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Preface to the Second Edition

For the successful operation of mechanical devices, from spinning computer disks
to automobiles to large electric generators of nuclear power stations, it is essential that the
components that are destined to move relative to one another do so with low friction and
rate of wear. This is made possible through appropriate design and utilization of fluid film
bearings. Traditionally, fluid film lubrication was a purely mechanical subject, but with the
emergence of bioengineering, the technology also finds application in lubricating artificial
joints, contact lenses, and mechanical heart pumps, to name a few. In this second edition, I
have tried to give a flavor of some of these advances. The contents of the first edition remain
valid by and large, as they deal with the fundamentals that have changed little. Thus, this
edition represents addition, rather than revision, of material. Chapter 2 is rewritten, however,
to align it with a more complete discussion of constitutive theory. Chapter 3, the chapter
covering thick-film lubrication, features a section on surface texturing; another section
treats surface roughness in a more thorough manner. The chapter on turbulence includes the
handling of flow with significant inertia. In the treatment of elastohydrodynamic lubrication,
covered in Chapter 8, I tried to convey basic ideas of the multigrid method and touched
on multilevel multi integration. The chapter on lubrication with non-Newtonian fluids
discusses the “qualitative” EHL, and contains a discourse on lubrication with piezoviscous
fluids, relative to the Reynolds equation. This chapter also comprises a thorough discussion
of blood as lubricant, with a view to the application of lubrication theory to artificial
organs. Chapters 12 and 13 are new. In the first of these, I concentrate on ultra-thin films,
both liquid and gaseous. The chapter discusses and classifies recent research results and,
particularly for gas films but also for liquid films, outlines design principles. The chapter
closes with the listing of 92 up-to-date references. The last chapter, Biotribology, is devoted
to lubrication of the hip joint. Its two principal sections discuss lubrication of natural
joints and artificial joints. The first of these presents the various theories of natural joint
lubrication including microelastohydrodynamic lubrication, biphasic models, and boundary
lubrication. The second section lists the various existing constructs of total hip replacement
and their relative performance. This last chapter surveys 60 references in all.

Compared to the first edition, the second edition contains more than 70 new pictorial
representations of recent research results. I trust that the reader will find these additions
worthwhile.

xiii





Preface to the First Edition

Fluid film bearings are machine elements which should be studied within the
broader context of tribology, “the science and technology of interactive surfaces in relative
motion and of the practices related thereto.”∗ The three subfields of tribology – friction,
lubrication, and wear – are strongly interrelated. Fluid film bearings provide but one aspect
of lubrication. If a bearing is not well designed, or is operated under other than the design
conditions, other modes of lubrication, such as boundary lubrication, might result, and
frictional hearting and wear would also have to be considered.

Chapter 1 defines fluid film bearings within the context of the general field of tribology,
and is intended as an introduction; numerous references are included, however, should a
more detailed background be required. Chapters 2, 3, and 4 outline classical lubrication
theory, which is based on isothermal, laminar operation between rigid bearing surfaces.
These chapters can be used for an advanced undergraduate or first-year graduate course.
They should, however, be augmented with selections from Chapter 8, to introduce the
students to the all-important rolling bearings, and from Chapter 9, to make the student
realize that no bearing operation is truly isothermal. Otherwise, the book will be useful to
the industrial practitioner and the researcher alike. Sections in small print may be omitted on
first reading – they are intended for further amplification of topics. In writing this book, my
intent was to put essential information into a rational framework for easier understanding. So
the objective was to teach, rather than to compile all available information into a handbook.
I have also included thought-provoking topics; for example, lubrication with emulsions,
the treatment of which has not yet reached maturity. I expect significant advances in this
area as it impacts on the environment.

The various chapters were read by Dr. M. L. Adams, Case Western Reserve University;
Dr. M. Fillon, University of Poitiers, France; Dr. S. Jahanmir, National Institute for Stan-
dards and Technology; Dr. F. E. Kennedy, Dartmouth College; Mr. O. Pinkus, Sigma Inc.;
Dr. K. R. Rajagopal, Texas A & M University; Dr. A. J. Szeri, University of California at
Berkeley; and Dr. J. A. Tichy, Rensselaer Polytechnic Institute. However, in spite of the
considerable assistance I received from various colleagues, any mistakes are mine alone.

The typing was expertly done by my daughter Maria Szeri-Leon and son-in-law Jorge
Leon. I am grateful to them for their diligence and perseverance; not even their wedding
interrupted the smooth flow of the project. I would also like to thank Ms. Florence Padgett,
Editor at Cambridge University Press, for suggesting the project and for having confidence
in me. My thanks are also due to Ms. Ellen Tirpak, Senior Project Manager at TechBooks,
for providing expert editing of the manuscript.

∗British Lubrication Engineering Working Group, 1966.
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CHAPTER 1

Introduction

The term tribology, meaning the science and technology of friction, lubrication, and wear,
is of recent origin (Lubrication Engineering Working Group, 1966), but its practical aspects
reach back to prehistoric times. The importance of tribology has greatly increased during
its long history, and modern civilization is surprisingly dependent on sound tribological
practices.

The field of tribology affects the performance and life of all mechanical systems and
provides for reliability, accuracy, and precision of many. Tribology is frequently the pacing
item in the design of new mechanical systems. Energy loss through friction in tribo-
elements is a major factor in limits on energy efficiency. Strategic materials are used in
many tribo-elements to obtain the required performance.

Experts estimate that in 1978 over 4.22 × 106 Tjoule (or four quadrillion Btu) of energy
were lost in the United States due to simple friction and wear – enough energy to supply
New York City for an entire year (Dake, Russell, and Debrodt, 1986). This translates to
a $20 billion loss, based on oil prices of about $30 per barrel. Most frictional loss occurs
in the chemical and the primary metal industries. The metalworking industry’s share of
tribological losses amount to 2.95 × 104 Tjoule in friction and 8.13 × 103 Tjoule in wear;
it has been estimated that more than a quarter of this loss could be prevented by using
surface modification technologies to reduce friction and wear in metal working machines.
The unsurpassed leader in loss due to wear is mining, followed by agriculture.

1.1 Historical Background

There is little evidence of tribological practices in the early Stone Age. Neverthe-
less, we may speculate that the first fires made by humans were created by using the heat
of friction. In later times hand- or mouth-held bearings were developed for the spindles of
drills, which were used to bore holes and start fires. These bearings were often made of
wood, antlers, or bone; their recorded use covers some four millennia. Among the earliest-
made bearings were door sockets, first constructed of wood or stone and later lined with
copper, and potter’s wheels, such as the one unearthed in Jericho, dated 2000 BC. The
wheel contained traces of bitumen, which might have been used as a lubricant.

Lubricants were probably used on the bearings of chariots, which first appeared ca.
3500 BC (McNeill, 1963). One of the earliest recorded uses of a lubricant, probably
water, was for transportation of the statue of Ti ca. 2400 BC. Considerable development
in tribology occurred in Greece and Rome beginning in the fourth century BC, during and
after the time of Aristotle. Evidence of advanced lubrication practices during Roman times
is provided by two pleasure boats that sank in Lake Nemi, Italy, ca. AD 50; they contain
what might be considered prototypes of three kinds of modern rolling-element bearings.
The Middle Ages saw a further improvement in the application of tribological principles,
as evidenced by the development of machinery such as the water mill. An excellent account

1



2 1 / Introduction

of the history of tribology up to the time of Columbus is given by Dowson (1973). See also
Dowson’s History of Tribology (Dowson, 1979).

The basic laws of friction were first deduced correctly by da Vinci (1519), who was
interested in the music made by the friction of the heavenly spheres. They were redis-
covered in 1699 by Amontons, whose observations were verified by Coulomb in 1785.
Coulomb was able to distinguish between static friction and kinetic friction but thought
incorrectly that friction was due only to the interlocking of surface asperities. It is now
known that friction is caused by a variety of surface interactions. These surface interac-
tions are so complex, however, that the friction coefficient in dry sliding still cannot be
predicted.

The scientific study of lubrication began with Rayleigh, who, together with Stokes,
discussed the feasibility of a theoretical treatment of film lubrication. Reynolds (1886) went
even further; he detailed the theory of lubrication and discussed the importance of boundary
conditions. Notable subsequent work was done by Sommerfeld and Michell, among others.
However, for many years the difficulty of obtaining two-dimensional solutions to Reynolds’
pressure equations impeded the application of lubrication theory to bearing design. This
impediment was finally removed with the arrival of the digital computer (Raimondi and
Boyd, 1958).

In contrast to friction, the scientific study of wear is more recent. As sliding wear, a
term often used to define progressive removal of material due to relative motion at the
surface, is caused by the same type of interaction as friction, the quantitative prediction
of wear rate is fraught with the same difficulties. The situation is even more gloomy, as
under normal conditions the value of the coefficient of friction between different metal pairs
changes by one order of magnitude at most, while corresponding wear rates can change by
several orders. Although there have been attempts to predict wear rate, Archard’s formula
(Archard, 1953) being perhaps the most noteworthy in this direction, for the foreseeable
future at least, the designer will have to rely on experimentation and handbook data (see
Peterson and Winer, 1980).

1.2 Tribological Surfaces

Even early attempts to develop a theory of friction recognized the fact that all
practically prepared surfaces are rough on the microscopic scale. The aspect ratio and the
absolute height of the hills, or asperities, and valleys one observes under the microscope
vary greatly, depending on material properties and on the method of surface preparation.
Roughness height may range from 0.05 μm or less on polished surfaces to 10 μm on
medium-machined surfaces, to even greater values on castings. Figure 1.1 shows a size
comparison of the various surface phenomena of interest in tribology.

When two solid surfaces are brought into close proximity, actual contact will be made
only by the asperities of the two surfaces, specifically along areas over which the atoms of
one asperity surface are within the repulsive fields of the other.1 The real area of contact Ar,
which is the totality of the individual asperity contact areas, is only a fraction of the apparent

1The equilibrium spacing of atoms is on the order of 0.2–0.5 nm (2–5 Angstrom); at distances less
than the equilibrium spacing, the repulsive forces dominate, while at greater distances the forces
of attraction are influential. The equilibrium spacing changes with temperature; macroscopically we
recognize this change as thermal expansion.
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Figure 1.1. Comparative size of surface-related phenomena. (Reprinted with permission from
Williamson, J. B. P. The shape of surfaces. In Booser, E. R. CRC Handbook of Lubrication.
Copyright CRC Press, Boca Raton, Florida, C© 1984.)

area of contact, perhaps as small as 1/100,000 at light loads. The areas of individual asperity
contacts are typically 1 to 5 μm across and 10 to 50 μm apart.

The topography of engineering surfaces indicates features of four different length scales:
(1) error of form is a gross deviation from shape of the machine element, (2) waviness is of
a smaller scale and may result from heat treatment or from vibration of the workpiece or the
tool during machining, (3) roughness represents closely spaced irregularities and includes
features that are intrinsic to the process that created the surface, and (4) surface features on
the atomic scale are important for the recording industry and in precision machining.

One of the methods used for describing surface roughness consists of drawing a fine
stylus across it. The stylus is usually a conical diamond with a radius of curvature at its
tip of the order of 2 μm. The movement of the stylus is amplified, and both vertical and
horizontal movements are recorded electronically for subsequent statistical analysis. The
instrument designed to accomplish this is the profilometer. Clearly, such an instrument is
limited in resolution by the diameter and the radius of curvature of the tip of the stylus. A
profilometer trace2 of an engineering surface is shown in Figure 1.2.

Two modern instruments, the scanning electron microscope and the transmission electron
microscope (Sherrington and Smith, 1988), have resolution higher than profilometers and
are employed extensively in surface studies. Optical interferometers, which can record sur-
face profiles without distortion or damage, have recently come into use thanks to advances

2That the vertical amplification is typically 10–1000 times greater than the horizontal one has led
to the popular misconception that engineering surfaces support steep gradients. Machined surfaces
have aspect ratios normally found in the topography of the Earth, the slopes rarely exceeding 5–10◦;
Figure 1.2 is a distortion of this.
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Figure 1.2. Profilometer trace of a rolled metal specimen. The vertical magnification is 20
times the horizontal magnification.

in microprocessors. Vertical resolution of the order of 1 nm has been achieved by opti-
cal interferometers, although the maximum measurable height is somewhat limited by the
depth of focus of these instruments (Bhushan, Wyant, and Meiling, 1988). The atomic force
microscope measures the forces between a probe tip and the surface and has been used for
topographical measurement of surfaces on the nanometers scale. Its modification, known
as the friction force microscope (Ruan and Bhushan, 1994) is used for friction studies on
the atomic scale. Details of these recent additions to the arsenal of the surface scientist can
be found in the excellent review article by Bhushan, Israelachvili, and Landman (1995).

To discuss surface roughness quantitatively, let ξ (x) represent the height of the surface
above an arbitrary datum at the position x, and let ξ̄ be its mean value as depicted in Fig-
ure 1.3. Furthermore, denote by |η(x)| the vertical distance between the actual surface at x
and the mean. Surface roughness is often characterized in terms of the arithmetic average,
Ra, of the absolute value of surface deviations from the mean

Ra = 1

L

∫ L/2

−L/2
|η(x)|dx, (1.1)

Figure 1.3. Schematics of a surface showing mean surface height, ξ̄ , and surface deviation
from mean height, η(x).
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or in terms of its standard deviation [i.e., root mean square (rms)], Rq, defined by

R2
q = 1

L

∫ L/2

−L/2
η2(x) dx. (1.2)

where L is the sample length.
The rms value, Eq. (1.2), is some 10–20% greater than the Ra value for many com-

mon surfaces; for surfaces with Gaussian distribution Rq = 1.25Ra. Typical values of Ra

for metals prepared by various machining methods are: turned, 1–6 μm; course ground,
0.5–3 μm; fine ground, 0.1–0.5 μm; polished, 0.06–0.1 μm; and super finished, 0.01–
0.06 μm.

Another quantity used in characterizing surfaces is the autocorrelation function, R(�), it
has the definition (see Figure 1.3)

R(�) = 1

L

∫ L/2

−L/2
η(x)η(x + �) dx. (1.3)

R(�) attains its maximum value at � = 0, equal to Rq
2, then vanishes rapidly as � is

increased. Its normalized value, r(�) = R(�)/R2
q , is called the autocorrelation coefficient.

Peklenik (1968) analyzed surfaces that were produced by different machining techniques
and proposed a surface classification based on the shape of the correlation function and the
magnitude of the correlation length λ0.5, defined by R(λ0.5) = 0.5.

The Fourier cosine transform, P(ω), of the autocorrelation function

P (ω) = 2

π

∫ ∞

0
R(�) cos(ω�) d�, (1.4)

is a quantity particularly suitable to the study of machined surfaces (see Figure 1.5), since it
clearly depicts and separates strong surface periodicities that may result from the machining
process (i.e., waviness).

There are other numerical characteristics of surfaces in use; to define these we make
recourse to probability theory. To this end consider the random variable ξ , representing
the height of the surface at some position x relative to an arbitrary datum, and examine
the event ξ < y, signifying that the random variable ξ has a value less than the number y.
The probability of this event occurring, designated by P (ξ < y), is a function of y. Define
the integral distribution function by F (y) = P (ξ < y), then F(−∞) = 0, F(+∞) = 1 and
0 ≤ F (y) ≤ 1. The random variable ξ is considered known if its integral distribution, F(y),
is given.

For any two numbers y2 and y1, where y2 > y1, the probability of the event ξ < y2 is
given by the sum of the probabilities that ξ < y1 and y1 ≤ ξ < y2 or

P (ξ < y2) = P (ξ < y1 or y1 ≤ ξ < y2)

= P (ξ < y1) + P (y1 ≤ ξ < y2). (1.5)

From Eq. (1.5) we find that

P (y1 ≤ ξ < y2) = P (ξ < y2) − P (ξ < y1)

= F (y2) − F (y1), (1.6)
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Figure 1.4. Illustration of the probabilistic terminology used.

In the case of a continuous random quantity the distribution function is differentiable.
Define the probability density function or probability distribution by

f (y) = lim

y→0

F (y +
y) − F (y)


y
. (1.7)

From here we can show that the probability that the random variable ξ has a value between
y and y + dy is

P (y ≤ ξ < y + dy) = F (y + dy) − F (y) = f (y) dy,

and that the probability that ξ is located between the numbers a and b is

P (a ≤ ξ < b) =
∫ b

a

f (y) dy.

Instead of the probability density function f (y) itself, its various moments are often
employed. The first initial moment, given by

ξ̄ =
∫ ∞

−∞
yf (y) dy, (1.8)

is the mean value of the random variable ξ (Figure 1.4). It is equivalent to Ra of Eq. (1.1).
The fluctuation about the mean can now be defined by η = ξ − ξ̄ ; this is the (random)

quantity appearing in Eqs. (1.1) and (1.2).
The first central moment, i.e., the moment about the mean, of the probability density

function is zero. Its second central moment

σ 2 =
∫ ∞

−∞
(y − ξ )2f (y) dy (1.9)

is nonnegative, and it is called the variance of the random variable ξ . The square root of
the variance is termed the standard deviation and is equivalent to the rms. of the deviation
from the mean, σ = Rq .

Many variables that express the results of physical, biological, or medical experiments
are, at least to first approximation, distributed according to

f (y) = 1

σ
√

2π
exp[−(y − ξ̄ )2/2σ 2], (1.10)

the so-called normal or Gaussian distribution. For this reason, the normal distribution
has played an important role in the development of statistical theory, and one frequently
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encounters Eq. (1.10) in applications. We note from Eq. (1.10) that if the random variable ξ
is normally distributed, it is characterized completely by its mean value ξ̄ and its standard
deviation σ . The simplicity in representation this affords is the reason why there is often
great compulsion to declare a distribution Gaussian even though it may deviate from
Eq. (1.10).

Other statistical quantities in use for surface characterization are the third and fourth
(nondimensional) central moments, the skewness, Sk, and the kurtosis or “hump,” K,
respectively

Sk = 1

σ 3

∫ ∞

−∞
(y − ξ̄ )3f (y) dy, K = 1

σ 4

∫ ∞

−∞
(y − ξ̄ )4f (y) dy. (1.11)

Both Sk and K are dimensionless numbers; Sk = 0 indicates perfect symmetry, while K is
small for a flat, broad distribution. For normal distribution Sk = 0 and K = 3.

There are many ways to statistically characterize surface roughness. Which of the
characterizations is best is application dictated.

It has been shown recently (Sayles and Thomas, 1978) that the value of the various
averages defined here changes with the sampling length L, i.e., surface roughness is a
nonstationary random function of position. It is then more amenable to treatment by fractal
methods (Majumdar and Bhushan, 1990; Wang and Komvopoulos, 1994).

Figure 1.5 shows statistical characteristics of some machined surfaces:

Manufacturing Peak to valley
processes Ra (μm) σ (μm) Sk K height (μm) Figure

Shaping, fine 8.0 11.0 0 2.8 47.0 1.5 (a)
Milling 2.3 2.7 +0.22 2.4 13.0 1.5 (b)
Surface grinding 1.0 1.3 +0.17 3.1 15.0 1.5 (c)
Superfinish 0.18 0.25 +0.32 5.9 1.6 1.5 (d)

The asperity-height distribution of many engineering surfaces is approximately Gaus-
sian. Several surface-finishing processes, such as bead-blasting, which are the cumulative
result of a large number of random happenings, will encourage a Gaussian distribution.3

Other processes, including wear, will destroy it. Figure 1.6 follows such a process. A mild
steel pad lubricated with SAE-20 oil was worn against a finely ground hard steel flat (N.B.,
when plotted on probability paper, the Gaussian distribution appears as a straight line).

1.3 Friction

If two solid bodies, in direct or indirect surface contact, are made to slide relative
to one another there is always a resistance to the motion called friction. Friction is beneficial
in many instances, and we may even try to increase it. However, in other cases friction is
energy consuming, and we endeavor to decrease it, although it may never be eliminated
entirely.

3Let the n random variables ξ1, . . . , ξn be independent. Then the central limit theorem asserts, under very
general conditions, that in the limit as n → ∞ the standardized sum (ξ − ξ̄ )/σ approaches Gaussian
distribution (Cramer, 1955). Here ξ̄ = ξ̄1 + · · · + ξ̄n, σ 2 = σ 2

1 + · · · + σ 2
n and ξ = ξ1 + · · · + ξn.
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Figure 1.5. Examples of engineering surfaces (a) fine shaped; (b) milled; (c) surface ground
(d) superfinished: their distributions, autocorrelation functions, power spectra. (Reprinted by
permission of the Council of the Institution of Mechanical Engineers from Peklenik, J. New
developments in surface characterization and measurements by means of random process
analysis, Proc. Inst. Mech. Engrs. 182, Pt. 3K, 108–126, 1968.)

Friction is present in all machinery, and it converts part of the useful kinetic energy
to heat, thus decreasing the overall efficiency of the machine. About 30% of the power
in an automobile (Hershey, 1966) and about 1.5% in a modern turbojet engine is wasted
through friction. The two journal bearings of a large generator dissipate perhaps 0.75 MW
or more. In 1951, G. Vogelpohl estimated that one-third to one-half of the world’s energy
production is consumed by friction (Fuller, 1956). Not all friction is undesirable, however,
and in numerous instances we promote it, e.g., in brakes.
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Figure 1.6. The effect of wear. The initial height distribution (A) and six non-Gaussian
distributions (open circles) of a bead blasted surface represent, from right to left, progressive
states. Height distributions of this form are typical of those created by stratified secondary
preparation processes. (Reprinted with permission from Williamson, J. B. P. The shape of
surfaces. In Booser, E. R. CRC Handbook of Lubrication. Copyright CRC Press, Boca Raton,
Florida, C© 1984.)

Laws of Friction

The two basic laws of friction:

1. Friction force F is proportional to the normal force W between surfaces,
2. Friction force is independent of the (apparent) area of contact,

were first deduced by da Vinci (1519) and discussed by Amontons (1699). Coulomb (1785)
verified these laws experimentally.4 Coulomb’s observation that “kinetic friction is nearly
independent of the sliding speed” is at times referred to as the third law of friction. The laws
of friction have remained intact for more than 400 years, and even modern experimental
research supports them in numerous cases.

This is not true, however, for the origin of friction as discussed by Coulomb. At first
Coulomb inclined toward the view that friction is produced by molecular adhesion between
the interacting surfaces, which is somewhat in line with present-day theories. Later Coulomb
rejected this in favor of the view that friction is produced by interlocking surface asperities.
According to this theory, the frictional force is the force required to lift the load over the
asperities. Considering that sliding down the asperities releases as much energy as was
spent on climbing up, Coulomb’s friction is nondissipative, as was first pointed out by
Leslie in 1804.

4To derive Amontons’ laws, we need the assumption that the real area of contact is proportional to the
normal load Ar = qW, where q is a constant. If now we denote the friction force per unit area by τ ,
we have for the friction force F = τ Ar, and Amontons’ laws follow at once. In the adhesion theory of
friction of Bowden and Tabor (1986), the constant q is made equal to the yield pressure p0.
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Figure 1.7. Elementary methods of measuring friction.

Most current theories recognize that frictional force in metals arises from three sources:
(1) the force necessary to shear adhesive junctions, formed at the real area of contact
between the asperities; (2) the deformation force, due to the ploughing of the asperities
of the harder metal through the asperities of the softer one; and (3) asperity deformation,
which is responsible for the static coefficient of friction – Suh (1986) lists the force required
for this as the third source of frictional force. Though these three forces, and the three effects
causing them, are not independent, it is customary to treat friction as a result of adhesion
interactions, plowing interactions, and asperity deformations. In elastomers, elastic and
viscoelastic effects dominate, while in ceramics the type of bonding (ionic in MgO and
Al2O3 and covalent in TiC, diamond, and SiC) limits plastic flow and the high plastic strains
associated with junction growth, at room temperature.

The idea of formation of adhesive junctions (cold welding) over the area of real contact
seems frivolous at first, until one considers ultraclean metallic surfaces. When such surfaces
are brought together in high vacuum (P < 10−8 Pa), the atoms of the real area of contact
approach one another across the interface. When they are within 2 nm (20 Angstrom), long
distance, weak van der Waals forces are first experienced. As the interfacial distance is
decreased to 0.2–0.1 nm, a full metallic bond will form and the pieces weld together. The
experiments of Buckley (1977) have been concerned with the force required to overcome
this so-called cold welding. The adhesive forces are sometimes greater than the forces
necessary to press the metals together. However, the metallic bond is completely broken if
extended to 0.5 nm, thus a surface film of this thickness signifies that only weak van der
Waals forces are acting. As a result, one should expect considerable reduction in adhesive
strength. These ideas recently have been confirmed by molecular dynamics simulations
(Landman, Luedtke, and Ringer, 1992).

Two elementary methods of measuring static friction, both considered by Leonardo da
Vinci, are illustrated in Figure 1.7. Though these methods are quick and convenient, they
have had limited success due to the response of the systems being too slow for variations in
the coefficient of friction to be detected. Once the body has started moving it will accelerate
under constant force, for in general fstatic> fkinetic. Even such a variation in friction can hardly
be detected by these simple methods. More sophisticated devices for measuring friction
are described by Bowden and Tabor (1986), who identify cleanliness of the surface as the
single most important factor in achieving repeatable friction results. Surface contaminants,
even when present in a layer only one molecule thick, are capable of drastically modifying
the friction coefficient because of the reduction in adhesive interactions. Table 1.1 lists fstatic

and fdynamic for various surface pairs under both dry and greasy (lubricated) conditions.
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Table 1.1. Coefficients of static and dynamic frictiona,b

Static Dynamic

Materials Dry Greasyc Dry Greasyc

Hard steel on hard steel 0.78(1) 0.11(1,a) 0.42(2) 0.03(5,h)
0.23(1,b) 0.08(5,c)
0.15(1,c) 0.08(5,i)
0.11(1,d) 0.06(5,j)
0.01(17,p) 0.08(5,d)
0.01(18,h) 0.11(5,k)

0.10(5,l)
0.11(5,m)
0.12(5,a)

Mild steel on mild steel 0.74(19) 0.57(3) 0.09(3,a)
0.19(3,u)

Hard steel on graphite 0.21(1) 0.09(1,a)
Hard steel on Babbitt 0.70(11) 0.23(1,b) 0.33(6) 0.16(1,b)
(ASTM 1) 0.15(1,c) 0.06(1,c)

0.08(1,d) 0.11(1,d)
0.09(1,e)

Hard steel on Babbitt 0.42(11) 0.17(1,b) 0.35(11) 0.14(1,b)
(ASTM 8)

0.11(1,c) 0.07(1,c)
0.09(1,d) 0.07(1,d)
0.08(1,e) 0.08(11,h)

Hard steel on Babbitt 0.25(1,b) 0.13(1,b)
(ASTM 10)

0.12(1,c) 0.06(1,c)
0.10(1,d) 0.06(1,d)
0.11(1,e)

Mild steel on cadmium silver 0.10(2,f)
Mild steel on phosphor bronze 0.34(3) 0.17(2,f)
Mild steel on copper lead 0.15(2,f)
Mild steel on cast iron 1.83(15,c) 0.23(6) 0.13(2,f)
Mild steel on lead 0.95(11) 0.5(1,f) 0.95(11) 0.30(11,f)
Nickel on mild steel 0.64(3) 0.18(3,x)
Aluminum on mild steel 0.61(8) 0.47(3)
Magnesium on mild steel 0.42(3)
Magnesium on magnesium 0.6(22) 0.08(22,y)
Teflon on Teflon 0.04(22) 0.04(22,f)
Teflon on steel 0.04(22) 0.04(22,f)
Tungsten carbide on tungsten carbide 0.2(22) 0.12(22,a)
Tungsten carbide on steel 0.5(22) 0.08(22,a)
Tungsten carbide on copper 0.35(23)
Tungsten carbide on iron 0.8(23)
Bonded carbide on copper 0.35(23)
Bonded carbide on iron 0.8(23)
Cadmium on mild steel 0.46(3)

(continued )
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Table 1.1 (continued)

Static Dynamic

Materials Dry Greasyc Dry Greasyc

Copper on mild steel 0.36(3) 0.18(17,a)
Nickel on nickel 1.10(16) 0.53(3) 0.12(3,w)
Brass on mild steel 0.51(8) 0.44(6)
Brass on cast iron 0.30(6)
Zinc on cast iron 0.85(8) 0.21(7)
Magnesium on cast iron 0.25(7)
Copper on cast iron 1.05(16) 0.29(7)
Tin on cast iron 0.32(7)
Lead on cast iron 0.43(7)
Aluminium on aluminium 1.05(16) 1.4(3)
Glass on glass 0.94(8) 0.01(10,p) 0.40(3) 0.09(3,a)

0.01(10,q) 0.12(3,v)
Carbon on glass 0.18(3)
Granite on mild steel 0.39(3)
Glass on nickel 0.78(8) 0.56(3)
Copper on glass 0.68(8) 0.53(3)
Cast iron on cast iron 1.10(16) 0.15(9) 0.07(9,d)

0.06(9,n)
Bronze on cast iron 0.22(9) 0.08(9,n)
Oak on oak (parallel to grain) 0.62(9) 0.48(9) 0.16(9,r)
Oak on oak (perpendicular) 0.54(9) 0.32(9) 0.07(9,s)
Leather on oak (parallel) 0.61(9) 0.52(9)
Cast iron on oak 0.49(9) 0.08(9,n)
Leather on cast iron 0.56(9) 0.36(9,t)

0.13(9,n)
Laminated plastic on steel 0.35(12) 0.05(12,t)
Fluted rubber bearing on steel 0.05(13,t)

a From Baumeister, T. Handbook of Mechanical Engineers, 7th ed. Copyright McGraw Hill Book
Co., C©1967. With permission.

b Key to lubricants used: a, oleic acid; b, Atlantic spindle oil (light mineral); c, castor oil; d, lard oil;
e, Atlantic spindle oil plus 2% oleic acid; f, medium mineral oil; g, medium mineral oil plus 1/2%
oleic acid; h, stearic acid; i, grease (zinc oxide base); j, graphite; k, turbine oil plus 1% graphite; l,
tubine oil plus 1% stearic acid; m, turbine oil (medium mineral); n, olive oil; p, palmitic acid; q,
ricinoleic acid; r, dry soap; s, lard; t, water; u, rape oil; v, 3-in-1 oil; w, octyl alcohol; x, triolein; y,
1% lauric acid in paraffin oil.

c Note that “Greasy” is not sufficient to describe surface condifions. The friction coefficient
depends on other factors such as speed, load, enviroment, etc. Thus Table 1.1 is, necessarily,
an oversimplification.

Asperity Contact

For the sake of this illustration, assume that the two surfaces in contact have
hemispherical-shaped asperities of radii r1 and r2, respectively. As the normal load is
slowly increased, contact is first made by the most prominent asperities. According to
Hertz (Johnson, 1992), the deformation of these asperities is initially elastic and the region
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of contact is a circle with radius

a =
(

3WR

2E′

)1/3

. (1.12)

Here W is the load, E′ is the effective contact modulus5, R is the effective radius

1

E′ = 1

2

(
1 − ν2

1

E1
+ 1 − ν2

2

E2

)
,

1

R
= 1

r1
+ 1

r2
, (1.13)

and E1, ν1 and E2, ν2 are Young’s modulus and Poisson’s ratio for the two solids, respectively.
At this elastic stage the real area of contact is proportional to W2/3 and, using Eq. (1.12),

the mean pressure over the contact circle is given by

p̄ = 2

3π

(
3WE′2

2R2

)1/3

. (1.14)

As the load is increased the mean pressure p̄ will also increase, until the elastic limit
(of the softer of the two materials) is reached. This will first occur at the point Z, located
at z/a = 0.48 (when ν = 0.3) below the center of the contact circle, as indicated in
Figure 1.8; here the shear stress first achieves its yield value k (Johnson, 1992). The yield
value6 of the shear stress is equal to 0.5σ yp, where σ yp is the yield stress in uniaxial tension.
At the instant of reaching the yield value of shear, the mean contact pressure attains the
value p̄ ≈ 1.1σyp.

Though the elastic limit is attained atZ = 0.48 as the mean contact pressure reaches p̄ =
1.1σyp, plastic flow is not yet possible due to the constraining influence of the surrounding
material in which deformation is still mainly elastic. Consequently, if the load is removed
at this stage, only a slight amount of residual deformation is noticeable.

As the normal load is further increased, the zone of plastic deformation propagates
outward from the point where it first occurred, until it eventually reaches the surface;
the value of the mean pressure is now p̄ = p0 ≈ 3σyp. The mean pressure at this point
is essentially the indentation hardness value, H, of the material. This is why, for ductile
metals, H ≈ 3σ yp. For hard tool steel E = 200 GPa, σ yp ≈ 1.96 GPa; an asperity of radius
r = 1 μm will deform plastically when the load is less than 10−5 N.

Addition of a tangential force to the normal load introduces several effects. The location
of the maximum shear stress moves closer to the surface. Friction also increases the
maximum value reached by von Mises yield parameter

J2 = 1
6 {(σx − σy)2 + (σy − σz)2 + (σz − σx)2} + τ 2

xy + τ 2
yz + τ 2

zx

so that yielding will occur at lower loads. This is shown in Figure 1.9, where the von Mises
yield parameter is plotted against f for ν = 0.3.

For single asperity contact, Eq. (1.12), the contact area is proportional to the 2/3 power
of the load and not to its first power, as apparently is required by Amontons’ laws (see
footnote 4). The asperities of real surfaces, however, are not of uniform height, as indicated

5Note that Johnson (1992) uses E∗ = E′/2 instead of our E′. The latter, our notation, is generally
employed in discussions on elastohydrodynamic lubrication (EHL).

6According to the Tresca yield criterion, a ductile material will yield under a slowly applied complex
state of stress when the maximum shear stress equals that which exists at yielding in a static tensile test
of the metal, i.e., at τmax = σ yp/2. Plastic flow in metals occurs along crystal planes so that a critical
shear stress criterion is preferable to other yield criteria.
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Figure 1.8. Stress distribution at the surface and along the axis of symmetry caused by (left)
uniform pressure and (right) Hertz pressure acting on a circular area of radius a. (Reprinted
with permission from Johnson, K. L. Contact Mechanics. Copyright Cambridge University
Press, C© 1992.)

by the profilometer trace in Figure 1.2, and do not all engage immediately as load is first
applied. Upon increasing the load, the number of asperities that take active part in carrying
the load will also increase. If, as in the probabilistic contact model of Greenwood and
Williamson (Greenwood, 1992), the number of asperity contacts is allowed to increase
with increasing load in such a manner that the average size of each asperity contact can
remain constant, the real area of contact becomes proportional to the load itself rather
than to its 2/3 power. Thus, even though the deformation is elastic, the Greenwood and
Williamson model supports Amontons’ law.

To illustrate this, we follow Greenwood (1992) and consider a rough surface with asper-
ity height distribution f (y), located at distance d from a perfectly smooth surface, as in Fig-
ure 1.10. If there are a total of N asperities (per unit area), the number of asperity contacts
with the plane is

n = N × P (d ≤ ξ ) = N × [1 − P (ξ < d)]

= N ×
[∫ ∞

−∞
f (ŷ) dŷ −

∫ d

−∞
f (ŷ) dŷ

]
(1.15a)

= N ×
∫ ∞

d

f (ŷ) dŷ.
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Figure 1.9. Variation of the maximum von Mises yield parameter, in and below the surface.
With friction in excess of 0.5, there is no longer a clear maximum. (Reprinted by permission of
the Council of the Institution of Mechanical Engineers from Hamilton, G. M. Explicit equations
for the stress beneath a sliding spherical contact. Proc. I. Mech. E., 197, 53–59, 1983.)

For a single asperity, we can obtain both the area of contact πa2 = πrδ, and the load
w = (2/3)E′√rδ3, in terms of the asperity compression δ = (z − d) and the radius of
curvature r. Then the total area of contact, Ar, and the total load, W, are given, respectively,
by (Johnson, 1992)

Ar = Nπr
∫ ∞

y

(ŷ − d)f (ŷ) dŷ (1.15b)

and

W = 2

3
NE′r1/2

∫ ∞

d

(ŷ − d)2/3f (ŷ) dŷ. (1.15c)

These equations can be evaluated once the probability distribution is known. Greenwood
and Williamson (Greenwood, 1992) chose an exponential distribution, f(y) = exp(−λ/y),
and found

n = N

λ
e−λd , (1.16a)

Ar = Nπr

λ2
e−λd , (1.16b)

Figure 1.10. Loading a rough surface, of asperity height distribution f(y), against a smooth
plane a distance d apart.
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and

W = 1

2
NE′

(πr
λ5

)1/2
e−λd , (1.16c)

so that

Ar =
√

2λπr

E′ W (1.16d)

and the area of contact is directly proportional to load, as required by Amontons’ laws.
Though the above derivation was for fully elastic deformation, we can glimpse at the

onset of plastic flow (Greenwood, 1992). The fraction of asperity contacts at which plastic
deformation occurs is proportional to δy/σ , where σ is the standard deviation of asperity
height, Eq. (1.9), and δy is the asperity compression at first yield, i.e., when p̄ ≈ H/3.
Greenwood and Williamson (1966) defined the so-called plasticity index ψ to be inversely
proportional to

√
σ/δy , so that

ψ = E′

2H

√
σ

r
. (1.17)

� ≈ 1 corresponds to 1% of the total contact area at yielded contacts. Asperity contact will
become plastic when the plasticity index exceeds unity (note that � is independent of the
average pressure p̄). For metal surfaces produced by normal engineering methods, 0.1 <
� < 100.

Adhesion Theory of Friction

In metals it has been found that the pressure, p0, that the asperities can support
when subjected to localized plastic deformation is approximately constant. In the plastic
range, then, if we double the load, the area of contact must also double in order to maintain a
constant yield pressure. Let A1, A2, A3, . . . represent a series of areas of contact, supporting
loads W1, W2, W3, . . . If W is the total load and Aro is the total area of real contact under
normal load, we have

= W1 +W2 +W3 + · · ·
= p0A1 + p0A2 + p0A3 + · · ·
= p0(A1 + A2 + A3 + · · ·)
= p0Aro. (1.18)

From this it follows that the area of real contact Aro is dependent neither on the size nor on
the shape of the area of apparent contact. It is determined only by the yield pressure p0 and
the load (Bowden and Tabor, 1956).

Note that the real area of contact is proportional to the load when the deformation is
plastic, as is required by Amontons’ law. However, fully plastic deformation of the asperities
seems feasible when the surfaces are used only a limited number of times. It is not realistic
to expect the same surface, say the surface of a cylinder, to deform plastically during
every one of the millions of times the other surface, the piston in this case, makes a pass.
One is inclined to think that after a short run-in period almost all the plastic (irreversible)
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deformations that were to take place have done so, and that after run-in the load carrying
deformation will be mainly elastic. On the second and successive passes the material is
subjected to the combined action of contact stresses and residual stresses from previous
passes; the effect of the latter is such as to make yielding less likely.7 The trouble with
this line of thought is that, at least according to the Hertz analysis for an isolated, single
asperity, Eq. (1.12), the area of contact in elastic deformation is proportional to the 2/3
power of the load, which would negate Amontons’ law. If, as in the probabilistic contact
model of Greenwood and Williamson (Greenwood, 1992), the number of asperity contacts
is allowed to increase with increasing load in such a manner that the average size of each
asperity contact can remain constant, the real area of contact becomes proportional to the
load itself rather than to its 2/3 power, Eq. (1.16d). Thus, even though the deformation is
elastic, the Greenwood and Williamson model supports Amontons’ law.

As the surfaces make contact only at the tips of their asperities, the pressures are
extremely high. Over the regions of intimate contact strong adhesion takes place, and the
specimens become, in effect, a continuous body (cold welding). As the surfaces are made
to slide over one another, the just welded junctions are sheared. Let s represent the shear
strength of the material and Aro the area of real contact. We may then write Aro × s for the
shear force. For the coefficient of friction we have

f = F

W
= Aros

Arop0
= s

p0
= junction shear strength

yield pressure
. (1.19)

This conclusion will be considerably altered in practice. For most materials, s is of order
0.2 × p0, so that according to this model f = 0.2. This is far too small. For identical metals
in normal atmosphere f = O(1) and for clean metals in vacuum f can reach 10 or larger.
This compelled Bowden and Tabor to modify Eq. (1.19) and the argument leading up to it.

The asperities are already loaded to their elastic limit by the normal load as the interfa-
cial tangential force is applied. To support the combined normal and tangential forces, the
plasticity condition at the junction would now be exceeded, which cannot be, unless there
were an appropriate increase of the real area of contact, from Aro to some Ar. This mech-
anism, referred to as junction growth, has a profound effect on the value of the coefficient
of friction.

Junction Growth

In the previous section the real area of contact Aro was determined solely by the
normal load and the yield pressure, Aro = W/p0. When a tangential load is also applied,
it is more appropriate to calculate the real area of contact on the basis of the combined
tangential and normal loading.

When subjecting a slab of solid material to the combination of (a) simple shear τ and
(b) normal loading p, the Tresca yield criterion, viz., k ≡ τmax = σ yp/2, takes the form
(Figure 1.11)

4τ 2 + p2 = σ 2
yp. (1.20)

7This is known as the shakedown principle (Johnson, 1992).
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Figure 1.11. Simple loading of an asperity and the corresponding Mohr’s circle. (Reprinted
with permission from Arnell, R. D., Davies, P. B., Halling, J. and Whomes, T. L. Tribology
Principles and Design Applications. Copyright Springer Verlag, C© 1991.)

Substituting p = W/Ar and τ = F/Ar into Eq. (1.20), we find that

Ar

Aro
=
√

1 +
(

2F

W

)2

. (1.21)

Here, Ar is the area of real contact under the combined normal and tangential loads and
Aro = W/σ yp. Equation (1.21) verifies our earlier assertion on junction growth. The coeffi-
cient of friction is now given by

f = 1/2√(
k
τ

)2 − 1
. (1.22)

There is nothing in this model, Eq. (1.21), to limit junction growth, which continues
indefinitely if (1) the surfaces are perfectly clean and (2) the metals are very ductile (Tabor,
1981).

When present, contaminants will limit junction growth. To illustrate this mechanism, let
τ i represent the interfacial yield stress, which is less than or equal to the shear yield stress
of the asperity material in bulk, k. We now write F = Ar τ i for the tangential force and
obtain from the Tresca yield criterion, Eq. (1.20), an improved formula for the coefficient
of friction

f = 1/2√(
k
τi

)2
− 1

. (1.23)

The variation of f with τ i is illustrated in Figure 1.12.
In analogy with combined loading and shear, p and τ acting on an actual adhesive

junction are assumed by Childs (1992) to obey

p2 + ατ 2 = βk2, (1.24)

where α and β are constants. In place of Eqs. (1.22) and (1.23), Childs obtains

Ar

Aro
=
√

1 + α
(
F

W

)2

, f = π

k

[
β − α

(τ
k

)2
]−1/2

(1.25)
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Figure 1.12. Junction growth: variation of the coefficient of friction with the interfacial yield
stress τ i.

Equation (1.25) suggests that junction growth is not the only possible mechanism for
reducing friction. If τ/k is of order unity and β > α + 1, then f < 1 results from the second
part of Eq. (1.25). It is also indicated that a small amount of weakening at the interface,
caused by a thin contaminant film of shear strength τ , can produce a significant reduction
in the coefficient of friction. This is the principle underlying boundary lubrication, and
lubrication by soft metal films.

Ploughing

For a hard conical asperity riding on a softer metal, we can illustrate the magni-
tude of the ploughing term by considering a conical asperity of semi-angle θ , shown in
Figure 1.13.

The pressure needed to make the softer material flow ahead of the advancing hard asperity
can be taken to be the hardness, H, of the softer material. The normal and tangential forces
supported by the asperity may then be calculated, respectively, as

W =
(
πr2

2

)
H = 1

2
Hπrh2 tan2 θ,

(1.26)
Fp = rhH = Hh2 tan θ.

Figure 1.13. A conical asperity of semi-angle θ indents a softer metal: a model for ploughing.
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Under these idealized conditions, the coefficient of friction due to ploughing is

fp = Fp

W
= 2 cot θ

π
. (1.27)

Under normal circumstances the slope of the asperities rarely exceeds 5–10◦, fixing the
range of θ at 85–80◦; this yields the ploughing component of the coefficient of friction lying
between 0.07 and 0.14. As the ploughing component is small, it may be considered additive
to the adhesion component. A more thorough plasticity theory is called for to nonlinearly
combine the two contributions to friction (Suh, 1986).

Friction of Metals

The coefficient of friction is given as the sum of three terms, fa, fp, and fd the adhe-
sion component, the ploughing component, and the deformation component, respectively.
According to Suh (1986), the adhesion component for metals varies from about 0 to 0.4,
depending on the presence of a contaminant layer covering the asperities. The ploughing
component is smaller than the adhesion component, usually not exceeding 0.1, except for
identical metals sliding against one another, having wear particles trapped between the
surfaces. The friction component due to asperity deformation, fd, can be as large as 0.4 to
0.75 in special cases, and is believed to be responsible for the static coefficient of friction
(Suh, 1986).

Suh (1986) defines six stages of surface interaction that characterize time-dependent
friction behavior of metals (Figure 1.14). The relative importance of fa, fp, and fd changes
from stage to stage. Stage I is characterized by ploughing of the surface by asperities;
the coefficient of friction is largely independent of material combinations. In Stage II the
value of friction is beginning to rise. The slope is steeper if wear particles generated by
asperity deformation and fracture become trapped. The swift increase in the number of
wear particles gives the friction curve a steep slope during Stage III; another contributor
here is adhesion due to the rapid increase of clean surfaces. Friction remains constant
during Stage IV as adhesion and asperity deformation are constant now, as is the number
of trapped wear particles. Stage V occurs when a very hard stationary slider is slid against
a soft specimen. The asperities of the slider are gradually removed, creating a mirror finish

Figure 1.14. Six stages in the frictional force versus distance slid relationship. (Reprinted with
permission from Suh, N. P. Tribophysics. Copyright Prentice-Hall, C© 1986.)
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of the hard surface. A decrease in friction will result in this case, due to the decrease in
asperity deformation and plowing. In Stage VI the hard surface is mirror smooth and the
value of the friction levels off. Stages V and VI do not occur if it is the hard slider that
moves and the soft specimen that is stationary (Suh, 1986).

Friction of Polymers

The interfacial bonding of polymers is of van der Waals type, the same as in the
bulk of the material. The tendency for shear to occur is in the bulk material (Briscoe and
Tabor, 1978). Two notable exceptions are Teflon (PTFE) and Ultra High Molecular Weight
Polyethylene (UHMWPE). When a polymer is sliding on metal or another polymer, the
deformation is mostly elastic, with virtually no plastic flow. For a given surface roughness
the value of the plasticity index for polymers is an order less than for metals.

Most polymers exhibit lower coefficient of friction at high normal load (Archard, 1953).
At low sliding velocity the coefficient of friction is generally low, it increases with sliding
speed to a maximum, then decreases again (Ettles, 1981).

Another important factor to take into account is that many polymers are viscoelastic.
Viscoelastic materials are both solid-like and fluid-like in their response to stress; the work
of deformation is neither completely stored, as in elastic solids, nor completely dissipated, as
in viscous fluids. These materials show a marked increase of flow stress with strain rate. The
coefficient of friction of polymers, sliding against one another or against a metal, varies
so widely that tabulation of friction coefficients would be meaningless. For viscoelastic
materials Amontons’ laws are not applicable.

Voyutski (1963) found that in most cases interfacial bonding is strongly strengthened by
diffusion of polymer chains across the interface. Polymers generally soften early or have
low melting points and poor heat conductivity. At high relative speed, the surface layers
often melt. However, friction still has both an adhesive component and a deformation
component.

Friction of Ceramics

The bonding within ceramics is largely covalent and very strong, but the force of
adhesion across the interface between contacting ceramics is of the van der Waals type and
is partly ionic. Friction is generally lower for ceramics than for metals owing to the weaker
interfacial bonds. These interfacial bonds will, at least in the absence of high temperatures,
be weaker than the bulk (Hutchings, 1992). Therefore, when surfaces are pulled or slid apart,
the break tends to occur along the original interface. If the ceramic is brittle, surface cracks
may develop at the rear of the moving junction, increasing the rate of energy dissipation.
The reader may wish to consult Jahanmir (1994) for further details on the tribological
properties of ceramics.

Thermal Effects of Friction

Almost all of frictional energy is dissipated in the form of heat. Continuous
rubbing of surfaces can build up not only significant temperatures but also large temperature
gradients in the contacting bodies. The nonuniform thermal expansion that accompanies
this can lead to loss of dimensional tolerance in the case of machine components.

It is relatively easy to set up energy conservation equations once the geometry and
thermal characteristics of the bodies are known and to calculate the average temperature
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field for given energy input. But heat does not enter the system in any easily definable
manner. Furthermore, it is generated instantaneously at the random asperity contacts of
the two surfaces. The instantaneous and random asperity temperatures, the so-called flash
temperatures that result from asperity interaction, are significantly higher than the nominal
temperature given by our steady-state energy conservation equations. A solution for flash
temperatures can be found in a book by Carslaw and Jaeger (1959), but this solution is
far too detailed to be reproduced here. For some recent work and bibliography, the reader
is referred to Tian and Kennedy (1993) and Tian and Kennedy (1994). The first of these
papers deals with the nominal surface temperature rise, while the second discusses local
flash temperature rise; the total frictional temperature rise is considered to be given by the
sum of these.

1.4 Wear

Wear is the progressive loss of substance of a body, due to relative motion at its
surface. Many different types of wear have been identified. Godfrey (1980), e.g., recognized
a dozen different types of wear, though at times it is not easy to differentiate between them.
In this introduction to wear we follow Rabinowicz (1965) and list four main types: sliding
wear, abrasive wear, corrosion, and surface fatigue. Only sliding wear and abrasive wear
will be discussed in some detail.

Research into wear follows two lines, wear modeling and the study of damaged surfaces.
Wear modeling, with the objective of engineering prediction of wear rates, is the older of
the two aspects of wear research. The study of damaged surfaces owes its existence to
significant recent advances in experimental methods and microscopy equipment.

Sliding Wear

In contrast to that of friction, the scientific study of sliding wear is recent. As
friction and sliding wear are caused by the same type of surface interaction, the quantitative
prediction of wear rates is fraught with the same difficulties as that of friction. However,
the situation is even more bleak, as under normal conditions the value of the coefficient of
friction between different metal pairs changes by one order of magnitude at most, while
corresponding wear rates can change by several orders. There have been numerous attempts
made in the past to predict wear rate, Archard’s formula (Archard, 1953) being one of the
most noteworthy in this direction.

To arrive at Archard’s wear rate equation, consider the asperities of opposing surfaces
as they make contact with one another while supporting the yield pressure p0 of the softer
material. Asperity contacts are assumed to occur uniformly over circular contact areas of
radius a. The elemental load carried by each asperity is then δW = πa2p0, and the total
load supported by n asperities is the sum

W = πp0

∑
n

a2. (1.28)

Now picture the asperities as having hemispherical tips of volume (2/3)πa3. On separat-
ing from its main body an asperity tip will contribute δV = (2/3)πa3 to the wear volume.8

8That the asperities are spherical and that the asperity is completely removed is a gross simplification
of actual conditions.
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Figure 1.15. Variation of wear rate, for various materials. (Reprinted with permission from
Archard, J. F. and Hirst, W. The wear of metals under unlubricated conditions. Proc. Roy. Soc.,
A 236, 397–410, 1956.)

However, not every asperity will break off on contact. If the probability of a particular
asperity breaking off on first contact is κ , then the wear volume per sheared distance per
asperity is

δQ = κ
(
δV

2a

)
= κπ

3
a2. (1.29)

Summing Eq. (1.29) for n asperities, substituting for �n a2 from Eq. (1.28), and recog-
nizing that the yield pressure equals the hardness value H, we have the wear volume per
distance slid, i.e., the wear rate, as

Q = KW
H
, (1.30a)

where the wear coefficient K = κ/3 is a pure number. It is found that K < 1 always, and
that the value of K can vary by several orders of magnitude when conditions change,9 even
for the same material pair. Equation (1.30) is Archard’s wear rate formula.

When written in the form10

V ∝ W

H
L, (1.30b)

where V = QL is the volume of material worn, Archard’s wear rate formula has the following
interpretation, called Archard’s laws for sliding wear:11

(1) The wear volume is proportional to the distance slid,
(2) The wear volume is proportional to the total load,
(3) The wear volume is inversely proportional to the hardness of the softer material.

We find confirmation of the first of these relationships in the original paper of Archard
and Hirst (1956). The relevant figure is reproduced in Figure 1.15.

9For lubricated sliding wear, Archard’s wear rate formula is supplied with another coefficient α < 1,
which characterizes the ratio of the area of metal to metal contact to the apparent area.

10This was developed for metals assuming plastic deformation. It may or may not apply to other materials.
11It should be obvious that, on using Archard’s equation in the form of Eq. (1.30), we can substitute

wear rate in place of wear volume.
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Figure 1.16. There is transition from mild to severe wear in stainless steel, while brass obeys
Archard’s law in the whole load range. (Reprinted with permission from Archard, J. F. and
Hirst, W. The wear of metals under unlubricated conditions. Proc. Roy. Soc., A 236, 397–410,
1956.)

The second relationship, viz., that the wear volume (or, the wear rate), is proportional to
the applied load, holds for metals in certain load ranges. Often at low load the wear rate is
small (mild wear), and increases linearly with load, up to a critical load. On reaching the
critical load, the mechanism that produces mild wear becomes unstable and transition to
severe wear takes place, the wear coefficient often changing by several orders of magnitude.
This situation is well illustrated in Figure 1.16, which shows transition from mild to severe
wear in stainless steel. Brass, on the other hand, undergoes no transition and obeys Archard’s
first law throughout the load range of Figure 1.16.

It is now generally recognized that the wear of a soft material against a hard one can be
characterized as mild or severe. In severe wear there is metallic contact of newly exposed
surfaces and severe surface damage. Severe wear takes place under conditions where a
protective oxide film is unable to form during the time available between interasperity
contacts. Mild wear, on the other hand, is manifested when, at light load and speed, there
is sufficient time between asperity interactions for oxide formation even at the prevailing
“low” reaction rate. Mild wear will also be encountered at high temperatures, caused either
by high rate of frictional heating (Figure 1.17), or by external heating, when the reaction
rate is sufficiently high to promote formation of a protective oxide film in the time available.

There are, hence, two transitions. The T1 transition is from mild to severe wear, and
occurs as the load (or the speed) is increased. The rate of exposure of virgin metal surface
during severe wear is opposed by the increasing rate of contamination of the surfaces by
reaction with the ambient atmosphere. As the temperature increases above some critical
T2, 250–350◦C in Lancaster’s experiments for a carbon steel pin sliding against tool steel,
a second transition takes place, this time from severe to mild wear. Here T2 is a nominal
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Figure 1.17. Variation of the rate of wear for pins with frictional heating. Apparent contact
area increasing from A to D. (Reprinted with permission from Lancaster, J. K. The formation of
surface films at the transition between mild and severe metallic wear. Proc. Roy. Soc., A 273,
466–483, 1963.)

surface temperature, the flash temperature, that characterizes individual asperity interactions
and has no effect on the transition. Figure 1.18 shows the variation in the wear rate with
varying load for a carbon steel pin sliding against tool steel.

Qualitatively, transition remains the same irrespective of whether heating occurs by
external means or as a consequence of friction (Lancaster, 1963). The variation of wear rate
with sliding speed at different temperatures is illustrated in Figure 1.19. At low speed, mild
wear results from the ‘large’ times available for oxidation; at high speeds, mild wear is the
consequence of increased rates of oxidation. The magnitudes of critical loads and speeds
will also depend on temperature. Changing the surrounding atmosphere to pure oxygen
will also vary the critical conditions (speed and load) for transition.

Classification of sliding wear into mild wear and severe wear infers linking the wear
mechanism to elastic contacts and plastic contacts, respectively (Kragelskii and Marchenko,
1982). Resulting from mild wear, the surface roughness is of the order of Ra ≈ 0.5 μm and
the wear debris particle dimension is in the range dp = 0.01 −1 μm. Mild wear dominates
both at low speed and high temperature, where oxidation can keep balance with the rate
of exposure of fresh surfaces, allowing the formation of an oxide layer. This last condition
facilitates a lower coefficient of friction. On the other hand, severe wear will create a rough
surface, with the arithmetic average of roughness Ra reaching 25 μm. The wear debris
is now made up of particles of dimension dp ≈ 200 μm, and surface oxidation can no
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Figure 1.18. Variation of wear rate with load, for carbon steel pin riding on tool steel.
(Reprinted with permission from Welsh, N. C. The dry wear of steels. Phil. Trans. Roy. Soc., A
257, 31–70, 1965.)

longer keep up with the exposure of fresh surfaces; therefore, the coefficient of friction is
usually large. Further increasing the load increases frictional work, leading to increased
temperature and, thus, to increased rate of oxidation. Formation of oxide film that can be
attained between successive asperity interactions grows exponentially with load as the load
is increased, other things being equal, while the time between collisions decreases linearly
(Amell et al. 1991) and a second transition from severe wear to mild wear may occur.

In an effort to develop a simple design guide, Lim and Ashby (1978) graphed the various
wear regimes for given pairs of materials, thereby producing wear maps. The vertical axis
of the graphs is normalized pressure and the horizontal axis is normalized sliding velocity.
A wear map for soft carbon steel sliding on the same, in air at room temperature, is shown
in Figure 1.20.

Figure 1.19. The variation of wear rate with sliding speed at different ambient temperatures for
brass sliding against steel, – in air; . . . . . . , in oxygen. (Reprinted with permission from
Lancaster, J. K. The formation of surface films at the transition between mild and severe
metallic wear. Proc. Roy. Soc., A 273, 466–483, 1963.)
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Figure 1.20. Wear map for soft carbon steels at room temperature in air. (Printed with
permission from Lim, S. C. and Ashby, M. F. Wear mechanism maps. Acta Metall., 35, 1–24,
1987.)

Region I in Figure 1.20 is characterized by high contact pressure and gross seizure of
the surfaces. Region II represents severe wear at high loads and low speed, while Region
III has mild wear at low load and speed. Thermal effects, which were hitherto unimportant,
become significant in Regions IV and V, both of which have increased reaction rate with
the ambient atmosphere. Regions VI, VII, and VIII represent narrow transition regimes.
For more detailed discussion of the significance and characteristics of the various regions
of the wear map of Figure 1.20, the reader is referred to Lim and Ashby (1987).

In the model described above, the idea that wear particle size is related to contact patch
size has been advanced. Rabinowicz (1965) suggested that energy considerations govern
wear particle size. He noted that the strain energy associated with plastic contact of elastic
bodies is H2/2E per unit volume of the material. The surface energy of the wear particle is
2πa2γ , where γ is the surface energy per unit of surface area. Rabinowicz then required
that the stored elastic energy in the particle volume exceed the surface energy

2

3
πa3H

2

2E
> 2πa2γ

or

a >
6Eγ

H 2
.

Furthermore if E/H = k, a constant, then

a >
kγ

H
.
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Table 1.2. Wear coefficient K × 106 for sliding wear, Eq. (1.30)

Metal-on-Metal
Metal-on-Nonmetal

Lubrication Identical Soluble Intermediate Insoluble Nonmetal-on-Nonmetal

None 1500 500 100 15 3
Poor 300 100 20 3 1.5
Good 30 10 2 0.3 1
Excellent 1 0.3 0.1 0.03 0.5

(Reprinted with permission from Rabinowicz, E. Wear coefficients, in Booser, E. R., CRC Handbook
of Lubrication. Copyright CRC Press, Boca Raton, Florida, C©1984.)

Rabinowicz provided evidence to support his arguments, one implication of which is that
there exists a minimum size of particles that can be generated through deformation.

Instead of attempting to find and tabulate the wear coefficient for pairs of metals (and
conditions), we follow Rabinowicz and divide sliding systems into a limited number of
categories, then give appropriate wear coefficient data for each category. The categories are:
identical, soluble, intermediate, insoluble, nonmetal-on-nonmetal, and metal-on-nonmetal.
For metals, the two principal factors that determine the wear coefficient are (1) the degree
of lubrication and (2) the metallurgical compatibility, as indicated by the mutual solubility.
Wear coefficients for adhesive wear for the five categories are given in Table 1.2, while
Figure 1.21, after Rabinowicz, illustrates compatibility for metal pairs. The corresponding
compatibility relationship is listed in Table 1.3.

Table 1.3. Compatibility relationship for metals

Metallurgical Metallurgical Sliding Anticipated
Symbol solubility compatibility compatibility wear

© 100% Identical Very poor Very high
� >1% Soluble Poor High
© 0.1–1% Intermed. soluble Intermediate Intermediate� <0.1% Interm. insoluble Intermed. or good Intermed. or low� Two liquid phases Insoluble Very good Very low

(Reprinted with permission from Rabinowicz, E. Wear coefficients, in Booser, E. R., CRC Handbook
of Lubrication. Copyright CRC Press, Boca Raton, Florida, C©1984.)

Abrasive Wear

It is usual to distinguish between two-body abrasion, in which the asperities of the
harder surface abrade the softer surface, and three-body abrasion, in which hard particles
trapped between two surfaces abrade one or possibly both surfaces.

The mechanics of two-body abrasion closely resembles that of ploughing, as discussed
earlier, except that in ploughing material is pushed aside while in abrasive wear some
cutting is also involved. Referring to Figure 1.13, we find the normal load supported as in
Eq. (1.26). The volume of material displaced by the cone while creating a groove of length
� is �h2 tan θ . If a fraction, ε, of the displaced material becomes wear debris, then the wear
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Figure 1.21. Compatibility diagram for metal pairs. The significance of the symbols is shown
in Table 1.3. (Reprinted with permission from Rabinowicz, E. Wear coefficients. In Booser, E.
R., CRC Handbook of Lubrication. Copyright CRC Press, Boca Raton, Florida, C© 1984.)

volume produced in unit ploughing distance is

q = εh2 tan θ.

Substituting now for h2 from Eq. (1.26), we obtain

q = 2εW

πH tan θ
.

Summing for all asperities engaged in abrading the surface, we find that the total wear
volume removed per unit sliding distance is

Q = k̂W

H
. (1.31)

In Eq. (1.31) W is the applied normal load and K̂ is a coefficient (Hutchings, 1992). We note
that formally Eq. (1.31) is identical to Archard’s rate equation for adhesive wear, Eq. (1.30).

We conclude this section with the observation that there has been considerable interest
in recent years in methods of predicting wear rates. Investigations have concentrated on
two problem areas, running in, which is a time-dependent phenomenon, and steady state,
which is homogeneous in time.

1.5 Effect of Lubrication

Lubrication is used to reduce/prevent wear and lower friction. The behavior of
sliding surfaces is strongly modified with the introduction of a lubricant between them. If
we plot, for example, for a journal bearing, the coefficient of friction against μN/P, where
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Figure 1.22. Lubrication regimes.

μ is the lubricant viscosity, N is the shaft speed, and P = W/LD is the specific load, we find
that at large values ofμN/P, the friction coefficient, is low and is proportional toμN/P. This
is the regime of thick-film lubrication. Upon decreasing μN/P, the friction passes through
a minimum value, as indicated schematically in Figure 1.22, and we enter into the regime
of mixed lubrication. For even smaller values of μN/P, the coefficient of friction increases
rapidly, marking the complete breakdown of the lubricant film in this so-called boundary
lubrication regime. Table 1.4 compares average values of the coefficient of friction in the
various lubrication regimes.

Thick-film Lubrication

When the minimum film thickness exceeds, say, 2.5μm, Petroff’s law12 is approx-
imately obeyed by a lightly loaded journal bearing. The coefficient of friction is small and
depends on no other material property of the lubricant than its bulk viscosity. This type of
lubrication is called thick-film lubrication. In many respects this is the simplest and most
desirable kind of lubrication to have.

Mixed Lubrication

The low μN/P branch of the curve in Figure 1.22 represents varying degrees of
thin-film lubrication, a name given by Hersey (1966) to the lubrication regime in which
the coefficient of friction depends on surface roughness and on a lubricant property that
Hersey terms “oiliness.” The transition from thick-film lubrication to mixed lubrication
takes place around the minimum point of the f-μN/P curve. As the value of μN/P is made
smaller, the film becomes thinner and some of the opposing asperities touch. The friction
coefficient now depends on the surface roughness, the material properties of the solids, and
the material properties of the lubricant. For increasing smoothness the minimum point of
the f-μN/P curve shifts to the left.

12Petroff postulates a uniform shear stress τw = μU/P acting on the journal. The coefficient of friction
f = F/W is then given by f = 2π2μRN/PC. In conventional oil-lubricated bearings C/R ∼ 1/500, and
we write f = const × μN/P. In older literature, the symbol Z (for the German Zähigheit) is used for
viscosity and Petroff’s law is written as f α ZN/P.
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Table 1.4. Average values of the coefficient of friction

Lubrication type Friction coefficient Degree of wear

Unlubricated 0.5–2.0 Heavy
Boundary and thin film 0.05–0.15 Slight
Thick film 0.001 None

Boundary Lubrication

In boundary lubrication, the film is so thin that its properties are no longer the
same as those of the bulk. If the speed is reduced or the load is increased, the lubricant film
becomes thinner than the height of some of the asperities. If these asperities are covered
by a suitable molecular layer of lubricant, they will not weld together. This will be the
case if the lubricant contains small amounts of surface-active materials. Typical active
materials are long-chain fatty acids, alcohols, and esters. For this type of lubrication the
friction coefficient is typically 0.1. Mixed lubrication can simply be viewed as a mixture
of hydrodynamic lubrication and boundary lubrication. Mixed lubrication is a term often
applied to conditions to the left of the minimum point of the f-μN/P curve.

This concept of boundary lubrication must be revised when applied to mineral oils. It
has been found that mineral oils under contact pressures of the order of 0.5–3 GPa increase
their viscosity 100- or even 1000-fold. The oil, which is trapped between the elastically
deformed solid surfaces, behaves as a virtual solid, preventing contact of the asperities. For
this type of lubrication to occur the surfaces must be smooth and well aligned.

Solid Lubrication

Some metals show strong mechanical anisotropy, being strong in compression
but weak in shear along certain directions. These metals may acquire low-friction sliding
surfaces under loading. For special materials such as molybdenum disulfide (MoS2) and
graphite, the crystal structure is in the form of tightly bonded layers lying on one another,
as shown in Figure 1.23.

In both graphite and molybdenum disulfide the bond between the interlayer atoms is due
to covalent forces and is very strong. The lamella-to-lamella forces, on the other hand, are
van der Waals type weak forces.13 When rubbed against a metal these solids will transfer
material onto a metallic substrate. The transfer film will be oriented so that the weak bond
is on its outer face. Thus, in sliding contact only this weak bond need be broken where
asperities on the harder body contact the film-covered substrate. For MoS2 the transfer
process is more or less independent of ambient conditions surrounding the bodies. For
graphite, however, moisture (or other contaminants such as simple hydrocarbons) must be
available to weaken the interlayer bond strength of the solid. This effect is of importance
in high-altitude rockets. In the reduced moisture levels at high altitude, brush wear in
the electric generators becomes extreme and large amounts of carbon dust are formed.

13Note that the distance between the lamellae is 0.34 nm for carbon and 0.349 nm in the molybdenum
disulfide, putting them safely out of range of short distance, i.e., strong forces. The interlayer atomic
distance in graphite, on the other hand, is only 0.142 nm.
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Figure 1.23. The structures of (a) graphite and (b) molybdenum disulfide. (Reprinted with
permission from Hutchings, I. M. Tribology: Friction and Wear of Engineering Materials.
Copyright CRC Press, Boca Raton, Florida, C© 1992.)

Very small amounts of organic compounds or moisture will inhibit this wear (Bisson and
Anderson, 1964). Not all lamellar solids exhibit small friction; some are more isotropic.

1.6 Fluid Film Bearings

Bearings are machine elements whose function is to promote smooth relative
motion at low friction between solid surfaces. The surfaces might be in direct contact, but
if they are not, the lubricant film separating them can be liquid, gaseous, or solid.

Considering the global geometry of the surfaces, a bearing may be conformal or coun-
terformal. The conformal condition is depicted in part (a) of Figure 1.24. In conformal
bearings, a prototype of which is the journal bearing, the apparent area of contact is large.
The maximum film pressure is of the same order of magnitude as the specific bearing load,
defined by P = W/A, where W is the external load and A is the projected (normal to the
load) bearing area.14 The film pressures are relatively small in conformal bearings and the
lubricant film is thick. In consequence, the bulk deformation of the bearing surfaces is
relatively unimportant or at least less important than the deformation of the asperities, say,
during the running-in period.

The counterformal condition, illustrated in part (b) of Figure 1.24, is typically found in
gear lubrication and in rolling-contact bearings. There the contact stresses are extremely
high and the film is thin. The lubricant oil exhibits properties in this high-pressure contact
zone that might be significantly different from its properties in bulk; it behaves as a virtual
solid. The elastic deformation of the solid surfaces forms an essential component of the
analysis of these bearings. One of the first investigator to study the elastic deformation of
contacts was Hertz, and the counterformal condition is often referred to as the Hertzian
condition.

When there is a continuous fluid film separating the solid surfaces we speak of fluid
film bearings. There are two principal ways of creating and maintaining a load-carrying
film between solid surfaces in relative motion. We call a bearing self-acting, and say

14For journal bearings, irrespective of the arc length, the specific bearing load is defined as P/LD, where
L is the length and D is the diameter of the bearing.
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Figure 1.24. (a) Conformal and (b) counterformal geometry.

that it operates in the hydrodynamic mode of lubrication, when the film is generated and
maintained by the viscous drag of the surfaces themselves, as they are sliding relative to
one another. The bearing is externally pressurized, and it operates in the hydrostatic mode,
when the film is created and maintained by an external pump that forces the lubricant
between the solid surfaces. The term fluid is used here to designate either a liquid or a
gaseous substance, but there are some fundamental differences between liquid-lubricated
bearings and gas-lubricated bearings because of the compressibility of gases. For this
reason this book will discuss both liquid-lubricated bearings and gas-lubricated bearings,
although in separate chapters. However, for the purpose of this introduction it is sufficient
to illustrate the method of operation of liquid film bearings only. Liquid-lubricated bearings
are compared on the basis of film thickness and coefficient of friction in Table 1.5.

Table 1.5. Comparison of liquid film bearings

Lubrication mode Film thickness (μm) Friction coefficient

Hydrostatic 50–5 10−6–10−3

Hydrodynamic 10–1 10−3–10−2

Elastohydrodynamics 1–0.1 10−3–10−2

Hydrostatic Bearings

Hydrostatic lubrication is, in principle, the simplest mode of liquid film lubrication.
The load-carrying film is both created and maintained by external means, the essential
property of this lubrication mode being that the load-carrying surface is floated, irrespective
of whether there is relative motion.

Part (a) of Figure 1.25 illustrates the geometry of a hydrostatic bearing at the com-
mencement of its operation. The lubricant is supplied to the recess at the supply pressure
pS either directly by a pump or via a manifold and flow restrictor. The load-carrying runner
will be supported by and will rest on the land as long as the supply pressure is below the
value W/AR, where AR is the recess area. The runner will lift-off as soon as the supply
pressure reaches W/AR. At this stage lubricant flow out of the recess and over the land
will commence, and the solid surfaces will be separated by a continuous lubricant film, as
shown in part (b) of Figure 1.25. The recess pressure is now given by pR = pS −
p, where

p represents line losses, including those encountered in the flow control devices. Varying
the supply pressure once lift-off has occurred will simply vary the film thickness h but will
leave the recess pressure unchanged.
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Figure 1.25. Hydrostatic bearing schematics (a) before and (b) after lift-off.

Generally speaking, hydrostatic systems use several evenly spaced pads, as shown
in Figure 1.26, so that asymmetric load distributions may be managed. Under normal
conditions, depicted by position I in Figure 1.26, the external load W is distributed equally
between the two hydrostatic pads A and B with uniform and equal film thickness. Tilting
the runner to position II will have the effect of decreasing the film thickness hA over pad A
and increasing the film thickness hB over B.

Figure 1.26. Operation with flow restrictors.

Because of the increased resistance to flow over pad A, the rate of lubricant flow QA will
decrease. This will cause the recess pressure pR,A to increase, as there is now less pressure
drop across the flow restrictor in line A. On the other hand, the increase in film thickness
over pad B will lead to a decrease in the recess pressure pR,B.

Operation with flow restrictors may be summarized as follows:

ps = pR,A +
pA = pR,B +
pB = const.

PadA

⎧⎨
⎩
QI IA < QIA

pIIA < 
p

I
A

pIIR,A > p
I
R,A

Pad B

⎧⎨
⎩
QI IB > QIB

pIIB > 
p

I
B

pIIR,B < p
I
R,B

.

The net effect of the action of the two pads will be a restoring moment on the runner.
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An externally pressurized bearing equipped with flow restrictors is called a compen-
sated bearing. Flow restrictor design influences bearing stiffness, required supply pressure,
required pumping power, and lubricant flow.

Among the advantages of hydrostatic bearings are:

(1) Low friction (vanishing with relative speed)
(2) Unaffected by discontinuous motion of the runner
(3) Exact positioning of the runner, as film thickness can be controlled accurately
(4) Capable of supporting heavy loads
(5) Only moderate temperature rise across pad because of large film thickness
(6) Continuous outflow of lubricant prevents ingress of dirt

Among the disadvantages of externally pressurized systems we list:

(1) Requirement for auxiliary external equipment
(2) Risk of lubrication failure because of failure of auxiliary equipment
(3) High power consumption by pumps
(4) Necessity of constant supervision
(5) High initial cost

Despite their many disadvantages, externally pressurized bearings are widely used.
Machine tools using this type of bearing can grind parts round within 0.05 μm, with a
0.025 μm surface finish. The lubricant can be either gaseous or liquid. Gaseous lubricant
is often used in lightly loaded applications (high-speed drills, gyroscopes, torque meters),
whereas liquid systems are normally used for heavier loads. Examples of the latter are
the bearings of the 200-inch optical telescope at Mount Palomar, which weighs 500 tons,
and the 140-foot radio telescope at Green Bank, with a support weight of 2000 tons in
addition to wind loads. Oil lifts, working in the hydrostatic mode, are often built into the
hydrodynamic bearings of large rotating apparatus to aid starting and stopping.

Hydrodynamic Bearings

To understand the operation of bearings in the hydrodynamic mode, consider
fluid flow between two solid surfaces. Both surfaces extend to infinity in the direction
perpendicular to the plane of Figure 1.27 and are slightly inclined toward one another. A
typical value for the slope of the solid surfaces in industrial bearings is 0.001 radian. The
top surface in Figure 1.27 is sliding in its own plane, with a velocity, U, relative to the
lower surface, dragging the lubricant with it into the convergent (in the direction of relative
motion) gap. No external pressure gradient is imposed on the flow.

If the fluid pressure were uniform everywhere in the film, with the flow induced solely
by the motion of the slider, the flow rate from left to right would be given by Q = Uh/2.
But the film thickness h varies along the gap, whereas the principle of mass conservation
requires Q to be constant.

The apparent inconsistency is removed if we allow for the existence of a pressure flow of
varying strength and direction, such that it aids shear flow where hU/2 is small (i.e., where
the gap is narrow) and hinders it where it is large. In this way we arrive at a uniform flow
rate so that mass conservation is satisfied. The type of pressure curve that would induce
the desired pressure flow is shown in Figure 1.27, it is readily measured in hydrodynamic
bearings.
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Figure 1.27. Schematics of a plane slider.

The plane slider of Figure 1.27 is the prototype of the hydrodynamic thrust bearing.
One of the more frequent functions of hydrodynamic bearings is to support rotating shafts;
thrust bearings are employed in these cases if the load vector is parallel to the axis of
rotation.

If the motion that the bearing must accommodate is rotational and the load vector is
perpendicular to the axis of rotation, the hydrodynamic bearings employed are journal
bearings.

When the lubricant is incompressible, the film temperature is nearly uniform, and the
load vector is fixed in space, as shown in Figure 1.28, the operating conditions of a
journal bearing of aspect ratio L/D can be uniquely characterized with reference to a single
dimensionless parameter. This parameter, the Sommerfeld number, is defined as

S = μN

P

(
R

C

)2

,

where C represents the radial clearance, i.e., the difference between the bearing and journal
radii C = RB − RJ, P = W/LD is the specific bearing load, N is the rotational speed, and
μ is the dynamic viscosity of the lubricant. Following accepted practice, we put RB = R in
the definition of the Sommerfeld number.

The journal will be concentric with the bearing under the condition P → 0 or N →
∞, i.e., when S → ∞. On decreasing the speed or increasing the load – in general, on
decreasing the value of the parameter S – the journal will occupy an eccentric position of
eccentricity e, its center sinking below the center of the bearing. As S → 0 the solid surfaces
approach one another and the lubricant film eventually fails, resulting in high temperatures
and considerable wear due to rubbing. The movement of the journal center is generally not

Figure 1.28. Schematics and nomenclature of a journal bearing.
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along a straight line. But its locus, well represented by a semicircle of diameter C, can be
predicted in many cases to the required accuracy.

The oil required for hydrodynamic lubrication can be fed from an oil reservoir under
gravity, it may be supplied from a sump by rings, disks, or wicks. The bearing might even
be made of a porous metal impregnated with oil, which “bleeds” oil to the bearing surface
as the journal rotates. Most porous metal bearings, however, operate in the mixed or even
in the boundary lubrication regime.

Hydrodynamic bearings vary enormously both in their size and in the load they support.
At the low end of the specific-load scale we find bearings used by the jeweler, and at the
high end we find the journal bearings of a large turbine generator set, which might be 0.8 m
in diameter and carry a specific load of 3 MPa, or the journal bearings of a rolling mill, for
which a specific load of 30 MPa is not uncommon. Gas bearings, on the other hand, operate
at low specific load (0.03 MPa) but often at high speeds. The high-speed, air turbine-driven
dental drill is capable of 500,000 rev/min.

Elastohydrodynamic Lubrication

The term elastohydrodynamic lubrication (EHL) is reserved for hydrodynamic
lubrication applied to lubricant films between elastically deforming solids. The principles
of EHL are readily applicable to such diverse objects as gears, rolling-element bearings,
and human and animal joints. In general, bearings that are lubricated in the EHL mode
are of low geometric conformity, and, in the absence of a lubricant film and of elastic
deformation, the opposing surfaces would contact in a point (ball bearings) or along a line
(gears or roller bearings).

If the solid surfaces that are lubricated in the EHL mode have large elastic modulus,
the contact pressures will be large, perhaps of the order of 1 GPa. The film thickness
will be correspondingly small, of the order of 1 μm. Under such conditions the material
properties of the lubricant will be distinctly different from its properties in bulk. This change
in lubricant properties, when coupled with the effects of elastic deformation of the solid
surfaces, yields film thicknesses one or two orders of magnitude larger than those estimated
from constant viscosity theory applied to nondeforming surfaces.

EHL theory may be viewed as a combination of hydrodynamic lubrication, allowance
for the pressure dependence of viscosity, and elastic deformation of the bounding surfaces.
The subject of elastohydrodynamic lubrication is outlined in Chapter 8.

1.7 Bearing Selection

While promoting smooth relative motion of the contact surfaces, bearings will
necessarily constrain such motions to occur (1) about a point, (2) about a line, (3) along a
line, or (4) in a plane.

Our main concern here is with motions that are constrained to proceed about a line and
in a plane. When continuous, both of these types of motion include rotation, the former
situation calling for journal bearings and the latter for thrust bearings.

There are four methods of supporting the contact load in the cases above: (1) letting the
surfaces rub against one another, (2) separating the surfaces by a fluid film, (3) rolling one
surface over another, and (4) separating the surfaces by electromagnetic forces.

A fifth method, that of introducing a flexible member between the surfaces, is not suitable
for continuous motion and is mentioned here only for the sake of completeness. Of the four
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methods of dealing with contact forces, our interest is with dry rubbing bearings, fluid film
bearings, and rolling-element bearings. These may be journal bearings or thrust bearings,
according to the constraining influence they are required to supply.

Rubbing Bearings

The friction and wear of rubbing surfaces has been discussed in earlier sections
of this chapter. It is sufficient to only consider frictional heating here. The rate of heat
generated is given by FU, where F is the frictional force and U is the relative velocity of
the surfaces. If A is the projected bearing area, then the risk of overheating is some function
of

FU

A
= fPU, (1.32)

where P = W/A is the specific bearing load. Overheating may result in seizure of the
surfaces and should be avoided. The performance of dry rubbing bearings is also limited by
an upper value of P, above which fatigue or extrusion of the bearing material may occur,
and by a wear rate [which again is proportional to the product PU, Eq. (1.31)], as excessive
wear leads to slackness of the machine elements. To avoid excessive wear, rubbing bearings
are, in general, lubricated by a thin film of solid lubricant.

Dry rubbing and boundary-lubricated bearings are best suited to low speeds and inter-
mittent duty. They provide high stiffness once loaded heavily, but they are the least-stiff
bearings under light load. Safe maximum PU values have been determined experimentally,
but these must be used with caution.

Rolling-Element Bearings

Bearings based on rolling-sliding are called rolling-element bearings. In a typ-
ical application this type of bearing usually provides for more precise shaft positioning
than hydrodynamic bearings (but where extreme precision in positioning is required, exter-
nally pressurized bearings are called for). These bearings perform well when subjected to
repeated starts-stops under full load. They are best suited to low-speed high-load situations.
Rolling-element bearings have little inherent damping capacity, leading to excessive plastic
deformation of raceways and premature fatigue under repeated shock loads.

With well-designed rolling-element bearings, wear is microscopic through most of the
life of the bearing. The ultimate limit of bearing performance is often surface fatigue of
the elements or the raceway. Rolling contact fatigue is characterized by the fairly rapid
formation of large wear fragments, signaling the end of bearing life. Up until such time,
there is no detectable wear in well-lubricated rolling-contact bearings. Therefore, it is
inappropriate to discuss wear rate in these bearings, and the term bearing life is preferable.
Bearing life is a function of the load and the total number of revolutions. Empirically, it has
been found that the bearing life, L, is inversely proportional to the third power of the load W.

Fluid Film Bearings

Wear is not a consideration in fluid film bearings, since in a well-designed fluid
film bearing the surfaces are always separated by a continuous fluid film. One of the
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Figure 1.29. Load-speed characteristics of journal bearings. (From the Tribology Subseries
Item No. 65,007, General Guide to the Choice of Journal Bearing Type, by permission of
Engineering Sciences Data Unit Ltd., London.)

exceptions to this rule is the heavily loaded self-acting (hydrodynamic) bearing during
starting-stopping.

If the bearing is externally pressurized, the load capacity is virtually independent of
surface speeds, although at high speeds a decrease of load capacity might be expected
because of thermal and/or inertial effects.

If the bearing is of the self-acting type, the load capacity increases with surface speed
initially. However, when the rate of heat generation becomes high enough to influence
lubricant viscosity, the load capacity drops off. If the bearing is self-contained, an additional
constraint is presented by the minimum film thickness limit at low speeds and by the heat
removal (maximum Babbitt temperature) limit at high speeds. Hydrodynamic bearings are
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Figure 1.30. Load-speed characteristics of thrust bearings. (From the Tribology Subseries Item
No. 65,007, General Guide to the Choice of Thrust Bearing Type, by permission of Engineering
Sciences Data Unit Ltd., London.)

best suited by their load-speed character to applications where the load increases with speed,
whereas hydrostatic bearings are most useful in situations where the load is independent of
speed.

The performance of steadily loaded journal bearings and of thrust bearings is shown in
Figures 1.29 and 1.30, respectively. These figures are reproduced from a paper by Neale
(1967) and show only general trends. The reader interested in bearing selection is referred
to the Tribology Handbook by Neale (1973) and to an exhaustive article in Machine Design
(1978). Considerations other than load and speed may often have overriding importance in
bearing selection. Tables 1.6 and 1.7 may be used to advantage in bearing selection.
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50 1 / Introduction

1.8 Nomenclature

A projected bearing area
Ar area of contact
C journal bearing radial clearance
D diameter
E elastic modulus
F friction force
H hardness
L bearing length
N shaft revolution
OB, OJ bearing, journal center
P specific bearing load
Q lubricant flow rate, wear rate
R radius
RB, RJ bearing, journal radius
S Sommerfeld number
U velocity
V wear volume
W external load
� plasticity number
e journal eccentricity
k shear strength
f coefficient of friction (F/W)
p pressure
p0 yield pressure
pR, pS supply, recess pressure

p pressure drop
μ viscosity
a radius
h asperity height, film thickness
� asperity spacing
p̄ average pressure,
κN probability
σ standard deviation
σ Y limiting tensile stress
τ tangential stress
τ c shear strength
τ j junction failure stress
τm maximum shear stress
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CHAPTER 2

Basic Equations

2.1 Fluid Mechanics

The equations employed to describe the flow of lubricants in bearings result from
simplifications of the governing equations of fluid mechanics. It is appropriate, therefore,
to devote a chapter to summarizing pertinent results from that subject. This summary will
not be limited to concepts necessary to appreciate the classical theory of lubrication. A
more than elementary discussion of fluid behavior is called for here, as various nonlinear
effects will be studied in later chapters.

Our discussion begins with the mathematical description of motion, followed by the
definition of stress. We will then derive Cauchy’s equations of motion by substituting
the rate of change of linear momentum of a fluid body and the forces acting on it into
Newton’s second law. This will yield three equations, one in each of the three coordinate
directions. For an incompressible fluid these three equations will contain twelve unknowns:
three velocity components (u, v,w) and nine stress components

(
Txx, Txy, . . . , Tzz

)
. For

compressible fluids there is an additional unknown, the density; for incompressible fluids
the density is known a priori. To render the problem well posed, i.e., to have the number
of equations agree with the number of unknowns so that a unique solution might exist,
we will need to find additional equations. A fourth equation is easy to come by, by way
of the principle of conservation of mass. The situation further improves on recognizing
that only six of the nine stress components are independent, due to symmetry of the stress
tensor. However, on specifying incompressibility of the fluid, a tenth unknown, the fluid
pressure makes its debut. In contrast, for a compressible fluid both the pressure and the
density are variables, but as they are connected through the equation of state, we count them
as representing a single unknown. In summary, for both compressible and incompressible
fluid we end up having four equations and ten unknowns. Six additional equations are
required.

Up to this point our discussion applies equally well not only to fluids but also to all
continuous media, irrespective of material properties. However, if we wish to obtain the six
additional equations that are still needed to close the problem, we can no longer retain this
generality. Accounting for the material behavior of the particular fluid under consideration
is, in fact, the ruse that will yield the missing equations. Material behavior of a class of
materials is postulated in a constitutive theory, the mathematical statement of which is the
set of constitutive equations for the class.

The simplest constitutive theory for fluids postulates that the normal stress components
are equal while the shear stress components vanish identically; this defines what is called
an inviscid or ideal fluid. When the corresponding constitutive equations are substituted
into Cauchy’s equations of motion, Euler’s equations result. These equations have relative
simplicity. However, inviscid fluids do not abound in nature and Euler’s equations do not
hold near solid surfaces. In engineering practice Euler’s equations are featured mostly in
the external flow problems of aerodynamics.

54
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Figure 2.1. Motion of a fluid body.

A somewhat more complicated constitutive theory states that the stress is linearly depen-
dent on the rate of deformation (a more complete definition will be given later). This is the
constitutive theory of a Newtonian fluid. When the corresponding constitutive equations
are substituted into Cauchy’s equations of motion, the Navier–Stokes equations result.
Newtonian theory is extremely useful as its predictions agree well with experimental data
on a large class of common fluids such as water or air.

Not all fluids are linearly viscous (a term often used to describe Newtonian behavior);
in particular, polymers and some other man-made fluids are not. Some naturally occurring
fluids, such as crude oil, also belong to the class of non-Newtonian fluids. In some of these
the current state of stress at a point is a nonlinear function of the current state of deformation
of the neighborhood of that point. In others, the state of stress is determined by the whole
history of this deformation. There are materials, which are both solid-like and fluid-like
in their response to stress, in the sense that the work of deformation is neither completely
stored as in solids, nor completely dissipated as in fluids. These substances, displaying both
elasticity and viscosity, are called viscoelastic materials.

Kinematics

Picture a body of fluid as it is moving through physical space and concentrate
on an inner part of this body of volume V(t), enclosed by the surface S(t).1 Think of this
fluid as consisting entirely of infinitesimal particles or material points (the terms particle
and material point will be used interchangeably). Each such material point occupies one,
and only one, spatial point at any given time. To specify the location of spatial points we
employ an orthogonal Cartesian coordinate system (x1, x2, x3).

For the purpose of future identification we assign permanent names to each of the
infinity of fluid particles within V(t). This is best achieved by momentarily freezing the
flow, initializing our clock, and assigning as permanent particle names the coordinates of
the spatial point that the material point happens to occupy in this frozen configuration
(Figure 2.1). We call this frozen configuration the reference configuration of the fluid. The

1Generally, we shall use script capital letters to designate volumes and surfaces that move with the fluid
and script lowercase letters for volumes and surfaces that are fixed in space.
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coordinates of a particle in the reference configuration are called its reference coordinates,
or Lagrangian coordinates, or material coordinates, and are designated by capital letters
(X1, X2, X3). They are assigned to, and will be retained by, fluid particles as their permanent
name. Particle position in the reference configuration, i.e., particle name, is thus identified
by the position vector X = (X1, X2, X3).

When it is not essential to discriminate among the various components of a vector,
say, the position vector x = (x1, x2, x3), i.e., when all coordinate directions have equal
importance in a mathematical statement, we shall write xi to represent the components.
Should it become necessary to state the number of the components explicitly, we shall
write xi, i = 1, 2, 3. Here i, the index, ranges over 1, 2, 3 and the symbolism is called index
notation. We shall use the notation x1, x2, or x3, however, when wishing to draw attention
to a particular component.

Upon unfreezing the fluid body, motion resumes. The particle that occupied the spatial
position X = (X1, X2, X3) at t = 0, now, at time t > 0, occupies another position x =
(x1, x2, x3). The continuous sequence of configurations that results from increasing the
parameter t is called a motion.

Motion is defined, therefore, by the mapping

xi = χi (X, t) , t ≥ 0, i = 1, 2, 3 (2.1)

where it is understood that Eq. (2.1) is the index notation representation of the vector
equation, x = χ(X, t), t ≥ 0.

Equation (2.1) signifies that the particle that occupied position X in the reference
configuration is located in point x at current time t. The coordinates xi are called Eulerian
or spatial coordinates. If X is fixed while t varies, Eq. (2.1) describes the path of particle
X. If, on the other hand, t is kept constant, Eq. (2.1) is the mapping of the reference
configuration onto the configuration at time t.

We shall insist on Eq. (2.1) being invertible, so that no two particles occupy the same
spatial point simultaneously, and no particle can be found at two different locations at
the same time. In other words, we shall study only motions that can be characterized by
deformation functions that possess single-valued inverse (this by no means constrains us in
our investigations). The Jacobian of our motion is, thus, bounded

0 < J =
∣∣∣∣ ∂x
∂X

∣∣∣∣ <∞

We further assume that a sufficient number of derivatives of χi and its inverse χ−1
i exist

and are continuous. For such motions we may invert Eq. (2.1) and write

Xi = χ−1
i (x, t) . (2.2)

Equation (2.2), or its vector representation X = χ−1 (x, t), informs that the spatial point
x at time t is being occupied by the particle that was located in position X in the reference
configuration.

There are two viewpoints in fluid mechanics: (1) the Lagrangian view fixes attention
on a given material point, i.e., holds X constant and describes the changes this material
point experiences while moving through space (varying x), and (2) the Eulerian view fixes
attention on a spatial point, i.e., holds x constant and investigates how conditions change at
that particular spatial point as various particles (varying X) stream through it. Accordingly,
variables associated with material points are given the qualifier material or Lagrangian,



2.1 / Fluid Mechanics 57

while variables associated with spatial points are named spatial or Eulerian. The two types
of variables are, of course, related to one another in unique fashion through the motion,
Eq. (2.1), of the fluid: for example, the velocity at a fixed point x in space will vary with time,
provided that the velocity of the string of particles. . . , Xk, Xk+1, . . . streaming through it
varies from particle to particle at the instant when located at x.

Velocity

Velocity is defined as the time rate of change of particle position. In Lagrangian
representation we write

Vi (X, t) = ∂xi (X, t)
∂t

. (2.3)

Here, the Vi are the components of the velocity of a given particle (note that particle identity
X is held constant during differentiation) as it travels along its path. By means of the motion
of the fluid, Eq. (2.2), we can transform the Lagrangian variables Vi into the Eulerian
variables vi , where the vi represent the velocity at the spatial point x:

V (X, t) = V
[
χ−1 (x, t) , t

] = v (x, t) . (2.4)

Acceleration

Acceleration is the time rate of change of velocity. It is the sum of its two com-
ponents: (1) the local acceleration and (2) the convective acceleration. Local acceleration
can be observed at a fixed point x of space, when the velocity V of the fluid particles that
pass through that point varies from particle to particle. It is, therefore, the time derivative
of the velocity v(x, t) with x held constant. Convective acceleration, on the other hand, is
the rate of change of particle velocity as is experienced by a particle while propelled along
its path by the prevailing velocity field. It is, therefore, the product of the velocity of the
particle and the spatial rate of change of this velocity.

The fact that there are two types of accelerations is acknowledged mathematically by
the statement that the velocity is both explicit and implicit function of time, so that

ai = dvi

dt
=
(
∂vi

∂t
+ ∂vi

∂x1

dx1

dt
+ ∂vi

∂x2

dx2

dt
+ ∂vi

∂x3

dx3

dt

)
. (2.5)

Here, a = (a1, a2, a3) is the acceleration vector. The first term on the right-hand side of
Eq. (2.5) is the ith component of local acceleration, the sum of the last three terms represents
the ith component of the convective acceleration.

On recognizing that

dx1

dt
= v1,

dx2

dt
= v2,

dx3

dt
= v3, (2.6)

Eq. (2.5) can be written as

dvi

dt
=
(
∂vi

∂t
+ v1

∂vi

∂x1
+ v2

∂vi

∂x2
+ v3

∂vi

∂x3

)
= ∂vi

∂t
+
∑3

j=1
vj
∂vi

∂xj

To simplify notation, we dispense with the summation sign and adopt the summation
convention: whenever an index appears exactly twice within the same term, summation
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is implied with respect to that index over its range. The abbreviated form of Eq. (2.5) is
then

dvi

dt
= ∂vi

∂t
+ vj ∂vi

∂xj
, (2.7)

where the index j is repeated in the last term. Equation (2.7) can be cast in a vectorial form
as

a = dv

dt
= ∂v

∂t
+ v · grad v. (2.8)

Equation (2.8) is a special case of the formula

dψ

dt
= ∂ψ

∂t
+ v · gradψ (2.9)

that expresses the time rate of change of the arbitrary quantity ψ , apparent to an observer
situated on the moving particle, instantaneously at position x. Equation (2.9) defines the
material derivative of ψ(x, t) relative to the Eulerian frame.

The Transport Theorem

The equations of mechanics, prominently among them Newton’s second law, are
written for bodies of fixed mass, i.e., for material volumes composed of the same material
points (particles). Material volumes are often referred to as systems in fluid mechanics. The
volume V(t) and closed surface S (t) of a system change continually (cf., Figure 2.1) as the
system is propelled along its path by the motion, however, there is no mass transfer across
S (t) by definition.

Although systems are indispensable concepts in theoretical analyses, there is only lim-
ited practical interest, e.g., in the fortunes suffered by a specific body of fluid as it proceeds,
say, from reservoir – through hydraulic turbine – to ocean, except in diffusion studies.
Of practical concern is what transpires within a certain designated, fixed, spatial vol-
ume, the so-called control volume (the volume enclosing the turbine, in this instance) as
the fluid streams through it, unobstructed in its motion by the control surface. There-
fore, statements that apply to control volumes would be more useful in applications. In
other words, one needs to translate to control-volume-language the laws of mechanics that
have been established for systems. This task is accomplished by the Reynolds transport
theorem:

d

dt

∫
V
ψdv =

∫
V

(
dψ

dt
+ ψ div v

)
dv. (2.10)

The quantity ψ (x, t) is a scalar or vector function of position. The integral on the left-
hand side represents the total amount of ψ contained in the system V = V(t); it is a well-
defined function of time, but the limits of this integral are time dependent. Notwithstanding,
its time rate of change can be easily computed as indicated in Eq. (2.10).

Two results from mathematics are needed here to prove the Reynolds transport theorem,
the formula that relates the volume element of the fixed reference configuration V0 = V(0)
to the volume element in the moving, current configuration V(t)

dv = Jdv0 (2.11)
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and Euler’s formula for the time rate of change of the Jacobian (Serrin, 1959)

dJ

dt
= J div v. (2.12)

Let ψ represent a fluid property per unit volume, then, as the volume in the reference state
remains unchanged in time, the rate of change of ψ contained in the system of volume V(t)
can be written as

d

dt

∫
V
ψ(x)dv = d

dt

∫
V0

ψ(X)J dv0 =
∫
V0

(
dψ(X)

dt
J + ψ(X)

dJ

dt

)
dv0

=
∫
V0

(
dψ(X)

dt
+ ψ(X) div v

)
J dv0. (2.13)

Applying Eq. (2.11) again leads to Eq. (2.10).
An alternative form of the transport theorem follows from the manipulation

dψ

dt
+ ψ div v = ∂ψ

∂t
+ v · gradψ + ψ div v = ∂ψ

∂t
+ div (ψv)

where we appealed to Eq. (2.9). Now, on employing the divergence theorem to the volume
integral of div(ψv) we arrive at

d

dt

∫
V
ψ(x) dv = ∂

∂t

∫
v
ψ dv +

∮
s
ψ v · nds. (2.14)

Here, v · n is the component of the velocity along the outward normal n; the first integral
on the right-hand side represents the total rate of change of ψ within the fixed volume
v instantaneously coinciding with the material volume V while the second integral is the
net through flow of ψ across its closed surface s. This is our second representation of the
transport theorem.

Equation of Continuity

An immediate use for the transport theorem (2.10) is found as follows. By defini-
tion there is no mass transfer in or out of a system, hence the principle of conservation of
mass requires that the total mass of fluid M in a material volume stay constant during the
motion of the system. By replacing ψ with the density ρ (a fluid property per unit volume
when the property is the mass M) in Eq. (2.10) we find

d

dt
M = d

dt

∫
V
ρ dv =

∫
V

(
dρ

dt
+ ρ div v

)
dv = 0. (2.15)

As the limit of the integral is arbitrary, the integrand itself is required to vanish, leading to
the equation of conservation of mass, often called the equation of continuity.

For a compressible fluid

dρ

dt
+ ρ div v = 0 (2.16a)

or, by taking into account Eq. (2.9),

∂ρ

∂t
+ div (ρv) = 0. (2.16b)
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For an incompressible fluid ρ = const > 0, thus Eq. (2.16b) takes the form

div v = 0. (2.16c)

If the fluid property in question is an intensive property, i.e., expressed as property per
unit mass F = ψ/ρ, we have, on applying Eq. (2.16) to Eq. (2.10),

d

dt

∫
V
ρ Fdv =

∫
V
ρ
dF

dt
dv. (2.17)

Stress

Consider a fluid body in its present configuration and an interior part, b, of this
body that has volume V enclosed by surface S. The various forces that may act on the
interior part b are of two types: (1) body forces, which are long-range forces that act
through the mass centers of the fluid, and (2) surface forces, which are short-range forces
that act across surfaces or interfaces. The former are characterized by the body force per
unit mass f (x) and the latter are characterized by application of Cauchy’s stress principle,
which states that on any imaginary closed surface there is a distribution of stress vectors
t, such that the resultant and moment of t are equivalent to the resultant and moment
of the actual forces that are exerted by the material outside the surface on the material
inside (Serrin, 1959).

Forces acting on fluid bodies are defined by means of integrals:

Body force: FB =
∫
V

f ρdv (2.18)

Surface force: FS =
∮
S

tds. (2.19)

The stress vector, in general, is not perpendicular to the surface on which it acts.
Furthermore, both its direction and its magnitude depend on the orientation of the surface.
To show this, we write Newton’s second law for a fluid particle having the form of a small
tetrahedron,2 cut out by the three coordinate planes through the point P, and by the inclined
surface element 
sn; the latter has orientation n, as indicated in Figure 2.2. Let tn be the
surface traction acting on
sn and let t (−i) represent the surface traction acting on
si , the
projection of 
sn onto the xi = const coordinate plane. How the stress vector tn is related
to the stress vectors t (−1), t (−2), t (−3) acting on the ‘negative’ side of the coordinate surfaces
can be deduced from the principle of conservation of linear momentum.

Newton’s second law, the principle of conservation of linear momentum, states that the
rate of change of linear momentum of a material volume equals the resultant force on the
volume

d

dt

∫
V
ρ vdv =

∫
V
ρ f dv +

∮
S

t ds. (2.20)

2Simple shapes often make for simple analysis; however, the shape of the fluid body is not central to
the argument.
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Figure 2.2. Equilibrium of tress vectors on an elementary particle of volume.

When this principle is written for our fixed fluid volume in Figure 2.2 and Eq. (2.17) is
applied to the integral on the left-hand side, we obtain∫


V
ρ

(
dv

dt
− f

)
dv =

∮

S

t ds. (2.21)

An estimate of the integrals in Eq. (2.21) may be made using the mean value theorem for
integrals

ρ∗
(
dv∗

dt
− f ∗

)

v = t∗

n
sn + t∗
(−k)
sk. (2.22)

Here, ρ∗, v∗ and f ∗ represent the value of ρ, v and f, respectively, somewhere within 
v
and t∗

n and t∗
(−k) are the values of tn and t (−k) somewhere on 
sn and 
sk , the starred

quantities chosen so as to abide by Eq. (2.22).
Let the characteristic dimension of the tetrahedron l → 0 so that P approaches the

surface from the interior and observe that

lim
l→0


v

sn

= 0; 
sk = nk
sn; t (−k) = −t (k).

It then follows from Eq. (2.22) that the stress vector acting on the arbitrary surface at
a point is a linear combination of the stress vectors on the coordinate surfaces through
the point. The coefficients in this relationship are the direction cosines characterizing the
orientation of the surface (Stokes, 1845)

tn = nk t (k) (2.23)

The components of the surface traction t (k) acting on the kth coordinate plane will
be designated by the capital letter T with appropriate indices. We adopt the scheme of
Figure 2.3, by which the first index specifies the orientation of the plane on which the
surface traction acts while the second index specifies the direction of the component itself.

Writing t for tn and designating the components of t and t (k) by

t = (t1, t2, t3), and t (k) = (Tk1, Tk2, Tk3)
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Figure 2.3. Convention for designating stress components.

we can write

[t1, t2, t3] = [n1, n2, n3]

⎡
⎢⎣
T11 T21 T31

T12 T22 T32

T13 T23 T33

⎤
⎥⎦ ; ti = njTij

or, in concise form,

t = n · T (2.24)

where the entity T = (Tij ) , i, j = 1, 2, 3 is the stress tensor.
We conclude here that the stress vector t acting on an arbitrary surface through a

point can be computed from Eq. (2.24) once the nine components of the stress tensor
T = (Tij ) , i = j = 1, 2, 3 as well as the orientation of the surface n = (n1, n2, n3) have
been determined.

The actual situation is somewhat less demanding, however. Under widely acceptable
conditions (i.e., when there are no surface or body couples), the stress tensor is symmetric
and hence has only six independent components. To show this, consider the stresses that
contribute to a torque, sayM3 about the x3-axis in Figure 2.3

M3 = (T12 − T21)
x1
x2
x3.

The principle of conservation of angular momentum3 (Newton’s second law, applied
to a rotating system) requires that the torque is balanced by the product of the moment of

3In continuum mechanics, for non-polar media symmetry of the stress tensor is assumed (Boltzmann
postulate), then conservation of angular momentum follows (Serrin, 1959).
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inertia and the angular acceleration. Denoting the angular velocity about x3 by ω3, in the
present context this means that

(T12 − T21)
x1
x2
x3 = 1

12
ρ
x1
x2
x3

(

x2

1 +
x2
2

) dω3

dt
.

After division by the volume element
v = 
x1
x2
x3 and shrinking the parallelepiped
to the point P , the right-hand side vanishes, demonstrating that T12 = T21. But if the stress
tensor is symmetric T = TT , only six of the nine stress components will occur in the
equations of motion.

Cauchy’s Equations of Motion

Equation (2.20) can now be written in the form∫
v
ρ
dv

dt
dv =

∫
v
ρ f dv +

∮
s

n · Tds. (2.25)

Using the divergence theorem on the second term on the right-hand side, we obtain∮
s

n · Tds =
∫
v

div Tdv

and Eq. (2.25) assumes the form∫
v

(
ρ
dv

dt
− ρ f − div T

)
dv = 0. (2.26)

As the integration limits are arbitrary the integrand itself is required to vanish, leading to
Cauchy’s equation of motion,

ρ
dv

dt
= ρ f + div T . (2.27a)

In component form the equation reads

ρ

(
∂u

∂t
+ u∂u

∂x
+ v ∂u

∂y
+ w∂u

∂z

)
= ∂Txx

∂x
+ ∂Txy

∂y
+ ∂Txz

∂z
+ ρfx

ρ

(
∂v

∂t
+ u∂v

∂x
+ v ∂v

∂y
+ w∂v

∂z

)
= ∂Txy

∂x
+ ∂Tyy

∂y
+ ∂Tyz

∂z
+ ρfy (2.27b)

ρ

(
∂w

∂t
+ u∂w

∂x
+ v ∂w

∂y
+ w∂w

∂z

)
= ∂Txz

∂x
+ ∂Tyz

∂y
+ ∂Tzz

∂z
+ ρfz.

Constitutive Equations

Most problems in engineering fluid mechanics fall into one of two categories: (1)
a moving boundary or a pressure gradient induces flow, or (2) a moving fluid exerts force on
its boundaries. In the first case, the fluid yields to stress by deforming while in the second
case stress is the consequence of deformation. We know from experience, however, that
not all fluids are alike: some, such as water or air, flow readily, while others, such as honey
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Figure 2.4. Definition of viscosity.

and asphalt, show reluctance to flow. We are thus led to the necessity of knowing, within
the context of responding to stress, the behavior of particular fluids.

Perhaps one of the simplest experiments we can perform in studying the force-motion
behavior of fluids involves two parallel plates, both submerged in the fluid under investiga-
tion. The plates are separated by a short distance 
y, as indicated in Figure 2.4. The idea
here is to mark with dye the fluid particles along a generic line at right angles to the plates
and then to observe the motion of this line of color (a material line as X is held constant
during the experiment) as the upper plate is moved with small velocity 
u relative to the
lower plate.

A short time
t into the experiment the dye line will still be straight but will be inclined
to its original direction at the small angle 
γ . For small values of 
u and 
t the angular
deformation 
γ is given by


γ ≈ tan 
γ = 
u
t


y
. (2.28)

It was first recorded by Newton that in common fluids the surface traction τ , defined
by τ = 
F/
A, where 
F is the force required to move the top plate of area 
A, is
proportional to the time rate of change of the angular deformation:

τ ∝ 
γ


t
∝ 
u


y
.

At the limit 
y → 0, as the plates are moved closer to one another, we can write the
differential form of the above relationship as

τ = μdu
dy
. (2.29)

The factor of proportionality μ is called the molecular viscosity, or simply the viscosity
of the fluid, and Eq. (2.29) is referred to as Newton’s law of viscosity. Whenμ is constant or
is dependent on temperature at most, as for water, air and common petroleum–oil lubricants
at low pressures, the fluid is said to be a Newtonian fluid. Non-Newtonian fluids, and there
are a host of them, are said to be shear thinning if μ decreases when the fluid is sheared at
increasing rate and shear thickening in the opposite case.

Equation (2.29) is restrictive in that it applies only to a single dimension. We will
generalize it to three-dimensional flows by replacing:

(1) y, by the triplet (x1, x2, x3);
(2) du/dy, by the nine spatial derivatives of velocity ∂vj/∂xi ; and
(3) τ , by the nine components of the viscous stress4 tensor τ .

4That part of the stress T that is due to viscous action (definition follows).
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The spatial derivatives of velocity can conveniently be organized into a two-dimensional
array; they form the components of the velocity gradient tensor L

L =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂u

∂x

∂v

∂x

∂w

∂x

∂u

∂y

∂v

∂y

∂w

∂y

∂u

∂z

∂v

∂z

∂w

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦
,

Lij = ∂vj

∂xi
. (2.30)

Based on the above, our extension of Newton’s law of viscosity to three dimensions
might take the form

τ = f (L) (2.31)

where f (L) is a yet unspecified tensor-valued function of the velocity gradient tensor,
except that this equation might imply more than we would like.

The reason for our objecting to Eq. (2.31) is simply that L carries superfluous informa-
tion: it contains particulars of both rate of rigid body rotation and rate of deformation. As
advanced by Stokes,

“the difference between the pressure (i.e., stress, in modern parlance) on a plane in a given
direction passing through any point P of a fluid in motion and the pressure which would
exist in all direction about P if the fluid in its neighborhood were in a state of relative
equilibrium depends only on the relative motion of the fluid immediately about P; and that
the relative motion due to any motion of rotation may be eliminated without affecting the
differences of the pressures above mentioned” (Stokes, 1845).

To illustrate the principle that stress cannot depend on rigid body motion, consider two
observers, O and O∗, one stationary and the other rotating, while both are simultaneously
monitoring the behavior of the same fluid particle. If stress depended on rigid body rotation
then O∗, whose frame of reference is fixed to the rotating particle and, therefore, finds the
particle to be at rest, would conclude that the particle was free of stress. On the other hand,
O, whose frame of reference is stationary, would see the particle rotate and report a nonzero
state of stress. We expect, however, that the state of stress is independent of observer
motion. The only way out of this dilemma is to postulate that stress may not depend on
rotation. Rotation is not frame indifferent; its value depends on the motion or position of the
observer. In contrast, deformation of a fluid element, as we will show later, is independent
of the motion of the observer and is thus a candidate argument for f in Eq. (2.31). Frame
indifferent quantities are also called objective quantities and are the only ones that should
enter into a constitutive equation.

General Motion of a Fluid Particle

In order to develop a facility to judge the frame indifference of a motion-associated
quantity, and hence to construct constitutive theorems, we need to investigate the general
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Figure 2.5. Relative motion of material points: velocity at Q
relative to that at P.

motion of the fluid. To this end consider the relative motion of arbitrary particles P and Q,
the latter being located in some neighborhood of the former (Figure 2.5).

We estimate the motion of Q relative to P by expanding the velocity about point P in
Taylor series,

v = vp + dx · grad v +O(dx2). (2.32)

At this stage it is expedient to split the velocity gradient tensor L = grad v into its
symmetric and skew symmetric parts (Cartesian decomposition),

grad v = 1
2 (L + LT ) + 1

2 (L − LT ).

def= D + Ω. (2.33)

The symmetric tensor D = DT is called the stretching tensor while the skew symmetric
tensor Ω = −ΩT is called the spin tensor. Relative to orthogonal Cartesian coordinates
and arranged in two-dimensional arrays, the stretching tensor and the spin tensor have the
components, respectively,

D = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
∂u

∂x

(
∂u

∂y
+ ∂v

∂x

) (
∂u

∂z
+ ∂w

∂x

)
(
∂u

∂y
+ ∂v

∂x

)
2
∂v

∂y

(
∂w

∂y
+ ∂v

∂z

)
(
∂u

∂z
+ ∂w

∂x

) (
∂w

∂y
+ ∂v

∂z

)
2
∂w

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.34a)

and

Ω =
⎡
⎣ 0 ωz −ωy

−ωz 0 ωx
ωy −ωx 0

⎤
⎦= 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

(
∂v

∂x
− ∂u

∂y

) (
∂w

∂x
− ∂u

∂z

)
(
∂u

∂y
− ∂v

∂x

)
0

(
∂w

∂y
− ∂v

∂z

)
(
∂u

∂z
− ∂w

∂x

) (
∂v

∂z
− ∂w

∂y

)
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.34b)

The vorticity vector ω is defined in Eq. (2.37).
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Substituting the decomposition equation (2.33) into Eq. (2.32) and neglecting higher
order terms results in

v = vP + dx · D + dx · Ω. (2.35)

The second term on the right-hand side can be written as

dx · D = grad
(

1
2 D
)

(2.36)

where the imaginary surface, D = dx · D · dx = const., is a closed surface, the so-called
rate of strain quadric, constructed about the point P. The right-hand side of Eq. (2.36)
represents a velocity field normal to the surface at each point. There are three mutually
perpendicular directions (the principal axes) in this velocity field, which suffer instantaneous
stretching but not instantaneous rotation. The rates of extension per unit length of fluid
elements along these directions are the eigenvalues of D (Truesdell and Rajagopal, 2000).

By defining the vorticity vector ω = curl v it also follows that

dx · Ω = 1
2ω × dx (2.37)

where ω represents the rigid body rotation of the principal directions of D.
Taking into account Eqs. (2.36) and (2.37), the velocity at Q relative to P can now be

written as

v = vP + grad
(

1
2 D
)+ 1

2ω × dx. (2.38)

Equation (2.38) proves that an arbitrary instantaneous motion is, at each point, the superpo-
sition of a uniform velocity of translation, a dilatation along three mutually perpendicular
axes, and a rigid body rotation of these axes (Serrin, 1959). The order of this superposition
is arbitrary.

Objectivity

We will now show that the stretching tensor is objective but the spin tensor is not.
A quantity is said to be objective (frame indifferent) if it is invariant under all changes of
frame. A frame [O, x, t] consists of an orthogonal Cartesian coordinate system (origin O)
and a clock. Consider two frames [O, x, t] and [O∗, x∗, t∗], related to each other through

x∗ = c (t) + Q (t) · x

t∗ = t − a. (2.39)

Here, Q (t) is a time dependent orthogonal matrix Q · QT = I that specifies the instanta-
neous orientation of (O, x) relative to (O∗, x∗), c (t) is the instantaneous distance between
O and O∗, and a is a constant.This is the most general change of frame that preserves
distance, time interval, and the sense of time (Truesdell and Noll, 1992).

Under the change of frame indicated above, objective vectors σ and tensors Φ transform,
respectively, as

σ ∗ = Q (t) · σ (2.40)

Φ∗ = Q (t) · Φ · QT (t) .
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To demonstrate the transformation laws, let the vector σ = x1 − x2 represent the position
of some x2 relative to some x1. In the starred frame the corresponding quantity is the
vector σ ∗ = x∗

1 − x∗
2. Substituting from Eq. (2.39) into this last formula leads to

σ ∗ = Q · (x1 − x1) = Q · σ .

To demonstrate Eq. (2.40) for the objective tensor Φ, construct the objective vector γ =
Φ · σ . In the starred frame this vector is represented by γ ∗ = Φ∗ · σ ∗ so that

γ ∗ = Q · γ = Q · Φ · σ

γ ∗ = Φ∗ · σ ∗ = Φ∗ · Q · σ .

Equating now the right-hand sides and observing that Q−1 = QT leads to the second
part of Eq. (2.40). It can be shown with the aid of Eq. (2.39) and the definitions for D and Ω ,
that D∗ = Q · D · QT and Ω∗ = Q · Ω · QT + Q · d Q/dt . Comparison with Eq. (2.40)
will then show that D is objective but Ω is not (the selection Q = I , d Q/dt = −Ω results
in Ω∗ = 0 even though Ω �= 0). Thus, if the stress depended on the spin tensor, the starred
observer [O∗, x∗, t∗] would not observe stress while her counterpart [O, x, t] would.

With the help of Figure 2.6 we now illustrate rotation, stretching, and angular deformation
of a fluid particle, as prescribed by the velocity gradient tensor L.

Figure 2.6. Deformation of a fluid particle.

Figure 2.6 depicts a fluid particle located on the positively directed (x, y) face of a
rectangular parallelepiped and observed from the +z (outward normal) direction, at two
time instances; at time t the particle is rectangular in shape, but deforms by time t +
t .
During the time interval
t the particle undergoes average rotation (α − β)/2 in the positive
(counterclockwise) sense. The time rate of change of this rotation (angular velocity) is

ωz = 1

2

(
dα

dt
− dβ

dt

)
(2.41a)

where

dα

dt
= lim

t→0

1


t

(
tan−1

∂v
∂x

x
t


x + ∂u
∂x

x
t

)
= ∂v

∂x
(2.41b)
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dβ

dt
= lim

t→0

1


t

(
tan−1

∂u
∂y

y
t


y + ∂v
∂y

y
t

)
= ∂u

∂y
. (2.41c)

Substituting into Eq. (2.41a) yields

ωz = 1

2

(
∂v

∂x
− ∂u

∂y

)
. (2.42a)

On the negatively directed (x, y) face of the parallelepiped the average rate of rotation
appears to be −ωz as viewed from the –z (outward normal) direction. (That the same
rigid body rotation can be evaluated as either ωz or −ωz depending on the position of the
observer, confirms our earlier assertion that rotation is not objective.)

Similarly, motion in the positively oriented coordinate faces (y, z) and (x, z), as observed
from the +x and +y coordinate directions, respectively, gives

ωx = 1

2

(
∂w

∂y
− ∂v

∂z

)
, ωy = 1

2

(
∂u

∂z
− ∂w

∂x

)
. (2.42b)

The spin tensor Ω is constructed from the rotations ωx, ωy, ωz as shown in Eq. (2.34).
To illustrate that the elements of the stretching tensor D contain information on the

rate of deformation, consider again the fluid particle depicted in Figure 2.6. At time t the
two material lines OA and OB, which form the sides of the particle, are perpendicular to
each other. At the later time t +
t they the two material lines are shown inclined at angle
(π/2 − γz), where γz = (α + β) is the angular deformation. The time rate of γz is

dγz

dt
=
(
dα

dx
+ dβ

dy

)
.

Substituting into this equation from Eq. (2.41) yields the rate of the angular deformation,
or shearing in the (x, y) plane, as

dγz

dt
=
(
∂v

∂x
+ ∂u

∂y

)
. (2.43a)

In similar fashion, in the (x, z) and the (y, z) planes, respectively, we have

dγy

dt
=
(
∂w

∂x
+ ∂u

∂z

)
,

dγx

dt
=
(
∂v

∂z
+ ∂w

∂y

)
. (2.43b)

Note that on the opposing, negatively directed coordinate surfaces we calculate identical
shearings (demonstrating that deformation is objective). We equate the shearings to twice
the off-diagonal elements of the stretching tensor D:

dγz

dt
= 2D12,

dγy

dt
= 2D13,

dγx

dt
= 2D23.

Also, because of the frame indifference of shearings referred earlier, we are allowed to
put

D21 = D12, D31 = D13, D32 = D23.

To calculate the diagonal elements of the matrix D, define the stretching of an infinitesimal
fluid line, originally of length � stretched to length �+
� in time 
t , as

d = 1

�
lim

t→0


�


t
.
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If the line element is in the x-coordinate direction, along the horizontal side of the rectangle
in Figure 2.6, we have �x = 
x and 
�x = (∂u/∂x)
x
t , so that

dx = 1

�x
lim

t→0


�x


t
= ∂u

∂x

and, similarly, in other coordinate directions

dy = ∂v

∂y
, dz = ∂w

∂z
.

Putting D11 = dx , D22 = dy , and D33 = dz, the stretching tensor acquires the form
shown in Eq. (2.34).

The Navier–Stokes Equations

The last sentence of the quote from Stokes (1845) appearing after Eq. (2.31) states
that the stress at point P cannot depend on the rigid body rotation of its neighborhood,
characterized by Ω , but it does depend on its deformation as described by D. The significant
difference between Ω and D that Stokes alludes to is that the latter of these quantities is
independent of the position or motion of the observer while rotation can appear positive,
negative, or zero, depending on the position or motion of the observer. In other words D is
objective while Ω is not. Stokes’ statement voices the common observation that stress can
depend only on objective quantities.

In addition to insisting that stress depend only on objective quantities, it appears to be
reasonable to postulate that stress itself is objective,5 thus under the change of frame (2.39),
stress transforms according to

T ∗ = Q (t) · T · Q (t)T . (2.44)

This statement, which also applies to the viscous stress, τ ∗ = Q · τ · QT , has immediate
consequence. Following Stokes (1845), we let stress depend on the rate of deformation,
then in the unstarred and starred frames, respectively,

τ = f (D), and τ ∗ = f (D∗).

From the second equation τ ∗ = Qτ QT = f ( Q D QT ) and, substituting for τ , from the
first, it follows that f has the special property,

Q f (D) QT = f ( Q D QT ). (2.45)

A function that satisfies condition (2.45) is called an isotropic function, and the material
it represents an isotropic material. Isotropy signifies that, regardless its orientation, a given
deformation produces the same intrinsic response; in other words, there is no preferred
direction either in the fluid or in space. The Stokes fluid and its subclass the Newtonian
fluid are specializations of f (D) in Eq. (2.45).

The definition of Stokes fluid is (Serrin, 1959)

[1] T is a continuous function of the deformation tensor D.
[2] T does not depend explicitly on position x (spatial homogeneity).

5In continuum mechanics this requirement is embodied in the Principle of Material Frame-Indifference
(Truesdell and Noll, 1992).
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[3] There is no preferred direction in space or fluid (isotropy).
[4] When D = 0, T reduces to −p I (hydrostatic stress).

The class of fluids is further narrowed to that of Newtonian fluids when

[5] T is linear in D.

Let τ = T − p I define the viscous stress tensor, which vanishes when D = 0, and, to
comply with [1], [2], and [4], put

τ = f (D). (2.46)

This constitutive relationship will now be re-written relative to the principal coordinate
system (indicated by an over bar) of the stretching tensor D,

τ̄ = f ( D̄); D̄kl =

⎛
⎜⎝
d(1) 0 0

0 d(2) 0

0 0 d(3)

⎞
⎟⎠ . (2.47)

Either of the two specific rotations Q(1) = diag(−1,−1, 1) and Q(2) = diag(1,−1,−1)
in Eq. (2.45) will transform that equation to

Q(α)τ̄ Q(α)T = f ( Q(α) D̄ Q(α)T ) = f ( D̄) = τ̄ , α = 1, 2. (2.48)

With α = 1, Eq. (2.48) yields⎛
⎜⎝
τ̄11 τ̄12 −τ̄13

τ̄21 τ̄22 −τ̄23

−τ̄31 −τ̄32 τ̄33

⎞
⎟⎠ =

⎛
⎜⎝
τ̄11 τ̄12 τ̄13

τ̄21 τ̄22 τ̄23

τ̄31 τ̄32 τ̄33

⎞
⎟⎠ .

This shows that when τ is expressed relative to the principal coordinate system of D,
the components τ̄13, τ̄31, τ̄23, and τ̄32 vanish. By changing to α = 2 in Eq. (2.48), two other
off-diagonal stress components τ̄12 and τ̄21 also vanish, proving that two tensors related by
an isotropic function possess the same principal directions,⎛

⎜⎝
τ(1) 0 0

0 τ(2) 0

0 0 τ(3)

⎞
⎟⎠ = f

⎛
⎜⎝
d(1) 0 0

0 d(2) 0

0 0 d(3)

⎞
⎟⎠ .

It is hence permissible to write

τ(i) = fi
(
d(1), d(2), d(3)

)
(2.49)

where the τ(i) are the eigenvalues of the viscous stress tensor τ .
It can be shown that Eq. (2.49) has the equivalent polynomial representation6 (Serrin,

1959)

T = α0(Θ,IID,I IID)1 + α1(Θ,IID,I IID)D + α2(Θ,IID,I IID)D2 (2.50)

6For this, more general, non-linear, case (Stokes fluid) the reader is referred to the excellent article by
Serrin (1959), also the first edition of this book. Constitutive equation (2.50) has been occasionally
employed in the study of aspects of non-linear material behavior. It should be borne in mind, however,
that no fluid is known presently that would obey (2.50) with α2 �= 0.
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where the invariants of D are defined as

Θ = trD, I ID = 1
2

[
(trD)2 − trD2] , I IID = det D.

However, if Eq. (2.49) is constrained to be linear as per specification [5], we have

τ(1) = a11d(1) + a12d(2) + a13d(3)

τ(2) = a21d(1) + a22d(2) + a23d(3) (2.51)

τ(3) = a31d(1) + a32d(2) + a33d(3).

Permutation of d(1), d(2), d(3), say into d(3), d(1), d(2), can be achieved by orthogonal trans-
formation that will permute the τ(i) in the same order, leaving the aij unchanged

τ(3) = a12d(1) + a13d(2) + a11d(3)

τ(1) = a22d(1) + a23d(2) + a21d(3)

τ(2) = a32d(1) + a33d(2) + a31d(3).

Equating appropriate right-hand sides from above, and continuing this process, will
result in

a11 = a22 = a33

a12 = a21 = a23 = a32 = a31 = a13.

We now designate the common value of the first row by λ+ 2μ and the second row by
2μ, where μ is the Newtonian viscosity7 (the physical meaning of λ will be investigated
later). It therefore follows that

τ(i) = λ
(
d(1) + d(2) + d(3)

)+ 2μd(i)

= λΘ + 2μd(i).

Transforming to a general coordinate system yields the constitutive equation for a
compressible Newtonian fluid,

T = (−p + λΘ) I + 2μD (2.52)

where p is the thermodynamic pressure while μ and λ are scalar functions of the thermo-
dynamic state.

For an incompressible Newtonian fluid Θ = 0 and (2.51) yields

T = −p I + 2μD. (2.53)

In this case, the case for incompressible fluid, p is a fundamental dynamic variable.
The Navier–Stokes equation for a compressible Newtonian fluid results from substituting

the constitutive equation (2.52) into Cauchy’s equations of motion (2.27a)

ρ
dv

dt
= grad (−p + λΘ) + div (2μD) + ρ f . (2.54a)

For the imcompressible fluid Θ ≡ 0 and we have

ρ
dv

dt
= −gradp + div (2μD) + ρ f . (2.54b)

7That the constant μ is indeed the Newtonian viscosity can be seen by applying (2.53) to unidirectional,
simple shear flow and obtaining T12 = μ (du/dy).
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Relative to orthogonal Cartesian coordinates the component equations for a compressible
fluid are

ρ

(
∂u

∂t
+ u∂u

∂x
+ v ∂u

∂y
+ w∂u

∂z

)

= ∂

∂x

[
−p + λ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
+ 2μ

∂u

∂x

]
+ ∂

∂y

[
μ

(
∂u

∂y
+ ∂v

∂x

)]

+ ∂

∂z

[
μ

(
∂u

∂z
+ ∂w

∂x

)]
+ ρfx

ρ

(
∂v

∂t
+ u∂v

∂x
+ v ∂v

∂y
+ w∂v

∂z

)

= ∂

∂y

[
−p + λ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
+ 2μ

∂v

∂y

]
+ ∂

∂x

[
μ

(
∂u

∂y
+ ∂v

∂x

)]

+ ∂

∂z

[
μ

(
∂v

∂z
+ ∂w

∂y

)]
+ ρfy

ρ

(
∂w

∂t
+ u∂w

∂x
+ v ∂w

∂y
+ w∂w

∂z

)

= ∂

∂z

[
−p + λ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
+ 2μ

∂w

∂z

]
+ ∂

∂x

[
μ

(
∂u

∂z
+ ∂w

∂x

)]

+ ∂

∂y

[
μ

(
∂v

∂z
+ ∂w

∂y

)]
+ ρfz. (2.55)

The Navier–Stokes equations for an incompressible fluid can be obtained either from
Eq. (2.54) or from Eq. (2.55) by substitutingΘ = 0, although the meaning of p is distinctly
different in incompressible fluid from that of in compressible fluid.

It is customary to define the mechanical (average) pressure p̄ as the negative of the
mean normal stress,

−p̄ def= 1

3
Tii = −p +

(
λ+ 2

3
μ

)
Θ (2.56)

p̄ − p = −
(
λ+ 2

3
μ

)
div v =

(
λ+ 2

3
μ

)
1

ρ

dρ

dt
.

For an incompressible fluid div v = 0 and p equals the mechanical pressure. For com-
pressible fluids the coefficient of bulk viscosity (λ+ 2

3μ) is a measurable quantity, but for
expedience it is often assumed to be zero. This, so-called Stokes assumption, appears to
be reasonable for monatomic gases, but does not hold for polyatomic gases or for liquids
(Serrin, 1959; Vincenti and Kruger, 1965). But in any case, it suggests the order of mag-
nitude estimate (λ/μ) = O (1), which we will find useful when constructing the thin film
approximation of the equations of motion.

The Navier–Stokes problem consists of the equation of continuity (2.16), the three
equations of motion (2.55), the equation of state in case of compressible fluids, and the
boundary and initial conditions. For an ideal gas the equation of state is

p = ρRθ (2.57)

where R is the gas constant and θ is the absolute temperature.
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The boundary conditions on velocity are no-slip for incompressible fluids, but also for
compressible fluids at low Knudsen number.8 The condition Kn < 0.001 characterizes
continuum flow, for Kn larger than this rarefaction effects must be taken into account.
However, for 0.001 < Kn < 0.1 the Navier–Stokes equation is still useful but only with
slip-flow boundary condition. For higher values of the Knudsen number, the Navier–Stokes
equation loses its validity and various forms of the Boltzmann equation must be employed
(see Chapter 12). The pressure might be imposed on the fluid externally, in which case it
will be defined on part of the boundary. Otherwise, there are no boundary conditions on
pressure; pressure is induced by the flow so as to obey the constraint of mass conservation.

2.2 The Thin-Film Approximation

To find solutions of the full Navier–Stokes and continuity equations is far from
elementary, and in applications one looks for ways to simplify these equations. Various,
well-researched simplifications are available to the analyst. When the equations have been
properly normalized, the condition Re → ∞ determines (inviscid) Euler flow. The condi-
tion Re → 0 defines (inertialess) Stokes flow. When density change is taken into account in
the body force term alone, we are defining Boussinesq flow. The boundary layer approxi-
mation applies in the vicinity of solid boundaries and at high Reynolds number. This last
mentioned simplification was arrived at only after careful order of magnitude analysis of the
various terms of the equations, not unlike the Reynolds lubrication approximation, which
preceded it by two decades.

Simplification of the Navier–Stokes equations is made particularly easy in lubrication by
the geometry of typical lubricant films. Under normal conditions, the in-plane dimensions
of the film are significantly greater than its thickness. Let Lxz designate the length scale
of the lubricant film in the (x, z) plane and Ly its length scale across its thickness in the y
direction (Figure 2.7), then for typical lubricant films ε = (Ly/Lxz) is O(10−3).

Figure 2.7. Bearing surfaces coordinate axes and length scales.

Reynolds developed the thin film approximation in his efforts to explain the experimental
results of Beauchamp Tower. While studying Tower’s report on railroad bearings, Reynolds

8The Knudsen number is the ratio of the mean free path to the characteristic dimension of the flow
Kn = λ/h. In current computer magnetic drives h ∼ 10 nm while for air λ ∼ 60 nm.
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identified “crucial proof . . . that the surfaces were completely and continuously separated
by a film of oil; this film being maintained by the motion of the journal, although the
pressure in the oil at the crown of the bearing was shown by actual measurement to be
as much as 625 lbs. per sq. inch above the pressure in the oil bath” (Reynolds, 1886). It
further occurred to Reynolds as possible that “the film of oil might be sufficiently thick for
the unknown boundary actions to disappear, in which case the results would be deducible
from the equations of hydrodynamics.”

Having two greatly differing length scales is what makes the analysis of fluid film
bearings relatively simple. This property of the film will be utilized for estimating the order
of magnitude of the various terms of the governing equations. The equations will then be
simplified by deleting terms that are judged to be too small to cause significant effect (from
here on forward the body force f will be neglected on account of the film having small body
weight relative to the magnitude of viscous and pressure forces).

To perform this “thin-film” simplification, normalize the variables participating in the
governing equations. The definition

(x̄, ȳ, z̄) = 1

Lxz

(
x,

1

ε
y, z

)
(2.58a)

renders the range of the nondimensional coordinates (x̄, ȳ, z̄) to be ε[0, 1]Z. The velocity
is normalized in like manner. For this, designate the characteristic value of the velocity in
the (x, z) plane of the film by U ∗. Obviously, the velocity scale in the direction across the
film will not equal U ∗; in fact, intuition says that it will be considerably smaller than U ∗ as
the flow is judged to be approximately parallel to the (x, z) plane. An estimate for V ∗, the
velocity scale across the film, can be secured from the equation of continuity (written here
for incompressible fluids)

∂ū

∂x̄
+
(
V ∗

εU ∗

)
∂v̄

∂ȳ
+ ∂w̄

∂z̄
= 0.

The three terms in this equation will be of the same order of magnitude if we choose

(ū, v̄, w̄) = 1
U∗
(
u, 1

ε
v, w

)
. (2.58b)

In addition, we define normalized pressure,9 time, viscosity, density, and λ by

p̄ = Rε
p

ρ∗U ∗2
; t̄ = U ∗t

Lxz
; μ̄ = μ

μ∗ ; ρ̄ = ρ

ρ∗ ; λ̄ = λ

λ∗ . (2.58c)

The Reynolds number Re and the reduced Reynolds number Rε are defined, respectively,
by

Re = ρ∗LyU ∗

μ∗ ; Rε = εRe. (2.58d)

The normalized (nondimensional) form of the continuity and Navier–Stokes equations
is

∂ρ̄

∂t̄
+ ρ̄

(
∂ū

∂x̄
+ ∂v̄

∂ȳ
+ ∂w̄

∂z̄

)
= 0 (2.59)

9Had we put P = p/ρ∗U∗2 the pressure would disappear on taking the limit Rε → 0, leaving four
scalar equations to be satisfied by three unknown velocity components.
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Rερ̄

(
∂ū

∂t̄
+ ū ∂ū

∂x̄
+ v̄ ∂ū

∂ȳ
+ w̄ ∂ū

∂z̄

)
= −∂p̄

∂x̄
+ ∂

∂ȳ

(
μ̄
∂ū

∂ȳ

)
(2.60a)

+ ε2

{(
λ0

μ0

)
∂

∂x̄

[
λ̄

(
∂ū

∂x̄
+ ∂v̄

∂ȳ
+ ∂w̄

∂z̄

)]
+ ∂

∂x̄

(
2μ̄
∂ū

∂x̄

)

+ ∂

∂ȳ

(
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∂v̄

∂x̄

)
+ ∂

∂z̄

[
μ̄

(
∂ū

∂z̄
+ ∂w̄

∂x̄

)]}

ε2

{
Rερ̄

(
∂v̄

∂t̄
+ ū ∂v̄

∂x̄
+ v̄ ∂v̄

∂ȳ
+ w̄ ∂v̄
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)
∂

∂ȳ
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(
∂ū

∂x̄
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∂ȳ
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(2.60b)

− ∂

∂ȳ

(
2μ̄
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∂ȳ

)
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∂ū

∂ȳ

)
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∂z̄

(
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∂ȳ
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∂
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(
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∂v̄
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∂ȳ
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∂w̄

∂t̄
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∂x̄
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∂ȳ
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)
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∂ȳ
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)
(2.60c)

+ ε2
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)
∂
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(
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∂ȳ
+ ∂w̄
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.

The thin film approximation follows from letting ε2 → 0

∂ρ̄

∂t̄
+ ρ̄

(
∂ū

∂x̄
+ ∂v̄

∂ȳ
+ ∂w̄

∂z̄

)
= 0 (2.61)

Rερ̄

(
∂ū

∂t̄
+ ū ∂ū

∂x̄
+ v̄ ∂ū

∂ȳ
+ w̄ ∂ū

∂z

)
= −∂p̄

∂x̄
+ ∂

∂ȳ

(
μ̄
∂ū

∂ȳ

)
(2.62a)

0 = −∂p̄
∂ȳ

(2.62b)

Rερ̄

(
∂w̄

∂t̄
+ ū ∂w̄

∂x̄
+ v̄ ∂w̄

∂ȳ
+ w̄ ∂w̄

∂z

)
= −∂p̄

∂z̄
+ ∂

∂ȳ

(
μ̄
∂w̄

∂ȳ

)
. (2.62c)

Equation (2.62b) shows that to present order of approximation the pressure does not vary
across the film and p = p (x, z, t) alone.

As Eqs. (2.62) were arrived at on the basis of the thin-film (or, more properly said,
small-slope) assumption, for results generated by them to be acceptable the value of ε must
be kept suitably small. The designer, however, will not be satisfied just by being told to
keep the aspect ratio small, she will want to know how small is sufficiently small. We shall
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return to this topic at the end of the present chapter where we investigate the region of
validity of the equations in (ε,Rε) space.

The Reynolds Equation

Equations (2.61) and (2.62) form the basis of the lubrication theory of Osborne
Reynolds. But to arrive at that theory, additional assumptions are yet to be made. In this
section we will make these assumptions and develop the (classical) Reynolds theory of
lubrication.

The principal simplifying assumptions of the theory derive from the observation that
the lubricant flow, at least in a first approximation, is isoviscous and laminar and that it
takes place in an “almost parallel” thin film of negligible curvature. The mathematical
statement of this is the Reynolds equation in lubricant pressure; it was formulated by
Osborne Reynolds just over a century ago.

Reynolds based his theory of lubrication on the following assumptions (Reynolds, 1886):

(1) The continuum description is valid.
(2) The Navier–Stokes equations hold.
(3) Compressibility is ignored.
(4) The viscosity is constant.
(5) The film is thin, therefore:

(a) Lubricant flow is free of eddies (i.e., it is laminar).
(b) Lubricant inertia is negligible.

In contrast to assumptions (1), (2), and (5), which are central to the theory, neglecting
compressibility is not indispensable to the development of lubrication theory and assump-
tion (3) was made by Reynolds simply because Tower’s experiments were performed with
an incompressible lubricant and Reynolds intentions were to explain the results of these
experiments. As will be shown in Chapter 9, inclusion of lubricant compressibility requires
but small modifications in the formulation.

In thrust bearings the lubricant film is bounded by plane surfaces. In journal bearings
the bounding surfaces are no longer plane, nevertheless, in relation to its thickness the film
curves only very gently. In fact, the ratio of film thickness to radius of curvature in most
practical bearings is at most of order ε. Therefore, assumption (5) is also a statement on
film curvature; as a consequence, it is permissible to describe fluid film lubrication relative
to an orthogonal Cartesian coordinate system. We arbitrarily fix the y axis of this Cartesian
system in the direction of the minimum film dimension; its (x, z) plane thus coincides with
the “plane” of the lubricant film.

In journal bearings we select the bearing surface to be the y = 0 “plane”. Although,
in reality, all vectors normal to this surface intersect in the center of the bearing, in the
approximate world of lubrication theory we consider these normal vectors to be parallel to
each other; i.e., we focus on such short distances along these vectors that the fact that they
intersect at what seems to us a very great distance, remains unnoticed. This is the essence
of neglecting film curvature.

When assumptions (1)–(5) are applied to the equations of motion and continuity we
obtain, now in terms of the primitive variables,

∂p

∂x
= μ∂

2u

∂y2
(2.63)



78 2 / Basic Equations

∂p

∂z
= μ∂

2w

∂y2
(2.64)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (2.65)

Naturally, these equations follow from Eqs. (2.62) on assuming that Rε < 1, or, equiva-
lently, that εRe < 1. Now in most bearing applications the Reynolds number can be large,
in fact the flow can still be laminar in journal bearings right up to Re ∼ 1000. Thus our
limit on the reduced Reynolds number could be interpreted as a limit on the magnitude of
the aspect ratio ε; in fact it must not exceed 1/1000. A more detailed discussion of this
topic can be found in Chapter 5 of this book.

The equations of motion may now be integrated twice with respect to y, since by
assumption (5) or Eq. (2.62b) neither ∂p/∂x nor ∂p/∂z varies across the film

u = 1

2μ

∂p

∂x
y2 + Ay + B

w = 1

2μ

∂p

∂z
y2 + Cy +D.

A, B, C, and D are either constants or, at most, functions of x and z. Their value must be
chosen so that u and w satisfy prescribed boundary conditions in y.

The boundary conditions for u and w are

u = U1, w = 0 at y = 0
u = U2, w = 0 at y = h (2.66)

where U1 and U2 represent the velocity of the bearing surfaces as indicated in Figure 2.7.
Substituting the velocity into the boundary conditions (2.66) evaluates the integration

constants and yields the velocity distribution

u = 1

2μ

∂p

∂x
(y2 − yh) +

(
1 − y

h

)
U1 + y

h
U2

w = 1

2μ

∂p

∂z
(y2 − yh). (2.67)

The pressure gradient in Eq. (2.67) is, as yet, unknown. But since the pressure p is an
induced pressure, the sole function of which is to guarantee compliance with the principle
of conservation of mass, it can be evaluated from the condition that both u and w satisfy
the equation of continuity. This seems to be a reasonable scheme, but it has one serious
flaw. If u and w are substituted into Eq. (2.65) the resulting single equation will contain
two unknowns10 v and p, and, unless v is specified, we have insufficient information
to determine p. This difficulty will be alleviated by integrating, in effect averaging, the
equation of continuity across the film, as the averaged equation will contain the velocity
component v only in the values it assumes on the boundaries at y = 0 and y = h(x, t). As

10The problem originates with the approximation itself; the set of reduced equations, Eqs. (2.63) to
(2.65), contain four unknowns u, v,w and p, but only three equations. Of course, one could employ
the fourth equation ∂p/∂y = 0 to eliminate the pressure by differentiation with respect to y and end up
with three equations in three unknowns. Thus, in reality, the Reynolds thin-film approximation leaves
us with a well defined system.
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the approach velocity of the surfaces is presumed known during this analysis, integration
across the film eliminates one of the two remaining unknowns.

Integrating the equation of continuity (2.65) across the film results in

v|h (x, t)
0 = −

∫ h (x, t)

0

∂u

∂x
dy −

∫ h (x, t)

0

∂w

∂z
dy. (2.68)

Interchanging integration and differentiation in Eq. (2.68) and substituting u and v from
Eq. (2.67) we obtain11

v|h (x, t)
0 = − ∂

∂x

[
1

2μ

∂p

∂x

∫ h(x, t)

0
(y2 − yh)dy

]
− ∂

∂z

[
1

2μ

∂p

∂z

∫ h(x, t)

0
(y2 − yh)dy

]

− ∂

∂x

∫ h(x, t)

0

[(
1 − y

h

)
U1 + y

h
U2

]
dy + U2

∂h

∂x
. (2.69a)

Evaluating the integrals and taking into account that

v|h (x, t)
0 = − (V1 − V2) = dh

dt
(2.69b)

where V1 − V2 is the velocity of approach of the surfaces, we obtain the Reynolds equation
for lubricant pressure

∂

∂x

(
h3

μ

∂p

∂x

)
+ ∂

∂z

(
h3

μ

∂p

∂z

)
= 6 (U1−U2)

∂h

∂x
+ 6h

∂ (U1 + U2)

∂x
+ 12(V2−V1). (2.70)

It is emphasized that V 1 = (U1, V1) and V 2 = (U2, V2) are the velocities of “corre-
sponding” points, each fixed to one of the bearing surfaces.12 The velocities V1 and V2

result from rigid body motion, which may include both rotation and translation, of the
bearing surfaces. It will be to our advantage in later work to separate rigid body translation
from rigid body rotation. Thus, we decompose the velocity of surface 2, surface 1 being
the reference surface, according to the scheme

U2 = U2, r + U2, t

V2 = V2, r + V2, t (2.71)

so that (U2,r , V2,r ) and (U2,t , V2,t ) are caused by rotation and translation, respectively.
For the plane slider in Figure 2.8, and for thrust bearings in general, the rotational

components of the velocity are identically zero. The translational components are usually
prescribed relative to the (x, y, z) coordinate system of the runner (now surface 1); thus

U2 = U2, t , U2, r ≡ 0

V2 = V2, t , V2, r ≡ 0. (2.72)

11Here we employ Leibnitz’s rule for differentiating under the integral sign

d

dx

∫ B

A

f (x, t) dt =
∫ B

A

∂f (x, t)

∂x
dt + f (x, B)

dB

dx
− f (x,A)

dA

dx
.

12We call two points, one fixed to the bearing surface and the other to the runner surface, corresponding
points at the instant when they are located on the same normal to the reference surface. For journal
bearings the pad surface is the reference surface. For the plane slider, on the other hand, it is expedient
to designate the runner surface as the reference surface.
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Figure 2.8. Velocities for rigid body translation of bearing surfaces.

Interpreting the film thickness as the normal distance between a point fixed on the bearing
(point Q in Figure 2.8) and the runner surface (x, z plane), we find that the film thickness
changes if and only if the bearing is given a translational velocity V2,t − V1 = V2 − V1 in
the y direction, relative to the runner. Such change of film thickness is uniform in x and so
is its time rate. Thus

U1 − U2 = U1 − U2, t

V2 − V1 = V2, t − V1 = ∂h

∂t
.

We find, furthermore, that both U1 and U2 are constant when the surfaces are rigid and
thus for thrust bearings the Reynolds equation (2.70) reduces to

∂

∂x

(
h3

μ

∂p

∂x

)
+ ∂

∂z

(
h3

μ

∂p

∂z

)
= 6 (U1 − U2)

∂h

∂x
+ 12 (V2 − V1) . (2.73)

Pressure generation in thrust bearings thus depends on the translational velocity of the
bearing surfaces relative to one another but not on the absolute value of the velocity. We are
therefore permitted to recast Eq. (2.73) into a form that contains only relative velocities.
We will do this in order to bring out the essentials of the analysis. The result is the Reynolds
equation for thrust bearings; that is, for bearings where only translation of the surfaces is
involved,

∂

∂x

(
h3

μ

∂p

∂x

)
+ ∂

∂z

(
h3

μ

∂p

∂z

)
= 6U0

∂h

∂x
+ 12V0. (2.74)

Here,

U0 = U1 − U2, V0 = V2 − V1

are the relative velocities in the directions parallel and perpendicular, respectively, to the
reference (runner) surface.

To generate positive (load carrying) pressures in the film, it is necessary that the right-
hand side of Eq. (2.74) be negative; that is,

U0
∂h

∂x
< 0,

∂h

∂t
< 0. (2.75)
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Figure 2.9. Velocities for translation and rotation of bearing surfaces.

The first of these conditions specifies a film that is convergent in space (in the direction of
relative motion), and the second specifies a film that is convergent in time.

In journal bearings one encounters both rotation and translation of the bearing surfaces.
The velocity V2 of an arbitrary point Q, fixed to the runner surface as in Figure 2.9, is given
by the sum of its velocity in rigid body translation V2,t and the velocity V2,r that is caused
by rigid body rotation of the journal. From Figure 2.9 we have

U2, r = ∣∣V2, r

∣∣ cos α = ∣∣V2, r

∣∣ [1 − 1

2

(
∂h

∂x

)2

+ · · ·
]

≈ ∣∣V2, r

∣∣ (2.76a)

as (∂h/∂x) � 1 by assumption.
We may also write

V2, r = |V2, r | sin α = U2, r tan α ≈ |V2, r |∂h
∂x
. (2.76b)

On the other hand, U2,r is easily replaced by U2. In journal bearings

U2, t

U2, r
= O(10−3)

and the following approximation is acceptable in most cases:

U2 = U2, r + U2, t = U2, r

(
1 + U2, t

U2, r

)
≈ U2, r . (2.76c)

Equation (2.76b) then takes the form

V2, r ≈ U2
∂h

∂x

V2 ≈ V2, t + U2
∂h

∂x
. (2.77)
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The first and the last terms on the right-hand side of Eq. (2.70) are combined as follows:

6 (U1 − U2)
∂h

∂x
+ 12

dh

dt
= 6 (U1 − U2)

∂h

∂x
+ 12

(
V2, t + U2

∂h

∂x
− V1

)

= 6 (U1 + U2)
∂h

∂x
+ 12

(
V2, t − V1

)
= 6 (U1 + U2)

∂h

∂x
+ 12

∂h

∂t
. (2.78)

As an alternative to Eq. (2.78) we might have started with the interpretation that the
film thickness h = h(x, t) is the normal distance between a point, Q, of the journal and
the surface of the bearing. The film thickness, according to this interpretation, might be
changing for one or both of the following reasons: (1) rigid body translation of the journal
center relative to the bearing along a bearing radius (local change), and (2) rotation of the
journal (convective change). The latter motion forces Q and h to move within a clearance
gap of varying width, with velocity U2,r. Therefore, recognizing that h is dependent on t
both explicitly and implicitly through the motion, we obtain (see Eq. (2.5))

dh

dt
= ∂h

∂t
+ dx

dt

∂h

∂x
= ∂h

∂t
+ U2, r

∂h

∂x

and recover Eq. (2.78) approximately. (For thrust bearings the second term on the right-hand
side vanishes.)

Taking now Eq. (2.78) into account, Eq. (2.70) reduces to

∂

∂x

(
h3

μ

∂p

∂x

)
+ ∂

∂z

(
h3

μ

∂p

∂z

)
= 6

∂

∂x
[h(U1 + U2)] + 12(V2, t − V1). (2.79)

Pressure generation in journal bearings has been shown thus to depend on (1) the sum
of the tangential velocities U0 = U1 + U2 and (2) the difference of the normal velocities
V0 = V2,t − V1. Equation (2.79) may then be recast into a form that contains U0 and V0

rather than the absolute value of the individual velocity components.

∂

∂x

(
h3

μ

∂p

∂x

)
+ ∂

∂z

(
h3

μ

∂p

∂z

)
= 6U0

∂h

∂x
+ 6h

∂U0

∂x
+ 12V0. (2.80)

Equations (2.74) and (2.80) are formally identical, but for the term 6h (∂U0/∂x), which
must be retained in Eq. (2.80) to account for journal motion under dynamic loading.
However, it should be borne in mind that the interpretation put on the velocity U0 is
distinctly different in the two cases. If the bearing surface is stationary, and this will be
assumed unless explicitly stated otherwise, thenU0 = U2 for journal bearings andU0 = U1

for thrust bearings.

Practical Upper Bound for ε

We aim now to provide preliminary estimate for the largest value of ε at which
predictions from Eqs. (2.62) can be expected to hold. For infinite extent of the flow domain
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Figure 2.10. Geometry of the plane slider.

in the z – direction, steady state, and isothermal operations, Eqs. (2.61) and (2.62) provide
the quasi one-dimensional system (Szeri and Snyder, 2006)

Rε

(
ū
∂ū

∂x̄
+ v̄ ∂ū

∂ȳ

)
= −∂p̄

∂x̄
+ ∂2ū

∂ȳ2
,
∂ū

∂x̄
+ ∂v̄

∂ȳ
= 0. (2.81)

The results we shall quote here relate to flow between inclined, flat planes, i.e., the ‘plane
slider’ (Figure 2.10). We put x̄ = x/Lxz, ȳ = y/Ly, H1 = H (x̄1) and H2 = H (x̄2) for
the nondimensional coordinates and film thickness at outlet and inlet, respectively, with
length scales Ly = (h1 + h2)/2 and Lxz = B = x2 − x1, where x1 defines the position of
the outlet and x2 > x1 the inlet.

Introduction of the stream function Ψ (x̄, ȳ) into (2.81) leads to

Rε

(
H
∂�

∂η

∂3�

∂η2∂ξ
− 2

dH

dx̄

∂�

∂η

∂2�

∂η2
−H ∂�

∂ξ

∂3�

∂η3

)
− ∂

4�

∂η4
= 0, 0 ≤ ξ, η ≤ 1. (2.82)

Here, we also affected the change of variables

ξ = x̄ − x̄1

η = ȳ/H (x̄) , H = h (x) /Ly

The no-slip boundary conditions on the solid boundaries are

� = 0,
∂�

∂η
= −H, at η = 0

� = Q∗,
∂�

∂η
= 0, at η = 1, (2.83)

where Q∗ is the dimensionless flow rate, an additional unknown. To ensure that the problem
remains mathematically well posed we must also increase the number of independent
equations. This we do by constraining the average pressure at outlet to equal its value at
inlet: ∫ 1

0

∫ 1

0
H (ξ )

∂P

∂ξ
dξdη = 0. (2.84)
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We approximate Ψ (ξ, η) by piecewise polynomial functions (deBoor, 1978) and apply
Galerkin’s method to evaluate the coefficients in the approximation. The resulting system
of nonlinear algebraic equations can be written in the form

G(ω) = 0, ω = (u, σ ) , (2.85)

where u is the vector of state variables and σ is the vector of parameters. The computational
scheme for solving Eq. (2.85), i.e., parametric continuation followed by the Gauss–Newton
method, can be found in Dai et al. (1992).

The principal conclusion from Eq. (2.62) is the invariance of the pressure across the
film. To investigate the upper bound of ε for this conclusion to hold, we look at flow
between inclined planes of various aspect ratios. As long as Eqs. (2.62) hold, the pressure
on the upper plate, P(h), and the pressure on the lower plate, P(0), are approximately
equal, becoming identical at the limit ε → 0. This may be investigated quantitatively by
computing a pressure difference coefficient

dp = 100 |P (h) − P (0)|max /P (h)max. (2.86)

Figure 2.11. Pressure difference coefficient dp for various values of the aspect ratio and
reduced Reynolds number (With kind permission from Springer Science & Business Media:
Meccanica, Convective inertia effects in wall-bounded thin film flows, 41, 2006, 473–482,
Szeri, A. Z and Snyder, V., Figure 2).

In Figure 2.11 we indicate the value of dp, calculated from the full Navier–Stokes
problem employing FIDAP, as a function of the parameters ε and Rε. We restrict attention
here arbitrarily to Re > 10, accepting this as a lower bound on the Reynolds number for
applications. For “small” values of the aspect ratio, Figure 2.11 appears to support the
assertion of Eq. (2.62): for ε ≤ 0.05, dp ≤ 1%, and even for the wider range ε ≤ 0.1,
dp < 16%, though the increase in dp for ε > 0.1 is quite rapid. Thus, for ε ≤ 0.1, we
have the approximate relationship dp ≈ f (Rε). This conclusion seems to hold well for
Rε ≤ 100.

Figure 2.12 plots the ratio of actual pressure over its zero Reynolds number value
against Rε, as calculated by FIDAP from the full Navier–Stokes problem at various values
of ε ≤ 0.1. Data for different ε values collapse onto a single curve, confirming again that
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Figure 2.12. Variation of Pmax/P0,max with Rε Re, FIDAP (+, ε = 0.005; o, ε = 0.05; ∗,
ε = 0.08; ×, ε = 0.1; (With kind permission from Springer Science & Business Media:
Meccanica, Convective inertia effects in wall-bounded thin film flows, 41, 2006, 473–482,
Szeri, A. Z. and Snyder, V., Figure 3).

under the stated conditions the aspect ratio is not a strong parameter of the flow, that is
Pmax/P0,max ≈ g (Rε).

Figure 2.13 compares lubricant force from two sources, FIDAP solution of the full
Navier–Stokes problem and the stream function–Galerkin formulation of Eq. (2.82). Two

Figure 2.13. Normalized force, ε ≤ 0.1; o, approximation; x, Navier–Stokes (With kind
permission from Springer Science & Business Media: Meccanica, Convective inertia effects
in wall-bounded thin film flows, 41, 2006, 473–482, Szeri, A. Z. and Snyder, V., Figure 5).
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channel geometries, h2/h1 = 2 and h2/h1 = 3/2, are depicted in this figure, the force is
normalized with its zero Reynolds number value.

This simplified analysis suggests that under conditions similar to those assumed here,
the thin film approximation (2.62) will yield acceptable results when the local value of
the aspect ratio, i.e., film slope, is less than 1 in 10. If the aspect ratio is greater than
this, the approximation no longer holds and the pressure must be calculated from the full
Navier–Stokes equations.

2.3 Nomenclature

D rate of strain quadric
D stretching tensor
FB, FS body, surface force
J Jacobian
L velocity gradient tensor
Ly,Lx,z characteristic lengths
M mass
M torque
R gas constant
Re, Rε Reynolds numbers
S, s surface
T stress tensor
V , v velocity
V,v volume
Xi, xi Cartesian coordinates
Ω spin tensor
a acceleration
d(i) principal values of D
ei Cartesian base vectors
f body force, constitutive function
h film thickness
n unit normal vector
p pressure
t time
t stress vector
λ dilatational viscosity
μ viscosity
ρ density
ε aspect ratio
τ viscous stress tensor
τ (i) principal values of τ
χ deformation function
ψ material property per unit volume
ω vorticity vector
(·)∗ characteristic quantity
(·)r , (·)t radial, tangential

(·) normalized
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CHAPTER 3

Thick-Film Lubrication

Fluid film lubrication naturally divides into two categories. Thin-film lubrication
is usually met with in counter-formal contacts, principally in rolling bearings and in gears.
The thickness of the film in these contacts is of order of 1μm or less, and the conditions are
such that the pressure dependence of viscosity and the elastic deformation of the bounding
surfaces must both be taken into account.

Thick-film lubrication is encountered in externally pressurized bearings, also called
hydrostatic bearings, and in self-acting bearings, called hydrodynamic bearings. Of the
latter, there are two kinds: journal bearings and thrust bearings. The film thickness in these
conformal-contact bearings is at least an order of magnitude larger than in counter-formal
bearings. In consequence, the prevailing pressures are orders of magnitude smaller, so that
neither the pressure dependence of viscosity nor the elastic deformation of the surfaces plays
important roles. If, in addition, the lubricant is linearly viscous and the reduced Reynolds
number is small, the classical Reynolds theory, as derived in the previous chapter, will apply.

This chapter discusses isothermal processes only. It should be realized, however, that
bearings never operate under truly isothermal conditions, and under near isothermal condi-
tions only in exceptional cases. Viscous dissipation and consequent heating of the lubricant
are always present, and the change in viscosity must be accounted for when analyzing
thick-film lubrication problems. In restricted cases, where design and operating conditions
are such as to suggest “uniform” temperature rise of the lubricant, the “effective viscos-
ity” approach of Chapter 9 might be employed. In other, again very limited, cases, where
heat conduction into the bearing surfaces can be neglected, the “adiabatic theory” might
be useful. But in the great majority of practical cases, particularly under turbulent flow
conditions, full thermohydrodynamic theory, including thermal/elastic deformations of the
bearing surfaces, must be employed.

3.1 Externally Pressurized Bearings

Hydrostatic bearings of non-uniform film thickness are discussed by Heller and
Shapiro (1968) and by Szeri and Phillips (1974). The effect of fluid inertia is considered by
Szeri and Adams (1978), and the coupled effects of nonuniform viscosity and fluid inertia
can be found in Gourley (1977).

Here we derive the theory of externally pressurized bearings under the assumptions of
(1) steady loading, (2) constant sliding velocity, and (3) uniform film thickness.

The applicable form of the Reynolds equation is obtained from Eq. (2.80) by substitution
of μ = const., h = const, and U0 = V0 = 0:

∂2p

∂x2
+ ∂2p

∂z2
= 0, or ∇2p = 0, (3.1)

where ∇2 is the two-dimensional Laplace operator.

88
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The boundary conditions on pressure are

p = pr on �i
(3.2)

p = pa on �o.

Here �i, stands for the recess boundary, �o represents the pad external boundary, pr is the
recess pressure, and pa is the ambient pressure. (Without loss of generality we put pa = 0
for the incompressible lubricant.)

Equation (3.1), together with the boundary conditions in Eq. (3.2), represents a Dirichlet
problem of applied mathematics. The solution of this problem is straightforward when
obtained numerically, but it is somewhat difficult to obtain analytically (Szeri, 1975). There
are two pad geometries, however, for which solutions of Eq. (3.1) exist in closed form, the
circular step and the annular geometries.

Pad Characteristics

Irrespective of the geometry or size of a hydrostatic pad, its performance charac-
teristics can be written in the form

W = afApr, (3.3a)

Q = qf h
3

μ
pr, (3.3b)

Hp = qf h
3

μ
prps, (3.3c)

Hf = hf μU
2
MA

h
, (3.3d)

where W is the external load, Q is the flow rate of the lubricant, Hp is the required pumping
power,Hf is the frictional loss, A is the pad area (including the area of the recess), and UM

is the maximum sliding velocity of the runner relative to the pad.
The quantities af , qf , and hf are commonly referred to as the area factor, the flow

factor, and the friction factor, respectively. These factors are dimensionless – that is, they
are independent of the size of the bearing pad but dependent on its geometry. They may be
evaluated for the particular geometry by the designer or, for the more common geometries
such as rectangular and sector, can be extracted from the literature (Rippel, 1963; Szeri,
1975).

Exactly how af , qf , and hf are obtained will be illustrated for the circular step geometry
of radii R1 and R2 > R1. Equation (3.1) is first written in polar coordinates for simplicity,
and then made nondimensional through the substitutions:

p = prp̄, r = R2r̄ , (3.4)

where R2 is the pad outer radius.
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Substitution results in the following differential equation and boundary conditions:

d

dr̄

(
r̄
dp̄

dr̄

)
= 0,

p̄ = 1 at r̄ = R1

R2
, (3.5)

p̄ = 0 at r̄ = 1,

in place of Eqs. (3.1) and (3.2).
The solution of system Eq. (3.5) is

p̄ = ln r̄

ln (R1/R2)
. (3.6)

We are now in the position to evaluate the bearing load capacity W as follows:

W = πR2
1pr + 2π

∫ R2

R1

rp dr

= πR2
1pr

[
1 + 2 (R2/R1)2

ln (R1/R2)

∫ 1

R1/R2

r̄ ln r̄ dr̄

]
(3.7)

= 1 − (R1/R2)2

2 ln(R2/R1)
Apr.

Consistent with the thin-film assumption of lubrication theory, the radial component of the
velocity is given by

ur = 1

2μ

dp

dr
y (y − h) , (3.8)

so that the flow rate out of the bearing can be calculated from the formula

Q =
∫ h

0
2πrur dy = π

6 ln (R2/R1)

h3pr

μ
. (3.9)

The pumping power Hp required to pressurize the lubricant to the supply pressure ps is
the product of supply pressure and flow rate:

Hp = psQ,

or, when substituting from Eq. (3.9),

Hp = π

6 ln (R2/R1)

h3pspr

μ
. (3.10)

In hydrostatic bearings the depth of the recess is much greater than the thickness of the
film, and thus viscous dissipation due to shearing motion of the bearing surfaces occurs
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mainly over the land. There, because of symmetry, the tangential velocity distribution across
the gap is approximately linear, and the uniform shear stress is τ = μrω/h.1 The power
loss from shearing motion can be calculated from

Hf =
∫
A

rωτ dA = 1 − (R1/R2)4

2

μU 2
MA

h
. (3.11)

Here UM is the maximum tangential velocity of the runner over the land of the stationary
bearing pad.

Equations (3.7)–(3.11) show that, for circular step bearings, the dimensionless perfor-
mance factors are

af = 1 − (R1/R2)2

2 ln(R2/R1)
, (3.12a)

qf = π

6 ln(R2/R1)
, (3.12b)

hf = 1 − (R1/R2)4

2
. (3.12c)

The total power loss in the bearing (excluding line losses and power loss encountered in
flow restrictors) is given by

HT = Hp +Hf = qf h
3

μ
prps + hf μU

2
MA

h
. (3.13)

The dependence of HT on the film thickness and the viscosity is shown in Figure 3.1 for a
certain hydrostatic bearing.

Optimization

The curves of Figure 3.1 suggest the existence of optimum values hopt, μopt of the
film thickness and the viscosity, respectively. If they exist, these optimum values are given
by the conditions

∂HT

∂h
= 0, (3.14a)

∂HT

∂μ
= 0. (3.14b)

1In the classical theory of hydrostatic bearings, the relative velocity, U0, has no effect on the flow in
the direction orthogonal to U0. Coupling between orthogonal directions is achieved by the nonlinear
terms of the equation of motion, and these are neglected in the present analysis.
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Figure 3.1. Total power loss for hydrostatic bearing as function of (a) the dimensionless film
thickness and (b) the dimensionless viscosity.

Substitution of HT from Eq. (3.13) into Eqs. (3.14a) and (3.14b) yields the optimum
film thickness at constant viscosity and the optimum viscosity at constant film thickness,
respectively.2

hopt =
(
hfμ

2U 2
MA

3qf prps

)1/4

, (3.15a)

μopt =
(
qf h

4prps

hfU
2
MA

)1/2

. (3.15b)

When substituting hopt into Eqs. (3.3c) and (3.3d), we find that

Hf

Hp
= 3 (3.16a)

and Eq. (3.13) yields

HT,hopt = 4

33/4

(
qf h

3
f prpsμ

2U 6
MA

3
)1/4

. (3.16b)

If, on the other hand, one employs the optimum value of the viscosity in Eqs. (3.3c) and
(3.3d), one is led to the conditions

Hf

Hp
= 1, (3.17a)

HT,μ opt = 2
√
qf hfAprpshUM. (3.17b)

2Note that the set of simultaneous equations (3.14) has only the trivial solution μ = 0 = h, and thus
we are compelled to optimize the functions H (h)

T ≡ HT (h,μ)|μ=const. andH (μ)
T ≡ HT (h,μ)|h=const.

separately.
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Condition (3.16a) states that for a given value of the viscosity, the total power loss has
a minimum when the film thickness is chosen such that the frictional power loss equals
three times the pumping power loss. Condition (3.17a) asserts that the total power loss is
a minimum if, for a given constant film thickness, the viscosity is selected so as to yield
equal values of the frictional power loss and the pumping power loss.

Obviously conditions (3.16a) and (3.17a) cannot be satisfied simultaneously (see foot-
note 2). We then wish to know the maximum variation of HT when the ratio Hf /Hp is in
the interval 1 ≤ Hf /Hp ≤ 3. Calculating the total power loss at constant viscosity, and
under the requirement Hp = Hf, we obtain

HT,h = 2
(
qf h

3
f prpsμ

2U 6
MA

3)1/4 . (3.18)

We may also calculate the total power loss at constant film thickness for the condition
Hf = 3Hp, obtaining

HT,μ = 4√
3

√
qf hfAprpshUM. (3.19)

Comparison of Eqs. (3.16b) and (3.18) and of Eqs. (3.17b) and (3.19) shows that

1 ≤ HT,h

HT,h opt

≤ 1.1398

1.1547 ≥ HT,μ

HT,μ opt

≥ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

for 3 ≥ Hf

Hp
≥ 1. (3.20)

We have just demonstrated that a plane hydrostatic bearing, irrespective of its geometry,
will operate at less than 16% above minimum total power as long as the ratio Hf /Hp is
held between the values 1 and 3 (Figure 3.1). It would therefore seem to matter little what
value of Hf /Hp we design for within this range. This conclusion is misleading, however,
and we do well to design for Hf /Hp = 1, for reasons indicated below.

Assuming that all the generated heat is spent on increasing the temperature of the
lubricant, the lubricant temperature rise 
T is given by

cρQ
T = HT ,
so that


T = 1

ρc

(
hf

qf

μ2U 2
MA

h4pr
+ ps

)
. (3.21)

Let us assume for simplicity that pr = kps, k = const, then 
T may easily be optimized
with respect to ps. From the condition

∂
T

∂ps
= 0

we derive the optimum value (in terms of temperature rise) of the supply pressure

ps,opt =
√
hf

qf

A

k
μ
UM

h2
. (3.22)
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With ps = ps,opt Eqs. (3.3c) and (3.3d) yield Eq. (3.17a) once more, and Eq. (3.21)
reduces to


Tps,opt = 2

ρc
ps. (3.23)

As one might expect, from the fact that Eq. (3.17a) was recovered on optimizing 
T
with respect to ps, substitution of μopt from Eq. (3.15b) into Eq. (3.21) yields the result
already given by Eq. (3.23).

Operation with Flow Restrictors

To successfully support asymmetric loads, multipad bearings with built-in pressure
regulators must be used (see Section 1.6). Regulation of pad pressure is accomplished by
use of a flow restrictor between the pressure source and the pad. The most common forms of
the control devices (see Chapter 1) used in externally pressurized bearings are (1) viscous
restrictors (capillary), (2) turbulent restrictors (orifice), and (3) constant flow devices (valve,
pump).

The oil film stiffness of the bearing depends on the control mechanism. When calculating
bearing stiffness, the supply system and the type of bearing have to be considered as forming
a system. The analysis of such a lubrication system will be shown here for a plane bearing
with capillary restrictor (Opitz, 1968).

The resistance to flow over the land is RB = μ/qf h3 from Eq. (3.3c), whereas the
resistance of the capillary RC = 128μ�2/πd4 is given by the Hagen-Poiseuille law. Here �
is the length of the capillary and d is its diameter.

From Eq. (3.3a) the arbitrary load W at h is

W = afApr

= afAps
RB

RC + RB , (3.24)

and for the reference load W0 at h0 we have

W0 = afAps RBo

RC + RBo
. (3.25)

The ratio of loads W/W0 can now be calculated:

W

W0
= 1 + ξ

1 + ξX3
, (3.26)

where

ξ = RBo

RC
and X = h

h0
.

The numerical value of ξ is thus equal to the ratio of the resistance over the land and the
capillary resistance for the static load W0. The ratio of supply pressure to recess pressure is
given, under the same condition, by ps/pr = ξ + 1.

We find the dimensionless bearing stiffness by differentiating Eq. (3.26) with respect
to h:

λ ≡ −∂ (W/W0)

∂ (h/h0)
= −3ξ (1 + ξ )X2(

1 + ξX3
)2 . (3.27)
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Figure 3.2. Operation with capillary restrictors: film thickness versus load for constant ratios
of the supply pressure to the recess pressure.

The ratio X is plotted against W/W0 in Figure 3.2. Figure 3.3 shows the variation of
λ/(1 + ξ ) with X. Inherent control by shallow parallel or tapered recesses is a more recent
development (Rowe and O’Donoghue, 1971).

The feature of shallow recess control is that inlet pressure remains constant while
pad coefficients vary. No external control devices are required, and therefore inherently
controlled bearings are very compact and simple.

Figure 3.3. Operation with capillary restrictor: dimensionless bearing stiffness versus film
thickness.
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3.2 Journal Bearings

Support of rotating shafts is one of the most common applications of hydrodynamic
bearings. The load in such applications is either perpendicular to the axis of rotation or
coincident with it. In the former case we speak of a radial load, and the shaft is supported
by a journal bearing. Thrust bearings are employed when the load is axial. Although the
previously derived Reynolds equation of lubrication is applicable to bearings of either type,
these two basic types of hydrodynamic bearings will be discussed under separate headings
in this section.

In their simplest form, a journal and its bearing consist of two eccentric, rigid, cylinders.
The outer cylinder (bearing) is usually held stationary while the inner cylinder (journal) is
made to rotate at an angular velocity ω. In addition to this rigid body rotation the journal
may also acquire a velocity of translation. The components of the translational velocity
are ė and e(ψ̇ + φ̇) measured along the line of centers OBOJ and perpendicular to it,
respectively, as depicted in Figure 3.4.

Figure 3.4. Journal bearing geometry and nomenclature.

Because the journal is eccentric with the bearing, the clearance gap between the cylidrical
surfaces is not uniform around the circumference of the bearing. When the width of this gap
is measured along a bearing radius, it is referred to as the film thickness and is customarily
given the symbol h.

We will now establish the dependence of h on the angular coordinate θ . Let P be an
arbitrary point of the bearing surface. The angular position of P relative to the line of centers
OBOJ is characterized by θ , as illustrated in Figure 3.4.
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From the triangle OJQOB we may write

QOB

sin γ
= RJ

sin θ
= e

sin δ
,

and as

γ = θ − δ
= θ − arcsin

(
e

RJ
sin θ

)
,

the distanceQOB is given by

QOB = RJ

sin θ
sin

[
θ − arcsin

(
e

RJ
sin θ

)]

=
√
R2
J − e2 sin2 θ − e cos θ. (3.28)

The film thickness, h, at the arbitrary position P of angular coordinate θ is given by

h = RB −QOB

= C + RJ + e cos θ − RJ
√

1 −
(
e

RJ

)2

sin2 θ.

Here we put RB = RJ + C, where C is the radial clearance.
The expression under the square root sign may be expanded in a binomial series as

e/RJ � 1:√
1 −

(
e

RJ

)2

sin2 θ = 1 − 1

2

(
e

RJ
sin θ

)2

− 1

8

(
e

RJ
sin θ

)4

− · · · .

Therefore, to order (e/RJ) the approximate expression for film thickness is

h = C + e cos θ

= C(1 + ε cos θ). (3.29)

Here ε = e/C, 0 ≤ ε ≤ 1 is the bearing eccentricity ratio. Typically, in liquid-lubricated
journal bearings C/RJ ≈ 0.002, and we find Eq. (3.29) to be of sufficient accuracy in most
practical cases (Dai, Dong, and Szeri, 1992).

Having established the dependence of the film thickness on the angular coordinate,
we are in a position to evaluate the right-hand side of Eq. (2.80). The angular coordinate
θ is related to a fixed direction, � in Figure 3.5, through the attitude angle φ and the
instantaneous load direction ψ . This permits us to rewrite Eq. (3.29) as

h = C + e cos [�− (φ + ψ)] . (3.30)

Having this new expression for film thickness greatly facilitates calculation of the squeeze
film term in Eq. (2.80)

V0 = ∂h

∂t

= de

dt
cos [�− (ψ + φ)] + ed(ψ + φ)

dt
sin [�− (ψ + φ)] (3.31)

= ė cos θ + e(φ̇ + ωW ) sin θ.
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Figure 3.5. Journal velocities and journal bearing nomenclature.

Here ωW = dψ/dt is the frequency of rotation of the applied load, a dot above a quantity
signifies its time rate of change, and we assume that the bearing is stationary.

Let (R, T) represent a Cartesian coordinate system centered at OJ with unit vectors R and
T parallel and perpendicular, respectively, to the line of centers, as illustrated in Figure 3.5.
The matrix of transformation from the (R, T) coordinate system to the (x, y) coordinate
system, which is centered at P and has unit vectors i and j, is given by

(M) =
(

sin θ − cos θ
cos θ sin θ

)
.

Thus we have(
U2,t

V2,t

)
= (M)

(
ė

e(φ̇ + ψ̇)

)
,

and the first two terms on the right-hand side of Eq. (2.80) simplify as follows (Szeri, 1980):

6U0
∂h

∂x
+ 6h

∂U0

∂x
= 6

∂

∂x

[
hU2,r

(
1 + U2,t

U2,r

)]

= 6
∂

∂x

{
hRω

[
1 + C

R

(
ε̇

ω
sin θ − ε φ̇ + ψ̇

ω
cos θ

)]}
(3.32)

≈ 6Rω
∂h

∂x
.
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Approximation (3.32) is good to order C/R, provided that ε̇, φ̇ and ψ̇ are all of order ω
or smaller.

The sum of Eqs. (3.31) and (3.32) yields the right-hand side of Eq. (2.80) for a stationary
bearing

∂

∂x

(
h3

μ

∂p

∂x

)
+ ∂

∂z

(
h3

μ

∂p

∂z

)
= 6Rω

∂h

∂x
+ 12

[
ė cos θ + e (φ̇ + ωW

)
sin θ

]
. (3.33)

In general both ė and φ̇ are different from zero, for even when subject to an external
load that is constant3 in both magnitude and direction, the journal center orbits around its
static equilibrium position. For a well-designed bearing the amplitudes of such orbits are
exceedingly small, so that motion of the journal center will not need to be considered when
calculating steady-state performance. However, when investigating stability of the orbiting
motion of the journal, or when calculating journal response to dynamic loading, ε̇, φ̇, and
ωW must be taken into account. We will consider only steady-state performance of journal
bearings in this chapter, so unless otherwise stated ε̇ = φ̇ = ωW = 0.

It will be to our advantage to bring Eq. (3.33) into a nondimensional form. This may be
achieved by the following transformation:

x = Rθ, z = L

2
z̄

h = CH = C(1 + ε cos θ) , p = μN
(
R

C

)2

p̄. (3.34)

Here θ , z̄, H, and p̄ are the dimensionless circumferential coordinate, the dimensionless axial
coordinate, the dimensionless film thickness, and the dimensionless pressure, respectively.
We also make the assumption μ = const., a condition that is rarely, if at all, attained in
practice.

The nondimensional pressure equation is

∂

∂θ

(
H 3 ∂p̄

∂θ

)
+
(
D

L

)2
∂

∂z̄

(
H 3 ∂p̄

∂z̄

)
= 12π

∂H

∂θ
. (3.35)

Equation (3.35) is usually solved on the computer, using finite difference (Raimondi and
Boyd, 1958) or finite-element (Reddi, 1970) methods. Approximate analytical solutions of
the full equation are also possible, although these tend to be somewhat complicated (Szeri
and Powers, 1967; Safar and Szeri, 1972).

There are two approximations to Eq. (3.35) that have closed-form analytical solutions.
Before investigating these, we interpret Eq. (3.35) as a condition for flow continuity. The
terms

∂

∂θ

(
H 3 ∂p̄

∂θ

)
,

(
D

L

)2
∂

∂z̄

(
H 3 ∂p̄

∂z̄

)
, 12π

∂H

∂θ

represent the dimensionless rates of change at a point, each in its own direction, of the
circumferential pressure flow, the axial pressure flow, and the shear flow, respectively. In a
finite bearing these three quantities are all of the same order of magnitude.

3Even minute changes that might occur in a nominally constant load, e.g., when the mass center of
the shaft does not coincide with its geometric center due to shaft deflection or to manufacturing
inaccuracies, will perturb the equilibrium position. So will fluctuations in temperature or shaft speed.
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If the bearing is “infinitely” long, there is no pressure relief in the axial direction and we
have ∂p̄/∂z̄ = 0. Axial flow is therefore absent, and changes in shear flow must be balanced
by changes in circumferential pressure flow alone. This condition will also apply in first
approximation to finite bearings, leading to the so-called long-bearing theory (Reynolds,
1886), if the aspect ratio L/D > 2. When this condition is satisfied4 we are permitted to
approximate Eq. (3.35) by

d

dθ

(
H 3 dp̄

dθ

)
= 12π

dH

dθ
. (3.36)

If, on the other hand, a finite bearing is made progressively shorter while operating at
the same speed and the same eccentricity ratio, it will generate lower and lower pressures
because of the progressively greater pressure relief in the axial direction. This leads to
decreased circumferential pressure flow, while the axial pressure flow will have increased.
In such cases we may write Eq. (3.35) in the approximate form

∂

∂ z̄

(
H 3 ∂p̄

∂z̄

)
= 12π

(
L

D

)2
∂H

∂θ
. (3.37)

The ratio L/D at which axial pressure flow first dominates circumferential pressure flow,
depends on the eccentricity ratio, L/D = 0.25, being a safe figure under normal operating
conditions. The theory that is based on Eq. (3.37) is termed the short-bearing theory
(DuBois and Ocvirk, 1955).

Before the availability of digital computers, the short-bearing and long-bearing approxi-
mations represented the sole practical methods for obtaining solutions to bearing problems.
They yield good results when applied judiciously and to the appropriate bearing geometry,
but great care should be exercised in interpreting results obtained by these approximations –
the long-bearing solution should be particularly suspect. These approximations still remain
useful in theoretical work or when a large number of solutions of the same bearing config-
uration are required. Such a situation may arise, for instance, when computing nonlinear
journal orbits. During such computations the oil film forces must be evaluated at each time
step, leading to a considerable volume of computations.

Short-Bearing Theory

The applicable form of the Reynolds equation is given by Eq. (3.37) and the
pressure boundary conditions are

p̄ = p̄a at z̄ = ±1. (3.38)

Notice that it is not possible to prescribe boundary conditions at constant θ . Thus we have
no way of specifying arbitrary bearing arc when using the short-bearing approximation.
This represents the principal limitation of short-bearing theory.

The solution of Eq. (3.37) that satisfies the conditions specified in Eq. (3.38) is

p̄ = 6π

(
L

D

)2 1

H 3

∂H

∂θ

(
z̄2 − 1

)+ p̄a, (3.39)

where p̄a is the dimensionless ambient pressure.

4If the condition on the aspect ratio is not satisfied, the long-bearing theory can lead to serious errors
and must be applied judiciously.
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Figure 3.6. Circumferential pressure distribution according to short bearing theory, Eq. (3.39).

It is seen from Eq. (3.39) that the gauge pressure p̄ − p̄a is a 2π periodic function of θ .
It is antisymmetric with respect to the position of minimum film thickness θ = π .

According to theory, therefore, below-ambient pressures of the same order of magnitude
as above-ambient pressures are generated, as shown in Figure 3.6.

The center of the rotating journal will remain in a fixed position (its static equilibrium
position) as long as the external load W is exactly balanced by the resultant pressure force
F. Relative to the (R, T) coordinate system of Figure 3.5 we have

W = W cosφR −W sinφT , W = (W · W )1/2

F = FRR + FT T , F = (F · F)1/2 = (F 2
R + F 2

T

)1/2
(3.40a)

where R and T are unit vectors directed along the line of centers and perpendicular to it,
respectively.

For static equilibrium of the journal

W + F = 0

or

W cosφ + FR = 0,

−W sinφ + FT = 0. (3.40b)

The components FR < 0 and FT > 0 of the pressure force are given by

FR =
∫ L/2

−L/2

∫ Rθ2

0
p cos θ dx dz, (3.40c)

FT =
∫ L/2

−L/2

∫ Rθ2

0
p sin θ dx dz. (3.40d)

Here θ2 represents the angular position of the trailing edge of the lubricant film, which
might or might not be located at θ = 360◦.
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For the time being we assume that the lubricant cannot withstand tension of any magni-
tude and that the film ruptures at θ2 = π , where, according to theory, film pressure exactly
equals ambient (now zero) pressure. The integrations in Eq. (3.40) are then to be performed
over the active bearing arc 0 < θ < π . If fR and fT are the nondimensional radial and
tangential force components, respectively, then

fR ≡ FR/LD

μN (R/C)2

= −2π

(
L

D

)2 ∫ π

0
cos θ

∂H/∂θ

H 3
dθ (3.41a)

and

fT ≡ FT /LD

μN (R/C)2

= −2π

(
L

D

)2 ∫ π

0
sin θ

∂H/∂θ

H 3
dθ. (3.41b)

To evaluate the integrals in Eq. (3.41), we make the following substitution due to
Sommerfeld (1904):

H = 1 + ε cos θ = 1 − ε2

1 − ε cosψ
, (3.42a)

so that

sin θ =
√

1 − ε2 sinψ

1 − ε cosψ
, cos = cosψ − ε

1 − ε cosψ
, (3.42b)

and

dθ =
√

1 − ε2

1 − ε cosψ
dψ. (3.42c)

The integrals in Eq. (3.41) can now be evaluated:∫ π

0
cos θ

∂H/∂θ

H 3
dθ = − ε

(1 − ε2)2

∫ π

0
sinψ (cosψ − ε) dψ = 2ε2

(1 − ε2)2
(3.43)

and ∫ π

0
sin θ

∂H/∂θ

H 3
dθ = −ε

(1 − ε2)3/2

∫ π

0
sin2ψdψ = − πε

2(1 − ε2)3/2
. (3.44)

Integrals of the type

A
i,j

k =
∫ β2

β1

sini β cosj β

(1 + ε cosβ)k
,

useful in journal bearing analysis, have been listed by Gross (1962), Cameron (1966), and
others.
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Substitution of Eqs. (3.43) and (3.44) into Eq. (3.41) results in the dimensionless force
components:

fR = −
(
L

D

)2 4πε2

(1 − ε2)2
,

fT =
(
L

D

)2
π2ε

(1 − ε2)3/2
. (3.45)

The bearing Sommerfeld number defined by

S ≡ μN

P

(
R

C

)2

= (f 2
R + f 2

T

)−1/2
(3.46)

is a dimensionless number, which is used to characterize bearing performance.5

For the short bearing with boundary condition p̄ = 0 at θ2 = π we have

S

(
L

D

)2

=
(
1 − ε2

)2
πε
√
π2(1 − ε2) + 16ε2

. (3.47)

The attitude angle, which is measured from the load line to the line of centers in the
direction of journal rotation, is given by

φ = arctan

∣∣∣∣fTfR
∣∣∣∣

= arctan

(
π

4

√
1 − ε2

ε

)
. (3.48)

The journal locus as given by Eq. (3.48) is almost semicircular in shape and is often referred
to as the equilibrium semicircle6 (Figure 3.7).

In short-bearing theory the circumferential pressure gradient is neglected. Implicit in
this is the assumption that the distribution of the circumferential velocity across the film is
linear, so that the shear stress is τxy = μU2/h.

The friction force is given by

Fμ = L

∫ 2πR

0
τxy dx

= 2π2μLDN√
1 − ε2

R

C

5In general, characterization of isothermal bearings requires two independent parameters, the most
practical choice being the Sommerfeld number, S, and the ratio, α/β. The latter specifies the position
of the load line relative to the leading edge of the bearing arc (Figure 3.9). With the present boundary
conditions, β = π and α = π − φ so that α/β = 1 − φ/π , and thus α/β is no longer independent of
S. This leaves the Sommerfeld number as the sole parameter.

6For a semicircle of radius 0.5 centered at (ε = 0.5, φ = 0), we have tan φ = √
1 − ε2/ε.
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Figure 3.7. Journal loci: (---) short-bearing theory, Eq. (3.48); (–--–) finite bearing; (––)
semicircle.

and the dimensionless friction variable by

cμ ≡ R

C

Fμ

W

= 2π2S√
1 − ε2

. (3.49)

The total side flow (both sides included) is calculated from the formula

Qs = 2
∫ πR

0

∫ h(x)

0
wdy dx (3.50)

or in dimensionless form, after performing the indicated integration across the film with
respect to y, by

qs ≡ Qs

NRLC

= − 1

12

(
D

L

)2 ∫ π

0
H 3 ∂p̄

∂z̄

∣∣∣∣
z̄=±1

dθ. (3.51)

Substituting for ∂p̄/∂z̄, we have

qs = 2πε. (3.52)

The predictions of short-bearing theory and accurate two-dimensional numerical solu-
tions at L/D = 1/4 are compared in Table 3.1.

Although the length/diameter ratio of numerous industrial bearings might be small
enough for their performance to be calculated on the basis of short-bearing theory, the latter
theory cannot be used unless the bearing is of 180◦ (noncavitating film) or 360◦ (cavitating
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Table 3.1. Performance prediction for a full journal bearing (L/D = 1/4)

Parameter Short-bearing approximation, θ 2 = π /exact solutiona

ε 0.1 0.6 0.9
S 15.84/16.20 1.00/1.07 0.053/0.074
φ 82.71/82.31 46.32/46.72 20.83/21.85
cμ 314.2/322.1 24.67/26.73 2.40/3.50
qs 0.628/0.621 3.77/3.72 5.65/5.59

aComputer solution of finite bearing obtained with the Swift-Stieber boundary
condition p̄ = ∂p̄/∂θ = 0 at θ = θ 2.

film) arc. To remove this constraint of the short-bearing theory, and also to increase the
range of applicable L/D ratios, O’Donoghue, et al. (1970) proposed solution for pressure,
see Eq. (3.39), in the form

p̄ (θ, z̄) = p̄c(θ )(1 − z̄2). (3.53)

Here p̄c(θ ) is the center line pressure. Substitution of Eq. (3.53) into Eq. (3.35) yields the
differential equation

d

dθ

(
H 3 dp̄c

dθ

)
− 2

(
D2

L

)
H 3p̄c = 12π

∂H

∂θ
. (3.54)

Performance calculations based on Eq. (3.54) are displayed in Table 3.2. The boundary
condition used here is the Swift-Stieber condition, p = ∂p/∂θ = 0 at θ = θ2.

Boundary Conditions

When in pure form, liquids can withstand tensile stresses that are certainly of the
order of tens or even hundreds of atmospheres (Temperly, 1975). If contaminated they will

Table 3.2. Performance prediction for a full journal bearing (L/D = 1/2)

Short-bearinga Modified short bearingb Finite bearingb

Eq. (3.37) Eq. (3.54) Eq. (3.35)

ε = 0.1
S 3.96 4.496 4.310
cμ 78.56 88.703 85.6
ε = 0.6
S 0.250 0.331 0.319
cμ 6.169 8.399 8.10
ε = 0.9
S 0.0133 0.0359 0.0313
cμ 0.602 1.790 1.60

aTrailing edge boundary at θ = π .
bTrailing edge boundary at p̄ = ∂p̄/∂θ = 0.
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cavitate, however, when the pressure drops below the saturation pressure of the dissolved
gases (gaseous cavitation). Vapor cavitation (boiling) of the liquid occurs when the pressure
falls to the vapor pressure.

Under normal operating conditions a lubricant film of converging-diverging geometry is
expected to cavitate within the diverging part of the clearance, where, on the assumption of
a continuous lubricant film, theory predicts negative pressures. This much is clear. Still, the
subjects of considerable discussion, however, are (1) the exact position of the film-cavity
interface and (2) the boundary conditions that apply at that interface.

A typical pressure curve for the lubricant film of a journal bearing shows the pressure
increasing from its value at inlet, which is located at say, θ = 0, with the angular coordinate
θ , until it reaches a maximum somewhere still within the convergent part of the clearance
space. Thereafter, the pressure decreases sharply to a small negative value (the subcavity
pressure) just to rise again to the level of the cavity pressure pcav. Dyer and Reason (1976)
showed that if the journal eccentricity is smaller than some critical value, εcrit, where εcrit

is inversely proportional to the bearing clearance, then a tensile stress greater than the oil
vapor pressure may be developed in the film. They actually measured a tensile stress of 740
kPa in the oil film of a steadily loaded journal bearing. The cavity pressure is essentially
constant and equals the saturation pressure of the lubricant. The saturation pressure, on the
other hand, is equal to or is just below the ambient atmospheric pressure, as the lubricant
is exposed to the ambient atmosphere for long periods of time under normal operating
conditions.

The solid curve in Figure 3.6 represents the lubricant pressure as obtained under the
so-called Sommerfeld boundary condition, which assumes the clearance space to be full
of lubricant and allows for subambient pressures. This condition yields results that are
physically unreasonable (e.g., shaft displacement is always at right angles to the applied
load), except in special circumstances. For instance, by locating an oil groove at the position
of minimum film pressure, Floberg (1961) demonstrated that a continuous, full Sommerfeld
pressure curve can be maintained experimentally. The journal locus is represented by a
straight line under such conditions, with a load angle of φ = π/2. Raimondi and Boyd
(1958) refer to the Sommerfeld condition as a type I boundary condition and find it useful
for calculating bearings that operate under high ambient pressures.

The half-Sommerfeld or Gümbel boundary condition, although obtaining the pres-
sure on the assumption of a continuous lubricant film, neglects the subambient pressure
loop completely when calculating bearing performance. The short-bearing performance in
Eqs. (3.45)–(3.52) was obtained under this condition. Although the Gümbel condition yields
a pressure curve that is at variance with experimental data, it does give closed-form solution
for bearing performance and is, therefore, still employed in theoretical work. A pressure
profile obtained with the Gümbel condition is shown by the dashed curve in Figure 3.6.

H. W. Swift, on the basis of a stability argument, and W. Stieber, from considerations of
flow continuity at the film-cavity interface, arrived at identical conditions, namely that

∂p

∂θ
= 0 p = pcav (3.55)

at the cavitation boundary. The cavity pressure differs little from, and is usually taken to
be equal to, atmospheric pressure. The Swift-Stieber boundary condition, as it is referred
to in the literature, has been shown by Cameron and Wood to lead to both minimum
potential energy and maximum load capacity of the bearing, and by Christopherson to
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Figure 3.8. Circumferential pressure distribution according to various trailing edge boundary
conditions.

yield minimum bearing friction (Cameron, 1966). The Swift-Stieber condition is unable to
predict the subcavity pressures that occur just upstream from the cavitation boundary. It is
nevertheless the most widely used boundary condition in numerical work. It leads to fairly
good agreement with experimental data, particularly at large eccentricities, and is easy to
incorporate into most numerical schemes. A typical pressure distribution obtained with the
Swift-Stieber condition is shown by the dashed curve in Figure 3.8.

For a long bearing, the pressure gradient dp̄/dθ can be obtained from Eq. (3.36) by
integration

dp̄

dθ
= 12π

H 2
+ A′

H 3
. (3.56)

Here A′ is an integration constant. When this expression for dp̄/dθ together with U1 = 0
is substituted into Eq. (2.59a), we obtain

ū = u

Rω

=
(

3 + A′′

H

) (
ȳ2 − ȳ)+ ȳ, (3.57)

where ū is the dimensionless circumferential velocity and ȳ = y/h is the dimensionless
coordinate across the film.

The constant A′′ in Eq. (3.57) can be evaluated from continuity considerations, which
demand that at the cavity-film interface where H = Hcav we have∫ l

0
ūdȳ = H∞

Hcav
≡ α̂. (3.58)

Equation (3.58) assumes that the cavity-fluid interface is a straight line beneath which all
the fluid flows to form a uniform layer of thickness h∞ = CH∞. Back substitution into
Eq. (3.56) yields

dp̄

dθ
= 12π

H 2
(1 − 2α̂) , (3.59)

The pressure gradient at film separation would thus be completely specified by Eq. (3.59)
had the film separated from the stationary surface at right angles. For this case, Coyne and
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Elrod (1970a, 1970b) determined the value of α̂ in terms of the group μU/σ , the surface
tension parameter of Taylor (1964). Here σ is the surface tension of the lubricant.

The second boundary condition of Coyne and Elrod at the film-cavity interface is

p = −σ
r

+
p, (3.60)

where r is the radius of curvature of the interface. The precise value of the transition
pressure correction
p, which is dependent on μU/σ , is of minor importance, particularly
at small values of the surface tension parameter. Pressure profiles based on the Coyne-Elrod
conditions show a subcavity pressure loop as indicated in Figure 3.8.

Smith (1975) sought to apply the Coyne-Elrod condition to bearings of finite width and
found good agreement for all values of the parameter μU/σ at high eccentricities. At mod-
erate eccentricities the condition led to a contradiction, which precluded its applicability.

In contradiction to Coyne and Elrod, Floberg (1964) observed that in the cavitated
region oil flow takes place in narrow strips, the quantity of lubricant adhering to the runner
and passing under the cavities being negligible. Because of the low viscosity of the air or
gases that occupy the cavities between the strips and because of the geometry of the strips,
the pressure is essentially constant within the cavitated region and is equal to the saturation
pressure of the dissolved gases. Under normal loading, subcavity pressures are negligible,
and the lowest lubricant film pressure is equal to the cavitation pressure. At the end of the
pressure buildup the oil flow leaving the continuous-film domain is

Q−
cav = Uh

2
− h3

12μ

∂p

∂x
, (3.61)

while the flow entering the cavitation region is

Q+
cav = ω̃Uh

2
. (3.62)

The symbol ω̃ stands for the fractional width of the oil in the cavitation region.
From the equalityQ−

cav = Q+
cav, we obtain

(1 − ω̃)
Uh

2
− h3

12μ

∂p

∂x
= 0. (3.63)

By assumption p ≥ pcav and 0 < ω̃ < 1, thus Eq. (3.63) is satisfied only if

∂p

∂x
= 0, (3.64a)

ω̃ = 1. (3.64b)

The second of these conditions means that oil will fill the whole width at the film-cavity
interface.

If the average pressure in the film is low, then the subcavity pressure will have an
influence on the position of the film-cavity interface and, according to Floberg (1965),
should be taken into account. There is now a finite number of lubricant strips in the
cavitated region. The assumption that no oil enters or leaves the gas-filled regions between
the strips leads to the condition

∂p̄

∂θ
− ∂p̄

∂ z̄

∂θ

∂z
= 12π

H 2
. (3.65)

Condition (3.65) is applicable at both upstream and downstream film-cavity interfaces.
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Both the Coyne-Elrod, Eqs. (3.59) and (3.60), and the Floberg, Eq. (3.65), conditions
yield subcavity pressures upstream of the lubricant strip, in agreement with experiments.
They are, however, difficult to implement in numerical schemes.

Savage (1977) considered the leading edge of the cavity and wrote an interface force
balance in the form

p (c) + σ

r
= 0, (3.66)

where p(c) is the fluid pressure at the cavitation boundary, σ is the surface tension of the
lubricant, and r is the radius of curvature of the cavity-fluid interface. The interface x = c
is constantly subject to small disturbances. Let ξ be such a small disturbance, caused by
fluctuation of fluid pressure, so that a point on the cavitation boundary originally at (c, y)
is displaced to a new position (c + ξ , y).

In its new, perturbed, position the force on the interface is given by the residue of
Eq. (3.66) when the latter is written for that new position. Since |ξ | < c we are permitted
to write

F (c + ξ ) = p (c + ξ ) + σ

r (c + ξ )

= F (c) + F ′ (c) ξ +O(ξ 2) (3.67)

= d

dx

(
p + σ

r

)
ξ +O(ξ 2).

The interface will return to its original position x = c under the action of F(c + ε),
provided that F and ξ have opposite algebraic signs. Thus the criterion for the existence of
a straight cavity-fluid interface is

d

dx

(
p + σ

r

)
< 0. (3.68)

In writing Eq. (3.68) we neglected terms of order ξ 2.
Both the Sommerfeld condition and the Gümbel condition are easy to apply in analyt-

ical work but give results that are at variance with experimental data. The Swift-Stieber
condition, although unable to reproduce the subcavity pressure loop, leads to acceptable
results for bearing performance and is easy to implement in most numerical methods. The
separation and Floberg conditions are difficult to implement in any numerical scheme and
will not be considered further. The interested reader is referred to Cavitation and Related
Phenomena in Lubrication, edited by Dowson et al. (1975). See also Dowson and Taylor
(1979).

Long-Bearing Theory7

The pressure differential equation under the condition of vanishing axial flow,
valid for long bearings, is given by Eq. (3.36)

d

dθ

(
H 3 dp̄

dθ

)
= 12π

dH

dθ
. (3.36)

Integration twice with respect to θ yields

p̄ (θ ) = 12π
∫ θ

0

H (θ ′) − A
H 3(θ ′)

dθ ′ + B. (3.69)

7Caution is advised when employing the long-bearing theory; if the condition (L/D)> 2 is not satisfied,
the results of the theory will be misleading.
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The pressure distribution in Eq. (3.69) will be subjected to some of the simpler boundary
conditions discussed previously.

Sommerfeld Condition

To determine the integration constants A and B in Eq. (3.69), we specify the
Sommerfeld boundary conditions for the full (360◦arc) bearing

p̄ (0) = p̄i

p̄ (2π ) = p̄ (0) . (3.70)

Substituting p̄(θ ) from Eq. (3.69) into Eq. (3.70) we have

A =
∫ 2π

0 (dθ/H 2(θ ))∫ 2π
0 (dθ/H 3(θ ))

, B = p̄i .

Using the Sommerfeld substitution, Eq. (3.42), we find that∫
dθ

H 3(θ )
= 1

(1 − ε2)5/2

(
ψ − 2ε sinψ + ε2ψ

2
+ ε2

4
sin 2ψ

)
(3.71)

and ∫
dθ

H 2(θ )
= 1

(1 − ε2)3/2
(ψ − ε sinψ) . (3.72)

Since the limits θ = 0, 2π correspond to the limitsψ = 0, 2π , we have for the Sommerfeld
boundary condition

A = 2(1 − ε2)

2 + ε2
, (3.73)

and the dimensionless pressure distribution is given by

p̄ (θ ) = 12πε sinψ

(2 + ε2)(1 − ε2)3/2
(2 − ε2 − ε cosψ) + p̄i . (3.74)

From Eq. (3.42) we have

cosψ = ε + cos θ

1 + ε cos θ
, (3.75a)

sinψ =
√

1 − ε2 sin θ

1 + ε cos θ
. (3.75b)

Substituting Eq. (3.75) into Eq. (3.74), we obtain the pressure distribution in terms of the
original variable θ :

p̄ (θ ) = 12πε sin θ (2 + ε cos θ)(
2 + ε2

)
(1 + ε cos θ )2

+ p̄i . (3.76)

The function p̄(θ ) as given by Eq. (3.76) is 2π periodic in θ and is antisymmetric with
respect to θ = π . Thus the theory predicts negative values of the gauge pressure p̄(θ ) – p̄i

of the same magnitude as its positive values.
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The components of the oil film force are obtained when the pressure of Eq. (3.76) is
substituted into Eq. (3.41). In dimensionless form we have

fR = 1

2

∫ θ2

0
p̄ cos θ dθ, (3.77a)

fT = 1

2

∫ θ2

0
p̄ sin θ dθ. (3.77b)

To evaluate Eq. (3.77) we need the following integrals:∫ θ2

0
p̄ cos θ dθ = (p̄ sin θ )θ2

0 −
∫ θ2

0
sin θ

dp̄

dθ
dθ

= −
∫ θ2

0
sin θ

dp̄

dθ
dθ

= −12π
∫ θ2

0
sin θ

[
H (θ ) − A
H 3 (θ )

]
dθ

= 12π

1 − ε2

[
cosψ + A

1 − ε2

(ε
4

cos 2ψ − cosψ
)]ψ2

0

, (3.78)

∫ θ2

0
p̄ sin θ dθ = (−p̄ cos θ )θ2

0 −
∫ θ2

0
cos θ

dp̄

dθ
dθ

= 12π
∫ θ2

0
cos θ

[
H (θ ) − A
H 3(θ )

]
dθ

(3.79)

= 12π

(1 − ε2)3/2

{
sinψ − εψ − A

1 − ε2

[
(1 + ε2) sinψ

−ε
(

3ψ

2
+ sin 2ψ

4

)]}ψ2

0

.

For the Sommerfeld condition we have

θ2 = ψ2 = 2π A = 2(1 − ε2)

2 + ε2

and find that

fR = 0, (3.80a)

fT = 12π2ε

(2 + ε2)(1 − ε2)1/2
= 1

S
. (3.80b)

These equations show that under Sommerfeld condition the displacement of the journal is
always at right angles to the applied load; that is, φ = π/2. This most unsatisfactory result
demonstrates the incorrectness of the Sommerfeld condition when applied to cavitating
films.
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Gümbel Condition

The Gümbel condition is θ2 = ψ2 = π and Eqs. (3.77)–(3.79) give

fR = − 12πε2

(2 + ε2)(1 − ε2)
, (3.81a)

fT = 6π2ε

(2 + ε2)(1 − ε2)1/2
. (3.81b)

The journal locus is calculated from

tanφ =
∣∣∣∣fTfR

∣∣∣∣ . (3.82a)

When substituting for the force components from Eq. (3.81), we obtain

φ = arctan
π

2

√
1 − ε2

ε
. (3.82b)

The bearing Sommerfeld number is calculated from Eq. (3.81) and has the value

S = (2 + ε2)(1 − ε2)

6πε
√

4ε2 + π2(1 − ε2)
. (3.83)

Swift-Stieber Conditions

For the long bearing, these conditions are represented by

p̄ (θcav) = 0, (3.84a)

d p̄

dθ

∣∣∣∣
θcav

= 0, (3.84b)

where θ cav is the unknown angular position of the cavitation boundary. In general θ cav =
θ cav(z̄) when θ cav is calculated from Eq. (3.84), but for the long bearing θ cav = const.
Substituting p̄(θ ) from Eq. (3.69) into Eq. (3.84b), we obtain

A = H (θcav) . (3.85)

Back substitution into Eq. (3.69) yields the pressure distribution

p̄ (θ ) = 12π
∫ θ

0

H (θ ) −H (θcav)

H 3 (θ )
dθ. (3.86)

The value of θ cav is as yet unknown but can be determined from the remaining boundary
condition, Eq. (3.84a); thus substitution of p̄(θ ) yields the condition∫ θcav

0

H (θ ) −H (θcav)

H 3 (θ )
dθ = 0. (3.87)

When written in terms of the Sommerfeld angle ψ of Eq. (3.42a), Eq. (3.87) is equiv-
alent to

ε (sinψcav cosψcav − ψcav) + 2 (sinψcav − ψcav cosψcav) = 0. (3.88)
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Table 3.3. Position of cavitation boundary
in long bearings, as calculated from the
Swift-Stieber condition

ε ψ cav (rad) θ cav (rad)

0.1 4.44510 4.34974
0.2 4.39769 4.21195
0.3 4.35099 4.08021
0.4 4.30484 3.95451
0.5 4.25905 3.83438
0.6 4.21346 3.71892
0.7 4.16785 3.60645
0.8 4.12203 3.49369
0.9 4.07574 3.37195

Here ψcav corresponds to θ cav, and we made use of

H (θcav) = 1 − ε2

1 − ε cosψcav
. (3.89)

The values of ψcav and θ cav are displayed in Table 3.3 (Szeri and Powers, 1967). The
entries of Table 3.3 represent accurate solutions of Eq. (3.88).

The dimensionless force components are obtained from Eqs. (3.77), (3.86), and (3.89):

fR = 3πε(1 − cosψcav)2

(1 − ε2)(1 − ε cosψcav)
, (3.90a)

fT = −6π (ψcav cosψcav − sinψcav)

(1 − ε2)1/2(1 − ε cosψcav)
. (3.90b)

When deriving Eq. (3.90), we made use of Eq. (3.87).
The bearing Sommerfeld number is obtained by substituting for fR and fT in Eq. (3.46):

1

S
= 3π

(1 − ε2)1/2 (1 − ε cosψcav)

[
ε2 (1 − cosψcav)4

1 − ε2
+ 4 (ψcav cosψcav − sinψcav)2

]1/2

.

(3.91)

The journal-center locus is given by

tanφ = 2 (sinψcav − ψcav cosψcav)

(1 − cosψcav)2

√
1 − ε2

ε
. (3.92)

To calculate the frictional losses we observe that at U1 = 0, U2 = U = Rω, Eq. (2.59a)
gives

τ = μ
∂u

∂y

= 1

2

∂p

∂x
(2y − h) + μ

h
U. (3.93)
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Table 3.4. Long-bearing solutions

Gümble condition Swift-Stieber condition

ε S, Eq. (3.83) φ, Eq. (3.82) S, Eq. (3.91) φ, Eq. (3.92)

0.1 0.33704 86.339 0.24144 69.032
0.2 0.16736 82.596 0.12373 66.900
0.3 0.11004 78.679 0.08376 64.464
0.4 0.08053 74.472 0.06289 61.638
0.5 0.06177 69.819 0.04931 58.296
0.6 0.04795 64.477 0.03895 54.234
0.7 0.03639 58.035 0.02993 49.098
0.8 0.02549 49.675 0.02110 42.181
0.9 0.01392 37.263 0.01151 31.666

The shear stress on the journal is

τ0 = h

2

∂p

∂x
+ Rωμ

h
. (3.94)

The total shear force on the journal is obtained by integrating τ 0 over the journal surface

Fμ =
∫ L/2

−L/2

∫ πD

0

(
h

2

∂p

∂x
+ Rωμ

h

)
dx dz

= πμDLN
R

C

∫ 1

−1

∫ 2x

0

(
H

4π

∂ p̄

∂θ
+ 1

H

)
dθ d z̄. (3.95)

Integrating the first term by parts, we find that

Fμ = πμDLN R
C

(
εfT

2π
+ 2π√

1 − ε2

)
. (3.96)

The friction variable, cμ, is obtained from Eq. (3.96) and the definition of the attitude
angle φ:

Cμ ≡ R

C

Fμ

W

= ε sinφ

2
+ 2π2S√

1 − ε2
. (3.97)

Of course, it would have been better to employ Eq. (3.94) only in the range 0 ≤ θ ≤ θ cav

and estimate the drag in the cavitated region from flow continuity considerations.
Table 3.4 contains long-bearing Sommerfeld numbers calculated by the Gümbel con-

dition from Eq. (3.83) and by the Swift-Stieber condition from Eq. (3.91). The entries in
Table 3.4 do not fully agree with the results usually quoted in the literature (Raimondi
and Boyd, 1958; Cameron, 1966; Pinkus and Sternlicht, 1961), possibly because previous
calculations relied on inaccurate values of θ cav.
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Finite Journal Bearings

The length/diameter ratio of industrial bearings is customarily in the range
0.25 < L/D < 1.5; neither the short-bearing nor the long-bearing approximations apply to
these bearings. Furthermore, the angular extent of large industrial bearings is rarely 360◦;
common ranges are 30◦ < β < 60◦ in pivoted-pad bearings and 120◦ < β < 160◦ in the
“viscosity pump” bearings of large rotating machinery. If the pad is centrally loaded (Fig-
ure 3.9), the ratio α/β = 1/2, where the angle α is measured from the pad leading edge to
the load line. For offset loading, α/β �= 1/2.

Figure 3.9. Fixed type journal bearings. (a) Full bearing, β = 360◦; (b) partial bearing,
centrally loaded, α = β/2; and (c) partial bearing, eccentrically loaded (offset), α �= β/2.
(Reprinted with permission from Raimondi, A. A. and Szeri, A. Z. Journal and thrust bearings.
In Booser E. R., CRC Handbook of Lubrication. Copyright CRC Press, Boca Raton, Florida,
C© 1984.)

Over a finite bearing pad of diameter D, axial length L, and arc β, the lubricant pressure
satisfies the equation

∂

∂θ

(
H 3 ∂ p̄

∂θ

)
+
(
D

L

)2
∂

∂ z̄

(
H 3 ∂ p̄

∂ z̄

)
= 12π

∂H

∂θ
. (3.35)

Solutions of Eq. (3.35) are usually sought subject to the Swift-Stieber boundary condi-
tions

p̄ = 0 at z̄ = ±1, (3.98a)

p̄ = 0 at θ = θ1, θ1 + β, (3.98b)

p̄ = ∂ p̄

∂θ
at θ = θcav (z̄) . (3.98c)

As the dimensionless film thickness is given by

H = 1 + ε cos θ

= 1 + ε cos
(
θ1 + x

R

)
, (3.99)

where θ1 is the angular coordinate of the pad leading edge x = 0, the pressure differential
equation and its boundary conditions contain four dimensionless parameters in all:

{L/D, β, ε, θ1} . (3.100)
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Two of these parameters, L/D and β, describe bearing geometry and remain fixed for a
particular bearing. The other two parameters, ε and θ1, specify the position of the rotating
shaft within the bearing and are therefore dependent on loading conditions and lubricant
viscosity.

Loading conditions and lubricant viscosity of an isothermal bearing can be characterized
with the aid of two parameters, the Sommerfeld number S, which is the inverse of the
dimensionless lubricant force Eq. (3.46), and the ratio α/β, where α is the angular position
of the pad trailing edge relative to the load line (Figure 3.9). Specifying the couple (ε, θ1) in
Eqs. (3.35) and (3.98) and solving these yields a pair of values (S, α/β) from the formulas

S = (f 2
R + f 2

T

)−1/2
, (3.46)

α

β
= 1

β
[π − (θ1 + φ)] . (3.101)

The dimensionless force components fR and fT are given by

fR = 1

2

∫ 1

0

∫ θ1+β

θ1

p̄ cos θ dθ d z̄, (3.102a)

fT = 1

2

∫ 1

0

∫ θ1+β

θ1

p̄ sin θ dθ d z̄, (3.102b)

and

φ = arctan

∣∣∣∣fTfR
∣∣∣∣ . (3.102c)

Thus, corresponding to each ordered pair (ε, θ1) there exists another ordered pair (S,
α/β); the mapping of the (ε, θ1) plane into the (S, α/β) plane is defined by the pressure
differential equation (3.35) and its boundary conditions (3.98), Eq. (3.46), and Eq. (3.101).
This mapping is one-to-one and invertible. In a physical experiment, one specifies the load
vector, the speed of rotation, and the lubricant viscosity – that is, the couple (S, α/β) – and
permits the journal to select its own equilibrium position (ε, θ1).

We thus have two equivalent parametric representations of journal bearing operations.
The parameters in Eq. (3.100) are the natural set of parameters to use in numerical work,
while the set

{L/D, β, S, α/β} (3.103)

is the obvious one to employ in a physical experiment.
The designer employs this latter set of parameters (3.103), and the task of the numerical

analyst is to find the (ε, θ1) couple that corresponds to the designer’s (S, α/β) couple. This
necessarily leads to solution of a nonlinear problem, which can be written in the symbolic
form

S −�1 (ε, θ1) = 0, (3.104a)

α

β
−�2 (ε, θ1) = 0. (3.104b)
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Here the functions �1 and �2 represent integrals of the pressure differential equation
and the integrals involved in Eqs. (3.46) and (3.101).

The set of nonlinear equations (3.104) is conveniently solved by Newton’s method. The
nth iterated solution can be obtained from⎡

⎢⎢⎣
∂�1

∂ε

∂�1

∂θ1

∂�2

∂ε

∂�2

∂θ1

⎤
⎥⎥⎦
[
ε(n) − ε(n−1)

θ
(n)
1 − θ (n−1)

1

]
=
⎡
⎣�1 − S
�2 − α

β

⎤
⎦ , n = 1, 2, 3, . . . . (3.105)

An extensive set of solutions of centrally loaded, isothermal bearings was published by
Raimondi and Boyd (1958). Solutions for eccentrically loaded partial arc bearings were
compiled by Pinkus and Sternlicht (1961).

The performance curves in Figures 3.10, taken from Raimondi and Szeri (1984), are for
a centrally loaded fixed-pad partial bearing of L/D = 1, β = 160◦ and various values of
the Reynolds number. (Some of the curves in the figures are for turbulent flow conditions.
Lubrication in the turbulent regime is discussed in Chapter 7, where we will again make
reference to Figure 3.10.)

Figure 3.11 illustrates the effect of shifting the load position (i.e., varying the value of
α/β, where α is measured from the pad leading edge to the load vector, and β is the pad
angle) on the position of the journal center.

It can be seen from Figure 3.11 that if α/β > 0.665 for L/D = 1 and β = 120◦ the
journal can be expected to rub the cap of the bearing.

Pivoted-pad bearings, in which the pad is free to rotate so that it may choose its own
orientation relative to the load line, are often used in practice. For these, the value of α is
dictated by the pivot position, as the resultant torque on the pad must vanish. Pivoted pad
journal bearings are discussed in Chapter 4, within the context of lubricant film dynamic
properties.

Cavitation Algorithm

In this section we discuss an algorithm, due originally to Elrod and Adams (Elrod
and Adams, 1974; Elrod, 1981) and modified subsequently by Vijayaraghavan and Keith
(1989), that is designed to automatically handle cavitation in liquid-lubricated bearings.

We begin the analysis with the time dependent form of the Reynolds equation valid for
compressible flow, Eq. (11.6)

∂ (ρh)

∂t
+ ∂

∂x

(
ρhU

2
− ρh3

12μ

∂p

∂x

)
− ∂

∂z

(
ρh3

12μ

∂p

∂z

)
= 0. (3.106)

The pressure-density relationship that is required by Eq. (3.106) is given through the
definition of the bulk modulus β

p = pc + β ln

(
ρ

ρc

)
, (3.107)

where pc and ρc are the pressure and density, respectively, in the cavitated region.8

8The cavitation pressure is approximately constant and the lubricant flow in the cavitation zone is due
to shear.
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Figure 3.10. Performance curves for a centrally loaded, fixed partial journal bearing: (a)
minimum film thickness, (b) attitude angle, (c) friction variable, and (d) inlet flow variable.
(Reprinted with permission from Raimondi, A. A. and Szeri, A. Z. Journal and thrust bearings.
In Booser, E. R., CRC Handbook of Lubrication. Copyright CRC Press, Boca Raton, Florida.
C© 1984.)

In the region of cavitation the principle of mass conservation leads to the equation

∂ (ρh)

∂t
+ ∂

∂x

(
ρhU

2

)
= 0. (3.108)

In an effort to combine Eqs. (3.106) and (3.108) into a single equation, Elrod and Adams
introduced a switching function, g, defined by

g =
{

1, in full film region

0, in cavitated region.
(3.109)
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Figure 3.10 (cont.)

Introducing g from Eq. (3.109), using p = pc + gβ ln φ from Eq. (3.107) and employing
the notation ρ = ρcφ, we obtain from Eq. (3.108)

∂(φh)

∂t
+ ∂

∂x

(
Uhφ

2
− βh3

12μ
g
∂φ

∂x

)
− ∂

∂z

(
βh3

12μ
g
∂φ

∂z

)
= 0. (3.110)
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Figure 3.11 Locus of journal center for offset loads, L/D = 1, β = 120◦. (Reprinted with
permission from Raimondi, A. A. Theoretical study of the effect of offset loads on the
performance of a 120◦ partial journal bearing. ASLE Trans., 2, 147–157, 1959.)

The variable φ has dual meaning: it may be interpreted as the ratio of densities in
the full film region and as the volume fraction of the lubricant in the cavitated region
(Vijayaraghavan and Keith, 1990a).

In the full film region where g = 1, Eq. (3.110) is an elliptic partial differential equation.
In the cavitated region g = 0 and Eq. (3.110) yields

∂ 

∂t
+ U

2

∂ 

∂x
= 0 (3.111)

in terms of the new variable  = φh. Differentiating Eq. (3.111) twice, first with respect
to t then with respect to x, we obtain

∂2 

∂t2
+ U

2

∂2 

∂t ∂x
= 0,

∂2 

∂t ∂x
+ U

2

∂2 

∂x2
= 0. (3.112)

Eliminating the mixed derivatives in Eqs. (3.112), we have

∂2 

∂t2
−
(
U

2

)2
∂2 

∂x2
= 0. (3.113)

As this is a hyperbolic equation, we have a change of type of the PDE at the cavitation
boundary; the numerical methods designed for solving Eq. (3.105) with g = 1 for full film
and Eq. (3.113) for cavitating film, must take this change into consideration (Vijayaraghavan
and Keith, 1991).

In the cavitated region Vijayaraghavan and Keith (1990a) recommend the use of second-
order upwind-differencing, while central-differencing suffices in the full film region. They
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also follow Jameson (1975) by adding high-order artificial viscosity terms (Anderson et al.,
1984) to the shear flow term in the cavitated region

∂

∂x
(φh) ≡ ∂ 

∂x

≈ ∂

∂x

[
 − (1 − g)

(
∂2 

∂x2


x2

2
− ∂3 

∂x3


x3

8

)]
, (3.114)

where 
x is the mesh spacing. With the addition of the artificial viscosity terms, the
whole equation can now be centrally differenced with the consequences that (1) in the full
film region, central differencing remains in effect on substituting g = 1, and (2) in the
cavitated region, the central-differencing automatically switches to second-order upwind-
differencing on account of the switch function being zero there.

For numerical work Eq. (3.110) is nondimensionalized

∂ (φH )

∂t̄
+ 1

4π

∂

∂x̄
(φH ) = β̄

48π2

∂

∂ x̄

(
H 3g

∂φ

∂ x̄

)
+ β̄

48 (L/D)2

∂

∂ z̄

(
H 3g

∂φ

∂ z̄

)
. (3.115)

Here we used

x̄ = x/2πR, z̄ = z/L, H = h/C, β̄ = β

μω

(
C

R

)2

,  ̄ = φH t̄ = ωt.

The finite differencing of Eq. (3.115) is explained in more detail in Vijayaraghavan and
Keith, 1990b). Its final results are9

(
∂  ̄

∂ x̄

)
i

≈ 1

2
x̄
[gi+1/2 ̄i+1 + (2 − gi+1/2 − gi−1/2) ̄i − (2 − gi−1/2) ̄i−1]

+ 1

2
x
[(1 − gi+1/2) ̄i − (2 − gi+1/2 − gi−1/2) ̄i−1 + (1 − gi−1/2) ̄i−2]

(3.116a)

for the shear flow term and[
∂

∂ x̄

(
−H 3g

∂φ

∂ x̄

)]
i

=
[
∂

∂x̄

(
−H 3 ∂g (φ − 1)

∂ x̄

)]
i

≈ − 1


x̄2

[
H 3
i+1/2gi+1 (φi+1 − 1) − (H 3

i+1/2 +H 3
i−1/2

)
gi (φi − 1)

+H 3
i−1/2gi−1 (φi−1 − 1)

]
(3.116b)

for the pressure term in x̄. To obtain the z̄ equation, replace i by j and x̄ by z̄ in Eq. (3.116b).
As relaxation methods require large computing times to convergence, Woods and Brewe

(1989) incorporated a multigrid technique into the Elrod algorithm. Vijayaraghavan and
Keith (1990b), on the other hand, advocate Newton iteration, coupled with an approximate
factorization technique. The algorithm has been successfully applied to finite grooved
bearings and flared misaligned bearings (Vijayaraghavan and Keith, 1990c). In context of
coating flows see Gurfinkel and Patera (1997).

9Note that the shear flow term has been split to preserve tridiagonality of the coefficient matrix.
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Figure 3.12. (a) The plane slider and (b) its nondimensional representation.

3.3 Thrust Bearings

Thrust bearings in their simplest form consist of two inclined plane surfaces that
slide relative to one another. The geometry of the bearing surface is commonly rectangular
or sector shaped, but other geometries are possible.

Plane Slider

The schematics of the fixed plane slider, the prototype of thrust bearings, is shown
in Figure 3.12(a). Let B represent the dimension of the slider in the direction of relative
motion; then the gradient m of the surfaces is calculated from

m = h2 − h1

B
. (3.117)

Here h1 and h2 represent the minimum value and the maximum value, respectively, of the
film thickness.

The applicable form of the Reynolds equation is given in Eq. (2.74). To render this
equation dimensionless, we make the following transformation:

x = Bx̄ y = mBȳ z = L

2
z̄ p = 6μU

Bm2
p̄. (3.118)

On the nondimensional x̄, ȳ plane of Figure 3.12, part (b), the x̄ axis represents the
runner surface of all plane sliders. The bearing surface projects onto the 45◦ line through
the origin. In this representation the dimensionless parameter x̄1 = x1/B serves to locate
the bearing pad, which is now of unit length when measured along the x̄ direction, relative
to the origin of the (x̄, ȳ) coordinate system. To specify bearing axial length and there-
by to complete the geometric description of the lubricant film, we need one more parameter,
say, the aspect ratio B/L.
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On this basis, when substituting Eq. (3.118) into the Reynolds equation and its boundary
conditions, we would expect the appearance of the two dimensionless parameters x̄1 and
B/L. This is indeed the case, for we find that

∂

∂x̄

(
x̄3 ∂p̄

∂x̄

)
+ 4

(
B

L

)2
∂

∂z̄

(
x̄3 ∂p̄

∂z̄

)
= −1, (3.119)

p̄ (x̄,±1) = 0, (3.120a)

p̄ (x̄1, z̄) = p̄ (x̄1 + 1, z̄) = 0. (3.120b)

The boundary conditions in Eq. (3.120) specify zero pressure on the pad boundaries, as
we have x̄1 = x1/B and x̄1 + 1 = (x1 + B)/B = x2/B.

The distribution of the dimensionless pressure is identical in all bearings that have
identical values of B/L and x̄1. The runner velocity U, the lubricant viscosity μ, and the
slope m enter into the calculations only as constant multipliers when computing actual
pressures.

The lubricant film force is given by

F =
∫ L/2

−L/2

∫ x2

x1

p (x, z) dx dz

or in nondimensional form by10

f ≡ Fh2
1

μULB2

= 6x̄2
1

∫ 1

0

∫ x̄1+1

x1

p̄ (x̄, z̄) d x̄ d z̄. (3.121)

The x coordinate of the center of pressure may be found from

Fxp =
∫ L/2

−L/2

∫ x2

x1

xp (x, z) dx dz. (3.122)

Writing xp = x1 + Bδ, in terms of dimensionless variables, Eq. (3.122) reduces to

δ = −x̄1 + 6x̄2
1

f

∫ 1

0

∫ x̄1+1

x̄1

x̄ p̄ (x̄, z̄) d x̄ d z̄. (3.123)

Here δ is the nondimensional distance between the center of pressure and the leading edge
of the pad.

Because of the simplicity of the boundary condition Eq. (3.120), Eq. (3.119) has a
straightforward analytical solution. Equation (3.119) is first made homogeneous by assum-
ing the pressure to be of the form

p̄ (x̄, z̄) = p̄∞ (x̄) − p̄∗ (x̄, z̄) . (3.124)

10In place of the dimensionless force as defined in Eq. (3.121), some authors, notably Raimondi and
Boyd (1955), employ the Kingsbury numberKf . These two quantities are related throughKf = x̄2

1/f .
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Here p̄∞(x̄) is the long-bearing solution and p̄∗ represents the correction resulting from
the finiteness of the bearing. The function p̄∞(x̄) satisfies

d

dx̄

(
x̄3 dp̄∞
dx̄

)
= −1, (3.125a)

p̄∞ (x̄1) = p̄∞ (x̄1 + 1) = 0, (3.125b)

p̄∞ = (x̄ − x̄1) (x̄1 + 1 − x̄)

(2x̄1 + 1) x̄2
. (3.125c)

The boundary-value problem for p̄∗(x̄, z̄) is

∂

∂x̄

(
x̄3 ∂p̄

∗

∂x̄

)
+ 4

(
B

L

)2
∂

∂z̄

(
x̄3 ∂p̄

∗

∂z̄

)
= 0, (3.126a)

p̄∗(x̄1, z̄) = p̄∗ (x̄1 + 1, z̄) = 0, (3.126b)

p̄∗(x̄,±1) = p̄∞ (x̄) , (3.126c)

and if the form p̄∗ = φ(x̄)ψ(z̄) is assumed, the functions φ and ψ satisfy

d

d x̄

(
x̄3 dφ

d x̄

)
+ 4

(
B

L

)2

λ2x̄3φ = 0, (3.127a)

φ(x̄1) = φ (x̄1 + 1) = 0, (3.127b)

d2ψ

d z̄2
− λ2ψ = 0. (3.128)

The function ψ , normalized at the ends of its interval, is

ψ = cosh λz̄

cosh λ
. (3.129)

The Sturm-Liouville problem, Eq. (3.127), was solved by Hays (1958) in terms of
Bessel functions but at the cost of some computational stability problems. Instead we
interpret Eqs. (1.27a) and (1.27b) as the Euler condition for the isoperimetric problem of
the minimization of∫ x̄1+1

x̄1

x̄3

(
dφ

d x̄

)2

d x̄,

subject to the conditions∫ x̄1+1

x̄1

x̄3φ2 (x̄) d x̄ = const.

and

φ (x̄1) = φ (x̄1 + 1) = 0.

Introducing λ as the Lagrange multiplier and changing the dependent variable to

v (x̄) = x̄3/2φ (x̄) ,
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the problem becomes that of minimizing (Szeri and Powers, 1970):

I =
∫ x̄1+1

x̄1

[
(v′)2 + 3

4x̄2
v2 − 4

(
B

L

)2

λ2v2

]
d x̄. (3.130)

Adapting the Rayleigh-Ritz method (Hildebrand, 1965), we assume that v(x̄) can be
represented by a series of functions that satisfy the boundary conditions. If sines are
chosen, v(x̄) has the form

vn (x̄) =
∑
m

xmn sinmπ (x̄ − x̄1), (3.131)

under the restriction that∑
m

x2
mn = 1.

By the usual arguments of variational calculus, the problem in Eq. (3.130) is transformed
into the matrix problem

AX = X!2. (3.132)

Here X = [xm],!2 = diag{λ2
1, λ

2
2, . . .}, and A = [amn], which is the Rayleigh-Ritz matrix

whose elements are (δmn is the Kronecker delta)

amn = 1

4

(
L

B

)2

(mnπ2δmn + qmn).

The symbol qmn stands for the definite integral

3

2

∫ x̄1+1

x̄1

sin nπ (x̄ − x̄1) sinmπ (x̄ − x̄2)

x̄2
d x̄.

Assuming that the problem can be solved, the expression for p̄∗(x̄, z̄) is

p̄∗(x̄, z̄) = x̄−3/2
∑
n

anvn (x̄)
cosh λnz̄

cosh λn
. (3.133)

Here the coefficients an are chosen by orthogonality of the eigenfunctions to make p̄∗

satisfy the boundary condition Eq. (3.126c)

an = 2
∫ x̄1+1

x̄1

x̄3/2p̄∞ (x̄) vn (x̄) d x̄. (3.134)

Often the lubricant pressure is of no interest. If that is the case, we can dispense with
computing p̄ from Eq. (3.124) and evaluate the load capacity, oil flow, and center of pressure
(pivot position) directly (Szeri and Powers, 1970). The procedure will be demonstrated for
the load capacity alone.

The nondimensional oil film force is written as

f = f∞ − f ∗, (3.135)

where f∞, the long-bearing force, is generated by p̄∞(x̄) and has the representation

f∞ = 6x̄2
1

[
ln

(
1 + 1

x̄1

)
− 2

2x̄1 + 1

]
. (3.136)
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It follows that f ∗ is the force correction resulting from the finiteness of the bearing.
Substitution of Eq. (3.134) into Eq. (3.133) yields

f ∗ =
∫ 1

0

∫ x̄1+1

x̄1

p̄∗(x̄, z̄) dx̄ d z̄

= 12x̄2
1

∑
k

(∑
n

bnxnk

)
λ−1
k tanh λk

(∑
m

xmkcm

)
. (3.137a)

Our expression for f ∗ may be written in the compact form, using matrix notation

f ∗ = 12x̄2
1b
T X!−1 tanh!XT c. (3.137b)

Here

cm =
∫ x̄1+1

x̄1

sinmπ (x̄ − x̄1)

x̄3/2
dx̄,

bm =
∫ x̄1+1

x̄1

x̄3/2p̄∞ (x̄) sinmπ (x̄ − x̄1) dx̄,

and b and c are column vectors, having elements b1, b2, b3, . . . and c1, c2, c3, . . . , respec-
tively.

It is permissible to write, Eq. (3.137b)

X!−1 tanh!XT = X!−1XT (X tanh!XT ) = A−1/2 tanhA1/2, (3.138a)

as the following equalities hold

X!nXT = (X!XT )n = An/2 (3.138b)

for any rational number n, and

X tanh!XT = X sinh!XTX (cosh!)−1XT .

In order to transform this last expression, we note that

X(cosh!)−1XT = [(XT )−1 cosh!(X)−1]−1

= (X cosh!XT )−1

= (coshX!XT )−1.

Here we took into account the orthogonality of the eigenvectors of the Sturm-Liouville
problem and utilized the series expansion for cosh !.

Our final expression for the dimensionless force Eq. (3.135) is

f = 6x̄2
1

[
ln

(
1 + 1

x̄1

)
− 2

2x̄1 + 1
− 2bT A−1/2 tanhA1/2c

]
. (3.139)

The term A−1/2 tanh A1/2 can be calculated without recourse to the eigenvalue problem
in Eq. (3.132) by making use of Padé approximations of the form

tanh λ1/2

λ1/2
≈
∑
n enλ

n∑
m dmλ

m
. (3.140)

Since hydrodynamic action requires convergence of the film shape in the direction
of relative motion, fixed pad sliders cannot carry load when the direction of rotation is
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Figure 3.13. Sector thrust pad geometry.

reversed. If the bearing is to be operated in either the forward or the reverse direction,
a combination of two pads with their surfaces sloping in opposite directions is required.
Operation of such a configuration is possible only if the diverging lubricant film cavitates.
If the ambient pressure is too high for the film to cavitate, then pivoted pad bearings are
often used. Normally a flat pad will carry load efficiently only if the pivot is offset – that
is, located between the center of the pad and the trailing edge – so that 0.5 < δ < 1. But
with the pivot so placed, the pad can carry load effectively in only one direction. Szeri and
Powers (1970) tabulate oil film force, oil flow, and pivot location for the parameter range
1/8 < x̄1 < 10 and 1/8 < L/B < 16.

When the pads are loaded, they deform, and the film shape is no longer given by h = mx.
Crowning might also be machined into the pad deliberately. Curved pads were first inves-
tigated by Raimondi (1960).

Sector Thrust Bearing

The film shape for the sector thrust pad of Figure 3.13 is given by

h = h2 − (h2 − h1)
θ

β
, (3.141)

where h2 and h1 are the maximum and minimum film thicknesses, respectively, and β is
the angular span of the sector.

The Reynolds equation (2.74) in cylindrical polar coordinates, with V0 set equal to zero,
is

∂

∂r

(
rh3 ∂p

∂r

)
+ 1

r

∂

∂θ

(
h3 ∂p

∂θ

)
= 6μωr

∂h

∂θ
. (3.142)
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Introducing the new variable (Tao, 1959)

φ = β

h2 − h1
h

and the notation

K = 6μω

(h2 − h1)2 β
2

into Eq. (3.142), the Reynolds equation reduces to

r
∂

∂r

(
r
∂p

∂r

)
+ 1

φ3

∂

∂φ

(
φ3 ∂p

∂φ

)
= −Kr2φ−3. (3.143)

The solution of Eq. (3.143) is sought in the form

p (r, φ) = p1 (r, φ) + p2 (r, φ) ,

where p1 (r, φ) satisfies the homogeneous equation and p2(r, φ) is a particular solution of
Eq. (3.143). The homogeneous equation is reduced to two ordinary differential equations:

r2ζ ′′ + rζ ′ − λ2ζ = 0, (3.144a)

ξ ′′ + 3φ−1ξ ′ + λ2ξ = 0, (3.144b)

by introduction of

p1 (r, φ) = ζ (r) ξ (φ) .

Equation (3.144a) is of the Sturm-Liouville type when specifying zero boundary con-
ditions for pressure and has solutions in terms of Bessel functions. Equation (3.144b), on
the other hand, is amenable to direct integration. Details of the solution are given by Tao
(1959).

Numerical solutions of the sector thrust bearing are given by Pinkus (1958) and Pinkus
and Sternlicht (1961). The plot in Figure 3.14 showing the nondimensional load vari-
able plotted against the radial slope parameter for various values of the tangential slope
parameter, is taken from Raimondi and Szeri (1984). These solutions were obtained via
Galerkin’s method, employing global interpolating functions. Pivoted-pad thrust bearings
employ supporting pivots, as shown in Figure 3.15, at the center of film pressure. While the
performance of pivoted-pad bearings is theoretically identical to that of a fixed-pad bearing
having the same slope, the pivoted type has the advantages of (1) self-aligning capability,
(2) automatically adjusting pad inclination to optimally match the needs of varying speed
and load, and (3) operation in either direction of rotation. Theoretically, the pivoted-pad
can be optimized for all speeds and loads by judicious pivot positioning, whereas the fixed-
pad bearing can be designed for optimum performance only for one operating condition.
Although pivoted-pad bearings involve somewhat greater complexity, standard designs are
readily available for medium to large size machines. Pivoted-pad thrust bearings are fur-
ther discussed in Chapters 4 and 9, within the context of dynamic properties and thermal
effects.
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Figure 3.14. Load capacity chart for thrust pad sector. (Reprinted with permission from
Raimondi, A. A. and Szeri, A. Z. Journal and thrust bearings. In Booser E. R., CRC Handbook
of Lubrication. Copyright CRC Press, Boca Raton, Florida. C© 1984.)

3.4 Effects of Surface Topography

Surface Roughness

All previous developments are based on the assumption of perfectly smooth bear-
ing surfaces. In reality, however, engineering surfaces are covered with asperities. These
asperities appear small relative to thick films, but might exert strong influence when the film
is thin. To appreciate this, consider aD = 50 mm journal bearing operating at ε = 0.8, with
minimum film thickness hmin = 10μm. Even for ground surfaces of this bearing, asperity
heights might reach δ ≈ 1.25μm with lateral spacing ten-times this value. For simplicity,
let us replace the real surface between two adjacent asperities by an ‘equivalent’ plane
slider, and define across-the-film characteristic length by �y ≈ [hmin + (hmin − δ)]/2 while
setting �xz ≈ 10δ. Then for ‘local’ aspect ratio, we have �y/�xz ≈ 0.75, casting doubts
on the applicability of the Reynolds equations under such conditions. In cases when the
lubrication approximation still holds even though the surfaces are rough, we are said to
be dealing with Reynolds roughness. When there is significant pressure variation across
the film due to surface roughness, to the extent that the lubrication approximation is no
longer valid, Stokes equation instead of Reynolds equation must be employed; in this latter
case we are dealing with Stokes roughness (Elrod, 1973). If, in addition, the Reynolds
number is finite, all solutions must be based on the Navier-Stokes equation. Just where the
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Figure 3.15. Pivoted-pad thrust bearing geometry. (Reprinted with permission from Raimondi,
A. A. and Szeri, A. Z. Journal and thrust bearings. In Booser, E. R., CRC Handbook of
Lubrication. Copyright CRC Press, Boca Raton, Florida. C© 1984.)

demarcation between roughness regimes lies, is not currently known. Compounding the
difficulties is the fact that the asperity height distribution for most machined surfaces is
random, and statistical methods must be applied when attempting to model lubrication
between rough surfaces.11

Statistical Methods

Tzeng and Saibel (1967) were among the first to apply statistical methods to
lubrication of rough surfaces. They investigated the inclined plane slider having one-
dimensional roughness transverse to the direction of relative motion. This analysis was,
almost immediately, extended by Christensen and Tonder (Christensen and Tonder, 1969;
Tonder and Christensen, 1971), and there have been many other attempts since. The method
employed by these investigators is based on statistical averaging of the Reynolds Equation.
As remarked by Tripp (1983), the Reynolds equation has the property, unusual among
equations of mathematical physics, that the boundary conditions are incorporated into the
equation – it is this feature of the Reynolds equation that offers hope for ensemble averaging
the equation itself.

Christensen and Tonder (1969) make two fundamental assumptions in their analysis: (1)
the magnitude of the pressure ripples due to surface roughness is small and the variance
of the pressure gradient in the roughness direction is negligible, and (2) the flow in the
direction transverse to roughness direction has negligible variance.

The first step in the analysis is to average the Reynolds equation. Applying the expecta-
tion operator, E, to each of the terms of Eq. (2.74), we write

∂

∂x
E

(
h3 ∂p

∂x

)
+ ∂

∂z
E

(
h3 ∂p

∂z

)
= 6μU

∂E (h)

∂x
. (3.145)

The film thickness, h, is separated into two partsh = h̄+ η, where h̄ denotes the nominal,
smooth, part of the film geometry while η is the variation due to surface roughness. For

11There have been attempts to represent surface roughness by Fourier series. These efforts, however,
should be considered as investigating waviness rather than roughness.
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reasons not explained, other than a reference to assumption (1), Christensen and Tonder
assert that the expected value of the product of two stochastic variables equals the product
of the expected values, and write

∂

∂x
E

(
h3 ∂p

∂x

)
= ∂

∂x

[
∂p̄

∂x
E(h3)

]
, (3.146)

where p̄ = E(p).
The flow in the z direction, assumed of having zero variance by assumption (2) above,

can be written as

h3 ∂p

∂z
= qz.

On averaging, we have

∂p̄

∂z
= qzE

(
1

h3

)
, qz = 1

E(h−3)

∂p̄

∂z
. (3.147)

By combining Eqs. (3.146) and (3.147), we obtain the ensemble averaged Reynolds
equation

∂

∂x

[
∂p̄

∂x
E(h3)

]
+ ∂

∂z

[
∂p̄

∂z

1

E(h−3)

]
= 6μU

∂

∂x
E(h), (3.148a)

valid for a bearing with longitudinal, one-dimensional roughness (Christensen and Tonder,
1969). For transverse, one-dimensional roughness, Tonder and Christensen (1972) find

∂

∂x

[
∂p̄

∂x

1

E(h−3)

]
+ ∂

∂z

[
∂p̄

∂z
E(h3)

]
= 6μU

∂

∂x

[
E(h−2)

E(h−3)

]
. (3.148b)

They have also attempted to extend these result to three-dimensional roughness, but only
with limited success.

Patir and Cheng (1978) published an analysis of three-dimensional surface roughness,
resulting in flow factors that are to be included in the Reynolds equation. Their idea was
to (1) characterize the surface by its autocorrelation function (see Peklenik, 1968), (2)
computer-generate sets of rough surfaces that have the specified autocorrelation, (3) solve
Reynolds equation for microbearings constructed with the computer-generated surfaces,
(4) calculate flow factors for use with a Reynolds equation that employs the nominal film
thickness and accounts for the surface roughness of the microbearings, and (5) average a
large number of flow factors to obtain statistical representation.

For given Gaussian surface roughness distribution we can calculate the autocorrela-
tion in a straightforward manner. If ηij denotes the asperity amplitude at the nodal posi-
tion xi = i
x, zj = j
z, the discrete autocorrelation function is defined by the n × m
matrix

Rpq = R (p
x, q
z) = E(ηijηi+p,j+q )
p = 0, 1, 2, . . . , n− 1
q = 0, 1, 2, . . . , m− 1

(3.149)

Our goal is to invert Eq. (3.149), i.e., to generate an N × M matrix of roughness ampli-
tudes having Gaussian height distribution that possesses a specified autocorrelation (Patir,
1978). To this end, using random number generator, we construct an (N + n) × (M + m)
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Figure 3.16. Computer-generated surface with isotropic roughness and specified
autocorrelation function.

matrix (κ i,j) whose elements are independent, identically distributed, Gaussian random
numbers. The roughness heights are then obtained as the sum

ηij =
n∑
k=1

m∑
�=1

aklκi+k,j+l,
i = 1, 2, . . . , N
j = 1, 2, . . . ,M

(3.150)

where the akl are the coefficients yet to be determined, so as to give the desired correletion
matrix.

To find the coefficients akl , substitute Eq. (3.150) into Eq. (3.149), taking into account
that the κij are uncorrelated and have unit variance, i.e.,

E(κij κkl) =
{

1 if i = k, j = l
0 otherwise

(3.151)

and obtain

Rpq =
n−p∑
k=1

m−q∑
l=1

aklak+p,l+q
p = 0, 1, . . . , n− 1
q = 0, 1, . . . , m− 1.

(3.152)

This represents nm simultaneous, deterministic equations from which to calculate the set
of nm coefficients akl. Once these coefficients are known, substitution into Eq. (3.150)
yields the required asperity height distribution (Patir, 1978). Hu and Tonder (1992) further
improved on Patir’s scheme for generating rough surfaces of specified statistical properties
by using Fast Fourier Transform (FFT) methods to commute between spectral space and
physical space.

It is now possible, either with the help of Eq. (3.150) or by utilizing Hu and Tonder’s
scheme, to generate surfaces with specified autocorrelation. Figure 3.16 shows such a
computer-generated surface.

It is also possible to construct microbearings with, and to fit-finite-difference mesh to,
the computer generated surfaces. Solution of Reynolds equation will then proceed in two
phases. To calculate the pressure flow factors φx and φz, the microbearing is subjected to
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mean pressure gradients (p1 – p2)/(x2 – x1) and ( p1 – p2)/(z2 – z1), respectively, where
(x2 – x1)(z2 – z1) is the dimension of the microbearing. The pressure flow factor φx , for
example, is calculated from

φx = E
(
h
∂p

∂x

)/[
h̄3 (p2 − p1)

(x2 − x1)

]
.

To calculate the shear flow factor φs , sliding is specified and the mean pressure gradient
eliminated (Patir and Cheng, 1979).

In the next step, the flow factors are averaged, having been calculated for a large number
of microbearings. The Reynolds equation now takes the form

∂

∂x

(
φx
h3

12μ

∂p̄

∂x

)
+ ∂

∂z

(
φz
h3

12μ

∂p̄

∂z

)
= U1 + U2

2

∂h̄

∂x
+ U1 − U2

2
σ
∂φs

∂x
+ ∂h̄

∂t
. (3.153)

Part (a) of Figure 3.17 plots the pressure flow factor φx , and part (b) plots the shear flow
factor φs versus h/σ , where σ is the composite rms roughness [see Eq. (1.2)]. Contact of
opposing asperities is first made when h/σ ≈ 3; for values less than this the lubrication
approximation no longer holds (Stokes roughness regime) and the flow factors become
increasingly inaccurate. In any case, the flow factors are very sensitive to the numerical
scheme employed (Peeken et al. 1997).

The theory has been extended to EHL (Ai and Zheng, 1989; Chang and Webster, 1991).
Others to discuss lubrication between rough surfaces were Elrod (1973, 1979), who used a
two variable expansion procedure, Tripp (1983), Mitsuya and Fukui (1986), Bhushan and
Tonder (1989), and Ai and Cheng (1994, 1996). The last two of these papers treats the
prescribed surface profile as a deterministic function and employs the multigrid method
(Lubrecht, ten Napel, and Bosma, 1986) for solving the Reynolds equation.

When the asperities touch, the lubrication approximation ceases to be valid (Sun and
Chen, 1977) and one has to solve Stokes equations. To date, there has been little work done
on Stokes roughness.

Homogenization

We begin by writing the steady-state Reynolds equation in form

∇ · (h3
η∇pη

)−!∂hη
∂x1

= 0, ∇ =
(
∂

∂x1
,
∂

∂x2

)
, (3.154)

where ! = 6μU and the index η refers the adjoining quantity to the prevailing surface
roughness, characterized by the length scale η.

Our fundamental assumption is that surface roughness results from nr × nr repetitions
of a basic roughness pattern over a representative cell of dimension η × η, η = 1/nr . In
consequence, the perturbation of the normalized film thickness h(x1, x2) caused by surface
roughness alone can be represented by the periodic function h1(ξ1, ξ2). Here (ξ1, ξ2) =
[(x1/η) , (x2/η)] are local variables running over the unit cell � = [0, 1] × [0, 1].

Denoting the global film thickness by h0 (x1, x2), the total, perturbed, film thickness is
given by

hε(x) = h0(x) + h1(ξ ). (3.155)
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Figure 3.17. Flow factors for rough surfaces: (a) pressure flow factor, (b) shear flow factor;
γ = λ0.5x/λ0.5z (Eq. 1.3). (Reprinted with permission from Patir, N. and Cheng, H. S. An
average flow model for determining effects of three-dimensional roughness on partial
hydrodynamic lubrication. ASME Journal of Lubrication Technology, 100, 12–17, 1978; Patir,
N. and Cheng, H. S. Application of average flow model to lubrication between rough sliding
surfaces. ASME Journal of Lubrication Technology, 101, 220–230, 1979.)

Moreover, by assumption, the corresponding pressure can be represented by the asymptotic
expansion

pη(x) = p0(x) + ηp1(x, ξ ) + η2p2(x, ξ ) + · · · . (3.156)
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Using the chain rule of differentiation, we have

∇(·) = ∇(·) + 1

η
∇ξ (·); ∇ξ =

(
∂

∂ξ1
,
∂

∂ξ2

)
, (3.157)

and when (3.156) and (3.157) are substituted into Eq. (3.154), we obtain

1

η

{
∇ξ · [h3

η(∇p0 + ∇ξp1)
]−!∂hη

∂ξ1

}

+
{
∇ · [h3

η(∇p0 + ∇ξp1)
]+ ∇ξ · (h3

η∇p1
)−!∂hη

∂x1

}
+ η {∇ · (h3

η∇p1
)}+ · · · = 0. (3.158)

Equating now the coefficients of the various powers of η to zero, we obtain a pair of
coupled differential equations in the two unknowns p0 and p1

∇ξ · [h3
η(∇p0 + ∇ξp1)

] = !∂hη
∂ξ1
, (3.159)

∇ · [h3
η(∇p0 + ∇ξp1)

] = !∂hη
∂x1

− ∇ξ · (h3
η∇p1

)
. (3.160)

These equations can be easily uncoupled however, owing to the linearity of Eq. (3.154),
by observing that

p1 = ω1
∂p0

∂x1
+ ω2

∂p0

∂x2
+ ω3 + C(x1, x2), (3.161)

solves Eq. (3.159), provided that the auxiliary variables ω1, ω2, ω3 satisfy, respectively, the
constraints

∇ξ · (h3
η∇ξω1

) = −∂h
3
η

∂ξ1
, (3.162a)

∇ξ · (h3
η∇ξω2

) = −∂h
3
η

∂ξ2
, (3.162b)

∇ξ · (h3
η∇ξω3

) = !∂hη
∂ξ1
. (3.162c)

Substituting p1 from (3.161) into Eq. (3.160), we obtain
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(3.163)

= !∂hε
∂ξ1

− ∇ · (h3
η∇ξω3

)− ∇ξ · (h3
η∇p1

)
.
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Figure 3.18. Journal bearing film geometry, isotropic case (Reprinted with permission from
Kane, M. and Bou-Said, B. Comparison of homogenization and direct techniques for the
treatment of roughness in incompressible lubrication. ASME Journal of Tribology, 126,
733–737, 2004).

To eliminate dependence on local variables we integrate Eq. (3.163) over the unit square
�while paying attention to the periodicity of the functions involved. Using matrix notation

A(x) =

⎡
⎢⎢⎣
∫
�
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η
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η
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−!hη
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η
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dξ

⎤
⎥⎥⎦ , (3.164)

we write the integrated form of Eq. (3.163), the homogenized Reynolds equation, in the
form

∇ · [A(x)∇P0 + B(x)] = 0, P0 = 0 on ∂�, (3.165)

where we consider ∇P0 a column vector.
The advantage of the homogenization scheme is purely computational. If in the solution

of the local problem (3.162) a mesh of size n1 × n2 were required to accurately portray
the roughness pattern over the unit cell �, the number of mesh points necessitated by the
complete deterministic solution would be of the order of r2 (n1 × n2). Kane and Bou-Said
(2004) compared results of homogenization with those of deterministic computations in a
highly loaded contact of a journal bearing for the roughness pattern

h1 = αsin
(

2π
δ1ξ1 + δ2ξ2

δ1 + δ2

)
.

Here α is the roughness amplitude and the pattern is transverse for δ1 = 1, δ0 = 0 and longi-
tudinal when δ1 = 0, δ0 = 1. Figure 3.18 displays the corresponding global film thickness
h0 as well as its perturbation over the representative unit cell �.

Figure 3.19 compares deterministic solutions with results of homogenization for α =
0.3hmin. The latter technique seems to be insensitive to the number of representative cells
while the deterministic solution necessitates increasing the number of discretization points
as nr is increased.
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Figure 3.19. Variation of pressure profile with roughness number (Reprinted with permission
from Kane, M. and Bou-Said, B. Comparison of homogenization and direct techniques for the
treatment of roughness in incompressible lubrication. ASME Journal of Tribology, 126,
733–737, 2004).

Application of homogenization to gas bearing is more involved than the case discussed
here, as the Reynolds equation characterizing compressible lubricant is nonlinear. Difficul-
ties arise when trying to decouple the global from the local problems. The full nonlinear
case, for which the coefficientsA11, . . . , A22 andB1, B2 are dependent on P0 was discussed
by Buscaglia and Jai (2000) and by Jai and Bou-Said (2002). Almqvist and Dasht (2006)
linearized the gas-bearing problem by assuming constant bulk modulus β = ρ (∂p/∂ρ); in
this case the analysis of the compressible and incompressible cases is formally identical.

Surface Texturing

Classical lubrication theory does not allow for the generation and maintenance
of a load carrying film between parallel surfaces. Yet already in 1891 Beauchamp Tower
reported on successfully operating a parallel thrust bearing, consisting of a plane collar
rotating against a fixed annulus (Cameron, 1966). This, of course, does not repudiate
classical theory but simply points to the fact that if any of its assumptions are violated, the
theory, and its predictions, no longer holds. In Tower’s bearing the correct mechanism that
allowed lubricant film to develop is, in all probability, related to thermal distortion of the
bearing surfaces, thus violating the “rigid surface” assumption. Violating the “smooth sur-
face,” assumption by the introduction of microroughness into the inlet section can, again,
lend load capacity to parallel surfaces in relative motion (Tonder, 2001; Li and Chen, 2007).

It has been known for some time that texturing of the surface can produce beneficial
effects in seals and in parallel thrust bearings (Hamilton et al., 1966; Anno et al., 1968,
1969). Various techniques are available for bringing about the texturing of surfaces, but
laser surfaces texturing (LST) is probably the most advanced method devised so far (Etsion,
2005). Lasers are convenient to use, are environmentally friendly, and able to produce
identical dimples at high surface density. Each of such dimples can then serve as a miniature
hydrodynamic bearing. Other intended uses of the dimples might be as micro-reservoirs for
lubricant or as microtraps for wear debris; here, however, we are interested in LST-created
dimples as microbearings.

Etsion and co-workers were among the first to theoretically analyze the effects of LST
on parallel thrust bearings (Etsion and Burstein, 1996). In one of their more recent papers
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Figure 3.20. Typical pressure distribution for partial and full texturing of parallel thrust
bearing (Reprinted with permission from Brizmer, V., Kligerman, Y. and Etsion, I. A laser
surface textured parallel thrust bearing. Tribol. Trans., 46 (3), 397–403, 2003, Taylor & Francis
Group).

(Brizmer et al., 2003), they consider texturing with spherical segment shaped microdimples.
They rely on the Reynolds equation and the Swift-Stieber cavitation boundary condition
to represent flow over the dimples. When setting the pressure inside the cavitation zone to
zero, the pressure distribution becomes asymmetric, yielding positive load bearing capacity.
In the case of a fully structured surface, that is when the surface is completely covered by
dimples, they find that the dimples do not interact but operate as independent microbearings.
The result in this fully textured case is a saw tooth like, periodic, pressure distribution
yielding a modest load capacity. But if the surface is only partially textured, the texturing
starting at and extending in the downstream direction from the inlet, the dimples interact
and produce a step-like pressure distribution over the textured portion of the pad, reaching
a maximum value at the start of the untextured section and falling to zero in the groove
(Figure 3.20).

In compressible flow where the cavitation effect is absent, the pressure profile is made
nonsymmetric by compressibility effects; this then enables generation of a load bearing
capacity (Etsion et al., 1999; Kligerman and Etsion, 2001). In a follow up paper Etsion
et al. (2004) provide experimental support for their theoretical conclusions. It is notable,
however, that this analysis, as it is based on the Reynolds equation, does not allow for
contributions from fluid inertia.

Arghir et al. (2003) are unwilling to accept Etsion’s rationale for the generation of
load capacity of textured parallel bearings. Instead, they work with the full Navier–Stokes
equations for steady flow and find that the zero inertia assumption (Stokes equation) is
unqualified to model flow over macro-roughness in the normally anticipated Reynolds
number range. Their conclusion is that the “net pressure gain is a pure inertia effect.” On
increasing the Reynolds number, the pressure computed from the Navier–Stokes equation
displays increasing asymmetry, as depicted in Figure 3.21, thus leading to positive load
carrying capacity over the dimple.

In clear contrast to this “convective inertia mechanism,” and in support of the “cavitation
mechanism” formulated by Etsion, Dobrica and Fillon (2009) find that for sliders, in
general, “inertia has negative effects, reducing load capacity.” There are, thus, contradictory
explanations as to the actual origin of the excess pressure. Of course, if the surfaces converge
in the direction of relative motion thus generating considerable pressure even in the absence
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Figure 3.21. Pressure distributions on the flat moving wall facing textured surface (Reprinted
with permission from Arghir, M., Roucou, N., Helene, M. and Frene, J. Theoretical analysis of
the incompressible laminar flow in a macro-roughness cell. ASME Journal of Tribology, 125,
309–318, 2003).

of texturing, cavitation appears less likely to occur and one would have to fall back on
convective inertia effects as the primary justification of the extra pressure effect, if, indeed,
it existed at all.

To investigate the influence of both the positioning and the size of two-dimensional,
cylindrical, dimples in a convergent geometry, Cupillard et al. (2008) positioned a pat-
tern of 10 dimples alternatively in the inlet zone where of dp/dx > 0 (configuration 1),
in the vicinity of the maximum pressure where p ≈ pmax (configuration 2) and in the
outlet zone where dp/dx < 0 (configuration 3) of a journal bearing. Dimples were char-
acterized by their width w and their depth d and, depending on size, spanned an angle
24 ≤ 
θ◦ ≤ 71 (Figure 3.22). In this work lubricant flow was governed by the steady-state
Navier–Stokes equations and the Rayleigh–Plesset multiphase cavitation algorithm
(Plesset, 1949). Computing with “deep” dimples, i.e., d/hmin > 1, Cupillard and his co-
authors found that each of the three configurations distorted the smooth-surface pressure

Figure 3.22. Dimple configuration (Reproduced with permission from Cupillard, S.,
Glavatskih, S. and Cervantes, M. J. Computational fluid dynamics analysis of a journal bearing
with surface texturing. Proc IMechE Journal of Engineering Tribology, 222, 97–107, 2008,
Professional Engineering Publishing).
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Figure 3.23. Pressure distribution in journal bearing with partially textured surface
(Reproduced with permission from Cupillard, S., Glavatskih, S. and Cervantes, M. J.
Computational fluid dynamics analysis of a journal bearing with surface texturing. Proc IMechE
Journal of Engineering Tribology, 222, 97–107, 2008, Professional Engineering Publishing).

profile to some degree, and that the distortion was always unfavorable as portrayed in the
pressure plots of Figure 3.23. But they also found that in all configurations the dimples
had the effect of reducing friction torque on the bearing, possibly by virtually eliminating
frictional losses over the area occupied by the dimples. The magnitude of this reduction of
friction, however, varied from configuration to configuration.

On computing the change in the coefficient of friction due to simultaneous changes in
both load and friction force, Cupillard et al. discovered that it was positive for configurations
1 and 3 but decreased for dimple configuration 2 as shown in Table 3.5. This finding is in
agreement with that of Brajdic-Mitidieri et al. (2005) on reduction of the friction coefficient
in pocketed pad bearings. An increase in the friction coefficient was observed, however,
at both low and high eccentricity ratios, but possibly due to eccentricity ratio dependent
change in the position of the pressure maximum relative to the fixed dimple configuration.

It has been known for some time (Tonder, 2001) that roughening of the inlet sec-
tion provides a lift to the parallel plate thrust bearing. In a follow up, Cupillard et al.
investigated the effect of locating a set of shallow dimples at θi = 0◦,
θ = 48◦. While
keeping the eccentricity ratio constant at ε = 0.61, the friction coefficient increased for both

Table 3.5. Changes in load, friction force and coefficient of
friction (d/hmin = 30.1, w = 0.004m, ε = 0.61)

Configuration (θi) Load (%) Friction (%) Coefficient of friction

1 (57◦) –23.1 –9.2 +18.2
2 (122◦) –2.8 –10.7 –8.1
3 (152◦) –25.5 –16.2 +12.5
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Table 3.6. Changes in load, friction force and coefficient of
friction (d = 45 nm,w = 0.004m)

Eccentricity ratio Load (%) Friction (%) Coefficient of friction

0.05 +41.4 −0.8 −29.9
0.1 +14.5 −0.5 −13.1
0.15 +6.3 −0.3 −6.2
0.2 +3.1 +0.3 −2.7
0.3 −1.7 −0.2 +1.6

d/hmin = 0.34 and d/hmin = 1.0. It did decrease, however, on changing to ε ≤ 0.2. The
data obtained at various eccentricity ratios and d = 45 nm is displayed in Table 3.6.

Their main conclusion here is that to improve bearing performance at high eccentricities,
deep dimples could be placed in the region of maximum pressure, bearing in mind, though,
that improper positioning of the dimples may lead to pressure deterioration instead of
pressure enhancement. At low eccentricities reduction of friction coefficient can be achieved
by locating shallow dimples just downstream of the position of maximum film thickness.
This latter action seems to originate from an additional pressure build-up rather than from
a reduction of the frictional force.

3.5 Nomenclature

A area of hydrostatic pad
B slider width (in direction of motion)
C radial clearance
D bearing diameter
F, FR, FT oil film force, radial and tangential components
Fμ friction force
H dimensionless film thickness
Hp, Hf ,HT pumping power, shear power, total power
Kf Kingsbury number
L bearing length
N shaft speed
OB,OJ center of bearing, journal
P lubricant force per projected bearing area
Q flow rate
Qs slider leakage
R = RB,RJ radius of bearing, journal
R1, R2 hydrostatic pad inner and outer radii
RB,RC resistance resulting from bearing, capillary
S Sommerfeld number
U,V surface velocity components
U0 effective surface velocity
UM maximum surface velocity
V , U, V surface velocity
V0 squeeze velocity
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W external load
af area factor
cμ coefficient of friction
d diameter of capillary restrictor
f , fR, fT dimensionless lubricant force, radial and tangential components
h, h1, h2 film thickness, minimum and maximum values
h1 perturbation on film thickness
hf friction factor
� length of capillary restrictor
m slope of bearing surfaces
n geometric constant
nr roughness number
p, pc pressure, center line pressure
pr, pa, ps recess, ambient, supply pressures
pi inlet pressures
p1 perturbation on pressure
qs dimensionless side leakage
qf flow factor
t time
ui(u, v,w) lubricant velocity components
v(u, v,w) lubricant velocity (components)
xi(x, y, z) orthogonal Cartesian coordinates
xp pivot position
�i, �O recess boundary, pad outside boundary
ψ, α angular coordinates
α position of load relative to pad leading edge
α roughness amplitude
β pad angle
δ dimensionless pivot position, asperity height
ε eccentricity ratio
η wavelength of roughness pattern
θ angular coordinate measured from line of centers
θ1, θ2 angular coordinates of pad leading edge, trailing edge
λ dimensionless bearing stiffness
μ lubricant viscosity
ξ resistance ratio
ρ lubricant density
σ surface tension, rms roughness
τ shear stress
τ0 wall stress
φ attitude angle
ω shaft angular velocity
ωw angular frequency of applied load
( ) dimensionless quantity
( )cav evaluated at fluid–cavity interface
( )ε pertaining to roughness ε



3.6 / References 143

3.6 References

Ai, X. and Cheng, H. S. 1994. A transient EHL analysis for line contacts with measured surface
roughness using multigrid technique. ASME J. Tribol., 116, 549–58.

Ai, X. and Cheng, H. S. 1996. The effect of surface structure on EHL point contacts. ASME J.
Tribol., 118, 569–66.

Ai, X. and Zheng, L. 1989. A general model for microelastohydrodynamic lubrication and its full
numerical solution. ASME J. Tribol., 111, 569–76.

Almqvist, A. and Dasht, J. 2006. The homogenization process of the Reynolds equation describing
compressible liquid flow. Tribol. Int., 39, 994–1002.

Anno, J., Walowit, J. A. and Allen, C. M. 1968. Microasperity lubrication. ASME J. Lubr. Techol.,
90, 351–355.

Anno, J., Walowit, J. A. and Allen, C. M. 1969. Load support and leakage from
microasperity-lubricated face seals. ASME J. Lubr. Techol., 91, 726–731.

Arghir, M., Roucou, N., Helene, M. and Frene, J. 2003. Theoretical analysis of the incompressible
laminar flow in a macro-roughness cell. ASME J. Tribol., 125, 309–318.

Bhushan, B. and Tonder, K. 1989. Roughness induced shear and squeeze film effects in magnetic
recording – Part i: Analysis. ASME J. Tribol., 111, 220–27.

Brajdic-Mitidieri, P., Gosman, A. D., Ioannides, E. and Spikes, H. A. 2005. CFD analysis of low
friction pocketed pad bearing. J. Tribol., 127, 803–812.

Brizmer, V., Kligerman, Y. and Etsion, I. 2003. A laser surface textured parallel thrust bearing.
Tribol. Trans., 46 (3), 397–403.

Buscaglia, G. C. and Jai, M. 2000. A new numerical scheme for non uniform homogenized
problems: application to the non linear Reynolds compressible equation. Math. Probl.
Eng., 7, 355–378.

Cameron, A. 1966. The Principles of Lubrication. Wiley, New York.
Chang, L. and Webster, M. N. 1991. A study of elastohydrodynamic lubrication of rough surfaces.

ASME J. Tribol., 103, 110–15.
Christensen, H. and Tonder, K. 1969. Tribology of rough surfaces: stochastic models of

hydrodynamic lubrication. Sintef Report, Trondheim, Norway. No. 10/69-18.
Coyne, J. C. and Elrod, H. G. 1970a. Conditions for the rupture of a lubricating film, Part 1,

Theoretical model. Trans. ASME Ser. F. 92. 451–457.
Coyne, J. C. and Elrod, H. G. 1970b. Conditions for the rupture of a lubricating film, Part II, New

boundary conditions for Reynolds’ equation, ASME Pap. 70-Lub-3.
Cupillard, S., Glavatskih, S. and Cervantes, M. J. 2008. Computational fluid dynamics analysis of a

journal bearing with surface texturing. Proc IMechE J., 222, 97–107.
Dai, R. X., Dong, Q., and Szeri, A. Z. 1992. Approximations in lubrication theory, ASME J. Tribol.,

114, 14–25.
Dobrica, M. B. and Fillon, M. 2009. About the validity of Reynolds equation and inertia effects in

textured sliders of infinite width. Proc. IMechE J., 223, 69–78.
Dowson, D. and Taylor, C. M. 1979. Cavitation in bearings. Ann. Rev. Fluid. Mech., 11, 35–66..
Dowson, D., Godet, M. and Taylor, C. M.(eds.).1975. Cavitation and Related Phenomena in

Lubrication, Institute of Mechanical Engineers, London.
DuBois, G. B. and Ocvirk, F. W. 1955. Analytical derivation and experimental evaluation of

short-bearing approximation for full journal bearings. Natl. Advis. Comm. Aeronaut.
Rep. 1157.



144 3 / Thick-Film Lubrication

Dyer, D. and Reason, B. R. 1976. A study of tensile stresses in a journal-bearing oil film. J. Mech.
Eng. Sci., 18, 46–52.

Elrod, H. G. 1973. Thin film lubrication theory for Newtonian fluids with surfaces possessing
striated roughness or grooving. ASME J. Lubr. Technol., 95, 484–89.

Elrod, H. G. 1979. A general theory for laminar lubrication with Reynolds roughness. ASME J.
Lubr. Technol., 101, 8–14.

Elrod, H. G. 1981. A cavitation algorithm. J. Lub. Tech., 103, 350–54.
Elrod, H. G. and Adams, M. L. 1974. A computer program for cavitation and starvation problems.

Leeds-Lyon Conference on Cavitation, Leeds University, England.
Etsion, I. 2005. State of the art in laser surface texturing. ASME J. Tribol., 127, 248–253.
Etsion, I. and Burstein, L. 1996. A model for mechanical face seals with regular microsurface

structure. Tribol. Trans., 39 (3), 677–683.
Etsion, I., Halperin, G., Brizmer, V. and Kligerman, Y. 2004. Experimental investigation of laser

surface textured parallel thrust bearings. Tribol. Lettr., 17 (2), 295–300.
Etsion, I., Kligerman, Y. and Halperin, G. 1999.Analytical and experimental investigation of laser

textured mechanical face seal. Tribol. Trans., 42 (3), 511–516.
Finlayson, B. 1972. The Method of Weighted Residuals. Academic Press, New York.
Floberg, L. 1961. On hydrodynamic lubrication with special reference to cavitation in bearings.

Chalmers Tek. Hoegsk. Handl., Dissertation.
Floberg, L. 1964. Cavitation in lubricating oil films. In Cavitation in Real Liquids, R. Davies (ed.),

American Elsevier, New York. Floberg, L. 1965. On hydrodynamic lubrication with
special reference to sub-cavity pressures and number of streamers in cavitation regions.
Acta Polytech. Scand. Mech. Eng. Ser., 19, 3–35.

Gourley, W. E. 1977. Laminar flow between closely spaced rotating disks with variable viscosity.
M.Sc. Thesis, Univ. of Pittsburgh.

Gross, W. A. 1962. Gas Film Lubrication. Wiley, New York.
Hamilton, D. B., Walowit, J. A. and Allen, C. M. 1966. A theory of lubrication by micro

irregularities. ASME J. Basic Eng., 88, 177–185.
Hays, D. F. 1958. Plane sliders of finite width. Trans. ASLE, 1, 233–240.
Heller, S. and Shapiro, W. 1968. A numerical solution for the incompressible hybrid journal bearing

with cavitation. Trans. ASME, ser. F, 90, 508–515.
Hildebrand, F. B. 1965. Methods of Applied Mathematics. Prentice-Hall Inc., Englewood Cliffs,

NJ.
Hu, Y. Z. and Tonder, K. 1992. Simulation of 3-D Random surface by 2-D digital filter and Fourier

analysis. Int. J. Mach. Tools Manufact., 32, 38–93.
Jai, M. and Bou-Said, B. 2002. A comparison of homogenization and averaging techniques for the

treatment of roughness in slip-flow-modified Reynolds equation. ASME J. Tribol., 124,
327–335.

Jameson, A. 1975. Transonic potential flow calculations in conservative form. Proceedings of 2nd
Computational Conference, Hartford, pp. 148–161.

Kane, M. and Bou-Said, B. 2004. Comparison of homogenization and direct techniques for the
treatment of roughness in incompressible lubrication. ASME J. Tribol., 126, 733–737.

Kligerman, Y. and Etsion, I. 2001. Analysis of hydrodynamic effects in surface textured
circumferential gas seals. STLE Paper no. 01-AM-10.

Li, J. and Chen, H. 2007. Evaluation on applicability of Reynolds equation for squared transverse
roughness compared to CFD. J. Tribol, 129, 963967.



3.6 / References 145

Lubrecht, A. A., ten Napel, W. E. and Bosma, R. 1986. Multigrid, an alternative method for
calculating film thickness and pressure profile in elastohydrodynamic line contacts. ASME
J. Tribol., 110, 551–56.

Lund, J. W. 1964. Spring and damping coefficients for the tilting-pad journal bearing. ASLE Trans.,
7, 342–52.

Lund, L. and Tonder, K. 1997. Numerical simulation of the effects of three-dimensional roughness
on hydrodynamic lubrication: correlation coefficients. ASME J. Tribol., 119, 315–22.

Mitsuya, Y. and Fukui, S. 1986. Stokes roughness effects on hydrodynamic lubrication. ASME J.
Tribol., 108, 151–8.

O’Donoghue, J. P., Koch, P. R. and Hooke, C. J. 1970. Approximate short bearing analysis and
experimental results obtained using plastic bearing liners. Proc. Inst. Mech. Eng., 184,
pt. 3L, 190–196.

Opitz, H. 1968. Pressure Pad Bearings. In Lubrication and Wear: Fundamentals and Application to
Design. Proc. Inst. Mech. Eng., 182, pt. 3A.

Patir, N. 1978. A numerical procedure for random generation of rough surfaces. WEAR, 47, 263–77.
Patir, N. and Cheng, H. S. 1978. An average flow model for determining effects of three-dimensional

roughness on partial hydrodynamic lubrication. ASME J. Lubr. Technol., 100, 12–7.
Patir, N. and Cheng, H. S. 1979. Application of average flow model to lubrication between rough

sliding surfaces. ASME J. Lubr. Technol., 101, 220–30.
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CHAPTER 4

Dynamic Properties of Lubricant Films

The behavior of rotors is strongly influenced by the characteristics of their supports.
The forces generated on a journal by the lubricant film of its bearings are nonlinear functions
of the position and velocity of the journal center.1 Thus, to calculate the critical speeds and
vibration amplitudes of rotors and to examine their stability against self-excited vibrations,
knowledge of the response of the bearing lubricant film to journal displacements and
velocities is essential.

In Figure 4.1 we schematize a rotor, of weight 2W, and its support. Under steady load,
the journal center is displaced from the bearing center to the steady operating position, OJS .

Rotor response to small excitation will be as shown in Figure 4.2. When the supporting
bearings are rigid, shaft vibration amplitude varies with shaft speed, as indicated by the
solid curve. This type of response would be expected when the rotor is running on rolling-
contact bearings. Rigidly supported rotors cannot be operated at a critical speed2 and can
become “hung” on the critical when attempting to drive through.

We add spring and considerable damping to the system, in addition to the shaft spring and
damping already present, when replacing the rigid supports with hydrodynamic bearings.
This additional stiffness and damping will, as indicated in Figure 4.2, lower the critical
speed below that calculated for rigid supports, and reduce the amplitude of vibration of the
rotor.

The above example shows excitation occurring at running speed. In practice, however,
excitation may occur at speeds other than running speed and might be caused by magnetic
pulls, aerodynamic forces on turbine or compressor blades (Alford, 1965), gear impacts
etc. Lubricant films themselves might originate destructive self-excited vibrations, which
include oil whip at somewhat less than one-half running speed (Hagg, 1946). The self-
excited vibration occurring at exactly one-half (or other exact submultiple) of the running
speed is known as subharmonic resonance (Den Hartog, 1956).

In Figure 4.3 we reduce the rotor-bearing configuration of Figure 4.1 to a simple dynam-
ical system consisting of a mass, springs, and dashpots. In this schematic, half the rotor
mass, M = W/g, is concentrated at OJS , the steady running position of the journal. If
excitation, F, at some frequency, �, is applied to this system, the mass center will respond
by orbiting about OJS , its instantaneous orbital position denoted by OJ. It is implied here
that the dynamic displacement (OJS – OJ) is small relative to bearing clearance. For “large”
dynamic displacements and velocities the behavior of lubricant films is strongly nonlinear,
rendering the representation in Figure 4.3 very approximate.

1A more thorough examination of the problem reveals that the force on an orbiting journal is dependent
on acceleration as well as on position and velocity (see e.g., Szeri, Raimondi, and Giron, 1983). For
simplicity, however, we do not include acceleration, i.e., fluid inertia, effects here, and leave their
analysis to Chapter 5.

2By critical speed we understand any rotor resonance that is excited by rotor unbalance. There can be,
thus, several critical speeds.

147



148 4 / Dynamic Properties of Lubricant Films

Figure 4.1. Dynamical elements of rotor-shaft configuration. (Reprinted with permission from
Raimondi, A. A. and Szeri, A. Z. Journal and thrust bearings. In Booser, E. R., CRC Handbook
of Lubrication. Copyright CRC Press, Boca Raton, Florida. C© 1984.)

Figure 4.2. Effect of oil film on shaft response. (Reprinted with permission from Raimondi,
A. A. and Szeri, A. Z. Journal and thrust bearings. In Booser, E. R., CRC Handbook of
Lubrication. Copyright CRC Press, Boca Raton, Florida. C© 1984.)

Figure 4.3. Representation of oil film as a simple dynamical system of springs and dampers
(cross-film springs Kxy , Kyx and dampers Cxy , Cyx are not shown). (Reprinted with permission
from Raimondi, A. A. and Szeri, A. Z. Journal and thrust bearings. In Booser, E. R., CRC
Handbook of Lubrication. Copyright CRC Press, Boca Raton, Florida. C© 1984.)
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For small dynamic displacements and velocities of the journal the oil film forces may
be linearized about their static equilibrium value, but even in this linear approximation the
lubricant film cannot be simulated by a simple elastic-dissipative system. Cross-coupling
stiffness and damping are needed to describe the relationship between the incremental
oil-film forces and the journal displacements and velocities that cause them:(

dFx

dFy

)
= −

(
Kxx Kxy

Kyx Kyy

)(
x

y

)
−
(
Cxx Cxy

Cyx Cyy

)(
ẋ

ẏ

)
. (4.1)

In this chapter, we will show how to evaluate the linearized force coefficients Kxx , . . . ,
Cyy . These coefficients define the rotor support for critical speed calculations.

For example, if a vibrating system, consisting of a rigid rotor of mass 2M running on
hydrodynamic bearings, is excited by a force F at frequency �, its response is described
by the equations of motion

M ẍ + Cxxẋ + Cxyẏ +Kxxx +Kxyy = F cos�t,
(4.2)

M ÿ + Cyyẏ + Cyxẋ +Kyyy +Kyxx = F sin�t.

By making the right-hand sides of these equations vanish, existence of any self-excited
vibrations can also be investigated (Den Hartog, 1956). When the bearing constitutes an
element in a complex dynamical system, it is usually incorporated in the system’s equations
of motion through its spring and damping coefficients. All eight oil film coefficients are
required in order to make accurate dynamical analyses of rotor-shaft configurations.

4.1 Fixed Pad

Linearized Force Coefficients

Let OB represent the center of the bearing in Figure 4.4. The static equilibrium
position of the rotating shaft is OJS , the eccentricity is ε0, and the attitude angle is φ0. The
components of the lubricant force, resolved along the fixed directions (R, T), are (FR)0 and
(FT)0.3

If there is a small unbalanced force on the journal, the journal will orbit about its static
equilibrium position (e0, φ0). At a particular instant it will occupy position OJ, a generic
point on the orbit. In OJ the eccentricity is e = e0 +
e, the attitude angle is φ = φ0 +
φ,
and the journal possesses instantaneous velocities ė and eφ̇. The instantaneous lubricant
force now has components Fr and Ft, relative to the instantaneous radial and tangential
coordinates r and t, respectively.

The instantaneous force will now be referred to the fixed (R, T) coordinate system,(
FR

FT

)
=
(

cos
φ −sin
φ

sin
φ cos
φ

)(
Fr

Ft

)
. (4.3)

For small departures from equilibrium we have the approximations

cos
φ ≈ 1, sin
φ ≈ 
φ
3Note that here FR > 0 when pointing away from the origin of the (e, φ) coordinate system. This is
contrary to the scheme adopted by some authors (Pinkus and Sternlicht, 1961; Lund, 1964), but follows
accepted mathematical notation (see, e.g., Trumpler, 1966).
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Figure 4.4. Force decomposition in journal bearings (for illustration only; not to scale).

and Eq. (4.3) can be written as

FR = Fr −
φFt,
(4.4)

FT = 
φFr + Ft.

We are interested in evaluating the increase in the force components4 over their equilib-
rium values, due to departure from the equilibrium


FR = FR − (FR)0,
(4.5)


FT = FT − (FT )0.

The force excess can be evaluated from Eq. (4.4) according to


FR = Fr − (FR)0 −
φFt,
(4.6)


FT = 
φFr + Ft − (FT )0 .

The scalar functions Fr and Ft are now expanded in Taylor series about the equilibrium
position. For Fr we have, neglecting higher-order terms,

Fr = (FR)0 +
(
∂FR

∂e

)
0

de +
(
∂FR

∂φ

)
0

dφ +
(
∂FR

∂ė

)
0

dė +
(
∂FR

∂φ̇

)
0

dφ̇, (4.7)

where all derivatives are evaluated in the equilibrium position, as indicated by the zero
subscript. The expansion is similar for Ft.

Substituting the Taylor expansions for Fr and Ft into Eq. (4.6) and, again, neglecting
higher-order terms, we obtain (from here on we drop the zero subscript, remembering that

4The force increment is resolved relative to the fixed (R, T) axes in Eq. (4.5).
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all derivatives are evaluated at equilibrium)

(
dFR

dFT

)
=

⎛
⎜⎜⎝
∂FR

∂ε

∂FR

∂φ
− FT

∂FT

∂ε

∂FT

∂φ
+ FR

⎞
⎟⎟⎠
(
dε

dφ

)
+

⎛
⎜⎜⎝
∂FR

∂ε̇

∂FR

∂φ̇

∂FT

∂ε̇

∂FT

∂φ̇

⎞
⎟⎟⎠
(
dε̇

dφ̇

)
. (4.8)

To calculate the force derivatives required in Eq. (4.8), we have to go to the Reynolds
equation (3.33), which we nondimensionalize according to Eq. (3.34). However, under
dynamic loading conditions it is appropriate to employ another nondimensional pressure p̂
that is related to p̄ of Eq. (3.34) through5

p̂ = p̄(
1 − 2φ̇/ω

) .
Note that at static equilibrium (ε = ε0, φ = φ0, φ̇ = ε̇ = 0) the pressure defined under

dynamic loading, p̂, reduces to the pressure defined under static loading, p̄.
In terms of the dynamic pressure p̂, as it will be referred to here, the nondimensional

Reynolds equation has the form.

∂

∂θ

(
H 3 ∂p̂

∂θ

)
+
(
D

L

)2
∂

∂ z̄

(
H 3 ∂p̂

∂ z̄

)
= −12πε sin θ + 24π

ε̇/ω(
1 − 2

φ̇

ω

) cos θ. (4.9)

As noted from Eq. (4.9), the dynamic pressure p̂ is a function of the variables ε, φ, ε̇/ω
and φ̇/ω. Its dependence on the attitude angle φ enters through the definition of the film
thickness

H = 1 + ε cos θ

= 1 + ε cos[�− (φ + ψ)],

where � = 0 is a fixed position (Figure 3.5).
We solve Eq. (4.9) subject to the Swift-Stieber boundary condition to obtain the force

coefficients. The nondimensional force components are

F̄R = FR/LD

μN (R/C)2
=
(

1 − 2
φ̇

ω

)[
1

2

∫ 1

0

∫ θ2

0
p̂ cos θ dθ dz̄

]
, (4.10a)

F̄T = FT /LD

μN (R/C)2
=
(

1 − 2
φ̇

ω

)[
1

2

∫ 1

0

∫ θ2

0
p̂ sin θ dθ dz̄

]
. (4.10b)

Employing the notation

fR = 1

2

∫ 1

0

∫ θ1

0
p̂ cos θ dθ dz̄,

fT = 1

2

∫ 1

0

∫ θ1

0
p̂ sin θ dθ dz̄,

5Although Eq. (3.33) is linear in ω, ė, and φ̇, superposition of three separate solutions is not permitted,
owing to the nonlinear condition p ≥ 0, and to the fact that the p = 0 contour is, in general, dependent
on all three parameters ω, ė, and, φ̇. However, at least two of the variables, ω and φ̇, enter the equation
in the form (ω −2φ̇). It is this property of Eq. (3.34) that is being exploited here.
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we can write Eq. (4.10) in the symbolic form

F̄R =
(

1 − 2
φ̇

ω

)
fR

[
ε, φ,

ε̇/ω

(1 − 2φ̇/ω)

]
, (4.11a)

F̄T =
(

1 − 2
φ̇

ω

)
fT

[
ε, φ,

ε̇/ω

(1 − 2φ̇/ω)

]
. (4.11b)

The partial derivatives of the force components may now be evaluated:

∂F̄R

∂ε
= (1 − 2φ̇/ω)

∂fR

∂ε
,

∂F̄R

∂φ
= (1 − 2φ̇/ω)

∂fR

∂φ
,

(4.12)
∂F̄R

∂(ε̇/ω)
= (1 − 2φ̇/ω)

∂fR

∂

(
ε̇/ω

1 − 2φ̇/ω

) 1(
1 − 2φ̇/ω

) ,
∂F̄R

∂(φ̇/ω)
= −2fR + (1 − 2φ̇/ω)

∂fR

∂

(
ε̇ω

1 − 2φ̇/ω

) (2ε̇/ω)

(1 − 2φ̇/ω)2
.

When Eq. (4.12) is evaluated at the equilibrium point ε = ε0, φ = φ0, ε̇ = 0, φ̇ = 0, we
obtain6 (Szeri, 1966)

(
dF̄R

dF̄T

)
=

⎛
⎜⎜⎝
∂fR

∂ε

∂fR

ε∂φ
− fT

ε

∂fT

∂ε

∂fT

ε∂φ
+ fR

ε

⎞
⎟⎟⎠
(
dε

εdφ

)
+

⎛
⎜⎜⎝
∂fR

∂ε̇/ω
−2fR
ε

∂fT

∂ε̇/ω
−2fT
ε

⎞
⎟⎟⎠
(
d (ε̇/ω)

εd(φ̇/ω)

)
. (4.13)

The first matrix on the right describes the oil film response to shaft displacement and is
called the (nondimensional) stiffness matrix, k̄. The second matrix describes response to
velocities ε̇/ω and εd(φ̇/ω) and is called the (nondimensional) damping matrix, c̄:

k̄ =

⎛
⎜⎜⎝
∂fR

∂ε

∂fR

ε∂φ
− fT

ε

∂fT

∂ε

∂fT

ε∂φ
+ fR

ε

⎞
⎟⎟⎠ , (4.14a)

c̄ =

⎛
⎜⎜⎝
∂fR

∂ε̇/ω
−2fR
ε

∂fT

∂ε̇/ω
−2fT
ε

⎞
⎟⎟⎠ (4.14b)

(note that we dropped the zero suffix for convenience, remembering that all forces and
force derivatives are to be evaluated under conditions of static equilibrium).

6We note that the rate of change of fR with respect to its argument (ε̇/ω)/(1 − 2φ̇/ω) can be evaluated
at arbitrary value of φ̇, say zero, varying ε̇/ω only.
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The nondimensional matrices k̄ and c̄ are related to their dimensional counterparts k
and c, respectively, through

k̄ = C

LDμN

(
R

C

)2 k, c̄ = Cω

LDμN

(
R

C

)2 c. (4.14c)

The elements k and c have dimensions force/length and force/velocity, respectively. The
nondimensionalization

¯̄k = C

W
k and ¯̄c = Cω

W
c, (4.14d)

where W is the external load on the journal, is sometimes also employed in the literature.
Then ¯̄k = S k̄ and ¯̄c = S c̄, where S is the Sommerfeld number.

Analytical Solutions

Long Bearings
Under dynamic conditions the pressure is given by

p̂ = 12π

⎡
⎢⎣∫ θ

0

dθ

H 2
−
∫ θ2

0

dθ

H 2∫ θ2

0

dθ

H 3

∫ θ

0

dθ

H 3

⎤
⎥⎦

(4.15)

+ 24π

⎡
⎢⎣∫ θ

0

sin θ

H 2
dθ −

∫ θ2

0

sin θ

H 2
dθ

∫ θ2

0

dθ

H 3

∫ θ

0

dθ

H 3

⎤
⎥⎦ ε̇/ω(

1 − 2φ̇/ω
) .

Here θ = θ2 is the position of the film-cavity interface. The integrals can be evaluated
using the Sommerfeld substitution (3.42), in which the boundaries θ = 0 and π , and θ = 0
and 2π translate to ψ = 0 and π and ψ = 0 and 2π , respectively.

For the Sommerfeld boundary condition p̄(0) = p̄(2π ), Eq. (4.15) integrates to

p̂ = 12π

{
ε sin θ (2 + ε cos θ )

(2 + ε2)(1 + ε cos θ )2
+ 1

ε

[
1

(1 + ε cos θ )2 − 1

(1 + ε)2

]
ε̇/ω(

1 − 2φ̇/ω
)
}
.

(4.16)

[Under Gümbel boundary conditions, p(0) = p(π ), p ≥ 0, there is an additional term on the
right-hand side of Eq. (4.16) as shown by Trumpler (1966).]

The force components are calculated from Eq. (4.16) according to Eq. (3.78)

fR = − 12π2

(1 − ε2)3/2

ε̇/ω

(1 − 2φ̇/ω)
,

(4.17)

fT = 12π2ε

(2 + ε2)(1 − ε2)1/2
.
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Table 4.1. Analytical stiffness and damping coefficients

Long bearing Short bearing

Sommerfeld BC. Gümbel BC. Gümbel BC.

k̄RR 0
−24πε(2 + ε4)

(2 + ε2)2(1 − ε2)2
−8πε(1 + ε2)

(1 − ε2)3

(
L

D

)2

k̄RT
−12π 2

(2 + ε2)2(1 − ε2)1/2

−6π 2

(2 + ε2)2(1 − ε2)1/2

−π 2

(1 − ε2)3/2

(
L

D

)2

k̄T R
12π 2(2 − ε2 + 2ε4)

(2 + ε2)2(1 − ε2)3/2

6π 2(2 − ε2 + 2ε4)

(2 + ε2)(1 − ε2)3/2

π 2(1 + 2ε2)

(1 − ε2)5/2

(
L

D

)2

k̄T T 0
−12πε

(2 + ε2)2(1 − ε2)

−4πε

(1 − ε2)2

(
L

D

)2

c̄RR
−12π 2

(1 − ε2)3/2

−12π

(1 − ε2)3/2

[
π

2
− 8

π (2 + ε2)

]
−2π 2(1 + 2ε2)

(1 − ε2)5/2

(
L

D

)2

c̄RT 0
24πε

(2 + ε2)(1 − ε2)

8πε

(1 − ε2)2

(
L

D

)2

c̄T R 0
24πε

(2 + ε2)(1 − ε2)

8πε

(1 − ε2)2

(
L

D

)2

c̄T T
−24π 2

(2 + ε2)(1 − ε2)1/2

−12π 2

(2 + ε2)(1 − ε2)1/2
− 2π 2

(1 − ε2)3/2

(
L

D

)2

S
(2 + ε2)

√
1 − ε2

12π 2ε

(2 + ε2)(1 − ε2)

6πε
√

4ε2 + π 2(1 − ε2)

(1 − ε2)2(D/L)2

πε
√
π 2(1 − ε2) + 16ε2

There is no dependence on θ in full journal bearings so that ∂fR/∂θ = ∂fT/∂θ = 0,
and on substituting Eq. (4.17) into Eq. (4.14) we obtain the k̄ and c̄ matrices, as shown in
Table 4.1.

For the Gümbel boundary conditions, p̄(0) = p̄(π ), the force components are7

fR = − 12πε2

(2 + ε2)(1 − ε2)
− 12π

(1 − ε2)3/2

[
π

2
− 8

π (2 + ε2)

]
ε̇/ω

(1 − 2φ̇/ω)
, (4.18a)

fT = − 6π2ε

(2 + ε2)(1 − ε2)1/2
+ 24πε

(2 + ε2)(1 − ε2)

ε̇/ω

(1 − 2φ̇/ω)
. (4.18b)

7Note that if the pressure is evaluated under the Sommerfeld boundary conditions p(0) = p(2π ) = 0,
and then integrated from θ = 0 to θ = π (i.e., p ≥ 0), the dynamic part of fR in Eq. (4.18a) will be
different (Vance, 1988). Our analysis agrees with that of Hori (1959) and Trumpler (1966).
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Short Bearings
Under the Gümbel condition, p ≥ 0, the pressure distribution is(

D

L

)2

p̄ = 6π
(1 − z̄2)

(1 − ε cos θ)3

[
ε sin θ − 2

ε̇/ω

(1 − 2φ̇/ω)
cos θ

]
(4.19)

and the force components are(
D

L

)2

fR = − 4πε2

(1 − ε2)2
− 2π2(1 + 2ε2)

(1 − ε2)5/2

ε̇/ω

(1 − 2φ̇/ω)
,

(4.20)(
D

L

)2

fT = π2ε

(1 − ε2)3/2
+ 8πε

(1 − ε2)2

ε̇/ω

(1 − 2φ̇/ω)
.

The linearized spring and damping coefficients derived from Eq. (4.20) are shown in
Table 4.1, they are obtained by substituting Eq. (4.20) into Eq. (4.14).

Coordinate Transformations

In place of a single, fixed bearing pad, multiple pivoted-pads are often employed.
The characteristics of pivoted-pad bearings are evaluated by combining the characteristics
of single pads in suitable manner. With this in view, it is expedient to transform the
characteristics of the single pad, i.e., the k̄ and c̄ matrices of Eq. (4.14), to a coordinate
system (ξ , η) that is fixed relative to the pivot and is located in the static equilibrium position
OJS . The ξ axis passes through the pivot, and the (ξ , η) axes are related to the (R, T) axes
by rotation through φ0.

It is easily seen from Figure 4.4 that under the coordinate transformation(
dξ̄

dη̄

)
= Q

(
dε

εdφ

)
, Q =

(
cosφ0 − sinφ0

sinφ0 cosφ0

)
, (4.21)

where the angle φ0 is measured from ξ̄ to ε counterclockwise and ξ̄ = ε/C, η̄ = η/C, the
force components (dF̄R, dF̄T ) are transformed according to(

dF̄ξ

dF̄η

)
= Q

(
dF̄R

dF̄T

)
. (4.22)

Substituting from Eqs. (4.21) and (4.14) into Eq. (4.22), we find that(
dF̄ξ

dF̄η

)
= Qk̄ QT

(
ξ̄

η̄

)
+ Q ¯c QT

(
˙̄ξ
˙̄η

)
. (4.23)

Employing the notation8

K̄ = − Qk̄ QT , C̄ = − Qc̄ QT (4.24)

and by substitution into Eq. (4.23),(
dF̄ξ

dF̄η

)
= −K̄

(
ξ̄

η̄

)
− C̄

( ˙̄ξ

˙̄η

)
. (4.25)

8The transformation in Eq. (4.24) identifies k̄ and c̄ as second-order Cartesian tensors.



156 4 / Dynamic Properties of Lubricant Films

The component of the stiffness and damping matrices in Eq. (4.24) are given by (Lund,
1964; Szeri, 1966)

K̄ξξ = −∂fR
∂ε

cos2 φ − ∂fT

ε∂φ
sin2 φ +

(
∂fT

∂ε
+ ∂fR

ε∂φ

)
sin 2φ

2
− fη

ε
sinφ,

K̄ξη = − ∂fR
ε∂φ

cos2 φ + ∂fT

∂ε
sin2 φ +

(
∂fT

ε∂φ
− ∂fR

∂ε

)
sin 2φ

2
+ fη

ε
cosφ,

(4.26a)

K̄ηξ = −∂fT
∂ε

cos2 φ + ∂fR

ε∂φ
sin2 φ +

(
∂fT

ε∂φ
− ∂fR

∂ε

)
sin 2φ

2
+ fξ

ε
cosφ,

K̄ηη = − ∂fT
ε∂φ

cos2 φ − ∂fR

∂ε
sin2 φ −

(
∂fR

ε∂φ
+ ∂fT

∂ε

)
sin 2φ

2
− fξ

ε
cosφ,

C̄ξξ = − ∂fR

∂ε̇/ω
cos2 φ + ∂fT

∂ε̇/ω

sin 2φ

2
− 2fξ

ε
sinφ,

C̄ξη = − ∂fT

∂ε̇/ω
sin2 φ − ∂fR

∂ε̇/ω

sin 2φ

2
+ 2fξ

ε
cosφ,

(4.26b)

C̄ηξ = − ∂fT

∂ε̇/ω
cos2 φ − ∂fR

∂ε̇/ω

sin 2φ

2
− 2fη

ε
sinφ,

C̄ηη = − ∂fR

∂ε̇/ω
sin2 φ − ∂fT

∂ε̇/ω

sin 2φ

2
+ 2fη

ε
cosφ.

Here we employed the notation(
fξ

fη

)
= Q

(
fR

fT

)
. (4.26c)

and dropped the zero subscript on φ0 to conform with accepted notation.
For a vertical load, fη = 0 and fξ = 1/S; the Sommerfeld number S is defined in Eq. (3.46).

4.2 Stability of a Flexible Rotor

Consider a weightless elastic shaft supporting a disk of mass M at its midpoint.
The shaft, in its turn, is supported by identical, single pad journal bearings at its end points.
In Figure 4.5, the geometric center of a bearing pad is designated by OB. Under the load
W = Mg, the center of the rotating journal occupies its static equilibrium position OJS , while
the mass center moves to OM, due to the deflection of the shaft. We define an orthogonal
Cartesian coordinate system (x, y) with origin in OJS , as shown in Figure 4.3, so OM has
coordinates (x2, y2).

If the rotor-bearing system is undisturbed, the rotor will remain in its static equilibrium
position. If disturbed and the disturbances are small, the rotor will leave its equilibrium
position and proceed along a closed orbit around it. This is what occurs in well designed,
stable, rotor-bearing systems. Under other, unstable, conditions the rotor is unable to find
a limit cycle and its path spirals outward until metal to metal contact between rotor and
bearing occurs. There is great practical importance attached, therefore, to knowing the
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Figure 4.5. Schematic of flexible rotor supported on two identical journal bearings.
[Ojs (0, 0);OJD (x1, y1);OM (x2, y2)].

criteria that demarcates stable from unstable operation. To find this criteria we begin with
the equations of motion:

rotor:

−k(x2 − x1) = Mẍ2

−k(y2 − y1) = Mÿ2 (4.27)

bearing:

2dFx + k(x2 − x1) = 0
(4.28)

2dFy + k(y2 − y1) = 0

Here k is the shaft stiffness and dFx , dFy are the components of the lubricant force
that is exerted on the shaft in excess of the equilibrium force Fx = W , Fy = 0. The force
increments (dFx , dFy) are given by Eq. (4.1).

To solve Eqs. (4.27) and (4.28), we assume that both OJ and OM undergo harmonic
motion of the type(

x1

y1

)
=
[
X1

Y1

]
eνt ,

(
x2

y2

)
=
[
X2

Y2

]
eνt . (4.29)

The eigenvalue ν in Eq. (4.29) is, in general, complex,

ν = R(ν) + iJ (ν),

and we have

eνt = eR(ν)t [cosJ (ν) t + i sinJ (ν) t] .
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The real part of ν is called the damping exponent. If R(ν)< 0, the motion is stable, and it is
unstable ifR(ν)> 0. The neutral state of stability (threshold of stability) is characterized by
R(ν) = 0. The imaginary part of ν is the damped natural frequency (the orbiting frequency).

Substituting Eq. (4.29) into Eqs. (4.27) and (4.28) and taking into account Eq. (4.1), we
obtain⎡
⎢⎢⎣

kMν2

Mν2 + k + 2Kxx + 2νCxx 2Kxy + 2νCxy

2Kyx + 2νCyx
kMν2

Mν2 + k + 2Kyy + 2νCyy

⎤
⎥⎥⎦
[
X1

Y1

]
=
[

0

0

]
. (4.30)

We nondimensionalize Eq. (4.30) according to

{Kij , ωCij , k} = LDμN (R/C)2

C
{K̄ij , C̄ij , k̄},

{X1, Y1} = C {X̄1, Ȳ1
}
, ν = ων̄, ω = ωNω̄.

(4.31)

Here ωN = √
k/M is the natural frequency of the rotor and the overbar signifies, as before,

nondimensional quantities.
Employing the rotation

α = k̄ ν̄ω̄2

ν̄2ω̄2 + 1
(a real number) , (4.32)

we obtain the nondimensional form of Eq. (4.30)[
α + 2K̄xx + 2ν̄C̄xx 2K̄xy + 2ν̄C̄xy

2K̄yx + 2ν̄C̄yx α + 2K̄yy + 2ν̄C̄yy

][
X̄1

Ȳ1

]
=
[

0

0

]
. (4.33)

Equation (4.33) possesses a nontrivial solution if and only if the system determinant vani-
shes. By expanding the determinant and equating it to zero, we would obtain a fourth order
polynomial in ν̄. Solving this so-called frequency (characteristic) equation would yield ν̄.

Instead of solving directly for ν̄, however, we will seek conditions for marginal stability,
a state that is characterized by the vanishing of the real part of ν̄. To this end, we separate
the determinant in Eq. (4.33) into its real and imaginary parts, which are then individually
equated to zero.

The real part of the determinant of Eq. (4.33) is∣∣∣∣∣
α + 2K̄xx 2K̄xy

2K̄yx α + 2K̄yy

∣∣∣∣∣+ ν̄2

∣∣∣∣∣
2C̄xx 2C̄yx

2C̄xy 2C̄yy

∣∣∣∣∣ = 0 (4.34)

and its imaginary part is∣∣∣∣∣
2C̄xx 2K̄xy

2C̄yx α + 2K̄yy

∣∣∣∣∣ ν̄ +
∣∣∣∣∣
α + 2K̄xx 2C̄xy

2K̄yx 2C̄yy

∣∣∣∣∣ ν̄ = 0. (4.35)

Since ν̄ �= 0, we can divide Eq. (4.35) by ν̄, and on expanding the determinants obtain

α = 2(K̄xyC̄yx + K̄yxC̄xy − k̄yyC̄xx − K̄xxC̄yy)
(C̄xx + C̄yy) . (4.36)



4.3 / Pivoted-Pad Journal Bearings 159

Using the definition of α, we find the instability threshold value of the relative frequency
as

ω̄2
c = α

ν̄2(k̄ − α).
(4.37)

in terms of α, k̄, and the yet undetermined whirl ratio ν̄.
If ω̄ > ω̄c, the system is unstable. At ω̄c = 1, instability sets in at the system natural

frequency, ωN = √
k/M .

To render Eq. (4.37) useful, we need to determine the whirl ratio ν̄ = ν/ω; this can be
accomplished by expanding Eq. (4.34)

ν̄2 = α2 + 2(K̄xx + K̄yy)α + 4(K̄xxK̄yy − K̄xyK̄yx)
4(C̄xxC̄yy − C̄yxC̄xy) . (4.38)

In the state of neutral stability ν̄ is purely imaginary:

ν̄ = iJ (ν̄) (4.39)

and
νwhirl

ω
=
√

−ν̄2, (4.40)

where ν̄2 is given by Eq. (4.38).
Note that both ω̄c and ν̄ are functions of the (dimensionless) shaft stiffness, k̄, and

the elements of the (dimensionless) bearing stiffness and damping matrices, K̄ and C̄; the
latter two being evaluated at, and depending on, the static equilibrium position of the journal
(ε0, φ0). Thus, for a given system, a stability chart can be prepared as a sole function of the
static position of the journal, or, alternatively, as a sole function of the Sommerfeld number.

The stability characteristics of a flexible rotor carried on full journal bearings that are
supported on a rigid foundation can be estimated from Figure 4.6 (Raimondi and Szeri,
1984).

In Figure 4.6 we plotted the stability parameter

M̄ = C

W
Mω2 (4.41)

against the short-bearing Sommerfeld number.

4.3 Pivoted-Pad Journal Bearings

Tilting-pad journal bearings consist of a number of individually pivoted pads or
shoes (Figure 4.7). Pivoting makes relatively high loading possible where shaft deflection
or misalignment is a factor. The most important features of tilting-pad journal bearings
are (1) small cross-coupling coefficients resulting in inherent stability, (2) availability of
preloading to achieve relatively high stiffness (important with vertical rotors), and (3) oper-
ation with clearances smaller than considered desirable for fixed-pad journal bearings.

Normal practice is to construct all pads alike and space them uniformly around the
circumference. When the number of pads is large, there is little difference in bearing
performance between two alternatives: load line passing through a pivot or between pivots.
When the number of pads is small, however, the load-between-pads orientation is preferred;
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Figure 4.6. Stability of single mass rotor on full journal bearings, mounted on a rigid support.
(Reprinted with permission from Raimondi, A. A. and Szeri, A. Z. Journal and thrust bearings.
In Booser, E. R., CRC Handbook of Lubrication. Copyright CRC Press, Boca Raton, Florida.
C© 1984.)

in this case the load capacity is greater, the temperature rise is lower as the load is distributed
more uniformly, and the lateral stiffness and damping are greater.

Load capacity is not unduly sensitive to pivot location when using oil lubricants. In these
cases, the pivot is usually positioned at pad center to preserve independence from direction
of journal rotation. When using low-viscosity fluids (water, liquid metals, and particularly
gases), however, load capacity is sensitive to pivot location, and the pivot must be offset
toward the trailing edge (Boyd and Raimondi, 1962).

Figure 4.8 illustrates a pad of angular extent β, which is machined to radius R + C
(position 1). In the absence of tilting, the film thickness is uniform (equal to C) and no
hydrodynamic force can be developed. However, if the pad is now moved to position 2, by

Figure 4.7. Pivoted-pad schematics. (Reprinted with permission from Ralmondi, A. A. and
Szeri, A. Z. Journal and thrust bearings. In Booser, E. R., CRC Handbook of Lubrication.
Copyright CRC Press, Boca Raton, Florida. C© 1984.)
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Figure 4.8. Preloading of pad. (Reprinted with permission from Raimondi, A. A. and Szeri,
A. Z. Journal and thrust bearings. In Booser, E. R., CRC Handbook of Lubrication. Copyright
CRC Press, Boca Raton, Florida. C© 1984.)

displacing the pivot radially inward a distance (C − C′), there results a nonuniform film
thickness and, consequently, a hydrodynamic force that preloads the journal. Bearings of
vertical machines operate almost concentric with their journal. To overcome the low radial
stiffness and consequent spragging, vertical machines are often equipped with preloaded
guide bearings.

Preload is characterized by the preload coefficient m = (C – C ′)/C, where 0 ≤ m ≤ 1.
Each pad is preloaded usually the same amount in vertical machines, while in horizontal
machines often the top pads only are preloaded to prevent spragging.

A pivoted pad will track the orbiting journal by rocking about its pivot. The influence of
pad inertia on the dynamic coefficients of the pad is negligible except when approaching
pad resonance. At pad resonance, the journal and pad motions are 90◦ out of phase. The
onset of pad resonance can be determined from the value of the critical mass parameter
and requires calculation of the polar moment of inertia, Ip, of the pad.

Referring to Figure 4.7, we have

Ip = 2r2
pMp

{
1 + f1 −

[
(sinα1 + sinα2)

β
f2

]}
, (4.42)

where

f1 =
[(
t1

rp

)
+ 1

2

(
t1

rp

)2

+ 1

2

(
t

rp

)
+ 1

4

(
t

rp

)2
]
,

f2 =
[

1 +
(
t1

rp

)][
1 +

(
t

rp

)
+ 1

2

(
t

rp

)2
]/[

t + 1

2

(
t

rp

)]
,

and Mp is the pad mass. Design data, such as shown in Figures 4.10 to 4.14, are often
calculated on the (admittedly unrealistic) assumption that the pivot point is located on the
pad surface; for this case t1/rp = t/rp = 0 in Eq. (4.42).

The first researchers to compute the linearized spring and damping coefficients of a full
journal bearing were Lund and Sternlicht (1962). Corresponding calculations for a partial
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Figure 4.9. Coordinate systems for the pivoted-pad. (Reprinted with permission from Lund,
J. W. Spring and damping coefficients for the tilting-pad journal bearing. ASLE Trans., 7, 342,
1964.)

bearing were made by Szeri (1966). Analysis of tilting pad bearings is more complicated.
Lund (1964) presented a pad assembly method in which he assumed harmonic motion for
both journal and pad. Shapiro and Colsher (1977) and later Allaire, Parsell, and Barrett
(1981) published a pad perturbation method that calculates a complete coefficient matrix
for the tilting pad bearing. In this latter scheme, the coefficient matrix is independent of
pad motion; frequency dependence and inertial dependence enter the analysis of the rotor-
bearing system only when a specific pad motion is assumed. In the sequel, we give details of
both the pad assembly method of Lund (1964), and the pad perturbation method of Shapiro
and Colsher (Allaire, Parsell, and Barrett, 1981).

Pad Assembly Method

Coefficient for Single Tilting Pad
In Figure 4.9, the symbol OB marks the position of the bearing center and OJ the instan-
taneous position of the shaft center. The center of curvature of the pad is at Ono in the
absence of load and at On when fully loaded and tilted. The bearing load vector, WB, is
in the vertical, and the pivot point, P, is located at an angle, ψ , relative to the load line.
With respect to OB, the eccentricity of the journal center, OJ, is e0 = cε0 at the attitude
angle φ0. The eccentricity of the journal is e = cε relative to the instantaneous pad center,
and the attitude angle, φ, is measured from the load line for the pad, which, by necessity,
connects OJ and P. Representing the radius of the journal by R, the radius of the pad is
OnP = R + C, while the pivot circle, centered at OB, has radius OBP = R + C ′. From
geometric consideration, we have

ε cosφ = 1 − C ′

C
− ε0 cos (ψ − φ0)

(4.43)= m− ε0 cos (ψ − φ0) ,

where m is the preload coefficient defined earlier.
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If the position of the journal, OJ, relative to the bearing, OB, is known, i.e., if the
couple (ε0, φ0) is specified, Eq. (4.43) and the requirement that the load on the pad, W,
passes through the pivot, P, are sufficient to determine the couple (ε, φ) for each pad.
The components of the required lubricant force are obtained from the force equilibrium in
Eq. (3.40b). Knowing (ε, φ) enables calculation of individual pad performance, which can
then be summed (vectorially) to yield performance characteristics for the bearing.

Unfortunately (ε0, φ0) is not known a priori, and the best the designer can do is assume
ε0, and use the condition that WB is purely vertical to calculate the corresponding ε0.
This procedure is, at least, tedious. If, however, the pivots are arranged symmetrically with
respect to the load line, the pads are centrally pivoted and are identical, we have φ0 ≡ 0,
and the journal moves along the load vector WB .

In the following discussion of the pad assembly method, we assume that all conditions
for φ0 ≡ 0 are met.

Referring to Figure 4.9, we note that under dynamic load the pad center oscillates about
On. Denoting the amplitude of this oscillation of the pad center by ηp and representing the
pad moment of inertia by Ip, Eq. (4.42), we can write the equation of motion of the pad as

Ip
η̈p

Rp
= −RpdFη. (4.44)

Setting Mp = Ip/Rp
2, Eq. (4.44) becomes

Mpη̈p = Kηξξ + Cηξ ξ̇ +Kηη(ηp − η) + Cηη(η̇p − η̇). (4.45)

We can relate pad motion, ηp, to the motion of the journal, η, by assuming that both
journal and pad execute synchronous motion according to

(ξ, η) = (ξ̂ , η̂)eiωt , ηp = η̂peiωt . (4.46)

Equation (4.46) is for the common case of unbalance excitation, when, necessarily, excita-
tion occurs at the shaft running speed, ω.

Unlike fixed arc bearings, the spring and damping coefficients of pivoted-pad bearings
are dependent upon the frequency, �, of the excitation force. For excitation at frequency
� �= ω, we should use

(ξ̂ , η̂)ei�t , η̂pe
i�t .

in Eq. (4.46). Bearing characteristics for non-synchronous excitation�/ω �= 1 are presented
by Raimondi and Szeri (1984). Here, for simplicity, we only treat synchronous excitation
�/ω = 1 and use Eq. (4.46).

Substituting Eq. (4.46) into Eq. (4.45) yields

η̂ − η̂P = −[(Kηξ + iωCηξ )ξ +Mpω
2η](p − iq), (4.47)

where

(p, q) ≡ (Kηη −Mpω
2, ωCηη)/

[(
K2
ηη −Mpω

2
)2 + (ωCηη)

2
]
.

Equation (4.47) can now be used to eliminate ηp from(
dFξ

dFη

)
= −K

(
ξ

η − ηp

)
− C

(
ξ̇

η̇ − η̇p

)
, (4.48)
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which is the dimensional counterpart of Eq. (4.25), written for a pivoting pad. Thus,
replacing (η − ηp) in Eq. (4.48) from Eq. (4.47), we have

dFξ = −(K ′
ξξ + iωC ′

ξξ

)
ξ̂ − (K ′

ξη + iωC ′
ξη

)
η̂,

(4.49a)
dFη = −(K ′

ηξ + iωC ′
ηξ

)
ξ̂ − (K ′

ηη + iωC ′
ηη

)
η̂.

where K ′
ξξ , C

′
ξξ , etc. are the spring and damping coefficients for the tilting pad given by

(Lund, 1964):

K ′
ξξ = Kξξ − (pKξη + qωCξη)Kηξ − (qKξη − pωCξη)ωCηξ ,
ωC ′

ξξ = ωCξξ − (pKξη + qωCξη)ωCηξ + (qKξη − pωCξη)Kηξ ,
K ′
ξη = −Mpω

2(pKξη + qωCξη),
ωC ′

ξη = Mpω
2(qKξη − pωCξη),

K ′
ηξ = −Mpω

2(pKηξ + qωCηξ ), (4.49b)

ωC ′
ηξ = Mpω

2(qKηξ − pωCηξ ),
K ′
ηη = −Mpω

2(qKηη + qωCηη) = −Mpω
2(1 + pMpω

2),

ωC ′
ηη = Mpω

2(qKηη − pωCηη) = (Mpω
2)2q.

If the pad has no inertia, then Mp = 0 and only K ′
ξξ and C ′

ξξ are nonzero. This is on
account of the pad freely tilting about the pivot.

The transformation from fixed-pad data to dynamic-pad data may be looked upon as
allowing the pad to pitch so that the load will pass through the pivot.

Bearing Coefficients
In the previous section we obtained the spring and damping coefficients for the nth tilting
pad relative to its own (local) coordinate system (ξ , η). It will be to our advantage during
assembly if the coefficients for each of the pads are referred to a global coordinate system,
(x, y) in Figure 4.9, of the bearing. The coordinate transformation from a local coordinate
system (ξ , η) to the global system (x, y) is(

x

y

)
= Q

(
ξ

η

)
, Q =

(
cos(π − ψn) sin(π − ψn)

− sin(π − ψn) cos(π − ψn)
)
, (4.50a)

where ψn is the pivot angle of the nth pad (Figure 4.9), measured counterclockwise from
the load line.

Under the coordinate transformation Eq. (4.50a), the components of the incremental
force dF transform according to the formula(

dFx

dFy

)
= Q

(
dFξ

dFη

)
. (4.50b)

Combining Eqs. (4.49a), (4.50a), and (4.50b), we obtain(
dFx

dFy

)
= − Q K ′ QT

(
x

y

)
− QC ′ QT

(
ẋ

ẏ

)
. (4.51)

Writing

K (n) = Q K ′ QT , C (n) = QC ′ QT (4.52)
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for the stiffness and damping matrix of the nth pad, referred to the (x, y) global coordinate
system, we have(

dF (n)
x

dF (n)
y

)
= −K (n)

(
x

y

)
− C (n)

(
ẋ

ẏ

)
. (4.53a)

The matrices in Eq. (4.53a) have components calculated by substituting Eq. (4.49) into
Eq. (4.52):

K (n)
xx = K ′

ξξ cos2 ψn +K ′
ηη sin2 ψn − (K ′

ξη +K ′
ηξ ) cosψn sinψn,

ωC(n)
xx = ωC ′

ξξ cos2 ψn + ωC ′
ηη sin2 ψn − (ωC ′

ξη + ωC ′
ηξ ) cosψn sinψn,

K (n)
xy = K ′

ξη cos2 ψn −K ′
ηξ sin2 ψn + (K ′

ξξ −K ′
ηη) cosψn sinψn,

ωC(n)
xy = ωC ′

ξη cos2 ψn − ωC ′
ηξ sin2 ψn + (ωC ′

ξξ − ωC ′
ηη) cosψn sinψn, (4.53b)

K (n)
yx = K ′

ηξ cos2 ψn −K ′
ξη sin2 ψn + (K ′

ξξ −K ′
ηη) cosψn sinψn,

ωC(n)
yx = ωC ′

ηξ cos2 ψn − ωC ′
ξη sin2 ψn + (ωC ′

ξξ − ωC ′
ηη) cosψn sinψn,

K (n)
yy = K ′

ηη cos2 ψn +K ′
ξξ sin2 ψn + (K ′

ξη +K ′
ηξ ) cosψn sinψn,

ωC(n)
yy = ωC ′

ηη cos2 ψn + ωC ′
ξξ sin2 ψn + (ωC ′

ξη + ωC ′
ηξ ) cosψn sinψn,

A summation over N pads that make up the bearing yields the bearing spring and damping
coefficients:

{K, C} =
Npad∑
n=1

{
K (n),C (n)}. (4.54)

If the pads are assumed to have no inertia – and this assumption is good for conditions
far from pad resonance – we may write

K (n) = K ′
ξξY (n), C (n) = C ′

ξξY (n), (4.55)

where

Y (n) =

⎛
⎜⎝ cos2 ψn

1

2
sin2 ψn

1

2
sin2 ψn sin2 ψn

⎞
⎟⎠

for the nth pad.
At zero preload, symmetry about the x axis, and load-between-pads arrangement,

Eq. (4.43) gives

ε0 = ε cosφ

− cos

[
(N − 1)π

N

]

where we put φ = (N −1)π/N for the lowermost pad. The maximum value of ε0 is obtained
with ε = 1 and φ = 0

max(ε0) = 1

−cos

[
(N − 1)π

N

] .
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Figure 4.10. Minimum film thickness variable versus (a) bearing characteristic number and
(b) normalized bearing eccentricity ratio: five 60◦ tilting pads, central loading, no preload,
inertialess pad, L/D = 0.5. (Reprinted with permission from Raimondi, A. A. and Szeri, A. Z.
Journal and thrust bearings. In Booser, E. R., CRC Handbook of Lubrication. Copyright CRC
Press, Boca Raton, Florida. C© 1984.)

The normalized bearing eccentricity 0 ≤ ε′0 ≤ 1 is defined as

ε′0 = ε0

max (ε0)
.

For the five-padbearing of Figures 4.10 to 4.13, max(ε0) = 1.2361.
Figures 4.10 to 4.13 plot performance characteristics for a five-pad pivoted-pad bearing

of L/D = 0.5. The pads are identical and are arranged symmetrically with respect to the load
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Figure 4.11. Bearing vertical stiffness: five 60◦ tilting pads, central loading, no pre-load,
inertialess pad, L/D = 0.5. (Reprinted with permission from Raimondi, A. A. and Szeri, A. Z.
Journal and thrust bearings. In Booser, E. R., CRC Handbook of Lubrication. Copyright CRC
Press, Boca Raton, Florida. C© 1984.)

line, hence the journal moves along the vertical, φ0 = 0. Figure 4.10 shows the variation of
the minimum film thickness parameter Hmin against (a) bearing characteristic number, and
(b) against normalized bearing eccentricity ratio.

Figures 4.11 and 4.12 plot vertical and horizontal bearing stiffness, respectively, and
Figure 4.13 contains information on bearing damping.

If the nth pad and the (N − n + 1)th pad are identical and are symmetrically placed
relative to the load line, then

ψ(N−n+1) = (2π − ψn),
1

2
sinψ(N−n+1) = −1

2
sinψn,

hence, for symmetry about the load line, the cross-coupling terms in Eq. (4.53) vanish.
To investigate the motion of a pad, we write Eq. (4.47) in the form

ηp = (Kηξ + iωCηξ )ξ + (Kηη + iωCηη)η
Kηη −Mpω2 + iωCηη . (4.56)
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Figure 4.12. Bearing horizontal stiffness: five 60◦ tilting pads, central loading, no preload,
inertialess pad, L/D = 0.5. (Reprinted with permission from Raimondi, A. A. and Szeri, A. Z.
Journal and thrust bearings. In Booser, E. R., CRC Handbook of Lubrication. Copyright CRC
Press, Boca Raton, Florida. C© 1984.)

Let ηp = η0 for zero pad inertia, Mp = 0

η0 = η + Kηξ + iωCηξ
Kηη + iωCηη ξ. (4.57)

The ratio ηp/η0 is a complex quantity that can be written as(
ηp

η0

)
=
∣∣∣∣ηpη0

∣∣∣∣ exp{i[arg(η0) − arg(ηp)]},

where

arg(η0) − arg(ηp) = tan−1

{
ωCηηMpω

2

Kηη(Kηη −Mpω2) + (ωCηη)2

}
. (4.58)

The phase angle [arg(η0) − arg(ηp)] reaches π/2 when the denominator in Eq. (4.58)
vanishes. At this juncture, the pad is said to possess critical mass, MCRIT

ω2MCRIT = K2
ηη + (ωCηη)2

Kηη
. (4.59a)
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Figure 4.13. Bearing damping: five 60◦ tilting pads, central loading preload, inertialess pad,
L/D = 0.5. (Reprinted with permission from Raimondi, A. A. Szeri, A. Z. Journal and thrust
bearings. In Booser, E. R., CRC Handbook of Lubrication. Copyright CRC Press, Boca Raton,
Florida. C© 1984.)

If the pad mass satisfies Eq. (4.59a), the conditions for pad resonance are satisfied. In
dimensionless form, Eq. (4.59a) is often expressed as

CWBMCRIT[
μDL

(
R

C

)2
]2 = 1

4πS2

(
CKηη

WB

)2

+
(
CωCηη

WB

)2

(
CKηη

WB

) , (4.59b)

where WB is the total load on the bearing and S is the bearing Sommerfeld number. The
critical pad mass for the five-pad bearing is plotted in Figure 4.14.

The computational algorithm of tilting-pad bearings is as follows (Nicholas et al., 1979):

1. The fixed-pad stiffness and damping coefficients K̄ and C̄ are obtained by dis-
placement and velocity perturbation about the equilibrium positions, Eq. (4.26).

2. The pad dynamic coefficients K̄ ′ and C̄ ′ are calculated using Eq. (4.49). These
coefficients, along with the fixed-pad Sommerfeld number, S, are labeled with the
dimensionless pivot film thickness, Hp, and stored.
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Figure 4.14. Pad critical mass: five 60◦ tilting pads, central loading, no preload, inertialess pad,
L/D = 0.5. (Reprinted with permission from Raimondi, A. A. and Szeri, A. Z. Journal and
thrust bearings. In Booser, E. R., CRC Handbook of Lubrication. Copyright CRC Press, Boca
Raton, Florida. C© 1984.)

3. A bearing eccentricity ratio ε0 (as the shaft moves along the vertical, for centrally
pivoted, symmetrically arranged pads, φ0 ≡ 0) is selected, and the pivot film
thickness for the nth pad, Hpn, n = 1, 2, 3, . . . , N, is calculated.

4. K̄ ′, C̄ ′ at given Hpi are obtained by interpolation and transferred to the global
(x, y) coordinate system, Eq. (4.52), to find K̄ (n)

, C̄ (n)
, n = 1, 2, 3, . . . , N .

5. Use of Eq. (4.54) leads to the bearing dynamic coefficients K, C
6. The dimensionless load on each pad is given by

F̄ (n)
x = −cosψn

Sn
,

(4.60)

F̄ (n)
y = − sinψn

Sn
,

and for the complete bearing

Fx =
N∑
n=1

F (n)
x = 1

S
,

(4.61)
Fy = 0
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Pad Perturbetion Method

Compared to fixed-pad bearings, analysis of tilting-pad bearings is complicated
by the fact that in addition to the degrees of freedom of the shaft, one has also to consider
the degrees of freedom associated with the pivoting of the pads. This was not done in
the previous section; Lund’s method does not provide the dynamical coefficients associ-
ated with the degrees of freedom of the pads. Instead, Lund assumes synchronous pad
motion right from the start, Eq. (4.46), thereby reducing pad data before interpolation and
assembly.

The pad perturbation method, on the other hand, calculates and stores the stiffness
and damping coefficients associated with all degrees of freedom of a single pad over the
whole range of eccentricities (pivot film thicknesses). The performance characteristics of
the tilting pad bearing are then calculated in the following steps:

(1) Fix the position of the journal (φ0 = 0 for symmetric arrangement of identical,
centrally pivoted pads).

(2) From geometry, calculate the pivot film thickness for each pad and interpolate from
previously stored pad data, to obtain pad characteristics at operating conditions.

(3) Obtain bearing characteristics by proper summation of individual pad character-
istics.

Excitation frequency and pad inertia enter the analysis of the rotor-bearing system only
when specific pad motion is assumed. Shapiro and Colsher (1977) describe this reduction
of the results of the pad assembly method to “standard” 4 × 4 stiffness and damping
matrices.

The rotor of the rotor-bearing system is assumed rigid and the bearings comprise N
pads, each pad assuming its own orientation δi, i = 1, . . . , N . The equations of motion
for rotor (2 degrees of freedom) and pads (1 degree of freedom each) are (Allaire et al.,
1981)

Rotor:

Mẍ +Kxxx +Kxyy + Cxxẋ + Cxyẏ +
N∑
i=1

(Kxδiδi + Cxδi δ̇i) = 0 (4.62a)

Mÿ +Kyxx +Kyyy + Cyxẋ + Cyyẏ +
N∑
i=1

(Kyδi δi + Cyδi δ̇i) = 0 (4.62b)

ith pad, i = 1, . . . , N

Ipδ̈i +Kδδi δi + Cδδi δ̇i +Kδxi xi +Kδyi yi + Cδxi ẋi + Cδyi ẏi = 0 (4.62c)

The coefficients in Eq. (4.62) have the form

Kxx = −
Fx

x

,Cyy = −
Fy

ẏ

,Kxδi = −
Fx

δi

, Cyδ̇i = −
Fy

δ̇i

,

Kδδi = −
Mδ


δi
, Cδδi = −
Mδ


δ̇i
,Kδxi = −
Mδ


xi
, Cδyi = −
Mδ


ẏi
.
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The first set is obtained by perturbing the equilibrium state of the rotor while constraining
the pads. The second set is obtained by constraining the rotor in its equilibrium state and
perturbing the pitch angle of the ith pad. The equations of motion, Eqs. (4.62), contain a
total of 8 + 10N coefficients.

The full stiffness matrix of a five-pad bearing, for example, is (Shapiro and Colsher,
1977; Allaire et al., 1981)


x 
y 
δ1 
δ2 
δ3 
δ4 
δ5

−
Fx Kxx Kxy Kxδ1 Kxδ2 Kxδ3 Kxδ4 Kxδ5

−
Fy Kyx Kyy Kyδ1 Kyδ2 Kyδ3 Kyδ4 Kyδ5

−
M1 Kδ1x Kδ1y Kδδ1 0 0 0 0

−
M2 Kδ2x Kδ2y 0 Kδδ2 0 0 0

−
M3 Kδ3x Kδ3y 0 0 Kδδ3 0 0

−
M4 Kδ4x Kδ4y 0 0 0 Kδδ4 0

−
M5 Kδ5x Kδ5y 0 0 0 0 Kδδ5

(4.63)

Similarly for the damping matrix. Note that these matrices are (N + 2) × (N + 2), where N
is the number of pads. Further details of the pad perturbation method of calculating tilting-
pad bearing performance can be found in Shapiro and Colsher (1977) and Allaire et al.
(1981). For an application of the pad perturbation method, see Section 4.4 on pivoted-pad
thrust bearings.

Thermal effects on the stability characteristics of bearings can be considerable. Their
importance can be gauged from Table 4.2, which is taken from Suganami and Szeri
(1979).

The domain of stable bearing operations changes considerably due to the viscosity
nonuniformity that is caused by uneven viscous dissipation in the film. Figure 4.15 illustrates
the size, i.e., the Peclet number, effect on stability boundaries.

Table 4.2. Stiffness and damping coefficients and threshold speed of stability for single
mass rigid rotor

Regime Model Kxx Kxy Kyx Kyy Cxx Cxy Cyx Cyy M̄

Laminar Isothermal (ISO) 0.944 −0.076 4.31 5.83 0.598 1.25 1.25 9.25 1.79
Adiabatic (ADI) 0.832 0.0038 3.85 5.89 0.492 0.940 0.934 7.95 3.08
Thermohydrodynamic
(THD), D = 20 cm

1.02 0.0415 4.69 6.14 0.565 1.13 1.12 8.74 2.31

Turbulent Isothermal (ISO) 0.878 −0.0192 3.94 5.90 0.534 1.04 1.04 8.16 2.77
Thermohydrodynamic
(THD), D = 60 cm

0.792 0.052 3.6 5.94 0.455 0.768 0.769 7.01 14.5
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Figure 4.15. Stability of single mass rigid rotor (N = 3600 rpm, C/R = 0.002, t = 50◦C).
(Reprinted with permission from Suganami, T. and Szeri, A. Z. A parametric study of journal
bearing performance: the 80 degree partial are bearing. ASME Journal of Lubrication
Technology, 101, 486–491, 1979.)

The effects of inertia and turbulence on dynamic bearing characteristics and on the
stability of rotor-bearing system have recently been discussed by Capone, Russo, and
Russo (1991).

4.4 Pivoted-Pad Thrust Bearing

The bearing is constructed from N identical, equally spaced, sector–shaped pivoted
pads. The pad angle is β, the pad radii are R1, and R2 > R1, and the pad thickness is
d. The pivot point is located at a distance (d – �) from the pad working surface (see
Figure 4.16). Because of this assumed uniformity of geometry, it is sufficient for us to
consider performance of a single pad. Bearing performance will be obtained by suitable
multiplication of single-pad performance.

The pad, pivoted in one point about which it is free to rotate (Figure 3.15), has three
rotational degrees of freedom. During the motion of the runner about its equilibrium
position, the pad will pivot in a manner that is determined by the dynamics of the whole
system, viz., the runner, the oil film, and the pad.

We follow the work of Allaire, Parsell, and Barrett (1981), and evaluate 4 × 4 spring
and damping matrices for each pad. The four degrees of freedom are the rectilinear motion
of the runner and the rotational modes of the pad. The motion of the runner and the motion
of the pad are connected by means of Euler’s rotational equations.

The inertial coordinate system (X, Y, Z) has its origin on the runner surface when the
latter is in its undisturbed static equilibrium position, and its Z axis is normal to the runner
surface. When occupying its unperturbed static position, the pad is inclined to the runner
at angles ψX, ψY.
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Figure 4.16. Pad schematics. (Reprinted with permission from Jeng, M. C. and Szeri, A. Z.
A thermohydrodynamic solution of pivoted thrust pads: Part 3 – linearized force coefficients.
ASME Journal of Tribology, 108, 214–218, 1986.)

Let (x1, x2, x3) be an inertial orthogonal Cartesian coordinate system, whose origin is
located in the pivot point, at a distance (d – �) from pad surface. The (x1, x2) plane is parallel
to the pad surface in the unperturbed position and x3 is normal to it.

We denote by (ξ 1, ξ 2, ξ 3,) the body axes, with origin in the pivot point, that rotate with
the pad. When the pad is occupying its static equilibrium position the ξ i coordinate system
coincides with the xi system. The instantaneous (small) rotation of the ξ i coordinate axes
relative to the xi coordinate axes during motion of the pad is measured by the rotation vector
α = (α1, α2, α3).

Let F0 and F represent the lubricant force in static equilibrium and during a small
departure of the runner from the condition of static equilibrium, respectively. Then for
small excursion of the runner Z(t) about Z = 0, Ż = 0 we may write

dF = F − F0 =
[
∂F

∂Z

]
Z=Ż=0

Z +
[
∂F

∂Ż

]
Z=Ż=0

Ż. (4.64a)

The linearized force coefficients Eq. (4.64a) are the system stiffness

K =
[
∂F

∂Z

]
Z=Ż=0

(4.64b)

and the system damping

C =
[
∂F

∂Ż

]
Z=Ż=0

(4.64c)
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Had we fixed the bearing in any particular position, the linearized force coefficients K
and C would be easy to calculate

− ∂F
∂Z

= lim

hc→0

F (hc +
hc, 0) − F (hc, 0)


hc
, 
hc = −Z,

(4.65)

−∂F
∂Ż

= lim

ḣc→0

F (hc,
ḣc) − F (hc, 0)


ḣc
, 
ḣc = −Ż,

where hc is the film thickness in the geometric center of the pad. If, however, the pad is
free to pivot, the excursion Z(t) of the runner introduces six unknowns to the problem:
αn(t) and α̇n(t), n = 1, 2, 3. Or, to state this differently, tilt of the pad not only causes a
righting moment on the pad but introduces forces on the runner as well. The pad has three
degrees of freedom, and thus the spring and damping matrices of the system are each 4 × 4,
the four degrees of freedom being the Z motion of the runner and the rotational modes of
the pad.

For a pivoting pad, we are thus forced to employ the more complicated Taylor expansion
(see Shapiro and Colsher, 1977)

dF = ∂F

∂Z
Z + ∂ F

∂Ż
Ż +

∑[
∂F

∂αn
αn + ∂F

∂α̇n
α̇n

]
(4.66)

valid for Z, Ż, αn and α̇n small.
In Eq. (4.66), we treat the instantaneous force F as a function of eight kinematic variables9

F = F (Z, Ż, αn, α̇n), F0 = F (0, 0, 0, 0), n = 1, 2, 3 (4.67)

and, accordingly, the partial derivatives are evaluated keeping all but one variable constant,
e.g.,

∂F

∂Z
= lim
Z→0

F (Z, 0, 0, 0) − F0

Z
,

(4.68)
∂F

∂α2
= lim
α2→0

F (0, 0, α2, 0) − F0

α2
.

Employing the notation

∂F

∂Z
= KZ,Z, ∂F

∂Ż
= CZ,Z,

(4.69)
∂F

∂αj
= KZ,j , ∂F

∂α̇j
= CZ,j , j = 1, 2, 3,

Equation (4.66) assumes the form

dF = KZ,ZZ + CZ,ŻŻ +
3∑
n=1

[KZ,nαn + CZ,nα̇n]. (4.70)

The stiffness and damping coefficients in Eq. (4.70) are obtained via the pad perturbation
method (Shapiro and Colsher, 1977).

9We omit hc, θ x, and θ y, which specify the equilibrium position of the pad, from the argument of F.
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Equation (4.70) contains six unknowns, αn, α̇n, n = 1, 2, 3 assuming that Z, Ż are
prescribed. Of course, the αn, α̇n are determined by the motion of the runner, i.e., they are
dependent on Z, Ż through the equations of motion for the pad. These equations (Euler’s
rotational equations) admit solutions with an exponential time factor and, therefore, can be
reduced to a linear algebraic system in the amplitudes.

To make use of the above mentioned property of the Euler rotational equations or,
ostensibly at this moment, to reduce the number of unknowns in Eq. (4.70), assume that the
runner executes small harmonic motion with angular frequency � and amplitude ψ (Jeng
and Szeri, 1986)

Z = ψ exp(i�t), (4.71a)

Ż = i�ψ exp(i�t). (4.71b)

The motion of the pad, as induced by the motion of the runner, will also be harmonic, and
we write10

αn = An exp (i�t) , (4.72a)

α̇n = i�An exp (i�t) . (4.72b)

With the aid of Eqs. (4.71) and (4.72), Eq. (4.70) takes the form

dF exp(−i�t) = [KZ,Z + i�CZ,Z]ψ +
3∑
n=1

[KZ,n + i�CZ,n]An. (4.73)

In this form, the equation for dF contains only three unknowns, An, n = 1, 2, 3. These
unknowns are related to the amplitude of the runner motion, ψ , through Euler’s rotational
equations (Goldstein, 1950)

I11α̈1 − I12α̈2 − I13α̈3 = τ1,

−I21α̈1 + I22α̈2 − I23α̈3 = τ2, (4.74)

−I31α̈1 − I32α̈2 + I33α̈3 = τ3,

where I11, I22, . . . , I33 are elements of the inertia matrix. These equations are written
relative to the {x1, x2, x3} coordinate system, located in the pivot point P. Prior to writing
Eq. (4.74), we made the assumption that both α and α̇ are small, so that products like α̇nα̇m;
n, m = 1, 2, 3, are neglected.

In Eq. (4.74), τ = (τ 1, τ 2, τ 3) is the torque on the pad resulting from the applied forces
and moments relative to {x1, x2, x3}, α = (α1, α2, α3) is the rotation vector about the same
axes, and αn = An exp(i�t).

The torque components τ 1, τ 2, and τ 3 are dependent on the motion of both runner
and pad. For small departures from equilibrium, we are permitted to terminate the Taylor
expansion at first order and write

τk = ∂τk

∂Z
Z + ∂τk

∂Ż
Ż +

3∑
n=1

[
∂τk

∂αn
αn + ∂τk

∂α̇n
α̇n

]
, k = 1, 2, 3. (4.75)

10It would make no difference in the final outcome had we permitted a phase shift of pad motion relative
to runner motion.
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The definitions
∂τk

∂Z
= Kk,Z

∂τk

∂Ż
= Ck,Z,

(4.76)
∂τk

∂αn
= Kkn,

∂τk

∂α̇n
= Ckn,

and Eqs. (4.71) and (4.72) enable us to write Eq. (4.75) in the form

τk exp (−i�t) = [Kk,Z + i�Ck,Z]ψ +
3∑
n=1

[Kkn + i�Ckn]An, k = 1, 2, 3. (4.77)

Although we do not constrain the pad from motion about x3, the coefficients Kk3 and
Ck3, k = 1, 2, 3, will be neglected on account of being small (Mote, Shajer, and Telle,
1983). The torque component τ 3 is also found to be small and is neglected in the analysis.

Substituting Eq. (4.77) into Eq. (4.74), taking into account Eqs. (4.72), we obtain the
following linear algebraic system

(M + N) A = Rψ. (4.78)

Here R is a column vector of elements

Rk = Kk,Z + i�Ck,Z, (4.79)

and the matrices M and N have the definition

−Mkm = (Kkm + i�Ckm +�2Ikm), (4.80)

N = diag(2�2I11, 2�
2I22, 2�

2I33). (4.81)

The linear system, Eq. (4.78), yields

A = (M + N)−1 Rψ

= aψ, (4.82)

where

a = (M + N)−1 R.

Note that a = R(a) + iJ (a) is a complex vector, it includes both the amplitude and the
phase angle of the pad motion about P.

The force response, d F, of Eq. (4.70) to the excitation Eqs. (4.71) and (4.72) is harmonic,
and when Eq. (4.82) is substituted into Eq. (4.73), we obtain

dF exp(−i�t) = (K + Ci�)ψ. (4.83)

From Eq. (4.83), the system stiffness and system damping are identified, respectively, as

K = KZ,Z +
3∑
n=1

{KZ,nR (an) −�CZ,nJ (an)} (4.84)

and

C = CZ,Z +
3∑
n=1

{CZ,nR(an) −KZ,nJ (an)/�}. (4.85)
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The nondimensional inertia tensor

Ī = ωhc

μ∗(
R)4
I (4.86)

can be evaluated in closed form. It has components

Ī11 = M̄p

{
1

4

(
1 + sinβ

β

)
+ d̄2

3
(
R̄2

2 + R̄2
1

) [�̄3 + (1 − �̄)3] + Ȳp(Ȳp − 2Ȳc)(
R̄2

2 + R̄2
1

)
}
, (4.87a)

Ī22 = M̄p

{
1

4

(
1 − sinβ

β

)
+ d̄2

3
(
R̄2

2 + R̄2
1

) [�̄3 + (1 − �̄)3] + X̄2
p(

R̄2
2 + R̄2

1

)
}
, (4.87b)

Ī33 = M̄p

{
1

2
+ [r̄p + R̄1]2 − 2ȲpȲc(

R̄2
2 + R̄2

1

)
}
, (4.87c)

Ī12 = M̄p

{
X̄p(Ȳp − Ȳc)(
R̄2

2 + R̄2
1

)
}
, (4.87d)

Ī13 = −M̄p

{
X̄pZ̄c(
R̄2

2 + R̄2
1

)
}
, (4.87e)

Ī23 = M̄p

{
2
(
R̄3

2 − R̄3
1

)
d̄[�̄ 2 − (1 − �̄)2]

3
(
R̄4

2 − R̄4
1

) sinβ/2

β
− ȲpZ̄c(
R̄2

2 + R̄2
1

)
}
, (4.87f)

where

Mp =
(
R2

2 − R2
1

)
βt

2
ρp = μ∗ (
R)4

ωhc
(
R2

2 + R2
1

)M̄p (4.88)

is the pad mass, ρp is the pad density, and d is the pad thickness.
In Eq. (4.87) we made use of the abbreviations

R̄1 = R1


R
, d̄ = d


R
, �̄ = �

d
, R̄2 = R2


R
, r̄ = r − R1


R
, 
R = R2 − R1.

(4.89)

The distance (d − �) measures the separation between the center of pressure (rp, ϕp) and
the pivot location, P; if the pad is supported on its surface, then d − �= 0. The coordinates
(Xp, Yp, Zp) and (Xc, Yc, Zc) are the coordinates of the pivot point, P, and the geometric
center, C, of the pad, respectively, relative to the {X, Y, Z}coordinate system (Figure 4.16).
In normalized form,

X̄p = [r̄p + R̄1] sin

[
β

(
1

2
− ϕ̄p

)]

Ȳp = [r̄p + R̄1] cos

[
β

(
1

2
− ϕ̄p

)]
(4.90)

Z̄p = 0,



4.4 / Pivoted-Pad Thrust Bearing 179

X̄c = 0,

Ȳc = 4

3β

(
R̄3

2 − R̄3
1

R̄2
2 − R̄2

1

)
sin
β

2
(4.91)

Z̄c = 1

2
d̄ (2�− 1) .

Here r̄p is the nondimensional radial coordinate of the center of pressure.
The foregoing equations may be nondimensionalized by specifying a force coefficient,

cF, and a torque coefficient, cτ , through the formulas

cF = μ∗ω (
R)4

h2
c

,

cτ = μ∗ω (
R)4

hc
, (4.92)

so that we may write

F = cF F̄ , τ = cτ τ̄ (4.93)

which serve as definition for the nondimensional quantities F̄ and τ̄ .
Defining, furthermore, nondimensional spring and damping coefficients through

KZ,j = cF K̄Z,j ; CZ,j = cF

ω
C̄Z,j , (4.94a)

KZ,Z = cF

hc
K̄Z,Z; CZ,Z = cF

hcω
C̄Z,Z, (4.94b)

Kk,Z = cτ

hc
K̄k,Z; Ck,Z = cτ

ωhc
C̄k,Z, (4.94c)

Kmn = cτ K̄mn; Cmn = cτ

ω
C̄mn, (4.94d)

and setting

t̄ = ωt, ψ̄ = ψ/hc, �̂ = �

ω
,

the dimensionless system stiffness and system damping, the counterpart of Eq. (4.84), is
given by

K̄ = K̄Z,Z +
3∑
n=1

{K̄Z,nR(an) − �̄C̄Z,nJ (an)}, (4.95a)

C̄ = C̄Z,Z +
3∑
n=1

{
C̄Z,nR(an) + K̄Z,nJ (an)/�̄

}
, (4.95b)

so that

K = cF

hc
K̄, C = cF

hcω
C̄. (4.96)

The quantities K and C have physical dimensions of stiffness (= force/length) and
damping (= force/velocity), respectively.
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Table 4.3. Linearized stiffness and damping coefficients

K̄ C̄
�̄ μ̄ = 1.0 μ̄ = μ̄(T ) μ̄ = 1.0 μ̄ = μ̄(T )

0.1 0.4523 0.1717 0.3108 0.1407
0.5 0.4907 0.1746 0.3120 0.1393
1.0 0.4921 0.1747 0.3121 0.1392
5.0 0.4926 0.1747 0.3121 0.1392

10.0 0.4926 0.1747 0.3121 0.1392

R2/R1 = 2.545, β = 24◦, ε̄ = 0, mx = 0.0, my = 1.0, Re = 500.
(Reprinted with permission from Jeng, M. C. and Szeri, A. Z. A
thermohydrodynamic solution of pivoted thrust pads: Part 3 − lin-
earized force coefficients. ASME Journal of Tribology, 108, 214–
218, 1986.)

Table 4.3 illustrates the effect of �̄, the ratio of excitational to rotational frequencies. At
least for the geometry depicted, dependence of both the system stiffness K̄ and the system
damping C̄ on �̄ appears to be insignificant. A stronger effect, that due to the temperature
dependence of viscosity, is also depicted in this table; both the stiffness, K̄, and the damping,
C̄, are affected by the temperature dependence of viscosity.

Table 4.4 tabulates K̄ and C̄ values for various magnitudes of the nondimensional pad
mass, M̄p. The dependence of system stiffness and damping on M̄p seems to be of little
significance.

Figure 4.17 illustrates the dependence of K̄ and C̄ on the crowning of the pad. The pad
deformation parameter, ε̄, is defined by Jeng, Zhou, and Szeri (1986) as the ratio of the
maximum deflection in the y − z plane (Figure 4.16) to the pad center film thickness, hc. This
figure depicts calculations at �̄= 1.0 and �̄= 0.1, performed in an iterative manner so that
the position of the pivot point remained fixed. This meant that the pad tilt parameter had to be
adjusted from solution to solution and also from iteration to iteration between the pressure

Table 4.4. Linearized stiffness and damping
coefficients

M̄p K̄ C̄
479.82 0.4921 0.3121
47.982 0.4870 0.3119

4.7982 0.4453 0.3112
0.47982 0.4629 0.3219
0.047982 0.4925 0.3120

R2/R1 = 2.545, β = 24◦, ε̄ = 0, �̄ = 1.0, mx = 0.0,
my = 1.0, Re = 500. (Reprinted with permission from
Jeng, M. C. and Szeri, A. Z. A thermohydrodynamic
solution of pivoted thrust pads: Part 3 − linearized
force coefficients. ASME Journal of Tribology, 108,
214–218, 1986.)
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Figure 4.17. Variations of system stiffness K̄ and system damping C̄ with pad deformation
parameter ε̄; R2/R1 = 2.545, b = 24◦, mx = 0.0, my = 1.0, Re = 500. (Reprinted with
permission from Jeng, M. C. and Szeri, A. Z. A thermohydrodynamic solution of pivoted thrust
pads: Part 3 – linearized force coefficients. ASME Journal of Tribology, 108, 214–218, 1986.)

and the energy equations (Jeng, Zhou, and Szeri, 1986). Dependence of system stiffness
and system damping on pad deformation seems to be strong. The solutions in Figure 4.17
were obtained from thermohydrodynamic bearing performance, i.e., the viscosity in this
solution is dependent on temperature and thus has a three-dimensional distribution.

4.5 Nomenclature

C pad clearance
C system damping
C ′ pivot circle clearance
Cxx , Cxy , Cyx , Cyy bearing damping coefficients
Cξξ , Cξη, Cηξ , Cηη fixed-pad damping coefficients
C ′
ξξ , C

′
ξη, C

′
ηξ , C

′
ηη tilting-pad damping coefficients

D journal diameter
e journal center eccentricity with respect to pad center
e0 journal center eccentricity with respect to bearing center
Fr, Ft radial and tangential components of pressure-force
Fξ , Fη force components in ξ and η-directions
fr, ft radial and tangential components of dimensionless pad force
fξ , fη compoents in ξ and η-directions of dimensionless pad fore
I transverse mass moment of inertia of shoe around pivot
K system damping
Kxx , Kxy , Kyx , Kyy bearing spring coefficients
Kξξ , Kξη, Kηξ , Kηη fixed-pad spring coefficients
K ′
ξξ , K

′
ξη, K

′
ηξ , K

′
ηη tilting-pad spring coefficients

L bearing length, inches
MCRIT critical pad mass
R journal radius
RP radius of pivot circle
SB bearing Sommerfeld number
S pad Sommerfeld number
W load
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x, y coordinates of journal center with respect to the bearing
ε eccentricity ratio with respect to the pad center
ε0 eccentricity ratio with respect to the bearing center
ηp amplitude for pad center motion
δi deflection, ith pad
ξ, η coordinates of journal center with respect to the pad
φ attitude angle with respect to the pad load line
φ0 attitude angle with respect to the bearing load line
n angle from vertical (negative x-axis) to pad pivot point
ω angular speed of shaft

Thrust Bearings

A(Ai) amplitude of angular perturbation
CZ,Z; CZn damping
Ck,m; Cn,Z damping
C system damping
C pad geometric center
Cp center of pressure
f lubricant force
I inertia tensor
KZ,Z; KZ,n stiffness
Kk,n; Kn,Z stiffness
K system stiffness
Mp pad mass
R1, R2 inner, outer pad radius
Re global Reynolds number (= R2ωhc/v∗)
(X, Y, Z) inertial coordinates
r, ϕ pad angular coordinates
� frequency of runner motion
cF, cτ force, torque coefficients
d pad thickness
� depth of pivot point
mx radial tilt parameter (= R1θ x/hc)
my azimuthal tilt parameter (= R1θ y/hc)
hc film thickness at C
θ x, θ y pad tilt angles
t time
α(αi) angular motion of pad
β pad angle
ρ̄ lubricant density
ω runner angular velocity
ν, μ viscosity
τ , (τ i) torque
(·) time derivative
(–) nondimensional quantity
R,J real, imaginary part
( )∗ reference quantity



4.6 / References 183

4.6 References

Alford, J. S. 1965. Protecting turbomachinery from self-excited rotor whirl. ASME J. Eng. Power,
87, 333.

Allaire, P. E., Parsell, J. K. and Barrett, L. E. 1981. A pad perturbation method for the dynamic
coefficients of tilting-pad journal bearings. Wear, 72, 29–44.

Boyd, J. and Raimondi, A. A. 1962. Clearance considerations in pivoted pad journal bearings. ASLE
Trans., 5, 418.

Capone, G., Russo, M. and Russo, R. 1991. Inertia and turbulence effects on dynamic characteristics
and stability of rotor-bearings systems. ASME Journal of Tribology, 113, 58–64.

Den Hartog, J. P. 1956. Mechanical Vibrations, 4th ed. McGraw-Hill, New York.
Goldstein, H. 1950. Classical Mechanics. Addison-Wesley.
Hagg, A. C. 1946. Influence of oil-film journal bearings on the stability of rotating machines. ASME

Trans. J. Appl. Mech. 68, A211.
Hori, Y. 1959. A theory of oil whip. ASME J. Appl. Mech., 26, 189–198.
Jeng, M. C. and Szeri, A. Z. 1986. A thermohydrodynamic solution of pivoted thrust pads: Part 3 –

linearized force coefficients. ASME Journal of Tribology, 108, 214–218.
Jeng, M. C., Zhou, G. R. and Szeri, A. Z. 1986. A thermohydrodynamic solution of pivoted thrust

pads: Part 2 – static loading. ASME Journal of Tribology, 108, 208–213.
Lund, J. W. 1964. Spring and damping coefficients for the tilting-pad journal bearing. ASLE Trans.,

7, 342.
Lund, J. W. and Sternlicht, B. 1962. Rotor bearing dynamics with emphasis on attenuation. ASME

J. Basic Engr., 84, 491–502.
Mote, C. D., Shajer, G. S. and Telle, L. I. 1983. Hydrodynamic sector bearings as circular saw

guides. ASME Journal of Lubrication Technology, 105, 67–76.
Nicholas, J. C., Gunter, E. J. and Allaire, P. E. 1979. Stiffness and damping properties for the

five-pad tilting pad bearing. ASLE Trans., 22, 113–224.
Pinkus, O. and Sternlicht, B. 1961. Theory of Hydrodynamic Lubrication. McGraw-Hill, New York.
Raimondi, A. A. and Szeri, A. Z. 1984. Journal and thrust bearings. CRC Handbook of Lubrication,

E. R. Booser (ed.), pp. 413–462.
Shapiro, W. and Colsher, R. 1977. Dynamic characteristics of fluid-film bearings. Proc. 6th

Turbomachinery Symp., Texas A&M University, 39–54.
Suganami, T. and Szeri, A. Z. 1979. A parametric study of journal bearing performance: the 80

degree partial arc bearing. ASME Journal of Lubrication Technology, 101, 486–491.
Szeri, A. Z. 1966. Linearized force coefficients of a 110◦ partial journal bearing. Proc. Inst. Mech.

Engr., 181, Pt. 3B, Paper No. 8.
Szeri, A. Z., Raimondi, A. A. and Giron, A. Linear force coefficients for squeeze-film damper.

ASME Journal of Lubrication Technology, 105, 326–334.
Trumpler, R. P. 1966. Design of Film Bearings. MacMillan, New York.
Vance, J. M. 1988. Rotordynamics of Turbomachinery. Wiley, New York.



CHAPTER 5

Effects of Fluid Inertia

The essence of lubrication theory is the recognition that the problem possesses
two length scales (see Figure 2.7). Let the length scale in the “plane” of the film be denoted
by Lxz, and let Ly be the length scale across the film; for conventional bearing geometries
(Ly/Lxz) = O(10−3). We utilize these length scales to normalize the equations of motion.
To this end, define nondimensional coordinates, denoted by overbar, as follows

{x̄, ȳ, z̄} = 1

Lxz

{
x,

(
Lxz

Ly

)
y, z

}
. (2.58a)

Furthermore, let U∗ represent the characteristic velocity in the plane of the film. The
equation of continuity then requires U∗(Ly/Lxz) to be the velocity scale across the film, and
we arrive at the following definition for normalized velocity:

{ū, v̄, w̄} = 1

U∗

{
u,

(
Lxz

Ly

)
v,w

}
, (2.58b)

where the overbar again denotes normalized, i.e., O(1), nondimensional quantity. The
nondimensional pressure and time are chosen to be

p̄ = p

ρU 2∗

(
Ly

Lxz

)
Re, t̄ = �t. (2.58c)

Here � is the characteristic frequency of the flow, and the Reynolds number has the
definition Re = LyU∗/ν. The assumption � ≈ U ∗/Lxz yields the second of (2.58c).

Substituting into the Navier-Stokes equations and neglecting terms of order (Ly/Lxz)2,
but retaining we obtain

�∗ ∂ū
∂t̄

+ Rεv̄ · ∇ū = −∂p̄
∂x̄

+ ∂2ū

∂ȳ2
, (2.62a)

�∗ ∂w̄
∂t̄

+ Rεv̄ · ∇w̄ = −∂p̄
∂z̄

+ ∂2w̄

∂ȳ2
. (2.62b)

Here �∗ = L2
y�/ν and Rε = (Ly/Lxz) Re are the reduced frequency and the reduced

Reynolds number, respectively, and p = p(x, z) alone.
The continuity equation is, of course, form invariant under the transformation Eqs. (2.58)

∂ū

∂t̄
+ ∂v̄

∂ȳ
+ ∂w̄

∂z̄
= 0. (2.16c)

According to Eqs. (2.58a) and (2.58b), lubricant inertia effects assume importance when
�∗ > 1 and/or Rε > 1. The three limiting cases that are instructive to consider here are:
(1) temporal inertia limit, characterized by Rε/�

∗ → 0,�∗ > 1; (2) the convective inertia

184
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limit, characterized by �∗/Rε → 0, Rε > 1; and (3) the total inertia limit, characterized
by Rε/�

∗ → O(1), Rε > 1.

5.1 Temporal Inertia Limit, Rε → 0, �∗ ≥ 1

When one of the bearing surfaces undergoes rapid, small-amplitude oscillation,
the condition �∗ � Rε is approximately satisfied. In this case, we retain the temporal
inertia terms in Eqs. (2.53) and (2.54) but drop the terms representing convective inertia
(Schlichting, 1968). Expressed in primitive variables, the equations of motion have now
the reduced form

ρ
∂u

∂t
= −∂p

∂x
+ μ∂

2u

∂y2
,

(5.1)

ρ
∂w

∂t
= −∂p

∂z
+ μ∂

2w

∂y2
.

We note that these equations are linear.
To accelerate a solid body through a fluid, a force must applied to accelerate the mass

of the body itself. Additional force must also be applied to accelerate the mass of fluid that
is being set in motion by the body. The added mass coefficient, CM, is defined as the factor
that multiplies the mass of the displaced fluid to give the mass of the accelerated fluid.
Studies of added mass can be traced back to Stokes (Rosenhead, 1963). More recently,
Chen et al. (1976) expressed Eq. (5.1) in terms of the stream function and found an exact
solution to the resulting linear fourth-order partial differential equation in terms of Bessel
functions. They were able to show that for a rod vibrating in a “large” cylinder filled with
viscous fluid, both the added mass coefficient, CM, and the damping coefficient, Cv , have
their maximum at small �∗ and decrease with �∗ ↑. This was also demonstrated by the
analysis of Brennen (1976), who obtained a large Reynolds number limit for the added
mass coefficient. Brennen found that for the ratio of CM obtained at �∗ → 0 to its value
obtained at �∗ → ∞ is ≈ 1.2. Tichy and Modest (1978) solved Eq. (5.1) for an arbitrary
two-dimensional surface executing normal oscillation and found the classical lubrication
solution for pressure to be in error, due to neglect of inertia forces. This analysis was
extended later by Modest and Tichy (1979) to combined oscillation and sliding. Mulcahy
(1980) was able to show that for �∗ < 25 the added mass coefficient, CM, is independent
of the reduced frequency and that in the range 0<�∗ < 25 the ratio CM/Cv is linear in the
reduced frequency according to the formula CM/Cv ≈ �∗/10. For �∗ . 25 Mulcahy found
that CM = CM(�∗) and that it is a decreasing function for �∗ ↑, as indicated by earlier
investigators.

5.2 Convective Inertia Limit, �∗ → 0, Rε ≥ 1

In journal or thrust bearings in near steady state at high Reynolds number we have
Rε � �∗. This condition approximates to the limit �∗/Rε → 0, and we neglect temporal
inertia in favor of convective inertia. When written in terms of primitive variables, this limit
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results in the equations

ρ

(
u
∂u

∂x
+ v ∂u

∂y
+ w∂u

∂z

)
= −∂p

∂x
+ μ∂

2u

∂y2
,

(5.2)

ρ

(
u
∂w

∂x
+ v ∂w

∂y
+ w∂w

∂z

)
= −∂p

∂z
+ μ∂

2w

∂y2
.

Sestieri and Piva (1982) applied Eq. (5.2) to a plane slider in a numerical analysis.
They showed significant inertia effects, up to 40% in load, for Rε = 8. Care must be
taken, however, when interpreting the results of Sestieri and Piva. As was pointed out by
Constantinescu and Galetuse (1982), a reduced Reynolds number of Rε = 8 for the slider
geometry of Sestieri and Piva translates to Re = 25,000 in a conventional journal bearing.

Szeri and Snyder (2006) recently investigated the plane slider and asserted that Eq. (5.2)
is a valid first extension of the classical Reynolds equation to higher Reynolds number
flows (c.f., the last section of Chapter 2), provided that the thin film approximation is not
violated. By keeping the runner plane and perturbing the film thickness toh +
h,
h(x) =
δ cos(nπx), they further concluded that the sign of the load capacity change due to inertial
effects is dictated by local film geometry approaching the outlet

sgn(fRe − f0) = −sgn
dh

dx

∣∣∣
xout

Here x is increasing in the flow direction, i.e., (xout − xin)U > 0 and the index of f is
indicative of the value of the flow Reynolds number.

For long cylinders at Rε = 30 San Andres and Szeri (1985) obtain, from numerical
solutions of the exact equations, a 47% change in pressure due to inertia when C/R =
1.0. But as (C/R) ↓, the results from the exact equations decrease monotonically to the
results of classical lubrication theory. Above Re = 2,000 the flow becomes turbulent,
but even there inertial effects can be neglected according to Constantinescu and Galetuse
(1982).

The method of averaged inertia was employed for the steady problem by Osterle, Chou,
and Saibel (1957) for a long bearing, and by Constantinescu (Constantinescu, 1970; Con-
stantinescu and Galetuse, 1982). The more recent of these papers finds that in conventional
journal bearings convective inertia effects can be neglected in the range 0 < Rε < 10.
Although at the upper end of the range inertia effects do appear, they are still small in
comparison with other nonlinear effects such as thermal distortion. Burton and Hsu (1974)
find that at small downward vertical load the journal center might rise above the bearing
center, as was shown experimentally by Black and Walton (1974). Others to use the method
of averaged inertia were Launder and Leschziner (1978).

Journal Bearings

In one of the early publications on flow between eccentric rotating cylinders,
Wannier (1950) discussed the problem without restricting the geometry; he used a complex
variable technique to solve the biharmonic equation, satisfied by the stream function in
Stokes flow. Wannier showed that the Reynolds equation of classical lubrication theory
(Reynolds, 1886) constitutes the zero-order approximation to the Navier-Stokes equations
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when the stream function is expanded in powers of the film thickness. Wood (1957), using a
modified bipolar coordinate system that reduces to polar coordinates when the eccentricity
vanishes, analyzed the boundary layers that develop on the two cylinders at large Reynolds
numbers. The small parameter of the perturbation analysis is the eccentricity ratio, and the
solution is expressed in combinations of Bessel functions.

The effect of fluid inertia is estimated from a perturbation of the Stokes flow in Kamal’s
(1966) analysis. Kamal’s inertial correction is incorrect, however, as was pointed out first
by Ashino (1975) and later by Ballal and Rivlin (1976); even their solution of the Stokes
problem shows disagreement with recent results. Another small perturbation analysis with
the eccentricity ratio as the parameter was published by Kulinski and Ostratch (1967).
Yamada (1968) neglected curvature effects and solved the boundary layer equations for
the case of a rotating outer cylinder. Assuming a perturbation series in the clearance ratio,
Yamada showed that the results of the unperturbed flow agree with those of lubrication
theory. The importance of the inertial correction is found in the pressure distribution: the
largest negative pressure is greater in magnitude than the largest positive pressure. This
conclusion also received support from Sood and Elrod (1974).

DiPrima and Stuart (1972a) obtained inertial corrections to the linearized problem
at small clearance ratios and at small values of the modified Reynolds number. Their
zero-order approximation is identical to lubrication theory. Results presented by DiPrima
et al. are in good agreement with those of Yamada. The perturbation analysis of Ballal and
Rivlin (1976) is one of the most complete analyses performed to date on the flow between
eccentric rotating cylinders, but the solution is incorrect except for Stokes flow (San Andres
and Szeri, 1985), as the boundary conditions are not satisfied for Re > 0. San Andres and
Szeri (1985) worked out an accurate numerical solution of the exact equations and applied it
to the wide-gap problem with arbitrary rotation of the cylinders. The analysis was recently
extended to account for heat transfer in a fluid with temperature dependent viscosity by
Dai, Dong, and Szeri (1991) and Kim and Szeri (1996) and to Rivlin-Ericksen fluids of
third grade by Christie, Rajagopal, and Szeri (1987).

The questions we shall investigate here are:

(1) What is the effect of neglecting convective lubricant inertia?
(2) What is the effect of neglecting curvature of the lubricant film?

To answer these questions we shall examine three models for flow in a long journal
bearing. The first model retains both inertia and curvature of the film and is based on the
full Navier-Stokes equations. The second model retains film curvature but neglects inertia
and results from application of the lubrication approximation in the natural coordinates
that provide exact representation of the curved boundaries. The third model, classical
lubrication theory, neglects both inertia and film curvature and results from application of
the lubrication approximation in Cartesian coordinates.

Navier-Stokes Model
We employ a bipolar coordinate system for the representation of the flow field between
infinite, rotating eccentric cylinders. The bipolar coordinate system {α̂, β̂} is related to the
Cartesian coordinate system {X, Y } through

α̂ + iβ̂ = −2 coth−1 (X + iY )

a
, (5.3)
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Figure 5.1. Geometry and coordinate systems for eccentric cylinders.

where a is the separation between the pole and the origin of the {X, Y } system (Figure 5.1).
In the bipolar coordinate system, the cylinders of radii r1 and r2, r1 < r2, have the simple
representation α̂ = α̂1 and α̂ = α2, α̂1 < α2 < 0, respectively. The scale factor, H, of the
bipolar coordinate system (Ritchie, 1968) is

H = a

(cosh α̂ − cos β̂)
.

The equations of motion and continuity defining the two-dimensional flow field are first
written relative to the bipolar coordinate system (Ritchie, 1968) and then nondimensional-
ized as follows:

α = 
 (α̂ − α̂1) , β = β̂

2π
, 
 = 1

α̂2 − α̂1
,

{U,V } = r1ω

sinh |α̂1| {u, v} , p = ρr2
1ω

2

sinh2 |α̂1|
p (5.4a)

H = ah, Re = r1ωC

ν
, C = r2 − r1, η = r1

r2
.

Here P represents the pressure and {U, V} are the physical components of velocity relative
to the bipolar coordinate system, while p and {u, ν} are their dimensionless counterparts.
Dynamic conditions in the flow are represented by the Reynolds number, Re, calculated on
the mean gap width. In terms of bipolar coordinates the eccentricity ratio is given by

ε = sinh (α̂1 − α̂2)

sinh α̂1 − sinh α̂2
. (5.4b)

We intend to solve the steady-state problem. It is well documented, however, that for
equal interpolation of velocity and pressure the mixed formulation of the steady-state
Navier-Stokes equation yields a singular system. To circumvent this (Babushka-Brezzi
stability criteria), Hughes, Franca, and Balestra (1986) employed an ingenious weighting
procedure that resulted in a stable system. Though this system contains extra terms in the
equation of mass conservation, in the limit its solutions are those of the Stokes problem.



5.2 / Convective Inertia Limit, �∗ → 0, Rε ≥ 1 189

In 1991 de Sampiao obtained results similar to those of Hughes et al., by manipulating the
steady-state equation for mass conservation and the time-discretized form of the momentum
equations. Zienkiewicz and Woo (1991) generalized the procedure by considering the
artificial compressibility formulation for the equation of mass conservation (Fletcher, 1991),
instead of its steady-state form. We follow Zienkiewicz and Woo (1991) closely and apply
their scheme to a Galerkin B-spline formulation of our nonzero Reynolds number flow.

Thus, although we are interested in the steady-state problem, we still write the equa-
tions of motion and the equation of mass conservation in their unsteady (nondimensional)
form:

∂u

∂t
= f (1) (u, v, p) ,

∂v

∂t
= f (2) (u, v, p) , (5.5)

1

c2

∂p

∂t
+ div v = 0.

Here we employed the notation

f (1) (u, v, p) = −

h
u
∂u

∂α
− 1

2πh
v
∂u

∂β
+ uv sin β̂ − v2 sinh α̂

− 

h

∂p

∂α
+ (1 − η)

ηRe

[
1

h2

(

2 ∂

2u

∂α2
+ 1

(2π )2

∂2u

∂β2

)
(5.6a)

− 2
 sin β̂

h

∂v

∂α
+ sinh α̂

πh

∂v

∂β
− cosh α̂ + cos β̂

h
u

]
,

f (2) (u, v, p) = −

h
u
∂v

∂α
− 1

2πh
v
∂v

∂β
+ uv sinh α̂ − u2 sin β̂

− 1

2πh

∂p

∂β
+ (1 − η)

ηRe

[
1

h2

(

2 ∂

2v

∂α2
+ 1

(2π )2

∂2v

∂β2

)
(5.6b)

+ 2
 sin β̂

h

∂u

∂α
+ sinh α̂

πh

∂u

∂β
− cosh α̂ + cos β̂

h
v

]
.

The divergence of the velocity field v = (u, v) has the (nondimensional) form

div ν = 1

h

(


∂u

∂α
+ 1

2π

∂v

∂β

)
− u sinh α̂ + v sin β̂. (5.7)

We could seek a steady-state solution to our problem by finding the time-asymptotic
solution to Eq. (5.5), subject to no-slip conditions at the wall

u = 0, v = sinh |α̂1| at α = 0,
(5.8a)

u = v = 0 at α = 1.
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In addition to the boundary conditions, we must also ensure periodicity of the solution
and its derivatives in β:

∂ (n)ϕ

∂βn
(α, 0) = ∂ (n)ϕ

∂βn
(α, 1)

n = 0, 1, 2, . . .
ϕ = u, v, p. (5.8b)

Equations (5.5) and (5.6) define the pressure only within an arbitrary constant. We set
this constant to zero by enforcing the condition p(0, 0) = 0. There can be no other conditions
specified on the pressure.

The condition p(0, 0) = 0 together with Eq. (5.8) and appropriate initial values could be
used to obtain {u(α, β, t), v(α, β, t), ρ(α, β, t)} from Eq. (5.5). To this end, we would
discretize the continuity equation according to

p(n+1) − p(n)

c2δt
= −div v(n+1/2) (5.9)

The velocity components at the n + 1/2 time level can be obtained from the equations of
motion (5.5):

ν(n+1/2) = ν(n) + δt

2

(
f (1), f (2))∣∣

n
(5.10)

so that now

p(n+1) − p(n)

c2δt
= −div v(n) − δt

2
div
(
f (1), f (2))∣∣

n
. (5.11)

Steady state is characterized by ∂u/∂t = 0, ∂v/∂t = 0 in Eq. (5.5) and by p(n+1) = p(n)

in Eq. (5.11). In consequence, to arrive directly at steady state we solve the following system
of equations:

f (1) (u, v, p) = 0, (5.12a)

f (2) (u, v, p) = 0, (5.12b)

div ν + δt

2
div
(
f (1), f (2)

) = 0, (5.12c)

subject to boundary conditions (5.8a) and periodicity condition (5.8b)

We intend to approximate the set of unknowns {u(α, β), v(α, β), p(α, β)} by piece-
wise polynomial functions. Thus, we partition the interval [0, 1] for x, where x represents
α or β, in turn, as

π : 0 = x1 < x2 < · · · < x� < x�+1 = 1.

Let p1(x), . . . , p�(x) be any sequence of � polynomials, each of order k (i.e., of degree <k),
and denote the collection of all piecewise polynomial functions h(x) by Pk ,π :

Pk,π {h (x) : h (x) = pi (x) if x ∈ [xi, xi+1] , 1 ≤ i ≤ �} .

Pk ,π is a linear space, and since there are � subintervals, the dimension of Pk ,π is k�.
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Consider now subspaces Sk ,π ,v of Pk ,π generated by imposing smoothness constraints on
elements of Pk ,π at the interior breakpoints xi, 2 ≤ i ≤ �. Let ν = {νi}�i=2 be a nonnegative
integer sequence, with vi ≤ k, all i, where vi denotes the smoothness index of the piecewise
polynomial subspace Sk ,π ,v at the breakpoint xi, so that h(j )(x+

i ) = h(j )(x−
i ), 0 ≤ j ≤ ν − 1.

Then the dimension N of the subspace Sk ,π ,v is given by

dim Sk,π,ν = k +
�∑
i=2

(k − νi).

We now construct a basis for Sk ,π ,v such that each element of the basis has local support
and each element is nonnegative. To generate such a basis, we employ the recurrence
relation (deBoor, 1978)

Ai,k (x) = x − ti
ti+k−1 − ti Ai,k−1 (x) + ti+k − x

ti+k − ti+k+1
Ai+1,k−1(x)

Aj,1 =
{

1 for x ∈ [tj , tj+1],

0 otherwise.

Here t = {ti}N+K
i=1 is any nondecreasing sequence such that

(1) ti ≤ t2 ≤ · · · ≤ tk ≤ x� and x�+1 ≤ tN+1 ≤ · · · ≤ tN+k;
(2) the number xi, 2 ≤ i ≤ �, occurs exactly di = k − νi times in t.

The sequence of A1, A2, . . . , AN of B-splines of order k for the knot sequence t is a basis
for Sk,π ,v. The choice of t translates the desired amount of smoothness at breakpoints, and
the Curry-Schoenberg theorem (deBoor, 1978) permits construction of a B-spline basis for
any particular piecewise polynomial space Sk ,π ,v.

The B-splines thus defined provide a partition of unity:

Ai (x) ≥ 0, 1 ≤ i ≤ N,
N∑
i=1
Ai (x) = 1

⎫⎪⎬
⎪⎭ x ∈ [x1, x�+1] .

Other relevant properties of B-splines are

A1 (x1) = AN (x�+1) = 1 Aj (x1) = 0 (j > 1) ,

Aj (x�+1) = 0(j < N ), Aj (x) = 0(x /∈ [tj , tj+k])

}

A′
1(x1) = −A′

2 (x1) �= 0, A′
j (x1) = 0 (j > 2) ,

A′
N (x�+1) = −A′

N−1 (x�+1) �= 0, A′
j (x�+1) = 0 (j < N − 1)

}
.

In the present calculations we employ quartic B-spline basis, i.e., k = 5, and write {Ai(α):
1 ≤ i ≤ Nβ} for the set of normalized B-splines relative to kα , πα , vα .

In similar manner, we define the normalized B-splines {Bj(β): 1 ≤ j ≤ Nβ ) on
0 ≤ β ≤ 1. However, the requirement that the solution be periodic in β, Eq. (5.8b),
suggest that we construct another basis {bj(β): 1 ≤ j ≤ Nβ − 3} from the Bj that is periodic
in β, and use the periodic {bj} in place of the nonperiodic {Bj}. Let c = 2B ′′

2 (0)/B ′′
3 (0) and

define matrices  and � as

 =
[
I3 0 �

0 INy−6 0

]
, � =

⎡
⎣ c 2 1

−c −1 0
1 0 0

⎤
⎦ ,
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where I3 and INy−6 are unit matrices, then the new base vectors, {bi}Ny−3
i=1 , are given by

b =  B = (b1, b2, . . . , bNy−3 )T , B = (B1, . . . , BNy)
T .

It can be verified that the sequence {bi} is a basis for a subspace of Sk,π,ν defined as

�k,π,ν = {ω (z) ∈ Sk,π,ν : ω(n)(0) = ω(n)(1), n = 0, 1, 2
}
.

The expansions

u (α, β) =
Nα−1∑
i=2

Nβ−3∑
j=1

uijAi (α) bj (β) ,

v (α, β) = sinh|α̂1|A1 (α) +
Na−1∑
i=2

Nβ−3∑
j=1

vijAi (α) bj (β), (5.13)

p (α, β) =
Nα∑
i=1

Nβ−3∑
j=1

pijAi (α) bj (β),

where the Ai(α), i = 1, . . . Nα are normalized splines in α and the bj, j = 1, . . . , Nβ−3 are
periodic splines in β, satisfy the boundary and periodicity conditions (5.8). The uij , vij , pij
are unknown coefficients, to be determined later.

Part (a) of Figure 5.2 displays normalized B-splines Ai(α), i = 1, . . . , Nα , for Nα = 10,
kα = 5, vα = 4, and part (b) displays periodic B-splines bj, j = 1, . . . , Nβ − 3, for Nβ =
10, kβ = 5 and vβ = 4. These splines possess three continuous derivatives at internal
breakpoints.

Substituting expansions (5.13) into the equations of motion and continuity (5.12), multi-
plying through by Frs (α, β), and integrating over the domain, in accordance with Galerkin’s
method, we obtain〈
f (1) (α, β) , Frs (α, β)

〉 = 0, (5.14a)〈
f (2) (α, β) , Frs (α, β)

〉 = 0, (5.14b)

〈div v (α, β) , Frs (α, β)〉 + δt

2

〈
div
[
f (1) (α, β) , f (2) (α, β)

]
, Frs (α, β)

〉 = 0. (5.14c)

Here we used the symbol Frs (α, β) ≡ Ar(α)bs(β) and the symbol 〈· , ·〉 to represent the
inner product of two functions calculated over the domain 0 ≤ α, β ≤ 1.

Our task can now be defined as solving the discretized system of equations (5.14) subject
to the single condition p(0, 0) = 0, which takes the form

p1,1 = 0.

This formulation, which closely follows that of Zienkiewicz and Woo (1991), leads to a
nonsingular algebraic system for the steady-state Navier-Stokes problem.

The system of nonlinear algebraic equations that result from the Galerkin discretization,
Eq. (5.14), can be put into concise form:

G̃ (μ) = 0, μ = (u, λ) , (5.15)



5.2 / Convective Inertia Limit, �∗ → 0, Rε ≥ 1 193

Figure 5.2. B-splines: (a) normalized splines Ai(α), (b) periodic splines bi(β). (Nα = Nβ = 10,
kα = kβ = 5)
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where u is the vector of state variables {uij , vij , pi,j } and λ is the vector of parameters 
,
η, ε, and Re.

The set of nonlinear equations (5.15) is difficult to solve for parameter values outside a
narrow range, and we employ parametric continuation in conjunction with Gauss-Newton
iteration (Ortega and Rheinboldt, 1970). Parametric continuation is a scheme that allows
for systematic determination of starting points for the iteration; using this technique one
can trace out the solution in parameter space. The simplest continuation scheme would be
to employ the solution obtained at, say, Re = 1 where the solution is easy to come by,
as starting point for the iteration at, say, Re = 10, where the solution is more difficult to
obtain.1 There are, of course, efficient schemes to accomplish this. Details can be found,
e.g., in Keller (1977) and Seydel (1988); the solution scheme detailed in Chapter 6 was
taken from Szeri and Al-Sharif (1995).

Lubrication Approximation in Bipolar Coordinates
While in the previous section our aim was to solve the exact Navier-Stokes problem, in
the present section the objective is to find approximate solutions for thin films but without
neglecting film curvature. To discover the correct approximation, we make use of the
geometry of the thin film by recognizing the existence of two different scale lengths that
are three orders of magnitude apart. The length scales we adopt are Lβ = r1 along the
principal dimension of the film and Lα = r1 (α2 − α1) across it. The continuity equation is
normalized according to

α = 
 (α̂ − α̂1) , β = β̂/2π, V = r1ωv, 
 = 1

(α̂2 − α̂1)
(5.16)

as the azimuthal velocity is of order r1ω. Then, to have the terms of the continuity equation
balance, we must scale the â component of the velocity as

U = 1

2π

r1ωu. (5.17)

The normalized pressure p̄(α, β) is defined through

p̄ = 2π
p

ρU 2∗

(
Lα

Lβ

)
re,

(5.18)

U∗ = r1ω, re = U∗Lα
ν
, Lα = r1 (α̂2 − α̂1) , Lβ = r1.

We are now ready to write the normalized equations of motion, neglecting terms of
the order (α̂2 − α̂1)2 or smaller. This order of approximation is consistent with lubrication
approximation, as

r2 − r1
r1

=
2 cosh

α̂2 + α̂1

2
sinh

α̂2 − α̂1

2
sinh α̂1

≈ (α2 − α̂1)

tanh α̂1
(5.19)

and tanh(α̂1 = O (1) for conventional bearing geometries.

1Parametric continuation is a particularly useful technique for mapping out solutions in case of solution
multiplicity (Keller, 1977).
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The normalized equations of motion thus take the form

∂p̄

∂α
= 0

(5.20)

− 1

(2π )2 h

∂p̄

∂β
= 1

h2 sinh α̂1

∂2v

∂α2
+ r∗e

[
1

h

(
u
∂v

∂α
+ v ∂v

∂β

)]
.

Note that r∗e ≡ 1
2π
re is the reduced Reynolds number of the problem, analogous to Rε

of Eq. (2.58). The condition Rε → 0 of classical lubrication theory is equivalent, thus, to
r∗e → 0 and, upon applying this limit, Eq. (5.20) reduces to

−sinh α̂1
h

(2π )2

∂p̄

∂β
= ∂2v

∂α2
,

∂p̄

∂α
= 0, (5.21)

with boundary conditions

u = 0, v = 1 at α = 0, (5.22a)

u = v = 0 at α = 1, (5.22b)

To solve Eq. (5.21), we integrate twice with respect to α and obtain

v = 1

C

∫ α

0

∫ φ

0
h (η, β)

dp̄ (β)

dβ
dη dφ + αf (β) + F (β) , C ≡ − (2π )2

sinh α̂1
. (5.23a)

Here f (β) and F(β) are arbitrary functions of β and serve to make Eq. (5.23) satisfy the
boundary conditions (5.22).

The complete solution of Eq. (5.21) that satisfies the boundary conditions (5.22) is

v = 1

C

dp̄ (β)

dβ

[∫ α

0

∫ ᾱ

0
h (η, β)dη dᾱ − α

∫ 1

0

∫ ᾱ

0
h(η, β)dηdᾱ

]
+ (1 − α). (5.23b)

Substitution into the integrated (across the film) continuity equation yields

∂

∂β

{
∂p̄

∂β

∫ 1

0
h (α, β)

[∫ α

0
I (ᾱ, β) dᾱ − α

∫ 1

0
I (ᾱ, β) dᾱ − C (1 − α)

]
dα

}
= 0,

(5.24)

I (α, β) ≡
∫ α

0
h (φ, β) dφ.

The innermost integral of Eq. (5.24) was obtained analytically while the other integrals
necessary to solve for p̄ were performed via Gaussian quadrature (Dai, Dong, and Szeri,
1992). The boundary conditions are p̄(0) = p̄(1) = 0.

To investigate the limit of the sequence of results obtained with sequentially smaller
values of C/r1, we compare at Re = 0 solutions from the Navier-Stokes equations with those
of the bipolar lubrication theory as (α̂2 − α̂1) → 0. Table 5.1 displays results for Sommerfeld
boundary conditions, while Table 5.2 was obtained for Gümbel conditions. These tables
contain the Sommerfeld number (inverse of nondimensional force) and the nondimensional
spring coefficients (4.14a). The data indicate that on decreasing the clearance ratio both the
Navier-Stokes theory and the bipolar lubrication theory converge to a common limit, this
limit being the classical lubrication theory of Reynolds.

The exact, zero Reynolds number solution of Ballal and Rivlin (1976) valid for arbitrary
clearance ratio, can be employed to study film curvature effects. When this solution is



196 5 / Effects of Fluid Inertia

Table 5.1. Convergence of solutions with (C/R) → 0

Theory (C/R) S kRR kRT kTR kTT

Navier-Strokes 0.002 0.16880 0.0 59.2402 −59.2492 0.0
0.001 0.16883 0.0 59.2300 −59.2385 0.0
0.0005 0.16885 0.0 59.2249 −59.2330 0.0

Reynolds 0.0 0.16886 0.0 59.2198 −59.2288 0.0

Bipolar lubrication 0.0005 0.16891 0.0 59.2037 −59.1951 0.0
0.001 0.16898 0.0 59.1786 −59.1703 0.0
0.002 0.16912 0.0 59.1285 −59.1208 0.0

ε = 0.1, Re = 0.0 Sommerfeld condition. (From Dai, R. X., Dong, Q. M. and Szeri, A. Z. Approxi-
mations in hydrodynamic lubrication. ASME Journal of Tribology, 114, 14–25, 1992.)

expanded in powers of the clearance ratio, the first two terms correspond to the Myllerup
and Hamrock (1994) solution, which employs regular perturbation:

p̄ = 12πε sin θ (2 + ε cos θ )

(2 + ε2)(1 + ε cos θ)2

+
(
C

R

)
4πε sin θ (1 + 5ε2 + 2ε(2 + ε2) cos θ )

(2 + ε2) (1 + ε cos θ )3 +O
(
C

R

)2

.

The first term is seen to be identical to the solution of the Reynolds equation under full
film boundary conditions [cf. Eq. (3.76)], while the second term is the first order curvature
correction

An alternative way of interpreting the results of Tables 5.1 and 5.2 is by calculating the
nondimensional group P/μN, where P is the average pressure defined as P = W/LD. The
results are shown in Table 5.3 at various values of (C/R). It may be concluded here that

PBP < PRE < PNS,

Table 5.2. Convergence of solutions with (C/R) → 0

Theory (C/R) S kRR kRT kTR kTT

Navier-Stokes 0.002 0.33692 3.8022 29.6201 −29.6246 1.8943
0.001 0.33698 3.8026 29.6150 −29.6192 1.8944
0.0005 0.33701 3.8029 29.6125 −29.6165 1.8945

Reynolds 0.0 0.33704 3.8085 29.6099 −29.6144 1.8945

Bipolar lubrication 0.0005 0.33706 3.8080 29.6075 −29.6118 1.8943
0.001 0.33732 3.8042 29.5851 −29.5892 1.8924
0.002 0.33760 3.7999 29.5604 −29.5642 1.8903

ε= 0.1, Re = 0.0 Gümbel condition. (From Dai, R. X., Dong, Q. M. and Szeri, A. Z. Approximations
in hydrodynamic lubrication. ASME Journal of Tribology, 114, 14–25, 1992.)
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Table 5.3. Effect of film curvature on P/μN

(P/μN) × 10−5

Boundary condition (C/R) Navier-Stokes Reynolds Bipolar lubrication

Sommerfeld 0.002 7.4202 7.4175 7.4052
0.001 29.6754 29.6701 29.6454
0.0005 118.6908 118.6802 118.6732

Gümbel 0.002 14.8104 14.8052 14.7824
0.001 59.2311 59.2207 59.1786
0.0005 236.8966 236.8826 236.8125

ε = 0.1, Re = 0.0. (From Dai, R. X., Dong, Q. M. and Szeri, A. Z. Approximations in hydrodynamic
lubrication. ASME Journal of Tribology, 114, 14–25, 1992.)

where PBP, PRE, and PNS represent the specific pressure according to the bipolar lubrication
theory, the lubrication theory of Reynolds, and the Navier-Stokes theory, respectively. Thus,
neglect of the higher order terms in Eq. (2.55) underestimates the specific bearing pressure
at all values of the clearance ratio (C/R), i.e., PBP, PRE < PNS. Neglect of the curvature of
the lubricant film, on the other hand, leads to an overestimate of the specific pressure, i.e.,
PBP < PRE. The net effect is shown in that the specific pressure of lubrication theory, PRE,
is bracketed by the specific pressures PBP and PNS. This convergence of both the bipolar
lubrication theory and the Navier-Stokes theory to the classical lubrication theory shows
that the latter constitutes the proper limit as (C/R) → 0.

The Sommerfeld number, S, and the stiffness matrix, k, can now be calculated for
0 < Re < ReCR. Table 5.4 contains the results of these computations at ε = 0.1, 0.5,
and 0.7. The data of Table 5.4 clearly demonstrate that the Sommerfeld number remains
virtually constant for all Re < ReCR . The largest change is encountered with Gümbel
boundary conditions at ε = 0.1, amounting to −6.5% change in S when increasing the
Reynolds number from zero to Re = 900, i.e., Rε = 1.8. The critical Reynolds number
here is ReCR = 932. Looking at the data of Table 5.4, it does become obvious, however,
that significant changes are encountered in the diagonal components of the stiffness matrix
kRR, kTT, which increase apparently linearly with the Reynolds number. Changes in bearing
stiffness, of course, alter the stability characteristics of the bearing for actual running
conditions, as contrasted to the inertialess world of classical lubrication theory.

These calculations suggest a generalization of the conclusion offered by DiPrima and
Stuart (1972b): “first order correction for inertia does not affect the vertical force or torque,
but does introduce a horizontal force.” Our extension is: Correction for inertia does not
affect the resultant force or torque nor the off-diagonal components of the stiffness matrix.
It does, however, induce changes in the diagonal components, the changes being linear in
the Reynolds number. In fact, the conclusions of DiPrima and Stuart hold not only in the
qualitative but also in the quantitative sense. The small perturbation theory calculates the
radial force component, F̄R , for Sommerfeld boundary condition at (C/R = 0.002), from
(DiPrima and Stuart, 1972b)

F̄R = 2π2

35ε(2 + ε2)

[
−(7 + 8ε2) +

√
1 − ε2

2 + ε (14 + 44ε2 + 5ε4)

]
Rε. (5.25)
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Table 5.4. Effect of lubricant inertia (C/R = 0.002)

ε Boundary condition Re S kRR kRT kTR kTT

0.1 Sommerfeld 0.0 0.16880 7.3 × 10−6 59.2402 −59.2492 7.6 × 10−6

50.0 0.16880 0.1836 59.2499 −59.2588 0.1944
100.0 0.16879 0.3673 59.2525 −59.2603 0.3889
500.0 0.16865 1.8374 59.2708 −59.2786 1.9447
900.0 0.16836 3.3091 59.2923 −59.3151 3.5016

Gümbel 0.0 0.33692 3.8122 29.6201 −29.6246 1.8943
50.0 0.33565 3.9047 29.7259 −29.7068 1.9963

100.0 0.33440 3.9977 29.8318 −29.7891 2.0946
500.0 0.32451 4.7619 30.6823 −30.4498 2.9076
900.0 0.31480 5.5616 31.5366 −31.1138 3.7663

0.5 Sommerfeld 0.0 0.03288 5.2 × 10−6 60.8262 −67.7159 3.2 × 10−6

50.0 0.03288 0.1323 60.8262 −67.6976 0.0811
100.0 0.03288 0.2750 60.8282 −67.6160 0.1491
500.0 0.03288 1.3347 60.8296 −67.6094 0.7453
900.0 0.03287 2.4734 60.8326 −67.5939 1.3415

Gümbel 0.0 0.06174 27.2012 30.4131 −33.8579 11.1500
50.0 0.06172 27.1428 30.4081 −33.7024 11.1937

100.0 0.06169 27.1031 30.4077 −33.5617 11.2470
500.0 0.06150 26.6237 30.4031 −32.4737 11.5515
900.0 0.06129 26.0506 30.3997 −31.5835 11.8643

0.7 Sommerfeld 0.0 0.02143 1.1 × 10−7 66.6671 −104.60 −2.8 × 10−8

50.0 0.02143 0.3630 66.6671 −104.60 −0.0173
100.0 0.02143 0.7259 66.6671 −104.60 −0.0346
500.0 0.02143 3.6294 66.6669 −104.60 −0.1730

1100.0 0.02143 7.9823 66.6666 −104.61 −0.3798

Gümbel 0.0 0.03636 73.4232 33.3335 −52.3011 −20.7935
50.0 0.03632 73.6046 33.3782 −52.4787 −20.8022

100.0 0.03628 73.7861 33.4228 −52.6563 −20.8110
500.0 0.03597 75.2469 33.7795 −54.0772 −20.8839

1100.0 0.03551 77.4519 34.3127 −56.2057 −21.0019

(From Dai, R. X., Dong, Q. M. and Szeri, A. Z. Approximations in hydrodynamic lubrication. ASME
Journal of Tribology, 114, 14–25, 1992.)

In Table 5.5, we compare our numerical results for F̄R with that of Eq. (5.25) and show
excellent agreement for Re < ReCR and for all ε ≤ 0.7 for conventional journal bearing
geometry. This conclusion still holds for larger values of (C/R), as indicated in Table 5.6.

The results obtained here demonstrate convincingly that lubricant inertia has negligible
effect on load carrying capacity in noncavitating film, for isothermal laminar flow of the
lubricant. The stability characteristics of the bearing are, however, affected by lubricant iner-
tia. These conclusions apply to practical bearing operations directly, and assert that bearing
load can be calculated from classical, i.e., noninertial, theory. To investigate stability, how-
ever, one must take lubricant inertia into account, even during laminar flow of the lubricant.
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Table 5.5. Comparison of numerical solution with small
perturbation solution

F̄R F̄R

ε Re Numerical solution DiPrima and Stuart

0.1 10.0 0.0039 0.0038
100.0 0.0389 0.0382
500.0 0.1945 0.1910
900.0 0.3502 0.3438

0.3 50.0 0.0446 0.0446
100.0 0.0892 0.0892
500.0 0.4461 0.4461
900.0 0.8029 0.8030

0.5 50.0 0.0406 0.0372
100.0 0.0746 0.0745
500.0 0.3727 0.3724
900.0 0.6708 0.6702

0.7 50.0 −0.0121 −0.0122
100.0 −0.0242 −0.0244
500.0 −0.1211 −0.1220
1100.0 −0.2660 −0.2683
1145.0 −0.2760 −0.2793

C/R = 0.002, Sommerfeld condition. (From Dai, R. X., Dong, Q.
M. and Szeri, A. Z. Approximations in hydrodynamic lubrication.
ASME Journal of Tribology, 114, 14–25, 1992.)

Solutions are obtained here under Sommerfeld and Gümbel boundary conditions, neither
of which is particularly useful in practice. There is some evidence (You and Lu, 1987) that
in journal bearings lubricant inertia has a tendency of stretching the film in the direction of
rotation. This result of You and Lu was obtained by extrapolation from the small perturbation
analysis of Reinhardt and Lund (1975). Ota et al. (1995) confirm the conclusions of You
and Lu on fluid inertia caused film stretching.

Hydrostatic Bearings

For simplicity and because most of the published results on the effect of fluid
inertia in hydrostatic lubrication are related to this bearing type, we consider here only the
circular step bearing.

When both surfaces of a circular step bearing are stationary and parallel and when
fluid inertia is neglected, theory requires a logarithmic pressure drop to maintain viscous
dissipation. Experiments performed at low flow rates verify this theoretical result (Coombs
and Dowson, 1965).

If the throughflow Reynolds number, defined by

RQ = Q

2πνh
,
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Table 5.6. Effect of fluid inertia on solution

Boundary
conditions Re S kRR kRT kTR kTT (F̄R)Numerical (F̄R)DiPrima

Sommerfeld 0.0 0.03118 0.00 64.14 −74.73 0.00 0 0
50.00 0.03089 13.17 64.26 −74.05 7.90 3.9483 3.7236
100.0 0.03005 25.18 64.67 −72.13 15.74 7.8722 7.4472
150.0 0.02880 35.23 65.39 −69.18 23.40 11.6990 11.1708

Gümbel 0.0 0.05883 28.32 32.07 −37.36 11.28 − −
50.0 0.05555 20.55 32.33 −24.60 15.85 − −

100.0 0.05088 11.71 32.92 −13.26 21.48 − −
150.0 0.04568 3.56 33.87 −4.35 27.75 − −

C/R= 0.02, ε= 0.5, ReCR = 128.64. (From Dai, R. X., Dong, Q. M. and Szeri, A. Z. Approximations
in hydrodynamic lubrication. ASME Journal of Tribology, 114, 14–25, 1992.)

where Q is the volumetric rate of throughflow, is increased, convective inertia gains impor-
tance. Its effect is to increase the pressure in the radial direction rapidly at small radii and
moderately at large radii. Convective inertia effects far outweigh viscous dissipation at
small values of the dimensionless radius, defined by

ρ = r

h
√
RQ
,

whereas at large ρ the creeping flow solution remains essentially correct (Figure 5.3).2

Livesey (1960) argued that departure from parallel flow must be slight even at large flow
rates and retained u∂u/∂r , where u is the creeping solution, as the significant inertia term.
Livesey’s analysis yields

∂P̄

∂ρ
= −12

ρ
+ 2K

ρ3
. (5.26)

In this equation

P̄ (ρ) = h

μνRQ

∫ h

0
p (r, z) dz (5.27)

is a dimensionless average pressure. The pressure gradient of creeping flow can be obtained
from Eq. (3.6); in our present notion it is dP̄ /dρ = −12/ρ. The value of K was given by
Livesey as 0.6, subsequent authors gave K = 0.72 (Moller, 1963) and K = 0.77143 (Jackson
and Symmons, 1965).

There is further distortion of the creeping flow profile due to centrifugal inertia, if the
runner surface is made to rotate (Figure 5.4). Osterle and Hughes (1958) demonstrated
that this distortion can be large enough to diminish the load capacity of a hydrostatic
bearing. Their solution was based on the assumption of negligible convective inertia and

2This statement is in complete agreement with the conclusion that inertia becomes important for Rε ≥
1. In the present example the characteristic velocity is U∗ = Q/2πr and the characteristic dimension
Ly = h. Then Re = (h/r)RQ and Rε = 1/ρ2; thus, inertia effects will be insignificant when ρ > 1.
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Figure 5.3. Flow between stationary parallel disks. Effect of convective inertia on pressure. (�)
Experimental values of Jackson and Symmons (1965). Theoretical curves: (––––) creeping
flow, Eq. (3.26); (— .. —) Jackson and Symmons (1965); (—) Szeri and Adams. (Reprinted
with the permission of Cambridge University Press from Szeri, A. Z. and Adams, M. L.
Laminar throughflow between closely spaced rotating disks. J. Fluid Mech., 86, 1–14, 1978.)

Figure 5.4. Flow between rotating parallel disks, E = 2.9. Effect of rotational inertia on
pressure. Experimental values: (�) Coombs and Dowson (1965), (©) Nirmal (Szeri and
Adams, 1978). Theoretical curves: (—..—) Osterle and Hughes (1958), (—) Szeri and Adams.
(Reprinted with the permission of Cambridge University Press from Szeri, A. Z. and Adams,
M. L. Laminar flow between closely spaced rotating disks. J. Fluid Mech., 86, 1–14,
1978.)
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on a rotational inertia that was calculated from a linear circumferential velocity. The radial
pressure gradient for this case was found to be

dP̄

dρ
= −12

ρ
+ 3ρ

10E2
. (5.28)

Here E = v/h2ω is the Ekman number and ω is the runner angular velocity. [The condition
Rε ≥ 1 now assumes the form ρ/E2 ≥ O(1).]

In a more thorough analysis of the problem, we consider two parallel disks of radius
r2 located at a distance h apart. The lower disk is stationary, and the upper disk rotates
at the angular velocity ω. We write the equations of motion relative to cylindrical polar
coordinates, assuming rotational symmetry, as

ur
∂ur

∂r
− u2

θ

r
+ uz ∂ur

∂z
= ν

(
∇2ur − ur

r2

)
− 1

ρ

∂p

∂r
, (5.29a)

ur

r

∂

∂r
(ruθ ) + uz ∂uθ

∂z
= ν

(
∇2uθ − uθ

r2

)
, (5.29b)

ur
∂uz

∂r
+ uz ∂uz

∂z
= ν∇2uz − 1

p

∂p

∂z
,

(5.29c)
0 < r1 < r < r2 0 < z < h.

Eliminating the pressure between the first and third equations by cross differentiation and
writing the resulting equations in terms of the stream function �, defined through

ur = 1

r

∂�

∂z
uz = −1

r

∂�

∂r
, (5.30)

we obtain the following system of equations (Szeri and Adams, 1978):

∂�

∂z

∂
(
D2�

)
∂r

− ∂�

∂r

∂
(
D2�

)
∂z

− 1

r

∂u2
θ

∂r
= ν

(
r3D2 + 4

∂

∂r

)
D2�, (5.31a)

∂�

∂z

∂ (ruθ )

∂r
− ∂�

∂r

∂ (ruθ )

∂z
= νr3D2 (ruθ ) . (5.31b)

The operator D2 in Eqs. (5.31) has the definition

D2 = 1

r2

(
∇2 − 2

r

∂

∂r

)
.

Equations (5.31) are supplemented with the boundary conditions

∂�

∂r
= ∂�

∂z
= uθ = 0 at z = 0,

∂�

∂r
= ∂�

∂z
= 0, uθ = rω at z = h, (5.32)

� (r, h) −� (r, 0) = Q

2π
.

The last condition of Eqs. (5.32) expresses global conservation of mass. In addition, we
need boundary conditions on both � and uθ at r = r1 (recess radius) and r = r2.
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It can be shown (Szeri, Schneider, Labbe, and Kaufman, 1983) that a minimum of four
dimensionless parameters are required to characterize the problem as given by Eqs. (5.31)
and (5.32). But if the spacing of the disks is narrow – that is, if h/r2 � 1 – then the radial
variation of the shear stress is negligible, and we have the approximation

D2 ≈ 1

r2

∂2

∂z2

h

r2
� 1. (5.33)

Under the thin-film approximation, the problem can be characterized by a single dimen-
sionless variable. To show this, we substitute

z = ζh, r = h√RQρ
(5.34)

� = hν RQ�̄, uθ = hω√RQρ�̄
into Eqs. (5.31) and obtain

d�̄

∂ζ

∂

∂ρ

(
1

ρ2

∂2�̄

∂ζ 2

)
− ∂�̄

∂ρ

∂

∂ζ

(
1

ρ2

∂2�̄

∂ζ 2

)
− 1

E2

∂
(
ρ�̄2

)
∂ζ

= 1

ρ

∂4�̄

∂ζ 4
, (5.35a)

d�̄

∂ζ

∂(ρ2�̄)

∂ρ
− ∂�̄

∂ρ

∂(ρ2�̄)

∂ζ
= ρ ∂

2
(
ρ2�̄

)
∂ζ 2

. (5.35b)

With the aid of Eq. (5.34), we also transform the boundary conditions into dimensionless
form

∂�̄

∂ρ
= ∂�̄

∂ζ
= �̄ = 0 at ζ = 0,

∂�̄

∂ρ
= ∂�̄

∂ζ
= 0, �̄ = 1 at ζ = 1, (5.36)

�̄ (ρ, 1) − �̄ (ρ, 0) = 1.

Equations (5.35a) and (5.35b) are now parabolic, and thus boundary conditions can no
longer be prescribed at r2. Furthermore, since the film is thin, the precise form of the
upstream boundary (now initial) condition becomes unimportant; thus, in Eqs. (5.35) and
(5.36) we have a one-parameter family of flows.

The parabolic system of Eqs. (5.35) and (5.36) has been solved, after reduction to
ordinary differential equations by the Galerkin method, with a predictor-corrector equation
solver. The solutions show strong interaction between circumferential and radial flows,
leading to consistently lower torque on the stationary disk. The radial derivative of the
dimensionless average pressure is given by (Szeri and Adams, 1978)

dP̄

dρ
= −12

ρ
+ 6

5ρ3
+ ρ

3E2
+
∑
n

[
96

π2ρ2
Xn

(
f ′
n − 1

ρ
fn

)
− Znfn

+ ρ

E2

(
1

2
g2
n − 2 (−1)n

πn
gn

)]
+
∑
n,m

Yn,m

(
π

ρ3
fnfm − 2π

ρ2
f ′
nfm

)
. (5.37)

Here fn(ρ) and gn(ρ) are the coefficients in the Galerkin expansions for �̄ and �̄, respec-
tively, and Xn, Yn,m, and zn are constants. The reader may wish to compare Eq. (5.37) to
Eq. (5.28), obtained by simpler means.
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Figure 5.5. Dimensionless pressure profiles in fluid between rotating parallel disks for various
values of the Ekman number. . . . , E = 0.5; –..–, E = 0.9; –o–, E = 2.0; ––, E = 2.9; –.–, E =
3.9; - - -, E = 4.9; —-, E = 100.0 (∼creeping flow). (Reprinted with the permission of
Cambridge University Press from Szeri, A. Z. and Adams, M. L. Laminar through flow
between closely spaced rotating disks. J. Fluid Mech., 86, 1–14, 1978.)

At any radial position r,

p (r) = p (r1) + μνRQ

h2

P̄ (ρ; ρ1) , (5.38)

where 
P̄ (ρ; ρ1) ≡ P̄ (ρ) − P̄ (ρ) and is calculated from Eq. (5.37). It can be shown that
the initial conditions are washed out completely within a short distance, so that


P̄ (ρc; ρb) = 
P̄ (ρc; ρa) −
P̄ (ρb; ρa) ρa < ρb < ρc (5.39)

is independent of the initial conditions on �̄ and �̄ and is valid for all thin films without
backflow, at points sufficiently far removed from the inlet.

In Figure 5.5, pressure profiles are plotted for various values of the Ekman number, i.e.,
for various rates of rotation at given viscosity, against the nondimensional radius. Let us
say our recess boundary is located at ρ1 = 2. In the absence of rotation, the profile labeled
‘creeping flow’ applies, and we see that no matter where the pad outer edge ρ2, ρ2 > ρ1,
might be located, the pressure decreases monotonically from the recess all the way to the
pad outer edge. Now, since at the pad outer edge the pressure is ambient by supposition, the
pressure will be above ambient everywhere within the clearance gap, yielding a force capa-
ble of supporting an external load. Conditions change drastically, however, when rotation is
added, i.e., when the Ekman number is made finite. For finite values of the Ekman number,
the pressure is no longer a monotonic decreasing function of ρ; for any nonzero rotation it
is possible to select a pad outer radius such that a region of subambient pressure will exist
within the clearance gap. If the region of subambient pressure is sufficiently large and the
film does not cavitate, a negative pressure force might be developed that will tend to draw
the runner towards the bearing. Of course the film is expected to cavitate when the pressure
falls below ambient; in any case, and the hydrostatic bearing will loose its load carrying
capacity. Subambient pressures and the resulting cavitation can be avoided by choosing
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ρ1 < ρ2 < ρmin(E), where ρmin is the location where 
P̄ reaches its minimum for a given
Ekman number.

The calculations above were performed for constant lubricant viscosity. It is possible to
include the lubricant energy equation in Eq. (5.29) and also to account for the temperature
dependence of lubricant viscosity (Gourley, 1977).

5.3 Total Inertia Limit, �∗/Rε → 1, Re ≥ 1

The conditions of this limit are by far the most demanding mathematically, as the
equations are now time dependent as well as nonlinear:

ρ

(
∂u

∂t
+ u∂u

∂x
+ υ ∂u

∂y
+ w∂u

∂z

)
= −∂p

∂x
+ μ∂

2u

∂y2
,

(5.40)

ρ

(
∂w

∂t
+ u∂w

∂x
+ υ ∂w

∂y
+ w∂w

∂z

)
= −∂p

∂z
+ μ∂

2w

∂y2
.

Equation (5.40) was solved by Reinhardt and Lund (1975) for journal bearings to first order
in a perturbation series in Rε, the zero-order solution representing the classical Reynolds
theory. At small values of the Reynolds number regular perturbation in Rε will work, as
was shown by Kuzma (1967), Tichy and Winer (1970), and Jones and Wilson (1974), but
care must be exercised as the perturbation series is divergent (Grim, 1976). There are also
numerical solutions available (Hamza, 1985).

Another approach is via the “method of averaged inertia” (Szeri, Raimondi, and Giron-
Duarte, 1983), which was first employed in this country by Osterle, Chou, and Saibel
(1975), but in connection with limit (3). For more recent work, see San Andres and Vance
(1987).

The Method of Small Perturbations

Journal Bearings
We follow Reinhardt and Lund (1974) and apply small perturbation analysis to Eq. (5.40).
We also put here Lxz = R and Ly = C, where R is the radius and C the radial clearance, and
employ Eqs. (2.58a) to (2.58c), to nondimensionalize Eq. (5.40). Our small parameter is
the reduced Reynolds number Rε ≡ (Ly/Lxz)Re = C2ω/ν, and we write⎧⎪⎪⎨

⎪⎪⎩
ū

v̄

w̄

p̄

⎫⎪⎪⎬
⎪⎪⎭ =

⎧⎪⎪⎨
⎪⎪⎩
ū(0)

v̄(0)

w̄(0)

p̄(0)

⎫⎪⎪⎬
⎪⎪⎭+ Rε

⎧⎪⎪⎨
⎪⎪⎩
ū(1)

v̄(1)

w̄(1)

p̄(1)

⎫⎪⎪⎬
⎪⎪⎭+O(R2

ε

)
. (5.41)

Substituting these expansions into Eq. (5.40) and collecting like terms, we obtain To zero
order:

∂p̄(0)

∂x̄
= ∂2ū(0)

∂ȳ2

∂p̄(0)

∂z̄
= ∂2w̄(0)

∂ȳ2
(5.42)

∂ū(0)

∂x̄
+ ∂v̄(0)

∂ȳ
+ ∂w̄(0)

∂z̄
= 0.



206 5 / Effects of Fluid Inertia

Following the procedure of Section 2.2, Eqs. (5.42) can be combined to yield a single
equation in pressure,

∂

∂x̄

{
h̄3 ∂p̄

(0)

∂x̄

}
+ ∂

∂z̄

{
h̄3 ∂p̄

(0)

∂z̄

}
= 6

∂h̄

∂x̄
+ 12

∂h̄

∂t̄
, (5.43)

which we recognize as the Reynolds equation (2.80).
To first order:

∂2ū(1)

∂ȳ2
= ∂p̄(1)

∂x̄
+ ū(0) ∂ ū

(0)

∂x̄
+ v̄(0) ∂ū

(0)

∂ȳ
+ w̄(0) ∂ū

(0)

∂z̄
+ ∂ū(0)

∂t̄

∂2w̄(1)

∂ȳ2
= ∂p̄(1)

∂z̄
+ ū(0) ∂w̄

(0)

∂x̄
+ v̄(0) ∂w̄

(0)

∂ȳ
+ w̄(0) ∂w̄

(0)

∂z̄
+ ∂w̄(0)

∂t̄
(5.44)

∂ū(1)

∂x̄
+ ∂v̄(1)

∂ȳ
+ ∂w̄(1)

∂z̄
= 0.

It is, again, possible to eliminate the velocities and obtain a single equation in pressure:

∂

∂x̄

{
h̄3 ∂p̄

(1)

∂x̄

}
+ ∂

∂z̄

{
h̄3 ∂p̄

(1)

∂z̄

}
= ∂

∂x̄

{
−3h̄7

560

∂

∂x̄

[(
∂p̄(0)

∂x̄

)2

+
(
∂p̄(0)

∂z̄

)2
]

− 3h̄6

140

∂h̄

∂x̄

(
∂p̄(0)

∂x̄

)2

+ h̄5

20

∂2p(0)

∂x̄2
+ 13h̄4

140

∂h̄

∂x̄

∂p̄(0)

∂x̄
− h̄2

10

∂h̄

∂x̄

− 3h̄6

140

∂h̄

∂z̄

∂p̄(0)

∂x̄

∂p̄(0)

∂z̄
+ 13h̄4

70

∂p̄(0)

∂x̄

∂h̄

∂t̄
+ h̄5

10

∂2p̄(0)

∂x̄∂t̄

}

+ ∂

∂z̄

{
−3h̄7

560

∂

∂z̄

[(
∂p̄(0)

∂x̄

)2

+
(
∂p̄(0)

∂z̄

)2
]

− 3h̄6

140

∂h̄

∂x̄

∂p̄(0)

∂x̄

∂p̄(0)

∂z̄
+ h̄5

20

∂2p̄(0)

∂x̄∂z̄
+ 13h̄4

140

∂h̄

∂x̄

∂p̄(0)

∂z̄

− 3h̄6

140

∂h̄

∂z̄

(
∂p̄(0)

∂z̄

)2

+ 13h̄4

70

∂p̄(0)

∂z̄

∂h̄

∂t̄
+ h̄5

10

∂2p̄(0)

∂z̄∂t̄

}
. (5.45)

Thus, the zero-order pressure equation of the perturbation scheme is the classical
Reynolds equation (5.43), while Eq. (5.45) gives the first-order pressure correction.

It is obvious from Eq. (5.43) that

p̄(0) = p̄(0)(x̄, z̄; h̄, ˙̄h), (5.46a)

and, because the derivative ∂p̄(0)/∂t̄ occurs in Eq. (5.45),

p̄(1) = p̄(1)(x̄, z̄; h̄, ˙̄h, ¨̄h). (5.46b)

Let ψ be the angular coordinate measured from the load line that coincides with the
vertical axis, as shown in Figure 5.6. Then ψ = θ + φ, where φ is the attitude angle, and
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Figure 5.6. Journal bearing geometry for analysis of fluid inertia effects.

we have

h̄ = h

C
= 1 + ε cos (ψ − φ) (5.47)

= 1 + ξ̄ cosψ + η̄ sinψ.

Here ξ̄ and η̄ are nondimensional Cartesian coordinates (Figure 5.6).
If we superimpose dynamic motions of small amplitudes, 
ξ̄ , and, 
η̄, about the

equilibrium position (ξ̄0, η̄0). the film thickness will vary according to


h̄ = 
ξ̄ cosψ +
η̄ sinψ. (5.48)

From Eqs. (5.41) and (5.48), we have the first-order Taylor expansion about the equilibrium
position (ξ̄0, η̄0)

p̄ = p̄
(0)
0 + p̄(0)

ξ̄

ξ̄ + p̄(0)

η̄ 
η̄ + p̄(0)
˙̄ξ

 ˙̄ξ + p̄(0)

˙̄η 

˙̄η

(5.49)

+ Rε

[
p̄

(1)
0 + p̄(1)

ξ̄

ξ̄ + p̄(1)

η̄ 
η̄ + p̄(1)
˙̄ξ

 ˙̄ξ + p̄(1)

˙̄η 

˙̄η + p̄(1)

¨̄ξ

 ¨̄ξ + p̄(1)

¨̄η 

¨̄η
]

Equation (5.49) can now be substituted into Eqs. (5.43) and (5.48). Collecting again
like terms, we end up with a set of 12 linear partial differential equations for the determi-
nation of {

p̄
(0)
0 , p̄

(0)
ξ̄
, . . . , p̄

(1)
¨̄η

}
. (5.50)

In formulating these equations, we take into account that

h̄ = h̄0 +
h̄,
where

h̄0 = 1 + ξ̄0 cosψ + η̄0 sinψ

and

(h̄)n = (h̄0)n + n (h0)n−1
h̄+O[(
h̄)2].



208 5 / Effects of Fluid Inertia

The vertical and horizontal components of the force perturbations corresponding to the
various pressure perturbations, Eq. (5.49), are obtained from{

f
(α)
ξ̄ ,ω̄

f
(α)
η̄,ω̄

}
= π

2

(
D

L

)∫ (L/D)

−(L/D)

∫ x̄2

x̄1

p̄
(α)
ω̄

{
cosψ
sinψ

}
dψdz̄

α = 0, 1
ω̄ = ξ̄ , ˙̄ξ, . . . , ¨̄η.

(5.51)

We arrange the force components obtained in Eq. (5.51) in matrix form:

K (α) = −
⎡
⎣f (α)

ξ̄ ,ξ̄
f

(α)
ξ̄ ,η̄

f
(α)
η̄,ξ̄
f

(α)
η̄,η̄

⎤
⎦ , (5.52a)

C (α) = −
⎡
⎣f (α)

ξ̄ , ˙̄ξ
f

(α)
ξ̄ , ˙̄η

f
(α)

η̄, ˙̄ξ
f

(α)
η̄, ˙̄η

⎤
⎦ , (5.52b)

D = −
⎡
⎣f

(1)

ξ̄ , ¨̄ξ
f 1
ξ̄ , ¨̄η

f 1
η̄, ¨̄ξ
f

(1)
η̄, ¨̄η

⎤
⎦ . (5.52c)

Let 
 f = f − f 0 signify the perturbation of the nondimensional oil-film force due to
the small motion (
ξ̄, 
η̄) about the point of static equilibrium (ξ̄0, η̄0); then, using the
notation of Eq. (5.52), we can write


 f = − (K (0) + Rε K (1)
)

ξ̄ − (C (0) + RεC (1))
 ˙̄ξ − Rε D
 ¨̄ξ . (5.53)

Here
ξ̄ = (
ξ̄, 
η̄) is the (nondimensional) displacement vector. The diagonal elements
of D, the inertia coefficient matrix, are plotted against ε in Figure 5.7.

It is obvious from Eq. (5.53) that the incremental force on the journal away from static
equilibrium depends on acceleration as well as displacement and velocity of the journal, as
was asserted earlier in Chapter 4.

Squeeze Flow Between Parallel Plates

Two distinct problems have been considered by researchers: one in which the
upper plate moves impulsively from rest with prescribed velocity toward the fixed lower
plate (Kuzma, 1967; Tichy and Winer, 1970; Jones and Wilson, 1974; and Hamza and
MacDonald, 1981), and another in which the upper plate moves under the action of a
prescribed body force of constant magnitude (Weinbaum et al., 1985; and Yang and Leal,
1993).

We shall employ cylindrical polar coordinates (r, θ , z) and suppose that the fixed disk
is at z = 0 and the moving disk is located at z = h(t). Assuming the problem has axial
symmetry, we may state it in terms of a Stokes stream function �(r, z)

ur = 1

r

∂�

∂z
, uz = −1

r

∂�

∂r
. (5.54)

Let h0 and R, the initial separation and the radius of the disks, be chosen as characteristic
length in z and r, respectively. Also, let W∗ be the characteristic velocity in z, the precise
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Figure 5.7. Inertial coefficients for journal bearing; (a) Dξξ , (b) Dηη: ––, Szeri et al., (1983); •
Reinhardt and Lund, (1974). (Reprinted with permission from Szeri, A. Z., Raimondi, A. A.
and Giron-Duarte, A. Linear force coefficients for squeeze-film dampers. ASME Journal of
Lubrication Technology, 105, 326–334, 1983.)

form of which is to be defined later. Then, the equation of continuity dictates that the
characteristic velocity in r is

U∗ = W∗

(
r0

h0

)
.

We nondimensionalize the stream function and the coordinates according to

� = R2W∗�̄, r = Rr̄, z = h0z̄.

The problem has two spatial dimensions r and z. We can eliminate dependence on r by
making use of the von Karman (1921) similarity transformation

�̄ = r̄2Ḡ(z̄, t̄), ūr = r̄ ∂Ḡ(z̄, t̄)

∂z̄
, ūθ = −2Ḡ(z̄, t̄). (5.55)

On substituting assumption (5.55) into the r component of the Navier-Stokes equations,
we obtain (dropping the over bar)

Re[Gzt + (Gz)
2 − 2GGzz] −Gzzz = −1

r

∂p

∂r
. (5.56)

The z component of the equation simply serves to evaluate the rate of change of pressure
across the film and need not be considered here.

To arrive at Eq. (5.56), we used

T∗ = h0

W∗
, P∗ = μW∗

h0

(
R

h0

)2

, Re = h0W∗
ν
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for characteristic time, characteristic pressure, and squeeze Reynolds number, respectively,
and dropped the bar that signifies nondimensionality.

The left side of Eq. (5.56) is at most a function of z and t, while the right side is at most
a function of r and t, which prompts us to put

1

r

∂p

∂r
= A (t) . (5.57)

Here A(t) is an instantaneous constant.

Constant Approach Velocity
This is characterized by the boundary conditions3

G = Gz = 0 at z = 0, (5.58a)

G = 1/2,Gz = 0 at z = 1 − t, (5.58b)

and the initial condition4 (Jones and Wilson, 1974)

G = 1

2
z at t = 0+. (5.59)

The characteristic velocity in the z-direction is chosen in this case to be the constant
velocity of approach, W∗ = W. To eliminate the pressure term, we differentiate Eq. (5.56)
with respect to z. However, as the boundary condition (5.58a) is not easy to apply, we
transform to a moving coordinate system (y, T) as follows:

G(z, t) → F (y, T ), 0 ≤ y = −z/T ≤ 1, 0 ≤ T = t − 1 ≤ 1.

The boundaries are now fixed at y = 0 (stationary plate) and y = 1 (moving plate), and
Eq. (5.59) takes the form

− yT Fyyy − 2T Fyy + T 2FyyT + 2T FFyyy = Re−1Fyyyy. (5.60)

The transformed boundary conditions are given by

F = Fy = 0, on y = 0 (fixed disk) (5.61a)

F = 1/2, Fy = 0, on y = 1 (moving disk) (5.61b)

and the initial condition by

F = y/2, at T = −1. (5.62)

Following Jones and Wilson (1974), we seek solution for small Reynolds number and
assume that

F =
∑
n=0

εnfn(y), ε = TRe. (5.63)

Note that |ε| = W∗h(t)/ν is the instantaneous Reynolds number.

3Note that the instantaneous film thickness is given by H (t) = h(t)
h0

= 1 − W
h0
t = 1 − t̄ .

4To arrive at this initial condition, Jones and Wilson argue that vorticity is unchanged across t = 0 by
the velocity impulse, and as the only vorticity component is rGzz, we have Gzz = 0. This integrates to
our initial condition.
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On substituting Eq. (5.63) into Eq. (5.60), we obtain

f ′′′′
0 + ε[f ′′

1 − yf ′′′
0 − 2f ′′

0 + 2f0f
′′′
0 ]

(5.64)
+ ε2[f ′′′′

2 + f ′′
2 − yf ′′′

1 − 2f ′′
1 + 2(f ′′′

0 f1 + f0f
′′′′
1 )] + · · · = 0

The leading-order term supplies the lubrication approximation

f0 = 3

2
y2 − y3, (5.65a)

and for the first-order correction we obtain

f1 = 1

70
y7 − 1

20
y6 + 3

20
y5 − 1

4
y4 + 5

28
y3 − 3

70
y2. (5.65b)

Though these functions satisfy the boundary conditions, they do not satisfy the initial
condition and, therefore, cannot be valid for short times.

From Eq. (5.59), the first three terms of the series (5.63) yield5

1

r

∂p

∂r
= 6T 3

{
1 − 5

28
(TRe) − 277

323,400
(TRe)2 + · · ·

}
. (5.66a)

To study conditions at short times, Jones and Wilson scale the time variable with the
Reynolds number and find that the leading inner solution term of Eq. (5.60) is

FyyT = ReFyyyy.

Solution of this diffusion-type equation, found by separation of variables, leads to

1

r

∂p

∂r
= 6T 3{1 + 4 exp[λ2(T + 1)/Re] + · · ·}, (5.66b)

where λ = 3π − 4/3π is an eigenvalue. From Eq. (5.66b), we can estimate the elapse of
time after start for the initial condition to loose influence on the pressure gradient.

For large Reynolds number, the flow is of the boundary layer type and matching of inner
and outer solutions is employed. Further details of the analysis are available in the paper
by Jones and Wilson (1974).

Constant Applied Force
Following Yang and Leal (1993), for Re � 1 we choose the characteristic velocity as

W∗ = 4

π

f h3
0

μR4
, f = mg,

then the characteristic time is

T∗ = π

4

μR4

f h2
0

.

This choice of velocity and time scales is suggested by the equation of motion for the
body encompassing the upper plate. For Re � 1, we may neglect inertia of both fluid
and body, and the equation of motion of the body reduces to a balance of viscous forces

5Note that the right-hand side of Eq. (5.66a) is to be divided by Re to obtain agreement with Eq. (13.2)
of Jones and Wilson, as they scale the pressure with ρW2 and the radial coordinate with d.
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and the weight, f, of the body. The pressure term A(t), Eq. (5.60), is then calculated form
considering the equation of motion for the body containing the upper plate. We find in this
manner that

A (t) = 1 + Reβ
d2H

dt2
, β = 4h0m

πρR4
, Re = 4ρf h4

0

πμ2R4
� 1. (5.67)

Equation (5.60) now takes the form

∂2G

∂z∂t
+
(
∂G

∂z

)2

− 2G
∂2G

∂z2
− 1

Re

∂3G

∂z3
= 1

Re
+ β d

2H

dt2
(5.68a)

with boundary conditions

G = −1

2

dH

dt
,

∂G

∂z
= 0 at z = H,

G = ∂G

∂z
= 0 at z = 0, (5.68b)

G = 0, H = 1 at t = 0.

We seek solution of Eq. (5.68) in the form of a regular perturbation expansion:

G(z, t) = G(0)(z, t) + ReG(1)(z, t) + · · · , (5.69a)

H (t) = H (0)(t) + ReH (1)(t) + · · · . (5.69b)

The zero-order solution contains one unknown integration constant, c0,

G(0) = 1

4

(
H (0)z2 − 2

3
z3

)
, H (0) =

(
3

t + c0

)1/2

. (5.70)

The solution in Eq. (5.70) completely satisfies the boundary conditions but not the initial
condition, confirming our earlier conclusion that regular perturbation in Re cannot solve
Eq. (5.68) for short times. The reason is that the problem possesses two very different
time scales, the classical signature of a singular perturbation problem. The “outer” time
scale, T∗ = h0/W∗, and the expansions (5.69) characterize long-term behavior. Short-time
behavior, on the other hand, is characterized by the “inner” time scale, Tν = h2

0/ν. The
ratio of the time scales is Tν/T∗ = Re, which we have assumed to be asymptotically small.

Equation (5.69) will suffice as the outer solution. To obtain the inner solution, we have
to rescale the problem. The inner and outer (time) variables, t̄ and t respectively, are related
by t̄ = t/Re. Rescaling Eq. (5.68) accordingly, we obtain the equation valid for short
times

∂2G̃

∂z∂t̃
− ∂3G̃

∂z3
− 1 = Re

[
2G̃
∂2G̃

∂z2
−
(
∂G̃

∂z

)2
]

+ β

Re

d2H̃

dt̃2
. (5.71)

Here the tilde denotes the variables in the inner (short time) region.
To obtain the “inner” solution, i.e., to solve Eq. (5.71), we assume that

G̃(z, t̃) = G̃(0)(z, t̃) + ReG̃(1)(z, t̃) + · · · , (5.72a)

H̃ (t̃) = H̃ (0) + ReH̃ (1)(t̃) + · · · , H̃ (0) = 1. (5.72b)
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Figure 5.8. Composite uniform approximation to the film thickness as function of the small
time variable t̄ at Re = 0.1; – –, β = 10; - - - -, β = 0. (Reprinted with permission from Yang,
S.-M. and Leal, G. Thin fluid film squeezed with inertia between two parallel plane surfaces.
ASME Journal of Tribology, 115, 632–639, 1993.)

The governing equation and boundary and initial conditions for the leading-order terms
Ḡ(0) and H̄ (1) are

∂2G̃(0)

∂z∂t̃
− ∂3G̃(0)

∂z3
= 1 + β d

2H̃ (1)

dt̃2
, (5.73a)

G̃(0) = ∂G̃(0)

∂z
= 0 at z = 0, (5.73b)

∂G̃(0)

∂z
= 0, G̃(0) = −1

2

dH̃ (1)

dt̃
at z = 1, (5.73c)

G̃(0) = 0, H̃ (1) = 0 at t̃ = 0, (5.73d)

The system (5.73) is amenable to solution via separation of variables (Yang and Leal,
1953). Yang and Leal evaluate the first two terms in both inner and outer expansions, and
from these construct H in the overlap region by matching. This is depicted in Figure 5.8.

The Method of Averaged Inertia

This method was employed for the steady state lubrication problem by Osterle,
Chou, and Saibel (1957) and by Constantinescu (Constantinescu 1970; Constantinescu and
Galetuse, 1982). Here we follow Szeri, Raimondi, and Giron (1983) and write Eq. (5.2) in
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the form

∂u

∂t
+ u∂u

∂x
+ v ∂u

∂y
+ w∂u

∂z
= − 1

ρ

∂p

∂x
+ 1

ρ

∂Txy

∂y
,

(5.74)
∂w

∂t
+ u∂w

∂x
+ v ∂w

∂y
+ w∂w

∂z
= − 1

ρ

∂p

∂z
+ 1

ρ

∂Tzy

∂y
.

As we are interested in average (across the film) quantities here, we integrate Eq. (5.74)
across the film and on using the averaged continuity equation

∂

∂x

∫ h(x,t)

0
u dy + ∂

∂z

∫ h(x,t)

0
w dy +

(
v − u∂h

∂x

)∣∣∣∣
h(x,t)

= 0 (5.75)

obtain

∂

∂t

∫ h

0
u dy + ∂

∂x

∫ h

0
u2 dy + ∂

∂z

∫ h

0
uw dy

(5.76a)

−
{
u

(
∂

∂x

∫ h

0
u dy + ∂

∂z

∫ h

0
w dy

)}∣∣∣∣
h

= −h
ρ

∂p

∂x
+ 1

ρ
Txy |h0 + u|h ∂h

∂t
,

∂

∂t

∫ h

0
w dy + ∂

∂x

∫ h

0
uwdy + ∂

∂z

∫ h

0
w2 dy = −h

ρ

∂p

∂z
+ 1

ρ
Tzy

∣∣∣∣
h

0

. (5.76b)

Partial differentiation of Eq. (5.76a) with respect to x and of Eq. (5.76b) with respect to z
and addition of the resulting equations yields

∂

∂x

(
h

ρ

∂p

∂x

)
+ ∂

∂z

(
h

ρ

∂p

∂z

)

= ∂

∂x

(
Txy |h0
ρ

)
+ ∂

∂z

(
Tzy |h0
ρ

)
+ UP ∂

2h

∂x ∂t
− ∂2

∂x ∂t

∫ h

0
u dy

(5.77)

− ∂2

∂x2

∫ h

0
u2dy − 2

∂2

∂x ∂z

∫ h

0
uw dy − ∂2

∂z ∂t

∫ h

0
w dy

− ∂2

∂z2

∫ h

0
w2dy + UP

(
∂2

∂x2

∫ h

0
u dy + ∂2

∂x ∂z

∫ h

0
w dy

)

Here UP is shaft surface velocity in rigid body translation.
We make our first significant assumption here: that the shape of the velocity profile is not

strongly influenced by inertia, so the viscous terms are approximated by (Constantinescu,
1970)

Txy |h0 = −12μ

h

(
U − 1

2
UP

)
; Tzy |h0 = −12μ

h
W. (5.78)

Here

U = 1

h

∫ h

0
u dy; W = 1

h

∫ h

0
ω dy (5.79)

are the components of the average velocity vector.
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Our second significant assumption∫ h

0
u2dy = hU 2;

∫ h

0
uω dy = hUW ;

∫ h

0
ω2dy = hW 2 (5.80)

equates the average of a product to the product of the averages and is not possible to defend.6

Nevertheless, it has been used by several researchers, beginning with Constantinescu (1970).
Assumptions (5.78) and (5.80) permit us to write (5.79) in the form

∂

∂x

(
h3

μ

∂p

∂x

)
+ ∂

∂z

(
h3

μ

∂p

∂z

)

= 12

{
v|h − 1

2
UP
∂h

∂x

}
+ h2

ν

{
UP

∂2h

∂x ∂t
− ∂2 (hU )

∂x ∂t
− ∂2

(
hU 2

)
∂x2

(5.81)

− 2
∂2 (hUW )

∂x ∂z
− ∂2 (hW )

∂z ∂t
− ∂2(hW 2)

∂z2
+ UP ∂

2(hU )

∂x2
+ UP ∂

2 (hW )

∂x ∂z

}
.

We will apply Eq. (5.81) to a squeeze film damper (Szeri et al., 1983). A schematic of
the damper is shown in Figure 5.9.

To nondimensionalize Eq. (5.81), we apply the transformation

h = CH, t = t̄/ω, x = Rx̄, z = 1

2
z̄, Ū = U/δω,

(5.82)

W̄ = W/δω, Re = δωC

ν
, p = 12μω

(
R

C

)2

p̄.

Here � is the characteristic frequency, δ is the characteristic orbit radius, and δω is the
characteristic velocity of the system.

The dimensionless form of Eq. (5.81) is

∂

∂x

(
H 3 ∂p̄

∂x̄

)
+
(
D

L

)2
∂

∂z̄

(
H 3 ∂p̄

∂z̄

)
= ∂H

∂t
− 1

2

(
δ

R

)
UP
∂H

∂x̄
+ Re

12

(
C

R

)
H 2

×
{
UP
∂2H

∂x̄∂t̄
− ∂2HŪ

∂x̄ ∂t̄
−
(
D

L

)2
∂2HW̄

∂z̄ ∂t̄
−
(
δ

R

)[
∂2HŪ 2

∂x̄2
+ 2

(
D

L

)
(5.83)

× ∂2HŪW̄

∂z̄ ∂x̄
+
(
D

L

)2
∂2HW̄ 2

∂z̄2
− UP ∂

2HŪ

∂x̄2
−
(
D

L

)
ŪP
∂2HW̄

∂x̄∂z̄

]}

Considering that δ = O(C) and therefore (δ/R) = O(10−3), it seems possible to simplify
Eq. (5.83) by deleting all terms which are multiplied by (δ/R). We will not do this, however,
as our intention is to introduce the short-bearing approximation at this stage via the equation
of continuity Eq. (5.75).

Introducing the short bearing approximation Ū ∼= 1
2 Ūp into Eq. (5.75), we have

∂HW̄

∂z̄
≈
(
L

D

)(
R

δ

){
1

2

(
δ

R

)
ŪP
∂H

∂x̄
− ∂H

∂t

}
≈ −

(
L

D

)(
R

δ

)
∂H

∂t̄
. (5.84)

6Hashimoto (1994) appears to have overcome the necessity of having to assume Eq. (5.80). This,
however, is purely illusory, as he makes the equally indefensible assumption that ∂Txy/∂y = const.
across the film, true only for zero inertia.
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Figure 5.9. Basic elements (cross-coupling not shown) of squeeze-film damper. (Reprinted
with permission from Szeri, A. Z., Raimondi, A. A. and Giron-Duarte, A. Linear force
coefficients for squeeze-film dampers. ASME Journal of Lubrication Technology, 105,
326–334, 1983).

This leads to the following approximation of Eq. (5.83) when we neglect terms multiplied
by (δ/R):

∂

∂x

(
H 3 ∂p̄

∂x̄

)
+
(
D

L

)2
∂

∂z̄

(
H 3 ∂p̄

∂z̄

)
= ∂H

∂t̄
+ H 2

12
Rε

{
∂2H

∂t̄2
+ 2

H

(
∂H

∂t

)2
}

(5.85)

Here Rε = Re(C/δ) is the reduced Reynolds number.
Further details can be found in Szeri, Raimondi, and Giron (1983). Here we show the

diagonal terms of the inertia coefficient matrix D, i.e., the added mass tensor, in Figure
5.7. This figure also contains results from small perturbation analysis (Reinhardt and Lund,
1974). The analysis of Szeri, Raimondi, and Giron (1983), when cavitation is accounted
for, yields results as shown in Figure 5.10.

Zhang, Ellis, and Roberts (1993) attempted to verify recent “averaged inertia” analyses,
as applied to squeeze, film dampers. They found that in the cases they considered, the
pressure field can be expressed as

p = 12

(
z2

2
− L2

8

)
+ 12

{
μ

(
1

h3

∂h

∂t

)
+ ρ

(
k1

h

∂2h

∂t2

)
− ρ

[
k2

h2

(
∂h

∂t

)2
]}
. (5.86)

The values of the numerical constants k1 and k2 in Eq. (5.86) for the various analyses
are shown in Table 5.7. In the San Andres and Vance (1986) analysis, the k1, k2 values
depend on the flow regime considered. At low Re, the analysis yields values identical to
those of Tichy and Bou-Said (1991); at large Re the k1, k2 values agree with those of
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Figure 5.10. Inertia coefficients in presence of cavitation. (Reprinted with permission from
Szeri, A. Z., Raimondi, A. A. and Giron-Duarte, A. Linear force coefficients for squeeze-film
dampers. ASME Journal of Lubrication Technology, 105, 326–334, 1983).
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Table 5.7. Numerical constants for inertia terms

Tichy and Bou-Said (1991) Trichy and Modest (1980)
El-Shafei and Crandall Szeri et al. El-Shafei and Crandall
(1991) (1983) (1991)

k1 1/12 1/12 1/10
k2 1/5 1/6 17/70

Szeri et al. (1985). At moderate Re values, San Andres and Vance propose k1, k2 between
bounds identified in Table 5.7.

5.4 Nomenclature

Ai, Bi, bi B-splines
C radial clearance
C , K , D linearized force coefficient matrices
E Ekman number
FR, FT radial, tangential force component
H film thickness, dimensionless
Ly, Lyz characteristic lengths
Lα, Lβ characteristic lengths
P̄ average pressure, dimensionless
Q flow rate
Re, RQ, re Reynolds numbers
R radius
U, V, W velocity components
W load
S Sommerfeld number
φ, ψ angular coordinates
ψ stream function
� characteristic frequency, angular velocity
c velocity of sound
h film thickness
p pressure
t time
u, v,w velocity components (Cartesian)
ur, uθ , uz velocity components (polar)
(x, y), (ξ, η) Cartesian coordinates
(r, θ, z) polar coordinates
(â, β̂) bipolar coordinates
ε eccentricity ratio
ρ, ζ dimensionless coordinates
ρ, μ, ν density, viscosity, kinematic viscosity
ω angular velocity
( )∗ characteristic quantity
(−) dimensionless quantity
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CHAPTER 6

Flow Stability and Transition

Classical lubrication theory is unable to predict the performance of large bearings
accurately, particularly under conditions of heavy load and/or high rotational speed. The
reason for this failure of the theory can be traced to two assumptions, (1) laminar flow and
(2) constant, uniform viscosity. A third assumption, that of negligible fluid inertia, yields
erroneous results only in special cases and, for the most part, can be left intact. The object
of this and the next chapters is to investigate the shortcomings of classical theory due to
the assumption of laminar flow. The effects of nonuniform viscosity will be discussed in
Chapter 9, while Chapter 5 dealt with fluid inertia effects.

It will be shown in Chapter 7, Eq. (7.59), that under isothermal conditions the pressure
generated in an infinitely long “turbulent” lubricant film of thickaness h has the same
magnitude as the pressure that can be obtained in an otherwise identical “laminar” film of
thickness

12

12 + kx (Re)
h.

The turbulence function kx(Re) ≥ 0, thus a change from laminar to turbulent flow at
fixed film geometry results in an increase in load capacity (Figure 3.10). The rate of heat
generation in the lubricant film also changes on passing from the laminar to the turbulent
regime. It is thus essential to know at the design stage in which flow regime will the bearing
operate.

The actual conditions are far more complicated than alluded to in the previous paragraph.
As suggested by Figure 9.7, the law governing energy dissipation changes abruptly on
changing from the laminar mode of flow, in turbulent flow the rate of energy dissipation can
be significantly higher. This higher rate of heat generations may lead to higher lubricant
temperature, and, in consequence, to lower lubricant viscosity. Lower viscosity, in its turn,
results in a loss of load capacity. There are thus two competing influences in effect; the
apparent decrease in film thickness, which increases load capacity, and the decrease in
lubricant viscosity, which tends to decrease it. The result of the ensuing competition under
particular circumstances can only be predicted by detailed calculations (see Chapter 9).

There are two basic modes of flow in nature: laminar and turbulent. Under certain
conditions, the laminar mode of flow is stable while under others, turbulence prevails. The
rate of degradation of kinetic energy and the mechanism of diffusion are quite different in
these two flow regimes, hence the ability to predict the appropriate flow regime in particular
cases is of great technical importance. The process of moving from one flow regime to
another is known as transition. In some cases, transition from the basic laminar flow is
directly to turbulent flow, e.g., in a cylindrical pipe. In other cases, a sequence of secondary
laminar flows separate the basic flow from turbulence, each member of the sequence being
distinct from the others and each being stable in its own domain of parameter space. In
Couette flow between concentric cylinders, Coles (1965) observed 74 such transitions, each
appearing at a certain well-defined and repeatable speed.

222
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Flow transition is preceded by flow instability. Instability of basic laminar flow occurs
when a parameter, λ, defined by the ratio of destabilizing force to stabilizing force, reaches
a critical value (Rosenhead, 1963). In isothermal flow, instability arises in one of two basic
forms:

(1) Centrifugal instability occurs in flows with curved streamlines when the (destabi-
lizing) centrifugal force exceeds in magnitude the (stabilizing) viscous force. The relevant
parameter is the Taylor number:

λ ≡ Ta ∼ measure of centrifugal force

measure of viscous force
.

The instability is often characterized by a steady secondary laminar flow (Taylor-Görtler
vortices).

(2) Parallel flow instability is characterized by propagating waves (Tollmien-Schlichting
waves). The inertia force is destabilizing and the viscous force is stabilizing in this case,
and the parameter is the Reynolds number:

λ ≡ Re ∼ measure of inertia force

measure of viscous force
.

Instability of this kind occurs in pipe flow and in the boundary layer.
In the following sections, we shall give more precise definition of the concept of stability,

then discuss ways how the critical value of the parameter, λCR, that separates stable from
unstable flows, may be calculated.

6.1 Stability

Let {U(x, t), p(x, t)} and {u(x, t), p(x, t)} represent the basic laminar flow and a
perturbation of this flow, respectively. Furthermore, let

{Û(x, t), P̂ (x, t)} = {U(x, t) + u(x, t), P (x, t) + p(x, t)} (6.1)

represent the perturbed flow.
If, with passage of time, the perturbed flow approaches the basic flow, we say that the

basic flow is asymptotically stable. Otherwise, the basic flow is unstable. If the basic flow
remains stable irrespective of the initial magnitude of the perturbation, the basic flow is
said to be globally stable. If the flow is globally stable and is such that some norm of the
perturbation never increases in time, not even instantaneously, the basic flow is said to be
globally and monotonically stable.

In some cases, the basic flow is stable only if the initial value of the perturbation is
suitably small. We then term the basic flow conditionally stable.

Stability Criteria

To give precise mathematical meaning to the stability criteria of the previous
paragraph, define the average kinetic energy per unit mass, E(t), of the perturbation u(x, t)

E(t) = 1

2V

∫
V

|u|2dv. (6.2)
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Figure 6.1. Stability limits for the basic flow.

We shall call the basic flow {U(x, t), P (x, t)} globally stable if

lim
t→∞

E(t)

E(0)
→ 0, (6.3)

irrespective of the magnitude of E(0), the initial value of the kinetic energy of perturbation.
The limiting value of the parameter λ for global stability is designated by the symbol λG.
When λ > λG, a perturbation can always be found that destabilizes the basic flow.

We shall call the basic flow globally and monotonically stable if, in addition to Eq. (6.3),
we also have

lim
t→∞

dE (t)

dt
< 0 for all t > 0. (6.4)

The greatest lower bound for global and monotonic stability, designated by λE and called
the energy stability limit, represents a sufficient condition for stability: no matter how
strong the perturbation may be, if λ < λE the perturbation will die out monotonically. λE is
called the energy stability limit because it is calculated by the energy method. If the basic
flow is globally stable but not monotonically stable, a perturbation can always be found,
the kinetic energy of which will initially increase with time before decaying to zero.

The flow is conditionally stable if

lim
t→∞

E (t)

E (0)
→ 0, whenever E(0) < δ. (6.5)

δ is called the attracting radius of the stable flow. For global or unconditional stability δ→
∞. The linear limit of the parameter λ = λL is defined by δ → 0. If λ > λL, the flow will
be unstable, no matter how weak the perturbation may be. Therefore, the linear limit λL,
so called because it is calculated from linear equations, represents a sufficient condition for
instability.

It can be shown (Joseph, 1976) that λL ≥ λE. In cases when these two stability limits
coincide (e.g., in Bénard convection) an infinitesimal perturbation is just as dangerous as any
finite perturbation. In other cases, the basic flow might be stable to infinitesimal disturbances
but is unstable to finite disturbances. Pipe flow, by keeping out finite disturbances, can
be kept laminar past Re = 100,000, yet, under ordinary circumstances, laminar flow is
guaranteed only up to Re = 2,000 (Hinze, 1987). Figure 6.1, after Joseph (1976), is a
schematic displaying the various stability regimes and defining criteria.
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Stability Analysis

To derive the equations that govern stability of the basic flow, consider a closed
container of volume, v(t), and surface, s(t), completely filled with a viscous fluid. The
fluid is brought into motion by external forces or by the motion of the boundary. The
velocity and pressure of this motion, denoted by {U, P } is governed by the Navier-Stokes
(2.54) and continuity (2.16) equations and appropriate boundary and initial conditions. In
nondimensional form, we have

∂U
∂t

+ U · ∇U − 1

Re
∇2U + ∇P − f = 0, (6.6a)

div U = 0, (6.6b)

B.C. : U (x, t) = Us(x, t), x ∈ s(t), t ≥ 0,
(6.6c)

I.C. : U (x, 0) = U0(x), divU0 = 0, x ∈ v(0).

Consider another motion of the fluid, defined by {Û, P̂ } = {U + u, P + p}, that is
obtained by perturbing the initial condition U0 to Û0 = U0 + u0. The perturbed flow Û
satisfies the same boundary conditions as the basic flow U ; it is also governed by the
Navier-Stokes and continuity equations

∂Û
∂t

+ Û · ∇Û − 1

Re
∇2Û + ∇P̂ − f = 0, (6.7a)

div Û = 0. (6.7b)

The evolution equation of the perturbation u is obtained by subtracting Eq. (6.6) from
Eq. (6.7)

∂u
∂t

+ U · ∇u + u · ∇U + u · ∇u − 1

Re
∇2u + ∇p = 0, (6.8a)

div u = 0, u|s = 0, (6.8b)

u|t=0 = u0(x), div u0 = 0. (6.8c)

We are assured by the uniqueness property of the Navier-Stokes problem (Joseph, 1972)
that the null solution u(x, t), ≡ 0 is the only possible solution to Eq. (6.8) for zero initial
perturbation u0 ≡ 0. But what if u0 �≡ 0? Will the perturbation vanish (stability) or will it
increase (instability) in time?

The problem specified by Eq. (6.8) is a nonlinear initial boundary value problem. Though
it does not lend itself to easy solution, it has been solved numerically in various cases, in
particular for flow between concentric cylinders by Marcus (1984a,b). Such solutions trace
the evolution in time of the initial perturbation u0.

We may also use Eq. (6.8) to calculate the energy limit of stability λE ≡ ReE, to do
this we first transform it into the evolution equation for the kinetic energy E(t) of the
perturbation.
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Energy Stability

To obtain the evolution equation for E(t), first form the scalar product of Eq. (6.8a)
with the velocity and integrate the result over the volume V(t). Application of the Reynolds
Transport Theorem1 and the boundary condition u|s = 0 leads to (Joseph, 1 1976)

dE
dt

= J − 1

Re
D = −D

(
1

Re
− J

D
)
. (6.9a)

Here

J = −
∫
v

u · ∇U · udv (6.9b)

is the production of kinetic energy of perturbation, and

D =
∫
v

|∇u|2dv (6.9c)

is its dissipation. Designating the maximum value2 of the ratio J /D in Eq. (6.9) by 1/ReE

1

ReE
= max

(J
D
)
, (6.10)

Eq. (6.9a) can be written in the form

dE
dt

= −D
(

1

Re
− 1

ReE
+ 1

ReE
− J

D
)

(6.11)

≤ −D
(

1

Re
− 1

ReE

)
,

as

1

ReE
− J

D ≥ 0.

Equation (6.11) shows that the flow is monotonically stable, Eq. (6.4), i.e., dE/dt ≤ 0, if
Re < ReE.

The energy stability limit ReE can be calculated from Eq. (6.10) for given basic flow
U by the following scheme: (1) for every admissible perturbation3 u, calculate J from
Eq. (6.9b) and D from Eq. (6.9c); (2) the particular perturbation that gives the largest value
for the ratio J /D is the critical perturbation, and this J /D ratio is the inverse of the energy
stability limit.

Rather than arbitrarily choosing perturbations in search of the critical one, as was done
by Orr (1907), we find it more effective to pose Eq. (6.10) as a problem in the calculus
of variations and to calculate ReE from a linear eigenvalue problem (Joseph, 1976). The

1The Reynolds Transport Theorem (Serrin, 1959a; White, 1991) is concerned with finding the time rate
of change of the total property associated with a material volume v(t), Eq. (2.10).

2That the maximum exists in bounded regions follows from the Poincaré inequality (Joseph, 1976).
The derivation is not valid when the region is unbounded, though a justification is available for infinite
regions whenever the disturbances can be assumed spatially periodic at each time instant (Serrin,
1959b).

3A perturbation is admissible if it is divergence free and satisfies no-slip boundary conditions, Eq. (6.8c).
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energy stability limit for concentric, rotating cylinders (unloaded journal bearings) was
first calculated by Serrin (1959b), but in this case, unlike that of Bénard convection, the
linear limit and the energy limit are widely separated. Thus ReE does not have practical
significance for us in cylinder flows.

Linear Stability

There is another way we can make use of Eq. (6.8) for steady U. By assuming
the perturbation u(x, t) to be infinitesimal, we may neglect the quadratic term u · ∇u and
obtain

∂u
∂t

+ U · ∇u + u · ∇U − 1

Re
∇2u + ∇p = 0. (6.12)

As this equation is linear (the basic flow U is known), one can exploit superposition, i.e.,
solve Eq. (6.12) for each (Fourier) component of the perturbation (Chandrasekhar, 1961).

Equation (6.12) loses validity once the initially infinitesimal perturbation has grown too
large, but for short times it will trace the evolution of the originally infinitesimal u(x, t). As
it contains time only through the first derivative, we look for solutions with an exponential
time factor

u(x, t) = v(x)e−ict , p(x, t) = π (x)e−ict . (6.13)

By substituting Eq. (6.13) into Eq. (6.12), we find that solutions of the type Eq. (6.13) exist,
provided there are numbers, c, for which the problem

− icv + U · ∇v + v · ∇U − 1

Re
∇2v + ∇π = 0 (6.14)

has nontrivial solutions. The particular numbers, c, for which Eq. (6.14) is amenable to
solution, are the eigenvalues, and the corresponding solutions, v(x), are the eigenfunctions.

Each of the infinity of eigenvalues is, in general, complex c = cr + ici, and we write

e−ict = eci t (cos cr t − i sin cr t) . (6.15)

We call ci the amplification factor. If ci < 0 for all c, the disturbance will decay in time and
the flow is stable.4 If, on the other hand, ci > 0 for at least one c, the disturbance will grow
in time and the flow is unstable.5 Neutral stability is characterized by ci = 0 for the leading
eigenvalue, while all other eigenvalues have negative imaginary parts; the lowest value of
the Reynolds number at which this occurs is the linear limit of stability, indicated here by
RCR ≡ (Re)L and referred to simply as the critical Reynolds number.

The term (cos crt – i sin crt) in Eq. (6.15) represents a motion that is periodic in time,
with period cr. There are two ways in which neutral stability, ci = 0, might be achieved.
For certain basic flows, cr �= 0 at neutral stability, thus neutral stability is characterized by a
time-periodic secondary (laminar) flow. If cr = 0 when ci = 0, the secondary (laminar) flow

4This is conditional stability, under the condition that initially the perturbation is infinitesimal. The flow
might or might not be stable yet to finite disturbances.

5This is a sufficient condition for instability; if the flow is unstable to infinitesimal disturbance, it will
certainly be unstable to finite disturbances.
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appearing in the neutral stability state is steady, and we say that the basic flow exchanges
its stability with (or transfers it to) the bifurcating flow (Chandrasekhar, 1960; Joseph,
1976). Which of these cases occurs in practice depends, of course, on the basic flow field
{U, P }.

Taylor (1923) was the first to employ linear stability analysis in the study of flow
between concentric cylinders, though the method had been applied half a century earlier to
other flows (Kelvin, 1871). Flow between eccentric cylinders was investigated by DiPrima
and Stuart (1972, 1975) among others. Cylinder flows will be discussed in detail in later
sections.

Bifurcation Analysis

We saw in the previous section that the conditions for neutral stability signal the
appearance of a new solution, ν(x)e−ict . This bifurcating solution might be steady or it
might be unsteady, depending on whether ci = cr = 0 or ci = 0, cr �= 0, respectively, at
criticality.

For Re slightly larger than ReCR, the bifurcating solution will grow exponentially,
Eq. (6.13), the growth being dictated by the amplification factor, ci. In some cases, this
exponential growth remains unchecked, and we conclude that the bifurcating solution
is unstable. In other cases, however, the perturbation will interact with the basic flow,
modifying the rate of energy transfer, Eq. (6.9b), from basic flow to perturbation, so as to
arrive at an equilibrium state. The equilibrated bifurcating flow is stable in the neighborhood
of the critical point Re = ReCR. Bifurcation analysis is concerned with stable bifurcating
solutions (Iooss and Joseph, 1982).

Bifurcating solutions emanate from the basic flow at so-called singular points where
the Jacobian matrix (∂v/∂x) becomes singular (Seydel, 1988) – in fact, we locate such
solutions by finding points on the solution curve where the Jacobian determinant vanishes.
The Lyapunov conditional stability theorem (Joseph, 1976) tells us that the first bifurcation
point found when increasing Re is identical to the linear limit of stability, ReCR. In this
sense, bifurcation analysis, which locates the first critical point of the basic flow, and linear
stability analysis, which calculates the linear stability limit, are equivalent.

Where bifurcation analysis has the advantage over linear stability analysis is that while
the latter is valid only within an infinitesimal neighborhood of the critical point, bifurcation
analysis permits the tracing of solution branches far away from critical points, as it employs
the full Navier-Stokes and continuity equations. At the bifurcating point, we can switch
to the new branch and continue the solution well into the supercritical, i.e., Re > ReCR,
range.

Bifurcating solutions that exist for values of Re < ReCR are called subcritical; those
which exist for values of Re > ReCR are termed supercritical (Figure 6.2). It can be shown
that subcritical bifurcating solutions are unstable and supercritical bifurcating solutions are
stable (Iooss and Joseph, 1982).

We will illustrate two methods of calculating RCR in the sequel. Bifurcation analysis will
be employed to calculate the critical Reynolds number for eccentric rotating cylinders, while
linear stability analysis will be used to study flow between rotating disks. Rotating disks
are important in the computer industry. Rotating disk flows can also serve as approximation
to flows in annular thrust bearings. Eccentric cylinder flows, on the other hand, are closely
related to flow in journal bearings.
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Figure 6.2. Simple bifurcating solutions: (a) subcritical, (b) supercritical bifurcation. The solid
lines represent stable solutions, s, the dotted lines represent unstable solutions, u.

6.2 Flow between Concentric Cylinders

Centrifugal instability was first studied by Couette and by Lord Rayleigh. On the
basis of energy considerations, Rayleigh derived a criterion of stability for inviscid fluids,
viz., that if the square of the circulation increases outward, the flow is stable. An explanation
of Rayleigh’s criterion in terms of the centrifugal force field and pressure gradient was later
given by von Karman (Lin, 1967).

To illustrate the argument constructed by von Karman, we consider a fluid ring located
at r = r1 and concentric with the axis of rotation. In steady state, the centrifugal force,
ρv2

1/r1, on the element of the ring must be balanced by pressure forces; this serves us in
estimating the steady-state pressure field. Consider now displacing the ring to r = r2. The
angular momentum (rv) will be conserved during this displacement in accordance with
Kelvin’s theorem,6 so in its new surrounding the centrifugal force acting on the ring is
given by

ρ
v2

r
= ρ (r1v1)2

r2

1

r2
= ρ (r1v1)2

r3
2

.

Because at r = r2 the prevailing pressure force equals ρv2
2/r2, the fluid ring will continue

in its motion outward, provided that

ρ
(r1v1)2

r3
2

> ρ
v2

2

r2
.

This simplifies to the Rayleigh stability criterion: In the absence of viscosity a necessary
and sufficient condition for a distribution of angular velocity to be stable is that

d

dr
(r2ω)2 > 0 (6.16)

everywhere in the interval.
When applied to flow between concentric cylinders, Rayleigh’s criterion means that

the flow is potentially unstable if the inner cylinder is rotating and the outer cylinder is

6Kelvin’s circulation theorem states that in an inviscid fluid the angular momentum per unit mass of a
fluid element (rv) remains constant [note that � = 2πrv is the circulation round the circle r = const.
(Milne-Thomson, 1968)].
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Figure 6.3. Taylor vortices between concentric cylinders, with the inner cylinder rotating and
the outer cylinder stationary. (Reprinted with permission from Schlichting, H. Boundary Layer
Theory 6th ed. Pergamon, London. Copyright 1968.)

stationary, but it is not susceptible to instability of the centrifugal type if the inner cylinder
is at rest and the outer cylinder is rotating.7 However, the flow in the latter case does become
unstable at higher rotation (Coles, 1965), the shear flow instability occurring at Re ∼ 2,000.

When the inner cylinder of radius r1 is rotated at the angular speed ω and the outer
cylinder of radius r2, r2 = r1 + C, C > 0 is kept stationary, the circumferential velocity
(the only nonzero velocity component for long cylinders) is given by

v (r) = r2
1ω

r2
2 − r2

1

[
r2

2

r
− r
]
. (6.17)

On increasing the rate of rotation, this flow becomes unstable. Taylor (1923) showed
that, when instability occurs, the disturbance assumes the form of cellular, toroidal vortices
that are equally spaced along the axis of the cylinder (Figure 6.3). The appearance of this
so-called Taylor vortex flow has a strong influence on the magnitude of the torque required
to rotate the inner cylinder. The stability parameter of the problem is the Taylor number,
which is proportional to the ratio of the centrifugal force to the viscous force. The definition
we use is that of Drazin and Reid (1984) for the “average” Taylor number:

T = 2 (1 − η)

(1 + η)
Re2, Re = r1ωC

v
, η = r1

r2
< 1,

where Re is the Reynolds number.
By assuming that the neutral (marginal) state of stability is stationary and that the radial

clearance C is small8 when compared to the radius r1, Taylor was able to calculate the first

7Synge (Lin, 1967) showed Rayleigh’s criterion to be sufficient for viscous fluids.
8The formula T1/2 = (C/r1)1/2 Re, valid for η→ 1, follows from the approximation (1 – η)/(1 + η) ≈
C/2r1.
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critical value of T. The currently accepted minimum value of the critical Taylor number,
TCR is (Drazin and Reid, 1984)

TCR = 1694.95, ReCR = 41.2
( r1
C

)1/2
. (6.18)

This is within 1% of the value calculated by Taylor in 1923.
As the Taylor number is increased above its critical value, the axisymmetric Taylor

vortices become unstable to nonaxisymmetric disturbances. Pairs of vortex cells that are
symmetrical, T = TCR, now become distorted (Mobbs and Younes, 1974). The boundaries
between adjacent vortex cells assume a wavy form, with the waves traveling azimuthally
at the average velocity of the basic Couette flow (Coles, 1965). The number of azimuthal
waves increases on further increasing the Taylor number, until turbulence eventually makes
its appearance. Concentric cylinder flows are discussed in detail by Koshmieder (1993).
More recent numerical work on concentric cylinder flows was reported by Deng (2006),
and by Deng and Braun (2007). They applied the three dimensional Navier-Stokes based
code CFD-ACE+ to simulate the flow of the fluid. The multiplicity of stable and unstable
solutions and the transition among these solutions were investigated and it was concluded
that pressure played a significant role in the formation and merging of the Taylor cells in
the axial direction and the waves in the circumferential direction.

Nonuniqueness of the flow was first demonstrated by Coles (1965), who documented
as many as 26 distinct time-dependent states at a given Reynolds number. Coles found
the different states by approaching the final Reynolds number along different paths in
parameter space. Earlier, Landau and Lifshitz (1959) suggested that transition to turbulence
may occur as an infinite sequence of supercritical bifurcations, each contributing a new
degree of freedom to the motion. Although attractive, this conjecture had to be abandoned
in light of theoretical (Ruelle and Takens, 1971; Newhouse, Ruelle, and Takens, 1978)
and experimental (Gollub and Swinney, 1975; Gollub and Benson, 1980) research, which
indicates that chaotic behavior occurs after a small number of transitions.

The value of the critical Taylor number depends on the clearance ratio C/r1 (Coles,
1965) but not on the aspect ratio L/C (Cole, 1976), where L is the length of the cylinders.
Only the Taylor number for the appearance for waviness is strongly dependent on L/C.
Cole observed formation of a single counterrotating vortex pair in an open-ended annulus of
length L = 5C. Schwartz et al. (1964) found that a superimposed axial flow has a stabilizing
influence. The sole effect of slow axial flow is to translate the Taylor cells axially, but with
higher axial flow the cell pattern assumes a spiral form. DiPrima (1960) also showed that
superimposed axial flow has a stabilizing influence.

Couette flow is not a solution of the finite length problem. The presence of endplates,
located a distance L apart, will force all three velocity components to vary with position. A
corkscrew motion with axial structure, known as Ekman pumping, emerges even at small
values of the Reynolds number. The experimental observations of Benjamin and Mullin
(1981, 1982), performed in an apparatus having a relatively small aspect ratio, � = L/C,
indicate at higher Reynolds numbers the existence of a number of distinct steady flows
that are supported by identical boundary conditions. More importantly, these experiments
reveal “an essentially continuous process: namely as Re is gradually raised through a narrow
quasi-critical range, arrays of axisymmetric, counter-rotating cells spread from the end and
finally link-up and become ordered prominently at the center of the Taylor apparatus”
(Benjamin and Mullin, 1982).

Benjamin and Mullin (1982) experimented with a Taylor apparatus of η = 0.6 and
� = 12.6 and found that the “primary” cellular flow, reached by gradual increases in Re,
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Figure 6.4. Subcritical Couette flow with recirculation. (Reprinted
with permission from San Andres, A. and Szeri, A. Z. Flow
between eccentric rotating cylinders. ASME J. Appl. Mech., 51,
869–878, 1984.)

was comprised of 12 cells. This primary flow was stable for a range of Reynolds number
values below the threshold for the onset of traveling waves. Benjamin and Mullin also
found flows other than the primary flow: “normal” flows, exhibiting both inward flow at
the stationary endplates and an even number of cells, and “anomalous” flows comprising
an odd number of cells and/or exhibiting anomalous rotation. They observed a total of 20
different flows, and, by applying degree theory, Benjamin (1978) predicted that the problem
has at least 39 solutions, 19 of which are unstable.9

Theoretical analyses of infinite cylinder flows at slightly supercritical Reynolds numbers
show a continuum of periodic solutions of wavelength λ, which are possibly stable when
λ is located within some interval (λ−

c , λ+
c ) centered around the critical value, λc, for

strict bifurcation of the Couette flow. Estimates for this λ interval were first made by
Chandrasekhar (1961) and Kogelman and DiPrima (1976), and were subsequently improved
by Nakaya (1975). The experiments of Burkhalter and Koschmieder (1977a) are not in
contradiction with this theory, once the part of the flow that seems to be “directly, influenced”
by the endplates is neglected, and the observed wavelengths fall within the narrowest of
the three (λ−

c , λ+
c ) intervals. It has been suggested (Benjamin and Mullin, 1982) that this

“continuum” of cellular flows of the infinite geometry is the result of taking the limit
� → ∞, thereby increasing the multiplicity of steady flows, each of which represents the
primary flow of its particular � interval.10

6.3 Flow between Eccentric Cylinders

For R< RCR and ε < 0.3, the flow is a Couette flow. On increasing the eccentricity
ratio above ε ≈ 0.3, a recirculation cell makes its appearance (Kamal, 1966), this flow
being stable up to Re < ReCR. Such a recirculating flow pattern is shown in Figure 6.4 for
Stokes flow at η = 0.5 and ε = 0.5.

On further increasing the Reynolds number past its critical value, Re = ReCR, the two-
dimensional basic laminar flow loses its stability to a new flow with three-dimensional
structure, similar to the case of concentric cylinders (Dai, Dong, and Szeri, 1992). Wilcock
(1950) and Smith and Fuller (1956) were the first to recognize that flow transition also takes

9The Leray-Schauder degree theory is concerned with the topology of certain Banach-space mappings.
In its application to fluid mechanics, the theory ascertains that, at any value of the parameter, the
number of stable solution branches exceeds the number of unstable branches by one.

10Dai and Szeri (1990) were able to follow a branch comprised of 28 normal cells, and another branch
of 30 anomalous cells, to � = 200. Note, that � = 500 for a short bearing of L/D = 0.1 and r1/C =
500.
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place between eccentric cylinders. Analytically, the problem was first treated by DiPrima
(1963). DiPrima’s local theory shows the flow to be least stable at the position of maximum
film thickness, along a vector extending from the center of the inner cylinder to the center of
the outer cylinder. The critical Taylor number, TCR, calculated at this position first decreases
as the eccentricity ratio, ε = e/C (where e is the eccentricity of the cylinders), increases
from zero and remains below its concentric value in the range 0 < ε < 0.6. For ε > 0.6,
TCR increases rapidly with increasing ε. This finding is, however, not in agreement with
experimental results. Experimental data (e.g., Vohr, 1968) indicate that the eccentricity has
a stabilizing effect over its whole range. Vohr also finds the maximum intensity of vortex
motion not at the point of maximum film thickness, as predicted by local theory, but at the
50◦ position downstream from it.

DiPrima’s local theory is based on the parallel flow assumption, i.e., on neglecting
the effect of the azimuthal variation of the tangential velocity, and is no longer thought
to represent the physics of the problem. In a second attempt to explain the dependence
of TCR on ε, DiPrima and Stuart (1972) examined the whole flow field (nonlocal theory),
considering the tangential velocity to be a function of both r and θ . The most dramatic result
of the newer theory is that it no longer places maximum vortex intensity at the position of
maximum instability but rather at 90◦ downstream of it. This theory also shows TCR(ε) to
be a monotonically increasing function, described by

TCR = 1695

(
1 + 1.162

C

r1

)
(1 + 2.624ε2). (6.19)

Agreement with experiment is acceptable, however, only in the range 0 < ε < 0.3.
In a more recent nonlinear theory, DiPrima and Stuart (1975) found that the position of
maximum vortex activity is at%max → 90◦ only if the supercritical Taylor number vanished
and %max → 0◦ as TSC → ∞. [The supercritical Taylor number is defined as TSC = (T −
TCR)/ε.] Although they found agreement in one specific case with Vohr’s observation of
%max = 50◦ for maximum vortex activity, they raised the question of the applicability of
their small perturbation solution under Vohr’s experimental conditions.

Castle and Mobbs (1968) found two kinds of instabilities of flow between eccentric
cylinders. The type of cellular flow that occurs at low speeds does not extend all the way to
the stationary (outer) cylinder, while the second type of instability occurs at higher rotational
speeds and exhibits vortices that straddle the clearance gap completely. According to Mobbs
and Younes (1974), it is the latter group of vortices that are usually detected by experiments,
as their existence is revealed by torque measurements on the stationary cylinder. The first,
lower mode of instability lies close to that predicted by the local theories of Ritchie (1968)
and DiPrima (1963). According to DiPrima and Stuart (1972), “it seems possible, therefore,
that this incipient mode may be a manifestation of local instabilities.” But they also admit
the possibility that the slower mode represents another instability that cannot be accounted
for by the nonlocal theory. The slower incipient mode was also detected by Versteegen and
Jankowski (1969) and by and Frêne and Godet (1974). Koschmieder (1976), on the other
hand, was unable to find instability of the first kind in his apparatus, nor could he detect
maximal vortex action downstream from the position of maximum gap width. Nevertheless,
he found TCR(ε) to be a monotonic increasing function, somewhat as predicted by nonlocal
theories. It seems that the nonlocal theory correlates better with instability of the second
type, while instability of the first type is predicted by local theories (Figure 6.4).

Li (1977) investigated the onset of instability in nonisothermal flows between rotating
cylinders and found that a positive radial temperature gradient, as might exist in journal
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Figure 6.5. Effect of eccentricity ratio on critical speed for instability. (–) theory, (−−)
experiment, (a) Castle and Mobbs (1968), (b) Vohr (1968), (c) DiPrima and Stuart (1972),
(d) Castle and Mobbs (1968), (e) Frêne and Godet (1974), and (f) DiPrima (1963).

bearings, is strongly destabilizing, particularly at high Prandtl numbers. Li also suggested
that under certain conditions the neutral (marginal) stability is oscillatory. Li’s conclusion
that a positive temperature gradient is destabilizing seems to be verified by the experiments
of Gardner and Ulschmid (1980).11

Though there have been numerous calculations of concentric cylinder flows [Weinstein,
1977a,b; Frank and Meyer-Spasche, 1981; Marcus, 1984a,b; Cliff et al., 1985, 1986; Meyer-
Spasche and Keller 1978 and 1980], the numerical treatment of eccentric cylinder flows has
been hindered in the past by two circumstances: (1) the partial differential equations that
model the basic flow contain the Reynolds number and the eccentricity ratio as parameters
and numerical solutions are difficult to obtain at large values of these parameters and (2)
classical stability analysis leads to an eigenvalue problem for partial, rather than for ordinary,
differential equations, increasing numerical complexity considerably. Nevertheless a linear
stability analysis has been published recently by Oikawa, Karasndani, and Funakoshni
(1989a,b), who use Chebyshev-Fourier expansion and the pseudo-spectral method (Gottlieb
and Orszag, 1977).

In the next section, we investigate the effect of cylinder eccentricity on Couette-Taylor
transition between infinite rotating cylinders, using bifurcation analysis. To do this, we
employ Galerkin’s method with B-spline basis functions to the system of equations that
govern the motion of the fluid and locate critical points by detecting the vanishing of the
Jacobian determinant during parametric continuation. The first bifurcation from Couette
flow provides us with the linear stability limit (Joseph, 1976). At the bifurcation point,
we switch to the new branch by locating its tangent in parameter space and continue the

11According to their data (Figure 9.9), turbulence must have set in at value Re = 1,100 of the global
Reynolds number, Re = RωC/ν. The value of the local Reynolds number Reh = Rωh/ν is even smaller
at transition to turbulence; it is in the range 360 < Reh < 560.
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solution into the supercritical range; this allows investigation of the bifurcating flow and
calculation of the torque which the bifurcating flow exerts on the cylinders.

Critical Reynolds Number

We employ a bipolar coordinate system for the representation of the flow field
between infinite, rotating eccentric cylinders. The bipolar coordinate system {α̂, β̂, γ̂ } is
related to the Cartesian coordinate system {X, Y,Z} through

α̂ + iβ̂ = −2 coth−1 (X + iY )

a
, γ̂ = Z, (6.20)

where a is the separation between the pole and the origin of the {X, Y,Z} system (Fig-
ure 5.1). In the bipolar coordinate system, the cylinders of radii r1 and r2, r1 < r2, have the
simple representation α̂ = α̂1 and α̂ = α̂2, α̂1 < α2 < 0, respectively. The scale factor of
the bipolar coordinate system is given by (Ritchie, 1968)

H = a(
cosh α̂ − cos β̂

) .
The nondimensional equations of motion and mass conservation are
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The divergence of the velocity field v = (u, v,w) has the (nondimensional) form

div v = 1

h

(


∂u

∂α
+ 1

2π

∂v

∂β
+ h∂w

∂γ

)
− u sinh α̂ + v sin β̂. (6.22)
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Equations (6.21) and (6.22) are nondimensional. They were nondimensionalized according
to

α = 
 (α̂ − α̂1) , β = β̂

2π
, γ = γ̂

r1
, 
 = 1

α̂2 − α̂1
,

{U,V,W } = r1ω

sinh |α̂1|
{
u, v,

1

ϑ
w

}
, ϑ = a

r1
, C = r2 − r1, (6.23)

p = P

ρr2
1ω

2
sinh2 |α̂1|, h = H

a
, Re = r1ωC

ν
.

Here P represents the pressure and {U,V,W } represents the physical components of
velocity relative to the bipolar coordinate system. Dynamic conditions in the flow are
represented by the Reynolds number, Re, calculated on the mean gap width.

We anticipate that although at small values of the Reynolds number fluid motion proceeds
in z = const. planes, at some higher rotation this basic laminar flow will give up its stability
to a more complex laminar flow that possesses periodic structure in γ for cylinders of
infinite length. Accordingly, we Fourier analyze the flow field as follows (Meyer-Spasche
and Keller, 1980):

{u, v, p} =
Nz∑
j=0

{
uj , vj , pj

}
cos jκγ

(6.24)

w =
Nz∑
j=1

wj sin jκγ

and investigate the individual Fourier components, obtained by substituting Eqs. (6.24) into
the equations of motion and continuity (Dai, Dong, and Szeri, 1992).

Let λ represent the length of a cell in the Z direction (not yet fixed). We shall restrict
attention to

Z ∈
[
−λ

2
,
λ

2

]
,

thus the solution domain of Eqs. (6.20) is defined by

0 ≤ α ≤ 1, 0 ≤ β ≤ 1, −π
κ

≤ γ ≤ π

κ
, (6.25)

where κ = 2πr1/λ is the nondimensional wave number. The wavelength λ, and thus the
wave number κ , is a parameter of the problem, and we obtain the critical Reynolds number,
ReCR, from computing d Re(κ)/dκ = 0.

The boundary conditions accompanying Eqs. (6.21) are no slip on the walls

u(0, β, γ ) = w (0, β, γ ) = 0, v (0, β, γ ) = sinh |α̂1|,
(6.26a)

u(1, β, γ ) = v (1, β, γ ) = w (1, β, γ ) = 0.

We also require periodicity of the solution and its derivatives in β

φ(n) (α, 0, γ ) = φ(n) (α, 1, γ ) , φ = u, v,w, p n = 0, 1, 2, . . . (6.26b)
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Equations (6.21) define pressure only within an arbitrary constant. We set this constant to
zero by requiring that p(0, 0, 0) = 0.

At this stage, Dai et al., (1992) eliminated the pressure, pj, j ≥ 1, from the component
equations so as to keep the discretized system nonsingular.12

The expansions

uk(α, β) =
Nα−1∑
i=2

Nβ−3∑
j=1

uijkAi(α)bj (β), 0 ≤ k ≤ Nγ ,

v0(α, β) = sinh |α̂1|A1(α) +
Nα−1∑
i=2

Nβ−3∑
j=1

vij0Ai(α)bj (β),

vk(α, β) =
Nα−1∑
i=2

Nβ−3∑
j=1

vijkAi(α)bj (β), 1 ≤ k ≤ Nγ , (6.27)

wk(α, β) =
Nα−1∑
i=2

Nβ−3∑
j=1

wijkAi(α)bj (β), 1 ≤ k ≤ Nγ ,

p0(α, β) =
Nα∑
i=1

Nβ−3∑
j=1

pijAi(α)bj (β),

where the Ai(α), i = 1, . . . Nα are normalized splines in α and the bj, j = 1, . . . , Nβ – 3,
are periodic splines in β, satisfy the boundary conditions (6.26a) and the periodicity con-
dition (6.26b).

Next, we substitute Eqs. (6.27) into the component equations, obtained by Fourier
decomposition of the equations of motion and continuity, and apply Galerkin’s method
(Dai et al., 1992). The discretized system of equations are then solved subject to the single
condition p(0, 0, 0) = 0, which takes the form p1,1 = 0.

The system of algebraic equations that result from Galerkin’s method can be written in
the form

F (u, σ ) = 0. (6.28)

Here F : U ⊕ � ⊂ Rn → Rm, dim U = m, dim � = n − m. u ∈ U is the vector of state
variables and σ ∈ � is the vector of parameters η, v, Re, ε.

In the computational scheme, we fix three of the parameters, say η, ϑ , and ε, and vary
the Reynolds number, Re; thus, n – m = 1 and the regular manifold of Eq. (6.28) is a path.

The objective here is to solve the nonlinear algebraic system Eq. (6.28) for various
values of σ , now signifying a single parameter, the Reynolds number, σ ≡ Re. The solution
u∗ = u(σ ∗) is guaranteed by the implicit function theorem in the neighborhood of the points
(u, σ ), where Fu(u, σ ), the Fréchet derivative of F(u, σ ), is non-singular. The computational
scheme for obtaining u∗ = u(σ ∗) is then straightforward: (1) first locate a point (u0, σ 0)
in (n + 1) space that lies within the neighborhood of attraction13 of (u∗, σ ∗), then (2)

12The pressure may be retained, at significant savings on algebra, if the scheme of Eq. (5.12) due to
Zienkiewicz and Woo (1991) is employed. An extension to the full Navier–Stokes problem can be
found in Szeri and Al-Sharif (1996).

13Attraction in terms of the numerical scheme, not in the sense of fluid dynamics.
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Figure 6.6. Schematics of the iterative solution of Eq. (6.29).

employ a suitable iterative scheme that guarantees convergence (u0, σ 0) → (u∗, σ ∗). Phase
(1), i.e., the predictor, is simplest when (u0, σ 0) is obtained by stepping along the tangent
to the manifold from a known point (Figure 6.6). The step size, s, is constrained by the
requirement that (u0, σ 0) lie in the neighborhood of attraction of (u∗, σ ∗).

For convenience of notation, we rewrite Eq. (6.28) in the form

G̃ (μ) = 0, μ = (μ, σ ) . (6.29)

Local Iteration

We employ the Gauss-Newton method (Ortega and Rheinboldt, 1970)

DG̃(μk)(μk − μk+1) = G̃(μk) k = 0, 1, 2, . . . (6.30)

to solve Eq. (6.29) by iteration, starting from a suitable initial point μ0. Here

DG̃(xk) = (DuG̃(μk),Dσ G̃(μk)) ∈ Rm×n

is the augmented Jacobian of G̃(μ) evaluated atμ=μk. (Note that the Jacobian is calculated
analytically.)

To solve Eq. (6.30) for μk+1, perform the Q-R factorization

DG̃(μk)T = Q
(�

0

)
, (6.31)

where Q ∈ Rn×n is orthogonal and � ∈ Rm ×m is upper triangular, and observe that

(�T , 0)QTQ(�−T

0

)
= I

and

DG̃(xk) = (�T , 0)QT .

This implies that Eq. (6.30) has the solution

μk+1 = μk −Q
(�−T

0

)
G̃(μk) k = 0, 1, 2, . . . , (6.32)

where �−T is the inverse of � transpose.
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Local iteration of the solution proceeds thus along the following steps:

(1) Select14 a starting point, μ = μ0,
(2) For k = 0, 1, 2, . . . until convergence

(a) Solve the triangular system: �T ' = G̃(μk),

(b) Compute the next iterate: μk+1 = μk −Q(
'

0
)

Continuation of the solution
The Q-R decomposition

DG̃(μk)T = Q
(�

0

)

indicates that the last column of Q is tangential to the solution manifold, so that the tangent
vector at μk is given by

t = Qen,
where en = (0, 0, . . . , 1)T.

The simplest way to find a starting point, μ0, for the Gauss-Newton iteration is by
computing

μ0 = μ+ st,
where s is a variable step and μ is a known point (Figure 6.5).

The iteration scheme depicted by Eq. (6.30) breaks down at critical points, μc, where
the Jacobian DuG̃(μc) is singular. If, as in the present example,

rank[DuG̃(μc)] = n− 1 (6.33)

and Dσ G̃(μc) ∈ range[DuG̃(μc)], the point μc is a simple bifurcation point where exactly
two branches with two distinct tangents intersect. [There is also a condition on the second
derivatives. For technical details the reader is referred to Iooss and Joseph (1976) and to
Keller (1977).]

Although a simple bifurcation point is characterized by the singularity of the augmented
Jacobian DG̃, computationally we are looking for the change of sign of

det
[
DG̃(μk)T , t

]
for continuously varying tangent vector, t. This is achieved by examining the test function

τ = sgn(r11 × r22 × · · · × rmm),

where the rii , 1 ≤ i ≤ m, are the diagonal elements of �.
In order to continue along the new branch at bifurcation, μ = μc, we need the tangent,

q, to the bifurcating branch. Aided by the fact that the bifurcating branches emanate

14To obtain the solution at low Reynolds numbers, often μ0 = 0 will suffice, i.e., all variables may be
set equal to zero prior to starting the iteration. At high Reynolds numbers this scheme, in general, will
not work. Thus, when seeking solution at high Reynolds numbers, μ0 must be a point (i.e., solution)
that was obtained from low Reynolds number solutions by some type of extrapolation.



240 6 / Flow Stability and Transition

Figure 6.7. Variation of critical Reynolds number with eccentricity ratio, η = 0.912:
− · − · −, DiPrima and Stuart (1972); •, Vohr (1968), experimental; —, Dai, Dong, and Szeri
(1992). (Reprinted from International Journal of Engineering Science, Vol. 30, Dai,
R. X., Dong, Q. M. and Szeri, A. Z. Flow between eccentric rotating cylinders: bifurcation and
stability, pp. 1323–1340, Copyright (1990), with kind permission from Elsevier Science Ltd,
The Boulevard, Langford Lane, Kidlington 0X5 1GB, UK.)

symmetrically at the bifurcation point, μ = μc, we are able to find a good approximation
to the tangent of the bifurcating branch by simply calculating

q = Qem, em = (0, . . . , 0, 1, 0)T .

Since |rmm| = min (rii) ≈ 0, 1 ≤ i ≤ m, the corresponding row vector in DG̃ is closest
to being a linear combination of the other rows of DG̃ and

q ∈ null[DG̃(μc), t].

Evaluation and decomposition of the Jacobian consumes most of the computational
effort. With a system of 1,452 equations and R < RCR, Dai et al., (1992) required 120
sec of CPU time on the Cray Y-MP/832 for one Newtonian iteration, and three iterations
to converge to an error <10−6. For supercritical conditions, 300 sec per iteration was
required, but convergence was achieved, again, in three steps. For continuation in Re, fixed
ε, 20 solutions were necessary to reach the critical point, starting from a low Reynolds
number solution that was obtained with μ0 = 0.

Figure 6.7 illustrates the variation of the normalized critical Reynolds number with
eccentricity ratio, at η = 0.912. The bifurcation calculations were performed with Nx =
Ny = 16 and Nz = 3. The figure also contains data from small perturbation solutions
by DiPrima and Stuart (1972), with correction from DiPrima and Stuart (1975). The
experimental data was obtained from torque measurements at η = 0.91 by Vohr (1968).
The bifurcation results are in good agreement with the experimental data of Vohr; they also
agree with DiPrima and Stuart as ε→ 0, where the DiPrima and Stuart small perturbation
analysis is valid, but diverge from the latter as ε increases.
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Figure 6.8. Comparison of numerical (Dai et al., 1990) and experimental (Castle and Mobbs,
1968) torque data at η = 0.912 (− · − · −, ε = 0.0; - - - ε = 0.2; — ε = 0.4;). (Reprinted from
International Journal of Engineering Science, Vol. 30, Dai, R. X., Dong, Q. M. and Szeri, A. Z.
Flow between eccentric rotating cylinders: bifurcation and stability, pp. 1323–1340, Copyright
(1990), with kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane,
Kidlington 0X5 1GB, UK.)

Let M1 and M2 represent the torque on the inner and the outer cylinder, respectively, and
define the torque coefficient CMi (Schlichting, 1960) through

CMi = 2Mi

πρω2Lr4
1

, i = 1, 2. (6.34)

Figure 6.8 compares torque results calculated on the outer cylinder at η = 0.912 with
experimental data by Castle and Mobbs (1968) by plotting

CM2

(1 − η)2

η2
,

indicating supercritical bifurcation at ReCR. There is good agreement especially at small ε.

Torque Measurements
Torque measurements for the concentric case have been made by Taylor (1923), Wendt
(1933), Donelly (1958), and Vohr (1968) and were reviewed by Bilgen and Boulos (1973).
It is a simple matter to show that if the friction force, Fμ, depends on ρ, μ, ω, r1, C, and L,
where C is the radial clearance and L is the length of the cylinders, the dependence must
be of the form

Fμ

ρω2r3
1L

= f
(
C

r1
,
ρωr1C

μ

)
(6.35)

on dimensional grounds.
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Figure 6.9. Variation of modified torque coefficient with Couette Reynolds number: (A) Eq.
(6.37a); (B) Eq. (6.37b); (C) Eq. (6.37d); (D) Eq. (6.37e). (Reprinted with permission from
Bilgen, E. and Boulos, R. Functional dependence of torque coefficient of coaxial cylinders on
gap width and Reynolds numbers. ASME Trans., Ser. G, 95, 122–126, 1973.)

Defining the torque coefficient CM as in Eq. (6.34), Eq. (6.35) can be written in the
approximate form (Bilgen and Boulos, 1973)

CM = λ
(
C

r1

)α
Reβ, (6.36)

where the Reynolds number is defined by Re = ρr1ωC/μ.
By analyzing available experimental data, Bilgen and Boulos achieved the best fit to

Eq. (6.36) with α ≈ 0.3. The value of the exponent β is dependent not only on the Reynolds
number in the laminar or the turbulent regimes but on both the Reynolds number and the
clearance ratio C/r1 in the vortex flow regime.

Laminar regime: Re ≤ 64

CM = 10

(
C

r1

)0.3

Re−1.0 (6.37a)

Transition regime: 64 < Re ≤ 500

CM = 2

(
C

r1

)0.3

Re−0.6 if
C

r1
≥ 0.07 (6.37b)

CM = 2

(
2 + C

r1

){
1 + 1.45

[
1 −

(
Tc

Ta

)]}
Re−1.0 if

C

r1
< 0.07 (6.37c)
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Turbulent regime: Re > 500

CM = 1.03

(
C

r1

)0.3

Re−0.5 500 < Re ≤ 104 (6.37d)

CM = 0.065

(
C

r1

)0.3

Re−0.20 Re > 104 (6.37e)

The maximum mean deviation of the experimental data from these equations is ±5.8,
±10.4, and ±8.35% in the laminar, transition, and turbulent regimes, respectively (Bilgen
and Boulos, 1973), as shown in Figure 6.9.

6.4 Rotating Disk Flows

Thorough stability analysis of thrust bearing flows has not yet been accomplished.
Among the flows that have been analyzed, flow between parallel rotating disks is the flow
closest to thrust bearing flows. Disk flows also warrant consideration due to their relevance
to magnetic disk storage systems, and to flow over certain hydrostatic pads.

The first systematic study of rotating disk flows was made by von Karman (1923), who
assumed that the axial velocity is independent of the radial coordinate. This assumption led
to a similarity transformation that was shown by Batchelor (1951) to be applicable even
when the fluid is bounded by two infinite rotating disks. Based on the examination of the
governing equations, Batchelor predicted that at high Reynolds numbers a thin boundary
layer will develop on each disk, with the main body of the fluid rotating at a constant rate
intermediate between disk velocities. This prediction was challenged by Stewartson (1953),
who reasoned that at high Reynolds number the flow outside the boundary layers would be
purely axial, thus inaugurating one of the longstanding controversies of fluid mechanics.

The similarity transformation, available when the disks are infinite, reduces the number
of spatial dimensions of the problem to one. Although it is questionable whether the
reduced model approximates to the physical problem, the equations resulting from the
similarity transformation have been subject to intense analytical and numerical probing. An
excellent review of the work on infinite disk flows can be found in Zandbergen and Dijkstra
(1987).

Flow between finite, parallel disks was first investigated both experimentally and numer-
ically by Szeri and Adams (1978) and by Szeri, Schneider, Labbe, and Kaufman (1983).
Dijkstra and van Heijst (1983) found the finite disk solution to be unique for all values
of the parameters considered: of the Batchelor type for weak and of the Stewartson type
for strong counterrotation. Brady and Durlofsky (1987) investigated the relationship of the
axisymmetric flow between large but finite coaxial rotating disks to the Karman similarity
solution. They combined asymptotics with numerical analysis and showed that the finite
disk solution and the similarity solution coincide over a decreasing portion of the flow
domain as the Reynolds number is increased. Although this conclusion might seem coun-
terintuitive and perhaps defies old wisdom, it does reinforce the assertion that finite disk
and infinite disk flows are qualitatively different (Szeri, Giron, Schneider, and Kaufman,
1983). Despite the availability of solutions for finite disks, the computation of disk flow is
far from elementary. Much of recent work on finite disk flows finds relevance in magnetic
disk storage systems (Tzeng and Fromm, 1990; Tzeng and Humphrey, 1991; Humphrey,
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Schuler, and Iglesias, 1992; Radel and Szeri, 1997). In these applications nonuniformi-
ties in flow can affect disk rotational stability, with attendant drastic effects on read-write
performance; the current read-write head to disk separation is on the order of 100 nm
or less.

Turning now to stability of rotating disk flows, we find that most investigations are of
flows bounded by a single rotating disk. Gregory, Stuart, and Walker (1955) examined
stability at infinite Reynolds number and found good agreement with experimental data on
the direction of wave propagation but overestimated the number of vortices that appear at
criticality. Brown (1961) extended their analysis by considering stability at finite Reynolds
number. The basic flow equations contain curvature and Coriolis terms in the work of
Kobayashi, Kohama, and Takamadate (1980). Szeri and Giron (1984) retain the axial
velocity in addition to the terms considered by Kobayashi et al. Their result shows favorable
agreement with experimental data.

Experimentally, Faller (1963) found two types of instabilities. The waves of each of
these form a series of horizontal roll vortices, whose spacing is related to the thickness of
the boundary layer. Others who studied these instabilities include Faller and Kaylor (1966),
Tatro and Mollo-Christensen (1967), Caldwell and Van Atta (1970), and Weidman and
Redekopp (1976). The Ekman velocity profile exhibits numerous inflection points, each of
which might give rise to instabilities. Faller and Kaylor found that the location of the type
I vortices, which are stationary or nearly so, coincides with the first inflection point of the
radial velocity. The analysis of Gregory, Stuart, and Walker (1955) of inviscid instabilities
of the flow on a single, infinite, rotating disk confirms this.

Linear Stability Analysis

The flow field is bounded by two parallel disks of finite radii, located at Z = 0 and
Z = s, with respect to the inertial cylindrical coordinate system (R, %, Z). The lower disk
rotates with angular velocity� relative to the upper disk. Experimental evidence shows that
the instabilities that may occur take the form of spirals, with their radius vector decreasing
in the direction of rotation of the disks. Based on this evidence, and on the assertion that this
type of instability should be a general feature of all rotating boundary layers (Greenspan,
1968), it is logical to select, as reference, an orthogonal, curvilinear coordinate system (x1,
x2, x3) that is related to the local geometry of the spiral vortices (Figure 6.10). The direction
of the x2 axis is chosen to coincide with axis of the spiral vortices (inclined locally at the
yet unknown angle ε to the R direction). The x1 axis intersects the x2 axis perpendicularly,
so that the x1 axis is in the direction of propagation of the spiral vortices.

The origin of the (x1, x2, x3) coordinate system is located on the lower disk at R = r,
some %, via the transformation (Gregory, Stuart and Walker, 1955)

T :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 = r
[

ln

(
R

r

)
cos ε − (%+�t) sin ε

]

x2 = r
[

ln

(
R

r

)
sin ε + (%+�t) cos ε

]
x3 = Z

. (6.38)

The scale factors of the {xi} coordinate system are

h1 = h2 = (R/r) = h, h3 = 1.
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Figure 6.10. Coordinate systems employed in the linear stability analysis of disk flows.

We next calculate the physical components {V1, V2, V3} of the basic flow velocity relative
to {xi}, which are given by⎧⎪⎨

⎪⎩
V1 = cos ε(UR) − sin ε(r�− V%)

V2 = sin ε(UR) + cos ε(r�− V%)

V3 = Wz
(6.39)

where {UR, V%,WZ} is the flow velocity in the cylindrical polar coordinate system
{R,%,Z}.

In accordance with the linear theory of stability, the basic flow is perturbed by an
infinitesimal wave. We look for instability to perturbation which propagates in the x1

direction, the direction of least stability, with speed (β/α)r, the real part of (β/α), relative
to {xi} and a wavelength of 2π/α. Let {u;p} represent the perturbation, then

{u(x);p(x)} = {v(x3);π (x3)}ei(αx1−βt). (6.40)

The linearized equations that govern the evolution of the perturbation {see Eq. (6.14)} are
given by Greenspan (1968)

−iλv + V · grad v + v · grad V + 2� × v = −grad
π

p
+ ν∇2v

(6.41)
div v = 0.

Using the notation

ϑ = s

r
, δ = s

hr
, mi = s

h2

∂h

∂xi
, �ij = s2

h3

∂2h

∂xi∂xj
, i, j = 1, 2,

Eq. (6.41) is nondimensionalized in accordance with

{xi} = r {x, y, ϑz} , {V1, V2, V3} = V0 {U,V, ϑW }
(6.42)

Re = V0s

ν
, σ = αs

h
, c = βh

αV0
,
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where V0 = r� is the local surface velocity. Upon decomposing Eq. (6.41) along {xi} and
substituting in Eq. (6.42), the following set of equations results:

−iσ cu− (m1v + iσv −m2u)V + ϑ
(
du

dz
− iσw

)
W

−
(
m1V + δ ∂V

∂x
−m2V − δ ∂U

∂y

)
v +

(
∂U

∂z
− δϑ ∂W

∂x

)
w + 2ϑv (6.43a)

= − 1

V0
δ
∂π̄

∂x
− 1

Re

[
−d

2u

dz2
+ iσ dw

dz
− (2m1m2 − �12 + iσm2) v + (2m2

2 − �22
)
u

]
,

−iσ cv + ϑ dv
dz
W + (m1v + iσv −m2u)U + ∂V

∂z
w +

(
m1V + δ ∂V

∂x
−m2U

)
u− 2ϑu

= −δ ∂V
∂y
v − 1

Re

[
−d

2v

dz2
+ (iσm2 − 2m1m2 + �12) u+ (2m2

1 − �11 + σ 2
)
v

]
,

(6.43b)

−iσ cw −
(
du

dz
− iσw

)
U − ∂v

∂z
V −

(
∂U

∂z
− δϑ ∂W

∂x

)
u+

(
δϑ
∂W

∂y
− ∂V

∂z

)
v

= − 1

V0

∂π̄

∂z
− 1

Re

[
iσ
du

dz
+ iσm1w + σ 2w +m1

(
du

dz
− iσw

)
+m1

dv

dz

]
,

(6.43c)

(m1 + iσ )u+m2v + dw

dz
= 0. (6.44)

Cross differentiation eliminates the pressure, and substitution from the equation of
continuity (6.44) eliminates the velocity component u. We further simplify these equations
by utilizing the approximations

δ ≈ ϑ, m1 ≈ δ cos ε, m2 ≈ δ sin ε
(6.45)

�11 ≈ δ2 cos2 ε, �12 ≈ δ2 sin ε cos ε, �22 ≈ δ2 sin2 ε.

The algebra is tedious, and we refer the reader here to Giron (1982) and Szeri, Giron,
Schneider, and Kaufman (1983).

We seek solutions in the weak form

v(z) =
N−1∑
i=2

viBi (z) ,

(6.46)

w(z) =
N−2∑
j=3

wjBj (z) .

Here the Bi(z), 1 ≤ i ≤ N are B-splines defined over a partition in z ∈ [0, 1]. The expansions
in Eqs. (6.46) satisfy the boundary conditions

v = w = dw

dz
= 0 (z = 0, 1) . (6.47)
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Figure 6.11. Basic flow velocity, resolved along direction ε : �, ε = 0◦; ©, 20◦; 
, 40◦; +,
60◦; ×, 80◦; ♦, 100◦; ∇, 120◦; �, 140◦; ∗, 160◦. (Reprinted with the permission of Cambridge
University Press, from Szeri, A. Z., Giron, A., Schneider, S. J. and Kaufman, H. N. Flow
between rotating disks. Part 2. Stability. J. Fluid Mech., 134, 133–154, 1983.)

The condition dw/dz = 0 at z = 0, 1 is a derived boundary conditions; it is obtained from
the equation of continuity (6.44).

Expansions (6.46), together with spline expansions for the (numerically or experimen-
tally) known basic flow, are now substituted into the reduced equations of motion in an
application of Galerkin’s method. Multiplication through by the elements of the test func-
tions {Bi(z)}Ni=1 and integration over the domain 0 ≤ z ≤ 1 lead to the complex algebraic
eigenvalue problem

|X − cY | = 0, (6.48)

where, in general, c = cr + ici.
The flow is marginally or neutrally stable if there is one eigenvalue with ci = 0 and

ci > 0 for all other eigenvalues. It is unstable if at least one eigenvalue exists with ci < 0.
The marginal state is steady if cr = 0.

We now illustrate some results for parallel, infinite, disk flows at a fixed value, say E−1 =
100, of the Ekman number. To identify the most dangerous direction for wave propagation,
the basic flow velocity is resolved along various directions as characterized by the angle ε
(Figure 6.11). The neutral stability curve of each of the resolved velocity profiles is then
calculated from the eigenvalue problem (6.48), by identifying (σ , Re) couples that yield
the neutrality condition ci = 0 (Figure 6.12). For each of the orientations, ε, the lowest
achievable Reynolds number yielding ci = 0 is now identified and plotted against ε in
Figure 6.13. This last Figure shows that the perturbation that propagates at ε ≈ 17◦ to the
radius is the most dangerous one, giving the critical Reynolds of ReCR = 5000. Therefore,
a basic flow characterized by E−1 = 100 is unstable to infinitesimal disturbances whenever
r ≥ 50s.

The scheme described here will yield results even if the basic flow is available only
experimentally (Szeri, Giron, Schneider, and Kaufman, 1983).
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Figure 6.12. Stability diagram at E−1 = 100, ε = 17◦. (Reprinted with the permission of
Cambridge University Press from Szeri, A. Z., Giron, A., Schneider, S. J. and Kaufman,
H. N. Flow between rotating disks. Part 2. Stability. J. Fluid Mech., 134, 133–154, 1983.)

Figure 6.13. Variation of the Reynolds number for neutral stability with orientation ε.
(Reprinted with the permission of Cambridge University Press from Szeri, A. Z., Giron, A.,
Schneider, S. J. and Kaufman, H. N. Flow between rotating disks. Part 2. Stability. J. Fluid
Mech., 134, 133–154, 1983.)

6.5 Nomenclature

Ai B-spline
C radial clearance
CM coefficient of torque
D rate of energy dissipation
E kinetic energy of perturbation
H scale factor
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J rate of energy production
P pressure
Re Reynolds number
V basic flow velocity
bi periodic spline
c eigenvalue
p pressure
r1, r2 inner, outer radii
v perturbation
α, β, γ bipolar coordinates
R, %, Z cylindrical polar coordinates
{xi} curvilinear coordinates
ε coordinate orientation
UR, V%, WZ basic flow velocity
Vi basic flow velocity
(.)r, (.)i real, imaginary part
(.)0 initial value
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Wendt, F. 1933. Turbulente strömungen zwischen zwei rotierenden konaxialen Zylindern. Ing.
Arch., 4, 577–595.

White, F. M. 1991. Fluid Mechanics. McGraw-Hill, New York.
Wilcox, D. E. 1950. Turbulence in high speed journal bearings. ASME Trans., Ser. F, 72, 825–834.
Zandbergen, P. J. and Dijkstra, D. 1987. Von Karman swirling flows. Annual Rev. Fluid Mech., 19,

465–492.
Zienkiewicz, O. C. and Woo, J. 1991. Incompressibility without tears: how to avoid restrictions of

mixed formulation. Internal. J. Numer. Methods Eng., 32, 1189–1203.



CHAPTER 7

Turbulence

Instability of laminar flow leads to flow transition and, on further increase of the
Reynolds number, to eventual turbulence. The object of this chapter is to investigate bearing
performance under turbulent conditions.

In journal bearings, turbulence makes its first appearance at Re ≈ 2000 (DiPrima, 1963).1

Opinions on the minimum value of the Reynolds number for turbulence in thrust bearings
are somewhat divided, but here again the value Re ≈ 2000 seems acceptable (Frêne, 1977).
Once turbulence has set in, the importance of the precise mechanism of the instability
and of the transition that resulted in turbulence diminishes. Nevertheless, some authorities
maintain that if turbulence was obtained by spectral evolution, then the cellular flow pattern
will persist into turbulence and affect the velocity profile-shear stress relationship (Burton
and Carper, 1967). Existing theories of turbulence do not account for such occurrences;
nevertheless, they show substantial agreement with experimental data from near-isothermal
bearing experiments.

7.1 Equations of Turbulent Motion

Turbulence is an irregular fluid motion in which the various flow properties, such
as velocity and pressure, show random variation with time and with position. Because of
this randomness the instantaneous value of a flow property has little practical significance,
it is the average value of that property that is of engineering interest.

To make our ideas precise, we represent a dependent variable by the sum of its average
(denoted by an uppercase letter and an overbar) and its fluctuating component (denoted by
a lowercase letter and a prime), so that

p = P̄ + p′ vi = V̄i + v′
i i = 1, 2, 3. (7.1)

The average value, say Ū ≡ V̄1 of the velocity component u ≡ v1, is interpreted as a time
average and is calculated according to

Ū (T ) = 1

T

∫ T

0
u (t + τ ) dτ T1 ≤ T ≤ T2. (7.2a)

Here T1 is the time scale of turbulence (time scale of largest eddies in the flow) and T2 is
the time scale of “slow” variations of the flow that, because of their relative slowness, do
not appropriately belong to turbulence.

In turbulence theory (Monin and Yaglom, 1973), Ū represents the stochastic average of
u; that is, the average of a large number of ostensibly identical experiments. If u(t) is

1This value seems to hold for isothermal bearing operations only. Strong thermal effects may lower the
critical value of the Reynolds number considerably (Li, 1977; Gardner and Ulschmid, 1974).
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a stationary random function of time, i.e., its mean value is constant and its correlation
function depends only on the difference τ = (t2 − t1), then it can be proved that

Ū = lim
T→∞

1

T

∫ T

0
u(t) dt,

provided that

lim
T→∞

1

T

∫ T

0
B(τ ) dτ = 0.

This last condition on the integral of the correlation function B(τ ) = u′(t)u′(t + τ ) is easily
satisfied in turbulence, since the velocities at distant (in either time or space) points are
uncorrelated, leading to B(τ ) → 0 as τ → ∞.

If the turbulence is homogeneous, say in the x direction, then we have correspondence
between the stochastic average and the space average taken along x, according to

U = lim
X→∞

1

X

∫ X

0
u(x) dx. (7.2b)

Although actual turbulent flows are in general, neither stationary nor homogeneous, aver-
aging is defined according to the approximate formulas of Eq. (7.2).

When Eq. (7.1) is substituted into the Navier-Stokes equation, we obtain

ρ

[
∂(V̄i + v′

i)

∂t
+ (V̄k + v′

k)
∂(V̄i + v′

i)

∂xk

]
= −∂(P̄ + p′)

∂xi
+ ∂

∂xj
[2μ(D̄ij + d ′

ij )]. (7.3)

Here D̄ij = 1
2 (∂V̄i/∂xj + ∂V̄j /∂xi) and d

′
ij = 1

2 (∂v
′
i/∂xj + ∂v′

j /∂xi) are the stretching ten-
sors for the mean motion and the fluctuation, respectively.

Our aim is to derive equations of motion for mean values. To this end, we average
Eq. (7.3) according to the rules

f + g = f̄ + ḡ, (7.4a)

af = af̄ a = const., (7.4b)

lim
n→∞ fn = lim

n→∞ f̄n, (7.4c)

f̄ g = fg (7.4d)

first established by Reynolds. Averaging leads to

ρ

[
∂V̄i

∂t
+ V̄k ∂V̄i

∂xk

]
= ∂P̄

∂xi
+ ∂

∂xj
(2μD̄ij ) − ρv′

j

∂v′
i

∂xj
. (7.5)

The averaged equation of motion, Eq. (7.5), can be put into a more convenient form with
the aid of the continuity equation for the fluctuation, which is derived below.

Substitution into the equation of continuity [Eq. (2.16c)] in terms of mean and fluctuating
components gives

∂V̄i

∂xi
+ ∂v′

i

∂xi
= 0. (7.6)

Taking the average value of this equation in accordance with Eqs. (7.4) leads to the equation
of continuity for the mean flow. By subtracting the mean flow continuity equation from
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Eq. (7.6), we obtain the continuity equation for the fluctuation. That is, for the mean motion
and the fluctuation we have, respectively,

∂V̄i

∂xi
= 0, (7.7a)

∂v′
i

∂xi
= 0. (7.7b)

Equation (7.7b) is now used to put the last term of Eq. (7.5) into the desired form:

v′
j

∂v′
i

∂xj
= ∂

∂xj
(v′
iv

′
j ),

so that Eq. (7.5) now reads

ρ

[
∂V̄i

∂t
+ V̄k ∂V̄i

∂xk

]
= ∂

∂xj
(−P̄ δij + 2μD̄ij − ρv′

iv
′
j ). (7.8)

The term in parentheses on the right-hand side is the average stress tensor in turbulent
flow,

T̄ij = −P̄ δij + 2μD̄ij − ρv′
iv

′
j . (7.9)

The stress tensor T̄ij is, thus, the sum of contributions from the mean flow −P̄ δij + 2μD̄ij
and contributions from the turbulence fluctuation,

τij = ρv′
iv

′
j . (7.10)

The latter is called the apparent (or Reynolds) stress tensor.2 Its components are unknown
variables in Eq. (7.8). For physical origin of τij see Schlichting (1968).

The system consisting of the equations of motion [Eqs. (2.41b)], the equation of con-
tinuity [Eq. (2.44b)], and the appropriate boundary and initial conditions defines a mathe-
matically well-posed problem for laminar flow, which, at least in theory, can be solved to
obtain the four unknowns v1, v2, v3 and p. The number of equations in the system avail-
able to characterize the mean flow remains the same as the flow becomes turbulent, the
system now consisting of the mean flow equations of motion, Eq. (7.8), and of continuity,
Eq. (7.7a), and the boundary and initial conditions; yet the number of unknowns has
increased to 10. (The Reynolds stress tensor is symmetric and has, therefore, only six
independent components.)

In turbulent flow, we thus have only four equations from which to determine 10
unknowns. As there does not seem to be any possibility of deriving additional equa-
tions on purely theoretical grounds, we are forced into (1) making assumptions concerning
the character of the flow and (2) considering experimental data, when wishing to close
the turbulence problem. This predicament gives rise to the so-called phenomenological or
semi-empirical models of turbulence.

2In laminar flow P̄ = p and V̄i = vi so that −ρv′
iv

′
j ≡ 0, and we recover from Eq. (7.9) Tij = −ρδij +

2μDij , the constitutive equation for a Newtonian fluid.
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It is, of course, possible to derive transport equations for components of the Reynolds
stress tensor (Hinze, 1975). These transport equations have the form

D

Dt
(v′
iv

′
j ) = −

(
v′
j v

′
k

∂V̄i

∂xk
+ v′

iv
′
k

∂V̄j

∂xk

)
− 2ν

∂v′
i

∂xk

∂v′
j

∂xk
+ p′

ρ

(
∂v′
j

∂xj
+ ∂v′

j

∂xi

)

− ∂

∂xk

(
v′
iv

′
j v

′
k − ν ∂v

′
iv

′
j

∂xk
+ p′

ρ
(δjkv′

j + δikv′
j )

)
. (7.11)

Inclusion of the six additional equations in our system of governing equations is of no
help with the closure problem as we have acquired 10 additional unknowns in the process:
the 10 independent components of the third-order correlation tensor Tijk = v′

iv
′
j v

′
k . The

closure problem is not peculiar to turbulence, it is common to all nonlinear stochastic
processes.

A number of models of turbulence have been proposed, each one designed to supply
additional equations. They range from the simple, such as the constant eddy viscosity
hypothesis of Boussinesq, to the sophisticated, exemplified by the 28-equation model of
Kolovandin (Ng and Spalding, 1972).

Before we discuss the various mathematical models of turbulence and examine how
they may be applied to the turbulent flow of a lubricant in the clearance space of a bearing,
we reduce the equations of motion by taking into account the simplifying features of the
lubricant film geometry.

Let Lxz,Ly represent the characteristic dimensions of the film as in Figure 2.7, and let
U∗ be the characteristic velocity in the “plane” of the film. Normalized variables are defined
as follows (c.f., Eq. (2.58)):

(X, Y, Z) = 1

Lxz

(
x,

1

ε
y, z

)
, T =

(
U ∗

Lxz

)
t

(U,V, W ) = 1

U ∗

(
U,

1

ε
V , W

)
, (u, v, w) = 1

v∗ (u′, v′, w′ ), (7.12)

P = Rε

ρU ∗2
P , Rε = εRe, Re = ρLyU

∗

μ
, ε = Ly

Lxz
.

Here we assumed that the various fluctuating components of the velocity are all of the same
order of magnitude, ≈ O(v∗).

Substituting Eq. (7.12) into Eq. (7.8), rearranging and setting κ = (u∗/U ∗)2 yields

Rε

[
dU

dT
+ κ
(
∂uu

∂X
+ ∂uw

∂Z

)]
+ κRe

∂uv

∂Y
= −∂P

∂X
+ ∂2U

∂Y 2
+ ε2

(
∂2U

∂X2
+ ∂2U

∂Z2

)
(7.13a)

ε2

[
Rε
dV

dT
− ∂

2V

∂Y 2
−ε2

(
∂2V

∂X2
+ ∂

2V

∂Z2

)]
= −∂P

∂Y
− κRε

[
∂uv

∂Y
+ ε
(
∂vu

∂X
+ ∂vw

∂Z

)]
(7.13b)

Rε

[
dW

dT
+ κ
(
∂wu

∂x
+ ∂ww

∂z

)]
+ κRe

∂vw

∂Y
= −∂P

∂Z
+ ∂2W

∂Y 2
+ ε2

(
∂2W

∂X2
+ ∂2W

∂Z2

)
(7.13c)
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Here

d

dT
= ∂

∂T
+ U ∂

∂X
+ V ∂

∂Y
+W ∂

∂Z

symbolizes (dimensionless) material derivative based on mean velocity.
In the spirit of the thin-film analysis of Chapter 2, we now delete terms in (7.17) that are

multiplied by powers of ε

Rε

[
dU

dT
+ κ

(
∂uu

∂X
+ ∂uw

∂Z

)]
+ κRe

∂uv

∂Y
= −∂P

∂X
+ ∂2U

∂Y 2
(7.14a)

κRε
∂uv

∂Y
= −∂P

∂Y
(7.14b)

Rε

[
dW

dT
+ κ

(
∂wu

∂X
+ ∂ww

∂Z

)]
+ κRe

∂vw

∂Y
= −∂P

∂Z
+ ∂2W

∂Y 2
(7.14c)

(1) Assuming now that κ ≈ 0(1), a condition that has been shown to exist in wake flow
(Hinze, 1979) but, in effect, has been applied to wall bounded thin-film flows by the early
researchers of the subject, leads us to

Rε

(
dU

dT
+ ∂uu

∂X
+ ∂uw

∂Z

)
= −∂P

∂X
+ ∂2U

∂Y 2
− Re

∂uv

∂Y
(7.15a)

Rε
∂uv

∂Y
= −∂P

∂Y
(7.15b)

Rε

(
dW

dT
+ ∂wu

∂X
+ ∂ww

∂Z

)
= −∂P

∂Z
+ ∂2W

∂Y 2
− Re

∂vw

∂Y
(7.15c)

These equations can be combined into a single, Reynolds-type equation in pressure only
if the Reynolds number is constrained, Re < ε−1, in which case we are lead to

∂P̄

∂X
= ∂

∂y

(
μ
∂Ū

∂y
− ρu′v′

)
, (7.16a)

∂P̄

∂Y
= 0, (7.16b)

∂P̄

∂Z
= ∂

∂y

(
μ
∂W̄

∂y
− ρv′w′

)
. (7.16c)

(2) When the cross section presented to the flow changes more rapidly, thus violating
the small slope assumption locally, the flow is definitely under strong influence from the
bounding walls. In such cases, it seems prudent to assume that κ ≈ 0(ε), a condition
that has been shown to exist in channel flow (Hinze, 1979). Under these conditions the
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turbulent film equations that apply are

∂P̄

∂X
= ∂

∂y

(
μ
∂Ū

∂Y
− ρu′v′

)
+ ρ dŪ

dt
, (7.17a)

∂P̄

∂Y
= 0, (7.17b)

∂P̄

∂Z
= ∂

∂y

(
μ
∂W̄

∂Y
− ρw′v′

)
+ ρ dW̄

dt
. (7.17c)

According to this second analysis, mean-flow inertia is of the same order of magnitude
as the surviving Reynolds stresses and both quantities should be taken into account.

In neither of the above two cases is the physics of turbulence well represented by a
Reynolds-type equation. Nevertheless, we follow accepted practice in this chapter and
consider (7.16) to be valid between smooth walls.

To calculate bearing performance under turbulent conditions, several researchers,
(Constantinescu, 1962; Ng and Pan, 1965; Elrod and Ng, 1967) employ Eqs. (7.16),
resorting to the more acceptable model of Eqs. (7.17) only when specifically investigat-
ing lubricant inertia effects (Constantinescu and Galetuse, 1979; Landau and Leschziner,
1978).

The earliest turbulent lubrication models employed equation Eqs. (7.16) and the ideas
of (1) mixing length (Constantinescu, 1959), (2) eddy viscosity (Ng and Pan, 1965; Elrod
and Ng, 1967), and (3) empirical drag laws (Hirs, 1973; Black and Walton, 1974). Closure
is obtained in these models by relating the Reynolds stress to the mean flow characteristics.
Such representations, when used in conjunction with Eqs. (7.16), can lead to relationships
between the mean velocity and the mean pressure gradient. To obtain the governing equation
for pressure, the mean velocity, now in terms of the mean pressure, is substituted into the
equation of continuity in a development that parallels the laminar flow case. Several of the
available models yield a formally identical turbulent Reynolds equation of the form

∂

∂x

(
h3

μkx

∂P̄

∂x

)
+ ∂

∂z

(
h3

μkz

∂P̄

∂z

)
= 1

2
U0
∂h

∂x
. (7.18)

Here kx = kx(Rh) and kz = kz(Rh), where Rh = U∗h/ν is the local Reynolds number,
thus in these formulations turbulence is accounted for by weighting the film thickness with
some function of Rh. Since kx, kz ≥ 12, the equality holding for laminar flow, the apparent
film thickness, h/kx

1/3, h/kz
1/3, employed in performance calculations is smaller than the

geometric film thickness, h, therefore, turbulent conditions yield higher pressures, for the
same film geometry, than do laminar conditions. Most turbulence models are in agreement
with this conclusion, it is in the actual form of the turbulence functions kx(x, z; Re), kz(x,
z; Re) where they differ (see Figure 7.4). But the difference in performance predictions
between the various models is often insignificant, except perhaps at extreme conditions
such as high eccentricity in a journal bearing.

7.2 Turbulence Models

Perhaps the first attempt to provide a mathematical model of turbulence was made
by Boussinesq in 1877, when he proposed a relation between the Reynolds stresses and the
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mean velocity gradient in the form

τij = −ρv′
iv

′
j = ρεm

(
∂V̄i

∂xj
+ ∂V̄j

∂xi

)
, (7.19)

so that the mean stress in the fluid is given by

T̄ij = −P̄ δij + μ
(

1 + εm

ν

)(∂V̄i
∂xj

+ ∂V̄j

∂xj

)
. (7.20)

Equation (7.20) is analogous to the constitutive equation of Stokes for laminar flow, except
that, unlike the molecular viscosity μ, the eddy viscosity εm is not a material constant.

The eddy viscosity, εm, depends on the structure of turbulence itself. Therefore, to
complete the model of Boussinesq, εm has to be related to measurable quantities of the
turbulent flow. Workers in the field of turbulence who use Boussinesq’s model, Eq. (7.20),
accomplish this in various ways.

Prandtl (1963) reasoned that the eddy viscosity is given by

εm = �2

∣∣∣∣∂Ū∂y
∣∣∣∣ (7.21)

when dealing with a two-dimensional mean flow along the solid wall, which is located at
y = 0. In Prandtl’s theory, the mixing length, �, is analogous to the mean free path of the
kinetic theory of gases. (It is shown in the kinetic theory of gases that if vm is the rms.
molecular velocity and � is the mean free path between collisions, then μ ∼ ρvm�, where
μ is the molecular viscosity.) To illustrate the analogy, without actually considering details,
we follow Prandtl and consider a two-dimensional mean flow that is parallel to the y = 0
plane (a solid wall) so that

Ū = Ū (y) V̄ = W̄ = 0.

Although turbulence is three dimensional, we focus attention on only one Reynolds stress
component −ρu′v′ and write, in accordance with Eq. (7.19), the approximation

τxy ≈ −ρu′v′ = ρεm dŪ
dy
. (7.22)

Here we neglected the viscous stress, so Eq. (7.22) is not valid in regions where viscous
effects are of the same order of magnitude as turbulence effects.

To have dimensional homogeneity in Eq. (7.22), the eddy viscosity, εm, must have the
physical dimensions of (length2)/(time). This requirement is satisfied when, in analogy to
the kinetic theory, we choose εm to be represented by the product of a characteristic length
and a characteristic velocity. The length parameter is selected in such a way that it permits
the local friction velocity

v∗ = √|τxy |/ρ
to be used as the velocity parameter. Thus we have, by definition,

εm = �× v∗ and |τxy | = ρv2
∗.

Substitution for εm into Eq. (7.22) yields

|τxy | = ρv2
∗ = ρεm dŪ

dy
= ρ (�× v∗)

dŪ

dy
.
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By comparison of the second and last terms we arrive at Eq. (7.21), so that

τxy = −ρu′v′ = ρ�2

∣∣∣∣dŪdy
∣∣∣∣ dŪdy . (7.23)

[Note that the absolute sign in Eqs. (7.21) and (7.23) was introduced to ensure that εm ≥ 0
whatever the sign of dŪ/dy.]

In a simple application of the theory, where there is only one characteristic dimension
associated with the problem (e.g., the distance from the wall in channel flow or the width
of the turbulent mixing zone in jets and wakes), we may assume proportionality between
this characteristic dimension and the mixing length �.

The velocity profile that may be obtained from Eq. (7.23) by integration is not valid at
the wall. There, in the so-called viscous sublayer, we have μ|dŪ/dy| � ρ|u′v′|, and the
velocity profile is determined as

τw = μdŪ
dy
, (7.24)

where τw is the wall stress.
In an application to boundary-layer flows, Prandtl integrated Eq. (7.23) within the

constant stress layer; that is, in the layer outside the viscous sublayer that is still close
enough to the wall so that the condition τ xy = τw is approximately satisfied. Within this
layer, as the only length parameter is the distance from the wall, Prandtl assumed that

� = κy, (7.25)

where κ is a dimensionless constant that must be deduced from experiment.
When Eq. (7.25) and τ xy ≈ τw are substituted into Eq. (7.23) and the latter is integrated,

we obtain

Ū = v∗
κ

ln y + C. (7.26)

The integration constant C can be determined in either of two ways.
First, by fixing attention on the layer y = y0 (y0 = h/2 in channel flow and y0 = δ in the

boundary layer, where δ is the boundary-layer thickness), where the velocity, Ū , is equal
to its maximum value U0, we have from Eq. (7.26)

U0 = v∗
κ

ln y0 + C. (7.27)

The integration constant C can now be eliminated between the last two equations, and we
obtain a particular form of the velocity defect law,

U+
0 − Ū+ = 1

κ
ln
y0

y
, (7.28)

that is valid within the constant stress layer. Here we used the notation U+
0 = U0/v∗ and

Ū+ = Ū/v∗. Experimental verification of the velocity defect law is given in Figure 7.1.
Alternatively, the constant C in Eq. (7.26) may be determined from the condition that

the turbulent velocity distribution of Eq. (7.23) must join onto the velocity of the viscous
sublayer of Eq. (7.26) somewhere in the vicinity of the wall. Thus, the condition on the
velocity distribution in Eq. (7.26) is Ū = 0 at y = yL. The thickness of the viscous sublayer
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Figure 7.1. Experimental verification of the velocity defect law, Eq. (5.34). (Reprinted with
permission from Clauser, F. H. The turbulent boundary layer. Adv. Appl. Mech., 4, 1–51, 1965.)

yL is determined by conditions at the (smooth) wall, characterized by v∗ = √
τw/ρ and by

the kinematic viscosity ν. Then, by dimensional reasoning, we must have

yL = β ν
v∗
, y+

L = β. (7.29)

Substituting into Eq. (7.26), we find

Ū+ = 1

κ
(ln y+ − lnβ). (7.30)

This is Prandtl’s universal logarithmic distribution. Here y+ = yv∗/ν is the dimensionless
distance from the wall, and the constant β depends on the nature of the wall surface.

In Eqs. (7.28) and (7.30), we found two universal velocity distribution laws. When these
are written in the more general form,

U+
0 − Ū+ = f (ŷ) ŷ = y

y0
(7.31)

and

Ū+ = F (y+) y+ = yv∗
ν
, (7.32)

they are known as the velocity defect law and the law of the wall, respectively.3 Experimental
verification of the law of the wall is shown in Figure 7.2.

The law of the wall, Eq. (7.32), is valid in the wall region, which comprises the viscous
sublayer adjacent to the wall, the constant stress layer farther out in the fully turbulent
region, and the buffer zone separating the two. The logarithmic velocity distribution of

3The velocity defect law, Eq. (7.31), and the law of the wall, Eq. (7.32), can be arrived at on purely
dimensional grounds. Then, the requirement that there must be a region of overlap where both equations
are valid leads to the logarithmic laws, Eqs. (7.28) and (7.30), without use of the mixing length theory.
For details of this more appealing approach see Townsend (1977) and Hinze (1975).
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Figure 7.2. Experimental verification of the law of the wall, Eq. (5.32). (Reprinted with
permission from Hinze, J. O. Turbulence, 2nd ed. McGraw-Hill, New York. Copyright 1975.)

Prandtl, Eq. (7.30), which is Prandtl’s simplified version of the law of the wall, does not
account for the buffer zone but joins the velocity profile of the constant stress layer abruptly
to the velocity profile of the viscous sublayer.

Much effort has been directed toward making Boussinesq’s hypothesis, Eq. (7.19),
applicable in the whole wall layer by providing a universal eddy viscosity profile there.
It was shown by Reichardt and later by Elrod (Hinze, 1975) that such an eddy viscosity
distribution must satisfy two requirements:

lim
y+→0

εm

ν
= const.× (y+)3,

(7.33)
lim
y+→∞

εm

ν
= const.× (y+).

The second condition is necessary to have agreement with Eq. (7.26), and the first follows
from the equation of continuity when there is streamwise variation of the mean values.

One of the more successful eddy viscosity profiles was devised by Reichardt (Monin
and Yaglom, 1973). His eddy viscosity

εm

ν
= k

(
y+ − δ+l tanh

y+

δ+�

)
, (7.34)

where k and δ+� are constants, δ+� being related to the thickness of the viscous sublayer,
satisfies the two conditions of Eq. (7.33) and is in good agreement with experimental data.

In the Kolmogoroff-Prandtl energy model, it is assumed that the eddy viscosity can be
represented as the product of two characteristic quantities of turbulence

εm = A
(
q2

2

)1/2

!, (7.35)



264 7 / Turbulence

where A is a numerical constant, q2/2 = v′
iv

′
i/2 is the kinetic energy of the turbulent

fluctuation per unit mass, and ! is an integral length scale.
The length scale! in Eq. (7.35) may be made proportional to the characteristic dimension

of the problem, as suggested by Prandtl. In the analysis of flow near a wall, Wolfshtein
(1969) employed the modified van Driest formula (Hinze, 1975)

! = y (1 − e−!ηReq
)
, (7.36)

where Aη is a constant and Req = y
√
q2/2ν is a local Reynolds number. Ng and Spalding

(1972), in contrast, recommended that ! be calculated from a transport equation.
The turbulent kinetic energy for use in Eq. (7.36) is given by a transport equation, which

is obtained from Eq. (7.11) by contraction:

D

Dt

(
q2

2

)
= − ∂

∂xi
v′
i

(
p′

ρ
+ q2

2

)
− v′

iv
′
j

∂V̄j

∂xi
+ 2ν

∂

∂xi
v′
j d

′
ij − ε. (7.37)

The terms on the right-hand side of Eq. (7.37) represent (1) the convective diffusion by
turbulence of the total turbulence energy, (2) the rate of production of turbulence, (3) the
work by the viscous shear stresses of the turbulent motion, and (4) the rate of viscous
dissipation of turbulent energy

ε = 2νd ′
ij d

′
ij

(7.38)

= ν

(
∂v′
i

∂xj
+ ∂v′

j

∂xi

)
∂v′
i

∂xj
.

In internal flows subject to a strong favorable pressure gradient, Jones and Launder
(1972) put ε ∼ (q2)3/2/! in Eq. (7.35), so that their eddy viscosity is given by

εm = C (q2)
2

4ε
(7.39)

and ε is calculated from a transport equation (Hinze, 1975).

7.3 Constantinescu’s Model

The approach in Constantinescu’s turbulent lubrication model (Constantinescu,
1959) is based on the Prandtl mixing length hypothesis, Eq. (7.21). Following Prandtl’s
ideas, the mixing length is made to vanish at the walls and to vary linearly with the distance
from the nearest wall:

� = ky 0 ≤ y ≤ h

2

� = ky ′ 0 ≤ y ′ ≤ h

2

⎫⎪⎪⎬
⎪⎪⎭ , (7.40)
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where y′ = h − y. Substituting for � from Eq. (7.40) and for −ρu′v′ from Eq. (7.23) into
Eq. (7.15a), the equation of turbulent motion in a long bearing (∂P̄ /∂z = 0, W̄ = 0) is
obtained. For 0 ≤ y ≤ h/2 this equation has the nondimensional form

∂

∂ŷ

(
k2ŷ2Rh

∣∣∣∣∂U∂ŷ
∣∣∣∣ ∂U∂ŷ + ∂U

∂ŷ

)
− h2

μU∗

∂P̄

∂x
= 0, (7.41)

where Rh = U∗h/v is the local Reynolds number and

ŷ = y

h
U = Ū

U∗
.

U∗ = U2 is the velocity of the runner in the x direction relative to the stationary bearing
surface (U1 = 0).

Equation (7.41) may now be integrated,

Aŷ2 ∂U

∂ ˆ̄y

∣∣∣∣∂U∂ŷ
∣∣∣∣+ ∂U

∂ŷ
+ Bŷ − C = 0, (7.42)

where we use the notation

A = k2
Rh, B = − h2

μU∗

∂P̄

∂x
.

The integration constant, C, in Eq. (7.42) corresponds to the dimensionless wall stress [as
ŷ → 0, Eq. (7.42) reduces to C = (∂U/∂ŷ)|ŷ=0 = hτw/μU∗]. It may therefore take on
positive, zero, or negative value. In addition, in the lubricant film we encounter (1) pressure
flow in the direction of motion (B > 0), (2) pure shear flow (B = 0), and (3) pressure
flow opposing shear flow (B < 0). The velocity gradient, ∂U/∂ŷ, might take on positive or
negative values. Thus, since all possible flow situations must be accounted for, Eq. (7.42)
represents a total of 3 × 3 × 2 = 18 distinct cases.

We can show, however, that not all 18 cases yield real and therefore physically possible
velocity profiles. As an example, consider the following combination of the parameters:

C > 0; B = −B ′ < 0;
∂U

∂ŷ
< 0. (7.43)

Equation (7.42) now assumes the form

Aŷ2

(
∂U

∂ŷ

)2

− ∂U

∂ŷ
+ B ′ŷ + C = 0. (7.44)

Solving formally for ∂U/∂ŷ, we have

∂U

∂ŷ
= 1 ±

√
1 − 4Aŷ2 (B ′ŷ + C)

2Aŷ2
. (7.45)

Equation (7.45) must satisfy two conditions simultaneously: (1) that 1 ≥ 4A ŷ2(B ′ŷ +
C), so that the solution is real, and (2) that ∂U/∂ŷ < 0, so that the last condition in
Eq. (7.43) is satisfied. This, of course, is not possible, leading to the conclusion that
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Eq. (7.43) does not represent a possible flow in the bearing clearance. Physically acceptable
solutions of Eq. (7.42) are obtained only in the following 10 cases:

1 2 3 4 5 6 7 8 9 10

B − − − − 0 0 + + + +
C − − 0 + + − − 0 + +
∂U/∂ŷ − + + + + − − − − +

Instead of integrating Eq. (7.42) rigorously in these 10 cases, Constantinescu chose to
follow Prandtl and divided the flow regime 0 ≤ ŷ ≤ 1/2 into two layers.

In the viscous sublayer 0 ≤ ŷ ≤ ŷL the effect of the Reynolds stress is negligible, and
here we have

∂U

∂ŷ
+ Bŷ − C = 0, (7.46)

whereas in the turbulent core the effect of molecular viscosity is small, and we take

Aŷ2 ∂U

∂ŷ

∣∣∣∣∂U∂ŷ
∣∣∣∣+ Bŷ − C = 0. (7.47)

Equations (7.46) and (7.47) are to be solved simultaneously, with similar equations for
the other half of the channel. These calculations will now be illustrated in one case, at
the position of maximum film pressure. There the following conditions and approximate
differential equations apply:

Sliding surface (ŷ ′ = 0), case 6

B = 0; C = −C ′ < 0; ∂U/∂ŷ ′ < 0

∂U

∂ŷ ′ = −C ′ viscous sublayer (7.48a)

Aŷ ′2
(
∂U

∂ŷ ′

)2

+ C ′ = 0 turbulent core (7.48b)

Stationary surface (ŷ = 0), case 5

B = 0; C > 0; ∂U/∂ŷ > 0

∂U

∂ŷ
= C viscous sublayer (7.48c)

Aŷ2

(
∂U

∂ŷ

)2

− C = 0 turbulent core. (7.48d)

Integrating Eqs. (7.48a) to (7.48d), we obtain the following four-segment velocity profile:

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−C ′ŷ ′ +K ′ 0 ≤ ŷ ′ ≤ ŷ ′
L

C ′
2 −

√
C ′

A
ln ŷ ′ ŷ ′

L ≤ ŷ ′ ≤ 0.5

C2 +
√
C

A
ln ŷ ŷL ≤ ŷ ≤ 0.5

Cŷ +K 0 ≤ ŷ ≤ ŷL.

(7.49)
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Figure 7.3. Velocity profile of plane Couette flow at Re = 40,000. Curves are theoretical
predictions: (—) Constantinescu (1959), Eq. (7.50); (- - -) Elrod and Ng (1967). (◦)
experimental values of Robertson (1959).

The integration constants C,C ′, C2, C
′
2,K, and K ′, the boundary-layer thickness ŷL

and ŷ
′
L can be evaluated by imposing the following conditions:

(1) No slip at the solid walls
(2) Continuity of both the velocity and the velocity gradient at the edge of viscous

sublayers
(3) Continuity of both the velocity and the velocity gradient in the center of the

channel.

Imposing these conditions on Eq. (7.49), we find that ŷL = ŷ ′
L = (CA)−1/2; that is,

y+
L = 1/k and

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − Cŷ ′ 0 ≤ ŷ ′ ≤ (CA)−1/2

1 −
√
C

A

[
1 + ln

(
ŷ ′√CA)] (CA)−1/2 ≤ ŷ ′ ≤ 0.5

√
C

A

[
1 + ln

(
ŷ
√
CA
)]

(CA)−1/2 ≤ ŷ ≤ 0.5

Cŷ 0 ≤ ŷ ≤ (CA)−1/2

(7.50)

Here the constant, C, is given by the transcendental equation

1 −
√
C

A

(
2 + ln

CA

4

)
= 0. (7.51)

Equation (7.51) has the solution C = 37.8097 at A = 6400, or Re = 40,000 and k =
0.4. When this value of C is substituted into Eq. (7.50), the velocity distribution in pure
Couette flow at Re = 40,000 is obtained according to Constantinescu’s model (Figure 7.3).
The shear stress is uniform across the channel and has the value τ/ρU 2

∗ = 37.8097/Rh.
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If the flow was laminar throughout the channel, the velocity distribution would be
represented by the single equation

U = 1

2
Bx(ŷ − ŷ2) + ŷ (7.52)

and the average velocity Um by

Um =
∫ 1

0
Udŷ = Ump + Ums

(7.53)

= 1

12
Bx + 1

2
.

Here Ump = Bx/12 is the average velocity of pressure flow and Ums = 1/2 is the average
velocity of shear flow. Thus, from Eq. (7.53) we find for laminar flow that

Bx = 12Ump. (7.54)

That is, in the laminar regime the average velocity of pressure-induced flow varies linearly
with the pressure parameter Bx.

For turbulent flow Ūms = 0.5 again, and when values of Ump are plotted against Bx

for different values of the Reynolds number, the resulting plots can be described by the
approximate relationship:

Bx ≡ − h2

μU∗

∂P̄

∂ x
= kx(Rh)Ump. (7.55)

An analysis, similar to the one above, yields the following relationship between axial
pressure drop and average velocity of pressure flow in the same direction [the axial flow
is decoupled from the circumferential flow in Constantinescu’s analysis; for the Reynolds
stress in Eq. (7.15c), he takes −ρv′w′ = ρ�2|∂W̄/∂y|∂W̄/∂y]:

Bz ≡ − h2

μU∗

∂P̄

∂z
= kz(Rh)Wmp, (7.56)

where Wmp is the dimensionless average velocity of the axial pressure flow induced by Bz.
Via curve fitting, Constantinescu’s analysis yields

kx = 12 + 0.53(k2
Rh)

0.725, (7.57a)

kz = 12 + 0.296(k2
Rh)

0.65. (7.57b)

Notice that for Re → 0, Eqs. (7.55) and (7.56) reduce to Eq. (7.54), i.e., laminar flow
is included in Constantinescu’s model. The variation of kx and kz with Reh is shown in
Figure 7.4.

Substituting Um = Ump + Ums and Wm = Wmp into the once-integrated continuity
equation,

∂

∂x
(Ūmh) + ∂

∂z
(W̄mh) + 1

U0

dh

dt
= 0, (7.58)

we obtain the differential equation that models the distribution of pressure in a turbulent
lubricant film:

∂

∂x

(
h3

μkx

∂P̄

∂x

)
+ ∂

∂z

(
h3

μkz

∂P̄

∂z

)
= U0

2

∂h

∂x
+ V0. (7.59)
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Figure 7.4. Variation of the turbulence functions Gx and Gz with Reynolds number.
Comparison of various theories.

Here −V0 = V1 −V2 is the squeeze velocity and U0 = U2, or U1, depending on whether
Eq. (7.59) is being used for a slider bearing or a journal bearing (see Section 2.2).

Arwas and Sternlicht (1963) found that in order to correlate theory with experiment,
the empirical constant k in Eq. (7.40) must be a function of the Reynolds number and
the eccentricity ratio. In later publications, Constantinescu himself recommended k =
0.125 Reh

0.07.
Constantinescu’s turbulent lubrication theory may be criticized on the following grounds:

(1) The change from viscous sublayer to turbulent core is abrupt (discontinuity in
shear stress), no account is taken of the buffer zone.

(2) The predicted thickness of the viscous sublayer does not agree with experimental
findings. (For pure shear flow, we obtained y+

L = 1/k ≈ 2.5, whereas measure-
ments give twice this value.)

(3) The linearization Bx = kx(Re)Ump is inaccurate at large B (i.e., the theory is not
applicable for externally pressurized bearings or for self-acting bearings at large
eccentricity ratios).

(4) Turbulent Couette flow has Ump = 0; thus, its representation is not possible by
Eq. (7.55).

(5) Orthogonal flows are decoupled.

This criticism is, of course, not intended to detract from Constantinescu’s seminal work in
turbulent lubrication.

7.4 Ng-Pan-Elrod Model

In an effort to construct a turbulent lubrication model that is consistent with
channel flow data, Ng (1964) investigated the applicability of Reichardt’s eddy diffusivity
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formulation, Eq. (7.34). For two-dimensional flow the Boussinesq hypothesis, Eq. (7.20),
is

dŪ+

dy+ = 1

1 + εm/ν , (7.60)

where the velocity has been made nondimensional with the shear velocity at the wall
ν∗ = (|τw|/ρ)1/2. By integrating Eq. (7.60) with εm/ν as given by Reichardt’s formula, and
fitting the resulting velocity profile to experimental data in the 0 < y+ < 1000 range, Ng
optimized Reichardt’s constants and found the values

k = 0.4 δ+� = 10.7. (7.61)

For y+> 1000, theoretical prediction and experimental data are at variance. Nevertheless,
in his first paper Ng assumed that Eq. (7.34) applies not only in the constant-stress region but
over the whole width of the channel. To take into account the presence of two boundaries,
the flow is divided into two regions. In the upper layer, given by y1 < y < h, the eddy
viscosity is calculated with the upper wall shear stress τ h. In the lower layer, defined by
0 < y < y1, the eddy viscosity is evaluated with the lower wall shear τ 0. It is required then
that εm/ν be a unique function of y+ = yv∗/ν, where ν∗ = (|τh|/ρ)1/2 or ν∗ = (|τ0|/ρ)1/2,
depending on location, with the consequence that the nondimensional coordinate ŷ1 = y1/h

of the interface between upper and lower layers is given by

ŷ1 =
√
τh√

τh + √
τ0
. (7.62)

In a further development, the linearized theory of Ng and Pan (1965), Reichardt’s eddy
viscosity distribution is still assumed to hold over the whole channel width. Following a
suggestion of Elrod’s, however, εm/v is now calculated with the local total shear, placing
the boundary between upper and lower layers in the center plane of the channel. Thus, εm/v
remains isotropic and its derivative has a discontinuity at the channel center. Substituting

τxy = μ∂Ū
∂y

− ρu′v′ = μ
(

1 + εm

ν

) ∂Ū
∂y

(7.63a)

and

τzy = μ∂W̄
∂y

− ρv′w′ = μ
(

1 + εm

ν

)∂W̄
∂y

(7.63b)

into Eq. (7.15), and integrating twice formally with respect to y, we obtain the velocity
distribution

Ū = 1

μ

[
τxy

(
h

2

)∫ y

0

dy ′

1 + εm/ν + ∂P̄

∂x

∫ y

0

y ′ − h/2
1 + εm/ν dy

′
]
, (7.64a)

W̄ = 1

μ

[
τxy

(
h

2

)∫ y

0

dy ′

1 + εm/ν + ∂P̄

∂z

∫ y

0

y ′ − h/2
1 + εm/ν dy

′
]
. (7.64b)

Here τ xy(h/2) and τ zy(h/2) are integration constants to be determined from the boundary
conditions.

Substituting Eqs. (7.64a) and (7.64b) into the continuity equation (7.7a) and integrat-
ing with respect to y would yield a differential equation in lubricant pressure, Eq. (7.81).
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(A detailed derivation of this equation is given in Chapter 9 in a discussion on thermohy-
drodynamic theory.) Such an equation would be nonlinear, for to calculate Ū and W̄ in
Eqs. (7.64) one must already know the total shear |τ | = (τ 2

xy + τ 2
zy)

1/2. Thus, Eqs. (7.64)
presuppose knowledge of the velocity field.

To avoid an iterative procedure, Ng and Pan made the assumption that the flow is a small
perturbation of turbulent Couette flow

τxy = τc + δτx δτx

τc
� 1,

(7.65)

τzy = δτz
δτz

τc
� 1,

so that

|τ | = τc + δτx +O (δτ 2
x

)
. (7.66)

Here τ c is the turbulent Couette stress and δτ x and δτ z are the perturbations of τ c in the
x and z directions, respectively.

But if τ is only a small perturbation of τ c, the eddy viscosity that yields the shear stress
τ is a small perturbation of the Couette flow eddy viscosity, and we may write

εm

ν
(ȳ; |τ |) = εm

ν
(ȳ; τc) + ∂ (εm/ν)

∂|τ |
∣∣∣∣
|τ |=τc

δτx +O (δτ 2
x

)
, (7.67)

where ȳ = y/h is the dimensionless normal coordinate. Using the notation

fc (ȳ) = 1 + εm

ν
(ȳ; τc)

(7.68)

= 1 + κ
[
ȳh+

c − δ+� tanh

(
ȳh+

c

δ+�

)]
,

where

h+
c (x, z) = h

ν

√
|τc|
ρ

and

gc (ȳ) = τc
∂ (εm/ν)

∂|τ |
∣∣∣∣
|τ |=τc

(7.69)

= 1

2
κȳh+

c tanh2

(
ȳh+

c

δ+�

)
,

Eq. (7.67) can be put in the abbreviated form

εm

ν
(ȳ; |τ |) = fc (ȳ) − 1 + gc (ȳ)

δτx

τc
+O(δτ 2

x

)
. (7.70)

When (
1 + εm

ν

)−1
= 1

fc (ȳ)

(
1 − gc (ȳ)

fc (ȳ)

δτx

τc

)
+O(δτ 2

x

)
.
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is substituted into Eqs. (7.64a) and (7.64b) and terms of order (δτ 2
x ) are neglected, we

obtain

U = Ū

U∗
= hτc

μU∗

∫ ȳ

0

dη

fc (η)
+
(
τxy

(
1

2

)
− τc

)
h

μU∗

∫ ȳ

0

1

fc (η)
(7.71a)

×
(

1 − gc (η)

fc (η)

)
dη + Bx

∫ ȳ

0

1
2 − η
fc (η)

(
1 − gc (η)

fc (η)

)
dη,

W = W̄

U∗
= hτzy (1/2)

μU∗

∫ ȳ

0

dη

fc (η)
+ Bz

∫ ȳ

0

1
2 − η
fc (η)

dη. (7.71b)

Observing that in pure shear flow Bx = 0 and τ xy(1/2) − τ c = 0, we have

hτc

μ

∫ 1

0

dη

fc (η)
= U∗. (7.72)

Both fc(ȳ) and gc(ȳ) are symmetrical with respect to ȳ = 1/2. Thus, satisfaction of the
remaining boundary conditions,

Ū = U0 at y = h, W̄ = 0 at y = h, (7.73)

leads to

τxy

(
1

2

)
= τc, τzy

(
1

2

)
= 0.

Equations (7.71a) and (7.71b) can be simplified to

U = 1

2
+ (h+

c )2

Rh

∫ ȳ

1/2

dη

fc (η)
+ Bx

∫ ȳ

0

1
2 − η
fc (η)

(
1 − gc (η)

fc (η)

)
dη, (7.74a)

W = Bz
∫ ȳ

0

1
2 − η
fc (η)

dη. (7.74b)

Substituting for Ū and W̄ in the continuity equation (7.7a) yields the linearized turbulent
lubrication equation. This is formally identical to Constantinescu’s equation (7.59), but here
the coefficients kx and kz are defined by

1

kx
≡ Gx =

∫ 1

0
dȳ

∫ ȳ

0

1
2 − η
fn(η)

(
1 − gc(η)

fc(η)

)
dη, (7.75a)

1

kx
≡ Gz =

∫ 1

0
dȳ

∫ ȳ

0

1
2 − η
fc(η)

dη. (7.75b)

Both kx and kz depend on h+
c through Eqs. (7.68), (7.69), and (7.75). The local value of h+

c ,
on the other hand, is dependent on the local film thickness through Eq. (7.72), which has
the dimensionless form

Rh = (h+
c )2
∫ 1

0

dη

fc (η)
, (7.76)
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The coefficients kx and kz depend, therefore, on the local Reynolds number. A good
representation of this dependence was obtained by least-squares fitting of polynomials to
Eqs. (7.75a) and (7.75b), with the results (Figure 7.4)

1

kx
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

12
Rh < 100∑

n

an (logRh)
n−1 100 ≤ Rh < 10,000

0.014 − 0.0114 (logRh − 4.0) Rh > 10,000

(7.77a)

1

kz
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

12
Rh < 100∑

n

bn (logRh)
n−1 100 ≤ Rh < 10, 000

0.023 − 0.0182 (logRh − 4.0) Rh > 10,000

(7.77b)

a1 = −0.4489 a2 = 0.6703 a3 = −0.2904 a4 = 0.0502 a5 = −0.00306

b1 = −0.3340 b2 = 0.4772 b3 = −0.1822 b4 = 0.02628 b5 = −0.001242.

To render the theory of Ng and Pan applicable even at large pressure gradients, Elrod and
Ng substituted Ū and W̄ from Eqs. (7.71a) and (7.71b) directly into the boundary condition
Eqs. (7.73) and subsequently into the continuity equation (7.7a). They also removed the
most objectionable component of the Ng and Pan model, namely, that Reichardt’s eddy
viscosity distribution is valid over the whole channel.

In the nonlinear model of Elrod and Ng (1967), Reichardt’s formula is retained only in
the constant stress region. In the core region the eddy, viscosity is assumed to be given by
a constant value εc. This value is obtained from a generalized form of Clauser’s formula
(1965),

εc = 1

56

∫ y0

0
|U0 − Ū |dy, (7.78)

where U0 is the maximum value of Ū at the given x = const, position.
To introduce the Elrod-Ng analysis (Elrod and Ng, 1967), set ε = min(εm, εc) where

εc is defined by (7.78) while εm is obtained from a modification of Reinhardt’s formula
(7.34), which now contains local stress rather than wall stress. Substituting into (7.16) and
applying the boundary conditions Ū (1) = U ∗ and W̄ (1) = 0 yields the velocity distribution

U = Bx

[
J (1)

I (1)
I (Y ) − J (Y )

]
+ I (Y )

I (1)
, (7.79)

W = Bz

[
J (1)

I (1)
I (Y ) − J (Y )

]
. (7.80)

The following notation is employed here:

I (η) =
∫ η

0

dY ′

1 + ε
V

, J (η) =
∫ η

0

dY ′

1 + ε
V

.
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Substitution of (7.79) into the mean flow continuity equation and integration across the
film yields

∂

∂x

{
h3

μ

∂P̄

∂x

[
J (1)

I (1)
Ī − J̄

]}
+ ∂

∂z

{
h3

μ

∂P̄

∂z

[
J (1)

I (1)
Ī − J̄

]}
= ∂

∂x

[
hU0Ī

I (1)

]
(7.81a)

or

∂

∂x

{
h3

μ

∂P̄

∂x

[
J (1)

I (1)
Ī − J̄ +

(
1
2 − Ī

I (1)

)
h3∂P̄
μν∂x

hU0

ν

]}
+ ∂

∂z

{
h3

μ

∂P̄

∂z

[
J (1)

I (1)
Ī − J̄

]}
= U0

2

∂h

∂x
.

(7.81b)

Here Ī and J̄ represent averaged values of I and J, respectively.
Consistent with the notation of Ng and Pan (1965), we now define the nonlinear turbu-

lence coefficients

Gx = J (1)
Ī

I (1)
− J̄ +

(
1
2 − Ī

I (1)

)
Bx

,

Gz = J (1)
Ī

I (1)
− J̄ ,

and obtain the modified Reynolds equation

∂

∂x

(
h3

μ
Gx
∂P̄

∂x

)
+ ∂

∂z

(
h3

μ
Gz
∂P̄

∂z

)
= U0

2

∂h

∂x
. (7.82)

When Bx → 0, Ī /I (1) → 1/2 , thus Gx has finite value in Couette flow. The coefficients
Gx and Gz depend only on the local Reynolds number hU0/ν and the pressure gradient
(h3/μν)(∂P̄ /∂x, ∂P̄ /∂z) .

There have been various studies published more recently that, in some way, are linked
to the Ng-Pan-Elrod model. An example is the work of Frene and co-workers (Lucas et al.,
1994) who employ the Van Driest formula and Prandtl’s mixing length model in place of
Reichardt’s eddy viscosity but retain Clauser’s formula for core eddy viscosity. For smooth
surfaces, Lucas et al. obtain results that are very close to those of the Elrod-Ng model; they
also offer an extension to rough walls.

7.5 Bulk Flow Model of Hirs

The bulk flow theory of turbulent lubrication by Hirs (1973) does not attempt
to analyze turbulence in all its details. Instead it relies on an easily measured global
characteristic of the flow, namely the relationship between average velocity and wall stress.
In a hydrodynamic bearing, we encounter two basic flow types, pressure flow and shear
flow. But more general flows, which result from the combined action of a pressure gradient
and the sliding of one of the surfaces, are also encountered. All these flow types have to be
considered by the theory [see the discussion following Eq. (7.45)].

Analyzing the then-available experimental data for pressure flow in a pipe, Blasius
discovered a simple relationship between the wall stress and the Reynolds number that is
calculated on the average velocity. This drag law, said to be valid for Re ≤ 105, also applies
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to pressure flow between parallel plates separated by a distance h. In the latter case, it has
the form

τ0
1
2ρU

2
a

n0(Re)m0 , (7.83)

where Re = Uah/ν is the Reynolds number based on the average velocity (Schlichting,
1968),

Ua = 1

h

∫ h

0
Ū dy.

While analyzing their own and also Couette’s experimental results, Davies and White
(1928) found a relationship between wall stress and average velocity of shear flow between
two parallel surfaces. The drag law for Couette flow may be put into a form that is identical
to the one obtained earlier by Blasius for pressure flow. Thus, following Hirs (1973), for
shear flow between parallel plates a distance h apart we write

τ1
1
2ρU

2
a

= n1 (Re)m1 . (7.84)

In these equations, Ua represents the average value of the mean flow velocity relative to
the surface on which the wall stress τ 1 is being evaluated. Thus, in Eq. (7.84) Ua = U∗/2,
where U∗ is the velocity of the sliding surface when the equation is applied to the stationary
surface, and Ua = −U∗/2 when applied to the sliding surface.4

For the particular case of Reynolds number equality between Eqs. (7.83) and (7.84), we
have the following value for the ratio of Poiseuille wall stress to Couette wall stress

τ0

τ1
= n0

n1
(Re)m0−m1

An exhaustive survey of available experimental data (Hirs, 1974) shows that m0 = m1 =
−0.25 and a = n0/n1 = 1.2. Motivated by this relative insensitivity of the wall stress to the
type of flow, Hirs assumed wall stress to be additive in the sense that if τ 1 is due to
the relative velocity U∗ of the surfaces and τ 0 is due to the pressure gradient dP̄ /dx, then
the wall stress τ that is caused by the combined action of U∗ and dP̄ /dx can be calculated
from τ = τ 0 + aτ 1 on the stationary surface and τ = τ 0 −aτ 1 on the sliding surfaces.
Furthermore, the Couette shear τ 1 is approximately equal to (n1/n0)τ 0.

A Couette flow of wall stress τ 1 is then equivalent, at least as far as Eq. (7.83) is
concerned, to a pressure flow that is maintained by the fictitious pressure gradient

dP1

d x
= − 2

h
aτ1. (7.85)

To arrive at this relationship, consider force equilibrium on a control volume of length 
x
and height h under the action of pressure forces ph and −(p + 
p)h and shear force 2aτ 1.

Utilizing the ideas above, Eqs. (7.83) and (7.84) may now be written for generalized
channel flows. [Here and in what follows, we assume the bearing to be held stationary and
put U1 = 0. A slight generalization of ideas is required if the bearing surface is given a

4The functions on the right-hand sides of Eqs. (7.83) and (7.84) must be odd functions. Alternatively, we
may write Eqs. (7.83) and (7.84) in the more appropriate form: 2τ 0,1/ρUa

2 = n0,1(|Re|)m0,1 sgn(Ua).
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velocity different from zero. For details see Hirs (1973).]

Stationary surface
(7.86a)

−h (d/d x) (P̄ + P1)

ρU 2
a

= n0

(
Uah

ν

)m0

Sliding surface
(7.86b)

−h (d/d x) (P̄ − P1)

ρ (Ua − U∗)2 = n0

(
(Ua − U∗)h

ν

)m0

.

On eliminating the fictitious pressure gradient d P1/dx between Eqs. (7.86a) and (7.86b),
we obtain the actual pressure gradient in terms of the average velocity Ua and the relative
velocity of sliding U:

dP̄

d x
= −n0

2

{
ρU 2

a

h

(
Uah

ν

)m0

+ ρ (Ua − U∗)2

h

[
Ua − U∗)h

ν

]m0
}
. (7.87)

It is worth noting that the magnitude of the weighing factor a = n0/n1 never enters Eq. (7.87)
and thus has no effect on the pressure gradient.

Equation (7.87) is valid for unidirectional flow; that is, for flow in the direction of
the representative pressure gradient. However, this direction need not coincide with the
direction of relative velocity U [x direction in Eq. (7.87)], in which case there will be two
component equations, one in the x direction and the other in the z direction.

The orthogonal components of Eq. (7.86a) are

−h(∂/∂x)(P̄ + P1)

ρUaSa
= n0

(
Sah

ν

)m0

, (7.88a)

−h(∂/∂z)(P̄ + P1)

ρWaSa
= n0

(
Sah

ν

)m0

, (7.88b)

where Sa = (U 2
a +W 2

a )1/2 is the magnitude of the average velocity vector Sa = Ua i +
Wak.

Raising all terms of Eqs. (7.88a) and (7.88b) to the second power and adding the results
leads to the equation

−h(d/d s)(P̄ + P1)

ρS2
a

= n0

(
Sah

ν

)m0

. (7.89)

Equation (7.89) is identical, except for a slight difference in notation, to Eq. (7.86a),
suggesting that our procedure for taking component equations (7.88a) and (7.88b) is correct.

When the orthogonal component equations are written for Eq. (7.86b) also, we have

−h(∂/∂x)(P̄ − P1)

ρ (Ua − U∗) Sb
= n0

(
Sbh

ν

)m0

, (7.90a)

−h(∂/∂z)(P̄ − P1)

ρWaSb
= n0

(
Sbh

ν

)m0

, (7.90b)
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where Sb = [(Ua − U∗)2 + Wa
2]1/2. If P1 is eliminated between Eqs. (7.88a) and (7.90a)

and between Eqs. (7.88b) and (7.90b), we obtain the pressure gradient in terms of the
components of the average velocities, the velocity of the sliding surface, the film thickness,
and the viscosity and density of the fluid.

The dimensionless pressure flow coefficients Gx and Gz can be obtained from

Gx =
1
2 − Ua/U∗

(h2/μU∗)(∂P̄ /∂x)
Gz = −Wa/U∗

(h2/μU∗)(∂P̄ /∂z)
(7.91)

by substitution. If Couette flow dominates so that the following conditions apply,

Gx
h3

μν

∂P̄

∂x
� 1

2
Rh Gz

h3

μν

∂P̄

∂z
� 1

2
Rh,

then Eq. (7.91) reduces to

Gx = 1

2 +m0
Gz, Gz = 21+m0

n0
R

−(1+m0)
h . (7.92)

Hirs (1974) uses n0 = 0.066 and m0 = −0.25 for smooth surfaces and Re ≤ 105. With
these values, Eq. (7.92) gives the approximate formulas:

kx ≡ 1

Gx
= 0.0687 R0.75

h , (7.93a)

kz ≡ 1

Gz
= 0.0392 R0.75

h . (7.93b)

At high Reynolds numbers the predictions of Ng, Pan, and Elrod and those of Hirs
are almost identical and it is only in and near the transition regime that any significant
discrepancy occurs. Neither of these theories agrees completely in this region with the
calculation of Ho and Vohr but Elrod and Ng come closest.

Ho and Vohr (1974) used the Kolmogorov-Prandtl energy model of turbulence; they
calculated the kinetic energy from its transport equation (7.37) and the length scale! from
the van Driest formula (7.36). Figure 7.5 shows comparisons between the models of Ho
and Vohr, Elrod-Ng (nonlinear) and Ng-Pan (linear) for two cases. In Figure 7.5(a) the
pressure gradient is parallel to the surface velocity while in Figure 7.5(b) it is orthogonal –
the definition used here is GRADP = Rh (Bx, Bz), where Rh = Uh/ν is the local Reynolds
number. Figure 7.5(a) displays a distinctive peak in Gx in the transition regime.

Other than a slight quantitative discrepancy here, both theories agree remarkably well.
However, Launder and Spalding caution against interpreting this as proof of the correctness
of the Ng-Pan-Elrod model. According to these authors, consistently accurate prediction
of internal flows under severe favorable pressure gradient can be achieved only if one
calculates the length scale from a transport equation, rather than from an algebraic formula.

Of the theories discussed here, the Ng-Pan-Elrod theory and the bulk flow theory of
Hirs are to be preferred over Constantinescu’s model. There is, however, little to choose
between the Ng-Pan-Elrod theory and the bulk flow theory. The latter may be extended to
flow between rough or grooved surfaces as experimental data become available. Extension
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(a) (b)

Figure 7.5. Values of Gx and Gz for GRADP = −5 × 105 (Reprinted with permission from Ho,
M. K. and Vohr, J. H. Application of Energy Model of Turbulence to Calculation of Lubricant
Flows, Trans. ASME, ser. F, 96, 95–102, 1974).

of the Ho-Vohr model to include fluid inertia is also possible. The effect of turbulence
on journal bearing performance can be gauged from Figure 3.10. Thermal effects and
turbulence are discussed in Chapter 9.

Turbulent lubricant flow between rough surfaces has been discussed by several
researchers. Hashimoto and Wada (1989) use ideas from the Hirs model and combine
resistance laws for rough surfaces for Poiseuille and Couette flows. The same ideas are
applied by several other authors. In contrast, Lucas et al. (1994) apply Prandtl’s mixing
length theory, calculating the mixing length from the Van Driest formula based on local
stress; for the completely rough regime the Van Driest formula does not apply, and an
appeal is made to the Rotta and Granville mixing length expression. In contrast, Brunetiere
and Tournerie (2009) replace (y+√

τ̄ ) with (y+τ̄ ) in Reinhardt’s modified eddy viscosity
formula (7.79) and add an extra term, which vanishes at the wall and tends to zero in the
logarithmic region

εm

ν
= κ

{
y+τ̄ − δ+� tanh

(
y+τ̄
δ+�

)
+ δ+k y+τ̄

[
1 − tanh

(
y+τ̄
δ+k

)]}
. (7.94)

The empirical constant δ+k relates to the quality of the surface roughness. Some of the
prediction of Brunetiere and Tournerie for velocity distribution between rough walls is
shown in Figure 7.6. The agreement appears to be good, but one should remember that the
theoretical reasoning for the adopted corrections might not stand up to scrutiny.
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Figure 7.6. Velocity profile for Couette and Poiseuille flows between rough walls (Reprinted
with permission from Brunetiere, N. and Tournerie, B. Study of hydrostatic mechanical face
seals in turbulent rough flow. ASME Journal of Tribology, 131, 1–10, 2009).

7.6 Turbulence with Inertia Retained

Turbulent flow with inertia effects is computed by one of two ways. Applying
canned software such as FLUENT it is now relatively simple to solve the thin-film turbulent
flow equations (Villasmil et al., 2005; Billy et al., 2006; Wang and Priestman, 2007). The
perturbation method of Pan (1973) is an extension of the Ng-Pan linearized turbulent
theory and was offered for all Reynolds numbers. An entirely new approach was taken by
Constantinescu (Constantinescu, 1970; Constantinescu and Galetuse, 1974) who applied
the method of averaged inertia. It appears that the first of these methods, CFD solution of
the thin-film equations, is not warranted in many instances, and the significantly simpler
method of averaged inertia will serve the engineering designer.

Method of Averaged Inertia

A number of investigators have employed the method of averaged inertia for the
study of turbulent flows in situations where sudden changes of the cross-section occur
(Constantinescu and Galetuse, 1974; Frene et al., 2006; Brunetiere et al., 2008). Here we
follow the analysis of Constantinescu (Constantinescu, 1970; Constantinescu and Galetuse,
1974; Frene et al., 2006). The essence of this method consists of replacing fluid inertia forces
by their cross-section averaged value. To achieve this, Eqs. (7.17) are rearranged, taking
into account the equation of continuity of the mean flow (7.7a), and integrated across the
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film with boundary conditions Ū (0) = U0, W̄ (0) = 0 and Ū (h) = W̄ (h) = 0

ρ
∂

∂x

∫ h

0
Ū 2dy + ρŪV̄ |h0 + ρ ∂

∂z

∫ h

0
ŪW̄dy = −h∂P̄

∂x
− τxy |h0,

ρ
∂

∂x

∫ h

0
ŪW̄dy + ρW̄ V̄ |h0 + ρ ∂

∂z

∫ h

0
W̄ 2dy = −h∂P̄

∂z
− τzy |h0, (7.95)

∂

∂x

∫ h

0
Ūdy + V̄ |h0 + ∂

∂z

∫ h

0
W̄dy = 0.

The integrals occurring in (7.95) are approximated by the polynomials

∫ h

0
Ū 2dy = αU 2

mh+ βU 2
0h− γUmU0h,

∫ h

0
ŪW̄dy = αUmWmh− γ

2
UmU0h, (7.96)

∫ h

0
W̄ 2dy = αW 2

mh,

where Um = 1
h

∫ h
0 Ūdy andWm = 1

h

∫ h
0 W̄dy are the components of the mean flow and U0

represents the relative sliding velocity of the boundaries.
For inertialess laminar flow the integrals occurring in (7.96) are easy to evaluate and are

given by substituting α = 6/5, β = 2/15, γ = 1/5.
For turbulent flow Constantinescu takes

α ∼= 1 β = 0.885

Re0.367 γ ∼= 0.

The crucial assumption is made at this point, that on introduction of inertia forces the
velocity profiles retain their previous, inertialess, shape and change only in magnitude. It
is permissible then to write

τxy |h0 = −kxμ
h

(
Um − 1

2
U0

)
, τzy |h0 = −kzμ

h
Wm. (7.97)

The first of (7.97) can be somewhat improved when corrected to

τxy |h0 = −kxμ
h

(
Um − 1

2
U0

)
+ δρU 2

m

∂h

∂x
, (7.98)

where δ = 2/15 for laminar and δ = 1.95/Re0.43 for turbulent flow.
We thus have three unknowns Um, Wm, and P̄ and a system of three equations (7.95)

which can be solved iteratively, starting perhaps, from the inertialess case. This proce-
dure has been used by several authors (Launder and Leschziner, 1975; King and Taylor,
1975).
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Table 7.1. Bearing performance comparison

Laminar (Re = 1) Turbulent (Re = 7,634)

Minimum film thickness (μm) 18.2 40.0
Attitude angle (deg.) 30 45
Viscous dissipation (W) 1520 4398

To illustrate the effect of turbulence, we calculate some of the performance characteristics
of a β = 160◦ fixed pad bearing, under the following conditions:

W = 10,000 N

N = 12,000 rpm

D = 0.1 m

L = 0.1 m

C = 0.0001 m

μ = 8.2 × 10−4 Pa · s

ν = 8.23 × 10−7 m2/s.

The specific pressure, Sommerfeld and Reynolds numbers are given by

P = W

LD
= 106Pa, S = μN

P

(
R

C

)2

= 0.041, Re = RωC

ν
= 7,634

(i) Entering Figure 3.10 with the parameter values S = 0.041 and Re = 1, we obtain
the column labeled “Laminar” in Table 7.1.

(ii) The actual parameter values S = 0.041 and Re = 7,634, on the other hand, yield
the column labeled “Turbulent” in Table 7.1.

The real difference between turbulent and laminar predictions is not that we require a
6 hp motor whereas laminar theory only asks for a 2 hp motor, but that most of the 4 hp
difference between the two estimates is used up in raising the temperature of the lubricant;
laminar theory is incapable of predicting this increased dissipation. For large bearings,
such as employed in the power generation industry, as much as 600–800 hp is dissipated
per bearing – if this is not taken into account at the design stage, bearing failure through
overheating and seizure will result.

It was mentioned, when discussing laminar theory, that isothermal operation of bearings
is a rarity and not the rule. This statement is even more true in the case of large bearings
operating in the turbulent regime. In such cases there can be no excuse for designing on
the assumption of isothermal operation, unless there is compelling evidence to support that
assumption. Thermal effects in turbulent bearings are discussed in Chapter 9.

7.7 Nomenclature

A modified local Reynolds number
Bx, Bz components of dimensionless pressure gradient
C radial clearance
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D bearing diameter
Dij stretching tensor
Fμ friction force
Gx, Gz turbulence functions
L bearing axial length
N shaft rotational speed
P̄ mean turbulent pressure
P1 fictitious pressure
R journal radius
Re global Reynolds number
Rh local Reynolds number
S Sommerfeld number
SA average velocity
Ump component of mean pressure flow
Ums component of mean shear flow
a shear–stress ratio
cμ friction coefficient
d ′
ij fluctuating component of stretching tensor

fc, gc turbulent functions
h film thickness
h+
c reduced film thickness

k mixing length constant
kx, kz turbulence coefficients
� mixing length
m0, m1 exponents for pressure flow, shear flow
n0, n1 coefficients for pressure flow, shear flow
p lubricant pressure
q2/2 turbulent kinetic energy per unit mass
t time
ui(u, v,w) velocity components
v∗ shear velocity
xi(x, y, z) ortogonal Cartesian coordinates
yL thickness of viscous sublayer
δij Kronecker delta
δ+� constant
ε eccentricity ratio
ε turbulent dissipation
εm, εc eddy diffusivity, core eddy diffusivity
λ coefficient
μ dynamic viscosity
ν kinematic viscosity
ρ density
Tij stress tensor
τ ij apparent stress
τ c Couette stress
τw wall stress
τ 0, τ h wall stress at y = 0, y = h
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τ 0, τ 1 wall stress resulting from Poiseuille flow, Couette flow
()1 evaluated at surface 1 (reference surface)
()2 evaluated at surface 2
()m average value
(−) mean turbulent quantities
()′ fluctuating turbulent quantities
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CHAPTER 8

Elastohydrodynamic Lubrication

Elastohydrodynamic lubrication (EHL) is the name given to hydrodynamic lubri-
cation when it is applied to solid surfaces of low geometric conformity that are capable
of, and are subject to, elastic deformation. In bearings relying on EHL principles, the
pressure and film thickness are of order 1 GP and 1 μm, respectively – under such condi-
tions, conventional lubricants exhibit material behavior distinctly different from their bulk
properties at normal pressure. In fact, without taking into account the viscosity-pressure
characteristics of the liquid lubricant and the elastic deformation of the bounding solids,
hydrodynamic theory is incapable of explaining the existence of continuous lubricant films
in highly loaded gears and rolling-contact bearings. This is illustrated in the next section,
by applying isoviscous lubrication theory to a rigid cylinder rolling on a plane.

When two convex, elastic bodies come into contact under zero load, they touch along a
line (e.g., a cylinder and a plane or two parallel cylinders) or in a point (e.g., two spheres or
two crossed cylinders). On increasing the normal contact load from zero, the bodies deform
in the neighborhood of their initial contact and yield small, though finite, areas of contact;
this deformation ensures that the surface stresses remain finite. For a nominal line contact
the shape of the finite contact zone is an infinite strip, for a nominal point contact it is an
ellipse. Nominal line contacts possess only one spatial dimension and are, therefore, easier
to characterize than the two-dimensional nominal point contacts.

8.1 Rigid Cylinder Rolling on a Plane

The geometry of the cylinder-plane combination is shown in Figure 8.1. Let h0

be the minimum separation between the infinitely long cylinder of radius R and the plane;
then, at any angular position θ the film thickness is given by

h = −R
n

(1 + n cos θ ) , (8.1)

where n = −R/(h0 + R) is constant for given geometry. We note that Eq. (8.1) is of the
same form as Eq. (3.29), which was derived for journal bearings, if only one puts C =
−R/n and ε = n. In consequence, many of the previously derived journal bearing formulas
remain applicable.

For the (infinite) cylinder-plane geometry, the Reynolds equation (3.33) reduces to

d

dx

(
h3

μ

dp

dx

)
= 6U0

dh

dx
, (8.2)

and its first integral is given by

dp

dx
= 6μU0

h− h2

h3
. (8.3)
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Figure 8.1. Cylinder-plane geometry and nomenclature.

We now introduce the transformation

p̄ = ph0

μU0
, h̄ = hm

R
, θ = sin−1

( x
R

)
to obtain a nondimensional representation of the pressure gradient in Eq. (8.3),

dp̄

dθ
= 6h0n

2

R

(
cos θ

h̄(θ ) − h̄(θ2)

h̄3 (θ )

)
. (8.4)

Implicit in this equation is the condition

dp̄

dθ
= 0 at θ = θ2,

where θ2 represents the as yet unknown position of the trailing edge liquid-cavity interface.
The pressure distribution can be found formally from Eq. (8.4) by a second integration,

p̄ = 6h0n
2

R

∫ θ

θ1

cos θ
h̄(θ ) − h̄(θ2)

h̄3(θ )
dθ + B. (8.5)

We subject this pressure distribution to the second of the Swift-Stieber boundary conditions,
viz., p̄(θ2) = 0, and find that θ2 is determined by the condition∫ θ2

θ1

cos θ
h̄(θ ) − h̄(θ2)

h̄3(θ )
dθ = 0 (8.6a)

or, when written in terms of the Sommerfeld angle ψ of Eq. (3.42), by the condition[
(cosψ2 + n) − sinψ − 1

2
sinψ cosψ −

(
1

2
+ n cosψ2

)
ψ

]ψ2

ψ1

= 0, (8.6b)

where, for a given ψ1, Eq. (8.6b) serves to determine ψ2.
For simplicity, we assume that the continuous film commences at x = −∞ and, therefore,

put θ1 = −π/2. The corresponding ψ1 = arccos(n) was found from Eq. (3.42a). Equation
(8.6b) is now in the form ψ2 = ψ2[−n/(n + 1)], where −n/(n + 1) = R/h0. Table 8.1 lists
ψ2 for typical values of R/h0. Once ψ2 is known, h̄(θ2) can be calculated and substituted
into Eq. (8.5) to obtain the pressure distribution. Having found the pressure distribution,
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Table 8.1. Rigid cylinder on a plane

R/h0 ψ2(rad) θ 2(deg) w̄′

10 0.8520 11.3105 1.3985 × 10
102 0.8833 3.8200 2.2140 × 102

103 0.8868 1.2166 2.4103 × 103

104 0.8872 0.3850 2.4423 × 104

105 0.8887 0.1220 2.4444 × 105

106 0.8871 0.0385 2.4473 × 106

we can evaluate the component of the lubricant force that acts normal to the plane. If w′

represents this force per unit axial width, we have

w′ =
∫ x2

x1

p dx = R
∫ θ2

θ1

p cos θ dθ. (8.7)

Substituting the dimensionless quantities defined above, integrating by parts as in
Eqs. (3.78) and taking into account Eq. (8.4), Eq. (8.7) yields

w̄′ = −6n2

[∫ θ2

θ1

sin θ cos θ

(1 + n cos θ)2 dθ + h̄(θ2)
∫ θ2

θ1

sin θ cos θ

(1 + n cos θ)3 dθ

]
, (8.8)

where we set w̄′ = w′/μU0.
The integrals in Eq. (8.8) are easily evaluated when using either the Sommerfeld sub-

stitution, Eq. (3.42), or partial fractions. In terms of the Sommerfeld angle ψ , the result is

w̄′ = 6

[
1 − n cosψ

1 − n2
+ ln

1 − n2

1 − n cosψ
+ n2

2(1 − n2)2

2n cosψ − cos2 ψ

1 − n cosψ2

]ψ2

ψ1

. (8.9)

Table 8.1 contains w̄′ as calculated from Eq. (8.9) at selected values of R/h0. From the
values in Table 8.1, we find that the approximate relationship

h0

R
= 2.44

μU0

w′ (8.10)

holds over a wide range of R/h0 and may serve as a means to calculate the minimum film
thickness ratio for given mechanical input.

We now follow Dowson and Higginson (1977) and estimate the film thickness for a gear
tooth contact. Typical values for the lubricant viscosity, surface speeds, and loads are

μ = 0.075 Pa · s, U1 = U2 = 5.0 m/s,

U0 = U1 + U2 = 10.0 m/s w′ = 26.5 kN/cm.

Substituting these values into Eq. (8.10), we find the dimensionless minimum film thickness
to be

h0

R
= 0.69 × 10−6.
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If R = 2.5 cm, assuming that is the neighborhood of contact the gear geometry is
satisfactorily represented by an “equivalent cylinder” of radius R rolling on a plane, we
obtain

h0 = 0.0172μm. (8.11)

This value is small in comparison with even the best surface finishes encountered in gear
manufacturing. It is almost two orders of magnitude smaller than the mean film thickness
between two steel disks of R = 3.81 cm under a load of 1.96 kN/cm, as measured by
Crook (1958). Typical rms surface finish for ball bearings is 0.1 μm for the ball and
0.25 μm for the raceway; for helical gears, ground and shaved, it is in the range 0.2–
0.4 μm. Thus, our conclusion must be that classical hydrodynamic theory cannot explain
the existence of a continuous lubricant film in highly loaded contacts. We must, therefore,
look for appropriate extension of Reynolds’ theory to explain continuous-film lubrication
of counter-formal contacts.

8.2 Elastohydrodynamic Theory

The above analysis of the cylinder-plane geometry was first performed by
H. M. Martin in 1916. Although Martin’s negative conclusion on the existence of a con-
tinuous hydrodynamic film in highly stressed EHL contacts was completely in opposition
to experimental evidence, it, nevertheless, discouraged theoretical research on lubricated
counter-formal contacts for two decades.

The assumptions that limited Martin’s analysis were (1) constant lubricant viscosity
and (2) rigid bounding surfaces. The first significant extension to classical hydrodynamic
theory came in 1936 when W. Peppler allowed the contacts to deform elastically; but
Peppler also put forth an erroneous proposition, viz., that the pressure cannot exceed the
Hertzian pressure of unlubricated contacts. The second extension, removal of the uniform,
constant viscosity constraint, came in 1945 when Gatcombe allowed the lubricant viscosity
to change with pressure. A good representation of the pressure dependence of viscosity of
mineral oils is given by the formula

μ = μ0 exp(αp), (8.12)

where μ0 and α are material constants of the lubricant.1

Substituting for μ in Eq. (8.3) and integrating the resulting equation, we obtain

dq̄

dθ
= 6h0n

2

R

(
h̄− h̄2

h̄3
cos θ

)
. (8.13)

The (dimensionless) reduced pressure, defined by

q̄ = h0

μ0U0α

(
1 − e−αp) , q = μ0U0

h0
q̄, (8.14)

1The pressure-viscosity coefficient α of the Barus (1889) formula (8.12) is in the range 1.5 – 2.5 × 10−8.
The lower end of the range is for “paraffinic” oils while the upper end for “naphtenic” oils (Jones
et al., 1975). However, this formula does not give good results at higher pressures, and application of
the Barus equation to pressures in excess of 0.5 MPa may lead to serious errors.
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is thus shown to satisfy the same equation as the isoviscous pressure, Eq. (8.4). Any
pressure distribution found for the constant viscosity case may, therefore, be readily used
for pressure-dependent viscosity through the formula

p = − 1

α
ln

(
1 − q̄ μ0U0α

h0

)
(8.15)

= − 1

α
ln (1 − αq) .

Equation (8.15) yields infinitely large pressure at the position where q = 1/α, as was first
remarked by Blok (1950). The solid surfaces, of course, cannot sustain limitless pressures.
They will deform elastically and our simple analysis breaks down; nevertheless, it points
to the necessity of having to consider both the pressure dependence of the viscosity and the
deformation of the surfaces when considering continuous film lubrication of highly loaded
contacts. Figure 8.2 dramatizes the development of EHL theory. The individual contribu-
tions of elastic deformation of surfaces and of pressure dependence of lubricant viscosity
are relatively modest. However, they combine nonlinearly to yield a much increased load
capacity and a new film shape.

The first satisfactory solution to account for the effects of both elastic deformation and
pressure dependence of viscosity was reported by A. N. Grubin in 1949. His work, and that

Figure 8.2. Pressure distribution and film shapes for same center line film thickness:
(a) constant viscosity, rigid cylinders; (b) pressure-dependent viscosity, rigid cylinders;
(c) constant viscosity, elastic cylinders; (d) pressure-dependent viscosity, elastic cylinders.
(Reprinted by permission of the Council of the Institution of Mechanical Engineers from
Dowson, D. and Higginson, G. R. A numerical solution to the elastohydrodynamic problem.
J. Mech. Eng. Sci., 1, 6–15, 1959.)
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of A. I. Petrushevich in 1951, established most of the essential properties of EHL solutions
in concentrated contacts:

(1) The film is of almost uniform thickness over most of the contact zone. It displays,
however, a typical and sudden decrease just upstream of the trailing edge.

(2) The pressure distribution curve follows the Hertzian ellipse over most of the
contact zone.

(3) A sharp second pressure maximum exists (Figure 8.4), particularly at high speeds
and light loads.

The first of these properties easily follows from Eq. (8.3), once it is acknowledged that
μ = μ(p). If μ is very large, and it might be several orders of magnitude larger than under
atmospheric conditions, (h − h2) cannot deviate much from zero so as to constrain dp/dx
from becoming excessive; this makes for an almost constant film thickness in the high-
pressure zone. At the trailing edge, on the other hand, the pressure must rapidly drop to zero
as here the Swift-Stieber conditions apply. To sustain the required large negative pressure
gradient there, the film thickness must decrease sharply just upstream of the trailing edge.

The second and third properties of EHL contacts follow from the observation that at
large load and small speed the film thickness is orders of magnitude smaller than the elastic
deformation, thus the pressure distribution will be close to the Herzian distribution for
dry contacts. At low load and high speed, on the other hand, the elastic deformation of
the surfaces remains insignificant when compared to the film thickness, thus the pressure
distribution will approach that of the rigid cylinder.

The physical parameters that are required to characterize the EHL problem can be con-
veniently combined into independent nondimensional parameters (groups); as the number
of the resulting dimensionless groups is smaller than the number of physical parameters,
this nondimensionalization of the problem facilitates presentation of the results. Assuming
pure rolling and considering only nominal line contacts, Dowson and Higginson (1977)
combined the physical variables of the isothermal EHL problem into four2 convenient
dimensionless parameters:

film thickness parameter H = h0/R

load parameterW = w/E′RL
speed parameter U = μ0ũ/E

′R
materials parameter G = αE′

and through numerical solution of the appropriate equations, obtained the following rela-
tionship for the minimum film-thickness variable:

H = 1.6
G0.6U 0.7

W 0.13
. (8.16)

Here R is the effective radius at contact and L is its axial length, E′ is the effective contact
modulus, ũ = U0/2 is the effective speed, and w is the load.

2This set of nondimensional parameters must be augmented with the ellipticity parameter, k = b/a,
when discussing nominal point contact. Here a and b are the semi-axes of the contact ellipse, expressible
in terms of the principal curvatures of the contacting bodies. (The full definition of parameters for
nominal point contact will be given later.)
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In practice the nondimensional parameters vary greatly, as 10−13 ≤ U ≤ 10−8,
3 × 10−5 ≤ W ≤ 3 × 10−4, and 2.5 × 103 ≤ G ≤ 7.5 × 103.

Writing the Dowson-Higginson formula for minimum film thickness, Eq. (8.16), in the
dimensional form, we obtain

h = 1.6
α0.6(μ0ũ)0.7E′0.03R0.43

w0.13
. (8.17)

Equation (8.17) indicates that the film thickness is virtually independent of the elastic
modulus of the material and is only a weak function of the external load.

For complete solution of the isothermal EHL problem, we have to satisfy simultaneously
the following equations:

(1) The Reynolds equation,
(2) The viscosity-pressure relationship,
(3) The equations of elasticity.

It was discovered early on that the conventional iterative scheme represented by

does not always converge. This is particularly true when there is large elastic deformation
of the surfaces. To correct for this, Dowson and Higginson (1959) proposed the so-called
inverse hydrodynamic solution. The essence of the inverse solution is calculation of the film
shape that would produce a specified pressure distribution. This same pressure distribution
is also employed to calculate surface deformations for plane strain. The remainder of the
computation consists of systematic alteration of the pressure distribution to bring the film
shape and surface deformation into agreement.

The inverse hydrodynamic method is essentially a one-dimensional method, but here it
works well. As a starting point, we perform the indicated differentiation in Eq. (8.2) and
obtain

h3 d

dx

(
1

μ

dp

dx

)
− dh

dx

(
6U0 − 3h2

μ

dp

dx

)
= 0.

The second term of this equation will vanish when

dh

dx
= 0

or when
dp

dx
= 2μU0

h2

(the first condition defines the point of inflection d2p/dx2 = 0 in an isoviscous lubricant).
Inspection of Figure 8.4 (below) will convince the reader that the first condition is

satisfied at the point of minimum film thickness near the trailing edge, while the second
condition is satisfied at a position x = a within the inlet zone where the film thickness has
the value

ha =
√

2μaU0

(dp/dx)a
.
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Substituting ha into Eq. (8.3) yields

h2 = 2

3
ha. (a)

The once-integrated Reynolds Eq. (8.3) may also be rearranged to yield

Kh̄3 − h̄+ 1 = 0, (b)

where

K = h2
2

6μU0

dp

dx
, h̄ = h

h2
.

Thus, knowing μ and U0, the complete film shape can be found for an arbitrary dp/dx
distribution from Eqs. (a) and (b). Details of the inverse hydrodynamic method are discussed
by Dowson and Higginson (1959, 1977).

Figures 8.3 and 8.4 show pressure distributions and film shapes for two different material
combinations, steel and mineral oil (G = 5000) and bronze and mineral oil (G = 2500).

Figure 8.3. Pressure and film thickness in EHL contact for (a) steel and mineral oil and (b)
bronze and mineral oil under high load, p̄ = p/E′, H = h/R. (Reprinted by permission of the
Council of the Institution of Mechanical Engineers from Dowson, D. and Higginson, G. R.
Effect of material properties on the lubrication of elastic rollers. J. Mech. Eng. Sci., 2, 188–194,
1960.)
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Figure 8.4. Pressure and film thickness in EHL contact for (a) steel and mineral oil and (b)
bronze and mineral oil under low load, p̄ = p/E′, H = h/R. (Reprinted by permission of the
Council of the Institution of Mechanical Engineers from Dowson, D. and Higginson, G. R.
Effect of material properties on the lubrication of elastic rollers. J. Mech. Eng. Sci., 2, 188–194,
1960.)

These solutions were calculated by Dowson and Higginson (1960) using the inverse hydro-
dynamic method. The necking down of the film near the outlet, which might be as high as
25%, and the sharp second pressure maximum are easily noticeable in Figures 8.3 and 8.4.
We note that the departure from the Hertzian pressure distribution is more pronounced at
the lower load, consistent with our earlier reasoning.

The speed effect is well demonstrated by the curves of Figure 8.5, which were obtained
for a liquid lubricant whose density was also allowed to change with pressure. The most
significant effect of lubricant compressibility (not shown) is a slight lowering of the
pressure peak and its displacement into the upstream direction from its constant density
position.

A slight reduction of the pressure peak occurs also on introduction of thermal effects
into the analysis, but only at higher speeds and moderate-to-high slip between rollers. At
lower speeds, the pressure peak becomes more severe. The film thickness in the contact
zone is not greatly influenced by temperature effects (Cheng and Sternlicht, 1965).

For pure rolling, Cheng (1965) and Cheng and Sternlicht (1965) reported no significant
thermal effects on either the pressure level or the film thickness but found that the tem-
perature has a major influence on the friction force. Kim and Sadeghi (1992), on the other
hand, found that thermal effects can reduce film thickness by as much as 15%. Calculated
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Figure 8.5. Effect of surface velocity on pressure distribution in EHL contact, p̄ − p/E′.
(Reprinted by permission of the Council of the Institution of Mechanical Engineers from
Dowson, D., Higginson, G. R. and Whitaker, A. V. Elastohydrodynamic lubrication: A survey
of isothermal solutions. J. Mech. Eng. Sci., 4, 121–126, 1962.)

and measured film thicknesses in EHL contacts are compared in Figure 8.6 (Dowson et al.,
1959; Cheng and Sternlicht, 1965; Sibley and Orcutt, 1961; Crook, 1958; Archard et al.,
1961).

We alluded previously to the fact that thin films and high contact pressures are not always
found in, nor are essential to, elastohydrodynamic lubrication. The lubrication of natural
and artificial biological joints (Tanner, 1966; Dowson, 1967), the viscous hydroplaning of
automobile tires (Browne, Whicker, and Rohde, 1975), and the lubrication of compliant
slider and journal bearings belong to this problem area.

Figure 8.6. Comparison of predicted and measured film thickness variable in EHL contacts.
(Reprinted with permission from Cheng, H. S. and Sternlicht, B. A numerical solution for the
pressure, temperature and film thickness between two infinitely long lubricated rolling and
sliding cylinders, under heavy loads. ASME Trans., Ser. D, 87, 695–707, 1965.)



8.3 / Contact Mechanics 295

Elastic deformation of surfaces can also cause significant effects in conformal bearings.
Carl (1964) found that elastic distortion of journal bearings leads to increased film thickness
and reduced peak pressure at low loads. Benjamin and Castelli (1971) were the first to treat
finite compliant bearings analytically and found severe change in the journal locus, as
compared to rigid bearings. Oh and Huebner (1973) applied the finite-element method to
a finite bearing. Oh and Rohde (1977) extended finite-element analysis to compressible
finite journal bearings. In another paper, Rohde and Oh (1975) presented the first complete
thermoelastohydrodynamic analysis of a finite slider. An excellent review of pre-1978 work
was given by Rohde (1978). For more recent work, see Mittwollen and Glienicke (1990),
Bouchoule et al. (1996), and Monmousseau et al. (1996), as referenced in Chapter 9.

8.3 Contact Mechanics

Consider two convex bodies, B̄1 and B̄2, which make contact in a single point,
O, under vanishing load. We intend to find out what happens at the contact as the load is
increased. To facilitate this discussion, we replace our very general bodies B̄1, B̄2 by the
ellipsoids, B1, B2, that are illustrated in Figure 8.7. The ellipsoid B1 has the same principal
curvatures, r1x and r1y, as the body B̄1 at O, while the ellipsoid B2 possesses the same
principal curvatures, r2x and r1y, as B̄2 at O. The principal curvatures, r1x and r2x, lie in the

Figure 8.7. Geometry of counterformal contact between two convex bodies. (Hamrock, B. J.
and Dowson, D. 1981. Ball Bearing Lubrication. Copyright John Wiley & Sons. C© 1981.
Reprinted by permission of John Wiley & Sons, Inc.)
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same3 plane x = 0 and r1y, r2y lie in the plane y = 0. The surfaces of the ellipsoids near the
point of contact can be represented by the equations

z1 = A1x
2 + A2xy + A3y

2,
(8.18)

z2 = B1x
2 + B2xy + B3y

2.

The distance, h, between two points, such as Q1 and Q2 in Figure 8.7, is then

h = z1 + z2 = (A1 + B1) x2 + (A2 + B2) xy + (A3 + B3) y2. (8.19)

We can always choose directions for x and y such as to make the coefficient of the product
xy in Eq. (8.19) vanish. This way we obtain

h = z1 + z2 = Ax2 + By2 = 1

2Rx
x2 + 1

2Ry
y2. (8.20)

Here Rx, Ry are the principal relative radii of curvature, defined by

1

Rx
=
(

1

r1x
+ 1

r2x

)
,

1

Ry
=
(

1

r1y
+ 1

r2y

)
.

The contours of constant gap h between the undeformed surfaces are the ellipses

x2

(
√

2hRx)2
+ y2

(
√

2hRy)2
= 1, (8.21)

the ratio of whose axes are given by (Ry/Rx)1/2.
If now we press the bodies together, they deform in the neighborhood of the point of

their first contact, O, and touch over a finite area. The contact area also has the shape of
an ellipse, the ratio of whose semi-axes, b/a, depends on (Ry/Rx)1/2 alone. But κ = b/a
equals (Ry/Rx)1/2 only in the limitRy/Rx → 1 (Johnson, 1992).4 The ratio of the semiaxes,

κ = b

a
,

is called the ellipticity parameter.5

Two additional indicators of contact geometry that will be used in the sequel are

Curvature sum:

Sc = 1

R = 1

Rx
+ 1

Ry
(8.22)

Curvature difference:

Dc = 1

Sc

[(
1

r1x
− 1

r1y

)
+
(

1

r2x
− 1

r2y

)]
.

3For the general case when the principal radii of curvature are not aligned, see Timoshenko and Goodier
(1951).

4The contact ellipse is somewhat skinnier than the ellipse h = const., Eq. (8.21).
5We select x as the direction of relative motion, so 2b is the axis of the contact ellipse normal to the
direction of fluid entrainment.
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It was shown by Hertz (1881) that the pressure distribution over the elliptical contact is
given by (Johnson, 1992)

p = pH
[

1 −
(x
a

)2
−
(y
b

)2
]

(8.23a)

and

pH = 3w

2πab
. (8.23b)

Here a and b are the lengths of the semi-axes of the contact ellipse, w is the load, and pH

is the maximum value of p.
As mentioned earlier, the values of a and b depend only on geometry; they must be

determined before the pressure can be evaluated from Eqs. (8.23). It was Harris (1991) who
showed how to calculate a and b. Knowing the curvatures 1/Rx, 1/Ry, we can determine
the curvature difference, Dc, in Eq. (8.22). Dc, on the other hand, can be expressed purely
in terms of the ellipticity parameter, κ as

Dc = (κ2 + 1)E − 2F
(κ2 − 1)E , (8.24)

where E and F are complete elliptic integrals of the second and first kind, respectively:

E =
∫ π/2

0

[
1 −

(
1 − 1

κ2

)
sin2 φ

]1/2

dφ, (8.25a)

F =
∫ π/2

0

[
1 −

(
1 − 1

κ2

)
sin2 φ

]−1/2

dφ. (8.25b)

Equation (8.24) is, thus, of the form

Dc = f (κ). (8.26a)

Equation (8.26a) enables us to find the value of the curvature difference, Dc, for given value
of the ellipticity parameter κ . But this is not what we need. We would like to calculate κ
for given value of Dc, i.e., we require the inverse of Eq. (8.26a)

κ = f −1(Dc). (8.26b)

Once in posession of this inverse relationship, Eq. (8.26b), we can, for given Dc, calculate
the ellipticity parameter κ , and with κ in hand determine the contact ellipse semi-axes a, b,
and the deflection δ according to (Harris, 1991)

a =
[

6κ2EwR
πE′

]1/3

, (8.27a)

b =
[

6EwR
πκE′

]1/3

, (8.27b)

δ = F
[

9

2ER
( w

πκE′
)2
]1/3

, (8.27c)
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and the stress distribution from Eqs. (8.23). Here

1

E′ = 1

2

[
1 − ν2

1

E1
+ 1 − ν2

2

E2

]

as before, Eq. (1.13).
Unfortunately, f (κ) is a transcendental function, thus its inverse in Eq. (8.26b) must be

obtained numerically (Hamrock and Anderson, 1973). Here we shall adopt, instead, the
approximation

κ ≈ κ̄ = 1.0339

(
Ry

Rx

)0.636

(8.28a)

obtained by Brewe and Hamrock (1977) by curve fitting. In place of Eq. (8.28a), some
authorities prefer

κ̄ = α2/π
r , αr =

(
Ry

Rx

)
. (8.28b)

Brewe and Hamrock (1977) also supply us with an excellent approximation to the elliptic
integrals in Eqs. (8.25):

E ≈ Ē = 1.0003 + 0.5968

αr
, (8.29a)

F ≈ F̄ = 1.5277 + 0.6023 lnαr . (8.29b)

Later Hamrock and Brewe (1983) recommended the simpler forms

Ē = 1 +
(π

2
− 1
)/
αr,

F̄ = π

2
+
(π

2
− 1
)

lnαr .

Using Eqs. (8.28) and (8.29) in Eqs. (8.27), we obtain the approximate values ā, b̄, and
δ̄. This approximation can be used with confidence for 0.01 ≤ αr ≤ 100.

By taking κ → ∞, we get a nominal line contact that, on increasing the load, w, from
zero, develops into an infinite-strip contact area of width 2b. Then

p = pH
[

1 −
(y
b

)2
]1/2

(8.30a)

and

pH = 2w′

πb
(8.30b)

where w′ is the load per unit length of the strip. The half-width of the contact area can be
calculated from

b =
(

8w′Rx
πE′

)1/2

. (8.30c)
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Table 8.2. Parameters employed in EHL
design formulas

Type of contact

Parameter Point Line

Film Thickness, H h/Rx h/Rx
Load, W w/R2

xE
′ w/RxLE

′

Speed, U μ0V/E
′Rx μ0ũ/E

′Rx
Materials, G αE′ αE′

Ellipticity, κ b/a

8.4 Nondimensional Groups

If we wish to design for continuous lubricant film in a counter-formal contact,
we must be able to predict the minimum film thickness. If the predicted film thickness is
large in comparison with the rms surface finish, and if sufficient amount of lubricant is
made available, the chances are that on application a continuous EHL film will result. If the
conditions for continuous film are not satisfied, partial EHL or boundary lubrication will
be obtained.

Having identified the minimum film thickness as the primary parameter in EHL design,
we will employ the formulas that are currently in use to calculate it.

It was indicated earlier, Eq. (8.16), that dimensional analysis of the EHL problem
yields

φ (H,U,W,G, κ) = 0. (8.31)

Here we extended Eq. (8.16a) by including the ellipticity parameter κ so as to make
Eq. (8.31) applicable also to point contacts. For the two types of contacts, viz., nominal
line and nominal point, the parameters in Eq. (8.31) have somewhat different definition, as
shown in Table 8.2. Here

1

Rx
= 1

r1x
+ 1

r2x
,

1

E′ = 1

2

[
1 − ν2

1

E1
+ 1 − ν2

2

E1

]
,

ũ = (u1 + u2) /2, V = (u2 + ν2)1/2.

According to Eq. (8.31), the film thickness variable, H, depends on four independent
nondimensional groups U, W, G, and κ . This is a great improvement over a primitive
variable representation and, as usual, dimensional analysis facilitates the presentation of
results. However, tabulation of H as a function of four nondimensional groups is still a
formidable task. Fortunately, it has been noticed by a number of researchers that, with little
sacrifice to accuracy of representation, the number of nondimensional groups involved
in determining the film thickness can be reduced by one, when employing a new set of
nondimensional groups. Elements of this new set are constructed by combining the elements
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of the set in Eq. (8.31); for nominal point contact they are:

gH =
(
W

U

)2

H

gV =
(
GW 3

U 2

)2

gE = W 8/3U 2

κ = 1.0339

(
Ry

Rx

)0.636

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

nominal point contact. (8.32)

Besides reducing the number of parameters of the problem and thereby facilitating
presentation of results, a further advantage in using Eqs. (8.32) is that the new parameters
are easily identified with the main characteristics of EHL. Thus, gH represents film thickness,
gV represents deviation from isoviscosity, gE represents significance of elastic deformation,
and κ represents the geometry of the contact.

We now have the relationship

gH = �(gV , gE, κ). (8.33)

Our task now is to find the function �(gV, gE, κ) over practical ranges of its arguments.
This task could be accomplished in one of two ways: (1) analytically, by simultaneous
solution of all the relevant equations of the system or (2) numerically, by solving the EHL
problem for a large number of inputs (gV, gE, κ) and then curve fitting to the supersurface
gH = �(gV, gE, κ) in four-dimensional parameter space.

Lubrication Regimes

Analytical solution of Eq. (8.33) is clearly out of the question, and we proceed by
the numerical method (the details of these calculations are presented in the next section).
But before doing that, let us first examine asymptotic cases gV = gE = 0; gE = 0, gV �= 0;
and gV = 0, gE �= 0, leaving the case gV �= 0, gE �= 0, for last.

(1) gV = 0, gE = 0: Rigid-Isoviscous Regime

In this lubrication regime the pressure is low enough that it leaves the viscosity unaltered
and is unable to cause significant elastic deformation of the surfaces. This is the condition
encountered in hydrodynamic journal and thrust bearings (see Chapter 3), and, to a lesser
extent, in lightly loaded counter-formal contacts. It is the regime of classical hydrodynamic
lubrication.

(2) gV �= 0, gE = 0: Rigid-Piezoviscous Regime

We encounter this lubrication regime in applications that exhibit pressures high enough
to effectively change the lubricant’s viscosity from its inlet value, yet not so high as to
initiate significant elastic deformation in the bearing material.6

6We should recognize that, by judiciously changing the pressure-viscosity coefficient, α, and the
effective Young’s modulus, E′, we could relocate our process from the gV �= 0, gE = 0 regime to the
gV = 0, gE �= 0 regime.
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(3) gE �= 0, gV = 0: Elastic-Isoviscous Regime

Though this regime is characterized by significant elastic deformation, the pressure is
not high enough to affect the viscosity of the particular lubricant employed. An example
for lubrication in the elastic-isoviscous regime is human and animal joints lubricated by
sinovial fluid (Dowson and Wright, 1981). Operation in this regime is often termed soft
EHL. Automobile tires and elastomeric machine elements also operate in this regime.

(4) gE �= 0, gV �= 0: Elastic-Piezoviscous Regime

This is the regime of full EHL, also called hard EHL. The elastic deformation of the
surfaces can be orders of magnitude larger than the thickness of the film and the lubricant
viscosity can be orders of magnitude higher than its bulk value.

We note here that the parameters gV and gE differ in nominal point contacts from that in
nominal line contacts. Definition (8.31) is valid for nominal point contacts.

In nominal line contacts, we drop the ellipticity parameter from the list of nondimensional
variables and define

gH =
(
W

U

)
H

gV = W 3/2G

U 1/2

gE = W

U 1/2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

nominal line contact. (8.34)

The various lubrication regimes are depicted in Figures 8.8 to 8.11.

Figure 8.8. Map of lubrication regimes for nominal line. (Reprinted with permission from
Arnell, R. D., Davies, P. B., Halling, J. and Whomes, T. L. Tribology Principles and Design
Applications. Copyright Springer Verlag, C© 1991.)



Figure 8.9. Map of lubrication regimes for nominal point contact, κ = 3. (Hamrock, B. J. and
Dowson, D. 1981. Ball Bearing Lubrication. Copyright John Wiley & Sons, C© 1981. Reprinted
by permission of John Wiley & Sons, Inc.)

Figure 8.10. Map of lubrication regimes for nominal point contact, κ = 3. (Hamrock, B. J. and
Dowson, D. 1981. Ball Bearing Lubrication. Copyright John Wiley & Sons, C© 1981. Reprinted
by permission of John Wiley & Sons, Inc.)
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Figure 8.11. Map of lubrication regimes for nominal point contact, κ = 6. (Hamrock, B. J. and
Dowson, D. 1981. Ball Bearing Lubrication. Copyright John Wiley & Sons, C© 1981. Reprinted
by permission of John Wiley & Sons, Inc.)

In the following, we list the formulas applicable in the various regimes:

Film-Thickness Design Formulas

Nominal Line Contact (Arnell, Davis, Halling, and Whomes, 1991)

(1) Rigid-Isoviscous Regime:

gHmin = 2.45. (8.35a)

(2) Rigid-Piezoviscous Regime:

gHmin = 1.05g2/3
V . (8.35b)

(3) Elastic-Isoviscous Regime:

gHmin = 2.45g0.8
E . (8.35c)

(4) Full EHL Regime:

gHmin = 1.654g0.54
V g0.06

E . (8.35d)
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Nominal Point Contact (Hamrock, 1990)

(1) Rigid-Isoviscous regime:

gHmin = 128αrλ
2
b

[
0.131 tan−1

(αr
2

)
+ 1.683

]2
, (8.36a)

where

λb =
(

1 + 2

3αr

)−1

.

(2) Rigid-Piezoviscous regime:

gHmin = 141g0.375
V [1 − e−0.0387αr ]. (8.36b)

(3) Elastic-Isoviscous regime:

gHmin = 8.70g0.67
E [1 − 0.85e−0.31κ ]. (8.36c)

(4) Full EHL regime:

gHmin = 3.42g0.49
V g0.17

E [1 − e−0.68κ ]. (8.36d)

Comparison of Figures 8.9, 8.10, and 8.11 shows the strong effect the value of elliptic
eccentricity κ has on regime boundaries.

A valuable aid for design of line contacts has been published by ESDU (1985): Film
Thickness in Lubricated Hertzian Contacts (EHL): Part I, Item No. 85027, London. See
also Harris (1991) and Hamrock (1991).

In the next section we give details of a numerical scheme that makes calculation of
Eq. (8.31) possible, leading to the formulas (8.35) and (8.36).

8.5 Analysis of the Line Contact Problem

The full EHL problem does not yield to analytical solutions and numerical methods
must be employed. Prior to discussing the relevant numerical methods, we will list the set
of equations and boundary conditions that must be satisfied simultaneously by any solution
of the problem. This set contains equations of fluid dynamics, equations of elasticity, and
state equations for the fluid that characterize its viscosity-pressure and density-pressure
behavior. We will not list energy conservation equations, however, and deal here only with
isothermal processes. The analysis of nominal line contacts is made simpler by the fact
that it employs only ordinary differential equations; it does, however, retain most of the
features of the EHL problem. For further study, the interested reader should consult the
various articles that have appeared in the ASME Journal of Tribology, as well as the book
by Hamrock and Dowson (1981).

Elastic Deformation

Figure 8.12 depicts a semi-infinite elastic body, located in z > 0 and loaded
along its y-axis. The components of strain resulting from the uniform line loading w′
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Figure 8.12. Line loading of elastic half-space.

are related to the components of stress by Hook’s law. For the normal components of strain,
we have

εxx = ∂u

∂x
= 1

E
[Txx − ν(Tyy + Tzz)], (8.37a)

εyy = ∂v

∂y
= 1

E
[Tyy − ν(Txx + Tzz)], (8.37b)

εzz = ∂w

∂z
= 1

E
[Tzz − ν(Txx + Tyy)]. (8.37c)

Here (u, v,w) are the components of the displacement of the solid, E is Young’s modulus of
elasticity, and v is the Poisson ratio. The quantities depicted by εxx, εyy, εzz and Txx, Tyy, Tzz
are the normal components of strain and stress, respectively.

The mixed components of strain are related to the mixed components of stress through
the shear modulus, G = E/2(1 + ν), as

εxy = ∂u

∂y
+ ∂ν

∂x
= 1

G
Txy, (8.38a)

εyz = ∂ν

∂z
+ ∂w

∂y
= 1

G
Tyz, (8.38b)

εzx = ∂w

∂x
+ ∂u

∂z
= 1

G
Tzx. (8.38c)

This three-dimensional state of strain can be made simpler by assuming that plane
sections defined by y = const. remain plane and will not be displaced in the y direction
during loading. But then

εyz = 0, εxy = 0, εyy = 0. (8.39)

Substituting the third of these conditions into Eq. (8.37b) yields

Tyy = ν(Txx + Tzz), (8.40)
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so for the plain strain problem Eqs. (8.37) and (8.38) reduce to

∂u

∂x
= 1 − ν2

E
Txx − ν(1 + ν)

E
Tzz, (8.40a)

∂w

∂z
= 1 − ν2

E
Tzz − ν(1 + ν)

E
Txx, (8.40b)

∂u

∂z
+ ∂w

∂x
= 1

G
Txz. (8.40c)

The displacements u,w can be obtained from Eqs. (8.40a) and (8.40b) by integration:

u = 1 − ν2

E

∫
Txx dx − ν(1 + ν)

E

∫
Tzz dx + f1(z), (8.41a)

w = 1 − ν2

E

∫
Tzz dz− ν(1 + ν)

E

∫
Txx dz+ f2(x). (8.41b)

For the situation depicted in Figure 8.12, the components of stress can be obtained
from the stress functions of Boussinesq (Timoshenko and Goodier, 1951; Dowson and
Higginson, 1977),

φ = −w
′

π
x tan−1

(
x

z

)
, (8.42)

where w′ is the load per unit width. The stress function, φ, satisfies the compatibility
condition ∇4φ = 0 and yields

Txx = ∂2φ

∂z2
= −2w′

π

x2z

(x2 + z2)2
, (8.43a)

Tzz = ∂2φ

∂x2
= −2w′

π

z3

(x2 + z2)2
, (8.43b)

Txz = − ∂2φ

∂x∂z
= −2w′

π

xz2

(x2 + z2)2
. (8.43c)

The displacement due to the line load, w′, can now be calculated from Eqs. (8.41),
which, on substituting for the stress from Eqs. (8.43a) and (8.43b) gives at any point (x, z)

u = −w
′

π

{
(1 + ν)(1 − 2ν)

E
tan−1

(
x

z

)
− (1 + ν)

E

xz

(x2 + z2)

}
+ f1(z), (8.44a)

w = −w
′

π

{
1 − ν2

E

[
ln(x2 + z2) − z2

(x2 + z2)

]
+ ν(1 + ν)

E

x2

(x2 + z2)

}
+ f2(x).

(8.44b)

We need two conditions to determine the functions f1(z) and f2(x). The symmetry conditions
of the problem dictate that −u(−x, z) = u(x, z), i.e., that u is an odd function of x. Using this
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as one of the conditions, we find that f1(z) ≡ 0. The displacements must satisfy Eq. (8.40c);
using this as the second condition yields

df2

dx
= 0, f2 = C = const.

We have no more interest in the horizontal displacement u but are interested in the
vertical displacement at the surface z = 0:

δ ≡ w|z=0 = −w
′

π

[
1 − ν2

E
ln x2 + ν(1 + ν)

E

]
+ C. (8.45)

We would now like to develop a displacement formula for normal surface loading over
the arbitrary strip s1 ≤ x ≤ s2. To this end, we consider an elemental strip of width ds that
is located at distance s, s1 < s < s2, from the y axis. Let the normal load on the elemental
strip be denoted by p(s) ds. We can get the elemental vertical displacement caused by the
loading on the elemental strip from Eq. (8.45) by simply replacing x by (x − s); i.e., by
parallel shifting of the coordinate system in the +x direction by the distance s:

dδ = −p(s) ds

π

[
1 − ν2

E
ln(x − s)2 + ν(1 + ν)

E

]
+ C(s). (8.46)

Here dδ is the vertical displacement of the surface at x, due to the elemental strip loading
p(s) ds at x = s.

Integration of Eq. (8.46) over the width (s2 − s1) of the strip yields

δ = − (1 − ν2)

πE

∫ s2

s1

p(s) ln(x − s)2 ds + Ĉ (8.47)

where

Ĉ = const.× (s2 − s1) − ν(1 + ν)

πE
w′.

The constant Ĉ can be evaluated in terms of δb, the deflection at some x = b,

Ĉ = δb + (1 + ν2)

πE

∫ s2

s1

p(s) ln(b − s)2ds. (8.48)

The total displacement at x caused by the strip load p(s) over (s2 − s1)

δ = δb − 1 − ν2

πE

∫ s2

s1

p(s) ln

[
x − s
b − s

]2

ds. (8.49)

Problem Formulation

In this section, we collect the equations that characterize the tribological interaction
of two elastic bodies along a nominal line contact, when a continuous film of lubricant
separates the two bodies. Young’s modulus and Poisson’s ratio of the bodies are E1, ν1 and
E2, ν2 respectively, so the effective modulus and effective radius are given by

1

E′ = 1

2

[
1 − ν2

1

E1
+ 1 − ν2

2

E2

]
,

1

Rx
= 1

r1x
+ 1

r2x
.
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For this nominal line contact the first integral of the Reynolds equation is

dp

dx
= 12μũ

h− hcav

h3
, (8.50)

where ũ = (u1 + u2)/2 is the average of the surface velocities (Table 8.2) and x0 is the
location of the cavitation boundary. This equation is to be solved subject to the Swift-Stieber
boundary condition

p = 0,
dp

dx
= 0 at x = xcav. (8.51a)

The second of these conditions is redundant since any solution of Eq. (8.50) will necessarily
satisfy this boundary condition. The upstream edge of the continuous film is located at
x = xmin, where we assume the pressure to be atmospheric:

p = 0 at x = xmin. (8.51b)

Note that p in Eqs. (8.50) and (8.51) is gauge pressure.
In EHL calculations the viscosity-pressure correlation of Roelands (1966) is usually

employed (Houpert and Hamrock, 1986)

μ = exp{(lnμ0 + 9.67)[−1 + (1 + 5.1 × 10−9p)z]}, (8.52a)

where z is a material parameter, and the lubricant density is assumed to vary according to
the relationship, proposed by Dowson and Higginson (1977),

ρ = ρ0

[
1 + 0.6 × 10−9p

1 + 1.7 × 10−9p

]
, (8.52b)

where p is in Pa.
In this introductory treatment, however, we simplify matters by assuming the viscosity-

pressure dependence to be given by the less accurate, but easy to apply, Barus formula

μ = μ0 exp(αp) (8.12)

and constrain the lubricant to remain incompressible.
The film thickness distribution is known only within an additive constant hw and, for

two surfaces in contact, is given by

h(x) = hw + x2

2Rx
− 2

πE′

∫ xcav

xmin

p(s) ln(x − s)2ds. (8.53)

Here we assumed that the undeformed gap is represented by a parabola, as before. The
unknown constant hw includes the minimum distance of the undeformed surfaces h0 = h(0)
plus the constant term Ĉ

We need one additional constraint to eliminate hw. This additional relationship is pro-
vided by the force balance

w′ =
∫ xcav

xmin

p(x) dx, (8.54)

where w′ is the external load.
The system of Eqs. (8.12), (8.49), (8.50), (8.53) and (8.54) and boundary conditions

(8.51) form a closed system that characterizes the EHL line contact problem.
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The problem is nondimensionalized through the transformation

x = bx̄, s = bs̄, h = b2h̄

Rx
, p = pH p̄, (8.55a)

where the maximum Hertzian pressure, pH, is given by Eqs. (8.30). The definition W =
w′/RxE′ for the load parameter (see Table 8.2) yields

b2 = R2
x

8W

π
. (8.55b)

In nondimensional form, the film thickness, Eq. (8.53), is given by

h̄ = h̄w + x̄2

2
− 1

2π

∫ x̄cav

x̄min

p̄(s̄) ln(x̄ − s̄)2ds̄

(8.56)

− 1

2π
ln b2

∫ x̄cav

x̄min

p̄(s̄) ds̄,

and the nondimensional form of Eq. (8.54) is

π

2
=
∫ xcav

xmin

p̄(s̄) ds̄. (8.57)

Taking into account Eqs. (8.30c) and (8.57), the nondimensional film thickness assumes
the form (Houpert and Hamrock, 1986)

h̄ = h̄w + x̄2

2
− 1

2π

∫ x̄cav

x̄min

p̄(s̄) ln(x̄ − s̄)2ds̄ − 1

4
ln

[
R2
x

8W

π

]
. (8.58)

The integrated form of the Reynolds equation (8.50) has the nondimensional form

exp

(
G

√
W

2π
p̄

)
dp̄

dx̄
= 3π2

4

U

W 2

h̄− h̄0

h̄3
. (8.59)

Equations (8.57), (8.58), and (8.59) and the boundary conditions

p̄ = 0 at x̄ = x̄min
(8.60)

p̄ = dp̄

dx̄
= 0 at x̄ = x̄cav

define the line contact problem of EHL in nondimensional form.

Numerical Considerations

There have been several methods of solution of the nominal line contact EHL
problem. Here we follow Houpert and Hamrock (1986) in their improvement of Okamura’s
approach (Okamura, 1982). The main problem is to accurately calculate the film thickness.
For high loads, the deformation can be orders of magnitude larger than the minimum film
thickness. Accurate calculation of the pressure is made difficult by the increase of viscosity,
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which, again, can increase by several orders of magnitude. We now calculate that part of
the film thickness that is due to elastic deformation,

δ̄ = 1

2π

∫ xmax

xmin

p̄(s̄) ln(x̄ − s̄)2ds̄ − 1

4
ln

[
R2
x

8W

π

]
, x̄max ≥ x̄cav. (8.61a)

The integrand in Eq. (8.61a) is singular at x = s, this singularity may be removed using
integration by parts (Kostreva, 1984),

δ̄ = − 1

2π
[Ip]x̄max

x̄min
+ 1

2π

∫ x̄max

x̄min

dp̄

ds̄
I (x̄; s̄) ds̄ − 1

4
ln

[
R2
x

8W

π

]
, (8.61b)

where

I (x̄; s̄) =
∫

ln (x̄ − s̄)2 ds̄

(8.61c)
= −(x̄ − s̄)[ln(x̄ − s̄)2 − 2].

Since p(xi) = p(x0) = 0, the boundary term in Eq. (8.61b) vanishes, and we obtain

δ̄ = − 1

2π

∫ ¯̇xmax

x̄min

dp̄

ds̄
(x̄ − s̄)[ln(x̄ − s̄)2 − 2] ds̄ − 1

4
ln

[
R2
x

8W

π

]
. (8.62)

For the remainder of this section, we drop the overbar, but bear in mind that all variables
have been nondimensionalized at this stage.

We wish to evaluate the integral in Eq. (8.62) numerically. To this end, define a nonuni-
form partition, with N odd,

(: xmin = x1 < x2 < x3 < · · · < xN−2 < xN−1 < xN = xmax, (8.63)

and write the integral in Eq. (8.62) as a sum of subintegrals, each evaluated on its own
subinterval,

δ= − 1

2π

∫ x3

x1

(.) ds − 1

2π

∫ x5

x3

(.) ds − · · · − 1

2π

∫ xj+1

xj−1

(.) ds − · · · − 1

2π

∫ xN

xN−2

(.) ds+C,
(8.64)

where, for brevity, we represent the constant term in Eq. (8.62) by C.
In the first of these subintegrals, the global dummy variable s ranges from x1 to x3, and

we replace it by a local dummy variable x′ = s − x2, which has the range [x1 − x2, x3 − x2].
In the generic interval centered about xj, j even, the local dummy variable is chosen to be
x′ = s − xj, which ranges over the interval [xj−1 − xj, xj+1 − xj], and so forth. Also, if we
substitute xi for x, Eq. (8.62) calculates the deformation at node i as the sum of deformations
δi2, δi4, . . . , δi,N−1, due to strip loading over the intervals [x1, x3], [x3, x5], . . . , [δN−2, xN],
N odd, so that

δi = δi,2 + δi,4 + · · · + δi,N−1 + C
(8.65)

=
N−1∑

j=2,4,...

δij − 1

4
ln

(
R2
x

8W

π

)
.
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We now evaluate the integrand in Eq. (8.62) for each of the subintervals. The discretized
form of Eq. (8.61c), substituting xi for x and xj + x′ for s, is

Iij (x
′) = −[xi − (xj + x ′)]{ln[xi − (xj + x ′)]2 − 2}, (j even). (8.66)

Next, we represent p(s) by its nodal values (Dowson and Higginson, 1959). But to make
the subintegrals independent of one another, p(s) of a particular subinterval can depend
only on the nodal values that are available within that subinterval. For example, in the
subinterval centered about node j, j even, we have the nodal values pj−1, pj, and pj+1

available. To interpolate for any x′∈ [xj−1 – xj, xj+1] – xj] in terms of the nodal values, we
employ Lagrange’s quadratic interpolation formula and write7

p(x ′) = x ′(x ′ + xj − xj+1)

(xj−1 − xj )(xj−1 − xj+1)
pj−1

+ (x ′ + xj − xj−1)(x ′ + xj − xj+1)

(xj − xj−1)(xj − xj+1)
pj (8.67)

+ x ′(x ′ + xj − xj−1)

(xj+1 − xj−1)(xj+1 − xj )pj+1.

Thus, for any point x′∈ [xj−1 – xj, xj+1 – xj], the pressure is represented by a parabola that
passes through points (xj−1, pj−1), (xj, pj), (xj+1, pj+1).

Differentiation of Eq. (8.67) with respect to x′ yields the pressure gradient at x′∈ [xj−1 – xj,
xj+1 – xj],

dp(x ′)
dx ′ = 2x ′ + (xj − xj+1)

(xj−1 − xj )(xj−1 − xj+1)
pj−1

+ 2x ′ + (xj − xj−1) + (xj − xj+1)

(xj − xj−1)(xj − xj+1)
pj (8.68)

+ 2x ′ + (xj − xj−1)

(xj+1 − xj−1)(xj+1 − xj )pj+1.

The formula for the pressure derivative, Eq. (8.68), will now be written as

dp(x ′)
dx ′ = (a1x

′ + a2)pj−1 + (a3x
′ + a4)pj + (a5x

′ + a6)pj+1, (8.69)

where the coefficients a1, a2, . . . a6 can be obtained by comparing Eqs. (8.68) and (8.69).
The subintegral centered about node j, j even, in Eq. (8.64) can then be written as

1

2π

∫ xj+1

xj−1

(.) ds = pj−1

{
1

2π

∫ xj+1−xj

xj−1−xj
(a1x

′ + a2)Iij (x
′) dx ′

}

+pj
{

1

2π

∫ xj+1−xj

xj−1−xj
(a3x

′ + a4)Iij (x
′) dx ′

}
(8.70)

+pj+1

{
1

2π

∫ xj+1−xj

xj−1−xj
(a5x

′ + a6)Iij (x
′) dx ′

}
.

7On substituting x′ = s – xj, we revert to the conventional notation of Lagrange’s interpolation formula
(Gerald, 1973).
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The integrals in Eq. (8.70) depend only on the sequence of nodal points, Eq. (8.63). As
soon as partition( is selected in Eq. (8.63), the integrals can be evaluated analytically in a
straightforward manner (Houpert and Hamrock, 1986). Let us assume, for simplicity, that
this has been done and designate the results by L, M, and U according to

Li,j−1 = 1

2π

∫ xj+1−xj

xj−1−xj
(a1x

′ + a2)Iij (x
′) dx ′, (8.71a)

Mi,j = 1

2π

∫ xj+1−xj

xj−1−xj
(a3x

′ + a4)Iij (x
′) dx ′, (8.71b)

Ui,j+1 = 1

2π

∫ xj+1−xj

xj−1−xj
(a5x

′ + a6)Iij (x
′) dx ′, [j = 2k, k = 1, . . . , (N − 1)/2].

(8.71c)

The deformation at node i due to loading on the strip centered about node j is

δi,j = Li,j−1pj−1 +Mi,jpj + Ui,j+1pj+1. (8.72)

Substituting into Eq. (8.65), the deflection at node i due to loading of all strips is

δi = [Li,1p1 +Mi,2p2 + (Ui,3 + Li,3)p3] + · · ·
+ [(Ui,2k−1 + Li,2k−1)p2k−1 +Mi,2kp2k + (Ui,2k+1 + Li,2k+1)p2k+1] + · · ·
+ [(Ui,N−2 + Li,N−2)pN−2 +Mi,N−1pN−1 + Ui,NpN ] + C.

(8.73)

Let us define the influence coefficients Di,n as follows

Di,n =
{
Mi,n n even(
Ui,n + Li,n

)
n odd,

(8.74)
Ui,1 = 0, Li,N = 0, 1 ≤ i ≤ N.

The influence coefficient, Di,n, calculates deformation at node i due to unit load at node n.
We may now write Eq. (8.73) in the concise form

δi =
N−1∑

j=2,4,...

δij − 1

4
ln

(
R2
x

8W

π

)
(8.75)

=
N−1∑
n=2

Di,npn − 1

4
ln

(
R2
x

8W

π

)
.

The unknowns of the boundary value problem, Eqs. (8.57)–(8.60), are the pressure at the
nodal points pk, 2 ≤ k ≤ N – 1, and the constant ĥw, which now also includes the constant
term

ĥw = hw − 1

4
ln

(
R2
x

8W

π

)
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The position of the cavitation boundary xcav is also unknown at this stage. Instead of
evaluating xcav, however, we consider hcav = h(xcav) as an unknown and write Eq. (8.56) as

0 = hcav − hw − 1

2
ξ 2 + 1

2π

∫ xM

xi

p(s) ln[ξ − s]2ds. (8.76)

Equation (8.76) is evaluated by interpolation (Okamura, 1983), as xcav = max(ξ ), where ξ
satisfies (8.76) and xM > xN. Determination of the location of the free boundary is, however,
difficult. To avoid such difficulties, Bisset and Glander (1988) scale the problem to a fixed
interval a priori, by using the transformation

x̂ = x − xmin

xcav − xmin
. (8.77)

This will introduce ĥcav = ĥ(1) into the equations naturally; ĥcav is now an unknown of the
problem.

The system of discretized equations takes the form of a set of nonlinear algebraic
equations.

F (x) = 0, x = (u, λ) , (8.78)

where u is the vector of state variables (pi, hcav, hw) and λ is a vector of the parameters
U, G, W, . . . , etc. In general, if there are n parameters, the solution set of Eq. (8.78) is an
n-dimensional manifold. When n = 1, the manifold becomes a path.

In the calculations we keep all the parameters constant except one, and use the Gauss-
Newton method for local iteration and the method of continuation for tracing the path (Bisset
and Gander, 1988; Wang, Al-Sharif, Rajagopal, and Szeri, 1992). Note that Eq. (8.78)
has the same form as Eq. (6.28). Application of the Gauss-Newton and path continuation
methods have been described in Chapter 6. For application of the highly successful multigrid
techniques (Brandt, 1984) to EHL problems, see Venner, ten Napel, and Bosma (1990),
and Ai and Cheng (1994). A short exposition of the multigrid (MG) method can be found
in the next section.

For simplicity, we have discussed only the nominal line contact problem in detail. By
employing this technique, Houpert and Hamrock (1986) were able to obtain solutions up
to 4.8 GPa maximum pressure. Extension to nominal point contact is discussed in a series
of papers by Hamrock and Dowson (1976a, 1976b, 1997a, 1977b, 1978, 1979). Additional
material is to be found in Hamrock (1991).

A great deal of effort has been devoted during the past two decades to the study of rough
EHL contacts. Notable recent papers dealing with this subject are Ai and Cheng (1994),
Greenwood and Morales-Espejel (1994), Venner and Lubrecht (1994), Ai and Cheng (1996)
and Xu and Sadeghi (1996).

8.6 Analysis of the Point Contact Problem

The version of the Reynolds equation that defines the steady-state EHL point
contact problem is a nonlinear partial differential equation in two spatial dimensions,
hence, it is more complex, and as far as both computer storage and computing times are
concerned more demanding, than the line contact problem of the previous section. Early
on, researchers attempting solution of the point contact problem were forced to employ
rather course grids due to the prevailing limitations on computer storage and performance;
on such grids, especially under severe loading, derivatives such as ∂p/∂x and ∂2p/∂x2



314 8 / Elastohydrodynamic Lubrication

changed rapidly from node to node, leading to instability of the computational scheme.
To curb these hard-to-handle changes, researchers introduced the substitution ϕ = ph3/2

into the Reynolds equation and employed Gauss-Seidel iteration to solve the discretized
equations, now inϕ (Hamrock and Dowson, 1981; Jalali-Vahid et al., 1998), employing over
relaxation to speed up convergence on ϕ and under relaxation when checking convergence
on p. Numerical stability was further promoted by applying backward differencing to the
Couette-flow term. However, prior to the introduction of modern multigrid (MG) methods
to elastohydrodynamic lubrication, solution of the EHL point problem remained difficult,
especially under high load (Gohar, 2000). Multigrid methods, these will be introduced later
in this section, speed up convergence of iterative methods such as the Gauss-Seidel scheme
by paying attention to the nature and composition of the error, thus permitting finer grids
to be employed.

The error, i.e., the difference between exact solution and iterated value, can be looked
upon as being made up of component functions, each of which possessing distinct frequency
and wavelength. Multigrid methods take cognizance that the various error components are
easiest to eliminate on meshes of different, appropriately chosen, density; high-frequency
components yield to treatment on smooth mesh while low-frequency component can be
best eliminated on coarser mesh. MG methods apply a series of different grids in prescribed
sequences to obtain accurate solution with minimal effort. With these modern methods,
high mesh density can be realized; there is no need for the ϕ substitution as we can now
solve p and h directly.

Relaxation

The finite difference approximation of partial differential equations is routinely
solved by standard iterative techniques like the Jacobi or Gauss-Seidel schemes. Although
these schemes have poor global convergence properties, for errors whose length scales are
comparable to the mesh size they provide rapid convergence and, after a few iteration sweeps
leave behind smooth, i.e., long wavelength, errors (for this reason, they are frequently
referred to in the literature as smoothers).

In way of providing rationale for introducing multigrid methods, we consider the two-
dimensional Poisson’s equation,

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
= f (x, y), ϕ = 0 onC. (8.79)

The finite difference approximation of Eq. (8.79), on the n× n uniform mesh �h with
mesh size, hx, hy , using central differencing, is

ϕhi+1,j − 2ϕhi,j + ϕhi−1,j

h2
x

+ ϕhi,j+1 − 2ϕhi,j + ϕhi,j−1

h2
y

= f hi,j . (8.80)

Let ϕ̃hk,l represent the current value of ϕhk,l , obtained from the previous iteration or
specified by the initial guess. In an iterative scheme, the new iterate ϕ̄hi,j can be calculated
from

ϕ̄hi,j =
(

2

h2
x

+ 2

h2
y

)−1 [
ϕ̃hi+1,j + ϕ̃hi−1,j

h2
x

+ ϕ̃hi,j+1 + ϕ̃hi,j−1

h2
y

− f hi,j
]
. (8.81)
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Equation (8.81) is a statement of Jacobi’s method. We note that the right-hand side of
the equation contains only values that were evaluated during the previous full sweep. The
Gauss-Seidel method, in contrast, utilizes the most up to date information at every appli-
cation of (8.80) in the iteration, without waiting for completion of the sweep. Employing
lexicographic ordering in updating ϕ̃, i.e., in order of increasing i and j, the Gauss-Seidel
iteration is characterized by

ϕ̄hi,j = ϕ̃hi,j − ω
(

2

h2
y

+ 2

h2
y

)−1

rhi,j , (8.82)

where the residue rhi,j has the definition

rhi,j =
[
f hi,j − ϕ̃hi+1,j − 2ϕ̃hi,j + ϕ̄hi−1,j

h2
x

− ϕ̃hi,j+1 − 2ϕ̃hi,j + ϕ̄hi,j−1

h2
y

]
. (8.83)

When ω < 1 the process is damped Gauss-Seidel iteration or Gauss-Seidel with under
relaxation.

We note here that both schemes, formulas (8.81) and (8.82), involve only four adjacent
points (i + 1, j ) , (i − 1, j ) , (i, j + 1) and (i, j − 1) in calculating ϕ(i, j ). In consequence,
should there be only small variation in ϕ over these points, i.e., should the error be smooth
relative to the current mesh�h, either of these schemes will yield a ϕ̄hi,j that differs but little
from the previous iterate ϕ̃hi,j . Once this stage is reached, the iteration process slows down.
However, if we now continue to iterate on a coarser mesh, say �2h of mesh size 2hx, 2hy ,
the error would fluctuate more rapidly from mesh-point to neighboring mesh-point, i.e.,
have a shorter wavelength relative to mesh size, providing once again for efficient iteration.

The assertion that an iteration scheme is more effective against errors whose wavelength
relative to mesh size is smaller is well illustrated by the following example. We setf (x, y) =
0 in Eq. (8.79) and specify a starting guess

ϕ0 = sin(kπx) × sin(kπy), (8.84)

that reduces to zero at the edges of the square domain [0, 1] × [0, 1], to comply with the
boundary condition ϕ = 0 on C.

As the only solution to this problem is the null solution ϕ(x, y) ≡ 0, the error ehi,j =
|ϕhi,j − ϕ̃hi,j | will be represented by the calculated value ϕ̃hi,j at any stage of the iteration.

In Figure 8.13 we record the changes in the error norm eh = max1≤i,j≤n |ϕ̄hi,j | for different
values of the wave number k as the iteration proceeds. As indicated in the figure, eh decreases
faster for the higher frequency error than it does for the low frequency one. This, of course,
immediately advises that once the iteration has slowed due to the error having become
smooth relative to�h, we should transfer to the courser mesh�2h to speed up convergence.

We may note here for future use that, when employing the Gauss-Seidel scheme, errors
of two consecutive iterations m and (m+ 1) satisfy the equation

e
(m+1)
i,j =

(
2

h2
x

+ 2

h2
y

)−1 (
e

(m+1)
i−1,j + e(m)

i+1,j

h2
x

+ e
(m+1)
i,j−1 + e(m)

i,j+1

h2
y

)
. (8.85)

Here we dropped the superscript h on ehi,j and for the mth iterate of ϕi,j put ϕ(m)
i,j =

ϕi,j − e(m)
i,j .
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Figure 8.13. Solution errors versus iteration number, square mesh: h = 1/64.

Another way to study the evolution of the various frequency components of the error
is via local mode analysis, the essence of which is the assertion that relaxation is a local
process; i.e., each unknown is updated using information from nearby neighbors alone. For
this reason, boundary conditions can be disregarded when investigation is restricted to only
a few relaxation sweeps in the interior of the domain. The approach is to assume that the
error can be represented by Fourier modes, then determine how relaxation modifies those
modes. However, as there are no boundaries to contend with, the Fourier modes do not
need to be restricted to discrete wave numbers. We can thus consider modes in the form
wj = exp(ιjθ) where θ ∈ (−π, π ] and ι = √−1. The mode corresponding to a specific
wave number θ has wavelength 2πh/ |θ |, values near π correspond to high frequency
waves while those close to zero to low frequency waves (Briggs et al., 2000).

The analysis easily extends to two dimensions. Furthermore, based on the assumption
that the relaxation maps a given Fourier component onto itself, it will be sufficient to
consider that at node (j, k) after the mth and the (m+ 1) st step, respectively, the error is
represented by a single Fourier mode,

e
(m)
j, k = A(m)eι(jθ1+kθ2)

(8.86)
e

(m+1)
j, k = A(m+ 1)eι(jθ1+kθ2).

We define the error amplification factor as the ratio of two successive amplitudes

A(m+ 1) = G(θ1, θ2)A(m). (8.87)

For Gauss-Seidel iteration of (8.79) with hx = hy = h, we substitute (8.86) into (8.85)
and obtain

G(θ1, θ2) = eιθ1 + eιθ2

4 − e−ιθ1 − e−ιθ2
.
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Figure 8.14. Amplification factor G (θ1, θ2) for Gauss-Seidel iteration of ∇2ϕ = 0.

The amplification factog G is plotted against the wave number k in Figure 8.14. It is evident
that as (θ1, θ2) → (0, 0), G(θ1, θ2) → 1.

The Multigrid (MG) Method

To illustrate the multigrid method we consider the boundary value problem

A(u) = f, u = 0 on C, (8.88)

which, on the mesh �h, has the finite difference approximation

Ah(uh) = f h. (8.89)

By applying iterative methods like the Jacobi or the Gauss-Seidel scheme on �h, the
high-frequency components of the error are eliminated first. Starting from some initial
guess uh0 and applying one of these schemes, the approximation ũh is obtained after ν1

iteration sweeps. We define the error and the residue, respectively, by

eh = uh − ũh (8.90)

and

rh = f h − Ah(ũh). (8.91)

We emphasize here that both error and residue are smooth at this stage.

Application to Linear Operators

When A symbolizes a linear operator, we change the nomenclature from A to
L ≡ A in (8.89) and write, after ν1 iteration sweeps,

Lhuh − Lhũh = Lh(uh − ũh)

= Lheh,
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thus obtaining the residual equation

Lheh = rh. (8.92)

Relaxing the original equation Lhuh = f h with arbitrary initial guess uh0 is thus equivalent
to relaxing the residual equation Lheh = rh with initial guess eh0 = 0. The scheme for this,
outlined in the following and starting from Eq. (8.92), is applicable to linear operators and
is referred to in the literature as the Correction Scheme (CS).

There is, however, no sense in continuing to relax (8.92) on �h, as the error is already
smooth, due to the ν1 smoothing relaxation sweeps already performed on (8.89). It is
better to transfer the residue rh from �h to �2h, obtaining r2h = I 2h

h rh in this process,
approximate the operator L on �2h by L2h, and continue relaxing on the equation

L2he2h = r2h. (8.93)

The restriction operator I 2h
h transfers arrays such as rh from the finer mesh �h to the

coarser mesh �2h. Implicit in Eq. (8.93) is the assumption that eh and e2h are two different
discretizations of the same quantity e.

If now we relax on the residual equation (8.93) ν1 times with initial value e2h
0 = 0, we

obtain the approximation ẽ2h to the error e2h. The latter array has representation Ih2h ẽ2h

on �h and we accept it as our approximation to the error eh. Here Ih2h is the prolongation
operator that transfers arrays such as ẽ2h from the coarse mesh �2h to the fine mesh �h.

Employing now Eq. (8.90), we find the improved approximation to uh through the
upgrade

ũh ← ũh + Ih2h ẽ2h. (8.94)

The grid �2h might be sufficiently coarse to provide the exact solution e2h after ν1

iterations where ν1 is small, say 2. However, if �2h contains too large a number of mesh
points, we may treat Eq. (8.93) in a fashion similar to that of the residual equation (8.92),
after all these two equations are formally identical. Continuing this process, we can build
a hierarchy of two-grid (TG) processes as follows (Briggs et al., 2000):

Relax on Lhuh = f h starting from some initial guess uh0 , iterating ν1 times
Compute f 2h = I 2h

h rh

Relax on L2he2h = f 2h starting from zero initial value, iterating ν1 times
Compute f 4h = I 4h

2h r2h

Relax on L4he4h = f 4h starting from zero initial guess, iterating ν1 times
Compute f 8h = I 8h

4h r4h

· · ·
Correct ẽ4h ← ẽ4h + I 4h

8h ẽ8h

Relax on L4he4h = f 4h with initial guess ẽ4h, iterating ν2 times

Correct ẽ2h ← ẽ2h + I 2h
4h ẽ4h.

Relax on L2he2h = f 2h with initial guess ẽ2h, iterating ν2 times

Correct ũh ← ũh + Ih2h ẽ2h.
Relax on Lhuh = f h with initial guess ũh, iterating ν2 times.
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Figure 8.15. Multilevel schemes: (a) V-cycle; (b) W-cycle; (c) Full Multigrid.

The computation scheme defined above is a V-cycle and, for five levels, is illustrated
schematically in Figure 8.15(a).

We now return to our previous Dirichlet problem with initial guess (8.84), using a series
of five-level V-cycles, with ν1 = ν2 = 2 and h = 1/32. Table 8.3 displays the residue norm,
defined by

r =
√∑

i,j

(ri,j )
2,

at each level of the V-cycle for the first, fifth, and tenth cycles. As the entries of Table 8.3
show, the first cycle reduces the residue norm on the h = 1/32 mesh from 19.4 to 0.642.
At the end of the tenth cycle, i.e., after only 40 iterations at level five, we arrive at a residue
norm r = 4.68 × 10−13. To reach the same result but without making use of the multigrid
technique, we would need 2944 iteration sweeps, all at level five. Now this might not be
time consuming in the example under consideration. However, we should bear in mind
that for the sake of accuracy EHL problems are typically solved on large mesh8 and the
equations are far more complicated than our sample problem; they also involve an integral
condition and calculation of the elastic deformation at each point, at each stage of each
relaxation sweep.

8In the paper by Ehret et al. (1997), for example, the finest mesh contains 513 × 513 mesh points and
the coarsest 17 × 17.
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Table 8.3. Residue norm at various levels and V-cycles for the
Dirichlet problem

Level h First cycle Fifth cycle Tenth cycle

5 1/32 1.94 × 10+1 4.31 × 10−5 7.66 × 10−12

4 1/16 1.82 × 10+1 3.60 × 10−5 5.28 × 10−12

3 1/8 1.42 × 10+1 2.19 × 10−5 2.30 × 10−12

2 1/4 5.99 × 100 6.17 × 10−5 5.30 × 10−13

1 1/2 0.00 × 100 0.00 × 100 0.00 × 100

2 1/4 5.41 × 10−1 5.84 × 10−7 4.92 × 10−14

3 1/8 7.29 × 10−1 1.71 × 10−6 1.98 × 10−13

4 1/16 7.09 × 10−1 6.42 × 10−6 4.93 × 10−13

5 1/32 6.42 × 10−1 2.22 × 10−6 4.68 × 10−13

If reasonable starting values are not readily available, one might employ the coarsest
grid to obtain acceptable starting values for smoothing on the finest grid, as indicated by
the full multigrid cycle of Figure 8.15(c).

The Intergrid Operators

The ideas of the previous subsection dictate that we find ways to transfer arrays
from the fine to the coarse mesh and vice versa. The restriction operators will accomplish
the first of these tasks. For simplicity in defining these operators, we chose the mesh of the
coarse-grid spacing H as double that of the fine-grid spacing, i.e.,H = 2h (the predominant
choice in practice).

The simplest restriction operator is the injection operator, which transfers the value
of an array on a fine-grid point directly to the corresponding coarse-grid point ϕHI,J ←
ϕhi,j , i, j = 2, 4, 6, . . . . Representation that is more accurate can be achieved by applying
the full weighting operator (e.g., Gohar, 2000)

ϕHI,J ← 1

16

[
ϕhi−1,j−1 + ϕhi−1,j+1 + ϕhi+1,j−1 + ϕhi+1,j+1

(8.95)
+ 2
(
ϕhi,j−1 + ϕhi,j+1 + ϕhi−1,j + ϕhi+1,j

)+ 4ϕhi,j
]
.

Here I = i/2 and J = j/2 and i, j = 2, 4, 6, . . . , thus, for example

ϕH4,2 ← 1

16

[
ϕh7,3 + ϕh7,5 + ϕh9,3 + ϕh9,5 + 2

(
ϕh8,3 + ϕh8,5 + ϕh7,4 + ϕh9,4

)+ 4ϕh8,4
]
.

The full weighting operator is diagrammed in Figure 8.16(a).
The prolongation operator I 2h

h disperses coarse-grid arrays, such as r2h, from �2h to
the finer grid�h. It is shown schematically in Figure 8.16(b). For the upper right quadrant,
consisting of points (i, j ) , (i + 1, j ) , (i, j + 1), and (i + 1, j + 1), we thus specify
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Figure 8.16. Intergrid operators: (a) Full weighting restriction operator; (b) prolongation
operator.

rhi,j ← rHI,J

rhi+1,j ← 1

2

(
rHI,J + rHI+1,J

)
(8.96)

rhi,j+1 ← 1

2

(
rHI,J + rHI,J+1

)
rhi+1,j+1 ← 1

4

(
rHI,J + rHI+1,J + rHI+1,J+1 + rHI,J+1

)
,

where i = 2I, j = 2J , and I, J = 1, 2, 3, . . . , thus, for example,

rh8,5 ← 1

2

(
rH4,2 + rH4,3

)
rh9,5 ← 1

4

(
rH4,2 + rH5,2 + rH5,3 + rH4,3

)
.

Application to Nonlinear Operators

Many of the problems of interest in mechanics, including lubrication of counter
formal contacts, are nonlinear. For these also the multigrid algorithm provides a new
powerful method of analysis. However, for nonlinear operators Ah(uh) − Ah(ũh) �=
Ah(uh − ũh) and the residual equation is no longer linear, i.e., we cannot treat the error
separate from the solution. The best we can do in way of a residual equation is to use
definitions (8.90) and (8.91) and form the nonlinear set of equations

Ah(ũh + eh) − Ah(ũh) = rh. (8.97)
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Here the approximation ũh to uh can be obtained by the Jacobi or the Gauss-Seidel
schemes with local linearization (Venner and Lubrecht, 2000). The above indicated change
from linear to nonlinear residual equation necessitates changes in the MG method to make
it applicable to nonlinear problems.

The multigrid technique for nonlinear problems naturally divides into two categories.
The first category of these methods, which we will call the MG-Newton scheme, employs
the multigrid scheme only as an inner solver of the linear approximation to the nonlinear
equations, which has already been obtained via Newton’s method. To define this scheme,
we return to (8.97) and expand the first term on the left in a Taylor series about ũ,

Ah(ũh + eh) = Ah(ũh) + J (ũh)eh + h. o. t. (8.98)

Truncating the system after two terms and substituting into (8.97) gives the linear system
of equations,

J (ũh)eh = rh. (8.99)

Here J (ũh) is the Jacobian evaluated at the current value ũh,

Jk,l = ∂Ahk (u
h)

∂uhl

∣∣∣∣
uh=ũh

.

This linear system (8.99) is best solved by multigrid methods. The current approximation
ũh can then be updated as ũh ← ũh + eh, where this last step follows from Newton’s
method. The MG-Newton method is described in detail by Chang et al. (1989), Lee and
Hsu (1993), Hsu and Lee (1994), and Dawson and Wang (1994). For application of this
method to transient problems, see Jalali-Vahid et al. (2001).

The second category of methods, known as the full approximation scheme (FAS), results
from generalization of the linear multigrid scheme (Briggs et al., 2000). The excellent book
by Venner and Lubrecht (2000) contain detailed description of the FAS, as it applies to both
HL and EHL problems.

To introduce the full approximation scheme we return to the nonlinear residual equations
(8.97) and discretized it on the coarse mesh �2h to obtain

A2h(û2h) = f̂ 2h. (8.100)

Here we assume to represent (ũh + eh) on the coarse grid�2h by the coarse grid variable
û2h in the form

û2h ← I 2
hhũh + e2h. (8.101)

We also recognize the transfers

A2h ← Ah

ũ2h ← I 2
hhũh (8.102)

r2h ← I 2h
h rh

and define the (known) right-hand side

f̂ 2h = I 2h
h rh + A2h(I 2h

h (ũh)
)
. (8.103)
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Equation (8.100) is formally identical to Eq. (8.89), and by applying the same scheme to
Eq. (8.100) as was employed for Eq. (8.89), we relax on A2h (û2h) = f̂ 2h to obtain the

approximation ˜û2h. We then have from (8.98)

e2h = û2h − I 2h
h ũh

(8.104)
∼= ˜̂u

2h − I 2h
h ũh.

As the representation of e2h on �h is Ih2he2h, from Eq. (8.104) we obtain the improved
approximation to the unknown uh as

ũh ← ũh + Ih2h
(

˜̂u
2h − I 2h

h ũh
)
. (8.105)

Application of the full approximation scheme (FAS) consists thus of the following steps:

� Restrict the current approximation and its fine-grid residual to the coarse grid:
r2h = I 2h

h ( f h − Ah(ũh)) and ũ2h = I 2h
h ũh.

� Solve the coarse-grid problem: A2h(û2h) = r2h + A2h(ũ2h).
� Compute the coarse-grid approximation to the error: e2h = ũ2h − ˜̂u

2h
.

� Interpolate the error approximation up to the fine grid and correct the current
fine-grid approximation: ũh ← ũh + Ih2h(e2h).

Problem Formulation

Consider an elastic half space to which forces are applied in the neighborhood of a
single point

(
x ′, z′

)
on the surface. If the resultant of these forces is F, then the displacement

at a point (x, z) is give by (Love, 1944)

w(x, z) = F (λ+ 2μ)

4πμ(λ+ μ)

1

r
. (8.106)

Here r =
√

(x − x ′)2 + (z− z′)2 is the distance between the point of application of the
force and the point where deflection is sought.

If instead of the Lame constants λ and μ we employ Young’s modulus and Poisson’s
ratio, where

λ = Eν

(1 + ν)(1 − ν)
; μ = E

(1 + ν)
(8.107)

the deflection (8.106) takes the form

w(x, z) = (1 − ν2)F

πE

1√
(x − x ′)2 + (z− z′)2

. (8.108)
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The deflection of the surface at pointQ (x, z) due to the normal load p(x, z) distributed
over the area 2a × 2b centered at (xc, zc) can be computed from the integral

w(x, z) = (1 − ν2)

πE

∫ xc+a

xc−a

∫ zc+b

zc−b

p(x ′, z′, ) dx ′dz′√
(x − x ′)2 + (z− z′)2

. (8.109)

Love (1944) evaluated this integral for uniform pressure, with the result given in Eq. (8.123).
The film thickness in nominal point contact, assuming that the body is locally a

paraboloid at contact, is given by

h(x, z) = h0 + x2

2Rx
+ z2

2Rz
+ 2

πE′

∫ +∞

−∞

∫ +∞

−∞

p(x ′, z′) dx ′dz′√
(x − x ′)2 + (z− z′)2

. (8.110)

The fluid pressure in conventional EHL contacts is O(1 Gpa); compressibility of even
liquid lubricants must be taken into account at such high pressure. We must, therefore, use
that version of the Reynolds equation that is applicable to compressible lubricants. To spec-
ify pressure dependence of density, the Dowson and Higginson relationship, Eq. (8.52b),
is often employed (c.f., Chapter 10).

The Reynolds equation for compressible fluids is given by Eq. (11.6) of Section 11.1.
For steady state the form given by Eq. (11.9) applies

∂

∂x

(
ρh3

μ

∂p

∂x

)
+ ∂

∂z

(
ρh3

μ

∂p

∂z

)
= 12um

∂(ρh)

∂x
, (8.111)

where um = U0/2 denotes the average velocity of the surfaces.
As discussed previously, the location of the cavitation boundary is not known a priori.

Here we cannot simply include its position as an additional unknown as this position is
dependent on z. Instead, we enforce the condition p(x, z) ≥ 0, by equating nodal pressures
to zero at each stage of the iterations when they fall below it (Rohde and McAllister, 1975).

To characterize pressure dependence of the viscosity we use either the Barus formula,
Eq. (8.12), or the correlation by Roelands, Eq. (8.52a).

The force balance condition, required to evaluate the minimum film thickness, is an
extension of Eq. (8.54),

w′ =
∫ +∞

−∞

∫ +∞

−∞
p(x, z) dxdz. (8.112)

The following substitutions make the these equations dimensionless

x = ax̄ z = az̄
p = php̄ h = (a2/Rx)h̄ (8.113)

μ = μ̄μ0 ρ = ρ̄ρ0.

Here ph is the maximum pressure in frictionless dry contact. To find its value we make
use of results by Hertz. Setting κ = 1 for circular contact, from (8.25a) we obtain E = π/2,
and from (8.22) the value R = Rx/2. Substitution of these quantities into Eqs. (8.23b)
and (8.27a) yields the required maximum Hertz pressure ph and the radius of the contact
circle a

ph = 3w′

2a2
; a =

(
3w′Rx

2E′

)1/3

. (8.114)
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Employing further the definitions

ξ = ρ̄h̄3

μ̄λ
; λ = 12umμ0R

2
x

a3ph

the nondimensional form of the Reynolds equation, the film thickness, and the force balance
becomes, respectively,

∂

∂x̄

(
ξ
∂p̄

∂x̄

)
+ ∂

∂z̄

(
ξ
∂p̄

∂z̄

)
− ∂(p̄h̄)

∂x̄
= 0 (8.115)

h̄(x̄, z̄) = h̄0 + x̄2

2
+ z̄2

2
+ 2

π2

∫ +∞

−∞

∫ +∞

−∞

p̄(x ′, z′) dx ′ dz′√
(x̄ − x̄ ′)2 + (z̄− z̄′)2

(8.116)

∫ +∞

−∞

∫ +∞

−∞
p̄(x̄, z̄) dx̄dz̄ = 2π

3
. (8.117)

The governing equations (115–117) will be discretized on the uniform grid �h with
mesh size h = hx̄ = hz̄ occupying the rectangular domain [x̄in, x̄out] × [z̄left, z̄right]. For
simplicity, we dispense with the over score bar that signifies non-dimensionality of a
variable, bearing in mind that under the new notation hi,j is the film thickness at mesh point
(i, j ) while h signifies mesh size.

Employing the notation

Fi,j = 1

2h2
[(ξi+1,j + ξi,j )pi+1,j − (ξi+1,j + ξi−1,j + ξi,j+1 + ξi,j−1 + 4ξi,j )pi,j

(8.118)
+ (ξi,j + ξi−1,j )pi−1,j + (ξi,j + ξi,j+1)pi,j+1 + (ξi,j + ξi,j−1)pi,j−1 − (ρh)i,j ,

the dimensionless Reynolds equation at point (i, j) takes the form Fi,j = 0, where we
replaced the coefficients ξi±1/2,j and ξi,j±1/2 by averages of neighboring values

ξi±1/2,j = (ξi±1,j + ξi,j )/2
(8.119)

ξi,j±1/2 = (ξi,j±1 + ξi,j )/2.
Under severe loading, central differencing of the squeeze term will not work (Chang

et al., 1989; Lee and Hsu, 1993; Dawson and Wang, 1994). In such cases Venner and
Lubrecht (2000) recommend using second-order backward discretization,

(ρh)i,j = 1.5ρi,jhi,j − 2ρi−1,j hi−1,j + 0.5ρi−2,j hi−2,j

h
. (8.120a)

In contrast, Jalali-Vahid (2000) uses a weighted combination of forward and backward
differences under unfavourable loading conditions,

(ρh)i,j = (1 − β)
ρi+1,j hi+1,j − ρi,jhi,j

h
+ β ρi,jhi,j − ρi−1,j hi−1,j

h
. (8.120b)

The forward scheme applies when β = 0, and when β = 1 Eq. (8.120b) prescribes back-
ward differencing.

For the Gauss-Seidel scheme, Eq. (8.115) is characterized by

p̄i,j = p̃i,j − h2

�i,j
ri,j , (8.121a)



326 8 / Elastohydrodynamic Lubrication

where �i,j = (ξi+1,j + ξi−1,j + ξi,j+1 + ξi,j−1 + 4ξi,j ) and the residue is given by, c.f.,
Eq. (8.82),

ri,j = Fi,j − 1

2h2
[(ξi+1,j + ξi, j )p̃i+1,j + (ξi,j + ξi−1,j )p̄i−1,j + (ξi,j + ξi,j+1)p̃i,j+1

(8.121b)
+ (ξi,j + ξi,j−1)p̄i,j−1 −�i,j p̃i,j ] + (ρh)i,j .

Approximating the pressure by a piecewise constant function that assumes the value
pk,l = p(xk, zl) over the h× h square centered on (xk, zl), (2 ≤ k, l ≤ n− 1,m− 1), we
can use Eq. (8.109) to approximate the deflection as (Venner and Lubrecht, 2000)

hhi,j = h0 + x2
i

2
+ z2

j

2
+
∑
k

∑
l

Khhi,j,k,lpk,l . (8.122)

The influence coefficients Khhi,j,k,l can be calculated analytically

Khhi,j,k,l = 2

π2

∫ zl+h/2

zl−h/2

∫ xk+h/2

xk−h/2

dx ′ dz′√
(xi − x ′)2 + (zj − z′)2

. (8.123a)

The integration yields nine different results, for the nine different cases constructed from
xi < xk, xi > xk, xi = xk and zj < zl, zj > zl, zj = zl , which can be combined into one
expression (Johnson, 1985; Venner, 1991)

Khhi,j,k,l = 2

π2

{
|xP | ln

[
zP + [z2

P + x2
P

]1/2
zM + (z2

M + x2
P

)1/2
]

+ |zP | ln

[
xP + [x2

P + z2
P

]1/2
xM + (x2

M + x2
P

)1/2
]

(8.123b)

+ |xM | ln

[
zM + [z2

M + x2
M

]1/2
zP + (z2

P + x2
M

)1/2
]

+ |zM | ln

[
xM + [x2

M + z2
M

]1/2
xP + (x2

P + z2
M

)1/2
]}
.

Here we use the notation

xP ;M = x̄ki ± h

2
, x̄ki = xk − xi

zP ;M = z̄lj ± h

2
, z̄lj = zl − zj .

Note that the influence coefficients depend only on the distance between points of force and
points of deflection, that is on |i − k| and |j − l|, but not on the actual location of either
of those points; this can lead to substantial reduction of computational work as well as of
storage (Venner and Lubrecht, 2000).
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In applying the MG method, which works directly on the nonlinear equations, one must
take cognizance of the fact that ξ undergoes significant changes when moving from the
unloaded to the loaded region of the contact. Correspondingly, the method of relaxation
has to be made region specific.

For ξ = const. Eq. (8.115) has the form

ξ

(
∂2p

∂x2
+ ∂2p

∂z2

)
− ∂(ρh)

∂x
= 0. (8.124a)

At the limit ξ → ∞, we obtain Laplace’s equation

∂2p

∂x2
+ ∂2p

∂z2
= 0 (8.124b)

for which point relaxation, either the Jacobi or the Gauss-Seidel technique, leads to good
convergence when applied within the context of the MG scheme. Thus outside the loaded
zone these schemes can be retained. In contrast, inside the loaded zone and at severe loading
conditions ξ → 0 and coupling in the z-direction is lost

∂(ρh)

∂x
= 0. (8.124c)

For this second case, the Gauss-Seidel line relaxation, which was an excellent smoother for
the first case, becomes unstable. However, the distributive line relaxation is a good scheme
to apply here. Based on practical tests, Venner (1991) recommends using

� ξ

h2 > 0.3, Gauss-Seidel line relaxation,
� ξ

h2 ≤ 0.3, Jacobi distributive line relaxation.

In addition, some underrelaxation is advised in both processes. For details, the reader should
consult Venner and Lubrecht (2000). This book also contains working computer codes for
both the HL and the EHL problem. The FAS method of solution of the equations of EHL
point contact are fully discussed by Lubrecht (1987), Venner (1991), Ehret et al. (1997),
Venner and Lubrecht (2000) and Gohar (2000).

Another popular way to deal with the EHL point contact problem is via the MG-
Newton scheme. In this scheme, MG is employed only as the inner solver for the linear
equations that were generated in Newton’s method (Chang et al. 1989). However, since
through the deflection term the film thickness is dependent on all nodal pressures, the
resulting Jacobian is full, leading to costly solution in terms of storage and computer
time. To reduce computational costs, Chang et al. (1989) retained only three terms in each
row of the Jacobian for the line contact problem, reducing the Jacobian to a tridiagonal
matrix. Similarly, Lee and Hsu (1993) truncated the Jacobian to a hexadiagonal matrix
when dealing with the thermal-EHL line contact problem. For the point contact problem,
Hsu and Lee (1994) set ∂Fi,j /∂pk,l = 0 for k < (i − 1) and k > (i + 1), and l < (j − 1)
and l > (j + 1); this resulted in a block tridiagonal Jacobian with nine nonzero terms in
each row.

As mentioned above, when all derivatives of the Reynolds equation are approximated
by second-order accurate central differences, accuracy is maintained but computational
stability suffers, especially at high loads (Houpert and Hamrock, 1986; Lubrecht, 1987).
Stability, in contrast, is greatly improved on using mixed second-order accurate central and
first-order accurate backward difference.
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To promote both good accuracy and good stability, Chang et al. (1989) apply standard
second-order accurate central difference formula to approximate the Reynolds equation as
residual function (see also Lee and Hsu, 1993; Hsu and Lee, 1994)

FRi,j = 1

2h2
[(ξi+1,j + ξi,j )pi+1,j + (ξi,j + ξi−1,j )pi−1,j + (ξi,j + ξi,j+1)pi,j+1

+ (ξi,j + ξi,j−1)pi,j−1 − 2�i,jpi,j ] − (ρh)i+1/2,j − (ρh)i−1/2,j

h
, (8.125a)

but a mixed second-order central and first-order backward differencing scheme for the
Reynolds equation intended for generating the Jacobian

FJi,j = 1

2h2
[(ξi+1,j + ξi,j )pi+1,j + (ξi,j + ξi−1,j )pi−1,j + (ξi,j + ξi,j+1)pi,j+1

+ (ξi,j + ξi,j−1)pi,j−1 − 2�i,jpi,j ] − (ρh)i,j − (ρh)i−1,j

h
. (8.125b)

Then the modified Newton’s scheme is characterized by

k=i+1∑
k=i−1

l=j+1∑
l=j−1

∂F Jij

∂pkl

pk,l = −FRi,j ; 2 ≤ i, j ≤ n− 1. (8.126)

Though the rate of convergence is determined by FJi,j , accuracy is controlled by FRi,j , which
relies on second-order accurate central differencing.

Calculation of the Jacobian would require the derivatives of the elastic deformation with
respect to each nodal pressure, resulting, on a square mesh, in a matrix of order (n,m) ×
(n,m). To save on computer storage the elements of the Jacobian Jij,kl = ∂F Ji,j /∂pk,l can
be set to zero for k < i − 1, k > i + 1 and l < j − 1, l > j + 1; the Jacobian then has nine
terms in each row, leading to a storage requirement of ∼ 9n. In fact, Hsu and Lee found that
it was sufficient to consider only the five terms Jij,ij , Jij,i−1j , Jij,i+1j , Jij,ij−1 and Jij,ij+1

and thus the Jacobian matrix can be truncated to a block-diagonal matrix for the EHL point
contact problem (Chang et al., 1989; Lee and Hsu, 1993; Hsu and Lee, 1994).

Dawson and Wang (Dawson and Wang, 1994; Ehret et al., 1997) further develop the
ideas of Chang et al. (1989) by considering only the local hydrodynamic pressure when
evaluating the pressure derivative of deformation, leading to

∂ξi,j

∂pk,l
= 0, for k �= i or l �= j. (8.127)

This scheme that includes the simplification (8.127), is termed the effective influence New-
ton (EIN) method by Dawson and Wang (1994). The Jacobian in the EIN method is block
tridiagonal; originally, it used central differencing for the discretization of the Couette term
(but see Ehret et al., 1997; Jin, 2000; Jagatia and Jin, 2001). Strictly speaking, assump-
tion (8.127) is valid only when using the constrained column model, i.e., the deflection
at a point is dependent only on the pressure at that point. However, the EIN method
has been compared with the MG method, as well as with older results of Hamrock and
Dowson, by Ehret et al. (1997) demonstrating excellent agreement between the EIN and
MG methods.
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In accordance with the assumptions of the EIN method, the elements of the Jacobian are

∂F Ji,j

∂pi−1,j
= 1

2h2

[
ξi−1,j + ξi,j − ∂ξi−1,j

∂pi−1,j
(pi,j − pi−1,j )

]
+ ∂(ρh)i−1,j

h∂pi−1,j

∂F Ji,j

∂pi+1,j
= 1

2h2

[
ξi+1,j + ξi,j − ∂ξi+1,j

∂pi+1,j
(pi,j − pi+1,j )

]

∂F Ji,j

∂pi,j−1
= 1

2h2

[
ξi,j−1 + ξi,j − ∂ξi,j−1

∂pi,j−1
(pi,j − pi,j−1)

]
(8.128)

∂F Ji,j

∂pi,j+1
= 1

2h2

[
ξi,j+1 + ξi,j − ∂ξi,j+1

∂pi,j+1
(pi,j − pi,j+1)

]

∂F Ji,j

∂pi,j
= 1

2h2

[
−�i,j − ∂ξi,j

∂pi,j
(4pi,j − pi+1,j − pi−1,j − pi,j+1 − pi,j−1)

]
− ∂(ρh)i,j
h∂pi,j

.

Multilevel Multi-Integration

Application of MG techniques can significantly lower computing times and com-
puting effort in solving partial differential equations. There is an aspect of EHL problems,
however, that makes solution of the EHL point contact problem time consuming, even when
MG techniques are employed. It is the calculation of the deflection

wi,j =
∑
k

∑
l

Khhi,j,k,lpk,l (8.129)

Khhi,j,k,l = 2

π2

∫ zl+h/2

zl−h/2

∫ xk+h/2

xk−h/2

dx ′dz′√
(xi − x ′)2 + (zj − z′)2

. (8.123a)

Though we evaluate K hh analytically, the summation in (8.129) involves O(n) opera-
tions, where n is the number of nodes, and for calculating deflection at each nodal point the
number of computations isO(n2). Furthermore, the summation has to be performed a large
number of times per iteration, leading to excessive computing times. The problem can be
alleviated, however, if we make use of the multilevel structure of the MG construction during
the process of integration. In that case, as Brandt and Lubrecht (1990) have shown, deflection
can be calculated fromO(n ln n) operations. The idea behind this so-called multilevel multi-
integration (MLMI), applied here to two consecutive meshes �h and �H where H = 2h,
is that the integral is performed on the coarse mesh�H , its value injected to even numbered
nodes of �h, and interpolated. Thus, we perform full integration only on the coarse grid
and interpolate back to the finer grid. According to Venner (1991) the idea is to “replace
the original fine grid multi-summation by a similar summation on a coarser grid in such a
way that the additional error remains small compared to the discretization error.” In this
short introduction to multilevel multi-integration, we follow Venner and Lubrecht (2000).

The general problem we wish to discuss is the efficient computation of integrals (integral
transforms) of the type

whi = wh(xhi ) def
∫
�

K
(
xhi , y

)
u(y), (8.130a)
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which, when discretized on �h, can be written as

whi =
∑
j

K
h,h
i,j u

h
j . (8.130b)

In addition to�h, we introduce a coarse grid�H with mesh sizeH = 2h just as we did
in the MG scheme. The smooth and coarse grids are related therefore through

xh2I = xHI ; yh2J = yHJ .
As discussed above, we would prefer to perform the summation (8.130) on the coarse

grid �H , if this could be accomplished without significantly reducing the accuracy of the
integral. The question is which function in (8.130) can be accurately represented on the
coarse grid. In the MG scheme the smooth-grid error components are transferred onto
the coarse grid and solved there, they are then interpolated back onto the smooth grid to
improve the smooth grid approximation. This can be done there, as the error components
are smooth. The same cannot be said of uh in (8.30) as it cannot be guaranteed to be smooth.
The kernel K or its discrete equivalent K hh however is expected to be smooth with respect
to each of its indices; this is, therefore, the function we expect to interpolate from �H to
�h with minimal error.

We may supposewh, the displacement in our case, to be smooth and to interpolate values
of whi on the smooth grid from the values of wHI on the coarse grid we write

whi = [IIhHw.H ]i . (8.131)

Here IIhH is the interpolation operator from �H to �h (not unlike IhH but perhaps of
higher order). The dot indicates the position of the index that is being worked on by the
interpolation operator; this designation becomes necessary only when we have multiple
indices.

For simplicity, this introduction assumes a smooth9 kernel for which we have

KhHi,J
defKhhi,2J . (8.132)

The values at other than even grid points of �h are obtained from the interpolation

K̃hhi,j = [IIhHKhHi,· ]j , (8.133)

where the tilde signifies that though the interpolation yields accurate results, K̃hhi,j is,
nevertheless, an approximation. Substituting into (8.131) we obtain our approximation
to wh

w̃hi =
∑
j

K̃
h,h
i,j u

h
j . (8.134)

As an illustration, consider the interpolation function[
IIhHK

hH
i,·
]

2J = KhHi,J
(8.135)[

IIhHK
hH
i,·
]

2J+1 = 1

2

[
KhHi,J +KhHi,J+1

]
.

This function is diagrammed in Figure 8.17.

9A kernel is smooth if its value at a point can be obtained by interpolation of sufficiently high order,
from its value at adjacent points. Kernels of elastic deformation are only “singularly smooth” and thus
require special attention (Venner and Lubrecht, 200).
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Figure 8.17. Interpolation from coarse grid �H to fine grid �h.

Writing IIhH as a two-dimensional array, we have

IIhH = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
1 1 0

. . .
1 1

2
1 1

0
. . .

1 1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.136)

Thus, the summation (8.134) assumes the value

w̃hi = h
∑
j

K̃hhi,j u
h
j

= h
∑
j

[IIhHK
hH
i,· ]ju

h
j (8.137)

= h

2

[
2KhHi,0 u

h
0 + (KhHi,0 +KhHi,1

)
uh1 + 2KhHi,1 u

h
2 + (KhHi,1 +KhHi,2

)
uh3

+ · · · + 2KhHi,n/2−1u
h
n−2 + (KhHi,n/2−1 +KhHi,n/2

)
uhn−1 + 2KhHi,n/2u

h
n

]
.

This can be re-written by combining coefficients of KhHi,J

w̃hi = h

2

[
KhHi,0

(
2uh0 + uh1

)+KhHi,1
(
uh1 + 2uh2 + uh3

)
(8.138)

+ · · · +KhHi,n/2−1

(
uhn−3 + 2uhn−2 + uhn−1

)+KhHi,n/2
(
uhn−1 + 2uhn

)]
.

We now use the substitution

uHJ
def 1

2

[(
IIhH

)T
u.h
]
J

(8.139)

and write (8.138) as

w̃hi = H
[
KhHi,0 u

H
0 +KhHi,1 uH1 + · · · +KhHi,n/2−1u

H
n/2−1 +KhHi,n/2uHn/2

]
(8.140)

= H
∑
J

KhHi,J
[(
IIhH

)T
uh.
]
J
.
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The transpose of the interpolation operator IIhH has the form

(
IIhH

)T = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1
1 2 1 0

. . .
1
1 2 1

1
. . .

1
1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(8.141)

We have just shown that

w̃hi = h
∑
j

K̃hhi,j u
h
j =H

∑
J

KhHi,J u
H
J . (8.142)

Multi-integration on two grids is, therefore, defined as (Venner and Lubrecht, 2000)

� Anterpolation
For each J compute uHJ according to:

uHJ
def 2−d[(IIhH )T u.h]J

� Coarse grid summation
For each I compute wHI according to:

wHI = H
∑
J

KHHIJ u
H
J ; KHHI,J = Khh2I,2J

� Interpolation
For each i compute whi using:

whi = [IIhHw.H ]i .
Here d is the dimension of the problem.

In closure, we quote from the book of Venner and Lubrecht (2000). The procedure of
replacing the multi-summation by a fine-to-coarse transfer, a course grid multi-summation
and an interpolation . . . can be applied once more to the course grid multi-summation and
repeated recursively until the grid is reached with a number of grid points proportional
to

√
n. On the latter grid the multi-summation is actually performed, requiring O(n)

operations. . . . Consequently, similar to the coarse grid correction cycle . . . a sequence of
coarser grid is used.

8.7 Rolling-Contact Bearings10

In contrast to hydrodynamic bearings, which depend for low-friction characteris-
tics on a fluid film between the journal and the bearing surfaces, rolling-element bearings
employ a number of balls or rollers that roll in an annular space. To some extent, these

10Section 8.7 is a reproduction, with permission, of parts of Chapter 8, Rolling Element Bearings, by
W. J. Anderson, in Tribology: Friction, Lubrication and Wear, ed. A. Z. Szeri. Hemisphere Publishing
Co., 1980.
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Figure 8.18. Deep groove ball bearing. (Courtesy Marlin Rockwell
Corp.)

rollers help to avoid gross sliding and the high coefficients of friction that are associated
with sliding. The term rolling element is used to describe this class of bearing because the
contact between the rolling elements and the races or rings consists more of sliding than
of actual rolling. A rolling contact implies no interfacial slip; this condition can seldom
be maintained, however, because of material deformation and geometric factors. Rolling-
element bearings ordinarily consist of two races or rings (the inner race and the outer race),
a set of rolling elements (either balls or rollers), and a separator (sometimes called a cage
or retainer) for keeping the set of rolling elements approximately equally spaced.

Rolling-element bearings offer the following advantages when compared with hydrody-
namic bearings: (1) low starting friction; (2) low operating friction, comparable to that of
hydrodynamic bearings at low speeds and somewhat less at high speeds; (3) less sensitivity
to interruptions in lubrication than with hydrodynamic bearings; and (4) capability of sup-
porting combined loads. In the latter respect, rolling-element bearings are more versatile
than hydrodynamic bearings, which usually can support only radial or thrust loads.

Rolling-element bearings also have disadvantages: (1) they occupy more space in the
radial direction than do hydrodynamic bearings and (2) they have a finite fatigue life because
of repeated stresses at ball-race contacts – in contrast to hydrodynamic bearings, which
usually have an almost infinite fatigue life.

Bearing Types

Ball Bearings
The various types of rolling-element bearings may be placed in two broad categories; the
first of these is ball bearings. The most common types of ball bearings are:

(1) Deep groove or Conrad
(2) Angular contact
(3) Self-aligning
(4) Duplex
(5) Ball thrust

A typical deep groove ball bearing is shown in Figure 8.18. This bearing has moderately
high radial load capacity and moderate thrust load capacity. Figure 8.19 shows an angular
contact bearing. This bearing has a higher thrust-load capacity than a deep groove bearing,
but it can carry thrust load in only one direction.
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Figure 8.19. Angular contact ball bearing. (Courtesy Marlin
Rockwell Corp.)

A self-aligning ball bearing with the outer-race groove ground to a spherical shape is
illustrated in Figure 8.20(a). This bearing has a relatively low load capacity but is insensitive
to shaft and housing misalignments. Figure 8.20(b) shows a second type of self-aligning ball
bearing with the self-aligning feature obtained by grinding the outer-race outside diameter
in a spherical shape to fit a spherical housing. This bearing has a higher load capacity than
the bearing in Figure 8.20(a), but care must be taken to maintain freedom of movement
between the outer race and the housing.

Angular contact bearings are usually used in pairs in duplex mounts. Different types of
duplex mounts are shown in Figure 8.21(a) (back to back) and Figure 8.21(b) (face to face).
These two arrangements make it possible to carry thrust load in either direction. Bearings
are manufactured as matched pairs, so that when they are mated and the races are made
flush, each bearing is preloaded slightly. This preloading provides greater stiffness and
helps to prevent ball skidding with acceleration at light load. When a high unidirectional
thrust load must be carried, a duplex tandem mount [Figure 8.21(c)] is used. With careful
manufacture and installation, a tandem bearing pair may have a thrust capacity as much as
1.8 times the capacity of a single bearing.

Figure 8.20. Self-aligning ball bearing: (a) groove of outer race ground to a spherical shape,
(b) outside diameter of outer race ground to fit spherical housing. (Courtesy Marlin Rockwell
Corp.)
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Figure 8.21. Duplex angular contact ball bearing, mounted (a) back to back, (b) face to face,
(c) in tandem. (Courtesy Marlin Rockwell Corp.)

A thrust ball bearing is shown in Figure 8.22. This bearing has a high thrust capacity but
is limited to low speeds because of the high degree of sliding in the ball-race contacts.

Roller Bearings
The second broad category is that of roller bearings. Common types are:

(1) Cylindrical
(2) Tapered
(3) Spherical
(4) Needle

Cylindrical roller bearings (Figure 8.23) are best suited of all roller bearing types for
high-speed operation. These bearings carry only radial load, and they are frequently used
where freedom of movement of the shaft in the axial direction must be provided because
of differential expansion.

Tapered roller bearings (Figure 8.24) and spherical roller bearings (Figure 8.25) are
high-load-capacity, low-speed roller bearings with combined radial load and thrust load
capability.

Needle bearings (Figure 8.26) are capable of carrying high loads and are useful in
applications where limited radial space is available.

Figure 8.22. Thrust ball bearing (Courtesy Marlin Rockwell Corp.).
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Figure 8.23. Cylindrical roller bearing. (Courtesy Marlin Rockwell
Corp.)

Figure 8.24. Tapered roller bearing.

Figure 8.25. Spherical roller bearing.
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Figure 8.26. Needle bearing with shaft and inner race.

Although rolling-element bearings are usually equipped with a separator, in some
instances they are not. Bearings without separators are usually termed full-complement
bearings. A common type of full-complement roller bearing is the needle bearing. In some
low-speed applications where load capacity is of primary importance, full-complement ball
bearings are used. In this type of bearing, the annular space between the races is packed
with the maximum number of balls.

Rolling Friction

The concepts of rolling friction are important because the characteristics and
behavior of rolling-element bearings depend on rolling friction. The theories of Reynolds
(1876) and Heathcote (1921) were previously well accepted as correctly explaining the
origin of rolling friction for a ball in a groove. The energy lost in rolling was believed to
be that required to overcome the interfacial slip that occurs because of the curved shape of
the contact area. As shown in Figure 8.27, the ball rolls about the x axis and makes contact
with the groove from a to b.

If the groove is fixed, then for zero slip over the contact area no point within the area
should have a velocity in the direction of rolling. The surface of the contact area is curved,
however, so that points a and b are at different radii from the x axis than are points c and d.
For an inelastic ball, points a and b must have different velocities with respect to the x axis
than do points c and d because the velocity of any point on the ball relative to the x axis

Figure 8.27. Differential slip resulting from curvature of contact ellipse.
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equals the angular velocity, ω, times the radius from the x axis. Slip must occur at various
points over the contact area unless the body is so elastic that yielding can take place in
the contact area to prevent this interfacial slip. Reynolds and Heathcote assumed that this
interfacial slip took place and that the forces required to make a ball roll were the forces
required to overcome the friction due to this interfacial slip. In the contact area, rolling
without slip will occur at a specific radius from the x axis. Where the radius is greater than
this radius to the rolling point, slip will occur in the other direction; where it is less than the
radius to this rolling point, slip will occur in the other direction. In Figure 8.27, the lines
to points c and d represent the approximate location of the rolling bands, and the arrows
shown in the three portions of the contact area represent the directions of interfacial slip
when the ball is rolling into the paper.

Frictional Losses in Rolling Contact Bearings

Some of the factors that affect the magnitude of friction losses in rolling bearings
are:

(1) Bearing size
(2) Bearing type
(3) Bearing design
(4) Load (magnitude and type, either thrust or radial)
(5) Speed
(6) Oil viscosity
(7) Oil flow.

In a rolling-contact bearing, friction losses consist of:

(1) Sliding friction losses in the contacts between the rolling elements and the race-
ways.

(2) Hysteresis losses resulting from the damping capacity of the raceway and the ball
material.

(3) Sliding friction losses between the separator and its locating race surface and
between the separator pockets and the rolling elements.

(4) Shearing of oil films between the bearing parts and oil churning losses caused by
excess lubricant within the bearing.

The relative magnitude of each of these friction losses depends on the bearing type and
design, the lubricant, and the type of lubrication. Palmgren (1959) presented friction coef-
ficients for various types of bearings, which may be used for rough calculations of bearing
torque. The values were computed at a bearing load that would give a life of 1 × 109

revolutions for the respective bearings. As the bearing load approaches zero, the fric-
tion coefficient becomes infinite because the bearing torque remains finite. The following
friction coefficients were given by Palmgren:

All these friction coefficients are referenced to the bearing bore.
Palmgren (1959) and Muzzoli (Wilcock and Booser, 1957) attempted to relate all the

factors that influence rolling-bearing torque. Palmgren outlined a method for computing
torque for several types of bearings by calculating the zero-load torque and the sliding
and hysteresis losses due to the load. Muzzoli’s equation for bearing torque is discussed
in Wilcock and Booser (1957). A number of factors must be known for these equations to
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Table 8.4. Contact bearing friction coefficients

Bearing Friction coefficient

Self-aligning ball 0.0010
Cylindrical roller, with flange-guided short rollers 0.0011
Thrust ball 0.0013
Single-row deep groove ball 0.0015
Tapered and spherical roller, with flange guided rollers 0.0018
Needle 0.0045

be useful, and their validity depends on the accuracy with which some of the factors are
determined.

Astridge and Smith (1972) conducted a thorough experimental study of the power loss
in high-speed cylindrical roller bearings. They found that the principal sources of power
loss were:

(1) Roller track elastohydrodynamic films (60%)
(2) Roller cage sliding (10%)
(3) Cage-locating surface sliding (10%)
(4) Cage side-chamber wall drag (10%)
(5) Oil flinging from rotating surfaces (7%)
(6) Elastic hysteresis (1%)
(7) Displacement of oil by rollers (1%).

Specific Dynamic Capacity and Life

In ordinary bearing applications where extreme speeds and temperatures are not
present, a properly installed and lubricated bearing will eventually fail because of material
fatigue. The repeated stresses developed in the contact areas between the rolling elements
and the races eventually result in failure of the material, which manifests itself as a fatigue
crack. The fatigue crack propagates until a piece of the race or rolling-element material
spalls out and produces the failure. Many bearings fail for reasons other than fatigue, but
in ordinary applications, these failures are considered avoidable if the bearing is properly
handled, installed, and lubricated and is not overloaded.

If a number of similar bearings are tested to fatigue at a specific load, bearing life varies
widely among them. For a group of 30 or more bearings, the ratio of the longest to the
shortest life may be of the order of 20 or more (Figure 8.28).

A curve of life as a function of the percentage of bearings that failed can be drawn for
any group of bearings (Figure 8.29). For a group of 30 or more bearings, the longest life
would be of the order of four or five times the average life. The term life, in bearing catalogs,
usually means the life that is exceeded by 90% of the bearings. This is the so-called B-10 or
10% life. The 10% life is one-fifth the average 50% life for a normal life-dispersion curve.

If two groups of identical bearings are run to fatigue at two different loads, the life varies
inversely as the nth power of the load:

L2

L1
=
(
W1

W2

)n
.
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Figure 8.28. Typical Weibull plot of bearing fatigue failures.

For nominal point contact n = 3, for nominal line contact n = 4. For point contact, then,

W1

W2
=
(
L2

L1

)1/3

W1L
1/3
1 = W2L

1/3
2 = const.

If W is a radial load that acts on a radial bearing and L is 1 million revolutions with rotation
of the inner race, then the constant is the specific dynamic capacity. The dynamic capacity
for thrust bearings is determined if W is a thrust load.

Figure 8.29. Distribution of bearing fatigue failures.
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In terms of the specific dynamic capacity, C,

L = (C/P )3 ,

where L is the life in millions of revolutions and P is the equivalent load. In general, the
ball bearings support both radial and thrust loads, and formulas for obtaining the equivalent
load, P, in terms of radial and thrust loads are given for various bearing types in most
bearing catalogs.

The bearing design factors that affect the specific dynamic capacity are the race confor-
mities, the rolling-element dimensions, and the number of rolling elements. Recent research
has shown that the bearing material and both the lubricant viscosity and the base stock can
have marked effects on fatigue. The original bearing fatigue investigations, which include
those of Palmgren, were made before the advent of the extreme temperatures and speeds to
which rolling bearings are now subjected. As a result, the great majority of bearings were
made of SAE 51100 or SAE 52100 alloys, and wide variations in material fatigue strength
were not encountered. In addition, all rolling bearings were lubricated with a mineral oil
such as SAE 30 or with a mineral-base soap grease so that the effect of the lubricant on
fatigue was not important enough to be included among the parameters affecting fatigue life.

In recent years, a better understanding of rolling-element bearing design, materials,
processing, and manufacturing techniques has permitted a general improvement in bearing
performance. This is reflected in greater bearing reliability or longer expected life in a
particular application. At the same time, operating conditions have become better under-
stood, so that the application factors of the past, which were based primarily on experience,
are giving way to quantified environmental factors that permit much better estimates of
expected bearing life. These environmental factors, considering application, bearing con-
figuration, and bearing rating, are often exceedingly complex, so that obtaining problem
solutions in a reasonable time requires high-speed computers and more information than is
readily available to most engineers. It becomes necessary to develop a guide that extends
the “engineering approximations,” which are illustrated in most bearing manufacturers’
catalogs, and provides information that will be of most use to the engineer.

The Anti-Friction Bearing Manufacturers Association (AFBMA) method for determin-
ing bearing load rating and fatigue life and/or the basic ratings published in any bearing
manufacturer’s catalog must be the heart of any design guide. Continuing in the vein of
the engineering approximation, it is assumed that various environmental or bearing design
factors are, at least for first-order effects, multiplicative. As a result, the expected bearing
life, LA, can be related to the calculated rating life, L10, by

LA = (D)(E)(F )(G)(H )L10

= (D)(E)(F )(G)(H )

(
C

P

)n
,

where D . . . H are the life adjustment environmental or bearing design factors, C is the basic
load rating, P is the equivalent load, and n is the load-life exponent (3 for ball bearings or
10/3 for roller bearings).

Methods for calculating the life adjustment factors are given in Life Adjustment Factors
for Ball and Roller Bearings (ASME, 1971). An extensive bibliography is provided in two
articles by Tallinn (1992a).
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Figure 8.30. Schematic of a roller bearing. (Reproduced with permission from Hamrock, B. J.
and Anderson, W. Rolling Element Bearings. NASA RP-1105. 1983.)

Specific Static Capacity

From considerations of allowable permanent deformation, there is a maximum
load that a bearing can support while not rotating. This is called the specific static capacity,
Co. It is arbitrarily defined as the load that will produce a permanent deformation of the race
and the rolling element at a contact of 0.0001 times the rolling-element diameter. When
permanent deformations exceed this value, bearing vibration and noise increase noticeable
when the bearing is subsequently rotated under lesser loads. Specific static capacity is
determined by the maximum rolling-element load and the race conformity at the contact. A
bearing can be loaded above Co as long as the load is applied when the bearing is rotating.
The permanent deformations that occur during rotation will be distributed evenly around
the periphery of the races and will not be harmful until they become more extensive.

Static and dynamic load capacities are normally given for bearings in bearing catalogs.

Fatigue Wear Out

Among the many possible causes of rolling bearing failure, there are two that
predominate. These are wear out and fatigue. Study of the factors that cause these failures
and means for preventing or delaying them has occupied much of the time of researchers
during the past decade. In addition, rolling bearings are being called on to operate at more
severe conditions of speed and temperature. The consequent demands for improvements in
bearing design and materials and lubricant technology have spawned additional research.
The reader should consult Tallinn (1992b).

8.8 Minimum Film Thickness Calculations

Nominal Line Contact

The geometry of the cylindrical roller bearing is depicted in Figure 8.30. Specifi-
cations of the problem are adapted from Hamrock and Anderson (1983).

The load on the most heavily loaded roller is estimated from Stribeck’s formula
(Hamrock, 1991).

wmax = 4w

n
= 4.8 kN.
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Table 8.5. Data for nominal line contact problem

Inner-race diameter di = 0.064 m
Outer-race diameter do = 0.096 m
Roller diameter d = 0.016 m
Roller axial length L = 0.016 m
No. rollers per bearing n = 9
Radial load per roller w = 10.8 kN
Inner-race angular velocity ωi = 524 rad/s
Outer-race angular velocity ωi = 0
Absolute viscosity μ0 = 0.01 Pa · s
Viscosity-pressure coefficient α = 2.2 × 10−8 Pa−1

Young’s modulus (rollers, races) E = 207.5 GPa
Poisson’s ratio ν = 0.3

The radii of curvature at contact on the inner and outer race, respectively, are

1

Rx,i
= 1

0.08
+ 1

0.032
= 5

0.032
,

1

Rx,o
= 1

0.08
− 1

0.048
= 5

0.048
,

giving Rx,i = 0.0064 m, and Rx,o = 0.0096 m.
The effective modulus, E′, and the pitch diameter, de, are given by

E′ = 2

1 − ν2
1

E1
+ 1 − ν2

2

E2

= 228 GPa, de = do + di
2

= 0.08 m.

The surface velocity for cylyndrical rollers is calculated from

ũ = |ωi + ωo||d2
e − d2|

4de
= 10.061 m/s,

where we assumed pure rolling.11

Calculation will be performed for the inner-race contact alone. The speed, load, and
materials parameters are calculated as

U = μ0ũ

E′Rx,i
= (0.01)(10.061)

(2.28 × 1011)(0.0064)
= 6.895 × 10−11,

W = wmax

E′LRx,i
= 4800

(2.28 × 1011)(0.016)(0.0064)
= 2.0559 × 10−4,

G = αE′ = (2.2 × 10−8)(2.28 × 1011) = 5.016 × 103.

The criteria for the effect of viscous change and elasticity are

gV = W 2/3G

U 1/2
= 1.7804 × 103, gE = W

U 1/2
= 24.759.

11For roller-bearing kinematics, see Anderson (1970), Anderson (1980), Hamrock (1991), and Harris
(1991).
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Table 8.6. Date for nominal point contact problem

Inner-race diameter di = 0.052291 m
Outer-race diameter do = 0.077706 m
Ball diameter d = 0.012700 m
No. of balls per bearing n = 9
Inner-groove radius ri = 0.006604 m
Outer-groove radius ro = 0.006604 m
Contact angle β = 0
Radial load wz = 8.9 kPa
Inner-race angular velocity ωi = 400 rad/sec
Outer-race angular velocity ωo = 0
Absolute viscosity μ0 = 0.04 Pa · s
Viscosity-pressure coefficient α = 2.3 × 10−8 Pa−1

Young’s modulus E = 200 GPa
Poisson’s ratio ν = 0.3

The point (gV, gE) characterizing conditions at the inner contact can be plotted in
Figure 8.8, showing that full EHL conditions apply. Thus, the formulas for minimum film
thickness calculation are

gH,min = 1.6549g0.54
V g0.06

E = 114.15,

Hmin = gH,min

(
U

W

)
= 3.8284 × 10−5,

hmin = Rx,iHmin = 0.245μm.

Employing a slightly different procedure, i.e., approximating from nominal point contact
formulas, Hamrock and Anderson find hmin = 0.32 μm.

Nominal Point Contact

The geometry of the ball bearing is shown in Figure 8.31. The specifications of
the problem are adapted from Hamrock and Dowson (1981).

Calculations will be shown for the inner-race contact only. The pitch diameter is

de = (do + de)
2

= 0.065 m.

The equivalent radii and curvature sum are

Rx = d (de − d cosβ)

2de
= 0.00511 m,

Ry = rid

2ri − d = 0.165 m,

SC = 1

R = 1

Rx
+ 1

Ry
= 201.76,
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Figure 8.31. Schematics of a ball bearing. (Reproduced with permission from Hamrock, B. J.
and Anderson, W. Rolling Element Bearings. NASA RP-1105, 1983.)

yielding R = 4.956 × 10−3 m, αr = Ry/Rx = 32.29, and an ellipticity parameter

κ̄ = α2/3
r = 9.1348.

The approximate formulas for the elliptic integrals give

Ē = 1 +
(π

2
− 1
)
/αr = 1.0177,

F̄ = π

2
+
(π

2
− 1
)

lnαr = 3.5542.

Using E′ = 219.8 MPa for effective modulus and Stribeck’s estimate (Anderson, 1980) for
the maximum load

wmax = 5w

n
= 4.944 kN

valid for ball bearings, the deformation is calculated from Eq. (8.27c)

δ = F̄
[(

9

2ĒR
)( wmax

πκ̄E′
)2
]1/3

= 29.087μm.

Assuming pure rolling, the surface velocity is calculated from (Hamrock, 1991)

ũ = |ωo − ωi |
∣∣d2
e − d2

∣∣
4de

= 6.252 m/s.
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The design parameters give

U = μ0ũ

E′Rx
= (0.04)(6.252)

(2.198 × 1011)(5.11 × 10−3)
= 2.227 × 10−10,

G = αE′ = (2.3 × 10−8)(2.198 × 1011) = 5.055 × 103,

W = wmax

E′R2
x

= 4,944

(2.198 × 1011)(5.11 × 10−3)2
= 8.6141 × 10−4.

The minimum film thickness variable is given by

gHmin = 3.42g0.49
V g0.17

E [1 − e−0.68κ ]. (8.32)

Substituting

gV =
(
GW 3

U 2

)
= 6.5149 × 1013

gE = W 8/3U 2 = 1.3545 × 1011

into Eq. (8.32), we find

gH,min = 1.5645 × 109,

Hmin = gH,min

(
U 2

W

)
= 1.0457 × 10−4,

and

hmin = RxHmin = (0.00511)(1.0457 × 10−4)

= 0.5345μm.

Hamrock and Dowson, relying on iteration in place of Stribeck’s formula for maximum
loading, obtain hmin = 0.557 μm. Further details of minimum film thickness calculations
can be found in Hamrock and Dowson (1981), Harris (1991), and Hamrock (1991).

8.9 Nomenclature

Dij influence coefficient
Dc curvature difference
E′ effective elastic modulus
G shearmodulus
G material parameter
H filmthickness parameter
I 2h
h restriction operator
Ih2h prolongation operator
IIhH interpolation operator
J Jacobian
K
h,h
i,j,k,l influence coefficient
Py normal load
R effective radius
Rx,Ry relative principal radii of curvature
Sc curvature sum
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U velocity parameter
U0 effective velocity
W load parameter
a, b semi-axes of elliptical contact
b semi-width of rectangular contact
ei,j error
gE elasticity parameter
gH film parameter
gV viscosity parameter
h film thickness
h0 film thickness at x = 0
p pressure
pH maximum Herzian pressure
rix, riy principal radii of curvature
ri,j residue
(u, v,w) elastic displacement
w load
φ stress function
α pressure-viscosity coefficient
αr ratio Ry/Rx
κ ellipticity parameter
( )1, ( )2 at inlet, exit
δ vertical deflection of surface
μ viscosity
μ0 viscosity at atmospheric pressure
( )0 at cavitation boundary
(·)h of mesh h
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CHAPTER 9

Thermal Effects

Classical lubrication theory predicts bearing performance on the assumption that
the viscosity of the lubricant is uniform and constant over the whole film. As bearing per-
formance is strongly dependent on lubricant viscosity and viscosity of common lubricants
is a strong function of temperature (see Figure 9.1), the results of classical theory can be
expected to apply only in cases where the lubricant temperature increase across the bearing
pad is negligible.

9.1 Effective Viscosity

In many applications (small bearings and/or light running conditions) the temper-
ature rise across the bearing pad, although not negligible, remains small. It is still possible
in these cases to calculate bearing performance on the basis of classical theory, but in
the calculations one must employ that specific value of the viscosity, called the effective
viscosity, that is compatible with the average temperature rise in the bearing. This might be
realized, for instance, by making an initial guess of the effective viscosity, followed by an
iterative procedure, using Figure 9.1, for systematically refining the initial guess. Boswall
(1928) calculated the effective viscosity on the basis of the following assumptions:

(1) All the heat generated in the film by viscous action is carried out by the lubricant.
(2) The lubricant that leaves the bearing by the sides has the uniform temperature

% = %i + 
%/2, where 
% = %o − %i is the temperature rise across the
bearing.

Let Q and Qs represent the volumetric flow rate of the lubricant at the pad leading edge
and at the two sides, respectively. Then, a simple energy balance based on the assumptions
above yields

ρc
%

P
= 4πcμ
q
(
1 − 1

2Qs/Q
) . (9.1)

Here

cμ = R

C

Fμ

W

is the friction variable and q = Q/RCNL is the dimensionless inflow. For short bearings
with Gümbel’s boundary condition, Eqs. (3.47) and (3.49) give, on substitution,

(
L

D

)2
ρc
%

P
= 8π (1 − ε2)3/2

ε2[π2(1 − ε2) + 16ε2]1/2
. (9.2)

For other bearing geometries, Eq. (9.1) has been tabulated by Raimondi and Boyd (1958).
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Figure 9.1. Viscosity-temperature curves for typical petroleum oils in ISO viscosity grades.
(Reprinted with permission from Booser E. R., CRC Handbook of Lubrication. Copyright CRC
Press, Boca Raton, Florida. C© 1984.)

To indicate the iterative procedure for calculating the effective temperature, Te, and
hence the effective viscosity, μe(Te), we rewrite Eq. (9.1). Since the right-hand side is a
function of the temperature, we put


% = 4πcμP

q
(
1 − 1

2Qs/Q
)
ρc

≡ g (%) .

The iterative procedure is then carried out according to the scheme

%(n)
e = %i +Kg

[
%(n−1)
e

]
, n = 1, 2, 3, . . . (9.3)

Raimondi and Boyd (1958) suggested that K = 1/2, and Cameron (1966) recommended
2/3 < K < 1. It is questionable, however, whether a universal value of K exists even in
small bearings (Seireg and Ezzat, 1972).

The effective viscosity method has been used, for example, on a self-contained bearing
in which a disk lubricator supplies lubricant to the bearing (Kaufman, Szeri, and Raimondi,
1978). The bearing is designed to operate with or without external cooling (forced air or
water), and carry both radial and axial loads (Figure 9.2).
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Figure 9.2. Bearing geometry and location of nodal points. (Reprinted with permission from
Kaufman, H. N., Szeri, A. Z. and Raimondi, A. A. Performance of a centrifugal disk-lubricated
bearing. ASLE Trans., 21, 314–322, 1978.)

The bearings, shaft, housing, and lubricant constitute a complex thermal system both
in geometry and in boundary conditions. Moreover, the heat transfer characteristics of this
system are temperature dependent. In the analysis of Kaufman et al. (1978), the various
components of the bearing-lubricant system are represented by nodal points. Once the
nodal network is selected, heat conservation equations in finite difference form can be
written. The heat transfer coefficients, which become coefficients in the finite-difference
equations, are calculated from actual component characteristics. When their dependence on
temperature is deemed essential to consider, they are based on temperatures of the previous
iteration.

Thus, the bearing-housing-lubricant system, from a heat transfer point of view, is repre-
sented by a set of finite-difference conservation equations. These equations are statements
of the requirement that the net rate of energy inflow into any nodal point be equal to the
rate of energy dissipation at that node. Thus, at the ith nodal point, i = 1, 2, 3, . . . , N,

N∑
j=1

qji = −Hi i �= j. (9.4)
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In lumped parameter analyses, such as this, the heat flow rate qji is given approximately
by

qji = A (i, j ) (%j −%i). (9.5)

Here A(i, j) represents the heat transfer coefficient between the ith and the j th node.
Substituting Eq. (9.5) into Eq. (9.4), we obtain∑

j

A (i, j )(%j −%i) = −Hi. (9.6)

Since in Eq. (9.6) the index i takes values 1, 2, 3, . . . , N, Eq. (9.6) is equivalent to a system
of simultaneous algebraic equations, which can be written in the matrix form

A% = H. (9.7)

In Eq. (9.7), the symbol A represents the N × N matrix,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
N∑
k=1
A (1, k) A (1, 2) · · · A (1, N )

A (2, 1) −
N∑
k=1
A (2, k) · · · A (2, N )

...

A (N, 1) A (N, 2) · · · −
N∑
k=1
A (N, k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9.8)

while % and H represent column vectors,

% = (%1,%2,%3, . . . , %N )T ,
(9.9)

H = (H1,H2,H3, . . . , HN )T .

When all heat transfer coefficients, as well as the viscosity, are kept frozen during a particular
iteration, Eq. (9.7) is reduced to a set of linear algebraic equations.

The iterative analysis closely models the transient state of bringing the bearing-housing-
lubricant system into thermal equilibrium. It starts with the calculation of heat production
in the cold bearing for an assumed mechanical input (bearing losses). The temperature dis-
tribution is then obtained from a steady-state heat balance. But, owing to the high viscosity
of the oil, the production rates of heat are high, leading necessarily to temperatures that are
above the equilibrium temperatures compatible with the given mechanical input. New and
improved heat production rates are now calculated, using average oil film temperatures that
are based on the just-obtained oil film temperatures and the ones obtained previously. The
iteration procedure is continued until sufficient agreement between successively calculated
temperatures is reached. This process will converge and give solutions for wide ranges of
input parameters.

Figure 9.3 compares theoretical prediction with experimental data on journal bearing
temperature, for a range of geometrically similar bearings. Figure 9.4 compares theoretical
predictions and experimental data for thrust face temperature under two different unit loads,
for a range of bearing size.
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Figure 9.3. Journal bearing temperature at load line. Water cooling, C/R = 1.5 × 10−3,
analysis: D = 25, 125, 254, 381 mm, test: D = 125, 254 mm. (Reprinted with permission from
Kaufman, H. N., Szeri, A. Z. and Raimondi, A. A. Performance of a centrifugal disk-lubricated
bearing. ASLE Trans., 21, 314–322, 1978.)

The effective viscosity model can, however, lead to significant errors in predicting
bearing performance. It was shown by Seireg and Ezzat (1972) that although the normalized
p/pmax plots (Figure 9.5) obtained under the different test conditions collapsed into a single
curve, the magnitude of the pressures differed significantly depending on inlet temperature,
even at constant speed.

Figure 9.4. Thrust face temperature. C/R = 1.5 × 10−3, analysis: D = 25, 125, 254, 381 mm,
test: D = 254 mm. (Reprinted with permission from Kaufman, H. N., Szeri, A. Z. and
Raimondi, A. A. Performance of a centrifugal disk-lubricated bearing. ASLE Trans., 21,
314–322, 1978.)
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Figure 9.5. Normalized circumferential pressure distribution. (Reprinted with permission from
Seireg, A. and Ezzat H. Thermohydrodynamic phenomena in fluid film lubrication. ASME
Paper No. 72-Lub-25, 1972.)

Furthermore, the experiments showed that for any particular geometry and oil inlet
temperature, there was only one speed at which the effective viscosity model and the exper-
iment gave identical pressure distributions (Figure 9.6). Seireg and Ezzat offer the following
conclusion: “The concept of an effective viscosity, although attractive, is infeasible since
that value of the viscosity is a function of the bearing geometry, bush and shaft materials,
lubricant physical properties, bearing load and speed, and the thermal boundaries.”

In large bearings and/or under severe running conditions thermal effects may be signifi-
cant, to the extent that prediction of bearing performance is no longer possible when based
on the assumption of a uniform effective viscosity. Furthermore, in large bearings the usual
limit condition in design is the maximum permissible bearing temperature. Early experi-
ments by Gardner and Ulschmid (1974), Gregory (1974), Capitao (1976), and Capitao et al.
(1976) are concerned with measuring maximum bearing temperatures.

A simple dimensional analysis will show that the nondimensional maximum bearing
temperature,%max/%∗, where%∗ is a characteristic temperature and%max is the maximum
bearing temperature, is dependent on a number of nondimensional groups, such as the
Reynolds number, Re, the Prandtl number, Pr, the dissipation number, !, the eccentricity

Figure 9.6. Variation of maximum pressure with inlet temperature. (Reprinted with permission
from Seireg, A. and Ezzat H. Thermohydrodynamic phenomena in fluid film lubrication. ASME
Paper No. 72-Lub-25, 1972.)
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Figure 9.7. Schematics of bearing thermal performance the different flow regimes.

ratio (C/R), and so forth. Analyzing a large set of field data on journal bearings of size
D = 1 inch to D = 32 inches, it was found that the data can be arranged to fall on two
parallel lines, as indicated schematically in Figure 9.7.

The lower line in Figure 9.7 is valid for laminar flow of the lubricant, while the upper
line is characterized by turbulent flow. It is clearly demonstrated here that not only must
we take into account the variation of lubricant viscosity with temperature, we must also
specify the flow regime, to correctly predict bearing performance. In the next section, we
shall discuss the variable viscosity theory, known as thermohydrodynamic theory, of fluid
film lubrication. For additional details the reader is urged to consult Pinkus (1990).

9.2 Thermohydrodynamic Theory

Thermohydrodynamic (THD) theory calculates pointwise variations of temper-
ature and viscosity in the lubricant film, then takes these into account when predicting
bearing performance. Though there are numerous instances of large temperature rise across
bearings operating in the laminar flow regime, THD theory becomes even more important in
turbulent lubrication. For this reason, we will derive THD theory for turbulent lubrication;
the resulting equations can be made to apply to laminar flow by elementary substitutions,
or by specifying Re∗ = 0 in computation.

The Energy Equation

The energy equation is the mathematical statement of the Principle of Conserva-
tion of Energy: the time rate of energy increase in a body equals the time rate of energy
supplied to it.

d

dt
(K + E) = W + Q. (9.10)
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Here

K = 1

2

∫
V
ρν · ν dv, E =

∫
V
ρe dv. (9.11)

The mechanical energy consists of work done by the surface and the body forces

W =
∫
S
τ · ν ds +

∫
V
ρ f · ν dv

(9.12)

=
∫
S
Tlkvkn1ds +

∫
V
ρfkvkdv,

where we made use of Eq. (2.15).
For total energy input, we write

Q =
∫
S

q · n ds +
∫
V
ρr dv, (9.13)

where q is the heat flux across the closed surface S(t) of V(t) directed outward and r is the
distributed heat source per unit mass of the body.

Upon substituting Eqs. (9.11), (9.12), and (9.13) into Eq. (9.10), we find

d

dt

∫
V
ρ

(
1

2
vkvk + e

)
dv =

∫
V
ρfkvkdv +

∫
S
Tlkvknlds +

∫
S
qlnlds +

∫
V
pr dv.

(9.14)

To simplify matters, we assume that there are no internally distributed heat sources,
r = 0. We also rewrite the left-hand side as follows:1

d

dt

∫
V

(
1

2
vkvk + e

)
ρ dv =

∫
V

(
vk
dvk

dt
+ de

dt

)
ρ dv, (9.15)

where dvk/dt is the kth component of the acceleration vector, Eq. (2.5).
Equation (9.14) contains both surface and volume integrals. We change the surface

integrals by the divergence theorem and obtain∫
S

(Tlkvk + ql) nldS =
∫
V

[(Tlkvk),l + ql,l] dv
(9.16)

=
∫
V

[Tlk,lvk + Tlkvk,l + ql,l] dv.

Substituting Eqs. (9.15) and (9.16) into Eq. (9.14), we find∫
V

[
ρ
de

dt
− Tlkvk,l − ql,l − vk(Tlk,l + ρfk − ρak)

]
dv = 0. (9.17)

1Equation (9.15) follows from the Reynolds transport theorem (d/dt)
∫
V(t) FdV = ∫V(t)[(dF/dt) +

F div ν]dv, where d/dt is the material derivative and V(t) is a material volume, and the equation of
continuity (2.16c).
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The bracketed term multiplying vk vanishes due to local conservation of linear momentum,
Eq. (2.27), and as V(t) is arbitrary the integrand itself must vanish,

ρ
de

dt
= Tlkvk,l + ql,l . (9.18)

Equation (9.18) is our (local) statement of the conservation of energy.
The stress power, Tlk vk,l , can further be simplified, using the Cartesian decomposition

(2.33),

vl,k = Dkl +�kl, (9.19)

where D = (Dkl) is the stretching tensor and � = (�kl) is the spin tensor.
It can be shown that the product of a symmetric tensor (stress) and a skew-symmetric

tensor (spin) vanishes,2 so on substituting Eq. (9.19) into Eq. (9.18), only Tlk Dkl survives.
The stress, on the other hand, for a Newtonian fluid is given by

Tlk = −pδlk + 2μDlk. (2.53)

Substituting Eqs. (9.19) and (2.53) into the energy equation Eq. (9.18), we obtain

ρ
de

dt
= −pvk,k + 2μDlkDkl − ql,l , (9.20a)

or, in vector notation,

ρ
de

dt
= −p div ν + 2μD : D − div q. (9.20b)

Assuming further that Fourier’s law of heat conduction

q = −k grad%

holds, where % is the temperature and k is the thermal conductivity, we obtain

ρ
d (cv%)

dt
= −p div ν + μ + div(k grad%). (9.21)

Here we put e = cv% for internal energy density and use the symbol  for the dissipation
function:

e = cv%,  = 2DijDji . (9.22)

To further simplify matters, we assume that the lubricant has constant thermal properties,
cv , k = const. For incompressible fluids, the dilatation work − p div ν = 0 by Eq. (2.16c),
cv = cp = c, and Eq. (9.21) becomes3

ρc

(
∂%

∂t
+ u∂%

∂x
+ v ∂%

∂y
+ w∂%

∂z

)
= k

(
∂2%

∂x2
+ ∂2%

∂y2
+ ∂2%

∂z2

)
+ μ . (9.23a)

2Tlk�kl = Tlk(−�lk) = −Tlk�lk = −Tkl�lk = −Tlk�kl , as �kl = −�lk, and Tkl = Tlk .
3With the aid of the equation of state, p = ρR%, it can be shown that ρ(d/dt)(cv%) + p div ν =
ρ(d/dt)(cp%) − dp/dt , so for perfect gas (9.21) takes the form ρ(d/dt)(cp%) = dp/dt + 2μD:
D − div q. This equatin should not be used for an incompressible fluid.
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Figure 9.8. Comparison of (◦) measured and (—) predicted temperature distributions along the
center line of a D = 10 cm journal bearing at N = 900 revolutions/min. (Reprinted with
permission from Suganami, T. and Szeri, A. Z. A thermohydrodynamic analysis of journal
bearings. ASME Journal of Lubrication Technology, 101, 21–27, 1979.)

For an incompressible fluid the dissipation function is

φ = 2

[(
∂u

∂x

)2

+
(
∂v

∂y

)2

+
(
∂w

∂z

)2
]

+
(
∂u

∂y
+ ∂v

∂x

)2

(9.23b)

+
(
∂v

∂z
+ ∂w

∂y

)2

+
(
∂w

∂x
+ ∂u

∂z

)2

.

One of the early applications of Eq. (9.23) to hydrodynamic lubrication was made by
Cope (Cope, 1949; Charnes, Osterle, and Saibel, 1952). His work subsequently acquired
classical status in lubrication and strongly influenced later research. Cope’s model is based
on the assumptions of (1) negligible temperature variation across the film and, therefore,
(2) negligible heat conduction into the neighboring solids.

All the generated heat is carried out by the lubricant under Cope’s assumption (adiabatic
theory). Furthermore, by neglecting the (second-order) convection terms, the order of the
differential equation (9.23a) is lowered. Solutions of the resulting first-order equation cannot
satisfy all the boundary conditions of the problem.4

The maximum film temperature is always located at the trailing edge in Cope’s adiabatic
model, whereas measurements locate its position upstream of the trailing edge and just
downstream from the position of maximum pressure (Figure 9.8). For a while it was
generally accepted that the classical isothermal theory and Cope’s adiabatic theory would
bracket actual bearing operations. This idea was later discarded (Seireg and Ezzat, 1972;
McCallion, Yousif, and Lloyd, 1970).

Dowson and Hudson (1963) were among the first to realize the importance of heat
conduction across the film, and their work provided the foundations of thermohydrodynamic

4We may draw a parallel between Cope’s approximation and the procedure that neglects the viscous
terms in the Navier-Stokes equation. The latter yields the equations of motion for an ideal fluid,
solutions of which cannot satisfy the no-slip boundary condition.
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theory. Notable subsequent papers were those by Dowson and March (1967), McCallion
et al., (1970), and Ezzat and Rohde (1972). A common assumption of the work reported
in these papers is that heat conduction in the direction of relative motion is unimportant
compared to heat convection in the same direction. This permits elimination of the term
∂2%/∂x2 in Eq. (9.23). But in the process of deleting this term, the equation loses some
of its generality, as it changes from elliptic to parabolic. The parabolic energy equation is
valid only when no reverse flow is encountered.

Reverse flow is encountered in journal bearings (see Figure 6.4) near the stationary
surface at inlet and usually occurs at high eccentricity ratios – a condition that is also
typical of high bearing temperatures. It is advisable, therefore, to retain the conduction
term ∂2%/∂x2 in Eq. (9.23), or to make other arrangements to accommodate reverse flow
(Suganami and Szeri, 1979; Boncompain, Fillon, and Frêne, 1986).

Before continuing with further discussion of Eq. (9.23), we will cast it in a form that
is appropriate for turbulent flow of the lubricant. For this purpose, in analogy with Eq.
(7.1), we write the temperature and the stretching tensor as the sum of the mean and the
fluctuation5

% = %̄+ θ ′, Dij = D̄ij + d ′
ij . (9.24)

From Eqs. (9.22a) and (7.4) the mean value of the dissipation is

μ ̄ = 2μDijDij = 2μD̄ij D̄ij + 2μd ′
ij d

′
ij . (9.25a)

For stationary turbulence the last term in Eq. (9.25a) can be obtained from Eq. (7.37)

2μd ′
ij d

′
ij = μ

(
∂v′
i

∂xj
+ ∂v′

j

∂xi

)
∂v′
i

∂xj
(9.25b)

= ∂

∂xi
vi

(
p + ρ q

2

2

)
− ρv′

iv
′
j

∂V̄j

∂xi
+ μ ∂

∂xi
v′
i

(
∂v′
i

∂xj
+ ∂v′

j

∂xi

)
.

Employing the Boussinesq model, Eq. (7.19), for the second term on the right, applying
the thin film approximation to simplify the first and third term, and integrating across the
film thickness (cf., Vohr in Safar and Szeri, 1974) we find∫ h

0
μd ′

ij d
′
ij dy ≈

∫ h

0
ρεmD̄ij D̄ij dy. (9.25c)

This is our justification for writing the mean dissipation as

μ ̄ ≈ 2μ̄
(

1 + εm

ν

)
D̄jiD̄ij . (9.26)

Substituting Eq. (9.24) into Eq. (9.23), averaging the resulting equation, and taking into
account Eq. (9.26), we obtain

ρc

[
Ūj
∂%̄

∂xj
+ v′

j

∂θ ′

∂xj

]
= k ∂2%̄

∂xj ∂xj
+ 2μ̄

(
1 + εm

ν

)
D̄jiD̄ij . (9.27)

Making use of the equation of continuity (7.7b), we can show that

v′
j

∂θ ′

∂xj
= ∂

∂xj

(
v′
j θ

′)

5Note that in Chapter 7 and Chapter 9 the overscore bar signifies statistical average.
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and write Eq. (9.27) as

ρcŪj
∂%̄

∂xj
= ∂

∂xj

[
k
∂%̄

∂xj
− ρcv′

j θ
′
]

+ 2μ̄
(

1 + εm

ν

)
D̄jiD̄ij . (9.28)

To make use of the particular geometry of the lubricant film, we shall nondimensionalize
Eq. (9.28), using Eqs. (7.12) and (9.29), and

T = %̄

%∗
, t = θ ′

θ∗
, μ = μ̄

μ∗
, (9.29)

where %∗ and θ∗ are the temperature scales for mean and fluctuation, respectively, μ̄ =
μ(%̄) and μ∗ = μ(%∗).

Substituting Eqs. (7.12) and (9.29) into Eq. (9.28), then neglecting terms multiplied by
(Ly/Lxz), where Ly and Lxz are characteristic film dimensions, we find

U
∂T

∂ξ
+ V ∂T

∂η
+W ∂T

∂ζ

= 1

Pe

∂2T

∂η2
−
(
Lxz

Ly

)(
u∗
U∗

)(
θ∗
%∗

)[
∂vt

∂η
+
(
Ly

Lxz

)(
∂ut

∂ξ
+ ∂wt

∂ζ

)]
(9.30)

+!μ
(

1 + εm

ν

)[(∂U
∂η

)2

+
(
∂W

∂η

)2
]
.

Assuming that (u∗/U∗) = O(Ly/Lxz)1/2 and θ∗/%∗ = O(Ly/Lxz)1/2, conditions that seem to

hold in wall turbulence,6 and letting Ly/Lxz → 0, Eq. (9.30) takes the form

U
∂T

∂ξ
+ V ∂T

∂η
+W ∂T

∂ζ
= ∂

∂η

[
1

Pe

∂T

∂η
− vt

]
(9.31)

+!μ
(

1 + εm

ν

)[(∂U
∂η

)2

+
(
∂W

∂η

)2
]
.

The Peclet number and the dissipation number have the definition

Pe = Pr × Re

(
C

R

)
, ! = μ∗ω

ρc%∗

(
Lxz

Ly

)2

, (9.32)

where Pr = cμ∗/k is the Prandtl number.
Although it is well recognized that turbulent transport of a scalar quantity is brought

about by both gradient-type diffusion caused by small-scale turbulence and by large scale
motion of eddies (Hinze, 1975), it has long been accepted in heat transfer to use the
approximation (Kestin and Richardson, 1963)

−ρv′θ ′ = ρεH ∂%̄
∂y
, (9.33a)

where εH is the eddy viscosity for the transport of heat. In nondimensional form, Eq. (9.33a)
is

vt = 1

Rε

1

Pr(t)

εm

ν

∂T

∂η
. (9.33b)

6See the discussion following Eq. (7.13).



9.2 / Thermohydrodynamic Theory 363

Here Rε = Re(C/L) is the reduced Reynolds number, and we put Pr(t) = εm/εH , where Pr(t)

is the turbulent Prandtl number.
Substituting Eq. (9.33) into Eq. (9.31), we obtain the final form of the (nondimensional)

energy equation applicable to turbulent lubricant films

U
∂T

∂ξ
+ V ∂T

∂η
+W ∂T

∂ζ
= 1

Pe

∂

∂η

[(
1 + Pr

Pr(t)μ
εm

ν

)
∂T

∂η

]
(9.34a)

+!μ
(

1 + εm

ν

)[(∂U
∂η

)2

+
(
∂W

∂η

)2
]
.

Implicit in Eq. (9.34) are the assumptions

(u∗/U∗) = O (Ly/Lxz)1/2 , θx/%∗ = O (Ly/Lxz)1/2 . (9.34b)

In journal bearings, the axial variation of temperature can often be neglected (Dowson and
March, 1967), and we employ[(

∂U

∂η

)2

+
(
∂W

∂η

)2
]

≈
(
∂U

∂η

)2

ζ=0

to obtain the approximate equation7

U
∂T

∂ξ
+ V ∂T

∂η
= 1

Pe

∂

∂η

[(
1 + Pr

Pr(t)μ
εm

ν

)
∂T

∂η

]
+!μ

(
1 + εm

ν

)(∂U
∂η

)2

. (9.35)

Although the correct scaling of turbulence appears to be as in Eq. (9.34), leading to
Eq. (7.16) for linear momentum and to Eq. (9.35) for energy, the momentum equations
are further simplified by most authors by neglecting fluid inertia; this simplification yields
Eqs. (7.15) and (9.35) for the characterization of the turbulent flow of incompressible
lubricants.

When evaluating εm/v, say from Reichardt’s formula, Eq. (7.34), we find the eddy
viscosity to be a continuous, monotonic function of the local Reynolds number, Reh =
Uh/ν; that is, the transition from laminar to fully turbulent flow is smooth and gradual.
But, this does not correspond to observation of the physical process of transition. If ReL

and ReU represent the lower and upper critical Reynolds number of transition, respectively,
then we would expect εm/v to vanish whenever Reh < ReL and to have its full value, as
calculated from Reichardt’s formula, only when Reh > ReU. [The fact that this obviously
incorrect (i.e., in the range Re < ReU) eddy viscosity is multiplied in Eq. (9.35) by the
laminar Prandtl number only makes things worse, as for typical processes 100< PR < 500.]
To compensate for this deficiency of Eq. (9.34), Suganami and Szeri (1979), introduced a
scaling factor for the eddy viscosity,

ϑ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if Reh < 400

1 −
(

900 − Reh
500

)1/8

if 400 < Reh < 900

1 if Reh > 900

(9.36a)

and replaced εm/ν in Eq. (9.34) by ϑεm/ν.

7Note that ∂/∂ξ = ∂/∂x̄ + [ȳε sin x̄/(1 + ε cos x̄)](∂/∂ȳ), where (x̄, ȳ) = (ξ, η/H ).
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Figure 9.9. Variation of maximum bearing temperature with speed in a pivoted-pad journal
bearing with D = 431.8 mm and β = 60◦. o, experimental (Gardner and Ulschmid, 1974); –,
constant-temperature shaft; ----, insulated shaft, theoretical. (Reprinted with permission from
Suganami, T. and Szeri, A. Z. A thermohydrodynamic analysis of journal bearings. ASME
Journal of Lubrication Technology, 101, 21–27, 1979.)

It is customary to solve Eq. (9.34) simultaneously with the equation of heat conduction
in the bearing and require continuity of both temperature and heat flow rate at the lubricant-
bearing interface (Dowson and March, 1967; Ezzat and Rohde, 1972).8 The remaining
boundary conditions are not easily defined and have been a source of intense discussion in
the literature.

The idea of a near-isothermal shaft was put forth by Dowson and March (1967) on the
basis of experimental observations (Dowson, Hudson, Hunter, and March, 1966). Suganami
and Szeri (1979) assumed that the shaft is at a constant temperature at small surface speeds
(laminar flow), as a significant portion of the generated heat leaves through the shaft
by conduction in that case (Dowson, Hudson, Hunter, and March, 1966). But for large
surface velocities (superlaminar flow), they solved Eq. (9.35) on the assumption of a
thermally insulated shaft, as now only an insignificant portion of the heat leaves through
the shaft. Physically, neither the isothermal shaft nor the insulated shaft assumption is valid.
Nevertheless, experimental evidence does not contradict the predictions of Suganami and
Szeri (1979), which are based on these assumptions (Figure 9.9). When applying Eq. (9.34)
to thrust bearings, constant runner temperature is the accepted boundary condition (Ezzat
and Rohde, 1972).

We may specify the temperature on the section of the leading edge that is free from
backflow. At the remainder of the leading edge, where backflow is present, as well as at

8To cut down on the amount of computations, an approximate equation for heat conduction in the
bearing may be integrated analytically (Safar and Szeri, 1974; Suganami and Szeri, 1979a; Yu and
Szeri, 1975). The matching conditions on temperature and heat flow can then be replaced by an
approximate film-bearing interfacial condition.
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the trailing edge, we do better to prescribe negligible conduction, i.e., zero temperature
gradient (Suganami and Szeri, 1979).

In summary, Eq. (9.35) was transformed to the (x̄, ȳ) coordinate system (see footnote 7)
and solved subject to the boundary conditions (Suganami and Szeri, 1979):

T = Ti (ȳ) if u ≥ 0
∂T

∂ x̄
= 0 if u < 0

⎫⎬
⎭ at x̄ = x̄1,

∂T

∂ x̄
= 0 at x̄ = x̄1 + β,

(9.36b)[
T + � (x̄)

∂T

∂ ȳ

]
= Ta at ȳ = 0,

T = Ts if (Rh)max ≤ 400
∂T

∂ ȳ
= 0 if (Rh)max > 400

⎫⎬
⎭ at ȳ = H.

The boundary function �(x̄) is obtained from the approximate heat conduction equation
for pad temperature %p that neglects conduction in the circumferential direction

1

r

∂

∂r

(
r
∂%p

∂r

)
= 0,

and matching heat flow and temperature at the film-pad interface.

The Pressure Equation

Derivation of the pressure equation that accounts for pointwise variation of vis-
cosity was first given for laminar flow by Dowson and Hudson (1963). By starting from
Eq. (7.15), rather than from the corresponding laminar equations of motion as Dowson and
Hudson did, we can combine the ideas of Dowson and Elrod (Elrod and Ng, 1967) and
make the derivation apply to the turbulent flow of the lubricant (Safar and Szeri, 1974).

Applying the eddy viscosity hypotheses (7.20), we obtain

∂P̄

∂x
= ∂

∂y

[
μ̄
(

1 + εm

ν

) ∂Ū
∂y

]
, (9.37a)

∂P̄

∂y
= 0, (9.37b)

∂P̄

∂z
= ∂

∂y

[
μ̄
(

1 + εm

ν

) ∂W̄
∂y

]
. (9.37c)

These equations can be integrated formally to yield

Ū = 1

μ∗

∂P̄

∂x
� (x, y, z) + U0

ξ1 (x, y, z)

ξ1 (x, h, z)
, (9.38a)

W̄ = 1

μ∗

∂P̄

∂z
� (x, y, z) . (9.38b)
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Here

� (x, y, z) = ξ2 (x, y, z) − ξ2 (x, h, z)

ξ1 (x, h, z)
ξ1 (x, y, z) ,

(9.38c)

ξ1 (x, φ, z) =
∫ φ

0

dy

μf (x, y, z)
, ξ2 (x, φ, z) =

∫ φ

0

y dy

μf (x, y, z)
,

and we use the notation

f (x, y, z) =
(

1 + εm

ν

)
.

Implicit in Eqs. (9.38) are the no-slip velocity boundary conditions

Ū = W̄ = 0 at y = 0,

Ū = U0 W̄ = 0 at y = h.
We may now follow the procedure already outlined in the derivation of the classical

Reynolds equation. Thus, substituting Eqs. (9.38) into the equation of continuity (7.7a) and
integrating with the boundary conditions9

[V̄ ]h0 = dh

dt
,

we obtain

∂

∂x

(
�

μ∗

∂P̄

∂x

)
+ ∂

∂z

(
�

μ∗

∂P̄

∂z

)
= U0

∂

∂x

(
h− ξ2 (x, h, z)

ξ1 (x, h, z)

)
+ V0 (9.39a)

for journal bearings and

∂

∂x

(
�

μ∗

∂P̄

∂x

)
+ ∂

∂z

(
�

μ∗

∂P̄

∂z

)
= U0

∂

∂x

(
ξ2 (x, h, z)

ξ1 (x, h, z)

)
+ V0 (9.39b)

for slider bearings. Here we employed the notation

� (x, z) = −
∫ h(x)

0
� (x, y, z) dy.

For isothermal flow, Eq. (9.39) is identical to the pressure equation of Elrod and Ng
(1967), and for laminar flow, it reduces to the thermohydrodynamic pressure equation of
Dowson and co-workers (Dowson and Hudson, 1963; Dowson and March, 1967).

Although the distribution of the temperature and the viscosity is assumed to be known
at the start of the solution of Eq. (9.39), this equation has nonlinear coefficients because
the eddy viscosity is dependent on shear stress. When these coefficients are linearized (see
Suganami and Szeri 1979), the equation becomes a generalization of the Ng and Pan (1965)
linearized turbulent equation. This equation is similar in form to the constant-viscosity
turbulent lubrication equation (7.59).

When nondimensionalized for steady state, the turbulent Reynolds equation is given by

∂

∂ ξ

(
H 3Gx̄

∂P

∂ ξ

)
+
(
D2

L

)
∂

∂ ζ

(
H 3Gζ

∂P

∂ ζ

)
= 2π

∂ (HF )

∂ ξ
. (9.40)

9U0 = U2 for journal bearings and U0 = U1 for slider bearings, if the bearing surface is stationary. In
either case V0 = V2 – V1 (see Chapter 2).
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The turbulence functions Gx̄ and Gz̄ are defined by

Gx =
∫

0
ζ1 (η) dη − ζ1 (1)

ζ2 (1)

∫ 1

0
ζ2 (η) dη, (9.41a)

Gz =
∫ 1

0
ζ3 (η) dη − ζ3 (1)

ζ4 (1)

∫ 1

0
ζ4 (η) dη, (9.41b)

F = 1

ζ4 (1)

∫ 1

0
ζ4 (η) dη. (9.41c)

Here

ζ1 (β) =
∫ β

0

(
1
2 − η)
μfc (η)

[
1 − gc (η)

fc (η)

]
dη, (9.42a)

ζ2 (β) =
∫ β

0

1

μfc (η)

[
1 − gc (η)

fc (η)

]
dη, (9.42b)

ζ3 (β) =
∫ β

0

(
1
2 − η)
μfc (η)

dη, (9.42c)

ζ4 (β) =
∫ β

0

dη

μfc (η)
. (9.42d)

The functions fc and gc are given by Eqs. (7.68) and (7.69), respectively,

fc(η) = 1 + κ
[
ȳh+

c − δ+� tanh

(
ȳh+

c

δ+�

)]
, (7.68)

gc (η) = 1

2
κȳh+

c tanh2

(
ȳh+

c

δ+�

)
, (7.69)

where ȳ = y/h and h+
c = h

ν

√
|τc|
ρ

, a local Reynolds number, were defined in Chapter 7.

Equation (9.40) was solved subject to the Swift-Stieber boundary conditions (3.84), and
the lubricant viscosity was calculated from Vogel’s formula

μ̄ = exp

[
a

b + %̄
]
, (9.43)

where the material parameters a and b are determined through curve fitting.

9.3 Journal Bearings

Bearing Temperature

Theoretical predictions by the THD model are compared here with two sets of
experimental data.



368 9 / Thermal Effects

Table 9.1. Test bearing

Shaft speed N = 900 rpm N = 3000 rpm

Pressure kPa 68.65 46.09
Temperature (◦C) 22.40 34.40
Flow rate (cm3/s) 37.60 59.00

D = 10 cm, L = 5 cm, β = 150◦, C = 0.01 cm, Rb = 15 cm.

One of the sets pertain to a pivoted-pad bearing that was studied by Gardner and
Ulschmid (1974). Figure 9.9 shows both calculated and experimental bearing temperature
data plotted against rotational speed for the D = 43.18 cm tilting pad bearing. The graph
also displays measured oil discharge temperatures. Transition from laminar to superlaminar
flow regime seems to take place in the 2000 < N (rpm) < 2500 interval. This corresponds,
roughly to 400< (Rh)max < 600, where (Rh)max is the maximum value of the local Reynolds
number within the 60◦ bearing arc. To investigate the effect thermal conditions at the shaft-
lubricant interface have on lubricant temperature, calculations were performed with both the
constant-temperature boundary condition, when the uniform shaft temperature was equated
to the oil discharge temperature, and the zero temperature gradient boundary condition. In
the laminar regime, there seems to be little difference between the two predictions, as
indicated by Figure 9.9, nevertheless the constant-temperature boundary condition shows
better agreement with experiment, as was suggested earlier. This is not so in the turbulent
regime, here the locally adiabatic shaft (zero normal gradient boundary condition) leads to
results that show far better agreement with the experiment, as would be expected on the
basis of the previous discussion.

It may also be noticed from Figure 9.9 that laminar theory grossly overestimates the
transition region temperatures, whereas turbulent analysis underestimated it. Furthermore,
the turbulent analysis does not yield results that coincide with the results of laminar analysis
at any finite value of the Reynolds number. The reason for this is that in the turbulent model
calculation of the eddy viscosity from Reichardt’s model makes for gradual transition, and
the eddy viscosity is given a nonzero value even when the flow is laminar, as discussed
above. Continuous transition from laminar to turbulent conditions, and agreement with
experiments in the transition regime, was achieved on introducing the eddy viscosity
scaling factor ϑ from Eq. (9.36).

The second set of data used here for comparison was obtained on a centrally loaded,
“viscosity pump” bearing (Suganami and Szeri, 1979a). This bearing has a 210◦ relief in
the top cap and is limited in the axial direction by two deep circumferential oil grooves,
one at each end. It is loaded by means of a hydraulic load cell. The temperature mea-
surements were obtained with thermocouples, sunk into the babbit to within 0.5 cm of the
bearing surface. Dimensions of the test bearing and relevant feed-oil data are shown in
Table 9.1.

Predicted and measured circumferential temperature profiles are compared for the
D = 10 cm diameter bearing of Table 9.1 in Figure 9.10. There are two solid curves
in the figure. Curve (a) represents solution of the energy equation of the THD model. As
this equation is two dimensional, it assumes that the clearance gap is filled with lubri-
cant everywhere. This solution clearly overestimates bearing temperatures. Curve (b) also
assumes that a continuous film exists in the diverging gap and cavitation only affects
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Figure 9.10. Circumferential temperature profile at N = 900 rpm, Table 9.1. (Reprinted with
permission from Suganami, T. and Szeri, A. Z. A thermohydrodynamic analysis of journal
bearings. ASME Journal of Lubrication Technology, 101, 21–27, 1979).

pressure calculations, but now the lubricant is replenished from the oil grooves at the sides.
One would expect this solution to underestimate bearing temperatures.

Note that Figure 9.10 displays laminar bearing operations and, in line with previous
contention, shows better agreement between theory and experiment when the former is
based on constant, temperature boundary condition at the shaft-film interface.

The Role of Nondimensional Parameters

The previous section brings into focus the governing dimensionless parameters of
the various lubrication models. If the geometric parameters β and L/D are fixed and if in
addition the orientation of the external force, characterized by the value of the parameter
α/β where α is the angular position of the load relative to the leading edge, is held constant,
the isothermal model contains just two parameters. Bearing performance can, in this case,
be completely characterized by the parameters

{S,Re}.
The adiabatic model requires only one additional parameter, assuming that the viscosity-
temperature dependence of the lubricant is given, as is the reference temperature. Bearing
performance can then be characterized by the groups

{S,Re,!}.
The THD model requires further addition of parameters. The parameters characteriging
THD bearing performance can be conveniently divided into two groups:{

S,Re,!,Pe,

(
C

R

)
,

(
%s

%∗

)}
, (9.44a)

{(
%i

%∗

)
,

(
%a

%∗

)
,

(
k

kβ

)
,
Rb

R
,Nu

}
. (9.44b)
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Figure 9.11. Variation of eccentricity ratio with Sommerfeld number at constant bearing
diameter, N = 3600 rpm, C/R = 0.002, %i = 50◦. (Reprinted with permission from Suganami,
T. and Szeri, A. Z. Parametric study of journal bearing performance: the 80◦ partial arc bearing.
ASME Journal of Lubrication Technology, 101, 486–491, 1979.)

Parameters grouped in expression (9.44b) were found to have only marginal effect on bear-
ing performance and can be left out of consideration in a first approximation to the problem.
The dimensionless shaft temperature (%s/%∗) is also dropped from further consideration
as it is specified only when the flow is laminar. First order effects are then due to{

S,Re,!,Pe,

(
C

R

)}
, (9.45)

and we retain these as the essential parameters of the THD problem in rigid bearings.
Thermal deformation is also important, as we shall see below. But taking into account
thermal deformation of shaft and bearing greatly increases the numerical complexity. The
large number of essential parameters precludes the possibility of full parametric study of
the THD problem and the representation of its results.

Figure 9.11 shows a plot of the eccentricity ratio versus the Sommerfeld number. There
are perhaps two observations to be made here: (1) The adiabatic (ADI) and the isothermal
(ISO) models do not bracket actual (THD) bearing performance, and (2) at small to moderate
load the turbulent bearing operates at lower eccentricity than does the laminar bearing, but
at high load this order is reversed.

Figure 9.12 shows maximum bearing temperature plotted versus Sommerfeld number,
i.e., inverse of specific bearing load. Maximum bearing temperature in laminar bearings
(D = 10, 20 cm) seems to be relatively insensitive to specific load; for the smallest of the
bearings calculated, the dependence is only marginal. This is not so for large (turbulent)
bearings, for which high specific load should be avoided at all cost, as it might lead to
overheating.

Figure 9.13 illustrates the fact that transition to turbulence (taking place under present
conditions at D ≈ 25 cm) is beneficial from the point of limiting bearing temperatures,
especially at low loads. This was already demonstrated experimentally by Gardner and
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Figure 9.12. Dependence of maximum bearing temperature on Sommerfeld number at constant
bearing diameter, N = 3600 rpm, C/R = 0.002, %∗ = 50◦C. (Reprinted with permission from
Suganami, T. and Szeri, A. Z. Parametric study of journal bearing performance: the 80◦ partial
arc bearing. ASME Journal of Lubrication Technology, 101, 486–491, 1979.)

Ulschmid (1974). The curves in Figure 9.13 also support a previous contention, viz., that
Tmax is strongly dependent on P when in the turbulent regime.

Friction Factor

Allowing viscosity to decrease with increasing temperature is expected to reduce
the wall friction coefficient in pure Couette flow. Increasing the eccentricity and no other
change would, on the other hand, tend to increase friction. Figure 9.14 illustrates the result

Figure 9.13. Effect of bearing size on maximum bearing temperature at constant specific load,
N = 3600 rpm, C/R = 0.002, %∗ = 50◦C. (Reprinted with permission from Suganami, T. and
Szeri, A. Z. Parametric study of journal bearing performance: the 80◦ partial arc bearing. ASME
Journal of Lubrication Technology, 101, 486–491, 1979.)
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Figure 9.14. Friction factor versus Reynolds number at constant specific load, N = 3600 rpm,
C/R = 0.002, %∗ = 50◦C. (Reprinted with permission from Suganami, T. and Szeri, A. Z.
Parametric study of journal bearing performance: the 80◦ partial arc bearing. ASME Journal of
Lubrication Technology, 101, 486–491, 1979.)

of introducing these two competing tendencies simultaneously; the net effect is an increase
in the wall friction coefficient. Only at large Re might this trend be reversed, at least at
the smallest of loads tested, as indicated by the curves of Figure 9.14 at D = 60 cm. The
friction coefficient is strongly dependent on load in the laminar regime. This dependence
lessens with increasing Reynolds number.

Journal Locus and Dynamic Coefficients

Figure 9.15 displays various journal center loci. The overall effect of turbulence,
and also of viscosity variation, is to displace the journal center in the downstream direction,
i.e., to increase the load angle. This shift in φ is monotonically increasing with bearing
diameter in both the laminar and the turbulent regimes, but the trend seems to be reversed
when in the transition regime. Thus, the locus of the D = 20 cm bearing is displaced further
from its isothermal position, that is, the D = 40 cm bearing. This might affect bearing
stiffness.

We saw in Chapter 4 that the incremental oil-film forces that are due to small perturbation
of static equilibrium, can be written as10[

dFx
dFy

]
= −W

C

[ ¯̄Kxx ¯̄Kxy
¯̄Kyz ¯̄Kyy

] [
x̄

ȳ

]
− W

Cω

[ ¯̄Cxx ¯̄Cxy
¯̄Cyx ¯̄Cyy

] [
˙̄x
˙̄y

]
.

The stiffness and damping coefficients of a β = 80◦ fixed-pad partial arc bearing at
ε = 0.7 were shown in Table 4.2 under the following conditions: (1) isothermal, laminar
flow; (2) adiabatic, laminar flow; (3) THD, laminar flow; (4) isothermal, turbulent flow;
and (5) THD, turbulent flow. The calculation involves finding the steady-state equilibrium

10 ¯̄Kxx = S ¯̄Kxx , etc., where K̄xx is defined in Eq. (4.31).
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Figure 9.15. Journal locus; N = 3600 rpm, C/R = 0.002, %∗ = 50◦ C. (Reprinted with
permission from Suganami, T. and Szeri, A. Z. Parametric study of journal bearing
performance: the 80◦ partial arc bearing. ASME Journal of Lubrication Technology, 101,
486–491, 1979.)

conditions for the journal (by solving the pressure and energy equations simultaneously)
and evaluating the incremental oil film forces while keeping the lubricant at its equilibrium
temperature. To perform the perturbation step correctly, one would again have to find
simultaneous solutions of the energy and pressure equations while the journal is in its
perturbed state. But this would, perhaps unnecessarily, increase the volume of computations.

These coefficients, shown in Table 4.2, were subsequently employed in calculating the
stability-threshold speed of a single mass rigid rotor supported at both ends. The threshold
speed parameter M̄ , defined in Eq. (4.41), is plotted against the Sommerfeld number in
Figure 4.15.

Table 4.2 shows significant changes in the static and dynamic coefficients. The “cumu-
lative” effect of these changes is a remarkable improvement in threshold speed. Fig-
ure 4.15 shows the threshold speed plotted against the Sommerfeld number. The curves for
laminar bearings (D < 20 cm) seem to bunch together. There is a significant improvement
in bearing stability threshold speed in the transition regime (20 < D < 30 cm), but the
dependence on D lessens again when in the turbulent regime (D > 30 cm). The threshold
speed, M̄ , becomes meaningful only, however, when it coincides with the shaft rotational
speed. When this occurs, a critical bearing load is defined for each bearing diameter, under
the assumed condition.

Figure 9.16 shows the critical bearing load plotted versus the shaft diameter for a fixed
pad. If the specific bearing load exceeds in magnitude the critical bearing load, the bearing
is stable. Figure 9.16 indicates that THD effects expand the regime of stable bearing
operations, in terms of the bearing specific load P.

Thermal Deformation

Boncompain, Fillon, and Frêne (1986) compared their numerical analysis with
experiments from Ferron (1982), and showed significant thermal deformation of the
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Figure 9.16. Critical bearing load versus shaft diameter for a fixed pad: N = 3600 rpm, C/R =
0.002, %∗ = 50◦C. (Reprinted with permission from Suganami, T. and Szeri, A. Z. Parametric
study of journal bearing performance: the 80◦ partial arc bearing. ASME Journal of Lubrication
Technology, 101, 486–491, 1979.)

surfaces. Excellent agreement was obtained, though the computations were performed for
the mid-plane of the pad only. They estimated the thermoelastic strain in their numerical
model from

εij = 1 + ν
E

Tij − ν

E
Tkk + α
% (M) δij . (9.46)

Here εij is the strain, Tij is the stress, 
%(M) = % (M) − %∗ is the temperature excess at
point M over the reference temperature%∗, α is the coefficient of thermal expansion of the
solid, and E, v are elastic moduli. The finite-element method was used to solve the coupled
system consisting of the energy equation for the lubricant (9.34), the Reynolds equation
with deformation film thickness calculated from Eq. (9.46), Vogel’s formula (9.43) for
viscosity, and the energy equation for the pad

∂2%p

∂r2
+ 1

r

∂%p

∂r
+ 1

r2

∂2%p

∂ϕ2
= 0. (9.47)

Figure 9.17 shows the isotherms in both lubricant film and pad, in a four-pad bearing,
indicating that there is considerable heat transfer in the pad in the tangential direction.

As may be judged from Figure 9.18, thermoelastic deformation can have significant
effect.

Bouard, Fillon and Frêne (1994) compared the turbulence models of Constantinescu
(1972), Elrod and Ng (1967), and Ng and Pan (1965), using the turbulent transition approx-
imation (9.36) of Suganami and Szeri (1979a). As shown in Figure 9.19 for pressure,
in Figure 9.20 for temperature, and in Figure 9.21 for power loss, there is little differ-
ence between the predictions of the three theories, under the conditions specified in the
paper.

More recent experimental investigations into turbulent lubrication are by Gethin and
Medwell (1985); Hopf and Schüler (1989); Taniguchi, Makino, Takeshita, and Ichimura
(1990); Simmons and Dixon (1994); Mittwollen and Glienicke (1990); Bouchoule, Fillon,
Nicolas, and Barressi (1996); and Monmousseau et al. (1996).
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Figure 9.17. %◦C = const. surfaces in lubricant film and pad. (Reproduced with permission
from Fillon, M. and Frêne, J. Numerical simulation and experimental results on
thermo-elasto-hydrodynamic tilting-pad journal bearings. IUTAM Symposium on Numerical
Simulation of Non-isothermal Flow of Viscoelastic Liquids. 85–99, C© 1995 Kluwer Academic
Publisher.)

Figure 9.18. Comparison of theoretical and experimental pad temperature for a four-pad
bearing. (Reproduced with permission from Fillon, M. and Frêene, J. Numerical simulation and
experimental results on thermo-elasto-hydrodynamic tilting-pad journal bearings. IUTAM
Symposium on Numerical Simulation of Non-isothermal Flow of Viscoelastic Liquids. 85–99,
C© 1995 Kluwer Academic Publisher.)
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Figure 9.19. Film pressure as predicted by various turbulence models (Bouard, Fillon and
Frêne, 1995). (Reproduced from Fillon, M. Dossier D’Habilitation a Diriger les Recherches.
Universite de Poitiers.)

The inlet temperature effect was investigated theoretically by Ettles (1992) and by Ha,
Kim, and Kim (1995). An analysis for tilting-pad bearings was published by Bouard, Fillon,
and Frêne (1996). Thermal transient analysis was performed by Gadangi, Palazzo, and Kim
(1996), and Fillon, Desbordes, Frêne, and Wai (1996).

9.4 Thrust Bearings

One of the sector-shaped pivoted pads of a thrust bearing we want to study is
shown in Figure 4.16. (Jeng, Zhou, and Szeri, 1986a). The plane of the runner surface
is located at z = 0 and the pad surface is located at z = h(r, ϕ) of the cylindrical polar

Figure 9.20. Maximum bearing temperature as predicted by the various turbulence models
(Bouard, Fillon, and Frêne, 1995). (Reproduced from Fillon, M. Dossier D’Habilitation a
Diriger les Recherches. Universite de Poitiers.)
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Figure 9.21. Power loss as predicted by the various turbulence models (Bouard, Fillon and
Frêne, 1995). (Reproduced from Fillon, M. Dossier D’Habilitation a Diriger les Recherches.
Universite de Poitiers.)

coordinate system {r, ϕ, z}. The characteristic lengths of the lubricant film are Lz across
and Lrθ along the film.

The Pressure Equation

Making use of the fact that Lz/Lrθ = O(10−3), in an order of magnitude analysis
similar to the one employed Chapter 7, the equations of motion for turbulent flow of the
lubricant reduce to11

∂P̄

∂r
= ∂

∂z

(
μ̄
∂Ū

∂z
− ρμ′w′

)
, (9.48a)

∂P̄

∂z
= 0, (9.48b)

1

r

∂P̄

∂ϕ
= ∂

∂z

(
μ̄
∂V̄

∂z
− ρv′w′

)
. (9.48c)

Starting from Eqs. (9.48) and repeating the analysis of Ng and Pan (1965), updated for
variable viscosity (Jeng, Zhou, and Szeri, 1986a), we obtain

∂

∂ϕ̂

[
H 3Gϕ

∂P

∂ϕ̂

]
+ β2ρ̂

∂

∂r̂

[
ρ̂H 3Gr

∂P

∂r̂

]
= β2ρ̂2 ∂ [H (1 − F )]

∂ϕ̂
. (9.49)

11The order of magnitude analysis based on the limit (Lz/Lrθ )2 → 0 yields ∂P/∂z =
(Lz/Lrθ )Re(∂/∂z)(w′w′) in place of Eq. (9.48b), but past practice has been to also assume (Lz/Lrθ )Re
→ 0 [(see Eq. (7.16)]. If the latter assumption is not made, derivation of a Reynolds type pressure
equation is not possible.
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The turbulent functions Gϕ , Gr, and F are defined by formulas identical in form to
Eqs. (9.41) and (9.42), except that they are functions of (r , ϕ) through fc, gc, and H,
while Gx, Gz were functions of (x, z).

The boundary conditions that complement equation Eq. (9.49) are

P (0, ϕ̂) = P (1, ϕ̂) = 0,

P (r̂ , 0) = P (r̂ , 1) = 0, (9.50)

P = ∂P

∂ϕ̂
= 0, at ϕ̂ = ϕ̂cav.

In arriving at Eq. (9.49), we employed the nondimensionalization

r = 
r̂ + R1, ϕ = βϕ̂, z = hẑ, Ū = 
ωU, V̄ = 
ωV

P̄ = μ∗ω
β

(



hc

)2

P, μ̄ = μ∗μ, h = hCH (9.51)


 = R2 − R1 > 0, ρ̂ = r̂ + R1/
, r = 
ρ̂,

where hC is the film thickness at the geometric center, C, of the pad (Figure 4.16).
The relationship between the normalized coordinate

z+c = zc

ν

√
|τc|
ρ

= ẑ hc
ν

√
|τc|
ρ

= ẑh+
c

and the local Reynolds number, Rh = rωh/νaν [cf., Eq. (7.76)], now has the form

Rh =
∫ 1

0

μav
(
z+c /ẑ

)2
d z̄

μ
{
1 + κ [z+c − δ+� tanh

(
z+c /δ+�

)]} . (9.52a)

For a given Rh, Eq. (9.52a) is a transcendental equation in z+c and must be solved numerically.
The local Reynolds number, on the other hand, is calculated from the global Reynolds

number, Re, with the aid of the local average viscosity,

μav (r̂ , ϕ̂) =
∫ 1

0
μ (r̂ , ϕ̂, ẑ) dẑ,

from the formula

Rh = Hρ̂

νav




R2
Re, Re = R2ωhC

ν∗
. (9.52b)

The eddy viscosity for momentum transfer is

εm

ν
= fc − 1 + ζ4 (1)

β2

H 2

ρ̂2

∂P

∂ϕ̂

[
ẑ− 1

2
+ ζ1 (1)

ζ2 (1)

]
gc, (9.53)

where ζ 1, ζ 2, fc, and gc are given by formulas analogous to Eqs. (9.42), (7.68), and (7.69).
When evaluated from Reichardt’s formula (Hinze, 1975), the eddy viscosity is a mono-

tonic increasing function of the Reynolds number, having nonzero value in the laminar
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regime. To remedy this, we introduce a scale factor, ϑ , for eddy viscosity from Eq. (9.36),
but now set RL = 500 and RU = 900 (Abramovitz, 1956; Gregory, 1974),

ϑ =

⎧⎪⎪⎨
⎪⎪⎩

0.0 (Rh)max ≤ 500

1 −
[

800 − (Rh)max

300

]1/8

500 < (Rh)max ≤ 800

1 (Rh)max > 800

and employ ϑ(εm/ν) in place of (εm/v) in the calculations.

Film Thickness
Let {x, y, z} be an inertial Cartesian coordinate system such that the z = 0 plane is located
on the runner surface and the z axis is in the vertical direction pointing upward and goes
through the geometric center C{(R1 + R2)/2, β/2} of the bearing (Figure 4.16). If ψx

and ψy represent the angular position of the pad in equilibrium, relative to the {x, y, z}
coordinate system, and if hC is the film thickness at the pad center C, we have

h = hC − xψy + yψx. (9.54a)

Here ψx and ψy are small angles, positive when measured counterclockwise.
The nondimensional counterpart of Eq. (9.54a) is

H = 1 − 


R1

{
ρ̂my sin

[
β

(
1

2
− ϕ̂

)]
+
[
ρ̂ cos

[
β

(
1

2
− ϕ̂

)]
− R1 + R2

2


]
mx

}
,

(9.54b)

where H = h/hC is the nondimensional film shape. The tilt parameters mx, my have the
definition

mx = R1ψx

hC
, my = R1ψy

hC
.

The Energy Equation

An order of magnitude analysis yields the equation of energy for the lubricant in
the form

ρc

[
Ū
∂%̄

∂r
+ V̄ ∂%̄

r∂ϕ
+ W̄ ∂%̄

∂z
+ ∂

∂z
(w′θ ′)

]
(9.55)

= k
[

1

r

∂

∂r

(
r
∂%̄

∂r

)
+ 1

r2

∂2%̄

∂ϕ2
+ ∂2%̄

∂z2

]
+ μ̄

(
1 + εm

ν

)[(∂Ū
∂z

)2

+
(
∂V̄

∂z

)2
]
.

The velocity-temperature correlation w′θ ′ may be approximated via the eddy viscosity
hypothesis, where, in analogy to momentum transport, we put

− w′θ ′ = εH ∂%̄
∂z

(9.56)

and the energy equation (9.55) is made nondimensional by substituting from Eq. (9.51) and

%̄ = %∗T , μ (%∗) = μ∗, μ = μ∗μ̄.
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When deriving the equation for lubricant pressure, Eq. (9.49), the z dependence was
integrated out and the transformation was from {r, ϕ} to {r̂ , ϕ̂}. In the present case, the
mapping is {r, ϕ, z}→ {r̂ , ϕ̂, ẑ}, and we must employ more complicated formulas:

∂

∂r
= 1




(
∂

∂r̂
− nr ∂

∂ẑ

)
,

∂

∂ϕ
= 1

β

(
∂

∂ϕ̂
− nϕ ∂

∂ẑ

)
,

∂

∂z
= 1

hC

∂

H∂ẑ
. (9.57)

Here we used the notation

nr = ẑ

H

∂H

∂r̂
, nϕ = ẑ

H

∂H

∂ϕ̂
.

The nondimensional energy equation is

U
∂T

∂r̂
+ V

βρ̂

∂T

∂ϕ̂
+
(
W

H
− Unr − V

βρ̂
nϕ

)
∂T

∂ẑ

= 1

Pe

{
∂

∂r̂

(
∂T

∂r̂
− nr ∂T

∂ẑ

)
− nr ∂

∂ẑ

(
∂T

∂r̂
− nr ∂T

∂ẑ

)

+ 1

(βρ̂)2

∂

∂ϕ̂

(
∂T

∂ϕ̂
− nϕ ∂T

∂ẑ

)
+ 1

(δH )2

∂2T

∂ẑ2
− nθ

(βρ̂)2

∂

∂ẑ

(
∂T

∂ϕ̂
− nϕ ∂T

∂ẑ

)
(9.58)

+ 1

ρ̂

(
∂T

∂r̂
− nr ∂T

∂ẑ

)
+ Pr

Pr(t)

1

δ2

∂

∂ẑ

(
μ

H 2

εm

ν

∂T

∂ẑ

)}

+!
(

1 + εm

ν

) μ
H 2

[(
∂U

∂ẑ

)2

+
(
∂V

∂ẑ

)2
]
.

Pe, !, and δ are the Peclet number, the dissipation parameter, and the film thickness
parameter, respectively:

Pe = ρc
2ω

k
, ! = μ∗ω

ρc%∗δ2
, δ = hC



. (9.59a)

The laminar and turbulent Prandtl numbers are defined through

Pr = cμ∗
k
, Pr(t) = εm

εH
, (9.59b)

and the temperature dependence of viscosity is assumed to be given by Vogel’s formula
(9.43).

The thermal boundary conditions are:

Runner surface (z = 0)

T = TR (the runner surface temperature) (9.60a)

Bearing surface [z = h(r, ϕ)]

−k ∂T
∂z

= −kB ∂TB
∂zB

cos
(
ψ2
x + ψ2

y

)1/2
T = TB (the bearing surface temperature) (9.60b)

Leading edge (ϕ = β)

T = TL (the lubricant inlet temperature) (9.60c)
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At the exit planes, i.e., at the trailing edge, ϕ = 0, the inside edge, r = R1, and the outside
edge, r = R2, of the pad there are no boundary conditions specified in the classical sense
by the physics of the problem. In journal bearings, Suganami and Szeri (1979a) assumed
zero normal derivative for the temperature at exit planes. This condition was found to be far
too restrictive for the present geometry and, eventually, zero second gradient exit boundary
conditions were prescribed.

The Heat Conduction Equation

The bearing surface boundary condition, Eq. (9.60b), presupposes simultaneous
solution of, or at least iteration between, the equation of energy for the lubricant, Eq. (9.59),
and the equation of heat conductivity for the bearing pad:

1

rB

∂

∂rB

(
rB
∂%B

∂rB

)
+ 1

r2
B

∂2%B

ϕ2
B

+ ∂2%B

∂z2
B

= 0. (9.61)

Here%B is the temperature in the bearing. The zB axis of the bearing coordinate system {rB,
ϕB , zB} is normal to the pad surface and is inclined to the vertical at angle α = (ψ2

x + ψ2
y )1/2.

Equation (9.58) requires the z component of the velocity, W(z). This is obtained from
the equation of continuity, for we have

W̄ (z) = −
∫ z

0

Ū

r
dz′ −

∫ z

0

∂Ū

∂r
dz′ −

∫ z

0

1

r

∂V̄

∂ψ
dz′. (9.62)

Pad Deformation

For the purposes of this analysis the pad surface is assumed to have spherical
crowning; this permits us to characterize pad deformation in a simple manner.

Small bearing pads are supported in a point, and pad deformation is often negligible. In
large bearings, however, considerable deformation of the pad is experienced, and simple
support in a point will no longer suffice. To minimize deformation, the pad is often supported
on a disk via a ring or rings, in the hope that elastic and thermal deformations will counteract
one another. In at least in two constructions examined by Jeng, Zhou, and Szeri (1986b),
the deformation was found to be near spherical.12

With reference to Figure 9.22, let Rd represent the radius of pad-surface curvature and
ε be the maximum deviation of the surface from planar along its mid-radius. If λ is the
distance between the center of the pad, C, and a generic point, P, then the deformation of
point P is given by

δh = Rd
⎡
⎣1 −

√
1 −

(
λ

Rd

)2
⎤
⎦ ≈ (x2 + y2)/2Rd,

where λ =
√
x2 + y2, so that

x = r sin

(
β

2
− ϕ

)
, y = r cos

(
β

2
− ϕ

)
− R1 + R2

2
.

12The ratio of the principal radii of curvature was Rx/Ry = 0.96 for one of the data and Rx/Ry = 0.95
for the other.
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Figure 9.22. Spherical crowning of thrust pad. (Reprinted with permission from Jeng, M. C.,
Zhou, G. R. and Szeri, A. Z. Thermohydrodynamic solution of pivoted thrust pads, part I:
Theory. ASME Journal of Tribology, 108, 195–207, 1986.)

The change, δh, in the nondimensional film thickness, h̄(r, θ ), when due to spherical
crowning, is given by

δ̂h = ε̂
{

4(r̂ + R̂ − 1)2 + (2R̂ − 1)2 − 4(r̂ + R̂ − 1)(2R̂ − 1) cos

[
β

(
1

2
− ϕ̂

)]}
.

(9.63)

Here

δ̂h = δh

hC
, ε̂ = ε

hC
, R̂ = R2

(R2 − R1)
.

When the pad is crowned, lubricant pressure might fall below ambient. Liquids, in impure
state, can support only negligible tension, and the film will cavitate somewhere in the
diverging part of the clearance space.

Table 9.2 compares experimental with numerical data in one particular case; sample
isobars and isotherms are displayed in Figure 9.23.

Table 9.2. Comparison of performance data
for a thrust pad

Experimental Numerical

Tmax(◦C) >95 107.61
F(kg) 96,300 96,682
ε̂ 0.9 0.7

%L = %∗ = %R = 38.5◦C, μ(%∗) = 2.62 × 10−5

Pa · s, R̄2/
 = 2.545, β = 24◦, δ = 1.094 × 10−4,
mx = 0.0, my = 1.0, Re = 51.398, Pr = 714.69,
! = 2.1962, Pe = 1.323 × 108, Nu = 100.0.
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Figure 9.23. Isobars, P = const., (a) and isotherms, T = const. (b) on a deformed pad under the
conditions of Table 9.2. (Reprinted with permission from Jeng, M. C., Zhou, G. R. and Szeri,
A. Z. Thermohydrodynamic solution of pivoted thrust pads, part I: Theory. ASME Journal of
Tribology, 108, 195–207, 1986.)

To aid the designer, one may now perform a parameteric study of THD thrust pad perfor-
mance and tabulate the results. But, the large number of input parameters is discouraging.
Making matters worse is the fact that in a thrust bearing the pivot position of the pad remains
fixed, while it is the tilt of the pad that changes with a change of the mechanical and/or
thermal loading of the bearing. In the course of the numerical work, on the other hand, the
analyst begins by specifying the slope of the pad and obtains the performance parameters,
including the center of pressure, as a result of calculations. The position of the center of
pressure he calculates will not, in general, coincide with the desired pivot location, and the
analyst will be required to iterate on the pad tilt angle until agreement is reached. This, of
course, is an expensive proposition.
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Table 9.3. Effect of viscosity variation

Tmax f j Q̂

Test run 1 4.2154 0.03485 3.50 1.62a

(2.7952) (0.02222) (2.36) (1.88)b

Test run 2 3.7472 0.03485 3.49 1.62a

(2.6013) (0.02363) (2.52) (1.85)b

aμ̂ = h/hmax,
bTHD.

Table 9.3 indicates the effect variable viscosity has on pad performance for two sets of
input parameters. The first entries for both test runs were calculated on the assumption that
μ= h/hmax; a crude approximation to the equilibrium oil-film viscosity profile. The second
entries for both runs correspond to three-dimensional THD solutions.

In Figure 9.24, we display the results of our study of the effects of pad crowning. Again,
these solutions have the pivot position fixed, i.e., the results were arrived at via the iteration
procedure described previously. The figure suggests a strong effect of crowning on the
load capacity and on the lubricant flow. The effect is considerably less on the value of the
maximum pad temperature and on the rate of dissipation.

The dynamic behavior of the tilting thrust pad bearing has been discussed in Chapter 4.
The solutions discussed there were based on thermohydrodynamic theory.

Figure 9.24. Effect of pad crowning on pad performance. (Reprinted with permission from
Jeng, M. C., Zhou, G. R. and Szeri, A. Z. Thermohydrodynamic solution of pivoted thrust pads,
part I: Theory. ASME Journal of Tribology, 108, 195–207, 1986.)
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9.5 Nomenclature

N rotational speed
Nu Nusselt number
P specific bearing load
Pe Peclet number
Pr molecular Prandtl number
Pr(T) turbulent Prandtl number
Q, Qs oil flow, leading edge, side
R journal radius
Rb pad outer radius
Re global Reynolds number
Rε reduced Reynolds number
Rh local Reynolds number
S Sommerfeld number
W external load
! dissipation number
c specific heat of lubricant
h film thickness
k thermal conductivity, oil
kB thermal conductivity, pad
ε eccentricity ratio
εm, εh eddy diffusivities
λ heat transfer coefficient
p pressure
%, %p, %s, %a temperature, lubricant, pad, shaft, ambient
μ viscosity
ν kinematic viscosity
ρ lubricant density
{u′, v′, w′} velocity fluctuation
{Ū , V̄ , W̄ } mean velocity
C radial clearance
¯̄Cxx... dimensionless damping coefficient

cf friction factor
¯̄Kxx... dimensionless stiffness coefficient

L bearing axial length
M̄ dimensionless stability threshold speed
xcavity position of cavitation boundary
β pad angle
τc, τav, τw Couette, average, wall shear stress
ω angular velocity
R1, R2 pad radius, inner, outer
d pad thickness
(x, y, z) coordinates, located in C

 width of pad
ρ̂ function of r̄
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(ˆ) nondimensional quantity
(−) average quantity
( )′ fluctuating quantity
( )∗ reference quantity
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CHAPTER 10

Lubrication with Non-Newtonian Fluids

Non-Newtonian effects might assume importance in lubrication due mainly to two
circumstances: lubrication with process fluids and treatment of the lubricant with polymeric
additives. A third circumstance that calls for extension of classical theory to non-Newtonian
fluids is relevant to lubrication of elastohydrodynamic (EHD), contacts. When subjected to
very rapid rates of shear, viscous fluids exhibit viscoelastic effects. Consider a typical EHD
contact, where the pressure might be 2–3 GPa and the rate of shear 106 s–1. A lubricant
particle will traverse this contact in a millisecond or less. In comparable time, the response
of the oil to the applied shear will change from that of a viscous liquid to that of an elastic
solid (glass transition) and back to a viscous liquid.

To characterize the quality of fluid response to applied shear, viz., its departure from
“fluidity,” we assign the Deborah number, defined by

De = duration of fluid memory

duration of deformation process

It is customary to measure duration of fluid memory1 by the Maxwell relaxation time
λ = μ/G, where μ is the viscosity of the fluid and G is its elastic modulus in shear.
Denoting duration of the deformation process, i.e., the process time, by τ , we have

De = λ

τ
.

Purely viscous response, i.e., Newtonian behavior, is characterized by De = 0. If De is
small, fluids of the differential type (to be defined below) can be used, but if De is large,
integral models must be employed to characterize fluid response (Huilgol, 1975).

Evidence for viscoelastic behavior of lubricants was first demonstrated by Barlow
et al. (1967, 1972), who subjected the lubricant to oscillating shear. At low frequency,
fluid response was characterized by viscous shear, and by predominantly elastic shear as
the period of oscillation was decreased to a value less than the relaxation time of the fluid.

Bourgin (1979) classified lubricant flows according to their Deborah number. Denoting
the film aspect ratio Ly/Lxz (Section 2.2) by ε, he listed the following categories:

(1) De = O(ε2): viscous behavior predominates and nonlinear viscous models, such
as power law, may be employed with success.

(2) De = O(ε): fluids of the differential type are applicable. All phenomenological
functions depend only on tr(D), where D is the stretching tensor (2.33).

(3) De = O(1): fluids of the differential type are no longer applicable. Integral repre-
sentation must be employed (Huilgol, 1975).

Bourgin (1979) found that for a typical journal bearing lubricated with a viscoelastic
lubricant De = O(ε), and for rolling contact bearings, De = O(1).

1There is ambiguity in associating a time constant with a material, as it will be influenced by the
deformation process applied in its evaluation.

389
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Figure 10.1. Flow of dilute polymer between parallel rotating disks.

For Deborah number De = 0, there is no memory, and there is, therefore, no elastic
response. This purely viscous fluid may, however, posses a viscosity that depends on the
local rate of shear (Sirivat, Rajagopal and Szeri, 1988). A striking example of shear thinning,
i.e., viscosity decreasing as the fluid is being worked on, is shown in Figure 10.1.

Figure 10.1 plots the tangential velocity of flow induced by rotating parallel disks in
dilute separan. Note that at an intermediate layer between disks there is a sudden change
of velocity, suggesting that locally the fluid suffers reduction of viscosity there. The flow
depicted in Figure 10.1 approximates to the flow occurring in a thrust bearing.

10.1 Hydrodynamic Lubrication

Summary of Previous Work

Various constitutive models have been employed in studying the flow of nonlinear
viscous fluids in journal and thrust bearings. One of the early treatments of the problem
of lubrication by a non-Newtonian lubricant was by Ng and Saibel (1962). In their regular
perturbation treatment of the plane slider, they assumed a stress constitutive equation of the
form

τ = μ∂u
∂y

+ εk
∣∣∣∣∂u∂y

∣∣∣∣
2
∂u

∂y
. (10.1)

Equation (10.1) arises when one restricts the flow of a thermodynamically compatible third
grade fluid of the differential type (Fosdick and Rajagopal, 1980) to the geometry of Ng
and Saibel. In another paper, Hsu and Saibel (1965) use the constitutive equation

τ + kτ 3 = μ∂u
∂y
, (10.2)

which is applicable to both pseudoplastic, k> 0, and dilatant, k< 0, fluids. For the pseudo-
plastic case, they find that the load capacity is reduced when compared to the performance of
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a Newtonian lubricant. Fix and Paslay (1967) investigated the lubricant elasticity effects of
a Maxwell-type material in a long journal bearing. Their most significant finding is a reduc-
tion of the attitude angle, which equals π/2 under Sommerfeld conditions, due to elasticity
of the lubricant. In an experimental paper, Tao and Philippoff (1967) show a pressure distri-
bution for viscoelastic liquids that is flatter than obtained for a Newtonian fluid. They also
indicate a shift into the downstream direction of the positive pressure peak. Considering the
in-plane oscillation of a flat plate in a linearly viscoelastic fluid, Tanner (1969) argues that the
normal stress effect is unimportant in the usual lubrication application. For an elastoviscous
liquid, i.e., a nonlinear Reiner-Rivlin fluid generalized to include unequal cross stresses,
Hanin and Harnoy (1969) show a load capacity higher than given by a Newtonian fluid.

The Stokesian velocity field is a solution to the equations of motion of a plane, steady,
noninertial flow of a second grade fluid (Giesekus, 1963; Tanner, 1966). This fact has been
used to extend the results of lubrication theory to flows involving fluids of second grade
(Davis and Walters, 1973). Since the velocity field in the two problems are identical, the
only quantity that is to be calculated is a “modified” pressure field.2 For a long journal
bearing, Davies and Walters find qualitative agreement with the earlier results of Fix and
Paslay (1967) concerning the magnitude of the attitude angle. The result of Giesekus and
Tanner has been extended to dynamically loaded bearings by Harnoy and Hanin (1974).
Tichy (1978) also looks at small-amplitude rapid oscillations and includes temporal inertia
for a Lodge rubber-like liquid. Tichy finds perturbation solution to order δ, where δ is
the amplitude of plate motion. At low Deborah number, the viscoelastic effect is found
to be negligible. However, Tichy warns that bearing operation at high Deborah number
could give rise to various resonance effects. He then goes on to state that the often-noted
discrepancy between theory and experiment (e.g., Harnoy and Philippoff, 1976) may be in
part explained by resonance phenomena.

Beris, Armstrong, and Brown (1983) look at slightly eccentric rotating cylinders; in fact,
their perturbation solution is in terms of the eccentricity. The extra boundary conditions,
required for a second grade fluid, are the requirement for single valuedness of the solution
in the multiply connected domain. Christie, Rajagopal, and Szeri (1987) find solutions at
arbitrary eccentricity.

For differential fluids of complexity 1, Bourgin and Gay (1983) investigate the influence
of non-Newtonian effects on load capacity in a finite journal bearing and in a Rayleigh bear-
ing (Bourgin and Gay, 1984). Buckholtz looks at the performance of power law lubricants
in a plane slider (Buckholtz, 1984) and in a short bearing (Buckholtz and Hwang, 1985).
Verma, Sharman, and Ariel (1983) investigated flow of a second-grade, thermodynami-
cally compatible fluid between corotating porous, parallel disks. Flow of a second-grade
fluid between parallel disks rotating about noncoincident axes was discussed by Rajagopal
(1981).

Lubrication with Power Law Fluid

For De = 0, non-Newtonian fluids are often modeled by power law. This section
follows the analysis given by Johnson and Mangkoesoebroto (1993) for lubrication with a
power law lubricant. The objective is to model shear thinning lubricants that do not exhibit
elasticity.

2The results of Tanner and Giesekus do not address the issue of uniqueness (Fosdick and Rajagopal,
1978; Rajagopal, 1984).
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The viscosity for a power law fluid can be written as

μ = μ(2DijDij )
n−1

2 , (10.3a)

where D = 1
2 (∇v + ∇vT ) is the stretching tensor, which is a generalization to three

dimensions of (Tanner, 1985)

μ = k
[(
∂v1

∂x2

)2
] n−1

2

= k
∣∣∣∣∂v1

∂x2

∣∣∣∣
n−1

. (10.3b)

The power law consistency index, k, and the power law exponent, n, are material parameters.
n = 1 yields the Newtonian fluid, for pseudoplastic (shear thinning) fluid, n < 1. Shear
thinning is characteristic of high polymers, polymer solutions, and many suspensions.

For flow in the (x1, x2) plane, v3 = 0 and the equations of motion take the form

ρ

(
∂v1

∂t
+ v1

∂v1

∂x1
+ v2

∂v1

∂x2

)
= − ∂ρ

∂x1
+ ∂T11

∂x1
+ ∂T12

∂x2
,

(10.4)

ρ

(
∂v2

∂t
+ v1

∂v2

∂x1
+ v2

∂v2

∂x2

)
= − ∂ρ

∂x2
+ ∂T21

∂x1
+ ∂T22

∂x2
.

An application of the lubrication assumption (Ly/Lyx) � 1 to Eq. (10.3a) permits us to
write

(T11,T12,T22) =
∣∣∣∣∂v1

∂x2

∣∣∣∣
n−1 (

∂v1

∂x1
,
∂v1

∂x2
,
∂v2

∂x2

)
. (10.5a)

Substituting Eq. (10.5a) and the assumption(
Ly

Lxz

)1+n LnyU
2−n
∗ ρ

μ
� 1 (10.5b)

into Eq. (10.4), we obtain

0 = − ∂p
∂x1

+ ∂T12

∂x2
, 0 = − ∂p

∂x2
, (10.6)

where T12 is given by Eq. (10.5a). These and the following equations are already in
nondimensional form.

Note that for Newtonian fluid, n = 1, Eq. (10.5b) is a constraint on the reduced Reynolds
number, Eq. (2.58d):

Rε =
(
Ly

Lxz

)
LyU∗
ν

� 1.

Since the pressure is independent of x2 by Eq. (10.6b), we can integrate Eq. (10.6a)

T12 =
∣∣∣∣∂v1

∂v2

∣∣∣∣
n−1

∂v1

∂x2
= p′x2 + c(x1, t), (10.7)
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where the prime symbolizes derivative with respect to x1. Inverting and formally integrating
Eq. (10.7), we have

v1 =
∫ x2

0
|p′x2 + c| 1−n

n (p′x2 + c)dx2 + U1, (10.8)

where U1 is the (dimensional) velocity of the surface x2 = 0.
From the equation of mass conservation (2.16c), we have, upon substituting for v1 from

Eq. (10.8) and integrating across the film,

v2 = 1

n

∫ x2

0
(ξ − x2)|p′ξ − c| 1−n

n (p′′ξ + c′)dξ. (10.9)

The boundary conditions are

v1 = U1(t), v2 = 0 at x2 = 0,
(10.10)

v2 = U2(t), v2 = V (t) at x2 = H (x1, t) = h(x1)

h0
.

Satisfaction of conditions (10.10) by Eqs. (10.8) and (10.9) yields two (nondimensional)
equations for the unknowns p′(x1, t) and c(x1, t):

∫ 1

0
|Hp′ξ + c| 1−n

n (Hp′ξ + c)dξ = U0

H
, (10.11)

H 3p′′
∫ 1

0
|p′Hξ + c| 1−n

n (ξ − 1)ξdξ +H 2c′
∫ 1

0
|p′Hξ + c| 1−n

n (ξ − 1)dξ = nV, (10.12)

where we put U0 = U2 – U1.
Though the integrals indicated in Eqs (10.11) and (10.12) can be evaluated in closed

form, Johnson and Mangkoesoebroto (1993) were unable to integrate the coupled nonlinear
differential equations numerically, as these equations are extremely stiff for n < 1. They
did, however, discover an analytical solution based on a nontrivial transformation, reducing
Eqs. (10.11) and (10.12) to two coupled algebraic equations for p′ and c. The dimensionless
pressure is plotted against dimensionless position in Figure 10.2 for a parabolic slider at
various values of n, as obtained by Johnson and Mangkoesoebroto (1993).

Fluids of the Differential Type

For a Newtonian fluid, Eq. (2.53), the extra stress, T + pI, is a linear function
of the current value of the stretching tensor D. The function of proportionality, μ, is a
constant, or at most a function of temperature. Newtonian fluids exhibit neither elasticity
nor memory effects.

To describe elasticity and memory effects as well as viscous response, we obviously
need more general constitutive equations than Eq. (2.53). This leads us to define a class of
materials, called simple materials, which includes a vast range of nonlinear materials from
classical linear elastic to linearly viscous (Truesdell and Noll, 1965).

In Chapter 2, we represented motion of the material point X by the mapping

x = χ (X, t), (2.1)



394 10 / Lubrication with Non-Newtonian Fluids

Figure 10.2. Dimensionless pressure versus dimensionless position for parabolic slider H =
1 + 10.4(x1 − 5)2 lubricated by power law fluid. (Reprinted with permission from Johnson,
M. W. and Mangkoesoebroto, S. Analysis of lubrication theory for the power law fluid. ASME
Journal of Tribology, 115, 71–77, 1993.)

where x is the place occupied by X at time t. We can also define the motion of a neighborhood
of X, relative to X, with the help of Eq. (2.1) by the Taylor series expansion

x(X̂, t) = x(X, t) + ∇χ (X̂ − X) + · · · (10.13a)

where X̂ is an arbitrary point in the neighborhood. There is a large class of engineering
materials that possess no microstructure, called simple materials by Noll, for which the
expansion in Eq. (10.13a) can be terminated after the linear term. For simple materials we
write

dx = FdX, (10.13b)

where F = ∇χ is the deformation gradient, and postulate that stress at a point depends
on the deformation of the neighborhood of that point. But to account for memory effects,
we consider the whole past history of deformation rather than just its current value. For an
incompressible simple fluid, therefore, our constitutive equation is

T + p I = �t
s=−∞ (F(s)). (10.14)

Here F (s) ,−∞ = s ≤ t, is the history of deformation, up to the present time t, and �

represents some tensor valued functional of this history. Equation (10.14) expresses the
postulate that in a simple fluid, stress at a material point X and time t depends on the past
deformation of the neighborhood of that material point.3

As it stands, Eq. (10.14) is far too general, however, to be of practical use. The question
is, how to proceed? There have been, in the past, two methods of attack:

(1) Specialize the motion to a class of motions such that memory is given little
opportunity to make itself felt. Such specialization leads to viscometric flows
(Tanner, 1985), solution of special problems is possible.

3The Newtonian constitutive equation is obtained from Eq. (10.14) by setting

�t−∞(F(s)) = −μ d
ds

[F(s) + F(s)T ] |s=0 = 2μD.
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(2) Specialize the material by specializing the constitutive equation (10.14). The
question is, how to handle memory dependence?

We shall follow the second of these alternatives but, for starters, restrict fluid memory to
an arbitrary short interval. Making this interval infinitesimal, we obtain a class of fluids for
which the history of motion prior to an infinitesimal time is irrelevant in determining the
stress.

The most important of the fluids with infinitesimal memory are fluids of the differential
type, those in which the stress at X is determined by the first n material derivatives of the
deformation gradient F

T + p1 = f (Ḟ, F̈ · · · , F(n−1), F(n)). (10.15a)

By requiring frame indifference, it can be shown that Eq. (10.15a) must be of the form

T + p1 = f (A(1), A(2), . . . , A(n)). (10.15b)

Here the A(k) are the coefficients in the Taylor expansion

C t (t ′) = FTt (t ′)Ft (t ′) = 1 − A(1)(t − t ′) + 1

2!
A(2)(t − t ′)2 + · · ·

and are defined through the recurrence formula

A(n+1) = d

dt
A(n) + LT A(n) + A(n) L, (10.16)

where

A(1) ≡ D = 1

2
(L + LT ).

L is the velocity gradient tensor, Eq. (2.30), d/dt represents material derivative, Eq. (2.9),
and the A(k) are the Rivlin-Ericksen tensors. The tensor C t (t ′) is the relative strain tensor,
and Ft(t′) is the relative deformation gradient.

The principle of material frame indifference, more specifically the requirement that
the constitutive equation be frame indifferent, dictates that f in Eq. (10.15) must be an
isotropic function, Eq. (2.45). But isotropic functions of symmetric tensors have polynomial
representation (Truesdell and Noll, 1965). As an example, an isotropic function of the first
two Rivlin-Ericksen tensors A(1) and A(2) can be written as

T + p1 = f (A(1), A(2))

= α1 A(1) + α2 A(2) + α3 A2
(1) + α4

(
A(1) A(2) + A(2) A(1)

)+ α5 A2
(2)

+ α6
(

A2
(1) A(2) + A(2) A2

(1)

)+ α7
(

A(1) A2
(2) + A2

(2) A(1)
)

+ α8
(

A2
(1) A2

(2) + A2
(2) A2

(1)

)
, (10.17)

where the αi’s depend on the basic invariants of A1 and A2. Equation (10.17) defines the
Rivlin-Ericksen fluid of complexity 2.

The constitutive relation (10.15b) of a fluid of complexity n includes the first n Rivlin-
Ericksen tensors A(1), . . . , A(n). Thus the fluid of complexity 1, from Eq. (10.17), is

T + p1 = α1 A(1) + α3 A2
(1). (10.18)
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We introduce now the concept of slow, or retarded, motion. If χ (X, t) is a motion, the
corresponding retarded motion is defined as

retχ (X, t) ≡ χ (X, rt), 0 < r < 1. (10.19a)

If the motion χ(X, t) carries particle X into spatial position x at time t, the retarded motion
ret χ(X, t) will carry the same particle into x at the later time t̂ = t/r . The smaller the value
of r, the slower is the motion. It can be shown that

ret A(n) = rnA(n), (10.19b)

so the fluid of complexity 1 in retarded motion is

T = −p1 + α1rA(1) + α3r
2 A2

(1). (10.19c)

The fluid of grade 1 is, by definition, of degree 1 in r. Thus the fluid of grade 1 is, from
Eq. (10.19c),

T = −p1 + μA(1). (10.20a)

This is a Newtonian fluid [as A(1) = D] if μ = const.
The grade two fluid has constitutive equation

T = −p1 + μA(1) + α1 A(2) + α2 A2
(1). (10.20b)

We can attach meaning to the concept of complexity and grade as follows: The lower the
complexity, the lower the order of velocity derivatives that are used to determine the stress.
The lower the grade, the slower is the motion that can be adequately described by the
constitutive equation.

When a fluid of the differential type is used in journal bearings for which the Deborah
number is O(10–3), it is impossible to distinguish between two fluids having both complexity
n > 3 and degree d > 1. Moreover, all phenomenological functions will depend on the
trace, tr(A2

(1)) (Bourgin, 1979).

Lubrication with a Third Grade Fluid

The Cauchy stress, T, in an incompressible homogeneous fluid of third grade is
related to the fluid motion in the following manner (Truesdell and Noll, 1965).

T = −p1 + μA(1) + α1 A(2) + α2 A2
(1) + β1 A(3)

+β2
[

A(1) A(2) + A(2) A(1)
]+ β3

(
trA2

(1)

)
A(1). (10.21)

The thermodynamics and stability of a fluid modeled by Eq. (10.21) have been studied in
detail by Rajagopal and Fosdick (1980). They find that if all motions of the fluid are to be
compatible with thermodynamics, then the following restrictions apply:

μ ≥ 0, |α1 + α2| <
√

24μβ3, α1 ≥ 0,

β1 = β2 = 0 and β3 ≥ 0.

Thus, in the case of a thermodynamically compatible fluid of grade three, the stress consti-
tutive equation takes the simplified form

T = −p1 + μA(1) + α1 A(2) + α2 A2
(1) + β3

(
trA2

(1)

)
A(1). (10.22)



10.1 / Hydrodynamic Lubrication 397

Note that if the material constants α1 and α2 are zero, then

T = −p1 +
(
μ+ β3trA2

(1)

)
A(1). (10.23)

The above model is a special fluid of complexity 1 (Truesdell and Noll, 1965) and in a
sense can be thought of as a type of power law model, for in a simple shear flow the shear
stress, τ , is related to the velocity gradient, ∂u/∂y, by

τ =
[
μ+ β3

(
∂u

∂y

)2
]
∂u

∂y
. (10.24)

Models of the type in Eq. (10.24) have been studied by Bourgin and Gay (1983) within
the context of flows in journal bearings. Ng and Saibel (1962) have used the model (10.24)
to study the flow occurring in a slider bearing [cf. Eq. (10.1)]. They, however, assumed
the coefficient that corresponds to β3 in our model to be negative. The power law model
used by Buckholtz (1985) would reduce to Eq. (10.24) if the parameter N of his model
was made equal to 3. The model (10.24) includes the classical linearly viscous fluid, the
incompressible homogeneous fluid of second grade, a subclass of the fluids of complexity
1, and several other models that have been used in lubrication as special cases.

On substituting Eq. (10.24) into the balance of linear momentum

div T + ρb = ρ dv
dt
, (2.27a)

we obtain the following equations of motion (Rajagopal and Fosdick, 1980):

μ
v + α1(
ω × v) + α1(
v)t + (α1 + α2){A(1)
v + 2div[(grad v)(grad v)T ]}
+ β3 A(1)

(
grad|A(1)|2

)+ β3|A(1)|2
v + ρb − ρvt − ρ(ω × v) = gradP (10.25)

where

P = p − α1v ·
v − 1

4
(2α1 + α2) |A(1)|2 + 1

2
ρ|v|2.

In the above equation, 
 denotes the Laplacian, (·)t the partial derivative of the quantity
within the parentheses with respect to time, and |v| and |A(1)| the inner product norm and
the trace norm of v, and A(1) respectively.

When

v = u(x, y)i + v(x, y) j

for two-dimensional flow is substituted into Eq. (10.25), the equations are made nondimen-
sional in accordance with Eq. (2.58) and terms of order (Ly/Lxz)2 and higher are neglected,
we arrive at (Kacou, Rajagopal, Szeri, 1987)

∂2ū

∂ȳ2
+ α1U

μR

{
∂ū

∂x̄

∂2ū

∂ȳ2
+ v̄ ∂

3ū

∂ȳ3
+ ū ∂3ū

∂ȳ2∂x̄
+ 3

∂ū

∂ȳ

∂2ū

∂ȳ∂x̄

}

+ 6
β3U

2

μ

1

C2

(
∂ū

∂ȳ

)2
d2ū

dȳ2
= ∂P̄

∂x̄
, (10.26)

4
α1U

μR

∂ū

∂ȳ

∂2ū

∂ȳ2
= ∂P̄

∂ȳ
. (10.27)
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Defining a modified scalar field p̄∗ through

p̄∗ = P̄ − 2
α1U

μR

(
∂ū

∂y

)2

,

we can rewrite Eqs. (10.26) and (10.27) as

∂2ū

∂ȳ2
+ γ

{
∂ū

∂x̄

∂2ū

∂ȳ2
+ v̄ ∂

3ū

∂ȳ3
+ ū ∂3ū

∂ȳ2∂x̄
+ ∂ū

∂ȳ

∂2v̄

∂ȳ2

}
+ δ

(
∂ū

∂ȳ

)2
d2ū

∂ȳ2
= ∂p̄∗

∂x̄
. (10.28)

0 = ∂p̄∗

∂ȳ
. (10.29)

In the above equations, the nondimensional parameters

α1U

μR
≡ γ and

β3U
2

μC2
≡ δ.

are measures of the non-Newtonian nature of the fluid. Notice that the nondimensional
parameter, γ , can be expressed as the ratio of the nondimensional numbers Re, �, and
(R/C) as

γ = Re

�

(
R

C

)
,

where

Re ≡ ρUC

μ
and � ≡ ρR2

α1
.

The nondimensional number, �, (Fosdick and Rajagopal, 1978) is referred to as the absorp-
tion number. Truesdell (1964) recognized that the term involving α1 controls the diffusion
of vorticity from a boundary. δ is a measure of the ratio of the non-Newtonian shear stress
to that of the Newtonian shear stress. It follows from Eqs. (10.28) and (10.29) that

p̄∗ = p̄∗ (x) ,

and thus the modified pressure p̄∗ does not vary across the film thickness.
Introducing the stream function ψ̄ (x̄, ȳ) through

ū = ∂ψ̄

∂ȳ
, v̄ = ∂ψ̄

∂x̄
, (10.30)

we can express Eq. (10.28) as4

∂4ψ̄

∂ȳ4
+ γ

{
−∂ψ̄
∂x̄

∂5ψ̄

∂ȳ5
+ ∂ψ̄

∂ȳ

∂5ψ̄

∂x̄ ∂ȳ4

}

+ δ

{
2
∂2ψ̄

∂ȳ2

(
∂3ψ̄

∂ȳ3

)2

+
(
∂2ψ̄

∂ȳ2

)2
d4ψ̄

∂ȳ4

}
= 0. (10.31)

4Equation (10.31) is of higher order than the corresponding equation for the classical linearly viscous
fluid, when γ �= 0. We thus need additional boundary conditions to solve the problem. We overcome
the paucity of boundary conditions by resorting to regular perturbation, although the problem is one
of singular perturbation.
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We shall assume that the stream function, ψ̄ , the pressure, p̄∗, and the flow rate, Q̄ ≡
Q/CU , can all be expanded in power series in γ and δ. For the sake of convenience, we
shall drop the bars that appear in the nondimensional terms.

Let

ψ =
∞∑
m=0

∞∑
n=0

γ nδmψnm (x, y),

p∗ =
∞∑
m=0

∞∑
n=0

γ nδmPnm (x, y),
(10.32)

Q =
∞∑
m=0

∞∑
n=0

γ nδmQnm (x, y).

Substituting Eq. (10.32) into Eq. (10.31) and equating like powers, we obtain the following
system of differential equations (first three equations are shown):

n = 0, m = 0:

∂4ψ00

∂y4
= 0, (10.33a)

n = 1, m = 0:

∂4ψ10

∂y4
= ∂ψ00

∂x

∂5ψ00

∂y5
− ∂ψ00

∂y

∂5ψ00

∂x ∂y4
, (10.33b)

n = 0, m = 1:

∂4ψ01

∂y4
= −2

∂2ψ00

∂y2

(
∂3ψ00

∂y3

)2

−
(
∂2ψ00

∂y2

)(
∂4ψ00

∂y4

)
. (10.33c)

Although these equations are linear if solved sequentially, they are rapidly becoming
cumbersome as n, m increase (Kacou, Rajagopal, and Szeri, 1987).

The boundary conditions that accompany Eqs. (10.33) are

ψnm = 0
∂ψnm

∂y
= 0

}
n,m = 0, 1, 2, . . . , at y = 0, (10.34a)

ψnm = Qnm
∂ψnm

∂y
=
{

1, n = m = 0
0, n,m = 1, 2, . . .

⎫⎪⎬
⎪⎭ n,m = 0, 1, 2, . . . at y = H. (10.34b)

The zeroth-order perturbation corresponds to the Newtonian case. It is trivial to show that
the solution is

n = 0, m = 0:

ψ00 = 1

6

dP00

dx

(
y3 − 3

2
Hy2

)
+ 1

2

y2

H
. (10.35a)



400 10 / Lubrication with Non-Newtonian Fluids

The pressure, P00, can be obtained in the standard manner as is done in classical lubrication
theory:

P00(x) = 6ε sin x(2 + ε cos x)

(2 + ε2)(1 + ε cos x)2
. (10.35b)

Proceeding in a manner identical to that used for determining P00 in classical lubrication
theory, we can show that

n = 1, m = 0:

d2P10

dx2
+ 3

H

dH

dx

dP10

dx
+
(
dP00

dx

)2 (
dH

dx

)2

− 4

H 3

d2H

dx2
− H

2

(
dP00

dx

)2
d2H

dx2

− 9

H 2

(
dH

dx

)2
∂P00

dx
+ 3

H

d2H

dx2

dP00

dx
+ 18

H 4

(
dH

dx

)2

= 0, (10.36)

n = 0, m = 1:

d2P01

dx2
+ 3

H

dH

dx

dP01

dx
+ H

5

dH

dx

(
dP00

dx

)3

− 9

10H

dH

dx

(
dP00

dx

)2

+ 2

H 3

dH

dx

dP00

dx
− 6

H 5

dH

dx
= 0. (10.37)

We are now in a position to determine the pressure up to first-order,

p∗ = P00 + γP01 + δP10 +O (γ δ) . (10.38)

The first-order correction, P10, is plotted in Figure 10.3; this profile is very close to the one
calculated by Harnoy and Philippoff (1976) for a second-grade fluid, using results due to
Giesekus and Tanner. In Figure 10.4, we plot pressure distribution at γ = 0.75 for various
values of δ.

It is fairly clear that viscoelastic effects are not significant at small values of the Deborah
number in steady flow. If, however, �∗> 1, anomalous resonance effects might occur.
There is virtually no information on viscoelastic effects in the flow regime �∗ ∼ Rε > 1.
Here inertia effects might interact nonlinearly with viscoelastic effects, leading to changed
bearing performance.

Among the many models that have been proposed in the literature to describe non-
Newtonian fluid behavior at arbitrary De, one that has gained considerable attention is the
K-BKZ fluid model (Kay, 1962; Bernstein, Kearsley, and Zapas, 1963). The model has
been shown to be consistent with statistical modeling of polymeric fluids. It might, thus,
be applicable when investigating process fluid lubrication. K-BKZ fluids have memory and
are represented by integral constitutive equations. Because of their memory, K-BKZ fluids
might show significant departure from Newtonian fluids in squeeze film applications. Little
information is available currently on numerical simulation of fluids with finite memory
at high shear rates, but initial studies on special simple integral constitutive models have
already provided interesting information regarding the structure of the boundary layer.
There is much work to be done here by both the rheologist and the numerical analyst. The
properties and predictive capabilities of some non-Newtonian fluids are tabulated by Tanner
(1985).
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Figure 10.3. Pressure correction P01 in a journal bearing lubricated by a fluid of grade three
(——, ε = 0.2; – – –, ε = 0.4; – · –, ε = 0.6; . . . , ε = 0.8). (Reprinted with permission from
Kacou, A., Rajagopal, K. R. and Szeri, A. Z. Flow of a fluid of the differential type in a journal
bearing. ASME Journal of Tribology, 109, 100–108, 1987.)

Figure 10.4. Pressure distribution for γ = 0.75 (– –, Newtonian; – · –, γ = 0, δ = 0.01; – • –,
γ = 0, δ = 0.02; . . . . , γ = 0, δ = 0.04). (Reprinted with permission from Kacou, A.,
Rajagopal, K. R. and Szeri, A. Z. Flow of a fluid of the differential type in a journal bearing.
ASME Journal of Tribology, 109, 100–108, 1987.)
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Figure 10.5. Typical traction curves measured on a two disk machine in line contact (p: x,
1.03 GPa; 
, 0.68 GPa; �, 0.5 GPa; ◦, 0.4 GPa). (Reprinted by permission of the Council of
the Institution of Mechanical Engineers from Johnson, K. L. and Cameron, R. 1967. Shear
behavior of EHD oil films. Proc. Inst. Mech. Eng., 182, 307, 1967.)

10.2 Elastohydrodynamic Lubrication

In discussing the various regimes of lubricant behavior in EHD contacts, we refer
to Figure 10.5, where the coefficient of friction is plotted against the ratio of sliding speed to
rolling speed for a two-disk machine (Johnson and Cameron, 1967). Under the conditions
of the experiment, the ordinate is proportional to shear stress, τ , and the abscissa to shear
rate, γ̇ . The various curves are drawn for various constant Hertzian pressure. Each of these
curves is seen to have a linear portion, τ ∝ γ̇ , where the fluid is essentially Newtonian. For
large p, the region of this type of behavior is limited to very small values of γ̇ . At larger
strain rate, the lubricant exhibits nonlinear, shear thinning behavior, though it may still be
treated by isothermal theories. At still larger strain rate, the lubricant enters the zone of
predominant thermal effects. Here the shear stress shows a slight decrease with increasing
strain rate (Johnson and Tevaarwerk, 1977).

The principal features of EHD contacts, such as the sudden contraction of the film or
the existence of the second pressure peak, remain largely unchanged by thermal effects
if the maximum Hertzian load p < 0.5 GPa. If, on the other hand, as it is in practice,
p> 0.5 GPa, then thermal effects are so severe that lubricant behavior departs significantly
from the linear. In these cases traction forces calculated on the assumption of a Newtonian
lubricant are an order of magnitude larger than found experimentally.

There have been several theories put forth to explain and model traction in the nonlinear
region. Fein (1967) and Harrison and Trachman (1972) suggested that the fluid, during
its brief stay in the contact zone, would not have time to assume equilibrium values of
density, viscosity, and shear modulus. Dyson (1970) suggested that the apparent decrease
of viscosity in steady, continuous shear of a linearly viscoelastic fluid can be used to model
the nonlinear part of the traction curve. An alternative explanation, that the shear stress-
shear rate is nonlinear for the lubricant, was offered by Trachman and Cheng (1972). Smith
(1962) proposed that in the high-pressure contact zone the lubricant was shearing like a
plastic solid.
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Constitutive Models

The Maxwell fluid, as shown in Figure 10.6, consists of a spring and a dashpot con-
nected in series. The model represents a fluid because the flow in the dashpot will continue
as long as force is applied. A sudden change in loading, however, will be accompanied by
an instantaneous elastic response due to the spring. To derive the constitutive equation for
this fluid, we note that the spring and the dashpot are subjected to the same force τ ,

τ = GγE, τ = μγ̇ν, (10.39a)

where G is the elastic modulus in shear and μ is the viscosity, while the total deformation
γ is the sum of the deformations γE and γν in the spring and the dashpot, respectively,

γ̇ = γ̇E + γ̇ν
= 1

G
τ̇ + 1

μ
τ. (10.39b)

For the integral counterpart of Eq. (10.39b), see Tanner (1985).

Figure 10.6. Maxwell’s constitutive model for a linearly viscoelastic fluid.

Experimental data of common lubricants display viscoelastic effects in the linear, small
strain rate region of the traction curve (Figure 10.5), such as might be described by
Eq. (10.39b), but show nonlinearity in the large strain rate region. To reconcile Eq. (10.39)
with both types of fluid response, Johnson and Tevaarwerk (1976) proposed a nonlinear
version of Eq. (10.39b),

γ̇ = 1

G
τ̇ + F (τ ), (10.40)

requiring the nonlinear function F(τ ) to reduce to τ/μ for small τ . They also generalized
Eq. (10.40) to three dimensions by changing the argument of F to the von Mises equivalent
stress

τe =
√

1

2
τij τij ,

replacing γ̇ with the stretching tensor Dij and τ with the shear stress tensor τij = Tij + pδij .
This generalized form is

2Dij = 1

G

dτij

dt
+ τij

τe
F (τe). (10.41)

When applying Eq. (10.41) to situations in which the deformations are large, Tevaarwerk
and Johnson (1975) recommend using the “convected time derivative,” a kind of total
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derivative that introduces no dependence on a fixed reference frame (Tanner, 1985). But,
provided that the recoverable elastic strain τ e/G remains small, the error introduced by
employing time derivative of the stress in place of its “convected” derivative are small,
of order (τ e/G)2. Tichy (1996), nevertheless, employs the convected Maxwell model in a
perturbation analysis in which the Deborah number is the small parameter.

Johnson and Tevaarwerk (1977) used the Eyring hyperbolic sine as the viscous element,
as this gave best fit to experimental data. At the same time, it has its roots in molecular
theory. The rheological equation proposed by them is

2Dij = 1

G

dτij

dt
+ τij

τe

τ0

μ
sinh

(
τe

τ0

)
. (10.42)

Here the representative stress, τ 0, is a measure of the stress above which the behavior
becomes appreciably nonlinear. For τ e � τ 0, Eq. (10.42) reduces to the linear Maxwell
model. This rheological model, Eq. (10.42), was later extended by Houpert (1985) to
include thermal effects.

Bair and Winer (1979) modified the Maxwell model by including a limiting shear stress.
In earlier rheological models, measurements of contact behavior had to be made in order
to predict contact behavior. In the Bair-Winer model, which shows good agreement with
experiments, material constants, viz., the low shear stress viscosity μ0, the limiting elastic
shear modulus G∞, and the limiting yield shear stress τL, are all derived from sources
other than EHD contact measurements and are functions of pressure and temperature. The
Bair-Winer equation relating stress to motion (in one dimension) in the lubricant is5

γ̇ = γ̇e + γ̇ν = 1

G∞

dτ

dt
− τL

μ0
tanh−1

(
τ

τL

)
. (10.43)

If the limiting shear stress is very large, then Eq. (10.43) reduces to the classical Maxwell
model. If, on the other hand, (1/G∞) → 0, the limiting case of viscoelastic behavior, the
model behaves fluid like

γ̇ = − τL
μ0

tanh−1

(
τ

τL

)
. (10.44)

Equation (10.43) can be written in the nondimensional form

μ0γ̇

τL
= De

∂τ̄

∂t̄
+ F (τ̄ ), (10.45)

where τ̄ = τ/τL andDe = μU/Gl. IfDe → 0, signifying absence of viscoelastic effects,
Eq. (10.44) results.

There is another factor to consider, solidification of the lubricant. Experiments show
that for the synthetic lubricant 5P4E, the glass transition pressure is ∼160 MPa at room
temperature. Experimentation is very critical near glass transition to guide modeling. In the
pressure-shear plate impact experiments of Zang (1995) and Zhang and Ramesh (1996), a
projectile carrying a 2-inches diameter plate is accelerated down the barrel of a light gas gun

5Originally, Bair and Winer specified logarithmic dependence for the nonlinear viscous shear term; this
was changed later to the tangent hyperbolic function, as the former is not antisymmetric with respect
to zero stress. Najji et al. (1989) offer a slight modification of Eq. (10.43) by writing it in terms of
the equivalent stress, τe; this, or another stress norm, must be used if extension to three dimensions is
required. See also Bair and Winer (1992).
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Figure 10.7. Schematic of the pressure-plate impact experiment. (Reprinted with permission
from Zang, Y. and Ramesh, K. T. The behavior of an elastohydrodynamic lubricant at moderate
pressures and high shear rates. ASME Journal of Tribology, 118, 162–168, 1996.)

and hits a parallel stationary target. On impact, the normal wave arrives first at the sample
and compresses it. The compressed lubricant is then subjected to a shearing deformation.
A schematic of the arrangement is shown in Figure 10.7.

In Figure 10.8, the dimensionless shear stress is plotted against the dimensionless shear
rate for two lubricants, Santotrac 50 and 5P4E. The limiting shear τL is almost independent
of shear rate in the relatively high shear rate regime (γ̇ > 103 s–1), as indicated in Fig-
ure 10.8, but is dependent on pressure (Figure 10.9).

Glass transition, or more correctly liquid-solid transition, was first reported by Johnson
and Roberts (1974). The critical pressure at which glass transition occurs is strongly
temperature dependent, as was first shown by Johnson and Roberts (1974), Alsaad et al.
(1978), and Bair and Winer (1979). Several sets of data are shown in Figure 10.10.

Figure 10.8. Dimensionless shear stress versus dimensionless shear rate. (Reprinted with
permission from Bair, S. and Winer, W. O. A rheological model for elastohydrodynamical
contacts. ASME Journal of Lubrication Technology, 101, 248, 1979.)
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Figure 10.9. Variation of limiting shear with pressure. (Reprinted with permission from Zang,
Y. and Ramesh, K. T. The behavior of an elastohydrodynamic lubricant at moderate pressures
and high shear rates. ASME Journal of Tribology, 118, 162–168, 1996.)

A Generalized non-Newtonian Reynolds Equation for EHL

Following on the work of Najji, Bou-Said, and Berthe (1989), Wolff and Kubo
(1996) derived a generalized non-Newtonian Reynolds equation for isothermal EHD line
contact. The basic equations that form the starting point of the analysis of Wolff and Kubo
are

∂p

∂x
= ∂τxy

∂y
,

∂p

∂y
= 0,

∂p

∂z
= ∂τzy

∂y
, (10.46)

∂ρ

∂t
+ div (ρv) = 0. (2.16a)

Figure 10.10. Comparison of four sets of liquid-solid transition data. (Reprinted with
permission from Bair, S. and Winer, W. O. A rheological model for elastohydrodynamical
contacts. ASME Journal of Lubrication Technology, 101, 248, 1979.)
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To take into account several types of rheological laws (Najji, Bou-Said, and Berthe, 1989;
Wolff and Kubo, 1996), we put

∂u

∂y
= Adτxy

dt
+ τxyF (τe) (10.47)

∂w

∂y
= Adτxy

dt
+ τzyF (τe), (10.48)

where τe = (τ 2
xy + τ 2

zy)
1/2, A = 1/G orA = 0 if fluid elasticity is ignored, and F(τe) rep-

resents the viscosity function.
Substituting Eq. (10.48) into Eq. (10.46), integrating twice with respect to y, and satis-

fying the no-slip boundary conditions

u = u1, v = v1, w = w1, for y = 0,
(10.49)

u = u2, v = v2, w = w2, for y = h,
yields the velocity distribution

u = ∂p

∂x

[∫ y

0
F (τe) y dy − f1

f0

∫ y

0
F (τe) dy

]
+ u2 − u1

f0

∫ y

0
F (τe) dy

+ u1 +
∫ y

0
A
dτxy

dt
dy − kx0

f0

∫ y

0
F (τe) dy, (10.50a)

w = ∂p

∂z

[∫ y

0
F (τe) y dy − f1

f0

∫ y

0
F (τe) dy

]
+ w2 − w1

f0

∫ y

0
F (τe) dy

+ w1 +
∫ y

0
A
dτzy

dt
dy − kz0

f0

∫ y

0
F (τe) dy. (10.50b)

The velocity gradients are obtained from Eqs. (10.50) by differentiation

∂u

∂y
= ∂p

∂x
F (τe)

(
y − f1

f0

)
+ u2 − u1

f0
F (τe) + Adτxy

dt
− kx0

f0
F (τe), (10.51a)

∂w

∂y
= ∂p

∂z
F (τe)

(
y − f1

f0

)
+ w2 − w1

f0
F (τe) + Adτzy

dt
− kz0

f0
F (τe), (10.51b)

where

kx0 =
∫ h

0
A
dτxy

dt
dy,

kz0 =
∫ h

0
A
dτzy

dt
dy,

f0 =
∫ h

0
F (τe) dy,

f1 =
∫ h

0
F (τe) y dy,
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From here on, the analysis follows that of Reynolds. We substitute Eqs. (10.50) into the
equation of continuity and integrate across the film, as in Eq. (2.68), to obtain

∂

∂x

[
m2
∂p

∂x

]
+ ∂

∂z

[
m2
∂p

∂z

]

= h
[
∂(ρ2u2)

∂x
+ ∂(ρ2v2)

∂z

]
− ∂

∂x

[
(u1 − u2)

m1

f0
+ u2ρ2h− u1m3

]

− ∂

∂z

[
(w1 − w2)

m1

f0
+ w2ρ2h− w1m3

]
− ∂

∂x
[mx4]

− ∂

∂z
[mz4] +

∫ h

0

∂ρ

∂t
dy + ρ2v2 − ρ1v1, (10.52)

where

m1 =
∫ h

0

(
ρ

∫ y

0
F (τe) dŷ

)
dy,

m2 = f1m1

f0
−
∫ h

0

(
ρ

∫ y

0
F (τe)ŷdŷ

)
dy,

m3 =
∫ h

0
ρdy,

mx4 = kx0m1

f0
−
∫ h

0

(
ρ

∫ y

0
A
dτxy

dt
dŷ

)
dy,

mz4 = kz0m1

f0
−
∫ h

0

(
ρ

∫ z

0
A
dτzy

dt
dŷ

)
dy.

Equation (10.52) is the generalized Reynolds equations of Wolff and Kubo (1996) for
elastoviscoplastic lubrication. For viscoplastic fluids A = 0, therefore mx4 and mz4, vanish.
If the viscosity function F (τe) = 1/μ and A = 0, Eq. (10.52) reduces to the form proposed
by Fowles (1970). If in addition to A = 0 and F (τe) = 1/μ we also specify μ, ρ = const,
Eq. (10.52) reduce to Eq. (2.70). Equation (10.52) was first derived for ρ = const. by Najji,
Bou-Said, and Berthe (1989).

For the two-dimensional flow in a line contact, we set

∂(·)
∂z

= 0, w1 = w2 = 0, τxy = τe = τ,

v1 = 0, v2 = u2
∂h

∂x
,

dτ

dt
= u∂τ

∂x
,

and Eq. (10.51) reduces to

∂

∂x

[
m2
dp

∂x

]
= u1

∂

∂x
[m3] + (u2 − u1)

∂

∂x

[
m1

f0

]
− ∂

∂x
[m4]. (10.53)
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Equation (10.53) is to be solved subject to the Swift-Stieber boundary conditions

p = 0 at x = xmin,
(8.60)

p = dp

dx
= 0 at x = xmax.

We may now use Eq. (10.53) in place of Eq. (8.50) in a scheme to solve the EHD
lubrication problem, but for one circumstance, Eq. (10.53) contains a yet undetermined
shear stress field. We thus need one additional equation.

To find the required additional equation, we reconsider the first of Eqs. (10.46). As p =
p(x), to the approximation employed dp/dx is independent of y and so is ∂τxy/∂y. But then
τxy is linear in y at any x. It is, therefore, enough to evaluate τxy at y = 0 and y = h and the
shear-stress distribution is known.

Evaluating Eq. (10.50a) at y = 0, u = 0 yields an equation in τxy(x, 0). An equation in
τxy(x, h) is obtained when Eq. (10.50a) is evaluated at y = h, u = U. It is a simple matter
then to find the shear-stress distribution from

τxy = τ (x, 0) + [τ (x, h) − τ (x, 0)]
y

h
. (10.54)

In their calculations for the line contact, Wolff and Kubo (1996) considered the following
nonlinear rheological models:

(1) The nonlinear viscous Eyring model (Eyring, 1936),

F(τ ) = τE

τμ
sinh(τ/τE); (10.55a)

(2) The nonlinear viscoplastic-like model (Bair and Winer, 1979),

F(τ ) = − τL
τμ

ln(1 − τ/τL); (10.55b)

(3) The nonlinear viscoplastic-like model, also called the simplified Bair and Winer
model,

F(τ ) = − 1

μ
(1− |τ/τL|)−1 ; and (10.55c)

(4) The nonlinear viscoplastic-like (circular) model, Lee and Hamrock (1990),

F(τ ) = 1

μ
[1 − (τ/τL)2]−1/2. (10.55d)

If the coefficient Ā �= 0, the elastic term can be added to any of these models.
The limiting shear stress was assumed to be linearly dependent on the pressure,

τL = τL0 + γp. (10.56)

Wolff and Kubo performed two sets of calculations, one with Santotrac 50 and the other
with a P-150 oil.

Figure 10.11 shows the variation of shear stress for several rheological models in
Santotrac. The traction coefficient for Santotrac is shown in Figure 10.12. Under pure
rolling conditions there is a very small difference in the pressure distribution and the film
shape predicted by the Newtonian and the Eyring models, as shown in Figure 10.13.
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Figure 10.11. Dimensionless shear stress for Santotrac 50 oil; W = 2.1 × 10–5, U = 10–11,
S = 0.5. (Reprinted with permission from Wolff, R. and Kubo, A. A generalized
non-Newtonian fluid model incorporated into elastohydrodynamic lubrication. ASME Journal
of Tribology, 118, 74–82, 1996.)

Figure 10.12. Traction coefficient for Santotrac 50 oil, W = 2.1 × 10–5. (Reprinted with
permission from Wolff, R. and Kubo, A. A generalized non-Newtonian fluid model
incorporated into elastohydrodynamic lubrication. ASME Journal of Tribology, 118, 74–82,
1996.)

Figure 10.13. Film shape and pressure distribution for Santotrac 50 oil, W = 8.4 × 10–5,
U = 10–11. (Reprinted with permission from Wolff, R. and Kubo, A. A generalized
non-Newtonian fluid model incorporated into elastohydrodynamic lubrication. ASME Journal
of Tribology, 118, 74–82, 1996.)
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We close this section by quoting the conclusions from Wolff and Kubo’s (1966) paper:

(1) Under low load and high rolling velocity conditions the thermal effects caused by
high slip have a greater influence on the film shape and pressure distribution than
the non-Newtonian effects.

(2) In the low slip range and under moderate and heavy loads the non-Newtonian
behavior of an oil has a decisive influence on the traction coefficient, while in the
high slip range, the thermal effects may become more important. The influence of
the non-Newtonian effects on the traction (in the low slip range) is stronger under
heavy load conditions and for high viscosity oils.

(3) For high viscosity oils subjected to heavy load conditions, the nonlinear viscous
Eyring model tends to overestimate the traction coefficient.

(4) The viscoplastic models give reasonable traction values over a wide range of loads,
slips, and oil viscosity values. The elastic behavior of a lubricant is important only
under very low slip conditions. It reduces the traction value, particularly under
heavy loads.

(5) In order to predict the traction coefficient over a wide range of parameters, the
EHL model has to include not only the non-Newtonian behavior of a lubricant but
also the thermal effects. It should also use a proper viscosity formula that fits the
measured viscosity well over a wide range of pressure and temperature.

10.3 Quantitative Elastohydrodynamic Lubrication (EHL)

A Letter to the Editor of the “Journal of Engineering Tribology” by six well-known
researchers of elastohydrodynamic lubrication remarks that “in most EHL papers viscosity
has been treated as an adjustable fitting parameter so that numerical simulations will be
stable and the outcome can be matched to experimental measurements of contact behavior”
(Bair et al., 2009). It is then recommended that this practice be abandoned, as it has not
been able to significantly advance lubricant characterization during the past three decades,
and that “accurately measured ” viscosities should be used in all future EHL studies. They
label their approach to EHL modeling “quantitative.”

Past approaches to EHL relied on the Dowson-Higginson “equation of state” (8.52.b)
for calculating changes in lubricant density and on the Roeland correlation of viscosity with
pressure and temperature (8.52a) to characterize viscosity changes. Papers in quantitative
EHL, in contrast, rely on lubricant characterization that was obtained extraneous to EHL
research: free-volume approach to characterize changes in viscosity and Tait’s equation of
state to compute variation in density.

The idea that the viscosity of a liquid should depend on the relative volume of molecules
per unit of free space is a concept that can be traced to the early part of the last century. But
it was Doolittle (1951) who gave the first usable formula for viscosity of liquids in terms
of relative free space

lnμ = B
(v0

vf

)
+ lnA.

Free space vf = v − v0 is defined here as increase of volume resulting from thermal
expansion but without phase change, v0 is the specific volume of the liquid extrapolated to
zero temperature and v is its volume under experimental conditions. For a single substance
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A and B are constants, they are determined by curve fitting to experimental data. To employ
the Doolittle formula the value of v0 is required.

Up until publication of Doolittle’s paper the most reliable method for determining the
density (reciprocal of the specific volume) of liquids was by Goldhammer’s rule

ρl − ρv = C(Tc − T )1/3,

where ρl is density of liquid phase, ρv is density of vapor phase, T is the absolute
temperature at measurement, and Tc is the critical temperature of the substance under
investigation. While experimenting with normal liquid paraffins, Doolittle discovered a
more accurate estimate; at given temperature the logarithm of the specific volume plotted
against the reciprocal of the molecular weight gave a straight line

ln(1/ρ) = a/m+ b.
Here m is the molecular weight and a, b are temperature dependent constants.

Cohen and Turnbull (1959) succeeded in putting Doolittle’s formula, which is purely
empirical, on a theoretical basis, and Cook et al. (1993) extended it to

lnμ = Bv∞
v0

⎡
⎢⎣ 1

v
v0

− v∞
v0

− 1

1 − v∞
v0

⎤
⎥⎦ + lnμ0. (10.57)

In this version of the viscosity-free volume relationshipμ0 and v0 are viscosity and volume,
respectively, at ambient pressure while v∞ and B are fitting parameters, v∞ being the
volume at infinite viscosity. In lubrication literature, in contrast, B and v∞/v0 are the
fitting parameters, the latter often denoted by the symbol vocc/v0 (Bair et al., 2005; Liu
et al., 2006). Equation (10.57) is referred to as the Doolittle free-volume model for viscosity.
The quality of correlation by (10.57) can be gauged from Figure 10.14, which displays
viscosity-pressure data for three substances, glycerol, 1,2-propanediol and 1-propanol.

The change in volume required in (10.57) is computed from the Tait equation of state
(Dymond and Malhotra, 1988), dating from 1888,

v
v0

= 1 − c ln

(
b + p
b + p0

)
.

The constants b and c are obtained by fitting to v − p data; they are related to the bulk
modulusK0 and its derivative with pressureK ′

0 (Cook et al., 1993). In lubrication literature
the Tait equation is often written in terms of the latter two quantities, which then take up
the role of fitting parameters (Bair et al., 2009), and the equation assumes the form

v
v0

= 1 − 1

1 +K ′
0

ln

[
1 + p

K0

(
1 +K ′

0

)]
. (10.58)

Now v0 is the volume at p = 0 and the ambient temperature bulk modulus can be an expo-
nential in temperature K0 = K00 exp (−βKT ). The accuracy of representation by (10.58)
can be gauged from Figure 10.15, which shows the density-pressure correlation for a low
viscosity silicon oil; the same figure also contains data for a mineral oil, and the corre-
sponding Dowson-Higginson correlation.
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Figure 10.14. Viscosity-pressure correlation for three liquid carbon alcohols by the Doolittle
free-volume formula (Reprinted with permission from Cook, R. L., Herbst, C. A. and King,
H. E. 1993. High-pressure viscosity of glass-forming liquids measured by the centrifugal force
diamond anvil cell viscometer, J. Phys. Chem., 97, 2355–2361, Copyright (1993), American
Institute of Physics.)

An alternative free-volume model is due to Yasutomi et al. (1984)

lnμ = lnμg + −2.3C1(T − Tg)F
C2 + (T − Tg)F . (10.59)

This is a pressure modified Williams-Landel-Ferry free-volume equation (Williams
et al., 1995) where Tg is the glass formation temperature,

Tg = Tg0 + A1 ln (1 + A2p)

and

F = 1 − B1 ln(1 + B2p).

Figure 10.15. Density variation with pressure for various oils (Reprinted with permission from
Bair, S. Rheology and high-pressure models for quantitative elastohydrodynamics, Proc
IMechE Journal of Engineering Tribology, 223, 617–628, 2009, Professional Engineering
Publishing.)
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Figure 10.16. Experimental viscosity data for jet engine lubricant and the Yasutomi correlation
(Reprinted with permission from Bair, S. The variation of viscosity with temperature and
pressure for various real lubricants, ASME Journal of Tribology, 123, 433–436, 2001,
Professional Engineering Publishing.)

The Yasutomi model is able to reproduce the often observed inflection of the pressure-
viscosity plot. Figure 10.16 displays the Yasutomi correlation for an aircraft turbine lubri-
cant at various temperatures (Bair, 2000). The data is compiled from two different labora-
tories; the curves show the viscosity inflection at μ ∼ 10 Pa·s.

To illustrate the goodness of agreement between EHL experimental data and “qualitative”
numerical prediction, in Figure 10.17 we reproduce a plot for film profile for squalane from
Liu et al. (2006). For these calculations the parameters of the Doolittle-Tait free-volume
correlation are vocc/v0 = 0.6633, B = 5.258, K0 = 1.312, and K ′

0 = 11.74.

Figure 10.17. Comparison of simulation with experimental data at two speeds (With kind
permission from Springer Science & Business Media: Tribology Letters, EHL simulation using
the free-volume viscosity model, 23(1), 2006, 27–37, Liu, Y., Wang, Q. J., Wang, W., Hu, Y.,
Zhu, D., Krupka, I., Hartl, M. Fig. 4.)
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Figure 10.18. Viscosity versus scaling parameter for pressures and temperatures up to 1.4 GPa
and indicated temperatures, (Reproduced with permission from Bair, S. Rheology and
high-pressure models for quantitative elastohydrodynamics. Proc IMechE Journal of
Engineering Tribology, 223, 617–628, 2009, Professional Engineering Publishing.)

A new approach to temperature and pressure correlation has been advanced recently by
Bair and co-workers (Roland et al., 2006; Bair, 2009) in the formμ = F (Tvγ0 ). Figure 10.18
displays the variation of eight orders of magnitude of viscosity data of a certain jet oil with
the appropriate scaling parameter (T/T0)(v/v0)γ ; here the pressure varies to 1.4 GPa and
the temperature from 23◦C to 220◦C.

Habchi et al. (2009) take temperature and pressure dependence of lubricant thermal
properties into account, then investigate how variability of the thermal properties affects
conditions in an EHL contact. Instead of the Tait equation of state (10.58) they apply
Murnaghan’s temperature modified formulation (Murnaghan, 1944)

v
v0

=
[

1 + K ′
0

K0
p

](−1/K0)

where K0 and K ′
0 have their previous definition. They also use scaling factors κ and χ ,

respectively, in defining the variation of heat conductivity and specific heat on temperature
and pressure

k = B + Cκ−1; κ =
( v

v0

)[
1 + A

(
T

T0

)( v
v0

)3
]

ρcp = C0 +mχ ; χ =
(
T

TR

)( v
vR

)−4

Habchi and co-workers applied two loads corresponding to p = 0.84 GPa and p =
1.35 GPa. Under pure rolling, they found negligible difference in film thickness between
isothermal and non-isothermal conditions, as the rate of heat generation was relatively
small. Under sliding-rolling conditions, however, when the entrainment speed is large,
there is considerable heat generation that will affect lubricant thermal conditions, and now
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there are considerable differences between isothermal, non-isothermal but constant thermal
properties, and non-isothermal and variable thermal properties.

To model shear thinning in hydrodynamic lubrication, several authors make use of the
Carreau viscosity, which combines the two Newtonian viscosity regions, μ0 at low and μ∞
at high shear rates, with an intervening power-law region in the form

μ− μ∞ = (μ0 − μ∞)[1 + (λγ̇ )2](n−1)/2. (10.60)

In application, μ0 and μ∞ are usually known while λ and n are found from fitting to exper-
imental data (Tanner, 1988). In quantitative EHL, a modification of the Carreau equation is
often preferred for film thickness calculations where shear stress is the independent variable
(Bair and Khonsari, 1996; Liu et al., 2007; Bair, 2009; Krupka et al., 2009).

μ =
[

1 +
( τ
G

)2
](1−1/n)/2

. (10.61)

The models (10.60) and (10.61) are related by writing λ = μ/G for the characteristic time,
where G is the shear modulus.

10.4 The Piezoviscous Fluid

The compressible Navier-Stokes equation (Navier, 1823; Stokes, 1845) is a conse-
quence of assuming that the Cauchy stress T depends only on the density and the velocity
gradient. The requirement of frame-indifference then implies that the dependence on the
velocity gradient can be only through its symmetric part. Restrictions due to isotropy and
the assumption that the stress is linear in the symmetric part of the velocity gradient lead
to the compressible Navier-Stokes model. This model is characterized by two material
moduli, both of them depending on the density.

During his derivation of the model, Stokes (1845) already recognized that the viscosity
of a fluid could depend on the “pressure.” While in a compressible fluid the pressure
is given by an equation of state and does not necessarily equal the mean normal stress,
it equals the mean normal stress in an incompressible fluid. Liquids such as water are
essentially incompressible over a very large range of pressures; yet, their viscosities can
vary significantly with pressure. Stokes recognized this possibility. “Let us now consider
in what cases it is allowable to suppose μ to be independent of pressure. Du Buat has
concluded it from his experiments on the motion of water in pipes and canals, that the total
retardation of the velocity due to friction is not increased by increasing the pressure . . . I
shall therefore suppose that for water, and by analogy for other incompressible fluids, μ is
independent of the pressure” (Stokes, 1845).

That the viscosity for liquids could depend on the pressure and could change significantly
with sufficiently large variations of the pressure has been well recognized and the great
body of early experimental work on this matter can be found in the literature (Bridgman,
1931; Cutler et al., 1958; Griest et al., 1958; Johnson and Cameron, 1967; Johnson and
Greenwood, 1980; Johnson and Tevaarwerk, 1977; Bendler et al., 2001; Paluch et al.,
1999; Griest et al., 1958). Incorporating this pressure dependence of viscosity into the
development of constitutive theories leads to an interesting departure from classical theories.
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In classical theories, constitutive expressions for the stress are usually given as explicit
functions of kinematical quantities, e.g., Hooke’s Law, Navier-Stokes model. Starting with
the assumption that the stress in the fluid depends upon the velocity gradient

T = f (L), L = grad v, (10.62)

the assumption that the fluid is frame indifferent, isotropic, and incompressible leads to
(Serrin, 1959)

T = −p I + a1 (IID, IIID) D + a1 (IID, IIID) D2. (10.63)

Here p is the Lagrange multiplier due to the constraint of incompressibility.
The requirement of linearity in D then leads to

T = −p I + 2μD, (10.64)

where μ is a constant.
If however, we allow for the possibility that the constraint forces influence the work

done, then we would have the possibility that the stress T have the form

T = −p I + 2μ̂ (p) D. (10.65)

There is a very fundamental difference between the two models (10.64) and (10.65).
While the model (10.64) provides an explicit relation between T and D, the model (10.65)
offers an implicit relation of the form

f (T , D) = 0. (10.66)

A generalization of the model (10.65) in which the viscosity depends on both the pressure
and the symmetric part of the velocity gradient allows one to describe shear thinning and
shear-thickening observed in some fluids. In such fluids the stress is of the form

T = −p I + β(p, D)D. (10.67)

The model (10.67) belongs to the class of implicit models (10.66). While many models
for viscoelastic fluids are implicit models, among them the Maxwell model, they are not
of the type (10.66) as they usually involve higher derivatives of the stress and stretching
tensors (Joseph, 1989).

Ever since Stokes assumed that the viscosity is a constant for the Navier-Stokes fluid, it
has been treated as such in most, though not all, subsequent studies. Of course, there are
many fluids that are known to shear-thin or shear-thicken and for such fluids, the viscosity is
considered a function of the symmetric part of the velocity gradient. There is, however, one
area of research that presumes the fluid to be a Newtonian fluid, the viscosity is not treated
as a constant but is allowed to depend on the pressure, namely in elastohydrodynamic
lubrication. Here, we come across an inconsistency: though the thin film approximation
is based on the assumption of constant viscosity, in developing the elastohydrodynamic
approximation, pressure dependence of the viscosity is acknowledged only a posteriori, i.e.,
after the Reynolds equation has been obtained under the assumption ofμ = const (Dowson
and Higginson, 1966). This obvious inconsistency in the derivation of the equation for
elastohydrodynamic lubrication has gone unnoticed for decades.

Current research on piezoviscous fluids has raised questions concerning (1) the appro-
priateness of the Reynolds equation in elastohydrodynamic lubrication (EHL), because of
possible change of type of the equations of motion at high pressures, and (2) the errors
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inherent in the lubrication approximation due to potential existence of cross-film pressure
gradient. In discussing these questions we rely heavily on a paper by Rajagopal and Szeri
(2003).

There have been some rigorous studies concerning the existence of solutions to the
equations governing the flows of fluids with pressure-dependent viscosity. Renardy (1986)
recognized that the equations could change type if the class of viscosity functions that he
picked did not satisfy a certain condition. However, his choice of the viscosity functions
is unrealistic as he postulates that μ(p)

p
→ 0, as p → 0. Numerous experimental results

clearly contradict this assumption (Roelands, 1966; Paluch et al., 1999; Bendler et al.,
2001).

Bair et al. (1998) made use of the criterion of Renardy (1986) for the equations to remain
elliptic. Adopting the Barus equation to represent the pressure dependence of viscosity, they
re-cast Renardy’s criterion. According to Bair et al., in two-dimensional flow change of
type from elliptic to hyperbolic occurs when τ(1) = α−1. Here τ(1) = 2μd(1) is the principal
shear stress. For mineral oils α−1 ≈ 50 MPa, and the criterion sets a limiting value for
the principal shear stress. The practical value of this finding to EHL remains questionable
however, as the Barus formula is unrealistic for glass forming liquids. Furthermore, in view
of Renardy’s analysis being based on unrealistic physical conditions, the modifications
proposed do not seem relevant to lubricant flow.

Bair et al. (1998) appear to be the first to argue that “the Reynolds equation ade-
quately captures the mechanics of the piezoviscous liquid only when the shear stress is
much less than the reciprocal of the pressure viscosity coefficient.” Schäfer et al. (1999)
continued along this line of investigation and, starting from the Navier-Stokes equations
with pressure-dependent viscosity, derived a corrected Reynolds equation. They concluded
that “application of Reynolds equation is permissible for the case of pure rolling in the
contact, but not when considering partial or pure sliding. Further terms from the Navier-
Stokes equations must be taken into consideration” Greenwood (2000), in a discussion to
Schafer’s paper, offered a simpler derivation of the same equation. Referring to Schafer’s
paper, Greenwood remarks “the author’s astonishing claim that the whole EHL theory
is based on an incorrect equation, seems to this discusser to be entirely correct.” Full
Navier-Stokes solutions of the EHL problem, applying the Roelands viscosity-pressure
relationship, have been produced recently by Almqvist and Larsson (2002). Taking aim at
further elucidating the inconsistency in applying the Reynolds equation to EHL problems
we develop the appropriate approximation for the equations governing elastohydrodynamic
lubrication and find that there are terms in addition to those that appear in the currently
employed equation. Models of the type (10.65) have a much richer class of solutions than
the Newtonian model (10.64). For example, even in the case of a simple flow between
infinite parallel plates, non-unique solutions are a possibility In addition, the structure of
the solutions to (10.65) can be drastically different from those for the Navier-Stokes fluid
(Hron et al., 2001). In the case of simple Poiseuille flow, for example, it is possible for the
solution to vary from plug flow to a V-shaped profile. It is also possible that approximations
derived from (10.65) could predict response that is both qualitatively and quantitatively
different from the classical approximation.

To investigate the error that is made by not consistently acknowledging pressure depen-
dence of the viscosity while deriving the equations governing the problem of elastohy-
drodynamics, we follow the procedure that is usually employed to derive the Reynolds
equation but use Eq. (10.65) instead of Eq. (10.64).
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On substituting (10.65) into the balance of linear momentum

div T + ρb = ρ dv
dt
, (2.27a)

we obtain

− gradp + μ(p)
v + 2D[gradμ(p)] + ρb = ρ dv
dt
. (10.68)

Focusing our attention on two-dimensional motion v = (u, v), p = p(x, y) and drop-
ping the body force b, Eq. (10.68) yields

−∂p
∂x

+ μ(p)
u+ 2μ′ (p)
∂u

∂x

∂p

∂x

+ μ′(p)

(
∂u

∂y
+ ∂v

∂x

)
∂p

∂y
= ρ

[
u
∂u

∂x
+ v ∂u

∂y

]
, (10.69)

−∂p
∂y

+ μ(p)
v + μ′(p)

(
∂u

∂y
+ ∂v

∂x

)
∂p

∂x

+ 2μ′(p)
∂v

∂y

∂p

∂y
= ρ

[
u
∂v

∂x
+ v ∂v

∂y

]
. (10.70)

For simplicity, and not because we believe that it characterizes the pressure depen-
dence of viscosity particularly well, we employ here the Barus formula with constant
coefficient α

μ̄ = exp(ᾱP ), ᾱ = αpH .
With the help of the definitions

(x̄, ȳ) = 1

Lxz

(
x,

1

ε
y

)
; (ū, v̄) = 1

U ∗

(
u,

1

ε
v

)
; p̄ = p

pH
; μ̄ = μ

μ∗ .

Equations (10.69) and (10.70) are recast in terms of nondimensional variables

−∂p̄
∂x̄

+ μ̄
(
ε2 ∂

2ū

∂x̄2
+ ∂2ū

∂ȳ2

)
+ ᾱμ̄

[
∂ū

∂ȳ

∂p̄

∂ȳ
+ ε2

(
∂v̄

∂x̄

∂p̄

∂ȳ
+ 2

∂ū

∂x̄

∂p̄

∂x̄

)]

= Rε

(
ū
∂ū

∂x̄
+ v̄ ∂ū

∂ȳ

)
, (10.71)

−ε−2 ∂p̄

∂ȳ
+ μ̄

(
ε2 ∂

2v̄

∂x̄2
+ ∂2v̄

∂ȳ2

)
+ ᾱμ̄

[
∂ū

∂ȳ

∂p̄

∂x̄
+ ε2 ∂v̄

∂x̄

∂p̄

∂x̄
+ 2

∂v̄

∂ȳ

∂p̄

∂ȳ

]

= Rε

(
ū
∂v̄

∂x̄
+ v̄ ∂v̄

∂ȳ

)
. (10.72)

Let us now examine the consequence of taking ε2 → 0. On close examination of our
normalization process, we find that while the nondimensional velocities and their derivatives
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areO(1), the same cannot be expected to hold true for the derivatives of the nondimensional
pressure. We must keep this in mind and neglect only O(1) terms among the terms that are
multiplied by ε2. Consistent with classical lubrication theory, we also assume that Rε → 0
and obtain

− ∂p̄
∂x̄

+ μ̄
{
∂2ū

∂ȳ2
+ ᾱ

[
∂ū

∂ȳ

∂p̄

∂ȳ
+ ε2

(
∂v̄

∂x̄

∂p̄

∂ȳ
+ 2

∂ū

∂x̄

∂p̄

∂x̄

)]}
= 0, (10.73)

−ε−2 ∂p̄

∂ȳ
+ μ̄

{
∂2v̄

∂ȳ2
+ ᾱ

[
∂ū

∂ȳ

∂p̄

∂x̄
+ ε2 ∂v̄

∂x̄

∂p̄

∂x̄
+ 2

∂v̄

∂ȳ

∂p̄

∂ȳ

]}
= 0. (10.74)

We now appeal to Eq. (10.74) to estimate the order of magnitude of the pressure
derivatives. To do this, we require two assumptions, the first of which has already been
employed in arriving at Eqs. (10.73) and (10.74).

Assumptions:

(1) All velocities and their derivatives are O(1)

i.e., in (10.74) we have

∂ū

∂ȳ

∂p̄

∂x̄
� ε2 ∂v̄

∂x̄

∂p̄

∂x̄
.

(2) The pressure derivatives are not of the same order, in fact

∂p̄

∂x̄
� ∂p̄

∂ȳ
,

ᾱ
∂ū

∂ȳ

∂p̄

∂x̄
� ∂2v̄

∂ȳ2
.

On employing (1) and (2) above, in conjunction with Eq. (10.74), we obtain the relative
order of magnitude of the pressure derivatives

∂p̄

∂ȳ
≈ ᾱμ̄ε2 ∂p̄

∂x̄

∂ū

∂ȳ
.

It follows immediately from assumptions (1) and (2) that

∂p

∂x
= μ∂

2u

∂y2
+ dμ

dp

[
∂u

∂y

∂p

∂y
+ 2

∂u
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∂p

∂x

]
,

∂p

∂y
= dμ

dp

∂p

∂x

∂u

∂y
, (10.75)

∂u

∂x
+ ∂v

∂y
= 0.

To first approximation, flow of a lubricant with pressure-dependent viscosity is governed
by the system of Eqs. (10.75); we would have to make the additional assumption that the
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pressure is invariant across the film ∂p/∂y = 0 to be able to derive a Reynolds-type equation
in pressure, and this might not be true depending on the rate of change of viscosity with
pressure.

10.5 Lubrication with Emulsions

There are numerous instances of technical importance in which multicomponent
lubricants are utilized either by design or by necessity. In many of these cases one of the
component is a liquid while the other component is a gas, or both components are liquids;
these mixtures do not exhibit Newtonian behavior even when their components themselves
are Newtonian, and thus classical lubrication theory is inapplicable to tribological contacts
lubricated with mixtures. Our objective in this section is to extend hydrodynamic lubrication
theory to lubrication with liquid-liquid and liquid-gas mixtures. The extended theory is able
to predict several experimentally observed phenomena, such as oil pooling ahead of an EHD
conjunction.

Correct modeling of the flow of multicomponent mixtures is of increasing technical
importance far beyond the confines of lubrication. Consequently much effort has been
devoted to it; the principal approaches employed in these investigations on the flow of
mixtures are (1) descriptive, (2) local volume averaging, and (3) continuum mechanics.

Because of the complexities of multiphase systems, initial attempts to describe the
physical processes have relied on descriptive models of a more or less intuitive or empirical
nature (Gouse, 1966; Soo, 1967; Butterworth and Hewitt, 1977). These models are generally
limited in application to specific multiphase systems and, typically, have a narrow range of
validity.

The second approach used to derive multiphase equations employs the technique of
volume averaging (Drew, 1971; Gray, 1975; Ishii, 1975). This approach considers the
system to be composed of interpenetrating continua, each constituent occupying only part
of space and each separated from the others by highly irregular interfaces. Governing
equations are obtained by averaging the classical single component equations over some
local, representative element of volume.

The basic scientific method utilized in the works discussed in this section is mixture
theory, a branch of continuum mechanics that details the behavior of multiphase continua.
The theory traces its roots to the pioneering work of Fick and was put on firm mathematical
footing by Truesdell (1969). The basic premise of the theory is the assumption that in a
mixture of N constituents, each spatial position x is occupied simultaneously by N particles,
one from each constituent. As the mass of each constituent of the mixture is continuously
distributed in space, it is permissible to write one set of conservation equations for each
constituent; these equations must, of course, be coupled, to express the interactions existing
between constituent particles.

The notion of overlapping continua is a hypothesis about materials in much the same
way as is the notion of a continuum in itself. Models developed using mixture theory are
therefore useful, provided that their predictions are interpreted at scales consistent with
the mixture hypothesis. Typical droplet size in oil-in-water or water-in-oil emulsions is
2r = 1.5 − 3 μm (Kimura and Okada, 1987; Schneider, Glossfield, and DeHart, 1986;
Nakahara, Makino, and Kyogaka, 1988), representing 0.025< r/h< 0.05 in a conventional
journal bearing of 0.5-m diameter, at an eccentricity ratio of 0.6. In EHL, we consider results
of mixture theory to represent time averaged conditions in the film.
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Fundamentals of Mixture Theory

For the sake of completeness, we begin with the following short exposition of
the basics of mixture theory (Bowen, 1976; Atkin and Craine, 1976a,b; Truesdell, 1969;
Bedford and Drumheller, 1983; Rajagopal and Tao, 1995).

Let Xa , α = 1, 2, represent the position of a material point of the αth constituent Cα in
its reference configuration, and let x be the spatial point that is occupied at time t by the
material point. The motion of a binary mixture C of components Cα , α = 1, 2 is defined by

x = χα(Xa, t), t ≥ 0, α = 1, 2. (10.76)

The range of α for the remainder of this discussion is given in Eq. (10.76) and will not be
repeated.

The velocity and the acceleration of the particle Xa are calculated, respectively, from

ẋα = ∂

∂t
χα(Xα, t), ẍα = ∂2

∂t2
χα(Xα, t). (10.77)

The spatial description of motion follows from Eqs. (10.76) and (10.77), e.g.,

v(α)(x, t) = ẋα = [χ−1
α (x, t)

]
.

Let grad denote differentiation with respect to x, at the configuration of the mixture at time
t, then the velocity gradient for Cα at (x, t) is defined by

L(α) = grad vα(x, t) 10.78

and the stretching tensor by

D(α) = 1

2

(
L(α) + LT(α)

)
.

We denote the true density of Cα by γα; this is the mass of the αth constituent per unit
volume of the αth constituent itself. Distinct from the true density is the density (or bulk
density) ρα , representing the mass of the αth constituent per unit volume of the mixture.
The (total) density, ρ, of the mixture is then given by

ρ(x, t) =
∑
α

ρα(x, t). (10.79)

The quantity φα , defined by

φα(x, t) = ρα (x, t)

γα (x, t)
, (10.80)

is the volume fraction of the αth constituent. Physically φα represents the volume of Cα per
unit volume of the mixture, therefore∑

α

φα = 1 (10.81)

for saturated mixtures (Mills, 1966).



10.5 / Lubrication with Emulsions 423

It is convenient to introduce the (mean) velocity of the mixture, v, via the requirement
that the total mass flow is the sum of the individual mass flows, so that

v = 1

ρ

∑
α

ραv
(α). (10.82)

Next, we introduce material derivatives d (α)/dt and d/dt, following the α constituent
and the mixture, respectively, by

d (α)

dt
= ∂

∂t
+ v(α). grad,

d

dt
= ∂

∂t
+ v . grad. (10.83)

Here we do not allow for interconversion of mass. Thus, the local form of the mass
conservation equation is

d (α)ρα

dt
+ ρα div v(α) = 0. (10.84)

The local version of the balance of linear momentum for the αth constituent is

ρα
d (α)v(α)

dt
= div T T(α) + ραb(α) + π (α). (10.85)

The term π (α) symbolizes the transfer of momentum per unit volume due to interaction
effects, due to relative motion between the constituents. π (α) is often referred to as diffusive
body force. Its exact form is determined by the other components of the mixture and will
be specified by a constitutive equation.

If q(α) is the heat flux, eα is the internal energy density, and rα is the external heat supply
associated with constituent Cα , the local form of the energy conservation equation for a
binary mixture is

ρ
de

dt
=
∑
α

TT(α) : L(α) + π · V (12) − div

[
ρ1ρ2

ρ
(e1 − e2) V (12)

]

+ ρr − div q +
∑
α

ραb(α) · v(α), (10.86)

where

r =
∑
α

rαρα/ρ, q =
∑
α

q(α), V (12) = v(1) − v(2), and π = −π (1) = π (2).

Finally, we postulate the second law of thermodynamics, in the form of the Clausius-
Duhem entropy inequality. If ηα represents the entropy density for Cα and η is the entropy
density for the mixture, then

η (x, t) = 1

ρ

∑
α

ραηα (x, t) , (10.87)

and a local form of the entropy production inequality for the mixture is

ρ
dη

dt
+ div

(
1

%
q
)

− ρr

%
≥ 0. (10.88)

Here we assumed that the flux of entropy due to the heat flux q(α) is q(α)/%, where% (x, t)
is the common temperature of the constituents, and that the input of entropy due to the heat
supply function rα is rα/%.
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Defining the partial Helmholtz free energy density for Cα by Aα = eα −%ηα , we can
write Eq. (10.88) in the form

−
∑
α

[
d (α)ραAα

dt
+ ραAα tr

[
D(α)

]+ ραηα d
(α)%

dt
+ π · V (12) − T (α) : L(α)

]

− 1

%
g · q ≥ 0. (10.89)

Constitutive Model

We identify (12α + 7) scalar unknowns {ρ(α), v(α)i , T(α)i,j, η(α), A(α), π i, qi, %},
i, j = 1, 2, 3, α = 1, 2. Of these (4α + 1), viz., ρα , v(α)i , and % are field variables to
be calculated from the (4α + 1) scalar conservation equations, Eqs. (10.84)–(10.85). We
thus need to specify (8α + 6) constitutive equations for the remaining (8α + 6) scalar
unknowns:

{Aα, ηα, T(α)i,j , πi, qi} i, j = 1, 2, 3; α = 1, 2. (10.90)

For a heat-conducting mixture of incompressible, viscous fluids, it is natural to have
the densities, ρα or φα (Bowen, 1980), the temperature, %, and the temperature gradient
g, as independent variables (Atkin and Craine, 1976a). Density gradients, h(α)), are also
necessary, since their omission leads to a theory that is too simple (Muller, 1968). In order
to include effects connected with the motion of the constituents, the velocities v(α) and
velocity gradients L(α) are added to the list of variables; frame indifference then requires
that the last two quantities be represented by the relative velocity V(12), the stretching
tensors D(α), and the relative spin �(12) = �(1) − �(2). However, it is known from the theory
of single materials that velocity gradients characterize viscous effects; viscous effects are
nonexistent in the ideal gas component, thus velocity gradient for the liquid component
only is considered in gas-liquid emulsions.

Liquid-Liquid Emulsion
Since the mixture is saturated, all processes must be subjected to the volume additivity
constraint in Eq. (10.81), which, when differentiated, yields

2∑
α=1

[
d (α)φα

dt
− (v(α) − v

) · gradφα

]
· V (12) = 0. (10.91)

Using Eq. (10.84), Eq. (10.91) can be rewritten as

2∑
α=1

φα div v(α) +
[
ρ2

ρ
gradφ1 − ρ1

ρ
gradφ2

]
· V (12) = 0. (10.92)

The thermodynamic theory of constraints (Truesdell and Noll, 1965), which requires intro-
duction of a Lagrange multiplier(, will be used to account for this constraint in the entropy
inequality.

Our choice, and this choice is by no means unique, of independent constitutive variables
for a heat-conducting mixture of incompressible fluids is the set (Al-Sharif et al., 1993)

φα,%, V (12), g, h(α), D(α),�(12), (10.93)
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where

g = grad%, h(α) = gradφα, �(12) = �(1) − �(2).

Consistent with the axiom of equipresence (Truesdell and Toupin, 1960), each of the
quantities in Eq. (10.71) is now assumed to be a function of the variables of Eq. (10.74),
but dependence on

V (12), g, h(α), D(α),�(12) (10.94)

is restricted to be linear, so as to simplify the analysis. This results in a set of constitutive
equations for the variables in Eq. (10.90).

Substituting the constitutive equations into the entropy inequality, we now assume that
inequality (10.70) must hold for all admissible thermomechanical processes in the mixture
(Muller, 1968; Atkin and Craine, 1976a). Standard methods of continuum mechanics yield
the reduced constitutive equations (Spencer, 1970; Bowen, 1976). For the diffusive body
force and the component stresses, in the case under consideration, we have (Al-Sharif,
1992; Al-Sharif et al., 1993)

π = '1V (12) +'4 g +
[
−ρ2

∂A2

∂φ1
+ ρ2

ρ
(

]
h(1) +

[
ρ1
∂A1

∂φ2
− ρ1

ρ
(

]
h(2), (10.95a)

T 1 = (−ρ1 + λ1 tr
[

D(1)
]+ λ3 tr

[
D(2)

])
I + 2μ1 D(1) + 2μ3 D(2) + λ5�(12), (10.95b)

T 2 = (−ρ2 + λ4 tr
[

D(1)
]+ λ2 tr

[
D(2)

])
I + 2μ4 D(1) + 2μ2 D(2) + λ5�(12). (10.95c)

Equation (10.95b) indicates that, under the constitutive assumption we made, the stress
in component C1 (water) depends on the stretching tensor D1 of component C1 but also
on the stretching tensor of component C2 (oil). The diffusive body force π in its simplest
form is given by the Stokes resistance law [neglecting dependence on h(α)]. We also note
that the constitutive equations (10.95) contain a number of material functions, such as the
viscosities μ1, . . . , μ4, that must be determined from experiments, obviously not a simple
task.

Liquid-Gas Emulsion
Our choice of constitutive variables for a heat-conducting mixture of an incompressible
fluid and an ideal gas is the set{

ρα,%, V (12), g, h(α), D(1)
}
. (10.96)

If we again assume the constitutive functions to be linear with respect to vector and
tensor arguments and substitute into the entropy production inequality, requiring the latter
to hold for all admissible thermomechanical processes in the mixture (Muller, 1968), we
arrive at the restricted constitutive equations (Chamniprasart et al., 1993). For component
stress, e.g., we have

T (1) = (−p1 + λ1 tr
[

D(1)
])

I + 2μ1 D(1),

T (2) = −p2 I .
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Lubrication Approximation

Let Lxz and Ly represent the length scales, in the “plane” of the film and perpen-
dicular to it, respectively, of the generic lubrication problem. The corresponding velocity
scales will be denoted by U∗, and V∗ = (Ly/Lxz)U∗ and the time scale by t∗ = (Lxz/U∗).
When the equations of motion, Eq. (10.85), are normalized with respect to these character-
istic quantities, they will contain various powers of (Ly/Lxz). To simplify these equations,
we let (Ly/Lxz) → 0 while keeping the Reynolds number LyU∗/ν ≈ O(1) in accordance
with the basic premise of lubrication theory.

Liquid-Liquid Emulsion
The result of such manipulations is two sets of equations, one set each for the two con-
stituents of the mixture. When these equations are formally integrated, a generalized
Reynolds equation for binary mixtures of Newtonian fluids is obtained (Al-Sharif, 1992).
This derivation assumes that the volume fraction, like the pressure, remains constant across
the film; the condition ∂φ/∂y = 0 is shown to hold approximately in the recent experiments
of Couet, Brown, and Hunt (1991), who measured local volume fraction for oil dispersed
in water.

The extended Reynolds equations for binary mixtures of two Newtonian fluids are

∂

∂x̄

[
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Equations (10.79) are in a nondimensional form suitable for a journal bearing of diameter
D and length L, and we put φ = φ1 = 1 − φ2. The (nonlinear) coefficients F1, . . . , F4 are
functions of the volume fraction φ and the material parameters such as μ1, μ2, μ3 and μ4,
occurring in the constitutive equations.

Liquid-Gas Emulsion
As a result of lubrication approximation, details of which can be found in Chamniprasart
et al. (1993), the component densities ρ1 and ρ2 are required to satisfy two nonlinear partial
differential equations, the extended Reynolds equations
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where

� = � (ρ̄1, ρ̄2) , �1 = �1 (ρ̄1, ρ̄2) , �2 = �2 (ρ̄1, ρ̄2) .

Equations (10.80a) and (10.80b) represent the model of Chamniprasart et al. (1993) for
the flow of bubbly oil in a bearing. To fully define the problem, these equations must be
supplemented with conditions on ρ1 and ρ2 at the film boundaries.
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Figure 10.19. Pressure, film thickness and oil volume fraction distribution for oil-water
emulsion in a journal bearing. (Reprinted with permission from Al-Sharif, A., Chamniprasart,
T., Rajagopal, K. R. and Szeri, A. Z. Lubrication with binary mixtures: liquid-liquid emulsion.
ASME Journal of Tribology, 115, 46–55, 1993.)

Applications

Journal Bearing
The lubricating action of an emulsion can be understood by analyzing Figures 10.19 and
10.20. Similar to single phase lubricant, a pressure profile is generated such that the resulting
flow field satisfies mass conservation of each of the components of the mixture. But in this
case the composition of the mixture is changing in response to the stress field, the volume
fraction of the higher viscosity constituent increases toward the minimum film thickness
zone (Figure 10.19).

According to Hirn (1954), water requires high sliding speed to enter the clearance; at
low sliding speeds the shaft will pull an oil-rich film into the clearance. The results in
Figure 10.20 reflect this behavior: Poiseuille flow is dominant in the water phase (a), but
Couette flow is dominant in the oil phase (b).

Figure 10.21 shows the pressure distribution in water-in-oil emulsion, corresponding to
various inlet water volume fraction. On increasing water concentration from zero, the peak
lubricant pressure first increases above its value for pure oil, only to exhibit rapid decline on
further increasing the volume fraction of the water droplets. On reaching volume fraction
of unity, we obtain the pressure distribution of pure water lubricant.

EHL Conjunction
In EHL contacts lubricated with water-in-oil emulsion, agreement with classical EHD film
thickness is obtained only if the viscosity of the continuous phase (oil) is used when the
diameter of the water droplets is in excess of the film thickness, for then, presumably, only
oil passes through the conjunction (Dalmaz and Godet, 1977; Hamaguchi et al., 1977). This
is also indicated by the fact that increased bulk viscosity, which results from adding water
droplets to the oil lubricant, has no effect on film thickness (Hamaguchi et al., 1977). But
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Figure 10.20. Velocity profiles for (a) water and (b) oil in oil-water mixture. (Reprinted with
permission from Al-Sharif, A., Chamniprasart, T., Rajagopal, K. R. and Szeri, A. Z. Lubrication
with binary mixtures: liquid-liquid emulsion. ASME Journal of Tribology, 115, 46–55, 1993.)

if the water particles are small, the EHD film thickness is larger than could be obtained for
the base oil; it is stipulated then that the emulsion proper and not just the continuous oil
phase enters the conjunction. This yields a thicker film as the emulsion has higher viscosity
than the base oil (Dalmaz, 1980; Wan et al., 1984).

Figure 10.21. Pressure distribution in journal bearing for various values of inlet water volume
fraction of water-oil mixture. (Reprinted with permission from Al-Sharif, A., Chamniprasart,
T., Rajagopal, K. R. and Szeri, A. Z. Lubrication with binary mixtures: liquid-liquid emulsion.
ASME Journal of Tribology, 115, 46–55, 1993.)
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Figure 10.22. Film thickness, pressure, and void fraction profiles. W = 1.35 × 10–5,
U = 6.43 × 10–12, G = 3500; - - - -, pure oil; – –, oil-water mixture. (Reprinted with
permission from Wang, S. H., Al-Sharif, A., Rajagopal, K. R. and Szeri, A. Z. Lubrication with
binary mixtures: liquid-liquid emulsion in an EHD conjunction. ASME Journal of Tribology,
115, 515–524, 1993.)

The prime concern of the designer of EHL contacts is the film thickness. In EHL with
conventional mineral oil lubricant, the film thickness parameter, H, is expressed as a certain
function of the velocity parameter, U, the load parameter, W, and the materials parameter, G
(Table 8.12). The principal additional parameters which characterize the material behavior
of the binary mixture lubricant are (1) the inlet volume fraction of the oil φi; (2) the surface
tension group, Ĉ = R2

δ /We, where Rδ and We are the droplet Reynolds number and the
Weber number, respectively; and (3) the relative droplet radius, r̄ = r/C, of the discretized
phase (Wang, Al-Sharif, Rajagopal, and Szeri, 1993).

It was reported by several investigators (Hamaguchi et al., 1977; Wan et al., 1984)
that there is no detectable film in the conjunction for an oil-in-water emulsion, unless the
emulsion breaks down and an oil pool is formed at the entrance; in this latter case the
film thickness in the EHL conjunction is defined by the viscosity of the oil. Wang et al.
were able to demonstrate a phenomena that is not unlike oil pooling. Figure 10.22 displays
the film thickness and the pressure distributions in an oil lubricated conjunction giving
Hmin = 0.3923 under the conditions noted. Figure 10.22 also shows the film thickness for
an oil-in-water emulsion with inlet oil volume fraction φi = 0.1. The volume fraction can
be seen to increase rapidly with x from its entrance value of 0.1 to 0.834 and as a result of
pooling the minimum film thickness achieves Hmin = 0.234, or 62% of its value for pure
oil, while the pressures in the two cases are close.
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Figure 10.23. Effect of reduction ratio on φmax. (Reprinted with permission from Wang, S. H.,
Szeri, A. Z. and Rajagopal, K. R. Lubrication of emulsion in cold rolling. ASME Journal of
Tribology, 115, 523–532, 1993.)

Cold Rolling
Grudev and Razmakhnin (1985a,b) report on extensive experimental investigations using
water-based lubricants. Their principal findings are (1) the oil volume fraction, φ, increases
with increasing reduction ratio, γ , of the workpiece to a limiting value that is largely
independent of other conditions; (2) increasing the yield stress of the workpiece increases
the tendency for oil-pooling; and (3) for every condition there is a value of γ above which the
oil-in-water emulsion acts as pure oil. Wang et al. examined these propositions. Figure 10.23
shows the oil volume fraction increase with the reduction ratio, for the conditions of their
paper the limit appears to be φmax ∼ 0.7.

At this limiting value of φ, the emulsion behaves as the pure oil. Figure 10.24 represents
our solution for oil volume fraction distribution at various values of strip yield stress. The
inlet value of φ is fixed at φi = 0.3 in these calculations. At a yield stress of σyp = 500 MPa
the working zone has φmax ≈ 0.56 and considerably thinner film than obtained with σyp =
10 MPa, which gives only φmax ≈ 0.37. Figures 10.23 and 10.24 are, thus, in agreement
with experimental findings of Grudev and Razmakhnin.

Lubrication with Bubbly Oil
The bearing referred to here was operated while fully submerged (Braun and Hendricks,
1981). To simulate operation under this condition Chamniprasart et al. make two assump-
tions: (1) the oil bath surrounding the bearing has constant, uniform composition, and (2)
the conditions at the edge of the lubricant film are identical to and are given by the con-
ditions in the bath. The first of these assumptions permits specification of a reference air
volume fraction, φ20, and a mixture reference bulk viscosity, β0, at bath conditions. The
second assumption assigns boundary conditions ρ1 = ρ10 and ρ2 = ρ20 on component
densities.
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Figure 10.24. Effect of workpiece yield stress on oil volume fraction distribution. (Reprinted
with permission from Wang, S. H., Szeri, A. Z. and Rajagopal, K. R. Lubrication of emulsion
in cold rolling. ASME Journal of Tribology, 115, 523–532, 1993.)

The reference bulk modulus of the mixture, β0, will vary on varying the gas reference
volume fraction, φ20. When φ20 → 0, β0 → β1, and we are effectively dealing with an oil,
lubricant: the corresponding pressure distribution in the bearing approaches the classical,
incompressible lubricant pressure distribution (Figure 10.25).

On increasing φ20, on the other hand, we find that the negative pressure loop contin-
ually diminishes until, at φ20 = 1, we obtain the pressure distribution for a gas lubricant
(Raimondi, 1961). The maximum pressure first increases as φ20 is increased from zero; to
get this increase in pressure, we would have to use a viscosity larger than the oil viscosity,
μ1, had we applied the classical Reynolds equation. This puts us in qualitative agreement
with Taylor (1932) and Hayward (1961) for small air volume fraction in the mixture.

Figure 10.26 plots experimental data by Braun and Hendricks (1981) along with pre-
dictions from mixture theory (Chamniprasart et al., 1993) for centerline pressure, showing
pressure variation in the cavitation zone.

10.6 Blood as Lubricant

Mechanical circulatory support as a treatment for congestive heart failure has
gained increased acceptance over the past two decades. Recently published results of the
REMATCH clinical trials (Rose et al., 2001) have confirmed the effectiveness of left ven-
tricular assist devices (LVADs) over pharmacological options. The greater part of these
blood pumps are axial flow devices that rotate at speeds in excess of 10,000 rpm. The tem-
perature rise associated with such high speeds and the use of mechanical bearings through
which the blood cells must pass, pose a serious risk of red cell lysis and thrombosis. These
devices are presently in various stages of pre-clinical and clinical testing. Notwithstanding
the success of these high-speed LVADs, the risk of thrombosis may limit their use for
destination therapy.
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Figure 10.25. Pressure profile for various values of the reference bulk modulus β0. (Reprinted
with permission from Chamniprasart, T., Al-Sharif, A., Rajagopal, K. R. and Szeri, A. Z.
Lubrication with bubbly oil. ASME Journal of Tribology, 115, 253–260, 1993.)

Figure 10.26. Bearing centerline pressure; – –, theoretical (Chamniprasart et al., 1993); o,
experimental (Braun and Hendricks, 1981). (Reprinted with permission from Chamniprasart,
T., Al-Sharif, A., Rajagopal, K. R. and Szeri, A. Z. Lubrication with bubbly oil. ASME Journal
of Tribology, 115, 253–260, 1993.)
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Blood trauma is defined as the lysis of the blood’s cellular components and is thought
to be strongly influenced by flow stress (Leverett et al., 1972; Sallam and Hwang, 1984;
Sharp et al., 1996). The high level of energy transmission from rotor to blood in rotary
blood pumps is a potential source for blood trauma (Bludszuweit, 1995; Chan et al., 2002).
The short-term stresses could be large, and the very process of circulation could result
in cyclical long-term stress histories. To knowledgably address the design of LVADs the
engineer must be cognizant of the material characteristics of blood as the flow stresses that
might cause hemolysis depend on these characteristics.

The Rheology of Blood

The apparent viscosity of blood varies 25–30 fold as the rate of shear, κ , is varied
over the range 0.01–100 s−1 (Yeleswarapu, 1996). The high viscosity at low shear rate is
thought to be due to red blood cell (RBC) aggregation (rouleaux formation), while low
viscosity at high shear rate is a consequence of the deformability of the red blood cells
(Chien et al., 1967). Even though they are biconcave discoids of 8–10μm diameter in their
unstressed state, red blood cells are able to traverse a capillary of only 3μm diameter without
rupturing. In addition to shear thinning, measurements performed on blood also indicate
typical viscoelastic effects, such as frequency dependence of the viscosity in unsteady flow
(Thurston 1979; Hakim et al., 2001). Thus, from the point of view of mechanics, blood is
both shear thinning (pseudo plastic) and viscoelastic.

The earliest recorded attempts to study the flow properties of blood (Young, 1809;
Poiseuille, 1840) suggest Newtonian behavior. Poiseuille, however, already observed, under
certain conditions, a cell-free layer close to the wall of the tube that suggested deviations
from the earlier estimates. Denning and Watson (1906) and Fahraeus and Lindqvist (1931)
noted an anomalous property of the apparent viscosity of blood, viz., its dependence on
the diameter of the tube used in measuring it. These, and later investigations (Zhang and
Kuang, 2000; Drochon, 2003) confirm that blood is a non-Newtonian fluid. Beyond a
certain high shear rate, nevertheless, there is transition to Newtonian behavior (Paul et al.,
2003); though this is well accepted as fact, published data on the transition threshold
diverge (Whitmore, 1968; Chmiel, 1973). The assumption that at a well-chosen “effective
viscosity” the Newtonian fluid computes the same flow conditions as would be exhibited
in a shear thinning fluid is often exploited in computation (Burgreen et al., 2004; Arora
et al., 2004). Such an assumption is not usually made in dealing with generalized fluid
motion; furthermore, if valid, it would preclude the need for an entire science dealing with
non-Newtonian fluids. Though it is true that for simple shear flow the stress profile is the
same in all simple fluids irrespective of their constitutive equation (Truesdell and Noll,
1992), this no longer holds for more general flows. Furthermore, in estimating the degree
of lysis suffered by RBCs in a mechanical device, one needs to compute the flow path, the
time it takes for the cells to travel that path, as well as the ambient stress field. And the
velocity distribution in a shear thinning fluid might be very different from that obtained
in a Newtonian fluid. To illustrate that the flow field of a shear thinning fluid of viscosity
μ = μs = μ(γ̇ ), where γ̇ is the rate of shear in 1-D flow, is not approximated well by the
flow field of a Newtonian fluid of viscosity μ = μN = const., no matter what value of μN
one chooses (c.f. Figure 10.1).

Rheological models may be classified as phenomenological or microstructural. The
former aims to derive stress-strain relations that describe observed phenomena, without
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necessarily considering microstructure or the interaction between individual constituents of
the fluid. The microstructural approach, on the other hand, endeavors to describe observed
phenomena from the known (or presumed) properties and structure of the microscopic
constituents of the fluid, and the interactions between these components. Phenomenolog-
ical models have the potential to duplicate the rheological behavior of blood; they are
also simple enough to be implemented in a CFD analysis and design optimization of
LVADs.

The models of the phenomenological approach may be thought of as either empirically
based or as continuum based, although this distinction is blurred at times. For example, the
W-S model (Walburn and Schneck, 1976) is an empirical model, yet it has symmetries of
material frame indifference and flow reversal (Easthope, 1989), and has been extended to
3-D. Empirical models are generally one-dimensional and are not necessarily based on phys-
ical principles. They are obtained by fitting an appropriate, ad hoc, mathematical function
to experimental data. Continuum-based models, on the other hand, are three-dimensional
and obey the fundamental principles of continuum physics, viz., (a) determinism, (b) local
action, and (c) frame indifference. In the following paragraphs we present a brief survey of
some of the rheological models applied to blood.

Belief in the existence of a yield stress led early on to Casson’s equation (Leverett et al.,
1972; Casson, 1959; Reiner and Scott-Blair, 1959; Baajines et al., 1993; Rohlf and Tenti,
2001; Das et al., 1998). Later, to better portray the essential property of shear thinning, the
power law model was borrowed from non-Newtonian fluid mechanics. Several power law
models have been proposed, one of the most successful being the W-S model (Walburn
and Schneck, 1976). Easthope and Brooks (1980) made experimental comparison of eleven
different constitutive functions for whole human blood, and pronounced the W-S model to
be the most successful one. In contrast, Zhang and Kuang (2000) found Casson-type models
superior to the W-S and other power law models. Other empirical models of particular note
are the Cross model, the Powell-Eyring model, and the Carreau model. Cho and Kensey
(1991) summarize these as well as some more elaborate constitutive models for portraying
the viscosity of whole human blood.

Rodkiewicz et al. (1990) presented a comparison of the W-S, the Casson and the Bingham
(Bingham, 1922; Ishikawa et al., 1998) models to study pulsatile flow. Zhang and Kuang
(2000) compared Casson-type and power-law-type (including W-S) models and found the
performance of the Quemada equation (Quemada, 1982), a Casson-type model, superior.
These models, however, are not well suited to characterize three-dimensional, viscoelastic
flows or to portray shear thinning over the entire practical range of shear rate variation,
unless they contain so many parameters as to render them impractical. In addition, it has
been observed that the power-law parameters depend substantially on the range of shear
rate for which data is being fitted. All these reasons prompt us to search among continuum
models.

Modern (nonclassical) continuum models are based on the theory of structured continua,
micropolar fluids or fluids with couple stresses. They can describe rheological anomalies
such as Fahraeus-Lindqvist (Popel et al., 1974), but appear to be too complex to apply in
CFD schemes. Models based on single continuum theories appear to be more suitable here;
they are, broadly speaking, of (a) differential type, (b) rate type, and (c) integral type. Of
these, differential-type (Majhi and Usha, 1988) models seem to be unrealistic and we are not
aware of integral-type rheological equations ever having been employed for the rheological
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characterization of blood, due to their great mathematical complexity. This leaves us with
rate-type models to characterize blood rheology in 3-D.

Rheological Models

Rate-type constitutive equations (Joseph, 1989) can describe viscoelastic behavior
and have been used for decades for this purpose. They are of the general form

τ k = f (τ , τ̇ , . . . , τ̇ k−1; A1, A2, . . . An). (10.99)

Here τ is the extra stress, A1, . . . , An are the Rivlin-Ericksen tensors (10.16), and the index
k symbolizes the order of material derivative.

Among rate-type models, the Maxwell model was perhaps the first to be employed
for characterizing the rheology of blood (Thurston, 1979). Quemada later proposed a
nonlinear version of this model (Quemada and Droz, 1983; Quemada, 1993), while Sharp
used a generalized version of it (Sharp et al., 1996). Phillips and Deutsch (Phillips and
Deutsch, 1975; Deutsch et al. 1976; Deutsch and Phillips, 1977) employed another well-
known rate-type model, the four-constant Oldroyd-B model. Hakim et al. (2001) compared
the performance of seven different viscoelastic constitutive equations in predicting pony
blood rheology. Several of these models were found to capture viscoelastic behavior such
as frequency dependence; of particular mention are the Thurston model and the Giesekus
model. Nevertheless, they were somewhat inadequate in their portrayal of shear thinning.

To improve characterization of shear thinning while retaining the facility to portray
viscoelastic behavior, Rajagopal and co-workers (Yeleswarapu et al., 1998, Yeleswarapu,
1996) proposed a three-parameter, nonlinear, Oldroyd-B model of the form

T = − p1 + τ

τ +!1[τ̇ − Lτ − τ LT ] = μ(D)[D] +!2[ Ḋ − LD − DLT ] (10.100)

Here !1 and !2 are the relaxation and retardation constants, respectively, which specify
viscoelastic behavior (Newtonian rheology is characterized by!1 = !2 = 0, μ = const.).

To mimic shear thinning, the viscosity function μ(D) in Eq. (10.100) was made to
depend upon the stretching tensor. However, to satisfy frame invariance, this dependence
must occur in the formμ(D) = μ(ID, IID, IIID). For an incompressible fluid in viscometric
flow, the first and the third invariants vanish, leaving the second invariant as the only
argument of the viscosity function. Thus μ(D) = μ(κ) and κ = |IID| is the rate of shear
in three-dimensional flow.

As the viscosity has distinct asymptotic values, η0 at κ → 0 and η∞ at κ → ∞,
Yeleswarapu searched for a generalized viscosity function of the form

μ(κ) = η∞ + (η0 − η∞)f (κ) (10.101)

and found best fit to viscometric data on whole human blood when choosing

f (κ) =
[

1 + ln(1 +!κ)

(1 +!κ)

]
. (10.102)

Yeleswarapu studied regression of the shear thinning models of Powell-Eyring, modified
Powell-Eyring, and Cross, as well as the proposed function, Eq. (10.101), to Chien’s
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Figure 10.27. Fitting Eq. (3) for whole human blood (Reprinted from Yeleswarapu, K. K.
Evaluation of continuum models for characterizing the constitutive behavior of blood, Ph.D.
Dissertation, University of Pittsburgh, 1996.)

experimental data (Chien et al., 1967); Eq. (10.101) performed very favorably in this
comparison. In a second effort to validate the model, Yeleswarapu fitted Eq. (10.101) to
his own data, shown for normal human blood in Figure 10.27, and for porcine blood in
Figure 10.28.

Figure 10.28. Fitting Eq. (10.100) for porcine blood (Reprinted from Mech. Res. Comm. 25(3),
Yeleswarapu, K. K., Kameneva, M. V., Rajagopal, K. R. and Antaki, J. F. The flow of blood in
tubes: theory and experiment, 257–262, Copyright (1998) with permission from Elsevier.)
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Figure 10.29. Poiseuille flow for porcine blood (Reprinted from Mech. Res. Comm. 25(3),
Yeleswarapu, K. K., Kameneva, M. V., Rajagopal, K. R. and Antaki, J. F. The flow of blood in
tubes: theory and experiment, 257–262, Copyright (1998) with permission from Elsevier.)

Predictions of the generalized Oldroyd-B model in pipe flow of porcine blood are
compared with experimental data in Figure 10.29 (Yeleswarapu et al., 1998).

The most recent generation of mechanical blood pumps that date back only a few
years utilize magnetic levitation for bearing support, which removes the potential for
wear and pump failure, ensuring long-term use. However, many of the existing concepts
suffer from mechanical and electrical complexity, high power consumption and consequent
heating.

Blood Trauma Models

The older, stress-based models of hemolysis assume that the membrane of the
RBC sees, and directly responds to, the local stress in the ambient fluid, even under rapidly
varying conditions: hemolysis is predicted when the accumulated stress reaches a threshold
value. However, the membrane of the RBC is viscoelastic and is, therefore, unable to
follow rapid stress variations in the ambient fluid; these variations will be smoothed, so to
speak, by the viscoelasticity of the membrane. In consequence, a strain-based hemolysis
model leads to lower hemolysis than a stress-based model in rapidly varying flow fields.
In this section we discuss stress-based and strain-based models, but advocate use of the
strain-based hemolysis model.

LVADs are often associated with flow-induced blood damage, particularly hemolysis of
red blood cells. The red blood cell may be pictured as a thin (thickness, b = 7 nm) viscoelas-
tic (relaxation time, λ ∼ 200 ms) membrane sack, enveloping a solution of hemoglobin and
platelets. In stress-free state, the cell resembles a biconcave disk of diameter ∼8μm and sur-
face area ∼40% in excess of that of a sphere of the same volume. In consequence, the RBC
changes its shape readily but strongly resists any change in its surface area. When the cell is
immersed in a shear field it may exhibit one of two types of motion. At low shear, its motion
is time unsteady, with the yet undeformed cell tumbling. At higher shear, the cell deforms
into an ellipsoid, assuming stationary orientation relative to the flow direction; however,
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the membrane circulates about the interior of the cell in a tank-tread like motion (Fisher
et al., 1978; Keller and Skalak, 1982). As the shear stress is increased, the RBC becomes
more elongated and reversible hemolyzing pores open up in the membrane. Finally, above
about 150 Pa shear stress, the membrane ruptures causing extensive hemolysis (Leverett
et al., 1972). This level of shear stress corresponds to a shear rate of 42,000 s−1 at an apparent
viscosity of 3.2 mPa · s and to about 6% areal strain of the membrane. To quote Blackshear
and Blackshear (1987), “Areal change occurs when the cell membrane is subjected to stress;
hemolysis occurs when the area increases by approximately 6.4%.”

The damaging effects on the RBC are known to depend on the magnitude of the shear
stress, τ, acting on the cells, and the residence time of the cells in the stressed environment,

t . Damage is remarkably low over a broad range of shear rates and exposure times.
However, there is a stress level above which a significant increase in blood damage can
be observed at sufficiently long exposure. This threshold stress was measured by several
researchers (Sutera, 1977; Wurtzinger et al., 1985). Leverett, as already mentioned, gives the
figure of τ = 150 Pa for moderate exposure time. Other measurements indicate significantly
increased blood damage when

τ ≥ 425 Pa and 
t ≥ 620 ms.

One of the earliest attempts to relate maximum permissible shear stress to time of expo-
sure was through the formula τ

√

t = const. (Blackshear et al., 1966). Two-dimensional

analysis of the data of Wurzinger et al. (1986) led Giersiepen and co-workers (Giersiepen
et al., 1990) to the improved correlation


Hb

Hb
= 3.62 × 10−7τ 2.416
t0.785. (10.103)

Here 
Hb/Hb is the ratio of plasma free hemoglobin to the total hemoglobin in the
sample. The equation proposed by Giersiepen has been used in CFD-type computations
(Chan et al., 2002; De Wachter and Verdonck, 2002), though it has been criticized for not
containing a threshold stress (Paul et al., 2003).

Anderson et al. (2000) have compiled data on the threshold value of stress and the corre-
sponding exposure time. The Giersiepen model might be improved upon by incorporating
a threshold stress, though this has been disputed by some researchers.

The experimental data embodied in Eq. (10.103) is for steady, one-dimensional flow,
whereas flow in an LVAD is both unsteady and three dimensional. To overcome this
inconsistency between the experimental evidence and its application, researchers attempt
to relate 3-D flow effects to steady shear flow through variously defined, instantaneous,
scalar parameters. Bludszuweit, for example, found it advantageous to think in terms of
a dimensionless damage parameter, somewhat in analogy with failure criteria in solid
mechanics (von Mises yield criterion); the parameter is zero initially and reaches unit value
at the point of RBC catastrophic damage (failure cycle N ). Bludszuweit then assumed
the partial damage after n cycles to be equal to n/N times the damage at failure. The
blood trauma model of Bludszuweit has been used in CFD analysis of a centrifugal pump
(Bludszuweit, 1995) and, more recently in a CFD analysis of an intracardiac axial flow
pump (Mitoh et al., 2003). Based on the assumption that the effect of shear accumulates
along particle path, Mitoh et al. summed the damage equation proposed by Bludszuweit
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following the particle. Arora et al. (2004) refer to models that characterize complex flow
stress by an instantaneous scalar parameter as “stress-based” models.

Based on earlier work by Maffettone and Minale (1998) on liquid drops, Arora et al.
(2004) propose a new, and qualitatively different, concept of RBC damage. They represent
the shape of the ellipsoidal RBC by the quadratic surface of a symmetric, positive definite,
second rank tensor M. The eigenvalues of this so-called morphology tensor are the square
principal semi-axes of the ellipsoid, whose volume is conserved by keeping det(M) = const.
The evolution of the morphology tensor, resulting from competition between drag forces
inducing deformation and the interfacial tension attempting to recover the undistorted
ellipsoidal shape, is defined by

M∗ = −c1[M − g(M)I] + c2[D · M + M · D]. (10.104)

Here

M∗ = ∂M
∂ t

+ u · ∇ M − � · M + M · �

is the Jaumann derivative of M, � = (L− LT )/2 is the spin tensor, c1 = 1/λ and λ =
τ/μR is the relaxation time of the membrane. Henon et al. (1999) find that τ ∼ 200 ms
for RBCs. The first term on the right-hand side in Eq. (10.104) models interfacial tension:
the function g(M) is introduced to preserve the volume of the cell and is defined in terms
of the invariants of M. The second term represents the effect of the imposed deformation.
Application of the Jaumann derivative instead of a partial time derivative assures us that
Eq. (10.104) is properly frame invariant.

Liquid drops do not tank-tread, red blood cells, on the other hand, do. To account for the
instantaneous rotation of the tank-treading RBC’s membrane, Arora expresses Eq. (10.104)
relative to the rotating frame defined by the eigenvectors of M; this adds another term to
the right-hand side, so now

M∗ = −c1[M − g(M)1] + c2[D · M + M · D] + c3[(� − W ) · M − M · (� − W )]

(10.105)

and replaces � with W in the definition of the Jaumann derivative. Here W is the spin
of the principal triad of M. In effect, Eq. (10.105) states that the vorticity that is seen by
the tank-treading membrane equals the vorticity of the ambient fluid minus the spin of the
principal triad.

Experimental observations on RBCs in steady shear flow guided Arora et al. to choose
c1 = 5.0 s−1, while stability considerations and the matching of the surface area of the RBC
with 6% area increase at catastrophic hemolysis yielded c2 = c3 = 1.25 × 10−3. Together,
the three parameters incorporate critical membrane strain, membrane relaxation time, tank
treading, and shape oscillations, into this strain-based hemolysis model.

Having computed the evolution of the morphology tensor M from Eq. (10.105), it
is now possible to calculate the instantaneous shape distortion D = (L− B) / (L+ B),
where L and B are the axial dimensions of the ellipsoidal RBC. For simple shear there
exists a unique relationship between the strength of the shear flow and the shape distortion
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parameter D: it can be found by computing the eigenvalues of M from the steady state
version of Eq. (10.104) written for simple shear. Arora employs this relationship to compute
an effective shear flow that corresponds to the actual shape distortion

τeff = μbloodκeff, κeff =
√

c2
1D

2(
1 −D2

)
c2

2

. (10.106)

Thus, while the stress-based model assumes equivalence of instantaneous fluid stress and
RBC membrane stress, the strain-based model computes an equivalent steady shear stress
corresponding to instantaneous RBC deformation. Substituting τeff for τ in Eq. (10.103),
we obtain the strain-based hemolysis model

d

dt

(

Hb

Hb

)
= 2.8417 × 10−7

[
μblood

√
c2

1D
2

(1 −D2) c2
2

]2

.416
t−0.215. (10.107)

In an unsteady flow where stress fluctuations are superimposed on a steady baseline
shearing, the stress-based model and the strain-based model yield identical results at low
fluctuation frequency. Under such condition, the RBC membrane sees the same stress
as the host fluid. However, as the frequency is increased such that the periodic time of
fluctuation becomes comparable to the relaxation time of the membrane, the RBC can no
longer respond accurately to the fluctuations. Thus, the contribution of the rapidly varying
component of shearing to cell deformation diminishes with increasing frequency, and the
strain-based model will predict lower hemolysis than does the stress-based model (Arora
et al., 2004).

10.7 Nomenclature

A Helmholtz free energy
A(n) Rivlin-Ericksen tensor
C radial clearance
Ĉ surface tension group
C,Cα mixture, αth constituent
D shaft diameter, distortion parameter
D stretching tensor
De Deborah number
F deformation gradient
G material parameter
H film thickness parameter
H nondimensional film thickness
L velocity gradient
L journal length
Lxz, Ly characteristic lengths
R journal radius
Re Reynolds number
Rε reduced Reynolds number
Rδ droplet Reynolds number



10.7 / Nomenclature 441

T stress tensor
U velocity parameter
U∗, V∗ characteristic velocities
V (12) relative velocity
W load parameter
� spin
�(1,2) relative spin
We particle Weber number
X reference (material) coordinate
r external heat supply
b external body force
c specific heat
g temperature gradient
h density gradient
h film thickness
k1, k2 material functions
k power law consistency index
n power law exponent
p, P lubricant pressure
q heat transfer by conduction
ret(.) retarded motion
t time
x Eulerian coordinate
v = (u, v,w) velocity
'1,'2 material functions
ω vorticity
γ reference density, reduction ratio
e internal energy density
η entropy density
% mixture temperature
λ relaxation time
λ1, . . . λ5 material functions
μ1, . . . , μ4 viscosities
ν kinematic viscosity
π diffusive body force
τ shear stress tensor
τe, τL equivalent, limiting shear stress
τ residence time
ρ density
φ volume fraction
χ deformation function
()(α), ()(α) pertaining to Ca
()∗ reference quantity
()o reference state
(−) nondimensional
tr[.] trace
( Lagrange multiplier
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CHAPTER 11

Gas Lubrication

The qualitative difference in performance between liquids and gases, in general,
vanishes as M → 0, where the Mach number, M, is the ratio of the fluid velocity to the local
velocity of sound. This general conclusion also holds for bearings, and at low speeds the
behavior of gas film lubricated bearings is similar to liquid-lubricated bearings – in fact,
many of the liquid film bearings could also be operated with a gas lubricant. This similarity
between liquid and gas films no longer holds at high speeds, however, the main additional
phenomenon for gas bearings being the compressibility of the lubricant.

Perhaps the earliest mention of air as a lubricant was made by Hirn in 1854. Kingsbury
(1897) was the first to construct an air-lubricated journal bearing. But the scientific theory
of gas lubrication can be considered as an extension of the Reynolds lubrication theory.
This extension was made soon after Reynolds’ pioneering work: Harrison in 1913 published
solutions for “long” slider and journal bearings lubricated with a gas. Nevertheless, the study
of gas lubrication remained dormant until the late 1950s, when impetus for the development
of gas bearings came mainly from the precision instruments and the aerospace industries.

In self-acting bearings, whether lubricated by liquid or gas, lubrication action is produced
in a converging narrow clearance space by virtue of the viscosity of the lubricant. As the
viscosity of gases is orders of magnitude smaller than that of commonly used liquid
lubricants, gas bearings generally must have smaller clearances and will produce smaller
load capacities than their liquid-lubricated counterparts.

Despite the smaller clearances, however, under normal conditions viscous heating in the
gas can be neglected. The equation for the conservation of energy for a constant property
gas is given by Eq. (9.20b). Here we retain the adiabatic compression term – p div v

on account of compressibility. Elrod and Burgdorfer (1959) simplified Eq. (9.21) for a
two-dimensional film of negligible internal energy, flowing between walls held at constant
temperature, and found that

%max

%0
− 1 = O(M2), (11.1)

where %0 is the temperature of the walls and the Mach number, M = u/a, is the ratio of
local gas velocity to the velocity of sound and%max = max(%). Consequently, if the bearing
Mach number is small, the usual case, the temperature variation across the lubricant film
thickness can be neglected.

Another way to estimate the appropriateness of the isothermal approximation is by
comparing the transit time of the gas through the clearance space to the time scale of
conduction (Ausman, 1966). Let the temperature of the gas, contained between parallel
surfaces, exceed the temperature of the walls by 
%. This temperature difference will, at
the centerline, decrease to 
%/3 in a time τ c = O(cpρh2/k), where cp, ρ, and k, are the
specific heat, density, and heat conductivity, respectively, for the gas. The transit time for
the gas through the bearing is τ t = O(2R/U), where R is the characteristic dimension of the
bearing in the direction of motion. If τ t � τ c, heat conduction from gas into bearing will
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occur at a high enough rate to keep the gas film virtually at the temperature of the bearing,
and the latter will be at near uniform temperature on account of the large heat conductivity
of metals. The criteria for isothermal operation is, therefore, τ t � τ c, or Pr Rε � 1. For
gas-lubricants, the Prandtl number Pr =μcp/k = O(1) and in gas-lubricated bearings C/R =
O(10−4), Re = O(1), giving Pr Rε = O(10−4), thus the condition τ t � τ c is, in general,
satisfied.

Another simplifying feature of gas lubricant films is the absence of cavitation. However,
we trade the linearity of the boundary conditions1 for nonlinearity of the equations, and
record no gain on this account. In gas films, however, rarely do we have to consider
turbulence. A typical R = 1 cm air-lubricated journal bearing operating with a clearance
ratio of (C/R) = 10−3 at a speed of N = 5 ×104 rpm would have a Reynolds number less
than 100, far below the critical value of ReCR ≈ 500–800. We may therefore neglect inertia
terms, i.e., apply the Reynolds lubrication theory, and assume laminar flow.

Some of the advantages of gas bearings are:

(1) Chemical stability of the lubricant
(2) No fire hazard
(3) Small thermal gradients
(4) No ecological contamination

However, gas films have shortcomings as well. Under this heading we may mention often
unavoidable metal-to-metal contact that increases friction instantaneously severalfold. To
minimize wear under dry contact, both bearing and runner surfaces must be hard. Hard
surfaces and tight clearances do not easily accommodate debris. It should be considered
that though gas bearing specific loads are small, these bearings often operate at speeds 1–2
orders of magnitude higher than liquid lubricated bearings – in consequences gas bearings
are more vulnerable to thermal/mechanical distress than are liquid bearings (Gross, 1962;
Pan, 1980).

Gas bearings run on thin films, h = 2.5 μm is not uncommon. Such tight clearances
require at least 0.025 μm rms roughness and must be at least 0.125 μm flat, as the self-
correcting action of running-in is not available to gas bearings. Near-perfect alignment is
also necessary, and elastic/thermal deflection must be limited to less than 0.5 μm.

Particularly in magnetic recording applications, where the read-write head has a min-
imum separation from the disk of order 100 nm or less, we must take into account the
clearance height relative to the mean free path of the gas molecules. This ratio is defined
as the Knudsen number

Kn = λ

h
, (11.2)

where h is the film thickness and λ is the mean free path (λ≈ 60 nm for air under standard
conditions). An approximate rule of thumb concerning flow regimes is

Kn < 0.001 continum flow,

0.001 ≤ Kn < 10.0 slip flow,

Kn ≥ 10.0 molecular flow.

1Recall that for liquid-lubricated bearings the Reynolds equation is linear in p, but the boundary
conditions p = dp/dθ = 0 are not.
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As will be shown in Chapter 12, there have been several attempts made to extend the
Reynolds equation above Kn > 0.01.

As in usual circumstances Rε = O(C/R), when we take formally the limit (C/R) →
0 in the equations of motion while treating the viscosity as a constant, we again arrive at
Eqs. (2.63), (2.64), and (2.67). In fact, our starting point in deriving the Reynolds equation
for gas lubricant will be Eqs. (2.67) and (2.16b), the equation of continuity for compressible
fluids.

11.1 Reynolds Equation for Gas Lubricant

The Reynolds equation is derived here for no-slip boundary conditions. Under
the lubrication assumptions the in-plane velocity components of the film are given by
Eq. (2.67):

u = 1

2μ

∂p

∂x
(y2 − hy) +

(
1 − y

h

)
U1 + y

h
U2,

(2.67)

w = 1

2μ

∂p

∂x
(y2 − hy).

The velocity satisfies no-slip conditions at the boundaries

u = U1, v = V1, w = 0 at y = 0,
(2.60)

u = U2, v = V2, w = 0 at y = h.

In the manner of Section 2.2, the velocity components are next substituted into the equation
of continuity that has been integrated across the film. The equation of continuity for a
compressible fluid is given by

∂ρ

∂t
+ div (ρv) = 0. (2.16b)

Rearrangement of Eq. (2.16b) and integration across the film yields

[ρv]h(x,t)
0 = −

∫ h(x,t)

0

∂(ρu)

∂x
dy −

∫ h(x,t)

0

∂(ρw)

∂z
dy −

∫ h(x,t)

0

∂ρ

∂t
dy. (11.3)

In analogy with Eq. (2.69b), we have

[ρv]h(x,t)
0 = ρ dh

dt
. (11.4)

Substituting from Eqs. (2.67) and (11.4) into Eq. (11.3), we obtain

[ρv]h0 = −1

2

∂

∂x

[
∂p

∂x

∫ h

0

ρ

μ
y (y − h) dy

]
− 1

2

∂

∂z

[
∂p

∂z

∫ h

0

ρ

μ
y (y − h) dy

]
(11.5)

− ∂

∂x

∫ h

0
ρ
[(

1 − y

h

)
U1 + y

h
U2

]
dy + ρU2

∂h

∂x
−
∫ h

0

∂p

∂t
dy.
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Since p is not a function of y, neither is ρ for an ideal gas. Assuming further that μ =
μ(x, z) at most and applying Leibnitz’s rule for differentiation under the integral sign,
Eq. (11.5) is written as

∂

∂x

(
ρh3

12μ

∂p

∂x

)
+ ∂

∂z

(
ρh3

12μ

∂p

∂z

)
= ∂

∂x

(
ρh
U1+U2

2

)
−ρU2

∂h

∂x
+h∂ρ

∂t
+ [ρv]h0 . (11.6)

For thrust bearings and, in general, for bearing surfaces that undergo rigid body translation
but no rotation, we have [Eq. (11.4)]

[ρv]h0 = ρ (V2 − V1) = ρ ∂h
∂t

as U2,r = 0 (11.7)

and

∂

∂x

(
ρh3

μ

∂p

∂x

)
+ ∂

∂z

(
ρh3

μ

∂p

∂z

)
= 6

∂

∂x
(ρhU0) + 12

∂(ρh)

∂t
. (11.8)

Here we followed the notation of Chapter 3 and put U0 = U1 − U2.
For journal bearings, one must consider both rigid body rotation and rigid body transla-

tion, and we put (following Section 2.2)

[ρv]h0 = ρ
dh

dt
= ρ ∂h

∂t
+ ρU2,r

∂h

∂x
(11.9)

≈ ρ
∂h

∂t
+ ρU2

∂h

∂x

as U2 = U2,r[1 + O(C/R)] ≈ U2,r by Eq. (2.76c). Substituting Eq. (11.9) into Eq. (11.8)
and collecting terms, we obtain an equation formally identical to Eq. (11.6), but now we
have U0 = U1 + U2.

For isothermal processes, common to the majority of gas bearing applications,

p

ρ
= const. (11.10)

If, further, we have steady conditions, ∂(ρh)/∂t = 0, Eq. (11.8) takes the form

∂

∂x

(
h3

μ

∂p2

∂x

)
+ ∂

∂z

(
h3

μ

∂p2

∂z

)
= 12U0

∂(ph)

∂x
, (11.11)

where U0 = U2 for journal bearings and U0 = U1 for sliders. Equation (11.11) is specified
for various bearing geometries by Pan (1980).

Gas lubrication is frequently applied to the head-disk interface in computer hard disk
drives. In these applications the Knudsen number is in the 0.01–15 range. When the
clearance becomes much smaller than the mean free path, the Reynolds equation with no-
slip boundary conditions predicts a shear stress that is too high. It seems, however, that it is
not the continuum assumption that is at fault but the no-slip boundary conditions (Anaya,
1996). Chan and Horn (1985) found that the drainage rate of a thin film of fluid between
two crossed molecularly smooth mica cylinders was adequately predicted by the continuum
Reynolds equation to about h = 30 nm. At thinner gaps, good correlation with experiment
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was obtained by simply adding a fictitious rigid layer to the mica surfaces in the Reynolds
equation model.

The models currently used to predict pressures in head-disk interface in computer hard
disk drives are (Anaya, 1996) the first-order slip theory of Burgdorfer (1959), the second-
order slip model of Hsia and Domoto (1983), the Boltzmann-Reynolds approach of Fukui
and Kaneko (1988), and the 1.5-order slip equation of Mitsuya (1993). The validity of
slip-flow theory was experimentally confirmed by Hsia and Domoto (1983), with helium
as a working fluid, in an effort to separate the high Knudsen number and high bearing
number effects. Theoretical load was calculated using first-order slip theory, which is based
on momentum transfer between gas and plate, down to 75 nm. However, most of the
experimental data falls below the theoretical load curve when the spacing is below 250
nm. They recommended a second-order slip theory as an extension. The Reynolds equation
obtained from the linearized Boltzmann equation, derived by Fakui and Kaneko (1988),
yields load results between the first- and the second-order slip theories. Mitsuya (1993)
derived, based on kinetic theory, a higher-order slip-flow model, the 1.5-order slip flow
model. Predictions from Mitsuya’s theory for load seem to fall between data from the
Boltzmann-Reynolds model and the second-order slip theory (c.f., Chapter 12).

11.2 Self Acting Gas Bearings

It is convenient to normalize Eq. (11.11) by the substitution

X = x

a
, Z = z

a
, P = p

pa
, H = h



, ! = 6μaU0

pa
2
. (11.12)

For journal bearings a = R, 
 = C, and U0 = Rω. For plane thrust bearing, a = B and 

is a representative film thickness (e.g., depth of recess). The transformed (nondimensional)
equation is

∂

∂X

(
H 3P

∂P

∂X

)
+ ∂

∂Z

(
H 3P

∂P

∂Z

)
= !∂(PH )

∂X
. (11.13)

For long bearings, we set ∂(·)/∂Z → 0 and, by integrating Eq. (11.13), obtain

dP

dX
= !

H 3P
(PH −K) , (11.14)

where K is a constant of integration.
The pressure gradient, ∂ P/∂X, in Eq. (11.14) must remain bounded under all conditions,

for otherwise the pressure would increase to physically unacceptable levels within a short
distance of the inlet. But for very large speeds, the left-hand side of Eq. (11.14) will remain
bounded only if PH → K, leading to

PH = K = PiHi, !→ ∞. (11.15)

This high-speed asymptote of gas bearing operation has been determined solely from
the forcing term, i.e., the right-hand side of the Reynolds equation, which is independent of
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Figure 11.1. Variation of load as function of speed for self-acting gas bearings. (Reprinted
with permission from Ausman, J. S. Gas-lubricated bearings. In Advanced Bearing Technology
by E. E. Bisson and W. J. Anderson. NASA SP-38, 1964.)

the length of the bearing. This, of course, suggests that there is negligible leakage at high
speed2 and finite-length and long bearings behave similarly at the limit U0 → ∞.

Next, consider gas bearing lubrication at very small velocities, U0 → 0. From Eq. (11.14),
it follows that

∂P/∂X = O(!) as !→ 0. (11.16a)

Thus, for the right-hand side of Eq. (11.13), we may write

!
∂(PH )

∂X
= !P ∂(H )

∂X
+O(!2), (11.16b)

and, on substituting from Eq. (11.16) into Eq. (11.13), we obtain

∂

∂X

(
H 3 ∂P

∂X

)
+ ∂

∂Z

(
H 3 ∂P

∂Z

)
= !∂H

∂X
+O(!2), !→ 0. (11.16c)

Equation (11.16c) has the form of the incompressible Reynolds equation.
From Eqs. (11.15) and (11.16), we draw the important conclusions, following Ausman

(Ausman, 1966):

(1) At low speeds, the behavior of gas lubricant is approximated by the behavior of
liquid lubricant.3

(2) At high speed, the product ph = const. and the load capacity becomes independent
of speed and depends only on the inlet (ambient) pressure.

(3) At high speeds, side leakage becomes negligible as both long bearing and finite
bearing solutions approach the asymptote ph = const. (Scheinberg, 1953).

The above three fundamental characteristics of self acting gas bearing are shown schemat-
ically in Figure 11.1.

2The same conclusion can be reached by comparing characteristic times of fluid transport in the direction
of relative motion (shear flow) and in the axial direction (pressure flow).

3Note, however, that liquid lubrication and gas lubrication are not completely identical even at low
speed. While there is cavitation in liquid bearings in the diverging portion of the clearance, gas films
remain continuous from inlet to outlet (Constantinescu, 1969).
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Journal Bearings

For journal bearings, we put a = R, X = θ , 
 = C in Eq. (11.13). The applicable
Reynolds equation is

∂

∂θ

(
H 3P

∂P

∂θ

)
+ ∂

∂Z

(
H 3P

∂P

∂Z

)
= !∂(PH )

∂θ
,

(11.17a)

! = 6μω

Pa

(
R

C

)2

,

and the boundary conditions are

P = 1 at Z = ±L
D
. (11.17b)

We also require periodicity in θ .
Equation (11.17a) is nonlinear, and no general closed-form solutions of it exists. Numer-

ical solutions are well documented, however, and are available in the literature (Elrod and
Malanoski, 1960; Raimondi, 1961). Although closed form solutions are not available for
arbitrary values of the parameters, we are able to obtain analytical solutions in asymptotic
cases.

The pressure equation may be linearized at small values of the eccentricity ratio, ε, by
assuming

P = 1 + εP1. (11.18)

Substituting Eq. (11.18) into Eq. (11.17a), we obtain the first order perturbation equation
as follows:

∂

∂θ

[(
∂

∂θ
−!

)
P1

]
+ ∂2P1

∂Z2
= −! sin θ, (11.19)

This formulation is known as the linearized p solution (Ausman, 1959). Using the notation

� ≡ L

D

√
1 +!2

(
cosh 2σ

L

D
+ cos 2ξ

L

D

)
,

�1

(
!,
L

D

)
≡

(σ − ξ!) sin 2ξ
L

D
− (σ!+ ξ ) sinh 2σ

L

D

�
,

�2

(
!,
L

D

)
≡

(σ − ξ!) sinh 2σ
L

D
+ (σ!+ ξ ) sin 2ξ

L

D

�
,

the load capacity is found to be

FR

p0LD
= πε!

2(1 +!2)

[
!+ �1

(
!,
L

D

)]
, (11.20a)

FT

p0LD
= πε!

2(1 +!2)

[
1 − �2

(
!,
L

D

)]
, (11.20b)
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Figure 11.2. Isothermal first-order perturbation solution for journal bearings. (Reprinted with
permission from Ausman, J. S. Gas-lubricated bearings. In Advanced Bearing Technology by
E. E. Bisson and W. J. Anderson. NASA SP-38, 1964.)

where

σ

ξ

}
=
√

(1 +!2)1/2 ± 1

2
(positive roots).

Note from Eq. (11.20) that the load is linearly dependent on the eccentricity ratio in this
approximation. In reality the increase in load is far more rapid than linear, once ε≈ 0.3
has been passed; the linear approximation is valid for only ε less than this value. Figure 11.2
shows the (dimensionless) total load capacity and the attitude angle for a gas journal
bearing at small eccentricities. The prediction from Eq. (11.20) is compared with numerical
solutions in Figure 11.3.

In an effort to assure stronger than a linear dependence of load on ε, Ausman considered
the product ph ≡�, rather than the pressure itself, as the dependent variable, and linearized
the Reynolds equation with respect to �.

To derive this approximation (Constantinescu, 1969), known as the linearized ph solu-
tion, we first write the pressure equation in a form that gives prominence to the function
�̄ = �/p0
:

H�̄

(
∂2�̄

∂X2
+ ∂2�̄

∂Z2

)
− �̄2

(
∂2H

∂X2
+ ∂2H

∂Z2

)
−!∂�̄

∂X
(11.21)

= �̄
(
∂H

∂X

∂�̄

∂X
+ ∂H

∂Z

∂�̄

∂Z

)
−H

[(
∂�̄

∂X

)2

+
(
∂�̄

∂Z

)2
]
.

For ! → ∞, we have, by Eq. (11.15), PH = �̄ → 0 const. and the right-hand side of
Eq. (11.21) vanishes. This right-hand side also vanishes for!→ 0, as now p → p0, P → 1,
and� → H. Ausman made the assumption that the right-hand side of Eq. (11.21) vanishes
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Figure 11.3. Comparison of perturbation solutions and computer solution with experimental
data. (Reprinted with permission from Ausman, J. S. An improved analytical solution for
self-acting, gas lubricated journal bearings of finite length. ASME J. Basic Eng., 83, 188–194,
1961.)

not only at the limits but over the whole range of !. But then Eq. (11.21) can be written in
the approximate form

H�̄∇2�̄ −!∂�̄
∂X

= �̄2∇2H. (11.22)

Equation (11.22) is still not linear, however. To remedy this, Ausman made the further
assumption that when �̄ is a coefficient, then �̄ ≈ H , so that H�̄ ≈ �̄2 ≈ H 2. The
resulting equation will now be linear and free of coefficient, but for




H 2
= 6μω

p0

(
R

C

)2 (
C

h

)2

≈ 6μω

p0

(
R

have

)2

≈ !.

For journal bearings H = 1 + ε cos θ , and Eq. (11.22) reduces to

∂

∂θ

[(
∂

∂θ
−!

)
�̄

]
+ ∂2�̄

∂Z2
= − cos θ. (11.23)

To solve this equation, we first make it homogeneous via the substitution

�̄(X,Z) = �̄∞ (X) − �̄∗ (X,Z)
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and use separation of variables to solve the resulting equation in �̄∗(X, Z). The high
degree of similarity between Eqs. (11.19) and Eq. (11.23) means that the load components
calculated from Eq. (11.23) will be but a function of ε times the load components calculated
from the linearized p solution

FR|� = 2

ε2

[
1 − √

1 − ε2

√
1 − ε2

]
FR|p, (11.24a)

FT |� = 2

ε2
[1 −

√
1 − ε2 ]FT |p. (11.24b)

Here (·)|� and (·)|p refer to the linearized � and linearized p solutions, respectively.
Figure 11.3 compares linearized p, linearized �, and computer solutions.

For large !, Eq. (11.17a) may be written as

∂H

∂θ
= 1

!

[
∂

∂θ

(
H 3P

∂P

∂θ

)
+ ∂

∂Z

(
H 3P

∂P

∂Z

)]
. (11.25a)

Neglecting the right-hand side upon taking the limit !→ ∞ would lead to

lim
!→∞

∂�̄

∂θ
= 0 (11.25b)

and satisfaction of the boundary conditions

∂�

∂θ
= ε sin θ, at Z = ±L

D
,

would not be possible. Clearly, the small parameter 1/! multiplies the highest derivatives
in Eq. (11.25a), and one is faced with a singular perturbation problem (Nayfeh, 1973).
To overcome the difficulty, Pan (1980) uses matched asymptotic expansion.4 The key for
matching inner and outer solutions is the mass content rule (Elrod and Burgdorfer, 1959;
Pan, 1980)

1

2π

∫ 2π

0
H 3P 2dθ = 1 + 3

2
ε2,

which is obtained by integrating Eq. (11.25a) over the circumference, taking into account
the periodicity of both P and H.

Infinitely Long Step Slider

The pressure differential equation (11.11) reduces to

d

dx

(
Uph

2
− 1

12μ
h3p

∂p

∂x

)
= 0, (11.26a)

and the boundary conditions are

p(0) = p(L) = pa. (11.26b)

The slider is shown schematically in Figure 11.4.

4According to Pan (1980), Eq. (11.25b) is to be employed in the open domain |Z | < L/D as the
outer solution. The inner solution, which satisfies the edge conditions, is obtained from a rescaling of
Eq. (11.25a). To achieve this rescaling, the axial coordinate is stretched in the ratio

√
!.
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Figure 11.4. Step slider geometry.

The equation is nondimensionalized as in Eq. (11.12) to give

d

dX

(
!PH −H 3P

∂P

∂X

)
= 0,

(11.27)
P (0) = P (1) = 1.

Integration of Eq. (11.27) yields

PH

(
1 − H 2

!

dP

dX

)
= K̂, (11.28a)

where K̂ , a constant of integration, equals the value of PH at X∗, where dP/dX = 0:

K̂ = PH |X=X∗ . (11.28b)

Employing Eq. (11.28a) in Eq. (11.27), we get

dP

dX
= λ

(
1 − γ

p

)
, (11.29)

where γ = K̂/H and λ=!/H2 are constants in each interval 0 ≤ X ≤ X0 andX0 < X ≤
1. The integral of Eq. (11.29) is

P + A+ γ ln (P − γ ) = λX. (11.30)

Applying the boundary condition P = 1 at X = 0, gives A = −1 −ln(1 −γ ), and if
γ1 = K̂/H1 and λ1 = !/H 2

1 , where H1 = H(1), we find in the range 0 ≤ X ≤ X0:

P − 1 + γ1 ln

(
P − γ1

1 − γ1

)
= λ1X. (11.31a)

Equation (11.30) can also be evaluated in the range X0 ≤ X ≤ 1:

P − 1 + K̂ ln

(
P − K̂
1 − K̂

)
= ! (X − 1) , (11.31b)

where Eq. (11.31b) satisfies P = 1 at X = 1.
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At X = X0, P = P0 ≡ P(X0), and we use this condition to match the pressures at X0:

H1 (P0 − 1) + K̂ ln

(
P0H1 − K̂
H1 − K̂

)
= !

H1
X0, (11.32a)

P0 − 1 + K̂ ln

(
K̂ − P0

K̂ − 1

)
= ! (X0 − 1) . (11.32b)

The system of Eqs. (11.32) contains two unknowns, P0 and K̂ . These equations cannot
be solved analytically, and one has to resort to numerical methods. For the limiting cases
!→ 0 and !→ ∞, however, we are able to obtain closed form solutions.

Asymptotic case !→ 0:
We look for small perturbation of the incompressible case and put

P0 = 1 +!π0 +O(!2). (11.33)

Substituting for P0 into Eq. (11.31) and collecting terms multiplied by!, we obtain K̂ and
π0 as (Pan, 1980)

K̂ =
[

(1 −X0)H 2
1 +X0

(1 −X0)H 3
1 +X0

]
H1,

π0 = X0 (1 −X0) (H1 − 1)

(1 −X0)H 3
1 +X0

.

The pressure distribution can now be written for small !:

P = 1 +!π0
X

X0
, 0 ≤ X ≤ X0, (11.34a)

P = 1 +!π0
1 −X
1 −X0

, X0 ≤ X ≤ 1. (11.34b)

Asymptotic case !→ ∞:
From Eq. (11.31), it can be shown that ! → ∞ requires K̂ → H1 and P0 → H1. To

signify this, we put for large !

K̂ = H1 − δH, δH/H1 � 1,
(11.35a)

P0 = H − δP, δP/P0 � 1,

and substitute into Eq. (11.31)

H1(H1 − 1 − δP ) + (H1 − δP ) ln

(
H1(H1 − 1) + δH −H1δP

δH

)
= !X0

H1
,

(11.35b)
H1 − 1 − δP + (H1 − δH ) ln

(
δP − δH

H1 − 1 − δH
)

= −! (1 −X0) .
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Figure 11.5. Pressure distribution in step slider (Pan, 1980).

We recognize that on the left-hand sides the logarithmic terms dominate as ! → ∞.
Furthermore, at the limit, H1(1 − δH/H1) → H1. Then, Eq. (11.35b) becomes

H1 ln

(
H1(H1 − 1) + δH −H1δP

δH

)
= !X0

H1
, (11.36a)

H1 ln

(
δP − δH

H1 − 1 − δH
)

= −!(1 −X0). (11.36b)

The above equations can be solved for δH, δP (Pan, 1980)[
δH

δP

]
= H1 − 1

1 + E0

{
H1E1(1 − E2)

H1E1(1 − E2) + E2(1 − E1)
, (11.37)

where

E1 = exp

[
−!X0

H 2
1

]
, E2 = exp

[
−!(1 −X0)

H1

]
,

E0 = E1(H1 − 1 −H1E2).

On substituting for δH, δP in Eq. (11.32), the pressure at large ! is obtained:

0 ≤ X ≤ X0:
(11.38a)

P = 1 + (H1 − 1) (1 − E2)

1 + E0

{
exp

[
−!(X0 −X)

H 2
1

]
− E1

}

X0 ≤ X ≤ 1:
(11.38b)

P = 1 + (H1 − 1) (1 − E1)

1 + E0

{
1 − exp

[
−!(1 −X)

H 2
1

]}
.

Sample results for h = 1.5 and X0 = 0.5 are given in Figure 11.5. The primary effect of
compressibility is related to the pressure peak. For small ! the above ambient value of the
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peak pressure is independent of the value of the ambient pressure and is proportional to the
product of speed and viscosity, as with incompressible lubricant. At large !, on the other
hand, the peak pressure is a constant multiple of the ambient pressure, where the multiplier
is numerically equal to the gap ratio H1.

Figure 11.5 displays the variation of the peak pressure P0 with !. The (normalized)
pressure distribution for various values of ! are also shown in the insert. Note that for
the incompressible case P0 varies linearly with !, but for higher values the curve deviates
more and more from the incompressible case, finally reaching a limiting value as!→ ∞,
in accordance with earlier assertions.

11.3 Nomenclature

B integration constant
C radial clearance
Fr, FT radial, tangential force
H film thickness (dimensionless)
K̂ integration constant
Kn Knudsen number
L bearing length
M Mach number
P pressure (dimensionless)
R bearing radius
Re Reynolds number
Rε reduced Reynolds number
U,U1, U2 surface velocity
X,Z coordinates (dimensionless)
% temperature
a characteristic length
cp specific heat
h film thickness
k heat conductivity
p pressure
pa ambient pressure
t time
u, v,w velocity components
! bearing (compressibility) number
ε eccentricity ratio
ω shaft angular velocity
λ mean free path
μ viscosity
τc, τt characteristic times
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CHAPTER 12

Molecularly Thin Films

Although the lubrication approximation has been derived for thin films, there is,
nevertheless, a thin film limit to its validity. When the characteristic dimensions of the fluid-
containing device approach the mean free path (for gases) or the dimension of the molecules
(for liquids) the continuum assumption, one of the basic assumptions of the approximation,
breaks down. In such cases the Reynolds equation must be amended or replaced by other
mathematical systems.

We have two distinct models at our disposal for representing fluids, continuum and
particle. While the latter is valid under the whole range of conditions, though its use is
limited by practical considerations, the continuum model applies only with restrictions.
The equations that are available for fluid characterization, and how they relate to the two
models, are shown in Table 12.1 (Gad-el-Hak, 1999).

Particle-based representation, which is at the most fundamental level, is of two kinds,
deterministic, in which the motion of each molecule in an ensemble is followed in detail, and
statistical, in which the evolution of the particle’s probability density function is investigated
(Ungerer et al., 2007).

Molecular dynamics (MD) simulation, a deterministic, particle-based method (Koplik
and Banavar, 1995), although theoretically applicable under the complete range of condi-
tions, is employed mainly for liquids as the long flight paths between collisions for gas
makes forward integration of the equations prohibitively expensive. In liquids the molecules
are densely packed, leading to a more efficient application of MD simulation.

The statistics based particle method, on the other hand, presupposes well-developed
kinetic theory, which is not available for liquids. In addition, the equations employed
here are derived for low-density packing of molecules, making these methods applicable
to gases. Both Monte Carlo approaches and the Boltzmann equation are derived from
the Liouville equation, a conservation equation of the n-dimensional probability function.
The direct simulation Monte Carlo (DSMC) method (Bird, 1994; Oran et al., 1998) may
be used for dilute fluids when the ratio of the average molecular spacing to molecular
diameter is larger than 10. The basic technique of DSMC is to uncouple molecular motions
from intermolecular collisions over small time intervals: particle motions are modeled
deterministically while collisions are treated statistically. The Boltzmann equation for the
one-particle distribution function f (x, c, t), where x is the location of the particle and c is
its velocity, is applicable over the whole range of the Knudsen number, Kn = λ/h, h being
the film thickness and λ the mean free path between collisions. The Boltzmann equation is
usually solved by various methods of computational fluid dynamics (CFD).

For air at standard temperature and pressure (STP) the ratio of mean free path to average
spacing of molecules to molecular diameter is ∼170: 10: 1 (Vincenti and Kruger, 1965).
A cube 1μm at the edges contains n ∼2.9 × 107 molecules. The molecules travel along
straight-line trajectories between collisions; the mean free path is λ ∼60 nm. There are
no forces acting on the molecules between collisions, which, on the whole, are binary and

466
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Table 12.1. Fluid characterization

Representation Type Equation (Method) Fluid

Continuum Deterministic Navier-Stokes, Gas-liquid
no-slip (CFD) Gas-liquid

Navier-Stokes, slip (CFD)
Particle Deterministic Newton (MD) Liquid

Statistical Liouville (DSMC) Gas
Boltzmann (CFD) Gas

number 1010 per second. Gases have well-developed kinetic theory, which greatly facilitates
their theoretical treatment.

As the temperature of a gas is lowered, the thermal velocity of its molecules decreases
and the molecules become more densely packed. A cube 1μm at the edges now contains
n ∼3.35 × 1010 molecules and the average molecular spacing decreases to ∼0.31 nm. One
can no longer speak of mean free path as the molecules of liquids are too closely packed.
This signifies that the continuum approximation will apply to liquids down to smaller
length scales than in gases. Nonetheless, when the characteristic dimension of the container
becomes comparable to the size of the liquid molecule the continuum assumption breaks
down. The forces that make their appearance owing to the breakdown of the continuum
assumption are referred to as structural or solvation forces. The occurrence and nature
of solvation forces have been investigated both experimentally and numerically. Experi-
mental investigations make use of various surface force apparatus (SFA) while numerical
investigations utilize molecular dynamics (MD) simulation.

Breakdown of the continuum model is best illustrated for gas flow. We shall first discuss
modeling in such applications, leaving the more difficult and less understood liquid film
for later.

12.1 Gas Flow

When the dimensions of a flow device are such as to accommodate a large enough
number of gas molecules, the gas can be considered to have its mass continuously distributed
throughout the space it occupies and to obey the no-slip condition at solid boundaries.
However, as devices are made smaller and smaller, attention must be paid, eventually, to
the fact that gases consist of discrete molecules.

The conditions that apply to a gas in thin films are best described with reference to the
Knudsen number, Kn = λ/h (cf., Figure 12.1). Continuum flow becomes applicable as
Kn → 0 while Kn → ∞ characterizes collisionless molecular flow. The various Knudsen
number regimes are: Kn = 0 for Euler flow, for 0 > Kn < 0.001 the flow (of a Newtonian
fluid) is governed by the Navier-Stokes equation with no-slip boundary condition. For flows
with Knudsen number above Kn = 0.001, the continuum approach is still usable if we allow
slip to occur at the boundaries (Gad-el-Hak, 1999). This was demonstrated by Shaaf and
Sherman (1954) among others, who measured the drag on a flat plate in a wind tunnel.
The Boltzmann equation holds for the full Knudsen number range, but, as the equation is
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Figure 12.1. Knudsen number range of various gas flow regimes.

difficult to solve, the continuum approach is advocated whenever applicable. For Kn → ∞
there is no choice, the collisionless Boltzmann equation must be used.

An important application of thin-film gas lubrication is to the head-disk interface of
computer hard disk drives. In these devices, found in most of today’s computers, the
read/write head is supported by a slider that is suspended above the rotating disk. The
density of the information that can be stored on the disk can be increased dramatically by
decreasing the flying height of the read/write head. Current drives have areal density of the
order of 12 Gbit/in2 and flying heights as low as 15 nm. To achieve a recording density of
100 Gbit/in2, the distance between head and recording surface must be reduced to 5–10 nm
(Bahukudumbi and Beskok, 2003). For films this thin, the Reynolds equation with no-slip
boundary condition predicts shear stresses that are far too high. It appears, however, that
it is not the continuum assumption so much that is at fault in creating this disagreement at
moderate rarefactions, but the no-slip boundary condition. Some of the models currently in
use for predicting flow conditions at the head-disk interface of computer hard disk drives
are the various velocity-slip theories (Burgdorfer, 1959; Hsia and Domoto, 1983; Mitsuya,
1993: Wu and Bogy, 2003; Bahukudumbi and Beskok, 2003) and the Boltzmann equation
based Reynolds approaches (Fukui and Kaneko, 1988; Cercignani et al., 2007).

Velocity Slip at the Boundary

Velocity slip at flow boundaries in moderately rarefied gases was observed as early
as 1857 by Kundt and Warburg. They found that in the region where the Knudsen number
ranges between 0.01 and 0.1, the limit

uslip = lim
Q→wall

|u(Q) − u0|

exists and is finite. Here u(Q) and u0 represent velocity at the point Q and at the wall,
respectively. Under these conditions the continuum hypothesis, i.e., the compressible
Navier-Stokes equation, can still be used if only the boundary conditions are amended
to account for the slip velocity uslip. At higher values of the Knudsen number, however,
rarefaction becomes the controlling phenomenon and continuum theories can no longer be
applied.

Hsia and Domoto (1983) experimentally confirmed the validity of the slip-flow theory
in helium. Initially, they calculated the load from first-order slip theory, which is based
on momentum transfer between gas and plate, down to 75 nm. However, most of the
experimental data fell below the theoretical load curve when the spacing was less than
250 nm. To correct for this divergence, they proposed a second-order slip theory as an
extension. The first-order and the second-order theories lie on both sides and bracket results
from the Reynolds-Boltzmann equation, which is obtained from the linearized Boltzmann
equation (Fukui and Kaneko, 1988).
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Figure 12.2. Schematics for slip-flow analysis.

A consistent slip condition that renders the Navier-Stokes relations valid in the 0.001 <
Kn < 0.1 regime, the so-called slip flow regime, is

uslip = Ls ∂u
∂y

∣∣∣∣
Q

, (12.1)

where (∂u/∂y)Q is the gradient at a point Q→ wall (Maxwell, 1879). The coefficient Ls
is called the slip coefficient; its importance in the slip-flow regime is comparable to that
of the coefficient of heat conduction in heat transfer. Albertoni et al. (1963) tabulated the
slip coefficient estimates of various authors, they themselves calculateLs = 1.1466 λ from
the BGK (Bhatnagar-Gross-Krook) model of the collision term in the Boltzmann equation
(Bhatnagar et al., 1954).

To examine velocity slip at a solid boundary, we study the flow of a gas of velocity u(y)
along the x-direction, as depicted in Figure 12.2. We assume here that the gas consists of
rigid, nonattracting molecules, which have number density per unit volume n, and randomly
distributed velocity with average magnitude c = √

8kT /πm. Here k is the Boltzmann
constant, m is the molecular mass and T is the absolute temperature.

The frequency of molecular bombardment per unit area on one side of an imaginary,
stationary surface in the flow, oriented parallel with the bounding surface such as ds in
Figure 12.2, is given by Z = (nc̄/4) (Bird et al., 2002). We can compute the shear stress
imparted to ds by summing the x-momentum of the molecules crossing this imaginary
surface from the two opposite directions

τ = Zm(u+ − u−). (12.2)

The velocities u+ = u(y+) and u− = y(y−) can be computed from a Taylor expansion
of u about y:

u+ = u(y) + ∂u

∂y
(y+ − y) + 1

2

∂2u

∂y2
(y+ − y)2 + · · ·

(12.3)

u− = u(y) + ∂u

∂y
(y− − y) + 1

2

∂2u

∂y2
(y− − y)2 + · · ·
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Substituting (12.3) into (12.2) and observing that (y+ − y)2 = (y − y−)2 we obtain

τ = Zm∂u
∂y

(y+ − y−). (12.4)

By comparing (12.4) with the macroscopic shear stress equation

τ = μ(∂u/∂y), (12.5)

we can relate the molecular viscosity to the frequency of oscillation of the molecules, the
molecular mass, and the Taylor length through

μ = Zm(y+ − y−). (12.6)

Applying the foregoing analysis to the boundary at y, where y− is the location of the
“displaced” solid wall, so that

u− = uplate, u(y) = ugas (velocity of gas at wall),

we have

u+ = ugas + ∂u

∂y

∣∣∣∣
y=0

(y+ − y) + 1

2

∂2u

∂y2

∣∣∣∣
y=0

(y+ − y)2. (12.7)

Substituting for u+ and u− into Eq. (12.2) and introducing the tangential accommodation
coefficient α to couple the transmitted shear force to the surface characteristics of the
boundary we obtain

τ = αZm
[
∂u

∂y

∣∣∣∣
y=0

(y+ − y) + 1

2

∂2u

∂y2

∣∣∣∣
y=0

(y+ − y)2 + ugas − uplate

]
. (12.8)

The accommodation coefficient is defined as the fraction of the molecules reflected
from the wall diffusively. When α = 0, the slip velocity is unbounded as the molecules
preserve their momentum (specular reflection, incidence angle equals reflection angle).
Diffuse reflection (zero tangential momentum on the average for reflected molecules), in
contrast, is specified by α = 1 (Bird, 1994).

On comparing the macroscopic formula for shear, Eq. (12.2), to Eq. (12.8), we find that

uslip
def= ugas − uplate = (y+ − y−) − α(y+ − y)

α

∂u

∂y
− 1

2

∂2y

∂y2
(y+ − y−)2. (12.9)

The slip velocity at the boundary is defined as the difference between ugas, the apparent
velocity at the wall, anduplate, the prescribed plate velocity. It is obvious from Eq. (12.9)
that the slip velocity can assume different values in the various models, depending on the
relationship the model specifies between the Taylor length (y+ − y) and the mean free
path λ.

The first-order and the second-order models equate the Taylor length to the mean free
path. In contrast, Mitsuya (1993) take cognizance that the molecules striking the plane
experienced their last collision at a distance of (2/3)λ from the plane (cf., Vincenti and
Kruger, 1965; Bird et al., 2002) and in this manner derives the 1.5th-order theory. Wu
and Bogy (2003), on the other hand, construct new first- and second-order slip models by
summing the contributions from groups of molecules impinging on the surface at various
angles; this, in effect, means a relaxation of the requirement that the length scale in the
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Taylor expansion (12.9) equals the mean free path. Wu and Bogy claim that in the low
inverse Knudsen number domain their second-order model gives the Pouiselle flow rate
with greater accuracy than the old second-order model does; it is also free of pressure
singularity at contact.

Shen et al. (2007) argued that the longitudinal pressure gradient that acts in the Knudsen
layer should also be taken into account, and developed a new slip-flow model from the
first-order solution of the Boltzmann equation. Their fist-order velocity is

uslip =
(

2 − α
α

)
t∗
√(

πkT

2m

)
∂u

∂y

∣∣∣∣
0

− λ

α

√(
2πm

2kT

)
1

mn

∂p

∂x
. (12.10)

Here k is the Boltzmann constant, t∗ is the relaxation time, m and n represent molecular
mass and number density, respectively.

Some of the typical slip-flow models are:

first-order slip (Burgdorfer, 1959): uslip =
(

2−α
α

)
∂u

∂y

∣∣∣∣
0

λ

second-order slip (Hsia, Domoto, 1983): uslip =
(

2−α
α

)
∂u

∂y

∣∣∣∣
0

λ− 1

2

∂2u

∂y2

∣∣∣∣
0

λ2

1.5th-order slip (Mitsuya, 1993): uslip =
(

2−α
α

)
∂u

∂y

∣∣∣∣
0

λ− 2

9

∂2u

∂y2

∣∣∣∣
0

λ2

second-order slip (Wu, Bogy, 2003): uslip = 2

3

(
2−α
α

)
∂u

∂y

∣∣∣∣
0

λ− 1

4

∂2u

∂y2

∣∣∣∣
0

λ2.

(12.11)

Poiseuille and Couette flow profiles, utilizing various slip-flow models, are compared in
Figure 12.3.

The velocity-slip formulas can be applied to compute the flow rate in Poiseuille flow
(Figure 12.4). The various models lead to different nondimensional flow rate equations:

continuum: Qp = D

6

first-order slip (Burgdorfer): Qp = D

6
+ a

√
π

2

second-order slip (Hsia, Domoto): Qp = D

6
+ a

√
π

2
+ π

4D

1.5th-order slip (Mitsuya): Qp = D

6
+ a

√
π

2
+
(

4

9

)
π

4D

second-order slip (Wu, Bogy): Qp = D

6
+
(

2

3

)
a
√
π

2
+
(

1

2

)
π

4D
.

(12.12)

Here the nondimensional Poiseuille mass flow rateQp, the rarefaction parameter D (some-
times referred to as the “inverse Knudsen number”) and the surface coefficient a are defined
by

Qp = ρ ∫h0 udy
h2

√
2RT

∂p

∂x

; D = h
√
π

2λ
; a = 2 − α

α
. (12.13)
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Figure 12.3. Pressure and shear flow according to various theories (0, continuum; 1, 1st order
slip; 2, 2nd order slip; B, Boltzmann). (Reprinted with permission from Fukui, S. and Kaneko,
R. Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation. ASME
Journal of Tribology, 110, 253–261, 1988.)

Figure 12.4. Variation of Poiseuille flow rate with inverse Knudsen number (Continuum; —,
Boltzmann eq.; − · · −, 1st order; — —, 1.5th order; − · −, 2nd order; ▪ ▪ ▪ , 2nd order,
Wu and Bogy.)
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As a first step toward deriving a modified Reynolds equation for ultra-thin gas films, we
integrate the thin-film equations of momentum, now in normalized form,

∂P

∂X
= !

6

∂2U

∂Y 2
;

∂P

∂Z
= !

6

∂2W

∂Y 2
;

∂P

∂Y
= 0; (12.14)

and find the velocity components (cf., Eq. 2.67). The integration constants are evaluated
by applying the slip-flow boundary conditions, for second-order slip, as an illustration, we
have

U (0) = 1 + aKn
∂U

∂Y

∣∣∣∣
0

− 1

2
Kn2 ∂

2U

∂Y 2

∣∣∣∣
0

U (H ) = −aKn
∂U

∂Y

∣∣∣∣
H

− 1

2
Kn2 ∂

2U

∂Y 2

∣∣∣∣
H

(12.15)

W (0) = aKn
∂W

∂Y

∣∣∣∣
0

− 1

2
Kn2 ∂

2W

∂Y 2

∣∣∣∣
0

W (H ) = −aKn
∂W

∂Y

∣∣∣∣
H

− 1

2
Kn2 ∂

2W

∂Y 2

∣∣∣∣
H

.

Here we employed the definitions

p = paP ; (u,w) = U ∗ (U,W ) ; h = h0H ;

(x, y, z) = L
(
X,
h0

L
Y,Z

)
; ! = 6μU ∗L

pah
2
0

.

The symbol pa represents the ambient pressure, h0 the minimum film thickness, ! the
bearing number, and U ∗ is the characteristic velocity along L.

The velocity components that satisfy Eq. (12.14) and boundary conditions (12.15) are

U = − 3

!

∂P

∂X
(Kn2 + aHKn +HY − Y 2) +

(
1 − Y + aKn

H + 2aKn

)
(12.16)

W = − 3

!

∂P

∂Z
(Kn2 + aHKn +HY − Y 2)

From here on we follow the analysis of Section 11.1 and derive a modified Reynolds
equation that is based on velocity slip at the boundaries

∂

∂X

{[
PH 3 + βKnH 2 + γKn2H

P

]
∂P

∂X

}
(12.17)

+ ∂

∂Z

{[
PH 3 + βKnH 2 + γKn2H

P

]
∂P

∂Z

}
= !∂ (PH )

∂X
.

In Eq. (12.17) we presented the modified Reynolds equation in a somewhat generalized
form to include several of the more common slip-flow models; the multipliers β and γ are
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Figure 12.5. Pressure distribution in plane slider (—, Continuum; �, 1st order slip; − · −,
1.5th order slip; B, Boltzmann; - - -, Effective viscosity; ◦, 2nd order slip). (Reprinted with
permission from Sun, Y. H., Chan, W. K. and Liu, N. Y. 2003. A slip model for gas lubrication
based on an effective viscosity concept, Proc IMechE Journal of Engineering Tribology, 217,
187–195, 2003, Professional Engineering Publishing.)

model specific as shown

first-order slip (Burgdorfer): β = 6a, γ = 0

second-order slip (Hsia, Domoto): β = 6a, γ = 6

1.5th-order slip (Mitsuya): β = 6a, γ = 8/3

second-order slip (Wu, Bogy): β = 4a, γ = 3.

(12.18)

Setting β = γ = 0 leads to the Reynolds equation for continuum gas flow with no-slip
boundary condition.

Figure 12.5 displays the pressure distribution in a plane slider per the various slip-flow
models; this figure was obtained by Sun et al. (2003) at ! = 200 and Kn = 1.77.

The load capacity of inclined plates in relative sliding at! = 10 and varying rarefaction
parameter (inverse Knudsen number)

D0 = h0
√
π/2λ = D/PH

is shown in Figure 12.6. The Boltzmann solution is shown bracketed by the first-order slip
and second-order slip solutions, just as in Figures 12.4 and 12.5.

Figure 12.7 plots minimum film thickness between a read/write head and its disk. The
1.5th-order slip model seems to perform best in this case, after the Boltzmann model, of
course.
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Figure 12.6. Load capacity of plane slider at ! = 10.0 (− · · −, Boltzmann eq.; − · −,
2nd order slip; - - -, 1st order slip.)

(μ
m

)

Figure 12.7. Minimum film thickness for miniature slider (l = 2 mm, b = 0.25 mm,
U = 10 m/s, w = 11mN, α = 1, 1.24; +, exp., Mitsuya). (Reprinted with permission from
Mitsuya, Y. Modified Reynolds equation for ultra-thin film gas lubrication using 1.5 order slip
flow model and considering surface accommodation coefficient. ASME Journal of Tribology,
115, 289–294, 1993.)
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In constructing a phenomological approach to the problem of rarefied gas flow Beskok
and Karniadakis (1999) observed that the coefficient of viscosity is related to the mean free
path by

μ = pλ√
RT π/2

. (12.19)

Starting from here, they derived a formula for a Knudsen number dependent effective
viscosity

μeff = μ
(

1

1 + αKn

)
. (12.20)

Sun et al. (2003) further developed this idea, utilizing the work of Veijola and Turowski
(2000), and defined effective values for viscosity, mean free path, and Knudsen number

μeff = f (Kn)μ

λeff = f (Kn)λ (12.21)

Kneff = f (Kn)Kn.

Here f (Kn) = (1 + 2 Kn + 0.2 Kn0.788e−Kn/10)−1 is a correlation obtained from curve fit-
ting to experimental data. The pressure distribution on a plane slider, as obtained via the
effective viscosity approach, is plotted in Figure 12.5.

Comparison with experiments suggest that the continuum model allowing for slip at the
boundaries yields good results for Kn ≤ 1 according to Odaka et al. (cf., Fukui and Kaneko,
1988), and even for Kn ≤ 2.5 according to Hsia and Domoto (1983). Nevertheless, it is
difficult to justify its use for Kn > 1.

Molecular Gas Lubrication

To compute gas flow at arbitrary Knudsen numbers, we require a more detailed
description of it than that afforded by slip-flow models. Direct computation of the position
and velocity of the molecules could be useful but is currently not feasible. We are thus forced
to work with distribution functions. In this, the task will be made lighter on recognizing that
the motion of a molecule between collisions is completely determined by external forces
and depends neither on the position nor on the velocity of other molecules.

If the density of the gas is small, i.e., the average spacing of the molecules relative to
their dimension is large, the collisions between molecules will be binary collisions. In such
cases, and as the molecules do not interact between collisions, statistical description of
the state the molecules can be accomplished with reference to the one-particle distribution
function f (x, c, t). We define this distribution as follows: the probable number of molecules
within the element of physical volume dx = dx1dx2dx3 located at the point x at time t, and
having velocities within the element dc = dc1dc2dc3 near c is equal to f (x, c, t) dxdc.
By following procedure analogous to that used for obtaining other conservation equations,
it is possible to formulate an equation that describes the rate of change of the distribution
function with respect to position and time. This equation is known as the Boltzmann
equation (Vincenti and Kruger, 1965; Kogan, 1969) and is of the form

∂f

∂t
+ c · ∇f =

{
δf

δt

}
coll

. (12.22)
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The right-hand side of Eq. (12.22), called the collision integral, specifies the net rate of
change of the number of molecules of class c per unit volume of gas as the difference of
depleting collisions and their inverse. The collision integral thus contains the distribution
function f (x, c, t), making Eq. (12.22) a nonlinear integro-differential equation.

Because of the nonlinearity of the collision term, the Boltzmann equation is difficult to
solve. A particular class of solutions, namely the Maxwellians, describes equilibrium states.
The left-hand side of the Boltzmann equation (12.22) is zero in equilibrium, therefore the
equilibrium distribution function f0 solves{

δf0

δt

}
coll

= 0.

The Maxwellian distribution function (Vincenti and Kruger, 1965) is given by

f0 = n0

( m

2πkT

)3/2
exp

[−mc2

2kT

]
. (12.23)

Here k is the Boltzmann constant, T is the absolute temperature, and n0 is the number of
molecules per unit volume.

Due to the great complexity of the collision integral, the Boltzmann equation is often
linearized. We mention here only two linearizations, though several have been proposed.
One of them is obtained as small perturbation of the equilibrium state, in the form

f (x, c, t) = f0 (1 + ϕ) ; ϕ(x, c, t) � 1. (12.24)

The other approximation which, according to Kogan (1969), has no strict mathematical
basis but works well, is the BGK model (Bhatnagar, Gross and Krook, 1954)

∂f

∂t
+ c · ∇f = (f0 − f )

τ
. (12.25)

Here τ is a velocity-dependent collision time. For small departures from equilibrium, when
the flow velocity of the gas is small relative to the thermal velocity of its molecules, the
BGK model (12.25) will lead to good results. Note that since the velocity of sound is of the
order of the root mean square of the thermal velocity, the condition for linearization can
also be written in terms of the Mach number.

Some of the most useful methods of solution of the BGK equation (12.25) are based
on perturbation techniques. There are several different perturbation methods in use here,
based on different choices of the small parameter (Cercignani, 1988). Here we apply (Gross
et al., 1957)

f = f0 + ϕ, n = n0 + ω, T = T0 + θ, (12.26)

where ϕ, ω, and θ represent the perturbation of the distribution function, the number
of molecules per unit volume, and the temperature. The last two of these quantities are
generated by the perturbation in f in the form

ω =
∫
EϕdC, θ = 2

3

∫
Eϕ

(
C · C − 3

2

)
dC.

Here we used the notation E = π−3/2 exp(−CiCi) and wrote dC = dC1dC2dC3 for the
volume element in velocity space.
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Substituting Eq. (11.26) into Eq. (12.25), we obtain the linearized equation (Gross et al.,
1957; Fukui and Kaneko, 1988)

εCX
∂ϕ

∂X
+ CY ∂ϕ

∂Y
+ εCZ ∂ϕ

∂Z
= D0

[
−ϕ + ω + 2C · V +

(
C · C − 3

2

)
θ

]
. (12.27)

Here D0 = D/PH = √
π/2 Kn(h0) is the characteristic inverse Knudsen number, C =

c/
√

2RT0 the nondimensional molecular velocity, V = v/
√

2RT0 the nondimensional flow
speed, h0 = εL the minimum film thickness and {X, Y,Z} = (x/L, y/h0, z/L). The mean
free path is computed from λ = μ√

2π RT0/ (2p) and V = ∫ECϕdC .
We will outline here the derivation of a Boltzmann-Reynolds equation for the infinite

cylinder, ∂ϕ/∂z → 0, problem (long-bearing). In this case we have (Fukui and Kaneko,
1988)

εCX
∂ϕ

∂X
+ CY ∂ϕ

∂Y
= D0

[
−ϕ + ω + 2CXVX −

(
C2 − 3

2

)
θ

]
. (12.28)

The trial solution

ϕ =
(
X

ε

)
ϕ0(C2) + CXϕ1(Y,CY , C

2) + ϕ2(Y,CY , C
2) (12.29)

satisfies differential equation (12.28) and appropriate boundary conditions, provided that
ϕ0, ϕ1, and ϕ2 solve

ϕ0 = ω0 +
(
C2 − 3

2

)
θ0, (12.30a)

CX
∂ϕ1

∂Y
+D0ϕ1 = D0 (2VX) − ϕ0, (12.30b)

CY
∂ϕ2

∂Y
+D0ϕ2 = D0

[
ω2 +

(
C2 − 3

2

)
θ2

]
. (12.30c)

Here we used the definitions

ωj =
∫
ϕjEdC; θj = 2

3

∫ (
C2 − 3

2

)
ϕjEdC; j = 0, 2

The flow rate can be obtained by solving Eq. (12.30b) for ϕ1 (ϕ2 does not contribute to
flow rate, only to temperature distribution), thus the velocity is obtained from

VX =
∫

(C2ϕ1E) dC. (12.31)

The velocity can be split into three terms UXP ,UXC , and UXT , indicating pressure flow,
shear flow, and thermal creep flow, respectively. These flow components are given by

VXP =
(
β

2D0

)
(1 −�P ) ,

VXC = U0�C,

VXT = −
(
γ

2D0

)(
1

2
−�T

)
, (12.32)
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where �P ,�C,�T are defined by integral equations

�P = 1 + D0√
π

∫ H

0
�−1(D0|Y − Y ′|)�PdY ′, (12.33a)

�C = 1√
π

[
T0 (D0Y ) +D0

∫ H

0
�−1(D0|Y − Y ′|)�CdY ′

]
, (12.33b)

�T = 1

2
+ D0√

π

∫ H

0
�−1(D0|Y−Y ′|)�T dY ′+ D0√

π

∫ H

0
�1(D0|Y−Y ′|) dY ′. (12.33c)

Here,

�n(ϕ) =
∫ ∞

0
tn exp(−t2 − ϕ/t) dt

is the Abramowitz function. These expressions are for diffuse reflection at the boundaries.
Thermal and momentum accommodation coefficients for surfaces relevant to the disk-drive
air bearing have been measured by Rettner (1997).

Equation (12.33a), (12.33b), and (12.33c), respectively, have been solved numerically
by Cercignani and Daneri (1963), Willis (1962), and Loyalka (1971). Substituting the
solutions of Eq. (12.33) into Eq. (12.32), the x-component of the velocity is obtained.

To derive a Reynolds-type equation, the flow rate must be calculated first. Due to the
linearity of Eq. (12.28), the flow rate q is a superposition of the pressure flow qp, the Couette
flow qC , and the thermal creep flow qT . The Couette flow is not dependent on the Knudsen
number. As for the other two flow components, qp has been evaluated by Cercignani et al.
(Cercignani and Daneri, 1963; Cercignani and Pagani, 1966)

qp = −Qp(D0)
h2

√
2RT0

(
dp

dx

)
(12.34a)

and qT by Loyalka (1971)

qT = QT (D0)
ph2

T0
√

2RT0

(
dTw

dx

)
. (12.34b)

The nondimensional coefficientsQp(D0) andQT (D0) are functions of the Knudsen number,
they can be found in the above-cited papers and are also reproduced by Fukui and Kaneko
(1988).

Assuming constant boundary temperatures, we have grad τw = 0. Then the Boltzmann
equation-based generalized Reynolds equation can be written as

div[Q̄P (D)PH 3 gradP ] = � · grad(PH ) (12.35)

Here Q̄P (D) = Qp(D)/Qcon, Qcon is the flow rate for continuum Poiseuille flow, and
D = PHD0. The characteristic rarefaction parameterD0 = p0h0/μ

√
2RT is calculated on

the reference state and is an assigned parameter, and � = (!x,!z) is a vector. Once Q̄P (D)
is defined, Eq. 12.35 can be solved in the same manner discussed for the compressible
Reynolds equation.
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Table 12.2. Coefficients for Poiseuille flow curve-fit

Range a1 a0 a−1 a−2

5 ≤ D 1/6 1.0162 1.0653 −2.1354
0.15 ≤ D < 5 0.13852 1.25087 0.15653 −0.00969
0.01 ≤ D < 0.15 −2.22919 2.10673 0.01653 −0.0000694

The problem, as presented by Eq. (12.35) is laborious to solve. The nonlinear coefficients
must be obtained from the integral equations (12.33) at each step of the iteration. An
alternative method of solution was presented by Fukui and Kaneko in their follow-up
paper (Fukui and Kaneko, 1990). Here Fukui and Kaneko solved the finite difference
approximation to Eqs. (12.33) ahead of time, then used the newly created database to
interpolate for flow coefficients in terms of the Knudsen number. Even interpolation can be
eliminated if the flow coefficients are approximated in closed analytic form. They publish
the following power series representation forQp

Qp = a1D + a0 + a−1D
−1 + a−2D

−2. (12.36)

The coefficients depend on the Knudsen number range as shown Table 12.2.
Figure 12.3 shows plane Poiseuille flow and plane Couette flow velocity profiles as

calculated by Fukui and Kaneko (1988). At high values of the rarefaction parameter,
D = √

π/2 Kn, the first- and second-order slip models yield results that are very similar
to those of the Boltzmann-Reynolds equation, and the calculated boundary slip is identical
in the three cases. At the lower values of D, however, not only does the boundary slip
have different values but the shape of the velocity distribution is different in the three
models.

Figure 12.4 plots pressure flow rate against inverse Knudsen number; the curve labeled
“Boltzmann” represents Eq. (12.36). Continuum theory with no-slip is shown to yield
acceptable results for Kn < 0.01, while the second-order slip result is good for Kn < 1.
For Kn > 1, the Boltzmann equation results differ drastically from slip flow model
predictions.

One of the shortcomings of the BGK model is that it leads to a Prandtl number of unity,
while for monatomic gas Pr = 2/3; this prompted Cercignani et al. (2007) to investigate the
slider-bearing problem using the ellipsoidal statistical model (ES), which allows the Prandtl
number to take its proper value. This analysis also accommodates for the observation that in
hard disk drives the lubricated disk surface is smoother than the carbon-coated slider surface
so that nonsymmetric gas-wall interactions need to be considered (Kang et al., 1999; Huang
and Bogy, 2000). It is found, however, that “in isothermal conditions and at low Mach num-
bers the corrections introduced by more refined kinetic models of the collisional Boltzmann
operator are negligible” (Cercignani et al., 2007); this is indicated in Figure 12.8.

Direct Simulation Monte Carlo

In order to maintain constant separation during operation, great demands are
placed on designing the hydrodynamic slider that carries the read/write head. The problem
has been attacked by several authors using direct simulation Monte Carlo (DSMC). This
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Figure 12.8. Pressure profile comparison, δ0 = 0.7,! = 61.6, α1 = α1 = 0.7.
(—, Reynolds-BGK; - - -, Reynolds-ES; ◦, DMSC; �, IP data, Jiang et al.). (Reprinted with
permission from Cercignani, C., Lampis, M. and Lorenzani, S. On the Reynolds equation for
linearized models of the Boltzmann operator, Transport Theory and Statistical Physics, 36,
257–280, Copyright (2007) Taylor & Francis Group.)

technique is suitable for solving the Boltzmann equation for dilute gases when average
spacing of molecules to molecular diameter δ/d ≥ 10 and 0.1 < Kn > 10.

In DSMC, the state of the system is given by (r i , vi) the position and velocity of the
ensemble of particles, each particle representing thousands of molecules in the physical
system. Integration of the evolution equations of the system moves each particle forward
into a new position r i + vi
t . When all particles have been moved, a given number of them
are selected for collision, according to collision probabilities derived from kinetic theory.
Four of the six equations needed to determine the post-collision velocities are supplied
by momentum and energy conservation, the remaining two are selected at random but
must satisfy certain conditions, such as the post-collision relative velocity directions be
uniformly distributed.

Alexander et al. (1994) solved the two-dimensional problem for a slider 5μm long
with maximum separation between disk and slider of 50 nm. Conditions were characterized
by the exit values of the Knudsen number, the compressibility number, and the Mach
number, Kn = 1.250, ! = 61.6 and M = 0.08, respectively. As illustrated in Figure 12.9
agreement between the MGL (molecular gas lubrication) method of Fukui and Kaneko
(1988) and DSMC was excellent. The first-order slip flow and the continuum model deviate
significantly from DSMC.

Huang et al. (1997) were able to demonstrate on a three dimensional slider of length
L = 4 μm, width W = 3.3μm, and minimum film thickness 0 ≤ h0 ≤ 25 nm, that in the
2.5 ≤ Kn ≤ 31.25 range DSMC and MGL agree for calculating force on the slider. The
maximum discrepancy of 3.76% in force occurred at Kn = 12.5; this would result in an
error of less than 10% in predicted film thickness. Bearing force is shown plotted against
the Knudsen number in Figure 12.10. DSMC was also applied to slider-disk contact, where
conventional theory gave unbounded force, and worked well.

The DSMC method is valid for the whole Knudsen number range and is of sufficient
accuracy, however, it is computationally intensive; the time step taken must be small relative
to the average time between collisions and the linear dimensions of the computational
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Figure 12.9. Pressure distribution for slider (•••, DSMC; –, MGL; − · −, 1st order
slip; − − −, continuum). (Reprinted with permission from Alexander, F. J., Garcia, A. L.,
and Alder, B. J. Direct simulation Monte Carlo for thin film bearings. Phys. Fluids 6(12),
3854–3860, Copyright (1994) American Institute of Physics.)

cells small relative to the mean free path. DSMC should be employed, therefore, only in
Knudsen number ranges where it is absolutely called for. In the vicinity of the head-disc
interface the flow field spans a wide range of Knudsen numbers. To be computationally
efficient, use of the DSMC should be limited to the interface gap itself while the larger,
outside regions can be modeled by the continuum Navier-Stokes equation. To match the
continuum and the rarefaction regions, John and Damodaran (2009) employ the alternating
Schwartz method. This method was developed originally to solve the Dirichlet problem
for the sum of subdomains (Kantorovich and Krylov, 1964; Szeri and Phillips, 1974).

Figure 12.10. Force on slider, comparison of DSMC and MGL (Reprinted with permission
from Huang, W., Bogy, D. B. and Alexander, F. J. Three-Dimensional Direct Simulation Monte
Carlo Method for Slider Air Bearing. Phys. Fluids, 9(6), 1764–1769, Copyright (1967),
American Institute of Physics.)
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Figure 12.11. Comparison of hybrid and DSMC solution for (a) pressure and (b) x-velocity
(Reproduced with permission from John, B. and Damodaran, M. Computation of head-disk
interface gap micro flowfields using DSMC and continuum-atomistic hybrid methods. Int. J.
Num. Meth. Fluids, 61, 1273–1298 2009, John Wiley & Sons Inc.).

Figure 12.11 compares the hybrid solution with the “exact” DSMC solution for pressure
and longitudinal velocity.

12.2 Liquid Flow

Due to the similarity in makeup between liquids and gases, viz., both are composed
of molecules that are relatively free to rearrange, it is not unreasonable to expect also
similarity in their behavior. In particular, we anticipate that close to solid boundaries the
behavior of liquids and gases will be comparable: the solid-fluid interface will support
no-slip boundary condition under certain conditions, while under others the fluid will slip
at the boundary. The degree of slip might then depend on the strength of the liquid-solid
coupling.

Molecular Dynamics Simulation

To elucidate some of the persisting questions of fluid mechanics such as the
nature of the velocity conditions at solid boundaries, researchers are increasingly turning



484 12 / Molecularly Thin Films

to molecular dynamic (MD) simulations. MD simulation writes Newton’s law of motion
for each molecule (Koplik and Banavar, 1998b)

ma
d2xa
dt2

= − ∂

∂x

∑
a �=b
ϕ (|xa − xb|) . (12.37)

In this expression a, b refer to the constituent atoms or molecules and ϕ is the interaction
potential.

Once the potential ϕ (r) has been selected, Eq. (12.37) can be integrated employing
some finite difference method. Many successful MD simulations have been reported in
the literature. Sanbonmatsu and Tung (2006) simulated the dynamics of 2.64 × 106 atoms
for a total of 22 ns sampling. Furuta et al. (2007) studied the molecular mechanism of the
universal joint function of the bacterial flagellar hook by a two-million-atom MD simulation.
More recently, Germann and Kadau (2008) ran MD simulations with 109 Leonard-Jones
atoms arranged on a simple cubic lattice, while Kadau et al. (2008) performed a series of
simulations of the Raleigh-Taylor instability that included up to 5.7 × 109 particles and
time scale up to 170 ns.

While it is true that the number of molecules current MD simulations can handle represent
only a very small volume (109 water molecules occupy a cube 0.31μm at edges), within a
few molecular layers the liquid adjusts to continuum representation (Koplik and Banavar,
1998a). In the simulations of Koplik and Banavar (1998b) the continuum representation
and MD simulation agreed when the linear size of the system was only O(10) molecules.
Therefore, MD simulation is only required over very small, critical regions of the liquid
domain.

Koplik and Banavar (1995) found that when the channel width is decreased, a phase
transition to a glassy state or an ordered state could enhance the viscosity. Liquids in large
gaps, or liquids above a single wall, remain fluidic all the way to within one or two molecular
layers of the solid surfaces. However, when the gap is squeezed down to the thickness of a
few molecules, the viscosity changes and the confined liquid often becomes solid-like.

Experimental evidence is somewhat contradictory in this respect. Derjaguin
(Israelachvili, 1986) found that the viscosity of water in quartz capillaries with a diameter
less than 100 nm, attains a value 40–50% higher than in bulk. However, this conclusion did
not seem to hold for nonpolar liquids. Chan and Horn (1985) studied the drainage of liquids
between two atomically smooth mica surfaces. Their results are in excellent agreement
with the Reynolds theory of lubrication for film thickness h > 50 nm. But for thinner films
they found drainage to be somewhat slower than predicted by continuum theory, as if two
molecular layers on each surface underwent no shear. Thus, in thinner films there is an
apparent enhancement of viscosity, which can be accounted for by allowing the plane of
shear to be displaced into the liquid. Israelachvili (1986) reported that in films as thin as
5 nm the “plane of slip” is within a few Angstrom units of the interface and the viscosity
is within 10% of its bulk value. Viscosity increase in thin channels was reported by Migun
and Prokhorenko (1987), while Debye and Cleland (1959) and Pfahler et al. (1991) found
the apparent viscosity μa to be consistently smaller than the bulk viscosity μ.

Velocity Slip at Solid Boundary

The no-slip boundary condition occupies a central position in our understanding
of fluid mechanics; nevertheless, it is an assumption whose microscopic validity has long



12.2 / Liquid Flow 485

been debated (Goldstein, 1938). Daniel Bernoulli was the first to propose that for a fluid
flowing along a solid surface the velocity at the solid surface must be the same as that of
the surface itself. Navier, in contrast, reasoned that the liquid may slip on the solid surface,
this slipping being opposed by a frictional force proportional to the velocity of the fluid
relative to the solid

uslip = Ls ∂u
∂y

∣∣∣∣
Q

; Q→ wall. (12.1)

Stokes, commissioned by the Royal Academy of Science to investigate the true nature
of boundary conditions, wrote that “the condition which first occurred to me to assume
for this case was that the film of fluid immediately in contact with the solid did not move
relative to the surface of the solid ” (Stokes, 1845). He calculated the discharge of long
straight circular pipes but was unable to obtain agreement with Dubuat’s experiments. The
reason for this cannot be attributed to the defectiveness of the boundary conditions Stokes
used, however, but to the fact that the motion of the fluid was outside its laminar range.
“In fact, it appears from experiment that the tangential force varies nearly as the square of
the velocity with which the fluid flows past the surface of a solid, at least when the velocity
is not very small ” (Stokes, 1845). After a period of indecision between Bernoulli’s and
Navier’s hypothesis, however, Stokes settled down on the side of the no-slip condition. By
the 1900s it was generally accepted that velocity slip, if it did exist, was probably too small
to be observed (Neto et al., 2005).

We may expect the no-slip condition to break down whenever the characteristic geomet-
rical length traversed by the fluid molecules is comparable to their mean free path (Langlois,
1964). The situations where this might occur are in the flow of rarefied gases, when fluids
(liquids or gases) are strongly confined in one dimension, and at moving three-phase contact
lines (spreading of liquids).

Din and Michaelides (1997) were among the first to use molecular dynamics simulations
in their investigations of Couette flow of a Lennard-Jones (L-J) liquid (cf., Figure 12.12)
in a micropore with weak and strong wall-fluid interaction, employing the potential for
liquid argon (σ = 0.3405 nm, m = 6.634 × 10−23g, ε = 1.657 × 10−14 erg/K). The walls
in their numerical experiment were also composed of individual atoms, and interaction
between wall and liquid was regulated by an L-J type potential with parameters σwf and
εwf . They observed that under weak interaction (εwf = ε) slip occurred near the wall and
the fluid in the contact layer exhibited higher viscosity than in the central region. For strong
solid-fluid interaction (εwf = 3.5ε), obtained by matching the depth of the potential well
to that of argon on a smooth carbon wall, the wall supported the no-slip condition. There
was also an immobile (crystalline) layer next to the wall exhibiting high viscosity. They
further concluded that the “Navier-Stokes equations are still valid at a distance of two to
three molecular layers from the wall, provided that the bulk viscosity and the appropriate
boundary conditions are used ” (cf., Din and Michaelides, 1997).

Thompson and Troian also applied MD simulation to simple shear flow of Newtonian
liquids, with the objective of determining the applicability of Navier’s boundary condition.
They used the shifted Lennard-Jones 6–12 potential, Figure 12.20, for both liquid and
wall and found that conditions at the interface are controlled “by the extent to which the
liquid feels corrugations in the surface energy of the solid ” (Thompson and Troian, 1997).
Such corrugations are maximized when ρw = ρ and the wall-fluid coupling εwf is large.
Then there is efficient momentum transfer and the conditions are consistent with no-slip.
Incommensurate densities and feeble wall-fluid interaction result in weaker corrugation
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Figure 12.12. Shear flow in liquids. (Reprinted by permission from Macmillan Publishers Ltd:
NATURE, Thompson, P. A. and Troian, S. M. A general boundary condition for liquid flow at
solid surfaces. 389, 360–362, Copyright (1997).)

and the development of interfacial slip. The velocity profile in Couette flow is shown in
Figure 12.12; here values of σwf , εwf , and ρw are listed in units of ε, σ , and ρ of the fluid.

The profiles exhibit flow behavior consistent with continuum hydrodynamics, but with
boundary conditions involving different degrees of slip. The same conclusions were reached
recently by Niavarani and Priezjev (2008) in their MD simulation, except that for U ≥
6.0 σ/τ a slight curvature was noted within a region of about 4σ near the walls.

The variation of Ls is shown in Figure 12.13a; when γ̇ is small, Navier’s formula with
Ls = L0

s = const. applies. As the shear rate γ̇ increases, the slip length Ls changes rapidly
and at some critical γ̇ = γ̇c becomes unbounded. Note from Figure 12.13b that the bulk
viscosity is constant over the whole range, indicating that the fluid remains Newtonian.

When Ls is normalized with L0
s and γ̇ with γ̇c, the various Ls = Ls (γ̇ ) curves of

Figure 12.13a collapse onto a single curve in a log-normal plot; this is illustrated in
Figure 12.14, where the dashed curve represents

Ls = L0
s (1 − γ̇ /γ̇c) . (12.38)

Equation (12.38) is the universal boundary condition of Thompson and Troian (1997)
at solid-liquid interface. It shows that at small rate of shear the slip length is a constant
but becomes dependent on the shear rate for high values of γ̇ . Thompson and Troian state
that “the well-known Navier slip boundary condition is but the low shear rate limit of a
more generalized universal relationship which is significantly nonlinear and divergent at
a critical shear rate γ̇c.” They further assert that the new phenomenological boundary
condition, Eq. (12.38), can be used to model viscous flows along solid surfaces. Niavarani
and Priezjev (2008), again using MD simulation, find that even at low rate of shear the slip
length is dependent slightly on γ̇ ; for small Reynolds numbers it is, however, unaffected
by the inertia terms in the Navier-Stokes equation.

Gad-el-Hak (1999) provides physical perspective into Eq. (12.38). For water the energy
scale in the Lennard-Jones potential is ε = 3.62 × 10−21 J and σ = 2.89 × 10−10 m.
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Figure 12.13. Variation of slip length and viscosity with rate of shear (Reprinted by permission
from Macmillan Publishers Ltd: NATURE, Thompson, P. A. and Troian, S. M. A general
boundary condition for liquid flow at solid surfaces. 389, 360–362, Copyright (1997).)

The molecular time scale is τ = (mσ 2/ε)1/2 = 8.31 × 10−13 s, with molecular mass
m = 2.99 × 10−26 kg. For the third case depicted in Figure 12.13, γ̇cτ = 0.1, giving
γ̇c = 1.2 × 1011 s−1. Such extremely high shear rate may be created in small devices but
only at high speeds, though measurable slip, Ls ≈ 17σ, might be realized more easily. For

Figure 12.14. Universal velocity-slip for liquids (Reprinted by permission from Macmillan
Publishers Ltd: NATURE, Thompson, P. A. and Troian, S. M. A general boundary condition for
liquid flow at solid surfaces. 389, 360–362, Copyright (1997).)
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Figure 12.15. Hydrodynamic force between crossed cylinders (◦, wetting surface; ♦, partially
wetting with contact angle ≈ 44◦; - -, Eq. 12.40 with f ∗ = 1). (Reprinted with permission from
Zhu, Y. and Granick, S. Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys. Rev.
Letts. 87(9), 096105, Copyright (2001) by the American Physical Society.)

high molecular weight polymers, γ̇c could be many orders of magnitude smaller. When
close to the critical shear rate γ̇c, the flow even at macroscopic distances can be affected by
the boundary condition at the wall (Thompson and Troian, 1997).

Vinogradova (1995) investigated drainage of thin liquid films confined between two
undeformed spheres of radius R1 and R2, respectively. In this theoretical study, hydropho-
bicity of the surfaces is characterized by an apparent slippage of the liquid while for a
hydrophilic surface the no-slip velocity boundary condition is specified. The lubrication
approximation to the Navier-Stokes equation (i.e., the Reynolds equation) leads to the
hydrodynamic force

Fh = −6πr̃2μv

D
f ∗. (12.39)

Here r̃ = R1R2/(R1 + R2) is the equivalent radius and v is the velocity of approach. For
both surfaces hydrophilic,f ∗ = 1 and we recover Taylor’s formula. If, however, the surfaces
are hydrophobic, velocity slip with slip-length Ls is postulated, leading to the correction
factor (Vinogradova, 1995)

f ∗ = h

3Ls

[(
1 + h

6Ls

)
ln

(
1 + 6Ls

h

)
− 1

]
. (12.40)

However, there is no dependence on either distance or rate of shear in Vinogradova’s
correction, in contradiction with the findings of Thompson and Troian, Zhu and Granick
and others.

The correction factor in Eq. (12.40) was evaluated by Zhu and Granick (2001) in exper-
iments on a sphere vibrating in liquid, in close proximity to a plane surface. Figure 12.15
plots the measured hydrodynamic force on the sphere as function of the mean separation
distance for tetradecane between mica (wetting) and OTE (partially wetting). In the wetting
case, the plot conforms to Eq. (12.40) with f ∗ = 1.
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Figure 12.16. Variation of slip length with shear rate (a, contact angle ≈ 110◦; b, contact
angle ≈ 44◦; c, contact angle ≈ 12◦). (Reprinted with permission from Zhu, Y. and Granick, S.
Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys. Rev. Letts. 87(9), 096105,
Copyright (2001) by the American Physical Society.)

For the nonwetting and partially wetting cases the hydrodynamic force measured by Zhu
and Granick agree with prediction of the Reynolds equation only at large separation; for
small separation the measured force was systematically smaller than predicted by theory.
Assuming that there was velocity slip at the solid-liquid interface, they estimated the
magnitude of the slip from the difference between theoretical and measured hydrodynamic
forces. The variation of this slip length under various experimental conditions is depicted in
Figure 12.16. Here the maximum velocity is defined as vpeak = dωwhere d is the amplitude
of the oscillation, ω is its frequency, thus vpeak/D is a measure of strain rate.

Several factors might influence both the existence of velocity slip and its magnitude. We
have already indicated dependence of Ls on shear rate; other factors to consider are surface
wettability, surface roughness, and the presence of a spontaneously generating gaseous
layer (nano bubbles) at interface.

A small contact angle indicates a strong interaction between liquid and surface, and
originally it was believed that liquids are more likely to slip on poorly wetted surfaces
(Chuarev et al., 1984). This was illustrated by Zhu and Granick (2001), for example, who
were successful in changing the hydrodynamic boundary condition of oil flow from no-slip
to “partial slip” by adding a surfactant to mica-alkane systems (Figure 12.16). The critical
shear stress for slip to occur was shown to decrease with increasing surface coverage
by the physisorbed surfactant. In contrast, other researchers have shown very clearly the
occurrence of velocity slip at the solid-liquid interface with surfaces that were partially or
totally wetted (Bonaccurso et al., 2002). Although in their earlier paper Zhu and Granick
concluded that for tetradecane (a linear alkane) f ∗ = 1, in 2004 they wrote “slip occurs even
for wetting fluids, provided that the surfaces are sufficiently smooth” (Zhu and Granick,
2004). They attribute differences between the data obtained in 2001 and those obtained in
2002, to unsatisfactory surface preparation (melt cutting using Pt wire) that was employed
in the first experiments (cf., Perkin et al., 2006; Israelachvili et al., 2006; Granick et al.,
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Figure 12.17. Comparison between the ‘soggy mattress’ theory and experiment (Zhu and
Granick 2001): (a) small amplitude, (b) large amplitude (data: ♦, �, ω = 1Hz; 
, �,
ω = 10 Hz). (Reprinted with permission from Lauga, E. and Brenner, M. P. Dynamic
mechanism for apparent slip on hydrophobic surfaces. Phys. Rev. E, 70, 026311, Copyright
(2004) by the American Physical Society.)

2006). In face of this controversy, Neto et al. (2005) argue that the level of hydrophobicity
cannot be a primary factor in determining slip.

The effect of surface roughness on the liquid-solid boundary condition also remains
largely unanswered. A rough crystal surface represses slip of Newtonian wetting liquids
according to McHale and Newton (2004) while Du et al. (2004) attests to velocity slip
under similar conditions.

Some researchers ascribe the existence of velocity slip to an observed layer of gas at the
solid-liquid interface in the form of nanobubbles. These bubbles have a radius of R ∼ 50–
100 nm but are highly flattened (large contact angle) and thus are truly nanoscopic in height,
h ∼ 10 nm (Maali and Bhushan, 2008). They are thought to appear spontaneously at the
interface between a hydrophobic surface and a polar solvent like water (Ishida et al., 2000).

Lauga and Brenner (2004) applied Eq. (12.39) to their investigation of the dynamics of
nanobubbles attached to hydrophobic surfaces. Their “leaking mattress” model has three
free parameters available for fitting to experimental data: the fractional surface coverage of
the bubbles, the bubble size, and the contact angle. They simulated the experiments of Zhu
and Granick (2001) and found fair agreement for a hydrophobic solid oscillating in liquid,
in close proximity to a plane (Figure 12.17). The mechanism that results in f ∗ ≤ 1 in these
calculations is, however, not consequent of microslip at bubble surfaces but, rather, is of
dynamic origin. As the solid phase oscillates, the periodic change in bubbles sizes reduces
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the amount of liquid necessary to be squeezed out of the gap, creating an apparent velocity
slip (Lauga and Brenner, 2004).

As formation of nanobubbles depends on experimental conditions (gas content of the
liquid, surface treatment, experimental protocol) and the bubbles can be removed from the
interface by partial degassing, Neto et al. (2005) conclude that nanobubbles cannot explain
velocity slip of all simple liquids.

Density Oscillation Near Solid Boundary

The question whether the presence of a solid boundary induces the neighboring
liquid molecules to organize structurally has been raised repeatedly. In their review article
Koplik and Banavar (1995) conclude that “the principal non-obvious result” of early work
in this area was that the liquid in the vicinity of a solid boundary is prominently layered due
to geometric constraining effect of the wall and from having attractive pairwise interactions
between liquid and solid atoms, and between liquid atoms themselves. In consequence,
pronounced density oscillation is observed near the wall, this oscillation decaying within
a few molecular diameters from the wall. Abraham (1978), one of the early investigators
of this topic, employed Monte Carlo simulation methods to investigate the density profile
in liquids at a liquid-solid interface; Figure 12.18 depicts some of the data he obtained for
two different fluid-wall systems.

Figure 12.18. Comparison of the interface liquid density profiles for two different wall-liquid
interactions. (Reprinted with permission from Abraham, F. F. The interfacial density profile of
a Lennard-Jones fluid in contact with a (100) Lennard-Jones wall and its relationship to
idealized fluid/wall systems: A Monte Carlo simulation. J. Chem. Phys. 68(8), 3713–3716,
Copyright (1978) American Institute of Physics.)

The constraining effect of two solid surfaces is even more dramatic. Niavarani and
Priezjev (2008) employed MD simulation to examine flow between two solid surfaces, one
corrugated the other flat. Density variation with position is plotted in Figure 12.19.
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Figure 12.19. Averaged fluid density profiles near (a) flat upper wall and (b) corrugated lower
wall with wavelength λ = 7.5σ and amplitude α = 1.4σ . (Reprinted with permission
Niavarani, A. and Priezjev, N. V. Rheological study of polymer flow past rough surfaces with
slip boundary conditions. J. Chem. Phys., 129, 144902, Copyright (2008) American Institute of
Physics.)

Experiments on water contrast sharply with those on nonassociating liquids. The latter
exhibits solidification when the thickness of the confined layer is decreased to about five to
eight monolayers, as manifested by the several orders of magnitude increase in viscosity.
The situation is quite different with water. While density increase due to van der Waals
attraction between liquid molecules and the wall promotes solidification in hydrocarbons,
it suppresses the tendency for water to solidify as liquid water is denser than ice (Raviv
et al., 2004).

Interactive Force Between Closely Spaced Solid Surfaces

When two solid surfaces are immersed in a liquid at a great distance apart and
both surfaces and liquid are at rest, no force can be detected between them. If, however,
separation is decreased, various forces manifest themselves. In actuality, the different
kinds of forces all have the same origin. According to the Hellman-Feynman theorem, all
intersurface forces are electric in origin; once the distribution of the electron clouds has
been obtained from the Schrödinger equation, the various forces can be calculated from
conventional electrostatic theory. However, this equation is not amenable to easy solution
and it has become accepted to instead classify the different manifestations of force into
different categories (Israelachvili, 2000).
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Forces between solid surfaces submerged in liquids are classified as either long range or
short range. Long-range forces are the van der Waals forces and the electrostatic forces, the
former usually attractive while electrostatic forces are repulsive. The DLVO (Derjaguin-
Landau-Verwey-Overbeek) theory considers the effect of only van der Waals and double-
layer forces. The theory has been well tested and is in excellent agreement with experiments.
Short-range forces are active in the 1–3 nm range and include solvation forces and hydration
forces. Solvation forces are oscillatory, are measured in nonpolar liquids, normally linear
hydrocarbons, while hydration forces are repulsive, and are present in electrolytes.

Van der Waals Forces

Van der Waals attraction between two atoms is characterized as

w(r) = −C
r6
. (12.41)

Here r is the distance coordinate, C is the interaction constant, and w the interaction
potential.

By summing all two-atom interactions, it is possible to calculate the van der Waals
potential between bodies. We will employ here the Hamaker constant (Hamaker, 1937)

A = π2Cρ1ρ2 (12.42)

and obtain the interaction potential between two planar surfaces D apart and of densities
ρ1, ρ2, respectively

W = − A

12πD2
. (12.43)

To gain an appreciation of the magnitudes involved here, we borrow from Israelachvili
(2000) and estimate the adhesive pressure. Typical value of the Hamaker constant is
A = 10−19 J for interaction across vacuum. If the surfaces are in contact, D ≈ 0.2 nm,
the adhesive pressure is

P = −dW
dD

= A

6πD3
≈ 7 × 108 Pa ≈ 7000 atm. (12.44)

The van der Waals force between two identical bodies is always attractive while between
different bodies can be attractive or repulsive. These forces are always present; they are
active in the 1–15 nm range, and are largely independent of the type and concentration of
the electrolyte (Israelachvili and Adams, 1978).

In the Lennard-Jones force potential, intended to describe molecular interaction in
nonpolar solvents, the attractive contribution models van der Waals attraction while the
repulsive part is included to prevent overlap. The potential is characterized by a length scale
σ – diameter of the molecule – for which ϕ(σ ) = 0, and an energy scale ε = [ϕ(r)]min.
Plotted against distance in Figure 12.20, the Lennard-Jones 6–12 potential has the form

ϕ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]
. (12.45)

The intermolecular force is given by the derivative of the potential F = ∂ϕ (r) /∂r and is
dependent on the separation r between the interacting molecules. When r > 21/6σ , the force
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Figure 12.20. Lennard-Jones force potential.

is that of attraction and it is repulsive for smaller values of r. In order to keep the number of
mutually interactive molecules small, in molecular dynamic simulation the potential is cut
off at some distance rc, often rc = 2.2σ , and shifted so that the force goes to zero smoothly
at cut off.

Double-Layer Forces

Electrostatic forces between surfaces submerged in liquids (water or any liquid
of high electric constant) are a consequence of (1) surface charging by ionization or
dissociation of surface groups or (2) by binding of ions from solution onto a previously
uncharged surface. Irrespective of the mechanism involved, however, surface charging will
result in an oppositely charged region of counter ions. The potential of this electric double
layer is governed by the Poison-Boltzmann equation.

Experiments with conductivity water and aqueous salt solutions measure long-range
double layer forces and indicate a jump into adhesive flat contact in a single monotonic
step at the position atD = 3.5 ± 1.0 nm, due to short-range, attractive van der Waals forces
between the surfaces (Figure 12.21).

Figure 12.22 displays force measurement in two electrolytes, 10−4 mol/dm3 KNO3 and
10−4 mol/dm3 Ca(NO3)2. When the concentration was further increased no jump-in, and on
separation from forced contact no adhesive jump, was observed; instead the forces become
increasingly repulsive (Israelachvili and Adams, 1978).

Solvation Forces

As the submerged surfaces are brought closer to one another, the regions of
density oscillation overlap and interact. If the molecules of the liquid are symmetric and
the confining surfaces are atomically smooth, the molecules will organize into layers of
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Figure 12.21. Force-separation profiles between mica surfaces in conductivity water (data
points: Raviv et al., 2004; solid curve: Pashley, 1981; - - -, DLVO fit). (Reprinted with
permission from Raviv, U., Perkin, S., Laurat, P. and Klein, J. Fluidity of water confined down
to subnanometer films. Langmuir, 20, 5322–5332, Copyright (2004) American Chemical
Society.)
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Figure 12.22. Measured forces in two electrolytes. The dotted line shows theoretical DLVO
forces, including the attractive van der Waals forces (Israelachvili, J. and Adams, G. E. 1978.
Measurement of force between two mica surfaces in aqueous electrolyte solution in the range
of 1–100 nm. J. Chem. Soc. Faraday Trans. 1. 74, 1400–1411. Reproduced by permission of
the Royal Society of Chemistry.)
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Figure 12.23. Schematic of the change in molecular ordering due to confinement (This figure
was published in Intermolecular and Surface Forces, Israelachvili J. N., Copyright Academic
Press (1992).)

decreasing thickness as confinement proceeds. Van der Waals and electrostatic double-
layer continuum theories cannot predict the normal surface forces that arise as consequence
of this structural change; such deviations from the predictions of continuum theories are
referred to as structural or solvation effects.

Solvation pressure arises when there is a change in liquid density, i.e., molecular ordering,
as the surfaces approach one another. When both surfaces are inert, are submerged in a
liquid of density ρ(∞), and are a distance D apart, the solvation pressure on them varies as
(Israelachvili, 2000)

P (D) = kT [ρs(D) − ρs(∞)]. (12.46)

The variation in ρ(D) may be inferred from Figure 12.23. This figure is a schematic of (a)
the changing molecular ordering as confinement is gradually increased, sequence g → a,
and (b) the oscillating solvation pressure that is a consequence of this change (Israelachvili,
2000). The period of oscillation is roughly the same as the diameter of the liquid molecules.

Some of the earliest experiments to measure solvation forces were carried out by Horn
and Israelachvili (1981): their surface forces apparatus is shown schematically in Fig-
ure 12.24. In this apparatus two thin sheets of molecularly smooth mica are glued to
cylindrical lenses, made of fused silica and mounted at right angles. The radius of curva-
ture R of the lenses is much greater than the separation between them (R/D ≥ 104). The
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Figure 12.24. Schematic diagram of the surface force apparatus (Reprinted with permission
from Chan, D. Y. C. and Horn, R. G. The drainage of thin liquid films between solid surfaces.
J. Chem. Phys., 83, 5311–5324, Copyright (1985), American Institute of Physics.)

clamped end of the cantilever spring can be moved up or down at constant speed. Optical
interference techniques are used to measure the minimum separation between the mica
sheets (Israelachvili and Adams, 1978).

To appreciate fully the solvation force experiments and their interpretation, essential
part of which is the occurrence of instabilities, we describe the experimental techniques
in some detail, following Horn and Israelachvili (1981). The phenomenon of oscillating
solvation forces is analogous to what occurs when a magnet (Figure 12.25) is suspended
on a spring above another magnet. As the upper magnet is slowly lowered, the spring will
extend to balance magnetic attraction with spring force. However, on reaching point P
where |∂F/∂r| just exceeds the spring constant K, the suspended magnet will jump into
contact. Attempting to separate the magnets, the spring will extend to produce the force

Figure 12.25. Schematic of force law between two magnets (Reprinted with permission from
Horn, R. G. and Israelachvili. Direct measurement of structural forces between two surfaces in
a nonpolar liquid. J. Chem. Phys. 75(3), 1400–1411, 1983, American Institute of Physics.)
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Figure 12.26. Experimental data of force F as a function of separation D in OMCST
(Reprinted with permission from Horn, R. G. and Israelachvili. Direct measurement of
structural forces between two surfaces in a nonpolar liquid. J. Chem. Phys. 75(3), 1400–1411,
Copyright (1981), American Institute of Physics.)

necessary to break contact, but at that tension, represented by point Q, the magnet will jump
apart. Note that sectionQ− P of the force-distance curve is not accessible by experiment;
rather the observable path follows the sequence Q′ → P → inward jump → P ′ → Q→
outward jump → Q′.

Across liquids composed of spherical molecules such as OMCTS, benzene and cyclo-
hexane, the oscillation of the force – separation curve displays periodicity equal to the
diameter of the molecules; the number of molecular layers, n, can then be counted by divid-
ing the spacing at force maxima by the molecular diameter. For straight-chain molecules
such as the n-alkanes, periodicity is given by the width of the molecular chains, as now the
chains align parallel to the solid surfaces (Gee and Israelachvili, 1990).

Figure 12.26 displays experimental measurements for solvation force between atom-
ically smooth mica in OMCTS (octamethylcyclotetrasiloxane [(CH3)2SIO]4), which
possesses spherical molecules. The arrows, inward at P8, P7, P6, . . . and outward at
Q2,Q3,Q4, . . . , indicate inward and outward jumps, respectively, from unstable to stable
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Figure 12.27. Measurement of forces across various hydrocarbon liquids; VDW signifies
theoretical Lifshitz van der Waal force (Gee, M. L. and Israelachvili, J. N. 1990. Interaction
of surfactant monolayers across hydrocarbon liquids. J. Chem. Soc. Faraday Trans. 86(24),
4049–4058. Reproduced by permission of the Royal Society of Chemistry.)

position. The continuous curves show stable regions of the F (D) curve; dashed curves
are unstable and, therefore, inaccessible to experiment. The inset displays variation of the
peak-to-peak amplitudes with separation.

Chan and Horn (1985) modeled the oscillating solvation force in a form that is suitable
for numerical computation of solvation effects (cf., Jang and Tichy, 1995)

F = Be−D/ξ1 cos(2πD/ξ2). (12.47)

The parameters B, ξ1, ξ2 of the curve-fit in Eq. (12.47) are obtained from comparison
with force versus separation data.

There seems to be significant difference in force profiles between liquids of symmet-
ric molecules and those composed of asymmetric molecules. Asymmetric molecules are
not capable of fitting into structured layers as their symmetric counterparts can. Hence,
forces measured across liquids of asymmetric molecules are monotonic, rather than oscil-
latory. Figure 12.27 displays experimental force data obtained across two organic liquids,
the n-tetradecane (C14), composed of symmetric molecules, and the isoparaffin (isoC19)
consisting of asymmetric molecules. The figure also contains data obtained across a poly-
dispersed mixture of isoparaffins by Gee and Israelachvili (1990).

From Figure 12.27 it may be asserted that molecular ordering of the isoC19 and the
iso mixture is thwarted, assuredly by the branching of the molecular chain (increasing
disorder). The same effect, distraction of periodicity, can be observed also when increasing



500 12 / Molecularly Thin Films

Transmitted wavelengths
to spectroscope

Microscope tube

Vertical leaf springs

Sectored PZ tube

Horizontal
leaf spring

Heat filtered
white light

Capacitor
probe

To
capacitor
bridge

x0

Figure 12.28. Schematic of the shear force balance (Reprinted with permission from Klein,
J. Molecular mechanism of synovial fluid lubrication. Proc IMechE Journal of Engineering
Tribology, 223, 617–628, 2009, Professional Engineering Publishing.)

surface disorder by roughening or when impurities are introduced into the liquid (Gee and
Israelachvili, 1990; Klein and Kumacheva, 1998).

In contrast to the foregoing, Zhu and Granick (2004) recently asserted that branched
hydrocarbon liquids could also display oscillatory solvation forces. That earlier experi-
menters failed to observe such oscillations was attributed by them to defective preparation
of mica surface. Melt cutting by platinum wire, the up-until-then preferred method of pro-
ducing atomically smooth mica, pollutes the freshly cut surfaces by depositing Pt atoms
on them. Using a cleaner method, viz., tearing sheets of freshly cleaved mica, Zhu and
Granick reported to have measured numerous force oscillations and force minima across
liquid squalane (C30 H62), a branched hydrocarbon. Becker and Mugele support the asser-
tions of Zhu and Granick (2003) on the importance of surface preparation and conclude that
their own shear force data differs from earlier measurements “due to contamination prob-
lems in the earlier measurements” (Becker and Mugele, 2005). In contrast, Gourdon and
Israelachvili, who repeated the experiments of Zhu and Granick (2004) on liquid squalane,
ostensibly using the same, new, method of preparing the mica surfaces, conclude that their
“results show the same nonoscillatory force profile as previously found for a number of
branched hydrocarbon liquids, exhibiting a single shallow adhesive minimum” (Gourdon
and Israelachvili, 2006). Furthermore, “neither the oscillatory forces nor the magnitude
of the steady-state friction or shear forces are affected by preparing mica in a different
way . . . and therefore disagree with the claim that there is a need for any reassessment of
the solidification in fluids confined between solid surfaces” (Israelachvili et al., 2006).

In another response to the call by Zhu and Granick (2003, 2004) for reassessing earlier
work in confinement-induced solidification, Perkin et al. (2006) measured forces between
mica surfaces that were prepared in the two different ways. The experiments were carried out
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Figure 12.29. Displacement of top surface, no applied lateral motion (a,D = 116 nm;
b,D = 6.2 ± 0.2 nm; c,D = 5.40.2 nm; n, number of molecular layers) (Reprinted with
permission from Klein, J. and Kumacheva, E. Simple liquids confined to molecularly thin
layers. I. Confinement induced liquid-to-solid phase transitions. J. Chem. Phys., 108(16),
6996–7009, Copyright (1998) American Institute of Physics.)

at three different locations, Oxford University, Weizmann Institute and Toronto University,
and were performed on both aqueous and nonaqueous liquids. “Normal-force versus surface
separation (D) profiles and shear force versus D measurements for purified water (no salt
added), for concentrated aqueous NaCl solutions, and for cyclohexane revealed that in all
cases the behavior of highly confined liquids between melt-cut and between torn-off mica
sheets was identical within experimental scatter” (Perkin et al., 2006).

Response to Shear

Klein and Kumacheva (1998) employed a shear force balance, depicted schemat-
ically in Figure 12.28, to investigate the shear response of confined liquids. From these
studies they discovered that by varying the degree of confinement, they could initiate
sharp transitions in the dynamic behavior of liquid hydrocarbons. In one of their exper-
iments they did not impose lateral motion on the top surface. Instead, they allowed it to
drift with external ambient noise at the characteristic frequency (∼17 Hz) of spring S1

(Figure 12.28). As shown in Figure 12.29, the random vibration persisted all the way
down to D ≥ 6.2 ± 0.2 nm(n = 7) but ceased abruptly when surface separation changed
to 5.4 ± 0.2 nm(n = 6); ostensibly, the film behaved as a liquid all the way down to n = 7
molecular layers but on changing to n = 6, it solidified sufficiently to resist the random
lateral shearing motion induced by external noise.

When alternating lateral motion was applied to the top surface (top trace in Figure 12.30),
no shear response was detected on the lower surface between D = 116 nm (trace A), and
D = 6.2 ± 0.2 nm (trace B). But on changing to D = 5.2 ± 0.2 nm (trace C) the behavior
of the layer changed abruptly; it began to exhibit behavior that is typical of solids (ability
to sustain finite shear stress, with no measurable relaxation prior to yielding).
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Figure 12.30. Lateral back-and-forth motion applied to the top mica surface, sliding past the
lower surface across OMCTS (Reprinted with permission from Klein, J. and Kumacheva,
E. Simple liquids confined to molecularly thin layers. I. Confinement induced liquid-to-solid
phase transitions. J. Chem. Phys., 108(16), 6996–7009, Copyright (1998) American Institute
of Physics.)

Klein and Kumacheva computed the effective mean viscosity and found it changing
abruptly, without transition, as depicted in Figure 12.30 (the broken lines atD = 54 ± 2 Å
and D = 62 ± 2 Å are, respectively, lower and upper bounds on μeff).

Behavior of conductivity water to shear, depicted in Figure 12.32, is in sharp contrast
to that of OMCTS. In each of the cases A, B, and C, of the figure, the forced motion of
the top surface is depicted in the upper trace while the lower trace represents shear force
measured on the bottom surface. As demonstrated here, the reciprocating motion of the top
surface is not communicated to the lower surface for films thicker than D = 5.6 ± 0.3 nm,
D = 5.8 ± 0.5 nm, and D = 3.3 ± 0.0 nm, for melt-cut mica (A), fully downstream melt
cut mica (B), and torn-off mica (C), respectively; no shear force above noise level was
observed up to the point where jump-in occurred as the surfaces slowly drifted toward
each other. This implies that “purified, salt free (conductivity) water remains fluid under
confinement by solid surfaces, down to film thicknesses in the range (3–0) ±0.3 nm,
retaining a viscosity within a factor of 3 or so to either side of its bulk value . . . .This
behavior is in sharp contrast to that of nonassociating liquids, whose viscosity increases
by many orders of magnitude when confined to films of less than five to eight molecular
layers” (Perkin et al., 2006).

Zhu and Granick (2003, 2004, 2006) find that the shear behavior of confined liquids is
history dependent. At low rate of compression (below 10−2 nm/s) they obtained “unprece-
dented low friction” while at faster compression “friction was larger by orders of magnitude
and in this respect resembled prior measurements in the literature” (Zhu and Granick, 2003).
Again, they contribute their finding to using contamination free mica surfaces. Israelachvili
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Figure 12.31. Variation of μeff with the number of molecular layers n (Reprinted with
permission from Klein, J. and Kumacheva, E. Simple liquids confined to molecularly thin
layers. I. Confinement induced liquid-to-solid phase transitions. J. Chem. Phys., 108(16),
6996–7009, Copyright (1998) American Institute of Physics.)

Figure 12.32. Response of water, confined between two solid surfaces, distance D apart, to
reciprocating shearing motion of the top surface (Reprinted with permission from Perkin, S.,
Chai, L., Kampf, N., Raviv, U., Briscoe, W., Dunlop, I., Titmuss, S., Seo, M., Kumacheva, E.
and Klein, J. Forces between mica surfaces, prepared in different ways, across aqueous and
nonaqueous liquids confined to molecularly thin films. Langmuir, 22, 6142–6152, Copyright
(2006) American Chemical Society.)
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Figure 12.33. Comparison of three solvation pressure models with experiment for OMCTS
(Reprinted with permission from Matsuoka H. and Kato, T. An ultrathin liquid film lubrication
theory – calculation method of solvation pressure and its application to the EHL problem.
ASME Journal of Tribology, 119, 217–226, 1997.)

and coworkers, however, do not accept these result and their implications (Israelachvili
et al., 2006).

Ultrathin Film Lubrication

Jang and Tichy (1995) used the exponential-cosine curve fit (Eq. 12.47) of Chan
and Horn (1985) to model the oscillatory effect in solvation pressure and (Eq. 12.43) to
model van der Waals pressure, in their thin film lubrication (TFL) correction to EHL theory.
The total pressure in the Reynolds equation is thus the sum of hydrodynamic, solvation,
and van der Waals pressures. According to the model, the effect of the molecular forces is
negligible for films in excess of 5 nm but becomes significant under 1 nm.

Matsuoka and Kato (Matsuoka and Kato, 1997; Kato and Matsuoka, 1999) apply a theory
of Henderson and Lozada-Cassou (1986) for rigid spheres to model solvation pressure and
use the Dejaguin approximation

F (D)sphere = 2πReqW (D)plane (12.48)

to relate interaction potential between parallel planes,W (D)plane, to force between spheres,
F (D)sphere. In this study, the van der Waals pressure is modeled by Eq. (12.43), but with a
rigorous evaluation for the Hamaker constant (Prieve and Russel, 1988).

The loads tested by Kato and Matsuoka were small enough not to cause deformation
according to classical EHL theory, thus all deformation that may have resulted from the
combined pressure could be attributed to van der Waals and solvation forces. On increasing
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the load, the film thickness was found to decrease stepwise in OMCTS and cyclohexane
(CH2)6, and agreement was found with lubrication theory for films thicker than 5 nm. For
films thinner than this, conventional EHL theory (Luo et al., 1999) begins to deviate from
experiment. Figure 12.33 compares experimental data with theoretical predictions for three
different models; the figure also contains the solution for classical lubrication theory (R-I).

For n-hexadecane, a stepwise decrease of the film thickness was not observed, and there
was agreement with R-I theory down to 2 nm.

12.3 Nomenclature

A Hamaker constant
C(CX,CY , CZ) Molecular velocity, normalized
D Rarefaction parameter
D Separation
F Normal force
Fs Shear force
H Film thickness, normalized
Kn Knudsen number
Ls Slip length
P Pressure, normalized
Qp,QC Flow coefficients, normalized
R Gas constant
R Radius of curvature
T Temperature
V (U,V,W ) Velocity, normalized
W Interaction potential
X, Y,X Cartesian coordinates, normalized
a Surface coefficient
c Molecular velocity
c̄ Molecular velocity, average
f (x, c, t) Distribution function
h Film thickness
k Boltzmann constant
m Molecular mass
n Number density
qp, qC Flow rate; Poiseuille, Couette
p Pressure
pa Pressure, ambient
u(u, v,w) Velocity
x(x, y, z) Cartesian coordinates
α Accommodation coefficient
γ̇ Rate of shear
μ Viscosity
ρ Density
τ Shear stress
(·)eff Effective quantity
(·)0 Reference quantity
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CHAPTER 13

Biotribology

The term biotribology, to cover “all aspects of tribology related to biological
systems,” was coined only four decades ago (Dowson and Wright, 1973); however, inves-
tigations into friction, lubrication and wear of biological tissues date back much further.
As early as the nineteenth century, Young (1809) and Poiseuille (1840) studied the flow
properties of blood, essential today for the design of artificial organs. Reynolds likened
lubrication of articulated joints to lubrication of machine elements. In the last sentence of
his classical paper, Reynolds remarked that hydrodynamic lubrication “is as fundamental
to animal mechanics as the lubricating action of the journal is to mechanical contrivances”
(Reynolds, 1886). Jin and Dowson (2005) listed six areas of biotribology in addition to
lubrication of joints and of red blood cells in capillaries, such as wear of dentures and the
tribology of contact lenses. Nevertheless, in this chapter, we restrict ourselves to one topic
only, the lubrication of articular joints.

Lubrication of Articular Joints

The loading cycle to which an articular joint is subjected is complex and the
demands this places on the joint are numerous (Paul, 1967). For example, across the hip
the cycle displays two force maxima, at heal strike (HS) and at toe-off (TO), as illustrated
in Figure 13.1, the latter reaching four times the body weight. As additional complications,
the forces that operate within the joint are three dimensional, time dependent and vary with
speed and length of stride, and, of course, vary from person to person.

The articulating surfaces of the bones of the joint are covered by cartilage, a specialized
soft tissue. The function of the cartilage is threefold: to distribute the load on the joint,
to reduce friction and eliminate wear, and to absorb energy during dynamic loading.
The precise mechanism of joint lubrication is not well understood and the reasons for
deterioration of the cartilage to the extent that the joint is no longer able to function are
not known. It appears, nevertheless, that solid-fluid interaction is at the heart of cartilage
modeling.

Gross deterioration of the cartilage leads to arthritis. Arthritis is the nation’s leading
cause of disability and costs the United States in the neighborhood of $65 billion annually.
Osteoarthritis is the most common form of arthritis, afflicting 20.7 million Americans
(Lawrence et al., 1998). One theory attributes osteoarthritis to abnormal release of enzymes
from cartilage cells, which then leads to cartilage breakdown and joint destruction. Another
theory is that some people may be born with defective cartilage or with slight defects in
the way that the joints fit together. These defects may cause cartilage breakdown due to
repeated, incorrect, loading of the joint as the person ages. Simply put, damage done to the
cartilage may be a process of wear and tear. This breakdown is exacerbated by the fact that
cartilage is largely free of nerves, blood vessels and lymph channels and, therefore, has only
a limited capacity for self-repair (Englert et al., 2005). As the only way nutrients can be
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Figure 13.1. Load patterns in units of body weight in hip joint during walking. The average
values were Ra = 3.29, Rb = 1.24 and Rc = 3.88 with maximum values of Ra = 5.8 and Rc =
6.4. (Reprinted with permission from Paul, J. P. Forces transmitted by joints in the human body.
Proc Instn Mech Engrs 181 (3J), 8–15, Copyright (1966) Professional Engineering Publishing.)

made available to the cells of the cartilage is transport by the synovial fluid (SF), knowledge
of the movement of the fluid through the cartilage is essential to the understanding of its
deterioration (Quinn et al., 2002; Zhang and Szeri, 2005, 2008).

13.1 Natural Joints

Properties of the Cartilage

The tribological properties of cartilage are intimately related to its structure and
material constitution (Klein, 2006). Cartilage is composed of 10–30% collagen fibrils,
which give strength, 3–10 % proteoglycans, which provide resiliency, and 60–78% water.
The collagen fibrils in articular cartilage consist of Type II collagen molecules, and are
of varying diameter, from 16 nm (Burgeson, 1982) to 200 nm (Clarke, 1971), and 300
nm in length. The collagen fibrils form a network into which the proteoglycans fit. From
a mechanical point of view, the cartilage is an organic matrix of a dense network of
macromolecules saturated with water. The tissue is permeable to fluid flow, in fact, most of
the fluid is free to flow in the interstices, and cartilage is easily compressed. When loaded,
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Middle (40–60%)
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Figure 13.2. The inhomogeneous nature of cartilage: fiber orientation changes from the deep
to middle to superficial tangential zone. (Reprinted with permission from Journal of
Biomechanics, 7(5), Mow, V. C., Lai, W. M. and Redler, I. Some surface characteristics of
articular cartilage I. A scanning electron microscopy study and a theoretical model for the
dynamic interaction of synovial fluid and articular cartilage. 449–456, Copyright (1974), with
permission from Elsevier.)

it will exhibit creep and stress relaxation; these nonlinear responses are due, primarily,
to the viscous drag arising from the relative motion of interstitial fluid and solid matrix
(poroelasticity).

The collagen fibrils in mature articular cartilage are inhomogeneously distributed, giving
the tissue a layered character. Classically, the tissue is divided into histological zones based
on the cellular arrangement (Figure 13.2). The gliding or superficial tangential zone, some
10–20% of the total thickness, contains a higher proportion of collagen fibrils, which are
randomly distributed in planes parallel to the loading surface of the cartilage (Weiss et al.,
1968). The transitional or middle zone, accounting for 40 to 60% of the thickness, contains
randomly oriented and homogenously distributed collagen fibrils (Clarke, 1974). The radial
or deep zone, next to the subchondral bone and straddling the tidemark, the demarcation
between cartilage and calcified tissue, has larger, radially oriented fibril bundles (Hunter
and Finley, 1973). Finally, the calcified cartilage zone, which lies between the tidemark and
the subchondral bone, is composed of short columns of chondrocytes separated by bars of
hyaline cartilage with vascular invasion on the bony side of the zone.

As already alluded to, in early times lubrication of articulated joints was compared to
lubrication of machine elements. In this manner hydrodynamic lubrication, which postulates
nonparallel rigid surfaces in relative motion separated by a continuous film of lubricant,
was proposed (MacConaill, 1932) to explain a coefficient of friction in the 0.0005–0.04
range for healthy tissue (Dowson and Jin, 1986; Mow and Mak, 1987; Foster and Fisher,
1996).

Elastohydrodynamic Models

The next stage of development recognized that the cartilage is soft and deforms
elastically under load; this realization led to the (soft) elastohydrodynamic lubrication
model (Dowson, 1967). It was found, however, that under physiological peak load the film
thickness in diarthrodial joints, calculated from elastohydrodynamic theory to be in the
h ∼ 0.1–1.0 μm range, was considerably smaller than the height of surface asperities of the
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Table 13.1. Parameters for micro-EHL model of ankle join

Equivalent radius (R) 0.35 m Relative velocity (U) 0.019 m/s
Cartilage thickness (d) 0.0024 m Load/length (w) 33.7 kN/m
Modulus of elasticity (E) 16 MPa Asperity wavelength 1 mm
Poisson’s ratio (v) 0.4 Asperity amplitude (a) 1 μm
Lubricant viscosity (μ) 0.01 Pa. s

cartilage δ ∼ 2–5μm (Dowson, 1967; Gardner et al., 1981; Dowson and Jin, 1986). Walker
et al. (1968), for example, measured Ra = 0.8μm for healthy articular surface and up to
Ra = 8μm for osteoarthritic cartilage.

Dowson and Jin (1986) subsequently envisaged the asperities to be effectively smoothed
out in the loaded conjunction and proposed a microelastohydrodynamic lubrication model
based on “local” asperity deformation that is additional to the “global” deformation of
the contact. In their solution of the Reynolds equation, Dowson and Jin modeled the
hydrodynamic pressure p as the sum of a dry contact pressure ps valid for a smooth
surface and a small perturbation 
p, accounting for the asperities. For film thickness, they
postulated

h = h0 + x2

2R
+ a cos

(
2πx

λ
+ ϕ

)
+ Csps + Cr
p. (13.1)

Here a and λ are the amplitude and the wavelength of the “asperities” on a soft layer,
which, with unloaded thickness d, represents the cartilage and covers a rigid cylinder, the
bone, of radius R; Cs and Cr are elastic compliances. Table 13.1 lists the parameter values
for the ankle joint in steady walking and Figure 13.3 displays the results of the Dowson
and Jin calculations: the pressure p, the film thickness h, and the deformed roughness
[a cos(2πx/λ+ ϕ) + Cr
p].

Asperity contact is first made when the ratio of film thickness to the arithmetic average
of the surface roughness (h/Ra) is less than 2–3. If well in excess of this value, then fluid-
film lubrication is likely (cf., Figure 3.13). In the computations of Dowson and Jin (h/Ra)
increased from an initial value of unity to 19.0, resulting in a minimum film thickness of
0.68 μm for the ankle joint. This is in the film thickness range of highly stressed machine
elements lubricated in the EHL mode.

For Dowson and Jin (1986) the computed high (h/Ra) value “immediately offered pow-
erful support for the concept of fluid film lubrication in synovial joints under these condi-
tions.” Under physiological pressures in living joints, the opposing articular surfaces are
thus expected to conform down to the nanometer level (Klein, 2006).

Significant advances were made in joint lubrication on broadening the concept beyond
the confines of classical fluid-film lubrication. The main impetus for this was the recognition
that the relative velocities that occur in diarthrodial joints in most applications are smaller
than required by hydrodynamic lubrication theory for the creation and maintenance of
a continuous, load carrying film. Additionally, the time scale for squeeze film action in
articular joints was found to be too short, when compared to the time interval over which
joints must support load. It appeared advantageous, therefore, to consider articular cartilage
as a deformable solid matrix saturated with fluid.
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(a) Pressure

(b) Film thickness

(c) Deformed roughness

Figure 13.3. Micro-elastohydrodynamic model of ankle joint (Reprinted from Journal of
Biomechanics, with permission from Dowson, D., and Jin, Z. M. Microelastohydrodynamic
lubrication of synovial joints. Proc IMechE Journal of Engineering in Medicine, 16, 63–65,
1986, Professional Engineering Publishing.)

Boosted Lubrication

Boosted lubrication/ultrafiltration is the name given to a possible mechanism that
presumes that during squeezing action synovial fluid is imbibed into the cartilage. Maroudas
(1967) was the first to raise the possibility that a gel, formed of concentrated synovial fluid,
collects in spaces between contacting asperities of opposing cartilage surfaces. The synovial
fluid contains macromolecules, occupying a large spherical domain of 400 nm in diameter,
while the pore size of normal cartilage surface is <5 nm (Mow and Lai, 1980; Mow and
Mak, 1987; Klein, 2006). Consequently, the water component of the synovial fluid might
be imbibed into the cartilage, leaving a residue of large molecule hyaluronan gel behind;
this pool of trapped hyaluronan gel (Figure 13.4) then performs the function of a boundary
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molecules

Figure 13.4. Boosted lubrication (Reproduced from Walker, P. S., Dowson, D., Longfield,
M. D. and Wright, V., “Boosted Lubrication” in synovial joint by entrapment and enrichment,
Ann, Rheum. Dis., 27, 512–520, Copyright (1968), with permission from BMJ Publishing
Group Ltd.)

lubricant as a macromolecular monolayer, 1–100 μm thick, attached to the surface of the
cartilage (Maroudas, 1967; Walker et al., 1968, 1970).

Later investigations of cartilage under squeeze film action (Hou et al., 1992; Jin et al.,
1992) indicated, however, that though thin fluid from SF can imbibe into cartilage within
the central high-pressure zone, leaving concentrated HA gel behind, the low porosity of the
cartilage prevents realization of effective squeeze film lubrication. Linn and Radin (1986)
also suggested that HA is not always an effective boundary lubricant. We will return to this
point later.

Weeping Lubrication

The weeping lubrication model (McCutchen, 1959), in contrast, considers car-
tilage as a reservoir of synovial fluid that is squeezed out from under (elevated) contact
points and into the cavity that remains between the opposing surfaces, at locations where
these surfaces are still separated. The trapped, pressurized, synovial fluid acts as a hydro-
static film. Because the permeability of the cartilage decreases significantly during loading
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Figure 13.5. Self-generating mechanism: time history of the x2 component of fluid velocity
(Mow, V. C. and Lai, M., Recent development in synovial joint biomechanics, SIAM Rev., 22,
257–317, Copyright C© 1980 Society for Industrial and Applied Mathematics. Reprinted with
permission. All right reserved.)

induced deformation, the constrained, pressurized, fluid is capable of carrying up to 90%
of the applied load. With the passing of time, however, the trapped synovial fluid seeps
away and the solid matrix is called upon to support the load; creep equilibrium in human
cartilage is reached in 4–16 hours (Mow et al., 1989). Thus, weeping lubrication requires an
exudation of synovial fluid during loading while boosted lubrication postulates imbibition
(Mow and Lai, 1980).

Biphasic Models

The ratio of typical “pore diameter” to minimum global dimension of the cartilage
is of the order 10−6, the porosity of the unloaded cartilage is as much as 80%, while the
diameter and length of the randomly distributed collagen fibrils that make up the matrix is
25–40 nm and 200–300 nm, respectively. These dimensions indicate that the assumptions
of mixture theory (Truesdell, 1969; Rajagopal and Tao, 1995; see also Chapter 10) hold
for articular cartilage. Mow and co-workers (Mow and Lai, 1980; Mow and Mak, 1987)
made a significant step forward in cartilage simulation by making use of the theory of
mixtures; their so-named biphasic model for cartilage has been used extensively ever since
(e.g., Ateshian et al., 1992; 1998). In this model, cartilage is a homogeneous mixture of
an incompressible elastic solid and an incompressible, inviscid, liquid. However, in reality,
cartilage is neither homogeneous, nor isotropic (cf., Figure 13.2), and undergoes large
deformation during loading, as discussed in later publications (Suh and Spilker, 1994, Lei
and Szeri, 2006).

According to Mow and Lai (1980), the exudation and imbibition of synovial fluid by
cartilage is not as simple as either the weeping lubrication or the boosted lubrication
models would lead us to believe. The self-generating lubrication mechanism of Mow and
co-workers (Mow and Lai, 1980; Mow and Mak, 1987) takes into account the biphasic
nature of the cartilage and is based on the load-partitioning factor β between solid and fluid
phases. Figure 13.5, for example, shows a free draining indenter (β = 0) moving over a
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Figure 13.6. Variation of time constant tμ for reaching equilibrium under constant loading
(Reprinted from Journal of Biomechanics, 40, Carter, M. J., Basalo, I. M., and Ateshian, G. A.
The temporal response of the friction coefficient of articular cartilage depends on the contact
area. 3257–3260, Copyright (2007), with permission from Elsevier.)

cartilage sample: “exudation of the interstitial fluid occurs in front of and underneath the
leading portion of the moving indenter and imbibition of fluid occurs behind and underneath
the trailing portion of it” (Mow and Lai, 1980). This self-generating mechanism is thought
by Mow and his co-workers to be responsible for joint lubrication (Mansour and Mow,
1977; Torzilli and Mow, 1976).

In a recent numerical work, Pawaskar et al. (2007) first slid a plate then a cylinder
indenter over cartilage. Weeping lubrication was indicated in the plate experiment by the
fluid rushing toward the surface, with the flow becoming parallel to the surface in time.
This fluid movement toward the surface was not seen, however, in the indenter experiment;
in fact, fluid was imbibed, reminiscent of boosted lubrication. Fluid exudation was also
seen at the leading and trailing edges. The difference between these results of the two
experiments is attributed by Pawaskar et al. to the difference in aspect ratio, but all in all
“this was indicative of self-generating lubrication mechanism” (Pawaskar et al., 2007).

In vitro, the friction coefficient has been observed to increase with time under steady
loading as the synovial fluid is squeezed out of the cartilage, indicating that friction in
diarthrodial joints is mainly due to solid phase sliding against solid phase (e.g., McCutchen,
1962; Walker et al., 1968; Foster and Fisher, 1996; Krishnan et al., 2004). In situ, however,
the cartilage will not achieve the elevated equilibrium value μeq because the time constant
for this increase, tμ is proportional to the size of the contact area (Carter et al., 2007), as
illustrated in Figure 13.6. After the load has been taken up by solid-to-solid contact, another
form of lubrication mechanism, namely boundary lubrication, takes over (Jin and Dawson,
2005).

Based on the hypothesis that interstitial fluid pressurization contributes significantly
to the reduction of friction in diarthrodial joints, Ateshian examines joint friction within
the context of the biphasic model of cartilage. The ensuing biphasic boundary lubrication
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(Ateshian, 1997; Ateshian et al., 1998) assumes the two constituents of cartilage, an incom-
pressible, ideal, fluid and a linearly elastic solid, obey the equations of mixture theory.1

The equations of motion (10.66) and continuity (10.72), for steady flow of the components
of the mixture, reduce to

grad T s + π = 0
(13.2)

grad T f − π = 0

and

grad(φsv
s + φf vf ) = 0. (13.3)

Here f and s symbolize fluid and solid, respectively, π = (φf )2(vf − vs)/k is the diffusive
body force (cf., 10.76) and the mixture Cauchy stress is given by

T = −p I + τ , τ = λs tr(e)I + 2μse. (13.4)

If we designate the opposing surfaces by superscripts 0 and 1, and solid and fluid volume
fractions of corresponding layers by φs0, φf 0 and φs1, φf 1, then for a saturated mixture we
have

φs0 + φf 0 = 1, φs1 + φf 1 = 1
(13.5)

φs0φs1 + φs0φf 1 + φf 0φs1 + φf 0φf 1 = 1.

Contacts of opposing cartilage surfaces are characterized as solid-solid, solid-fluid,
fluid-solid, and fluid-fluid, the extent of these depending on solid and fluid area fractions of
the opposing cartilage surfaces (for isotropic pore distributions these equal the respective
volume fractions in the mixture). Statistically, solid-solid contact occurs over (φs0φs1) dA,
solid-fluid contact over (φs0φf 1) dA, and fluid-solid contact over (φf 1φs0) dA. The element
area (φf 0φf 1) dA is characterized by fluid-fluid interaction.

Let t , the surface traction over dA, be given by the sum of the partial surface tractions

t = φs0φs1 tss + φs0φf 1 tsf + φf 0φs1 tf s + φf 0φf 1 tff
(13.6)

= φs0φs1 tss − (1 − φs0φs1)pn.

Here we recognized that surface traction in our ideal fluid is normal to the surface and has
magnitude p.

The total transmitted force across the contact is supplied by the integral

W =
∫
A

tdA. (13.7)

On recognizing that t = n · T (2.24), and taking (13.6) and (13.7) into account, the total
load transmitted across the solid-solid interface is

W ss =
∫
A

(−φs0φs1p I + τ ) · ndA. (13.8)

1For fundamentals of mixture theory, see Section 10.5.
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Let � represent the common unit tangent to the surfaces at contact in the direction of
motion, then the normal and the tangential components of W and W ss are, respectively,

Wn =
∫
A

n · tdA; W' =
∫
A

� · tdA
(13.9)

Wss
n =

∫
A

n · (−φs0φs1p I + τ ) · ndA; Wss
' =

∫
A

� · (−φs0φs1p I + τ ) · ndA.

The quantity Wp/Wn, where Wp = −∫A pdA, is named by Ateshian (Krishnan et al.,
2004) the, “interstitial fluid load support.”2

Ateshian et al. (1998) define the effective value of the coefficient of friction by μeff =
W'/Wn and its equilibrium value, manifested when all fluid has drained out of the cartilage
and the entire load is transmitted via solid-solid contact, by μeq = Wss

' /W
ss
n . In an ideal

fluid, solid-fluid and fluid-fluid contact forces lack tangential component, therefore

W' = Wss
' ; μeff = μeq

Wss
n

Wn
. (13.10)

Under load Wss
n → Wn as t → ∞, Eq. (13.10) has the potential to explain the above-

mentioned time dependence of μeff . In the simplest case, solid-solid contact might be
characterized by Coulomb friction, but the model is capable of admitting complex boundary
lubrication effects.

In support of the hypothesis for biphasic boundary lubrication, Ateshian and asso-
ciates measured the friction coefficient simultaneously with interstitial load support for
bovine articular cartilage, demonstrating that the former correlates negatively with the latter
(Krishnan et al., 2004). Figure 13.7 plots the effective coefficient of friction and the inter-
stitial fluid load support against time for cartilage sliding against glass, under constant load.
In the words of the authors of the paper, the results of this study provide “experimental
evidence in support of the primary role of interstitial fluid pressurization in the frictional
response of articular cartilage” (Krishnan et al., 2004).

Boundary Lubrication

Hydrodynamic lubrication and self-generating lubrication both presume existence
of a lubricant film between the articulating surfaces, a condition that is not always satisfied.
Yet the coefficient of friction remains low (Hills, 2000). Charnley (1960) was among the
first to broach the possibility of boundary lubrication, where the articulating surfaces are
separated by a monolayer of bio-lubricant. He and others, e.g., Maroudas, argued that the
hyaluronic acid complex found in the synovial fluid fulfilled the function of a boundary
lubricant. However, while the SF was found to perform well as a bulk lubricant in the
hydrodynamic mode, its performance in the boundary mode has been questioned. As
concluded by Jay et al. (2007), hyaluronic acid (HA) will impart viscosity to the synovial
fluid, but does not act, itself, as a lubricant in the boundary mode.

The synovial fluid is a shear thinning, non-Newtonian fluid; it exhibits high viscosity
at low shear rates, but at physiological shear rates (γ̇ = 105 s−1 or higher) its viscosity
becomes comparable to that of water. In consequence, according to Klein (2006), at high
shear rate the SF will be “squeezed right out from between the sliding articular surfaces at

2Note, that the actual load supported by the interstitial fluid is −∫A(1 − φs0φs1)pdA.
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Figure 13.7. Variation of the effective friction coefficient, μeff , and the interstitial fluid load
support,Wp/Wn, with time (Reprinted with permission from Krishnan, R., Kopacz, M. and
Ateshian, G. A. Experimental verification of the role of interstitial fluid pressurization in
cartilage lubrication, Journal of Orthopaedic Research, 22, 565–570, 2004, John Wiley and
Sons.)

normal pressure.” Klein thus supports the earlier conclusion that boundary lubrication plays
an important role in joint lubrication and it is the surface-attached molecules “that must
be providing the remarkable lubrication characteristic of healthy synovial joints” (Klein,
2006).

In addition to hyaluronan molecules, the synovial fluid contains the glycoprotein lubricin
(PRG4), sometimes also known as superficial zone protein (SZP), and various surface-active
phospholipids (SAPL). Hills (2000) advocated that hydrophobicity was imparted to slid-
ing surfaces by adsorbed SAPL as a monolayer or oligolamellar layers. Klein (2006),
on studying the molecular mechanism of synovial joints, contradicted the suggestion that
macromolecules could be adsorbed to the cartilage surface from solution, as both synovial
macromolecules and cartilage surface are negatively charged. In any case, adsorbed macro-
molecules do not provide for exceptionally good lubrication. Instead, Klein advanced the
hypothesis that the synovial polyelectrolytes responsible for good lubrication of the carti-
lage, namely lubricin and aggrecan, are released by chondrocyte cells within the cartilage
below the superficial zone and subsequently diffuse and are secreted into the synovial space
through the superficial zone surface. These flexible, negatively charged macromolecules
will “at some point in their passage through the surface adopt configurations in which they
are partly within the superficial zone and partly emanating away from it into the synovial
space” (Klein, 2006), where they form brushlike structures. This is indicated schematically
in Figure 13.8. Under compression, it is further hypothesized, the opposing brushes will
deform into thinner layers rather than interpenetrate (Klein, 2006; Zappone et al., 2007):
an eightfold compression of the layers only doubles the extent of interpenetration, thus
keeping the coefficient of friction low. The brushes are aided in their friction-lowering
performance by trapped hydrated ions that act like “ball-bearings” (Klein, 2006).

A great deal of research is currently being performed toward evaluating the lubricating
capability of the various constituents of the synovial fluid. In contrast to Klein (2006),
Schmidt et al. (2007) find that each constituent of the SF interacts with, and adsorbs to, the
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Figure 13.8. Schematics of the brush-like surface phase formed by synovial macromolecules
(Reproduced with permission from Klein, J. Molecular mechanisms of synovial joint
lubrication. Proc IMechE Journal of Engineering Tribology, 220, 691–710, Copyright (2006)
Professional Engineering Publishing.)

articular surface, contributing both individually and in combinations toward lowering the
coefficient of friction. Figures 13.9(i), 13.9(ii) and 13.9(iii) show static friction and average
kinetic friction coefficients in phosphate buffered saline (PBS) and various concentration
of SF, HA, and PRG4. Schmidt et al. conclude, however, that the “combination of the SF
constituents HA, PRG4, and SAPL at physiological concentrations approaching, but not
fully replicating, the boundary-lubricating ability of SF suggests that additional lubricating
molecules and/or complexes remain to be identified ” (Schmidt et al., 2007).

Jay et al. (2007) single out lubricin (PRG4) as the primary boundary lubricant, and argue
that SF lacking in lubricin cannot reduce friction, nor does it prevent cartilage wear when
acting in the boundary mode. Using a pendulum apparatus, they evaluate the importance
of lubricin by (1) comparing the knee joint of normal and lubricin-mutant mice and (2)
testing SF samples from patients with the autosomal recessive disorder CACP that is
characterized by lubricin deficiency. These studies demonstrate that SF lacking in lubricin
is unable to reduce friction in the boundary mode, clarifying why patients with CACP are
prone to precocious joint failure. The joints of lubricin-mutant mice showed early wear and
higher friction than those of the “wild” type. In the case of two-month-old mice, the mean
coefficient of friction for those with lubricin was measured at 0.0013 and for lubricin-mutant
mice at 0.0023. The smallness of this increase of friction is attributed to the effectiveness
of biphasic lubrication even in lubricin-mutant mice; however, even this modest increase in
friction was sufficient to cause damage to the cartilage. Lubricin self-organized and reduced
the work of adhesion between opposing asperities, according to Jay et al. (2007). Synovial
fluid from CACP patients was evaluated in vitro for coefficient of friction, using a saline
solution with a coefficient of friction of 0.1. Measured values of the coefficient of friction
for the SF of six CACP patients were indistinguishable from those obtained with saline
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Figure 13.9. Effect of graded concentration of (i) synovial fluid (SF), (ii) hyaluronan (HA),
and (iii) proteoglycans 4 (PRG4), respectively, on the boundary lubrication of articular
cartilage: A, static friction; B, average kinetic friction, pre-sliding duration 1.2 s. (Reprinted
with permission from Schmidt, T. A., Gastelum, N. S., Nguyen, Q. T. Schumacher, B. L. and
Sah, R. L. Boundary lubrication of articular cartilage. Arthritis & Rheumatism, 56(3), 882–891,
Copyright (2007) John Wiley and Sons.

alone and none of the fluids showed ability to lubricate in the boundary mode. Jay et al.
conclude that HA alone does not act as a boundary lubricant, only when it is chemically
bound to the surface; lubricin has a hyaluronate-binding region and might help anchor HA
to articular cartilage in a synergism of the two macromolecules.

The lubricin molecule (Figure 13.10) forms the mucous coating of many surfaces in the
human body (eyelids, gastrointestinal tract, etc.). With a contour length of 200 ∓ 50 nm

Figure 13.10. Schematic representation of the lubricin structure. The N- and C- ends are
separated by a large, negatively charged mucin-like domain (Reprinted from Biophysical
Journal, 92, Zappone, B., Ruths, M., Greene, G. W., Jay, G. D. and Israelachvili, J. Adsorption,
lubrication and wear of lubricin on model surfaces: polymer brush-like behavior of a
glycoprotein, 1693–1708, Copyright (2007), with permission from Elsevier.)
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Figure 13.11. Change in SPR response units (RU) with respect to PBS baseline (Reprinted
with permission from Chang, D. P., Abu-Lail, N. I., Guilak, F., Jay, G. D., and Zauscher, S.
Conformational mechanics, adsorption, and normal force interactions of lubricin and
hyaluronic acid on model surfaces. Langmuir, 24, 1183–1193, Copyright (2008) American
Chemical Society).3

and a few nanometers in diameter, it possesses a small net positive charge, though its center
domain is negatively charged and hydrophilic (Zappone et al., 2007, Chang et al., 2008).

In contrast to Klein (2006), Zappone et al. found lubricin to adsorb from buffered saline
solution on various surfaces: (1) negatively charged mica, (2) positively charged poly-lysine
(on mica) and aminothiol (on gold), and (3) hydrophobic self-assembled monolayers of
alkanethiol (on gold), in the form of a dense layer of end-grafted single tails or loops,
50–100 nm in thickness. The frictional characteristics and wear damage of the surfaces
were shown to be intimately connected to the strength of the adsorption.

Chang et al. (2008) performed both normal force and adhesion measurements on lubricin,
hyaluronic acid and their mixture, on substrates functionalized with hydrophilic (–OH termi-
nated) or hydrophobic (−CH3 terminated) self-assembled monolayers. Typical adsorption
isotherms for lubricin and HA, obtained from surface plasma resonance (SPR) technique is
shown in Figure 13.11. Lubricin adsorbed significantly more than did HA on both hydroxyl
and methyl surfaces. Chang et al. find agreement with conformation of adsorbed lubricin
as proposed by Zappone et al. (2007); on hydrophobic surfaces it is looplike, with the end
domains of the molecule serving as anchors. On hydrophilic surfaces, it adopts a taillike
conformation.

As we have discussed above, there are, roughly speaking, three directions of research
pertaining to friction in diarthrodial joints, each receiving primary support from one of
three different camps of researchers. There is a strong urging to liken lubrication of joints
to lubrication of machine elements, especially by investigators having background in the
latter. In contrast, researchers in biomechanics seem to prefer explanations based on the
poroelastic nature of cartilage, while those with background in chemistry and medicine
investigate lubrication in the boundary mode. It is, of course, generally accepted that
lubrication of diarthrodial joints cannot be explained by any one mechanism alone, rather,
that during different phases of the load cycle (cf., Figure 13.1), different mechanisms
come into play and that, during any phase of the cycle, joint performance is the result
of a combination of fluid-film and boundary lubrications in synergy. It is well to bear in

3The resonance unit 1 RU∼1μg/cm2.
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mind that the various lubrication mechanisms operate at different length and time scales.
Microelastohydrodynamic lubrication is operational at higher relative speeds and larger
separation of the articulating surfaces, as in the knee joint during the swing phase of the
cycle. Boosted, weeping and biphasic boundary lubrication are called upon at first asperity
contact, while at direct cartilage-cartilage contact, lubrication is provided by the synovial
fluid macromolecules as they attach to the cartilage surfaces.

13.2 Artificial Joints

Total joint replacement procedures have been performed for several decades;
they represent one of the most successful applications of biomechanics. Almost all of us
are acquainted with persons whose life has been changed for the better by a total joint
replacement procedure. Over 800,000 hip joints are replaced worldwide annually (Jin and
Dowson, 2005). The Merrill-Lynch report, quoted in Isaac et al. (2009), puts this number
at approximately 1,500,000. Though the number of total knee replacements is lower than
this, knee replacements are becoming increasingly more popular, especially in the United
States. Nevertheless, we discuss only hip joint replacement in this section.

Types of Total Hip Replacement (THR)

In a healthy hip joint, the ball shaped head of the femur or thighbone articulates
within the cuplike socket, called the acetabulum, of the pelvic bone. Total hip replacement
(THR) or total hip arthroplasty (THA) are synonymous names given to the orthopedic
procedure that replaces the severely damaged hip with an artificial joint. The artificial joint
consist of a socket, the acetabular cup and its liner that replace the acetabulum of the hip
joint, and a ball mounted on a wedge-shaped stem that replaces the ball of the hip joint
and the upper part of the femur. The stem is driven into the femur and held in position by
cement. In some variations of the prosthesis, the cup is screwed into the pelvis and/or held
in place by cement. Figure 13.12 is an X-ray photograph of a human pelvis; the right hip
has been replaced by a ball and socket.

In one of the earliest recorded hip replacements, Glück fixed an ivory ball and socket
joint to the bone with nickel-plated screws (McKee, 1982). Later, Glück experimented with
a grouting compound for fixation. The Burmese orthopedic surgeon San Baw performed
some 600 total hip replacement surgeries, starting from 1960, also using femora carved
from ivory. Ivory gave way to metal-on-metal and to metal-on-polymer implants by the
mid 1960s. The former was typified by the McKee-Farrar joint (McKee and Watson-Farrar,
1966) while Sir John Charnley of Wrightington Hospital near Wigan, England, pioneered
the metal-on-polymer joint. The metal-on-metal joint had serious problems to start with,
mainly because the ball and socket, both made of stainless steel, were manufactured to
the same radius. Even then, the joint had the advantage of producing little wear (McKee,
1982). It was recognized only later that a finite clearance was necessary to avoid equatorial
binding and thus decrease friction.

Charnley first employed a metal femur articulating against a Teflon R© cup, but soon
realized that the wear rate was excessive and by 1962 replaced the polytetrafluoroethylene
with ultra-high molecular weight polyethylene (UHMWPE).4 Both femoral and acetabular

4The ubiquitous UHMWPE is a linear polymer with a molecular weight in the range of 3 − 6 ×
106 g/mol.
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Figure 13.12. The patient’s right hip (left on image) has been replaced, with a metal head that
is set in the femur and the socket replaced by a white plastic cup (NIADDK, 9AO4, Connie
Raab-contact; NIH.)

components were fixed to the bone using acrylic bone cement, the use of which was
also pioneered by Charnley. This replacement joint, known as the Charnley Low Friction
Arthroplasty (LFA), was lubricated with synovial fluid. For over two decades, the Charnley
design was the most used THR system in the world, far surpassing other available options.
In the original design, the femoral stem had a collar, discernible on the photograph in
Figure 13.12; this was deemed necessary for transmitting the hip joint loads directly
onto the cut surface of the femoral neck. Today over 80% of artificial hip joints utilize
polyethylene acetabular cups articulating on metal or ceramic femoral heads (Galvin et al.,
2005). Artificial joints can be either cemented or non-cemented. While cemented implants
are for older patients with poor quality bones, non-cemented implants are usually reserved
for young, healthy, individuals with strong bones.

The critical quantities to investigate when selecting a THR construction are not unlike
those for choosing bearings as machine elements, namely friction, wear, and minimum
film thickness. The coefficient of friction varies (Scholes and Unsworth, 2000), 0.02 for
ceramics-on-ceramics (COC), 0.05 for metal-on-polymer (MOP) and 0.18 for metal-on-
metal (MOM). The wear rate also fluctuates considerably from joint to joint and some
THRs last for considerable time; there is a case reported in the literature where the life of
the prosthesis exceeded 50 years. After 50 years in service, the right and left penetration
rates5 were measured at 100 and 50 μm/year, respectively (Dawson, 2001). However, the
normal length of life of an implant is closer to 10–25 years. Another problem with wear
besides the structural one is that the tissue surrounding the prosthesis must absorb the
wear particles, which, though in the nanometer-micrometer range (Brown et al., 2007), are
very numerous. Consider, as an example, the measured wear rate of 35 mm3/106 cycles for
metallic head and UHMWPE cup (Fisher et al., 2006). Particles from UHMWPE surfaces

5To relate wear volume (δV ) to depth of penetration (p) Dowson employs the simplified formula
δV ≈ πR2

1 {p/ [1 + C/p]}, where C = R2 − R1 (cf., Ilchmann et al., 2008).
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Table 13.2. Major types of THRs, their approximate date of introduction

Approximate date
of introduction Type of bearing Reference

1951 metal on metal, 1st cycle (1) McKee and Watson-Farrar (1966)
1958 metal on PFTE (1) Charnley (1961)
1962 metal on UHMWPE (1) Fisher et al. (2006)
1970 ceramic on ceramic (2) Boutin et al. (1972)
1977 ceramic on UHMWPE (1) Semlitsch et al. (1977)
1980 metal on metal, 2nd cycle (2) Müller (1995)
1995 metal/ceramic on XLPE∗ (1) Oonishi (1995)
2000 ceramic on metal (2) Firkins et al. (2000)

∗ Highly cross-linked polyethylene (Kurtz et al., 1999).

are in the 0.1–1.0 μm range (Brocket et al., 2006). For simplicity, in this illustration we
assume uniform particles 1 μm in diameter, yielding 6.6845 ×1010 particles per million
cycles. A million cycles per year represent 2747 steps per day, and for the average patient
this translates to 66,845 particles per steps. Osteolysis from polyethylene wear debris has
become one of the most significant factors to limit long-term survival of implants (D’Lima
et al., 2003). There is less wear for metal-on-metal and ceramic-on-ceramic implants.
However, the wear particles are smaller and, therefore, more numerous and more insidious
with respect to osteolysis (Brown et al., 2007).

Full film lubrication is desirable to eliminate wear and keep friction small. However, the
film might be broken at places leading to mixed lubrication, while in other cases boundary
lubrication is prevalent. One way to estimate the effective lubrication regime in which
the implant operates is to examine the ratio λ = hmin/R̄a , where R̄a = (R2

a1 + R2
a2)1/2 is

the effective r.m.s roughness of the two surfaces. A value of λ < 1 signifies boundary
lubrication while λ > 3 suggests a full fluid film. Some suggested values of λ are 0.5–1 for
metal-on-polymer and > 3 for ceramic on ceramic.

There are a large number of different implants at the surgeon’s disposal. Already in
1955, Murray and his co-workers listed 62 different primary THRs, manufactured by 19
different companies. Half of these had been introduced during the five previous years, and
only 30% had any performance results published in peer-reviewed journals. The price of the
implants ranged from £250 to £2000, but, interestingly enough, the two cheapest implants
had the longest reported follow-up (Murray et al., 1995). We list some of the major types of
THRs, their approximate date of introduction, and significant references to the implants in
Table 13.2. The entries in this table can be conveniently placed in two categories of THR:
category (1) is for hard on soft and (2) for hard on hard constructs. There is yet a third
category not listed in the table, hard femoral ball articulating against the compliant lining
of the acetabular cup (Scholes et al., 2006).

Mathematical Modeling

Before a mathematical analysis of the lubrication of THRs can be attempted,
we need to represent the Reynolds equation in spherical coordinates. This is easily
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Figure 13.13. Total hip replacement model geometry. (Reproduced with permission from
Jagatia, M. and Jin, Z. M. Elastohydrodynamic lubrication analysis of metal-on-metal hip
prostheses under steady state entraining motion. Proc IMechE Journal of Engineering in
Medicine, 215, 531–541, Copyright (2001) Professional Engineering Publishing.)

accomplished when writing the vector form of Eq. (2.80)

div

(
h

μ

3

gradp − 6U0h

)
= 0. (13.11)

In spherical coordinates the gradient and divergence operators are given by

gradp = ∂p

∂r
i r + 1

r
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∂θ
i θ + 1

r sin θ
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∂ϕ
iϕ

divA = 1
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r sin θ
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∂ϕ
.

Specifying constant radius at r = R2 and substituting into Eq. (13.11) leads to the
Reynolds equation in spherical coordinates

sin θ
∂

∂θ

(
h3 sin θ

∂p

∂θ

)
+ ∂

∂ϕ

(
h3 ∂p

∂ϕ

)
= 6μR2

2ω sin2 θ
∂h

∂ϕ
. (13.12)

Here we considered only steady state and rotation about the z-axis as in Figure 13.13.
The Reynolds equation is normalized as follows:

H = h

C
; P = p

E
; λ = 6μR2

2ω

C2E
; W = w

ER2
2

(13.13)
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The discretized form of Eq. (13.13) is

Fi,j ≡ 1
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+ (H 3
i,j sin θj +H 3

i,j+1 sin θj+1
)
Pi,j+1

]− λ sin2θj
Hi,j −Hi−1,j


ϕ
= 0.

Here Hi,j = hi,j /C is the normalized film thickness and

hi,j = C(1 − εx sin θi cosϕj − εy sin θi sinϕj ) + δi,j .
To calculate the elastic deformation of the UHMWPE cup, Jalali-Vahid et al. (2001)

used the constrained column model, according to which the deflection at a point is linearly
dependent on the local pressure at that point and no other pressure

δα,β =
R2

[(
R3

R2

)3

− 1

]
pα,β

E

[
1

1 − 2ν
+ 2
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(
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)3
] . (13.15)

Jagatia and Jin (2001), in contrast, relied on finite element computations to evaluateDα,β =
δα,β/C.

The discretized equation (13.14) was solved by the Newton-Raphson method. The
elements of the Jacobian matrix are given by
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Here we employ the notation D′
α,β ≡ ∂Dα,β/∂Pα,β .

The load components can be obtained by summation from

Fx = R2
2

4

n∑
i=1

m∑
j=1

(ϕi+1 − ϕi) (θj+1 − θj )Mi,j

(13.17)

Fy = R2
2

4

n∑
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m∑
j=1

(ϕi+1 − ϕi) (θj+1 − θj )Ni,j .

Here m× n is the mesh dimension and the arraysMi,j , Ni,j are defined as
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.

Hard-on-Soft THR

This category comprises metal or ceramic femoral ball articulating against poly-
meric acetabular cup. As already mentioned, by 1962 Charnley substituted UHMWPE for
Teflon in his low-friction arthroplasty, because of the high wear rate in the former. The
metal was stainless steel in the original design but was subsequently changed to a CoCrMo
alloy. The coefficient of friction is in the 0.02–0.06 range for metal head on UHMWPE and
0.015–0.099 for ceramic head (Scholes and Unsworth, 2000; Dowson, 2001).

Elastohydrodynamic lubrication analysis of THR was reported by Jalali-Vahid et al.
(2000, 2001). The cup was held stationary in these investigations while the head was made
to rotate about the z-axis at a steady angular velocity ω. The elastic deformation of the
UHMWPE cup was computed from Eq. (13.15). The hydrodynamic pressure was deter-
mined employing the effective influence Newton method (EIN) as described in Section 8.6.

The effect of varying femoral head radius, radial clearance, elastic modulus and
UHMWPE liner thickness are indicated in Figures 13.14 and 13.15. The base input data
for these figures are as follows:

ω = 2 rad/s; w = 2500 N; μ = 0.005 Pa · s; d = 5 − 15 mm;

R1 = 11 − 16 mm; E = 250 − 2000 Mpa; C = 75 − 200μm.

Larger elastic modulus and larger clearance both tend to reduce the minimum film
thickness while the femoral head radius and the thickness of the UHMWEPE lining correlate
directly with minimum film thickness (Jalali-Vahid et al., 2001).
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Figure 13.14. Variation of minimum film thickness with (a) femoral head radius, (b) radial
clearance (Reprinted from Journal of Biomechanics, 34, Jalali-Vahid, D, Jagatia, M., Jin, Z. M.,
Dowson, D. Prediction of lubricating film thickness I UHMWPE hip joint replacement.
261–266, Copyright (2001), with permission from Elsevier.)

The minimum film thickness was curve-fit by Jalali-Vahid and is given relative to the
film thickness in a ball-on-plane geometry of Wang (1994).
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Here (hmin)b−p is the ball-on-plane minimum film thickness

(hmin)b−p = 1.47RU 2/5M (38M−2.20+0.0045 logM−0.214). (13.19)

The Moes load parameter in (13.18) is defined asM = W/U 4/5 with
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Figure 13.15. Variation of minimum film thickness with (a) UHMWPE thickness, (b)
magnitude of elastic modulus (Reprinted from Journal of Biomechanics, 34, Jalali-Vahid, D.,
Jagatia, M., Jin, Z. M., Dowson, D. Prediction of lubricating film thickness in UHMWPE hip
joint replacement. 261–266, Copyright (2001), with permission from Elsevier.)

Jalali-Vahid et al. (2001) employed the correlation (Eq. 13.18) in a parametric study but
found that the minimum film thickness for realistic conditions (see Figures 13.14–13.15)
was far below the estimated 1μm roughness of the UHMWPE. This strongly intimates that
metal-on-UHMWPE prostheses are lubricated in the mixed mode where at least some of
the load is carried by the contacting asperities and the lubricant film is not continuous.

Wear rate of UHMWPE cup articulating against metal femoral head has been
observed at 35–50 mm3/year, leading to 0.17 mm/year linear penetration. Under fortunate
circumstances, this gives 15–25 year life to Charnley-type THRs. Unfortunately, the life
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expectancy of the THR before corrective surgery is considerably less, owing to osteoly-
sis, sometimes referred to as plastic disease. This circumstance led researchers on a quest
for improved materials, during the second half of the last century. Another impetus for
the search was the fact that younger, and therefore more active, patients now receive hip
implants. To satisfy their requirement for increased stability and greater range of motion,
surgeons were experimenting with larger femoral heads. But a larger femoral head promotes
occurrence of osteolysis; the larger head leads to increased rate of wear simply because
it affords larger travel for the femoral head for the same angular motion (Dowson, 2001;
Fisher et al., 2006). This conclusion, however, does not seem to apply to metal-on-metal
bearings. Affatato et al. (2008), for example, found that a 28 mm femoral head had twice
the wear volume of a 54 mm head in metal-on-metal bearings, presumably because larger
heads favor full film lubrication.

Different materials, such as carbon-reinforced plastics, were tried to improve the wear
rate of acetabular caps. It was observed that polyethylene responded favorably to wear if
the relative motion was along the fiber axis but performed poorly when it was loaded off
axis (D’Lima et al., 2003). This suggested that three-dimensional cross-linking of polymer
chains would toughen up UHMWPE. Cross-linking of polymer is performed by radiation
or by chemical means (Kurtz et al., 1999).

The idea of cross-linking seemed to work, some researchers were unable to detect any
wear of the highly cross-linked polymer (D’Lima et al., 2003). According to a recent pub-
lication by the University of Leeds Biotribology Lab (Fisher et al., 2006), the wear rate
of highly cross-linked polyethylene is 1/8th of that of traditional polyethylene. However,
the particle size from the former is submicron, which is more insidious for osteolysis than
are larger particles, thus Specific Biological Activity of highly cross-linked polyethylene is
almost twice that of conventional polyethylene. Fisher et al. define also a Functional Bio-
logical Activity, which considers wear rate, leading, in the present case to functional biolog-
ical activity for highly cross-linked polyethylene 1/4th of that for traditional polyethylene.
Fisher et al. (2006) also find that the wear rate decreases when changing from a metal to an
alumina ceramic head; for conventional polyethylene cup this change is from 35 mm3/year
to 25 mm3/year.

Hard-on-Hard THR

Archard’s wear formula (Eq. 1.30)

V = KWL
H

suggests that a hard-on-hard bearing would have less wear than a hard-on-soft construct,
and as wear particles play a major role in osteolysis, it is natural to turn attention to metal
and ceramic components for both socket and ball. Two hard bearing surfaces articulating
against one another will have a lower rate of wear, important particularly for young and
more agile patients.

The problem with the original McKee prosthesis was the lack of clearance between
cup and ball, and the consequent high friction and occasional equatorial seizing of the
components. For hard-on-hard construct, it is essential to have hydrodynamic lubrication
to avoid the high friction. In today’s constructions, a radial clearance of 54 μm on a 28 mm
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Figure 13.16. Comparison between spherical and ball-on-plane geometries (Reproduced with
permission from Jagatia, M. and Jin, Z. M. Elastohydrodynamic lubrication analysis of
metal-on-metal hip prostheses under steady state entraining motion. Proc IMechE Journal of
Engineering in Medicine, 215, 531–541, Copyright (2001) Professional Engineering
Publishing.)

diameter cup is usual. For metal-on-metal and ceramic-on-ceramic bearings λ > 3, pointing
to full film lubrication, thus EHL analysis does have a place in these investigations.

In their analysis of metal-on-metal prostheses, Jagatia and Jin (2001) start form the
spherical coordinate form of the Reynolds equation, Eq. (13.13). However, while Jalali-
Vahid calculated surface deformation approximately, Jagatia and Jin obtain it by finite
element methods.6 They use the effective influence Newton method, thus a new pressure
difference at (k + 1) step was obtained from the assumed one at (k) from


P (k+1) = Fi,j (P k)

(∂F/∂Pi,j )

P (k+1) = P (k) + γ
P (k+1).

Jagatia and Jin find that the thickness of the backing material to the acetabular cup
makes little difference to either contact pressure or elastic deformation. More surprisingly,
as indicated in Figure 13.16, they show good agreement between their full solution and the
solution for ball on plane by Hamrock and Dowson (1978)

hmi

R
= 2.8

( μu
E′R

)0.65 ( w

E′R2

)−0.21
. (13.20)

Here the equivalent radius, the reduced elastic modulus and the entraining velocity are
given, respectively, by

R = R1R2

C
; E′ = E

1 − ν2
; u = ωR1

2
.

The degree of agreement shown in Figure 13.16 suggests that in most applications it is
sufficient to employ the Hamrock and Dowson formula based on an equivalent ball-on-plane

6For a comparison of the two methods, see Quiñonez et al. (2008).
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Figure 13.17. Effect of protein concentration upon friction factor (Reprinted with permission
from Brockett, C., Williams, S., Jin Z., Isaac, G., and Fisher. J. Friction of total hip
replacements with different bearings and loading conditions. Journal of Biomedical Materials
Research Part B: Applied Biomaterials, 81 B, 508–515, Copyright (2007) John Wiley and Son.)

model rather than calculating deformation rigorously. It was also determined by Jagatia
and Jin that 1.36 < λ < 2.14 for a radial clearance of 150μm and 3.16 < λ < 4.96 for
radial clearance of 50μm for an average surface roughness of Ra ∼ 0.01μm (Udofia and
Jin, 2003), indicating mixed lubrication at the larger clearance, but full film at the smaller
one. Brocket et al. (2006) tested the effect of protein concentration on friction in THRs
when lubricated with 100% serum, 25% serum, and water in a pendulum friction simulator.
Increasing bovine serum concentration was found to increase the friction factor for all
bearing combinations except for metal femur in metal cup, as indicated in Figure 13.17.

For metal-on-metal bearings, larger heads promote full film lubrication and less wear
(Fisher et al., 2006). Relevant results by Affatato et al. (2008) on femoral heads of diameters
28, 36, 54 mm with mean clearances of 90, 105, 200μm are shown in Figure 13.18.

The entries in Table 13.3 are compiled from several authorities (Scholes and Unsworth,
2000; Dowson, 2001; Fisher et al., 2006; Brockett et al., 2006; Vassiliou et al., 2007; Firkins
et al., 2000, Jin and Dowson, 2005) and show ranges of parameter values. The difficulty
with such compilation is that there is little uniformity in the conditions and the environment
in which the data was obtained. The data from Fisher et al. (2006) is complete on its own;
it was taken under similar conditions, a circumstance that encourages relative rating of
the various THRs. Ceramic-on-ceramic bearings have not been around long enough for a
long-term evaluation. It has been reported (Feder, 2008; Roseneck et al., 2008) that 7% of
patients who received ceramic hips from 2003 to 2005 developed squeaking in the joint.
Meanwhile, no squeaking occurred among a control group of 48 patients who received
metal and plastic bearings.
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Table 13.3. Performance parameters for various material combination in THR

Femoral
head

Acetabular
cup

Wear rate(
mm3

106 cyc.

) Penetration(
μm

year

)
hmin (nm) λ

Functional
Biological
Activity

metal UHMWPE 35–41 100–300 140 0.5–1.0 18
ceramic UHMWPE 23–33 50–150 150 <1 –
metal XLPE 5–10 – – <1 4.2
ceramic XLPE 3 – – <1 3.8
metal metal 0.1–1.5 2–20 18–70 >3∗ –
ceramic ceramic 0.05–0.1 2–20 15–40 >3 0.2
ceramic metal 0.01–0.015 – 42–50 3.0 –

∗ For CoCrMo bearing Scholes and Unsworth found λ < 1, typical of mixed lubrication.

Isaac et al. (2009) highlight the importance of correct positioning of components. Mal
positioning, either accidental or intentional, can lead to rim wear and elevated ion levels in
MOM bearings. In MOP or COP bearings the result is elevated polyethylene wear. In COC
bearings, in contrast, misalignment can lead to squeaking and strip wear.

One of the most complete statistical studies of THRs is by The Nordic Arthroplasty
Association (Havelin et al., 2009). With contribution from Denmark, Norway, and Sweden,
this report analyses data from 280,201 THRs. They find 10-year survival rates of 92%, 94%
and 93% depending on the country; only 3.4% of the primary THRs had to be revised. This,
indeed, speaks to the great success of total hip replacement procedure.

mm
mm
mm

mm3

Figure 13.18. Cumulative volumetric weight loss (and its standard deviation) for metallic
femoral heads and acetabular cups of different sizes (Reprinted with permission from Affatato,
S., Leardini, W., Jedenmain, A., Ruggeri, O., and Toni, A. 2008. A large diameter bearings
reduce wear in metal-on-metal hip implants. Clinical Orthopeadics and Related Research, 456,
153–158.)
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13.3 Nomenclature

C elastic compliance
E Young’s modulus
R radius
T stress tensor
U0 relative velocity
F transmitted force
a asperity height
ceff effective coefficient of friction
h film thickness
n normal unit vector
p pressure
t surface traction
λ asperity wavelength
� tangent unit vector
tμ time constant
r, θ, ϕ spherical coordinates
ω angular velocity
(·)s pertaining to solid
(·)f pertaining to fluid
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Index

Abrasive wear, 22, 28
Acceleration effects see Inertia effects
Acceleration, 57, 63, 147, 208, 422
Acetabular cup, 525, 527, 534, 536
Acetabulum, 525
Added mass, 185, 216
Adhesion theory, 16
Adhesive jump, 494
Adhesive junction, 10, 18
Adiabatic process, 88, 172, 360, 368, 372
Amonton’s law, 2, 9, 13, 14, 17, 21
Angular contact bearing, 333
Angular deformation, 64, 68
Area of contact, 2, 3, 9, 13, 16, 17
Asperity contact, 2, 12, 16, 22, 514
Attitude angle, 97, 103, 149, 281
Autocorrelation, 5, 8, 131
Averaged inertia, 186, 205, 213, 216

Backflow, 204, 232, 364
Ball bearing types, 333, 345
Barus formula, 288, 308, 419
Bearing

ball, 37, 302, 333
circular step, 89, 199
conformal, 32
counterformal, 32
eccentricity, 36, 97, 188
geometry, 96, 100, 116, 207
journal, 36, 37, 41, 81, 96
long, 100, 107, 109
number, 455, 473
roller, 335
short, 100
stability, 373

BGK equation, 477
Bifurcation, 228, 232, 239
Bipolar coordinates, 187, 194, 235
Blasius friction law, 274
Body force, 60, 358
Boltzmann equation, 466, 469, 476
Boltzmann-Reynolds equation, 478, 480
Boundary conditions, 78, 468, 485, 488

Coyne-Elrod, 108
Floberg, 108
Gümbel, 112
Sommerfeld,10
Swift-Stieber, 106, 112

Boundary lubrication, 30, 31, 518, 520
Boussinesq hypothesis, 259, 263, 361
Branched molecules, 500
B-splines, 191
Bubbly oil, 426, 430
Bulk modulus, 117, 137, 412, 431

Capillary, 94, 433
Cartilage, 511, 512
Cavitation, 106, 117, 138, 204
Center of pressure, 123, 178, 383
Centerline-pressure, 431
Central limit theorem, 7
Charnley LFA, 526, 530
Circular step bearing, 89, 91, 199
Clauser’s eddy viscosity, 273
Clearance ratio, 187, 195, 231, 242
Coefficient of friction, 10, 17, 20, 29, 33, 140
Cold rolling, 430
Cold welding, 10, 17
Collagen, 512, 517
Collision integral, 477
Compatibility, metallurgical, 28
Compressibility, 324, 451, 463
Compressibility number, see Bearing number
Concentric cylinders, flow between, 222, 229
Conservation of

angular momentum, 62, 229
energy, 357, 359
linear momentum, 60, 189, 359, 423
mass, 59, 78, 118, 423
probability function, 466

Constitutive modeling, 54, 71, 260, 393
Constrained column model, 328, 529
Contact area, 2, 13, 16, 296
Contact ellipse, 290, 297, 337
Contact

deformation, 32
geometry, 296
mechanics, 295
modulus, 13, 290
real area of, 2, 10, 17

Contaminant, 10, 18, 20, 31
Continuity equation

compressible fluid, 59
incompressible fluid, 60
turbulent flow, 256

Coordinate transformation, 155, 164
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Couette flow, 222, 231, 267, 271, 427, 486
Creeping flow, see Stokes flow
Critical mass, 161, 170
Critical speed, 147, 149, 234
Crowning, 127, 198, 381
Curvature, 77, 162

difference, 296
effects, 187
radius, 295
sum, 296

Cylinder flows, 228, 246, 232
Cylinder rolling on plane, 285
Cylindrical roller bearing, 335, 339, 342

Damping coefficient, 149, 152, 154, 163, 169
Damping exponent, 158
Deborah number, 389, 396, 404
Deep groove ball bearing, 333
Deflection, 156, 180, 297, 323
Deformation function, 56

gradient, 394
history, 394

Degree of freedom, 171, 231
Density, 54

bulk, 422
oscillation, 491
pressure dependence of, 308, 412
true, 422

Dimensional analysis, 299, 356, 438
Disk flows, 243
Disk-lubricated bearing, 353
Dissipation number, 356, 380
Dissipation, 21, 172, 222, 264, 361
Double layer force, 494
Dowson-Higginson formula, 291, 411
Duplex mount, 334
Dynamic coefficients, 161, 169, 372

Eccentricity ratio, 97
Eccentricity, 36
Eddy viscosity, 260, 263, 273, 278
Effective viscosity, 351, 433, 476
EIN, effective influence Newton, 328, 530
Ekman number, 202, 247
Elastic deformation, 16, 32, 37, 289
Ellipticity parameter, 290, 296, 345
Energy stability, 224
Entropy inequality, 423
Equation

angular momentum, 62, 229
Boltzmann, 476
Boltzmann-Reynolds, 478, 480
Cauchy, 63
constitutive, 54, 71, 395, 403, 425
continuity, 59, 256
Doolittle, 411

energy, 359, 363, 380
Euler’ rotational, 176
Laplace, 88, 327
linear momentum, 60
motion, 63, 163
motion, averaged, 254, 256
Navier-Stokes, 72, 73, 76, 138, 255, 418, 468
Reynolds, laminar flow, 77, 80, 99, 454, 473, 479
Reynolds, turbulent flow, 259, 274, 366, 377
Tait, 411

Equivalent cylinder, 288
Error of form, 3
Eulerian (spatial) coordinates, 56, 58
Externally pressurized bearing see Hydrostatic

bearing

Film thickness, 33, 80, 118, 130
formula, 97, 303
variable, 299

Finite journal bearing, 115, 295
Fixed pad, 117, 126, 128, 169
Floberg cavitation condition, 108
Flow factor, 89, 131, 134
Flow transition, 223, 254
Fluid

Carreau, 416
complexity n, 391, 395
differential type, 389, 393
grade, 390, 396
integral type, 434
K-BKZ, 400
Maxwell, 403, 417
Newtonian, 64, 71, 72, 393
Oldroyd-B, 435, 437
power law, 391, 434
simple, 394
Stokes, 70, 417

Frame indifference, see Objectivity
Free volume, 411, 414
Frequency dependence, 149, 158, 162, 171, 181
Friction

adhesion theory of, 9, 16
coefficient, 10, 11, 17
laws, 9

Friction variable, 104, 114, 351
Frictional losses, 113, 140, 338

Gas bearing solution
asymptotic, 457, 462
linearized p, 457, 460
linearized ph, 458
matched asymptotic, 460
small eccentricity, 457

Gaussian distribution, 6, 9, 131
Gauss-Newton iteration, 238
Glass transition, 404, 405
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Graphite, 12, 31
Greenwood-Williamson contact, 14, 16
Gümbel conditon, 112

Hagen- Poiseuille law, 94
Half speed whirl, see Subharmonic resonance
Hardness, 13, 19, 23
Hyaluronic acid (HA), 520, 524
Hydrophilic, 488, 523
Hydrophobic, 488, 490, 521, 524
Heat transfer, 353, 362, 374
Helmholtz free energy, 424
Hertzian pressure, 297, 309, 324, 402
Hook’s law, 305
Hydrodynamic stability

bifurcation, 228, 239
criteria, 224
energy method, 226
linear, 227

Hydrostatic bearing, 33, 88
advantages, disadvantages, 35
flow restrictors, 34, 94
optimization, 94
pad characteristics, 89

Indentation hardness, 13
Inertia matrix, 208, 209, 216
Influence coefficient, 312, 326
Inverse hydrodynamic solution, 291
Inward jump, 498
Isothermal process, 88, 172, 291, 364, 416

Journal bearing
boundary conditions, 100, 106, 109
differential equations, 82, 99
film thickness, 97
finite, 115
journal locus, 103
journal velocity, 99, 96
long, 109
modified short, 105
partial arc, 115
pivoted pad, 115, 117, 155, 159
short, 100
types, 115

Junction growth, 10, 17
Junction strength, 17, 18

Kelvin’s theorem, 229
Knudsen number, 452, 467

Lagrangian coordinate, 56
Law of the wall, 262
Lennard-Jones potential, 485, 493
Length scales, 3, 74, 83, 194, 264
Limiting shear stress, 404, 409

Line contact, 285, 290, 298, 303
Linearized force coefficients, 149, 174
Liquid-solid transition, see Glass transition
Load parameter, 290, 299
Lubricant force, 101, 116, 149, 157
Lubricin (PRG4), 521, 523, 524
Lubrication regimes, 300

Mach number, 451, 477, 480
Mass content rule, 460
Matched asymptotic expansion, 460
Materials parameter, 290, 343, 429
Maxwell fluid, 403, 435
Maxwellian distribution function, 477
McKee-Farrar joint, 525, 533
Mean free path, 452, 466, 470
Mica, 484, 488, 498, 502
Micro EHL, 514
Mild wear, 24
Mixing length, 259, 260, 264
Modified short bearing, 105
Mohr’s circle, 18
Molecular dynamics (MD) simulation, 466, 484, 491
Molybdenum disulfide (MoS2), 31
Monte Carlo (DSMC) simulation, 466, 481, 483
Motion

harmonic, 157, 162, 176
rotational, 36, 173, 176
rotor, 149, 156, 157
squeeze, 185, 208
translational, 79, 96

Nanobubbles, 490
Natural frequency, 158
Natural joint lubrication

biphasic, 518
boosted, 514, 525
boundary, 520, 523
micro EHL, 514
self-generating, 517
weeping, 516

Navier-Stokes equation, see Equations
Needle roller bearing, 335
Newton’s second law, 60
Nodal network, 353
No-slip boundary condition, 74, 83, 468, 485

Objectivity, 67
Oil flow, 34, 89, 100, 104, 108
Oil whip, 147
Oiliness, 30
Oil pooling, 421, 430
OMCTS, 498, 502, 504
Orbit, 99, 147, 156
Osteolysis, 527, 533
Outer solution, 211, 460
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Pad
deformation, 180, 381
inertia, 161, 168, 171
motion, 161, 171
perturbation method, 162, 171
resonance, 161, 169
assembly method, 162, 171

Parametric continuation
Partial journal bearing, 115
Peclet number, 172, 362, 380
Petroff’s law, 30
Phase angle, 168, 177
Pivot position, 117, 125
Pivoted pad, 115, 128, 159
Plane slider, 36, 79, 83
Plastic flow, 10, 13
Plasticity index, 16, 21
Ploughing, 19, 20
Poiseuille flow, 279, 427, 471, 479
Poroelasticity, 512
Power loss, 91, 93, 339, 377
Power spectra, 8
Prandtl number, 356, 363
Preload coefficient, 159, 161, 334
Principle of material frame indifference (PMI),

70
Probability, 6, 466
Profilometer, 3

Rarefaction parameter, 471, 474, 479
Rayleigh’s criterion, 229
Read/write head, 468, 474
Recirculation, 232
Reduced frequency, 184
Reduced pressure, 288
Reduced Reynolds number, 75, 184, 195
Reference configuration, 55, 58, 422
Reichardt’s formula, 263, 270
Relaxation time, 389
Restrictors, 34, 94
Retarded motion, 396
Reynolds equation, see Equations
Reynolds number, 75

critical, 231, 236, 242
droplet, 429
local, 234, 259, 363
reduced, 75, 184, 195
through flow, 199
transition, 223, 231, 234, 254, 363

Reynolds stress, 256, 260
Rigid body motion, 65, 67, 81
Rivlin-Ericksen tensor, 395
Roeland’s formula, 308
Rolling contact bearing

film thickness, 303, 342, 344
frictional losses, 338

Rolling friction, 337
Rotation, 174, 180, 230, 340, 528
Rotor bearing stability, 157

Scaling, 363, 415, 460
Sector pad, 127, 173
Self-excited instability, 147, 159
Severe wear, 24
Shear modulus, 305, 402, 416
Shear rate, 402, 405, 416, 487
Shear stress, 13, 71, 114
Shear thinning, 64, 390, 402, 416
Side flow, 104
Simple fluid, 394
Sliding wear, 2, 22, 25
Slip flow, 74, 469, 485
Slip length, 486, 507
Slip-flow models, 471, 474
Solvation force, 467, 493, 496, 500
Sommerfeld

number, 36
substitution, 102

Specific bearing load, 30
Speed parameter, 290, 373
Spherical molecules, 498, 515
Spherical roller bearing, 335
Spin tensor, 66
Spragging, 161
Squalane, 414, 500
Squeeze film damper, 215
Squeeze flow, 208
Static equilibrium, 99, 149, 155,

174
Step bearing, 91, 199
Step slider, 460
Stiffness

bearing, 95, 152, 167
shaft, 157, 159

Stokes flow, 74, 186, 232
Strain, elastic, 374, 404
Stream function, 83, 202, 208, 398
Stress function, 306
Stress tensor, 62, 71, 256, 403
Stretching tensor, 66, 71
Stretching, 67, 69
Stribeck’s formula, 342
Sturm-Liouville problem, 124,

128
Subharmonic resonance, 147
Surface contact, 7
Surface force apparatus, 467, 496
Surface roughness, 3, 7, 129
Surface tension group, 429
Surface tension, 108
Surface traction, 60, 402, 410, 519
Swift-Stieber condition, 105, 112
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Symmetry of stress, 54, 62
Synovial fluid, 512, 520, 522

Tapered roller bearing, 335
Taylor number, 223, 230, 233
Taylor vortex flow, 230
Teflon cup, 525, 530
Temperature distribution, 354, 360,

478
Temperature rise, 22, 35

gaseous lubricant, 451
liquid lubricant, 93, 351, 357

Tensile stress, in liquid, 105, 106
Thermal equilibrium, 354
Thrust bearing, 36, 40, 77, 80, 376
Torque, 62, 140, 177, 241
Transport theorem, 58, 226
Tresca yield criterion, 13, 17
Turbulence

averaging, 255, 361
correlation, 255, 257
dissipation, 361
functions, 259, 269, 367
kinetic energy, 224, 226, 264

Turbulence models
Blasius, 275
Boussinesq, 260
Constantinescu, 264
van Driest, 264
Elrod-Ng, 273
Hirs, 274
Kolmogoroff-Prandtl, 263
Ng-Pan, 269

Prandtl, 261
Reinhardt, 263

Unbalance response, 147, 149, 163
UHMWPE, 21, 525, 530, 532

van der Waals force, 10, 21, 31, 492, 493, 504
Velocity defect law, 261
Velocity gradient, 65, 66, 68, 395
Velocity scale, 75, 184, 426
Velocity slip, 468, 485, 488
Viscometric flow, 394, 435
Viscosity

pressure dependence of, 288, 308, 411, 415
temperature dependence of, 352, 367, 415

Viscous dissipation, 88, 90, 264
Vogel’s formula, 367
Volume fraction, 120, 422, 426
von Karman similarity transformation, 209, 243
von Mises yield parameter, 13, 438
Vortex flow, 230
Vorticity, 67

Waviness, 3, 231
Wear coefficient, 23, 28
Wear laws
Wear map, 26, 27
Weber number, 429
Whirl ratio, 159

XLPE, highly cross-linked polyethylene, 527,
536

Yield stress, 13, 18, 430, 434
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