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Preface

The aim of this book is to present the basic facts of linear functional anal-
ysis related to applications to some fundamental aspects of mathematical
analysis.

If mathematics is supposed to show common general facts and struc-
tures of particular results, functional analysis does this while dealing with
classical problems, many of them related to ordinary and partial differential
equations, integral equations, harmonic analysis, function theory, and the
calculus of variations.

In functional analysis, individual functions satisfying specific equations
are replaced by classes of functions and transforms which are determined by
each particular problem. The objects of functional analysis are spaces and
operators acting between them which, after systematic studies intertwining
linear and topological or metric structures, appear to be behind classical
problems in a kind of cleaning process.

In order to make the scope of functional analysis clearer, I have chosen
to sacrifice generality for the sake of an easier understanding of its methods,
and to show how they clarify what is essential in analytical problems. I
have tried to avoid the introduction of cold abstractions and unnecessary
terminology in further developments and, when choosing the different topics,
I have included some applications that connect functional analysis with other
areas.

The text is based on a graduate course taught at the Universitat de
Barcelona, with some additions, mainly to make it more self-contained. The
material in the first chapters could be adapted as an introductory course
on functional analysis, aiming to present the role of duality in analysis, and

X1



xii Preface

also the spectral theory of compact linear operators in the context of Hilbert
and Banach spaces.

In this first part of the book, the mutual influence between functional
analysis and other areas of analysis is shown when studying duality, with
von Neumann’s proof of the Radon-Nikodym theorem based on the Riesz
representation theorem for the dual of a Hilbert space, followed by the rep-
resentations of the duals of the L? spaces and of C(K), in this case by means
of complex Borel measures.

The reader will also see how to deal with initial and boundary value
problems in ordinary linear differential equations via the use of integral
operators. Moreover examples are included that illustrate how functional
analytic methods are useful in the study of Fourier series.

In the second part, distributions provide a natural framework extend-
ing some fundamental operations in analysis. Convolution and the Fourier
transform are included as useful tools for dealing with partial differential
operators, with basic notions such as fundamental solutions and Green’s
functions.

Distributions are also appropriate for the introduction of Sobolev spaces,
which are very useful for the study of the solutions of partial differential
equations. A clear example is provided by the resolution of the Dirichlet
problem and the description of the eigenvalues of the Laplacian, in combi-
nation with Hilbert space techniques.

The last two chapters are essentially devoted to the spectral theory of
bounded and unbounded self-adjoint operators, which is presented by us-
ing the Gelfand transform for Banach algebras. This spectral theory is
illustrated with an introduction to the basic axioms of quantum mechanics,
which motivated many studies in the Hilbert space theory.

Some very short historical comments have been included, mainly by
means of footnotes. For a good overview of the evolution of functional
analysis, J. Dieudonné’s and A. F. Monna’s books, [10] and [31], are two
good references.

The limitation of space has forced us to leave out many other important
topics that could, and probably should, have been included. Among them
are the geometry of Banach spaces, a general theory of locally convex spaces
and structure theory of Fréchet spaces, functional calculus of nonnormal
operators, groups and semigroups of operators, invariant subspaces, index
theory, von Neumann algebras, and scattering theory. Fortunately, many
excellent texts dealing with these subjects are available and a few references
have been selected for further study.



Preface xiii

A small number of references have been gathered at the end of each
chapter to focus the reader’s attention on some appropriate items from a
general bibliographical list of 44 items.

Almost 240 exercises are gathered at the end of the chapters and form
an important part of the book. They are intended to help the reader to
develop techniques and working knowledge of functional analysis. These
exercises are highly nonuniform in difficulty. Some are very simple, to aid
in better understanding of the concepts employed, whereas others are fairly
challenging for the beginners. Hints and solutions are provided at the end
of the book.

The prerequisites are very standard. Although it is assumed that the
reader has some a priori knowledge of general topology, integral calculus with
Lebesgue measure, and elementary aspects of normed or Hilbert spaces, a
review of the basic aspects of these topics has been included in the first
chapters.

I turn finally to the pleasant task of thanking those who helped me
during the writing. Particular thanks are due to Javier Soria, who revised
most of the manuscript and proposed important corrections and suggestions.
I have also received valuable advice and criticism from Maria J. Carro and
Joaquim Ortega-Cerda. I have been very fortunate to have received their
assistance.

Joan Cerda
Universitat de Barcelona






Chapter 1

Introduction

The purpose of this introductory chapter is to fix some terminology that
will be used throughout the book and to review the results from general
topology and measure theory that will be needed later. It is intended as a
reference chapter that initially may be skipped.

1.1. Topological spaces

Recall that a metric or distance on a nonempty set X is a function
d: X x X —[0,00)

with the following properties:

1. d(z,y) =0 if and only if z = y,
2. d(z,y) = d(y,z) for all z,y € X, and
3. d(z,y) < d(z,2) + d(z,y) for all z,y,z € X (triangle inequality).
The set X equipped with the distance d is called a metric space. If
xz € X and r > 0, the open ball of X with center and radius r is the set
Bx(z,7) = {y € X; d(y,z) < r}, while Bx(z,7) = {y € X; d(y,z) < r}
denotes the corresponding closed ball.

Of course, a first example is the real n-dimensional Euclidean space, R",
with the Euclidean distance between two points z,y € R™ defined to be

d(z,y) = |z —y| =

l—‘I



2 1. Introduction

where, for z = (z!,...,2"),
n

ol = (@),

Jj=1

the Euclidean norm of z.

1.1.1. Topologies. Most continuity properties will be considered in the
context of a metric, but we also need to consider the more general setting
of topological spaces.

Recall that a nonempty set X is called a topological space if it is
endowed with a collection 7 of sets having the following properties:

1.0, XeT,
2. ABeT=ANBEeT,and
3. UnenAETIHACT.

The elements of 7 are called the open sets of the space, and 7 is called
the topology. The closed sets are the complements G¢ = X \ G of the
open sets G € T.

A subset of X which contains an open set containing a point z € X is
called a neighborhood of z in X. A collection U(z) of neighborhoods of
a point z is a neighborhood basis of z if every neighborhood V' of this
point contains some U(z) € U(z). Of course, the collection of all open sets
that contain z is a neighborhood basis of this point.

The interior of A C X is defined as the set Int A of all points = such
that A contains some neighborhood U(x) of z. It is the union of all open
sets contained in A, and A is an open set if and only if Int A = A.

The closure A of A is the set of all points x € X such that U(z)NA # 0
for every neighborhood U(z) of z. Obviously A is closed since, if z & A,
we can find an open neighborhood U(x) contained in A°, so that this set is
open. Moreover, A is contained in every closed set F' that contains A, since
F* is an open set whose points do not belong to the closure of A.

A sequence {z,} C X converges to a point x € X if every neighbor-
hood of z contains all but finitely many of the terms x,. Then we write
lim, 00 £, = T Or T, — T a8 N — 0O.

All the topological spaces we are interested in will be Hausdorff,! which
means that for two arbitrary distinct points x,y € X one can find disjoint
neighborhoods of z and y. This implies that every point {z} is a closed set,

INamed after the German mathematician Felix Hausdorff, one of the creators, in 1914, of
a modern point set topology, and of measure theory. He worked at the Universities of Leipzig,
Greifswald, and Bonn.



1.1. Topological spaces 3

since any other point has a neighborhood that does not meet {z}, and {z}°
is open.

Moreover, in a Hausdorff space, limits are unique. Indeed, if z, — z,
then for any neighborhood U(z) there exists N so that z,, € U(z) if n > N;
for any other point y we can find disjoint neighborhoods U(z) and U(y) of
z and y, and it is impossible that also z, € U(y) if n > Ny.

Let us gather together some elementary facts concerning topological
spaces:

(a) Suppose (X1, 71) and (X2, 72) are two topological spaces. A function
f: X1 — X5 is said to be continuous at z € X; if, for every neighborhood
V(y) of y = f(z) € Xa, there exists a neighborhood U(z) of = such that
f(U(z)) C V(y). Obviously, we may always assume that V(y) € V(y) and
U(z) € U(x) if U(z) and V(y) are neighborhood bases of = and y.

(b) If f: X; — X5 is continuous at every point z of X, f is said to be
continuous on X;. This happens if and only if, for every open set G C Xa,
the inverse image f~1(G) is an open set of X1, since f(U(z)) C V(y) C G
means that U(z) C f~1(G).

By taking complements, f is continuous if and only if the inverse images
of closed sets are also closed. Moreover, in this case, f(4) C f(A) for
any subset A of X since, if U(z) N A # 0 when U(z) € U(x), for every
U(f(z)) € U(f(x)) we may choose U(z) so that f(U(z)) C U(f(z)) and
then f(U(z)) N f(A) CU(f(z)) N f(A) #0.

(c) Suppose two topologies 71 and 7 are defined on X. Then 7; is said
to be finer than 73, or 73 is coarser than 77, if 7o C 71, which means that
every Tz-neighborhood is also a 7i-neighborhood, or that the identity map
I:(X,T1)— (X,7Tz) is continuous.

(d) If Y is a nonempty subset of the topological space X, then the
topology 7 of X induces a topology on Y by taking the sets GNY (G € T) as
the open sets in Y. With this new topology, we say that Y is a topological
subspace of X. The closed sets of Y are the sets F NY, with F' closed in
X.

(e) Many topologies encountered in this book can be defined by means of
a distance. The topology of a metric space? X is the family of all subsets
G with the property that every point z € G is the center of some open (or

2The name is due to F. Hausdorff (see footnote 1 in this chapter), but the concept of metric
spaces was introduced in his dissertation by the French mathematician Maurice Fréchet (1906).
See also footnote 2 in Chapter 3.



4 1. Introduction

closed) ball contained in G. It is not hard to verify that the collection of
these sets satisfies all the properties of a topology on X.

It is an easy exercise to check that open balls are open sets, closed balls
are closed, z, — z if and only if d(z,,z) — 0, and that, for a given point
z € X, the balls Bx(z,1/n) (n € N) form a countable neighborhood basis
of z.

It follows from the triangle inequality that Bx(z,7) N Bx(y,r) = 0 if
d(z,y) = 2r > 0 and the topology of the metric space is Hausdorff.

Suppose A is a subset of the metric space X. Since z € A if and only
if Bx(z,1/n) N A # ( for every n € N, by taking a, € Bx(z,1/n)N A, we
obtain that z € A if and only if z = lim, a,, i.e., d(z,a,) — 0, for some
sequence {a,} C A. That is, the closure is the “sequential closure”.

Similarly, a function f : X3 — X2 between two metric spaces is continu-
ous at z € X if and only if f(z) = lim,, f(z,) whenever z = lim,, z,, in X;.
Thus, f is continuous if it is “sequentially continuous” (see Exercise 1.9(a)).

But one should remember that knowledge of the converging sequences
does not characterize what a topology is or when a function is continuous
(cf. Exercise 1.9). A topological space is said to be metrizable when its
topology can be defined by means of a distance.

1.1.2. Compact spaces. A Hausdorff topological space (K, 7T) is said to
be compact if, for every family {G;};cs of open sets such that

K=|]G,,
j€J
a finite subfamily {Gj,,...,Gj,} can be chosen so that

K=Gj,U---UG;,.

By considering complements, compactness is equivalent to the property
that for a family of closed sets F; = G$ (j € J) such that every finite
subfamily has a nonempty intersection (it is said that the family has the
finite intersection property), ﬂje ; Fj is also nonempty.

A subset K of a Hausdorff topological space X is said to be compact if
it is a compact subspace of X or, equivalently, if every cover of K by open
subsets of X contains a finite subcover.

It is also a well-known fact that a metric space K is compact if and only
if it is sequentially compact; this meaning that every sequence {z,} C K
has a convergent subsequence.

In a metric space X it makes sense to consider a Cauchy sequence
{zk}, defined by the condition d(zp,z4) — 0 as p,q — oo; that is, to every
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€ > 0 there corresponds an integer N such that d(zp,z,) < & as soon as
p 2> Ne and ¢ > N,.

If {1} is convergent in the metric space, so that d(z,z) — 0 as k — oo,
then {z} is a Cauchy sequence, for d(zp,z) < d(2p, ) + d(zq,z) — 0 as
p,q — 0o. The metric space is called complete if every Cauchy sequence
in X converges to an element of X.

Every compact metric space K is complete, since the conditions z,, —
and d(zp, zq) — 0, combined with the triangle property, imply that z,, — .

In a metric space, a set which is covered by a finite number of balls with
an arbitrarily small radius is compact when the space is complete:

Theorem 1.1. Suppose A is a subset of a complete metric space M. If
for every € > 0 a finite number of balls with radius € cover A, then A is
compact.

Proof. Let us show that every sequence {an,} C A has a Cauchy subse-
quence.

Denote {ano} = {an}. Since a finite number of balls with radius 1/2™+1
covers A, there is a ball B(c,1/2) which contains a subsequence {an1} of
{an}. By induction, for every positive integer m, we obtain {anm+1} C
B(cm+1,1/2™*1) which is a subsequence of {an,m}, since a finite number of
balls with radius 1/2™*! cover A.

The “diagonal subsequence” {amm} is then a Cauchy subsequence of
{an}, since app € B(cm,1/2™) if p > m, so that d(app,aqq) < 2/2™ if
P, = m.

Finally, if {z,} is any sequence in X, by choosing a, € A so that
d(an,zn) < 1/n and a Cauchy subsequence {am, } of {a,}, which converges
to a point x € A, it is clear that also x,,, — x, since

d(zm,,z) < d(Tm,, am,,) + d(am,,z) = 0.

This shows that A is sequentially compact. O

In R™, a set is said to be bounded if it is contained in a ball and, by the
Heine-Borel theorem, every closed and bounded set is compact. This is
a typical fact of Euclidean spaces which is far from being true for a general
metric space, even if it is complete.

The following properties are easily proved:

(a) In a Hausdorff topological space X, if a subset K is compact, then
it is a closed subset of X.

(b) In a compact space, all closed subsets are compact.
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(¢) If f: X; — Xz is a continuous function between two Hausdorff
topological spaces and K a compact subset of Xi, then f(K) is a
compact subset of Xj.

Property (a) is proved by assuming that there is some point z € K \ K.
Then disjoint couples of open neighborhoods Uy(z) of z and V (y) of y for
every y € K may be taken; by compactness, K C U110V=1 V(yk) and U :=
ﬂ;}cv:l Uy, (z) would be a neighborhood of z disjoint with K, contrary to
z € K.

To prove (b), complete any open covering of the closed subset with the
complement of the subset, yielding an open covering of the whole space;
then use the compactness of the space to select a finite covering.

In (c), the preimage by f of an open covering of f(K) is an open covering
of K, and a finite subcovering of this covering of K yields a corresponding
finite subcovering for f(K).

Suppose (X}, 7;) is a family of topological spaces. The product topol-
ogy 7T on the product set X = ][;c; X; is defined as follows:

Let m; : X — X be the projection on the jth component and, for every
z = {z;}jes in X, let U(z) denote the collection of the sets of the type

Ue) = [ Ui(=) = () 77 (Us(=y))
jeJ jeJ
where Uj(z;) is an open neighborhood of z; and Uj(z;) = X; except for
a finite number of indices j € J. Then, by definition, G € T if, for every
z € G,z € U(z) C G for some U(z) € U(z). It is readily checked that T
is a topology, which is Hausdorff if every (X}, 7;) is a Hausdorff topological
space.

Obviously the projections 7; are all continuous, and 7 is the “small-
est” topology on X with this property, since for such a topology every set
TI'j_l(Uj(ile)) has to be a neighborhood of z.

Theorem 1.2 (Tychonoff®). If K; (5 € J) is a family of compact spaces,
then the product space K = Hje ;K 1s also compact.

Proof. Let F be a family of closed sets of K with the finite intersection
property and consider the collection ® of all families of this type that contain
F, ordered by inclusion. By Zorn’s lemma,? at least one of these families,

3Named after the Russian mathematician Andrey N. Tychonoff, who proved this theorem
first in 1930 for powers of [0, 1]. He originally published in German, but the English transliteration
Tichonov for his name is also commonly used. E. Cech proved the general case of the theorem in
1937.

4Zorn’s lemma on partially ordered sets will be invoked several times in this book. It is
equivalent to Zermelo’s axiom of choice in set theory. A binary relation < on a set X is said to
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F', is maximal, since, if {Fo} C @ is totally ordered, then |J, F, also has
the finite intersection property and is an upper bound for {F,}.

The closed sets 7;(F) C Kj, where F € F', also have the finite in-
tersection property and every space K; is compact. Hence we can find

z; € Npep m;(F) and, if Uj(z;) is a closed neighborhood of z; € Kj,
it follows that 7rj_1(Uj(:cj)) € F' since F' is maximal. It follows that

Nrer m(F) = {x;}.
Choosing Uj(z;) = K except for finitely many of the indices j € J, we

obtain

[1Ui(e) = 75 Ui(es) € 7

j€J jeJ
and [[;c; Uj(z;)NF # 0 for every f € F'. Then, if F' € F', every neighbor-
hood of z = {z;};cs intersects F', and = € F' since F is closed. This proves
that Nper F # 0. O

1.1.3. Partitions of unity. A locally compact space is a Hausdorff
topological space with the property that every point has a neighborhood
basis of compact sets.

We suppose that X is a metric locally compact space, for instance any
nonempty closed or open subset of R™, with the induced topology (see also
Exercise 1.5). In this section, we use the letter G to denote an open subset
of X, and we use K for a compact subset of X.

We will represent by C.(X) the set of all real or complex continuous
functions g on X whose support, supp g = {g # 0}, is a compact subset of
X. We consider C.(G) C C.(X) by defining g(z) = 0 when z ¢ G, for every
g € Cc(G).

Note that if K is a compact subset of G, we can consider K C Int L C L,
where L is a second compact subset of G, since, if for every z € K we select
a neighborhood V' (z) with compact closure V(z) C G, we only need to take
L=V(z1)U---UV(zy) if KCV(z1)U---UV(zy). Then

C
o(z) = 7 d(z, L) 3
(z,K) + d(z, L°)

defines a function g € C.(G) such that 0 < p <1 and g(z) = 1forall z € K.
We say that g is a continuous Urysohn function for the couple K C G.

be a partial order if the following properties are satisfied: (a) z < =, (b) if z X y and ¥y = 2,
then z X 2, and (c) if z < y and y X z, then z = y. A subset Y of the partially ordered set
X is said to be totally ordered if every pair x,y € Y satisfies either z X y or y <X z. According
to Zorn’s lemma, if every totally ordered subset Y of a nonempty partially ordered set X has an
upper bound zy € X (this meaning that y X zy for every y € Y'), then X contains at least one
maximal element (an element z such that z < z implies z = z).
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With the notation g < G we will mean that g € C.(G) and 0 < g < 1,
and K < g will mean that g € C.(G) and g = 1 on a neighborhood of K
and 0 < g < 1. Thus, there is a Urysohn function g such that K < g < G.

Theorem 1.3. Let {Q1,...,Qmn} be a finite family of open subsets of X
that cover the compact set K C X. Then there exists a system of functions
©; € Cc(Q) which satisfies

1.0< ¢; <1 forevery j=1,...,m and

2. YL pj(x) =1 for every z € K.
This system {p;}7L, is called a partition of unity subordinate to the cov-
ering {Q,...,0m} of K.

Proof. Let us choose a system K; C ; (1 < j < m) of compact sets that
covers K, that can be constructed as follows: if
K C Bx(azl,rl) Uu---u Bx(:I:N,TN)
with Bx (zi,7;) C £, just define
K;j = U{Bx(wiﬂ”i) N K; Bx(zi,1:) C Q;}.

For every j let g; be a Urysohn function for the couple K; C Q;. If we
define

pri=01,pp=1-01) (1-ok-1)oxr (1<k<m),
an induction argument shows that
o1+t =1-(1-0)1—02) - (1—ok)
if1<k<m. Ifz €K, gj(z) =1 for some j. O
Remark 1.4. If G is open in R", it is shown in Chapter 6 that the Urysohn

functions g; can be chosen to be C* (cf. Section 6.1). In this case, the
functions ¢; are also smooth.

1.2. Measure and integration

The Riemann integral on R", which may be historically grounded and useful
for numerical computation and sufficient in many areas of mathematics, is
far from being adequate for the requirements of functional analysis. Much
more appropriate is the Lebesgue integral, based on computing the measure
of level sets of functions.

We will summarize the Lebesgue construction for a general measure.

A measurable space is a nonempty set  where a distinguished col-
lection ¥ of subsets has been selected having the properties of a o-algebra,
meaning that the following axioms are satisfied:
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1. Qe .

2. If {Ax}32, is a sequence of sets in X, then (J72; A € Z.

3. If A € 3, then its complement A° = Q\ A is also in X.
These properties also imply that § = Q¢ € X, that (32, Ak € Tif {Ax}2, C
Y,and A\B=ANB¢e€ L if A,B € X. The sets in ¥ are the measurable
sets of the measurable space.

If Q is any nonempty set, a trivial example of o-algebra is the collection
P(Q) of all subsets of Q.

In our applications 2 can be assumed to be a locally compact metric
space, or an open or closed subset of R™, and it can be assumed that the
measurable sets are the Borel sets of (2, the elements of the Borel o-
algebra Bg, which is the intersection of all the o-algebras that contain all
the open sets of §2; that is, Bq is the o-algebra generated by the open sets
of Q.

A measure (sometimes also called a positive measure) 4 on the mea-
surable space (€2, X) is a mapping
p: X — [0,00]
such that (@) = 0 and with the following o-additivity property:
If {Ax}32, is a sequence of disjoint sets in X, then

p(lH Ax) =D uAg).
k=1 k=1

We use the symbol W to indicate a union of mutually disjoint sets.

A measure space is a measurable space (§2,%) with a distinguished
measure, p: 2 — [0, 00].
The following properties are easy consequences of the definitions:

e Finite additivity, u(A1 W+ W Ap) = p(A1) + -+ + u(Ap), since
the finite family can be completed with the addition of a sequence
of empty sets to obtain a countable disjoint family.

e u(A) < u(B) if A C B, since B= AU (B\ A) and u(B) =
w(A) + p(B\ A).

o If A,, 1 A (ie., A is the union of an increasing sequence of mea-
surable sets, Ap,), then pu(A) = limy, u(An), since A = A; W (A2 \
Al)LU(AQ,\(AzUAl))L'U"-.

o If A, | A (ie., A is the intersection of a decreasing sequence of
measurable sets) and p(A;) < oo, then pu(A) = limy, u(Arp), since
(A1) — p(A) = limp (u(A1) — w(Am)).
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All our measures will be o-finite: Q = (Jgo; Q with u(Q%) < oo.

A simple example in any set ) is the Dirac delta-measure, d,, located
at an arbitrary point p € 2, defined on any set A C Q by

dp(A) = xa(p)
where x4 stands for the characteristic function of the set A, such that

xa(z) = 1if x € A and xa(z) = 0 when = ¢ A. Here the o-algebra &
is taken to be all subsets of 2.

But the main example for us is the Lebesgue measure® |A| of Borel
sets of R™. The change of variables formula is supposed to be known and
it shows that this measure is invariant by rigid displacements, that is, by
translation, by rotation, and by symmetry. If A is an interval, |A| is the
volume of A (the length if n = 1, and the area if n = 2).

The Lebesgue measure is an example of Borel measure® on R™, that
is, a measure u on the Borel g-algebra which is finite on compact sets. It is
the only Borel measure on R™ which is invariant by translation, and such
that the measure of the unite cube [0, 1]" is 1.

We will see in Theorem 1.6 that every Borel measure on R™ is a regular
measure, meaning that the following two properties hold:

(a) Outer regularity: For every Borel set B,
w(B) = inf{u(G); G D B,G an open subset of R"}.

(b) Inner regularity: For every Borel set B,
w(B) =sup{u(K); K C B, K a compact subset of R"}.

Given two o-finite measure spaces, (Q1,%1,u1) and (Qg, X, y2), the
product o-algebra ¥ = 3¥; ® ¥y is defined to be the smallest o-algebra
containing all the sets A; x A2 (4; € ¥1, A2 € ¥3). It can be shown
that there is a unique measure g on ¥, the product measure, such that

#(Ar x Az) = p(Ar)p(A2).

In the special case of the Borel measures on R", it easy to show that
Brr ® Brm = Brn+m, and the product of the corresponding Lebesgue mea-
sures is the Lebesgue measure on the Borel sets in R*+™,

In measure theory only functions f : € — R such that every level set
{f>r}:={weQ f(w) >} (r € R) is measurable are admissible. They

5Described by the French mathematician Henry Lebesgue in his dissertation “Intégrale,
longueur, aire”, in 1902 at the University of Nancy. He then applied his integral to real anal-
ysis, with the study of Fourier series. In fact, this integral had been previously obtained by W.
H. Young.

6Named after the French mathematician Emile Borel, one of the pioneers of measure theory
and of modern probability theory.
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are called measurable functions and, with the usual operations, they form
a real vector space which is closed under pointwise limits, supremums and
infimums for sequences of measurable functions. Simple functions,

N
s= Z AmX Am (An €%, A\ €R),
m=1

where we may suppose that the measurable sets A,, are disjoint, are examples
of measurable functions. In fact, every measurable function, f, is a pointwise
limit of a sequence of simple functions s, such that

(1.1) |sn(z)| 1 |f(z)| for every z € Q.
To obtain this sequence, consider f = f* — f~ (f*(z) = max(f(z),0)) and,
if f >0, define

n2"

k-1
(12) 371:X{f2n}+;—2n X{%%‘I'Sf<zin}

If f is bounded, s, — f uniformly on Q as n — oo.

The Lebesgue integral [ f du (or [, f(x) dz) is then defined as follows:
If f>0,

N
(1.3) /fdu = supzaj,u(Aj) € [0, 00],
n=1

where the “sup” is extended over all simple functions
N
s= ZanAJ' (NeN, Aj =sa;) €X)
i=1

such that 0 < s < f.

This integral of nonnegative measurable functions is additive and pos-
itively homogeneous. Moreover [ fdu = 0 if and only if u({f # 0}) =0,
that is, f = 0 almost everywhere (a.e.), and it satisfies the following funda-
mental property:

Monotone convergence theorem. If 0 < f,(z) T f(z) Vz € Q (or a.e.),

then [ fodut [ fdp.

If the convergence is not monotone, the following inequality still holds:
Fatou lemma.” If f,(z) > 0 Vz € Q, then [liminf f, du < liminf [ f, dp.

7Obtained by the French mathematician Pierre Fatou (1906) in his dissertation, when working
on the boundary problem of a harmonic function. Fatou also studied iterative processes, and in
1917 he presented a theory of iteration similar to the results of G. Julia which initiated the theory
of complex dynamics.
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If f=f*— f, the integral [ fdu:= [ ftdu— [ f~ dp is defined if at
least one of the integrals [ f* dy is finite, and we write f € £!(u) if both
integrals are finite, that is, if [|f|du = [ftdu+ [ f~dp < oo. In this
case, f is said to be integrable or absolutely integrable.

Then, with the usual operations, £!(u) is a real vector space. On this
linear space, the integral is a positive linear form: [ fdu > 0if f > 0.
Hence, [ fdu < [gduif f <g,and | [ fdu| < [|f|dp.

Moreover, the following fundamental convergence result also holds:

Dominated convergence theorem. If f,(z) — f(z) Yz € Q (or a.e.) and
|fa(z)] < g(z) Vz € Q (or ae.), where g € L1(u), then [ fodu — [ fdu.

These convergence theorems, as well as the change of variable formula
and the Fubini-Tonelli theorem on iterated integration on R™ or on a product
measure space, will be freely used in this text.

For any measurable set A, we denote [, fdu := [ xafdu.

Lebesgue differentiation theorem. For the usual Lebesgue measure on
R™, if f € LY(R"), then
1

lim ———— — f(z)|dy =0 a.e. onR".
el INORNCIL”

When n =1, limyjg o 1 f(y) — f(z)|dy = 0 a.e. onR.

r—r
A function F on an interval [a,b] C R such that
T
(1.4) F(z) := / ft)dt+c
a

for some f € L1(R) and some constant c is called absolutely continuous.
Obviously, it is continuous, and it follows from the Lebesgue differentiation
theorem that F'(z) = f(z) a.e. on [a,b], since, assuming that f = 0 on
[a, 8],

_ T z+7
’F(:c:l:;)T F( )*f(x)’g%/m_r 1£(t) — f(z)|dy — 0 ae. as T | 0.

The integration by parts formula
b

b
/ F@)G(z) dz = (F()G(b) — F(a)G(a)) — / F()G(x) dz
holds if F and G are absolutely continuous.

To deal with a complex-valued function, just consider the decomposition
into real and imaginary parts, f = u+1iv : = C (u and v real measurable
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functions) and define

/fd,u:=/udu+i/'vdu

if u,v € L1(u) (that is, if [|f|dp < co). This integral is a linear form on
the class £!(u) of all these complex integrable functions, which is a complex
vector space, and also | [ fdu| < [|f|du.

In measure theory, two functions are equivalent when they coincide a.e.
If N(w) = {f; f =0 ae.}, we denote L*(u) := L1 (u)/N (1) and ||f||; :=
J |f]dp does not depend on the representative of f € L!(u).

If 1 < p < oo, we also define

1= ( | Ifl”du>1/p

I flloo := min{C > 0; |f(z)] < Ca.e.}.

Obviously, || f|l, = 0 if and only if f =0 a.e., and ||Af|l, = [M|||fl,- We
set 0-o00:=0.

and

The Minkowski inequality?®

If +gllp < 1Ifllp + llgllp
is clear if p = 1 or p = oo. In the remaining cases 1 < p < oo, it can be
obtained from Holder’s inequality®
p 1 1
du < / | = -+—=-=1
[ ltsldu <1l (= -2 or 242 =),

which follows from the convexity of the exponential function, which allows
us to set

ab = e%loga”+;1flogb”l < _1_eloga” + l/elogb”/ _ lap + le'_
p p p v
Then just take a = |f(z)|/||fllp, b = |9(z)|llg]lp and integrate.
For 1 < p < 00, the Minkowski inequality is now obtained from

|f +glP <IFIf+ 9P~ + gl f + 9P,

since then an application of Holder’s inequality gives

1/ 1/p
[ 1+ apan<isl, ( / |f+gl”du) 1l ( / |f+g|”du> ;

8Named after the Lithuanian-German mathematician Hermann Minkowski, who in 1896 used
geometrical methods in number theory, in his “geometry of numbers”. He used these geometrical
methods to deal also with problems in mathematical physics. Minkowski taught at the Universities
of Bonn, Gottingen, Konigsberg, and Ziirich.

9First found by the British mathematician Leonard James Rogers (1888) and independently
rediscovered by Otto Holder (1889).
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that is,

IF + glls < W Fllall + g2/ + lgllall £ + gl = (llfllp + lgllp)IIf + glZ™,

where p —p/p’ = 1.
We will write

(f9) = / fgdu
if the integral exists, and Holder’s inequality reads

K5 < N Flpllglle-

The collection of all real or complex measurable functions f such that
| fllp < oo, with the usual operations, is a real or complex vector space, and
the quotient space by M(u) is denoted LP(u). The value ||f||, is the same
for all the representatives f we may pick in an equivalence class, and || - ||,
has on LP(y) all the typical properties of a norm.!°

If p = oo, note that a representative of f is bounded and then in (1.2)
we obtain s,(z) — f(z) uniformly.

When p = 2, note that || f||2 = \/(f, f)2, where
(f,9)2 2=/ fgdu (/ fgdpin the real case)

is well-defined, and it is a scalar product that allows us to work with L?(u)
as with a Euclidean space. This will be the basic example of Hilbert spaces.

1.2.1. Borel measures on a locally compact space X and positive
linear forms on C.(X). Let X be a locally compact metric space.

If 14 is a Borel measure on X, then every g € Cc(X) is u-integrable, since
lg| < Cxk for K = suppg and compact sets have finite measure. Note
that, on Cc(X), the integral [ g du is linear and positive, that is, [ gdu >0
if g > 0. These linear forms are called Radon measures, first obtained in
1913 by J. Radon!! by considering Borel measures on a compact subset of
R™.

10The name LP for these spaces was coined by F. Riesz in honor of Lebesgue. See footnote 5
in this chapter.

1In France, N. Bourbaki chose as starting point of the integral the Radon measures on a
locally compact space X, a point of view previously considered by W. H. Young in 1911 and by
P. J. Daniel in 1918. It is worth noting that L. Schwartz constructed his distributions in the
same spirit, by changing the test space Cc(X). If every open subset of X is a countable union of
compact sets, then the Radon measures are in a bijective correspondence with the Borel measures
through the Riesz-Markov representation Theorem 1.5.
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Theorem 1.5 (Riesz-Markov representation theorem). Let J be a positive
linear form on C.(X). Then there exists a uniquely determined Borel mea-
sure it on X so that

(15) @)= [gdu (g€ cx)
and which satisfies the inner reqularity property for open sets
u(G) =sup{u(K); K C G, K compact}.
This Borel measure is also outer regular: p(B) = inf{u(G); G D B, G open}.

Proof. We start by defining p* on open sets by
w*(G) :==sup{J(9); g < G},
where we assume p*(0) = 0.
This set function has the following properties:

(a) p*(G1) < u*(G2) if G1 C Gy, since then C.(G1) C Co(Ga).

(b) p*(G1U G2) < u*(G1) + p*(G2), since, if K is the support of g <
(G1UGy), for j = 1,2 we can find ¢; € C.(G;) such that 0 <
¢j < 1and 370, pj(z) = 1 for every = € K, a partition of unity
constructed as in Theorem 1.3; thus g = gp1+9p2, J(g) = J(ge1)+
J(g9p2) < p*(G1) + p*(Ga), and (b) follows.

(€) p*(Upey Gr) < oz #*(Gk), since the support K of every g <
Urw; Gk is contained in some finite union UkN 1 Gk so that, by (b),

J(g) <u* (U Gg) < ZIJ (Gk) < ZIJ (Gk),

k=1 k=1
and (c) follows.
Now we extend p* and for every set A we define
w*(A) = inf{u*(G); G D A}.
This set function has the properties of an outer measure:
(a) (@) =0,

(b) u*(A) < u*(B) if A C B, so that it is an extension of u* previously
defined on open sets, and

(0) u*(Ug2y Ar) < T2, #*(Ar) (o-subadditivity).

To prove (c), take any € > 0 and pick Ay C Gg with p*(Gg) < p*(Ax) +
¢/2F. Now, by (b) and from the o-subadditivity on open sets,

UAk <,,L(UGk <Z,,L Gk)<zu (Ax) +¢,

k=1 k=1
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which yields (c) since € > 0 was arbitrary.

Let us say that a set F is measurable if it satisfies the Carathéodory
condition

p*(A) > p (ANE) + p*(A\ E)

and let 4 be the restriction of the outer measure p* to measurable sets.!?

It is a general fact in measure theory that the collection ¥ of all mea-
surable sets defined in this way is a o-algebra and the restriction p of u* to
Y is a measure. We need to show that any open set G is measurable, since
then ¥ will contain the Borel o-algebra By.

Thus, let us prove that G satisfies the Caratheodory condition when A
is also an open set, U. Let ¢ < U NG so that J(g) > p*(UNG) —e.
We have G® C (suppg)® and choose h < U \ suppg such that J(h) >
w*(U \ suppg) —e. Then
p*(U) 2 J(g+h) > p*(UNG)+up*(U\ supp g)—2¢ > pu*(UNG)+u(U\G)—2e,
which yields p*(U) > p*(U N G) + p*(U \ G) since € is arbitrary.

For any set A, if U is an open set with A C U, we have that

prU) 2 p(UNG) +p*(U\G) 2 u*(ANG) + p*(A\ G)

and the Caratheodory condition for G follows by taking the infimum over
these U D A.

With this construction we have built a Borel measure since, for any
compact set K, we are going to prove that

(1.6) w(K) = inf{J(g); K < g},
where the set on the right side is not empty.

Indeed, u(K) = infgox u(G) < J(g) whenever K < g, since K C {g >
1—¢e}if0<e<;forany h < {g>1—¢} we have h < g/(1 —¢) and
J(h) < J(9)/(1 —€), by the positivity of J, which yields

wK)<p({g>1-e})= sup J(h) <J(g)/(1-¢),
h=<{g>1—-¢}
and then we let € — 0.

To prove (1.6), let € > 0. Choose G O K such that u(K) > u(G) — ¢
and K < g < G. Then u(K) < J(g9) < u(G) < pu(K) + € and (1.6) follows.

By construction, u satisfies the announced regularity properties.

We still need to prove the representation identity (1.5), where we can

assume that 0 < g < 1, since every g € Cc(X) is a linear combination of
such functions.
12In his book “Vorlesungen ber reelle Funktionen” (1918), the Greek mathematician Con-

stantin Carathéodory chose outer measures as the starting point for the construction of measure
theory.
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Let Ko = suppg. We will decompose g as a sum of N functions obtained
by truncating g as follows. If 0 < j < N, let K; = {g > j/N} and define

. —1 1
gj = min (max {g - JT,O}, N)’
that is, g;(z) = 1/N if x € Kj, gj(x) = g(z) — (j —1)/N if z € K;_1 \ Kj,
and g;(z) = 0 otherwise. Then g = Z;\;l g; and the estimates

1 1

FHUG) < [ gdu < ulki)
and ) )

NHES) < J(g5) < u(Kj-1)

are readily checked. Then

1 1
~ ) K < /gdﬂ <5 > K1)
j=1 j=0
and
1 & ] N1
N LA < T(9) < 5 D w(Kj-),
so that

and J(g) = [ gdp.

To prove the uniqueness part, we only need to show that if x is a Borel
measure that satisfies the required regularity property, then it follows from
the representation property J(g) = [ gdu that u(G) = sup,.c J(9)-

Indeed, obviously J(9) < [ xcdu = p(G) if ¢ < G, and u(G) >
sup,<g J(g). Now, for every compact subset K C G we choose K < g < G.
Then p(K) < J(g) < u(G) and, by the inner regularity property, u(G) =
supgcq H(K). O
Theorem 1.6. If X is a locally compact subset of R™ (so that every open
set G C X is the union of an increasing sequence of compact sets), then
every Borel measure A on X is regular:

A(B) = inf X(G) sup A(K)

for every Borel set B.

Proof. We apply to Jx(g) := [ gdA the Riesz-Markov theorem, so that

JA(Q):/gd# (9 € Ce(X)).



18 1. Introduction

First we show that A\(G) = u(G) for every open set G by considering Ky, 1 G.
Then we can choose Ly, < gm < G with L; = K7 and

m m—1
L, = (U Kj) U ( U suppgj),

so that g, T x¢ and A\(G) = u(G) by monotone convergence.

We now study the outer regularity for any Borel set B.

Let B = Lﬂ;”;l Bj so that p(B;) < oo and, by the regularity properties of
i, we can choose Gj D Bj so that u(G;\B;) < £/27. Then G = U1G; D B
and u(G\ B) <e.

Similarly, there exists an open set U D B¢ such that (U \ B€) < ¢, and
then the closed set F' = U° satisfies F C B and u(B\ F) = u(U \ B®) <e.

Therefore A(G\F) = u(G\F) < 2¢, and it follows from A\(G) < A\(B)+2¢
that A is outer regular.

To show that X is also inner regular, consider K, 1 F, so that A\(K,,) —
A(F) > M(B) —e¢. d

1.2.2. Complex measures. A complex measure on the measurable
space (X,X) is a complex-valued set function g : ¥ — C which satisfies
the o-additivity condition

u( @ Bk) = iﬂ(Bk)-
k=1 k=1

We will say that p is a real measure if u(B) € R for all B € 3.

Note that actually the convergence in C of the series > po p(Byg) is
absolute, since the union of the sets By does not change with a permutation
of the subscripts k.

The total variation measure of the complex measure u is the set
function defined on X by

6l(B) :=sup { 3" |u(Bu); B = |4 By }.
k=1 k=1

In general, a complex measure is not a positive measure and, if it is a
positive measure, it is finite.

Theorem 1.7. The total variation |u| of the complex measure u is a finite
measure that satisfies

(1.7) lu(B)| < |ul(B)  (Be€X).

It is the smallest measure satisfying this property; that is, if A is another
measure such that |(B)| < A(B) for every B, then |u|(B) < \(B) VB € 3.
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Proof. The estimate (1.7) is obvious, since B = BUQU---UDPU---.
Moreover, if |(B)| < A(B), then A(B) > |u|(B), since, if B = gz ; By,

MB) =D A(Bk) = |n(By)l.
k=1

k=1

To show that |u| is o-additive, let B = 472 Bi and consider any other
partition B = |72, Aj, so that A; = W2;(A4; N By). Then

[e9) (e.0)
Do Iu(AI <D Iu(4; N BRI < ) lul(Be),
J=1 gk k=1
which implies |u|(B) < Y52, [ul(By).
To prove the opposite inequality, for B = [z ; By, let & < |u|(Bk) and
By = 4721 Bk, so that

> " |u(Brj)| > b

j=1
Then
o0
l(B) = Y |u(Brg)l =D b

.k k=1
and we obtain that |u|(B) > Yz, |u|(Bk)| by taking the supremum over
all the possible d.

Also |p|(0) = 0 and |y is a measure.

To show that |u|(X) < oo, suppose that |u|(B) = oo for some B €
¥. For every t > 0, we would find a partition B = |#z., Bg such that
Y pei |(Bg)| > t and then

N
(1.8) > lu(Br) >t
k=1

for some N.
We claim that there is an absolute constant ¢ > 1 such that

N
(1.9) S Iu(Bul < ¢ 3 u(By)]
k=1

jeJ

for some J C {1,..., N}, so that, for A = {J;c; Bx C B we obtain

N
t <y |u(Bx)l < clu(4)],
k=1
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and then |u(A)| > t/c. In (1.8) we choose ¢t > c, so that [u(A)| > 1 and
t
(BN A)| 2 |u(A)| = [(B)| > - — |u(B)| = 1

if t = c(1+ |u(B)]).
Now we have B = AW (B \ A) with |u(A)|, |w(B\ A)| > 1 and at least
|1 (A) or |u|(B\ A) equal to oo.

Suppose now that |u|(X) = co. Then we can successively split

X=AWB =A WAy WBy=---=A WA ¥ WAy WBy =---
with |1(A;)] > 1 and |p|(Bn) = oo for every j and N.

We should have in C

M( @ A]-) = i#(Aj),
j=1 j=1

but the series cannot converge, since 1 < |u(A4;)| /4 0, which yields a con-
tradiction. Therefore |u|(X) < oo.

To prove the claim (1.9), let 2z = (By) (1 <k < N)andr = N |2].
For at least one of the four quadrants of C, @, limited by |y| = |z|, we have
> zeq |26l > r/4. Denote J = {j; z; € Q} and choose a rotation with angle
¥ so that z; = €z is in the quadrant |y| < z. Then

1 1
Dl =122512 3 R 2 2= 15l > 5,
JjeJ jeJ jeJ \/i JjeJ 4\/§
which proves (1.9) with ¢ = 4v/2. O

If 1 is a real measure, then
T A |7 ey
l’l' * 2 ) ILL * 2
are two (positive) finite measures such that
p=pt—p”, |pl=p"+p

They are called the positive and negative variations of u, respectively.

Every complex measure p is a linear combination of four measures, since
© = Ru + iSu, where Ry and Sp are two real measures.

In Lemma 4.12 we will show that
(1.10) wB) = [ hdul  (Ben)

for a uniquely |u|-a.e. defined |u|-integrable function h such that |h| = 1,
so we will be allowed to define LP(u) = LP(|u|) and [ fdu = [ fhd|p| for

every f € L(u).
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Every complex Borel measure on R is a linear combination of finite
(positive) Borel measures, and such a measure, u, is the Lebesgue-Stieltjes
measure associated to the distribution function

F(t) = N((_Oo7t]);

which is increasing and right-continuous, so that p((a,b]) = F(b)— F(a) and
the Riemann-Stieltjes integrals of all Riemann-Stieltjes integrable functions
on [a, b] coincide with the Lebesgue integrals:

[ 1w ar) - [ f

Linear combinations of these integrals and measures are the correspond-
ing integrals with complex distribution functions and complex measures that
allow us to give the representation

| sware = [ fa

for complex measures p and, say, f € C.(R).

1.3. Exercises
Exercise 1.1. Prove that
d(r,s) = |arctan s — arctanr|

defines a distance on R whose topology is the usual one, but R is not
complete with this distance. This shows that two distances which are topo-
logically equivalent may not have the same Cauchy sequences.

Exercise 1.2. Prove that, in a metric space, every compact set is contained
in a ball.

Exercise 1.3. Prove that, in a metric space M, the closure of a subset
A is compact if and only if every sequence {ax} C A has a convergent
subsequence in M.

Exercise 1.4. Prove that every point of a compact space K has a neighbor-
hood basis of compact sets. That is, every compact space is locally compact.

Exercise 1.5. Prove that a nonempty subset X of R" is a locally compact
subspace if and only if it is the intersection of a closed and an open set, and
that every open set of X is the union of an increasing sequence of compact
sets.
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Exercise 1.6. Let I = [a,b] and K = I = [[,.; I endowed with the com-
pact product topology. Note that {f(¢)}:er € K means that f = {f(t)}ter
represents a function f : I — I and prove that

M :={f = {f(t)}ter € K; {z; f(z) # 0} is at most countable}
with the topology induced by K is sequentially compact but not compact.

Exercise 1.7. Suppose (Xj,7;) is a family of topological spaces and Y
is another topological space. Show that for the product topology 7 on
X = [lje; X, a mapping f : Y — X is continuous if and only if every
mjo f:Y — X; is continuous.

Exercise 1.8. Assume that 7 and 7" are two Hausdorff topologies on the
same set K and 7" is finer than 7. Prove that if (K, 7") is compact, then
T=T.

Exercise 1.9. Suppose that f : X — Y, where X and Y are two topological
spaces, and zg € X.

(a) If X is metrizable (or if 2o has a countable neighborhood basis),
prove that f is continuous at zg if and only if f is sequentially continuous
at zo.

(b) Let X be R endowed with the topology of all sets G C R such
that G° is countable, and let Y also be R but with the discrete topology
(all subsets of R are open sets). Show that Id : X — Y is a sequentially
continuous noncontinuous function.

Exercise 1.10. If f is a measurable function on a measurable space, show

that f( )
xr
sen f(@) = 5]

(with 0/0 := 0) defines another measurable function.

Exercise 1.11. If v is the counting measure on a set X, so that v(A) =n €
N or v(A) = oo for any set A C X, prove that f : X — R (or C) is in L(v)
if and only if N := {f # 0} is at most countable and ),y |f(k)| < co. In
this case, show that [ fdv =73,y f(k).

In this context one usually writes £1(X) or £! for L!(v).
Exercise 1.12. Compute the limits of
n n n n
/ (1 + f)nem dz, / (1 — E) e *dz, and / (1 - i)nem dz
0 n 0 n 0 2n
as n — 0o.

Exercise 1.13. Use the Fubini-Tonelli theorem to prove that the integral

I:=/ 1 —dzdy
©,12 |z =yl
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is finite if and only if & < 1, and then show that I = 2/(1 — @)(2 — ).
Exercise 1.14. If F : [a,b] — R is absolutely continuous, prove that F'
satisfies the following property:

If € > 0 is given, there is a § > 0 such that

D IF(by) - Flay)| < e
k

for every finite sequence {(ax, bx)} of nonoverlapping intervals contained in
[a,b] such that . (bx — ax) < 6.
The converse is also true: If the above property holds, then F has a
representation as in (1.4). See a proof in [37], [39], or [6].
Exercise 1.15. Let u be a Borel measure on R and define
F)=0, F(t)=u((0,t])ift>0, F(t)=—p((0])ift<D0.

Then F is an increasing right continuous function and u is the Lebesgue-
Stieltges measure associated to F' as a distribution function, that is,

p((a,b]) = F(b) — F(a).
Moreover, if f € Cla,b], [ fdu = f: f(t)dF(t), a Riemann-Stieltjes inte-
gral.

Exercise 1.16. If 4 is a complex measure, prove that limyg u(Bg) = p(B) if
either By 1 B or B | B.

Exercise 1.17. Show that, for any complex Borel measure p,
lul(B) = sup{l/ faul; 1f1 <1},
B

Exercise 1.18. Suppose that {\;} € £1(N) and that {ax} is a sequence in
R™. Prove that there is a uniquely determined Borel measure x4 on R™ such
that

/ gdu=> Mglar) (g €C(R™).
k=1

Show that Y52, [As| = sup{| [ gdul; g € Co(R™), |g| < 1} and |u|(F°) =0
if = {al, ag, .. }

References for further reading:

J. Cerda, Andlisis Real.

P. R. Halmos, Measure Theory.

L. Kantorovitch and G. Akilov, Analyse fonctionnelle.
J. L. Kelley, General Topology.
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A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions
and Functional Analysis.

H. L. Royden, Real Analysis.
W. Rudin, Real and Complex Analysis.



Chapter 2

Normed spaces and
operators

The objects in functional analysis are function spaces endowed with topolo-
gies that make the operations continuous as well as the operators between
them. This chapter is devoted to the most basic facts concerning Banach
spaces and bounded linear operators.

It can be useful for the reader to retain as a first model of function spaces
the linear space C(L) of all real continuous functions on a compact set L in
R"™ with the uniform convergence, defined by the condition

|f = fullz := r?eatxlf(t) - fn(t)l — 0.

Examples of operators on this space are the integral operators
Tfe) = [ K@) ) dy

where K(z,y) is continuous on L x L. Then T : C(L) — C(L) is linear and

I7f =Tl < max [ [K(@,)lIF0) = falw)] dy < MIF = Falz
z L

so that T satisfies the continuity condition | T'f —T fu|lr — 0 if ||f — fullz —
0.

Note that if L = [a, b, this space is infinite-dimensional, since it contains
the linearly independent functions 1, z, 2, etc. Two major differences with
respect to the usual finite-dimensional Euclidean spaces are that a linear
map between general Banach spaces is not necessarily continuous and that
the closed balls are not compact.

25
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We start this chapter with some basic definitions and, after the basic
examples of LP spaces and C(K), with the inclusion of the proof of the
Weierstrass and the Stone-Weierstrass theorems, we consider the space of
all bounded linear operators.

The use of Neumann series, which will appear again when studying the
invertible elements in a Banach algebra and the spectrum of unbounded op-
erators, in combination with Volterra integral operators gives an application
for the solution of initial value problems for linear ordinary differential equa-
tions. The introduction of Green’s function also allows us to solve boundary
value problems by Fredholm integral operators. These applications are de-
scribed in the last section.

The chapter includes a review of the most basic facts concerning orthog-
onality in a Hilbert space. Duality will be discussed in Chapter 4.

There is also a section on summability kernels that will be useful in later
developments. They are applied here to show the density of the trigonomet-
ric polynomials in LP(0,1) and to prove the Riemann-Lebesgue lemma.

The section devoted to the Riesz-Thorin interpolation theorem of linear
operators on LP spaces is optional. It will be used only in Chapter 7 to

include the nice proof of the LP-continuity of the Hilbert transform due to
M. Riesz.

2.1. Banach spaces

2.1.1. Topological vector spaces. In this book, a vector space will al-
ways be a linear space over the real field R or the complex field C. The
letter K will denote either of them, and K will be endowed with the usual
topology defined by the distance d(\, ) = |A\ — u|, where | - | represents the
absolute value. The collection of all the discs (intervals if K = R)

D(Xo,e) ={r € K; |A— Xo| < e} =X+ D(0,¢) (e>0)
is a neighborhood basis of the point A9 € K.
A vector topology T on a vector space E will be a Hausdorff topology
such that the vector operations
(z,y) e ExEw—z+ye€E, Mz)eKxEw— A AreE

are continuous when we endow E X E and K x F with the corresponding
product topologies. Then we say that F, or the couple (E,T), is a topo-
logical vector space.

On a topological vector space E, every translation 7, : ¢ € E — z+x0 €
E is continuous, since it is obtained by fixing a variable in the sum: If V(y)
is a neighborhood of y = z + zo, there is a neighborhood U(z) x U(zg) of
(x,z0) € E x E such that U(z)+U(zo) C V(y), and then 1., (U(z)) C V(y).
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Similarly, every multiplication x € E +— Aox € E by a given scalar )\ is
also continuous.

Since the inverse 7_z, of 7, is continuous, U is a neighborhood of 0 € E
if and only if U + zo is a neighborhood of zy. Thus, the topology of E
is translation-invariant: U is a neighborhood basis of 0 € E if and only if
U(zo) = {U + zo; U € U} is a neighborhood basis of o € E. We will say
that U is a local basis of E. An obvious example is the collection of all
open sets that contain 0.

A subspace of a topological vector space (F,7T) is a vector subspace
F with the topology that consists of all the sets GNF, G € T. Then F
becomes a topological vector space.

Recall that C C FE is convex if and only if 0 < ¢t < 1 implies tC +
1-¢t)Ccc.
Theorem 2.1. Let E be a topological vector space. Then:

(a) The closure F' of a vector subspace F of E is also a vector subspace.

(b) The closure C of a convex subset C of E is also convez.

Proof. To prove (a), suppose A, € K. If A # 0, multiplication by A and
by its inverse is continuous and we always have AF' = AF'. Then
M+ uF = F+uFCF+FCF,
since, if z,y € F, for every neighborhood z + y + U of z +y (when U is
in a local basis U), the continuity of the sum allows us to take V' € U so
that V +V C U. Hence, ifa € (x+V)NF and b € (y + V)N F, then
at+tbex+y+V+VCcax+y+Uandalsox+yekF.
To prove (b) consider z,y € C andlet a+f8 =1 (a, B > 0). Using the
same argument as in (a), az + By € C. O

Theorem 2.2. Suppose U and V are local bases of the topological vector
spaces E and F. A linear mapping T : E — F' is continuous if and only if,
for every VeV, T(U) CV for someU € U.

Proof. T(U) C V if and only if T(zo + U) C T(zo) + V. O

2.1.2. Normed and Banach spaces. Normed spaces are the simplest
and most useful topological vector spaces.

Recall that || - ||g : E — [0,00) is a norm on the vector space E if it
satisfies the following properties:
L ||lz|lg > 0if z #0,
2. triangle inequality: ||z + y||lg < ||zllg + [yl if 2,y in E, and
3. |Ixz|lg = |A|||z||g if z € E and X € K.
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A normed space is a vector space F endowed with a norm || - ||z defined
on it, with the topology associated to the distance dg(z,y) := ||y — z||&-

If E and F are two normed spaces, we endow FE x F with the product
norm

(2, )l xF := max(|lz]| 2, |yl r)

and its distance

d((z1,1), (z2,92)) = max(||lz1 — z2|| &, l|ly1 — v2llF),

which defines the product topology. A sequence (zn,yn) € E x F (n € N)
is convergent in the product space if and only if the component sequences
{zn} and {y,} are convergent in the corresponding factor space.

Of course, these facts extend in the obvious way to finite products.

Theorem 2.3. The topology of a normed space E is a vector topology, and
the norm || - ||g is a continuous real function on E.

Proof. The continuity of the vector operations follow from the inequalities

(1 +z2) — (1 —w)lle < lz1—ville+ 2 —w:2le
< 2max(dg(z1,91), de(Z2,¥2))

and
Azn — pzlle < |A = plllznllE + plllzn — 2| B

To show that the norm is also continuous, note that

(2.1) llzlle — lyllz| < llz - ylle
because ||zl|lz < ||z —ylle + [lyllz and |lylle < |z - yllz + ||zl 0

A topological vector space (F,Tg) is said to be normable if T is the
topology defined by some norm on E.

A normed space E is called a Banach space! if it is complete; that
is, whenever ||z, — z4||g — 0, we can find z € F so that ||z — ||z — 0.
Completeness is a fundamental property of many normed spaces. Some basic
theorems will apply only to complete spaces.

The calculus with numerical series is meaningful for vector-valued series
in a Banach space E. If ) o, |[zn||g < o0, then ) 2, z, is called abso-
lutely convergent and, as in the case of numerical series, every absolutely

1The term was introduced by M. Fréchet to honor Stephan Banach’s work around 1920,
culminating in his 1932 book “Théorie des Opérations Linéaires” [3], the first monograph on the
general theory of linear metric spaces.
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convergent series is convergent in E since, if sy = 271:;1 zn and p < g,

q (o]
”sq - Sp”E =l Z znllE < Z |lznlle =0 when p— oo,
n=p+1 n=p+1

and the limit z = imy_;00 SN = > o Tn exists in E.

We now present the most basic examples of Banach spaces. Many other
spaces of analysis are obtained from them.

Example 2.4. The real or complex Euclidean spaces K" are the first
examples of Banach spaces. They are finite-dimensional and their norm

(2.2) el = (Y 1z)Y? (@ = (a1,...,20))
j=1

is associated to the usual Euclidean scalar product z-y = Y 7_; zx¥k by the
relation |z| = \/z - z.

Example 2.5. On the vector space B(X) of all K-valued bounded functions
on a given nonempy set X, we consider the uniform norm, or “sup” norm,

Ifllx = sup |f(z)].
z€X

The convergence ||f — fn||x — 0 means that f,(z) — f(z) uniformly on X.
A special case is the sequence space {*° = B(N) (or B(Z)). In this
context one usually writes

"{3371}”00 = sup |zy|
n

for the sup norm.

These spaces are also complete.

Indeed, if {fn}» is a Cauchy sequence in B(X), it is uniformly Cauchy
and every {fn(z)}n is a Cauchy sequence in K, so that there exists f(z) =
lim f,(z). Then it follows from the uniform estimate

|fp(z) = fo(z) <€ (p,q=m0)
that
|fp(z) - fl@)| <e  (p=mo)
when q = 0. Thus, [If, — fllx < ¢, Ifllx < e+ Ifyllx < oo, and fu — f
uniformly on X.

Example 2.6. A subspace F of a normed space E will be a vector subspace
equipped with the restriction of the norm | - ||g. If E is a Banach space, F'
is complete if and only if it is closed in E, since every Cauchy sequence of
F is convergent in E and the limit is in F' when F' is closed.
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Let X be a topological space. We denote by Cp(X) the subspace of
B(X) of all K-valued bounded and continuous functions f on X. As a
closed subspace of the Banach space B(X), Cp(X) is also complete.

Note that every Cauchy sequence {gn} in Cp(X) is convergent in B(X)
to a function f, which belongs to Cy(X) as a uniform limit of continuous
functions.

Example 2.7. The product E = E! x .- x E" of a finite number of Banach
spaces with the product norm

1 n o I
I 5l = a1

is complete, since in F we have coordinatewise convergence.

Let m € N and suppose that €2 is a nonempty open set in R®. We
call C™(£)) the normed space of all C™ functions f on © such that every
derivative D f of order || < m admits a continuous and bounded extension
to Q. With the norm

[|fllem := max [[D*fl|g,
o <m
C™(f) is a Banach space.

The space C’_n(Q) can be seen as a closed subspace of the finite product
E =] aj<m Co(2) of Banach spaces by means of the injection

feC™) — {D*f}a<m € E.

Here, according to the simplifying notation introduced by H. Whitney,

for every a = (a1,...,a,) € N™, we denote
¥ =z 2 if x=(21,...,20)
and

D% =9M...50n,

where 0; = 0/0z; represents the partial derivative with respect to the jth
coordinate, and |a| = a1 + - - - + @, is the order of the differential operator
D*. With this notation, the n-dimensional Leibniz formula states that

D*(fg)=>_ (g) DPfDFg
BLa

and it is easily proved by induction (cf. Exercise 2.1). Here 8 < a means
Bi<ajforl<j<nand a—pf=(1—p1,...,an — Bn).
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Example 2.8. Let (Q2,X, 1) be a measure space and let 1 < p < co. Con-
sider LP(u) with the LP-norm

1= ( [ Iflpdu)l/p,

when 1 < p < o0 and ||f|leo := min{C > 0; |f(z)| < Ca.e.}, as in Sec-
tion 1.2. It will follow from the next theorem that this space is complete.

A similar example is /¥ = ¢P(N) or ¢P(Z), the space of all numerical
sequences z = {zx} (k € N or Z) such that

Izl = (3 Jzal?)” (supla| if p = oo)
k

with the usual operations.?

Theorem 2.9. Let 1 < p < oo and assume that all the functions fi are
measurable.

(a) Let fx(z) — f(z) everywhere and |fx| < g a.e. for some g € LP(u).
Then f — f in LP(u).

(®) If 521 1 fellp < oo, then Y _peq|fe(z)] < oo a.e., there exists a
function f € LP(u) such that f(z) = > poy fu(z) a.e., and f =3 72, fx in
LP(p).

(c) Every convergent sequence fi — f in LP(u) has a subsequence which
converges pointwise a.e. to f.

Proof. (a) Since also |f(z)| < g(z), |fx — fIP < (29)P € L (1) and | fi(z) —
f(z)|P — 0, and by dominated convergence, || fix — fllp — 0.

(b) Let M = Y2, ||fill, and put gn(z) == Ypy Ife(@)] 1T 9(2), so
that g%, 1 ¢P and [ g du < MP, by the triangle inequality. By monotone
convergence, also [ gPdy < MP and g(z) = SN |fe(z)] < 0o ae. The
sum f(z) := D pe; fr() is defined a.e., or everywhere by picking equivalent
representatives for the functions fr. Now we apply (a) to the partial sums
Z;?:l fj to obtain Zle fi = fin LP(p).

(c) Since || fm — frll = 0, we can select a subsequence {f,} such that

1
||fkm+1 - fkm” S 2—,"7
This subsequence is the sequence of partial sums of the series
foo + (Frp = fr) + (fos = foa) + -+ (fomaa = Fom) +

20n an arbitrary set J endowed with the counting measure, one usually writes £P(J) instead
of LP(J). A function f on J is in ¢P(J) (1 < p < oo) if and only if 3¢, |f ()P < oo. If
et If(4)IP < oo, then N := {j € J; f(j) # 0} is at most countable (cf. Exercise 1.11).

If J ={1,2,...,n}, £2(J) is the Euclidean space K™.
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which is absolutely convergent on LP(u), since Y > ;1/2™ < co. Now an
application of (b) gives fi,, — h in LP(1) and a.e. Obviously, h = f a.e. O

Corollary 2.10. LP(u) is a Banach space.

Proof. Assume first 1 < p < oo and let {fx} be a Cauchy sequence in
LP(u). As in the preceding proof of (c), there exists a subsequence {f, }
which is convergent to a function h € LP(u). By the triangle inequality, we
also obtain fx — h in LP(u).

In L*(p), if {fx} is a Cauchy sequence, the sets By := {z; |fi(z)| >
| felloo} and Bp,q := {z; | fp(x) — fo(®)| > ||fp — fqlloo} have measure 0, and
also p(B) = 0 if B is the union of all of them. Then we have limy, fx(z) =
f(z) uniformly on B¢ and limy fx = f in L®(u). a

Remark 2.11. In a Banach space, every absolutely convergent series is
convergent, and the converse is also true: If every absolutely convergent
series of a normed space F is convergent, then the space is complete. To
show this fact, just follow the proof of (¢) in Theorem 2.9 for a Cauchy
sequence {fx} C E; the terms fi, are the partial sums of the absolutely
convergent series

Fey + (Fry = fra) + (Fos = fra) + o+ (fomyr — Fom) + 0

which is convergent.

Corollary 2.12. Let (2,3, 1) be a measure space and 1 < p < oco. Then
every f € LP(p) is the limit in LP(u) of a sequence {s,} C LP(u) of simple
functions.

Proof. Just consider s, such that |s,(z)| 1 |f(z)| for every z €  asin (1.1)
and apply Theorem 2.9(a). a

Corollary 2.13. Suppose u is a Borel measure on a locally compact metric
space X and let 1 < p < co. Then every f € LP(u) is the limit in LP(u)
of a sequence {gx} C C.(X), meaning that every gy has a continuous with
compact support and that limy e, || f — gkllp = 0.

Proof. Since simple functions are dense in LP(u), we only need to approx-
imate every Borel set B with finite measure by functions in C.(X). By
regularity, we can find K C B C G such that u(G \ K) < &P and choose
K <g<G. Then

/IXB~9|”duS/ ldp < €P.
G\K
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A very important property of LP(R™) space is the continuity of transla-
tions:

Theorem 2.14. Assume that f € LP(R™) (1 < p < o0) and denote
(thf)(x) = f(x — h). Then the LP-valued function h € R™ s 7, f € LP(R")
is continuous; that is,

li — =0.
hl)n,gollThf Thofllp = 0

Proof. Since ||7hf — Tho fllp = |Th=ho f — fl|p» We can assume hg = 0.

Start first with g € C.(R™) supported by K and let K (1) = K + B(0,1).
If € > 0, by the uniform continuity of g, we can find § > 0 so that

17hg = glloo < €/IK (1) if |A] < 6.

Then it follows that |79 — g, < € if || < 4.

With Corollary 2.13 in hand, we choose g € C.(R™) so that ||f—g]|, <¢,
and then

Ihf = Fllp < lm(f = Dllp + 1709 = gllp + 1F = gllp < 3e.
a

Every normed space E has a completion, defined as a Banach space E
with an isometric linear embedding Jz : E — E with dense image J 5(E)
in E. A completion can be obtained either in the same way as R is defined
as the completion of Q or using duality, as in Theorem 4.25.

The completion is unique in the sense that, if Jp : E — F is a second
one, there exists a unique isomorphism ® : F — E such that ® o Jp :
E — E is the embedding J P E and ® is an isometry: For every
Cauchy sequence {z,} C E, the images {Jzz,} C E and {Jrz,} C F are
also Cauchy and convergent in E and F, respectively, and ®(lim,, J 5Tn) =
lim,, Jrz,, is the only possible definition of ®. It is clear that ® is an isometric
isomorphism.

It is customary to identify E with the subspace Jz(FE) of the completion

E.

2.1.3. The space C(K) and the Stone-Weierstrass theorem. By C(K)
we represent either the real or the complex Banach space of all real-valued or
complex-valued continuous functions on a compact topological space K, en-
dowed with the uniform norm. When confusion is possible, we write C(K; R)
or C(K; C), respectively.

Let A be a subalgebra of C(K); that is, A is a vector subspace of C(K)
and the product of two functions in A belongs to A.
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The closure of A is also a subalgebra of C(K), since it is a vector subspace
(cf. Theorem 2.1) and f, — f and gn, — g uniformly on K imply fngn — fg.
To prove this fact, just consider

”fg - fngn“K < fg— fgn”K + ”fgn - fngn”K
< N fllkllg = gnllx + llgnllxllf = fallx — O.

We say that A separates points of K if, given z # y in K, there is a
function g € A such that g(z) # g(y), and we say that A does not vanish
at any point of K if, given x € K, there is a function g € A such that

g9(z) #0.

Lemma 2.15. If a subalgebra A of C(K) separates points and does mot
vanish at any point of K, then the following interpolation property holds:

For any two different points x,y € K and two given numbers a and (3,
there is a function f € A such that f(z) = o and f(y) = B.

Proof. Let g, ks, hy € A such that g(z) # g(y), he(x) # 0, and hy(y) # 0.
Then
g = gh,y - g(m)hy, g2 = ghz - g(y)hz

belong to A and we define

o B
f= g2 + g1-
92(2)""  91(y)
This function also belongs to A and satisfies the required interpolation prop-
erty. O

If K is a compact subset of R, then the set P(K) of all real polynomial
functions on K is a subalgebra of C(K;R) that separates points since, if
a,b € K are two different points, at least a; # b; for one coordinate j
and then the corresponding monomial z; has different values on a and b.
Moreover 1 € P(K) and this subalgebra does not vanish at any point of K.

Theorem 2.19 will show that these facts will imply that P(K) is dense in

C(K;R), but let us first consider the special case K = [a, b] of one variable
and prove the classical Weierstrass theorem.?

3First proved in 1885 using the summability kernel W; of Exercise 2.27 by one of the fathers
of modern analysis, the German mathematician Karl Weierstrass, who taught at Gewerbeinstitut
in Berlin.
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We are going to present the constructive proof based on the Bernstein
polynomials? B, (f) associated to a continuous function f on [0, 1]:

n
— n AW n—k
Bof(z) := ; (k>f(n)a; (1—z)"*
For every n, the linear operator By, on C|0, 1] is positive; that is, B, f > 0 if
f >0, sothat B,f > Bpg if f > g and |B, f| < By|f|-

Theorem 2.16. Every continuous function f on [a,b] is the uniform limit
on [a,b] of a sequence of polynomials.

Proof. The linear change of variables £ = (b — a)t + a allows us to as-
sume [a,b] = [0,1], and we will prove that f € C[0,1] can be uniformly
approximated on [0, 1] by the Bernstein polynomials B, f.

It is clear that B,1 = 1 and we are going to show that, for I(z) = z and
I(z) = a?,

-1 1

Bl =1, B,I*= 12+I

and then B,I% — I? uniformly on [0, 1], since supy< <1 |Bnl?(z) — I*(z)| <
1/n.
Indeed, differentiating

(2.3) oy =3 (F)erst

k=0

with respect to z and multiplying by x, we obtain

nz(z +y)"~ Xn: ( > kyn—k,

k=1
which for y = 1 — z reads nz = Y p_; k(})z*(1 — )" % = nBz.
Also, differentiating (2.3) once again with respect to z and now multi-
pying by z?,

n(n—1)z?(z +y)" 2 Zk _1)( ) kyn—k

k=2

4The Russian mathematician Sergei N. Bernstein (1880 — 1968), who solved Hilbert’s nine-
teenth problem on the analytic solution of elliptic differential equations, found his constructive
proof of the Weierstrass theorem using probabilistic methods in 1912: He considered a random
variable X with a binomial distribution with parameters n and z, so that the expected value
E(X/n) is z, and he combined the use of the weak law of large numbers, which made it possible
to show that lim,, P(|f(X/n) — f(z)| > €) = 0 for every continuous function f on [0, 1], with the
remark that E(f(X/n)) is precisely the polynomial By f(z).
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Hence, for y =1 -z,

k=2
= nzi(ﬁ) z*(1 — )" —nz z*(1— )"k
n’ \k ’
k=2
or (n— 1):102 = nBpx® — Bz, which is equivalent to the identity announced

for Bpz2.
To prove the theorem, we may assume that |f| < 1 on [0, 1] and, since

f is uniformly continuous, for every € > 0 we can choose § > 0 so that
|f(z) — f(y)| < eif |z — y| <4, and then

F(@) = )| < e+ o =)

also when |z — y| > 6.

We look at y as a parameter and z as the variable. Then, from the
properties of By,

|Bnf — f(W)| = |Ba(f — f@WDI < Ba(lf — f¥)])
< Bn(e+ 6—22(30 —y)?) <e+ 532(371[2 — 2yl +9°).

Finally, if we evaluate these functions at y,

(Baf)W) — 1) < e+ 5(Bal?y — 1) — e

uniformly on y € [0,1] as n — co. Hence || Bnf — flljo,1) < 2€ as n > ny, for
some ng. O

Corollary 2.17. Cla,b] is separable; that is, it contains a countable dense
set.

Proof. Every g € Cla,b] is the uniform limit on [a,b] of a sequence of
polynomials, and every polynomial P(z) = Eszl axx® is the uniform limit
of a sequence Pp,(z) = E,Icvzl qk,mxk of polynomials with rational coefficients.
Just take Q 3 gi . — ax in R (gr;m € Q 4+ iQ in the complex case). Then
the collection of these polynomials with rational coefficients is dense and it
is countable. O

Exercise 2.9 extends Corollary 2.17 to C(K) if K is a compact metric
space.

A subset of a normed space is called total if its linear span is dense. With
the argument of Corollary 2.17, if a normed space contains a countable total
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set Z, it is separable, since the set of all linear combinations of elements in
Z with rational coefficients is dense.

Obviously the product of two separable normed spaces is also separable,
and it is readily seen that a subspace F' of a separable space E is also
separable.

Indeed, if Z is a countable dense subset of E, the collection of all the
balls Bg(z,1/m) with 2 € Z and m € N is countable and covers E. By
choosing a point from every nonempty set Bg(z,1/m) N F, we obtain a
countable subset A of F' which is dense in F since, for every y € F and
every m € N, there exists some z,, € Z such that ||z, — y||g < 1/2m and
some G, € A such that ||zm — am||g < 1/2m; then ||y — am|lg < 1/m.

Remark 2.18. The fact of being separable indicates that a normed space E
is somehow “not too large”. It cannot contain an uncountable set {Zq}aca
such that ||zq — zp||g > ¢ if @ # B, for some § > 0, since if {yn, }nen is dense
in E, for every a € A, [|Za — Yn(a)llE < §/2 for some n(a) € N, and the
mapping a € A — n(a) € N is injective.

Next we prove the extension of the Weierstrass Theorem 2.16, due in
1937 to M. H. Stone, which includes the proof of the density of the set of
all polynomials in C(K) when K is a compact subset of R™.

Theorem 2.19 (Stone-Weierstrass). Let K be a compact space. If a subal-
gebra A of C (K;R) separates points and does not vanish at any point of K,
then A = C(K;R).

Proof. Let f € C(K;R) and consider any positive number &£ > 0. We will
prove that ||f — g||x < € for some g € A in four steps.
(1) If f € A, then |f| € A.
Let a < 0 and b > 0 be such that f(K) C [a,b] and v(z) = |z| on [a,]].
According to the Weierstrass theorem, we can find Q, € Pla,b] so that
lim @ — vl = 0.

Since Qn(0) — v(0) = 0, the polynomials P, = Q, — Qr(0) are such that
Pn(0) = 0 and || P, — v||[q,5) — 0 as n — oco. Hence Py (z) = fcvz(?) axz¥, so

that P,(f) = a1f + asf?+ -+ anf" € A and
1Pn(f) = | flllx < |Pn—vllfap — 0.
(2) If f,g € A, then sup{f,g},inf{f,g} € A, since according to (1)

sup{,}(z) = max{ (@), g(a)} = LLEL = ¢
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and
inf{(f, 0} (@) 1= min{f(@), ()} = LTI W =dl e 5

(3) If z € K, we can find g, € A so that g,(z) = f(z) and g, < f +¢
on K.

According to Lemma, 2.15, for every y € K we can choose f, € A so that

fy(z) = f(z) and fy(y) = f(y).
By continuity, fy < f + € on a neighborhood U(y) of y and, since K is

compact,
K=U(y)U---UU(yn).

An application of (2) gives

gz = inf{fyla cee ,ny} S A,
and g;(z) = min{f(z),..., f(z)} = f(z). Forevery z € K, g(2) < fy,(2) <
f(z)+eif z€ U(y;). Thus, g < f +e.

(4) Finally, if we choose g, as in (3) for every z € K, then g, > f —¢
on a neighborhood V(z) of z and
K=V(z1)U---UV(zg).
It follows as in (3) that

g:=5sup{gzss-- -, 9z, } €A

satisfies ||g — f|lk < e, since gg1,..., 9z, < f+ € and every z € K belongs
to some V(z;), and g(2) > gz, (2) > f(2) +e. 0

There is also a complex form of the Stone-Weierstrass theorem:

Corollary 2.20. Let A be subalgebra of the Banach space C(K; C) of all
complex-valued continuous functions on a compact space K that separates
points and does not vanish at any point of K. If A is self-conjugate, that is
feAif f € A, then A =C(K;C).

Proof. Since A is self-conjugate, if f € A and v = Rf, then also u =
S(if) = (f+f)/2€ Aand
Ao :={Rf; f € A} ={Sf; f € A}.
is a subalgebra of C(K;R), since u = Rf and v = Rg € Ay imply uv =
R(fg+ £9)/2 € Ao.
Moreover A, separates points and does not vanish at any point, since
z,y € K and f(z) # f(y) for some f € A implies Rf(z) # Rf(y) or

Sf(z) # Sf(y), and Rf(z) # 0 or Sf(x) # 0 if f(z) # 0. Hence Ay is dense
in C(K;R) and, if f € C(K;C), we can find two sequences {u,} and {v,}
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in Ay that approximate Rf and f, so f, = up + v, € Ag +tA; C A and
fn — f uniformly on K. 0

2.2. Linear operators

2.2.1. Bounded linear operators.

Theorem 2.21. A linear mapping T : E — F between two normed spaces
is continuous if and only if

(2.4) ITz||r < Cllz|le

for some finite constant C > 0.

Proof. We know from Theorem 2.2 that T is continuous if and only if, for
every € > 0, we can choose § > 0 so that

T(BE(O, 5)) C BF(O, 6).

Hence, ||Tz||r < € if ||z|]|g < 6, or | Tz||r < C|z||g for any z € E, with
C=¢/s. O

If aset A C E is contained in a ball Bg(0, R), we say that A is bounded.

A continuous linear mapping T' between two normed spaces F and F is
also called a bounded linear operator, since condition (2.4) means that
|Tz||r < C when z € Bg(0,1) and T(Bg(0,1)) is bounded in F. That is,
T is bounded on the unit ball of E.

By denoting ||T| = supjg) ;<1 72| F, the smallest constant C in (2.4),
T is continuous if and only if ||T'|| is finite.

Example 2.22 (Fredholm operator®). If K : [a,b] x [¢,d] — C is a contin-
uous function and Tk f(z) = [, cd K(z,y)f(y) dy, then
Tk : Cle,d] — Cla,b]

is a bounded linear operator, since |Tx f(z)| < (d — ¢)|| K ”[c,d]x[a,b]” Fllie,aps
s0 that [|Tk fllia,5) < Cllf lljc,q) With C = (d = )| K |[c,d] x[a,8]-

5The Swedish mathematician Erik Ivar Fredholm, in 1900, created the first theory on linear
equations in infinite-dimensional spaces, establishing the modern theory of integral equations

1
@)+ /0 K@) f@dy=g(y) (0<z<1)

as the limiting case of linear systems

n
f@)+ ) K(@i,y)f) =9(y;) (1 <i<n),
=1
and found his “alternative”, which we will meet in Theorem 4.33. He based his fundamental
paper published in 1903 on the determinant named after him which is associated to the Fredholm
operators. His method was immediately followed by the work of Hilbert, Schmidt, Poincaré, F.
Riesz, and many others.
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Example 2.23 (Volterra operator®). Similarly, if K is a continuous function
on the triangle A := {(z,y) € [a,b] X [a,b];a <y <z < b} and

Tef@) = [ Ko)f)d,

then
Tk :Cla,b] — Cla, b]

is a bounded linear operator, and ||Tx|| < (b — a)||K||A-

Let T : E — F be a bijective linear mapping between two normed
spaces. We say that T is an isomorphism of normed spaces if and only
if T and T~! are continuous. By (2.4), the continuity of T and T~ means
that we can find two constants a, 8 > 0 that satisfy

allzlle < [Tzlr < Bzl e.

Two norms ||-||; and ||-||2 on a vector space E are said to be equivalent if
they define the same topology, that is, if the identity I : (E, ||-]l1) = (&, ||-|l2)
is an isomorphism, so that

(2.5) allzlls < llzflz < Bl

Example 2.24. On C[a, b], the usual norm || f||5,4 and ||f|l1 = f: |f(t)|dt
satisfy
Ifllr < (= @)l Fllja9

and we say that ||-||[,p is finer than I |l1, since I : (E,]||- lag)) — (E, |- I)
is continuous and the topology of || - [|[4,5 is finer than the one of || - ||;.

It is readily checked that, if | - | is the Euclidean norm (2.2), ||z||co :=
maxj_, ||, and ||z||1 == Z?=1 |;|, then

[zlleo < lz] < Vnllzlloos  l1lleo < Il < nll2]lco-
Next we will prove that, in fact, the norms on K™ are all equivalent.

Theorem 2.25. If E is a normed space of finite dimension n, then every
linear bijection T : K™ — E is an isomorphism.”

Thus, E is complete and, on E, two norms are always equivalent.

6 In 1896 the Italian mathematician and physicist Vito Volterra published papers on what is
now called “an integral equation of Volterra type”. His main contributions in the area of integral
and integro-differential equations is contained in his 1930 book “Theory of Functionals and of
Integral and Integro-Differential Equations”.

"This result holds for every topological vector space. The case n = 1 is included in Exer-
cise 4.5. The proof is by induction on n (cf. Berberian [4, (23.1)]).
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Proof. On K" we consider the Euclidean norm | - | and the norm ||z|| :=
|Tz||g. If z = 3_%_; z’uj, where {u1,...,un} is the canonical basis in K™,
then

n n
lzll <D la’lllusll < Clzl (O = llusl),
J=1 J=1

since |27| < |z|, so that || Tz||g < C|z|.

To prove the reverse estimate, we will use the fact that the unit Euclidean
sphere S = {z; || = 1} is compact and that the function f(z) := ||z is
continuous on S, since |f(z) — f(y)| < |lz — y|| £ C|z — y|. This function
has a minimum value ¢ = min f = ||zg|| > 0 for some z¢ € S, and then
llz/|z||| > c, so that |z| < ¢~z a

Every compact subset K of a normed space FE is closed, and it is bounded,
since K C (J°_, Be(0,m), so that K ¢ UN_, Bg(0,m) = Bg(0, N) for
some N > 0.

The converse is also true when F is a finite-dimensional space, since K
is then homeomorphic to a closed and bounded set of a Euclidean space K",
which is compact by the Heine-Borel theorem.

An important fact is that this property characterizes finite-dimensional
normed spaces; that is, if the unit ball Bg is compact, then dim F < oo.
The proof will be based on the existence of “nearly orthogonal elements”
to any closed subspace of a normed space.

Lemma 2.26 (F. Riesz). Suppose E is a normed space and M a closed
subspace, M # E, and let 0 < € < 1. Then there ezists u € E such that
lulle =1 and d(u, M) > 1 —¢.

Proof. Let ve E\ M, d=d(v,M) > 0 (M is closed), and choose mg € M
so that ||[v — mo|lg < d/(1 —€). The element u = (v — mo)/|lv — mollE
satisfies the required conditions, since, if m € M,
lw—mlle = llv—(mo + [lv —mollzm)||&/llv—molle 2 1 —e.
(]

Remark 2.27. If we have an increasing sequence of closed subspaces M,
of a normed space, then there exists a sequence {u,} such that u, € My,
|lunlle = 1, and d(unt1, M) > 1/2, so that {up} has no Cauchy subse-
quence, since ||up — uql|lg > 1/2 if p # q.

A similar remark holds for a decreasing sequence of closed subspaces.

Theorem 2.28. If the unit sphere Sg = {z € E; ||z||lg = 1} of a normed
space E is compact, then E is of finite dimension.
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Proof. Assume that F has a sequence {z,} of linearly independent ele-
ments. We can apply Remark 2.27 to the subspaces M,, = [z1,...,Zn],
which are closed since they are complete by Theorem 2.25. Then {u,} C Sk
has no convergent subsequence. ]

2.2.2. The space of bounded linear operators. With the usual vector
operations, the set L(E;F) of all bounded linear operators between two
normed spaces F and F is a vector space, and it becomes a normed space
with the operator norm
Tl := sup ||Tz||F,
Izl <1

since all the properties of a norm are satisfied:

1. If |T)| = 0, then ||Tz||r < ||T|||lz||z = 0 for all z € E and T' = 0,

2. |AT|| = supyg <1 Il F = |Alsup)gyz<1 1Tl = A T|, and

3. Ty + Ta)zllr < (IT2ll + I T2]) |zl 2 and then || Ty + T2l < [ T3l +

I T2

Moreover, the norm of the product ST of two bounded linear operators
T:E— FandS:F — G is submultiplicative,

(2.6) ST < ISTHITT,

since
18Tzllc < ISIHTzlF < ISIIT|||z| £-

Note that
IT||= sup [[Tz|r= sup |Tz|F,

lzlle<1 llzll e=1
since, if ||z||g < 1,
|7zl Fr = im(1 — )| Tz||Fr =Um ||T((1 - &)z)|r < sup |Tz|p
el0 el0

llzll g <1
and then ||T|| = supygz<1 [|T||7. Also, if 0 < |jz]|g <1,
ITzllF = [zl eIT(z/lzl|e)llr < sup ||Tz|F,

lzll =1
and ||T|| = supyg)g=1 T F-
Theorem 2.29. If F is a Banach space, then L(E; F) is also complete.

Proof. Let {T,,} be a Cauchy sequence in L(E;F). For every z € E,
{Tnz} is a Cauchy sequence in the complete space F', since ||Tpz — Tyz||F <
|Tp — Tylll|lz||e. We define Tz := limT,z and, by the continuity of the
vector operations, T' : E — F is linear. Moreover, for every € > 0 we can
find N > 0 so that

[Tpz — Tozllr < 1T, — Tollllzlz <& Vp,g2 N, V|z||lp <1
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and, by letting ¢ — oo, ||Tpz — Tz||[r < e. Therefore T € L(E;F) and
T, — T|| = 0 if ¢ = oo. O

In the special case F' = K, the Banach space of all bounded linear forms
FE' := L(E;K) with the norm

lull = sup |u(=)]
lellz<1

is called the dual space of E.

We will use the notation £L(F) for L(E; E). Every element of L(E) is
called a bounded linear operator on FE.

2.2.3. Neumann series. Let us consider the problem of solving the equa-
tion

Tu—Au=v (T e L(E),v EER),
where E is any Banach space and v € E and 0 # A € K are given.

We may obtain the inverse of T'—AI = —\(1—T'/)) using the Neumann
series®
o0
L™ Lom
D) =

similar to a numerical geometric series. If |T'||/|\| < 1,

le 1/AMT| < ZII /AT = Z(IITII/IAI 00,

n=0
and the Neumann series is convergent. It is shown that
a_ 1l
(2.7 @A ==35 T (T < ),
by checking that, if S is the sum of the series, S(T' — A\I) = (T — A\I)S = 1.
For instance, if Sy = — Zﬁ:o A~"1T™, 5 partial sum of the series, then
S(T — M) =limy Sy (T — /\I) by (2.6), and

Tn+1 TN +1

SN(T =) =~ el +Z T \N+I —1
n=0 n=0

when N 1 oo, since we have ||T"/A"|| < (||T||/|A])™

An interesting application refers to the example of the Volterra operators
defined in Example 2.23. If T and Ty are defined by the integral kernels

8The German mathematician Carl G. Neumann, who worked on the Dirichlet principle, used
this series in 1877 in the context of potential theory.
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K,H € C(A), then TxTy is also a Volterra operator T, defined by the
composition L of K with H,

Lo2) = | " K(e,y)H(y, 2) dy

since, assuming that K(z,y) = H(z,y) =0if y > =z,

b b b
TyTuf(z) = / K (,9)Ti f(v) dy = / K(z,y) / H(y, 2)f(2) dzdy

= [([ Kevawm)sed

and, if a < z < z < b, in the last integral we have Kj(z,y) = 0 or Ka(y,2) =
0 and then K(z,z) = 0. It is worth observing how this composition of
kernels of integral operators corresponds to the product of matrices of linear
mappings in linear algebra.

The continuity of

L) = [ " K(e,y)H(y, 2) dy

defined on A follows from the continuity of the restriction of K and H to
this triangle.

We can compose Tx n times with itself to obtain

131(5) = | Kalo,)f(w)d,
where K; = K and

b T
Kn(a:,y)z/ K(:c,z)Kn_l(z,y)dzz/ K(z,2)Kp-1(2,y) dz

y
when y <z and n > 2. If |K(z,y)| < M, by induction,

M
(n—1)!
since Kp41(z,y) = fm K(z,2)Kn(2,y)dz and, if y < z,

(2.8) |Kn(z,y)| < |z —y*

Mn 1 n+1
lKn+1(wy|</M ey e =

(z—y)™

Theorem 2.30. Let Tk : Cla,b] — C[a, b] be the Volterra operator defined
by the kernel K € C(A). Then, for any A # 0,

_ 1 T2
(2.9) (T = M)~ = —3 §0$ S
n=

and the series is absolutely convergent in L(C[a,b]).
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Proof. From (2.8),

n M"(b—a)"
IT%|l < (b —a)||Kn|l < W
and
MrMb—a)r 1

1 A nmgn <
which is the general term of a convergent numerical series.
The identity (2.9) is obtained as (2.7). O

In Theorem 2.48 and Exercise 2.20, the reader will find interesting appli-
cations of Theorem 2.30 to find the unique solution for the Cauchy problem
of a linear differential equation.

2.3. Hilbert spaces
Let us review some basic facts concerning Hilbert spaces.

2.3.1. Scalar products. A scalar product or inner product in a real
or complex vector space H is a K-valued function on H x H,

(z,y) e Hx Hw (z,y)g € K,
having the following properties:

(1) It is a sesquilinear form, meaning that, for every z € H, (-, z)g

is a linear form on H and (z,-)y is skewlinear, that is,

(=91 +y2)m = (z,9)m + (=, 92)0,  (2,29)r = M=, 9)H-

In the real case, K = R, (-,+)g is a bilinear form, since A = ).
(2) (y,2)g = WH, so that, if K =R, (-, )y is symmetric.
(3) (z,z)ug >0ifz #0.

By (1)a (w’O)H = (O, y)H =0.

Given this scalar product, the associated norm on H is
1/2
(2.10) lzlle = (2, 2)3".
Obviously || Az||lg = |A\|||lz||l# and ||z]|g > 0 if z # 0. The subadditivity
follows from the fundamental Schwarz inequality®

(2.11) |z, 9)a| < llzllzllylla

9 Also called the Cauchy-Bunyakovsky-Schwarz inequality; first published by the French math-
ematician Augustin Louis Cauchy for sums (1821), and for integrals stated by the Ukrainian
mathematician Viktor Bunyakovsky (1859) and rediscovered by Hermann A. Schwarz (1888), who
worked on function theory, differential geometry, and the calculus of variations in Halle, G6ttingen,
and Berlin.
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by considering ||z + y||%, = (z + ¥,z + ¥)u and the properties of the inner
product to obtain

lz+ylE = Izl + lylk + 2R 9)a < ll21F + lylk + 2, 9)=]

< el + ol + 2lzllzlyllz,

that is, [|lz + I} < (lzllz + llyll=)*

To prove the Schwarz inequality, which is obvious if y = 0, in

0 < [lz + Myll% = ll2llE + MPIylE + Mz, 9) + Ay, @)

we only need to choose A = —(z,y)u/||yl|% and then multiply by |ly||%.

It follows from the Schwarz inequality that the inner product is contin-
uous at any point (a,b) of H X H since

|(mn: yn)H - (aa b)HI = |($n - a, y’n)H + (a» Yn — b)Hl
< llzn —allallynllz + llallzllyn — bllz — 0

if (zn,yn) — (a,b) in H x H.

A Hilbert spacel? is a Banach space, H, whose norm is induced by an
inner product as in (2.10).

Remark 2.31. The completion H of the normed space H with a norm
defined by a scalar product as in (2.10) is a Hilbert space.

Ifz,9 € f{ with z, = = and y, = y (2n,yn € H), we obtain a scalar
product on H by defining

(3;’ y)f[ = nll)ngo(wn, y’n)H7
since ||zp|| &, ||ym||lz < C and, by the Schwarz inequality,

|(@n, Yn) i = (@m, Ym) H| < |20 = Zml| mllYmll 1 + [ 2ml| 2 ][Yyn — Yl er — O

as m,n — oo.

This definition does not depend on the sequences z, — z and y, — ¥
since, if also z), — x and y}, — y, then {(zn,yn)u} and {(z;,,y,)u} are
subsequences of a similar one obtained by mixing both of them.

Note that

1217 = lim |zn]lf = lim(zn, 2n)m = (7,4) -

10The name was coined in 1926 by Hilbert’s student J. von Neumann, who included the
condition of separability in the definition, when working on the mathematical foundation of quan-
tum mechanics. Hilbert used the name of infinite-dimensional Euclidean space when dealing with
integral equations, around 1909. It was another student of Hilbert, Erhard Schmidt, beginning his
1905 dissertation in Gottingen, who completed the theory of Hilbert spaces for £2 by introducing
the language of Euclidean geometry.
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Example 2.32. The Euclidean space K", with the norm
|(:131, e amn)l = \/Imll2 R |.’En|2

induced by the Euclidean inner product z-y = Y _; 2,7, is the simplest
Hilbert space.

Example 2.33. Another fundamental example is L?(u), with

112 = ( [ 197aw) "

induced by the scalar product (f,g)2 = [ fgdp.

Example 2.34. The space £2 of all sequences = {Zn}nen (OF {Zn}nez)

that satisfy
2
213 = l@nl* < 00
n
is the Hilbert space whose norm is induced by (z,y)2 = > _,, Zn¥n. It is the
L? space on N (or Z) with the counting measure.

2.3.2. Orthogonal projections. The elementary properties and termi-
nology of Euclidean spaces extend to any Hilbert space H:

It is said that a,b € H are orthogonal if (a,b)y = 0, and the orthogonal
space of a subset A of H is defined as

At = {z € H; (2,a)y = 0Va € A}.

It is a closed subspace of H, since, by the Schwarz inequality, every (-, a) g is
a continuous linear form on H and A+ = (,.4 Ker (-, a)n, an intersection
of closed subspaces.
For a finite number of points z1,...,z, that are pairwise orthogonal,

the relation

ey + -+ zally = lzallFy +- -+ leallh
is the Pythagorean theorem, and a useful formula is the parallelogram
identity

2

2llall + 2lI6lIE = lla+blI% + lla — b7
They follow immediately from the definition (2.10) of the norm. The par-
allelogram identity will be useful to prove the existence and uniqueness of
an optimal projection on a closed convex set for every point in a Hilbert
space:

Theorem 2.35 (Projection theorem). (a) Suppose C is a nonempty closed
and convex subset of the Hilbert space H and x any point in H. Then there
is a unique point Po(zx) in C that satisfies ||z — Po(z)||an = d(x, C), where
d(z,C) = infyec ||y — | &-
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A point y € C 1is this optimal projection Pc(z) of = if and only if
(2.12) R(c—y,z—y) <0 VeceC.

(b) If F is a closed subspace of the Hilbert space H, then H = F @ F+
(direct sum), and x = y+ 2z withy € F and z € F+ if and only if y = Pp(z)
and z = Pp.(z).

Moreover Pp is a bounded linear operator Pp : H — H with norm 1 (if
F27é {0}), Ker Pp = F1, Im Pp = F, (Pp(21),22) 5 = (21, Pr(z2))n, and
Pg = Pp.

Proof. (a) Let d = d(z,C) and choose y, € C so that d, = ||z — ya|| — d.

Since C'is convex, (yp+yq)/2 € C and, by an application of the parallelogram
identity to a = (z — yp)/2 and b = (z — y4)/2,

1 1 1 1

5+ d3) = llz = 5w + )l + v —vall% = & + Zllwp — vallf-
By letting p,q — 00, d? > d° + limy gs00 1119 — Ygll% and [lyp — yoll} — 0.
Since C is complete, y, — y € C and ||z — y||g = lim,, ||z — yu|lg = d.

The uniqueness of the minimizer y follows from the fact that if z is also a
minimizer, the foregoing argument shows that {y, z,, 2,v, 2, .. .} converges
and y = z.

To prove (2.12), suppose that c € C and 0 < t < 1. Then (1-¢t)y+tce C
by the convexity of C, and

lz = yl% < llz = (1 =)y — tellif = e —y = t{c — o)l
where
(2.13) llz —y — tle—v)IE = llz —yllE — 2tR(c — v,z — v)m + llc - vl
Hence 2R(c—y,z—y)g < t|lc—y||% and it follows that R(c—y,z— )y <0
by letting t — 0.
Conversely, if R(c —y,z —y)u# < 0 and in (2.13) we put t =1,

lz—ylE = lle—yl% =2R(c—y,z—y)u — lly —cll% < 0.

(b) Since F N F+ = {0}, it is sufficient to decompose every z € H into
z=1y+z withy € F and z € F*. We choose y = Pp(z) and z = 2 — y, so
that we need to prove that z € FX. Indeed, by (a) we have R(c—y,2z)g < 0
for any u = ¢ —y € F and also R(Au,2)g <0, so that (u,z)g = 0 for every
u=c—y€ FandzeFL

Let y; = Pp(z;) and 2; = z; —y; (j = 1,2). Since 2; € F,

(Pr(z1),22)m = (y1,%2 + 22)1 = (Y1 + 21, ¥2) 1 = (21, P(22)) 1

The linearity of Pr follows very easily from this identity, and it is also clear
that P2(z) = Pr(y) =y = Pp(z), Ker Pp = F1 and Im Pp = F.
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From ly + 2|l = Ilylif; + 1213 we obtain [|Pr(z)I} < llz]%, so that
1P|l < 1, since || Pr(y)lla = [lyllz if y € F. O

If F is a closed vector subspace of H, we call F1 the orthogonal com-
plement of F, and the optimal projection Pr is called the orthogonal
projection on F.

The projection theorem contains the fact that F+ # {0} if F # H. This
will be used to prove Theorem 4.1, the Riesz representation theorem for the
dual space of H.

Theorem 2.36. Let A be a subset of H. Then the closed linear span [A] of
A coincides with A+, so that A is total in H if and only if AL = {0}.

Thus, a vector subspace F of H is closed if and only if F-+ = F.

Proof It is clear that A+ = [A]* and, by continuity [A]* = [A] thus, if
= [A], we need to prove that F1L = F.

We have F' C F4L and, if ¢ F, it follows from Theorem 2.35 that we
can choose z € FL so that (z,2)g # 0; just take z = Pp.(z). This shows
that also z ¢ F1+,

Note that A is total when F' = E and, by Theorem 2.35, this happens
if and only if A+ = F+ = {0}. O

2.3.3. Orthonormal bases. A subset S of the Hilbert space H is called
an orthonormal system if the elements of S are mutually orthogonal and
they are all of norm 1.

Suppose F' = [ey, ..., en], where {e1,...,en} is a finite orthonormal set
in H. Then

n
Pp(z) =) (z,ex)mex
k=1
since 2 =z — Y p_; (%, ex)mex € FL. It follows from || Pr(z)||}; < ||lz[|3; that
n
@ en)ul < el
k=1

This estimate, which is known as Bessel’s inequality, is valid for any
orthonormal system S = {e;};e; just take the supremum over all the finite
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sums!!;

(2.14) Y @ en)ul® < izl
i€J
The numbers Z(j) := (x,e;)n are called the Fourier coefficients of =

with respect to S.

An orthonormal basis of H is a maximal orthonormal system, which
is also said to be complete. That is, the orthonormal system S = {e;};es is
an orthonormal basis if and only if

Z(j) = (z,ej) k=0 VjeJ=z=0,

which means that S+ = 0 and S is total.

By an application of Zorn’s lemma, it can be proved that every orthonor-
mal system can be extended to a maximal one.

In our examples, Hilbert spaces will be separable, so that an orthonormal
system S = {e;},cs is finite or countable, since ||e; —e;||g = V2 if i # j (cf.
Remark 2.18).

We will only consider the separable case and write £2 = ¢2(J) if J =

{1,2,...,N}, N, or Z, but the results extend easily to any Hilbert space.

By Bessel’s inequality x € H — 7 = {Z(j)} € £2 is a linear transform
such that 7 = {Z(j)} € £2 and ||Z||2 < ||z||z. When S is complete, this
mapping is clearly injective, since in this case Z(j) = 0 for all j € J implies
z = 0 by definition. Moreover, every & € H is recovered from its Fourier
coefficients by adding the Fourier series 3 _..;Z(j)e;:

Theorem 2.37 (Fischer-Riesz'2?). Suppose S = {e;};jes is an orthonormal
system of H. Then the following statements are equivalent:

(a) S is an orthonormal basis of H.
(b) z=23;c;%(j)e; in H for everyz € H.

(¢) llz|% = ||Z||2 for every z € H or, equivalently, (z,y)u = (%,7)2
for all z,y € H (Parseval’s relation).

Proof. Suppose J = N and let ¢ = {c;} € £2.

11 According to footnote 2 in this chapter, if f(j) = (z,e;) i, then

I£13 = S 1F DI =sup{ 3 1f (k)% F C J, F finite}

Jj€J keF

is the integral of | f|? relative to the counting measure on J, and f € £2(J) if || f||2 < oo.
12 Found independently in 1907 by the Hungarian mathematician Frigyes Riesz and the
Austrian mathematician Ernst Fischer.
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We claim that z := 3322, cje; exists and Z = c. Indeed, if Sy =
N
> j=1¢iej and p < g,

18-Sl = || 3 el = 3 lesl

p<j<q Pp<j<q
and we obtain the convergence of the series Z;il cje; to some z in H.
Moreover

Z(k) = (li]{,nSN,ek)H = liI{,n(SN,ek)H = cp,

since (Sn,ex)m =ci if N > k.
Now (b) follows from (a): By Bessel’s inequality Z = {Z(j)} € £? and, if
z=73221%(j)e;j, then Z = and z — z(j) for all j, so that z =y by (a).
From (b), ||lz||% = limy ||Sn|% = thZ —1 1Z(5)|? = ||z]l2. Then also
(z,y)m = (Z,7)2 by the polarization 1dent1ty

1
(2.15) (@ y)m = 7 (e + ylE = llz - yli%)
if K=R, and

1 , . : ,
(216)  (zv)m = ;(lz +ylk — llz — yllf +dillz +iyllf — illz — ivlE)

in the complex case. They are both checked by expanding the squared norms
as scalar products.

Finally, if = 0, from (c) we obtain z = 0 and (a) follows. O

Remark 2.38. We have proved that, when {e;} ;e is an orthonormal basis,
the linear map = € H — 7 € £2 is a bijective isometry, and that (b) defines
its inverse.

The identity (b) is the expansion of z in a Fourier series. The classical
best-known example is the following:

Example 2.39. In the Hilbert space L?(T) = L?(0,2w), where for conve-
nience we define the scalar product as

2
(f.0) =g [ FH)a@di= / 19,
0

the trigonometric system ey (t) := e*** (k € Z) is orthonormal. It is well
known that it is complete and a proof of this fact, known as the uniqueness
theorem for Fourier coefficients, follows from (2.27), where a construc-
tive proof of the density of the trigonometric polynomials is given. Another
proof based on the Stone-Weierstrass theorem is contained in Exercise 2.10.
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The corresponding Parseval relation'? is
1 27 0 o 1 2 it 2
= HRa= Y |5 -kt gl
5 [ ol g | s

2.4. Convolutions and summability kernels

We are going to consider examples of linear operators T between complex
L? spaces on o-finite measure spaces X and Y. The reader may assume
that X and Y are two Borel subsets of R™ and R™, respectively, with the
corresponding Lebesgue measures.

Assume that the domain D(T) of T contains all complex integrable
simple functions on X and that T takes values that are measurable functions
on Y. If there exists a constant M > 0 such that

ITfllg < Ml fll  (f € D(T) N LP(X)),

we say that T is of type (p,q) with constant M. As usual, we assume
1<p,g<oo.

If T is of type (p,q) and D(T) N LP(X) is a dense vector subspace of
LP(X), we keep the same notation T to represent the uniquely determined
continuous extension T : LP(X) — L4(Y) of this operator.

2.4.1. Integral operators. Let K(z,y) be an integral kernel, a complex-
valued measurable function on X x Y. The associated integral operator Tk
is defined by

Tif(e)i= | K@) ) dy
Theorem 2.40. (a) Under the condition
(2.17) / |K(z,y)|dy < C < oo a.e onX,
Y

Tk 1is well-defined on L and it is of type (00, 00) with constant C.
(b) If

(2.18) / |K(z,y)|dz < C a.e. onY,
X

then Tk is well-defined on L' (X) and it is of type (1,1) with constant C.

(c) If both requirements (2.17) and (2.18) are satisfied, then Tk 1is a
bounded linear operator on Ty : LP(X) — LP(Y) for every p € [1,00], and
1Tkl < C.

13 In 1806 Marc-Antoine Parseval published an identity for series as a self-evident fact, which
he later applied to the Fourier series.
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Proof. The first result follows from
74@)1 < [ 1K@ WIdy < 1o /Y K (2, )| dy

and from assumption (2.17).

Similarly, |Tfll1 < [x [y | K(z,9)]|f(y)|dydz < C||f]l1 in the second
case.

A direct proof of the remaining case (c) is left as an exercise (Exer-

cise 2.29). It will also be a trivial corollary of the Riesz-Thorin Theorem 2.45;
see Exercise 2.30. g

Convolution operators are special instances of integral operators.

Recall that the convolution f * g of two functions f and g on R™ is
defined by

(F+0)@)i= [ Flz=v)aty)dv

One has to be careful to make sure that this integral is meaningful a.e. and
that it defines a measurable function. In this case we say that f and g are
convolvable.

The convolution operator f* is the integral operator associated to the
integral kernel K(z,y) = f(z — y), which is measurable on R?" if f is
measurable on R". Indeed, if F(z,y) = f(y), then K = FoT is measurable
on R?" and T(z,y) = (z + ¥,z — y) is a homeomorphism of R?",

The following properties for convolvable functions are readily obtained
from the definition:

(a) fxg=gx*f ae.
(b) {f*xg # 0} C {f # 0} + {g # 0}, so that, if supp f is compact,
then

(2.19) supp f * g C supp f + suppg.

(c) Ok(f *g) = f»Okg if f € L*(R™) and g € C}(R™) is bounded with
a bounded partial derivative Oxg.

To prove (b), note that if z & {f # 0} + {g # 0}, then

(F+9)@) = [ fa-o)dy
{9#0}

and for every y € {g # 0} we obtain f(z —y) =0, so that (f *xg)(z) =0. If

supp f is compact, then supp f+ supp g is closed, since from z = lim,, a,+b,,

with a, € suppf and b, € suppg, we obtain a,, — a € suppf and

z — a = limg(an, + bp, — an,) =b € suppyg.
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As a corollary of Theorem 2.40 with K (z,y) = g(z —y) and C = ||g||1,
we obtain Young’s inequality

(220) | *glly < Ifllpllgls (1 <p<oo, f € LP(R), g € L'(R™).
By Holder’s inequality, we also have

2.21) [If *glleo < Iflollglly (1 <p< oo, f € LP(R™), g € IF (R™)).

2.4.2. Summability kernels on R". A summability kernel on R" is
a family {K)}aep of integrable functions which satisfy

(1) A C (0,00) and 0 € A,

(2) [gn Kn(z)dz =1,

(3) supy [ Kxl1 < oo,

(4) limy fIwI>R |Kx(z)|dz =0 for all R > 0.

Of course, for positive summability kernels assumption (3) is redundant.
The following result justifies our also saying that a summability kernel

is an approximation of the identity:

Theorem 2.41. Let {K)}ren be a summability kernel on R™.

(a) If f is a continuous function on R™ and lim, o f(z) = 0, then
limy_,0 K * f = f uniformly on R™.
(b) If f € LP(R™) for some 1 < p < 0o, then limy_q | Ky * f — f||, = 0.

Proof. (a) For M > 0, let
100 = [ i =1) - 1K)y
ly|<M
and
so)s= [ 1@ -9) - FOIIKW) dy
lyl>M

Then, using property (2) of a summability kernel,
(F+ K@) = S@)l =] [ (7o =)~ FIKA6) dy] < 1000) + I,

For any € > 0, since f is uniformly continuous, we can find M such that,
by (3),

IM)<  swp |f(z—y) - fWIIE < 5.
l[y|<M,zeR™

Then, by property (4), we can select § > 0 so that, if |A\| < 6,
€
IO <2flle [ |EAWy < 5
ly|>M
and it follows that |f *x K)(z) — f(z)| < ¢ for all z € R™.
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(b) Using (2) as before, we obtain
1Kas s =51 < [ ([ 1nf - DK@ )’ da

and, by writing | K| = |Kx|'/?|K5|'/? if 1 < p < oo, an application of
Holder’s inequality and property (3) gives

1Kns f= 1B <C [ lind = FIgIKAW dy
with C = sup,, || K,[[?"". We continue as in (a) and we write

[ It = P dy < 10) + T0),
with M small so that

(M) = / Iy — FIEI K@) dy < /2,
ly|<M

since ||y f—f||5 — 0if y — 0, by Theorem 2.14. The proof ends by observing
that

J(M) < 21| /| LOEEEE

for X\ large enough. O

It is readily checked that a summability kernel on R™ is obtained from a
single positive integrable function K such that [, K(x)dz = 1 by defining

(2.22) Ky(z) = tan(f) (t > 0).

Example 2.42. The Poisson kernel on R is the summability kernel

1 =z

Blo)= e

(t>0),

obtained from the function
1 =z

T rltae

P(z)

2.4.3. Periodic summability kernels. Summability kernels can also be
considered on a finite interval I C R, say I = [a,a + T). To define a
convolution, we extend every function f : I — C to the whole line R by
periodicity, and we associate to every T-periodic function f : R — C a
function F: T — C on T = {z € C; |2| = 1} by the relation

f(t) — F(e27rit/T).

This is a bijective correspondence, and F € C(T) if and only if f € Cr(R),
this notation meaning that f is continuous on R and T-periodic.
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We will also write LP(T) to represent L”(a,a + T') or L(R), the linear
space of all T-periodic functions which are in LP when restricted to an
interval (a,a + T). In the case 1 < p < o0, since C.(a,a + T) is dense in
LP(a,a+T), C(T) is also dense in LP(T).

As an example, note that F(z) = zF means that f(t) = e2™*/T (k € Z)

and P(z) = t:]_v n Ck2* represents a trigonometric polynomial. We will

denote ex(t) = €2™/T, so that e = zF when we identify f and F, and
e_ = zk.
It will be convenient to use the notation

[swa=% [ swa

and to define the norm of LP(T) as ||fll, = (Jp [f(¢)[Pdt)/P if 1 < p < oo.
Then |lexllp = 1 and |[fllx < [|£]lp-

The convolution on T is defined by
(F29)®) = [ F(e)alt=s)ds

when f,g € L(T).
A summability kernel or approximation of the identity on T is a

family of functions {K}aea in L!(T) satisfying the following:

(1) A is an unbounded subset of (0,00) (for convenience we will let

A — 00).

(2) [ Ka(z)dz =1.

(3) supy [ Kx[l1 < oo.

(4) limy—e0 faT—‘s |Kx(z)|dz=0for all 0 < § < .

The proof of the following result is exactly the same as that of Theo-
rem 2.41:

Theorem 2.43. Let {K)}ren be a summability kernel on T.
(a) If f € C(T), then limy00 K * f = f uniformly on T.
(b) If f € LP(T) for some 1 < p < 00, then limy_,q || K * f — f|lp = 0.

If f e L}(T),

(e 9)

£ Z Ck(f)e21rikt/T

k=—o00
means that cx(f) = fT f(t)e—k(t) dt are the Fourier coefficients of f and
that Y52 _ ck(f)e?* /T is the classical Fourier series of f.
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Our next aim is to show how summability kernels appear when studying
the convergence of these Fourier series.

To study the possible convergence of the Fourier sums

SN(f,:L‘) = Z /ft)e—kat/TdteZMk,m/T

k=—-N

_ /f Z e27r1,k:(:z: t)/T) dt

by the change of variable y = 27z/T we can and will assume that T' = 27.
We will denote by

(2.23) Dn(t) := Z et =14 2Zcos nt)

k=—N

a sequence of trigonometric polynomials which is called the Dirichlet ker-
nel, to write

Sn(f) = f*Dn.
By adding the geometric sequence in (2.23), we also obtain, if 0 < |¢| < T,
giN+1)t _ o—iNt sm[(N + e
et —1 sin

sin[(N + 1/2)t]

sin(t/2)

Note that [ Dn(t) dt =1, since [ ex(t)dt =0if k # 0, and Dy (~t) =
Dn(t). For every 6 > 0, {Dn} is uniformly bounded on § < |t| < 7:

Dn(t) =

(2.24) IDn(t)] < G <t<m).

_ 1
sin(d/2)

Property (3) of summability kernels fails for the Dirichlet kernel, which
is not an approximation of the identity, but we obtain a summability kernel,
the Fejér kernel, by making the averages

1 N-1
(2.25) Fy =1 n; Dy

Indeed,
1 sin?(Nt2)
N (t) = T 20
N sin“(t/2)
will follow from the identity

(2.26) 2sinasin 8 = cos(a — ) — cos(a + f)
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and the properties
(a) Fn >0,
(b) Fn(—t) = Fn(t),
(c) & 745, Fn(t)dt =1, and
(d) limp_00 maxs<jy<r/2 FN(t) = 0 for every 0 < 6 < T/2
are easily checked.
For instance, we multiply both sides of

Ni sin[(n + 1/2)z]

NEy(z) = sin(z/2)

n=0
by 2sin?(z/2) to obtain

2N sin’(z/2)Fy(z) = ) _ 2sin[(n +1/2)z]sin(z/2),

n=0
and an application of (2.26) with @ = (n+ 1/2)z and 8 = /2 gives
N-1
2N sin?(z/2) Fn(z) = Z [cos(nz) — cos((n + 1)z)] = 1 — cos(Nz).
n=0

Then, again by (2.26), but now with o = § = Nz/2,
2sin?(Nz/2) = 1 — cos(Nz),
and from both identities we obtain
N sin®(z/2)Fn(z) = sin?(Nz/2).
Now (a) and (b) follow immediately, and (c) also:

L
%/_LFN(t) =% Z / Dy (t) dt = Z 1=1.

n=0 n—O
To check (d), note that, if 0 <6 <t <,
1 1 1 1
< AT )
N sin?(t/2) — N sin%(6/2)
since sin?(t/2) is increasing on (0, ).
The Cesaro sums of f € L! (T) are the trigonometric polynomials

0 < Fyn(t) <

on(f,x) = Zs(f,w) f*Fn(z)

and according to Theorem 2.43, 1f f € LP(T) (1 < p < ), then
(2.27) lim || = ow(f)llp = 0.
N—oo
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This shows that the trigonometric system {ex}rez is total in LP(T) (1 <
p < 00) and, as an application, we give a proof of the Riemann-Lebesgue
lemma:

For every f € L'(T), limg| 00 k() = 0, since this is obviously true for
the trigonometric polynomials on(f) and we have ||c(f — on(f))|loo < € if
1f = on(Dlly < &, 50 that [cx()] = [ex(f — ow(/))] < ¢ for every k| > N.

If f,g € L'(T) have the same Fourier coefficients, then f = g. This fact,
known as the uniqueness theorem for Fourier coefficients, also follows
from (2.27), since f = limy on(f) =limyon(9) = g.

The closed subspace of £*° which contains all the sequences {cx} with
limit zero will be denoted cg. Then f € L!(T) + ¢ is injective and contin-
uous.

2.5. The Riesz-Thorin interpolation theorem

Sometimes it is easy to show the continuity of a certain operator 7' when
acting between two couples of Banach spaces, say T : LP° — L% and T :
LPt — L9, The interpolation theorems show that then T is also bounded
between certain intermediate couples LP and L9.

We are going to prove Thorin’s extension of the classical M. Riesz inter-
polation result, known as the convexity theorem, by combining techniques of
real analysis with the maximum modulus property of analytic functions.!4

The following result will be used in the proof of the interpolation theo-
rem:

Theorem 2.44 (Three lines theorem). Let f be a bounded analytic function
in the unit strip S = {z € C; 0 < Rz < 1} that extends continuously to
S ={z € C; 0 <Rz <1}, and denote

M(9) := Sup |f(2)].

Then
M®©®) < M@O)'?MQ1)?°? (0<d<1).

Proof. To prove that |f(¢9 + iy)| < M(0)'~?M(1)?, we can assume that
neither M (0) nor M(1) is zero, since we can consider M (0)+¢ and M(1)+¢
and then € | 0.

14The first interpolation theorem was proved in 1911 by the Belarusian mathematician Issai
Schur, who worked in Germany for most of his life, for operators between #P spaces of type (1,1)
and (00, 00) in terms of bilinear forms. The convexity theorem was proved in 1927 by Marcel Riesz,
the younger brother of Frigyes Riesz who worked in Sweden for most of his life. It was extended
in 1938 by Riesz’s student Olov V. Thorin with a very ingenious proof, considered by Littlewood
“the most impudent idea in Analysis”. This theorem refers to couples of LP spaces but, with
the ideas contained in Thorin’s proof, in the 1960s the Argentinian-American Alberto Calderén
developed an abstract complex interpolation method for general couples of Banach spaces.
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Let F(2) = f(z)/(Mg~*MF), which is similar to f but with M(0) =
M(1)=1and |F| < K on 0 < ®z < 1. We only need to show that |F| < 1.

For every € > 0, let us consider F;(z) = F(z)/(1 + €z) on the rectangle
R, which is the fragment of S lying between the lines y = +iK/e. On the
boundary of S,

|[Fe(2)] < |F(z)] <1 < 1 (z=%R2)

“l4ex T 14ex —
and, when |y| = K/e, also
F K
R < EEl o Ky
elyl ~ elyl
By the maximum modulus theorem, |F¢| <1 on R, and the estimate
|Fe(2)] <1

is also valid everywhere on S. Then we conclude that |F(z)| < 1+ €|z| on
S, and |F(2)| < 1 by letting ¢ — 0. O

Let us apply this result to prove the interpolation theorem for operators
between LP spaces on X and Y, two measurable spaces endowed with the
o-finite measures p and v.

We denote by S(X) the class of all simple integrable complex functions
on X and by M(Y) the class of all complex measurable functions on Y, and
we recall that a linear operator T': D(X) - M(Y) (D(X) C M(X)) is said
to be of type (p, q) with constant M if || T f||; < M||fl|, for every f € D(X).

We will use the fact that

(2.28) Ifle= sup |(f,9)l= sup |(f,q)],"
llgllyr <1 llgll =1

where (f,g) = fy fgdv. The proof is obtained from Holder’s inequality as
follows:

Obviously Supjg). <1 {f,9)] < |Ifll- To prove the converse estimate,
normalization allows us to suppose that || f|l; = 1, and we write f = |f|s
with |s| = 1. When 1 < g < oo, define go = |f|9715; then ||goll; = 1 and
(f) gO) =1

If ¢ = oo, suppose that M := supyig),=1 [{f, 9)| > || fllco, SO that, for some
m > 0, we can choose A C {|f| > M +1/m} such that 0 < v(A) < co. Then
go := v(A) 13y a € L' (v) would satisfy |(f, go)| > ||f|loo, Wwhich contradicts
Hoélder’s inequality.

15This is the description of the LP norm by duality. See also (4.6).
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Theorem 2.45 (Riesz-Thorin). Let T : S(X) — M(Y) be a linear operator
of types (po, qo) and (p1,q1) with constants My and My, respectively. Then,
if 0 <9 <1, T is also of type (py,gs) with constant M (¥), where

1 1-9 9 1 1-9 9

—_— = + = —= +—,

Dy Po n qy q0 q1
and M(9) < My~ M}.

Proof. (a) Let p = py and ¢ = gy, and consider first the case pop = p1 = p.
Note that we only need to show that, if g9 < g < ¢q, then

(2.29) llglla < llgligy gl

since then, for g = T'f, we obtain

-9 9 -9 aq0 - 9
ITfllq < llgllzs*Ngllg, < Mg~ MY £llge £, -

To prove (2.29) when 1 < ¢; < oo, we use Holder’s inequality with the
exponents 7 = go/(1 — ¥)q and 7’ = ¢1/9q to obtain

_ (1-9)q/q0 9g9/q
lallg = [ 1910-1g1% < ( [ 191%) "7 ( [ 1g1e) """,

. 1-9 b7
that is, [lgllZ < llgll%s~llgllas.
Ifpo =p1 =pand g < ¢ < g1 = 00, then ¥ = (g—gqo)/g and 1-9 = qo/q.
Hence,

ol = [ 1al" < g™ [ ol = lgle2lglgs =

(b) Now assume that py # p1, and then 1 < p < co. We denote
l—-2z =z 1-2z =z
O!(Z) = +—, ,B(Z) = )
Po n q0 q1
so that a(d¥) = 1/p and B(d¥) = 1/q.
Since ||Ts||q = SUP||g|l =1 | [y (T's)g dv|, we need to prove that

(2.30) | /Y (Ts)gdu[ < M}0m?

for all simple functions s and g satisfying ||s||, = 1 and ||g||¢ = 1.
Suppose first that ¢’ is finite. Then

N K
S= GnXdn 9= bkXB
n=1 k=1
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where the A, (and the By) are disjoint sets of finite measure and a, # 0 #
bi. Moreover ||s|, =1 and ||g|ly =1 give us that

N K
D lanfPu(4n) =1, D |oelPu(Br) = 1.
n=1 k=1

Write s(z) = |s(z)|o(z), so that s(z) = |an|exp(iargay) if x € Ay, and also
9(y) = |9(y)|v(y). Then for every z € C we define the simple functions

s, = |3|a(Z)/0t(19)0’ g = |g|(1—ﬂ(Z))/(1—ﬂ(19))0

and

F(z) = / (Ts2)gsdv = 3 [an|22/a0) b, [(-BE/A=C,
Y n,k

with Cpx = [ (T'xa,)xB, exp(i arg a, +iarg bg), which is an entire function
as a linear combination of exponentials.

The real parts of a(z) and B(z) are bounded on S and then F' is also
bounded. The announced estimate will be obtained from Theorem 2.44 if
we show that

(2.31) |F(iy)| < Mo, |F(1+iy)| < M,

since F(¥) = [,,(Ts)gdv and then (2.30) will follow.
From the definition of F(z), T being of type (po, go) with constant My,
Holder’s inequality gives

|F(iy)| < ”Tsiy”qo”.qiy”q{, < M0”3iy”po“giy||q{),

where

N N
IsiglB = 3~ |lan| @@ (A1) = 3 an|Pu(An) =1,
n=1

n=1

since Ra(iy) = 1/pp and a(¥) = 1/p. Similarly, || g||g; =1 and we arrive at
the first estimate |F(iy)| < Mp in (2.31).

The same argument using the fact that T is of type (p1, ¢1) with constant
M yields the second estimate |F'(1 + iy)| < M;. This completes the proof
for ¢ finite.

In the case ¢’ = oo, take g, = g for all 2. O

Corollary 2.46. Let T be a linear operator on D(T) = LP°(X)+ LP*(X) of
types (po, qo) and (p1,¢1) with constants My and M;. Then, with the same
notation as in Theorem 2.45, T : LP?(X) — L% (Y) is of type (pyg, gs) with
constant M(d) < M3~? M7, for every 0 < 9 < 1.



2.6. Applications to linear differential equations 63

Proof. We can assume that pg < p = py < pi1, since, when py = p1, part
(a) in the proof of Theorem 2.45 applies.

Let f € LP and consider a sequence {si} of simple functions such that
Isk] < |f| and sx — f. If E = {|f| > 1}, we define g = fx&, st = SkXE,
h=f—g, and sﬁ =8k — s,lc. By dominated convergence, sy — f, s,lc - g,
and s — hin LP.

By taking subsequences if necessary, T'si — T'g and T'si — Th in LP
and a.e., and also T's — T'f a.e.

If ¢ < o0, by the Fatou lemma and Theorem 2.45,
ITfllg < liminf |Tsllg < M@)lsklls = M@)|fllp-

If ¢ = o0, then go = q1 = 00, and also ||Tf]|co < liminfy || Tsk|co- O

As an application we will prove an extension of the Young inequali-
ties (2.20) and (2.21):
Theorem 2.47. Let 1 < p,q,r < 0 and let
1 1 1
S+-==+1
p q T
If f € LP(R™) and g € LI(R™), then f and g are convolvable, fxg € L"(R"),
and

17 % gll» < 11 Fllpllgllq-

Proof. Assume that p < g, so that also p < r. By (2.20), fx is of type (1,p)
with constant || f||, and by (2.21) it is of type (p’, o) with the same constant.
It follows from the Riesz-Thorin Theorem 2.45 that it is also of type (p, q)
with constant || f||, by choosing ¥ = p/r, since then 1/¢ = (1-19)/p' +9/1
and 1/r =1/49. O

2.6. Applications to linear differential equations

The aim of this section is to present some applications of the preceding
methods to solve initial value problems and boundary value problems for a
second order linear equation with continuous coefficients,

u” + a1 (z)v + ao(z)u = c(z),

on a bounded interval [a,b]. Functions are assumed to be real-valued.

This equation can be written in what is called self-adjoint form,

(2.32) () —qu=f  (0<peCla,b];q,f€Cla,b]),
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since, for p(z) = exp([ a1) such that p’ = pa;, our equation is equivalent to
pu” + paiu’ + pagu = pc, that is, (pu') — p'v’ + paiv’ + pagu = pc, so that
we only need to consider ¢ = —pag and f = pc.

We write Lu = (pu')’ — qu for short, and by a solution of Lu = f we
mean a function u € C?[a, b] such that Lu(z) = f(z) for every z € [a, b].

Note that the operator L : C%[a,b] — Cla,b] satisfies the Lagrange
identity

(2.33) uLv —vLu = [p(uwv’ — w'v)]’ = (pWY,
where W = uv’ — w/v is the Wronskian determinant.6

2.6.1. An initial value problem. Next we consider the Cauchy prob-
lem

(2.34) Lu=f, u(a)=a, u(a)=p
where o, # € R are given and L is as above.

Integration and the assumption u/(a) = B show that to solve (2.34)
involves finding the solutions of

P ) - ) - [ “autdi= [T f@a e ot uo) = o)

After dividing by p, it turns out that integration and the condition
u(a) = o show that this is equivalent to

u(z) = / ) - / )uly) dyds — g(z)  (u € Cla,b]),

where

(2.35) 9(z) = —a— p(a),B/ 26 /ap(s / f(y) dyds.

Note that, if a < £ < b, we are dealing with the integral of a continuous
function on the triangle

A:={(s,9);a<y<s<z}

and, according to Fubini’s theorem,

| vlshuty) dsdy - / e [ " w(y) dyds = / “w(y) /y " u(s) dsdy,

so that we are reduced to solving the integral equation
T T ds
wo)= [ awul) [ dy-g@)  (weclab).
o v D(s)

161f suppu C (a,b), then [*(pW)’ = 0 and [®u(z)(Lv)(z)dz = [°(Lu)(z)v(z)dz, a self-
. a a a
adjointness property of L.
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Let us consider

T
1
K(x,y :=qy/—dt a<y<z<b),
@) =a) [ a )
which is a continuous function on the triangle defined by a <y < z < b,
and suppose that g € Ca,b] is as in (2.35). With Theorem 2.30 we have

proved the following result:

Theorem 2.48. The function u € C%[a,b] is a solution of the Cauchy prob-
lem (2.34) if and only if u € Cla,b] and it satisfies the Volterra integral
equation

Tku—u=g,

whose unique solution is

oo
u=(Tx —I)7'g==) Tkg.

n=0

As shown in Exercise 2.20, a similar result holds for linear differential
equations of higher order with continuous coefficients.

Let us recall how, from the existence and uniqueness of solutions for the
Cauchy problem (2.34), it can be proved that Ker L, the set of all solutions
for the homogeneous equation, is a two-dimensional vector space:

Lemma 2.49. Two solutions y1 and yo of the equation Lu = 0 are linearly
dependent if and only if their Wronskian, W = y1y4 — yiy2, vanishes at one
point. In this case, W(z) =0 for all z € [a,b].

Proof. Indeed, if W(¢) = 0 at a point £ € [a, b], then the system
y1(€)er+y2(€)ca =0, wi(§)ar +y3(6)ca =0

has a solution (¢, c2) # (0,0) and the function v := ¢;y; + c2y2 is a solution
of the boundary problems Lv = 0, v(¢) = v/(£) = 0 on [a,¢] and on [¢,b].
By the uniqueness of solutions for these Cauchy problems, it follows that
v =0 on [a,b] and y;, y2 are linearly dependent.

Conversely, if ¢4 +coy2 = 0 with (c1, c2) # (0, 0), then also c1y] +cayh =
0, and W (z) = 0 for every z € [a, b] as the determinant of the homogeneous
linear system

yi(z)er + y2(x)c2 =0, yy(z)er +ya(z)e2 =0
with a nonzero solution. O

Theorem 2.50. Let y; and yo be the solutions of
Lyl = 0) ) (0,) = 1) yll (a’) =0
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and
Lyy =0, y2(a) =0, ys(a)=1.
Then {y1,y2} is a basis of Ker L.

Proof. Since W(a) = 1, according to Lemma 2.49, the functions y; and y2
are linearly independent.

To show that any other solution u of Lu = 0 is a linear combination of
y1 and yo, note that v := u(a)y1 + v/(a)y: is the solution of
Lv=0, v(a)=u(a), v'(a)=1'(a),
and then u = v = u(a)y1 + v'(a)y2. O

2.6.2. A boundary value problem. We shall now restrict our attention
to the homogeneous boundary problem

(2.36) Lu=g, Bi(u)=0, Ba(u)=0,
where
Lu=(pv') —qu  (0< pé€Cla,bl; g€ Cla,b])

as in (2.32) and

Bi(u) := Aju(a) + A2v/(a) =0 (JA1] + |A2] #0)
and

Bs(u) := Byu(b) + Bo/(b) =0 (|B1| + |B2| # 0)
are two separated boundary conditions involving the two endpoints.

Note that
D := {u € C?[a, b]; B1(u) = 0, Bz(u) = 0}

is a closed subspace of C2[a, b], endowed with the norm

llull = max(|[ullia,b}, Il a,p1, 1" lfa,61)

and the restriction of L to D, Lp : D — C|a, b], is a bounded linear operator.

Our boundary problem will be solved for every g € Cla,b] if we can
construct an inverse for Lp. To this end we need to suppose that L is
one-to-one on D; that is, we assume that u = 0 is the unique solution of
Lu =0 in C?|a, b] such that Bj(u) = Ba(u) = 0.

Lemma 2.51. There exist two linearly independent functions y1,y2 € C?|a, b]
which are solutions of Lu = 0 and satisfy B1(y1) = 0 and Ba(y2) = 0.
Proof. Let y; and y2 be nonzero solutions of

Ly1=0,  Bi(y1)=0

and
Ly, =0, Bs(y2) = 0.
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By our assumptions, there are no nonzero solutions of Lpu = 0, so that
Bi(y2) # 0 and By(y1) # 0, and y1, y2 are linearly independent.

By the existence theorem for the Cauchy problem (Theorem 2.48) we
can always find these functions y; and ys. g

It is worth observing that, if y1,y2 € C?[a,b] are two linearly indepen-
dent solutions of the homogeneous equation Lu = 0, then pW is a nonzero
constant, since (pW)' = 0 by (2.33) and W # 0 by the linear independence
of y; and ys.

Hence, if y; and y, are as in Lemma 2.51, then pW = C is a constant.
Our aim is to show that the boundary value problem (2.36) is solved by the
Fredholm operator defined by the kernel

1 .
o¥(@pe(z) ifa<z<{<H,
2.37 G(z,§) := .
(237) @O={ TnOne taziiecs
which is called the Green’s function!” of the differential operator L for
the boundary conditions B; (u) = 0, Ba(u) = 0. Note that G is a real-valued
continuous function on [a,b] X [a,b] and G(z,&) = G(¢, z).
Theorem 2.52. Under the assumption of L being one-to-one on D, for
every £ € (a,b) the function G(-,£) is uniquely determined by the following
conditions:
(a') G(,f) € (32([(1,6) U(é.) b])’ LG()&) =0 on [a, 6) U(é.’b]: and G(’é.)
satisfies the boundary conditions B1(G(-,€)) = 0, B2(G(+,§)) = 0.
(b) G(-¢€) € Cla, b].
(c) The right side and left side derivatives of G(-,&) exist at x = £ and
1
0:G(€+,€) — 0,G(€—,&) = —=.
LG (E+,€) — 0:G(€—, ) G

Proof. That G satisfies (a)—(c) follows easily from the definition. Note that

COG(E+,8) =n (@),  CG(E—,€) = 11(E)pa(6)
and then C(8;G(£+,€) — 0;G(£—,&)) = W, which is equivalent to (c).

To show that G is uniquely determined by (a)-(c), we choose {y1,y2} as
in Lemma 2.51. By conditions (a) and since also By(y1) = Ba(y2) = 0, it
follows that a3 B1(y2) = 0 and b1 B2(y1) = 0 with B1(y2) # 0 and Ba(y1) # 0.
e @ on fog]

a1(§)yr  on [a,¢],
G(,€) =
0= o on e

17Named after the self-taught mathematician and physicist George Green who, in 1828,
in “An Essay on the Application of Mathematical Analysis to the Theories of Electricity and
Magnetism” introduced several important concepts, such as a theorem similar to Green’s theorem,
the idea of potential functions as used in physics, and the concept of what we call Green’s functions.
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Now, from our assumptions (b) and (c),

a1(&)y(€) = b2()y2(8),
b2(8)ya(§) — al(ﬁ)yll(ﬁ):m,

a linear system with W (€) # 0 that determines a1 (&) and ba(&). O

Theorem 2.53. Under the assumption of Lp being injective, the Green’s
function G is defined by (2.37) and the Fredholm operator

b
Tf@) = [ Gaofe) i
= (0@ [ w©r© &+ uE [“neied)

c

is the inverse operator T : Ca,b] — D C C2[a,b] of Lp. That is, u € C%[a, b]
15 the unique solution of the boundary value problem

Lu=g, Bj(u)=0, Bs(u)=0
if and only if

b
u(z) = / Gz, £)g(€) de.

Proof. Suppose u is a solution of the boundary value problem and apply
Green’s formula,

/:(uLv —vlu) = [p(uv' - vu’)]y,

T

obtained from the Lagrange identity (2.33) by integration, to the solution u
and to v = G(+,£) on the intervals [a,& — €] and [§ + €,b]. Allowing € | 0,
we obtain

/j (uLG(.,ﬁ) - G(-,s)Lu) - [P(uG(-, €)' - G('f)“')] "

a

and
/ﬁb (uLG(-,f) - G(~,§)Lu) - [p(uG(.’ £y - G(, §)u,)] ;_

Since Lu = g and LG(+,€) = 0, the sum of the left sides is — f:G(~,§)g.
According to the properties of G, for the sum of the right sides we obtain
1 b
—puz + [p(uG( €)' = G(, )| = —u
D a

and u(z) = [ G(z, £)g(€) d¢ holds.
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Conversely, according to the definition of G, it follows by differentiation
from

50@ [ 1n©0@ &+ L) [ n@el6)d

a

u(z) =
that

T— b
wz) = / 0,G(z,€)g(€) dé + /  0.6(z,€)o(€) ot

b
- / 0,G(x, €)g(€) de.

With a similar computation, (pu')’ can be evaluated and, by using the prop-
erties of G, one gets Lu(z) = f: L(G(-,&))(x) - g(&) dE + g(z) = g(=). O

2.7. Exercises

Exercise 2.1 (Leibniz formula). For one variable,

m

oo =35 (7)o

k=0
In the case of n variables,

D*(fg) =) (;‘) (DPf)D*~4g.

BLa

Exercise 2.2. Prove that if a vector subspace F' of a topological vector
space F has an interior point, then F' = E.

Exercise 2.3. Equip a real or complex vector space E with the discrete
topology, that is, the topology whose open sets are all the subsets of F. Is
E a topological vector space?

Exercise 2.4. Prove that the interior of a convex subset K in a topological
vector space F is also convex.

Exercise 2.5. Let cgp be the normed space of all finitely nonzero real-valued
sequences with the “sup” norm ||(z1,...,ZnN,-..)||lcc = sup, |zn|. Find an
unbounded linear form u : cgp — R and an unbounded linear operator
T : cgo — Coo-

Exercise 2.6. Show that the Banach space of all bounded continuous func-
tions on R™ with the “sup” norm can be considered a closed subspace of
L*(R"™), and prove that this space is not separable.

Exercise 2.7. Let 1 < p < co. Prove that LP(R") is separable.
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Exercise 2.8. Prove that the normed space Co(R") of all continuous func-
tions f on R™ such that limj;o f(x) = 0, with the usual operations and
the “sup” norm, is a completion of the vector subspace C.(R™) of all con-
tinuous functions f on R™ with a compact support endowed with the “sup”
norm and that it is separable.

Exercise 2.9. Let K be a compact metric space.

(a) Prove that K is separable.

(b) Prove that C(K) is also separable by showing that, if {z,} is a dense
sequence in K and ¢mn(z) = max(l/m — d(z,zy),0), the countable set
{pmm; m,n > 1} is total in C(K).

Exercise 2.10. Prove that the trigonometric system {ex}xez is total in
L%(T) by showing first that C(T) is dense in L?(T) and that the polynomials
SN veez® (N €N, ¢ € C) are dense in C(T).

Exercise 2.11, Prove that the vector space of all C! functions on [a,b]
with the usual operations and the norm ||f|| := max(|| flla,e)> |/ ll[a,) is 2
separable Banach space.

Exercise 2.12. For the norms ||z, := (3> F_, lazk|”)1/p (1 <p < o00)and
lz||lo := max}_; |zn| on R", find the best constants o and B such that

allzfleo < flzllp < Bllzlco-

Exercise 2.13. If C = C([0,1];R), compute the norm of u € C’ defined as

1
u(f) = /0 £(t)g(t) dt

with g := 322 (=1)"X(1/(n+1),1/n) and show that u(Bc) = (—1,1), so the
norm of u is not attained by |u(f)| on the closed unit ball B¢ of C[0, 1].

Exercise 2.14. If Tk : C[c,d] — Cla,b] is a Fredholm operator (see 2.22)
and K > 0, then ||[Tk| = sup,<;<p fcd K(z,y)dy. Similarly, if Tk is a
Volterra operator and K > 0, then ||Tx|| = sup,<,<p [i K(z,y) dy.

Exercise 2.15. Consider K € C([0,1]?) and T : L'(0,1) — L*(0,1) such
that

1
Tf(z) = /0 K (2,)(y) dy.
Prove that ||T|| = maxg<y<1 fol |K (z,y)| dz.

Exercise 2.16. In Theorem 2.40, assume that K is nonnegative. Then
prove that the norm of Ty : L> — L is precisely C if [, K(x,y)dz = C
a.e. Similarly, if C = fX K(z,y) dz a.e., show that the norm of Ty : L' — L!
is C.
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Exercise 2.17. On [-m, 7] X [—m, 7] we define the integral kernel

N
K(z,y) = Z an cos(nz) sin(ny)

n=1

and, for a given vy € C[—m, 7], consider the integral equation on C[—, 7]

(2.38) u(z) — i K(z,y)u(z) dz = vo(x).

-

Prove that the Neumann series gives (I — T)~! = I + T for the Fredholm
operator T' = Tx. Then show that

™
w(z) :=w(x)+ [ K(z,y)vo(y)dy
-
is the unique solution of (2.38). If vy is an even function, then u = vg.
Exercise 2.18. Find the Volterra integral equations that solve the following
Cauchy problems on [0, 1]:
(@) u"+u=0, u(0)=0, u(0)=1.
(b) v’ +u=cosz, u(0)=0, «'(0)=1.
() v +a1v +au=0, u(0)=«a u(0)=p8(xB€cR).
(A v +zv'+u=0, u0)=1, 4(0)=

Exercise 2.19. Prove that

Tf(z) = / " dons / 7 g / ") dt

defines a Volterra operator on C|a, b] whose integral kernel is

K(z,t) = (z—t)"! (a<t<z<bh).

_1
(n—1)!
Exercise 2.20. On [a, b], consider the Cauchy problem

u™ + a4 pau=f u@)=¢ (0<j<n-1),

with aj...an, f €Cla,bl and ¢p...cn—1 € R.

(a) By denoting v = u(™), show that the problem is equivalent to solving
the Volterra integral equation

/ " K (@, y)o(y) dy - v(z) = 9(z),

where
)m 1

K(z,y) = Zamcc)(”” S
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and
9(z) = cp1a1(z) + (en-1(z — a) + cn—2)
_ \n—1
+-- 4+ (Cn—l% + - +eci(z — a) + cp)an(z)
—f(z).

Here Exercise 2.19 may be useful.

(b) Show that it follows from (a) that the Cauchy problem has a uniquely
determined solution v € C"[a, b].

Exercise 2.21. Suppose f and g are nonnegative integrable functions on
R? such that

supp f = {(z,y); 2> 0,1/ <y<1+1/z}
and
suppg = {(z,y); y > 0}.
Prove that supp f *x g ¢ supp f + suppg. Why is this not in contradiction
with (2.19)?

Exercise 2.22. If f € L?(R") and g € L¥ , prove that f*g is then uniformly
continuous.

Exercise 2.23. On L!'(R), prove that the convolution is associative but
check that (f1 * f2) * f3, f1* (f2 * f3) are well-defined and they are different
if fi =1, fo(x) = sin(mz)x(-1,1)(z), and f3 = X[0,00)-

Exercise 2.24. Let {K)}xea be a summability kernel on R and let f €
L>®(R). Prove that, if f is continuous on [a,b], then limy o K) *x f = f
uniformly on [a, b].

Exercise 2.25. Prove that the sequence of de la Vallée-Poussin sums,
defined as the averages

RA
Van =5z >, Dn=2Fy — Fy,
n=N
is a summability kernel.

Exercise 2.26. Let ¢y be the closed subspace of £*°(Z) of all sequences
z = {zF} oo Such that limyg) o, cx = 0. Calculate the norm of the Fourier

transform c: f € LY(T) = ¢(f) € co-
Exercise 2.27. On R, let W(z) := e~™" and, for n variables, let W (z) :=
el = W(z1)-- - W(zy).

Prove that

1
Wi(z) := t—ne—"lm'z/tz (t>0)
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is a C*° summability kernel on R™. It is called the Gauss-Weierstrass
kernel.

Exercise 2.28. If {e,}n>1 is an orthonormal basis of F', a closed subspace
of a Hilbert space H, prove that

Pp(z) = Z(a:, en)Hen.
n>1

Exercise 2.29. Prove Theorem 2.40 in the case 1 < p < co by showing first
that Tk f(z) is defined a.e. by an application of Holder’s inequality in

| K@iy = [ K@K @) b
Y Y

Exercise 2.30. Prove Theorem 2.40(c) in the case 1 < p < oo as an appli-
cation of the Riesz-Thorin theorem.

Exercise 2.31. The Riesz-Thorin Theorem 2.45 with the convexity estimate
M) < M(}_”&M}’ was proved for complex LP-spaces. Prove a corresponding
result for real spaces but with the estimate M (¢) < 2M(}"9M ? by extending
the real linear operator T' to the complex linear operator T' defined by

T(f +1ig) :=Tf +iTg.
Exercise 2.32. Let £°(2) = R? with the norm

1@, )l = (2l + [yI")?  (max(|e|, ly]) if p = o0).
Show that the operator T'(z,y) := (z + y,z — y) is of type (co,1) with
constant My = 2 and of type (2,2) with constant M; = 2/2 and that T
does not satisfy the convexity estimate M () < M&_ﬂM}’ .

Exercise 2.33. If f € LP(T) and 1 < p < 2 and ¢(f) = {ck(f)}?2_o I8
the sequence of Fourier coefficients of f, defined as cx(f) = [ f(t)e—x(2) dt,

show that ¢(f) € ¢ and

el < 1£llp
first if p =1 or p = 2 and then for every 1 < p < 2.

References for further reading:

N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert
space.

S. Banach, Théorie des opérations linéaires.

S. K. Berberian, Lectures in Functional Analysis and Operator Theory.
R. Courant and D. Hilbert, Methods of Mathematical Physics.

J. Dieudonné, Foundations of Modern Analysis.

L. Kantorovitch and G. Akilov, Analyse fonctionnelle.
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A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions
and Functional Analysis.

F. Riesz and B. Sz. Nagy, Lecons d’analyse fonctionelle.

W. Rudin, Real and Complex Analysis.



Chapter 3

Fréchet spaces and
Banach theorems

It will also be useful to consider topological vector spaces which are not
normable, but the class of general topological vector spaces proves to be too
wide for our needs. Usually it is sufficient to consider spaces with a vector
topology which is still metrizable and complete and which can be defined
by a sequence of norms or semi-norms instead of a single norm. They are
called Fréchet spaces and some fundamental aspects of the theory of Banach
spaces still hold on them.

An example of nonnormable Fréchet space is the vector space C(R) of
all continuous functions on R with the uniform convergence on compact
subsets of R, defined by

\f = falll-nn = _jmax |f () = f(t)] =0
for all N > 0.

The sequence of semi-norms || f||{_n,x) defines a vector topology, which
can also be described by the distance associated to the Fréchet norm,

(o 0)

1 -
=30 A Ml

] 2N 14+ 1 fll=ny

which retains many of the properties of a norm.

This Fréchet norm is used to prove the basic Banach theorems concerning
the continuity of linear operators.
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3.1. Fréchet spaces

A semi-norm on the real or complex vector space F is a nonnegative func-
tion p: E — [0, 00) with the following properties:

1. p(Az) = |A|p(z) and
2. p(z +y) < p(z) +p(y)-
Then p(0) = 0, but it may happen that p(z) = 0 for some z # 0.
It is shown as in the case (2.1) of a norm that

(3-1) Ip(z) — p()| < p(z — y)
and the p-balls
Up(e) := {z; p(z) < e} =eUp(1) =p ' ((—£,6)) (p€P, £>0)
are convex sets such that AUp(e) C Up(e) if |A| < 1 (it is said that they

are balanced) and (J,,tUp(€) = E (they are absorbing). Note that, if
p(z) = 0 and z # 0, the ball Up(e) contains the whole line [z].

3.1.1. Locally convex spaces. A family P of semi-norms on E is called
sufficient if p(z) = 0 for every p € P implies z = 0.

Theorem 3.1. If P is a sufficient family of semi-norms on E, then the
collection of all the finite intersections of the balls Up(e) (p € P, € > 0) is a
local basis U of a vector topology Tp on E.

On the topological vector space (E,T), a semi-norm p is continuous if
and only if the ball Up(1) is an open set.

Proof. We say that z € E is said to be an interior point of A C F if
z+U C A for some U € U and that A is open if every a € A is an interior
point of A.

It is trivial to check that the collection 7p of these sets satisfies all the
properties of a topology, which is Hausdorff since, if z # y, there exists
p € P such that p(x —y) = € > 0, and z + Up(e/2) and y + Up(e/2) are
disjoint, because z +u = y+v with p(u) < £/2 and p(v) < €/2 would imply
p(xz—y) =plv—u) <e.

It is also very easy to show that the vector operations are continuous.
In the case of the sum, Up(e/2) 4+ Up(e/2) C Up(e) and also, if U is a finite
intersection of these balls, (1/2)U + (1/2)U C U and the sum is continuous
at (0,0) € E x E. Continuity at any (z,y) € E x E follows by translation; if
z+y+U is a neighborhood of z+y and V+V C U, then (z+V)+(y+V) C
z+y+U.

For every continuous semi-norm p, the set Up(e) = p~! ((—6, 6)) is open.
Conversely, if ¢ is a semi-norm and Up(1l) is an open set, then Up(e) =
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eUp(1) € Tp and it follows from (3.1) that, for every z € y + Up(e),

lp(z) —p(¥)| < p(z —y) <e,
so p(z) € (p(y) — &,p(y) + €) and p is continuous at y. O

A topological vector space (E, T) is said to be a locally convex space’

if there exists a sufficient family P of semi-norms defining the topology as
in Theorem 3.1. In this case, the family of all sets

Up, (€) N -+ N Up, (e) = {x; max{p1(z),...,pn(z)} < €}
(e>0,p; €P,i=1,...,n,n € N) is alocal basis for this topology. We will
also say that {Up(e); p € P, € > 0} is a local subbasis for this topology.

A normable topological vector space is a locally convex space with a suf-
ficient family of semi-norms consisting in a single norm.

Example 3.2. Let X be a nonempty set. Over the vector space

c*=JJc

zeX
of all complex functions f : X — C (f = {f(z)}zex € C¥), the collection of
all semi-norms p,(f) := |f(z)| (z € X) is sufficient and defines the product
topology, which is the topology of pointwise convergence, since p;(fn) — 0
for every z € X if and only if f,(z) — 0 for every z € X.

Recall that the collection of all finite intersections of sets
L (D(fo(2)€)) = {f = {f@)}aexs 1£(2) = fol2)| <€} = fo+ Up.(e)

is a neighborhood basis of fo = {fo(z)}zex for the product topology and,
according to Theorem 3.1, it is also a neighborhood basis for the topology
defined by the semi-norms p, (z € X).

Example 3.3. Over the vector space C(R) of all continuous functions on
R, the sequence

Pu(f) = fllmnm = sup [f(t)] (n€N)
—n<t<n

of semi-norms is sufficient. They define the topology of the local uniform
convergence, or uniform convergence on compact sets.

Every compact set K C R is contained in an interval [—n,n], and then

Ifllx < pn(f). Hence, pn(f — fx) — 0 implies ||f — follx — 0, and this
means that f, — f uniformly on K.

LConsidered by J. Dieudonné and L. Schwartz in the 1940s to extend the duality theory
of normed spaces, locally convex spaces were the basis for the study of the distributions by L.
Schwartz.



78 3. Fréchet spaces and Banach theorems

The continuity condition ||Tz||r < C||z| g for a linear operator between
normed spaces has a natural extension for locally convex spaces:

Theorem 3.4. Let P and Q be two sufficient families of semi-norms for the
locally convex space E and F'. A linear application T : E — F' is continuous
if and only if for every q € Q there exist p; € P (j € J finite) and a constant
C > 0 so that
q(Tz) < C'maxpj(z).
JjE€J

A sequence {z,} C E is convergent to 0 if and only if p(xz,) — 0 for every
peP.

Proof. By Theorem 2.2, the continuity of 7' means that, if Uy(e) is a g-ball,
T(U) C Uq(e) for some U = Up, (6) N -+ - NUp, () (pj € P). That is,

< .
q(Tz) <C maxp; (z)

with C = ¢/4, since z/a € Up, (1) N--- N Up, (1) if @ > max,ecypj(z), and
q(Tz/o) < €/6. Hence (6/a)Txz € Uy(e) and ¢(Tz) < ae/d, and we obtain
q(Tz) < Cmax;egpj(z) by allowing a | max;ecy p;(z).

Finally, z, — 0 if and only if z, € Up(¢) when n > v(p, ), i.e., eventu-
ally p(zn) < ¢, for every Up(e). O

Suppose that F is a locally convex space and that F' is a closed subspace
of E. The linear quotient map

m:E— E[F

is defined as m(z) = 7 = z + F and, if P is a sufficient family of semi-norms
on E, we consider on E/F the collection P of semi-norms p defined by

ooy — inf _
p(z) = inf p(y) = inf p(z - 2),
for every p € P.

It is clear that every functional $ is a semi-norm on E/F. The family P
is sufficient, since p(Z) = 0 for all p means that inf,erp(z — 2) = 0 for all
p, every ball  + Up(e) meets F', and then z € F = F and Z =0 in E/F.

This new topological vector space E/F is the quotient locally con-
vex space of £ modulus F, and the quotient map is continuous, since
p(m(z)) = p(&) < p(x) for every f € P. If E is a normed space, E/F is also
a normed space.

In a locally convex space E with the sufficient family of semi-norms P,
a subset A is said to be bounded if p(A) is a bounded set in R for every
p € P or, equivalently, if for every neighborhood U of 0 we have A C rU for
some 7 > 0.
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Indeed, if every p is bounded on A and if U is a neighborhood of 0, we
can choose Up, (6)N---NUp, () C U and, if p; < M; on A (1 < j < n), then
A C rU by choosing r > M /e.

Conversely, suppose that A satisfies the condition A C TUp(1) = Up().
Then 7 is an upper bound for p(A).

A compact subset K of the locally convex space E is bounded, since
every continuous semi-norm p is bounded on K. If every bounded closed
subset of E is compact, it is said that F has the Heine-Borel property.
As we have seen in Theorem 2.28, a normed space has this property only if
its dimension is finite.

3.1.2. Fréchet spaces. In many important examples, the sufficient fam-
ily of semi-norms will be finite (this is the case of normable spaces, with
a single norm) or countable (as in Example 3.3). In this case the lo-
cally convex space is said to be countably semi-normable and then, if
P = {p1,p2,.-.,Dn,--.} is a sufficient sequence of semi-norms, the sequence
of all Up = (j_; Up, (1/n) forms a decreasing countable local basis of open,
convex, and balanced sets, and (),>; U, = {0}, since the topology is Haus-
dorft.

We can assume p; < py < --- since for the increasing sequence of
semi-norms g1 = p1, g2 = sup(p1,p2), g3 = sup(p1,p2,p3), ... we obtain
Ug.(€) = Up, () N --- N Up,(e) and both families of semi-norms define the
same topology.

The Fréchet norm associated to the sequence of semi-norms will be

the function
o0

e = 32 2ol®)

— l4pa(z)
It is not a true norm, but it has the following properties:
1. z =0 if ||z|| = 0, since pp(z) = 0 Vn implies z = 0.
2. || = =zll = ||=l|, since pn(—z) = pn(z).
3. lz +yll < llll + lyll-

To show this last property, note that

a_ . b
l14+a ~ 140

if0<a<b,and

pa@+y) __ pa(@)tpaly) _ pa(2) Pn(y)
L+pn(z+y) =~ 1+pa(x) +pa(y) ~ 1+pa(z)  1+pa(y) ’
since 1+ pn(z) + pa(y) 2 1+ max(pa(z), Pa(y))-
Then d(z,y) := ||y — z|| is a distance and d(z + z,y + 2) = d(z, y).
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Theorem 3.5. Let || - || be the Fréchet norm of a countably semi-normable
locally convez space E. Then the distance d(x,y) = ||z — y|| defines the
topology of E.

Proof. Let us show that every ball By(0, §) for the distance d contains some
U € U and that, conversely, every Up,, (¢) contains a ball Ba(0,0).
(a) B4(0,1/2F) contains Upk+1(1/2k+1)2
If pry1(z) < 1/25%1) then py(x) < -+ < prya(z) < 1/2k+1 and
k+1 k+1
L1172
lzll <2 n2n 1+ 1/2FH1 Z 2n
n=1 n=k+2

(b) The pm-ball Uy, (1/2¥) contains B,(0, 1/2k+m+1) since

-m pm () k+m+1
— < 1/2
1+ pm(z) /

if |z|| < 1/2%+™+1; therefore py(z)/(1 + pm(z)) < 1/2%*! and it follows
that pp,(z) < 1/2%. O

Let F be a countably semi-normable locally convex space with the suffi-
cient family of semi-norms P. We say that {z,} C F is a Cauchy sequence
if eventually =y — z,, € U for every 0-neighborhood U or, equivalently,
p(zk — zm) — 0 for every p € P.

By Theorem 3.5, every Cauchy sequence of E is convergent if and only
if the metric space E with the distance d defined by the Fréchet norm || - ||
is complete. Then we say that E is a Fréchet space.?

Every Banach space is a normable Fréchet space, but there are many
other important Fréchet spaces that are not normable.

Theorem 3.6. The countably semi-normable space C(R) of Ezample 3.3
with the sufficient sequence of semi-norms pp(f) = ||f|l-n,n) is @ Fréchet
space. It is not normable, since there is no norm || - || with the property

pn(f) < Chll £l (f € C(R), C, > 0 constant),
for alln € N.
Proof. If C(R) were normable, by the norm || - ||, then for f such that

f(n) = nC, we would have nC, < |f(n)| < C,||f|| and n < ||f]| for all
n € N.

2Named after the French mathematician Maurice Fréchet, who with his 1906 dissertation
titled “Sur quelques points du calcul fonctionnel” is considered one of the founders of modern
functional analysis. See footnote 2 in Chapter 1.
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If { .} is a Cauchy sequence, it is uniformly convergent on every interval
[—n,n] to a certain continuous function g, and there is a common extension
of all of them to a function g on R, since g, is the restriction of gn+i.
Obviously, fr — ¢ uniformly on every [—n,n]. a

The construction of Example 3.3 can be extended to the setting of the
class C(Q) of all complex continuous functions f : 2 — C on an open subset
Q of R™, which is the union of an increasing sequence of the compact sets
of R™

(3.2) Ko = Bwo,m) N {z € ; d(z, ) > %}.

Every Ky, is a subset of the interior G, 1 of the next one, Kpmt1. If @ = R™,
K = B(zg,m). Every compact set K C Q is covered by Ky for some N,
since @ = (J°_, G and K c UN_, G € K.

It is also easily shown, as for C(R), that C(Q2), as a complex vector
space with the usual operations and with the topology associated to the
sufficient increasing sequence of semi-norms gm(f) = ||fll k.., is & Fréchet
space. Since ||fllx < gn(f) if K C Ky, the family of all semi-norms || - ||
(K any compact subset of 2) defines the same topology on C(2), which is
again the topology of the local uniform convergence.

To define the important example of C* functions, we introduce some
terminology that will be useful in the future.

Let us denote o = (a1, ...,0,) € N® and D* = 97 - -- 93~ as in Exam-
ple 2.7. For every compact subset K of R", we define

pr.a(f) = |D*flix = sup |D*f(z)|
zeK

if D*f exists.

Then £(2) will represent the locally convex space of all C* functions
on {2 with the topology defined by the sufficient increasing sequence of semi-
norms

G(f) = S ID%fll, = S pryalf)  (G=1,2,...).
el <j el <j

If K is any compact subset of §2, then K C K for all j > N, for some
N € N, so that pk,o(f) < g;(f) for some j, and the topology of £(2) is also
the topology of the semi-norms pg . A sequence {fx} C () is convergent
to 0 if D*fi, — 0 uniformly on every compact of 2, for every a € N™.

For every compact subset K of 2, the collection of functions

(3.3) Dk (Q) = {f € £(Q); supp f C K}
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is clearly a closed subspace of £(2). By extending functions by zeros, we
can suppose that Dg(R2) C E(R™).

Theorem 3.7. £() is a Fréchet space.

Proof. A sequence {f;}32; C £(?) is a Cauchy sequence if and only if
every {D°f; 521 is uniformly Cauchy over every compact set K and then
it is uniformly convergent on K. Hence, D*f; — f* uniformly on compact

sets and then D*f = f® if f = fO. This means that f; — fin £(Q). O

Similarly, for any m € N the vector space £™(Q2) of all C™ functions
f: 2 = C with the topology defined by the semi-norms

pr(f) = > ID*flx

o] <m

is also a Fréchet space. A sequence {fx} C £™(f) is convergent to O if
D* fi; — 0 uniformly on every compact of 2, for every |a| < m.

Also, DR(Q2) = {f € €™(Q); suppf C K} is a closed subspace of
E™(Q), for every compact subset K of .

3.2. Banach theorems

We are going to present some profound results that prove to be very useful to
show the continuity of linear operators. The ideas are mainly due to Stefan
Banach and depend on the following Baire category principle concerning
general complete metric spaces.

Theorem 3.8 (Baire). If {Gn}32, is a sequence of dense and open subsets
in a complete metric space M, then A :=(,2, Gp, is also dense in M. It is
said that A is a dense Gs-set.

Proof. We need to show that A NG # 0 for every nonempty open set G in
M.

Since G is dense, we can find a ball B(z1,m) € GN Gy with r; < 1.
Similarly, we can choose B(z2,r2) C B(z1,71) N G2 and ro < 1/2, since Gy
is dense. In this way, by induction, we can produce

B(2n,mn) C B(Tn-1,7n—1) N Gy, rn < 1/n.
Then d(zp,z4) < 2/n if p,q > n, since zp, T4 € B(Tn,y), and {z,} is a
Cauchy sequence in M. But M is complete, so we have lim, =, = z.

Si{lce zy, lies in the closed set B(zy, rn)_if k > n, it follows that z lies in
each B(zp,m,) C Gpand z € A. Alsoz € B(z1,m1) C Gand ANG # 0. O
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Corollary 3.9. Let F, (n € N) be a countable family of closed subsets of
a complete metric space M containing no interior points for every n € N.
Then the union B = ;2 F;, has no interior point either.

Proof. Every open set G, := F} is dense since, for any nonempty open set
G, G ¢ F,, so that GN Gy # 0. According to Theorem 3.8, A := (.2, Gn
is dense, so that A° = B does not contain any nonempty open set. a

Theorem 3.10 (Banach-Schauder?). Let E and F be two Fréchet spaces.
If T : E — F is a continuous linear operator and T(E) = F, then T is an
open mapping, that is, T(G) is open in F if G is an open subset of E.

In particular, if T is a bijective and continuous linear mapping, then
T is also continuous.

Proof. Let || - || be a Fréchet norm on E and let & be the local basis of
E that contains all the open balls U, = {z € F; ||z|| < r}, and let V be a
similar local basis in F'.

We want to prove that every T'(U,) is a zero neighborhood in F', since
then, if G is an open subset of F and Ta € T(G) (a € G), there exists
B(a,r) = a+ U, C G that satisfies T'(a + U,) C T(G) and Ta is an interior
point in T'(G), since T'(a + Uy) = T'a + T(U,) is a neighborhood of Ta.

Let us start by showing that every T'(U,) is a zero neighborhood in F'.
For every z € E, (1/n)z — 0 and z € nU, ), for some n € N, so that

E = Up_1nU, g and F = T(E) = Up2; nT(U,/2) = Upzy nT(Upj2)- By
the corollary of Baire’s theorem, T'(U, /) has at least one interior point y and

we can find y +V C T(U,j2) (V € V). We have y € T(U,2) = —T(Uy2),
so that V C —y + T(U,/2) C T(Uyy2) + T(Uy/2) € T(Uy) and T(Uy) is a
neighborhood of 0 € F.

If s > 0 and r = s/2, let us prove now that V, C W implies V, C
T'(Us), and then T'(U,) will be a neighborhood of 0.

Let y € V,, so that ||y|| < o. To prove that y € T(Us), we will find
x € Us sothat y =Tx.

Write s1 =8 =) oo, Tn With 7, > 0 and r, = 7. We know that T'(U,)
is a neighborhood of 0 and, for every n > 2 there is a ball V;,, C T'(Uy,) and
we can suppose that o, | 0.

We have y € V, C T(U,,), so that ||y — Tz1|| < o2 with 2, € U,,, i.e.,
|21l < 1.

3 Also known as the open mapping theorem in functional analysis, it was published in 1929
by S. Banach by means of duality in the Banach spaces setting in the first issue of the journal
Studia Mathematica and also in 1930 in the same journal by J. Schauder, essentially with the
usual direct proof that we have included here.
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By induction,

y—Tz € Vo, CT(Up,), |ly—T2z1 — T2 < o3 with ||z2] < r2,

y—Tz1— —Tzp_1 € Vo, CT(Ur,), ly——T2n|| < Ong1 With ||za]| < 7n,

There exists z = )2 | zn, since || 351 znll < 3502 ) 7n — 0 as p — 00
and partial sums of the series form a Cauchy sequence in the Fréchet space

E.
The map T is linear and continuous; thus
n

To=T(lim 3 o) = Jim (Ta oo+ Ton) =y

Moreover ||z = limp—oo || Y opeq 26/l < >op T =8, and z € Us. O

If T: E — F is a continuous function between two metric spaces, it is
obvious that its graph

G(T) :={(z,y) € Ex F; y="Txz}

is a closed subset of the product space FE X F, since if (zp,, Tzn) — (z,y) in
E x F,then Tz, - Tz and y =Tz.

That the converse is true if T is a linear operator between two Fréchet
spaces is a corollary of the Banach-Schauder theorem:

Theorem 3.11 (Closed graph theorem). Let E and F' be two Fréchet spaces.
A linear map T : E — F is continuous if and only if its graph G(T) is closed
in ExF.

Proof. First let us show that E x F', with the product topology, is a Fréchet
space.

Let || - |z and || - ||F be the Fréchet norms defined by the increasing
sufficient sequences of semi-norms {p,} and {g,} for E and F, respectively.
The corresponding product topology on E x F' is the topology associated
to the sufficient sequence of semi-norms 7,(z,y) := max(p.(z), gn(y)), since
the ryp-balls Uy, (€) = Up, (€) x U, (€) form a local basis for both topologies.
Then {(zn,yn)} is convergent in F x F if and only if both {z,} C E and
{yn} C F are convergent, and E X F' is complete if and only if F and F are
complete.

If the vector subspace G(T') is closed in E x F', it is a Fréchet space with

the restriction of the product topology in Ex F', and we denote m1(z,Tz) = z
and mp(z, Tz) = Tz the restrictions of the projections of £ x F' on E and
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F, respectively. They are two continuous linear maps m; : G(T) — E and
m: G(T) — F.

Now m is bijective and, by the Banach-Schauder theorem, the inverse
map 77! : z — (z,Tz) is continuous from E to G(T). But Tz = ma(mix)
and T is continuous as a composition of two continuous maps. d

Remark 3.12. For amap T : E — F between two metric spaces F and F,
the graph G(T') is closed in E x F'if and only if

zn >z and Tz, > y=>y="Tx.

This condition is clearly weaker than a continuity assumption, which means
that
Tn >z =3Jy=1limTz, and y = Tz.
Note that in the case of a linear map T between normed or Fréchet spaces,
if
zn, — 0 and Tz, > y=y=0,
then the graph is closed.

In a Hilbert space H, an orthogonal projection is a bounded linear opera-
tor P such that P2 = P and (Pz,y)y = (z, Py)y. These last two properties
characterize the orthogonal projections:

Theorem 3.13. Let H be a Hilbert space, and let P : H — H be a mapping
such that (Pz,y)g = (z, Py)u. Then P is linear and bounded, and it is an
orthogonal projection if P2 = P.

Proof. The linearity of P is clear; see (b) in Theorem 2.35. To prove that
P is bounded, suppose that z; — 0 and Pz, — y; then, for any z € H,

(z,y)g = liTILn(a;, Pz,)g = liTILn(Pw, Zn)g = 0.

Choose z = y and then y = 0, so that the graph of P is closed.

If P2 =P, let F = P(H) and Q = I — P. Then also (Qz,y)y =
(z,Qy)H, @* = Q, and F = KerQ is a closed subspace of H. Furthermore
Q(H) = F, since (Pz,Qy)y = (z, P(y— Py))y =0 and z = Pz + Qz =
y+ 2z € F® F as in Theorem 2.35(b). d

It is a well-known elementary fact that a pointwise limit of continuous
functions need not be continuous, but with the Banach-Steinhaus theorem*
we will prove that, for Banach spaces, a pointwise limit of continuous lin-
ear operators is always continuous. This theorem is an application of the
following uniform boundedness principle:

4First published in 1927 by S. Banach and H. Steinhaus but also found independently by the
Austrian mathematician Hans Hahn, who worked at the Universities of Vienna and Innsbruck.
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Theorem 3.14. Let T; : E — F (j € J) be a family of bounded linear
operators between two Banach spaces, E and F'. Then

(a) either M := supje; ||T;|| < oo, and the operators are uniformly
bounded on the unit ball of E, or

(b) 9¥(z) := sup,e; | T(z)||F = oo for every x belonging to a Gs-dense
set ACE.

Proof. The level sets Gp, := {p > n} of the function ¢ : E — [0, 00]
are open subsets of E, since Gn = U;c;{2; | Tzl > n} and every T; is
continuous. Now we consider two possibilities:

(a) If one of the sets Gy, say G, is not dense in E, there is a ball B(a, )
contained in G§,, so that

¥(a + z) < m whenever ||z|g <,
which means that ||Tj(a + z)||r < m for all j € J if ||z||g < r. Then
173 (@)lF < ITj(a +2)|r + [Ti(a)llr <2m  (lzle <)
or, equivalently, ||T;(z)||r < 2m/r if ||z||g < 1, for every j € J, and it

follows that M < 2m/r < oo.

(b) If every Gy, is dense, then (z) = oo for every z € A := o Gy,
since then 1 (z) > n for every n € N. By Theorem 3.8, A is a dense subset
of E. a

Theorem 3.15 (Banach-Steinhaus). Let T, : E — F (n € N) be a sequence
of bounded linear operators between two Banach spaces such that the sequence
{Tnz} is bounded for every z € E. Suppose further that the limit lim,, T, (x)
exists in F' for every point x belonging to a dense subset D of E.

Then T : D — F such that Tz = lim, T,,(x) extends to a bounded linear
operator T : E — F such that

||| < liminf,||T,|.

Thus, every sequence {T,,} C L(E; F) such that Tz = limy, T, (z) exists
for every x € E defines a bounded operator T € L(E; F).

Proof. By Theorem 3.14, M := sup,cn || Tn|| < 0.

For every z € E, {T,(z)} is a Cauchy sequence in the Banach space F.
Indeed, if € > 0, there exist z € D so that ||z — z||g < € and n € N so that
|T5(2) — T4(2)||r < € whenever p, g > n. Then

1 T5(2) — To(@)llF < 1 Tp(x) — Tp(2)llF + | Tp(2) — To(2)llr
+ | To(2) — Ty(2)l|lF < 2Me +e.
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We define T'(z) := lim, T,,(z) and T': E — F is obviously linear. Moreover,
1T ()| F = lim || T (2)|| F < liminfy || Toll|2l| £

and it follows that ||T|| < liminf,||T},]|. O

3.2.1. An application to the convergence problem of Fourier series.
If f € LY(T) and cx(f) = [5 f(t)e—k(t) dt, recall that

c(f) = {ck(f) e o0 € €O
and obviously |lc(f)|loo < |If]l1-

The Fourier mapping f € L(T) + ¢(f) € cp is continuous and injective,
but it cannot be exhaustive, since in this case the inverse map would also
be continuous and

lle(Hlloo > 811112

for some § > 0, which leads to a contradiction. Indeed, if Dy is the Dirichlet
kernel (see (2.23)), then ||c(Dn)|lco =1 and ||Dy||1 — o0, since

2 (" sin[(N+1/2)t]|dt: E/N+1/2 | sint| i@t
t m™Jo

D >
IDwll > = t

0
N ki N
2 1 / 4 1
> =) — |sint|dt == ) —.
T ; km J—1yn 2 g:: k

The Fourier sums are the operators Sy = Dy* : C(T) — C(T). Their
norms Ly := ||Sy|| are called the Lebesgue numbers; obviously Ly <
|Dn|l1 and it is shown that

Ly = Dnl
holds by considering a real function g which is a continuous modification of
sgn Dy such that |g| <1 and |Sng| > ||Dn|l1 — €.
Theorem 3.16. (a) There are functions f € L'(T) such that SNf / f in
LY(T) as N — co.

(b) There are functions f € C(T) such that SNf / f in C(T) as N —
0o. In fact, for every z € R there is a dense subset Ay of C(T) such that,

for every f € Az, supy |Sn(f,z)| = o0
Proof. (a) Note that Ly — co. According to Theorem 3.14,
sup || Sy (f)ll1 = o0
N

for every f belonging to a dense set A C C(T).

(b) Again, the linear forms un(f) := Sn(f,z) are continuous on C(T),
with ||uN|| = Ly. O
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Remark 3.17. By the Fischer-Riesz Theorem 2.37, Sy f — f in LP(T) for
every f € LP(T) if p = 2, and it can be shown, though it is much harder,
that this is still true when 1 < p < co and p # 2.

The convergence of the Fourier series fails in L!(T), but according
to (2.27) the trigonometric polynomials are dense in every LP(T) if 1 <
p < 00.

3.3. Exercises

Exercise 3.1. Suppose A is a convex absorbing subset of a vector space F,
and let

ga(z) == inf{t > 0; z € tA},
which is called the Minkowski functional of A. Denote B = {qA < 1}
and B = {q4 < 1}.

(a) Prove that ga(z +y) < ga(z) + q4(y), ga(tz) = tqa(z) if t > 0, and
that BC AC B and g = g4 = q5-

(b) Suppose A is also balanced and |J;,5,tA = E. Prove that g4 is a
semi-norm.

Exercise 3.2. Suppose A is a subset of a vector space E. Prove that the
convex hull of A, defined as

n
co(A) = {tia1+ - +tnan;n €N, ;> 0, > t;=1,a;€ A1<j<n)},
j=1
is the intersection of all the convex subsets of E that contain A.
If E is a locally convex space and A is bounded, prove that co(A) is also
bounded and that, if A is open, then co(A) is also open.

Exercise 3.3. Prove that in every topological vector space E the family of
all balanced open neighborhoods of zero is a local basis of E.

Exercise 3.4. Prove that the class H () of all holomorphic functions on an
open subset 2 of C is a closed vector subspace of C(2) and of £(2). Hence,
H(2) is a Fréchet space with the topology of the semi-norms || - | (K C
compact).

Exercise 3.5. Show that, for every p € [1, 00|, the sequence of semi-norms

() =1fPNp® (=0,1,..)
defines the topology of Dy, y(R).
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Exercise 3.6. Every Fréchet norm, | - ||, satisfies the following properties:
(@) |z|| =0=z=0.
(b) (A < 1= |lAz]| < |||
(©) lle +yll < llol + ]l
(d) limy—o || Az]| = 0.
(€) limyz) 0 [[Az]| = 0.
) || - || is not a norm.

Exercise 3.7. If || - || is the Fréchet norm on C(R) associated to the semi-
norms pn(f) = ||fll(-n,n)» show that || f|| = 1/2, |lg|| = 50/101, and ||A| >
1/2if f(z) = (1 —|z|)*, g(z) = 100f(xz — 2), and h = (f + g)/2, and prove

that the closed ball B4(0,1/2) for d(f,g) = ||g — f|| is not convex.

Exercise 3.8. If E = E' x --- x E™ is a finite product of Fréchet spaces
endowed with the product topology, then prove that E is also a Fréchet
space and extend this result to countable products.

Show that £(R) can be described as a closed subspace of [[o<f<oo C(R).

Exercise 3.9. (a) Prove that C(R) does not have the Heine-Borel property
by showing that the countable set of all “triangle functions”

f (t) — d(t’ [_l/na l/n]c)
" . |t| +d(t, [_1/n)1/n]c)
is bounded and its closure is not compact.
(b) Extend this result to C(§2), where Q is an open subset of R™.

Exercise 3.10. Suppose that E; and E» are two Fréchet spaces and that
M is a dense subspace of E;. Prove that every continuous linear mapping
T : M — FE5 has a unique continuous linear extension T : E1 — Fs.

Exercise 3.11. Prove the following statements:

(a) If E/F is a quotient locally convex space and 7 : E — E/F is the
quotient map, then the image by 7 of an open subset of E is open in E/F.

(b) If E is a Fréchet or Banach space, then E/F is also a Fréchet space
or Banach space, respectively.

(c) If F and M are two closed subspaces of a Banach (or Fréchet) space
FE and M is of finite dimension, then F' + M is also closed in E.

Exercise 3.12. Let {ex}rez be an orthonormal basis of a Hilbert space H.
Let u, = e_, + ne, and

F:=lep;n>0], M := [ug; n>1].
Prove that F' and M are two closed subspaces of H such that F' + M is
dense and not closed in H. Note that >, te_, € £2(Z)\ (F + M).

n=1n
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Exercise 3.13. As an application of Corollary 3.9, prove that [a,b], and
every compact metric space without isolated points, is uncountable.

Exercise 3.14. Prove that in an infinite-dimensional Banach space there is
no countable algebraic basis.

Exercise 3.15. Find a noncontinuous function f : R — R with a closed
graph in R2.

Exercise 3.16. If T : C[0,1] — C][0,1] is a linear map such that Tf,(t) —
Tf(t) at every t € [0,1] whenever f, — f in C[0,1] (that is, uniformly),
show that T is continuous.

Exercise 3.17. Assume that C[0,1] and C?[0, 1] are endowed with the sup
norm || -||j01j. Show that the graph of the derivative operator D : C[0,1] —
C[0,1] (Df = f’) is closed but the operator is unbounded. Why does this
not contradict Theorem 3.117

Exercise 3.18. Let T : E — F be a linear map between two Fréchet spaces.
Prove that, if y = 0 whenever £, — 0 in E and Tz, — y in F, then T is
continuous.

Exercise 3.19 (Uniform Boundedness Principle for metric spaces). Let M
be a complete metric space and f; : M — R (j € J) a family of continuous
functions which is bounded at each point z € M, |f;(z)| < C(z) < oo for all
J € J. Prove that the functions f; are uniformly bounded on a nonempty
open subset G of M.

Exercise 3.20 (Approximate quadrature). Let {J,} be a sequence of linear
forms on C[0, 1] of the type
N(n)

=3 A5 (8,

where, for each n, {t’,;‘}fcv:(’f) is a given finite sequence of points in [0, 1] that
are called the nodes of J,.
The sequence is called a quadrature method if

/ ' f@ydt = lim Ju()
0 n—oo

holds for every f € C[0,1].

Prove that |Jullcjo,1y = ZN(n) |A%| and that {J,} is a quadrature
method if and only if the following conditions are satisfied:

(1) limp—00 Jn(zF1) = 1/k for every k € N and
(ii) sup,, ZN(n) AE| < oo.
If A¥ > 0 for all n and k, then (i) implies (ii).



3.3. Exercises 91

Exercise 3.21. (a) Suppose E1, Ep, and F' are three Banach spaces. Prove
that a bilinear map B : E; X Fy — F is continuous if and only if it is
separately continuous; that is, the linear maps B(:,y) and B(z,-) are all
continuous.

(b) If E is the normed space of all real polynomial functions on [0, 1] with

the norm [|f[ly = f |f(t)| dt, prove that B(f,g) := [y f(t)g(t) dt defines a
separately continuous bilinear map B : F X E — R which is not continuous.

Exercise 3.22. Let Fj, F», and F be three Banach spaces. Prove that a
bilinear map B : Fy X E; — F is continuous if and only if its graph
G(B) := {(z1,72,9) € E1 X E2 X F; B(x1,22) = y}
is a closed subset of the product space Fy, X Ey x F.
Exercise 3.28. Suppose T : L!(0,1) — L(0,1) is a bounded linear oper-

ator and p,q > 1. If T(LP(0,1)) C L9(0,1), is it necessarily true that the
restriction 7" : LP(0,1) — L%(0,1) will also be continuous?

References for further reading:

S. Banach, Théorie des opérations linéaires.

S. K. Berberian, Lectures in Functional Analysis and Operator Theory.
B. A. Conway, A Course in Functional Analysis.

R. E. Edwards, Functional Analysis, Theory and Applications.

G. Kothe, Topological Vector Spaces I.

R. Meise and D. Vogdt, Introduction to Functional Analysis.

W. Rudin, Functional Analysis.






Chapter 4

Duality

An essential aspect of functional analysis is the study and applications of
duality, which deals with continuous linear forms on functional spaces.

In the case of a Hilbert space, the projection theorem will allow us to
prove the description of the dual given by the Riesz representation theorem
and by its extension known as the Lax-Milgram theorem, which is useful
in the resolution of some boundary value problems, as we will see in some
examples in Chapter 7.

But if we are dealing with a more general normed space, or with any
locally convex space, to ensure the existence of continuous linear exten-
sions of continuous linear functionals defined on subspaces, we need the
Hahn-Banach theorem. This theorem adopts several essentially equivalent
versions, and we will start from its analytical or dominated extension form
and then the geometric or separation form will follow.

We include in this chapter a number of applications of both the Riesz
and the Hahn-Banach theorems, such as the description of the duality of LP
spaces, interpolation of linear operators, von Neumann’s proof of the Radon-
Nikodym theorem, and an introduction to the spectral theory of compact
operators.

4.1. The dual of a Hilbert space

In this section, H will denote a Hilbert space. Its norm | - || is associated
to a scalar product,

Izl = (z,2)n
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Note that, for every z € H, (-,z)g is a linear form on H. We will see that
its norm is equal to ||z||z and that every continuous linear form is of this
type, as for Euclidean spaces.

4.1.1. Riesz representation and Lax-Milgram theorem. The decom-
position H = F @ F1 given by the Projection Theorem 2.35 allows an easy
proof of the following fundamental representation result concerning the dual
of a Hilbert space.

Theorem 4.1 (Riesz representation). The map J : H — H' such that
J(z) = (-,z)g is a bijective skew linear isometry, that is,

W) ¢ 2)ella = ll=llH,

(2) J(@1+ 32) = J(21) + J(32),

(3) J(Az) = AJ(z), and

(4) ifu € H', thenu = (-,z)y for some z € H.

Proof. The Schwarz inequality (2.11) means that ||(-,z)u||lg’ < ||z||a, and
the linear form (-, z) g reaches this value ||z|| g at o = z/||z|| &, which proves
(1).

The identities (2) and (3) are obvious.

Finally, if 0 £ v € H' and F = Keru, then F # H = F & F* and there
exists z € FL, ||z||g = 1. Since u(z)z —u(z)z € F for every z € H, we have

0 = (u(2)z — u(z)z, z) g, which is equivalent to u(z) = (z,u(z)z)y. Thus,

u=(-,u(2)2)q. O

Example 4.2. By an application of the Riesz representation theorem to
the Hilbert space L? = L?(u),

(L*) ={(-,9)2; g € L?},

and g — (-, g)2 is a skew linear isometric bijection from L? onto (L?)’. Since
g € L? — § € L? is also a skew linear isometric bijection, g + (-,7)z is a
bijective linear isometry from L? onto (L?)’ that allows us to consider L? as
its own dual. The notation

(fr9) 1=/fgdu (f,g € L?

is a usual one, u = (-, g) (g € L?) are all the continuous linear forms on L?,
and [[ul| = ||g]l2.

It is customary to identify (-, g) with g and to say that the dual L?(u)’
of L%(u) is L?(u).
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The following extension of the Riesz theorem was given by P. D. Lax!
and A. Milgram when studying parabolic partial differential equations:

Theorem 4.3 (Lax-Milgram). Let H be a Hilbert space and suppose that
B : Hx H — K is a bounded sesquilinear form; that is, B satisfies the
conditions

(1) B(-,a) is linear and B(a,-) skew linear for every a € H and

(2) |B(z,y)| < Cllzl|lellylle for some constant C, for all z,y € H.

If B is coercive, meaning that
|B(z,2)| > cllz|®  (z € H)

for some constant ¢ > 0, then for every u € H' there exists a uniquely
determined element y € H such that u = B(-,y). Hencey € H + B(-,y) €
H' is a bijective skew linear map.

Proof. By virtue of the Riesz Theorem 4.1, for every y € H, there is a
unique T'(y) € H such that B(z,y) = (z,T(y))y for all z € H, and it is
readily seen that the mapping T : H — H is linear. For instance,

(:I:,T(/\y))H = B(IB, ’\y) = B(X.’B, y) = (:\m)T(y))H = (.’B, ’\T(y))H’
and then T'(Ay) = AT'(y).

It follows from the assumption |(z,T(y))n| = |B(z,y)| < Cllz|allylla
that
ITW)lla < Cliylla

and T is bounded. Similarly, by the coercivity assumption,

clyld <16, T@)al < el T@)| &,
so that
clylla < ITWa < Clylla.

Obviously T is one-to-one, and these estimates imply that T'(H) is closed
since, if T(yn) — 20, then

cllyn = ymllar < T (yn) = T (ym)ll &,
and we can find yo = limy,, so that zo = T'(yo) € 2(H).
To prove that T is onto, suppose that z € T(H)L, so that B(z,y) =0
for all y € H and then 0 = B(z, z) > b||z||x; thus z = 0 and T(H)* = {0},
which proves that T(H) = H, since T'(H) is closed.

This shows that for every u € H’ there is an element T'(y) € H such
that u(z) = (z,T(y))m, and then u(z) = B(z,y) for all z € H.

LPeter David Lax, while holding a position at the Courant Institute, was awarded the Abel
Prize (2005) “for his groundbreaking contributions to the theory and application of partial differ-
ential equations and to the computation of their solutions”.
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Note that y is unique, since it follows from B(z,y1) = B(z,y2), or
B(z,y) = 0 for y = y1 — ya, that 0 = |(y, T(y))r| = |B(y,y)| > cllyll} and
then y = 0, and hence y; = y». O

4.1.2. The adjoint. Suppose T’ € L(H1; Hz), where H; and H; are Hilbert
spaces. The transpose 1" acts between the duals Hj and Hj by the rule
T'v =voT; that is,

(4.1) (T'v)(z) =v(Tz) (z € Hy, v € Hy).

By the Riesz representation Theorem 4.1, v = (-,y) g, and T'v = (-, T*y)m,
for some T*y € H,, and (4.1) becomes

(4.2) (z,T*y)m, = (Tz,y)g,  (z € Hy, y € Ha).

The adjoint of T is the linear operator T* : Hy — H; characterized by
the identity (4.2), and its linearity follows from this relation. For instance,
(w’T*(yl + y2))H1 = (Tm’yl)Hz + (T:B, yZ)Hz =(z,T"y + T*y2)H1

for every x € Hy, and then T*(y1 + y2) = T*y1 + T*ya.

Clearly T** = T and (ST)* = T*S™* if the composition is defined.
Theorem 4.4. The map T € L(Hy; Hz) — T* € L(Hy; Hy) is a skew linear
isometry such that |T*T| = ||T||* = | TT*||, and for every T € L(H1; Hz)
the following properties hold:

(a) (ImT)*+ = Ker T*,

(b) (KerT*)t =TmT,

(c) (ImT*)*+ = KerT, and

(d) (KerT)t = TmT*.
Proof. Since (z,(A\T)*y)m, = (A\Tz,y)n, = M=, T*Y)n, = (<, NT*y) b, , we
obtain (AT')* = AT™*. It is also clear that (S +T)* = S* +T™.

By the Riesz representation Theorem 4.1,

(4.3) IT||= sup |Tzllm,=  sup  |(y,T2)m,l-
llzll ey <1 || £y 1yl 21, <1
Hence,
IT*=  sup  |(@T'Y)ml=  sup (4 T2)m,| = ||T|
llll &y syl <1 1]l £ry 19l 1y <1
and also
IT|?= sup |Tzl}, = sup (z,T*Tz)m, <|T*T| <|T|>
||| £, <1 ||l £r, <1

To prove (a), note that (y, Tz) g, = 0 if and only if (T™y, ) g, = 0, which
holds for every z € H when T*y = 0. The remaining properties follow very
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easily from the identity 7** = T and from the relation F1+ = F, if F is a
vector subspace of H; (or Hz), contained in Theorem 2.36. a

Remark 4.5. It is worth observing that, in the complex case, (A\T')* = AT*,
but (AT)" = AT’, since (AT)'(v) =vo (A\T) = voT.

An operator T' € L(H) is said to be self-adjoint if 7* = T. By Theo-
rem 2.35(b), every orthogonal projection is self-adjoint.

The Hilbert-Schmidt operators Ty, defined by integral kernels K €
L*(X xY) as

Ty f(z) = /Y K(,9)f () dy,

form another important family of bounded linear operators between Hilbert
spaces. Here X and Y are assumed to be two o-finite measure spaces.

Theorem 4.6. If K € L*(X xY), then Tk : L*(Y) — L*(X) and | Tk| <
|K|l2- The adjoint T}, : L*(X) — L%(Y) is the Hilbert-Schmidt operator
Tk~ defined by the kernel K*(y,z) = K(z,y). Hence, if X =Y, Tk 1is
self-adjoint when K(y,z) = K(z,y) a.e. on X x X.

Proof. By Schwarz inequality,

| xGuwla < ([ xeora)”( [ 1oea)”

with [, |K(z,y)?dy < oo ae., since [y [, |K(z,y)?dyde < oo. Then
Tk f(z) is defined a.e. and

T f (@) < /Y K (z,v)Pdy /Y 1F ) Pdy.

By integrating both sides, ||Tk fllz < | K||2|| f]l2-
Fubini’s theorem shows that (Tk f,g)2 = (f, Tk*9)2- U

The description (4.3) of the norm of an operator by duality has a useful
variant for self-adjoint operators:

Theorem 4.7. If T € L(H) is self-adjoint, then (Tz,z)y € R for every
z € H and

1Tl = sup |(Tz,z)nl.

llzll =1

Proof. We call S := sup|, =1 (T, z)n|, so that |(T'z,z)u| < l|z||%S.
Since S < ||T'||, we only need to show that | Tz||g < S if ||z||g = 1, and we
can assume that Tz # 0.
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We will use the polarization identities, which extend (2.15) and (2.16),

1
(T2, y)u = 7 (T(@+y), 2 +y)u — (T(z ~y),z —y)n)
if K=R and
1
(Tz.y)n = (T +y)z+y)n - (T@-y),e -y
+i(T(z +iy),z + i)y — i(T(z — 1y), % — iy)H)
in the complex case. They are checked by expanding the inner products.
Since (Tz,z)g = (z,Tz)n € R,
1
®(Tz,y)r = 7 (T(@+),2 +y)u - (T(@ —y),5 — y)n).

Let ||z||g =1 and y = (1/||Tz||zr) Tz so that also ||y||z = 1 and

S S
T2l = R(Tz,y)n < (2 + vl + = - yllE) = Z(l2lE + lyllz);
hence ||Tz||lg < S. O

4.2. Applications of the Riesz representation theorem

Throughout this section, (2,8, ) will be a o-finite measure space. Our
aim is to obtain some consequences of the duality result of Example 4.2 for

L*(u).

4.2.1. Radon-Nikodym theorem. Suppose 0 < h € L'(u). The finite
measure

v(A) :=/Ahd,u,

on (2, B) is such that v(A) = 0 if u(A) = 0. When this happens, we say
that v is absolutely continuous (relatively to p) and write v << p.

Theorem 4.8 (Radon-Nikodym). Let p and v be two o-finite measures
on (,B). If v << u, there exists a unique a.e. determined nonnegative
measurable function h such that

(4.4) V(4) = / hip  (A€B).
A
If v is finite, h € L'(u).

Proof. First assume that p and v are finite and define A = p + v. Then
A(A) = 0 if and only if u(A) = 0.
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The linear form u(f) := [ fdp is bounded on the real Hilbert space
L?(u) and also on L%()), since u < X. Then there exists a unique function
g € L?()\) such that

[1du=[ 1o (rerron.

We rewrite this identity as

(45) [ ta-gdu= [ sqav
Formally (1 — g) dp = gdv and we will try
h = 1-g
g

We need to prove that 0 < g <1 p-a.e.

First F:= {g < 0} is p-null, since for f = xr we obtain from (4.5) that
w(F) < [xr(l—g)du= [xrgdv < 0.

To prove that G := {g > 1} is also a p-null set, assume that u(G) > 0.
Then, by taking f = xg, again from (4.5) we obtain that 0 > [(1—g)dp =
Jg 9dv > 0, which is impossible.

By changing g on a p-null set if necessary, 0 < g < 1 everywhere. The
function k = fg is A-integrable, and equation (4.5) reads

/khduz/kdu.

If k = xa and f = xa/g € L?()), we obtain [, hdu = v(A).

For any A € B, by denoting A, = AN {g > 1/n}, we obtain x4,/g €
L*(\) and [, hdu = v(A,). Then, by monotone convergence, [, hdu =
v(A).

Observe that 0 < h € L'(u) and it is unique since, if [ 4 fdp =0 for
every A € B, then f =0 p-a.e.

Now let 4 and v be o-finite. We can find Q, € B (n € N) with Q, 1 Q
and p(Qn),v(Qn) < co. If A C Qp, then v(A) = [, hndp, with hy(z) =

hn+1(z) a.e. on y, and we can take hy = (hnt1)|q,. We define h, = 0 on
Q¢ and the nonnegative function h(x) := lim, h,(z) is measurable; then, by
monotone convergence,

v(A) =limv(ANQ,) =lim hdy = / hdp.
n " JANQ, A
The uniqueness of A follows from the uniqueness on every €2,. O

Formula (4.4) is often represented by the notation dv = hdy, and h is
called the Radon-Nikodym derivative of v.
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4.2.2. The dual of LP. Recall that, if 1 < p < oo, LP = LP(u) is the
Banach space of all y-measurable (real or complex) functions f defined by

the condition
1/p
1= ([ 19Pdu) " < oo,

modulo the subspace of functions vanishing a.e., with the usual modification
for p = oo.
By denoting

(f,9) = / fgdu

with p’ = p/(p—1) (p = 0 if p =1, and p’ = 1 if p = 00) if the integral
exists, then, by Holder’s inequality,

(AR <IFpllgly  (f € LP(n), g € L7 ().

Note that, for every g € L¥, (-,g) € (L?)" and ||(-, 9)||(zry < llglly for
any p € [1,00], and we say that g € L s (,g) € (LP)’ is the natural map
from L” into the dual of LP.

We know from Example 4.2 that L2(u)' can be identified with L?(pu).
As an application of the Radon-Nikodym theorem, we will show that LP(u)’
can also be identified with L (1), if 1 < p < oo.

To prepare the proof, we will consider positive linear forms on the real
LP spaces. We say that v € (LP)’ is positive if v(f) > 0 when 0 < f € L?,
and then we write v € (LP),. Also, f € (LP)* if f € L? and f > 0 a.e.

Lemma 4.9. (LP)' = (L?), — (LP)/,.
Proof. Let v € (L?)" and f € (LP)* and define

v4(f) := sup v(g).
0<g<f

Obviously, v+ (af) = av,(f) if « € Rt and f € (LP)*. To show that v, is
also additive, we observe that, if fi, fo € (L?)*, then

vi(f1) +ve(fo) = sup v(g1 + g2)
0<91<f1,0<892< f2

< sup v(g) = v (fi + fo).
0<g<fi+f2

For the reversed inequality, we claim that
{ge @) 9<fi+flc{ge TP 9< it +{ge (L))" 9 < fo}

To prove this, if 0 < g < f1 + f2 and g1 := inf(g, f1), then the function
92 := g — g1 > 0 satisfies g < fo since, when g;(z) = fi(z),

g2(z) = g(z) — fi(z) < fo(x)
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and ga2(z) =0 < fo(x) when g1(z) = g(x). Hence, also
v (f1 + f2) S v (f1) + v ().

Every real function f € LP admits a decomposition f = f; — fo with
f1, f2 € (LP)*, for instance by taking f; = f+ = sup(f,0) and fo = f~ =
Sup(—f) O)a and

v4(f) = v4(f1) — v+(f2)

does not depend on the decomposition, since f; — fo = f* — f~ implies
v4+(f1) + v () = v (fF) + v4(f2).

It is clear that vy (Af) = Avy(f) in both cases A > 0 and A < 0
(we(=f) = v (f7) — v+ (fY) = —vi(f)). Additivity also holds for v,
since

vr(fit+fa) = v ((fF+5) -0+ 1))
= (v+(f) +v-(F)) = (+(fD) + v+ (f7)
= v4(f1) +ve(f2),

and it is continuous, since

o+ (A < v (fF) + v+ (F7) < Mvllzey (F Ml + 17 llp) < 2lvllzey 1 llp-

Finally, v_ := vy — v is also linear and continuous, and
v-(f) = sup v(g)—v(f) =0
0<g<f
if f>0. a

Theorem 4.10 (Riesz representation theorem for (LP)'). Suppose 1 < p <
00. For everyv € LP(p) there is a uniquely determined function g € LP (1)
such that

W)= [ fedn  (feD),
and ||glly = [[vll(zey-

Proof. (a) First let u(Q) < oo and v € (LP)/,.

By v(A) :=v(xa) (|xallp = #(A)}P < 00) we obtain a finite measure v
on (£, B), since v(0) = 0 and

N N
I/(t:JAn) = v(li]{,n; XAn) = li]{,n;U(XAn) = ;I/(An).

It is clear that v << p, since u(x4) = w(0) = 0 if u(A) =0.

By the Radon-Nikodym theorem for finite measures, v(x4) = v(4) =
[4 hdp for a unique integrable function h > 0, and also v(s) = [ shdpy if s
is a simple function.
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If 0 < f € LP, we choose simple functions s, so that 0 < s, 1 f. Then
8n — f in LP by dominated convergence; hence

v(f) = limv(sp) =lim/ Sphdu = / fhdu
n n
by monotone convergence, and [ fhdu < ||[v]lLo(uy |1 fllp-

(b) In the general o-finite case and for v € LP(u),, let Q@ = Wz, D
with p(Qp) < 0.

We obtain h, associated to the restriction v, of v to LP(u,) as in (a),
and we extend hy with zeros. Then, if h:= )" hn, > 0 and f € LP(p), we
can write

() = [ S thmdu=3 [ fhdu= 3 v(fxa,) = o(h).

Note that fh is integrable, since ) . fxa, = f in LP(u) by dominated
convergence, the last equality follows, and

[ismdis =3 [ 1ol di=o151) < oo

(c) If v = vy —v_ € (LP), by (b) there exists h so that fh € L' for
every real function f € L? and v(f) = [ fhdp.

(d) In the complex case, if v € (LP)', we obtain h = hy + ihy so that
fhi, fhe € LY for every f € LP, Rv(f) = [ fhidu, Sv(f) = [ fhidp. Then
v(f) = [ fhdp if f € LP is a real function. By linearity, also v(f) = [ fhdu
for any complex function f € LP.

(e) The function h obtained in (c) and (d) belongs to LP' and ||h||,y =
Ivll(zey:

Suppose first that p > 1 and let B, = Q, N {|h| < n}, with Q, 1 Q.
Then the functions f, = |h[?'~1sgn (h)xp, (sgnz = |z|/z, with 0/0 := 0)
belong to LP, v(f,) = [ |h|” x5, du, and

[ du < Wl lfally = ol ([ 7 d)

n n

1/p

By monotone convergence, [[hl% < lvlloylIAIE/?, and [kl < [vllzsy:-
Since v = (-, h), by Holder’s inequality ||v||(zry < [|Allp-

When p = 1, we also have ||v]|(z1y < ||h]lo. Suppose [[v]l(z1y +€ <
||2]|co; then, since the measure is assumed to be o-finite, there exists some
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A € B such that 0 < p(A) < oo and |h(z)| > [jv]|(z1) + € for every z € A.
If fn := sgn(h)xB.n4, then

o(f) = /B IHdu> (ol gy +)u(Ban 4

and, since also v(fn) < [[vllzryllfalli = lvll(z1ypw(Br N A), we arrive at a
contradiction by allowing n 1 co.

(f) Finally, h is uniquely determined since, if [, hdu = 0 for every A € B
with finite measure, then h = 0 a.e. a

Note that if 1 < p < 0o, by Theorem 4.10, the natural linear mapping
g — (-,g) is a bijective isometry from L” onto (LP)’ which allows us to
represent by L¥ (1) the dual of L?(1) and to describe the LP-norm by duality:
(4.6) ”9"1}’ = sup [(f,9)|= sup  [{f,")],
Ifllp<1 [s]lp=1; s€S
where S denotes the vector space of all integrable simple functions.

Indeed, S is a dense subspace of LP, so that the norm of u = (f,-) does
not change when we restrict v to this subspace.

Remark 4.11. Similarly, if 1 < p < oo, /' can be regarded as the dual
of £° throughout the mapping y € £ — (-,y) € (/), now with (z,y) =
Y omey TnYn, T = (zn) € P, and y = (yn) € ?°'. Recall that ¢ is the space
LP associated to the counting measure on N (see Exercise 1.11).

4.2.3. The dual of C(K). Another fundamental theorem of F. Riesz shows
that every continuous linear form on C(K) is represented by a complex
measure.?

Lemma 4.12. For every complexr measure p there is a |p|-a.e. uniquely
defined |u|-integrable function h such that |h| = 1 which satisfies

(@.7) u(B) = /B hdu — (BeB).

Proof. The existence of h € L!(|u|) follows from an application of the
Radon-Nikodym theorem to ®ut, Ru~, Sut, and Su~. By (1.7), the four
of them are finite and absolutely continuous with respect to ||, so that they
have an integrable Radon-Nikodym derivative.

The uniqueness of h follows by noting that [z hd|u| = 0 VB € B implies
h =0 a.e.

2In 1909, F. Riesz obtained the representation of every u € C[0,1]’ as a Riemann-Stieltjes
integral u(g) = fol g(z) dF(z) when solving a problem posed by Jacques Hadamard in 1903. J.
Radon found the extension to compact subsets of R™ in 1913, S. Banach to metric compact spaces
in 1937, and S. Kakutani to general compact spaces in 1941.
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If |u|(B) > 0, then | [ hdlul| = |u(B)| < |u|(B) and

(48) s ] <1

which implies |A(z)| < 1 a.e.
Indeed, D(0,1)¢ C C is a countable union of discs D = D(a,r) and it is
enough to prove that |u|(h~1(D)) = 0.

If we assume that |u|(B) > 0 for B = h~1(D), then
1 / 1 /
—— | hd|p|—a| £ ——= h—al|dluy|l <r
[y Jo e | < gy J, el

m}?) /B hdlul ¢ D(0, 1),

which is in contradiction to (4.8).

To show that also |h(z)| > 1 a.e., let us check that B(r) := {|h| < r} is
a |p|-null set for every r < 1. If B(r ) Uk_l B,

ZmBu—Z[/ hlul| < Tlul By) = rlul (Br)

and |p|(B(r)) < r|u|(B(r)), so that |u|(B (r)) =0, since r < 1. O

and

The identity (4.7) is represented by du = hd|u|, which is called the
polar representation of .

It is natural to define LP(u) := LP(|u|) and [ fdu := [ fhd|u| for every
f € L (w). Obviously | [ fdu| < [ |f]d|yl.
Now we are ready to prove the Riesz representation theorem.

Theorem 4.13. Let K be a compact subset of R™ and let C(K) be the real
or complex Banach space of all continuous functions on K, with the usual
sup norm.

If u is, respectively, a real or complex Borel measure on K, then

uu(g) == / gdu

defines a continuous linear form on C(K), and p — u, is a bijective linear
map between the vector space M(K) of all Borel real or complex measures
on K and the dual space C(K)'.

Proof. Since |u,(9)| < [ gl d|ul < |lgllx|pl(K), it follows that

lupllery < 1ul|(K)
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and w,, is a continuous linear form.?

Conversely, if v € C(K)', we are going to prove that v = wu, for some
u € M(K).

In the case C(K) = C(K;R) of real functions, and with the same proof of
Lemma 4.9, every v € C(K; R)' is the difference v = v, —v_ of two positive
linear forms v4,v— € C(K)!.. They are defined on any positive function
feC(K)+ by

v(f) = sup v(g),
0<g<f

and v— = v — v4.

Every f € C(K) admits a decomposition f = f; — fa with fi, fo € C(K),
for instance by taking fi = f* = sup(f,0) and fo = f~ = sup(—f,0)
and, as in Lemma 4.9, vy (f) := v4(f1) — v4+(f2) does not depend on the
descomposition, since f1 — fo = f*— f~ implies vy (f1)+v+(f7) = v (F )+
v4(f2).

With this procedure we obtain

C(K) = C(K), — C(K),.
‘We write
@9)  v@)=[gdu-[odu=[gdn  gecw)),

if the Borel measures p+ represent the positive linear forms vy and g =
Uy — ti—, as in the Riesz-Markov representation theorem.
In the complex case, every v € C(K)' determines two continuous linear
forms v, Sv € C(K;R)’. Since
v(f) =v(g+1h) =v(g) +iv(h)  (9,h € C(K;R)),
if (Rv)(g9) = [ gdp and (Sv)(g) = | gdA on C(K;R), we can write

wﬁ:/mmw/h@+d}a—/haz/ﬁmw/fa

If 4 and X are two Borel real measures on K, then v =p+iA: B —= C
is a complex measure and v(f) = [ fdv.

To prove the uniqueness, let [ ghd|u| = 0 for all g € C(K). Since
C(K) is dense in L*(|u|), by Corollary 2.13, we can consider ||k — gk|l1 — 0,
gk € C(K). Then

) = [ (= aebyalad = | [ (5= gohlul] < 15— gells 0

and g = 0. Thus, the linear map p — u, is injective. g

31t can be proved that ||uyllc(xy = [1l(K).
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4.3. The Hahn-Banach theorem

For a Hilbert space, the projection theorem has been useful to give a com-
plete description of the dual. The duality theory of more general spaces is
based on the Hahn-Banach theorem.*

4.3.1. Analytic form of Hahn-Banach theorem. The basic form of
the Hahn-Banach theorem refers to a convex functional on a real vector
space E, which is a function ¢ : E — R such that q(z + y) < q(z) + q(y)
and g(az) = aq(z) (z,y € E and o > 0).

We note that the sets {z; ¢(z) < 1} and {z; g(z) < 1} are convex.

Obviously, a semi-norm is a convex functional.
Theorem 4.14 (Hahn-Banach). Let E be a real vector space, F a vector
subspace of F, q a convez functional on E, and u a linear form on F which
is dominated by q:

u(y) <q(y) (yeF).

Then u can be extended to all E as a linear form v dominated by q:

v(z) < g(z) (z€E).
Proof. If F # E, we start with a simple extension of u to the subspace
Folyl={z+ty; z € F, t € R},

the linear span of F' and y &€ F.
Of course, if s € R, then v(z + ty) = u(z) + ts is a linear extension of w.
Our aim is to obtain the estimate
v(z +ty) = u(2) +ts < (2 + ty)
by choosing a convenient value for s = v(y). Since g is positive homogeneous,
if this estimate holds for ¢ = =£1, then v(z + ty) = (1/|t))v(jt|]z £ v) <
(1/1t])q(|t|z £ y) = q(= + ty). Hence all we need are the inequalites
w(z)+s<qlz+y), w#)-s<q(z'-y) (2,7 €F)
that is, u(2’') — q(2' — y) < s < ¢(z +y) — u(z). Hence
u(Z' +2) <q(z' —y+z+y) <z —y) +q(2 +y).
It is possible to choose s so that
sup (u(z') — ¢(2' —¥)) < s < inf (q(z +y) — u(2))
Z/eF zeF
and then v is dominated by gq.
4The first version of the Hahn-Banach theorem dates back to the work of the Austrian
mathematician Eduard Helly in 1912, essentially with the same proof given later independently

by H. Hahn (1926) and S. Banach (1929). We give the original proof published by S. Banach in
1929; only his transfinite induction has been changed by an application of Zorn’s lemma.
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Once we know that a one-dimensional extension is always possible, we
can continue with a standard application of Zorn’s lemma as follows.

Consider the family ® of all extensions £ of u to vector subspaces L of
E that are dominated by g, and we order ® by (L1,¢;) < (Lg,{2) meaning
that Ly C Lo and £, agrees with ¢ on L.

Every totally ordered subset {(Lq,%,)} of ® has the upper bound (L, £)
obtained by defining L := |J, Lo and £(y) := £,(y) if y € Lo If also
Y € Ly, then £,(y) = £y (y) by the total ordering of the set {(Lq,¢s)}, and
the previous definition is unambiguous. For the same reason, L is a vector
subspace of F and £ is a linear extension of all the linear forms £,.

By Zorn’s lemma, there is a maximal element (F,£) in ®. But according
to the first part of this proof, this extension must be the whole space F,
since if F° # E, we would obtain an extension v to a strictly larger subspace
F @ [y] of E, in contradiction to the maximality of (F', 7). O

The following version of the Hahn-Banach theorem for semi-norms holds
for real and complex vector spaces:

Theorem 4.15 (Hahn-Banach). Let F' be a vector subspace of the vector
space E, q a semi-norm on E, and u a linear form on F that satisfies the
estimate

lu@)l < q(y) (y € F).
Then there exists an extension of u to a linear form v on E which satisfies

lv(z)| < g(z) (z € B).

Proof. The real case is simple. We know from Theorem 4.14 that there
exists an extension v which satisfies v(z) < ¢(z) and —v(z) = v(—z) <
9(—z) = q(z), i.e. Jv(z)| < q(=).

Now suppose FE is a complex vector space® and F is a complex vector
subspace of E. In this case we split the complex linear form u into the real
and imaginary parts, u(y) = u1(y) + tu2(y). Then u; and ug are real linear
forms on F', which is also a real vector subspace of F regarded as a real
vector space. Since uy(ty) + tu2(iy) = u(iy) = tu(y), u1 and ug are related
by u1(iy) = —u2(y).

Conversely, if u; is a real linear form on F, the additive functional

(4.10) u(y) = u1(y) — iu1(y)
is a complex linear form, since u(iy) = tu(y) and u(ry) = ru(y) when r € R.
5The complex version of the Hahn-Banach theorem was published simultaneously in 1938

by H. F. Bohnenblust and A. Sobczyk and by G. Buskes; curiously, in his work Banach only
considered the real case.
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To extend our u(y) = u1(y) — tu1(ty), it follows from the real case and
lu1(y)| < |u(y)| < g(y) that there exists a real linear extension v; of u; so
that |v1(z)| < g(x). Then the complex linear form v(z) = v (z) — vy (iz) is
an extension of u, since v1(y) = u1(y).

Finally, we have |vi(z)] < ¢(z) and, if for a given z € E we write
|v(z)| = Av(x) with |A| = 1, then it follows that also

lv(z)] = v(Az) = vi(Az) < g(Az) = |Alg(z) = g(=),

since ¢ is a semi-norm. O

4.3.2. The geometric Hahn-Banach theorem. Suppose that K is a
convex subset of a real vector space F and that K is absorbing in the
sense that | J,.o(tK) = E. Then the gauge or Minkowski functional of
K is defined as the functional

pi : E — [0,00)
such that .
pk(z) = inf {t > 0; 7€ K}.
It is easily checked that this functional is convex and that
K C {z € E; px(z) < 1}.
To show the subadditivity of pk, note that, if z/t,y/s € K, also
T+y t s vy
= -~ ZeK
t+s t+st t+ss
and pg(z+y) < t+s. By taking the infimum with respect to ¢ and then with
respect to s, we obtain px (z+y) < pr(z)+s and px(z+y) < pr(z)+pK ().
It is also worth noticing that px(z) < 1 if z is an internal point of K,
in the sense that for any 2 € E there is an € = ¢(2) > 0 such that
{z +1tz |t| < e} C K,

that is, for every line L through z, L N K is a neighborhood of z in L.
Indeed, if z is internal, then we have (1 + €)z € K for some &€ > 0, so that
pr(z) <1/(1+¢) < 1.

Sometimes we will use self-explanatory notation such as f(A) < f(B)
when f(a) < f(b) for alla € A, b € B.

(4.11)

Theorem 4.16. Let K be a convezr subset of a real vector space E with at
least an internal point xo. For anyy € E\ K there is a nonzero linear form
f: E — R that satisfies

FK) < ().
If all the points of K are internal, then f can be chosen so that

f(K) < f(y)-
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Proof. A translation allows us to assume that xq = 0 is an internal point
of K, and then K is absorbing.

Note that px(y) > 1, since y # 0, and we can define f on [y] so that
f(y) = 1; that is, f(ty) = t. Then t < tpg(y) = px(ty) if t > 0, and
t < pk(ty) is obvious if ¢ < 0.

Having shown that f < px on [y], we conclude from Theorem 4.14 that
f can be extended to all of E so that f(z) < px(z) < 1= f(y).

Recall that if z is an internal point of K, then px(z) < 1. O

Next we consider E equipped with a vector topology over the reals and
two disjoint subsets A and B in E. We say that these sets are separated
if there exists a nonzero f € E’ such that

f(A) < f(B).
If instead of this we have
sup f(4) < inf f(B),
we say that A and B are strictly separated.

Theorem 4.17. Suppose A and B are two nonempty disjoint convex subsets
of a real locally convez space E.

(a) If one of them is open, then A and B are separated.

(b) If they are closed and one of them is compact, then A and B are
strictly separated.

Proof. We choose ag € A, by € B. Then the convex set
K=A—-B+b—ap= U(A—y+b0—ao)
yEB
is an open neighborhood of zero and y = by — ap ¢ K.

An application of Theorem 4.16 provides a linear form f such that
fly) = 1and f(K) < 1. Also f(-K) > 1. Then U = KN —K is an
open neighborhood of zero such that |f(U)| <1, and f € E'.

If a € A and b € B, then f(a) < f(b), since a —b+y € K implies
f(a) = f(®) = fla—b+y)—1<0.

Then f(A) and f(B) are two disjoint convex subsets in R, and f(A)
is open. This is readily shown, since f is a nonzero linear form and, if
U is a balanced and convex neighborhood of 0, then f(U) =1 C Ris a
neighborhood of 0 in R and it follows as in the proof of Theorem 3.10 that
f(G) is open if G is open.

Thus, if 7 = inf f(B), f(a) < r for every f(a) in the open interval f(A).
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To prove (b), since A is compact and B is closed, for every a € A we
can consider (a+ U, + U,) N B = @, with U, a convex neighborhood of zero;
then, by choosing A C Uﬁ;l(an +U,,), U = ﬂf:;l U,, is an open convex
set. The set A+ U is also open and convex, and it is disjoint with B, since

N N
A+U C | J(@an+Ua, +U) C | (an + U, + Us,).-
n=1 n=1

Now we apply (a) to the couple A + U, B to obtain f € E’ so that
f(A+U) and f(B) are two disjoint intervals in R, f(A) a compact interval
contained in the open interval f(A 4+ U), and (b) follows. O

Remark 4.18. For a complex locally convex space E, separation refers to
E as a real locally convex space. Note that, if f is a continuous real linear
form such that f(A) < f(B), we know from (4.10) that u(z) = f(y) —if(iy)
is the uniquely determined complex linear form by the condition Ru = f. It
is obviously continuous.

Corollary 4.19. Assume that E is a real or complex locally convex space.
(a) If K is a convex and balanced closed subset of F and zp € F \ K,
then |u(K)| < 1 and u(zo) > 1, real, for some u € E'.

(b) If M is a closed vector subspace of F and zyp € E\ M, then u(M) =
{0} and u(zy) = 1 for some u € E'.

Proof. (a) By Theorem 4.17, K and {zo} are two strictly separated sets
and 0 € K, so that we can choose f = Ru satisfying f(z) < 1 < f(zo) for
all z € K. Since K is symmetric, |f(z)| < 1 < f(zo) = Ru(zo).

(b) From (a) we obtain u € E' such that u(zo) ¢ u(M) and M is a
proper vector subspace of K, which forces u(M) = {0}. We can normalize
u so that u(zp) = 1. O

4.3.3. Extension properties.

Theorem 4.20. Suppose F is a subspace of a normed space F.

(a) If u € F', there exists an extension of u to a continuous linear form
v € E' such that ||v||g = ||ullpr. If 1 # z2 are two points of E, then there
exists v € E' so that v(z1) # v(x2).

(b) For every zo € E \ F, there exists v € E' such that ||v||g = 1,
v(F) = {0} and v(zo) = d(zo, F) = infyer ||y — zo]|.

If 0 # zg € E, then ||v||pr =1 and v(2o) = ||zo||g for some v € E'.
Proof. (a) If ¢(z) := ||u||#||z|]|g, by the Hahn-Banach Theorem 4.15, u

admits a linear extension v that also satisfies |v(z)| < q(z) = ||u||#||z|| &,
and obviously ||v||g > ||u|| -
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If y = 21 — 23 # 0, it is easy to obtain v € E’ such that v(z; — z2) =
|z1 — z2||E # 0. Just extend u(ty) := t||y||g as above.

(b) On the subspace Z = [z9] ® F of E we can define the linear form
u(Azo + y) = Ad(zo, F), so that ||u||z < 1, since

1
lu(rzo +y)I < lllzo + 39l = [IAzo + yll-

Then, by choosing ||zo—ye||E < d(z0, F)+¢ (ye € F), we obtain u(zo—ye) =
d(zo, F) and
1 d(zo, F)

—|u(Zo — >

oo —velle "% 7Y Gy, Py ¢
for every € > 0. Thus, ||lul]|zx = 1 and u has an extension to v € E’ with
II'U”E/ =1.

In the special case F' = {0}, v(zo) = d(z0,0) = ||zo||g and ||v||p =

1. 0

Theorem 4.21. If F is a subspace of a locally convex space E and u € F’,
then there exists an extension of u to a continuous linear form v € E'.

If 1 and x2 are two distinct points of E, there exists v € E' so that

v(z1) # v(z2).

Proof. The topology of F is defined by the restriction of any sufficient
family of semi-norms for the topology of E. By Theorem 3.4, there exists
a continuous semi-norm ¢ on E so that |u(y)| < ¢(y) for all y € F'. By the
Hahn-Banach Theorem 4.15, u admits a linear extension v that also satisfies
|v(z)| < ¢(z) and v € E'.

If y =21 — 22 # 0, u(Ay) := X defines a linear form on F' = [y] and
we can choose a continuous semi-norm p on E such that p(y) # 0. Then
we have |u(y)| = cp(y), |[u(Ay)| = cp(Ay), and u has an extension to some
linear form v on E such that |v(z)| < ep(z) and v € E'. Since u(y) # 0,
v(z1) # v(z2). O

Assume that F is a locally convex space and that M a closed subspace of
E. If there exists a second closed subspace of FE such that E = M & N, that
is, E = M+N and MNN = {0}, then M and N are said to be topologically
complementary subspaces of E and M (and N) is a complemented
subspace.

As an application of Theorem 4.20 and Theorem 4.21, let us show that
finite-dimensional subspaces are complemented:

Theorem 4.22. Suppose that E is a normed space (or any locally convex
space) and that N is a finite-dimensional vector subspace of E. Then E =
N @& M for some closed subspace M of E.
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Proof. Let {e1,...,en} be a base of N and let 7; (1 < j < n) be the
corresponding projections, so that y = Z;-;l 7j(y)ej. Since N has finite
dimension, every projection is continuous and, by Theorem 4.21, it has a
continuous linear extension 7; : E — K. We are going to show that we can
take M = ﬂ;.l:l Ker 7j, which is a closed vector subspace of E.

Indeed, if z € E, let y := >0 7j(z)e; € N and z := z —y. Then
7j(2) = 7;(z) — mj(y) = 0 for every j and z € N, so that E = N + M. This
sum is direct, since if y = 3°7_; m;i(y)e; € N is also in M, then m;(y) =

#j(y) = 0 for every j and y = 0. O
Remark 4.23. For any locally convex space F, separation for a point and

a closed subspace F' can be obtained from Theorem 4.21 by means of the
quotient map 7 from E onto the quotient space E/F.

If P is a sufficient family of semi-norms on E, recall that E//F is endowed
with the topology defined by the family of semi-norms P defined by

(%) = ;relg p(y) = ;ggp(x - 2)

and the quotient map is continuous. If x € E\ F, then 0 # % € E/F and we

can find ¥ € (E/F') which satisfies 9(Z) # 0 so that we only need to define
v = Um.

4.3.4. Proofs by duality: annihilators, total sets, completion, and
the transpose. Here we present some duality results that depend on the
Hahn-Banach theorem.

Most of these results turn out to be very useful in applications, in spite
of the nonconstructive nature of that theorem, in whose proof we have used
Zorn’s lemma.

Let E’ be the dual of a locally convex space E and write
(4.12) (z,u) := u(x).

Then (-,-) : E x E' — K is a bilinear form such that, if u(z) = (z,u) =0
for all z € F, then u = 0, and also z = 0 if {(z,u) = 0 for all u € E’, by
Theorem 4.21.

The annihilator of A C F is the closed subspace of E’
A°:={veF; (a,v)=0Va€ A} = n Ker (a, -)
a€A
and the annihilator of U C E’ is the closed subspace of
U’:={z€FE; (z,uy=0YueU}= ﬂ Ker u.
uely
Obviously, A C B= B° C A° and A C A%.
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Annijhilators play the role that orthogonality plays in Hilbert spaces.
They can be used to characterize by duality the closure of a vector subspace:

Theorem 4.24. Suppose E is a locally convex space. The closed linear span
[A] of a subset A of E coincides with A%, the annihilator in E of A° C E/,
so that A is total in E if and only if A° = {0}.

Thus, a vector subspace F' of E is closed if and only if F*° = F.

Proof. It is clear that the annihilator of A coincides with the annihilator
of the linear span [A] of A _and, by continuity, with the annihilator of the
closure of [A]; thus, if F' = [A], we need to prove that F°° = F.

Indeed, we have F' C F° and, if z ¢ F, by Theorem 4.20(b), we can
choose v € E’ so that v € F° and v(z) # 0. This shows that also z & F°°.

Note that, if F' # F, there exists v € F°, v # 0, so that F° # {0}. O

Theorems 4.24 and 2.36 are in the basis of certain approximation results.
To prove that a point z of a locally convex space E lies in the closure of
a subspace F, all we need is to show that u(z) = 0 for every u € E’ that
vanishes on F'.

Theorem 4.25. For any normed space E the mapping J : E — E" such
that J(z) = Z, where

2(u) = (z,u) = u(z),
is a linear isometry from E into the Banach space E", endowed with the
norm ||w|| g = SUP|ju| ;<1 |w(w)]|.

Hence, the closure of J(E) in E" is a completion of E.

Proof. The function Z = (z,u) is clearly linear on E’, and ||Z| g~ < ||z||E,
since |Z(u)| = |u(z)| < ||lullgr||z||g. According to Theorem 4.20(b), we can
find some v € E’ such that ||v||pr < 1 and Z(v) = ||z||g; thus ||Z|p" = ||z||&.

Finally, J is linear:
J(z1 + z2)(u) = u(z1 + z2) = J(z1)(u) + J(z2)(u) = (J(z1) + J(x2))(u)
and also J(A\z)(u) = A\J(z)(u) for every u € E'. O

Assume now that T : E — F is a continuous linear operator between
two normed spaces. The transpose T” of T is defined on every v € F’ by
T'v = voT, which is obviously a linear and continuous functional on E, and
clearly it depends linearly on v. Then

T :F' - F
is continuous, since
(4.13) IT" vl = Tl < (T MllvllF-
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It is useful to rewrite the definition of 7" as
(Tz,v) = (z,T'v).

Theorem 4.26. The transposition map T € L(E;F) — T' € L(F';E') is a
linear isometry and for every T € L(E; F) the following properties hold:
(a) (ImT)° = KerT",
(b) (KerT')° = ImT, and
(¢) (ImT")° = KerT.

Proof. It is clear that (T'+ S)' =T’ + 5’ and (A\T)' = AT". Moreover, as in
the Hilbert space case for the adjoint,
IT= ~ sup  [Tzw)|=  sup [z, Tv)| =T
llzll 2<1, lvl| pr <1 llzll2<1, |lvll <1

(a) Note that (T'z,v) = (z,T'v) and v € (ImT)° if and only if (z, T'v) =
0 for all z € E, that is, if and only if v € Ker T".

(b) By (a) and Theorem 4.24, (Ker7")° = (ImT)*° = ImT.

(¢) Asin (a), since (z, T"v) = (T'z,v), z € Ker T if and only if (z, T"v) =
0 for all T'v € ImT". O

Remark 4.27. It is easily checked that also Im7” C (KerT)° but the
reverse inclusion is not always true, as shown in Exercise 4.20.

4.4. Spectral theory of compact operators

The principal axes theorem of analytical geometry asserts that any symmet-
ric quadratic form on R™

n
(Az,z) = 2 04 T
i,j=1
can be rewritten in the normal form Y & ; A\;z? by means of an orthogonal
transform. The general form of this theorem, in the language of matrices or
operators, says that each real symmetric matrix A is orthogonally equivalent
to a diagonal matrix whose diagonal entries are the roots of the equations
det(A — A\I) = 0, that is, the eigenvalues of A.

The earliest extensions to an infinite-dimensional theory were achieved
after a construction of determinants of infinite systems. They were applied
to integral equations around 1900, defined by operators with properties that
are close to those of the finite-dimensional case.

6This was obtained in 1852 by the English mathematician J. Sylvester in terms of the qua-

dratic form (Az, z), and A. Cayley inaugurated the calculus of matrices in which the reduction to
normal form corresponds to a diagonalization process.
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Here, for a first version of this spectral theory in the infinite-dimensional
case, we are going to consider the class of compact operators in Banach
spaces.

Let T : E — F be a linear map between Banach spaces and let Bg
be the closed unit ball of E. Then T is said to be compact if T'(Bg) is
compact in F', that is, if every sequence in T'(Bg) has a Cauchy subsequence
(see Exercise 1.3).

Such an operator is bounded, since T(Bg) C Jp~, Br(0,n) and, by

compactness, T'(Bg) C Br(0, N) for some N.

Every bounded linear operator T' with finite-dimensional range T'(E) is
compact, since in T'(E) the closure of the bounded set T'(Bg) is compact,
by Theorem 2.25.

We will use the notation L.(E; F') to represent the collection of all com-
pact linear operators between E and F, and L (F) = L.(E; E).

4.4.1. Elementary properties. The following theorem is useful to prove
the compactness of certain operators:

Theorem 4.28 (Ascoli-Arzeld”). Let K be a compact metric space and
assume that ® C C(K) satifies the following two conditions:

L. supseq |f(z)| < 0o for every x € K (®(x) is bounded for every
z € K).

2. For everye > 0 there is some § > 0 such that supseq | f(z)—f(y)| <
e if d(z,y) < (we say that ® is “equicontinuous”).

Then ® is compact in C(K).

Proof. If § = 1/m, the compact set K has a finite covering by balls
Bk(cm,,90), and the collection of all the centers for m = 1,2,... is a count-
able dense set C' = {cx} in K.

Let {fn} C ®. By the first condition, we can select a convergent sub-
sequence {fn1(c1)}, then we obtain a subsequence {fn2} C {fn,1} so that
{fnz2(c2)} is also convergent, and so on. Let {f,/} be the diagonal sequence
{fmm}, which is convergent at every c € C.

7In 1884 Giulio Ascoli (at the Politecnico di Milano) needed the assumption of equicontinuity
to prove that a sequence of uniformly bounded functions possesses a convergent subsequence. In
1889 Cesare Arzela (in Bologna) considered the case of continuous functions and proved what is
nowadays usually called the theorem of Ascoli-Arzeld and in 1896 he published a paper in which
he applied his results to prove, under certain extra assumptions, the Dirichlet principle.
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For € > 0, let § = 1/m be as in condition 2. For every z € K, we choose
¢j = Cj(z) € C so that x € Bk(c;,0) with j < n(e) and then

| fo (z) — fo ()]
< |fw(x) = for (i)l + | fr(c;) = for (i) + | fo (cs) — for (2)]
< 2 +|fy(cj) — fo(c))]
where
| for (c;) — fqr(c)| < kfgg(}é) | fpr (ck) — for(ck)| = O,

so that || fyy — fyllx — 0. a

The following result gathers together some of the basic properties of
compact linear operators:

Theorem 4.29. The collection L (E;F) of all compact linear operators
between two Banach spaces is a closed subspace of L(E; F) and the right or
left composition of a compact linear operator with a bounded linear operator
is compact.

If T € L(E;F), then also T' € L(F';E'); if E and F are Hilbert
spaces, T* € L (F; E) (Schauder theorem).?

Proof. It is clear that L (E; F) is a linear subspace of L(E; F').

If T = lim, T, with T,, € L(E;F), to prove that T is compact, let
e > 0 and let N be such that ||T'— Tx|| < /2. Since Ty (Bg) is compact,
it is covered by a finite collection of balls Br(y;,e/2) (i € I), and then
T(Bg) C U;er Br(yi, €), since for every € Bg we have | Te—Tyz||r < /2
and Tyx € Br(y;,e/2) for some i € I.

Now, by considering &, = 1/m, it is easy to check that every sequence
{Tz,} with z,, € Bg has a partial Cauchy sequence, since we obtain succes-
sive subsequences {TZnm} C {T%nm-1} contained in some Br(y,em) and
the diagonal sequence {T'Zm,m} is a Cauchy subsequence of {T'z,}.

Let S = TR and assume first that T' : F' — G is compact and R: £ — F
is bounded. Then R(Bg) C |R||Br and S(BEg) C ||R||T'(BFr), whose closure
is compact; hence, S is compact. If T is bounded and R compact, then
R(BEg) is compact and its image by the continuous map T is also compact,
so that S(BEg) is contained in a compact set.

Suppose T' is compact and consider {vp }nen C Bg. To obtain a Cauchy
subsequence of {T"v,}, let K := T(Bg) and ® := {f, = vpx; n € N} C

8In 1930, the Polish mathematician Julius Pawel Schauder proved this result that allowed the
use of duality in the Riesz-Fredholm theory for general Banach spaces. Schauder is well known
for his fixed point theorem, for the Schauder bases in Banach spaces, and for the Leray-Schauder
principle on partial differential equations. See also footnote 3 in Chapter 3.



4.4. Spectral theory of compact operators 117

C(K). Then ® is equicontinuous because
|fn(Tz) = fo(Ty)| = [vn(Tz) — va(Ty)| < || Tz — Tyl
and it is also uniformly bounded, since || fr||x < ||vn|lF» < 1. According the

Ascoli-Arzeld Theorem 4.28, ® is compact in C(K) and {f,} has a Cauchy
subsequence { fy, }, so that

T vn,, = T'vp, |l = SUP |n, (TZ) — vny (Tz)| < sup | fn,(a) — fn,(a)] =0
T€EBE acK

as p,q — 00. O

Example 4.30. Every Volterra operator
T
7f@) = [ K@,)f0)dy,
a

where K (z,y) is continuous on A = {(z,y) € [a,b] X [a,b];a <y < z < b},
is a compact operator T : C[a, b] — Cla, b], since ® = T'(B¢|,) satisfies the
conditions of the Ascoli-Arzela Theorem 4.28.

Indeed, if a <t < s < b and if for a given € > 0 we choose § > 0 so that
|K(s,y) — K(t,y)| < eif |s—t| <6 and (s,y),(t,y) € A (K is uniformly
continuous on A), then

t
ITf(s) -Tf()] < /IK(s,y)~K(t,y)I|f(y)|dy

S
+ [ 1Kl Wldy
< (b—a)e+ [ Kllals -t
for every f € Bejqy) if |s —t| < 6, and @ is equicontinuous. Obviously it is
uniformly bounded, since ||T'f||jq,¢) < [ Klla(®— a)|| flla,y-

Example 4.31. It is shown in a similar way that every Fredholm operator
Tk, defined as in (2.22) by a continuous integral kernel K, is compact.

Note that [T f(s) — Tie f ()| < [;' |K (s,9) = K(t,9)||f ()| dy < (d = c)e
if || flle,qg <1 and |s — t| < 6 small, by the uniform continuity of K.

Example 4.32. The Hilbert-Schmidt operator Ty : L?(Y) — L?(X), de-
fined as in Theorem 4.6 by a kernel K € L?(X x Y), is also compact.

This is proved by choosing a couple of orthogonal bases {u,} C L%(X)
and {v,} C L?(Y), so that an application of Fubini’s theorem shows that the
products W (2, ) = un(z)vm(y) form an orthogonal basis in L2(X x Y).
By the Fischer-Riesz Theorem 2.37,

K = Z Cn,mWn,m,

n,m
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with convergence in L%(X x Y).
The Hilbert-Schmidt operator defined by the kernel

Ky = Z CnymWn,m
n,m<N

is compact, since it is continuous by Theorem 4.6 and its range is finite-
dimensional, contained in [uy,; n < N]. Now, again by Theorem 4.6,

ITx — Tyl < 1K — Knll2 = 0

and, according to Theorem 4.29, Tk is compact.

4.4.2. The Riesz-Fredholm theory. For compact operators there is a
complete spectral theory.’

Recall that A € K is an eigenvalue of T' € L(E) if Np(\) = Ker (T—\I)
is nonzero, that is, if T — AI is not one-to-one. Every nonzero z € Np()\)
is called an eigenvector, and Np()) is an eigenspace. Obviously T' = AI
on Nr()), which is a closed subspace of E and it is invariant for T. The
multiplicity of an eigenvalue A is the dimension of Np()).

The spectrum?!® of T is the set o(T) of all scalars A such that T — AJ
is not invertible. That is, A € o(T) if either X is an eigenvalue of T' or the
range Rp(A) := Im (T — ) is not all of E. This subspace of E need not
be closed, but it is also invariant for T, since T(Tz — A\z) = T(Tz) — \Tz
belongs to Rr(\).

Note that if T' is compact and 0 ¢ o(T), then dim(F) < oo, since in
this case 7! is continuous by the open mapping theorem and I = 71T is
compact, so that the unit ball Bg and the unit sphere Sg = {z; ||z||g = 1}
are compact, and Theorem 2.28 applies.

Theorem 4.33 (The Fredholm alternative). Suppose T € L(F) and A # 0.
Then:

(a) dimNp(X) < oo.

(b) Rr(A) = N (N\)°, and it is closed in E. If E is a Hilbert space, then
Rr(X) = Np« (D)L

(c) Nr(X) = {0} if and only if Rr(\) = E; thus, if 0 # X € o(T), then
A is an eigenvalue of T

9David Hilbert constructed his spectral theory for £2 essentially with Fredholm’s method (see
footnote 5 in Chapter 2), and F. Riesz followed him to develop the theory on L2. In 1918, Riesz
extended Hilbert’s notion of a compact operator to complex functional spaces, a few years before
the introduction of general Banach spaces.

10Tn this context, the term spectrum was coined by D. Hilbert when dealing with integral
equations with quadratic forms, or, equivalently, with linear operators on £2.
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Proof. Since T—AI = A™Y(AT—1I) and AT € L.(E), we can assume without
loss of generality that A = 1. Denote N = Np(1) and R = Rr(1).

(a) Since Ty =1: N — N is compact, dim N < co.

(b) According to Theorem 4.22, E = N @ M, M a closed subspace of
E. Then §:= (T —1I)jy : M — R is a continuous isomorphism and we only
need to show that S~ is also continuous, which means that C||z||g < ||Sz||g
for some constant C' > 0 and for all z € M.

If this were not the case, then we would find z,, € M so that ||z,||g =1
and ||Sz,||g < 1/n, and, since T is compact, passing to a subsequence if
necessary, Tz, — z and Sz, — 0, with z € M, since z, = Tz, — STy, = 2
and M is closed. Moreover, Sz = lim, Sz, = 0 and z = 0 since S is
one-to-one, which is in contradiction to ||z||g = lim, ||z,|| g = 1.

By the properties of the transpose, R = R = (Ker (T" — I))°.

(c) Suppose N = {0} and R(1) :== R # E. Then T : R(1) — R(1) is
compact and, according to (b), R(2) = (T'—I)(R(1)) is a closed subspace of
R(1) and R(2) # R(1), since T' — I is one-to-one. In this way, by denoting
R(n) = (T — I)™(E), we obtain a strictly decreasing sequence of closed
subspaces.

As in Remark 2.27, we choose up, € R(n) so that d(un, R(n+ 1)) > 1/2
and ||up||g = 1. Then, if p > g,

Tup — Tug = (T — DNup — (T — Nug+up —uqg = 2 — uq
with z € E(p+1)+E(qg+1)+E(p) C E(g+1), so that ||Tup—Tuql|g > 1/2,
which is impossible, since T" is compact.

This shows that R = F if N = {0}. For the converse suppose that
R = E, so that Ker (T" — I) = Im (T — I)° = R° = {0} and we can apply
the previous result to 7", which is compact by Schauder’s theorem. Hence
N = Im(T' — I)° = (E')° = {0}. O

Theorem 4.34. Let T € L(E). Then o(T) C {X; |\ < ||T||} and, for
every 6 > 0 there are only a finite number of eigenvalues A\ of T such that
Al > 6.

Proof. If Tz = Az and ||z||g = 1, then |\ = ||Tz|lg < ||IT-

Suppose that, for some § > 0, there are infinitely many different eigenval-
ues A, such that |1/A,| < 1/4, and let Tz, = Az, with ||2,||g = 1. These
eigenvectors are linearly independent, since z, = (121 + +** + Bn-1Zn—1
with 21, ...,2Z,—1 linearly independent would imply, after an application of
T, that B; = Bj\j/ A (1 < j <n) and then necessarily A\, = A;.

We can apply Remark 2.27 to the spaces M, = [z1,...,Zxn] to obtain
Un = B1Z1 + -+ + BnZn € M, such that ||us||g = 1 and d(un, Mp—1) > 1/2.
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Then the sequence {u,/A,} is bounded and we arrive at a contradiction by
showing that it has no Cauchy subsequence:
It is easily checked that u, — Tun/An € [21,...,Zn-1] = Mp—1 and, if
p>4q,
1

1
|7 — =T
P

) N

1 1
= ||up - {up — =T, + —T }“ > 1/2.
E “u,, {u” Ap up+/\q vapllp =1/

O

Remark 4.35. If E is any complex Banach space and T' € L(F), it will be
proved in Theorem 8.10 that o(7') is always a nonempty subset of C which
is contained in the disc {X; |A| < r(T")}, where

r(T) = lim [T = inf [TV < |T]|.

If T € L.(F), Theorems 4.33 and 4.34 show that o(T') \ {0} is a finite
or countable set of eigenvalues with finite multiplicity.

These nonzero eigenvalues will be repeated according to their multiplic-
ity in a sequence {\,} so that {|\,|} is decreasing. If this sequence is infinite,
then A, — 0, since for every € > 0, according to Theorem 4.34, only a finite
number of them satisfy |A,| > &.

It may happen that o(T) \ {0} = 0, as shown by Theorem 2.30 for
Volterra operators T' € L.(C[a,b]). For these operators o(T") = {0}, since
Cla, b] is infinite dimensional.

In the special case of a self-adjoint compact operator of a Hilbert space,
H, the spectral theorem will show the existence of eigenvalues and will give
a diagonal representation for the operator.

Assume that 0 # A = A* € L(H).

Note that eigenvectors of different eigenvalues are orthogonal, since it
follows from Az = az and Ay = By that (o — B)(z,y)y = (Az,y)g —
(.’12, Ay) H= 0.

If M(A) := sup|g) ,=1(Az, z) g and m(A) := infy -1 (Az, z)H, then

|All = sup |(Az,z)| = max(M(A), —m(A)),

llzll m=1

by Theorem 4.7, and every eigenvalue A is in the interval [m(A), M(A)],
since Az = Az for some z € H with ||z||gz = 1, and then A\ = (Az, z)q.
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Theorem 4.36 (Hilbert-Schmidt spectral theorem!!). The self-adjoint com-
pact operator A # 0 has the eigenvalue o such that |o| = ||A||, and either
a = M(A) if |All = M(A) or a =m(A) if |A] = —m(4).

Moreover, if {un} is an orthonormal sequence of eigenvectors associated
to the sequence {\,} of nonzero eigenvalues, then

Az =) (@, un)Hun  (z € H)

n>1

in H and, if there are infinitely many eigenvalues, then Ay — A in L(H)
as N — oo, where

N
Anz = Zx\n(a:,un)Hun.

n=1

Proof. If || A|| = M(A), then M(A) = lim,(Azp, z,) g with ||z,||g = 1 and
|Azn||r < M(A). Then it follows from

Az, — M(A)zallly = | Azally — 2M (A)(An, z0) 1 + M(A)?
< 2M(A)2 — 2M(A)(Azn, zn)H

that limy, (Az, — M (A)z,) = 0 and M (A) € o(A), since if lim, (Az, —Azy,) =
0 and )\ ¢ o(A), then z, = (A — AI)"}(Az, — Az,) = 0 by continuity. But
M(A) = ||A|| # 0 and M(A) is an eigenvalue.

Similarly, if || A|| = —m(A), then m(A) = lim,(Azy,, z,) with ||z,||g =1
and ||Az,|lg < —m(A), so that, with the same proof as before,

|Azy, + m(A)z,||% — 0

and m(A) € o(A) \ {0}.

To prove the second part of the theorem, note first that, if N = Ker A
and F' = [uj, ug, ..., then F = N+, so that H = F@® N.

Indeed, if Az = 0, then (z,u,)gy = 0 for alln > 0, and N C FL. It
follows from A(F) C F that also A(FL) C F*: if z € FL, then (Az,z)g =
(2, Az)g = 0 for all z € F, since Az € F. But necessarily A(F1) = {0},
and also F+ C N, since the restriction A : F+ — F' is a self-adjoint
compact operator, and if we suppose that it is nonzero, then, according to
the first part of this theorem, A would have a nonzero eigenvalue o which
should be one of the eigenvalues A, of A: H — H, so that u, € FNFL, a
contradiction.

11D, Hilbert first developed his spectral theory for a large class of operators with a spectrum
containing only eigenvalues, and E. Schmidt identified them as the compact operators through a
“complete continuity condition”. See Exercise 5.13.
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Nowlet z =y+2 € F® N with y € F and z € N. By the Fischer-Riesz

theorem,
y= Z(y’u’n)Hun = Z(waun)Hun

n>1 n>1
and

Az = Ay = Z(waun)HAun = Z /\n(wau‘n)Hun'

n>1 n>1
To show that Ay — A, let ||z||gz < 1. Then, using Bessel estimates,
I(A = Aw)zllF = Y Pal@un)al® < v Y |(@,un)ml* < An]
n>N n>N
and \y — 0. O

An approximate eigenvalue of a linear operator A € £L(H) is a num-
ber A such that lim, ||Az, — Az,||lg = O for some sequence of vectors
Zn € H such that ||z,||g = 1. In this case (Azp, — Azp,2n)g — 0 and
A = lim, (Azy, z,), so that A € [m(A), M(A)] if A is self-adjoint.

Approximate eigenvalues belong to o (A) since, if limy, || Az, — Az ||y = 0
and X\ € 0(A)°, then z, = (A — AI)(Az, — Azy,) — 0 as n — oo would be in
contradiction to the condition ||z, ||z = 1 for all n.

Remark 4.37. If A is a bounded self-adjoint operator, it follows from the
proof of Theorem 4.36 that both m(A) and M(A) are approximate eigen-
values.1?

Indeed, we may assume without loss of generality that 0 < m(A4) <
M(A) = ||A||, since M(A) is an approximate eigenvalue of A if and only if
M(A) + t is an approximate eigenvalue of A + tI. The case A = m(A) is
similar.

4.5. Exercises

Exercise 4.1 (Banach limits). Consider the delay operator
Tz(n) =z(n+1)
acting on real sequences z = {z(n)}32; € £*° and the averages

_ s+t a(n)

Anzx

Prove that
p(z) :=limsup A,z

n—roo

121t will be proved in Theorem 9.9 that every spectral value of A is an approximate eigenvalue,
so that [m(A), M(A)] is the least interval which contains o(A).
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defines a convex functional p on E = £°° and show that there exists a linear
functional A : £*° — R such that, for every z € £,

A(rz) = A(z) and liminfz(n) < A(z) < limsupz(n).
n—00 n—00

Exercise 4.2. Let x¢ be a point in a real normed space E. If ||zo]|g = 1,
show that there exists u € E' such that u(zo) = 1 and so that the ball
Bg(0,1) lies in the half-space {u < 1}.

Exercise 4.3. Let M be a closed subspace of a locally convex space E.
Prove that if M is of finite codimension (that is, dim (E/M) < 00), then M
is complemented in F.

Exercise 4.4. Suppose T : F — ¢* is a bounded linear operator on a
subspace F' of a normed space E. Prove that T' can be extended to a
bounded linear map 7" : E — £ with the same norm, ||T|| = |||

Exercise 4.5. If E is a topological vector space, prove that a linear form u
on FE is continuous if and only if Kerwu is closed.

Exercise 4.6. Suppose that F is a locally convex space and that A =
{en; n € N} satisfies the following properties:

en—0, E=[A], and e, & [ej; j #n] VneN.

Ifz = Zg__(j) mTn(z)en € E, then prove that the projections m, are continuous
linear forms on F and that the convex hull co(K) of K = AU{0} is a closed
subset of F which is not compact, but K is compact.

Find a concrete example for E and A.

Exercise 4.7. Prove that the completion H of a normed space H with a
norm defined by a scalar product, ||z||% = (z,z)n, is a Hilbert space.

Exercise 4.8. Let H be a Hilbert space. When identifying every z € H
with (-, z) € H', show that AL = A° for any subset A of H.

Exercise 4.9. We must be careful when identifying (L?) = L? or (£2) = ¢2,
if we are dealing simultaneously with several spaces. Consider the example
H = £? and the weighted ¢£? space

V= 2({n*152) = {z = {za}72y; ) n’laal® < 0o}
n=1

with the scalar product (z,y)y 1= Y oo N2Znn.

Prove that V is a Hilbert space with a continuous inclusion V' < ¢2 and
that every u € (£2)' is uniquely determined by its restriction uy to V, which
is a bounded linear form on V, so that a continuous inclusion (¢2)" < V' is
defined and, by considering (¢2)' = £2, we obtain V C £2 C V'.
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It would be nonsense to also consider V/ = V, and one must choose
(02) = £2 or V' = V when dealing with both V and £2.

Exercise 4.10. Let F, F, and G be three normed spaces. Show that a
bilinear or sesquilinear map B : E x F' — G is continuous if and only if
there exists a constant C' > 0 such that

1Bz, y)lc < Clizllellylls  (z € E,y€F).

Exercise 4.11. Prove that the inclusions C™*1[a,b] < C™[a,b] are com-
pact.

Exercise 4.12. If {fx} is a bounded sequence of £(R), then show that
for every m € N there is a subsequence of { f,gm)}g‘;l which is uniformly
convergent on compact subsets of R and £(R) has the Heine-Borel property.
Extend this to every £(Q2), © an open subset of R", and prove that these
spaces (and also Dy () if K has nonempty interior) are not normable.

Exercise 4.13. Suppose 0 < ¢ < 1, m is the Lebesgue measure on [0, 1], and
w is another Borel measure on this interval. If u(B) = ¢ whenever m(B) = ¢,
show first that necessarily p is absolutely continuous with respect to m and
then prove that p = m.

Exercise 4.14. Let m be the Lebesgue measure on R, consider two Borel
subsets E and F of R, and define the Borel measures pug(B) := m(B N E),
pr(B) := m(BNF). Find when ug is absolutely continuous with respect to
wr and, in this case, describe the corresponding Radon-Nikodym derivative.

Exercise 4.15. Let 1 < p < oo and z = {zx} € 2. Show that ||z|, =
Sk Tkyk for some y = {yx} € ¢ such that ||y|y = 1; that is, if (y,z) =
> Zkyk and ug = (-,z), the norm of u, € (¢F') = (P is attained on the
closed unit ball of /. Find a similar result for functions f € LP(R).

Exercise 4.16. Find some z = {zx} € ¢* such that we cannot find any
y = {yx} € ! so that |ly|l1 =1 and ||z|lcoc = Yk zkyk. That is, if (y,z) =
>k Tkyk and ug = (-, z), the norm of u, € (£1) = £ is not attained on the
closed unit ball of £*.

Exercise 4.17. Let ¢ be the subspace of £*° which contains all the con-
vergent sequences z = {z"} € £*°. Prove that c¢ is complete and that
v(z) := limz" defines a continuous linear form on ¢ with norm 1 such that
there is no y € ¢! so that v(z) = (z,y) for all z € ¢ ((z,y) = Y_ z"y™). Show
that the natural mapping ¢! — (£*°)’ is not exhaustive.

Exercise 4.18. Prove that the natural isometry J : L!(a,b) — L*(a,b)’,
such that Jf = (-, f) with (g, f) := f:g(t)f(t)dt, is not exhaustive.

Remark: It can be proved that L!(0,1) is not isomorphic to any dual.
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Exercise 4.19. Prove that ¢! is isometrically isomorphic to the dual of cg,
the Banach subspace of £*° of all the sequences with limit 0.

Exercise 4.20. Prove that if T : ! — ¢! is defined by
T(en) = T(32),
then Im7T" # (KerT)°.

Exercise 4.21. Prove that the set of all the characteristic functions x; of
intervals I C (a,b) is total in LP(a,b), for every 1 < p < oo.

Exercise 4.22 (Minkowski integral inequality). Let K (z,y) be a measur-
able function on R? and let 1 < p < 0o. Using the duality properties of LP,

prove that
+o00 +oo
II/ K(~,y)dyH S/ 1K (, y)lp dy
—00 p

—00
first if K > 0 and then when K(-,y) € LP(R) for every y € R.

Exercise 4.23. Let p be the Borel measure on (0,1) defined through the
Riesz-Markov theorem by the linear form

Lg(z
u(g) :=/0 ?dﬁl)

on C.(0,1). Is u the restriction of a real Borel measure i on R?

Exercise 4.24. Let u be a linear form on the real vector space C(K) of all
real-valued functions on a compact set K of R™. Prove that u is positive if
and only if u(1) = supy4<13 [u(g)| and that in this case |lullc(xy = u(1).

Exercise 4.25 (The dual of H(D)). In the disk D = {|z| < 1} C C consider
the circles () = re®* (0 <t < 27), 0 < r < 1, and denote by Ho(D°) the
vector space of all continuous functions g on D¢ that have a holomorphic
extension to a neighborhood Uy = {z; |2| > ¢} of D¢ in C and such that
g(00) =lim,,00 g(2) = 0. Prove the following statementS'

(a) If g € Ho(D°) and v, C Ug, then ug(f) := 55 [, f(2)9(2) dz defines
ug € H(D)' which does not depend on 7.

(b) If u is a complex Borel measure on oD with 0 < ¢ < 1, then u,(f) :=
[, f du also defines u, € H(D)".

(c) If pis as in (b) and g,(2) := ng —= du(w), then 9u € Ho(D°) and
f(Z) dz).

27n

ug, = u, (use the Cauchy integral formula f(w) = 2m J. 1 i
(d) The map g € Ho(D®) — ug € H(D)' is bijective.
Exercise 4.26. Prove the easy converse of the Schauder theorem: If E and

F are two Banach spaces and T € L(F'; E') is compact, then T' € L(E; F)
is also compact.
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Exercise 4.27. Find a concrete Volterra operator T' € L.(C[a,b]) with no
eigenvalues.

Exercise 4.28. Prove that every nonempty compact subset K of C is the
spectrum of a bounded operator of £2.

Exercise 4.29. Show that if K = {\;n € N} U {0} with A\, — 0, then
K = o(T) for some T € L(£?).

Exercise 4.30. By Theorem 4.29, if T is the limit in L(F; F') of a sequence
{T%.} of continuous linear operators of finite rank, T' is compact.

Prove that the converse is true if F is a Hilbert space by associating to
every T € L.(E; F) and to every € > 0 an orthogonal projection P. of F' on
a finite-dimensional subspace such that

IT = PT|| <e.

P. Enflo (1973) proved that this converse is not true for general Banach
spaces by giving a counterexample in the setting of separable reflexive spaces.

References for further reading:

N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert
Space.

S. Banach, Théorie des opérations linéaires.

S. K. Berberian, Lectures in Functional Analysis and Operator Theory.
B. A. Conway, A Course in Functional Analysis.

R. Courant and D. Hilbert, Methods of Mathematical Physics.
L. Kantorovitch and G. Akilov, Analyse fonctionnelle.

G. Kothe, Topological Vector Spaces I.

P. D. Lax, Functional Analysis.

F. Riesz and B. Sz. Nagy, Lecons d’analyse fonctionelle.

W. Rudin, Real and Complex Analysis.

W. Rudin, Functional Analysis.

K. Yosida, Functional Analysis.



Chapter 5

Weak topologies

This short chapter is devoted to the introduction of the weak topologies, the only
locally convex space topologies that we are considering in this book which can be
nonmetrizable.

We are mainly interested in the weak* topology on a dual E’, such that the
weak* convergence u, — u of a sequence in E’ means that u,(z) — u(z) for all
ze E.

For any normed space F, the Alaoglu theorem shows that the closed unit ball
in the dual space E’ is weak* compact. Moreover, if E is separable, then this
closed unit ball equipped with the weak* topology is metrizable. These facts make
it easier to use the weak topology on bounded sets of E'.

As an application to the Dirichlet problem for the disc, we include a proof
of the Fatou and Herglotz theorems concerning harmonic functions which are the
Poisson integrals of functions or measures on the unit circle T C C.

The weak convergence and the weak* topology will appear again when studying
distributions and with the Gelfand transform of commutative Banach algebras.

5.1. Weak convergence

A sequence {z,} in a normed space F is said to converge weakly to z € E
if u(zn) — u(z) for every u € E'.

The usual convergence =, — z, meaning that ||z, — z||g — 0, is also
called the strong convergence. It is stronger than weak convergence, since
|u(zn) — u(z)| < ||lullgr||zn — z||g. The converse will not be true in general
(cf. Exercises 5.3 and 5.7).

Similarly, a sequence {uy} in the dual E’ of the normed space is said to
converge weakly* tou € E’ if up(z) — u(z) for every z € E. Again, up, = u
in E’ implies weak* convergence, since |u,(z) — u(z)| < |lun — ull& 2| E-

127
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This weak* convergence is weaker than the weak convergence of {u,} since,
if w(un) — w(u) for every w € E”, then also Z(u,) = up(z) — Z(u) for every
ze k.

We have a similar situation with the pointwise convergence of a sequence
of functions f, = {frn(z)}zex € C¥, since

folz) = f(z)  (zeX)
means that 6;(fn) — 0:(f) for every evaluation functional d;, which is a
linear form on the vector space CX of all functions f : X — C.
We know from Example 3.2 that this pointwise convergence is the con-
vergence associated to the product topology on CX.

These weak limits will be limits with respect to certain locally convex
space topologies.

5.2. Weak and weak™* topologies

Let E be any real or complex vector space and let £ be a vector subspace
of the algebraic dual of E, which is the vector space of all linear forms on
E. We say that (E,£) is a dual couple if £ separates points of E, that is,
if u(z) = u(y) for all u € € implies z = y.

A typical dual couple is a locally convex space FE with the dual E’, and
we will see that every dual couple is of this form, for a convenient topology
on FE.

Theorem 5.1. Suppose (E, &) is a dual couple, ui,...,u, €E, and u € £.
Then uw =Y ;_; Mug if and only if

ui(z) =+ =up(z) = 0= u(z) =0.
Proof. Suppose u(z) = 0 whenever u;(z) = --- = u,(z) = 0. Define the
one-to-one linear map ® : E — K" such that ®(z) = (ui(z),...,un(x)).

There exists & € (K™)' such that u = @ o ® that can be defined on ®(F) as
@(ui(z),...,un(x)) := u(z) since, if (u1(z),...,us(z)) = (U1(¥),-- ., un(¥)),
it follows from our assumption that u(z) = u(y).

We can write
w(ag,...,0n) = Aa1 + -+ + Apan,
so that
u(z) = u(P(z)) = Mwr(z) + -+ - + Apun(z) (z € E)
and u = \uy + -+ + ApUn.

The converse is obvious: if u =Y p_; Aguk, then ui(z) = - - = up(x)
0= u(z) =0.

|
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Note that, if F is a locally convex space, u € F’, and z,z1,...,Zn € E,
then, according to Theorem 5.1, z = Y }'_; A\gzy if and only if u(z) = 0
(u € E') whenever u(z1) = -+ - = u(z,) = 0.

We assume that (F, £) is a dual couple.

The weak topology o(E, £) is the locally convex topology on F defined
by the sufficient family of semi-norms py(z) = |u(z)| (v € £). Similarly,
o(E,FE) is defined by the sufficient family of semi-norms p,(u) = |u(z)]
(x € E). Tt is the restriction to £ C KF of the product topology or the
topology of the pointwise convergence on K¥ of Example 3.2.

We use the prefix o (&, E)— to indicate that we are considering the topol-
ogy o(£,E) on &.

Theorem 5.2. With the notation Z(u) = u(z), o(€, E) is the weakest topol-
ogy on £ that makes every function T continuous.

The dual of (E,0(E,E)) is E, as a vector subspace of the algebraic dual
of €.

Proof. Every functional Z is o(&, E')-continuous, since |Z(u)| = py(u) and
|Z(u)] < € if u € Up,(€).

If every function Z is T-continuous for a topology 7 on &, then every
set

V(uo) = {u € &; |Z(u) — Z(uo)| < &} = {u; ps(u — wo) < ¢}
is an T-neighborhood of ug, and it is also a (€, F)-neighborhood of wuy.

Thus, every point ug of a weakly open set G is a T-interior point of G and
T is finer than o(€, E).

Let & be the o(€, E)-dual of £. By construction, E C £'.

Reciprocally, if w € &', then there exist z;,...,z, € E and a constant
C > 0 such that

w(w)| < C max(ps, (w), - - , Pz, (w))-

Hence, w(u) = 0 if u(z1) = -+ = u(z,) = 0, and then w = >}, ATy by
Theorem 5.1. d

In a locally convex space, the closed convex sets and the closed subspaces
are closed for the original topology of the space:

Theorem 5.3. Suppose C is a convex subset of the locally convex space E.
Then the weak closure of C is equal to the closure C of C' for the topology
of B.
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Proof. The original topology is finer than w := o(E, E') and the weak
closure C% of C is closed in E, so that C C C*. Conversely, suppose that
zo & C; according to Theorem 4.17(b), we can choose u € E’ so that

sup Ru(zp) < r < inf Ru(B)

and Ru is weakly continuous. Hence, {®u < r} is a weak neighborhood of
xo which is disjoint with C, and o ¢ C™. This shows that C* C C. a

Corollary 5.4. For any subset A of a locally convex space F, the weak
closure of [A] and its closure for the original topology are the same. Hence,
A is total if and only if it is weakly total.

In the special case of a normed space F, we call w* = o(E',F) the
weak* topology of the dual space E', and w = o(E,E’) is the weak
topology of F. These topologies are weaker than the corresponding norm
topologies on E’ and E.

Note that a sequence {u,} C E' is convergent to u if u, — u for the
topology w* if and only if it is weakly* convergent to u, since we have
lun(z) — u(z)| = pz(un — u) — 0 for every x € E.

Similarly z, — z for the weak topology w if and only if u(z,) — u(z)
for every u € E’, and {z,} is weakly convergent to z in E.

The most important facts concerning the topology w* are contained in
the following compactness and metrizability result.

Theorem 5.5 (Alaoglu'). The closed unit ball Bp: = {u € E'; ||lu|lp < 1}
of the dual E' of a normed space E is w*-compact. If E is separable, the
w*-topology restricted to By is metrizable.

Proof. Recall that w* is the restriction to E’ of the product topology on
K? and observe that Bp: is contained in K := IlepD(0, |z||) since, if
llullgr <1, then u = {u(z)}zck satisfies |u(z)| < ||z|| for every z € E. By
the Tychonoff theorem, K is a compact subset of KZ, and

Bp = Wf€K; f(z+y) = f(@)+ FW)IN[ S € K; f(h2) = Af(z)}
T,y Az

is the intersection of a family of subsets, all of them being closed as defined
by the equalities with continuous functions

Toty(f) = m2(f) + my(f) and mrg(f) = Ame(f).

Thus, Bgr is a closed subset of K and it is compact.

IThis is the best known result of the Canadian-American mathematician Leonidas Alaoglu
(1938), contained in his thesis (Chicago, 1937). For separable spaces, it was first published by S.
Banach (1932).
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Suppose now that the sequence {z,}32; is dense in E. Then the fam-
ily of semi-norms p;, (u) = |u(xy)| is sufficient on E’ since, by continuity,
u(zn) = 0 for all z, implies u(z) = 0 for all z € E. This sequence of
semi-norms defines on E’a locally convex metrizable topology 7 which is
clearly weaker than the w*-topology. On Bpg these topologies coincide,
since Id : (Bg/,w*) — (Bgr,7T) is continuous and the image of a compact
(or closed) set is T-closed, since it is 7T-compact. a

Note that Theorem 5.5 states that, if E is separable, the w*-topology
is metrizable when restricted to a bounded set, but this is far from being
true in general for w* on the whole E’. This only happens if F is finite
dimensional (Exercise 5.12).

Example 5.6. Suppose {K)}reca is a summability kernel on R™ such that
limy—0 suppy>as |[Ka(z)| = 0forall M > 0. If f € L°(R™), then lim)_,0 K*
f = f in the w*-topology on L*(R"™) = L(R")'.

A similar result holds for the periodic summability kernels.

This is shown as in the proof of Theorem 2.41 by considering, for every
ge L,

| [wiss=pd| < [| [t~ r@gle)da 1Kaw ay
sup |/ Ty f(z) — :c))g(:c)d:c|

ly|<M

-+2H9H1Hfﬂanﬁup | Kx(v)],
y_

IN

where
| [ - @)ot@) da]=| [r9(a) - 90 @) da] <l = gl oo
and we know that limas—0 supjy<as [I7yg — gll1 = 0 by Theorem 2.14.

It is worth noticing that the analogue of this last example holds for
measures as well:

If u is a complex Borel measure on R™ (or on T), which has a polar
representation dy = hd|u|, and g is a bounded Borel measurable function,
then the convolution

m*muw=/gw—wwmn=/g@—ymwwmw

is well-defined.
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If every function K of the summability kernel is bounded and continu-
ous, then

(5.1) puxKy—p—0
for the weak topology with respect to C.(R™) (or C(T) in the periodic case).
Similarly, f *x Ky — f — 0 in the w*-topology on L™ if f € L.

Note also that we can define the Fourier series for any complex measure

won T (or on (—m, 7))
(o0}

L~ Z ck(“)eikt

k=—o00

by
1 . _
(p) = 5- /( () = /T o F du(z).

Then the corresponding Cesaro sums are oy (u) = p * Fy, where Fyy is the
Cesaro summability kernel (2.25), and it is a special case of these remarks
that on(u) — p in the above w*-topology.

5.3. An application to the Dirichlet problem in the disc

Our next aim is to show how the previous results are related to the classical
Dirichlet problem.

Let U denote the open unit disc |2| < 1 in the plane domain, and let
1 . = 1 .
0= 5(8:, —1i0y), 0= 5(8x+z8y)

so that
400 =83 + 82 = A
With this notation, the Cauchy-Riemann equations J;u = Oyv, Ozv = —0yu

for f = u+ iv read Of = 0, and every holomorphic function f = v + iv on
U is C as a two-variables function which is harmonic; this is,

Af =0.

Obviously, u = Rf and v = &f are also harmonic.

For a real-valued harmonic function u, any real-valued v such that f =
% + v is holomorphic on U is called a harmonic conjugate of u and,
according to the Cauchy-Riemann equations, the harmonic conjugate of u
is unique up to an additive constant, since ;v = 9yv = 0 leads to v = C.
When v is chosen with the condition v(0) = 0, v is called “the” harmonic
conjugate of u.
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Our aim is to study the extension of a function f defined on T = U
to a harmonic function on U, that is, to study the Dirichlet problem for the
disc

(5.2) AF =0, F=fonT.

The condition F' = f on the boundary has to be understood in an appro-
priate sense.

If f € C(T), we look for a classical solution, which is a continuous
function F' on U which is harmonic in U. This problem is completely solved
by the Poisson integral that can be obtained by an application of the Hahn-
Banach theorem, as follows.

Let E be the subspace of the complex Banach space C(T) which contains
all the complex polynomial functions g(z) = Z;’f:l cp2™ restricted to T. By
the maximum modulus property, ||g|lt = ||9]|z, and the evaluation map
g — g(20) at a fixed point z9 € U is a continuous linear form with norm
1 which is extended by the Hahn-Banach theorem to u,, € C(T)’ so that
l[tazoll = 1.

Note that if E is any linear subspace of C(T) with the maximum modulus
property, it can, and will, also be assumed to be contained in C(U), and the
evaluation map is defined on this subspace of C(T).

By the Riesz representation Theorem 4.13,

iz () = /T fduy  (f €C(T))

for a complex Borel measure p,, on T, and then we say that p,, represents
Uz OF 2. We will see that this measure is uniquely determined by 2.

Lemma 5.7. If u € C(T), ||u]| = 1, and u(1) = 1, then the representing
measure of u is positive.

Proof. We need to prove that u(f) > 0 if f > 0 and we can also asume that
f<1 Letg=2f—1,s0that -1 < g <1 and, if u(g) = a+ b (a,b € R),
it follows from the hypothesis that for every z € R

1422 > ju(g+i)|? = la+ib+iz|> =a® + (b+2)* > (b+2)%,
so that b2+2xb < 0 and then b = 0, u(g) = a. Finally we have |a| < ||g||T <1
and then a = u(g) = 2u(f) — 1 forces u(f) > 0. O

Note that for the functions ey(z) = 2* (k € Z), if 2o = re*?,

rhe? = /I‘ en dfiz (n>0)
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and, since the measure is positive and e_,, = €, on T,

rhe~ 0 = / e—nditz.
T

Hence, [1exdpz, = rlklgikd,

By addition, for every r € [0,1) we obtain the 2w-periodic function

(5.3) P.(s) = i rlklgiks
k=—00
such that
(5.4) [t =5 [ reno-na

for every trigonometric polynomlal, since it holds when f = e,. But the
Fejér kernel Fiy is a summability kernel and, for every f € C(T), the Cesaro
sums on(f) = Fy = f are trigonometric polynomials such that on(f) — f
uniformly. By continuity, (5.4) holds for every f € C(T) and the Borel
measure [i,, is the uniquely determined absolutely continuous measure

dptzy = %Pr(ﬁ —t)dt (20 = ).

Note that P, (19 — t) is the real part of

e’t tz _1- 72 4 2irsin(9 — t)
142 —ityn _ ; .
+ Z #0¢€ et — 2y |1 — zpe—%| ’

that is,

1—1r2

1—2rcos(d —t) + 72’
The family {P, }o<r<1 is called the Poisson kernel of the disc. Every
P, is a positive continuous and periodic function such that

P(9-1)=

o0

1 [/ .
P. = r|k|—/ ek ds =1
/I‘ ' kzz—oo 27 J

and P,(—t) = P.(t). Moreover,

sup P (t) < P(0) =0 if §]0,
0<é<|t|<n

so that {P,}o<r<1 is & summability kernel on T.
We summarize all these results in the following theorem:
Theorem 5.8. The Poisson kernel { P }o<r<1 is the summability kernel on
T such that
1—1r2 €+ 2
1—2rcos(d —t)+12  “eit —z’

P(—t)=
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and )
Az = %Pr (9 —t)de (20 = re™?)

represents every point zg € U in the sense that it is the unique measure on
T such that

fe) =55 [ SR == (Box )(0)

for every f in a vector subspace E of C(U) which contains the polynomials
and satisfies the mazimum modulus property || fllg = || f|T-

Now we are ready to solve the Dirichlet problem (5.2) using the Poisson
integral of a function

(Prx f)(9) = 27r f(“’) r(9—t)di

or of a measure y,
1 T
(Pen)0) = 5= [ PO -0)du).

-7

Theorem 5.9. Let f € L(T) and let u be a complex Borel measure on T.
Denote

F(re®) = (P, x £)(¥) or F(re®) := (P, * u)(¥9),
with0<r <1 and ¥ €R.
Then F is harmonic on the open unit disc U and, asr — 1, the functions
F(9) := F(re®®) satisfy the following convergence results:
(a) If f € C(T), then F, — f uniformly, so that, by defining F(e*’) :=
f(e®), F is a classical solution of the Dirichlet problem (5.2).
(b) If f € LP(T) with 1 < p < oo, then Fr. — f in LP(T).
(c) If f € L™(T), then F,. — p in the w*-convergence on L®(T) =
L(Ty.
(d) If F, = P, xpu, then F, — u in the w*-convergence for p € M(T) =
c(T).

Proof. If f is real, then F' is the real part of the holomorphic function

(5.5) V(z) = — / Tty gy,

2 J_p et — 2z
and it is harmonic. A similar reasoning shows that F(re®®) = (P * p)(d)
defines a harmonic function on U.

Since we are dealing with a summability kernel, the statements (a) and
(b) hold, and (c)—(d) follow from (5.1). O
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Remark 5.10. A simple change of variables gives

it
“or / R? — 2rcos(z9 —t) +r2f(a+ Re™) dt
for every z = a + re € D(a,R) if f is continuous on the closed disc
D(a, R) = {z € C; |z — a| < R} and harmonic in D(a, R).
For r = 0 this is the mean value property of the harmonic function
f:
L[ f(a+ Re™)dt
fla) = — a e .
(@) =5 -

Let us now consider the inverse problem and, given a harmonic function
F on U, try to find out whether it is the Poisson integral of some function
or measure on T. We still denote F,.(9) = F(re®®) if z = re®’ € U.

Theorem 5.11. Suppose F' is a complez-valued harmonic function in the
open unit disc U.

(a) F 1is the Poisson integral of some f € C(T) if and only if F, is
uniformly convergent when r 1 1. In this case, F is the unique
classical solution of the Dirichlet problem (5.2).

(b) F is the Poisson integral of some f € L'(T) if and only if F, is
convergent in L*(T) when r 1 1.

(c) Fatou’s theorem: If 1 < p < oo, F is the Poisson integral of
some f € LP(T) if and only if

sup ||F|lp < oo.
0<r<1

(d) F is the Poisson integral of some complex Borel measure if and
only if

sup ||Fr|l1 < oo.
0<r<1

(e) Herglotz’s theorem: F is the Poisson integral of some Borel
measure if and only if FF > 0.

Proof. We need to prove only the direct parts, the converses being con-
tained in Theorem 5.9.

Let us start with (a) by showing that, if /. — f uniformly, then F' is
the unique solution of the Dirichlet problem for the disc. We can suppose
that F' is real-valued and we will prove that F' has to be the real part of the
holomorphic function V' defined in (5.5).

The function V3 = RV is a classical solution of the Dirichlet problem
with the boundary value f. Then H = F —V; € C(U) is harmonic in U and
zero on T, and we only need to show that H = 0 at every point of U.
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Assume that H(z) > 0 for some zy € U, denote € = H(29)/2, and let
h(z) := H(z) +¢lz|?,
a continuous function on U such that h =€ on T and h(z) > €. Then
max h = h(z)

for some z; € U, so that 02h(z;) < 0 and 8§h(z1) < 0. This is in contradic-
tion to Ah(z;1) = 4e, which follows from the definition of h. The assumption
H(zp) < 0 would also lead to a similar contradiction and H = F — V; = 0.

Proceeding now to the proofs of (d) and (e), let R := supg<,«; || Fr||1 and
ur(g) := (g, F;). Then u, € C(T) and |lu.|| < R. According to Alaoglu’s
theorem, since C(T) is a separable Banach space, the ball with radius R is
a metrizable w*-compact set and from a sequence r — 1 we can choose a
subsequence u,, which is w*-convergent to some u € C(T)'.

By the Riesz representation theorem there is a complex Borel measure
& on T such that

u(g) = / gdu=lim [ gOF,®d (gec().

n—>00

Note that every function hn(z) = F(’rnz) is harmonic in a neighborhood
of U and on U it is the unique solution of the Dirichlet problem (5.2) for
f(e®*) = F(rye®). Thus, if z = re'?,

hn(2) = % /_ P9 )hn(e) dt

If for a fixed z = re?” € U we consider the continuous function g=PF,
where

et + 2 9
P,(t) := §Reit — =P.(9—-t) (z=re"),
we obtain
F(z)= hmh / P,du= P (9 — t) du(t).

If F > 0, then ||F.|s = F(0) for every r € [0,1) by the mean value
property of harmonic functions, and the complex measure y obtained in (d)
is positive.

The proof of (c) is similar. In this case, u.(g) is defined for every g €
LP(T) and u, € L” (T) with |lu,|| < R = supg<ry |Frllp- Since 1 <p/ <
00, L”'(T) is separable and, according to Alaoglu’s theorem, we have some
ur, — u in the w*-topology on L” (T)'. Now by the Riesz representation
theorem for the dual of an L?-space, u(g) = [ gh for some h € LP(T) such
that |||, < R. Now the proof continues as in (d).
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The proof of (b) is simple. If F,. — f in L'(T) and du = f(t)dt on T,
then as in (d) it follows that

F(z) = li7rlnhn(z) = /TPZ du = /7r P.(9 —t)f(t) dt,

-7

since now u, = (-, Fr) = (-, f). O

5.4. Exercises
Exercise 5.1. Prove that the unit ball of £! is not weakly compact.

Exercise 5.2. Prove that every sequence in the closed unit ball of L?(R)
has a weakly convergent subsequence, and find a weakly convergent sequence
with no convergent subsequence.

Exercise 5.3. In the Banach space C[0, 1], prove that the sequence

nx if0<z<1/n,
f(@)=¢2-nz if I/n<z<2/n,
0 if2/n<z<1

is weakly convergent to 0 but it is not strongly convergent.
Exercise 5.4. If § € C[-1,1] is the linear form

5(g) == 9(0)

and {hn,}2, C C[-1,1], prove that h, — & weakly (in the sense that
(g, hn) = f_llghn — g(0) for every g € C[—1,1]) if and only if the following
three conditions are satisfied:

(1) limy, [1] ho(t) dt = 1,

(2) lim, f_ll hn(t)p(t)dt = 0 if ¢ € C*°[—1,1] vanishes in a neighbor-

hood of 0, and

(3) sup, f_ll hn(t) dt < oco.
Prove also that if sup,, f_ll hn(t) dt = oo, then there exists a function g €
C[-1,1] for which [, ghs — c0.
Exercise 5.5. If z, — = weakly in a Banach space E, prove that ||z||g <
liminf ||z, £

Exercise 5.6. For every Banach space F there is a linear isometry from E
onto a closed subspace of C(K), where K is the closed unit ball Bgr endowed
with the restriction of the weak* topology of E’.
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Exercise 5.7. Let E be a locally convex space. If z, — 0 in FE, then also
xzn — 0 weakly. By considering an orthonormal system in a Hilbert space,
show that the converse is not true in general.

Exercise 5.8. In a Fréchet space E, suppose that z, — x weakly. Prove
that z is the limit in F of a sequence of convex combinations Z;V:I Q;jTn; of
elements from the sequence {z,}.

Exercise 5.9. As an application of the uniform boundedness principle,
prove that a subset of a normed space E is bounded if and only if it is
weakly bounded. If F is complete, also show that a subset of E’ is bounded
if and only if it is w*-bounded.

Exercise 5.10. Let T : E — F be a linear mapping between two Fréchet
spaces and let T'(v) := vo T (v € F’), the transpose of T. Prove the
equivalence of the following properties:

(a) T is continuous.
(b) T is weakly continuous (T': E(o(E, E’)) — F(o(F, F') continuous).
(¢c) T'(F') C E' (and then T : F'(o(F', F)) — E'(c(E', E) continuous).

Exercise 5.11. Let F be an infinite-dimensional locally convex space. Prove
that the weak topology o(E’, E) on E' is metrizable if and only if E has a
countable algebraic basis.

Exercise 5.12. Let E be a normed space. Prove that if the weak topology
o(E, E') on E, or the weak* topology on E’, is metrizable, then E is finite
dimensional.

Exercise 5.13. Let H be a separable Hilbert space and let T € L(H).
Prove that T is compact if and only if, for any sequence {z,} C H such that
(z,zn)g — 0 as n — oo for all x € H (that is, z,, — 0 weakly), it follows
that ||Tz,|lg — 0. Operators with this property were called completely
continuous by Hilbert and Schmidt.

Exercise 5.14. Suppose E is a real normed space and K;, K2 are two
disjoint weakly compact convex subsets of E. Then prove that f(K;) <r <
f(K32) for some f € E' and r € R.

Exercise 5.15 (Goldstine’s theorem). Recall that £ C E” or, more pre-
cisely, J(F) is a subspace of E” if J is as in Theorem 4.25. Show that the
weak* topology on E” induces on E the weak topology and that the closed
unit ball Bg of E is w*-dense in the closed unit ball Bg~ of E”. Thus F is
w*-dense in E”.

Exercise 5.16. A normed space F is said to be reflexive if E” = E; that
is, if J(F) = E” with J as in Theorem 4.25.
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(a) Prove that E is reflexive if and only if the closed unit ball Bg of E
is weakly compact.

(b) Prove that every closed subspace F' of a reflexive normed space FE is
also reflexive.

(c) Prove that a Banach space F is reflexive if and only if E’ is reflexive.

Exercise 5.17. Prove that every Hilbert space H is reflexive and that
LP(0,1) (1 < p < o) is reflexive if and only if 1 < p < 0.

Hint: Use the representation theorems and Exercise 4.18.

Exercise 5.18. Check the details of the Riesz representation theorem for
(¢P)" (1 < p < o) which show that the dual space of ¢ is isometrically
isomorphic to ¢/ throughout the bilinear form (z,y) := 3., z(n)y(n). If
1 < p < o0, find a weakly convergent sequence in /P which is not strongly
convergent.

Show that on £ the weak topology is strictly weaker than the topology of
the norm. It is true, but harder to prove, that in ! every weakly convergent
sequence is strongly convergent.

Exercise 5.19. Find a sequence of functions f, such that, for any 1 < p <
00, fn — 0 weakly in LP(—m, ) but not strongly.

Exercise 5.20. Prove that C[0, 1] is w*-dense in L>°(0, 1) but it is not dense
for the topology of the norm.

Exercise 5.21. If

w .
(5.6) Z cpeFt

k=—o00

is a given trigonometric series, we denote Sy := Zﬁ; N cxet and

1 N
(5.7) ON = N_-I-lgsn’

the Cesaro means.

Prove that (5.6) is the Fourier series of a complex Borel measure on T
if and only if supy |lon||1 < 0.

Exercise 5.22. Prove that (5.6) is the Fourier series of a function f € LP(T)
(1 < p < o0)if and only if supy |lon]p < co.

Exercise 5.23. Prove that (5.6) is the Fourier series of a function f € L(T)
if and only if the sequence {on} of Fourier sums is a convergent sequence
in L}(T).
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Exercise 5.24. Prove that (5.6) is the Fourier series of a 27-periodic con-
tinuous function if and only if {on} is a uniformly convergent sequence.

References for further reading:

S. Banach, Théorie des opérations linéaires.

N. Dunford and J. T. Schwartz, Linear Operators: Part 1.
G. Kothe, Topological Vector Spaces 1.

P. D. Lax, Functional Analysis.

F. Riesz and B. Sz. Nagy, Le¢ons d’analyse fonctionelle.
W. Rudin, Real and Complex Analysis.

W. Rudin, Functional Analysis.

K. Yosida, Functional Analysis.






Chapter 6

Distributions

For a long time, physicists have been operating with certain “singular func-
tions” that are not true functions in the usual sense.

A typical simple example was Dirac’s function §, assumed to be “sup-
ported by {0} but so large on this point that [; 6(t) dt = 1”, which is the
unit impulse of signal theory.!

Previously, in 1883, to solve some physical problems, Heaviside? intro-
duced a symbolic calculus that included the derivatives of singular functions.
With this calculus it was accepted that § is the derivative Y’ of Heaviside’s
function Y = (g .0), and then a formal partial integration with ¢ regular
enough and with compact support gives

RGOS | dya=0).
R (0,00)

In his 1932 text [43] on quantum mechanics, von Neumann warned
against the use of these unclear objects. In the preface of the book he
says that “The method of Dirac ... in no way satisfies the requirements of

1The § function was introduced by the British physicist, and one of the founders of quantum
mechanics, Paul Adrien Maurice Dirac as the continuous form of the discrete Kronecker delta in
the formulation of quantum mechanics, which is contained in his 1930 book “The Principles of
Quantum Mechanics”, a landmark in the history of science.

2The English telegraph operator and self-taught engineer, physicist, and mathematician
Oliver Heaviside patented the co-axial cable in 1880, reformulated Maxwell’s initially cumbersome
equations by reducing the original system of 20 differential equations to 4 differential equations in
1884, and between 1880 and 1887 developed a controversial operational calculus that motivated
his saying “Mathematics is an experimental science, and definitions do not come first, but later
on”,

143
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mathematical rigor [with] the introduction of ‘improper’ functions with self-
contradictory properties” and he calls the delta functions and their deriva-
tives “mathematical fictions”. Very soon afterwards Bochner introduced in
a rigorous way singular functions in Fourier analysis, and Sobolev (1938)
used weak derivatives in the study of partial differential equations.

But it was L. Schwartz3 who defined them as linear forms acting on a
family of test functions ¢, with the appropriate continuity properties.

The idea was that, as a mater of fact, a singular function such as ¢ always
appears inside an integral formula. In the case of the Dirac function, the
useful property is that [ ¢(t)d(t) dt = ©(0), and & can be directly defined
as the linear form ¢ — ¢(0) acting on a convenient family of test functions
728

If we consider any function 0 < g € C.(R) supported by [—r, 7] and such
that [ o(t) dt = 1, the summability kernel g, (t) := ng(nt) is such that

lim . p(t)en(t) dt = lim (p,0n) = ¢(0) (¢ €C(R)),

n—o0
since | [ (t)on(t) dt — (0)] < [T 10(t) — (0)|en(t) dt — 0. This means
that § is also a weak limit of the sequence {g,} by associating to o, the
linear form (-, gr,).

As a positive linear form on the space of test functions C.(R), by the
Riesz-Markov theorem ¢ can also be considered a Borel measure. The class
of test functions for distributions will be much smaller than C.(R), and op-
erations with distributions will include well-defined generalized derivatives.
The derivatives ¢, 6", ... of § will be distributions but will not longer be
measures.

With the description of the general theory of distributions, we will in-
clude some basic facts and examples concerning differential equations, a
field where the influence of functional analysis has grown continuously pre-
cisely due to the use of distributions. In the next chapter we will find more
examples.

The results are stated for complex-valued distributions, but the reader
can check that they are also valid for real distributions.

6.1. Test functions

Let €2 be a nonempty open subset of R™.

3Laurent Schwartz formalized the mathematical theory of the generalized functions or distri-
butions in 1945, and his 1950-51 book “Théorie des Distributions” [40] remains a basic reference
for this topic. See footnote 1 in Chapter 3.
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In Section 3.1 we introduced the Fréchet space £(2) of all C*° com-
plex functions on (2, endowed with the locally convex topology of the local
uniform convergence of functions and their derivatives.

If K(£2) represents the family of all compact subsets of §2, the space of
test functions is the vector space of all C* complex functions on 2 with
compact support,

D)= |J Dk
Kek(Q)
Recall that, if K € K(2), in (3.3) we defined Dk () as the closed subspace
of £(Q) that contains all f € £(Q) whose support lies in K, so that its
topology is defined by the increasing sequence of norms

(6.1) av(f)= Y IID*fllx (N €N).

la|<N

Thus, ¢ — ¢ in Dg () means that D%pr — D%y uniformly, for every
a € N™.

Example 6.1. Let g(t) = e~/*x(g 4o (t) and denote o(z) = Cg(1 — |z|?)
with C > 0 such that [ ¢(z) dz = 1. Then g is a test function whose graph
has the familiar bell shape that satisfies 0 < ¢ € Dg(g1)(R").

The derivatives are g™ (t) = P,(1/t)e”/t if t > 0, where every P, is a
polynomial and g™ (t) = 0 if t < 0; thus g™ (0) = lims—0 g™ (t) = 0 for
every n € N, so that g is C* supported by [0, 00), and ¢ € D 1)(R").

From ¢ we can define a C*° summability kernel {ge}o<e<e, On R™ by
0c(z) = e "o(x/¢) (see (2.22)). Note that 0 < g € Dp()(R") and that
[ 0e(z) dz = [ o(x) dz = 1. Such a function is often called a mollifier.

Let us define the local analogue of L!(£2) by denoting Li () the vector
space of complex measurable functions locally integrable on the open set €2,
i.e. functions integrable on every compact subset K of Q2. As usual, two
locally integrable functions are supposed to be equivalent if they coincide

a.e.
If f € LL _(R™), 0. * f given by

loc
D@ = | elo-0iwdy= [  fo-v)ew)d
R™ B(0,e)
is a well-defined C'* function, since we can differentiate under the integral
sign.

New test functions can be constructed from Example 6.1. For every
couple K C , there is a test function ¢ € D(2) which is a smooth Urysohn
function for this couple, so that K < ¢ < 2. It can be defined as follows:
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Let 0 < 6 < d(K,§°)/2 and let 0 < ¢ € D(B(0,8)) with [ ¢(z)dz = 1,

as in Example 6.1. We denote
K(§) = K + B(0,6) = {x € R"; d(z, K) < §}

and define ¢ = x(s) * -

The properties of convolution (cf. (b) and (c) in Subsection 2.4.1) yield
0 € Di(26)(2), since f x o € E(R™) and supp (f * o) C K + B(0,0) = K(J).
To obtain ¢ = 1 in a neighborhood of K, we only need to change K by a
compact neighborhood of K.

The C* summability kernel {g.} is useful to regularize nonsmooth func-
tions:

Theorem 6.2. (a) If f € Ck(R") and 0 < € <1, then f * g. € Dg(y)(R™)
and limg_,g f * 0 = f uniformly on R™.
(b) If f € LP(R™) (1 < p < 00), then lim.q f * 0 = f in LP(R™).

Proof. Let supp f C K and supp ge C B(0,€). Then f * g € £(R™) and
supp (f * 0e) C K () C K(n).
Now (a) and (b) follow from Theorem 2.41. O

The small class D(R) is large enough to be dense in many spaces, such
as LP(Q) if 1 < p < oo (see Exercise 6.2) and £():

Theorem 6.3. The set D(2) of all test functions is dense in £(N2).

Proof. For every f € £(2) we consider {omf} C D(R), where g, are the
Urysohn functions associated to an increasing sequence of compact subsets
K, of Q such that every other compact subset K of §2 is contained in one
of them, K, and o, f = f, so that D*(g,,f) = D*f on K if m > N. Then
D*(omf) = D*f uniformly on every compact set K C . a

6.2. The distributions

The distributions in a nonempty open subset 2 of R™ are defined as the
linear forms on D(f2) which satisfy a convenient continuity property.
On D(2) = Ukex) Dk (), instead of defining a topology, it will be

sufficient to consider a notion of convergence.*

We say that ¢, — ¢ in D(Q) if p — ¢ in Dg () for some K € K(Q2);
that is, ¢ and ¢, are test functions on € that satisfy

e supp ¢k C K for some fixed compact set K C 2 and

4This notion of convergence follows from the topology defined in Exercise 6.5. With this
topology, D(R) is known as the inductive limit of the spaces Dk (2).
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o D%p, — D%p uniformly as k — oo, for every a € N™.

A distribution on the open set €2 is defined as a linear form
u:D(Q) » C
which is continuous with respect to the above convergence or, equivalently,
such that up, () € Dk ()’ for every compact set K C Q.
We denote by D’'(€2) the complex vector space of all distributions on €.

Hence u € D'(2) means that u : D(?) — C is a linear form such that
u(pk) = 0 whenever @ — 0 in some Dk ().

Thus, if u € D'(Q), for every compact set K C 2 there are an integer
N = Nk > 0 and a constant Cx > 0, both depending on K, such that

lu(p)| < Ckan(e) =Ck Y, D%l (p € Dk(R)).
|a|<N
If there is an N independent of K, then the smallest such N is called the
order of the distribution u (the constant C still can depend on K). If this
N does not exist, u is said to be of infinite order.

Example 6.4. Suppose f is a locally integrable function on . Then we
can define

ule)=(0.f) = [ F@o@)de  (peD@).
It is clear that uy is a linear form on D(£2) such that |us ()| <[ fllL1(x)llellx,
that is, uy € D'(Q).
Next we prove that the linear mapping f € L _(Q) = (-, f) € D'(Q) is

loc

one-to-one, so that we can consider L} () € D'(2) and it is said that the

loc
distribution uy is a function. If no confusion is possible, we write f for uy.

Theorem 6.5. If f € Li. .(Q) and [, f(z)p(x)dz = 0 for every test func-

loc

tion ¢ € D(Q), then f =0 (a.e.).

Proof. We can assume that f is a real function and we only need to prove
that f =0 a.e. on every ball B(a,r) C Q.

If A= {z € B(a,r); f(z) > 0}, choose K, C A C Gpn C B(a,r) so
that |Gm \ Km| 4 0 (K, compact and Gy, open sets). If ¢, is a Urysohn
function for K, C G, then ¢, = x4 a.e. and

/Af+(:v) dr = lim/f(a:)gom(az) dz = 0.

Hence, f*(z) = 0 a.e. on B(a,r). Analogously, f~(z) =0 a.e. on B(a,r).
O
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Example 6.6. For every a € (2, the Dirac distribution, J,, is defined as
da(p) = p(a). On R", we denote ¢ = do.

Example 6.7. If u is a Borel measure, or a complex Borel measure on 2,
then

/gdu /ghdlul (9 € Cc(2))

defines a linear form (-, u) on C¢(f2), and the restriction to D(Q) is clearly
a distribution which is 1dent1ﬁed with p. Here du = hd|u| is the polar
representation of u.

The pair (D(Q2),D'(R?)) is a dual couple since, if u(yp) = 0 for every
u € D'(Q), then p =0 ([ |p|> = (p,¢) = 0). Thus, if u is a distribution
and ¢ a test function, we also write (p,u) instead of u(yp).

Eventually we will use the notation (p(z),u(z)) if we need to refer to
the variable that is used at each moment.

The space D’'(R2) is endowed with the weak topology o(D’'(2), D(R)),
and the distributional convergence u; — u means that ug(p) = u(p)
for every test function (.

Multiplication by a C* function, g € £(Q), is naturally extended
to distributions: If f € LL (Q), also gf € L () and, as a distribution,

(0,9f) = /Q o(@)9(@)f (z) dz = (g, f),

which suggests that we can define gu for every u € D'(Q) by the rule
(9u) () = u(gyp); that is,

(0, gu) := (g, ).
Since gy € D(Q) for every ¢ € D(Q), to prove that gu € D'(Q), we only
need to check the continuity property for this new linear functional gu on
D(£2). But multiplication by g is a linear operator g- : D(2) — D(Q) such
that
(6.2) @r = ¢ in D(Q) = gy — gy in D(Q)

since, if o — ¢ in Dk (Q), it is easily checked that also gy, — g in D ()
from

10i(g99) 1 < 11039l xllellx + llgllx 11050l ¢
and from the corresponding estimates for the successive derivatives D%(g¢).

Hence, also (gu) (k) = u(gex) = u(ge) = (gu)(»), and gu € D'(R).
There is a general procedure for extending some operations on D((2)

to operations on D’'(f2) which includes the above multiplication by a C*
function as a special case.
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If T : D(Q1) — D() is a linear map such that T'u = uo T € D'()
for every u € D'(Q2), then T' : D'(Q2) — D'(Q4) is the transpose of T
(To,u) = (p,T'w)  (p € D(), u€ D'(Q)).

Both T and T” are weakly continuous, since

Pp(T'u) = {0, T'u)| = {Tp, u)| = pry(u)

and py(Tp) = pru(p), where the p, and the p, are, respectively, the semi-
norms that define the weak topology on D and on D'.

Sometimes there are two linear operators
T: D(Ql) — D(Qz), R: D(Qz) — D(Ql)
which are transposes of each other in the sense that

(0, Rp) = (Tp,9) (¢ € D(E1), ¥ € D(Qa).

Then, for every u € D'(Q2) we can define Ru = uo T, which is a linear form
on D(§2;) characterized by the condition

(¢, Ru) = (Tp, u).

If T satisfies the continuity condition T, — 0 in D(€;) whenever ¢, — 0
in D(£1), then every Ru is a distribution on Q4, and R : D'(22) — D'(£%1)
is the transpose T of T : D(£21) — D(€2). This transpose is considered the
extension of R : D(Q3) — D(1).

Very often, the restriction of R = T" : D'(23) = D'(1) to L () is
also a natural extension of R : D(Q2) = D(1).

This is the case of multiplication by a C* function g € £(2), R = g- on
D(R2). With our definitions, also T = g- on D(2), since

(o, g) = /Q 0(@)g(@)p(z) dz = (90,9),

and R = g-, extended to D'(f2), coincides with g- when restricted to Ly ().

Let us now consider the case of a C* change of variables 9 : Q23 — (24,
and let Rf represent the function f(y~1(z)) if f € L (€2), so that

(0, Rf) =/Q F@)e@@)ITpW)l dy = (| Jyle(®), f)-

The following theorem shows that 9 : D(£2;1) — D(§22) continuously.

Theorem 6.8. Let vy : Qg — Q) be a C*®°-change of variables, K a compact
setin Q, and let L = ™1 (K). Then the linear map ¢ — @(1) is continuous
from Di (1) to D).
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Proof. If o(z) = 0 when z ¢ K and y ¢ L, then z = ¢(y) ¢ K and
e(W)() = 0. So ¥ : p € Dk(1) — (W) € DL(e) is a well-defined
linear mapping. From 8;(¢(v)) = 0;9(9j¢)(¢), it follows as for (6.2) that
18 (e())llL < 118591l Llidse0ll k. Similarly,

10%0; ( ()l < 10x05% 1 LlIOs0ll k¢ + 1051|110k Bs0ll ke

and, by induction, |D%*p(¥)|r < CYpcq IDPollk. Thus, ¢ — 0 in
DK(Ql) implies \I’(wk) —0in DL(Qz). O

Let Tp := |Jyle(¥) if ¢ € D(4), and let u € D'(2). Then the linear
form T"'u on D(£;) defined as the transpose of T by

(0, T'u) = (| Tple(¥), u)
is a distribution, since it is the composition
@ = () = |Jylo(®) = u(|Tyle(¥))
of three linear mappings which have the appropriate continuity properties.
Ifu=feLl.(Q), T'u = Rf. Hence, we write Ru = T"u and
((p,R’u,) = <|J¢|¢("/)))u)

defines the change of variables for distributions. Translations, scaling, and
symmetry of distributions on 2 = R™ are special cases:

Example 6.9. On R™ the translated 7,(u), the symmetric i, and the dila-
tion u(ax) of a distribution u are the distributions defined as follows:

() (s 7a(w)) = (T—atp, ), o1 (p(2z), u(z — a)) = (p(z + a),u(z)).
(b) (@, @) = (@, u), or (p(z),u(—2)) = (¢(-2),u(z)).
(©) (p(z), u(a™'z)) = |a|™(p(az), u(z)) if o # 0.

An example is 7,0 = d,, since

(¢, 7ad) = (p(z + a),8(x)) = ¢(a) = (p, ba)-

6.3. Differentiation of distributions

If f € EY(R), or if f is an everywhere differentiable function on R and f’ €
L} .(R) (see e.g. Rudin’s “Real and Complex Analysis” [39]), integration
by parts yields

w1 = [ er®d=- [ Fo1ed=—,1

ifpe D[_r,,,] (R).
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This result suggests that we associate to each distribution « on the open
set @ C R™ the partial “derivatives” 0;u (or Du = «' when n = 1) by the
formula

(0,050 i= (~Bjp,u) (1< ] <n).
That is, (9ju)(¢) = —u(9;p) (W (p) = —u(¢’) if n = 1).
If o — 0 in Dk (N2), then
_<6j(pk’u) -0,

since 9;¢r — 0 in Dg (). Thus, d;u € D'(Q2), the operator

9;: D'(Q) - D' ()
is the adjoint of

—-0; : D(Q) = D(Q),
and d; on D'(f2) extends the partial derivatives of C! functions on Q.

Note that 9; : LL () — D'(§2) can be defined as the restriction of
9; : D'(Y) — D'(N). It is a custom, which we shall usually follow, to
write 0; f instead of Ojuy, which is a distribution called the distributional
derlvatlve or weak derlvatlve of f € L} (). It is characterized by the
identity

(0,0;f) = / f@p(@) dz (¢ € D(®)).

The ath distributional derivatives are defined by induction. If D* =
07t o--- 008", then
D*:D'(Q) - D'(Q)
is a continuous linear operator such that
(¢, D®u) = (=1)*|(D%p, ).
We also write D®f for D*uy if f € LL ().

Theorem 6.10. If f € E™(Q) and |a| < m, then the usual pointwise deriv-
ative D*f coincides with the distributional derivative: D*us = upef.

The Leibniz formula for the derivatives of a product of functions® is
extended to

0;(fu) = (9 f)u+ fou  (f € EY(Q), ue D(Q)).
Proof. By induction, assume m = 1 and consider D% = 0i:

(p.0xu7) = = [ Drp(a) (@) do

5See in Exercise 2.1 the extension of the Leibniz formula to higher-order derivatives.
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We can suppose that f(z) = 0 if z € R"\ G, where G C 2 is an open set
containing K = supp ¢, so that

(@, 01f) = —/Rn Ap(z) f(z) dz.
If z = (t,z) € R x R" ! and fz(t) = f(x), integration by parts gives

o)== [ [ shorO@ds=pan.
For the product,

(#,0(fu)) = =(fOj0,u) = (905 f — (), u) = (@, (8;f)u+ fOju).
g

If f is absolutely continuous, so that f’ exists a.e., and if f’ € Llloc(R),
it is shown in Exercise 6.20 that this a.e. derivative is also the distributional
derivative of f. But one has to be careful since the following examples show
that there are many functions f € LL (R) with an a.e. defined derivative

f' € LL _(R) which is not the distributional derivative of f.

loc

Example 6.11. Let f be a C! function on (a,b) \ {t1,%2,...,ts} (@ < t1 <
ty < +++ < tp < b), such that the right and left limits f(¢;+) and f(t;—)
exist and are finite (1 < j < n). If f' on (a,bd) \ {t1,t2,...,ts} is locally
integrable on (a,b), then the distributional derivative of uy = (-, f) is

up =+ (ftit) = F(t1-)) 8 + (ftat) — ft2—))
+oot (f(tn+) - f(tn"))‘stn-

Define ¢ = 0 outside of (a,b). If to = a and t,,+1 = b,
N, rtiv
== [ v s
=17t

and integration by parts gives

i tj+1
i) = 3 / P(OF () di + F(t-)p(t5) — F(t (i)
i=1 7t
b n
- / o F W) dt+ 3 (Fti+) — F(t-) ().

j=1
Example 6.12. If f € £(R) and Y = x| ) (Heaviside function), then

n—1
(fY) = f'Y + f(0)é and (fY)(n) = f(n)Y + Z f(k) (0)6(n—k—1).
k=0
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The first identity is contained in Example 6.11. Then, by induction,

n—1
(FY)HD = (fY)™) = fOY 4+ f05 4 3 10 (0)5n
k=0
and f(™§ = f)(0)s.
The following results show a couple of instances where the derivatives of
distributions behave as the derivatives of functions.

First, on an interval of R, the constant functions are the unique distri-
butions with zero derivative:

Theorem 6.13. Let u € D'(a,b) (—o0 < a < b< +00). Thenu' =0 if and
only if u is a constant function.

Proof. If ¢ € D(a,b), let ¢ = ¢ — (f: )0, where we choose ¢ € D(a,b) so
that fab o0 =1. Then ¢ € D(a,b) and ¥(z) = [T is also a test function
since, if supp ¢, supp o C [¢,d] C (a,b), then ¥(z) =0 if z ¢ [c, d].
Moreover v/ (¥) = —u(¥') = —u(y) = —u(cp)+(f: ©)u(p) and, if ' = 0,
also fab u(0)p(t) dt —u(p) = 0. Thus, u(v) = (¢, u(p)) and u is the constant
function u(p). O

The derivative of a distribution on R™ can be defined as a quotient limit
of distributions:

Theorem 6.14. Suppose ¢ € D(R"™) and u € D'(R"), and let e; be the jth
standard basis vector of R™. Then

.. T—he;p — 9 .
lim 2~ % — 5, in D(R™
lim i in D(R™)
and T he;U— U
. —he; b — . /(pn
— =90, D'(R"™).
illln% . dju in D'(R™)

Proof. We can suppose 7 = 1 and we choose a compact set K C R™ which
contains supp ¢ and so that d = d(supp ¢, K¢) > 0. By the Lagrange mean
value theorem,

(P(IL' + he]i) — (P(m) _ 31<P($)

with |hz| < |h|. Note that supp¢ + he; C K if |h| < d and, by taking the
supinz € K,
het) —
plethey) - 9(2) < sup [[Bup(z + ter) ~ Brp(@)lic,
h K <A

where the right side tends to 0 as |h| — 0, since 9;¢ is uniformly continuous.

= |01p(z + hae1) — O1p(2)|

- 31(,0(:1:)
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The same holds for every D%p and, if h — 0,

p(z + he1) — p(x)
h

— O1p(z)

in Dg(R™) and in D(R™).
From the continuity of the distribution u on Dk (R"),
(oo~ her), u(a) = ()
h
if h — 0, so that limp—0(p, A (T—he,u — u)) = (p, Oju). O

- (_al‘P7 u)

6.4. Convolution of distributions

The convolution f * g of two integrable functions f and g is a well-defined
integrable function and, if one of them has compact support, then

(o, fxg) = Lng(y)Anw(w)f(w—y)dwdy
= (p(y+2), f(2)9¥)) = ({p(y + 2), f(2)), 9(v))-

If u and v are two distributions, this suggests that we should try

(pyuxv) = ((p(y + 2),u(2)),v(y))

as a possible definition, but then we need to apply v to the function f(y) =
(p(y + 2),u(2)). Note that if suppy C B(0,7), we can only state that
©(y + z) = 0 whenever (y, z) lies in |y + z| > 7, and f can no longer have a
compact support.

This shows that it is convenient to consider cases where u can be applied
to functions with an unbounded support. This will be possible if u belongs
to the class of distributions with compact support.

6.4.1. Support of a distribution and distributions with compact
support. We recall that the support of a continuous function f on  is
the closure in Q of the set of points where f(z) # 0 or, equivalently, the
complement of the largest open subset of €2 on which f is zero.

To define an analogous concept for distributions, it is convenient to show
that they are locally determined, and partitions of unity are useful to this
end.

Recall that, according to Theorem 1.3 and Remark 1.4, if {Q4,...,Qn}
is a finite family of open subsets of R™ which covers a compact set K C R",
then there exists a partition of unity ¢; € D(;) (1 < j < m) subordinate
to this covering.
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Note also that if G is an open subset of 2, we can consider D(G) C
D(R2) C D(R™) and the restriction of a distribution u € D'(R2) to D(G) is
also a distribution, ug € D'(G). If the restrictions of u,v € D'(?) are the
same, we say that these distributions are equal on G, and we write u = v
on G.

Theorem 6.15. For a given distribution u € D'(Q), there is a largest open
subset G of Q) where u is zero.

Proof. Let G be the union of all open subsets of 2 where u is zero, and let
¢ € Dg(G). Then K C Q1 U -+ UQy, with w = 0 on every £, and we can
choose a partition of unity {¢;}7L; subordinate to this covering of K. Then

u(p) = u(P7L; wip) = D5, u(pjp) = 0, since supp p;p C Q. o

The support of a distribution u € D'(Q2), suppu , is defined as the
complement Q \ G of the largest open subset G of 2 where u vanishes.

Theorem 6.16. The support of u € D'(Q) is compact if and only if u is
the restriction to D(Q) of some v € £'(Q), which is uniquely determined by
u. We call £'(Q) the dual of £(Q).

Proof. Since the inclusions Dk () — £(Q) are all continuous, the restric-
tion u of every v € £'(Q2) to D(Q) is a distribution. The continuity of v
means that

(6.3) () < Cagm(f)  (f €E(Q))

for some semi-norm qx m(f) = max|q|<m || D f||x and some constant C' > 0.
Thus v(f) = 0 if supp f C Q\ K, since in this case gx m(f) = 0, and then
suppv C K.

Reciprocally, given u € D'(Q) with suppu = K, compact, we choose
K(6) = K + B(0,6) C Q and K(8) < o < 2. We claim that

v(f) = u(fe)
defines a linear form on £(Q) which is an extension of u which does not
depend on g or §.

Indeed, if also K (&) < 01 < , then u(fo) —u(fo1) =u(f(e—01)) =0
since supp (¢ — 1) N K = 0.

Moreover, if ¢ € Dg(Q), it is shown that v(p) = u(pe) = u(p) by
choosing a compact set L such that K U suppy C Int (L) and L < o < Q.
If f — 0in £(Q), it is easily checked that fro — 0 in D(Q) and then
v(fr) = 0. That is, v € £'().

According to Theorem 6.3, the set D(Q2) of all test functions is dense in
£(Q), and v is uniquely determined by wu. a
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Since v € £'(Q) = u = vyp(q) € D'(R) is linear and one-to-one onto the
class of all distributions on © with compact support, £'(2) is said to be the
space of distributions with compact support on €.

6.4.2. Convolution of distributions with functions. Next we define
the convolution of a distribution with a function on the whole R™ when at
least one of them has compact support. Suppose first that ¢ € D(R™) and
u € D'(RM).

Since (f * ¢)(@) = (p(c —v), f¥)) if f € Li,o(R™), we define

(u* ) (z) == (p(z — y),w(y)) = () (¥), u(¥)) = (B, T—2u) = (T—zp, &).

Note that (u * ¢)(z) is continuous with respect to u in D'(R™) (when
¢ € D(R™) and z € R" are fixed), with respect to ¢, and with respect to
z. That is,

(6.4)

(uk * ) () = (ur @) (@), (uxpr)(z) = (uw* @) (@), (ug*@)(Tk) = (u*p)(z)
when up — u in D'(R™), pr — ¢ in Dg(R"), and zx — = in R™, respec-
tively.

Indeed, (ug * @)(z) = (Tap, uk) = (Tzp,u) if up — u, since on D'(R™)
we are considering the weak convergence.

Also, if i = @, then (u % 9) (&) = (P, T-at) = (9, 7-o1).

Finally, if zx — =z, then (u * ¢)(zk) = (T—z,,4) — (T—g¢, @) from the
uniform continuity of ¢ and of all D%y, since |D%p — 7_5, D%*p||lrn < € if k
is large, and there is a single compact set L C R" so that supp7_z, ¢ C L.

Let us gather together the basic properties of this convolution:

Theorem 6.17. If ¢ € D(R") and u € D'(R™), then u* ¢ € E(R") and
the following properties are satisfied:

(a) Ta(u* @) = (Tau) * @ = u * (159).

(b) D*(u * ) = (D%u) *x o = u* (D%p).
(c) supp (u* ) C suppu + supp .

(d) (uxp)*xp =ux*x(px1) if p € C.(R").
)

(€) uxpr = uxp in ER™) if o, = ¢ in D(R™); hence, ux : D(R™) —
E(R™) is continuous (when restricted to every Dk (R™)).

Proof. (a) From the definition,

(u*p)(z —a) = (p(z = (y +a)), u(y)) = (¢(z - ¥), Tau(y)) = ((rar) * ¢)(z)
and also {p(z —a —y),u(y)) = (u* (Tap))(x).



6.4. Convolution of distributions 157

(b) We can assume D* = 9;. Then, according to Theorem 6.14, an
application of (a) gives

A(urp)a) = lim T—tﬁ(u*so)(wt)—(u*so)(x)

= lim
t—0

= (P, T-z01u) = ((BW) * ¢)(z).

< T—z—te; U -T—xu>

Similarly,
O (u p)(x) = lim <—“’—“’ T_ou) = (u* 019)(x).

(c) If suppy(z — ) N suppu = O, then (p(z — -),u) = 0. Hence, if
(u*x)(z) # 0, necessarily supp ¢(x—-)N suppu # 0, so that x—y € supp ¢
at least for one point y € suppu and then x € suppu + supp¢. Thus,
{u* ¢ # 0} C suppu + supp , which is closed as a sum of a compact set
and a closed set, so that

suppu * ¢ = {u* ¢ # 0} C suppu + supp ¢.

(d) We claim that, by writing the integral that defines (¢ * ¢)(z) for a
given point z € R™ as the limit of Riemann sums with uniform increments
0 < h <1, then
(6.5) lim 3 7 oz — ha)p(h)h™ = (p ) (2)

2€Z"
in D(R"). Note that the sums are in fact finite, since ¢ has a bounded
support, and the argument in (c) shows that their supports are contained
in supp ¢ + supp .

To prove this claim, note that (z,y) — D%p(z — y)¥(y) is uniformly
continuous on R2", since it is continuous and it is readily checked that
its support is compact, so that D .zn D*p(z — hz)ih(hz)h™ = (v * ¥)(x)
uniformly in z.

Now, since (p(z —y — hz),u(y)) = (u* ¢(- — hz))(z),
wx(px9))(@) = lLm(( Y oz —y— h2)p(hz)h™), u(y))

h—
0 zZE€EZ™

= hm Z (u * )(x — hz)Y(hz)h™

zGZ"
- /R (wr )~ yhpy) dy = ((ux¢) »¥)().

(e) The restrictions ux : Dg(R"™) — £(R™) are continuous by the closed
graph theorem, since, if o — ¢ in D(R") and u * ¢ — f, then it follows
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from (6.4) that (u * pg)(z) = (u * ¢)(z) for every z € R™. Hence, f(z) =
(u* p) (). 0

The convolution that we have defined can be considerably extended.

If u € D'(R") is a distribution with compact support and f € £(R"),
then we also may define

(u* f)(z) = u(raf)
since u is extended to a unique u € £'(R"), by Theorem 6.16. We have an

analogous result to Theorem 6.17:

Theorem 6.18. If f € E(R") and u € E'(R™), then ux f € E(R™) and the
following properties are satisfied:

(8) To(ux* f) = (Tou) * f = u* (15f).

(b) D*(u* f) = (D%*u) * f =u* (D*f).

(c) (uxf)*=ux(f*7) ifp € D(R").
Proof. The statement (a) is proved exactly as in Theorem 6.17 and (D%u) *
f =wux(D*f), which is one half of (b), follows directly from the definition.
To also show that D*(u * f)(z) = u * (D*f)(z), we choose p = g € D(R"™)
such that ¢ = 1 on a neighborhood of suppu U 7, f and then

(ux D*f)(z) = ux (D*(ef))(z) = D*(u  (ef))(z)
with (u * (of))(z) = u(e7=f) = (u * f)(z). Note also that
((D%u) * f)(z) = ((D%u) * (ef)) (=)

is continuous.

To prove (c), let G be a bounded open set that contains suppu and
choose any ¢ € D(R™) such that g = f on supp + G. Then m = m
on G and it follows from the definition that

(u* (f *9))(0) = (u* (ex%))(0) = (u* (P * 0))(0).

Since 7, f =mo0on W, uxf = uxp at every point in — supp % and it follows
that

((ux £) x9)(0) = ((ux o) * )(0).
But supp (u * 1) C suppu + supp ¥, so that

(wx ) * £)(0) = ((ux %)  2)(0)
and ((ux*1)*0)(0) = (ux* (v * 0))(0), which combined with the first identity
gives

(u* (f *$))(0) = ((ux9) * £)(0)

and we obtain (c) from (a) by applying a convenient translation. O
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Example 6.19. ¢ x f = f for every f € £E(R"), since
(6* f)(zx) = {f(z—v),6(y)) = f(z).

6.4.3. Convolution of distributions. A typical fact of convolution op-
erators is that they commute with translations. By Theorem 6.17(a), for
every distribution u € D'(R™), the operator ux : D(R") — £(R™) is linear,
continuous on every Dg(R™), and u * (7o) = 7,(u * ¢). The converse is
also true:

Theorem 6.20. If T : D(R™) — C(R™) is linear, continuous on every
Dk (R™) (or, simply, (T'pk)(0) — 0 if o — 0 in D(R™)) and if it commutes
with translations, then T = ux for a uniquely determined distribution u €
D'(R™).

Proof. Since necessarily (T'¢)(0) = (u * ¢)(0) = (rou)(®) = u(®), we must
define u(p) := (T'¢)(0). Note that u is linear and, if ¢, — 0 in D(R"), then
w(pk) = (T@r)(0) — 0; hence u € D'(R™).
But T'(1—4¢)(0) = (u*7—a¢)(0) and, since T commutes with translations,
(Te)(a) = (7-aTp)(0) = T(7-ap)(0) = (u* T—a¢p)(0) = (u * ¢)(a).
(]

The preceding theorem will allow us to extend the previous definitions
to a convolution of two distributions u and v on R™ if at least the support
of one of them is compact. In this case we can define

Tup(p) :=ux (v*op).

Note that, if v € £&'(R™), then v* ¢ € D(R™) and u * (v * ¢) is well-defined,;
similarly, if 4 has compact support, then v * ¢ € E(R™) and we also are
allowed to consider

ux (v*@)(x) = u(1a(V ¥ ).

In both cases, the linear map Ty, : D(R") — £(R") is continuous on
every D (R™) and commutes with translations. By Theorem 6.20, there
exists a unique w € D'(R™) such that Ty, , = w*. Then we define u*v := w,
so that u *x v € D'(R™) is characterized by the identity

(uxv)*xp=ux(v*p) (¢ € D(RM)).
Theorem 6.21. Let uj,uz,us,u,v € D'(R").
(a) If ux o =0 for every ¢ € D(R™), then u = 0.
(b) If at least two of u1,ug,us € D'(R™) have compact support, then

uy * (ug * ug) = (u1 * ug) * u3.
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(c) If at least the support of one of u and v is compact, then uxv = vxu,
D*(u*v) = (D%) *v = (u* D),
and supp (u * v) C suppu + suppv.

Proof. (a) u(p) =u(10@) = (u*x¢)(0) =0if uxp =0.
(b) From the definitions, (u1 * (ug * ug)) * @ = ((u1 * ug) * ug) * ¢ since,
in any case,
(w1 * (ug * uz)) * @ = ug * ((uz * ug) * ) = ug * (uz * (ug * @))
and
((u1 * ug) * ug) * @ = (u1 * u2) * (ug * @) = uy * (u2 * (ug * @)).

(c) Let u1 = u* v and ug = v *x u. To show that u; = ug, we only need
to prove that u; * (1 * @2) = ug * (p1 * 2) for any 1,2 € D(R™), since
then, by an application of (b), (u1 *®1) * 2 = (ug * ¢1) * p2. Now we apply
(a), so that uj * 1 = ug * 1 and then u; = us.

But, by using the fact that the convolution of functions is commutative
and (b),

(uxv)* (p1#p2) = ux((v*p1) *p2) = ux (2% (Vxp1)) = (uxp2)* (v*p1)
and also

(v*u) x (o1 % p2) = (vx @) * (u*p2) = (u*p2) * (v*p1).
Hence, v xu = u x v.

To study the supports, let o be a test function supported by B(0,1) and
with [ o =1, and let gx(z) = k"o(kz). Assume that v has compact support.
Then supp (u * v) C supp (u * v * gg) and

supp (u * v * gx) C suppu + supp (v * gx) C (suppu + suppv) + supp gk
where supp gx = B(0,1/k); hence
ﬂ ((suppu + suppv) + B(0, 1/k)) = suppu + suppv,
k
a closed set, since suppwv is compact.

Finally,
(D(uxv)) * i = (s v) ¥ D% = ux (v % D*0) = u (D)
for every ¢, and D*(u * v) = u * (D%v). O

Example 6.22. If u € D'(R™), uxd = u, since (u*xd)*p = ux(d*p) = u*ep.

This example shows that the derivatives are convolution operators:
D%y = D*(0 * u) = (D*) * u.
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6.5. Distributional differential equations

6.5.1. Linear differential equations. A very simple differential equation
on (a,f) CR is

w=0
and in Theorem 6.13 we proved that its distributional solutions are the
classical constant solutions.

This property is easily extended to all ordinary linear equations with
smooth coefficients:

Theorem 6.23. Let a € E(a,B) and f € C(a,B). The solutions u €
D'(a, B) of the first order linear differential equation

v +au=f
are the classical solutions u € £*(a, ).
This fact still holds for linear systems:
@+ Ai=f
(A= {a{}zjzl annxn matriz, f = (fi,--, fn) €C(a,B)", @€ D'(a, B)™).
Proof. If a = 0 and F € £(a,pB) is a primitive of f, then (u — F)' =
w—F =0and u— F=C. Hence, u = F + C is a C! function.

In the general numerical case, if [ a is a primitive of a, then the function
e = exp [ a is a C* solution of ¢’ = ea and, for any solution u of u'+au = f,
(eu) = eu' + e'u = e(v' + au) = ef,

1

which is continuous. Then eu is a C! function and so is u = e leu.

In the vector case we follow the same model with [A = {[al Fiz1-
Then e = exp [ A = Y52 ,(1/k!)(J A)* is a square matrix with an inverse
e~! that allows us to write again @ = e lei. O

Corollary 6.24. If f € C(o,8) and ag,a1,...,an-1 € E(,B), then the
distributional solutions of the linear equation

u™ 4 ap_ 0™V 4t ad +au = f

are the classical solutions u € £™(a, B).

Proof. With the usual procedure, we denote u; = u*~1) (k= 1,...,n) to
obtain the first order linear system

/ / / —
Up + An—1Un + -+ aru2+aour = f, U1 —Un=0,...,u; —uz =0

and then we apply Theorem 6.23. W]
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Such a regularity property does not hold in the several variables case, and
we have an example in Exercise 6.35. A differential operator with constant
coefficients on R",

P(D)= ) a.D*
la|<N
is said to be hypoelliptic® whenever, for every open set 2 C R™, if f € £(Q)
and v is a distributional solution u € D'(Q2) of P(D)u = f, u must also
belong to £(£).

There is a characterization of all the polynomials P such that P(D)
is hypoelliptic due to Hormander (see, for instance, Yoshida’s “Functional
Analysis” [44]). Here we are going to prove a sufficient condition in terms
of what is known as a fundamental solution.

6.5.2. Fundamental solutions. On R", a fundamental solution of a
differential operator with constant coefficients

P(D)= Y a,D*
la|<N
is a distributional solution of the equation P(D)u = é.

The interest in having a fundamental solution, F, is due to the fact that,
if v is any distribution and F or v has a compact support, so that v * E is
well-defined, then

(6.6) P(D)(Exv)=(P(D)E)xv=4d*xv=w

and F x v is a solution of P(D)u = v.

By the Malgrange-Ehrenpreis theorem, every differential operator with
constant coefficients has a fundamental solution.”

In the following pages we are going to show a few important concrete
examples.

Theorem 6.25. On R, the ordinary linear operator with constant coeffi-
cients

P(D)u=u™ +au™ D 4. 4 a4 + anu
has the fundamental solution E = fY, if f € E(R) is the solution of

PD)f=0, frD0)=1, " 20)=-.-=f(0)=f(0)=0.

61f the characteristic polynomial Py (z) = EI «|=N 6aT® does not vanish at any point, P(D)
is said to be elliptic; an example is the Laplacian. Every elliptic operator is hypoelliptic (see [14]).

7 A proof due to Hérmander can be found in Yosida’s “Functional Analysis” [44] or in Rudin’s
“Functional Analysis” [38].
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Proof. The derivative of E = fY is E' = fé6 + f'Y = f(0)6 + f'Y = f'Y.
Then E” = f'(0)6 + f"Y = f"Y and, by induction

E® = f0=D0)5 4+ fMy =§ + f™y.
Hence,
PD)E =6+ f™Y +a1f" VY 4+ 4 an 1 Y + anfY
=6+YPD)f=6

as announced. a

As a first example in several variables, let us look for a fundamental
solution of the Laplacian

A=0?+-.. 402
on R", which is the most important of all differential operators.
To this end, Green’s identities®

(6.7) AWWM@M+AVWWVWWM=waM
and
(6.8) /Q'u(w)Au(w) dx — /Qu(w)Afv(a:) dx = /S(va,,u — udyv)do

are useful. Here  C R" is a regular domain for the divergence theorem
and u, v are two C? functions on  and v denotes the outer normal vector
field on the positively oriented boundary S of 2.

Note that (6.8) follows from (6.7), and (6.7) is obtained by taking w =
vVu in the divergence theorem

/Q(Div w)(w)dw=/5w-uda.

By the spherical symmetry of A, we are led to try a radial function

E‘n(w) = ¢(T)) r= |£I)|,
such that AE, = 0 on r > 0 as a possible fundamental function. In this
case,

AB(z) = 9(r) + "=y (r),

obtained from the chain rule of differentiation. Then, the radial solutions of
AE, =0onr >0 are the C* functions given by

(69) v ={ 5. D,

8 In 1828, G. Green’s included these identities in “An Essay on the Application of Mathe-
matical Analysis to the Theories of Electricity and Magnetism”. See footnote 17 in Chapter 2.
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plus an additive constant.
Denote by w,—1 the area of the unit sphere S,—; C R™

2,n.n/2
wp =2, w;=2m, wy=A4T, Wwp_1= m—)

Theorem 6.26. The function E, defined on R™\ {0} by
Lilog|z| if n=2
(6.10) E,(z) =4q“ o
n( _ (n—2§wn_1 |$|2 n Zf n # 2

s a locally integrable fundamental solution for the Laplacian, and it is of
class C* on R™\ {0}.

Proof. Polar integration shows that E, is integrable on B(0, 1), and it is
clearly a C* function on R™ \ {0}.

For ¢ € D(R™), we require that
(6.11) | (89)@Fa(s)dz = (0).
R»

Since E, is singular at 2 = 0, we cut out from R™ a small ball B(0,r)
and, since ¢ is supported by some ball |z| < R, we are led to integrate on
Q. = {z; r < |z| < R} and to show that

(6.12) lim /Q En@)p(e) do = 4(0).

We apply Green’s identity (6.8) with v(z) = E,(z) = 9(r) given by (6.9)
and u = ¢. Since Av =0 on 2, and ¢ = 0 on a neighborhood of the outer
boundary |z| = R of ,, we have

/ E,Apdz = / (Endyp — 90y Ey) do.
Qr {lz|=r}

On |z| = r the exterior normal points towards 0 and E(z) = 9(r). Conse-
quently, again using Green’s identities with v = 1 and u = ¢,

/ E.Apdz = (r) Ovpda +9'(r) / pdo
Q {lzl=r} {lzl=r}

= —¢(7‘)/ Acp+C’r1_n/ pdo.
B(0,r) {lz|=r}

Here |B(0,7)| = Ar™ and lim,_,o 7™(r) = 0, so that, from the continuity of
7

lim/ En(z)Ap(z) dz = Cwnp(0)

740 Q,

and we obtain (6.12) by taking C = 1/wp. O
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Remark 6.27. It will follow from Theorem 6.31 that A is hypoelliptic, a
result known as Weyl’s lemma.

The behavior of this fundamental solution will allow us to show that (6.6)
gives a solution of the Poisson equation,® Au = f, for any f € L%, ifn > 3.
In Exercise 6.37 we consider the case n = 2.

Theorem 6.28. If f € L'(R") and n > 2, then u := Ax f is a well-defined
locally integrable function which is a distributional solution of

Au = f.

Proof. Define Ey = xp(0,1)En € L*(R") and Eo = E, — Ey € L®(R™).
Then Ep * f € L*(R") and Ey * f € L®°(R™), so that u = A * f is well-
defined and locally integrable.

Now consider
N =xpomf and v =A% N
so that, by a standard application of the dominated convergence theorem,
uN — u in D'(R™) and also Au? — Au in D'(R™).
But Aul = fV, since
(o, 0u") = (D, By fN) = (FN « D, By)
= (DN +9), Bn) = (FN o, LE,)
= (V5 9)(0) = (v, M),

and we are led to Au = limy Au? =limy fN = f. O

There are similar results for the heat operator!?:
Theorem 6.29. The function T' defined on R1T" by

I'(t,z) = {(467rt)“n/2e‘lacl2/(4ct) ift>0

(6.13) 0 ift<0

is a locally integrable fundamental solution, of class C*® on R™\ {0}, for
the operator

n
L=8—~cA=08—c) 0.
J=1
Here ¢ > 0.

9Named after Siméon-Denis Poisson, who in 1812 discovered that Laplace’s equation Au = 0
of potential theory is valid only outside a solid.

1011 Chpter 7, the Fourier transform will show that I'(¢, z) is a natural fundamental function
for this operator.
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Proof. Note that, if t > 0, after a change of variable, we obtain

1 |2
/nF(t’x)dw:W/ne lul /Zdu=1

and T is locally integrable on R!*™.
For every test function ¢,

(p, 0Ty = —lim/ / Owp(t, z)T'(t, z) dt dz
e—0 € R»

and, by partial integration,

(6.14) (p, L) = lim/ / o(e,z)0I(t, z) dt da:+/ f(e,z)T'(t, z) dz.
e—0 € R» R»
Here I'(t,z) = t~™2['(1,t~1/2z) and the substitution x = u+/ gives

[ #leora)ds= | #leuBIT, u) du— p(0) [ Tt du=y(0)
R" R R

when € | 0, by dominated convergence.
A direct computation shows that, on ¢t > 0,
0I'(t, ) = cAL'(t, x)

and integration by parts proves that

/ / o(t,z)oI'(t, z) dtdx = / / cAp(t, z)I'(t, z) dt dx
{t>e} JR" {t>€e} JR"
and (6.14) becomes

(9, 0:') = (p, cAL) + ¢(0),

which means that LT = 6.

It is also clear that I" is C* away from the origin, since the partial
derivatives vanish as ¢t | 0 when x # 0. O

This fundamental solution is zero for ¢ < 0 and, as for the Laplacian, we
have

Theorem 6.30. If f € L*(R't"), then u := T * f is a well-defined locally
wntegrable function which is a distributional solution of the heat equation,

Lu = 0u — cAu = f.

Proof. Denote I't(z) =I'(t,z) and fi(z) = f(t,z). To prove that

wtn) = [ [ Tee-nib) dyds
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is well-defined as a distribution, we apply Young’s inequality to the convo-
lution I'y_s * fs to obtain

sup/ fu(t, 2)| dz < / / 1f(s,2)|dsdz = |||l
teR JR™ —o0 JR™
and we conclude that u is defined a.e. and locally integrable.

Now, as in Theorem 6.28, we define
N =xpomf and v =T« fV,
so that uV — u in D'(R!*™) and also Lu" — Lu in D'(R1*™).
N _ fN

But again Lu , since

(o, LuN) = (Lp.Dx fN) = (fN + L'p,T)
= (L(fV*g)1) = (¥ x o, LT)
= (N 9)(0) = (o, V).

Thus Lu = limy LuM = limy fV = f. O

The regularity of the solutions of both Poisson and heat equations ap-
pears as special cases of the following theorem about operators that have a
fundamental function which is C*° away from zero.

We will use the fact that, if f € £(Q) and u € D'(), then
D*(fu) = fD%u + Z C[;DﬁfD“‘ﬁu = fD%u + vq,
0<|BI<lal

which follows from the Leibniz formula. Note that, if f is constant on an
open set G C Q, then v = 0 on G, since D? f = 0 on this open set for every

B#0.
Of course, by linearity, it follows that

(6.15) P(D)(fu)= fP(D)u+v and v=0o0n G if f is constant on G,
for every differential operator with constant coefficients P(D).

Theorem 6.31. If a differential operator with constant coefficients P(D)
has a fundamental solution which is of class C*° on R™\ {0}, then P(D) is
hypoelliptic.

Proof. Suppose that P(D)E = § with F of class C* on {0}° and that
P(D)u = f on an open set & C R, with f € £(R) and u € D'(Q). We
start by showing that every compact set K C {2 has an open neighborhood
G C 2 where u is C*°.
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We select a second compact set K(20) = K +_B (0,26) C Q and we choose
G = K+ B(0,6). Then let K(24) < ¢ < Q and B(0,6/2) <y < B(0,4), and
consider the compactly supported distributions gu and yE. As in (6.15),
P(D)(eu) = eP(D)u+v =of +v,

where v € D'(Q2) and suppv N K(26) = 0, since v is zero on a neighborhood
of K(24). Also
P(D)(vE)=yP(D)E+h=6+h
and h € D(R") since E is C* on {0}¢ and h = 0 on B(0,4/2).
Then
P(D)(yE+*pu) =vE x of + yE * v
and
P(D)(vE * pu) = pu + h * gu,
so that
ou=—h*xou+yEx*xof +YExv=9p+yE*xv, ¢€DR"),

with supp (YE *v) C B(0,8) + suppv C Q5; thus u = ¢ on G.

By considering an exhaustive increasing sequence K, of compact sets
in 2 as in (3.2) and K,,, C Gy, C Int Kpp41 so that u is a C* function gy,
on Gp,, we have that g,+1 = ¥ = gm on G, so that u = g on Q if g is the
common extension to 2 of the functions g,. a

Now the regularity of the solutions of the Poisson equation Au = f is
an obvious corollary of the preceding results:

Theorem 6.32. Let §2 be an open subset of R™. If f € E(Q) and if u € D'()
is a distributional solution of

Au = f,
then u € £(Q).

Of course, there is the analogous result for the heat operator, but the
situation is not the same for the wave operator, i.e.,

n
O=8-A=08]-) 0,
i=1

on Rt7,

This operator is no longer hypoelliptic and it is more involved. Here we
describe only the elementary case n =1, i.e.,

O=0? - 062
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After the change of variables
s=t—z, y=t+z

we are led to the operator
050,

since then f(s,y) = f(t — z,t + z) = g(t, ) shows that
49,0, f (s,y) = (8} — B2)g(t, z).
We must find a locally integrable solution F(s,y) of
400y F (s,y) = 6(s,y),
and the simplest one, obtained by separating variables, is
F(s,9) = 7Y ()Y (8) = Xauz0y(5:9)-
Our candidate is then E(t,z) = cY (¢t — 2)Y (¢ + z) with ¢ such that

#(0,0) /R2 E(t,z)0p(t, z) dt dx

_ ¢ sty s—y
- 2| Y ©moeE, 22 Y) dsdy

= 2¢p(0,0).

Thus 1
E(t,z) = §Y(t — )Y (t +2);

that is, E = 1/2, constant in the sector t+z > 0, t—x > 0, and 0 elsewhere.
This shows that the operator is not hypoelliptic.

6.5.3. Green’s functions. For the boundary value problem
Lu=(pu) —qu=g (0<pé€Ca,b]; q€Cla,b])
with
Bi(u) := Aru(a) + Aau'(a) =0 (|A1] +[A2| #0)
and
By(u) := Bu(b) + Bou/(b) =0 (| B1| + |Ba| # 0)
the Green’s function G(z, &) has been defined in (2.37) so that it is contin-
uous and, for every £ € (a,b), it satisfies the following properties:
(a) G(’f) € 62([0” £) U (£’b])’ LG()&) =0on [a,f) U (6’ b]’ and G(a&)
satisfies the boundary conditions B1(G(+,&)) = 0, B2(G(+,€)) = 0.
(b) G(-,€) € Cla, b].
(c) The right side and left side derivatives of G(-,§) exist at = £ and

BuG(E+,€) — B,C(E—,€) = @
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Note that, as a distribution on (a,b), LG(:,§) = &, which will also be

represented by
L:G(x,€) = d¢(x).
Indeed, for every ¢ € D(a,b), and if we denote G¢ = G(-,£), we can write

(0, LGe) = ((p¢')', Ge) + (¢, 4G¢),
where, since suppy C (a,b) and G¢ is continuous, integration by parts

produces
/)/ Ge) { ¢ b } e
((pe'),Ge) = — / - / ¢'pG.
¢ e e ¢

Finally we integrate by parts once again to obtain

&~ b
(p,LGe) = (%ng)+{ /a — /E . }so(pGg)’-(sopG’g)(ﬁ-)+(sopG’g)(€—)
£ b
- / - / (pLGe) - (¢p)(€)(GLle—) — GL(E+)
= (ep)(§) == (6) = (&) = (9, %)
On the space

{u € C?[a,b]; By(u) =0, By(u) = 0},
the operator T'f(z) = f G(z, &) f(€) d¢ = (f(£),G(=,&)) solves Lu = f.

In a more general setting, we say that G(z,£) is a Green’s function
for a differential operator L on an open set & C R™ if G(-,&€) € D'(Q)

and
LG(, &) = o
for every £ € Q.
Formally, if u(z) = (f(£),G(z,€)) = [ G(=,£)f(€) d¢, we obtain

Lu(z) = /Q LG(2,6)(€) dE = (£(€),82(6)) = £(2)
and T'f(z) := (f(£), G(z,&)) solves Lu = f.

Note that if E is a fundamental solution for a linear operator with con-
stant coefficients P(D), then G(z,{) = E(z — £) is a Green’s function for
P(D) on 2 = R", since

P(D)G(¢€) = P(D)eE = 7¢P(D)E = 7¢6 = 6
and the formal solution is u(z) = [ G(x,£)f(€) dé = E * f.

By requiring G(-,¢) to satisfy some linear conditions that determine a
subspace H of D’'(£2), we can try to solve Lu = f with u € H.
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This was the case in Theorem 2.53 for a boundary value problem.

As a very important example, let us describe a method to find a Green’s
function for the Dirichlet problem

(6.16) Au = f, Ujon = 0

on a bounded open set @ C R™ For such a Green’s function, G, the
requirements are

(6.17) AGE = (55, G& € C(Q), Gg(y) =0 Vyeon
for every ¢ € Q, where we denote G¢(x) = G(x, €).

The uniqueness of such a function will follow from Theorem 7.37, and
the existence will be proved for instance if for every £ € {2 we can solve the
Dirichlet problem

Age=0on Q, ge€C(Q), ge(y) =Enly—¢) VyeodQ,
with E, the fundamental solution defined in (6.10), since by defining
G(z,€) = En(z — §) — g¢(),
G satisfies (6.17).
From the condition G¢ = 0 on 012, the possible solution

ue) = [ G o) dt
of Au = f will also satisfy u(y) = [ G(y,£)f(£) dé = 0 when y € 9Q.

Similar heuristic arguments can be used to guess a method to solve
the homogeneous Dirichlet problem on  with inhomogeneous boundary
conditions

It can be shown that, if the bounded open set 2 has a C'° boundary,
the Green’s function G exists, G(z,y) = G(y, z), G(z, -) extends to G(z,-) €
C®(Q\ {z}) for every z € £, and

w(z) = /Q G(z,v)f () dy

is the solution of (6.16).

If u is this solution, since Au = 0, a formal application of Green’s
identiy (6.8) leads to

u(z) = /Q u(y)é(z —y)dy = /Q (U(y)AGz(y) - Gz(y)AU(y)) dy

/S ()P Ca(v)do (y) = /S 1 ()80 G (v)do (1),

Il
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The function
P(:L‘,y) = 6V(y)G($’y) ((:I:,y) € x S)

is called the Poisson kernel for €2, and

u(z) = /S P(z,9)f(y) dy

is the Poisson integral, a candidate for the solution of the Dirichlet prob-
lem (6.18).

Usually it is hard to find Green’s functions and Poisson kernels. We
restrict ourselves here to the very special but important case of the ball
B = {z € R™; |z|] < 1} and we refer to Folland’s “Introduction to Partial
Differential Equations” [14] for further information on this subject.

6.5.4. Green’s function of the Dirichlet problem in the ball. We

write
L log|z —y| if n=2
E(ziy =E?J,$ =FE (z—y): 2m _ ’.
) ( ) n _(n—2§wn_1|w_y|2 n lfﬂ#?

and note that, if  # 0 is given, the function
= |zl2rE(

is harmonic on R™\ {0,z/|z|?}. We claim that g,(y) = E(z,y) ify € S =
OB.

Indeed, if n > 2 and |y| =1,

1 _ _ -
B(w,9) = 0:(0) = ~ gy (|2 = 9P = llaf ™2~ aly )

and
(6.19) |zl 2z — |ely| = |z —y|
since
-yl = |z -2z-y+1
= |lzly]* - 2lel 2 - (|zly) + ||z) 22|
= |lzly - o 22|”.
We define

Gla,1) 1= Ble,) =~ 0u(0) = =g (Ie =3P = llel 2= Jaly ")

if z # 0 and
1

m(hﬂz—" -1).

G(O’ y) =
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Then G satisfies all the required properties.
Ifn=2,
6200 Glo,9) = 5= (logle — ]~ loglel s  Jely|)
’ o2
when z # 0, and
1
G(0,y) == 5 loglyl.

We can compute the Poisson kernel for the ball,

P(m,y) = By(y)G(a:,y) ((m’y) € B x S)
since v(y) = y is the normal vector to the sphere S and the normal derivative
on S is 8,(y) = D71 Y;jOy;- Thus, when n > 2,

1 (vilei—yy) | —lelyi(elzs — ysle))
P(x - ( it~ Y5) | j i =Y )
@) = S LS e
_ 1 (Iyl2—w~y_ |w|2|y|2—w-y>
wna \ Jz—y™  ||zly — || 1a|"

and from (6.19) we obtain
1 1-—|z|?

Wn-1 |z — Y[

(621) P("B)y) = ((x,y) € B x S)

when n > 2.

If n = 2, we recover the Poisson kernel of Theorem 5.8, since a direct
computation of By(g)G(z,ﬁ), with G defined as in (6.20), leads to

1—e? £+2
P

(28) = 27r |£ 1€ =22 27r§R£ -z
Note that here we have included the normalizing factor 1/27.

((2,€) e U x T).

Now the expected result for n > 2 can be proved:

Theorem 6.33. If f € C(S) and P(z,y) is the Poisson kernel for the ball
given by (6.21), then the function

ua)= [ Penf®dy  (@eB)
is harmonic on B and extends continuously to B andu = f on S.

Proof. We will follow the argument used to prove Theorem 2.41, now based
in the following facts:

(1) f5 Pla,y) do(y) = 1.
(2) Ifyo € Sand V = B(yo,6)NS, then lim,4 fS\V P(ryo,y)do(y) =0.
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To prove (1), we will apply the mean value theorem for harmonic functions!!

to Py = P(:,y),

1 1
Py(z) = ?—/ Py(z)do(z) = / Py(z +rz)do(z),
1Sr] Js,(z) Wn-1Js
at the point x = 0, if 0 < r < 1, which gives
= P(0,y) = /Prz, do(z).
o =POY) = ;— | P(rzy)do(?)

By (6.19), P(rz,y) = P(ry, z) and
/ P(ry,z)do(z) =1
S

is (1) if z = ry, with » < 1.
Fact (2) is almost obvious, since in
1 1-|ryf?
Wn-1 |ry0 — Y|

P(ryo,y) =

limy41 (1 —|ryo|?) = 0 and 1/|ryo —y|™ is uniformly bounded for 1/2 < r < 1
and |y — yo| > 4.

Proceeding to the proof of the theorem, if € > 0 is given, choose § > 0
so that

If@) — f(2)| <eif ly—2] <6
and V(y) = B(y,0) N S. Then by (1)

sw—uem={[ +[ }0) - s)Pev) i)
and we obtain

1F@) —u(ry)] < e + 2] flls /S o Pl 2)do(3) < 26
Y

if r is close to 1, by (2).

This shows that lim,41 u(ry) = f(y) uniformly for y € S, and u has a
continuous extension to B given by u(y) = f(y) if y € S. O

In Exercise 6.38 we leave it to the reader to prove a similar result for
the LP convergence u(ry) — f(y) for every f € LP(S).

118ee Folland, “Introduction to Partial Differential Equations” [14, page 90].
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6.6. Exercises

Exercise 6.1. Let 0 < r < 1. From g as in Example 6.1, define a Urysohn
function g, for [—r,7] C R supported by [—1,1] by choosing first

w() = [ " (et —r - t)dt

—00

and then )
or(z) = 551/)(1 +z)Y(1 - z).

On R™, if 0 <R<], find r so that H(z) = o,(|z|?) defines a test function
H such that B(0,R) < H < B(0,1).
Exercise 6.2. If  is open in R"™ and 1 < p < 00, prove that D(f2) is dense
in LP(Q).
Exercise 6.3. Consider on D(R) the locally convex topology 7~ defined by
the sufficient sequence of norms

— (m)

lielly = max [l91™]|co.

Prove that this topology is metrizable but not complete and that its restric-
tion to every Dk (R) is the topology that we have defined on this vector
space. Show also that the convergence of sequences in D(R) for 7 is not
the convergence that we are considering for sequences of test functions.

Exercise 6.4. Suppose 0 # ¢ € D(R) and ¢, (t) = n"lp(n~'t). Study the
possible convergence of the sequence {¢,}52; in D(R) and in £(R).

Exercise 6.5. In D(), let U be the family of all convex balanced subsets
U such that U N Dk (R) is an open set in Dk (), for every K € K(2).
(a) Show that U is a local basis for a vector topology in D(2).

(b) Show that the convergence for this topology is precisely the conver-
gence we are considering in D(Q2).

(c) Show that for this topology every Cauchy sequence is convergent.
(d) Show that for this topology the dual of D(Q2) is D'(Q2).

Exercise 6.6 (Borel). Let {c,}52; C C. Prove that there is a C* function
f on R such that f(™(0) = ¢, for every m € N as follows:

(a) Consider [—1,1] < ¢ < (=R, R), define
Cn
fa(t) == ’Ht @(rat)

with {r,}32, C [1,00), and prove that, if m < n,

(m) (™) A
" < [Cn|Gn— T 3 NS
1£ IR < lenlgn-1(¢) ;(J) )
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with g, as in (6.1) on the compact set [—R, R].

(b) Show that it is possible to choose {r,}32; C [1,00) so that the
functions f, satisfy g,—1(fn) < 1/2™.

(c) Prove that > o> fa(t) = f(t) for some f € £(R) and £(0) =
Exercise 6.7. Prove that, for every function f € LL () and every complex
Borel measure p on €, the distributions defined by

<%ﬁ=LM@Nthdmm=wa

are of order 0.
Exercise 6.8. Prove that the Dirac distribution d, is not a function.

Exercise 6.9 (¢’ is not a measure). Show that the distribution ¢’ is not a
complex measure.

Exercise 6.10. Find limy_, K in D'(R") if {K)}aea is a summability
kernel on R".

Exercise 6.11 (Dirac comb). Prove that [I] = > 72° & on R is well-
defined as the sum of a convergent series in D'(R).

Exercise 6.12. Find the order of 6™ € D'(R).
Exercise 6.13. Prove that

@) =3¢ (1/n)
n=1

defines on (0, 00) a distribution of infinite order that is not the restriction
of any distribution v on R, meaning that u # vp(g,c0)-

Exercise 6.14. Every positive linear form u : D(Q) — C (u(y) > 0 if
¢ > 0) is a distribution. The restrictions u : Dk (Q2) — C satisfy |u(p)| <
u(0)|l¢|lx if 0 is a Urysohn function on K C , and they are continuous.

Exercise 6.15. Let f € LL (R \ {zo}) and assume that z¢ is a noninte-
grable singularity of f. We only know that [ fy exists for a test function
¢ if zop &€ supp . A regularization of f is a distribution uy on R"™ which
satisfies us(p) = [ fo if zo & supp .

For the function f(t) = 1/t, on R we obtain a regularization of f by
taking a,b > 0 and defining

= [ s / o) —ol0) gy [ )y,

oo ¢ b

There is a continuous function ¥, so that uz(yp) := f_ba Mdt =

f b ¥, (t) dt defines a distribution on R, and us appears as the sum of three
dlstrlbutlons If 0 ¢ supp g, then us(p) = [ o(t)/tdt.
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Exercise 6.16. Prove the following statements concerning limits in D'(R).
(a) If ur() := [T, M dt (r > 0), then u, € D'(R) and u, — 0 as
rJ 0.
(b) pv% = limgo X[_E’E]c(t)% is a well-defined distribution. Moreover, if
supp ¢ C [—r, 7], then

(.07 = ()

+o00
(o, pV%) = pV/ @ dt.

It is a regularization of f(t) =1/t.
Exercise 6.17. Let f € Lt _(R™\{0}) so that f(z)|z|™ is locally integrable

loc
for some positive integer m and, for a test function ¢, denote by

and we write

Topla) =Y dp(0)(a .., 1)
k=0

the Taylor polynomial of degree m, so that |p(z) — Tme(z)| < Cplz|™ if
|z| < r. Show that

ur(e) = [ 1()(p(o) - Tmple)x(-oon)(12)) do
Rn
defines a regularization of f.

Exercise 6.18. Find the distributional derivatives Y™ of the Heaviside
function Y = x[p,c0)-

Exercise 6.19. Show that f(t) := log|t| is locally integrable on R and
prove that f’ = pvi. Note that lim.ologe(p(—€) — ¢(€)) = 0.
Exercise 6.20. Let f(t) = fot g(z)dz (t € R) for some g € L*(R); that is,
f is an absolutely continuous function on R, and f' = g a.e.

Prove that g = f’ is the distributional derivative of f: (p,g) = —(¢/, f)

for every test function ¢ on R.

Exercise 6.21. Prove that D* : D/() — D'(2) is a linear continuous
operator that extends D% : £™(Q) — £™~lel(Q), if |a| < m.

Exercise 6.22. Suppose P(D) = 3’ 4<m CaD® is a differential operator
with C* coefficients c,, on Q and denote P(D)%u := 2laj<m D*(cqu).
Prove that P(D)# = P(D) and (P(D)u)y = u(P(D)%p).

Exercise 6.23. Prove that, if at least one of u,v € D'(R™) has compact
support, then 74(u * v) = (Tou) * v = u * (T4v).
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Exercise 6.24. Prove that supp D*u C suppwu for every distribution u €
D'(Q).

Exercise 6.25. Find the supports of Y and §’ on R.

Exercise 6.26. Prove that the order of all distributions with compact sup-
port is finite.

Exercise 6.27. Prove that 1% (6’ *Y) # (1% 4’) xY and that this is not in
contradiction to Theorem 6.21(b).

Exercise 6.28. If u € £'(R"), prove that ux : E(R") — £(R") is a contin-
uous linear operator which commutes with translations.

Exercise 6.29. We say that {dn}3_; C L. (R) is an approximation of
0 if
b b
Jim [ d@)dt=0if 0¢ (o] and Jim / dm(t) dt = 1if 0 € (a,b).
(a) If {dm}%_; is an approximation of § and Ym(z) := [* dm(t)dt,

prove that ¥, = Y and d,, = ¢ in D'(R).
(b) Find a concrete approximation of 4.

Exercise 6.30. Not all the solutions in 7’(R) of the differential equation
tu/(t) = 0 are classical solutions.

Exercise 6.31. Find the fundamental solutions of the differential operator
PD)u=v" —4" +u —u.

Exercise 6.32. Find the fundamental solutions of P(D)u = u"” + 3u” +
3u’ + u.

Exercise 6.33. Here we assume that ¢ € C.(R?) N £2(R2) and that E,
is the fundamental solution for A on R2. Prove that u := ¢ % Fy is a
classical solution of the Poisson equation Au = ¢; that is, Au(z) exists in
the pointwise sense and coincides with ¢(z).

Exercise 6.34. On C = R?2, prove that
1
E = — = ;
@y)=— (z=z+iy)
is a fundamental solution of the Cauchy-Riemann operator
1
0z = 5((% +i0y).

Exercise 6.35. (a) If ¢ # 0 and v € D'(R), show that we can define
u(z — cy) € D'(R?) by

(o(@,y) ulz — o)) = /R (@0 dy (o € D(R?)
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and that, ifu € L] .(R), then this distribution is a locally integrable function
on R2.

(b) Show that for any distribution v € D'(R), v = u(z — ct) is a distri-
butional solution on R? of the wave equation 82v — c292v = 0.

Exercise 6.36. Prove that the heat operator and the Cauchy-Riemann
operator are hypoelliptic.

Exercise 6.37. Prove a version of Theorem 6.28 to find a solution of Au = f
on R? under the assumptions f € L!'(R?) and f(x)log*(|z|) € L1(R2).

Exercise 6.38. Suppose f € LP(S) (1 < p < o) and P(z,y) is the Poisson
kernel for the ball given by (6.21). Prove that

u(z) = /5 P(z,9){(4)doy)  (z € B)

is a well-defined harmonic function on B which satisfies the boundary value
condition

im [ 1)~ u(r)P dotu) = 0.

References for further reading:

P. A. M. Dirac, The Principles of Quantum Mechanics.

R. E. Edwards, Functional Analysis, Theory and Applications.
G. B. Folland, Introduction to Partial Differential Equations.
I. M. Gelfand and G. E. Chilov, Generalized Functions.

L. Hérmander, Linear Partial Differential Operators.

J. Horvath, Topological Vector Spaces and Distributions.

E. H. Lieb and M. Loss, Analysis.

W. Rudin, Functional Analysis.

L. Schwartz, Théorie des Distributions.

K. Yosida, Functional Analysis.






Chapter 7

Fourier transform and
Sobolev spaces

The Fourier transform is one of the most powerful operators in analysis. Its
scope and applications have been extended to areas as different as harmonic
analysis, partial differential equations, signal theory, probabilities, and alge-
braic number theory.

Its virtues depend on the use of the functions e'** = cos(at) + i sin(at),
which are the homomorphisms of the additive group R to the multiplicative
group T, and on the translation-invariance of the Lebesgue measure.

These facts are intimately linked to the fundamental properties of con-
verting convolution and linear differential operators into multiplication oper-
ators, changing convolution and partial differential equations into algebraic
equations, and yielding explicit solutions in basic equations such as Laplace,
heat, and wave equations.

With the extension to distributions, the scope of the Fourier transform
increased substantially. By considering the Sobolev spaces of functions with
distributional derivatives in L? up to a certain order, a control on the
smoothness properties of these functions is obtained. The reason is that
the Fourier transform, which changes differentiation into multiplication, is
an L? isometry and L? is a Hilbert space.

With the fundamental properties of the Fourier transform of distribu-
tions, we present an introduction to the theory of Sobolev spaces.! For

1 Around 1930 the Russian mathematician Sergei L’vovich Sobolev introduced his space
wbh2(Q), or H!(R), with the use of weak derivatives as the natural Hilbert space for solving the
Laplace or Poisson equation —Au = f with boundary conditions. A little later, in France Jean
Leray considered a similar method to find weak solutions for the Navier-Stokes equation.

181
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completeness, we give the basic definitions in the LP setting but, in fact, we
only use the Hilbert space case, p = 2.

The estimates given by the Sobolev norms are a standard tool to prove
the existence and regularity of solutions for partial differential equations.
We illustrate this by means of an application to the Dirichlet problem and
by studying the eigenfunctions of the Laplacian, and we include Rellich’s
compactness theorem, a result which is of great importance in the applica-
tions.

7.1. The Fourier integral

For each £ = (§1,...,&) € R", e¢ is the complex sinusoidal defined on R™
by

e¢(x) := exp(2miz - §) = exp (27ri i :kak).

k=1
The Fourier integral f of a function f € L!(R™) is defined by

F©)= [ f)em=tds = (freq).
The Fourier transform F : L'(R") — L*®(R™) N C(R™), such that
Ff = f,is a linear mapping and | f|lco < || f|l1 (i-e., || F|| £ 1).

An application of Fubini’s theorem, derivation under the integral, partial
integration and elementary changes of variables show that the following
useful properties of the Fourier transform hold on L!(R™):

(a) a = e—af and e/(;? = Ta.f-
(b) [Ff(h~')] (€) = f(h€) and [f(ha)] (€) = k" F(h1E).
(c) Frg="F 5 and fpo F®)FW) dy = fn F®)9(v) dy.

(d) 81f(&) = (—2mi)[z1f (@))(€), if z1 f(z) is also integrable.

(e) 51\f &) = 21rz'§1f(§), if f is of class C! and 8, f is also integrable.

Note that to check (e) we can suppose n = 1. Then f(t) = fot f(z)dz+
f(0) and lim;, 4o f(t) = fot f'(z)dx + f(0) exists and is finite, since f’ is
assumed to be integrable, and this limit has to be 0, since f is also integrable.
Integration by parts gives

oo i ] t=+00 400 )
/ f/(t)e_27rzﬁt dt = f(t)e—21rz£t] _ + 27Ti€/ f(t)e—21rz£t dt

with f(t)e=2mit]i=t = o,
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The inverse Fourier transform is the mapping F such that

-~

ENE = [ f@e=tds = (e = Fi-e).

Example 7.1. The Fourier integral of the square wave, x(_1/2,1/2), is the
function sinc defined as

o sin(ng)
sinc (€) := €
since
1/2 . 1/2 1/2
/ e 2T g = / cos(2méx) dx — i / sin(2méz) dz = sinc ().
-1/2 -1/2 —1/2

This function plays an important role in signal analysis and will appear
again in Theorem 7.18.

Example 7.2. If W is the function defined on R™ by W (z) = e~™I** then
W =W and

—malz|? —2miz-€ 3. _ 1 —nl¢?/a
(7.1) e e dz ¢
n a™

for every a > 0.
If n =1, from W'(t) = —2ntW (t), the Fourier transform gives
2mEW (€) + (WY (§) =0
and then
(€W ()Y = 2mEW (€)e™” + (W) (€)™’ = 0.

Thus e"EZW(é ) = K, a constant. The value of this constant is obtained from
the Euler-Gauss integral ff°oo e~ dg = /7 with the substitution z = /7 t,
which gives

K =W(0) =/ e ™ dt =1,
—00

so that W (¢) = W ().
For n variables, W(z) := e~™** = W(z1)--- W (z,), and also W=Ww.

Another simple change of variables or an application of property (b) of
the Fourier transform yields (7.1).

The operators F and F will be extended to certain distributions, known
as temperate distributions, and their extensions will essentially keep prop-
erties (a)—(e).
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To show why F is a valuable tool for solving some partial differential
equations, consider the example of an initial value problem for the heat
equation on [0,00) x R™,

(7.2) dwu(t,z) — Au(t,z) =0, u(0,2) = f(z),
with A = Z?=1 6§j, and formally apply F with respect to the variable
z € R™. By property (d),

Bya(t, &) + an¢?at, &) =0,  @(0,¢) = (&),

and, taking £ as a parameter, we note that this is a very simple initial value
problem for an ordinary linear differential equation whose solution is

a(t,€) = flee 1o,
According to Example 7.2, if a = 1/(4rt),

e-—41r2|5|2t _ (47Tt)-n/2/ e—la:|2/4te—21ria:-6 dx

n

so that, by property (c),

U(t,¢) = FOWi(E) = Fx Wil®)
if Wy(z) = (4mt)~"/2e~1#1*/4 Hence, the function

1

(13 u(t,o) = (FWIE) = g | W@y

is a candidate for a solution of (7.2).

Note that
1 T

Vi Vi)

is a summability kernel, known as the Gauss-Weierstrass kernel, associ-
ated to the positive integrable function W, so that the initial value condition
limuo f * Wy = f will hOlCl.2

Moreover, equation (7.3) suggests I'(t,z) = Wi(z)Y(t) as a possible
fundamental solution of the heat operator, which is the case as we have seen
in Theorem 6.29.3

Wt(:c) =

The following Poisson theorem relates Fourier integrals with Fourier
series:

2See the details in Exercise 7.2.
3This was how Poisson constructed solutions for the heat equation in the work contained in
his “Théorie mathématique de la chaleur” (1835).
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Theorem 7.3. Suppose that f € L*(R) satisfies the condition

o0
~k
(7.4) kz}; 7(F)] <o
Then there exists a continuous T-periodic function fr on R such that
fr(t) = Z f(t - kT)
k=—00
and

fr(t) = {2 % J’c‘( % ) (2mikt/T

=—00

a series which is uniformly convergent on R, that is, in Cr(R).

Proof. Denote L = T'/2. On [-L, L) (and on every [kT' — L,kT + L)), we
can define a.e. the periodic function

fr= 3 fe-kT),
k=—00
with convergence in L'(—L, L), since

/ S If(t— kD)) dt = ||l < o0

L k=00
and then Y 22 |f(t — kT)| < oo a.e.
The Fourier coefficients of fr € LL(R) are

i) = (7))
since

) = & Y / £t — KT)e=2m/T gy

k——oo

— t —2k1rzt/Tdt
T 2_: /L ka(

_ 1 —2kmit/T
- /R f(©)e t.

From condition (7.4) and by the M-test of Weierstrass, it follows that
the Fourier series is absolutely and uniformly convergent to a continuous
function which coincides with fr a.e. a
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If the support of f is compact, or if there are two constants A,§ > 0
such that
IFOI < AR+ 1N,
then the integrable function f satisfies condition (7.4).
The function fr is called the periodized extension of f. If supp f C
[-T/2,T/2], fr is the T-periodic extension of the restriction of f to the
interval [-T'/2,T/2).

7.2. The Schwartz class S

To define the Fourier transform of distributions, instead of D(R™) we need
to consider a class of C* functions that is invariant under the Fourier trans-
form. Properties (c) and (d) of the Fourier transform suggest that we con-
sider the complex vector space

SR = {p € ER™); qn(p) < o0 for N =0,1,2,...},

where

an(p) = sup  (1+a)V|D()|.
zER™; || <N

Note that |z%| < (14]z|?)V if |a| < N, so that ¢ € E(R™) is in S(R™) if and
only if, for every couple P, @ of polynomials, the function P(z)Q(D)y(x)
is bounded.

The topology of S(R") is defined by the sequence gp < ¢1 < g2 < -+ of
norms, so that the convergence ¢ — ¢ in S(R") is the uniform convergence
on R"

2P D*p(z) — 2P D%p(x)
for all a, B € N, which is equivalent to the uniform convergence
P-Q(D)pr — P-Q(D)yp
for every couple P, @ of polynomials.
The following theorem collects some basic properties of this new space.

Theorem 7.4. S(R"), with the topology defined by the increasing sequence
of norms {qn }§9—g, 15 a Fréchet space.

The inclusions D(R™) C S(R™) C LY(R™) are continuous (that is, for
every compact set K C R™, the mappings Dk (R™) — S(R") — L'(R")
are continuous), and D(R™) is dense in S(R™).

The differential operators P(D), the multiplication by polynomials, trans-
lations, dilations, the symmetry, and every modulation or multiplication by
a complex sinusoidal e, are also continuous linear mappings of S(R™) into

S(R™).
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Proof. If {¢x} C S(R™) is such that every {(1 + |z|?)VD%pr(z)}32 is a
uniformly Cauchy sequence, then (1 + |z|2)Y D%pi(z) — ¢N o) uniformly
as k — 00, so that ¢ = ¢go € E(R"), since D%py(z) — @o,o(z) uniformly
and then ¢ € E(R") and ¢g o(x) = DYp(x).

Hence (1+]z|?)Y D%pr(z) — (1+|z|?)N D%p(z) uniformly, which means
that ¢ — ¢ in S(R™).

Note that

1 0 Ln—1
TR ), T <
ifn—1-2N < —1.
Then, if N > n/2 and ¢ € S(R"),

ol < [ an()(1-+1af)" do = Canly)

and S(R") — L!(R™) is continuous.
Recall that the topology of Dg (R™) is defined by the increasing sequence
of norms

pn(p) := sup ||[D%||g = sup ||D%p||R=,
le|<N |e|l<N

so that, if ¢ € Dg(R"),
gn(p) < sup(l+ |a:|2)NpN(‘P),
zeK

and Dg(R") — S(R™) is continuous.

To prove that D(R") is dense in S(R™), let ¢ € S(R"). To find functions
¢N € D(R") such that oy — ¢ in S(R"), choose B(0,1) < ¢ < R™ and
define oy (z) = o(N~1z) (N € N), so that B(0, N) < oy < R™.

Then, if on = one,

D% —om@)] < 3 (g)w“—%(x)lwﬂ(l—QN><x>|
BLa

= 3 ()P e@iv sup 19701 ex)Ga/

where we can select N so that supjz >y |D*Pyp(z)| < ¢ for all B < a, since
D* By € S(R™). Note that D?(1 — gn)(z) = 0 if |z < N, and we obtain

sup [D*(p —en)(@)| < D

(a)eN_lﬂl sup |DP(1 — on)(z/N)| < Cn e
B<a le|2N
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A similar estimate holds for every sup,cgn(1+|z|?)™|D%(¢ — ¢n) ()|, since
also

sup (1 +[2*)™|D*Pp(z)| < e.
|lz|>N

Thus, gm(p —en) — 0if N — oo.
We leave the remaining part of the proof as an easy exercise. a

Theorem 7.5 (Inversion Theorem). The Fourier transform is a continuous

bijective linear operator F : S(R™) — S(R™) and F~1 = F.

Proof. For every ¢ € S(R™), the functions DPz%p(x) are also in S(R™)
and it follows from the properties of F that ¢#D%3(¢) are bounded and
p e S(R").

To prove that F : S(R"™) — S(R") is continuous, note that

PE1< [ eI+ P+ o) do < Cavle) (V> n/2),

so that, if g — 0 and @ — ¥ in S(R™), then @r(§) — 0 and ¢(§) = 0,
and the continuity now follows from the closed graph theorem.

To show that FF = I, if we try a direct calculation of F (Fe), the
integral

/ f(x)ezﬂ(z“”) € de da
R® JR"

is not absolutely convergent on R2".

We avoid this problem by using properties (b) and (c) of the Fourier
transform to obtain

| 1wt dy = | @bt Wy = [ Fwh gt dy
R” Rn Rn
which, with the substitution Ay = z, becomes

w0 0aw e = [ F) et dy

that is, [z f(h1z)g(z)dz = [Ra f(y)g(h‘ly) dy. By letting h — oo, the
dominated convergence theorem gives

/ F(0)g(z) de = / Flw)9(0) dy.
R" R”

If we choose g = W, since [Rn W(z)dx = Jan W(z)dz =1 and W(0) =1,

~

FO)= [ fly)dy.
R
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An application of this identity to f(x) = (7_;f)(0) combined with property
(a) gives

1@ = [ I = | ewiwan
which is f = FFf. The identity f = FFf is similar. O

As an application, let us present a new proof of the Riemann-Lebesgue
lemma.

Corollary 7.6 (Riemann-Lebesgue). If f € L*(R™), then f € Co(R™); that
is,

~

lim f(§) =0.

¢ 00

Proof. We know that D(R") is dense in L'(R") (see Exercise 6.2) and, if
¢ — f in L}(R™), then @ — f uniformly with $; € S(R™) so that they
are null at infinity. a

Not only multiplication by a polynomial and by e, is continuous on
S(R™):
Theorem 7.7. If ¢ € S(R™) and ws(z) := (1 + |z|>)/? (s € R), the
pointwise multiplications ¥- and ws- and the convolution Y* are continuous
linear operators of S(R™).

Proof. Let ¢ € S(R™) and note that, if |a| < N,

(1+ [PV D) < 3 (g) (1 + |22V | D*Bxp(z) | DPp(2)| < Can(e),
BLla

since every | D #1(z)| is bounded. The case of ws- is similar, since |wse| <
(1+ |2V (z)] and [9jws(z)| < |szjws—a(t)]-

Finally, F(1 * ) = F(1)F(p), so that 1 x ¢ = F(F(1)F(p)) and 1x is
the product of continuous operators. O

7.3. Tempered distributions

If S’(R™) is the topological dual space of S(R™), it follows from Theorem 7.4
that the mapping u € §'(R") — v = ypr~) € D'(R™) is linear and one-to-
one.
A distribution v € D'(R") is the restriction of an element u € S'(R™) if
and only if there exist N € N and a constant C'y > 0 such that
[u(@)| < Cvan(p) =Cn  sup  (1+ )N |D%(z)| (¢ € DR™)).

z€R™; |a|<N
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The elements of S'(R™), or their restrictions to D(R™), are called tem-
pered distributions. On S’(R") we consider the topology w*, so that
uk — v in 8'(R™) means that (o, ux) — (p,u) for every p € S(R™).

It is customary to identify every u € S'(R™) with its restriction v €
D'(R™), so that

S'(R™) c D'(R™).

Example 7.8. Suppose 1 < p < 0o and N € N. If (1 + |z|?)"V f(z) is in
LP(R™), then, as a distribution, f € §'(R™). In particular,

P(R") = S'(R")  (1<p<L o),
and this inclusion is continuous.

Ifp=1,
e.hl = [ A+l @)+ 1) oe) da

< [ Q4PN @) do
Rn

= Cnan(¥p)-
If p > 1, using Holder’s inequality, we obtain

e, pl < ([ I+ el )"

and, if M is such that [p.(1+ |z|2)N-M dz = C < oo, a division and
multiplication by (1 + |z|?)M give

(0, 1)1 < CPC sup (14 [a")Mli(2)] < Kan ().
x n

Example 7.9. Every distribution with compact support, v € £'(R™), is a
tempered distribution.

The inclusion S(R™) — &(R™) is continuous, since the topology of
E(R™) is defined by the seminorms

pr,N(p) = sup [|D%l|k
lo|<N

and pr,N(p) < an(y) if ¢ € S(R™).
Moreover S(R™) is dense in £(R"), since D(R™) is dense, and the re-
striction of u € £'(R™) to S(R™) is a tempered distribution.

Let P be a polynomial with constant coefficients, ¥ € S(R"™), and u €
S’(R™). As in the case of general distributions, we define Pu, P(D)u, and
Yu by

(¢, P(D)u) = (P(=D)p,u), (¢, Pu)=(Pp,u), (p,%u)=/(dp,u),
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where P(—D) =} <y co(—1) Do if P(z) = Yia|<n Cax® (the substitu-
tion of every :c;!j by (—0;)%, and D* = 9f* - - 92n).

They belong to S'(R™), since they are the composition of continuous
linear mappings. For instance, P(D)u : ¢ — P(—D)¢ + u(P(—D)yp),
where P(—D), P-, and - are continuous on S(R"), their transposes are
P(D), P-, and -, and they are continuous linear operators of S'(R™).

Also translations, modulations, dilations, and the symmetry defined,
respectively, by
<(P7 Tau) = <T—G(P7 u)7 (‘P’eau) = (ea(,o,u),
(p(@), ulha)) = (Ao (h~ ), u(@), (p,8) = (@),
are continuous linear mappings of §'(R™) into §'(R™).

7.3.1. Fourier transform of tempered distributions. Property (c) of
the Fourier integral on L'(R™) suggests that we may also define the Fourier
transform 4 of any tempered distribution u by

(p,u) = (Pu)  (p€SR).

Since F is continuous on S(R"), & = uo F € §'(R™) for any u € S'(R").
We still write Fu = u.

Similarly, F is defined on S'(R™) by (p, Fu) := (Fop,u).
Theorem 7.10. The Fourier transform F : S'(R"™) — S'(R™) is a bijective
continuous linear extension of F : LY(R™) — L*(R™). The inverse of F
on 8'(R™) is F.

The behavior of F on L*(R™) and on S(R™) with respect to derivatives,

translations, modulations, @'latioq\sj and symmetry extends to the Fourier
transform on 8'(R™), and Fu = Fu.

Proof. If f € L}(R™) and uy = (-, f), then Fuy = - F.

As the transpose of F : S(R") — S(R"), F : S'(R") —» S'(R") is
weakly continuous. By property (c) of the Fourier integral, if f € L}(R™),
then Fuy = ug and F : L}(R") — L*(R™) is the restriction of F :
S'(R™) — S'(R™).

Also, FF=1d and FF = Id, since

(¢, FFu) = (FFp,u) = (¢, u).

Let us consider the behavior of F with respect to dilations:

(o(y), Flu(hz)l(y)) = ((Fo)(@),u(hz)) = (h™(Fe)(h™'z),u(z))
(Fle(hy)l(z), u(z)) = (p(hy), (Fu)(y))
= (p(y), h ™(Fu)(h'y)),
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and m is the distribution A~"%(h~'y). We leave it to the reader to check
the remaining statements.

For differential operators, P(D) = Zlalsm caD® (co € C),

(¢, FP(D)u) = (P(—D)Fp,u) = (P(2mi§) Fp(£), u(£))
and FP(D)u is the distribution P(27ri§)]-'u(§). O

Example 7.11. T = 4, since ($,1) = [g. P(£) d¢ = (0) = (p,0). As a
modulation of 1, the Fourier transform in S'(R™) of the function eZk™® ig
To0 = 0.

Similarly, 8 = 1, and 3;(5) = g2kmia

Example 7.12. Every f € LZ(R) is a tempered distribution such that, in

S'(R),
+00

Z (F)mT and f= " cr(f)ok/T-

- k=—o00
Here

a+T
() =7 | e Ty (kez)

are the Fourier coefficients of f.

Since

2 too (k+1)T 2
R 4 < 33 / IOF 4 _ o1,
he—oo VK

r 1+ tz T 14+ k2
it follows from Example 7.8 that LZ(R) — S'(R), continuously. Then
[eo}
f= Z e (f)e2kmit/T
k=—00

in §'(R), since this is true in L4(R).
But the Fourier transform is linear and continuous in &'(R), and maps
2 mit/T into 6y /7, so that f =Y pe _ ck(f)e*™/T in S'(R).4

7.3.2. Plancherel Theorem. We also have LP(R") C S'(R"), and the
action of F on L?(R") is especially important.

Theorem 7.13 (Plancherel®). The restrictions of F and F to L*(R™) are
linear bijective isometries such that F = F 1.

4These results are also true for f € LE(R) (p > 1), since f = 3200 _  cx(f)e? /T in
LE.(R).

5Named after the Swiss mathematician Michel Plancherel, who in 1910 established conditions
under which the theorem holds. It was first used in 1889 by Lord Rayleigh (John William Strutt)
in the investigation of blackbody radiation.
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Proof. Since D(R™) is dense in L?(R™) ({¢, f) = 0 for every ¢ implies
f =0, so that D(R*)* = {0} in L2(R™)), the larger subspace S(R") is also
dense.

The identity fRn ¥)9(y)dy = Jg P(y)g(y)dy holds for all p,g €
S(R"). If g = T/), then § = ¢ and [g. w(y)w(y) dy = [pn P)b(y) dy,

i.e., (¢,%)2 = ($,%)2. This shows that F is an L2-isometry on S(R") that
by continuity extends to a unique isometry F of L2(R™).

The restriction of 7 on §'(R™) to F : L2(R™) — S/(R™) is continuous,
since the inclusion L2(R™) < S’(R™) is continuous, and it coincides with
F on the dense subspace S(R™); hence 7, = F on L%(R™").

The operator F , such that Fu = @, has a similar behavior. To show
that F = F~! on L?(R™), note that FF = Id = FF on &'(R™), so that
also FF = Id = FF on L?(R™). O

Remark 7.14. If f, g € LX(R"), [g. f(v)9(y) dy = fRn )3 (y) dy, but on
L%*(R™) the Fourier transform can be seen as an improper 1ntegral for the
convergence in L2(R™),

(&) = lim f(z)e™2m= gy,
Rtoo JB(0,R)

Note that xp(,g)f € L'(R™) N L*(R™) and
f= llm M Xp(0,R)f

g

in L2(R™), so that

f= lim F(xpo.mf), with F(xp,rf)(E) = / fl@)e™ da.

Rfoo B(0,R)
Obviously, instead of xp(,r) We can use more regular functions, such as
o(R™1z) with B(0,1) < o < R™.6
Example 7.15. If Q > 0 and h € R, then sinc (20t + k) is in L%(R), and
2Q[sinc (2Qt + h)] (£) = eﬂihg/QX[_Q,Q] (€).

Indeed, since sinc is the Fourier transform of the square wave of Exam-

ple 7.1, it belongs to L2(R), and the same happens with sinc (2Qt + h) =

sinc (2Q(¢t + h/28)). By the Plancherel theorem sinc = = X[-1/2,1/2] and,
using the properties of the Fourier transform,

[smc (2Q(t + % )]A(E) = eZ”i%g[Sinc (2Qt)]A(§) = %e"’%gs/in?(ﬁ/m)

8If n =1, f(£) = limpmooo [, f(z)e~27%€ dz for almost all £ € R holds if f € L?. This
result is equivalent to the Carleson theorem on the almost everywhere convergence of Fourier
series, one of the most celebrated theorems in Fourier analysis.
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with sine (€/29) = X(—1/2,1/2)(€/29) = X(—a,0)(€)-

We also know from Example 7.9 that the distributions with compact
support are tempered, so that we can consider the restriction of F to the
space &'(R™). Let us denote

e,(€) ;=™ (¢ eR", zeCM).

Theorem 7.16. If u € £'(R™), then U is the restriction to R™ of the entire
function

F(z) := (e—z,u).
For every o € N™ there is an integer N such that the function
(L + |2|*) "N/ D*5(z)
is bounded.
Proof. The function F is continuous on C, since e, — e, in E(R") as

z = zp. Indeed, D%e, — D%e,, uniformly on every compact subset of R,
since for one variable

6271'1ltz _ ethzo — / orit e21rit( dC
[20,2]

Let us show that F' is holomorphic in every variable z; by an application
of Morera’s theorem; that is, [ o F(z)dz; = 0 if ~ is the oriented boundary
of a rectangle in C. By writing the integral as a limit of Riemann sums,

F(z)dzj = [ u(e—z)dzj = ( [ e—(t)dzj,u(t)) =0,
fres= ] J

since [ e~?™t dz; = 0 for every t; € R.

For every ¢ € Djgyn(R™),
((t), u(e—)) = /[ o (p(t)e—t,u) dt = ( - o(t)e—¢(z) dt, u(z)) = (,u)
and u = F on R™.

Note that by the continuity of u on £(R™),

ID°a(€)] = |(=2mi)|(@%e_¢(2),u(2))| S C sup  |DP(ae_¢(2))|
IBISN, |z|<N

and it follows that |Du(¢)| < C'(1 + |¢[2)N/2. =
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7.4. Fourier transform and signal theory

A first main topic in the digital processing of signals is the analog-to-digital
conversion by means of sampling, which changes a continuous time signal
f(t) into a discrete time signal z = {z[k]}$>_ . C C, z[k] := f(kT).

The band of an analog signal f is the smallest interval [—, Q] which
supports its Fourier transform f and we shall see that for a band-limited
signal, that is, with 2 < oo, sampling can be done in an efficient manner.
It is worth observing that in this case f is analytic:

We know from Theorem 7.16 that, if u € S'(R) has a Fourier transform
with compact support 7 € £'(R), then u is the restriction to R of the entire

function,
F(z) := (2™, (¢)).

This shows that a signal cannot be simultaneously band-limited and time-
limited.” Usually, analog signals are of finite time, so they are not of limited
band, but they are almost band-limited in the sense that & ~ 0 outside of
some finite interval [—, Q). Sometimes, filtering of the analogical signal is
convenient in order to reduce it to a band-limited signal.

We will suppose that f € L?(R) and suppfc [—9Q, 9], so f is analytic.
The minimal value Qy of Q is called the Nyquist frequency?® of f.

Let us consider the T-periodized extension of fwith T =2,

= Y fle-k1) (P=29),

k=—00
which is in L2(R). Then
~ 1 a 1 —k
(7.5) ck(fr) = _Qf( ): 2Q (E)
and

1

- £ shaR)en

with L2(—€, )-convergence of this Fourier series.

According to the inversion theorem, f(t) = fi)a f(ﬁ)ezm’t£ d¢ for every

z € R, and the scalar product by e 2"/? op [—9, Q] gives the pointwise

identity
— 1 O itk 20)E
)= 2 () [ ¢

TThis is a version of the uncertainty principle

8Named after the Swedish engineer Harry Nyquist, who in 1927 determined that the number
of independent pulses that could be put through a telegraph channel per unit of time is limited
to twice the bandwidth of the channel.
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and, by Example 7.15,

Q
(7.6) 1 / 2 tHk/20E ge — gine (20t + k).
20 /g
This shows that we obtain a complete reconstruction of f(t),
[e9)
kN .
(7.7) f) = Z f(ﬁ) sinc (2Q¢ — k),

k=—o00
with pointwise convergence, by sampling with the sampling period T,, =
1/29Q.
Our aim is to prove that in fact we have uniform and L? convergence.
Lemma 7.17. The functions
(7.8) V2Q sinc (2Qt — k) (keZ)

form an orthonormal system in L*(R).

Proof. If
o = [sinc (2% — k)] = [sinc (2Q(t — k/2Q))],
according to Example 7.15
ok(€) = ™/ sinc (2Q1)] " (£) = ™/ Q%X[-n,n} (6)-
From the Plancherel theorem,
([sinc (20t — m)], [sinc (2t — n)])2 = (¥m, Pn)2,
and then

Q
2 (pmoipn) = [ mmEIdg —o0
if m # n, and (2Q)2||¢om||3 = 29, so that
I [sine (20 — m)] ||z = 1/v/290.

The family of functions (7.8) is called the Shannon system.

Theorem 7.18 (Shannon®). Suppose f € L?(R) and supp f C (9,9}, so
that we can assume that f is continuous. Then

ft)= i f(%) sinc (202t — k)
k=—o00

in L2(R) and uniformly.

9Named after the electrical engineer and mathematician Claude Elwood Shannon, the founder
of information theory in 1947.
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Proof. We have seen in (7.7) that the sequence

sn(f,t) = _2: f<29)51nc(29t— k)

N

_ Z (2’;2 )% /_ ) Q2mitE ,—2mike /260

is pointwise convergent to f(t) and that

Q -~ .
£(t) = / e

Hence,

1£(5) — sw(f,z)] = ‘/ J’c‘ (2(’;) 2mlc§/29} 21rz§td€‘

and, by Schwarz inequality,
9 AN
_ ey - 2miké /2 1/2
#6 -sw(ral < ([ _|F© > mal(m)e [ ag) " 202
We know from (7.5) that the Fourier coefficients of Fr with respect to the

trigonometric system are
~ 1 ,/-k
ex(fr) = 354 (35)

Hence,
Mol -k
27r1,k§/29 _
>, Qf(2ﬂ) = Sn(fr,t),
k=—N
and SN(fT) — frin L2 #(R).
Then,

sup |£(t) = sn(f, )| < @)Y f - Sn(Fr)ll 20,

which yields the uniform convergence.
Since c(fr) = {ck(ﬁp)} € £% and the Shannon system is orthonormal,
= 1 .k
(7.9) aty="Y mf(m)\/ Qsinc (20t — k)

k=—o00

in L2(R). But some subsequence of the partial sums is a.e. convergent to g
and uniformly convergent to f, so that g = f as elements of L%(R.). (]
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The Shannon theorem shows that the sampling rate of Qs = 2{2y sam-
ples/seg is optimal, and it is called the Nyquist rate. If Q; > 2Qy, we
are considering suppr [—Qs/2,95/2], wider than the symmetric interval
which supports f and an unnecessary oversampling if {15 is much greater
than 2Qn. If Q; > 2Qp, the function g obtained in the sum (7.9) differs
from the original signal f and is called an alias of f.

In digital processing, the discrete time signals « = {xz[k]}{2__ obtained
by sampling from analogical signals are usually of finite time, so that z[k] = 0
if |k| > N for some N, but for technical reasons it is convenient to consider
more general signals. We say that z is slowly increasing, and write z € £,
if there exist two constants N and C, such that

je[k]| < ClE[Y  (k #0).

The class ¢ is a vector space with the usual operations and slowly in-
creasing sequences can be considered tempered distributions:

Theorem 7.19. If z € ¢, then
+00

Ug 1= Z z[k]ox,

k=—00

defines a tempered distribution, and the correspondence x € £+ u, € S'(R)
is an injective linear mapping which shows that we can consider £ C S'(R).

The Fourier transform of x as a tempered distribution is

400 )
z= Z x[k]e~2mkE,
k=—o00
Proof. If u = S7%° z[k|6; = 0, for every n € Z we can choose ¢ € S
with support in (n — 1,n + 1) such that u(¢) = z[n]. Since
400

(7.10) Y lalkle(k) < C Y 1kI72Nk[*V]e(k)] < Kaan(p),

k=—o00 k#0

w35 x[klp(k) is linear and continuous on S(R). It is the limit
in & of the partial sums uy = S8 z[k]0k, un(p) = u(p) if p € S.

Moreover, & = Y7 z[k]6, = S350 wlk]e~2mike, 0

This Fourier transform (7.10) is called the spectrum of z.

If {z[k]} € £2, we have convergence in L?(R) and = € £2 — 7 € L}(R)
is a bijective isometry, such that z[—k] = cx(Z) (k € Z).

If {z[k]} € £*, then T € C1(R). Of course, £* C £2 C £ (see Exercise 7.13).
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Example 7.20. The Fourier transform of z[j] = csinc (cj) (0 < ¢ < 1/2) is
the 1-periodic square wave such that x(_c/2,c/9)(€) on [-1/2,1/2].

In this example, z € £2, since € L(R), but Z is not continuous, so
that z & £1.

The Fourier transform of a signal and that of its samples are related as
follows:

Theorem 7.21. Let f € L?(R) be a band-limited signal and let z[j] :=
f(5/29Q), with Q@ > Qp. Then

a1 €
Fo=558(5) (=<9
Proof. According to the inversion theorem,

.'I)[j] — /_11 A(é)ez'/rzﬁj d¢ = _/ 2#15]/2(2 d¢

so, by the 2Q-periodicity of ¢27ii/28,

J o~ s s Q _ -
il = f(5g) = / fle)ermeil® ge = N / e~ 20m)erme/20 gg
e k=—oc0" ™

Q 0 ~ P
= [ (X Fe—2mm)emernge
- k=—o00

and, from the uniqueness property of the Fourier coefficients,

7 (ag) = Z Fle —20k) = fan.

This relation means that

B =20 ) f(20(-k)),

where the right side is f scaled by the factor 2Q. Since Q2 > Qy, we have
faa(§) = f(€) if [§] < 1/2 and then Z(£) = 20 (2Q¢). O
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7.5. The Dirichlet problem in the half-space

In Theorem 6.33 we have obtained the solution u(z) = [ P(z,y)f(y) dy of
the homogeneous Dirichlet problem!? for the ball with the inhomogeneous
boundary condition ug = f by means of its Poisson kernel P.

Here, as in (7.2) for the heat equation, we will use the Fourier trans-
form as a tool to solve the homogeneous Dirichlet problem in the half-space
R = {(t,z) € R x R™; t > 0},

(7.11) u+ Au =0, u(0,z) = f(z),
where A =372, 8%..

We will be looking for bounded solutions,!! that is, for bounded har-

monic functions u on the half-space t > 0 such that, in some sense, u(t, z) —

f(z)ast]O.

7.5.1. The Poisson integral in the half-space. The Fourier transform
changes a linear differential equation with constant coefficients
P(D)u = f,

with P(D) = 3_,4<m caD*®, into the algebraic equation
P(2mig)a(€) = f(¢),

where P(2) =3, <m CaZ* = D jaj<m CaZl "+ ™

For this reason, to find an integral kernel for the Dirichlet problem (7.11)
similar to the Poisson kernel for the ball, we apply the Fourier transform
in z to convert the partial differential equation in (7.11) into an ordinary
differential equation.

Assuming for the moment that f € S(R"™), for every ¢t > 0 we obtain
o7u(t, &) — an’¢at, ) =0,  (a(0,€) = f(8)),

and we are led to solve an ordinary differential equation in ¢ for every ¢ € R™.

The general solution of this equation is

Ut €) = A(E)e®™ 8t + B(¢)e 2, A(€) + B(¢) = F(¢).

If we want to apply the inverse Fourier transform, and also because of the
boundedness condition, we must have A({) = 0. Then B(¢) = f(§) and

10The work of Johann Peter Gustav Lejeune Dirichlet included potential theory, integra-
tion of hydrodynamic equations, convergence of trigonometric series and Fourier series, and the
foundation of analytic number theory and algebraic number theory. In 1837 he proposed what is
today the modern definition of a function. After Gauss’s death, Dirichlet took over his post in
Gottingen.

11 This boundedness requirement is imposed to obtain uniqueness; see Exercise 7.12.
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with this election
u(t,z) = (Pox f)(@),  Bi) = e,
where P(t,z) := P;(x) will be the Poisson kernel for the half-space.

If n = 1, an easy computation will show that the Fourier transform of
g(z) =e %"l on R is

1 1
7.12 9(&€) = = .
(712) 19=>178
Note that the family of functions
1 =z
B(z) = -
«z) w2+ z2 (¢>0)

is the Poisson summability kernel of Example 2.42, obtained from P; by
letting P;(z) = (1/t)Pi(z/t).
To check (7.12), a double partial integration in

(o 0]
/ e~ 2rlal g—2mikz g, 2/ e~ 2" cos(2méx) dz
R

0
shows that
3¢ = _1 [e‘”“’ cos(27r£:c)] ®_ 27 / e~ 2T sin(2néz) dz
™ 0 0
- 1 27r/ e sin(2néz) dz = 1_ £%5(¢).
™ 0 T
Thus L1
9(6) = it e

Obviously PL =¢ > 0 and [ Pi(z)dz = g(0) = 1.

This result is extended for n > 1, but the calculation is somewhat more
involved and it will be obtained from (7.1) and from

et a?/4t \/_ a
7.13 / —e” dt = \/me”
(719 o Vi
for a > 0.
To prove (7.13), we will use the obvious identity

R 2
/ e~ g — 1/(1 + 62)
0

and also

eiat
/ 5 dt = me™?,
R1+t

which follows from (7.12) by a change of variables.
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Indeed,

—a 1 iat *® —(14t2)s 1 [* —s iat —st?
e = — [ e e dsdt = — e e'%e dtds
TJR 0 ™ Jo R

o0 ; 2,2 o0 2 1
2 / =S / e2maa:e—41r sz% Jrds = / eS¢ ¢ /4s ds
0 R 0 VT

and (7.13) follows.
Now we are ready to prove that

t NG WAY
(7.14) P(t,z) = cn (2 + |z|2)@+D/2 (C" = )’

that is,

—2mléft —2miz-€ g& t
/ne e dg c"(t2+|x|2)(n+1)/2'

A change of variables allows us to suppose ¢t = 1 and, using (7.1) and (7.13),

1 oo ,—t .

00 o=t 21412 )
_ & —m2|€|2/t —2ma:-§d dt
|77 femerenta
= 2( g2y (nt D)2 /°° T +/2 g
0

Cn
(1 —+ |x|2)(n+1)/2 '

According to Theorem 2.41, since P, = P(t,) is a summability kernel, if
f € C(R™) tends to 0 at infinity, then u(t,z) = (P, f) — f(z) uniformly as
t10. If fe LP(R") (1 <p < o00), then u(t,:) = f in L? when ¢ | 0. Thus,
in both cases, f can be considered as the boundary value of u, defined on
t>0.

Moreover, a direct calculation shows that (82 + A)P(t,z) = 0, and then
u is harmonic on the half-space t > 0, since

@+2) [ Plhz=1)iG)dy=0.

Note also that if |f| < C, then |u(t,z)| < Cfff: P(t,z—y)dt=C.
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7.5.2. The Hilbert transform. In the two-variables case we write

1y
P =——.
(@y) =27 >
We have seen that it is a harmonic function on the half-plane y > 0. This
also follows from the fact that it is the real part of the holomorphic function

i 1 y+iz
B e —— P ] .
mz  mwaxs+y? v(@) +iQy ()
The imaginary part,
1 =z

Qy(z) = Q(z,9y) = S

which is the conjugate function of P(z,y), is the conjugate Poisson ker-
nel, which for every = # 0 satisfies

lim Qy(z) = 11

yl0 T

This limit is not locally integrable and does not appear directly as a
distribution, but we can consider its principal value as a regularization of
1/z as in Exercise 6.16. Let us describe it as a limit in S'(R) of Q,:

By definition, for every ¢ € S(R),

+o00
(w(m),p%) = pV/_OO (p—f—)

do = lim / he(2)0(z) da
el0 Jr

if he(z) = 7 X{jo|>e}(@). This limit exists since Jeciala z7lp(0)dz = 0

and then
Vl _ Mday f(x_)dx_
(p(z),pvy) /|m|<1 . + /W ;

Theorem 7.22. In §'(R),

1 1
Zov= =1
Pz = ARGy

and
1 1

J:(; pv;) = —isgn.

Proof. For the first equality, we only need to show that Fy := 7Q,—he = 0
in §8'(R) as € — 0. But we note that, for every ¢ € S(R),

zp(x) / zp(z)  p(x)
F) = d _ d
e B /{|x|<e} 4+ Jg <€2+»’02 z ) *

_ / w(sa;) d — / w(ew)z da
{el<1} 1+ 2 {of>1} (1 + 22)

and both integrals tend to 0 as € — 0, by dominated convergence.
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For the second formula, a direct computation of the Fourier transform
of the function —i(sgn¢)e~ 2"l shows that

@y(ﬁ) = —i(sgn g)e—%ylél
and then

f( PV ><§)-hm—z<sgns> ~2mlél = —i(sgn¢)
in §'(R), since
I /R _i(sgné)e " klp(€) de = [R _i(sgn)p(€) de

for every ¢ € S(R). (W

The Hilbert transform!? is the fundamental map of harmonic analysis
and signal theory H : L?(R) — L?(R) defined by

Hf() = —isgn(6)f(€)  (f € L*(R)).

Theorem 7.23. The Hilbert transform is a bijective linear isometry such
that

H?=—-1 and H* = —H.
For every ¢ € S(R),

1 1 , o
Hyp = ;pVE*tp—lﬁg(Qy*tp) in §'(R).

Proof. If m(§) := —isgn{, it is clear that M : f — mf is a bijective linear
isometry of L?(R) and, by the Plancherel theorem, H FMF is also a
bijective linear isometry. Moreover H? = —I, since m? = —1, and

(Hf,9)2 = (FMFf,g)2 = (MFf,Fg)a = (Ff,~MFg)2 = (f,~Hg)e.
With Theorem 7.22 in hand and from the properties of the convolution,
=1imQ,3 = li
F(Hyp) lim @y = lim F(Qy * ¢),

so that Hyp = lim,o(Qy * ¢) in S'(R).
Also Hp = F(MFy) = (.Fm)*<p_—pv * Q. O

12The name was coined by the English mathematician G. H. Hardy after David Hilbert, who
was the first to observe the conjugate functions in 1912. He also showed that the function sin(wt)
is the Hilbert transform of cos(wt) and this gives the £+ /2 phase-shift operator, which is a basic
property of the Hilbert transform in signal theory.
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If ¢ € S(R), its bounded harmonic extension to the half-plane y > 0,

u(z,y) = (Py * ¢)(z)
has
v(z,y) = (Qy * ¥)(z)
as the conjugate function, so that
F(z) = u(z,y)+iv(z,y)
1 t

= - /R PR t?)J2 el OLS % /R R __xt)_z " yztp(t) dt

1 t—2z
= = [ Z—Z_o(t)dt
i /R rapAU)

is holomorphic on §z =y > 0, and it is continuous on y > 0 with
liigF(z) = o(z) +i(Hyp)(z).
Y

Since F?(z) = u%(z,y) — v*(z,y) + i2u(z, y)v(z,y) is also holomorphic,
2uv is the conjugate function of u? —v?, and H(p? — (Hy)?) = 2pHp, where
H™!'= —H. Thus

(7.15) (Hp)? = ¢* + 2H(pHop).

We can write
1 zT—Yy 1 Y
Hso(m):_/w( )dy:_/w()dy
™ JR Y mTIJRTTY
in the sense of the principal value, and the integrals are called singular

integrals. The kernel .
K(z,y) = —
(@,y) = — ”
is far from satisfying the conditions of the Young inequalities (2.20), but H
will still be an operator of type (p,p) if 1 < p < oo:

Theorem 7.24 (M. Riesz). For every 1 < p < oo, H is a bounded operator
of LP(R).

Proof. We claim that if || Hy|lp, < Cp|l¢llp, then ||Hep|l2p < (2Cp + 1)||¢]|2p-

Indeed, either || Hepl||2p < ||¢]|2p and there is nothing to prove, or ||¢||2p <
||H fl|2p- In this last case, by (7.15),

1HllZ, I(He)?llp < 9?llp + 20 H (0Hp)
lill3, +2CplleHell,

<
< lelzp + 2 lI9llzpll Hepll2p
< lellzp(t + 2C) | Hepll2p

as claimed.
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From this claim, starting from ||[Hy||2 = ||¢||2, we obtain by induction
[Hellzn < (2" = Dllelln (n=1,2,...)
and an application of the Riesz-Thorin interpolation theorem!3 gives

1Hellp < Collell, (v € S(R))

for every 2 < p < o0, so that H(LP(R)) C LP(R) and H is of type (p,p) for
these values of p.

Suppose now that 1 < p < 2, so that p’ > 2 and H is a bounded linear
operator L” (R) — L¥ (R).

Then

177l = sup{] | oHoO s ol <1}

= sun{| | pHaO s ol <1} < el O

7.6. Sobolev spaces

7.6.1. The spaces W™P, Let {2 be a nonempty open subset of R", 1 <
p <ooand me N.

The Sobolev space of order m € N on {2 is defined by
W™P(Q) := {u € LP(Q); D%u € LP(Q), |a| < m},

where the D®u represent the distributional derivatives of u. We endow
W™P(Q) with the topology of the norm

[ellmpy = D 1D%ullp.
la|<m
Note that the linear maps W™P(Q) — LP(Q), W™+LP(Q) — W™P(Q),
and D* : W™P(Q) — W™~l2l»(Q) are continuous, if |a| < m.
In R¥ all the norms are equivalent, so that || - ||(m,p) is equivalent to the

norm
lull := max ||[D%ul|p.
|a]<m

It is easy to show that W™P(Q2) is a Banach space by describing it as
the subspace of [] 4 <m LP(§2) of all elements of the type {D*u}iqj<m. It
is closed, since, if {D%ug}qj<m — {u(o‘)}|a|5m in the product space, then
Dy, — @ (o] < m) in LP(R).

13Marcel Riesz proved his convexity theorem, the Riesz—Thoriﬁ Theorem 2.45 for p(¥) < ¢(9),

to use it in the proof of this fact and related results of harmonic analysis. See footnote 14 in
Chapter 2.
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Note that if fx — f in LP(Q2), then also fi — f in D'(Q2) since

(o, f = fi) < llellwllf — fllp-
Hence D%uy, — D% = u(® in D'(Q), so that {D*Ut}|aj<m — {D*U}jaj<m:

In the case p = 2, we can renorm the space with the equivalent norm

otz = (310%™,

la<m

so that W™2(Q) becomes a Hilbert space with the scalar product
(% V)ma2= Y (D%, D*),.

la|<m

Every u € W™P(Q) C LP(Q) is a class of functions, and it is said that
it is a C™ function if it has a C™ representative.

In the case of one variable, we can consider W™?(a,b) C C[a, b] for every
m > 1, since, if u = v a.e. and both of them are continuous, then u = v.
Moreover, the following regularity result holds:

Theorem 7.25. If u € WP(a,b) and v(t) := fctu’(s) ds, then u(t) =
v(t) + C a.e., so that u coincides a.e. with a continuous function, which we

still denote by u, such that
T
u@)-uw) = [ W (oye@b),
y

The distributional derivative u' is the a.e. derivative of u, and the inclusion
WtP(a,b) < Cla,b] is continuous.

Proof. Function v, as a primitive of u' € L\ (a,b), is absolutely continuous
on [a,b], and, by the Lebesgue differentiation theorem, «’ is its a.e. deriva-
tive. The distributional derivatives v’ and v’ are the same, since, by partial
integration and from ¢(a) = ¢(b) = 0 when ¢ € D(a, b), we obtain

(o= [0 [wdsar= [ Vopw =)

But (u —v)' = 0 implies u — v = C, and u is continuous on [a, b].

It follows from u = v + C that u(z) — u(y) = v(z) —v(y) = f; u'(s) ds.

If up — u in WYP(a,b) and ux — v in C[a,b], then v = u, since
there exists a subsequence of {ux} which is a.e. convergent to u. Hence,
W1P(a,b) < C[a,b] has a closed graph. ]

Remark 7.26. It can be shown that, if m > n/p and 1 < p < oo,
W™P(Q) C £¥(Q) whenever k < m — (n/p).
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We will prove this result in the Hilbert space case p = 2 (see Theo-
rem 7.29).

7.6.2. The spaces H*(R™). There is a Fourier characterization of the
space W™?2(R™) which will allow us to define the Sobolev spaces of fractional
order s € R on R™.

In Theorem 7.7 we saw that the pointwise multiplication by the function

ws(€) := (14 ¢1*)*/2

is a continuous linear operator of S(R™), and it can be extended to S'(R™),
with wsu € S'(R™) for every u € S'(R™), defined as usual by

(p, wsu) = (wsip, u).
We define the operator A® on §'(R") in terms of the Fourier transform
Ay = F~Hwga).

It is a bijective continuous linear operator of S(R™) and of §'(R™), with
(A*)™! = A=* and such that

As'll, = w‘g'l/l:.

It is called the Fourier multiplier with symbol w;, since it is the result
of the multiplication by ws “at the other side of the Fourier transform”.

Since A?™ = (Id — (4m)~1A)™, we can also write

A® = (1d — (4m)"1A)%/2,

We define the Sobolev space of order s € R,
H*(R™) = {u € &'(R"); A*u € L%(R™)},
ie., H*(R™) = A=*(L%*(R")), and we provide it with the norm
lully = I1A%ullz = | Asullz = lwqlle,

associated with the scalar product (u,v) () = (A*u, A%v)2.

It is a Hilbert space, since A® is a linear bijective isometry between
H*(R") and L?(R™) = H°(R™) and also from H"(R™) onto H™~*(R"),
which corresponds to U — ws:

[A%ull(r—s) = llwr—sA%ullz = [lwrtlle = [[ullry-

Ift <s, H(R") — H'(R™), and S(R™) is a dense subspace of every
H*(R™), since it is dense in L?(R™) and A~° : L?(R™) — H*(R") and
A=5(S(R™)) = S(R™).
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Theorem 7.27. If k € N and s € R,
H(R") = {u € S'(R"); D%u € H* *(R™)V|a| < k},
and || - ||s) and w3 4<k |1 D%ull(s—k) are two equivalent norms.

In particular, if s = m, then H*(R") = W™2(R™) with equivalent
norms.

Proof. If u € H*(R™), note that every
Dau(g) = (2mi€)(€) = (2mi€)“w-s(§)Aou(E)

is a locally integrable function, since Ay € L2(R™) and (2mi€)%w_s(€) is
continuous.

If || < k, then
€% = Jegr - gan] < Jelled = (D dylel?
j=1

since, for every j, |&]% < (e E2)%/2 = |¢|%. So €% < (1 + |€|2)/2 =
wi(€)-

Moreover (1+|¢[2)%/? < C 3 ai<k 1651, since 37 < [€%] > 0 everywhere
and

gk €91

is a continuous function on R™ such that, if |¢| > 1,

(L+ g%+

k
E?‘:l Iéjlk B

o= <

Thus,
(14 €2 = >~ (2mleljea| = S |(2mig)°].

lel <k lee| <k
From these estimates we obtain

lull) = lws—sewrills < C Y llws—kl(213€)%lll2 = C Y [ID*u(E)ll(s—ry

le|<k o<k
and also, if |a| < k,

1D%ull(s—k) = llws—&l(2m)*B(E)|ll2 < Cllws—rwitllz = Cllulls)-

Theorem 7.28 (Sobolev). If s — k > n/2, H*(R") C E¥(R™).
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Proof. By polar integration, [g.(1+ [£[?)*=° d¢ < co if and only if

(o o] (o o]
/ (1+ 1"2)’°_3r"_1 dr ~ / r2k=2s,n—1 g < oo,
1 1

i.e.,, when 2k —2s+n—1 < —1, which is equivalent to condition s —k > n/2.
Then, if ¢ € S(R™), multiplication and division in

Do(a) = [ Drp(@)em=tas = [ (migple)eet e

by ws_k(¢) = (1 + |§|2)(S —k)/2 followed by an application of the Schwarz
inequality yields

|D%*p(z)| < /Rn|(2”§)a|“’3—’°(§)|¢(€)IWk_s(ﬁ)d§
”Dawll(s—k)(/m(l + ¢k d§)1/2

AN

and

(7.16) 1D%¢lleo < CID%0ll(5—)-

When u € H*(R™), we can consider ¢, — u in H*(R"™) with ¢}, € S(R"),
the estimate (7.16) ensures that { D%pn, }50_; C S(R™) is uniformly Cauchy,

and we obtain that D%p,, — D%*u uniformly, if |a| < k. This proves that
u € EF(RM). O

7.6.3. The spaces H™(2). If m € N and for any open set 2 C R", we
will use the notation
H™(Q) = W™2(Q)
suggested by Theorem 7.27.
In this case, as a consequence of the Sobolev Theorem 7.28 we obtain

Theorem 7.29. If m — k > n/2, H™(Q) C £¥(Q).

Proof. It is sufficient to prove that u € H™(Q) C L*(Q) is a C* function
on a neighborhood of every point. By multiplying v by a test function if
necessary, we can suppose that as a distribution its support is a compact
subset K of (2.

If K <n < Q and if % is the extension of u € L%(Q) by zero to 4 €
L?%(R™), then @ € H™(R™), since for every |a| < m we can apply the Leibniz
rule to

(p, D) = (p, D*(7))
to show that (-, D) is L2-continuous on test functions, so D%i € L?(R")
by the Riesz representation theorem, and 4 € H™(R"™). By Theorem 7.28
we know that 4 € £¥(R™) and then u € £¥(Q2). a



7.6. Sobolev spaces 211

Remark 7.30. It is useful to approximate functions in H™(Q2) by C*
functions. The space H™(2) can be defined as the completion of £(2) N
H™() under the norm ||-||m,2. In fact it can be proved that £(Q2)NW™P(Q)
is dense in W™P(Q) for any 1 < p < oo and m > 1 an integer.*

We content ourselves with the following easier approximation result
known as the Friedrichs theorem.

Theorem 7.31. If u € H'(Q), then there exists a sequence {pm} C D(R™)
such that limpm, [|[u—¢m||1r@) = 0 and limy, ||0ju — 8;@m||Lr(w) = 0 for every
1 < 7 < n and for every open set w such that @ is a compact subset of Q2.

Proof. Denote by u° the extension of u by zero on R™ and choose a mollifier
0¢- Then g, xu® — u° in L2(R™) and so lim,_q ||u— e *u°||Lp() = 0. Allow
0 < e < d(@,9Q°), so that (g * u®)(z) = (0 * u)(z) and 9;(ge * u°)(z) =
(0e* (0ju)°)(z) for every z € w. So lime—0 [|0ju — 0;(0e *u°)|| L2(w) = O, since
(0ju)° € L(R™).

If ey, | 0, let us multiply the functions f,, = o, * u® € E(R™) by the
cut-off functions x,, such that B(0,m) < xm < R™ By the dominated
convergence theorem, if ¢, = xmfm, then

lom — wllz < [1xXm(fm — )2 + Ixmu® —w’llz = 0 as m = oo

and @ C B(0,m) for large m. It follows that the test functions ¢, satisfy
all the requirements. (W

As an application, we can prove the following chain rule for functions
v € HY(Q) and any o € £(R) with bounded derivative and such that o(0) =
0:

(7.17) 0i(eov) =(dov)0v  (1<j<n)

Indeed, since |¢/| < M and p(0) = 0, by the mean value theorem |o(t)| <
M|t|. Thus |gov| < M|v| and gov € L?(). It is also clear that (¢’ ov)d;v €
L3(Q).

Pick ¢, € D(R™) as in Theorem 7.31. Then, for every ¢ € D(Q2) with
supp ¢ C w, from the usual chain rule

[ (eovm(@0(@)da = [ (& o em)@Bsen(@lpla) da.
Q Q

Here g0 ¢m — gowv in L?(Q) and (¢’ 0 ¢m)8i¢m — (¢’ 0v)d;v in L?(w) by
dominated convergence, and (7.17) follows.

14This is the Meyer-Serrin theorem and a proof can be found in [1] or [17].
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7.6.4. The spaces H{*(2). When looking for distributional solutions u €
H™(Q) in boundary value problems such as the Dirichlet problem with a
homogeneous boundary condition, it does not make sense to consider the
pointwise values u(x) of .

Vanishing on the boundary in the distributional sense is defined by con-
sidering u as an element of a convenient subspace of H™(2).

The Sobolev space H{*(2) is defined as the closure of
D)= (J DR
KeKk(R2)
in H™(Q), and it is endowed with the restriction of the norm of H™(2).
In this definition, D™(Q2) can be replaced by D(f):
Theorem 7.32. For every m € N, D(Q2) is dense in Hf*(2).

Proof. Let ¢ € D™(2) C D™(R™). If o > 0 is a test function supported by
B(0,1) such that [lo[ls = 1, then gx(x) := k™o(kz) is another test function
such that ||g||; = 1, now supported by B(0,1/k). Moreover g, * % € D(R")
and

D*(ox *¥) = ok * D*% — D
in L2(R™) for every |a| < m with

supp g * ¥ C supp gx + supp¥ C 2

if k is large enough. Hence, D(R™) 3 g x ¢ — ¢ in H™(Q2) and ¢ € D(Q),
closure in Hg*((2). (W

The class S(R") is dense in H™(R"), D(R™) is also dense in S(R"),
and the inclusion S(R™) — H™(R™) is continuous, so that D(R™) is dense
in H™(R") and

H*(R™) = H™(R"™).

The fact that the elements in HJ*(2) can be considered as distributions
that vanish on the boundary 992 of 2 is explained by the following results,
where for simplicity we restrict ourselves to the special and important case
m=1.

Theorem 7.33. Ifu € H'(Q) is compactly supported, then u € H}(Q2), and
its extension @ by zero on R™ belongs to H*(R™).

Proof. If v € H'(Q2) has a compact support K C €, it is shown as in
Theorem 7.29 that @ € L?(R™) belongs to H!(R") by using 7 such that
K<n=<Q.

But D(R™) is dense in H'(R™) and it follows from ¢, — @ in H'(R™)
that omn — u in H(Q) with pmn € D(Q), so that u € H}(Q). a
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Theorem 7.34. Let Q@ C R™ be a bounded open set. If u € H(Q)NC()
and ujpq = 0, then u € H ().

Proof. Assume that u is real and let o € £!(R) be such that |o(¢)| < |¢| on
R, 0 =0o0n [-1,1], and o(t) =t on (—2,2)°. If [-1,1] < ¢ < (—2,2), just
take o(t) = t(1 — (t)).

If v € HY(Q), then pov € L?(Q) and by the chain rule (7.17) also
9j(0ov) = (o' ov)-9jv € L3(Q), so pov € HY(N).

Hence uy, := m™1p(mu) € H}(Q) since supp uy C {|Ju| > 1/m}, which
is a compact subset of the bounded open set 2. By dominated convergence,
Um — u in H1(Q) and it follows that u € H}(S). a

It can be shown that this result is also true for unbounded open sets and
that the converse holds when 2 is of class C':

(7.18) u € C(Q) N Hy(R) = wppq = 0.
We only include here the proof in the easy case n = 1:

Theorem 7.35. If n = 1 and Q2 = (a,b), then H}(a,b) is the class of all
functions u € H(a,b) C Cla,b] such that u(a) = u(b) = 0.

Proof. By Theorem 7.34, we only need to show that u(a) = u(b) = 0 for
every u € Hj(a,b) C Cla,b]. But, if D(a,b) > v — u in Hi(a,b), also
¢ — u uniformly, since H}(a,b) < C[a, b] is continuous by Theorem 7.25,
and then ¢i(a) = pi(b) = 0. O

7.7. Applications

To show how Sobolev spaces provide a good framework for the study of
differential equations, let us start with a one-dimensional problem.

7.7.1. The Sturm-Liouville problem. We consider here the problem of
solving

(7.19) —(pv) + qu=f, u(a) = u(b) =0

when ¢ € C[a, b], p € C[a,b], and p(t) > > 0.

If f € C[a, ], a classical solution is a function u € C?[a,b] that satis-
fies (7.19) at every point.

If f € L*(a,b), a weak solution is a function u € H}(a,b) whose
distributional derivatives satisfy —(pu')’ + qu = f, i.e.,

b b b
/ p(t)u ()¢ (t) dt + / q(t)u(t)p(t) dt = / f@et)dt (¢ € D(a,b)).
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If v € H}(a,b), by taking ¢ — v (¢ € D(a,b)), the identity

b b b
/ p(t)u' (t)v'(t) dt + / q(t)u(t)v(t) dt = / f()v(t) dt

also holds.

To prove the existence and uniqueness of a weak solution for this Sturm-
Liouville problem, with f € L%(a,b), we define

b - b -
B(u,v) = / PV (T (D) dt + / a()u(t)o(D) dt.

Then we obtain a sesquilinear continuous form on Hg(a,b) x H}(a,b) and
(-, f)2 € H(a,b)', since

|1 B(u,v)| < llplloollvll2llv"ll2 + llglloo lullzllvll2 < cllull,z vl

and |(u, 2| < [|fll2llwll1,2)-

If B is coercive, we can apply the Lax-Milgram theorem and, for a
given f € L?(a,b), there exists a unique u € H}(a,b) such that B(v,u) =
(v, f)2, which means that u is the uniquely determined weak solution of
problem (7.19).

For instance, if also ¢(t) > 6 > 0, then

b
Blww) = | GO OF + aOOF) dt > lullyy,p

and B is coercive.

Finally, if f € Cla, b], the weak solution u is a C? function, and then it
is a classical solution. Indeed, pu’ € L?(a, b) satisfies (pu')’ = qu — f, which
is continuous; then g := pu/ and v’ = g/p are C! functions on [a, b], so that
u € C?[a,b], and u(a) = u(b) = 0 by Theorem 7.35.

7.7.2. The Dirichlet problem. Now let 2 be a nonempty bounded open
domain in R™ with n > 1, and consider the Dirichlet problem

(7.20) —Au=f, u=00nd0 (felL*N).

If f is continuous on  and u is a classical solution, then u € C2(2) N C(f)
and (7.20) holds in the pointwise sense.

Let us write (Vu, V) = 3%, (0ju,0jv)2. When trying to obtain
existence and uniqueness of such a solution, we again start by looking for
solutions in a weak sense. After multiplying by test functions ¢ € D(Q),
by integration we are led to consider functions u € C2(Q2) N C(Q) such that
u =0 on 9N and

(g, —Du)a=(p,f)2 (v D)),
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or, equivalently, such that

(Vo,Vu)e = (¢, f)2 (v € D(Q)).
Then it follows from Theorem 7.34 that u € H}(f), and
(7.21) (Vo,Vu)e = (v, f)2 (v € H5())

since for every v € H}(2) we can take ¢ — v in HY(Q), so that ¢ — v
and 8;p — Oju in L%(Q).

A weak solution of the Dirichlet problem is a function u € HE(f)
such that —Awu = f in the distributional sense or, equivalently, such that
property (7.21) is satisfied.

Every classical solution is a weak solution, and we can look for weak
solutions even for f € L?(f).

To prove the existence and uniqueness of such a weak solution, we will
use the Dirichlet norm | - ||p on H}(92), defined by

Julfy = [ 194 = [ 3" 16,ula) do
Q Qi

It is a true norm, associated to the scalar product
(u,v)p = (Vu, Vv)s,
and it is equivalent to the original one:

Lemma 7.36 (Poincaré). There is a constant C depending on the bounded
domain ) such that

(7.22) lull < Cllullp (v € Hy(%)),
and on H}(Q) the Dirichlet norm || - ||p and the Sobolev norm || - ||(1,2) are
equivalent.

Proof. Since D(2) is dense in H}(£2), we only need to prove (7.22) for test
functions ¢ € D(?) C D(R™).

If Q C [a,b]", let us consider any z = (z1,2’) € Q and write

p(z) = / ) O1p(t, z") dt.

By the Schwarz inequality,

b
|¢Msw—@W(AwWwﬂWﬁfﬂ

and then, by Fubini’s theorem,

b
|M%s@—@[ﬂdg/meﬂWﬁ=@—@W&ﬂ%
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with |01¢| < |[V|, and (7.22) follows.

From this estimate,
lullfy 2y = llull + I1Velll3 < (C* + D)llulb
and obviously also |[ullp < [lull(1,2)- u

Theorem 7.37. The Dirichlet problem (7.20) on the bounded domain
has a uniquely determined weak solution u € H(Q) for every f € L%(),
and the operator

ATV L3(Q) = HA(Q)

18 continuous.

Proof. If C is the constant that appears in the Poincaré lemma, then, by
the Schwarz inequality,

(v, 2| < (I ll2llvllz < Cllf 2Nl

and (-, f)2 € H3(Q)' with ||(, f)2ll < C||fll2- By the Riesz representation
theorem, there is a uniquely determined function u € HE(Q) such that
(v, f)2 = (v,u)p for all v € H(R), which is property (7.21).

The estimate [lullp = (-, fl2llzay < Cllfll2 shows that A7 <
C. O

An application of (7.18) shows that a weak solution of class C? is also a
classical solution if Q is C*:

Theorem 7.38. Letu € C2(Q)NC(Q) and f € C(Q). Ifu is a weak solution
of the Dirichlet problem (7.20) and Q is a C' domain, then u is a classical
solution; that is, —Au(z) = f(z) for every z € Q and u(z) = 0 for every
x € 0N.

Proof. By (7.18), ujgq = 0. Since u € C*(2), the distribution Au is the
function Au(z) on 2, and the distributional relation —Awu = f is an identity
of functions. g

We have not proved (7.18) if n > 1, and the proof of the regularity of
the weak solutions is more delicate. For instance, if f € C*°(Q) and the
boundary 092 is C', it can be shown that every weak solution u is also in
£(Q), so that it is also a classical solution. More precisely, the following
result holds:

Theorem 7.39. Let Q be a bounded open set of R™ of class C™*2 with
m > n/2 (or R or R} = {z : z, > 0}) and let f € H™(Q). Then
every weak solution u of the Dirichlet problem (7.20) belongs to C*(Q), and
it 18 a classical solution.
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7.7.3. Eigenvalues and eigenfunctions of the Laplacian. We are go-
ing to apply the spectral theory for compact operators. The following result
will be helpful:

Theorem 7.40. Suppose that ® C L%(R™) satisfies the following three con-
ditions:

(a) ® is bounded in L?*(R™),

(b) limp—eo flzI>R|f(a:)|2d:c = 0 uniformly on f € ®, and

(¢) limp—o ||f — Tnfll2 = O uniformly on f € ®.
Then the closure ® of ® is compact in L*(R™).

Proof. Let € > 0. By (b), we can choose R > 0 so that
[ l@Pa<s  (ew),
lz|>R

Choose 0 < ¢ € D(B(0,1)) with [ ¢ = 1, so that pi(z) = k"p(kz) is a
summability kernel on R™ such that supp ¢, C B(0,1/k), and we know
that limg—eo || f * & — fll2 = 0 if f € L2(R"). In fact, since px = 0 on
ly| > 1/k, it follows from the proof of Theorem 2.41 that

(% o1)(@) — ()] = | /Iy e~ sl )

and then || f xpy — fll2 < suppy<1/k I7nf — fll2. Thus, by (c), we can choose
N so that

If —frenla<e  (fe€D).
Moreover it follows very easily from the Schwarz inequality that

(f *on)(@) = (f * en) (W) < 7a—yf = Fll2llonll2

and also

(£ * en)(@)] < I fll2llenl2.

These estimates, with conditions (a) and (c), allow us to apply the Ascoli-
Arzela theorem on B(0, R) C R™ to the restrictions of the functions f * ¢y
with f € ®, which can be covered by a finite family of balls in C(B(0, R))
with the centers in @,

Be(B(0,r))(f1:6), - - -+ Be(so,r)) (fms 6),
for every 6 > 0.
Note that at every point z € R"
If(@) = fi(@)] < X{e>ry @) (@) + X{je|>r) (@) fi ()]
+ £ (@) = (f * n)(@)| + | fi(z) — (fj * on)(z)|
+x(e1<r} (@) (f * on)(x) — (f; * on)(2)]
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and the previous estimates yield
If = fill2 < 46 + | B(0, R)ll/zlsllg;%l(f *on)(@) — (f5 * on) ()],

so that, by choosing § = ¢/|B(0, R)|'/?, it follows that || f — f;||2 < 5 and,
by Theorem 1.1, the closure of ® in L2(R™) is compact. a

Remark 7.41. Obvious changes in the proof, such as applying Holder’s
inequality instead of the Schwarz inequality, shows that the above theorem
has an evident extension to LP(R") if 1 < p < oo.

Theorem 7.42 (Rellich!®). If Q is a bounded open set of R™, the natural
inclusion H}(Q) — L%(Q) is compact.

Proof. The extension by zero mapping L?(Q2) — L?(R™) is isometric, so
that it is sufficient to prove the compactness of the extension by zero map
of Theorem 7.33, i.e.,

feHYQ) — fe H(R = HY®R") c LAR")  (f(z) =0if z € Q°).
This follows as an application of Theorem 7.40 when ® is B = {f; f € B},
if B is the closed unit ball in Hg ().

Indeed, BZ is contained in the unit ball of L2(R™) and, if Q C B(0, R),
then f|$|> rIfI> = 0, so that conditions (a) and (b) of Theorem 7.40 are
satisfied. To prove (c), note that
(7.23) Imu —ullz < IAIIVulllz - (w € HY(R™))

since we can consider ¢, € D(R") so that ¢ — u in H}(R") as k — oo
and for every test function ¢ we have

1 2 1
() = o @l = | [ bV —m)atf <1 [ 1Vp(a— )Pt

by the Schwarz inequality, and (7.23) follows for ¢ by integration.
Then ||7,f — f||2 < |h| for every f € B, which is property (c) for B. O

Theorem 7.43. If ) is a bounded open set of R™, then (—A)~! is a compact
and injective self-adjoint operator on L2(Q) and on H(Q).

Proof. The compactness of (—A)~! : L2(Q2) — L?() follows by consider-
ing the decomposition

(=A)7H: L*(Q) — H5(Q) = LA(Q),

15The theorem, in this case p = 2, is attributed to the South-Tyrolian mathematician Franz
Rellich (1930 in Géttingen) and to Vladimir Kondrachov (1945) for the more general case stating
that WO1 "P(Q) is compactly embedded in L%(Q2) for any g < np/(n — p) if p < n, and in C(Q) if
o > n. For a proof we refer the reader to Gilbarg and Trudinger [17] and Brezis [5].
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where (—A)7!: L2(Q2) — HJ(Q) is continuous by Theorem 7.37 and, by the
Rellich Theorem 7.42, H3(2) < L?() is compact.

Similarly,

(—A)™: B (@) - 22(9) "2 B (@)

is also compact.
Note that (—A)~!: L2(Q) — H(Q) is bijective, by Theorem 7.37.
Ifu=(-A)"lp and v = (—=A) ", with ¢, € D(R2), then
(u,v)p = (Vu, Vv)2 = (—Au,v)2 = (¢, v)s,
so that
(=2)"'9,9)p = (0, (=2))p
and
(=8)" w,v)p = (u, (-A)M)p
for all u,v € H}(2) by continuity. Also

(=2)7 9, 9)2 = (Vo, V)2 = (0,9)D = (¢, (=2) T'9)2.

This shows that (—A)™! is self-adjoint on H}(Q) and on L3(R). O
Note that
(7.24) (=A)tu,v)p = (u,v)2  (u,v € Hy(Q)),

from the density of D(2) in H}(£2). Thus (—A)~! is a positive operator on
H}() in the sense that
(7.25) (=) Yu,u)p > 0
if 0 # u € H} ().
An eigenfunction for the Laplacian on Hg () is an element u € H}(Q)

such that Au = Au for some A, which is said to be an eigenvalue of A if
there exists some nonzero eigenfunction u such that Au = Au.

Hence 0 is not an eigenvalue, since A : H3 (Q) — L2(f) is injective, and
u € H}(Q) is an eigenfunction for the eigenvalue A of A if and only if

(=) lu= —iu.

The solutions of this equation form the eigenspace for this eigenvalue A\. Note
that A < 0, as a consequence of the positivity property (7.25) of (—A)~1.

From the spectral theory of compact self-adjoint operators,

(=2)7!: Hp(Q) — H(2)
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has a spectral representation
o0

(7.26) (=)t = Zuk(v, Uk) DU (v € H}(R)),
k=0

a convergent series in H& (), where ur, = —1/A; | 0 is the sequence of the
eigenvalues of (—A)~! and {uy}, is an orthonormal system in H}(£2) with
respect to (-,-)p such that (—A)lur = pgug. Since (—=A)7! is injective,
{ur}2, is a basis in H}(£). Moreover (ug,u;)2 = 0 if k # j, by (7.24).

Theorem 7.44. Suppose f € L?(QY). The weak solution of the Dirichlet
problem

—AMu=f (ue H)(Q))

is given by the sum
o0
u=— Y (f,w)ou
k=0

in H}(Q). The sequence of eigenfunctions v/—Aguy is an orthonormal basis
of L*().

Proof. It follows from (7.24) applied to the elements u;, € H}(S) that

luell3 = pe = —=1/Ak,  (uk,um)2 =0 if m # k.

Moreover, since H}(S2) contains D(Q2), it is densely and continuously in-
cluded in L2(Q), {ux}, is total in L%(2), and the orthonormal system

{V=Xkui}2, is complete in L2(2).
For every f € L%(Q),

(7.27) F=Y (V= Aur)av/ = Mg = =Y Ak(f, u) 2
k=0 k=0

in L2(Q) and {v=Xe(f uk)2}o € 2. Also {(f,ur)2}2, € 2, since
_)\k — 00.

We can define

w=Y (f ur)auk
k=0

since the series converges in H}(f2). Then

Au = (fiu)2luk =Y Ne(f, un)aw

k=0 k=0
in D/(2). In (7.27) we have a sum in D’'(Q), so that —Au = f. O
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To complete our discussion, we want to show that the eigenfunctions
uy, are in £(), so that they are classical solutions of —Aug = Azux. The
method we are going to use is easily extended to any elliptic linear differential
operator L with constant coefficients.

Theorem 7.45. Suppose L = A+ and u € D'(Q), where § is a nonempty
open set in R™. If Lu € £(), then u € £(Q).

Proof. If Lu € £(Q2), then
(7.28) eLu € H*(R"™) V¢ € D(Q)
for every s € R. We claim that it follows from (7.28) that
pu € HP2(R™) Vop e D().
Then an application of Theorem 7.29 shows that pu € £(Q) for every ¢ €
D(Q) and then u € £(R).

To prove this claim, let supp ¢ C U, U an open set with compact closure
U in ©, and choose U < 1 < Q. Note that 1u € £ (R") and it follows from
Theorem 7.16 that ¢u € H!(R™). By decreasing t if necessary, we can
suppose that s+2 —t=k € N.

Let 19 = 9, ¥ = ¢ and define 91,...,1x_1 by recurrence so that

supp ¥j+1 < %5 < U; C {¢pj—1 = 1}.
It is sufficient to show that y;u € H''J(R™), since then pu = pu €
Ht*(R") = H*+2(R™) will complete the proof.
We only need to prove that if ¢, € D(f2) are such that
suppp < % and Yu € HY(R™),
then pu € H1(R™).
From the definition of L and from the condition supp ¢ < 1,

n

(L, ¢lu = L(pu) — pLu = > _ ((85¢)u + 2(;)d5u)
j=1

is a differential operator of order 1 with smooth coefficients and satisfies

[L, plu = [L,¢](¢u). Hence L(pu) = [L, p|(u) + ¢Lu with [L, ¢](yu) €
H**1(R"™) and pLu € D(R"), and we conclude that

L(pu) € HFL(R™M).
Therefore also
(A& = 1)(pu) = L(pu) — (A — L)pu € H*(R?)

and, since A — 1 is a bijective operator from H'"!(R") to H!*!(R™), we
conclude that pu € H:=H(R™). O
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For a more complete analysis concerning the Dirichlet problem we refer
the reader to Brezis, “Analyse fonctionelle”[5], and Folland, “Introduction to
Partial Differential Equations” [14].

7.8. Exercises

Exercise 7.1. Calculate the Fourier integral of the following functions on
R:

(a) f(t) =te .

(b) fo(t) = X(a,b)-

(c) f3(t) =M.

(d) fa(t) =@+

Exercise 7.2. Assuming that 1 < p < co and f € LP(R™), check that the
Gauss-Weierstrass kernel

1 _l1z|?
Wi(z) := (47rt)"/26 l=|*/4t (h>0)

is a summability kernel in S(R™), and prove that

(47rt1)n/2 / n e Wz —y)dy  (t>0)

defines a solution of the heat equation
Ou—Au=0

u(t, z) :=

on (0,00) x R™.

If p < oo, show that limyou(t,:) = f in LP(R™). If f is bounded
and continuous, prove that u has an extension to a continuous function on
[0,00) x R™ such that u(0,z) = f(z) for all z € R™.

Exercise 7.3. The heat flow in an infinitely long road, given an initial
temperature f, is described as the solution of the problem

dyu(z,t) = 02u(z,t), u(z,0) = f(z).

Prove that if f € Co(R) is integrable, then the unique bounded classical
solution is

u(z,t) = /R Fle)e™ ™2 ge — (f ) ()

where ) )
Kt(w) = WC_E

Exercise 7.4. Find the norm of the Fourier transform F : L'(R") —
L®(R™).
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Exercise 7.5. Is it true that f,g € L*(R) and f % g = 0 imply either f =0
or g =07

Exercise 7.6. Let 1 < p < co. Prove that ¢ € £(R™) is in S(R") if and
only if the functions z# D*p(z) are all in LP(R™). Show that the inclusion
S(R™) — LP(R™) is continuous.

Exercise 7.7. Show that if a rational function f belongs to S(R"), then
f=0.

Exercise 7.8. If f is a function on R™ such that fo € S(R") for all
¢ € S(R™), prove that the pointwise multiplication f- is a continuous linear
operator on S(R").

Exercise 7.9. Suppose f € S(R) and f € D|_r,Rr), and let 1 < p < oo.
Prove that there is a sequence of constants C, > 0 (n = 0,1,2,...), which
depend only on p, such that

1F™llp < CuR™Ifl, (€ N).
Exercise 7.10 (Hausdorff-Young). Show that, if 1 <p < 2and f € LP(R"),
then f € L®(R") + L*(R™) and F : LP(R™) — L* (R™).
Exercise 7.11. Show that sinc € L*(R)\L!(R), and find | sinc ||z, F (sinc),
and F(sinc).

Exercise 7.12. If u is a solution of the Dirichlet problem (7.11) on a half-
plane, find another solution by adding to u an appropriate harmonic func-
tion.

Exercise 7.13. Show that ¢ C ¢ (1 < p < 00) and that the injective linear
map ¢’ — S’ such that z[k] — Y 7o z[k]dx(t) is continuous.

Exercise 7.14 (Hausdorff-Young). Show that (3252 __ |cx(f)IP)/7 < || fllp,
with the usual change if p = 00, if 1 <p <2 and f € LP(T).
Exercise 7.15 (Poisson summation formula). Prove the following facts:
(a) If p € S(R), p1(t) = 72 p(t — k) is uniformly convergent.
(b) The Fourier series of ¢, is also uniformly convergent.
() S8 (k) = SF . @(k), with absolute convergence.

(d) For the Dirac comb, {] = I1I.
Exercise 7.16. If 1 < q < o0, prove that
A1 = D fllp b ot<mllq

defines on WP™(Q) a norm which is equivalent to || - ||(m p)-

Exercise 7.17. Every u € W'P(a, 00) is uniformly continuous.
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Exercise 7.18. For a half-line (a, 00) prove a similar result to Theorem 7.25,
now about the continuity of WP (a, 00) < C[a, 00) N L*(a, o).

Exercise 7.19. Every u € W1P(0,0) can be extended to Ru € WHP(R)
so that Ru(t) = u(—t) if ¢ < 0 and Ru(z) — =[5 v(t)dt for all z € R.
Moreover, R : W1P(0,00) - W1P(R) is llnear and continuous.

Exercise 7.20. The extension by zero, P : H}(2) — H'(R™), is a contin-
uous operator.

Exercise 7.21. If 02 has zero measure, the extension by zero operator, P,
satisfies 0; Pu = POj;u for every u € H ().

Exercise 7.22. If u € H'(—1,1), its extension by zero, u°, is not always in
H'(R).

Exercise 7.23. If s—k > n/2 (s € R) and m — k > n/2 (m € N), prove
that the inclusions H*(R") — £¥(R™) and H™(Q) — £F(Q) of the Sobolev
Theorem 7.28 are continuous.

Exercise 7.24. Let u(z) = e~2717l a5 in Example 7.12. Prove the following
facts:
(a) u,u’ € L2(R) (distributional derivative), and u € H*(R) if s < 3/2.
(b) u ¢ H3?(R).
Exercise 7.25. Prove that the Dirichlet problem
—Au+u=f u=00n0Q (fecL*R))

has a unique weak solution by applying the Lax-Milgram theorem to the
sesquilinear form

B(u,v) = /Q (Vu(e) - Vo(z) + u(2)o(x)) do

on H}(Q) x H}(Q).

References for further reading:

R. A. Adams, Sobolev Spaces.

H. Brezis, Analyse fonctionelle: Théorie et applications.

G. B. Folland, Introduction to Partial Differential Equations.
I. M. Gelfand and G. E. Chilov, Generalized Functions.

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of
Second Order.

L. Hérmander, Linear Partial Differential Operators.
E. H. Lieb and M. Loss, Analysis.
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V. Mazya, Sobolev Spaces.

W. Rudin, Functional Analysis.

E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean
Spaces.






Chapter 8

Banach algebras

Some important Banach spaces are equipped in a natural way with a con-
tinuous product that determines a Banach algebra structure.! Two basic
examples are C(K) with the pointwise multiplication and L£(F) with the
product of operators if E is a Banach space. It can be useful for the reader
to retain C(K) as a simple reference model.

The first work devoted to concrete Banach algebras is contained in some
papers by J. von Neumann and beginning in 1930. The advantage of con-
sidering algebras of operators was clear in his contributions, but it was the
abstract setting of Banach algebras which proved to be convenient and which
allowed the application of similar ideas in many directions.

The main operator on these algebras is the Gelfand transform? G : a — @,
which maps a unitary commutative Banach algebra A on C to the space
C(A) of all complex continuous functions on the spectrum A of A, which
is the set of all nonzero elements x € A’ that are multiplicative. Here A is
endowed with the restriction of the w*-topology and it is compact. As seen
in Example 8.14, A is the set of all the evaluations é; (¢ € K) if A = C(K),
and F(&;) = &,(f) = f(¢), so that in this case one can consider f = f.

But we will be concerned with the spectral theory of operators in a
complex Hilbert space H. If T is a bounded normal operator in H, so that

!Banach algebras were first introduced in 1936 with the name of “linear metric rings” by the
Japanese mathematician Mitio Nagumo. He extended Cauchy’s function theory to the functions
with values in such an algebra to study the resolvent of an operator. They were renamed “Banach
algebras” by Charles E. Rickart in 1946.

2Named after the Ukrainian mathematician Israel Moiseevich Gelfand, who is considered the
creator, in 1941, of the theory of commutative Banach algebras. Gelfand and his colleagues created
this theory which included the spectral theory of operators and proved to be an appropriate setting
for harmonic analysis.

227
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T and the adjoint T* commute, then the closed Banach subalgebra A = (T')
of L(H) generated by I, T, and T™* is commutative.

It turns out that the Gelfand theory of commutative Banach algebras
is esp/e\cially well suited in this setting. Through the change of variables
z = T(x) one can consider ¢(T) = A, and the Gelfand transform is a
bljectlve mappmg that allows us to define a functional calculus g(T") by

(T) = g(T) if g is a continuous function on the spectrum of T'.

For this continuous functional calculus there is a unique operator-valued

measure E on ¢(T") such that

o) = [ gOdEM),
o(T)
and the functional calculus is extended by
s = [ s
a(T)

to bounded measurable functions f.

The Gelfand transform, as a kind of abstract Fourier operator, is also
a useful tool in harmonic analysis and in function theory. The proof of
Wiener’s 1932 lemma contained in Exercise 8.15 is a nice unexpected appli-
cation discovered by Gelfand in 1941, and generalizations of many theorems
of Tauberian type and applications to the theory of locally compact groups
have also been obtained with Gelfand’s methods. We refer the reader to
the book by I. M. Gelfand, D. A. Raikov and G. E. Chilov [16] for more
information.

8.1. Definition and examples

We say that A is a complex Banach algebra or, simply, a Banach algebra
if it is a complex Banach space with a bilinear multiplication and the norm
satisfies

lzyll < llzllllwll,

so that the multiplication is continuous since, if (z,,yn) — (z,y), then

2y = Zngnll < ll2llly — vall + lz = zallllyall = 0.
Real Banach algebras are defined similarly.

The Banach algebra A is said to be unitary if it has a unit, which is
an element e such that ze = ex = z for all z € A and ||e|| = 1. This unit is
unique since, if also e’z = ze’ = z, then e = ee’ = ¢'.

We will only consider unitary Banach algebras. As a matter of fact,

every Banach algebra can be embedded in a unitary Banach algebra, as
shown in Exercise 8.1.
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Example 8.1. (a) If X is a nonempty set, B(X) will denote the unitary
Banach algebra of all complex bounded functions on X, with the pointwise
multiplication and the uniform norm ||f||x := supgex |f(z)|- The unit is
the constant function 1.

(b) If K is a compact topological space, then C(K) is the closed subal-
gebra of B(K) that contains all the continuous complex functions on K. It
is a unitary Banach subalgebra of B(K), since 1 € C(K).

(c) The disc algebra is the unitary Banach subalgebra A(D) of C(D).
Since the uniform limits of analytic functions are also analytic, A(D) is
closed in C(D).

Example 8.2. If 2 is a o-finite measure space, L>(Q2) denotes the unitary
Banach algebra of all measurable complex functions on 2 with the usual
norm ||-||o of the essential supremum. As usual, two functions are considered
equivalent when they are equal a.e.

Example 8.3. Let E be any nonzero complex Banach space. The Banach
space L(F) = L(E; E) of all bounded linear operators on E, endowed with
the usual product of operators, is a unitary Banach algebra. The unit is the
identity map 1.

8.2. Spectrum

Throughout this section, A denotes a unitary Banach algebra, pos-
sibly not commutative. An example is £(F), if E is a complex Banach
space.

A homomorphism between A and a second unitary Banach algebra B
is & homomorphism of algebras ¥ : A — B such that ¥(e) = e if e denotes
the unit both in A and in B.

The notion of the spectrum of an operator is extended to any element
of A:
The spectrum of a € A is the subset of C
oa(a) =c(a) :={A € C; e—a g€ G(A)},
where G(A) denotes the multiplicative group of all invertible elements of A.

Note that, if B is a unitary Banach subalgebra of A and b € B, an
inverse of \e — b in B is also an inverse in A, so that o 4(b) C op(b).

Example 8.4. If E is a complex Banach space and T' € L(E), we denote
o(T) = o4(g)(T). Thus, A € ¢(T) if and only if T — Al is not bijective, by
the Banach-Schauder theorem. Recall that the eigenvalues of T', and also
the approximate eigenvalues, are in o(T"). Cf. Subsection 4.4.2.
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Example 8.5. If E is an infinite-dimensional Banach space and T' € L(E) is
compact, the Riesz-Fredholm theory shows that o(T) \ {0} can be arranged
in a sequence of nonzero eigenvalues (possibly finite), all of them with finite
multiplicity, and 0 € o(T), by the Banach-Schauder theorem.

Example 8.6. The spectrum of an element f of the Banach algebra C(K)
is its image f(K).

Indeed, the continuous function f — A has an inverse if it has no zeros,
that is, if f(t) # X for all t € K. Hence, A € o(f) if and only if A € f(K).

Let us consider again a general unitary Banach algebra A.

Theorem 8.7. If p()\) = 17:0 cpA™ is a polynomial and a € A, then
a(p(a)) = p(o(a)).

Proof. We assume that p(a) = coe + c1a + - - - + cya?, and we exclude the
trivial case of a constant polynomial p()\) = c.

For a given p € C, by division we obtain p(u) — p(A) = (u — A)g(A\) and
p(p)e—p(a) = (ne—a)g(a). If pe—a & G(A), then also p(u)e—p(a) ¢ G(A).
Hence, p(o(a)) C o(p(a)).

Conversely, if u € o(p(a)), by factorization we can write

p—pA)=aA1—=A)-...-(An = A)
with o # 0. Then pe —p(a) = a(Me—a)-...- (Aye—a), where ye —p(a) ¢

G(A), so that \je —a & G(A) for some 1 < i < N. Thus, \; € o(a) and we
have p()\;) = u, which means that u € p(a(a)). O

The resolvent of an element a € A is the function R, : o(a)® — A such
that R4()\) = (Ae — a)~!. It plays an important role in spectral theory.

Note that, if A # 0,
Ro(\) = —(a—Xe) L= 2"Ye - A"1a)™L.

To study the basic properties of R,, we will use some facts from function
theory.

As in the numerical case and with the same proofs, a vector-valued
function F' : @ — A on an open subset §2 of C is said to be analytic or
holomorphic if every point zg € © has a neighborhood where F' is the sum
of a convergent power series:

oo
F(z)=) (z—z)"an  (an € A).

n=0
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The series is absolutely convergent at every point of the convergence disc,
which is the open disc in C with center zy and radius

1

= > 0.
limsup,, ||a,||1/™

The Cauchy theory remains true without any change in this setting, and
F is analytic if and only if, for every z € Q, the complex derivative
F(z+ h) — F(2)
h

/ T
Py = o

exists.

We will show that o(a) is closed and bounded and, to prove that R, is
analytic on o(a)®, we will see that R/, (\) exists whenever \ & o(a).

Let us first show that R, is analytic on |A| > ||a]|.
Theorem 8.8. (a) If |ja]| < 1, e —a € G(A) and

(e—a)7t za (a® :=e).

(b) If |A| > |la|l, then A & o(a) and

0o

Ro(A) =Y A lg™
n=0
(c) Moreover,
Rl € 57—77

A= Tlall ||a||
and lim) 00 Ra(A) = 0.
Proof. (a) Asin (2.7), the Neumann series )~ ; a” is absolutely convergent

(Jla™|| < lla||™ and ||a]| < 1), so that z=),° ,a™ € A exists, and it is easy
to check that z is the right and left inverse of e — a. For instance,

lim ( e—a)Za (e —a)z
N—oo

since the multiplication by e — a is hnear and continuous, so that
N+1

N N
(e—a)Za":Za”—Zanze—aN"'l—)e if N = oo.
n=1

n=0 n=0

(b) Note that
R.(\) =x"Ye—-A2"1a)!

and, if |[A\~1a|| < 1, we obtain the announced expansion from (a).
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(c) Finally,

o) 1
R =AY DA™ € —r-
IRV = A II;) < =T

The spectral radius of a € A is the number
r(a) :=sup{|A|; A € o(a)}.
From Theorem 8.8 we have that r(a) < ||a||, an inequality that can be strict.
The following estimates are useful.
Lemma 8.9. (a) If ||a|| < 1,
llall?
1—lall’
(b) If x € G(A) and ||| < 1/2]lz7Y), then z + h € G(A) and
Iz + )™ =27t + 27 ha ™| < 2l P A2

le—a)™ —e—al <

Proof. To check (a), we only need to sum the right-hand side series in

o) o0
Ie—a) " —e—all=11D_a" <) lla|™
n=2 n=2

To prove (b) note that  + h = z(e + z~'h), and we have
lz= Al < llzHlIR) < 1/2.

If we apply (a) to a = —z A, since ||a|| < 1/2, we obtain that z+h € G(A),
and

Iz +h)~ =27t + 27 he ™ < (e —a) ™' — e —allll™|
with [|(e — o)™ — e —al| < =7 A]?/(1 — [lall) < 2llz~ |12 O

Theorem 8.10. (a) G(A) is an open subset of A and x € G(A) — z7 ! €
G(A) is continuous.

(b) R, is analytic on o(a)® and zero at infinity.

(c) (a) is a nonempty subset of C and®

nlll/n nlll/n.

r(a) = lim la"[/" = inf

3This spectral radius formula and the analysis of the resolvent have a precedent in the study
by Angus E. Taylor (1938) of operators which depend analytically on a parameter. This formula
was included in the 1941 paper by I. Gelfand on general Banach algebras.



8.2. Spectrum 233

Proof. (a) According to Lemma 8. 9(b) for every z € G(A),

B(z, "9z 1”) G(4)

and G(A) is an open subset of A.
Moreover

I +r)" =2 < @ +h)" =27 + e ha ™Y + [la~Tha M| = 0
if |h|| — 0, and z € G(A) = =~ € G(A) is continuous.

(b) On a(a)e,
R,()) = lei_r)r%)u"l[((k +pe—a)”! = (Ne —a)"!] = ~R.()?

follows from an application of Lemma 8.9(b) to z = Ae — a and h = pe. In
this case 27 1hz~! = pz~lz~! and, writing 272 = 2~ 1z1, we obtain

p @+ pe) =2 = pT (@ pe) T a7+ 2T he T 2T o

as u — 0, since
o~ (@ + pe) ™ — a7 + 27 he || < ful 20|zl - 0.
By Theorem 8.8(b), ||R.(A)|| < 1/(|A] = ||la|]) = 0 if |A\] — oo.

(c) Recall that o(a) C {A; || < r(a)} and r(a) < ||a||. This set is closed
in C, since o(a)® = F~}(G(A)) with F()\) := Ae — z, which is a continuous
function from C to A, and G(A) is an open subset of A. Hence o(a) is a
compact subset of C.

If we suppose that o(a) = 0, we will arrive at a contradiction. The
function R, would be entire and bounded, with limy,o, Ra(}) = 0, and the
Liouville theorem is also true in the vector-valued case: for every u € A/,
u o R, would be an entire complex function and limjy— oo u(Ra(A)) = 0,
so that u(R,(\)) = 0 and by the Hahn-Banach theorem R,(\) = 0, a
contradiction to R,(A\) € G(A).

Let us calculate the spectral radius. Since

o0
=1 Z A" "™
if |\| > r(a), the power series ), 2"a" is absolutely convergent when
|z| = |A|7! < 1/r(a), and the convergence radius of > oo |la™|||2|™ is
R = (lim sup ||a”||*/™)~! > 1/r(a).
n—o0

Then, r(a) > limsup,_,, ||a"[|*/™.
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Conversely, if A € o(a), then A™ € g(a™) by Theorem 8.7, so that |\"| <
la™|| and

IA| < inf |a™||*/™ < liminf ||a™|"/™.
n

Then it follows that 7(a) = limp—eo ||a™||Y/™ = inf, ||a™|*/". 0

As an important application of these results, let us show that C is the
unique Banach algebra which is a field, in the sense that if A is a field, then
A — Ae is an isometric isomorphism from C onto A. The inverse isometry
is the canonical isomorphism:

Theorem 8.11 (Gelfand-Mazur?). If every nonzero element of the unitary
Banach algebra A is invertible (i.e., G(A) = A\ {0}), then A = Ce, and
A — Xe is the unique homomorphism of unitary algebras between C and A.

Proof. Let a € A and X\ € o(a) (0(a) # 0). Then de — a € G(A) and it
follows from the hypothesis that a = Ae. A homomorphism C —+ A = Ce
maps 1 — e and necessarily A — Ae. a

8.3. Commutative Banach algebras

In this section A represents a commutative unitary Banach alge-
bra. Some examples are C, B(X), C(K), and L*(Q). Recall that L(E) (if
dim E > 1) is not commutative, and the convolution algebra L!(R) is not
unitary.

8.3.1. Maximal ideals, characters, and the Gelfand transform. A
character of A is a homomorphism x : A — C of unitary Banach algebras
(hence x(e) = 1). We use A(A), or simply A, to denote the set of all
characters of A. It is called the spectrum of A.

An ideal, J, of A is a linear subspace such that AJ C J and J # A.
It cannot contain invertible elements, since x € J invertible would imply
e=zz ! € J and then A = Ae C J, a contradiction to J # A.

Note that, if J is an ideal, thgn J is also an ideal, since it follows from
JNG(A) = 0 that e ¢ J and J # A. The continuity of the operations
implies that J+ J C J and AJ C J.

This shows that every maximal ideal is closed.

4According to a result announced in 1938 by Stanislaw Mazur, a close collaborator of Banach

who made important contributions to geometrical methods in linear and nonlinear functional
analysis, and proved by Gelfand in 1941.
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Theorem 8.12. (a) The kernel of every character is a mazimal ideal and
the map x — Ker x between characters and mazimal ideals of A is bijective.

(b) Every character x € A(A) is continuous and
xll = sup [x(a)| =1.

lalla<1
(c) An element a € A is invertible if and only if x(a) # 0 for every
X € A.

(d) o(a) = {x(a); x € A(A)}, and r(a) = sup,en |x(a)|-

Proof. (a) The kernel M of any x € A(A) is an ideal and, as the kernel of
a nonzero linear functional, it is a hyperplane; that is, the complementary
subspaces of M in A are one-dimensional, since x is bijective on them, and
M is maximal.

If M is a maximal ideal, the quotient space A/M has a natural structure
of unitary Banach algebra, and it is a field. Indeed, if 7 : A — A/M
is the canonical mapping and 7(z) = Z is not invertible in A/M, then
J = m(zA) # A/M is an ideal of A/M, and 771(J) # A is an ideal of A
which is contained in a maximal ideal that contains M. Thus, 771(J) = M,
so that m(zA) C m(M) = {0} and T = 0.

Let X : A/M = Cé — C be the canonical isometry, so that M is
the kernel of the character xas := X o mps. Any other character x; with the
same kernel M factorizes as a product of mj; with a bijective homomorphism
between A/M and C which has to be the canonical mapping Cé — C, and
then x1 = xm.

(b) If x = xum € A(A), then [Ix|| < |lmalllIXIl = llmasll <1 and [[x]| =
x(e) =1.

(c) If z € G(A), we have seen that it does not belong to any ideal. If
z & G(A), then A does not contain e and is an ideal, and by Zorn’s lemma
every ideal is contained in a maximal ideal. So z € G(A)° if and only if
belongs to a maximal ideal or, equivalently, x(z) # O for every character .

(d) Finally, Ae —a ¢ G(A) if and only if x(A\e —a) = 0, that is , A = x(a)
for some x € A(A). O

We associate to every element a of the unitary commutative algebra A
the function @ which is the restriction of (a,-) to the characters,® so that

a:A(A) - C

is such that @(x) = x(a). On A(A) C Ba we consider the Gelfand topol-
ogy, which is the restriction of the weak-star topology w* = o(A’, A) of A’.

5Recall that {a,u) = u(a) was defined for every u in the dual A’ of A as a Banach space.
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In this way, @ € C(A(A)), and
G:ae A—aeC(A(A))
is called the Gelfand transform.

Theorem 8.13. Endowed with the Gelfand topology, A(A) is compact and
the Gelfand transform G : A — C(A(A)) is a continuous homomorphism of
commutative unitary Banach algebras.

Moreover ||al| = r(a) < |la|| and Ge =1, so that ||G|| = 1.

Proof. For t}_le first part we only need to show that A C By is weakly
closed, since By is weakly compact, by the Alaoglu theorem. But

A={¢eBuit(e) =1, &é(ay) = £@)EwW) Yo,y € A

is the intersection of the weakly closed sets of B4 defined by the conditions
(zy,") — (2,-)(,") =0 (z,y € 4) and (e,") = 1.
It is clear that it is a homomorphism of commutative unitary Banach
algebras. For instance, €(x) = x(e) = 1 and zgy(x) = x(z)x(v) = Z(x)7(x)-
Also, |[a]| = sup,ea |X(a)| < |lall, according to Theorem 8.12(d). O

Example 8.14. If K is a compact topological space, then C(K) is a unitary
commutative Banach algebra whose characters are the evaluation maps d;
at the different points t € K, and t € K + §; € A is a homeomorphism.

Obviously é; € A. Conversely, if x = xa € A, we will show that there
is a common zero for all f € M. If not, for every t € K there would exist
some f; € M such that fi(t) # 0, and |ft| > € > 0 on a neighborhood U (t)
of this point ¢t. Then, K = U(t;) U---UU(tn), and the function

f=1falP 4 1o = fuFo o+ fon Fes
which belongs to M, would be invertible, since it has no zeros.

Hence, there exists some ¢t € K such that f(t) = 0 for every f € M. But
M is maximal and contains all the functions f € C(K) such that f(¢) = 0.

Both K and A are compact spaces and t € K — §; € A, being continu-
ous, is a homeomorphism.

8.3.2. Algebras of bounded analytic functions. Suppose that Q2 is a
bounded domain of C and denote by H*(£2) the algebra of bounded analytic
functions in §2, which is a commutative Banach algebra under the uniform
norm

I flloo = sup | £(2)]-
z€QN
It is a unitary Banach subalgebra of B(2).
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The Gelfand transform G : H*(2) — C(A) is an isometric isomorphism,
since ||f2|| = ||f]|? and r(f) = || f|| for every f € A, and we can see H®(Q)
is a unitary Banach subalgebra of C(A) (cf. Exercise 8.18).

For every ¢( € , the evaluation map §; is the character of H*(Q)
uniquely determined by d¢(2) = ¢, where z denotes the coordinate function.

Indeed, if x € A satisfies the condition x(z) = ¢ and if f € H*®(Q), then

£(2) = () + {21 f“)( )

and

(N =10+ x(EE D) -0 = s

It can be shown that the embedding @ — A such that ( — J is a
homeomorphism from 2 onto an open subset of A (see Exercise 8.14 where
we consider the case 2 = U, the unit disc) and, for every f € H®(Q), it is
convenient to write f(dg) =f()if ¢ € Q.

Suppose now that ¢ € 0f2, a boundary point. Note that z — £ is not
invertible in H*(Q2), so that

Agi={xedix(z-€ =0} = {x €A x(z) =¢} = (®1)

is not empty.
For every x € A, x(z —x(#2)) = 0 and z — x(2) is not invertible, so that
x(z) € Q and x € Q or x € Q¢ for some £ € . That is,

(8.1) A =QU< U Ag)

£€0Q

and we can imagine A as the domain 2 with a compact fiber A = (2)71(¢)
lying above every £ € 09Q2.

The corona problem asks whether  is dense in A for the Gelfand topol-
ogy, and it admits a more elementary equivalent formulation in terms of
function theory:

Theorem 8.15. For the Banach algebra H*(Q2), the domain (2 is dense in
A if and only if the following condition holds:

If f1,..., fn € H®(Q) and if

(82) AN+ -+ [fa(() 26>0
for every ¢ € Q, then there exist g1,...,9n € H*®(Q) such that

(8.3) figr+- -+ fagn = 1.
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Proof. Suppose that Q2 is dense in A. By continuity, if [f1| + -+ +|fa| > &
on , then also |f1| + -+ |fn| = 0 on A, so that {f1,..., fn} is contained
in no maximal ideal and

1€ H®(Q) = fiH™(Q) + - + faH®(Q).

Conversely, suppose 2 is not dense in A and choose xp € A with a
neighborhood V' disjoint from 2. The Gelfand topology is the w*-topology
and this neighborhood has the form

v ="{x max p(hj) = xo(hs)| <5, hy,....hn € H®(Q)}.

The functions f; = h;j—xo(h;) are in V and they satisfy (8.2) because o¢ ¢ V
and then |f;({)] > §. But (8.3) is not possible because fi,..., fr € Kerxo
and xo(1) = 1. a

Starting from the above equivalence, in 1962 Carleson® solved the corona
problem for the unit disc, that is, D is dense in A(H*(D)).

The version of the corona theorem for the disc algebra is much easier.
See Exercise 8.3.

8.4. C*-algebras

We are going to consider a class of algebras whose Gelfand transform is a
bijective and isometric isomorphism. Gelfand introduced his theory to study
these algebras.

8.4.1. Involutions. A C*-algebra is a unitary Banach algebra with an
involution, which is a mapping x € A — x* € A that satisfies the following
properties:

(a) (z+y)* =a" +v",
(b) (Az)* = Az™,
(c) (zy)* =y*z",
(d) ** = z, and
(e)e*=e
for any z,y € A and ) € C, and such that ||z*z| = ||z||? for every z € A.

6The Swedish mathematician Lennart Carleson, awarded the Abel Prize in 2006, has solved
some outstanding problems such as the corona problem (1962) and the almost everywhere con-
vergence of Fourier series of any function in L?(T) (1966) and in complex dynamics. To quote
Carleson, “The corona construction is widely regarded as one of the most difficult arguments in
modern function theory. Those who take the time to learn it are rewarded with one of the most
malleable tools available. Many of the deepest arguments concerning hyperbolic manifolds are
easily accessible to those who understand well the corona construction.”
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An involution is always bijective and it is its own inverse. It is isometric,
since [|]|* = [|lz*2|| < [l&*[[|lz]l, so that [lz]| < [|z*|| and [|lz*[| < [l = [|z|l.

Throughout this section, A will be a C*-algebra.

If H is a complex Hilbert space, L(H) is a C*-algebra with the invo-
lution T' +— T*, where T™ denotes the adjoint of T'. It has been proved in
Theorem 4.4 that | T*T|| = |TT*|| = ||T||2.

Let A and B be two C*-algebras. A homomorphism of C*-algebras is
a homomorphism ¥ : A — B of unitary Banach algebras such that ¥(z*) =
U(z)* (and, of course, ¥(e) = e).

We say that a € A is hermitian or self-adjoint if a = a*. The orthog-
onal projections of H are hermitian elements of L(H). We say that a € A
is normal if aa* = a*a.

Example 8.16. If a € A is normal and (a) denotes the closed subalgebra
of A generated by a, a*, and e, then (a) contains all elements of A that can
be obtained as the limits of sequences of polynomials in a, a* and e. With
the restriction of the involution of A, (a) is a commutative C*-algebra.
Lemma 8.17. Assume that A is commutative.

(a) Ifa=a* € A, then oa(a) CR.

(b) For every a € A and x € A(A), x(a*) = x(a).

Proof. If t € R, since ||x|| =1,
Ix(a+ite)|> < |la+ite|? = ||(a+ ite)*(a + ite)]

= |(a—ite)(a +ite)|| = [la® + t2e|| < ||a||? + 2.
Let x(a) = a+ i (a,B € R). Then
lal? + ¢ > |a +iB +it]* = o? + B2 + 2Bt + t2,

ie., ||la]|> > o® + 5%+ 2Bt, and it follows that 8 =0 and x4(a) = ¢ € R.

For any a € A, if z = (a + a*)/2 and y = (a — a*)/2i, we obtain
a = z + iy with z, y hermitian, x(z), x(y) € R, and a* = = — iy. Hence,
x(a) = x(2) + ix(y) and x(a*) = x(z) - ix(y) = x(a). O
Theorem 8.18. If B is a closed unitary subalgebra of A such that b* € B
for every b € B, then og(b) = oca(b) for every b € B.

Proof. First let b* = b. From Lemma 8.17 we know that opy C R and,
obviously,
oa(b) Cop(b) C O'(b)(b) = 8o(b)(b).

To prove the inverse inclusions, it is sufficient to show that do ) (b) C
oa(b). Let A € 8oy (b) and suppose that A & g4(b). There exists € A so
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that (b — Ae) = (b — Ae)z = e and the existence of A\, & oy(b) such that
An — A follows from A € o) (b). Thus we have

(b=Xne) L€ () C A, b—Dne—b-)e, and (b—X,e)"t = (b—Xe)™! =1=.
Hence z € (b), in contradiction to A € o (b).

In the general case we only need to prove that if z € B has an inverse y
in A, then y € B also. But it follows from zy = e = yz that (z*z)(yy*) =
e = (yy*)(z*z), and z*z is hermitian. In this case we have seen above
that z*z has its unique inverse in B, so that yy* = (z*z)~! € B and
y=y(y*z") = (yy*)z" € B. O

8.4.2. The Gelfand-Naimark theorem and functional calculus. We
have proved in Theorem 8.13 that the Gelfand transform satisfies ||al|a =
r(a) < ||a]|, but in the general case it may not be injective. This is not the
case for C*-algebras.

Theorem 8.19 (Gelfand-Naimark). If A is a commutative C*-algebra, then
the Gelfand transform G : A — C(A(A)) is a bijective isometric isomorphism
of C*-algebras.

Proof. We have a*(x) = x(a) = a(x) and G(a*) = G(a).

If * = z, then r(z) = lim, ||z%"||*/2" = ||z|, since ||z?|| = ||zz*| = ||z||?
and, by induction, [l | = ||&*"?| = (l2]*")* = |

If we take = = a*a, then ||a*a||a = ||a*al|, so

lall* = lla*a|l = lla*alla = l|a@lla = @]z
and [|a|| = |[@]|a-

Since G is an isometric isomorphism, G(A) is a closed subalgebra of
C(A(A)). This subalgebra contains the constant functions (€ = 1) and it
is self-conjugate and separates points (if x1 # X2, there exists a € A such
that x1(a) # x2(a), i.e., a(x1) # a(x2)). By the complex form of the Stone-
Weierstrass theorem, the image is also dense, so G(A) = C(A(A)) and G is
bijective. a
Theorem 8.20. Let a be a normal element of the C*-algebra A, let A =
A(a) be the spectrum of the subalgebra (a), and let G : {(a) — C(A) be the

Gelfand transform. The function@: A — o4(a) = o(g)(a) is a homeomor-
phism.

Proof. We know o(a) =a(A). If x1, x2 € 4, from a(x1) = @(x2) we obtain
x1(a) = xa(a), x1(a") = x1(a) = x2(a) = x2(a*), and x1(e) = 1 = xz(e),
so that x1(z) = x2(z) for all z € (a); hence, x1 = x2 and @ : A — o(a) is
bijective and continuous between two compact spaces, and then the inverse
is also continuous. O
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The homeomorphism @ : A = o(a) (A = @(x)) allows us to define the
isometric isomorphism of C*-algebras 7 = oa : C(0(a)) — C(A) such that
[g(N)] = [GRA] = [9(@(x))]-

By Theorem 8.19, the composition

®, =G tor:C(c(a)) = C(A) = (a) C A,
such that g € C(o(a)) = G71(g(@)) € (a), is also an isometric isomorphism
of C*-algebras. If g € C(o(a)), then the identity ®,(g) = goa = g(a)
suggests that we may write g(a) := ®4(g).

So, we have the isometric isomorphism of C*-algebras

®,:9€C(0(a)) = gla)e(a) C A

such that, if go()\) A is the identity on a(a), then ® (go) =aand go(a) = a,
since 7(go) = @ = G(a). Also go(a) = a* and

(8.4) pla) = Z c;kal (a*)* if p(z) = Z c; k22"

0<j,k<N 0<j,k<N

We call &, the functional calculus with continuous functions. It
is the unique homomorphism ® : C(o(a)) — A of C*-algebras such that

dp)= > cjkd’(a)¥(a)
0<j,k<N
if p(2) = X o<jk<n Cik? iz,
Indeed, it follows from the Stone-Weierstrass theorem that the subalge-
bra P of all polynomials p(z) considered in (8.4) is dense in C(o(a)) and, if
g = limy, p,, in C(o(a)) with p, € P, then

@(g) = limpn(a) = La(9)-
These facts are easily checked and justify the notation g(a) for ®4(g).

8.5. Spectral theory of bounded normal operators

In this section we are going to consider normal operators ' € L(H). By
Theorem 8.18,

o(T) = opwy(T) = o1y (T)
and it is a nonempty compact subset of C.

From now on, by B(c(T')) we will denote the C*-algebra of all bounded
Borel measurable functions f : ¢(T) — C, endowed with the involution
f + f and with the uniform norm. Obviously C(o(T')) is a closed unitary
subalgebra of B(c (7).

An application of the Gelfand-Naimark theorem to the commutative
C*-algebra (T') gives an isometric homomorphism from (T') onto C(A(T)).
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The composition of this homomorphism with the change of variables
A =T() (A € o(T) and x € A(T)) defines the functional calculus with
continuous functions on o(T'), g € C(a(T')) — ¢(T) € (T) C L(H), which is
an isometric homomorphism of C*-algebras.

If x,y € H are given, then
Uzy(9) = (9(T)z,y)u

defines a continuous linear form on C(o(T')) and, by the Riesz-Markov rep-
resentation theorem,

(@(T)2, 1)1 = tiay(g) = / gding
o(T)

for a unique complex Borel measure pig, on o(T).

We will say that {44, } is the family of complex spectral measures
of T. For any bounded Borel measurable function f on o(T'), we can define

'U/:c,y(f) = fdugy
o(T)

and in this way we extend ugy to a linear form on these functions. Note
that |uzy(9)l = [(9(T)z,y)r| < llzllalyllallglocr)-

8.5.1. Functional calculus of normal operators. Now our goal is to
show that it is possible to define f(T") € L(H) for every f in the C*-algebra
B(o(T)) of all bounded Borel measurable functions on ¢(T") C C, equipped
with the uniform norm and with the involution f — £, so that

(f(T)z,y)H = ugy(f) = f Az,

o(T)

in the hope of obtaining a functional calculus f — f(T') for bounded but
not necessarily continuous functions.

Theorem 8.21. Let T' € L(H) be a normal operator (TT* = T*T) and let
{tig,y} be its family of complex spectral measures. Then there exists a unique
homomorphism of C*-algebras

@1 : B(o(T)) — L(H)
such that
@r(f)z,v)n / fdpay  (my€ H).

It is an extension of the continuous functional calculus g — ¢(T), and

N2 (AN < Iflor)-
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Proof. Note that, if y; and pg are two complex Borel measures on o(T)
and if [gdui = [gdus for all real g € C(o(T)), then p1 = pg, by the
uniqueness in the Riesz-Markov representation theorem.

If g € C(0(T)) is a real function, then g(T') is self-adjoint, since g(T)* =
g(T). Hence, (¢9(T)z,y)r = (9(T)y, z)z and then

/ 9diay = / gdpyz = / gdily,z,
o(T) a(T) o(T)

bzy = Hyz-
Obviously, (z,y) — o(T) 9 oy = (9(T)z,y)m is a continuous sesquilinear
form and, from the uniqueness in the Riesz-Markov representation theorem,
the map (,y) = pzy(B) is also sesquilinear, for any Borel set B C (7).
For instance, pg )y = Apz,y, since for continuous functions we have

[ oty = 3o = [ gy
a(T) o(T)

so that

With the extension usy(f) = [,(r) fdpey of usy to functions f in
B(o(T)), it is still true that

|uzy (F)] < Nzl llyllzll flloy-
For every f € B(o(T)),

(z,9) = By(z,y) = / f ditay
o(T)

is a continuous sesquilinear form on H x H and By(y,z) = By(z,y), since

/ fd.uz,y = / fd.uy,z
a(T) o(T)

(bz,y(B) = pyz(B) extends to simple functions). Let us check that an
application of the Riesz representation theorem produces a unique operator
®7(f) € L(H) such that Bf(z,y) = (27(f)z,y)H.

Note that Bf(-,z) € H’ and there is a unique ®7(f)z € H so that
Bg(y,z) = (y, ®r(f)z)n for all y € H. Then

(@7 (f)z,y)r = Bf(y,z) = By(z,y) = /U(T) fduzy  (z,y € H).

It is clear that By(z,y) is linear in f and that we have defined a bounded
linear mapping ®7 : B(o(T")) — L(H) such that

(@7 (F)z, v)a| < | fllo ezl aliylla
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and [|®7(f)|| < ||fllo(z)- Moreover, with this definition, ®r extends the
functional calculus with continuous functions, g — g(T').

To prove that @7 is a continuous homomorphism of C*-algebras, all that
remains is to check its behavior with the involution and with the product.

If f is real, then from pigy = fiy,z we obtain (27 (f)z,y)n=(2r(f)y, 2)g
and ®&7(f)* = ®7(f). In the case of a complex function, f, @7 (f)* = &7 (f)
follows by linearity.

Finally, to prove that ®7(f1f2) = @7(f1)@r(f)(f2), we note that, on
continuous functions,

[ hgduny = (D@00 = [ gy
o(T) a(T)

and gdpy,y = djig(T)z,y (,y € H). Hence, also
figdusy = [ frdu
o(T) 19 Glz,y o(T) 1%Fg(T)zy
if f1 is bounded, and then

/ o F19ey = (@10 U = (oD @r() 3D

= /U(T)gd.u'w,@(fl)*y-

Again fidugy = Al @r(f1)*y> a0d also fa(T) fifedpgy= fa(T) f2 Az g (T)y
if f; and fy are bounded. Thus,

(@r(fAife)z,y)n = f1f2dpzy
o(T)

= /(T) f2dps or(fyry = (27 (f1)@1(f2)Z, ¥)H

and ®7(f) is multiplicative. a

As in the case of the functional calculus for continuous functions, if
f € B(o(T)), we will denote the operator ®r(f) by f(T); that is,

(= [ Fdiay  @yeH)
ag

8.5.2. Spectral measures. For a given Hilbert space, H, a spectral
measure, or a resolution of the identity, on a locally compact sub-
set K of C (or of R™), is an operator-valued mapping defined on the Borel
o-algebra By of K,

E :Bx — L(H),
that satisfies the following conditions:
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(1) Each E(B) is an orthogonal projection.
(2) E(0) =0 and E(K) = I, the identity operator.
(3) If B, € Bk (n € N) are disjoint, then

E( @ Bn)z = i E(Bp)x
n=1 n=1

for every z € H, and it is said that

E(lH Bn) =) E(Bn)
n=1 n=1

for the strong convergence, or that F is strongly o-additive.
Note that F also has the following properties:
(4) If By N B2 =0, then E(B;)E(Bz) = 0 (orthogonality).
(6) E(B1 N By) = E(B1)E(B2) = E(B2)E(B;) (multiplicativity).

(6) If By C By, then Im E(B;) C Im E(B3) (usually represented by
E(Bl) < E(Bg)).

(7) If B, 1 B or By, | B, then lim, E(By,)z = E(B)z for every x € H
(it is said that F(By) — E(B) strongly).

Indeed, to prove (4), if y = F(Bs)z, the equality
(E(B1) + E(B;))? = E(B1 ¥ B)? = E(B1) + E(Bz)
and the condition By N By = () yield
E(B1)E(Bs)z + E(B2)E(B1)x =0,

that is, F(B1)y +y = 0 and, applying F(B;) to both sides, E(B;)y = 0.

Now (5) follows from multiplying the equations
E(B1) = E(BiNBy)+E(B1\BiNBy), E(By) = E(BiNB2)+E(B;\B1NB3)
and taking into account (4).

If B, 1 B, then lim,, E(By)z = E(B)z follows from (3), since

B=B W (B2\B1)W(B3\ B2)W---.

The decreasing case By, | B reduces to K \ B, 1 K \ B.

It is also worth noticing that the spectral measure F generates the family
of complex measures E;, (z,y € H) defined as

Eyy(B) == (E(B)z,y)H-

If z € H, then E;(B) := E(B)x defines a vector measure E; : Bx — H,
ie., Ex(0) =0 and E;(Hneq Bn) = Y peq Ez(Br) in H.
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Note that for every z € H, E; , is a (positive) measure such that
Es0(B) = (E(B)e,y)n = |E(B)zllly,  Eou(K) = |zl

a probability measure if ||z||g = 1, and that operations with the complex
measures E; ., by polarization, reduce to operations with positive measures:

1 . .
Ery(B)= 4 (Ew+y,m+y(B) — By o—y(B)+iBriyatiy(B) —iEa—iy,z—iy(B )) :

The notions E-almost everywhere (E-a.e.) and E-essential supre-
mum have the usual meaning. In particular, if f is a real measurable
function,

E-sup f =inf{M € R; f < M E-a.e.}.

Note that F(B) = 0 if and only if E;z(B) = 0 for every z € H. Thus, if
B; C By and E(B3) = 0, then E(B;) = 0, and the class of E-null sets is
closed under countable unions.

The support of a spectral measure E on K is defined as the least
closed set supp E such that E(K \ suppE) = 0. The support consists
precisely of those points in K for which every neighborhood has nonzero
E-measure and F(B) = E(B N supp E) for every Borel set B C K.

The existence of the support is proved by considering the union V of
the open sets V,, of K such that F(V,) = 0. Since there is a sequence V,, of
open sets in K such that Vo = Uy, v, cvi} Voo then also V = U, v cvy Vo
and E(V) =0. Then suppE =K\ V.

We write

R=/deE

to mean that

(Rwry)H = \/I(dezz;,y (a:,y € H)

It is natural to ask whether the family {yy} of complex measures associ-
ated to a normal operator T is generated by a single spectral measure E asso-
ciated to T'. The next theorem shows that the answer is affirmative, allowing
us to rewrite the functional calculus of Theorem 8.21 as f(T) = fa(T) fdE.
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Theorem 8.22 (Spectral resolution”). If T € L(H) is a normal operator,
then there exists a unique spectral measure E : By(ry — L(H) which satisfies

(8.5) T=[ XE().
o(T)
Furthermore,
(5.6) @)= [ FNBR)  (f €B@),
o(T)
and
(8.7) EB)=x8(T) (B € Byr)-

Proof. If &7 : B(o(T)) — L(H) is the homomorphism that defines the
functional calculus, then to obtain (8.6) we must define E by condition (8.7),
E(B):=®r(xB) (B € Byn)
and then check that F is a spectral measure with the convenient properties.

Obviously, E(B) = E(B)? and E(B)* = E(B) (xp is real), so that
E(B) is an orthogonal projection (Theorem 3.13).

Moreover, it follows from the properties of the functional calculus for
continuous functions that E(o(T)) = ®(1) = 1(T) = [ and E(0) = ®(0) =0
and, since ® is linear, F is additive. Also, from

(E(B)z,y)r = (2(xB)T,Y)H = tay(B),

we obtain that
[ saB=gn), [ jap=8() (seco@), s eBE)
o(T) o(T)

Finally, FE is strongly o-additive since, if B, (n € N) are disjoint Borel
sets, E(Bn)E(Bm) = 0 if n # m, so that the images of the projections
E(B,) are mutually orthogonal (if y = E(Bp)z, we have y € Ker E(By,)
and y € E(B,)(H)"') and then, for every z € H, .,, E(Bn)z is convergent
to some Pz € H since

Y BBzl < Izl
n
this being true for partial sums, |[E(WY_; B.)z|% < |Izl%-

7In their work on integral equations, D. Hilbert for a self-adjoint operator on £2 and F. Riesz
on L? used the Stieltjes integral

] gy H4EE) = im 3 () = Blti-s))  (hore Bta) = Bltx-1) = Bltn-, 1)
4 k

to obtain this spectral theorem.
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But then
[e ] (e ) [e ]
(P!I?,y)H = Z(E(B’n)m’y)H = ,uw,y( H‘J Bn) = (E( + Bn)m,y)H
n=1 n=1 n=1

and >, E(Bp)z = Pz = E(l§),, Bn)z.8

The uniqueness of E follows from the uniqueness for the functional cal-
culus for continuous functions ®7 and from the uniqueness of the measures
Eg,y in the Riesz-Markov representation theorem. O

Remark 8.23. A more general spectral theorem due to John von Neumann
in 1930 can also be obtained from the Gelfand-Naimark theorem: any com-
mutative family of normal operators admits a single spectral measure which
simultaneously represents all operators of the family as integrals [ K 9 dFE for
various functions g.

8.5.3. Applications. There are two special instances of normal operators
that we are interested in: self-adjoint operators and unitary operators.

Recall that an operator U € L(H) is said to be unitary if it is a bijective

isometry of H. This means that
vur=u0U=1I

since U*U = I if and only if (Uz,Uy)y = (z,y) and U is an isometry. If it is
bijective, then (U~ 'z, U 'y)g = (z,y)r and (U)*Ulz,9)n = (z,9)H,
where (U1)*U~lz = (U*)"U 'z = (UU*) "z and then (UU*)'z,y)y =
(z,y)H, so that UU* = I. Conversely, if UU* = I, then U is exhaustive.

The Fourier transform is an important example of a unitary operator of
L*(R™").

Knowing the spectrum allows us to determine when a normal operator
is self-adjoint or unitary:
Theorem 8.24. Let T € L(H) be a normal operator.

(a) T is self-adjoint if and only if o(T) C R.

(b) T is unitary if and only if o(T) C S = {X; |\| = 1}.
Proof. We will apply the continuous functional calculus &7 for 7" to the
identity function g(A) = X on o(T'), so that g(T) =T and g(T') = T™*.

From the injectivity of &7, T' = T™ if and only if g = g, meaning that
A=A eR for every A € o(T).

Similarly, T' is unitary if and only if TT* = T*T = I, i.e., when gg = 1,
which means that |A\| =1 for all A € o(T). O

8See also Exercise 8.21.



8.5. Spectral theory of bounded normal operators 249

Positivity can also be described through the spectrum:

Theorem 8.25. Suppose T € L(H). Then

(8.8) (Tz,z)g >0 (z € H)
if and only if
(8.9) T=T" and o(T) C [0,00).

Such an operator is said to be positive.

Proof. It follows from (8.8) that (T'z,z)y € R and then
(Tz,z)g = (z,Tz)yg = (T*z,z)H.
Let us show that then S :=T —T* = 0.

Indeed, (Sz,y)r + (Sy,z) = 0 and, replacing y by iy, —i(Sz,y)g +
i(Sy,z) = 0. Now we multiply by 7 and add to obtain (Sz,y)y = 0 for all
xz,y € H, so that S =0.

Thus o(T) C R. To prove that A < 0 cannot belong to o(T'), we note
that the condition (8.8) allows us to set

(T = ADzl% = ITzlF — 2M(Tz, )5 + X2||z|-

This shows that T\ := T'— Al : H - F = (T — M) has a continuous
inverse with domain F', which is closed. This operator is easily extended to
a left inverse R of T by defining R = 0 on F+. But T) is self-adjoint and
RT) =1 also gives T\R* = I, T), is also right invertible, and A ¢ o (7).

Suppose now that T' = T* and o(T") C [0,00). In the spectral resolution

(Tz,z)g = AdE; z(A) >0,
o(T)

since E 5 is a positive measure and A > 0 on o(T") C [0, 00). O

Let us now give an application of the functional calculus with bounded
functions:

Theorem 8.26. IfT = | o(T) AdE()) is the spectral resolution of a normal
operator T' € L(H) and if Ay € o(T), then

Ker (T'— XoI) = Im E{ )¢},
so that Ao is an eigenvalue of T if and only if E({\o}) # 0.
Proof. The functions g(A\) = A — Ao and f = x(»,) satisfy fg = 0 and
9(T)f(T') = 0. Since f(T) = E({Xo}),
Im E({\o}) C Ker (9(T)) = Ker (T — AoI).
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Conversely, let us take

G = o(T)\ {ro} =Y Bn

with d(\o, Br) > 0 and define the bounded functions

_ xB.(N)

fa(A) = Py
Then fo(T)(T — MoI) = E(By), and (T — AoI)z = 0 implies E(Bp)z = 0
and E(G)z =), E(Bn)z = 0. Hence, z = E(G)z+ E({Xo})z = E({\o})z,
ie,z e ImE({\}). O

As shown in Section 4.4, if T is compact, then every nonzero eigenvalue
has finite multiplicity and o (T")\ {0} is a finite or countable set of eigenvalues
with finite multiplicity with O as the only possible accumulation point. If T'
is normal, the converse is also true:

Theorem 8.27. If T € L(T) is a normal operator such that o(T) has no
accumulation point except possibly 0 and dim Ker (T' — A\I) < oo for every
A #0, then T is compact.

Proof. Let o(T) \ {0} = {A1,A2,...} and |\1| > |A2| > ---. We apply the
functional calculus to the functions g, defined as
gn(A)=Aif X=X and k<n

and gn,(A) = 0 at the other points of o(T") to obtain the compact operator
with finite-dimensional range

9n(T) =D ME({M)).
k=1

Then
”T_gn(T)“ < sup |A- gn(A)l < |/\n|
A€o (T)

and |\,] = 0 as n — oo if o(T') \ {0} is an infinite set. This shows that T
is compact as a limit of compact operators. O

8.6. Exercises

Exercise 8.1. Show that every Banach algebra A without a unit element
can be considered as a Banach subalgebra of a unitary Banach algebra A;
constructed in the following fashion. On A; = A x C, which is a vector
space, define the multiplication (a, A)(b, ) := (ab + \b + pa, Au) and the
norm ||(a, \)|| := ||a]| + |A|- The unit is § = (0, 1).
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The map a — (a,0) is an isometric homomorphism (i.e., linear and
multiplicative), so that we can consider A as a closed subalgebra of A;. By
denoting a = (a,0) if @ € A, we can write (a, \) = a+ \d and the projection
xo(a + Ad) := X is a character xo € A(A;).

If A is unitary, then the unit e cannot be the unit § of A;.

Exercise 8.2. Suppose that A = C; is the commutative unitary Banach
algebra obtained by adjoining a unit to C as in Exercise 8.1. Describe A(A)
and the corresponding Gelfand transform.

Exercise 8.3. (a) Prove that the polynomials P(z) = YV

n=0

in the disc algebra A(D) by showing that, if f € A(D) and
nz
@)= 1(357):

then f, — f uniformly on D and, if ||f — fu|| < €/2, there is a Taylor
polynomial P of f, such that || f, — P|| < &/2.

Hence, polynomials P are not dense in C(D). Why is this not in contra-
diction to the Stone-Weierstrass theorem?

(b) Prove that the characters of A(D) are the evaluations d, (|2| < 1)
and that z € D — §, € A(A(D)) is a homeomorphism.

(c) If fi1,..., fn € A(D) have no common zeros, prove that there exist
91s---59n € A(D) such that figi + -+ fogn = 1.

cp2™ are dense

Exercise 8.4. Show that, with the convolution product,
frg(x):= /R f(z —y)g(y) dy,

the Banach space L!(R) becomes a nonunitary Banach algebra.

Exercise 8.5. Show also that L!(T), the Banach space of all complex 1-
periodic functions that are integrable on (0, 1), with the convolution product

1
fxg(x) = /0 flz—y)g(y) dy,
and the usual L! norm, is a nonunitary Banach algebra.

Exercise 8.6. Show that ¢!(Z), with the discrete convolution,
+o00

(uxv)[k] == Z ulk — mjv[m],

m=—00
is a unitary Banach algebra.
Exercise 8.7. Every unitary Banach algebra, A, can be considered a closed

subalgebra of £(A) by means of the isometric homomorphism a +— L4, where
Ly(z) := az.
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Exercise 8.8. In this exercise we want to present the Fourier transform
on L'(R) as a special case of the Gelfand transform. To this end, consider
the unitary commutative Banach algebra L!(R); obtained as in Exercise 8.1
by adjoining the unit to L!(R), which is a nonunitary convolution Banach
algebra L'(R) (see Exercise 8.4).

(a) Prove that, if x € A(L*(R)1) \ {xo} and x(v) = 1 with u € L*(R),
then vy (a) := x(T—qu) = x([u(t + o)]) defines a function 7, : R - T C C
which is continuous and such that 7, (a + 8) = vy () (8).

(b) Prove that there exists a uniquely determined number &, € R such
that 7, () = e2"%xe,

(c) Check that, if Gf denotes the Gelfand transform of f € L'(R), then
Gf(x) = Jg f(a)e ™ do = Ff(E).

Exercise 8.9. Let us consider the unitary Banach algebra L*°(Q2) of Ex-
ample 8.2. The essential range, f[Q], of f € L°°(Q2) is the complement of
the open set | J{G; G open, u(f~!(G)) = 0}. Show that f[Q] is the smallest
closed subset F of C such that u(f~1(F°)) = 0, || fllco = max{|A|; X € £[Q]},

and f[Q] = o(f).

Exercise 8.10. The algebra of quaternions, H, is the real Banach space
R* endowed with the distributive product such that

lz=z, ij=—ji=k, jk=—kj=1, ki=—ik=3j, i’=4j2=k*=—1

ifzeH, 1=(1,0,0,0),¢=(0,1,0,0), 5 = (0,0,1,0), and k£ = (0,0,0,1),
so that one can write (a,b,c,d) = a + bi + ¢j + dk.

Show that H is an algebra such that ||zy| = ||z||||y| and that every
nonzero element of A has an inverse.
Remark. It can be shown that every real Banach algebra which is a field
is isomorphic to the reals, the complex numbers or the quaternions (cf.
Rickart, General Theory of Banach Algebras, 35, 1.7]). Hence, C is the only

(complex) Banach algebra which is a field and H is the only real Banach
algebra which is a noncommutative field.

Exercise 8.11. If x : A — C is linear such that x(ab) = x(a)x(b) and
X # 0, then prove that x(e) = 1, so that x is a character.

Exercise 8.12. Prove that, if 7 is a compact topology on A(A) and every
function @ (a € A) is T-continuous, then 7T is the Gelfand topology.

Exercise 8.13. Prove that the Gelfand transform is an isometric isomor-
phism from C(K) onto C(A).

Exercise 8.14. Let U be the open unit disc of C and suppose A is the
spectrum of H*°(U). Prove that, through the embedding U — A, U is an
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open subset of 2. Write

A=Du( | &),
£edD
as in (8.1), and prove that the fibers A¢ (|¢| = 1) are homeomorphic to one

another.

Exercise 8.15 (Wiener algebra). Show that the set of all 27r-periodic com-
plex functions on R

+00 ] +00
&)= ae® (D ekl < o0),

k=—00 k=“'00

with the usual operations and the norm || f|lw = 33#2° __|ck|, is a commu-

tative unitary Banach algebra, W. Moreover prove that the characters of
W are the evaluations d; on the different points ¢ € R and that, if f € W
has no zeros, then 1/f € W.

Exercise 8.16. Every f € W is 2m-periodic and it can be identified as
the function F on T such that f(t) = F(e®). If f(t) = 3, cke™, F(z) =
>4 ckz®. In Exercice 8.15 we have seen that the &; (¢ € R) are the characters
of W, but show that G : W — C(T), one-to-one and with ||f]| < ||f]lw, is
not an isometry and it is not exhaustive.

Exercise 8.17. Suppose A is a unitary Banach algebra and a € A, and
denote M(U) = supycpe || Ra(A)||. Prove that, if U C C is an open set and
oa(a) C U, then 04(b) C U whenever ||b—a| < ¢ if § < 1/M(U) (upper
semi-continuity of o 4).

Exercise 8.18. Let A be a commutative unitary Banach algebra. Prove
that the Gelfand transform G : A — C(A) is an isometry if and only if
la2|| = [|a||? for every a € A.

Show that in order for ||a|| to coincide with the spectral radius r(a), the
condition ||a?|| = ||a||? is necessary and sufficient.
Remark. This condition characterizes when a Banach algebra A is a uni-
form algebra, meaning that A is a closed unitary subalgebra of C(K) for
some compact topological space K.

Exercise 8.19. In the definition of an involution, show that property (e),
e* = e, is a consequence of (a)-(d). If z € A is invertible, prove that
(.’B*)_l — (:12_1)*.

Exercise 8.20. With the involution f — f, where f is the complex con-
jugate of f, show that C(K) is a commutative C*-algebra. Similarly, show
that L*°(Q), with the involution f — f, is also a commutative C*-algebra.
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Exercise 8.21. If {P,}32, is a sequence of orthogonal projections and
their images are mutually orthogonal, then the series ) - ; P, is strongly
convergent to the orthogonal projection on the closed linear hull @ P, (H)
of the images of the projections P,.

Exercise 8.22. Let Az = > "2 ; M\ (z, ex) Hex be the spectral representation
of a self-adjoint compact operator of H, and let {P,}5; be the sequence of
the orthogonal projections on the different eigensubspaces
H1 = [61, ey ek(l)], ey Hn = [ek(n_l)_H, ‘e ,ek(n)], ‘e
for the eigenvalues an = Ag(n—1)41 = .. = Ag(n) of A.
Show that we can write

o0
A= Z oan P,
n=1

and prove that

E(B)= ) P,
an€B
is the resolution of the identity of the spectral resolution of A.

Exercise 8.23. Let u be a Borel measure on a compact set K C C and let
H = L%(u). Show that multiplication by characteristic functions of Borel
sets in K, E(B) := xp-, is a spectral measure E : By — L?(u).

Exercise 8.24. If E : By — L(H) is a spectral measure, show that the null
sets for the spectral measure have the following desirable properties:

(a) If E(Bp) =0 (n € N), then E(J;2, B,) =0.

(b) If E(B;) =0 and By C By, then E(B;) =0.
Exercise 8.25. Show that the equivalences of Theorem 8.25 are untrue on
the real Hilbert space R2.

Exercise 8.26. Show that every positive T € L(H) in the sense of Theo-
rem 8.25 has a unique positive square root.

Exercise 8.27. With the functional calculus, prove also that, if T' € L(H)
is normal, then it can be written as

T=UP
with U unitary and P positive. This is the polar decomposition of a
bounded normal operator in a complex Hilbert space.

References for further reading:
I. M. Gelfand, D. A. Raikov and G. E. Chilov, Commutative Normed Rings.
E. Hille and R. S. Phillips, Functional Analysis and Semigroups.
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T. Kato, Perturbation Theory for Linear Operators.
P. D. Lax, Functional Analysis.
M. A. Naimark, Normed Rings.

M. Reed and B. Simon, Methods of Modern Mathematical Physics.

C. E. Rickart, General Theory of Banach Algebras.

F. Riesz and B. Sz. Nagy, Lecons d’analyse fonctionelle.

W. Rudin, Functional Analysis.

A. E. Taylor and D. C. Lay, Introduction to Functional Analysis.
K. Yosida, Functional Analysis.






Chapter 9

Unbounded operators
in a Hilbert space

Up to this moment all of our linear operators have been bounded, but densely
defined unbounded operators also occur naturally in connection with the
foundations of quantum mechanics.

When in 1927 J. von Neumann! introduced axiomatically Hilbert spaces,
he recognized the need to extend the spectral theory of self-adjoint operators
from the bounded to the unbounded case and immediately started to obtain
this extension, which was necessary for his presentation of the transforma-
tion theory of quantum mechanics created in 1925-1926 by Heisenberg and
Schrédinger.?

The definition of unbounded self-adjoint operators on a Hilbert space re-
quires a precise selection of the domain, the symmetry condition (z, Az)y =
(Az, x) g for a densely defined operator not being sufficient for A to be self-
adjoint, since its spectrum has to be a subset of R. The creators of quantum

! The Hungarian mathematician Janos (John) von Neumann is considered one of the foremost
mathematicians of the 20th century: he was a pioneer of the application of operator theory to
quantum mechanics, a member of the Manhattan Project, and a key figure in the development
of game theory and of the concepts of cellular automata. Between 1926 and 1930 he taught in
the University of Berlin. In 1930 he emigrated to the USA where he was invited to Princeton
University and was one of the first four people selected for the faculty of the Institute for Advanced
Study (1933-1957).

2 The German physicist Werner Karl Heisenberg, in Géttingen, was one of the founders of
quantum mechanics and the head of the German nuclear energy project; with Max Born and
Pascual Jordan, Heisenberg formalized quantum mechanics in 1925 using matrix transformations.
The Austrian physicist Erwin Rudolf Josef Alexander Schrédinger, while in Zurich, in 1926 derived
what is now known as the Schrodinger wave equation, which is the basis of his development of
quantum mechanics. Based on the Born statistical interpretation of quantum theory, P. Dirac and
Jordan unified “matrix mechanics” and “wave mechanics” with their “transformation theory”.

257
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mechanics did not care about this and it was von Neumann himself who clar-
ified the difference between a self-adjoint operator and a symmetric one.

In this chapter, with the Laplacian as a reference example, we include the
Rellich theorem, showing that certain perturbations of self-adjoint operators
are still self-adjoint, and the Friedrichs method of constructing a self-adjoint
extension of many symmetric operators.

Then the spectral theory of bounded self-adjoint operators on a Hilbert
space is extended to the unbounded case by means of the Cayley transform,
which changes a self-adjoint operator T' into a unitary operator U. The
functional calculus of this operator allows us to define the spectral resolution
of T.

We include a very short introduction on the principles of quantum me-
chanics, where an observable, such as position, momentum, and energy, is an
unbounded self-adjoint operator, their eigenvalues are the observable values,
and the spectral representing measure allows us to evaluate the observable
in a given state in terms of the probability of belonging to a given set.3

Von Neumann’s text “Mathematical Foundations of Quantum Mechan-
ics” [43] is strongly recommended here for further reading: special attention
is placed on motivation, detailed calculations and examples are given, and
the thought processes of a great mathematician appear in a very transparent
manner. More modern texts are available, but von Neumann’s presentation
contains in a lucid and very readable way the germ of his ideas on the
subject.

In that book, for the first time most of the modern theory of Hilbert
spaces is defined and elaborated, as well as “quantum mechanics in a unified
representation which ... is mathematically correct”. The author explains
that, just as Newton mechanics was associated with infinitesimal calculus,
quantum mechanics relies on the Hilbert theory of operators.

With von Neumann’s work, quantum mechanics is Hilbert space analysis
and, conversely, much of Hilbert space analysis is quantum mechanics.

9.1. Definitions and basic properties

Let H denote a complex linear space. We say that T is an operator on H if
it is a linear mapping T : D(T') — H, defined on a linear subspace D(T") of
H, which is called the domain of the operator.

3Surprisingly, in this way the atomic spectrum appears as Hilbert’s spectrum of an operator.
Hilbert himself was extremely surprised to learn that his spectrum could be interpreted as an
atomic spectrum in quantum mechanics.
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Example 9.1. The derivative operator D : f — f’ (distributional de-
rivative) on L?(R) has

D(D) = {f € L*(R); f' € I*(R) }

as its domain, which is the Sobolev space H1(R). This domain is dense in
L?(R), since it contains D(R).

Example 9.2. As an operator on L?(R), the domain of the position
operator, @ : f(z) — zf(x), is

D(Q) = {f € I(R); [of(a)) € IX(R)}.

It is unbounded, since ||x(nnt1)ll2 =1 and |@x(nnt1)ll2 > n.

Recall that f € L2(R) if and only if f € L2(R) and both f and zf(z)
are in L2(R) if and only if f, f/ € L?(R). Thus, the Fourier transform is a
unitary operator which maps D(Q) onto H'(R) = D(D) and changes 27iQ
into D. Conversely, 2miQ = F~'DF on D(Q).

Under these conditions it is said that 27iD and @ are unitarily equiv-
alent. Unitarily equivalent operators have the same spectral properties.

Of course, it follows that D is also unbounded (see Exercise 9.3).

We are interested in the spectrum of T'. If for a complex number A the
operator T — A\ : D(T') — H is bijective and (T —X)"!: H - D(T) C H
is continuous, then we say that A is a regular point for 7'

The spectrum o(T') is the subset of C which consists of all nonregular
points, that is, all complex numbers \ for which T—\I : D(T) — H does not
have a continuous inverse. Thus A € ¢(T') when it is in one of the following
disjoint sets:

(a) The point spectrum o,(T), which is the set of the eigenvalues of
T. That is, A € 0p(T) when T' — X : D(T) — H is not injective. In this
case (T'— AI)~! does not exist.

(b) The continuous spectrum o.(T’), the set of all A € C\ o,(T)
such that T — A\I : D(T') — H is not exhaustive but Im (7" — A\I) = H and
(T — X\I)~! is unbounded.

(c) The residual spectrum o, (T), which consists of all A € C\ 0,(T")
such that Im (T — M) # H. Then (T — AI)~! exists but is not densely
defined.

The set o(T)¢ of all regular points is called the resolvent set. Thus,
X € o(T)° when we have (T — XI)~! € L(H).
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The resolvent of T is again the function
Rr:0(T)® = L(H), Rr(\):=(T-X)7L

The spectrum of T' is not necessarily a bounded subset of C, but it is
still closed and the resolvent function is analytic:

Theorem 9.3. The set o(T')° is an open subset of C, and every point g €
o(T)® has a neighborhood where

[oe]

Rr(A) = =) (A= Xo)*Rr(Xo)**,
k=0
the sum of a convergent Neumann series.

Proof. Let us consider A = Ag + p such that |u| < ||[Rr(Xo)||. The sum of
the Neumann series

oo
S() =Y uFRr(o)** (Il < 1/ Rr(Mo)ll)
k=0
will be the bounded inverse of T' — AI.
The condition ||uRz(Xo)|| < 1 ensures that the series is convergent, and
it is easily checked that (T'— AI)S(u) = I:

N
(T = Mol = uI) Y u*((T = WD) ™) = I = (uRr(M))"™*! = 1,
k=0
and S(u) commutes with 7. O

A graph is a linear subspace F' C H x H such that, for every z € H,
the section Fy := {y; (z,y) € F'} has at most one point, y, so that the first
projection 71 (z,y) = z is one-to-one on F. This means that z — y (y € F)
is an operator Tr on H with D(Tr) = {z € H; F, # 0} and G(TF) = F.

We write S C T if the operator T is an extension of another operator S,
that is, if D(S) C D(T') and Tip(sy = S or, equivalently, if G(S) C G(T).

If G(T) is closed in H x H, then we say that T is a closed operator.
Also, T is said to be closable if it has a closed extension T'. This means that
G(T) is a graph, since, if T is a closed extension of T', G(T) C G(T') and 91
is one-to-one on G(T'), so that it is also one-to-one on G(T'). Conversely, if
G(T) is a graph, it is the graph of a closed extension of T, since G(T') C G(T).

If T is closable, then T will denote the closure of T; that is, T = Tm.

When defining operations with unbounded operators, the domains of the
new operators are the intersections of the domains of the terms. Hence

D(S+T) = D(S)ND(T) and D(ST) = {a: € D(T); Tz € D(S)}.
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Example 9.4. The domain of the commutator [D, Q] = DQ — @D of the
derivation operator with the position operator on L?(R) is D(DQ)ND(QD),
which contains D(R), a dense subspace of L%(R).

Since D(zf(z)) —xD f(z) = f(z), the commutator [D, Q] coincides with
the identity operator on its domain, so that we simply write [D, Q] = I and
consider it as an operator on L?(R).

9.1.1. The adjoint. We will only be interested in densely defined oper-

ators, which are the operators T' such that D(T) = H.

If T is densely defined, then every bounded linear form on D(T) has a
unique extension to H, and from the Riesz representation Theorem 4.1 we
know that it is of the type (-, z) . This fact allows us to define the adjoint
T* of T'. Its domain is defined as

D(T*)={y € H; z— (T'z,y) is bounded on D(T)}
and, if y € D(T*), T*y € H is the unique element such that
(Tz,9)r = (=, T*y)x  (z € D(T)).

Hence, y € D(T™) if and only if (T'z,y)n = (z,y*)n for some y* € H, for
all z € D(T), and then y* = T™y.
Theorem 9.5. Let T be densely defined. Then the following properties hold:

(a) (AT)* = XT™*.

(by I+T)*=I+T".

(c) T* is closed.

(d) If T : D(T) — H is one-to-one with dense image, then T* is also

one-to-one and densely defined, and (T~1)* = (T*)~L.

Proof. Both (a) and (b) are easy exercises.

To show that the graph of T* is closed, suppose that (yn, T*yn) — (y, 2)
(yn € D(T*)). Then (z,T*yn)g — (z,2)g and (T'z,yn)g = (T'z,y)n for
every z € D(T), with (z,T*yn)u = (Tz,yn). Hence (z,2)g = (Tz,y)n
and z = T*y, so that (y, z) € G(T™).

In (d) the inverse 7! : ImT — D(T) is a well-defined operator with
dense domain and image. We need to prove that (T*)~! exists and coincides
with (T-1)*.

First note that T*y € D((T~1)*) for every y € D(T™), since the linear
form z — (T~ 'z, T*y)y = (z,y)g on D(T!) is bounded and T*y is well-
defined. Moreover (T~1)*T*y = y, so that (I""1)*T* = I on D(T*), (T*)~}:
ImT* - D(T™), and

(T*)—l C (T—l)*
since, for y = (T*)"1z in (T"})*T*y =y, we have (T"1)*z = (T*) 2.
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To also prove that (T-1)* C (T*)7!, let z € D(T) and y € D((T*)71).
Then Tz € Im (T) = D(T~1) and
)

(Tx’ (T_l)*y)H = (37,3/ H, (Tx’ (T_l)*y)H = (maT*(T_l)*y)H‘

Thus, (T~ !)*y € D(T*) and T*(T~!)*y = y, so that T*(T"!)* = I on
D((T*)™') = ImT*, and (T*)~!: Im (T*) — D(T*) is bijective. O

It is useful to consider the “rotation operator” G : H x H — H X H,
such that G(z,y) = (—y, z). It is an isometric isomorphism with respect to
the norm ||(z,9)| := (||lz||% + |lyl|%)"/? associated to the scalar product

((z,9), (@', y") xm = (2,2 ) g + (1,98,
which makes H x H a Hilbert space. Observe that G? = —1I.
Theorem 9.6. If T is closed and densely defined, then
Hx H=G(G(T)) @g(T*) =G(T) & G(G(T™)),

orthogonal direct sums, T™ is also closed and densely defined, and T** =T.

Proof. Let us first prove that G(T*) = G(G(T))*, showing the first equality,
and that T™ is closed. Since (y,2) € G(T™*) if and only if (Tz,y)y = (z,2)H
for every x € D(T'), we have

(G(.’E,T.’II), (y, z))HxH = ((—T-'E, -’E)a (ya z))HxH =0,

and this means that (y,z) € G(G(T))*, so that G(T*) = G(G(T))*.
Also, since G? = —1I,

H x H=G(G(G(T)) ®G(T*) = G(T) & G(G(T™)).

If (z,y)g = 0 for all y € D(T™), then ((0, 2), (=T™y,y)) yxz = 0. Hence,
(0,2) € G(G(T*))* = G(T) and it follows that z = T0 = 0. Thus, D(T*) is
dense in H.

Finally, since also HxH = G(G(T*))®G(T**) and G(T) is the orthogonal
complement of G(G(T™)), we obtain the identity T = T™*. a

9.2. Unbounded self-adjoint operators

T :D(T) C H— H is still a possibly unbounded linear operator on the
complex Hilbert space H.
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9.2.1. Self-adjoint operators. We say that the operator T is symmetric
if it is densely defined and

(Tz,y)u = (=,Ty)n  (z,y € D(T)).
Note that this condition means that T' C T*.

Theorem 9.7. Every symmetric operator T is closable and its closure is
T*.

Proof. Since T is symmetric, T' C T* and, G(T*) being closed,

g(T) c g(T) c Gg(17).

Hence G(T') is a graph, T is closable, and G(T) is the graph of T. As a
consequence, let us show that the domain of T™* is dense.

According to Theorem 9.6, (z,y) € G(T*) if and only if (—y, z) € G(T)*,
in H x H. Hence,

G(T) = G(T)* = {(T*z, —z); = € D(T*)}*.

This subspace is not a graph if and only if (y,z21), (y,22) € G(T) for two
different points 21,22 € H; that is, (0,2) € {(T*z,—z); z € D(T*)}* for
some z # 0. Then (z,2z)y = 0 for all z € D(T™) which means that 0 # z €
D(T*)*, and it follows that D(T*) # H.

Since D(T*) = H, T** is well-defined. We need to prove that

G(T) =G(T) = {(T*z,—=); = € D(T*)}*

is G(T™**). But (v,u) € G(T) if and only if (T*z,v)y — (z,u)g = 0 for all
z € D(T*); that is, v € D(T**) and v = T**v, which means that (v,u) €

The operator T is called self-adjoint if it is densely defined and T = T,
i.e., if it is symmetric and

D(T*) C D(T),

this inclusion meaning that the existence of y* € H such that (T'z,y)g =
(z,y*)g for all z € D(T) implies y* = T'z.

Theorem 9.8. If T is self-adjoint and S is a symmetric extension of T,
then S = T. Hence T does not have any strict symmetric extension; it is
“maximally symmetric”.

Proof. It is clear that T = T* € S and S C 5%, since S is symmetric.
It follows from the definition of a self-adjoint operator that T° C S implies
S* C T*. From S C S* C T C S we obtain the identity S =T. a
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We are going to show that, in the unbounded case, the spectrum of
a self-adjoint operator is also real. This property characterizes the closed
symmetric operators that are self-adjoint.

First note that, if T'= T™, the point spectrum is real, since if Tz = Az
and 0 # z € D(T), then
Nz, 2)n = (z,Tz)n = (Tz,2)n = Mz, 2)H

and X = \.
Theorem 9.9. Suppose that T is self-adjoint. The following properties hold:

(a) X € o(T)° if and only if | Tz — Az||g > c||z||g for all z € D(T),

for some constant ¢ > 0.
(b) The spectrum o(T) is real and closed.

(¢) A€ a(T) if and only if Txy, — Axyp, — 0 for some sequence {xn} in
D(T) such that ||zp||lg = 1 (X is an approximate eigenvalue).

(d) The inequality |[Rr(\)|| < 1/|SA| holds.

Proof. (a) If A € o(T)¢, then Rp(\) € L(H) and
lzllg < [ReWIINT = ADzlla = (T = M)z 4
Suppose now that ||Tz — A\z||g > c||z||g and let M = Im (T — A\I), so

that we have T'— AI : D(T') — M with continuous inverse. To prove that
M = H, let us first show that M is dense in H.

If z € M1, then for every Tz — Az € M we have
0=(Tz—Mz,2)g = (Tz,2)g — Nz, 2)H-

Hence (T'z,2)n = (z, o)y if x € D(T), and then z € D(T*) = D(T) and
Tz = Az. Suppose z # 0, so that A = X\ and we arrive at T2 — Az = 0 and
0 # z € M, a contradiction. Thus, M+ = 0 and M is dense.

To prove that M is closed in H, let M > y, = Tz, — Az, — y. Then
lzp — x4l < ¢ |yp — yqllH, and there exist z = limz, € H and lim, Tz, =
y + Az. But T is closed, so that Tx =y + Az and y € M.

(b) To show that every A = a + i8 € o(T) is real, observe that, if
z € D(T),

(Tz-Xz,z)g = (Tz,2)g—Nz, 2)g, (Tz —Iz,z)y = (Tz,z)g—N(z, T)H,
since (Tz,z)y € R. Subtracting,

(Tz — Az,z) 4 — (Tz — Az, z)n = 2if|z|%,
where (Tx — Mz, z); — (Tz — Az, )y = —2iIm (Tz — Az, z)g. Hence,

Bllzlf = 1Im (Tz — M2)n| < [(Tz - Az, 2)1| < Tz — Mz||gllla
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and then |B|||z||lg < || Tz — Az||g if z € D(T). As seen in the proof of (a),
the assumption B # 0 would imply A € o(T")°.

(c) If X € o(T'), the estimate in (a) does not hold and then, for every
¢ = 1/n, we can choose z,, € D(T') with norm one such that || Tz, —Azx ||z <
1/n and ) is an approximate eigenvalue. Every approximate eigenvalue A is
in o(T), since, if (T — A\I)~! were bounded on H, then it would follow from
Tzn — Azp, — 0 that z, = (T — MI)"Y(Tz, — Azn) — 0, a contradiction to
| znlla = 1.

(d) If y € D(T) and A = RA + iSA € R, then it follows that

(T = ADyl% = (Ty — My, Ty = 2p)a > (SN)y, (SNy) g = [SA?lyl%-

If z = (T'— Al)y € H, then y = Rp(A\)z and ||z||% > |SA?||Rr(N)z||%; thus
[SAll RN < 1. ]

The condition o(7T) C R is sufficient for a symmetric operator to be
self-adjoint. In fact we have more:

Theorem 9.10. Suppose that T' is symmetric. If there exists z € C\ R
such that z,z € o(T)¢, then T is self-adjoint.

Proof. Let us first show that ((T'— 2I)~1)* = (T' — zI)~!, that is,
(T = 2I) 7'z, 20) g = (z1, (T — 2I) " z2) 1.

We denote (T — zI)"'z; = y; and (T — 2I)"'z3 = y,. The desired identity
means that (y1, (T — z)y2)m = (T — 2I)y1,y2) and it is true if y1,y2 €
D(T'), since T is symmetric. But the images of T — zI and T — zI are both
the whole space H, so that ((T'— zI) "'z, z2)g = (z1, (T — 2I)~'z2) g holds
for any z1,22 € H.

Now we can prove that D(T*) C D(T). Let v € D(T*) and w = T*v,
ie.,

(Ty1,v)a = (yr,wa (Y € D(T)).

We subtract z(y1,v)n to obtain
((T — zI)yl,v)H = (yl,w — E’U)H.

Still with the notation (T — 2I)~!z; = y; and (T — zI)~lzg = y2, but now
with 23 = w — Zv, since (z1,v)g = (T — 2I)y1,v)r = (Y1, w — Zv)H,

(z1,v)g = ((T—zI)—lwl,w—Zv)H = (1, (T—ZI)_l(w—Zv))H (Vz1 € H).
Thus, v = (T — zI)~Y(w — zv) and v € Im (T — 2)~! = D(A). O

In the preceding proof, we have only needed the existence of z € R such
that (T — 2I)~! and (T — zI)~! are defined on H, but not their continuity.
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Example 9.11. The position operator @ of Example 9.2 is self-adjoint and
o(Q) = R, but it does not have an eigenvalue.

Obviously @ is symmetric, since, if f, g, [zf(z)], [z9(z)] € L?(R), then
(1,92 = | af@@ds = [ 1()2g@)do = (£,Qa)e
R R

Let us show that D(Q*) C D(Q). If g € D(Q*), then there exists g* € L*(R)
such that (Qf,9)2 = (f,g%)2 for all f € D(Q). So [ ¢(z)xg(z)dz =
fre (z)g*(z) dz if ¢ € D(R), and then g*(z) = zg(x) a.e. on R. Le., zg(x)
isin L2(R) and g € D(Q). Hence Q is self-adjoint, since it is symmetric and
D(@) Cc D(Q).

If A € 0(Q), then T = (Q — M\I)~! € L(H) and, for every g € L?(R), the
equality (Q — A\I)Tg = g implies that (Tg)(z) = g(z)/(xz — \) € L*(R) and
A € R, since, when A € R and g := x(\ ), 9(z)/(z — \) & L*(R).
Example 9.12. The adjoint of the derivative operator D of Example 9.1
is —D, and D is self-adjoint. The spectrum of 7D is also R and it has no
eigenvalues.

By means of the Fourier transform we can transfer the propertles of Q.
If f,g € H'(R), then (Df,g); = (Df,§)2. From (QF,§)2 = (f,QF)2 and
Df(a:) = 2mitf(z) = 2mi(QF)(z) we obtain

(Df) 9)2 = (27TiQf, §)2 = (f’ _2WiQ§)2 = (f, _DQ)Z

and —D C D*. As in the case of @, also D(D*) C D(D).

Furthermore, (iD)* = —D* = iD and ¢(iD) CR. If T = (:D — A\I)~}
and g € L?, then an application of the Fourier transform to (iD—\AI)Tg = g
gives —2mzTg(z) — ATg(z) = g(z), and

—~ gz
Ty(=) = _271.'955-2)\

has to lie in L?(R). So we arrive to A € R by taking convenient functions
9= X(a)-

Example 9.13. The Laplace operator A of L?(R™) with domain H?(R™)
is self-adjoint. Its spectrum is g(A) = [0, 0).

Recall that
HX(R") = {u € L2(R™); D%u € L2(R™), |o < z}

= {uerr@y [ 10+ kPae P < o)
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and A, with this domain, is symmetric: (Au,v)2 = (u, Av)s follows from
the Fourier transforms, since

| alers@as = [ aerae de

To prove that it is self-adjoint, let u € D(A*) C L*(R"). If w € L2(R™) is
such that
(Av,u)2 = (v, w)s2 (v € HXR")),

then, up to a nonzero multiplicative constant,

| sl - | e

for every ¥ € H%(R™), a dense subspace of L2(R™), and |¢|?G(¢) = ci(€),
in L2(R™). Hence, [z, |(1+ [£[*)T(€)]?d¢ < oo and u € HY(R") = D(A).
Thus, D(A*) C D(A).

The Fourier transform, F, is a unitary operator of L2(R™), so that the
spectrum of A is the same as the spectrum of the multiplication operator
FAF~! = 47?|¢|?., which is self-adjoint with domain

{rev@y; [ 10+ iR <o),

and A € o(FAF~1)¢ if and only if the multiplication by 472|¢|? — A has a
continuous inverse on L?(R™), the multiplication by 1/(4m%|¢|? — \). This
means that \ # 4m2|¢|? for every £ € R™, i.e., A & [0,00).

An application of Theorem 9.10 shows that a perturbation of a self-
adjoint operator with a “small” symmetric operator is still self-adjoint.
For a more precise statement of this fact, let us say that an operator S is
relatively bounded, with constant ¢, with respect to another operator A
if D(A) C D(S) and there are two constants c, ¢ > 0 such that

(9.1) ISz} < @?|lAz| + SPllzlly (z € D).
Let us check that this kind of estimate is equivalent to
(9.2) 1Szl < &/||Az||le +Cllzlla (z € D)

and that we can take o/ < liffa<land a<1lifd < 1.

By completing the square, it is clear that (9.2) follows from (9.1) with
o=« and c = ¢. Also, from (9.2) we obtain (9.1) with o2 = (14 e~ !)o/?
and ¢ = (1+¢)c?, for any € > 0, since 2¢/|| Az uc|z|| g < e~ 1o/?|| Ax||% +

d 2||a:||%{ and an easy substitution shows that

(Il Azlle + cllzlla)® < o[ AzlF + |z
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Theorem 9.14 (Rellich?). Let A be a self-adjoint operator and let S be
symmetric, with the same domain D C H. If S is relatively bounded with
constant o with respect to A, then T = A+ S is also self-adjoint with domain
D.

Proof. Let us first check that the symmetric operator T is closed. If (z,y) €
G(T), then we choose z, € D so that z, — z and Tz, — y. From the
hypothesis we have

|AZn — Azm|lg < | T2n — T2m||lu + al|Azn — AZm||lH + cl|Zn — Tml|H,

which implies
c

1
|Azn — Azl < ———IT%n — Tom|ln + 2 = Zml| &,

l-a l-«
and there exists z = lim,, Az,,. But A is closed and z = Az with x € D.

Moreover ||Szy, — Sz|| g < a||A(zn —z)|| g + c|lzn — 2||g and Sz, — Sz.
Hence y = lim,, Tz, = Tz and (z,y) € G(T).

The operators T' — zI (z € C), with domain D, are also closed. With
Theorem 9.10 in hand, we only need to check that £Ai € o(T)° when A € R
is large enough (|A| > ¢).

To show that T'— Xil is one-to-one if X # 0, let

(T-XDz=y (z € D)
and note that the absolute values of the imaginary parts of both sides of
(Tz,z)n — Xi(z, z)n = (y,2)H
are equal, so that |A|||z||% = |S(v, z)g| < ||y||lgllz]|z and
lzller < Xyl (z € D).

Thus, y = 0 implies z = 0.

Let us prove now that 7" — A¢I has a closed image. Let y, — y with
Yn = (T — Xil)zn. Then ||zn — Zmllg < A "Y|Yn — Ymllz and the limit
z = limz, € H exists. Since (T' — M\il)z, — y and the graph of T'— Ai[ is
closed, z € D and y = (T — M)z € Im (T — X\il).

Let us also show that Im (7" — Ail) = H by proving that the orthogonal
is zero. Let v € H be such that

(Az + Sz — Miz,v)g =0 (x € D).

4F. Rellich worked on the foundations of quantum mechanics and on partial differential
equations, and his most important contributions, around 1940, refer to the perturbation of the
spectrum of self-adjoint operators A(e) which depend on a parameter e. See also footnote 15 in
Chapter 7.
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Then (A — Xi)(D) = H, since Xi € o(A)°. If (A — \il)u = v, let £ =u, and
then we obtain that

((A=X)u, (A= X)u)g + (Su, (A — Xi)u)g = 0.
From the Cauchy-Schwarz inequality, ||Au — Miu||% < ||SullallAu — Xiu|lg
and
4w — Niulsr < [|Sulla.
Since A is symmetric, (Ay — Ay, Ay — Xiy) g = || Ay||% + 2?||yl|% and
1 Au|l? + N |lulll = | Au = Mully < |Sully < ol Aulf + Allull?.

But, if |A\| > ¢, the condition o < 1 implies w = 0, and then v = 0.
We have proved that (T'— A\il)™! : H — H is well-defined and closed,

i.e, it is bounded. Hence, +i)\ € o(T)¢ and the symmetric operator T is
self-adjoint. a

Example 9.15. The operator H = —A — |z|~! on L?(R3), with domain
H?(R3), is self-adjoint.

Let —|z|™* = Vo(z) + Vi(z) with Vp(z) := xB(z)V(z) (B = {|z|] < 1}).
Multiplication by the real function |z|~! is a symmetric operator whose
domain contains H?(R3), the domain of —A, since Vou € L2(R3) if u €
H?(R3), with

Voullz < [IVolloollull2 = [lull2
and ||Viullz < ||Vall2]|ulloo, where ||u]lco < ||T||l1- To apply Theorem 9.14, we

will show that multiplication by —|z|™! is relatively bounded with respect
to —A.

From the Cauchy-Schwarz inequality and from the relationship between
the Fourier transform and the derivatives, we obtain

~ 2 dé _ o3
(o m010)" < [y gap-o+°Dull = Zo-aDul

From the inversion theorem we obtain that u is bounded and continuous,
since it is the Fourier co-transform of the integrable function u. Then

IViullz < (8% — Aullz + B ||ullz) (v € HA(R?))
so that
[Vl < B2 — Aullz + (e8%2 + 1) |Jull2
and ¢f~1/2 < 1 if B is large.

It follows from the Rellich theorem that H is self-adjoint with domain
H?(R3).
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9.2.2. Essentially self-adjoint operators. Very often, operators appear
to be symmetric but they are not self-adjoint, and in order to apply the
spectral theory, it will be useful to know whether they have a self-adjoint
extension. Recall that a symmetric operator is closable and that a self-
adjoint operator is always closed and maximally symmetic.

A symmetric operator is said to be essentially self-adjoint if its closure
is self-adjoint. In this case, the closure is the unique self-adjoint extension
of the operator.

Example 9.16. It follows from Example 9.13 that the Laplacian A, as
an operator on L2(R™) with domain S(R™), is essentially self-adjoint. Its
closure is again A, but with domain H2(R™).

Theorem 9.17. If T is symmetric and a sequence {un}neNn C D(T) is
an orthonormal basis of H such that Tu, = Aun (n € N), then T is

essentially self-adjoint and the spectrum of its self-adjoint extension T is
o(T) = {\; n € N}.

Proof. The eigenvalues A, are all real. Define

(o0} oo (o0}
D(T) := {Z QnUn; Z lan |2 + Z 222 < oo},
n=1 n=1 n=1
a linear subspace of H that contains D(T), since, if £ = > 2 | anun € D(T)
and Tz = Y > Brun € H, the Fourier coefficients oy, and B, satisfy
,Bn = (T.’L’,’U,n)[-[ = (-'17, Tun)H = /\n("D,un)H = A\pap

and {an}, {dnan} € £2.
We can define the operator T on D(T) by

oo oo
T( Z anun) = Z AnCinUn.
n=1 n=1

Let us show that T is a self-adjoint extension of T
_ It is clear that T is symmetric, T' C T, and every \, is an eigenvalue of
T, so that {\p; n € N} C o(T).

If A & {MA;n €N}, so that [A — Ay| > 6 > 0, then it follows that
A & o(T) since we can construct the inverse of

(T — AI) ( i anun) = i an(An — Nup
n=1 n=1

by defining

(Z 0‘”“") = i Anan

n=1 n=1
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Indeed, we obtain an operator R € L(H) (||R|| < 1/6) which obviously is
one-to-one and its image is D(T'), since

S [y P (143) <o

and, moreover, we can associate to every z = 3% . apu, € D(T) the ele-

ment

n=1

Y= Zﬂnun—zan()\ —)\ 'LLnEH

n=1
such that Ry = x.
Also,

(T — AI)R( i anun)
n=1

and R= (T — \I)~!
To prove that T is self-adjoint, we need to see that D((T)*) C D(T).
Ifz =3, anuy, € D((T)*) and y = (T)*x, then, for every n € N,

E Ol Un
n=1

(y:un)H = ("B:Tun)H = )\n(m,un)H = Apouy
and Y22 |Anan|? < 00, ie., z € D(T).

Finally, to prove that T is the closure of T, consider

("B»Ty) = (Z QnUn, Z/\nanun) € g(T)

n=1 n=1
Then zy := Zf:;l ann € D(T) and
N N )
(@, Tzn) = () ontin, ¥ Anointn) = (z,Tx)
n=1 n=1
in H x H, since {an}, {M\an} € £2. a

Remark 9.18. A symmetric operator 7' may have no self-adjoint extensions
at all, or many self-adjoint extensions. According to Theorems 9.7 and 9.8,
if T is essentially self-adjoint, T** is the unique self-adjoint extension of T'.

9.2.3. The Friedrichs extensions. A sufficient condition for a symmet-
ric operator T' to have self-adjoint extensions, known as the Friedrichs
extensions, concerns the existence of a lower bound for the quadratic form
(Tz,z)y
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We say that T, symmetric, is semi-bounded® with constant c, if

c:= inf Tx,z)g > —00,
z€D(T), IIwIIH=1( )
so that (T'z,z)g > c||z||%) for all z € D(T).

In this case, for any ¢’ € R, T'—¢'[ is also symmetric on the same domain
and semi-bounded, with constant ¢ + c. If T is a self-adjoint extension of
T, then T — /I is a self-adjoint extension of T' — ¢'I, and we will choose a
convenient constant in our proofs. Let us denote

(117, y)T = (Tm)y)H)

a sesquilinear form on D(T') such that (y,z)r = (z,y)p. If ¢ > 0, then we
have an inner product.

Theorem 9.19 (Friedrichs-Stone®). If T is a semi-bounded symmetric op-
erator, with constant c, then it has a self-adjoint extension T such that
(Tz,z)m > c||z|%, if = € D(T).

Proof. We can suppose that ¢ = 1, and then (z,y)r is a scalar product on
D = D(T) which defines a norm ||z||7r = (x,m);/z > ||zl &

Let Dr be the || - ||r-completion of D. Since ||z||g < ||z||T, every || - |IT-
Cauchy sequence {z,} C D, which represents a point Z € Dr, has a limit z
in H, and we have a natural mapping J : Dy — H, such that JZ = z.

This mapping J is one-to-one, since, if Jy = 0 and z, — y in Dp,
{zn} C D is also a Cauchy sequence in H and there exists z = limz,, in H.
Then z = Jy = 0 and, from the definition of (y,z)r and by the continuity
of the scalar product, it follows that, for every v € D,

(v,y)T = lirrln(v, Tn)T = lirrln(Tv, Zn)g = (Tv,z)g = 0.

But D is dense in Dt and y = 0.
_ Wehave D =D(T) C Dr — H and, to define the Friedrichs extension
T of T, we observe that, for every u = (-, y)g € H’,

lu(@)| < l|lzllmllylle < llzlzllylle  (z € Dr)

and there exists a unique element w € Dt such that u = (-,w)r on Dr. We
define D(T) as the set of all these elements,

D(T) = {w € Dr; (-,w)r = (-,¥)g on Dr for some y € H},

5In 1929 J. von Neumann and also A. Wintner identified this class of operators that admit
self-adjoint extensions.

SKurt Otto Friedrichs (1901-1982) made contributions to the theory of partial differential
equations, operators in Hilbert space, perturbation theory, and bifurcation theory. He published
his extension theorem in Géttingen in 1934, and M. Stone did the same in New York in 1932.
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i.e., D(T) = D(T*) N Dr and T*w = y for a unique w € D(T), for every
y € H. Next we define

Tw=yif (y)g = (,w)r over Dr  (w € D(T)),
so that T is the restriction of T* to D(T) = D(T*) N Dr-.

This new operator is a linear extension of T', since, for all v € Dr,
(9.3) w,wyr=@Twy  (we D))
and, if y =Tx € H with z € D,

(v,9)u = (v,Tz)g = (Tv,z)g = (v,z)r  (ve€ D).
Thus, z = w and Tw = Tz, i.e., D C ’D(T) and T C T.

To show that T is symmetric, apply (9.3) to w € D(T) Cc Dp. If
v,w € D(T), then (w,v)r = (w,Tv)n and the scalar product is symmetric,
so that (Tw,v)g = (w,Tv)H.

Observe that T : ’D(T) — H is bijective, since, in our construction, since
every y € H, w was the unique solution of the equation Tw = y. Moreover,
the closed graph theorem shows that A := T7':H—-DT)CHisa
bounded operator, since y, — 0 and Ty, — w imply

0 =lm(T "%, yn)ar = (2,7 "yn)nr = (v, )

for every x € H, and then w = 0. This bounded operator, being the inverse
of a symmetric operator, is also symmetric, i.e., it is self-adjoint. But then,
every z € C\ R is in o(A)°.

The identity 2717 —A~! = A71(A—2I)z~! shows that 27! € 0(A71)° =
o(T)¢, if z ¢ R. By Theorem 9.10, T is self-adjoint. (W

9.3. Spectral representation of unbounded self-adjoint
operators

T :D(T) C H — H is still a possibly unbounded linear operator.
The functional calculus for a bounded normal operator 7" has been based

on the spectral resolution
T = / NAE(),
o(T)

where E represents a spectral measure on o(T'). If f is bounded, then this
representation allows us to define

ﬂﬂ=/mﬂMM0)
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This functional calculus can be extended to unbounded functions, A,
and then it can be used to set a spectral theory for unbounded self-adjoint
operators. The last section of this chapter is devoted to the proof of the
following result:

Theorem 9.20 (Spectral theorem). For every self-adjoint operator T' on
H, there ezists a unique spectral measure E on R which satisfies

T /R tdE(t)

in the sense that
+o00
(To,y)u = / tdEyy(t)  (zeD(T),y e H).

—00

If f is a Borel measurable function on R, then a densely defined operator
1@ = [ reaee

is obtained such that
+o00
(f(M)z,y)n = (2e(f)z,y)n = f)dE,y(t)  (z€D(f), y € H),

-0

where
o) = {z e B [ IF VP dBus < oo}
For this functional calculus,
(@) If(D)2ll} = [y |F1? 4Bz if @ € D(F(T)),
(b) F(TR(T) C (fR)(T), D(f(T)A(T)) = D(A(T)) N D((fR)(T)), and
() F(T)* = F(T) and F(T)*f(T) = |f*(T) = F(TD)F(T)*.
If f is bounded, then D(f) = H and f(T') is a bounded normal operator.
If f is real, then f(T) is self-adjoint.
The following example will be useful in the next section.

Example 9.21. The spectral measure of the position operator of Exam-
ples 9.2 and 9.11,

Q= /R_tdE@),
is E(B) = xp- and dE, 4(t) = o(t)y(t) dt, i.e.,

[ tBoyt) = @p.01= [ to®FD et (0 DQ))
R R
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This is proved by defining F'(B)y := xpy for every Borel set B C R;
that is, F(B) = xp-, & multiplication operator. It is easy to check that
F : Br — L(L*(R)) is a spectral measure, and to show that F = E, we
only need to see that

/R to(t)p(t) dt = /R tdF,4(t),

where Fy, 4 (B) = (F(B)p, )2 = [g(F(B)p)(t)%(t) dt.
But the integral for the complex measure F,,, is a Lebesgue-Stieltjes
integral with the distribution function

F(t) = Fpp((=00,1]) = (X(-o0, %)2 = /

t

. ©(s)y(s) ds,

and then dF(t) = p(t)y(t) dt.

The spectrum o (T') of a self-adjoint operator can be described in terms
of its spectral measure E:

Theorem 9.22. If T = [g tdE(t) is the spectral representation of a self-
adjoint operator T, then
(a) o(T) = supp E,
(b) op(T) = {X € R; E{A\} # 0}, and
(c) Im E{\} is the eigenspace of every A € op(T).
Proof. We will use the fact that
(7= Aaly = [ (¢~ N dBaslt) (@€ DT AER),

which follows from Theorem 9.20(a).
(a) If X & supp E, then Ej (A — &, A +€) = 0 for some € > 0, and
I =MDl = [ (¢~ NP dBaa(t) 2 e,
(A—¢e,2+e)
which means that A ¢ o(T"), by Theorem 9.9.

Conversely, if A € supp E, then E(A—1/n,A+1/n) # 0 for every n > 0
and we can choose 0 # z, € ImE(A — 1/n,A + 1/n). Then supp Ey,, &, C
[A—1/n, X+ 1/n] since it follows from VN (A —1/n,A\+1/n) = 0 that E(V)
and E(A — 1/n,\ + 1/n) are orthogonal and E; (V) = (E(V)z,z)g = 0.
Thus

1
T = ADnlly = [ (6= X)? By (1) < ool

and ) is an approximate eigenvalue.
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(b) Tz = Az for 0 # « € D(T) if and only if [3(t — A\)?dE,(t) = 0,
meaning that E; ;{\} # 0 and E; (R \ {\}) =0.

(c) The identity E; (R \ {\}) = 0 means that £ = E{\}(z) satisfies
Tz = \z. g

Since F(B) = E(B N supp E), in the spectral representation of the self-
adjoint operator, T', R can be changed by supp F = o(T'); that is,

T = /R tdE(t) = /0 o H4E)

h(T)=/ hdE= |  hdE(t).
R o(T)

As an application, we define the square root of a positive operator:

and also

Theorem 9.23. A self-adjoint operator T is positive ((T'z,z) > 0 for all
z € D(T)) if and only if o(T) C [0,00). In this case there exists a unique
self-adjoint operator R which is also positive and satisfies R?> = T, so that
R = /T, the square root of T.
Proof. If (Tz,z)y > 0 for every € D(T) and A > 0, we have

Mzl < (T +ADe,2)m < (T + M)ellalella,

so that
(T +ADz||lg > Mzllg  (z € D(T)).

By Theorem 9.9 there exists (T’ + A)~! € L(H) and -\ & o(T).

Conversely, if o(T) C [0,00) and € D(T), then [;°tdE;.(t) > 0.
Moreover

(Tz,y)u = /0 T tdE,(t)  (zeD(T),y e H).

Define R = f(T) with f(t) = t'/2. Then D(R) = {z; Jo tdE o < o0},
which contains D(T) = {=; [;°t*dE; < co}. Thus,

R=VT = /Oo Y2 dE(t).
0

From Theorem 9.29(b), R? = T, since D(f2) = D(T) C D(f).
To prove the uniqueness, suppose that we also have

S:/OootdF(t)

such that S? = T and -~
T = / t2dF(t).
0
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With the substitution A = t? we obtain a spectral measure E'(\) = F(\/2)
such that T = [;° AdE’()). From the uniqueness of the spectral measure,
E' = E and then S = R. O

9.4. Unbounded operators in quantum mechanics

To show how unbounded self-adjoint operators are used in the fundamentals
of quantum mechanics, we are going to start by studying the case of a single
particle constrained to move along a line.

9.4.1. Position, momentum, and energy. In quantum mechanics, what
matters about the position is the probability that the particle is in [a,b] C
R, and this probability is given by an integral

b
/ (2)|? da.

The density distribution [¢(z)|? is defined by some ¢ € L?(R), which is
called the state function, such that [g |¢(z)[>dz = ||9||3 = 1 is the total
probability. Here % is a complex-valued function and a complex factor o
in 9 is meaningless (|| = 1 is needed to obtain ||3||]2 = 1). There is a
dependence on the time, ¢, which can be considered as a parameter.

The mean position of the particle will be

wo= [ alb@Pdo= [ ov@p@ de = [ 2dBy40

with dE.q/,’.q/, = 1p(a;)1/)(a:) dx.
If @ denotes the position operator, Qp(z) = zp(z), note that p, =
(Q¢a¢)2

The dispersion of the position with respect to its mean value is measured
by the variance,

vary = [ (@ Pl(@) dg = [ (o= By () = (@=iry D)4 ).
R R

Similarly, if [g |f(z)||¥(z)|*dz < oo, the mathematical expectation of
fis

(9.4) /R F@) (@) B dz = (f1p, )2 = /R £(2) dEy 4 ().

The momentum of the particle is defined as mass x velocity:

p =mz.



278 9. Unbounded operators in a Hilbert space

Note that, from the properties of the Fourier transform,
(9.5)

[ e = [ eheped = [ D0k = 5o v
By assuming that the probablllty that p € [a, b] is given by

b/h
/ (€2 de,
a/h

where h = 6.62607095( 44) 10"34J seg is the Planck constant,’ the
average value of p is

7 [AP(B)[ ar=n [ erbierae.

Here the Fourier transform can be avoided by considering the momentum
operator P defined as

P="lp (D=i)

2mi dz/’
since then, as noted in (9.5), this average is
(96) b [ EbOF & = (Pyv)e

If [RIf (h&)”{ﬁ(ﬁ )|2 d¢, then the functional calculus gives the value
polf) = [ SO dg
R

for the mathematical expectation of f, which in the case f(p) = p" is
py(P") = (P, 9)a.

The kinetic energy is

p2

2m’
so that its mathematical expectation will be

po(T) = 5~ (P, ).

The potential energy is given by a real-valued function V(z) and from (9.4)
we obtain the value

= [ V@mwE)d = Ve
for the mathematical expectation of V if [ |V (z)|4(z)|* dz < co.

TThis is the value reported in October 2007 by the National Physical Laboratory for this
constant, named in honor of Max Planck, considered to be the founder of quantum theory in 1901
when, in his description of the black-body radiation, he assumed that the electromagnetic energy
could be emitted only in quantized form, E = hv, where v is the frequency of the radiation.



9.4. Unbounded operators in quantum mechanics 279

The mathematical expectation is additive, so that the average of the
total energy is

(T + V) = (5P + V), = (Y, D),

where
1

2m
is the energy operator, or Hamiltonian, of the particle.

H=_—pP’4v

9.4.2. States, observables, and Hamiltonian of a quantic system.
As in the case of classical mechanics, the basic elements in the description
of a general quantic system are those of state and observable.

Classical mechanics associates with a given system a phase space, so
that for an INV-particle system we have a 6 /N-dimensional phase state.

Similarly, quantum mechanics associates with a given system a complex
Hilbert space H as the state space, which is L?(R) in the case of a single
particle on the line. In a quantum system the observables are self-adjoint
operators, such as the position, momentum, and energy operators.

A quantum system, in the Schrodinger picture, is ruled by the fol-
lowing postulates:

Postulate 1: States and observables

A state of a physical system at time ¢ is a line [¢)] C H, which we
represent by 1 € H such that ||¢||y = 1.

A wave function is an #-valued function of the time parameter t €
R — 9(t) € H. If (t) describes the state, then ci(t), for any nonzero
constant ¢, represents the same state.

The observable values of the system are magnitudes such as position,
momentum, angular momentum, spin, charge, and energy that can be mea-
sured. They are associated to self-adjoint operators. In a quantic system,
an observable is a time-independent® self-adjoint operator A on H, which
has a spectral representation

Az/R/\dE()\).

By the “superposition principle”, all self-adjoint operators on H are assumed
to be observable,’ and all lines [)] C H are admissible states.

8In the Heisenberg picture of quantum mechanics, the observables are represented by time-
dependent operator-valued functions A(t) and the state ¢ is time-independent.

9Here we are following the early assumptions of quantum mechanics, but the existence of
“superselection rules” in quantum field theories indicated that this superposition principle lacks
experimental support in relativistic quantum mechanics.
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The elements of the spectrum, A € o(A), are the observable values of
the observable A.

Postulate 2: Distribution of an observable in a given state

The values A € 0(A) in a state 1 are observable in terms of a probability
distribution PJ}“.

As in the case of the position operator @ for the single particle on R,
the observable A = g AdE(X) on H is evaluated in a state ¢ at a given
time in terms of the probability Pf(B) of belonging to a set B C R with
respect to the distribution dEy () (we are assuming that |9y = 1), so
that

PA(B) = [ MByu() = (BB D
and the mean value is

A, = /R NdEy(\) = (A, ).

When ¢ € D(A), this mean value ;LI, exists, since A\? is integrable with
respect to the finite measure Ey 4, and also [ [A|dEy4(X) < co.

In general, if f is E 4-integrable,

—_—

is the expected value of f, the mean value with respect to Ey, y.
The variance of A in the state ¢ € D(A) is then

vary (A) = /R (A= Ay)2dBy 5 (\) = (A — AyD)p, ) = || A — Ayl

It is said that A certainly takes the value )¢ in the state 1 if 2¢ =X
and vary(A) = 0.

This means that 9 is an eigenvector of A with eigenvalue Ag, since it
follows from Ay = Aoy that Ay = (A9, 1)y = Ao, and also

vary (4) = || Ay — Ayl = 0.
Conversely, vary(A) = 0 if and only if At — 21\1/,¢ =0.

Postulate 3: Hamiltonians and the Schrédinger equation

There is an observable, H, the Hamiltonian, defining the evolution of
the system

¢(t) = Ut’ﬁo,

where 1) is the initial state and U; is an operator defined as follows:
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If h is the Planck constant and g;(\) = e~#*, a continuous function
with its values in the unit circle, then using the functional calculus, we can
define the unitary operators

U := gt(H) S ﬁ(%) (t S R)
that satisfy the conditions
Upo=1, UgU;=Uss, and %I_I’)I; Uiz — Usz||ly = 0Vx € H,

since g:g: = 1, go = 1, 9s9t = gst, and, if H = fa(H) AdE(]) is the spectral
representation of H, then the continuity property

Ut~ Uablly = [ 1 HA = e BBy () 50 as v
a(H)

follows from the dominated convergence theorem.

Such a family of operators Uy is called a strongly continuous one-
parameter group of unitary operators, and we say that A = —(i/h)H
is the infinitesimal generator.

It can be shown (Stone’s theorem) that the converse is also true: every
strongly continuous one-parameter group of unitary operators {Ut}tGR has
a self-adjoint infinitesimal generator A = —(i/h)H; that is, Uy = e~ ®H for
some self-adjoint operator H.

It is said that .

U = e_ﬁH

is the time-evolution operator of the system.

It is worth noticing that, if ¢ € D(H), the function t — U is differen-
tiable and

d
~Usp = U = AU

at every point t € R. Indeed,

1 1

;(UsUtiﬁ —Up) = Ut;(Us"[} — )
and
(9.7) lim ~(Usth — ) = Ag = — HY,

since
—isA/h _ 1

1 i 2 e 12
@ =+ ol = [ 15+ 4B 0

S

as s — 0, again by dominated convergence.

For a given initial state 1y, it is said that 1 (t) = U is the correspond-
ing wave function.
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If ¢ (t) € D(H) for every t € R, then the vector-valued function ¢ — 1(t)
is derivable and satisfies the Schrédinger equation!®

iy (t) = Hip(t),
since by (9.7)

P(t) = %(Utwo) = AUty = —%H¢(t).

In this way, from a given initial state, subsequent states can be calculated
causally from the Schrédinger equation.!!

9.4.3. The Heisenberg uncertainty principle and compatible ob-
servables. To illustrate the role of probabilities in the postulates, let us
consider again the case of a single particle on R. Recall that the momen-
tum operator,

Py(a) = 59 (a),

is self-adjoint on L?(R) and with domain H'(R).
From Example 9.4 we know that the commutator of P and @ is bounded

and N

where D([P, Q]) = D(PQ)ND(QP), or extended to all L>(R) by continuity.

Lemma 9.24. The commutator C = [S,T] = ST — TS of two self-adjoint
operators on L%(R) satisfies the estimate

|5¢| < 2\/va,r¢(S) \/var,p (T)

for every ¢ € D(C).

Proof. Obviously, A = S—§¢I and B = T—ﬁpl are self-adjoint (note that
Sy, Ty € R) and C = [A, B]. From the definition of the expected value,

1Cy| < (B, Ap)2| + |(A¥, By)a| < 2(|Bo|lal| At]l2,

where, A being self-adjoint, ||A¥||3 = (A%y,%)2 = vary(S). Similarly,
1By|3 = vary(T). 0

10E, Schrédinger published his equation and the spectral analysis of the hydrogen atom in a
series of four papers in 1926, which where followed the same year by Max Born’s interpretation
of 4(t) as a probability density.

11We have assumed that the energy is constant and the Hamiltonian does not depend on t
but, if the system interacts with another one, the Hamiltonian is an operator-valued function H (t)
of the time parameter. In the Schrédinger picture, all the observables except the Hamiltonian are
time-invariant.



9.4. Unbounded operators in quantum mechanics 283

Theorem 9.25 (Uncertainty principle).
h
\/var,/,(Q) \/var¢(P) > yre

Proof. Inthe case C = [P, @), |6,,,| = |(h/27ri)f,,,| = h/2m and we can apply
Lemma 9.24. O

The standard deviations /vary(Q) and /var,(P) measure the uncer-

tainties of the position and momentum, and the uncertainty principle shows
that both uncertainties cannot be arbitrarily small simultaneously. Position
and moment are said to be incompatible observables.

It is a basic principle of all quantum theories that if n observables
Ai,..., A, are compatible in the sense of admitting arbitrarily accurate
simultaneous measurements, they must commute. However, since these op-
erators are only densely defined, the commutators [A;, Ax] are not always
densely defined. Moreover, the condition AB = BA for two commuting
operators is unsatisfactory; for example, taking it literally, A0 # 0A if A is
unbounded, but A0 C 0A and [4,0] = 0 on the dense domain of A.

This justifies saying that A; = [3 AdEY()) and Ay = [z AdE*()\) com-
mute, or that their spectral measures commute, if

(9-8) [E?(B1), E¥(B2)] =0  (B1, Bz € Br).

If both A; and Ay are bounded, then this requirement is equivalent to
[A;, Ak] = O (see Exercise 9.18).12 For such commuting observables and
a given (normalized) state v, there is a probability measure Py on R™ so
that
Py(By x -+ x Bn) = (E'(B1) -+~ E"(Bn)¥, $)u

is the predicted probability that a measurement to determine the values
A1, ..., An of the observables A,,...,A, will lie in B = By X -+ X B,,.
See Exercise 9.19, where it is shown how a spectral measure £ on R" can
be defined so that dEy 4 is the distribution of this probability; with this
spectral measure there is an associated functional calculus f(4i,...,Ap) of
n commuting observables.

9.4.4. The harmonic oscillator. A heuristic recipe to determine a quan-
tic system from a classical system of energy
n p2_
T+V = L 4+ V(q,---
+ ; om; (q15---,q1)

12But E. Nelson proved in 1959 that there exist essentially self-adjoint operators A; and A2
with a common and invariant domain, so that [A1, A2] is defined on this domain and [A;, A2] =0
but with noncommuting spectral measures.
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is to make a formal substitution of the generalized coordinates g; by the po-
sition operators @; (multiplication by g;) and every p; by the corresponding
momentum P;. Then the Hamiltonian or energy operator should be a self-
adjoint extension of

= Z Ql» »Ql)-

For instance, in the case of the two-body problem under Coulomb force,
which derives from the potential —e/|z|, n = 3 and the energy of the system

is
2

e
E=T+V= ——|p|2
E)
Hence, in a convenient scale, H = —A — 1. is the possible candidate of the
[2]

Hamiltonian of the hydrogen atom. In Example 9.15 we have seen that it is
a self-adjoint operator with domain H?(R3).

With the help of his friend Hermann Weyl, Schrédinger calculated the
eigenvalues of this operator. The coincidence of his results with the spec-
tral lines of the hydrogen atom was considered important evidence for the
validity of Schrédinger’s model for quantum mechanics.

Several problems appear with this quantization process, such as finding
the self-adjoint extension of H, determining the spectrum, and describing
the evolution of the system for large values of ¢ (“scattering”).

Let us consider again the simple classical one-dimensional case of a single
particle with mass m, now in a Newtonian field with potential V, so that

d, .
-VV =F= Z‘l—t(mq),
g denoting the position. We have the linear momentum p = mg, the kinetic

energy T = (1/2)mg? = p?/2m, and the total energy E =T + V.

The classical harmonic oscillator corresponds to the special case of
the field F(q) = —mw?q on a particle bound to the origin by the potential
2

w
Vig) = m?qz
if ¢ € R is the position variable. Hence, in this case,
1 w? 1 w?
E=T _ 12 wo2_ L 2 w2
+V 5™d +m2q P +m2q

From Newton’s second law, the initial state ¢(0) = 0 and ¢(0) = a > 0
determines the state of the system at every time,

g = acos(wt).
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The state space for the quantic harmonic oscillator is L2(R), and the
position @ = ¢- and the momentum P are two observables. By making the
announced substitutions, we obtain as a possible Hamiltonian the operator

1 w?
H=— 2 * N2
oml tM5 @
On the domain S(R), which is dense in L%(R), it is readily checked that
(Hep, Qﬁ)z = (¢aH¢)2a

so that H is a symmetric operator. We will prove that it is essentially
self-adjoint and the Hamiltonian will be its unique self-adjoint extension
H = H**, which is also denoted H.
In coordinates,
A2 d2 mw?
- 373 T q
2m - 4m® dg 2
which after the substitution z = ag, with a2 = 2mmw/h, can be written
hw d?
H="(a? - ).
2 \¥ T a2
Without loss of generality, we suppose hw = 1, and it will be useful to
consider the action of
1/, d?
H=_ (m - —)

dxz?

on
F :={P(z)e™® 2, p polynomial},

the linear subspace of S(R) that has the functions z"e
basis.

Since H(z"e*"/2) € F, we have H(F) C F. Similarly, A(F) C F and

B(F)C Fif
1 d
A= E((B + 'd_m),

the annihilation operator, and

B = %(m—-j—m),

2 .
—2°/2 a5 an algebraic

the creation operator.

Theorem 9.26. The subspace F of S(R) is dense in L*(R), and the Gram-
Schmidt process applied to {z"e™ " */ 2}n_0 generates an orthonormal basis
{¢n}n—0 of L*(R). The functions v, are in the domain S(R) of H and
they are eigenfunctions with eigenvalues Ap, =n +1/2. According to Theo-
rem 9.17, the operator H is essentially self-adjoint.
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Proof. On F, a simple computation gives
1 1

H=BA+§I=AB—§I;
hence HB = BAB + %B and BH = BAB — %B, so that
[H,B] = B.

Then, if HyY = A and By # 0 with ¢ € F, it follows that A + 1 is also an
eigenvalue of H, with the eigenfunction B1, since

H(Bvy) = B(Hv)+ By = ABy + By = (A + 1)By.
For \
Yo(z) := e /2,
we have 2Hug () = z2e~%"/2 — (e72"/2) = ¢=%*/2, 50 that

Hyo = 2o
and 1)y is an eigenfunction with eigenvalue 1/2.
We have v/2By(z) = 2ze"/2 # 0 and, if we denote
Yn = (V2B)"o = V2B,

from the above remarks we obtain
1
H¢n=(n+§)1/)n (n=0,1,2,...)

and 9n(z) = Hp(z)e /2. By induction over n, it follows that Hj, is a
polynomial with degree n. It is called a Hermite polynomial.

The functions 1, are mutually orthogonal, since they are eigenfunctions
with different eigenvalues, and they generate F.

To prove that F is a dense subspace of L%(R), let f € L?(R) be such
that [ f(z)z"e~*"/2dz = (z"e~*"/2, f(x))2 = O for all n € N. Then

F(z) :=/Rf(a:)e_”’2/2e_2’”'“dm

is defined and continuous on C, and the Morera theorem shows that F' is
an entire function, with

FM(z) = (—27ri)"/ o f (z)e™ %2205 g,
R

But F(™(0) = (ze~*"/2, f(z))2 = 0 for all n € N, so that F = 0. From the
Fourier inversion theorem we obtain f(z)e=*"/2 =0 and f = 0.

It follows that the eigenfunctions ¥y, := 19n |5 "4 of H are the elements
of an orthonormal basis of L?(R), all of them contained in S(R), which is
the domain of the essentially self-adjoint operator H. O
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Remark 9.27. In the general setting, for any mh,
hw/ o d?
=5~ )
and we have Hypy, = hw(n + %)Jn Thus
o(H) = {hw/2,hw(l+1/2), hw(2 +1/2),...}.

The wave functions Jn are known as the bound states, and the numbers
are the energy eigenvalues of these bound states. The minimal energy is
hw/2,'3 and 1) is the “ground state”.

9.5. Appendix: Proof of the spectral theorem

The proof of Theorem 9.20 will be obtained in several steps. First, in Theo-
rem 9.28, we define a functional calculus with bounded functions for spectral
measures. Then this functional calculus will be extended to unbounded func-
tions in Theorem 9.29. The final step will prove the spectral theorem for
unbounded self-adjoint operators by the von Neuman method based on the
use of the Cayley transform.

9.5.1. Functional calculus of a spectral measure. Our first step in the

proof of the spectral theorem for unbounded self-adjoint operators will be

to define a functional calculus associated to a general spectral measure
E:Bxg — L(H)

as the integral with respect to this operator-valued measure.

Denote by L°°(E) the complex normed space of all E-essentially bounded
complex functions (the functions coinciding F-a.e. being identified as usual)
endowed with the natural operations and the norm

|flloc = E-sup |£].

With the multiplication and complex conjugation, it becomes a commutative
C*-algebra, and the constant function 1 is the unit. Every f € L*°(F) has
a bounded representative.

We always represent simple functions as

N
s = Zanxgn € S(K),
n=1
where {Bi,...,Bn} is a partition of K. Since every bounded measurable
function is the uniform limit of simple functions, S(K) is dense in L*®(E),
and we will start by defining the integral of simple functions:

13Max Planck first applied his quantum postulate to the harmonic oscillator, but he assumed
that the lowest level energy was 0 instead of hw/2. See footnote 7 in this chapter.
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As in the scalar case,

N
/ $dE =Y 0nB(Ba) € L(H)

n=1
is well-defined and uniquely determined, independently of the representation
of s, by the relation

((/sdE)a:,y)H=/stEw,y (z,y € H),

since fK sdEzy = Zﬁ;l on(E(Bp)z,y)u = (2712,:1 anE(Br)z,Y)H.

It is readily checked that this integral is clearly linear, [ 1dE = I, and
([sdE)* = [sdE.

It is also multiplicative,

(9.9) /stdE:/sdE/tdE:/tdE/sdE,

since for a second simple function ¢ we can suppose that t = 27]:7:1 BrXB,)
with the same sets B, as in s, and then

N
/sdE/tdE - ;ﬂn(/sdE)E(Bn)

N N
= ZﬂnanE(Bn)E(Bn) = Z anfnE(Bp)
n=1

n=1

= / stdE.
Also

“(/sdE)ﬂ:“Z = /K |s|?dE.,  (z € H, s € S(K))

((/sdE)x,(/sdE)x)H - ((/sdE)*(/sdE)x,x)H
— ([ 1sP aB)z,2)a

| [ saB] <lsle

and, in fact, the integral is isometric. Indeed, if we choose n so that ||s|jcc =
|| with E(B,) # 0 and z € Im E(B,), then

(/ sdE):c = onE(Bp)z = anx

since

This yields
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and necessarily

|(fsaz)a],, = sl

Now the integral can be extended over L*°(E) by continuity, since it is
a bounded linear map from the dense vector subspace S(K) of L*(E) to
the Banach space L(H).

We will denote
Sp(f):= /de = liﬁn/sndE
if s = f in L®(F) (sk € S(K)).
The identities (Pe(sk)z,y)r = [ sk dFzy extend to
@s(P)ev)i = [ 1 By

by taking limits. All the properties of ® g contained in the following theorem
are now obvious:

Theorem 9.28. If F : Bx — L(H) is a spectral measure, then there is a
unique homomorphism of C*-algebras ®g : L°(K) — L(H) such that

@(P)ei)n = [ fiFay  (ayeH, [ L=(K).
This homomorphism also satisfies

(9.10) |®5 ()l = /K fPdE,,  (z€H, f € L(K)).

9.5.2. Unbounded functions of bounded normal operators. To ex-
tend the functional calculus f(T") = ®¢(T") of a bounded normal operator
with bounded functions to unbounded measurable functions h, we start by
extending to unbounded functions the functional calculus of Theorem 9.28
for any spectral measure E:

Theorem 9.29. Suppose K a locally compact subset of C, E : Bx — L(H)
a spectral measure, h a Borel measurable function on K C C, and

D(h) := {a: € H; / W) dEy 4 < oo}.
K
Then there is a unique linear operator ®g(h) on H, represented as
op(h) = / hdE,
K
with domain D(®g(h)) = D(h) and such that

(s (h)z, 1)1 = /K BN dBry(N) (@ € D(h), y € H).
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This operator is densely defined and, if f and h are Borel mesurable func-
tions on K, the following properties hold:

(@) 12p(h)zl}; = [x h]* dEsq, if = € D(h).

(b) @&(f)®E(h) C 25(fh) and D(®E(f)®r(h)) = D(h) N D(fh).

(c) ®p(h)* = ®g(h) and ®(h)*®g(h) = (k%) = ®r(h)PE(h)*.
Proof. It is easy to check that D(h) is a linear subspace of H. For instance,
|E®B)(= + )% < 2 E(B)al% + 21 BByl so that

Eotyzty(B) < 2E3,4(B) + 2Ey4y(B)
and D(h) + D(h) C D(h).
This subspace is dense. Indeed, if y € H, we consider
B, :={|r| <n} 1K,
so that, from the strong o-additivity of E,
y = E(K)y = lim E(By)y,
where z,, := E(By)y € D(h) since
E(B)z, = E(B)E(Bp)zn, = E(BN By)zn (BCK)

and Ey, 5, (B) = Fy, z,(B N By), the restriction of Ey, z, to By, so that

/K |h|2 dEz, z, =/ |h|2 dEy, 2, < "7'2”"177»“%1 < o0.

n

If h is bounded, then let us also prove the estimate

) 1/2
©11) | [ hdey|< [ WaiBal < ([ 107 dBns) Iyl < o,

where |Ey | is the total variation of the Borel complex measure Eg .

From the polar representation of a complex measure (see Lemma 4.12),
we obtain a Borel measurable function g such that |g| =1 and

ohdEyy = |h|d|Egy,

where |E, | denotes the total variation of E,,. Thus,

| [ habey| < [ WldiBayl= [ ohdEzy = (@x(eh)a,)n
K K K

IN

IN

1/2
I@s(enallalyll = ( [ leh? dBes) Iyl

= ([ 1P dBe) ol

where in the second line we have used (9.10), and (9.11) holds.
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When h is unbounded, to define ®g(h)z for every z € D(h), we are
going to show that y — |, kx hdEzy is a bounded conjugate-linear form on
H. Let us consider hy(2) = h(2)xB,(2) — h(z) if z € K, so that

| [ ndBay| < ([ 1ol aBes) ol

and by letting n — oo, we also obtain (9.11) for A in this unbounded case if
z € D(h).

Then the conjugate-linear functional y — [ x hAE;y is bounded with
norm < ( [y |h|2dEysz)'/?, and by the Riesz representation theorem there is
a unique ®g(h)z € H such that, for every y € H,

@e(Wa,v)n = [ BNy, I2e(baln < ([ 1WPdB.)"

The operator ®g(h) is linear, since F; 4 is linear in z, and densely defined.

We know that (a) holds if h is bounded. If it is unbounded, then let
hi = hxp, and observe that D(h — hi) = D(h). By dominated convergence,

1@5(h)e — x(hi)all = |85k — )l < /K |h— g dBy z — 0

as k — oo; according to Theorem 9.28, every hy satisfies (a), which will
follow for h by letting k& — oo.

To prove (b) when f is bounded, we note that D(fh) C D(h) and
dE; 34(f)2 = [ @Ez,z, since both complex measures coincide on every Borel
set. It follows that, for every z € H,

@s()@st)z, D = (@5(h)e,Bs(N2)n = [ hdBagyp:
= (®5(fh)z,2)u
and, if z € D(h), we obtain from (a) that
1P aBasgnonie = [ 1FPdBee (o D)
Hence, ®g(f)®r(h) C ®&(fh).
If f is unbounded, then we take limits and
VP dBeprasoine = [ |HPdBes (@€ D)
holds, so that ®g(h)z € D(f) if and only if x € D(fh), and
D(25(f)®E(h)) = {z € D(h); 2e(h)z € D(f)} = D(h) N D(fh),
as stated in (b).
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Now let z € D(h) N D(fh) and consider the bounded functions fi =
fxB,, so that fyh — fhin L?(E, ;). From (a) we know that ®g(fih)z —
®p(fh)z,

25 (f)2E(h)z = lim @5(fx)@p(h)e = lim @5(fxh)z = 2E(fh)z,
and (b) is true.
To prove (c), let z,y € D(h) = D(h). If hx = hxp,, then
(@p(h)z,y)n = lim(@p(hi )z, y)n = lim(z, Pp(he)y)m = (2, 2e(R)Y)H,
and it follows that y € D(®g(h)*) and <i>E£h) C ®g(h)*. To finish the proof,
let us show that D(®g(h)*) C D(h) = D(h).

Let z € D(®g(h)*). We apply (b) to hx = hxp, and we have ®g(hi) =
&g (h)®E(xB,) With ®g(xB,) bounded and self-adjoint. Then

®e(xB,)2e(h)* = Pr(xB,)"®e(h)* C (PE(h)®E(XB,))"
= Og(he)* = Pp(hk)

and xg, (Pg(h)*)z = ®g(hy)z. But |xx| < 1, so that

/K |hi|*dE;, , = /K 1XB. |2 dEs p(hy 205z < Eoghy 2@ mhy = (K).

We obtain that z € D(h) by letting k — oo .
The last part follows from (b), since D(®g(hh)) C D(h). O

Remark 9.30. In Theorem 9.29, if ®g(By) = 0, we can change K to K\ By:

(@n(h)z,y)r = / W\ dBsy(\)  (z € D(@p(R), y € H)

K\By

if h is Borel measurable on K \ By.

If E is the spectral measure of a bounded normal operator T', then we
write h(T) for ®g(h), and then the results of Theorem 9.29 read

h(T) = / hdE
o(T)
on D(h) = {z € H, ||f||%72,2 < 00}, in the sense that

(W(T)z,v)5 = / hdBs,  (z€D(h),y e H)

o(T)

Also
(8) 1Dy = [,z W2 dBu if @ € D(A(T)),
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(b) f(T)R(T) C (FR)(T), D(F(T)MT)) = D(R(T)) N D((fh)(T)) with
F(T)M(T) = (fR)(T) if and only if D((fh)(T)) C D(h(T)),

and
(c) h(T)* = h(T) and h(T)*h(T) = |h|*(T) = K(T)h(T)*.

9.5.3. The Cayley transform. We shall obtain a spectral representation
theorem for self-adjoint operators using von Neumann’s method of making
a reduction to the case of unitary operators.

If T is a bounded self-adjoint operator on H, then the continuous func-
tional calculus allows a direct definition of the Cayley transform of T' as'4
U=g(T) = (T i) (T +4)7},
where g(t) = (¢t —1)/(t+1), a continuous bijection from R onto S\ {1}, and

it is a unitary operator (cf. Theorem 8.24).

Let us show that in fact this is also true for unbounded self-adjoint
operators.

Let T be a self-adjoint operator on H. By the symmetry of T and from

the identity Ty £ iyll} = llyly + 1Tyll} £ Gy, Ty)u £ (Ty, ),
ITy iyl =yl + 1Tyl (v € D(T)).

The operators T+l : D(T) — H are bijective and with continuous inverses,
since +1i € o(T)°.

For every z = Ty + iy € Im(T +¢I) = H (y € D(T)), we define
Uz =U(Ty + iy) := Ty — 1y; that is,

Uz = (T —il)(T+ i)'z (z € H).

Then U is a bijective isometry of H, since ||Ty + iy||% = |Ty — iy||% and
Im (T'+4I) = H, and U is called the Cayley transform of 7.

Lemma 9.31. The Cayley transform
U= (T—i)(T+:)!

of a self-adjoint operator T is unitary, I — U is one-to-one, Im (I —U) =
D(T), and

T=iI+U)(I-U)""!
on D(T).

14Named after Arthur Cayley, this transform was originally described by Cayley (1846) as a
mapping between skew-symmetric matrices and special orthogonal matrices. In complex analysis,
the Cayley transform is the conformal mapping between the upper half-plane and the unit disc
given by g(z) = (2—1)/(z+1%). It was J. von Neumann who, in 1929, first used it to map self-adjoint
operators into unitary operators.
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Proof. We have proved that U is unitary and, from the definition, Uz =
(T —il)yif z = (T + i)y for every y € D(T) and every z € H. It follows
that (I + U)z = 2Ty and (I — U)z = 23y, with (I — U)(H) = D(T). If
(I -U)x =0, then y = 0 and also (I 4+ U)z = 0, so that a subtraction gives
2Uz =0, and z = 0. Finally, ify € D(T), 2Ty = (I+U)(I-U)"1(2iy). O

Remark 9.32. Since I — U is one-to-one, 1 is not an eigenvalue of U.

9.5.4. Proof of Theorem 9.20: Let T be a self-adjoint operator on H.
To construct the (unique) spectral measure E on o(T) C R such that

T = / tdE(t),
o(T)

the Cayley transform U of T" will help us to transfer the spectral represen-
tation of U to the spectral representation of T

According to Theorem 8.24, the spectrum of U is a closed subset of the
unit circle S, and 1 is not an eigenvalue, so that the spectral measure E’ of
U satisfies E'{1} = 0, by Theorem 8.26. We can assume that it is defined
on Q@ =S\ {1} and we have the functional calculus

ﬂw=/ fwﬂw»=/ﬂ»wm> (f € B@)),
a(U) Q

which was extended to unbounded functions in Subsection 9.5.2.
If A(A) :=1(1+ A)/(1 = )) on £, then we also have

h(U)z,y)m /th (z € D(W(V)), y € H),

with
D(h(U)) = {z € H; / |h|? dE,, , < 0o}
Q

The operator h(U) is self-adjoint, since A is real and h(U)* = h(U) =
h(U).
From the identity
h(A)(1 =) =31+ N),
an application of (b) in Theorem 9.29 gives
WUY(I = U) =i(I +U),
since D(I — U) = H. In particular, Im (I — U) C D(h(U)).
From the properties of the Cayley transform, T' = i(I + U)(I — U)™!
and then

T(I -U)=i(I+U), D(T)=Im(I-U)cC DHT)),
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so that h(U) is a self-adjoint extension of the self-adjoint operator T. But,
T being maximally symmetric, T = h(U). This is,

(T, = [ B dEL,K)  (@eD(T),yeH)

The function ¢ = h()) is a homeomorphism between {2 and R that
allows us to define E(B) := E'(h~(B)), and it is readily checked that E is
a spectral measure on R such that

(T2, )5 = /R tdE, () (z€D(T),ye H)

Conversely, if F is a spectral measure on R which satisfies

(T2, )i = /R tdEs,(t) (z€D(T),ye H),

by defining E'(B) := E(h(B)), we obtain a spectral measure on 2 such that
(b)) = [ ANEL,(N) (e € DRO)), v € H).
But U = h~1(h(U)) and
(Ua:,y)H=/ﬂ)\dE;,y()\) (z,y € H).

From the uniqueness of E’ with this property, the uniqueness of E follows.

Of course, the functional calculus for the spectral measure E defines the
functional calculus f(T) = fj';o fdE for T = fjoc;o AdE(X), and f(T) =
F(R(D)).

9.6. Exercises

Exercise 9.1. Let T : D(T) C H — H be a linear and bounded operator.
Prove that T has a unique continuous extension on D(T) and that it has a
bounded linear extension to H. Show that this last extension is unique if
and only if D(T) is dense in H.

Exercise 9.2. Prove that if T is a symmetric operator on a Hilbert space
H and D(T') = H, then T is bounded.

Exercise 9.3. Prove that the derivative operator D is unbounded on L%(R).

Exercise 9.4. If T is an unbounded densely defined linear operator on a
Hilbert space, then prove that (ImT)+ = Ker T*.

Exercise 9.5. If T is a linear operator on H and A € o(T)¢, then prove
that ||Rr(N\)|| > 1/d(X,o(T)).
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Exercise 9.6. Show that, if T" is a symmetric operator on H and Im7T = H,
then T is self-adjoint.

Exercise 9.7. If T is an injective self-adjoint operator on D(T") C H, then
show that ImT = D(T!) is dense in H and that T~ ! is also self-adjoint.

Exercise 9.8. Prove that the residual spectrum of a self-adjoint operator
on a Hilbert space H is empty.

Exercise 9.9. Suppose A is a bounded self-adjoint operator on a Hilbert
space H and let

A= AdE(\)
o(A)

be the spectral representation of A. A vector z € H is said to be cyclic for
A if the set {A"2}22, is total in H.

If A has a cyclic vector z and 4 = E, ,, then prove that A is unitarily
equivalent to the multiplication operator M : f(t) — tf(t) of L?(u); that is,
M = UAU where U : L?(u) — H is unitary.

Exercise 9.10. Let

A= AdE(\)
o(A)

be the spectral resolution of a bounded self-adjoint operator of H and denote
F(t) := E(—00,t] = E(c(A) N (—00,1]).
Prove that the operator-valued function F' : R — L(H) satisfies the follow-
ing properties:
(a) If s <t, then F(s) < F(t); that is, (F(s)z,z)g < (F(t)z,z)q for
every x € H.
(b) F(t)=01if t <m(A) and F(t) =1 if t > M(A).
(c) F(t+) = F(t); that is, lim,); F'(s) = F(t) in L(H).
If a < m(A) and b > M(A), then show that with convergence in L(H)
b M(A)
A= / tdF(t) = / tdF(t) = / FdF(2)
a m(A)+ R
as a Stieltjes integral.
Exercise 9.11. On L2?(0,1), let S = 4D with domain H'(0,1). Prove the
following facts:
(a) ImS = L?(R).
(b) S* = 4D with domain H}(0,1).
(c) S is a non-symmetric extension of D with D(iD) = H?(0,1).
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Exercise 9.12. On L%(0,1), let R = iD with domain H}(0,1) (i.e, S* in
Exercice 9.11). Prove the following facts:

(a) ImR = {u € L2(R); [, u(t)dt = 0}.

(b) R* =iD with domain H'(0,1) (i.e, R* = S of Exercice 9.11).
Exercise 9.13. As an application of Theorem 9.17, show that the operator
—D? = —d?/dz? in L?(0,1) with domain the C* functions f on [0, 1] such
that f(0) = f(1) = 0 is essentially self-adjoint.

Exercise 9.14. Show also that the operator —D? = —d?/dz? in L%(0,1)
with domain the C* functions f on [0, 1] such that f'(0) = f/(1) = 0 is
essentially self-adjoint.

Exercise 9.15. Prove that —D? = —d?/dz? with domain D(0, 1) is not an
essentially self-adjoint operator in L2(0,1).

Exercise 9.16. Let V be a nonnegative continuous function on [0, 1]. Then

the differential operator T' = —d?/dz? + V on L%(0,1) with domain D?(0, 1)
has a self-adjoint Friedrichs extension.

Exercise 9.17. Let
h
Qup(z) = 2p(z), FPrp =5 -0k  (1<k<n)

represent the position and momentum operators on L?(R™).

Prove that they are unbounded self-adjoint operators whose commuta-
tors satisfy the relations

h
[Q]’ Qk] = O’ [Rﬂ Pk] = Oa [Rya Qk] = 6],]62_7”-[

Note: These are called the canonical commutation relations satisfied
by the system {Q1,...,Qn; P1,...,Pn} of 2n self-adjoint operators, and it
is said that @i is canonically conjugate to Pj.

Exercise 9.18. Prove that, if A; and As are two bounded self-adjoint op-
erators in a Hilbert space, then AjAs = A2 A; if and only if their spectral
measures E! and E? commute as in (9.8): E1(B;)E?(B) = E?(B;)E}(By)
for all By, By € Bg.

Exercise 9.19. Let
A1=/ AEY()), A2=/ NAEY(\)
R R

be two self-adjoint operators in a Hilbert space H. If they commute (in
the sense that their spectral measures commute), prove that there exists a
unique spectral measure E on R? such that

E(Bl X Bz) = E(Bl)E(Bz) (Bl, Bz (S BR)
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In the case of the position operators A; = Q7 and Az = Q2 on L?(R?), show
that F(B) = xp- (B C Bgz2).

Exercise 9.20. Find the infinitesimal generator of the one-parameter group
of unitary operators U;f(z) := f(z +t) on L?(R).

Exercise 9.21. Suppose that g : R — R is a continuous function. Describe
the multiplication g- as a self-adjoint operator in L?(R) and U; f := e**9f as a,
one-parameter group of unitary operators. Find the infinitesimal generator
A of Uy (t € R)

References for further reading
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W. Rudin, Functional Analysis.

A. E. Taylor and D. C. Lay, Introduction to Functional Analysis.

J. von Neumann, Mathematical Foundations of Quantum Mechanics.

K. Yosida, Functional Analysis.



Hints to exercises

Chapter 1

Exercise 1.1. The identity is a homeomorphism between the two metric
spaces, and {1,2,3,...} is a Cauchy sequence in (R, d) but not in (R, |- |).

Exercise 1.2. A finite number of balls B(a,m) (m € N) cover the compact
set.

Exercise 1.3. If every sequence_{ak} C A has a convergent subsequence in
M, for every sequence {zy} C A, choose {ar} C A with d(zk,ax) < 1/k. If
ak,, — T, also zg, — T.

Exercise 1.4. If U is an open neighborhood of z € K, using the fact that
U is compact and that Ig is Hausdorff, show that U contains a compact
neighborhood W of z in U.

Exercise 1.5. If X = FNG (F closed and G open) and a € X, then
B(a,R) C G for some R > 0 and B(a,r) N F (r < R) is a neighborhood
basis of a in X.

If X € R" is locally compact, for every a € X consider a compact neigh-
borhood W (a); then Int W (a) is an open neighborhood of a and Int W(a) =
U(a)NX for some open set U(a) in R™, so that G = |J,cx U(a) is also open.
Show that X = G\ (G\ X) =GN (G )\ A4)°.

Exercise 1.6. If {fp}52; € M and A := Up_1{fn # 0} = {z1,22,...}, I
being compact, by a diagonal argument select fn, so that fn, (z;) = £ € I.
If f(z;):=¢; and f(z) =0if z & A, then f € M and f,, — fin M.

Exercise 1.7. See J. L. Kelley [24, Chapter 3].

299



300 Hints to exercises

Exercise 1.8. Consider I : (K,T’) — (K, T) and use that I(F) is a compact
subset in (K, 7T) to show that I~! is continuous.

Exercise 1.9. (b) Show that z, — z¢ in X if and only if z, = x¢ for every
n > ng.

Exercise 1.10. See W. Rudin [39, Chapter 1].

Exercise 1.11. Every function is measurable and, according to the defini-
tion (1.3) of the Lebesgue integral, the integral of a nonnegative function

f={f(j)}jes is the sum
> f(i) =sup { > fk)ike K, K C ﬁnite}.

jeJ keF

If > es [f(F)] < oo, then N := {j € J; f(j) # 0} = UpLi{s € J; f ()| =
1/n} is at most countable, since every {j € J; |f(j)| = 1/n} is finite. Hence

2 g [f(D = Lnen |f(n)] and
Jrav=[rrav- [ ra= Y e - X = 3 5

keN keN keN

Exercise 1.12. Use monotone convergence (first prove that (1 + z/n)" is
increasing), dominated convergence, and Fatou’s lemma, respectively.

Exercise 1.13. Show that I = 2J with
1 T T r—€
J=/dw/L, /L=lim L
0 o (z—y)* 0o (T—y)* eoJy (z-y)*

Exercise 1.14. If E = (¢, (ax, bx), then >, [F(bk) — F(ax)| < [g|f(¢)|dt =
u(E), where p is a finite measure such that u(A) = 0 if |A] = 0. It is
shown that u(E) — 0 as |E| — 0 by supposing that, for some € > 0 there
exists E, such that u(E,) > ¢ and |E,| < 1/2" for every n € N, since then
E = g>1 Up>i En would satisfy |E| = 0 but u(E) > n.

Exercise 1.15. See Royden [37, IIL.3].
Exercise 1.16. u is the linear combination of four finite measures.

Exercise 1.17. Using the representation [p fdu = [ fhd|u| with h as
in (1.10), we have both | [ hdu| = |u|(B) with |h| = 1 and also | [5 fdu| <
Jelfldlul < |u|(B) if |f] < 1.

Exercise 1.18. The Riesz-Markov theorem with u(g) = > 722, Akg(ax) yields
the first part.
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Obviously | [ gdu| < Y52 || if g € C,(R™) and |g| < 1. For the
opposite estimate, if Zk>no |An| < €, construct a convenient function g such
that g(ax) = sgn g if £ < ng. Then 35, |An| < |u(g)| + € and

E|An| =sup ) [\ < sup |U(9)|
™0 k<ng
Similarly 3°, g |Aa| = |1|(G) for any open set G C R™ and || is associated
to {|Ax|} in the same way that 4 is associated to {\x}. Clearly |u|(G) =0
if G = F©.

Chapter 2
Exercise 2.1. If n = 1, use induction and (™#') = (%) + (™).
Ifn>1and a=(a,...,an41), write @ := (a1, ..., a,,0) and
an41
D* (931 (fo)) = kZO (%) D (ka0 ™)
Then i
D (dhuasotti™*e) = 3 (5)PP@kanp=romig.
Finally, i
> () (5) P ekanosreme o = 3 (5) 0noet.
k=0 B<a BLa

Exercise 2.2. If U(z) = 2 + U C F, a neighborhood of z, then also U C F
and (J,._; mBg(0,7) = E.

Exercise 2.3. Suppose z € E\ {0} and let U = {0}. The product Az should
be continuous in A, so that we should have Az € U if |A\| < € for some € > 0.

Exercise 24. If 0 < ¢t < 1, then tInt K + (1 — t)Int K C K and every
tInt K + (1 —t)Int K C K is open, so that tInt K + (1 —¢)Int K C Int K.

Exercise 2.5. Define u(e;) = 1, u(eg) = 2, ... if {e,} is the canonical basis
sequence.

Exercise 2.6. If g and h are two different bounded continuous functions, then
G = {f # g} is a nonempty open set and |G| > 0, so that g # h in L*°(R").
Choose an uncountable family of intervals I,, so that ||xr, — X15llec > 1 if
a # f to show that L>°(R™) is not separable. See Remark 2.18.
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Exercise 2.7. Use the fact that, as a subspace of C(B(0,m)), C.(B(0,m))
is separable and it is dense in LP(B(0,m)). Then approximate every f €

LP(R™) by fxB(0,m)-

Exercise 2.8. Co(R"™) is complete and o(z/k)g(z) — g(z) uniformly if
B(0,1) < ¢ < B(0,2). Every {f € C.(R"); supp f C B(0,m)} is sepa-
rable.

Exercise 2.9. (a) For every n € N, K = UN(J)B(Cn,j,l/n), and the set
{cnj}n,; is dense in K. (b) Apply the Stone-Weierstrass theorem to the
subalgebra of C(K') generated by the functions @m n.

Exercise 2.10. Since C(0,7) is dense in L2(0,T), C(T) is also dense in
L?(T). The Stone-Weierstrass theorem shows that the algebra of trigono-
metric polynomials is dense in C(T), and the uniform convergence implies
the convergence in L%(T).

Exercise 2.11. Describe C![a, b] as a closed subspace of Cla, b] x Cla, b].
Exercise 2.12. The constants are 1 and n!/?.

Exercise 2.13. Show that |u(f)| = 1 with |f| < 1 implies f = sgng on
every interval (1/(n + 1),1/n) and that f cannot be continuous, so that
u(Be) € (=1,1). If =1 < r < 1, we define f such that u(f) = r as

F=3n(= 1) 0a(t) with (~1)"en < (1/(n+ 1), 1/n).
Exercise 2.14. Tx1 = ||Tk||.

Exercise 2.15. If M = maxo<y<1 fol |K (z,y)| dz, then | Tf|l1 < M||fll1 by
Fubini-Tonelli, and ||T|| < M.

To prove that ||Thll1 > M — e with ||h[lpy < 1, note that M =
fol |K (z,y0)| dz for some yo € [0,1], use the uniform continuity of K to
choose y1 < yo < y2 in [0,1] so that |K(z,y) — K(z, )| <€ if y € [y1, 2],

and define h = (y2 — yl)—IX[yl,yz]‘
Exercise 2.16. |Tx|| = ||Tk1|lp (p = o0 or 1).

Exercise 2.17. Show that T™ = 0, since its kernel is K,, = 0 if n > 1, and
then (I —T)~! = I +T. Note that vp(y) sin(ny) is an odd function when vy
is even.

Exercise 2.18. Write the equations in the form (pu') — qu = f and the
Cauchy problems as fol K(z,y)u(y)dy — u(z) = g(z). Then (a) f = 0,
K(z,y) =y — =z, g(z) = —=; (b) f(z) = cos(z), K(z,y) =y —z, g(z) =
—z +cosz; (c) f =0, K(z,y) = (ao/a1)(exp(ary — a1z) — 1), g(z) =
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—a+(b/en)(exp(—arz) — 1); (d) f =0, K(z,y) = z(1 —exp(z?/2 — 4*/2)),
g(z) = —zexp(z2/2).

Exercise 2.19. By induction and Fubini’s theorem,

/:dmn_l /:H dxn—z-../:l f(t)dt:ﬁ/j(w_t)n—lﬂt)dt‘

Exercise 2.20. Consider v = u(™, integrate on [a, 2], use the initial conditions
u)(a) = c;, and apply the result of Exercise 2.19.

Exercise 2.21. Show that supp f * g contains [0,00) x {0} but supp f +
supp g = (0, 00) X (0,00), a sum of noncompact sets.

Exercise 2.22. If s(f)(z) = f(—z), show that |(f * g)(b) — (f * g)(a)| <
C||ms(f) — 1as(f)|| and apply Theorem 2.14.

Exercise 2.23. Just compute the convolutions.
Exercise 2.24. See the proof of Theorem 2.41(a).

Exercise 2.25. Write

1 2N=1 1 V-1 1 2Nt
2F2N—FN:N2)Dn—NZDn=N Dh.
n= n= n=N

Exercise 2.26. ||c|| = 1.
Exercise 2.27. Wi(z) = (1/t")W (z/t).

Exercise 2.28. If Pr(z) = y, then y = }_ - ,(y, en)men (Fischer-Riesz). If
z=y+ 2z then (y,en)n = (z,en)H.

Exercise 2.29. Check that
’ 1/p
| k@ wlswlay <o ( [ IKEliwry)

and then integrate.

Exercise 2.30. Note that T is (1,1) and (o0, 00) with My = M; = C and
1/p=1/g=1-9.

Exercise 2.31. ||T|| < 2||T||.

Exercise 2.32. Let ¥ = 1/2 and note that T is of type (4,4/3) with constant
221/2(21/2)1/2 (Exercise 2.31). Show that |T°(1,2)lla/s > 2%/4)I(1,2)|4 if
(z,9) = (1,2).
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Exercise 2.33. Obviously [cx(f)| < ||f]l1, and also ||c(f)||2 = || f]l2 (Parseval).
If 1 < p < 2, apply the Riesz-Thorin theorem to ¢ : LP(T) — I

Chapter 3

Exercise 3.1. (a) See (4.11).

Exercise 3.2. If A C rU and U is convex, also co(A) C rU. If A is open,
then

co(A) = {t1Ad+ - +tain €N, t; >0, t1 4+ +to = 1}
is also open.

Exercise 3.3 Let U be a neighborhood of zero in E. Then AV C U if
|A| < 4, for some § > 0 and some neighborhood of zero, V. It follows that
U{A\V; || £ 6} C U is balanced.

Exercise 3.4. If f, — f uniformly on compact sets, then 0 = f,y fa(2)dz —
f,y f(2)dz =0, and f is analytic. Hence, () is closed in C(Q2).

Exercise 3.5. Use the open mapping theorem.

Exercise 3.6. (d) ||[Az| < 27]:,:1 2™ 1_’;’;&'\(”25) + 27N < ¢ if N is such that

27N < ¢/2, and allow A — 0, so that S 27" 1_?_’;)5:\(%) <e (f) |nz|| €1

and [|na| = nlla]| 4 oo.
Exercise 3.7. It should be ||h| < 1/2.

Exercise 3.8. If the semi-norms p,’1 define the topology of E7, then the
semi-norms g, (z) := max(pl(z!),..., (™)) (z = (z},...,2™)) define
the product topology on E.

IfE=E'x---x E™x---, a countable product, the topology is defined
by the sequence of semi-norms g, (z = (z!,...,2™,...)).

Embed £(2) = [12,C(Q) by £~ (f*)).
Exercise 3.9. (a) If {fn,} is a subsequence, then fn, (t) = 0 if t # 0, and
frne(0) = 1. (b) Choose a € Q and define
falt) = d(t, B(a,1/n)°)
" d(zya) + d(t, B(a, 1/n)°)

with n large enough.

Exercise 3.10. Consider M > z, — = € E; and prove that Tz, is a Cauchy
sequence with a limit y € Fs such that, if also M > z/, — = € Ej, then
necessarily Tzq, Tz}, Tzo, Tz, ... is a Cauchy sequence with the same limit
y. Define 7% :=y.
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Exercise 3.11. (a) First show that the topology in E/F is the collection
of all sets G C E/F such that 7=(G) is an open set in E, so that 7 is
continuous, and if a set M C E/F is closed, then m~1(M) is closed in E.

(b) If ||| g is an F-norm associated to the topology on E, then check that
|7 (z)|| = inf,eF ||z—2||£ is a corresponding F-norm for E/F'. To prove that
every Cauchy sequence {u,} in E//F must converge, choose [[tn, —un,,, || <
1/2 and 7(2k) = un, so that ||zx — zxp1lle < 1/2F still. If 2 — z in E,
then un,, — m(z) in E/F and also u, — n(z) in E/F.

(¢) F+ M = n~Y(n(M)) is closed, since (M) is finite dimensional in
E/F and every finite dimensional subspace is closed by Theorem 2.25 (in
the case of a Fréchet space, cf. Kéthe [26, 15.5] or Rudin [38, 1.21]).

Exercise 3.12. Show that {e,} C F' + M and F + M is dense. The element

To =Y ooy %e_n is well-defined. Suppose zg = z1 + 2 with 29 = limb,,
(bm € [un;n > 1]) and z; € F and show that, if n > 1, then (—ne_, +
en,Z2)g = 0 and also (z1,e_n)g = 0. It follows that (zo, —ne—n +en)g =

—1 so that (z1,en)r = —1, and then 3, |(21, €n)|? = 00, a contradiction.

Exercise 3.13. Write [a,b] = J,{%a}, where Int ({zo}) = 0.

Exercise 3.14. If F = (J2,[e1,...,en] and Int([e1,...,em]) # 0, then
F=lei,...,em)

Exercise 3.15. Consider f(z) =1/z (f(0) :=0).
Exercise 3.16. Use the closed graph theorem.

Exercise 3.17. If fo(t) = t"/n, then f, — 0in (C*(0,1], ] - ||o,1)) but f,(t) =
t"~1 does not converge in (C*[0,1], |l - [lo,1))-

Exercise 3.18. See Remark 3.12.

Exercise 3.19. The set F,, := {¢(z) < n} is closed and M = |J, Fn. By
Corollary 3.9 of Baire’s theorem, Int Fy,, # 0 for some m.

Exercise 3.20. Apply the uniform boundedness principle (Theorem 3.14) to
the sequence {J,}.

Exercise 3.21. (a) If (zn,yn) — (20,%0) in Ey x E3, show that the lin-
ear mappings T, = B(,y,) are uniformly bounded and write B(zn,yn) —
B(zo,y0) = Tn(zn — 20) + B(z0,yn — yo)- (b) Choose P, polynomials such
that P,(x) — z~'/2 in L'(0,1) (polynomials are dense in L!(0,1), since
C.(0,1) is dense by Corollary 2.13 and polynomials are uniformly dense in
C.(0,1)) and observe that { P, } is a bounded sequence such that { B(Py, P,)}
is unbounded.



306 Hints to exercises

Exercise 3.22. See Exercise 3.21.

Exercise 3.23. Use the closed graph theorem.

Chapter 4

Exercise 4.1. See the proof of Theorem 4.14, now for the vector subspace

F ={z €£; 3limA,z € R}.
n

Exercise 4.2. See Theorem 4.17.
Exercise 4.3. See, for instance, Kothe [26, 15.8].

Exercise 4.4. If my, is the n-projection of £>°, apply the Hahn-Banach theorem
to extend m, o T to T, € E’ and define T'(z) = (T (z)) € £*°.

Exercise 4.5. If u # 0 and Keru is closed, then z + U C E \ Keru for
some neighborhood of zero, U, which can be supposed balanced, and then
u(U) C K is also balanced. Show that either u(U) is bounded, and then u
is continuous, or u(U) = K, in which case u(z) = —u(y) for some y € U
and then z +y € (z+ U) N Keru, a contradiction.

Exercise 4.6. Note that {e,} is a linearly independent system. Check that
Kerm, = [ej; j # n] = [ej; j # n] (show that z € [ej; j #n] \ [ej;  # n]
would imply m,(z)en, € [ej; j # n]), so that m, is continuous (cf. Exer-
cise 4.5). Observe that z € co(K) if and only if z = Zﬁ__l mn(Z)en
with m,(z) > 1 and 22’:1 mn(z) < 1. To prove that co(K) is closed, if
z = 22,:1 mn(z)en € H, consider the cases (a) mp(z) & [0,1] and (b)
SN Tn(z) € [0,1]. Check that z € V C co(K)¢if V = Mg ([0, 1]°) in case

N -1 .
(a), and V = (zn=1 ﬂn) ([0, 1]) in case (b).
Example: The linear hull of an orthonormal sequence u, in a Hilbert

space and e, = (1/n)up.

Exercise 4.7. If & = lim,, z,, and § = lim, y,, in H with z,,, y, € H, show that
{(n,yn)u} is a Cauchy sequence of numbers and that (Z,§) := lim(zn, yn) o
is a well-defined inner product.

Exercise 4.8. If u; = (-, z), then (a,z)x = 0 if and only if uz(a) = 0. Thus,
z € At if and only if u, € A°.

Exercise 4.9. ||z||2 < ||z||y and V is dense in £2.
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Exercise 4.10. If B is continuous at (0,0), then ||B(z,y)||l¢ < 1if ||z||lg <€
and [ly|r < ¢, for some € > 0. Then || B((¢/||z||g)z, (¢/|lyllF)y)lle < 1 (f
2,y #0), and ||B(z,y)llc < e7?||z]|llyllr-

Conversely, the condition ||B(z,y)||lc < Cllz||ellyl|F yields
|1 B(z,y) — B(a,b)|| < Cllz — allllyllr + Cllal|zlly — bl #.
Exercise 4.11. Suppose ||f,£j)||[a,b] <1(keNand0<j<m+1) and use
the mean value theorem to apply Theorem 4.28.
Exercise 4.12. Similar to Exercise 4.11.

Exercise 4.13. If m(E) = 0 and u(E) > 0, then m([a,c] \ E) = ¢; if also
u(A) = ¢, then m(AU E) = ¢ but u(B) > c.

To prove that p = m, show first that also m(A4) = ¢/2 = p(A4) = ¢/2
when ¢ < 1/2. If, for instance, m(A41) = ¢/2 and p(A1) < ¢/2, choose Ay
and As, all of them disjoint and such that m(As) = m(A43) = ¢/2; since
m(A1 U Ay) = m(Aa U A3) = m(A; U A3) = ¢, it follows that u(Asz) > ¢/2,
w(As) < ¢/2, and p(As) > c¢/2, a contradiction. If ¢ > 1/2, extend p to
[0, 2] by defining u(A) = p(A—1) if A C (1,2].

Exercise 4.14. The condition is m(E \ F') = 0, and then dug = xgdur.
Exercise 4.15. If ||z||, = 1, define yx = sgn zx|zx [P~
Exercise 4.16. Consider zx =1 —1/k.

Exercise 4.17. |v(z)| < ||z|lo and v extends to v € (£*°). From v(ex) =
(ex,y) = y* it would follow that y = 0.

Exercise 4.18. See Exercise 4.17, with C[a, b] as a substitute of c.

Exercise 4.19. If v € ¢, define k= v(er). If zy = Zszl zker, — x in cp,
so that v(y) = im}_; y*z* = (z,y), choose z* = sgny* (z* = 0 if y* = 0),
so that v(2) < ||v||, and [v(y)| < [ly[l1/|2]|co-

Exercise 4.20. Represent the transpose of T as T" : (yn) € £*° + (yn/n) €
£, with ImT” C ¢, and KerT = {0}.

Exercise 4.21. Approximate uniformly every g € C.(a,b) by step functions.

Exercise 4.22. If K > 0, Holder’s inequality yields

[ ([ kena)@ia < ([ Keurds) ol

If K(-,y) € LP(R), consider |K(z,y)|.
Exercise 4.23. Note that {2 has to be finite.
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Exercise 4.24. Let u(1) = supjgi<; |u(g)| and assume u(1) =1. If0 < f <1,
define g = 2f — 1 and then |u(g)| < 1; thus u(f) = (1 +u(g))/2 > 0.

Bxercise 4.25. (a) lug ()] < 21 [, (:)9() dz] < Ifllp(an 9 p(ose- More-
over, f% f(2)g(z)dz = f% f(2)g(z)dzif p<r<s<1.

(b) 1[5 faul < [51fldu < w(D)|fllop-
(c) Derivation under the integral yields that g,, is holomorphic.
(d) Fubini’s theorem combined with the Cauchy integral formula shows that

2m/f 2)gu(z dz—/ zi dp(w).

Exercise 4.26. Consider T as a restriction of T".

Exercise 4.27. If Tf(z fo (t)dt (0 < z < 1) and Tf = 0, then
differentiation shows that f

Exercise 4.28. If K = {\1, A, ...}, define T € £(£2) such that Teg = Axex.
Exercise 4.29. See Exercise 4.28.

Exercise 4.30. If K = T(Bg), consider K C UkN:_E?)B(c’,:, 1/n) and F, =
[, ...,cY ™). Show that limp e |T — Pr, T = 0.

Chapter 5

Exercise 5.1. Not every z € (£')’ attains its norm on the unit sphere of ¢!
(Exercise 4.16).

Exercise 5.2. Since L(R) = L*(R)' and L?(R) is separable, Bz, is
w*-compact and metrizable. For the last part, see Exercise 5.7.

Exercise 5.3. Suppose u(fn) # 0, so that there exist 6 > 0 and {f,,} so
that ng+1 > 2ng and u(fp,) > 9 (or < —9). Define yy := Zszl frx, wWhich
satisfies ynv (z) < 4 everywhere. It follows from u(fp,) > 6 that u(yn) > N6,
and u would be unbounded. Hence, f, — 0 weakly, but || fx[/[0,;) = 1.

Exercise 5.4. Suppose that g(0) = 0 and choose ¢ to be zero near 0 and
such that ||g — ¢||[-1,) < €. Show that (3) implies f_ll(g — ¢@)hy, < ce and
lim sup,, f_ll ghn < €, so that (g, hn) = ¢(0). If g(0) = C, write g = go + C.

For the converse, choose g = 1 to prove (1). To prove (3), apply the
uniform boundedness principle to the sequence (-, hy).

Exercise 5.5. Let ||z||g = u(z), ||lullpr = 1. Then ||z||g = lim, |u(z,)| <
liminf, ||z,| &
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Exercise 5.6. K = By is w*-compact, and z — 7 (Z(u) = u(z) if |ul|gr < 1)
is a linear isometry of F into C(K).

Exercise 5.7. If 2, — 0 in E, then py(z,) = |u(z,)| — 0 with u € E’. Let
{en}32, be an orthonormal system in a Hilbert space. Then e, /4 0 in H,
but e, — 0 weakly, since Y50 ; |(en, 2)m|? < ||z]|% < 0o and (e, )y — 0.

Exercise 5.8. By Theorem 5.3, the weak closure K of co({z,}) is also its
closure, € K, and z is the limit of points in co({z,}).

Exercise 5.9. Consider A C F as a subset of E” = L(E', K).

Exercise 5.10. Assume (b): the graph of T is closed and (a) holds, since if
Zn, = x in E and Tz, — y in F, then it follows from u(z,) — u(z) for all
u € E' that v(Tz,) = v(Tz) (u € voT € E') and also v(Tz,) — v(y).
Thus, v(Tz) = v(y) for all v € F, and Tz = y. To show that (b) and (c)
follow from (a), note that pz(T"u) = |u o T(z)| = prz(u).

Exercise 5.11. Let U, = {max{pg,,...,pzn} < 1/M}. If z € E, every ball
{pz < €} contains some Uy; that is, |u(z;)| < 1/nVj = |u(z)| < 1. Hence
u(z1) = =u(zny) =0=u(z) =0and z € [21,...,Zp).

Exercise 5.12. None of the semi-norms sup; < ;< |{z,u;)| defining the weak
topology can be a norm.

Exercise 5.13. If T is compact and z, — 0 weakly, every subsequence of
{T'z,} has a subsequence which is norm-convergent to 0, so | Tz, ||z — 0 in
H.

For the converse note that By is weakly compact and metrizable. Then,
for every {zx} C Bpy, there is a weakly convergent subsequence, z, — z in
By, so that z, —z — 0 weakly and ||T'zg, — Tz||g — 0.

Exercise 5.14. There exists f in E’ which strictly separates K; and K.

Exercise 5.15. Denote by Bg the weak™ closure in E” of the closed unit ball
Bg and suppose that K = R. To prove that Bg = Bpr, let wg € E” be
any point not in Bg, a weak* closed convex set. Then there is a u € E/,
llull e = 1, such that sup,,c g, (v, w) < (u,wo), and it follows that |wol| g >
1. Therefore Bg» C Bg.

Exercise 5.16. (a) If Bg is weakly compact, use Goldstine’s theorem to show
that Bg = Bgr. The converse follows from Alaoglu’s theorem.

(b) The weak topology of F is the restriction of the weak topology of E.

(c) If E is reflexive, then o(E',E) = o(E',E") and Bg is o(F', E)-
compact and o(E’, E")-compact, so that E’ is reflexive. If E’ is reflexive,
then E is a closed subspace of the reflexive space E”.
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Exercise 5.17. To show that w = (zo,-) for every w € H”, write Tu = 2
ifu=(,2z)y € H. Then 7 : H — H is a bijective skewlinear isometry,
and H' is a Hilbert space with the inner product defined by (u1,u2)m =
(Tug,Tu1)g. Finally, w(u) = (u,w)m = (Tuo,Tu)y for some ug € H'.
Choose g = Tug.

The mapping f € L*(0,1) = (-, f) € L*(0,1)" is not exhaustive: if
w = (-, fo) for some fo € L*(0,1), since L!(0,1)" = {ug; g € L>®(0,1)} with
ug(f) = fol f(t)g(t) dt, necessarily w(ug) = ug(fo) Vg € L*(0,1), and the
mapping J of Exercise 4.18 is not exhaustive.

As the dual of L'(0,1), L*(0,1) is not reflexive (Exercise 5.16(c)).

Exercise 5.18. For the last part, see Kothe [26, 22.4(2)].

Exercise 5.19. Choose f,,(t) = €™ and apply the Riemann-Lebesgue lemma.

Exercise 5.20. If fol fg =0 for all g € C[0,1], with f € L'(0,1), then also
fabf = 0 for every (a,b) C (0,1) and it follows that f = 0. In L*°(0,1) a
limit of continuous functions is also continuous.

See the proof of Theorem 5.11 to solve Exercises 5.21-5.24
Chapter 6

Exercise 6.1. ¢/(z) = g(z)g(1—r—x) > 0, ¥(x) = ol_r g(t)yg(l—r—t)dt =
C, a constant, if z > 1—7, and 9(z) = 0 if and only if z < 0. Hence o(z) =0
if and only if x < —1 or > 1, and p(z) = C?, a constant, if -7 < z < 7.
Choose ¢ = 1/C2.

Exercise 6.2. Since C.() is dense in LP(2) (Corollary 2.13), approximate
every f € Cx () C C.(R™) by f*g. as in Theorem 6.2, with supp f*g. C Q.

Exercise 6.3. The distance d(p,¥) =Y 502 V|l — ¥lIn/(L+ l¢ — ¥lIn)
defines the topology. Choose ¢ € Djg1j(R) and show that the test functions
©N = ZkN=0 1,0 form a Cauchy sequence in the new topology 7 but {¢n}
it is not convergent in the convergence we are considering for test functions.

Exercise 6.4. Note that |<p$,m)| < n~™ 1 supg (™) and that J,, supp ¢y is
unbounded.

Exercise 6.5. The family 7 of all unions of sets of the form ¢+ U (¢ € D(Q),
U € U) is a topology on D(f2). To check (a), first show that if ¢ € G1 NGy
with G1,G2 € T, then ¢ + U C G1 N G;, for some U € U.

To prove that every Cauchy sequence is contained in some D (2), sup-
pose that this is not the case, so that there are terms ¢ of the sequence
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and distinct points zx € Q (k € N) such that @g(zx) # 0 and with no limit
points in Q. Then U := {p; klp(zk)| < |pr(zk)|} € U, since K € K(Q)
contains finitely many points zj and then U NDg(Q) € T.

Exercise 6.6. (a) By the Leibniz formula,

fmp =2 3 m> L inejpm (k=) ot
) ,o(j I )

and supp @(rpt) C [—R/rn, R/rn).

(b) r*~™ < 1/r, when m < n, and choose r,, large.

From (b), [|fP g < gn-1(fa) < 1/2" whenever n > p, so that ety (P)
is uniformly convergent on compact subsets and f € E(R). Also f(t) =
cnt™/nl if |t| < 1/ry, so that f(p)( 0) = 0 when p # n and f,ﬁ")(o) = Cp.

Exercise 6.7 Note that |(p, f)| < (Jx |f)a0() and (o, )| < |ul(K)qo(p)
for every ¢ € Dg ().

Exercise 6.8. We would have [¢f = 0 if ¢(a) = 0 and then, as in Theo-
rem 6.5, f =0 a.e. on R™\ {a}, that is, f = 0 a.e. but §, # 0.

Exercise 6.9. Apply &' to the test functions ¥,(t) = —sin(nt)p(t), with
[-1/2,1/2) < ¢ < (—=1,1). Then ¢§'(,) = n and, if § = p,

n<| / (1) sin(rnt) du(t)| < |ul([-1,1).
[_1’1]

Exercise 6.10. Write [ K)(z)¢(z) dz — ¢(0) = [ Kx(z)(p(z) — ¢(0)) dz and
see the proof of Theorem 2.41.

Exercise 6.11. If suppy C [-n,n| and N > n, then Zk__ () =

S, (k). We can define [1I(p) := 332 k), 111 = S72 0 on
D[—n,n](R)'

Exercise 6.12. The order is < m, since |{y, §(™)| < 2720 l¥(0)|. To show

that it is > m — 1, apply 6(™ to the functions 0, where [—1,1] < o <
(—2,2) and ¥ (x) = k1 ~™ cos(kz) if m is even, else ¥y (z) = k'~ msm(k:c)

Exercise 6.13. The distribution u satisfies |u(p)] < Crx SN o lle™ |k =
Ckaqn(p) if ¢ € Dk and K C (1/N,00). To prove that there is no N € N
such that the above estimate holds for every compact set K C (0, 00), apply
Exersice 6.12. There is no extension v of u to R, since the continuity of v
on D[_3 9 would imply that the order should be finite.
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Exercise 6.14. Let K < ¢ < Q, |¢| < ||¢|lke for every ¢ € D (). If ¢ is
veal, then —¢llxe < ¢ < llpllice and |u(@)] < u(e)l¢llx. If ¢ is not real,
then [u(p)] < 2u(o)ll¢lx-

Exercise 6.15. Let ¢ € C[—a, b] be such that 9 (t) = (¢(t) — ¢(0))/t if ¢t # 0.
Then uy(p) = ff “ M dt = ffaw(t) dt defines a distribution on R,
and uy € D'(R) as the sum of three distributions. If 0 ¢ supp¢, then
P(t) = o(t)/t and ug(p) = [ o(t)/tdt.

Exercise 6.16. (a) If ¢ — 0 in D(R), define ¥k (t) := (px(t) — ¢r(0))/t
(¢,,(0) if t = 0), continuous and such that [1x(t)| < ||} ll[—rs)> to Prove that

ur(pk) — 0. (b) Observe that feSItISr M dt — [T MO—) dtife | 0.
Exercise 6.17. Write
uslp) = /{ RIS | @) - Tnpe(a))da
z|>

{lz|<1

to prove that us(px) — 0 as ¢ — 0 in D(R™). Note that if 0 ¢ supp ¢,
then

usle) = [ f@hpla)ds = (o, 5)
since ¢(z) — Tmp(z) = ¢().
Exercise 6.18. If suppyp C [—N,N], then — [ ¢ = —(N) + ¢(0) =
©(0) = &(¢), so that Y’ = 4. By induction, Y (1) () = £¢(™)(0).

Exercise 6.19. If suppy C [—n,n], then f[_n,n]f(t) dt = 2 [)'logtdt =
nlogn—n and f € Lj, (R). Moreover —(¢/, f) = —limeyo [y, ¢'(t)f (t) dt
and

/ (0)7(8) dt = —p(e) log e +(e) log e — / D 4t (o, vp3)
e<|t|<r e<|t|<r

since [loge(p(—¢) — ¢(e))] < e logellly/lli_nm — 0 85 € = 0.

Exercise 6.20. If suppy C [—a,a], A = {-a <z <y <a},and [ =
Ja #'(2)f'(y) dz dy, then by Fubini’s theorem

I= /R ' (w)ey) dy = - /R o (2)f(z) dz.

Exercise 6.21. (@, D) := (—1)1*1(D%p, u).
Exercise 6.22. If P(D) = cD®, note that (¢, cD%u) = (—1)*(D*(cp), u).

Exercise 6.23. See Theorems 6.17 and 6.18.
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Exercise 6.24. If u(¢) = 0 when supp ¢ C G, then D%u(p) = +u(D%u) =0,
since supp D%p C G.

Exercise 6.25. suppY = [0, 00) and suppd’ = {0}.

Exercise 6.26. If v € £(Q2) and suppv < Int K, then v = gv. This yields
[v(p)| < Cran(yp) for every ¢ € Dk () and the Leibniz formula shows that

an(op) < Mgn(p). Hence |v(p)| = |v(op)| < Ck Mgn(p).

Exercise 6.27. 1% (6’ *Y) =1 and (1x§') *Y = 0. Two of the supports are
not compact.

Exercise 6.28. See Theorem 6.18.

Exercise 6.29. Yn(z) — Y(z) if z # 0 and |Yiu(z)| < fiVN |dm (t)| < o0
on [-N,N] (N > 1). Then Y, —» Y in D/(R) by dominated conver-
gence. Moreover Y,, — 4§ in D'(R) and Y,, = d,, (integrate by parts in
Jiay #(0)Yr(t) dt, when Y, is C" or absolutely continuous and Y’ = d,, in
the distributional sense)

Finally, d,(t) := —m is an approximation of 4.

Exercise 6.30. Two different solutions are u =1and u =Y.

Exercise 6.31. The general solution of P(D) = 0 is F(t) = Ae! + Bcost +
Csint. From f”(0) = 1 and f(0) = f’(0) = 0 we obtain A = 1/2¢, B =
C = —1/2. Hence, E(t) = F(t) + ((e?)/(2e) — (1/2) cost — (1/2) sint) Y (t).

Exercise 6.32. The general solution of P(D) = 0 is F(t) = Ae™t + Bte™* +
Ct?e~t. From f"(0) = 1 and f(0) = f'(0) = 0 we obtain A = B = 0 and
C = 1/2. Hence, E(t) = F(t) + ((1/2)t2%e )Y (¢).

Exercise 6.33. Take derivatives under the integral.

Exercise 6.34. Check that 9;f = mé as follows: Define the continuous
functions fn(z) = 1/z if |z| > 1/n and fn(z) = n?% if |2| < 1/n. Then
show that 0 f, = n?x D(0,1/n)» Which tend to w8 as n — oo. Finally prove
that f, — 1/z in D’(R?) (use dominated convergence).

Exercise 6.35. It is easy to see that F(y) := (p(z,y),u(z — cy)) defines
a continuous function and that (wg,v) — 0 as ¢ — 0 in D(R?) (use
dominated convergence). If u € £(R), a direct computation shows that
02v — c202v = 0. When u € Li (R) and L is the wave operator, use the
fact that (p, Lv) = (L, v).

Exercise 6.36. Apply Theorem 6.31.
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Exercise 6.37. Write E; = EJ + E$°, E = X{j5<1}- To check that u =
f* E9 + f * ES is defined and locally integrable, note that f x ES° exists
everywhere and is locally bounded, since log |z —y| —log |y| — 0 as y — oo.
Every function fn := fX{|s|<n) satisfies the same conditions as f and u, :=
fn* B2 — u in the distributional sense, by dominated convergence, so that
also Au, — Au in D'(R?). Moreover (u,, Ap) = (Eo, A(fr %)) = (fn, ).
Therefore Au = lim, Au, = lim, f, = f.

Exercise 6.38. Write ur(y) = u(ry), choose g € C(S) so that || f — g, < &,
and let v(z) = [ P y) do(y). Then

If —urllp < IIf gllp +llg = vrllp + llor — urllp < 26+ Jlor —urllp

when r is close to 1. Prove that [q P(rz,y)do(y) = [g P(rz,y)do(z) =1
(use the mean value theorem) to show that f € L”(S) — u, € LP(S) has
norm 1, so that ||v, — ur||p = 0 as g — f in LP(S).

Chapter 7

Exercise 7.1. Note that f; is the derivative of et /2, fa is the translation
of a dilation of x(_1/2,1/2), and f3 and f4 are related to that Poisson kernel.

Exercise 7.2. Take derivatives under the integral, and use the properties of
summability kernels.

Exercise 7.3. Compare K; with the Gauss-Weierstrass kernel W,
Exercise 7.4. ||fllco < |fll1 and W = W, so that || F|| = 1.
Exercise 7.5. If f = ¢, g = 1;, and supp ¢ N supp® = 0, then fxg = 0.

Exercise 7.6. If g(z) = z°D%p(x) is in S(R™), then also g € S(R™) C
LP(R™). Moreover, ||¢|lp = [|lw—2nwane|lp < Can(p) if Np > n/2.

If wenp € LP(R™) for all N, then ¢ € L'(R™). If the functions
P D%p(z) are in L'(R™) N £(R™), then ¢ is bounded, and so is every
P D%p(z).

Exercise 7.7. From Qf = P € S(R™), P a polynomial, it follows that P = 0.
Exercise 7.8. Apply the closed graph theorem.

Exercise 7.9. Write f = ogf with [-R,R] < op < (-R—1,R+1) and
apply the Fourier transform to f(™.

Exercise 7.10. Consider f = fxs>13 +xqs1<1} € L' (R™)+L*(R™). Since
1 flloo < ||l and ||f||2 = || fll2, the result follows from the Riesz-Thorin
theorem by choosing 0 = 2/p’.
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Exercise 7.11. F(sinc) = F(sinc) = X(-1/2,1/2) is not continuous, and
| sinc |2 = [Ix(-1/2,1/2)ll2 = 1.

Exercise 7.12. Define v(z,y) = u(z,y) + v.

Exercise 7.13. If z[k] € ¢ C £°°, then |z[k]| < |z[k]] < Clk|. If ¢ €
Di_n,n)(R), then (p,uz) = Ek_ ~ Z[k]p(k) — 0 as ¢ — 0 in Di_y N (R).
Exercise 7.14. See Exercise 7.10.

Exercise 7.15. Since
1/2 k=oo
[, 3 lett=Rlde= gl < oo,
12 = "o

1(t) = 82 . p(t—k) is well-defined on interval (—1/2,1/2] and the series
converges a.e. and in L!. The Fourier coefficients are

400 1/2
o) = Y, [ lt—Remdr— (k)
k=—00 1/2

and Y4 |@(k)| < oo since p € S(R). Therefore the Fourier series is

uniformly convergent and 12 (k) = ¢1(0) = 3422 . @(k), the sum of
the Fourier series at the origin. Note that (d) follows from (c).

Exercise 7.16. In RN the norms ZkN=1 |zk|, maxiy_, |z|k, and (ZkN=1 |z |P)1/P
are equivalent.

Exercise 7.17. |u(z) — u(y)| < |z — yll/p’"u,”p-

Exercise 7.18. As in Theorem 7.25, v(t) = [ ct u/(s) ds+ C' is continuous and
[v(t)] < ||v|l1 + |C]. Also W1P(a,00) < C[a,00) N L*(a, 00) is continuous,
by the closed graph theorem.

Exercise 7.19. By Theorem 7.25, Ru € C(R), and ||Ru||} = 2||u||b. If v =14/,
the distributional derivative of u on (0, 00), define v(—t) := —v(t) if t < O
Then
0 T
Ru(z) — u(0) = u(—z) — u(0) = / v(—t) dt = / vt dt (= <0)
T 0

and Ru(z)—u(0) = u(z)—u(0) = [ v(t)dt also holdsif z > 0. Then (Ru)’ =
v, [I(Ru)[I = 2|l'|lp, and Ru € WHP(R) with | Rull1,, = 2"/7[lull1,p-
Exercise 7.20. If ux, — 0 in H}(2) and 4 — v in H!(R™), then v = 0.
Exercise 7.21. (0;Pu)ja = (0ju)ja and (9;Pu)ge = (Oju)jqe = 0, so that

(05 Pu)jaqe = (Oju)jane and O is a null set. Hence 9; Pu = POju in L?(R™)
and as distributions.
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Exercise 7.22. Choose u = 1, a constant on (—1,1). Then u° € L2(R), but
(uw°) = 6_1 — &1 € L%(R), since it is not a function.

Exercise 7.23. Use the closed graph theorem.

Exercise 7.24. The Fourier transform of u is of type (1 + |£|?)~! and

JTia+ e w@rde= [Ta+ey s <oo

0 0

if s < 3/2.

Exercise 7.25. B(u,u) = [, (|Vu(z)[? + [u(z)]?) dz = ||u||fqé, coercive.

Chapter 8
Exercise 8.1. If e = (e, 0) is the unit in A C A;, then de = e # 6.

Exercise 8.2. Note that x(1)x(1) = x(1) for every x € A(C), and x(8) = 1.
Here 1 = (1,0) and 6 = (0,1).

Exercise 8.3. (a) z € A(D) but z ¢ A(D). (b) Suppose x € A and let
g(2) = z. Then o(g) = D, x(P) = P(a), and, by continuity, x(f) = f(a) =
8a(f). (¢) If @ € D, then |fj(a)| > 0 for at least one j and x(f;) # 0. Then
J = fiA(D)+ -+ fnA(D) is not contained in a maximal ideal, since there
is no d, such that 6, (f;) =0 for every j (1 < j < n).

Exercise 8.4. Suppose e * f = f for every f € L(R). From the properties
of the Fourier transform, ep = ¢ for every ¢ € S(R), which implies € = 1.

Exercise 8.5. Similar to Exercise 8.4, with Fourier coefficients.
Exercise 8.6. The unit is § = {0[k]} such that §[0] = 1 and d[k] = 0 if k& # 0.

Exercise 8.7. Note that Loy = LoLp, Le = I, and || Lo|| = supjq<1 [laz|| <
lall and || Lee|| = [la]l-

Exercise 8.8. () [ (@-+8) —7(a)] = [x(r—a(r_gu—u))| < 7_gu—ully >0
as B —= 0 and yy(a + B) = x(T—at * T—qu) = Yy (a)¥x(B). It follows from
Tx(@)vx (=) = 7x(0) = 1 and from 7y(na) = yy(a)" that |y (a)] =1 (v
is bounded).

(b) A continuous solution v : R — T of y(a + B8) = vy(a)y(B) has
the form 7, (a) = e%® for some ¢ € R. The following steps lead to a
proof: (1) v(na) = v(a)™. (2) w, := Arg(y(27™")) - 0 as n — oco. (3)
2Wpt1 —wp € 27Z. (4) 2wpy1 = wy for all n > p for some p € N. (5)
wn = 2w, for all n > p. (6) If £ = 2Pw,, then y(a) = €*“ for all
a € {m2™; m,n € Z, n > p}, which is a dense subset of R.
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() From uxf(§) = [g f(a)T—au(§) dav, x(f) =x(uxf) = [g f(&)x(—a) da

and  is continuous on L!(R).

Exercise 8.9. If F, = GS, then (UGq)® = N fHFS). Also p(f~1({l2] >

[£lloo})) = 0 and p(f~}({lz] > |\]})) # 0 if |A| < ||flloo. Finally, A & o(f)
iff 1/(f(z) — ) exists a.e. and is bounded a.e.

Exercise 8.10. See Rickart [35, 1.7].
Exercise 8.11. x(e) = 1 follows from 0 # x(a) = x(a)x(e).
Exercise 8.12. See Exercise 1.8.

Exercise 8.13. For every f € C(K), f(6;) = f(t) is continuous with respect
to the initial compactAtopology, which coincidesAWith the coarser Gelfand
topology. Moreover, f(d;) = f(t) shows that |f|la = ||fllx and C(A) =

G(C(K)).

Exercise 8.14. U is open in A because U = {x; |Z(x)| < 1}, where z denotes
the coordinate function. The rotation ¢ : z — £z induces an isomorphism
f— fopof H*®(U), and the adjoint of this isomorphism maps A; onto Ag.

Exercise 8.15. To prove that every x € A(W) has the form x = 4., let
u(t) = €%, so that [|ul| = ||1/ull = 1 and |x(u)| = 1, since |x(w)|, [x(1/v)| <
1. There is some 7 € R such that x(u) = € = u(7) and x(u*) = x(u)* =
uk(7). Hence x(P) = P(1) if P(t) = 2o lkj<N cxe'®t, these trigonometric
polynomials are dense in W, and x(f) = 6:(f) for every f € W. If f does
not vanish at any point, then f has an inverse in W which must be 1/f.

Exercise 8.16. §; = &5 if and only if t — s = 2k, and 6;f = §,F. Hence
A=Tand f=f (or F) as in Exercise 8.13. But not every function in
C(T) is the sum of an absolutely convergent Fourier series, and W is dense
in C(T) (use the Stone-Weierstrass theorem). This implies that G cannot
be an isometry.

Exercise 8.17. From the properties of the resolvent, there is a number M > 0
such that ||(Ae — z)7Y|| < M for all A € U, and

de—z—y=(Ne—2z)e—(Ne—2)"y)
is invertible, since ||(Ae — z)~'y|| < 1. Choose § = 1/M.

Exercise 8.18. Note that ||@||a = r(a) = lim, ||a®"||}/?". If G is an isometry,
so that ||@]|a = ||a||, it is clear that ||a?|| = |[a2||a = ||a||A llal|?.

Y =e*=e.

Exercise 8.19. e*z = (z*e)* = 2** = z and (z7!)*z* = (zz
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Exercise 8.21. If M, = P,(H) and M = @ M, then y € M if and only if
Y =301 yn, where 322 . |lyn|? < 0o and y, € M.

Consider y, € My such that Y o2 |lyn[> < oo, with ynLly, when
n # m. Then Sy = 22,:1 Yn is a Cauchy sequence, since ||S, — S4||2 =
I3 g1 wmll? < 320241 lymll® — 0 a8 p — co.

Show that M := {37, yn,limy Sy < oo} is the smallest closed sub-
space which contains every M,. Then Pz := > >, P,z € M, Pz = z if
and only if z € M, P? = P, and (Pz1,x2)y = (1, Px2).

Exercise 8.22. See Theorem 4.36.

Exercise 8.23. B C K, (E(B)f,0)n = [ x5/ = [ fX59 = (f E(B))n
and E(B)E(B)f = xgxsf = E(B)f, so that E(B) is an orthogonal pro-
jection. Also, E(ANB)f = xansf = xaxsf = E(A)E(B)f. Moreover,
E(WoZ1 Br) = Xy, Bn* = 2omee1 XBn"-

Exercise 8.24. F(B) =0 if and only if (E(B)z,z)g = 0 for every z € H.

Exercise 8.25. Try T = ( _01 (1) >

Exercise 8.26. By Theorem 8.25, T = T* and o(T") C [0,00). Note that
0<T € C(a(T)), T = f? for a unique f € C(a(T)), f > 0, and there is a
unique S € (T') such that S = f and S > 0, which is equivalent to S > 0.

Exercise 8.27. On o(T') = o(1y(T), let A = p(\)s(A) with p(A) = |A| > 0 and
|s(A)| = 1 everywhere. Define P = p(T') and U = s(T)).
Chapter 9

Exercise 9.1. If F = D(T) is not the whole space H, write H = F @ F* and
consider two different operators on F1 to extend T from F to H.

Exercise 9.2. Since |(Tz,v)u| < lzllalTyll, {Tz;|z|lg < 1} is weakly
bounded and it is bounded by the uniform boundedness principle.

Exercise 9.3. A reduction to Example 9.2 is obtained by considering the
Fourier transform of x(n nt1)-

Exercise 9.4. Note that y € (ImT)* if and only if € D(T) — (Tz,y)g = 0,
so y € D(T*) and T*y = 0.

Exercise 9.5. X € o(T)° if | — Xo| < 1/Rr(No); then d(Xg,o(T)) >
1/Rr(Xo).
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Exercise 9.6. To show that D(T™*) C D(T), let y* = T*y for any y € D(T™),
and choose z € D(T) so that Tz = y*. Then y = z since, for every z € D(T),
(Tz,9)r = (2,y*)u = (T2, x)H, that is, (u,y)g = (u,z) g for all u.

Exercise 9.7. InT = Ker Tt = H. Let y € D((T"!)*); then (A™'z,y)n
(z,y*)g for any € D(T7!) and (2,9)g = (Tz,y*)g if z € D(T) (2 =
T~2), where y* € D(T) and Ty* = y since T = T*. Theny € ImT
D(T™!) and (T Y)*y = y* = Ty, so that (T~1)* =T1.

Exercise 9.8. Let A & 0,(T'), assume that F = D(T — \I) is not dense, and
choose 0 # y € F*. But (Tz — Mz,y)g = O for all z € H and, since A € R
and T* = T, also (z,(T — AM)y)g = 0, and for z = (T — AI)y we obtain
Ty = Ay, a contradiction to A & op(T).

Exercise 9.9. Show that U(f) = f(A)z defines a bijective isometry (note
that U[t"] = A"z) and check that AUf = U[tf(t)].

Exercise 9.10. Cf. the constructions in Yosida [44, XL.5].

Exercise 9.11. Note that fol i (t)(t) dt = fol f(t)i/(t) dt to check that
S C S*. Denote V(z) = [ v(t)dt (v € D(S*), and choose u =1 in

1 - - 1 -
/ i (8008 dt = w() VD) — / LOVDd  (ueD(S))
0 0
to show that V(1) = 0. It follows that iv — V € (ImS)! = {0} and
D(S*) = H}(0,1).
Exercise 9.12. See Exercise 9.11.

Exercise 9.13. Show that —D?f = \f with the conditions f(0) = f(1) =0
has the solutions A\, = —m2n2, f,(x) = sin(rnz) and prove that {fn; n =
1,2,3,...} is an orthogonal total system in L2(0,1).

Exercise 9.14. Consider —D?f = \f with the conditions f/(0) = f/(1) = 0.

Exercise 9.15. Show that the operator has at least two different self-adjoint
extensions, obtained in Exercises 9.13 and 9.14.

Exercise 9.16 (T, 9)2 = (¥, 9)2 + f; V()|[¥(2)]?dz > [[9[|3. Indeed,
()] < fy 19/ ()] dz < tM/2]|9|l2; hence [ [o(t)[? dt < [|v']I3.

Exercise 9.17. Q; and P; are Q and P = 52 D in the case n = 1.

27

Exercise 9.18. Prove that A; and A commute if and only if As commutes
with every E'(B;), and then A; will commutes with E!(Bj) if and only if
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E'(B;) commutes with every E?(B,). Indeed,

(AgAr1z,y)H = / tdE} 4y (A142z,y)m = / tdEL,.,
and also
(A2E1 (B).’E, y)H = Eal;,Agy(B)) (EI(B)A2x,y)H = E}lzw,y(B)'

It follows from AjA; = AA; that AA; = AA for all A € (4;) =
{9(A1); g €C(d(A1))}, and then EL , = Eﬁzw’y. If Ay,E*(B) = E'(B)As,,
then also E Ay = E}lzm’y.

A2y

Exercise 9.19. Show first that every F(B; x Bg) is an orthogonal projection
and that E satisfies the conditions (1)—(3) of spectral measures on R? (see
Subsection 8.5.2) on Borel sets of type B = B; X By. Then extend F to all
Borel sets in R? as in the construction of scalar product measures.

Exercise 9.20. Solution: Au = —u’ with D(4) = H'(R). Note that u €
H(R) when u € L?(R) and the distributional limit limp_,o A~ [u(z — k) —
u(z)] exists in L%(R).

Exercise 9.21. Au = gu, and D(A) = {u € L*(R); gu € L*(R)}.
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