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Introduction

The purpose of this book is to develop the analytic theory of the hypoel-
liptic Laplacian and to establish corresponding results on the associated
Ray-Singer analytic torsion. We also introduce the corresponding theory for
families of hypoelliptic Laplacians, and we construct the associated analytic
torsion forms. The whole setting will be equivariant with respect to the ac-
tion of a compact Lie group G.

Let us put in perspective the various questions which are dealt with in this
book. In [B05], one of us introduced a deformation of classical Hodge theory.
Let X be a compact Riemannian manifold, let (F, V¥, g%') be a complex flat
Hermitian vector bundle on X. Let (€' (X, F),d”) be the de Rham complex
of smooth forms on X with coefficients in F, let dX* be the formal adjoint
of dX with respect to the obvious Hermitian product on € (X, F'). Then the
Laplacian 0% = [dX,d* *}l is a second order nonnegative elliptic operator
acting on Q (X, F). Let H® = ker 0¥ be the vector space of harmonic forms.
Classical Hodge theory asserts that we have a canonical isomorphism,

HX ~H (X,F). (0.1)

Let T*X be the cotangent bundle of X, let (Q (T*X, T*F),dT*X) be

the corresponding de Rham complex over T*X. In [B05], a deformation of

classical Hodge theory was constructed, which is associated to a Hamiltonian

H on T*X. The corresponding Laplacian is denoted by Ai’H. In the case
2

where H = % and H® = ¢H depends on a parameter ¢ = +1/b*> € R*,

with b € R, an operator which is conjugate to A2 ., the operator 27 .,
is given by the formula

1 .
AL e = 1 (—AV + @ p* + ¢(26iiz — n)

1 o
—3 <RTX (ei,€5) ek,el> e%%@-z@)

— (CLy’H + gw (VE, ") (Y™) + %eiingfiw (VF,g") (e))

N | =

+ %w (VF,g") (e2) Vg). (0.2)

In (0.2), AV is is the Laplacian along the fibers of 7% X, RTX is the curvature
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tensor of the Levi-Civita connection VT¥| the e?,¢; are horizontal and ver-
tical 1-forms, which produce orthonormal bases of T*X and TX, Y is the
Hamiltonian vector field associated to H, i.e., the generator of the geodesic
flow, Ly~ is the Lie derivative operator associated to Y7t, and w (VF,gF)
is the variation of g with respect to V. The differential operator which
appears in the first line in the right-hand side of (0.2) is a harmonic oscil-
lator. A fundamental feature of the operator Q%)Hc is that by a theorem of
Hérmander [Hor67], 2 — A2 ;. is hypoelliptic.

In [BO5], algebraic arguments were given which indicated that when b
varies between 0 and +oco, the Laplacian 2Ai)HC interpolates in a proper

sense between the Hodge Laplacian (0% /2 and the operator \p|2 /2 — Lyn.
Moreover, Aiﬂ'ﬂc was shown in [B05] to be self-adjoint with respect to a
Hermitian form of signature (oo, 00).

A key motivation for the construction of the Laplacian Ai,Hc is its rela-
tion to the Witten deformation of classical Hodge theory. Let us simply recall
that if f : X — R is a smooth function, the associated Witten Laplacian
is a one parameter deformation (X of the classical Laplacian [0, which
coincides with (0% for T = 0, which also consists of elliptic self-adjoint op-
erators for which the Hodge theorem holds. If f is a Morse function, Witten
showed that as T — Z4oo, the small eigenvalue eigenspaces localize near
the critical points of f. He also conjectured that the corresponding com-
plex of small eigenvalue eigenforms can be identified with the corresponding
Thom-Smale [T49, Sm61] of the gradient field —V f, in the case where this
gradient field satisfies the Thom transversality conditions [T49]. This con-
jecture was proved by Helffer-Sjostrand [HeSj85]. The Witten deformation
was used in [BZ92, BZ94] to give a new proof of the Cheeger-Miiller the-
orem [C79, Miil78] on the equality of the Reidemeister torsion and of the
analytic torsion for unitary flat exact vector bundles, and more generally
of the Ray-Singer metric on A = det H' (X, F'), which one defines using the
Ray-Singer torsion, with the so-called Reidemeister metric [Re35], which is
defined combinatorially. Let us just recall here that the Ray-Singer analytic
torsion can be obtained via the derivative at s = 0 of the zeta functions of
the Laplacian OX.

Let LX be the loop space of X, i.e., the set of smooth maps s € S7 — X,
and let E be the energy functional £ = % fol |x\2 ds. The functional integral
interpretation of the Laplacian Aiﬁc is explained in detail in [B04, B05]. In

particular 2A3>,Hc interpolating between (1% /2 and \p|2 /2 — Ly~ should be
thought of as a semiclassical version of the fact that the Witten Laplacian
OL% on LX associated to the energy functional E should interpolate between
the Hodge Laplacian 0% and the Morse theory for E, whose critical points
are precisely the closed geodesics. Incidentally, let us recall that neither OFX
nor its Witten deformation has ever been constructed. Let us also mention
that if one follows the analogy of the deformation in [B05] with the Witten
Laplacian, then ¢ = 1/T, so that T = £b?.

It was also observed in [B05] that at least formally, Fried’s conjecture



INTRODUCTION 3

[F86,

F88] on the relation of the Ray-Singer torsion to dynamical Ruelle’s

zeta functions could be thought of as a consequence of a infinite dimensional
version of the Cheeger-Miiller theorem, where X is replaced by LX. This
conjecture by Fried has been proved by Moscovici-Stanton [MoSta91] for
symmetric spaces using Selberg’s trace formula.

The present book has four main purposes:

To

To develop the full Hodge theory of the Laplacian A;Hc. This means
not only proving a corresponding version of the Hodge theorem, but
also studying the precise properties of its resolvent and of the cor-
responding heat kernel. The main difficulty is related to the fact that
T*X is noncompact, and also that the operator Aéﬁc is not classically
self-adjoint.

To develop the appropriate local index theory for the associated heat
kernel.

To adapt to such Laplacians the theory of the Ray-Singer torsion
[RS71] of Ray-Singer, and of the analytic torsion forms of Bismut-Lott
[BL095].

To give an explicit formula relating the analytic torsion objects asso-
ciated to the hypoelliptic Laplacian to the classical Ray-Singer torsion
for the classical Laplacian (.

reach these above objectives, we use the following tools:

We refine the hypoelliptic estimates of Hérmander [Hor85] in order to
control hypoellipticity at infinity in the cotangent bundle. Some of the
arguments we use are similar to arguments already given by Helffer-
Nier [HeNO5] and Hérau-Nier [HNO04] in the case where X = R" in
their study of the return to equilibrium for Fokker-Planck equations.
It is quite striking that although we view our hypoelliptic equations
as coming from a degeneration of elliptic equations on LX, we end up
dealing with kinetic equations on X.

We develop the adequate theory of semiclassical pseudodifferential op-
erators with parameter h = b, combined to a computation of the re-
solvents as (2,2) matrices, by a method formally similar to a method
we developed in the context of Quillen metrics in [BL91], in order to
study the convergence as b — 0 of the operator A2 bHe 1O 0X. One
basic difference with respect to [BL91] is that our operators are no
longer self-adjoint.

We develop a hypoelliptic local index theory. This local index theory
extends the well-known local index theory for the operator d¥ + d**
[P71, Gi84, ABP73, G&6]. Still, the fact that we work also with analytic
torsion forms forces us to develop a very general machinery which will
extend to the analysis of Dirac operators. The hypoelliptic local index
theory is itself a deformation of classical elliptic local index theory.
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o We study the deformation of the Ray-Singer metric and also the cor-
responding hypoelliptic analytic torsion forms by a method formally
similar to the one used in [BL91] and later extended in [B97] to holo-
morphic torsion forms. At least at a formal level, even though we deal
with essentially different objects, the proofs are formally very close,
even in their intermediate steps.

e We develop the adequate probabilistic machinery which allows us to
prove certain localization estimates, and also the Malliavin calculus
[M78] corresponding to the hypoelliptic diffusion process. In particular
we establish an integration by parts formula for a geometric hypoel-
liptic diffusion, which extends a corresponding formula established in
[B84] for the classical Brownian motion.

Let us now elaborate on the functional integral interpretation of the above
techniques, along the lines of [B04, B05]. For ¢ = 1/b%, the dynamics of the
diffusion (x4, ps) € T*X associated to the hypoelliptic Laplacian 2Ai’HC can
be described by the stochastic differential equation

& =p, p=(—p+w)/b*, (0.3)
where w is a standard Brownian motion. The first order differential system
(0.3) can also be written as the second order differential equation on X,

&= (=& +w) /b (0.4)
When b — 0, equation (0.4) degenerates to
T =w. (0.5)

In (0.3), p is an Ornstein-Uhlenbeck process, whose trajectories are con-
tinuous, x is a so-called physical Brownian motion, and the trajectories of
x are C'. Incidentally observe that p is a Gaussian process with covariance
exp (— [t — s| /b?) /b In (0.5), x is a standard Brownian motion, and its tra-
jectories are nowhere differentiable. Now Brownian motion is precisely the
process corresponding to the Hodge Laplacian (0% /2. The fact that equation
(0.4) degenerates into (0.5) when b — 0 is one of the arguments to justify
the convergence of QA;HC toward (0% /2 when b — 0 at a dynamical level.

The convergence argument of the trajectories in (0.4) to those in (0.5) can
indeed be justified. In another form, it was already present in earlier work
of Stroock and Varadhan [StV72], where another convergence scheme of the
solution of a differential equation to the solution of a stochastic differential
equation was given. Such convergence arguments provide the critical link
between classical differential calculus and the It6 calculus.

But as explained in [B05], we are asking much more, since we want to
understand the functional analytic behavior of the Laplacian Aiﬂ'ﬂc when
b — 0, and this in every degree. Arguments in favor of such a possibility were
given in [B05], writing the operator Ai,HC as a (2,2) matrix with respect to
to a natural splitting of a corresponding Hilbert space.

Our proof of the convergence of ZAi’HC to (0% /2 can be thought of as a
functional analytic version of the It6 calculus. The analytic difficulties are
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in part revealing the tormented path connecting a C'' dynamics for b > 0 to
a nowhere differentiable dynamics for b = 0.

Let us still elaborate on this point from a formal point of view, along the
lines of [B04, B05]. Indeed for b > 0, the path integral representation for the

supertrace Trg |exp (—tAi)Hc)} is given by

1 1 .12 b4 ! .12
Tr [exp (—tA3 5)] Z/LXexp <_2_t/0 | %] ds—ﬁ/o || ds—i—...).

(0.6)
In (0.6), ... represents the fermionic part of the integral. One should be
aware of the fact that the process x in (0.4) which corresponds to (0.6) is
such that %fol ||” ds = +o0.

In (0.6), if we make b = 0, in the right-hand side, we recover the stan-
dard representation of the Brownian measure, for which 3 f01 \x\z ds = +o0.
Making b = 0 seems to be an innocuous operation in (0.6), which could be
Taylor expanded. The opposite is true. First of all the H' norm of & is much
“bigger” than its H° norm. Any perturbative expansion of (0.6) to b = 0
will lead to inconsistent divergences. The rigorous process through which one
shows the convergence of (0.6) to the corresponding expression with b = 0
is much subtler and involves functional analytic arguments, which we now
describe in more detail.

The arguments in [B05] show that the convergence of A3 ;. to 0¥ /4
should be obtained by inverting the harmonic oscillator fiberwise. However,
this picture provides only the limit view, in which b has already been made
equal to 0. Namely, the inverse of the harmonic oscillator should be viewed as
a fiberwise pseudodifferential operator, supported on the diagonal of X. For
b > 0 close to 0, the inverse of the relevant operator is no longer supported
over the diagonal of X. A suitably defined version of this inverse can be
viewed as a semiclassical pseudodifferential operator on X with semiclassical
parameter h = b. This semiclassical description is valid only to describe the
more and more chaotic behavior of the component p € T*X as b — 0 in
(0.3). As explained in (0.4), (0.5), as b — 0, the dynamics of & converges
to a Brownian motion on X. The obvious implication is that the relevant
calculus on operators which will give a precise account of the transition from
the dynamics in (0.3) to the Brownian dynamics (0.5) will necessarily have
two scales, a semiclassical scale with parameter h = b and an ordinary scale.

Let us point out that we also study the transition from the small time
asymptotics of the heat kernel in (0.3) to the corresponding small time
asymptotics for the standard heat kernel corresponding to (0.5). This re-
quires proving the required uniform localization in b as t — 0, and also using
a two scale pseudodifferential calculus, with semiclassical parameters t, b.

No attempt is made in this book to study the limit b — +o00, which should
concentrate the analysis near the closed geodesics.

We now present three key results which are established in this book. Let
A =det H (X, F) be the determinant of the cohomology of F', so that A is a
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complex line. By proceeding as in [B05], for b € R*,c = 1/b2, we construct
a generalized metric || Hi , on the line A, using in particular the Ray-Singer
torsion for Aiﬁc in the sense of [RS71]. A generalized metric differs from a
usual metric in the sense it may have a sign. Let || Hio be the corresponding

classical Ray-Singer metric, associated to the analytic torsion for O0X. The
following result is established in Theorem 9.0.1.

Theorem 0.0.1. Given b > 0,c = 1/b%, we have the identity

s =113,- (0.7)

More generally, if G is a compact Lie group acting isometrically on the
above geometric objects, along the lines of [B95], we can define the logarithm

of an equivariant Ray-Singer metric log (HH?\ b), which one should compare

with the equivariant Ray-Singer metric log (|| ||i0) Take g € G andlet X, C
X be the fixed point manifold of X. Let ¢ (0,s) = Y. <f) (g ) —

Sk bm(”‘g) be the real and imaginary parts of the Lerch function [Le88].
Set
¢ ¢
0 _%
J(0) = 3 <3 (6,0) e (0, 0)) (0.8)

We denote by e (T'X,) the Euler class of T X, and by °J, (T'X|x, ) the locally
constant function on X, which is associated to the splitting of 7X|x, using
the locally constant eigenvalues of g acting on T'X|x,. In Theorem 9.0.1, we
also establish the following extension of Theorem 0.0.1.

Theorem 0.0.2. For g € G,b > 0,c = 1/b%, we have the identity

2.\ . r
g L) (g) =2 /X e (TX,) 0, (TX|x,) ¥ [g].  (0.9)

X0 p

A more general result is for the torsion forms Ten g4, (T7 M, g
which we define in chapter 6 as analogues in the hypoelliptic case of the ana-
lytic torsion forms of Bismut and Lott [BL0o95] T g0 (T M, g™, V¥, "),
normalized as in [BGO1], which were obtained in the context of standard
elliptic theory. The torsion forms Zen g0 (T M, g7X, V¥, g*') are secondary
invariants which refine the theorem of Riemann-Roch-Grothendieck for flat
vector bundles established in [BL095] at the level of differential forms. They
were constructed using the superconnection formalism of Quillen [Q85b]. We
make here a similar construction to obtain the hypoelliptic torsion forms
Zh,g,bo (THM7 gTXv vFv gF) .

Let us now explain our results on hypoelliptic torsion forms in more detail.
We consider indeed a projection p : M — S with compact fiber X, the flat
Hermitian vector bundle (F, v, gF) is now defined on M, and THM c TM
is a horizontal vector bundle on M. The Lie group G acts along the fibers

TX7 vF’gF)
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X. The equivariant analytic torsion forms Zen g.4, (TH M, gTX VI gF ) are
smooth even forms on S.

Put
1 aC HZ on xP
JO.x)=5 1> 220, —p) 5 +iy = (0,-p)—|,  (0.10)
2 o Js p! o Js p!
peven podd

07 (8,2) =J(6,z) - J(0,0).

The functions J (0, x) and °J (6, z) were introduced in [BGO1, Definitions
4.21 and 4.25, Theorem 4.35, and Definition 7.3].
Take g € G. Here OJg (TX\XQ) is now a cohomology class on My C M.

The class ch, (V00,57 50 52 ) ¢ @ (8) fder (S) is defined in
equation (8.1.1). It is a secondary class attached to a couple of generalized
metrics on ' (X, F) ~ H (X, F).

We now state a formula comparing the elliptic and the hypoelliptic torsion
forms, which is established in Theorem 8.2.1.

Theorem 0.0.3. For by > 0,c = 1/b3 and by small enough, the following
identity holds:

— Tengbo (TH M, g™ V5 gF) + Ten g0 (TP M, g7, VF, ")

_&lg (vf}(X,F)’ hgj-(X,F)’ h?o-(X,F)) _'_/X e (TXg)OJg (TX|Mq) TI‘F [g] -0

in Q' (S) /d (S). (0.11)

Note that except for the restriction that by has to be small, Theorems
0.0.1 and 0.0.2 follow from Theorem 0.0.3.

Let us also point out that in [BL91], given an embedding of compact
complex Kéhler manifolds ¢ : Y — X, and a resolution of a holomorphic
vector bundle n on Y by a holomorphic complex of vector bundles (£, v) on
X, we gave a local formula for the ratio of the Quillen metrics on the line
det H% (Y, n) ~ det H* (X, ). This problem seems to be of a completely
different nature from the one which is being considered here. In particular
all the operators considered in [BLI1] are self-adjoint. Still from a certain
point of view, the structures of the proofs are very similar, probably because
of the underlying path integrals, which are very similar in both cases.

The book is organized as follows. In chapter 1, we describe the results
obtained by Bismut and Lott [BL0o95] and Bismut and Goette [BGO1] in
the context of classical Hodge theory. In particular we recall the construc-
tion in [BL095] of the analytic elliptic torsion forms, which are obtained by
transgression of certain elliptic odd Chern forms, and we describe various
properties of Ray-Singer metrics on the line det H* (X, F).

In chapter 2, we recall the construction given in [B05] of a deformation of
classical Hodge theory on a Riemannian manifold X, whose Laplacian Ai’HC
is a hypoelliptic operator on T*X, this theory being also developed in the
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context of families. Also we give the general set up which will ultimately
permit us to establish the above three results.

In chapter 3, given b > 0, we discuss the Hodge theory for the hypoel-
liptic Laplacian, and we summarize the main properties of its heat kernel.
We discuss in detail the spectral theory of Aéﬁc and the behavior of the
spectrum as b — 0. We show that for b > 0, the spectrum is discrete and
conjugation-invariant. We prove that for b > 0 small enough, the results of
classical Hodge theory still hold, and also that except for the 0 eigenvalue,
the other eigenvalues have a positive real part and remain real at finite dis-
tance. Also we prove that the set of b > 0 such that the Hodge theorem does
not hold is discrete. The bulk of the analytic arguments used in this chapter
is taken from the key chapters 15 and 17.

In chapter 4, we construct hypoelliptic odd Chern forms, which depend
on two parameters, b > 0,¢ > 0, with ¢ = £1/b%. Also we show that their
asymptotics as t — 0 coincide with the asymptotics of the corresponding
elliptic odd Chern forms. These results are obtained using a new version of
the Getzler rescaling of Clifford variables [G86] in the context of hypoellip-
tic operators. The arguments of localization are obtained using probabilistic
methods and arguments from chapter 14. Let us also point out that in [L05],
one of us has studied in detail the asymptotics of the hypoelliptic heat kernel
on functions, also outside the diagonal, and obtained a corresponding large
deviation principle, in which the action considered in the formal represen-
tation (0.6) ultimately appears in an exponentially small term as t — 0.
Alternative localization techniques are given in chapters 15 and 17. These
techniques will play an essential role when studying the combined asymp-
totics for the heat kernel as b — 0, — 0.

In chapter 5, we study the behavior of the hypoelliptic odd Chern forms
when ¢t — 400 or b — 0. We study in particular the uniformity of the
convergence.

In chapter 6, using the results of chapters 4 and 5, for b > 0 small enough,
we construct the corresponding analytic hypoelliptic torsion forms, which are
obtained by transgression of the hypoelliptic odd Chern forms, and we con-
struct corresponding hypoelliptic Ray-Singer metrics for any b. The elliptic
and hypoelliptic torsion forms verify similar transgression equations, which
makes plausible Theorem 0.0.3, which asserts essentially that their difference
is topological. Also we show that the hypoelliptic Ray-Singer metrics does
not depend on b.

In chapter 7, we compute the hypoelliptic torsion forms which are attached
to a vector bundle. This chapter is based on explicit computations involving
the harmonic oscillator and Clifford variables. This computation plays a key
role in the proof of our final formula.

In chapter 8, we establish our main result, which was stated as Theorem
0.0.3, where we give a formula comparing the hypoelliptic to the elliptic
torsion forms. The proof is based on a series of intermediate results, whose
proofs are themselves deferred to chapters 10-13.

In chapter 9, we prove Theorems 0.0.1 and 0.0.2, i.e., we give a formula
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comparing the elliptic and hypoelliptic Ray-Singer metrics.

In chapter 10, given a cohomology class, we calculate the asymptotic ex-
pansion of the corresponding suitably rescaled harmonic forms as b — 0.

In chapter 11, we give the proof of an intermediate result associated with

the smooth kernel for exp (_tAi,HC) when b ~ V/t.

In chapter 12, we get uniform bounds on the heat kernel when b € [\/f, bo] ,
with ¢ €]0,1], and by > 0.

In chapter 13, we study the heat kernel for Ai,HC in the range b €]0, v/1],t €
10, 1]. Note here that local index methods are also developed in chapters 12
and 13.

In chapter 14, we establish an integration by parts formula for the hy-
poelliptic diffusion, in the context of the Malliavin calculus [M78]. Some of
the objects which appear there are the concrete manifestation of the dreams
described in [B05].

Chapters 15-17 contain most of the analytic machine used in the book.

In chapter 15, given a fixed b > 0, we develop the hypoelliptic estimates
for the operator A2 ##e- The noncompactness of 7*X introduces extra diffi-
culties with respect to Hérmander [Hor67, Hor85]. These are handled using a
Littlewood-Paley decomposition of the chapters of the given vector bundles
on annuli. We show that the spectrum of Ai’Hc is included in a region of
C which is limited by a cusplike boundary. Also we study the trace class
properties of adequate powers of the resolvent.

In chapter 16, we develop some of the key tools which are needed to
study the limit b — 0. Indeed when microlocalizing this asymptotics, we
are essentially back to the case of a flat manifold. In the case of flat tori, it
was shown in [B05, subsection 3.10] that the hypoelliptic operator A2 ;. is
essentially isospectral to (0 /4. In particular the spectrum of A2 o me is real.
Still the method used in chapter 17 to study the limit b — 0 consists in
writing our operator as a (2,2) matrix. Even in the case of the torus, this
method is nontrivial. The asymptotics as b — 0 of the matrix component
are determined by a function Jy (y,A), (y,A) € R x C, whose behavior is
studied in detail. The Bargman representation of the harmonic oscillator in
terms of bosonic creation and annihilation operators plays a key role in the
analysis.

Finally, in chapter 17, we study the asymptotics of the resolvent of the
operator A2 e a8 b — 0. This chapter is technically difficult. Its purpose
is to give a detailed analysis of the behavior of the resolvent of A, . as
b — 0. This means that the hypoelliptic estimates of chapter 15 have to be
combined with the computation of the resolvent as a (2,2) matrix. Here, in
the hypoelliptic analysis, as in chapter 15, we use Kohn’s method of proof
[Ko73] of Hérmander’s theorem [H6r67] to get a global estimate with a gain
of 1/4 derivative, and a parametrix construction in which we use a subelliptic
estimate with a gain of 2/3 derivatives in appropriate function spaces. One
should observe here that this subelliptic estimate is not optimal for large
|p|, but that in the (2,2) matrix calculus, projection on the kernel of the
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fiberwise harmonic oscillator which appears in (0.2) compensates for that.
Optimal hypoelliptic estimates have been obtained by one of us in [L06]. In
chapter 17, we also study the behavior of the heat kernel when b — 0,t — 0.

In the text, to make the book more readable, we often use results of
chapters 15-17, referring to those chapters for the complete proofs. This is
the case in particular in chapter 13. In principle, except for notation, the
various chapters in the book can be read independently, with the help of the
index of notation which is given at the end of the book.

In the whole book, the positive constants C' which appear in our estimates
can vary from line to line, even when the same notation is used for them. Also
in many cases, when dependence on parameters is crucial, the parameters
on which they depend are noted as subscripts.

The results contained in this book were announced in [BLO5].

In the whole book, if A is a Zs-graded algebra, if a,a’ € A, we denote by
[a,a’] their supercommutator.

The authors would like to thank Lucy Day Werts Hobor for her kind help
in the preparation of the final version of the book.



Chapter One

Elliptic Riemann-Roch-Grothendieck and flat vector

bundles

The purpose of this chapter is to recall the results on elliptic analytic torsion
forms obtained by Bismut and Lott [BL0o95] and later extended by Bismut
and Goette [BGO1] to the equivariant context.

This chapter is organized as follows. In section 1.1, we state elementary
results on Clifford algebras.

In section 1.2, we recall some basic results of standard Hodge theory.

In section 1.3, we give a short account of the construction of the Levi-
Civita superconnection in the context of [BL095].

In section 1.4, we review the relations of this construction to Poincaré
duality.

In section 1.5, we introduce a group action on the considered manifold.

In section 1.6, we give elementary results on Lefschetz formulas.

In section 1.7, we state the the Riemann-Roch-Grothendieck theorem for
flat vector bundles of [BL095].

In section 1.8, we explain the construction of the analytic torsion forms of
[BL095].

In section 1.9, we give the relevant formulas for the Chern analytic torsion
forms of [BGO1], which are simple modifications of the forms in [BL095].

In section 1.10, we describe the behavior of the analytic torsion forms
under Poincaré duality.

In section 1.11, we briefly review the construction of certain secondary
classes for flat vector bundles.

Finally, in section 1.12, we describe the determinant of the cohomology
of a flat vector bundle and the construction of corresponding Ray-Singer
metrics via the Ray-Singer analytic torsion.

1.1 THE CLIFFORD ALGEBRA

Let V be a real Euclidean vector space. We identify V' and V* by the scalar
product of V. If U € V', let U* € V* correspond to V' by the metric.

Let ¢ (V) be the Clifford algebra of V. Then ¢ (V) is spanned by 1,U € V,
with the commutation relations

UU +U'U = -2(U,U"). (1.1.1)
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IfU eV, set
e(U) = U* A —ig, U)=U" Ativ.  (1.1.2)
Then ¢(U),¢(U) lie in End®?? (A (V*)). Moreover, if U, U’ € V,
c(U),c(U)] = 2,0, W), e =200, (1.13)
c(U),e(U")] = 0.
By (1.1.3),
UA = % CU)+eU)), iy = % E(U) - (). (1.1.4)

Let £ = E; & E_ be a Zy-graded finite dimensional vector space, and
let 7 be the involution defining the grading, i.e., 7 = 1 on F4. The alge-
bra End (E) is Zs-graded, its even (resp. odd) elements commuting (resp.
anticommuting) with 7.

If A € End (FE), we define its supertrace Trg [A] by the formula

Trg [A] = Tr[TA4]. (1.1.5)
Of course, the definition of the supertrace extends to the case where E is
infinite dimensional, as long as A is trace class.

Let F' be another vector space. Then the exterior algebra A (F*) is also a
Zo-graded algebra. Let A" (F*) ®@End (E) be the Zy-graded tensor product
of the algebras A* (F*) and End (F).

As in [Q85b], we extend Tr, to a map from A (F*) ® End (E) into A" (F*),
with the convention that if « € A" (F*), A € End (E),

Trg [wA] = oTrg [A] . (1.1.6)

A basic fact [Q85b] is that the supertrace of a supercommutator vanishes.

1.2 THE STANDARD HODGE THEORY

Let X be a compact manifold of dimension n. Let (F, v ) be a complex
flat vector bundle on X, so that V¥ is the corresponding flat connection
of F. Let (€ (X,F),dX) be the de Rham complex of smooth sections of
A (T*X)®F, equipped with the de Rham map dX. Let H' (X, F) be the
cohomology of this complex. Then H' (X, F) is a finite dimensional Z-graded
vector space.

Let ¢g7X be a Riemannian metric on X, let g be a Hermitian metric
on F. Let dvx be the volume on X attached to g"*. Let (), (. x)ar De

the Hermitian product on A" (T*X) ®F which is associated to g7X, g¥'. We
equip Q' (X, F) with the Hermitian product ¢ F) defined by

(5.8} s e = /X () ey . (1.2.1)

Let d*¥* be the formal adjoint of dX with respect to the Hermitian product
(1.2.1). Set

DX =d* +d*. (1.2.2)
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Then D™ is a Dirac type operator, and D*? = [d¥, d**] is the correspond-
ing Laplacian, which we denote 0. Put

HY = kerd* Nkerd™**. (1.2.3)
Then
HY = ker DX = ker D2, (1.2.4)
Moreover, Hodge theory asserts that
HX ~ H (X,F). (1.2.5)

By (1.2.5), H" (X, F) inherits a Hermitian product g” () from the restric-
tion of ¢ (XF) to HX.
Put
w(VF,gF) = (¢") 7 V¥~ (1.2.6)

Then w (VF, gF) is a smooth 1-form on X with values in self-adjoint elements
in End (F). Set

Vi =vF 4+ %w (V¥ q"). (1.2.7)
Then V" is a unitary connection on F, and its curvature RY is given by
RF = —iw (V7 g")2. (1.2.8)
From (1.2.6), we get
VFw (VF, ") = —w (VF,5)°. (1.2.9)
From (1.2.7), (1.2.9), we obtain
vEuw (VF, ¢") =o0. (1.2.10)

This expresses the fact that Vi “w (VF,¢") (B) is a symmetric tensor in
A, BeTX.

Let VTX be the Levi-Civita connection on T'X, and let RTX be its cur-
vature. Let VA (T"X)®F gA(T"X)®Fu 1o the connections on A" (T*X) @ F
induced by VX and V¥, v,

Let e1,...,e, be a locally defined smooth orthonormal basis of TX. By
[BZ92, Proposition 4.12],

DX = c(e; VA_'(T*X)(@F’“—1 e w (VF, ¢ (). 1.2.11
>t v 3270w (V") (). 021

Let A be the horizontal Laplacian acting on Q' (X, F). Then when
acting on ' (X, F),

A =N g Tenz vAgl)vf)T%F (1.2.12)
i=1 ‘
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Observe that A" is not self-adjoint, except when ¢ is flat. Similarly, we

can defined the self-adjoint Laplacian AH" by replacing VA (T"X)®F hy
VA (T"X)8Fu

In the sequel, we use Einstein’s summation conventions. Let eq,..., e, be
an orthonormal basis of TX, let e',...,e™ be the corresponding dual basis
of T* X. The Weitzenbock formula says that

OX = —AH ¢ <RTX (ei,€5) ek,el> eiiejekiel

—w (VF,gF) (e:) Vé\i'(T*X)‘@F - eiie].VeFiw (VF,gF) (ej). (1.2.13)

Let SX be the Ricci tensor of X. Using the circular symmetry of RTX as
in [B05, eq. (3.48)], we can rewrite (1.2.13) in the form

0% = —Afu 4 <SXei,ej> eiiej — % <RTX (es,€5) ek,el> eiejiekiel

+ %Vi’"w (VF,gF) (e;) + iw (VF,gF)2 (e;) — VeFiw (VF,gF) (ej) €ic, .
(1.2.14)
In (1.2.14), VI (VF, g'') (e;) can be replaced by VEw (VF, g7') (e;).

1.3 THE LEVI-CIVITA SUPERCONNECTION

Now we summarize the main results of Bismut and Lott [BL095] in the con-
text of families. Our summary will necessarily be brief. We refer to [BL095]
for more details.

Let M, S be smooth manifolds. Let p : M — S be a smooth submersion
with compact fiber X of dimension n. Let TH M be a horizontal vector
bundle on M, so that TM = THM ®TX. Let ¢ be a Euclidean metric on
TX. Let (F, VF) be a flat vector bundle on M, let g* be a Hermitian metric
on F. We still define w (V¥, ¢%") on M as in (1.2.5). Let PTX : TM — TX
be the projection associated to the splitting TM = THM e TX. IfU € TS,
let U € TH M be the horizontal lift of U.

In [B86, section 1], a Euclidean connection VI on T'X was constructed,
which is canonically attached to (TH M,gTx ) This connection restricts to
the Levi-Civita connection along the fibers X.

Let RTX be the curvature of V. A tensor T was obtained in [B86, sec-
tion 1], which is a 2-form on M with values in T X, which vanishes identically
on TX xTX.Let U,V € TS,A € TX. Then by [B97, Theorem 1.1],

T U, v =-pPTX U, VT, T (U, A) = % (6") " (Lyng™ ) A.
(1.3.1)

In particular, if U € TS, A, B TX,
(T (U",A),B)=(T (U",B),A). (1.3.2)

Let (Q (X, F),d*) be the fiberwise de Rham complex of forms with co-
efficients in F'. Then Q (X, F') is a Z-graded vector bundle on S. We equip
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Q (X, F) with the L? Hermitian product ¢® %) associated to g7, g%,
which was defined in (1.2.1). In [BL095], Bismut and Lott constructed a
superconnection A and an odd section B of A" (T*S)®End (Q (X, F)) on
Q' (X, F), which are canonically associated to (THM, gTX,gF), and such
that
A% = —B2. (1.3.3)

The superconnection A is a special case of the Levi-Civita superconnection
of [B86] which is used in the proof of a local version of the Atiyah-Singer
index theorem for families. The construction of B uses in particular the flat
superconnection A" on Q' (X, F'), which is just the total de Rham operator
on M.

Set m = dim S. Let fi,..., fm be a basis of T'S, let f!,..., f™ be the
corresponding dual basis of T*S.

Let VA (T"X)®F be the connection on A (T*S)®A (T*X) along the
fibers X: R

IgA (T"X)RF _ oA (T"X)BF + <T( f,ei) ,->f‘lc(ei) + <TH7 > (1.3.4)
Let 1A (T"X)®Fu he the connection taken as before, replacing V¥ by V¢,

We use the notation of section 1.1. Also we still assume that eq, ..., e, is
an orthonormal basis of TX. Bismut and Lott [BL0o95, Theorem 3.11] gave
a Weitzenbock formula for the curvature A? of the superconnection A. The
following version of this formula was given in [B05, Theorem 4.55].
Theorem 1.3.1. The following identity holds:
1

2—_
A_4

N 1 N
<RTX (-,e:) ei,ej> c(e;) — ZVFw (VF,gF) (e;)C(e;)
- iw (VE, ") (e2) 1V£1_'(T*X)®F - iw (VF,gF)z. (1.3.5)

_|_

RN,

1.4 SUPERCONNECTIONS AND POINCARE DUALITY

We briefly summarize the results obtained in [BL095, subsection 2 (g)] on
the behavior of A, B under Poincaré duality. We will write the objects we
just considered with a superscript F', to emphasize their dependence on F.

Let o (T X) be the orientation bundle of TX. Let X be the Hodge operator

associated to g7X. Let v: Q (X, F) — Q" (X, F ®o (TX)) be such that
if s € Q' (X, F), then
vs = (—1)0HD/2ni X (1.4.1)
Then
V2 = (—1)nnh/2, (1.4.2)
By [BL095, eq. (2.106)] and by (1.4.2),
AP = (—1)ty AP 8Ty, BE (1)t BT Xy, (1.4.3)
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1.5 A GROUP ACTION

Let G be a compact Lie group. We assume that G acts on M and preserves
the fibers X, the vector bundle T# M, and also that the metric ¢g7¥ is G-
invariant. Also we suppose that the action of G on M lifts to F', and preserves
the flat connection V¥, and the metric g

Clearly G acts on Q' (X, F), so that if s € Q (X, F),

(gs)(x) =g.s (g_lx) . (1.5.1)
The action of G on ' (X, F) induces a corresponding action on H' (X, F').

The constructions we described before are obviously G-invariant. So the
operators which we described before commute with G.

Let M, be the fixed point set of g in M. Then M, is a smooth submanifold
of M, which fibers on S, with compact fiber X, the fixed point set of g in X.
Then X is a totally geodesic submanifold of X. Let gTXs be the restriction
of g7 to T X,. Clearly,

T" M|y, C TM,, (1.5.2)
i.e., the restriction of T M to M, defines a horizontal subbundle T M, on
M,

1.6 THE LEFSCHETZ FORMULA

We make the same assumptions as in sections 1.2 and 1.5 and we use the
corresponding notation. It is enough here to consider the case of a single
fiber X.

Take g € G. We define the Lefschetz number x, (F) by the formula

Xg (F) = TrH 50 ) (1.6.1)
Let Nx,,x be the orthogonal bundle to T'X, in TX|x,. Set
{=dim X,. (1.6.2)

Let e (T'X,) € H (Mg, Q) be the Euler class of TX,. Recall that g acts as a
flat automorphism of F|5z,. Then the Lefschetz fixed point formula asserts
that

()= [ erx,) T ). (1.6.3)

g
Of course g acts on o (T'X). Moreover, on X, the action of g on o (TX)
is given by

Ilo(rx) = (-1)" . (1.6.4)
Set
Li(9)=x4(F), L_(9)=(-1)"xg (F®o(TX)). (1.6.5)
By Poincaré duality,
Li(9)=L-(9). (1.6.6)

Whenever necessary, we will write L (g) instead of Ly (g). Note that since
e (I'X,) is nonzero only if £ is even, (1.6.6) is compatible with (1.6.3), (1.6.4).
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1.7 THE RIEMANN-ROCH-GROTHENDIECK THEOREM

We make the same assumptions as in sections 1.3 and 1.5 and we use the
corresponding notation. We define the 1-form w (VF,gF) as in (1.2.5).
In the sequel, we set

h(z) = ze® . (1.7.1)

Let ¢ be the endomorphism of A° (T*M) given by a — (2r) 98/ o,
Note here that with respect to the conventions of [BL0o95] and in [BGO01],
the normalizing factor is now 27 instead of 2iw. Our conventions fit instead
with the conventions in [BG04]. Of course we extend the definition of ¢ to
any manifold.

Take g € G. By [BGO1, Proposition 3.7], whose proof uses in particular
(1.5.2), the connection VI preserves T'X,. The restriction of VI to T X,
is just the Euclidean connection VX4 on T X, which is canonically attached
to (TH Mgy, g"¥7). Let RTXs be the curvature of V9. Let e (T Xy, V)
be the closed Euler form in Chern-Weil theory, which represents the Euler
class of T' X, associated to the Euclidean connection V?Xs. Then

RTXg
e (TX,, V') =Pf [ o

} if dim X, is even, (1.7.2)
=0 if dim X is odd.

Then e (T'X,) is the cohomology class of e (T Xy, VI¥s).
Let hy (VF,gF) be the odd form on M|,

hyg (VF,gF) = (27T)1/2 <pTrF [gh (w (VF,gF) /2)] . (1.7.3)

By [BL095, Theorems 1.8 and 1.11] and [BGO1, Theorem 1.8], the form
hg (VE,g¥) is closed, and its cohomology class does not depend on the
metric g*'. This class will be denoted hy (V). Note that

hg (vf*,gf*) = —hy (VF,g"). (1.7.4)

Recall that A is a superconnection on Q (X, F), and that B is an odd
section of A" (T*S) ®End (Q (X, F)). First we state a result established in
[BL095, Theorem 3.15] and in [BGO1, Proposition 3.22]. Recall that x4 (F')
is a locally constant function on S. The heat kernel exp (—A?) is fiber-
wise trace class. Now we use the formalism of section 1.1. The supertrace
Trg [g exp (—AQ)] is a smooth even form on S.

Proposition 1.7.1. We have the identity
Trs [gexp (—4%)] = x4 (F). (1.7.5)

Recall that A’ is the flat superconnection on ' (X, F') which was used in
[BL0o95] to define A and B. As explained in section 1.3, A’ is just the de
Rham operator on the total space of M.
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Definition 1.7.2. Put
hg (A’, gﬂ'<X>F>) = (21)"/? oTu, [gh (B)] . (1.7.6)
The forms in (1.7.6) are called elliptic odd Chern forms.
By (1.4.3), we get
hy (A/th'(X,F)) = (—1)™ ', (A/7gQ~(X,f*®O(TX))) . (1.7.7)

From (1.7.7), we deduce in particular that if the metric g is flat, X is
oriented, n is even, and g preserves the orientation

hg (A’,gﬂ'<X>F>) ~0. (1.7.8)

For t > 0, we replace the metric g7X by gI'* = g7 /t. Here th'(X’F)

denotes the Hermitian product on €' (X, F') in (1.2.1) which is associated
to gI' X, g¥". We denote by Ay, B; the objects we just considered, which are
associated to gf .
For a > 0, let ¢, : A (T*S) — A (T*S) be given by
Yok = at®8 /2, (1.7.9)
Let N be the number operator of Q (X, F), i.e., the operator acting by
multiplication by k£ on Q¥ (X, F). For t > 0, set

Cy =tN2A= N2, Dy = tNV2B=N/2, (1.7.10)
Then by the results in [BL095], we get
Cy = 7 "WitAwy, Dy = b, "VtByiby. (1.7.11)

Recall that H' (X, F) is a Z-graded vector bundle on S, equipped with
the flat Gauss-Manin connection V¥ (X:F)and with the metric g (X:F)
defined after (1.2.5) . We define the odd closed form h, (VH (X:F) gH (X.F))
as in (1.7.3), by simply replacing Tr by Trg, so that this form is simply the
alternate sum of the corresponding forms for H' (X, F).

For t > 0, let ay be a smooth form on S. We will write that as ¢ — 0,
ap =0 (\/1_5) if for any compact K C S, and m € N, the sup over K of the
derivatives of order < m is dominated by CK)m\/l_f. A similar notation will
be used when ¢t — 4-o00.

Now we state a result established in [BL095, Theorems 3.16 and 3.17] and
in [BGO1, Theorems 3.24 and 3.25].

Theorem 1.7.3. The forms hy (A’,gtg.(x’F)) are odd, closed, and their

cohomology class does not depend on t > 0. Moreover, ast — 0,

hy (A’,g?'(X’F)):/X ¢ (TX,, V%) by (VF,gF) + 0 (V). (1.712)

g9

Ast — o0,
hy (A’,g?'(X’F)) —n, (VH'<X7F>,gH'<XvF>) +o (1/\/5) . (17.13)
In particular,

hg (vH'<X>F>) - /X e(TX,) hg (VF) in H* (S,R). (1.7.14)

g
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Definition 1.7.4. For ¢t > 0, set

: N
A 1 QU(XLF) /
hy (A .9 ) = ¢Trg {2 gh (B)} . (1.7.15)

Using (1.7.5) and proceeding as in (1.7.7), we get

. n (X F* @0 n
By (A g ) 4 (<) gy (A7, g™ (VT 20T0)) = 2o, (F). (17.16)
Put

Xy (F) = (=1) T CoF [g] (1.7.17)
j=0
Then xj, (F) is also a locally constant function on S.
Now we recall the results established in [BL095, Theorems 3.20 and 3.21]
and in [BGO1, Theorems 3.29 and 3.30].

Theorem 1.7.5. The form hg\ (A’,g?(X’F)) 1s even. Moreover,
A (A Q(X,F)

a , Q'(X,F) _ hg ( vgt

o (A gt ) =d : (1.7.18)
Ast — 0,

- n

h) (A’,g? (X’F)) = X, (F) + 0 (\/{5) . (1.7.19)

Ast — +o0,
Q' (X,F 1
h) (A’,gt ( >) = 3, (F)+0 (1/\/?5). (1.7.20)

1.8 THE ELLIPTIC ANALYTIC TORSION FORMS

Now we follow [BL095, subsection 3 (j)] and [BGO1, subsection 3.12].
Definition 1.8.1. Set

+oo . 1
Ty (T M, g7, V7, gF) = — / ry (41,98 07) = Sx (F) R (0)

_ (%Xg (F) - %x; (F)> W (ivi/2) %. (1.8.1)

By Theorem 1.7.5, we find that the integral in the right-hand side of (1.8.1)
is well-defined. The following result was established in [BL095, Theorem 3.23]
and in [BGO1, Theorem 3.32].

Theorem 1.8.2. The form Ty, 4 (TH]W7 gTX,VF,gF) 1s even. Moreover,

dTh,g (T M, g™,V ") = ; e (TXy, V™) hy (VF, g")

—h, (VH‘X’F),gH'(X’F)) . (1.8.2)
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The forms Tp,,4 (TH M, g, V¥, ") are called analytic torsion forms.

Remark 1.8.3. Suppose that the connected components of X, have odd di-
mension. This is true if X is orientable, and either X is odd dimensional and
g preserves the orientation, or X is even dimensional and g reverses the ori-
entation. If H* (X, F') = 0, by Theorem 1.8.2, 7}, 4 (THM7 g™, VF,gF) isa

closed form on S. Its cohomology class does not depend on (TH M, g7, g*').

Remark 1.8.4. Let (DX)_2 be the inverse of D2 acting on the orthogonal
bundle to ker DX in Q' (X, F). For s € C,Re (s) > dim (X) /2, set

9, (s) = —Trs [N (DX’Q)_S} . (1.8.3)
Then 94 (s) extends to a meromorphic function of s € C, which is holomor-

phic near s = 0. By definition, the equivariant Ray-Singer analytic torsion
[RS71], [BZ92, BZ94] of the de Rham complex (0 (X, F),d™) is given by

% (0). It was shown in [BL095, Theorem 3.29] that
10¢
Thg (T7 M, QTX,VF,QF)(O) = 53—; (0). (1.8.4)

In the sequel, when g = 1, we will use the notation 9 (s) instead of ¥; (s).
For t > 0, set

by = oTrs {g (NTX - %) % (Bt)] . (1.8.5)
By (1.7.5) and (1.7.15), we get
by = h)) (A’,g?(X’F)) - gxg (F). (1.8.6)
By (1.7.19), as t — 0,
bo=0(Vi), (1.8.7)
and by (1.7.20), as t — —+o0,
b — %X; (F) = Tx (F) + O (1/VA). (1.8.8)

Also, (1.8.1) is equivalent to

—+oo
7;1,9 (THMngxvvFng) = _/ <bt
0

_ (%xg (F) - %x; (F)) (h’ (i\/z_f/Z) W (0))) %. (1.8.9)

Observe that by [BGO1, eq. (9.71)]
[ (i) w @) 2 [ (ivi)

1 +oo +oo
_ / (e —1) dt +/ o—t/adt 1/ ot/ gy
0 13 1 t 2 )

=T/ (1) +2(log(2) —1). (1.8.10)

+oo
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By (1.8.9), (1.8.10), we get
1 “+o00
7—h,g (THM7 ngvvFng) = _/ btﬂ - / (bt - boo) %
0 1

~ 1)+ 208 () = 1) (336 () = o (1) . (181

1.9 THE CHERN ANALYTIC TORSION FORMS

Now we follow [BGO1, subsections 2.7 and 3.17], where the appropriate nor-
malization of the analytic torsion forms was established.
If f(z) is holomorphic, put

(Ff)(z) = x/o f(4s(1 = s)2?)ds, Qf (z)= /0 f(4s(1 — s)z) ds.

(1.9.1)

Then Ff (z) is an odd function of z. An easy computation given in [BGO1,
eq. (2.99)] shows that

+oo

Z 221’—%21’—1. (1.9.2)
= (2p —1)!
Observe that
+oo  op—1
2 x
pe” = (1.9.3)
—1)
= -1
The coefficient of z2P~! in (Fe’) () is obtained from the corresponding coef-
ficient in the expansion of ze®” by multiplication by the factor 2272 %.

We can then define (Few)g (VF,gF) as in (1.7.6), by simply replacing the
function h by Fe®. As in [BGO1], we will use the notation

chy (VF,g") = (Fe®), (VF,g"). (1.9.4)

Recall that for a > 0, ¢, was defined in (1.7.9). Let @ € End (A" (T*5))
be given by

1
Qo= / Vys(1—s)uds. (1.9.5)
0
If a € A* (T*S), then
(p)?*
Qu= e (1.9.6)

As in [BGO1, Definition 3.46], set
Teng (T M, g™ V", ¢") = QT o (T M, g™, V", g"). (1.9.7)
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The even forms Ten g (TH M, g7X, V¥, g¥') are called the Chern analytic
torsion forms. In [BGO1, Theorem 3.47], it is shown as a consequence of
(1.8.2) that

ATen,g (THM, g™ x, V", g") =/X e (TX,,VT¥9)chg (V7 g")

e (VH~(X,F)7gH'(X,F)) . (1.9.8)

1.10 ANALYTIC TORSION FORMS AND POINCARE DUAL-
ITY

As explained in [BL095, section 2 and Theorem 3.26], the above constructions
are compatible with Poincaré duality. In particular by [BGO1, eq. 7.24] or
by (1.7.16),

Tho (THM’ g%, vf*@)o(TX)’gF*@o(TX))

= (1" T, (THM, g™,V gF) . (1.10.1)

Of course, a similar identity holds for the Chern analytic torsion forms.

1.11 THE SECONDARY CLASSES FOR TWO METRICS

Let g5, 91 be two smooth g-invariant Hermitian metrics on F. In [BL095,
Definition 1.12], [BGO1, Definition 1.10], a secondary class h, (VF,gg, glF) €
O (M) /dY (M,) was defined such that

dhy (V.98 91) = hg (V. 07) — hy (VF,9{) - (1.11.1)
Let £ € [0,1] — g/ be a smooth family of Hermitian metrics which inter-

polates between g&" and gf'. An explicit representative of Eg (VF N ) is
given by

~ ! 1 —10gF 1
By (V) :/ T |:g§ (oF) " Zew <§w (V7. ¢) (VF,geF)ﬂ de.
’ (1.11.2)
The class of h, (VF,g") in Q (M) /dSy (M,) does not depend on the in-
terpolation.

In [BGO1, Definition 2.38 and Theorem 2.39], the class &1; (VE, g, 9f) €
O (M) /dY (My) was defined by a formula similar to (1.11.2) such that

deh, (VF,gf, gF") = chd (VF, gF) — ch2 (VF, g8) . (1.11.3)
A representative of ch; (VF N ) is obtained by a formula similar to

(1.11.2), by replacing h by Fe'. Recall that @ € End (A" (T*M,)) can be
defined as in (1.9.5). By [BGO1, Theorem 2.39],

ch, (VF, g8, gF') = Qhy (Vg8 gT) . (1.11.4)
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Let us also observe that one can as well replace the metric gt by —g%’
while still preserving the above results. Of course w (V¥ g*') is unchanged
when replacing ¢¥ by —g¢¥'. The above formulas are therefore unchanged
when replacing g* by —g¥.

In [BL095, Theorem 3.24] and [BGO1, Theorem 3.34], the dependence in
Q (S) /dY (S) of Th g (THM, g™ %, VE, g¥) T g (THM, g™, VE, g¥) on
the given data is easily expressed in terms of the above classes, as a conse-
quence of (1.8.2), (1.9.8).

1.12 DETERMINANT BUNDLE AND RAY-SINGER METRIC
If \ is a complex line, let A~! be the corresponding dual line. If E is a
complex finite dimensional vector space, set

det E = A™™(E). (1.12.1)

More generally, if £ = @~ E* is a complex finite dimensional Z-graded
complex vector space, put

det ' = Q) (det EV) " (1.12.2)
=1
Put
A(F) = det H' (X, F). (1.12.3)

Note that by Poincaré duality,
AE* @ o(TX)) = (A (F)V"" (1.12.4)
Recall that in section 1.2, we defined the metric g %) on H' (X, F)
via the identification HX ~ H" (X, F). Let | \i( ) be the corresponding Her-
mitian metric on A (F'). The Ray-Singer metric || ||i( ) on the complex line
A (F) is then defined in [BZ92, Definition 2.2] by the formula

oY
ey = e (55 ©) 13- (1125

Now following [BZ94, sections 1 and 2] and [B95, sections 1 and 2], we
extend the above formalism to the equivariant situation.

Let G be the set of equivalence classes of complex irreducible representa-
tions of G. An element of G is specified by a complex finite dimensional vector
space W together with an irreducible representation py : G — End (W).
Let xw be the character of the representation yu .

Recall that G acts naturally on H* (X, F) or H (X, F ® o (T X)). We have
the isotypical decomposition

H (X,F) = @) Homg (W,H (X,F)) @ W. (1.12.6)
wed
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Ifwe @, set
Aw (F) = det (Homg (W, H (X, F)) @ W). (1.12.7)
Then Aw (F) is a complex line. Put
AF)= P dw (F). (1.12.8)
WeG

The vector space A (F) is called an equivariant determinant.
Recall that HX = ker (0X. The identification HX ~ H" (X, F) is an iden-
tification of G-vector spaces. For W € G, let | |?\W( ) be the corresponding

Hermitian metric on Ay (F).
Set

log (\ |§(F)) = ZAlog <| \iW(F)) ® rivl[//[/ (1.12.9)
wed

Recall that ¥, (s) was defined in (1.8.3).

Definition 1.12.1. Put
1 o) =log (113 9 (0 1.12.10
og (HIxry ) =1og (I [xr) ) + 7 (0). (1.12.10)

Note that (1.12.9), (1.12.10) are formal symbols, which depend on the
choice of a g € G. In particular log (H ||i(F)) is by definition the logarithm

of the equivariant Ray-Singer metric.

By the methods of [BL095, section 3], one deduces from (1.8.2), (1.8.4) the
anomaly formulas for Ray-Singer metrics which were established in [BZ92,
BZ94]. Since H' (X, F) is equipped with the flat connection VH 5F) | we

can define the variation dlog <|| Hi( F)) with respect to this flat connection.
As explained in [BL095, eq. (3.138)], these formulas take the following form.

Theorem 1.12.2. The following identity of 1-forms holds on S':

1 1
5dlog (H Hi(m) (g):/ e (TX,y, Vi) " {giw (VF,gF)]. (1.12.11)
X.q



Chapter Two

The hypoelliptic Laplacian on the cotangent bundle

The purpose of this chapter is to recall the main results in Bismut [B05] on
the hypoelliptic Laplacian and also on the families version of this operator.

This chapter is organized as follows. In section 2.1, we recall the construc-
tion of the exotic Hodge theory given in [B05]. This construction depends in
particular on the choice of a Hamiltonian H.

In section 2.2, we give the Weitzenbock formula for the corresponding
hypoelliptic Laplacian.

In section 2.3, we state the results in [B05] according to which this new
Hodge theory is a deformation of classical Hodge theory.

In section 2.4, we describe the results in [B05] in the context of families.
The relevant object is a superconnection.

In section 2.5, we give the Weitzenbock formula for the curvature of the
relevant superconnection. This is still a hypoelliptic operator. We also give
other remarkable identities established in [B05], which will be needed when
using local index techniques.

In section 2.6, we relate this curvature to the curvature of the elliptic
Levi-Civita superconnection considered in section 1.3.

In section 2.7, we briefly consider the issue of Poincaré duality.

In section 2.8, we give a 2-parameter version of the new superconnection,
in which both the give metric and the Hamiltonian are rescaled. This 2-
parameter deformation will play an essential role in the proof of our results
on Ray-Singer metrics and on analytic torsion forms.

Finally, in section 2.9, we introduce a group action.

Throughout the chapter, we make the same assumptions as in chapter 1,
and we use the corresponding notation.

2.1 A DEFORMATION OF HODGE THEORY

We make the same assumptions as in section 1.2 and we use the correspond-
ing notation. In particular X denotes a compact Riemannian manifold of
dimension n.

Here we follow [B05, section 2]. Let 7 : T*X — X be the cotangent bundle
of X. Let p be the generic element of the fiber 7*X. Let § = 7*p be the
canonical 1-form on 7*X, and let w = d* X6 be the canonical symplectic
2-form on T*X. Let dvp+x be the symplectic volume form on 7T*X.

If H: T*X — R is a smooth function, let Y** be the corresponding
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Hamiltonian vector field, so that
AT XH +iynw = 0. (2.1.1)

We will often identify TX and T*X by the metric g”*. The connection
VTX induces a connection V"X on T X. We still use the notation 7*X for
the total space of this vector bundle. The connection VI ¥ induces a hori-
zontal subbundle THT*X ~ m*T X of TT*X, so that we get the splittings

TT*X =7* (TX & T*X), TT*X=7"(T"'X®TX). (21.2)

U eTX,let UY € THT*X ~ TX be the lift of U.
By (2.1.2), we have the isomorphism of Z-graded bundles of algebras

A (T'T*X) =7 (A (T*X) BN (TX)). (2.1.3)

Let e1,...,e, be a basis of TX, let e',...,e" be the associated dual basis
of T*X. Let €1,...,¢, and €',...,e" be other copies of these two bases. By
(2.1.2), €1,...,en,€,...,e" is a basis of TT*X, and e!,... e" €1,...,¢&, is

the corresponding dual basis of T*T*X. Set
Ao = €' Nigi, to = € A, (2.1.4)

Let (Q (T*X,n*F), dT*X) be the de Rham complex of smooth forms on
T*X with coefficients in 7*F which have compact support. The operator

iR/TX\p acts on Q (T*X,7*F). We have the classical identity [B05, Proposi-
tion 2.5]
dTX = ¢ AVATTTTXBE Lo A Vs + i g (2.1.5)
Put

f=<} ;) F:<(1) _21> f:G é) (2.1.6)

Then f is a scalar product on R?, and F is an involution of R2, which is an
isometry with respect to f. Its +1 eigenspace is spanned by (1,0), and the
—1 eigenspace is spanned by (1, —1). Note here there should be no confusion
between the flat bundle F' and the morphism F'. Also § is a symmetric matrix,
and, moreover,

f=[F. (2.1.7)

Using the identifications in (2.1.2), we observe that f defines a metric
g’T"X on TT*X given by
TX
gl X = <1|TX QQT*X> . (2.1.8)

Then the volume form on T*X which is attached to g77 X is just dvp-x.
Let p : TT*X — T*X be the obvious projection with respect to the splitting
(2.1.2) of TT*X. Then if U € TT*X,

<U7U>QTT*X = <7T*U,7T*U>9TX +2<7T*U,pU> +2<pU7pU>gT*X . (219)
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Similarly, we will identify F to the g77 ¥ isometric involution of TT*X,
Tx\ 1
po (Urx 2(6™)7) (2.1.10)
0 —llrx

Then F acts as F~1 = F on A" (T*T*X).
Let r : T*X — T*X be the involution (z,p) — (z, —p).

Definition 2.1.1. We denote by g (7" X7 F) the Hermitian product on
Q (T*X,7*F) which is naturally associated to the metrics g7 X and g%
Let u be the isometric involution of " (T X, 7*F) for () a:(r+x.xr), Which
is such that if s € Q (T* X, n*F),

us (z,p) = Fs(x,—p). (2.1.11)
Let h® (T" X" F) he the Hermitian form on Q (T*X, 7*F),
(8,8 ) g (e xomemy = (U8, 8") g (re x,mv ) - (2.1.12)

Let H : T*X — R be a smooth function which is r-invariant. If s, s’ €
O (T*X,n*F), set

<S,S/>h§:(T*X,w*F> = <U€_2H

s,s’>gﬂ.(T*x,ﬂ*F) . (2.1.13)

(I"X.m"F) ig still a Hermitian form on Q (T*X, 7F).

Then hH

Let {77°X be the symmetric bilinear form on TT*X given by

X g™ Alp-x (2.1.14)
= Ul 0 ) 1.

By (2.1.7), we get
FrTx — gTT" X, (2.1.15)
Set
vs (s,p) = s (x,—p). (2.1.16)
Let f& (7" X7 F) be the Hermitian form on Q' (T*X, 7* F)) which is naturally

associated with f77°X and ¢%. By (2.1.12), (2.1.13), (2.1.15), (2.1.16), we
get

(5,8 ) pacrex.mery = (U8, 8 ) oo xmepy (2.1.17)
(s, s/>h§i-<wx,w*p) = <vei2Hs, s/>fQ.<T*X7,r*F) .
Set
dE] X = et X e, (2.1.18)
Definition 2.1.2. We denote by EZ? the formal adjoint of d%’:X with
respect to h (T X7 F) If H = 0, we will write EZ:*X instead of 83:7?
Then one has the obvious,

(2.1.19)

Moreover, d¢ 27—( is the formal adjoint of dT X with respect to f)Q (I X" F),
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Definition 2.1.3. Set

1 /- x * 1 /- x .
Apm =5 <d¢,2H +d" X) v Bem=35 <d¢,2H —d" X) ;o (2.1.20)
1 /—r*x x 1 /—rx x
Q[¢77-{ = 5 <d¢,H + d,{[ X) s %dﬂ'{ = 5 <d¢,H — d,{[ X) .
Clearly,
Ay 1 = e_HA¢7H€H, Byn = e_HB¢7H€H. (2.1.21)
By [B05, Theorem 2.21], Ag 5 (resp. By.z) is b3, ™ ) self-adjoint (resp.
skew-adjoint), and A 3¢ (resp. B 3¢) is h* 77X F) gelf-adjoint (resp. skew-
adjoint).

We denote by‘més,w%;s,n the operators obtained from Ay 1, By n by
replacing €’ by €' — €;, iz by e, for 1 < i < n, while leaving unchanged
the other annihilation and creation variables. Equivalently,

91;5)7_[ = e*“oﬂ(ﬁﬁe“o, %;5,7-[ = 67u0%¢)H6M0. (2122)

We will not give the explicit expressions for these operators. They can be
found in [B05, section 2]. The operators 2, ,/, B, ,, are associated as before
to the operators

dg}f’ = e Hogl Xemo, Eiil = e*“oaiie“o. (2.1.23)

Let ¢TT"X = ¢7X @ ¢7"X be the obvious natural metric on TT*X =

TX & T*X. Let ¢ (T" X7 F) he the corresponding Hermitian product on

Q (T*X,7*F). Let h* (T"Xm"F) be the Hermitian form on Q (T*X, 7*F)
such that if s,s" € Q (T*X,7*F), then

(5,8 Yy cre ey = (18,8 )y v (2.1.24)
By [B05, eq. (2.120)],
<S, Sl>hﬂ'(T*x,ﬂ—* F) = <€_IL0$7 6_'uo S/>hQ.(T* X, 7% F) - (2125)

By [B05, Theorem 2.30], the operator 2 ;. (resp. B ;.) is RS (T X, F)
self-adjoint (resp. skew-adjoint).

Remark 2.1.4. In [B05, subsection 2.12], for b € R*, an extension of the
above constructions is given, these constructions themselves corresponding
to the case b = 1. Indeed, in (2.1.6), we replace f, F,f by the more general
fv, Fp, fp given by

fo= <ll’ 222) ; Fy, = <(1) Eﬁ) s o= (2 8) ~ (2.1.26)

The objects corresponding to Ag 3, Bs 1, As 1, Bex will now be denoted
with the subscript ¢, instead of ¢. The definition of Qlim,H’ %fm,ﬂ is slightly
more involved and is given in [B05].

For a € R, let 7, : T*X — T*X be the map (z,p) — (z,ap). Let
Ky, :Q(IT*X,7*F) - Q (T*X,n*F) be the map s(x,p) — s(z,ap). The
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difference between K, and r} is that K, has no action on the exterior alge-
bra. Put

Ho = 1H. (2.1.27)
Then by [B05, Proposition 2.32],
T* X T*X %1 =T*X =T"Xr 4 1
d =ryd’ Ty, dg, 1 = TZd@Hl/Jb J
Agy =15 As w70 By =145 Bow, (2.1.28)
/ / —1 / / -1
Ay, 1= Koy 2, , K oo = KoBy g, Ky

2.2 THE HYPOELLIPTIC WEITZENBOCK FORMULAS

From now on, we use the notation

H=3 p*. (2.2.1)
For c € R*, set
He = g Ip|? (2.2.2)

We will often distinguish the + case, with ¢ > 0, and the — case, with ¢ < 0.

Recall that Y7 is the Hamiltonian vector field on T* X associated to H.
Let Lyx be the associated Lie derivative operator acting on Q (T*X, 7*F').
Then we have the easy formula

Ly» = VQLT*X)@A-(TX@F + €le; + <RT*X (p, €i) p, ej> iz, (2.2.3)

If p € T* X, we will write instead p when we want to emphasize that p is
considered as a vertical 1-form, or as the corresponding radial vector field.
For example, Lz denotes the Lie derivative operator which is associated to
the fiberwise radial vector field p. We have the easy formula

Ls =Vp+ejia. (2.2.4)

Let AV be the standard Laplacian along the fibers of T*X. Now we state
the Weitzenbock formulas of [B05, Theorem 3.4].
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Theorem 2.2.1. The following identities hold:

1 1 o
A% gpe = 1 (—AV +2cLy — 3 (R™ (e ej) ex, 1) elejigkigz>
1 L oF F _F 1 F _F
-5 LyHC+§€ zaveiw(v . g )(ej)+§w(V . g )(ei)Va ,

1
A 4o = 1 (—AV + A p)* + ¢(26iia — n)
L orx PG
~3 (R"™ (e5,¢;) ex, 1) €' €ignia
1 I 1 P F (yHe L. oF F F
-5 YHC+§w(V . g )( )—!—Eez@-Veiw(V .g") (e)
1 F F
+ v (V . g )(ei) Vs |, (2.2.5)
1
Apre = 7 <_AV + ¢ |p® + ¢ (281 — n)

1 o .

= (BT (ei,ej) exser) (¢ = @) (¢ = &) Zek+€“eg+a>
1 T OB F

) (vﬁ,ﬁf R (C(RTX (p, ) prej)

1 . 1
+ §v£w (V¥ g") (ej)> (€' =€) e, 10 + v (VF,g") (e2) Vg).

By using Hérmander’s theorem [H6r67], it is shown in [B05, Theorem 3.6]
that if ¢ # 0, if v € R is an extra variable, the operator % — Ai,H is
hypoelliptic.

2.3 HYPOELLIPTIC LAPLACIAN AND STANDARD LAPLA-
CIAN

Put

0y = (—AV +2L5 - <RTX (eir€5) en, er) eiejigkig> , (2.3.1)

1
2

| =

by = — (iLYH + %eiingfiw (VF,gF) (ej) + %w (VFagF) (ei) V’a‘) .

Then by [B05, Theorem 3.8], which itself is deduced from Theorem 2.2.1, we
find that for b € R,

o | b (2.3.2)

2
2A¢b,ﬂ:7’( == ﬁ b
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Recall that o (T X) is the orientation bundle of TX. This is a Zs line bun-
dle, which we identity to the corresponding obvious complex flat Euclidean
line bundle.

Let ®7"X be the Thom form of Mathai-Quillen [MatQ86] on the total
space of T* X which is associated to the connection VZ~ X . The n-form &7 X
is a form on T*X with values in 7*0 (T'X), which is closed and Gaussian
shaped along the fibers of T*X. To fix the normalization of ®7 X unam-
biguously, let us just say that

x 1
(I)T X _ W exp (— |p|2 +.. ) . (2.3.3)

In (2.3.3), ... denotes explicit differential forms.
Let j : Ty X — T*X be the embedding of one given fiber into the total
space of T*X. Let  be a n-form of norm 1 along 7 X. Then by [MatQ86],

T 1
jreT X = —7z ©XP (— \p|2) 7. (2.3.4)
By construction,
mdT X =1 (2.3.5)

Note that (2.3.5) follows from (2.3.4).
In the + case, Q (T*X,7*F) now denotes the vector space of smooth

sections s of A" (T*T*X) @7* F on T* X such that s exp (— p|? /2) lies in the

Schwartz space, i.e., for any k,m € N, |p\’c V™sexp (— \p\Q /2) is uniformly

bounded on T*X. We identify Q (X, F') to its image in Q (T*X,n*F) by

the map s — 7*s. Then Q (X, F) is the image of the projector QTX :
QO (T*X,7*F) — Q (T*X,7n*F) given by

QU Xp =, (ﬂ A @T*X) . (2.3.6)

In the — case, Q (T* X, 7n*F) denotes the vector space of smooth sections

s of A (T*T*X)®n*F on T*X, such that exp (\p|2 /2) s lies in the cor-

responding Schwartz space. We identify ' (X, F ® o (T X)) to its image in

Q*" (T*X,7*F) by the map s — m*s A ®T X, Then Q (X, F ® o(TX)) is
the image of the projector Q¥ X : Q (T*X,n*F) — Q (T*X,n*F),

QT X = (mpB) ndT X, (2.3.7)

By [B05, Theorem 3.11], the operators ay,a_ are semisimple. Moreover,

the kernel of a is spanned by the O-form 1, and the kernel of a_ by the

n-form ®7"X. Finally, the operators Q1 X, QT X are simply the projectors

over the kernels of a4, a_ with respect to the splitting
O (T"X,n*F) =keray ®Imay. (2.3.8)

Let a;' denote the inverse of ai acting on Imax. As observed in [B05,
subsection 3.7], by maps ker ay into Imay.

In the sequel X will be the standard elliptic Laplacian acting on Q' (X, F)
for¢ > 0,0n Q (X, F ®o(TX)) for c < 0. Now we state an important result
established in [B05, Theorem 3.13].
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Theorem 2.3.1. The following identity holds:

. . 1
QL ¥brazeLQl X = EDX. (2.3.9)
Now we denote by " (T*X,7*F) the vector space of smooth sections of
A (T*T*X) &n*F which are square integrable with respect to dvp-x. By
[BO5, Propositions 2.36 and 2.39],

PR R N
B, in = 3 (c(éi) Ve £¢(p)) — 3 (@(es) —c(e)) V2 (T XOSF,

+ (C (62) - 6(?)) w (VF,gF) (62) - <(el — é\l) (ej — /6\]) iek+€k

RN,

b
4
— g, qarie,qar (€5 — ’é@) (R™ (es,¢5) prex) . (2.3.10)

We rewrite (2.3.10) in the form
1

B, wr = — 5 (€() Vo £ (p)) + H +bJ. (2.3.11)
Put
1
as = 5 (<Y + P+ 28z ).
Y T |
By = — (ivl;g T"X)®Fu | Sw (VF’gF) (ei)V’eﬁ> , (2.3.12)
1 P~ Py .
Y= (RTX (e, ;) enser) (€ =€) (€7 —€)) iey yoric, et

1 P~ -
— (j: (R™ (p,ei) p,ej) + EVfiw (V¥ g") (ej)> (€' —€)ic,1e-
By [B05, Theorem 3.8],
ar | Px
22U Ly = T e (2.3.13)
The operators a4 are self-adjoint. The fiberwise kernel of the restriction of
a4 to fiberwise forms is 1-dimensional and spanned by exp (— Ip|? / 2). Ifnis
a fiberwise volume form with norm 1, the fiberwise kernel of a._ restricted to
fiberwise forms is also 1-dimensional and spanned by exp (— \p\Q / 2) 7. Note

that ker oy is also ker (¢ (€;) V& £ ¢ (D)). Let Py be the fiberwise orthogonal
projection on ker cex with respect to the standard Hermitian L? product. Of
course we have the orthogonal splitting

O (T"X, 7" F) =ker oy ®Imovy. (2.3.14)

We denote by a;l the inverse of ay acting on Im a.. Observe that 5+ maps
ker a4 into Im a.

We identify Q (X, F) to its image in Q (T*X,7*F) by the embedding
iyt a— mrsexp (— Ip? /2) /74 and Q (X, F ® o (TX)) to its image in
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Q (T*X,7*F) by the embedding i_ : s — 7 sexp (— Ip|? /2) A =Lz In the

sequel dX* — dX acts on Q (X, F) in the + case, on Q (X, F ® o(TX)) in
the — case. The same convention will apply to O

The following result, closely related to Theorem 2.3.1, is established in
[B05, Proposition 2.41 and Theorem 3.14].

Theorem 2.3.2. The following identities hold:

P.HP, = % (¥ —a¥X), (2.3.15)

1 O
Py (y+ — Braf Bz) Pr = -
Remark 2.3.3. In [B05, Propositions 2.39-2.41], corresponding results are
established on the asymptotics of the operator K bﬁ;)HcK 1/6 as b — 0. These
results will not be used here.

2.4 A DEFORMATION OF HODGE THEORY IN FAMILIES

Here we make the same assumptions as in section 1.3. Namely, p: M — S
denotes a submersion with compact fiber X of dimension n. We use otherwise
the same notation as in this section, and also in sections 2.1-2.3.

Let M be the total space of the cotangent bundle T*X. Let 7 : M —
M,q : M — S be the obvious projections. Take (x,p) € T*X. Then p
is a 1-form on T, X. We extend it into a 1-form on M which vanishes on
TH M. This way we obtain a 1-form on T, M, which lifts to a 1-form on M.
Equivalently, we get a canonical 1-form 6 on M. Set

w = dM. (2.4.1)

Then w is a 2-form on M, which restricts to the canonical symplectic form
on the fibers of T*X.

In [B05, subsection 4.5], a horizontal vector bundle T M is defined, which
is just the orthogonal vector bundle to TT* X in T'M with respect to w. Then
w splits naturally into

w=w" +wf, (2.4.2)
where w", wH are the restrictions of w to TT* X, TH M. By [B05, Proposition
4.6], if TH is the restriction of T to T*M x TH M,

wf = (p, 7). (2.4.3)

Let 7 be the fiberwise Hamiltonian vector field whose associated Hamilto-
nian is just wf. Then 7# is a 2-form on S with values in vector fields along
the fibers T* X.

Note that (' (T*X,7*F),d" ¥) is a Z-graded complex of vector bundles
over S.
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Let H : M — R be a smooth function. A superconnection AQ”‘H_W n and
an odd section B¢ —wn Of A (T™S) ®End (Q (T*X,7*F)) are constructed
in [B05, section 4], which are such that

AL o = =B [Aﬁfﬂ_wH,BQfH_wH = 0. (2.4.4)
Put
CYln = e‘(H‘“’H)Aﬁ,AH_wHe”‘“’H, (2.4.5)
oM, = e () pM e
Identities similar to (2.4.4) are valid for Qﬁ¢ o wH’/’Dé:lH—wH'
If S is a point, then
A on = Ag 1, B, _m = Bsn, (2.4.6)
€¢H Wi = Ag M, @%wa;; =By n.

More generally, the component of degree 0 in A" (T*S) of the objects consid-
ered above are just the operators we described in section 2.1. In particular
the components of degree 0 of A”M, ¢! coincide with ar X dal X,

By using the splitting TM = THM @ TT*X, 1-forms along the fibers
T*X can be considered as forms on M which vanish on T M.

Now we use the same notation as after (2.1.3). We still define po as in
(2.1.4). Set

€¢H wH =€ “°€¢H wue, SQAH Wi ze*“OBDM met. (2.4.7)

Equivalently, QE¢H wH’g(j)H ,u are obtained from M b wH’®¢H wH by
making the replacements indicated after (2.1.21). If S is a point, then

GQAH wH = %H’ 8’(15,7'[70.)1‘1 = %¢7H. (248)

Now we give some more details on A @QAH_MH. The construction

¢ H—wH>
of AM S wH is made using the superconnection A, which is the total de

Rham operator acting on Q' (M, 7*F), considered as a flat superconnection
on Q (T*X,7*F) as in [BL0o95]. The superconnection A’ is such that

[A/M,Agf;w] = 0. (2.4.9)
In [BO5], A¢ o wH’BésMH u are written in the form
Agle—wH 9 (Q:Zb 2(H—wH) + A/M) ) Bé)\jlﬂ_wH =z (@;5 A H—wH) A/M) .

(2.4.10)

Note that h (T"X.m"F) was defined in (2.1.13). We define h%’ET‘;;XJr*F) by re-
placing H by H —w® in the right-hand side of (2.1.13). By [B05, Proposition
4. 24] ¢¢ 2(7‘[ wH) is the hQ (T X, F) A/M.

Let 7Y be the symplectic adjoint of A" with respect to the fiberwise

-adjoint of

symplectic form w" in the sense of [B05]. Let Z;M be the adjoint flat su-
perconnection to A’M in the sense of [BL0o95] with respect to the Hermitian
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form h* (7" X7 F) (which is just the Hermitian form in (2.1.13) with H = 0)
on O (T*X,n*F). By [B05, Proposition 4.18],

AN = XA M e, (2.4.11)

By [BO05, Definition 4.20],

iy = A om2(H=e) (2.4.12)
Set
My = e (H) grMe(=e™) (2.4.13)
Then
M = L (E%_WH + e:;QiWH) : (2.4.14)
DM w = (E% ot = ).

Note in particular that (2.4.5) follows from (2.4.10) and (2.4.12)-(2.4.14).

Remark 2.4.1. We use the same notation as in Remark 2.1.4. The corre-
sponding objects are still denoted with a subscript ¢, and w? is replaced
by bwf. By [B05, Propositions 2.32 and 4.33], we get

x—1 M *—1
¢¢bH bwH —Tb%Hl/b wHTy £y b, H—bwH —Tb@w{l/b wHTy

(2.4.15)
M M -1 M M -1
Qfm,H—wa = Kb€¢,H1/b—wHKb ) gtz)b,H—wa = Kbg(j),Hl/b—wHKb :

2.5 WEITZENBOCK FORMULAS FOR THE CURVATURE

From now on, we still take H as in (2.2.1), and for ¢ € R, we define H® as
n (2.2.2).

Let eq,...,e, be an orthonormal basis of TX as in section 2.1. We use
otherwise the same notation as in that section on the e?,¢;, €.

Let f1,..., fm be a basis of T'S, let f1,..., f™ be the corresponding dual
basis of T*S.

The following result was established in [B05, Propositions 2.39, 4.31, and
4.35]. Take b € R%, ¢ = £1/b%
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Proposition 2.5.1. The following identity holds:

R Gl gk)) (R™™ (ei,€5) p, ex)
- <T( 5761') ,ej>f" (ei —/e\i) le;+es
i (%w (V".9") (12) = (T (7. ) ,p>)

1

~3 <TH, €i> (ei —€ + iei+éﬁ) . (251)

Now we replace S by S x R*, where ¢ € R*, so that ¢ is now allowed

to vary. By [B05, Theorem 4.40], for ¢ # 0, the operator a% — (’Z{ﬁ’iiw,{ is
fiberwise hypoelliptic.
Set
1, . P~ 3c
Ve = §(€Z+Z’ei) (€' + & +ie,) —V,ﬁ—k;\p\Z, (2.5.2)

6;}?chin = gglec,wH + |:©£leC7MH7VC:| .

Now we give the result established in [B05, Theorems 4.38 and 4.42].
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Theorem 2.5.2. The following identity holds:

1 2 .
Q:{x?fc,wH ! <_AV + [pl” + ¢(28iizi e, — 1)

1 o
~3 <RTX (eir€5) ex, er) ezejigkié\l>

N o

(V;\'(T*T*X)@F’“ + (T (fi,p) ei) f* (€' + 26 +igi_se,)
+ <TH7p> - (ei +'LE\‘) fa <VZ1XT( 57}?) vp> - eiia <RTX (p7 ei) 6j»p>>

_ (%w (VF,0°) (e) + 3 (T (£, ) ) 57 () + @) Ve
— 5 (e b iz) el (VIXT (£ ) o)

(i) (¢ in) (VIXTH ¢))

4
i VG (V07 () - L (e~ ie) £ (9707 (e 1)
1 (¢ i) FOVER (V5 6) (£2)
— ST (V) (IS + e @ i) ) (259)
Moreover,
1 1,. .
Gﬁglec_wH = 5w (VF,gF) 1 (¢ +igi) w (VF,gF) (e:)
. . o 3
- g (p+ip+6p—61*(T (fi,p),p)) - Sde p?. (2.5.4)
Finally,

3
6%7'[670.)1{ + |:¢me’ ?C |p2:|
zlw(VF ) —l(ei—i—iw)w(vF F)(e)—E
2 7g 4 € 7g (3 2

Remark 2.5.3. By (2.4.7), we obtain the formula for @ﬁ/‘?’fﬁw,{
by e’ —&; and iz by le,+21, while leaving the other creation and annihilation
operators unchanged.

(p+i5). (2.5.5)

by replacing e’

In [B05, subsection 4.21], various conjugations are made on the opera-
tors considered above to put them in a more geometric form. We briefly
describe the main steps of these constructions. First we replace €’,ic,, €;, igi
by €%, ic, 1z, 0c,,¢ — e'. This transformation does not change the obvious
commutation relations.
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The above transformation can also be described as follows. First we use
the canonical isomorphism

A (TX)~ A" (T*X) QA" (TX). (2.5.6)
Using (2.1.3), (2.5.6), we get the isomorphism
A(T*T*X) =7 (A (T*X) A" (T*X) @A™ (TX)) . (2.5.7)

The second copy of A" (T*X) in (2.5.7) will now be generated by e, ... ,e".
Set
A = €lig,. (2.5.8)
Then we conjugate the operator obtained by the first transformation by
Y
e 2o,
Let <T0,p> be given by
(T p) = (T (f,e;),p) foe". (2.5.9)
A final conjugation is done by conjugating the operator we obtained before
by exp (<T0,p>). Starting from QQAwaH , DQ"Hin, we obtain the operators
~M ~M
€ re iy Dy pe_,m- The transform of other operators which were previ-
ously considered will be denoted using a similar notation.
The Lie derivative operator Ly acts naturally on Q (T*X,7*F). Also
the vector field Y can also be considered as a vector field on M. We denote

by Ly -+ the corresponding Lie derivative operator acting on smooth sections
of A" (T* M) ®F. We still have the Cartan formula,

Ly» = [dT*X,iYH} , Ly = [dM,iyn] . (2.5.10)

Let V"X be the connection corresponding to the connection V7' by the
metric ¢g7X. Then the connection V7" X induces the splitting

TM=T"MaeTT*X. (2.5.11)

As explained in [B05, subsection 4.22], in general T*#' M does not coincide
with T2 M. From (2.5.11), we get the isomorphism

A (T*M) = A (T*S) @A (TT*X). (2.5.12)

In particular the e?,€; can be considered as forms on M.
Then by [B05, eq. (4.174)] and by (2.2.3), we have the identity

Lyn = VQLT*X)@A-(TX)@F + €ide; + <RT*X (p;ei) p, €j> e'igi, (2.5.13)
Ly = Lyr = (T (f5,p) ") foie, + (BT (p, f5) pei) foier.

We still use the same notation Ly, Ly~ for the above operators in which
€i, iz have been replaced by iz, ¢'. By (2.5.13), we get

Lyw = AT OBNIIXSE GG <RT*X (, &) , ej> ¢iel, (2.5.14)

‘CYH = LY“ - <T (ff?p) vei> faie@' + <RT*X (p7 ff) 2 ei> fa/é‘i‘
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Moreover, recall that # has been extended into a canonical 1-form on M.
More precisely,

0= (p,e;) e’ (2.5.15)
Then by [B05, eq. (4.175)], we get
dMo =¢;et + <T (ff, ei) ,p> et + <TH,p> . (2.5.16)

We denote by ﬁﬁrMG the expression obtained from d™ by replacing €;, iz
by iz, e'. By (2.5.15), we get

A\ﬁrM(? =ig e + (T (f.e;),p) f*e' + (T p). (2.5.17)
In the sequel, we will use the notation
w (VF,gF) =¢ew (VF,gF) (ei) . (2.5.18)

Also forms like w (VF, gF)2 will be viewed as 2-forms on M, and so they can
be expanded as a sum of monomials of degree 2 in the e*, f*. The same is
true for objects like 1 (e;, R"¥e;) €'e?, where RT™ should itself be expanded
as a sum of monomials in the e*, f.

Now we state the formula given in [B05, Theorems 4.45 and 4.52].

Theorem 2.5.4. The following identity holds:

:rﬁzc_wbr = % (—AV + P + ¢ (20,8 — n)) + i {(e;, R™e;)e'e!
_ iw (VFng) (ez) V’e*i . ivA-(T*T*X)(gFa (vFng) _ iw (vFng)Q

— g (ﬁyﬁ + %w (VF,gF) (YH) + gﬁ{”@) + %dc (? —el — ze) (p,e;).
(2.5.19)

Moreover,

~ 15, .. . 3c
Do =58 (€' +icioe) = Vs+ 3 Ipl*,
~M 1 1. Cc . 3 2
Qqﬁ,Hcwa = 50‘) (VFagF) - Zw (VFagF) ~3 (p + 6ip) — §dC Ip|”,
(2.5.20)
~M ~IM 3¢, o 1 1. C .
8o+ |Gl 5 0| = 30 (VF0) - 19 (970~ 5
Remark 2.5.5. It should be observed that the considerations we made in
(2.5.11)-(2.5.12) to interpret the e, ¢; as forms on M will be partially irrel-
evant in the sequel. The reader may as well take formulas (2.5.13)-(2.5.17)

as definitions, whenever necessary.
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2.6 §4' Ly pom €7 AND LEVI-CIVITA

+H—bw
SUPERCONNECTION

Now we recall the results of [B05, subsection 4.22], which extend to families
the results already described in section 2.3. We will give the simplest version
as possible of the results of [B05].

. By equation (2.5.1) in Proposition 2.5.1, we can write S%’inwa in the
orm

1
Sqﬁb,iu b = T op (c(éi) Va £c(p)) + 9H+ + b+ (2.6.1)

Recall that ay was defined in (2.3.12). Inspection of the formulas in [B05,
Theorem 4.38] or use of equation (2.5.3) together with Remark 2.5.3 shows
that that there are operators 3,7, such that for b € R%,c = +1/v?,

B

M2
2€) % s b2 + o e (2.6.2)

We make the same fiberwise identifications as after equation (2.3.13). Also
we define the operators Py as in the corresponding section. These oper-
ators now act fiberwise. We denote by A;, A_ the Levi-Civita supercon-
nections on Q (X, F),Q (X,F®o(TX)). Let By, B_ be the odd sections
of A" (T*S) ®End (' (X, F)),A (T*S) ®End (¥ (X, F ® 0 (TX))) as in sec-
tion 1.3.

The following related results were established in [B05, Proposition 4.36
and Theorem 4.57], which extends Theorem 2.3.2 to the case of families.

Theorem 2.6.1. The following identities hold:
P 9+ Py = By, (2.6.3)
Py (’Yi ﬁiai ﬂ:l:) + = 2A2

2.7 THE SUPERCONNECTION AM
AND POINCARE DUALITY

¢, H—wH

Here we assume again that H : M — R is arbitrary. Let *7 X be the
Hodge operator associated to the metric g77 X and to the orientation of
T*X by the fiberwise symplectic form wV. Let «f : Q (T*X,7*F) —
Q2n— (T*X, F*F*) be the linear map such that if s € Q° (T* X, 7*F), then
ks = (—1)i(i+1)/2 uxl X gFs. (2.7.1)

Set
'KCH WwH =K 672(7{ e ) (272)
Temporarily, we will use the notation Agﬁ’iw » instead of AQAH_W u, the
notation for other objects being modified in the same way. In [B05, eq.
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(4.91)], it is shown that if H is r-invariant,

Afﬁin = Kﬁ:j;H Aﬁjlii;,whr Kf{_wH,

Bﬁ?’f:w = —Hﬂ’iiHBﬁf;i,meﬁ_wH, (2.7.3)
o = /@F’*leiﬁf‘j;wH KF

D = =R T

Tt is interesting to relate (1.4.3) and (2.7.3) in the light of Theorem 2.6.1.
Of course here we take H as in (2.2.1). Although our statement may look
cryptic, let us just mention that the extra factor (—1)" in (1.4.1) with
respect to to (2.7.1) can be explained by commutation with dpi A ... A dp,.
The extra factor (—1)" in (1.4.3) with respect to (2.7.3) appears for the same
reason.

2.8 A 2-PARAMETER RESCALING

We make the same assumptions as in section 2.4. We still consider the case
where H : M — R is an arbitrary smooth function.
In this section, M, .S will be replaced by M x Rf, S x Rf. For t € RY,

set
TX

g
glX = — (2.8.1)

Along the fiber X, over (s,b,t), we equip TX with the metric g/ X. Let H
be the function defined on M x R#?, which restricts to r},,H on M x (b, ).

We will denote with the subscript ¢, H the objects which were considered
in the previous sections. Still, when restricting these objects to M x (b, t), so
that dt = 0,db = 0, we will denote them with the subscript b, t. For instance

*2
M pM it MXRY® M xR2
Ay, By denote the restriction of Az~ ", B/~ T

Let NT"X be the number operator of A (T*T*X). Using (2.1.3), we find
that N7°X gplits as

to given values of b, t.

NT'X = N L NV, (2.8.2)
where N NV are the number operators of A" (T*X) and A" (T'X).
Set
Upe =tV "2y, (2.8.3)
It will often be convenient to conjugate the objects which were considered
above by the operator Uy ;.

In this section, Z;i/l denotes the object constructed in Remark 2.4.1,
which is associated to the fixed metric g7, and b is kept fixed. Similarly,
@Q:’Hfwa,Df;:)Hiwa denote the corresponding objects associated to the

metric g7, with b fixed. Set
E= <LfgngXei,ej>fa/\ei/\ig. (2.8.4)
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Using (1.3.1), we can rewrite (2.8.4) in the form
E=2(T(ff e),e;) f*Ne' Nig (2.8.5)
As we explained in Remark 2.4.1, the operators Ql%’H, By, n are well de-
_/M
fined, as are Aj, 7@%77_‘_wa78’£/:77_{_wa. -

Let 7, be the morphism of A" (T*X)®A (T'X) which acts trivially on
A (T*X) and which maps €; into be; and ig into iz /b. Then 7, extends
to A (T*X)®A (TX)®F.

Finally, by analogy with (1.7.11), set

cg:,H—wa t ql)t 1\/_6 by H— wawt? gx,Hfwa,t = /(bt_l\/g@;}:,Hfwa(bt?

(2.8.6)

€£j7ﬂ—wa,t = ¢t_l‘/z(’3£jﬂ—bwh’¢t’ g%,?‘(—bwl‘[,t = ¢;1\/ES%,H—MH¢#
Theorem 2.8.1. The following identities hold:

Ub tQ:EAxRJr Ub L= (H_wa/t)tNT*X/2A/Mt_NT*X/Qe(H—bWH/t)
0 b VYH NT*X ) L~ V+H
alt —— - - -2 TP 2.8.
+dt<at+ +—L T >+db<ab L -F ) (2.8.7)

Uth:/MXRJr Ubt _ e(H—wa/t)t—NT*X/ZZ;;/;AtNT*X/Qe—(H—wa/t)

VVH X - VYH
+dt<a+bLA———N +ﬁ>+db<2—ﬁ+”—>.

ot t 2t tb 0b t b

Moreover,

P 1
Ub tQ:M_XRJr Ubt \/291(%77_{ + VQ (T*X,m*F) _ %E

+ %faw (VF,gF) (ff) SO IN de*XwH/\/E

g0 b NT'X )
H ~ _
<T ety (€ -l-h/b)-l-dt(at-i- ale = —5— +2tb>
o0 Ly
+db <% - ) , (2.8.8)

1
Uy, tQMXRJr Ub t \/_%dm E 10 ( (VF’ gF) (ff) - Vng>

% (TH6) (¢ + o o) — (% dbb) VEH D,
Also,
U@yt ™ U = € Uni® ™ Ut = D
(2.8.9)
Finally,
Q:’MH bwH = € MOTb 16(/;:)7-[,wa7—176“0, (2810)

— e Ho M Ho
&m,ﬂ—bw—e Ty B@,H—waTbe .



THE HYPOELLIPTIC LAPLACIAN ON THE COTANGENT BUNDLE 43

Proof. To establish the first identity in (2.8.7), we first make H = 0, we
replace w by 0, and we make dt = 0. Then the first identity in (2.8.7) follows
easily from the first identity in [B05, Proposition 4.33], which expresses the
fact that the de Rham operator d™ on M commutes with the operators .
The equality of the dt parts follows from a trivial calculation which is left
to the reader. Also note that

Lowt =W, (2.8.11)

Using (2.8.11), we obtain the first identity in (2.8.7) by conjugation.
By [B05, Proposition 4.33], we get

r A = A A = /NI T My N b (9.8.19)
Observe that here, over S x (b,t), the metric is given by g7 /t, so that g
is replaced by Ag/t. Then the second identity in (2.8.7) follows easily from
(2.8.12).

To establish (2.8.8), we note first that the identity of the terms containing
dt or db follows from (2.8.7). We can now make dt = 0,db = 0. Then (2.8.8)
follows from [B05, Proposition 2.18, Theorem 4.23, and Proposition 4.33].

For t = 1, the identities in (2.8.9) follow from [B05, Proposition 4.33]. The
case of a general ¢ is now obvious by (2.8.8).

Finally, equation (2.8.10) follows from (2.4.7) and (2.4.15). The proof of
our theorem is completed. [l

Remark 2.8.2. Identity (2.8.9) already indicates that the above scaling in
the t variable exhibits the same naturality properties as the scaling which
is done in [B86], [BL095], and [BGO1]. Also note that when squaring any of
the identities (2.8.7), we should get 0.

2.9 A GROUP ACTION

We make the same assumptions as in section 1.5. The action of G on M
lifts to M. Also G acts on Q (T*X,7*F) by a formula similar to (1.5.1).
Moreover, by construction, T M is preserved by G. The geometric data
we started with being G-invariant, the operators in [B05] which we just
described commute with G. For example, 75 M is also preserved by G. The
action of G on Q' (X, F) lifts to Q (T*X,7*F). Moreover, the operators
which we considered before commute with G.



Chapter Three

Hodge theory, the hypoelliptic Laplacian and its heat

kernel

The purpose of this chapter is to give a short summary of the results on
the analysis of the operator Ai)HC, these results being established in detail
in chapters 15 and 17. In particular we state in detail convergence results
on the resolvent of Qlﬁfb’ 14 as b — 0 which are established in chapter 17.
Also we derive various results on the spectral theory of Ai)HC. In particular
we show that for b > 0 small enough, the standard consequences of Hodge
theory hold, and we prove that the set of b > 0 where the Hodge theorem
does hold is discrete. Finally, we prove that at finite distance, for b > 0 small
enough, the spectrum of Ai,HC is real.

This chapter is organized as follows. In section 3.1, we briefly describe the
relations between the cohomology of X and the cohomology of T*X

In section 3.2, we state general results relating the finite dimensional kernel
of A¢ e to the cohomology of X.

In section 3.3, we state the main properties of the heat kernel for 22 bHe

In section 3.4, we state results on the convergence of the heat kernel for
A2 13, to the heat kernel for O /4 as b — 0.

In section 3.5, we describe more precisely the spectrum of 91 2 1y asb—0.

In section 3.6, we show that the set of b > 0 where the Hodge theorem
does not hold is discrete.

Finally, in section 3.7, we show that the above results extend to the case
of families.

3.1 THE COHOMOLOGY OF T*X AND
THE THOM ISOMORPHISM

As before, o (T'X) is the orientation bundle of TX. Note that T*X is oriented
by its symplectic form w.

Let £ : X — T*X be the embedding of X as the zero section of T*X
Let H (T*X,n*F) (resp. H® (T* X, n*F)) be the cohomology of T*X (resp.
with compact support) with coefficients in 7* F'. Then, classically,

H (I'*X,m*F)=H (X,F), H (I"X,7"F)=H " (X,F®o(TX)).
(3.1.1)

The first isomorphism comes from the maps k* : Q' (T*X,7*F) — Q (X, F)
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and 7 : Q (X, F) —» Q (T*X,7*F). The second is the Thom isomorphism.
Namely, if [®7 %] € H*™ (T*X,* ® o(TX)) is the Thom class, then

se€e HY (T"X,7*F) > m,s € H™" (X, F® o(TX)) (3.1.2)
is the inverse to
s € H (X, F®o(TX)) - s A [07"X| € B4 (T X, 7 F). (3.1.3)
It will be convenient to use the notation
H(X,F)=H (X,F) if ¢> 0, (3.1.4)
=H "(X,F®o(TX)) if ¢ <0.

Equivalently, $ (X, F) is just H (T*X,n*F) for ¢ > 0 and H® (T*X,7*F)
for ¢ < 0.

3.2 THE HODGE THEORY OF
THE HYPOELLIPTIC LAPLACIAN

We make the same assumptions as in sections 2.1-2.3, and we use the cor-
responding notation. In particular g7 denotes a Riemannian metric on X,
and S is now reduced to a point. Moreover, we fix ¢ = +1/b*> € R*, with
b > 0. The constants in the estimations which follow will depend in general
on b.

Let Q (T*X,7*F) now denote the vector space of smooth sections of
A (T*T*X)®F over T*X. Let S (T*X,7*F) be the vector space of the
s € Q (T*X,n*F) which decay, together with their derivatives of any order,
faster that any |p|~ ", with m € N. For obvious reasons, we will use the
notation hS (T" X F) instead of 2 (T"X:7"F) and a similar notation for the
other Hermitian forms which were considered in chapter 2.

As in (2.2.1), (2.2.2), we use the notation

‘P|2 C 2
_In” e SR 2.1
= o=y (3:2.1)
Recall that by (2.1.21), (2.1.22), (2.4.15),
A e = 6_H0A¢7HC€HC, izﬁ,HC = e_HC_“OA¢7Hc€HC+’LLO, (3.2.2)

/ 4 -1
(Zﬁ'b,iH == Kbﬁ@HCKb .

By (3.2.2), we find that any statement we make for one of the operators is
valid for the other one, when making the obvious changes. We will use this
procedure constantly, without further mention, in particular when referring
to spectral theory.

As was explained in section 2.1, Ay xe is self-adjoint with respect to
hic(T*X’ﬂ*F), Ay is self-adjoint with respect to hS (7" X7 F) and A7, g
is self-adjoint with respect to BS (T" X7 F),
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\

Figure 3.1

Let Q (T*X,7*F)° be the space of sections of A" (T*T*X) @7*F which
are square integrable over 7% X. By Theorem 15.7.1, the operator Q%,HC has

discrete spectrum and compact resolvent in End (Q (T*X, W*F)O).

To make our terminology unambiguous, let us just say that elements of
the spectrum will be called eigenvalues.

Moreover, the corresponding characteristic spaces are finite dimensional
and included in S (T* X, 7*F'). Let us just mention that given an eigenvalue
A, the associated characteristic space is the analogue of a Jordan block in
finite dimensions. It is the image of the spectral projector associated with
the eigenvalue \. )

Take A € C\Sp Qli)Hc. Then the resolvent <Qli’Hc — )\) maps bijectively
S (T*X,n*F) into itself.

Let ~« be the contour in C in Figure 3.1, which separates the closed
domains §+, which contain 4+oco. The precise description of «y is as follows.

Given b > 0,c = £1/b?, constants A\g > 0,co > 0 depending on b > 0 are
defined in Theorem 15.7.1, so that

7:{A:_Ao+o-+z’7,o-,7eR,azco \7\1/6}. (3.2.3)

Note that v depends explicitly on b.
By Theorem 15.7.1,

Sp2A2 e C 04 (3.2.4)
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First we prove the obvious extension of [B05, Proposition 1.1].

Proposition 3.2.1. The spectrum Sp?liﬁc is invariant by conjugation.
Moreover, given b > 0, if A € Sp Qli)Hc, then

Re) > — ). (3.2.5)

Proof. Let 27 ;.. be the formal adjoint of 2 3. with respect to the Hermi-
tian product g (7" X" F) considered in Definition 2.1.1. If w is the isometric
involution of Q' (T* X, n*F') defined in (2.1.11), we deduce from (2.1.12) and
from the above that

A e = udAg reu " (3.2.6)

By (3.2.6), we find that 2 ;.. and A2*,. have the same spectrum. Therefore
Sp 27 4. is conjugation-invariant. Since §4 contains the spectrum of 27 ,,.,
(3.2.5) is obvious.
If A e Sp mi,?—tcv let S (T*X,n*F), € S (T* X, n*F) be the corresponding
characteristic subspace. If ny = dimS" (T*X,7*F),, then
S (T"X,7*F), =ker (A3 5, — ). (3.2.7)
Recall that df,.% commutes with mi,?—tm and so df.X actson S (T* X, 7 F),.
Then (8 (T*X,7*F), ,dﬁtx) is a subcomplex of (S (T*X,7*F), d:’;cx).
Consider the subcomplex (S (T*X,7*F),,d%.~). By (3.2.7),
S (T*X,7*F), = ker 23"%,... (3.2.8)

Take € > 0 small enough so that the disk of center 0 and radius e intersects
Sp QLi’HC only possibly at 0. Let § be the circle of center 0 and radius €. Set

1 dA
=— | ——— =1-". 3.2.9
» 2i7r/5)\—2liﬁc’ & ¥ (3:29)
Then P is a projector on S" (T X, 7*F),, and Q is a complementary pro-
jector. Moreover, 8 does not depend on e. In particular 9 and £Q map
S (T*X,n*F) into itself. Set
S (T"X,n*F), =ImQ|s 7+ x, 7 F)- (3.2.10)
Then
S(T*X,7°F) =8 (T*X,7"F), &S (T*X,="F), . (3.2.11)
Also the operators d&.X and Ezﬁf preserve the above splitting.
Moreover, 27 ;. acts as an invertible operator on 8" (T* X, 7*F), . Indeed
let Q (T*X, W*F)S be the image of Q" (T* X, 7* F)° by the projector Q. Then
0 does not lie in the spectrum of the restriction of ﬁéﬁc to S (T*X, W*F)S,

so that (i’liﬁc) acts as a bounded operator on this vector space. Us-

-1
ing equation (15.5.3) in Theorem 15.5.1, we find that (Q(;Hc) maps
S (T*X,n*F), into itself.
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By (3.2.8), we find that the splitting (3.2.11) is just the splitting
S (T*X,7*F) = ker A2y, & Im2A3".. (3.2.12)
Of course, in the above, we can as well replace ng by & € N, k > nyg.
Now we establish the obvious analogue of [B05, Theorem 1.2].

Theorem 3.2.2. The complex (8' (T*X,n*F), ,d%ix) s exact. In partic-
ular

I8 (8' (T* X, 7 F) ,dﬁiX) —H (8' (T X, 7" F), ,dﬁiX) . (3.2.13)
The vector spaces S (T* X, m*F), and S (T*X,7n*F), are orthogonal with
respect to hS ("X ) The restrictions of h 7" X F) 1o S (T*X,n*F),

and S (T*X,n*F), are nondegenerate. Moreover,

. * * . * =T*X
S (T )(7 i F)* = Im dQCX‘S'(T*X,Tr*F)* @ Im dd),HC‘S'(T*X,W*F);? (3214)

and the decomposition (3.2.14) is hS (T X7 F) orthogonal. Finally, the map
s €S (T*X,7*F) — e"s € Q (T*X,7*F) induces the canonical isomor-
phism
H (5' (T*X, 7" F) dﬁix) ~§ (X, F). (3.2.15)
~1
Proof. We proceed as in the proof of [B05, Theorem 1.2]. Since (QL;HC)
acts on §* (T* X, n*F),, we get the identity in End (S* (T* X, 7*F),),
vy =T"X -1
U= [ e (2 0) 7] (3.2.16)
From (3.2.16), we deduce that (S (T*X,7*F), ,d}5.~) is exact. By (3.2.11),
we get (3.2.13). Using (3.2.8) and the fact that 2 5. is b 77X F) gelf-
adjoint, if a € &' (T*X,7*F),,a’ € S (T*X,7*F), we get

2n I —
(0,250 >b5_(T*X7W*F) —0. (3.2.17)

Since 2(35”7‘2” acts as an invertible operator on §* (T* X, 7*F') , we deduce from
(3.2.17) that S (T* X, 7*F), and S’ (T* X, 7*F), are mutually h5 (7" X7 F)
orthogonal. Since §S (7" X7 F) ig nondegenerate, we get the second part of
our theorem. By (3.2.16) the images of d%.X and of Ei{i inS (T*X,n*F),
span S (T*X,7*F),. Moreover, since EZQ(C is the hS (T" X" F) adjoint of
dX | these images are orthogonal with respect to hS (7" X7 F) Since the re-
striction of S (T X7 F) o §* (T* X, n* F), is nondegenerate, we get (3.2.14).
Now we establish (3.2.15). Let d”"X be the de Rham operator along the
fiber T*X. Set
AL = e Mgl XM (3.2.18)
Let d”"X* dZX be the obvious formal adjoints of d”" X, dL.X with respect
to the standard Hermitian product on smooth forms along the fibers of 7% X.
Clearly,

AL = dTX 4 pn, AL = dT X 4 ci, (3.2.19)
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Let OF.X = {&?_;X AL X *} be the corresponding Laplacian. Recall that NV
is the number operator of A' (T'X), the exterior algebra along the fiber. An
easy computation shows that if AV is the scalar Laplacian along the fibers
T*X, then

05X = AV + 2 pf +2¢(NY —n). (3.2.20)
It is now a basic observation of Witten [Wi82] that for ¢ > 0, the kernel of
OZ.X is concentrated in degree 0 and generated by exp (—c |/ 2), while

for ¢ < 0, it is concentrated in degree n and generated by exp (c \p\Q /2) 7,

where 7 is a n form of norm 1 along the fibers of T* X, which is defined up to
sign. Using the basic properties of the harmonic oscillator (and in particular
the fact that its resolvent acts on S (T*X, 7*F)), we deduce from the above

that the cohomology of the fiberwise complex (S (T*X,n*F), c?{tcx ) is con-
centrated in degree 0 or n, and generated by the forms we just considered.
For ¢ > 0, the function exp (—c \p\Q /2) is dﬁix closed. Using the Leray-
Hirsch theorem, we get (3.2.15) for ¢ > 0. Similarly, if ®7 ¥ is the Mathai-
Quillen Thom form of T*X [MatQ86], as we saw in (2.3.4), the restriction
of ®T"X to one given fiber is given by exp ( — |p|2) 1. Using the above

an/2:

and the Leray-Hirsch theorem, we get (3.2.15) for ¢ < 0. The proof of our
theorem is completed. O

Theorem 3.2.3. Tak? Ap € Spﬂiﬁc,x # . Then & (T*X,7*F), and
S (I"X,m"F), are hS (T" X7 F) orthogonal. If A € Sp 913)%, the restriction
of S T X E) 4o S (T*X, 7 F), + S (T*X,n*F)5 is nondegenerate.

Proof. The proof of our theorem is similar to the proof of [B05, Theorem
1.11]. Take A, 1 as above. Take k € N large enough so that

S (T*X, 7" F), = ker (A2 5. — N)". (3.2.21)

IfaeS (T*X,n"F),,be S (T"X,n"F),, since AL . is hS T X7F) gelf-
adjoint, from (3.2.21), we get

k

(o, (50 =2 = 0. (3.2.22)

>h$'(T*X,7r*F)
_ Kk
Since p # A, the restriction of (9135,%6 — )\) to 8 (T*X, 7T*F)u is invertible.
By (3.2.22), & (T*X,n*F), and § (T*X,7*F),, are h " Xm"F) orthogo-
nal.
Let 6 be a small circle centered at A. We define the projectors Py, Qx by
a formula similar to (3.2.9), so that P, Q) are projectors on supplementary
subspaces S (I X, 7" F), , S (T" X, m*F), ..
If X € R, the same argument as in (3.2.22) shows that S (7T*X, 7*F), and
S (T*X,m*F), , are h¥ (7" X7 F) orthogonal. Since hS (7" F) is nonde-

generate, the restriction of hS (7" X7 F) o & (T*X,n*F), is nondegenerate.
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If A ¢ R, then Py, Py are commuting projectors such that

PPy = PP = 0. (3.2.23)

Put
S(T*X,7°F), 5 =8 (T"X,7°F), &8 (T*X, 7" F);. (3.2.24)

Set
Bax =P+ P, Qyx=1-PByx (3.2.25)

Then B, y is a projector on S* (T*X,7*F), 5, and Q, 5 is a projector on a
vector space S (T* X, 7*F), 5,, so that

S(T*X, 7' F) =8 (I"X,7"F), 5 &S (I"X,7"F), 5. - (3.2.26)
By proceeding as in (3.2.22), &' (T"X,7"F), 5 and S (I"X,7"F), 5, are

hS (T" X7 F) orthogonal. This shows that the restriction of S (T" X7 F) g
nondegenerate. The proof of our theorem is completed. O

3.3 THE HEAT KERNEL FOR 22,

Again we fix ¢ = £1/b%

The domain of the operator Qli’Hc is dense in Q (T*X,7*F)° since it
contains & (T* X, 7*F'). Moreover, by equation (15.7.4) in Theorem 15.7.1,
there exists Ag > 0 such that if A € R, A < — ),

H A2 e —A) H <O+ ) (3.3.1)
By the theorem of Hille-Yosida [Y68, section IX-7, p. 266], we find that there
is a unique well-defined semigroup exp (—tﬁiﬁc).
—1
Moreover, by (3.2.4) or by (15.7.3), if A € J_, the resolvent (Q(éﬁc - )\)
exists. Also by equation (15.7.3) in Theorem 15.7.1, if A € §_, the operator
(2(¢ He — )\) is compact, and

N B

Proposition 3.3.1. Fort > 0, the heat operator exp (—ti’liﬁc) is given by

the contour integral
1 -1
U2 gpe) ==— [ e (A=AF 5c) dA 3.

Proof. Let € be the downward oriented straight line {\ € C,Re A = —\p}.
We claim that we have the equality operators distributions in the variable
t>0,

1 -
exp(—tmiﬁc)zﬁ/ (A =262 ) T dA (3.3.4)
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Equation (3.3.4) is obvious by taking the Fourier transform in the variable
t > 0 of the parabolic equation associated to the operator exp (—ti’liﬁc)

and then using the inverse Fourier transform.
Using (3.3.4) and integration by parts, we find that for any N € N,

912 o (—I)NN' —t)\ )\ 91 (N+1) d)\
exp (—t ¢’Hc) = W ( ¢,Hc) . (335)

€

Now by (3.3.2), we can choose N large enough so that the integral in (3.3.5) is
converging absolutely in the space of bounded operators. Since the integrand
in the right-hand side of (3.3.5) is holomorphic in A € J_, by using the
theorem of residues, we get

CDYNL (N+1)
Sl et (=) an

(_1)N N! o—tA (N+1)
T 2N ) (A=2A35.) " TdA (3.3.6)
Finally, using the bound (3.3.2) and integration by parts, we get

L N e VA / A (N+1)
— A—RAL . A\ = ———— A=A e dA.
i 009 D= [ )
(3.3.7)
By (3.3.6), (3.3.7), we get (3.3.3). O
Using (3.3.2), (3.3.3) and integration by parts, we find that for any N € N,

(—1)N A

—t>\ (N+1)
2imtN (A= Agp0e) dA. (3.3.8)

eXp( t91¢ Hc) =
Y

If A is an operator acting on € (T*X,7*F)° which is trace class, let lA]l;
be its norm as a trace class operator. By Theorem 15.7.1, if A\ € §_, for

—-N
N € N, N > 12n, the operator (Q%ﬁc - )\) is trace class, and

’NH C 1+ Y. (3.3.9)

[[REFEPY
By (3.3.8), (3.3.9), we conclude that given t > 0, there exists C; > 0

In section 15.2, a standard chain of Sobolev spaces H® on T*X is defined
using the s/2 powers of the positive self-adjoint operator

S=—AT AV 4+ |p]. (3.3.11)

A

In section 15.3, another chain of Sobolev spaces H*® on T*X is also defined.
Note that

H'=H' =Q (T"X, = F)". (3.3.12)
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Moreover, in Remark 15.3.2, it is shown that for s € R, we have the
continuous embedding H* C H?, and also that for s’ > s large enough, we
have the continuous embedding H®* C H?®. In particular,

H® =H>* =8 (T*X,n*F). (3.3.13)

-1
By equation (15.7.6) in Theorem 15.7.1, if A € §_, (Q%ﬁc - )\) maps
H* into H*T1/4 with a norm dominated by C; (1 + |A|)*/*'**. Therefore, un-

der the same conditions, (Q(i)HC — )\) maps H* into H*N/* with a norm
dominated by Cj y (1 + [A)) @ FDY,

By (3.3.8), it follows that the operator exp (—tmiﬁc) is regularizing, i.e.,
it maps any H® into H™® = S (T*X,n*F). More precisely given s,s’ € R,
this operator is continuous from H® into H® . From the above, it follows that

exp (—thinc) maps H? into H*' with a continuous norm. By standard ar-

guments, exp (—thinc) has a smooth kernel exp (—tmiﬂc) ((z,p), (', p"))

which is rapidly decreasing in the variables p, p’ together with all the deriva-
tives.
From the above it follows that

Tr [exp (—thiHc)] = / Tr [exp (—thi’Hc) (z,2)] dvr-x.  (3.3.14)
T*X

Of course in (3.3.14), instead of taking the trace, we may as well take the
supertrace.

-1
As we already saw, for A € §_, the resolvent (Qliﬁc — )\) is compact,

the spectrum Sp Q%,HC is discrete. However, contrary to what is known for
self-adjoint operators, we do not know if the closure of the direct sum of the
characteristic subspaces of 9135,7# spans Q' (T*X, 7r*F)O.

Let A\, € C,n € N denote the elements of Sp Q%ﬁc, counted with the
multiplicity of the corresponding characteristic space. Then the e %A n €
N are the nonzero eigenvalues of the operator exp (—tﬁi)Hc). Indeed us-
ing equation (3.3.3), it is clear that the e~**» are characteristic values of
exp (—thiHc . Moreover, since exp (—thiHc) is a compact operator, it

has a discrete spectrum, which can accumulate only at 0. Let u© € C be
a nonzero eigenvalue. Let ¢ be a small circle with center pu, such that the
corresponding disk does not contain 0 or any eigenvalue other than p. The
corresponding spectral projector P,, can be written in the form

1 du’
P = —/ K . (3.3.15)
2im /. 1 — exp (—tﬂiﬁc)

Since ¢ does not contain 0, we can rewrite (3.3.15) in the form

1 dy’
P, =exp (—tA2 . —/ . (3.3.16)
23 ( o H ) 297 c /J'/ (,U/ — exp <_tmi,ﬂc))
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By (3.3.16), the spectral projector P, is compact, and so it has finite range
&, which is the characteristic subspace for the operator exp (—tmi HC) as-

sociated to the eigenvalue pu. Then mi,?—tc commutes with exp( tmi Hf),

and so it acts on &£,. Note here that the fact that Qli’Hc is unbounded is
irrelevant. Let M C C be the associated family of eigenvalues of 9135,7# on

&,. By (3.3.3), it is now clear that if A € M, then e~** = y. This concludes
the proof of our statement on the relation between the eigenvalues of Q(iﬁc

and the eigenvalues of exp (—ti’liﬂc).
By Weyl’s inequality [ReSi78, Theorem XIII.10.3, p. 318], we know that

5 e < flexp (22 )

neN

|, - (3.3.17)

Moreover, by Lidskii’s theorem [ReSi78, Corollary, p. 328], we get

D e =Tr [exp (—123 5 )] - (3.3.18)
neN

Because of (3.2.4) and using the fact that ngﬂ.(c has compact resolvent,
we find that given a > 0, the set {n € N,Re\,, < a} is finite. Note that this
also follows from (3.3.17).

3.4 UNIFORM CONVERGENCE OF THE HEAT KERNEL
ASb—0

In this section, we give uniform estimates on the resolvent of Q(gmiﬂ when
b— 0.
Let 6 = (50,(51,52) with dg € R, 61 > 0,92 > 0. Put

Ws = {A € C,Re\ < &y + 4, \Im)\\52}. (3.4.1)
For r > 0,b > 0, set
Wer b = {X € Wy /b*, TRe A+ 1 < [Im A} . (3.4.2)

By Theorem 17.21.3, for any r > 0, there exists by > 0,0" = (&, 91, 0%)

with 6y €]0,1],67 > 0,05 = 1/6 such that if b €]0,bg],\ € Ws/ pr, the
-1

resolvent (Ql;?b 1H )\) exists. Moreover, it verifies the obvious uniform

bounds with respect to the norms considered above.

Figure 3.2 should make this quite clear. Indeed we have denoted by ~; the
boundary of Wy /b?. Then the spectrum of Q(gmiﬂ is located in a domain
which lies either to the right of 7} or inside the cone domain limited by the
two lines indicated on Figure 3.2.

Now we use the same conventions as in section 2.3. In particular 0¥ is
the Hodge Laplacian acting on Q' (X, F) for ¢ > 0, on Q (X, F ® 0(TX))
for ¢ < 0.
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Figure 3.2

We fix » > 0. With the notation of section 3.2 and in Figure 3.1, by
equation (17.21.58) in Theorem 17.21.5, there exists by €]0,1] such that
given v €]0,1[, £ € N, for N € N* large enough, if b €]0,bo], A € Ws' p .,

@2 =0T —i (@ a2 P|| <o (349)

The precise definition of the norm in (3.4.3) is given just after equation
(17.21.55).

More generally, by Remark 17.21.6, if K C C\ 0 is a compact set such
that SpO% /4N K = (), the estimates in (3.4.3) remain valid for A € K.

By the above, it follows that for any Ao > 0, if v is a contour taken as in
Figure 3.1, for r large enough and b > 0 small enough, ~ lies entirely to the
left of Wt b

Using the uniform estimates (17.21.23), (17.21.24) in Theorem 17.21.3, for
b > 0 small enough, we get

1 —1
— A2 ) = [ e (A= AL ye) dN 4.4
exp (—1U55) = 5— /f (A =A%) (3.4.4)
By proceeding as in (3.3.8), for N € N, we also get
RN _ ~(N+1
oxp (—12A2 L) :(2,)7N e (=22 L) T an (34.5)
it ~
Also we have the trivial
1
exp (0¥ /4) = 5 / e~ (A — O /4) d), (3.4.6)
in ),
from which we also get
—l)N N! _ —(N+1)
A G A (AN-0%/4 : 4.
exp (1% /1) = Le h-0%4) YV (347
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By (3.4.3) and (3.4.5)-(3.4.7), we get
|[|exp (—tA47, 13¢) — i+ exp (—tO% /4) Ps|||, < Cy Lb". (3.4.8)

Let exp (—t0%) (x,2) be the smooth kernel for the operator exp (—t0*)
with respect to the volume dvx (z'). Then

iy exp (—0%) Py ((z,p) , (2/,9))
= # exp <_ ‘P|2 /2) exp (—tDX) (x,2") exp (— |p/\2 /2) . (3.4.9)

There is a corresponding formula in the — case, which is left to the reader.

Note that by the definition of the norms ||| |||, the estimate (3.4.8) implies
a corresponding estimate for the smooth kernels. From (3.4.8), (3.4.9), for
any m,m’ € N, and any multiindex a, |a| < m/,

(L+1p)™ 05 (exp (—1AF, 1p¢) — iz exp (07 /4) Px)

((z,p), (@, p")| < Crmmb”.  (3.4.10)

3.5 THE SPECTRUM OF 272 ., ASb—0

Recall that by Proposition 3.2.1, the spectrum of Qlﬁfb’ 4+ 1S conjugation-
invariant. If A € SpA7 L, we still denote by S (T*X,7*F), the corre-
sponding characteristic space.

Recall that Sp0¥ is real. Let K C C\ 0 be a compact subset of C such
that

SpO¥ /4N K = . (3.5.1)

By Theorem 17.21.3 and by Remark 17.21.6, there exists by > 0 such that
for b E]O, bo},

SpAZ 1y NK =10 (3.5.2)

As we shall see later, the condition that 0 ¢ K can easily be dropped.

By Figure 3.2, for M > 0,b €]0,b], {) € SlefbiH,Re)\ < M} is uni-
formly bounded.

Let M > 0, and let € €]0,1/2] be small enough so that the eigenvalues
A€ SpO¥X /4, X < M + 1 are spaced by more that 3e. If A\ € SpO0X, \ < M,
let ¢x € C be the circle of center A and small radius e. Let d,\,d’)\ be the
disks of center A and radius €, €/2.

By the above, when 0 is an eigenvalue of (0¥, there exists by > 0 such that
for b E]O, bo},

{1 € SpAT 13, Rep < M} C Uy g, 0% 44 (3.5.3)
Re A<M
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If 0 is not an eigenvalue of 0%, one should in principle also add to the right-
hand side the disk dj, which means that Sp* /4 should be replaced by
SpOX /4U0. However, we will see shortly that this addition is unnecessary.

By Proposition 17.21.4 and by Remark 17.21.6, for £ € N, for N € N*
large enough, if p lies in the finite union of the circles ¢y, Re A < M, we have

-N
uniform bounds on ’(Q(;Eb)ﬂ.[ - N)

¢
Set

1 -1
A
cx
As explained in the proof of Theorem 15.7.1, the operator P> is a compact
projector which projects on a finite dimensional vector space " (T*X, 7r*F)A
included in & (T* X, 7*F'). This vector space is the direct sum of the charac-
teristic subspaces S' (T* X, W*F)# for the p € Sp m;i,i?—t which are included
in the disk d). We have the trivial inclusion

S (T"X,7*F), € 8 (T*X,n"F)". (3.5.5)
For any N € N, we can reexpress the projector > in the form
1 —(N+1)
B = %/ uy (M — Q(;?Miﬂ) dp. (3.5.6)
cx
Set

1 -1
Py =— —-0%/4)  dp. 3.5.7
A= o . (/J / ) K ( )

Then Py is the spectral projection on the eigenspace Ey of (0% /4 associated
to the eigenvalue A. As in (3.5.6), we can write

1 —(N+1)
Py = o uN (p—0%/4) dp. (3.5.8)
CX

Using the bounds in (3.4.3) and the observations which follow, and pro-
ceeding as in (3.4.10), we easily deduce that for b €]0, bo],

| —ixPAP:||, < Cb". (3.5.9)
By (3.5.9), we find that for b > 0 small enough,
dim S (T*X,7*F)" = dim E} if ¢ > 0, (3.5.10)
= dim B} "if e < 0.

Equation (3.5.10) shows that if 0 ¢ SpJ¥X, then the dimensions in (3.5.10)
vanish for b > 0 small enough. This vindicates our claim that equation (3.5.3)
is valid in full generality.

Since the radius € of dy is arbitrary small, we find that as b — 0,

SPRAZ 1g Ny — {A}. (3.5.11)
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Theorem 3.5.1. Take M > 0. There exists by > 0 such that for b €]0, by],
SpA7 13 N{A € C,ReA< M} C Ry,
dim S (T*X, 7" F), = dim b’ (X, F), (3.5.12)
S (T X, 7" F)y = kerdl X, N kerdy, s ry.
Finally, for b €]0,bo], there is a canonical isomorphism
S(T"X,m"F)y~9 (X, F). (3.5.13)

Proof. Assume that pu € Sp Qlffbi% Nd,, and that ;4 ¢ R. By Theorem 3.2.3,
the bilinear form hS (7" X7 F) vanishes identically on S* (T*X, T F),. Re-
call that in the + case, i4 is an embedding of Q' (X, F') into S (T* X, n*F),
and that in the — case, i_ is an embedding of Q' (X,F ® o (T X)) into
S (T*X,7*F). The restriction of hS (T"X7F) 6 i, O (X, F) is a positive
metric, and the restriction of hS (7" X F) to i_Q (X, F ® 0(TX)) is the
product of (—1)" by a positive metric.

We will now establish the first part of (3.5.12) in the + case, the proof
in the — case being identical. Indeed by (3.5.9), for b > 0 small enough and
A€ SpO¥ /4, A < M, the map e € Ey — Plite € S (T*X,n*F), is one to
one. In particular for b > 0 small enough and A, e taken as before,

. 1
e 2 2 5 el (3.5.14)

Let R_ be the orthogonal projector from S (T* X, 7*F') on vector space
of r-antiinvariant forms. Since R_ vanishes on i+ Q (X, F'), we find that for
b > 0 small enough, Re A < M, e € Ej,

1
|R-Prisel|,, < 5 lell 2 - (3.5.15)

If e € E, is such that Priye lies in a characteristic subspace associated
to an eigenvalue p € C \ R, by Theorem 3.2.3, hS (7" X" F) vanishes on
S (T"X,n*F),, and so

1
|- iye| . = 5 [Brigel,, - (3.5.16)

From (3.5.14)-(3.5.16), we obtain a contradiction, i.e., we have shown that
the considered p lie in R.

Now we proceed as in [B05, proof of Theorem 1.5]. By (3.1.4) and (3.5.10),
we get

dim S (T*X,7*F)° = dim $" (X, F) . (3.5.17)
Moreover, by (3.2.13) and (3.2.15) in Theorem 3.2.2,
dim S (T*X,7*F), > dim § (X, F). (3.5.18)

By combining (3.5.5), (3.5.17), and (3.5.18), we see that there is equality in
(3.5.5) for A = 0, and also there is equality in (3.5.18). Equality in (3.5.5)
means that 0 is the only eigenvalue of Qlﬁfb’ 1 contained in the disk dy.
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dg/b2

A\

Figure 3.3

Using the above results, we have therefore established the first two identities
in (3.5.11).

The fact that there is equality in (3.5.18) forces the map dg:)i(’H to vanish
on § (T*X,7*F),. By Theorem 3.2.2, the restriction of RS (T X" F) g6

S (T*X,m*F), is nondegenerate. Since " (T*X,7*F'), is stable by Egbi;{,
E; )fH also vanishes on S (T* X, 7*F),. Therefore,
S (T*X, 7" F), C kerd}, X4, A kerdy, 1 r. (3.5.19)
The opposite inclusion is trivial. So we obtain the last identity in (3.5.12).
By (3.2.13), (3.2.15) in Theorem 3.2.2, and using the fact that df %},
vanishes on & (T X, 7*F),, we get (3.5.13). This concludes the proof of our
theorem. (]

Remark 3.5.2. An interesting corollary of Theorem 3.5.1 is that Figure 3.2
can be replaced by Figure 3.3. Namely, for b > 0 small enough, the spectrum
of Q(’;M 4 is contained in the union of the domain to the right of 7, and of
a small cone based at 0.

3.6 THE HODGE CONDITION

Now we follow [B05, Definition 1.4].

Definition 3.6.1. We will say that b > 0 is of Hodge type if
S (T*X, 7" F)y = kerd/E 5 A kerdy, o (3.6.1)
Using Theorem 3.2.2 and proceeding as in the proof of [B05, Theorem
1.5], we find that b > 0 is of Hodge type if and only if

dimS (T*X,7*F), = dim § (X, F). (3.6.2)
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As we saw in Theorem 3.5.1, there exists by such that if b €]0, by], then b
is of Hodge type.

Theorem 3.6.2. The set of b € R} such that b is not of Hodge type is
discrete.

Proof. If the set of b which are not of Hodge type is not discrete, there is
a b € Ry where such non-Hodge b accumulate. By Theorem 3.5.1, we have
b>0.

Our proof will now proceed along the lines of the proof of a corresponding
result [B05, Proposition 1.23], established in a finite dimensional context.
Set

M, = b3 Kyp/sU2 3 Ky 25 (3.6.3)
Using (2.2.5), we can write M, in the form
1
M= (—AV + 073 p? £ 6723 (28iie — n)

pi/3 X ) .

e <R (e:,€5) €k, el> (ez - ei) (eJ - ej) Ge 1ok le, 1ot

1 T T XS F
= (iVQoST T*X)QF, + (ib2/3 <RTX (p, i) D, ej>
lor F F i) b>/® F F
+ Eveiw (V7. g") (e)) | (e' = @) ie,4e0 + — W (V. 9") (ei) Vai |.

(3.6.4)

Take r > 0. Let V;. C R% be the open set of the b such that the circle
¢ C C of center 0 and radius r does not intersect Sp M.. Then the V. form
an open covering of R} .

For r > 0,b € V,, set

! 1 -1
Pr=g— | (b=Mc) dp (3.6.5)
i .,
Then P, projects on a finite dimensional vector space E,. C &' (T* X, 7*F).

For 0 < i < 2n, let M,..; be the restriction of M. to E:. Let P, (2) be

the characteristic polynomial of M, . ;, i.e.,

Pr,b,i (Z) = det (mr,c,i - Z) . (366)

By Theorem 3.2.2, the multiplicity of 0 as a zero of P,y (2) is at least
equal to dim ' (X, F). For b € V., set
Qrpi = P ORI () (3.6.7)
By (3.6.2), b € V, is of Hodge type if and only if @Q;5; # 0. Note here the
fundamental but obvious fact that this condition depends only on b and not
on r as long as b € V.
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To complete the proof, let us accept for the moment the fact that @, ; is
an analytic function of b € V..

Consider the set A C R’ such that if b € A, and b € V., function Q5
vanishes on an open neighborhood of b. Then A is open. We claim that A is
closed. Indeed if b > 0 lies in the closure of A and b € V., the function Q. ;
vanishes infinitely many times near b. Since this function is analytic on V.,
it vanishes identically near b, and so b € A. Therefore A is either empty or
is equal to R . However, by Theorem 3.5.1, for b > 0 small enough, b is of
Hodge type, and so b €¢ A. Therefore A is empty.

The above implies that the non-Hodge b > 0 cannot accumulate on b > 0,
since otherwise, by analyticity, b would lie in A.

Now we concentrate on the proof of the analyticity of Q. ;. It is enough to
show that B, depends analytically on b or, equivalently, that ‘B, ; extends
to a holomorphic function on a small open V € C of a given b > 0. It is
convenient to take b’ = b%/3 as a new variable, so that the right-hand side of
(3.6.4) is a finite sum containing b'~2,b'~1, b/, b2 as well as a constant term.

We claim that the resolvent (M. — \) ™" is still well-defined when b’ € C
lies in a small open neighborhood of b > 0. Indeed take b = = + iy, z >
0,y € R. We claim that for |y| small enough, the arguments of chapter
15 can be used. We study the extra terms which appear only because b’
is now complex. First there is the term |p\2 which appears with an extra
small purely imaginary factor. This term is easily dealt with, since it has no
impact on the estimates (15.4.7), (15.4.8). Otherwise it can be dealt with
like the customary real factor containing | p|2. The term in the second line of
(3.6.4) is irrelevant. The term in the third line of (3.6.4) is already a source
of concern in chapter 15, but the fact it contains now an extra imaginary
factor is irrelevant.

The only serious difficulty comes from the last term in the fourth line
of (3.6.4). Indeed this term is naturally skew-adjoint, and now it acquires
a small self-adjoint component. However, again because this component is
small, it is easily absorbed by the “big” nonnegative term —iAV, and so
does not affect the estimate (15.4.7).

Now M, is a holomorphic function of ¥’, and so is the resolvent (M, — )
This completes the proof of our theorem. O

—1

Remark 3.6.3. It is important to observe here that the analyticity property
which is used in the proof of Theorem 3.6.2 does not extend to b = 0.

3.7 THE HYPOELLIPTIC CURVATURE

Observe that by (2.4.6), (2.4.8), the component of degree 0 in A" (T*S) in

M,2 M2 ; 2 2
the operators €¢,Hc—wH7 €¢,Hc—wH is equal to 23 /e, AT 4. The same con-
M, 12

siderations apply to infinbw n and A by
Moreover, inspection of equation (2.5.3) shows that all the terms of pos-
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itive degree in these curvatures can be handled by the methods of chapters
15-17. This is made very easy because of the fact that the f* act as nilpotent
operators which supercommute with the other operators. In particular the
spectrum of the above curvature operators is the same as the spectrum of
their component of degree 0, which we studied before.

All the results which were stated before in the case of one single fiber
extend to the case of families. In particular as b — 0, the resolvent of
¢ ¢b”iH7bw r converges to the resolvent of Af’Q in exactly the same sense as
betore, Theorem 2.6.1 being used instead of Theorem 2.3.2 in the proof of
the convergence.

Details are easy to fill and are left to the reader.



Chapter Four

Hypoelliptic Laplacians and odd Chern forms

In this chapter, given b > 0, we construct the odd Chern forms associated
to a family of hypoelliptic Laplacians. The idea is to adapt the construction
of the forms of [BL095, BGO1] which was explained in chapter 1.

Our Chern forms depend on the parameters b > 0,¢ > 0. We will study
their asymptotics as t — 0. The asymptotics of the forms rely on local index
theoretic techniques which we adapt to the hypoelliptic context.

The proofs of some of the probabilistic results which are needed in the
proof of the localization properties of the heat kernels for ¢ > 0 small are
deferred to chapter 14.

This chapter is organized as follows. In section 4.1, we introduce the for-
malism of Berezin integration.

In section 4.2, we show that as in the elliptic case, the even Chern forms
associated with the hypoelliptic Laplacian are trivial.

In section 4.3, we construct the odd Chern forms, and also a fundamental
closed 1-form in the parameters b,¢. This 1-form plays a key role in the
proof of our main results on the hypoelliptic torsion forms and on Ray-Singer
metrics.

In section 4.4, we give the limit as ¢t — 0 of the odd Chern forms. The
proofs are delayed to sections 4.5-4.13.

In section 4.5, we use a commutator identity established in Theorem 2.5.2
to give another expression for the odd Chern forms. This identity plays a
key role in our local index computations.

In section 4.6, we make a rescaling on the coordinate p. The limit ast — 0
of our odd Chern forms will be studied in this scale.

In section 4.7, we show that given g € G, the evaluation of the above limit
can be localized near 7r’1Xg. This is done using probabilistic techniques,
and in particular arguments obtained via the Malliavin calculus [M78, B81b]
which are in part given in chapter 14. Alternative localization techniques can
be found in [LO5].

In section 4.8, we show that given x € X, locally near z, we can replace
the total space of T* X by T, X ®T X. Also a Getzler rescaling [G86] adapted
to this new situation is introduced to compensate for the singularities of the
corresponding heat kernel as ¢ — 0.

In section 4.9, we show that the rescaled operator has a limit as t — 0.
This last result is the exact analogue of the corresponding result by Getzler
[G86] for the square of the classical elliptic Dirac operator.

In section 4.10, we establish the convergence of the associated heat kernels,
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and we establish the appropriate uniform bounds on these kernels.

In section 4.11, we give an explicit formula for the model hypoelliptic heat
kernel on a flat space.

In section 4.12, we give an explicit formula for the supertraces involving
the matrix part of the limit operator.

In section 4.13, we obtain the asymptotics as t — 0 of our Chern forms.

We make the same assumptions and we use the same notation as in chapter
2.

4.1 THE BEREZIN INTEGRAL

Let E and V be real finite dimensional vector spaces of dimension n and m.
Let ¢g¥ be a Euclidean metric on E. We will often identify E and E* by the
metric . Let ey, . .., e, be an orthonormal basis of E, and let e!,...,e" be
the corresponding dual basis of E*.

Let A" (E*) be the exterior algebra of E*. It will be convenient to introduce
another copy A” (E™) of this exterior algebra. If e € E*, we will denote by €
the corresponding element in A" (E*).

Suppose temporarily that E is oriented and that ey, ..., e, is an oriented
basis of E. Let fB be the linear map from A" (V*) A" (E*) into A (V*),
such that if « € A (V*),3 € A (E*),

B
/ af =0 if degf < dim F, (4.1.1)

B
/ Q' A A = (—1)MHD/2

More generally, let o( E) be the orientation line of E. Then [ P defines a linear
map from A" (V*)&A (E*) into A (V*) o (E), which is called a Berezin
integral.

Let A be an antisymmetric endomorphism of F. We identify A with the
element of A (E*),

1 . )
A= Z (ei, Aej) & N e (4.1.2)
1<4,5<n

By definition, the Pfaffian Pf [A] of A is given by

B
/ exp (—A) = Pf[4]. (4.1.3)

Then Pf [A] lies in o(E). Moreover, Pf[A] vanishes if n is odd.

Let S be a manifold, and let E be a real vector bundle on S of dimension
n, equipped with a Euclidean metric ¢¥ and a metric preserving connection
VE. Let o(E) be the orientation bundle of E. Let RZ be the curvature
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of VF. Let e (E) € H (S,0(E) ® Q) be the rational Euler class of £. Then
e (E) vanishes if n is odd. Moreover, if n is even, the class e (F) is represented
in Chern-Weil theory by the closed form e (E ,VE ) given by

E R*
E,V®)=Pf|—]|. 4.1.4
e (5.7%) =Pt |4 (.14
Let e1,...,e, be an orthonormal basis of E. We will use the Berezin inte-
gration formalism, with V' =T'S. By (4.1.3) and (4.1.4), we get
e(B,VF) = ! Eex = (e;,RPe;)e'e (4.1.5)
) Wn/2 p 4 iy J . E

4.2 THE EVEN CHERN FORMS

We make the same assumptions as in sections 1.3, 1.5, 2.4, 2.8, and 2.9.
By (3.1.4), % (X, F') is naturally Z-graded, and the operator defining the
grading is just N7 . Set
X, (F) = Te® S0, x, (F) =T, 50 [gpNT'X] - (a2.)
By (1.6.1), (1.6.5), (1.6.6), we get
Xy (F) = xg (F) = L(g). (4.2.2)

Moreover, using the Thom isomorphism in (3.1.4) and Poincaré duality, we
also get

Xy (F) = X, (F) ifc >0, (4.2.3)
(2nxq (F) — Xy (F)) if ¢ <0.

In the sequel, we use the notation of section 2.8 and of chapter 3. In
particular we take

_ t2 9
=+— . 4.2.4
H=toslp (1.2.4)

Note that if we used the conventions of section 2.8, then we would have
H = +|p|® /2. However, for notational convenience we stick to the notation
in equation (3.2.1), so that H = |p|® /2.

Let g/~ X be the metric on 7*X which is associated to the metric g7~ /t
on TX. Then if g7 X = ¢7" X, we get g/ "X = tg” X. We can write (4.2.4)
in the form

— t

H=tos Ipl? . (4.2.5)
By (4.2.5), we can then use the results of [B05] and of chapter 2, with ¢ = +55
and H =1 |p\f

Also, all the objects we considered in section 2.8 should have an extra
index 4. This index will not be explicitly written. As explained in section
1.6, L (g) is the common value of L (g) and L_ (g).
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By the results established in chapter 3, the operator exp (—Ait) is fiber-

wise trace class. We claim that the even form Trg [exp (—Aﬁ:gﬂ is a smooth

form on S. Indeed smoothness is a consequence of the fact that the fiberwise
hypoelliptic operators Aﬁ:z depend smoothly on the parameter s € S, and
also on the uniformity of the hypoelliptic estimates in chapters 3 and 15, as
long as b remains in a compact set in R .

First we state an analogue of Proposition 1.7.1.

Theorem 4.2.1. The following identity holds:
Trs [g exp (—Ag\jg)} = L(g). (4.2.6)
Proof. Clearly,
Trs [gexp (—Aﬁ:g)} = Trg {g exp (Bg\/tlz)} . (4.2.7)

Using (4.2.7) and the fact that supertraces vanish on supercommutators, we
get

%TlrS {g exp (Bg\/tlz)} = Try Bg\ft‘, % exp (Bgt/tl’Q) ] =0. (4.2.8)

Therefore, the left-hand side of (4.2.6) does not depend on ¢. In sections 4.5-
4.13, we will obtain our theorem by taking the limit as ¢ = 0 of the left-hand
side of (4.2.6). O

g

4.3 THE ODD CHERN FORMS AND A 1-FORM ON R*2

We use the notation of section 2.8. As in (1.7.1), set

h(z) = ze® . (4.3.1)
By the second identity in [B05, Theorem 4.23], we get
MxR? dt
B ¢,$_JH = BM + oo Fd(t/b)t/b I?. (4.3.2)
From the results on the heat kernel of Q(iﬁc which were explained in section

*2
MR

3.3, the operator h ( Tt

) is fiberwise trace class.
Definition 4.3.1. Set
a = (2m)"? o, [gh (Bgfg“ti)] ,
Upp = (271')1/2 ©Trg [gh (Bg‘;‘)] , (4.3.3)
b = £pTry [92—2 [l (Bé‘,’t‘)] ,
wy = T {g (% - Z—Z p|2> h' (Bz%)] :

Then a is a smooth form on S x Rf, and the other objects are smooth forms
on S which depend on the parameters (b, t).
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By the considerations we made after (2.4.10), hQ (I" X7 F) ig well-defined.
To fit with the conventions of Definition 1.7.2, we w1ll also write a in the
form

H—wH

a=h, (A’MxR’f @ (T X,m F>) (4.3.4)

Similarly, let b Hz; /);WWF) be the bilinear form which was considered after

(2.4.10), which is associated to the metric gf X = g7 /t and to the function
j:Z—zH. Then we can write the form u; as

by = hy (A’M, hQ'(T*X*”*”) . (4.3.5)

t,H2 /02—y H

The forms in (4.3.5) will be called the hypoelliptic odd Chern forms.

Theorem 4.3.2. The forms a and up; are odd, and the forms vy, wp+ are
even. There is a smooth odd form v, on S such that

db dt
a = Upz + b ——Ub,t + ’LUb t+ dbdttb t- (436)

The form a is closed on S X Rj_z. In partzcular the odd forms up+ are closed
on S, and their cohomology class does not depend on (b,t).

*2 ~
Proof. Recall that B;\A—XRJr is odd in A (T*S) ®@End (Q (T*X,n*F)), so

H—wH
that a is an odd form. By (4.3.2), we get (4.3.6).
Using the second identity in (2.4.4), we get

d% =pdTrs [gh (Bi/%xij;)}

*2 *2
=T, {g {Af;R:H,Br;TH] 1% (B(QAH » )] = 0. (4.3.7)

So we have shown that a is closed. The remaining part of the theorem is now
trivial. O

Definition 4.3.3. Put
wy, ;= @Trg {g (W — wH> h’ (Bbﬂf)] . (4.3.8)
Proposition 4.3.4. The form w,; is even. Moreover,
Wy — Wy, = (2m) /2 dT, [g% (p—iz) W (Bbﬂj)] : (4.3.9)
In particular,
wy) = w’). (4.3.10)

Proof. By [B05, Proposition 4.34], where we replace g7X by g7 /t and H
by +r;, 1, we get

1 /71— . A t2 NT'X _
5 ([E5 0] - (A% 35] ) = 52 % 55 bl* - (% - wH) . (43.11)
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Moreover,
B (z) = (14 22%) exp (2?). (4.3.12)
Therefore,
W (B = (1-2401) exp (- 4717). (4.3.13)
Finally, by (2.4.9),
[A/M’Aé\jtl,ﬂ _o, {@Z\:,Aé‘;"z} =0. (4.3.14)
Using (4.3.3), (4.3.8), (4.3.11)-(4.3.14), we get (4.3.9). O

2
Now we define v, Q5£/%fiw as in (2.5.2).

H

Definition 4.3.5. Put

3t2
a= (27r)1/2 @Trg {g (@MXRE + [Q‘%\/_lzl:f,:t |p2}> exp (CDMXRE’Z)]

¢, H—wH W b H—wH
(4.3.15)
Then @ is also an odd form on S x R2.
Theorem 4.3.6. The following identity holds:
1/2 MxR? MxR2,2
a= (2m) / ©Trg [g®¢,ﬁx—wh’ exp (334,7%_“1 )] . (4.3.16)

Moreover, @ is a closed form on S x R2, which is cohomologous to a. More
precisely,

3t2

a=a=xdpTrg [gﬁ

MxR2 2
Ip|® exp <©¢,ﬂXwH)] . (4.3.17)

Proof. Since supertraces vanish on supercommutators,

MxR? MxRZ2\] _

Tr, [g |25 v exp (D055 0)] = 0. (4.3.18)

Using (2.5.2) and (4.3.18), we get (4.3.16). Moreover, by (2.4.9), Q‘%V_lj)l:i
commutes with ’Df%ffj , and so

MxR2 32 o MxR2,2
Trs |:g |:€%ZH 7@ |p‘ :| exp <©¢)ﬁwa):|
32 MxRZ,2
— dTr, [g@m exp (%)ﬁ;;;) . (4.3.19)

Identity (4.3.17) is now a consequence of (4.3.15), (4.3.16), and (4.3.19). O
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4.4 THE LIMIT AS t — 0 OF THE FORMS uy, ¢, Vb1, Wh.t

Now we state the main result of this chapter.

Theorem 4.4.1. Ast — 0,

Up g :/ ¢ (TX,, V7%0) by (VF,g7) + 0 (VE), (4.4.1)

g

vpt = O (\/E) ) wp =0 (\/Z) .

Proof. Our theorem will be proved in the next sections. Still we give a direct
proof that given the first equation, the second and the third equations can
be deduced from each other. Indeed, we introduce a third copy of R , and
over h € R, the metric "% is replaced by g~ /h. Let W, be the form
corresponding to u ¢ over S x RY. Using the analogue of (4.3.2), we find
easily that when evaluated at h = 1, we have the equality

1
Uyt = Up,e + dh <§vb7t + wb7t> . (4.4.2)

. =TX . -
The connection V'~ over M x R which corresponds to VZ* is given by

oTX _ orx 9 1
V'Y = vTX Lan <8h 2h>. (4.4.3)
By (4.4.3), we get
e (TXQ,VTX”) = e (TX,, V%), (4.4.4)

i.e., the form e (TXQ,VTX”) does not contain dh. By the first equation in
(4.4.1) and by (4.4.2), we find that as ¢t — 0,

1

5 Ut + Wt = @ (\/1_5) . (4.4.5)
By (4.4.5), we find that the second and third equations in (4.4.1) are equiv-
alent. 0

Remark 4.4.2. Tt is remarkable that the asymptotics as ¢ — 0 of the hypoel-

liptic odd Chern forms uy; = hy (A’M, pe (L) X )

.2 | is the same as the
t,ib—Zwa

asymptotics of the elliptic odd Chern forms h (A’ , th -(X’F)), which was
given in (1.7.12).
4.5 A FUNDAMENTAL IDENTITY

We use the notation in section 2.8. Let z be an odd Grassmann variable,
which anticommutes with all the other odd variables considered before.
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Definition 4.5.1. Set

Loy =7 — 20 (4.5.1)
Proposition 4.5.2. The following identities hold:

(27T)1/2 ©Trg [gexp (—Lv)] = (27r)1/2 @Trg {g exp (—Aé\g’z)} + 2upz.
(4.5.2)

Proof. The identity (4.5.2) with z = 0 is trivial. In the definition of up ¢, we
may as well replace By{ by D1. By definition,

Trg [gh (33{,\;‘)] = Trg {g@% exp (Dﬁ;‘g)] . (4.5.3)

Using (2.5.2), (4.5.3), and the fact that supertraces vanish on supercommu-
tators, we get

T, [gh (D4)] = Trs [ 983 exp (D517)] (4.5.4)
Our proposition follows from (4.5.4). O

Remark 4.5.3. The reader can ask what is the point of replacing Dﬁ’t‘ by
6% in (4.5.4). This is because methods of local index theory can be used in
the second expression, which would fail when applied to the first one.

We denote by gw the operator obtained from £;; by making the trans-
formations indicated in [B05, subsections 4.21 and 4.22] and also in section
2.5 in (2.5.6)-(2.5.9). Observe that this transformation is g-equivariant. The

operator £, , now acts on smooth sections of
A (T*S)RA (T*X) RN (T*X) OA™ (TX) DFRC [z (4.5.5)
over the fibers of T*X over S.

Proposition 4.5.4. The following identity holds:
Trs [gexp (—Lp )] = (—1)" Trg [g exp (—Qb)t)} . (4.5.6)

Proof. The identification (2.5.7) is g-equivariant. Taking into account the
shift by n in the grading, equation (4.5.6) follows. O

4.6 A RESCALING ALONG THE FIBERS OF T*X

Recall that for a € R*, 7, is the dilation p — ap. Then r} acts naturally on
the smooth sections of the vector bundle in (4.5.5). Also the operator gb)t
acts on the smooth sections of (4.5.5). Clearly, conjugation by r leaves the
operators e;, i, unchanged, and, moreover,

*/6%7’:71 = Ni/av T*ié\"’n*71 = aia" (461)

a a i Q

r
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Set
m,, = rf/ﬂgb,trf/;- (4.6.2)
By (4.5.6), (4.6.2),
Tre [gexp (—Lp )] = (—1)" Trg {g exp (‘ﬁb,tﬂ . (4.6.3)
Let VA (T"X)8A(T"X)@A™(TX)®Fu he the connection on
A (T*X) BN (T*X)RA" (TX)RF
which is induced by V7X and V.

Proposition 4.6.1. The following identity holds

= (- 4 G (i (- V- Vi) <)

(e;, R"e;)e'e — %w (VF,g") (ei) Ve

41

4

\/_ =R 1 2
I (T*T* X)®F (VF F) w (VF,gF)

t A (T*X)BA (T* X)BA™(TX)BF,u
Fom|V ’
2b2< Vi

(T e £ (¢ 1) + T pI V) + (BT () ) m)

1 Vi o
— 2 ( (VF F) 7% (VF’gF) T 5 P+ 6zﬁ)> . (4.6.4)
Proof. This is an easy consequence of (1.3.2), (2.5.14), (2.5.17), and of The-
orem 2.5.4. 0

Remark 4.6.2. Recall that dvp«x is the symplectic volume form on 7* X . Let
exp <_@b,t) (z,2') be the smooth kernel with respect to dvr«x (2’) which

is associated to the operator exp <_@b,t)'
Clearly,

Trg {g exp (—@b)t)} = / Tre [g exp (—@b’t) (z,gz)} dvp«x (2) .
* (4.6.5)

4.7 LOCALIZATION OF THE PROBLEM

In the sequel, for simplicity we will assume that S is compact. If this is not
the case, we can as well restrict ourselves to compact subsets of S.
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Let dx be the Riemannian distance along the fibers X with respect to
97X Let ax be a lower bound for the injectivity radius of the fibers X.

Let Ny, x be the orthogonal bundle to T'X, in T'X|x,. We identify X,
to the zero section of Nx_,x.

Given n > 0, let V,, be the np-neighborhood of X, in Nx_,x. Then there
exists 1o €]0,ax/32] such that if n €]0,8n], the map (z,7) € Nx,,x —
expy (Z) € X is a diffeomorphism from V, on the tubular neighborhood
U, of X4 in X. In the sequel, we identify V, and U,,. This identification is
g-equivariant. Let o €]0,70] be small enough so that if dx (gilx,x) < a,
then x € Uy, .

Let dvx, be the volume element on X, and let dvy, ,, be the volume
element along the fibers of Nx_,x. Let k(z,y),r € Xg,y € Nx,/x2, |yl <
1o be the smooth function with values in R, such that on i,

dvx (z,y) =k (z,y) duny, , (y) dvx, (). (4.7.1)
Note that
k(z,0) =1. (4.7.2)
Set
@;,t = r;2/t@b,t'r:/b2‘ (4.7.3)

Then by (4.6.1), (4.6.4), we get

= 1{ ¢ t (. [ i ,
@;’t =1 (—b—4AV +|p|* + 0 (2231. (e — b2l /1312 — bQ’Lei/\/E) - n)>
t? TX  \ ~ing t3/2 F F
—|—4—b4<ei,R ej>ee ——4b2w(V . g )(ei)Va

32 s 1 2
_ —VA (T*T X)®F@ (VF,gF) _ Zw (VF,gF)

42

1 A (T X)&A (T X)BA(TX)EFu @ (i g
:F§<V\/Z(Y7" YA ( YA )% +<T (favei)f (e _tZEi) +TH’p/\/E>

+ (R™ (-,p) e, p) VZ?)

1 32 to :
—z <§w (VF,QF) — WW (VF,QF) + ﬁ (p + 6b421’3\/t2)> . (474)
Clearly,
~ —/
Trg [gexp (—gb)t)} = Trg [g exp (_%b,tﬂ . (4.7.5)

Let exp (—@;t) (,+) (2, 2') be the smooth kernel for exp (—@;t) with re-
spect to dvp«x (2). Then
Trs [g exp <_@;,t)} = /*X Trg {g exp (—@;t) (z,gz)} dvp«x (2).
(4.7.6)



72 CHAPTER 4

Now we will show why the asymptotics of (4.7.6) as t — 0 can be localized
near 71X, C T*X.
Throughout the chapter, we fix by > 1.

Proposition 4.7.1. There exist m € N,c > 0,C > 0 such that if a €
[%,1] ,t €]0,1],b € [\/f,bo] 2= (z,p),2 = (2/,p') € T*X, then

exp (~a, ) ()] < g xp (e (Il + W 4+ 02 (2,2) /1)),

(4.7.7)
Proof. Consider the scalar operator
t2 1
Sbe == A" +3 p|” F VIV, (4.7.8)

First we will establish (4.7.7) when replacing @;t by Sp.:. More precisely
we take a > 0. We will show that for a given b > 0, the heat kernel
exp (—aSy+) (+,-) verifies an estimate similar to (4.7.7). Take (z,p) € T*X.
To prove such an estimate we will use the Malliavin calculus [M78] as in
[B81a, B81b] and in chapter 14.

Let P be the probability law of the Brownian motion w. € T, X, and let E¥
denote the corresponding expectation. Consider the stochastic differential
equation for z, = (zs,ps) € T* X,

&= +V1p, p= bt—fgw, (4.7.9)
Trg =, Po = P-
In (4.7.9), p is the covariant derivative of p with respect to the Levi-Civita
connection, and 70 denotes parallel transport from 7, X into T, X with
respect to the Levi-Civita connection. If g : T*X — R is a bounded smooth
function, by the Feynman-Kac formula, we get

exp(-as) ()= B [ow (=3 [ P ds) o). @70

Note that to establish (4.7.10), we use the It6 calculus on the process (z,p)
together with the existence of the smooth kernel exp (—aSp+) (2, 2’).

Let h: Ry — T, X be a bounded adapted process. Consider the differen-
tial equation
£3/2

J+ RTX (J,2) & = £—5h, (4.7.11)
Jo =0, Jo = 0.
Recall that TT*X ~ TX & T*X. Then by proceeding as in the proof of

(14.2.7), we get
£ lo (=5 [ as) (o' o) (i) )
_ P {exp (-% /O ps2ds> 7 (2a) /O <<h,5w> 4 <J‘, %>ds>] .
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In (4.7.12), [;' (h,0w) is a notation for the corresponding It6 integral. Of

course,
/Oa <j, %> ds = <Ja7 %> - /O“ <J7 £5w>. (4.7.13)

Consider now the functions
bs = (s/a)* (3 —2s/a), Vs = —(s/a)’ (a—s). (4.7.14)

Then the functions ¢, ¥ vanish at 0 together with their first derivatives, and,
moreover,

o = 1,0, =0, e = 0,9, = 1. (4.7.15)
In the sequel, we take U = (Y, 2) € T, X ® T, X. Put
JY =19 (¢.Y +4.7). (4.7.16)

The linear map (Y, 2) — (Jfl], Jflj) is just the parallel transport operator

79. With this choice of Js, we can write equation (4.7.12) in the form

5" [exp (=5 [t as) (o o). (W2 2riz) )
exp (‘% /Oa pslzds> 9 (za)
/Oa <<:|:t§% (jU +R™ (JY, &) x) ,5w> - <jU, %> ds)]. (4.7.17)

Now we use the basic technique of the Malliavin calculus. Let Y, Z be
smooth sections of TX over X. Set U = (Y, Z) € TT*X. We wish to write
an integration by parts for

£ o (<4 [ i as) i o). 0] (47.18)

— ¥

Clearly,
(Yoo, Zo)) = 70 (18 Y, T8 Za,) - (4.7.19)

Clearly 7§Y;,, 75 Z, can be written as linear combinations of the ei, €. By
(4.7.11)-(4.7.14), we can express

BP [exp (-% /0 e ds) {d (z0) , (i, 708)) (4.7.20)

as the expectation of a quantity where only g appears, and none of its deriva-
tives. Still, to obtain the required integration by parts formula, 7§U,, =
(1§Ys,, 7§ Zs,) also has to be differentiated. By taking into account the con-
tribution of w in (14.2.8), this computation can be easily done. Therefore
we get an integration by parts formula very similar to (4.7.11) for (4.7.18).
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The above procedure can be iterated as many times as necessary. We get
a formula of integration by parts for

EF {exp (—%/ |p52d8> Up...Ung (za)]
0

of the same kind as above. By taking m large enough, this leads in principle to
a uniform bound for exp (—aSy+) (2, 2’) and its derivatives, when a € [%, %],
and when the other parameters vary as indicated in our proposition.

Still we have to be careful in proving that the right-hand side of the ana-
logue of (4.7.17) is indeed integrable with respect to P, and also that we
can obtain the uniform bound in (4.7.7). First we consider equation (4.7.17)
itself. We will show that if a € [, 1], if z = (,p), and if the other parame-
ters are taken as before, the right-hand sides of (4.7.10) and (4.7.17) can be
uniformly bounded by

C
—exp (—elpl®) (Y1 +12]) gl - (4.7.21)

Indeed recall that by (4.7.9), © = ++/tp. Classically [IM74, p. 27], there
exist ¢ > 0,C > 0 such that for any M > 0,a > 0,

P[ sup |ws| > M} < Cexp (—M?/2a). (4.7.22)
0<s<a

By (4.7.22), we get a bound like (4.7.21) easily, with ¢ = 0 and C still
depending on |p|. However, we now take into account the exponential factor
in the right-hand side of (4.7.12). Take p with [p| > 1, and choose M = b |p| /
2t in (4.7.22). Then on (supg< <, |ws| < b? |p| /2t),

/ sl ds > = |p|?. (4.7.23)
0 4
Moreover, by (4.7.22),
P { sup |ws| > b%|p| /2t] < Cexp (—b4 p|? /8at2) . (4.7.24)
0<s<a

The above then leads easily to the uniform bound in (4.7.21).
We claim that the same method can be used to control

5" fexp (=5 [ I as) t ) 0]

Indeed the extra term which appears in the integration by parts formula does
not raise any new difficulty. The same idea can be used to control instead

E? {exp (—%/ |p52d8> Ui...Ung (za)]
0

for arbitrary m. Therefore, we get the analogue of the bound (4.7.7) for
exp (—aSy+). We leave to the reader to verify that similar bounds hold for
integration by parts formulas involving derivatives of arbitrary order of g.
This way, we find that in the range of parameters which was specified before,

exp (—aSpy) (2,2") < t% exp (— (\p|2 + |p/|2)) . (4.7.25)
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Note that the appearance of |p/|* in the right-hand side of (4.7.25) can be
obtained by the same arguments as before, or by using instead the adjoint
Sy of Spt.

Assume now that z,2’ € X are such that dx (z,2') > , and that z =
(z,p),2 = (2/,p). Win (4.7.9) z0 = 2,2, = 2’, we find that

B
su sl > ——=. 4.7.26
2P [ps| v ( )
If p is such that [p| < 3/2av/t, by (4.7.9), (4.7.22), we get
B } 402 /q 3,3
P | su s| > ——=| < Cexp(—cb 8a’t’) . 4.7.27
S i 2 | < Clxp (b2 ') (a.7.27)

By proceeding as above, and using (4.7.27) and the Cauchy-Schwarz inequal-
ity, we find that there exist ¢ > 0,C > 0, m € N such that if a,b,t vary in
the above range of parameters, if 5 > 0 and dx (z,2') > S,

exp (~aSi) (2,02) < - exp (—c (i + WP+ 62/1)) . (47.28)

This establishes in particular the obvious analogue of (4.7.7) when @;t is
replaced by Sp.¢/2.
Now we briefly explain how to obtain the exact form of (4.7.7). We should

—/
inspect the precise form of equation (4.7.4) for M, ,. We claim that we can

—/
construct the heat kernel exp (—Qa@b)t) by using the same probability space

as above, by combining this with the It6 calculus and the Feynman-Kac for-
mula. This is indeed very classical [M78], [B84], except maybe for the term
—%w (VF,9") (eiVai). We trivialize F along x. using parallel transport

with respect to the unitary connection V**, When constructing the kernel
—/
exp (—Qamb7t), the noncommutative Feynman-Kac formula which incorpo-

rates this term is of the type

3/2 o
v =V gw (V".g") (bw) + (;?VA (I X)erg (vF, ")
1 2 t3/2
+ v (VF,gF) +z <w (VF,gF) — W@ (VF,gF)>>ds], (4.7.29)
Vo=1.

Equation (4.7.29) incorporates only the terms acting on F'.

Another equation incorporates all the other terms in the right-hand side
of (4.7.4) acting on A" (T*X)®A" (T*X). Observe that some of these terms
are diverging as ¢t — 0, like the term :Fﬁigz e’. To overcome this divergence,

—/
we conjugate the operator M, , by tN"/2 This conjugation has no effect on

the required estimate. The only diverging unbounded term for b € [\/1_5, bo]
3b%2
t

and t — 0 is given by + i5. Still since this term contains z and 22 =0,
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the divergence can be absorbed in a diverging term of the type 1/t™. The
—/
techniques of estimation of the kernel exp (—%b)t) (+,+) remain the same as

above.
The proof of our proposition is completed. O

Remark 4.7.2. For 3 > 0, recall that Ug is the S-neighborhood of X, in X.
By (4.7.6) and (4.7.7), there is C' > 0,c¢ > 0 such that for a € [1,1],t €

10,1],b € [V, bo] , 5 €]0,1],

< Cexp (—cf?/t).

(4.7.30)
Of course, in (4.7.30), we can as well replace @;t by @b’t. The above shows
that the integral in the right-hand sides of (4.6.5) or of (4.7.6) localize near
7T71Xg.

/rr—lx\u[, Tr, {g exp (—a@;t) (z,gz)] dvrsx (2)

4.8 REPLACING T*X BY TyX ¢ T;X AND THE RESCALING
OF CLIFFORD VARIABLES ON T*X

Let v(s) : R — [0, 1] be a smooth even function such that

v(s)=1if |s| <1/2, (4.8.1)
=0if |s| > 1.
IfyeTX, set
El )
= - |- 4.8.2
py) =~ <4770 (4.8.2)
Then
p(y) =1if [y[ < 2n, (4.8.3)
=0 if [y] > 4no.

First we describe the case where S is reduced to one point, i.e., the case
of a single fiber X.

Take € €]0,ax/2]. If s € S,z € X, let BX (z,€) be the geodesic ball of
center  and radius € in X, and let BT=X (0,¢) be the open ball of center
0 and radius € in 7, X. The exponential map exp, identifies BZ=%X (0, ¢) to
BX (z,¢).

Along radial lines centered at = along the fiber X, we identify

A (T*X) QN (T*X) &A™ (TX)RF
to
(A (T*X) &N (T*X) RA" (TX)®F)
by parallel transport with respect to the connection
YA (T X)@N (T X)BA (TX)BF
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In particular, the fibers Ty X|, cpx (4, are identified to T;X by parallel
transport with respect to the connection V7 X along the radial geodesic con-
necting y to z. The total space of T*X over BX (x,¢) is then identified with
BT=X (0,¢) x T X . Note that all the above identifications are g-equivariant.

The flat vector bundle F has been trivialized on BX (x,€) using the flat
connection V. Therefore we can consider F as the trivial flat vector bundle

onT,X.

Definition 4.8.1. Let gZ=* be the metric on T, X given by
922 =" (W) g™ + (10" () g™ (4.84)

In particular the metric g2 is just the given metric 7% on BT=X (0,2n,) ~
BX (z,2m0), and coincides with the flat metric g7=* outside of BT=X (0, 47).
Note that the above constructions are g-invariant.

Similarly let gff be the metric on F, over T, X which is given by

g =0 g™+ (10" w) g™ (4.8.5)
Let @bi be the operator of the type @b,t which is associated to the metrics
ToX ,Fo
92" 9"

The operator ﬁb,t acts on smooth sections of
A (T*S),® (A (T*X) @A (T*X) A" (TX)BF)
on (TX ®T*X),. By (4.8.3), if |y| < 2o, the operators M, , and N, ,

coincide. Also we define the operator @;t from ﬁb,t as in (4.7.3).

Now we consider the case where S is not necessarily reduced to one point.
We will be especially careful here, although this precise construction will be
needed in chapters 11 and 13 only. Indeed near = € My, there is a coordinate
system identifying a neighborhood V of = in M, to an open ball centered
at 0 in R™ x RY, so that the projection mg : My — S is just the obvious
projection R™ x R! — R™. The vector bundle TX can be trivialized as a
Euclidean vector bundle over V), so that the action of g on T X| M, is constant.
In particular T'X is trivialized near 0 on R™ x {0}.

If 2’ € V, we still use the exponential map exp:, to identify the ball
BT=X (0,4m9) to an open ball along the fiber containing 2’. The map (s,Y) €
R™ x T,X — expX Y € M provides us with a chart for M near z € My,
such that the projection 7 : M — S is just (s,Y) — s, and moreover
g(s,Y) = (s,gY). Using this chart, we find that the metric g7* pulls back
to a metric on 7, X. More precisely, the metric g”*»¥ pulls back to a metric
on T, X, which we still denote g7vX.

We still define the metric gZ=X on T,X as in (4.8.4). In particular for
ly| > 4np, this new metric is a “constant metric”, which does not depend on
(s,y). Note that the metric gZ=¥X is g-invariant.

Similarly, we can choose a new g-invariant horizontal vector bundle T M,
which coincides with the given T*# M for |y| < 2n9, and is given by a “con-
stant” horizontal vector space for |y| > 4.
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Let dy,dp be the volume forms on the fibers of T X, T*X. We denote by
exp (—ﬁb’t) ((y,p), (¥',p")) the smooth kernel on T, X & T X associated

with exp (—ﬁ“) with respect to the symplectic volume dy’dp’. We use a
A~ ~/
similar notation when replacing 9, , by 9, ,.

Proposition 4.8.2. There exist ¢ > 0,C > 0 such that for a € [%, 1] ,t €
]Oa l]ab € [\/zv bo] S Xg7

(e [gexp (—ats, ) (w.2). 9 (w.0))| R (2.0)

/77_1{Z/€ng/x,x>|y<770}

— Trg [g exp (—a@;,t) ((ysp) 9 (y,p))])dydp < Cexp(—c/t). (4.8.6)

Proof. We will give a probabilistic proof of (4.8.6). Indeed by the same pro-
cedure as in the proof of Proposition 4.7.1, we can give a probabilistic rep-
resentation of the kernels which appear in the left-hand side of (4.8.6) as a
path integral involving paths connecting z to gz in time a/2, which project
on X into paths connecting y = mz to y' = gmwz. Let T be the first time
before a where the path y, = 7z, exits the ball BX (z,21n9), with the con-
vention that T' = o0 if this event does not occur. By (4.8.3), (4.8.4), and
(4.8.5), the contribution of the paths which are such that T'= 400 to the
path integrals are the same. To evaluate the difference of the heat kernels,
we have to consider only those paths such that 7' < +oc0. Now using (4.7.9),
we find that on such paths

sup |ps| > 9 0 (4.8.7)

0<s<a \/1_5a
We can now use the uniform bounds in (4.7.7) and proceed as in (4.7.26)-
(4.7.27) and after (4.7.29) to obtain (4.8.6). In particular the diverging terms
one gets by the rescaling indicated after (4.7.29) are ultimately killed by the
term exp (—c¢/t). The proof of our proposition is completed. O
Of course, in (4.8.6), we can replace @;,tvﬁ;,t by @ht,ﬁhﬂ
Definition 4.8.3. For a > 0, if f is a smooth section of
A(T*S), @ (A (T*X)®A (T*X)®A™ (TX)RF)
on T, X®T;X,if (y,p) e TXST*X),, set
Iof (y,p) = [ (ay,p). (4.8.8)
Put
D4y = Lz 2 Ry 1 L2 s (4.8.9)

Note that in (4.8.9), the operator I;s/2 2 just acts as a scalar operator. It
does not act on the Grassmann variables €.
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Recall that by (1.6.2), ¢ = dim X,. In the sequel, we may and we will
assume that ej,..., e, is an orthonormal basis of T, X, and egy1,..., €, is
an orthonormal basis of Nx_,x.

Let ¢;,¢,1 < i < ¢ be other orthonormal bases of TX,. These variables
will be considered as generating other copies of A" (T, X,). Let ¢/, 1 < i < ¢
be the basis of T*X, dual to the basis ¢;,1 <7 < /.

Definition 4.8.4. Let ‘ﬁbi be the operator obtained from Qb)t by making
the following replacements for 1 <1 < £:

e ¢’ is unchanged.

e i., is changed into —e®/t + i, + %ei +dei /b.

e ¢’ is unchanged.

e iz, is changed into iz, + %’e},
and for /+1<i<n:

e ¢’ is changed into v/te’.
e i, is changed into i., /v/%.

e ¢ is changed into %é\".

® iz, is changed into %za

Needless to say, the replacements made in Definition 4.8.4 are compatible
with the commutation relations verified by the given operators.

The kernels for exp (—Qb,t) , €Xp (—@ ) will be denoted as before, and

bt
will be calculated with respect to dydp.

Let Trg be the linear map defined on the algebra A spanned by the
el, e, ¢;,¢; for 1 < i < £ with values in R, which, up to permutation, vanishes
on all the monomials except on the monomial of maximal length, with

L
Tr, Heié‘iez@] = 1. (4.8.10)
i=1

We extend the functional ’l/“fs to a functional mapping
A (T78) 8ABEnd (A (V% /x © Nk, /x ) BF )
into A" (T*S), by taking the classical supertrace on the last factor above.

Clearly g acts as the identity on T X, ® T*X,. In the sequel if I C
{1,...,¢}, set

el = Hei, (4.8.11)

el

. b Y i b
(—e /t—i—ze,—i—ge./t—l—ze./b) :H(—e /t"‘lei"‘gei-’—lei/b).

icl
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Other products will be denoted in the same way.
Note that we have the expansion

~

b J
gexp (—‘Bb,t) (67 (w.p), (y,p) =D e (—e'/t e e ie-/b>

L
el (zA + %?) Hijkr (y,p), (4.8.12)
where the H; k1, (y,p) are smooth sections of
A" (T*S) ®End (A‘ (NX /x ® Nx, /X) @F)gc .
We define
Tr, [g exp (—%,t) (97" (v:p), (yvp))}

by writing the expansion (4.8.12) in normal form, i.e., by putting the an-
nihilation operators i, , iz, t.1, 1<i < £ to the very right of the expansion,
by ignoring any of the terms containing any of these annihilation operators,
and by applying otherwise the above rule on the definition of Trs.

Proposition 4.8.5. The following identity holds:

(5)" o) o () ()]
(1) Tr. [gexp (-8,,) (57 4.0), (0:2)| - (4.8.13)

Proof. Consider the vector space R with its canonical basis e. Let e* be
the dual basis. The operators e*,i. act on A" (R*). Then e*i. is the only
monomial in the algebra spanned by 1,e*, i, whose supertrace is nonzero,
moreover,

Trg [€%ie] = —1. (4.8.14)
By applying (4.8.14) to TX, ® T X, we get (4.8.13) easily. O

4.9 THE LIMIT AS ¢t — 0 OF THE RESCALED OPERATOR

Let ¢ : My — M be the obvious embedding. Let @ be the operator given by

@Zi —AV:FQ Z?Zel :F%Vp
1<i<e
o vF gF)2 w(vF gF)
- i RTXoe;) e'ed — -0 (V7 — zi* 2. (4.9.1
1<;j<z <e e]> eel —1 1 21 5 ( )

—_

=~

Note that @ depends on x € My, but this dependence will not be written
explicitly.
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In the sequel, we will write O (Jy|) for an expression which, in the given
range of parameters, is uniformly bounded by C |y|. In the given trivializa-
tion, we denote by V,@ first order differentiations in the directions y or
p. Also O (p) will denote an expression which depends linearly on p with
uniformly bounded coefficients. Other notation is self-explanatory.

The fundamental algebraic fact of this chapter is as follows.

Theorem 4.9.1. Ast — 0,

B,, — B (4.9.2)

More precisely, fort €]0,1],b € [\/E, bo] Nyl < 26200 /t3/2,

- - f . . o
B, =F+ 4b4|‘ \2/1)_ Z (eie" + eiiz,) — Z ig, (€' + ie,)

1<i<e 1+1<i<n
t /2 B2 e Vi
+O<b—2>+0<b2 |y>+0<\fv+ Wl [V, + S 7 |\2\V+b—2p

2 9 t2
+ oy Il eyl | (4.9.3)

Proof. Our theorem is an easy consequence of Proposition 4.6.1. We use im-
plicitly the fact that in our trivialization of A" (T*X)®A" (T*X) ®A™ (T X),
the connection form is a combination of operators of the type e‘ic, and €'z, ,
which ultimately disappear in the given rescaling. Also we use the fact that
i* RTX restricts to RTXs on TX,.

Now we explain in more detail the various terms which appear in the
right-hand side of (4.9.3). The first two terms are obvious. The last series of
terms in the second line in the right-hand side of (4.6.4) contribute to the

two next terms. The difference between the term evaluated at th y and the

corresponding term evaluated at 0 produces the contribution O ( 2 y)

the first line in the rlght—hand 51de of (4.9.3).

Let us consider the term FL 2b2 Vp (T"X)BA(T" X)BAN(TX)EFu in the right-

hand side of (4.6.4). We split this term into its scalar part and its matrix
part.

The scalar part is the operator :F%Vp, which we split in its horizontal
part and vertical part with respect to the coordinates (y, p). After the rescal-
ing in the variable y, the difference of the horizontal part with the standard

22y v ) As to the vertical differentiation,
it can be dominated by O (t3/2 p|? V)

operator V,, is of the form O (

Now we estimate the matrix part of :F%Vﬁ(T*X)(X)A-(T*X)(X)AH(TX)@F’U.

In the given trivialization, the corresponding connection form vanishes at
y = 0. Using the replacements in Definition 4.8.4 and the considerations we
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made at the beginning of the proof, we find that this term contributes by
2
@ (5—4 \ylp)-
The remaining terms in the fourth line in the right-hand side of (4.6.4) are
of the form O (%p) The term in the fifth line in (4.6.4) can be dominated

+3/2

by O ( 2 ‘P|2). The sixth line can also be easily controlled.

By summing up all the terms, we get (4.9.2). The proof of our theorem is
completed. O

Remark 4.9.2. In the right-hand side of (4.9.3), for fixed b, as ¢ — 0, the
remainder tends to 0. However, when b ~ \/%, this is not the case for a number
of terms, including a few of them which do diverge. These divergences will
be dealt with in chapters 11 and 13. They are indeed spurious divergences.

Clearly the operators which appear in the right-hand side of (4.9.1) com-
mute. Therefore,
- AV 1 1 ~
exp (—%) = exp (T + §Vp> exp :F§ Z ;¢

1<i<e

exp —% Z <ei,RTX-‘7€j>€ié7

1<i4,5<¢

1" exp (w (VF’gF)z + Pad (VF’QF)> . (4.94)

4 2

4.10 THE LIMIT OF THE RESCALED HEAT KERNEL

Theorem 4.10.1. Forng > 0 small enough, there existc > 0,C > 0,m € N

such that for a € [§,1],t €]0,1],b € [Vt,bo] .2 € Xg,y € Nx, /x|yl <

Vo /842, p € TEX,

’exp (~a%,,) (47" wp), (y,p))‘

<cC (1 + <£>m> exp (—c (|y\1/3 + |p\2/3)) . (4.10.1)

Moreover, ast — 0, forx € Xg,y € Nx, /x2,p €T*X,

Tr. [gexp (—aB, ) (67 (0:9) (v.9)]
— T, [g exp (—a@ (97" (w.p), (y,p))} . (4.10.2)

Proof. To simplify the arguments, we will first assume that ¢ = 1, so that
Xy = X. In this case we should take y = 0 in our proposition. As a first step,
by imitating the strategy in the proof of Proposition 4.7.1, we consider only
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the scalar part Gy ; of the operator 2‘}3 . Note that in the whole proof, we

will not change our notation when deahng with T, X instead of considering
the whole manifold X . In particular V7* denotes the Levi-Civita connection
with respect to the metric g7=X

As we said before, the manifold X is now replaced by T, X equipped with
the metric gZX. The analogue of equation (4.7.9) is now

Ys = £ps, Ps = T, (4.10.3)
Yo = O7 Po = g_lp_
n (4.10.3), 70 represents the parallel transport with respect to the Levi-
Civita connection associated to the metric g7=X

For a €]1, 1], we want to estimate exp (—a&y4) ((0,p), (0,p)). Inspection
of the right-hand side of (4.6.4) shows that salvation will not come only from

the factor zt,_i p|?, which tends to 0 as t — 0. However, in (4.10.3), we want
to have y, = 0.

For the paths which are such that |p| > b2/2at3/2, we can use the dampen-
ing factor 2 |p|? /b* in the right-hand side of (4.6.4). By proceeding as before,

these contributions can be uniformly bounded by C exp (—cat2 p|? /1)4)7

with ¢ > 0,C > 0. Now ¢ > (b%n0/2a \p\)Q/g, and so there is ¢/ > 0 such
that

exp (—cat2 p|? /b4) < exp ( b4/3 p|2/3> (4.10.4)

Now we consider those paths which are such that |p| < b?/2at?/2. Since
Yo = Yo = 0, when considering ¢ as a section of T, X, we must have

/ yds = 0. (4.10.5)
0
y (4.10.3), we get

s = =70 (p + wy) . (4.10.6)

In (4.10.6), 70 denotes parallel transport with respect to the Levi-Civita
connection along the curve y. from 7, X into T,, X. By (4.10.5), (4.10.6), we

get
/ TgwstZ—/ 9pds. (4.10.7)
0 0
0

The operators 70 are preserving the metric gZ=X. Moreover, since the
metric g7+ differs from the constant metric g7** only on a compact set,

when viewed as acting on T, X, the operators 70 are uniformly bounded.

Therefore,
a
/ 0w, ds
0

We denote temporarily by VI the Levi-Civita connection on T, X with
respect to the metric gZ% on T,X. Let I'7X be the Christoffel symbol of

<Ca sup |ws]. (4.10.8)

0<s<a
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the connection VIX. Equivalently, I7¥ is the connection form for VX in

the trivialization of T'X associated to the given chart near z. If U € T, X, if
Us = 70U, then

d 32 . B
£US + b—Zl"tzéz v (ys) US =0. (4109)
By (4.10.9), we get
£3/2
U, —U = _b—2/ TTX,  (4u) Undu. (4.10.10)
0 oz Yu

Using (4.10.6), (4.10.10) and the fact that the ¥ are uniformly bounded, we
get

43/2
|70 — 1] < C—55 sup |ps|. (4.10.11)
b?  o<s<a
y (4.10.11), we obtain
a t3/2
‘/ 0pds| > a|p| (1 —C'—5 sup |ps> . (4.10.12)
0 b® 0<s<a
By (4.10.7), (4.10.8), (4.10.12), we get
43/2
sup |ws| > [p| <1 —C'—5 sup ps|> . (4.10.13)
0<s<a b? o<s<a
Now by (4.10.3), we obtain
sup |ps| < |p|+ sup |ws|. (4.10.14)
0<s<a 0<s<a
We deduce from (4.10.13), (4.10.14) that
3/2
(1 - C— p|> Ip| < (1 + C’/— p|> sup |ws] . (4.10.15)
0<s<a
Recall that now |p| < ZCts/Q By (4.10.15),
sup |ws| > C" |p| /2. (4.10.16)
<s<a

We can control these paths by the same argument we already used to dom-
inate the contribution of such p by exp ( —c¢ |p|2
The proof of our proposition is completed for the scalar part of the op-

erator. Controlling the full operator does not raise any substantially new
difficulty. Still two kinds of terms have to be taken care of:

e In the fourth line in the right-hand side of (4.6.4), there is a term p/
V/t. For fixed b, this singularity is compensated by the factor # Still
the resulting expression diverges when b = v/t. However, this term can
be controlled by an adequate rescaling of the Grassmann variables f¢,
also using the fact that by (4.7.22), for any v > 0,

E [exp (’y sup ws>} < 4o0. (4.10.17)
0<s<1
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The rescaling of the f* by the factor combined with (4.10.17)

\f\pl

b2
Vt(1+p])
ultimately introduces a correcting factor 1+ (

the factor |p|™

ultimately disappearing because of exp ( |p\2/ 3)

e The only serious point is to control F5tz (RTX (-,p) e;,p) Vte' in the
right-hand side of (4.6.4). This term is made indeed smaller by the
rescalings of Definition 4.8.4. The main difficulty is that it appears in
a first order differential equation which defines the associated noncom-
mutative Feynman-Kac formula, and the weight ¢3/2 is bigger than ¢2
which appears as a factor of [p|*. The difficulty in the estimation comes
exactly at the stage leading to equation (4.10.4), where this quadratic
term becomes too big to control.

We briefly explain how to take care of this second term. Take x > 1. In
Definition 4.8.4, we make the rescaling also depend on the extra parameter
k. For1 <i< E is changed into €'/k, and ig, is changed into wig, + %’e}.

For £ +1 < i < n, & is changed into ﬁé\‘ and ‘g, into \”‘/llzel The other

rescalings are kept unchanged. Let @b , be the obvious analogue of @b .
Clearly

™ [gen (<8,,) (7 w.0) (0.0)]

= T [gen (87, ) (7 (00), ()] - (420.18)

Recall that for the moment, we assume that g = 1. The quadratic term in
the right-hand side of (4.6.4) is now F4 2b2 <RTX (-,p) €i, p) €. Moreover, the
terms containing iz, appear in the first line in the right-hand side of (4.6.4).
The contribution of the annihilation creation operators to the first line in
the right-hand side of (4.6.4) is now

+ (V + ia) (? — kV/ti, — L K—\/Eze> . (4.10.19)

2h2 /1 N
Taking into account the fact that ¢ €]0,1],b € [v/t,bo], we find that (4.10.19)
is dominated by
t
C (1 + %) . (4.10.20)

Now consider the noncommutative Feynman-Kac formula which produces
the heat kernel exp (—2a§:t) ((0,p), (0,p)). Using the above considera-

tions, and in particular (4.10.20), we find that at least if w (V¥, %) =0, it
can be controlled by the expectation of

ot3/2
C’exp( 2b4/ ps)? ds+ / ps)? ds+c\/_(m>. (4.10.21)
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Now by (4.10.3), we get
ps =75 (p+ws). (4.10.22)
Using (4.10.17)-(4.10.21), given b € R*, for ¢ €]0, 1] small enough

’exp <_2a§b,t) ((Ovp) ) (Ovp))‘
cat? o + cat3/? ﬁ N c”am/f)

b2 K b

t2 /b2
— Cexp (—% Ipl? (1 - ;\/J n c”afi) . (4.10.23)

Put

k=1+p|"?. (4.10.24)

Under the conditions given before (4.10.4), we get

1/2 /
LV, ey
b2 = b2 = ptl/4 — ¢1/4
By proceeding as in (4.10.4) and using (4.10.23)-(4.10.25), we find that for
t €]0, 1] small enough,

’exp (‘2@;) ((0,p), (0,p))‘ < Cexp (—c \p\Q/g) : (4.10.26)

Taking into account (4.10.18), (4.10.24), and (4.10.26), the remainder of the
proof of the estimate (4.10.1) continues as before, at least for ¢ small enough.
Note that if ¢ is bounded away from 0, it would be enough to take k to be
a large constant, and get an estimate better than (4.10.26).

Now we consider the case of a general ¢ € G. Equation (4.10.3) now
becomes

(4.10.25)

Ys = Eps, Ps = Tsou.}S? (4.10.27)
Ya = Yo, Pa = gPo-

In (4.10.27), we take yo € Nx, /x 2
By (4.10.27), we get

<a sup |ws|.
0<s<a

(4.10.28)

a
(g — 1) po| < sup |wsl, ’(9—1)yo—/ 0pods
0<s<a 0

Let pg,pé be the components of p in T, Xy, Nx, /x .- By (4.10.28), we get

lpg| < C sup |wsl. (4.10.29)
0<a<s
By (4.10.11), (4.10.28), (4.10.29), we obtain
I t3/2
e A L ) FNRCRE )
0<a<s 0<s<a
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By (4.10.14), (4.10.29), (4.10.30), we get
t3/2 t3/2
lyo| + (1= C—5Ipo| | Ipo] < {1+ C—5Ipol | sup |ws|.  (4.10.31)
b b 0<a<s

Equation (4.10.31) is the obvious extension of equation (4.10.15) to this more
general situation.

From (4.10.31), we get (4.10.15). By proceeding as before, we obtain the
bound

‘exp (—a@b)t) (97" (90, p0) (yo,po))‘

<C (1 + <§>m> exp (—c \p0|2/3) . (4.10.32)

We consider first the case where |yo| < 2Ctz# pol”. Since b > /1, |p0|2/3 >

(2(%%1/2)1/3 lyo|"/® and so (4.10.1) holds in this case.
Now consider the case where |yg| > 20'524 Ipo|®. By (4.10.31),

Yol
1/2 =
1+ (C%) ‘y0|1/2 0<a<s

In particular, since b > V¢,

<2 sup |wsl. (4.10.33)

|yol
1+ (S02)t?
Using (4.7.22) and also (4.10.34), we obtain the bound

<2 sup |ws]. (4.10.34)
lyol '/ 05azs

exp () (57 (w0-p0) (v, p0) | < € (1 + (%)wj exp (<" o))

(4.10.35)
By combining the bounds in (4.10.32) and (4.10.35), we still get (4.10.1).
Now we establish (4.10.2). We use Theorem 4.9.1, in combination with

uniform estimates on the heat kernel exp (—@b t) and its derivatives. These

uniform estimates can be established using the Malliavin calculus as in chap-
ter 14 . Combining these uniform estimates with Duhamel’s formula, we get
(4.10.2). The proof of our theorem is completed. O

4.11 EVALUATION OF THE HEAT KERNEL FOR 2] + aV,

Let V' be a finite dimensional vector space of dimension n equipped with a
scalar product g¥. Let V* be the dual of V equipped with the dual metric.
Let A7, AV be the Laplacians of V, V*. Set

ARV = o (4.11.1)
Sy A1,
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Note that AV does not depend on the metric gV, but just on the symplectic
form w of Ve V*.

In [Kol34], Kolmogorov computed the heat kernel for the operator ATV +
aVyp. The fact that it has a smooth heat kernel was one motivation for
Hérmander [Hor67] to prove his theorem on hypoelliptic second order differ-
ential operators.

Proposition 4.11.1. For any a € R, s > 0, the following identity holds:

AV 2 2.3
exp (s (T + an>> = exp (ZAV _LE£HY + ﬁAH> exp (asVp) .

4 12
(4.11.2)
Equivalently,
AV as
exp (s (T + avp>> = exp (?Vp)
2.3
SAV 4 P8 A o (4

exp <4A oA )exp(2 V,,). (4.11.3)

Proof. We give an algebraic proof of (4.11.2). The arguments which will be
used can of course be justified analytically. Set

AV
Us = exp (s (T + avp>> , Vs = Usexp (—asV,) . (4.11.4)
Clearly,
[Vp, Vai] = =Ve,, (4.11.5)
and the commutator of V,, with V., vanishes. From (4.11.5), we get
exp (sV,,) AV exp (—=sV,) = (Vi — sVe,)> . (4.11.6)
By (4.11.4), (4.11.6), we obtain
dVs 1 2 Lov HYV | 2 2H
y :VSZ(Vg —asVe,) :VSZ (AY —2asA™Y +a?s*AM) . (4.11.7)
s
By (4.11.4), (4.11.7), we get (4.11.2). Moreover,
2 2.3 9 2.3
SAV _ B ANBY Y5 v S (g, 98 @5 AH
AV - ZARY L 22 A 4(ve 2vei) + LAt (418)
Equivalently,
2 2.3
SAv_ 4 \mv &S \H
4A 1 A 5 A
2.3
e (B9, (227 4 AT exp (-
= exp ( 5 Vp) <4A + 15 A )exp( 5 Vp). (4.11.9)
By (4.11.2) and (4.11.9), we get (4.11.3). O

Let g now be a linear isometry of V. Then g induces the isometry g—! of
V*. If V* is identified to V' by the metric, this is just g itself. In the sequel,
we assume that 1 is not an eigenvalue of g on V.
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Proposition 4.11.2. Ifa € R*, the following identities hold:

/*exp (ATV + avp> ((0,9),(0,q)) dg = (ﬁ)n (4.11.10)

AV
exp | =— +aV, | (¢  (v,p), (y,p)) dydg = ————.
/V@V* XP< 1 p) (97" (.p), (v, p)) dydg 0o

Proof. We will give two different proofs of our proposition, one based on
Proposition 4.11.1, the other using Fourier analysis and not relying on ex-
plicit computations.

e A first proof
To prove the first identity, we begin by using (4.11.3) to get

o (5 +49,) (0.0 0.0)

AV a? a a
= exp (T) (g,q) exp (RAH> (;, _?q) . (4.11.11)

By (4.11.11), we get

AV
Vﬁ47+wammmmm

12 W/ e ( 12| \2) d L PR TR
=—5= xp | — = —= 1.
a?m? P a ) la| /7 )
which is the first identity in (4.11.10).

Similarly, using again (4.11.3), we get

exp (ATV + an> (97" (1,9, (y,9) = exp (T) (94.9)

a? a a 12 \"/?
_AH ( -1 —a — — ) = _
exp<48 ) 9 YT 3590954 pEG
~ 12 _ a . 2
exp (— 99 — Q|2) exp (—a—2 ’g oyt 5 Ga+ Q)’ ) - (411.13)
Note that (4.11.13) is precisely the formula obtained by Kolmogorov
[Kol34]. Using (4.11.13) and the fact that no eigenvalue of ¢ is equal
to 1, we get the second identity in (4.11.10). The first proof of our
proposition is completed.

e A second proof

We use first the Fourier transform in the variable y € V. Also, to avoid
notational confusion, we will consider p as an operator, and use the
notation ¢ to denote the variable which is integrated in V*. We get

/ﬁ4§#wgmmmm@

AV
= / exp (T + 2ima (p, f}) (q,q)dqd§. (4.11.14)
VeV
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Note that the operator which appears in the right-hand side of (4.11.14)
acts on V* and depends on the parameter £ € V*. Moreover, given
& € V*, we have the obvious

exp (ATV + 2ira { ,g)) (¢,q) = exp (ATV + 2ima {p + q,f)) (0,0).

(4.11.15)
By (4.11.14), (4.11.15), we get
AV
exp (T + an> ((0,4),(0,9)) dg
v
AV
= exp (— + 2ima ( ,5)) (0,0) exp (2ima (g, &)) dqd€.
VeV 4
(4.11.16)
Also
/ exp (2ima{q,§)) dqg = %5520. (4.11.17)
v lal

By (4.11.16), (4.11.17), we obtain

AV
[ e (T ‘ avp) ((0.9).(0.9)) dg

_ ﬁexp (%) 0,0) = (ﬁ)n (4.11.18)

A similar computation shows that

AV
/ exp (T + avp> (97" (,q). (y,q)) dydgq
VeV

J T )
= exp (T + 2ima ( ,€>> (97" a.q)
VeV oV*
exp (2i7 (1 —g7") y,€)) dydgd¢. (4.11.19)
Now

, - 1
/Vexp (2ir {((1—g™ ") y,&)) dy = m&:o. (4.11.20)

By (4.11.19), (4.11.20), we obtain

AV
/ exp (T + avp> (97" (v,9), (y,9)) dydg
Vev=

1 AV B 1
- m/* exp (T) (9™"'¢,q) dq = aa—gF 4

The second proof of our proposition is completed.
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4.12 AN EVALUATION OF CERTAIN SUPERTRACES

We will use the formalism of Berezin integration of section 4.1, as in equa-
tion (4.1.5), with S replaced by My, and E by T'X,. We will evaluate the
supertrace of the expression which appears in the right-hand side of (4.9.4).

If « € A (T*S)®A (T*X,), we denote by a™* € A" (T*S) ®o (T X,) the
form such that a™®el A ... A e is the form of top vertical degree appearing
in the decomposition of «.

Proposition 4.12.1. The following identity holds:

1 R 1 Ix .
gexp | T3 Z et | exp | —7 Z (ei, R™*ve;) e'e’
1</t 1<i,5<¢

i*exp (w (VF,gF)2/4+zw (VF,g") /2)]

1\* (8 1 "
<§> / exp | =7 Z <ei,RTX-‘7€j>€Lé7

1<4,5<¢

= det ((1-g) \ng/x)z

max

Tt {gi* exp (o.) (VF,gF)2 /4 + zw (VF,gF) /2)} (4.12.1)

Proof. We have the identity

_p 1 -
(_1)n ETrs g exp :F§ Z €;e;

1<i<e

1 ey

TX ~

exp | =7 E <ei,R gej>eé7
1<i,j<8

i exp (w (VF,gF)2/4—|—zw (V¥ g") /2)]

(N —~ 1 ~
_ TrA (NXQ/X@NXg/X) [g] Trg | exp ZF§ Z e;¢;
1<i<t

1 o

_ - . TXg, \ 2i5J

exp 1 E <ez,R ge]>e e
1<i,j<t

i* exp (o.) (VF,gF)2/4—|— 2w (VF, g") /2)] (4.12.2)

Note that the factor (—1)" " in the right-hand side of (4.12.2) has disap-

peared so as to lead to ™t (N;Q/X@NX”/X) [g]-
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Clearly,
. * 2
T (¥ x N, %) 11— gt (1 glnsy ) (4.12.3)

Moreover,

1 —~ 1 .
exp | F3 Z eie; | = H <1¢§%ei>~ (4.12.4)

1<i<e 1<i<e

When calculating Tr, in the right-hand side of (4.12.2), (4.12.4) introduces
a sign (F1)°. When comparing with the sign conventions in (4.1.1) and
(4.8.10), we see that there is an extra sign (—1)E which appears when ul-

timately replacing T/‘i by the Berezin integral [ B in the right-hand side of

(4.12.2). Ultimately the sign correction is (jzl)e. However, in the present
case, the right-hand side is nonzero only if an even number of €/,1 < i < £
appears, so that ¢ has to be even. This ensures that the sign correction
ultimately disappears. The proof of our proposition is completed. O

The final step in the computation of the local supertrace of exp (—@) is
as follows.

Proposition 4.12.2. The following identity holds

~

/ (—1)" " T [gexp (—@) (97" (. q), (y,q))}
Nx, xxT*X
= W/ exp | = E (ei, R"*ve;) e'e
T 1<ij<t

vl [gi* exp (w (VF,gF)2 /4 + zw (VF,gF) /2)}] max. (4.12.5)

Proof. Our Proposition follows from (4.9.4) and from Propositions 4.11.2
and 4.12.1. O

4.13 A PROOF OF THEOREMS 4.2.1 AND 4.4.1

We use (4.6.3), (4.6.5), (4.7.6), (4.7.30) to conclude that to evaluate the limit
as t — 0 of Trg [gexp (—£s,)], we should only evaluate the limit of

(-1)" /7r*1U Trq [g exp (—@b)t) (z,gz)} dvrx (2) .
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By (4.7.1), we get

/Tr‘lUno Tr [g exp (—@b)t) (z,gz)} dvr«x (2)

— /Xg dUXg (1‘) /{yeng/x,|y<770}XT*X
Trg {9 exp (_@b,t) (97" (w.p), (y,p))} k(z,y)duny, ,x (y)dp. (4.13.1)

By (4.8.6), in the right-hand side of (4.13.1), we can as well replace @bi by

ﬁbvt, while making k (z,y) = 1. Moreover, using (4.8.13), given z € X, we
get

/{ v emtempere T 1% () (47 00). )|
YENx /x|yl <no § xT;

dony, () dp = (—1)" /{

YENx /x|y <m0 /t3/2 } x Tp X
Tr, [g eXp( ‘Bbt) (67 (v,p), (y,p))} dony,,x (y)dp. (4.13.2)

Using Theorem 4.10.1, Proposition 4.12.2, and the above considerations, we
find that as ¢t — 0,

Tr, [g exp (—£5.)] / m/ exp [ =2 S (e, B Noe,) o0
1<zg<l

Trr [gi* exp (o.) (VF,gF) /44 2w (VF,gF) /2)} . (4.13.3)

y [BGO1, Proposition 1.6], we get

Tt [gi* exp (w (VF,gF)2 /4 + zw (VF,gF) /2)}
=Tr" [g] + 2Te" [gh (w (VF,¢7) /2)]. (4.13.4)
By (1.6.3), (1.6.5), (1.7.3), (4.1.5), (4.13.3), (4.13.4), we obtain

1 -1
Trg [gexp (—£b¢)] — L(g) + z( )1/2g0 /X e (TXQ,VTXH) hg (VF,gF) .

(4.13.5)
Moreover, the difference @b’ . @b has been estimated in equation (4.9.3) of
Theorem 4.9.1. Using Duhamel’s formula, one concludes that for given b €
R, the speed of convergence in (4.13.5) is O (V't). By (4.2.8), by Proposition
4.5.2 and by (4.13.5), we get Theorem 4.2.1 and the first identity in (4.4.1)
in Theorem 4.4.1.
Now we establish the second identity in (4.4.1). Instead of using the for-
mula in (4.3.3) for v,;, we can observe that varying ¢ = +75 in H® = ¢ |p\f
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can also be obtained via Theorem 2.5.4. Ultimately, we find that to obtain
%Ub,ty instead of the operator £, ;, we should now consider the operator
db )
Sbt :Ftb3 (p—p—tip) :|Z3z—t2 % (4.13.6)

It is then easy to see that when making the rebcahngb in (4.6.2), in (4.8.8),
and in Definition 4.8.4, when ¢t — 0, in the analogue of (4.9.2), (4.9.3), no
term containing db appears in the right-hand side, so that the second identity
n (4.4.1) holds.

An alternative method is to consider directly the expression in (4.3.3) for
vpt. By (4.3.12), we get

B (x) = (1 + 2%) exp (az?) |az1. (4.13.7)

0 —
Let 90, , be the operator obtained from 2, , by making z = 0. By pro-
ceeding as in Proposition 4.5.4 and using (4.3.3), (4.13.7), we get

n 0 t =0
v ==x(=1)"¢ (1 + 2%> Trg [gb_Q p|? exp (—aﬂw)} lo=1. (4.13.8)

By (4.13.8), we can then proceed as before and we get the second identity
n (4.4.1).

As we saw in (4.4.5), we already know from the above that as ¢t — 0,
wpr = O (\/f) Still, it is interesting to use the same sort of arguments as
above for wy ;. Indeed, we have the identity

9 Ao 1
Wy = (1 + 28_> pTrg { (2—2 ¥z p|2> exp (—aAé\’/tl’Q)} la=1. (4.13.9)

Set

== ) ene. (4.13.10)

1<i<n
By proceeding as before, we get

Ao t?
Trs {g (27 T Ip2> exp (—aAﬁAt’z)]

= (—1)" Tr, {g (% ¥ b% pl2> exp (—a@;tﬂ 1. (4.13.11)

Set

1 P
=5 > elne. (4.13.12)
1<i<e
Using (4.13.9) and proceeding as in the proof of Proposition 4.12.1, we find
easily that as ¢t — 0,

Vit o (S5 ol ) e (-]

1 [P 1 .
— / (+1)" W/ Mexp <_Z <ei,RTXer>€‘é7> T [g]. (4.13.13)
Xg m
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The sign (—1)" in the right-hand side of (4.13.13) appears by the discussion
at the end of the proof of Proposition 4.12.1. Note that the right-hand side of
(4.13.13) is a form of degree 0 on S. Also only odd dimensional components
of X, give a nonzero contribution, so that (£1)" is just +1. By (4.13.11),
(4.13.13), we find that as ¢t — 0,

Ao 12
Tr, {g (—0 F 3 p|2> exp (—A{,\ﬁ’z)}

0o \sing | o F

\/_ .. 775/2/ Mexp (—— (e;, R e]>e/e7> T [g] + O(1).
(4.13.14)

We claim that O (1) can be replaced by O (V) in the right-hand side of

(4.13.14). First we consider the case where g = 1. In this case, the term of
weight v/t which appears in the first line in the right-hand side of (4.9.3) is

given by j:% (?{e\i + eiig; ) The same computations as before show that the
contribution of this term vanishes identically. In the general case where g is
not necessarily equal to 1, the contribution of the remaining terms in the first
line of (4.9.3) are also irrelevant. Note that the operator % is invariant by the

map (y,p) — (—y, —p). In the second line in (4.9.3), the terms O (ﬂ@) and

O ( p) do not contribute for the same reason. Therefore we have proved
that instead of (4.13.14), we have

Ao t?
Trg {g (2—2 T pl2> exp (—Aﬁfz)}

41 1 Tx, ;
\/_ XW//Q/ Mexp( 4<61,R e>ee>Tr lg] + O(\/%)
(4.13.15)
We claim that for a > 0, as t — 0,
Ao
Tr, {( b2 \p| )exp (—aA{:/tl’Q)}
+1 1 1 TXy, \zisg )| mF
:\/7 Xgm/ M exp (—Z<ei,R '€j>€é\‘7> Tr [g]+(9<\/f).
(4.13.16)

Indeed the only difference with respect to (4.13.15) is that we should in-
stead evaluate the contribution of exp (—a@) instead of exp (—@) as was
done before. However, when replacing ATV + %Vp by a (ATV + %), we get

instead in the right-hand side of the first equation of (4.11.10) (2/a3/2ﬁ)n.
Ultimately we obtain (4.13.16) easily.
By (4.13.9), (4.13.16), we see that as t — 0,

Wy = O (\/%) , (4.13.17)
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which is just the third equation in (4.4.1).
The proof of Theorem 4.4.1 is completed. (]
As an aside, we state the following result, part of which was already proved.

Proposition 4.13.1. Fora >0, ast — 0,

Ao 8o M2
Trg [(E + » |p\ exp <_aAb,t )
+1 1 B 1 o N
~ Vat Jx, 77 / viexp (‘Z {ei, B g€j>5"63> " [g] + 0 (V).
(4.13.18)

Try {g (N 2_ n_ wH> exp (—aAﬁ/tl’z)}

+1 1 [P 1 X\ i) ero
- 0= — M exp —1 (ei, R" ey e'e | Tr' [g] + O (1).
X.q

In particular ast — 0,

wy, = O(1). (4.13.19)

Proof. The first identity in (4.13.18) was already established in (4.13.16).
So, we concentrate on the proof of the second one.

By using the transformations which were described after Remark 2.5.3
and also the conjugation in (4.6.2), we find that the analogue of (4.13.11) is
the identity

T*X _
Trg [<¥ — wH> exp (—aA{:/tl’Q)}

_ Dy <eiz’ei—€%‘a+2e%a/\/£+<:r( T ei) 7p/\/?f> e (\/z'té“' — 2ei)

2

—9 <TH,p/\/Z>> exp (—a@zt)] . (4.13.20)

To make the argument simpler, we first assume that g = 1. When making
the changes indicated in Definition 4.8.4, the first term in the right-hand
side of (4.13.20) is changed into

¢ (z + %ei + z@/b) + <2e”/\/£ - ?) (r + ba/\/i) (4.13.21)

and the expression appearing in the second line is unchanged. ‘
In (4.13.21), the leading singular term as ¢ — 0 is given by %e’ (e; + 2¢;).
Inspection of equation (4.9.4) shows that as t — 0,

N —
Tr, {g ( —- wH> exp (—Aﬁﬁ’Q)] —0. (4.13.22)

In the asymptotic expansion of (4.13.21), to compute the term in 1/v/¢, we
first observe that the coefficient of 1/y/¢ in the second line of (4.13.20) or in
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(4.13.21) does not contribute to the evaluation of the corresponding coeffi-
cient, either because of the considerations we just made, or by the argument
we gave after (4.13.14). So what remains to understand is the contribution
of the term which is v/# in the right-hand side of (4.9.3) combined with the
1/t term in (4.13.21). We find that the relevant expression to be considered
is

1o ; .
T3 (6:€" + egiz,) €' (e + 2¢;) . (4.13.23)

In (4.13.23) only the component containing e;e; is relevant. This component
is exactly given by

1., ,
Fhe (e" + 2ig,) €". (4.13.24)

The term containing iz, in (4.13.24) is also irrelevant, since it disappears

under ’l/i Ultimately, we get the second identity in (4.13.18).

In the case where g is not equal to 1, a similar computation still using
(4.9.3) leads to the second identity in (4.13.18).

Equation (4.13.19) follows from (4.13.7) and (4.13.18). The proof of our
proposition is completed. [l

Remark 4.13.2. It should be pointed out that the right-hand side of (4.13.18)
already appeared in [BZ92, Theorem 7.10] in a study of the small time
asymptotics of the supertraces which appear in the definition of the Ray-
Singer analytic torsion [RS71]. This is not an accident.

The remainder in the first equation in (4.13.18) is O (v/¢) and in the second
equation it is O (1). Indeed the first leading term in the second equation is
obtained by considering the expansion in (4.9.3) to order /£, while in the
first equation, it is just computed using the constant term in this expansion.
Using equation (4.3.9) does not compensate for the discrepancy, except in
degree 0, because of (4.3.11), which makes the left-hand sides of the two
identities in (4.13.18) coincide. The purpose of identities like (2.5.2), (4.5.2)
and (4.5.4) is to go back to the situation where only the constant part of the
asymptotic expansion in (4.9.3) is used.

As we showed in (4.4.2)-(4.4.5), the expansion of wp; in (4.4.1) can be
directly obtained from the expansion of up ¢ and vy ¢, which only requires the
consideration of the leading term in the expansion (4.9.3).

Finally, as should be clear from the methods used above, all the quantities
which were considered above have an asymptotic expansion in v/#, and this
to arbitrary order, the coefficients of the expansion being given by integrals
of functions which can be computed locally over X.



Chapter Five

The limit as ¢t — +00 and b — 0 of the

superconnection forms

The purpose of this chapter is to establish the asymptotics as ¢ — +oo or
b — 0 of the hypoelliptic superconnection forms which were constructed in
chapter 4. We show that for b > 0 small enough, convergence as t — +o00
is uniform, and also that as b — 0, the hypoelliptic superconnection forms
converge to the elliptic superconnection forms, and this occurs uniformly
when ¢ > 0 stays away from 0.

This chapter is organized as follows. In section 5.1, we define what will
eventually be limit superconnection forms, for ¢ = 400 or for b = 0.

In section 5.2, we state the convergence results.

In section 5.3, we split our even superconnection forms as the sum of
two pieces defined via contour integrals, the first integral excluding the 0
eigenvalue, and the other one referring only to the 0 eigenvalue. Also we
state two results on the asymptotics as ¢ — 400 or b — 0 of these two
pieces, from which the asymptotics as t — +o00 of our three superconnection
follows.

Sections 5.4 and 5.5 are devoted to the proofs of the above two results.

Finally, in section 5.6 we establish the asymptotics of the odd supercon-
nection forms.

We make the same assumptions and we use the same notation as in chap-
ters 2 and 4. Also throughout this chapter, we assume that S is compact. if S
is noncompact, the uniform convergence results are still valid over compact
subsets of S.

5.1 THE DEFINITION OF THE LIMIT FORMS

Recall that ¢ = +1/b%, with b > 0. In the present section, we will apply the
results of Theorems 3.2.2 and 3.2.3 to the operator Ai,HC’ by simply using

the conjugation in (3.2.2). In particular exp (c p? /2) S (T"X,n*F) now
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replaces S (T* X, 7*F). For A € SpA3 ,,., set

QO (T*X,7°F) = exp <c Ip|? /2) S (T"X, 1" F),

O (T*X,7°F), = exp (c Ip|? /2) S (T*X,7°F), (5.1.1)

QO (T*X,7°F), = exp (c Ip]? /2) S (T*X, 7" F),

so that
O (T*X,7°F) = Q (T*X, 7" F),® Q (T* X, 7 F), . (5.1.2)
_ . (T X, F)
By Theorem 3.2.2, the splitting (5.1.2) is by, orthogonal, and the

restriction of h%;(T*X’”*F) to each of the vector spaces in the right-hand side

of (5.1.1) is nondegenerate.

For b > 0, let P, be the projector from Q (T*X,7*F) on Q' (T* X, 7n*F),
with respect to the splitting (5.1.2). Then d” X acts on both terms of the
splitting (5.1.2). By Theorem 3.2.2, the complex (Q (T*X,7*F), ,d" X) is
exact, so that

H (Q (T* X, 7 F) ,dT*X) - H (Q (T*X,7*F), , dT*X) . (5.1.3)
Finally, by (3.2.15),
I8 (Q (T*X,7°F), dT*X) =0 (X, F). (5.1.4)

By Theorem 3.5.1, there exists by > 0 such that for b €]0, by], over S, the
Q(T*X,x* F)

generalized metric hy. is of Hodge type, i.e.,

O (T*X, 7 F)y = kerd” X nkerdy 5yy.. (5.1.5)

Besides by equation (3.5.13) in Theorem 3.5.1, for b €]0, by}, we have the
canonical isomorphism

QT X, m"F),~% (X,F). (5.1.6)
Set
H, (X, F) = ker A 5. (5.1.7)
From (5.1.5), we find that for b €]0, bo],
QO (T"X, 7" F), = H (X, F). (5.1.8)
From (5.1.6), (5.1.8), we deduce that for b €]0, bo],
H, (X, F)~$ (X,F). (5.1.9)
By Theorem 3.2.2, the restriction of the Hermitian form h%'C(T*X’W*F) to

H, (X, F') is nondegenerate. Let h?'(X’F) be the Hermitian form on $" (X, F')
which is induced by the restriction of f)gb(T*X’ﬂ*F) to Hj (X, F) via the
canonical isomorphism (5.1.6).
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Clearly the ' (X, F') are the fibers of a smooth vector bundle on S, which
is equipped with the flat Gauss-Manin connection V¥ (X:F) Observe that
under the canonical isomorphism in (3.1.4), the Gauss-Manin connections
VH (XF) and V9 (5F) coincide.

Moreover, the Hermitian form h?(X’F) is smooth, and depends smoothly
on b > 0.
By imitating (1.2.6), set
w(vﬁ'(X,F)’hbﬁ'(XvF)) _ ( Sﬁ'(X,F)) vﬁ (X, F)h XF) (5110)

Recall that G acts on ' (X, F). We define hy (Vf’ (X, F) h XF)) as in

(1.7.3), by making the obvious changes, i.e., by imitating the construction
of the form hy (VH (X:F) gH (X)) in section 1.7.

Definition 5.1.1. For b > 0, set
= hy (VR p ),

Up,0 = T () [glg—fh’( (Vo g () /2)]

_ 9 (X,F) Ip| ’ Sﬁ'(X,F) 5”9 (X,F)
Wh,oo = ¢Trs g<2:Fb2>h( (v ) 12)|
] (5.1.11)

s = 00 o (S Y (o (7250 57 )]

Recall that given F, g%, b; was defined in (1.8.5). We write temporarily
by = b}, to emphasize the dependence of b, on F. Recall that x, (F), Xy (F)
were defined in (1.6.1) and (1.7.17), that X, (F),X, (F) were defined in
(4.2.1), and moreover that (4.2.2), (4.2.3) hold.

Definition 5.1.2. Put
ct = bl if ¢ >0, (5.1.12)

= (-1)" bF®OTX) if ¢ < 0.
For t > 0, set
u,t = hy (A',g?-(X’F)) ifc >0,
oy = (—1)" Ry (A/,g?'(X’F‘@“(TX”) if e <0, (5.1.13)

n
Vot = :I:§Xg (F),

n

wo,t = Wy = ¢t F 4 Xg (F)
Proposition 5.1.3. For any b > 0,
1

Whoo = Wy o0 = 5 (Xg (F) = nX, (F)) - (5.1.14)
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Proof. By [B05, Proposition 4.34] applied to a single fiber X as in (4.3.11),
or by using directly [B05, Proposition 2.16], we get
1 /=T x , p? NTX_p
5 ([doarep] = [a7 % ;.sD e A N GARE)
By (5.1.5), d”"X and dj 5. both vanish on H;, (X, F). So by (5.1.15), we
get
Wh,00 = Mb,oo' (5116)

Observe that the f)ﬁ (X:F) are not standard metrics. However, the arguments

of [BL095, Proposition 1.3] or [BG01, Proposition 1.6], can be used to es-
tablish the last identity in (5.1.14). O

5.2 THE CONVERGENCE RESULTS

Now we state the essential results of this chapter.

Theorem 5.2.1. There exists by > 0 such that given tg > 0, there exists
C > 0 such that for b €]0,bo],t > to,

C
[Up,t — Up,oo| < 7 [Ub,t — Vp,o0] < 7 (5.2.1)
C C
Wt — Wh,o0| < 7 |wps — Whoo| < N

Moreover, given tg > 0,v €0, 1], there exists Cy,, > 0 such that for b €
]Ovbo]at 2 t07
[up,s — uo,e| < Ciy,0b”, s, oY, (5.2.2)

—_ v — v
) st = 0, = = = >
|wp,s — wo,¢| < Cty,0b”, |wb,t wO,t| < iy 0b”.

Proof. The remainder of the chapter is devoted to the proof of Theorem
5.2.1. O

Recall that H = [p|° /2. By (2.8.6), by equations (2.8.9) and (2.8.10) in
Theorem 2.8.1 and by (4.3.3), (4.3.8), we get

upe = (2m)'2 T, [gh (% EH—wl t)} ’

A [g pl2H (g%ﬂ wH’tﬂ , (5.2.3)
— T —Ho Ao Ho 2 5.92.4
Wp,t = PLls (g | € 76 + ‘p| Sqﬁb,iH wH ]| > ( -4 )
NT'X—n b
wy, ;= ¢Trs [9 (ﬁ - EWH> W (gfj;:,inH,t)] :
Moreover, by (2.1.28), (2.4.8), and (2.4.15), @:;4 iH bt Q(;Eb)ﬂ_[ is of pos-

itive degree in the variables f®. Since the f® supercommute with the other
operators, and using also the fact that any nonzero monomial in the f“is of

length at most m = dim S, the spectrum of M & iH por 18 the same as the

spectrum of Ql%’iH, which we considered in section 3.5.
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5.3 A CONTOUR INTEGRAL

For ¢ > 0, let d C C be the circle of center 0 and radius €. For §9 > 0,6, >
0,02 = 1/6, recall that W5 € C was defined in (3.4.1). Let 75 be its boundary,
ie.

:{)\GC,ReA:(SO—HSl |Im)\|1/6}. (5.3.1)

We use the results of section 3.5. In particular we choose € small enough
as in that section. By (3.5.3), (3.5.11) and by Remark 3.5.2, there exist
bp > 0,80 > 0,01 > 0 such that if b €]0,bg], the spectrum of 91;5 pe 18
included in the union of the disk bounded by d and in the interior of C\W(s,
and moreover 0 is possibly the only element of the spectrum included in the
disk d.

As we saw in (4.3.12),

W (z) = (1+22%) " (5.3.2)
Put
r(A) =(1-2\)e?, (5.3.3)
so that
W (z) =71 (-27). (5.3.4)

In what follows, instead of the function 7 (\), we will use the function e=?*,

simply to make our references to [B97] simpler. However, the analytic details
will be exactly the same as for r (X).

Set
/ 1 1
Bo= g |, (A A A
:_/ —tn A ez H) i, (5.3.5)
1 - M,2 -1
Wie =g | ¢ <>\ ) N

By the above 3} is the natural projector on the finite dimensional vector
space " (T X, n*F), , = ker mgb,iﬂ' Using (2.8.6) and the above consider-
ations, for t > 1, we get

exp (~€512, ) = 0 Vit + Wi (5.3.6)

Incidentally observe that for ty > 0, by modifying d and §, we may as well
assume that (5.3.6) holds for ¢ > ¢y. This is what we will do in the sequel.
We dejf\i/lne VO/{Z’ Who.t, by replacing Ql:fb’iH,ng iH b > ngiﬂ bt ¢ by
2 2
DX/4,A:t 7A:|:,t .

Let NV be one of the operators which appear in the right-hand side of the

. . . 2 9
formulas defining vy, ¢, wp ¢, wy, 4, i.e., N is one of the operators izt)_z Ipl”, ;(t’ F

ﬁ| 2 NT*QX*" —wf . Put

N = e orb~ Uy JNU,  Thet. (5.3.7)
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ie.,
NT'X —n b 4

A
N == |p, e*m?oeﬂo T, —— ' (538)

Note that only in the last case does IV depend on ¢t > 0. We will denote by
Noo the expression in (5.3.8) for ¢t = +o0.
We now state two results, from which part of Theorem 5.2.1 will follow.

Theorem 5.3.1. There exists by > 0 such that for any ty > 0, there exist
¢>0,C >0 for which if b €]0,bo],t > to, then

Trs [gN V]| < Ce™. (5.3.9)

There exists by > 0 such that given to > 0,v €]0,1][, there exists Cy,, >
0,¢ > 0 for which if b €]0,bg],t > to, then

|Trg [gNVp ] — Trs [P+ NPy Vo ]| < Cyyve 0. (5.3.10)

Theorem 5.3.2. There exists by > 0 such that for any ty > 0, there exists
C > 0 for which if b €]0,bg),t > to, then

Trs [gNWy ¢] — Trg | gPyet° K, ' Noo Kpe 0 P,

eXp(uJ(Vﬁ(XF) :o(mw) /4>] %

Given to > 0,v €]0,1], there exists Cyy, > 0,¢ > 0 such that for b €
]Ovbo]at 2 t07

I Trg [gN Wiy 4] — Tr [P NP Wo ]| < Ciy b’ (5.3.12)

(5.3.11)

Remark 5.3.3. Let us show how to derive Theorem 5.2.1 from equation
(5.3.6) and from Theorems 5.3.1 and 5.3.2 for vy 4, Wp,¢, Wy, ;- Indeed the only
important change is to replace the function e by 7 (\), but this is very
easy. Another possibility is to use instead (4.13.7).

By (2.1.4) and using the notation in (2.8.2), we get

e Mo N\get = \g — po + NH¥ — NV. (5.3.13)
From (5.3.13), we obtain
Pie Mo )\get P, = PN Py, (5.3.14)

P e toxgetoP_ =P (N" —n) P_.
Moreover, we have the trivial
n
Py |p|* Py = oL (5.3.15)

Using (1.6.5), (1.6.6), by the explicit form of N in (5.3.8), by (5.3.14) and
(5.3.15), we get Theorems 5.2.1 for vy 4, Wh, 1, Wy ¢-

Sections 5.4 and 5.5 will be devoted to the proof of Theorems 5.3.1 and
5.3.2.
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5.4 A PROOF OF THEOREM 5.3.1

Clearly,

(—I)N N! i M2 —(N+1)
%,t = W /Yé € ()\ - €¢b7iH—bWH) dA. (541)

By equation (3.4.3) and by the comments we made in section 3.7, when
replacing Q(gMiH,DX/‘L by @fb’inwa,Af’z, as we saw in section 3.7, if
A € s, the obvious analogue of (3.4.3) holds. Using the precise definition
of the norms ||| |||, after equation (17.21.55), there exists by > 0 such that
for N € N large enough, there is Cy > 0 for which if b €]0, bo], A € 7s, the

_ @M,Z )7(N+1)

Sy L H bt is trace class, and moreover,

operator < p >2 ()\

<C. (5.4.2)
1

By (5.4.1), (5.4.2), there exists ¢ > 0,C > 0 such that under the above
conditions,

—(N+1)
¢vb,inwa)

H< p>2 (A — M2

|<p > Vi, < Cne . (5.4.3)

By (5.4.3), we get (5.3.9).
By using the extension of equation (3.4.3) which was described before,
from (5.4.1), we get (5.3.10). The proof of Theorem 5.3.1 is completed. O

5.5 A PROOF OF THEOREM 5.3.2

For i =0,1,2, let Si::gifbwb, be the component of gﬁ:,inwa of degree i
in the variables f*. Note that by (2.4.8),
M, (0
S0 n =Bl (5.5.1)
By (2.5.1), S;}:’(ilﬁfbw,,,ﬁgj’fﬁfbw,, do not depend on b. By (2.5.1) and

(2.8.6), we can expand ng)iﬂ,t in the form

M2 o2 M,(1) M,(2) 2
Covere = BAG, et (g%,inwa + S%,iufbwﬂ/\/l_f)
M, (1 M, (2
(Bl VI o+ 5G] 652)

Now we will use the notation in Theorem 3.5.1, while introducing the extra
subscript b. By the third equation in (3.5.12), we find that for b €]0, bg],

S(T"X, 7" F)y, =kerAy, 15 =ker By, 4. (5.5.3)
Moreover, we have the splitting, which is analogous to (3.2.11),

S ("X, F) =8 (T"X, 7" F)y, &S (I"X,7F),,. (5.5.4)
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Using (2.1.20), (3.2.14), (5.5.1), (5.5.4), we find that [ RV S e
maps S (1" X, 7°F), ,, into & (T"X, 7" F), ;.

If w is a matrix written as in (17.1.1) with respect to the splitting (5.5.4)
of 8 (T*X,n*F), we can write formally u~' in the form given in (17.1.3).
Namely, let u be given by

A B
u= {C D] . (5.5.5)
Set
H=A-BD™!C. (5.5.6)

Then, at least formally,
-1 H-1 —~H'BD™!
“ T|-D'CH' D '+D'CH'BD!
Now we apply (5.5.5), (5.5.7) tou = A—€,"% . We claim that (5.5.7)
is correct. In fact if u(®) is the component of u which has degree 0 in the
variables f¢, u is diagonal and (5.5.7) is trivial. Then equation (5.5.7) is

(5.5.7)

obviously a perturbation of (u(o))fl by terms of positive degree in the f¢
and so it is indeed correct.

By (5.5.1), u is a sum of five terms, which are factors of t,v/t,1,1/v/t,1/t.
Using the considerations we made after (5.5.3), we see that A =0 (1),B =
O Wt),C=0((t),D=0(t).

Now we will proceed as in [B97, section 9]. For « € C*,5 € C,y € C,b €
10, bo], set

91 2

M bv,£H M, (1) M,(2)

LaBb ;2 (gm,:l:?-{—wa + 5S¢b,iﬁ—bw1¥)
M, (1 M, (2
- |: ibmiH’rygd)b,:(l:?)'{—wa +%{¢b,ﬂ(:7)'(—wa:| ? (558)
2

M M,(1) M, (2)

M=~ (Sm,inwa + 58%,17{4@')
M,(2) }

’ M, (1)
_{ %iHWSm,iH—wa+3¢b,iﬁ—wa .

-1
We denote by (91¢ iH) the operator acting on S (T* X, 7* F') which is 0

on S (T*X,n*F),, and acts like the inverse of A7 L, on S (T*X,7*F), .
Then we have the strict analogue of [B97, Theorem 9.29].

Theorem 5.5.1. For a € C*,|a| < 1,5 € C,y € C,b €]0,bg], then

) / exp( )\) dim S
— 7 d\= E E :
- M
2im Ja A= £ p=0 1<io<p+1

0<J1,--,Jp+1—ig>
JiteFipt1—ig<io—1

(_1)p_j1---_jp+l—i0

(o =1 —J1... = Jptri—ip)

O Co o MG Cppa. (5.5.9)



106 CHAPTER 5
In the right-hand side of (5.5.9), io C;’s are equal to P}, and the other C;’s

_1\ _ 1\ 1H+ip+1-ig
are given by <a2 [mgb,i%t} e <a2 (Q(gmiﬂ) ) . In par-

ticular each term in the right-hand side of (5.5.9) is a monomial in o and a
polynomial in (3,.
Moreover, if C1,...,Cpi1 are chosen as indicated before, then

deg, (C1MAL ,Co .. MY ,Cpy1) < 2(p+ 1 — o), (5.5.10)
deg, (C1MG" ,Co . MG ,Cp1) =2(p+1—ido+ 1+ + pr1-4) -

The above inequality is an equality if and only if — [%ibb,iHv'YS;}::i%_wa}
appears ezxactly 2(p + 1 —ig) times in sequences of the form
B [—%;b,iﬁﬂgij”(ilﬁfbwfi} ((12 (Qlfb,iH)_l)lﬂk
(=80, 8 | B (5.511)
the other C;’s being equal to ;.
Proof. The proof is the same as the proof of [B97, Theorem 9.29]. O

First we consider the first two cases in (5.3.8), in which N does not depend
on t. By (5.5.9), we get

1 —A /
Tr, QNT %M)d% = Z Ot,mm (b) a*B™y™
i Ja A= L5050 0<2m<dim §

0<m’<¢<2dim S
(5.5.12)
where the Oy, m (b) are smooth even forms on S. Incidentally, note that
the condition 2m < dim S comes from the fact that 8 appears as a factor of
a term of degree 2 in A" (T*S).
Now we establish the analogue of [B97, Theorem 9.30].

Theorem 5.5.2. There exist forms Ogm m (0) such that for any v €]0,1],
there exists Cy, > 0 such that for b €]0,bo], if ¢, m, m’ are taken as in (5.5.12),

10,m,m (b) = Opm,m (0)] < CO. (5.5.13)

Proof. Observe that by Theorem 5.5.1, the the right-hand side of (5.5.12) is a
polynomial in the variables «, 3, . Using Cauchy’s residue formula, to prove
our theorem, it will be enough to show that there is a smooth form A («, 8,7)
which is holomorphic in «, 3,7 with 1 < |a| <1/2,|8] < 1/2,|y| < 1/2 such
that for b €]0, bg, A € d,

oo | Mﬁl ~h(anh)

2 J, A — ﬁﬁf‘m,b

To prove (5.5.14), we need to show only that the analogue of equation (3.4.3)
holds in the given range of parameters for A € d. First note that as explained

Tr, < Cub°. (5.5.14)
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in Remark 17.21.6, the estimates in (3.4.3) are still valid when A € d. More-
over, the operator S)ﬁgf‘%b in (5.5.8) is of order 0 and depends polynomially
on p. The whole analysis made in chapters 3, 15, and 17 goes through. The
proof of our theorem is completed. O

Observe that by (5.5.1), (5.5.8), we have

M,2 _aM
€ ine = 2\%,%’\/;1, (5.5.15)
By (5.5.12), (5.5.15), we get
—l—m+m’
Tro[gNWial = Y. O O)VE (5.5.16)
0<2m<dim S

0<m’/<¢<2dim S
Now under the conditions on ¢, m, m’ in the right-hand side of (5.5.12), for
t> th

Vi <o (5.5.17)
Using Theorem 5.5.2, (5.5.16), and (5.5.17), we get

Tr gNWodl = S Op O)VE " < G (55.18)

0<m<2dim S
0<m’<¢<2dim S

By using the analogue of equation (3.4.10) for the operator Gﬁ/bl)’iHiwa

which we described in section 3.7, we find that for a given ¢, as b — 0,

Trs [gNWy4] — Trg [gPe NP W] . (5.5.19)
From (5.5.18), (5.5.19), we get for ¢ > t,
|Trs [gNWh,i| — T [gPe NP Wy o] dX| < Gy 00", (5.5.20)

which is just (5.3.12), in the first two cases in (5.3.8). Establishing this
equation in the third case goes along the same line. Details are left to the
reader.

Now we establish (5.3.11) in the first two cases for N in (5.3.8). By The-
orem 5.5.2, the Oy 1 s (b) are uniformly bounded. By (5.5.16), we find that
for t > ty,

C
Trs [gNWoel = D Oroe(d)| < —.

(5.5.21)
0<¢<2dim S Vi

Inspection of (5.5.10) shows that only those terms where there is equality
in the first line, and where j; = -+ = jpyr1-4, = 0, contribute to the sum

20<e<2dim s Or0.e (b). Put
M _ gt M(1),2 M(1) / ., B
mb - s’pb (S(bb,iwaH - |:8’¢b,:tHfwa7 ¢b7:|:7'{:| (%d)b,j:’}-()

M(1
{S%,(i)waH»%/m,iHD‘BZ. (5.5.22)
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Then inspection of the right-hand side of (5.5.9) shows that

1 —A
Y. Ouoe(b)="Tr, [gm;,w;,? / e;p(iﬂjdx} . (5.5.23)
0<¢<2dim S i Jg A+,
Clearly,
1 exp (—A) M
— | ——— =exp (N . 5.5.24
2im Jqg A+ M p (M%) ( )
Also it is elementary to verify that
2
M, (1
= (‘BQS%;L,M‘BQ) . (5.5.25)
Now by (2.4.5), (2.4.7), and (2.4.15),
U Ly g = Ko 10T (U a0t et Mo gL (5.5.26)

M _ —po—(H—w) pM po+H —wf -—1
Sy b = Koe ( )B¢,HC—wH6 ’ Ky

By (5.5.26), we deduce in particular that

S o = Koe 0B et R (5.5.27)

Incidentally, since (5.5.27) is an identity of operators of order 0, H¢ can be
made equal to 0 in the right-hand side of this equation.

As was explained in section 2.4, A’M is a version of the de Rham op-
erator on the total space of M. By definition, it induces the Gauss-Manin

connection V? (X:F) on 6 (X, F). As we saw after (2.4.10), E%(HC_WH) is
the hgc(zﬂ;i{(’ﬂw) adjoint of A" Since w is itself of degree 2 in the f<,

E:zi;lé}(l—wff) is necessarily the h%c(T*X’”*F) adjoint of AM:(1),

By Theorem 3.2.2, the splitting (3.2.11) is hS (7" X7 F) orthogonal, and
Q(T*X,m*F)

correspondingly, the splitting (5.1.2) is by orthogonal. Using the
notation in (5.1.10), it is then elementary to verify that
w (vwx,F), hbg(x,m) = P2B) 5 u Py (5.5.28)
Set
N’ = Pyt K, 'NKye "0 B, (5.5.29)

By (5.5.23)-(5.5.25) and by (5.5.27)-(5.5.29), we get

Z Oro.0 (b) = Trs [gN’ exp <w (Vh~(X,F)7 hb~(X,F))2 /4)} .
0<¢<2dim S
(5.5.30)
By (5.5.21), (5.5.23), (5.5.29), and (5.5.30), we get (5.3.11) in the first two
cases in (5.3.8). The proof of the third case in (5.3.8) follows similar lines,
and is left to the reader. This completes the proof of Theorem 5.3.2. (]
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5.6 A PROOF OF THE FIRST EQUATIONS
IN (5.2.1) AND (5.2.2)

Now we will consider the case of uy¢. Clearly

M M M,2
h (g(ﬁb,:ﬁ:?-(—bwh’,t) = 8y, £1—bwi ¢ CXP <_€¢b,:|:7-{—wa,t) : (5.6.1)
The main difference with respect to what we did before is the appearance of
the operator ng’iH_bw&t as a factor in the right-hand side of (5.6.1). By
(5.2.3) and (5.6.1), we get

1/2 M,
upr = (27) / ©Trg {g%ﬁf’inwa)texp <_€¢'b7iH*wa;t):| . (5.6.2)
We now will prove the analogues of Theorems 5.3.1 and 5.3.2, with N
replaced by ng tH_pot ¢+ The main difficulty is that by equation (2.6.1),
the operator &Q’b‘ L_pon CONtains a diverging term when b — 0.

Let 2 be an extra odd Grassmann variable. If « € A" (T*S) ®R [z], we can
write « in the form

a=L0+zy, B,ye N (T"S). (5.6.3)
Set
of =7. (5.6.4)
Now we use the notation in equation (2.5.1). Put
/ 1. ~
gﬁiiﬁ_wa = gé):l,:l:ﬂ—wa + % (c(ei) Va £c(p)), (5.6.5)

M, 2~ A~
Rl o = Qfmiﬁ_bwz{ + 3 (¢(€) Ve £c(p)).

Note that with the notation in (2.6.1),

Sm:ﬂm—w =9+ +bJ. (5.6.6)
Moreover,
M/(l) _ M/(l) M’(Q) _ M/(Q)
glﬁb,ﬂ:?'{—wa - S¢b7i7-(_wa7 S¢b7i7_{_wa - g¢b7iﬂ_wa- (567)

In the sequel, for a > 0, the operator v, also maps z into y/az. We define
the corresponding objects with the extra index ¢ as in (2.8.6). In particular

RU Ly = U RS Lyt (5.6.8)
Also,
M — iz O M (1) L M@
S(bb,inwH,t — \/%S(Zﬁb,iH*wH + S(bb,inwH + %gm)iHin. (569)
Set
ug,vt = (271')1/2 ©Trg [gsgii’)—{_wa’t exp <_€2j:in—wa,t)} , (5.6.10)

z

u;)’vt = (27r)1/2 oTrg [g exp (—ﬁgf)inwa)t)}
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One verifies easily that
Uy = Up y + Up g (5.6.11)

We will prove analogues of Theorems 5.3.1 and 5.3.2 for ub , and uy/
We claim that u, , can be handled using the techniques of sections 5 4 and
5.5. Clearly, using (5 3.6), we get

M M,2
Try |:gg¢b,inwa,t exp( Qz’@,,i?—[ bwH t)i|

= T [ gV g Vi | + T[98 g Wit | - (5.6.12)

Indeed by (3.4.3), besides equation (5.4.2), we also have

—(N+1)
A (T*"T*X ®F,u M2

<C. (5.6.13)
1

Then the first term in the right-hand side of (5.6.12) can be handled by
the same techniques as the correspondmg term in sections 5.4 and 5.5. The
factor v/t which appears in S A bl ¢ 1S killed by e~“!. Equivalently, we
obtain an analogue of Theorem 5.3.1 for this first term.

The case of the second term in the right-hand side of (5.6.12) is slightly
subtler. Indeed by proceeding as in (5.5.16), we get

Trs [ggfj;::inwa,th’t} = Z (Pf’m,m’ (b) Vi+ Qe,m v (b)

0<2m<dim S
0<m’<#<2dim S

+ R (b) /\/z?) VT (5.6.14)

The terms containing Py, » (b) are associated with the contribution of

ﬁ@g::i?{_bw u, the terms containing Qg m m/ (b) corresponding to the con-
tribution of &2/: i%_wH, the terms containing Ry, m (b) corresponding to
SM’@)
P, H—wH "
Note that Py m (b)), Qem,ms (b) , Rem,ms (b) verify estimates similar to
(5.5.13).
We claim that
> Proe(b) =0, > Poea=0 (5.6.15)
0<¢<2dim S 1<¢<2dim S
Indeed by proceeding as in (5.5.22)-(5.5.24), we get
ST Pros(d) = Tr [o830 G LaBhen ()] (5.6.16)
0<¢<2dim S

However, the operator S¢ fql bwH

side vanishes. Also (5.5. 10) shows that Py, is nonzero only if £ —m’ is a
multiple of 2. This gives the second equation in (5.6.15).

is an odd operator, so that the right-hand
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Equation (5.6.7) and the same arguments as before show that

Z Q0,0 (b) = Trs Q‘Bbgif’(il%{,bwff‘ﬁg exp (‘IKM’“)} . (5.6.17)
0<¢<2dim S

By (2.6.3) in Theorem 2.6.1, (5.5.29), (5.6.6), (5.6.7), and (5.6.14)-(5.6.15),
we produce forms w;, ., ug , such that under conditions of Theorem 5.2.1, we
get
Cy
\/E )
Note that u;, ., ug , are the sum of two terms. One term is just the contribu-
tion of (5.6.17). The other term is the contribution of Y ;<o 4im s Fe,1,¢ (0),
which does not vanish in general. o

We claim that

by — U oo| < [uhs — uh | < Cr b’ (5.6.18)

U ;= Uo,t- (5.6.19)

Indeed combining the first equation in (2.6.3) with (5.6.6) leads easily to
(5.6.19).
Now we will consider uj ;. We claim that the results which are valid for the

operator ngv’iH_bw » remain valid for the operator ﬁ% 4+ H—pwr- LThe point

is that the term 5 (c(€;) Ve £¢(p)) is small compared to Gg:”inwa.
Indeed the harmonic oscillator ay which appears in equation (2.6.2) for

ﬁ:”inwa is minus the square of 1 (¢(€;) Ve £ ¢(p)). Moreover, the spec-

trum of ﬁgﬁ i por and (’ngv’iH_bw » are identical.

We then write exp <_‘ﬁ£:,inwa,t) in a form similar to (5.3.6). For sim-

plicity we still use the notation V4, ;, Wp ;. The term corresponding to V; can
be handled exactly as before. So we concentrate on the term corresponding to
W+ We claim that the conclusions in (5.6.14) and the vanishing of (5.6.16)
still remain valid in this case. Indeed the argument is essentially the same,
and uses the fact that the operator ¢ (€;) V& £ ¢ (p) is an odd operator.
Ultimately, we produce a form uy . such that under the conditions of
Theorem 5.2.1,
" < %

Upo| = \/%a
The reason why in (5.6.20), ug, = 0 is that the operator ¢ (€;) V& % ¢ (D)
vanishes identically on ker a. Also U’Z,oo appears as the contribution of a
term of the form >, ) yin g Pro1.e-

By (5.6.11), (5.6.18), (5.6.19), and (5.6.20), we get equation (5.2.2) for
up,¢. Moreover, to establish the first equation in (5.2.1), we need to show
only that

lug | < Ciy0b. (5.6.20)

1
|“b,t -

Up oo = Up oo+ Upy oo (5.6.21)
By (5.5.25) and (5.6.17), we get
upee = 2 20 > Qo (5.6.22)

0<¢<dim S
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So to establish (5.6.21), we need to show only that the sum of the terms of
the type o< y<o dim s Pr.1,¢ (b) which appear in uy, . and uy . vanishes iden-
tically. However, the sum of these two terms involves the operator ‘B;b’ +H
combined with the terms in the right-hand side of (5.5.9), with m' = ¢, m =
1. However, inspection of (5.5.11) shows that in the right-hand side of (5.5.9),
the corresponding terms are such that C1 = Cpy1 = ;. Now by (5.5.3), the
operator B, ;, vanishes on &' ("X, 7*F') . Therefore we have established
the required vanishing result.

This completes the proof of the first equation in (5.2.1).

Remark 5.6.1. One reason that makes the proof of the required estimates on
up, ¢ is difficult is that we have no a priori good understanding of the operator
Q(;b)ﬂ_[. Indeed since it contains differentials of the type VQO(T*T*X)GEF’", it
cannot be easily dealt with.



Chapter Six

Hypoelliptic torsion and the hypoelliptic

Ray-Singer metrics

The purpose of this chapter is to define hypoelliptic torsion forms and corre-
sponding hypoelliptic Ray-Singer metrics on the line A = det )" (X, F). The
main result of this chapter is that these objects verify transgression equa-
tions very similar to the corresponding equations we gave in chapter 1 for
their elliptic counterparts. It is then natural to try to compare the hypoel-
liptic objects to the elliptic ones. This will in fact be done in chapters 8 and
9.

The present chapter is organized as follows. In section 6.1, we construct
the hypoelliptic torsion forms, and we briefly study their dependence on the
parameter b > 0.

In section 6.2, we study the compatibility of the torsion forms to Poincaré
duality.

In section 6.3, we define a generalized Ray-Singer metric on the line A =
det $ (X, F') via the analytic torsion of the hypoelliptic Laplacian.

In section 6.4, we introduce a truncation procedure on the spectrum of our
Laplacian. This procedure is needed only for large values of the parameter
b.

In section 6.5, we show that the hypoelliptic Ray-Singer metric is smooth.

In section 6.6, we extend this procedure to the equivariant determinant
already considered in section 1.12 in the elliptic context.

In section 6.7, a key variation formula is given for the hypoelliptic Ray-
Singer metric. In particular we show that it does not depend on b > 0. The
sections which follow are devoted to the proof of this formula.

In section 6.8, we establish an elementary identity.

In section 6.9, we introduce projected connections associated with the
truncation procedure.

Finally, in section 6.10, we prove the variation formula.

Throughout the chapter, we make the same assumptions as in chapter 4,
and we use the corresponding notation. Also we assume S to be compact.

6.1 THE HYPOELLIPTIC TORSION FORMS

Recall that @ € End (A" (T*S)) was defined in (1.9.5). We take by > 0 small
enough so that for b €]0, bg], the results of sections 3.4, 3.5, and of chapter
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5 hold. Also for b > 0, we set ¢ = £1/b%
Recall that the map @ € End (A®V*" (T*S)) was defined in (1.9.5).

Definition 6.1.1. For g € G,b €]0, bo], put

oo n 1
Thogo (T M, g™, V", g7) = —/ (wb,t - <§Yg (F) — 5% (F)>
0

(h' (i\/E/Q) B (0))> %, (6.1.1)
7—ch,g,b (THMv gTXv vFng) :Q,Z;L,g,b (THM7 gTX7 vFng) .

Observe that by Theorem 4.4.1, by Proposition 5.1.3, and by Theorem
5.2.1, the integral in the right-hand side of (6.1.1) is well-defined.

The even forms Tj 45 (THM, gTX,VF,gF) Teng b (THM, gTX,VF,gF)
will be called the hypoelliptic torsion forms and the Chern hypoelliptic
torsion forms, respectively. These are smooth forms on .S, which depend
smoothly on b €]0, by].

Theorem 6.1.2. The following identities hold:

ATh,g (T M, g™,V g") = /X e (TX,, VT ¥a) by (VF, g")

g

b, (Vﬁ'(X,F)7 h§'<X7F>) , (6.1.2)
d,]::h,g,b (THMa gTX7 vF’ gF) = /}( € (TX.‘]’ VTXH) Ch; (VF’ gF)

g
~ ch? (vﬁ'(X’F), h?'(X’F)) :

Proof. By Theorem 4.3.2,

0 Wy, t
G = 2t
ot t
Using Theorems 4.4.1 and 5.2.1, by integrating (6.1.3), we get the first equa-
tion in (6.1.2). The second equation in (6.1.2) is a consequence of the first

one and of the considerations we made in (1.9.1)-(1.9.6). O

(6.1.3)

Remark 6.1.3. In our definition of 7y, g, (T M, g™, V¥, g¥'), we could as
well replace wp,; by wy, ;. A minor difficulty would be that the asymptotic
expansion (4.13.19) is not quite enough to produce a converging integral.
However by pursuing further along the lines of chapter 4, we find easily that
ast — 0, w,,, has an asymptotic expansion in powers of V/t to arbitrary order.
The asymptotics of wy, , as ¢ — +o00 is taken care of by Proposition 5.1.3 and
Theorem 5.2.1. To modify the definition of 7j 4 (THM, gtX, vt gF), one
just needs to subtract from wj, ; the constant term in its asymptotic expan-
sion as t — 0 to get an expression which will converge. By Proposition 4.3.4,
the obtained expression will differ from 7}, 45 (THM, gt X vt gF) by an ex-
act form, which has no effect on equation (6.1.2). As in [BL095, BGO01], in the
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sequel, we will be interested in the evaluation of Ty, g, (TH M, g™, V¥, g"")
modulo exact forms. So replacing wp ¢+ by w;, ; is indeed permitted. Needless
to say, in degree 0, by (4.3.10), wyp,¢ and w,, , coincide, and so the two possible
definitions of the torsion forms coincide in degree 0.

For ¢ = 1/b2, by (3.1.4), $ (X, F) = H (X, F). Then the first terms of the
right-hand sides of (1.8.2), (1.9.8) and of (6.1.2) are the same, while the sec-
ond terms refer to distinct Hermitian forms on H' (X, F'). When ¢ = —1/b2,
then § (X, F) = H " (X,F ® o(TX)), and moreover since e (T' X4, VI )
vanishes when dim X is odd, using (1.6.4), we get

/ e (TX ’VTXg) h <VF®O(TX)79F®0(TX))
X g g

g

= (—1)”/ e (TXg,V'¥9) hy (VF,g"). (6.1.4)
XQ
It follows that for ¢ = —1/b2, (=1)" Ty, 4 (TH M, gTX, VF®(TX) gF@o(TX))
and T gp (THM, gt X vF, gF) verify similar equations. In both cases, it is
natural to compare the elliptic and hypoelliptic torsion forms.
Also observe that by Theorem 4.3.2, we get
0 Wy, t 0 Ub,t

i Ll LA . 1.
ot ot e (6.1.5)
By Theorems 4.4.1 and 5.2.1, by (6.1.1) and by (6.1.5), we obtain
%Th,g,b (TH" M, g™, V¥, g") = —”*”T"" in Q (S) /d (S). (6.1.6)

Equation (6.1.6) can be integrated in b, and so for 0 < b < V" and ¥V’
small enough, 7, .1 (THM, g, VF,gF) —Th,gb (THM, gtx, VF,gF) can
be evaluated in Q (S) /dQ (S) in terms of the secondary classes of section
1.11. This idea will not be pursued further. In fact in Theorem 8.2.1, we will
give a formula comparing Tp,g5 (TH M, g*™, V¥, ") to the elliptic torsion
forms of chapter 1 in ' (S) /dQ (S), from which the above results follow.

In section 6.3, we will establish an analogue of equation (1.8.4), which
will relate our definition of the analytic torsion forms in degree 0 to the
more classical Ray-Singer torsion, whose definition can be adapted to the
hypoelliptic context. Also note that in Theorems 6.7.1 and 6.7.2, in degree
0, we will give another formulation of (6.1.6) which is valid for any b > 0, as
a result of independence on b of a hypoelliptic Ray-Singer metric.

6.2 HYPOELLIPTIC TORSION FORMS AND POINCARE DU-
ALITY

In this section, to distinguish the cases ¢ > 0 and ¢ < 0, we will temporarily
add an index & to T 45 (THM, g, VF,gF).

Proposition 6.2.1. The following identity holds:
Tngoot (T7M, 6™ 97 67 ) = ~Thguz (THM,g™, V7, g7) . (6:21)
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Proof. We use temporarily the notation " instead of a in Definition 4.3.1.
By (2.7.3), the fact that I*i,f‘_wH is an even operator and that supertraces
vanish on supercommutators, we get

=%

af =—al . (6.2.2)
By (4.3.6) and (6.2.2), we obtain
Why 4 = —Wh, £ (6.2.3)

Our proposition now follows from (6.1.1) and from the fact that when re-
placing F by F, by (4.2.2), (4.2.3), X, (F) — %qu (F) is changed into its
negative. O

Remark 6.2.2. Of course (6.2.1) still holds for Zen g.p (TH]W7 gTX,VF,gF).
Incidentally it is interesting to establish (6.2.3) directly using (4.3.3). Finally,
observe that by (2.7.3) and (4.3.8), the analogue of (6.2.3) holds for w, ,.

6.3 A GENERALIZED RAY-SINGER METRIC ON
THE DETERMINANT OF THE COHOMOLOGY

Recall that the line X (F) was defined in (1.12.3) by
AF)=detH (X, F). (6.3.1)
Also in (1.12.4), we showed that by Poincaré duality,
AF* @ o(TX)) = (A(F)YV"" (6.3.2)
Set
A=detH (X,F). (6.3.3)

Now we will use the notation in section 5.1. By Theorem 3.2.2 and by (5.1.1),
we know that

A~ detQ (T*X, 7 F), . (6.3.4)
Also by (3.1.4),
A= A(F)ife>0, (6.3.5)
=AF®o(TX)) V" ife<o.
Let h%IC(T*X’W*F)O be the restriction of hgc(T*X’ﬂ*F) to Q (T X,n*F),. By

(T*X,m*F),

Theorem 3.2.2, the Hermitian form f)%c( is nondegenerate.

Definition 6.3.1. We denote by | \ietg.(T*X =), the generalized metric

on the line det @ (T X, 7* F), which is induced by b5 ™ Let |2 be
the corresponding generalized metric on A via the isomorphism (6.3.4).
Note that the above objects depend explicitly on c.
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In Definition 6.3.1, we follow the terminology in [B05, subsection 1.4].
Indeed if hgc(T*X’W*F)D turns out to be a standard Hermitian metric, then
| |?\ is the corresponding Hermitian metric on A. The above notation is just
the obvious extension to the general case. Note here that the square in | \i is
not meant to indicate any positivity. To the contrary, as explained in detail
in [B05, subsection 1.4], the generalized metric | \i has a definite sign € (\ |i)

If f)HCT 7o has signature (p, ¢), this sign is (—1)%.
Put
D¢7HC == 2A¢7HC’ (63.6)
which, by (2.1.20), is equivalent to
Dyyee = dTX + 0 gnge. (6.3.7)
-1
Let <D¢ Hr) be the inverse of Dy 3 on Q (I X, n*F), . For g € G,s €
C,Res >> 0, set

Py(s) = —Tr, @ X0 [gNTX (D2 5) 7] (6.3.8)

When ¢ = 1, we will write ¥ (s) instead of ¥; (s).

It is not even clear that (6.3.8) makes sense. However, we claim that e? (0
is indeed well-defined.

As we saw after equation (3.3.18), there are only a finite number of \ €
SpAi)Hc such that Re A < 0. Let P~y be the obvious projector on the finite
dimensional complex

O (T*X,7"F)_y = @Rex<oS¥ (T" X, 7°F), . (6.3.9)
We define the projector P<g in the same way. Set
P.o=1- P<y. (6.3.10)

We define 9.¢ (s) and 90 (s) by inserting in (6.3.8) the operators Py and
P- ¢, so that in principle,

exp (¥ (0)) = exp (g (0)) exp (¥ (0)) (6.3.11)

Let [J;Z( C(T X,m*F)
By Theorem 3.2.3, th is nondegenerate.

Any definition of exp (¥, (0)) leads to the fact that this should be an
alternate product of determmants of the restriction D¢ e <o Of D¢ e tO
QO (T*X,7*F)_, which is always well-defined. Note that since the spectrum
of Déﬁc is conjugation-invariant, this quantity is always real. Contrary to
what the notation seems to indicate, exp (9’ (0)) has a sign. By [B05, The-

Q(T* X, 7* F)
Slgn bec

)<0 be the restriction of h%'C(T*X’”*F) to Q (T*X,7F) .
(T*X, 7" F) _ .

<0

orem 1.9 and Remark 1.10], this sign is just (—1)
Now we will make sense of exp (9%, (0)). Indeed, by equation (3 3.9) or
by equation (15.7.5) in Theorem 15.7.1, we know that for s € R,s >> 0,
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—S
o He
is also trace class. Using Proposition 3.2.1, it is clear that if s € R, s >> 0,
then ¥s0 (s) € R.

Now we show that ¥ (s) extends to a holomorphic function near s = 0.
First we claim that for s € R,Res >> 0,

—S8
the operator (Di)Hc) is trace class. Therefore the operator Psg ( DZ)

Tr, [Poo (D35) "] =0. (6.3.12)
Indeed,
2 —s XX
Tr, [P>0 (D250 ]: > o (6.3.13)
AESPDS e
ReA>0

where  is the Euler characteristic of the complex (@ (T*X,7*F), ,d’ ).
Note that (6.3.13) is a consequence of Weyl’s inequality [ReSi78, Theorem
XII1.10.3, p. 318], which guarantees that the series in the right-hand side
of (6.3.13) is absolutely convergent, and also of Lidskii’s theorem [ReSi78,
Corollary, p. 328]. Since the complexes (Q (T*X,7*F), ,d" X) are exact,
the x vanish identically, so that (6.3.12) holds.

We deduce from (6.3.12) that for s € R, s >> 0,

90 (s) = —Tr, [(NT*X - n) Peo (D;Hc)‘s] . (6.3.14)

Now we use the Mellin transform to rewrite ¥~ (s) in the form

“+o0
Is0(s) = —ﬁ/o 571 [(NT*X - n) P.gexp (—tDi’Hc)] dt.
(6.3.15)
The integral in (6.3.15) splits as fol + f1+°°. By using a contour integral
similar to the contour integral in (5.3.5) for the definition of V4 ¢, and using
an estimate similar to (5.4.3), we find that the integrand after t*~! decays
exponentially as ¢ — +o00. Therefore the integral f1+°° extends to a holo-
morphic function of s € C.
We already know that P<g is a projector on a finite dimensional vector
space. Moreover,

ﬁ /01 51 Trg [(NT*X — n) P-gexp (—tDi’HC)} dt
= F}s) /01 A VS KNT*X — n) exp (—tDi)Hc)} dt
- I‘zs) /01 T, [(NT7X = ) Pegexp (<tD3 50.)| dt. (6.3.16)

Clearly, as t — 0,

Tr, [(NT*X _ n) P<gexp (—tDi)Hc)} ~ Tr, [(NT*X _ n) PSQ} LO().
(6.3.17)
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By (6.3.17), we see that the second integral in the right-hand side of (6.3.16)
extends to a holomorphic function near s = 0.
Using the notation in section 2.8 and in chapter 4, from (6.3.6), we get

Try [(NT*X — n) exp (—tDiVHC)} = Try KNT*X - n) exp (—4A§7t)} .
(6.3.18)
By equation (4.13.18) in Proposition 4.13.1, by Remark 4.13.2, and by the
above, there are a € C,a’ € C such that as t — 0,
Tr, [(NTX =) exp (D3 50.) | = % +d+0 (Vi)  (6319)
Note that by the first equation in (4.13.18) and also by Remark 4.13.2, which
guarantees that in degree 0, the left-hand sides in (4.13.18) coincide, we have
indeed @’ = 0 instead of in the right-hand side of (6.3.19), but (6.3.19) is
enough for our purpose.
By (6.3.19), it is clear that the first integral in the right-hand side of
(6.3.16) also extends to a holomorphic function near s = 0. This function is
still real for s € R.

The conclusion is that 65 (s) extends to a holomorphic function near
5=0.

Definition 6.3.2. Put
Sy (g7, VF, ") = exp (¥ (0)). (6.3.20)

The right-hand side of (6.3.20) is unambiguously defined as a nonzero
real number. In particular, its sign is well-defined. Only the real negative
eigenvalues of Di,HC contribute to this sign.

Definition 6.3.3. Let || |3 be the generalized metric on \,
2 2
1% =5 (675, V5, g") [ 5 - (6.3.21)

The metric || H?\ will be called a generalized Ray-Singer metric.

Let € (|| Hi) be the sign of the generalized metric || ||?\ By (6.3.21), we get

€ (H H?\) =sign (S, ("%, V", 9")) € (\ |i) . (6.3.22)

Now we adapt Definition 6.1.1 to the case where S is a point, so that M =
X. Here T” M = {0}. For b € R, small enough, and ¢ = £1/b?, we have de-
fined the real number T}, (gTX, VF,gF), which is just 75, 4.5 (gTX, VF,gF)
in the case where g = 1. Here the notation 77 M has been dropped. Also we
may as well replace the subscript h by ch, since @ has no effect in degree 0.

For b > 0 small enough, by Theorem 3.5.1, there is no ambiguity in the
definition of ¥ (s), since the nonzero eigenvalues have positive real part.

Proposition 6.3.4. For b > 0 small enough, the following identity holds:

~ Ly ). (6.3.23)

Th,b (gTXaVFng) 2
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Proof. By (4.3.10), when defining T}, (97, V¥, g*'), we can replace wy; by
wy, ;- Using the asymptotic expansion in (6.3.19), the proof of our proposition
is exactly the same as the proof of [BL095, Theorem 3.29]. O

We claim that the above result can be extended to the case of a general
b. Indeed the projectors Pq, P~o were defined before. By inserting Psq in
the definition of wy, ;, we obtain now the real number wb Y. Moreover, using
Proposition 4.3.4 and Theorem 4.4. 1, we find that as t — 0, we have an
asymptotic expansion of the type

wi? =wi§+0 (Vi) (6.3.24)

Put
TX wF F e >0 S0/ (s dt
T (977, V59" ) g = — (wbt —wgoh (z\/Z/Z)) - (6.3.25)
0

The same arguments as in the proof of Proposition 6.3.4 show that

1
s (97, 97,97) g = 50%0(0). (6.3.26)

By (6.3.20), we find that
Sy (9", V", g") = exp (QTh,b (9", VF,gF)>O) exp (9 (0)). (6.3.27)

The critical fact which ensures that (6.3.23) and (6.3.27) are compatible is
that if u € C is such that Re y? > 0, then

_/0+°° (" (ivin/2) - (\f/Q)) = log (1?) . (6.3.28)

6.4 TRUNCATION OF THE SPECTRUM AND
RAY-SINGER METRICS

Here we will adapt arguments of Quillen [Q85a] to the present situation. We
use the arguments in [B05, subsection 1.6].
Let 7 € R be such that if A € SpD? ;,., then |\| # .

Definition 6.4.1. Let 7 € R} be such that if A € Sp91¢ e then |A] # 7.
Put
S(T"X,m*F)_,.= P ST X,7°F),. (6.4.1)
AESPAZ e
[Al<r

We define the projector P, on S (T X, 7*F) _, asin (3.2.9), the contour
¢ being now the circle of center 0 and radius r. Set B, = 1 —P.,.. Then P,
is a projector on the finite dimensional vector space S* (T*X,7*F)_,, and

B>, projects on a supplementary subspace S* (T X, 7*F) . As in (5.1.1),
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by multiplying by exp (c \p\2 /2), we obtain vector spaces Q (T*X,7*F)
and Q@ (T*X,7*F), .

Clearly Q (T*X,n*F)_, and Q@ (T*X,7n*F), ., are themselves complexes,
and moreover, instead of (5.1.2), we have now

<r

QT X, 7 F)=Q (I"X, 7" F)_, & Q (T"X,7"F),,.. (6.4.2)
Proposition 6.4.2. If r > 0 is taken as before, then
H (Q(T*X,n*F).,,d*) =0, (6.4.3)
H (O (T*X,7*F)_,.,d*) =9 (X,F).
The subcomplexes Q@ (T*X,m*F)_, and Q@ (T*X,7*F), ., are h%c(T*X’W*F)
orthogonal, and the restriction of h%'C(T*X’W*F) to each of these subcomplexes
is nondegenerate.
Proof. This follows from Theorems 3.2.2 and 3.2.3. |

For r > 0, by [KMu76] and by Proposition 6.4.2, we have the canonical

isomorphism
A~ detQ (T*X,n*F)_,.. (6.4.4)

Note that the canonical isomorphisms in (6.3.4), (6.4.4) are compatible with
the isomorphism det Q' (T*X,7*F)_, ~ detQ (T*X,n*F), one also ob-
tains via [KMu76]. Let f)%c(T T F)<r be the restriction of hgc(T*X’ﬂ*F)
to Q (T*X,7*F)_, and let | \ietQ.(T*XJ*F)O be the induced generalized
metric on det Q" (T* X, m*F) _,.. Let | \i’q be the corresponding generalized
metric on A via the isomorphism (6.4.4).

For r > 0 such that r/4 verifies the previous assumptions, s € C,Res >>
0, set

Do (5) = —Tr @ X7 E) oy [NT*X (D;)HC)*S} : (6.4.5)

In (6.4.5), /4 appears in the right-hand side because A3 ;. = D7 ;./4.
Again, it is not clear that (6.4.5) is well-defined.

As we saw after (3.3.18), the set {)\ € Sp DiHC,ReA < 0} is bounded,

and so it is finite. Also for r > 0 large enough, if X € SpD3 5., |A| > 7, then
Re A > 0. So the definition of Js, (s) is unambiguous.
Set

S (9", V5, g") ., = exp (9,.(0)). (6.4.6)
By proceeding as in section 6.3, we find that S, (g7, V¥, g%)_ is a well-
defined nonzero real number.

As in (6.3.25), we can define Tj, (gTX, VF,gF)M. The obvious analogue
of (6.3.27) is

Sh (gTX,VF,gF)>T = exp (2Th,b (gTX,VF,gF)>T) . (6.4.7)
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Proposition 6.4.3. The following identities hold:

2 TX F _F
1IN =5 (g" %,V 9") |

2
e (6.4.8)
Proof. The restriction of EZ;Q);C to O (T*X,7*F)_, is the IJ%C(T e
adjoint of d””X. Our proposition now follows from [B05, Theorems 1.9 and
1.14]. This is an analogue for our main result in a finite dimensional context,
which is here clearly enough. O

Remark 6.4.4. Recall that ¢ = 41/b%. We have not noted explicitly the
dependence of |||, on b € RY. Still keeping track of the dependence will
be important in the sequel. Temporarily, we will denote these metrics || || ,-
Of course the generalized metric also depends on the sign of ¢, which is not
explicitly written.

6.5 A SMOOTH GENERALIZED METRIC ON THE
DETERMINANT BUNDLE

We make the same assumptions as in chapter 4. In particular g7X is a metric
on TX, and g is a Hermitian metric on F. Otherwise, we use the notation
of this chapter.

Recall that (X, F) is equipped with the flat connection V9 (X:F),

We then define the complex lines A4, s € S as in (6.3.3). Clearly these lines
patch into a smooth line bundle A on S, which is canonically equipped with
a flat connection V.

We replace temporarily S by S’ = S x R’.. The line bundle A lifts to S,
together with the flat connection V*. For s’ = (s,b) € ', we can equip the
fibers A\; with the generalized metric || ||is ,- fFor simplicity, this metric will

be denoted as || Hi

Theorem 6.5.1. The metric || H?\ is a smooth generalized metric on X over
S’

Proof. Take r > 0, and define the open set V;. C S as in [B05, eq. (1.68)],

ie.,
V, ={s' €5’ if A\ € SpD} 5., then |A| #r}. (6.5.1)

Then S’ is covered by the V,.. Moreover, given s’ € S', M > 0, there isr > M
such that s’ € V,.. Also Q" (T*X,n*F)_, is a smooth Z-graded finite dimen-
sional vector bundle on V., equipped with the smooth generalized metric
h%C(T X B i s e V., and r > 0 is large enough, T}, (gTX,gF,HC)>T is
a smooth function on V;.. By Proposition 6.4.3, it is now clear that || ||i is a
smooth generalized metric on A. O
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6.6 THE EQUIVARIANT DETERMINANT

In this section, we use the formalism of section 1.12. We still make the
same assumptions as in chapter 4. Then G acts naturally on H' (X, F) or
H (X,F®o(TX)).

Clearly the action of G lifts to T*X. Also G acts on ' (T'X). Then (3.1.4)
is an identification of G-spaces. R

Now we use the notation in (1.12.6)-(1.12.8). If € G, set

Aw = det (Homeg (W, 9 (X, F)) @ W). (6.6.1)
Put
A= By egiw- (6.6.2)
Recall that A (F') was defined in (1.12.8). By (3.1.4),
A=A (F) ifc >0, (6.6.3)

=AF@oTX) " ifc<o.

Clearly G commutes with Dinc. The splitting (5.1.2) of Q (T*X, 7*F)
is preserved by G. The generalized metric h%'C(T*X’W*F) is also G-invariant.
Moreover, the identifications in Theorem 3.2.2 are identifications of G-spaces.

Now we proceed as in [B05, subsection 1.12]. If W € G, set
Q(T"X, W*F)O)W = Homg (W, Q¥ (T"X, 7" F),) ® W. (6.6.4)
Then we have the isotypical decomposition of Q (T*X,7*F'),,

QO (T X, 7 F)yg= @ Q@ (T°X, 7" F)g - (6.6.5)
wed
By [B05, Proposition 1.24], the decomposition (6.6.5) is hgc(T*X’W*F)O or-
thogonal, and the restriction of U%C(T X7 o 6 each term in the right-hand
side of (6.6.5) is nondegenerate.

The 0 (T X, 7" F), yy, are subcomplexes of Q" (7" X, 7" F),. Set

pw = det Q (T*X,7°F)y p= P nw. (6.6.6)
wed
By Theorem 3.2.2, there are canonical isomorphisms

By (6.6.7), we have the canonical isomorphism
A~ (6.6.8)

Now we use the notation in [B05, Definition 1.25].

Definition 6.6.1. Let log (\ \Z) be the logarithm of the generalized equiv-

ariant metric on g which is associated to hgc(T o F)O, and let log (\ |?\) be

the corresponding object on A via the canonical isomorphism (6.6.8).
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Let log | \iet uw Pe the logarithm of the generalized metric on pw asso-

ciated to the restriction of h%c(T*X’W*F)D to (T X, 7" F), - Recall that
xw is the character of the representation associated to W. Then we have
the identity

2\ 2 Xw
log (\ IM) =2 log (I \MW) ® v (6.6.9)
wed
As before, some care has to be given to the fact that the generalized metrics
in (6.6.9) are not necessarily positive. Therefore each term log (| \iw) con-

tains implicitly the logarithm of the sign of the corresponding metric. The
logarithm of the sign is just kiw, with k € Z determined modulo 2.

Recall that 1 (s) was formally defined in (6.3.8). Note that there are still
ambiguities in the definition of 9, (s), due to the negative part of the spec-
trum. These ambiguities are lifted as before, by still splitting the spectrum
of D3 ;.. There remain ambiguities of the type

> kwimxw, (6.6.10)

with ky € Z being unambiguously determined mod 2. In the case where G
is trivial, we got rid of the ambiguity by taking the exponential.
Now we imitate Definition 1.12.1.

Definition 6.6.2. Put
log (H II§) = log (\ Ii) + 9 (0). (6.6.11)

The object in (6.6.8) will be called the logarithm of the generalized equiv-
ariant Ray-Singer metric on A.

Note that the techniques and results of section 6.4 apply without any
change to these new metrics. This adaptation is left to the reader.

For b > 0 small enough, as in (6.3.20), we can define Sy (¢7%, V¥, g*')
by the formula

Sg (9", VF,g") = exp (¢, (0)) . (6.6.12)

Assume temporarily that S is just a point. For b > 0 small enough, we
will write Ty, g5 (97, V¥, g*') for the torsion form which is concentrated in
degree 0. The same arguments as in Proposition 6.3.4 show that for b > 0
small enough,

1
Th,g,b (gTX7 vFng) = 519; (0) . (6613)

We can construct the generalized equivariant line bundle A on S, which is
now a direct sum of line bundles over S. The definition of 95, (s) in (6.4.5)
is now changed into

Farg (5) = =T, @ T s [gNTX (D2 5) 7] (6.6.14)



HYPOELLIPTIC TORSION AND THE HYPOELLIPTIC RAY-SINGER METRICS 125

We define Sy (6", 9", 1), as in (6.4.6) and Th 4 (¢, V¥, ¢")_ . by
a formula similar to (6.3.25). The analogue of (6.3.27) is the identity
Sgu (975, 9" H) = exp (2Th,g,b (7%, V", gF)>T) . (6.6.15)
Proposition 6.4.3 takes the following form.
Proposition 6.6.3. The following identity holds:
tog (I 17) =1og (| <, ) +1ogSh,. (47, 6",9").,.  (66.16)

Needless to say, the equality in (6.6.16) is valid for all choices of g € G.

*

As before, to emphasize dependence on b € R, we will sometimes write
instead log (H H?\b)

The obvious analogue of Theorem 6.5.1 is that the generalized equivariant
Quillen metric on A is “smooth” over S’ = S x R*. In the case where G is
trivial, this was already proved in Theorem 6.5.1. In the general case, this
means in particular that the sign of the various metrics remains constant or,
equivalently, that the integers which express the logarithms of these signs

remain constant modulo 2. The proof is exactly the same as the proof of
Theorem 6.5.1.

6.7 A VARIATION FORMULA

The main result of this chapter is as follows.

Theorem 6.7.1. The generalized metric || ||?\)b does not depend on b. More-
over, the following identity of closed 1-forms holds on S:

1 1
el I3 = [ e (1, 97 T g (v .47)]

g

for ¢ > 0, (6.7.1)
_ (_l)n/ ¢ (TX,, VX0) TyFEoT) glw <VF®0(TX)’gF®o(TX))
X, 2
(6.7.2)
for ¢ < 0.

Theorem 6.7.2. The following identity of closed 1-forms holds on S’ =
S xR*:

1 1
Sdlog | 13 (9) :/ e (TX,, V%) Tr? {giw (VF,gF)}. (6.7.3)
Xy

Proof. The remainder of the chapter is devoted to the proof of Theorem
6.7.2. 0
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Remark 6.7.3. By (6.7.3), we see that the metric || Hib is locally constant
in the b variable. Then Theorem 6.7.1 follows from (1.6.4), from Theorem
6.7.2 and from the fact that only even dimensional X, contribute to the
right-hand side of (6.7.3).

Again it is remarkable that the right-hand sides of (1.12.11) and (6.7.3)
coincide.

6.8 A SIMPLE IDENTITY

Proposition 6.8.1. For any b € R*,t > 0, the following identity holds:

wy) = wy) = T, [g% (VX —n)w (\/Equ,Hc)]

i) 1/
(1 + 21@) Tr, {gi (NTX = n) exp (—tA;HC)} . (68.1)

Moreover,

© ©
0 wbt) _9ov bt)

ot  at b
Proof. The first part of our proposition follows from equation (2.8.8) in The-
orem 2.8.1, from (4.3.8), from Proposition 4.3.4, and from (4.13.7). Moreover,
(6.8.2) is a consequence of Theorem 4.3.2. O

(6.8.2)

6.9 THE PROJECTED CONNECTIONS

We denote by H* the smooth function which coincides with H¢ on M x {b}.
Now we follow [BO05, section 4]. If U € T'S, let U¥ € TH M be its hori-
zontal lift. Then the Lie derivative operator Lyn acts naturally on smooth

sections of Q' (T* X, 7n*F). If s is such a smooth section, set
vEIXT ) = Lyas. (6.9.1)

Then V' (T"X7F) is a connection on ' (T* X, 7*F). Put
w (@ @7 F) TN < g e (72 ) ) £ 20 [P
+ [0 (V") (1)

vQ'(T*X,ﬂ—*F)* _ VQ-(T*X,W*F) +w <Q (T*X, ) hH*T X,m* F))

b

(6.9.2)
v (T X7 F)u 1 (VQ (T" X7 F)x 4 g (" X,m* F))
2
By [B05, eq. (4.27), PrOpOsitiOnb 4.21 and 4.24, and eq. (4.109)], the connec-

tion V2 (T"Xm" F)* g the h (" X7 F)_adjoint of V¥ (T X7 F) gyer § x R*.

Therefore V¥ (77X F).u preserves the generalized metric hQ (T X,m"F)
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Let V. C S x R* be the open set defined as in (6.5.1). Recall that on V.,
we have the canonical isomorphism in (6.4.4).

Definition 6.9.1. Let V¢ T Xm F)o apnd v (I X" Fou denote the
connections on ' (T*X,7*F)_, over V; which are obtained by projection
of V¥ (I Xm ) and v (I XT ) on O (T*X, 7 F) _, with respect to the
splitting (6.4.2).

By (6.4.4), the connections V¥ (7" X7 F) o, @ (T Xm ) ou ipduce con-
nections V2, V2" on A over V.

Recall that after (6.4.4), we defined the generalized metric | \i < On the
restriction of A to V.. Now we establish an analogue of [B05, Proposition
1.21 and eq. (1.96)]. Recall that if g € G, T} 4.5 (gTX, vE, gF)>T is a smooth
function on V..

Proposition 6.9.2. The following identity of connections holds on V,.:
VA =V2,. (6.9.3)

Moreover,
Au 1 2
Vit = VA 4 EVA log| |3 < - (6.9.4)
Finally,

dlog|| |3 = dlog]| |3 , +2dTh., (g7, V¥, g7) (6.9.5)

>r
Proof. The proof of the first part of our proposition is the same as the proof

of [B05, Propositions 1.17 and 1.21]. Since the splitting (6.4.2) is hgc(T*X’ﬂ*F)

orthogonal, the considerations which follow (6.9.2) show that (6.9.4) holds.
Identity (6.9.5) follows from (6.6.15) and from Proposition 6.6.3. O

6.10 A PROOF OF THEOREM 6.7.2

We may and we will assume that S has dimension 1, so that wf = 0. Also
we fix g € G. Given b > 0,t > 0, we have the identity of 1-forms on S,

up, = Trg [gh (BLY)] - (6.10.1)
By (2.8.8) and (6.9.2), we get the equality of 1-forms on S,

1 (T X
Up,p = Tr, |:g§w <Q (T*X, W*F) , h%C(T X, F)) 1% (\/%B¢,HC):| . (6102)

Since By e commutes with Ai)Hc, it preserves the splitting (6.4.2) of
the vector space Q (T*X,n*F). Let P<,, P-, be the spectral projectors on
QO (T*X,m*F)_,,Q (T*X,7*F),. We denote with a superscript < r or
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> 7 the restriction of By e to one of these two vector spaces. Put

w(Q' (T*X, 7" F) 2.0 F))

<r

Q(T X, " F))

—P<Tw .P<',ﬂ7 (6103)

(
( (T* “FY.h Q(T XﬂF))>T
o

Q'(T*X,w*F)) P
>r-

=Ps,w (2 » Dpge

Set
1 71'
U = Th, [QQW (Q ("X, 7 F), g% F)) (\/qu H)}
(6.10.4)
1 P Q (1" X7 F) p
ug ;= Trg {g2w<ﬂ (T X, 7" F) , hge )> h (\/_B¢HC) .
It follows from the above that
Upp = up g gy (6.10.5)
Recall that A’ (0) = 1. Therefore, as t — 0,
1 —
upy = iy = T [g2w (Q (T*X,7*F),p % F)) ] . (6.10.6)
<r

By Proposition 6.9.2, it is clear that

1
uh =5V og (1 B -.) - (6.10.7)
By Theorem 4.4.1, we know that as t — 0,
1
Uy — Upo = / e (TX,, V%) Tr |:92w (VF, gF)} (6.10.8)
X

g

By (6.10.5), (6.10.6), (6.10.8), we conclude that as ¢ — 0, there is a 1-form
ub>6 on V, such that

Upy = U o (6.10.9)
so that
up,0 = U+ Up - (6.10.10)
Proposition 6.10.1. The following identity holds:
g = dThb.g (gTX r HW)M. (6.10.11)

Proof. We define wy 7} as in Definition 4.3.3:

w7 = Tr, { ; (NTX =)W (\/_Baf;_[c)} . (6.10.12)
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Note that here, wf{ is a smooth function on V,.. We claim that

o o,  wpr

Indeed if the superscript > r was omitted, this identity would just be a con-

sequence of Theorem 4.3.2. Recall that since d” X commutes with Bi e

d""X acts on Q' (T*X,7*F)_,. Let dT"X>7 be the restriction of d7" X to
QO (T*X,7*F),,. Since S is one dimensional,
A/M>T — dT*X>7‘ + vQ'(T*X,Tr*F)>T

is still a flat superconnection on Q' (T*X,7*F), . The proof of (6.10.13)
continues as the proof of Theorem 4.3.2. Needless to say, we could as well
replace > r by < r and obtain (6.10.13) by difference.

Recall that we can take r > 0 large enough so that if A € SpAiHc, then
Re X > 1. By proceeding as in (5.4.3), there are ¢ > 0,C > 0 such that if
s € V., near s, for t > 1,

‘exp (—tA;;fC) H1 < Ce e, (6.10.14)

From (6.10.4), (6.10.12), (6.10.14), we deduce that as t — +o0, ub>tr and
wf{ tend to 0 exponentially fast near s € V.. By (6.10.13), we get, for ¢t > 0,
o d
W= —d/ w2 (6.10.15)
: \ Uy,
Now we will make t — 0 in (6.10.15). As we saw in (6.10.9), the left-hand

side has a limit as ¢ — 0. We can define wf{ as in (6.10.12), and we have an
analogue of (6.10.5) for w, ,. Put

1 -
wih = Tr {95 (NT X _ n) P<T} . (6.10.16)
Then MES is locally constant on V,.. Moreover, as t — 0,
wyy = wyp +O(t). (6.10.17)
By using Theorem 4.4.1, (4.3.10) and (6.10.17), we find that as ¢ — 0,
Wl = —wip + O (\/Z) . (6.10.18)

From (6.10.17), we find that in the integral in the right-hand side of (6.10.15),
there is a logarithmic divergence as t — 0, which, being a locally constant
term, is killed by the operator d.

By (4.13.7),

o (Vigge )] = (14204 ) T g (18252)] . (62019

By proceeding as in the proof of Theorem 4.2.1, Trg [g exp (tB;;fc)} does
not depend on t. Using (6.10.14) and making ¢ — o0, we find that this
quantity is just 0. So by (6.10.19), we get

Tr, g0 (VEBZ5.)] =0. (6.10.20)
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By (6.3.19) and using the observation which follows, which guarantees
that @’ = 0 in the right-hand side of (6.3.19), we find that as t — 0,

1 T X 2,>r -
ETIS [gN exp (ths)Hc)} = Vi +6+0 (\/E) , (6.10.21)
and B = —wyg is locally constant on V;.. Also observe that by (6.10.14),
there is ¢ > 0 such that as t — +o0,

1 . ) »
§TrS [gNT X exp (tBi;c)} =0 (e ). (6.10.22)

By (4.13.7), we get
wyy = (1 + 2t%> %Trs [gNT*X exp (tBiiii)} . (6.10.23)

By (6.10.15), (6.10.21), (6.10.22) and (6.10.23), we obtain
T e 1 * 2,>r du
ub>,t = —d(/; §TIS |:gNT Xexp <UB¢:,}>_‘1/b2)i| 7
T [gNT N exp (tB270)] ). (6:10.24)

By (6.10.9), (6.10.21), (6.10.24), and using the fact that [ is locally constant,
we get

1
1 - ! du
>r _ T*X 2,>r
g = = / <5Tfs o7 N exp (w8 )| = 2 - 5) w
M| T*X 2,>r\] du
—/1 §T1rs [gN exp (“B%HC)} Z) (6.10.25)
Using (1.8.10), (6.10.14), (6.10.21), and (6.10.23), we have the easy formula

Th,g,b (gTX7 ng gF) >r

1
_ 1 T*X 2,>r @ du
= —/0 <§Trs [gN exp <UB¢,H1/62)} - N -3 w

+ 2 — /1+0<> %Tlrs {gNT*X exp (uBz’>T )] cz_u) + (I (1) + 21og (2)) B

¢,’H1/b2
(6.10.26)
Since  is locally constant, (6.10.11) follows from (6.10.25) and (6.10.26).
The proof of our proposition is completed. O

By (6.9.5), (6.10.5)-(6.10.11), we get (6.7.1).

Now we briefly show how to establish that || Hi , does not depend on b.
Here we can take S to be a point. The discussion is ‘then exactly the same as
before. We still use Theorem 4.3.2 in the form given in (6.8.2) and we exploit
the second identity in (4.4.1). The combination of these two facts permits
us to complete the proof of Theorem 6.7.2. ]



Chapter Seven

The hypoelliptic torsion forms of a vector bundle

The purpose of this chapter is to calculate the hypoelliptic torsion forms
of a real Euclidean vector bundle equipped with a Euclidean connection.
These explicit computations will play a key role in establishing the formula
which compares the elliptic to the hypoelliptic torsion forms. The fact that
our computations are closely related to computations in [BGO1, section 4] in
the elliptic case can be considered as a microlocal version of our comparison
formula.

The present chapter is also related in spirit with similar computations
which were done in a holomorphic context in [B90, B94].

This chapter is organized as follows. In section 7.1, we introduce a key
function 7 (¢, n, x).

In section 7.2, we give the Weitzenbock formula for the hypoelliptic cur-
vature in the case of a vector bundle F.

In section 7.3, we establish a translation invariance property of the hy-
poelliptic Laplacian.

In section 7.4, we equip F with a flat isometry ¢, and we consider the
corresponding eigenbundle decomposition of E.

In section 7.5, we define a von Neumann supertrace of the corresponding
heat kernel on £ & E*.

In section 7.6, we give a probabilistic expression for the heat kernel.

In section 7.7, certain finite dimensional supertraces are expressed in terms
of infinite determinants.

In section 7.8, we complete the evaluation of the supertraces of the heat
kernel in terms of the traces of certain operators acting on the circle.

In section 7.9, some extra computations are done on related supertraces.

In section 7.10, the Mellin transforms of certain Fourier series are intro-
duced.

Finally, in section 7.11, the hypoelliptic torsion forms of the vector bundle
E are evaluated.

7.1 THE FUNCTION 7 (c,7,x)

Take x € C,c € R*. Let P, (\) be the polynomial

P..(\) = —>\3+§()\+x). (7.1.1)
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Note that
Poa (<A) = =Pow (). (7.1:2)
Let A1, A2, A3 be the roots of P, (A). Take n € C.
Definition 7.1.1. Set

3
7 (¢,n,7) =H2sinh<A’;n>. (7.1.3)
=1

By (7.1.2),

7(¢,—n,—z) = —7(c,n, 7). (7.1.4)
Also observe that when changing 7 into 7 + 2im, 7 (¢,n, x) is changed into
-7 (Cv , 1’)

Let L? be the vector space of square integrable complex functions on
[0,1]. The operator J = % with periodic boundary conditions acts as an
unbounded antisymmetric operator on L2, with simple eigenvalues 2ikn, k €
Z.

Take z € C, |z| = 1, so that z = ¢?,§ € R/27Z. Let C. ([0,1],C) be the
vector space of smooth functions f defined on [0, 1] with values in C such that
f1 = zfo. Then the operator % acting on C, ([0, 1], C) has a unique skew-
adjoint extension, which will be denoted J.. Observe that if Ty € End (L?)
is given by f; — e*? f, then

T, 0. Ty = J + 6, (7.1.5)

where the domain of the operator in the right-hand side of (7.1.5) consists
of the standard periodic functions on [0,1]. Moreover, the spectrum of J,
is just ¢ (2kw + 6),k € Z. Finally, note that when z = 1, we will use the
notation J instead of Jj.

In the sequel, we will consider determinants of operators acting on LZ2.
These determinants will always be infinite products over k € Z. The con-
sidered products either will be obviously convergent or will converge when
considering products of the type [[_,,;<.<,, and making M tend to +oo.
Also note that expressions like J=! or J_; will appear. It will be implicitly
assumed that such operators are restricted to the direct sums of eigenspaces
where J or J,ie is invertible. In the case where such restricted determinants
appear, they will be signaled by det *, instead of the usual det. Similarly, the
trace of operators of this kind will be written as Tr*.

Theorem 7.1.2. If 6 € R, the following identity holds:

, , P. . (—i(2km +0))
T (c,16,x) = Pe 5 (—i6) : - .
kg* (2ik)?

(7.1.6)

Moreover, if k € Z,

2

. kC * c? -2 ? -3
7 (¢, 2ikm,x) = (—1) Vi det™ (11— ZJ + ij . (7.1.7)
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If 0 ¢ 2rZ, then
; 3 2 2
7 (c,if,2) = (2 sinh (g)) det (1 — CZJ;-E + %m;?) . (7.18)

Proof. We have the well-known formula

2sinh (y/2) =y H

keZ*

By (7.1.1), (7.1.3), (7.1.9), we get (7.1.6). Equation (7.1.7) follows trivially
when k = 0, and by antiperiodicity, we get (7.1.7) in full generality.
If 0 ¢ 27Z, then

Pey(—i(2km +0)) 0\’
11 @ikn)® 11 (”%)

2ikm +y

1.
2ikm (7.1.9)

keZx keZx
2 2
H(l— S .Cx,3>. (7.1.10)
ez 4 (2ikm + i0) 4 (2ikm + 10)
Moreover,
P (i) = (i0)* [1— —C 4 €% (7.1.11)
4(i0)*  4(3i0)° ) o

By combining (7.1.6) with (7.1.9)-(7.1.11), we get (7.1.8). The proof of our
theorem is completed. O

7.2 HYPOELLIPTIC CURVATURE FOR A VECTOR BUNDLE

Let S be a smooth manifold. Let 7 : £ — S be a real vector bundle of
dimension n on S. Let g¥ be a Euclidean metric on E, let V¥ be a Euclidean
connection on F, and let RF be the curvature of V.

Let M P be the total space of E. Now, we will use the formalism of section
2.4, with M = M¥, and X = E. Indeed observe that the connection V¥
induces a horizontal vector bundle TH# M¥* c TMF, so that

TMY =THME o E. (7.2.1)

Moreover, TX = E is equipped with the metric g¥. So the assumptions of
section 2.4 are verified.

Let y be the generic element of E. One verifies easily that the tensor T of
(1.3.1) is purely horizontal, and that if U,V € T'S,

T U, v")=RP (U V)y. (7.2.2)
Clearly,
T"X=E@¢FE". (7.2.3)
Then M¥, the total space of T*X, is just the total space of E @& E*.
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The connection V¥ induces the dual connection VZ~ on E*, so that E®E*
is equipped with the connection VZ @ VE", which is metric compatible. It
induces a horizontal subbundle T M¥ on M¥ | which is just the one which
was considered in [B05, subsection 4.5] and in section 2.4.

Let eq, ..., e, be a basis of E, and let !, ..., e be the corresponding dual
basis. Let €!,...,e" denote the associated basis of E* (in E & E*), and let
€1,...,€n be the corresponding dual basis. The fiberwise symplectic form on
T*X = E® E* is just

Ww Y =8¢ e (7.2.4)
We will identify the e?,€; with the corresponding vertical 1-forms on MF.

Let p be the generic element of E*, so that (y,p) is the generic element
of T*X = E & E*. The form 6 of section 2.4 is just the horizontal form on
M¥ associated to the canonical section p. Using (2.4.2), (2.4.3) or a simple
direct computation,

w=uw"+(R"y,p). (7.2.5)

From now on, e1,...,e, will be supposed to be an orthonormal basis of
E. Let ¢c € R. We will give formulas for some of the operators considered in
section 2.5. Here we will take F' to the trivial flat Euclidean vector bundle
Ron S, sothatw(VF,gF) =0.

Let @ (E @ E*) be the vector space of smooth sections of A" (E* @ E*) ®
A™ (E) along the fibers E @ E*. The operators which we will consider act on
smooth sections of ' (E @ E*).

If p € E*, recall that p can be identified with a corresponding element in
E. Then V]]f denotes the associated fiberwise differentiation operator along
the fibers of E. Also AV still denotes the Laplacian along the fibers of E*.
Here that ¢ € R* is allowed to vary, so that dc € A! (R).

Theorem 7.2.1. The following identities hold:

AME,2 1 Y 2 2 .o~ 1 E 1]
Cp et = 1 (—A + ¢ p|” + ¢ (2ig e — n)) + 1 (ei, R%ej)e'ed
c . i . 1 ~ .

=5 (Vy +ia (¢ +ie,) + (R¥y,p)) + 5de (P = p—ip), (7.2.6)

~MF c ., . 3

G ne—wn = —5 (P+6ip) — ode Ipl*,

~MF ~IME 3¢, 9 C_.

Q@Hcwa + |:§chHa 9 Ip| :| = _§p~
Proof. Our theorem follows from (2.5.14), (2.5.17), from Theorem 2.5.4, and
from (7.2.2). O

7.3 TRANSLATION INVARIANCE OF THE CURVATURE

Take yo € E. Let T}, be the operator
s (y,p) = Tyos (y,0) = s (y + o, p) - (7.3.1)
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Proposition 7.3.1. The following identity holds:

~MF 2 1 B ~MPF 2 E
TyoCs e wn Tyt = exp (= (R%y0,y)) €4 e exp ((Ryo,y)) . (7.3.2)
Proof. This is a trivial consequence of Theorem 7.2.1. |

7.4 AN AUTOMORPHISM OF FE

Let g be an automorphism of the vector bundle E, which preserves the
metric g¥, and is parallel with respect to VZ. Let e 0 < # < 7 be the
distinct nonreal eigenvalues of g, the other possible eigenvalues being 1 and
—1. These eigenvalues are locally constant on S. Let gt ,E', E~! be the
corresponding eigenbundles. We get the orthogonal splitting

E@rC=E'@rCoE 'opCo P F aE . (741
0<f<m

Note that E', E~' are real vector bundles, and that E @ B is the
complexification of a real vector bundle Eﬁiw. By (7.4.1), we have the real
splitting

E=E'eE'a P B (7.4.2)
o<o<m

Finally, observe that the connection V¥ preserves the splittings (7.4.1),
(7.4.2).
Let QO (E @ E*) be the vector space of smooth sections of A" (E* @ E)

along £ ® E*.
~MF ~AIME S MF
We will now assume that in the operators €, 5,0 wH,QiHr wh B e H s

the Grassmann variables €’, iz, have been replaced by iz, e;. Still these op-
erators will be denoted as before These operators now act on Q' (E @& E*).

~ME,
Clearly, g acts on ' (£ ® E*) and commutes with €4 5,c_,u. Let 2 be
an odd Grassmann variable, which anticommutes with all the other odd
variables. Set

~MF ~MF
»QCE §¢ H(‘ wH — 2 <®¢ He—wH + |:Q:Hc wHs & 3¢ |p2:|> . (743)
Using Theorem 7.2.1, we get
~MFE 2
£ Qd’ HC—wH + z ;'Lp (744)

Let dy, dp be the volumes along the fibers of E, E*. Let Q. ((y,p), (v, p"))

~ME 2
be the smooth kernel associated to exp <—g¢’chH and the volume dydp.

~MF 2 .
The kernel associated to gexp (—QQHC_MH) is g« Q¢ (g—l (y,p), (yl7p/)).
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Now we will rewrite the operator ££ using the notation of section 1.1. By
Theorem 6.1.2, we get
ep 1

C

1
(—AV 4 2 pf? + ¢ (28 — n)) +4

C PR 1 . ~ C.
~3 (Vf +&¢(e;) + (RPy,p)) + Edc (iz—¢(p)) + 2515 (7.4.5)

Note that in (7.4.5), the Clifford variables ¢ (e;) anticommute with the €;, iz .
The fact they both wear hats should not make them related in any way.

<ei, RE€j> Z"e*iigj

S

7.5 THE VON NEUMANN SUPERTRACE OF exp (—£F)

In the sequel, we suppose ¢ # 0. A first crucial observation is that in general,
the operator exp (—£F) is not trace class. One evidence for this is that, by
Proposition 7.3.1, £F is essentially translation-invariant by translations in
E. Also observe that for 1 <7 < n,

c(e;)C(e;) = 2ei,, — 1. (7.5.1)

By (7.5.1), we find that among the monomials in the ¢ (e;),¢(e;) acting on

A (E*), up to permutation, only c(e1)¢(e1)...c(en)¢(en) has a nonzero
supertrace, and moreover,

Trg[c(e1)C(e1)...c(en)Clen)] = (—2)". (7.5.2)

By (7.5.2), since no Clifford variable ¢ (e;) appears in the right-hand side
of (7.4.5),

e, B Q. ((y,p), (y.p))] = 0. (7.5.3)

To overcome the above difficulties, we describe a recipe to produce a “nat-
ural” von Neumann supertrace of the operator gexp (—£%). This recipe is
inspired from [B90, section 4], [B94, section 2].

Let o(E) be the orientation line bundle of E. Let ¢(F) be the algebra
spanned by the ¢(e;),1 <i <n.If A € ¢(FE), A can be expanded as a sum of
monomials in the ¢ (e;). Let A (4) € o(E) be the coefficient of ¢ (e1)...¢(ey)
in this expansion. The map A € ¢(E) — A (A) is a supertrace in the sense
that if A, B € ¢(E), then [A, B] maps to 0.

First suppose that g = 1, so that £ = E'. We expand Q ((y,p), (v, ))
as a sum of monomials in the c(e;). We denote by Q2 ((y,p), (y,p)) the

coefficient of (—1)"™*/22(ey) ... 2(en) so that
Qc((.p), (u:p) =+ Q2 ((1,), (y,p) (~1)" "2 C(er) ... E(en).

Note that
Q2 ((y,p) s (y,p)) € End (A" (E)) @A (T*S) @R [z, de] ®o (E),
and so
Tr* Q2 ((y,p) , (,p)] € A (T*S) 8R [2,dc] Bo (E) .
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By Proposition 7.3.1, Tr A (F) [Q° ((y,p), (y,p))] is invariant by translations
in y € E, so that we can as well take y = 0.

Finally, it is easy to verify that as |p| — 400, Q. ((0,p), (0,p)) decays like
a Gaussian as |p| — +oc.

Definition 7.5.1. We define the von Neumann supertrace Trg [exp (—Sf)]
by the formula

Trs [exp (—£7)] = / T ) [Q2 ((0.9). (0,p))] dp. (75.5)
E*
Note that Try [exp (—£Z)] is a smooth section of A (T*S) &R [z, dc] ®o (E).

Assume now that no eigenvalue of ¢ is equal to 1. In this case,

T 9 [9Q. (97" (:p) , (u:D))]
no longer vanishes identically for trivial reasons, since, in general, g contains
the missing ¢ (e;),1 < i <n.

Moreover, one verifies that as |(y,p)| — +0o0, Q. (g_1 (y,p), (y,p)) still ex-
hibits a Gaussian-like decay. We will give a short probabilistic proof for that.
Many arguments have already been used in chapter 4. Indeed the dampening
factor c? |p\2 ensures the proper Gaussian decay as |p| — +o0.

Gaussian decay as |y| — +oo is subtler and still uses this dampening
factor. Indeed for large |y|, |gy — y| is large. Because the dynamics of the
underlying path integral is determined by an equation like the one we will
write in (7.5.1), this means that supg<,<q [pt| =~ |y|. If |p| ~ |y|, Gaussian
decay in p guarantees Gaussian decay in y. If [p| < c|y| /2, an estimate like
(4.7.22) still guarantees Gaussian decay when |y| — +o0.

Definition 7.5.2. If no eigenvalue of ¢ is equal to 1, we define the von
Neumann trace Trg [g exp (—Sf )] by the formula

Trs [gexp (—£F)] =/ Tr* F ) [9Qc (97 (,0) , (v, p))] dydp.

E®E*
(7.5.6)
In this case, Tr [gexp (—£F)] is a smooth section of A" (T*S) ®R [z, dc].

In the general case, we use the splitting (7.4.1) of EQgr C to define the von
Neumann supertrace Trs [gexp (—£F)] by combining the above techniques.
Indeed if ey, . .., e, is such that ey, ..., e,, is an orthonormal basis of E', only
the Clifford variables ¢ (e;),1 < i < m receive a special treatment. Similarly,
if EVL denotes the orthogonal bundle to E' in E, in the obvious extension
of (7.5.5), (7.5.6), the variable (y, p) will be integrated on E''* @ E*. Details
are easy to fill in, and are left to the reader. Note that in the general case,
Trg [gexp (— EE)] 15 a smooth section of A' (T*S) &R [z, dc] ®o (EY).

+i6

Let g1, -1 26 * be the operators £ attached to E', E~1, B&
Proposition 7.5.3. The following identity holds:

Try [g exp (—ﬁf)] = Try [exp (—i}i)] Try [g exp (—ﬁ;l)]

H Trs [g exp (—Siiw)} . (7.5.7)

0<o<m
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Proof. This is a trivial consequence of the fact that the operator £ splits
according to (7.4.2). O

If a e R, let H, € End (Q (E @& E*)) be given by

s (y,p) — Has (y,p) = s (y,ap). (7.5.8)
Put
£ =H,, Lt H 5. (7.5.9)
By (7.4.5),
1 2 c 1
E \va 2 o~ . E ..
ﬁc/ — 5 (—A + Z ‘p| + 5 (262‘2@' — n)) + Z <6i,R 6j>lgz’tgj
1

c ~— 1 1 R c .
~5 (\/—§Vf +e;cle;) + 7 <REy,p>> + mdc (i —¢(p)) + Zm’tﬁ
(7.5.10)

Let Q. ((y,p),(y',p")) be the smooth kernel associated to exp (—£F’). We
define Trg [g exp (—Sf’ )] just as before, using instead the kernel Q. One
verifies easily that

Tr [g exp (—ECE)] = Trs [gexp (—Ef')] . (7.5.11)

Replacing £F by £ is done simply for the convenience of later references.

7.6 A PROBABILISTIC EXPRESSION FOR Q.

Let g ((y,p), (y',p’)) be the smooth kernel for exp (A2 2\[ p) Given

(Y0,p0) € E @ E*, let Ry, p,) be the probability law on C ([0,1], E & E*)
of the hypoelliptic diffusion process (y:,p¢), whose infinitesimal generator

% zf - Let S(y, p) be the probability law on C ([0,1], E @ E*) of
the corresponding bridge (y:,p:), which starts at (yo,po) at time 0, and is
such that (y1,p1) = g (¥0, po). Let ESwo.r0) be the expectation operator with
respect to Sy, po)-

Note that under Ry, »,) OF S(yo,p0);

is

dy c
—= = ——p, 7.6.1
it~ 23 (7.6.1)
so that
c 1
— dt =y1 — yo. 7.6.2
2\/5/0 Pt Y1 — Yo ( )
Equivalently,

c 1
Ve /0 prdt = (g — 1) go. (7.6.3)
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In particular, if g = 1, so that £ = E', then

1
/ pedt =0, (7.6.4)
0

i.e., p € L3, where L3 is the subvector space of L? orthogonal to the con-
stants.

Now we fix the path p, € C([0,1], E*). Let U;,0 < t < 1 be the solution
of the differential equation

au € ) cn 1 B o\ .
o= U 5 (c(e;) —igi) + 71 (ei, R%ej) igiigi
de ,. cz
BENG (ip—c(p) — m%}’ (7.6.5)
Uy = 1.

Proposition 7.6.1. For any (yo,po) € E® E*, the following identity holds:

02 1
Q.. (Y0, o) » g (Yo, p0)) = ESworo) [GXP<_§/ Ip|* dt
0

1
c
+— RFy,pYdt |U . Do), , . (7.6.6
2\/5/0< yP> > 1|9 ((yo,p0) » 9 (Yo, 10)) - ( )
Proof. Our proposition follows easily from (7.5.10) and from the Feynman-
Kac formula. O

7.7 FINITE DIMENSIONAL SUPERTRACES AND INFINITE
DETERMINANTS

In this section, we will give an expression for the supertrace of gU;. Let
504 (E) be the bundle of antisymmetric sections of End (E) which commute
with g. Temporarily, we replace R by A € so, (E).

So let V; be the solution of the differential equation

av C ) en 1 o
P 14 26 (ce;) —ig) + =1 (i, Aej) izt
dc cz
— = (i —2(p)) — —=ip|, 771
=2 0) — sy (7.7.1)
Vo=1.

Note that we will adopt the conventions of section 7.5 concerning super-
traces, that is, the Clifford variables ¢ (e;),1 < ¢ < m, will play a special role.
Note that in principle, Trg [gV1] is a section of A (T*S) @R [z, dc] ®o (E?).
Still, we will often be interested here in the part of the supertrace which is
even in z, dc, that is, either it does not contain z, dc or it contains the factor
zde. We will denote this restricted supertrace by the notation Trg®V*". The
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part of the supertrace which only contains either z or dc will be denoted
TrSOdd.

Let Cg° ([0, 1], E) be the vector space of smooth functions f defined on
[0, 1] with values in E, such that

fi=gfo. (7.7.2)
The operator % acts as a real antisymmetric operator on Cg° ([0, 1], £). We
denote by J,; the corresponding skew-adjoint extension of %. If g =1, we
will use the notation J instead of J,.

Note that ker J; is in one to one correspondence with ker (g — 1). We will
denote by J° ! the inverse of Jg restricted to the orthogonal space ker JgJ-
to ker J, in L?([0,1], E). Equivalently, J; ! is the inverse of .J, restricted to
ker J, ;-.

We will denote Fredholm determinants of operators where J° L appears
with the notation det *, to remind the reader that the zero eigenvalue of J,
is excluded.

Let Et C E be the orthogonal vector bundle to E' in E. Since A
commutes with g, E' and EM* are stable by A. In particular A|g: is an
antisymmetric endomorphism of E'. By definition, Pf [A|g1] vanishes if E*
is odd dimensional. In general, it is a section of o (El)

We claim that det * (1 - %J;Q + %AJQ’?’) has a natural square root. In-

deed the operator 1 — %J;Q is positive definite, so that det (1 — %Jg’z)

is positive. For A close enough to 0, we can define the “natural” square
root det*1/2 (1 — §J;2 + %AJ;?’) of this determinant, which is an ana-
lytic function of A.

Although this will not be used in the next chapters, we show briefly how
to define this square root as an analytic function of A € sog (E). Indeed the
operators A and J,; are antisymmetric and real. Complex conjugation maps
the corresponding eigenspaces into eigenspaces associated with the negative
of the eigenvalues. Since we exclude the zero eigenvalue of J,, this makes that
in the infinite product which defines the Fredholm determinant, the same
factor appears necessarily twice. By picking just one of these factors, we can

then define the square root det *!/2 (1 - %JQ_Q + %AJQ_‘?’). It is obviously
an analytic function of A € so(FE), which extends the previously defined
function, since it coincides with that function at A = 0.

Observe that if Pf* denotes the Pfaffian of an operator acting on the
orthogonal of ker Jg, at least formally,

* IR o 72}
det /2 (1S g2 &) — i {Jg o A,
479 T P [J,]

Note that the ratio of two Pfaffians is a real number. By splitting ker JgL
into a direct sum of eigenspaces associated to the nonzero eigenvalues of J,,
and writing the Pfaffians in (7.7.3) as a product of Pfaffians, one can make
easily sense of (7.7.3).

(7.7.3)
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Definition 7.7.1. Set

2 1,1
K A) = P1[S | der ™ (-
det *1/2 (1 — ﬁJ*2 + éAJ3> (7.7.4)
LI SAR) .

We will give a more concrete expression for x (¢, g, A). Assume first that
E = E'is even dimensional and oriented by the choice of the basis ey, ..., e,.
Then there is an oriented orthonormal basis of E such that the matrix of A
is a union of semidiagonal blocks

0 —yj> .
,1 <5 <n/2,
(w 0 j<n/
so that if ; = dy;,1 < j < n/2, the +x; are the eigenvalues of A. In
particular the Pfaffian of A is just

n/2
PrA] =[] (~u))- (7.7.5)
1
Then one verifies easily that
n/2 ic? n/2 c? 9 c? 3
x (¢, 1,A) = Jl;[l <?xj> jl;[ldet (1 - ZJ + ijJ ) . (7.7.6)

Assume now that £ = El‘fw, with 0 < 6 < 7, so that E is even dimen-
sional. Let B € End (E) be the antisymmetric endomorphism with semidi-

agonal blocks (2 _00>, so that

g=¢eb. (7.7.7)

We may and we will assume that A is also reduced in semidiagonal blocks

0 —yj> .
,1<5<n/2
<yj 0 j<n/

on the same basis as B. Put again x; = iy;. Then we have the identity

o\\" i ? ?
x (c,g,A) = (2 sin <§>> H det (1 - ZJ;,Q + ijj"'ig)> . (1.7.8)
j=1

We will not be more specific in the case E = E~1, i.e., when g = —1.
We will also consider expressions of the type
c2zde J,
¢, g, A)ex g , . 7.7.9
x (¢, 9, 4) p<8 <Jg_%Jg+%APP>> (7.7.9)

Equation (7.7.9) should be properly interpreted. Indeed recall that in (7.6.5)
and in (7.7.1), p; is such that p1 = gpo.
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If A is close enough to 0, the operator Jg’ — %Jg + %A is invertible. How-
ever, if A is arbitrary, this operator may well be noninvertible. Still, the
expression (7.7.9) remains an analytic function of A because of the deter-
minant appearing in the definition of x (¢, g, A) given in (7.7.4). For similar
considerations in a simpler situation, we refer to Mathai-Quillen [MatQ86]
and to [B90, section 5].

Theorem 7.7.2. The following identity holds:

czde J
T, ™" [gVi] = x (¢, 9, A S —p,p)|. (7.7.10
™ gVi] = x (e, g )eXp< S <Jg_%Jg+%App>> (7.7.10)

. . . . +i6
Proof. We will consider in succession the cases E = E',F = Eg | E =

E-L.

e The case where E = E!. Here, we assume that £ = E', ie., g = 1.
First we will make z = 0,dc = 0. We claim that if £ is odd dimen-
sional, Trg [Vl] vanishes. Indeed V; is even in the monomials containing
the €;,iz,¢(e;). Moreover, only even monomials in the €;,iz can have a
nonzero supertrace when acting on A" (E). In the expansion of V7, such even
monomials will always be factors of even monomials in the ¢ (e;). If E is odd
dimensional, the monomial ¢ (e1)...¢(e,) never appears in this expansion,
so that indeed Tre [V1] vanishes.

We can now assume that F is even dimensional. Note that

1 1
€ = 3 (c(e) +c(e)), lei = 3 (c(e) —cl(e)). (7.7.11)
In the sequel, we will use the notation for 1 < i < n,
c(e;) =ic(e;), c(e;) =ic(e;). (7.7.12)

The ¢(e;),c(€;) are now standard Clifford variables, which anticommute,
and also anticommute with the other Clifford variables. Observe that since
n is even,

II c@e@ = I @ [ =@, (7.7.13)

(—1)" D28 (ey) . Een) =T (er) ... (en) .-

We assume temporarily that the Euclidean vector bundle E is oriented
and spin, and we denote by S¥ = S¥ & SF the corresponding Zo-graded
vector bundle of spinors. Then S¥ is a ¢ (FE) Clifford module. Among the
monomials in the ¢(e;), only c¢(e1)...c(en) has a nonzero supertrace, and
moreover,

Tr5" e (er) ... c(en)] = (—20)"/2. (7.7.14)

In the sequel we make ¢ (E)®® act on SERSERSE. The corresponding

three copies of ¢ (E) are generated by the ¢(e;),c(€;),¢(€;). Using (7.7.13),
(7.7.14), we find easily that we have the identity of functionals on ¢ (E)?,

Try =

1 ~ ~
m—inrSSE®SE®SE. (7715)
{2
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Using (7.7.1), the fact that z = 0,dc = 0 and also (7.7.11), (7.7.12), we
get

Vi = exp(%cﬁ(é}) (@) + % (c(€) +ic(€:))E (&)
+ %6 (Aeiej) (c (@) — it (€)) (c(ej) —ic (aj))). (7.7.16)

Let V be a finite dimensional real Euclidean vector space, and let so (V') be
the Lie algebra of antisymmetric elements in End (V). Let H € so(V)®g C.
Let ¢ (V') be the Clifford algebra of V.. Let vy, ..., v, be an orthonormal basis
of V. Then the image ¢ (H) of H in ¢(V) ®gr C is given by

o (H) = % (Hoiyv;) ¢ () ¢ (v;) - (7.7.17)

Assume that V has even dimension p and also that it is oriented. Let SV =
S_“f @ SY be the corresponding Z,-graded vector space of spinors. Then SV
is a ¢ (V)-Clifford module. Moreover, ¢®V" (V') preserves the Zs-grading of
Sv.

If a € ¢(V)®r C, let TrSSV [a] be the supertrace of a when acting on

c¢(V). If H € so(V), then there is an oriented orthogonal basis of V' such
that the matrix of H has semidiagonal blocks (0 _O%) ,1<j<p/2. By

i
(7.7.14) and (7.7.17), one finds easily that

p/2
Te,®" [exp (¢ (H))] = [] (~2isin (v;/2)). (7.7.18)
j=1
Clearly,
p/2
Pf[H] = H (—5) - (7.7.19)

The function Pf extends to an analytic function on so (V) ®gr C, which is
such that

Pf? = det. (7.7.20)

Moreover, the function

p/2 ]
A(H) = E (%) (7.7.21)

is an analytic symmetric function in the 7?. Therefore it is an ad-invariant
analytic function of the coefficients of the characteristic polynomial of H.
It can be expressed as an analytic function of the Tr [H 2’“] ,k € N, and so
it extends uniquely as an invariant analytic function on End (V) ®@g C. If
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H € so(V)®r C, it has eigenvalues £01,...,+0,/2. Then

p/2
Pf? [H] = det [H] = [] (-03), (7.7.22)
Z 62
AH) = E sinh (6,/2)

By analyticity, we deduce from the above that if H € so(V) ®gr C,

Tr,5" [exp (c (H))| = Pf[iH] A~ (H) . (7.7.23)
Let M € End (E3) ®r C be given by
0 i< —
M= | —i¢ 4 —i4 it (7.7.24)
c - A - c A
2 T'g T3 71

Then M is antisymmetric. We make the first columns and rows be associ-
ated with the € (e;), the second with the ¢ (€;), the third with the ¢ (e;). By
(7.7.16), and using (7.7.17) with V = E3, we get

Vi =exp(c(M)). (7.7.25)
By (7.7.23),
Tr, S @S 88" () = PrliM] A1 (M) (7.7.26)
Let « € C. Let C be the (3, 3) matrix
0o i =3
c=[-ig = —iziig (7.7.27)
¢ oo

Let @ (M) = det (C — X) be the characteristic polynomial of C. By a straight-
forward computation, we get

Q) =Pea(N). (7.7.28)
Let A1, A2, A3 be the roots of @ (A). By (7.1.3), (7.7.28),
3 A\
7(¢,0,2) = H 2sinh (5) . (7.7.29)

We fix an orientation of E. Then there is an oriented orthonormal ba-
sis of E such that the matrix of A on this basis has semidiagonal blocks
(; _0‘%). Put z; = iy;. Then £x1,...,4x, /5 are the eigenvalues of A. By
(7.7.23), by (7.7.26)-(7.7.29), and by a careful computation of signs, we get

n/2
ESQES QE
Te, 5 9575 (1] = (1) T 7 (e,0,24). (7.7.30)
1
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By (7.1.7) in Theorem 7.1.2, by (7.7.6), (7.7.15), and (7.7.30), we get
(7.7.10) when E = E' and z and dc are made equal to 0.

Now we consider the case where E = E', but z, dc do not vanish. Essen-
tially the same arguments as before show that if n is odd, then Try®¥*" [V4]
still vanishes. Assume now that n is even. Note that we can rewrite the
differential equation (7.7.1) in the form

& —vleon- 2 (36w - con-iew)
~ 553 @ —c®)]. (7.731)
Vo=1

Let ¥; € E® ® C [z, dc] be given by

9 = — ﬁ_ﬁ (cz+dc)pe| . (7.7.32)
15 (cz +dc) p;

We denote by c () the element of ¢ (E?) ®C (2, dc) which is obtained by
replacing each of the three components in (7.7.32) by the corresponding
Clifford multiplications, and introducing the obvious minus sign when taking
z or dc out of the Clifford multiplication. Then (7.7.31) can be rewritten in
the form

av

Vo=1.
By [B90, Theorem 5.1], by (7.7.31), (7.7.32), we get

-1
Trs [V4] = Trs [exp (¢ (M))] exp << (% + M) 19,19>> . (7.7.34)

In (7.7.34), the boundary conditions are the standard periodic boundary
conditions on [0, 1]. Note that to make sense of the right-hand side of (7.7.34),
considerations similar to the ones we made after (7.7.9) should be made. For
details we refer to [B90, Chapter 5].

The first factor in the right-hand side of (7.7.34) was evaluated before. So
we now concentrate on the evaluation of the second factor. We still take C'
as in (7.7.27). Observe that if A is not a root of the polynomial P, ., then

1
C—-\N"'=
C=N =5
2 . . .2 2
pLpys L
. . .2 2 3 = c .CQ
—LA Yot M4+EIx+ o z(—21+5)/\+21I (7.7.35)

Pofrog Ci(fre)Aris N-faog
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Let us temporarily consider p; in (7.7.32) as a real number, and 9; as an
element of C (z,dc). By (7.7.35), we get

<(c N7 19,19> = —zde Ipe|?. (7.7.36)

2\
8P, . (N)
By (7.7.24), (7.7.27), (7.7.36), we get easily

(i—i—M)lﬁﬁ Ly (7.7.37)
dt TR\ g At ) "

By (7.7.34), (7.7.37), we get (7.7.10) when E = E*.

e The case where E = Eﬁiw. Now, we assume that ' = E{?{ie, so that &/
is even dimensional. Moreover, there is B € End (E) which is antisymmetric,
commutes with A, and is such that (7.7.7) holds. Then the action of B on
A (E* ® E) is given by

Blx (Brap) = i (Bei, ej) (c(ei)c(ej) —c(ei)c(e;)

+c(€i)c(aj)—a(a)a(aj)>. (7.7.38)

As before, we replace in (7.7.38) the ¢(e;), ¢ (e;) by ic(e;) , ¢ (€;), the effect
being to change the — signs into + signs in (7.7.38).

Recall that F is oriented. We will temporarily assume that E is spin, and
we denote by S¥ = Sf @ SE the corresponding spinors. Then (SE)®4 isa
¢ (E)®* Qlifford module. It is then elementary to verify that in our compu-
tation of the supertrace, we can as well replace A" (E* @ E) by (SE)®4.

First we assume that z = 0,dc = 0. Let N € End (E*) @gr C be given by

B 0 0 0
o B i< -
N=1, —is¢  4+B _iﬁ big (7.7.39)
c -A .
0 2 g~ —7 + B

Note that N is antisymmetric. It follows from (7.7.31) and (7.7.38) that we
have the identity of operators acting on A" (E* @ E),

gVi =exp (c(N)). (7.7.40)
Let +0;,1 < j < 2n be the eigenvalues of N. Then by (7.7.22), (7.7.23),

2n
Trg [exp (¢ (N))] = H 2sinh (%) . (7.7.41)
j=1

The explicit sign in (7.7.41) is evaluated using explicitly the orientation of
E*.
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If n € C, set
n 0 0 0
N i3 —3
D=g _is z3n —izii (7.7.42)
0 § —if—i5 —F+n

Let R () be the characteristic polynomial of D. By comparing with (7.7.27),
(7.7.28), we get

RXN=n—=ANP..(A—n). (7.7.43)
Assume that the eigenvalues of A acting on E¢” are given by z1,...,x, /2.
By (7.1.3), (7.7.41), (7.7.43), we get
n/2
T, [gVi] = (2isin (0/2))"* ] 7 (c.i6, ;). (7.7.44)
1

Using (7.1.8) in Theorem 7.1.2, (7.7.8), and (7.7.44), we get (7.7.10) when
z,dc are made equal to 0.
Consider now the general case, where z, dc do not vanish. Put

0
dep
Wy = — Lz(\/i+ dt ) (7.7.45)
vz (2 +de)py
475 (cz +dc) p
Consider the differential equation
aw
Wy = 1.

If we identify B to the corresponding matrix acting on E*, and M to the
matrix acting like 0 on the first copy of F, and like the given M on the last
E3, from (7.7.39), we get

N =B+ M. (7.7.47)
By (7.7.33), (7.7.46), (7.7.47), we find that
Vig=Wi. (7.7.48)

Now by using again [B90, Theorem 5.1] as in (7.7.34) and by (7.7.48), we
get

Trs [gVi] = Trs [Wh] = Trs [exp (¢ (V)]

~1
exp << (% + N) exp (—tB) wy, exp (—tB) wt>> . (7.7.49)

Again, standard periodic boundary conditions are used in the right-hand
side of (7.7.49). However, since e "7 is an orthogonal matrix,

<<% + N)l exp (—tB) wy, exp (—tB) wt> = <<% + M>1 Wt,m> ;

(7.7.50)
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where the operator (% + M )_1 should now act on smooth functions f on
[0,1] with values in E* such that f; = gfo, which, incidentally, is the case
for w;. By using (7.7.36) and proceeding as in (7.7.37), we get

<<d+M>119 19> CQch< i pp> (7.7.51)
—_— 5 = — C2 C2 3 . . .
dt 8 J3—GJy+FA
From (7.7.49),(7.7.51), we get (7.7.10) in full generality when E = E%.
e The case where E = E~'. Now we assume that £ = E~1,ie., g = —1.

We replace temporarily £ by E & E, so that g acts like —1 on both copies
of E. Then Trs®V" [¢gV1] is replaced by its square. Let B € End (E @ E) be

given by
0 —m
B = (77 0 ) , (7.7.52)

so that ¢ = e?. Since E @ E is even dimensional, we can then proceed as
before, and get the identity corresponding to (7.7.10) for F & E, which is
the square of the one we are looking for. The expressions we consider are
analytic in A, ¢, z,dc. When A =0,c¢=0,z = 0,dc =0, then V; = 1, so that

Tr [gV4] = 277, (7.7.53)
which coincides in this case with (7.7.10). Therefore we have established
(7.7.10) also in this case. The proof of our theorem is completed. O

7.8 THE EVALUATION OF THE FORM Tr, [gexp (—£E)]

Here we establish the main result of this chapter.

Theorem 7.8.1. The following identity holds:

Trg [gexp (—£F)] = e (El’ VEl)

2
(1 _ < zdcTr*

8

! D (7.8.1)
crrzo-mgrl)

Proof. We split the proof of our theorem into two parts.
e The case where E = E'. First, we assume that ¢ = 1, so that Jg =
J= % with periodic boundary conditions. Note that by (7.1.9),

(2sinh (vu/2))" = u™/? det *1/? (1 — uJ 72) . (7.8.2)
If p € E*, let P, be the probability law on C ([0, 1], E*) of the Brownian
bridge t € [0,1] — p; € E*, with pg = p1 = p. For u > 0, let @, be the
probability law on C ([0, 1], E*) of the Gaussian process with values in E*

with covariance (—J? + u)fl. By (7.8.2) and by [B90, eq. (7.36)], we have
the equality of positive finite measures on C ([0, 1], E*),

u ! 2 dp _ dQ.,
o (<5 [ wlar)an s = e 08
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Set
1
h = / pedt, qt = py — h. (7.8.4)
0

By construction, ¢ € LZ. Then under Q,, h and ¢. are independent random
variables, the probability law of h is a centered Gaussian with values in
E with covariance 1/u, and ¢ is a Gaussian process concentrated on L3,
with covariance (—J 24 u)_l, whose corresponding probability law will be
denoted QY.

Using (7.8.2) and the above, we find that under the finite positive measure
in (7.8.3), the law of h, ¢. is just

(%)n/z det*11/2 ) exp (—u |h|? /2) dh ® dQ° (q). (7.8.5)

Let o € End (Q (E @ E*)) be given by f (y,p) — f (~y,—p). By (7.4.5),
the part of ££ which does not contain z, dc is invariant under conjugation by

o, and the part which contains z, dc is antiinvariant. We then deduce easily
that

Tr,dd [exp (—£F)] = 0. (7.8.6)
So we concentrate now on Trs®*" [exp (—£F)]. By Proposition 7.6.1 and
by Theorem 7.7.2, this expression vanishes if £ is odd dimensional. So we

assume now that E' is even dimensional.
Note that y; is such that (7.6.1) holds. So by (7.6.2), (7.8.4),
c

—yo = —=h. 7.8.7
Y1 — Yo 972 ( )
By (7.6.4), under S(y ), p. € LY, so that J~'p € LY is well defined. By

(7.5.5), (7.6.1) and by (7.6.6) in Proposition 7.5.3, we get

2 1 2
oo (-£8)) = [ 500 foxp (<5 [ s G (RET )
0

E*

Trs [U1]] ¢ ((0,p), (0,p)) dp. (7.8.8)

Also by (7.8.5), (7.8.7), (7.8.8) and using Fubini’s theorem, which allows us
to condition on y; = 0 after having done the integration in the variable
p € E* we get

2n

Tr, [exp (—£F)] =

e (L) = e T

2
EQ2 [exp (% <REJ_1p,p>> Try [Uﬂ] . (7.8.9)

Using now Theorem 7.7.2 and (7.8.9), we obtain
B 2"y (c, 1, RE)
T At 2 (1= 272 | ol

0 02 J
EQc/4 | o i REJ-! 4+ zde - - , . (7.8.10
lXp<8<< FE= =y vl R (7.8.10)

Trg [exp (—ﬁf)]
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Trivial properties of Gaussians show that

0 62 J
B9 |exp | — ( | REJ ™ + zde ,
["p<8<< Bogryare )"’

L.

= det *1/2

(7.8.11)
2 2 _ J
-FP+g-T (REJ ! +chm>

Moreover, we have the obvious,

24
det *1/2 o+ 4

2 2 _ J
24+ _(REJ-Y 4 pdo— T
HER T

det *1/2 (1 — %J‘Z)
 det*1/2 (1 — € J-2 4 S REJ-3)

—ZicczTr* L . (7.8.12
( i (—J2+%<1—REJ1>)2D .

By (7.7.4), (7.8.10)-(7.8.12), we get (7.8.1) when E = E*.

e The case where 1 is not an eigenvalue of g. Now we assume
that 1 is not an eigenvalue of g. For p € E*, let P, , be the probability
law on C ([0, 1], E*) of the Brownian bridge ¢t € [0,1] — p; € E*, with
po = p,p1 = gp. For u > 0, let @, 4 be the probability law on C ([0, 1], E*) of
the Gaussian process with covariance (—J92 + u)fl. Note that under @, g,
p. is a continuous process such that p; = gpg. We claim that we have the
equality of positive finite measures on C ([0, 1], E*) which generalizes (7.8.3),

1
U 1 dp
exp <—§/0 Ipe|? dt — 3 (1 —9)P|2> dPg,pW

— dQu,g
B |det (eVu/2 — e=Vu/2g) | '

(7.8.13)

The proof of (7.8.13) is exactly the same as the proof of (7.8.3) given in [B90,
proof of Theorem 7.3], which we repeat. Take f € L2 ([0,1], E*). Set

I = EPg,p
E*

1 1
eXp(/ (f,dp — updt) — g/ Ipe|” dt
0 0

1 2 dp
—510=9)p )] S (1819

Using the fact that g is an isometry, the obvious analogues of [B90, eq. (7.27)
and (7.28)] remain valid.
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Let w. be a Brownian motion with values in E*. Given p € E*, let p/ be
the solution of the stochastic differential equation

dp’ = (Vup' + f) dt + dw, Py = D- (7.8.15)

Let dp be the Ito differential of p. The same use of the Girsanov transforma-
tion as in [B90] shows that

WEPW [exp (/01 (f + Vup, op) — % ’f+\/ﬂp|2>]

e (~310-0)sl*) (819

is exactly the value of the density of the probability law of p} with respect
to dp at p’ = gp. This probability law was obtained in [B90, eq. 7.32)] by an
easy explicit computation. Equation (7.8.13) then follows.

Using (7.1.9), instead of (7.8.2), we have the more general

det 1/2 (—J2 + u)
Vu/2 _ V)2, g
det (e e g) et 17 (- %) (7.8.17)
By (7.8.17), we get in particular
det 1/2 (=2
det (1 —g) (=) (7.8.18)

T det* 172 (=)
By (7.8.17), (7.8.18), we obtain

det (e\/ﬂ/2 - e_ﬁ/Qg) = det (1 — g) det /2 (1- ng_Q) . (7.8.19)

We now use the notation in (7.8.4). Under @, g4, the probability law of h
is a centered Gaussian on E* whose variance o2 (u) > 0 can be calculated
explicitly, its exact value being irrelevant.

Under S, ), (7.6.1), (7.6.2), (7.8.4), and (7.8.7) still hold. Since y; = gyo,
we get

€ -1
y 2\/§Jg D. (7.8.20)
By (7.5.6), (7.6.6), and (7.8.20), we obtain

2 1
Tr [gexp (—ﬁf)] =/ ESw.m» exp _c_/ |p\2dt
EQE* 8 Jo

02
+§<ngREPvP>>Trs l9U1][a((v.p) . 9 (y.p)) dydp. (7.8.21)

Using (7.8.13), (7.8.19)-(7.8.21), and also Fubini’s theorem, we get

1
—£EN =
Try [g eXp( ’SC )] det (1 _ 9)2 det 1/2 (1 — %J;Q)

2

E9Qg.c2/a {exp (% <REJg_1p,p>> Trg [gUl]} . (7.8.22)
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By Theorem 7.7.2 and (7.8.22), we obtain

RF)
Tr, [gexp (—£F)] = rlos
rs [gexp (—£5)] det (1 —g)*det /2 (1 — <7, 2)

exp é REJY 4 zde Yo D,p
8 ! Jg - %Jg + %RE 7 .
8.

(7.8.23)

0
EQg.02/4

Now the obvious analogue of (7.8.11), (7.8.12) just says that

EQg,cz/fL [exp (é <<REJ_1 + zdc i > p p>>]
C2 C2 ?
8 g J3—SJg+ TRE

27—
B det1/2 <1_IJ9 2)
det1/2 (1 — S, 2 + S REJ,®)

d 1
(1 - %@Tr . — QD . (7.8.24)
(=75 + 5 (1= REJ;))
By (7.7.4), (7.8.23), (7.8.24), we obtain
zdc 1
Trs [gexp (—£F)] =1 - “=c*Tr 2] , (7.8.25)
i (=77 +5 (1=R"J;))
which is just (7.8.1). The proof of our theorem is completed. O
7.9 SOME EXTRA COMPUTATIONS
Put
~MF 2 ~MF
ME =€ gpe_ o — 28 e n. (7.9.1)

The von Neumann supertraces

2 /\ME,Z E
Trs | g |p|” exp =& e || Trs [g exp (—smc )]
are defined as in Definitions 7.?.1 and 7.5.2.

~

~E
In the sequel, we write ®,  instead of D 3._,» when the value ¢ has
been fixed, so that dc = 0.
Recall that h (z) is given by (4.3.1), b’ by (4.3.12). In particular A’ (z) is
E

E’2

~M ~M
an even function of x, so that A’ [ D is in fact a function of ®, . In

C

~MPE 2
particular, we can define the generalized supertrace Trg {g |p\2 h (QC )]

as before.

If o is a section of A" (T*S)®C [dc], we denote a?=0 the section of
A" (T*S) which is obtained by making dc = 0. If 8 € A" (T*S) ®C [z, dc],
B%4¢ denotes the section of A" (T*S) which is a factor of zdec in the obvious
expansion of .
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Theorem 7.9.1. The following identities hold:
~MFE 2
Trg {g ‘p|2 €Xp <_g¢’chH>} =e (El, VEI)

1 1
5T ; , 7.9.2
2 —Jg—i—%(l—REng)] (7.92)
Try [gexp (—smf)] =e (El,VEl)
—6J2+ S (3RFJ; 1 1
(1 = Lo st > ( g )ZD , (7.9.3)
s (=75 +5 (1-REJ;))

~ E zdc
- %Trs {g p|* 1’ <2M )} — Tr, [gexp (~ME)]*"
Moreover,
Tr, [gexp (—£7)] ™

zde 0 3 ~MFE 2
= Tr, [gexp (—Dﬁf)] ey aTrS {g;c p|? exp <—§¢7HC_WH>]

1

2
— (B, vE' ) Sy
( ) (~J2+ < (1- REJ; )’

8

] . (7.9.4)

Proof. Let n be an even Grassmann variable which is such that n? = 0. We
claim that we have the identity

~MF 2 ~MPF 2
Trs {g exp <_g¢)chH +7 |p2>] = Tr {g exp (—Q(b)chH)]

~MFE 2
+ nTrg {g Ip|? exp <—§¢7HC_WH>] . (7.9.5)

Note that since the objects appearing in (7.9.5) are only generalized super-
traces, the identity in (7.9.5) is not entirely trivial. However, it can be easily
proved by the methods used in the proof of [B90, Theorem 4.6]. Namely,
we can express the left-hand side of (7.9.5) by using a kernel version of
Duhamel’s formula, which only contains terms of degree 0 and 1 in the vari-
able . Then we use the fact that the finite dimensional version of our gen-
eralized supertrace vanishes on supercommutators, together with equation
(7.3.2) in Proposition 7.3.1. Details are left to the reader.

By proceeding as in the proof of Theorem 7.8.1 on the left-hand side of
(7.9.5), we easily get the first identity in (7.9.2). To establish the second
identity, we use equation (7.2.6), and also we proceed as in the proof of
Theorem 7.8.1. By the first identity in (7.9.2), the contribution of —3dc Ip|?
to Trs [gexp (—ME)] is given by

1

~J2+ ¢ (1-REJ;Y |

—e (El, VEI) %zdcTr* (7.9.6)
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~M
To obtain the contribution of the first terms in formula (7.2.6) for & 3/,
we proceed again as in the proof Theorem 7.8.1. Instead of (7.7.32), we have
now

ﬁdCPt
9 = — 4%@ (=bez+de)py | . (7.9.7)
475 (Tez + de) pe
Instead of (7.7.36), we get
% (2) + 32)

<(c — N7, 9> = zdc (7.9.8)

8P, . (M)

Also (7.7.45) is correspondingly modified. By proceeding as in the proof of

Theorems 7.7.2 and 7.8.1, and using (7.9.8), we find that the contribution
E

~M
of the first two terms in equation (7.2.6) for &, 5., u is given by

E -1
e (El,VEl) © deTr* 23R, 2]
8 (-J2+ < (1- REJ;))
By summing (7.9.6) and (7.9.9), we get the second identity in (7.9.2). Using
Theorem 7.8.1 and the second identity in (7.9.2), we get (7.9.4).
We will establish the last identity in (7.9.2). In the sequel, we make dec = 0.
We use (4.3.12) and we get

~MFE ME
Tr, {g \p|2 h (2?/1 )} = (1 + 2%) Tr {g \p|2 exp (—agiw 2)} la=1-

(7.9.10)

Now the right-hand side of (7.9.10) can be evaluated by the same method as

the first identity in (7.9.2). Instead we will use another method. Let R, be the

map s (y,p) — s(v/ay,/ap). Using the first identity in (7.2.6), we observe
E

~MF 2 ~MFE 2
that when conjugating a€, by R., we get the operator ¥,& . ~ 1,1, so
that ¢ has been replaced by ac, and R by aRF. Also, especially when 1 is an
eigenvalue of g, one has to be careful, because the effect of the conjugation

is not trivial on the generalized supertrace. Ultimately we get
~MF 2
Tr, {g p|? exp (—agc )] = ge (El,VEl)

Tr*

2

(7.9.9)

1
— — . (7.9.11)
—J2 + £ (1 - aREJ, 1)1
By the second equality in (7.9.2), by (7.9.10) and (7.9.11), we obtain the last
equality in (7.9.2). The proof of our theorem is completed. O

Remark 7.9.2. Although we have given a direct proof of the identities in
Theorem 7.9.1, some of them should be viewed as almost tautological. Indeed
one can give a direct proof of the first identity in (7.9.4) similar to the proof
of (4.3.17) in Theorem 4.3.6. Similarly the third identity in (7.9.2) simply
comes from two related evaluations of the components of an odd form, very
similar to the identity (4.5.2) for up ¢.
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7.10 THE MELLIN TRANSFORM OF CERTAIN
FOURIER SERIES

If z € C, /z denotes an arbitrary (but fixed) square root of z. Now we follow
[B94, Definition 4.1]. For u,n,z € C, put

—277+\/x2+4u> - h(—x+277+\/x2+4u
sin
4

o(u,n,z) = 2sinh (x 1

(7.10.1)
Observe that —o (u,n,x) is the analogue of 7 (¢,n,x) in (7.1.3), where the
polynomial of degree P, (A) in (7.1.1) is replaced by the polynomial of
degree 2,
Quz(N) =\ + 2\ —u. (7.10.2)
Clearly,
o (*,i6,0) = 2 (cosh () — cos (0)). (7.10.3)
Using (7.10.3) and an easy computation given in [BZ94, eq. (5.45)], we get
for ¢ > 0,
2o (c%,0,0) B sinh (c)
o (c2,i0,0)  cosh (c) — cos (

=1 +22€ "Ccos(nf).  (7.10.4)

n>1

By (7.10.4), we find that as ¢ — 0,

e} 2

660(0,19,0) 2 .

Qe T 7 = f 2wl .10.
SERT) c—!—O(c) if 0 € 27Z, (7.10.5)

=0 (c) if 0 ¢ 277,
and that as ¢ — +o00,
%a (¢?,i6,0)
o (¢2,i6,0)
y [B94, Proposition 4.2],

=140 (7). (7.10.6)

o(u,0,0) = (6% + iz + u) H

keZx

(0 + 2km)* +i (6 + 2km) z + u
4k272 '

(7.10.7)
From (7.10.7), if ¢ € R*, we get as in [BGO1, Proposition 4.14],

9 2 ;

EO’ (C ,29,0) 2c

Lt = E —_—. 7.10.8
0 (c2,i0,0) &5 (0 + 2km)” + 2 ( )

Definition 7.10.1. For § € R,s € C,Re(s) > 1, put
400 +oo .
cos (nf sin (nd
C.5) =3 S0 g =y S (7.10.9)

ns ns
n=1 n=1
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Then ¢ (60,5),n(0,s) are the real and imaginary parts of the Lerch series
[LeS8| L (0, s) = 527> <2 1f0 ¢ 27Z, s — (6, 5) extends to a holomorphic

n=1 ns
function on C, if 6 € 27Z, s — ((y,s) extends to a meromorphic function
on C with a simple pole at s = 1. Also s — 71 (6, s) extends to a holomorphic

function on C.

By (7.10.4), we find that if s € C,Re(s) > 1,

L[ a1 [ 50 (c%i6,0) -
F(S)/o ‘ §<W—1 de=¢(0,s). (7.10.10)

By the above, it is clear that the left-hand side of (7.10.10) extends to
a meromorphic function of s € C, with a simple pole at s = 1, which is
holomorphic if 8 ¢ 27Z. In particular (7.10.10) is an equality of meromorphic
or holomorphic functions on C.
By (7.10.5), (7.10.6), we find that as ¢ — 0,
1 91%20(c2i0,0) 1 .
—Zc&g% =5+0 () if 6 € 2nZ, (7.10.11)

=0 () if 6 ¢ 2nZ,

and that as ¢ — +o0,

1 91Z0(c%i0,0) 1 e
- &zm‘?fro(e ). (7.10.12)

_1.0150(i0,0) ¢ . (7.10.13)

2 2
1Bcc o (¢2,i6,0) pyer ((9+2k7r)2+02)

Using (7.10.10) and integration by parts, we find that for s € C,Re (s) > 1,

Lot 1 01 (g5o(i6,0) 1
_@/0 “1%ce (W—l>dc—5<s+1><(0,s).
(7.10.14)

If f(z) is an analytic function of z € C, we denote by f*9 (z) the
function f (z) — f (0).
Definition 7.10.2. For c € R*,z € C,6 € R*, put
2c c?
—, L% (¢,z) = —.
02 +c2(1- %) (02 +c (1))
An elementary computation using finite increments shows that given M >

0, there is a constant C' > 0 such that if ¢, 6 are taken as before and = €
C, |z| < inf (M, |6] /2), then

K% (¢c,z) = (7.10.15)

3

KGO (ea)| <00 [P0 ()| < C
662+ c2)

C4

6] (6% + ¢2)*
(7.10.16)
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/ /
In the sequel, we denote by Z Loz K2Fm+0 (¢, 1), Z rez L2k7+0 (¢, x)

the sum of the corresponding series, where we take as a convention that if
2km+ 6 vanishes, the corresponding term is omitted. Similar conventions will
be used with other functions as well.

Using (7.10.16) and an obvious integral bound, we find that given 6 €
R, there exists C' > 0 such that if x € C,|z| < 1/2 if € 27Z, |x| <
T infrez |0 + 2kn| if 0 ¢ 2nZ, for ¢ > 1,

Z’ L2ETH0C0) (¢ )

keZ

!

< ¢ (7.10.17)

C/
S I
CQ

Z/ szﬂ+9(>0) (c, x)
kEZ

By (7.10.6), (7.10.8), (7.10.12), (7.10.13), as ¢ — +oo,

! 1 1
2km+0 — 1 - L2k‘n’+9 .
E K (c,0) +O<C>, E (¢,0) —+O =

keZ kEZ

By (7.10.17), (7.10.18), we conclude that as ¢ — +o0,

!y r2km+0 _ 1 " okmt0 _ 1 1
ZK (c,x)-l—!—@(z , ZL (c,m)—@—l—o =)
kEZ k€EZ

(7.10.19)
By splitting the integral
1 /+oo " oknto 1
— ¢’ L0 (¢,x) — — | de
I'(s) Jo (% 4c

into two pieces fol and f1+°°, the first piece is holomorphic in s € C,Re (s) >
1, and extends to a holomorphic function near s = 0, and the second piece is
holomorphic on s € C,Re (s) < 1, so that the integral itself is holomorphic
near s = 0.

Recall that if f (x) is a holomorphic function, we defined the holomorphic
function Qf (z) in (1.9.1).

Definition 7.10.3. If x € C,0 € R,|z| < 27 when 6§ € 27Z, |z| <
infrez |6 + 2km| when 0 ¢ 27Z, put

o0 ,
1(0,2) = % lﬁ/o ¢ (Z L2740 (¢ x) — i) dc] ls—o, (7.10.20)

kEZ
J(0,2) =QI(0,x).
Now we recall a few definitions in [BGO1, Definitions 4.28 and 4.33].

Definition 7.10.4. For § € R*,z € C,|z| < |0], put

Py =L (- o Fa)="Ll (12 - (7.10.21)
REAT] 0 ’ AT o) - VT
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By [BGO1, Proposition 4.34],
QI (x) = J (2). (7.10.22)

Similarly, in [BGO1, Definitions 4.21 and 4.25], for z € C,0 € R, |z| < 27 if
0 € 2rZ, |z| < infrez |2km + 0| if 0 ¢ 27Z, functions I (0,z),J (0, x) were
defined such that

J(0,2) =QI(6,x). (7.10.23)
In the sequel, we use the notation
710,2)=1(0,2)—1(0,0), °J(0,2)=J(0,2)—J(0,0). (7.10.24)
y (7.10.23), (7.10.24), we get
07(0,2) =Q°I(0,x). (7.10.25)
In the sequel, sums like Z/kez (12’”” (z) — %k (0)) do appear. It is un-

derstood that if 2k7 + @ or 2k vanishes, the corresponding term I2¥7+9(z)
or 1?7 (0) is not counted in the sum. Similar conventions will be used with

other functions as well.
By [BGO1, Theorems 4.30 and 4.35],

10,0)= 2| S BERE ) (2

=
peven
@2p+1)! 877 T\P
Ti), ? +P) (Z) ]’
pEN p'
podd
T(6,2)= 3 (I (@) — 127 (0)) (7.10.26)
keZ
1 8( xp
J(0,x) == + Z _' 7
2 peN 88 pEN
peven podd
0T (0,0) = 3 (JATH (2) — T (0)) .
keZ
By [BGO1, Theorem 4.37], if 6 ¢ 27Z,
10¢ .
= _22(9— .10.2
J (6, 2) 5 De (6 —ixz,0), (7.10.27)
and by [BGO1, Theorem 4.38], if ¢’ €] —2x,27[\ {0}, |2| < infyez |0 + 2kn|,
J(@, z)=J(0,z+i0)+J (z). (7.10.28)

Theorem 7.10.5. The following identity holds:

1(0,2) = I(6,) % 3(0,2) = J(6,7) - (7.10.29)

Z.
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Proof. By (7.10.20), (7.10.23), the second identity in (7.10.29) follows from
the first one.

We use (7.10.13) to obtain a more explicit expression for the left-hand
side of (7.10.14). We claim that the sum ), _, in (7.10.13) can be replaced

!
by the truncated sum Z vez’ Indeed these two sums differ at most by the

function 1/¢2, whose contribution to a Mellin transform vanishes identically.
By comparing (7.10.13) and (7.10.15) with (7.10.20), we get

10
1(0,0) = 55, (s +1)¢(0,5)) [s=0- (7.10.30)
By Lerch’s formula [W76, chapter 7, egs. (15)-(23)] as used in [BZ94, egs.
(5.51)-(5.54)], we get

1

¢(0,0) = —3. (7.10.31)

By (7.10.26), (7.10.30), (7.10.31), we get equation (7.10.29) for x = 0.
By (7.10.19), (7.10.20), we get

+oo
I(>0) (9,1') _ / Z’ L2k7r+9(>0) (C, l‘) de. (71032)
0 kez
Clearly, for 0 # 0,

oo 1 i\ T2 oo c?
LY (¢,x)dc = — (1 - —) / —de. 7.10.33
[ rend-g(-3) [ e (7:1039)

By differentiating the equality valid for y > 0,

dC— 5 A.l() 4
0 yc \/g

we get
+o00 2
/ & _de=1. (7.10.35)
o (1+¢?) 4
By (7.10.21), and by (7.10.32), (7.10.33), (7.10.35), we get
160 (,2) = 3 PG (), (7.10.36)
keZ
Comparing with the second identity in (7.10.26), we see that
169 (0,2) = 159 (0, z) . (7.10.37)
Since (7.10.29) has already been established for z = 0, by (7.10.37), we get
(7.10.29) in full generality. O

Remark 7.10.6. The identity in (7.10.29) is stunning. Indeed the function
I (6, z) was obtained in [BGO1] by a construction which is very different from
the present one, based on the family of Witten Laplacians along the fibers
E. The fact that the present construction gives essentially the same answer
demonstrates the extraordinary rigidity of the quantities we are considering.
It should be pointed out that the functions I (x),J? (z) also appeared in
another context in [BG04, Definition 4.5], when evaluating the defect in the
behavior of certain currents with respect to Morse-Bott functions.
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7.11 THE HYPOELLIPTIC TORSION FORMS
FOR VECTOR BUNDLES

By (7.10.19), we find easily that as ¢ — +o0,

2c 1
Tr* —dmE+0O(-), 7.11.1
T (1—REJ91)1 lm (c) (7.11.1)
2 .
T c |- dim E N (%) .
(—J2+¢(1-REJSY)) de c

Also observe that by equation (7.8.1) in Theorem 7.8.1, the second form
in (7.11.1) is intimately related to Trs [g exp (—Sf)] In chapter 8, it will
precisely appear in this way.

Recall that the map ¢ : A" (T*S) — A" (T*S) was defined in section 1.7.
Also the map @ € End (A" (T*S5)) was defined in (1.9.5).

Definition 7.11.1. Set
2

I(EvE)_g L/+Oos Tr* C
g 95| (s) J, “\P (—J2 +¢2 (I—REJg_l))2
dim F
_ IZZ )dc |s—0, (7.11.2)

Jy (E,VP) =QI, (E,VF).

As we saw before, g has eigenvalues 1,e*%  and —1. Let B € End (E) ®r
C commuting with g, which is 0 on E', which has semidiagonal blocks
((9(1 _69]) on Eeiwj7 and which is im on E~'. Note that B is real if E~!
is reduced to 0. Moreover,

g=eb. (7.11.3)

Finally, since R¥ commutes with g, it also commutes with B.

Proposition 7.11.2. The following identity of real closed differential forms
holds:

L (E,VP)=Tr [I (—iB,—]j—:ﬂ , Jg(E,VF)=Tr [J (—z’B,—g—:ﬂ :
(7.11.4)

Proof. This is a trivial consequence of (7.10.15), (7.10.20), (7.10.23), and
(7.11.2). O

Remark 7.11.3. By using equation (7.8.1) and comparing with (7.11.2), it is
legitimate to call I, (E, VE) Jy (E, VE) the hypoelliptic torsion forms for
the vector bundle E.
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In [BGOL, eqs. (4.65) and (4.69)], the following closed forms were intro-
duced:

I, (E,VP) =Tr {I (—iB, —];—:ﬂ . Jy (B,VE)=Tr [J (—iB, —5—:)} .
(7.11.5)

Note that with respect to [BGO1], we replaced —% by —12{—:. The forms
Iy (E,VE),J, (E,V¥) were obtained in [BGO01] as elliptic torsion forms of
the vector bundle E.

By Theorem 7.10.5 and Proposition 7.11.2, we get

I, (E,VF) =1, (E,V¥) - idim E, J4(E,VF)=J,(E, V") - idim E.
(7.11.6)

This is still a version of the extraordinary coincidences which were alluded to
in Remark 7.10.6. The content of (7.11.6) is that the elliptic and hypoelliptic
torsion forms of E are essentially equivalent.

When replacing I,.J by °I,°J, the forms OIg (E,VE) ,OJg (E,VE) were
also considered in [BGO1, section 7.1], where they play a critical role. By
(7.10.25),

0J, (E,VP) = Q°I, (E,VF). (7.11.7)
By Lerch’s formula [W76, chapter 7, egs. (15)-(23)], we know that
¢ 1
— = ——log (2m). 1.
% (0,0) = —3 log (2m) (T118)
So by Theorem 7.10.5 and by (7.11.8), we get
B\ _0 N :
I, (B, V") ="I, (E,V") — 1 (log (27) + 1) dim E, (7.11.9)
1
o (B, VE) =], (B, V") = 7 (log (27) + 1) dim E.

Incidentally observe that by (7.8.1), (7.9.4), (7.11.1), as ¢ — +o0,

Tr, [goxp (—MF)]*" = —diiEe (El,VEl) +0 (;2) . (7.11.10)




Chapter Eight

Hypoelliptic and elliptic torsions: a comparison

formula

In this chapter, we establish the main result of the book. Namely, we give an
explicit formula relating the hypoelliptic torsion forms to the corresponding
elliptic torsion forms. The proofs of several intermediate results are deferred
to the following chapters.

This chapter is organized as follows. In section 8.1, we construct natural
secondary Chern classes attached to two couples of generalized metrics on
9 (X, F).

In section 8.2, we state our main result. The next sections are devoted to
the proof of this result.

In section 8.3, we introduce a rectangular contour I' in Rf on which the
form a of section 4.2 is integrated. Our main formula will be obtained by
pushing I' to the boundary of R2.

In section 8.4, we state four intermediate results, which will be used in
the proof of our main formula. The proofs of these results are deferred to
chapters 10, 11, and 12.

In section 8.5, the asymptotics of the integral of a on the four sides of the
rectangle I' is studied under the deformation of I'.

In section 8.6, the divergences of the integrals of a on the four sides of the
rectangle are matched.

In section 8.7, our final identity is shown to be our main result.

In this chapter, S is assumed to be compact.

8.1 ON SOME SECONDARY CHERN CLASSES

We use the notation of chapters 5 and 6.

By (3.14), % (X,F) is H (X, F) for ¢ > 0, and H ™ (X, F®o0(TX))
for ¢ < 0. Moreover, as we saw after (1.2.5), each of these last Z-graded
vector spaces inherits a standard Hermitian metric via the Hodge theory of
X. We denote by hoﬁ'(X’F) the corresponding Hermitian metric on ' (X, F)
for ¢ > 0, and the product by (—1)" of the associated Hermitian metric for
c<0.

Recall that $ (X, F) is a Z-graded flat vector bundle on S equipped with
the flat Gauss-Manin connection V9 (X:F) Also G acts on the fibers of
" (X, F) and preserves the connection V9 (X:F),
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Now we use the notation of section 1.11. If ggJ (X, F), g1 (P are two split
Hermitian metrics on " (X, F), set
= : (X, F (X, F
hy (vﬁ (X,F)’ggﬁ ( ),g? ( ))
HUXF)  HYX,F
—Z Ty (90, g81OOD gD OGN (8.1.1)

ch, (v”’ (), gg (0 g (1)

2n
i y° i YX,F YX,F
=3 (1) (9100, g O g0

As was observed in section 1.11, in the above, we may as well replace some

of the metrics ggJ I(X’F), gfl(X’F) by their negatives, the point being that the

sign of the corresponding objects should be the same for any <.

8.2 THE MAIN RESULT

We take by > 0 small enough so that the results in section 3.5, of chapter 5
and of section 6.1 hold for b €]0,b,]. Also we still take ¢ = +1/b%. We will
distinguish these two cases as the case + and the case —.

Put

Thogo (THM, g™V g) = T5, o (TF M, g7, V7, ¢¥) if ¢ >0, (8.2.1)
(—=1)" T (THM’ g7, VF@O(TX)7gF®o(TX)) fe<o
Note that by (1.10.1), for ¢ < 0, we can rewrite (1.10.1) in the form
Th.g,0 (THM, gTX,VF,gF) =—Thg4 (THM, gTX,VF*,g?*) ) (8.2.2)

Theorem 8.2.1. Assume that by €]0,by]. For any i,0 < i < 2n, the Her-

(X,F)

’i
mitian form f)? or its negative is a Hermitian metric, and moreover

hb (XE) s the same sign as f)o (XE)
The following identities hold:
_ ,Th,g,bo (THM, gT)(7 vF’ gF) + ,];L,g,o (THM, gTX’ VF, gF)
~hy (Vﬁ'(X,F)’ 5'(XF) ,f)ﬁ (X,F) ) i/ e (TX,) I, (TX|y,) Te [g] = 0

in Q (S)/d (S), (8.2.3)
— Toh,g,bo (THM, gTX7vF’gF) + /]‘Ch 4.0 (THM,gTX,VF,gF)

— ch, (vﬁ'<x,F> po X P (X F))

j:/ e(TXy)Jy (TX|a,) Tt" [g) = 0 in Q (S) /dQ (S).

g9
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Proof. First we observe that by (1.9.7), (6.1.1), and (7.11.7), the second
equation in (8.2.3) follows from the first one. The remaining sections are
devoted to the proof of the first equation in (8.2.3). O

Remark 8.2.2. Observe that when applying the d operator to (8.2.1), we
get an identity which itself follows from (1.8.2), (1.11.1), and (6.1.2). Also
we observe that by (1.10.1), by Proposition 6.2.1, and by (8.2.2), (8.2.3) is
compatible to Poincaré duality. Equivalently, it would be enough to prove
our theorem in the case ¢ > 0, the case ¢ < 0 being simply a consequence.

8.3 A CONTOUR INTEGRAL

Here we use the notation of chapter 4. In particular the even differential
form a on S x Rf was defined in Definition 4.3.1, and a formula for a was
given in (4.3.6). Let 8,¢, A be such that 0 < 8 < b,0 < € < 1 < A. Let
I' be the oriented rectangular contour in Ri* indicated in Figure 8.1. The
contour I' is made of four oriented pieces I'1,...,I'4. It bounds a domain A.

Proposition 8.3.1. The following identity of even forms holds on S':

/Fa: —d/Aa. (8.3.1)

Proof. Since a is an odd closed form on S x R%*, equation (8.3.1) follows
from Stokes’s formula. O

For 1 <k <4, set

I) = / a. (8.3.2)
Tk
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Then by (8.3.1), we get

4
d R= —d/ a. (8.3.3)
k=1 A

To obtain Theorem 8.2.1, we will make A — +o00, 5 — 0,€ — 0 in this order
in (8.3.3). We will study in succession each of the terms in the left-hand side
of (8.3.3).

8.4 FOUR INTERMEDIATE RESULTS

‘We use the notation of Definitions 5.1.1 and 5.1.2. Put

n 1
w0 = F 7 Xy (£, Wo,00 = ﬂ:§ (X (F) —nxg (F)). (8.4.1)
By (1.8.7), (1.8.8),
wo,t = wo,0 + O (\/%) ast — 0, (8.4.2)

= Wp,00 + O (1/\/1?) ast — +00.
We use the notation of chapter 7, with S = My, E = TX|xy,.
Definition 8.4.1. For ¢ € R*, put

zde
Me = —<p/ Tre [g exp (—szlMg)} T [g] . (8.4.3)
X.q
By (1.6.3) and (7.11.10), we know that as ¢ — +oo0,
n 1
c= — F —= . 4.4
me= o (1) +0 () (8.4.0)
Theorem 8.4.2. If c = £1/b%, for any v €]0, 1], when b — 0,
by ) = (v (07 T 0 ) (8.4.5)
Theorem 8.4.3. Forb >0, ase — 0,
mq /p2
Ve — 2 bé (8.4.6)
There exist C > 0, « €]0, 1] such that for € €]0,1],b €]0, 1],
|V eb,e — vo.e| < CH™. (8.4.7)
For any by > 1, there exist C > 0 such that for € €]0,1],b € [\/€, bo],
€
[vh.e| < O (8.4.8)

Remark 8.4.4. Observe that (8.4.4), (8.4.6) are compatible with (8.4.7),
(8.4.8), and that (4.4.1) and (8.4.8) are also compatible. Theorem 8.4.2 will
be proved in chapter 10, Theorem 8.4.3 in chapters 11, 12, and 13. More
precisely equation (8.4.6) will be proved in chapter 11, equation (8.4.8) in
chapter 12, and equation (8.4.7) in chapter 13.
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Remark 8.4.5. By Theorem 8.4.2, we know that for 0 < b < b, and b small
enough, for ¢ > 0, for any i,0 < i < 2n, f)?l(X’F) is a Hermitian met-
ric. Moreover, as we saw in section 5.1, for b €]0,b,], the Hermitian forms

f)?(X’F) are nondegenerate. It follows that for 0 < b < b, the signature of

these Hermitian forms remains constant. Therefore for b €]0, by ], the hbﬁl(X’F)
are Hermitian metrics. The same argument can be used for ¢ < 0, except
that if n is odd, the considered Hermitian forms are the negative of stan-
dard Hermitian metrics. Therefore the first part of Theorem 8.2.1 has been

proved.

8.5 THE ASYMPTOTICS OF THE I?

We start from identity (8.3.3), which asserts that

> IR =0inQ(S)/d2 (S). (8.5.1)
k=1

Note that if «,, is a sequence of smooth exact forms on S which converges
uniformly to a smooth form «, then « is still exact.
1) The term I9

Clearly,

dt

A
I?:/ Wo,t (8.5.2)

e A — +00
By Theorem 5.2.1, as A — +o0,

0 L ! I dt
IT —wpy,00log (A) — I} = Who,t + ! (Why,t — Why,00) rx (8.5.3)

e3—0
The term I} remains constant and equal to I7.
oc—0

By Theorem 4.4.1, as € — 0,

1 “+o0

dt dt

-1 :/ U)bo,t? +/ (Who ¢t — Wh,00) e (8.5.4)
0 1

e Evaluation of I}

Proposition 8.5.1. The following identity holds:

I} = =T g, (T7M, g™, V", g") = (I" (1) + 2 (log (2) — 1)) wpy 00
(8.5.5)

Proof. This follows from (1.8.10), (6.1.1), and (8.5.4). O

2) The term I3
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We have the identity

b db
= —/ Vb A (8.5.6)
B

e A — 400
By Theorem 5.2.1, as A — +o0,

bo db
-1 = —/ Vb,oo — - (8.5.7)
P b

Also using [BL095, Definition 1.12] or [BGO01, Definition 1.10] or by (1.11.2),
we get

j - (vﬁ (XF) [y (58 o XF)) in Q(S)/d ().  (8.5.8)

o3 —0
Using obvious properties of the classes in (8.5.8) following from (1.11.2),
we get

— (vﬁ'<X>F> f;”’ (XF) g () ) in Q (S) /d (S). (8.5.9)
By (1.11.2) and by Theorem 8.4.2, as § — 0, for any v €]0, 1],
> : (X, F
hyg (vﬁ (X.F) f) 7hﬂ ))

1
=3 (n log (8) + 5 log (7)) xo (F) + O (8"). (8.5.10)
So by (8.5.9), (8.5.10), we find that as § — 0,

1
13 F 5, (F)log (8) — I3
n
=y (VR 50 60 ) 4 Tlog (m) g (F). (85.11)

ec— 0

As € — 0, I3 remains constant and equal to I3.
3) The term I

We have the identity

A
dt
I = —/ Wi (8.5.12)
e A — 400
By Theorem 5.2.1, as A — +o0,

dt

1
Ig + wg 00 log (A) — I; = —/ wgt— —

Feo dt
P / (’w,g)t - ’w,g)oo) —_—. (8.5.13)
1 t

e —0
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By Theorem 5.2.1, as § — 0,

1 +o00
dt dt
I — 1= —/ wo,t~ —/1 (wo,t — Wo,00) 7 (8.5.14)

ec— 0

By (8.4.1), (8.4.2), we find that as € — 0,

1 “+o00
n dt dt
I3+ 7 Xo (F)log (€) — I3 = —/ (wo,+ — wo,0) " —/ (wo,t — wo,00) e
0 1
(8.5.15)

e Evaluation of I3

Proposition 8.5.2. The following identity holds:
I = Trgo (T M, g™, V¥ g7) 4 (I" (1) + 2 (log (2) — 1)) (w0,00 — wi.0)

(8.5.16)
Proof. Our proposition follows from (1.8.11), (5.1.12), (5.1.13) and from
(8.5.15). O
4) The term I
Clearly,
o db
9= / Vpe—- (8.5.17)
5 b
e A — 400
The term I{ remains constant and equal to I}.
e3—0
By Theorem 5.2.1, as § — 0,
bo db
It undog(8) = 12 = [ (o= ) T+ welog).  (55.13)
0
oc— 0
Take € > 0 small enough so that by//€ > 1. Set
1 bo/+/e
db 0 db
J) = —V0,c) & Jy = / —. 8.5.19
1 /0 (vyepe — V0.c) i 2= | Vyabe ( )
Clearly,
If = J) + J§ + vo,c log (Ve) . (8.5.20)
By (8.4.4), as b — 0,
2m;§b2 - gxg (F)+0 (). (8.5.21)

By (8.4.6), by equation (8.4.7) in Theorem 8.4.3, and by (8.5.21), as € — 0,

1 “+o00
0 . 71 _ myp2 N db _n
J—=Ji = j:/0 (2 72 5 X (F)) = :I:/1 (mc 1o X (F)) de.

(8.5.22)
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Moreover, by (8.4.6) and (8.4.8) in Theorem 8.4.3, as € — 0,

“+o0 db 1
JO gl = :I:/ P L . j:/ mede. (8.5.23)
1 0

2 b
So by (5.1.13), (8.5.20)-(8.5.23), we find that as € — 0,
2 gxg (F)log (€) — I3 = J: + J}. (8.5.24)
e Evaluation of I3

Proposition 8.5.3. The following identity holds:

9

Il =+ ( / e (TX,y, V¥ 1, (TX|Mg, VTX|Mg) " [g]
X

n

+(3 -1 (1)~ log (2)) T (F)). (8.5.25)

Proof. Set

le = —gp/ Trs [gexp (— fX‘AIg)}ZdC T [g]. (8.5.26)

g9

By the first identity in (7.9.2), (7.9.4), (7.11.1) and by (8.5.22)-(8.5.24), we
get

1 “+oco
1
+I2 = / l.dc +/ (lc - —Xg (F)) de + §nxg (F). (8.5.27)
0 1 4c 4

Moreover, by (7.9.4), (7.11.1), (7.11.2), we get

/x e (TXg) Ty (TX]ar,) Tr" [g]

g

—/lm +/+°°(z — 5% (F)) de+ (I (1) +log (2)) Ty (F)
= . cac : c 4cXg c 0g 4Xg .
(8.5.28)
By (8.5.27), (8.5.28), we get (8.5.25). O
8.6 MATCHING THE DIVERGENCES
Proposition 8.6.1. The following identity holds:
4
> I =0inQ (S)/d2 (S). (8.6.1)
k=1

Proof. We start from equation (8.5.1). As A — +o0, by Proposition 5.1.3,
and by (8.5.3), (8.5.13), we have the diverging terms

(W8,00 — Why,00) log (A) = 0. (8.6.2)
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From (8.5.1), (8.6.2), we get

4
> L =0inQ(S)/d2 (S). (8.6.3)
k=1
By (5.1.13), (8.5.11), (8.5.18), as B — 0, we have the diverging terms
n n
£ (50 (F) = 5x, () log (8) = 0. (8.6.4)
So we get
4
> R =0inQ(5)/d2 (S). (8.6.5)
k=1
By (8.5.15), (8.5.24), as ¢ — 0, we have the diverging terms
n n
(izxg (F) F X (F)) log (€) = 0. (8.6.6)
By (8.6.5), (8.6.6), we get (8.6.1). O

8.7 A PROOF OF THEOREM 8.2.1

Now we establish Theorem 8.2.1. Using Propositions 8.5.1, (8.5.11), Propo-
sitions 8.5.2 and 8.5.3, we get

- %,g,bo (THMv gTX7 vFng) + 771,9,0 (THMv gTXv vFng)
—hy (VNP ) CHF) p (48 / e (TX,,VTX0)

0
g

L (X1, 7750 ) 1
— (I"(1) + 2 (log (2) = 1)) (wsg,00 — Wo,00 + Wo0,0)
+ (3 +log(m) — TV (1) —log (2)) ng (F)=0in Q (S)/dQ (S). (8.7.1)
As we saw before Theorem 5.2.1, wg oo = Why,00. Using (8.4.1), we get

n

— (I (1) +2(log (2) — 1)) wo,0 = (3 +log (m) — T (1) — log (2)) 1 Xo (F)
= + (log (271) + 1) gxg (F). (8.7.2)
By (1.6.3), (8.7.1), (8.7.2), we get
_ 777/7!],1)0 (THM, gTX7 VF,QF) + 771,9,0 (THM, gTX’ VF,QF)

~y (VP P ) [ (2, 910)
g

(Ig (TX\MQ, VTX‘M.q) + % (log (27) + 1)) T [g) = 0in Q (S) /2 (S).
(8.7.3)

By (7.11.9) and (8.7.3), we get the first equation in (8.2.3). The proof of
Theorem 8.2.1 is completed. O



Chapter Nine

A comparison formula for the Ray-Singer metrics

We make the same assumptions as in chapter 6, and we use the corresponding
notation. Also we assume here that S is reduced to a point.

Recall that b € R% and that ¢ = +1/b%. By Theorem 6.7.1, the generalized
metric || ||§7b does not depend on b. Recall that a priori, || ||ib is only a

generalized equivariant metric, in the sense that the sign of the || Hiw W e G
is not necessarily positive.

When n is even, or when n is odd and ¢ > 0, we denote by || H?\,o the
corresponding more classical Ray-Singer metric on A which was constructed
in section 1.12. When n is odd and ¢ < 0, we use the same notation for
the generalized equivariant metric on ), in which ¢ () is replaced by
(—1)" g (XF) Observe that in this case, the Euler characteristic y (F)
vanishes identically, so that if G = 1, this is again the Ray-Singer metric on
A

Theorem 9.0.1. For any b > 0, g € G, the following identity of positive
equivariant Hermitian metrics holds:

2
log <| ||,\,b> (9) = :I:Q/X e(TXy) OJg (TX\X_QD TF lg]. (9.0.1)

2
%0

In particular, if G is reduced to a point, we have the identity of Hermitian

metrics on the complex line A,

3 =130 (9.0.2)

Proof. By Theorem 6.7.1, we know that the generalized metric || ||i , does
not depend on b > 0. Therefore we only need to establish (9.0.1) for b > 0
small enough.

We claim that our theorem is a consequence of Theorem 8.2.1. Indeed if n

is even, for 1 < ¢ < 2n, the hg (XF) o1 their negative are Hermitian metrics.

By Theorem 8.2.1, we know that for b > 0 small enough, the h?i(X’F) have
the same type as h? (XF) Moreover, by (1.11.2), (1.11.4), we get

o . - 1 (1R
9 (X,F) (9 (X, F Ab
2,0
Using (1.8.4), (1.12.10), (6.6.11), (6.6.13), (8.2.3), and (9.0.3), we get (9.0.2).
When G is reduced to a point, if n is even, || |§’2 is a Hermitian metric.

When n is negative, since the Euler characteristic x (F') vanishes, || ||i o is
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still a Hermitian metric. Finally, (9.0.2) follows from (9.0.1). The proof of
our theorem is completed. O



Chapter Ten

The harmonic forms for b — 0 and the formal

Hodge theorem

The purpose of this chapter is twofold.

On the one hand, in section 10.1, we prove Theorem 8.4.2, i.e., we compute
the asymptotics of the generalized metrics f)? XT) a5 b — 0.

On the other hand, in section 10.2, we give a direct proof of a formal Hodge
theorem as b — 0. Namely, we prove that up to some trivial scaling, the space
of formal power series in the variable b > 0 which lies in r;H, (X, F') is in
one to one correspondence with $' (X, F'). More precisely, given a fixed class
in § (X, F), we compute the formal power series in the variable b of the
closed form in r;H; (X, F') which represents this cohomology class.

In section 10.3, we show that the above formal power series also vanishes

. —T*X

under a scaled version of dy 93/c-

Finally, in section 10.4, we show that this formal power series is the Taylor
expansion near b = 0 of the harmonic form in H; (X, F) which represents

the given cohomology class.

10.1 A PROOF OF THEOREM 8.4.2

Take b > 0. Recall that ¢ = £1/b? and that H = 3 |p|*.
In the + case, 0¥ is the standard elliptic Laplacian acting on Q (X, F);
in the — case, it is the elliptic Laplacian acting on Q" (X, F ® o (T X)). Set

H (X,F) = kerO¥. (10.1.1)

Then by (1.2.5), H (X, F) is canonically identified to H (X, F) in the +
case and to H' (X, F ® o(T X)) in the — case. Equivalently,

H (X,F)~ 9 (X,F) forc >0, (10.1.2)
~ 97" (X,F) forc <0.

For b > 0, recall that in (5.1.7), we defined H (X, F)) as

H, (X, F) = ker A3 .. (10.1.3)
By (5.1.9), for b €]0, bo],
H, (X,F)~$% (X,F). (10.1.4)
Recall that by (5.1.8), for b €]0, bg],

Q(IT"X, 7" F), o = H, (X, F). (10.1.5)
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In section 10.1, for b > 0, we defined P, as the projector on the vector
space QO (T* X, 7" F), , with respect to the splitting (5.1.2) of Q" (1" X, 7" F).
By (10.1.5), for b €]0, bo|, P is a projector on H (X, F'). The projector P,
can be defined by a contour integral similar to (5.3.5). Since Aiﬁc commutes
with 7" X, the projector P, also commutes with d” X. By (5.1.5), we get

dUXp, = pdT X =o. (10.1.6)

In the + case, we identify s € Q (X, F) to 5 = n*s € Q (T*X,7*F).
In the — case, we identify s € @ (X, F®o(T X)) to 5 =7*s A rf/bq)T*X €
Q (T*X,n*F). In both cases, we obtain this way closed forms on 7* X which
represent the corresponding cohomology classes in 9 (X, F').

It follows from the above that the map s € H (X, F) — Bs € H (X, F)
is an isomorphism which is compatible with the canonical identifications in
(10.1.1) and (10.1.2).

As we saw in section 5.1, the restriction of b ™ ) to H; (X, F) is

s we saw in sectio , by b (X,

nondegenerate and induces the Hermitian form f)?(X’F) on 9 (X, F).

By (2.1.21), (2.1.22), (2.1.28),
o = €T UTIOK Ay e K e T O, (10.1.7)
Recall that the projector P from S (I X,7*F) on & (T"X,n*F),, =
ker A7 4, was defined in (5.3.5). By (10.1.7), we get
Py, = T K P K, e R, (10.1.8)

The map s € Hy (X, F) — eT"Kpe H0s € ker Q(;Eb’iH provides the canon-
ical identity of these two spaces. By (2.1.25), if s, € Q (T*X,n*F) have
compact support, then

1
<ejFH7“°Kbs,6¢H7“°Kbs/>hﬂ.(T*X1,,*F) = <$7S/>b§i'C(T*X,7r*F) . (10.1.9)

Take s,s' € H (X, F). By (10.1.8), (10.1.9), we get

(B3, By’ ) o crexome ey = 0" (BT K5, BieTHHOKGE) o rexmo ey -
HC
(10.1.10)
Let P be the orthogonal projector from Q (X, F) or Q (X, F ® o(T X))
on H (X, F). By using the estimate in (3.5.9) with A = 0, we find that for
any v €]0, 1] there is C,, > 0 such that for b €]0, bo],

19, — ix PPy, < Cub". (10.1.11)

b

We assume first that we are in the + case, i.e., ¢ = 1/b%. Then P, projects
on forms which have fiberwise degree 0. Also e~ spans fiberwise the image
of P;. Using (10.1.10), (10.1.11), we get

<Pb§, Pb§/>h§Z{'C(T*X,7r*F)

=b" ((e r*s, e_Hﬂ*s’>hQ.<T*XJ*F) +O(b")|s]]s']) . (10.1.12)
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The restriction of the Hermitian form A% (77X F) to forms of the type
e~ Mn*s is just the standard Hermitian product. From (10.1.12), we get

(Py5, Py} o ooy = b (W? (5,5 ey + O (%) ]3] |s’\) . (10.1.13)
o

By (10.1.10)-(10.1.13), we get (8.4.5) in the + case.
Let us now consider the — case. Then

Ky5 =7*s A Ky, @7 X (10.1.14)

When acting on functions, the operator Kpry /b is just the identity. Let 1 be a

fiberwise volume form of norm 1 in 7% X. Using (2.3.4), (10.1.11), (10.1.14),

and the fact that exp (— \p\Q / 2) 7 spans fiberwise the image of P_, we get
1

Pret MK =b"" (71'*5—2 exp (— Ip? /2) n+ O (bY) |s|> . (10.1.15)

an/

Also the restriction of A (T X7 F) t4 forms of the type which appear in the
right-hand side of (10.1.15) is (—1)" times the usual Hermitian product on
these forms. Therefore,

(w*sexp (< bl /2) ms exp (< o /2)0)
= 7Tn/2 (—l)n <$7 S/>gﬂ'(X,F®o(TX)) . (10116)
By (10.1.12), (10.1.15), (10.1.16), we get (8.4.5) in the — case. The proof
of Theorem 8.4.2 is completed. O

Remark 10.1.1. Let dx be the current of integration on X viewed as the zero
section of 7% X. Then dx can be viewed as a compactly supported current of
degree n with values in o (T'X). In the — case, we could as well have taken
S = sdx. This is of course a current, but it is permitted in our theory. Note
in this case that

K35 = b3, (10.1.17)
Also
P5=1""2r*sexp (— Ip|? /2) 0. (10.1.18)

Then (10.1.10), (10.1.17), (10.1.18) also lead to (8.4.5) in the — case.

10.2 THE KERNEL OF Ai)Hc AS A FORMAL POWER SERIES

Here we use the notation of section 2.3, in particular for the definition of
Q (T*X,m*F).

We will assume ¢ > 0. Still all the arguments we will give in this case, the
+ case, are also valid for the case where ¢ < 0. This is why we will not write
the subscript + explicitly.
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By [B05, Proposition 3.5], the operators a, b commute with the de Rham
operator d” X. Let QT (T*X,n*F), Q'+ (T*X) be the +1 eigenspaces for
the action of 7*, so that

Q(T*X,7*F) = QT (T*X,7*F) Q@+ (T* X, n*F). (10.2.1)

Then a preserves this splitting, and b exchanges the vector spaces in this
splitting. We can then write these two operators in matrix form as

T 1

a0 0 b

a= (0 aJ-> , b= (bT 0 ) . (10.2.2)
As we saw in section 2.3, ker a is generated by the even form 1. In particular

the operator a* is invertible. Moreover, QT (T* X, 7* F) splits as

QN (T X, n*F) = keral @ Imaf. (10.2.3)

We denote by (aT)_l the inverse of af acting on Imaf.
Recall that Q (X, F) embeds as a vector subspace of kera’ € QT (X, F)
by the map s — 7*s. Put

L= %DX. (10.2.4)
Then Q' (X, F) splits orthogonally as
Q(X,F)=ker LeIm L. (10.2.5)

Let L~ be the inverse of L acting on Im L.
By Theorem 2.3.1, we have the identity of operators acting on ' (X, F'),

QT % ba10QT X = L. (10.2.6)
Recall that by equation (2.3.2), for ¢ > 0,
243, 3 = 35 + % (10.2.7)
Consider the equation for s € Hy (X, F') = ker Aiﬁc,
A% 4es = 0. (10.2.8)
Put
o=r}s. (10.2.9)
By (2.1.28), (10.2.8), (10.2.9), we get
A%, no =0. (10.2.10)

By (10.2.7), we can rewrite (10.2.10) in the form
(% +5) o =0. (10.2.11)
In (10.2.11), we split o using the splitting (10.2.1) of Q (T*X, 7*F),
oc=0o +ot. (10.2.12)
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Similarly, we will also split o' using the splitting (10.2.3),
ol =74w. (10.2.13)
By (10.2.2), (10.2.11), we get

ot =—b(a") T blol. (10.2.14)
Equation (10.2.11) is then equivalent to
af -1

(172 — b+ (at) bT> ol =0. (10.2.15)

We will expand o = o] as a formal power series in the variable b?, of the

form
ol = ol +olb? + - (10.2.16)

C

By (10.2.15), (10.2.16), we get for ¢ > 0,
afof — bt (at) " blol, =0 (10.2.17)

Equation (10.2.17) for ¢ = 0 says that 08 € keral, so that ag; e (X, F).
By (10.2.6), equation (10.2.17) for ¢ = 1 says that

Lot =0, (10.2.18)

ie., 0'8; is harmonic on X, and then closed on X . Using the splitting (10.2.13)
for O’I, we get
v = ()7 bt (a) bl (10.2.19)

Note that 7y is not determined yet.

A consequence of [B05, Proposition 3.5] is that, as we shall see in (10.3.5),
the operators a, b can be written as anticommutators of d”” X with other odd
operators, so that in particular they commute with d” X. Since the form g
is closed, it follows that vy is an exact form.

For ¢ = 2, equation (10.2.17) says that

afol — bt (at) Tblof = 0. (10.2.20)
Using (10.2.6), we find that if (10.2.20) holds,
L = QT Xbt (at) ™ bluy. (10.2.21)

Since QfX commutes with the de Rham operator, and since v; is exact,
the form in the right-hand side of (10.2.21) is exact in ' (X, F'). Therefore
the right-hand side of (10.2.21) lies indeed in Im L. If we insist on the fact
that the o;,7 > 1 are exact, the only possibility in (10.2.21) is to take

7 =L'Q4b" (at) T bluy. (10.2.22)

Then vy, 7 are exact, and UI is exact.
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It should now be clear that we can proceed by recursion to solve all the
equations (10.2.20), so that for ¢ > 1, the ag are exact, and the 7; lie in Im L.
By (10.2.14), (10.2.16), we have the formal expansion

ot = b (@) ol (o] alpr ) (10.2.23)

The same arguments as before show that all the terms which appear in the
right-hand side of (10.2.23) are themselves exact.

From the above, we find that in the space of formal power series, the form
o. is closed, and its cohomology class is equal to the class of 08. By the
above we get a formal expansion of o of the form

+oo
o= b’ (10.2.24)
=0
In (10.2.24),
0i =0}, if i is even, (10.2.25)
=~ (at) "blof,_, . if i is odd.

Finally, inspection of equations (2.2.3) and (2.3.1) and a trivial recursion
argument shows that for any ¢ € N, ¢; is a polynomial of degree at most 27
in the variable p.

This last fact is true only in the 4+ case. In the — case, the o; are the
product of eI by a polynomial of degree at most 2i.

10.3 A PROOF OF THE FORMAL HODGE THEOREM

Again we take ¢ = +1/b%. Recall that by (2.1.28),

=T*X —TX
d¢b,i2H = de¢,271c7“b L (10.3.1)
By [B05, Proposition 2.33], we get
—T*X .
—_T*X d :F iQYH 6T X,V :l: 'L.QA
dg, 21 = 2 + = (10.3.2)

In (10.3.2), the operators a5 STV are explicitly determined odd oper-
ators whose exact form is irrelevant. Recall that Egbi’;_( = 0. From (10.3.2),

we deduce that

X 2 rxv . )

(d ¥ zgyn) —0, (5 ; izZﬁ) —0, (10.3.3)
(@7 F 20,07 2i5| =0,

Of course, the identities in (10.3.3) can be proved directly. Let us just men-
tion a proof of the third equation. Recall that Ao was introduced in (2.1.4).
By [B05, Proposition 2.16],

577X £ 975 = — {ET*X T iy, Ao} . (10.3.4)
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The third equation in (10.3.3) then follows from the first two equations and
from (10.3.4).
Also by [B05, Proposition 3.5],
1
2
In section 10.2, we showed that equation (10.2.11) has a unique solution
as a power series ¢ in (10.2.24), such that the cohomology class of oy is fixed
and the o; are exact. In particular

A" Xe = 0. (10.3.6)

- R
ap =5 [TV £ aig] L by = sl d T E 2iyx| . (10.35)

To establish that the Hodge Theorem holds in the sense of formal power
. —T*X

series, we must check that d, 1op0 = 0.
Using (10.3.2), this is equivalent to the following result.

Theorem 10.3.1. The following identity of formal power series holds:

5T*X,V + 25~ _p=
(% +d N 2in> o =0. (10.3.7)

Equivalently, fori >0,

*

§TXY 191 oy + (40 F2iy) 011 = 0. (10.3.8)
( )it (

Proof. As before, we will consider only the + case, the — case being similar.
We will prove (10.3.8) by recursion. By construction, (10.3.8) holds for ¢ = 0.
Assume that i’ = 2i is even, and that (10.3.8) holds for j < i'. We will prove
that (10.3.8) holds for ¢’ + 1. Equivalently, we will show that

(@ =20 ) ol = (67X +2i5) (a*) " blo] =0, (10.3.9)

Using the second identity in (10.3.3) and (10.3.5) , we find that 67" %V +2i5
T

(675 + 235) () blo]
1 — * * —T*
=5 (@) (67 +2ip) aT X (@ — 20y ) ol (10.3.10)
Using (10.3.3) and equation (10.3.8) for i’ = 2i, we obtain

commutes with a~'. Since o] is d” X closed, using again (10.3.5), we get

*

(675 +25) (@

By (10.3.5) and (10.3.11), we find that in the right-hand side of (10.3.10),
we can as well replace (67 %Y 4 2i5) "X by at, ie., we get (10.3.9).

Now we assume that ¢’ = 27 — 1 is odd, and that (10.3.8) holds for j <4’
We will show that (10.3.7) holds for i’ + 1, i.e.,

- 2iy7—¢) ol =0. (10.3.11)

<5T*X’V + 21’5) ol + (ET*X - 2ip) o2i—1 = 0. (10.3.12)
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Now, by (10.2.17) and (10.2.25), we get
T

(67 %Y 4 2p) of = = (57XV 4-2i5) (aF) " bronr. (103.13)

The same arguments as in (10.3.10) show that
* — 1 - *
<5T XV —1—21'5) (aT) ! bLazz;l = 3 ( T) ! (5T XV +i2iﬁ)
AT (ET*X ~2iy) 051, (10.3.14)

Now we use the third identity in (10.3.3) and also (10.3.8) for i’ = 2i — 1,
and we get

*

(675 + 2i55) (4

By (10.3.5), (10.3.13)-(10.3.15), we get (10.3.12). The proof of our theorem
is completed. O

- 2’iy7—¢) Tai1 = 0. (10.3.15)

10.4 TAYLOR EXPANSION OF HARMONIC FORMS
NEAR b=0

We use the notation of section 10.2. For m € N, set

o =Y ol (10.4.1)
=0
Put
T = AL, o™ (10.4.2)

A trivial computation shows that
1
™= Ebiambm_l. (10.4.3)

By (2.1.21), (2.1.28), and(2.8.10),

AL gy = MOFLAZ Ly mpetot Tt (10.4.4)
Let d € C be the small circle of center 0 which was considered in section 5.3.
Then if b €]0,bg], A € d, the resolvent ()\ - Aib,iH) exists. Moreover, the
natural projector P, from S (T*X,7*F) on §' (T*X,7*F), , = ker A 4
is given

1 9 ~1

Py = 5~ ; (A=AZ, 1y)  dA (10.4.5)

Also since dT"X commutes with Aib) 14> Pp also commutes with d™ X More-
over, using (5.3.5), (10.4.4), and (10.4.5), we get

Py = e 1T I PyryetoF T (10.4.6)
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If A € d, by (10.4.2),
(A—A%, in) o™ =A™ — 7. (10.4.7)
From (10.4.7), we get
(AN=A2 ) o= Ao (A= A2 ) T AT (10.4.8)
By (10.4.5), (10.4.8), we obtain

-1

1 N,
Pbam:am+%/d(A—A§b¢H) Atdar™. (10.4.9)

Now as we saw in section 10.2, o,, — o is d7” X exact. Also by Theorem
3.5.1, for b €]0,bo], d"* vanishes on ker A2 ;. Since P, commutes with

dTX | we get
Pyom = Prog. (10.4.10)
By (10.4.9), (10.4.10), we obtain
1 e
Pyoo = om + %/d (A= A% 1y)  AThdAT™. (10.4.11)

By (10.4.4), if X\ € d,
(A= A2, ) = Tmero (A —A2 15) e ror e (10.4.12)
Moreover, it follows from equation (17.21.23) in Theorem 17.21.3 and from
Remark 17.21.6 that for b €]0, by, A € d, the operators ()\ - ngb,iH)

uniformly bounded norm when acting on the standard L? space over T*X.
IfseS (T*X,n*F), set

[sll 9, = He:FHSHLz . (10.4.13)

1
have

By noting that 07" introduces a singularity as b — 0 which is at most
O (b™™), from (10.4.11), (10.4.12), we claim that

[Poc0 — omll gy < Cond™ 1™ [loo]| gy - (10.4.14)

Indeed in the + case, as we saw at the end of section 10.2, the o; are poly-
nomials in p of degree at most 2¢, which depend continuously on oy by
construction. The estimate (10.4.14) is then obvious. In the — case, o; is the
product of e=2* by a polynomial of degree at most 2i, which also depends
continuously on o¢. Equation (10.4.14) still follows.

Tt follows from (10.4.14) that Pyoq is approximated by the polynomial o,
to arbitrary order.



Chapter Eleven

A proof of equation (8.4.6)

The purpose of this chapter is to establish equation (8.4.6) in Theorem 8.4.3.
We will thus compute explicitly the limit as ¢ — 0 of v Vbt The techniques
are closely related to the ones we used in chapter 4. However, a direct ap-
plication of the results of that chapter would lead to spurious divergences.
This forces us to modify our trivializations, very much in the spirit of the
local version of the families index theorem of [B86].

This chapter is organized as follows. In section 11.1, we introduce our new
trivialization and rescaling of the creation and annihilation variables.

In section 11.2, we prove the convergence of certain supertraces.

In section 11.3, we establish equation (8.4.6).

11.1 THE LIMIT OF THE RESCALED OPERATOR ASt—0

In this chapter, we use the notation and conventions of chapter 4. However,
we do not replace ¢ by t/b?, but given b > 0, we fix ¢ = £1/b* € R*. With
respect to chapter 4, we make z = 0,dc = 0,dt = 0,db = 0.

Recall that h (x) was defined in (1.7.1) and 7 (\) in (5.3.3), and also that
(5.3.4) holds.

As in (4.5.6), we get

Tr, [gt ip|* b’ (@QﬁHC_wH)} — (—1)" Tr, [gt Ipl? 7 (—@fic,wﬂ . (11.1.1)

As in (4.6.2), set

= . M2 .
M., = rl/\/fgqﬁ,HwaHr\/p (11.1.2)

Note that with respect to (4.6.2), the subscripts are now (c,t) instead of
(b,t). Moreover, the operators which appear in (11.1.2) are not the same as

in (4.6.2), even though the notation suggests otherwise.
Let 1y} (T XA (T X)@AMTX@F o the connection on
A (T*X) SN (T*X)RA™ (TX)RF
along the fibers X,

1VA'(T*X)@A'(T*X)@A"(TX)@F,u B vA'(T*X)@A'(T*X)@A"(TX)@F,u
" =V.

+

S

(T (far€i) f* (&' —tie,) +TH,-). (11.1.3)
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By equation (2.5.19) in Theorem 2.5.4 and by equation (4.6.4) in Proposition
4.6.1, we get

M, = i (—AV +Epf +c (2% (? — V- \/%Z) - n))
+ i (e;,R"¥e;)e'e! — %w (V¥ ¢") (e:) Va
_ %vA’(T*:{WX)@F&} (VF,g ) _ iw (VF7gF)2
_ CT\/E (1V2'}££*X)®A-(T*X)@A"(TX)@F,u + (RTX (-,p) es,p) ge‘) (11.1.4)

Take z € X9. We trivialize X near x using the fiberwise geodesic coor-
dinate system centered at z. Namely, we identify a neighborhood of 0 in
T, X with a neighborhood of z in X by the map y € T, X — expX (y) € X.
Also we trivialize A" (T*X) @A (T*X) ®A" (TX) ®F along geodesics cen-
tered at x by parallel transport with respect to the fiberwise connection
1vé\'(T*X)®A'(T*X)®A"(TX)®F,u'

Using the above trivialization, we define the operator ﬁc)t as in section

4.8, with b is replaced by by/t. For a > 0, we define I, as in (4.8.8).
Set

O = LRy i (11.1.5)

Observe that when b = 2, the operator @b’t in (4.8.9) is just ﬁc)t written in
a different trivialization.

Let ¢(e;),1 < i < ¢ be a family of Clifford variables such that if U,V €
T, Xy,

[cU),e(V)]=2(U,V). (11.1.6)
These ¢ (e;) anticommute with all the other Clifford variables. Still, one

should keep in mind that contrary to what may be suggested by the notation
in section 1.1, for 1 <14 < ¢, ¢(e;) and e’ + i, are for the moment unrelated.

Definition 11.1.1. Let @C , be the operator obtained from Qc,t by making
the following replacements for 1 < i < £:

e ¢! is unchanged.

e i., is replaced by —e'/t +i., +C(e;) /V/1.
e ¢! iz are unchanged.

And for /+1<i<n:
e ¢’ is replaced by Ve’

e i, is replace by i., /v/t.

e ¢’ iz, are unchanged.
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Incidentally, observe that as we just saw, for 1 < i < ¢, ¢(e;) is a Clifford
variable having nothing to do with e, i.,, while for £ +1 < i < n, ¢(e;)
is taken as in (1.1.2). This adds an element of extra confusion, which the
reader has to accept for a while.

Still, it is important to observe that when b = /%, the rescaling of Defini-
tion 4.8.4 coincides with the ones in Definition 11.1.1, as long as one makes
the following conventions for 1 < i < /:

° ’c\(el) =€+ lei.
® ¢ = 0.

The above formulas make clear that indeed the ¢(e;),1 < 4 < £ should be
considered as independent Clifford variables.

~

Let r (—%C t) ((y,p), (¥, p")) be the smooth kernel for r (—@Ct) with

respect to dy'dp’. We can define Try [g Ip|*r (—@Qt) (g7 (y,p)) ,(y,p))}

by following rules similar to the ones we used in section 7.5. We explain
these rules in more detail in the present context.
First we concentrate on the case where g = 1 and F'is trivial, so that £ = n.

Then the kernel r (—@C t) ((y,p), (y,p)) can be expanded in monomials in
the e’ —e'/t +ie, +C(e;) /V/1, €, iz, We denote by

T (bl r (-B,,) (0.0). p))] € A (T°)

the object which one obtains first writing r (—@C t) ((y,p), (y,p)) using a

normal ordering as in section 4.8, i.e., by putting all the annihilation op-
erators i., to the right, and then, after ignoring any term containing any

of the i.,, by taking the standard supertrace in the variables €',ig,, and

by selecting only those terms containing the terms to the left of the mono-
mial ¢(e1)...¢(e,) with a correcting sign (—1)”(7”1)/2. In the general case,
we combine the above conventions for the indices 1 < ¢ < ¢ with taking a
classical supertrace in the remaining variables.

Let Tr, [g Ipl*r (—‘ﬁc’t) (67" (wp) ,(y,p))}max be the form in A" (T*S)

which comes to the left of e! A ... A e’ in the expansion of

Tr, [g pl*r (—@C,t) (¢ (v,p) ,(y,p))} €N (T"M,).
Proposition 11.1.2. The following identity holds:
T (g P e (<Des) (07 w0) s (0,9) ]

= Tr, [g pl*r (—@C,t) (9" (W), (y,p))}max- (11.1.7)

Proof. We make the replacements which were described in Definition 11.1.1.
For 1 <i<Y, eiiei is replaced by

' (ie, + (i) V). (11.1.8)
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Also recall that for 1 < i </, each e%i,, contributes to the initial supertrace
by a factor —1. When making the above replacements, we find that when ex-
panding the kernel g exp (—Qgt) (g’l (y,p), (y,p)) in the above Grassmann

or Clifford variables, the original local supertrace will be obtained from the
coefficient of

eb...e'C(e1)C(er)

by taking the supertrace in the remaining variables e?,i.,, £+ 1 < i < n and
€ iz, 1 <i < n with the correcting factor (—1)““1)/2 t!/2. This last factor
overcomes the singularity ¢—¢/2. This concludes the proof of Proposition

11.1.2. =
Set
-1 ;
L, = (-AV + A 4 ¢ (2ia, (B () — ”))

LR L (95,0 (%4 R0 ).

(11.1.9)

N O

Note that @C depends on z € X,.

In the asymptotic expansion of operators, we follow the same rules as in
Theorem 4.9.1. However, the various O which appear are taken only with
respect to a given value of b.

Theorem 11.1.3. Ast — 0,

~

B, —F. (11.1.10)

More precisely, fort €]0,1],|y| < 2no/Vt,

= - S 25 2 2

B, =3, +Vio (1 Flyl+ Y + [y Vo + [PV + 9 + |yl p) . (11.1.11)
Proof. Even though the connection 1V?. (7 X)@A (I X)SAHT XD w0 taing
a term diverging like 1/¢, the only part of this connection which contains an-
nihilation operators i., does not depend on ¢. The consequence is that when
acting on terms which only contain creation operators, the trivialization us-

1VA' (T* X)RA (T* X)RA™ (TX)RF,u
t

ing does not introduce spurious divergences.

Also observe that
& INVE — Ve, ¢ VT + \/fz} ~0. (11.1.12)
Using (11.1.3) and (11.1.12), we get

[1vtA'(T*X)®A-(T*X)Q@A"(TX)@F,u’ 2. (? _ ez—/\/E _ \/Eze)} —0,
(11.1.13)
so that the operator which appears in the first line of (11.1.4) is parallel with

. T*X)@A' (T*X)@A"(TX)@F,U

respect to the connection 1V? ( . Also observe for
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1 <i<{, e /\t+Vti, is changed into v/tie, + ¢ (e;). We thus handle easily
all the terms which appear in the right-hand side of (11.1.4), except for the
difficult term in the fourth line which starts with — C‘[ (...).

Let ( VE) be a vector bundle on a fiber X, let RE = VF2 be the
curvature of VE. By [ABP73, Proposition 3.7], if E is trivialized on a small
neighborhood of z € X by parallel transport with respect to the connection
V¥ along geodesics centered at x, if T is the corresponding connection form,
if y € T, X is close enough to 0,

T, = 1RE (y,) + O (W) . (11.1.14)
We assume temporarily that F' is the trivial line bundle, so that we can
drop the superscript « in the definition of VA (T"X)&A ("X JBA™(TX), “. Also
we will temporarily underline sections of T X or T*X when they will be
considered as vectors or 1-forms along the fibers. Along these lines, we denote
temporarily by V¥ the restriction of VZX to the fiber X , and by AETX its
curvature. Also we use temporarily the notation 1ZA'(T*X)®A-(T*X)®AH(TX)
instead of VA (T"X)8A (T*X)@A™(TX)

Put
T = LT (1) e n oA p
T = f*Ne' NI (T (fEei) ,e5), (11.1.15)

n

TP =S| S (T (fe) ) fone

j=1 1<i<n
1<a<m

In the sequel our tensors will be evaluated at z € X. A straightforward
computation, which uses in particular (1.3.2), shows that

Ly TSN IXIBANTN2 . (RTX e, o)) (i, +@ie,) + X TXTH /1

VA A ( ced) [ (¢! — tie,) /t— |T° Jt. (11.1.16)
Now we use the same arguments as in the proof of Theorem 4.9.1 on the

splitting of the scalar part of vt'V :, YZ; XOBA (T X)BA™(TX) . By (11.1.14),

(11.1.16), we find that after having done the replacements in the Clifford
variables indicated in Definition 11.1.1, by considering y,p as sections of
TX which can be contracted with underlined exterior variables along T°X,
we get

(T*X) A (T* X)RA™(TX
I\[\/—l tyH ( ) ( ) l/ﬂ:vp
1 TX i,
+3 > (B (wp)ene)ee
1<i,j<e

1 . 1
5V (yp) - VI (50) - 5 12 (0)

+VEO (1 + 1yl Vp + [pPV + \y\zp) . (11.1.17)
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In (11.1.17), we temporarily underlined y, p to emphasize the fact that they
were contracted with Grassmann variables like ef. Also i* in i*V X T° (y,p)
refers to the Grassmann variables e’,1 < i < n. Note that the coefficient just
before this expression is —1 and not —1/2. Indeed, as we saw at the beginning
of the proof, for 1 < i < ¢, e’ —ti,, is replaced by 2e’ — ti,, — /1¢(e;), Whose
limit is 2e’. Using now [BG04, Theorem 3.26] or [B05, Theorem 4.15], w
can rewrite (11.1.17) as

A A A" %
IV e ISR EONEN L v, (i Ry, )

+VEO (14 1y ¥y + 1o ¥ + [y [pl) - (11.1.18)

When F' is nontrivial, the asymptotics of
1VA' (T* X)RA (T*X)@A"(TX),uI

Vip /vt
is the same as in (11.1.18), by still using (11.1.14) and the above computa-
tions. The proof of our theorem is completed. O

Remark 11.1.4. Consider the vector bundle (TX\Mg,gTX‘Mg,VTXWy) on

M. It satisfies the assumptions which are used in the constructions of chap-
MTXIM

ter 7. We define the operator €4 5. " asin (7.2.6). When w (V¥ ¢¥) = 0,
and comparing (7.2.6) and (11.1.10), we get

R AMTXU\lq 2

PBo=Chpeor - (11.1.19)
Note that the identification (11.1.19) relies on the equality (1.1.2),

Cei) = €' +ie,. (11.1.20)

Identity (11.1.19) can be very confusing if one considers the e’ as forms on
X,. However, in the formalism of (7.2.6), there is no relation between E!
and the base manifold S. Hence the ¢ (e;) are treated in (7.2.6) as exogenous
Clifford variables coming from E and not from S. This is precisely what we
did before when introducing the ¢(e;). The identification (11.1.19) is then
legitimate.

Identity (11.1.19) is a hypoelliptic version of the local families index the-
orem of [B86]. It plays a crucial role in the sequel.

11.2 THE LIMIT OF THE SUPERTRACE ASt—0

By taking (11.1.19) into account, we define the form Tr [g pl>r (—@C)} on
M, by using the same conventions as in section 7.5, i.e., it is defined as a

TX .
von Neumann supertrace. We take the operator 9. Mo g in (7.9.1).

Theorem 11.2.1. Given c € R*, ast — 0,

Try [gt > 0’ (©¢ HLWH)} — (—1)”/}( Tr {g I r (—@C)} . (11.2.1)
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Moreover, the following identities hold:

v [ foblr (-2,
= —Q/X Trs [g p|? exp( QJTTXWg)rdC T [g]. (11.2.2)

Proof. Using (11.1.1) and (11.1.2), we get
T [gt [pf” ' (D2 wﬂ)} = (" ol (<2L,)] . (123

Moreover,
Trg [9 Ip|*r <_@c,t)}
:/ Tr, [g Wr(—@c,t) (g7 (x,p),(x,p))} dvrex. (11.2.4)
T+ X

Using Proposition 4.7.1 and proceeding as in Remark 4.7.2, it is clear that
for 3 > 0, the integral in the right-hand side of (11.2.4) localizes on 7~ 1Ujs.
By Proposmon 4.8.2, 1t 1s also clear that when evaluating the limit, we can
as well replace ‘J)IC . by ‘ﬂc 4

Now we use the obvious analogue of (4.13.1). Moreover, by proceeding as
in (4.13.2) and using (11.1.7), for € X, we get

2. (—,m —1
/{yENXg/XVylénO}XT;X s {g plr ( mc’t) (g (v.p), (y,p))]

duny,,x (y) dp
T folor (-B,,) (0 w.0). (0.9)]

duny,,x (y)dp. (11.2.5)

Now by equation (4.10.1) in Theorem 4.10.1, for ¢t €]0,1],z € X,,y €
Nx,/x;lyl < no/Vt,p € TS X, at least when b > 1,

’T\rs [g Ipl*r (—@Qt) (97" (w.p) »(y,p))} ’
<C (1 + tm%) exp (—c <|y\1/3 + |p\2/3)) . (11.2.6)

However, inspection of the proof of Theorem 4.10.1 shows trivially that given
b > 0, the estimate (11.2.6) is always valid. Also note that when writing the
uniform bound in (11.2.6), we took into account the fact that the rescaling
on the variable y differs by a factor b?. Still the uniform bound in (11.2.6)
is inadequate because of the diverging factor tm%

However, for a given b > 0, the above divergence is a ghost divergence.

Indeed the estimate in (11.2.6) was obtained in Theorem 4.10.1 using a trivi-
T* X)®A™(TX)®Fu

[{yEng/x,ly<no/\/f}XT;‘X

alization via the connection VA (T X)@A ( . As explained be-
fore (11.1.3), we use here a different trivialization. As is clear from Theorem
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11.1.3, this makes the above divergence disappear. Therefore the estimate
(11.2.6) is valid when deleting the term 1/t™/2.

By using (11.1.11) and the appropriate uniform estimates on the heat
kernels, we find that as t — 0,

T folof r (-B,,) (0 @.0). 0.9))]

— Tr, [g pl*r (—@) (97" (wp), (y,p))} . (11.2.7)

By combining (11.2.3)-(11.2.7), it is clear that (11.2.1) holds.

When w (VF,gF) vanishes, i.e., when ¢ is parallel, equation (11.2.2)
follows from (7.9.2) in Theorem 7.9.1 and from (11.1.19). Note that the
replacement of €iz, by iz,e; which is done in section 7.4 makes the sign
(—1)" ultimately disappear in the right-hand side of (11.2.2). In the general

case, we also use (4.13.4). The proof of our theorem is completed. O

11.3 A PROOF OF EQUATION (8.4.6)

By (4.3.3) and by Theorem 11.2.1, it is clear that for b > 0, as t — 0,
2 TX\ zdc
Uiy = Fpg® /X T, [gexp (—om )| (11.3.1)

Comparing with (8.4.3), we find that (11.3.1) is just (8.4.6).

Remark 11.3.1. In our proof of (11.3.1), we could have instead used the

expression for v+ which was suggested before (4.13.6). This would have led
. TX|nmg
us more directly to the operator 9. .



Chapter Twelve

A proof of equation (8.4.8)

The purpose of this chapter is to establish equation (8.4.8) in Theorem 8.4.3.
We thus establish a uniform bound on |vp | for € €]0,1],b € [\/€,bo]. The
proof relies on techniques already used in chapters 4 and 11.

This chapter is organized as follows. In section 12.1, we combine the tech-
niques of chapters 4 and 11 to obtain a uniform expansion of the rescaled
operator in the considered range of parameters.

In section 12.2, we prove the required estimate.

12.1 UNIFORM RESCALINGS AND TRIVIALIZATIONS

In this chapter, we fix by > 1. We take ¢t €]0,1],b € [\/7?7 bo]. We use the
notation of section 4.7, while making in the whole chapter z = 0,dc =
0,db=0,dt =0.

We will use the expression for vy ; given in (4.13.8),

n 0 t =
we==x(—1)"¢ <1 + 2%> Trs [gb_Q p|? exp (—a@b)t)} la=1. (12.1.1)

The point of equation (12.1.1) is that we have expressed v, in terms of
supertraces of heat kernels. We can rewrite (12.1.1) in the form

0
Ub,t = (1 + 2@)

n t an
(j: (-1)"¢ / Tr, [gb_z ol exp (—adt, . ) (2, gz)] dvr- x (z)> ozt
X
(12.1.2)
Using Proposition 4.7.1, which covers precisely the range of parameters

which is considered here, and proceeding as in Remark 4.7.2, we find that
for a € [1/2,1],6 > 0,

¢ —
/ Tr, [gb—2 Ip* exp (—am,,t) (zng)} dvr-x| < Cexp (—cB?/t).
71 (X\Up)

(12.1.3)
Recall that the connection 1V£\'(T*X)®A'(T*X)®AH(TX)®F’U was defined in
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(11.1.3). By (4.6.4) in Proposition 4.6.1 and by (11.1.3), we get

b4
+ i (e;, R™¥e;) el — %w (V¥ 6") (e:) Va
_ %VA(T*T*X)@F@ (V. gF) - iw (VF,gF)2
+ % (1V2;£*X)®A-(T*X)@A"(TX)@F,u I <RTX (-,p) ei,p> ge‘) . (12.14)

Take now x € X,. As in section 11.1, we will use the trivialization of
A (T*X) RN (T*X) @A™ (TX)QF along radial geodesics centered at x by

parallel transport with respect to 1V (T X)BA (T X)BA™(TX)®Fu . We define

mb’t as in section 4.8. The basic difference with respect to chapter 4 is that

1VA' (T* X)RA (T* X)BA™ (TX)RF,u
t

we use the connection for the trivialization

of the considered vector bundles.
By PI‘OpOblthH 4.8.2, over 7~ 'Ug, we can as well replace the operator

Sﬁbt by ‘ﬁbt Incidentally, note that we can indeed use Proposition 4.8.2
even though our choice of trivialization is now different.
We define the operator 9, , as in (4.8.9). From 9, ,, we obtain the operator

@b , as in Definition 4.8.4, that is, by making the replacements indicated

there. As in section 4.8, the kernels for exp (—a@b’t) , €Xp (—@b t) will be
calculated with respect to the volume dydp.

Proposition 12.1.1. The following identity holds:

3/2\ "¢ N 3/2 3/2
(tb—2> Tr, [gbt—g Ip|* exp (—mb,t) (gl (%%p) ; (tb—Zyp»}
— U o e (<B,,) (07 ) )| (G25)

Proof. The proof of our proposition is the same as the proof of Proposition
4.8.5. O

Recall that the operator ‘,]A3 was defined in (4.9.1). We give a better ver-
sion of Theorem 4.9.1, in which the potentially diverging terms will have
disappeared. The whole point of this new theorem is that we use a different
trivialization.

Theorem 12.1.2. Ast — 0,

~

@b’t — P (12.1.6)
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More precisely, fort €]0,1],b € [\/l_f, bo] Nyl < 20200 /8372,

- - 2
ﬁb,f%jﬁpFW(%) (o (1+f|y))

~ t3
+O<\/¥V —5 [yl Vp + |p\ V+ \pl + 4py> (12.1.7)

Proof. We will combine the methods used in the proof of Theorems 4.9.1
and 11.1.3. Theorem 11.1.3 will be especially useful, since its proof uses the
same trivialization as ours.

We start from equation (12 1.4). We make the preliminary observation

that using the connection V2 (" XBA(T"XOBANTXIBEw 4600 not add extra

divergences when applied to expressions containing only creation operator
e',e’. Also to handle the matrix terms in the first line in the right-hand
side of (12.1.4), we use (11.1.13). One finds easily that they contribute to

ﬁh . @ by a term O (%) The terms in the next two following lines can

be estimated as in the proof of Theorem 4.9.1. This way, we get in particular
the term O ( = |y\) in the right-hand side of (12.1.7).

The terms O (\/EV + b—2 Ip| ) appear for the same reason as in the proof

of Theorem 4.9.1. What remains is the contribution of

32| A (T XO)BA (T X)BAM(TX) B Fu
b2 t,YH

to the expansion of ‘B . In fact by (11.1.17), we get, once the replacements
of Definition 4.8.4 have been done,

£3/2 . .
It3/2/b2 b2 1V;\;7T{ XA (T X)BA™(TX)EF, I 2/t3/2
£3/2
=V, 0 (G Ve + S bl T+ Solyl) . 209
The proof of our theorem is completed. O

12.2 A PROOF OF (8.4.8)

Now we establish a better version of Theorem 4.10.1.

Theorem 12.2.1. Forng > 0 small enough, there existc > 0,C >0,m € N
such that for a € [%,1] ,t €]0,1],b € [\/l_f, bo] T € Xg,y € Nx, /X 2 ly| <
b2no/t3/% p € Ti X, then

’g exp (~aB, ) (47" wp), (y,p))‘ < Cexp (—c(|y"* + 1bl*"*)) -
(12.2.1)
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Proof. To establish our theorem, we will use the expansion (12.1.7) in The-
orem 12.1.2. Indeed the expansion makes clear that in the given range of
parameters, the coefficients of the operator 8, = remain uniformly controlled.
It is then easy to adapt the techniques of the 7pr00f of Theorem 4.10.1 so as
to get (12.2.1). The proof of our theorem is completed. O

By using (12.1.5) and proceeding as in (4.13.2), we get

' - _
/ Tr, [gb—Q [p]? exp <_amb,t) (9w, (y,p))] dydp
{veNx, xlyl<no}

A~

T oo (-8,) (7 ). 00|

dydp. (12.2.2)

' [
{veNx,/xlyl<b>no }

From (12.2.1), (12.2.2), we get

~

Tr, [95—2 exp (—a‘Bbvt) (6" (,p) 7(y,p))] dydp

/34€ng/x7|y|§b2no/t3/2
t

<O (1223)

By combining the previous estimates with (12.2.3), we get (8.4.8).



Chapter Thirteen

A proof of equation (8.4.7)

The purpose of this chapter is to establish the estimate (8.4.7), which gives an
estimate for |v, 7, , — vo,¢| which is uniform in b €]0, 1], €]0, 1]. The idea is to
combine the local index techniques of chapter 11 with the functional analytic
machine which is extensively developed in chapter 17 to prove that in the
proper sense, as b — 0, the hypoelliptic Laplacian converges to the standard
Laplacian. Indeed our estimate is compatible with the convergence result
for v s, , as t — 0, which is established in chapter 11. This explains why
the methods of that chapter play an important role in the whole proof. The
main point of the present chapter is actually to show that the convergence
result of chapter 11 can be made uniform in b €]0, 1.

This chapter is organized as follows. In section 13.1, we establish our
estimate in the range t < b°.

In section 13.2, we show that the estimate can be localized near 7~ X,.

In section 13.3, we give a new approach to the local index theoretic tech-
niques of chapter 11, which will permit us to obtain the required uniformity.

In section 13.4, we evaluate the limit as ¢ — 0 of the properly rescaled
Laplacian.

In section 13.5, we replace the fiber X by one of the tangent spaces
T, X,z € Xy, and we consider a corresponding localized operator.

Finally, in section 13.6, we complete the proof of (8.4.7).

13.1 THE ESTIMATE IN THE RANGE t > b#

By (2.2.5), we find easily that Ait is conjugate to tA:fb ,.- Note that this
is also a consequence of (2.8.8). Finally, @ﬁ/tl’Q — Ait has positive degree in
A (T*S5). As explained in section 3.7, this implies that 6%’2 and Ait have
the same spectrum.
The set W 1 is defined in (3.4.2) and in (17.20.1). By taking ¢, r as in
-1
Theorem 17.21.3, for b €]0,bg], A\ € Ws' 4., the resolvent (Aib,iH — )\)
exists and verifies appropriate estimates. Since t €]0, 1], for b €]0,bo], A €

-1
W b.r, the resolvent <A3)bﬁ o )\) exists.

By the above considerations, it follows that for b €]0,bg],t €]0,1], A €

1
MxR*?2 .
W b.r, the resolvent ((’th R )\) exists.
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Take cg > 0,c¢1 > 0. Let v be the contour in C given by
= {AeC,ReA:—c0+c1 |Im)\\1/6}. (13.1.1)

We orient v downward. By taking ¢ large enough and ¢; small enough, we
find that for b €]0,1], v C C\ W5/ p .
By equation (2.8.9) and by the above,

Upar (~€4?) Ut = o (=122, ) v (13.1.2)

Proposition 13.1.1. Take v €]0,1[. There exist C,, > 0,u > 0 such that
for t €]0,1],b €]0,1],

‘”\/Zb,t - Uo,t‘ < Gt ™", (13.1.3)
Proof. By (4.3.3) and (13.1.2), we get

_ 2 M,
v = U7 0T g o r (—tcmiﬂ_ﬁw)} : (13.1.4)

Now observe that for ¢ €]0,1],b €]0, 1], if A lies to the left of «, then A/t €
W iv.r- 1t follows that

(—w? ) S (N (A — M2 )_1d>\
" by TH—VEbwH | T 9in 7T ¢ iy EH—VEbw ’
(13.1.5)
For N € N, let ry (—\) be the Nth integral of  (—\) which vanishes at
Re A = +00. By (13.1.5), we get

2
7 (G i)

_ = M2 -N
= [ e (=) ()\—t%ﬁb)iHiﬂwa) dx. (13.1.6)

On the other hand, one has the trivial

N - 1)!

r(—ta2) =& N

/TN,I (=A) (A — t42) "V dx. (13.1.7)

Now we take L € N. By equation (3.4.3) and Theorem 17.21.5, we know
that given v €]0,1[, for N € N large enough, for b €]0,1],¢ €]0,1], A € v,

29w

< Cv)NtiNbv.

L
(13.1.8)
Note that in degree 0, equation (13.1.8) follows directly from Theorem
17.21.5. However, as explained in section 3.7, the arguments of chapter 17

. . M,2
can be easily extended to the hypoelliptic curvature £ b H b

As explained in (3.4.10), (13.1.8) guarantees at the same time a uniform
bound of the difference of the corresponding kernels and also the adequate
uniform decay of the difference of kernels as |p| — +oc.

-N
M2 . 2\—N
m </\ - te«bmiwﬁw) —ix (A-tAL) T Py
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By (5.3.15),
Py |p|* Ps = g (13.1.9)
Finally, by (1.7.5),
Tr, [gr (—tA2)] = xg (F), T, [gr (—tA2)] = x4 (F® 0(TX)).
(13.1.10)

Using (1.6.5), (1.6.6), (13.1.9) and taking into account the fact that Py
projects on forms of fiberwise degree 0 and P_ on forms of fiberwise degree
n, we finally get

n
Trs |gPs |p|* Per (—tA?t)] = 35Xy (F). (13.1.11)
By (5.1.13) and (13.1.4)-(13.1.11), we get (13.1.3). The proof of our propo-
sition is completed. O

By (13.1.3), we find that if v’ < v, there exists C' > 0 such that for
t €]0,1],b €]0, 1], > b /¥,

< b, (13.1.12)

‘U\/Zb,t — Vot

i.e., we have established the estimate (8.4.7) in the considered range of pa-
rameters. Therefore to establish (8.4.7) in full generality, we may as well
assume that 8 > 0 is given and that ¢ < b°.

Ultimately to establish (8.4.7), it will be enough to show that given 8 > 0,
there exists C' > 0, > 0 such that for b €]0,1],¢ €]0,1],¢ < b3,

<Ot 4b%). (13.1.13)

’U\/Zb,t — Vo,t

Now we concentrate on the proof of (13.1.13).

13.2 LOCALIZATION OF THE ESTIMATE NEAR 71X,

By (13.1.4),
U/tbt = i¢{1w
A*X Trs |:g ‘p|2 r <_t¢2/l\/fb7i7_{_\/zwa) (971 (xvp) ’ (xvp))i| dUT*X~
(13.2.1)

Proposition 13.2.1. Given 8 > 0, N € N, there exists Cg v > 0 such that
for b €]0,1],t €]0, 1],

TI'S |:g |p‘2 r (—tQ:M72 ) g_1 (1‘7p) , (Jj,p) :| dUT*X
/7T1(X\Z/{B) d)\/fbviH_\/zwa ( )

< CpntN. (13.2.2)
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Proof. We use (13.1.4) for v, 7,, (13.1.6) for r (—tezmiﬂ_ﬁbw,{), and

also equation (17.22.6) in Theorem 17.22.2. Again we have used the argu-
ments in section 3.7 to extend the results of chapter 17, which are valid for
A2 13 to the curvature Qigf”iﬂ_bw H- a
Remark 13.2.2. By Proposition 13.2.1, the contribution of 7=! (X \ U3) to
the integral in the right-hand side of (13.2.1) is compatible with (13.1.13).
Therefore the estimate (13.1.13) can be localized near 7= X,.

We use the notation of chapters 11 and 13. We start from equation (11.1.4)
for M. ,. Set

M, = KD, K, " (13.2.3)
By (4.3.3), (11.1.1), (11.1.2), and (13.2.3), we get
vz = Fp (—1)" Trg [9 Ipf*r (—Mc,t)} : (13.2.4)

For N € N large enough, let Ky, n ((x,p),(2/,p")) be the Schwartz

kernel associated to the operator <>\ — /M\c,t) . Similarly let Ko an (z,2")

be the Schwartz kernel associated to the operator (A — A?t)t)fN

Definition 13.2.3. For N € N large enough, set

U\/tb,t,N (z,A)
=+ (-1)"p(N - 1)!/

*

Trs |:g |p‘2 Kb,t,)\,N ((xvp) ) (nggp))] dp
X
(13.2.5)
Similarly set
vo,e,n (2, A) = (N — 1)!;T1rS [9Ko,1.a.n (2,92)] fore > 0, (13.2.6)

_ v

Trg [gKo N (2, 92)] if ¢ < 0.

By (1.7.5) and by (13.2.4), for N large enough,

1
CNG Wi /X [%[f”“N—l (=N vymen (@A) d)\il dz, (13.2.7)
1
Vo, = / — [/ rv—1(—A)vo,n (z,N) d)\il dz.
X 21 ~

By using again equation (17.22.6) in Theorem 17.22.2, we find that given
B8 > 0,N’ € N, there exists C n,n- > 0 such that for b €]0,1],¢ €]0,1], A €
s

< CanntY. (13.2.8)

v (z, ) dx
/W‘l(X\Uﬂ) Vi
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By (4.7.1), (13.2.7), and (13.2.8), we find that to establish (13.1.13), we only
need to show that for any \ € v,z € X,,t €]0,1],b €]0,1],¢ < b°,

J) (vt (2:5:3) — w0y (2, X)) K ) dy
{veNx, x.lyl<B}

< C@N (ta + ba) . (13.2.9)
For x € Xy, € v, set

W /o N (z,A) = / Uiy o N (,y, Nk (z,y)dy, (13.2.10)
{veNx, /xlyI<B}
woan (2.0 = [ vo (2,5 M) k (2, ) dy.
{veNx, x,lyl<B}

Then (13.2.9) is equivalent to
\wﬁw (2, X) — woen (2, N)] < Oy (2 +b9), (13.2.11)

in the range t < bP.

13.3 A UNIFORM RESCALING ON THE CREATION
ANNIHILATION OPERATORS

First we start giving a new approach to the results of chapter 11.
We use the same notation as in section 11.1. In particular we fix z € X,.

We define @Qt as in that section. Also we obtain the operator A/ .t from ia,t
as in (13.2.3):

N = KR K, (13.3.1)
Put
Ocv=1sNeidy) i (13.3.2)

As in sections 4.8 and 12.1, we introduce Grassmann variables ¢;,4.:,1 <
i</

Definition 13.3.1. Let é&t be the operator obtained from the operator
cht by making the following replacements for 1 <1i < £:

e ¢’ is replaced by e’ — /tig,.

e i, is replaced by —e'/t +ic, + (&; + i — ig,) V1.
e ¢ is replaced by € —ig, + ¢; +igi + Vtie,.

® iz, is unchanged.

And for /4+1<i<n:
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e ¢ is replaced by v/ (e’ — iz, ).

e i., is replaced by i., ¢, /V/1.

e ¢ is replaced by €' — iz, + e’ + i, .

e iz, is unchanged.

One verifies easily that the above transformations are still compatible
with the obvious commutation relations. Moreover, for £ + 1 < 4,5 < n,
e'ie; +e€'ig,; is changed into e'i,, +€'ig, +i¢; e, +ic,ie,. If Aisan (n —£,n — ()

antisymmetric matrix, its action on A (N;(q/x) RN (N;(q/x) is given by

N Z (Aei,e;) (e'ie, +ig,) -
£+1<i,j<n
The above indicates that the action of A is unchanged when making the pre-
ceding transformations. More generally, this transformation commutes with
the obvious action of O (n — ¢) on A’ (N;}g/X) RN (N;*(Q/X). In particular
it commutes with the action of g.
As we did after Definition 11.1.1, we will now use the notation

Cle;) = ei+igif 1<i <4, (13.3.3)
= el 4, if (+1<i<n.

Again we hope this notation does not cause extra confusion. Indeed for
1 < i < /,¢(e;) has no relation whatsoever with e® + i.,, while it is still its
former self for £ +1 <7 <n.

By taking (13.3.3) into account, we can then use almost the same con-
ventions as in section 11.1 for the definition of Try and of Try . In this
definition, only the indices 1 < ¢ < ¢ deserve a special treatment. We ex-
pand the kernel r (—@Qt) (97 (y,p) . (y,p)) as in (4.8.12) while using the
transformations of Definition 13.3.1 instead of the transformations of Defini-
tions 4.8.4 or 11.1.1. We treat the ¢(e;),1 <1 < £ as a block, i.e., we forget
about the expression ¢ (e;) = e; +1.i, 1 < ¢ < £. We reduce the corresponding
expressions in normal form with respect to the i.,,1 < i < £. We eliminate
any term ultimately containing i.;,1 < ¢ < ¢, and we make the convention
that

Trg

£
Hei/c\(ei)] = (-1, (13.3.4)

while the Try of any other monomial in the et,¢(e;) will be zero. The other
variables €',ig,,1 < i </, as well as all annihilation and creation operators
for £+ 1 < <, are treated as standard operators, and they contribute to
Trg by their classical supertrace.
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Proposition 13.3.2. The following identity holds:
=42 Ty, [g Ip[*r (—Qc,t) ((g7" (w:)) (y,p))]

= Tr, [g pl*r (—ﬁc,t) (97" (w,p), (y,p))}max- (13.3.5)

Proof. The proof of our proposition is essentially the same as the proof of
Proposition 11.1.2. Under the replacements of Definition 13.3.1, for 1 <14 < ¢,
eic, is replaced by (e’ — Vtig,) (—€'/t +ic, + (€(e;) —iz,) /VE) and €'ig,
is changed into (c(€;) + ¢ (e;) + Vtie,) iz, and for £+ 1 < i < n, €', is
changed into (e’ — g, ) ic,—g,, while €z, is changed into (€' + €’ +ic,) iz, .
In particular for £+1 < i < n, e'i,é'ig, is changed into e'ie, eliz, +ic,iz,. We
deduce from these considerations that the supertrace of monomials in the
el ie,, € ig,,0+1 < i < nactingon A’ (N;(g/x) RN (N;(g/x) is unchanged
when making the above replacements. When combining the observation we
made just before (13.3.3) with the above arguments, we get (13.3.5). The
proof of our proposition is completed. O

13.4 THE LIMIT AS t — 0 OF THE RESCALED OPERATOR

Now we establish a more precise version of Theorem 11.1.3. In this version,
the O are uniform in the considered range of parameters. Strictly speaking,
this result is not needed in our proof of (8.4.7). However, the fact it is true
is useful in understanding the proof.

Definition 13.4.1. Let ﬁc be the operator
1 o 1 "
T (—AV + |p|> £ (2ig,e" - n)) F 5 (Vp + (i*R" ¥y, p))
1, R R 1 )
+ 1 <ei,z RTXej> (C(e;) +c(&)) (€(ey) +c(e)) — Jiw (VF,gF) )
(13.4.1)

[

In the sequel, we will be still more precise in our treatment of the notation
O. Indeed we use the notation O (1) to indicate a function of y,¢ which is
bounded together with its derivatives in the variable y. The same rule applies
to all the other O.

Theorem 13.4.2. Ast — 0,

Do, — P.. (13.4.2)

More precisely,

L\\b
I
[y

A (O V0 W)V, +0W)pin;Var + 0 () i)

V3O (1 + 1yl + \p|2) . (13.4.3)

“l%,
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Proof. The proof is essentially the same as the proof of Theorem 11.1.3. First
note that equations (11.1.12) and (11.1.13) remain valid. Also for 1 < i < n,
€' — e’ /\/t — \/ti., is changed into € + ig,, so that ig, (’e\i — e/t — \/1_526@) is
changed into iz,e’. This already indicates that even before making t — 0, in
the formula for @C’ , corresponding to (11.1.4), the first line is changed into

1
4h?
Also observe that for 1 <1 < £, € is changed into ¢(e;) + ¢ (€;) + Vti.,, and
for £+ 1 < i < n,into ¢(e;) + c(€;). This accounts for the first term in the
second line in (13.4.1).
As in the proof of Theorem 11.1.3, we must control the term

( AV + |p|? £ (2ig,@ n)). (13.4.4)

:FilvA (Z; X)®A (T* X)®A"(TX)®Fu
20 t,Y

We still use equations (11.1.16)-(11.1.18). This concludes the proof of equa-
tion (13.4.2). Proving (13.4.3) is just keeping track of the various terms in
the right-hand side of (11.1.4) as t — 0. O

Remark 13.4.3. It is very interesting to study directly the limit as b — 0
of the operator ‘B It has indeed the preferred matrix form, which was
already considered in [BLI1, sections 11-13] and in [B05], and which is used
systematically in our treatment of the limit b — 0 in chapter 17. From the
methods of this chapter, we find that in the appropriate sense, as b — 0, P,
converges to the operator ﬁ given by

~

P - —i (Ve, + (i"R™%y, )’

+ i <e¢,i*RTXej>5(ei)’c\(ej) - %i*w (VF,gF)2 . (13.4.5)

Recall that the superconnections A, and A_ were defined in section 2.6.
As in section 1.7, A, ; and A_ ; denote the corresponding superconnections
which are associated to the metric g7~ /t. After the appropriate rescaling of
Aiztv the operator Q was obtained in [BL095, proof of Theorem 3.16] as the

limit of these operators as t — 0. The operator Q is given by the formula

~

2
Q = _% (Vfiz + % <i*RTXyaei>> 7 <€z, *RTX6J> 8 6])

- ii*w (VF,gF)*. (13.4.6)

Note that ﬁ is obtained from Q by conjugation by I 5. When computing

the local supertrace on M, of exp (— Q), we get a correcting factor 1/ 20/2,
This is compensated by the fact that in [BL095], up to a sign which is the
same as here, Hf ¢ (e;) contributes to the supertrace by the factor 2¢/2. The
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conclusion is that the limit as b — 0 of éc)t is precisely the operator which
appears in the local index theorem for the elliptic superconnection.
In the sequel, we will also use the notation

~ ~

Peo=P.. (13.4.7)

13.5 REPLACING X BY T«X

We fix € X,. Set
Py = 20°N . (13.5.1)

Now we use the notation of section 17.4. Using (11.1.4), (13.2.3), we find
easily that the operator P, has the same structure as the operator P}, in
chapter 17, with h = /tb. We will then use freely the notation and the
estimates of chapter 17 applied to the operator P,;, while replacing h by

\/tb.
We define Py, as in (17.6.1):
Py, =Pps+ Py (13.5.2)

Let n: R" — [0,1] be a smooth function. We assume that 7 is equal to 1
on the ball {y € R",sup;<;<,, |y’| < 1}, and that its support is included in
{y € R", sup;<;<,, |y’| < 2}. Set

ay)= > nly—m). (13.5.3)
mezn
For m € Z"™, set
_nly—m)
U (y) = — W (13.5.4)

Then ¢,,, m € Z™ is a partition of unity on R™. The function Y, . 2, (y)
is periodic with periods in Z™ and also positive, so it has a positive lower
bound. It follows that if u € L? (R™ x R"), the standard L? norm of u

1/2
is equivalent to the norm (ZmEZ" [¥m (y)u\z) . Similar considerations

apply to the other norms which are considered in chapter 17.
Now we will use the results of chapter 17. The operator R was defined in
(17.5.17). Using inequality (17.5.22), we get, for b €]0,1],¢ €]0,1],s > 0,

2
—4 2 < —3/2 2
T |/¢mU|>\,sC,s+ ‘v¢mU‘ASCS + 7 / ‘me‘)\,sc,s—‘rl/ll

2

I ‘WmU‘ < CoRYmUR oy (13.5.5)

A,sc,s+1/8
Note that the constants in (13.5.5) are uniform in m € N, because for
y € T, X with |y| large enough, our operator has constant coefficients in the
variable y.
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Using the fact that [R, ¥, (y)] = O(771), from (13.5.5) we get

TR e + [VU| 72U

2 2
Asc,s A,sc,s+1/4

)
2

+ /4 ’@U

< ¢, (|RUL PR s) - (1356
A,sc,s+1/8 ‘ |>‘75°75 +7 ‘ |>\,sc,s ( )

The argument we used to prove that (17.5.21) implies (17.5.22) can be
used to show that (17.5.22) still holds. Namely, we can as well replace 1y,
by 1in (13.5.5). In particular the conclusion of Theorems 17.5.2, 17.6.1, and
17.6.3 are still valid.

Recall that the Sobolev spaces H® were defined in Definition 15.3.1. Still
observe that our base X being now R”, the embedding H*t'/4 — H* is no
longer compact.

As in Definition 17.6.2, put

Span = (P = N) (13.5.7)
The analysis for the parametrix of Sy ¢ x, which is done in sections 17.5-17.13,
is still valid, since it is of a local nature.
Remark 13.5.1. Let ® : R™ — R be a smooth function which is uniformly
bounded together with its derivatives. One such function is ®(y) = co(1 +
ly|?)Y/2. If h = \/tb, by (11.1.4) and (13.2.3), we get
ePW/hp) em*W/h = P, £ Vyn . (13.5.8)
The term Vy»® is linear in the variable p, and so it can be absorbed by
the harmonic oscillator. In particular if sup,cg» V@ (y) is small enough, we

find that the analogue of the first equation in (17.6.14) still holds. Namely,
given a € R, s € R, there exists hy > 0,C, s > 0 such that if ReA < A\,b €

}0, ]’Lo], t G]O, 1],
‘ <p>? eq)(y)/th,t’,\e_q“y)/th < Cosll<p >0y s (13.5.9)
A,sc,s+1/4 =

Equation (13.5.9) shows that the resolvent Sy » is local in y modulo expo-
nentially small errors in the parameter h, and that if |y — y'| > ¢; > 0, the
magnitude of the interaction between y and 3’ can be dominated uniformly
by e~lv=¥'l/2 for some ¢o > 0.

We shall denote by A/ ot the limit as ¢ — +oo of the operator N ct- This
limit is taken in the sense of section 17.21. As we will see in that section, ﬁmt
is given by Ait’z, which is the curvature of the Levi-Civita superconnection
over the total space of T X, which is associated to the metric gZ=X and to
the local version of the horizontal subbundle that was described in section
4.8.

Let Ky, \ n ((7,0), (2/,0')) , K§ 4 » v (2, 2) be the Schwartz kernels which
. \-N N -N
are associated to the operators ()\ - Mc)t) ) ()\ — ./\_/Oo’t) e e T, X,

we define Ui/{b,t (2, X),vf, (2/, ) as in (13.2.5), (13.2.6), by making the obvi-
ous replacement. Similarly, if z € X, we define wi/zb PN (z, \) ,w(lht’N (z,\)
as in (13.2.10). Recall that 8 > 0 is fixed.

-1
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Proposition 13.5.2. For N € N* large enough, there exist « > 0, C >0
such that for b €]0,1],t €]0,b°],\ € v,z € X,

‘w\/zb,t,N (l’, >\) - wi/Zb,t,N (l’, A)‘ S Cta7 (].35].0)
|w07t7N (1'7 >‘) - w(l),t,N (Jf, )‘)| < Ct.

Proof. We use the notation in Theorem 17.22.2. Take z € X,. Consider a
smooth section d whose support is included in a small compact neighborhood
K of x. We may and we will assume that p = 1 on a neighborhood of K. Set

e= (A - Mcyt)_N d. (13.5.11)

Let ¢ (2') : X — [0, 1] be a smooth function which is equal to 1 on K, whose
support is included in (p = 1). By Theorem 17.22.2 and by Remark 17.22.3,
if NN e N,M €N,

11— @) ellynr < Cnroat™" dll, _ s - (13.5.12)
Let f be defined by the equation
— \N
f=d— (A - Mgt) de. (13.5.13)

Since the support of d is included in the support of ¢, the same is true when
replacing d by f. By (13.5.11), can rewrite (13.5.13) in the form

f= (/\ - ﬂc,t)N (1-¢)e. (13.5.14)

The coefficients of the /M\Qt are singular as b — 0, with a singularity which
is at most 1/b. Since t < b°, by (13.5.12), (13.5.14), given L € N, M € N,

1A llar < Croart™ Nl _ar - (13.5.15)

We can consider ¢e, d, f as being defined on T, X. Since the support of ¢
is included in p = 1, by (13.5.13), we get

AN
(A - Mc,t) de=d— f, (13.5.16)
and so
. \-N

o= (A-A..) (-1, (13.5.17)

Moreover, (13.5.17) can be written in the form

. \-N . \-N . \-N

¢ <>\ - Mc,t) d— ()\ - /_vc,t) d=— (A - /Mc,t) f. o (13.5.18)

Assume first that the base S is reduced to a point. We claim that the ob-
vious analogue of the first inequality in (17.21.24) (which is part of Theorem
17.21.3) holds when replacing L. by N, ;, so that given £ € N, for N € N*

large enough,
. \—-N
H(A—MCJ) <Ch. (13.5.19)
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The difference with the proof in Theorem 17.21.3 is that R™ is noncompact.
However, the techniques of the proof of this theorem can be adapted without
any change. Since Mgt = tMC/m, for N € N* large enough, we get from
(13.5.19),

H < Cnt™V. (13.5.20)
¢

By (13.5.15), (13.5.18), (13.5. 20) we deduce that if ¢ is a smooth function
whose support is a small neighborhood of z,

14 () (Koo = K3 n) ((w0) (00 0 ()|, < Onet™'. (13.5.21)

Of course all the constants are uniform in ¢ € X. By (13.2.10) and (13.5.21),

we get the first identity in (13.5.10). The same argument can be used for the
second identity.

In the case where S is not reduced to a point, using (2.8.6), the above

proof extends in full generality. O

13.6 A PROOF OF (13.2.11)

In this section, we establish (13.2.11), which will conclude the proof of (8.4.7).
By (13.5.10), we find that to establish (13.2.11), it is enough to show that

‘wi/fb,t’N (z,A) — wo o (T, A)‘ < Cn (t* +0b%). (13.6.1)
By the proof of Proposition 13.1.1, we know that
‘wi/fb,t,N (z,A) = wo . (T )\)’ < COnt™b". (13.6.2)

Recall that the operator BC was defined in Theorem 13.4.2.
Definition 13.6.1. For N € N,z € X, let Ky 0N ((y p), (Y, p")) be the
Schwartz kernel associated to the operator ()\ - ﬁc,o) . For N € N large
enough, if v € X,y € NXQ/X,xv set

Ty (7,9, A) = £ (=1)" ¢ (N = 1)!

/ Tr, [g P> Kooan ((4,p) (gy,gp))] dp. (13.6.3)
X
For x € X, put
mx N = [ e (13.6.4)
Nx,/x
_ N—N
Similarly let K n (y,vy") be the Schwartz kernel associated to ()\ — 2)
For N € N large enough, set
n-— . —
To.n (2,9, A) = o (N — 1)!§Trs (9K~ (v, 9y)] - (13.6.5)

Put
Wo,N (2, A) :/ Vo, (2,y) dy. (13.6.6)
Nxg,/x,x
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Theorem 13.6.2. For N € N large enough, forx € X4,y € Nx,/x.2, A €7,
ast— 0,

=02yl (x, \/Ey) k (x, ﬁy) — Ty N (7,9), (13.6.7)
£ =024, (x \/Ey) k (x \/fy) — To,N (7,Y) -

Moreover, given m € N, there exist C > 0,a > 0 such that for b €]0,1],t €
]Oa 1],.13 S Xgay S NXQ/X,asv ‘y| S ﬂ/\/g;

0 (96 \/Zy) k (x ﬂy) — Ty N (x,y)‘ < C(1LH+y) ™t
(13.6.8)

t(nfo/%&t,z\/ (CU, Vty, )\) —Vo,N (xvy)’ <O+ [y)) ™t

Remark 13.6.3. We will show how to derive (13.6.1) from Theorem 13.6.2.

Indeed using (13.6.7), (13.6.8), we find that as t — 0,

w:\l/zb)t’N (x,\) = Wy, N (x,A), w(l,’t)N (x,\) = won (x,N). (13.6.9)

More precisely, the same references show that
]wlﬂbw (z,\) — Ty (@, )\)’ < o, (13.6.10)
’wé)t’N (x, ) —wo, N (, )\)| < Cte.

By (13.6.2) and (13.6.10), we get

[@o,n (2, \) — Wo,n (2, )] < Cy (£740* +1%). (13.6.11)

Since the left-hand side of (13.6.11) does not depend on ¢, we find that there
exists a > 0 (possibly different from the one in (13.6.11)) such that

@, (2, A) — To,n (z,A)] < Cnb™. (13.6.12)

Incidentally note that (13.6.12) can be given a simple direct proof.

By (13.6.10) and (13.6.12), we get (13.6.1). This concludes the proof of
(8.4.7).

So now we concentrate on the proof of Theorem 13.6.2.

13.7 A PROOF OF THEOREM 13.6.2

Note that the second sort of inequalities in (13.6.7), (13.6.8) refers to classical
elliptic relative index theory for which such results should be well known.
Note that using the arguments we gave in chapters 5 and 17, we find that
as b — 0,

Vaan (@Y) = voun (@), Toon (w,y) = Ton (z,y).  (13.7.1)

By (13.7.1), the second lines in (13.6.7), (13.6.8) follow from the first lines.
So we concentrate now on the proof of the first identities in (13.6.7), (13.6.8).
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We start from equation (11.1.4) for @c,t. In the sequel we will also use
equation (11.1.4) for @Cyt, which is an operator of the same type as @c,t'
Theorem 13.4.2 gives us the asymptotic expansion of the operator éc’t as
t—0.

Set

1 .
o =5 (~AV+ P Fn) g (13.7.2)

The operator oy is self-adjoint and nonnegative. As explained in the proof
of Theorem 13.4.2, the critical fact in %C , s that the first line in equation

(11.1.4) for @C’t contributes to ﬁc)t by the operator o/, /2b* which does not
depend on t. Moreover, even before taking the asymptotic expansion, the
coefficient of 1/bin P, , is an operator which maps ker o, into its orthogonal.
Indeed this component either depends linearly on p or contains one of the
operators Vg, or it contains an odd expression of the type pipjvgk.

In equation (13.4.1) for ﬁc, the term :Fﬁ (Vp + <i*RTXy,p>) appears.
This term raises an extra difficulty because it depends linearly in the vari-
able y, and so it is not controlled any more by the estimates which are used
in chapters 15 and 17. However, such a difficulty already appears in stan-
dard local index theory for elliptic Dirac operators. This should be clear by
equation (13.4.5) for P, which now depends quadratically on y.

In the case of one single fiber, equation (4.8.4) makes clear that for |y| >
4ng large enough, the metric g”=¥ is flat on 7, X, and so the corresponding
fiberwise curvature vanishes for |y| > 47,.

In the case of a family, the argument is subtler. Indeed the construction
of gT=X and of the new T M, given in section 4.7 also ensures that the full
curvature tensor R still vanishes for |y| > 4np.

To control the dependency in y, we will use the same method as the one
which was developed in [BL91, subsection 11k)] in the context of elliptic
local index theory. Indeed the above support conditions will permit us to
introduce L? norms whose weight takes the degree into account.

Definition 13.7.1. For 0 < o <m,0< ¢’ </, let Ig"’l be the vector space
of L? sections of
A7 (T7,8) BAT (T;X,) BN (Nk, 1 ) BN (T; X) B2 (T, X,) BF,

over T, X.
If s €I, set

[slo, = /T . Ek (1 +p (\/%y/2) \yI)Q(mH_J_J/) dy. (13.7.3)

Note that we have included ¢ (T, X,) in Definition 13.7.1 because of the
inclusion of the extra ¢ (e;) = ¢; +4,i,1 <4 < £ in the construction of éc,t‘

By (4.8.3), p (V/ty/2) is equal to 1 when v/ [y| < 4no, and so it is equal to
1 on the support of p (v/ty). As in [BL91, Proposition 11.24], we find that
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for 1 <1i,5 </, the operators
i j i 3/2
1\/5\y\§4no ly|e'e?, 1\/f|y\§4no ly Ve, 1\/f|y|S4no ly|t / e, (13.7.4)

are uniformly bounded. In (13.7.4), one can replace any of the e by a f¢, 1 <
a < m and still get the same boundedness result.

In our context, over T, X ~ R", one can then develop the same argu-
ments as in chapters 15 and 17. Note of course that T, X is noncompact,
whereas in these chapters, we assumed X to be compact. To compensate for
noncompactness, in all the norms used in these chapters, we introduce the
weights in (13.7.4) instead of the classical unweighted L? norms. Of course
the analysis in the variable p remains unchanged. In particular we define the
norm [|A|, as in (17.21.22), by changing the L? norm as indicated above.

Definition 13.7.2. For a € R,y,2z € R", set
Max(y)=1+a>+y—z|°. (13.7.5)
Put
P, =md/2P, m; /2 (13.7.6)
Now we establish an analogue of the first inequality in (17.21.24).

Proposition 13.7.3. There exists by €]0,1] such that given ¢ € N, there
exist N € N,Cp > 0 for which if b €]0,b],t € [0,1],A € 7,2 € Xg,a €
R,y,z € R, then

—)\

‘ Aaz

<Cy. (13.7.7)
L

—c,t

Proof. For a = 0, the proof of (13.7.7) is the same as the proof of (17.21.24)
in Theorem 17.21.3. Indeed the main point is contained Theorem 13.4.2 and
its proof. As was observed after (13.7.2), the coefficient of 1/b* in P, is the
operator o/;, which does not depend on ¢. Combining this observation with
the boundedness results in (13.7.4) leads easily to a proof of (13.7.7) when
a=0.

Clearly,

~a,z

z =~ a TX,— _
P —Bc,ti—%max Ty - 2), p>. (13.7.8)

The functions a (y — z) /M, . are uniformly bounded together with all their

a

TX,—1
CT— <gﬁy’ (y—2) 7p>
maps ker .y in its orthogonal. Therefore the operator in (13.7.8) still has the
preferred matrix structure which is needed in proving the results of chapter
17. The same methods lead to the estimate (13.7.7) also in the case of an
arbitrary a € R. O

derivatives in the variable y € R™. Also the term

Proposition 13.7.4. For o' = 2, for any L € N, there exist C >0, N € N
for which for any y,y',p,p’ € R™, k € N and all multisndices « such that
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la| + k < L, for b €]0,bo],t € [0,1], X € ~,then

N N -N
<p>t<p <y -y >t op, <(Ec7t - )‘) - (2070 - )‘) )

(y,), (. p))| SCt<y>". (13.7.9)

Proof. Recall that the operator ﬁz: was defined in (13.7.6). We claim that
for a’ = 2, given £ € N, there exist ¢/ € N,Cy; > 0 for which for any
b €]0,bgl,t € [0,1],a € R,z € R",
~a,z -1
(B =) o
¢

-1
7@//2 ~a,z a//2
Myro (Per —A) mylou

< Cellully

Lec,t

’ ~a,z -1 ~a,z -1
m;/(,LO/Q ((Ec:t - )‘) - (20:0 - )‘) )U
Indeed for ¢ = 0, the first two inequalities in (13.7.10) follow from the ana-
logue of equation (17.21.23) in Theorem 17.21.3, and from the conjugation
argument based on (13.7.8), which was used earlier.

Now we prove the first two equations in (13.7.10) for arbitrary ¢ € N. Let
I, be the direct sum of the vector spaces considered in Definition 13.7.1. As
in (17.2.6), we split I into

I, = kero/, @ kera/f. (13.7.11)

< Colully (13.7.10)
4

< Covt|uly -
‘

~ —1
We will use the formal (2, 2) matrix expression for (BM - )\) , which is

given in (17.2.12) and (17.21.2), replacing h by b. In particular, we use the
notation in (17.16.1), i.e., we set

~ 1
Onin = PL (¥Be,—2)  PL. (13.7.12)

Also we define Ty » as in (17.17.3). The other notation will be modified
in the obvious way, by replacing the index h, A by b, ¢, A\. Then we get a strict
—1

analogue of equation (17.21.2) for (ﬁc)t - )\) . Note that these equations

are also valid for ¢ = 0.
Put
1

Jogr =i+ (Tyrp2x —A) Py (13.7.13)
As in (17.21.36), we get
~ -1
<Ec,t - )\) = Jpi.x +ORp ¢z (13.7.14)

The semiclassical norms || [|;2, .. , are defined in equation (17.4.5), which
is part of Definition 17.4.1. We make the obvious extension of these norms
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in our context. Similarly we define a family of operators R¢ the way we do
before (17.21.21), and we also obtain corresponding norms || ||,. To establish
the first two identities in (13.7.10), we will use the commutation estimates
contained in (17.21.46), (17.21.47), whose proof in the present context is
strictly similar to the proof which is given in chapter 17. Also note that if
Qe R,

||QquQ>\,SC,]\/[ < Cy ||“Hz+2M- (13.7.15)
Finally, note that for £ € N,
lull, = > 1Qully2x seo- (13.7.16)
QEeR!

By using the analogue of the commutator estimates in (17.21.46), (17.21.47)
and also (13.7.15), (13.7.16), we obtain the first two inequalities in (13.7.10)
for arbitrary ¢ € N.

Now we establish the third 1nequahty in (13.7.10). Equation (13.4.3) gives

the precise form of Pct - P 0 By conJugatlon by ma/f, we obtain the
corresponding asymptotics of Bc’t - 20,0‘ The right-hand side of (13.4.3) is
slightly modified by the conjugation. Indeed éc,o is replaced by ﬁjg, and

the term which appears as a factor of \/T{ contains an extra O (y) p.
Put

~a,z -1 ~a,z —1
Doiy = (Pc,t - A) - (EC,O - A) . (13.7.17)
Then
~a,z -1/ a2z ~a,z ~a,z -1
Dea=— <2c,t - )‘) (Bc,t - PcO) (20’0 - )\) . (13.7.18)
To establish the third inequality in (13.7.10), note that the first two in-

equalities allow us to handle conjugation by m;,‘)lo/ 2, Using the analogue of

equation (13.4.3) for éz: - ﬁﬁg , which was described above, and also the
first inequality in (13.7.10), we see that to establish the third inequality in
(13.7.10), only the term in the right-hand side of (13.4.3) which contains as
a factor v/1/b is potentially troublesome. We will denote this term by Agf .

It maps ker o/, into ker o/f-.

~a

2 -1
Now we write the analogue of (13.7.14) for <BC:t — )\) , and we obtain

o -1 a,z
(Bc,t - )‘) = Jb At bRb A (13.7.19)
Note that
TpinAt Jyon = 0. (13.7.20)

Using (13.7.18)-(13.7.20), we find that in the right-hand side of (13.7.18),
the singularity 1/b in A disappears.
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Moreover, when taking o’ = 2, by the analogue of (13.4.3), we get
ma (Bey - Ps)
_ Y om)$ Vi ?
= X (0T +0 (1) V,+0 (1) pip; Ve + O (1)) + 3O (1+[pl*) .
(13.7.21)

Using the first two estimates in (13.7.10), and also (13.7.17)-(13.7.21), we
obtain the third estimate in (13.7.10).

Note that in the estimates in (13.7.10), there is a loss of derivatives. We
will now show that this loss can be compensated using an interpolation
argument.

Take a € R. We claim that for N € N large enough the obvious analogue

of (13.7.10) holds when replacing (ﬁc’t - )\) by (Pct - )\) . Indeed

this is obvious by iteration of the inequalities in (13.7.10).
For N € N, set

N ~a,z -N ~a,z —N
DiiN = (gt - A) - (20’0 - A) . (13.7.22)
Using (13.7.18), we have the obvious equality
~a,z -(N-1)
a,z, N ’ a,z
Dc,t,/\ = (Ec,t - )‘) Dc [N
(N-2) ~a,z -1
+ (B -A) U pE (Blo-A) 4 (13.7.23)
By proceeding as in Proposition 13.7.3, for p € N large enough,
(@2 -2) i
Consider ¢/ € N which is associated to ¢ = 0 in (13.7.10). Using (13.7.10),

(13.7.24), for a given £ > ¢, for ny,n_ € N,ny +n_ = N,ny > N; € N,
we get inequalities with constants depending only on ¢,n ,n_:

g C,. (13.7.24)

—a /2 ~a,z —n+ a,z ~a,z —n—
m, 73C : — A Dz (Peo — A U

1

<C Hm_a /QDng (7/5(:; — )\)_ T

—L

<C’Hm “/2D6M<73Z”§—/\)7 u

0

< Vi H (Blo-») " w

L sovi H (Brs-)

< C\/EHUH—Z‘
¢
(13.7.25)

Moreover, for ny < Ny,ny +n_ = N — 1, using the second inequality in
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(13.7.10), there is ' € N depending only on ¢ such that

oty (B2 =2) " o (B )

)4

<Cp

m_,ao/2D‘le>\ (733; )\)7 Y

(13.7.26)
[/
By the third inequality in (13.7.10), there is ¢” € N depending only on ¢/,
and so depending only on ¢, such that

—n_ —n

DI/ (ﬁjg - )\) ul| <Ot H (ﬁig - )\) Y
Z/ Z//

Finally, since n_ > N — 1 — ny, by (13.7.7) in Proposition 13.7.3, by taking
N € N large enough and still depending on ¢, we get

(53"
By (13.7.26)-(13.7.28), we obtain

i (B ) i (B )

(13.7.27)

< lull_, - (13.7.28)
Z//

< CVt|ull_,. (13.7.29)
l

If n_ < Ny, using the nonconjugated form of the second inequality in
(13.7.10) and the third inequality in the same equation, given ¢ € N, there
is ¢/ € N such that

(Boe=2) " ma PP < OVl (13.7.30)
The dual equation to (13.7.30) gives
HDC t, /\m;/ao/2 (Bct - )\)7 u < CoVt flull_,- (13.7.31)
2

Conjugating D7y by m;%/ ? does not modify the estimates, so that by
(13.7.31) we get
Hma /2DCM (ﬁc,t - A)f Cu| <Ot _,. (13.7.32)
—q
Take ny € N so that ny +n_ = N — 1 as in each of the terms in the
right-hand side of (13.7.23). Since n_ < Ny, then n,. > N — 1 — N,;. We can
then take N large enough so that ny > Nyyp. Using (13.7.32), we get

Hm“ P(Ber-2) D (Bl w

J4

< Cy||m <Ct|ull_,. (13.7.33)
—p
By (13.7.23), (13.7.25), (13.7.29), and (13.7.33), given £ € N, for N € N

large enough,

—a'/2ya,z S&% —n-
UL ,0 Dct A <Pc,0 - )‘) U

Hm;‘f{,”DngNuH < Cit|ull_, - (13.7.34)
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By taking ¢ € N large enough in (13.7.34), we deduce from (13.7.34) that
there exists N € N such that under the conditions given in the statement of
our proposition,

a/2 _ _
Ma,z (y) [ ) N ) N
<p>k<cp Sk maTy/) e ((2&,s - )\) - (20,0 - )\)

(4,p), (0 P)| < CVIM®/2 (). (13.7.35)

Since the constant in the bound in (13.7.35) is independent of z, we are free
to take z = y/. For a given value of a € N, (13.7.35) implies (13.7.9). The
proof of our theorem is completed. O



Chapter Fourteen

The integration by parts formula

The purpose of this chapter is to apply the basic techniques of the Malliavin
calculus to the hypoelliptic diffusion which is associated with the hypoelliptic
Laplacian.

This chapter should be put in historical context. Malliavin invented his
calculus in [M78], as a technique to derive integration by parts formulas with
respect to the Brownian measure. He showed in particular that solutions of
stochastic differential equations were accessible to his calculus. One main
application was the proof by Malliavin of the regularity of the heat kernel
associated to a second order hypoelliptic differential operator of the form
considered by Hormander [Hor67]. Malliavin’s analysis was completed by
Stroock [St81b, St81a], who proved smoothness of the heat kernel in great
generality.

Another approach to the Malliavin calculus was given in [B81b] using the
Girsanov transformation to obtain a direct proof of integration by parts,
which itself is related to the Haussmann representation of Brownian martin-
gales [Ha79].

The way the Malliavin calculus is applied to hypoelliptic diffusions is by
showing that a map ® from classical Wiener space to a smooth manifold X
is a.s. nonsingular, and more precisely by obtaining proper estimates on the
inverse of the Malliavin covariance matrix ®'®'*.

In [B84], a geometric form of integration by parts for an elliptic diffusion
was given. In fact in the elliptic case, the transversality of the map & is ob-
vious. In [B84], it was pointed out that the same situation could occur with
mildly hypoelliptic diffusions. This will turn out to be also the case here,
which explains why the sophistication in the arguments can be kept at a
minimum. In addition, the objects which appear in the proof of the integra-
tion by parts formula are intimately related to the second order differential
operators on the circle, which were considered in chapter 7.

The reader should be familiar with the theory of Brownian motion and
stochastic integration.

This chapter is organized as follows. In section 14.1, we give the main
arguments in [B84] from which one can derive the integration by parts for-
mula for geometric elliptic diffusions, which are associated with the standard
Laplacian of a Riemannian manifold X.

In section 14.2, the case of our hypoelliptic diffusion is considered. We
establish a corresponding integration by parts formula.

In section 14.3, we briefly show how to derive estimates on the hypoellip-
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tic heat kernel from the integration by parts formula. Although the proof
of smoothness of the heat kernel is not developed in detail, it should be
accessible to any reader with a reasonable knowledge of the subject.

In section 14.4, we give a path integral representation for the gradient of
the logarithm of the heat kernel, similar to the one given in [B84] in the
elliptic case.

14.1 THE CASE OF BROWNIAN MOTION

In this section, we recall the main results in [B84] on the integration by
parts formula. We make the same assumptions as in section 1.2 and we use
the corresponding notation. In particular S denotes the Ricci tensor of the
Riemannian manifold X.

Let AX be the Laplace-Beltrami operator acting on smooth real functions
on X. Then A¥X is the restriction to smooth functions of —¥.

Let P 2 be the O(n) principal bundle of orthonormal frames in TX.
Let (6,w) be the canonical 1-forms on P. The Maurer-Cartan equations on
P can be written as

do = —w N8, dw=—wAw+ (14.1.1)

We will navigate freely between intrinsic tensorial objects on X and their
equivariant representations with respect to the principal bundle P.

Take z € X. Recall that T, X is a Euclidean vector space. Let s € Ry —
wg € T, X be a Brownian motion. Given the choice of an orthonormal basis
in T, X, it will often be convenient to consider w. as a standard Brownian
motion with values in R". Let s € Ry — z; € X be the curve in X,
starting at « at time 0, whose development in 7, X is precisely ws. Then z.
is a Brownian motion on X. Equivalently, if 70 € Hom (7, X, T,, X ) denotes
parallel transport with respect to the Levi-Civita connection, then z is a
solution of the stochastic differential equation in the sense of Stratonovitch,

@ = 70, (14.1.2)

S

Note that equation (14.1.2) makes sense although w. is a.s. nowhere differen-
tiable. The theory of stochastic differential equations is precisely developed
to make sense of an equation like (14.1.2).

Let P, denote the probability law on C (R4, X) of the process x..

Let hs be a bounded adapted process with values in R"™, and let As be
a bounded adapted process taking values in antisymmetric (n,n) matrices.
Now we describe the integration by parts formula of [B84, Theorem 2.2].
Let dw be the It6 differential of w., as opposed to wds, the Stratonovitch
differential of w..

For ¢ € R, consider the stochastic process,

t t
wf:/ eMS(swer/ Chds. (14.1.3)
0 0
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Then using the Girsanov formula as in [B84], we know that the probability
law of w’ is equivalent to the law of w., with an explicit density.

In (14.1.2), we replace w. by w’, and we calculate the differential of z.
with respect to £ at £ = 0. This computation is done as follows. Consider the
stochastic differential equation on the processes (s, @) along the path xg,

1
a9 = (—Esxﬂ + h) ds + (w+ A)dw, dw=-Q(0,w)ds, (14.1.4)

’19(0) = 0, wo — 0.

The integration by parts formula of [B84, Theorem 2.2] asserts in its sim-
plest form that if f: X — R is a smooth function, then

t
B U w000 = B o) [ (ot (a1s)
0
Consider the stochastic differential equation,
1
di = (—Esxﬁ + h) ds, dw = —Q (9,0) ds, (14.1.6)

9(0) =0, wo = 0.

Observe that (14.1.6) is a special case of (14.1.4), by simply taking A = —w.
Then the key observation in [B84] is that (14.1.5) still holds.

Let now Y € T, X. Let ¥¥ be the solution of the differential equation
along x.,

1
dyY = —ESXﬂYds, I =Y. (14.1.7)
Then by [B84, Theorem 2.14], we get
Vy EP [f(x0)] = BP [(f'(2:),9))] - (14.1.8)

Let B : Y — 9Y be the obvious linear map.
Let s € [0,1] — @5 € R be a smooth function such that ¢ = 0,91 = 1.

Put
-y

V, = s0) . (14.1.9)
Then 7, is a solution of equation (14.1.6), with h, = Ly 0¥ By (14.1.5),
(14.1.8), we get

Vy B [f(x;)] = E Uotf(xt)/ot <%¢g/tﬂ§,5w>} : (14.1.10)

Let p; (z,y) be the smooth heat kernel associated to etA /2. Given Yy €
X, let ng)y be the probability law of the Brownian bridge connecting x at
time 0 and y at time t. The probability law Pgﬁ’y is obtained via a regular
disintegration of P, with respect to xy = y. By []3847 Theorem 2.15], under
P! w. and z. are semimartingales. Using (14.1.10), we get, as in [B84],

ERT

t

. 1 ~

M = FPey {/ —gpls/tES(Sw] . (14.1.11)
Dt (xvy) 0 t
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Note that in [B84], the choice p; = s was made. However, it should be
pointed out that the choice of a function ¢, whose support is included in
[0,a] with a < 1 is also very interesting, since estimates are much easier in
the stochastic integral in the right-hand side of (14.1.11) if one stays away
from s =t.

Now we follow [B84] to explain how (14.1.11) can be given a direct inter-
pretation. The Weitzenbock formula in (1.2.13) asserts in particular that we
have the identity of operators acting on smooth 1-forms,

0% = —AH + 5%, (14.1.12)
By applying the de Rham operator dX to the heat equation
0 1
—n, — ZAXp, = 14.1.1
5abs(®:y) = 5 AT ps(2,y) =0, ( 3)
we get
0 1_x
£Vps(x,y) + §D Vps(z,y) = 0. (14.1.14)

In (14.1.13), (14.1.14), the operators AX 01X act on the variable x.

Now using the Feynman-Kac formula, one verifies easily that under P, for
s <t, EsVpi_s(zs,y) is a martingale. Therefore, for s < ¢, ES%(QUS, y) is

a martingale with respect to Pijy for s < t. Finally, as explained in [B84, eq.

(2.87)], under P!, W, = ws — [ Vp’::“ (2, y)du is a Brownian martingale.

Using the trivial

¢
1
/ ?p;/tds =1, (14.1.15)
0

we find that (14.1.11) is a consequence of the above considerations.

Remark 14.1.1. This is a simple remark for the experts in the Malliavin
calculus. Observe that if k is a bounded adapted process, the solution of

0=k, 6o =0 (14.1.16)

is also a solution of (14.1.6) with h = $5%0 + k. If k is a constant ko,
then 0, = tkg. In particular for ¢ > 0, the map h — 6, is surjective. This
is another version of the invertibility of the Malliavin covariance matrix,
which is obvious in this case. We will extend this remark to the case of our
hypoelliptic operators after equation (14.3.7).

14.2 THE HYPOELLIPTIC DIFFUSION

Recall that H = [p|® /2. For ¢ € R*, ¢ = +1/b2,b > 0, we consider the second
order operator on T*X,

1
L.= EAV — V5 + cVyn. (14.2.1)

The operator % — L, is hypoelliptic by [H6r67].
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We use the same notation as in section 4.7. Take z = (z,p) € T*X.
Consider the stochastic differential equation for the process z; = (xs,ps) €
T*X,

&= ep, p=—cp+ 70w, (14.2.2)
Tog =1, Po = p-.
We can rewrite (14.2.2) in the form
i=c(—2+71w), (14.2.3)

a second order differential equation already considered in [B05, eq. (0.11)].
Again (14.2.2), (14.2.3) have to be properly interpreted in the sense of
Stratonovitch. Let P, be the probability law on C (R, T*X) of the process
z.. Incidentally note that formally, when making ¢ = co, equation (10.2.20)
restricts to the equation (14.1.2) & = 724, and when making ¢ = 0, (14.2.3)
restricts to the equation of geodesics & = 0.

We will write a formula of integration by parts with respect to the new
process (z.,p.). As before, we replace w. by w’ taken as in (14.1.3), and we
calculate the differential of (x.,p.) with respect to £ at £ = 0. Set
9
e
In the sequel, we use the notation J,J instead of D ot [])Ds J. Then by the
first equation in (14.2.2),

J, = (14.2.4)

T Dps
Js = . 14.2.5
Y ( )
By the second equation in (14.2.2), we obtain
]
J+ed+ R (J,i) i = +c <h+(A+w) df)
&= R"™ (&,J), (14.2.6)

J():O, j():O, WOZO.

Let g : T*X — R be a smooth function on 7% X with compact support.
Then using integration by parts on Wiener space as in [B84], we get

<dg (xtvpt) ’ (Jtv %) >

Consider now the differential equation

EFew = Efer {g (ze,pt) /Ot <h,5u)>] . (14.2.7)

J+cJ+ R (J,4) & = ch, w=-R"™(J,1), (14.2.8)
Jo=0,Jy=0, @y = 0.
Then (14.2.8) is a special case of (14.2.7), by taking
A=-—w. (14.2.9)

Note that taking into account what we said after (14.2.3), for ¢ = 0, (14.2.8)
is just the equation for Jacobi fields. Recovering equation (14.1.6) for ¢ = +00
is subtler and will not be considered here. Then equation (14.2.7) still holds.
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14.3 ESTIMATES ON THE HEAT KERNEL

Let h be an adapted process. Consider the differential equation

J+cJ + RTX (J,4) & = ch, (14.3.1)
Jo=0, Jo=0.
Let s € [0,1] — s € R be a smooth function such that
Yo =y =0, Y1 =1,94 = 0. (14.3.2)
A special case of such a function is just
s = 5% (3 —25). (14.3.3)
Set
P, =8> (=1+s). (14.3.4)
Then
Do = =0, ¥y =0,4; = 1. (14.3.5)

We claim that for ¢ > 0, the map h — (Jt, Jt) is surjective. Indeed given
A BeT,X, set

Js = /(bs/tA"’_tas/tB- (1436)
Then
(Jt,jt) — (A, B). (14.3.7)

Moreover, J; is a solution of equation (14.3.1), with an h which is explicitly
determined from the equation. Note that estimating h so as to prove the
proper estimates on the objects appearing in the integration by parts formula
is very easy in this case.

Again the expert will notice that what we just established is the invertibil-
ity of the Malliavin covariance matrix. We should stress that this invertibility
is based on trivial considerations on differential equations, and does not rely
on sophisticated probabilistic arguments. We are therefore very far from gen-
eral hypoelliptic diffusions such as the ones considered by Malliavin [M78],
and very close to the situation considered in [B84, subsection 1c)]. Indeed
the same arguments as in [B84, Theorem 1.10] lead directly to the invert-
ibility of the Malliavin covariance matrix, in the context of the deterministic
Malliavin calculus of [B84].

Given A, B € T, X taken as before, we can then use the integration by
parts formula (14.2.7) with the above choice of h. Let Z be a smooth vec-
tor field on T* X, which is bounded together with its derivatives. By pro-
ceeding as Malliavin in [M78] and in [B81b], which involves a slight exten-
sion of the above integral by parts formula, we ultimately obtain a formula
for EPe» [Zg (x4 ,,)] in terms of the expectation of a quantity where only
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g (x4, pt) appears. By iterating these computations, if Z1, ..., Z,, are smooth
vector fields on T* X, we obtain a corresponding formula for

EP=r [Zy ... Zmg (zi,p1)] -

So we find that this expectation can be viewed as the integral of g with
respect to some measure.

We can then deduce that there is given z = (z,p) € T*X, exp (tL.) is
obtained via a smooth kernel ¢; (z, 2") with respect to the symplectic volume
dvr+x. The above considerations also lead to estimates on the heat kernel
and its derivatives in z’. Joint smoothness in z,z’ also follows from the
previous considerations, as we will briefly show in the next section.

14.4 THE GRADIENT OF THE HEAT KERNEL

By (2.1.2), TT*X = 7* (TX & T*X). Also we identify T*X to T X by the

metric g7X. Take Z = (Y,Y’) € T,T*X. Consider the differential equation
J? +¢eJ? + R™™ (J17,4) & = 0, (14.4.1)
Jo=Y,Jy=Y".

Then by proceeding as in [B84, Theorem 2.14] and using the same techniques

as before, we get
J,
<g’ (ze,pe) , (Jt, f) >] . (1442

Vv o B (g (z,p)] = E

Set
T2 =y J?. (14.4.3)
Then 75 is a solution of (14.2.8), with h = hZ given by
z H/t z 2wl/t iz //t z
nz _ Vst s/t j s/t 7z, 14.4.4
Ct2 S + ct S + t S ( )
By (14.2.7) and (14.4.2), we get
t
V(yy//c)EPx*P l[g (z¢,pt)] = EPer {g (xt,pt)/ <hZ,5w>} . (14.4.5)
0

Recall that ¢ (z,2'), 2,2’ € T*X is the smooth heat kernel for exp (tL.)
with respect to the symplectic volume dvpsx of T*X. Observe that

q (2,2") = /*X Qry2 (2, 2") qryo (2", 2") dvp-x (7). (14.4.6)

Now using the theorem on support of Stroock and Varadhan [StV72], it is not
difficult to show that for any s € R’ , the support of the probability measure
gs (z,2") dvrx (2") is the full T*X. Taking adjoints, the roles of z and z”
can be exchanged. From (14.4.6), we conclude that ¢; (z,2’) is everywhere
positive.
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If 2,2/ € T*X, let P;Z, be the regular conditional law of the process z.
under P,, conditioned on z; = z’. In principle the disintegration of P* with
respect to z; only exists 2z’ a.e.. However, by proceeding as in [B84, chapter
2], this construction can be done smoothly for every z’ € T* X, by using the
h-process associated to the smooth kernel ¢; (z, 2 )

Let Fs, G5 be the linear maps ZeT.T*X - J2 €T, X, ZeT.T*X —
JZ € T,.X. Their adjoints Fy, Gy map T, X into T,T*X. By (14.4.4),
(14 4.5), we get

v /e B ! t t ;l ¢s g
v,y /o)t (%, 2") _ gPL / /t JSZ 4 s/t “Ys/t JZ /tJSZ,&Us .
@ (Z, Z/) 0 ct? ct t
(14.4.7)
Equivalently,
V.. c 5 ! t t ;l ; - 2 ; ~
M:E%-z/ / L ) B LG ) s,
@ (Z, Z/) o ct? t ct
(14.4.8)

We will give an interpretation of (14.4.8) similar to the one in (14.1.12)-
(14.1.15). Indeed we start from the analogue of equation (14.1.13),

%qs (Zv Z/) — Leqs (Z, Z/) =0. (1449)

In (14.4.9), the operator L. acts on the variable z. Now we will use the results
of chapter 2 with F' the trivial line bundle. By applying the d”” X operator
0 (14.4.9), and using the fact that —L, is the restriction to functions of the
operator 243 ., we get

%VqS (2,2) + 243 1.V, (2,2) = 0. (14.4.10)

Still the operator Ai,HC acts on the variable z.
Using Itd’s formula, we find easily that under P

— s VV _ .
rocess Wy = Wg — dt—u (., 2") du is a Brownian martingale. Now we
0 qt ?

use (2.2.3) and the Weitzenb6ck formula of Theorem 2.2.1 for Ai’HC. We
trivialize TX ~ T*X along x. by parallel transport with respect to the
Levi-Civita connection. Then by Itd’s formula, we find easily that under
P,, for s < t, F,vH Gi—s (2s,2") + 1G VVai_s (zs,z') is a martingale. It is
equivalent to say that if Z € TT*X under P,, for s < t,

for 0 < s < t, the

zz”

iz
<JSZ, VHq (26, 2')) + <JT, \ARE (zsz')> (14.4.11)

is a martingale. This martingale can be written explicitly as a stochastic
integral with respect to the Brownian motion w. Note that this last fact will
follow from equation (14.4.16).

Therefore under P? ,, for s < t,

z,z"

H TZ 14
<JSZ’ V qt*S (ZS,Z/)> + <(]_7 v Qtfs (ZS,Z/)> (14.4.12)

dt—s c dt—s
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is a martingale.

Take a €]0,1[. Let ¢ : [0,1] — R be a smooth function such that ¢y =
1y = 0, which is constant and equal to 1 on [a, 1]. In particular it satisfies
(14.3.2). By the above, it follows that

t ! !/
s/t z s/t iz s/t 17 1
J, J, ——JZ7, dws =
/0 < ct? ¢ O >] a (2,2')

t by 200, ., Ve
/< ILyZ 4 t/tJf+ t/tJf,qut,s(zs,z/) ds|. (14.4.13)
0 C

EF

ET-

ct?

Let T, be the differential operator

D? D TX / on
TC——<D 2+CD—+R (hE)E ). (14.4.14)
By construction,
/// 2wl/ //
s/t 17 s/t ;7 s/t +z7 A
JZ 4 S G7 TS G T (4, Z 14.4.15
ct?2 7s + ot s t t s (w /t ) ( )

Let D denote the covariant differential along the path x. with respect to
the Levi-Civita connection. By (2.2.3), (2.2.5), (14.4.10), and It&’s formula,
we get, for s < t,

DVVQtfs (st Z/) =c (VV(]tfs - VHqtfs) (st Z/) dS + V(‘s/wvv%fs (st Z/) )
(14.4.16)
DVHq_ (25,2") = cRT* (VVqu_s (25, 2") , ) pds + V5, V7 g5 (25, 7).

In the right-hand side of (14.4.13), we can replace fo by f . By (14.4.15)
and using the It6 calculus, we get

' S/t Z %/t iz w;/t Z oV /
/0 e JZ + ” JZ + ; JZ NV s (25,2") ) ds

at 1D
- _/o <<ZD_ + 1) bop1d 2, DVY gy (zs,z/)>
at
+/ <w5/tJSZ’ ERTX (VVar—s (25,7), &) x> ds
0

1.
+<EJZ Jat,VVq(la)t(zat,z')>. (14.4.17)

By (14.4.16), we get

G

0 Ds

N (T T
+/ <<——+1>ws/t VXwVVqt_s(zs,Z’)>- (14.4.18)

ws/t']s 7DV qt— S(stz)>
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Using (14.4.16) again, we obtain
at 171 D
/0 <<EE + 1) Vs dZ, e (VVg—s — VP qy) (2, z’)> ds
= (JZ, (VY aa—ay — V7 qa-ayt) (Zat, )

at
+ / <ws/t‘]52a CRTX (VVQt—s (Zsa Zl) ap) p>d$
0

at
—/ (st IZ Vi (VVat—s — V7 qi_y) (25,2)) . (14.4.19)
0

From now, we will use the notation ~ instead of = every time an It0
integral containing dw is ignored. By (14.4.17)-(14.4.19), we get

t [ 2, . (4
/ <c;gt,]§+ Ci/tjf+ i/thZ,VVqt_s (zs’Z’)>d$
0

JZ
~ <J£, VHq(l,a)t (2at,2')) + <Tt7 VVQ(lfa)t (Zat, z')> . (14.4.20)

As we saw before, the right-hand side of (14.4.20) is a martingale for a < 1.
Moreover, the It6 integrals which appear as the missing terms in (14.4.20)
are trivially square integrable, and so they are martingales for a < 1. In
particular their expectation with respect to P, vanishes.

From the above, we get

t ///t 2w//t ) //t
/ LJ7 + C—:JSZ + 2LJZ VYV g (24, 7)) Y ds
0

EP-
ct? t

=V o (z,2). (14.4.21)
Combining (14.4.13) and (14.4.21), we have given a direct proof of (14.4.7).



Chapter Fifteen

The hypoelliptic estimates

The purpose of this chapter is to prove the basic hypoelliptic estimates

on the Laplacian miﬁi,i%‘ The proofs extend very easily to the curvature

GM,2
b, £ H—bw
We consider A7, Qfé:ft%—bw u instead of A7, ., (‘E;HC_WH because in

» of the superconnection Ggf 1 H_pon defined in (2.4.15).

chapter 17, we will establish estimates which are uniform in b €]0, by], where
bo > 0 is a positive constant, for which the choice of 91@7 L5 (’Egjv’iH_bw o 1S
more natural. Part of the work which is needed in chapter 17 will then have
been already done in the present chapter.

This chapter is organized as follows. In section 15.1, we recall simple prop-
erties on ngmiﬁ.

In section 15.2, we construct a Littlewood-Paley decomposition in the
variable p. This way, we will be able to work instead on bounded balls or
annuli of T*X.

In section 15.3, we embed these bounded subsets in the projectivization
of T* X, so as to replace T*X by a compact manifold.

In section 15.4, we prove the basic hypoelliptic estimates.

In section 15.5, we derive estimates for the resolvent of 91@7 1 on the real
line.

In section 15.6, these results are extended to the full resolvent. In partic-
ular, we show in Theorem 15.7.1 that there exist Ay > 0,¢o > 0 such that
if

A= —XAo+o0+ir, G§CO|T|1/6,
-1
then the resolvent <Qlﬁfb TH )\) exists.

Finally in section 15.7, we show that for N € N large enough, the operator
-N
(QU;M iy — )\) is trace class.
Throughout the chapter, we make the same assumptions as in sections
2.1-2.3 and we use the corresponding notation.

15.1 THE OPERATOR 272

We will often identify the fibers of TX and T*X by the metric g7X. Also
e1,...,en is an orthonormal basis of T X .
Recall that p denotes the canonical section of T*X. The corresponding
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radial vector field along the fibers is denoted by p, so that
p=mpi. (15.1.1)
Put
L.= 2Q(¢b L (15.1.2)
As in (2.3.12), set

1
at =5 (—AV + [p|* + (283 — n)) ;
S T |
By = — (ivgf Xk 5 (VE, ") (e) va) , (15.1.3)
1 N SN . .
V= —= <RTX (es,€5) €k, eg> (ez — ei) (eJ - ej) Gy trohle, 1ot

4
1 NN
B (i (B (pei)pie) + 5Vew (V. 6") (ef)> (¢ = &) e, +2r-
y (2.3.13), we get
Le= — + 25 4 e (15.1.4)

Incidentally, note that equation (2.6.2) gives an expansion of the same

@:;4 iH por - Lhis is the key argument which

allows us to extend without further mention our results on A2 L, to corre-

type when replacing Q(gb 14 by

sponding results for @M bt
Let T'X, T"X C TX&BT*X be the subvector bundles of TX &T* X which
are spanned respectively by U + U U - U with U € TX. Then

TXeT*X=T'XaT"X, (15.1.5)
and the splitting in the right-hand side of (15.1.5) is orthogonal.
From (15.1.5), we deduce that
AN(T*XaTX)=A (T'X)®A (T"X). (15.1.6)
Let N’, N” be the number operators of A" (T"X), A" (T X). Then the num-
ber operator N7™X of A" (T*X @ TX) splits naturally as
NT'X = N+ N". (15.1.7)
Observe that if a > 0,
av" <RTX (p, i) p, ej> (ei — é}) ie]._,_gja_N
=a <RTX (p,€:) p, ej> (ei — ’e\i) Qe 4ei- (15.1.8)
By taking a > 0 small enough, we can make the right-hand side of (15.1.8)

arbitrarily small. In partlcular given b > 0, we can choose a > 0 so that

(15.1.8) is dominated by ‘fb‘z .

In the sequel, to make our notation simpler, we will not note the above
conjugation, so that formally, some of our arguments are valid only for b >
0 small enough. However, we will indicate explicitly those points where a
conjugation of the operator should be done so that our arguments remain

valid even for large values of b.

"
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15.2 A LITTLEWOOD-PALEY DECOMPOSITION

Recall that the Schwartz space S (T* X, 7* F') was defined in section 3.2. Let
S" (T* X, 7*F*) be the corresponding dual space of tempered currents. Let
H be the Hilbert space of square-integrable sections of 7* (A" (T*X) @F) on
T*X, let { ) be the corresponding Hermitian product on H, and let | | be
the associated norm.

Let A% be the obvious horizontal Laplacian of T7* X . Namely, if ey, ..., e,
is a locally defined orthonormal basis of T'X, then

AHu — Vé\ (T* X)@Fu,2 _ vgz(z;*ej()@nu. (15.2.1)
Set l
S =—ATv AV 4 p*. (15.2.2)
Then S is a self-adjoint positive operator. If s € R,u € ' (T*X,7*F), set
lul, = SS/Qu‘ . (15.2.3)
H

Let H® be the completion of &' (T X, 7n*F) with respect to the norm | |,.
Then the H® define a chain of Sobolev spaces. Put

H™ = N,erH®. (15.2.4)

Then H® = & (T*X, n*F).

We introduce a Littlewood-Paley decomposition in the radial variable |p|.
Take rg €]1,2[. Let ¢ (r) be a smooth function defined on R4 with values in
[0, 1], which is decreasing and such that ¢ (r) = 1 if |r| < % and ¢ (r) = 0 if
|r| > 1. Set

X(r)=9¢(r/2)—o¢(r). (15.2.5)
Then x takes its values in [0, 1] and its support is included in [%,2]. For
j €N, put

x;(r) = x(2777r). (15.2.6)

Then one has the obvious equality
d(r)+ Y x;(r) =1 (15.2.7)

j=0
By (15.2.7),

—+oo
doxi<t (15.2.8)

j=0

Put
1/2

<p>= (1 + \p|2) . (15.2.9)

Let u e S (T*X,n*F). For j € N, set
dj(u) = x; (< p>)u. (15.2.10)
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Since < p >> 1, then ¢ (< p>) = 0. By (15.2.7), (15.2.10), we get the
Littlewood-Paley decomposition,

= 5;(u). (15.2.11)
=0
Set
B— {p eT*X, p® < 3} . (15.2.12)

The support of dg(u) is included in the ball B. For j > 1 the support of the
0;(w) is included in the annulus C; given by

Cj={p,<p>e[2/ro, 271}, (15.2.13)
Observe that
C;NCjya =10 (15.2.14)
By (15.2.8), (15.2.11), and (15.2.14), we get
Z 185 () < lulfy < 32 105 (w7 - (15.2.15)
=0
Definition 15.2.1. For u € &' (T*X,n*F), set
Uj(x,p) = 6;(u)(z,2p). (15.2.16)
Let R be the annulus:
R={p,Ip|* € [7,% - %74]- (15.2.17)

0
For any j € N, U; € S (T* X, n*F). Moreover, the support of Uy is included
in the ball B, and for j > 1, the support of the U; is included in R. We
recover u from U by the formula

=> Uj(xz,277p (15.2.18)
7=0
Put
Bo={peT X}, |p|’ <5} (15.2.19)

For any j € N, the support of the U; is included in By.

15.3 PROJECTIVIZATION OF T*X AND SOBOLEV SPACES

Let P (T*X @ R) be the real projectivization of T* X ® R, and let Y be the
total space of P (T*X @& R). Then T*X embeds as an open dense subset of
P(T*X ®R) by the map p € T*X — (p,1) € P(T*X ® R). The comple-
ment of 7*X in P (T*X @ R) is just P (T*X), whose total space is denoted
by Z. We still denote by 7 : Y — X the obvious projection.
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Recall that the metric 77 X on TT* X was defined after equation (2.1.23).
Let g"P(T"X&R) be a metric on TP (T*X @ R) which restricts to g7 7 X on
the ball 2By. We denote by dvp 1+ xgr) the corresponding volume form.

Let S be the space of smooth sections of 7* (A" (T*X) ®A" (T X)®F) on
Y which vanish near Z. Note that S can be identified with the vector space of
elements of §* (T* X, 7* F') with compact support. Let H be the corresponding
Hilbert space of L? sections of 7* (A" (T*X) ®A" (TX)®F) on Y. Note that
H embeds continuously into H. Let || denote the obvious norm on H.

Using the unitary connection VA (T"T"X)®Fu  we can define a natural
self-adjoint Laplacian AY acting on S. This is a second order self-adjoint
elliptic differential operator. The precise choice of AY is irrelevant. Set

S=-AY +1. (15.3.1)
Then S is a self-adjoint positive operator.
Definition 15.3.1. For j € N, set
Aj = (S+2Y) (15.3.2)
Given s € R,U € S, we define the Sobolev norm |U|; ; by the formula

1/2

U, =2"? A0, (15.3.3)
If w € S, if the U; are defined as in (15.2.16), put

2 2
lully = > 10515, - (15.3.4)
Jj=0

We denote by H* the completion of S with respect to the norm || [|,. We
will use the notation H = H°.

Remark 15.3.2. By (15.2.15), H = H, and the associated norm on H is
equivalent to the norm of H. Moreover, u € H! if and only if u, V., u, < p >
Vaiu, < p>2u € H. When u is restricted to have fixed compact support in
T*X, the H® are the usual Sobolev spaces. Also for s’ > s, the embedding
of H*' in H* is compact.

We claim that if s € R, H* C H?®, and the corresponding embedding is
continuous. Indeed note that by (15.2.18),if s € R,u € S,

lul < Cs [Jull, - (15.3.5)

Also using basic properties of the harmonic oscillator, we know that given

m € N, for s € R large enough, for |o| < m, the map u € H®* —»< p >™

Veu € H is uniformly bounded. So we find easily that given s € R, for s’ > s

large enough, H s' ¢ ‘H?, and the corresponding embedding is continuous.
Set

H™ =NgerH’. (15.3.6)
Using (15.2.4) and the above results, we get
H® =H* =8 (T*"X,n*F). (15.3.7)
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15.4 THE HYPOELLIPTIC ESTIMATES

In the sequel, VU denotes the differential of U in the directions along the
fibers T*X or P (T*X @ R), and VU denotes the differential of U in hori-
zontal directions.

Recall that for a € R,u € § (T*X,n*F), then K u (z,p) = u (z,ap).

Definition 15.4.1. For 7 > 0, set

Le,=K'L.K,. (15.4.1)
Put
1 .
aer =5 (A + 2 pf £ (28ie F 1)),

(TT* VG Fw 1
Bi,=-— (iTlvg;T TTOek 57w (V¥ ¢") (ei)v@) . (15.4.2)

1 P~ TGN .
Ve = =g (BT (eirej) exsee) (€7 = @) (¢ =€) ey poric,+ar
1 P~ -

_ (j:7'2 (R™ (p,e;)p.e;) + Evgw (VF,g") (ej)> (e" =€) ic,4er-
By (15.1.3), (15.1.4), (15.4.1), we get
atr,  Bir

b2 + b
Also observe that with respect to the standard Hermitian product on H, S+

is skew-adjoint.
Let L, ., L, be the self-adjoint and skew-adjoint parts of L., with re-

¢,

spect to the standard L? Hermitian product, so that
Ler= L’CJ + L’C'J. (15.4.4)

Lo, = . (15.4.3)

From (15.4.2), one can deduce obvious formulas for L, ., LY .
Given Ay > 0, set

P, = L+ Ao, Por=Ler+ Ao (15.4.5)

Let P! ., P.'. be the self-adjoint and skew-adjoint parts of P ;.

In the sequel || denotes the norm in H or in H. Since the support of the
sections which we will consider is included in By, the restriction of these
norms to such sections are equivalent. Also () denotes the standard Hermi-

tian product on H.

Theorem 15.4.2. If Ay > 0 is large enough, for any s € R, there exists
Cs > 0 such that for any j € N, for any U € S (T*X,7n*F) whose support
is included in the ball B for j = 0 and in the annulus R for j > 1, then

A a2
+BIR UL g +27 VU

< Cy|PopsUL .
(15.4.6)

291U+ VU

2
J>s j,s+1/8
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Proof. The proof of our theorem is organized as follows.
e First we establish elementary coercitivity estimates.

e Then we prove three important lemmas. In particular Lemma 15.4.4
is a crude hypoellipticity estimate, where the Hérmander property of
our second order operator plays a key role.

e The combination of the three lemmas leads to a proof of Theorem
15.4.2.

Actually, we follow closely the proof by Hérmander [Hor85, chapter 22,
pp. 353-359] of the hypoelliptic estimates, with special attention to the de-
pendence on the scaling parameter 7 = 277. A proof of a similar result which
involves different norms was given by Helffer-Nier [HeN05] and Hérau-Nier
[HNO04] when establishing the hypoellipticity of the Fokker-Planck operator.

Note that we can ignore the normalizing constant 2%/2 in the right-hand
side of (15.3.3). For simplicity, we will not write the index j explicitly in the
Sobolev norms. Also we will take 7 €]0, 1].

We will denote by C' positive constants not depending on 7,s, and by
Cs positive constants not depending on 7 and still depending on s. These
constants may still depend on ¢. Also they may vary from line to line.

We claim that if b > 0 is small enough but fixed, for A\g = Ag (b) > 0 large
enough, there exists C' > 0 such that for any 7 €]0, 1] and U € ' (T* X, 7n*F)
with support in the annulus R, then

—~ 2
‘VU‘ +r U < O (P U2, (15.4.7)

Indeed recall that by (15.4.2), only o -, 7+~ contribute to P, . Also note
that given by > 0,b1,b2 € R, for Ay > 0 large enough, the polynomial

Q (1) = (No+ba) 7%+ by7 + b

has a positive lower bound when 7 €]0, 1]. We use also the fact that on R,
|p\2 has a positive lower bound. For b > 0 small enough, the quadratic term
in the variable p in v+, is small with respect to 72 [p|” /2. Then (15.4.7)
follows from (15.4.2). Of course if 7 = 1, the estimate (15.4.7) still holds for
Ao > 0 large enough when the support of U is included in the ball B.

For b > 0 arbitrary, as explained in (15.1.8), we should conjugate our
operator by aV " with a small enough, so that the operator obtained from
P. by this conjugation is such that (15.4.7) still holds. We will continue the
proof in the case where b > 0 is small, the proof for b large being the one
suggested here.

Note that

(PLUT20)| < [(Pe U, 772U)] (15.4.8)
Using (15.4.7), (15.4.8), we find that under the same assumptions as before,

~ 2
‘VU‘ +r 4 UPR < OB, U (15.4.9)



THE HYPOELLIPTIC ESTIMATES 231

For 1 < i < n, we still denote €' a vector field along the fibers P (T*X @& R)
of Y which coincides with our given &' on By.

We will use classical pseudodifferential operators with weight A on Y. A
symbol of degree d is a smooth function a (y, {, 7) on T*Y x]0, 1] with values

11
mEnd (A (T*X)®A (TX)®F),
such that for any a, 3, there exist C g > 0 such that

o5 0Laly,C.7)| < Coplr + [P, (15.410)
We denote by S? the set of symbols of degree d.
To keep in line with the notation in (15.3.2), set
A=(S+7H". (15.4.11)
IfU €8, set
U, = AU (15.4.12)

By definition in our context, a smoothing operator on Y is a family of
operators B(7), 7 €]0,1] such that for s,¢ € R, there exist C;; such that

|B(T)U|, < Cs4|U, (15.4.13)

We use a local coordinate system on X, and we trivialize the above vector
bundles in this coordinate system. This induces in turn a local coordinate
system on Y.

Let U denote the Fourier transform of U (y) in the variable y € R?", i.e.,

U(Q)= /R% e "WOU (y) dy. (15.4.14)

To a symbol a, given the above coordinate system and trivialization, we
associate an operator Op(a) by the formula

O (a) (y, Dy T)U () = (27) " /R 0y, nT(CQ) A (15.4.15)

Note that in (15.4.15), D, = —i0,,.

Let £ be the corresponding set of pseudodifferential operators A (1) of
degree d on P (T*X ® R). Then A(7) € &7 if and only if for any small
compact K C P(T*X @ R), for any cutoff function 6(y) with support close
enough to K, there exist a € S?, a cutoff function ' (y) with support close
enough to K and a smoothing operator B (7) such that

A(7)0 = 6'Op(a)d + B(7). (15.4.16)

For A € &% the class o (A) of A in £9/£9! will be called the principal
symbol of A.

If By € €% Ey € &Y, then E4Ey € £ ¢ (EqEx) = 0 (Eg) o (Ea).
If a,a’ are symbols, let [a,a’] denote their pointwise commutator, and let
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{a,a’} denote their Poisson bracket. If E; = Op (a),Eqy = Op(a’), then
[Eq, E¢'] — Op ([a,d'] —i{a,a’}) € 472

When acting on H, operators in £Y act as a family of bounded operators,
which is uniformly bounded in the parameter 7 €]0,1]. Also observe that
AV, Ve € EL

Let ¢ (r) : Ry — [0,1] be a smooth function which is equal to 1 when
r2 < 5, and to 0 for 72 > 6. Set

0o (p) = (|pl) - (15.4.17)

Then 6 is equal to 1 on By.
Consider the operator R given by

R = 0y P. . 00. (15.4.18)
If the support of U is included in By,
P..U = RU. (15.4.19)
Let R, R” be the self-adjoint and skew-adjoint components of R, so that
R=R + R (15.4.20)
Clearly,
R’ = 60P. 0, R’ = 6,P 6. (15.4.21)
Of course P, , P’ can be obtained via (15.4.2)-(15.4.5). Using these explicit
formulas, and also the fact that 772 € £, we get
[R,E4) € TEIV + 77267, (15.4.22)
Moreover, if E € £% is such that o (E) is scalar, then we have the stronger
[R,E] € 7269V + 717, (15.4.23)

The difference between (15.4.22) and (15.4.23) comes from the fact that

the term —%Tw (VF,gF) (ei) Vai in [y » was the only term contributing to

7€V in (15.4.22), and that this contribution disappears when commuting

with an operator with scalar principal symbol and also because 772£% can be

replaced by 771€%. Equation (15.4.23) will be used in particular in (15.4.56).
We take Ag > 0 large enough so that (15.4.7)-(15.4.9) hold.

Lemma 15.4.3. If A\g > 0 is large enough, there exists C' > 0 such that for
any U € S (T*X,7n*F) with support included in the ball B if j =0, and in
the annulus R for j > 1, then

IR'U%, ,, < Cr |RUP. (15.4.24)
Proof. By (15.4.9), we get
‘@U‘ + 772 |U| < C|RU. (15.4.25)

Using (15.4.2)-(15.4.5), we find that 7R” € £!. In fact multiplication by 7
kills the term factor 77! which appears in the skew-adjoint part of 31 ,. Set

Eo=A"'7R". (15.4.26)
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Then Ey € £°. Also
[R'U%, )y =7 1 (R"U, EoU) . (15.4.27)
Moreover,
7 YR'U, EU) = 771 (RU, EoU) — 77 (R'U, EU) . (15.4.28)

Also since Ey € £9, it acts as a uniformly bounded operator on H. By
(15.4.25), we get

7 Y (RU, EU)| < 7 |RU|* . (15.4.29)

For )¢ large enough, R’ is self-adjoint and nonnegative, and so by Cauchy-
Schwarz, we get

2r ' (R'U, EoU)| < 77 (R'U,U)| + 77 (R'EoU, EoU)| . (15.4.30)
By (15.4.25), we have
U (R'U,U)| = 7' [Re (RU, U)| < C7 |RU|*. (15.4.31)
Finally, we write

YR EgU, EoU) = 77 'Re (EoRU, EqU) + 7 'Re ([R, Eo)U, EoU) .

(15.4.32)

By (15.4.22) and (15.4.25), we obtain
R, Eo)U| < C (T \%U\ T |U|) < C|RU|. (15.4.33)
Our lemma now follows from (15.4.27)-(15.4.33). O

Now we prove a result which plays a crucial role in the proof of the hy-
poellipticity of our operator.

Lemma 15.4.4. There exists C > 0 such that for any U € S (T*X,n*F)
with support included in the ball B if j = 0, and in the annulus R if j > 1,
then

U|1/4 < CT3/4|RU. (15.4.34)

Proof. We have to prove that there exists C' > 0 such that if j, U are taken
as indicated, and if 7 = 277, then

772Uy + VU] g0+ ’@U‘_M < o34 RU|. (15.4.35)
Note that A=3/4 < 73/2 and so
U|_y/y < CT32 U] (15.4.36)
By (15.4.9), (15.4.25), and (15.4.36), we obtain

72Uy + ’VU‘_3/4 < C7%2|RU|. (15.4.37)
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Let e be a smooth section of TX over X. Observe the critical fact (which

guarantees hypoellipticity by Hérmander [H6r67]) that
Ve, VR T RORU] _ g T )8R _y (15.4.38)

STX "
VYHe

Observe that Vgﬁ e depends linearly in p, and so V is a vertical dif-

VTXe
vyH
ferentiation operator of type pd,. The scaling which we used before ensures

that such an operator is of the type V which is controlled by the estimate
(15.4.38). Using (15.4.37), (15.4.38), we find that to establish (15.4.35), we
only need to prove that

‘ Ve, v U’_3/4 < e/ RU. (15.4.39)

Let S be the differential operator
S = gyvA T8 g (15.4.40)
Because of the support condition on U, we may replace V?,}ST*T*X)@F’" in

(15.4.39) by S. This will be done repeatedly in the sequel. Also in the sequel
we will often use the notation V instead of V.

Set
E_yj5 =A%V, 3] (15.4.41)
Then E_y /5 € E-1/2. Moreover,
~ 2 ~
\ V.5] U‘ e = ([v.5]u.BpU). (15.4.42)
Also observe that since Vg and V?,}ET*T*X)@FW are skew-adjoint operators

with respect to the standard L? Hermitian product (), then
<$SU, E_, /2U> . <Ei1 125U, €U> - <SU, V,E_, /2}U>, (15.4.43)
(SVU,E_1oU) = = (VU,E_158U ) = (VU, IS, E_1o)U ).

By (15.4.2), and using obvious notation, we get

S=FrR' +72V +71 L. (15.4.44)
By (15.4.11), A=*/? < 1, and so
|¢*1U]_1/2 <|UJ. (15.4.45)

By (15.4.9), by (15.4.24) in Lemma 15.4.3, and by (15.4.44), (15.4.45), we
get

1SU|_, 5 < C7** |RU|. (15.4.46)
Therefore,

‘Eil/QSU‘ < 2 |RU. (15.4.47)
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Using (15.4.9) and (15.4.47), we get
]<Ei1/QSU, $U>\ < P2 |RUPE. (15.4.48)

Note that the operators [Vai, E_y/5] and [S,E_; 5] lie in E-1/2, Using
(15.4.9) and (15.4.46), we obtain

(ST, [V, E1 o) U)| < 072 |RU| U] < 72 |RUP. (15.4.49)

Still using (15.4.9) and the obvious analogue of (15.4.47), we can control
the first term in the right-hand side of the second line in (15.4.43) as in
(15.4.48). By proceeding as before,

(YU, [s. B o) U)| < CIRUIU| < €72 |RUP. (15.4.50)

By (15.4.43)-(15.4.50), we obtain the required estimate in (15.4.39). The
proof of our lemma is completed. O

By (15.4.7),if 6 > 0 and if U € S (T* X, n*F) verifies the same support
conditions as before,

‘%Uf < CRe (A~V/RU,AV3720)
<C (5 ‘A—l/E‘RU’2 + %4 ’Al/SU’2> . (15.4.51)

Let 61 (p) be a smooth function of |p| with values in [0,1], which has
compact support and which is constructed in the same way as the function
fp. We assume that 6y is equal to 1 on a neighborhood of the annulus R,
and that it vanishes near p = 0. Finally, if j > 1, set 6; = 61. On the sequel,
for j € N, we use the notation 6 = 0;.

By Lemma 15.4.4, for any s € R, we get

|AY49ASU| < O34 ROACU|. (15.4.52)
Moreover, we have the commutator identities

AYAOAS = ASFV49 4 AV, A7), (15.4.53)
ROA® = A°RO + R[, A°] + [R, A®)6.

Since # = 1 on the support of U, the essential support of [#, A*] does not
intersect the support of U, so for any s, o, there exist C,s , > 0 such that

He?AS]U‘a‘ S CS,O' |U‘s ° (15‘4'54)
Also U = U, and for « > 0, if V € H,
v, <7m*|V]. (15.4.55)

Moreover, by (15.4.23),
[R,A%] € 72E°V + 77 1&%. (15.4.56)
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Using (15.4.52)-(15.4.56), we find that
2
|U\§+1/4 < 73/2 (C \RU|§ +C,rt ‘VUL + Cor™? U|§> . (15.4.57)

If we apply (15.4.51) to OA°TY/8U, by using the same commutation argu-
ments as before, we get

WUEH/S <9 <C [RU[; + O WUE + Cyr 2 U|§>
4

i
+ - (CIUR 1ya+ Cr* V) + ClUR 1y (15.4.58)

Now we scale (15.4.57) by the factor 773/, and (15.4.58) by the factor
1/6. Also for A > 0, we take 6! = A7%/%. Adding up these two inequalities,
we obtain

~ 2 o |2
TRNUR, 4 AT VU < C|RUE +C.r* |VU| +Cor? U2
s+1/4 s+1/8 s s s
+ CAQT—S/Q ‘U|§+1/4 + Cs (A2T5/2 ‘U|§ + AT5/4 |U‘§+1/8) . (15459)

In (15.4.59), we fix A so that CA%? < 1/2. Using the trivial fact that
m2|U2 < 75/4|UJ2,, 5. we obtain that

~ |2 ~
TR kU] < CIRUL 4 Ot VU
s+

2
s

+Cr UL+ Cr® U2, - (15.4.60)

By equation (15.4.7) applied to A*U, and still using (15.4.56), we obtain
~ )2 )2

‘VU’ + 774 UP < C|RUP + O ’VU‘ + O U, (15.4.61)

By adding (15.4.60) and (15.4.61), we get

Sl L a2 L —3/2 712 s/4 |5y
VU 47 UR + 72 U+ 7 | SU

s+1/8
~ 2
§C|RU\§+CST4’VU‘ + O UR + Cr A U, . (15.4.62)

We will complete the proof of Theorem 15.4.2 by a contradiction argument.
For s € R, let W* be the Hilbert space

W = {u eH Vu e HH/S} . (15.4.63)

Suppose that for some value of s, equation (15.4.6) does not hold. Then there
exist 7, = 277% Uy such that the left-hand side of (15.4.6) , in which we
make j = jr, U = Uy, is equal to 1, and moreover limy_, ;o |P. 7, Ux|, = 0.
By (15.4.62), the sequence jj remains bounded, so we may suppose that ji
remains constant and equal to j.
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So now 7 = 277 is fixed. The support of the U, is included in By, and
moreover the Uy, form a bounded sequence in the Hilbert space W*t1/4, By
Sobolev embedding, we can as well assume that Uy, converges in W51/ to
Us. We claim that Uy, # 0. Indeed if Uy, = 0, as k — +o0, the right-hand
side of the inequality (15.4.62) would tend to 0, while the lim of the left-hand
side would be positive.

By (15.4.62), for any U € &' (T* X, n*F) with support included in By,

UR 10+ ‘@UEH/B <c, (RU|§ U, + \ﬁUD . (15.4.64)
By iterating (15.4.64), we find that for N € N large enough,
U210+ ]6(]‘2 < Co (IRUE +1U_y) - (15.4.65)
o+1/8
Recall that 7 = 277 is fixed.

Lemma 15.4.5. For any 0 € R, and any U € S§" (T*X,n*F*) whose
support is included in the ball By, if RU € H, then U € H°T/4 VU €
HOH/® | and inequality (15.4.65) holds for U.

Proof. This is a standard consequence of (15.4.65). In fact let ¥,, be a
sequence of scalar regularizing operators in £ which is bounded in £° and
which converges to the identity as m — +o0o0. We may and we will assume
that support of the W¥,, is as close as necessary to the diagonal. Note that
there are uniformly bounded A,,, B,, € £° such that

[R,U,,] = AV + By (15.4.66)

The V,,, = U,,,U still have compact support, this support being included in an
open ball B), which is slightly bigger as By. Of course, inequality (15.4.65) is
still valid for U € &' (T* X, n* F') with support included in Bj,. Using (15.4.65)
with U replaced by V;,, = ¥,,,U, we find that given ¢, N, there exists Cy y > 0
such that for any m € N,

2 - 2 2 2 - 2 2
Vinlis1/a + ]VVmLH/S <Cyn (|RU|; +|U|;_x + ‘AmVUL +|BnU|; ) -

(15.4.67)
Also there exists t € R such that U € H!*/4 VU € H!+1/8. Using the fact
that RU € H?, we conclude that the set of ¢ € R which are taken as before
contains ¢. The proof of our lemma is completed. [l

As we saw before, limy . y o | Pe,-U|, = 0. Since the sequence Uy, converges
to Uso in W*H1/8 we conclude that P.,Us = 0, which implies RU,, = 0.
By Lemma 15.4.5, we conclude that Uy is smooth. By (15.4.9), we find that
Usx = 0. This gives us the required contradiction. The proof of Theorem
15.4.2 is completed. [l
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15.5 THE RESOLVENT ON THE REAL LINE

For s € R, let D; (L.) be the domain of L., i.e.,

D, (L) = {u € H*, Lou € H*}. (15.5.1)
We can also define D (P.), and
D, (P:) = Ds (Le) . (15.5.2)

Theorem 15.5.1. Take \g > 0 large enough. If s € R,u € 8" (T*X,n*F*),
if Pou € H®, then u € H*TY4, and there exists Cs > 0 such that for any u
taken as before,

[ll g1 /0 < Csl|Peull, (15.5.3)

Moreover, S (T* X, m*F') is dense in Ds(F,), i.e., for any u € Ds(P,), there
exists a sequence uy € S (T* X, 7*F') such that

lim (|ju—ugll, + || P (v — ui)l|,) = 0. (15.5.4)

k—-+oco

Proof. We use the notation of sections 15.2-15.4. Take v € S" (T* X, n*F*),
and set v = Peu. For j € N, we define the corresponding Uj;,V; as in
(15.2.10), (15.2.16). In the sequel we take 7 = 277, and we drop the index j
in Uj, V}
Set
W =K, -1 [P, x (T <p>)]u. (15.5.5)
A straightforward computation shows that
P ,U=V+W (15.5.6)

Since the Hamiltonian vector field Y™ preserves H = [p|® /2, then

{vé\/'}(tT*T*X)@F,u’X(T <p>)|=o0. (15.5.7)

Now we use (15.1.3), (15.1.5) and we get
1
[P, x (1 <p>)] = 55 (A X (r <p>) = 2(Vax (T <p>)) Va)
1
— ¥ (VF,gF) (e;) Vax(r<p>). (15.5.8)
By (15.5.8), we get

K. [P,x(T<p>)K,= 2—22 (-KT_l (AVx (r <p>))

— 2K, (Vax(r <p>)) TV’@)

1
— ¥ (VE,9") (e:) K,-1Vax (r<p>). (15.5.9)
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We write (15.2.18) in the form

u=>Y KU (15.5.10)

In (15.5.10), the sum is made over the 7/ = 277, j € N, and the corresponding
U’ is just U;. By (15.5.5), (15.5.9), (15.5.10), we get
1
W = (ﬁ (=K, (AVx(r<p>)) —2K,-1 (Vax(r <p>))7Va)

1

T (VF,g") (e:) K,-1Vax (r <p>) ) ZK U (15.5.11)

The support of K.-1x (7 < p >) is included in {|p\ [— — 72,4 — 72} }
o
The support of U’ is included in {|p\2 [i — 72 4—7 }}, and so the
O

support of K/,.U’ is included in {|p\ { i T% —72.4 7,2 -7 } } We then
0

find that only the 7" which are such that 1/2rq < 7'/7 < 2r¢ contribute

to the sum in the right-hand side of (15.5.11). Since ro €]1,2[, and also

7 =27J,7/ =277 then the nonzero terms in (15.5.11) are such that 0 <

|7 — 7’| <1, i.e., there are at most three nonzero terms.
By (15.5.11), if u € 8 (T*X,m*F) ¢ € R, then

Wil, < G277 > U, +C27¥ Y
l77—3l<1 [/ =3l<1

We use (15.5.5), (15.5.6), (15.5.11), and (15.5.12). Assume that ¢ € R is
such that u, Vu, Pu € H*. Then

(15.5.12)

’ ~

VU |

’Pc,2—jUj|t SC“/}‘t+Ct27J Z |Uj/‘t+ct272j Z ’@Uj, .

l3'=jl<1 3" —jl<1
(15.5.13)
By inequality (15.4.6) in Theorem 15.4.2, we get
3j/4 —55/8 |
294U,y + 27 ’vUj vy SC |P.o-iUj], - (15.5.14)
By (15.5.13), (15.5.14), we obtain
3j/4 —55/8 |
2%/ ‘Uj|t+1/4+2 7 IVUj t+1/8
<CWVl,+C27 3 U, +c2 ¥ Y ’VUJ-/ L (155.15)
7" —jl<1 l7"—41<1
Set
Bi = 294 |Uj, 4 + 2757 9T s (15.5.16)
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By (15.5.15), we get

Biw <CIVil, +Ce27 ™" By qya+C27 8N By s

77 —41<1 l7"—4l1<1
(15.5.17)
Since A=1/8 < 7%/4 and 11/8 < 2, from (15.5.17), we get
B < CVjl,+C27 /8 3" By s, (15.5.18)
77 —41<1
By (15.5.18), we obtain
2 S CIVP+ 2789 N B2 e (15.5.19)
7" —41<1

Since u € 8" (T*X,7*F*), for ' € R small enough, v € H* . By using the
same arguments as in Remark 15.3.2, we find that for ¢ € R small enough,
B+ € £2. In the statement of our theorem, we made the assumption that if
v = P.u, then v € H*, which is just the fact that |V}|, € f2. By (15.5.19), it
should be clear that 3, 5 € fo. In particular, u € H*+1/4,

Let W?* be the vector space of the v € & (T*X,n*F*) which are such
that 8; s € f2. We equip W* with the norm

[ullyys = 1855l - (15.5.20)
By (15.5.19), we get
lallyge < Co (1Poull, + lullyyesze) (15.5.21)

Using a contradiction argument similar to the one we used in the proof of

Theorem 15.4.2 after equation (15.4.62), we find that
lull,ye < Cs || Peull,, (15.5.22)
from which (15.5.3) follows.

Finally the fact that &' (T*X,7*F) is dense in D (P.) can be established
by an argument similar to the one we used in the proof of Lemma 15.4.5.
The proof of our theorem is completed. O

15.6 THE RESOLVENT ON C
Recall that for s € R, Ds (L) was defined in (15.5.1). For s = 0, we use
instead the notation D (L.).

Theorem 15.6.1. There exist \g > 0,Cy > 0 such that for any u €
D(L.),A € C,Re(\) < =)o,

I lullg + el 4 < Co ll(Le = X ull,y - (15.6.1)

There exists Cy > 0 such that for o,7 € R,0 < Cy |7'|1/6, if A= —Xg+o+ir,
then

A+ MDY ully < Coll(Le = A) ully - (15.6.2)
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Proof. Note that identity (15.6.2) follows from (15.6.1). Indeed in (15.6.1),
we take A = —X\g+it,v = (Le — (A4 0)) u, so that (L. — \) u = v+ ou, and
(15.6.1) shows that

I lully < Co (lvllg + o] Tully) (15.6.3)

from which (15.6.2) follows.
To prove (15.6.1), we take Ag as in section 15.4. As before, P, = L. + A.
If A € C, set

P.yx=L.— A (15.6.4)
IfaeR,,5€R,let A€ C be given by
A=—-X—a+if, (15.6.5)
so that
Poy=FP.+a—1ip. (15.6.6)

Now we follow closely the proof of Theorems 15.4.2 and 15.5.1, but we
modify the weight A; in (15.3.2) by putting instead

Axj = (S+2% +27%\2)" 2, (15.6.7)
For u € S, equations (15.3.3), (15.3.4) are now replaced by
in s 2 2
Ul =22 05,0, Ml =D UG, (15.6.8)
3=0
Clearly, there is C' > 0 such that for ¢t > 0,a > 0,
£2 4+ % > Ca?/3. (15.6.9)
From (15.6.9), we get
247 4272 | N2 > C NP (15.6.10)
Using (15.6.10), we find that (15.6.1) will follow from the estimate
[ullx1/a < CllPeaully - (15.6.11)

Note that this estimate is the obvious extension of equation (15.5.3) in The-
orem 15.5.1. So we concentrate on the proof of (15.6.11), by following the
same strategy as in our proof of Theorem 15.5.1.

We define P, . from P,y as in (15.4.1), so that by (15.6.6),

Peyr=FP.r+a—if. (15.6.12)
First, we will show that Theorem 15.4.2 is still valid for Ay > 0 large enough,
when using instead the norms in (15.6.8) and replacing P, ; by Pe x ,, with
constants not depending on A, so that equation (15.4.6) is replaced by

2 2
45 17712 ES 35/2 17712 —55/4 |
271U+ ’VU‘M‘,S T2 sy +2 ’WJ‘A,J‘,S“B

< Ci|PoraiUly,, . (15.6.13)
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Instead of (15.4.8), (15.4.9), for A\g > 0 large enough, if the support of
UeS (T*X,n*F) is included in the annulus R, we have

—~ 2
’VU‘ T UP +ar P UP < O(PL, U 720), (15.6.14)

~ 2
‘VU‘ +r U +ar 2 |UP? < C|P.. AU

We will modify our construction of pseudodifferential operators on the
total space Y of P (T* X @ R). In inequality (15.4.10), we replace the weight
774 4(? by the weight 7= 472 |)\\2+\C|2. We denote by S§ the corresponding
set of symbols, and by £¢ the associated set of pseudodifferential operators.
Instead of (15.4.11), we now set

A= (S +774 42 |)\\2)1/2 .

We take 6y as in (15.4.18), and we define Ry by the formula
Ry = 00 Py » \bp. (15.6.16)

The obvious analogues of equation (15.4.22) and (15.4.23) still hold.

The same arguments as before lead to the analogue of Lemma 15.4.3. We
claim indeed that as in the proof of Lemma 15.4.3, TRY € £'. This is because
the contribution of A to 7RY is just 7Im A, and our choice of the weight A
in (15.6.15) has been made so that 7|\ € £'. The analogue of (15.4.24) is

then verified, i.e.,

(15.6.15)

[R{UL 1) < O |RAUI. (15.6.17)

We claim that the analogue of Lemma 15.4.4 also holds. Indeed by pro-
ceeding as in the proof of (15.4.39) in Lemma 15.4.4, we get

{@, VQQST*T*X@F)’“} U < Cr¥ Ry (15.6.18)
A\, —3/4
From (15.6.18), we obtain
HQTR;’} U’A L SCTMIRULL (15.6.19)
Clearly,
AT < (A7) T2 2 = |z T2 (15.6.20)

By the second inequality in (15.6.14) and by (15.6.20), using the fact that
0 <a <A, we get

Tlal[Uly 54 < CT?|RAU|. (15.6.21)
By (15.6.12),
i =—Ry+ R (15.6.22)
Now since A~1/4 < 71/2 by (15.6.17), we get
T|RYUI, 3,4 < CT° [RAU|. (15.6.23)
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Moreover, by (15.4.2), (15.4.3), (15.6.14), and (15.6.18),

T|R'Uy 30 < CT/* |R\U. (15.6.24)

By (15.6.22)-(15.6.24), we obtain
718l U554 < CT* RN (15.6.25)

By (15.6.21), (15.6.25), we get
TIN5 _aja < CT* R\ (15.6.26)

The estimate (15.6.26) is precisely the one which permits us to complete the
proof of the analogue of Lemma 15.4.4, and so to get

Uly1ya < CT¥*HRAUI. (15.6.27)

We can then obtain the analogue of (15.4.62), i.e.,

2 2
Y 4 U2 =3/2 1712 5/4 "\ ‘
‘VU‘)\’S +T UG+ T Ul\ 510 T77° VU N1/ (15.6.28)

~_ |2 -
<CIRUR, +Cort |VU[ | +Car 2 UR  +Cr® U s

To deduce (15.6.13) from (15.6.28), we use the same argument used after
(15.4.62), with associated sequences 7, = 277 Uy, \. Using (15.6.28), we
may and we will assume that jr = j, so that 7, = 7 remains constant. Also
we claim that we may as well assume that |[A\;| remains bounded. Indeed for
ceR,e>0,

Ul ome < (TN ULL, - (15.6.29)

By (15.6.29), we deduce that if |A\y| — o0, for k large enough, we get
(15.6.13), with the given j, which is impossible. Therefore we have completed
the proof of (15.6.13).

We deduce (15.6.11) from (15.6.13) exactly as in the proof of Theorem
15.5.1. In fact we obtain the obvious analogue of equation (15.5.21). To derive
the analogue of (15.5.22), we still use a contradiction argument. Namely, we
assume there exists uy, A\, with || Pex, ux|l, — 0, while [|ug||,). = 1. First
we claim that |[Ag| remains uniformly bounded. Indeed if |A\x| — +o0, by
still using (15.6.29), we find that the analogue of (15.5.21) would contradict
(15.5.22). So we may as well assume that A\, — A. It is now easy to proceed,
and so we obtain a proof of the analogue of (15.5.22), i.e., we have completed
the proof of (15.6.11).

This concludes the proof of Theorem 15.6.1. O

15.7 TRACE CLASS PROPERTIES OF THE RESOLVENT

If A e L(H), let ||A| be the norm of A. Let £1 (A) be the vector space of
trace class operators acting on H. If A € £, (H), set

IA]l, = Tr [(A*A)l/ﬂ . (15.7.1)
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Then || ||; is a norm on £; (H).

If A is a possibly unbounded operator acting on H with compact resolvent,
let Sp A C C be the spectrum of A. By definition, if A € SpA, the charac-
teristic subspace of H associated to A is the image of the spectral projection
operator attached to .

In what follows, the Hilbert space H is equipped with its canonical Her-
mitian product. The formal adjoint L} of L. is taken with respect to this
formal adjoint.

Theorem 15.7.1. The adjoint of the unbounded operator L. acting on H is
the formal adjoint L% of L. acting on S’ (T* X, n*F), with domain D (L%) =
{ue H,Liue H}.

There exist Ag > 0,co > 0,C > 0 such that if U C C is given by

U={\= N +0o+ir, 0,7 € R0 < co|7]/5}, (15.7.2)

if X €U, the resolvent (Lo — \) ™" exists, and moreover

C

(Le— N7 € ———. (15.7.3)
=7 <
There exists C > 0 such that if A € R, A < —Xg, then

|e=n7 = ca+ . (15.7.4)

If \¢ Sp L., then (L. — )\)_1 is a compact operator acting on H, and for
N € N,N > 12n, (L. —\) " is trace class. There exists C' > 0 such that
ifAel,

|z - AVNHI <1+ )Y (15.7.5)

If A\ ¢ SpL., for any s € R, the resolvent (Lc—)\)_1 maps H® into
HEFY4A | In particular (Le — N) ™" maps S (T* X, 7*F) into itself. Given s €
R, there exists Cs > 0 such that for N e U,u € S (T*X,7*F),

< Cy (14 A ], . (15.7.6)

L.— )\t
H( ) v s+1/4

The spectrum Sp L. of L. is discrete. If X € Sp L., let V\ be the character-
istic subspace of L. associated to A. Then V) is a finite dimensional subspace
of S (T*X,*F).

Proof. As we saw in Theorem 15.5.1, §" (T* X, 7n*F) is dense in the domain
D (L), which implies the first part of our theorem.

By (15.6.2), we find that by an adequate choice of A\g > 0,¢¢ > 0, if A € U,
the range of L. — A is closed, and moreover L. — A is injective. The operator
L being of the same type as L., the same results also hold for L* — . In
particular the range of L. — ) is dense. Since it is closed, L. — A is surjective.
By still using (15.6.2), if A € U, the operator (L. — A)™ " is well defined, and
we get the uniform bound (15.7.3).
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Now we establish (15.7.4). Indeed by (15.6.14), if A € R, A < —\q, then
A+ Xo| 72U < C{(LL, — N U, 772U). (15.7.7)

By the obvious analogue of (15.4.8) and by (15.7.7), if A € R, A < —\g, we
get

A+ Xo| U] < C(Le,r — N UJ. (15.7.8)
By (15.7.8), we obtain
A+ ol ully < Cl(Ze — Al (15.7.9)
By (15.7.9), we get (15.7.4).
If \ ¢ Sp L,

(Le = A) "= (Le+X0) " =M+ A) (Le+ o) (Le—A) . (15.7.10)

Since the embedding of H'/* into H is compact, by equation (15.5.3) in
Theorem 15.5.1, (Lc + Ao) ™" is a compact operator. By (15.7.10), (Lo — A) ™"
is also compact.

Recall that the self-adjoint operator S was defined in (15.2.2). It is easy
to see that ast — 0,

Tr [e9] = tSS/Q +o(tn2). (15.7.11)

By (15.7.11), we find that for s € R, s > 3n, S~5/2 is trace class. In partic-
ular, for s > 3n, the embedding H®* — H is trace class. By Remark 15.3.2,
‘H*® embeds continuously in H®. It follows that for s > 3n, the embedding
‘H® — H is trace class.

By Theorem 15.5.1, (Le + o)~ " maps H* into H5T1/4. Therefore, if N €
N,N > 12n, (L. + )\0)—1\/ is trace class.

If N¢ SpL.,N € N, we have the obvious extension of (15.7.10),

N
(Le =NV = (Le+20) VDL A+ X)) (Le—NT7 | (15.7.12)

j=1

By (15.7.12), we conclude that if A ¢ Sp Lo, N € N,N > 12n, (L. — )"
is trace class. Moreover, if A € U, using the uniform bound (15.7.3) for

H(LC - )\)71H and also (15.7.12), we get the estimate (15.7.5).
Take A\g as in Theorem 15.5.1. By (15.5.3),

llyqa/a < Csll(Le = A ully + 1A+ Aol fJull, - (15.7.13)
Also since the H® form a chain of Sobolev spaces, for any s > 0, A > 0,

lully < A7 flullygy g+ A° g - (15.7.14)

By taking A = 2|\ + Ao|*, we deduce from (15.7.13), (15.7.14) that for
s>0,

el gaya < Co (I0Le = M ull + X+ 20l Jlully) . (15.7.15)
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By (15.7.15), we find that for s > 0, if A ¢ Sp L, (L. — )~ " maps H* into
H*+1/4. By duality and interpolation, this result extends to s € R. Using
(15.3.7), we find that if A & Sp Le, (L — A) ™ maps 8" (T* X, 7* F) into itself.
Using (15.7.3) and (15.7.15), we get (15.7.6) for s > 0. The case of a general
s € R follows by duality and interpolation.

As we saw before, if A ¢ Sp L, (L. — )\)_1 is compact. Therefore Sp L.
is discrete. If A € SpecL., by Riesz theory, the characteristic subspace V) is
finite dimensional. Indeed let ) € C be a small circle of center A such that
A is the only element of Sp L. contained in the closed disk bounded by §y.
Then the circle 0y is a compact subset of the resolvent set. In particular for
1 € 8y, the operators (L. — p)” " € End H are uniformly bounded. Set

1

Pr=-— [ (u—L) " dp, (15.7.16)
21 S

Q) =1— P,

By [Y68, Theorem VIIIL.8.1], B, is a projector. Since the operators which
appear in the integral are bounded and compact, the projector 3, is com-
pact. Therefore, its image F. y is finite dimensional. By integrating by parts
as many times as necessary and using the fact that the (L. — ,u)_1 map H?®
into H*T1/4 we find that E. C S (T*X,7*F). Finally, Q) projects on a
complementary vector space F¢ y.

Clearly L. acts on E, x, and its only eigenvalue on this vector space is .
Moreover, L. also preserves Fr 5, and A does not lie in the spectrum of the
restriction. By using Jordan’s theory, we find that in fact E. ) is just the
characteristic subspace of L..

The proof of our theorem is completed. O



Chapter Sixteen

Harmonic oscillator and the J; function

The purpose of this chapter is to introduce the basic tools which are needed
in the proof of the convergence of the resolvent of the operator 2ml¢2b,i71 to
the resolvent of (0% /2 as b — 0.

Here we essentially consider the case where X is a flat torus, or even R,
and we give an explicit formula for the resolvent for b = 1. In chapter 17,
this will be used when studying the semiclassical symbol of the resolvent of
227 14 and establishing its main properties.

This chapter is organized as follows. In section 16.1, we introduce the for-
malism of the bosonic annihilation and creation operators, and we construct
the Bargman kernel, which passes from the classical form of the harmonic

oscillator % (—AV + \p|2 — n) to its spectral decomposition, where the har-

monic oscillator is just the bosonic number operator N .

In section 16.2, we introduce an operator B (§).

In section 16.3, we compute the spectrum of B (i€), and we give a formula
for the resolvent (B (i) — A) . We introduce functions Jj (y, A), which give
certain matrix coefficients of the resolvent.

In section 16.4, we give special attention to the function Jy (y, A), which is
the matrix coefficient of the resolvent with respect to the ground state. The
precise analysis of the function Jy (y, A) plays a critical role in our study in
chapter 17 of the behavior of the resolvent of 29(’;% 1y a8 b—0.

Finally, in section 16.5, we study instead the resolvent of B (i§) 4+ P, where
P is an orthogonal projection operator. The point of adding P is that B (i€)+
P is invertible for any £. The corresponding procedure will also play an
important role in chapter 17.

16.1 FOCK SPACES AND THE BARGMAN TRANSFORM

Let V be a real finite dimensional Euclidean vector space of dimension n,
and let V* be its dual. Whenever necessary, we identify V' and V* by the
scalar product.

Let ei,...,e, be an orthonormal basis of V, and let e',...,e™ be the
corresponding dual basis of V*.

Let B (V*) be the Heisenberg algebra associated to V*. This algebra is
generated by 1,a (U),a* (V),U,V € V*, with the commutation relations

a(U)a* (V)—a*(V)a(U)=(U,V). (16.1.1)
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In (16.1.1), a (U),a* (V') should be considered as even, so that we can write
this identity in the form

la(U),a" (V)] =(U,V). (16.1.2)
The associated bosonic number operator N is given by
N =a*(e')a(e). (16.1.3)

The Heisenberg representation of B (V*) on the L? space of V* with re-
spect to the Gaussian measure e~ PI*/2dp/ (27r)"/? is given by

a(U)=Vy, o U)==Vu+(V,p), N=-A"+V; (16.14)
Under the isometry of L2 (e_|p|2/2dp/ (2%)"/2) to the standard L? space

given by f — e~ P*/2f (\/2p) /x"/4, the operators in (16.1.2), (16.1.3) be-
come
1 1
a(U)= 7 (Vo +(U,p), a (V)= 7 (=Vv + (V,p), (16.1.5)
_1 Vo2
N=3 (=AY +1pf* = n).

If € V*®@rC, let \2\2 € C denote the complexification of the square of the
Euclidean norm, and let ||z]|* € R be the square of the Hermitian norm of z.
Let H_ be the Hilbert space of holomorphic functions of z = ¢+ir € V*@rC

which are square integrable with respect to exp (— HZH2) dgdr. Let P (p) be

the standard heat kernel associated to e2 /2 on vV,

_ b e
P (p) ROE . (16.1.6)

The map u € L? (e"p‘z/de/ (271')"/2) — Pxu(z)/n"/? € H, is obviously
an isometry.
When identifying L? (e"p‘z/de/ (27r)"/2) to the standard L? as above,

the corresponding isometry L? — H, is given by the action of the Bargman
kernel B given by

w—Bu () = o [ e (<ol 2= o 24 VR 02)) o)

(16.1.7)
The inverse B~! is given by the formula
1 2 2
B~'f(p) = 7/ [elPl?/2=V2em+l=l/2 ¢ (yap. (16.1.8)
EN e —

To verify (16.1.8), it is enough to take f (z) = e{®# in which case explicit
computations lead easily to (16.1.8).

When acting on H,, under the above isomorphism, we now have
; 0

=2'—.
0zt

a(U) =Vy, a* (V)= (V,z), N (16.1.9)
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Note here that B maps ﬁe"p‘zm into 7~"/2. This corresponds to the
canonical identification of ker NV under the various representations of the
Heisenberg algebra. Also note that H, is usually called the Heisenberg space
representation of the bosonic algebra.

Recall that the Hermite polynomials on R™ are defined by

elon) =3l = N ok (p) . (16.1.10)
keNn
In H., the expansion (16.1.10) corresponds to the expansion
(@,2) w2
ef? = 3" a o (16.1.11)
keNn

The Hj, (p) are mutually orthogonal in L? (e"p|2/2) dp/ (2m)"'?, and the

2¥ /k! are mutually orthogonal in ...
In the sequel, we will use the classical notation

efeop) ;= elop)=3lal®, (16.1.12)
The notation :: is for normal ordering. The notation reconciles the Gaussian

and holomorphic representation of the Heisenberg algebra.

Proposition 16.1.1. For £ € R", in L? (e*|p‘2/2dp/ (27r)n/2), we have the
identity
e(a(©)=a”(©) . Jlap) . _ (&)—€?/2 . (a—tp) . (16.1.13)

Proof. By (16.1.2), [a(&,) ,a* (¢)] = |¢[*, and so
p(al©)=a" (&) —_ ,—I&*/2,—a" () gal8) (16.1.14)

By (16.1.9), we get
e¥8) ;glap) = old) . plap) . o=at(€) . plap) . pla=Ep) . (16.1.15)

Then (16.1.13) follows from (16.1.14) and (16.1.15). O

16.2 THE OPERATOR B (¢)

Definition 16.2.1. Set
1

B(&) =5 (-A" +pf —n) - (.8). (16.2.1)

Using the original representation of the operators a,a*, N as in (16.1.5),
which corresponds to original version of our operator, we can write B (£) in
the form

(a€) +a* (&) (16.2.2)
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We rewrite (16.2.1) in the form

B© =5 (-AY +1p—g) - 5l (16.2.3
By (16.2.1), we get
eVeB (§)e Ve =N — % el (16.2.4)
By (16.1.5), we can rewrite (16.2.4) as
e 3 (@O=a"©O) g () = U5 (@O=a"©) _ pr_ % 2. (16.2.5)

Proposition 16.2.2. Fort > 0,0, €V,

2
e"tBE)  elan) = exp (% l€]? + (1—e") <<a, %> - %))

: exp <<e_t (a - %) + %,p>> . (16.2.6)
Proof. By (16.2.4),

o tBE) — ot o~ T5(a(O)=a"(©) ;~tN , J5(a(§)—a () (16.2.7)
Moreover, since N is the number operator, if 3 € R",

eV B = el B (16.2.8)

Using (16.1.13), (16.2.7), and (16.2.8), we get (16.2.6). O

Scalar products are now taken in L? (e—\p\2/2dp/ (27r)"/2).

Proposition 16.2.3. The following identity holds:
2
<eftB(€) celor) ; celfp) :> = exp ((et —1+1) %)

exp ((1 —e™) <a + 4, %> et <a,ﬂ>> . (16.2.9)

In particular,

2
<e_tB(5)1, 1> = exp ((e—t —1+1) %) (16.2.10)
Proof. To get (16.2.9), we use Proposition 16.2.2 and the fact that
<: elop) . elfp) :> = el@P), (16.2.11)
By making o = 0, 5 = 0, we get (16.2.10). O

Remark 16.2.4. The operator B (§) depends linearly on £ € V. It still makes
sense as an operator when £ € V ®gr C. By analyticity, we find that the
identities in Propositions 16.2.2 and 16.2.3 extend to £ € V ®@gr C. In the
sequel we will use these identities when replacing £ € C by ¢£,£ € V. Note
that the self-adjoint part of the operator B (if) is nonnegative. One then
finds easily that if £ # 0, the operator B (i€) is invertible. This is reflected
by the fact that as ¢ — +o00, (16.2.6) and (16.2.9) converge to 0 at the rate
e tlE?/2,
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16.3 THE SPECTRUM OF B (if)
Note that if £ € V,

B (i€) = % (—AV +1pl? - n) —ip,£). (16.3.1)

Now we consider the holomorphic representation of the Heisenberg algebra,
so that N is given by (16.1.9). In particular, if £ € R™,
. ; 0 i
B (i§) =z R

Note that B (i€) acts as an unbounded operator on L2 (V*). Also B (if)
is a compact perturbation of the harmonic oscillator B (0) = N. Therefore
it has compact resolvent. In particular B (i§) has discrete spectrum and
finite dimensional characteristic subspaces. Let Sp B (i§) be the spectrum of
B (i¢).

For € C\ (—N), let D, be the inverse of the operator N+ p acting on
holomorphic functions on C™. Then D,, is the holomorphic extension in the
variable p € C of the operator defined for Re 1 > 0 by the formula

(& 2) + Ve). (16.3.2)

Duf () = /O =L (1)t (16.3.3)

Equivalently, if t‘_f_ is the holomorphic extension of the distribution 1;>¢t*,
we have

1
DuNE) = [ (0 e (16.3.)

Proposition 16.3.1. Let v : V @g C — C be a holomorphic function. If
2
AeC )\ ¢ % + N, the equation
(B(i&) = Nu=w (16.3.5)

has a unique holomorphic solution u, which is given by the formula

-4 ) )

exp ((1 —t) <<27£2,Z> + g)) dt. (16.3.6)

pB (i) = 5~ +N. (16.3.7)

Moreover,

Proof. By (16.3.2), we get

B (i¢) = (z - %g) <% - %g) + @. (16.3.8)
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By (16.3.8), we get
2
eivﬁ/\/ie_i<£/\/§’z>B (’Lg) ei<§/ﬁ’z>67ivf/\/§ = zlai + % (1639)
Z’L
Incidentally, note that in view of (16.1.14), (16.3.9) is just a form of (16.2.5).
By (16.3.4), (16.3.9), we get (16.3.6).
Now we establish (16.3.7). Indeed if A € Sp B (i€), then ker (B (i) — A) is

not reduced to 0. By the above it follows that A € % ]2 + N. Conversely by
(16.2.4), we get

. 1 )
B(i¢) = e V¢ <N+ 3 |£2> eV, (16.3.10)
Moreover, the spectrum of the self-adjoint N + @ is just % + N, and the

corresponding eigenvectors are the product of exp (— |p|2 / 2) by the Hermite

polynomials. The operator e~V¢ acts naturally on such eigenvectors. We still

obtain in this way an eigenvector of B (i£). Therefore @ + N is included in
Sp B (i€). O

Remark 16.3.2. Note that for A € C,Re A < 0,
—+oo
(B (i) —A) " :/ !X =BGO) gy (16.3.11)

0
Using (16.2.6) and (16.3.11), we recover (16.3.6).

By (16.3.6), we find that if A ¢ 5 + N,
1 2 ; 2
(B~ 1= [ e <<1 Ly <<%> " '%)) "

Definition 16.3.3. If k € N,y € R, set
1
Ji(y, \) = / (b)Y A Le(=0v" (1 _ )k gy, (16.3.13)

By expanding (16.3.12) in the variable z, we get

+oo k
, _ 1 /€
(B(i&) =N 1= —h (\g| V2, )\) (z <ﬁz>) . (16.3.14)
k=0 """
Note that
1
o (s A) = / (14)V L0 gy (16.3.15)
For Re A < y?, we can rewrite (16.3.15) in the form
oo —t 2
Jo (4, \) = / eMel=t=e"" ) gt (16.3.16)
0

Writing the function Jy (y,A) in the form (16.3.16) is natural in view of
(16.2.10) and (16.3.11).
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16.4 THE FUNCTION Jg (y, \)

Let 6 = (do, 01,02) with dp € R,d1 > 0,d2 > 0. Set
Ws = {A€C.ReA < g+ a1 [Im A"} (16.4.1)
Set
u=y>—\ (16.4.2)

Theorem 16.4.1. If y € R, the function A € C — Jy(y,A) € C is mero-
morphic, with simple poles at A € y?> + N. Moreover,
2k

Joly: A) = ’g) w(u + lgj(u +k)’ (16.4.3)

and the series in (16.4.3) converges uniformly on the compact subsets of the
domain of definition of Jo (y, \).
There exist 6 = (0o, 01,02) with §y €]0,1[,81 > 0,02 = 1 such that

o Ifk € N, there exists C, > 0 such that if (y,\) € RxWs, [y|+|A| > 1,
then

|08 Jo (5, VI < Cr (14 [y + 1A " (16.4.4)

o If(y,A\) € RxW;, then Jo(y,\) # 0, —1, and there exists Cy > 0 such
that if (y,A) € R x Ws, then

[ Jo (y: M) = Co (1 +[y| + [AD " (16.4.5)

e There is C > 0 such that if X\ € Ws, A\ # y?, then

y2

92 = AL+ [yl + 1A

]Jo (y,A) — (4% — )\)_1’ <cC (16.4.6)

Proof. If Re A < 2, then Reu > 0. By (16.3.15), we get

+oo 2k
Z/ 1 dt—. (16.4.7)
Ifa>0,b>0,

/01 (1 — )t at = % (16.4.8)

By (16.4.7), (16.4.8), we obtain

Jo (Y, \) = 5 &y%. (16.4.9)
’ = T(utk+1)

Note that
Fu+1)=ul(u). (16.4.10)
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From (16.4.9), (16.4.10), we get (16.4.3). Since both sides of (16.4.3) are
meromorphic in A, the equality extends to its obvious domain of definition.
Set

¢ (t) =log (t) + 1 —t. (16.4.11)

Note that for z €]0, 1],

x? x?
G-2) = v(-2) < - (16.4.12)
To prove (16.4.4), first observe that if (y,A\) € R x Ws, if 0 < dp < 1,
the only possible pole of Jy (y,)\) as a function of A is A\ = y2. Therefore
if & €]0,1[ is small enough, if A € W, |y| + |A| > 1, Jo (y, A) has no pole.
To establish the estimate (16.4.4), we can as well take C' > 0 as large as
necessary, and assume that |y| + [\ > C.
If ly| + |A] > C and |\ is small, then y*> > |A|, and so by (16.3.15),
(16.4.11),

b e _dt

Using (16.4.12), (16.4.13), we get (16.4.4) in the above range.

Take ¢¢ €]0,7/2[. Consider the domain of D € C which is limited by
the half lines Argz = + (% — (;50) and which contains the line —R. In the
sequel, we fix € €]0,1/2] as small as necessary, and we also assume that
A€ D, with [A] > e > 0.

Observe that there exists C' > 0 such that if A € D,Re\ > 0, then

[Im Al > C |- (16.4.14)
We claim that there exists C’ > 0 such that if A € D,z > 0,
IAN—z| > C"|\. (16.4.15)

Indeed this is clear if Re\ < 0, and for ReX > 0, this follows from (16.4.14).
By (16.4.15), we find that

lu(u+1)... (u+ k)| >CFE AT (16.4.16)

By (16.4.3) and (16.4.16), we see that if ¢ > 0 is small enough and y? < ¢|)|,
then (16.4.4) holds. Observe that the various constants above remain uniform
as long as ¢y remains away from 0.

Now we fix ¢ > 0 as above. We can choose ¢y small enough so that if
XA € D,y? > c|)|, then

Re ) < ¢?/2. (16.4.17)

Note that if |A| + |y| > 1 and y? > c|)|, then ?/c + |y| > 1, which implies
that there is o > 0 such that |y| > «. By (16.4.17), if A € D,

2 2
y? —Re\ > % > % (16.4.18)
Put

(t) = (y> — ) log(t) + y*> (1 —t). (16.4.19)
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Note that
O (t) = y*y (t) — Mog (t). (16.4.20)
For p = :I:%, set
0(s)=p(1—y9). (16.4.21)
Consider the complex path « parametrized by s € [0, 1],
ty = se?(), (16.4.22)
Then
Jo(y, \) = / e®® %. (16.4.23)
vy

Note that by (16.4.18), the integral in (16.4.23) is indeed convergent.
Over the path v, we have the obvious

Re® (t) = (y> — ReA) ¢ (s) + sy* (1 — cos (p (1 — s)))
+(1—s)(pImA+ReX). (16.4.24)

We claim that if ¢q is small enough, there is C' > 0 such that given A\ € D,
we can choose p = :I:% so that

Re @ (t;) < C (y°¥(s) — (1 —s)|A]) . (16.4.25)

Observe that

b(s)<—2(1-35)7, (1-cos(p(l-s)) <

By (16.4.18), (16.4.26), if p = +1,

p?(1—s)®.  (16.4.26)

]
| =

1
(y> —Re) ¢ (s) +sy* (1 —cos(p(1—s))) < Zwa (s). (16.4.27)
Moreover, given n > 0, by taking ¢o small enough, if A € D, ReX > 0, then
ReA < n[Im . (16.4.28)

We take n = 1,p = —3sgn(ImA). Using (16.4.14) and (16.4.28), we find
that if A € D, if ReA >0

1
pIm A +Re ) < ~1 Im A < —=C'|)]. (16.4.29)
Of course, if Re A < 0, we still have the inequality
1
pIm A+ Re )\ < ~3 [\ (16.4.30)

By (16.4.24), (16.4.27), (16.4.29), (16.4.30), we get (16.4.25).

Since y? > c|)|, using (16.4.25) and also the fact that |\ > €, we find
that the contribution of the s € [0, 1] which are away from 1 in the integral
in the right-hand side of (16.4.23) is compatible with (16.4.4).
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Using (16.4.25), the first equation in (16.4.26), and the fact that if s € R,
then 52 > s — 1, we get
ds

1
/ (o) s
1/2 ts ]

By (16.4.31) and again taking into account the fact that |\| > €, we finally
obtain (16.4.4) for k = 0. Higher derivatives in the variable y can be handled
in the same way. Therefore we get (16.4.4) in full generality.

We claim that if C' > 0 is large enough, if |y|+|A| > C, then (16.4.5) holds.
First if |y| 4+ || is large and | )| is small, we use again the fact that y2 > |)|,
so that by using (16.4.12) and (16.4.13), (16.4.5) holds in this range.

Then we consider the case where A € D. By (16.4.3),

+oo
< c/o exp (—C' (1 + A/ [y]) s) (16.4.31)

1 2k

Jo () = ;} o 1)?' NoEst (16.4.32)

so that using a bound similar to (16.4.16), if |y|> < c¢|A|, we get from
(16.4.32),

|Q

190 (v, A)| =

from which (16.4.5) still follows.

Now we may as well assume that A € D, |\| > ¢,y% > c|A|. By using again
(16.4.25) and the first equation in (16.4.26), it is clear that in (16.4.23), the
obvious bounds on the integral away from s = 1 are compatible with (16.4.5)
with |y| + |A| large, as long as we show that the integral near s = 1 verifies
the corresponding bound.

We will show that the inequality in (16.4.31) can be turned into an equiv-
alence. The sum of the first two terms in (16.4.24) vanishes to order 2 at
s =1, while the third term is negative and controlled by (16.4.29). By mak-
ing the change of variable |y| (1 — s) = s’ and using integration by parts, we
get

(16.4.33)
|ul

C

1o (y; M| > =7
[yl + (Al

(16.4.34)

which is exactly what we need.

Now we show that with the adequate choice of §, if (y, A) € R x W, then
Jo (y,A) # 0,—1. Using (16.4.4), (16.4.5), what is left to prove is that if
¢o > 0 is small enough, if y € R, A € D, |y| +|A\| < C, then Jy (y, A) is never
equal to 0 or —1. Since the considered domain is compact, we may as well
assume that Re A < 0.

Here we take V = R.. Set

1

f=(Bavay) -a) 1. (16.4.35)
By (16.3.14),
<f, (B(z’\/iy) - )\) f> = Jo (4, \). (16.4.36)
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By (16.1.9), (16.3.2), (16.4.36), we get

(N ) —ReX|fI? =ReJo (y,\). (16.4.37)
By (16.4.37), if Re A < 0, we obtain
Re Jo (y,A\) >0, (16.4.38)

the equality in (16.4.38) being possible only if y = 0, Re A = 0, in which case
Jo (y,A) = —1/A. In any case, the values 0, —1 are excluded. This concludes
the proof of (16.4.5).
Now we establish (16.4.6). First note that if y € R, for A € W, the only
possible pole for the function Jy (y, \) is A = 2. Also note that by (16.4.3),
Jo (y, A ! v
0(y,A) = PR + IR
Moreover, if A € Ws, A — 1 € W5 and |\ — 1] has a positive lower bound on
W;. If y € R, the poles of J (y,- — 1) are given by y? + 1 + N, and this set
does not intersect Ws. By (16.4.4), if y € R, A € Wj, then

Jo (g, A—1). (16.4.39)

1Jo (y, A= 1) < C (A +y|+ M) . (16.4.40)
By (16.4.39), (16.4.40), we get (16.4.6). The proof of our theorem is com-
pleted. [l

Let S C R4 be a nonempty closed set. If A € C, put
ri(A) =d(\S),

1
1 1
g Ly IHReA perso.

AL 7 (A + [Im A
Observe that if A € S, then p () = +o0.

We take § = (dg,01,02) as in Theorem 16.4.1. If h €]0,1], A € Wj, then
h2X\ € Ws.

Given 65 €]0, 1], by taking &) €]0,1[,d; > 0 small enough, we have the
inclusion

Ws: C Ws. (16.4.42)

It follows that if & €]0,1], A\ € W/, then h2\ € W;.

Proposition 16.4.2. Given r > 0, there exist C' > 0,C, > 0 such that if
h €]0,1], if X € C is such that h>\ € Ws, and if

rReA+1< [Im )|, (16.4.43)
then
) ) Ch+C, (1+|A)""?
\h?Jo (hy, h*N)| < 72 (16.4.44)
L+ A7 + [yl
hlyl+1

\W?Jo (hy, h*N)| < C

AN
lyl” +1
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There exist C > 0,hg €]0,1] such that for h €]0,ho,y* € S,h?X\ € W,
then

1+ h% [N\ + hly|

h*Jo (hy, h*\)| < Cp (\) ———n——= 16.4.45
Proof. By equation (16.4.4), if h €]0,1], h2X € Ws, h|y| + h? |A| > 1,

W2y (hy, W2A\)| < C (L + |yl /h+ A" (16.4.46)
Also,

1+\>\|1/2+\y| ~1/2

ST T oo (b (14 | , 16.4.47

1+ 1yl /h+ A — ( (14 [A) ) ( )

h hlyl+1 hlyl+1
< — < —5—.
lyl+h = |y +hlyl+1 " |y +1

By (16.4.46), (16.4.47), we get (16.4.44) when h|y| + h? |A| > 1.
Ifr= iJr—, —1<e¢ <1,if A\=a-+1ib,a >0 is such that (16.4.43) holds,

ifyeR, -
[y? = A > 9> —a+ bl >y +c (Ja| +[b]) + 1 —cp, (16.4.48)

By (16.4.48), we get

|2 = A = Cr (T4 9>+ A]). (16.4.49)

Moreover, there is d, > 0 such that if A = a + ib verifies (16.4.43), then
|[A| > d,. In particular if a < 0, we still have

|2 =N =92+ A = C (1+ 52+ |N]). (16.4.50)

For k € N*, replacing y? by y? + k/h? in (16.4.49), (16.4.50), if \ verifies
(16.4.43), we get

W2 (y> = A) + k| > Cp (B2 (1 +y* + [\]) + k) > Crk. (16.4.51)

By (16.4.3), (16.4.49)-(16.4.51), we conclude that if h €]0,1], A € C, |hy| +
2 |A| < 1, if (16.4.43) holds,

-1
12|y (hy, h2N)| < C, (1 +yl? + \A|) . (16.4.52)
Also observe that
1+ A2 _
M <O+, (16.4.53)
L+ |y["+ Al

By (16.4.52), (16.4.53), we still get (16.4.44).

Now we will establish (16.4.45). First assume that h|y| + h% |\| > 1. By
(16.4.4) in Theorem 16.4.1, we get

2
| < Ch .
1L+ hly|+h%|N

My multiplying the numerator and the denominator in the right-hand side
of (16.4.54) by 1/h%+ |y| /h+| )|, we get an estimate like (16.4.45), in which

|h?Jo (hy, h*)) (16.4.54)
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p () is replaced by 1. Since p (A\) > 1, we have established (16.4.45) in this
case.

Assume now that h |y| + h? || < 1 and that A € Wy, so that h2\ € W;.
First suppose that Re A < 0. Then for k € N,

B (y* = N) + k| > k. (16.4.55)
Using (16.4.3) and (16.4.55), we obtain
1+1
: C <o Lt /|)\|27
AT I+ Aty

|h*Jo (hy, h*N)| < (16.4.56)

which fits with (16.4.45).
Now assume that Re A > 0. First we will show that there exists hy €
10,1],C > 0 such that if h €]0, ho], A € W/,

|h?Jo (hy,K*N)| < ¢

= 16.4.57
< ly? — Al ( )

Indeed for k € N*, if A =a + ib,a > 0,

W2 (v = AN) + k| > k+ 1% (y> —a+1b]). (16.4.58)
If |b] > a, a lower bound for (16.4.58) is still k. If |b] < a, since A € W, and
04 < 1, we see that such A vary in a compact set. From (16.4.58), we find
that for h €]0, 1] small enough, a lower bound for (16.4.58) is k/2. Therefore

we get (16.4.57). So to establish (16.4.45) also in this case, what remains to
prove is that

14| 2
M <Cp(N). (16.4.59)
y? = Al
First we consider the case where y? > a. Since y? € S, by construction

y? —a+ b > (N). (16.4.60)
In this case, the left-hand side of (16.4.59) is just % This is a de-
creasing function of y2, so that its maximum on the considered domain
of variations is at 4> = a. The value at the maximum is just %. If

|b| > 71 (X), this is dominated by 1+2(2a + 1)/ (]b| + r1 (A\)). This bound is
compatible with (16.4.59). If |b] < r1 (A), by (16.4.60), the minimum value
of y? is just a +r1 (A) — |b]. The maximum value of the considered function
is attained at the minimum value of 32, and the value of the maximum is

now % Agam this is compatlble with the bound (16.4.59).

Now suppose that y? < a. Since y? € S, instead of (16.4.60), we now have

a—y? 1ol >r(N). (16.4.61)
The left-hand side of (16.4.59) is % This is an increasing function of

y2, so that the maximum value of this function on its domain of variation is
still 2'”“7'“ If |b] < 1 (A), the domain of variation of y? has now the upper
bound a + |b| — r1 (A). At this point the value of the considered function is
given by 2“”‘3';&;()‘)“ < 2a+f11((/\>3)+1. The proof continues as before. We

have completed the proof of our proposition. O
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Now we extend Theorem 16.4.1 to arbitrary Ji. We make the convention
that if k € Z,k <0, set J, = 0.

Theorem 16.4.3. For any k € N, if y € R, the function A € C —
Ji (y,\) € C is meromorphic, with simple poles at A € y*> + N. Moreover,
(K +1)...(K+k) ok

Jk(ya)\):l;)u(u+1)...(u+k/+k)y

, (16.4.62)

and the series in (16.4.62) converges uniformly on the compact subsets of
the domain of definition of Jy, (y, ). Also for k € N,

kE(Jg — Je—1) + y2Jk+1 — Ak =0k 0. (16.4.63)

There exists 6 = (0g, 01,d2) with &y €]0,1[,d1 > 0,02 = 1 such that for
k. k' € N, there exists Ci g > 0 such that if (y,A) € R x Ws,|y| + || > 1,
then

05 T (9 V)] < O (L lyl+ AT (16.4.64)
Proof. To establish (16.4.62), we use equation (16.3.13) for Ji, and we pro-

ceed as in (16.4.7)-(16.4.10). Also we use (16.3.2) with n = 1 and the fact
that by (16.3.14),

(B (zﬁy) - /\) io %Jk (v, \) (iy2)F =1, (16.4.65)
k=0

and we get (16.4.63).
Using (16.3.13) and (16.4.62), and proceeding as in the proof of Theorem
16.4.1, we get (16.4.64). The proof of our theorem is completed. O

Now we assume that V =R"™. If A ¢ @ + N, if 3 € N™, set

(B - N2 = > ylae (16.4.66)

aeN™
Comparing (16.3.14) and (16.4.66), we get

ST et = io % (|§\ V2, A) (z <%z>)k (16.4.67)

a€EN™ k=0
By (16.4.67), we deduce in particular that

u8 = Jo (161 /v2.2). (16.4.68)
Proposition 16.4.4. For any 0 € N,

Yowit = Y ks (I&\/\/?,A)

aeENn keN
B1,B2EN™
B1+B2=p

St (erae)’ (s viena) s oo
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Proof. By equation (16.3.6) in Proposition 16.3.1, if 2’ € C",
1
(B (i€) = \) L el=2) :/ JEP /221 0-0lel 2

exp ((1 1) (z <§/\/§, z> + <z’, S z’g/\/i>)) dtel==) . (16.4.70)
Moreover, by (16.4.66),

(B(ig) — N el = 3 L oypsaye (16.4.71)

We can now expand the term exp (((1—¢%)...)...) in the second line in
right-hand side of (16.4.70) using (16.3.13). Comparing with (16.4.71), we
get (16.4.69). O

16.5 THE RESOLVENT OF B (i) + P

Let P be the orthogzonal projection operator on ker A. Note that in L2, ker N
is spanned by e~ PI"/2and in H. it is spanned by the function 1. Consider
the equation

(B +P-N""2"= > =" (16.5.1)
aeN'll
By (16.4.66), (16.5.1), we get
a? =8 —y2dl. (16.5.2)
In particular, by Theorem 16.4.1, by (16.4.68) and (16.5.2), if A € W, then
V3 = Jo (|¢]/v2,A) # —1, and moreover,
vevo
L+yg

A symbol a (€, A) of degree d is a smooth function of £ with values in C,
which is holomorphic in the parameter A € W, such that if v € N™, there
exists Cy > 0 such that

al =P — (16.5.3)

]aga (&, )\)‘ <O (14 M+ e (16.5.4)
We denote by Sg the corresponding class of symbols.

Proposition 16.5.1. There exists § = (dg,01,02), with §y €]0,1[,6; >
0,65 = 1 such that if X € Ws, the resolvent (B (i) + P — \)~" exists, and
further if a, 3 € N™, af € Sgl.

Proof. We take  as in Theorem 16.4.1. Since B (i) — A has compact resol-
vent, B (i) + P also has compact resolvent. Assume that a nonzero f € H,
is such that

(B(i€)+ P — X f =0. (16.5.5)



262 CHAPTER 16

Assume first that A € Ws, A # % By Proposition 16.3.1, A ¢ Sp B (i€),
and so

f=— (B -\ ""Pf. (16.5.6)
Since f # 0, then Pf # 0. By (16.3.14), (16.5.6), we obtain
Pf=—J (\§| V2, A) Pf. (16.5.7)

By Theorem 16.4.1, Jo (y, |¢| /v/2) # —1, which contradicts (16.5.7).
If A= %, A € Ws, then A < §g. Moreover,

Re((B(i&)+P =\ f,f)> (1 =N|f>>1-6)|f*,  (16.58)
which contradicts (16.5.5). We have thus proved that W is included in the
resolvent set of B (i§) + P.

We use the estimates in equation (16.4.64) in Theorem 16.4.3, and also
equation (16.4.69) to express the 12 as a finite linear combination of products
of monomials in the components of ¢ by the J. Ultimately we find that
for (y,A) € R x Ws, |y| > 1, the ¥ verify the estimates in (16.5.4) with
d = —1. Also recall that by Theorem 16.4.1, Jy (y, \) verifies the estimates
in (16.4.4), and also that for (y,A) € R xWs, Jo (y, A) # —1. Using (16.4.68)
and (16.5.3), we conclude that a? € S;'. The proof of our proposition is
completed. O

Set
Pt=1-P (16.5.9)
We take § as in Proposition 16.5.1.
Proposition 16.5.2. If A € Ws, then P+ (B (i€) — \) P+ is invertible.

Proof. By Proposition 16.5.1, if A € Ws, B (i§) + P — X is invertible. As we
explain in section 17.1, the invertibility of P+ (B (i€) — \) P+ is equivalent
to the invertibility of P (B (i) + P — A)~' P. Also ker \/ is 1-dimensional.
By (16.5.1),

P(B(i€)+P-XN""'P=adf (16.5.10)
By (16.4.68) and (16.5.3),
al = 1i°J0 (1g1/v2.2). (16.5.11)

Note that (16.5.11) is an equality of holomorphic functions, and so it is also
valid at the poles of Jo (|¢] /v2, A).

By Theorem 16.4.1 and by (16.5.11), we find that if A € W, then af # 0.
The proof of our theorem is completed. O

Definition 16.5.3. If A € W, set

Tear = %Pa (&) (P (B (i€) — \) PL)’1 a* (&) P. (16.5.12)

Then T¢ » € Endker V. Since ker V is 1-dimensional, T¢ \ € C.
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By Theorem 16.4.1, we know that if A € W, then Jy (y, \) # 0. Note that
if h €]0,1], then AW; C W.
Proposition 16.5.4. If A € W,
€°

i — -1 - 2 -
Tea— A= It (16V2A). Tea= 5 (l€/V2 ). (16513)
Also if h €]0,1], h—lzihg’hz,\ extends continuously at h = 0. More precisely,
1 1
ﬁghg,h2>\|h:0 =3 €. (16.5.14)
Finally,
S (y,\) € Szt (16.5.15)
Jo

Proof. By Proposition 16.3.1, we find that if A € Ws, A # |§\2 /2, B(i§) — A
is invertible. Moreover, by (16.3.14),

P(B(i€) -\ ' P=1 (\g\ V2, A) . (16.5.16)

By what we just saw, (16.5.16) is invertible. By the argument we give after
(17.1.5), ¢ » — A is invertible, and moreover,
—1
Tea— A= (P (B (i€) — \) " P) . (16.5.17)
By (16.5.16), (16.5.17), we get the first equation in (16.5.13) when A #
€17 /2. Also both sides extend to A = |¢|* /2 by continuity, so that the first
equation in (16.5.13) still holds there. The second equation follows from
(16.4.63) for k = 0.
By (16.5.13),

1 -1

S Thenn — A = (W) (h €] /V2, h2>\) . (16.5.18)
Using (16.4.3) and (16.5.18), we get (16.5.14). We can derive (16.5.14) di-
rectly from (16.5.12). In fact we get

1 1 -1
73 Shenaln=o = 5Pa(§) (PENPH) " (O P. (16.5.19)
By (16.5.19), we get
1 1 . 1
zTnenaaln=o = S Pa(§)a” () P =3 €2 (16.5.20)

Now we establish (16.5.15). Using equation (16.4.5) in Theorem 16.4.1
and Theorem 16.4.3, we find that for |y| + |A\] > 1, % verifies the proper
estimates. Moreover, A = 2 is the only possible pole of .J; in R x W;s and
this pole is simple. Finally, A = y? is a simple pole of Jy, and by (16.4.3),

2

l%es’/\:y2 ']0 (yv )‘) = —e? 3 (16521)

which does not vanish. Therefore §—(1) (y, A) is holomorphic in A when (y, \) €

R x W;. This concludes the proof of (16.5.15). The proof of our proposition
is completed. [l

By (16.5.13), we find that if & €]0,1], A € Wy, X # [€]* /2,

1 —1
(ES%W - A) = h%J, (h €] /V/2, hZA) . (16.5.22)



Chapter Seventeen

The limit of Ql;i,iu asb— 0

The purpose of this chapter is to study the asymptotics of the hypoelliptic
Laplacian L. = 29(’;% 1+ as b — 0. Our main result is that, as anticipated
in [B0O5], it converges in the proper sense to the standard Laplacian (0% /2.
As in chapter 15, we only consider the case of one single fiber, the more
general case of the hypoelliptic curvature of a family does not introduce any
significant new difficulty.

Since this chapter is analytically quite involved, we will try to describe
its organization in painstaking detail. The operator L. is of order 1 in the
horizontal directions, while (0¥ /2 is of order 2. The crucial algebraic link
between these two operators was given in [B05, Theorem 3.14], and stated
as the second identity in Theorem 2.3.2. The underlying motivation for the
computations in [B05] is the evaluation of the resolvent (L, — A) ™' as a (2,2)
matrix with respect to the splitting H = ker ay @ ker af. A formal algebraic
formula for this resolvent is given in (17.2.12), which is based on a trivial
computation on matrices. At least at a formal level, it is clear that when
b— 0, (Le— A" — iy (OX/2— )\)71 Py . The main point of the present
chapter is to justify this formal argument, and also to provide the proper
functional analytic framework so that the convergence takes place in suitable
Sobolev-like spaces. We will describe the relevant formulas in more detail.

We will set here b = h, so as to underline that h is a semiclassical param-
eter. Put

P, = h?L,,
Onx =Pt (Py— ) Pt (17.0.1)
Ty = PeyePe — Pi (Bs + hyx) O, ) (B + hys) Py

In (17.2.12), (17.21.2), using the fact that B+ maps ker a+ into ker ag, we
obtain the formal equality of operators acting on ker a,

-1

Py(Le— XN "ig = (Thpen — N (17.0.2)
Formal considerations show that as h — 0,
Op.nzx — PragPr. (17.0.3)

Let az' be the inverse of the restriction of ot to ker at. By (17.0.1), (17.0.3),
we find that as h — 0,

T p2x — Pi (v — Broi'Be) Pe. (17.0.4)
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The crucial formula in [B05, Theorem 3.14], which is given in Theorem 2.3.2,
asserts precisely that
X

Py (s — frog'fs) Pe = 0. (17.0.5)

Equations (17.0.3)-(17.0.5) provide one of the main arguments in favor of
the fact that as h — 0, (L. — \) " — iy (0%/2 =)' Py.

As h — 0, Pj, behaves like a semiclassical operator in the x variable, since
differentiation in x is multiplied by h. It is then natural to use a semiclassical
pseudodifferential calculus to handle the convergence in (17.0.3).

For h > 0 small enough, we will show in Theorem 17.17.4 that T} p2)
is a classical pseudodifferential operator of order 1 acting on Q (X, F) or
on (X, F®o(TX)). The convergence of operators will be analyzed as a
convergence of a family of pseudodifferential operators of order 1 to a differ-
ential operator of order 2. Of course, these are standard pseudodifferential
operators. These simple considerations indicate that while the convergence
(17.0.3) involves semiclassical pseudodifferential operators, the convergence
(17.0.4) will be obtained via classical pseudodifferential calculus.

From the above we find that we should combine at the same time a semi-
classical pseudodifferential calculus with an ordinary pseudodifferential cal-
culus. Corresponding to these two calculi, there will be two kinds of norms,
semiclassical norms to handle the convergence in (17.0.3) and classical ones
to handle the convergence in (17.0.4). The issue gets even more involved
when one has to get a precise view of the behavior of the heat kernel of L.
as t — 0, which is uniform as h — 0. One of the important points which is
established at the end of this chapter is precisely such a uniformity result. In-
cidentally, observe that since no wave equation is associated to our operators,
finite propagation speed methods cannot be used to establish localization of
the heat kernel, not to speak of uniform localization.

It is probably easier to describe briefly the tormented convergence which
takes place from a dynamical perspective. Indeed as explained in detail in
[BO6], the stochastic process (z.,p.) which is associated to the scalar part of
L. is a Langevin process, such that @ = p/h. In particular . has C* tra-
jectories. When h — 0, the component x converges to a standard Brownian
motion on X, so that in distribution sense, & converges to the time derivative
of Brownian motion, whose trajectories are nowhere differentiable. These
convergences were handled in a related context by Stroock and Varadhan
[StVT72]. What is being done here is the functional analytic counterpart to
the convergence of the dynamics.

Let us now describe in more detail the semiclassical aspects of the analysis.
Studying the operator ©y, » is made easier by replacing the operator P, by
the operator PP, given by

P) =P, + Py. (17.0.6)
While O, 5 is unchanged by this transformation, a4 is replaced by a4 + Py,
which is invertible. Let Sy » be the resolvent for PY, i.e.,

Spa = (P) =)' (17.0.7)
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A simple formula given in Theorem 17.16.2 expresses @;f\ in terms of

Sh,x. The convergence of the resolvent (L. — A) ! is obtained in particular by
studying the behavior of S » as h — 0. As should be clear from the previous
considerations, P is a differential operator which is semiclassical in the =
variable. However, because of lack of uniformity as |p| — 400, for a given
h > 0, Sp,x does not lie in a proper algebra of operators. Actually we deal
with classes of operators which are semiclassical pseudodifferential operators
in the x variable and ordinary operators in the p variable. These classes are
described in detail in section 17.8. In fact if (z, ) are the canonical variables
for the ordinary pseudodifferential calculus on X, in our classes of operators,
there are increasing powers of < p > which appear when considering the z, £
differentials of the corresponding symbols, so that ultimately, even though
our operators can be composed, their composition does not lie in the class.
We are even led to consider classes of operators which are not invariant under
change of coordinates to better describe the resolvent Sj, .

The proper use of pseudodifferential calculus allows us to prove in Theorem
17.10.1 that in the proper sense, for h small enough, Sp  is an operator
of order —2/3, which improves on the hypoelliptic estimates which were
obtained in Theorems 15.5.1 and 15.6.1, where the gain of regularity was
only 1/4. Moreover, as explained before, we show in Theorem 17.15.3 that
Py Sy 2i+ is a semiclassical pseudodifferential operator of order —1 on X.
These refined estimates are needed in the proof of the proper convergence of
the resolvent (L. — A) 'as h — 0.

Now we describe the organization of this chapter in more detail.

Section 17.1 is devoted to elementary computations on (2, 2) matrices.

In section 17.2, we apply formally these computations to the evaluation of
(Lo — M)~ " as a (2,2) matrix.

Sections 17.3-17.15 are devoted to the semiclassical analysis of the operator
L.

In section 17.3, we introduce the semiclassical Poisson bracket on smooth
functions on the total space of P (T*X @ R), in which only the base coor-
dinate is rescaled by the factor h. When h — 0, this semiclassical Poisson
bracket converges to the fiberwise Poisson bracket along the fibers 7% X.

In section 17.4, we introduce semiclassical Sobolev norms. Their construc-
tion is adapted from section 15.3, where the case of a fixed h was considered.

In section 17.5, uniform hypoelliptic estimates on the operator P are
established with respect to the semiclassical Sobolev norms, which extend
the corresponding estimates in section 15.4. To establish these estimates, the
proper algebra of semiclassical pseudodifferential operators on P (T*X @& R)
are introduced.

In section 17.6, corresponding estimates are established for P,g, and the
associated resolvent S}, » is considered for A € R. The resolvent is shown to
be an operator of order —1/4.

In section 17.7, the resolvent is extended to A € C. In particular it is
shown that a domain to the left of a curve with a cusp is included in the
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resolvent set.
In sections 17.8-17.11, we develop pseudodifferential operator techniques
to improve on these estimates.

In section 17.8, classes of semiclassical symbols Sg’fc

operators along the fiber T* X are introduced. Let 79;”;6 be the corresponding
classes of operators. The (d, p,d) refer to the corresponding parameters in
the classical Hormander’s classes Si s- The parameters k,c¢ = (co,c1) refer
to the growth as |p| — 400 of these symbols.

In section 17.9, when A € R, with Re A bounded above, the full semi-
classical symbol Q9 (z,&) — X of P, — X is considered, as well as its inverse
eo.nx (2, €). It is shown to lie in one of the above classes, with d = —2/3.

In section 17.10, under the same conditions on A, a parametrix is obtained
for Sy x, whose principal symbol is shown to be eg n x (z,€). In particular,
in a given coordinate chart, we show that it lies in one of the above classes
with d = —2/3, which improves on the above —1/4.

In section 17.11, we show that the parametrix is local over X in the proper
sense as h — 0.

In sections 17.12 and 17.13, we show that P1Sy x and S, Py lie in a
better class of operators, whose order is —5/6.

In section 17.14, the above results are extended to the set of A € C to the
left of a cusp-shaped curve.

In section 17.15, we prove that P15y xzi4 is a semiclassical elliptic pseu-
dodifferential operator over X of order —1, whose principal symbol can be
easily expressed in terms of the function Jy (y,A), whose properties were
studied in chapter 16.

In section 17.16, we study the analytic properties of the operator ©p x
introduced in (17.0.1) by expressing it in terms of S, .

In section 17.17, using the results which were obtained on ©p,_ ), we study
the properties of the operator Tj » defined in (17.0.7). In particular we ob-
tain in Theorem 17.17.4 a key formula for T} x which shows that T} y is a
pseudodifferential operator on X of order —1. The principal symbol of T}, »
is expressed in terms of the functions Jy, J1, Jo of chapter 16.

Sections 17.18-17.20 are devoted to the study of the asymptotics of T}, p2
as h — 0. Part of the difficulty lies in the fact that we have to describe
precisely in what sense this family of operators of order 1 converges to the
operator (0% /2 which is of order 2.

In section 17.18, we introduce the operator (.J1/.Jo) (hDX/v/2,\), which
we will use to approximate T}, p2 .

In section 17.19 we express T}, 25 — A in terms of an operator Uy, p2»,
whose asymptotics as h — 0 is studied in detail. The refined properties of
the function Jy, J1, Jo which were established in chapter 16 play a key role
in our estimates.

In section 17.20, the asymptotics as h — 0 of the operator (Th,h2>\ — )\)
is obtained.

In section 17.21, we obtain uniform estimates on the resolvent (L. — )\)71

on X with values in

-1
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as h — 0, using at the same time ordinary and semiclassical norms, and we
study its convergence as h — 0 at the level of the corresponding kernels.
Finally, in section 17.22, we obtain corresponding results on the resolvent
(€L, — )\)71 which are uniform as € €]0, 1].
We use the same notation as in chapter 15. In particular H still denotes the
Hilbert space of square integrable sections of 7* (A" (T*X) ®A" (T'X) @7 F)
on T*X, and || is the corresponding L? norm on H.

17.1 PRELIMINARIES IN LINEAR ALGEBRA

Let E = Ey® E1 be a Zs-graded vector space. Let u € End (F). We write u
in matrix form with respect to the splitting of F as

w= [é g] . (17.1.1)

Assume that u is invertible. We will give a matrix expression for the inverse
u~! of u under the assumption that D is invertible. When writing this ma-
trix expression, we will assume implicitly that other matrix expressions are
invertible as well. These implicit assumptions will be obvious in the formula

anyway.
Set
H=A-BD'C. (17.1.2)
We have the following easy formula:
-1 H-! —-H'BD™!

u =

_Dfchfl Dfl +D710H71BD71 (17.1.3)

Let P, Pt be the projectors on Ey, E;. We extend operators acting on E°
or E' by the 0 operator on E' or E°. From (17.1.3), we get

Dl =ut—ut (PutP) (17.1.4)

In fact if D is invertible, the invertibility of u is equivalent to the invert-

ibility of A — BD~'C. In the finite dimensional case, this is obvious by the
formula

detu = det (D) det (A — BD™'C). (17.1.5)

If w is invertible, the invertibility of D is equivalent to the invertibility
Pu~'P.

17.2 A MATRIX EXPRESSION FOR THE RESOLVENT

Recall that b € R% and that ¢ = +1/b%. We will consider again the operator
L = 291’2 1¢ @s in equation (15.1.2). The operators o+, 3+, v+ were defined
n (2.3.12) and in (15.1.3). By (15 1.4),
B

Le=—+4+— 17.2.1
b2 + b + v+ ( )
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Here we take by €]0, 1] small enough, and we assume that b €]0, bg]. In the
sequel, we will set
h=b. (17.2.2)

This is because h is a standard notation for a semiclassical parameter.
Let Pp be the operator

Py = a+ + hfBs + h?yy, (17.2.3)
so that
P,
Le= 15 (17.2.4)

Note that Py, is different from P, in (15.4.5).
Let ker af be the orthogonal subspace to ker a+ in H with respect to the
standard Hermitian product of H, so that with the notation in (2.3.14),

ker af = Imax. (17.2.5)
Then we have the splitting
H =keras @ keraf, (17.2.6)

which is just the one in (2.3.14).

As was observed in section 2.3, 8+ maps ker .t into ker at. In the sequel,
we will write the considered operators in matrix form with respect to the
above splitting. So we get

=g o) =g F) oe=(22) a2

Set

Ly =, Lo = B2 + hya, (17.2.8)
L3 = B3+ hvs, Ly =a+ hBs+ hPy.
By (17.2.1)-(17.2.8), we obtain

Lo
L= (Q i) . (17.2.9)

ho R

Let A € C be such that L. — A is invertible. Set

H=1ILy—A—Ly(Ls—h*)\) " Ls. (17.2.10)

There is no risk of confusion between the operator H and the Hilbert space
H. Put

Dy = Ly — B2\ (17.2.11)
By (17.1.3), at least formally, we can write (L. — A)~' in matrix form as

(Lo -2 = H-! —hH 'LyD; "
¢ T |=hD;'LsH™Y W2D;t 4+ h2Dy LsH 'LeDy |
(17.2.12)
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The remainder of this chapter is devoted to the analysis of equation (17.2.12).
As we already saw in section 2.3 after equation 2.3.13, the fiberwise kernel
of the operator a4 restricted to fiberwise forms is 1-dimensional. If F' = R,

the kernel of a is spanned by the Gaussian exp (— >/ 2) and the kernel

of ar_ restricted to fiberwise forms is spanned by exp (— |p|2) 7, where 7 is
a fiberwise volume form.
Let P1 be the fiberwise orthogonal projector from H on kerai. Set
Pf=1-Ps. (17.2.13)
Ifue A (T*X)RA (TX)®F, let Q u (resp. Q_u) be the orthogonal pro-
jection of w on A" (T*X)RF (resp. on A" (T*X) @A™ (T'X)®F). Then one
has the obvious formula

Pyu=n "2 P2 / e la2Q u (q) dvp=x (q) - (17.2.14)
e

17.3 THE SEMICLASSICAL POISSON BRACKET

We use the notation of section 15.3. Recall that Y is the total space of
P(T*X ®R). Let i : TVY — TY be the vector subbundle 7Y which con-
sists of tangent vectors to the fibers P (T*X @ R), and let TV*Y be its dual.
We have the obvious exact sequences which are dual to each other,

0-T"Y LTY - 7*TX — 0, (17.3.1)
0— "X — TV 517V - 0.

Given h > 0, we denote by T*Y,. C T*Y @& T"V*Y the graph of the mor-
phism ¢*/h. Then T*Y;. is a vector bundle on Y'x]0,1]. The Grassmann
graph construction asserts that T*Y;. extends to a smooth vector bundle
over Y x [0,1]. In particular,

T*Yielyxqoy = TT*X & TV*Y. (17.3.2)

Denote by THY C TY a horizontal vector bundle on Y, so that TY =
THY @ TVY. The corresponding dual splitting is T*Y = m*T*X @ TV*Y.
A smooth trivialization of T*Yj. is given by

(,B) € T*"T*X ©TV*Y — (n*a + hB,i* ) € T*Yec. (17.3.3)

Also observe that over Y x]0,1], the map v € T*Y — (hv,i*y) € T*Y
identifies the two vector bundles.
We have obvious morphisms

V'Y £y, L Ty (17.3.4)

Then over |0, 1], j identifies T*Y;. and T*Y.
Recall that T*Y is a symplectic manifold. Let w” " be the corresponding
symplectic form. The symplectic form w” ¥ on T*Y pulls back to a closed
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2-form j*wT*Y on the manifold T*Y;.. The restriction of the form j*wT*Y
to the h-fibers for h €]0, 1] is a symplectic form.

Let {}T*Y € A% (TT*Y) be the Poisson bracket on T*Y, i.e., the 2-form
on T*T*Y which is dual to the symplectic form w” Y. For h €]0, 1], set
(1T e = 2y (4T (17.3.5)

One verifies easily that { }TWSc extends smoothly at h = 0.

Let {}TV*Y € A*(TVTV*Y) be the Poisson bracket along the fibers
of TV*Y. By (17.3.2), {}TV*Y can be considered a Poisson bracket on
T*Ysc|n=0. Then one verifies easily that

O o = (377 (17.3.6)

Let f,g: T*Ysc — R be two smooth functions. Note here that these two

functions also depend implicitly on h. Set
T"Ysc
{f,9}sc =A{df.dg}” . (17.3.7)

Equation (17.3.7) defines the semiclassical Poisson bracket. By (17.3.6),
(17.3.7), we get

(. D eep_y = 1.9 no - (17.3.8)

17.4 THE SEMICLASSICAL SOBOLEV SPACES

We use the Littlewood-Paley decomposition of elements of S (T*X,n*F')
similar to the one in section 15.2. As in (15.2.16), (15.2.18), we now have

Uj (z,p) = 6; (u) (x,2'p) , u(x,p) =Y Uj(x,277p). (17.4.1)
j=0
We will now define semiclassical Sobolev norms with small parameter h,
while keeping track of the explicit dependence on the spectral parameter
AeC.
Recall that in section 15.3, we introduced the vector space S, the Laplacian
AY acting on S, and the operator S in (15.3.1). Let AY>V be the fiberwise
Laplacian along the fibers P (T*X @& R).

Definition 17.4.1. Let Sy be the second order self-adjoint positive operator
acting on S,

See = S — AV 1. (17.4.2)
For j € N, X\ € C, set

1/2

Axseg = (Ssc 2% +27% ]A?) (17.4.3)

This weight is closely related to the one in (15.6.7).
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For s € R,U € S, let |U], . ; , be the semiclassical Sobolev norm of U
given by

|U A,8C,7,8 = 2j"/2 |A§\,sc,jU| . (1744)
If u(z,p) € S, set
2 2 2 9
el ses = D Uil sergs lelze,s = lullg se.s (17.4.5)
j=0

Remark 17.4.2. For given h > 0, A\ € C, the completion of S with respect to
the norm || || . , is the vector space H* defined in Definition 15.3.1, but for
a given A € C, the norms || ||, .., and || ||, are not uniformly equivalent as

h — 0, except when s = 0, where both are equivalent to the usual L? norm
on H.
Notice that Hu||i «.1 is equivalent to

‘<< 2 Al )
p>"+ U
<p>

and this uniformly for h > 0, A € C.

2

)

2
+ 1% |Vul® + ’<p>Vu

17.5 UNIFORM HYPOELLIPTIC ESTIMATES FOR Py,

Lemma 17.5.1. Recall that Py is given by (17.2.14). For any s € R, Py
maps H® into itself. Given s € R, there exist Cs > 0 such that for any
h€]0,1,A € C,u € S,

||Piu||)\,sc,s < CS Hu”)\,sc,s : (1751)
Proof. This is an obvious consequence of (17.2.14). O

Now we establish an obvious uniform analogue of Theorems 15.5.1 and
15.6.1.

Theorem 17.5.2. There exist hg > 0,9 > 0 such that if h €]0, ho], A €
C,ReXd < =)Ag,s e Rou € 8" (T*X,n*F*), if (P, — N u € H®, then u €
H5H/4. Moreover, there exist constants C > 0,Cs > 0 such that if h, \, s, u
are taken as before,

Hu||sc,s+1/4 S CS H(Ph + Ao)u”sc,s ’ (1752)
1/6
XY Nullye o+ ttllger 7 < CN(PL = N ]

sc,0 *

Proof. Comparing with Theorems 15.5.1 and 15.6.1, the main point here is
to check that the constants C,Cs in (17.5.2) are uniform in h €]0, h).

We will closely follow the proofs of Theorems 15.4.2, 15.5.1, and 15.6.1. If
A€ C, put

Pox =Py — \. (17.5.3)
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As in (15.6.5), if Ay > 0, > 0,0 € R, set
A= X —a+if. (17.5.4)
In the sequel, Ay will be precisely determined.
For 7 €]0,1], set
Pypyr=K, 1P, K. (17.5.5)
We define a7, 04 7,7+, as in (15.4.2). Then oy - is self-adjoint with re-

spect to the standard Hermitian product on H, and S+ , is skew-adjoint. By
(17.2.3), (17.5.4), (17.5.5), we get

Puar=0xr+Xo+a—if+hf-+h*ys .. (17.5.6)
Let Q}, \ .- @} ., be the self-adjoint and skew-adjoint parts of Pj x -, so that
P = Qhar+ Qhoxre (17.5.7)

Note that at , appears only in Q;l)w, and [+ . appears only in Q’};A’T.
To keep in line with (17.4.3), set

1/2
A se = (SSC + 77472 \/\|2) : (17.5.8)

As in chapter 15, we will make 7 =277, € N.

Take U € § (T*X,n*F) with support in the annulus R. By proceeding
as in (15.6.14), we find for Ay > 0 small enough, if Ay > 0 is large enough,
there exists C' > 0 such that for h €]0, ho] and A taken as in (17.5.4),

~ 2
‘VU’ +r U +ar 2 U < C(Qpa U7 2U), (17.5.9)

Srrl? L —apr2 D 2
VUl + 1 UP + ar 2 |UP < C 1P UP .

Also (17.5.9) still holds when 7 = 1, and the support of U is included in B.
From now on hg > 0, A\g > 0 will be chosen so that (17.5.9) holds.

We will use semiclassical pseudodifferential operators on the total space
Y of P (T*X @ R) with weight A. In particular, as in the proof of Theorem
15.6.1, we incorporate the spectral parameter A in the weight. Recall that 7
denotes the projection T*X — X or ¥ — X.

U eS (T*X,n*F), and if U has compact support, if s € R, set

|U‘/\,sc,s = |A§,SCU’ . (17510)

In alocal coordinate system on X, and using the appropriate trivialization,
the map 7 : Y — X is written as y = (x,p) — x with (x,p) varying in a
compact subset of R?". In the given coordinate system, then T*Y ~ R?2",
In the above coordinate system, ¢ = (£,n) € T*Y;. corresponds to % +ne€
T*Y ~ R?",

By definition, a symbol of degree d is a smooth function a (y,(, h, T, \)
defined on 7Y x]0,1] x C with values in End (A (T*X) ®A" (TX) ®F),
which is such that for any multiindices o, 3, there exist C, g > 0 for which if
ReA < —\p, and all other variables vary in their natural domain of definition,

d-1pl

a;afa(y,g,h,T,A)‘ <Cop (FHH+2APH[CR) . (17511)
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We denote by S? the set of symbols of degree d. When a (y,(, h, 7, \) is
defined also for h = 0, then (17.5.11) should also be valid for h = 0.

A smoothing operator on Y is a family of operators B(h, 7, A), where h, 7, A
are taken as before, such that for any s,t € R, there exist C; > 0 with

‘B (h7 T, >‘) U‘)\,sc,s < Cs’t |U‘)\,sc,t : (17512)
We quantify a symbol a into an operator A = Op (a) by the formula

A ($’p7 hDy, Dpa h,T, >‘) U (l‘,p)

_ (27T)—2n B / 2 e%@’f)”@’”)a(x,p,ﬁ,mh,T, A) U (%ﬂ?) dédn,
R n
(17.5.13)

where U (&,m) is the Fourier transform of U in the variables z, p.

Let £¢ be the associated set of pseudodifferential operators of degree d
on Y. Then A € &% if, for any small compact subset K C Y, for any cutoff
function 6 (y) with support included in a small neighborhood of K, there
exists a cutoff function 6’ equal to 1 near the support of 6, such that in the
appropriate coordinate system, there exists a € S and B smoothing such
that

A(t)0 =60'0Op(a)d+ B (h,7,\). (17.5.14)
For A € £%, the principal symbol o (A) of A is the class of @ in the quotient
space S/89~1, /
If £; € gd,Ed/ e &l , then E4Ey € gd+d7 O'(EdEd/) = U(Ed)O'(Ed/).
Moreover, if Eq = Op (e),Ey = Op (€'), then

[Eq, Eg] — Op ([e, e+ %{e, e'}SC> € gtd =2, (17.5.15)

Elements of £° are uniformly bounded operators on 7, and moreover
Axse, hWVe,, Ve, 772 € EL.

As should be clear from (17.5.13), the above class of semiclassical operators
is naturally associated to what is known in the literature as the adiabatic
limit [BeB94, MaMe90, Wi85]. Indeed consider the projection 7 : ¥ — X.
The adiabatic limit refers to a situation where the metric on Y is of the form
g7 + 77X /h2. Let g7"Y be the metric induced by g7¥ on TVY, and let
gT""Y be the dual metric on TV*Y. As h — 0, the principal symbol of the
Laplacian AY is such that

o (—AY) = [i*¢2ry + O (h?) [€[2rev (17.5.16)

Let 6y (p) be a smooth radial cutoff function with values in [0, 1], which is
equal to 1 near the ball By, and which vanishes for |p|? > 6. Set

R = 6yPy »+00. (17.5.17)

Let R = R’ + R” be the decomposition of R into its self-adjoint and skew-
adjoint parts. The explicit forms of these operators can be obtained via
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equations (15.4.2) and (17.5.6). Then a4 , does not appear in R”, and f4 ,
does not appear in R’.
Note that

Bh VT T XIB g e g1, (17.5.18)
Using the explicit formula for R, we get
[R, E4) € 7€V + 772€¢,
[R,E4) € 729V +171€% if o (Ey) is scalar, (17.5.19)
TR" € £
As in the proof of Lemmas 15.4.3 and 15.4.4, for any U € S (T* X, 7n*F)
with support in the ball B if j = 0, and in the annulus R otherwise,
|R//U|)\,sc,—l/2 < cr'/? ‘RU|>\,sc,0 ) ‘U|)\,sc,1/4 < crilt |RU‘>\,sc,0 :
(17.5.20)

As in the proof of Theorem 15.4.2, from (17.5.20), we derive the following
analogue of (15.4.62):

2 2

‘@U

— 2 - 2 V.
+T7 4 ‘U|/\,sc,s +7 8/2 |U‘)\,sc,s+1/4 + T5/4 ‘VU

A,sc,s A,sc,s+1/8

+ CST_Q |U‘i,sc,s + 037_5/4 |U‘i,sc,5+1/8 .
(17.5.21)

Note here that it is essential that the constant C' in the second line of
(17.5.21) does not depend on s.

We shall now deduce from (17.5.21) conclusions similar to the ones we
obtained in equation (15.4.6) in Theorem 15.4.2 for nonnegative values of s.
Namely, we will show that for s > 0, there exists Cs > 0 such that for any
7 =277,h €]0,ho],ReX < —\o,U € S, with the same support conditions as
before,

< CIRUR o0 + Co7* [VU

2
A,sc, 8

—4 2 - 2 -3/2 2
T ‘U|)\,sc,s + ‘VU \sc.s +7 |U‘)\,sc,s+l/4
~ 2
I ‘VU < C,|RUZ ... (17.5.22)
A,sc,s+1/8 77

To establish (17.5.22), we use our usual contradiction argument. Suppose
that for some s > 0, equation (17.5.22) does not hold. Then there exist
sequences T, = 2795 hy, Ay = —Xg + ai + i0k, Uy such that the left-hand
side of (17.5.22) is equal to 1 and limg—, oo |R (hk, Tk Ak) Ukly, o s = 0- By
(17.5.21), the sequence ji is necessarily bounded, so we may suppose that
ji = j is constant, i.e., 7 = 277* remains constant.

By (17.5.8), for > 0, if p = p/ + p”, with p/ >0, 4" > 0, then

AP > g2y (17.5.23)
By (17.5.23), we get in particular
AR > NP3 (17.5.24)
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By (17.5.24), we get

—2u/3
|V|)\,sc,s < CM |>\‘ w ‘V‘)\,sc,s+u : (17525)

Then if |Ay| — 400, it would follow from (17.5.21) and (17.5.25) that
(17.5.22) would hold.
Therefore, we can also assume that the sequence A\, converges to A € C,
so that ultimately we can forget about the dependence on .
Set
2

NUZs = 1013 e a5 + |9V (17.5.26)

A,sc, s

The norm |||U]]

sc,s Still depends on the parameter h. By (17.5.21), we get

A,sc, s sc,s

RN w4175 < Cs (IRURL ey + U] ) - (17.5.27)

For s € R,e > 0, there exists Cs . > 0 such that
1Ullse,s < €ll|Ulllsc,s+1/8 + Cs.e [U] .- (17.5.28)
By (17.5.9), (17.5.27), (17.5.28), for s > 0, we obtain
Uk lse,s4+1/8 < Cs |RU} (17.5.29)

Now we made the assumption that as k& — oo, the right-hand side of
(17.5.29) tends to 0. Therefore the left-hand side of (17.5.29) also tends to
0, which contradicts the fact that the left-hand side of (17.5.22) is equal to
1.

Now we follow the proof of Theorem 15.5.1. Let v = (P, — A\) u, and let
Uj;,V; be associated to u,v by (15.2.16). To make our notation simpler, we
will write [Vj[, ., instead of [Vj|,  ;, as in (17.4.4). As in (15.5.13), for
s € R, we get

|/\,sc,s .

|th>‘727j Uj |)\,sc,s S C |‘/J ‘)\,sc,s + 052_] Z ‘Uj/ |)\,sc,s

1<t
ro2Y 3 IVUJ‘AM . (17.5.30)
l7/—31<1
As in (15.5.16), set
o3/, —5i/8 [
Bis = 29/ |Ujl, e rya 2 ’VU] rvossi/s (17.5.31)
As in (15.5.17), (15.5.18), we deduce from (17.5.30) that
Bivs CWVilysou +C27H8 3" 850 1ys. (17.5.32)

13" —3l<1

We define the auxiliary norm [||u|||xsc,s by the formula

- (17.5.33)

When s = 0, ||ul|xsc,s does not depend on A. With the conventions in
(17.4.5), this is just ||lul| which is equivalent to the usual L? norm.

[Ilulllxse.s = 1Bj.s

sc,0?
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By (17.5.32), for s € R, we get

[[|ul[[xsc,s < Cs (HUHA,SC,S + \HUI\IA,sc,sq/g) . (17.5.34)
Given € > 0, s € R, there exists C, s > 0 such that
[ulllxse,s—178 < elllull[xse,s + Ces [[ullge 0 - (17.5.35)
Moreover, by (17.5.9),
[Ullse.0 < Cllvllgeo- (17.5.36)
Finally, for s > 0,
HUHSC,O < ||UH)\,SC,S ' (17537)
By (17.5.34)-(17.5.37), for s > 0, we obtain
el xse,s < Csl|v]]xse,s- (17.5.38)
Now we use again equation (15.6.9), which asserts that
N2+ 774 > O, (17.5.39)

By proceeding as in the proof of equation (15.6.1) in Theorem 15.6.1, that
is, using (17.5.38) with s = 0 (instead of (15.6.11)) and (17.5.39), we get
the second inequality in (17.5.2). For s > 0, we obtain the first inequality in
(17.5.2) from (17.5.38) with A = —A¢. In particular, since the adjoint P of
P, has the same structure as Py, we find that for h €]0, hgl, s > 0, P, + Ao
is one to one from {u € H*, P,u € H*} into H®, and that there exist Cs > 0
such that

H(Ph o) ! ’UH A (17.5.40)

sc,s *

Also (17.5.40) still holds for Py, and so by duality, we get (17.5.40) for any
s € R.

By (17.5.21), for any s € R, by the same argument of contradiction as the
one we used to derive (17.5.22) from (17.5.21),

Mellinse,s < Co (Iollasess + Nl o) - (17.5.41)

Using (17.5.41) with A = A¢ and (17.5.40), we find that the first equation in
(17.5.2) still holds for s < 0. The proof of our theorem is completed. O

17.6 THE OPERATOR PY AND ITS RESOLVENT S, , FOR
AER

Set
P) =P, + Py. (17.6.1)
By (17.2.3), (17.6.1), we obtain
P) = a4 + hBs + h?yg + Py (17.6.2)

Now we will extend Theorem 17.5.2 to the operator P}?.
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Theorem 17.6.1. There exist hg > 0, A1 > 0 such that for h €]0, hg], A €

C,Re) < \i,s € Ryu € 8" (T*X, n*F*), if (P,g —)x)u € H?, then u €

H T4 Moreover, there exist constants C' > 0,Cs > 0 such that
HUHSC,SJA/AL < G| (P}? - )‘1) ulsc,s (17.6.3)

1/6
Y ullgesp + tllge 10 < CI(PE = A) wllse.o-

Proof. By (15.1.3), (17.6.2), we get

Re ((PY — \) u,u) = Re ((at + Py)u,u) — Re X |ul”® + h*Re (y1u,u).
(17.6.4)
By (15.1.3),

el <€ (Il +1). (17.6.5)

By (15.1.3), (17.6.4), (17.6.5), if hg > 0, A1 > 0 are small enough, for h €
10, hol, A € C,Re A < A,

ullse,o < CII (P = X) ullsc.o- (17.6.6)
By Lemma 17.5.1 and by Theorem 17.5.2, for s € R, we obtain
H“HSC,5+1/4 < Cs (H (P}? - )‘1) Ulse,s + ”“”sc,s) ) (17.6.7)

A e + Nl < € (11 (PR = A)
Also given € > 0, there exists Cs . > 0 such that
[ellse,s < € llttllse spaja + Cselltellaeo- (17.6.8)
Using (17.6.6)-(17.6.8), we get the second inequality in (17.6.3), and also
the first one when s > 0. In particular, as in the proof of Theorem 17.5.2,
PP — )\ is one to one from {u € H*, PPu € H*} into H*, and also if s > 0,
there exists Cs > 0 such that

—1
I1(Pr = A1) 0llse,s < Col[0]]sc,s- (17.6.9)

w0 + e ) -

Also the formal adjoint Q%" of PP has the same properties as PP, and so
it verifies similar estimates. By duality, we find that (17.6.9) holds for any
s € R, which together with (17.6.7) implies the first inequality in (17.6.3)
for any s € R. The proof of our theorem is complete. O

Definition 17.6.2. For A € C,Re \ < Ay, set
Spa= (PP =) " (17.6.10)

Let ¢ = (¢1(2),...,on (2)) be a family of smooth real functions on X.
Let Adg S be the iterated commutator,

Angh,A = [(pN, ...[(pg, [(pl, Sh’,\]]...}. (17.6.11)
Clearly,
[p1, Shal = =Shx [01, PY] Shox = FhSha (Vyner) Spoa (17.6.12)
By (17.6.11), (17.6.12), we get
Angh,A = (:Fh)N Z Sh’,\ (VyH 4,001) Sh))\ cee Sh’,\ (VYH (pUN) Sh’,\.

oESN

(17.6.13)
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Theorem 17.6.3. If N € N,a € R,s € R, there exist Cyq s > 0,Cs > 0
such that for A € C,Re X < A1, h €]0, ho], the operator < p >% Spx <p>"¢
is bounded from H® to H*/*, the operator (P}? — )\) Adg (Sh.2) is bounded
from H® to H5tN/5 and moreover if v € S (T*X,7*F),

| < p >a ’UH)\,SC,S7 (17614)

H <p >a Sh7)\’U| A,sc,s+1/4 S Ca,s
| (P — A) AdLY Sy av]

Proof. We establish the first inequality in (17.6.14). Put « = Sp_yv. Then

A,sc,s+N/5 S CshN ‘ |U| ‘)\,sc,s-

v=(Pp= (A= —A))u+ (Pr— Ao — A1) u. (17.6.15)
By (17.5.1), we get
[ (Pe = Ao — A1) ullase,s < Cllully g (17.6.16)
With the notation of the proof of Theorem 17.5.2, set
Yis = 29 |Ujl, oy + 29 U e ja + 275978 | VT . (17.6.17)
Put
ulllxse,s = 75,se2 (17.6.18)

Recall that the norm |||u|||x sc,s Was defined in (17.5.33). We have the trivial
inequalities
| |>\,sc,s+1/4 < Mulllxse,s < [lullllxse,s- (17.6.19)

Observe that under the given conditions on A € C, A — A\g — Ay verifies the
conditions given in Theorem 17.5.2 for A. By (17.5.22), (17.5.30), (17.6.15),
(17.6.16), and the first inequality in (17.6.19), we get for s > 0,

HH“HH/\,sc,S < Cs (HU| Asc,s T |H“m)\,sc,s—1/8) . (17.6.20)
Using (17.5.35) and (17.6.20), we get

u

lllse.s < Co (I10lx a0 + e - (17.6.21)
Moreover, by (17.6.3),
||uHsc,0 < ¢ HUHSC,O . (17622)
Also for s > 0,
HUHSC,O < ”vH)\,sc,s . (17623)
By (17.6.21)-(17.6.23), we find that for s > 0,
ull|xsc,s < Cs ”UH)\,sc,s : (17.6.24)
By (17.6.19) and (17.6.24), for s > 0, we get
||u||)\,sc,s+1/4 S CS H,U”)\,sc,s ) (17625)

which is just the first inequality in (17.6.14) with a = 0.
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To obtain this equation for s > 0 and arbitrary a € R, we just use the
same proof as before, replacing vx sc,t,; by 27%Vasc,t,j-
For 1 <i < N, put

w=—(Vyno)u. (17.6.26)

The index i has not been written in w, ¢ to avoid complicating the notation.
Recall that w grows linearly in p. We get

‘Wj‘)\,sc,s < Cs2j |Uj‘)\,sc,s : (17-627)
Clearly there is C' > 0 such that for ¢ > 0,6 > 0,
b/t 4 % > COb/°. (17.6.28)
By (17.6.28), we get
AVS < (71/4/\1/4 + fl) . (17.6.29)
By (17.6.27), (17.6.29), we obtain
(Wilsses1/5 < 29 [Wjly ges + 277/ (Wil s s51/4
< Oy (2% |Ujy ey + 2994 Uy geg1a) - (17.6.30)

By comparing (17.6.17) with the right-hand side of (17.6.30), and using
(17.6.24), for s > 0, we get

||w||/\,sc,s+1/5 S CS HU”)\’SC’S . (17631)
Using the first equation in (17.6.14) and (17.6.13), (17.6.31), we obtain
the second equation in (17.6.14) for s > 0.
We get analogous estimates when replacing Py by its formal adjoint PP*.
We find that for s > 0,a € R,

|<p>* S}tx)‘v||)\,sc,s+l/4 <Cl<p>" vl g0 (17.6.32)

HS;:’/\VYH gO’UH)\,sc,s+l/5 S C ||UH)\,SC,5 .

By duality, we conclude that the estimates in (17.6.14) still hold for s <
—1/4. By interpolation, we find that they hold for arbitrary s € R. The
proof of our theorem is completed. O

Lemma 17.6.4. Let K be a compact subset of X, and ¢ (z) € C§° (X \
Given s,t € R,N € N, there exists Cs s n > 0 such that for h €]0, ho],
C,Re ) < M\, if v € H®, if the support of v € H* is included in 7= (
then

K).
A€
K),

1eSn A0l g0 < Cot, NV 0]y s - (17.6.33)

Proof. Let 1 € C§° (X \ K), which is equal to 1 on the support of ¢, so that
p =, v =0. Then

gOSh)\U = (pAdﬁShA’U = @Sh,k (P;? — /\) AdﬁSh,w. (17.6.34)
Using (17.6.14) in Theorem 17.6.3 and (17.6.34), we get (17.6.33). O
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17.7 THE RESOLVENT Sy » FOR A € C

Definition 17.7.1. For Ay > 0,¢9 > 0, set
V= {)\ eCA=pu+v,Reu< i, veR, v <c |u\1/6}. (17.7.1)

The definition of V should be compared with the definition of ¢ given in
(15.7.2) with Ao, co replaced by —\{, ¢, which we repeat. Namely,

U:{A:A6+a+iT,U,TER,a§c6 \7\1/6}. (17.7.2)

Note that if A € U,

VS 4 ir+ ¢ |7, (17.7.3)

A=\, +0—cyl7]|
so that if Ay = X}, co = ¢, then U C V.

Conversely assume that A € V. There are a > 0,7 € R such that

=X —a+ir, (17.7.4)
and so if o = v — a,
A=\ +0+iT. (17.7.5)
If 0 > 0, then a < v, so that
a<colpC. (17.7.6)
By (17.7.4), (17.7.6), we get
a<C (1 + \7\1/6) , (17.7.7)

with C depending only on cg, A1. By (17.7.4), (17.7.7),
lu| <C" (1 +|7)). (17.7.8)
From (17.7.8), we deduce that since A € V,

o< (1+4]7°). (17.7.9)
By (17.7.5), we get
A=\ +C"+ (0 —C")+ir. (17.7.10)

By (17.7.10), we find that if \j = A\ + C”, ¢, = C”, then A € U. Finally,
note that if ¢ < 0, then A € U.

Theorem 17.7.2. There exists A1 > 0, co > 0 such that for h €]0, hol, Shx
extends as a holomorphic function of X € V, and moreover the conclusions
of Theorem 17.6.3 and Lemma 17.6.4 remain valid when X\ € V.

Proof. We take A\g > 0 as in Theorem 17.5.2, and A; as in Theorem 17.6.3
If A= p+veVistaken as in (17.7.1), for s € R, the norms || ||, .. ; and

[ ,,.5c.¢ are uniformly equivalent. Also note that if (P — X) u =, then

(P) —p)u=v+wu (17.7.11)
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By (17.6.14) in Theorem 17.6.3, we deduce from (17.7.11) that given s €
R, there is Cs > 0 such that
|| ||,u.,sc s+1/4 = < C (”’UH;L,SC,S + |V‘ HUH;L,SC,S) : (17712)
Moreover, by (17.5.24),
Hu”p.,sc s — |/J"7 |uH;L,sc,s+l/4 . (17713)

y (17.7.12), (17.7.13) we conclude that given s € R, if ¢g > 0 is small
enough and A € V, then

1/6‘

[[u HM scstl/d S C ol (17.7.14)
Now we will show that for ¢y > 0 small enough, (17.7.14) is valid for any

s € R. Given X\ € C, we still define Ry as in (17.5.17), that is
Ry = 90Ph7>\7-,—90. (17.7.15)
First we concentrate on the proof that for ¢y > 0 small enough, for s € R,
the analogue of (17.5.22) holds for any A € V, with R replaced by R, the

constant Cs > 0 depending only on s.
Indeed if A\=p+v €V, set

,u’ = u— )\0 - )\1, (17716)

,8C,S8 *

so that
Rep' < —=X. (17.7.17)
y (17.7.16), (17.7.17), we get
lul < C |- (17.7.18)

If U verifies the same support conditions as in (17.5.22), then 63U = U,
and so

R,yU=R\U+ (MA+ M +v)U. (17.7.19)
Therefore
‘RM/U|M/)SC)S S |R)\U‘,u’,sc,s + (>\0 + )‘1 + |l/‘) |U‘,u’,sc,s : (17720)
Using (17.5.24), (17.7.18), and (17.7.1), we get
v
‘V| |U‘,u sc,s — C‘,U,|1/6 ‘U|/,L/7SC7S+1/4 <Cc ‘U|/,L/7SC,S+1/4 . (17721)
By (17.7.20), (17.7.21), we obtain
|R#'U‘lu sc,s < |R)\U|M ,SC, 8 + ()\0 + >\1) ‘U|u’,sc,s + CCO |U‘u/,sc,s+1/4 :
(17.7.22)

Now because of (17.7.17), we can use the inequality (17.5.21), in which A
is replaced by p/, and R by R,,/. By combining this inequality with (17.7.22),
we get

4 —3/2
W s, ‘U|/,L scs+7— |U‘,u scs+1/4+7— W sc,s41/8
< C|R)\U|[L sc,s + Cs T +Cs T2 |U‘,u sc,s + Cs 7_5/4 ‘U‘/,L sc,s+1/8
' ,sc,s
+C ()\0 + )\1) |Uv‘u’,’s€)S + Ceg ‘U|M,)SC’S+1/4 . (17723)
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Using (17.7.23) and also the fact that the constant C' does not depend on
s, we find by taking ¢y > 0 small enough and independent of s, a strict
analogue of equation (17.5.21) with respect to the norms indexed by p’ and
with R replaced by Rj.

Now given s € R, the norms indexed by A or by p’ are uniformly equiva-
lent. This means that given s € R, we derive a strict analogue of (17.5.22)
for A € V, in which the original norms indexed by A are considered, and
R = R). This proves the claim we made after (17.7.15).

It is now easy to continue our proof along the lines of the proof of Theorem
17.5.2, so as to obtain the analogue of this theorem. The proof of the analogue
of Lemma 17.6.4 is now strictly similar to the proof of the lemma itself. The
proof of our theorem is completed. O

17.8 A TRIVIALIZATION OVER X AND THE SYMBOLS S/},
Let 29 € X and let =z = (xl,...,x”) be the geodesic coordinate system
centered at zy on a small open neighborhood U of xy. We trivialize T X on
U by parallel transport with respect to the connection V7% along geodesics
centered at xg, and we trivialize F' by parallel transport with respect to the
connection V¥ along these geodesics. Therefore A" (T*X) @A (T X) ®F has
been identified to (A (T*X)®A (TX) ®F)m0 by parallel transport along
geodesics centered at zo with respect to the connection VA (T T X)®F
Set

V= (A(T"X)®N (TX)RF) (17.8.1)

Note that over U, T™* X has been identified to 7" X, by the above metric
preserving trivialization. In particular

m().

T"X|ly ~UxT,; X. (17.8.2)

Let d be the obvious trivial connection on 7, X. Then the Levi-Civita
connection V"X is given by

vI'X — 417X, (17.8.3)

so that 7" X is a 1-form valued in antisymmetric elements of End (T;OX )
IfzeU,let o, :T; X — T;X be the identification which is obtained by

parallel transport with respect to V7 X along the geodesic connecting o
and z. Then o, is an isometry. The canonical 1-form 6 on T*X is given by
o:p. In our coordinate system, the symplectic form w is given by

w = do.p. (17.8.4)

Let dx be the Euclidean volume form on 7,X, let dp be the Euclidean
volume form on 7T X. Let k (x) be the smooth positive function on U such
that in the given coordinates,

dvx () =k (x) dz. (17.8.5)
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By the above, the symplectic volume form on T*X is given over U by

dvx () dp.
In the above coordinate system, the vector field Y is given by
Y™ (2,p) = (gTX)71 op—TTX ((gTX)i1 ap) p. (17.8.6)

The right-hand side of (17.8.6) gives the canonical splitting of Y7 as the sum
of a horizontal and a vertical vector field in the (x, p) coordinates. Note that
since IT"X takes its values in antisymmetric matrices, both components of
Y™ in (17.8.6) preserve the function |p|°. This is compatible with the fact
that the Hamiltonian vector field Y™ preserves H = [p|* /2.

We denote by S the Schwartz space of functions of p € T,; X with values
inV.

Recall that A\; > 0 was obtained in Theorem 17.6.1. In the sequel, we still
denote by \; a positive real number, possibly smaller than the one found in
Theorem 17.6.1.

Clearly, in our given coordinate system, T*U ~ U x R™. For technical
reasons, in the sequel, we have to distinguish 7, X from R". Indeed here p
varies in T,y X, while § €: R".

For p,§ € T, X, set

2\ —
A(E,p,\) =< p>2 |
(&,pA) =<p>"+ o~

1221 — A 2/3
BEp =222 ce>)
(&P A) <<p> + <€

To keep in line with the notation already used, if 7 €]0,1],p,& € T, X, set
A (EN) =777+ 720 — A+ <>, (17.8.8)
By (&,N) = (7201 — M|+ < € )3,

+<E>, (17.8.7)

It will be convenient to choose an isometric identification of T; X with
R"™.

For u € §, we consider again the Littlewood-Paley decomposition of U as
in (17.4.1). In particular, we still have the identity

+oo
u(p) =Y _U; (277p). (17.8.9)
j=0

Let AV be the Laplacian on T, X. Let J; be the positive self-adjoint
operator

1/2

JT (57 >‘) = (_AV + AE— (57 )‘))
For s € R,u € S, set

(17.8.10)

U

D,8,J

in s 2 2
= 297/2| J5_ U | e, ful2 , = Z U155 - (17.8.11)
j=0
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Given s € R, the norms in (17.8.11) depend on &, and for a given &, they are
mutually equivalent. We denote by H, s the completion of S for the norm
[, - Note that H,,s does not depend on the choice of &.

In the sequel we will write that two norms are related by the equivalence
sign ~ if they are uniformly equivalent with respect to the given family of
parameters.

Observe that for k£ € N,

27U D AL |0gU L. (17.8.12)
[BI+I<k
Let 0; (&,p),j € N be a family of smooth radial functions of p € R"
depending on the parameter & € R"™ for which, given any multiindex g,
there exists Cz > 0 such that if j € N, p € By,

1096 < CAL,. (17.8.13)
By (17.8.12) and (17.8.13), if s € N,

10;Ujlp,s.; < Cs |Uj (17.8.14)

P;8,7 7
with a constant C, depending only on the Cs for || < s. By duality and
interpolation, we find that (17.8.14) is still valid for any s € R.

Let m (¢, 7, h,\) be a positive function, which is smooth in r € [1, 400,
with parameters &, h, A, such that for any k& € N, there exist Cy > 0 for
which

ak
’Wm’ < Cpm. (17.8.15)
For 7 €]0, 1], set
me (&, A) =m (&7 R, A) . (17.8.16)
We assume that there exists C > 0 such that if p € Bfor j =0,or forpe R
for j > 1,
1

G (& h,A) <m (&, <2p>,h,A) < Cmy-i (§,h,A). (17.8.17)

If my,mo verify (17.8.15) and (17.8.17), if @ € R, the functions m; +
ma, mima, m§ verify the same equations.

Set
0. — m(£,< 29p >,h,)\)

! mo—i (f, h7 >‘)

Observe that 227 < A, ;. Using the weaker 2/ < Ay, and also (17.8.15),
(17.8.17), we find that 6; verifies (17.8.13).

If w € 8, we can define the function m (§, < p >,h, A\)u(p), which we

denote mu for simplicity.
Using (17.8.9), we get

(17.8.18)

mu=Y m(&<p>hA\U;(27p). (17.8.19)
j=0
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By (17.8.14), (17.8.15), and using the fact that as we just saw, 1/m verifies
the same assumptions as m, there exists Cs > 0 such that

1
amQ—j ‘U |p5j <|m (§,< 2Jp >, h )\ Uj|p,s,j < CSmQ—j ‘Uj|p,s,j .
(17.8.20)
By (17.8.17), there exists C' (£, h, ) > 0, M € N such that
Im (&, r, B, A)| < C (& h,N) (14 )™M, (17.8.21)

By (17.8.15), similar inequalities hold for the %m. It follows that for given
hy A, &, then mu € S. From (17.8.20), we deduce that for any &, h €]0, ho, A €
Cues,

oA Z% AU < a2, < Cs Zom2 UL - (17.8.22)
J
Note that by the above, (17.8.22) contains only finite expressions.

One verifies easily that the functions r, A,.—1 (£, ), B,—1 (§,\) verify the
conditions in (17.8.15), (17.8.17). Therefore if N,a,b € R, any monomial
TNAﬁ_lef_l also verifies these conditions. Using (17.8.22), given a, b, N € R,
we get the equivalence of norms,

|<p>N A“BbuHi Z2QJNA2°‘ B2, |U;
7=0

(17.8.23)

P,s,J "

Now we will introduce a class of pseudodifferential operators on U with
values in operators acting on S. Our classes extend the classes S5 defined
in [H6r85, section 18.1].

Definition 17.8.1. Let e (z,&, h, A) be a function which is smooth in z €
R" ¢ € R™, holomorphic in A € C,ReX < Ay, which depends also on
h €]0, hol, and which takes its values in the set of linear continuous operators
acting on S.

Let 0 <8< p<1€eR,c=(cc1) € R? and d,k € R. The function e
will be said to be a symbol in the class Sd5C if for any s € R, N € N, for
any multiindices «, 3, there exists Cs n.o,g8 > 0 such that if u € S,

H< p >N 333?6 (x, &, h, N u’

p;s

< Co N8 H< p >NFhteolalteld] u’ (17.8.24)

p,s+d+3|a|—p|B|

Here, if e, e’ are symbols taken as above, we denote by ee’ the pointwise
product of e and ¢’. This is not the product of the bymbols in any class of

pseudodifferential operators. If e € Sp 5.0 e e Sp 5. then ee’ € Sd+d h+k

Moreover, if e is taken as before, aaafe € Sd”‘al PlAl: k“o‘al“lwl e =
(co,c1) is such that ¢g > 0, any smooth functlon ¢ (x) with bounded deriva-
tives of any order lies in 8¢ 05,0 . Also note that tautologically, 0,,0:,< p >

commute, so that the order of the operators in (17.8.24) is irrelevant.
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Ifee S;l’fc, the L2-adjoint e*P of e in the variable p also lies in S;l)’f;c.
If the support of u(x,-) € S is compact, the partial Fourier transform

u (&, p) of u(z,p) in the variable x is given by the obvious formula
u(é,p) = / e~ "8y (z,p) da. (17.8.25)

Definition 17.8.2. Let Pi’gc be the set of semiclassical pseudodifferen-
tial operators E (x, hD., h, \) with values in operators acting on the space
S, such that if v € S, and if the support of w(z,-) is compact, there is
e(z,& h,N) € Si’gc such that

n

B (2, hDa by N (2, p) = (2h) " / eH @) (¢ (2,6, h, \) T) (% p) de.

(17.8.26)
Let By (v, hDy,h,\) € Pi* and By (2, hD,, h, ) € Pi%% be compactly
supported in . Then one has the classical formula for F1 FEs,
E\E, = Ej, (17.8.27)
with F3 associated to es given by the following formula [H6r85, chapter 18]:
h/i)P!
€3 (.’E, 57 h7 )‘) = Z %85618562
|Bl<M
+ (/M M) Y %, (17.8.28)
|Bl=M+1 "
1
Rarp = (2m)" / (1= )™ dt / =000 ey (2, € + tho)
0 R xR"

(1= A
o—ino (L= L)

1
x ey (x + u, &) dudf = 271'_”/ 1—tht/
2t duad = 0m) " [La-pMa [

x g er (x, & +tho) dea (x + u, €) dudo.

In general, the symbol es does not lie in any of the above classes, because of
a lack of control in the powers of p. The purpose of many of the manipulations
which follow is to circumvent this difficulty. Equivalently, the classes ,P;.)),.(S,c
do not form an algebra under composition, except when ¢ = (0, 0).

Moreover, if E(x,hD,,h,\) € Pﬁﬁ . is compactly supported in z, its
adjoint E* is associated to the symbol e* given by

N

(@, &h A = S (h/ﬁz!) o8ofem? + (h/i)™ (M +1) > R*’ﬁﬂf’ﬂ,
1Bl<M Bl=M+1

(17.8.29)

1
Ronp = (2m)" / (1—t)Mdt / e 09l (x + u, & + tho) dudp.
0

From (17.8.28), (17.8.29), one can get estimates on Rz g, R a3
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Remark 17.8.3. Observe that (17.8.24) indicates that the operators consid-
ered above induce a loss in the control at infinity in the variable p. Note that
the condition p > ¢ is essential in guaranteeing that the operators considered
above can be composed.

In the sequel we will not insist on the fact that the classes of symbols we
consider be invariant under change of coordinates, even though the operators
we will consider are globally defined on T*X, i.e., are themselves invariant
under these changes.

Let ¢ : R® — R"™ be a diffeomorphism. The action of ¢ on smooth real
functions f (§) is given by f(§) — f (1;/’1 (z) f). More generally 1 also
acts on S ® V by an action K, which incorporates the action of v on
A (T*X)®A (TX)®F. Given our choice of trivialization, the actions of 1)
on the £ and p variables do not coincide.

Let E (x,hD,,h,\) be a properly supported operator whose symbol is
denoted e (z,&, h, A). Under ¢, e (z, &, h, A) is changed into ey (y, 7, b, A), with

ey (¥ (x),n, b, N) = e WO e (@, hDy by ) e VML
(17.8.30)
From these considerations, we see that operators of the type £0; have
to satisfy estimates which are compatible with the corresponding estimate
involving J,. The fact that the estimates with {0, should be compatible with
those with 0, leads to the inequalities

co > c1, p+46>1. (17.8.31)

Note that the second condition in (17.8.31) is exactly the one which appears
in [H6r85, section 18.1, p. 94] for the pseudodifferential operators associated
to symbols in S7s.

In the sequel, we use the notation

d d,0 d _ cd0
8975 - 8975,(070)’ Pfhcs - Sp,5,(0,0)7 (17.8.32)
Sk — gdik pdik Sk

- %2/3,1/3,(2,2) - %2/3,1/3,(2,2)"

Lemma 17.8.4. Let K C R"™ be compact. Let E (x,hD,, h,\) € 73;{’56 be
such that its symbol e (z,&, h, \) vanishes for x ¢ K. For s € RN € N,
there exist Mg > 0,Cs v > 0 such that for u (x,-) with support included in
K

)

||< p >N Eu”/\,SC,S < Cs,N ||< p >N+M§ u||)\,sc,s+d . (17833)
Proof. Peetre’s inequality asserts that if a € R%,{,n € R",
2
(a+lg+nl*) <= (a+16P) (a+nf). (17.8.34)

In particular if a > 1,

(atle+aP) <2 (1+P) (a+ ). (17.8.35)
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By (17.8.35), we get

< | < Cy <>l (17.8.36)

p,s,§+n p,s,§ "

1
— —ls|
<>l

By (17.8.28), (17.8.29) and (17.8.36), we find that if By € P} and E, €
Pg’% are compactly supported in the variable x, then F1Fy € ngfdz, and

also that if E7 is the adjoint of E, then Ef € Pg’lé. In this argument we use
explicitly the fact that § < p. Note that stability under composition comes
from the fact that, as explained in Remark 17.8.3, when ¢ = (0,0), there
is no loss in powers of p in the definition of the composition in (17.8.27),
(17.8.29).

By using the same arguments as in the proof in [Hér85, Theorem 18.1.11]
of the continuity of the pseudodifferential operators of order 0 acting on L?,
we find that given d € R, s € R, there exists Ly € N such that if the symbol
e(x,& h,\) of E verifies the estimates in (17.8.24) with £ = 0,¢ = (0,0)
when |a| + |3] < Ls, for any N € N, there is Cs y > 0 such that

H <p >N EuH/\,SC,S < CS,NH <p >N U‘|/\,sc,s+d~ (17837)

To complete the proof, we observe that given s € R and F (z, hD,, h, A) €
73;1”; .. there exists M € N such that e (z,&, h,\) < p >~M verifies precisely
the above assumptions. This completes the proof of (17.8.33). O

17.9 THE SYMBOL Q2 (x,£) — A AND ITS INVERSE eg , » (x,¢)

In this section, we take xg € X as in section 17.8, and we use the cor-
responding notation. In particular, we use the trivialization of the various
vector bundles which was considered there. So we may as well consider U as
an open set in R™.

The operator P,g is considered as an operator acting on smooth sections
of V over 7~U. It will be more convenient to view P}? as acting on smooth
sections of S ® V over U.

Take (z,€) € T*U ~ U x R". In our semiclassical setting, we define the
semiclassical symbol @y, (z,&) of Py, to be given by

Qn (,8) = e H@8/h pei@8)/h (17.9.1)

We define the symbol QY (z,€) of PP by a similar formula.
Recall that P, is given by (17.2.3). By using (17.8.6), we get

Qn(z,&) =ar F (z <(gTX)—1 0p,§> _h <FTX ((gTX)—l Up) 6i,ej>

L (997 (e1) Vo + B

(eziej + Eﬂ’a)) =+ hv]_"T*X((gTX)—lo.p)p 5

(17.9.2)
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Of course all the matrix operators in (17.9.2) are evaluated in the considered
trivializations. Moreover,

It is fundamental to observe that in our trivialization, the operators a4+
and Py are constant, i.e., they do not depend on z € U. Also as we saw after
(17.8.6),

~

Vrrx ((g7%)1ap)p [pl* = 0. (17.9.4)

Let L? be the vector space of square integrable sections of V in the variable
p € R If u € L?, we denote by |lul| the norm of u in L2. We still denote
by V differentiation along the vertical R”, and by AV the corresponding
Laplacian in the variable p.

Given z,¢, we consider QY (z,£) as an unbounded operator acting on L2
with domain

DY (x,&) ={uec L? QY (x,&)uc L?}. (17.9.5)

The graph of QY (z,&) in L? x L? is closed. We equip DY) (z,£) with the norm
of the graph induced by L? x L2.
Recall that the functions A (§,p,\), B (§,p,A) were defined in (17.8.7).
First we state a fundamental theorem which gives L2-estimates for QY (x, &).
In the sequel, we use the notation

N =2X; — A, (17.9.6)

so that if Re A < A1, then Re N > ).
Let U’ C U be an open set such that U C U. In what follows, I || denotes
the standard L? norm.

Theorem 17.9.1. Given A\ €]0,1/2[, there exist hy €]0,1] such that for
h €]0, hol, (z,&) € T*U', A € C,Re X < Ay, then Q%) (,€) — X is one to one
from DY (z,€) into L?, and moreover C§° (R™, V) is dense in DY (z, ).
For any a,b € R, there exist C, > 0,Cy > 0 such that if A € C is taken
as before, if u,v € L2, and (Q% (z,&) — )\) u=w, then
<> Vul| +[[<p>ttul| <o fl<p>to, (17.9.7)
|[<p>" (1A ul+ B (& p A ul)|[| < Cyl|[<p>" A+h<p>).
Proof. Set
L=a4+ Pt —2)\. (17.9.8)

Observe that the operator L is self-adjoint and positive for A; < 1/2.
In the sequel we fix A such that 0 < A\; < 1/2. Then there exists C' > 0
such that

(Lu,u) > C/ (\@u?—k <p>?2 |u\2) dp. (17.9.9)
RTL
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Recall that A was defined in (17.9.6). Let 0 (p) be a radial smooth com-
pactly supported function, and let u € DY (z,£). Since Qy, (z,€) is a second
order elliptic operator, then u € HZ . Using the specific form of 81,y in
(15.1.3) and also (17.9.2), we find that there exists C' > 0 such that

Re ((Q) (#,€) — A) u,0%u) > Re (L + X) u,6%u)
—Ch /Rn (< p>2 ’@92‘ lul? + 62 (< p> ul*+ ‘@u’ |u\))dp
- Chz/n <p>20%|uf’ dp. (17.9.10)
Moreover, by (17.9.9), we get .
Re ((L + X)u,0%u) = Re (L + X') Ou, fu) + Re ([0, L] u, Ou)

~ 2
>c [ ¢ (]w‘ +<p>? u|2> dp-l—Re)\’/ 62 [ul® dp
R” R”

—~ |12
_C// (‘W‘ +|9AV9|> ul* dp — ||6ul| [|[Pe, 6]ul| . (17.9.11)
Rn

Using the fact that if Re A < Aq, then Re X > Ay, by (17.9.10), (17.9.11),
for hg > 0 small enough and h €]0, hol, we get

Re ((Qf (2.6) = ) u.0%u) = C | 62 (|Vul*+ < p >2 u?) dp
R’V'L
+ A [ PuFdp—C’ (h/ < p>2|V6?||u® dp
Rn Rn

—~ |12
+/ (‘ve‘ +|9AV9|> |u2dp> — |0ul| |[Ps, 0]ul| . (17.9.12)
RTL

Take 6 (p) = v (< p>)p(ep), where 7y is a power of < p >, and p is a
smooth compactly supported radial function which is equal to 1 near p = 0.
We choose first deg () = —1/2. As ¢ — 0, the negative terms in the right-
hand side of (17.9.12) are easily controlled. By making ¢ — 0 in (17.9.12),
we find that < p >'/2 u € L?. The same argument with different choices of
deg~y € [0,1] show that if u € DY (z,€), then <p >2u € L? <p>Vue
L2,

In particular, when taking § = 1 in (17.9.12) and using Cauchy-Schwarz,
we obtain

H%H Fl<p>ul < Q0 (@€ — ) ul|. (17.9.13)
By taking degy =1 and using (17.9.13) to control ||Qu|| ||[Px, 0] u||, we get
+|<p>?ul| < C(Q) (#,€) — A) ul| . (17.9.14)

If u € DY (z,9), if ue = p(ep)u, then u. € DY (z,€), and from (17.9.14),
we find that as ¢ — 0,

H<p > @u’

| [@% (2,€) . p(ep)] ull — 0. (17.9.15)
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Therefore, as ¢ — 0,
l[ue —ull + ||Q% (2, €) (ue — u)|| = 0. (17.9.16)

By (17.9.16), we deduce easily that C5° (R™, V) is dense in DY (z,£). In
particular the adjoint Q% (z,€) of QY (z,&) is equal to the formal adjoint
of QY (x,€) with domain DV* (z,€) = {u € L? Q% (z,&)u € L?}. Observe
that QY (z,&) and Q9* (z, ) have the same structure. By (17.9.14), both are
injective with closed range, so that QY (z,¢) is one to one from DY (z,€) into
L2

Using now (17.9.12) with a symbol § =< p >%, and noting that for any
b,c € R, < p>°¢ Py < p>’is a bounded operator, we get the first part of
(17.9.7).

Now we establish the second part of (17.9.7). Assume that u € DY (x,¢),
and set (Q?L (z,6) — )\) u = v. Put

W = (—%AV i ((07%)  oup €) + A’) u. (17.9.17)

Note that by (15.1.3) and (17.9.2), we can give an explicit formula for v’
in terms of u and v. By using the first inequality in (17.9.7) with a = 0,1, 2,
we get

[l < C (vl +Rl<p> ). (17.9.18)
Incidentally observe that
11 +h<p>)ol < [l+h]<p> ol <V2([(1+h<p>)o]). (17.9.19)

By (17.9.18), we find that to establish the second part of (17.9.7) with
b =0, we only need to establish the inequalities

(==)
(17.9.20)

First we assume that £ = 0. Observe that since Re\’ > A1 > 0, the
operator %:2/\, acts as a bounded operator on L2. Therefore the first
inequality in (17.9.20) follows from (17.9.17). Using (17.9.17) again and the
inequality we just proved, we get

(N Hlull < C VI, (17.9.21)
which combined with (17.9.18), (17.9.19) also leads to a proof of the second
inequality in (17.9.20).

Now we prove (17.9.20) with £ = 0. Set

1

k(z)=+0, (91%) & (17.9.22)

By (17.9.2), the ¢ dependent part of Q9 (z,&) is given by Fi (k,p). By
making an x dependent rotation of the coordinates p, we may and we will
assume that k = £ (]k],0,...,0). Recall that for a € R, Kyu (p) = u (ap).
Set

W= Ky osu,  w= kTP K e, p= RPN (17.9.23)

A ul| + &[> flul| < € ]I, SCA+h<p>)ol.
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Then equation (17.9.17) can be written in the form
1
w = <—§AV +p— ip1> u'. (17.9.24)
Then the first inequality in (17.9.20) is equivalent to the inequality

|AY Y ||+ /]| < C Jw]|- (17.9.25)

We concentrate on the proof of (17.9.25).
We denote by @’ (1) the Fourier transform of «’ in the variable p. Then
equation (17.9.24) is equivalent to

. 0 1, 2\ .
== - . 17.9.2
W (an1+,u+277|>u (17.9.26)

Now we write = (n',7), with ’ € R"~!. Since @’ is a tempered distribu-
tion, by (17.9.26), we can express it in the form

Foo 2 2 1.2 2 3 6
a’ (n',n) :/ e~ (I 2)stn® 2 2= 6 (L g pfYds. (17.9.27)
0

For s > 0,
nh?s —nts? > —s%/4, (17.9.28)
and so
In%s —n's? +53/3 > s|n'|> + 53 /12. (17.9.29)
In the sequel, we write
W= pr+ip, e € Ry, € R (17.9.30)
Clearly,
+oo 12 3 ].
/ e (el P/2)s=s?/24 qo c 0 = (17.9.31)
0 T I+ /2

Estimating (17.9.27) by a convolution and using (17.9.29) and (17.9.31), we
obtain

12" (. n') Il () z2 () (17.9.32)

< C 1@
1 — = ||W
") L+ pr + |2

Set p = (p1,p’). Let A}, be the Laplacian in the variable p’. By (17.9.32),
we deduce that
|Apu ]| + (1 + pe) W] < Cllw]|. (17.9.33)
Remember that our goal is to establish (17.9.25). In view of (17.9.33) we
are now reduced to a 1-dimensional problem on the variable p;. Set
19% 1,y
L= —Ea—p% —i(p1 — i), w =w+ <§Ap, —,ur> o' (17.9.34)
We rewrite (17.9.24) as an equation of Airy type,
Lu = (17.9.35)
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Clearly,
Re ()] < o/ ] (17.9.36)
From (17.9.33), (17.9.34), (17.9.36), we get
ou’
< C|w] . 17.9.37
o= <ciul (17937
Moreover,
L ||* = 1@ 2—|—H( — )|’ +i o’ u (17.9.38)
- 2 ap% D1 H1 apl’ . s
By (17.9.33), (17.9.35), (17.9.37), (17.9.38), we get
1 0%/ ,
- - < . 17.9.
325+ 161 -t < (17.9.39)

By (17.9.33), (17.9.39), we find that (17.9.25) holds.
By (17.9.18), (17.9.19), (17.9.23), (17.9.33) and (17.9.39), we get

AV ull + (167 +Re X ) llull + Il k,p) = Tm N[ ull < C |1+ < p >)v].

(17.9.40)
Also observe that

, 2/3
k[*3 + Re N + |(k,p) — ImN| > C’ (%) : (17.9.41)

Indeed (17.9.41) is trivially true if k| [p| < 4 [Im X'|. If not, then [k| > C'L22"
and (17.9.41) also holds. By (17.8.7), (17.9.40) and (17.9.41), we get the
second identity in (17.9.20). Thus we have established the second identity in
(17.9.7) when b = 0.

Now we establish the second identity in (17.9.7) for arbitrary b € R. We

have the obvious identity
Q) (2,8 =N <p>Pu=<p>v+[Q)(z,8),<p>"u (17.9.42)
Using the considerations we made after (17.8.6) and also (17.9.2), (17.9.3),
we get
(@ (,6), < p>"] = 5 [AY + b (V7,67 (e0) Ver, < p >']
+ [Pe,<p>]. (17.9.43)

Using now the first inequality in (17.9.7) and the second inequality in (17.9.7)
with b = 0 applied to < p >? u, we obtain this second inequality for arbitrary
b. The proof of our theorem is completed. O

By Theorem 17.9.1, we know that Q% (x,&) — A is one to one from D (z,£)
into L2.
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Remark 17.9.2. The estimates in the second line of (17.9.7) are much more
precise than those we would get using the classical hypoelliptic estimates
of chapter 15. Indeed, because B ({,p, \) > |§\2/3, we gain 2/3 derivatives
in the variable z when passing from v to u, instead of the classical gain of
1/4 which was obtained in Theorem 17.5.2. Also a simple scaling argument
shows that 2/3 is indeed optimal. Still the factor h < p > in the right-hand
side of the second line of (17.9.7) is certainly not optimal. In the right-hand

side of equation (17.9.2), the term ih@FT*X((gT X)~1op) is responsible for

p
the appearance of h < p >.

Definition 17.9.3. Let egpa (7,€) : L? — DY (z,€) be the inverse of
Q?L (.’E, 5) - A

If peR, set

9
a(p) = 3P 1. (17.9.44)

We take Ay €]0,1/2].

Theorem 17.9.4. Take p €]1/3,2/3] and assume that h €]0, ho],Re A < A;.
For any v € S, the function (z,§) — u(x,&) = eon (x,&) v is smooth as
a function of (x,€) with values in S @ V.. The symbol e » (z,§) lies in

S/ 2/3,1

o173 (2,01 (p))" In particular, eo . (z,8) € S~

Proof. Note that for p = 2/3, then ¢; (p) = 2, so that S;f;g:(lzﬁ(p)) =

S72/31. To establish our theorem, we just have to prove that eq s (z,€) C
Sp_f;g’(g e (p) Comparing with (17.8.24), we have to show that for any mul-

tiindices «, 3, for s € R, N € N, there exists Cs n,o,3 > 0 such that

|< >N 0202u

b,s
< Cynag ||< p SN2l v‘ . (17.9.45)
o p,s—2/3+|al/3—p|]|
Set
B(&,p, )
M, =|<p>N (<p>?+— 22
A~ () H P ( b +1—|—h<p> up,s
-~ AVu
N+1 N
<p> \% <p>" — 17.9.46
+H p “p,s+H P 1+h<p>’p,s ( )
For h €]0, ho|, we have the obvious
[<p>Nul, < OM o511 (u), (17.9.47)

and so (17.9.45) will be a consequence of the estimate

Ms,N (azzagu) < Cs,N,oz,ﬁ H< p >N+2|a|+61(l’)‘ﬂ| ’U‘

p.s+lal/3—plB|
(17.9.48)
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To establish (17.9.48), we will argue by induction on k = || + |5].
We will obtain the case where k = 0 as a consequence of Theorem 17.9.1.
Let Uj, V; be associated to u,v as in (17.4.1). Set
22| A Ujlp,sj + Ba-s|U;
1+ h27

P,S,J

D, (Uy) = 22|Ujlp,sj + IVUjlps s +

(17.9.49)
The definition of D; ; (U;) should be compared with the one of M, n (u) in
(17.9.46), at least when N = 0. The scaling by K, accounts for the apparent
discrepancy.
For 7 €]0, 1], set

Qnr (2,8) = K.1Qn (2,6 K7, Q) (2,6) = K-1Qj (2, €) K.

(17.9.50)
We define Py ; by a similar formula. Then

Q)+ (2,€) = Qn,r (2, + Py - (17.9.51)
By (17.2.14), we get

Py u= a2 eIl /2r / e_‘q|2/272Qiu (q) dq. (17.9.52)

By (17.9.2), we obtain

Qhr(x &) =as, Frt (z <(gTX)71 0p,§> -

h <FTX ((gTX)i1 Up) €, ej> (eiiej + aigj))
2)p ~ hz—Tw (VF,g") (ei) Ve + B?ya s + Py r.
(17.9.53)

The following lemma plays a crucial role in the proof of (17.9.48) in the
case k = 0.

+ hTﬁlﬁrT*x((ng)flo

Lemma 17.9.5. For any s € R, there exists Cs > 0 such that foru € S,j €
N,

v,

27 \1].
5. + 2 ‘Uj|p,s,j S CS

2% |AVU;|

Ky (Qg,z—j (,8) — )\) Uij,s )
< Cs(1+h/7) (17.9.54)

P;s,J

. + BQ—J’ ‘UJ|

D;S,0
i (@10 -) 0]

For any s € R, there exists a rapidly decreasing function T's for which if
u,v € S are such that (Q?L (z,6) — )\) u=wv, then

o0
Dy (U;) < 3T (2079) Vil (17.9.55)
k=0
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Proof. We still use the notation in (17.8.8)-(17.8.11). Also we will often write
Qn> QY Qn,r, Q) - instead of Qp, (z,€), Q) (,€),Qnr (x,),Q) , (2,). Set

U|, =77"/2|J2U],., (17.9.56)

so that if 7 =277, then [U], . = |U],.

Let S? be the set of symbols of degree d in the variable p with values
in End (V'), with parameters z, £, h, 7, A which are associated to the weight
J;. Let n be the variable dual to p. If a(x,& h,7,\,p,n) € 8%, for any
multiindices «, 3,

d-181

2

o ofa e, hor Apm| <C (I + 426 N) T . (17.957)

The class of symbols S? coincides with the class Sﬁo which was considered
in [HO6r85, section 18.1] with large parameter A, (€, \).

Let @ (n) be the Fourier transform in the variable p of u € §. The quan-
tification A = Op (a) of a is such that

A(xa§7ha7—a)‘7pa Dp)u (Q) = (271-)7”/ ei<p,7]> a(ﬂ:,g,h,T,A,p, 77) ﬁ(n) d’l?

(17.9.58)
Let €dAbe the corresponding class of pseudodifferential operators over R".
Then V, A, (§,\) € £L.
Let 0y (p) be a smooth cutoff function which is equal to 1 on the ball By.
Set

Rp,r =00 (Qn,r — A) bo. (17.9.59)
If the principal symbol of E; € &4 is scalar, as in (17.5.19), we get
[Ry.r, Ed) € 7269V + 771€4, (17.9.60)

In the sequel, we omit the index j, and we replace 277 by 7. Set

= (@), - NU. (17.9.61)
We denote by || the standard L? norm. By equation (17.9.7) in Theorem
17.9.1, for any U with support in B and in the annulus R for j > 1,

‘@U’ vt <Y, (17.9.62)
T |AYU| + |B.U < C|(1+h<p/T>)Y].

Let Cy > 0 be a large constant. We first observe that if 7=' 4+ B, < Cp, by
(17.8.8), the parameters 7-1, < & >,|\| are bounded. Therefore for s € R,
in the above range of parameters, 7"/2 |U |p,s is uniformly equivalent to the
usual s Sobolev norm U. In this range of parameters, we claim that the
inequalities in (17.9.54) follow from (17.9.62). Indeed let 0 (p) € Cg° (R™)
be a radial cutoff function which is equal to 1 near B for j = 0, and near the

annulus R for j > 1, and vanishes near 0 also in that case.
Equation (17.9.61) is equivalent to the equation

(Qhr—NU=0(Y =Py ,U). (17.9.63)
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Note that Qn,» — A is a second order elliptic operator in the variable p € R™
with uniformly bounded coefficients (indeed |£] is uniformly bounded), and
that Iy ; is a smoothing operator. From (17.9.63), we find that given s, s’ €
R,

Ul 10 < Cow <|9Y\p7s + \U|pys,) . (17.9.64)
Note that in (17.9.64), Cs & depends implicitly on Cj.
Since 77! remains uniformly bounded, we have the obvious inequality
0y|, < C|K;Y|, . (17.9.65)
By (17.9.64) and (17.9.65), we obtain
Ul s < Cow (\KTY\M + \U|pys,) . (17.9.66)
Using the injectivity of Q) _, (17.9.62), (17.9.66) and the familiar contradic-
tion argument, we get
Ul 542 SCIEY ], (17.9.67)

Therefore we have established (17.9.54) under the conditions which were
given above.

Now we will consider the case where 7 is small. Let ¢ be a radial cutoff
function which has the same properties as 6 before, and which also vanishes
near 0 for j > 1.If E; € £, N € N, using (17.9.57), (17.9.58) and integration
by parts, we get

|<p>N (1 -¢)EU|, , <Cn|U|, _y, (17.9.68)
[, Ea]Ul, 0 <Cn[U], _n-

Recall that J was defined in (17.8.10). By (17.9.60), replacing U by ¢ J2U
in (17.9.62), and using (17.9.68), we get

WU

p,;s

+72 U, < Cs<|wJ$Y|p’0+72 ‘@U’ +77MUL,,
p,s
+ | [Pe,r, 0 J7] UI,,,()) ) (17.9.69)

72 |AVU’p,s + B, U], <Cs (1+n/7) (|¢JfY|p70 + 72 ‘@U

p,S
+ 77t IUp,s> +Cs |1+ h <p/T>) [P 07U,

Since the operator < p > Py acts as a bounded operator on L?,
[(1+h<p/T>) Pi’szJfU\p)o <C ‘U|p,s . (17.9.70)

Set
1

er (p) = ﬂe—|1’|2/2T2. (17.9.71)
/n-’ﬂ T’I’L
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By (17.9.52), (17.9.71), we get

JiPy cu= Jle; (p) / e (¢) Q+u(q) dq. (17.9.72)

By (17.9.72), using the fact that p remains bounded on the support of 1,
(1+h <p/T>)9J° Py U|, o < C(L+h/7) 7" [Ter|, o | I |

s 0=
(17.9.73)

Note that the factor 7" in the right-hand side of (17.9.73) comes from the

conventions used in (17.8.11). Using the Fourier transform, we get

T”\erT\;O:Q%”/?/ (4 2 lpl” +A2> exp (—471'2 |p\2) dp. (17.9.74)

7-2

Now by noting that A, > 772, and using the fact that

2
47r2|% + A2 = (4 2)12‘ -+ 1) A2, (17.9.75)
we find that given s € R, as 7 — 0,

| Jze |2 g ~ CL A% (17.9.76)

By (17.9.70), (17.9.73), (17.9.76), we get

[Pt ¥ J2] U‘p,o <CslUl,,, (17.9.77)
|(L+h <p/7>)[PerpJ7]U|, o < Cs (L +h/T)|UJ, -
By combining (17.9.69) and (17.9.77), we obtain
+ 7_2‘U|p,s < Cps (wa'Vp,O +7° +77! |Up,8> )
p,s p,s
™ [AVU|,  + B |U|,, < Cs (1+h/7) (17.9.78)

Qwﬁvno+ﬁ

+7 YU S).
» U1,

Given s € R, if 75 €]0, 1] is small enough, if 7 €]0, 79|, by (17.9.78), we get

AT S Cos [TV 0, (17.9.79)
72 |AVU| + B |U|,, < Cs(1+h/7) [WJY],,
Moreover,
W JZY |, 0 < Cs|[K-Y |, - (17.9.80)

From (17.9.79), (17.9.80), we deduce that for 7 €]0, 19}, (17.9.54) holds.
Observe that there exists Cs > 0 such that for £ > 0,s € R,

1
\4
e = C (e AYU| [+ . |Up)s> : (17.9.81)
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For 7 > 719, and B, > Cy > 0, if Cy is large enough, from the second
inequality in (17.9.78) and from (17.9.81), we get

V S
|AYU| |+ B U, < Cs |93Vl (17.9.82)

Using (17.9.80) and (17.9.82), we find that if Cy > 0 is large enough, the
second inequality in (17.9.79) still holds. Using again (17.9.81) and this sec-
ond inequality, we also get the first inequality in (17.9.79). Combining with
(17.9.80), we get again the estimates in (17.9.54). This concludes the proof
of these inequalities in full generality.

Now we will establish (17.9.55). We use the notation

X (p) = x (1 <p/T>). (17.9.83)
We will proceed as in (15.5.5)-(15.5.11). Recall that ¥ was defined in
(17.9.61). Set

W =K [Q)x(r<p>)]|u. (17.9.84)
Since (Q?L — )\) u =, as in (15.5.6), we get
Y=V+W. (17.9.85)

Put
W' =K1 [Qn,x(T<p>)]u, W'"=[Py, x:]K,—1u. (17.9.86)
By (17.9.84), (17.9.86), we get
W=Ww +W" (17.9.87)
By (15.1.3), (17.9.2) and (17.9.4), we get

Qux (7 <p>)] =5 (-AVx (7 <p>) = 2(Vax(r < p>)) Va)

- gw (VF,9") (e:) Vax (r <p>). (17.9.88)

y (17.9.88), we obtain

Ko [Qn,x (1 <p>)] K, = %(—Kﬂ (AVx (r <p>))

h
—2K,-1 (Vax (r <p>)) Tv@) 5w (VF,9") () Ky 1 Vax (T <p>).
(17.9.89)
As in (15.5.10), we write (17.4.1) in the form
u=>Y K.U. (17.9.90)

From (17.9.86), (17.9.89), (17.9.90), we get, as in (15.5.11),

W' = (% (—K -1 (AVx(r <p>)) — 2K, (Vax(r <p>))7Va)

w (vFng) (e)) Kr-1Vax (T <p> > ZK 12U U'. (17.9.91)
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Now the considerations we made after (15.5.11) show that if 7 = 277 7' =
277 given j € N, the nonzero terms in (17.9.91) appear only with |j/ — j| <
1.

By (17.9.49), (17.9.54), (17.9.85), (17.9.87), (17.9.91), we get

P,S,J

+ 3 (’2—2@@,
|

J'—jl<1

Dy,; (Uj) < Cs (I‘/}

+ (2—2j + hz—j) |Uj’|p,s,j/>

p,s,J’

+||[Pesx (277 < p>)] quﬁ). (17.9.92)

We claim that there exist C' > 0,0 > 0 such that in the given range of
parameters,

a 2 2 B-r
(\77|2+A3) (1472 <n>+hr)<C (7'_2+ In| + %) .
(17.9.93)
Indeed,
20,12
2 *In|* + By ) 1(3 2 )
- > — B,). 17.9.94
el + I e g (Pl (17.9.94)
Also there is C' > 0 such that
1 1
T2 4 57'3 In|> > cC \77|6/5 , T2 4 §TBT > CB2/3. (17.9.95)
By (17.9.94), (17.9.95), we obtain
21,12
—2 *Inl* + B- ( 2 2/3 6/5)
— > C B . 17.9.96
T+ nl+ 1+ 2O B + [nl ( )

Using equations (17.8.8) for A;, B, we deduce from (17.9.96) that there
exists C' > 0,0 > 0 such that

7'2"17|2 + B‘r

o/2
2 2 -2
(|77‘ 7') (I+ <n>)<C (T || 1+ h/7

) . (17.9.97)

Since 7, ht €]0,1], (17.9.93) follows from (17.9.97).

By making 7 = 277 in the right-hand side of (17.9.93), we obtain precisely
the weight that was used in the definition of D, ; (U;) in (17.9.49).

Using (17.9.93), we get

Ujlp,s,j < CDs—6,5 (Uj),

Z (22j ‘@Uj/

3" —il<1

+ (2—23‘ + h2*j) |Uj/p,s,j/> (17.9.98)

p,8,J’

<C Y Degy(Up).

3" —il<1
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By (15.2.14), we get

Ix @7 <p>)ull, < D Upl, .- (17.9.99)
l7'=3l<1

y (17.9.98) and (17.9.99), we get

x (27 <p>)ul,, <Cs Dy (Ujr). (17.9.100)
3" —3l<1

Using an obvious modification of inequality (17.5.1) in Lemma 17.5.1 and
(17.9.100), we obtain

[Pex (277 <p>)ul  <Co Y Doy (Uy). (17.9.101)
[7/—71<1

Let 6(p) € C§° (R™) be a radial cutoff function which has the same prop-
erties as the function 6 which was considered after (17.9.62). Since the choice
of 6 depends on whether j = 0 or j > 1, we will write ; instead of 6, even
though we only pick 8y and 6#;. In particular there is € > 0 such that if
|p| < ¢, then 61 (p) = 0. By (17.2.14) and using the notation in (17.9.72), we
get

[x (277 <p>) Piquﬁ <272 |gie, lp.s.j / el(p)u(p)dp’ .
Rn
(17.9.102)
Moreover, using (17.4.1), we have
+oo
‘/ er(p )dp’ <) ks / ot (p)Ur(p )dp’ (17.9.103)
n k:o n

(17.9.102), (17.9.103), we obtain

||X (277 <p>) Peul|,

+oo
< C272 0 e5-51p,05 Y 27 2 Okea—il, 4 UKl
k=0

(17.9.104)

p,8,k
Clearly,
—jn 12 2 2 g 2
2 |0j€2-5 ‘p)s’j <C Inl” + A3-; ) |0iea-s
R’V'L

By construction, there is € > 0 such that 6; (p) vanishes for |p| < e.
Therefore,

(n)dn. (17.9.105)

—

Ore. (n) = 742 exp (—52/472)

/ne—“mel (») exp< R (\p| 2/2)) dp.  (17.9.106)

We claim that there is a rapidly decreasing function I' () such that

e P20y (p)exp | —=— (Ipl* —€%/2) ) dp
he (<552 (1 =12))

<T'(n). (17.9.107)
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This is indeed obtained using the support property of #; and integration by
parts.
By (17.9.106), (17.9.107), we find that there exists ¢ > 0 such that

2

‘91’; (n) < T(n)e=c". (17.9.108)

By (17.9.105), (17.9.108), we get for any s € R,
2720y 5| < CLAS e 17.9.109
J D,8,J 2

Also given s € R, ¢ > 0, there exists C > 0,¢’ > 0 such that for 7,7’ €]0, 1],

(%)s exp (—c (77 +7'7%)) < Cexp (= (2 +7'7%)) . (17.9.110)

By (17.9.98), (17.9.104), (17.9.109) and (17.9.110), we obtain

00 v .
X277 <p>)Peul| < CY e NID L (U). (17.9.111)
k=0

By (17.9.92), (17.9.98), (17.9.101), (17.9.111), we find that for any s, there
exists Cg > 0 such that

Ds,j(Uj)SCs<Vjp,s,j+ Y Doy (Uy)

13/ —jl<1
25 = 2k
+e7 7N e Do (Uk)>. (17.9.112)
k=0
For N € Z, put
+o00 ‘ ) +o00 ‘ )
ulll?x =Y 29VDZ(U;),  lollin =2 29N Vlp, ;- (17.9.113)
j=0 j=0
By (17.9.112), we get
lulllou < Coow (10l + lullls—o.nv) - (17.9.114)

By Theorem 17.9.1, Q9 (z, ) — X is injective. By the familiar contradiction
argument, we get, from (17.9.114),

lullls,v < Cs,n [0l v - (17.9.115)
By (17.9.115), we get (17.9.55). The proof of Lemma 17.9.5 is complete. O

Now we will finish the proof of equation (17.9.48) in the case k = 0. For
N € N, put

v =2V Dy ;(U;), 8j = 2N|Vjlp,s.j- (17.9.116)
Using (17.8.23) and the comments we made after equation (17.9.49), we get
Mow@ ~ Iy <p>Y ol ~lole. (79017
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Moreover, since I's is rapidly decreasing, given N € N, there is a rapidly
decreasing function I's y such that for any j,k € N,

2INT (2 =k < T, n (217K 2k, (17.9.118)
By (17.9.55) and (17.9.118), one gets
1VIlez < 21T, (27111 (1]l 2 - (17.9.119)

Note that the factor 2 in (17.9.119) comes from the absolute value in 217—*!.
By (17.9.117), (17.9.119), we get (17.9.48) for o = 0,8 = 0, that is, for
k=0.

We establish inequality (17.9.48) for arbitrary k& € N by recursion. We
will assume that it has been proved for k" < k — 1, and we will establish it
for k.

We will use the notation

Uap = 050Fu. (17.9.120)

Recall that v depends only on p and not on (z, ). We will take derivatives
in 2, £ of the equation (Q) — A) u=v. For k = |a|+|3| > 1, and taking into
account the fact that Q¥ is an affine function of £, we get

(Q) =N tap = Sartiass+ Y Top,ts,. (17.9.121)

In (17.9.121), the operators S,, are proportional to 991QY, the operators
T, 3, involve just one derivative in & of @Y, and derivatives of QY in X of
order lower than «, and moreover

o+ =o,a0 < a v<a, |B2] +1 =0 (17.9.122)
In particular, in (17.9.122),
|+ 8| <k — 1. (17.9.123)
By (17.9.2), for 1 <¢ <n,

To,i = +i <(gTX)_1 op, e”> : (17.9.124)
By the already proved equation (17.9.48) with k = 0, we get
My, (ta,p) < Con [|<p >N (@R (2,6) = A) wag|,, - (17.9.125)

Observe that for p €]1/3,2/3] and with ¢1(p) = 9p/2—1, there exist C > 0
such that

B, + r2|p|?
A Ore) (2 B

W) . (17.9.126)

In fact we will prove the stronger inequality,
(I + 42)7% < Cra® (72 4 ) 4+ 7B,). (17.9.127)
Now using the definition A., B; in (17.8.8), we get

2 2\"/? I3 —2p 3p/2
(Inl +AT) ~ |n|® + 772 + B2, (17.9.128)
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Therefore to establish (17.9.127), we only need to verify the inequalities
T gl 4 (20 < o) (772 4 ) (17.9.129)

771339/2 < Cor—a (772 + TBT) .
Now the first inequality in (17.9.129) is trivial since for |n| < 772, it reduces
tol+2p<ci(p)+2=3p+1,andfor [n| > 772, it comes from the fact
that 7= |n|” < 77 |5|, which is itself a consequence of the inequality
2(1—=p) > 1—61(0)52—%@

Also since ¢1 (p) = 5p— 1, if x =77

in (17.9.129) in the form

B¥? <C (339”/2 + xgp/2_3BT) . (17.9.130)
Now (17.9.130) is obvious for p = 2/3. Moreover, for p €]1/3,2/3[, the
minimum in € R4 of the right-hand side of (17.9.130) is attained for

T~ Bi/g, for which we get again (17.9.130). This completes the proof of
(17.9.126).
Comparing (17.9.46) with (17.9.126), we get

[<p>NFull < OM, Ny (17.9.131)

So using (17.9.48) for k — 1, (17.9.122)-(17.9.125), and (17.9.131), we get
I <p > T05,u,5,]

1 we can write the second inequality

D,s S Cs,oz” <p >N+1 uVﬂzHPVS

< Cs,N,aMs—p,N—i-cl (p) (U‘V;ﬁz)

< Conyapll <p SNTHATA@IBly|| L ass—pia- (17.9.132)
As was already pointed out, the operators a, P+ do not depend on x, and
so they do not contribute to Sq,. Therefore S,, is essentially of the same
type as the contribution to QY of h3y + h%yy.
We claim that

(7_1 <&>+ht i+ h27'_2)

B, +72n|?
e A} (1791
1+h/T (17.9.133)

The last two terms in the left-hand side of (17.9.133) are easy to control. To
control the first term, it is enough to show that
<&>< AV3B,, (17.9.134)
which is obvious since < £ > < A,, < & >2/3< B,
By (17.9.133), we get
| <p >N Sayullps < COMgi1/3 N0 (u). (17.9.135)
Using the estimate (17.9.48) for &’ < k, (17.9.122), and (17.9.135),

<0 > Sa, (tasp)||, , < OMt1/3,n42(tas,)

1/6
<C(Inf+42) " 1 <T—2 + [l +

< Cs,N,a,ﬂ H< D >N+2\a\+61(ﬂ)|ﬁ\ 1}’ ) (17.9.136)
p,s+|al/3—p|B]

By (17.9.121)-(17.9.125), (17.9.135), and (17.9.136), we get (17.9.48) for
arbitrary k € N.
The proof of Theorem 17.9.4 is complete. |
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17.10 THE PARAMETRIX FOR Sy, »

Recall that Sy » and egpx (x,&) were respectively defined in Definitions
17.6.2 and 17.9.3. In the sequel, we will write eg instead of eg p x (,&).

We define ¢ (p) as in (17.9.44). If xo € X, we still use the coordinate
system and the trivializations which were defined in sections 17.8 and 17.9.
The class of symbols and operators which were defined in section 17.8 refer
to this particular trivialization.

Now we will obtain a parametrix for Sy, .

Theorem 17.10.1. Take p €]1/3,2/3]. Let zy € X, let K,U C X be
small neighborhoods of xy, with K C U, K compact and U open, and let

p(z) € C§° (U) be a cutoff function which is equal to 1 near K. There ex-
2/3,1 /3,1

ists Eo € Py 173.0.e0(p)) Whose symbol is emctl@/ €0 € 8,13 oy W0
B, c Pp 11//;; 42 o with symbol e1 € Sp 1/3 (2 er(0) compactly supported in

x € U, such that for u € S (T*X,7*F) with support in 71K, and M € N,
then

Spau= Y hoEE{u+ S, \EMu. (17.10.1)
0<j<M
In particular,

By € P2/31, E, € P1/34, (17.10.2)

Proof. Let @ (&, p) be the Fourier transform of u (z, p) in the variable z. Let
Ey (x,hDy, h,v) be the pseudodifferential operator associated to eg p x (, &)
as in (17.8.26), i.e

Eo (2, hDy, h, \) u(z,p) = (27rh)_"/n w8 e (@, € (%,p) de.

(17.10.3)

By Theorem 17.9.4, we know that Fy € Pp f//g’ (12 1(0))”

Let U, K be taken as in Theorem 17.10.1, and let ¢ (x) € C§°(U) be equal
to 1 near K. By (15.1.3), (17.6.2), and (17.8.6),

[P, ¢] = Fh <(gTX)_1 op, dm<p> . (17.10.4)
Assume that the support of u(z,-) is included in K. Set
Ey(z,hD,, h, Nu(z, p)
- j:(27rh)_"/ et (@) <(gTX)1 op, dy (peon) (,€) T (%,p) > de.
’ (17.10.5)

Using the fact that egp » (z,€) is the inverse of QY (x,&) — X and (17.10.4),
we get

(P} — ) Eou = u — hEu. (17.10.6)
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By the considerations we made after Definition 17.8.1, by Theorem 17.9.4,
and by (17.10.5), noting that —2/3+1/3 = —-1/3,14+2 = 3, we get

—1/3,4
Er€P, 15 2000 (17.10.7)

Note that the fact that 3 is changed into 4 in (17.10.7) reflects the extra
linear dependence on p in the right-hand side of (17.10.5).

Recall that S\ = (P}? — )\)71. Replacing u by ZO<]‘<M hJ'E{u in equa-
tion (17.10.6), for M > 1, we get

Spau= Y hoEE{u+ s, \EMu, (17.10.8)

0<j<M
which is just (17.10.1). By using the same argument as in the beginning of
the proof of Theorem 17.9.4, we get (17.10.2). The proof of our theorem is
completed. O

17.11 A LOCALIZATION PROPERTY FOR Eg,E;

We now state a lemma on the local properties in the variable x of the oper-
ators Ey, By which appear in (17.10.1).

Lemma 17.11.1. Let K a compact subset of U, and let p(z) € C§*(U\ K).
Then for any s € R,t € R,N € N, there exists Csy y > 0 such that
for h €]0,ho],A € C,ReA < A1, and u € § (T*X,7*F) whose support is
included in 7~ K, for j = 0,1,

IoEjuly ey < Coah™ 0l o (17.11.1)

Proof. For m € N, and j = 0,1, we have
()DEJ (1‘7 h‘Dmv h‘a )\)U(Jf,p)

_ h2m(27rh)*"/ e;%(a:ﬂn&) (_Ag)mej(x’&h’A)M dyde.

n |z —y[>"
(17.11.2)
Using the properties listed after (17.8.24) and also Theorem 17.10.1, for
p€|1/3,2/3],

vym —2/3—2mp,14+2mci1 (p)
(—AY)" (e0) €8, 375 gt tame(e), (17.11.3)

vym —1/3—2mp,44+2mc1(p)
(-A) () €S, n e
By (17.8.8) and (17.8.24), for a > 0,

d,k d+a,k—2a
Spio.2.e1(0) © Spub(2ier ()" (17.11.4)

Given p €]1/3,2/5], then c1(p) = 9p/2 — 1 < 2p. Take o €]y (p),2p[- By
(17.11.4), for m € N,

d—2mp,k+2me1(p) d—2mp+mo,k+2mei(p)—2mo
0.3.(2,01 () C S0 5.2,e1(0)) : (17.11.5)
Now observe that given d, k, p, o taken as before, for m € N large enough,

d —2mp + mo and k + 2mc; (p) — 2mo become arbitrarily negative. Using
equation (17.8.33) in Lemma 17.8.4, (17.11.2),(17.11.3), and the above, we
obtain our lemma. O
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17.12 THE OPERATOR PS5y,

Let L% (resp. Dy, resp. DY) be the space of square integrable (resp. smooth,
resp. distribution) sections over X of A'(T*X)®F in the + case, and of
A (T*X)®F®o (TX) in the — case. We identify L% to keray € H? by the
isometric embedding iy described before Theorem 2.3.2. In fact, if u € L%,
then

iyu = T uexp (— Ip|? /2) Ja™4 i_u=T"sexp (— p|? /2) A /a4,
(17.12.1)

In (17.12.1),  is a unit volume form in 7*X.

For s € R, let H% be the Sobolev space of sections of A" (T*X) ®F on X
in the + case, of A" (T*X)®F®o (TX) in the — case. For any s € R, the
map ¢+ maps Hy into Hs Nkeray.

Theorem 17.12.1. There exists A1 > 0 such that if s € R, there is Cs >0
for which if A € C,ReA < Ay, forue § (T*X,n*F) Nkeray, then

||Sh,/\u‘|,\)sc)s+5/6 S CS ||u||)\,sc,s ? (17122)
and foru e & (T*X,n*F),
I1P£Snaully sosp56 < Cs lullyse,s - (17.12.3)

Proof. Notice that the structure of S} | = ((P?)* —X)~! is similar to the one
of Sp . By duality and interpolation, we only need to establish (17.12.3).
Using partition of unity on X, we may and we will assume that the support
of w is included in 7~ 'K, where the open set U and the compact subset
K C U are taken as in Theorem 17.10.1. Let ¢(x) € C§°(U) be a cutoff
function which is equal to 1 near K. We will show that

[P Shatlly g srs/6 < Cs 1]y ses - (17.12.4)

Combining Lemma 17.6.4 with the above estimate then leads to a proof of
(17.12.3).

We use the coordinate system and the trivializations of vector bundles
which were described at the beginning in section 17.8. Also the notation will
be the same as in the proof of Theorem 17.10.1. We may and we will assume
that ¥ = .

By (17.2.14), given N, L, o, 3, there exists Cs n,1,a,8 > 0 such that in the
given range of parameters,

H< p>NVep, <p>k @%H < Conpapllilyp,.  (17.12.5)

A,sc, 8

Note that (17.12.5) gives an extension of (17.5.1).
By (17.10.1) in Theorem 17.10.1, we get

YPeSpau= Y WYPLEE{u+hMyPLS, \E u. (17.12.6)
0<j<M
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By (17.6.14) in Theorem 17.6.3, by (17.8.33) in Lemma 17.8.4, by (17.10.2)
in Theorem 17.10.1, and by (17.12.5), if M’ € N is the integer associated to
EM and to s — 1/4 as in (17.8.33), we get

< Cy

prish)‘Ei’wuH/\,sc,s —

<p >—M ShVAE{wu‘

A,sC, S

<Cs

<p >_M E{MUH)\ sc,s—1/4 S CS ||u||)\,sc,sfl/4fM/3 . (17127)

Using again Lemma 17.8.4 and (17.10.2) in Theorem 17.10.1, and proceed-
ing as in (17.12.7), we find that for 0 < j < M,
Hq/)PiEOE{u‘ L " N (17.12.8)

,SC,§

Therefore in order to prove (17.12.4), we just have to prove the stronger
inequality than (17.12.8) for j = 0,

1P Boully seurs/6 < C llully se.s - (17.12.9)

Remark 17.12.2. The fact that we obtain the better 5/6 instead of 2/3 in
(17.12.2) and (17.12.3) will play a crucial role in the sequel. Indeed otherwise,
the proof of Theorem 17.16.3 would lead to replacing —1/6 in (17.16.10) by
—1/3, which would not be enough to establish the crucial Theorem 17.21.3.

17.13 A PROOF OF EQUATION (17.12.9)

By (17.10.3), we have the identity

n

PiEO(l', h‘Dmv h‘a )\)U(Jf,p) = (271-]1‘)7“/ e'%@’&)PieO’h’)\(x,ﬁ)ﬁ (%ap> dg

(17.13.1)
Equation (17.13.1) just says that the operator Py Ey is associated to the
symbol Pyeg.

To establish (17.12.9), we will show in Proposition 17.13.4 that for any
LeN, <p>F Prey <p>te 575/6’0, and then we will use Lemma 17.8.4
to conclude.

First, we give a refinement of the estimate (17.9.20) in the proof of Theo-
rem 17.9.1.

If6(p) € S,M € N, set

10 = > P98l (17.13.2)
la|+]|BI<M

Lemma 17.13.1. There exists C > 0 for which if a > 0,u € S are such
that

[AY ul| . + allprull 2 < 1, (17.13.3)
then

full < .| [ owputan] < cae [ i, ar

L2()
(17.13.4)
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There exist C > 0, M € N for which ifbe R,k € R", u € S are such that
[l gz + [[AY ul| o + (b= (kyp)) ull 2 <1, (17.13.5)

b \2
<<k>+—> u
<p>

\ 9<p>u<p>dp‘ < C(<k>+) "0l
R"l

then

<C, (17.13.6)
L2

Proof. Take u,v € S§. Consider the equation
1
v = <—§AV - iap1> u. (17.13.7)

We denote by @ the Fourier transform of u in the variable p. Then (17.13.7)
is equivalent to

~ 0 1, 2\~
VU= (aa—nl + 3 I ) u. (17.13.8)
By proceeding as in (17.9.24), (17.9.27), we get
+oo
a(nl’n/) — %/ e—%(\7]\25/2—7]152/2-&-53/6)6(771 _ S’n/) ds. (17139)
0

Observe that for s > 0,n! € R,
nt?s/2 —n's? /2 + 5% /6 > 5% /24. (17.13.10)
For a > 0,7/ € R"!, set

1 _ 1 /25 &3
wa’nl(s)zlszoae a(‘n‘ /2+ /24).

(17.13.11)
There exists C' > 0 such that for any a > 0,7’ € R"!,
[ amll < Ca™?/3, | amll > < Ca™>/6, (17.13.12)

By (17.13.9)-(17.13.11),

“+oo
[u(n*.n')| < / Cay ()]0 (n" —s,1)| ds. (17.13.13)
0
By (17.13.13), we get
@G L2y < Mpaime i 1BC 1)l L2y - (17.13.14)
When (17.13.3) holds, by (17.13.12), (17.13.14), we get the first inequality
in (17.13.4).
Clearly,
0)u ) dp=(20)" [ ()T (o) (17.13.15)
RTL n
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By (17.13.13), (17.13.15), we get

~ oo
0 (77)‘ (/0 Oan () |5(771 - s,n')| ds) dn
<C [ {00016 119

dn', (17.13.16)

<Ca ¥ ola [ (o],

which gives the second inequality in (17.13.4) under (17.13.3).

Now we establish (17.13.6). These inequalities are obvious for < k >
+/b] <1 and also for k = 0.

For k # 0, by a rotation in the variable p, we may and we will assume that
k= (|k],0,...,0), so (k,p) — b= |k|(p1 — %) Since the Fourier transform of

‘ Rn(?(p)U(p)dp‘ <C

R"

bl o~
0(p1 — lr.9') s equal to e U BTA(n), by (17.13.4), we get

H< ko >2/3 uHL2 <c, (17.13.17)
‘ 9(p)u(p)dp‘ <C < k>0 / Hé\(nl, ~)‘ dn*.
R" L2(n’)
We claim that there exists C' > 0 such that
‘b| 2/3
<k >2B 4b— (k,p)| zc<< k> + ) ) (17.13.18)
<p>

The proof is similar to the proof of (17.9.41). Indeed (17.13.18) is true if
b — (k,p)| > 3 |b]. If not, then [b] / < p > < 2|k[, and (17.13.18) still holds.

By using (17.13.5), (17.13.17), and (17.13.18), we get the first inequality
in (17.13.6). For a given C’ > 0, if |b] < C" < k >, the second estimate in
(17.13.6) also follows from (17.13.17). To establish this second estimate in
full generality, we may and we will assume b > C’ < k >, where C" is a large
positive constant.

Let ¢ € C§° (] —1/2,1/2[) be equal to 1 on [—1/4,1/4]. Set

uy =1 (1 - @) u,  uy = (1 — 1 (1 - @)) w.  (17.13.19)

Since b > C’ < k >, the functions w1, us verify bounds similar to the bounds
in (17.13.5) for w, possibly with a bound which is larger than 1.

First we study the contribution of us to the second inequality in (17.13.6).
Observe that [b— (k,p)| > £ on the support of uz, and so by (17.13.5), we
get

¢

l[uzllpe < 5= (17.13.20)

Since b > C' < k >, by (17.13.20), we derive a bound on | [g.. 0 (p) uz (p)| dp
which is compatible with the second estimate in (17.13.6).
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We still make a rotation on p so that (k,p) = |k|p1. Set
v = Kb/|k|“1~ (17.13.21)

Then the support of v is included in the set of p such that |1 —p;| < 1/2.
As we saw before, u; verifies an estimate similar to (17.13.5). This estimate
can be written in the form

k[? k
ol + B aVel ol - pe < (B1) . arsa)

Let ¢ € C§° ([1/4,5/4]) be equal to 1 on [1/2,3/2]. Set

el(p)=<|%>n/2w(p1) (iﬁ) w(p)=<|%>n/2_2v(p). (17.13.23)

Clearly,

b2
0 (p)ur (p)dp=—— [ 01 (p)w(p)dp. (17.13.24)
R k[ Jro
Now by (17.13.22), (17.13. 23) we get
A w]|,, + |an( —pr)w|. <1 (17.13.25)
Using (17.13.3), the second estimate in (17.13.4), (17.13.24), (17.13.25), we
obtain
0 (p) u ()dp’<0< ) 5/6/H91 ) dn’.
R" || ')
(17.13.26)

Now observe that since the support of ¢ is included in [1/4,5/4], given
M, M’ € N, there exists Cpz,pr > 0 such that

|k

M

1601 5sr < Car,nar (17.13.27)

By (17.13.26), (17.13.27), we find that the contribution of u; to the integral in
the second inequality in (17.13.6) is also compatible with the corresponding
estimate. The proof of our lemma is completed. O

A smooth function ¢ (z,p) with values in End (V) is said to be a symbol
if there is d € R such that

02050 (2, p)| < Cap <p>?1°1. (17.13.28)

If e, ¢’ are symbols, we denote by ee’ their pointwise product, i.e., we use the
same notation as after (17.8.24).

e3Pl +2/3,|a—B|—1

Lemma 17.13.2. Given a multiindex «, there is cag € S
and c;, 5 € S 51a=Bl such that

eo, Z 3 €0Ca,3€0, e, = Z 3geoc;ﬂ. (17.13.29)

B<a BLa
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If k e N,
k J . GO0
eo <p>Fe Y <p>7epS’. (17.13.30)
0<j<k
Given multiindices «, 3, there exist an g~ € SEFH2/3810 g symbols
Pa,8,y Such that
0207e0 =" 0)PaprC00a,p.- (17.13.31)
[vI<]e

Proof. As we saw after (17 8. 24) with respect to the pomtw1se product of
symbols, SLEST K ¢ Std k+F Since ¢ € S72/31, by taking ¢, 5= Ca,€0
for [8| < |af and ¢, , = 1, the second identity in (17 13.29) follows from the
first one. By multiphcatlon on the left and on the right by Q9, this first
identity is equivalent to

(@0 =2 = (Qh =) [0+ 9eocas |- (17.13.32)

B<a

To establish (17.13.32), we will argue by induction on k = |af, the case
k = 0 being obvious. By (15.1.3), (17.9.2), and (17.9.3), for 8 # 0, the iter-

ated commutator Ad6 is a linear combination with coefficients smooth
functions in x of the operators
& o9 M(z), M(z), AdS (Py) (17.13.33)
iy Di 3pj ’ 3pi’ Di ’ ) op\t£)s cL9.

where M (x) denotes a smooth matrix operator. Incidentally note that for
|B] > 3, only the last operator in (17.13.33) still appears. The operators in
(17.13.33) lie in S0, Note in particular that this is the case for p; =% 8 since
this operator is scale-invariant, so that we may ultimately exploit the fact
that |p| is bounded on the ball By.

For multiindices a,~ such that 8 < «, let go 3 be a symbol which is a
linear combination with integer coefficients of the operators AdgpQ% with
|| = |a — B]. By the above, g 5 € S'0. By recursion, we see that given «,
there are g, g such that

95 (Q) =N =(Qh =N 05+ 9 gap. (17.13.34)

B<a
To the left of the second sum in the right-hand side of (17.13.34), we may as
well introduce the factor (Q9 — A) eg = 1. Also since |3| < |al, by recursion

we can replace 6035 by the expression in the right-hand side of the first
identity in (17.13.29). We get

Iy (Q?L — )\) = (Q?L - )\) oy + Z Bgeo Ja,8 + Z 9y €0C3,~€0ga.p
B<a y<pB<L
(17.13.35)
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By (17.13.35), we find that (17.13.32) holds with
Cai = Gap+ D €0 €0 Gan: (17.13.36)

B<y<a

From known results on eg, go,3 and using recursion on the cg ., we obtain
the required result on ¢, 3.
By (17.9.46), (17.9.48), we get

<p>? eS8, <p> 0,eeS8, B eeSH. (17.13.37)
Let o(z,p) be a symbol of degree d. By (15.1.3), (17.9.2), and (17.9.3), we

get
[Qn, 0] € O (9pp (Op+ < p>?) + 02¢) . (17.13.38)

Moreover,

[eo, 0] = —eo [@), ¢] €o. (17.13.39)

By (17.13.37), (17.13.39), we find that [eq, ¢] € eoS»4~1. If E € S%9~1 then
<p >4 E € 8% We can then proceed by recursion and obtain (17.13.30).

We will establish (17.13.31) by recursion on k = |a| + |3|. Equation
(17.13.31) is obvious for k = 0. For any L € R,

S <p>t=<p>t 890 =80 (17.13.40)
By (17.13.40), it is enough to establish (17.13.31) with aq g~(z,&, h,A) €

S5H-2/318l% where * denotes an unspecified real number.
Put

e’ = 0207 eo. (17.13.41)
By (17.9.121), we get
g’ =3 o Sareg?? + 3" el e (17.13.42)

The sum in (17.13.42) is submitted to the conditions in (17.9.122) and
(17.9.123). Moreover, by (17.9.124), T,, g, depends linearly on p, and so it is
a symbol of degree 1.

For a symbol (@ (z,p) of degree d,

9o @ = 3"yl hgs, (17.13.43)
Bl

where wgf;la—ﬂ Vs a symbol of degree d — | — (|. In what follows we will
often use the same notation for different symbols.
Using (17.13.29), (17.13.31), (17.13.43), and also recursion, we get

v,B2 __
coTvpey™ = D 0pd) P s, €005

[vI<]v|
Y1 o lwl_”h*
= > €00} v psn€0upy C Y, O5€0S 5 T peoayp, -
[VI<]v| [v|<Iv]
1<y o<1 <y

(17.13.44)
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The last term in (17.13.44) is of the required form in the right-hand side of
(17.13.31) (with 0 replaced by *), because by (17.9.122),

Sl’Yls—ﬂ\ 7*90@0@” o c S \71\3—\0\ —2/3+ \V\;\’Yl —2/3| Bz, c S \ﬂlglal _2/3“3‘7*'
(17.13.45)

We proceed in the same way to deal with the terms containing S,, in
(17.13.42). The structure of S,, was described after (17.9.132). First we
study the contribution of the £ linear component of S,, which is bilinear in
&, p. Using recursion, we get

eofqﬁegz’ﬁ: Z £e000) Pas,B8,4€00as, 8,y
lvI<]az]

— Y1
= E feoap Pasz,8,7600az,8,y
[v[<laz]v1<y

C Y eSS eo dag g (17.13.46)

[v[<[ee|
o<v1<vy

Using again (17.9.122), we get

\71\;\0\ C8|71\5\0\+1/3+|a2\;\“f|_2/3‘[,}'7* CS‘Q|E|U|_2/3V3|’*’

(17.13.47)

S " Epeotas, by

which takes care of the term in (17.13.46).

What remains in S, are either matrix values symbols, which can be dealt
with as above, or a term containing just one differential in the p variable,
with a matrix coefficient. Now note that

codpeg™ = Y €00 Pas,p.1C000s,5
1yI< o] +1
lv—ol
C > eSS Tpeotaypy. (17.13.48)

[vI<laz|+1
o<y

Using again (17.9.122), we get

ST pegaa, gy € ST/ L2 310 - glelFlEl1-2/31)
(17.13.49)
We find that (17.13.48), (17.13.49) are compatible with (17.13.31).
The proof of our lemma is complete. O

Remark 17.13.3. Since eg € S™2/31 by the considerations which follow
(17.8.24), we get dpeq € S™V/33. We will briefly show that

[pD,, 0] € STH/33. (17.13.50)

By (17.13.50), we find that the estimates on 0,eg and [pdp, eg] are compat-
ible. Now eg is a symbol which is globally defined. As explained in Remark
17.8.3, the above compatibility indicates that our computations are indeed
consistent.
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To establish (17.13.50), note that
[P0y, €0] = P [Dp, €0] + [P, €0] Dp- (17.13.51)

By (17.13.29) in Lemma 17.13.2, [0,,e0] € S™'/32, and so p[d,,e0] €
S—1/3:3, Moreover, by (17.13.39),

[p, €] = €0 Q). p] €. (17.13.52)

The term Py in the expression (17.9.3) for QY is easily dealt with. By
(17.13.38),

[Qn,p] € O (0p+ < p >?). (17.13.53)

Now note that 9, € S»~!, the —1 coming from the presence of < p >? in
the expression for A (£, p, \) in (17.8.7). Therefore

eo <p >2ed, € STY33, (17.13.54)
Also
eoapeoﬁp = 60812,60 + 600p [60, 3],} . (171355)

By (17.13.37), 3360 € S%! and so 60812)60 e §~2/3:3, Also by using (17.13.37)
again, dpeg € S 1. By noting that our classes of operators are invariant
when taking adjoints, we thus find that eqd, € S®~!. Moreover, [eg, d,] €
§71/32 and so

eody [0, 9] € STV € §71/33, (17.13.56)
By (17.13.51)-(17.13.56), we find that indeed [pd,, eo] € S/33.
Proposition 17.13.4. For any L € N, then
<p>L Preg <p>te §75/60 (17.13.57)
Proof. In our trivialization, P1 and < p > do not depend on z, and so
0507 <p>" Preg<p>F=<p>L P0tdleg <p>".  (17.13.58)

Using the defining equation (17.8.24) and (17.13.58), our proposition will be
a consequence of the inequality

H< p >N PLo2dfey < p>" u’ < Nl yit jofal_zjos - (17-13.59)

p,s+5/6

We may temporarily assume that dim F' = 1. Observe that the operator
in the left-hand side of (17.13.59) has rank 1. By (17.13.30) and (17.13.31)
in Lemma 17.13.2, and integration by part in p, we see that it is sufficient
to prove that for 8 € S, s € R, there exists C > 0 such that

’(< E>+ )T a(p) eoudp‘ < Clul,,- (17.13.60)

RTL
By interpolation, we just have to verify (17.13.60) for s € Z.
First we prove (17.13.60) when s € N. By (17.8.8), for 7 €]0, 1],

A >7(<E> 420 = A)). (17.13.61)
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By (17.13.61), we find that if s € N,
[<p>"ul . <Cs(<E>+A) " ull,, - (17.13.62)

By (17.13.30) and (17.13.62), we find that to establish (17.13.60) for s € N,
we only need to show that

(<€>+|A)>°

/ 6 (p) eoudp’ <l|<p>ul. (17.13.63)
Rn

Using the inequalities (17.9.7) in Theorem 17.9.1 with a = 2,b = 0 allows us
to dominate the norms |ul,-, ||Aveou||L2 in terms of | < p > u|| 2. Recall
that Qp (x,€) is given by (17.9.2). Using this formula, We can dominate
Re Al [Jul| ;- and [[(Im X+ (k,p)) u| ., with k = a(gTX) ¢ in terms of
ll<p>u|,2. By using Lemma 17.13.1, we get (17.13.63).

To establish (17.13.60) for s € Z,s < 0, we just have to show that for
] <],

’(< &> +|)\‘)5/67\a|/ Geoagudp‘ < Cs |lul| 2 - (17.13.64)
RTL

Using (17.13.29), we find that to establish (17.13.64), we only need to show
that for k € N,a € S*¥/3* (with * € R),

)5/6—k

(< &>+ Begaudp

R'Il
We argue by induction on k. Indeed the case k = 0 was already considered.
For a € S%”, there exist a; € SF=2)/3* gy € §5/3* such that

a=0pa1 + (< &> +|A)3ay (17.13.66)

Indeed ifc = — < p>AY < p>+A2 € 820 then ¢ la € 5%, and
moreover,

< Clull o - (17.13.65)

a=—<p>A" <p>clat(<&>+ )P (<> +A) P A2
(17.13.67)
Then (17.13.67) is a form of (17.13.66).
Using (17.13.66), we get

epa = 8 epal + €g [ap, Qh] epal + €g (< &> +‘)\|)1/3 . (17.13.68)
Recursion and integration by parts takes care of the contribution of the first
and last terms in (17.13.68) to (17.13.65). Moreover, using (15.1.3) and equa-
tion (17.9.2) for @y, we find that the £-linear part of [3p, Qg] is compatible
with (17.13.65). The only terms of [9,,Q%] which remain to be controlled

are of the form p or pd,. Using (17.13.30), we may as well replace pd, by 0p.
Now note that

608p60a1 = 8peoeoa1 + ep [8,), Q%] epepan. (171369)

Using the fact that e € S=2/3! and the form of QY, we get [3p, Q%] epep €
S~1/3*. By recursion, we find that the contribution of (17.13.69) is also
compatible with (17.13.64). As to the terms of the form p, they can be
handled using (17.13.30). The proof of Proposition 17.13.4 is complete. [
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Now we establish (17.12.9). As we saw in (17.13.1), the symbol of ¢ Ey is
just ¥eg. Then (17.12.9) follows from Lemma 17.8.4 and Proposition 17.13.4.
This completes the proof of Theorem 17.12.1. O

17.14 AN EXTENSION OF THE PARAMETRIX TO A eV

Finally, we investigate the holomorphic extension of the resolvent Sj x to
A € V, where V is defined in (17.7.1). Recall that in Theorem 17.7.2, we
showed that the resolvent S » extends to A € V and verifies corresponding
uniform estimates. Now we will extend the results we obtained using the
construction of the parametrix to such A. Recall that V depends on A\; >
0,co > 0.

Theorem 17.14.1. There exist A1 €]0,1/2[,co > 0, such that Sy » extends
as a holomorphic function of A € V, and Theorems 17.9.1, 17.9.4, 17.10.1,
and 17.12.1 as well as Lemma 17.13.2 and Proposition 17.18.4 still hold.

Proof. We use the notation A = p+ v as in equation (17.7.1). As we already
observed in the proof of Theorem 17.7.2, in the given range of parameters,
the norms || [|, .. , and |/ [, .., are equivalent. Using Theorem 17.7.2, and
following the same strategy as we did before, the only point to verify is that
Theorem 17.9.1 extends to A € V. Thus we must show that if (Q?L — )\) u=v,
the estimates in (17.9.7) still hold. Note that

(Q) — p)u=1v+ru. (17.14.1)

By (17.14.1), we get the inequalities (17.9.7) in Theorem 17.9.1 in which A
is replaced by p and v is replaced by v 4 vu.
Moreover, for x > 0,
[

T+ 2576

> C /", (17.14.2)

so that when ¢g €]0, 1],

2/3
1
<p>2+<<|/;>> <p>zc<u>4/”zc<A>1/6. (17.14.3)

Using the form of the inequalities (17.9.7) which was described before and
(17.14.3), we get

A N< p > ull e < Call<p >* (v+vu)| e - (17.14.4)

Now recall that if A € V, then |v| < ¢q | u\l/ % The constants C, are uniformly
bounded as long as a varies in a compact set of R. From (17.14.4), we find
that when a varies in such a compact domain, we can choose ¢ €]0, 1] small
enough so that

l<p>®vul|,. <Cl<p>Tv|,-. (17.14.5)
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From (17.14.5), we get the inequalities in (17.9.7) when a remains bounded.
However, by proceeding as in the proof of Theorem 17.9.1, we find that once
our inequalities have been established bounded a, b, they extend to arbitrary
a,b.

The proof of Theorem 17.14.1 is complete. O

17.15 PSEUDODIFFERENTIAL ESTIMATES FOR P, Sy, )it

We still use the embedding of L% into H® which was described at the be-
ginning of section 17.12. Other spaces of distributions are embedded as well.

Recall that OX = (dX + dX*)2 is the Hodge Laplacian, which acts on Dx
and on D.

Definition 17.15.1. If se R,A € C,u € H%, set

lullxo = || (1+0%) "4l

)
2
LX

s/2
ol ez s = || (14 N+ 8%)

, (17.15.1)

L%

s/2
ull s pas = | (L AR+ 120%) 7w

L%

By comparing (17.4.3) and (17.15.1), one finds easily that given s € R,
the norms ||ul| v, , , and [Ju], . , are uniformly equivalent, the constants
in the equivalenéeyﬂot dependiﬁg on h, .

Recall that Ws was defined in (16.4.1). Namely,

Ws = {A € C,Re\ < 0y + 41 \Im)\\52}. (17.15.2)

Moreover, V was defined in (17.7.1) and depends on A\; > 0, ¢y > 0. We claim
that when taking 50 = )\1, 51 = Co, 52 = 1/6, then

Ws C V. (17.15.3)
Indeed if A =a + b, A € Wy, if a < Ay, then A € V. If a > A1, then
A=A F+ib+a— A, (17154)

and moreover 0 < a— A\ <7 \b|1/6, so that again A € V.

To simplify the exposition, many statements will only be given in the +
case. However, the corresponding statement in the — case will be obtained
simply by replacing F' by F ® o (T X).

We fix temporarily § = (do, d1,d2). The precise value of ¢ will be deter-
mined later.

Take 29 € X. Let U C X be a small open neighborhood of z(, and
let x',...,2" be a coordinate system on U. Consider a trivialization of
A (T*X)®F on U. In the + case, a symbol a(z,&,h,\) of degree d is a
smooth function of (z,&) with values in End (A (T*X) A (TX)@F) ,

Zo

which is holomorphic in the parameter A € W; and also depends on h €
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10, ho], such that for any c«,(, there exists Cq3 > 0 such that for x €
R™, h €]0, ho], A € W,

0207 a(x,&, 1, \)| < Cap (1+ |2+ |g|)drL/3lel=2/3181 (17.15.5)

We denote by Séd’h the set of symbols of degree d. Note that Séd’h is simply
a semiclassical version of the Hérmander class Sg/&l /3 defined in [Hor85,

section 18.1].

A smoothing operator on X is a family of operators B(h,\), depending
holomorphically on A € Ws, and also depending on h €]0, ho], such that if
se R,t € R, N € N, there exists C, n > 0 such that if u € Dx,

IB(h, MNtll x pxs < Cotn BV [llx pns - (17.15.6)

Note in particular that because N is arbitrary in (17.15.6), if B (h,A) is
smoothing, it is also a uniformly regularizing family of operators in the
classical sense, which converges to 0 as h — 0.

In the above coordinate system, if u is a smooth section of A" (T*X) ®F
with support included in U, let @ (§) denote its Fourier transform. We quan-
tify a symbol @ into an operator A = Op(a) by the usual formula

Az, hDy, b \) u(z) :(Qﬂh)‘"/ H @O o €, b )i (%) de. (17.15.7)

Let Eg’ , be the associated set of pseudodifferential operators of degree d on

X.If AcEf,, if K C X is a small compact set, if ¢ () is a cutoff function
with support in a small neighborhood of K, there is a cutoff function ¢’
equal to 1 near the support of ¢, a symbol a € Sg) ,, and a smoothing operator
B (h, A\) such that in the given local coordinates and trivializations,

Ap = ¢'Op(a)p + B(h, \). (17.15.8)
For A € ]Eg’ n» we denote by o4(A) the semiclassical principal symbol of A.

Namely, if A = Op(a), 04(A) is the class of a in the quotient space ngh/thvh.

If £ € EéhvEd’ € ]Eéh’ then EqFEy € ]Eéh R (EdEd/) = O’(Ed)O'(Ed/).
Moreover, if By = Op(a ) Ey = Op( "), then

[Eq, E¢/] — Op([a, d'] + = {a d'}y) e n2ELTE T, (17.15.9)

Operators in IE5 , act as a family of uniformly bounded operators on L% .

We will denote by 85 n,o and ]E5 n,o the classes of symbols and correspond-
ing operators, where the estimates in (17.15.5) are replaced by the stronger
estimates

9207 a(w,€, h,\)| < Cap (1+ A + €)1 (17.15.10)

An operator A € E5 , is said to be elliptic if there exist hy €]0, ho| and
C > 0 such that if h €]0,h], A € Wj such that

loa(A)(z, & h,A)| > C (1+|A| + <) (17.15.11)
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If Ae Eéd’h is elliptic, then for hy small enough, there exist B € Eg;‘f such
that AB=1,BA=1.
Recall that eg p x (,£) was defined in Definition 17.9.3 as the inverse of

Q?L (.’E, 5) - A
Definition 17.15.2. For A\ e R,A < lor A ¢ R, let eg’/\ (z, &) be the inverse
of QY (x,&) — A. In the sequel, we will often use the notation e instead of
€ a-

We have the obvious

€.\ = €00\ (17.15.12)

Therefore the estimates which were proved for eg are also valid for €.

In the sequel we will often write ef instead of e .

Observe that Py S yi+ maps Dy into itself. Note that aJ (£) was defined
in (16.5.1). An explicit formula for aJ (¢) was given in (16.5.11). In particular
a (&) depends only on [£].

Theorem 17.15.3. There exists &' = (8,01, 04) with &, €]0,1[,6] > 0,65 =
1/6 such that Py Sp i+ € Eé_,’lh. Moreover, this operator is elliptic, and its
principal symbol is given by

o1 (P£Spaix) = al. (17.15.13)
Given a,b,c,d € R, then
PrOgp" Sy ap°0fiz € By, (17.15.14)

Proof. We take 6’ = ¢, with ¢ as in (17.15.3). By Lemma 17.6.4, by Theorem
17.7.2, and by (17.15.3), our problem is local on X. As in the proof of The-
orem 17.12.1, we will work in a small open neighborhood U of a given point
o € X, and we use the corresponding coordinate system and trivialization.

Let K be a compact subset of U, and let ¢, ¢' € C§°(U) be cutoff functions
with ¢ equal to 1 near K and ¢’ equal to 1 near the support of p. By
equation (17.10.1) in Theorem 17.10.1, by Theorem 17.14.1, and by (17.15.3),
if A e Wy,

¢ PySpairou = Z WPy EoElivpu+hMyp' PyS, \EMiyou.
0<j<M
(17.15.15)
Moreover, by (17.10.2) in Theorem 17.10.1 and by proceeding as in the proof
of Lemma 17.8.4, if L € N, we get

E/Pip e i3k, EoEIPLp e P~2/373/3-L, (17.15.16)

Note here that the fact that Py appears in (17.15.16) overcomes the fact
that the P%* do not form an algebra under composition.
We claim that

@' PLSp xizp € ¢' Py Egizp + BEY,. (17.15.17)
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In fact by using Theorems 17.6.3 and 17.7.2, Lemma 17.8.4, Theorem 17.10.1,
and the considerations we made after (17.15.1), we get

¢’ PeSuaBtlizoull g, 3 1 apnrys < Cns lullx - (17.15.18)
Since (17.15.15) and (17.15.18) are valid for any M € N, it is a classical
result that ¢’ PrSy iz € Eg',. By (17.15.15), we obtain (17.15.17).

We already know that ¢ Py Fpire € IEg,)lh. By (17.15.17), to establish our
theorem, we only need to prove that this is an elliptic operator on K, whose
principal symbol is given by (17.15.13).

Set

@ (,6) = 3 (@1~ Qo) (+.6). (17.15.19)
By (17.9.2), (17.9.3),
Q) = Q0 + hQx. (17.15.20)

Moreover, Qp, is a differential operator of degree 1 along the fibers 7% X,
whose coefficients are polynomials of degree at most 2 in p.
Clearly,

eo = ey — heoQy, €. (17.15.21)

By equation (17.13.29) in Lemma 17.13.2, [Bp,eg] € S~/31 Using the
considerations we made on Qp, we find that for any L € N, QnedPy €
§1/3=L_ Then the same arguments show that for any L € N,

PiegQpegiy € S™H7E (17.15.22)

Let E) € P~2/3! be associated to €J as in (17.8.26). By (17.15.21),
(17.15.22), and replacing the symbols by the corresponding operators, we
get

@PyEgi+p € pPrEgiso + hEyg',. (17.15.23)

To establish the first part of our theorem, what remains to prove is that
Pieli is an elliptic symbol of degree —1. By using the notation of sections
16.1 and 16.4, and comparing equations (15.1.3) and (17.9.2) with (16.2.1),
we get in the + case,

)= (B (i (o7%) " ¢) + P+ NV =2) (17.15.24)

In the — case, NV should be replaced by n — NV, P, by P_, and & by —£.
Now observe that ker ay is concentrated in vertical degree 0 and ker a_ in
vertical degree n. Moreover, the operator B (i) is scalar, so that it does not
change the vertical degree. Recall that the operator P was defined in section
16.5. By (17.15.24), we obtain

PPy =P (B (ii&m (7))~ g) +P- A)71 P (17.15.25)

By (16.5.1), and taking into account the fact that af is a radial function of
&, we get

PredPy = al (595 (g7%) e, )\) . (17.15.26)
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Now we can use Proposition 16.5.1 to control the derivatives in the £ variable
of the right-hand side of (17.15.26), and we obtain the estimates in (17.15.10).
Incidentally note that since we take do = 1 in Theorem 16.4.1, the domain in
which these final estimates are valid is bigger than our Wjs.. The derivatives
in the variable x are also easy to control by using Proposition 16.5.1 and
by (17.15.24). Finally, since a is a globally defined symbol, we may as well
evaluate (17.15.26) at © = ¢, so that we get equation (17.15.13). This
completes the proof of the first part of our theorem.

To establish the second part of our theorem, note that Piagpbsh,wcagii
is a linear combination of operators of the form PipCSh)Apclii. Using the
same arguments as above, we see that to establish the second part of our
theorem, we must show that Pyp®edp©i is a symbol of degree —1. Of course
we can instead replace the p* by corresponding Hermite polynomials. Then
we use Proposition 16.5.1 for the a and (17.15.24) to complete the proof of
our theorem. |

17.16 THE OPERATOR ©y, )

In the sequel, if an operator acts on ker at, we extend it to an operator acting
on H by making it act like the 0 map on ker a+. Recall that P =1 — Py.

Definition 17.16.1. Set
Onx = Pi (P, —\) PE. (17.16.1)
Then O, acts on ker af.

Recall that the orthogonal projection operator P was defined in section
16.5 and that P+ =1 — P.

Theorem 17.16.2. There exists &' = (8, 01, 04) with &, €]0,1[,6; > 0,65 =
1/6, such that for hg > 0 small enough and h €]0, ho], A € W, the operator
On.x is one to one from ker at into itself. Moreover, we have the identity of
operators acting on H,

@;3 = Sk — Sha (Pish’,\ii)il Shoa- (17.16.2)
If a,b,c,d € R, then
Pip*dbPrO, \PLpdlis € By, . (17.16.3)
Moreover,
— c - a - -1 ¢ -
o_1 (PipaﬁzPiL@hi\Pip @‘fzi) = Pp 3;; (PL (B(i&) — ) PL) P Bgzi.
(17.16.4)

Proof. By Theorems 17.6.1 and 17.7.2 and by choosing ' = ¢ as in (17.15.3),
the operator P}? — A is invertible with inverse Sy . By Theorem 17.15.3, for
h small enough and A € Wj, the operator Py Sp zi+ acts as an invertible
operator on ker ay. Equation (17.16.2) now follows from (17.1.4).
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By Theorem 17.15.3, P+ Sk ri+ € Sé_,’lh. Therefore for h small enough,
(PSpix) " € E}, . Using (17.16.2), we find that to establish (17.16.3),
we only need to show that the operators

PipaafiPiSh,xii, PiSh,APipcagii, Pip“B;‘,PiSh,APipca;fii
(17.16.5)
lie in Ey',. Since P{+ = 1 — Py, this is a consequence of Theorem 17.15.3.

By equation (17.10.1) for Sh,x in Theorem 17.10.1 and by (17.16.2), we
get

Pyp®d)PLO; \ PLp 0fi
= Pypdb Pt (Eo — By (PLEyis) " Eo) Ppeotis mod hE;Y,.  (17.16.6)

By Theorem 17.10.1, eq is the principal symbol of Ey, and by Theorem
17.15.3, Pyediy is the principal symbol of PySii. To find the principal
symbol of the operator in the left-hand side of (17.16.6), we only need to
evaluate

a .o\ 1 cad-
Pip 3;;Pi‘ (eo —eo (Piegzi) eo) Pi‘p @‘fzi. (17.16.7)

Now we use the notation in (17.15.19), the identity (17.15.21) By the above,
we find that the principal symbol of the operator in (17.16.3) is given by

N cod;
PipaagPi‘ <68 — e (Prediy) eg) Pip 3gzi. (17.16.8)

Equation (17.1.4) shows that (17.16.8) is just the right-hand side of (17.16.4)
with B (i€) replaced by B (i€) + P. Since Q) = Qo + P+, we may indeed
replace QY by Qo. The proof of our theorem is completed. O

Theorem 17.16.3. For s € R, there exists Cs > 0 such that for h €
10, hol, A € Wsr,u € H,

—1
|03

For s € R, there exists Cs > 0 such that if h €]0,ho]l,\ € Ws/, if u €
keray NH?, v € H?,

< . 17.16.9
Asc,s4+1/4 — ||uH)\,sc,s ( )

—1
|emsntonl, o< Cllullyaes. (17.16.10)

< CS ||U||>\,sc,s :

|n126; %] <
’ A,sc,5—1/6

Proof. By Theorem 17.15.3, for h small enough, Py Sh i+ € Eg,}h is in-
vertible, and so (PiSpaix) ' € IE%,JL. By equation (17.16.2) in Theorem
17.16.2, we can express @gi\ in terms of Sp, .

First we establish (17.16.9). Indeed by Theorems 17.6.3 and 17.7.2,

||AS’h,,\u\|/\7SC75+1/4 < Cs [|ully ge.s - (17.16.11)



THE LIMIT OF 72, ASb— 0 325
Moreover, by Theorems 17.12.1, 17.14.1, and 17.15.3, we obtain

HSh,A (P Shiz) ™" Sh,wH < Cllullyse,s - (17.16.12)

A,sc,84+2/3

By (17.16.2), (17.16.11), (17.16.12) we get (17.16.9).
Now we establish the second equation in (17.16.10). By (17.2.8),

hLy©; \ = Ps (hB+ + h*y+) PO, ). (17.16.13)
Also we have the trivial
Py (ax + Py —\) P+ =0. (17.16.14)
By (17.2.3), (17.6.1), (17.16.13), (17.16.14), we obtain
hL20; ) = Px (P —)) 0, (17.16.15)

We write @;’f\ in terms of Sp, » as in (17.16.2) and we use (17.6.10) and
(17.16.15). We obtain

hLy©) )\ = P — Py (P:Spxiz) ™" Sha. (17.16.16)

Using again Theorems 17.12.1, 17.14.1, and 17.15.3, we get

H (PsSpniz) " Sh,)ﬂf’

< Cs [0l ses - 17.16.17
A\,sc,5—1/6 ||UH/\,5C,3 ( )

The second inequality in (17.16.10) follows from equation (17.5.1) in Lemma
17.5.1, from (17.16.16), and from (17.16.17). The first inequality in (17.16.10)
can be established by the same method. The proof of our theorem is com-
pleted. O

Remark 17.16.4. The inequalities in (17.16.12) can be established in a dif-
ferent way, in which (17.16.14), (17.16.15) are not used. By (15.1.3) and
(17.16.2), the only possible difficulty comes from

PihVQLT*T*X)@F’uSh,A (PiSh,Aii)_l Shau.
Clearly
PihV/;éT*T*X@F’uSh,A (PiSpxis) " Shau
— YA TTXOEFup, .5, Py (PeSpaie) " Spau. (17.16.18)
By Theorem 17.15.3,
PipiSu Py (PLSpxiz) 't €Y . (17.16.19)

By (17.16.18) and (17.16.19), we get the second inequality in (17.16.10). We
can prove the first inequality along the same lines.
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17.17 THE OPERATOR Ty,

By [B05, eq. (3.67)],

Pivy P, = —i (R™™X (ei,€;) ex, 1) €'e7ic, e,
+ % (<SXei,ej> — Vfiw (VF,gF) (e5)) eiiej. (17.17.1)

By proceeding as in [B05], P_~y_ P_ is obtained from the right-hand side of
(17.17.1) by adding the term V. w (VF, %) (e;).

Definition 17.17.1. For h €]0, ho], A € Wy, set

Thn = Pev+ Py — Py (B+ 4+ hy2) O, 5 (B+ + hys) Pe. (17.17.2)

With the notation in (17.2.8), we get
Thn=L1— Lo (Ly —\) " Lg. (17.17.3)
The operator T}, » acts on Dx. Let T,’:’/\ denote the formal adjoint of T}, ».

Theorem 17.17.2. The following identity holds:
Ty y =T, (17.17.4)

Proof. As we saw after (2.1.25), by [B05, Theorem 2.30], the operator 2j, ;.
is self-adjoint with respect to the Hermitian form A (7" X7 F) defined in
(2.1.24). By (15.1.2)-(15.1.4), it follows that the operators o, fB+,v+ are
self-adjoint with respect to h® (7" X7 F) By (17.2.3) or (17.2.4), P, is also
RS (T X7 F) gelf-adjoint. Also observe that ker a4 is r*-invariant. More pre-
cisely, r* acts like the identity on keray for ¢ > 0 or when ¢ < 0 and n is
even, and like —1 for ¢ < 0 and n is odd.

If C'is an operator, we denote by CT its hf (
we get

"X, F) adjoint. By the above

0], =6, (17.17.5)
By (17.17.2), (17.17.5), we obtain
Tf =T, 5. (17.17.6)

QT X" F) and h (T"X7"F) are proportional,

Q(T*X,x* F)

When restricted to kera., g
the constant of proportionality being +1. Also the restriction of g
to ker ax ~ Dx is just the L? Hermitian product of Dx. Since T},  acts on
ker oy, (17.17.4) and (17.17.6) are equivalent. The proof of our theorem is
completed. O
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Definition 17.17.3. For h € [0, ko], A € Wi, set
Apx = PipO; \pis,

1
By = £P:pO; <§w (VE,9") (e:) Vi — h7i> it (17.17.7)
1 .
Bj, , = +Ps <§w (VE,9") (e;) Vo — hvi> 0, \pix,
1 _
Cpy=—P1 <§w (VF,g") (e;) Vo — hWi) ®h,1>\

1
<§w (VF,9") (e:) Var — h%) Q4.
By Theorem 17.16.2, for h €]0, ho], A\ € Wy, Oy » is indeed well-defined.
Including h = 0 in the definition is harmless.

Let w1, 72 be the first and second projections of T*X x T*X on X, or
from X x X on X. By Lemma 17.8.4 and by Theorem 17.16.2, @;’{\ is an
operator on sections of 7* (A" (I X) ®A" (TX)®F) over the total space of
T*X. The kernel @;{\ (+,+) is a distribution on T*X x T*X with values in

i (M (T*X) @A (TX)®F) &3 (A (T*X)®A (TX)BF).

Recall that we identified TX and T*X by the metric g?X. By Theorem
(17.16.2), we find that Ay, » is a distribution on X x X.

In the sequel, we use the notation A* to denote the adjoint of an operator
A acting on Q (X, F) oron Q' (X, F ® o (T X)) with respect to the standard

L? Hermitian product.

Given a smooth section Y of T'X over X, one associates the operator
vy 0O Tt s such that vy (7S = g OB giy (v),

In the + case, the operator VA (T"X)@Fuxp  gA (T X)&Fu j5 5 well de-
fined pseudodifferential operator. A more explicit expression for this opera-
tor can be obtained as follows. Take xg,y9 € X. Let e1,..., e, be smooth
orthonormal basis of TX near xg, let €),...,e), be a smooth orthonormal
basis of T'X near yo. We denote with a superscript the corresponding dual
bases. The distribution kernel for VA (T"X)@Fux p  gA(T"X)&Fu pear 24 o
is given by

A (T*X)@F,u*A+VA' (T*X)®F,u

_ A (T*X)RF,ux i\ o—1 j A (T*X)QF,u
=vA Py (p,e") O\ (p,¢?) PV, . (17178)
Similar formulas also hold in the — case.

We will use the notation in sections 16.1 and 16.4. In particular 1 denotes
the canonical generator of ker A/, P is the orthogonal projection on ker NV,
and P =1 — P. Also recall that Sg was defined in section 16.5.
Theorem 17.17.4. We have

AnBha, B\, Crx € Byl (17.17.9)

* _ _ * _ ! * _ _
ror = Ay 3 By =B, % o =Chx
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Moreover,
Thox = VA'(T*X)@F,u*Ah))\vA'(T*X)@F,u + vA'(T*X)@F,u*Bh’/\
— B, VN8R L Py Pt Cye (17.17.10)
The principal symbol a (€, \) of Ap x is such that if ( € T*X,

—1

(06,0 = 5 {(PH (B (6 - ) P*) 0" () La” (O)1)
:

(o= 1) (18 VRN 16+ 5 (5 =) (19/V2.8) .0
(17.17.11)

N =

Moreover,
(ag,&) — X = <(B (i€) — N1, 1>71 = J;! (\§| V2, A) . (17.17.12)
_lgP
(ag,€) = 57 (Il /V2.).

Finally,
1
Too = §DX. (17.17.13)

Proof. The inclusions in (17.17.9) follow from (17.16.3) in Theorem 17.16.2.
The same arguments as in the proof of Theorem 17.17.2 lead immediately to
the identities in (17.17.9). Note in particular that the fact that p is an odd
function explains the minus sign in the identity By \ = _B;,X'

We claim that (17.17.10) follows from (15.1.3) and from (17.17.2). The
main point is to explain the contribution of VQ}STXKT*X)@F’” to the right-
hand side of (17.17.10). If ey,..., e, is a locally defined orthonormal basis

of TX, then
vQ’}(‘T"T"X)(@F,u _ <p’ ei> vé(T*T*X)@F,u' (171714)

Since Y is divergence free,

PAT 0B e _ _GA (T T X)8F (17.17.15)
From (17.17.14), (17.17.15), we get
vé‘;{T*T*X)@F,u _ _vé\i- (T*T* X)BF u* <p, ei>. (17.17.16)

Using (17.17.14), (17.17.16), we get (17.17.10).
By equation (17.16.4) in Theorem 17.16.2, we get
) -1
(a¢,¢) = P(p,Q) (PH(B(i&) =N PY)  (p,Q) P. (17.17.17)

Using (16.1.5) and (17.17.17), we get the first equality in (17.17.11).
Set

S =(B(i&)—N"". (17.17.18)
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By (17.1.4), we get
(P-(B(i&) -\ PH) ' =6 - (P&P)' 6. (17.17.19)
Using (16.4.66), the first identity in (17.17.11), and (17.17.19), we get
easily
1/, 1
e =5 (w166 - 5
By (16.4.67)-(16.4.69), we get
vl =0 (Ig1/V2.A),
uf = (16l /V2,0) i€/ V2, (17.17.21)

vh =71 (16l /V2A) i6 )V,

w?wécicj) : (17.17.20)

v = o= 1) (161v2.2) 8, — 57 (161 V2. 2) 665

By (17.17.20), (17.17.21), we obtain the second part of (17.17.11).
By (17.17.11), we get

(06,6) = 5 {a () (P* (B (i&) ~ ) P*)

Comparing (17.17.22) with (16.5.12), we get

(ag, &) = Te . (17.17.23)

The first line in (17.17.12) follows from (16.3.14), from equation (16.5.13) in

Proposition 16.5.4, and from (17.17.23). The second line in (17.17.12) also
follows from (17.17.23) and (16.5.13).

By the result in [B05, Theorem 3.14], which was stated in Theorem 2.3.2,
we get (17.17.13). The proof of our theorem is completed. O

Lt (o)1, 1> . (17.17.22)

Remark 17.17.5. More generally, one can give an explicit formula for Ty »
which extends (17.17.13). Indeed P14 Py was evaluated in (17.17.1). More-
over, inspection of the proof of [B05, Theorem 3.14] shows that with respect
to 1,0, the contribution of the second term in the right-hand side of (17.17.2)
will be simply scaled by 1 — A. So we get

1 1
Tox = T (—)\Pi’YiPi + EDX> . (17.17.24)

17.18 THE OPERATOR (J1/Jo) (hD¥*/v/2,))

We take § = (0o, 01, 02) as in Theorem 16.4.1.
By Theorem 17.9.5, given y € R, the poles of Jy (y, -) are simple and given
by y? + N. Moreover, by (16.4.4) and (16.4.5) in Theorem 17.9.5, we get

08 Jo (g, )] < Cr (L + [yl + D TF7, (1)) € Rx W, [y| + A > 1,
(17.18.1)

[Jo (N < CA+yl+ A, (5,2) € R x Ws.
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Recall that the class of symbols S¢ was defined in section 16.5. By (17.18.1),
;' €St and by (16.5.15), j—; € S;'. Note if y? < &, y? is a pole of Jo (y, \)
in W;. Therefore, we will not write that Jo € S5*
By (1.2.2),
DX =adX +a%~. (17.18.2)

By the above, if h €]0, 1], A € W;/h*\SpO* /2, Jo (hD* /v/2, h?X) is a pseu-
dodifferential operator of order —1, and this operator is invertible. Moreover,

Jo (hD¥ V5, h2A)* = Jo (hD* V2, 1°%) . (17.18.3)

Also note that by (16.3.16) or (16.4.3), we may as well replace DX by vVOX.

Now we fix h €]0, 1. Tt A € Wy/h2, (h2Jo) "' (hDX /V/2, h2)) is a pseudod-
ifferential operator of order 1, and ‘]1 ( hDX //2,h?]) is a pseudodifferential
operator of order —1. By (16 4.63), 1f A€ Ws,

_ ox
(h21) " (hDX/\/§, th) A= ( DX /v/2, k2 ) (17.18.4)
2 J
Also since J ES(S , J (hDX/\/_ )\) €E5h0
In the next proposition, we consider the operators B (i€) in the case where
n=1.

Proposition 17.18.1. If h €]0,1], A € W,
J _
= (hDX/\/i, /\) = Pa(1) (P (B (ihD¥) = ) PY) 'a* (1) P. (17.18.5)
0
Moreover,
J1 x J1
o_ <J (hD¥ /2, A)) T (1g1/v2.2) (17.18.6)
Proof. By (16.5.12), (16.5.13),
J1 o 1 . 1 -1 *
.2 = Pa(1) (P (B <Z\/§y) )\)P ) ()P, (17.18.7)
By (17.18.7), we get (17.18.5).
First we consider the + case. To evaluate the principal symbol of the
operator in (17.18.5), we take a coordinate system on an open neighborhood

U of g € X as in section 17.8 and we use the corresponding notation. In

particular A" (T*X)&F is trivialized as indicated there. Let T'A' (T X)®Fu
be the connection form for VA (7" X)®Fu iy this trivialization. Let e1, . .., en
be an orthonormal basis of T,,X. By (1.2.11), in the above trivialization,
DX can be written in the form
n
DX =) "c(e) (Vgglei LA (T X)E R (&;1&'))
1

——Z e w (VF,gF) (5 %) . (17.18.8)
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By (17.18.8), we find that DX is a first order differential operator whose
principal symbol o (DX ) is given by
o (DY) =ic(0;'¢). (17.18.9)

The semiclassical symbol h®X of hDX is obtained from the right-hand
side of (17.18.8) by multiplication by h and by replacing 9,; by i{;/h. The
semiclassical symbol of 2+ (hDX /v/2, \) is then just 4+ (h®X, ). Tt follows
from the above that

o1 (j—; (hDX/\/i, A)) - j—; (ihc (03€) /V2, A) . (17.18.10)

Also 2% (y, ) is a function of y2. Moreover, since o, : Ty X — T;X is an

Jo
isometry,
¢ (io;1€)" = [¢[2. (17.18.11)
By (17.18.10), (17.18.11), we get (17.18.6). The proof of our proposition is
completed. 0

17.19 THE OPERATOR Uy ,
If h €]0, ho], h?X € W, using (17.18.4), we get

X
Thoer — A = (h2p) " (hDX/ﬂ, h2>\) b Tppen— = (hDX/\/i hZ)\) .

2 Jy
(17.19.1)
If A € Ws \ h2Sp% /2, as we saw before, for a given h > 0, the operator
h?Jy (hDX /v/2,A) is a well-defined pseudodifferential operator of order —1.
Set

DX
Upx = h2Jo (hDX/\/i A) Tpy— ot (hDX/\/i, )\) . (17.19.2)
5 3 2 JO

We can then rewrite (17.19.1) in the form
Tpper — A = (h2Jy) " (hDX/\/§, h2>\) (14 Uy - (17.19.3)

We will use the notation in (16.4.41) with respect to S = Sp[¥/2. In
particular the function p (A) is defined as in (16.4.41).

Theorem 17.19.1. There exists &' = (8,07, 05), with &, €]0,1[, 6] > 0,65 =
1/6 and there exists C > 0 such that for h €]0,ho],\ € Ws//h?%, if u €
Q (X, F), then

|Unpzaul| . < Chp () [|ul|.2 - (17.19.4)

Proof. We may and we will assume that ||ul| . = 1. Set

DX
Vir = Thr— o1 (hDX/\/E, A) . (17.19.5)
’ ) 2 JO
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We use Theorem 17.17.4, particularly equations (17.17.12) and (17.17.13),
and also equation (17.18.6) in Proposition 17.18.1. We find in particular that
for h €]0, ho], the operator V}, 5,2, is a pseudodifferential operator of order 1.

We consider the first term in the right-hand side of (17.17.10). First, as we
explained after (17.15.6), the contribution of a semiclassical smoothing oper-
ator in Ay, 2 will be uniformly smoothing, and its corresponding norm will
decay faster as h — 0 than any h"Y, N € N. Moreover, since A € IE}:)}S,,
when replacing A, 52 by the operator associated to the semiclassical prin-
cipal symbol a (&, A) of Ap x, this introduces at the level of operators an
error whose classical symbol can be dominated by Ch/ (14 h[é|+ h? [)]).
Using the bound (16.4.45) in Proposition 16.4.2, we find that when estimat-
ing (17.19.4), this replacement introduces an error which can be dominated
at the level of symbols by

2
Cp()\)1+h |>\|+h2|§\ i h
T+ N+ > T+R2A[+ ]
which is compatible with (17.19.4).

We will then replace A, 2y by a (h€, h2X), which we identify to the corre-
sponding operator as in (17.15.7). In what follows, it should be clear that in
the local coordinates centered at xg, 0,5 = i€;,1 < j < n. Using the notation
in Theorem 17.17.4, the operator to be considered is

A (T 08 uxg (pe p2)) YA (TT X)8Fu (17.19.7)
Equation (17.19.7) is an expression for the composition of several operators.
A priori we cannot commute VA (T X)8Fux with q (hf,hz)\). Now we ex-
plain how to handle such commutations. Incidentally observe that although
the expression (17.19.7) seems to be coordinate-invariant, the underlying
operator is not.

We use equation (17.17.11) for the semiclassical principal symbol a (£, A)
of Ap x. By (16.4.62), the functional equation (16.4.39) for Jy extends to the
equation

(1 + \§|2) < Chp()), (17.19.6)

(Jo=1) (1, A) = Jo (y, A = 1). (17.19.8)
By Theorem 16.4.1, Jo (y,A — 1) € S5'. From (17.19.8), we find that Jy —
J1 € S(S_l.

By (16.4.63) with £ =0 and k = 1, we get
J? 1 (4
a = (= - . 17.19.
(Jo JQ) y2 (Jo Jo+ J1 ( 7 99)

Moreover, j—; —Jo+ J1 € Sé_l.

We will now use the above considerations to write (17.19.7) in a more
explicit form. Namely, we will push the operators & to the very left of the
considered expression. Incidentally note that a (A, h?X) is normally ordered,
that is, the operators £ should be thought of as being to the right of whatever
function of x appears. Using (17.17.11), we find that a first contribution to
(17.19.7) is given by

1

—EVMT*X)@F%* (Jo — J1) (h €] /V/2, m) YA (TTTX)8Fu - (17.19.10)
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n (17.19.10), there is an implicit trace which is taken via the metric g7~
Now using standard pseudodifferential calculus, we find that if K € Sgl,
then

[ T 0BF e (R1g] V2 R2N) | = b (1 B2 A+ hlel) 7 (1+[gl)
(17.19.11)
The sign ~ means here that at the level of symbols, the operator in the right-
hand side is of the order of the right-hand side. Note that the first term in
the right-hand side of (17.19.11) appears because of differentiation in the £
variable of K (|¢] /v/2,h%)), the other two terms appearing because of the
Lie bracket. Ultimately the contribution of the commutator to (17.19.4) can
be dominated as in (17.19.6), that is, it is compatible with the estimate we
want to prove. Therefore we can replace the expression in (17.19.10) by

—% (Jo —J1) (h €| /V/2, th) A, (17.19.12)

Using (17.19.9), we find that the contribution of the second term in the
right-hand side of (17.19.7) is given by

1 (T* X)RF,u,* u
Sy (e (% —Jo+ J1> (n1el /v2.020) L gh@T08r

) €I
(17.19.13)
n (17.19.13), ¢* is dual to ¢ by the metric g7X. The expression involving

the ¢ is again normally ordered. Besides, in VA (T* X)@Fyu,s , & should be

understood as being to the right of VA (7" X)®F“ *, while in VA o X)®Fu,

it is to the left of VA (T"X)®Fu,
Take again K € Sgl. By using the same notation as in (17.19.11), we find
that if K € S;*,

(VT8 i (el V2 02N) ] 2 b (L4 02 A+ R 1g) T (14 1)
(17.19.14)
Still using the bound (16.4.45), we find that the contribution of the commu-
tator (17.19.14) to the estimation of (17.19.4) can be dominated for |£] > 1
by

2

Cpy) LR R h(1+1€7)
L+ N J€* (1 h2 A+ Ale)? —
By (17.17.11) and by (17.19.10), (17.19.12), (17.19.13), (17.19.15), we get

Chp(A).  (17.19.15)

VA (T X)@Fux (e, h2)\) YA (T T X)@Fu
1
=3 (Jo—J1) (h €| /V2, h2)\) A
1/J AT X)EFw 1 A Y
t3 (J_1 —Jo+ J1> (h €1/v2, h2>\) Vs*(T eE VE*(T T"X)8F,

&2
(17.19.16)
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Since ﬁ € Sgl, by the same arguments as before, we find that

1J 1J
2J(1) (nD¥ V2, n2 )AHv" ~ 2L <h|§\/\/_ 2,h2\) Al (17.19.17)

By (17.19.16), (17.19.17), (17.19.9), we obtain
vA'(T*X)@F,u*a(hE h22) gA (T X)BFa 1.Jy ( DX /v/3, h2) )AH,u
’ 2 J

~ = (% —Jo+ J1> (h €] /V2, h2>\)

wk 1 (T*T*X)RF,u
(AH“ +va ™ X)BFux___ g (I"T"X08F, ) . (17.19.18)

s
Set
U* ]' u
A=At v X)BF, rE A/ XBF, (17.19.19)

We claim that A is a classical pseudodifferential operator of order 0. To
prove this, we necessarily have to use local coordinates. To do this, we will
just take X = R™. Let eq,...,e, be the canonical basis of R™. The metric
g7 is then given by g, which is an (n,n) self-adjoint matrix which depends
smoothly on . The corresponding matrix elements are denoted by g; ;,1 <
i,j < n. The matrix elements of the dual metric g7 X = g are denoted
g, 1<i,j<n.

Let I'7X be the connection form of the Levi-Civita connection V¥ with
respect to the trivialization TX ~ R", and let I'* (7" X) be the corresponding
connection form on A" (T*X). Given a trivialization of F, let T'¥** be the
connection form for V%, Let I be the corresponding connection form on
A (T*X) ®F. We denote by I';,1 < i < n the components of I'. Let n be

the 1-form
1
n= §d10g det g. (17.19.20)

We will now write the full symbol of the operator, so that in particular
& = —i0,s. Also we will use the notation * to indicate a product in the
algebra of pseudodifferential operators, as opposed to the pointwise product.

Clearly,

AP = (& —in; —iTy) % g7 % (& —iTy) . (17.19.21)
By definition,
VTSR (¢ — iy — D)) * (676) (17.19.22)
VATNIBEY i (g7g) « (¢ — iT).
Finally,
€” = gP1€,8,. (17.19.23)



THE LIMIT OF 72, ASb— 0 335

By (17.19.19), (17.19.21)-(17.19.23),

A= (6 —im — T (g7 + (g6) (576,6) ™ (a))
¥ (& —ily). (17.19.24)
Now observe that

(¢7'a) x & = g7'&g;. (17.19.25)
By (17.19.24), (17.19.25), we get

A= (i +T3)g"T; — (i +T3) (6%6) (9776:6) " (97'&) * T
+ig; * (99T5) — i+ (9%6) (9768 ™" (97'G) * Ty (17.19.26)
Now the operator in the first line of (17.19.26) is a classical pseudodifferential
operator of order 0. Let B be the operator in the second line of (17.19.26).
Then B is a pseudodifferential operator of order 1. Its classical principal
symbol is obtained by deleting the *. When doing this, we find that the
principal symbol of B vanishes. Therefore B is also a classical pseudodiffer-
ential operator of order 0.
We conclude from the above that A is indeed a classical pseudodifferential

operator of order 0.
By (16.4.39),

___ 1 v

= +
yv=A+1 y2—-x+1

By (17.19.27), we deduce that

JO (ya)‘_ 1)

Jo (Y, A —2). (17.19.27)

y2_>\ N y2
y2—A+1 y2-A+1

We claim that by taking d§j €]0, 1[, 87 > 0 small enough, there exists C' > 0
such that for A € W,

Jo(y,A—1)—1=— Jo(y,A—2).  (17.19.28)

[ = A+1=C(1+ A\ +y%). (17.19.29)
Set A\ =a+1ib,a,b € R. For a <0, (17.19.29) is trivial. For a > 0,
[P =A+1|>y* —a+1+]b. (17.19.30)

Moreover, for 0 < C' < 1,
Y —a+1+p-CA+y*+a+p))=1-C)(1+y*)+(1-C) |
(14 C)a>1-C+(1-0) b - (1+0) (5g+5;|b\”6). (17.19.31)

By taking §(,d71,C small enough, for any b € R, the right-hand side of
(17.19.31) is nonnegative. Therefore we have established (17.19.29).
Note that if A € Ws, then A — 1 € Ws. Using (16.4.40), if A € W,

oy, A=2)| <C A +yl+A)". (17.19.32)
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By (17.19.8), (17.19.28), (17.19.29) and (17.19.32), if A € Wj,
y> + A

T+ A +y?

By (16.4.45), (17.19.33), we find that if h €]0, ho),y? € S, h®\ € W/,

|]’L2J0 (]’Ly, h2)\) ((Jo - J1) (]’Ly, h2>\) - 1)|

L+ R A +hlyl , Y+ A )

T 407 T h2 o] £ 72y < Cp(A)h*. (17.19.34)
The estimate (17.19.34) indicates that in the right-hand side of (17.19.18),
we may as well replace J; — Jy by 1.

In the right-hand side of (17.19.18), we should then estimate the contri-
bution of g+ (A [¢] /v2,h*)) — 1.

By (16.4.40) and (17.19.8), if A € W,

|(Jo—J1) (y,A) =1 < C (17.19.33)

<Cp(A)

c
Ji—Jo) (4, A)| € ————. 17.19.35
By (17.19.35), we find that if y? € S, h2\ € W,
h?Jo (hy, h*X) (? (hy, h?X) — 1) < Ch*. (17.19.36)
0

The estimate (17.19.36) takes care of the difference j—(l) — 1 in the right-hand
side of (17.19.18).

Now we inspect the other terms in the right-hand side of (17.17.10). First
we replace B, 423, B%,h%\v Cp, p2x by their semiclassical principal symbol. In-
deed the same argument as before shows that the contribution of the differ-
ence to Uy, 25 can be dominated by Cp (X) hﬁ In the sequel, we will
also use without further mention the same commutation arguments as the

ones outlined after (17.19.7).
As we saw in equation (17.16.4) in Theorem 17.16.2, the semiclassical
symbols of By, », Blh,)n Cp,x are given by

Bea=£Pp (P (B(i6) - ) PY) ™ 20 (V7.67) (e) Var P,
E’m = iP%w (VF,9") (ei) Vi (P (B (i€) — \) Pi)‘lpP, (17.19.37)
Cen = —P%w (VE,9") (e:) Var (P (B (i€) — \) Jﬂ)‘1

%w (VF,gF) (e;) Va P.

Using the identity (17.17.11) in Theorem 17.17.4, we can rewrite (17.19.37)
in the form

_ 1

Bea = F5a (60w (V7,6"),

_ 1

By, = 506N w (V¥ 9"), (17.19.38)

Ten = 7 (86N w (V9,97 0 (V7))



THE LIMIT OF 72, ASb— 0 337

When F is of dimension 1, the interpretation of (17.19.38) is clear. In general
w (VF,g") is a section of T*X ® End (F). If e1,..., e, is an orthonormal
basis of T X, the interpretation of the last identity is that
— 1
Cen = 1 (a (& N)eiej)w (VF,gF) (e;)w (VF,gF) (e5). (17.19.39)
We already know §—(1) and Jo — Ji lie in S;'. By (17.17.11) and (17.19.9),
we conclude that for any ¢, (a (£,\) ¢, ¢) € Syt
We take a system of local coordinates on X and trivializations as we
did after (17.19.19). We identify a (hf,hz)\) to the corresponding classical
pseudodifferential operator. By the above, it follows that
e S h
[VA (I X)@ku g (hg,hZA)} ~ 3 5. (17.19.40)
(L+h2 A+ hE])
By proceeding as in (17.19.6), we find that (17.19.40) is irrelevant in our
estimates. _ _,
We also identify Bpe p2x, B 25 to the associated classical pseudodiffer-
ential operators. By (17.19.38)-(17.19.40), we get
vA'(T*X)@F,u*Eh&h%\ - E;L&h%\vA'(T*X)@F,u

= i% (a (&, h2X) eire) VT w (V5 7) (e5),  (17.19.41)

@h&;ﬂ)\ ~ <a (hf,hz)\) ei,ej> iw (VF,gF) (e;)w (VF,gF) (e5)-

Now recall that by (1.2.10), VlF]’uw (VF, gF) (V') is a symmetric tensor. Using
equation (17.17.11) in Theorem 17.17.4 and (17.19.41), we obtain

. — — Ry
vA (T X)®F)u*Bh§,h2)\ _ Bh&hz)\vA (T*"X)®F,u

=5 Co = 1) (hlEl V2N TE (V7 6") (e

+ % (j—; — Jo+ J1> (h €1 /2, h2>\) #Vf’“w (VF,9") (&), (17.19.42)
Chenzy = % (Jo —Jv) (h €1 /v2, h2)\) w (VFaQF) (e:)°

1 (] w (VF g% (©)
+3 (J_o — Jo+ J1> (h €] /V2, h2A) —

The same arguments as in (17.19.18)-(17.19.36) show that in (17.19.42),
we can replace J; — Jp and % by 1.

Using now equation (1.2.14) for 0%, equation (17.17.1) for Py~ P4, and
the considerations which follow, we finally get (17.19.4). The proof of our
theorem is completed. O

17.20 ESTIMATES ON THE RESOLVENT OF T}, y,2,

For r > 0,h > 0, set
Wet = {X € Wy /W%, r (ReA+1) < [ImA|}. (17.20.1)
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In the sequel we take 8’ as in Theorem 17.19.1.

Theorem 17.20.1. There exists C > 0 such that if h €]0,ho],A € C,\ €
Ws: /h? \ SpO¥X /2 are such that hp(\) < C, for any s € R, the operator
(Th,h2>\ — )\)71 maps H% into H§(+1, and moreover there exists Cs > 0 such
that if u € Q (X, F') in the + case, oru € O (X, F ® o (TX)) in the — case,
then

1

H(ThwA —A)7 <§DX - A) u—u

X, \1/25

< Csh H (p (\) + DXW) uHX e (17202)

For any r > 0, there exists h, €]0, ho] such that for h €]0,h.],A\ € Ws/ 1 r,

the operator (Th,h2>\ — )\)71 exists. Moreover, given s € R, there exist C,. >
0,Cs > 0 such that if h, X are taken as before,

| (T2 = 2 < @ (e Co (14 )72 Il oo

-1
) UHX,A1/2,5+1 - y
(17.20.3)
Proof. If A € End (L% ), we denote by [|A]| the norm of A. By Theorem
17.19.1, it is clear that if hp(A) is small enough, the operator 1 + Uj, j2x
is invertible when acting on HY = L%, and that its inverse is uniformly
bounded.
We will show that under the same conditions, given s € R, there exists
Cy > 0 such that

—1
(LS W
H ((1 + Uh,h2>\)71 - 1) UH

As we just saw, this is true for s = 0.
Set

< Cs ”“”X,)\l/z,s ) (17.20.4)

< Cshp (V) [lullx yisz,

= s

X,\1/2 5

A= (14 +0%)Y2 (17.20.5)
Then

l[ull x x1/2. = [A]| . (17.20.6)
If v = (1 + Uh’h2)\)_l u, then

A0 = (14 Uppzn) (A= [A%, Uy pa] ) - (17.20.7)
By Theorem 17.19.1, there exists C' > 0 such that for hp (\) small enough,
for any s € R,

(17.20.8)

s

H(l + Uppea) ' A%

| <Cllullxnne,
We claim that given s € R, there is Cs > 0 such that
[[A%, Unp2a] w]| < Cs (hp (A) +82p° (V) [[wllx xir2 o 1yg- (17.20.9)
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The proof of (17.20.9) will be delayed. By (17.20.7)-(17.20.9), for hp (A) small
enough, we get

oz < Co (Iullxnrns +lelnnsorys) - (17:2010)

By (17.20.10), we deduce that the first equation in (17.20.4) holds for s > 0.
Since the formal adjoint of U}, 2 has the same structure as Uy, p25, the above
proof also leads to a proof of the first equation in (17.20.4) for arbitrary
s € R. A similar argument allows us to also obtain the second equation in
(17.20.4) for any s € R.

Now we concentrate on the proof of (17.20.9). The idea is to go along the
proof of Theorem 17.19.1 and check that the corresponding estimates can
be safely “commuted” with A®.

Moreover, recall that all the functions of DX which we considered are in
fact functions of 0% . As an aside , let us observe that DX and OX commute
anyway. By (17.19.2), (17.19.5), we get

(A% Unpiaa] = 1200 (RDX V2,02 [A, Vi poa] (17.20.11)

We will evaluate the commutator in the right-hand side of (17.20.9) using
equation (17.17.10) in Theorem 17.17.4. We will use the arguments we al-
ready gave in the proof of Theorem 17.19.1.

First we consider the contribution of the first term in the right-hand side of
(17.17.10) for T}, p2x. As we already explained in (17.19.18)-(17.19.36), once
Ay, 2y is replaced by its semiclassical principal symbol a (h¢, h?)), there is an

approximate cancellation with the term —§—(1) (hDX/\/Z hz)\) A;{’u which is

compatible with the above estimates. Commuting A® with VA (7" X)@Fux o
VAT X)®Fu does not raise any special difficulty, the above cancellations
still occurring. The only potential difficulty consists in controlling the com-
mutator of A® with an operator of the type VA (I X)@Fuxp pgA (T X)@Fu,
where B is itself a semiclassical pseudodifferential operator which lies in Egi
Apart from a smoothing semiclassical operator, whose contribution is irrele-
vant by (17.15.6), we can as well assume that B = Op (b), where b € Sé_’}ll. For
h small enough, the classical symbol of B is given by b (x, hé, h, hz)\). When
commuting A® with B, we can then use the classical rules of composition of
pseudodifferential operators, where the parameter \ is incorporated. Using
the bounds in (17.15.5) with d = —1, we get

[A® (z,€) , hb (z, hé, h,h*N)]

s—1 _
= b (1 P i) (1 R A )

—5/3

yE <1+|>\\1/2+|£\)S (1+h2 A+ h€)) (17.20.12)

Incidentally observe that mixing classical and semiclassical pseudodifferen-
tial operators produces terms with different homogeneities. By (17.20.12),
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we get

L+R2|A+h|E] |[
1+ |\ + ¢

5—2
s—7/3 1+ \/\|1/2 + [¢]
<chp) | (T+ N2 +1l) T+ h(<1 T |§)|)2/3 (1+1¢?)

Cp(N) b (2,1, b, 2] (1+ 1)

s—1/3
<Chp) (1+ A2+ Jgl) L (17.2013)

which fits with (17.20.9).

Establishing the corresponding bounds for the other terms in the right-
hand side of (17.17.10) follows the same principle as before. So we get
(17.20.9).

By (16.4.4), (17.19.3), and (17.20.4), the first part of our theorem is now
obvious. By (16.4.6), we get

|h*Jo (hy,h*X) (y* — A) — 1| < Chly|. (17.20.14)
By (17.19.3), (17.20.4), (17.20.14), we get (17.20.2).

Now we will establish (17.20.3). Indeed given r > 0, there exists C;, > 0
such that if A € W p ., then p (\) < C,, and so by the above, there is h, €
10, ho] such that for h €]0, h,], the operator (Th)hz/\ - )\)_1 is well defined.
Using the first identity in (16.4.44), (17.19.3), and (17.20.4), we get (17.20.3).

The proof of our theorem is completed. O

17.21 THE ASYMPTOTICS OF (L. — )"

Take ho > 0 small enough. We take h €]0, ho]. Here we make ¢ = 4-1/h.
Put

-1

Ry = (Th,h2>\ — )\) (17.21.1)

By (17.2.12), we have the formal equality
(Le=N)7"

Rp A _th,/\L2@;:jlz)\ (17.21.2)
—h@;’}ﬁ \L3Rn h%;}}lz L @;}ﬁ \hL3Ry, ,\th@;}Lz NE o

To analyze the action of pseudodifferential operators which lie in the
class E5 ;, on the chain of Hilbert spaces which is associated to the norms
[ 1l a1/2 » We introduce a new norm. Indeed set

1/2
A=+ +0%Y 0 Ay = <1+|h2>\|2+h2DX) . (17.21.3)
Let HY 3 be the Sobolev space H3** equipped with the norm

lly gy = [[A A2 0| o (17.21.4)
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By (17.15.1), (17.21.4), we get

Il x pir2s = l1ully g0 el xponzns = lully o (17.21.5)
From the considerations we made after (17.15.1), using (17.21.5), we find
that given s € R, the norms | |2 o, and [ [| o , are uniformly equivalent
in the considered range of parameters h, A.
If E € Ef ,, we denote by Ej, the operator E in which A has been replaced
by h2), so that Ej, is defined for A € Ws/h2.

Proposition 17.21.1. If B is an operator which is a polynomial of degree
pin \)\|1/2 Ve, 1 < i <, for s1,s0 € R, there exists Cs, s, > 0 such that
ifu e Dx,

1Bully 4, sy < Csio 1Ullx prsy .o - (17.21.6)

Moreover, given E € Eg)h and any s1,s2 € R, there exists Cs, 5, > 0 such
that if u € Dx,
IEnully sy 0 < Csiso ully o sppa (17.21.7)

Proof. Using duality and interpolation, it is enough to establish our result
when s1, s5 € 2N.

Equation (17.21.6) is true when sy = 0. To establish this equation in full
generality, it is enough to prove it for B = V. If so = 2{3, {5 € N, there is
a partial operator @ (9;) of degree 2¢s such that

[vei,Affz} = Q(hd,). (17.21.8)
Therefore,
Hveiu||)\,2f1,2lg = ||A/2Z2v€i“||,\,241,0
< HVQAQ&UHAQQQ +11Q (hdx) ully 5, o

< CZ17£2 ||UHA)2Z1+1)2Z2 . (17219)

So we have established (17.21.6).
Clearly (17.21.7) holds when s; = 0. Moreover, by (17.15.5), if E € IE5 B
then

V.., E] € Egp'/°. (17.21.10)
So if A is a polynomial in \)\|1/2 V., of total degree 2/,
e Y EfPa, (17.21.11)
1<5<24,

where the A; are themselves polynomials in \)\|1/ % V., of degree < 201 — j.
Using (17.21.6), (17.21.7) with s; = 0 and (17.21.11) with A = A%, we get

[Enullx a0, 5 < Crusa | lullx 26, 6540 Z [ellx 200,55 4473
1<5<26

(17.21.12)
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Also for 0 < j < 21, we have the trivial

1llx 20y —j.sntarizz < Crusa lully 2, 5pta- (17.21.13)
Then (17.21.7) follows from (17.21.12) and (17.21.13). The proof of our
proposition is completed. O

We will extend the estimate (17.20.3) in Theorem 17.20.1, taking into
account the refined norms | [, , .,

Proposition 17.21.2. Forr > 0,s1 € R,ss € R, there exists h,. > 0,C, >
0,Cr s1.s5 > 0 such that for h €]0, hy], A € Ws: pr,u € Dx,
1 _
H (Th,hz)\ - >\) S CT,S1,52 (h + CT (1 + |)\|) 1/2) ||uH)\,51752 :
(17.21.14)
Proof. By equation (17.20.3) in Theorem 17.20.1 and by (17.21.5), we get
(17.21.14) when sg = 0.
By duality and interpolation, it is enough to establish (17.21.14) for sy =

d > 0. We will show that given a > 0, if (17.21.14) holds for d € [0, q],
then it still holds for d € [0, a + 2/3]. Recall that IE§7 n.o Was defined via the

inequalities in (17.15.10). Let F € Eg,h,o with symbol e = e4 + heg_1,€; €
S§.p,0 fori = d—1,d, so that eq is scalar. If A € E§ ,,, by (17.15.5), (17.15.10),
we get

H)\,51+1,52

(B, A] € hE %% (17.21.15)
Using Theorem 17.17.4 and in partlcular (17.17.9) and (17.17.10), we get
B, Thol € Y By Ve, +E5 2% (17.21.16)
Also,
H(Th,h2)\_)‘)71uH = HA;Ld (Th7h2)\—)\)71UH . (].721].7)
A,81,d A,81,0
Moreover,

N (Thpor = N) = (Thpen — A) A

+ (Thp2y — /\)_1 [T 20, AR] (Thopzx — >\)_1

(17.21.18)
Put
m=h+C,(1+A) 2. (17.21.19)
By Proposition 17.21.1, by (17.21.14) with so = 0, and using also (17.21.16)-
(17.21.18), we obtain

—1

H (T p2x — A) < CS1m<HA;zd“H>\,sl,o

Y
A,s1+1,d

+ H [Th,h2>\7A;:i] (Th,h2)\ - )\)71 ’LLH)\ >
51,

< G (e + [ Trrer =24 (17.21.20)

)\,sl+1,d—2/3> '
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By (17.21.20), we obtain the announced recursion on d. The proof of our
proposition is completed. O
Let Q° be the set of differential operators with smooth coefficients in
x € X, which are polynomials in \)\|1/2, Ve;» Vai,0Vei, pi, pip; which are of
total degree at most . Let R be a finite family of operators which generate
Qf over C* (X, R).
We will denote by Hx ¢ the associated Sobolev space with the norm

lally = D 1Qullzs - (17.21.21)

QER!

We denote by Hx,_, the vector space which is dual to Hx ¢.
If Ae L£(L%), let ||A]| be the norm of A. In the case where A extends to
a bounded operator from H_, into Hy, set

1Al = > QA (17.21.22)
Q.,Q ERL

Recall that H is the standard L? space over T*X. If B € End (H), we still
denote by ||B|| the norm of B.

Theorem 17.21.3. There exist hg > 0,0" = (0, 61, 85) with &), €]0,1][, ] >

0,8, = %, such that for any r > 0,

e For h €]0, ho], A € Wy 1., the resolvent (L. — )\)71 exists and is given
by equation (17.21.2). There exists C > 0 such that if b, A are taken as
before, then

H(LC - )\)_1H S 07
Hiﬂ: (Thopoa — /\)_1 P:I:H <C, (17.21.23)
[ =2 s (Tger =0 7 Pe| < Om

o Let v €]0,1[. For any £ € N, for N € N* large enough, there exists
Cn > 0 such that if h, X\ are taken as before, then

’(Lc - A>7NH£ < CN»

. —N

Hzi (Thopox — \) PiH/ < Cw, (17.21.24)
H(LC NN iy (g =AY PiHZ < Ovh'.

Proof. We take ¢ as in Theorem 17.20.1. If A € Ws/ , -, by equation (17.20.3)
in Theorem 17.20.1, we get the second estimate in (17.21.23), and we also
find that the operators Ly (T}, p2y — )\)_1 (Thopex — )\)_1 L3 are uniformly
bounded when acting on H = L?. By (17.16.9),

<Cs s - 17.21.25
h2\sc,s+1/4 Hu||h2>ubc,s ( )

-1
Heh,hb\“‘
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In particular @;22 , is uniformly bounded as an operator acting on L2
By Proposition 17.21.2, we find that given s1,s2 € R,

‘ )\751752

Recall that Lo is given by (17.2.8). Also in the + case,

1
(Thnea — A) LQuH < Cooa 1Laully 4y, (17.21.26)

P VAT, _ gA (TT XOBF D, . (17.21.27)
By (17.21.27), we find easily that

||L2“H>\,sl—1,52 < Csy,s0

P, (1 + |p\2) uH . (17.21.28)

;81,82

Using the considerations after (17.21.5), and also (17.21.26), (17.21.28)
with s;7 = 0,55 = s, we get

| (Tper = 2) 7" Lau| < O fullyerses (17.21.29)

h2)\,sc,s
The same arguments as in the proof of (17.21.29) also show that

HLg (Th,h2)\ — )\)71 u

pornes < Colullian e (17.21.30)

Set
_ -1 _
A= 0, 323hLs (Thpea = A) " La©) oy (17.21.31)
We claim that A acts on L? as a uniformly bounded operator. Indeed by

Theorem 17.16.3 and by (17.21.29) with s = 1/6, since 1/6 — 1/4 = —1/12,
we get

-1 —
||Au|| < C H (Th)hz)\ - )\) Lg@h)}ﬁ/\u‘

h2)\,sc,1/6

“cleii

h2Ase.1/6 <C ‘|u‘|h2)\,sc,71/12 < Cllufl. (17.21.32)
Incidentally note that it is here that the critical —1/6 is used in our proof.
Using (17.21.2) and the above estimates, we deduce that the resolvent
(L, — A) "' is indeed given by (17.21.2) and moreover that (17.21.23) holds.
The second equation in (17.21.24) follows from equation (17.20.3) in The-
orem 17.20.1. By (17.21.23), we find that for any N € N,

H(LC NN iy (T =AY PiH < Cyh. (17.21.33)

We will now show that the third estimate in (17.21.24) follows from the
first two. Take v €]0,1[, and let p € N such that 1 — 1/p > v. Put ¢ =
pl. Assume that N € N is such that the first two identities in (17.21.24)
hold with respect to £'. Using these two estimates, (17.21.33), and classical
interpolation, we get

H(LC NN —ig (T =AY PiH[ < Cpi—Vr, (17.21.34)

which implies the third identity in (17.21.24).
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Therefore, we only need to establish the first estimate in (17.21.24). Recall
that Rp » was defined in (17.21.1). Set

R ’ ~RnLoO s (17.21.35)
O LaRin h0) (14 LaRiaLa®) ), )| -
J =g (Thpen —A) " Py
y (17.21.2),
(Le—A\)""=J+hR. (17.21.36)

Take o = 1/12. We claim that for s € R, there exists Cs > 0 such that if
h G}O,ho], A€ Wst o,

||RuHh2)\,sc,s+U < Cs ||u||h2/\,sc,s’ H‘]u||h2)\,sc,s+o < Cs ||uHh2)\,sc,s :
(17.21.37)

Indeed since o < 1/2, by proceeding as in (17.21.13) and (17.21.14), we get

| (@per =27 < Cylully

<! ) 17.21.38
20,540 = s”uH)\,O,s ( )

,—1,5+0

The second inequality in (17.21.37) follows the considerations we made after
(17.21.5) and from (17.21.38).

Since o < 1/4, we can use (17.21.29), (17.21.30), and the same arguments
as in the proof of (17.21.32) to show that

| (@per =2 7" L26;, hQAuHm s SCuler ey (17:2130)

H@ hg/\L?, (Th,h2>\ — )\)71 u

h2A sc,s < CS ||u||h2>\,sc,s .

Similarly, since o = 1/12, the same arguments as in (17.21.32) show that

H@h hz)\th (Th,h2)\ — )\) LQ@h hz)\u‘

h2\,sc,s+0

< Oy <c .

B h2\,sc,s+o0+1/6 ||u||h2/\ sc,s
(17.21.40)

By (17.16.9), (17.21.35), (17.21.39), (17.21.40), we get the first inequality of
(17.21.37), which completes the proof of (17.21.37).
By (17.21.36), we obtain

(Th,h2)\ —)\) Lgeh hz)\u‘

(Le =X = hN2guRi gl Rl (17.21.41)

where the nonzero indices are such that 22:1 ir = N7, 22:1 jr = No, N1 +
Ny = N. By (17.21.37), (17.21.41), we get

TR TRy s < C ol e (17.21.42)
Clearly, for j € N,

INVZ < (277 A+ 27). (17.21.43)

N =
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By (17.4.3), (17.4.4), and (17.21.43), we get for £ € N,
lull, < Ceh™ ullyzy ger s (17.21.44)
and so
[l p2xse,—e < Ceh™ Jlull_, - (17.21.45)

Using (17.21.37) and (17.21.41)-(17.21.45), we find that to prove the first
estimate in (17.21.24), the only potentially annoying terms are the ones with
No < 20. Since No > q, we may assume that ¢ < 2¢. This is what we will do
now.

We claim that there exists M, € N* such that for any Q € R, then

JQ= > QJq, Q=Y J,HQ, (17.21.46)
Q' ER! Q'ER!L

RQ = Z Q/RQH QR = Z R/Q/Q/.
Q' eR! Q'ER!

so that in (17.21.46), the sums are finite, and moreover we should have the
estimates

1@ty ses + || TG < Cs [ullp2 se.s - (17.21.47)

|h2>\,sc,s -

||RQ'uHh2)\7scvs + HR/Q”LL ‘h%\,sc,s < CS ||uHh2)\,sc,s+Mg '

First we establish the required properties for J. Recall that A was defined
in (17.21.3). If Q € Ry,

QJ = (QJA™) A", (17.21.48)
By Proposition 17.21.2,
||AZJA_L]u||/\’Sl’52 < Cays 1l gy 1., - (17.21.49)
By (17.21.49), we obtain
lRTA™ u]ly 4, s, < Corsa

(17.21.50)

|>\,sl—1752 .

Using the considerations we made after (17.21.5) and by making s; = 0 in
(17.21.50), we get

1QIA™ Ul 2 o < Cs lullpon ses (17.21.51)

By (17.21.48), (17.21.51), we get the second identity in (17.21.46). To obtain
the first identity, instead of (17.21.48), we write

JQ =A (AT1JQ), (17.21.52)

and we proceed as before.

Now we establish the commutation relations in (17.21.46), (17.21.47) for
R. Note that if R, R? are operators such that the estimates in (17.21.46),
(17.21.47) hold with R = R! and R = R? with a given M, then R' + R?
verifies similar estimates with the same M, and R'R? with M replaced
by 2M. Using equation (17.21.35) for R and also the estimates for J in
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(17.21.47), we need to prove only estimates similar to (17.21.46), (17.21.47)
with R replaced by @;}Lz y- To do this we will use again equation (17.16.2)

for ©; .
By Theorem 17.15.3, we know that (PSjxis) " € Ej} ;- Therefore if

A € Ws/ p.r, the commutators of (PiShythii)fl with @ can be easily eval-
uated using the pseudodifferential calculus. So we only need to prove the
relevant estimates for S}, p25. By Lemma 17.6.4 and by Theorem 17.7.2, the
evaluation of the commutators [Q, Sh.n2 )\] can be reduced to the evaluation
of the commutators [Ey, Q] , [E1, Q], where Ey, F1 appear in the parametrix
formula (17.10.1) in Theorem 17.10.1.

By Theorem 17.10.1, the symbol of Ey is ey, where ey was defined in
Definition 17.9.3. We use equation (17.10.5) for E; together with Lemma
17.13.2, in order to evaluate the commutators of Ep, E1 with p;, Vg, Ve,.
The results on the commutators with the @ follow easily.

Now we come back to the estimation of the finite number of terms in the
right-hand side of (17.21.41) such that Na,q < 2¢, which is the final point
needed in the proof of the first estimate in (17.21.24). We only need to show
that if Q, Q' € RY,

QI R ... TR Qul|,, <Cllul,.. (17.21.53)
Now N1 > N —2¢, and so at least one of the ¢; is such that
Ni _ N
> —= > — — 1. 17.21.54

By (17.21.46), (17.21.47), we only need to check that given I, M’ € N, for
N’ € N large enough,

Q' < Cnr llullpas e nre (17.21.55)

h2X\;sc,M’

which is itself a consequence of equation (17.20.3) in Theorem 17.20.1. The
proof of our theorem is completed. O

Let K ((z,p), (2/,p")) be the kernel of an operator K. For ¢ € N, let ||| K]|||,
be the least upper bound of the norms of the kernels QK Q' ((x,p), (¢',p")),
with Q, Q' € RE.

By Sobolev’s inequalities, if n = dim X,

K, < Cell KNl 3301 - (17.21.56)
where the right-hand side is defined as in (17.21.22).

Proposition 17.21.4. Take v €]0,1[,¢ € N. For N € N* large enough,
there exists Cy > 0 such that for h €]0, ho], A € Wss pr, then

H‘(LC_A)_NH’Z <Cw, (17.21.57)

(2= =i (Tgar = 2) 7V Pe]], < O
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Proof. This is an obvious consequence of (17.21.24) and of (17.21.56). O

Theorem 17.21.5. Take v €]0,1[,£ € N. For N € N* large enough, there
exists Cn > 0 such that for h €]0, hol, \ € Wy 1, then

1 —N
(Le —A) N —iy (—DX - A) Py

5 < Cyh'. (17.21.58)

0

Proof. Set
-1 1_« -t
A= (Thp2a—A) B= §D —-A . (17.21.59)
As we saw after (17.20.14), given r > 0, there is C; > 0 such that if A €

W' h.r, then p (X)) < C.
By (17.20.2) in Theorem 17.20.1 and by (17.21.5),

[(A—=B)ully 0 < Cshllully s 10- (17.21.60)
Moreover,
||B“||)\,s,0 <C H“”,\,S—Q,o ) (17.21.61)
By (17.21.60), (17.21.61), we obtain
(AN = BM)u \MO < Csnhllully o no- (17.21.62)
By (17.21.57) and (17.21.62), we get (17.21.58). The proof of our theorem is
completed. O

Remark 17.21.6. Recall that the function p (A) defined in (16.4.41) is associ-
ated here to S = Sp(0% /2. Let K be a compact subset of C, not containing
0, and such that

KnSpO¥/2=0. (17.21.63)

Then the function p (A) is bounded on S. The results of Theorem 17.20.1 are
obviously valid for A € K, as long as A > 0 is small enough. It follows that
the results contained in Propositions 17.21.1, 17.21.2, in Theorem 17.21.3,
in Proposition 17.21.4, and in Theorem 17.21.5 are also valid when A\ € K.
In particular, by Theorem 17.21.3, we find that for h > 0 small enough,

SpL.NK = 0. (17.21.64)

17.22 A LOCALIZATION PROPERTY

Observe that by (13.2.4), for € €]0,1[,h > 0, for ¢ = £1/h?,

_ax By,

= ﬁ + T + €Y+, (17.22.1)
Comparing with (13.2.4), we see that E2LC/€2 is obtained from L. by scaling
B+,7v+ by the factors €, €2 respectively.

GQLC/sz
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Let us denote explicitly the dependence of L. on the metric g7, i.e.,
. X . . . .
we write LZT instead of L.. Then one verifies easily that up to a trivial
conjugation,

TX 2 TX
Ly /5 = e2LYca- (17.22.2)
Incidentally observe (17.22.2) is also a consequence of the identities in (2.8.8)
in degree 0.
In the sequel, it will often be convenient to use the notation

h = eb, c=+1/b% (17.22.3)

Also for notational convenience, we set by = hyg.
By (17.21.1), (17.21.2), we have the formal equality

62LC€2—>\ 71:
(€L

6_2Reb,/\/62 —bﬁ_ZReb’/\/€2€L2@;7lb2>\
b0 oreLae 2 Rayne 0% (030 + O3y LaRan /e L20,)

(17.22.4)

Proposition 17.22.1. Let v €]0,1[. For any ¢ € N, for N € N* large

enough, there exists Cn > 0 such that for b €]0,bo],e €]0,1],A € Wsr p r,
then

Proof. Note that if A € Ws: 3, then )\/62 € Ws' h,r. Our proposition now
follows from Theorem 17.21.5. O

<Ce Npv. (17.22.5)

-N €2 -
(€Leje —A) " —ix (55)‘ - A) Py
4

Given ¢ € N, we define the family of operators Q° as the family Qf, by
simply replacing the V., by e€V.,. We define corresponding norms ||||_, as
in (17.21.21).

Theorem 17.22.2. Let K be a compact subset of X, and let ¢(x) € C§° (X \
K). Given N € N, M € N, there exists by €]0,1], € €]0,1], Cps,.n > 0 such
that for b €]0,bo],e €]0,e0], A € Ws/ b, if the support of u is included in
7 Y (K), then

Hd)(x) (Lejex — )\)71

uHM < Crrne™ Jull_y, - (17.22.6)

Proof. For the moment, we only consider the parameter h as in the previous
sections, and we take A € Wy, . Take ¢1(z), p2(x) € C5°(X) with disjoint
supports. By Lemma 17.6.4 and by Theorems 17.7.2, 17.15.3, and 17.16.2,
we find that for any s € R,t € R, N € N, there exists C' > 0 such that

[er0mhntnl],.. < Cornh™ o e (17.22.7

h2\,sc,t
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Since s,t, N are arbitrary, from (17.22.7), we deduce that for any M €
N, N € N, there exists Cy, v > 0 such that

qul@;}ﬂ@zuHM < CaunhN [|ull_y, - (17.22.8)

Moreover, by commuting @gjlbz , With operators in Q! as in the proof of
Theorem 17.21.3, from (17.21.46), (17.21.47), we find that given ¢ € Z, there
exists £/ € Z,C > 0 such that

H@E}szHZ < Cllully - (17.22.9)

We claim that if M € N, N € N, there exists Cjs,y > 0 such that under
the conditions stated in our theorem,

. -1
H(bﬂi (62T€b’b2)\ - )\) Pi(bgu

By (17.21.56), (17.22.4), (17.22.8)-(17.22.10), we get (17.22.6), i.e., we get a
proof of Theorem 17.22.2.

Now we concentrate on the proof of (17.22.10). If 6 = (61 (z),...,0n (z))
is a family of smooth real functions on X, we use the notation AdyT as in
(17.6.11).

Assume that 601, ...,0y are smooth real functions which are equal to 1 on
the support of ¢; and equal to 0 on the support of ¢a. Then if A € Wy .,

‘M < CuneVull_,,.  (17.22.10)

orix (Thx —N) " Papy = iz o1 AdY (Thx — A) ' ¢ Ps. (17.22.11)
Also we have the identity
Ad) (Thn— A"
= (=)D (T = N AY (Tin) (Thp =N~

AdY (Thp) (Tha— A", (17.22.12)
with ij > 1,i1"'+ip:N.
We claim that for ¢ > 1,
AdyThae Y BV + B (17.22.13)
1<i<n

To establish (17.22.13), we use equation (17.17.10) for Tj x. Observe that
in the right-hand side of (17.17.10), Pyv+ P+ does not contribute to the
commutator in (17.22.13). By Theorem 17.17.4, Ay, € Ej 5. By (17.15.5)
and (17.15.9), we find that

(01, An] € hE; . (17.22.14)
By (17.22.14), we get

VAT X)BFux (g A, ] € hE;?}{?{ (17.22.15)



THE LIMIT OF 72, ASb— 0 351

The other commutators with 6 in the right-hand side of (17.17.10) can be
handled in the same way. A recursion argument then leads to the proof of
(17.22.13).

Observe that given r > 0, for h €]0,1],y € R, A € Wy 1,

A=y?[ > C 1+ A +y7). (17.22.16)
By (17.22.16), if A € Wss j.r,
< Cslully s_20- (17.22.17)

(54
— = U
’ 2 A,s,0

By equation (17.20.2) in Theorem 17.20.1, by (17.21.5), and by (17.22.17),
for A € Wes+ ., we get

[Ter =27,

So using equation (17.21.7) in Proposition 17.21.1, (17.22.13), and (17.22.18),
we get

-1

UH < Cs (H“”,\,S—Q,o +h H“”,\,S—LO) : (17.22.18)

| @ =0 (AdiTigen) ]| < <|| (AdyThp2x) ully o

+h (AdéTMzA)

< Cs (HU||,\,S—1,—2/3 +h ||“H>\,s,—2/3) :

A,s—1,0

(17.22.19)

Now we use the notation in (17.21.3). Clearly,

A/
A< Th (17.22.20)
so that
HuHs,—Q/?) S h72/3 ||uHs—2/3,0 . (172221)
By (17.22.19), (17.22.21), we obtain
1 i

|(Tner =3 7 AdThponar| < Cullull_ys0- (17.22.22)

Then inequality (17.22.10) with € = 1 follows from (17.22.11), (17.22.12) and
(17.22.22).

Recall that by (17.22.3), h = eb. Take A € Wy . Set = \/e? € Wy .
Then

1 -1

(EThpzy — N =€ 2 (Thp2p — 1) (17.22.23)
By (17.22.10) with € = 1, we get
M/2 . —1
H(l + |+ 0% /2) / drix (Th p2y — 1) PﬂbﬂbHLz
< Cy H (1 + || + 0% 2) M7 uH L. (17.22.24)



352 CHAPTER 17

By (17.22.24), we obtain

M/2 . —1
(2 + M+ %/2) ™ 61 (T = N) 7 Pen| |

—M/2
§0M62M72 ) / UH 2

(€ + |\l + 0% /2 (17.22.25)

Moreover, there exists ¢ > 0 such that for b €]0, bo], A € W 4., then |A] > c.
By (17.22.25) we obtain

H (T+ A+ €QDX/2)M/2 Pri+ (€Th 2y — M)il P:|:¢2U’ L2 S
Crre2M—2 H(l + A+ 0¥ 2) M2y (17.22.26)
By (17.22.26), if A € Wss 4., we get
H¢1 (EThpz, — ) PinguHE L SOnEM Rl . (17:22.27)
By (17.22.27), we get (17.22.10).
This completes the proof of our theorem. O

Remark 17.22.3. Given N € N*, it is possible to replace (€2L./z2_y) = by

(€Leje2—») N We still get the obvious analogue of Theorem 17.22.2. Indeed
by proceeding as in the proof of (17.22.9), we find that given ¢ € Z, there
exists £/ € Z, C such that

(Lejeo_y) " uH < Clull, - (17.22.28)

By combining (17.22.6) in Theorem 17. 22 2 with (17.22.28), we get the cor-

responding statement for (€2L/e2_ /\)
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