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Preface

This volume contains the papers presented at FMICS 2011, the 16th Interna-
tional Workshop on Formal Methods for Industrial Critical Systems, taking place
August 29–30, 2011, in Trento, Italy. Previous workshops of the ERCIM Working
Group on Formal Methods for Industrial Critical Systems were held in Oxford
(March 1996), Cesena (July 1997), Amsterdam (May 1998), Trento (July 1999),
Berlin (April 2000), Paris (July 2001), Malaga (July 2002), Trondheim (June
2003), Linz (September 2004), Lisbon (September 2005), Bonn (August 2006),
Berlin (July 2007), L’Aquila (September 2008), Eindhoven (November 2009), and
Antwerp (September 2010). The FMICS 2011 workshop was co-located with the
19th IEEE International Requirements Engineering Conference (RE 2011).

The aim of the FMICS workshop series is to provide a forum for researchers
who are interested in the development and application of formal methods in
industry. In particular, these workshops bring together scientists and engineers
who are active in the area of formal methods and are interested in exchanging
their experiences in the industrial usage of these methods. These workshops
also strive to promote research and development for the improvement of formal
methods and tools for industrial applications.

Thus, topics of interest for FMICS 2011 include, but are not limited to:

– Design, specification, code generation and testing based on formal methods
– Methods, techniques and tools to support automated analysis, certifica-

tion, debugging, learning, optimization and transformation of complex, dis-
tributed, real-time systems and embedded systems

– Verification and validation methods that address shortcomings of existing
methods with respect to their industrial applicability (e.g., scalability and
usability issues)

– Tools for the development of formal design descriptions
– Case studies and experience reports on industrial applications of formal

methods, focusing on lessons learned or identification of new research
directions

– Impact of the adoption of formal methods on the development process and
associated costs

– Application of formal methods in standardization and industrial forums

This year, we received 39 submissions. Papers underwent a rigorous review
process, and received three or four review reports. After the review process,
the international Program Committee of FMICS 2011 decided to select 16 pa-
pers for presentation during the workshop and inclusion in these proceedings.
The workshop featured two invited talks by Leonardo de Moura (Microsoft Re-
search, USA) and Joost-Pieter Katoen (RWTH Aachen University, Germany);
this volume includes two extended abstracts written by our invited speakers.



VI Preface

Following a tradition established over the past few years, the European As-
sociation of Software Science and Technology (EASST) offered an award to
the best FMICS paper. This year, the reviewers selected the contribution by
Thomas Reinbacher, Joerg Brauer, Martin Horauer, Andreas Steininger and
Stefan Kowalewski on “Past Time LTL Runtime Verification for Microcontroller
Binary Code.” Further information about the FMICS working group and the
next FMICS workshop can be found at: http://www.inrialpes.fr/vasy/fmics.

We would like to thank the local organizers Anna Perini and Angelo Susi
(Fondazione Bruno Kessler - IRST, Trento, Italy) for taking care of all the local
arrangements to host FMICS in Trento, the ERCIM FMICS working group
Coordinator Alessandro Fantechi (Univ. degli Studi di Firenze and ISTI-CNR,
Italy) for guiding us when necessary, Jan Olaf Blech (fortiss GmbH, Germany) for
acting as Publicity Chair and coordinating the publication process, EasyChair
for supporting the review process, Springer for taking over the publication, all
the members of the Program Committee for their great work during the review
process, the external reviewers for their participation during the review process of
the submissions, all the authors for submitting papers to the workshop, and the
authors who participate in the workshop in Trento. All these people contributed
to the success of the 2011 edition of FMICS.

August 2011 Bernhard Schätz
Gwen Salaün
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Towards Trustworthy Aerospace Systems:

An Experience Report

Joost-Pieter Katoen

RWTH Aachen University, Software Modeling and Verification Group, Germany

1 Introduction

Building modern aerospace systems is highly demanding. They should be ex-
tremely dependable. They must offer service without interruption (i.e., without
failure) for a very long time — typically years or decades. Whereas “five nines”
dependability, i.e., a 99.999 % availability, is satisfactory for most safety-critical
systems, for on-board systems it is not. Faults are costly and may severly damage
reputations. Dramatic examples are known. Fatal defects in the control software
of the Ariane-5 rocket and the Mars Pathfinder have led to headlines in news-
papers all over the world. Rigorous design support and analysis techniques are
called for. Bugs must be found as early as possible in the design process while
performance and reliability guarantees need to be checked whenever possible.
The effect of fault diagnosis, isolation and recovery must be quantifiable.

Tailored effective techniques exist for specific system-level aspects. Peer re-
viewing and extensive testing find most of the software bugs, performance is
checked using queueing networks or simulation, and hardware safety levels are
analysed using an profiled Failure Modes and Effects Analysis (FMEA) approach.
Fine. But how is the consistency between the analysis results ensured? What is
the relevance of a zero- bug confirmation if its analysis is based on a system
view that ignores critical performance bottlenecks? There is a clear need for an
integrated, coherent approach! This is easier said than done: the inherent het-
erogeneous character of on-board systems involving software, sensors, actuators,
hydraulics, electrical components, etc., each with its own specific development
approach, severely complicates this.

2 Modeling Using an AADL Dialect

About three years ago we took up this grand challenge. Within the ESA-funded
COMPASS (COrrectness, Modeling and Performance of Aerospace SyStems)
project, an overarching model-based approach has been developed. The key is
to model on-board systems at an adequate level of abstraction using a general-
purpose modeling and specification formalism based on AADL (Architecture
Analysis & Design Language) as standardised by SAE International. This en-
ables engineers to use an industry-standard, textual and graphical notation with
precise semantics to model system designs, including both hardware as well as
software components. Ambiguities about the meaning of designs are abandoned.
System aspects that can be modeled are, amongst others,

G. Salaün and B. Schätz (Eds.): FMICS 2011, LNCS 6959, pp. 1–4, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 J.-P. Katoen

– (timed) hardware operations, specified on the level of processors, buses, etc.,
– software operations, supporting concepts such as processes and threads,
– hybrid aspects, i.e., continuous, real-valued variables with (linear) time-

dependent dynamics, and
– faults with probabilistic failure rates and their propagation between compo-

nents.

A complete system specification describes three parts: (1) nominal behavior, (2)
error behavior, and (3) a fault injection—how does the error behavior influence
the system’s nominal behavior? Systems are described in a component-based
manner such that the structure of system models strongly resembles the real
system’s structure. A detailed description of the language and its formal seman-
tics can be found in [2].

3 Formal Verification

This coherent and multi-disciplinary modeling approach is complemented by a
rich palette of analysis techniques. The richness of the AADL dialect gives the
power to specify and generate a single system model that can be analysed for
multiple qualities: reliability, availability, safety, performance, and their mixture.
All analysis outcomes are related to the same system’s perspective, thus ensuring
compatibility. First and foremost, mathematical techniques are used to enable
an early integration of bug hunting in the design process. This reduces the time
that is typically spent on a posteriori testing —in on-board systems, more time
and effort is spent on verification than on construction!— and allows for early
adaptations of the design. The true power of the applied techniques is their
almost full automation: once a model and a property (e.g., can a system ever
reach a state in which the system cannot progress?) are given, running the
analysis is push-button technology. In case the property is violated, diagnostic
feedback is provided in terms of a counterexample which is helpful to find the
cause of the property refutation. These model-checking techniques [1] are based
on a full state space exploration, and detect all kinds of bugs, in particular also
those that are due to the intricacies of concurrency: multiple threads acting on
shared data structures. This type of bugs are becoming increasingly frequent, as
multi-threading grows at a staggering rate.

4 Requirements

Whereas academic tools rely on properties defined in mathematical logic, a lan-
guage that is major obstacle for usage by design engineers, COMPASS uses
specification patterns [5]. These patterns act as parametrised “templates” to
the engineers and thus offer a comprehensible and easy-to-use framework for
requirement specification. In order to ensure the quality of requirements, they
can be validated independently of the system model. This includes property
consistency (i.e., checking that requirements do not exclude each other), and
property assertion (i.e., checking whether an assertion is a logical consequence
of the requirements).
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5 Safety

Analysing system safety and dependability is supported by key techniques such
as (dynamic) fault tree analysis (FTA), (dynamic) Failure Modes and Effects
Analysis (FMEA), fault tolerance evaluation, and criticality analysis [4]. System
models can include a formal description of both the fault detection and isolation
subsystems, and the recovery actions to be taken. Based on these models, tool
facilities are provided to analyze the operational effectiveness of the FDIR (Fualt
Detection, Isolation and Recovery) measures, and to assess whether the observ-
ability of system parameters is sufficient to make failure situations diagnosable.

6 Toolset

All techniques and the full modeling approach are supported by the COMPASS
toolset [3], developed in close cooperation with the Italian research institute
Fondazione Bruno Kessler in Trento, and is freely downloadable for all ESA
countries from the website compass.informatik.rwth-aachen.de. The tool is
graphical, runs under Linux, and has an easy-to-use GUI.

7 Industrial Evaluation

The COMPASS approach and toolset was intensively tested on serious industrial
cases by Thales Alenia Space in Cannes (France). These cases include thermal
regulation in satellites and satellite mode management with its associated FDIR
strategy. It was concluded that the modeling approach based on AADL provides
sufficient expressiveness to model all hardware and software subsystems in satel-
lite avionics. The hierarchical structure of specifications and the component-
based paradigm enables the reuse of models. Also incremental modeling is very
well supported. The RAMS analyses as provided by the toolset were found to be
mature enough to be adopted by industry, and the corresponding results allowed
the evaluation of design alternatives [6]. Current investigations indicate that the
integrated COMPASS approach significantly reduces the time and cost for safety
analysis compared to traditional on-board design processes.

Acknowledgement. We thank all co-workers in the COMPASS project for
their contributions, in particular Thomas Noll and Viet Yen Nguyen (RWTH
Aachen University), Marco Bozzano, Alessandro Cimatti and Marco Roveri
(FBK, Trento), Xavier Olivé (Thales) and Yuri Yushstein (ESA). This research
is funded by the European Space Agency via several grants.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

2. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability, and performance analysis of extended AADL models. The Computer
Journal (March 2010), doi:10.1093/com



4 J.-P. Katoen

3. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M., Wim-
mer, R.: A model checker for AADL (tool presentation). In: Touili, T., Cook, B.,
Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 562–565. Springer, Heidelberg
(2010)

4. Bozzano, M., Villafiorita, A.: Design and Safety Assessment of Critical Systems.
CRC Press, Boca Raton (2010)

5. Grunske, L.: Specification patterns for probabilistic quality properties. In: Int. Conf.
on Software Engineering (ICSE), pp. 31–40. ACM, New York (2008)

6. Yushstein, Y., Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T.,
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Satisfiability at Microsoft

Leonardo de Moura

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
leonardo@microsoft.com

Abstract. Constraint satisfaction problems arise in many diverse ar-
eas including software and hardware verification, type inference, static
program analysis, test-case generation, scheduling, planning and graph
problems. These areas share a common trait, they include a core com-
ponent using logical formulas for describing states and transformations
between them. The most well-known constraint satisfaction problem is
propositional satisfiability, SAT, where the goal is to decide whether a
formula over Boolean variables, formed using logical connectives can be
made true by choosing true/false values for its variables. Some problems
are more naturally described using richer languages, such as arithmetic.
A supporting theory (of arithmetic) is then required to capture the mean-
ing of these formulas. Solvers for such formulations are commonly called
Satisfiability Modulo Theories (SMT) solvers.

Modern software analysis and model-based tools are increasingly
complex and multi-faceted software systems. However, at their core is
invariably a component using logical formulas for describing states and
transformations between system states. In a nutshell, symbolic logic is
the calculus of computation. The state-of-the art SMT solver, Z3, de-
veloped at Microsoft Research, can be used to check the satisfiability of
logical formulas over one or more theories. SMT solvers offer a compelling
match for software tools, since several common software constructs map
directly into supported theories.

SMT solvers have been the focus of increased recent attention thanks
to technological advances and an increasing number of applications. The
Z3 solver from Microsoft Research is particularly prolific both concern-
ing applications and technological advances. We describe several of the
applications of Z3 within Microsoft, some are included as critical com-
ponents in tools shipped with Windows 7, others are used internally and
yet more are available for academic research. Z3 ranks as the premier
SMT solver available today.

G. Salaün and B. Schätz (Eds.): FMICS 2011, LNCS 6959, p. 5, 2011.
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Lightweight Verification of a Multi-Task

Threaded Server:
A Case Study With The Plural Tool�

Néstor Cataño and Ijaz Ahmed

Carnegie Mellon University - Portugal, Madeira ITI
Campus da Penteada, Funchal, Portugal
{nestor.catano,ijaz.ahmed}@m-iti.org

Abstract. In this case study, we used the Plural tool to verify the design
of a commercial multi-task threaded application (MTTS) implemented
by Novabase, which has been used for massively parallelising computa-
tional tasks. The effort undertaken in this case study has revealed several
issues related with the design of the MTTS, with programming practices
used in its implementation, and with domain specific properties of the
MTTS. This case study has also provided insight on how the analy-
sis done by the Plural tool can be improved. The Plural tool performs
lightweight verification of Java programs. Plural specification language
combines typestates and access permissions, backed by Linear Logic. The
Plural specifications we wrote for the MTTS are based on its code, its
informal documentation, sometimes embedded in the code, and our dis-
cussions with Novabase’s engineers, who validated our understanding of
the MTTS application.

Keywords: Concurrency, Formal Methods, Parallelism, The Plural Tool,
Verification.

1 Introduction

Hardware engineers and chip manufacturers are currently developing even big-
ger multi-core processors to develop desktops that will be massively parallel
within the next few years. To take advantage of this new parallel technology,
computer scientists are working on the development of programming languages
and programming paradigms that exploit the massively parallel power provided
by the (future) hardware. As an example of this, the Æminium research project
is working in the development of a platform [16] that allows programmers to
write concurrent-by-default programs and that supports massive parallelism.
Æminium platform is under development and its evolution has been greatly
influenced by the Plural tool [14], its predecessor. Plural provides support to
typestates and access permissions. Typestates define protocols on finite state
� This work has been supported by the Portuguese Research Agency FCT through

the CMU-Portugal program, R&D Project Æminium, CMU-PT/SE/0038/2008.

G. Salaün and B. Schätz (Eds.): FMICS 2011, LNCS 6959, pp. 6–20, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Lightweight Verification of a Multi-Task Threaded Server 7

machines [17]. Access permissions are abstractions describing how objects are
accessed. For instance, a Unique access permission describes the case when a
sole reference to a particular object exists, and a Shared access permission mod-
els the case when an object is accessed by multiple references. Access permissions
are inspired by Girard’s Linear Logic [11], hence, they can be used as part of
specifications, and can be produced and consumed.

For this case study, we used the Plural tool for the specification and verifi-
cation of a multi-task threaded server (MTTS), implemented by Novabase [13],
which has extensively used for massively parallelising the processing of com-
putational tasks. The MTTS has historically been a robust and reliable core
application. The MTTS is part of several software applications used by Nov-
abase’s clientele, e.g. it is used in the financial sector to parallelise the archiving
and processing of documents. MTTS has been implemented in Java. It utilises
queues to store tasks, which are executed by a pool of threads.

Our goals for the case study included verifying the design of a massively
parallel application, determining how well the Plural tool works on a complex
commercial application - what kinds of specifications and code can and cannot
be analysed by Plural. This case study further allowed us to make a list of desir-
able properties and features the Plural tool (and Æminium, its successor) must
implement to become a more powerful and usable lightweight verification tool.
The process of verifying MTTS with Plural revealed a series of issues related
with good programming practises and with design decisions made in the imple-
mentation of the MTTS. These issues would not have been revealed otherwise,
e.g. through direct code inspection. Furthermore, the specification we wrote can
be used by Novabase to generate a collection of documents describing the be-
haviour of the MTTS, and the use of an automated tool like Plural increases
our confidence on the correctness of the specifications. This documentation can
be used to resolve differences between members of the quality assurance team
of Novabase, their programmers, or any of those and Novabase’ clientele itself,
regarding the expected behaviour of the MTTS. The Plural specifications we
wrote for the MTTS are based on our understanding of the MTTS application,
built from direct inspection of its code and from our discussions with Novabase’s
engineers, who validated our understanding.

The rest of this paper is organised as follows. In the following, we present some
related work. Section 2 introduces the specification language used by Plural (ac-
cess permissions and typestates), and describes how verification is performed
with the Plural tool. Section 3 presents the structure of the MTTS application.
Section 4 presents the specification of the MTTS application and shows miscel-
laneous aspects of the verification of the MTTS with Plural. Section 4 includes
a discussion on the limitations of the analysis performed by Plural and how we
overcame these limitations. This discussion includes a list of desirable features
regarding the analysis done by Plural. Section 5 discusses our current work on
the implementation of some of these features.
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Related Work. In previous work [8], we used JML to specify an electronic
purse application written in the Java Card dialect of Java. JML is a behavioural
interface specification language for Java [12]. Typestates can be regarded as
JML abstract variables and, therefore, JML tools can be used to simulate the
typestate verification of specifications. However, JML does not provide support
for the reasoning about access permissions and JML’s support for concurrency
is rather limited. The work presented here is more complex than the work in [8],
as it involves reasoning on concurrency properties of a system.

The Plural group has conducted several case studies on the use of typestates
to verify Java I/O stream libraries [3] and Java database libraries [4]. The case
studies show that Plural can effectively be used to check violation of APIs pro-
tocols. The case study presented in this paper takes a further step in considering
a large commercial application with about fifty Java classes.

In [10], Robert DeLine and Manuel Fähndrich use the Fugue protocol checker
on a relatively large .Net web based application. Likewise Plural, Fugue provides
support to typestate verification, however, it does not provide support to access
permissions. In [9], the Vault programming language is used to describe resource
management protocols. Protocols can specify that certain operations must be
performed in a certain order and that certain operations must be performed
before accessing a given data object. The technique has been used on the interface
between the Windows kernel and its device drivers.

2 Preliminaries

2.1 Plural Specification Language

Plural specification language combines typestates and access permissions specifi-
cations. Typestates define protocols on finite state machines [17]. Access permis-
sions are abstract definitions on the capability of a method to access a particular
state [3,5]. Plural uses access permissions to keep track of the various references
to a particular object, and to check the types of accesses these references have.
Accesses can be reading and writing (modifying). Plural provides support to
five types of access permissions, namely, Unique, Share, Immutable, Full,
and Pure. Figure 1 presents a taxonomy of how different access permissions can
coexist, e.g. Full access to a referenced object allows the existence of any other
reference with Pure access to the same referenced object.

– Unique(x). It guarantees that reference x is the sole reference to the ref-
erenced object. No other reference exists, so x has exclusive reading and
modifying (writing) access to the object.

– Full(x). It provides reference x with reading and modifying access to the
referenced object. Additionally, it allows other references to the object (called
aliases) to exist and to read from it, but not to modify it.

– Share(x). Its definition is similar to the definition of Full(x), except that
other references to the object can further modify it.
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This reference Other references

Unique ∅
Full Pure

Share Share, Pure
Pure Full, Share, Pure, Immutable

Immutable Pure, Immutable

Current permission Access through
read/write read-only other permission

Unique - none
Full Immutable read-only
Share Pure read/write

Fig. 1. Simultaneous access permissions taxonomy [3]

– Pure(x). It provides reference x with reading-only access to the referenced
object. It further allows the existence of other references to the same object
with read-only access or read-and-modify access.

– Immutable(x). It provides x and any other existing reference to the same
referenced object with non-modifying access (read-only) to the referenced
object. An Immutable permission guarantees that all other existing refer-
ences to the referenced object are also immutable permissions.

Access permissions are inspired by Girard’s Linear Logic [11], hence, they can be
used, produced and consumed. In Plural, typestates are declared with the aid of
the @ClassStates clause. Method specifications are written with the aid of the
@Perm clause, composed of a “requires” part, describing the resources required
by a method to be executed, and an “ensures” part, describing the resources
generated after method execution. So, the Linear Logic formula P−−◦Q is written
as @Perm(requires=“P”, ensures=“Q”). The semantics of the operator ⊗ of
Linear Logic, which denotes simultaneous occurrence of resources, is captured by
the operator “*”. P and Q above are specifications such as Unique(x) in A *
Full(y) in B, which requires (ensures) that reference “x” has Unique permission
to its referenced object, which should be in state A, and simultaneously requires
(ensures) that “y” has Full permission to its referenced object, which should be
in state B. The semantics of the additive conjunction operator “&” of Linear
Logic, which represents the alternate occurrence of resources, is captured by the
use of a @Cases specification, the decision of which is made according to a
required resource in one of its @Perm specifications. The additive disjunction
operator ⊕ of Linear Logic is modelled by the use of a @Cases specification,
the decision of which is made according to an ensured resource by one of its
@Perm.

Figure 2 illustrates an example of specification with Plural taken from the case
study. Class Task models a generic processing task in the MTTS. The internal
information about the task is stored in an object “data” of type MttsTaskDataX.
We identify four possible typestates a task can be, namely, Created, Ready,
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@ClassStates({
@State (name = ‘ ‘Created’’ , inv = ‘ ‘ data == null ’’ ) ,
@State (name = ‘ ‘Ready’’ , inv = ‘ ‘ data != null ’’ ) ,
@State (name = ‘ ‘Running’’ , inv = ‘ ‘ data != null ’’ ) ,
@State (name = ‘ ‘ Finished ’’ , inv = ‘ ‘ data == null ’’ )

})
public Task implements AbstractTask {

private MttsTaskDataX data ;

@Perm( ensures = ‘ ‘Unique ( this ) in Created ’’ )
public Task ( ) { . . . }

@Perm( r e qu i r e s = ‘ ‘ Full ( this ) in Created ∗ #0 != null ’’ ,
ensure s = ‘ ‘ Full ( this ) in Ready’’ )

public void setData (MttsTaskDataX data ) { . . . }

@Perm( r e qu i r e s = ‘ ‘ Full ( this ) in Ready’’ ,
ensure s = ‘ ‘ Full ( this ) in Finished ’’ )

public void execute ( ) throws Exception { . . . }
}

Fig. 2. Example of a specification for a generic task

Running, and Finished. The state Created is the initial state of any task.
This uniqueness property is enforced by the class constructor. A task is in state
Ready once it has been given some data to be run. It is in state Running when
it is running, and it is in state Finished when it has been executed and the task
data has been consumed. The constructor of class Task creates a Unique object
that is initially in state Created. Method “setData()” requires this to have
Full permission on its referenced object, which should be in state Created,
and simultaneously requires that its first parameter is different than null. The
operator “*” combines several specifications. Expression “#i” stands for the
parameter number “i+1” of a method. Method “execute()” requires this to
have Full permission and to be in state Ready, and ensures that this will
have Full permission on its referenced object, which will be in state Finished.
Additionally (not shown in this example), in Plural, the clause @Cases allows
the annotation of several @Perm specifications for a method.

2.2 Checking Programs with Plural

Plural is a typestate specification and checker tool, implemented as a plug-in
of Eclipse [14]. The Plural tool takes a Java program annotated with Plural
specifications and checks whether the program complies with its specifications.
Plural performs several types of program analysis, e.g. fractional analysis (influ-
enced by Boyland’s work in [6]), hence, access permissions can be split in several
more relaxed permissions and then joined back again to form more restrictive
permissions. Plural has also a simple effects-analyser that checks if a particular
method has side-effects, and an annotation analysis tool that checks whether
annotations are well-formed.

Plural employs a packing and unpacking object mechanism that is used to
transition objects into valid states in which invariants can be checked. Plural
implementation of the packing and unpacking mechanism has been influenced
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-mttsServer -creator -creator

RemoteOperationControl QueueManager ExecutionThread

RemoteTaskRegistration TaskQueue MttsThreadGroup

-queueM

-queueM

-queueM -queue

pkg server

-thread-remoteOC.

-remoteTR.

ThreadPoolTaskCreatorMttsServerServerWrapper

-pool

Fig. 3. The server package

by the work of M. Barnett and al. in [2]. Hence, Plural packs receiver objects
to some state before methods are called. This ensures that objects are seen in
consistent states during method calls.

3 General Outline of the MTTS Application

The MTTS is the core of a task distribution server that is used to run tasks over
different execution threads. The core is used in the financial sector to process
bank checks in parallel with time bound limits. MTTS’ implementation is general
in the sense that it makes no assumptions on the nature of the running tasks.
The MTTS organises tasks through queues and schedules threads to execute the
task queues. Tasks are stored in databases.

The MTTS is a typical client server application, which is divided into 3 main
components, namely, TaskRegistration, RemoteOperationControl and QueueM-
anager. MTTS’ clients use the TaskRegistration component to register tasks.
This component stores the registered tasks in a database. The QueueMan-
ager component implements some working threads that fetch and execute tasks.
The RemoteOperationControl component is used to monitor and to control the
progress of the tasks. Every queue implements a mutex manager algorithm to
synchronise tasks.

Implementation of the MTTS. The MTTS is composed of three main pack-
ages, namely, mtts-api, il and server. The structure of the server Package is
shown in Figure 3. The mtts-api package models tasks and queues. Class Task
implements tasks and QueueInfo implements queues. Class IMutexImp in the il
(intelligent lock) package implements a mutex algorithm to synchronise tasks,
and class MutexManager creates and destroys locks. Lock status and statistics
are implemented in classes IMutexStatus and IMutexStatistics respectively.

The server package is the main package of the MTTS application and uses
features implemented by the other packages. The server package implements
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code that fetches tasks from the database and distributes them through differ-
ent threads. Class ServerWrapper runs the server as a system service and Class
MttsServer implements the basic functionality to start and stop the server. Class
TaskCreator and class QueueManager create tasks and manage queues respec-
tively. Class RemoteTaskRegistration provides an interface to remotely regis-
ter tasks and class RemoteOperationControl provides an interface to clients to
remotely view the progress of tasks. Class ThreadPool keeps a list of class Ex-
ecutionThread objects that execute running threads. Class DBConnection im-
plements the basic features to communicate with database.

4 Specification and Verification of MTTS

4.1 The General Specification Approach

The specification of the MTTS application is based on its informal documen-
tation, sometimes embedded in the code as comments, and on our discussions
with Novabase’s engineers. After our discussions with Novabase’s engineers took
place, we wrote a technical report describing the architecture of the MTTS ap-
plication [1]. The report was then validated by Novabase.

Since Plural performs a modular analysis of programs, we commenced writ-
ing specifications, starting from the most basic classes of the MTTS, e.g. classes
that are inherited from or are used by other classes. Since the specification of
more complex classes depends on the specification of the most basic ones, we
provided basic classes with a sufficiently detailed specification. We specified the
basic packages mtts-api and il first and specified package server last. Because
Plural does not include a specification for Java standard classes, e.g. List and
Map, we wrote specifications for these Java classes as well. We also wrote speci-
fications for Java classes related with database interaction, e.g. Connection and
DriverManager. In the following, we present and discuss some of the specifica-
tions of the three main packages of the MTTS and discuss miscellaneous aspects
of the specification and verification of the MTTS application with Plural.

4.2 Miscellaneous Aspects of the Specification of the MTTS

Processing Tasks. Figure 2 presents an excerpt of the specification of class
Task (see Section 2.1). There are some miscellaneous aspects about the spec-
ification of this class that are worthy to mention. Although we would like to
distinguish typestates Ready and Running, their associated invariants are the
same. In Plural, if an object is in state Ready, then “data” is different than
null. However, the opposite direction is not necessarily true. If one wished to
fully distinguish these two typestates then one could add conditions “isready”
and “! isready” to their respective invariants. But then one would need to mod-
ify the source code of class Task by creating a boolean variable “ready” and to
keep track of the value of this variable through the code of class Task. This is
error-prone and we further wanted to keep the source code of the MTTS intact
as much as possible.
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The specification of class Task ensures that a task cannot be execute twice.
Only the class constructor leaves a task in state Created. Only method “set-
Data” transitions a task from Created to Ready. And a task needs to be in
state Ready to be executed. The specification also ensures that “setData” must
be called before “execute()”.

Mutual Exclusion. Method “acquire()” acquires a lock and method “re-
lease()” gives the lock up. Method “acquire()” is the only class method that
transitions into typestate Acq, and method “release()” is the only class method
that takes an object from typestate Acq into typestate FStat. These methods
are defined in class IMutex. Mutual exclusion to a critical section is ensured by
enclosing the code of the critical section between a call to method “acquire()”
and a call to method “release()”. Hence, two different threads cannot execute
a critical section simultaneously. If a first thread acquires a lock by successfully
completing a call to “acquire()”, a second thread can only acquire the lock after
the first thread has released it.

@Full( r e qu i r e s = ‘ ‘FStat ’’ , ensures = ‘ ‘Acq’’ )
public abstract void acqu i r e ( ) { }

@Full( r e qu i r e s = ‘ ‘Acq’’ , ensures = ‘ ‘FStat ’’ )
public abstract void r e l e a s e ( ) { }

An object of type ExecutionThread (see below) is in state FullMutex if it has
Full access permission to field “mutex” of type IMutex. Hence, mutual exclusion
to a certain code (e.g. method “doErrorRecovery”) is attained by enclosing it
between a call to “mutex.acquire()” and a call to “mutex.release()”.

@ClassStates({
@State (name= ‘ ‘FullMutex’’ , inv = ‘ ‘Full (mutex) in FStat ’’ ) ,

})
class ExecutionThread extends Thread {
private IMutex mutex ;

@Perm( r e qu i r e s = ‘ ‘FullMutex’’ , ensures = ‘ ‘FullMutex’’ )
private void doErrorRecovery( Exception e ) {

try { mutex . a cqu i r e ( ) ; . . . }
f ina l ly { . . . mutex . r e l e a s e ( ) ; }

}
}

Absence of Deadlocks. The Plural specification provided to methods “ac-
quire()” and “release()” ensures that if a thread has acquired a lock, then the
thread needs to release the lock before another thread can acquire the lock. This
is a source for deadlocks: one needs to check that an acquired lock is eventually
released. Plural does not provide support to reachability analysis so we did not
prove the absence of deadlocks in general, but only in particular settings, e.g. by
direct code inspection. As an example of this, the code of method “doErrorRecov-
ery” in class “ExecutionThread” below is enclosed between a call to “acquire()”
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and a call to “release()”. This was often the case for methods in class “Execu-
tionThread”. Method “doErrorRecovery” uses a Java try-catch-finally statement
to ensure that the “release()” method is always finally called regardless of the
method termination status (normal or exceptional). Plural analysers take the
semantics of the try-catch-finally Java statement into account.

Destroying a Non-Released Lock. Method destroy(IMutex m) in class Mu-
texManager removes a mutex from the list of mutexes. However, destroying
(removing) a mutex can lead the system to a deadlock (or to a state that might
enable some abnormal behaviour) as the thread that acquired the lock will never
be able to release the lock and so threads waiting for the thread to release the
lock will await forever. To ensure that a mutex is not destroyed before it is first
released, we added the specification Full(#0) in NotAcq to the “requires” part
of method “destroy” (“#0” refers to the first parameter of the method, i.e. m).
Therefore, Plural will generate an error for any code that calls method “destroy”
with a mutex object “m” in a state other than NotAcq.

Reentrant Mutexes. According to the implementation and the documenta-
tion of the MTTS, although two different threads cannot acquire the same lock,
a single thread can acquire the same lock several times. Class IMutexImp im-
plements interface IMutex. It declares a thread field “o” that keeps track of the
thread that owns the lock, and an integer variable “nesting” that keeps track of
the number of times the owner thread has acquired the lock. From the imple-
mentation of class IMutexImp, it appears evident that “nesting” is 0 whenever
object “o” is null (a class invariant property). We define a typestate NestAcq
(acquired several times by the same thread) related to the invariant “o != null *
nesting > 1” and use this typestate in the specification of all the methods of the
class, e.g. “acquire()” and “release()”. However, Plural does not provide support
to integer arithmetic. We then thought of modifying the code of class IMutexImp
to declare and use a boolean variable “nested” to be true whenever “nesting”
is greater than 1, and modifying the invariant associated to the typestate Nes-
tAcq to be “o != null * nested==true”. This approach however is error-prone:
it requires us to set “nested” accordingly all through class IMutexImp whose
code is large.

An additional problem related to the specification of reentrant mutexes has to
do with the analysis performed by Plural. We describe this problem with the aid
of the specification of the method “release()” below. This method requires the
receiver object to be in state NestAcq that means“nested” !=false. This indi-
cates that if-statement in method “release()” can never be executed, and hence
the receiver object remains in the state NestAcq. However, the Plural tool is-
sues a warning saying that it cannot establish the post-typestate specification.
This proves another limitation of the analysis performed by Plural. To determine
that the if-statement is never executed, it is necessary to analyse the invariant
property associated with the definition of the NestAcq typestate. The actual
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implementation of Plural does not perform such data-flow analysis. Due to all
these limitations in the analysis performed by Plural, the actual specification for
class IMutexImp does not introduce a NestAcq typestate.

@Full( r e qu i r e s = ‘ ‘NestAcq’’ , ensures = ‘ ‘NestAcq’’ )
public void r e l e a s e ( ) {

i f ( o != null && nested==fa l se ) { . . . }
}

Plural and Good Programming Practices. Class ExecutionThread declares
a boolean variable “terminate” that is used to determine whether the thread has
finished its execution or not. The variable is not explicitly initialised in its dec-
laration, yet according to the Java specification language its default value is
false. Typestate ThreadCreated represents the state in which a thread has
just been created. The constructor of class ExecutionThread does not set vari-
able “terminate”. Despite the fact that the initial value of variable “terminate”
is false, Plural issues an error for the execution of the constructor of class Ex-
ecutionThread. This error states that the object cannot be packed to typestate
ThreadCreated.

Although this shows a bug in the Plural tool, we report it as a programming
bad practice. Programmers should explicitly initialise variables to their intended
value, thus avoiding relying on the underlying compiler or on external tools, e.g.
external typestate analysers like Plural. In this sense, Plural can be used to
enforce initialisation of class variables.

@ClassStates({
@State (name= ‘ ‘ThreadCreated ’’ , inv = ‘ ‘ te rminate==fa l se ’’ ) ,

. . .
})
class ExecutionThread extends Thread {
private boolean te rminate ;

. . .
@Perm ( ensures = ‘ ‘Unique ( this ) in ‘ ‘ThreadCreated")
ExecutionThread (...) { ... }
...

}

Specification of Standard Libraries. The MTTS stores tasks and related
information into a database. The DBConnection class of MTTS implements
the basic features that support communication with databases. Plural does not
furnish specification of standard Java classes such as Connection and Driver-
Manager, so we needed to write specifications for these classes as well. The
specification of these classes allowed us to prove that the MTTS adheres to gen-
eral protocols of database interaction. For instance, we proved that a connection
is always open whenever database operations such as fetching a task from the
database and updating task information stored in the database are taking place.

Abstract class MttsConnection below presents part of the specification we
wrote for class MttsConnection. Class MttsConnection defines a root typestate
Connection with two sub-typestates OpenConnection and ClosedConnec-
tion, modelling an open and closed database connection respectively. According
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to the Java specification language, method “open()” can be called on an object
that is in state OpenConnection, and “close()” can be called on an object that
is in state ClosedConnection. The specification of other standard libraries was
conducted in a similar way. They were all specified in Java abstract classes.

@Refine ({
@States (dim= ‘ ‘Connection ’’ ,

va lue={ ‘ ‘OpenConnection’’ , ‘ ‘ClosedConnection’’})
})
public abstract class MttsConnection {

@Perm( ensures = ‘ ‘Unique ( this ) in OpenConnection’’ )
MttsConnection ( ) { }

@Full( va lue= ‘ ‘Connection ’’ , ensures = ‘ ‘OpenConnection’’ )
public abstract void open ( ) throws java . s q l . SQLException ;

@Full( va lue= ‘ ‘Connection ’’ , ensures = ‘ ‘ClosedConnection’’ )
public abstract void c l o s e ( ) throws java . s q l . SQLException ;

}

Checking for Non-Nullness. One of the most common properties to verify
is the one restricting values to be different than null. For instance, method
“setName” (see below) in class “MttsTaskDataX” restricts parameter “name”
to be different than null. This parameter is used to set the internal name of the
underlying task. Plural issues an error for any call to method “setName” with a
parameter that cannot be proved to be different than null.

@Perm( r e qu i r e s = ‘ ‘#0 != null ’’ )
public void setName( S t r i ng name) { . . . }

Starting and Shutting Down the MTTS Server. Class MttsServer is
the main class of the MTTS application. It implements methods “start()” and
“stop()” to start and to shutdown the server. It declares three variables “Op-
ControlRemote”, “TaskRegistrationRemote” and “queueManager” to manage
the three major features of the server: control of remote operations, task regis-
tration, and the queue manager, respectively.

We wanted to check some design consistency aspects of the server, e.g. the
server is in its starting state ServerStart if and only if its three components are
in their starting states TStart, CStart and QStart respectively. Similarly, we
wanted to prove that the MTTS server is in state TShutdown if and only its
three components are in their respective shutdown states TShutdown, CShut-
down and QShutdown. Although, the implementation of method “start()”
verified the definition of typestate ServerStart, the implementation of method
“stop()” did not verify the definition of typestate ServerShutdown. Method
“stop()” does not shutdown all its components but only the “queueManager”.

We report this as a flaw in the design of the MTTS server application. Due
to the size of the MttsServer class and all the classes it uses, discovering this
design flaw would not be possible through direct code inspection.
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@ClassStates({
@State (name= ‘ ‘ServerStart’’ ,

inv = ‘ ‘Full ( queueManager ) in QStart ∗
Full (OpControlRemote ) in CStart ∗
Full ( TaskRegistrat ionRemote) in TStart’’ ) ,

@State (name= ‘ ‘ServerShutdown’’ ,
inv = ‘ ‘Full ( queueManager ) in QShutdown

Full (OpControlRemote ) in CShutdown ∗
Full ( TaskRegistrat ionRemote) in TShutdown) ’’})

class MttsServer {
private OpControl OpControlRemote ;
private TaskRegi st rat ion TaskRegistrat ionRemote ;
private QueueManager queueManager ;

@Perm( ensures = ‘ ‘Full ( this ) in ServerStart’’ )
public void s t a r t ( ) throws MttsException { . . . }

@Perm( r e qu i r e s = ‘ ‘Full ( this ) in ServerStart’’ ,
ensure s = ‘ ‘Full ( this ) in ServerShutdown’’ )

public void stop ( ) throws MttsException {
queueManager . shutdown ( ) ;

}
. . .

}

4.3 Discussion on the Limitations of Plural

We verified significant properties of the MTTS application ranging from simple
non-null properties to absence of deadlocks and mutual exclusion to a critical
section. Our experience dictates that Plural is a practical tool that can effectively
be used to verify complex system properties that are harder to verify using other
automated approaches. We also used Plural to check design decision in the imple-
mentation of the MTTS. We consider that the specification we have written can
be used to enhance the quality of the implementation of the MTTS application.
The mere exercise of writing abstractions (typestates) for an application forced
us to fully understand and evaluate the MTTS application. The incompleteness
of the written specifications are mainly due to the incompleteness of the analysis
performed by Plural.

In the following, we summarise Plural limitations. Some of these limitations
have already been discussed in previous sections.

– The Plural tool does not provide support to the analysis of programs with
loops. For instance, method “run()” in class ExecutionThread loops while
no termination request has not been placed - “while(! terminate){...}”. To
check method “run()”, we modified it so that it loops once at the most -
“if(! terminate){ ... }”. The if-statement abstracts the while-loop statement.
This abstraction is a source of incompleteness in the analysis we performed of
the MTTS application. Nonetheless, abstracting loops as conditional state-
ments is often a decision made in the implementation of formal methods
tools, e.g. the ESC/Java tool [7] implements a similar approach to deal with
loops.

– Plural does not provide support to integer arithmetic. So, one cannot define
invariants that use integer variables. Plural provides support to the analysis
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of boolean expressions that check equality or non-equality of references, or
to boolean expressions that check (non-) nullness of references.
In the implementation of the MTTS, class IMutexImp implements a mutex
algorithm that is used to synchronise threads. Mutexes can be acquired or
released. Thus, if a thread acquires a lock then no other thread can acquire
the same lock. A thread can acquire a lock several times. So, it must release
the lock the same number of times it acquired it for any other thread to
(eventually) be able to acquire the lock. However, in Plural it is not possible
to define a typestate that describes the situation when a thread has acquired
a lock several times as this will require the invariant related to the typestate
to rely on an integer arithmetic expression “nesting > 1”.

– Plural does not implement a strong specification typechecker, so program-
mers can unconsciously write specifications that include misspelled (nonex-
istent) typestates, and the Plural analysers can unconsciously use the mis-
spelled typestate in their analysis. Plural does not issue any error on a spec-
ification that uses a nonexistent typestate.

– Plural does not provide support to reachability analysis. If a thread object
is in state Acq, will the object ever be in state NotAcq? Plural does not
provide support to reachability analysis. Nonetheless, in practice, for small
classes, one can inspect the code and trace how states evolve. For large classes
and large pieces of code this becomes impossible.

– Method “execute()” in Figure 2 transitions a task object from typestate
Ready to typestate Running, and thereafter to typestate Finished. These
two transitions occur both within method “execute()”. Typestate Ready is
required by method “execute()” and typestate Finished is produced by
method “execute()”. Running is an intermediate typestate for which the
specification of method “execute()” does not provide any information. Not
being able to reason about intermediate program states is a limitation of the
analysis performed by the Plural tool. The information about intermediate
states can be used by programmers (and tools) to assert certain facts that
otherwise cannot be asserted. For instance, in the verification of the MTTS,
we could not specify the property stating that a running task cannot be
deleted.

5 Conclusion and Future Work

The MTTS is a relatively large size commercial application that implements
a server with a thread pool that runs processing tasks. The specification and
verification of the MTTS was a challenging and laborious task. The authors spent
about six months writing the specifications and verifying the MTTS application
with Plural. We specified and verified forty nine Java classes with 14451 lines
of Java code and 546 lines of program specifications written in Plural. The
automation of the analyses performed by the Plural tool ranges from a couple
of milliseconds for the verification of small classes to a couple of minutes for the
verification of large classes, e.g. the server class. The first author had previous



Lightweight Verification of a Multi-Task Threaded Server 19

experience in the specification and verification of Java applications using JML
but did not have any previous experience with Plural. The second author had no
previous experience in the use of formal methods tools. The code of the MTTS
was not originally documented so we needed to write its documentation prior to
its specification and verification. We kept the code of the MTTS unchanged as
much as possible and tried to keep the semantics of the code intact whenever we
introduced any changes to it.

This is the first case study on the use of Plural for the verification of a com-
mercial large sized application. Some of the limitations of Plural (see discussion
in Section 4.3 for a full list) hampered our specification and verification work.
Nonetheless, we managed to specify and verify important design properties back-
ing the implementation of the MTTS application. The written typestate spec-
ifications can further be used to generate a collection of documents describing
the behaviour of the MTTS, which can be used for the quality assurance team
of Novabase for different purposes.

We are currently working on the implementation of some features to over-
come some of these limitations. The two authors and Radu Siminiceanu, at the
National Institute of Aerospace in Virginia, are currently working on a formal
methods based approach to the verification of Plural and Æminium specifica-
tions. Hence, specifications are translated into an abstract state-machine that
captures all possible behaviour of the specifications, and the EVMDD (Edge-
Valued MDD) symbolic model-checker [15] is used to check the specifications.
Furthermore, we are working on a Petri net inspired semantics to represent ac-
cess permissions. The translation is carried out for specifications alone, regardless
of the program source code. This ongoing work enables reachability analysis of
Plural specifications and the checking for absence of misspelled specifications.

Writing program specifications for medium sized or large applications is a
laborious and sometimes complex task. To help programmers write Plural spec-
ifications, we are currently working on a prototype tool that infers likely access
permissions automatically. Roughly speaking, we analyse a Java program and
store in a graph the information on how program objects are read or written.
The graph is stored as an XML file, which is then used to generate the access
permissions. We are currently working on the implementation of the prototype
tool as an Eclipse plug-in.

Acknowledgements. Wethank JonathanAldrich andNelsBeckmanatCarnegie
Mellon University, and Filipe Martins, Manuel Beja, and Paulo Casanova at Nov-
abase for useful feedback on the work presented in this paper.
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Abstract. SystemC TLM (Transaction Level Modeling) enables the de-
scription of complex Systems on Chip (SoC) at a high level of abstrac-
tion. It offers a number of advantages regarding architecture exploration,
simulation performance, and early software development. The tendency
is therefore to use TLM-based descriptions of SoC platforms as golden
models that, by essence, must be flawless.

In this paper, a SoC critical embedded platform under development
by Astrium is used as proof-of-concept demonstrator, to assess the ISIS
prototype tool which is devoted to the verification of SystemC TLM
designs. Given temporal properties that capture the intended require-
ments, ISIS automatically instruments the design with ad hoc checkers
that inform about the satisfaction of the properties during simulation.

After a description of the target platform design, we show that the
PSL language enables the unambiguous expression of the required prop-
erties, and that the checkers produced by ISIS verify their satisfaction
with a limited simulation time overhead.

1 Introduction

As the complexity of Systems on Chips (SoC’s) drastically increases, the need
for new design methodologies is compelling, and the interest in languages like
SystemC [1] is growing (SystemC is in fact a library of C++ classes for model-
ing electronic circuits). SystemC TLM (Transaction Level Modeling) [10] favors
design reuse, architecture exploration, and early software development [4]. Also,
due to its high level of abstraction, in particular for specifying the communica-
tion of complex data types between the components of the SoC, the simulation
of TLM models is several orders of magnitude faster than RTL (Register Trans-
fer Level) simulation, thus considerably improving productivity in SoC design
[15]. Hence it is widely being adopted, and TLM specifications tend to become
golden reference models [11] that, by essence, must be completely flawless. To
that goal, Assertion-Based Verification (ABV) brings an attractive solution.

ABV addresses the issue of verifying that the design obeys a given collection of
temporal assertions (or properties). Those assertions, written in languages such
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as the IEEE standards PSL [3] and SVA [2], are used to capture the desired
characteristics. They provide a way to drive the formal analysis of the design
model. This is now a well-established technology at the RT level [19]. The leading
CAD companies have integrated property checking in their RTL simulators;
e.g., ModelSim (Mentor Graphics), VCS (Synopsys) and the Incisive platform
of Cadence allow to complement VHDL or Verilog descriptions with temporal
assertions to be checked during simulation. No equivalent solution exists for
SystemC TLM descriptions, which are algorithmic specifications that make use
of elaborate communication models for complex data types (“transactions”) and
communication interfaces.

ISIS [23,9] is an academic tool that actually answers the need for ABV at
the system level. Given PSL assertions that express the intended behaviour,
it automatically instruments the SystemC TLM design with ad hoc checkers.
During simulation, those checkers provide information about the satisfaction
of the assertions. The original simulation testbenches can be used, there is no
need of specific ones. In the context of TLM descriptions, assertions of interest
mainly target the verification of the hardware/software interoperability in the
interactions on the SoC. They express properties regarding communications i.e.,
properties associated with transactional events (for instance, data are transferred
at the right place in memory, a transfer does not start before the completion of
the previous one, etc.). ISIS enables the verification of those kinds of require-
ments, and is usable with timed or untimed models. This paper illustrates its
applicability to a representative SoC platform developed by Astrium.

The SoCKET project1 gathers industrial and academic partners to address
the issue of design methodologies for critical embedded systems. At different
phases of the SoCKET design flow (see Fig. 1) [18], the satisfaction of dedicated
properties has to be guaranteed (namely at the System level, and after HW/SW
partitioning). Some of these requirements, originally provided as textual descrip-
tions, can be fully disambiguated when translated into PSL assertions.

The ultimate goal of Astrium is to verify these properties at the System Level
using TLM-based Virtual Platforms, but also at the implementation level using
RTL designs. The ISIS tool fits the Functional Validation and SW Performance
Validation steps.

In that framework, Astrium is developing a toolbox in SystemC dedicated
to architecture prototyping and to benchmarking architecture performance. The
prototype platform is an assembly of software and hardware models. Following
the standard test process, we usually run one or more test scenari and check the
results. This procedure is useful, but its outcome is only a measure of the quality
of the results. It does not ensure that there is no unexpected side effect. The
ISIS approach gives the possibility to complement this process by automatically
instrumenting the code with functional properties in order to check them while
executing a test scenario (e.g., to verify that a client does not read data in a
DMA destination area when a transfer is on-going).

1 SoC toolKit for critical Embedded sysTems, see http://socket.imag.fr/
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Fig. 1. SoCKET design flow [18]

2 ABV for SoC Platforms

2.1 Expression of Requirements for TLM Designs

Brief Overview of PSL. The core of the PSL (Property Specification Lan-
guage) language is the Temporal layer that gives the possibility to describe
complex temporal relations, evaluated over a set of evaluation cycles. Basic ex-
pressions of the Boolean layer are used by the other layers. The Modeling layer
is used to augment what is possible using PSL alone, in particular it allows to
manage auxiliary (global) variables. The Boolean and Modeling layers borrow
the syntax of the hardware description language in which the PSL assertions are
included (SystemC, or more generally C++, in our case).

Formulas of the FL (Foundation Language) class of the PSL Temporal layer
essentially represent linear temporal logic. Their semantics is defined with re-
spect to execution traces (we will see thereafter that these traces are obtained
by different discretizations depending on the abstraction level).

One key basic operator of the FL class is strong until, denoted until! or U :
roughly speaking, ϕ until!ψ holds iff there exists an evaluation point in the trace
from which ψ holds, and ϕ holds until that point.

The PSL formula alwaysϕ means that ϕ must be verified on each evaluation
point of the trace.

Using the strong next event! operator, formula next event!(b)(ϕ) requires the
satisfaction of ϕ the next time the boolean expression b is verified.

Finally, formula ϕ before!ψ means that ϕ must be satisfied before the point
from which ψ holds.
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Classically in temporal logics, the weak until operator until does not impose
the occurrence of ψ. Weak versions of other operators (such as weak next event
and before) are derived accordingly. See [3] for more details about PSL.

Specifying at the System Level. At the Register Transfer level, which is
close to the circuit implementation, properties of interest target a high level of
accuracy, with detailed precisions of the behaviour of hardware elements (signals)
with respect to the synchronization clock. Execution traces are usually built by
sampling the simulation traces at clock ticks.

At the transactional (TLM) level, there is a need for addressing more coarse-
grained properties, typically related to abstract communication actions. More-
over, there is no synchronization clock, and there is even often no explicit notion
of time. An illustrative example of a simple assertion that can be expressed at
this level is: the intended address is used when a memory transfer occurs.

At this level, ISIS2 keeps the PSL semantics unchanged but observation points
are when the assertion needs to be re-evaluated i.e., each time a variable of the
assertion may be modified (an appropriate action occurs in the corresponding
channel). Hence the execution traces are built by sampling at the communication
actions that are related with the variables involved in the assertion.

Expressing Conditions on Communications. ISIS gives the user the possi-
bility to express conditions on communication actions: not only the occurrence
of a given communication, but also conditions on the values of the actual pa-
rameters of the corresponding function call (or on its return value).

With the various features offered by the TLM-1 and TLM-2 communication
models, it may be important to differentiate the simple occurrence of a commu-
nication action, the start, or the end of a communication action. To that goal,
ISIS automatically generates ad hoc predicates fctname CALL(), fctname START(),
and fctname END(), that can be used in Boolean expressions:

– name.fctname CALL() and name.fctname START() denote that the communica-
tion function fctname of the element name has just been called,

– and name.fctname END() expresses that the communication function fctname

of the element name just ended.

Complementarily, name.fctname.p# denotes the parameter in position # of func-
tion fctname (0 is used for the return value).

The Modeling layer of PSL allows declaring auxiliary variables (variables that
are not part of the design) as well as giving behavior to them. It is of great interest
in the TLM context, as will be demonstrated in section 4.3. Since the reference
manual does not provide details about its semantics (it is simply commonly
admitted that the statements of the Modeling layer should be evaluated at each
step of the evaluation of the property), its implementation in ISIS has required
the definition of an operational semantics [8].

2 See http://tima.imag.fr/vds/Isis/
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Example. Let us close this discussion with a simple example of platform, de-
livered with the first draft of the TLM 2.0 library: a master programs a DMA
through a memory-mapped router to perform transfers between two memories.
A property of interest is: any time a source address of the first memory is trans-
ferred to the DMA, a read access in this memory eventually occurs and the right
address is used (a similar property can be used for the other memory).

The expression of this property requires the memorization of the source ad-
dress at the moment it is transferred to the DMA (write operation on the ini-
tiator port of the master, to the destination of the DMA source register), to be
able to check that this address is actually used when the memory is read (read
operation on the first memory). The PSL Modeling layer is necessary: an auxil-
iary variable req src addr memorizes the source address (the second parameter
of the write operation, expressed as initiator port.write.p2 in the ISIS for-
malism) each time the source register of the DMA is overwritten. Another extra
variable dma src reg is used, but is just a constant that stores the address of the
DMA source register, for the sake of assertion readability:

// ---- Modeling layer ----

// HDL_DECLs :

int req_src_addr;

int dma_src_reg = 0x4000+pv_dma::SRC_ADDR;

// HDL_STMTs :

// Memorization of the source address when transferred to the DMA:

if (initiator_port.write_CALL() && initiator_port.write.p1 == dma_src_reg)

req_src_addr = initiator_port.write.p2;

// ---- Assertion ----

// PROPERTY :

assert always ((initiator_port.write_CALL() &&

initiator_port.write.p1 == dma_src_reg &&

initiator_port.write.p2 < 0x100)

=> next_event!(mem1.read_CALL())(mem1.read.p1 == req_src_addr));

2.2 Platform Instrumentation

To build property checkers from PSL assertions, ISIS uses a variant of the
original interconnection method developed as the HORUS technology for RTL
designs [22]: checkers are built compositionally from a library of elementary com-
ponents that correspond to the primitive PSL operators. In the ISIS context,
those elementary components are SystemC modules.

Moreover, ISIS provides a framework for the observation of the communication
actions used to sample the simulation traces (as explained in section 2.1) [23].
Thus, starting from PSL assertions:

– the tool performs the automatic construction of the corresponding checkers,
– then the SystemC code of the design under verification is automatically

instrumented to relate the variables involved in the properties (formal vari-
ables) to actual components of the design. For instance, in the example of
section 2.1, the variables named initiator port and mem1 in the assertion
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statement are actually the initiator port of the master and the first memory;
this correspondance is provided by the user3. This allows for flexibility and,
if required, reusability of the same assertion in different contexts.

The monitors are thus linked to the design under test through the observation
mechanism, and it remains to run the SystemC simulator on the system made of
this combination of modules, using the original testbenches. Any property viola-
tion during simulation is reported by the monitors. To the best of our knowledge,
no other tool offers a comparable solution.

2.3 Related Works

Few results have been proposed regarding static or dynamic verification of Sys-
temC TLM specifications. The static approaches proposed in [13], [20] and [14]
concentrate on model checking SystemC designs. They consider either clock-
synchronized descriptions ([13]) or actual TLM specifications ([20], [14]). Ab-
straction techniques are required to get tractable models, or only limited (pieces
of) designs can be processed.

A first proposal for constructing checkers for SystemC designs was described
in [12], but was restricted to clocked designs and to assertions that are roughly of
the form a condition holds at a given time point or during a given time interval.

A simulation-based methodology to apply ABV to TL models is proposed
in [21]. During a first simulation run, transaction traces are recorded in a VCD
file. This file is then translated into a Verilog description that is used for a second
simulation inside an RTL simulator, and SVA assertions can be checked at this
level. This solution is necessarily time-consuming since two simulation runs are
required. Moreover, transactions are simply mapped to Boolean signals (true
during the transaction, and false otherwise), which prevents from considering
the parameters of the communications.

In [6] the authors explicitly express events through a specialized extension of
SVA. A framework to perform runtime verification of transactional SystemC de-
signs is proposed, and a possible implementation using proxies is also mentioned
in [7]. This approach is appealing, but both the additional semantics constructs
and the framework appear unnecessarily complicated. A few experimental re-
sults are reported in [7]; even if they cannot be directly compared to those of
ISIS since case studies are different, the simulation time overhead appears to be
significant.

Lahbib uses the PSL property checkers generated by the FoCs tool to monitor
PSL assertions in transactional designs [17,16]. The key feature of this work is
the use of specific channel classes, containing instances of the property checkers.
During simulation, the TLM method transport calls on the checker’s transition
function when a transaction is initiated. With this approach, the checkers are

3 ISIS can be used with a graphical user interface; in that case the information is
provided through a selection list. There also exists a scripting-oriented version, in
which the user provides the information by means of attributes in an XML file.
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enclosed inside the channels and this induces considerable limitations: the asser-
tions cannot involve several channels and hybrid properties (i.e., including both
signals and TLM channels) are not supported.

Some commercial tools also provide for introducing PSL assertions in SystemC
designs. The tool Cadence Incisive Unified Simulator (v 6.11) supports TLM, but
only signals can be involved in the assertions, and neither the next event operator
nor the strong temporal operators can be used. Other tools like Synopsys VCS
only accept RTL descriptions.

To our knowledge, ISIS is the only existing tool with the following features:

– actual complex TLM descriptions are supported,
– the statements of the assertions can involve several channels, and this group

of channels can be heterogeneous (signals and TLM channels),
– communication parameters can be taken into account,
– using the PSL Modeling layer, auxiliary variables can be used for the ex-

pression of the specifications.

Moreover it provides a high level of automation and it is quite efficient, both for
the construction of the checkers and during instrumented simulation.

3 The Case Study

3.1 Platform Description

In the SoCKET project, Astrium proposes a use case in the Guidance/Navigation/
Control domain, specified as an image processing algorithm supporting mobile ob-
ject extraction/tracking for overall telemetry compression. The main goal is to de-
fine the optimal data processing architectures for different sets of parameters of
this algorithm.

Fig. 2. Architecture block diagram: processor + dedicated HW accelerator
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Fig. 3. Astrium demonstration platform

Various SoC architectures are targeted. In the first one, described in Fig. 2,
the full algorithm is partioned into SW and HW pipelined stages: each HW
accelerator is in charge of a complete algorithm step. The currently available
SystemC platform (Fig. 3) gives a simplified but fully representative view of
this architecture, where the accelerator function in a convolution operator. This
platform models the functional behaviour, but also the timing constraints by
means of an Astrium implementation of a technology for the separation of time
and functionality in timed TLM modelling [5]4. The ISIS experimentations have
been performed using that platform.

The LeonPV is a pseudo-processor that emulates the behaviour of the target
software (“PV” is the functional behaviour, “T” is the time layer that adds time
annotation to the exchange). The Router routes each TLM transaction to one
of the slave components, among them the TTP Mem (a memory) with its layer
of time annotation (refresh, latency, . . . ). In parallel, a transaction is sent to
the Bus which portrays the bus fabric characteristics (arbitration, latency, . . . ).
Finally, the Conv component is also equipped with a time layer. This Conv IP
is a convolution block able to fetch and store data in the main memory without
any processor intervention. It includes a register file with Command Register
and DMA configuration register. In the ultimate platform, the pseudo-processor
will be replaced by an Instruction Set Simulator (ISS) running the definitive
embedded code.

4 TTP = Timed TLM Protocol.
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3.2 Some Typical Requirements

Various types of properties can be considered for this kind of platform. They can
be classified into specific categories, described below. A representative property
of each category has been selected for verification with the ISIS technology.

Software Synchronisation Rules. These rules are related to the correct op-
eration of the software with respect to the hardware e.g., answer to an event
response time, concurrent access, buffer under/overflow.
Platform rule 1: The processor does not start a new convolution processing be-
fore the completion of the previous one.

Coding Constraint Rules. These rules check that the coding constraints im-
posed by the quality rules or the hardware requirements are respected e.g., reg-
isters are programmed before starting an operation, a given sequence is obeyed
when using a block.
Platform rule 2: No convolution processing must be started before both desti-
nation and source addresses have been programmed.

Architectural Constraint Rules. These rules check that architectural prop-
erties are respected by the software e.g., an AMBA target retry-enable is only
accessed by one master, flash memory write state machine is well managed. They
can also check some temporal properties related to the overall system behaviour
like arbitration policy or maximum latency constraints.
Platform rule 3: The memory does not respond with two “splits” consecutively
to the same master (the bus does not support multiple split transactions; the
system architecture must prevent this behaviour).

4 Application of ABV to the Case Study

Nowadays, the Astrium’s validation process is mainly based upon the devel-
opment and execution of dedicated tests: specific tests are developed for each
requirement, and each test addresses a given requirement. Well-suited sets of
tests have to be tailored for each validation phase in the design flow (at IP level,
sub-system level and top level). The approach of assertion-based verification
should instead enable the formal description of properties at system level, to be
refined and reused later on. This should reduce the specification effort and lead
to safer verifications. The solution described in section 2 provides the starting
point of such an ABV flow.

We illustrate here the applicability of this solution to the platform and re-
quirements of section 3. That also gives us the occasion to express remarks
about the facets of ABV at the system level. In addition to the DMA exam-
ple of section 2.1, the capabilities of ISIS have been demonstrated on a variety
of case studies, ranging from small systems with FIFO, faulty channel, packet
switch, to a Motion-JPEG decoding platform [8,9,24]. The experiments reported
here regarding the Astrium’s platform show that the approach is workable in an
industrial context.
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4.1 Convolution Processings in Sequence

The first property states that the Leon processor does not start a new convolution
processing before the end of the previous one. To formalize this property, it is
necessary to identify the designer’s view of starting and ending a convolution
processing. From a hardware-oriented point of view, starting a processing is
identified by writing in the read address register of the convolution unit (denoted
a read addr), and the end of a processing corresponds to reading in the length
register of the convolution unit (denoted a write length) a value that equals
image size. The PSL formalization of this property is given below (it also takes
into account the fact that this assertion should hold only when PVT NO CHECK,
which is a particular debugging flag, is deactivated). The declarative part of
the Modeling layer is simply used to declare constants for the addresses of the
registers and for the image size. The assertion part states that, every time the
processor starts a new convolution processing (writes into a read addr), the end
of this processing (read image size in a write length) will occur before the next
start.

vunit prop1 {

// HDL_DECLs :

unsigned int l=NBL, c=NBC;

unsigned int image_size = l * c;

unsigned int hw_conv_address = ttp_validation::get_address_map(HW_CONV);

unsigned int a_read_addr = hw_conv_address +

ttp_validation::conv_reg::a_read_addr;

unsigned int a_write_length = hw_conv_address +

ttp_validation::conv_reg::a_write_length;

unsigned int NO_CHECK = prt_tlm_ttp::PVT_NO_CHECK;

// HDL_STMTs :

// no statement here.

// PROPERTY :

assert

always(leonPVinitiator_port.write_CALL()

&& leonPVinitiator_port.write.p1 == a_read_addr

&& leonPVinitiator_port.write.p5 != NO_CHECK

=> next ( (leonPVinitiator_port.read_END()

&& leonPVinitiator_port.read.p1 == a_write_length

&& leonPVinitiator_port.read.p2 == image_size

&& leonPVinitiator_port.read.p5 != NO_CHECK)

before (leonPVinitiator_port.write_CALL()

&& leonPVinitiator_port.write.p1 == a_read_addr

&& leonPVinitiator_port.write.p5 != NO_CHECK)));

}

We can remark that this assertion refers to a variable leonPVinitiator port.
As explained in section 2.2, the user indicates that this variable is actually the
initiator port of the Leon processor in the platorm, which corresponds to the
element called Top.m leon.m leon PV.initiator port in the SystemC code.
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4.2 Convolution Processing and Transfer of Addresses

The second property states that both the destination and source addresses must
be sent to the convolution unit before it starts a convolution processing. Here too,
this assertion should hold only when PVT NO CHECK is deactivated. As already men-
tioned, starting a processing is identified by writing in the read address register
of the convolution unit (denoted a read addr); its destination address register
is denoted a write addr. The assertion expresses that, for each processing, the
destination address must be transmitted before the source address (sending the
source address is the last action, that triggers the convolution processing). The
assertion is made of the conjunction of two sub-assertions: the first one is related
to the very first processing, and the second one checks the expected behaviour for
the other processings (a new processing is recognized by the end of the previous
one). Here too, leonPVinitiator port is Top.m leon.m leon PV.initiator port.

vunit prop2 {

// HDL_DECLs :

unsigned int l=NBL, c=NBC;

unsigned int image_size = l * c;

unsigned int hw_conv_address = ttp_validation::get_address_map(HW_CONV);

unsigned int a_read_addr = hw_conv_address +

ttp_validation::conv_reg::a_read_addr;

unsigned int a_write_addr = hw_conv_address +

ttp_validation::conv_reg::a_write_addr;

unsigned int a_write_length = hw_conv_address +

ttp_validation::conv_reg::a_write_length;

unsigned int NO_CHECK = prt_tlm_ttp::PVT_NO_CHECK;

// HDL_STMTs :

// no statement here.

// PROPERTY :

assert

((leonPVinitiator_port.write_CALL()

&& leonPVinitiator_port.write.p1 == a_write_addr

&& leonPVinitiator_port.write.p5 != NO_CHECK)

before (leonPVinitiator_port.write_CALL()

&& leonPVinitiator_port.write.p1 == a_read_addr

&& leonPVinitiator_port.write.p5 != NO_CHECK))

&&

always((leonPVinitiator_port.read_END()

&& leonPVinitiator_port.read.p1 == a_write_length

&& leonPVinitiator_port.read.p2 == image_size

&& leonPVinitiator_port.read.p5 != NO_CHECK)

=> next((leonPVinitiator_port.write_CALL()

&& leonPVinitiator_port.write.p1 == a_write_addr

&& leonPVinitiator_port.write.p5 != NO_CHECK)

before (leonPVinitiator_port.write_CALL()

&& leonPVinitiator_port.write.p1 == a_read_addr

&& leonPVinitiator_port.write.p5 != NO_CHECK)))

}
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4.3 Successive Splits Forbidden

The third property aims at verifying that the AHB memory cannot emit two
successive splits for the same master. This assertion is simple and intuitive, but
is challenging regarding its formalization. Indeed, a more precise statement of
the property is: if a master accesses the AHB memory (read or write operation)
and the status of this communication indicates that a split has been issued, then
there must be no split when the master retries its access. Here, the Modeling
layer is mandatory to memorize the id of the last master that accessed the AHB
memory. We also use it to manage a Boolean variable status split.

Depending on the objectives of the designer, it may be decided to which extent
the AHB bus is also concerned with this assertion: the communication can be
observed on the initiator port of the AHB bus (version 1 below), or on the slave
port of the AHB memory (version 2 below).

vunit prop3_v1 {

// HDL_DECLs :

unsigned int prev_master, master = 999;

bool to_ahb; // true if the target is the AHB memory (target 0)

bool status_split; // true if a split has been issued

prt_tlm_ttp::ttp_response<ttp_ahb::ahb_status> resp;

prt_tlm_ttp::ttp_status<ttp_ahb::ahb_status> s;

// HDL_STMTs :

if (bus_initiator_port.do_transport_END()) {

to_ahb = (bus_initiator_port.do_transport.p3 == 0);

// if the target of the communication is the AHB memory:

if (to_ahb) { // set ‘‘master’’ and ‘‘status_split’’

prev_master = master;

master = bus_initiator_port.do_transport.p1.get_master_id();

resp = bus_initiator_port.do_transport.p2;

s = resp.get_ttp_status();

status_split = (s.access_extension())->is_split();

}

}

else { to_ahb = false;

status_split = false;

}

// PROPERTY :

assert always((bus_initiator_port.do_transport_END()

&& to_ahb && status_split)

=> next (next_event(bus_initiator_port.do_transport_END()

&& to_ahb && (master == prev_master))

(!status_split)));

}

where bus initiator port is in fact Top.m bus.initiator port. The second version
is similar, but directly observes the transport calls for the memory (the Boolean
variable to ahb is no more required):



Runtime Verification of Typical Requirements 33

vunit prop3_v2 {

// HDL_DECLs :

unsigned int prev_master, master = 999;

bool status_split; // true if a split has been issued

prt_tlm_ttp::ttp_response<ttp_ahb::ahb_status> resp;

prt_tlm_ttp::ttp_status<ttp_ahb::ahb_status> s;

// HDL_STMTs :

if (ahb_mem.transport_END()) { // set ‘‘master’’ and ‘‘status_split’’

prev_master = master;

master = ahb_mem.transport.p1.get_master_id();

resp = ahb_mem.transport.p0;

s = resp.get_ttp_status();

status_split = (s.access_extension())->is_split();

}

else status_split = false;

// PROPERTY :

assert always((ahb_mem.transport_END() && status_split)

=> next (next_event(ahb_mem.transport_END()

&& (master == prev_master))

(!status_split)));

}

and ahb mem here is the slave Top.m memory with split.m ahb memory T.

4.4 Performances

CPU times for these experiments demonstrate that the ISIS monitoring tech-
nology incurs moderate overhead in simulation time. In Table 1, CPU times are
taken on an Intel Core2 Duo (3 GHz) under Debian Linux. The first column
recalls the simulation context:

– for properties 1 and 2, simulations check image processing by means of the
convolution block. The testbench is configured to process 100000 images.
Here we simply performed untimed simulations, but comparable results are
obtained in the case of timed simulations.

Table 1. Experimental results

Simulation Monitoring CPU time Number of property
No Yes overhead evaluations

P1 Processing of 100000 images 9.38 s 9.81 s +4.6% 500000
with the convolution block
(untimed)

P2 Processing of 100000 images 9.38 s 10.02 s +6.8% 500000
with the convolution block

P3 v1 Processing of 30000 images 7.68 s 8.34 s +8.6% 600000
by the Leon itself (timed)

P3 v2 Processing of 30000 images 7.68 s 7.83 s +2% 360000
by the Leon itself (timed)
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– for property 3, timed simulations check image processing by the Leon, with
storage of the resulting images in the AHB memory. The testbench is con-
figured to process 30000 images.

The second column gives SystemC simulation times without any monitoring. The
third column gives CPU times for simulations while monitoring with the checkers
constructed by ISIS. Checkers construction and code instrumentation times are
negligible. The number of times the checker functions have been evaluated during
those simulations is reported in the fifth column.

Fig. 4. Simulation times for various amounts of processed images
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Figure 4 shows that the percentage of CPU time overhead remains the same
whatever the amount of images processed by the platform. The first chart com-
pares CPU times for simulations without any monitoring and with the monitor-
ing of properties 1 and 2, for 50000 to 300000 images. The second chart compares
CPU times for simulations without any monitoring and with the monitoring of
the two versions of property 3, for 15000 to 100000 images.

5 Conclusion

After these experiments, Astrium issued a first noticeable return of experience,
summarized as follows:
– the expressivity of PSL is fine, and the benefits provided by the Modeling

layer are undoubtable,
– the moderate overhead induced by the ISIS monitors is attractive,
– these monitors will enable non-regression testing when introducing new ver-

sions of the platform components, such as the Leon instruction set simulator,
– there is a need to define strict rules for the textual (natural language) de-

scription of the properties. As a preliminary proposal:
• to respect the TLM “philosophy”, specify at TLM interfaces only (mod-

ule boundaries only),
• to enable the formalization of the properties, the model developer must

explictly specify the observation/connection points and disambiguate the
meaning of transactions in terms of function calls and parameters in-
volved (e.g., in property 1, starting a processing is identified by writing
in the read address register of the convolution IP).

Our future works include the refinement of these property definition rules. We
will also focus on the relation between such PSL properties at the TLM level and
their counterparts at the RT level, as well as on prototyping the embedding of
the automatically generated monitors into the final design in order to mitigate
the space radiation environment effects at the architecture level (today, most
of the mitigation is performed at the silicon technology level).

Acknowledgments. The authors are grateful to A.Berjaoui for his help with
the SystemC encoding.
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Abstract. This paper presents a method for runtime verification of
microcontroller binary code based on past time linear temporal logic
(ptLTL). We show how to implement a framework that, owing to a dedi-
cated hardware unit, does not require code instrumentation, thus, allow-
ing the program under scrutiny to remain unchanged. Furthermore, we
demonstrate techniques for synthesizing the hardware and software units
required to monitor the validity of ptLTL specifications.

1 Introduction

Program verification deals with the problem of proving that all possible execu-
tions of a program adhere to its specification. Considering the complexity of
contemporary embedded software, this is a particularly challenging task. Con-
ventional ad-hoc testing is significantly less ambitious; it is thus the predominant
method in the (embedded) software industry. Typically, a set of test-cases is de-
rived manually or automatically in a best effort fashion. Then, the arduous task
of judging the results of a test-case run often remains with the test engineer.

1.1 Runtime Verification by Code Instrumentation

The field of runtime verification [7] has gained momentum as it links traditional
formal verification and monitoring the execution of test cases. The aim is to
increase confidence in correctness of the system, without claiming freedom from
defects. In runtime verification, test oracles, which reflect the specification, are
either automatically derived (e.g., from a given temporal logic formula that spec-
ifies a requirement) or formulated manually in some form of executable code.
Correctness of an execution is then judged by means of evaluating sequences of
events observed in an instrumented version of the program under scrutiny. Instru-
mentation can either be done manually, or automatically by scanning available
program nodes (e.g., assignments, function calls, . . . ) at the level of the imple-
mentation language. Function calls are then inserted to emit relevant events to
an observer, i.e., the test oracle. The latter approach has proven feasible for
high-level implementation languages such as C, C++, and Java, as well as for
hardware description languages such as VHDL and Verilog. Various runtime
verification frameworks have thus emerged [8, 6, 13, 20, 14].

G. Salaün and B. Schätz (Eds.): FMICS 2011, LNCS 6959, pp. 37–51, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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1.2 Pitfalls of Code Instrumentation

Despite considerable technical progress, existing approaches to runtime verifica-
tion are not directly transferable to the domain of embedded systems software,
mainly due to the following reasons:

1. Embedded code often adopts target-specific language extensions, direct hard-
ware register and peripheral access, and embedded assembly code. When in-
strumenting such a code basis, one has to take all the particularities of the
target system into account, depleting the prospect of a universal approach.

2. In its present shape runtime verification proves the correctness of high-level
code. However, to show that a high-level specification is correctly reproduced
by the executable program, it is necessary to verify the translation applied
to the high-level code as it is not unknown for compilation to introduce
errors [9, 2, 24]. One thus needs to prove that for a given source code P , if
the compiler generates a binary code B without compilation errors, then B
behaves like P [29]. Proving correctness of the compiler itself is typically not
feasible due its complexity and its sheer size [21, 22]. Flaws introduced by
the compiler may thus remain unrevealed by existing approaches.

3. Instrumentation at binary code level is never complete as long as the full
control flow graph (CFG) is not reconstructed from the binary program.
Although CFG reconstruction of machine code is an active research area [3,
12, 17], generating sound yet precise results remains a challenge.

4. Instrumentation increases memory consumption, which may be of economi-
cal relevance for small-sized embedded targets.

We conclude that a non-instrumenting approach for microcontroller binary code
may be a notable contribution to further establish the use of lightweight formal
techniques, such as runtime verification, in the embedded software industry.

1.3 Requirements to Runtime Verification of Microcontroller Code

To overcome the pitfalls discussed so far, which prohibit the application of ex-
isting frameworks to the embedded systems domain, it is necessary to provide a
framework that works on the level of binary code and additionally satisfies the
following requirements:

Req1: Generality. For a verification on the binary code level the target mi-
crocontroller must be fixed. However, the approach shall not be bound to a
certain compiler (version) or high-level programming language.

Req2: No Code Instrumentation. Typically, software event triggers are in-
strumented to report execution traces as sequences of observations. For small-
scale embedded platforms, it is necessary to extract event sequences without
code instrumentation.

Req3: Provide Mechanics to Evaluate Atomic Propositions. The atomic
propositions (AP ) of the specification need to be evaluated on microcon-
troller states of the running system. We need to find a reasonable trade-off
between expressiveness of the AP and the complexity of their evaluation.
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Furthermore, to be useful in an industrial environment, some practical require-
ments need to be considered:

Req4: Automated Observer Synthesis. From a user point of view, it is
desirable to input a specification in some (temporal) logic, which is auto-
matically synthesized into an observer that represents the semantics of the
temporal property.

Req5: Usability. We aim at a framework which is applicable in industrial soft-
ware development processes; at best, this is a push-button solution. It shall
be possible to include implementation-level variables in the specification,
which are automatically mapped to the memory state on the target hard-
ware.

1.4 Contributions to Runtime Verification

The contribution of this paper is a framework for supervising past time linear
temporal logic (ptLTL) properties [15] in embedded binary code. ptLTL allows to
specify typical requirements to embedded software in a straightforward fashion,
which contrasts with our experiences using Computation Tree Logic (CTL) [31].
Further, we present a host application that interacts with a customized hardware
monitoring unit and a microcontroller IP-core (executing the software under
scrutiny), both of which are instantiated within an FPGA. In our approach,
supervision of ptLTL specifications can take place either offline (using the host
application) or online in parallel to program execution. Both options come along
without any kind of code instrumentation or user-interaction. We implemented
the presented approach into our testing framework called CevTes [30].

1.5 Structure of the Paper

The presentation of our contributions is structured as follows. In Sect. 2, we
present preliminaries used throughout the paper. Sect. 3 introduces our frame-
work for runtime verification of binary code. We apply our approach to a real-life
example in Sect. 4. We put our work in context with related work in Sect. 5 and
conclude with a discussion of achievements in Sect. 6.

2 Preliminaries

This section introduces notations used in the remainder of the paper, including
a formal microcontroller model and the finite-trace temporal logic ptLTL.

2.1 Formal Microcontroller Model

Addressing Memory Locations. Let Addr = {0 ≤ x < |Mem| : x ∈ N∪{0}}
denote the set of memory locations of the microcontroller, where Mem represents
the (linear) address space of the microcontroller memory. We write rx to address
a specific memory location, e.g. , r20 denotes the memory location with address
20. We assume a memory mapped I/O architecture (e.g. Intel MCS-51), thus,
I/O registers reside within Mem.
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State of the Microcontroller Program. In the following, let Nk = {0, . . . , k−
1}. A state S of the microcontroller is a tuple 〈pc,m〉 ∈ Locs × (Addr → N2w),
where Locs is a finite set of program counter values, and m : Addr → N2w is
a map from memory locations (with bit-width w) to memory configurations.
The state space of the program is thus a subset of Locs × (Addr → N2w). We
denote the initial microcontroller state S0 by 〈0x00,m0〉 wherem0 represents the
configuration of all memory locations after power-up and 0x00 is the assumed
reset vector.

State Updates. State updates trigger a state transition, thereby, transforming
a predecessor state S−1 into the current state S. A state update is a triple δ =
〈ζδ,@δ, pcδ〉, where ζδ is the new configuration of the altered memory location,
@δ is its address, and pcδ is the new program counter value. Given a strict
sequential execution of the program, state updates are in temporal order. A
state update S−1 δ−→ S transforms S−1 = 〈pc−1,m−1〉 into S = 〈pcδ,m〉 where:

m(i) =

{
ζδ if i = @δ

m−1(i) otherwise

A sequence of events, denoted π, is a trace of state updates δ, e.g. , π = 〈δ0 . . . δn〉.

2.2 Past Time LTL

While past time operators do no yield extended expressive power of future time
LTL [10, Sect. 2.6], a specification including past time operators may sometimes
be more natural to a test engineer [23, 19]. A ptLTL formula ψ is defined as

ψ ::= true | false | AP | ¬ψ | ψ • ψ
�ψ | 	 ψ | � ψ | ψ Ss ψ | ψ Sw ψ

where • ∈ {∧,∨,→}. �ψ means previously ψ, i.e., it is the past-time analogue
of next. Likewise, the other temporal operators are defined as: 	ψ expresses
eventually in the past ψ and �ψ is referred to as always in the past. The duals of
the until operator are Ss and Sw, i.e. , strong since and weak since, respectively.

Monitoring Operators. These basic operators can be augmented by a set
of monitoring operators [15, 20]. The semantics of the monitoring operators is
derived from the set of basic operators in ptLTL, thus, do not add any expressive
power. However, they provide the test engineer a succinct representation of the
most common properties emerging in practical approaches:

ψ ::= ↑ ψ | ↓ ψ | [ψ, ψ)s | [ψ, ψ)w

↑ ψ stands for start ψ (i.e., ψ was false in the previous state and is true in
the current state, equivalent to ψ ∧ ¬ � ψ), ↓ ψ for end ψ (ψ was true in the
previous state and is false in the current state, equivalent to ¬ψ ∧ �ψ), and
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[ψ1, ψ2) for interval ψ1 ψ2 (ψ2 was never true since the last time ψ1 was true,
including the state when ψ1 was true, equivalent to ¬ψ2 ∧ ((�¬ψ2) S ψ1)). The
set of atomic propositions AP contains statements over memory locations in
Locs. Space constraints force us to refer the reader to [15, 20, 10] for a formal
semantics.

Determining Satisfaction. It is important to appreciate that satisfaction of
a ptLTL formula can be determined along the execution trace by evaluating only
the current state S and the results from the predecessor state S−1 [15].

3 System Overview

The following section details our runtime verification framework, as depicted
in Fig. 1, which works on microcontroller binary code rather than a high-level
representation of the program, thus meeting Req1.

We address Req2 by a hardware monitor unit, which is transparently attached
to an industrial microcontroller IP-core running on an FPGA. The monitor al-
lows to extract execution traces without code instrumentation. We tackle Req3
by a twofold approach: (i) Offline mode: We permanently send state updates
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δ from an hardware implemented event logger to a host application which ap-
plies δ to the current state S−1 to obtain the successor state S. The AP of the
ptLTL formula ψ are evaluated on S and the validity of ψ is decided by a synthe-
sized SW ptLTL observer. (ii) Online mode: As a self-contained alternative, we
check the AP of the ptLTL formula on-the-fly and decide the validity of ψ by a
synthesized HW ptLTL observer directly on the FPGA.

We meet Req4 by instantiating an algorithm described by Havelund and
Roşu [15], i.e., we generate observer for ptLTL as executable Java or VHDL
code. Finally, we comply with Req5 by providing a graphical interface to the
system and an optional debug file parser allowing to state formulas over high
level symbols.

3.1 ptLTL Observer Synthesis

Runtime verification requires an observer to be attached to the system under
test. Our approach supports a full FPGA based solution as well as a combined
one where a hardware event logger stimulates a Java class on the host computer.
Technically speaking, we derive (a) Java classes and (b) VHDL entities, both
representing an observer for the specification ψ. In a subsequent step, (a) is
compiled into executable Java code and (b) is synthesized into a netlist. Both
observers rely on the hardware monitor unit to evaluate the AP of ψ. Whereas
(a) utilizes event updates about the state of the microcontroller, (b) makes use
of a dedicated atomics checker hardware unit.

Observer synthesis thus consists of the following stages: (i) We use the ANTLR
parser generator [26] to parse a ptLTL formula ψ, which yields an abstract syntax
tree (AST) representing the specification. (ii) After some preprocessing of the
AST, we determine the n subformulas ψ0 . . . ψn of ψ using a post-order traversal
of the AST. (iii) We generate observers as executable Java or synthesizable
VHDL code [15].

3.2 Hardware Monitor Unit

The hardware monitor unit (cf. Fig. 1) is attached to the system under test,
an (unmodified) off-the-shelf microcontroller IP-core1, which is embedded into
its application environment. The observer consists of three main components,
namely an event logger, an atomics checker unit, and a synthesized ptLTL ob-
server. The remainder of this section discusses the details of these components.

Event Logger. The event logger wiretaps the data and the program interface
of the microcontroller and collects memory updates δ non-intrusively. For exam-
ple, if the currently fetched instruction is MOV [*20, 0x44], which moves the
constant value 0x44 into r20, and the current program counter pc equals 0xC1C1,
then the event logger assembles a new state update δ = 〈0x44, 20, 0xC1C1〉.
1 For our actual implementation we employ an Intel MCS-51 IP-core from Oregano

Systems (http://www.oregano.at).
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Atomics Checkers. The purpose of these units is to check the atomic propo-
sitions of ψ, one per unit. Ideally, we would favor a full-fledged hardware-only
solution allowing for arbitrary atomic propositions to be checked on-the-fly. How-
ever, as we aim at a lightweight monitor with small area overhead, we opted
for offering two implementation variants: a software-implemented offline checker
supports arbitrary expressions for atomics, and we use constraints similar to Lo-
gahedra [16] for the hardware-based online approach, thus allowing to establish a
balance between hardware complexity and expressiveness. More specifically, the
hardware-based atomics checker supports conjunction of restricted two-variable-
per-inequality constraints of the form

(±2n · ri ± 2m · rj) �� C
where ri, rj ∈ Mem, C ∈ Z, n,m ∈ Z, and �� ∈ {=,�=,≤,≥, <,>}. The second
operand is optional, thus allowing range constraints of the form ±(2n) · ri �� C.

Fig. 2 shows the generic hardware design to evaluate a single atomic proposi-
tion. The unit is connected to the data interface. We instantiate one such unit
for each ap ∈ AP ; the derived verdicts atomic(0 . . . |AP |) serve as input for the
ptLTL observer. The constant C is loaded into the compare unit; mode consti-
tutes control signals to determine the operation to be performed on the operands.
The write-enable signal issued by the CPU triggers the atomics checker unit
which stores the value on the data bus in a register iff the destination address
equals i or j, respectively. The shifter unit supports multiplication and division
by 2n. The arithmetic unit is a full-adder, serving both as adder and subtracter.
Observe that, when Add(〈a〉, 〈b〉, c) is a ripple carry adder for arbitrary length
unsigned vectors 〈a〉 and 〈b〉 and c the carry in, then a subtraction of 〈a〉 − 〈b〉
is equivalent to Add(〈a〉, 〈b〉, 1). Relational operators can be built around adders
in a similar way [18, Chap. 6].

Synthesized HW ptLTL Observer. The synthesized ptLTL observer unit sub-
sumes the verdicts of the diverse atomic checker units over the respective AP of ψ
into a final decision π |= ψ. While in the offline mode this function is performed
in software, a dedicated hardware block is needed for the online mode.

Housekeeping. The hardware monitor unit supports writing the *.hex file
under scrutiny into the target system’s PROM and handles communication tasks
between FPGA and host application using a high-speed USB 2.0 controller.
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Fig. 2. The atomics checker unit
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3.3 Host Application

The host application is responsible for offline runtime verification. It reads a
*.hex binary file and a ptLTL formula ψ. Optionally, compiler-generated debug
information is parsed and symbols in the high-level implementation language are
related to memory addresses in microcontroller memory. Rather than expressing
properties over memory locations within the RAM of the microcontroller, this
approach allows high-level implementation symbols to be included in the formula.
For example, the formula ↑ foo = 20 is satisfied iff the memory location that
corresponds to the variable foo, say, r42, does not equal 20 in the predecessor
state S−1 and equals 20 in the current state S. Therefore, even though the
analysis is based on binary code, it is possible to state propositions over high-
level symbols, which eases the process of specifying desired properties.

State Updates. State transitions S−1 δ−→ S are performed on each state update
δ, received from the event logger. Incoming events are categorized as follows:
(i) events that perform plain state updates and (ii) events that alter memory
locations used in atomic propositions of the formula. Events in (i) are used
to keep a consistent representation of the current microcontroller state, whereas
events in (ii) additionally trigger the SW ptLTL observer to derive a new verdict.

Event Evaluation. Atomic propositions are directly evaluated on the current
state S, and the resulting verdicts are then forwarded to the observer that decides
the validity of formula ψ.

Synthesized SW ptLTL Observer. Whenever the destination address @ of
a state update δ matches any memory location in the atomic propositions AP
of ψ, the generated software ptLTL observer code is executed and a new verdict
is derived. If the property is violated, the unit reports “×” to the user. State
updates are in temporal order, thus, it would be possible to store a sequence
〈δ1, . . . , δn〉 of state updates and apply the observer afterwards, decoupled from
program execution. However, in our experiments, it was always possible to eval-
uate the events without time-penalty, i.e., as they occur while the program is
running. The stored state space consists only of the current state S.

4 Worked Example

In the remainder of this section, we report on applying our toolset to embedded
C code. As an example, we consider a function block specified by the PLCopen
consortium, which has defined safety-related aspects within the IEC 61131-3 de-
velopment environment to support developers and suppliers of Programmable
Logic Controllers (PLC) to integrate safety-related functionality into their sys-
tems. In the technical specification TC5 [28], safety-related function blocks are
specified at a high level while the actual implementation is left to the application
developer. The emergency stop function block [28, pp. 40 – 45], which we con-
sider in the following, is a function block intended for monitoring an emergency
stop button.
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S EStopOut = 1S EStopOut = 0

1start

2 3 4

6

5

7 8

9

Fig. 3. The emergency stop function block as nondeterministic finite state machine

Interfaces. The function block senses five Boolean inputs, namely Activate,
S EStopIn, S StartReset, S AutoReset, Reset and drives three boolean out-
puts Ready, S EStopOut,Error and one 16-bit wide diagnosis outputDiagCode.
S EStopOut is the output for the safety-related response.

Requirements. The functional description of the block is given by PLCopen
as a state diagram [28, p. 42]; Figure 3 shows a simplified version of the state
machine (transition conditions and transitions from any state to the idle state
(S1) have been omitted to make the presentation accessible). Overall, the block
comprises nine states, i.e., Idle (S1), Init (S2), Wait for S EStopIn1 (S3), Wait
for Reset 1 (S4), Reset Error 1 (S5), Safety Output Enabled (S6), Wait for
S EStopIn2 (S7), Wait for Reset 2 (S8), and Reset Error 2 (S9).

Implementation. The implementation consists of approximately 150 lines of
low level C code targeting the Intel MCS-51 microcontroller. For our experiments,
we used the Keil μVision3 compiler. The compiled and linked *.hex file is written
into the Intel MCS-51’s PROM, serving as the system under test.

4.1 ptLTL Specification

In the implementation, the 8-bit unsigned variable currState represents the
current state, of the function block. An enumeration maps the state numbers
{S1, . . . , S9} to identifiers. To simplify presentation, we write ΘSx as abbre-
viation for the event currState = Sx. We proceed by describing two desired
properties of the system.

Property 1. Predecessors of state SafetyOutput Enabled (S6) are {S2, S4, S7, S8},
thus, S6 shall not be reached from any other state, which is formalized as:

ψ1 := ↑ (ΘS6) → [ ↑ (ΘS2 ∨ΘS4 ∨ΘS7 ∨ΘS8), ↑ (ΘS1 ∨ΘS3 ∨ΘS5 ∨ΘS9))S



46 T. Reinbacher et al.

The start of event ΘS6 implies that the start of {ΘS2, ΘS4, ΘS7, ΘS8} was ob-
served in the past; since then, the start of {ΘS1, ΘS3, ΘS5, ΘS9} was never ob-
served.

Property 2. Transitions to the reset states Reset Error 1 (S5) and Reset Error
2 (S9) shall only originate from Wait for Reset 1 (S4) and Wait for Reset 2
(S8), thus, have only a single predecessor state.

ψ2 := ↑ (ΘS5) →↓ (ΘS4)
ψ3 := ↑ (ΘS9) →↓ (ΘS8)

The start of event ΘS5 causes the end of event ΘS4; the start of ΘS9 causes the
end of ΘS8.

4.2 Online Runtime Verification

We synthesized observers for properties ψ1, ψ2, and ψ3 (cf. Fig. 5), both as VHDL
hardware description and Java code. We sampled the emergency stop module
with different, randomly-generated input patterns and could not find a property
violation. To prove our approach feasible, we intentionally altered the next-state
code of the state-machine implementation in a way that the transition from S7

to S8 is replaced by a transition from S7 to S9, thus conflicting with ψ3.

Error Scenario. The relevant C code of the implementation is listed in Fig. 4.
Whereas the code on the left shows the correct implementation of state Wait
for S EStopIn1 (S3), the code on the right erroneously introduces a transition
to the state Reset Error 2 (S9). We first synthesize hardware observers for ψ1,
ψ2, and ψ3. Next, the host application configures the atomic checker unit with
the atomic propositions that need to be evaluated, that is:

ap1 : ΘS8 � (currState = ST WAIT FOR RST2)
ap2 : ΘS9 � (currState = ST RST ERR2)

The (Boolean) verdicts over the atomics are the inputs to the synthesized ptLTL
observer, i.e., the vector atomics of the VHDL entity shown in Fig. 5. The
Boolean output err is raised to true whenever the specification is falsified by
the monitor. The sequential process p reset takes care of initialization of the
involved registers and the combinatorial process p observer logic implements
the actual observer for ψ3. We again applied a random input pattern and revealed
the erroneous state transition. For example, the sequence S1 � S2 � S6 � S7 �
S9 � S6 was shown (by the observer) to be conflicting with specification ψ3.

4.3 Offline Runtime Verification

To conclude the example, we also applied our offline approach to the emergency
stop example. We thus synthesized a Java class serving as monitor and used
the event logger of the hardware monitor unit to offer state updates δ to the
host. Likewise, the host application was also able to reveal the erroneous state
transition. However, offline runtime verification requires a host computer to be
present, whereas our online approach is a self-contained hardware approach.
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1 case ST WAIT FOR ESTOPIn2:
2 Ready = true;
3 S EStopOut = false;
4 Error = false;
5 DiagCode = 0x8004;
6 if (!Activate)
7 currState = ST IDLE;
8 if (S EStopIn && !S AutoReset)
9 currState = ST WAIT FOR RST2;
10 if (S EStopIn && S AutoReset)
11 currState = ST SAFETY OUTP EN;
12 break;

1 case ST WAIT FOR ESTOPIn2:
2 Ready = true;
3 S EStopOut = false;
4 Error = false;
5 DiagCode = 0x8004;
6 if (!Activate)
7 currState = ST IDLE;
8 if (S EStopIn && !S AutoReset)
9 currState = ST WAIT FOR RST2;
10 if (S EStopIn && S AutoReset)
11 currState = ST RST ERR2;
12 break;

Fig. 4. Emergency stop C implementation; correct(left) and erroneous (right)

5 Related Work

As our approach supports software as well as hardware-based monitoring function-
ality, we categorize related work into software- and hardware-based approaches.

Software-Based Monitoring. The commercial tool Temporal Rover [8]
allows to check future and past time temporal formulae using instrumentation
of source code. Basically, the tool is a code generator that supports Java, C, C++,
Verilog or VHDL; properties to be checked are embedded in the comments of
the source code. The respective property checks are then automatically inserted
into the code, compiled, and executed.

Academic tools with automated code instrumentation capabilities are the Java
PathExplorer (JPaX) [13], the Monitoring and Checking (MaC) framework [20],
and the Requirements Monitoring and Recovery (Rmor) [14] tool. JPaX and
MaC facilitate automated instrumentation of Java bytecode; upon execution,
they send a sequence of events to an observer. JPaX additionally supports con-
currency analysis. Rmor provides a natural textual programming notation for
state machines for program monitoring and implements runtime verification for
C code.

Hardware-Based Monitoring. Tsai et al. [33] describe a noninterference hard-
ware module based on the MC68000 processor for program execution monitor-
ing and data collection. Events to be monitored, such as function calls, process
creation, synchronization, etc. , are predetermined. With the support of a
replay controller, test engineers can replay the execution history of the erro-
neous program in order to determine the origin of the defect. The Dynamic
Implementation Verification Architecture (DIVA) exploits runtime verification
at intra-processor level [1]. Whenever a DIVA-based microprocessor executes
an instruction, the operands and the results are sent to a checker which verifies
correctness of the computation; the checker also supports fixing an erroneous
operation. A hardware-related tool called BusMop [27] is based on the Mon-
itor Oriented Programming (MOP) framework [6]. In essence, BusMop is a
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1 library ieee ;
2 use ieee. std logic 1164 .all ;
3

4 entity FORMULA PSI 3 is
5 generic (
6 ATOMICS LEN : positive := 2;
7 SUBFORMULAS LEN : positive := 5);
8 port (
9 clk : in std logic ;
10 reset : in std logic ;
11 atomics : in std logic vector (ATOMICS LEN−1 downto 0);
12 err : out std logic );
13 end FORMULA PSI 3;
14

15 architecture behaviour of FORMULA PSI 3 is
16 signal pre reg, pre reg next : std logic vector (SUBFORMULAS LEN−1 downto 0);
17 signal now reg, now reg next : std logic vector (SUBFORMULAS LEN−1 downto 0);
18 signal atomics reg : std logic vector (ATOMICS LEN−1 downto 0);
19

20 begin
21

22 p observer logic : process(pre reg, now reg, atomics reg)
23 variable pre reg next v : std logic vector (SUBFORMULAS LEN−1 downto 0);
24 variable now reg next v : std logic vector (SUBFORMULAS LEN−1 downto 0);
25 begin
26 pre reg next v := pre reg;
27 now reg next v := now reg;
28

29 now reg next v(4) := atomics reg(0);
30 now reg next v(3) := not now reg next v(4) and pre reg next v(4);
31 now reg next v(2) := atomics reg(1);
32 now reg next v(1) := now reg next v(2) and not pre reg next v(2);
33 now reg next v(0) := not now reg next v(1) or now reg next v(3);
34 pre reg next v := now reg next v;
35

36 pre reg next <= pre reg next v;
37 now reg next <= now reg next v;
38 end process;
39

40 p reset : process (clk, reset)
41 variable pre reg v : std logic vector (SUBFORMULAS LEN−1 downto 0);
42 begin
43 if reset = ’1’ then
44 pre reg v(4) := atomics(0);
45 pre reg v(3) := ’0’;
46 pre reg v(2) := atomics(1);
47 pre reg v(1) := ’0’;
48 pre reg v(0) := not pre reg v(1) or pre reg v (3);
49 pre reg <= pre reg v;
50 now reg <= (others => ’0’);
51 atomics reg <= (others => ’0’);
52 elsif rising edge(clk) then
53 pre reg <= pre reg next;
54 now reg <= now reg next;
55 atomics reg <= atomics;
56 end if;
57 end process;
58

59 err <= not now reg(0);
60

61 end behaviour;

Fig. 5. The auto-generated observer VHDL code for ψ3
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hardware-monitoring device which sniffs traffic transmitted between COTS em-
bedded components attached to a PCI/PCI-X bus, thereby acting as advanced
bus guardian. Similar to our approach, the monitor and the system under verifi-
cation are executed within an FPGA. The specification is translated by the MOP
framework into a hardware description, which is then synthesized into a netlist
and loaded into dynamically reconfigurable blocks of the FPGA. Whereas Bus-
Mop is designed to monitor data transmissions through a PCI interconnection
for large-scale embedded systems, our framework monitors embedded software
at a fine level of granularity.

The work of Brörkens and Möller [5] is akin to ours in the sense that they
also do not rely on code instrumentation to generate event sequences. Their
framework, however, targets Java and connects to the bytecode using the Java
Debug Interface (JDI) so as to generate sequences of events.

Lu and Forin [25] present a compiler from Property Specification Language
(PSL) to Verilog, which translates a subset of PSL assertions about a software
program (C in their approach) into hardware execution blocks for an extensible
MIPS processor, thus being the first method that allows transparent runtime
verification without altering the program under investigation. The synthesized
verification unit is generated by a property rewriting algorithm proposed in [32].
Atomic propositions are restricted to allow only a single comparison operator,
whereas our approach supports more complex relations among memory values
within our hardware unit, thus yielding greater flexibility in the specification.

Observer Synthesis. The idea of generating Java code as observers for ptLTL
is due to Havelund and Roşu [15]. A comparable approach based on alternating
automata for future time LTL was described by Finkbeiner and Sipma [11].

6 Conclusion and Future Challenges

This paper advocates runtime verification of microcontroller code without code
instrumentation. Our method supports runtime checks for ptLTL during execu-
tion of the code, thereby evading the problem of errors introduced by translation
from a high-level language into binary code. Such errors are likely to go unno-
ticed by conventional approaches for high-level representations. The framework
itself relies on a hardware monitor unit and synthesized observers, thereby mak-
ing code instrumentation dispensable. The example discussed in this paper is
based on randomly generated inputs, which is insufficient in practical applica-
tions. Test-case generation for binary code, though orthogonal to the techniques
described in this paper, thus remains a topic of interest. For this task, we will
further investigate a combination of SAT solving and backward abstract inter-
pretation [30, 4].
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6. Chen, F., Roşu, G.: MOP: An efficient and generic runtime verification framework.
In: OOPSLA, pp. 569–588. ACM, New York (2007)

7. Colin, S., Mariani, L.: Run-Time Verification. In: Broy, M., Jonsson, B., Katoen,
J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Systems.
LNCS, vol. 3472, pp. 525–555. Springer, Heidelberg (2005)

8. Drusinsky, D.: The temporal rover and the ATG rover. In: Havelund, K., Penix, J.,
Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 323–330. Springer, Heidelberg
(2000)

9. Eide, E., Regehr, J.: Volatiles are miscompiled, and what to do about it. In: EM-
SOFT, pp. 255–264. ACM, New York (2008)

10. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, vol. B, pp. 995–1072. MIT Press, Cambridge (1990)

11. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. Form.
Methods Syst. Des. 24, 101–127 (2004)

12. Flexeder, A., Mihaila, B., Petter, M., Seidl, H.: Interprocedural control flow recon-
struction. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 188–203. Springer,
Heidelberg (2010)
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Abstract. This paper shows how to take advantage of a SAT-solving approach
in the development of safety control software systems for manufacturing plants.
In particular, it demonstrates how to construct reusable components which are as-
sembled after instantiation to derive controllers of modular production systems.
An experiment has been conducted with Alloy not only to verify properties re-
quired by a control theory for complex systems organized hierarchically, but also
to synthesize two major parts of a component: observer and supervisor. The for-
mer defines its interface while guaranteeing nonblocking hierarchical control.
The latter ensures the satisfaction of constraints imposed on its behavior and on
the interactions among its subcomponents during system operation. As long as
the size of component interfaces is small, SAT-solvers appear useful to build cor-
rect reusable components because the formal models that engineers manipulate
and analyze are very close to the abstract models of the mathematical theory.

Keywords: Repository of reusable components, component-based software de-
velopment, hierarchical control, supervisory control theory, verification, synthe-
sis, bounded model checking, SAT-solver, Alloy.

1 Introduction

Control is omnipresent in many industrial critical systems. In order to avoid hazardous
operations, the development of controllers cannot be done without the use of rigorous
methods because they aim at increasing safety in software solutions. Formal verifica-
tion techniques have been recognized as essential ingredients of such methods for a
long time. However, to be able to analyze software solutions, it is important to un-
derstand fundamental rules involved in their construction. This is the reason a control
theory, such as the supervisory control theory (SCT) [15], is so promising to get con-
trol problems solved properly. A systems-theoretic view of component-based software
development (CBSD) that comes with some principles should transcend all technical as-
pects because these principles promote better software engineering practices based on
a sound foundation. Nevertheless, a theory must be accompanied by formal techniques
such that together they constitute a standard way for achieving the aforementioned goal.
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Several attempts have been made in this direction since the beginning of the nineties.
In particular, symbolic representation techniques have been used with success by some
researchers in the framework of SCT for the derivation of optimal supervisors on sys-
tems of realistic size. Custom fixed point procedures implemented with binary decision
diagrams (BDD) have been developed both in the SCT language-based formulation [3]
and SCT state-based formulation [14]. BDD-based symbolic representation techniques
have also been used when control specifications are written in a temporal logic [10]
or systems are decomposed into subsystems [16]. Furthermore, some academic and
commercial tools integrate BDD-based algorithms into their verification and synthe-
sis procedures [20,1]. Now it seems that sizable progress has been achieved through
their use in industrial applications (e.g., [9]). Later, efforts have been made to inves-
tigate bounded model checking with SAT-solvers to verify the controllability property
and deadlock freedom for non-modular and non-hierarchical control [4]. These prop-
erties, which appear in almost all control problems, have been encoded, together with
the transition functions of automata modeling the plant and control specification, as
propositional formulas for checking their satisfiability with respect to the plant and con-
trol specification. Automatic generation of nonblocking supervisors has been, however,
voluntarily omitted because solving this problem is more difficult using a SAT-solving
approach than the verification of the two previous properties. Neither fixed point proce-
dures nor complex encoding schemata are a concern in this paper. The focus is solely
on the satisfaction of properties, specified in a declarative manner, by SAT-solvers.
Compared with the work of Claessen et al. [4], satisfaction of properties is done in a
hierarchical manner (not on a flat structure), which reduces the amount of resources re-
quired by SAT-solvers. This is due to the fact that control requirements are modularized
by subsystems and control problems are solved locally at each level of a hierarchy.

In a previous companion paper [6] it has been demonstrated how a systems-theoretic
view of CBSD could be advantageous to organize the constituent elements of a com-
plex system into a hierarchy of components in the context of the hierarchical control
architecture (HCA) framework of SCT [18]. The emphasis was on formal component
properties that are invariant under horizontal composition and vertical composition as
well as superposition of control. This allows for their combination in an arbitrary way
with an unrestrained number of components and an unrestrained number of abstraction
levels No suggestions were, however, made concerning the verification of HCA prop-
erties on the results of control problems. It was implicitly assumed that standard, non
SAT-based, SCT procedures were used.

In the HCA framework, components are assembled vertically and horizontally, and
control becomes explicit when assembling components, since each level of the hierar-
chy imposes constraints on the level beneath it. With respect to a dynamic closed-loop
model, supervisors of adjacent levels are linked by communication channels: a down-
ward communication channel (the command channel) provides control actions in order
to enforce constraints on the lower level; and an upward communication channel (the
information channel) refines and returns feedback to the upper level. These two chan-
nels must be provided with properties that ensure an effective implementation of the
high-level supervisor in the lower level. This schema must, however, be transposed into
the cyclical scan activity schema usually encountered in programmable logic controllers
(PLC) for practical reasons [5].



54 D. Côté et al.
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Fig. 1. Hierarchical structure of the handling subsystem

This paper focuses on well-defined procedures for subsystem synthesis and abstrac-
tion, starting with elementary components, then composite components. Such compo-
nents are considered as solutions of control problems solved with the aid of
SAT-solvers running relevant models. As long as the procedures for composition, syn-
thesis and abstraction are used, one remains within the HCA framework with all its
benefits. In particular this affords building further components by assembly of already
abstract components from within the same framework [6]. This opens the way to pyra-
midal hierarchies of abstract components, potentially compounding the cost savings
usually associated with reuse. The dominant rationale behind this approach is to cre-
ate repositories of reusable components that could pass through a standard certification
process that assesses their reliability, which is a crucial issue for industrial critical sys-
tems. Overall, the subject is presented as follows. Section 2 makes use of a subsystem
of a modular production system (MPS) from FESTO to introduce the main result of the
HCA framework and basic elements of an Alloy model. Sections 3 and 4 present the
processes and models for the construction of elementary components and composite
components with Alloy. Section 5 concludes with some statistics and critical remarks.

2 Illustration of Basic Concepts with an Example

Figure 1 shows the hierarchical structure of a handling subsystem. It is a part of the
MPS used as a test bench at GRIL1 to evaluate controllers derived from various syn-
thesis procedures. It consists of two physically separated stations: the FESTO sorting
station [8] and an homemade returning station. The sorting station includes a conveyor

1 Groupe de recherche en ingénierie du logiciel de l’Université de Sherbrooke.
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belt equipped with two gates that can be actuated to dispatch workpieces towards one
of three output slides according to some criteria (e.g., color, dimension, material). The
returning station has been added to the original MPS in order to implement a contin-
uous manufacturing process. A crane recovers workpieces one by one from the output
slides and returns them in a feed magazine located in the first station of the MPS, which
makes them available for the next stations. The returning station includes a boom for
the motion of a bridge fixed on a two meters square rail linear guide. The bridge permits
horizontal movements perpendicular to the rail within a range of 50 centimeters. In a
similar way, a winch is attached to the bridge for vertical movements within a range of
40 centimeters. A hook fixed to the winch can pick up and release a workpiece every-
where in this predefined 3D space. The names of these physical modules appear just
above the rounding boxes in Figure 1, which represent reusable software components
or local software components (dashed outline). These names are also used to designate
the corresponding instances of software components. For example, the two gates, the
bridge and the winch are all instances of the same reusable component Jack111.

The state-space size for this subsystem has been estimated to 7, 16 × 108 states.
Even though a nonblocking supervisor could be effectively derived by using some of
the BDD-based synthesis procedures mentioned in the introduction, the approach advo-
cated in this paper suggests to apply HCA within the paradigm of CBSD for the follow-
ing reasons. On the one hand, the notion of interface, which is associated with the upper
level in the HCA framework, is an abstraction of the lower level in which some tran-
sitions are unobservable. In general, the absence of such a mechanism leads to larger
models, particularly in monolithic approaches (e.g., [3,1,10]) or in situations in which
the events and states of a transition structure must be renamed when explicitly modeling
a given behavior repetitively, because events cannot be shared between internal transi-
tion structures (the local coupling property in [14]). In this last case, loss of integrity
can occur with respect to the exact state of the corresponding physical module (violation
of its correct usage). Even if the notion of interface plays a major role in a modeling
method (e.g., [16]), the abstraction mechanism is often limited to a small number of
layers by the underlying theory (e.g., two layers in the hierarchical interfaced-based su-
pervisory control theory [13]). On the other hand, the strategy behind HCA promotes a
bottom-up approach, but it does not preclude engineers following also a top-down ap-
proach. An important point is that engineers can easily trace back control requirements
written in a natural language from their formal specifications, particularly when they are
expressed in some form of predicates. Furthermore, because requirements are modular-
ized by subsystems, local control problems are smaller and easier to understand. To sum
up, applying HCA within the paradigm of CBSD is a less error-prone approach since it
makes complexity more manageable and takes advantage of reusable components.

2.1 Overview of the Main Concepts of HCA

The construction of a software component is based on the theorem that appears in the
following box (theorem 6 in [18]). At first glance, this theorem provides conditions
that must be satisfied at each step of an abstraction process to achieve hierarchical
consistency with preservation of nonblockingness.
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Let Clo be a standard control structure on L and θ : L→ T ∗ be a causal reporter
map. Suppose that

Chi(M) = θ(Clo(L)) (control consistency),
θ−1(Mm) = Lm (consistency of marking),
θ is an observer (observer), and
θ−1

v ◦ κM ≤ κL ◦ θ−1 ◦ κM (partner-freedom).
Then, for all E ⊆ M, κM(E) is nonblocking⇔ κL ◦ θ−1(E) is nonblocking.

Given two finite sets of events Σ and T , the pair 〈L, Lm〉 with L, Lm ⊆ Σ∗ and Lm ⊆ L =
L, where L denotes the prefix closure of L [12], is a language model of the lower level
(the agent in Figure 1) and 〈M,Mm〉 with M,Mm ⊆ T ∗, M = θ(L) and Mm ⊆ M = M
is a language model of the upper level (the interface in Figure 1). The map θ and the
inverse image map θ−1 represent the information channel and command channel be-
tween the lower and upper levels, respectively. The term Clo(L) (resp. Chi(M)) is the
set of controllable sublanguages of L (resp. M) and κL(H) with H ⊆ L (resp. κM(E)
with E ⊆ M) the supremal controllable sublanguage of H (resp. E) w.r.t L (resp. M).
Intuitively, κL ◦ θ−1(E) is the behavior of the low-level synthesis of a high-level con-
trol specification [18]. Within the context of this theorem, a synthesis procedure that
computes κM(E) while satisfying the nonblocking property ensures that the marked
language κL ◦ θ−1(E) ⊆ κL ◦ θ−1(E) is nonblocking.

The actual form of this theorem represents a serious obstacle to the design and ver-
ification of software components. It has been reformulated in a weaker form in [5] for
the specific case where both levels use standard control technologies to induce the cor-
responding standard control structures Clo and Chi. The standard control technology is
a partition of the set of events (e.g., Σ) into controllable and uncontrollable events (e.g.,
Σc and Σu respectively). An uncontrollable event cannot be disabled by a supervisor. Let
Lvoc := {ε} ∪ ω−1(T ), where ω : L → T , called the tail map of θ, is defined as follows
(s ∈ Σ∗, σ ∈ Σ and τ ∈ T ):

ω(sσ) :=

{
τ, if θ(sσ) = θ(s)τ;
undefined otherwise.

The set Lvoc is the set of vocal strings, which are the strings of L that cause the genera-
tion of an event through θ [18]. The map θ can then be expressed as follows:

θ(ε) = ε

θ(sσ) =

{
θ(s)ω(sσ), if ω(sσ) is defined;
θ(s) otherwise.

Let Xτ := {sσ ∈ Lvoc | ω(sσ) = τ} and Tθ := {τ ∈ T | Xτ � ∅}. With respect to
the general theorem, the control consistency and partner-freedom properties have been
eliminated as described in the following box.

Let Σ = Σc
.∪Σu be the standard control technology for the agent, T = Tc

.∪Tu

with Tc = {τ ∈ Tθ | Xτ ⊆ Σ∗Σc} and Tu = Tθ − Tc be the standard control
technology for the interface, and θ : L→ T ∗ be a causal reporter map. Suppose
that

θ−1(Mm) = Lm (consistency of marking) and
θ is an observer (observer).

Then, for all E ⊆ M, κM(E) is nonblocking⇔ θ−1(κM(E)) is nonblocking.
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This result is due to the standard control technology peculiar to the upper level (the
choice of Tc). Indeed, it implies control coincidence (θ−1(Chi(M)) ⊆ Clo(L)), which
in turn implies a weak form of control consistency (Chi(M) ⊆ θ(Clo(L))) and partner
freedom [5]. It should be noted that κM(E) is used instead of E (this corresponds to an
appropriate choice of E with respect to the original theorem) and κM is idempotent. If
κM(E) is nonblocking, then the corresponding behavior in the lower level is nonblocking
which means that deadlock and livelock cannot happen.

Compared with strict control consistency, this result gives access to fewer control
options in Clo by the upper level. Thus, control becomes coarser as the hierarchy of
abstraction builds up. Nevertheless, it often reveals adequate for practical use as it em-
bodies the usual trade-off made to obtain coarser-grained interfaces (i.e., simpler ab-
stractions) in order to encapsulate complexity.

2.2 Overview of Alloy and Its Use in the Design of Components

Alloy is a symbolic model checker [11]. Its modeling language is first-order logic with
relations as the only type of terms. Basic sets and relations are defined using signatures,
a construct similar to classes in object-oriented programming languages, which supports
inheritance. Alloy uses SAT-solvers to verify the satisfiability of axioms defined in a
model and find counterexamples for properties (theorems) that should be deduced from
these axioms. An Alloy specification consists of signatures, noted sig, which basically
define sets and relations. Constraints, noted fact or attached to a signature as appended
facts (lines 9–14 in the following specification), are formulas that condition the values
of sets and relations. The declaration sig X {r : Y -> Z} declares a set X and a
ternary relation r which is a subset of the Cartesian product X × Y × Z.

In the sequel Alloy is used to derive supervisors and verify consistency of marking
and the observer property. Since the choice of Tc by engineers must conform to the
definition of the standard control technology of an interface, it must be checked by
Alloy. These operations are performed on automata specified as follows in the Alloy
modeling language.

1 abstract sig State {}
2 abstract sig Event {}
3 abstract sig Automaton
4 { states: set State,
5 events: set Event,
6 initialState: lone State,
7 finalStates: set State,
8 transition: set State -> Event -> State
9 }{

10 transition.dom + transition.ran in states
11 transition.mid in events
12 initialState in states
13 finalStates in states
14 }
15

16 fun getReachableStates[a: Automaton, s: set State] :
17 set State
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18 { s.*(a.transitionsOn[a.events]) }
19

20 fun getCoreachableStates[a: Automaton, s: set State] :
21 set State
22 { s.*(˜(a.transitionsOn[a.events])) }
23

24 pred isTrim[a: Automaton]
25 {
26 let S = getReachableStates[a, a.initialState] &
27 getCoreachableStates[a, a.finalStates]
28 | a.transition = a.transition & (S -> Event -> S)
29 and a.finalStates = a.finalStates & S
30 }

In this model the function transitionsOn returns the pairs of states of transitions
because the events are irrelevant for determining reachable and coreachable states. Op-
erator “*” is the reflexive transitive closure, “˜” is the inverse operator and “&” is the
intersection. The first two apply on a relation. The predicate isTrim is satisfied when
the automaton a has only reachable and coreachable states, in particular the system
behavior represented by the automaton is nonblocking.

3 Construction of Elementary Components with Alloy

An elementary component is generally associated with a hardware device. It is created
in an ad hoc manner from a raw model that represents the device in terms of a state
space defined from the value domains of sensors and actuators, and all the events gen-
erated by the device. The events and states are observable by a control device such as a
PLC. Several assumptions must be made on the raw model in order to obtain a suitable
model that depicts the real behavior of the device. This step allows for elimination of
instability problems such as inertial effects due to a chaotic usage of a command. These
assumptions are proven to be acceptable with respect to statistical tests about meticu-
lous experiments on the device. The suitable model is then refined into more expressive
models by relabeling events and states. These expressive models aim to provide inter-
faces with the component.

Figure 2 shows the raw model of a typical pneumatic jack (or cylinder) with five
self-locking valves. Pneumatic jacks come in various forms. Their main features are the
number of valves to regulate the exhaust air flow (e.g., three valves for one stable posi-
tion or five valves for two stable positions), the type of valves (e.g., self-locking valve)
and the presence of sensors to detect the end of travel positions. The lack of sensors
at either end of travel positions requires a timer to assess complete extension or com-
plete retraction. In this model, Xi and Yi denote sensor inputs and actuator commands,2

respectively, and it is assumed that the end of travel positions are both detected by sen-
sors. The transitions represented by dashed edges have been identified as nonessential
following experiments on its working. Eliminating these transitions yields a state tran-
sition system, which models the device behavior in a normal mode of operation (the

2 More precisely, Xi and Xi denote the values of a binary sensor while ↑Xi and ↓Xi denote a
signal rising edge and a signal falling edge, respectively.
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Fig. 2. Raw model of Jack211::r

automaton at the left of Figure 3), and control actions, which disable the superfluous
controllable transitions (omitted due to space limitation). It takes 589 ms to check the
predicate isTrim for this automaton with Alloy (and MiniSat) running on a 2,5 GHz
Intel dual-core with 4 Gb of memory. As a matter of fact, the automaton at the left of
Figure 3 is a Mealy machine that also defines the causal reporter map θ. Applying this
map gives the interface at the right of Figure 3. Essentially, it permits to extend and then
retract the cylinder repetitively. Indeed, several interfaces are possible. They may differ
in the number of commands they provide and their initial state. Such an abstraction
reduces the number of states to consider at the next layer. Even if the reduction ratio is
small, the combined effect on several layers may be considerable.

The following part of an Alloy model contains a representation of the map θ in a
relational fashion. It has one argument, an input/output string in the sense of a Mealy
machine with the input string over the input alphabet Σ (e.g., {↑X0, ↓X0, ↑X1, ↓X1,
↑Y0, ↓Y0, ↑Y1, ↓Y1}) and the output string over the output alphabet T (e.g., {extend,
eoe, retract, eor}). It returns the corresponding output string over T , which is defined as
an Alloy sequence (seq) of symbols (i.e., a relation of Z × T ). The local variable sq
defines the set of pairs (i, o) of a sequence that corresponds to the output string of the
input/output string. The function inds returns the indexes associated with a sequence.
The fact at line 7 forces θ to be total.

1 fun theta[s: IO/String] : O/String
2 { let sq = { i: Int, o: T | i in inds[s.sequence] and
3 o = (s.sequence)[i].oLabel }
4 | { t: O/String | t.sequence = sq }
5 }
6 fact
7 { all s: IO/String | some t: O/String | theta[s] = t }
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Fig. 3. Agent and an interface of Jack211::r

3.1 Checking the Condition for Tc

The choice of the controllable events Tc by engineers must fulfill the condition pre-
scribed by the weak form of the theorem introduced in Section 2.1 (i.e., Tc = {τ ∈ Tθ |
Xτ ⊆ Σ∗Σc}). This condition is expressed as follows in Alloy.

1 pred ISCT
2 { all t : O/String | not t.lastEvent.isSilent and t.isPrefix
3 implies all s : IO/String | theta[s] = t implies
4 t.lastEventCntl implies s.lastEventCntl
5 }

Given a string t generated by the interface (t.isPrefix) for which its last event is
non-silent (not t.lastEvent.isSilent), then for all string s such that θ(s) = t
(s ∈ Lvoc necessarily holds), if the last event of t is controllable (t.lastEventCntl)
then the last event of s must be controllable (s.lastEventCntl). It takes 639 ms to
check that the component Jack211::r satisfies this predicate.

3.2 Checking the Consistency of Marking

The consistency of marking property, θ−1(Mm) = Lm, is formulated as follows in Alloy.

1 pred CM
2 { all s : IO/String | s.isPrefix implies
3 let q = lastVisitedState[s] | theta[s].isAccepted
4 iff some IOAutomaton.finalStates & eClosure[q]
5 }
6 pred isAccepted[x: String]
7 { x.isPrefix
8 some (last[x.visitedStates] & x.wrtAutomaton.finalStates)
9 }

10 pred isPrefix[x: String]
11 { #inds[x.visitedStates] = #inds[x.sequence]+1 }

The auxiliary predicates isAccepted and isPrefix are self-understandable. They
hold when the last visited state from the initial state is an accepting state and when
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the number of visited states from the initial state is equal the length of the string
plus one, respectively. The function eClosure (for ε-closure) is defined from the
function GetReachableStates. The predicate CM needs explanation. If s ∈ L
(s.isPrefix) then its image θ(s) ∈ Mm (theta[s].isAccepted) if and only
if there is a final state in the ε-closure(q) with respect to the output alphabet, where q
is the last state visited by s (i.e., (∃u ∈ Σ∗)su ∈ Lm ∧ θ(su) = t). Consistency of mark-
ing can be checked from a given agent and a given interface by using the following
command:

1 check { CM } for 1 but length seq, 1 O/String, 1 IO/String

In this command, the symbol length must be replaced by an integer constant equal
to the maximum length of a sequence of states that corresponds to a string (i.e., s ∈
IO/String) in order to be sure to deny the predicate, if such a string exists. This
bound can be easily determined. It is the number of states of the agent plus one. For the
component Jack211::r, length is set to 7 and Alloy verifies the predicate in 704
ms.

3.3 Checking the Observer Property

A causal reporter map involves information hiding and relabeling. During the construc-
tion of a component, engineers guess θ based on the wanted interface for the component
while trying to satisfy the observer property. This property, which is closely related to
the concept of observational equivalence, can be characterized as follows (application
of lemma 2.1 in [19], see also [18]): θ is an observer iff (∀s ∈ L)(∀τ ∈ T )θ(s)τ ∈ M =⇒
(∃u ∈ Σ+)su ∈ L ∧ θ(su) = θ(s)τ.

1 pred thetaIsAnObserver
2 {
3 all s : IO/String | all t : O/String | all o : T |
4 s.isPrefix and not o.isSilent and t.isSymbol[o] and
5 (theta[s]).followedBy[t].isPrefix implies
6 some q : IOAutomaton.states
7 | let p = lastVisitedState[s]
8 | q in eClosure[p] and o in outputFrom[q]
9 }

The term s.isPrefix at line 4 means that s ∈ L and not o.isSilent at the
same line means that τ ∈ T . The term t.isSymbol[o] is similar to a cast operation
because of the distinction between a symbol of T and a string of length one over T in
the Alloy model. The term (theta[s]).followedBy[t].isPrefix at line 6
is the translation of the condition θ(s)τ ∈ M in Alloy. The formula at lines 7–8 corre-
sponds to conclusion (∃u ∈ Σ+)su ∈ L ∧ θ(su) = θ(s)τ, but in terms of the automaton
representation of u. It takes 1 864 ms to check that θ of the component Jack211::r
satisfies this predicate.

If a given θ does not satisfy the predicate, then a counterexample is generated by
Alloy. It can be used to identify a faulty transition from which a new θ can be pro-
posed. Satisfying consistency of marking and the observer property together represents
an iterative procedure in which human intervention is required in order to obtain a use-
ful interface. Such a procedure can be implemented by using the Kodkod API [17].
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Fig. 4. Assembly diagram of the composite component BRCrane

4 Construction of Composite Components with Alloy

Composite components may also be included in a repository of reusable components.
Usually, such components are common in transportation (e.g., crane, conveyor) and
processing (e.g., drill, measurement instrument) of workpieces. Contrary to elemen-
tary components, they are built by following a systematic design process, in particular
their control part can be automatically derived with respect to a control specification.
The construction of a composite component is illustrated with a typical crane, named
BRCrane, introduced in Section 2. It is created from one composite component (a
boom) and three elementary components (a bridge, a winch and a hook). As shown in
Figure 1, the boom is an instance of Servomotor, the bridge and the winch are in-
stances of Jack111, and the hook is an instance of Jack211::r. Figure 4 gives the
assembly diagram of this component. It includes the interfaces of the basic components
after instantiation.

The control specification associated with this component includes 19 constraints
classified into three groups: strict shuffling of command pair, equipment safety and
functionality. They are expressed in propositional logic formulas which define a set
of forbidden states. For example:

– Boom ∈ {m f ,mb}∧Bridge ∈ {ie, ir} is a strict shuffling of command pair constraint.
When negated this formula means that the boom and the bridge cannot move simul-
taneously.

– Boom = o ∧Winch = d is an equipment safety constraint. When negated, it forbids
the winch to be pulled down when the boom is just above the feed magazine.

– Boom = m f ∧ Hook = nc is a functionality constraint. When negated, it states
that the command to open the hook cannot be launched when the boom is moving
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forward to reach one of the three output slides, because it is assumed that it is
already open and it will be closed.

This description seems to give the impression that this composite component can only
be used in the specific context of the MPS. This is not absolutely true because this crane
can be seen as a transportation device that picks up a workpiece from three possible in-
put positions and move it to a unique output position, vertically higher and horizontally
distant from the input positions, where it is put down. Furthermore, it can be useful
to create other components that model similar cranes, but with different, even more
permissive, behaviors.

The free behavior of the crane is obtained by the shuffle product of the four automata
that appear in Figure 4. This yields to an automaton with 256 states (denoted by aut in
the following Alloy model) in which some events are uncontrollable (uEvents). At
this stage, the maximally permissive and nonblocking supervisor (sup), that forbids the
crane reaching any state that belongs to the set of forbidden (or bad) states (bStates),
must be derived. The predicategoodStates specifies the set of states of an acceptable
solution, that is, a solution in which there is no sequence of uncontrollable transitions
that leads to a bad state (controllability property) and the good states are coreachable to
the set of final states or equivalently any task can be completed (nonblocking property).

1 pred goodStates[a: Automaton,
2 uEvents: set Event,
3 bStates, gStates: set State]
4 {
5 let gT = gStates <: (a.transitionsOn[Event]) :> gStates,
6 uT = (a.transitionsOn[uEvents]) |
7 {
8 gStates in (a.initialState).*gT
9 no (*uT.bStates & gStates)

10 all q : gStates | some (q.*gT & a.finalStates)
11 gStates.uT in gStates
12 }
13 }

The term gT defined at line 5 by using the domain restriction (<:) and range restric-
tion (:>) operators represents the set of transitions between good states (gStates).
The term uT defined at line 6 denotes the set of uncontrollable transitions. The good
states are reachable from the initial state (line 8), coreachable to the set of final states
(line 10) and closed under uncontrollable transitions (line 11). Furthermore, no chain
of uncontrollable transitions leads to a forbidden state from a good state (line 9).

Unfortunately, nothing guarantees that the instance found by Alloy is effectively the
supremal solution. Nevertheless, this has been the case for all the supervisors derived
for the MPS and other systems until now. A safe procedure to synthesize the supremal
solution consists in defining a predicate with the following formula.

1 sup.isSupervisor[aut, uEvents, bStates]
2 all x : Supervisor | x.isSupervisor[aut, uEvents, bStates]
3 => x.states in sup.states
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Fig. 6. BRCrane interface

If x is an acceptable solution of the same control problem, the states of x must be
included in the set of states of a given solution found by Alloy in the previous iteration.
At this point, two cases are possible. First, there is no counterexample, which means
that sup is the supremal solution. Second, there is a counterexample. Adding the states
of x that are not included in sup to the set of states of sup is another acceptable, but
greater solution, which must be used for the next iteration. Such a procedure can be
implemented by using again the Kodkod API.

Deriving the maximally permissive and nonblocking supervisor by using a SAT-
solver is unusual, even though it is equivalent to some fixed-point procedures defined
on languages [12] or synthesis algorithms working on automata [2]. It takes 13 480 ms
to derive a supervisor for the crane and 22 770 ms to check that it is the least restrictive.
It is given in Figure 5. Since the number of atoms is limited to about 256 in Alloywhen
there is a quaternary relation in a model, the set of forbidden states (231 states) has been
replaced by a unique representative state to get round this limitation.

It should be noted that the two properties involved in the weak form of the theorem
introduced in Section 2.1 are preserved when components are aggregated horizontally
or vertically without adding supplementary control, and when supplementary control
is superposed to the control of the interface of a component [6]. Indeed, the boom, the
bridge, the winch and the hook has been aggregated horizontally, then control has been
added to supervise the agent of the crane, not the interfaces of the basic components
individually. Eventually, control could be added to the interface of the crane. The latter
could be considered as the agent of a new component in which control is added to
constrain even more the behavior of the crane.
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Finally, the interface of the crane (see Figure 6) is obtained by a causal reporter map
that satisfies the condition on Tc, consistency of marking and observer property. It takes
3 542 ms, 3 800 ms and 16 100 ms to check the corresponding predicates with Alloy.

5 Conclusion

The work reported in this paper has focused on two main points. First, it shows that
a variant of the original HCA framework combined with CBSD is advantageous to
construct a repository of reusable components and use it in the development of control
software systems for modular production systems. Second, it reveals how a SAT-solving
approach is applicable to verify properties and synthesize parts of small components,
since the Alloy models have been obtained by a direct translation of the theory. This
work has resulted in a repository presently containing 48 elementary components and 17
composite components. It has been exploited with success in the systematic derivation
of a S7-SCL program by a naive (not yet optimized) code generation procedure from
glue code of reusable components after instantiation. The program has 6 631 lines of
source code (with comments) running on a Siemens PLC, model 315PN/DP, connected
to a Profibus network. The size of the object code is bigger than the one obtained from
an ad hoc solution programmed in the S7-GRAPH language (36 580 bytes versus 26 718
bytes).

The MPS from FESTO used in the case study, with all its pneumatic, mechanical
and electrical apparatuses similar to those encountered in the manufacturing industry,
and the data in Table 1 demonstrate the relevance to industrial application. To the best
of our knowledge, it is the first time that the HCA framework has been adapted in order
to solve a control problem of substantial size in the context of CBSD and SAT-solving.
This work also demonstrates how the underlying hierarchical design method combined
with CBSD is scalable. Of course, using a SAT-solving approach to built a repository
of reusable components entails drawbacks mainly due to limitations imposed by Alloy,
in particular the maximum number of allocated tokens, which impacts on the maximal
size (in terms of number of states) of automata. Among the 17 composite components,
two have not been constructed by the proposed approach, likewise for the distribution
subsystem, testing subsystem and processing subsystem. Different encoding schemata of
the interfaces of their subcomponents and automaton used for synchronization should
be examined to settle the problem. The run times observed with Alloy are significantly
higher than those gathered during the use of Supremica [1] (less than 350 ms for each
synthesis of a supervisor) and execution of a C++ implementation of the algorithm de-
veloped by Wong and Wonham [19] for computing an observer (less than one second
for each observer), which is an adaptation of the Fernandez algorithm [7]. However,
no formal proof of correctness exists for the aforementioned programs. Since they are
complex such proofs represent a particularly difficult task. Checking the correctness of
an Alloy specification with respect to a control theory is tractable, because it is essen-
tially a translation of mathematical conditions of the theory into Alloy code. Moreover,
Alloy makes it easier to maintain these specifications (only 400 lines in this work) to
take into account the evolution of a control theory. The conclusion of this comparative
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Table 1. Statistics about the development of the control software system for the MPS

Distribution Testing Processing Handling MPS
subsystem subsystem subsystem subsystem

Estimated size of the state space 1, 10 × 104 6, 91 × 104 7, 13 × 1013 7, 16 × 108 1, 5 × 1032

Number of components 5 6 19 13 44
Number of memories 1 2 10 7 22
Number of layers 3 3 5 5 6

Control specification 22 22 15 10 4
Control specification (reuse) 10 14 79 50 222
Total 32 36 94 60 226

Size of source code (LOC) 674 785 2 504 1 777 6 631
Size of object code (bytes) 3 944 3 964 13 454 9 948 36 580

study confirms that the proposed approach can deal with interesting problem encoun-
tered in industry considering the current state-of-the-art of SAT solvers. Despite the un-
derlying difficulties, this type of research (adopting the SAT-solving paradigm to model
a control theory in the practitioner’s CBSD perspective in order to achieve scalability
and correctness) is promising.
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6. Côté, D., Embe Jiague, M., St-Denis, R.: Systems-theoretic view of component-based soft-
ware development. In: Pre-proceedings of 7th International Workshop on Formal Aspects of
Component Software, pp. 65–82 (2010) (to appear in Lecture Notes in Computer Science)

7. Fernandez, J.-C.: An implementation of an efficient algorithm for bisimulation equivalence.
Science of Computer Programming 13, 219–236 (1990)

8. FESTO: Sorting Station—Modular Production System. Festo Didactic GmbH & Co., Denk-
endorf (1998)

9. Gebremichael, B., Vaandrager, F.: Control synthesis for a smart card personalization system
using symbolic model checking. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS,
vol. 2791, pp. 189–203. Springer, Heidelberg (2004)



A SAT-Based Approach for the Construction of Reusable Control System Components 67

10. Gromyko, A., Pistore, M., Traverso, P.: A tool for controller synthesis via symbolic model
checking. In: Proceedings of 8th International Workshop on Discrete Event Systems, pp.
475–476 (2006)

11. Jackson, D.: Software Abstractions. MIT Press, Cambridge (2006)
12. Kumar, R., Garg, V.K.: Modeling and Control of Logical Discrete Event Systems. Kluwer

Academic Publishers, Boston (1995)
13. Leduc, R.J., Lawford, M., Wonham, W.M.: Hierarchical interface-based supervisory

control—part II: parallel case. IEEE Transactions on Automatic Control 50, 1336–1348
(2005)

14. Ma, C., Wonham, W.M.: Nonblocking Supervisory Control of State Tree Structures. Lecture
Notes in Control and Information Sciences, vol. 317. Springer, Heidelberg (2005)

15. Ramadge, P.J., Wonham, W.M.: The control of discrete event systems. Proceedings of the
IEEE 77, 81–98 (1989)

16. Song, R., Leduc, R.J.: Symbolic synthesis and verification of hierarchical interface-based su-
pervisory control. In: Proceedings of 8th International Workshop on Discrete Event Systems,
pp. 419–426 (2006)

17. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)

18. Wong, K.C., Wonham, W.M.: Hierarchical control of discrete-event systems. Discrete Event
Dynamic Systems: Theory and Applications 6, 241–273 (1996)

19. Wong, K.C., Wonham, W.M.: On the computation of observers in discrete-event systems.
Discrete Event Dynamic Systems: Theory and Applications 14, 55–107 (1996)

20. Zhang, Z., Wonham, W.M.: STCT: an efficient algorithm for supervisory control design. In:
Caillaud, B., Darondeau, P., Lavagno, L., Xie, X. (eds.) Synthesis and Control of Discrete
Event Systems, pp. 77–102. Kluwer Academic Publishers, The Netherlands (2002)



Formal Safety Analysis in Industrial Practice

Ilyas Daskaya1, Michaela Huhn2, and Stefan Milius1

1 Institut für Theoretische Informatik, Technische Universität Braunschweig
Braunschweig, Germany

{I.Daskaya,S.Milius}@tu-braunschweig.de
2 Department of Informatics, Clausthal University of Technology

Clausthal-Zellerfeld, Germany
Michaela.Huhn@tu-clausthal.de

Abstract. We report on a comparative study on formal verification of two level
crossing controllers that were developed using SCADE by a rail automation man-
ufacturer. Deductive Cause-Consequence Analysis of Ortmeier et al. is applied
for formal safety analysis and in addition, safety requirements are proven. Even
with these medium size industrial case studies we observed intense complexity
problems that could not be overcome by employing different heuristics like ab-
straction and compositional verification. In particular, we failed to prove a crucial
liveness property within the SCADE framework stating that an unsafe state will
not be persistent. We finally succeeded to prove this property by combining ab-
straction and model transformation from SCADE to UPPAAL timed automata. In
addition, we found that the modeling style has a significant impact on the com-
plexity of the verification task.

Keywords: model-based development, SCADE, Deductive Cause-Consequence
Analysis.

1 Introduction

A key issue in the development of safety-critical systems is safety analysis, i. e., a thor-
ough analysis how components may fail and cause a system hazard. From the safety
analysis, the safety requirements for components are derived and the design is proven
correct w.r.t. functional safety in the verification and validation phase.

For developing software for safety-critical systems, formal methods are considered
an adequate means because they provide correctness results at a level of strict mathe-
matical rigor. Standards like the IEC 61508 part 3 [15] and its railway-specific derivative
CENELEC 50128 [6] highly recommend them for the software development according
to higher safety integrity levels (SIL). Nevertheless, seamless usage of formal methods
is still a future challenge for industries. Frequently heard arguments trying to explain
industries’ indecision towards the proliferation of formal methods are a lack of integra-
tion and coverage in the development process and poor scalability for larger designs.

In this paper we report on our experiences on a seamless, tool supported, formal
approach that covers design, safety analysis and formal verification: We compare two
medium-sized design variants of a level crossing controller. Both were developed using
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the SCADE Suite1 by a manufacturer for rail automation equipment. The two models are
different in their modeling style, namely one is state-based and built based on safe state
machines [4], whereas the other one is strictly data-flow oriented. Both implement the
same functionality and have exactly the same interfaces, but the models were originally
thought as a comparative basis to evaluate model qualities relevant for application devel-
opers such as understandability, maintainability etc. This was a purely design-oriented
comparison that we have expanded to safety analysis and formal verification.

So the starting point for our investigation is the question whether the modeling style
has an impact on formal safety analysis and verification. By using the built-in state-
of-the-art SAT-based model checker of SCADE we also strive for a good showcase for
seamless formal support of the safety process. A precondition for an authentic showcase
is to take the original design models without tailoring them beforehand to the needs of
some particular formal analysis technique at hand.

We apply Deductive Cause-Consequence Analysis (DCCA) by Ortmeier et al. [19]
as a formal generalization of the well accepted safety analysis techniques FMEA (Fail-
ure Mode and Effect Analysis) and FTA (Fault Tree Analysis). Moreover, we are able to
formally verify a number of safety requirements, i.e. functional correctness properties
imposed by the safety analysis. However, we have to cope with severe complexity prob-
lems even with these medium sized designs that prevent us from completing both, the
DCCA and the verification of safety requirements. We try several abstraction techniques
to reduce complexity of the verification problems within the SCADE Design Verifier, but
without success. We illustrate our attempts on data abstraction, cone of influence, and
symmetry reduction as well as decomposition using the example of a liveness property
that arises from the safety requirements. Finally, we transform the state-based model
into UPPAAL timed automata2 and succeed with the verification of that liveness prop-
erty easily. What we technically realize as a model transformation between two formal
frameworks, namely SCADE and UPPAAL, is methodically an abstraction of time: In
the SCADE model time is handled in multiple steps in each of which an external timer
is compared to internal variables modeling timeouts. In contrast, the real-time zones of
UPPAAL only take one transition to the next relevant point in time. Hence the resulting
state space is significantly smaller.

Overall, the state-based model of the level crossing control can be considered slightly
better suited for formal analysis. However, to be able to generalize this result, a clear and
application-oriented notion of model elements with major impact on the verification
complexity has to be developed.

The paper is structured as follows: In Sec. 2 we recall safety analysis using FMEA
and DCCA as a formal approach to it and SCADE suite as a model-based development
environment featuring formal verification. Liveness analysis, a number of heuristics we
have tried in order to deal with the intrinsic complexity problems, and, notably, the
transformation of SCADE models to UPPAAL timed automata are described in Sec. 3.
In Sec. 4, safety analysis and verification results of the two model variants of a level
crossing controller are presented in detail. Sec. 5 concludes with lessons learned.

1 SCADE is a product of Esterel Technologies, see www.esterel-technologies.com.
2 UPPAAL is an integrated tool for modeling and verification of real-time systems, see
www.uppaal.com.
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2 Safety Analysis and DCCA

The development of safety-critical systems and their software is regulated by standards.
In the railway domain the CENELEC standards EN 50126, 50128, and 50129 [9,6,10]
apply. Since software is intangible, it is commonly agreed that system failures caused
by software malfunction stem from systematic errors that are introduced during the soft-
ware development and are not recognized in the safety process. Consequently, software
safety engineering aims at (1) a complete and consistent specification of functional and
safety aspects for a software component, (2) the correct implementation of the specifi-
cation and (3) providing evidence that the safety objectives are met.

2.1 Safety Analysis

In the architectural design phase, the intended functionality is modularized. For safety-
critical systems, a hazard analysis is performed to identify potential failures, hazards,
and the causal chains between them. Classical inductive methods for hazard analysis
are Failure Mode and Effect Analysis (FMEA) and its extension Failure Mode, Effects
and Criticality Analysis as standardized in IEC 60812 [14]: FMEA classifies failures
according to the severity of their effects, the occurrence frequency, and the detection
rate. Starting from a definition of the system and its boundaries, a functional viewpoint
is taken and each subfunction is analyzed with respect to potential fault modes. For
functionality implemented in software, fault identification is supported by generic fault
types like omission, commission, untimely reaction and value fault [18]. Local effects
can be directly deduced from the component faults. In order to determine the system
level effects, fault propagation is analyzed based on the functional architecture by using
a formal deduction method (see Section 2.4). A fault is called critical if it has severe
effects and an unacceptably high occurrence frequency. Safety measures are taken to
eliminate the faults or at least mitigate the effects, to decrease their occurrence proba-
bility, or to actively detect them. Findings and actions to be taken are usually summa-
rized in an FMEA table. Often a Fault Tree Analysis (FTA) is conducted to complement
FMEA. FTA proceeds deductively by starting from potential hazards and then investi-
gates which combination of faults or operational modes in the components may cause
them.

FMEA is a structured but semi-formal technique. In an iterative design process, an
FMEA is conducted and refined with each iteration cycle or change in the design or
operational constraints. As FMEA is an inductive method, common cause faults and
their effects are analyzed in a separate step.

2.2 Safety-Oriented Software Design

For the development of safety-related software in the rail domain, the standard CEN-
ELEC 50128 [6] prescribes the activities for design, validation, and verification with
their input and output artifacts. As faults due to software are traced back to systematic
development errors, the standard recommends measures that are considered appropri-
ate to avoid such errors or to reveal them in a validation or verification step. Hence,
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development activities have to be performed with an adequate degree of rigor such
that functional correctness and fulfillment of safety requirements can be proven with
substantial evidence.

The SCADE tool suite (Safety-Critical Application Development Environment) is
a model-based development framework for safety-critical software that supports cer-
tification due to EN 50128 up to SIL 3 and 4. The SCADE modeling language is a
synchronous and dataflow-oriented language based on LUSTRE [12], and was extended
by safe state machines [4]. SCADE provides certified automated code generation and
immediate simulation of the model. It supports testing, in particular model coverage is
recorded, and the SCADE Design Verifier (SCADE DV) allows for SAT-based formal
verification3.

Here, SCADE was chosen as design framework for the level crossing control (LC)
from our industrial partner. The reason was the seamless design flow from the require-
ments via the model executing on a hardware abstraction layer (HAL) to the C code
generated for the real target processor. Back then, validation, verification and safety
assessment were performed with traditional methods. With a broader usage of SCADE,
different modeling styles came up and also the desire to benefit from the Design Verifier.

2.3 Formal Verification Using SCADE DV

The behavior of a SCADE design model can be given as a transition system on which
SAT-based model checking can be performed in order to verify reachability properties4,
see [1].

In contrast to other approaches, the SCADE DV does not offer a temporal logic but
properties have to be modeled as synchronous observers using the same language op-
erators as for the design. Nevertheless, we will use CTL as a succinct notation for
reachability properties to be verified, but the reader should keep in mind that they are
encoded as observer nodes at the SCADE level (cf. Figures 1 and 5). Notice, however,
that more general temporal properties, notably unbounded liveness, cannot be automat-
ically verified using this SAT-based approach.

2.4 Deductive Cause Consequence Analysis

An important step in safety analysis concerns determining the causal relationship be-
tween component fault modes and hazards. There are various techniques that exploit
formal methods, notably model checking, for identifying the desired cause-consequence
relation [1,16,5]. Here we consider DCCA by Ortmeier et al. [19,11], which is a formal
approach to safety analysis that generalizes FTA and FMEA. In DCCA, a hazard H is
specified as a state predicate. Primary component fault modes are modeled by adding
simple fault automata that are triggered by a Boolean input indicating the occurrence
of this particular fault. The immediate effect of a fault on a component is specified in
a so-called fault node within the component model. The hazard is implemented as an

3 SCADE uses the SAT solver developed by Prover Technologies, see www.prover.com
4 In the area of model checking, reachability properties are often called safety properties, be-

cause they express that the system always stays in a good or ”safe” state. In contrast, for us a
safety property is any constraint to ensure dependable behaviour.
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Fig. 1. Integration of DCCA with SCADE

observer node that takes signals from the system and evaluates them according to the
negation of the hazard predicate H , i.e., returning false whenever the hazard occurs.
Figure 1 gives a schematic picture of the integration of DCCA with SCADE.

A core notion of FTA is that of a critical cut set of faults for a hazard, i.e. a subset
of primary faults for which some operational condition and occurrence sequence exist
such that the hazard occurs without further influence. This was formalized in DCCA
to the notion of a critical set. According to [11], critical sets can be formalized for the
SCADE semantics as follows:

Definition 2.1. Let Γ be a subset of the set of primary component faults Δ of a system
Sys. Sys〉Γ denotes that behavior of Sys where no fault from Δ \ Γ ever occurs. Now Γ
is called critical for a hazard described by the state predicate H iff Sys〉Γ �|= AG¬H .
A critical set Γ is called minimal iff no proper subset of Γ is critical.

If the analysis reveals a singleton as minimal critical set, this indicates that there exists
a single-point-of-failure in the system, which has to be eliminated by further safety
measures. A DCCA is called complete iff all minimal critical sets have been identified.

Theorem 2.2 (Minimal-Critical-Set Theorem [19,11]). If a complete DCCA has been
conducted for a hazard H then for each minimal critical set, preventing one fault from
occurrence will prevent the hazard H .

In order to determine the minimal critical sets we use an iterative approach similar
to [1]: Suppose that Δ is the set of all component fault modes identified during the
FMEA and that H is a hazard. We iterate over all subsets Γ ⊆ Δ starting with Γ = ∅
and increasing Γ stepwise (singletons, doubletons etc.). We use the SCADE DV to prove
whetherΓ is critical forH : all trigger inputs for fault modes in Γ become system inputs,
and the inputs of all other fault mode nodes are constantly false. Whenever SCADE DV
returns a counterexample, i. e. a situation in which the hazard node expressing ¬H
is false, we have identified a minimal critical set Γ , and due to the monotonicity of
criticality no super set of Γ needs to be considered.

3 Liveness and Abstraction Techniques

In this section we describe the general steps we took in our case study. Here we assume
that we are given a design model of the system Sys in a formalism providing support
for formal verification. Our steps were as follows:
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(1) Given the system model we performed a safety analysis identifying hazards and
component fault modes, cf. Section 2.1.

(2) We used DCCA to determine the cause-consequence relationship between compo-
nent fault modes and hazards. For this we use the SCADE DV to obtain minimal critical
sets of fault modes, cf. Section 2.4.

(3) We performed an analysis of a liveness property arising from the safety requirements
of the system.

(4) We applied several strategies in order to deal with complexity issues arising in con-
nection with the model checking performed in steps (2) and (3).

We already explained methodological details of steps (1) and (2) in Section 2. In the
remainder of this section we will describe steps (3) and (4) in more detail.

3.1 Liveness Analysis

This step of our case study concerns the analysis of a safety related liveness prop-
erty derived from a system requirement, see Section 4.3 for the concrete formulation.
Roughly, this requirement states that a certain non-safe state of the system may occur,
but this state must not be permanent, and it must be left within a certain time interval
that depends on the system’s configuration. Indeed, our analysis in step (2) revealed
that this non-safe state of the system will occur under a certain fault mode. This is still
in accordance with the requirement. However, it has to be verified that the system will
leave this non-safe state in time.

If ϕ is a propositional formula describing the non-safe state then this property might
be formulated in a temporal logic like CTL as AG(ϕ→ AF¬ϕ). However, SCADE does
not provide a direct way to express a liveness property with an unbounded quantifier
like AF. A concrete time limit – and hence a bound for the number of cycles – is not
specified, but it is individually set for each configuration.

Thus, we explore the model and try to establish a lower bound on the number n of
cycles after which the non-safe state is left: It is clear that once in the non-safe state the
system will remain there for at least one cycle, and so we verify whether the non-safe
state is left after n = 2, 3, . . .. This can be modeled as a SCADE observer by using the
operator ImpliesWithinNTicks from the design verifier library, see Figure 2 for n = 4.

Fig. 2. Observer node for the liveness analysis with n = 4
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3.2 Dealing with Complexity within SCADE DV

Unfortunately, we failed to complete our analysis just using SCADE DV even with small
numbers n due to complexity problems, see Section 4 for details. We will now mention
the strategies we have applied in order to deal with this problem.

Abstraction. First we generated an abstract version of the design model in SCADE. For
this we applied three different techniques: data abstraction, cone of influence reduction
and symmetry reduction (see e. g. [7] for an introduction) – the way in which these are
applied is detailed in Section 4. However, even for the abstracted model the liveness
verification could not be completed using SCADE DV.

Compositional verification. In a further attempt to cope with complexity of the live-
ness analysis we manually broke down the given liveness property into proof obli-
gations for each component of the model. We then argued that the liveness property
holds for the whole model if the components satisfy their respective proof obligations.
This divide-and-conquer strategy allowed us to complete the verification for all but one
model component with the SCADE DV.

3.3 Model Transformation to UPPAAL

In order to complete the analysis for this remaining system component we decided to
transform this component to another formalism. Manual inspection of the component
revealed that its behavior is to a large extent governed by 14 timers that are external
to the SCADE model and are provided from the runtime environment in form of an
integer input. For this reason we consider it promising to transform that component to a
modeling formalism that also takes time into account. We have therefore chosen timed
automata [3] with UPPAAL as modeling and analysis tool.

We will briefly describe the principles of the model transformation: We assume that
the given SCADE node comes as a flat safe state machine. That means that there are
no hierarchical states and no memory within states (such as fby operators). Outputs are
assigned within the states. We also assume that all transitions in the safe state machine
are strong, i. e., in a cycle where the transition guard holds the target state of the transi-
tion is active (see [4]). These restrictions hold for the model in our case study. For other
models, preprocessing steps like flattening of hierarchical states have to be applied.

In contrast to SCADE’s deterministic behavior, UPPAAL models may also behave
non-deterministically. Thus, the transformation should ensure the deterministic behav-
ior of the model in UPPAAL. The following points are important:

Activation conditions and output variables. The activation condition of a transition in
SCADE gets mapped to the guard of the corresponding edge in UPPAAL. If an output
flow of a SCADE node changes when taking a transition, we add the corresponding
assignment along the translated transition in UPPAAL.

Firing transitions. When a transition guard holds, the corresponding transition in the
translated UPPAAL model must fire immediately to faithfully reflect the transition
behavior in the SCADE model. For this purpose we use UPPAAL urgent channels. Each
translated transition synchronizes on an urgent channel that can always be activated so
that no delay occurs along the transition, see Figure 8, where this urgent channel is go2.
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Transition priorities. We must make sure no two transition guards are true simulta-
neously. SCADE uses explicit transition priorities to prevent this. Suppose that we have
two transitions with the same source state and with guards ϕ and ψ, respectively, such
that the ϕ transition has higher priority. Then in the transformed UPPAAL model the
first transition has guard ϕ and the second one the guard ψ ∧ ¬ϕ.

Timers. As already mentioned, our SCADE model is partly governed by external timers
that are started by certain model outputs and that trigger transitions. In the translated
UPPAAL model these timers are explicitly modeled as shown in Figure 3. The timeouts
are taken from the SCADE model. The edge between S0 and S1 will reset

Fig. 3. Modelling a timeout in UPPAAL

the clock variable x. During the urgent
state S1 clock x does not progress. So
any output assignment that may happen
together with the start of the timer will
be performed as a variable assignment
at the edge from S0 to S1. The invari-
ant x ≤ 10 makes sure that the state S1

is left before x reaches 10. Upon timeout (x == 10) we progress to S3 and perform
any output assignment associated with the timeout along the edge from S2 to S3.

This part of the model abstraction realizes the time abstraction mentioned in the
introduction. A situation where the SCADE model is waiting for a timeout, i.e., the inte-
ger input corresponding to system time increases for a (possibly large) number of cycles
where no reaction of the model happens and no model output changes, corresponds to
only one transition in the transformed UPPAAL model. This fact leads to a significant
reduction in the size of the state space of the transformed model, and we believe this
makes formal verification feasible.

3.4 Correctness of the Model Transformation

Although the transformation from SCADE to UPPAAL can be automated in principle,
we manually performed it in our case study. We also did not provide a formal proof of
the semantic correctness of our transformation. Both tasks were out of the scope of our
current project, and so we leave them for future work.

However, in order to establish confidence in the correctness of our transformation we
followed an approach based on testing that we will now describe. From the requirements
specification we created a test suite. By using the SCADE model test coverage facility
this test suite was shown to yield 90% decision coverage of the original SCADE model.
The same test suite was used on the translated UPPAAL model. For each test case we
recorded the traces (i.e., the list of input and output values in each step) of the simulation
of both models.

Now in order to establish the equivalence of the two models we need an appropriate
notion of equivalence for the traces. Due to the different timing concepts of the two
underlying formalisms, the traces of the SCADE model do not correspond one-to-one
to the traces of the translated UPPAAL model. Instead we use a version of stuttering
equivalence, see e. g. [17,7]. We write (�v1, . . . �vn) for a trace of length n produced by
a model simulation running some test case. We say that this trace is stuttering equivalent
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to some other trace (�w1, . . . , �wm) if there are sequences 1 = i1 < i2 · · · < ik−1 <
ik = n and 1 = j1 < j2 · · · < jk−1 < jk = m with k ≤ n,m and such that

�vir = �vir+1 = · · · = �vir+1−1 = �wjr = �wjr+1 = · · · = �wjr+1−1 and �vn = �wm,

where 1 ≤ r ≤ k− 1. In other words, two lists containing the same input/output values
in the same order (but possibly repeating certain list elements a different number of
times) are equivalent. Example: Suppose we have a model with one integer input and
one Boolean output. Then the two lists ((1, true), (1, true), (42, false), (42, true)) and
((1, true), (42, false), (42, false), (42, true)) are equivalent.

With this notion of equivalence we compared traces of SCADE simulations of a test
case with those of UPPAAL simulations of the same test case. We showed equivalence
of the two models with respect to all test cases from our test suite.

4 Comparative Safety Analysis of Level Crossing Control

Now we present the results of our industrial case study. For the sake of brevity we omit
some details; they can be found in [8]. Our formal safety analysis was performed com-
paratively for two SCADE models for the modular level crossing controller in [13]. The
two SCADE models were developed by different developers with different implementa-
tion styles: the first model uses a design based on safe state machines (SSM) [4] and the
second one uses data flow diagrams, which are essentially graphical respresentations
of LUSTRE [12]. Whenever information has to be stored for the next execution cycle
in the data-flow oriented model, this is done within local variables for which the value
is kept using the fby-operator. Both models implement the same architecture with the
following operators, which can be composed in order to obtain a level crossing control
logic for a specific level crossing layout:

- route controller (LC Route)
- site controller (LC Site)
- group controller (LC LS Group)
- time controller (LC Timer)

The route controller monitors the activation of the lights and barrier groups depending
on the activation signal from a particular route, cf. Figure 4.

The site controller synchronizes all route controllers and group controllers and acts
as a logical connector. The group controller controls the lights and barriers, which are
grouped logically, using a hardware abstraction layer. Finally, the time controller mon-
itors the time elapsed since the last activation of the LC until its complete deactivation.
Depending on the level crossing layout, numbers of inputs, outputs and nodes in the
models can vary. In our case, models are specified for controlling of a level crossing
with 2 routes and 2 lights-barrier groups, see Figure 4. They have 18 boolean, 1 integer
input variables, 5 boolean output variables and 14 constants. The models are composed
of 5 nodes: 2 LC Route, 2 LC LS Group, 1 LC Site. Specifically, the first model has 12
states + 23 transitions for each LC Route operator, 14 states + 23 transitions for each
LC Site operator, 27 states + 51 transitions for each LC LS Group operator. In both
models, the LC Timer operator has 2 states.
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Fig. 4. Sample layout of a locally monitored level crossing

4.1 Application of FMEA

We briefly summarize the results of our FMEA, the details are in [8]. The analysis
has revealed ten component fault modes (FM1 – FM10) and two hazards: (a) a train
drives through a non-secured level crossing (LC) and (b) car drivers drive against clos-
ing/closed barriers. Hazard (a) can happen if the monitoring signal shows the LC to
be safe while it is not (i. e., one of the light-barrier groups (LBG) is switched off).
That means, if a monitoring signal is activated (UE MEin=true), both LBGs must be
switched-on (LS1 MEin=true and LS2 MEin=true). This state can be represented as a
formulaH in propositional logic as follows:

H = (UE MEin ∧ ¬(LS1 MEin ∧ LS2 MEin)) (1)

Figure 5 shows the SCADE observer node for the hazard H from (1).

Fig. 5. SCADE model of the hazardous event H

4.2 Application of DCCA

To apply DCCA to our two models we first created an environment model in SCADE

simulating stimuli from the hardware of a real level crossing system. We then extended
the hardware model with the fault modes and their occurrence patterns from the FMEA.

Functional Correctness. Recall from Section 2.4 that the first step of DCCA consid-
ers the empty set of fault modes. So we verify functional correctness of the models
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Table 1. Singleton fault modes

State-based Model Data-flow Model
N=1 Valid Critical Time Valid Critical Time
FM1 x 1 x 1
FM2 x 122 x 543
FM3 x 14 x 459
FM4 x 13 x 312
FM5 x 143 x 323
FM6 x 108 x 330
FM7 x 199 x 329
FM8 x 14 x 324
FM9 x 15 x 245
FM10 x 14 x 495
Average Time (sec) 64,3 336,1

w.r.t. the safety requirement expressed by the hazard H . With SCADE DV, the proof
took 15 seconds for the first model and 322 seconds for the second one. The difference
originates from the different implementation styles. The SSM based design seems to
have a smaller state space, hence a quicker proof is possible with the first model.

Single Fault Modes. We checked criticality of singleton fault mode sets Γ w.r.t. the
hazard node H . Table 1 shows the results and proof execution times in seconds. Only
FM1 (unwanted switch off of warning lights) is identified as critical for both models.
The rest of the failure modes could be proven to be non-critical.

At Most 2 Fault Modes. This step requires analysis of the fault mode sets Γ with
|Γ | = 2. As FM1 is already critical, we only analyze sets Γ with FM1 �∈ Γ . We assume
that for each hardware type only one fault mode can occur at a time, and only a single
hardware component of the same hardware type can fail at a time, e. g. only one of the
barriers in a barrier group can fail. Finally, sensor failures can occur either as a false
detection or a mis-detection, but not both.

Figure 6 and 7 present the analysis results for the first and second model, respec-
tively. The cells marked with an “x” represent single fault modes and already have been
treated in the previous step. The Gray colored combinations have not been analyzed
due to the assumptions explained in the previous paragraph and since FM1 is critical.
Red colored cells (marked by “C”) represent the critical sets while green cells (marked
by “V〈time〉”) represent the non-critical fault modes and also indicate the proof dura-
tions in seconds. Critical sets were proven to be critical within 1 second. White colored
combinations (marked by “U”) could not be proven to be critical or non-critical in a
reasonable time. We could not analyze all relevant 2-element fault mode combinations,
hence, our DCCA for critical doubletons is not complete. Since three simultaneous fail-
ures are highly unlikely we terminated the analysis with this step.

To summarize, while our analysis remains incomplete we have identified three min-
imal critical sets: {FM1}, {FM4,FM6} and {FM4,FM7}; FM4 means that a barrier is
stuck and FM6 and FM7 mean the corresponding sensor does not detect this.
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FM1 FM2 FM 3 FM4 FM5 FM6 FM7 FM8 FM9 FM10
FM1 x

FM2 x
FM3 x

FM4 V149 V15 x
FM5 V457 U x
FM6 U U C V256 x

FM7 U U C V14 x

FM8 U U U U U U x
FM9 U U U U U U x
FM10 U U U U U U x

Fig. 6. Results for the state-based model

FM1 FM2 FM 3 FM4 FM5 FM6 FM7 FM8 FM9 FM10
FM1 x

FM2 x
FM3 x

FM4 U U x
FM5 U U x
FM6 U U C U x

FM7 U U C U x

FM8 U U U U U U x
FM9 U U U U U U x
FM10 U U U U U U x

Fig. 7. Results for the data-flow model

4.3 Liveness Analysis

We have shown that both models do have critical sets of fault modes. From a con-
trol engineering point of view this was expected to happen, and rather than requiring
prevention of the hazard the corresponding safety requirement for the system reads as
follows:

Requirement. A state in which the monitoring equipment feedbacks its status as ac-
tivated (UE MEin=true) and at least one LBG is non-active (LS1 MEin=false or
LS2 MEin=false) is non-safe. Such a state must not be permanent and has to be left
independently from the input values as quickly as possible by deactivation of the moni-
toring signal.

This requirement can be formalized as a liveness property in CTL as follows:

AG(UE MEin ∧ ¬(LS1 MEin ∧ LS2 MEin) ⇒ AF(¬UE MEin)) (2)

As explained in Section 3.3 we tried to use the SCADE DV with an observer as shown
in Figure 2 to obtain a lower bound on the number n of cycles the system remains in
the non-safe state corresponding to our hazard propertyH .

4.3.1 Liveness of the State-Based Model. For n = 2, SCADE DV delivered “falsifi-
able” as an answer within a few seconds, which means that the hazard may last for at
least two cycles. For n = 3 it was not possible to prove the correctness of the system
after 1 week of execution time as a result of the state explosion problem. To overcome
this problem we used several strategies (see Section 3.3). Full details are in [8].

Data Abstraction. The only integer input of the models is used for synchronization
of the controller with a global clock T System. The value of T System is used by 14
different timers for realizing the delays and timeouts. For the current verification, only
10 of them are relevant. Using SCADE assumptions we have put bounds on the possible
values of T System, thus reducing the complexity of the verification.

Cone of Influence Reduction. Only 7 inputs out of 19 of the model have an influence
on the observer node. Some of the remaining inputs have constant values as they cor-
respond to configuration settings. These inputs can be replaced by the constants. As a
consequence some transition triggers are simplified or even become constantly false.
As a result some states become unreachable and are removed as well.
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Symmetry Reduction. Here we remove the identical operators and symmetric config-
urations in order to reduce the state space. Our initial configuration was a 2 Route+2
LBG level crossing. Obviously, a reduced model (1 Route+1 LBG) needs to satisfy the
liveness property, too. If we can verify the validity, it can substantiate the claim that the
full system is correct.

Unfortunately, even with the above three simplifications it was still impossible to
verify the liveness property with the SCADE DV.

4.3.2 Compositional Verification. With an operator level analysis, we identified that
an occurrence of FM1 generates an LS MEin=false (an LBG is not switched on) signal,
which is converted to AN MEin=false (not all LBG’s are switched on) signal through
an AND gate by the LC LS Group operator. It feedbacks this status to the LC Site
operator, which updates an internal variable as LS MEin=false. Finally, LC Route re-
ceives this signal and signals the monitoring signal to switch-off. This is followed by
a UE MEin=false signal by a failure-free monitoring signal. This led us to decompose
the liveness property for the whole model into properties for its components:

1. For LC LS Group operator: LS MEin=false shall be followed by an AN MEin=false
signal; in CTL:

AG((¬LS MEin ∧AN MEin) ⇒ AF(¬AN MEin)). (3)

2. For the LC Site and LC Route operators: AN MEin=false shall be followed by an
UE MEin=false signal; in CTL:

AG((UE MEin ∧ ¬AN MEin) ⇒ AF(¬UE MEin)).

It can be easily seen that both parts together imply the main liveness property. Analysis
of the second formula was successful. Thus, the operators LC Site and LC Route are
verified. They were found to satisfy the liveness property within 6 execution cycles.
However, the first part could not be proven in a reasonable time. This led us to consider
the LC LS Group operator as the bottleneck for the complete analysis.

4.3.3 UPPAAL Transformation. Using the model transformation described in Sec-
tion 3 we transformed the LC LS Group operator to UPPAAL. The resulting UPPAAL
model is a network of 5 timed automata. Four automata model the environment such as
hardware behavior, switch-on and switch-off commands and the fault mode FM1. The
LBG automaton (see Figure 8) models the behavior of the LC LS Group operator. It
synchronizes with other UPPAAL automata over the urgent go1 channel. This chan-
nel ensures progress and an immediate transition as soon as an edge’s guard holds. For
example, it can be seen that edge from S00 to S01 fires as soon as AN SEin holds.

Verification with UPPAAL. UPPAAL uses a fragment of timed CTL (TCTL) [2].
Like TCTL, the query language consists of path formulæ and state formulæ [20]. In our
case the liveness property (3) for the LC LS Group operator will be rewritten as:

(not LS_MEin and AN_MEin) --> not AN_MEin

This property means when a failure occurs in the hardware (LS MEin=false), the output
variable AN MEin of the LBG automaton will eventually be false. This property is valid
and the proof has been completed within seconds.
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Fig. 8. LBG automaton in UPPAAL

4.3.4 Liveness of the Data-Flow Design. The second model could not be proven
correct w.r.t. the liveness property with the full configuration (2 Route+2 LBG). Its
data-flow oriented design does not allow us to apply state and transition based abstrac-
tion techniques. However, symmetry reduction is still possible. A model with reduced
configuration (1 Route+1 LBG) was found to be valid for 4 cycles within 130 seconds.

In contrast to the first model, in the case of the second model the liveness property
could be proven to be valid for a reduced model without decomposing it. As a pos-
sible reason we consider the direct connection between LBG hardware elements and
the LC Route operator. In this model, whenever a failure occurs, it is directly sensed
by the route controller that controls the monitoring signal. This connection eliminates
the effects of the other operators on the liveness property. Hence, this property is not
dependent on the feedbacks from the LC LS Group operator.

5 Lessons Learned and Conclusions

We performed a comparative case study on formal safety analysis and verification. Our
starting point were two functional equivalent SCADE models of a level crossing con-
troller software, both developed in industry. As a formally founded, model-based ap-
proach was used in the design already, a seamless expansion towards formal safety
analysis and verification within the same tool environment was straightforward. De-
spite of the difficulties we faced and which fill major parts of our experience report, we
were able to identify some of the most relevant critical sets of fault modes as well as
to verify numerous safety requirements. In addition, confidence that the results of the
formal verification apply for the finally generated executable is strong, since the target
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code is automatically generated from the SCADE models by the certified code genera-
tor. Such a full integration and tool support for design, code generation and verification
is mandatory for the successful usage of formal methods in industrial development of
safety-critical systems. In this way formal methods can contribute with strong evidence
to a safety case a system manufacturer has to provide to certification authorities.

5.1 Lessons Learned

Our verification results support the hypothesis that applicability of formal analysis
based on SAT model checkers depends on the design and modeling style. We found that
the state-based model lends itself better to abstraction and reduction techniques than the
data-flow oriented one; in our case study some properties were only provable after re-
duction and abstraction had been applied. Another argument pro state-based designs
is that they facilitate transformation to other model checkers. For data-flow oriented
designs some abstraction techniques do not seem obviously applicable.

On the other hand, we found that our liveness analysis could be performed with
the data-flow oriented model after a symmetry reduction with the SCADE DV whereas
for the state-based model further abstraction and a model transformation to UPPAAL
was necessary. In this concrete case this seems to be due to architectural differences.
However, from our case study we cannot conclude that data-flow oriented models are in
general better suited for formal verification. We faced severe complexity issues during
DCCA and liveness analysis for both of our moderately sized models.

After all, we cannot fully explain why the two modeling styles differ w.r.t. verifi-
cation: The size and complexity of the models are similar. But in the data-flow design
the state information is scattered throughout the model and less uniform than in the
state-based one. That may be a reason why the model transformation to SCADE DV’s
SAT-based model checker yields a better result for the state-based model. But to sub-
stantiate this assumption the SCADE internal model transformation would have to be
inspected in detail.

5.2 Open Issues and Future Work

Next, we discuss a few open issues: Firstly, the heuristics we applied in order to deal
with complexity issues during our liveness analysis also could be applied to the for-
mal verifications that happen during the DCCA. Secondly, our model transformation to
UPPAAL makes heavy use of the specific form of the given SCADE model (flat state
machine, timers). If one aims at an extension to safe state machines with hierarchy it is
questionable to which extent the flattening that has to be part of any (automatic) trans-
formation will blow-up the resulting timed automata and whether formal verification in
UPPAAL will perform well on them. Perhaps, it is possible to exploit compositional
techniques in this case, and we leave this as an open question. Thirdly, we believe that
the steps we performed in our case study are successfully applicable more generally pro-
vided that given SCADE models adhere to similar restrictions. Lastly, we verified our
model transformation with the help of testing and did not provide of formal proof of the
semantic correctness of our model transformation. Such a correctness proof would, of
course, be desirable, but here we leave this for future work.
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Finally, we have to state that formal verification is still constrained by scalability
problems that hampers its usage in practice. We solved them for the state-based model
by transforming it into UPPAAL timed automata, a formalism that offers a much more
efficient handling of time. From a methodological point of view, this model transforma-
tion is a time abstraction. However, it cannot easily be integrated with the synchronous
modeling paradigm SCADE is based on. In addition, thorough expertise on verifica-
tion techniques, the underlying semantics and algorithmics is a pre-requisite to come
up with an alternative formalism that potentially can efficiently solve a specific veri-
fication problem. However, a desirable improvement of todays verification engines is
feedback that, in case of complexity problems, directs the developer to the origin of the
problems within the models. For example, a measure of the impact of selectable model
elements or system components on state space size or other complexity measures for
the verification problem will be of great help, as it will ease the choice for a promising
abstraction or reduction heuristic.
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Abstract. Lustre is a formal synchronous declarative language widely
used for modeling and specifying safety-critical applications in the fields
of avionics, transportation, and energy production. In such applications,
the testing activity to ensure correctness of the system plays a crucial
role in the development process. To enable adequacy measurement of test
cases over applications specified in Lustre (or SCADE), a hierarchy
of structural coverage criteria for Lustre programs has been recently
defined. A drawback with the current definition of the criteria is that they
can only be applied for unit testing, i.e., to single modules without calls
to other modules. The criteria experiences scalability issues when used
over large systems with several modules and calls between modules. We
propose an extension to the criteria definition to address this scalability
issue. We formally define the extension by introducing an operator to
abstract calls to other modules. This extension allows coverage metrics to
be applied to industrial-sized software without an exponential blowup in
the number of activation conditions. We conduct a preliminary evaluation
of the extended criteria using an Alarm Management System.

1 Introduction

Lustre [4,1] is a synchronous dataflow language widely used to model reac-
tive, safety-critical applications. It is based on the synchronous approach where
the software reacts to its inputs instantaneously. Lustre also forms the kernel
language for the commercial toolset, SCADE (Safety Critical Application De-
velopment Environment1), used in the development of safety-critical embedded
software. SCADE has been used in several important European avionic projects
such as Airbus A340-600, A380, Eurocopter.

The verification and validation activity ensuring the correctness of the system
is very important for applications in the safety-critical systems domain. For
applications modeled in the Lustre language, this concern has been addressed
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either by means of formal verification methods [5] or using automated testing
approaches [7,9]. State space explosion still poses a challenge for applying formal
verification techniques to industrial applications. Hence, developers use intense
testing approaches to gain confidence in the system correctness.

To determine whether the testing process can terminate, several test adequacy
criteria based on the program control flow have been used in the past, such as
branch coverage, LCSAJ (Linear Code Sequence And Jump) [10] and MCDC
(Modified Condition Decision Coverage) [2]. These criteria do not conform to the
synchronous data-flow paradigm and when applied do not provide meaningful
information on the Lustre specification. To tackle this problem, Lakehal et al.[6]
and Papailiopoulou et al.[8] defined structural coverage criteria specifically for
Lustre specifications. The structural coverage criteria for Lustre are based on
activation conditions of paths. When the activation condition of a path is true,
any change in the path entry value causes modification of the path exit value
within a finite number of time steps.

The Lustre coverage criteria defined in [6] and [8] can only be used for unit
testing purposes, i.e. adequacy can only be measured over a single Lustre node
(program units). To measure adequacy over Lustre nodes with calls to other
nodes, the calls would have to be inline expanded for coverage measurement.
Doing this results in an exponential increase in the number of paths and activa-
tion conditions to be covered. As a result, the current definition of the criteria
does not scale to large and complex systems.

To tackle this scalability issue, we extend the definition of Lustre coverage
criteria to support node integration. In our definition, we use an abstraction
technique that replaces calls to nodes with a new operator, called the NODE
operator. This abstraction avoids the entire set of paths of the called node from
being taken into account, and instead replaces it with a unit path through the
NODE operator. We evaluated the extended criteria over an Alarm Management
System used in the field of avionics.

The rest of this paper is organized as follows. Section 2 provides a brief
overview of the essential concepts of the Lustre language and the existing cover-
age criteria defined for Lustre programs. In Section 3, we define the extended
coverage criteria for integration testing, and Section 4 presents a preliminary
evaluation.

2 Background

2.1 Overview of Lustre

A Lustre program is structured into nodes. Nodes are self-contained mod-
ules with inputs, outputs, and internally-declared variables. A node contains an
unordered set of equations that define the transformation of node inputs into
outputs through a set of operators. Once a node is defined, it can be called (or
instantiated) within other nodes like any other expression in the specification.

In addition to common arithmetic and logical operators (+, -, *, /, and, or, not),
Lustre supports two temporal operators: precedence (pre) and initialization
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node Never(A: bool) returns (never_A: bool);
let

never_A = not(A) -> not(A) and pre(never_A);

tel;

c1 c2 c3 c4 ...

A false false true false ...

never_A true true false false ...

L3
pre

A

never_A

L1

L2

Fig. 1. A Lustre node and its operator network

(->). The pre operator introduces a delay of one time unit, while the -> operator,
also called followed by (fby), allows the initialization of a sequence. Let X =
(x0, x1, x2, x3, . . .) and E = (e0, e1, e2, e3, . . .) be two Lustre expressions. Then
pre(X) denotes the sequence (nil, x0, x1, x2, x3, . . .), where nil is an undefined
value, while X ->E denotes the sequence (x0, e1, e2, e3, . . .).

Figure 1 illustrates a simple Lustre program and an instance of its execution.
This program has a single input boolean variable (A) and a single output boolean
variable (never_A). The output is true if and only if the input has never been
true. Lustre nodes are usually represented by an operator network, a labeled
graph connecting operators with directed edges. An operator in the network
specifies data-flow transfers from inputs to outputs. An edge specifies the data-
flow between two operators. There are three kinds of edges: input, output and
internal edges. Input (or output) edges are occurrences of input (or output)
variables of the Lustre node. Internal edges correspond to occurrences of local
variables. The operators not, and, pre, and followed by in the operator network
of Figure 1 are connected so that they correspond exactly to the sequence of
operations in the Lustre node Never in Figure 1. At the first execution cycle,
the output never_A from the followed by operator is the input edge L1 (negation
of input A). For the remaining execution cycles, the output is the input edge L3
(conjunction of previous never_A and the negation of A).

2.2 Lustre Coverage Criteria

Given an operator network N, paths in the program can be viewed as possible
directions of flows from the input to the output. Formally, a path is a finite
sequence of edges 〈e0, e1, . . . , en〉, such that for ∀iε [0, n − 1], ei+1 is a successor
of ei in N. A unit path is a path with two successive edges 〈ei, ei+1〉. For instance,
in the operator network of Figure 1, we can find the following paths.

p1 = 〈A, L1, never_A〉; p2 = 〈A, L1, L3, never_A〉;
p3 = 〈A, L1, never_A, L2, L3, never_A〉;
p4 = 〈A, L1, L3, never_A, L2, L3, never_A〉
All these paths are complete paths, because they connect a program input

with a program output; the paths p1 and p2 are elementary paths, because they
contain no cycles while the paths p3 and p4 contain one cycle2. Lakehal et al.[6]

2 Cyclic paths contain one or more pre operators.
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Table 1. Activation conditions for Boolean/Relational/Conditional operators

Operator Activation condition

s = NOT (e) AC (e, s) = true

s = AND (a, b) AC (a, s) = not (a) or b; AC (b, s) = not (b) or a

s = OR (a, b) AC (a, s) = a or not (b); AC (b, s) = b or not (a)

s = ITE (c, a, b) AC (c, s) = true; AC (a, s) = c; AC (b, s) = not (c)

s = op (e), AC (e, s) = true

where opε {<, >,≤,≥, =}
s = op (a, b), AC (a, s) = true

where opε {+,−, �, /} AC (b, s) = true

Table 2. Activation condition definitions using path prefix p′ and last operator

Last Operator Activation condition

Boolean/Relational/Conditional AC (p) = AC(p′) and OC(en−1, en)

FBY (init, nonInit) AC (p) = AC(p′) -> false for initial cycle

AC (p) = false -> AC(p′) for all but the initial cycle

PRE (e) AC (p) = false -> pre
(
AC(p′)

)

only considered paths of finite length. A path is considered finite if it contains
no cycles or if the number of cycles is limited.

Lakehal et al. associate a notion of an activation condition with each path.
When the activation condition of a path is true, any change in the path en-
try value causes eventually the modification of the path exit value. A path is
activated if its activation condition has been true at least once during an execu-
tion. Table 1 summarizes the formal expressions of the activation conditions for
boolean, relational, and conditional Lustre operators. In this table, each expres-
sion s = op (e) in the first column, that uses the operator op with the input e and
output s, is paired with the respective activation condition AC (e, s) for the unit
path 〈e, s〉 formed with operator op. Activation condition for a unit path with
the NOT operator is always true, since the output is always affected by changes
in the input. For operators with more than one input, such as AND(a, b), there
will be more than one unit path –〈a, s〉and〈b, s〉– from each input to the output.
The activation conditions for such operators are listed from each operator input
to each output. To exemplify, consider the activation conditions for AND(a, b)
–AC(a, s), and AC(b, s). The activation condition for the unit path from input
a to output s, AC(a, s), is true when the effect of input a propagates to the
output s. This happens when input a is false, in which case the output is false
regardless of the value of input b. It also occurs when input b is true, the output
value solely depends on the value of input a. As a result, AC(a, s) = not(a) or b.
The activation condition, AC(b, s), from input b is computed in a similar fashion.

For a given path p of length n, 〈e1, ...., en−1, en〉, the activation condition
AC(p) is recursively defined as a function of the last operator op in it (en−1 ∈
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in(op) and en ∈ out(op)) and its path prefix p′ of length n − 1,〈e1, ...., en−1〉. If
p is a single edge (n = 1), AC(p) is true. Table 2 presents definitions of AC(p)
based on the last operator op and the path prefix p′. Let OC(en−1, en) be the
activation condition associated with operator op on the unit path (en−1, en).

To illustrate the activation condition computation, consider the path p2 =
〈A, L1, L3, never_A〉 in the operator network for the node Never in Figure 2.
Path p2 and its sub paths are illustrated in Figure 2. The activation condition
for p2 will be a boolean expression that gives the condition under which ef-
fect of input A progresses to output never_A. To calculate this condition, we
progressively apply the rules for the activation conditions of the corresponding
operators in Table 1 and Table 2. Equations (1), (2), (3), and (4) shown below
along with Figure2 illustrate this computation. We start from the end of the
path and progress towards the beginning, moving one step at a time along the
unit paths.

AC (p2) = false → AC (p′) where p′ = 〈A, L1, L3〉 . (1)

AC(p′) = not(L1) or pre(never_A) and AC(p′′) (2)

AC(p′′) = true (3)

Upon backward substitution of values for AC(p′) and AC(p′′) from Equations 2
and 3, respectively, into Equation 1 we get

AC (p2) = false → Aor pre (never_A) (4)

The activation condition for path p2 in Equation 4 states that at the first exe-
cution cycle, the path p2 is not activated. For the remaining cycles, to activate
path p2 either the input A needs to be true at the current execution cycle or the
output at the previous cycle needs to be true.

Criteria Definition. Lakehal et al.[6] defined three coverage criteria for
Lustre/SCADE programs and implemented a coverage measurement tool called
Lustructu based on the definitions. The coverage definitions are for a given
finite path length. To understand our contributions in extending the criteria
later in the paper, we present the formal definitions of the criteria from [6].

Path P2 in node Never

Path P2 as a unit path 
 with prefix p'

Path p' as a unit path
 with prefix p''

Path p''

p' = <p'', L3> p'' = <A,L1>p2 = <p', never_A>

Fig. 2. Path p2 and its sub paths in node Never
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node2

pre

node1

node4

node3

node5

Fig. 3. Example of a complex Lustre program

Let T be the set of test sets (input vectors) and Pn = {p|length(p) ≤ n} the
set of all paths in the operator network whose length is less than or equal to n.
The input of a path p is denoted as in (p) and a path edge is denoted as e. A
family of criteria were defined by Lakehal et al. for a finite path length n:

Basic Coverage Criterion (BC). This criterion is satisfied if there is a set
of test input sequences, T , that activates at least once the set Pn. Formally,
∀p ∈ Pn, ∃t ∈ T : AC (p) = true. The aim of this criterion is to ensure that all
dependencies between inputs and outputs have been exercised at least once.

Elementary Conditions Criterion (ECC). In order to satisfy this criterion
for a path p, it is required that the path p be activated for both values, true
and false, of the input (taking only boolean input variables into consideration).
Formally, ∀p ∈ Pn, ∃t1 ∈ T : in (p) ∧ AC (p) = true and ∃t2 ∈ T : not (in (p)) ∧
AC (p) = true. This criterion is stronger than the basic criterion since it also
takes into account the impact of input value variations on the output.

Multiple Conditions Criterion (MCC). This criterion checks whether the
path output depends on all combinations of the path edges, including the internal
ones. To satisfy this criterion, test input sequences need to ensure that the
activation condition for each edge value along the path is satisfied. Formally,
∀p ∈ Pn, ∀e ∈ p, ∃t1 ∈ T : e∧AC (p) = true and ∃t2 ∈ T : not (e)∧AC (p) = true.

For a given path length n, [6] shows that MCC n subsumes ECC n which in
turn subsumes BC n.

3 Integration Testing Approach

3.1 Motivation

For simple Lustre programs, coverage computation can be performed in a short
amount of time. If the path length and number of paths is low, the number of
activation conditions to be satisfied is also low, and unsatisfied conditions can
be easily identified and analyzed by test designers. However, for complex Lustre
programs, the number of activation conditions is usually high. This is particularly
true for the MCC criterion, where the number of activation conditions to be
satisfied increases dramatically with the length and the number of paths. As a
result, coverage assessment and analysis become prohibitively expensive making
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the criteria inapplicable. One of the primary reasons for the extremely high
number of paths and activation conditions in complex Lustre programs is due to
the presence of node calls. For instance, Figure 3 partially illustrates a complex
node with calls to node1, node2, node3, node4, and node5. In order to measure
coverage of the complex node in Figure 3 with the existing definition of Lustre
criteria in [6], the node calls would have to be expanded into their definitions.
The paths and the corresponding activation conditions are locally computed
within each expanded node call, and these are then combined with expressions
in the global node to compute the final activation conditions. This often results
in a huge number of paths and activation conditions in the global node.

3.2 Path Activation Conditions

To help tackle this issue of intractable number of activation conditions, we define
an approximation of the operator network by abstracting the called nodes. We
replace calls to nodes with a new operator, the NODE operator, in the operator
network. The inputs and the outputs of the NODE operator are the inputs and the
outputs of the called node. This abstraction avoids the entire set of paths of the
called node from being taken into account for coverage assessment. However,
the abstraction is such that it is still possible to determine whether the output
of a called node depends on a given input of the called node. More precisely,
as illustrated in Figure 4, at the global level the set of paths beginning from
an input ei and ending at an output si, in the operator network of the called
node, is represented by a single unit path p = 〈ei, si〉 using the NODE operator. To
compute the activation condition of p, we first compute the activation conditions
of all paths from the edge ei to the edge si in the called node. We then combine
these activation conditions using the disjunction operator into a single activation
condition for p.

To exemplify, consider the unit path p2 = 〈e2, s2〉 at the global level in Fig-
ure 4. To compute the activation condition of p2 with the NODE operator
NODE0, we first compute the activation conditions of paths from the edge e2
to the edge s2 in the called node. Depending on the number of cycles we con-
sider in the called node, the set of paths from e2 (input b) to s2 (output d) in
the called node is {〈b, d〉, 〈b, d, t1, d〉, 〈b, d, t1, d, t1, d〉,〈b, t1, d, t1, d, t1, d〉...}. We
compute activation conditions of each of these paths; AC(〈b, d〉), AC(〈b, d, t1, d〉),
and so forth. Finally, we compute the activation condition of the unit path
p2 at the global level as the disjunction of each of these individual activa-
tion conditions (depending on the number of cycles considered), AC(p2) =
AC(〈b, d〉) ∨ AC(〈b, d, t1, d〉) ∨ AC(〈b, d, t1, d, t1, d〉) ∨ ...

We would like readers to note that, even though the proposed abstraction
requires the computation of activation conditions for paths in the called node,
the computation effort is only increased by a linear amount (by the number of
paths from the edge ei to the edge si in the called node). The number of paths
and activation conditions in the callee node is not affected by the number of
paths from the edge ei to the edge si in the called node since the abstraction
represents them by a unit path. This, however, is not the case in the original
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Global level (NODE0 abstracted) Local level (NODE0 expanded)
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pre

NODE0 out
e1 s1

in1

in2
e2

t1

cNODE1b
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pre d

Fig. 4. A Lustre node using a compound operator

criteria definition. The original definition substitutes the entire operator network
of the called node into the callee node, resulting in an exponential increase in
the number of paths and activation conditions in the callee node. As a result,
our approach still results in significant savings in effort required for coverage
assessment. In Section 4, we illustrate the difference in number of activation
conditions between the original criteria definitions and our proposed extension
using a case study.

A called node may also contain calls to other nodes which in turn may call
other nodes and so on. An example of such an occurrence is shown in Figure 4,
where at the global level there is a call to NODE0 which in turn calls NODE1.
As a result, we get a tree structure of called nodes and every level of this tree
corresponds to a different depth of node integration. In Figure 4(a), let AC0 (p)
be the activation condition of p = 〈e1, s1〉 at level zero. At level one, since NODE0
calls NODE1 (Figure 4(b)), the following expression describes the correlation of
activation conditions between the different levels of integration:

AC0 (〈e1, s1〉) = AC1 (〈a, c〉) (5)

In general, at level (or depth) m, a path activation condition depends on the
activation conditions at level m + 1, as seen in the following definition.

Definition 1. Let E and S be the sets of inputs and outputs respectively of a
NODE operator at level m such that there is an input ei ∈ E and an output si ∈ S.
Let n>0 be any positive integer and p1, p2, . . . , pk be the paths from the input
ei to the output si the length of which is less than or equal to n. The abstract
activation condition of the unit path p = 〈ei, si〉 at depth m and path length
n is defined as follows:

ACm
n (p) = ACm+1

n (p1) ∨ ACm+1
n (p2) ∨ · · · ∨ ACm+1

n (pk) (6)

Similar to the activation condition definition for the basic operators, the abstract
activation condition signifies the propagation of the effect of the input value to
the output. Disjunction of the activation conditions of the involved paths, ensures
that at least one of the dependencies of si on ei is taken into account. In other
words, if at least one path of length lower or equal to n in the called node is
activated, then the unit path p for the NODE operator is activated, ACm

n (p) =
true, implying that the value of the output si is affected by the value of the
input ei of the NODE operator.
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3.3 Extended Criteria Definition

We extend the original Lustre coverage criteria for unit testing[6] to support node
integration using the abstraction technique discussed in the previous section. We
replace calls to nodes with the NODE operator. We re-define the three classes of
path-based criteria—BC, ECC, and MCC—to account for node integration. We
use three input parameters in the definition of each criterion,

1. Depth of integration: This parameter determines the level at which abstrac-
tion of node calls using the NODE operator will begin (i.e where the abstract
activation condition will be used). This parameter is not present in the def-
inition of the original criteria.

2. Maximum path length from an input to an output: This parameter is used
in the original criteria definition. However, the paths to be covered and their
length vary depending on the depth of integration parameter.

3. Number of cycles to consider in paths: This parameter is used in the original
criteria definition to indicate the number of cycles to take into account in
paths whose length is at most equal to the maximum path length parameter.

Depth of Integration. Coverage analysis of a node using the parameter
depth = i indicates that called nodes up until depth i are inline expanded,
while called nodes at depths i and deeper than i are abstracted using the NODE
operator. The node being covered corresponds to depth 0. For instance, in Fig-
ure 5 that represents the call graph of an application with several embedded
nodes (used in [6]), covering node #1 using the parameter depth = 0 implies
that calls to all nodes starting from nodes #2, #3, and #4 (since they are called
by node#1) will be abstracted using the NODE operator. If we set the depth of
integration as depth = 1, it implies that calls to nodes #2, #3, and #4 will be
inline expanded and all other nodes (that are in turn called by nodes #2, #3,
and #4) will be replaced by the NODE operator. Developers can choose a value
for the integration depth parameter according to the complexity of the system
being covered. If no value is specified for this parameter, we use a default value
of 0 corresponding to the common definition of integration testing (focusing on
the current node and using abstractions for all called nodes).

Maximum Path Length. The maximum path length parameter used in the
original criteria definition in [6] takes on a slightly new meaning in our criteria
definition with the node operators and the integration depth parameter. For
instance, in the node of Figure 4, for the paths with length 4, we can identify
path p = 〈in2, e2, s2, out〉 if we consider an integration depth of 0 (i.e. NODE0 is
abstracted using the node operator). However, if we use an integration depth of
1, NODE0 will be unfolded. The previously considered path p = 〈in2, e2, s2, out〉
with length 4 will now correspond to p′ = 〈in2, b, d, out〉 with a path length of 4
or to p′′ = 〈in2, b, d, t1, d, out〉 with a path length of 6 if we consider one cycle.
Additionally, the computation of the abstract activation conditions associated
with a NODE operator for called node N depends on the maximum path length
and number of cycles we choose in N.
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Fig. 5. Structure of a large application

Criteria Definition. We extend the family of criteria defined for unit
testing in Section 2.2 (BC, ECC, MCC), for integration testing with the NODE
operator. We name the extended criteria iBC, iECC, and iMCC (i stands for
“integration-oriented”).

Let m be the integration depth, n the maximum path length, Pn the set of
all paths of length lower or equal to n at this depth, l the maximum path length
to be considered for the abstract activation condition computation in NODE
operators, and T the set of input sequences. Let in (p) denote the input of path
p and e denote an internal edge.

The integration-oriented Basic Coverage criterion (iBC ) requires activating
at least once all the paths in the set Pn for the given depth of integration.

Definition 2. The operator network is covered according to the integration-
oriented basic coverage criterion iBCm

n,l if and only if: ∀p ∈ Pn, ∃t ∈ T :
ACm

l (p) = true.
The integration-oriented Elementary Conditions Coverage criterion (iECC )

requires activating each path in Pn for both possible values of its boolean inputs,
true and false.

Definition 3. The operator network is covered according to the elementary con-
ditions criterion iECCm

n,l if and only if: ∀p ∈ Pn, ∃t1 ∈ T : in (p) ∧ ACm
l (p) =

true and ∃t2 ∈ T : not (in (p)) ∧ ACm
l (p) = true.

The integration-oriented Multiple Conditions Coverage criterion (iMCC ) re-
quires paths in Pn to be activated for every value of all its boolean edges, in-
cluding internal ones.

Definition 4. The operator network is covered according to the integration-
oriented multiple conditions criterion iMCCm

n,l if and only if: ∀p ∈ Pn, ∀e ∈ p,
∃t1 ∈ T : e ∧ ACm

l (p) = true and ∃t2 ∈ T : not (e) ∧ ACm
l (p) = true.

Subsumption Relation. From the above definitions, it clearly follows that
the satisfaction of a criterion iC ∈ {iBC, iECC, iMCC} for a maximum path
length n in an operator network implies the satisfaction of the criterion for all
path lengths less than n in the operator network. This subsumption relation
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is assuming a given integration depth m and maximum path length l for the
abstract activation conditions. In other words, iCm

s,l ⊆ iCm
n,l for any s ≤ n.

With regard to the integration depth parameter, there is no subsumption rela-
tion. Consider, for instance, iBCm

n,l and iBCm−1
n,l . The satisfaction of the former

requires to unfold some node calls that are abstracted in the latter at depth m-1.
As a result, the paths of length less than or equal to n may be different between
the two criteria and, therefore, the subsumption relation is not obvious. For the
same reason, the original criteria definitions do not subsume the extended crite-
ria. Abstraction using the node operator results in a different operator network
for the extended criteria from the original criteria. As a result, for the same
maximum path length n in the operator network of the global node, the set
of paths considered for satisfaction of criterion C ∈ {BC, ECC, MCC} does
not necessarily subsume the set of paths considered for satisfaction of criterion
iC ∈ {iBC, iECC, iMCC}.

Lustructu Tool3. For coverage measurement using the extended criteria
definitions presented in this Section, we enhanced the existing Lustructu tool
presented in [6] to support abstraction of node calls and computation of ab-
stract activation conditions. We currently only support an integration depth of
0, i.e., all node calls are abstracted using the NODE operator. In the future, we
plan to support other values of the integration depth parameter. The Lustructu
tool takes as input the Lustre program, name of the node to be integrated,
coverage criteria to be measured, and the parameters for the coverage criteria
(path length, number of cycles). The tool computes and returns the activation
conditions for the integrated node for the selected criteria.

4 Empirical Evaluation

In this section, we evaluate the relative effectiveness of the extended coverage
criteria against the original Lustre coverage criteria using an Alarm Manage-
ment system (AMS) that was developed for an embedded software in the field
of avionics. The main functionality of the system is to set off an alarm when
the difference between a flight parameter provided by the pilot, and the value
calculated by the system using sensors exceeds a threshold value. We believe the
system, even though relatively small, is representative of systems in this appli-
cation area. The AMS is implemented using twenty one Lustre nodes and has
several calls between nodes.

Table 3 provides size information on the biggest seven of the twenty one nodes
in the system4. The main node in the system (node #1) calls node #2 and
node #3 that together implement the core functionality of the system. For our
evaluation, we use node #2 in the AMS, since it contains several nested temporal
loops and two levels of integration, rendering it complex and interesting for us.
The two levels of integration in node#2, as depicted by the call graph in Figure 6,
3 http://membres-liglab.imag.fr/parissis/TOOLS/LUSTRUCTU/
4 The remaining fourteen nodes are relatively small and not complex.
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Table 3. Size of the alarm management system nodes

Code Op. Net.

node LOC inputs outputs edges operators

#1 830 29 13 275 190

#2 148 10 3 52 32

#3 157 10 1 59 37

Code Op. Net.

node LOC inputs outputs edges operators

#4 148 10 3 52 32

#5 132 6 5 36 24

#6 98 9 2 33 22

#7 96 7 2 33 22

node #2

PULSE1BASCS Alarm

BASCR

Fig. 6. Call graph for node #1

is as a result of calls to three nodes, two of which in turn call another node. In
our evaluation of node #2, we attempt to answer the following two questions,

1. Does the proposed integration oriented criteria reduce the testing effort when
compared to the original criteria for node integration?

2. Is the proposed integration oriented criteria effective in fault finding?

To answer the first question we observe (1) whether the number of activation
conditions needed to satisfy the extended criteria is lower than what is needed
for the original criteria, and (2) whether test sequences needed for achieving
coverage using the extended criteria are shorter than test sequences needed for
the original criteria. To address the second question with regard to fault finding
effectiveness, we create several mutations of node#2 and determine whether tests
are effective in revealing the mutants.

4.1 Testing Effort

In this section we attempt to answer the first question in our evaluation with
regard to testing effort. We assess the testing effort in two ways (1) using number
of activation conditions, and (2) using test sequence length.

Number of Activation Conditions. Comparing the number of activation condi-
tions between the two criteria helps assess the relative difficulty in satisfying the
criteria. It also serves as a good indicator of the relative effort that needs to be
spent in coverage measurement and analysis, since more activation conditions
usually means a greater number of test cases and longer test case execution time.
Analysis of why satisfactory coverage is not achieved becomes difficult with a
large number of activation conditions. In our evaluation, we compare the number
of activation conditions required for iBC vs BC, iECC vs ECC, and iMCC vs
MCC to assess the relative testing effort involved.
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Table 4. Number of activation conditions for node #2

# ACs

# cycles iBC iECC iMCC BC ECC MCC

1 29 58 342 50 100 1330

3 29 58 342 131 262 4974

In Table 4, we present the number of activation conditions for the extended
versus the original criteria for node #2. The data in the table corresponds to
complete paths with at most 1 and 3 cycles. As seen in Table 4, the extended
criteria, iBC, iECC and iMCC, require significantly fewer activation conditions
than their counterpart with no integration, BC, ECC, and MCC, respectively5.
The difference in number of activation conditions is particularly large between
the iMCC and MCC criteria, 342 vs 1330 for 1 cycle and 342 vs 4974 for 3
cycles. As the number of cycles increase, the difference in activation conditions
becomes more considerable. From these results, we conclude that the number of
activation conditions for the extended criteria is significantly smaller than the
original Lustre coverage criteria for node#2.

Test Sequence Length. We now compare the length of test sequences needed to
satisfy the extended criteria versus the original criteria. We use the length of
test sequences as an indicator of testing effort based on the assumption that
developers would need to spend more time and effort constructing longer test
sequences. In order to assess the testing effort in an unbiased fashion, we use
randomly generated test sequences and measure both criteria. We generated test
sequences varying from length 1 up to 1000. We generated five such sets. We do
this to reduce the probability of skewing the results by accidentally picking an
excellent (or terrible) set of test sequences. We measured the coverage criteria
(BC, ECC, and MCC – with and without node integration) over varying test
sequence lengths using the following steps:

1. Randomly generate test input sequences of length 1 upto 1000. Generate five
such sets with different seeds for random generation.

2. Using each of the test sequences in step 1, execute the coverage node for the
criteria and compute the coverage achieved.

3. Average the coverage achieved over the five sets of test sequences.

Figure 7 shows the relation between coverage achieved and test sequence length
for iBC vs BC, iECC vs ECC, iMCC vs MCC. Note that these results consider
paths with cycles repeating at most 3 times in the node. Figure 7 illustrates that
5 Node #2 does not contain any temporal loops at the top level (level 1 in Figure 6).

As a result, the number of paths for the extended version with the NODE operator
is constant regardless of the number of cycles considered. In contrast, in the original
version, the number of paths dramatically increases with the number of cycles since
the called nodes contain temporal loops. If Node #2 contained temporal loops at
the top level, the difference in activation conditions would be more considerable.
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Fig. 7. Comparison of coverage criteria for test sequence lengths 1 to 1000

to achieve the same level of coverage, the extended criteria require shorter test
sequences in all three cases - BC, ECC, and MCC. For instance, to achieve 80%
iMCC we need test sequences of length 6, whereas to achieve 80% MCC we need
test sequences of length 30. Additionally, for all three extended criteria it was
possible to achieve 100% coverage with the randomly generated test sequences.
On the other hand, for the original criteria, we could only achieve 100% coverage
for BC. The maximum coverage achieved for ECC and MCC was only 90% and
89%, respectively, even with test sequences of length 1000. This may be either
because the criteria have activation conditions that are impossible to satisfy, or
because some of the activation conditions require input combinations that are
rare (absent in the generated test sequences).

For iBC vs BC in Figure 7, 100% coverage is achieved for both criteria using
test sequences of length at least 20. However, the gradient of the curves for
the two criteria are very different. Test sequences of length less than 20 achieve
higher iBC coverage than BC. We make a similar observation for iECC vs ECC.
Test sequences of length 50 were sufficient to achieve maximum seen coverage
for both iECC and ECC (100% for iECC and 90% for ECC). Any given test
sequence achieves higher iECC coverage than ECC. For iMCC vs MCC, we find
test sequences of length 50 were sufficient to achieve 100% coverage of the iMCC
criterion. On the other hand, we need test sequences of length at least 500 to
achieve the maximum seen coverage of 89.67% for MCC. In addition, like for BC
and ECC, any given test sequence achieves higher iMCC coverage than MCC.

To summarize, the observations made with Figure 7 indicate that the extended
criteria require shorter test sequences, and therefore lesser testing effort, than
the original criteria for the same level of coverage. The difference is especially
significant in the case of iMCC vs MCC. Additionally, it is possible to achieve
100% coverage of the extended criteria but not of the original criteria (except
for BC) with the randomly generated test sequences.

Based on these observations and the conclusions about the number of activa-
tion conditions made previously, we believe that the extended criteria are more
practical and feasible for test adequacy measurement over large systems.
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Fig. 8. Mutation Score for Extended Criteria

4.2 Fault Finding Effectiveness

Mutation testing [3] is widely used as a means for assessing the capability of
a test set in revealing faults. In our evaluation, we created mutants by seeding
a single fault at a time in the original Lustre specification. To seed a fault, we
used a tool that randomly selects a Lustre operator in the original program
and replaces it with a mutant operator in such a way that the mutant program
is syntactically correct. Table 5 illustrates the Lustre operators we selected
and the corresponding mutations for it. We created 26 mutants of node #2. Our
procedure for evaluating fault finding effectiveness involved the following steps:

1. Run each of the randomly generated test sequences in Section 4.1 (5 sets of
test sequences with length 1 to 1000) on the original Lustre specification of
node #2 and record the output.

2. For each of the 26 mutants, run each of the randomly generated test se-
quences used in step 1 and record the output.

3. For each test sequence, compare the mutant output in step 2 with the cor-
responding oracle output in step 1. If there is a difference, then the test se-
quence killed (or revealed) the mutation. Otherwise, the test sequence failed
to reveal the seeded fault.

4. The mutation score of a test sequence is the ratio of the number of killed
mutants to the total number of mutants (26 in our evaluation).

5. We average the mutation score for each test sequence length over the 5
generated sets.

Figure 8 plots the achieved coverage for iBC, iECC and iMCC and the mutation
score. There is a correlation between the criteria satisfaction ratio and the num-
ber of killed mutants. This correlation is low for iBC (correlation coefficient of
0.64) since it is a rather weak measure of coverage. Correlation for iECC (0.87)
is higher and it is more effective in killing the mutants. iMCC is the most effec-
tive in killing the mutants with the highest correlation (0.94). Figure 8 compares

Table 5. Mutations

operator not and or pre <, >, =, ≤, ≥ +, −�, /

mutant pre, [delete] or, fby and, fby not, [delete] <, >, =, ≤, ≥ +, −�, /
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the mutation score achieved by the extended criterion, iMCC, versus MCC. It is
evident that the original criterion is definitely more rigorous than the extended
criterion. For instance, achieving 80% MCC reveals 90% of the seeded faults.
On the other hand, achieving 80% iMCC only reveals 65% of the seeded faults.
Nevertheless, as seen in Section 4.1, achieving the original criterion requires test
sequences significantly longer than what is needed for the extended criterion.
The shortest test sequence that achieves maximum MCC (89%) is of length 500
and reveals 100% of the faults. The shortest test sequence that achieves maxi-
mum iMCC (100%) is of length 50 and reveals 94% of the faults. On an average,
this shortest test sequence failed to kill 1 of the 26 mutants. In all 5 sets of ran-
domly generated tests, the shortest test sequence achieving 100% iMCC failed
to kill one particular mutant where the or Lustre operator was replaced by
the fby operator. Test sequences of length 200 or greater were able to kill this
particular mutant. Admittedly, abstraction of the activation conditions over the
called nodes leads to a trade off between the test sequence length needed for
maximum coverage and the fault finding effectiveness. Nevertheless, as seen in
our preliminary evaluation, the iMCC criteria is 94% effective in fault finding,
only missing one of the 26 faults, with a reasonably short test sequence.

4.3 Threats to Validity

We face two threats to the validity of our evaluation. First, the AMS is relatively
small when compared to other industrial systems. However, it is representative
of other systems in the embedded systems domain. Second, the mutants were
created by changing the Lustre operators. These mutants may not be repre-
sentative of faults encountered in practice. However, since information on faults
that commonly occur is not easy to come by, the fault finding assessment using
the mutations is a helpful indicator of the effectiveness of the technique.

5 Conclusion

Previous work [6] proposed structural coverage criteria over Lustre programs
for measuring unit testing adequacy. This criteria when applied to integration
testing experiences severe scalability issues because of the exponential increase
in the number of activation conditions to be covered for nodes with calls to other
nodes. In this paper, we have presented an extended definition of the Lustre
structural coverage criteria, called iBC, iECC, iMCC, that helps to address this
scalability problem. We use an abstraction that replaces the calls to nodes with a
NODE operator. This abstraction avoids the entire set of paths of the called node
from being taken into account for coverage assessment. However, the abstraction
ensures that we can still determine whether the output depends on a given
input of the called node. To provide flexibility in dealing with specific needs and
complexity of systems, we provide parameters in the criteria definition such as
integration depth and path length inside integrated nodes that can be tuned by
developers. We hypothesize that the extended criteria will result in considerable
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savings in testing effort while still being effective at fault finding. We conducted
a preliminary evaluation of this hypothesis using an Alarm Management System.
The extended criteria reduced the number of activation conditions by as much
as 93% (for MCC) and was effective at revealing 94% of the seeded faults.
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Abstract. For several years, Rockwell Collins has been developing and
using a verification framework for MATLAB Simulink c© and SCADE
SuiteTMmodels that can generate input for different proof engines. Re-
cently, we have used this framework to analyze aerospace domain models
containing arithmetic computations. In particular, we investigated the
properties of a triplex sensor voter, which is a redundancy management
unit implemented using linear arithmetic operations as well as condi-
tional expressions (such as saturation). The objective of this analysis
was to analyze functional and non-functional properties, but also to pa-
rameterize certain parts of the model based on the analysis results of
other parts. In this article, we focus on results about the reachable state
space of the voter, which prove the bounded-input bounded-output sta-
bility of the system, and the absence of arithmetic overflows. We also
consider implementations using floating point arithmetic.

1 Introduction

In order to meet their reliability requirements, safety-critical systems such as
digital flight control typically rely on redundant hardware. Redundancy man-
agement [8] has been investigated since the 1960s. While first implementations
were based on analog hardware, the introduction of digital computers in the
1970’s enabled the development of systems based on fault detection and isola-
tion. A common form of redundancy used in aircraft systems is Triple Modular
Redundancy (TMR), in which three instances of a device run in parallel and a
voter is used to process the results of these instances.

TMR can be applied on different levels of a system, starting with the de-
vices that furnish critical information about its environment and therefore are
required to provide high reliability. Sensors that measure physical quantities like
air data on aircraft are often exposed to extreme conditions and may be subject
to temporary or even permanent faults. To increase the integrity of the measure-
ment, TMR is implemented in this context by using three identical sensors and
computing an output value from the three input values by a triplex sensor voter
algorithm, that might for example calculate an average, or select the midvalue.
If one of the sensor values exhibits an unacceptable discrepancy from the two
other values, it is considered as faulty, and the voter switches to a degraded
mode in which only the two valid inputs are taken into account. This implies
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that TMR is based on the assumption that two sensors never fail exactly at the
same instant, which must be justified by the very low probability of such an
event.

A sensor can be considered as defective if the difference with the other sensors
is very high over a short time span, or if it is moderately different over a longer
period of time. The thresholds that are used in the fault detection have to be
chosen carefully since a sensor that is still in the limits of its tolerance should not
be disconnected because a threshold was chosen too low. Conversely, a threshold
chosen too large may compromise the measurement in a potentially dangerous
way. Furthermore, when a sensor is disconnected, the transient of the voter
output must be limited so as to not perturb the systems that rely on the voter
output.

The problems of choosing the threshold values and guaranteeing an upper
bound for the transient can benefit from a formal analysis that can safely ap-
proximate all possible internal states of a system and thereby consider all possible
input scenarios. In this way, it can be guaranteed that the sensor voter design
meets its safety requirements. Usually, the fault detection thresholds and tran-
sients are determined by simulation, which is very time consuming since many
different cases need to be considered, and does not guarantee that input se-
quences that lead to extreme cases have been taken into account. Furthermore,
even if the algorithm of a system exhibits a correct behaviour on the model level,
it is still possible that an implementation behaves incorrectly due to the use of
floating point hardware in which the occurrence of rounding errors is unavoidable
in general. In this article, we describe our experience with using formal analysis
to address these issues. We do not present any particular new methodology, but
we investigate if and how existing analysis tools can be used to satisfy industrial
needs.

An additional objective of this article is to make the triplex sensor voter pub-
licly available to the research community, who might use it as an industrial case
study in order to experiment new techniques. Both model checking and abstract
interpretation could be used to achieve a higher degree of automatization and
a more precise representation of the reachable state space. Following this objec-
tive, some of the results described here have been presented orally at workshops
in the past (like for example [4]), however they have not been the subject of a
refereed written article.

The rest of this article is organized as follows. In Section 2, we describe the
system that we have analyzed, a triplex sensor voter, and in Section 3, we present
the objectives and results of an analysis of the Simulink model which specifies the
voter. Implementations using floating point arithmetic are considered in Section
4, where we present analysis results about such implementations. In Section 5,
we describe a simple method to find invariants automatically, which showed to
be very useful in practice. The lessons we have learned from the analysis are
presented in Section 6, and we conclude with an outlook on future work in
Section 7.
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2 The Triplex Voter

The triplex sensor voter we analyzed is an example for a voter that is used on
commercial aircraft. It is modeled in the widely used Simulink [10] environment,
and we used the Rockwell Collins translation framework [7] to analyze it using
formal methods, much as was done in the work presented in [3]. However, in [3],
real values are abstracted by integer values, and the analyzed voter is different in
that it is implemented by a pure function, in contrast to the voter in the present
work which uses integrators.

The triplex sensor voter computes an output value from inputs provided by
three redundant sensors, possibly detecting a sensor failure when an input value
presents a sufficiently large mismatch with respect to the other inputs over a
certain period of time. In its Simulink model it is possible to distinguish blocks
that implement the control part (reset logic, failure processing) from blocks that
implement the output value computation. The former consists mainly of oper-
ations with Boolean output (comparators, logical operations) while the latter
contains arithmetic operations. Following a compositional verification approach,
we consider these blocks separately. In the work described in this article we
focused on the output value computation block and will not describe the fail-
ure detection logic here. In its normal operational mode in which no failure has
been detected, the voter takes three input values and determines the output
value in the following way: for every input value there is an internal equaliza-
tion value that is subtracted from the corresponding input value in order to
obtain an equalized value. Then, the middle value of the three equalized values
is chosen. A block diagram of the voter without failure detection is shown in
figure 1.

Fig. 1. Block diagram of the triplex sensor voter (without failure detection)
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Note that the voter does not compute an average value from the three input
values, but chooses the middle value of the three equalized values. This has the
advantage of robustness against failures in which one of the sensors gives sud-
denly extremely high or extremely low values since the output does not depend
on the maximal and the minimal values, but only on the middle value.

The role of the equalization values is to compensate offset errors of the sen-
sors, assuming that the middle value gives the most accurate measurement. For
example, if the input values have the form (xt +1.0, xt, xt−1.0), the equalization
values will tend to (1.0, 0.0,−1.0), thus the equalized values tend to (xt, xt, xt).
The behaviour of the voter is illustrated by the diagram in figure 2. Since the
subject of this article is the analysis of the voter, but not the voter itself, we
will not give any further explanation or motivation of its behaviour. It might
even be preferable to have an analysis method which does not require a deeper
understanding of the dynamical behaviour of the system itself.

Fig. 2. Simulation trace of the triplex voter: if the input values stay constant, the
equalized values tend to the middle input value. The middle equalized value is chosen
as output.

Let satl(x) denote saturation of x to l, i.e.

satl(x) =

⎧
⎨

⎩

l if x > l
−l if x < −l
x otherwise

The behaviour of the voter in normal operation mode can then be described
by the following recurrence relations:
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EqualizationA0 = 0.0
EqualizationB0 = 0.0
EqualizationC0 = 0.0

Centeringt = middleV alue(EqualizationAt, EqualizationBt,
EqualizationCt)

EqualizedAt = InputAt − EqualizationAt

EqualizedBt = InputBt − EqualizationBt

EqualizedCt = InputCt − EqualizationCt

V oterOutputt = middleV alue(EqualizedAt, EqualizedBt, EqualizedCt)

EqualizationAt+1 = EqualizationAt+
0.05 ∗ (sat0.5(EqualizedAt − V oterOutputt) − sat0.25(Centeringt))

EqualizationBt+1 = EqualizationBt+
0.05 ∗ (sat0.5(EqualizedBt − V oterOutputt) − sat0.25(Centeringt))

EqualizationCt+1 = EqualizationCt+
0.05 ∗ (sat0.5(EqualizedCt − V oterOutputt) − sat0.25(Centeringt))

These equations can easily be expressed in a synchronous language like Lus-
tre [2] in order to analyze them with formal verification tools. In practice, a
Lustre description can be obtained automatically from the original Simulink
model by using the Rockwell Collins verification framework [7].

Note that the state of the voter at a given time step is completely determined
by the three equalization values: the output is computed from the input values
and from the equalization values.

The saturation parameters 0.5 and 0.25 have been fixed exemplarily. They
limit the maximum rate of change of the voter output and depend on the context
in which the voter is used. The parameter 0.05 expresses the sensor sample rate
since the voter is usually run with a frequency of 20Hz. In section 5, we will
mention how we have analyzed the influence of these parameters.

3 Analysis of the Simulink Model

Analysis of the triplex voter was performed using both formal verification and
simulation for the case in which no sensor can fail. Additional analysis is being
performed for the more complicated case in which at most one sensor can fail. For
the formal verification, we used the Prover [9] and the Kind [5] inductive provers.
When we considered only the equations corresponding to normal operation, we
mainly used Kind which takes advantage of the SMT solving capabilities of the
underlying solver. However, on the full model (including fault detection), Kind
was not able to prove the investigated properties, whereas Prover furnished good
results thanks to its capabilities for automatic invariant generation.
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3.1 Properties of Interest

The first analysis objective we were interested in was to prove the bounded-input
bounded-output stability of the system, i.e. that the system output is bounded as
long as the system input is bounded, so that no transient peaks can occur which
might perturbate the control systems which receive the voter output as their
input. In particular, we wanted to prove that the maximal difference between
the voter output and the true value of the quantity measured by the sensors
(represented by the variable TrueV alue) is bounded. We assume that all three
input values differ by at most a certain constant value MaxDev from TrueV alue,
that corresponds to the maximal deviation of a sensor when it operates normally.
This is formally expressed by the constraints

|InputA − TrueV alue| ≤ MaxDev
|InputB − TrueV alue| ≤ MaxDev
|InputC − TrueV alue| ≤ MaxDev

In order to prove that the output value is bounded, it is sufficient to prove
that the centering value is bounded since we can easily prove that for a given
constant C,

|Centering| < C → |V oterOutput − TrueV alue| < MaxDev + C

Since the equalization values depend only on the differences between the input
values and not on their absolute value, we can assume without loss of generality
that the true value is 0.0 to simplify the analysis.

We were also interested in relations between the equalization values that hold
over all reachable states, for example the maximal difference between any two
equalization values. Fault detection (which is not described in this article) is
based on monitoring the equalization values and the equalized values. In the more
complex case in which a sensor can fail, analysis of the equalization values should
allow us to parameterize the fault detection logic and prove that it behaves
correctly.

Furthermore, we were interested to prove an upper bound for the equalization
values, which implies that no arithmetic overflow may occur even if the voter is
operating over long periods of time.

3.2 Analysis Results

In our analysis, we fixed the maximal sensor deviation to 0.2. This value was
recommended as typical by the domain experts and was also large enough to
ensure that the conditional logic implemented in the saturation blocks was in-
voked. By running simulation, we found a possible maximal value of about 0.151
for the centering value. We also tried bounded model checking in order to find
a lower bound for the maximal difference between the true value and the voter
output. However, due to the coefficient 0.05 in the definition of the equalization
values, the change rate of these values is very small and it takes a large number
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of steps to reach extreme values. With bounded model checking, we only found
a maximal centering value of about 0.1.

We also tried an iterative approach, where we first generated a counter ex-
ample for |Centering| < C1 for a small value C1. Then, in the next iteration
we took the state violating |Centering| < C1 found in the previous iteration
and used it as initial state to find a counterexample for |Centering| < C2, with
C2 > C1, and so on for C3, C4, . . . until a value was reached for which no coun-
terexample could be found. This gave slightly better results, but the value found
was still smaller than the one found by simulation, which is certainly due to the
analysis being stuck at a local maximum.

Using the SMT solvers Kind and Prover, we found that the conjunction of the
following expressions constitutes a 1-inductive invariant over the triplex voter
state:

|EqualizationA| < 0.4
|EqualizationB| < 0.4
|EqualizationC| < 0.4

|EqualizationA + EqualizationB + EqualizationC| < 2/3
|EqualizationA− EqualizationB| < 0.4
|EqualizationB − EqualizationC| < 0.4
|EqualizationC − EqualizationA| < 0.4

|Centering| < 0.27

This invariant was found by hand, using the trial and error principle. In the
course of proving these invariants, we also considered and proved several other
expressions, but these did not turn out to be useful in proving our main theorems.
Finding these invariants through trial and error was very time consuming, even
if the execution time of the model checker was never more than a few seconds.
Note that the invariant we have found implies a maximal centering value of 0.27.
By increasing the number of induction steps to 7, we where able to prove that
0.24 is an upper bound for the centering value. There is still uncertainty for
the interval between the maximal value found by simulation (slightly less than
0.151) and 0.24.

The first four lines of the above inequalities already define an inductive invari-
ant. However, the other inequalities are interesting because they give an upper
bound for the difference of two equalization values, which is useful for param-
eterizing the fault detection logic, and an upper bound for the centering value,
which implies an upper bound on the difference between the voter output and
the true value.

The validity of this invariant can be checked by a pencil-and-paper approach
which is tedious, but the symmetry of the voter can be used to limit the number
of cases that need to be considered. We are not aware of any simple mathemat-
ical argument which could explain that the equalization values stay within the
bounds given by the invariant, and which could be found easily by the designer
of the system, thus there is a real interest in a computerized formal analysis.

To improve our insight into why these particular invariants were useful, we
also generated system states through random simulation. Figure 3 shows states
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that were reached during simulation, as well as the approximation of the reach-
able state space by the inductive invariant. More precisely, it shows a projection
of these states to the (EqualizationA, EqualizationB)-plane (the state space itself
is 3-dimensional and includes EqualizationC). The two-dimensional projections
of states reached by simulation are represented as black points while the ap-
proximation of the reachable state space defined by the inductive invariant is
shown as a shaded polygon. In the simulation, all input values were extreme
values, i.e. equal to ±MaxDev, and changed after every 150 steps. It is likely
(however not guaranteed) that certain points that were reached are at the outer
bounds of the state space. From the diagram, we might conclude that the space
of reachable states has a relatively complex form, and cannot be described by
linear expressions in a precise manner. The simulation results shown here do not
claim to be complete in any way, but they are only supposed to give an idea
about the system behaviour, and about maximal values which can effectively be
reached during an execution.

In order to prove an upper bound for Centering that is smaller than 0.24,
the approximation needs to be more precise. However, if we diminish any of the
constants on the right hand side of the inequalities, then the invariant is no
longer inductive.

Note that the square areas on the upper right and lower left corner come
from the inequality |Centering| < 0.24 since this implies that two equalization
values cannot be both greater than 0.24 (otherwise the middle value would be
greater than 0.24). The uncertainty that still persists in our analysis would get
smaller if either we could make these squares bigger (i.e. prove an upper bound
for centering that is less than 0.24) or find a scenario in which the reached states
come closer to the squares (centering greater than 0.151).

4 Analysis of a Floating Point Implementation

The results we obtained by analyzing the model are based on a mathematical
semantics in which real variables are supposed to have infinite precision, i.e.
rounding errors due to a finite representation do not occur. For a machine im-
plementation, which usually uses floating point arithmetic, these results might
not be true. For example, we cannot exclude that the accumulation of rounding
errors could jeopardize the stability of the system after several hours of opera-
tion. For this reason, a formal analysis of the pure model is not sufficient, but
we also need to analyze the impact of rounding errors.

4.1 Analysis Using an SMT Solver

Similar to the approach presented in [6], we used an upper approximation of
the rounding error and an SMT solver to prove the stability of the system,
under the assumption that the used compiler does not change the ordering of
the operations. Floating point implementations could be analyzed at bit level in
a completely accurate way, but this is very costly since floating point arithmetics
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Fig. 3. Approximation of the reachable state space, and execution trace of a simulation
(projection on the EqualizedA-EqualizedB-plane)
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correspond to complex boolean functions on large bit vectors. Also, all the details
about the executing processor and the width of its internal registers need to be
known, and we could not take advantage of the capabilities of SMT solvers since
the reasoning is exclusively on boolean level. For our purpose, a much less precise
analysis is sufficient.

Modern floating point hardware is usually conform to the IEEE 754 standard,
in which two kinds of numbers are distinguished: normalized numbers (with a
mantissa greater or equal to 1.0 and less than 2.0) and subnormal numbers (with
a mantissa less than 1.0 and with the smallest representable exponent). For our
analysis, we need to have the following information about the hardware on which
the code is executed:

– an upper approximation of the maximal relative error of normalized num-
bers (which depends on the number of digits in the representation of the
mantissa), and

– an upper approximation of the maximal absolute error of subnormal numbers
(depending on the smallest representable exponent, and on the number of
digits of the mantissa).

Like in [6], in order to keep the model as simple as possible, we use the sum
of the maximal relative error and of the maximal absolute error as an upper
approximation of the rounding error of floating point operations. The rounding
errors themselves are represented by free variables which are introduced into
the model, one for every arithmetic operation. Let relErr denote the maximal
relative error of normalized numbers, and absErr denote the absolute error of
subnormal numbers. For example, if 32 bit IEEE 754 floating point numbers and
rounding-to-nearest mode are used, relErr = 2−24, and absErr = 2−150.

For an arithmetic operation ⊗ ∈ {+,−, ∗, /}, let ⊗F be the floating point
operation corresponding to ⊗, and let f1 and f2 be values which are representable
in the used floating point representation. Let

E = |f1 ⊗ f2| ∗ relErr + absErr

Then it holds that

(f1 ⊗ f2) − E ≤ f1 ⊗F f2 ≤ (f1 ⊗ f2) + E

In practice, we replace every expression

a ⊗ b

in the model by
a ⊗ b + e

where e is a new variable which is constrained by

|e| ≤ |a ⊗ b| ∗ relErr + absErr
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For numerical constants which occur in the model, we can determine the
precise rounding error, and thus replace constants by their floating point ap-
proximation. For example, if 32 bit IEEE 754 floating point numbers are used,
the constant 0.05 is replaced by 0.0500000008.

After this modification of the model, the inequalities we gave in the preceding
section do not define an invariant anymore. However, we can find an invariant
which is slightly larger than the one for real number semantics. For a maximal
sensor deviation of 0.2, the conjunction of the following expressions defines an
inductive invariant:

|EqualizationA| < 0.4 + 1.0E-6
|EqualizationB| < 0.4 + 1.0E-6
|EqualizationC| < 0.4 + 1.0E-6

|EqualizationA + EqualizationB + EqualizationC| < 2/3 + 2.0E-6

We tried to use more precise approximations of the rounding error, for example
taking into account that the absolute rounding error is zero for addition and
subtraction, or that the rounding error is smaller than both operands. However,
we were not able to find a smaller invariant, or even to prove the invariant of the
infinite precision semantics. From a practical point of view, the invariant that
we found is clearly sufficient.

4.2 Analysis by Abstract Interpretation

Abstract interpretation is a powerful technique to check properties on the source
code level. Astrée [1] is a tool based on abstract interpretation that has been
used with success on many industrial applications to prove the absence of runtime
errors, where rounding errors are taken into account. We have used Astrée on a
manually written C code implementation of the voter.

In its standard configuration, Astrée did not find an invariant, and reported
a potential overflow of the equalization values. However, Astrée was able to
confirm partially the invariant that we have found as described in the preceding
section, i.e. it was able to prove that certain transitions of the voter do not violate
the invariant. We believe that in principle, it should be possible to confirm the
invariant for all transitions if the code is modified in a way which allows Astrée
to exploit all available information. However, this requires a high effort since
all possible execution paths have to be considered separately. Future versions of
Astrée might not require this transformation.

A possible interaction between model level and code level would be to prove
invariants on model level using an SMT solver and to transfer the invariant to
code level where it is confirmed using an abstract interpretation tool. Such proofs
could be used as certification evidence in the future since a qualification support
kit for Astrée is planned.
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5 Automated Generation of Invariants

Finding inductive invariants by hand is very time consuming and depends on
the skills of the user, therefore we were looking for a way to generate them
automatically. In the case of the voter analysis, a relatively simple algorithm
turned out to be very useful. It allowed us to analyze the effect of varying
parameters, and to express invariants depending on the maximal deviation of
the sensors and on other system parameters.

Our objective was to find inductive invariants that can be described by a
conjunction of the form ∧

i=1,...,n

|expri| ≤ Ci

where the expri are linear expressions over the state variables, and the Ci are
non-negative constants. The choice of the expressions is primordial in order to
find an invariant. Since we do not have a method to generate the expressions
automatically, we can only use a trial-and-error approach. Given appropriate
expressions, the following algorithm searches for an invariant:

Input: a set of expressions expr1, . . . , exprn,
a Lustre model M ,
a constant real number δ

real v1, . . . , vn := 0.0
bool invariant found := false
repeat

if
∧

i=1,...,n |expri| ≤ vi is a 1-inductive invariant of M then
invariant found := true

else
Let Γ be an induction step counter example
forall i ∈ {1, . . . , n} do

if |Γ (expri)| > vi then
vi := vi + δ

until invariant found ;

Algorithm 1. Invariant Generation

Note that we do not increase the value of the variables vi to the value which
has been found in the counter example, but by a constant δ. This is because
in a counter example, the values which are found are greater than the values
in the tested property only by a very small amount. SMT solvers in general
do not generate an optimal solution, and even if we would compute an optimal
solution, the convergence would be extremely slow. Worse, the algorithm might
not terminate at all. Of course, a bad choice of δ might also lead to a very long
execution time if it is chosen too small, or to non-termination if it is chosen too
great. We obtained good results with δ = 0.01.



114 M. Dierkes

By varying the maximal deviation and observing the effect on the automat-
ically generated invariant, we were able to find a general formulation of the
invariant depending on the maximal deviation. For every MaxDev > 0, we can
prove that the conjunctions of the following expression is an invariant of the
voter:

|EqualizationA| < 2 ∗ MaxDev
|EqualizationB| < 2 ∗ MaxDev
|EqualizationC| < 2 ∗ MaxDev

|EqualizationA + EqualizationB + EqualizationC| < 2 ∗ MaxDev + 1/3
|Centering| < MaxDev + 1/8

Modifications of the saturation parameters (which we have set to 0.25 and 0.5)
do not have any impact on this invariant, with the restriction that the saturation
threshold applied to the centering value must be greater or equal to the other
threshold divided by two, otherwise the expression is not inductive. Concerning
the sensor sample rate (fixed to 0.05), if it is chosen in the interval ]0.0, 0.5], the
expression is inductive.

Note that for MaxDev = 0.2, the above invariant is weaker than the one
on page 108. In fact, for values of MaxDev which are smaller than 0.25, the
smallest upper bounds which can be proven are less than the values in the general
invariant, which is probably due to the non-linearity caused by the saturation
operators.

6 Lessons Learned

Our first approach was similar to the analysis of purely boolean systems. In this
approach, when an inductive proof fails, the feedback from the proof engine is
analyzed by the user, and then missing invariants are added. When a purely
Boolean system is analyzed, system invariants often correspond to some implicit
intention of the designer. An intuition of how the system is supposed to work
can therefore be very helpful to find invariants. However, this approach does
not seem to work as well on the kind of system analyzed here. The invariants
do not really express an intention of the designer, who is probably not even
aware of them. They are implied by the dynamic behaviour of the system, but
not a design objective in their own right. Therefore, trying to find invariants by
looking at induction step counterexamples is very difficult.

It turned out to be a better approach to consider systematically certain in-
equalities comparing linear expressions over the system variables (for example,
sums or differences of any two variables) to constants and then to try to find the
smallest constants for which the set of inequalities is an invariant of the system,
which also has the advantage that it can be done automatically.

The runtime of the model checker when we tried to find an inductive invariant
was in the order of some seconds, and therefore negligible compared to the
time spent by the human users formulating potential invariants and interpreting
induction step counter examples.
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The proof that a floating point implementation of the voter has bounded-
input bounded-output stability and cannot generate runtime errors caused by
arithmetic overflow is certainly an interesting result. The approach using SMT-
solvers was successful for this. Even if modelizing rounding errors requires the
introduction of many new variables, the analysis runtime was in the order of a
few minutes.

Abstract interpretation seems to be less suited to this kind of system since
the analysis probably needs to consider every execution path separately. This
means that it is not possible to apply execution path abstraction, which gives
its power to abstract interpretation.

7 Ongoing and Future Work

A gap still exists in our analysis between the greatest centering value that we
found by simulation (about 0.151) and the smallest upper bound that we were
able to prove (0.24). Therefore, we are interested in either finding a smaller
upper bound or counterexample that demonstrates a greater maximal value. In
order to prove a smaller upper bound, we need a more precise approximation of
the space of reachable states. This could possibly be done using other forms of
invariants, like invariants containing boolean conditions, or non-linear invariants
(however, the latter would not be accepted by the inductive provers we used).
On the other hand, for practical applications a guaranteed upper bound of 0.24
might be sufficient to ensure the correct behaviour of the system the voter is
part of.

It seems difficult to obtain a greater maximal centering value by simulation
since we have already investigated the most obvious strategy, namely stimulating
the system with extreme input values. Another approach would be to develop
more powerful techniques based on bounded model checking. Our iterative ap-
proach was a first step to this direction.

Our invariant generation procedure requires the user to specify a set of ex-
pressions for which upper bounds are searched for. For the moment, there is no
assistance in finding these expressions. It would be very interesting to find how
these expressions could be derived from the program automatically. In general,
a very interesting question is if our invariants, or at least some of them, can
be found completely automatically. This question will certainly be investigated
further since it is necessary for the analysis to be as automated as possible if it
is to be used in an industrial context by engineers who are not experts on formal
methods.

Abstract interpretation seemed to be less powerful for proving the invariant
of the voter than model checking, but as soon as the full triplex voter including
fault detection and reset logic is analysed, model checking is likely to require
a huge amount of computing resources because of its lack of scalability. In this
case, abstract interpretation might be very useful. The best solution might be
to combine both techniques, and a research effort to do this is currently under-
taken at Rockwell Collins. Furthermore, we made the experience that abstract
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interpretation can benefit from the code being structured in a certain way. Au-
tomated generation of code which is optimized for analysis by abstract interpre-
tation should be investigated more in depth.

In our analysis of a floating point implementation, we used a very simple
approximation of the rounding error. It would be interesting to study more
precise approximations, which might allow to prove the invariant that was found
on the model level without modification. Concerning execution time, we made
the experience that a more precise approximation sometimes allows for a much
faster analysis, despite the additional formulas which are necessary. However, a
systematic analysis of this needs to be done.
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Abstract. We report on the actual industrial use of formal methods
during the development of a software bus. At Neopost Inc., we developed
the server component of a software bus, called the XBus, using formal
methods during the design, validation and testing phase: We modeled
our design of the XBus in the process algebra mCRL2, validated the
design using the mCRL2-simulator, and fully automatically tested our
implementation with the model-based test tool JTorX. This resulted in
a well-tested software bus with a maintainable architecture. Writing the
model, simulating it, and testing the implementation with JTorX only
took 17% of the total development time. Moreover, the errors found with
model-based testing would have been hard to find with conventional
test methods. Thus, we show that formal engineering can be feasible,
beneficial and cost-effective.

1 Introduction

Formal engineering, that is, the use of formal methods during the design, imple-
mentation and testing of software systems is gaining momentum. Various large
companies use formal methods as a part of their development cycle; and several
papers report on the use of formal methods during ad hoc projects [27,15].

Formal methods include a rich palette of mathematically rigorous modeling,
analysis and testing techniques, including formal specification, model checking,
theorem proving, extended static checking, run-time verification, and model-
based testing. The central claim made by the field of formal methods is that,
while it requires an initial investment to develop rigorous models and perform
rigorous analysis methods, these pay off in the long run in terms of better, and
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more maintainable code. While experiences with formal engineering have been a
success in large and safety-critical projects [24,17,27,29,30], we investigate this
claim for a more modest and non-safety-critical project, namely the development
of a software bus.

Developing the XBus. In this paper, we report on our experiences with formal
methods during the development of the XBus at Neopost Inc. Neopost is one
of the largest companies in the world producing supplies and services for the
mailing and shipping industry, like franking and mail inserting machines, and
the XBus is a software bus that supports communication between mailing devices
and software clients. The XBus allows clients to send XML-formatted messages
to each other (the X in XBus stands for XML), and also implements a service-
discovery mechanism. That is, clients can advertise their provided services and
query and subscribe to services provided by others.

We have developed the XBus using the classical V-model [31], see Fig. 2, using
formal methods during the design and testing phase. The total running time of
this project was 14 weeks.

An important step in the design phase was the creation of a behavioral model
of the XBus, written in the process algebra mCRL2 [23,4]. This model pins down
the interaction between the XBus and its environment in a mathematically pre-
cise way. Performing this modeling activity greatly increased the understanding
of the XBus protocol, which made the implementation phase a lot easier.

Testing of the XBus. After implementing the protocol, we tested the imple-
mentation, where we distinguished between data- and protocol behaviour. Data
behaviour concerns the input/output behaviour of a function. This behaviour is
static, the input/output behaviour is independent of the order in which the
methods are called. Protocol behaviour relates to the business logic of the sys-
tem, i.e. the interaction between the XBus and its clients. Here, the order in
which protocol messages occur crucially determines the correctness of the pro-
tocol. First, data behaviour was tested using unit testing, and all errors found
were repaired. Then, protocol behaviour was tested using JTorX (details below),
since the purpose of the mCRL2 model was exactly to pin down the protocol
behaviour.

With JTorX. We tested the implementation against the mCRL2 model. JTorX
[7,3] is a model-based testing tool (partly) developed during the Quasimodo
project [6]. It is capable of automatic test generation, execution and evalua-
tion. During the design phase, we already catered for model-based testing, and
designed for testability: we took care that at the model boundaries, we could ob-
serve meaningful messages. Moreover, we made sure that the boundaries in the
mCRL2 model matched the boundaries in the architecture. Also, to use model-
driven test technology required us to write an adapter. This is a piece of software
that translates the protocol messages from the mCRL2 model into physical mes-
sages in the implementation. Again, our design for testability greatly facilitated
the development of the adapter.
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Our findings. We ran JTorX against the implementation and the mCRL2 model
(once configured, JTorX runs completely automatically) and found five subtle
bugs that were not discovered using unit testing, since these involved the order
in which protocol messages should occur. After repairing these, we ran JTorX
several times for more than 24 hours, without finding any more errors.

Since writing the model, simulating it, and testing the implementation with
JTorX only took 17% of the total development time (counting only human work-
ing time), we conclude that the formal engineering approach has been very suc-
cessful: with limited overhead, we have created a reliable software bus with a
maintainable architecture. Therefore, as in [19], we clearly show that formal en-
gineering is not only beneficial for large, complex and/or safety-critical systems,
but also for more modest projects.

The remainder of this paper is organized as follows. Section 2 provides the
context of the XBus implementation project. Then, Section 3 describes the ac-
tivities involved in each phase of the development of the XBus. Section 4 reflects
on the lessons learned in this project and finally, we present conclusions and
suggestions for future work in Section 5.

2 Background

2.1 The XBus and Its Context

Neopost Incorporated [5] is one of the world’s main manufacturers of equipment
and supplies for the mailing industry. Neopost produces both physical machines,
like franking and mail inserting machines, as well as software to control these
machines. Neopost is a multinational company headquartered in Paris, France
that has departments all over the world. Its software division, called Neopost
Software & Integrated Solutions (NSIS) is located in Austin, Texas, USA. This
is where the XBus implementation project took place.

Shipping and franking mail. Typically, the workflow of shipping and franking
is as follows. To send a batch of mail, one first puts the mail into a folding
machine, which folds all letters, then an inserting machine inserts all letters
into envelopes1 and finally, the mail goes into a franking machine, which puts
appropriate postage on the envelopes and keeps track of the expenses.

Thus, to ship a batch of mail, one has to set up this process, selecting which
folding, inserting and franking machine to use and configure each of these ma-
chines, setting the mail’s size, weight, priority, and the carrier to use. These
configurations can be set manually, using the machine’s built-in displays and
buttons. More convenient, however, is to configure the mailing process via one
of the desktop applications Neopost provides.

The XBus. To connect a desktop application to the various machines, a software
bus, called the XBus, has been developed. The XBus communicates over TCP
and allows clients to discover other clients, announce provided services, query for
1 Alternatively, a combined folding/inserting machine can be used.
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services provided by other clients and subscribe to services. Also, XBus clients
can send self-defined messages across the bus.

When this project started, an older version of the XBus existed, called the XBus
version 1.0. Goal of our project was to re-implement the XBus while maintaining
backward compatibility, i.e. the XBus 2.0 must support XBus 1.0 clients. Key re-
quirements for the new XBus were improved maintainability and testability.

2.2 Model-Based Testing

Model-based testing Model-based testing (MBT, a.k.a. model-driven testing) is
an innovative testing methodology that provides methods for automatic test
generation, execution and evaluation. Model-based testing requires a formal
model m, usually a transition system, of the system-under-test (SUT, a.k.a.
implementation-under-test or IUT). This model m pins down the desired sys-
tem behavior in an unambiguous way: traces of m are correct system behaviors,
and traces not in m are incorrect.

The concept of model-based testing is visualized in Fig. 1. Tests derived from
a model m are applied to the SUT, and based on observations made during test
executions, a verdict (pass or fail) about the correctness of the SUT is given.

Each test case consists of a number of test steps. Each test step either applies
a stimulus (i.e. an input to the SUT), or obtains an observation (i.e. a response
from the SUT). In the latter case, we check whether the response was expected,
that is, if it was predicted by the model m. In case of an unexpected observation,
the test case ends with verdict fail. Otherwise, the test case may either continue
with a next test step, or it may end with a verdict pass.

Test execution requires an adapter, which is a component of the tester in
Fig. 1. Its role is to translate actions in the model m to concrete commands—
in our case to TCP messages—of the SUT. Writing an adapter can be tricky,
for instance if one action in the model corresponds to multiple actions in the
system. Therefore, it was an important design rationale us to keep the adapter
simple, which we achieved via a close correspondence between m and the system
architecture.

However, given a model m and the adapter a, model-based testing is fully
automatic. MBT tools can fully automatically derive test cases from the model,
execute them, and issue verdicts. There are various MBT tools around, like
SpecExplorer from Microsoft [34], Conformiq Qtronic [1], and AGEDIS [26].
Each of these tools varies in the capabilities, modeling languages and underlying
theories, see [8,25] for an overview.

JTorX. These techniques have been implemented in the model-based test tool
JTorX. JTorX [7,3] was (partly) developed during the Quasimodo project [6].
It improves over its predecessor TorX [9,33]—which was one of the first model-
based testing tools in the field. JTorX is based on newer theory, and much easier
to install, configure and use. Moreover, it has built-in adapter functionality to
connect the model to the SUT via TCP/IP. All this turned out to be particularly
helpful in this case study.
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Model: m Tester

pass/fail

SUT

Fig. 1. Model-based testing

JTorX has built-in support for models in graphml [21], the Aldebaran (.aut)
file format, and the Jararaca [2] file format. Moreover, it is able to access models
via the mCRL2 [23], LTSmin [11] and CADP [20] tool environments.

In JTorX the test derivation and test execution functionalities are tightly
coupled: test cases and test steps are derived on demand (only when required)
during test execution. This is why we do not explicitly show test cases in Fig. 1.

Correctness of tests. MBT provides a rigorous underpinning of the test process:
it can be shown that, under the assumption that the model correctly reflects
the desired system behavior, all test cases derived from the model are correct,
i.e., they yield the correct verdict when executed against any implementation, see
e.g. [32]. More technically, the test case derivation methods underlying JTorX are
provably correct, i.e. have been shown sound and complete. That is, any correct
implementation of a model m will pass all tests derived from m (soundness).
Moreover, for any incorrect implementation of m, there is at least one test case
derivable from m that exhibits the error (completeness). Note that completeness
is merely an important theoretical property, showing that the test case derivation
method has no inherent blind spots. In practice only a finite number of test cases
are executed. Hence, the test case exhibiting the error may or may not be among
those test cases that are executed. As stated by the famous quote by Dijkstra:
“testing can only show the presence of errors, not their absence”.

Rich and well-developed MBT theories exist for control-dominated appli-
cations, and have been extended to test real-time properties [16,28,13], data-
intensive systems [18], object-oriented systems [22], and systems with measure
imprecisions [12]. Several of these extensions have been developed during the
Quasimodo project as well.

2.3 The Specification Language mCRL2

The language mCRL2 [23,4] is a formal modeling language for describing concur-
rent systems, developed at the Eindhoven University of Technology. It is based
on the process algebra ACP [10], and extends ACP with rich data types and
higher-order functions. The mCRL2 toolset facilitates simulation, analysis and
visualization of behavior; model-based testing against mCRL2 models is sup-
ported by the model-based test tool JTorX. Specifications in mCRL2 start with
a definition of the required data types. Technically, the behavior of the system
is declared via process equations of the form X(x1 : D1, x2 : D2, xn : Dn) = t,
where xi is a variable of type Di and t is a process term, see the example in
Section 3.2. Process terms are built from potentially parameterized actions and
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3. Implementing 4. Unit Testing

2. Creating Design
a. Developing architecture (class diagram)
b. Specifying business logic (formal model)

1. Obtaining Requirements

5. Integration Testing
(model-based)

6. Acceptance Testing

Fig. 2. The V-model that was used for development of XBus

the operators alternative composition, sum, sequential composition, conditional
choice (if-then-else), parallel composition, and encapsulation, renaming, and ab-
straction. Actions represent basic events (like sending a message or printing a
file) which are used for synchronization between parallel processes. Apart from
analysis within the tool set, mCRL2 interoperates with other tools: Specifications
in mCRL2 can be model checked via the CADP model checker, by generating
the state space in .aut format, they can be proven correct using e.g. the theorem
prover PVS, and they can be tested against with JTorX.

3 Development of the XBus

We developed the XBus implementation using the classical V-model [31], see
Fig. 2. In our approach we have three testing phases: unit testing, integration
testing and acceptance testing.

The sequel describes the activities carried out in each phase of the V-model.
Each section below corresponds to an activity in the V-model. As stated, the
total running time of the XBus development was 14 weeks.

3.1 XBus Requirements

We have obtained the functional and nonfunctional requirements by studying
the documentation of the XBus version 1.0 (a four page English text document)
and by interviewing the manager of the XBus development team.

The functional requirements express that the XBus is a centralized software
application which can be regarded as a network router. Clients can connect and
disconnect at any point in time. Connected clients can send XML-formatted
messages to each other. Moreover, clients can discover other clients, announce
services, and query for services that are provided by other clients. Also, they can
subscribe to services, and send self-defined messages to each other. Below, we
summarize the functional requirements; as said before, important non-functional
requirements are testability, maintainability and backwards compatibility with
the XBus 1.0.
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Functional requirements are as follows.

1. XBus messages are formatted in XML, following the same Schema as the
XBus 1.0.

2. Clients connecting to XBus perform a handshake with the XBus server. The
handshake consists of a Connreq—Connack—Connauth sequence.

3. Newly connected clients are assigned unique identifiers.
4. Clients can subscribe to be notified when a client connects or disconnects.
5. Clients can send messages to other clients with self-defined, custom, data.

Such messages can have a self-defined, custom message type. In addition
there are protocol messages for connecting, service subscription, service ad-
vertisement.

6. Clients can subscribe to receive all messages, sent by other clients, that are
of one or more given types (including self-defined messages), using the Sub
message.

7. Clients are able to announce services they provide, using the Servann message.
8. Clients can inquire about services, by specifying a list of service names in

a Servinq message. Service providers that provide a subset of the inquired
services will respond to this client with the Servrsp message.

9. Clients can send private messages, which are only delivered to a specified
destination.

10. Clients can send local messages, which are delivered to the specified address,
as well as to clients subscribed to the specified message type.

XBus protocol messages are the following.

Connreq (implicit) implied by a client establishing a TCP connection with XBus
Connack sent from XBus to a client just after the client establishes a TCP

connection with the XBus, as part of the handshake.
Connauth sent from a client to the XBus to complete the handshake.
(Un)Sub sent from a client to XBus, with as parameter a list of (custom) mes-

sage types, to (un)subscribe receipt of all messages of the given types.
Notifconn sent from XBus to clients that subscribed connect notifications.
Notifdisc sent from XBus to clients that subscribed disconnect notifications.
Servann sent (just after connecting) from a client c to XBus, which broadcasts

it to all other connected clients, to announce the services provided by c.
Servinq sent (just after connecting) from client to XBus, which broadcasts it to

all other connected clients, to ask what services they provide.
Servrsp sent from a client via XBus to another client, as response to Servinq, to

tell the inquirer what services the responding client provides.

3.2 XBus Design

The design phase encompassed two activities: we created an architectural design,
given by the UML class diagram in Fig. 3, and we made an mCRL2 model,
describing the protocol behavior. An important feature of the UML design is
that is already catered for model-based testing.
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The architectural design and the mCRL2 model were developed in parallel;
central in their design are the XBus messages: each message translates into a
method in the class diagram and into an action in the mCRL2 model. The UML
diagram specifies which methods are provided, and the mCRL2 model describes
the order in which actions should occur, i.e. the order in which methods should
be invoked. Thus, the architectural model in UML and the behavioral model in
mCRL2 are tightly coupled.

Architectural Design. The architecture of the XBus is given in Fig. 3, follow-
ing a standard client-server architecture. Thus, the XBus has a client side,
implemented by the XBusGenericClient, and a server side, implemented by the
XBusManager. The latter handles incoming protocol messages and sends the re-
quired responses. Both the server and the client use the communications package,
which implements communication over TCP.

We have catered for model-based testing already in the design: the
XBusManager has a subclass JTorXTestableXBusManager. As we elaborate in Sec-
tion 3.5, the JTorXTestableXBusManager class overrides the send message from
the XBusManager, allowing JTorX to have more control over the state of the
XBus server.

�i�ProtocolCommon

�i�ProtocolServer �i�ProtocolClient

Protocol

XBusManager

JTorXTestableXBusManager

�i�IXBus

0..*clients

XBus

ConnectionManager

�i�ConnectionListener

0..*listeners

TCPConnectionListener

�i�Connection
0..*

conns

TCPConnection

Communications�Server side�Engine

XBusGenericClient

�Client side�Client

�i�IXBusMessage XBusMessage

Messages

Fig. 3. High level architecture of the XBus system. It contains a server side pack-
age, and a client side package. Furthermore, it has functionality for TCP connections
and XBus messages. Both server and client implement the Protocol abstract class. All
interfaces are indicated with �i�.

Modeling strategy. When creating the model, the first step is to define what and
what not to model, to determine the abstraction level and boundaries of the
model.

Included in the model. The messages that come into the server, their handling and
their response messages are modeled. The handling of the messages is modeled
as follows. After a message is received, the server will handle it. This means
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that the server will send a response, relay the message, broadcast a message,
and/or modify its internal state, depending on the type of message that arrived.
Furthermore, the server keeps track of the client’s state by keeping an internal
list of client objects, just as in the Engine package in the architecture.

Excluded from the model. The Communications package is not included in the
model. The model just describes that messages are received by and sent from
the server (i.e. the XBusManager). This corresponds to the hand-over of incoming
messages (from the perspective of XBus) from the Communications package to
the Engine package, and the hand-over of outgoing messages in the opposite
direction. So, the boundary between packages in the architecture corresponds
with the boundary between the model and its environment.

Thus, we do not model internal components like TCP-sockets, queues, or pro-
grammatic events. The correctness of these internal components will be verified
by unit tests. We will use the model discussed here to simulate and test the
XBus protocol (i.e. the business logic).

The XBus model. We modeled the desired behavior of the XBus as an mCRL2
process. We chose mCRL2 because of its powerful data types, which make the
modeling of the messages and its parameters convenient. In particular, we bene-
fitted from its concise notation for enumerated types, records, and lists, and the
ability to define functions. Functions are defined in a functional programming
style. They can be called from the server process, and can modify data structures
defined in the data part.

Data. All the data that the server keeps track of is kept in one data object: a
list of clients. This is modeled as a list of data structures, that for each client
contains the following items:

– an integer that represents the identity of the client;
– the connection status of the client, which is an enumeration of: disconnected,

awaitingAuthentication, connected;
– the subscriptions of the client, which is a list of message types.
– the services that the client provides, which is a list of integers.

We defined functions to model manipulations on these data types. Most of
our functions operate on the lists of clients and the client’s lists of subscriptions
and services. Typical operations are insertion, lookup, update, and removal of
items in these lists.

Behavior. The behavior of the XBus server is modeled as a single process that—
for all kinds of incoming messages that it may receive—accepts a message, pro-
cesses it (which may involve an update of its state), and sends a response (where
appropriate), after which it is ready to accept the next message.

Listing 1 shows part of the definition of this process (slightly simplified). The
process is named listening. It has a single parameter: c, the list of clients. The
fragment shows that for each client—where j is used as index in c (line 2)— that
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1 proc listening (c:Clients) =

2 (sum j:Int.(j >= 0 && j < numClients (c) &&

3 getClientStatus (j, c) == DISCONNECTED )

4 -> (ConnectRequest .ConnectAcknowledge .

5 listening (changeClientStatus (j, c, AWAIT_AUTH )))

6 <> delta

7 ) + ...

Listing 1. Definition of XBus handling of Connreq message in mCRL2

currently is in DISCONNECTED state (line 3), the server is willing to accept a
ConnectRequest message, after which it will send out a ConnectAcknowledge mes-
sage (line 4), after which it updates the status of the jth client in the list to
AWAIT AUTH and continues processing—modeled by the recursive call to listening
with the updated client list (line 5).

The language mCRL2 allows modeling of systems with multiple parallel pro-
cesses, but this is not needed here. Having multiple concurrent processes would
make the system as well as the model more complicated, which would make
them harder to maintain and test. One might choose to use multiple processes
when performance of the system is expected to be a problem, but that is not an
issue here. In a large mailing room there may be 20 clients at the same time, a
number with which the single-process server can easily cope.

Model size. The entire model consists of 6 pages of mCRL2, including comments.
Approximately half of it concerns the specification of data types and functions
over them; the other half is the behavioral specification.

Model validation. During the construction of the model, we exhaustively used
the simulator from the mCRL2 toolkit. We incrementally simulated smaller and
larger models, where we used both manual and random simulation. This was done
for two reasons. First, to get a better understanding of the working of the whole
system, and to validate the design already before the implementation phase was
started. This was particularly useful to improve our understanding of the XBus
protocol, of which only a (non-formal) English text description was available,
which contained several ambiguities. Second, to validate the model, to be sure
that it faithfully represents the design, i.e. to fulfill the assumptions stated in
Section 2.2, such that when we use JTorX to test our implementation against
the model, all tests that JTorX derives from the model will yield the correct
verdict. Due to time constraints, model-checking was not performed. It would
have allowed validation of (basic) properties like the absence of deadlocks, as well
as checking more advanced properties, e.g. that every message sent eventually
reaches the specified destination(s).

3.3 Implementation

Once we had sufficient confidence in the quality of the design—to a large ex-
tent due to modeling and simulation—it was implemented. The programming
language used was C#—use of .NET is company policy.
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3.4 Unit Testing

As mentioned in the introduction, the overall test strategy was to test data
behaviour using unit testing, and protocol behaviour using model-based testing.
The classes in the Communications and Messages packages were therefore tested
using unit testing.

For the Communications package unit tests were written to test the ability to
start a TCP listener and to connect to a TCP listener, to test the administration
of connections, and to test transfer of data. For the Messages package unit tests
were written to test construction, parsing and validation of messages. The latter
was tested using both correct and incorrect messages.

Each error that was found during unit testing was immediately repaired.

3.5 Model-Based Integration Testing

After unit testing of data behaviour, we used model-based testing for the busi-
ness logic, i.e. to test the interaction between XBus and its clients. This is be-
cause here the dynamic behavior, i.e., the order of protocol messages, crucially
determines the correctness of the protocol.

Test architecture. To test whether the XBus interacts correctly with its envi-
ronment, we chose a test set up with 3 XBus clients, see Fig. 4. Thus, JTorX
plays the role of 3 XBus clients, which are able to perform all protocol actions
described in Section 3.1. We first discuss how we connected JTorX to the XBus
server, and then we briefly discuss an alternative.

Model JTorX XBus

pass/fail

Fig. 4. Testing XBus with JTorX playing the role of 3 clients

Our solution is depicted in Fig. 5. We provide stimuli to the XBus using three
XBusGenericClient instances, each of which is connected to the XBus via TCP.
We observe the responses from the XBus not via the XBusGenericClient, but
via a direct (testing) interface that has been added to XBus. This interface is
provided by the JTorXTestableXBusManager in the Engine package, see Fig. 3.
JTorXTestableXBusManager overrides the function that XBus uses to send a mes-
sage to a specified client, and instead logs the message name and relevant pa-
rameters in the textual format that JTorX expects. Additional glue code—the
adapter—provides the connection between JTorX and the XBusGenericClient in-
stances on the one hand, and between JTorX and XBus test interface on the
other hand. From JTorX the adapter receives requests to apply stimuli, and
from the XBus test interface it receives observed responses. The adapter for-
wards the received responses to JTorX without additional processing. For each
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Model JTorX Adapter XBust

TCP

c c c

Fig. 5. The Test Architecture that we used: JTorX provides stimuli to XBus via generic
clients (c) over TCP, and observes responses via test interface (t), also connected via
TCP

received request to apply a stimulus the adapter uses XBusGenericClient meth-
ods to construct a corresponding XBusMessage message and send it to the XBus
server (except for the Connreq message, for which XBusGenericClient only has to
open a connection to XBus).

The adapter is implemented as a C# program that uses the Client package
(see Fig. 3) to create the three XBusGenericClient instances, which in turn use the
Communications package to interact with the XBus. The main functionality that
had to be implemented was the mapping between XBus messages and the corre-
sponding XBusGenericClient methods, and the corresponding XBusGenericClient
instances. Due to the one-to-one mapping that exists between these—by design,
recall Section 3.2— implementing this mapping was rather straightforward.

JTorX and the adapter communicate via TCP: the adapter works as a sim-
ple TCP server to which JTorX connects as a TCP client. This is one of two
possibilities offered by JTorX; which of the two is chosen does not really matter.

It may seem that the Communications package does not play a role during
model-based testing with this test architecture, also because we mentioned that
we excluded it from the model. However, the Communications package is used
normally in the XBus to receive the messages that clients send to it. Moreover,
the only functionality of the Communications package that is not used in the XBus
itself in this test architecture—the functionality to send messages over TCP—is
used by the XBusGenericClient instances that are used to send the stimuli to the
XBus.

An alternative approach would have been to not add the direct (testing) interface
to XBus, to observe its responses, but to use the XBusGenericClient instances for
this, as depicted in Fig. 6. This alternative approach has the clear advantage
that no additional (testing) interface has to be added to XBus, and thus the
interaction via the XBusGenericClient instances is (in the perception of XBus)
identical to the interaction during deployment.

However, this alternative approach also has one slight disadvantage. From
the perspective of an observer of XBus responses, each of the TCP connections
between an XBusGenericClient instance and the XBus resembles a first-in first-
out (FIFO) queue, where a message that is sent later, over one connection, may
overtake a message that was sent earlier over another connection. This means
that the order in which XBus responses, via XBusGenericClient instances, arrive
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Model JTorX XBus

TCP

c c c

Fig. 6. Alternative solution: JTorX connected to XBus via generic clients (c) over TCP

at the adapter, and thus ultimately at JTorX, may differ from the order in which
XBus sends them. This, in turn, may result in incorrect fail verdicts—because
the model does not reflect the FIFO-queue behavior of the TCP communication
medium between XBus and the adapter. We have seen this reordering effect
before, for example in our experiments with model-based testing of a simple
chatbox protocol entity [9] and know that we can deal with it by extending
the model with FIFO buffers that model the FIFO queue behavior of the TCP
connections.

With both test architectures we have to deal with the reordering effect of the
TCP connections, either by extending the XBus with a specific testing interface,
or by extending the model. In this case we chose to extend the XBus.

Running JTorX. Once we had the model, the XBus implementation to test, and
the means to connect JTorX to it, testing was started. We ran JTorX in random
mode. Figure 7 shows the settings in JTorX. These include the location of the
model file, the way in which the adapter and the XBus are accessed, and an
indication of which messages are input (from the XBus server perspective) and
which ones are output.

Bugs found using JTorX. One of the most interesting parts of testing is finding
bugs. In this case, not only because it allows improving the software, but also
because finding bugs can be seen as an indication that model based testing
is actually helping us. We found 5 bugs. Typically these were found within 5
minutes after the start of a test. Some of them are quite subtle:

1. The Notifdisc message was sent to unsubscribed clients. This was due to an
if-statement that had a wrong branching expression.

2. The Servann message was sent (also) to unauthorized clients. Clients that
were still in the handshake process with the server, and thus not fully au-
thenticated, received the Servann message. To trigger this bug one client has
to (connect and) announce its service while another client is still connecting.

3. The message subscription administration did not behave correctly: a client
could subscribe to one item, but not to two or more. This was due to a bug
in the operation that added the subscription to the list of a client.

4. The same bug also occurred with the list of provided services. It was imple-
mented in the same way as the message subscription administration.
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Fig. 7. Screen shot of the configuration pane of JTorX, set up to test XBus. JTorX
will connect to (the adapter that provides access to) the system under test via TCP on
the local machine, at port 1234. The bottom two input fields list the input and output
messages.

5. There was a flaw in the method that handles Unsub messages. The code that
extracts subscriptions from these messages (to be able to remove them from
the list of subscriptions of the corresponding client) contained a typing error:
two terms in an expression were interchanged.

All these bugs concern the order in which protocol messages must occur. There-
fore, it is our firm belief that they are much harder to discover with unit testing.

3.6 Acceptance Testing

Acceptance testing was done in the usual way. We organized a session with the
manager of Neopost’s ISS group, and showed how the XBus 2.0 worked. In par-
ticular, we demonstrated that it implements the features required in Section 3.1.

4 Findings and Lessons Learned

In a time perspective. So how long did it take to create the artefacts for model-
based testing, namely the model, the test interface and the adapter? Program-
ming and simulating the model took 2 weeks, or 80 hours. The test interface was
created in a few hours, since it was designed to be loosely coupled to the engine.
It was a matter of a few dozens lines of code. The adapter was created in two
days, or 16 hours. Thus, given the total project time of 14 weeks, creating the
artefacts needed for model-based testing took thus about 17% of our time.
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The modeling process. Writing a model takes a significant amount of time, but
also forces the developer to think about the system behavior thoroughly. More-
over, we found it extremely helpful to use simulation to step through the proto-
col, before implementing anything. Making and simulating a model gives a deep
understanding of the system, in an early stage of development, from which the
architectural design profits.

Automated testing with JTorX. Writing an adapter can be a large project, but
in this case it was relatively straightforward. This can be attributed to having an
architectural design that closely resembles the formal model, and a one-to-one
mapping between the actual XBus messages and their model representation.

5 Conclusions and Future Research

We conclude that model-based testing using JTorX was a success: with a rela-
tively limited effort, we found five subtle bugs. We needed 17% of the time to de-
velop the artefacts needed for model-based testing, and given the errors found, we
consider that time well spent. Moreover, for future versions of the XBus, JTorX
can be used for automatic regression tests: by adapting the mCRL2 model to
new functionality, one can detect automatically if new bugs are introduced.

We also conclude that making the formal model together with the architec-
tural design had a positive effect on the quality of the design. Moreover, the
resulting close resemblance between model and design simplified the construc-
tion of the adapter.

Although construction of the adapter was relatively straightforward, it would
have been even easier if (parts of) the adapter could have been generated au-
tomatically, which is an important topic for future research. Another very im-
portant topic is to implement test coverage metrics (e.g. from [14]) in JTorX, so
that we can quantify how thoroughly we have been testing.
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Abstract. Cell libraries are collections of logic cores (cells) used to
construct larger chip designs; hence, any reduction in their power con-
sumption may have a major impact in the power consumption of larger
designs. The power consumption of a cell is often determined by trigger-
ing it with all possible input values in all possible orders at each state. In
this paper, we first present a technique to measure the power consump-
tion of a cell more efficiently by reducing the number of input orders that
have to be checked. This is based on symbolic techniques and analyzes
the number of (weighted) wire chargings taking place. Additionally, we
present a technique that computes for a cell all orders that lead to the
same state, but differ in their power consumption. Such an analysis is
used to select the orders that minimize the required power, without af-
fecting functionality, by inserting sufficient delays. Both techniques have
been evaluated on an industrial cell library and were able to efficiently
reduce the number of orders needed for power characterization and to
efficiently compute orders that consume less power for a given state and
input-vector transition.

1 Introduction

A cell library is a collection of logic cores used to construct larger chip designs, con-
sisting of combinational cells (e.g., and and xor) and sequential cells (e.g., latches
and flip-flops). Cell libraries are usually described at multiple levels of abstraction,
such as a transistor netlist and a Verilog description. Cells are used repeatedly in
many larger designs and hence any minor improvement in their power consump-
tion may lead to considerable power saving in the subsequent designs.

In this paper, we analyze the dynamic power consumption of netlists, as these
describe the design that will finally be manufactured. An analysis at the level
of Verilog descriptions is also possible but not very promising, because the same
functional behavior (as that of the netlist) is often described using very differ-
ent structures, a prominent example being User Defined Primitives (UDPs). To
measure the dynamic power consumed by a netlist we use an abstract measure,
namely the number of wires charged, possibly weighted by the node capacitance,
if this is additionally available.

From a given transistor netlist, we first build a transition system, which de-
scribes the state of each wire in the netlist. In practice, this transition system is
described symbolically by equations in the inputs and values of wires [2]; hence,
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we use Binary Decision Diagrams (BDDs) for a symbolic representation of the
netlist semantics. In order to efficiently analyze the different power consump-
tion of different permutations, we quotient these permutations into equivalence
classes. Every such equivalence class contains different orders of applying a tran-
sition from one input vector to another, but all of these orders have the same
functional effect and consume the same amount of power. Thus, during power
characterization, only one of these orders has to be considered.

In practice, the order of evaluating input changes may be controlled efficiently;
in such cases, we seek a reduction in the dynamic power consumption by choos-
ing, among functionally equivalent orders, the one that has the minimal power
consumption. For this problem, we developed an analysis of functionally equiv-
alent orders. Then, given the current state of the wires and an input vector
transition, we can determine the order that consumes the minimal amount of
power. Thus, by choosing this order the functionality of the circuit is not altered,
but the power consumption is indeed reduced.

Related Work. The work reported in [3] also determines the power consumption of
cells. The authors present an empirical algorithm, which also groups together dif-
ferent input vector transitions. However, they group together different values of in-
puts, whereas our approach groups together different orders of applying the same
input vector. Furthermore, their grouping is made manually and afterwards all
remaining input vectors and orders are enumerated explicitly, as opposed to our
symbolic approach. Another approach that also uses a transition system model of
circuits is presented in [8]. This approach builds an explicit representation of the
transition system, and hence has to combat the size of these transition systems by
simplifying the netlist, something which is not required in our symbolic represen-
tation. A symbolic representation of cells for the purpose of power analysis is also
used in [1]. There, the symbolic representation is used during simulation of cells
to determine the charge for each wire. Our work can be seen as a preprocessing
step to theirs, as we first reduce the number of orders that later have to be simu-
lated. Already in [7] it was observed that superfluous transitions (called glitches)
of signals cause an increased power consumption. In contrast to our work, there
glitches are detected by simulations, and only considered at cell outputs. The au-
thors propose a number of techniques to reduce glitches. One of these is the addi-
tion of delays to enforce a certain order of events, which is also what we propose to
select a low power evaluation. The theoretical basis of this paper builds upon [5]
and [6]. Those analyses are extended by also taking power consumption into ac-
count and using the results to build symbolic graph structures that represent the
equivalence classes of orders in a compact way.

Paper Structure. The rest of this paper is structured as follows. In Section 2, we
introduce the notion of vector-based transition system which we use to model the
semantics of transistor netlists. Furthermore, the section introduces orders as per-
mutations of inputs and lists as their building blocks. Section 3 then presents our
first technique to determine all equivalence classes of orders that are functionally
equivalent and consume the same amount of power. A technique that determines
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equivalence of orders based on functional equivalence is then presented in Sec-
tion 4. For each of these equivalence classes, it is furthermore analyzed which
of these orders consumes the least amount of power for a given state and input
vector transition. We briefly sketch our implementation in Section 5 and report
empirical results obtained from applying our implementation on an industrial
cell library in Section 6. We conclude the paper in Section 7.

2 Preliminaries

The analysis in this paper is concerned with transistor netlists. These consist of
a number of transistor instantiations, which for the purpose of this paper are
seen as a switch. From such a transistor netlist, a system of Boolean equations
is created, using the method of [2]. These equations form a transition system,
where states are represented by a vector of Boolean variables. Transitions occur
between stable states (i.e., states that are finished evaluating for the current
input values) and are labeled with another Boolean vector, representing the new
values of the inputs. The structure of the states is irrelevant for the transitions,
thus the set of states is kept abstract in our formal treatment. Only in the
experiments, state vectors are investigated to determine the number of charged
wires. Since a transistor netlist can start up in any arbitrary state, the transition
systems we consider do not have an initial state, instead an evaluation can start
in any state.

Hence, we consider a vector-based transition system, which is a triple T =
(S, I,→) where S is an arbitrary set of states (usually, as explained above, S
is a set of vectors representing the current internal state), I = Um is the set
of input vectors for some basic set U (commonly the Boolean values B), and
→ ⊆ S×I×S is the transition relation. For a vector �v = (v1, . . . , vk), we denote
its j-th position by �v|j = vj and the update of the vector �v in coordinate j by
value v′ is denoted by �v[j := v′] = (v1, . . . , vj−1, v

′, vj+1, . . . , vk).
We are only interested in one-input restricted traces, because they form the

common semantic model of hardware description languages (the so-called sin-
gle event assumption in [3]). In order to define one-input restricted traces, i.e.,
traces where the used input vectors differ in at most one coordinate, we use
the Hamming distance dH(�i1,�i2) = |{1 ≤ j ≤ m : �i1|j �= �i2|j}|. A one-input

restricted trace is then a trace consisting of consecutive steps s0

�i1−→ s1

�i2−→ s2

with dH(�i1,�i2) ≤ 1. We define the transition system T I = (S × I,→T I ) as
the system where the states are extended with the input vector used to arrive
in that state, and the transitions are only labeled by the input position that
was changed. Formally, we have →T I ⊆ (S × I) × {1, . . . , m} × (S × I) where

s0;�i0
j−→T I s1;�i1 iff s0

�i1−→ s1 and �i1 = �i0[j := �i1|j ]. Here and in the following we
denote a tuple (s,�i) ∈ S × I by s;�i. It is easy to see that one-input restricted
traces can be converted between the two representations. Thus, we use the two
representations interchangeably in the rest of this paper and drop the subscript
T I if no confusion can arise.
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For an evaluation of a netlist, we want to consider each input exactly once,
to determine whether it has changed its value or not. Thus, we are interested in
one-input restricted traces of length m where none of the indices occurs twice.
This can be described by means of a permutation, that assigns to each step the
coordinate of the input to consider. We write Πm for the set of all permutations
over the numbers {1, . . . , m}. In the remainder, we will make use of the fact
that every permutation can be obtained by a sequence of adjacent transposi-
tions, which are swappings of two neighboring elements. To be able to construct
permutations from smaller parts, we denote by Lm the set of all lists containing
each of the numbers {1, . . . , m} at most once. Then, we interpret the permuta-
tions Πm as those lists containing every number exactly once (i.e., the lists of
length m). Given a list � = j1 : · · · : jk ∈ Lm, we define the length of this list as
|�| = k and the sublist �[a .. b] = ja : · · · : jb for 1 ≤ a ≤ b ≤ k. The empty list is
denoted ∅ and a singleton list is denoted by its only element. The concatenation
of two lists �1 = j1 : · · · : ja and �2 = j′1 : · · · : j′b with jc �= j′d for all 1 ≤ c ≤ a
and 1 ≤ d ≤ b is defined as �1++�2 = j1 : · · · : ja : j′1 : · · · : j′b.

3 Reducing Input Vector Orders for Power Analysis

3.1 Order-Independence of Power-Extended Transition Systems

Our first improvement in power analysis is achieved by grouping, in equivalence
classes, those orders that have the same power characteristics. For such orders, it
is sufficient to only consider one member of the equivalence class. Important for
such equivalence classes is to result in the same state in order not to affect the
functionality of the netlist. This latter problem of determining whether the state
reached after applying an input vector in different orders is the same has already
been considered in [5] and [6]. Here, we extend those works to also consider
the dynamic power consumption. For this purpose, we define a power-extended
vector-based transition system.

Definition 1. The power-extended vector-based transition system Tp = (Sp, I,
→p) of a vector-based transition system T = (S, I,→) is defined Sp = R × S

and w;s
�i−→p w+p(s, s′);s′ for s

�i−→ s′. The function p : S × S → R computes a
weighted number of wire chargings given the source and target states.

The added first component of the states, a number, is used to sum the weights of
the charged wires (which we interpret as the consumed power) during an evalua-
tion. (Our definition indeed allows for weighted wire charging in order to cater for
node capacitance in our calculations. However, for presentation purposes through-
out the rest of this paper, we assume the weights of all wire chargings to be equal;
hence, in the remainder of the paper, the sum of weights denotes the number of
wire chargings.) Note that a vector-based transition system does not assume a
particular type of the states, so this is still a vector-based transition system.

We initially set the power component (the real number component in the
state) to 0, indicating that no chargings have taken place yet. Then, we select



138 M. Raffelsieper and M.R. Mousavi

0;s0;�i0

w1
1 ;s1;�i1

w2
1 ;s2;�i2

w1
1 + w1

2;s12;�i12

w2
1 + w2

2;s21;�i21

j

k

k

j

?
=

Fig. 1. Evaluation of two input coordinates

two inputs (identified by their position in the input vector, as in the transition
system T I) and change them in both possible orders. Finally we check whether
the resulting states for the two orders are equal or not. For example, assume that
we initially arrive in state s0 with an input vector �i0, denoted by 0;s0;�i0. Then,
we apply the two consecutive input changes, denoted by [j := v′j ] and [k := v′k]
where j �= k, in the two possible orders leading to the two evaluations depicted
in Figure 1.

As indicated in Figure 1, it remains to be checked whether the two states
w1

1 + w1
2 ;s12;�i12 and w2

1 + w2
2 ;s21;�i21 are equal or not. First, we note that the

input vectors�i12 and�i21 are equal, as they are constructed by updating positions
j and k in �i0 with the same values. Formally, this holds because for j �= k,
�i12 = �i0[j := v′j ][k := v′k] = �i0[k := v′k][j := v′j ] = �i21. Thus, we only have
to compare the remaining parts of the states. We have already addressed this
problem, called order-independence, for generic vector-based transition systems
in [6]. Checking that the states s12 and s21 are equal is the same as order-
independence, i.e., checking that the order of these two inputs does not affect
the functionality. By requiring that w1

1 + w1
2 = w2

1 + w2
2 , we additionally require

that the order of the two inputs also does not cause different power consumptions.
In this paper, by exploiting the result of [6], we show that for transistor netlists

checking order-independence for two inputs is both necessary and sufficient to
establish order-independence for traces of full input length. In order to do this
we introduce the relation −→→, which denotes traces.

Definition 2. Let T = (S, I,→) be a vector-based transition system with m
inputs, let s;�i ∈ S × I, and let � = j1 : · · · : jk ∈ Lm.

We define −→→T ⊆ (S × I) × Lm × (S × I) as s;�i �−→→T s′;�i′ iff there exists a

state s0;�i0 and 1 ≤ b ≤ m such that s0;�i0
b−→ s;�i

j1−→ . . .
jk−→ s′;�i′.

In the above definition, we additionally require that the initial state is reachable
from some other state, which we call one-step reachability. This restriction is
added to rule out transient initial states that can only occur at boot-up and will
never be reached again.

We then call a vector-based transition system T with m inputs order-

independent, iff for all π, π′ ∈ Πm it holds that π−→→ = π′−→→. To relate order-
independence, which considers traces of length m, and the check that only
considers two inputs, we make use of the following theorem of [6].
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Theorem 3 (Theorem 9 in [6]). Let T = (S, I,→) be a deadlock-free vector-
based transition system with m inputs having the fixed-point property. Then T is
order-independent, iff j

�� k for all 1 ≤ j < k ≤ m.

In Theorem 3, deadlock-freedom has its intuitive meaning, namely that for every
current state and every possible input transition, a next state can be computed.
This is the case for the semantics of transistor netlists, our target application, as
they always compute a next state for any input vector. The second requirement,
the fixed-point property, demands that a reached state is stable, i.e., applying
the same input vector twice does not result in a different state from when the
input vector is only applied once. It is shown in [6] that vector-based transition
systems constructed from a transistor netlist using the algorithm of [2] always
have the fixed-point property. Intuitively, this holds because the states are stable
and hence cannot distinguish the stable situation from applying the same inputs
again. Since an unchanged state means that also the number of wire chargings
does not change, this also holds in our power-extended vector-based transition
system. Therefore, without mentioning this explicitly in the remainder of this
paper, we assume these two hypotheses of Theorem 3 to hold.

The relation ��, called the one-step reachable commuting diamond, relates two
input positions 1 ≤ j �= k ≤ m, if for every one-step reachable state s0;�i0 ∈ S×I,
s0;�i0

j−→ ◦ k−→ s12;�i12 iff s0;�i0
k−→ ◦ j−→ s12;�i12. This is similar to the situation

depicted in Figure 1, assuming that the states s12 and s21 and their power
consumptions are equal.

To summarize, also for power-extended vector-based transition systems we
only have to analyze pairs of inputs, instead of complete sequences, to determine
order-independence and therefore equivalent power consumption. This drasti-
cally decreases the number of required checks from m!, i.e., the number of all
permutations, to m2−m

2 , the number of all pairs of inputs.

3.2 Equivalence Relation on Orders

Full order-independence of a power-extended vector-based transition system
would mean that all orders always have the same power consumption. Of course,
this is neither expected in any useful transistor netlist, nor is it of much prac-
tical relevance. Therefore, we want to create an equivalence relation on orders
that groups together those subsets of orders having the same number of wire
chargings. This relation, formally defined below, is called power independence.

Definition 4. Let T = (S, I,→) be a vector-based transition system with m
inputs.

We define a relation ↔T on Lm, where � ↔T �′ iff the lists are equal except
for swapped positions �′[j + 1] = �[j] and �′[j] = �[j + 1], for which the one-step
reachable commuting diamond property holds (i.e., �[j] �� �[j + 1]).

Using relation ↔T , we define the equivalence relation ≡T on Lm as the re-
flexive transitive closure of ↔T . If � ≡T �′, then we also call � and �′ (power-)
independent.
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Note that the above definition is using a general vector-based transition system.
If this is a power-extended one, then we call the relation power-independence,
otherwise we only talk about independence of lists. For the power-independence
relation, we have the following result, showing that it indeed groups together
those orders that have equal (functional and power consumption) behavior.

Lemma 5. Let Tp = (Sp, I,→p) be a power-extended vector-based transition
system with m inputs and let π, π′ ∈ Πm be power-independent (i.e., π ≡Tp π′).

Then for traces 0;s0;�i0
π−→→Tp w1;s1;�i and 0;s0;�i0

π′
−→→Tp w2;s2;�i it holds that

w1 = w2 and s1 = s2.

Proof. Follows by an induction on the number of swapped input coordinates to
reach π′ from π. �

Thus, to characterize a cell, one only has to choose one representative from each
power-independent equivalence class and measure the power consumption for
this order. All other orders in this equivalence class will have the same power
consumption and hence do not have to be considered.

To obtain the different orders that have to be considered, we build the power-
independence DAG (directed acyclic graph) that enumerates all equivalence
classes of the power-independence relation ≡Tp .

Definition 6. Let Tp = (Sp, I,→p) be a power-extended vector-based transition
system with m inputs.

The power-independence DAG Gi = (Vi,�−→i) of Tp is defined as Vi ⊆ Lm

with root ∅ ∈ Vi and for 1 ≤ j ≤ m with j /∈ �, � �−→i �′ for some unique
�′ ≡Tp �++j.

We did not label the edges with inputs in the above-given DAG since the input
corresponding to each edge is always the single element by which the two lists
of the start and the end node of the edge differ.

To construct the power-independence DAG Gi, we start with the single root
of this DAG, ∅, which indicates that initially no inputs have been considered
yet. The construction of the DAG then proceeds in a breadth-first fashion: for
each leaf � (which is a node without outgoing edges) and every input j that has
not yet been considered (i.e., is not in �), an edge is added to that leaf. The
target node of this edge is determined by looking at the parent nodes of the
currently considered leaf. If there exist a parent node �p reaching the current
node � with input j′, a node �′ reachable from the parent node �p with list j : j′,
and inputs j and j′ are exchangeable, i.e., j

�� j′, then the edge is drawn to
the existing node �′. This is depicted in Figure 2 (a), where the dashed edge
is added. Otherwise, if one of the above conditions is violated (i.e., either the
inputs cannot be exchanged or the node �′ has not been generated yet), a new
node �++j is created and an edge drawn there. As an example, the case where

for all �p

j:j′�−→∗
i �′ we have j ��� j′ is depicted in Figure 2 (b). There, the dashed

edge and the dashed node are added to the DAG. This process finishes at leaves
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Fig. 2. Construction of the power-independence DAG

for which the list of considered inputs contains every input exactly once. It
can furthermore be shown that the above construction always yields the power-
independence DAG. Next, we prove that this DAG exactly distinguishes between
the equivalence classes of the power-independence relation ≡Tp .

Theorem 7. Let Tp be a power-extended vector-based transition system with m
inputs and let Gi = (Vi,�−→i) be its power-independence DAG.

Then, for all orders π1, π2 ∈ Πm, π1 and π2 are power-equivalent, iff there
exist paths ∅ π1�−→∗

i π and ∅ π2�−→∗
i π in Gi for some order π ∈ Πm.

Proof. To prove the “if” direction, we observe that due to the definition of the
power-independence DAG in Definition 6, all nodes on a path, when appending
the remaining considered inputs, are power-independent. This directly entails
π1 ≡Tp π ≡Tp π2.

The “only-if” direction is proved by an induction over the number of swap-
pings needed to reach π1 from π2, cf. Definition 4. If there are none, then π1 = π2

and the theorem trivially holds. Otherwise, we can apply the induction hypoth-
esis to π2 and the order π′, resulting from π1 by undoing the last swapping of

j and j+1. This gives two paths ∅ π′
�−→∗

i π and ∅ π2�−→∗
i π in the graph. Since the

two swapped positions j and j + 1 are power-independent, and the rest of the
orders π1 and π′ are the same, the two paths induced by these two orders must
have the diamond shape due to the requirement in Definition 6, proving that
also a path ∅ π1�−→∗

i π exists. �

In summary, to determine the power-independent orders of a given power-
extended vector-based transition system, we construct its power-independence
DAG. Due to the above theorem, the lists contained in the leaves of the power-
independence DAG are representatives of the different equivalence classes of
orders that have to be considered for power characterization, i.e., only one of
these orders has to be measured to obtain the real power consumption of all
equivalent orders. Therefore, the number of leaves compared to the number of
all possible orders is a measure for the reduction obtained by our method.
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4 Selecting Orders to Minimize Power Consumption

The technique introduced in the previous section is useful in characterizing the
power consumption of a cell. However, in order to minimize the power consump-
tion, we develop a slightly different technique. Namely, contrary to the previous
section, where we identify orders that always have the same dynamic power con-
sumption, we now want to identify orders that are functionally independent (i.e.,
they do not influence the computation of a next state) but may have different
power consumption. Then, by taking the order (one representative order among
the equivalent orders) that consumes the least amount of power, the dynamic
power consumption of computing the next state can be reduced.

For this purpose, we again define a DAG structure describing the different
possible orders, but now we identify nodes that are computing the same next
state, i.e., the inputs leading to such a shared node only need to have the diamond
property regarding the functionality and not necessarily regarding the power
consumption. Furthermore, we add to each node a back-pointer that determines
which input leads to less power consumption. Then, by traversing the DAG from
some leaf to the root following these back-pointers, one can construct the order
that computes the same next state but uses minimal power. Next, we formalize
this intuition.

Definition 8. Given a vector-based transition system T = (S, I,→) with m
inputs and its power-extended vector-based transition system Tp = (R×S, I,→p),
we define the power-sum DAG Gs = (Vs,�−→s, �s), where Vs ⊆ Lm, �−→s ⊆
Vs × Vs, and �s ⊆ Vs × (S × I × I) × Vs. The root is defined to be ∅ ∈ Vs.

The transition relation �−→s is defined for every � ∈ Vs and every 1 ≤ j ≤ m
as � �−→s �′ for some unique �′ such that �++j ≡T �′.

The back-pointer relation �s is defined for every � ∈ Vs, s;�i ∈ S × I, and
�i′ ∈ I as ∅ �s;�i;�i′�s � and, if � �= ∅, �

s;�i;�i′�s �′ for some unique �′ ∈ Vs with �′
j′�−→s �,

�′ = j1 : · · · : jh, and 0;s;�i
j1−→p . . .

jh−→p ◦ j′−→p w;s′;�i′ for which w ∈ R is
minimal.

Note that in the definition of the transition relation of this DAG, we use in-
dependence based on equal states, not the extended power-independence which
also checks for equal power consumption. Finally, we remark that again labels
of edges are left out, but the transition relation �−→s can be understood as la-
beled by an input position 1 ≤ j ≤ m, indicating the added input coordinate
that has been considered. This was already made use of in the definition of the
back-pointer relation, but this position can again be recovered as the single input
coordinate by which the two lists differ.

The construction of the power-sum DAG works similarly to the construction
of the power-independence DAG. For it, we use the auxiliary function wmin,
which assigns to every node and state and input transition the minimal weight
that the resulting state can be reached with, i.e., for � ∈ Vs and s;�i;�i′ ∈ S×I×I,

wmin(�, s;�i;�i′) = w if 0;s;�i �′−→→Tp w;s′;�i′ and w is minimal among all �′ ≡T �. This
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Fig. 3. Construction of the back-pointer relation in the power-sum DAG for some state
and input vector transition s;�i;�i′ ∈ S × I × I

can be efficiently read from the back-pointer relation. To complete the function,

we define wmin(�, s;�i;�i′) = ∞ if no �′ ∈ Vs exists such that �
s;�i;�i′�s �′.

We start with the root node ∅ and add nodes in a breadth-first fashion. At
each step, for each leaf � of the DAG, we add an edge for every input position
1 ≤ j ≤ m that is not yet contained in �. If there exists a node �′ such that

�p

j′�−→s �, �p

j:j′�−→∗
s �′, and j

��T j′, then the edge �
j�−→s �′ is added. Otherwise,

a new node �++j is added to the DAG, and the edge �
j�−→s �++j is added.

This is the same construction that was used for the power-independence DAG
Gi, illustrated in Figure 2, only here the commuting diamond property does not
take the power consumption into account.

For the back-pointer relation, we use that sub-paths of a path with minimal
weight also are of minimal weight, since otherwise a sub-path could be replaced

by a smaller one. So, when adding an edge �
j�−→s �′, we define �′

s;�i;�i′�s � if
s;�i �−→→ s0;�i0

j−→ s′;�i′ and wmin(�, s;�i;�i′) + p(s0, s
′) < wmin(�′, s;�i;�i′), otherwise we

leave �s unchanged. Note that if �′ is a new node, then always the first case is
applied, since the sum is always smaller than ∞.

An illustration of the back-pointer construction is shown in Figure 3, where

the dashed edge �
j�−→s �′ is to be added. Initially, we assume that there already

is a node �min such that �′
s;�i;�i′�s �min, i.e., the power consumption is minimal

if taking the minimal path from the root ∅ to node �min, which is assumed to
have weight w′, and then extending it by considering coordinate j′, whose power
consumption we assume to be p′. This situation is depicted in Figure 3 (a). Next,
the node � is considered. Note that �′ ≡T �++j ≡T �min++j′, as otherwise the

edge �
j�−→s �′ would not be drawn. We assume the weight of the minimal path

from the root ∅ to the node � to be w and the power consumption of the step
from � to �′ to be p. In case w + p < w′ + p′, then we have found a new minimal
path for �′, thus we update the back-pointer relation as shown in Figure 3 (b).
Otherwise, the previous path of the back-pointers is still giving the minimal path
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even after adding �
j�−→s �′, so in that case the back-pointer relation remains as

depicted in Figure 3 (a).
It can be shown that the above construction yields exactly the power-sum

DAG Gs of a power-extended vector-based transition system. In the following
theorem, it is shown that Gs identifies all orders that lead to the same state and
a construction of the order consuming the minimal amount of power is given.

Theorem 9. Let Tp = (R×S, I,→p) be a power-extended vector-based transition
system with m inputs and power-sum DAG Gs = (Vs,�−→s, �s). Furthermore,
let π, π′ ∈ Πm be some orders and s;�i;�i′ ∈ S × I × I be some state together with
previous and next input vectors.

If ∅ π�−→∗
s π′, then a path π′ = �m

s;�i;�i′�s . . .
s;�i;�i′�s �0 = ∅ exists and π ≡T π′ ≡T π′′

for π′′ = j1 : · · · : jm ∈ Πm defined by �r = �r−1++jr for all 1 ≤ r ≤ m such

that 0;s;�i π′′−→→ w;s′;�i′ and w is minimal.

Proof. Existence of the back-pointer path and hence of π′′ is guaranteed by the
(unique) existence of a successor w.r.t. �s for every node that is not the root
and since �r �= ∅ for every 1 ≤ r ≤ m. The property π ≡T π′ ≡T π′′ directly
follows from the definition of the transition relation of Gs. Finally, minimality
of w follows from the definition of the back-pointer relation of Gs. �

Given a cell and its power-sum DAG Gs, one can obtain the order consuming the
least amount of power for a given state, input vector transition, and order π in
which the inputs are to be changed. This works by first traversing the DAG Gs

according to the order π, which will result in a leaf π′ of the DAG. From the leaf,
the back pointer relation is followed upwards to the root, giving another order
π′′ with π′′ ≡T π′ ≡T π that consumes the least amount of power, as shown in
Theorem 9. Enforcing this order π′′ can for example be done by adding delays,
which is also proposed in [7].

5 Implementation

The techniques presented in Sections 3 and 4 were implemented in a prototype
tool. This tool first parses a SPICE netlist and builds a symbolic vector-based
transition system from it using the algorithm of [2], where states consist of a
vector of formulas, computing values from the set {0, 1, Z}. The values 0 and 1
correspond to the logic values false and true, respectively, and represent an active
path from a wire in the netlist to the low and high power rails, respectively. The
third value, Z, represents a floating wire that has neither a path to the low nor to
the high power rail. As the initial state of the netlist, we allow arbitrary values
for all of the wires. The inputs are restricted to the binary values 0 and 1.

The power consumption of a transition is computed by the function p in
Definition 1. In our implementation, this function is defined as p(�s, �s′) =
∣
∣{1 ≤ j ≤ n : �s|j = 0, �s′|j = 1}∣∣ for a netlist consisting of n wires, i.e., it
counts the number of wires that transition from 0 to 1.
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Building the power-independence DAG is then performed by first computing
the diamond relation for all pairs of inputs (also taking power consumption into
account). This is done symbolically using BDDs, requiring a total of O(n · m2)
BDD comparisons for m inputs and n state variables. Here, for every pair of input
variables (of which there are O(m2) many) and every of the n state variables, two
BDDs are constructed. The first computes the next state function after applying
the two inputs in one order, the second BDD computes the next state function
after applying the inputs in the other order. The currently considered pair of
inputs has the power-extended diamond relation, if and only if these pairs of
BDDs are equal for all state variables and the total number of wire chargings
is the same. Finally, we construct the power-independence DAG as described in
Section 3.2.

If the power-sum DAG is to be constructed, as described in Section 4, then
we first need to compute the functional independence relation for all pairs of
inputs. This also requires O(n · m2) BDD comparisons. Furthermore, we need
to keep track of the state to which a list of input coordinates leads, to be able
to construct the back-pointer relation. For this purpose, we unroll the symbolic
transition relation, i.e., we create a new transition relation that computes, given
a starting state and input vector, the state and input vector after changing the
inputs in the order of the currently considered node. This is used to create a
symbolic formula computing the number of wires charged when adding another
input to the list. Among these formulas we finally compute a symbolic minimum
that indicates which parent node leads to minimal power consumption.

6 Experimental Results

We applied our technique to reduce the number of considered orders, which was
presented in Section 3, and the technique to select an equivalent order that con-
sumes less power, presented in Section 4, to the open-source Nangate Open Cell
Library [4]. For each of the contained netlists, the SPICE source was parsed, a
transition system created, and the power-independence DAG or power-sum DAG
built and traversed to enumerate all equivalence classes. All of our experiments
were conducted on a commodity PC equipped with an Intel Pentium 4 3.0GHz
processor and 1GB RAM running Linux.

6.1 Reducing Input Vector Orders

Our results for reducing the number of considered orders with different functional
or power consumption behavior are presented in Table 1, where the first column
gives the name of the cell, the second column gives both the number of inputs
and the number of wires, the third column the number of all possible orders, and
the fourth column shows the number of different equivalence classes returned
by our approach together with the time it took to compute these. Finally, the
last column demonstrates the achievable power reduction, to be explained in
Section 6.2.
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For combinational cells, marked with “(c)” in Table 1, the results show that
our approach cannot reduce the number of orders that have to be considered.
This is usually due to situations in which wires are in one order first discharged
only to be finally charged, whereas evaluating them in another order keeps the
wire charged during the whole evaluation. Thus, all possible orders have to be
considered during power characterization of these cells.

For sequential cells however, we can observe some larger savings especially for
the larger cells. For example, in case of the largest cell in the library, the cell
SDFFRS, we could reduce the number of orders to consider from 720 to only 288,
which is a reduction by 60%. Especially for sequential cells these savings have an
effect, since for these cells the characterization not only has to take the possible
input combinations into account, but also the current internal state. Overall,
when summing up the absolute number of orders that have to be considered for
the sequential cells, we get a reduction by more than 47%. This is especially
advantageous for the large cells, as witnessed by the average of the reduction
rates of sequential cells, which is only slightly above 16%. So especially for large
sequential cells with lots of possible orders, our approach can reduce the number
of orders that have to be considered significantly.

6.2 Selecting Input Vector Orders

We also evaluated the technique presented in Section 4, which computes the
functionally equivalent orders and a path back that uses the minimal amount
of power, using the open-source Nangate Open Cell Library [4]. The results are
shown in the last column of Table 1, where the number of equivalence classes
w.r.t. ≡T , the average number of maximal differences in wires chargings, and the
amount of time for constructing the DAG and computing the result are given.

The results show that for combinational cells all orders lead to the same final
state, which is expected as the state is completely determined by the new input
values. For the sequential cells we observe that not all orders lead to the same
final state, as there are multiple leaves in the power-sum DAG. This happens
because the computation can depend on internally stored values, which might
have different values when applying the input changes in different orders.

We illustrate the selection of orders by means of an example. Consider the
scan logic of the cell SDFFRS (which is also the same in the cells beginning with
SDFF), which is a multiplexer (mux) that selects, based on the value of the scan
enable signal, between the data input and the scan input. In case the scan enable
signal changes from 0 to 1 and the data input changes, then the power-sum DAG
tells us that it is more power-efficient to first change the scan enable signal and
then change the data input, than vice versa. This can be explained intuitively
by the fact that while the scan enable signal is 0, the mux is transparent to
changes in the data input, so also wires connected to transistors controlled by
the mux output are affected. This is not the case anymore if we first change the
scan enable to 1, so that the change in the data input cannot be observed at the
output of the mux. In case of the cell SDFFRS, choosing the first order can cause
7 more wires to be charged.
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Table 1. Results for the Nangate Open Cell Library

Cell #I / W #Πm |Gi| / t [s] |Gs| : Avg / t [s]

AND2 (c) 2 / 3 2 2 / 0.37 1 : 2.5 / 0.37
AND3 (c) 3 / 4 6 6 / 0.46 1 : 3.5 / 0.47
AND4 (c) 4 / 5 24 24 / 0.60 1 : 4.5 / 0.66
AOI211 (c) 4 / 4 24 24 / 0.62 1 : 4.0 / 0.64
AOI21 (c) 3 / 3 6 6 / 0.44 1 : 2.5 / 0.45
AOI221 (c) 5 / 5 120 120 / 0.97 1 : 7.0 / 1.14
AOI222 (c) 6 / 6 720 720 / 1.79 1 : 9.5 / 5.57
AOI22 (c) 4 / 4 24 24 / 0.68 1 : 5.0 / 0.66
BUF (c) 1 / 2 1 1 / 0.33 1 : 0.0 / 0.27
CLKBUF (c) 1 / 2 1 1 / 0.25 1 : 0.0 / 0.29
CLKGATETST 3 / 13 6 6 / 0.68 4 : 3.7 / 0.71
CLKGATE 2/ 11 2 2 / 0.54 2 : 0.0 / 0.54
DFFRS 4 / 24 24 24 / 1.20 12 : 1.1 / 1.82
DFFR 3/ 19 6 4 / 0.78 4 : 0.0 / 0.90
DFFS 3 / 19 6 6 / 0.82 4 : 1.0 / 0.90
DFF 2 / 16 2 2 / 0.63 2 : 0.0 / 0.68
DLH 2 / 9 2 2 / 0.50 2 : 0.0 / 0.52
DLL 2 / 9 2 2 / 0.53 2 : 0.0 / 0.52
FA (c) 3 / 14 6 6 / 0.71 1 : 3.0 / 0.76
HA (c) 2 / 8 2 2 / 0.46 1 : 1.0 / 0.48
INV (c) 1 / 1 1 1 / 0.24 1 : 0.0 / 0.25
MUX2 (c) 3 / 6 6 6 / 0.52 1 : 4.0 / 0.53
NAND2 (c) 2 / 2 2 2 / 0.35 1 : 1.5 / 0.35
NAND3 (c) 3 / 3 6 6 / 0.44 1 : 2.5 / 0.44
NAND4 (c) 4 / 4 24 24 / 0.58 1 : 3.5 / 0.61
NOR2 (c) 2 / 2 2 2 / 0.35 1 : 1.5 / 0.36
NOR3 (c) 3 / 3 6 6 / 0.47 1 : 2.5 / 0.45
NOR4 (c) 4 / 4 24 24 / 0.58 1 : 3.5 / 0.63
OAI211 (c) 4 / 4 24 24 / 0.59 1 : 4.0 / 0.64
OAI21 (c) 3 / 3 6 6 / 0.47 1 : 2.5 / 0.45
OAI221 (c) 5 / 5 120 120 / 1.07 1 : 7.0 / 1.22
OAI222 (c) 6 / 6 720 720 / 1.80 1 : 9.5 / 5.61
OAI22 (c) 4 / 4 24 24 / 0.62 1 : 5.0 / 0.66
OAI33 (c) 6 / 6 720 720 / 1.77 1 : 8.0 / 4.79
OR2 (c) 2 / 3 2 2 / 0.37 1 : 2.5 / 0.38
OR3 (c) 3 / 4 6 6 / 0.46 1 : 3.5 / 0.47
OR4 (c) 4 / 5 24 24 / 0.59 1 : 4.5 / 0.66
SDFFRS 6 / 30 720 288 / 2.99 48 : 6.4 / 13.01
SDFFR 5/ 25 120 96 / 1.61 16 : 6.4 / 3.07
SDFFS 5 / 25 120 36 / 1.49 16 : 6.0 / 2.77
SDFF 4 / 22 24 18 / 1.04 8 : 6.0 / 1.33
TBUF (c) 2 / 5 2 2 / 0.38 1 : 3.0 / 0.39
TINV (c) 2 / 4 2 2 / 0.39 1 : 3.0 / 0.38
TLAT 3/ 12 6 6 / 0.63 2 : 3.0 / 0.67
XNOR2 (c) 2 / 5 2 2 / 0.41 1 : 2.0 / 0.41
XOR2 (c) 2 / 5 2 2 / 0.44 1 : 2.0 / 0.40
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Note that some correlation exists between the size of an equivalence class and
the achievable power reduction: The more possible orders there are the more
likely it is that another equivalent order with less power consumption exists.
This can also be observed in results of Table 1, where the largest differences
occur for combinational cells, which always have exactly one equivalence class.

7 Conclusions

This paper presented a technique to group together orders of applying input
vectors which affect neither the functional behavior nor the power consumption.
Such a technique is useful for power characterization, where it is sufficient to
only choose one order of each of these equivalence classes, as all other elements
exhibit the same behavior. Additionally, we presented a technique to select an
order that uses the minimal power among functionally equivalent orders. Such
a technique is useful when the order can be controlled, e.g., by means of the
addition of delays as proposed in [7]. Then, one can force the evaluation to use
an order consuming the minimal amount of power, without affecting the result
of the computation. Both techniques were evaluated on the Nangate Open Cell
Library and provided reductions within reasonable amounts of time.

Acknowledgments. We would like to thank (in alphabetical order) Alan Hu,
Hamid Pourshaghaghi, and Shireesh Verma for their valuable input on this pa-
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Abstract. The approach proposed in this paper forms the front-end of a
framework for the complete design flow from specification models of new
automotive functions captured in Matlab Simulink to their distributed
execution on hierarchical bus-based electronic architectures hosting the
release of already deployed automotive functions. The process starts by
deriving a task structure from a given Matlab Simulink model. Because
the obtained network is typically unbalanced in the sense of computa-
tional node weights, nodes are melted following an optimization met-
ric called cohesion where nodes are attracted by high communication
density and repelled by high node weights. This reduces task-switching
times by avoiding too lightweight tasks and relieves the bus by keeping
inter-task communication low. This so-called Task Creation encloses the
translation of the synchronous block diagram model of Simulink into a
message-based task network formalism that serves as semantic base.

Keywords: simulink, creating tasks, design flow, distributed systems.

1 Introduction

We propose a framework that aims at automating significant parts of the design
flow in the following typical scenario for embedded application development in
automotive: given the electronic architecture A of a particular car model, we are
looking for a conservative cost-optimized extension of this architecture to im-
plement a new customer feature F . We consider typical hierarchical bus-based
target architectures with a backbone TDMA based bus. In this work, we con-
centrate on the front-end of this framework where we assume that F is given
as a Matlab Simulink model and propose an automated process to derive a bal-
anced task structure serving as input to the design space exploration process.
The goal is to optimize the granularity of the task structure while maintaining
causality constraints by balancing computational load and minimizing commu-
nication density. This is achieved by introducing a metric called cohesion which
reduces task-switching times by avoiding too lightweight tasks and relieves the
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bus by keeping inter-task communication low. As an interface between this front-
end process and the design space exploration process, we use function networks,
which provide a formal semantic base expressive enough to represent different
communication and execution paradigms and all timing related aspects [4].

To formally represent Matlab Simulink models we follow Lublinerman et al.
[12] where these models are defined as timed synchronous block diagrams (TBD).
A related approach of Tripakis et al. [5] is also based on TBDs and translates
Simulink models to Lustre to partition the generated code into modules that are
executed on different processors communicating via a time-triggered bus. Con-
trary to our work, the focus lies on separating the code into different modules
respecting a global partial order, while still performing a scheduling analysis
for user-specified timing constraints. Producing modular sequential code from
synchronous data-flow networks is also addressed by Pouzet et al. [13]. They de-
compose a given system into a minimum number of classes executed atomically
and statically scheduled without restricting possible feedback loops between in-
put and output. However, the question of efficient and modular code generation
lies beyond our approach but can be esteemed as supplementary. Di Natale et al.
propose [6] an optimization of the multitask implementation of Simulink mod-
els with real-time constraints on a single processor. The optimization goal is to
reduce the use of rate transition blocks between different synchronous sets (that
are connected blocks with the same sample time) to minimize buffering and la-
tencies. The tasks for the scheduling analysis are determined by the synchronous
sets while task priorities and execution order of function blocks within a task are
optimized. Another work from Kugele et al. [11] is also based on synchronous lan-
guages and presents a way to deploy clusters - that are actually tasks - specified
by the COLA language on a multi-processor platform. This allocation process
is completed by a scheduling-analysis involving address generation and estima-
tion of memory requirements for a pre-defined middle-ware. In this process they
also rise the question of how to generate clusters of nodes (tasks) but currently
assume that this is a decision that is taken manually by the user.

The contribution of this paper is as follows. Taking a translation scheme
for Matlab Simulink models to function networks, we define a cohesion metric
and an algorithm that partitions the resulting nodes to obtain a balanced task
set with respect to computational weights, and also minimized communication
demand between tasks. To obtain tasks correctly, we define formal composition
operations for nodes in a function network and show semantics preservation of
these operations in terms of causality (ordering) of node executions and timing.

Outline. We start in Section 2 with the definition of an extended task network
formalism called function network as semantic base for the whole process fol-
lowed by a short introduction into the translation concept from Matlab Simulink
to function networks in Section 3. The actual approach of task creation including
its semantics and application is presented in Section 4 completed by evaluation
results of this approach in Section 5. Section 6 concludes the paper.
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Fig. 1. Adaptive Cruise Control System

2 Function Networks

Like other task network formalisms, function networks [4] are directed graphs
where nodes represent processing elements (tasks), and edges represent channels
transmitting events between nodes. A channel may transport different events.
Channel c3 in Figure 1 for example transmits events from the set {d1, ..., dn}.

Event sources allow to model events sent by the environment to the network.
In Figure 1, they are depicted as rectangles with filled circles. Source φ3 repre-
sents for example a distance sensor delivering values d1, ..., dn. The occurrence
of events is defined in terms of event streams [14]. Common streams define for
example periodic or sporadic event occurrences. Event streams for function net-
works are defined by a tuple (Σout, P−, P+, J, O) where Σout is a set of events,
[P−, P+] defines an interval of a minimum and maximum period for event oc-
currences, J is the jitter, and O is an initial offset.

The connection between nodes and channels is realized by ports. Activation
of nodes is captured by their input ports (small white circles). An input port
activates a node when at least one event has occurred at each incoming channel
of that port. Node fv in Figure 1 for example is activated when both an event
v1 on channel c1 and v2 on c2 occurs. A node having multiple input ports is
activated on the activation of any of its input ports. Combining multiple ports
and multiple input channels allows modeling of complex node activations.

Function nodes employ internal state-transition systems to model for exam-
ple functions that are sensitive to incoming events, and data access to, e.g.
shared variables and FIFO buffers. Node fc for example sends a braking event
b whenever it is activated and the last captured distance was critical (crit).
Each activation causes a delay for processing, depending on the input event, the
current state, and the particular output port. Delays are taken from intervals
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with best-case and worst-case bounds. For example, an event crit that activates
node fc in state s0 needs between 3 and 4 ms to be sent to port p8.

To simplify modeling data flow, the function network formalism is extended
by data nodes, that are special function nodes modeling explicit data storage.
We define different types of data nodes as persistent ones like Shared variables
and FIFO buffers, and volatile ones like Signals. Another data node type is the
finite source (FSource) producing an initial event at its output port at system
startup while emitting the next event not before an event was received at any
input port. This node type is used to model cycles in function networks. Its
semantics is very similar to pre-allocated events in task networks with cyclic
dependencies [9]. A further enrichment is the introduction of a new channel type
named read channel. While common (activation) channels model control flow
and cause an activation at their target function node, read channels model data
dependencies, that is, reading access by a function node to a data node at the
activation of that function node. Read channels are depicted as dotted arcs.

Definition 1 (Function Network). A function network is a tuple FN =
(Σ,P, C, Φ,F,D) where:

– Σ is a finite alphabet. Events are tuples e = (σ1, . . . , σk) with σi ∈ Σ.
Σ̊ ⊂ Σ∗ is a finite set of events.

– P = PI
.
∪ PO is a set of input and output ports,

– C = CA ∪ CR ⊆ (P × N
+ × N

+ × P) is a set of channels c = (pout, δ, pin)
where δ ∈ (N+ ×N

+) is a delay interval, c ∈ CA are activation channels and
c ∈ CR are read channels leading exclusively from data to function nodes.

– Φ is a set of sources φ = (EP , P out) where EP = (Σout, P−, P+, J, O) is an
event pattern, Σout ⊆ Σ̊ are the events transmitted by the source. P out ⊆ PO

is a set of output ports.
– F is a set of function nodes f = (P in,A, P out) where P in ⊆ PI is a set

of input ports, and P out ⊆ PO is a set of output ports. A = (S, s0, T ) is a
timed transition system where S is a non-empty finite set of states, s0 ∈ S
is the initial state, and T is a transition function

T : P in × Σ̊ × S → ((P out × Σ̊) ∪ {⊥} → N
+ × N

+) × S

mapping combinations of ports, incoming events and states to ports, delay
intervals and successor states. Symbol ⊥ denotes “no output port”.

– D is a set of data nodes d = (P in, δ, b,Pout) where P in ⊆ PI is a set of input
ports, δ ∈ (N+×N

+) is a delay interval, b ∈ {FIFO ,Shared ,Signal ,FSource}
is a data node type. Pout ⊆ PO is a set of output ports. �

3 From Specification Models to Function Networks

In our design process, function networks are obtained from a Matlab Simulink
model by a set of transformation rules. Blocks are translated to function nodes
and signals are translated to channels. The main challenge is here to translate
a synchronous specification into a message-based task model. This is realized
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by deriving a semantics for Matlab Simulink models based on updates of signal
values and relating this to events in the function network. For signals between
blocks of different synchronous sets (connected blocks with same sample time [6])
the Matlab Simulink concept of Rate Transition Blocks is mapped to function
networks. Timing information is obtained by deriving event patterns for specific
nodes in the function network. The behavior of the specification is translated
into executable code by employing (existing) code generators such as Realtime
Workshop or TargetLink. Worst case execution times (WCETs) are calculated for
the resulting code blocks to assign weights to the respective function nodes. For
this, we use a combination of well known techniques like static program analysis
[7] and measuring. For translation, we pick up the basic idea of [12] where Matlab
Simulink models are defined as Timed Synchronous Block Diagrams (TBDs).

3.1 Translating Simulink

The TBD is flattened as described by Lublinerman [12] while the hierarchy of
subsystems is used to generate constrains for the task creation (see Section 4).
As in [12], we assume the TBDs to be acyclic in that all cycles must contain at
least one Moore-sequential block such as a “Unit Delay” block. In the following
we shortly introduce the translation concept. More details can be found in [3].

Blocks. Each block b with n inputs and m outputs is translated to a function
node fb with one input port and m output ports. All input channels are syn-
chronized at the input port to activate the function node only when all needed
inputs have been computed i.e. the appendant events have been received. The
delay of each transition is defined by determining the worst case execution time
of this block assuming the input configuration described by the events.

Each Moore-sequential block b with n input signals and m output signals is
translated to an FSource data node with one input port and m output ports.
Each Rate Transition Block with an input signal from a block a and an output
signal to a block b is translated to a special function node frt with a Shared data
node converting the sample time of block a to the sample time of block b. Data
Store Memory blocks and Sink blocks are translated to Shared data nodes.

Triggers and Signals. A trigger with a sample time ST connected to a block b
with no input signals is translated to a Source with an event pattern implement-
ing ST and an activation channel to the input port of fb. A trigger t leading
from port o of block a to block b is translated to an activation channel from the
respective port po of fa to the input port of fb.

A signal x leading from output port o of block a to an input port of block
b is translated as follows: If a and b have the same sample time x is translated
to an activation channel from pout

o to pin
b . If a and b have different sample times

we create a “virtual” rate transition block between a and b whose translation
was described before. Additionally, we define the data size DataSize(c) for each
created channel c by considering the data type of the appendant Simulink signal.
This is used to define weights in the subsequent task creation process.
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Fig. 2. Preserving Synchronous Sets of Matlab Simulink Models

3.2 Preserving Semantics

For both translation and the following task creation, preserving semantics of
the original specification is a key issue. Matlab Simulink models are inherently
untimed, where block executions and communication are instantaneously, and
are not affected by delays and jitter due to variances in the delays. Obviously,
nothing of this holds for any implementation of a Matlab Simulink model that
runs on real hardware. Moreover, TBD models follow the synchronous paradigm
while function networks are asynchronous models based on communication by
message transfer. If we translate one paradigm to the other, we have to take care
that ordering of block executions is maintained and that for each execution the
currently available inputs match those of the original semantics.

The translation maintains the partial order of blocks induced by the structure
of a TBD [6] and preserves the order of signal updates by corresponding events in
the function network. For blocks of one synchronous set all input channels of the
corresponding function node are synchronized. Each time a block is executed,
its output signals are updated which is represented in the function node by
producing an event on each output port for each activation. Between different
synchronous sets a function node acts as rate transition translating from one
sample time to the other. On top of Figure 2 a Simulink example is depicted
with its function network translation beneath. The block RTB represents a rate
transition leading from sample time ST1=[6,0] to ST2=[2,0]. In the function
network this is realized by a function node RTB with a source implementing
ST2 \ ST1 = {[6, 2], [6, 4]} and a Shared data node storing input events.

To capture Matlab Simulink semantics correctly when the corresponding im-
plementation is executed on a platform, we additionally have to ensure that all
functions of a synchronous set are executed within their associated sample time.
Thus, we define (causal) deadlines from the activation of any start node to the
finished execution of any end node of a synchronous set. The length of the dead-
line is defined by the period of the set. For connected synchronous sets we need
to define further deadlines over a complete path from a source to a sink while
their length is determined by the minimum period of any set of the path. These
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deadlines may also be non-causal depending on the relation of the involved peri-
ods. For example, in Figure 2 there exist deadlines for each synchronous set (of
length 6, 2 and 5) and additional deadlines (which are causal here) over the sets
with ST1 and ST2 with a length of 2. For the following task creation process it is
important to maintain the synchronous sets because otherwise no valid deadlines
could be defined. More details on perserving semantics can be found in [3].

4 Task Creation - Semantics and Application

A function network that results from translation of a Simulink model is typically
unbalanced, consisting of a large number of nodes with high variance in compu-
tational node weights which estimate the load a node potentially produces on an
ECU. If we treat each node as a single task, this would result in a large commu-
nication overhead when many lightweight tasks are spread over the distributed
hardware resources in the pursuing design exploration process. Accordingly, we
want to obtain a more suitable task set by merging function nodes into tasks.

The proceeding of Realtime Workshop is to put all blocks with the same
sample time into one task. These may not only be blocks of the same synchronous
set but also of independent sets sharing the same sample time which may lead
to very “heavy” tasks. For the execution on a distributed real-time system,
this strategy precludes any of these blocks from being executed concurrently,
which increases the risk of deadline violations. Nevertheless, nodes of the same
synchronous set are still good candidates to be executed in the same task [6].
But due to the possibly high variety of the number and weights of nodes in
synchronous sets not all sets would necessarily result in useful tasks. For example,
we do not want to allow arbitrary large weights because those tasks may be either
not executable on some ECUs, or they would reduce the number of possible
schedules due to large blocking times. On the other hand, tasks should not be
too lightweight, because the sum of task switching times would increase and
waste a significant amount of ECU capacity. From the perspective of the design
space exploration, it is desirable to have tasks with balanced weights. This would
largely reduce the impact of computational density of tasks, and the decision
where to allocate a task would be more driven by the actual optimization criteria.

Another important issue for task creation is the communication between tasks
which may get very expensive if tasks are mapped to different ECUs and a bus
has to be used. A bus is not only comparably slow, but also often the bottleneck
of such systems and can hardly be upgraded. Hence, another objective for task
creation should be to minimize communication between tasks to relieve the bus.
To achieve all of this, we introduce in the next section a metric called cohesion.

4.1 Cohesion and Weights

Formally, task creation partititions the set of function and data nodes (which
are special function nodes) N = F ∪ D into a task set T = {τ1, ..., τm} where
τi = {ni,1, ...., ni,k}, ni,j ∈ N . The communication structure of the resulting
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task set is determined by the set of channels C(T ) between different partitions.
The task set shall be chosen such that communication density is minimized
and node weights are balanced. Node balancing is achieved by minimizing the
standard deviation with respect to the aspired task weight leading to preferably
merging nodes with low weights, while communication is minimized by reducing
the weight of C(T ). For the definition of cohesion, we introduce weight factors
α, β > 0 that are adjusted by user preference to control the process. Furthermore,
we assumem− to be the desired minimum number of tasks which also determines
the aspired task weight. This leads to the following definition of cohesion:

cohesion(FN , T ) = α · ŵ(T ) + β · com(C(T )) , where

ŵ(T ) = 1/m ·
√

∑m

i=1
(w − w(τi))2 (standard deviation)

w = 1/m− ·
∑

n∈N
w(n) (aspired task weight)

w(τi) =

∑

ni,j∈τi

w(ni,j) (weight of task τi)

com(C(T )) =

∑

c∈C(T )
com(c) (sum of communication weights)

The weight w(n) of a node depends on its execution times in terms of transi-
tion delays and its activation pattern while execution times strongly depend on
the compiler target. We define the delay of a transition as the minimum WCET
among all potential processors of the target architecture, because without further
knowledge about possible allocations we assume that each node will be allocated
to its best fitting processor. More precisely, the weight of a node is defined as
the sum of its port weights. The weight of a port is the maximum delay of all
transitions starting at this port divided by the ports lower period bound. The
period depends on the event pattern of preceding nodes and event sources. The
weight for function node f = (P in,A, P out) is defined as:

w(f) =
∑

pi∈P in( 1
P−

i

· maxti,j (Δ+(ti,j))) , where

Δ+(ti,j) is the upper delay bound of the jth transition starting from input port
pi and P−

i is the lower period bound of pi. Communication density is defined in
terms of weights for channels c depending on their data size, the communication
rate, and the maximum bandwidth in bytes/s of all buses k. It is defined as:

com(c) = DataSize(c)
max Bandwidthk

· 1
P−

c
, where

DataSize(c) is the data size of channel c and P−
c is the lower period bound of

c. The period of a channel can in general be retrieved for example by so-called
event stream propagation for task networks. For Matlab Simulink models, the
period of any communication and any port activation is always well-defined.

Beside the optimization goal of minimizing the cohesion function, there exists
a set of user-controlled constraints restricting the task creation process. First, we
introduce minimum and maximum achievable task weights. The minimum task
weight w− is intended to counteract thrashing caused by tasks with too small
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execution time, which induces frequent task switching and thus lowers processor
utilization. The maximum task weight w+ describes the maximum utilization
a single task should involve on a processor and ensures that there is sufficient
potential parallelism, thus allowing to reduce end-to-end latencies. As α and
β, these parameters will typically highly depend on the respective application.
Second, further constraints can be obtained from the hierarchical structure of
the original specification model. For example, in Simulink the user may claim
that all blocks of a certain subsystem have to be mapped into the same task.

4.2 Syntax and Semantics of Task Creation

In this section, we elaborate on the question what task creation actually means
and which semantic consequences it implicates. The process of task creation is
divided into three independent operations: merging of function nodes, elimina-
tion of local data nodes and elimination of self-activations. The first operation is
mandatory for task creation while the other operations are optional. The opera-
tions are defined with the help of a component concept where a component is a
part of a function network with a well-defined interface of ports to the remaining
network. Each operation replaces one component by another one with the same
interface. For semantic correctness of an operation, the causality i.e. the partial
order of interface events has to be maintained. This also holds for internal events
as long as they remain observable when applying the operation. If an event is
no longer observable, causality is preserved by maintaining the control flow.

Merging nodes. When two function nodes are merged this involves a restruc-
turing of the function network by replacing a component of two function nodes
f1 and f2 by a component with one function node f1+2 with the same interface.
This means that each the sets of input ports and output ports of f1 and f2 are
unified. The transition system of f1+2 is obtained by building the usual parallel
composition ‖ [1] of the transition systems of f1 and f2.

Definition 2 (Node Merging). Let FN = (Σ,P, C, Φ,F,D) be a function
network and f1 = (P in

1 ,A1, P
out
1 ) ∈ F and f2 = (P in

2 ,A2, P
out
2 ) ∈ F be two

function nodes. The merge operation is defined as follows:
merge(FN , f1, f2) = (Σ,P , (F \{f1, f2})∪{f1+2}, Φ,D, C), where f1+2 = (P in

1 ∪
P in

2 ,A1 ‖ A2,Pout
1 ∪ Pout

2 ) �

The semantic consequences of merging two function nodes f1 and f2 is mainly
that f1 and f2 are now executed on the same scheduling resource i.e. transitions
of f1 and f2 cannot be executed concurrently anymore. But even though we
change function network behavior by this operation causality is still preserved
in terms of partial ordering of events. This is because all events, ports, channels
and data nodes are maintained as well as the transition systems of the orig-
inal function nodes. Therefore, also the partial order of all events (including
interface events) is preserved. Concerning timing, node merging may enlarge the
delay between the arrival of an event at an input port and the emitted output
event, because transitions that could be executed concurrently before cannot be
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Fig. 3. Merging two function nodes (left side) into one (right side)

executed concurrently after merging. Because computational weights of function
nodes are the sum of their port weights and all ports are maintained including
their transitions, the weight of f1+2 is the sum of the single weights of f1 and
f2 as claimed in the weight calculation.

In Figure 3 on the left side a component of a function network with two
function nodes f1 and f2 is depicted where f1 triggers f2 via a Signal node and
two activation channels. Furthermore, there are read and activation channels
to a Shared data node. The same function network part after merging f1 and
f2 is depicted on the right side of Figure 3. The activation path is now a self-
activation i.e. f1+2 activates itself at a different input port. The Shared data
node is unaffected and the read channel moves with its target port to f1+2.

The merging operation is associative because both the joining of ports and
the parallel composition of transition systems is associative. This becomes im-
portant for the application of this operation in the task creation algorithm. This
operation can also be applied for two function nodes that are directly connected
by an activation channel (with a delay > 0).

Elimination of Local Data Nodes. A data node d is local if it is exclusively
connected to a function node f and in the same task partition as f . When
eliminating a data node, also the corresponding read and write channels are
removed. The transition system of f is modified such that the respective events
are removed from any transition. Additionally, the output port pw writing to d
is removed and each transition that emitted events at pw now writes ⊥ instead.

Definition 3 (Data Node Elimination). Let FN = (Σ,P, C, Φ,F,D) be a
function network, f = (P in, (S, s0, T ), Pout) ∈ F a function node and d ∈ D
a data node with an incoming activation channel cw = (pw, δw, pd) (pw ∈ Pout)
transmitting event w and an outgoing read channel cr = (pd′ , δr, pr) (pr ∈ P in)
transmitting event r. The data node elimination function is defined as follows:

elimd(FN , f, d) = (Σ′,P ′,F , Φ,D′, C′), where

– Σ′ = Σ \ {r, w}, P ′ = P \ {pd, pd′ , pw},
– D′ = D \ {d}, C′ = C \ {cr, cw} and
– f = (P in, (S, s0, T ′),Pout \ {pw}), T ′ contains all transitions from T while

• each occurence of pw in a transition is replaced by ⊥,
• event r is deleted in each transition where E contains r. �
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Fig. 4. Elimination of a local data node

On the assumption that the behavior of the function node does not depend on
the read event of the removed data node, this operation maintains the causality of
the remaining events. All input ports of the function node are obtained together
with all activation events of that node. The transitions of the function node are
maintained as well while they are cleaned by the read event r. Thus, the partial
order between input and output events of the components interface is still valid.
Concerning timing, the delay between any input and output signal that involves
the reading of event r becomes smaller because the data is now available locally
and the time for reading the event (possibly over a bus) is saved. Thus, any
end-to-end deadline that was valid before this operation is still valid after it. In
Figure 4 on the left side a component is shown with a function node and a local
data node that is eliminated on the right side. The arrows in the function node
indicate the affected transitions to show that these are maintained even if an
output port is removed.

Elimination of Self-Activations. Self-activations are self-loops of a function
node f either via a Signal node or an activation channel with a delay > 0.
They particularly arise when two function nodes with an activation dependency
are merged. Thus, their elimination is a typical continuation of the node melt-
ing process. The consequences of the elimination of self-activations are, that an
involved data node is removed if it is not used by other function nodes. Addi-
tionally, channels may be deleted including the appendant ports and events.

To be able to apply this operation without violating causality of events, the
input port of the self-activation loop must not have any other incoming channels.
A further necessary condition for a loop containing a data node d is, that d must
not have both incoming and outgoing channels to other function nodes than f . In
this case, it would not be possible to remove the self-activation without affecting
activations from or to other nodes. Before defining the operation for eliminating
self-activations itself, we need to define some help functions. The first one adds
an output delay to a given set of output specifications of a transition. An output
specification is a pair of a port and event mapped to a delay interval.

Definition 4 (Output Delay Addition). Let ψ = {(p′1, E′
1 → δ1), ..., (p′n,

E′
n → δn)} with δi = [δ−i , δ

+
i ] be a set of output specifications, and δ = [δ−, δ+]

a delay interval. Output Delay Addition is defined as:
δadd(Ψ, δ) = {(p′1, E′

1 → (δ1 + δ)), ..., (p′n, E
′
n → (δn + δ))},

where δi + δ ≡ [δ−i + δ−, δ+i + δ+] �

Next, we define how a given transition system changes when a self-activation
via an output port pw and an input port pa is eliminated. For each transition
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that does not contain one of these two ports nothing changes. But all pairs of
transitions that would execute successive in the case of a self-activation need to
be concatenated. This means, that the left part (input port, input event, origin
state) of the first transition becomes also the left part for the concatenated
transition. The right part of this new transition must not fire events at pw, if this
port is removed during self-loop elimination. Instead, the delays of the affected
events are added to the delays of all output ports of the second transition. All
other output specifications remain unchanged.

Definition 5 (Self-Transition Concatenation). Let T be a transition sys-
tem, pa be an input port and pw an output port of a self-activation. Self-Transition
Concatenation is defined as: concat(T, pa, pw) = T ′ where

1. ∀t = (p, E, s → Ψ, s′) ∈ T , p �= pa, � ψ = (pw, Ew → δw) ∈ Ψ holds: t ∈ T ′

2. For each pair of transitions
– t1 = (p1, E1, s1 → Ψ1, s

′
1) ∈ T where ∃ψw = (pw, Ew → δw) ∈ Ψ1 and

– t2 = (pa, E2, s2 → Ψ2, s
′
2) ∈ T holds:

∃t ∈ T ′ with t = (p1, E1, s1 → Ψ1 \ ψw ∪ δadd(Ψ2, δw, s
′
2)) �

Elimination of self-activations is defined for a function node f that activates
itself via a Signal node d. This is the more general case compared to activations
by direct activation channels which are covered as well as a simplification of case
1) of the subsequent definition. A self-activation is resolved by replacing it by
a set of concatenated transitions. This means that succeeding executions of the
self-activation are merged into one using the previously defined functions.

Definition 6 (Self-Activation Elimination). Let FN = (Σ,P, C, Φ,F,D)
be a function network, f = (P in, (S, s0, T ),Pout ∈ F a function node and
d = (P in

d , δd, bd,Pout
d ) ∈ D a Signal data node that has an incoming activa-

tion channel cw = (pw, δw, pd) (pw ∈ Pout) transmitting event w and an outgo-
ing activation channel ca = (pd′ , δa, pa) (pa ∈ P in) to f transmitting event a.
Self-activation elimination is defined as follows:

elima(FN , f, d)=(Σ′,P ′,F , Φ,D′, C′) while we distinguish the following cases:

1. If d has no other channels than cw and ca, then
– Σ′ = Σ \ {w, a}, P ′ = P \{pd, pd′ , pa, pw}, D′ = D\ d, C′ = C \ {cw, ca},
– f = (P in \ {pa}, (S, s0, concat(T, pa, pw)),Pout \ {pw})

2. If d has an additional activation channel to another function node, then
– Σ′ = Σ \ {a}, P ′ = P \ {pd′ , pa}, D′ = D, C′ = C \ ca,
– f = (P in \ {pa}, (S, s0, concat(T, pa, pw) ∪ Tw),Pout)

where Tw = {(p, E, s → Ψ, s′) ∈ T | ∃(pw, Ew → δw) ∈ Ψ}
– d = (P in

d , δ,Pout
d \ {pd′})

3. If d has an additional activation channel from another function node, then
– Σ′ = Σ \ {w}, P ′ = P \ {pd, pw}, D′ = D, C′ = C \ {cw},
– f = (P in, (S, s0, concat(T, pa, pw) ∪ Ta),Pout \ {pw})

where Ta = {(p, E, s → Ψ, s′) ∈ T | p = pa}
– d = (P in

d \ {pd}, δ,Pout
d ) �
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(a) Simple loop with local data node

(b) Complex loop with non-local data node

Fig. 5. Eliminating self-loops

The semantic consequence of this operation is mainly the change of causal
event chains that include the events w and a. All these event chains are shortened
by removing the sub-chain from w to a. This is realized by concatenating the
appendant transitions. But even if these events are removed completely, the
causality of the remaining observable events of the component is still preserved.

This is exemplified in Figure 5a where a function node with a self-activation
is shown whose involved data node is local to that function node. The arrows in
the function node indicate two transitions that are executed successively . On
the right side the situation is shown after the ports 2 and 3 were removed by
eliminating the self-activation. Here, the two transitions are concatenated. But
an activation at port 1 still leads to an event at port 4 as on the left side. What
is different, is the fact that both transitions are now executed as one transition.
While on the left side it was possible that another activation occurs between
these transitions it is not possible on the right side anymore. This reduces the
set of possible execution traces. Figure 5b shows another example where the
involved data node has a further outgoing activation channel to another function
node f2. Thus, the data node is still existent after self-loop elimination but the
back-loop channel to f is removed. Additionally, the output port 2 still exists to
activate f2. So, even if the two transitions are concatenated to one transition,
the firing of port 2 is maintained. This keeps the causality of the interface events
to f2. Concerning timing, the delay between any input and output event of the
interface either stays the same (if it is not affected by the self-activation) or is
even shortened because the delay of the self-activation (which is always > 0) is
no longer existent. Furthermore, the number of task switches is reduced because
two activations are now executed as one.

4.3 Task Creation Algorithm

The objective of the task creation algorithm is to partition function nodes into
a set of at least m− partitions while minimizing the cohesion function and
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respecting the user-defined constraints. The function nodes of one partition are
merged afterwards to one task by the previously defined operations. From the
semantic point of view each two function nodes may be merged without vi-
olating any causality of events. But at least for Simulink models only nodes
with the same period are allowed to be merged. The algorithm consists of two
steps where first an initial solution is created by a constructive algorithm. Af-
terwards, an adapted state-of-the-art algorithm is applied to optimize the initial
solution. Due to the fact that function networks derived from Simulink models
typically consist of connected function nodes in several synchronous sets with
a high amount of communication, the algorithm for the initial partitioning is
communication-driven as well and works as follows:

1. Put each node n ∈ N into an own separate partition.
2. For each channel c connecting two partitions Ti, Tj

– Check if merging of {Ti, Tj} is valid w.r.t to constraints,
– Calculate gain G of cohesion by joining {Ti, Tj}.

3. Merge that pair of partitions {Ti, Tj} with the maximum gain G.
4. Proceed until no valid set of merging candidates with G > 0 can be found.

The result is then improved by a combination of the Kernighan/Lin (KL)
[10] and Fiduccia/Mattheyses (FM) [8] algorithms that move or exchange nodes
between partitions. A discussion about complexity and optimality of these algo-
rithms can be found in [3]. The complexity of the initial algorithm is O(|N | · |C|).

The final result is a set of partitions of nodes while all function nodes of
the same partition are merged to create a task. The order in which the nodes
are merged is irrelevant, because the operation merge is associative. Empty
partitions do not result in a task. To complete the task creation process, it is
checked for each local data node and each self-activation if it can be eliminated
with the appendant operation. Here, local data nodes have to be eliminated
before self-activations are tackled, because local data nodes may induce read
channels that prevent a semantic-preserving self-loop elimination. Even though
both elimination operations are not absolutely necessary for task creation, they
play an important role to reduce task switches and communication times.

5 Case Study and Experimental Results

As a case study to evaluate the presented approach we chose an advanced driver
assistance system named Virtual Driver Assistant (ViDAs)[2] specified in Mat-
lab Simulink as a single-rate model (i.e. one synchronous set). Beside a common
adaptive cruise control it additionally contains a lane change assistant and a
module to spot speed-limit signs to adjust the speed accordingly.

This model was translated automatically into a function network consisting of
140 nodes with 198 channels interconnecting them. We estimated worst case exe-
cution times for the translated blocks based on the code generated from Realtime
Workshop Embedded Coder for a LEON3 processor running at 81 MHz, and an-
notated them as transition delays of the respective function nodes. To calculate



An Automated Semantic-Based Approach for Creating Tasks from Simulink 163

Table 1. Evaluation Results

System Param. Initial Val. Result Values Runtime
Name #N #C m− w ŵ com m min/max w(τ ) ŵ com (seconds)

FN 1 50 70 5 0.261 0.235 0.511 6 0.169 / 0.267 0.054 0.058 4
FN 2 100 142 10 0.229 0.207 0.984 12 0.112 / 0.282 0.058 0.127 32

ViDAs 140 198 14 0.169 0.156 1.441 14 0.078 / 0.342 0.085 0.113 87
FN 3 200 284 20 0.235 0.212 1.897 23 0.141 / 0.290 0.053 0.116 158
FN 4 300 427 30 0.213 0.192 2.875 32 0.098 / 0.294 0.052 0.233 345

channel weights we assumed a FlexRay bus with a maximum bandwidth of 10
MBit/s. This function network was given as input to the proposed task creation
algorithm. As user-defined parameters we set the minimum number of tasks m−

to 14 (aspired task weight w=0.169), the maximum allowed task weight w+ to
0.3 and α and β to 1. The initial node weights vary between 0.002 and 0.342 (av-
erage weight 0.017) with a standard deviation ŵ of 0.156 and a communication
weight com of 1.441 (which would be infeasible for the bus). This is depicted in
Table 1 in the first three big columns of line “ViDAs” where #N denotes the
number of nodes and #C the number of channels. After a runtime of 87s (initial:
8s, KL/FM: 79s) we get a result where ŵ is reduced to 0.085 (factor 1.84) and
com to 0.113 (factor 12.75). In Table 1 these results can be found in the columns
“Result Values” and “Runtime”. The reason why com could be reduced much
more than ŵ is mainly that the initial system already has a comparably high
communication weight leading to a greater potential for optimization of com .
But still, the minimum task weight could be increased as desired from 0.002 to
0.078. Putting all nodes into one task as Realtime Workshop would do results
in a task weight of 2.365 which would be infeasible.

To further evaluate the quality and scalability of the approach, we generated
artificial function networks consisting of a number of function nodes with weights
between 0.002 and 0.1. The input parameters restrict w+ to 0.3 and m− to 10%
of #N. The corresponding results are shown in the remaining lines of Table 1.
These results confirm the observations we made for the ViDAs system, because
also here communication could be reduced significantly. The reason why the
resulting ŵ is mostly lower as for ViDAs is due to the simplified communication
structure of the generated networks and the assumption that initial node weights
are distributed uniformly which is not always the case for real Simulink models.

6 Conclusions

The front-end process of a framework is presented for a design process that starts
at high level specifications, and ends at implementations at the architecture level.
Function networks are employed as an expressive interface between Simulink
models forming the entry point of the process, and the following exploration
process to find optimal hardware architectures executing the functions.

The task creation described in this paper forms the initial optimization step
within the intended design process by obtaining a balanced task network that
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minimizes task communication to avoid a typical bottleneck of bus utilization
in distributed hardware architectures found in automotive industry. The paper
does not only describe the algorithms of task creation but also provides a well-
defined semantic foundation for composition of the function network formalism
which is useful to reason for example about preserving semantics while merging
nodes to larger task structures. Concerning future work it is planned to reduce
the algorithms complexity and also evaluate alternative techniques. Additionally,
the interaction with the succeeding design space exploration should be considered
in more detail involving e.g. backtracking to learn from previous decisions.
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Abstract. An integral part of the performance modeling process is the specifi-
cation of the performability measures of interest. The notations proposed for this
purpose can be grouped into classes that differ from each other in their expres-
siveness and usability. Two representative notations are the continuous stochastic
reward logic CSRL and the measure specification language MSL. The former is
a stochastic temporal logic formulating quantitative properties about states and
paths, while the latter is a component-oriented specification language relying on
a first-order logic for defining reward-based measures. In this paper, we combine
CSRL and MSL in order to take advantage of the expressiveness of the former and
the usability of the latter. To this aim, we develop a unified notation in which the
core logic of MSL is employed to set up the reward structures needed in CSRL,
whereas the measure definition mechanism of MSL is exploited to formalize mea-
sure and property specification patterns in a component-oriented fashion.

1 Introduction

The performance modeling process comprises two tasks: describing system evolution
over time and specifying performability measures. The former task can be handled with
a wide range of mature formalisms ranging from low level ones like continuous-time
Markov chains (CTMC) and queueing networks to higher level and general-purpose
ones like stochastic automata, stochastic Petri nets, and stochastic process calculi (see,
e.g., [8,7] for a survey).

The latter task consists of expressing the metrics on the basis of which the system
model should be assessed at steady state or at a given time instant or interval. The
traditional way of doing this is to construct a reward structure [16] by associating real
numbers with the states and the transitions of the CTMC underlying the system model.
The reward assigned to a state determines the rate at which a gain/loss is accumulated
while sojourning in that state, whereas the reward assigned to a transition determines
the instantaneous gain/loss implied by the execution of that transition. The value of the
measure is then computed as the sum of state probabilities and transitions frequencies,
where rewards are used as weights.

In order to cope with the higher level of abstraction of general-purpose system
modeling formalisms, more recent approaches to performability measure specification
instead resort to a mixture of rewards and logics in a manner that avoids any direct
intervention on the underlying CTMC (see, e.g., [4,3,1] and the references therein). In
this paper, we focus on two representatives of the above mentioned approaches, which
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are CSRL and MSL, with the aim of combining their expressiveness and usability, thus
enabling the modeler to take advantage of their complementary strengths.

CSRL [4,3] is a stochastic temporal logic suitable for expressing properties on sys-
tem descriptions with an underlying CTMC semantics. These properties can be state-
based, like, e.g., stating whether the steady-state probability of being in states satisfying
a certain condition is in a specified relation with a given threshold, and path-based, like,
e.g., stating whether the probability of observing paths satisfying a certain condition is
in a specified relation with a given threshold.

MSL [1], which is composed of a core logic and a measure definition mechanism, has
been conceived to support the specification of performability measures for descriptions
of component-based systems with an underlying CTMC semantics. The core logic of
MSL defines reward structures by assigning real numbers to states and transitions of the
CTMC. Each state of the CTMC is viewed as a vector of local states representing the
current behavior of the various components, and can be given a reward either directly
on the basis of its constituent local states or indirectly on the basis of the activities
labeling its outgoing transitions. The measure definition mechanism of MSL enhances
usability by means of a component-oriented level on top of the core logic. The idea is
to employ such a higher level to set up libraries of measure definitions that are provided
by performability experts, which could then be exploited by nonexperts too.

Both MSL and CSRL suffer from some limitations. On the one hand, MSL is suit-
able for specifying classical measures such as throughput, utilization, queue length, and
response time, but it is not adequate for formulating path properties. On the other hand,
CSRL requires familiarity with temporal logic and supports neither the component-
oriented formalization of performability measures nor the definition of policies for stat-
ing the association of rewards to states, thus complicating the work for nonexperts.

As a solution to such drawbacks, in this paper we propose UMSL, a unified mea-
sure specification language arising from the combination of two adequate extensions
of MSL and CSRL. The objective is to enable the modeler to take advantage of the
usability of the former and the expressiveness of the latter in a single notation. In order
to make it affordable the specification of performability measures also by nonspecial-
ists, the development of the unified language aims at a clear separation of concerns by
means of (i) a core logic for setting up both reward structures and logical formulas and
(ii) a measure definition mechanism for expressing performability measures on top of
the core logic.

In the remainder of this paper, we introduce finite labeled CTMCs as a reference
model for the assessment of the performability of component-based systems (Sect. 2),
we present the core logic of UMSL (Sect. 3), we illustrate the measure definition mech-
anism of UMSL, which is an extension of that of MSL (Sect. 4), and finally we provide
some concluding remarks (Sect. 5).

2 Reference Model

According to the guidelines of [2], the description of a component-based system should
comprise at least the description of the individual system component types and the
description of the overall system topology. The description of a single component type



Performability Measure Specification: Combining CSRL and MSL 167

should be provided by specifying at least its name, its parameters, its behavior, and
its interactions. The overall behavior should express all the alternative sequences of
activities that the component type can carry out – which can be formalized by means of
traditional tools like automata, Petri nets, and process calculi – while the interactions
are those activities used by the component type to communicate with the rest of the
system.

For performability evaluation purposes, we assume that from the description of a
component-based system it is possible to extract a stochastic model in the form of a
CTMC. Since the overall behavior of each component can be observed through the
activities that are executed, every transition of the CTMC is labeled not only with its
rate λ ∈ R>0, but also with an action taken from a set Act . Likewise, every state of
the CTMC is labeled with the vector of local states denoting the current behaviors of
the N ∈ N>0 components in the system, with each local state belonging to a set Loc.
In this way, the stochastic model reflects the component-oriented nature of the system
description. Formally, our reference model is a finite labeled CTMC:

M = (S, T, L, N,Loc,Act)
where S is a finite set of states, T ⊆ S ×Act ×R>0 ×S is a finitely-branching action-
labeled transition relation, and L : S → LocN is an injective state-labeling function.

For notational convenience, s
a,λ−−−→M s′ denotes the transition (s, a, λ, s′) ∈ T and

L(s) = [z1, z2, . . . , zN ] the vector of local states labeling s ∈ S. We use the notation
z ∈ s (resp. z /∈ s) to express that z = zi for some 1 ≤ i ≤ N (resp. z �= zi for
all 1 ≤ i ≤ N ). Moreover, we denote with negLoc (resp. negAct) the set of negations
z̄ (resp. ā) of local states z ∈ Loc (resp. activities a ∈ Act). Negation is simply a
shorthand for expressing that a component is not in a given local state or cannot execute
a given activity. Finally, we define predicate sat by letting:

s sat z iff z ∈ s s sat a iff ∃λ ∈ R>0, s
′ ∈ S. s

a,λ−−−→M s′

s sat z̄ iff z /∈ s s sat ā iff �λ ∈ R>0, s
′ ∈ S. s

a,λ−−−→M s′
which is extended to conjunctions and disjunctions of local states and activities in the
expected way. As an example, we have that s sat z1 ∧ z2 iff s sat z1 and s sat z2.

Throughout the paper, we use C as metavariable for components, B for specific
current behaviors, a for activities, and the dot notation C.B (resp. C.a) to express com-
ponent behaviors (resp. component activities).

Example 1. Let us consider as a running example a system with two identical servers P1

and P2 that process requests arriving at the system with rate λ ∈ R>0. When a request
finds both servers busy, it must immediately leave the system; i.e., no buffer is present.
When a request finds both servers idle, it has the same probability to be accepted by
the two servers. The two servers process incoming requests at rates μ1, μ2 ∈ R>0,
respectively. They can also fail with rates χ1, χ2 ∈ R>0, respectively, and are then
repaired with rates �1, �2 ∈ R>0, respectively.

Assuming that the arrival process has a single local state – Arrivals – and that each
server has three local states – Idle , Busy , and Failed – the labeled CTMC underlying
this system is as shown in Fig. 1, with the initial state being the leftmost one. For
instance, the label P1.Idle in the initial state denotes that server P1 is initially idle.
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Fig. 1. Labeled CTMC for the running example

3 Core Logic of UMSL

In order to complement the expressiveness of CSRL with the capability of MSL of
defining reward structures, in this section we combine the two formalisms into a single
logic that will be the core of UMSL. First, we define an extension of MSL (Sect. 3.1)
and an extension of CSRL (Sect. 3.2), then we show how they are combined (Sect. 3.3).

3.1 Extending MSL Parameterization

Each formula of the core logic of MSL is a first-order predicate parameterized with
respect to a set of local states or activities that contribute to the value of a performa-
bility measure [1]. The role of the predicate is to specify how the contributions are
combined to set the reward gained while sojourning in each state. In order to generalize
the parameterization mechanism, we introduce an extension of MSL, called dnfMSL, in
which each predicate is defined with respect to a set of groups of local states or activities
expressed in disjunctive normal form for the sake of uniform treatment and usability.

The set dnfLoc of disjunctive normal forms on local states comprises elements like:
Z = (z1,1 ∧ . . . ∧ z1,m1) ∨ . . . ∨ (zn,1 ∧ . . . ∧ zn,mn)

which, to hide connectives to nonexperts, can be abbreviated with Z = {Z1, . . . , Zn},
where Zi = {zi,1, . . . , zi,mi} and each literal zi,j occurring in conjunct Zi is either
a local state or the negation of a local state. In practice, conjunction expresses that a
certain group of local states is needed for a state to gain a reward, while disjunction
establishes that alternative conjuncts may contribute to assign a reward to the state.

Similarly, the set dnfAct of disjunctive normal forms on activities comprises ele-
ments such as:

A = (a1,1 ∧ . . . ∧ a1,m1) ∨ . . . ∨ (an,1 ∧ . . . ∧ an,mn)
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which can be abbreviated with A = {A1, . . . , An}, where Ai = {ai,1, . . . , ai,mi} and
each literal ai,j occurring in Ai is either an activity or the negation of an activity.

We note that the use of conjunction constitutes a novelty with respect to the param-
eterization mechanism of [1] that enhances the expressive power. The case mi = 1 for
all 1 ≤ i ≤ n, in which each conjunct is a singleton, corresponds to an original set
parameter for MSL formulas of [1].

We now define four formula schemas that specify the way in which the contributions
provided by each element in the set parameter are combined to establish a reward.
These formulas arise from the combination of the type of elements forming the set
parameter (local states or activities) with the fact that each (or only one) conjunct in the
set parameter that is satisfied contributes to the reward. The predicates and functions
that will be used subsequently are as follows:

– eq : R × R → {true, false} such that:

eq(x, y) =
{

true if x = y
false otherwise

– state rew : S → R such that state rew(s) is the reward accumulated while so-
journing in state s due to either local states of s or activities enabled by s.

– lstate rew : Loc ∪negLoc → R such that lstate rew(z) is the reward contribution
given by local state z and lstate rew(z̄) is the reward contribution given by the
negation of local state z̄.

– act rew : Act ∪ negAct → R such that act rew(a) is the reward contribution
given by activity a and act rew(ā) is the reward contribution given by the negation
of activity ā.

The values lstate rew( ) and act rew( ) should be defined by the modeler depending
on the measure of interest: in Sect. 4, we will show how to make such an assignment as
transparent as possible. Then, each of the following formula schemas states that for a
given set parameter the reward state rew( ) results from a specific combination of the
contributions provided by local states or activities occurring in the set parameter.

The first formula schema assigns to s ∈ S a direct state reward, to which all the
conjuncts of local states in a set Z that are satisfied by s contribute in an additive way.
The contribution of each conjunct Zi ∈ Z that is satisfied is obtained by combining the
rewards associated with the literals occurring in Zi through a function af : 2R → R –
like, e.g., sum, min, max, and avg – taken from a set AF of associative and commutative
arithmetical functions. The first formula schema asserts the following for each s ∈ S:

eq(state rew(s), sum lstate contrib(s, Z, af ))

where Z and af are given and sum lstate contrib : S×dnfLoc×AF → R is such that:
sum lstate contrib(s, Z, af ) =

∑
Zi∈Z s.t. s sat Zi

af {| lstate rew(z) | z ∈ Zi |}
which is zero if there is no Zi ∈ Z satisfied by s.

The second formula schema assigns to s ∈ S a direct state reward, to which only
one among the conjuncts of local states in a set Z that are satisfied by s contributes.
The contribution is selected among the contributions of those conjuncts by applying
a function cf : 2R → R – like, e.g., max and min – taken from a set CF of choice
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functions; i.e., cf (∅) = 0 and cf ({x1, . . . , xn}) ∈ {x1, . . . , xn} for all n ∈ N>0.
Formally, the second formula schema asserts the following for each s ∈ S:

eq(state rew(s), choose lstate contrib(s, Z, af , cf ))

where cf is given too and choose lstate contrib : S × dnfLoc × AF × CF → R is
such that:
choose lstate contrib(s, Z, af , cf ) = cf

Zi∈Z s.t. s sat Zi

af {| lstate rew(z) | z ∈ Zi |}
The third formula schema assigns to s ∈ S an indirect state reward, to which all the

conjuncts of activities in a set A that are satisfied by s contribute in an additive way.
Formally, the third formula schema asserts the following for each s ∈ S:

eq(state rew(s), sum act contrib(s, A, af ))

where A and af are given and sum act contrib : S × dnfAct ×AF → R is such that:
sum act contrib(s, A, af ) =

∑
Ai∈A s.t. s sat Ai

af {| act rew(a) | a ∈ Ai |}
which is zero if there is no Ai ∈ A satisfied by s.

The fourth formula schema assigns to s ∈ S an indirect state reward, to which only
one among the conjuncts of activities in a set A that are satisfied by s contributes.
Formally, the fourth formula schema asserts the following for each s ∈ S:

eq(state rew(s), choose act contrib(s, A, af , cf ))

where cf is given too and choose act contrib :S×dnfAct×AF×CF →R is such that:
choose act contrib(s, A, af , cf ) = cf

Ai∈A s.t. s sat Ai

af {| act rew(a) | a ∈ Ai |}
Example 2. The system throughput for the running example can be determined by as-
signing to each state an indirect state reward obtained by summing up the rates of the
serve activities enabled in that state, as shown by this formula of the third schema:

eq(state rew(s), sum act contrib(s, {{P1.serve}, {P2.serve}}, sum))
with act rew(Pi.serve) = μi for i = 1, 2. It is also possible to define the same mea-
sure by using direct state rewards as in the following formula of the first schema:

eq(state rew(s), sum lstate contrib(s, {{P1.Busy}, {P2.Busy}}, sum))
with lstate rew(Pi.Busy) = μi for i = 1, 2.

The system utilization can be specified by assigning to each state a unitary reward if
the state includes at least one server in the Busy local state, as specified by the following
formula of the second schema:

eq(state rew(s), choose lstate contrib(s, {{P1.Busy}, {P2.Busy}}, min, min))
with lstate rew(Pi.Busy) = 1 for i = 1, 2.

As a variant of the previous measure, consider the utilization of server P1 whenever
server P2 is not in the busy state, which can be defined as follows:

eq(state rew(s), choose lstate contrib(s, Z, min, min))
with Z = {{P1.Busy, P2.Idle}, {P1.Busy, P2.Failed}}, lstate rew(P1.Busy) = 1,
and lstate rew (P2.Failed) = lstate rew(P2.Idle) = 1. Alternatively, by using nega-
tion we have Z = {{P1.Busy, P2.Busy}} and lstate rew(P2.Busy) = 1.

We conclude by noting that, as done in [1], analogous formula schemas could be easily
included in dnfMSL that assign rewards to transitions rather than states. However, they
would not enhance the expressiveness of the logic.
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3.2 Extending CSRL with Actions

The stochastic temporal logic CSRL expresses both state properties and path proper-
ties based on conditions over the states traversed along a path [4,3]. In an action-based,
component-oriented setting, it is convenient to extend the temporal operators of CSRL
with actions. The resulting action-based logic, which we call aCSRL, is actually a com-
bination of CSRL and aCSL [14]. In contrast to aCSL, in aCSRL we allow reference
to states. As in CSRL, the syntax of aCSRL features bounds on both the time and the
reward accumulated along a path, while, as in aCSL, the syntax of aCSRL can make
reference to actions exhibited along the path.

The syntax of the state formulas of aCSRL is as follows:

Φ ::= Z | A | Φ ∧ Φ | ¬Φ | S��p(Φ) | P��p(ϕ) | EJ(Φ) | Et
J(Φ) | CI

J(Φ)

where Z ∈ dnfLoc is a disjunctive normal form on local states, A ∈ dnfAct is a
disjunctive normal form on activities, �� ∈ {<,≤,≥, >} is a comparison operator,
p ∈ R[0,1] is a probability, t ∈ R≥0 is a time value, I is an interval of time values, J is
an interval of real-valued rewards, and ϕ is a path formula (see below).

State formulas are built from: disjunctive normal forms on local states or activities;
logical conjunction and negation; the steady-state operator S��p(Φ), which establishes
whether the steady-state probability of being in states that satisfy Φ is in relation ��
with the threshold p; the probabilistic operator P��p(ϕ), which establishes whether the
probability of taking paths that satisfy ϕ is in relation �� with the threshold p; and the
expected reward operators EJ(Φ), Et

J(Φ), and CI
J(Φ) [4,3], which establish whether

the reward accumulated at steady state or at a given time instant t or interval I while
sojourning in states that satisfy a certain state formula Φ is in interval J .

Example 3. The formula E[0,7](P1.Failed) is true in a state if the expected reward ac-
cumulated in the long run in states in which P1.Failed holds is not greater than 7. The
formula E10

[2,5](P2.Busy) is true in a state if the expected reward accumulated at time 10

in states in which P2.Busy holds is between 2 and 5. The formula C[0,15]
[8,∞)(true) is true

in a state if the expected reward accumulated before 15 time units is at least 8.

The syntax of path formulas is as follows:

ϕ ::= ΦAU<t
<r Φ | ΦA1U

<t
<r A2 Φ

where A,A1,A2 ⊆ Act are sets of actions, t ∈ R≥0 ∪ {∞} is a time value, and
r ∈ R ∪ {∞} is a reward value.

The until formula Φ1 AU<t
<r Φ2 is satisfied by an execution path if the path visits a

state satisfying Φ2 within t time units, while accumulating at most r reward, and visits
states satisfying Φ1 while performing only actions in A until that point. Similarly, the
until formula Φ1 A1U

<t
<r A2 Φ2 is satisfied by a path if the path visits a state satisfying

Φ2 within t time units, while accumulating at most r reward, after performing an action
in A2, and visits states satisfying Φ1 while performing only actions in A1 until that
point. Note that a path satisfying Φ1 A1U

<t
<r A2 Φ2 actually makes a transition to a state

satisfying Φ2, whereas this is not required in the case of Φ1 AU<t
<r Φ2 (if the initial state

of the path satisfies Φ2).
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Example 4. The formula P≤0.02((P1.Idle ∨ P1.Busy)AU<30
<7 {fail} P1.Failed) is true

in a state if, with probability at most 0.02, there is a point along the path at which the
state property P1.Failed holds directly after performing any fail action, at which no
more than 30 time units have elapsed and at most 7 units of reward have been accumu-
lated, and for which P1.Idle ∨ P1.Busy holds at all preceding points, and the actions
in A = {arrive, serve, repair} are the only actions seen on the path before the action
fail . Intuitively, the formula establishes whether certain conditions are met whenever
along the path server P1 fails for the first time (note that P1.Idle ∨ P1.Busy could be
replaced by ¬P1.Failed ).

We restrict our attention to until formulas featuring upper bounds on time and accumu-
lated rewards for simplicity (note that aCSL has been presented only with respect to
upper bounds on time in [14], and that practical techniques for model-checking CSRL
formulas feature upper bounds only in [3]).

Before presenting the semantics of aCSRL with respect to the reference model M =
(S, T, L, N,Loc,Act), we introduce some notation. For each state s ∈ S, we let the

exit rate of s be defined by E(s) =
∑{|λ ∈ R>0 | s

a,λ−−−→M s′ |}. A state s is called

absorbing if and only if E(s) = 0. If s
a,λ−−−→M s′ and t ∈ R≥0, then we say that there

exists a step of duration t from state s to state s′ with action a, denoted by s
a,t−−→ s′. An

infinite path is a sequence s0
a0,t0−−−→ s1

a1,t1−−−→ · · · of steps. A finite path is a sequence

s0
a0,t0−−−→ s1

a1,t1−−−→ · · · an−1,tn−1−−−−−−−→ sn of steps such that sn is absorbing.
Let PathM be the set of paths of M and let PathM(s) be the subset of paths that

commence in state s. For any state s ∈ S, let ProbM
s denote the probability measure

over the measurable subsets of PathM(s) [5]. For any infinite path ω = s0
a0,t0−−−→

s1
a1,t1−−−→ · · · and any i ∈ N, let ω(i) = si, the (i + 1)st state of ω, let δ(ω, i) = ti,

and, for t ∈ R≥0 and i the smallest index such that t ≤ ∑i
j=0 tj , let ω@t = ω(i). For

A ⊆ Act , let si
A−→ si+1 be a predicate which is true if and only if ai ∈ A. For any

finite path ω = s0
a0,t0−−−→ s1

a1,t1−−−→ · · · al−1,tl−1−−−−−−→ sl, the state ω(i) and duration δ(ω, i)
are defined only if i ≤ l, and are defined as in the infinite-path case (apart from δ(ω, l),
which equals ∞). Furthermore, for t ≥ ∑l−1

j=0 tj , let ω@t = ω(l); otherwise, ω@t is

defined as in the infinite-path case. Similarly, predicates of the form si
A−→ si+1 are

defined only if i < l, and are defined as in the infinite-path case.
A transient probability is the probability of being in a certain state s′ at time t given

an initial state s. In the model-checking context, we can express a transient probability
in terms of paths as πM(s, s′, t) = ProbM

s {ω ∈ PathM(s) | ω@t = s′}. The steady-
state probabilities are used to refer to the long-run average probability of the CTMC
being in a state, and are defined by πM(s, s′) = limt→∞ πM(s, s′, t). For S′ ⊆ S, let
πM(s, S′, t) =

∑
s′∈S′ πM(s, s′, t) and πM(s, S′) =

∑
s′∈S′ πM(s, s′).

Given a reward structure ρ : S → R, let the instantaneous reward ρM(s, s′, t) =
πM(s, s′, t) ·ρ(s′) and the expected long-run reward ρM(s, s′) = πM(s, s′) ·ρ(s′). For
S′ ⊆ S, let ρM(s, S′, t) =

∑
s′∈S′ ρM(s, s′, t) and ρM(s, S′) =

∑
s′∈S′ ρM(s, s′).

For an infinite path ω = s0
a0,t0−−−→ s1

a1,t1−−−→ · · · and i ∈ N, let γ(ω, i) = ti · ρ(si).



Performability Measure Specification: Combining CSRL and MSL 173

Table 1. Semantics of aCSRL

s |=M Z iff s sat Z
s |=M A iff s sat A
s |=M Φ1 ∧ Φ2 iff s |=M Φ1 and s |=M Φ2

s |=M ¬Φ iff s �|=M Φ
s |=M S��p(Φ) iff πM(s, SatM(Φ)) �� p

s |=M P��p(ϕ) iff ProbM
s {ω ∈ PathM | ω |=M ϕ} �� p

s |=M EJ(Φ) iff ρM(s, SatM(Φ)) ∈ J
s |=M E t

J(Φ) iff ρM(s, SatM(Φ), t) ∈ J
s |=M CI

J(Φ) iff
∫

I
ρM(s, SatM(Φ), u)du ∈ J

ω |=M Φ1 AU<t
<r Φ2 iff ∃k ≥ 0.

(ω(k) |=M Φ2 ∧
(∀i < k. ω(i) |=M Φ1 ∧ ω(i)

A−→ ω(i + 1)) ∧
t ≥ ∑k−1

i=0 δ(ω, i) ∧ r ≥ ∑k−1
i=0 γ(ω, i))

ω |=M Φ1 A1U<t
<r A2 Φ2 iff ∃k > 0.

(ω(k) |=M Φ2 ∧
(∀i < k − 1. ω(i) |=M Φ1 ∧ ω(i)

A1−−→ ω(i + 1)) ∧
ω(k − 1) |=M Φ1 ∧ ω(k − 1)

A2−−→ ω(k) ∧
t ≥ ∑k−1

i=0 δ(ω, i) ∧ r ≥ ∑k−1
i=0 γ(ω, i))

where SatM(Φ) = {s ∈ S | s |=M Φ}.

After enriching the reference model M with a reward structure ρ on states only, the
formal semantics of aCSRL is given by the satisfaction relation |=M defined in Table 1.

3.3 Intertwining aCSRL and dnfMSL

The objective of UMSL is to combine aCSRL and dnfMSL in order to join their com-
plementary advantages. In fact, on the one hand, dnfMSL is not expressive enough to
establish that a state is given a reward only if it satisfies a complex condition formalized
by a temporal logic formula that includes not only logical connectives. On the other
hand, aCSRL is intended to specify logical properties but it does not help the modeler
to understand which rewards must be attached to every state for any occurrence of until
and expected reward operators.

In order to overcome these drawbacks, we propose two different ways of combining
aCSRL formulas and dnfMSL formula schemas, which result in two intertwined no-
tations, called dnfMSL+ and aCSRL+, that constitute the core of UMSL. Formally, a
formula of UMSL can be a dnfMSL+ formula schema ν or an aCSRL+ formula Φ, such
that:

ν ::= eq(state rew(s), sum lstate contribΦ(s, Z, af ))
| eq(state rew(s), choose lstate contribΦ(s, Z, af , cf ))
| eq(state rew(s), sum act contribΦ(s, A, af ))
| eq(state rew(s), choose act contribΦ(s, A, af , cf ))



174 A. Aldini, M. Bernardo, and J. Sproston

where:

sum lstate contribΦ(s, Z, af ) =
{

sum lstate contrib(s, Z, af ) if s |= Φ
0 otherwise

and with the other three functions that are defined similarly, while:

Φ ::= Z | A | Φ ∧ Φ | ¬Φ | S��p(Φ) | P��p(ν, ϕ) | EJ (ν, Φ) | Et
J(ν, Φ) | CI

J(ν, Φ)

where ϕ is a path formula and ν provides probabilistic and reward operators with the
reward structures that are needed for their interpretation.

A formula of dnfMSL+ parameterized with respect to Φ associates with each state
s ∈ S satisfying Φ the reward defined by the underlying dnfMSL formula schema.
Note that dnfMSL+ extends dnfMSL in a conservative way. Indeed, the dnfMSL+ for-
mula schema eq(state rew(s), sum lstate contribΦ(s, Z, af )) and the dnfMSL for-
mula schema eq(state rew (s), sum lstate contrib(s, Z, af )) define the same reward
structure whenever either Φ = true or Φ = Z .

A formula of aCSRL+ is an extension of a formula of aCSRL in which every sub-
formula requiring a reward structure ρ for its interpretation is paired with a dnfMSL+
formula schema ν defining such a reward structure. The semantics of aCSRL+ is ex-
actly as shown in Table 1 in the case of aCSRL, with the assumption that regarding the
reward structure ρ we have that ∀s ∈ S. ρ(s) = state rew(s), where state rew(s) is
the reward assigned to s by ν.

Example 5. The formula E[0.5,0.7](ν, P1.Busy ∨ P2.Busy), where ν is the dnfMSL+
formula corresponding to the third case of Ex. 2, is true in a state if the system utiliza-
tion, in the long run, is in the interval [0.5, 0.7].

Thanks to the way in which dnfMSL+ and aCSRL+ are defined, the core logic of
UMSL allows for a controlled form of nesting according to which a formula schema
of dnfMSL+ embeds a formula of aCSRL+, while in turn a formula of aCSRL+ may
embed a formula schema of dnfMSL+. In this way, UMSL offers the same expressive-
ness as aCSRL, whose operators are fully integrated in UMSL. Moreover, as we will
see in the next section, UMSL includes additional capabilities concerned with the use
of nested reward structures.

4 Measure Definition Mechanism of UMSL

MSL is equipped with a component-oriented measure definition mechanism built on top
of the core logic for enhancing its usability [1]. In this section, we show that the same
mechanism can be applied on top of dnfMSL+. Moreover, we show that it can be ex-
tended to aCSRL+ formulas so as to develop a component-oriented property definition
mechanism. The combination of the two mechanisms makes the specification of UMSL
formulas an easier task with respect to using CSRL, especially for people not familiar
with (temporal) logics. The syntax for specifying in MSL a performability measure as
a macro definition possibly parameterized with respect to a set of component-oriented
arguments is as follows:

MEASURE � name� ( �arguments� ) IS � body�
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The metric is given a symbolic name and is parameterized with respect to component
behaviors and component activities to be used in its body, which is defined in terms of
MSL core logic formulas in the case of a basic measure. Assuming that the identifier of
a metric denotes the value of the metric computed on a certain finite labeled CTMC, it is
then possible to define derived measures whose body comprises metric identifiers com-
bined through the usual arithmetical operators and mathematical functions. The idea is
that libraries of basic measure definitions should be provided by performability experts,
which could then be exploited by nonexperts too upon defining derived measures. In any
case, when the definition of a measure is available, the modeler is only asked to provide
component-oriented parameters without having to consider which numbers have to be
associated with which entities.

We now show how this mechanism is inherited by dnfMSL+. The syntax for defining
a performability measure in UMSL is extended as follows:

MEASURE � name� ( �arg1 ; arg2 ; arg3 � ) IS � body�

where the body of a basic measure is a dnfMSL+ formula schema ν, while the argu-
ments are divided into three parts:

– arg1 ::= Z | A
– arg2 ::= Φ
– arg3 ::= ∞ | t | [t1, t2]

The first two arguments represent the sequence of lists of component behaviors (or ac-
tivities) parameterizing ν and the aCSRL+ formula embedded in ν, respectively. The
third argument does not define the reward structure underlying the measure descrip-
tion. Instead, it is used for analysis purposes to specify the time at which the measure
should be computed: ∞ denotes steady-state analysis, t ∈ R≥0 denotes instant-of-time
analysis, and [t1, t2] (with t1, t2 ∈ R≥0 and t1 < t2) denotes interval-of-time analysis.

The definition of Φ may be hard from the viewpoint of a modeler who is not fa-
miliar with temporal logics like aCSRL. For this reason, we now introduce a property
definition mechanism on top of aCSRL+, which is inspired by the measure definition
mechanism of MSL. The syntax for defining a property in UMSL is as follows:

PROPERTY � name� ( �arguments� ) IS � body�

where the body is defined as an aCSRL+ formula parameterized with respect to the ar-
guments that are provided. Arguments are given in form of a list � defined as follows:

� ::= �′ | �′, �
�′ ::= Z | A | �� p | t | r | I | J

where Z (resp. A) is a sequence of lists of component behaviors (resp. activities) form-
ing disjunctive normal forms, p is a probability and �� is a comparison operator used in
steady-state and probabilistic operators, t (resp. r) is a time (resp. reward) value used
in path formulas, while I (resp. J) is an interval used to specify time (resp. reward)
bounds in expected reward operators.

In order to illustrate the measure definition mechanism of UMSL, let us consider
three basic definitions, which will be used in the following examples.
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The property determining whether a state satisfies a disjunctive normal form on local
states {Z1, . . . ,Zn}, where Zi = {zi,1, . . . , zi,mi} for all 1 ≤ i ≤ n, can be represented
by the following definition:
PROPERTY sat elem(Z1, ...,Zn) IS (z1,1 ∧ ... ∧ z1,m1) ∨ ... ∨ (zn,1 ∧ ... ∧ zn,mn)
The property that states whether the steady-state probability of being in a certain

combination Z ∈ dnfLoc of component behaviors is less than p is given by:
PROPERTY ss beh(Z, <p) IS S<p(Z)

The property establishing whether the probability of being for the first time in the
component behavior C.B by time t after having consumed at most an amount r of re-
sources, with each unitary resource usage expressed by the execution of C′.a, is less
than p, can be defined as:

PROPERTY path beh(C′.a, C.B, t, r, <p) IS P<p(ν,¬C.B ActU
<t
<r C.B)

where ν is the formula eq(state rew(s), sum act contribtrue(s, C′.a, sum)) such that
act rew(C′.a) = 1. This property generalizes Ex. 4 and emphasizes the support pro-
vided by dnfMSL+ to the definition of the reward structure needed by the interpretation
of an until formula of aCSRL+.

Similar to the measure definition mechanism, assuming that the identifier of a prop-
erty denotes the truth value of the corresponding aCSRL+ formula computed on a cer-
tain finite labeled CTMC, it is then possible to define derived properties whose body
comprises property identifiers combined through the usual logical operators.

A property identifier can in turn be used as a macro in the definition of performability
measures, in a way that masks the temporal logic formula that constitutes the body of
the property. We illustrate this fact by considering two typical performance measures:
system throughput and resource utilization.

As observed in Sect. 3.1, the definition of the throughput is parameterized with re-
spect to the component activities C1.a1, . . . , Cn.an that contribute to the throughput.
We refine this definition by assuming that a side condition – expressed by an aCSRL+
formula Φ – can be introduced to represent a guard that must be satisfied to count the
activity contribution. Then the rate at which each state satisfying Φ accumulates reward
is the sum of the rates of the contributing activities that are enabled at that state. If Φ
is given a property definition prop included in a library of properties, then we have the
following measure definition:

MEASURE throughput(C1.a1, . . . , Cn.an; prop( ); ) IS
eq(state rew(s), sum act contribprop( )(s, A, sum))

where A = {{C1.a1}, . . . , {Cn.an}} and act rew(Ci.ai) = λi for all 1 ≤ i ≤ n if the
rate associated with Ci.ai is λi.

Example 6. Given the basic measure definition throughput , the average system through-
put for the running example can be determined through the following invocation:

throughput(P1.serve, P2.serve; true;∞)
which specifies the reward structure with act rew(Pi.serve) = μi for i = 1, 2. If the
contribution of a server activity must be counted only when the other server is under
repair, then the invocation becomes:

throughput(P1.serve, P2.serve;
sat elem({P1.Busy, P2.Failed}, {P2.Busy , P1.Failed});
∞)
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In the case of the utilization of a resource, as seen in Sect. 3.1 we have to specify the
set of component activities C1.a1, . . . , Cn.an modeling the utilization of that resource,
while a unit reward is transparently associated with each state in which this activity is
enabled. As in the case of the system throughput, we enrich the definition by adding a
side condition:

MEASURE utilization(C1.a1, . . . , Cn.an; prop( ); ) IS
eq(state rew(s), choose act contribprop( )(s, A, sum, min))

where A = {{C1.a1}, . . . , {Cn.an}} and act rew(Ci.ai) = 1 for all 1 ≤ i ≤ n.

Example 7. The utilization of server P1 by time t is specified as follows:
utilization(P1.serve; true; [0, t])

Assume to be interested in counting the use of P1 only if the probability of observing a
subsequent P1 failure by time t′ after having been used at most r times is less than p.
In this case, the invocation of the basic measure definition utilization becomes:

utilization(P1.serve; path beh(P1.serve, P1.Failed , t′, r, <p); [0, t])

An interesting set of measure definitions refers to the problem of determining the prob-
ability of being in specific component behaviors. In this case, it should be enough for
the modeler to specify these component behaviors in terms of Z ∈ dnfLoc:

MEASURE beh prob(Z; Z; ) IS
eq(state rew(s), choose lstate contribZ(s, Z, min, min))

such that lstate rew(z) = 1 when z is one of the component behaviors occurring in Z .

Example 8. The probability on the long run of being in a state in which both servers
are under repair or both servers are idle is determined by taking:

Z = {{P1.Failed , P2.Failed}, {P1.Idle, P2.Idle}}
and then by using the invocation beh prob(Z; Z;∞).

The measure beh prob can be generalized to express more complex measures like:
MEASURE beh prob(Z; prop( ); ) IS
eq(state rew(s), choose lstate contribprop( )(s, Z, min, min))

The measure above quantifies the probability of being in states satisfying the property
prop( ) and including a combination of component behaviors occurring in Z .

Example 9. Consider the probability of being in the component behavior P1.Failed at
time t, provided that with probability less than p we observe again action P1.fail by
n time units while accumulating a number of arrivals less than r. The value is given by:

beh prob(P1.Failed ; path beh(Arrivals .arrive , P1.fail , n, r, <p); t)
Now, consider an extension in which a failure state P1.Failed is taken into account also
in the case that the related steady-state probability of being in a total failure state – i.e.,
both servers are under repair – is less than q. In this case, the invocation becomes:

beh prob(P1.Failed ;
path beh(Arrivals .arrive , P1.fail , n, r, <p) ∨
ss beh({{P1 .Failed ,P2 .Failed}}, <q);

t)

Finally, the parameterization of the measure definition mechanism of dnfMSL+ can
be further extended by assuming that each literal occurring in Z (resp. A) is possi-
bly associated with a real number expressing the reward contribution of the local state
(resp. activity) to be used in the definition of function lstate rew (resp. act rew ).
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For instance, the overall energy consumption with respect to the component behav-
iors C.B1, . . . , C.Bn is the sum of the probabilities of being in the various local states,
each multiplied by a reward that describes the rate at which energy is consumed in that
state. Hence, we extend the basic measure beh prob to derive the following measure:

MEASURE energy consumption(C .B1 (l1),C .B2 (l2), . . . ,C .Bn(ln); true; ) IS
beh prob(C .B1 (l1); true; ) + . . . + beh prob(C .Bn(ln); true; )

where lstate rew(z) = li when z = C.Bi for some 1 ≤ i ≤ n.

Example 10. Assuming that the energy consumed in the busy state is 50% more than
the energy consumed in the failure state, while no energy is consumed in the idle state,
the overall energy consumption with respect to server P1 in the interval [0, t] is given
by the following invocation of the derived measure energy consumption :

energy consumption(P1.Idle(0), P1.Busy(3), P1.Failed(2); true; [0, t]).

5 Conclusion

In this paper, we have shown how to combine two orthogonal extensions of the logics
CSRL and MSL in order to obtain UMSL, a unified measure specification language
trading expressiveness and usability.

From the expressiveness standpoint, the core logic of UMSL – i.e., the combination
of dnfMSL+ and aCSRL+ – offers interesting features.

On the one hand, the expressiveness gain with respect to MSL core logic is twofold.
Firstly, the combinations of local states and activities that contribute to the reward struc-
ture are now formalized as more expressive propositional logic formulas in disjunctive
normal form. Secondly, it is possible to add conditions stating that certain states are
given certain rewards only if they satisfy temporal logic formulas expressed in aCSRL+.

On the other hand, observing that aCSRL+ inherits the same expressiveness as CSL-
like stochastic logics [14,3,18], several examples of Sect. 4 – see Exs. 7 and 9 – show
that UMSL supports the definition of nested, independent reward structures. This fea-
ture is not considered in other mechanisms proposed in the literature for the definition
of reward structures in the setting of stochastic model checking [10,19,9,17,18].

To complete the expressiveness analysis, it would be interesting to compare UMSL
with alternative mechanisms for the specification of performance measures, like, e.g.,
Performance Trees, which have been proved to be more expressive than CSL [20].

Finally, from the usability standpoint, we observe that the objective of the defini-
tion mechanisms presented in Sect. 4 is to manage both reward structures and logic
operators as transparently as possible, especially through the macro mechanism used
for derived definitions. In this way, while basic definitions represent a task for experts,
their use within derived definitions should be affordable by non-specialists. Along this
line of research, it would be interesting to employ the measure and property defini-
tion mechanisms of UMSL to define specification pattern systems inspired by, e.g.,
ProProST [13]. Indeed, since measure and property definition mechanisms of UMSL
can be combined to realize nested patterns in a component-oriented fashion, we believe
that UMSL-based specification patterns would help practitioners to apply in a correct
and easy way model-checking techniques for the verification of the performability of
component-based systems.
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Abstract. The complexity of multiprocessor architectures for mobile
multi-media applications renders their validation challenging. In addi-
tion, to provide the necessary flexibility, a part of the functionality is
realized by software. Thus, a formal model has to take into account both
hardware and software. In this paper we report on the use of LOTOS NT
and CADP for the formal modeling and analysis of the DTD (Dynamic
Task Dispatcher), a complex hardware block of an industrial hardware
architecture developed by STMicroelectronics. Using LOTOS NT facil-
itated exploration of alternative design choices and increased the con-
fidence in the DTD, by, on the one hand, automatic analysis of formal
models easily understood by the architect of the DTD, and, on the other
hand, co-simulation of the formal model with the implementation used
for synthesis.

1 Introduction

Multi-media applications require complex multiprocessor architectures, even for
mobile terminals such as smartphones or netbooks. Due to physical constraints,
in particular the distribution of a global clock on large circuits, modern multipro-
cessor architectures for mobile multi-media applications are implemented using
a globally asynchronous, locally synchronous (GALS) approach, combining a set
of synchronous blocks using an asynchronous communication scheme.

Due to the high cost of chip-fabrication, errors in the architecture have to
be found as early as possible. Therefore, architects are interested in applying
formal methods in the design phase. In addition, a formal model has to take into
account both hardware and software, because a part of the system’s functionality
is implemented in software to provide the flexibility required by the rapidly
evolving market. However, even if the software part can be updated easily, the
basic functionalities implemented in hardware have to be thoroughly verified.

This paper reports on the application of a modern formal analysis tool
(CADP 2010 [4]), and in particular the LOTOS NT [3,7] language, to a complex
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hardware block of an industrial architecture developed by STMicroelectronics,
namely the Dynamic Task Dispatcher (DTD). The DTD serves to dispatch data-
intensive applications on a cluster of processors for parallel execution.

Until to now, formal methods have been used by STMicroelectronics mainly
for checking the equivalence between different steps in the design flow (e.g. be-
tween a netlist and a placed and routed netlist) or for establishing the correctness
of a computational block (e.g. an inverse discrete cosine transform) by theorem
proving. However, STMicroelectronics is unfamiliar with formal methods to val-
idate a control block such as the DTD. For this reason, STMicroelectronics
participates in research projects, such as the Multival1 project on the validation
of multiprocessor architectures using CADP. Our choice of CADP was also moti-
vated by related successful case-studies, in particular the analysis of a system of
synchronous automata communicating asynchronously [8], and the co-simulation
of complex hardware circuits for cache-coherency protocols with their formal
models [9]. Finally, because the considered design is a GALS architecture, the
interfaces between the processors and the DTD can be considered asynchronous,
which fits well with the modeling style supported by CADP.

We show several advantages of modeling and analyzing the DTD using
LOTOS NT, a new formal language based on process algebra and func-
tional programming, instead of classical formal specification languages, such as
LOTOS [10], which also supported by CADP. First, although modeling the DTD
in LOTOS is theoretically possible, using LOTOS NT made the development of
a formal model practically feasible. Second, because the formal model is eas-
ily understandable by the architect, it can serve as a basis for trying alternate
designs, i.e. to experiment with complex performance optimizations that would
otherwise be discarded as too risky. Last, but not least, the automatic analy-
sis capabilities offered by CADP (e.g. step-by-step simulation, model checking,
co-simulation) increased the confidence in the DTD.

The rest of the paper is organized as follows. Section 2 describes the DTD.
Section 3 presents the LOTOS NT model of the DTD. Section 4 reports on
formal verification of the DTD using CADP. Section 5 reports the co-simulation
of the LOTOS NT model and the original C++ model of the DTD. Finally,
Section 6 presents our conclusions.

2 Dynamic Task Dispatcher

The joint STMicroelectronics-CEA “platform 2012” project [14] aims at develop-
ing a many-core programmable accelerator for ultra-efficient embedded comput-
ing. This accelerator includes one or several processor clusters with associated
memories and control blocks. We focus on a cluster designed for fine grain par-
allelism (data and task level).

The underlying programming model is the “ready to run until completion”
model, i.e. a task can be divided in several sub-tasks, which, if each sub-task has
all the data needed for its completion at the time it is launched, can be executed
1 http://vasy.inria.fr/multival
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P2 P15P1Host P0

Dynamic Task Dispatcher (DTD)

...
Shared Data Memory

Shared Instruction Cache

Fig. 1. Global architecture of the cluster

in parallel. As there is no interaction between sub-tasks, the sub-tasks respect
the Bernstein conditions [2], and thus can be executed in any order, even in
parallel (this might be required to reach the expected performance). One of the
routines for sub-task-execution is dup(void *f(int i), int n), which replicates n
times the execution of the function f (each instance receiving a different index
i as argument), and terminates when all the sub-tasks have terminated.

In order for this execution scheme to be efficient, task switching must require
only a few cycles and sub-tasks must be allocated at run time to an idle processor.
This has several implications on the hardware architecture. First, this cluster is
based on a data memory shared by all processors. Thus, even if a sub-task runs
on the different processor than its ancestor, it has the same frame pointer and
thus an easy access to global variables. Second, all processors share the same
instruction cache, lowering the cost of replicating a task on several processors.
Lastly, a dedicated hardware block, the Dynamic Task Dispatcher (DTD), is
responsible for task selection and launch on the selected processor.

The cluster consists of 16 STxP70 processors, extensible 32-bit microcon-
trollers with an Harvard architecture (separated data and instruction busses).
Communication with the DTD is performed through data accesses on dedicated
addresses. The DTD is thus connected, in parallel, to the data bus of each pro-
cessor. A processor will use a store operation to ask the DTD to dispatch a
task and a load operation when willing to execute a new task. Figure 1 shows
the overall architecture, designed as globally asynchronous, locally synchronous
(GALS) system: Even if all the processors run at the same clock frequency, their
clocks may not be synchronized due to physical limitations. Furthermore, due
to its complexity, the DTD is not targeted to run at the same clock frequency
as the processors.

In order to reduce power consumption, inactive processors are kept in idle
mode and are woken up by the DTD using an asynchronous wakeup signal. After
wakeup, a processor immediately issues a load to a memory mapped address of
the DTD. The answer to a load is either a task descriptor, containing the address
of a function to execute (in this case, the processor jumps to the address and
executes the function), or a special descriptor indicating that there is no more
work (in this case, the processor switches to the idle mode). To signal the end
of task execution, a processor issues a load for a new task.
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The implementation of dup() first issues a store to ask for a task to be dis-
patched, and then enters a loop, which starts by issuing a load. The response
is a task descriptor (in this case, the processor executes the task — a processor
is guaranteed to execute one instance of the function it asked to replicate), a
special descriptor indicating that there are no more instances to execute but
some instances executing on other processors are not yet terminated (this case
is called active polling), or a special descriptor indicating that all the sub-task
have been executed (in this case, the processor can leave the loop and go on
executing the calling task). The cluster supports three levels of nested tasks per
processor, which is enough for the forcasted applications and is not too expensive
in term of silicon area.

The DTD also has an interface to handle the main tasks requests issued by
the host processor (application deployment on the accelerator). This interface
is connected to a queue and as soon as there is a task to execute in this queue
and an idle processor, the task is assigned to the processor and removed from
the queue.

Figure 2 shows a sub-task execution scenario using three processors. The pro-
cessor P0 requests the execution of four instances of the sub-task foo(). Processor
P0 is assigned the execution of the sub-task with index 3, processors P1 and P2
are awakened and assigned the execution of the sub-tasks with respective indexes
2 and 1. As execution on processor P2 terminates, P2 is assigned the execution of
the sub-task with the last index, 0. When the processor P0 finishes its execution,
it is first informed that it has to wait for the completion of sub-tasks instances
(LD RSP (WAIT SLAVE)). When asking once more after all sub-tasks have been
executed, P0 is informed about the completion (LD RSP (DONE)).

3 Formal Model of the DTD

We formally modeled the DTD using LOTOS NT [3,7], a variant of the E-
LOTOS [11] standard implemented within CADP. LOTOS NT combines the best
of process-algebraic languages and imperative programming languages: a user-
friendly syntax common to data types and processes, constructed type definitions
and pattern-matching, and imperative statements (assignments, conditionals,
loops, etc.).2 LOTOS NT is supported by the lnt.open tool, which translates
LOTOS NT specifications into labeled transition systems (LTSs) suitable for
on-the-fly verification using CADP.

3.1 Design Choices

From the DTD point of view, all the interfaces (with the host, the memory,
and the processors) evolve in parallel: hence, an unconstrained state space
exploration would lead to a state space explosion. Furthermore, the applica-
tions running on processors must respect some rules that are embedded in the
2 We use the notation “when C1 then B1 ... else when Cn then Bn end when” as

syntactic sugar for “if C1 then B1 ... elsif Cn then Bn else stop end if”.
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Fig. 2. Sub-task execution scenario

programming model such as the number of nested tasks and order of transactions
on the interface. Modeling these rules in the DTD model would be artificial. For
all these reasons, we have chosen to abstract the application to typical scenar-
ios, running on abstracted processors, and to perform our verifications on each
identified scenario.

The classical way of verifying a hardware block is to run massive simulations.
For a block like the DTD, these simulations mean executing several scenarios.
These simulations rely on the event scheduler of the simulator. Precise hardware
simulations of the whole system are expensive in time and some abstractions are
used, which imply that the resulting scheduling may not be the same as the real
one. Even if we restrict the verification of our formal model to a set of scenarios,
we explore all the scheduling possibilities for each scenario. Furthermore, we are
able to use model checking, which is impossible for standard simulations.

We decided to model everything, hardware (both the DTD and the proces-
sors), applications, and software routines (namely dup()) using LOTOS NT pro-
cesses, because only the code inside a LOTOS NT process has access to the gates
and can synchronize with other processes. For example, it is mandatory to define
a dup() as a sequence of three rendezvous, namely a store, a load request, and a
load response.
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The representation in an asynchronous language of events taken into account
simultaneously was a modeling challenge. Indeed, the DTD is a classical syn-
chronous hardware block, scanning its inputs at each cycle and computing the
relevant outputs. Hence, the decisions taken by the DTD are not based on a
response to a single input but on the totality of all inputs. We did not want to
artificially synchronize on a global clock, so we used a multi-phase approach: an
input is, asynchronously, taken into account by modifying the internal vector
state Si, and outputs are issued according to So. The outputs are computed,
asynchronously, by scanning the vector state Si, updating the vector state So

by a decision clause. This clause may include a rendezvous on a gate, which can
be seen as clock for this decision function in a synchronous design. This ren-
dezvous also prevents there being non-determinism in the generated LTS. This
approach enables interleaving of synchronisation in the independent interfaces
of the model because the model is never blocked waiting for a synchronization
and parallel parts of the model evolve atomically.

The main difference between this approach and that proposed for integrating
a synchronous automaton in an asynchronous environment [8] is that we need to
aggregate several asynchronous events into a single synchronous event, whereas
in [8] each asynchronous message is decomposed into a set of synchronous signal
changes.

Figure 3 presents the code of a simple arbiter respecting the rules presented
and the associated LTS. This arbiter has 2 interfaces A and B, the states of
which are recorded in the variables state A and state B. Each interface evolves
by the rendezvous on gate I followed by the rendezvous on gate O. The first two
when-clauses deal with the first rendezvous and modification of the state, while
the last two clauses deal with the second rendezvous, according to the computed
state. The middle clause is the decision function which updates the state. This
clause issues a rendezvous on gate D. The priority given to the A interface can
be seen on state 4 of the LTS.

3.2 Modeling the Dynamic Task Dispatcher Hardware3

From the DTD point of view, the state of a processor can be unknown (before
the processor signals it has booted), idle (in the idle mode), neutral (executing a
top-level task), master (having caused a dispatch of sub-tasks by calling dup()),
or slave (executing a sub-task dispatched by another processor). In the last case,
the DTD has to keep a reference to the corresponding processor having called
dup(). Due to the nested task mechanism, the processor state has to be kept in
a stack-like structure of fixed depth.

Additionally, we have to record the state of the interface of each processor. The
state of the interface of a processor is used to propose the relevant rendezvous.
For example, the running state of the interface is used when the processor exe-
cutes a task or a sub-task, so that the interface can accept a load signaling the

3 The DTD model is considered confidential by STMicroelectronics and cannot be
presented in more detail.
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process Arbiter [IA, OA, IB, OB, D: none] is
var state A, state B: Nat in

state A := 0; state B := 0;
loop select

(* handling first rendezvous (“input”) *)
when state A == 0 then IA; state A := 1 end when

[] when state B == 0 then IB; state B := 1 end when
(* decision function *)
[] when state A == 1 then state A := 2 else

when state B == 1 then state B := 2 end when;
D (* marking the decision *)

(* handling second rendezvous (“output”) *)
[] when state A == 2 then OA; state A := 0 end when
[] when state B == 2 then OB; state B := 0 end when

end select end loop
end var end process

6 7
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3 54

1 2
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IB IA

OAOB
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OA OB
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D

OB OA

(a) LOTOS NT specification (b) LTS

Fig. 3. Example of an arbiter

end of task execution. Each rendezvous affects only the state of the correspond-
ing interface: thus, all interfaces can change independently of the others. DTD
decisions are based on (and modify) all the interface states and processor states.

The model of the DTD is thus described by a LOTOS NT process Dtd exe-
cuting an infinite loop containing:

– For each processor, several guarded clauses dealing with its interface. Each of
these clauses handles a rendezvous with the processor and updates the vari-
ables representing the state of the processor interface. A clause also deals
with the communication with the host processor, filling a queue with task
requests. These blocks of code implement the connection between the asyn-
chronous communication scheme and the synchronous decision function.

– Several clauses to achieve the dispatches requested by the tasks executing on
the processor and to launch tasks requested by the host. This corresponds
to the function executed by the DTD on each cycle.

The communication between the DTD and processor n is modeled using four
gates: WAKEUPn, LD RQn (load request), LD RSPn (load response), and STn
(store, considered to be atomic).

The number of processors impacts the internal structure of the DTD, mainly
because the arbitration is based on the global state vector, and not on local
properties of some part of it. Hence, a generic model of the DTD parameterized
by the number of processors would be complex. Instead, we choose to develop a
model generator that takes a number of processors and generates the correspond-
ing LOTOS NT process Dtd. This development was facilitated by the structure
of the model. The part dealing with a processor interface is just replicated using
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type PC T is pc 1, pc 2, pc 3 with ”==”, ”!=” end type

process Execute [ST, LD RQ, LD RSP, MSG: any]
(j: Job Desc T, inout S:Job Desc Stack T) is

var pc: PC T, index: Nat in
pc := get PC (j);
case pc in

pc 1 -> MSG (”pc 1”);
Dup [ST, LD RQ, LD RSP, MSG] (pc 3, 4, EXEC(pc 2, -1), !?S)

| pc 2 -> MSG (”pc 2: Master after Dup”)
| pc 3 -> MSG (”pc 3: slave with index ”, get Index (j))
end case

end var end process

Fig. 4. Scenario 2 for four processes: creation of four sub-tasks

some naming conventions for the variables and gates used in this blocks. The
decision part of the model requires changes to some loop bounds and extension
of the number of case clauses of some select statements. The resulting code size
ranges from 1020 lines (170 lines per processor and 230 lines for the decision
part) for four processors to 8530 lines (376 lines per processor and 2328 lines for
the decision part) for 16 processors.

3.3 Modeling Applications and Processors

First, we define an enumerated type, called PC T representing the addresses
of the task functions. To circumvent a limitation of the LOTOS NT compiler,
which rejects some non-tail recursive calls, we include a call-stack in the processor
model; this call-stack is passed by reference (mode inout) to the processes Execute
and Dup implementing the execution of the tasks.

The execution of a task function is modeled by a simple process, called Execute
that is mainly a switch between the various values of PC T, as shown in Figure 4.

Dup adds the continuation cont (the task function to be executed at the end
of the sub-task) to the stack, performs the store operation, and exits. When Dup
exits, so does the calling Execute process. Then Processor requests a new sub-
task. After termination of all sub-tasks, Processor calls Execute to execute the
continuation, which is removed from the stack. The corresponding LOTOS NT
code is shown in Figure 5.

4 Formal Analysis of the DTD

We used the CADP toolbox [4] to generate the LTSs corresponding to twelve
scenarios each for four and six processors. Let N be the number of available
processors. Scenario 1 defines a set of more than N tasks, which can be executed
in parallel. The other scenarios all contain calls to dup(), the simplest one being
scenario 2 (see also Figure 4). Scenario 2 defines one main task that forks N sub-
tasks; scenario 2 1 adds to scenario 2 more sub-tasks and scenario 2 2 adds to
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process Dup [ST, LD RQ, LD RSP: any]
(pc: PC T, count: Int, cont: Job Desc T, inout stack: Job Desc Stack T) is

stack := push job desc (cont, stack);
ST (DUP(pc, count))

end process

process Processor [ST, LD RQ, LD RSP, WAKEUP: any] is
var stack: Job Desc Stack T := nil in

ST(BOOT);
loop

WAKEUP;
loop main loop in var j: Job Desc T in

LD RQ (NEED JOB);
LD RSP (?j);
case j in

var npc: PC T, index: Int in
EXEC(npc, index) -> Execute [ST, LD RQ, LD RSP, MSG] (j, !?stack)

| WAIT SLAVE -> null
| DONE ->(* all slaves terminated, pop the continuation *)

if (is stack empty(stack)) then
break main loop

else
j := head stack(stack); stack := POP JOB DESC(stack);
Execute [ST, LD RQ, LD RSP, MSG] (j, !?stack)

end if
| NONE -> break main loop

end case
end var end loop

end loop end var end process

Fig. 5. Stack-based implementation of Dup and Processor

scenario 2 two other main tasks that do not fork sub-tasks. Scenario 3 uses nested
calls of dup(): a main task forks sub-tasks that also fork, the total number of tasks
and sub-tasks being greater than N . Scenarios 3 1 and 3 2 change the number
of sub-tasks for each level of invocation, and scenario 3 3 adds to scenario 3 two
other main tasks that do not fork sub-tasks. The main task of Scenario 4 invokes
dup() twice consecutively, each time forking more than N sub-tasks; scenario 4 1
just forks more sub-tasks at each invocation of dup() than scenario 4. Lastly,
scenario 5 consists of two main tasks, each invoking dup().

Table 1 summarizes the state space sizes and generation times using a com-
puter with a 2.8 GHz processor and 120 GB of RAM. For six processors, LTS
generation was possible for only five scenarios, and for more processors, even
the generation of the smallest scenario ran out of memory. For even smaller sce-
narios (only two tasks in scenario 1, or a duplication to only two processors in
application 2), the LTS can be visualized step-by-step and checked manually.
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Table 1. LTS sizes, as well as generation and verification times (in seconds)

N (# scenario size generation verification time
proc) states transitions time prop. 1 prop. 2 prop. 3 prop. 4

1 664,555 2,527,653 30.62 2917.46 2766.66 1.21 3379.43
2 28,032 91,623 2.46 .19 .55 .38 .48
2 1 73,984 255,391 3.75 .26 1.32 .76 .94
2 2 920,649 3,537,763 39.44 .79 421.02 6.29 429.11
3 168,466 557,363 8.13 .28 1.43 1.05 1.39

4 3 1 1,445,922 5,204,671 69.07 .94 12.52 8.01 13.19
3 2 665,546 2,387,195 27.87 .59 6.21 3.42 5.17
3 3 4,435,309 17,328,979 229.02 2.63 482.89 32.32 476.42
4 63,760 211,579 3.90 .22 .99 .55 .72
4 1 168,288 586,539 7.31 .33 2.49 1.32 1.69
5 181,170 596,022 8.82 .29 1.81 1.18 2.43
5 1 1,626,933 5,989,205 63.52 1.27 20.07 10.21 37.59

2 4,998,344 24,324,439 312.85 4.83 339.92 108.24 168.97
2 1 14,778,488 74,826,343 970.13 16.73 1551.16 752.54 545.56

6 4 12,696,086 62,482,651 1048.09 9.97 843.62 404.25 374.80
4 1 37,090,190 189,595,795 3049.07 33.85 3479.69 1430.14 1605.42
5 97,297,953 489,846,494 9022.89 62.70 6405.57 2170.91 5344.10

To gain confidence in our model, we included assertions that, if violated, would
yield an ERROR transition. We checked for all scenarios that the generated LTS
did not contain such an ERROR transition.

To formally verify the correct execution of the different scenarios, we expressed
some properties using the MCL language [13]. The ability to capture the number
of a processor in one transition label proved to be crucial to expressing a property
in a concise and generic way.4

A first formula expresses that each scenario is acyclic, i.e. from each state, a
terminal state without outgoing transitions is eventually reached:

μ X . [ true ] X

The set of states satisfying this fix-point formula is computed iteratively, start-
ing with X = ∅: Initially, “[ true ] ∅” is satisfied by states without outgoing
transitions, and iteration k adds to X those states from which a deadlock can
be reached in k steps.

Unfortunately, this property does not hold for all scenarios with a dup()
operation, because the master processor stays in its state after receiving a
WAIT SLAVE. Indeed, the third block of messages in Figure 2 (i.e. “LD RQ
(NEED JOB)” followed by “LD RSP (WAIT SLAVE)”) might be repeated an ar-
bitrary number of times. However, under the hypothesis that each slave always
terminates, such a cycle is executed a finite number of times. Thus, cycles of
this form should not be considered a problem, and the property must be refined,

4 This required renaming (on the fly) all gates to extract the number of the corre-
sponding processor, e.g., STn has to be renamed into the pair “ST !n”.
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for instance by requiring that only cycles of this form are permitted, i.e. that
the system inevitably reaches either a deadlock or gets stuck in a cycle of the
permitted form (the formula “< true* . ϕ >@” is satisfied by all states of a cycle
containing a transition with a label of the form ϕ):

μ X .
(

[ true ] X or (exists y:Nat . <true*.{LD RSP !y !”WAIT SLAVE”}>@))

A second formula expresses that, after waking up a processor, the DTD even-
tually tells the processor that there is no more work left, i.e. each WAKEUPx is
eventually followed by “LD RSPx !NONE” (where x is a processor number):

[ true* . {WAKEUP ?x:Nat} ] inevitable
({LD RSP !x !”NONE”})

Note how the number x of the processor woken up is extracted from a transition
label by the first action predicate “{WAKEUP ?x:Nat}” and is used subsequently
in the property. The predicate “inevitable(B)” expresses that a transition labeled
with B is eventually reached from the current state. It can be defined in MCL
by the following macro definition:

macro inevitable(B) =
μ X .(

< true > true and(
[not(B)] X or (exists y:Nat . <true*.{LD RSP !y !”WAIT SLAVE”}>@))

)

end macro

As for the first property, the definition of inevitable ignores any (spurious) cycles
corresponding to a master processor waiting indefinitely for the slave processes
to terminate.

A third formula expresses that each call to dup() executes to completion, i.e.
each “STx !DUP” is eventually followed by “LD RSPx !DONE”:5

[ true* . {ST ?x:Nat !”DUP”} ] inevitable
({LD RSP !x !”DONE”})

A final formula expresses that each task sent by the host application is ex-
ecuted exactly once, i.e. each “HOST !c” (c being the task to be executed) is
eventually followed by a transition of the form “LD RSP !x !c”, but cannot be
followed by a sequence containing two transitions of the form “LD RSP !y !c” (x
and y being processor numbers, and c being the task received previously from
the host processor):6

[ true* . {HOST ?c:String} ](
inevitable

({LD RSP ?x:Nat !c}) and
[(

true* . {LD RSP ?y:Nat !c}){2}] false
)

In this formula, the expression “
(
true* . {LD RSP ?y:Nat !c}){2}” characterizing

transition sequences that contain exactly two repetitions of a sequence of the
form “true* . {LD RSP ?y:Nat !c}”.
5 This property requires an additional renaming operation to suppress the parameters

of the DUP operation, i.e. to rename “STn !DUP (...)” to “ST !n !DUP”.
6 This property requires an additional renaming operation, namely to rename

“LD RSPn !EXEC(c, -1)” to “LD RSP !n !c”.
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Using the EVALUATOR 4 model checker [13], we verified these properties in
about ten hours for all 17 scenarios for which we had generated the LTS (see
Table 1 for details).

Because our formal LOTOS NT model is simpler to modify than the one
used by the architect, we also explored different architectural choices and opti-
mizations. In order to get better performance, we wanted to avoid a processor
from going into idle mode when a task needed to be executed. Due to timing
constraints in the decision process of the real hardware, a slave processor that
terminates a sub-task can only be assigned immediately to another sub-task from
the same master processor. When no more sub-tasks are available, the slave pro-
cessor goes in the idle state even if there are pending tasks to execute (main tasks
or sub-tasks from another master processor). We proposed that, when terminat-
ing a sub-task, a processor asks the DTD a second time for a task to execute.
This answer to this second request would be treated, in the real hardware, by a
decision process different from the one involved in the first request and should
meet the timing constraints. We checked on our model that this behavior would
lead to a correct execution scheme, before the architect made the modification.

5 Co-simulation of the C++ and LOTOS NT Models

The DTD has been designed by the architect directly as a C++ model suitable
for high level synthesis tools such as CatapultC7 or the Symphony C compiler8.
Therefore, this model follows the synchronous approach commonly applied in the
hardware design community. In this approach, a hardware block is represented
as a function f : inputs × state → outputs × state that is called on each clock
cycle to evaluate its inputs and to compute the outputs and the new internal
state to be used in the next clock cycle.

The C++ model of the DTD comes with a clock-based simulation environ-
ment providing abstractions of the host processor, the cluster processors, and
the software executing on them. In order to assess the correctness of the C++
model (and thus the generated hardware circuit), we experimented with the
co-simulation of the C++ and LOTOS NT models, using the EXEC/CÆSAR
framework [9]. Practically, we added the LOTOS NT process Dtd (i.e. the model
of the DTD without its environment) to the simulation environment coming with
the C++ model. Keeping also the C++ model of the DTD ensured that both
models were exposed to the same stimuli, enabling us to crosscheck both mod-
els, in particular that both models behave similarly. This differs from classical
co-simulation environments where a part of a design is replaced by a model not
depicted at the same level of abstraction, such as an Instruction Set Simulator of
a processor inserted in the simulation of a full System On Chip with peripherals
depicted in a hardware description language.

In some sense, this co-simulation is similar to model-based conformance test-
ing, as for instance with TGV [12] or JTorX [1]. Taking as input a model and a
7 http://www.mentor.com/esl/catapult/overview
8 http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/default.aspx
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test purpose, TGV computes a test case that, when used to test an implemen-
tation, enables conformance of the implementation to the model to be checked:
without a test purpose, our co-simulation simply checks the conformance of each
step in an execution. Contrary to JTorX, our approach does not require an ex-
plicit representation of the model, which avoids the state explosion problem and
enables the co-simulation of the DTD for 16 processors (for which we could not
generate the LTS).

The main challenge was the combination of asynchronous event-based LO-
TOS NT model with a synchronous clock-based C++ model and simulation
environment. Indeed, in one single clock cycle, several inputs to the DTD might
change, and it might also be necessary to change more than one output: thus,
a single simulation step of the C++ model might require several events (i.e.
rendezvous synchronizations) in the LOTOS NT model. To further complicate
matters, the number of events corresponding to a single clock cycle is not known
in advance, because it depends on the current state and inputs.

Before presenting our approach to driving an asynchronous model within
a synchronous simulation environment and the results of our experiments, we
briefly recall the principles of the EXEC/CÆSAR framework.

5.1 Principles of the EXEC/CÆSAR Framework

In the EXEC/CÆSAR framework, a LOTOS NT model interacts with its simu-
lation environment only by rendezvous on the visible gates. Practically, for each
visible gate, the simulation environment has to provide a C function, called a
gate function; offers of the rendezvous are passed as arguments to the gate func-
tion (in a nutshell, offers sent from the LOTOS NT model to the environment
are passed by value, and offers received from the environment are passed by ref-
erence). Each gate function returns a boolean value, indicating whether or not
the simulation environment accepts the rendezvous.

Using the CÆSAR compiler [6,5], a LOTOS NT model is automatically trans-
lated into a C function f , which tries to advance the simulation by one step. In
each state, f first determines the set of rendezvous permitted by the LOTOS NT
model; if this set is empty, f signals a deadlock, otherwise it iterates on the ele-
ments of the set, calling the corresponding gate functions with appropriate pa-
rameters. As soon as one rendezvous is accepted by the environment, the model
performs the corresponding transition and moves to the next state. If none of
the rendezvous is accepted, f returns with an indication that the state has not
changed; this feature enables the simulation environment to compute the set of
all rendezvous possible in the current state of the LOTOS NT model; calling f
once more then enables one of these rendezvous to be accepted.

5.2 Approach

To integrate the asynchronous LOTOS NT model into the synchronous C++
simulation environment, we took advantage of the feature of EXEC/CÆSAR
mentioned above to compute the set of all enabled rendezvous. We also
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exploited the fact that, as usual for hardware circuits, input and outputs can
be distinguished by the gate of the rendezvous: the gates ST, LD RQn, and
HOST represent inputs of (i.e. signals received by) the DTD, whereas the gates
LD RSPn and WAKEUPn represent outputs of (i.e. signals sent by) the DTD.
Furthermore, we used the fact that any output of the DTD is always the reac-
tion to (a set of) inputs. Last but not least, we relied on the modeling style, in
particular the independence of the different interfaces of LOTOS NT model of
the DTD. Indeed, for a set of actions (only inputs or only outputs) that may
occur in the same clock cycle, the modeling style ensures the confluence of the
execution of the actions in the set, i.e. when the LOTOS NT model of the DTD
executes such a set of actions, all orderings lead to the same state. Thus, one
can arbitrarily choose one ordering.

Concretely, to simulate the equivalent of one clock cycle of the synchronous
C++ model, we execute the following steps.

– Iterate over all proposed rendezvous to compute the set of all enabled outputs
of the LOTOS NT model. If this set is different from the set of outputs
produced by the C++ model (since the last clock), signal an error.

– Accept all outputs in the set once. If an output is enabled more than once,
signal an error.

– Iterate over all proposed rendezvous to compute the set of all enabled inputs
of the LOTOS NT model. If this set does not include all inputs to be given
to the C++ model, signal an error.

– For all inputs given to the C++ model, provide them once to the LOTOS NT
model.

– Accept the rendezvous marking the execution of the decision function.

If we apply this approach to the arbiter example presented in Figure 3, the
output signals are OA and OB, input signals are IA and IB, and the decision
making signal is D. In a co-simulation, the behavior of the model will not cover
the full LTS as an output is always accepted before the next input. For example,
in state 3, the input transition 3 → 6 cannot be taken, due to the output
transition 3 → 0; this implies that transition 6 → 8 is never taken. Because
also transition 5 → 7 cannot be taken, states 7 and 8 are unreachable. Thus,
co-simulation obviously explores only a sub-set of the LTS.

5.3 Results

Using the EXEC/CÆSAR framework, we co-simulated the LOTOS NT model of
the DTD for 16 processors with the architect’s C++ model, using the architect’s
simulation environment for stimuli generation. After a ramp-up phase mainly
devoted to fine-tuning which signal should be considered in which clock phase
and dealing with C/C++ mangling, we were able to run the first scenarios. Being
clock-based, the simulation environment imposes the scheduling of the signals;
this corresponds to selecting a path in the LOTOS NT model.

For some applications, we found a difference in the choices made by the
LOTOS NT and the C++ models. This revealed that the decision part of the
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two models was not written in the same way. For implementation reasons, the
architect’s C++ model uses a decision tree, while the LOTOS NT model uses an
iterative approach. This highlighted, once again, that a natural-language speci-
fication is subject to different interpretations. We modified and re-validated the
LOTOS NT model to fit the decisions made by the C++ model.

Although clock-based, the simulation environment should be considered only
as cycle-approximate, i.e. only the interaction between the DTD and the proces-
sors are precisely modeled, whereas execution time of both memory latency and
instruction execution in processors is not modeled precisely. The LOTOS NT
model is insensitive to the latter execution times, as it proposes all interleav-
ings. Because important properties have been formally verified on LOTOS NT
model, and the C++ model behaves as the LOTOS NT model on the execution
scheme proposed by the simulation environment, we gained confidence in the
fact that the C++ model should have correct behavior in cases not proposed by
the simulation environment, which is clearly an added value compared to solely
simulation-based validation.

6 Conclusion

We illustrated that LOTOS NT, a formal modeling language based on process
algebra, is well-suited for modeling, design-space exploration, analysis, and co-
simulation of a complex industrial hardware circuit in an asynchronous multi-
processor environment. This increased the confidence in the design and enabled
the integration of an optimization that might otherwise have been judged too
risky. Although all this would certainly have been possible using a classical formal
specification language or other formal methods, we found that using LOTOS NT
helped in obtaining the model and communicating with the architect, and might
be an interesting addition to the design flow.

This work points to several research directions. First, the case study poses
a challenge of using more elaborate and/or prototype state space exploration
techniques (e.g. distributed, compositional, and on-the-fly verification, or static
analysis for state space reduction) to handle larger scenarios. Second, it would be
interesting to consider a more general version of the DTD where each processor
would, after boot, declare its instruction-set extensions, and the dup() operation
would also specify the required instructions.

Acknowledgments. We are grateful to Michel Favre (STMicroelectronics) for
discussions about the architecture of the DTD and to Radu Mateescu (INRIA)
for help with the expression of correctness properties in MCL.
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Abstract. This paper describes an approach to transform Structural
Operational Semantics, given as a set of deduction rules, to a Linear
Process Specification. The transformation is provided for deduction rules
in De Simone format, including predicates. The Linear Process Specifica-
tions are specified in the syntax of the mCRL2 language, that, with help
of the underlying (higher-order) re-writer/tool-set, can be used for simu-
lation, labeled transition system generation and verification of behavioral
properties. We illustrate the technique by showing the effect of the trans-
formation from the Structural Operational Semantics specification of a
simple process algebra to a Linear Process Specification.

1 Introduction

The behavior of a system can be analyzed in various ways. It can be achieved by
observing output from simulations, or by examining the behavioral descriptions
(e.g., code of a controller). To perform such an analysis, one always requires
syntax (the way to denote behavior), semantics (the way in which grammatically
correct behavior is executed) and a relationship between the two.

One way to describe the formal execution behavior of a system, is to use Struc-
tural Operational Semantics (SOS) [33]. Here, semantics is assigned to syntax,
by means of deduction rules that describe the allowed set of actions of a piece of
syntax. Unfortunately, there are hardly any suitable automated transformations
from SOS specifications, along with a syntactical instance, to languages that can
be subjected to formal analysis.

In this paper, we address this gap by formulating a systematic approach by
which the deduction rules specified in SOS, along with the signature of the
syntax, are transformed into a symbolic representation of a labeled transition
system, called a Linear Process Specification (LPS) [6,20]. The LPS can later be
subjected to formal analysis (e.g., simulation, explicit labeled transition system
generation, and verification). We restrict the deduction rules to the De Simone
format [18].

G. Salaün and B. Schätz (Eds.): FMICS 2011, LNCS 6959, pp. 196–211, 2011.
� Springer-Verlag Berlin Heidelberg 2011



Transforming SOS Specifications to Linear Processes 197

We have chosen LPS as a target formalism, because it (i) has a mathematical
representation that strongly relates to deduction rules in SOS and (ii) can be
directly implemented in the mCRL2 language [22,27]. In fact, LPS serves as
a backbone for the representation and manipulation of behavioral models in
the mCRL2 tool-set. Since this tool-set facilitates a higher-order term rewrite
system, a transition generator and other transformation tools, we are able to
exhaustively explore the state space and conduct formal behavioral analysis.

The framework aims at the transformation of formal behavioral specifica-
tions to specifications that are suitable for analysis, e.g., simulation and model-
checking. The technique can be, and is, used [35], when prototyping formal
(domain specific) languages, to investigate behavior dictated by the underlying
operational semantics or to automate translations of formal languages towards
the mCRL2 tool-set.

Outline. Section 2 describes the preliminaries on SOS and LPS. Section 3 de-
scribes the transformation of the signature and SOS of a language to an LPS.
Section 4 provides a small but nevertheless illustrative example. Section 5 dis-
cusses discrepancies between the presentation and implementation. In Section 6,
we discuss extensions of the framework such as predicates. In Section 7, we
position this work. Section 8 concludes and elaborates on future work.

2 Preliminaries

2.1 Structural Operational Semantics

Structural Operational Semantics (SOS) defines the possible actions that a piece
of syntax can perform. SOS is typically represented by a transition system spec-
ification (TSS) [8]. The syntax for which the semantics is defined, is represented
by a signature. A signature fixes the composition operators and their correspond-
ing arities, where a function with arity zero represents a constant. We assume
a set of variables V and a set of action labels A. Note, that the definitions of
signature and transition system specification as used in this paper are restricted
to signatures with a single sort and transition system specifications with a single
transition relation symbol.

A signature Σ is a collection of function symbols together with their arities.
The arity of a function symbol f ∈ Σ is denoted ar (f). The collection of terms
over signature Σ, denoted T (Σ), is the smallest set such that (i) a variable x ∈ V
is a term, and (ii) if t1, . . . , tn are terms and f ∈ Σ is an n-ary function symbol,
then f(t1, . . . , tn) is a term. The set of closed terms over signature Σ, denoted
C(Σ), is the set of all terms over Σ in which no variables occur. The variables
that occur in a term p are denoted by vars(p). A transition formula is of the
form p

l−→ p′ for p, p′ ∈ T (Σ) and l ∈ A.
A transition system specification (TSS) is a tuple (Σ,D) where Σ is a signa-

ture and D is a set of deduction rules. A deduction rule is of the form
H

C
where
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H is a set of transition formulas, called the set of premises and C is a transition
formula, called the conclusion.

To illustrate our technique, we only consider TSSs that consist of deduction
rules of a specific form; we restrict to TSSs in the De Simone format [18]. A TSS
(Σ,D) is in De Simone format, if every deduction rule d ∈ D complies to the
following form:

{xi
li−→ yi | i ∈ I}

f(x1, . . . , xar(f))
l−→ t

[Condd]

where all of x1, . . . , xar(f) and yi, for i ∈ I are distinct variables, f ∈ Σ,
I ⊆ {1, . . . , ar(f)}, and t is a process term that only contains variables from
{xj | j �∈ I} ∪ {yi | i ∈ I} and does not have repeated occurrences of variables,
li’s and l are labels and Condd is a condition on the labels of the premises and the
label of the conclusion. A TSS defines a set of transitions, a so-called transition
relation; see, e.g., [2,32] for formal definitions thereof.

2.2 (Simplified) Linear Process Specifications

In this paper we transform a TSS to an LPS. Informally, an LPS consists of a
signature, variable declarations, a collection of data equations, action declara-
tions, a linear process equation, and an initialization. An LPS can be viewed
as a symbolic representation for (possible infinite) labeled transition systems. A
formal definition of a Linear Process Specification and its components can be
found in [22].

A signature is a triple (S, C,M) where

1. S is a set of sort names, a non-empty (possiblly infinite) set of data elements.
2. C is a set of constructor function declarations of the form f : S1×· · ·×Sn → S

with S1, . . . , Sn, S ∈ S. Constructor functions are functions by which exactly
all elements in the sort can be denoted.

3. M is a set of mapping declarations of the form f : S1 × · · · × Sn → S with
S1, . . . , Sn, S ∈ S. Mapping functions define auxiliary functions to rewrite
terms of a sort.

The sets C and M are disjoint.
A variable declaration is of the form x1, . . . , xn : S where the xi are variable

names and S is a sort name. From the signature and the variable declarations,
terms (of a certain sort) can be constructed. A data equation is of the form
p = p′ where p and p′ are terms of the same sort.

A linear process equation (LPE) is an equation of the form:

X(d:D) =
∑

i∈I

∑

ei:Ei

ci(d, ei)→ai(d, ei)·X(gi(d, ei))

where I is a finite index set of summand variables, where for i ∈ I holds:

– ci(d, ei) is a term of sort B (denoting the set of Booleans) that serves as a
Boolean guard to allow actions,
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– ai(d, ei) ∈ A,
– gi(d, ei) is a term of sort D that denotes the next state,
– ei and Ei denote a variable name and a sort expression, respectively.

The original definition of an LPE allows more features such as actions with data
parameters, time annotations, termination, etc., which are not needed in this
paper and are therefore omitted. The initialization is a statement of the form
X(p), where p is an (open) term of sort D.

3 Method

We provide a template that transforms a TSS (in the De Simone format) to
an LPS. This LPS is described in mCRL2 notation, which is a symbolic de-
scription of the transition relation (transition system) described by the TSS. In
order to directly implement it as an mCRL2 specification, we sometimes slightly
deviate from notations that are common in mathematics, (e.g., when denoting
a set comprehension). The framework that we present is restricted to the use
of mCRL2-restrictive TSSs, as defined below. The method is illustrated by an
example in Section 4.

Definition 1 (mCRL2-restrictive TSS). A TSS is mCRL2-restrictive if

1. the signature Σ contains finitely many function symbols,
2. the set of labels A is finite,
3. the set of deduction rules D is finite, and
4. the conditions of the deduction rules can be represented in mCRL2.

In Section 6, we discuss possibilities for relaxing some of these restrictions.

3.1 Signature Transformation

For a signature Σ that consists of different function symbols f1, . . . , fn, we de-
fine a sort T together with additional constructor, projection and recognizer
functions in the mCRL2 language by:

sort T = struct f1(π1 : T , . . . , πar(f1) : T )?isf1

...
| fn(π1 : T , . . . , πar(fn) : T )?isfn ;

For terms of this sort, f1, . . . , fn ∈ C are the constructor functions. The pro-
jection functions πi ∈ M are used to retrieve argument i of a function sym-
bol. These functions are defined by the equations πi(f(x1, . . . , xar(f))) = xi in
case i ≤ ar (f) and undefined otherwise. The recognizer functions isfi ∈ M
facilitate the evaluation whether a term is of a particular form. The equa-
tions defining recognizer function isfi are isfi(fi(x1, . . . , xar(fi))) = true and
isfi(fj(x1, . . . , xar(fj))) = false for i �= j. Note, that in mCRL2 the equality for
sort T is denoted by ≈. For a detailed description about sorts in the mCRL2
language consider [22].
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3.2 Transitions

The structured sort STrans is introduced to model pairs of a label and a term.
We assume that the set of action labels, say {a1, · · · , an}, is represented by a
sort ATrans .

sort ATrans = struct a1 | · · · | an;
sort STrans = struct sol(πl : ATrans , πt : T );

The projection functions πl and πt are used to retrieve the transition label and
process term from a solution, respectively.

We introduce a function RTrans that satisfies the property, for all s, s′ and
labels l

sol(l, s′) ∈ RTrans(s) iff s
l−→ s′

Since every transition is derivable due to a specific lastly applied deduction
rule, this is accomplished by introducing a function Rd : T → Set(STrans) for
each deduction rule d of the TSS. Then, for D = {d1, · · · , dn}, the function
RTrans : T → Set(STrans) is defined by means of the single equation

var p : T ;
eqn RTrans(p) = Rd1(p) ∪ · · · ∪ Rdn(p);

Consider a deduction rule d of the form

{xi
li−→ yi | i ∈ I}

f(x1, . . . , xar(f))
l−→ t

[Condd(li1 , . . . , li|I| , l)]

in the De Simone format, where I = {i1, . . . , i|I|}. The equation that is introduced
for Rd is given next, followed by an informal explanation of its structure and the
used auxiliary functions. Finally, their formal definitions are provided.

eqn Rd(p) = { s : STrans

| isf(p)
∧ σt(πt(s))
∧ ∃li1 ,...,li|I| : ATrans (Condd(li1 , . . . , li|I| , πl(s))

∧
∧

i∈I yi ∈ vars(t) ⇒ sol(li, μt
yi

(πt(s))) ∈ RTrans(πi(p))
∧

∧
i∈I yi �∈ vars(t) ⇒ ∃zi : T sol(li, zi) ∈ RTrans(πi(p)))

∧
∧

j�∈I xj ∈ vars(t) ⇒ μt
xj

(πt(s)) ≈ πj(p)
};

The conjunct isf (p) states that the rule can only be applied to terms p that
are headed by function symbol f . The conjunct σt(πt(s)) states that the target
term must have the same structure as the term t from the deduction rule. The
third, fourth and fifth conjunct state that labels li and terms yi need to be found
such that the condition and premises of the deduction rule are satisfied. Here,
the third conjunct states that we require a solution that fulfills the condition.
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The fourth and fifth conjunct restrict the possible solutions to those that agree
with the substitution for the occurrences of xi and yi in t to obtain πt(s). The
expression μt

x(p) denotes the term (from p) that is used to instantiate variable x
in t. The last condition checks that the substitutions used for the source variables,
occurring in the target, are those provided by p.

Check target structure. The resulting target term must be an instance of the
term t. We define a function σt : T → B that checks this. If t is of the form x for
some variable x then we introduce the following equation:

var p : T ;
eqn σx(p) = true;

and for t of the form f(t1, . . . , tar(f)), for some function symbol f and terms
t1, . . . , tar(f), we introduce the equation

var p : T ;
eqn σf(t1,...,tar(f))(p) = isf (p) ∧ σt1(π1(p)) ∧ · · · ∧ σtar(f)(πar(f)(p));

and auxiliary functions σti : T → B with their corresponding equations.

Capture conditions. The user of this framework has to introduce functions Condd

that capture the meaning of the conditions in the deduction rules. This means
that applicability is restricted to such conditions that can be captured as Boolean
expressions in the mCRL2 syntax.

map Condd : ATrans × · · · × ATrans ×ATrans → B;

For practical cases, these functions are easily captured in the mCRL2 data lan-
guage.

Extract instance of a variable. To retrieve the term that is used to instantiate a
variable x in the term t, we introduce a projection function μt

x : T → T .
In case t is of the form x we introduce the equation

eqn μx
x(p) = p;

In case t is of the form f(t1, . . . , tar(f)) for some function symbol f and terms
t1, . . . , tar(f), we introduce an equation

eqn μ
f(t1,...,tar(f))
x (p) = μti

x (πi(p));

for each term ti in which x occurs. Additionally we add the auxiliary functions
μti

x : T → T and their corresponding equations. Note that we only use μt
x in

those cases where x ∈ vars(t). Hence it does not matter that the function μt
x is

not defined for variables different from x that do not occur in t. Since we only
consider t in which every variable occurs at most once, μt

x is well-defined.
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3.3 Linear Process Transition Generator

Basically, transitions are performed as long as the set of solutions belonging to
term p is non-empty. So, we declare process X with the process parameter p : T .
For each iteration, we select a solution s such that s ∈ RTrans(p) holds. Then,
for s we need to dispatch the transition (e.g., πl(s)) and update term p to be
πt(s). Putting it all together results in:

proc X(p : T ) =
∑

s:STrans

s ∈ RTrans(p) → πl(s) · X(πt(s));

To obtain the behavior associated with a particular term p, we consider the
process X(p):

init X(p);

The following theorem expresses the correspondence between the labeled tran-
sition systems associated with the closed process term p and the mCRL2 process
X(p). A proof of this theorem can be found in [34].

Theorem 1 (Correspondence). Let (Σ,D) be an mCRL2-restrictive TSS in
the De Simone format. Then for every p ∈ C(Σ), the labeled transition system
associated with p and the labeled transition system associated with X(p) are
isomorphic.

4 Application

To illustrate our approach we consider the process algebra MPT from [4] ex-
tended with an interleaving parallel composition operator. Assume a finite set of
actions A = {a1, . . . , an}. The signature of this language consists of the nullary
function symbol 0, the unary function symbols α. (for α ∈ A, denoting the
argument), and the binary function symbols + and ‖ . In this section we
will use infix notation for the binary function symbols, where zero, ai, alt , and
par represent 0, ai., +, and ‖ respectively.

When applying the signature transformation we get:

sort T = struct zero?iszero | a1(π1 : T )?isa1 | . . . | an(π1 : T )?isan

| alt(π1 : T , π2 : T )?isalt | par (π1 : T , π2 : T )?ispar;
sort ATrans = struct a1 | · · · | an;
sort STrans = struct sol(πl : ATrans , πt : T );

The deduction rules for this process algebra are:

(a1)
a1.x1

a1−→x1

· · · (an)
an.x1

an−→x1

(a1)
x1

l−→ y1

x1 + x2
l−→ y1

(a2)
x2

l−→ y2

x1 + x2
l−→ y2

(p1)
x1

l−→ y1

x1 ‖ x2
l−→ y1 ‖ x2

(p2)
x2

l−→ y2

x1 ‖ x2
l−→x1 ‖ y2
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As no conditions (other than true) appear in these deduction rules we do not
consider them in the remainder of this section. To accommodate the (auxiliary)
computation we introduce the following functions and variables:

map RTrans , Ra1 , . . . , Ran , Ra1, Ra2, Rp1, Rp2 : T → Set(STrans);
σx1 , σx2 , σy1 , σy2 , σy1‖x2 , σx1‖y2 : T → B;
μx1

x1
, μy1

y1
, μy2

y2
, μ

y1‖x2
y1 , μ

y1‖x2
x2 , μ

x1‖y2
x1 , μ

x1‖y2
y2 : T → T ;

var v : T ;

The sort STrans refers to the declaration defined in Section 3.2. The overall
relation function we define as:

eqn RTrans(v) = Ra1(v) ∪ . . . ∪ Ran(v) ∪ Ra1(v) ∪ Ra2(v) ∪ Rp1(v) ∪ Rp2(v);

Then the resulting equations for the action prefix terms are, for each α ∈ A

eqn σx1(v) = true;
μx1

x1
(v) = v;

Rα(v) = {s : STrans | isα(v) ∧ σx1(πt(s)) ∧ μx1
x1

(πt(s)) ≈ π1(v)};

The required equations for deduction rule (a1) are:

eqn σy1(v) = true;
μy1

y1
(v) = v;

Ra1(v) = {s : STrans | isalt(v) ∧ σy1(πt(s))
∧ ∃l1 : ATrans (sol

(
l1, μ

y1
y1

(πt(s))
)
∈ RTrans(π1(v)))};

For deduction rule (p1), the following set of equations is constructed:

eqn σy1‖x2(v) = ispar(v) ∧ σy1(π1(v)) ∧ σx2(π2(v));
σy1(v) = true;
σx2(v) = true;
μ

y1‖x2
y1 (v) = μy1

y1
(π1(v));

μy1
y1

(v) = v;
μ

y1‖x2
x2 (v) = μx2

x2
(π2(v));

μx2
x2

(v) = v;
Rp1(v) = {s : STrans | ispar(v) ∧ σy1‖x2(πt(s))

∧ ∃l1 : ATrans (sol (l1, μ
y1‖x2
y1 (πt(s))) ∈ RTrans(π1(v))

∧ μ
y1‖x2
x2 (πt(s)) ≈ π2(v))};

The treatment of deduction rules (a2) and (p2) is analogous to the treatment
of rules (a1) and (p1).

To perform a meaningful analysis for the closed term p, we provide the fol-
lowing LPE, instantiated by p as:

proc X(v : T ) =
∑

s : STrans

s ∈ RTrans(v) → πl(s) · X(πt(s));

init X(p);
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To illustrate that the method is effective, Figure 1 provides graphs generated
by the mCRL2 tool-set (release-March 2011), that are obtained by applying the
framework. In each case, the initial process parameter p from sort T , which
generates the labeled transition system, is provided in the caption below the the
graphs. The tools that have been used to generate the pictures are subsequently
txt2lps and lps2lts. The first tool reads a textual LPS and stores it into the binary
LPS format. The second tool unfolds an LPS into a labeled transition system.

0

1

2

3

a1

a2

a3

(a) a1(a2(a3(zero)))

0
1

2
3

a1

a2

a2

a1

(b) par(a1(zero), a2(zero))

0

1

2

a1

a2
a3

(c) alt(a1(zero), a2(a3(zero)))

Fig. 1. Three different specifications, as generated by the mCRL2 tool-set

5 Implementation

In order to implement a specification, we require a finite number of deduction
rules and a finite signature, such that we can generate a finite textual specifi-
cation. Furthermore we need to apply two restrictions, in order to conduct an
analysis. The first restriction applies to the use of actions. The second restriction
applies to the use of quantifiers.

In the example we use elements of sort ATrans (part of the data specification)
as actions in mCRL2. Within the mCRL2 language the direct use of data sorts
as actions is prohibited. In fact, mCRL2 requires two separate declarations. To
overcome this limitation, we declare a (dummy) action with a data parameter of
sort ATrans and use this data parameter to encode the SOS-action. So instead

of p
a−→ p′, we get p

Trans(a)−→ p′, where Trans is the dummy action name carrying
ATrans as its parameter.

The second restriction applies to the use of quantifiers. The mCRL2 language
allows the user to specify existential (∃) quantifiers, but their evaluation within
the tool-set is currently being developed. The existential quantification over the
action labels can be dealt with by the tool-set since these concern a finite domain.

The existential quantifiers over the zi variables are not necessarily over a
finite domain. The mCRL2 tool-set cannot compute these in all cases. However,
the expressions ∃zi : T sol (li, zi) ∈ RTrans(πi(p)) can be replaced by expressions
li ∈ Rl(πi(p)), where the function Rl is like RTrans but instead of returning a set
of solutions, which consists of labels and terms, it returns only a set of labels. Let
Rl, (Rl

d)d∈D : T → Set(ATrans) be the derived function along with its auxiliary
functions. Then Rl =

⋃

d∈D
Rl

d, where the auxiliary functions are defined as:
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eqn Rl
d(p) = {a : ATrans | isf(p) ∧ ∃li1 ,...,li|I| : ATrans (Condd(li1 , . . . , li|I| , a) ∧

∧
i∈I li ∈ Rl(πi(p)))};

6 Extension of the Framework

Although we have not shown it in this paper, we believe that there are no
reasons why the mCRL2 tool-set would not be able to deal with multi-sorted
signatures. The main adaptation to the presented method is that for each sort
in the signature a different mCRL2 sort needs to be defined.

Also extending the framework to deal with TSSs in which multiple transition
relations occur poses no problem as it requires the definition of a different func-
tion R for each transition relation in the TSS. Also, different solution sorts must
be provided based on the arities of the involved transition relations. mCRL2
requires that the sorts do not share function symbol names. The example in the
end of this section illustrates the treatment of multiple transition relations.

In the previous section we have only dealt with sets of actions labels that
are finite and that are therefore easily captured by means of a structured sort
in mCRL2. mCRL2 allows the use of much more involved sorts. As long as the
label set can be captured as a sort in mCRL2 we can also deal with infinite label
sets. A problem may arise in the impossibilities of the tool-set in dealing with
the existential quantifiers in that case.

In the remainder of this section we discuss how predicates can be dealt with.
Predicates are a useful addition to TSSs [5]. Predicates are used to express
behavioral properties, like termination and divergence. A deduction rule d in a
TSS with transition relation symbol −→ and predicate P is of the form:

{xi
li−→ yi | i ∈ I} ∪ {Pxj | j ∈ J}

Pf(x1, . . . , xar(f))
[Condd]

or
{xi

li−→ yi | i ∈ I} ∪ {Pxj | j ∈ J}

f(x1, . . . , xar(f))
l−→ t

[Condd]

where all of x1, . . . , xar(f) and yi, for i ∈ I are distinct variables, f ∈ Σ, I, J ⊆
{1, . . . , ar (f)} and I ∩ J = ∅, t is a process term that only contains variables
from {xk | k �∈ I ∪ J} ∪ {yi | i ∈ I} and does not have repeated occurrences
of variables, li’s and l are labels and Condd is a condition on the labels of the
premises and the conclusion (if any).

Predicates can be considered a special type of transition relation, with special
transition labels. Therefore, we introduce a special transition relation symbol

P−→ for each predicate P . Then the above deduction rules can be represented
by:

{xi
li−→ yi | i ∈ I} ∪ {xj

P−→ yj | j ∈ J}

f(x1, . . . , xar(f))
P−→ f(z1, . . . , zar(f))

[Condd]
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{xi
li−→ yi | i ∈ I} ∪ {xj

P−→ yj | j ∈ J}

f(x1, . . . , xar(f))
l−→ t

[Condd]

where zk = xk for all k �∈ I ∪J , and zk = yk, otherwise. Since we assumed I and
J to be disjoint, these rules are in the De Simone format.

For the new transition relation P−→ (representing the predicate relation P )
we define the sorts APred with single element P , and SPred and function RPred ,
such that for all s ∈ C(Σ) and labels P ∈ APred , holds:

sol(P, s) ∈ RPred(s) iff s
P−→ s

Note, that predicates modeled in this way, appear as a self-loop transition in a
labeled transition system. To emphasize the difference between action transitions
and predicate transitions, we use dummy action Pred for predicate transitions.

sort APred = struct P ;
sort SPred = struct sol(πl : APred , πt : T );
act Pred : APred ;

proc X(p : T ) =
∑

s : STrans
s ∈ RTrans(p) → Trans(πl(s)) · X(πt(s))

+
∑

s : SPred
s ∈ RPred(p) → Pred(πl(s)) · X(πt(s));

Predicate application. In this example we extend MPT with termination. By
introducing termination, the signature as mentioned in Section 4, is extended
with the function symbol 1. Within the MPT extension it is common to write
x ↓ instead of ↓ x. The deduction rules for this extension are:

(t1)
1 ↓

(t2)
x1 ↓

x1 + x2 ↓
(t3)

x2 ↓

x1 + x2 ↓

The deduction rules that we obtain by replacing the predicates by transition
relations are the following:

(t1)
1

↓−→ 1
(t2)

x1
↓−→ y1

x1 + x2
↓−→ y1 + x2

(t3)
x2

↓−→ y2

x1 + x2
↓−→x1 + y2

Now, we first extend the signature by adding a nullary constructor function one
representing the constant 1 and a recognizer function isone as follows:

sort T = struct zero?iszero | one?isone | a1(π1 : T )?isa1 | . . . | an(π1 : T )?isan

| alt(π1 : T , π2 : T )?isalt | par(π1 : T , π2 : T )?ispar;

To compute the solution belonging to the termination predicate we introduce
function the RPred , supported by three auxiliary functions Rt1, Rt2, Rt3. Valid
solutions for predicates are computed by:
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map RPred , Rt1, Rt2, Rt3 : T → Set(SPred);
eqn RPred(v) = Rt1 ∪ Rt2 ∪ Rt3;

where the auxiliary functions are defined as:

eqn Rt1(v) = {s : SPred | isone(v) ∧ πt(s) ≈ v ∧ πl(s) ≈ ↓};
Rt2(v) = {s : SPred | isalt(v) ∧ σy1+x2(πt(s))

∧ sol(↓, μy1+x2
y1

(πt(s))) ∈ RPred(π1(v)) ∧ μy1+x2
x2

(πt(s)) ≈ π2(v)};
Rt3(v) = {s : SPred | isalt(v) ∧ σx1+y2(πt(s))

∧ sol(↓, μx1+y2
y2

(πt(s))) ∈ RPred(π2(v)) ∧ μx1+y2
x1

(πt(s)) ≈ π1(v)};

To illustrate the use of predicates within the framework, consider Figure 2 that
shows a generated example with the mCRL2 tool-set. The initial specification
p is shown in the caption. Here the process can either perform action a1 and
deadlock or perform action a2 and terminate successfully. The tools used are
identical to those used in our previous example.

0

1

2

Trans(a1)

Trans(a2)
Pred(one)

Fig. 2. Example of a predicate, generated by the mCRL2 tool-set for alt(a1(zero),
a2(one))

7 Related Work

SOS meta-theory research is mainly aimed at proving useful properties about
TSSs [2,32] such as congruence results [23], deriving equational theories [1], con-
servative extensions [21], and soundness of axioms [3]. Research on how to im-
plement them is underexposed. Most of the related work is performed with the
Maude model checker [36]. Other authors have studied the link between the
rewriting logic [26] and SOS both from a theoretical [10,11,28,19,32] as well as
practical point of view [12,13,19,31,39,40].

In [13], the outline of a translation from Modular SOS (MSOS) [29,30] to the
Maude rewriting logic is given and proven correct. The translation is straight-
forward and the technical twist is in the decomposition of labels, e.g., to the
structure of the labels in MSOS. A more elaborate explanation of this can be
found in [11]. Within the work of [40], they try to capture the CCS seman-
tics rewrites. While rewrites have no labels, labels are encoded as the result of a
rewrite rule, e.g., the CCS transition of p

a−→ q is written as a.p−→{a}p. Though
this is a correct transition, (a.p) ‖ q−→ ({a}p) ‖ q is not, since the right-hand
side term is not well formed. To overcome this problem, they introduce a dummy
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operator by which they extend the semantics in order to generate the transitive
closure (p34-p38). Basically, rewrites can only be performed on the outermost
function symbol and the result needs to be constructed as such. Since we use
tuples to store a solution, rather than encoding it into a single term, we do not
have to compute the transitive closure.

In [31,38,39,40] we see that the most noticeable difference is the formalism
in which they express the TSS. In these works the authors stick to a represen-
tation for which hardly any tooling for formal analysis is available, or needs to
be developed from scratch. This hinders a formal analysis. We have chosen a
formalism, that is supported by a collection of tools that is specially aimed at
performing formal analysis.

LETOS [25] is a tool environment that generates LATEX documents and exe-
cutable animations in Miranda [37]. This can be accomplished for a wide range
of semantics, including some deterministic SOS forms. Since LETOS can only
deal with deterministic semantics, it poses some problems when analyzing the
behavior of concurrent (non-deterministic) systems.

An approach for implementing SOS rules is presented in [15], which combines
(unconditional) term-rewriting and λ-calculus for simulation. It demonstrates
how SOS can be used in proof tools based on term rewriting. For that the Larch
Prover [24] is used, and explained in [14]. Their method aims to demonstrate
and prove the equivalence between different semantics definitions. We, however,
aim at creating a bridge that closes the gap between a language for specification
and a language for performing analysis. Furthermore, we include conditions and
predicates, whereas they only allow predicates.

Process Algebra Compiler [16] is a tool that takes the signature and the
SOS rules of a language and generates a LEX/YACC scanner/parser as well as
verification libraries (Lisp and in Standard ML which are respectively compiled
with the kernels of the MAUTO tool [9] and the Concurrency Workbench [17]). In
fact, PAC is a compiler that can be used as a front-end for verification tools. With
the help of so-called back-end procedures, they generate the required routines
for the different target systems, by relating concepts from the original language
to those in the target formalism. How the relationship is defined between them,
still needs to be addressed by the user. As our work describes such a relation,
this method can be implemented into PAC.

8 Assessment and Future Work

In this paper we have demonstrated that a subclass of SOSs, namely those ad-
hering to the De Simone format, can be transformed into a Linear Process Spec-
ification in the mCRL2 language. These can be subsequently accommodated
with the mCRL2 tool-set. Although we have selected mCRL2 as our specifica-
tion/implementation language, we do not foresee any difficulties when choosing
another language as long as it has the same expressive power, e.g., it facilitates
a higher-order rewrite system to compute set comprehensions and a transition
generator to (exhaustively) explore behavior.
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The work presented here originates from work carried out as part of the KWR
09124 project LithoSysSL at ASML. The core activity within this project is
to investigate how to formalize a language-oriented, domain specific modeling
environment and use it for specification, verification and validation purposes
within the Lithography domain. During the project we have performed several
successful analyses, which are based on the framework as presented here. Ad-
hoc concepts that have been incorporated include multiple signatures, complex
predicates for transition synchronization and the enabling of transition via data.
The framework has been successfully used to study the composition of language
elements, which revealed unintended execution behavior [35].

Extensions towards multi-sorted transition specifications with multiple transi-
tion relations are currently considered. Also, we are looking into accommodation
of extensions of the De Simone format. We claim to be able to deal with negative
premises of the form xi

l
� , with copying of variables in the premises and in the

target term of the conclusion. This means that we can deal with TSSs where the
deduction rules have finitely many premises and are in the GSOS rule format
[7]. Besides the extension towards the GSOS format, we also have preliminary
evidence that look-ahead in premises can be dealt with to some extent and that
the use of state vectors in the TSS (as far as these are expressible in the mCRL2
data language) is feasible.

By incorporating these extensions, we will be able to transform more lan-
guages towards the mCRL2 tool-set and facilitate formal behavioral analysis of
a wider range of (domain specific) languages. Finally, we are planning to inves-
tigate the scalability of our framework. This includes aspects such as the size of
the signature, size of the syntax and the number and complexity of deduction
rules.
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Abstract. We describe a collaborative effort in which the HOL4 theorem prover
is being used to formally verify properties of a structure within the Large Hadron
Collider (LHC) machine protection system at the European Organization for
Nuclear Research (CERN). This structure, known as Successive Running Sums
(SRS), generates the primary input to the decision logic that must initiate a criti-
cal action by the LHC machine protection system in response to the detection of
a dangerous level of beam particle loss. The use of mechanized logical deduction
complements an intensive study of the SRS structure using simulation. We are es-
pecially interested in using logical deduction to obtain a generic result that will be
applicable to variants of the SRS structure. This collaborative effort has individ-
uals with diverse backgrounds ranging from theoretical physics to system safety.
The use of a formal method has compelled the stakeholders to clarify intricate
details of the SRS structure and behaviour.

1 Introduction

The Large Hadron Collider (LHC) at the European Organization for Nuclear Research
(CERN) is a high-energy particle accelerator. It is designed to provide head-on colli-
sions of protons at a center of a mass energy of 14 TeV for high-energy particle physics
research. In order to reach the required magnetic field strengths, the LHC has super-
conducting magnets cooled with superfluid helium. Due to the high energy stored in
the circulating beams (700 MJ), if even a small fraction of the beam particles deposit
their energy in the equipment, they can cause the superconductors to transition to their
normal conducting state. Such a transition is called a quench. The consequences of a
quench range from several hours of downtime (for cooling the magnets down to their
superconducting state), to months of repairs (in the case of equipment damage).

The main strategy for protecting the LHC is based on the Beam Loss Monitoring
System (BLMS), which triggers the safe extraction of the beams if particle loss exceeds
thresholds that are likely to result in a quench. At each cycle of the two counter-rotating
beams around the 27 km tunnel of LHC, the BLMS records and processes several thou-
sands of data points to decide whether the beams should be permitted to continue cir-
culating or whether their safe extraction should be triggered. The processing includes
analysis of the loss pattern over time and of the energy of the beam.

G. Salaün and B. Schätz (Eds.): FMICS 2011, LNCS 6959, pp. 212–227, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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The BLMS must respond to dangerous losses quickly, but determining whether losses
are dangerous may require analysis of loss data recorded over a long period of time. Fur-
thermore, the BLMS must continue recording large amounts of data in real-time while
processing. To achieve these goals, the BLMS maintains approximate cumulative sums
of particle losses over a variety of sizes of moving windows. The component respon-
sible for maintaining these sums is called Successive Running Sums (SRS). The SRS
component is implemented in hardware, in order to be fast enough to work in real-
time, and on Field Programmable Gate Arrays (FPGAs) in particular so that they can
be easily reprogrammed with future upgrades [16].

The SRS component has a complex structure and the correctness of its behaviour is
critical for safe and productive use of the LHC. Any error in the SRS implementation
would compromise either the availability of the LHC (unnecessary request for a beam
dump) or its safety (not triggering a necessary beam dump). The current approach for
analyzing the SRS implementation is simulation of its behavior on sample streams of
input for different loss scenarios [15].

In this paper, we describe a formal verification approach, based on logical deduction
using HOL4 theorem prover [8,13], to analyzing the SRS implementation. Our high
level proof strategy takes advantage of the regular structure of the SRS, which consists
of multiple layers of shift registers and some simple arithmetic hardware. There is a
degree of regularity in how the output of each layer is used as input to the next layer.
There is also a degree of regularity in the timing of each layer with respect to its po-
sition in the stack of layers. This regularity serves as a basis for inductive reasoning,
which makes the amount of verification effort impervious to the number of layers in the
structure.

Our interest in using formal methods was originally motivated by questions about
the SRS that arose in the course of an external technical audit of the BLMS performed
by two of the co-authors, Ghafari and Joyce, and their colleagues. Compared to test-
based methods, like simulation, formal methods not only offer much higher confidence
in the correctness of a system’s behavior, but also help improve our understanding of
its specification. One of the challenges in pursuing a formal verification approach for
SRS was capturing the intricate details of the system’s specification via experiment and
refinement with a team of different backgrounds and expertise. Our confidence in the
SRS design as a result of this effort ultimately rests upon our deep understanding of
why the design is correct rather than the fact that we obtained “Theorem Proved” as the
final output of a software tool. In particular, our use of mechanized logical deduction
was a highly iterative process that incrementally refined our understanding of (1) the
implementation (2) the intended behavior and (3) the “whiteboard-level” argument or
explanation for why the implementation achieves the intended behaviors. The most
important use of HOL4 was its role as an “implacable skeptic” that insisted we provide
justification and compelled us to clarify the details [11].

Our contributions in this paper are: a formal model of the SRS component of the
BLMS, a formal analysis of its behavior, and commentary on the process and outcomes
of taking a formal approach. We give an overview of the BLMS in Section 2, and
describe the SRS component in particular in Section 3. In Section 4, we describe our
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Fig. 1. An ionization chamber installed on the side of the magnet in the tunnel

approach to formal verification, and present the formal model and results. Finally, we
reflect on the process, summarising lessons learned and future directions, in Section 5.

2 BLMS Overview

The main purpose of the BLMS is to measure particle loss, and to request beam ex-
traction if the loss level indicates that a quench is likely to occur. The physical principle
underlying particle loss measurement [4,16] is the detection of energy deposited by sec-
ondary shower particles using specially-designed detectors called ionization chambers
(see Figure 1). There are approximately 4000 ionization chambers strategically placed
on the sides of the magnets all around the LHC tunnel underground. The ionization
chambers produce electrical signals, based on the recording of shower particles, which
are read out by acquisition cards. Acquisition cards, also located in the tunnel and
therefore implemented by radiation-tolerant electronics, acquire and digitize the data
and transmit the digitized data to the surface above the tunnel using optical links. At the
surface, data processing cards named BLETCs receive the data and decide whether or
not the beam should be permitted to be injected or to continue circulating. Each acquisi-
tion card receives data from eight ionization chambers, and each BLETC receives data
from two acquisition cards. A BLETC provides data to the Logging, Post Mortem, and
Collimation systems that drive on-line displays in the control room, perform long-term
storage for offline analysis, and setup the collimators automatically. Due to demanding
performance requirements, BLETCs are implemented on FPGAs, which include the re-
sources needed to implement complex processing and can be reprogrammed making
them ideal for future upgrades or system specification changes.

Figure 2 shows a block diagram of the processes on a BLETC FPGA. In the follow-
ing, we briefly describe each of the four main processing blocks on a BLETC card.

(a) Receive, Check, and Compare (RCC): The RCC block receives data directly from
the acquisition cards, and attempts to detect erroneous transmissions by using Cyclic
Redundancy Check and 8B/10B algorithms [7,14].
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Fig. 2. Block diagram of a BLETC card

(b) Data Processing: Whether or not a quench results from particle loss depends
on the loss duration and the beam energy. Given the tolerance acceptable for quench
prevention, the quench threshold versus loss duration is approximated by the minimum
number of sliding integration windows (called running sums) fulfilling the tolerance.
In order to achieve the required dynamic range (domain of variation of losses), the
detectors use both Current-to-Frequency converter and Analogue-to-Digital converter
circuitries. The Data Combine block merges these two types of data coming from a
detector so as to send a single value, referred to as a count, to the SRS block. The
implementation of the SRS block is described in Section 3.

(c) Threshold Comparator: Every running sum needs to be compared to the thresh-
old determined by the beam energy reading at that moment. The comparator initiates a
beam dump request if any of the running sums is higher than its corresponding thresh-
old. Beam dump requests are forwarded to the Beam Interlock System which initiates
the beam dump. There are 12 running sums calculated for each 16-detector channel al-
located to a BLETC card. There are 32 levels (0.45 to 7 TeV) of beam energy and each
processing module holds data only for those 16 connected detectors. Thus, a total of
6,144 threshold values need to be held on each card.

(d) Logging, Post Mortem and Collimation: To be able to trace back the loss sig-
nal development, the BLMS stores the loss measurement data. This data is sent to the
Logging and Post-Mortem systems for online viewing and storage. For the purpose of
supervision, the BLMS drives an online event display to show error and status informa-
tion recorded by the tunnel electronics and the RCC process as well as the maximum
loss rates seen by the running sums. Each BLETC card also provides data to the Colli-
mation system for the correct alignment and setup of the collimators.
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3 Successive Running Sums (SRS)

Beam losses can happen at different rates, compared to the number of cycles of the
beams around the tunnel. One-cycle failures are called ultra-fast losses. Multi-cycle
losses can be classified as: very fast losses, which happen in less than 10 ms; fast losses,
which happen between 10 ms and 1 s; and, steady losses, where the beam is lost over
one second or more [12].

Processing the data collected by the detectors involves an analysis of the loss pattern
over time, accounting for the energy of the beam. The processing procedure is based on
the idea that a constantly updated moving window can be maintained in an accumulator
by adding the incoming (newest) value and subtracting the oldest value (see Figure 3).
The number of values in the window is its integration time. Ideally, we would have
an unbounded number of windows with lengths covering the whole spectrum of times
from 40 micro-seconds (the rate at which data from detectors enter a BLETC card)
to 100 seconds, for detecting all losses from ultra-fast up to steady. To approximate
this ideal with finite resources, the BLMS is given the tolerance acceptable for quench
prevention, and the quench threshold versus loss duration curve is approximated by the
minimum number of windows that meet the tolerance.

Long moving windows, that is, windows with large integration times, are required,
which means keeping long histories of received count values. To accomplish this goal
with relatively narrow shift registers, the SRS uses consecutive storage of sums of
counts. Instead of storing all the values needed for a sum, the SRS accumulates many
values as a partial sum, thereby using only a fraction of the otherwise needed mem-
ory space. The partial sums for a window with a large integration time are chosen so
that they also serve as the sums calculated by a window with a smaller intergration
time. This technique works by feeding the sum of one shift register’s contents, every
time its contents become completely updated, to the input of another shift register (see
Figure 4). By cascading shift registers like this, very long moving windows can be con-
structed using a significantly small amount of memory. This scheme is the basis for the
SRS implementation in each BLETC.

The SRS implementation minimizes resource usage by using smaller, previously cal-
culated, running sums in the calculation of larger, later running sums, which therefore
do not need extra summation values to be stored. In addition, it makes use of multipoint
shift registers that are configured to give intermediate outputs, referred to as taps. The
taps provide data outputs at certain points in the shift register chain, thus contributing
to the efficient use of resources.
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In the SRS implementation, one shift register’s sum is fed as input to another shift
register. Therefore, the best achievable latency of each shift register is equal to the
refreshing time of its preceding shift register, i.e., the time needed to completely update
its contents. The read delay signal (see Figure 4) of each shift register holds a delay
equal to this latency to ensure correct operation. The delay is equal to the preceding
shift register’s delay multiplied by the number of cells to be used in the sum.

Figure 5 shows the implementation of SRS in a BLETC. It consists of 6 slices, where
each slice computes two running sums (e.g., slice 4 computes running sums RS6 and
RS7) with the use of a multipoint shift register, two subtractors and two accumulators
(see Figure 6).

As shown in Table 1, cascading 6 slices is enough to reach the approximately 100
second integration limit required by the specifications given by the scientists and engi-
neers who designed the machine protection strategy for the LHC.

4 Verification of the SRS Implementation Using HOL4

In this section, we describe our approach to formal verification of the SRS component
of a BLETC, and present the formal model and results.

4.1 Introduction

Our formal verification effort uses mechanised logical deduction, or theorem proving.
In general, theorem proving is used to show that desired properties of a system are
logically implied by a formal model of the system. We use the HOL4 open source
software tool [8,13], which was developed initially at the University of Cambridge, but
now by an international team. HOL4 enables the construction of theories in Higher-
Order Logic (HOL) [2], a formal logic with a similar expressive power to set theory
that is widely used for formalising hardware and software models and statements about
them. The implementation of HOL4 uses Milner’s LCF approach [6]: a small “kernel”
implementing the primitive rules of the logic, and convenient derived rules and tactics
implemented in terms of the kernel. Every theorem ultimately comes from the kernel,
and this fact provides high assurance of the logical soundness of the verification results
obtained using the system.
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HOL4 is an interactive theorem prover: the user provides the high level proof strategy
by composing functions that automate common chains of logical deduction. The work
described here could have been done using other systems such as HOL Light [5], Is-
abelle/HOL [10], ProofPower [1], PVS [9] or Coq [3]. The first three use essentially the
same higher-order logic as HOL4, whilst PVS and Coq support more powerful logics.
While offering less “push-button” automation than other kinds of formal verification
such as model-checking, machine-assisted theorem proving using HOL4 is appropriate
for verifying the SRS, since it gives a way to very explicitly parameterize the model.

Our goal is to build a generic model of the SRS structure, and to prove that it sat-
isfies its specification, that it calculates approximate running sums of received count
values within acceptable error margins. Let RS n denote, as in Figure 5, output n of the
SRS structure, which is supposed to compute a sum of received count values, and let
true sum n denote this sum. The multi-layered structure of the SRS and the read delay
of each shift register result in the outputs being delayed from the true sum values. A
sketch of the desired correctness statement is:

∀n · RS n = true sum n ± acceptable error
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Table 1. SRS configuration in BLETC

Range Refreshing
40 µs steps ms 40 µs steps ms slice running sum

1 0.04 1 0.04 slice 1 RS0
2 0.08 1 0.04 slice 1 RS1
8 0.32 1 0.04 slice 2 RS2

16 0.64 1 0.04 slice 2 RS3
64 2.56 2 0.08 slice 3 RS4

256 10.24 2 0.08 slice 3 RS5
2048 81.92 64 2.56 slice 4 RS6

16384 655.36 64 2.56 slice 4 RS7
32768 1310.72 2048 81.92 slice 5 RS8

131072 5242.88 2048 81.92 slice 5 RS9
524288 2097.52 16384 655.36 slice 6 RS10

2097152 83886.08 16384 655.36 slice 6 RS11

Although Figure 5 suggests that the SRS structure has only twelve outputs (i.e., 0 ≤
n ≤ 11), we obtain a more generic result (that is useful in future upgrades of the system)
by interpreting and proving the statement above for all values of n.

To make the above correctness statement more precise, we need to include the notion
of time. The count values arrive at the input of the SRS block every 40 micro-seconds,
which we abstract as a single time step in our logical model. We formalize the input
stream as a function of time: D t denotes the input value to the SRS structure at time
t. In addition, the terms in the above statement depend on this stream of input counts.
With these refinements, the correctness statement becomes:

∀D n t · RS D n t = true sum D n t ± acceptable error

Prior to defining a formal model of the SRS and proving theorems about it, we
developed an informal “whiteboard-level” argument for why the SRS implements its
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intended behavior. The essence of this argument relies on four facts which can be es-
tablished from the structure of the SRS and some details about the timing relationship
between layers:

1. The shift register of each slice (except the first) is updated once the shift register of
its previous1 slice is completely updated, that is, when a count value has propagated
down the full length of the previous slice’s shift register.

2. The integration window of a given shift register in a slice (except the first slice)
can be decomposed into a sequence of non-overlapping segments, S1, S2, . . . , Sw

(where w is the width of the shift register) each of which is equal to the size of the
integration window of the shift register of the previous slice.

3. After a period of initialization, the values stored in the shift register of a given slice
(except the first) are the w outputs of the previous slice, where w is the width of the
shift register of this slice.

4. After a period of initialization, the output of each slice is always equal to the sum
of the contents of its shift register.

Using Facts 1, 2 and 3 in an inductive argument, we show that each cell of the shift
register of a given slice, after a period of initialization, always contains the sum of
the SRS inputs for one of the non-overlapping consecutive segments that make up the
integration window of this slice. Then using Fact 4 and arithmetic reasoning, we can
show that the output of this slice, after a period of initialization, contains the sum of the
SRS inputs over its integration window.

While the above paragraph gives the appearance of a straightforward argument for
the correctness of the SRS (corresponding roughly to Theorem 1 in Section 4.3), in fact
the argument involves consideration of many details that arise from the formal model
of the SRS presented in the next section. Using a theorem proving tool enables us to
keep track of these details without losing sight of the overall goal.

4.2 Formal Model of SRS

The first step to prove the correctness statement is to build a logical model of the SRS
structure. We model each building block of the SRS structure that holds a count value
– for example, each cell in each shift register – as a function in HOL2.

Our model is both a simplification and a generalization of the actual structure of
SRS in BLMS in the following sense. We model an unbounded number of slices (rather
than six slices), each with an unbounded number of shift register cells and taps (rather
than fixed width shift registers and only two taps), simply by letting indices range over
the natural numbers without explicitly giving limits. This parameterization makes the
model more likely to be applicable to future versions of the system, but also fits more
naturally into HOL than would a bounded model. We defined our formal model to be
at a level of abstraction above the details of circuity that implements basic arithmetic
operations. We use natural numbers throughout, rather than, for example, finite words

1 Here, the phrase “previous slice” refers to the slice whose output is used as input to this slice.
2 The acronym HOL refers to higher-order logic rather than the software tool HOL4. We use the

tool to define a function in the logic.
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Table 2. Descriptions of the HOL functions comprising our model of the SRS structure

Function Intended meaning
tap n x The position of tap x of slice n. (The first position is 0.)
input n A pair (n′, x) indicating that the input to slice n is output x of slice n′.
delay n The number of time steps between updates of slice n.
source D n m t The value of the cell that is the direct input to cell m of slice n, at time t,

given input stream D.
SR D n m t The value of cell m of slice n, at time t, given input stream D.
output D n x t The output at tap x of slice n, at time t, given input stream D.
RS D n t The value of running sum n at time t, given input stream D.
update time n t A boolean indicating whether t is an update time for slice n.

that would more accurately model count values. This level of abstraction is sufficient
to answer the questions that originally motivated this work. A separate verification ef-
fort can focus on showing that a more realistic model of hardware circuitry accurately
implements natural number arithmetic.

Table 2 lists the HOL functions comprising our model along with their intended
meanings. The arrangement of the slices is described by functions input n and tap n x.
The read delay of a slice is modeled by delay n. Each slice is modeled by three func-
tions: SR D n m t represents the value of each cell of the slice’s shift register,
source D n m t represents the direct input of each cell, and output D n x t rep-
resents the value of the slice’s output at its taps. The function RS D n t models the
running sums and update time n t checks if it is time to refresh the contents of a slice.
We have both RS and output functions, though RS is easily defined in terms of output,
because RS represents an SRS output (indexed by a single number), whereas output
represents an individual slice output (indexed by slice and tap numbers). By separating
RS and output, we allow for designs where some slice outputs are not SRS outputs, but
may still be used internally as inputs to other slices.

The formal definitions of the functions listed in Table 2 are given in Figure 7. The
definition of input when n = 0 or when n > 6 does not change the structure repre-
sented, since slice 0 is a virtual slice and the real SRS has only six slices, so we give
definitions convenient for theorem proving. A similar comment applies to other defini-
tions when n, representing a slice number, is 0, or when x, representing a shift register
position, is greater than 1. We define all excess taps (where x > 1) to be in the same
position as the last tap.

As explained in Section 3, the delay of each slice is equal to the delay of the slice
it receives its input from multiplied by the number of elements in the input slice used
for the sum. For example in Figure 5, delay 4 = delay 3 × tap 3 0 = 2 × 32. The
definition of the source function states that the source of each cell m in a shift register
is cell m − 1, except for the first cell whose source is the output of the input slice. For
example, source D 4 7 t = SR D 4 6 t and source D 4 0 t = output D 3 0 t.
The output of each slice is computed every time the contents of its shift register are
updated by adding the incoming newest value (specified by source) and subtracting its
oldest value, that is the value in the cell at the tap position. The content of each cell
of a shift register, SR D n m t is also computed at every update time based on the
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value of its source. Every definition in Figure 7 is local (only represents a small part of
the SRS structure) and therefore verification against its intended meaning is relatively
straightforward.

Figure 8 shows the definition of a set of additional functions required to prove our
main results. The function delay sum n represents the cumulative delay of the preced-
ing shift registers of a slice. For example, delay sum 4 = delay 3+delay 1+delay 0 =
2 + 1 + 1 = 4. The function last update n t returns the latest time not after t at which
slice n updates, and exact D n x t computes the exact sum of consecutive input counts,
without delay, that output D n x t is supposed to approximate.

4.3 Theorems about the Model

Our central result equates the output of a slice to a sum of consecutive input counts.
More precisely, it says that if slice n was just updated, then the output at tap x is equal to
the sum of ((tap n x)+1)×(delay n) input values, starting from the input delay sum n
time steps ago.

Theorem 1. For all values of D, n, and x, the output of slice n > 0 at an update time
t satisfies

output D n x t =
((tap n x)+1)×(delay n)−1∑

m=0

{
0 t < m + delay sum n

D (t − m − delay sum n) otherwise

Proof. The shift register of slice n is updated every delay n time steps. When updated,
the values in its cells are shifted one cell. Therefore3,

SR D n (m + 1) t = SR D n m (t − delay n)

By induction on m, using the above,

SR D n m t = SR D n 0 (t − (m × delay n))

By induction on t, we can show that output D n x t is a sum of values of consecutive
shift register cells,

output D n x t =
tap n x∑

m=0

SR D n m t

Combining the last two results, output D n x t is a sum of consecutive values of the
first shift register cell, SR D n 0. Thus, we can express output D n x t in terms of
output D n′ x′ t, where (n′, x′) = input n, since the source of SR D n 0 is the pre-
vious (input) slice’s output. Finally, by induction on n, we can express output D n x t
as a function of D alone, as required, using the result above for the inductive case. ��

3 For presentational convenience, here, we do not provide details for the case when t is small
(e.g., when t < m × delay n). For complete theorem statements and the proof script, please
refer to https://github.com/xrchz/CERN-LHC-BLMTC-SRS/blob/master/
hol/srsScript.sml.
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tap 0 0 = 0 tap 0 x = 0
tap 1 0 = 1 − 1 tap 1 x = 2 − 1
tap 2 0 = 8 − 1 tap 2 x = 16 − 1
tap 3 0 = 32 − 1 tap 3 x = 128 − 1
tap 4 0 = 32 − 1 tap 4 x = 256 − 1
tap 5 0 = 16 − 1 tap 5 x = 64 − 1
tap 6 0 = 32 − 1 tap 6 x = 128 − 1 (where each x > 0)
. . . tap n x = 0 (where x ≥ 0 and n > 6)

input 0 = (0, 0) input 1 = (0, 0)
input 2 = (0, 0) input 3 = (1, 1)
input 4 = (3, 0) input 5 = (4, 0)
input 6 = (4, 1) input n = (n − 1, 0) (where n > 6)

delay 0 = 1
delay n = delay n′ × ((tap n′ x) + 1)

where (n′, x) = input n (and n > 0)

source D n 0 t = output D n′ x t where (n′, x) = input n
source D n m t = SR D n (m − 1) t (where m > 0)

SR D n m 0 = 0
SR D n m t = if update time n t then

source D n m (t − 1)
else SR D n m t (where t > 0)

output D 0 x t = D t
output D n x 0 = 0
output D n x t = if update time n t then

((output D n x (t − 1)) + (source D n 0 (t − 1))) − (SR D n (tap n x) (t − 1))
else output D n x (t − 1) (where n, t > 0)

RS D n t = output D
(⌊

n
2

⌋
+ 1

)
(n mod 2)

update time n t ⇐⇒ (tmod delay n = 0)

Fig. 7. Definitions of the HOL functions comprising our model of the SRS structure. tap and
input are defined to match Figure 5. Slice 0 is a virtual slice representing the SRS input; this
enables a succinct definition of source.

delay sum 0 = 0
delay sum n = delay n′ + delay sum n′ where (n′, ) = input n

last update n 0 = 0
last update n t = if update time n t then t

else last update n (t − 1) (where t > 0)

exact D n x t =

((tap n x)+1)×(delay n)∑

m=0

{
0 t < m + 1

D (t − m − 1) otherwise

Fig. 8. Definitions of auxiliary HOL functions used while proving theorems about the model of
the SRS structure
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Since the outputs of a slice stay constant between update times for the slice, Theo-
rem 1 suffices to characterize all outputs at all times. Thus, the SRS structure’s outputs
are equal to the exact running sums of the input counts over windows whose sizes de-
pend on the width of the slice’s shift register and position of the taps. However, the sums
are delayed by the total delay across all previous slices (represented by delay sum).

The fact that the SRS calculates exact, but delayed, sums, is captured in the next
theorem, which relates output D n x t to exact D n x at an earlier time.

Theorem 2. For all values of D, n, and x, the output of slice n > 0 at all times t
satisfies

output D n x t =

{
0 last update n t + 1 < delay sum n

exact D n x (last update n t + 1 − delay sum n) otherwise

Proof. The proof follows from Theorem 1, using the definition of exact, and the fact
that output D n x t has the same value as at the last update time. ��
The function true sum is easily defined in terms of exact, namely, true sum D n t =
exact D

(⌊
n
2

⌋
+ 1

)
(n mod 2) t. Since RS is similarly defined in terms of the output,

Theorem 2 establishes a relationship between the values of RS and of true sum.
We call the difference between the RS values and their corresponding true sums,

caused by the delay, the error. To meet the tolerance acceptable for quench preven-
tion, the SRS specification requires a bound on this error. Without restricting the input
stream, the error is unbounded4. However, according to extensive experimental analysis,
the beam loss over time follows some patterns. By formulating some characterization
of the input stream as constraints on D, we can recover a bound on the error. One of
these constraints is a maximum value for the difference between two consecutive input
count values. This “maximum jump size” can be inferred from the highest quench level
thresholds.

Under such a constraint, we have proved the follwoing result bounding the error of
output D n x t compared to exact D n x t.

Theorem 3. For all k and D satisfying |D (t′ + 1) − D t′| ≤ k at all times, the
following holds for all slices n > 0, tap positions x, and times t:

t > (tap n x + 1) × (delay n) + delay n + delay sum n =⇒
|output D n x t − exact D n x t| ≤ (tap n x + 1) × (delay n) × k×

(delay sum n − 1 + t mod delay n)

Furthermore, for all k there exists an input stream Dk satisfying |Dk (t′+1)−Dk t′| ≤
k for all t′ and

|output Dk n x t − exact Dk n x t| = (tap n x + 1) × (delay n) × k×
(delay sum n − 1 + t mod delay n)

for all n > 0, x, and t > (tap n x + 1) × (delay n) + delay n + delay sum n.
4 For any bound, we can construct an input stream that causes the bound to be exceeded by, for

example, having a sequence of zeroes followed by a sequence of count values much higher
than the bound.
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Proof. By applying Theorem 2, we are left with an inequation involving the function
exact specifically between exact D n x t and exact D n x (last update n t + 1 −
delay sum n). Our assumption on t ensures that we are never in the 0 case of either
Theorem 2 or of the definition of exact. The function exact is defined as a sum of
consecutive values of D; we need to bound the difference between one such sum and
another earlier one of the same size. But if at each step the maximum difference is k,
then the total difference is at most k times the distance between the ends of the two
sums, as required. (We use the fact that last update n t = t − t mod delay n.) The
input stream achieving this bound is given by Dk t = k × t. ��
Theorem 3 gives a bound on the error of a running sum at a given time in terms of
the time step, the slice and tap numbers, and the assumed bound on the difference be-
tween consecutive counts. This bound is tight for the conditions we assume, namely
that the time step is sufficiently high and that the difference between consecutive counts
is bounded, in the sense that it is achievable by an input stream satisfying those con-
ditions. To determine whether an error bound is acceptable with respect to the specifi-
cation of SRS, however, it turns out to be more useful to know the relative size of the
error as a fraction of the true sum. According to the specification of SRS, the running
sums should have a maximum 20% relative error ((|RS D n t − true sum D n t| <
20% × (true sum)). We have not yet characterized the relationship between our error
bound at a given time and the true sum at that time.

The proof of Theorem 3 is straightforward when summarized, as above. However,
as for all of our theorems, there are several non-trivial details underlying the high-level
summary provided. For example, proving that the maximum difference between the end
terms in a sum is the maximum difference between consecutive terms multiplied by the
number of terms requires an inductive argument. Our HOL4 proof script for verification
of SRS consists of 750 lines of code. We proved 69 theorems, including 14 definitions.
In addition, we had to prove approximately 30 generic theorems that were added to
HOL4 libraries during this work.

5 Conclusions and Lessons Learned

We have described a case study in which we used HOL4 theorem prover to verify
properties of the SRS structure within the LHC machine protection system. In this case
study, we built a parameterized model of the SRS structure and showed that its behavior
is correct with respect to its specification. It is likely that the configuration of the slices
and shift registers will need to change in the future as the understanding of the LHC and
its possible weaknesses increases to accommodate more targeted protections. Thus, the
parameterization in our model is crucial to make it applicable to the future upgrades.

One of our main challenges in this effort was building the formal model and formu-
lating the correctness statements. There are three different sources of complexity that
are inherent in understanding why the SRS structure implements its intended behavior:
(a) the structure of the SRS: although it features considerable regularity, it includes ex-
ceptions to this regularity that complicate reasoning, e.g., the input of one slice may
not be the output of the immediately previous slice, but may be the first or second out-
put of any earlier slice or even the global input; (b) the non-trivial timing relationships
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between different elements of the SRS; e.g., the frequency of updates to the contents of
a shift register depends on the position of the shift register in the layered structure of the
SRS; (c) arithmetic relationships that are not always intuitively apparent at first glance.
While each of these sources of complexity is manageable on its own, reasoning about
the correctness of the SRS is a matter of grappling with all three sources of complexity
at once.

To understand the structure of the SRS, we started with a model of a simplified
structure, which had a more regular arrangement of the slices and ignored the middle
taps, and proceeded to a model which is closer to the SRS implementation in BLMS.
In addition, we used a basic spreadsheet simulation model for a few slices for sanity
testing the correctness formulae. However, some sanity tests related to Theorem 1 led
us astray when we did not know the correct formula for that theorem. The formulae
we conjectured worked for small values of n, and simulating large values of n was
expensive, but the counterexamples were only to be found at large values of n.

The use of mechanized theorem proving to verify the correctness of the SRS behavior
complements an intensive verification effort based on simulation performed at CERN.
This effort targeted the validity of the SRS as an accurate and fast enough method by
analyzing its behavior (a) in the boundaries of the threshold limits and (b) in expected
types of beam losses, e.g., fast and steady losses. Its results showed that the current
implementation of the SRS, given in Figure 5, satisfies the specification, that is, the
running sums have a maximum 20% relative error.

By contrast, the results in this paper apply to all possible input streams, not just the
sample inputs considered at CERN – our main contribution, as stated in Theorem 2,
showed that the behavior of the SRS is correct for all possible input streams. However,
we do not know if the constraint on input stream given in Theorem 3 is sufficient to
satisfy the maximum 20% relative error bound. One of the potential reasons for this
problem is not knowing how to characterize the input stream to the SRS. Due to the
physical nature of this problem, such a characterization of the input stream is not triv-
ial. While testing and simulation of the SRS on a limited set of input streams offers a
level of confidence that the behavior of SRS satisfies this particular specification, con-
structing a formal proof for all possible behaviors requires a better understanding of
the characteristics of the input stream. One future research direction is to investigate
whether constructing such a formal proof is feasible for the SRS component of BLMS.

Another future research direction is to refine our formal model to a lower level of
abstraction, closer to the hardware level (e.g., by representing count values as finite
words instead of natural numbers). We are also considering verifying a model extracted
from the Hardware Description Language (HDL) used to synthesize the BLETC FPGA.

Acknowledgment. The authors thank Mike Gordon at the University of Cambridge for
his insightful and helpful feedback during the course of this work.
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Abstract. In traditional approaches to software development, modeling
precedes programming activities. Hence, models represent the intended
structure and behavior of the system-to-be. The reverse case, however, is
often found in practice: using models to gain insight into an existing soft-
ware system, enabling the evolution and refactoring of the system to new
needs. We report on a case study with the ASK communication platform,
an existing distributed software system with multithreaded components.
For the modeling of the ASK system we followed a hierarchical top-down
approach that allows a high-level description of the system behavior on
different levels of abstraction by applying an iterative refinement proce-
dure. The system model is refined by decomposing the components into
sub-components together with the “glue code” that orchestrates their
interactions. Our model of the ASK system is based on the exogenous
coordination language Reo for specifying the glue code and an automata-
based formalism for specifying the component interfaces. This approach
is supported by the modeling framework of the tool-set Vereofy which
is used to establish several properties of the components and the co-
ordination mechanism of the ASK system. Besides demonstrating how
modeling and verification can be used in combination to gain insight into
legacy software, this case study also illustrates the applicability of ex-
ogenous coordination languages such as Reo for modeling and tool-sets
such as Vereofy for the formal analysis of industrial systems.

1 Introduction

In the traditional process of software development, abstract models of software
are commonly used to represent the intended structure and behavior of a system-
to-be. The rigorous use of formal modeling languages and verification techniques
provides a smart approach for the compositional design by stepwise refinement
and yields systems that are correct by construction. In practice, however, this
ideal policy for the system design is not taken and complex systems are often
built by linking software components that rely on program code where no formal
models are available. In those cases, especially when software needs to be adapted
to new needs (by others), formal models are highly desirable to obtain valuable
insights for the redesign.
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Coordination and interaction modeling languages [13,11], and tools to verify
properties of the models such as [2,10,12], allow to gain deeper insights into the
complexity of the coordination and interaction inside a software system. In this
article, we illustrate that coordination languages and corresponding model check-
ing techniques offer an elegant framework for recovering the interaction structure
of a given software system by means of an industrial case study. We consider the
ASK communication platform [5] (see Sec. 2) and use the exogenous coordination
language Reo [4] and the model checker Vereofy [6,7,9]. Reo is a channel-based
coordination language, where the glue code that orchestrates the interactions of
components is compositionally built by plugging channels together, resulting in
a Reo network of channels. Its library of basic channels as well as the possibility
to provide customized channels and connectors allows for a wide variety of co-
ordination patterns. Reo allows to declare the structure of a complex system by
means of channels and the interfaces of components on each level of abstraction,
without having to provide the operational behavior for the components or for
the Reo network explicitly. Only on the lowest level of abstraction, constraint
automata [8] provide the operational semantics for the most basic components
and channels. The operational behavior of the entire system is implicitly given
by operational semantics of the Reo network and the automata specification of
the basic components. Other modeling languages like Promela (SPIN) [12] or
reactive modules [3] hardly support hierarchical top-down modeling and in con-
trast to other formalisms like classical process algebras that provide this support,
the declarative nature of Reo promotes the specification of the coordination glue
code in a very intuitive and flexible manner external (exogenous) to the com-
ponents. As the components remain oblivious and independent of the context
in which they are used, a clear separation between coordination and compu-
tation is achieved. This facilitates iterative refinement of the components and
the glue code as well as reuse of components which have been formally verified.
The Reo and constraint automata approach is supported by Vereofy, a model-
ing and symbolic formal verification tool-set for checking operational correctness
of component-based systems. Vereofy supports a hybrid approach to modeling,
with the instantiation and composition of channels, connectors, and components
into a Reo network handled by Vereofy’s RSL (Reo Scripting Language), while
the guarded command language CARML (Constraint Automata Reactive Mod-
ule Language) serves to formalize the behavioral interfaces of components. The
model checking engine of Vereofy supports, among others, linear and branching-
time logics adapted to the Reo and constraint automata framework augmented
with regular expressions for reasoning about the data flow at I/O-ports [7].

We use the ASK system to illustrate how the exogenous modeling approach
based on Reo and constraint automata can be applied to model coordination
mechanisms in a hierarchical way, i.e., by identifying components and component
connectors, modeling them as constraint automata and Reo networks (formally
specified by CARML and/or RSL code) and refining the components for lower
abstraction levels. The refinement steps rely on a decomposition of components
into subcomponents and their glue code, which again are formally represented by
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constraint automata and/or Reo networks. We use the model checking engine of
Vereofy to establish several properties of the components and the coordination
mechanisms within the ASK system. Besides demonstrating how modeling and
verification can be used in combination to gain insight into legacy software,
this case study primarily illustrates the applicability of an exogenous modeling
approach, namely Reo and the Vereofy tool-set, for the modeling and formal
analysis of interaction-intensive industrial software systems.

Structure. In Sec. 2, we provide a brief overview of the ASK system. In Sec. 3,
we present the hierarchical modeling approach, the realization of important con-
cepts in Reo and, as an example, a more detailed description of the model. The
verification issues for an important part of the ASK system at different levels
of detail are discussed in Section 4 along with the application of Vereofy to the
ASK model.

2 The ASK System

ASK [5] is an industrial software system for connecting people to each other.
The system uses intelligent matching functionality in order to find effective con-
nections between requesters and responders in a community. ASK has been de-
veloped by Almende [1], a Dutch research company focusing on the application
of self-organisation techniques in human organisations and agent-oriented soft-
ware systems. The system is marketed by ASK Community Systems [5]. ASK
provides mechanisms for matching users requiring information or services with
potential suppliers. Based on information about earlier established contacts and
feedback of users, the system learns to bring people into contact with each other
in the most effective way. Typical applications for ASK are workforce planning,
customer service, knowledge sharing, social care and emergency response. Cus-
tomers of ASK include TNT Post, Rabobank and Pfizer. The number of people
using a single ASK system varies from several hundreds to several thousands.

System Architecture. The ASK system can be technically divided into three
parts: the web front-end, the database and the ASK core. The web front-end
acts as a configuration dashboard, via which typical domain data like users,
groups, phone numbers, mail addresses, interactive voice response menus, ser-
vices and scheduled jobs can be created, edited and deleted. This data is stored
in a database, one for each deployment instance of the ASK system. The feed-
back of users and the knowledge derived from earlier established contacts are
also stored in this database. Central to our case study, however, is the ASK
core (see Fig. 1), the “communication engine” of the system, which consists of a
quintuple of components: Reception, Matcher, Executer, Resource Manager and
Scheduler. These components handle all communication with and between users
of ASK, provide matching functionality and schedule outbound communication
and other kinds of jobs.

The “heartbeat” of the ASK core is the Request loop, indicated with thick ar-
rows. Requests flow through the request loop until they are fully completed and
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Fig. 1. ASK Core Overview

removed. Requests are primarily initiated by the Resource Manager and nor-
mally removed by the Executer. The request loop itself is medium and resource
independent. Within the Resource Manager component, the loop is separated
from the level of media-specific resources needed for fulfilling the request. Tele-
phony connections are handled inside the Resource Manager with the help of
Asterisk (IAX), a telephony development tool-kit. In particular, the individual
components in the ASK core perform the following tasks: The Reception coordi-
nates the communication process, i.e., the steps to be taken by ASK in order to
fulfill a request, while the Matcher seeks appropriate context-based participants
for a request. The Executer determines the best way in which the matching par-
ticipants can be connected at the time of the request and the Resource Manager
effectuates and maintains the actual connection between participants. Finally,
the Scheduler schedules jobs, in particular requests for (outbound) communica-
tion between the ASK system and its users.

Component Architecture. The components within the ASK core all have a similar
inner structure. Each of them is equipped with an enhanced thread-pool, which is
called an abbey. The threads within the pool are called monks: workers capable of
handling specific types of tasks, which they get from a single task queue. Several
types of abbeys are in use. In this paper, we restrict ourselves to a single type
of abbey for all components, consisting of a fixed amount of monks and a fixed
size task queue. The operation of putting a task in the queue blocks if the queue
is full. Tasks in ASK can be either finite, in which case a monk executes the
task and then is able to perform another task, or infinite, in which case the
execution of the task never ends (and the monk executing the task is dedicated
to it forever). The hostess task is a particular example of an infinite task which
is present in all components involved in the request loop. Within the hostess
task, requests sent to a component are received, converted into tasks, and put
into the local task queue in order to be eventually executed by a monk.

Within the Scheduler component, which is not involved in the request loop,
tasks are put in the task queue based on job descriptions in the database (a
special task is responsible for this). Here, a job stands for a task with a timestamp
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attached to it. The timestamp indicates the time at which the task must be put
in the task queue (note that this is different from either starting time or deadline
for execution of the task).

Resource Management. An important resource limitation in ASK is the number
of telephony lines that can be connected at the same time – due to hardware
constraints. This limitation is especially relevant in case the Scheduler is used to
initiate outbound calls to many people at the same time. A special asynchronous
communication is used between the Scheduler and the Resource Manager, which
is used to inform the Scheduler about the load put on the Resource Manager.
This load is expressed in terms of a happiness factor, ranging from 0 (a heavy
load, the Resource Manager is “sad”) to 1 (no calls at all, the Resource Manager
is “happy”). To simplify the presentation in this paper, we use a binary happiness
factor providing the alternatives “happy” and “sad” only.

Verification Issues. Modeling the ASK system gives rise to a variety of verifi-
cation issues of interest. On a basic level, this includes the correct functioning
of the coordination employed to model the real-world concepts in the Reo net-
work. On a higher level, the behavior of the components acting in concert can
be analyzed to ensure that certain assumptions are always adhered to, e.g., the
absence of dead-locks or that a particular behavior may only occur in special
circumstances. The analysis of liveness properties ensures that certain desirable
behavior actually occurs, e.g., that a task will eventually be handled, etc. Of par-
ticular interest for the potential refactoring of parts of the system is the question
of equivalence of model variants.

3 Top-Down Modeling and Specification of ASK

The ASK core has been written in the ANSI C programming language, while
its runtime structure consists of five multi-threaded UNIX processes potentially
running on different machines. An appropriate method was needed to trans-
late the “implementation concepts” of the system (processes, threads, shared
data structures, functions, function calls, etc.) into the “modeling concepts” of
Reo (channels and nodes) and constraint automata (states, transitions, and con-
straints). We will first provide a brief overview of these modeling concepts.

3.1 Basic Principles of Reo and Constraint Automata

A Reo network consists of a circuit of channels and nodes, providing the coordi-
nation for a number of components. The most basic channel is the synchronous
channel ( ), passing data from one end to the other. A variant of this
channel is the synchronous drain channel ( ), which synchronizes activity
at both ends, i.e., one of the ends can only be active if the other is active as
well. Filter channels ( ) only pass data if their filter condition is satisfied.
Asynchronous communication is facilitated by FIFO buffer channels ( ) of
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{A,B} ∧
Data(A) = task(HostessTask) ∧
Data(A) = Data(B)A B

task(HostessTask)

Fig. 2. Customized filter channel and the corresponding constraint automaton

various capacities. The channel ends are either connected to the interface ports
of the subcomponents or to Reo nodes, which enforce certain coordination se-
mantics for the connected channel ends. Communication via the default Reo
node ( ) requires that exactly one of the incoming channel ends is active, i.e.,
choosing between the available inputs, and that all of the outgoing channel ends
are active, i.e., simultaneously copying the received data to all outputs. Route
nodes ( ) behave the same on the input side but will route the input to exactly
one of the connected outgoing channel ends. By designating certain nodes as
interface ports, the Reo network can be regarded as a component and used as a
subcomponent in some higher level network. For further details, we refer to [4].

Constraint automata are used as an operational semantic model for the Reo
network, by providing constraint automata for the parts of the network and
employing appropriate compositional operations. Customized channels can thus
be easily created by providing their behavior as an automaton. As an example,
Fig. 2 shows a synchronous Reo filter channel and the corresponding constraint
automaton. The transition constraint requires that both ports A and B can only
be active simultaneously, that the data transferred at both of them is identical
and that it matches the filter condition. The channel will thus only pass messages
with the specified content and block otherwise. The behavioral interfaces of
components can similarly be specified as constraint automata.

In essence, constraint automata can be regarded as transition systems with
a special form of annotations specifying the enabledness of communication ac-
tions. The concepts of well-known temporal logics like LTL and CTL can thus
be adapted for constraint automata, augmented with special operators allowing
the formalization of the data flow via regular expressions over the I/O-activity
at the ports and nodes. In this paper, we present LTLIO formulas (denoted by
Φ) using the standard propositional logic operators as well as the standard op-
erators � (Globally), ♦ (Finally), X (next step) and W (weak until), referring to
state properties as well as the communication activity. For the formulas in the
branching-time logic BTSL (denoted by Ψ), we mainly use the ∃〈〈α〉〉true opera-
tor, denoting the existence of an execution prefix such that the communication
activity matches the regular expression α. For further details, we refer to [7,9].

As we pointed out earlier, the concepts used in the implementation must be
mapped to appropriate concepts in the Reo and constraint automaton frame-
work. For this purpose, the data domain for the messages in the model is struc-
tured in such a way as to capture the essential information present in the imple-
mentation, e.g. function parameters or return values. Threads, tasks and shared
variables are modeled as components with the appropriate connector glue as de-
tailed below, while the various queues in the ASK system are mapped to FIFO
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Fig. 3. Abstraction levels in the ASK model and components contained in the level

channels. More complex data structures, such as a hash table for mapping ad-
dresses are modeled as well by specifying their behavior as constraint automata.

3.2 Hierarchical Modeling

To adequately capture the implementation concepts of the system in the model,
we developed a hierarchical modeling method suitable for the modeling of ASK
and other systems which rely on similar implementation concepts. We have iden-
tified at least five appropriate hierarchical levels of abstraction for use within the
Reo network, as shown in Fig. 3.

Fig. 4. Reo network of the ASK Core (system level)
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At the highest level of abstraction, the Context Level, we model the system as
an entity interacting with its context – in our case, the ASK database and the
telephony IAX hub, which have been modeled as drivers for the behavior of the
system. At a lower level, the System Level, we model the system in isolation, as a
network consisting of several processes – the five components of the ASK core. An
even lower level, the Process Level, focuses on the organization within a process:
the Reo network connects threads and shared data structures (e.g., the task
queue). At the Thread Level, we zoom in onto a single thread within a process
– at this level control flow is purely sequential: the Reo network implements
low-level control statements like function calls, if-then and while-do, thereby
connecting C functions to each other. The lowest Function Level can be used
(even recursively) to zoom in onto lower levels within the function call tree. In
our model of the ASK core, at this level we only modeled the interface behavior
via constraint automata.

System level: ASK Core. We start the illustration of our approach with a Reo
network at the system level (see Fig. 4). At this level, the Reo network connects
the five components of the ASK Core shown earlier in an informal manner in
Fig. 1. The channels between the components represent UDP communication
channels in the real system. The network itself is wrapped into an ASK Core
component, with interface ports to the context-level components DB Driver (top)
and IAX Driver (bottom).

Process level: Scheduler. As a second step in our illustration, we zoom in
onto one of the system level components and consider it at the process level.
The purpose of the Scheduler process (Fig. 5) in the ASK system is to schedule
activities at certain times. In our model, we limit ourselves to the scheduling
of outbound calls. In addition, we abstract from the precise timing, i.e., the
outbound calls are scheduled in a non-deterministic fashion.

Interface. The interface of the Scheduler consists of a port OutboundCallRequest
Out for initiating a call, two ports DBIn and DBOut to communicate with the
database, as well as two ports for getting an update of the current happiness
value of the ASK system. As we explained earlier, the happiness value (either
“happy” or “sad”) is determined by the ResourceManager and reflects the level
of congestion of the resources necessary to place a call, e.g., the number of free
telephone lines, etc. The Scheduler requests an update of the happiness value at
a regular time interval via port HappinessRequestOut, with the response arriving
at port HappinessResponseIn. It should never initiate an outbound call if the
happiness value is “sad”.

Structure. The Scheduler is composed of several thread components: A single
control thread (SchedulerMain) and a pool of several worker threads (Scheduler-
Monks). Each SchedulerMonk consumes requests to carry out some task from
the task queue. While carrying out the task it may put request for the scheduling
of a job in the job queue and read or write the shared variable containing the last
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Fig. 5. Reo network for the Scheduler (process level)

known happiness value. Furthermore, it may communicate with the rest of the
ASK system via the interface ports of the Scheduler. The SchedulerMain thread
is responsible for initially filling the task queue and then transforming the re-
quests from the job queue into appropriate tasks. The Reo network is designed to
ensure that external responses reach the appropriate recipient and that attempts
of concurrent access are resolved appropriately. The number of SchedulerMonks
in the worker thread pool and the size of the queues are parametrized in the
model. While the SchedulerMain thread and the shared variable are modeled
directly by providing an appropriate automaton for their behavior, the Sched-
ulerMonks are again composed from subcomponents and a connector network.

Thread level: SchedulerMonk. We will now consider the SchedulerMonk
threads (Fig. 6) – the worker threads of the Scheduler – in more detail. They
remain idle until a request to carry out some task arrives via port TaskIn. The
request is routed via filter channels depending on the value of the requested task
to the appropriate task handler. The HostessTask continuously monitors the
HappinessResponseIn port and updates the stored happiness value in the Sched-
uler via port hOut. The GaugeHappinessTask is responsible for requesting an
update of the happiness value, the UpdateJobsTask is responsible for requesting
that jobs are periodically rescheduled and the JobWrapperTask is responsible
for initiating an outbound call. Apart from the HostessTask, which runs con-
tinuously and keeps the monk occupied, the other tasks perform their function,
may send new jobs to the job queue of the Scheduler to ensure future execution,
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Fig. 6. Reo network of a SchedulerMonk (thread level)

{Context} ∧
Data(Context) =
task(HandleRequestTask)

{HappinessRequestOut} ∧
Data(HappinessRequestOut) =
request(ProcessHappiness)

{HappinessJobOut} ∧
Data(HappinessJobOut) =
job(GaugeHappinessTask)

{Finished} ∧
Data(Finished) =
FINISHED SIGNAL

1 2

3

0

Fig. 7. Automaton for the GaugeHappinessTask (function level)

and then finish, freeing the monk to accept a new task. As an example for the
task components, which are modeled by constraint automata, consider Fig. 7.

4 Verification of the ASK Model

In the sequel, we detail the specification of the verification issues raised previ-
ously in Section 2, starting at the basic level of the coordination mechanisms.

The thread property. When one of the tasks is finished, it sends a token via
its Finished port to the attached FIFO buffer. These buffers are connected via
a synchronous drain channel ( ) to the TaskIn port and the router/filter
network responsible for delivering the task request to the appropriate task com-
ponent. This ensures that a new task can only be accepted if there is a to-
ken in one of the buffers, and that the token is consumed when the task is
accepted. The purpose of this coordination pattern is to ensure that inside a
SchedulerMonk at most one of the tasks can be active at the same time. Oth-
erwise, a single thread could exhibit concurrent execution, contradicting the
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fact that in the ASK system threads are the basic units of concurrent execu-
tion and thus the model would allow significant spurious behavior. By using
the observation that a task is active if the control location of the correspond-
ing automaton is not in the initial, idle state (e.g., see Fig. 7) where the task
waits for activation, we can specify the thread property as the LTLIO formula

ΦTP =
∧

t∈Tasks

�
(
“Task t is not idle” −→

∧

t′∈Tasks\{t}
“Task t′ is idle”

)

where Tasks denotes the set of the tasks. Formula ΦTP requires that, for all tasks,
whenever a task is not idle, i.e., active, all other tasks are idle, i.e., inactive.

To further analyze the coordination pattern used to ensure the thread prop-
erty and correct routing of tasks in more detail, the following formulas specify
that receipt of a new task message via port TaskIn may only happen if there
is a token in one of the buffers (ΦM1, LTLIO), that after a new task message
has been received the token was consumed and all buffers are empty (ΦM2,
LTLIO), that the correct task is activated (ΦM3, LTLIO) and that a task may
only send the finish signal when it has been previously activated (ΨM4, BTSL):

ΦM1 = � (“TaskIn active” −→ ¬“all buffers empty”)
ΦM2 = � (“TaskIn active” −→ X “all buffers empty”)

ΦM3 =
∧

t∈Tasks

�
(
“Data(TaskIn) = task(t)” −→ “Context of t is active”

)

ΨM4 =
∧

t∈Tasks

¬∃〈〈“Context of t inactive”∗; “Finished of t active”〉〉 true

Simplification of task coordination. As these properties can be shown to hold
for the SchedulerMonk, we can conclude that at most one of the three FIFO
channels storing the “finished” token is full at the same time (ΦB, LTLIO):

ΦB =
∧

b∈Buffers

�
(
“b is full” −→

∧

b′∈Buffers\{b}
“b′ is empty”

)

We can thus simplify the coordination pattern by replacing the three FIFO
channels by a single FIFO channel. We used the bisimulation checker of Vereofy
to show that the original and the simplified variant of the SchedulerMonk are
bisimulation equivalent for the behavior at the interface ports. This shows that
the refactoring of the coordination circuit was valid, giving the strong guarantee
that the same branching and linear-time properties – that don’t refer to internals
of the SchedulerMonk – hold for both variants. In the ASK model, we can thus
replace the original model of the SchedulerMonk by the refactored variant.

Happiness. As a further example, we now analyze the handling of the happiness
value. The Scheduler is supposed to refrain from requesting some outbound call
if the happiness value is “sad”. As the happiness value is determined by the
ResourceManager, the Scheduler regularly requests an update of the happiness
value. It is clear that there can be a race condition where the Scheduler bases
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its decision to initiate an outbound call on its most current information of the
value, while concurrently the value is changed in the ResourceManager. We thus
consider here only the aspect of the handling of the happiness value based on
the knowledge of the Scheduler. As the decision to initiate an outbound call is
made in one of the SchedulerMonk worker threads, we will first consider the
handling of the happiness value at the SchedulerMonk level. The desired be-
havior can be specified by the following properties: Before the SchedulerMonk
sends an OutboundCallRequestOut, it has previously read a happiness value via
port hIn and the received value was “happy” (ΨH1, BTSL) and that between two
OutboundCallRequestOut, the monk receives a fresh happiness value via port hIn
where the value was “happy” (ΦH2, LTLIO).

ΨH1 = ¬∃〈〈“hIn inactive∨Data(hIn)�=happy”∗;“OutboundCallRequestOut”〉〉true
ΦH2 = �

(
“OutboundCallRequestOut”

−→ X(¬“OutboundCallRequestOut” W “hIn and Data(hIn) = happy”)
)

Checking these formulas using Vereofy show that the SchedulerMonk behaves as
expected. One level above, at the Scheduler process level, we would like a similar
property to hold as well, i.e., that an OutboundCallRequestOut may only happen
if the last HappinessResponseIn contained a “happy” value, as formalized by the
BTSL formula ΨH3, where step signifies an arbitrary step in the system:

ΨH3 = ¬∃〈〈step∗;“HappinessResponseIn and Data(HappinessResponseIn=sad)”;
“¬ HappinessResponseIn”∗; “OutboundCallRequestOut”〉〉true

Trying to verify this formula with the model checker shows that this property
is violated for the Scheduler. An analysis of the produced counterexample trace
shows that it is possible that a SchedulerMonk determines that the currently
known happiness value is “happy” and commences with preparations to initiate
the outbound call, e.g., querying the database for further information, etc., be-
fore actually sending the OutboundCallRequestOut. During this time it is then
possible for a fresh HappinessResponseIn to arrive, now with the happiness value
being “sad” and the SchedulerMonk will go ahead with sending the Outbound-
CallRequestOut despite this new information. An examination of the implemen-
tation of the ASK system showed that such a race condition was indeed present
in the version of the system considered in this case study. This issue could be
dealt with by adding checks to ensure that the JobWrapperTask has up-to-date
information before requesting the call.

Liveness. Another aspect of interest are questions of liveness in the system model
at the different levels, i.e., that the system remains responsive. At the level of the
SchedulerMonk worker threads, the primary interest consists of verifying that
the processing of the assigned tasks is able to finish and the SchedulerMonk is
available again to process some new task – except in the case of being assigned
the HostessTask, which is by construction infinite and thus continuously occupies
the thread, formalized by the LTLIO formula ΦL1:
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ΦL1 = �
(
“TaskIn and Data(TaskIn) �= task(HostessTask)”
−→ X♦ “TaskIn is enabled”

)

When checking property ΦL1 for the SchedulerMonk component in isolation, i.e.,
with an unspecified environment, the model checker uses the mild assumption
that communication at the interface ports will not be continuously blocked by
the environment. The atomic proposition “TaskIn is enabled” then labels those
states where the reception of a new task is not blocked by the monk. Having veri-
fied the property above, we can thus conclude that the SchedulerMonk will indeed
finish processing its task, as long as the environment provides appropriate inter-
action at the interface ports, i.e., that the monk will not deadlock by itself. On
the Scheduler level, we need to use fairness assumptions to rule out pathological
cases, e.g., where only one of the monks is active all the time although the other
monks would be able to be active. Thus we require strong fairness for all the rele-
vant components of the Scheduler, i.e., for the Main thread and each of the Monks
it is required that if there is infinitely often the possibility of making a step, then
it infinitely often makes a step. In addition, we require a similar fairness for the
internal steps of the thread and job queues which are modeled by the concatena-
tion of multiple simple FIFO buffers, i.e., that a data value will eventually move
from the input end of the queue to the output end if possible. Using Vereofy, we
proved the realizability of the fairness assumption, i.e., that there are indeed exe-
cutions in the system that are fair. The analogous property to formula ΦL1 at the
SchedulerMonk level is then LTLIO formula ΦL2 at the Scheduler level:

ΦL2 =
∧

m∈Monks

�
(
“TaskIn of monk m and Data(TaskIn) �= task(HostessTask)”

−→ X♦ “Monk m is finished”
)

We continue analyzing the functionality of the Scheduler process. The Main
thread is expected to continuously process requests for jobs placed in the job
queue by the monks during the execution of some previous task, and transform
them into tasks and place them into the task queue. This can be formalized by
the LTLIO formula ΦL3, implying that there is a steady stream of tasks being
generated and – due to the finite size of the task queue – actually processed:

ΦL3 = �♦
(
“TaskOut of Main”

)

Furthermore, there should be a steady stream of outbound call requests if the
Scheduler gets a “happy” response and from then on there are no further “sad”
responses, formalized by the LTLIO formula ΦL4:

ΦL4 = ♦
(
“HappinessResponseIn”∧
�(“HappinessResponseIn” −→“Data(HappinessResponseIn) = happy”)

)

−→ �♦ “OutboundCallRequestOut”

4.1 Verification of the ASK Model Using Vereofy

In Vereofy the automata at the lowest level of the ASK model are specified in
CARML, while the components at the higher levels, consisting of subcomponents
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and a Reo network of channels connecting them, are generated by means of RSL
scripts1. As a guarded command language, CARML allows the concise specifica-
tion of the component behavior amenable to an efficient symbolic representation.
RSL scripts mainly provide a versatile way of instantiating subcomponents and
channels and join them together, as well as elegant mechanisms for generating
parametrized model variants which in some case are abstractions from the full
model. Overall, the ASK main model in its simplest version, where all parameters
have been set to small reasonable values, consists of 334 component instances
and channels (with 66 different types) from which 79 constitute the Scheduler,
38 the Matcher, 40 the Reception, and 141 the ResourceManager. The remaining
channels form the coordinating network.

The ASK model is – to our best knowledge – the largest and most complex
Reo network to date and thus provided a challenging test case for the Vereofy
model checker. Internally, Vereofy relies on a symbolic representation based on
binary decision diagrams (BDDs) of the automata for the components and the
network. The symbolic representation of the ASK model at full detail uses 393
boolean variables to encode the state space of the composite system. There
are 1018 distinct communication points in the model, i.e., interface ports or
Reo nodes, with the transferred data values at each point being encoded by
11 boolean variables (for 290 distinct message values). Vereofy employs well
known dynamic reordering techniques, as well as special heuristics for the Reo
framework to identify redundancies and gain a compact representation. The
number of reachable states of the processes which we could build in full detail
reaches a magnitude of up to 1010 states.

In the sequel, we present some statistics related to the modeling and verifi-
cation as presented in Sec. 3. The table below shows the size (number of BDD
nodes) of the internal representation for the components detailed in the previous
section, as well as the time spent to pre-compute a favorable variable ordering
for the boolean variables, which can then be reused to build the internal repre-
sentation in the time shown in the third column. Here, the Scheduler has been
built with two monks and in three variants where the capacity of the task queue
is either one, two, or three (tq1, tq2, and tq3). All computations were performed
on an AMD Athlon 64 X2 Dual Core Processor 5000+ (2.6 GHz) with 8GB of
RAM, running Ubuntu Linux.

Component BDD nodes Build time Reorder time

GaugeHappinessTask 59 < 1s -

SchedulerMonk 15319 < 1s -

SchedulerMonk (simplified) 8632 < 1s -

Scheduler (tq1) 71327 2, 7s 264s

Scheduler (tq2) 797846 7, 7s 647s

Scheduler (tq3) 3147036 10, 0s 2292s

1 The CARML/RSL code for the ASK model can be found at
http://wwwtcs.inf.tu-dresden.de/ALGI/ASK-FMICS2011.tgz
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For the verification of the ASK system model we made use of Vereofy’s model
checking engines for LTLIO and BTSL as well as the bisimulation checker [7]. All
properties presented in Sec. 3 could be shown to hold, except those where it was
already explained why they do not hold. The properties for the SchedulerMonk
could all be checked in less than one second, with the bisimulation check of
the equivalence with the simplified variant taking 16 seconds. The table below
summarizes the verification times for the considered Scheduler variants.

Property Verification (tq1) Verification (tq3) Verification (tq3)

ΨH3 0, 5s 7, 3s 7, 8s

realizability of fairness 5, 7s 324s 2713s

ΦL2 5, 3s 329s 2913s

ΦL3 2, 4s 200s 3034s

ΦL4 11, 0s 816s 3533s

We were able to identify and fix several implementation inefficiencies in Vere-
ofy and develop further optimization heuristics to be able to handle models of
this scope. As the full composition of all the layers of the model at the full level
of detail remained elusive, we have employed abstraction techniques such as au-
tomatic abstraction from concrete data values, the replacement of components
by ones with more generic behavior, to nevertheless be able to gain insights at
these levels that do not rely on the detailed behavior. Further improvements
of the techniques to cope with the state space explosion as well as support for
additional convenient automatic abstraction techniques remain as future work.

5 Conclusion

Our aim was to show that the exogenous modeling approach using coordina-
tion languages facilitates the hierarchical decomposition of complex systems into
manageable components at different layers of abstraction. In particular, the com-
munication and coordination aspects arising in distributed and complex systems
like ASK can be modeled in an explicit and intuitive manner. This separates co-
ordination from computation and enables the independent top-down refinement
of both the components and the coordination glue code. In this regard, the mod-
eling phase itself proved useful to gain insight into the parts of the ASK system
and their complex interactions. The modeling of the ASK system was supported
by the input formalisms of Vereofy allowing the comprehensive specification of
complex component behavior and the scripted composition of the Reo network
for comfortable parameterization and generation of model variants. Tool support
for verification provided by Vereofy then was crucial to gain further insights, both
in the form of exploration of the system behavior (random traces, visualization of
the communication, exploration of the model using counter-examples/witnesses
for temporal logic formulas) as well as for the comfortable specification and for-
mal verification of interesting properties, as exemplified in Section 4. Instead
of only allowing the verification of components by themselves and the coordi-
nation patterns in isolation, Vereofy offered an integrated verification approach
supported by the underlying common constraint automata framework.
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As a result of the insights gained in this case study, Almende has taken three
initiatives. Firstly, bugs in the ASK system have been eliminated based on the
outcomes of the verification. Secondly, the modeling approach presented in this
paper has been adopted for the hierarchical modeling of other critical parts of the
ASK system, primarily in order to gain further insight in potential refactorings
of the code leading to an improved modular structure. However, we certainly
expect to find more problems and other issues through the application of Vereofy.
Finally, ideas have been sketched at Almende to apply high-level Reo circuits as
coordination glue for lower-level modules, as soon as a better modular structure
has been achieved.
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Abstract. Over the years, researchers have investigated how to provide
better support for hospital administration, therapy and laboratory work-
flows. Among these efforts, as with any other safety critical system, reli-
ability of the workflows is a key issue. In this paper, we provide a method
to enhance the reliability of real world workflows by incorporating timed
compensable tasks into the workflows, and by using formal verification
methods (e.g., model checking). We extend our previous work [1] with the
notion of time by providing the formal semantics of Timed Compensable
WorkFlow nets (CWFT -nets). We extend the graphical modeling lan-
guage of Nova WorkFlow (a workflow management system currently un-
der development) to model CWFT -nets and enhance Nova WorkFlow ’s
automatic translator to translate a CWFT -net into DVE, the modeling
language of the distributed LTL model checker DiVinE. These enhance-
ments provide a method for rapid (re)design and verification of timed
compensable workflows. We present a real world case study for Seniors’
Care, developed through collaboration with the local health authority.

Keywords: Workflow System, Compensable Task, Time Constraint,
Distributed Model Checking, Health Services Delivery.

1 Introduction

Medical and health services delivery processes are complex and have many stages
that require collaboration and coordination among several professionals and de-
partments, which may leave the processes insufficiently defined. Medical errors
including miscommunication between clinical and other health care profession-
als, incorrect drug and other therapeutic administration, and miscalculated drug
doses are costly for the system, may adversely affect the patient, and may lead
to patient’s death. Workflow Management Systems (WfMS) can contribute to
the development of efficient and clearly defined health care processes. Reliability
of such safety critical processes is of vital inportance.

Model checking is an automatic formal verification method, which has great
potential for verifying models of complex and distributed business processes.
For the most part, tools for model checking can verify only the correctness of
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statements dealing with relative time, such as “Eventually the patient receives a
certain treatment”. However, to save the patient’s life, it should be verified that
the medical process satisfies “The patient receives a certain treatment within
half an hour” [2]. For such safety-critical applications, quantified time notions
including time instance and duration must be taken into account while model
checking.

Usually, a major part of a workflow definition defines “normal” behaviors in
response to anticipated events and/or results. An exception in the workflow is
an “abnormal” behavior. Exceptions in health services delivery workflows may
cover a wide variety of events, not limited to medical emergencies, depending on
the application context and workflow design decisions [3]. An effective recovery
mechanism for these exceptions in a workflow management system is crucial for
its success. Time constraints on the recovery mechanism of a workflow make the
model checking problem even more difficult. A compensable transaction is a type
of transaction whose effect can be semantically undone even after it has been
committed [4]. As an extended model of ACID (Atomic, Consistent, Isolated,
Durable) transactions, compensable transactions help support the “abnormal”
behaviors of workflows.

In this paper, we extend the semantics of Compensable Workflow nets, and
the components of the graphical Compensable Workflow Modeling Language [1]
with the notion of time. We also extend the automatic translators [1], [2] and
integrate it into Nova WorkFlow1 [5], a Workflow Management System currently
under development. Nova WorkFlow allows the user to graphically design a timed
compensable workflow, specify an LTL property for the model, and automatically
generate the DVE code of the model for verification by DiVinE. We show the
usefulness of our method with a real world case study.

The remainder of this paper is as follows: Section 2 presents some background
topics; Section 3 describes Timed Compensable Workflow nets, its underlying
formalism, and its graphical modeling components; Section 4 presents a verifica-
tion method for Timed Compensable Workflow nets; Section 5 describes a case
study, and Section 6 concludes the paper, discusses related work, and offers some
directions for future work.

2 Preliminaries

This section provides background information about workflows and their time
constraints, and compensable transactions.

2.1 Workflow and Time Constraints

For control purposes, a workflow may be viewed as an abstraction of the real
work under a chosen aspect that serves as a virtual representation of the actual
work. Therefore, a workflow is a collection of activities and the dependencies
among those activities. The activities correspond to individual tasks in a business
1 http://logic.stfx.ca/software/nova-workflow/Overview/
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process. Dependencies determine the execution sequence of the activities and the
data flow among these activities.

When we talk about activities (or tasks) and the dependencies among them,
time plays an important role. Several explicit time constraints have been iden-
tified for the time management of an activity [6]. Duration is the time span re-
quired to finish a task. Forced start time prohibits the execution of a task before
that certain time. Deadline is a time based scheduling constraint which requires
that a certain activity be completed by a certain time. A constraint, which forces
an activity to be executed only on a certain fixed date, is referred to as a fixed
date constraint. Delay is the time duration between two subsequent activities.
Besides these explicit time constraints, some time constraints follow implicitly
from the control dependencies and activity durations of a workflow model. They
arise from the fact that an activity can start only when its predecessor activi-
ties have finished. Such constraints are called structural time constraints since
they abide by the control structure of the workflow [6]. The concept of relative
constraint which limits the time distance (duration) between the starting and
ending instants of two non-consecutive workflow activities can be found in [7].
In this work, we consider both duration and delay constraints which together
are capable of modeling the timing aspects of almost any workflow [8]. Duration
and delay are expressed by integer values following the Gregorian calendar, i.e.,
year, month, week, day, hour, and minute.

2.2 Compensable Transaction

A compensable transaction refers to a transaction with the capability of with-
drawing its effect after its commitment, if an error occurs. A compensable trans-
action may be described by its external state. In [4] we find a finite set of eight
independent states, called transactional states, which can be used to describe the
external state of a transaction at any time. These transactional states (and their
abbreviation) are idle, active, aborted, failed, successful, undoing, compensated,
and half-compensated, where successful, aborted, failed, compensated, and half-
compensated are terminal states. Before activation, a compensable transaction
is in the idle state. Once activated, the transaction eventually moves to one of
the terminal states. A successful transaction has the option of moving to the
undoing state. If the transaction can successfully undo all its partial effects it
goes to the compensated state, otherwise it goes to the half-compensated state.

The transactional composition language, t-calculus, was proposed to describe
reliable systems composed of compensable transactions. In addition, it provides
flexibility and specialization, commonly required by business process manage-
ment systems, with several alternative flows to handle exceptional cases. The
syntax of t-calculus incorporates several operators to compose compensable
transactions: Sequential Composition (S ; T ), Parallel Composition (S || T ),
Internal Choice (S � T ), Speculative Choice (S ⊗ T ), Alternative Forward-
ing (S � T ), Backward Handling (S � T ), Forward Handling (S � T ), and
Programmable Composition (S � T ), where S and T represent arbitrary com-
pensable transactions [4].
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3 Modeling Timed Compensable Workflow with
CWFT -Nets

In this section, we extend the semantics of Compensable Workflow nets (CWF-
nets) [1] with the notion of time. We use a Petri net based formalism to provide a
sound mathematical foundation, and provide the graphical modeling components
of CWFT -nets.

3.1 Timed Compensable Workflow Nets (CWFT -Nets)

We start by defining CWF-nets and its elements based on [1] and [5] and grad-
ually build the semantics of CWFT -nets.

An atomic task is an indivisible unit of work. Atomic tasks can be either com-
pensable or uncompensable. Generally, if activated, an atomic uncompensable
task always succeeds [9], while an atomic compensable task either succeeds or
fails and is compensated. When a task executes, it performs some actions, and its
execution may depend on some conditions. The formal definition of pre-condition
and action are given below:

Definition 1. A term, σ, is defined using BNF as: σ ::= c | χ | σ ⊕ σ, where
⊕ ∈ {+,−,×,÷}, c is a natural number and χ is a (natural) variable.

A pre-condition is a formula, ψp, is defined as ψp ::= σ � σ | (ψp � ψp),
where � ∈ {<,≤, >,≥,==}, � ∈ {&&, ||} and σ is a term. An action, ψa, is an
assignment defined as ψa ::= v = σ; v is called a mapsTo variable and σ is a
term.

A compensable task can be composed with other compensable tasks using the
t-calculus operators.

Definition 2. A compensable task, Γc, is recursively defined using BNF as: Γc

::= τc | (Γc1 
 Γc2), where τc is an atomic compensable task, which has a set
of pre-conditions {ψp

i } and sets of actions {ψa} (forward) and {ψa′} (compen-
sation) associated to it, and 
 ∈ {;, ||, �, ⊗, � } is a t-calculus operator.

Note that, in this paper, we assume if activated, an atomic compensable task
τc either completes successfully or fully compensates. Therefore, the backward
handling operator (�), forward handling operator (�) and programmable com-
pensation operator (�) from [1] are omitted. Any task can be composed with
uncompensable and/or compensable tasks to create a new task. As above, a task
may be considered as a formula; subtasks correspond to subformulas.

Definition 3. A task, Γ , is recursively defined using BNF as: Γ ::= τ | Γc |
(Γ1 � Γ2) | (Γ1)+, where τ is an uncompensable atomic task, which has a set
of pre-conditions {ψp} and a set of actions {ψa} associated to it; Γc is a com-
pensable task; � ∈ {∧,∨,×, •} is a binary operator. + is an unary operator for
loops (iteration), and Γ+ denotes that Γ executes at least once if activated and
iterates as long as its pre-conditions are true.
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Any task which is built up from the operators {∧,∨,×, •} is deemed as un-
compensable. Thus if Γ1 and Γ2 are compensable tasks, then Γ1;Γ2 denotes
another compensable task while Γc1 • Γc2 denotes a task consisting of two dis-
tinct compensable subtasks. The control flow operators ∧,∨, and × as well as
the t-calculus operators ||,�,� and ⊗ are associative [5].

Definition 4. A Compensable Workflow net (CWF-net) is a tuple ( i, o, T, Tc,
F ) such that:

– i is the input condition and o is the output condition,
– T is a set consisting of atomic tasks, split tasks, and join tasks,
– Tc ⊆ T is a set consisting of the compensable tasks,
– F ⊆ ({i} × T ) ∪ (T × T) ∪ (T × {o}) is the flow relation (for the net).

The elements of a CWF-net (i.e., tasks, input condition, output condition and
flow relation) are called workflow components. It is convenient to represent a
large CWF-net using smaller CWF-nets, each representing a subnet. A place-
holder for the subnet is known as a composite task. The first compensable subtask
of a compensable task is called the initial subtask; the compensation flow from
the initial subtask is directed to an uncompensable task or to the output condi-
tion which follows the compensable task; every task in a workflow is on a directed
path from i to o.

We used a Petri net based formalism to define atomic tasks, split tasks, and
join tasks in [1] [5], where no time constraint is considered. There a CWF-net
could be represented by a Petri net. In this paper, we use a modified version of
time Petri nets (which we call Explicit Time Petri nets [10]). In Explicit Time
Petri nets, we abstract the time granularities of time Petri nets to range over
integers rather than real numbers, and use a hybrid semantics based on both
the weak time semantics and the strong time semantics of time Petri nets [11].

Definition 5. An Explicit Time Petri Net (ETPN) is a tuple, PM =
〈P, TP , F,M0,m〉 where: P, F, M0 denote a set of places, a set of arcs and
an initial marking, respectively (as in ordinary Petri nets); TP = Ts ∪ Tw =
{t1, t2, ..., tn} is a finite non-empty set of transitions, each of which is associ-
ated with a set of pre-conditions {ψp}, and a set of actions, {ψa}, Ts is a set
of strong transitions, and Tw is a set of weak transitions; m is a mapping for
time constraints, m: TP → D1 ×D2, where D1, D2 are sets of positive integers
representing delays and durations respectively.

An ETPN has one global clock to simulate the absolute time, now; delay and
duration of transition ti are simulated by a clock, local to the transition. The
local clocks of transitions are synchronized with the global clock.

A transition t is enabled iff ∀p ∈•t, M(p)≥1, where •t represents the set of
input places of t (similarly, t• represents the set of output places of t). Some
transitions may be enabled by a marking M , but not all of them may be allowed
to fire due to the firing constraints of transitions (delays and durations). A
transition t (with d1 ∈ D1 and d2 ∈ D2) enabled by marking M at absolute
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time nowenable cannot fire before the absolute time (nowenable + d1) and can
fire any time non-deterministically between (nowenable + d1) and (nowenable +
d1 + d2), unless disabled by the firing of some other transition. If transition ti
fires, it leads the system to another state, at any time between (nowenable +
d1) and (nowenable + d1 + d2) (inclusive). An enabled strong transition must
fire after (nowenable + d1 + d2) is elapsed, and an enabled weak transition will
become disabled after that time. As the global clock is explicitly storing the time
(as now), we are able to verify quantified properties involving time instances.

Definition 6. An atomic timed uncompensable task τ is a tuple (E, s) such that:

– E is an ETPN, as shown in Fig. 1 (left) where t1 is a strong transition,
which will ensure that the task will finish during its assigned duration (d2);

– s is a set of unit states {idle, active, successful}; the unit state idle indicates
that transition t1 in E is not yet enabled and the delay time (d1) has not
elapsed, the active state indicates that t1 is enabled and the delay has elapsed,
and the successful state indicates that t1 has fired and produced a token in
the place p suc.

Note that the unit states of a task are different from the state of an ETPN
where a state is determined by the marking (recall a marking is a function from
the set of places to the nonnegative integers) of its places and the global clock
time. Before we formalize the notion of atomic compensable task we note that
compensation duration (d3) refers to the maximum time required to compensate
a failed task plus the duration for the task.

[d1, d2]

t1

p suc
[d1, d3]

[0, d3]

p abt

t2

t3

p suc

[d1, d2]

t1

d1 = delay
d2 = duration
d3 = compensation duration

Fig. 1. Uncompensable (left) and compensable (right) atomic tasks in an ETPN

Definition 7. An atomic timed compensable task τc is a tuple (Ec, sc) such that:

– Ec is an ETPN as shown in Fig. 1 (right) where t1 is a weak transition, and
t2 and t3 are strong transitions; as a weak transition, t1 will ensure that the
task is compensated if it is not finished within its assigned duration;

– sc is a set of unit states {idle, active, successful, undoing, aborted}, where
• idle indicates that transitions t1, t2, and t3 are disabled, the delay time

of t1, and t2 have not elapsed and there is no token in p suc and p abt;
• active indicates that the transitions t1, t2 are enabled but their delay times

have not elapsed;
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• successful indicates that there is a token in place p suc and the delay
time has elapsed;

• undoing indicates that the transition t3 is enabled and the compensation
duration time has not elapsed;

• aborted indicates that there is a token in place p abt.

The task τc transits to the unit state active after getting a token in the
input place of transition t1. The token has to wait in the input place until d1

has expired to make the transition firable (a transition is firable, if it can fire).
Transition t1 has d2 time to get the work done and produce a token in p suc,
representing the unit state successful. If it fails to finish the work within d2,
the transition becomes disabled and transition t2 has to compensate the task
failure. Transition t2 has d3 − d2 time to compensate the task and produce a
token in p abt representing the unit state aborted ; d3 is always greater than d2.
Note that, both “firable” transitions can fire at any time within their assigned
time durations. The unit state aborted indicates an error occurred performing
the task or the assigned duration time for the task has elapsed and the effects
can be successfully removed. The compensation (backward) flow is started from
this point. Petri net representation of join tasks, split tasks, and compound tasks
can be found in [5].

Now we are ready to provide the formal definition of CWFT -nets.

Definition 8. A Timed Compensable Workflow net (CWFT -net) is a tuple
(CN , Tick ) such that:

– CN is a CWF-net with atomic timed compensable and uncompensable tasks,
– Tick is a global clock that simulates the absolute time now; an enabled Tick

may or may not increase the value of now by 1 (depending on whether or
not the time has elapsed). Tick is disabled iff there exists a transition t in
the CWFT -net which is firable and its duration time has already elapsed:
Formally, Tick is disabled iff, ∃t(firable(t) = true and (now− (enabled(t)+
delay(t))) ≥ duration(t)).

3.2 Graphical Representation of CWFT -Net

In [1] we described a graphical workflow modeling language, the Compensable
Workflow Modeling Language (CWML), with which one can model a workflow
with compensable tasks composed using t-calculus operators. Here we extend
this graphical language with time, calling it CWMLT . Fig. 2 shows the modeling
elements of CWMLT , where τ stands for a timed uncompensable task and τc
stands for a timed compensable task.

A workflow specification in CWMLT is a set of timed compensable workflow
nets (CWFT -nets) which form a hierarchical structure. Tasks are either timed
atomic compensable tasks, timed atomic uncompensable tasks, or composite
tasks. Each composite task refers to a unique CWFT -net at a lower level in the
hierarchy.
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Fig. 2. Modeling Elements of CWMLT

Construction Principle: Construction principles for the graphical repre-
sentation of tasks are as follows:

– The operators [•, ; ] are used to compose the operand tasks sequentially.
Atomic timed uncompensable tasks and atomic timed compensable tasks
are connected by a single forward flow. Atomic timed compensable tasks are
connected by a forward flow if they are composed using (•) and by both
a forward flow and a compensation flow if they are composed using the
sequential operator (; );

– A pair of split and join routing tasks are used for tasks composed by {∧, ∨,
×, ||, �, ⊗, �}. Atomic timed uncompensable tasks are connected with split
and join tasks by a single forward flow. Atomic timed compensable tasks are
connected with split and join tasks by two flows (forward and compensation);

– For those operators that are associative, an n-fold composition (e.g., (τ1 ∧
τ2) ∧ τ3) is represented using the appropriate n-fold split and join (e.g., τ1
∧ τ2 ∧ τ3).

CWMLT is a block-structured language and hence the soundness is preserved
by construction (soundness of a workflow requires that upon input of a token
in the input condition, the underlying Petri net eventually terminates and at
the moment it terminates, there is a token in the output condition and all other
places are empty). The use of structured vs. unstructured workflow is debatable;
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usually unstructured workflow languages are more expressive, but soundness is
not preserved by construction. Among some popular workflow management sys-
tems, YAWL [12] uses workflow patterns for workflow modeling and its language
is unstructured, while ADEPT2 [13] uses a block-structured language, and BPEL
uses an unstructured language.

4 Verification of CWFT -Nets

Once a workflow is modeled using a CWFT -net, the underlying ETPN is trans-
lated into the DVE model specification by an automatic translator. Combining
an LTL property with the DVE model specification, the DiVinE model checker
determines whether or not the property holds.

A model described in DVE consists of processes, message channels and vari-
ables. Each process, identified by a unique name, consists of a list of local vari-
able declarations, process state declarations, initial state declaration and a list of
transitions. A transition may contain a guard (which decides whether the tran-
sition can be executed) and effects (which assign new values to local or global
variables).

DiVinE is an un-timed model checker which generally cannot verify timed
systems. Lamport [14] advocated explicit-time description methods using a gen-
eral model construct, e.g., global integer variables or synchronization between
processes commonly found in standard un-timed model checkers, to realize timed
model checking. He presented an explicit-time description method using a clock-
ticking process (Tick) to simulate the passage of time; we are using this method
for our translation procedure.

Before we describe the translation procedure we define an ETPN representa-
tion in DVE, upon which we will perform the verification.

Definition 9. A DVET model is a 7-tuple, DM = (now, Proctick, Proc,
PT imer, V , T ′

P , S0) where:

– “now” is a variable which indicates the current time,
– Proctick is a clock process,
– Proc = {Proctick} ∪ {Proc1, P roc2, ..., P rocn} is a finite set of processes,
– PTimer = {PT imer1, PT imer2, ..., PT imern} is a finite set of variables,

where PT imeri is the timer of Proci,
– V ⊆ {now} ∪ PT imer ∪ {v1, v2, ..., vk} is a finite set of variables,
– T ′

P = {t′tick, t
′
1, ..., t

′
m} is a finite set of transitions, where each transition is

associated with a set of guards, G, and a set of effects, E,
– S0 : V → {0, 1, 2, 3, ...} is the initial assignment of the variables.

Translation Principle: The underlying ETPN model, PM = 〈P, TP , F,M0,m〉
of a CWFT -net is translated to a DVET model DM = (now, Proctick, Proc,
PT imer, V , T ′

P , S0) by the following rules:

i. for each place p ∈ P , there corresponds a variable vp in DM ; the initial
values of the variables are set with the initial marking M0 of PN, i.e.,
∀p∈PS0(vp) = M0(p);
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ii. for each transition tsi ∈ Ts, which is associated with a set of pre-conditions
{ψp

i } and a set of actions {ψa
i }, there corresponds a process Proci in DM ;

Proci has a transition t′i associated with a set of guards, Gi and a set of
effects, Ei; Gi and Ei are determined by the pre-conditions, actions, time
constraints and flow relations of tsi :
Gi = {ψp

i } ∪ {S(vp) ≥ 1 | p ∈ •tsi} ∪ {(now − PT imeri) ≥ delay(tsi )};
Ei = {ψa

i }∪{S(vp) = 1 | p ∈ ts•i } ∪ {PT imerk = now|(ts•i ∩• tsk) �= ∅, where
tsk ∈ Ts};

iii. for each transition twi ∈ Tw, which is associated with a set of pre-conditions
{ψp

i } and a set of actions {ψa
i }, there corresponds a process Proci in DM ;

Proci has a transition t′i associated with a set of guards, Gi and a set of
effects, Ei; Gi and Ei are determined by the pre-conditions, actions, time
constraints and flow relations of twi :
Gi = {ψp

i } ∪ {S(vp) ≥ 1 | p ∈ •twi } ∪ {(now − PT imeri) ≥ delay(twi ) ∧
(now − PT imeri) ≤ duration(twi )};
Ei = {ψa

i } ∪ {S(vp) = 1 | p ∈ tw•
i } ∪ {PT imerk = now|(tw•

i ∩• twk ) �= ∅,
where twk ∈ Tw};

iv. the tick process Proctick works as the Tick, defined in Definition 8;
v. a transition t′i in DM is firable if it satisfies its guard conditions. If t′i is firable

at state S, firable (t′i, S) is true, otherwise it is false; A firable transition may
or may not fire depending on whether or not the event actually takes place.

A proof similar to the one in [5] will show that for any LTL formula φ, PM � φ
iff DM � φ.

5 Case Study and Property Verification

In this section, we model a health care workflow using CWFT -nets and
verify properties of the model. We study an Acute Abdominal Pain Diagnosis
(AAPD) workflow, which we are developing with the local health authority, the
Guysborough Antigonish Strait Health Authority (GASHA).

AAPD Workflow: GASHA has established a Seniors’ Care program in re-
sponse to an aging population and ongoing pressures on the health services de-
livery system created by the increasing number of individuals in hospital medical
beds waiting for nursing home placement. The aim of the program is to create a
seamless, integrated continuum of care for the senior population that improves
accessibility to services across the district, provides timely intervention as needed
and keeps service at the community level. We are building workflow models for
each of the key sectors of GASHA’s Seniors’ Care program. A large number of se-
niors are admitted to the hospital emergency services with complaints of abdom-
inal pain. The AAPD workflow for seniors overlaps both the hospital emergency
department and the Seniors’ Care program. We show how timed compensable
workflow nets can help develop a verifiable health care workflow, in this case an
AAPD workflow.
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Fig. 3. An Acute Abdominal Pain Diagnosis Workflow for Seniors

In this workflow (see Fig. 3), designed using the graphical editor of
Nova WorkFlow, a patient with acute abdominal pain is transferred to the hos-
pital Emergency Department (ED) from a senior’ nursing home or other loca-
tion. According to the American Pain Society’s Guidelines for the treatment of
pain, each patient should receive individual optimal doses of pharmacological
pain relief, which can be administered by the pre-hospital ambulance care unit.
Proper assessment of an elderly patient after medication is required because of
an increased risk of cerebral and cardiovascular negative effects when an opi-
oid is administered [15]. After the patient has reached the ED, he is Triaged
(emergency assessment to prioritize a patient’s treatment) by a nurse. A pa-
tient should have an initial triage assessment within 10 minutes of arrival [16].
Thus we have assigned some duration to this task; if the task is not completed
within its assigned duration, the compensation flow should be activated and
raise some alert to handle the situation. According to the Canadian ED Triage
and Acuity Scale, five Triage levels are defined: Resuscitation, Emergent, Urgent,
Less Urgent, and Non Urgent. Depending on the Triage results, particular tasks
need to be performed within a certain time frame (from immediate to 120 min-
utes). A Triage includes a primary survey ABCD (Airway and Cervical Spine,
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Breathing, Circulation, and Disability (Neurological)) and a secondary survey
EFGH (Exposure/Environmental Control, Full set of vital signs, Give comfort
measures, and History and Head to toe assessment). After Triage, the physician
checks the patient’s medical history, performs a physical exam and requests a
series of lab exams (Complete Blood Count (CBC) with Differential and Liver
Function Test) and imaging exams (CT scans for upright and supine abdominal,
and upright chest) for the patient. The patient finishes the lab exams and waits
for the CT scan films. The CT scan can fail for different reasons and raise an
exception which can then be compensated (by a consultation with a physician)
using an alternative flow, performing an Ultrasound for upright and supine ab-
dominal, and upright chest. Finally the diagnosis workflow ends and the patient
is either admitted to the hospital or discharged from the ED. Often, CT scan
devices may not be available for a patient at a particular time as a hospital has
a limited number of CT devices. The hospital may decide to use an Ultrasound
instead of a CT scan when a CT scan is not available as a predefined compen-
sation in the workflow. We model this scenario using an Alternative Forwarding
(S � T ) composition; here S (for CT scan) will try to execute first and if it
fails then T (for Ultrasound) will execute as a compensation. The compensa-
tion may be done by different health services delivery professionals (e.g., nurse,
administrative staff, physician).

The time information used in this model is obtained from the guidelines for
nurses at GHASA. The entire Seniors’ Care program model is large; hence the
state explosion problem for the full model can be crucial. DiVinE exploits the
power of distributed computing facilities so that more memory is available to
accommodate the state space of the system model; parallel processing of the
states can, moreover, reduce the verification time [17]. We are using the dis-
tributed LTL model checker DiVinE for these reasons. We are using a discrete
clock to represent the passage of time, which might blow up the state space of
the models where the time units of delay, duration, and compensation duration
vary substantially. To address this issue we could incorporate the efficient EDM
[18], in which the clock may leap multiple time units in a tick. This would greatly
reduce the state space.

Property verification: Once we finish modeling the system, we need to iden-
tify the properties which must be true in the model. We verify the following
properties of the model:

1. If the initial assessment of a patient is not made within 10 minutes of reaching
the ED, the appropriate personnel should be alerted.
G ((initial triage assessment start ∧ initial triage assessment timer10m ∧ !
initial triage assessment completed ) − > F compensated)

2. An emergent patient should be assessed within 15 minutes.
G ((patient assessment result ∧ patient emergent) − > F (assess-
ment emerge- nt Patient ∧ assessment emergent patienttimer15m))

3. A patient should not be in the ED for more then 360 minutes.
G (start − > F (end ∧ now less then360) )
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4. A problem with a CT device should be compensated within 30 minutes using
an Ultrasound.
G (problem in ct − > F ( ultrasound completed ∧ ultrasound timed30m))

We define initial triage assessment timer10m as ed initial triage assessment-
timer <= 10, where 10 means ten minutes; the other propositions in the LTL
formula use variables available in the model. The experimental results show
that properties 1 and 3 hold in the model and properties 2 and 4 do not hold.
The counter example for property 2 shows that an emergent patient may not
be assessed within the assigned time and in this situation in the model this
task is compensated; the problem here is with property 2. The counter example
for property 4 helps us find an execution sequence for which both the CT and
Ultrasound do not occur in 30 minutes. In this case, both the execution sequences
failed. To avoid the problem we should modify the model to include another path
that will alert the appropriate personnel if both the execution sequences fail.

6 Related and Future Work

Health services delivery workflows are often complex and time sensitive. In or-
der to ensure a patient’s safety, health-related workflows should be verified and
mechanisms for exception handling must be incorporated before they go into
operation. Modeling a workflow with time constraints and compensation is not
easy with existing tools. In this paper we provided a new language for modeling
time-constrained workflows with compensation. We used t-calculus operators as
they are expressive enough to represent many compensation scenarios. Our tool
allows us to input a timed compensable workflow using a graphical editor and
automatically translate the model into the input language of the DiVinE model
checker; we can then verify LTL properties of the model. In our case study we
used our tool to model and verify a Seniors’ Care workflow. A timed compen-
sation workflow model like the one we provide here is well suited for medical
administrative workflows and laboratory workflows.

Over the years, researchers have investigated how to improve workflow systems
to model real world scenarios and how to increase the reliability of a workflow.
Acu et al. [19] extended the work on workflow nets by van der Aalst [12] using
compensations; their approach was similar to the concept of compensation em-
ployed in [20]. Li et al. [4] defined the behavioral characteristics of the transaction
calculus (t-calculus) operators focusing on compensable transactions. However,
these formal models of compensation [4], [19], [20] lack the notion of time. In
[21], the authors provided a formalism for timed workflow net based on Petri nets
and gave an analysis of their boundedness and liveness properties. Medical errors
(e.g., errors in a blood transfusion protocol and a chemotherapy process) were
detected by the authors [22] using a model checking approach applied to medical
processes defined by the Little-JIL graphical language. YAWL [12] comes with
limited forms of verification (e.g., livelock, deadlock, etc.) and an ADEPT2 [13]
workflow can be verified using SeaFlows [23]. The method in [21] and the tools
in [22], [12], [13] do not have any compensation mechanism. BPEL has been used
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in the industry for some time and there are many publicly available tools (e.g.,
WSEngineer [24]) to analyze a workflow designed in BPEL. While WSEngineer,
which is based on CSP, can verify temporal properties in workflows, it cannot
incorporate quantified time notion in its specification language. Timed automata
and time Petri nets are two popular formalisms for timed model checking due
to their simple graphical representations and sound mathematical formalisms.
While the timed automata based model checker UPPAAL can be used to verify
time-constrained compensable workflows, we favour the use of time Petri net
formalisms for the same reasons provided in [25]. It is possible to design and
verify a timed compensable workflow using time Petri net tools such as Romeo
and TINA. However, the required modeling effort and the state explosion prob-
lem often limit the applicability of these tools for real world workflow models.
Our graphical modeling language for timed compensable workflow significantly
reduces the effort required to design a large timed compensable workflow system;
use of DiVinE enables us to handle the huge memory requirement for complex
real world models.

An interdisciplinary team in the StFX Centre for Logic and Information2, con-
sisting of researchers and students in computer science and health related fields,
have been working closely with clinicians, administrators and other health care
providers to greatly refine the details of the process of care and include infor-
mation on time, access control and other process specific information. We are
also developing a monitoring mechanism that can be included into the workflow
model, and thus can facilitate the error handling during workflow execution.
All these efforts will lead to the development of next generation workflow pro-
cesses and information management systems which can enhance the potential of
Canada’s emerging electronic health record system and improve health services
delivery by providing automated decision support.
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