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Preface

This is a book on holomorphic operator functions of a single variable and their ap-
plications, which is focussed on the relations between local and global theories. It is
based on methods and technics of Complex analysis of scalar and matrix functions
of several variables. The applications concern: interpolation, holomorphic families
of subspaces and frames, spectral theory of polynomials with operator coefficients,
holomorphic equivalence and diagonalization, and Plemelj-Muschelishvili factor-
ization. The book also contains a theory of Wiener-Hopf integral equations with
operator-valued kernels and a theory of infinite T6plitz matrices with operator
entries.

We started to work on these topics long ago when one of us was a Ph.D. stu-
dent of the other in Kishinev (now Cisinau) University. Then our main interests
were in problems of factorization of operator-valued functions and singular inte-
gral operators. Working in this area, we realized from the beginning that different
methods and tools from Complex analysis of several variables and their modifica-
tions are very useful in obtaining results on factorization for matrix and operator
functions. We have in mind different methods and results concerning connections
between local and global properties of holomorphic functions. The first period was
very fruitful and during it we obtained the basic results presented in this book.

Then World Politics started to interfere in our joint work in the new area. For
a long time the authors became separated. One emigrated to Israel, the other was
a citizen of East Germany, and the authorities of the second country prevented
further meetings and communications of the authors. During that time one of
us became more and more involved in Complex analysis of several variables and
finally started to work mainly in this area of mathematics. Our initial aims were
for a while frozen. Later the political situation in the world changed and after the
reunification of Germany the authors with pleasure continued the old projects.

During the time when our projects were frozen, the scientific situation
changed considerably. There appeared in the literature new methods, results and
applications. In order to cover the old and new material entirely in a modern form
and terminology we decided to write this book. As always happens in such cases,
during the writing new problems and gaps appear, and the material requires in-
clusion of additional material with new chapters containing new approaches, new
results and plenty of unification and polishing. This work was done by the authors.



xii Preface

We hope the book will be of interest to a number of large groups of experts in
pure and applied mathematics as well as for electrical engineers and physicists.

During the work on the book we obtained support of different kinds for
our joint activities from the Tel-Aviv University and its School of Mathemati-
cal Sciences, the Family of Nathan and Lilly Silver Foundation, the Humboldt
Foundation, the Deutsche Forschungsgemeinschaft and the Humboldt University
in Berlin and its Institute of Mathematics. We would like to express our sincere
gratitude to all these institutions for support and understanding. We would also
like to thank the Faculty of Mathematics and Computer Sciences of the Kishinev
University and the Institute of Mathematics and Computer Center of the Academy
of Sciences of Moldova, where the work on this book was started.

Berlin, Tel-Aviv, November 2008 The authors



Introduction

The book. This book contains a theory and applications of operator-valued holo-
morphic functions of a single variable. (By operators we always mean bounded
linear operators between complex Banach spaces.) The applications concern some
important problems on factorization, interpolation, diagonalization and others.
The book also contains a theory of Wiener-Hopf integral equations with operator-
valued kernels and a theory of infinite T6plitz matrices with operator entries.

Our main attention is focussed on the connection between local and global
properties of holomorphic operator functions. For this aim, methods from Complex
analysis of several variables are used. The exposition of the material appears in
style and terms of the latter field.

Multiplicative cocycles. Grauert’s theory. The theory of multiplicative cocycles
plays a central role in this book. It is a special case of the very deep and powerful
theory of cocycles (fiber bundles) on Stein manifolds (any domain in C is a Stein
manifold), which was developed in the 1950s by H. Grauert for cocycles with values
in a (finite dimensional) complex Lie group. This theory then was generalized into
different interesting directions. In 1968, L. Bungart obtained it for cocycles with
values in a Banach Lie group, for example, the group of invertible operators in a
Banach space.

One of the main statements of Grauert’s theory is a principle which is now
called the Oka-Grauert principle. Non-rigorously, this principle can be stated as fol-
lows: If a holomorphic problem on a Stein manifold has no topological obstructions,
then it has a holomorphic solution. This important principle was first discovered
in 1939 by K. Oka in the case of scalar functions.

For domains in the complex plane C, Grauert’s theory is much easier but still
not simple. It is even not simple for the case of cocycles with values in the group
of invertible complex n x n-matrices when no topological obstructions appear.

For operators in infinite dimensional Banach spaces, we meet essential diffi-
culties, which are due to the fact that the group of invertible operators in a Banach
space need not be connected. This becomes a topological obstruction if the domain
in C is not simply connected. So, for operator functions, the Oka-Grauert principle
is meaningful also for domains in C.
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For the problem of Runge approximation, the Oka-Grauert principle claims
the following: Runge approximation of a holomorphic invertible operator function
by holomorphic invertible functions is possible if this is possible by continuous
invertible functions. From this it follows that such a Runge approximation always
holds when the domain is simply connected or the group of invertible operators is
connected. The latter is the case for the group of invertible operators in a Hilbert
space, and in particular, for the group of invertible complex n x n-matrices.

For simply connected domains, the proof of the Runge approximation theo-
rem for invertible operator functions is not difficult and can be obtained without
the theory of cocycles. We show this at the end of Chapter 2. For general domains
however, this proof is much more difficult (even in the case of matrix-valued func-
tions) and will be given only in Chapter 5 in the framework of the theory of
multiplicative cocycles.

A special type of multiplicative cocycles is given by two open sets Dy and Do
in C and an invertible holomorphic operator function on Dy N Ds. For this type,
the following is proved:

0.0.1 Theorem. Let E be a Banach space, let GL(E) be the group of invertible
operators in E, let D1, Dy C C be two open sets, and let A : DN Dy — GL(E) be
holomorphic. Assume that at least one of the following two conditions is satisfied:

(i) The union Dy U Dy is simply connected.
(ii) All values of A belong to the same connected component of GL(E).

Then there exist holomorphic operator functions A; : Dj — GL(E), j = 1,2, such
that

A=AA;Y onDiND,. (0.0.1)

If both topological conditions (i) and (ii) in Theorem 0.0.1 are violated, then
the assertion of Theorem 0.0.1 is not true. A simple counterexample will be given
in Section 5.6.2 for the case when D; U D5 is an annulus.

The following operator version of the Weierstrass product theorem (on the
existence of holomorphic functions with given zeros) is a straightforward conse-
quence of Theorem 0.0.1.

0.0.2 Theorem. Let E be a Banach space, let GL(E) be the group of invertible
operators in E, and let GL;(E) be the connected component in GL(E) which
contains the unit operator I. Let D C C be an open set and let Z be a discrete and
closed subset of D. Suppose, for each w € Z, a neighborhood U,, C D of w with
Uw N Z = {w} and a holomorphic operator function A, : Uy \ {w} — GL(E) are
given. Further assume that at least one of the following two conditions is fulfilled:

(i) The set D is simply connected.
(ii) The values of each Ay, w € Z, belong to GLi(E).
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Then there exist a holomorphic operator function B : D\Z — GL(E) and a family
of holomorphic operator functions H,, : U, — GL(E) such that

H,A, =B on Uy \ {w},, weZ.

The classical Weierstrass product theorem we get for £ = C and H,(z) =
(z —w)"™, Ky € N,
There are also a “right-sided” and a “two-sided” version of Theorem 0.0.2.

Contents. The book consists of an introduction and eleven chapters. Let us now
describe in more detail the content of each chapter separately.

The first chapter contains the generalization to functions with values in Ba-
nach spaces of the traditional material from Complex analysis of one variable
which is usually contained in the beginning of a basic course.

Chapter 2 starts with Pompeiju’s integral formula for solutions of the in-
homogeneous Cauchy-Riemann equation, the Runge approximation theorem, the
Mittag-Leffler theorem, and the Weierstrass product theorem. Then, in Sections
2.6 and 2.7, we present the (less well known) “Anschmiegungsatz” of Mittag-Leffler
and a strengthening of the Weierstrass product theorem. In the case of the Weier-
strass product theorem and its generalization, in this chapter, we still restrict
ourselves to scalar functions. It is one of the main goals of this book, to generalize
these results to the case of operator functions, using Grauert’s theory of cocycles.

Chapter 3 is dedicated to the splitting problem with respect to a contour for
functions with values in a Banach space, as well as to the factorization problem
for scalar functions with respect to a contour.

In Chapter 4 we generalize to finite meromorphic Fredholm operator func-
tions the classical Rouché theorem from Complex analysis and the Smith factor-
ization form. The proof is based on the local Smith form.

Chapter 5 is entirely dedicated to the theory of multiplicative cocycles, which
were discussed in large before.

Chapter 6 contains a theory of families of subspaces of a Banach space E.
First we introduce a complete metric on the set G(E) of closed subspaces of F, the
so-called gap metric. A continuous family of subspaces of FE then will be defined as
a continuous function with values in G(FE), and a holomorphic family of subspaces
of E will be defined as a continuous family of subspaces which is locally the image
of a holomorphic operator function. Vector functions with values in such a family
are called sections of the family. Note that we do not require that the members of
a holomorphic family be complemented in the ambient space. It may even happen
they are not pairwise isomorphic. An example is given in Section 6.5.

First we prove the following results: any additive cocycle of holomorphic
sections in a holomorphic family of subspaces splits; for any holomorphic operator
function A whose image is a holomorphic family of subspaces, and any holomorphic
section f of this family, there exists a global holomorphic vector function u that
solves the equation Au = f; for any holomorphic family of subspaces there exists
a global holomorphic operator function with this family as image. Proving this,
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the main difficulty is the solution of certain local problems (in this generality,
published for the first time in this book). In terms of Complex analysis of several
variables, the solution of these local problems means that any holomorphic family
of subspaces is a so-called Banach coherent sheaf (a generalization of the notion
of coherent sheaves). After solving this we proceed by standard methods that are
well-known in Complex analysis of several variables.

Then we consider holomorphic families of subspaces, which we call injective
and which have the additional property that, locally, the family can be represented
as the image of a holomorphic operator function with zero kernel. We study the
problem of a corresponding global representation. Here we need the theory of
multiplicative cocycles from Chapter 5. It turns out that this is not always possible,
but we have again an Oka-Grauert principle.

Then we study holomorphic families of complemented subspaces (which are
injective), where we can prove more precise results than for arbitrary injective
families. Again there is an Oka-Grauert principle.

At the end we consider the special case of families of subspaces which are finite
dimensional or of finite codimension. Here there are no topological restrictions.

Chapters 7 and 8 are dedicated to factorization of operator functions with
respect to a contour and the connection with Wiener-Hopf and Té&plitz operators.
This type of factorization was in fact considered for the first time in the pioneer-
ing works of Plemelj and of Muschelishvili. Because of that we call it Plemelj-
Muschelishvili factorization. We start with the local principle, which quickly fol-
lows from the theory of multiplicative cocycles and which allows us to prove theo-
rems on factorization for different classes of operator functions. The local principle
reduces the problem to functions which are already holomorphic in a neighborhood
of the contour.

For further applications we need a generalization of the theory of multiplica-
tive cocycles. This is the topic of Chapter 9, where we introduce cocycles with
restrictions. Let us offer an example (which is basic for all cocycles with restric-
tions). Suppose that in Theorem 0.0.1 an additional set Z C DU Do, discrete and
closed in D, and positive integers m,,, w € Z, are given. Assume that the function
A —1I has a zero of order m,, at each w € D;NDyNZ. Then the theory of cocycles
with restrictions gives the additional information that the functions A; and As in
Theorem 0.0.1 can be chosen so that, for all w € D; N Z, 7 = 1,2, the function
A; — I has a zero of order m,, at w.

In Chapter 10, by means of the theory of cocycles with restrictions, we es-
sentially improve the Weierstrass product Theorem 0.0.2: The functions H,, in
this theorem now can be chosen so that, additionally, for each w € Z, the func-
tion H,, — I has a zero of an arbitrarily given order m,, at w. This has different
consequences that are discussed in this short chapter.

Chapter 11 is dedicated to holomorphic equivalence and its applications to
linearization and diagonalization. Let F be a Banach space, let L(F) be the space
of bounded linear operators in E, let GL(E) be the group of invertible operators
from L(FE), let D C C be an open set, and let Z be a discrete and closed subset
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of D. Then two holomorphic operator functions A, B : D\ Z — L(E) are called
(globally) holomorphically equivalent over D if there exist holomorphic operator
functions S, T : D — GL(FE) such that A = SBT on D.

In the first section, results are presented that explain the importance of
the notion of holomorphic equivalence in spectral theory of linear operators and
holomorphic operator functions. It contains the following two results: 1) For each
relatively compact open subset €2 of D, each holomorphic operator function A :
D — L(FE), after an appropriate extension, becomes holomorphically equivalent
to a function of the form zI — T, z € Q, where T is a constant operator and [ is
the identical operator (Theorem 11.2.1). 2) Two operators T, S € L(E) with the
spectra o(A) and o(B) are similar if and only if some extensions of the functions
zI — T and zI — S are holomorphically equivalent over some neighborhood of
o(A)Uo(B) (Corollary 11.2.3).

The remainder of this section is devoted to the relation between global and lo-
cal holomorphic equivalence where two holomorphic operator functions are called
locally holomorphically equivalent if, for each point, they are holomorphically
equivalent over some neighborhood of this point. We prove that two meromorphic
operator functions with meromorphic inverse are locally holomorphically equiva-
lent if and only if they are globally holomorphically equivalent (Theorem 11.4.2),
and we prove that any finite meromorphic Fredholm operator function is globally
holomorphically equivalent to a diagonal function (Theorem 11.7.6). The local fact
behind this is the Smith representation of matrices of germs of scalar holomorphic
functions.

Acknowledgement. In the beginning of the 1970s, on an invitation of one of us,
M.A. Shubin visited Kishinev and gave two talks about applications of Grauert’s
theory and the theory of coherent analytic sheaves to different results for linear
operators. One of the talks was on the local principle for Plemelj-Muschelishvili
factorization of matrix functions and the second was about the analysis of holo-
morphic families of subspaces. These talks had on us an important influence. Very
soon after this we came up with a series of papers on operator-valued cocycles
in the case of one variable with new direct proofs and also with new results and
applications to operator functions. At the end this development led to this book.
It is our pleasure to thank M.A. Shubin providing us with the initial input.



Notation

Here we give a list of standard symbols and some remarks concerning the termi-
nology used in this book without further explanation:

— C is the complex plane, R is the real axis, C* := C\ {0}, R* :=R\ {0}.
— N is the set of natural numbers (including 0), N* := N\ {0}.

— 7Z is the set of entire numbers.

— Banach spaces and Banach algebras are always complex.

— If E, F are Banach spaces, then we denote by L(F, F') the Banach space of
bounded linear operators operators from E to F', endowed with the operator
norm. We set L(F) = L(E, E), and we denote by GL(E) the group of all
invertible operators from L(E). By a projector in E we always mean an
operator P € L(E) with P2 = P.

— By an operator we always mean a bounded linear operator between two Ba-
nach spaces.

— Let E, F be Banach spaces, and let A € L(E, F'). Then we denote by Im A
the image, and by Ker A the kernel of A. The operator A is called injective,
if Ker A = {0}, and it is called surjective if In A = F.

— The unit operator of a Banach space F will be denoted by I or Ig.

— For n € N* we denote by L(n,C) the algebra of complex n x n matrices, and
by GL(n,C) we denote the group of invertible elements of L(n,C).

— By a neighborhood we always mean an open neighborhood, if not explicitly
stated to be anything else.

— If U is a set in a topological space X, then U always denotes the topological
closure of U in X (and not the complement).
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Notation

— By C°-functions or functions of class C° we mean continuous functions. If T

is a subset of C and M is a subset of a Banach space, then we denote by
CM(T) or by (C%)M(T) the set of all continuous functions f : T' — M.

If U C Cis an open set, U # (), and E is a Banach space, then a function
f:U — E is called C* or of class C¥ on U, k € N* U {oo}, if it is k times
continuously differentiable with respect to the canonical real coordinates of

C.

If U C Cis an open set, U # (), and M is a subset of a Banach space E,
then we denote by (C*)(U) the set of all C*-functions f : U — E such that
f(z) € M for all z € U, and by OM(U) we denote the set of all holomorphic
(Def. 1.1.1) functions f : U — E such that f(z) € M for all z € U.

We set O(U) = O%(U), C*(U) = (C*)(U) and O*(U) = O (U) for each
open U C C and k € N.

If K C Cis a (not necessarily open) set of uniqueness for holomorphic func-
tions (for example, the closure of an open set, or an interval) and F is a
Banach space, then we speak also about a holomorphic function f: K — FE
to say that f is the restriction of an E-valued holomorphic function defined
in a neighborhood of K.

If D C C is an open set with piecewise C!-boundary (Def. 1.4.1), then we
denote by 9D the boundary of D endowed with the orientation defined by
D (Sect. 1.4.1), i.e., D lies on the left side of dD.



Chapter 1

Elementary properties of
holomorphic functions

This chapter is devoted to the basic facts usually contained in a basic course on
Complex analysis of one variable. The difference is that we do this for functions
with values in a Banach space. Many (not all) of these results will be deduced by
the Hahn-Banach theorem from the corresponding scalar fact.

Some care is necessary with respect to the maximum principle. The strong
version, that the norm of a non-constant holomorphic function does not admit
local maxima, is not true in general. For example, it fails for [*° and it is true for
Hilbert spaces.

1.1 Definition and first properties

The notion of a holomorphic function with values in a Banach space can be defined

as in the scalar case by complex differentiability:

1.1.1 Definition. Let E be Banach space, and let U C C be an open set. A function

f:U — FE is called complexly differentiable or holomorphic if, for each w € U,
z—w oz —w

exists. Clearly, then also the partial derivatives of f with respect to the canonical
real coordinates x,y exist, and the Cauchy-Riemann equation holds:

f(w) = g—i(w) = i%(w), w e D. (1.1.1)

The function f’ : U — FE, which is then defined, will be called the complex
derivative or simply the derivative of f.
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The space of all holomorphic functions from U to E will be denoted by
OE ().
1.1.2. From this definition the following facts follow immediately:
— Each holomorphic function with values in a Banach space is continuous.!
~ If U C C is open, E is a Banach space, f,g € OF(U) and «a,8 € O%(U),
then af + B3g € OF(U), and (af + Bg) =o' f +af + 3 g+ Bg on U.
~ If U C Cis open, A is a Banach algebra, and f,g € O4(U), then fg € O4(U)
and (fg)' = f'g+ fg' on U.
~ If U C C is open, E, F are Banach spaces, f € OF(U), and A € OFEF)(U),
then Af € OF(U) and (Ag)' = A’g + Ag’ on U.
— If U C C is open, A is a Banach algebra with unit, GA is the group of

invertible elements of A, and f : U — GA is holomorphic, then f~—! is
holomorphic and (f~1) = —f~1f'f~' on U.

- If U,V C C are open, E is a Banach space, and o : U — V, f: V — FE are
holomorphic, then the composition f o « is holomorphic and

(foa) =d/(f'oa)  onU. (1.1.2)

— If I C R is an interval, U C C is open, F is a Banach space, a : I — U is
differentiable, and f : U — E' is holomorphic, then the composition f o« is
differentiable on I and

(foa) =d(f ca) on I. (1.1.3)

The theorem on uniqueness of holomorphic functions is deeper, but by means
of the Hahn-Banach theorem it can be quickly obtained from the scalar fact:

1.1.3 Theorem. Let D C C be a connected open set, and let z, € D, n € N*, be
a sequence which converges to a point zog € D such that z, # zo for all n € N*.
Further let E be a Banach space, and let f,g : D — E be two holomorphic functions
such that f(zn) = g(zn) for alln € N*. Then f =g on D.

Proof. Let E’ be the dual of E. Then it follows from the theorem on uniqueness
of scalar holomorphic functions that, for all ® € E’, ® o f = ® o g. By the Hahn-
Banach theorem this implies that f = g. O

The same is true for Liouville’s theorem:

1.1.4 Theorem. Let E be a Banach space, let E' be the dual of E, and let f : C — E
be a holomorphic function. Suppose, for each ® € E’, the function ®o f is bounded
on C (which is the case, for example, if the function || f|| is bounded). Then f is
constant.

IThey are even of class C°°, but, as in the scalar case, this can be proved only after the
Cauchy formula is obtained.
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Proof. Tt follows from Liouville’s theorem for scalar holomorphic functions that
® o f is constant for all ® € E’. By the Hahn-Banach theorem this implies that f
is constant. (]

1.2 The maximum principle

The following (weak) version of the maximum principle again can be obtained by
means of the Hahn-Banach theorem immediately from the maximum principle for
scalar holomorphic functions:

1.2.1 Theorem. Let D C C be a bounded open set, let E' be a Banach space, and
let f: D — E be a continuous function which is holomorphic in D. Denote by 0D
the boundary of D. Then

max|£(2)] = mae | £(2)]. (1.2.1)

Proof. Let zy be an arbitrary point in D, and let E’ be the dual of E. Then,
for each ® € E’, the function ® o f is holomorphic and hence, by the maximum
principle for scalar holomorphic functions,

|(@(f(20))| < max [|(®o f)(=)]| < @]l max [[£(2))]-
By the Hahn-Banach theorem, this implies

|/ (z0)] < max || f(2))]|

z€0D
As z was chosen arbitrarily in D, this implies (1.2.1). O
The strong maximum principle

“If a holomorphic function, defined on a connected open set, admits a local
maximum, then it is constant”

is not true for functions with values in an arbitrary Banach space. Indeed, take
the space C? with the norm ||(£1,&2)||max = max{|& ], |€2|} and consider the holo-
morphic function f(z) = (z,1) defined for |z| < 1. Clearly f is not constant but

[ fllmax = 1.
For functions with values in a Hilbert space we have the strong maximum

principle:

1.2.2 Theorem. Let D C C be a connected open set, let H be a Hilbert space, and
let f: D — H be a holomorphic functions such that, for some zy € D and € > 0,

1£Goll = £ for all |z — zo| <. (12:2)

Then f is constant.
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To prove this we need some facts on scalar holomorphic functions, which are
not necessarily contained in a standard course on Complex analysis. We therefore
first present these facts with proofs.

1.2.3 Lemma. Let D C C be an open set, and let p : D — C be a scalar holomorphic
function. Let x,y be the canonical real coordinates on C, and let

92 92
a2 T o2

be the Laplace operator. Then
Alp|? = 4]¢'|. (1.2.3)
Proof. We have

02 92 o (_0 op\ 090 ¢  Bpdp  0%p
. <so </>> oy ¢ Opdp 0%

2 PR PR
Oz el = ox2 (v?) = oz \" Ox + w@x Oz Ox w@x2 Oz Ox SD@IQ

and, in the same way,

o 0P0p Py dpdp P

a2 7 = Gy, TPar Tayay TPy

Since ¢ is holomorphic and therefore, by the Cauchy-Riemann equation,

op 8@ _ 0p 0p
[ d . Y k.
or 3y L G ’ oy’
this implies

6 2 _ = 5 ¥ 5290 /2 —6295 6295
ox 2| | Ox? (9 | | 02 02

and, in the same way,

2 92  %p
ol =2[¢ P+ Pos + oo
9 || ¢’ +soay2 +903y2
Hence
d 92 o’ 0%p _ _
Alpl? = 4l¢')* + w(a s+ 502 i) + (a <+ 502 2> =4|¢'|* + BAp + pAP.

Since Ay = Ap = 0 (real and imaginary part of ¢ are harmonic), this implies
(1.2.3). 0
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1.2.4 Lemma. Let g > 0, and let ¢ be a scalar holomorphic function defined on
the disc |z| < rg. Set

2
1 2
M(r) = o / ’(p(re”) dt for 0 <t <. (1.2.4)
™
0
Then M is of class C* on [0 rol, and
/ |’ |2d\ for 0 <r <. (1.2.5)

| |<r
Here d) is the Lebesgue measure.

Proof. Since the function under the integral in (1.2.4) is of class C*> with respect
to ¢t and 7, it is clear that M is of class C*°, where, by differentiation under the
integral sign, we get

2w
v L [ / d|pl* O 3@?@
M(r)—27T oe o T oy or dt, (1.2.6)

where z,y are the canonical real coordinates on C. Since x(re) = rcost and
y(re) = rsint and therefore

x .
— =cost and —~ =sint,

or or
it follows from (1.2.6) that

2w
_ L[ ey 6|<p|2 <’5|s0\2
0

Now we fix 0 < r < rg, and we denote by S, the circle with radius r centered
at zero. Let 7 : S, — [0,27[ be the function defined by 7(re®) = ¢, 0 <t < 2m.
Then (1.2.7) can be written

) _i/ dlp|? Agl* .
M'(r) = 5 ( 5 (cosor)dT + a9 (sinoT)dr |.

Since, on S, © = rcosor, y = rsinor and therefore
dx|s = —r(sinor)dr and dy‘s r(cos oT)dr,
this further implies that
1 0|¢l|? dlp|?

2mr ox dy
S,
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By Stokes’ theorem this yields

1 9?|p|?

/ —_— - p—
M'(r) = r < D2 dx N dy

|z|<r

d|]?
y

dy/\dx).

Since dx A dy = —dy A dx = dX, this implies
()= 5 [ AlePar
27y '
|z <r
By Lemma 1.2.3 this means (1.2.5). O

1.2.5 Lemma. Let zg € C and r > 0. Let ¢ be a scalar holomorphic function in a
neighborhood of the closed disc |z| < r. Then

2
dt (1.2.8)

27
1 .
(o) < 5 / (20 +re®)
0

and (1.2.8) holds with equality, if and only if, ¢ is constant.

Proof. We may assume that zp = 0. It is clear that (1.2.8) holds with equality if
© is constant.

Assume that ¢ is not constant. Then ¢’ has not more then a finite number
of zeros on |z| < r. Therefore it follows from Lemma 1.2.4 that the function

2m
1 N
M(r') = %/’ga(zo—i—r'e”)’ dt
0
is strictly monotonicly increasing for 0 < ' < r. Since M(0) = |p(20)|?, this

implies that

2
‘ dt. 0

27
1 ,
elal” < 5 [ folzo+ re)
0

Proof of Theorem 1.2.2. Let (-,-) be the scalar product of H. Choose an orthonor-
mal basis {e;};cr of H. Set

fi(z) = (f(2),€;), zeD, jel.

Then each f; is holomorphic and, by (1.2.2),

Yo IHEE =1 )P = IO =D If5(P, |2 = 2] <e.

Jjel jeI
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It follows that

> Ifi(0)

/ S 1 (o) Pt

Jel jel
> /Z‘fg ZO“FE@ ’ dt = Z /|f] Z()+56 ’ dt.
jeI jer
Since, on the other hand, by Lemma 1.2.5,
27
2 1 ity 12 .
|f5(20)]” < 2 | fi(z0 + ™) | at for all j € I, (1.2.9)
0
this implies that
fi(20)]? = /‘fJ zo + e’ )| dt  forall jel.

Again by Lemma 1.2.5 this means that f; is constant for all j € I. Hence f is
constant. (]

Note also the following:

1.2.6 Proposition. Let D C C be an open set, let E be a Banach space, and let
f: D — E be holomorphic. Then || f|| is subharmonic in D.?

Proof. Let zo € D and r > 0 be given such that the closed disc |z — 2| < r is
contained in D. Then we have to prove that

27
1f (zo0)]l < %/Hf(zo +re't)||dt. (1.2.10)
0

Let E’ be the dual of E. Then, for each ® € E’, ® o f is holomorphic. Hence, for
each ® € E’, ® o f is subharmonic. Hence, for each ® € E’,

2
12(f(20))| < 5= /‘(D (20 + e’ )Hdt < ||<I>||—/Hf 20 + re’t) ||dt.
0
By the Hahn-Banach theorem this implies (1.2.10). O

2Recall that a continuous function p : D — R is called subharmonic if, for all zo € D and
r > 0 such that the closed disc |z — zg| < r is contained in D,

1 27
p(z0) < 2—/p(zo+re“)dt.
0
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Therefore the maximum principle stated in Theorem 1.2.1 can be viewed also
as a consequence of the maximum principle for subharmonic functions.

1.3 Contour integrals

Here we collect a number of definitions for later reference.

1.3.1 Definition (C'-contours). A set I' C C is called a connected C!-contour if
there exist real numbers a < b and a C'-function v : [a,b] — C with I’ = y([a, b])
such that:

(i) v/(t) #0 for all a <t < b;
(ii) vy(t) # v(s) for all a < t,s < b with t # s;

(iii) either v(b) # y(t) foralla <t < b

or 1(b) = y(a) and '(b) = +/(a).
Then the function 7 is called a C'-parametrization of I'. If v(b) = v(a), then T is
called closed.

By a (not necessarily connected) C'-contour we mean the union of a finite
number of pairwise disjoint connected C'-contours.

1.3.2 Definition (Piecewise C'-contours). A set I' C C is called a connected piece-
wise C!-contour in each of the following three cases:

(I) There exist real numbers a < b and a C'-function v : [a,b] — C with T =
7([a, b]) such that:

(i) ¥ (t) #0for all a < ¢ < b;
(i1) y(t) # v(s) for all a < t,s < b with t # s;

(iii) 7(b) = (a) and 21 € C\] - 00,0].%

(IT) There exist finitely many real numbers ¢ = ¢; < ... < t,, = b and a continu-
ous function v : [a,b] — C with T’ = y([a, b]) such that:

(i) For each 1 < j < m — 1, the function
Vi 7|[tj,tj+1]
is of class C' on [t;,t;41] and 7(t) # 0 for all t; <t <t;;.
(i) 2%+ e C\] - 00,0] for 1 < j < m — 2.

Vip1 (tiv1)

(iii) y(t) # v(s) for all a < t,s < b with ¢ # s.

3i.e., either " is smooth at (b) = y(a) or I" forms a non-zero angle at v(b) = ~y(a).
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(IIT) If in case (IT) condition (iii) is replaced by

(i) 2(8) # 1(s) for all a < t,5 < b with t £ 5, 7(5) = 7() and 2 €
C\] — 00, 0].

The contour T is called closed, if and only if, v(b) = vy(a).
The function ~ then is called a piecewise C'-parametrization of I.

By a (not necessarily connected) piecewise C'-contour we mean the union
of a finite number of pairwise disjoint connected piecewise C'-contours. Such a
contour is called closed if each connected component is closed.

1.3.3 Definition (Orientation of a contour). First let I' C C be a connected piece-
wise C!-contour.

If v : [a,b] — C and v* : [a*,b*] — C are two piecewise C!-parametrizations
of T, then by definition of a piecewise C'-parametrization, on [a*, b*[, the function
~~1 o 4* is well defined, and, as it is continuous, it is either strictly monotonicly
increasing or strictly monotonicly decreasing. In the first case we call v and ~x
equivalent.

In this way the set of all piecewise C'-parametrizations of I' is divided into
two equivalence classes.

We say that I is oriented if one of these two equivalence classes is chosen. If
this is done, then a piecewise C!-parametrization of I is called positively oriented
if it belongs to the chosen class.

A (not necessarily connected) piecewise Cl-contour I is called oriented if on
each connected component of I an orientation is chosen.

1.3.4 Definition. Let I’ be an oriented piecewise C!-contour, let E be a Banach
space, and let f : ' — FE be a continuous function.

If T is connected and v : [a,b] — C is a positively oriented, piecewise C?-
parametrization of T', then it follows from the substitution rule (which follows as
in the scalar case from the chain rule) that

b

/f(z)dz ::/f('y(z))'y’(t)dt (1.3.1)

is independent of the choice of . Therefore, by (1.3.1) an integral [, f(z)dz is
well defined.

If " is not connected and I'y, ...,I,, are the connected components of I", then

we define n
/f(z)dz:z:/f(z)dz. (1.3.2)
T

—
J r;
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If T is a circle of radius r centered at zy € C and if T' is oriented by the
parametrization y(t) := zg + re, 0 < t < 2, then we define

/ f(z)dz = /f(z)dz =qr 7f(zo + Teit)e“dt. (1.3.3)
r 0

|z—zo|=r

1.3.5 Definition. Let I" be a piecewise C!-contour.

If T is connected and 7 : [a,b] — C is a piecewise C!-parametrization of T,
then it follows from the substitution rule (which follows as in the scalar case from
the chain rule) that

b
| = / I (£)]dt (1.3.4)

is independent of the choice of 7. Therefore, by (1.3.4) a number |T'| is well defined.
If T is not connected and I'y, ..., I, are the connected components of I", then
we define

INES PN (1.3.5)
j=1

The number |T| is called the length of T.

1.3.6 Proposition. Let T’ be a piecewise Ct-contour, let E be a Banach space, and
let f: T — E be a continuous function. Then

fro
F

Proof. We may assume that T' is connected. Let 7 : [a,b] — C be an oriented,
piecewise C!-parametrization of T', and let E’ be the dual of E. Then, for each
® € F' with ||®]| =1,

® ( F/ f(z)dz)

b b
s/ﬂ@@@@»ymwpn;mwjﬂwwﬂ/h«wﬁ=u‘ggWﬂaw

< [T max | £(2)]| (1.3.6)

—‘/é(ﬂ%ﬂﬁ#@ﬂt

@<]fh@DV@MQ

a<t<b

By the Hahn-Banach theorem, this implies (1.3.6). O
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1.4 The Cauchy integral theorem

1.4.1. Let D C C be an open set. We shall say that D has a piecewise C'-boundary
if the boundary of D (in C) is a closed piecewise C!-contour I' (Def. 1.3.2) such
that each point of I is also a boundary point of C \ D.

Let D C C be an open set with piecewise C!-boundary. Then different ori-
entations of I' are possible (more than two if " is not connected). One of these
orientations is of particular interest: The orientation defined by D: This is the
orientation of I' such that D is “on the left” of I' with respect to this orientation.*
In this case, we also say that I' is oriented by D or oriented as the boundary of
D.

By 0D we denote the boundary of D if it is oriented by D.

1.4.2 Theorem (Cauchy integral theorem). Let D C C be a bounded open set with
piecewise C'-boundary, let E be a Banach space, and let f : D — E be a continuous
function which is holomorphic in D. Then

/f(z)dz =0. (1.4.1)

Proof. Let E’ be the dual of E. Then, for each ¢ € E’', ® o f is a scalar function
which is continuous on D and holomorphic in D. Hence, by the Cauchy integral
theorem for scalar functions,

<I>< / f(z)dz> = /@(f(z))dz =0 forall ® e £ (1.4.2)
oD

oD

By the Hahn-Banach theorem this implies (1.4.1). O

1.4.3. Recall that an open set D C C is called simply connected if it is connected
and, for any continuous function v : [0,1] — D with «(0) = (1), there exists a
continuous function

H:[0,1]x [0,1] — D

such that H(0,t) = H(1,t) forall 0 <t <1, H(-,0) =« for all 0 < s < 1 and
H(-,1) is a constant.

We need also the following homotopy version of the Cauchy integral theorem
for functions with values in a Banach space.

4A possible formal definition: We say that D is on the left of T if the following condition is
satisfied: If v : [a,b] — C is a positively oriented piecewise Cl-parametrization of one of the
connected components of T', then €iv/(t) € D for each a <t < b such that v(¢) is a smooth point
of I' and any sufficiently small € > 0.
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1.4.4 Theorem. Let D C C be a simply connected open set, let E be a Banach
space, let f : D — E be holomorphic, and let v;,7, : [0,1] — D be two piecewise
Cl-functions with v,(0) = 75(0) and v,(1) = v5(1).> Then

/ﬂm@»mam:/fmu»%ww. (1.4.3)
0 0

Proof. Let E’ be the dual of E. Then, by the homotopy version of the Cauchy
integral theorem for scalar functions, for each ® € E’,

(/fvl Iz ) O/ﬂb 71 (2)dz
1 1
= [+(sz w0w=¢(/ﬂ%wﬁum0.
0 0

By the Hahn-Banach theorem this implies (1.4.3). |

1.5 The Cauchy formula

1.5.1 Theorem (Cauchy formula). Let D C C be a bounded open set with piecewise
Cl-boundary, let E be a Banach space, and let f : D — E be a continuous function
which is holomorphic in D. Then

Y )
flw) = 3 / mdz, w € D. (1.5.1)
oD

Proof. Let w € D be given. Let £’ be the dual of E. Then, for each ® € E', ®o f
is a scalar function which is continuous on D and holomorphic in D. Hence, by
the Cauchy formula for scalar functions,

(f(w)) = = / (I)(f(z))dz:fb(l, /) dz) for all ® € F'.

211 Z—w 21 z—
oD

By the Hahn-Banach theorem this implies (1.5.1). |

1.5.2 Lemma. Let I' C C be an oriented, piecewise Cl-contour (not necessarily

closed), let E be a Banach space, and let f : T' — E be continuous. Let n € N*
and set 0

Fz:/idg, ze C\T. 1.5.2

&)= | F \ (152)

r

SHere we do not assume that the images v ([0, 1]) and v,([0, 1]) are piecewise C'-contours in
the sense of Definition 1.3.2.
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Then F is holomorphic on C\ T and

F'(2) n/(cf(f))n—i-ldc’ z€ C\T. (1.5.3)
Moreover
|1|1LI100||F( z)| =0. (1.5.4)

Proof. Using the estimate from Proposition 1.3.6, we get

[RACS
F < |I'|m
IE ()] ||<F|C s
As I is compact and therefore
1
lim max — =0,

|z]— o0 ger ¢ —z|”

this implies (1.5.4).
It remains to prove that F' is holomorphic on C\T. Let w € C\ T be given.
We must prove that

1 1
. == ({—w)" n
| — d¢ = 0. 1.5.
i (ST a0 (s
We have
1 1
o w1
z—w (¢ —w)ntt

_ w2 —w) —n(C = 2)" (2 —w)
(z —w)(€ = 2)"(¢ —w)"*!
C—ztz—w)"™ —((=2)"((—2+z—w) —n((—2)"(z —w)
(z —w)(¢ = 2)"(¢ —w)"*!
o (PN =2 — )k = (=) = (4 1)(C = 2)"(z — w)
(z —w)(¢ = 2)"(¢ —w)"*!

_ n+1 (n+1) (C n+1 k( ’LU)k
( w)(¢ — ) (¢ —w)n+t
n+1 (n+1) (C n+1 k( w)ku

(z —w).

(¢—2)" (C w)n

If € > 0 is chosen so small that the disc |z — w| < ¢ is contained in C\ T, this
implies that, for some constant C' < oo,

1 1
(C—z)’; - 1(U<—w)n e Z;)”“ < Clz — v if|z—w|<eand (€T
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By the estimate from Proposition 1.3.6 this further implies

—w)

1 1
== ((—w)" n
| [ (BT ) 0| < Mm@ ~ wl
I

for |z — w| < &, which proves (1.5.5). O
In view of this lemma, the Cauchy formula immediately implies:

1.5.3 Corollary. Any holomorphic function with values in a Banach space is in-
finitely times complexly differentiable (Def. 1.1.1). In particular, it is of class C*°.

Moreover, if D and f are as in Theorem 1.5.1 and if we denote by f(™ the
n-th complex derivative of f in D, then

n! z

fWWO—%W/kpﬁ&HM% w e D. (1.5.6)
aD

1.5.4 Theorem. Let D C C be an open set, and let M be a subset of D such that

there exists a piecewise C*-contour in C with M C T'. Further, let E be a Banach

space, and let f : D — F be a continuous function which is holomorphic on D\ M.

Then f is holomorphic on D.

Proof. Let w be an arbitrary point in M. Set

AE:{zec

|z—w|<5} for € > 0.

It is sufficient to prove that, for sufficiently small € > 0, f is holomorphic on A..

By hypothesis there exists a piecewise C'-contour I' in C with M C I'. En-
larging I' if necessary, we may achieve that w is an “inner point” of T', i.e., that,
for some g9 > 0, the disc A,, is divided by I' into two connected open sets Ajﬂ
and A_ . Moreover, we can choose 0 < & < ¢ so small that the closed disc A, is
contained in D, and the open sets

AF:=A.NAY  and  AZ:=A.NAZ

have piecewise C'-boundaries 9AT and A . Then, by Cauchy’s formula and by
Cauchy’s integral theorem,

1 f(C)dC:{f(Z) if 2 € AZ,
—Zz

2mi ¢ 0 if ze AZ
OAF
and
L[ 1O, e ieeAn
2mi ) (—z )0 if 2 € AT,
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Since the orientation of I' N A, as a part of AT is different from its orientation
as a part of A7, this implies that
1 f(©) .
— —2d( = f A N\T.
v [ Ha—se sean

Ig—wl=e

Since f is continuous on A, this further implies that

% / g(_C)ZdC = f(2) for all z € A,.

|¢—w]=e

In view of Lemma 1.5.2 this proves that f is holomorphic on A.. O

1.6 The Hahn-Banach criterion

1.6.1 Theorem (Hahn-Banach criterion). Let D C C be an open set, let E be a
Banach space, let E' be the dual of E, and let f : D — E be a function. Then the
following two conditions are equivalent:

(i) The function f is holomorphic on D.
(ii) For each ® € E', the scalar function ® o f is holomorphic on D.

Proof. (i) = (ii) is obvious.

Suppose (ii) is satisfied.

We first prove that then f is continuous. Consider an arbitrary point zg € D
and choose r > 0 so small that the disc |z — 29| < r is contained in D. Since, for
each ® € E’, ®o f is holomorphic on D and, hence, ®o f is bounded on |z —z| < 7,

the set
{@(f(z)) ‘ |z — 20| < r}

is bounded for each ® € E’. Since weakly bounded sets are strongly bounded, it
follows that the set {f(z) ||z — 20| < r} is bounded in E, i.e., we have a constant
C < oo such that

If)) <C for all |z — zo| < 1. (1.6.1)

Now let z,, n € N*, be a sequence which converges to zp such that |z, — zo| < r
for all n € N*. From the Cauchy formula, the estimate from Proposition 1.3.6 and
estimate (1.6.1) then it follows that, for all ® € E’,

1 1 1
(- 1e)| =5 [ o(e) (- )
|z—z0|=r
1 1 1
=T |z£nz?;f{:r q)(f(Z))’ Z— 20 B z— Zn’ = T”(I)”C\ZEHZ%\XZT’ Z— 20 B Z— Zn '
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By the Hahn-Banach theorem this implies that

1 1

|£(20) = f(zn)| < 7C max

|z—z0|="

Z2—20 Z—2n|

Hence limy, o0 f(2n) = f(20)-

To prove that f is holomorphic, we again consider an arbitrary point zg € D
and choose r > 0 so small that the disc |z — 29| < 7 is contained in D. As f is
continuous, by Lemma 1.5.2 the function

F(e) = 5 / g(f)zdc, 2= 20l <1,

I¢=z0l=r

is holomorphic. Therefore it remains to prove that f(z) = F(z) for |z — z| < 7.
Let such z be given. Since, for each ® € E’, the function ® o f is holomorphic, it
follows from the Cauchy formula and then from the definition of F' that

oo g [ ase(y [ () -e(re)

[¢—z0l=r [¢—20]=r
for all ® € E'. By the Hahn-Banach theorem this implies that f(z) = F(z). O
We conclude this section with some applications of Theorem 1.6.1.

1.6.2 Theorem. Let D C C be a simply connected open set (Section 1.4.3), let
E be a Banach space, and let f : D — E be holomorphic. Then there exists a
holomorphic function F : D — E such that F' = f.

Proof. Fix z9 € D. Then, for each z € D, we choose a C!-function ~ : [0,1] — D
with v(0) = 2¢ and (1) = 2z and define

F(z) = / FHO) Q).

As D is connected, such a function v always exists, and, as D is even simply
connected, by the homotopy version of the Cauchy integral Theorem 1.4.4, this
definition does not depend on the choice of 4. So F' is well defined. It remains to
prove that F' is holomorphic and F’ = f.

Let E’ be the dual of E. Then, by the corresponding scalar fact, for each
® € E’, the function ® o F' is holomorphic and (® o F')’ = ® o f. By the Hahn-
Banach criterion, Theorem 1.6.1, this means that F' itself is holomorphic, and thus
this implies that F’ = f. O

1.6.3 Lemma. Let D C C be an open set, let E be a Banach space, and let f :
D — E be a function. Let E' be the dual of E, and suppose there exists a sequence
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of holomorphic functions f, : D — E, n € N, such that, for all ® € E’ and each
compact K C D,

lim max H<I><f(z)) - @(fn(z)) H ~0. (1.6.2)

n—oo ze€K

Then f is holomorphic on D.

Proof. From (1.6.2) it follows that ® o f is holomorphic for each ® € E’. Hence,
by Theorem 1.6.1, f is holomorphic. ([l

1.6.4 Theorem. Let D C C be an open set, let E be a Banach space, and let
fn: D — E, n €N, be a sequence of holomorphic functions, which converges,
uniformly on each compact subset of D, to some function f : D — E. Then
f is holomorphic on D, and the sequence of complex derivatives f], converges,
uniformly on each compact subset of D, to f’.

Proof. 1t follows immediately from Lemma 1.6.3 that f is holomorphic. It remains
to prove that f/ converges to f’, uniformly on each compact subset of D. Let
zo € D and r > 0 be given such that the closed disc |z — zp| < r is contained in
D. It is sufficient to prove that
lim max | f'(z) = f.(2)| =0. (1.6.3)
=00 [2—zq|<r
Choose 7’ with r < 7/ such that also the closed disc |z — zp| < r’ is contained in
D. Then, by the Cauchy formula for the complex derivative (1.5.6),

re-ne =g [ 1L

[(—z0|=1"

for |z — zg| < r. By the estimate from Proposition 1.3.6 this implies that

/

o o <r e MQ=R@I
176 = ol <o max WEZROl < e e 1£10) - 100
for |z — z9| < r. As f, converges to f, uniformly on |z — zg| = r/, this implies
15.3.08. O

We already observed that also the holomorphic functions with values in a
Banach space satisfy the Cauchy-Riemann equation (1.1.1). If we additionally as-
sume that the function is continuously differentiable (with respect to the canonical
real coordinates), then, as in the scalar case, the Cauchy-Riemann equation is also
sufficient for holomorphy:

1.6.5 Theorem (Cauchy-Riemann criterion). Let D C C be an open set, let E be
a Banach space, and let f : D — E be a C'-function. Then f is holomorphic, if

and only if,
of _.of

= za—y on D. (1.6.4)
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Proof. We already observed that (1.6.4) is necessary for the holomorphy of f.
Now we assume that (1.6.4) is satisfied. Let E’ be the dual of E. Since f is
of class C1, then it follows from (1.6.4) that, for each ® € E,

o®of) _ (o))

D.
ox dy on

Hence, ® o f is holomorphic for all ® € E’, and it follows from the Hahn-Banach
criterion, Theorem 1.6.1, that f is holomorphic. (Il

1.7 A criterion for the holomorphy of operator
functions
1.7.1 Theorem. Let D C C be an open set, let E, F' be Banach spaces, let A: D —

L(E,F) be a holomorphic operator function. Then the following two conditions
are equivalent:

(i) A is holomorphic on D.
(ii) For each vector x € E, the vector function Az is holomorphic on D.

Proof. (i) = (ii) is obvious.

Assume (ii) is satisfied.

We first prove that then A is continuous. Consider an arbitrary point zy € D
and choose r > 0 so small that the disc |z — 29| < r is contained in D. Since, for
each € E, Az is holomorphic on D and, hence, Az is bounded on |z — 2zo| < 7,
the set

{A(z)m ‘ |z — 20| < 7“}

is bounded for each x € E. By the Banach-Steinhaus theorem, it follows that the

set
{A(z) 2 — 2] < r}

is bounded in L(E, F), i.e., we have a constant C' < oo such that

A(z)]| < C for all |z — zo| < 1. (1.7.1)

Now let z,, n € N*, be a sequence which converges to zp such that |z, — zo| < r
for all n € N*. From the Cauchy formula, the estimate from Proposition 1.3.6 and
estimate (1.7.1) then it follows that, for all x € E,

y\A(z0>x—A(zn)xy|=217TH / A(z)x( LI )dz

zZ—2z29 Z—2Zn

|z—z0|=r

1 1

zZ—2y Z—2n

<rC|z|| max
|z—z0|=r
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Hence
1 1

| A(20) — A(2n)|| < 7C max

|z—zo|=r

2—20 Z2—2n]|

which further implies that lim,_,.c A(zn) = A(z0).

To prove that A is holomorphic, we again consider an arbitrary point zy € D
and choose r > 0 so small that the disc |z — zg| < r is contained in D. As A is
continuous, by Lemma 1.5.2 the function

F(z):= 2%” / ?(_Cidg, |z — 20| <7,

[¢—z0|=r

is holomorphic. Therefore it remains to prove that A(z) = F(z) for |z — zo| < r.
Let such z be given. Since, for each x € E, the function Ax is holomorphic, it
follows from the Cauchy formula and then from the definition of F' that

A(z)x = 2%” / ?(E)jd( = (217” / ?Eid()x =F(z)z

[¢—=0|=r [¢—20|=r
for all x € E. Hence A(z) = F(z2). O
1.8 Power series
1.8.1. Let F be a Banach space, and let
Z an(z — 20)", 20 € C, (1.8.1)
n=0

be a power series with coefficients a,, € E. The series (1.8.1) is called convergent
in a point ¢ € C if the series of vectors

Z an (¢ — 20)"
n=0

converges in F (with respect to the norm), and it is called absolutely convergent
in ¢ eCif

> llanlll¢ = zo|™ < oo.

n=0
1.8.2 Theorem (Abel’s lemma). Let E be a Banach space, and let

o0

Z(z — zo)"an zo € C, (1.8.2)

n=0
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be a power series with coefficients a,, € E. Set
1

p= .
limsup {/Jlan]
n—oo

If |C — 20| > p, then the series (1.8.2) does not converge in ¢. If | — zo| < p, then
the series (1.8.2) converges absolutely in . Moreover, then, for all r < p,

(1.8.3)

o0

max [¢ — Go|"[|an| < oo (1.8.4)

—20l<
n=0 |¢=2ol<r

Proof. First let | — z9| > p. This means that

¢ = 2o/ limsup [lan||'/™ > 1,
n—oo

ie.,
limsup Ja, ¢ — 20| > 1.
n—oo

Hence the sequence a,, (¢ — o)™ does not converge to zero.
Now let 7 < p be given. Then

1/n

rlimsup ||a, ||/ < 1.

n—oo
Choose g with

rlimsup {/||lan| < ¢ < 1.
n—oo

Then we can find ng € N such that

Ty ||anH <gq for all’rLZnO,

It follows that
o0 oo
ma. a — (It < "< oo. O
> e fallc Gl <3
n=0 n=0

1.8.3. The number p € [0, oo] defined by (1.8.3) is called the radius of convergence
of the power series in (1.8.1).

1.8.4 Theorem. Let E be a Banach space, let

o0

Z(z —20)" zo € C, (1.8.5)

n=0

be a power series with coefficients a,, € E, and let p be the radius of convergence
of it. Then:
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(i) The power series
oo

Zn(z — 20)" ta, (1.8.6)

n=1

also has the radius of convergence p.

(ii) The function defined by

f(Q) = i(C—ZO)”an, 1€ — 20| < p, (1.8.7)
n=0
is holomorphic on the open disc |z — z9| < p, and
PO =S (20 a1 0l < (1.88)
n=1
(iii) If f is the holomorphic function defined by (1.8.6), then
ap = %, n € N. (1.8.9)

Proof. Part (i): By definition (1.8.3) of the radius of convergence, assertion (i) is
equivalent to the equality

1 1
limsup ¥/Jlan]]  limsup "/nflan]
n—oo n—oo

But the latter relation follows (for example) from the fact that the scalar power
series

oo oo
D lanli(z=20)"  and > nllag(z - z0)""
n=0 n=1

have the same radius of convergence.
Part (ii): From (1.8.4) it follows that the sequence of partial sums

N
Za"(z_zo)nv N eN,
n=0

converges to f, uniformly on each compact subset of the disc |z — z9| < p. By
Theorem 1.6.4 this implies that f is holomorphic and that the sequence of partial
sums

N
Znan(z—zo)"*l, N e N,
n=1

converge to f’, uniformly on each compact subset of the disc |z — zg| < p.
Part (iii): This follows, as in the scalar case, by repeated application of (i)
and (ii). O
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1.8.5 Theorem. Let D C C be an open set, let E be a Banach space, and let
f D — E be a holomorphic function. Let zo € D and let r > 0 such that the
open disc |z — zo| < r is contained in D. Then there exists a uniquely determined

power Series
o0

Z(z - ZO)nfn

n=0
with coefficients f, € E with radius of convergence such that

oo

FO =) (C—20)"fn (1.8.10)

n=0

for all ¢ in a neighborhood of zg. Then

_ M=) 1 / NON ,
=TT T o o zi®e  Joral0<r<m (1.8.11)
|z—z0|=1"

Moreover, then p > r and (1.8.10) holds for all ¢ wtih | — zo| < 7.

Proof. The statement on uniqueness and the first equality in (1.8.10) follows from
part (iii) of Theorem 1.8.4. To prove the remaining statements, we define vectors
by

1 f(z)

=L / ol nen, (1.8.12)
|z—zo|=1"

where 0 < ' < r. (By the Cauchy integral theorem this is independent of the

choice of 7’.) It remains to prove that, for |¢ — zo| < r, the series

o0

> (¢ = 20)" fa

no

converges to f({). Let such ¢ be given. Then, as in the scalar case, we choose r’/
with |¢ — 29| < v’ < r and obtain by means of the Cauchy formula

_ 2 FE) g L ERENIC)
MO=5 | ptmam | I Cmea

|z—zo|=1" |z—z0|=1" z

1 — (¢—2\" [(2)
% / Z(ZZQ) Z*Zodz

|z —zo|=r' "=°

o0

i(c—zw"(;m. / (Zfiz;LHdZ>:Z(C—Zo)nfn-

n=0 n=0

|z—z0|=r
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1.9 Laurent series

1.9.1 Theorem. Let zg € C, let 0 < r < R < o0, let E be a Banach space, and
let f be an E-valued function defined and holomorphic in r < |z — zg| < R. Then
there exists a uniquely determined Laurent series

o0

> (z=20)"fn (1.9.1)

n—=—oo

with coefficients f, € E such that

- n "<R <R 1.9.2
3 oAbl <o frrsr <R<R (192
and

FO= Y (C—20)"fn forr<|C—z|<R (1.9.3)

Moreover, then

1 f(z)
= omi T on+l . 1.9.4
|z—20|=p

Proof. Uniqueness and formula (1.9.4): Suppose we have a Laurent series with
(1.9.2) and (1.9.3). Then, for each r < p < R,

1 f(2) (z — z0)F _
2mi / (z — 2p) "+1 Z 27m / (z — zp)t1 4z = fa-
|2—Sol=p |2—Sol=p

Ezxistence: We define a function fy on the disc |z — 29| < R as follows: If a
point z with |z2— 29| < R is given, then we choose a number p with |z —2p| < p < R
and set

f+( (1.9.5)

C - z
C zo|=p
By the Cauchy integral theorem, this definition is independent of the choice of p,
and, by Lemma 1.5.2, f1 is holomorphic on the disc |z — 2| < R. Furthermore,
we define a function f_ on |z — 29| > r as follows: If a point z with |z — zg| > r is
given, then we choose a number p with |z — zg| > p > r and set

f_(z)z—% / g(_ozdg. (1.9.6)

I¢—zol=p
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Again, by the Cauchy integral theorem, this definition is independent of the choice
of p, and, by Lemma 1.5.2, f_ is holomorphic on |z — 29| > r and

‘ l‘im f-(z)=0. (1.9.7)
Then
f&)=7f12)+ f-(2) for r < |z — 20| < R. (1.9.8)

Indeed, let z with r < |z — 29| < R be given. Then we choose p4 and p_ with
r < p_ < |z — 20| < p+ < R and obtain, by the Cauchy-Integral formula,

s 1O 4 L ISP
10=57 | Fha-gm [ LLa-ne+re

[¢—zol=p+ |¢—zol=p—

As f4 is holomorphic on the disc |z — 29| < R, it can be represented by a
power series (Theorem 1.8.5):

o0

fe(z)=> (z2=20)"fo,  |z—20| <R, (1.9.9)

n=0
where, by Abel’s lemma (Theorem 1.8.2),

oo

max |z — 2o|"||full <00 for R’ < R. (1.9.10)
n:OlZ?ZOlSR/

Now we consider the function

F(z):=f_ (zo + i) ;

which is defined and holomorphic for 0 < |z| < 1/r. As lim,| f-(2) = 0,
this function extends continuously to 0 with F(0) := 0. By Theorem 1.5.4, this
extended F is holomorphic on the whole disc |z| < 1/r. Therefore also F' can be
represented by a power series

oo
1
F(z)=> 2"F,, |a|< = (1.9.11)
n=1
where
oo
max |z|"||F,| < oo, r’ > (1.9.12)
— 1zl

Set fn, = F_,, for n < —1. Then it follows from (1.9.11) and (1.9.12) that

ra=r(A) =2 () B X earn Eowls

=% n=1 =% n=-—00
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and
—1 o] 1 n
Z max |z — zo|"|| full = Z max | Fnll < oo, r’ >
|z—z0|>71" 1/|z—z0|<1/7" | Z — 20
n=—oo n=1

Together with (1.9.8), (1.9.9) and (1.9.10) this shows that the Laurent series

o0

Z (Z - ZO)nfn

n=—oo

has the required properties. O

1.10 Isolated singularities

1.10.1. Let D C C be an open set, let E be a Banach space, and let f be an
FE-valued holomorphic function with the domain of definition D. Then, as in the
scalar case, a point zg € C is called an isolated singularity of f, if {zo}UD is open
and zg & D.

1.10.2. Let 25 € C, let U be a neighborhood of zj, let E be a Banach space, and
let f:U\ {2z} — E be a holomorphic function. (In other words, in the sense of
Section 1.10.1, we assume that zg is an isolated singularity of some holomorphic
function f.) Further let € > 0 be the maximal radius such that the punctured disc
0 < |z — 20| < € is still contained in U.

By Theorem 1.9.1 then there exists a uniquely determined Laurent series

o)

Z (Z - ZO)nfn

n=—oo

which converges in 0 < |z — z| < € such that

o0

f(Q) = Z (C—20)"fn  forall0<|(—z<e. (1.10.1)

n=—oo

This Laurent series will be called the Laurent series of f at z, the formula
(1.10.1) will be called the Laurent expansion of f at z, and the vector f_; will be
called the residuum of f at zg. As in the scalar case one sees that, for each ¢ > 0
such that the punctured disc 0 < |z — zo| < € is contained in U,

fo1= % / f(z)dz. (1.10.2)
|z—z0|=¢

The isolated singularity zo will be called a removable singularity of f if f, =0
for all negative integers n. If, moreover, fo = 0, then it will be called a zero of f.
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If zg is a zero of f and f # 0 in a neighborhood of zg, then (by uniqueness of the
Laurent expansion) there exist positive integers n with f,, # 0 — the smallest of
them will be called the order of the zero zj.

The isolated singularity zo will be called a pole of f if there exists a negative
integer p such that f, # 0 and f, = 0 for all integers n < p — 1. The integer p
then is called the order of the pole zg.

If zy is not a removable singularity of F' and not a pole of f, then z; is called
an essential singularity of f.

1.10.3 Theorem (Riemann’s theorem on removable singularities). Let E be a Ba-
nach space, and let zy be an isolated singularity of an E-valued holomorphic func-
tion f defined in a deleted neighborhood of zy. If f is bounded, then zy is removable
as a singularity of f.

Proof. Let
F2)= > falz—20)"

n—=—oo

be the Laurent series of f at zy. We have to prove that f,, = 0 for n < —1. Let
n < —1 be given. Choose r > 0 sufficiently small. Then

C:= sup |f(2)| < o0,
0<|z—z0|<T

and, by (1.9.4),

2mi z — zp)" T
|z—z0|=¢

fnzi. / (f(z)dz for0 <e <.

In view of the estimate given in Proposition 1.3.6, this implies

1 C
|fn|§6|Z£nZaUm|x=6|f(z)\W§€—n for0<e<r
As n < —1, this further implies that f,, = 0. |

1.10.4 Theorem. Let E be a Banach space, and let zg be an isolated singularity of
an E-valued holomorphic function f defined in a deleted neighborhood of zg. Then
the following two conditions are equivalent.

(i) There exist constants C' < oo and ¢ > 0 such that, for some ¢ > 0,

clz — 2N < |If(2)] € Clz — 20|V for 0 < |z —zo| < e. (1.10.3)

(ii) The Laurent series of [ at zg is of the form

f(z) =" falz—20)"  with fx #0. (1.10.4)
n=N
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Proof. First assume that (i) is satisfied. Then

__ I
g(z) T (Z*ZQ)N

is a holomorphic function in a deleted neighborhood of zy which is bounded from
above and below. This implies, by Riemann’s Theorem 1.10.3, that g extends
holomorphically to zg, where g(z¢) # 0. Let

oo

9(2) =3 (2 = 20)"gn

n=0
be the potential series of g at zy. Then

o0 o0

f(z) = (z=20)"g(2) = Z(Z —20)"" N gy = Z (z = 20)" gn—n

n=0 n=N

is the Laurent expansion of f. As go = g(z0) # 0, it is of the form (1.10.4).
Now we assume that condition (ii) is satisfied. Then

6(2) = L S o N = S (- a0)
(Z ZO) n=N n=0

is holomorphic in a neighborhood of zy, where g(z9) = fn # 0. Choose € > 0 so
small that
HfNII

<llg@l <2lfnll - for Iz = 20l <e.
As f(2) = (z — 20)V g(z)7 then (1.10.4) holds with C' = 2|fx| and ¢ = |fn|/2. O

1.10.5 Theorem (Residue theorem). Let D C C be an open set with piecewise
Cl-boundary OD, let z1,...,z, be a finite number of points in D, let E be a Ba-
nach space, and let f : D\ {z1,...,2,} — E be a continuous function which is
holomorphic in D. If we denote by reszjf the residuum of f at z;, then

i res, [ = % /f(z)dz (1.10.5)
i=1 8D

Proof. Choose € > 0 so small that the closed discs |z — z;| <&, 1 < j < n, are
pairwise disjoint and contained in D. Then by the Cauchy integral theorem

/f dz—Z | e

\z zj|=¢

By (1.10.2) this implies (1.10.5). O
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1.10.6. Let D C C be an open set, and let E be a Banach space. If we say that
f is an E-valued holomorphic function with isolated singularities on D, then we
mean that there is a set Z C D, which is discrete and closed in D (i.e., without
accumulation points in D), such that f is an E-valued holomorphic function on
D\ Z. In this case we say also that f : D — F is holomorphic with isolated
singularities. The points from Z (which then are isolated singularities of f in the
sense of Section 1.10.1) are called the singular points of f, and the points from
D\ Z are called the regular points of f.

If all singular points of f are either removable or poles, then f is called
meromorphic on D.

1.11 Comments

Except for Theorem 1.2.2 about the strong maximum principle in Hilbert spaces
(which is possibly new), the results of this chapter are coa.



Chapter 2

Solution of Ju = f and
applications

In complex analysis of several variables, the inhomogeneous Cauchy-Riemann
equation is an important tool. For results in Complex analysis of one variable
this equation is also important, but it is missing in many standard books.

For the aim of the present book, the inhomogeneous Cauchy-Riemann equa-
tion is basic. Therefore we dedicate the present chapter to it and its applications.
We give these results with full proofs, not using the corresponding scalar fact, even
if it would be possible to deduce a result by the Hahn-Banach theorem from the
corresponding scalar fact.

Moreover, here we present also some results, which are specific for scalar
functions, with full proofs, as these results are difficult to find in the literature.

2.1 The Pompeiju formula for solutions of Ju = f
on compact sets

In this section, E is a Banach space.
Let D C C be an open set, and let u : D — E be a C'-function. Then we

use the abbreviation
ou = gu _1(0u + z%
S0z 2\0r Oy

where 2,y are the canonical real coordinates on C and z = z +iy. The function du
is called the Cauchy-Riemann derivative of u. By the Cauchy-Riemann criterion
(Theorem 1.6.5), u is holomorphic if and only if du = 0. This implies that, for all
holomorphic functions h : D — C,

d(hu) = hou. (2.1.1)
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Moreover, if ¢: D — C is a C''-function with compact support, then partial inte-

gration gives
/ 0(Ou) d\ = 7/ (Op)udA
D D

where d\ is the Lebesgue measure.
This can be used to define du in the sense of distributions if w is not of class
C'. In this book, we are interested only in the following special case:

2.1.1 Definition. Let D C C be an open set, and let v : D — E be a continuous
function. We say that u has a continuous Cauchy-Riemann derivative if there exists
a continuous function v : U — E such that

/Dgpud/\:—/D(@p)ud/\ (2.1.2)

for all C*°-functions ¢: D — C with compact support. It is clear that this function
v then is uniquely determined. We call it the Cauchy-Riemann derivative of v and
denote it by du.

Instead of “u has a continuous Cauchy-Riemann derivative” we say also “Ou
is continuous”. Moreover, if © and f are two continuous functions, then writing
“Ou = f” we mean that “u has a continuous Cauchy-Riemann derivative and

ou = f.

2.1.2 Proposition. Let D C C be an open set, let u : D — E be a continuous
Junction such that Ou is continuous on D, and let ¢ : D — C be a C!-function.
Then also O(yu) is continuous on D, and

A(pu) = (9Y)u + You.
Proof. For all C'*°-functions ¢: D — C with compact support, we have

/ (@) + $du) dX = / o(B)ud) + / oDudA

D D D

= [ w@upuar— [auui
D

= [ e@uuir— [@owuir— [ o@opuar

D D

=- / () d.

p O

2.1.3 Lemma. Let D C C be an open set, let u: D — E be a continuous function
such that also Ou is continuous on D, and let K C D be compact. Then there



2.1. The Pompeiju formula 31

exists a sequence (Up)nen of CP-functions u, : D — E such that, uniformly on
K, both

lim u, =u and lim Ju, = Ou.
n—oo n—oo

Proof. Choose an open neighborhood V' of K which is relatively compact in D.
Further, let ¢ be a real non-negative C'*°-function on C with

/(pd)\ =1 and  p(z)=0 if |z|>1.
C

Now let a continuous map u : D — E be given such that Ou is also continuous on
D. Then we set

ug(z)szfvga(ZEC)u(C)d)\(C), 2eC, e>0. (2.1.3)

Since

EQ/LP(Z_C)d/\(C)zl for all z € C and cp(z_c):O if |z—¢|>e¢,
c €

9

then, for sufficiently small ¢ > 0 and all z € K,

uee) —u(a)| < 2* @(Z‘C)|u<<>—u<z>|dA<<>< max  u(¢) - u(z)|-

3 CEV,|z—(|<e

Since V is compact, it follows that lim,_ou. = u, uniformly on K. Since also Ou
is continuous on D, then, in the same way, we get lim. (0u). = du, uniformly on
K. This completes the proof, because du. = (Ou).. Indeed, differentiating under
the integral in (2.1.3) we obtain

Bu) == [ 3o 225 Jut ax0) =22 [ e (2 a9y an(o),

v

which implies, by (2.1.2),

@) =2 [

\4

(-2\ 5 .
o(£55) @ 130 = @) 0
2.1.4 Theorem (Cauchy formula for continuous functions). Let D be a bounded
open set with piecewise Ct-boundary 0D, and let w : D — E be a continuous
Junction such that also Ou is continuous on D. Moreover we assume that Ou admits
a continuous extension to D. Then

O, 1 [Tu) Z
u(z) = 2m,/c_zdc [ 200, zep. (2.1.4)
oD D
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Proof. First consider the case when u is of class C! in a neighborhood of D. Let
z€ D.Set D. ={¢ € D ||{—z| > ¢} for sufficiently small € > 0. Then, by Stokes’
formula, with { = z + iy,

W(Q) [ u(©) ()
/c—zdc‘/c—zd”’“/c—zdy
OD. OD. o

D,
9 u(Q) [0 u) o [ (0u)(Q)
= [ GO i [ N = —|—21/ )
D. D. D,
Since
, w(@) .. [ ulQ) : u(@) .. [ u(Q) ,
il{l(l)/c_zd(—/c_de—El% / C_ZdC—/g_zal(—Qmu(z),
0D, oD |¢—z|=e oD

this implies (2.1.4).

Now we consider the case when u admits a continuous extension u to a
neighborhood of D such that 4 is also continuous in this neighborhood. Then by
Lemma 2.1.3 we can find a sequence (uy,)nen of C*°-maps u,: C — E such that,
uniformly on D, both

lim w, =v and lim Ou, = Ou.

n—oo n—oo
Since the required equation(2.1.4) is already proved for each wu,, passing to the
limit, it follows for w.

Finally, consider the general case. Then we take a sequence of bounded open
sets (D, )nen With piecewise C'-boundary such that D,, C D and

O, [ B, [
Jim /C ng_aég_zdg o /C dA(©) / HELax)

n—oo n—oo

0Dy, Dy

Since the required equation(2.1.4) is already proved for each u’ p.» bassing to the
limit, it follows for w. ! O

2.1.5 Theorem. Let D C C be an open set, and let u : D — E be a continuous
function such that Ou =0 on D. Then u is holomorphic.

Proof. Since the assertion is local, we may assume that D is a disc and u is defined
and continuous in a neighborhood of D and that du = 0 in this neighborhood.
Then the second integral in the Cauchy formula (2.1.4) vanishes, i.e.,

_ 1 [ u@
u(z)—%/c_zdg, z€D.
oD

Now the assertion follows by differentiation under the integral. ]
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2.1.6 Definition. Let 0 < a < 1. First let M C C be an arbitrary set. For any
function f : M — E, we set

1/ llar.0 = sup [[f(2)]l
zeEM

and

[£(2) = f(w)]
I fllara = I laro + Z’weskl/[lf”z#w w .
We write || f||, instead of ||f||5; o and [|f]|, instead of || f|5,, if it is clear which
set M we mean.
A function f : M — F is called (locally) Holder continuous with exponent
« if, for each point zg € M, there exists a neighborhood U of 2y such that

I fllvans,a < oo-

The space of all such functions will be denoted by (C*)¥(M). Instead of Hélder
continuous with exponent o we say also Holder-a continuous or of class C* .

A function f : M — FE will be called Hdlder continuous if there exists
0 < a < 1 such that f is Holder continuous with exponent «.

Sometimes, for practical reasons, continuous functions will be called Holder
continuous functions with exponent 0 (although they are not Holder continuous).

Now let D C C be an open set, and k € N* U {oco}. Recall that (C¥)F(D)
denotes the space of all E-valued C* functions on D.

A function f: D — E is called of class C**t® or simply C**< if f is C* on D
and, moreover, the partial derivatives of order k of f are of class C% on D. The
space of all such functions will be denoted by (Ck¥**)¥(D).

2.1.7 Definition (Pompeiju operator IIp). Let D C C be a bounded open set.
Then, for any bounded continuous function f: D — E and each z € C, we define

(Opf)(=

C—z

The operator IIp will be called the Pompeiju operator on D.

2.1.8 Lemma. Let d < oo. Then there exists C' < 0o such that

[t - |0 < e ullogls - w (21.5)
[¢l<d

for all z,w € C.
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Proof. Let z,w € C be given. Since, for z = w, the left-hand side of (2.1.5) is zero,
we may assume that z # w. We have

Nl

|z—w]

/ |<—z\ O/ / |dqd?"—ﬁlz—w\ (2.1.6)

[¢—z|<i|z—w| [(—z|=r

Moreover, if [( — z| < 1|z — w|, then |¢ — w| > %]z — w|. Therefore

dA(Q) 2 T w
/ TP | ao=Fk-ul

[¢—z|<3z|z—w]| [¢—z|<z|z—w]|

Together with (2.1.5) this yields

e e O R P

(-2 (—w
|C—2l<}lz—w]

Hence

w’ d\(¢) < 37|z —w]. (2.1.7)

min(|¢—z,|¢—w|)< 4 |z —w|

It remains to estimate

1 1
I(zw) = / S LS

[¢l<d
min(|¢—z|,[¢—w])>F|z—w]
If |¢ — w| > 1|z — w], then
€ =2 <IC—wl+ |z —w| <[ —w[+2|¢ - w| = 3[¢ —w|

and therefore

‘ 1 ‘ |z — w| 1|z —w|
_ — <= 3
(—z (—w| [(—2[|C—w] = 3|¢—¢|
Hence
|z —w| / dA(¢) _ |z —w / dA(¢)
I < < — 2
()= =27~ 3 [k
[¢l<d 2d>[C—z|> 5 |z—w|

I¢—z2[>3|z—w]

2d 2d

_M/ / @dr_lﬂz_@” / dr
3 r2 3 r

Yz—w| [¢—z|=r 5lz—w]
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Since
2d d 1
:
/ ™~ log(2d) ~log (5= — wl) = log(4d) ~ log |= — wl
L |z—w|

< log(4d) + |log |z — w|

this yields

27 log(4d)

1 <
(2w) < %

2m
|z —w| + ?\z—leog\z—wH.

Together with (2.1.7) this implies that there is a constant C' < oo (depending on
d) satisfying (2.1.5) O
2.1.9 Theorem. Let D C C be a bounded open set, let I1p be the Pompeiju operator
(Def. 2.1.7), and let f : D — E be a bounded continuous function.

(i) Then there exists a constant C < oo such that
|oHE) - Mo fw)|| < Cle - wijlog 2wl (218)
for all z,w € C. In particular,

HDf‘Be N (©H*D). (2.1.9)

0<a<l1
ii) If, moreover, f is of class C* on D, k € N*, then
(i)

HDf‘DE N (C*)E(D). (2.1.10)

0<a<l1

Proof. Part (i) follows immediately from Lemma 2.1.8.

We prove part (ii). Let k¥ € N be given. Since the statement is local, it is
sufficient to prove that, for each n € D, there exists a neighborhood U C D of n
such that

HDf‘ e () (CPW). (2.1.11)
v O0<a<l
Let n € D be given. Choose a C*°-function y with compact support supp x C D
and x = 1 in a neighborhood U C D of . We have

Ipf=Tp(xf)+Op((1—x)f).

Since (1 — x)f = 0 in U, by differentiation under the integral, we see that
IIp((1 = x)f) is C* in U. Therefore it remains to prove that IIp(xf) is C*T
in U.
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As x has compact support, the substitution { — ¢ + z gives

TJp (—=2 Q0 ¢

for all z € U. Again by differentiation under the integral, we see that II(x f) is of
class C¥ on U, where, for all v, € N with 0 < v 4 u < k,

o7 (p(xf)) [ RUALT0T) PN
W(z :7;/«:W(<+2)T, zeU. (2.1.12)

So it is proved that IIp(f) is of class C¥ on U.

It remains to prove that the derivatives of order k of IIp(xf) belong to
No<aci(C*)E(U). Let v, € N with v 4+ p = k be given. By the substitution
¢ — ¢ — z, from (2.1.12) we get

" (Ip(xf)) 1 / VT (xf) , . dA(C)
C

Oz Oy (2) = T Ox" Oy C—z’

zeU. (2.1.13)

Since supp x is a compact subset of D,

- ortu (Xf)
Ci= gmax N gavayr ©f <o
and, by (2.1.13),
0" (Ip (xf)) 0" (Ip(xf)) 1 1
| axuay# (Z) - axl’ayu (U}) < C/ ‘ (-2 - (—w ’ d)\(c:)

for all z,w € U,. Now it follows again from Lemma 2.1.8 that

9V (Ip(x.f))
oxv Oy+

belongs to Ny o<1 (C*)E(U). O

2.1.10 Theorem. Let D C C be a bounded open set, and let f : D — E be con-
tinuous and bounded. Then IIpf (Def. 2.1.7) has a continuous Cauchy-Riemann

derivative on D and ~
Jlipf=f on D. (2.1.14)

2.1.11 Remark. It is easy to see that the assertion of Theorem 2.1.10 is true for
any open set D and any continuous f such the integral

£(0)
‘Ac—zﬁ“)
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converges (without the hypotheses on boundedness of D and f). We will not use
this generalization. Instead, in Section 2.3,we will use an approximation argument
to deduce from Theorem 2.1.10 the solvability of du = f for arbitrary continuous
functions f on arbitrary open sets. For that we need the Runge approximation the-
orem presented in Section 2.2. First, in the next section, we give a first application
of Theorem 2.1.10 and Theorem 2.1.9.

Proof of Theorem 2.1.10. By Definition 2.1.1 we have to prove that

[ esin== [ @mpr i

for any C*°-function ¢: D — C with compact support in D. Let such ¢ be given.
Then, by the Cauchy formula (Theorem 2.1.4), ¢ = IIp(d¢). Interchanging the
order of integration, this yields the required relation:

[eran= [ mo@aran= [ (-1 [ L29aq) s ane)

I O N A C N WV
= [@a0 (3 [ L5 ave)) axo =~ [ oo an )

2.1.12 Theorem (Regularity of 9). Let D C C an open set, let f : D — E be of
class C* on D, k € NU {oo}, and let u : D — E be a continuous function with
continuous Cauchy-Riemann derivative such that

ou = f on D.

Then
we [ cH(D).

O0<a<l

Proof. Since the assertion is local, we may assume that both D and f are bounded.
Then it follows from theorems 2.1.10 and 2.1.9 that there exists

NS ﬂ ckte(D) with v =f on D,

0<a<l1

namely v = Hpf. Then d(u —v) = f — f = 0 on D. By Theorem 2.1.5 this
means that u — v is holomorphic. As holomorphic functions are of class C*° and
v € Nycac: CFT(D), it follows that u € My ,oq CFT(D). O

2.2 Runge approximation

In this section E is a Banach space.
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2.2.1 Theorem (Mergelyan approximation). Let D C C be a bounded open set
with piecewise C*-boundary, and let f : D — E be a continuous function which is
holomorphic in D. Then, for each € > 0, there exists a neighborhood U of D and
a function f € OF(U) such that

If(z) = f(2)] <e for all z € D. (2.2.1)

Proof. Take a finite number of real non-negative C'°° functions xi,...,Xn oOn
C with sufficiently small supports supp x; (how small, we say below) such that
>7—1 xj = 1 in some neighborhood of 9D. Set

fi(z) = ! /aDXj(Of(OdC, z€C\ (suppx; N9D), 1<j<n.

T 2mi (—=z

Differentiation under the sign of integration shows that each f; is holomorphic on
C\ (supp x; N 9D). From Cauchy’s formula we get

ifj(z) 1 Z?Xj(C)f(C)dC_ 1 £(0)
Jj=1

aC=f(z)  (2.22)

~ 2mi aD (—z 2w op C— 2

for all z € D. By Proposition 2.1.2, d(x, f) = (9x;)f is continuous on D. There-
fore, by the Cauchy formula for continuous functions (Theorem 2.1.4) and by
Definition 2.1.7 of IIp,

x;if = fi +p(d(x;f)) on D.

Since x; f is continuous on D and, by Theorem 2.1.9, also IIp (E(Xjf)) is contin-
uous on D, this implies that each f; admits a continuous extension from D to
supp x; N 0D, which we denote by ij. Then it follows from (2.2.2) that

F(2)=fP(z)+...4+ fP(z)  forall z € D.

Since 9D is piecewise C! and each fjB extends to a holomorphic function outside
supp x; N 0D, now we can choose the supports supp x; so small that, by small
shifts, for each j, we can find a neighborhood U; of D and a function fj € OE(U;)
such that - _ . o

1£7(2) = fi ()] < ~  forzeD.

Setting U = U N...NU, and f: fl +...+ fn, we complete the proof. [

2.2.2 Theorem (Runge approximation). Let D C C be a bounded open set (possibly
not connected) with piecewise C*-boundary, and let f : D — E be a continuous
Sfunction which is holomorphic in D.

(i) If C\ D is connected, then f can be approximated uniformly on D by E-valued
polynomials.
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(ii) If C\ D is not connected and Uy, ...,Uy are the bounded connected com-
ponents of C\ D, then for any choice of points py € Uy,...,pn € Un, the
function f can be approzimated uniformly on D by E-valued rational func-
tions which are holomorphic on C\ {p1,...,pn}.

Proof. Denote by U, the unbounded connected component of C \ D and set
R = max_ 7 |2|. We now proceed in 4 steps:

Step 1. First consider the case when f is holomorphic in some neighborhood
of the disc |z| < R. Then the potential series of f at zero gives a uniform approx-
imation of f on this disc by E-valued polynomials. Since D is contained in this
disc, this completes the proof in this case.

Step 2. Now we consider the case when f is of the form

flz)= b ¢ with b € E and € € Ux. (2.2.3)

Then we choose a continuous curve 7: [0,1] — C\ D with y(0) = ¢ and |y(1)| > R
and take 0 =tg < t; <...<t, =1 such that

lti1—t;]<  min [z—~(t)] for1<j<n.
zeD,0<t<1

Then, for 1 <j < N,
b b 1

_ . — . ’ y(t)—y(ti—1)
z fY(t]) z ’Y(tj_l) 1-— W

b ii(ww>—vm;n)k

z=tj-1) fm \ 2= (ti)

where the series converges uniformly in z € D. Therefore, for each j, the function
b/(z — v(tj)) can be approximated uniformly on D by E-valued polynomials in
1/(z —y(tj—1)). It follows that the map

b b

z—&  z—(to)
can be approximated uniformly on D by E-valued polynomials in
1 1
e t) 21
Since (1) > R and therefore, as we saw in step 1,
1
z—~(1)
can be approximated uniformly on D by polynomials, this completes the proof for
functions of the form (2.2.3).
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Step 3. Here we consider the case when (CLE is not connected, Uy,...,Un
are the bounded connected components of C\ D, p; € Uy,...,py € Uy are the
chosen points and, for some 1 < 5 < N, f is of the form

b
f(z) = ¢ with b € E and £ € U;. (2.2.4)
Then we choose a continuous curve v : [0,1] — U; with v(0) = ¢ and (1) = p;,,
and, in the same way as in step 2, we see that

b
z=£

can be approximated uniformly on D by E-valued polynomials in

1

)
z—pj

which completes the proof for functions of the form (2.2.4).

Step 4. Consider the general case. By Theorem 2.2.1 we may assume that f
is defined and holomorphic in some neighborhood V of D. Take a bounded open
set G with C!-boundary such that D C G and G C V. Then, by Cauchy’s formula,

- d D.
211 BGC_Z C7 Z€

If C\ D is connected, then passing to Riemann sums, this shows that f can be
approximated uniformly on D by linear combinations of functions of the form

SO
2= €

with £ € G C Uy. Since, as we saw in step 2, such functions can be approxi-
mated uniformly on D by E-valued polynomials, this completes the proof if C\ D
is connected. If C \ D is not connected, Uy,...,Ux are the bounded connected
components of C\ D and p; € Uy,...,py € Uy are the chosen points, then the
same argument with Riemann sums yields that f can be approximated uniformly
on D by linear combinations of functions of the form

f©)
z=¢

with £ € 0G C Uy WU U... U Uy. Since, as we saw in steps 2 and 3, all such
functions can be approximated uniformly on D by E-valued rational functions from
O((C\ {p1,...pn}, E), this completes the proof also if C\ D is not connected. O
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2.2.3 Remark. In the approximation Theorems 2.2.1 and 2.2.2, the hypothesis that
0D is piecewise C' can be essentially weakened. But then the proof of Theorem
2.2.1 (which is used in the proof of Theorem 2.2.2) becomes more difficult. Let us
mention also the following approximation theorem without any hypothesis on the
smoothness of the boundary:

2.2.4 Corollary (to Theorem 2.2.2). Let D C C be a bounded open set which
consists of a finite number of connected components D1, ..., Dy, each of which is
star shaped, such that D; N\ Dy =0 for j # k, and let f : D — E be a continuous
function which is holomorphic in D. Then f can be approzimated uniformly on D
by E-valued polynomials.

Proof. Since each Dj is star shaped, we have points z; € D; with z; —|—i(z—zj) €D;
for all z € D; and (consequently) z; + t(z — z;) € D; for all z € D;. Then, for
each € > 0,

fg(z)::f(zj+(1—5)(z—zj)), zeﬁj, 0<t<1,
is holomorphic in a neighborhood of D and liH(l] max || f(z) — fe(2)]| = 0. Now we
€=V zeD

can continue as in the proof of Theorem 2.2.2 or we can apply Theorem 2.2.2 to
a slightly larger open set with C'-boundary. (Il

2.3 Solution of Ju = f on open sets

In this section F is a Banach space.

By Theorem 2.1.10, for each bounded open set D C C and each bounded
continuous function f :— FE, there exists a continuous function u : D — E with
Ou = f. As a first important consequence of the Runge approximation Theorem
2.2.2 now we get the following stronger result:

2.3.1 Theorem. Let D C C be an arbitrary open set, and let f : D — E be an
arbitrary continuous function.

(i) Then there exists a continuous function u: D — E, which has a continuous
Cauchy-Riemann derivative on D (Def. 2.1.1), such that

ou=f on D.

(ii) Any such function u is automatically of class C* on D, for all 0 < a < 1.
Moreover, if f € (C*)P(D), k € N*, then any such function u is automati-
cally of class (C**)E on D, for all 0 < a < 1.

Proof. Part (ii) follows from Theorem 2.1.12. We prove part (i). Take a sequence
(Dy)nen of open sets D,, C D such that:
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e For all n € N, D,, is bounded, D,, has C* boundary, D,, C D,,.1, and each
bounded connected component of C\ D,, (if there is any) contains at least
one point of C\ D.

e U, D,=D.

Then, by Theorem 2.1.10, there is a sequence (i, )nen of continuous functions
Upn: D, — E with continuous Cauchy-Riemann derivatives such that 0w, = f ‘ D,

Now we construct inductively a sequence (un)neny of continuous functions
U, : D, — E such that also

Iun = f|p, (2.3.1)
for all n € N, and moreover
1
max |un(2) — un—1(2)| < — (2.3.2)
2€Dp_2 2n

ifn>2.
Beginning of the induction: ug := g, uy := Uy.

Hypothesis of induction: Assume, for some k € N*, we already have continuous
functions w, : D,, — E, 0 < n <k, such that (2.3.1) holds for all 0 < n < k, and
(2.3.2) holds if 2 < n < k.

Step of induction: Since Oup = f = Upy1 on Dy, the difference uy — g4y is
holomorphic on the neighborhood Dj, of Dj_;. As each bounded connected com-
ponent of C\ Dj_; contains at least one point of C\ D, we can apply the Runge
approximation Theorem 2.2.2 and obtain a holomorphic function h : D — E with

1

= —Rh(O)] < .
zérgi;}i1 |uk(z) Upt1(2) (O| = okl

Setting ug41 1= Uk41 + h|Dk+1, we obtain a continuous function ug41 : Dgy1 — F
such that (2.3.1) and (2.3.2) holds also for n = k + 1.

The sequence (up)nen is constructed.

By (2.3.2), there is a well-defined continuous function u : D — E such that,
for each k € N, the sequence (uy,),,~, converges to u, uniformly on Dy. It remains
to prove that Ou = f on D. It is sufficient to show this on each Dj. Let k € N be
given. Then, uniformly on Dy,

u—up = Ilm (u, —u).
k k<n—oo ( " k)
Since the functions u, —ug, k < n, are holomorphic on Dy, and the uniform limits

of holomorphic functions are holomorphic, it follows that u — uy is holomorphic
on Dy. Hence du = duy = f on Dy. O
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2.4 (OPF-cocycles and the Mittag-Leffler theorem

In this section E is a Banach space.

Let U C C be an open set. Recall that, in this book, for U # ), we denote
by OF(U) the space of E-valued holomorphic functions on U. For U = {), we set
OE(U) = {0}, where 0 is the zero vector of E.

2.4.1 Definition. Let D C C be an open set, and let & = {U;};cr be an open
covering of D. Denote by C1(U, OF) the space of families f = {fjr}jrer with
fin € OF(U; nU). A family f = {fir}jker € CHU,OF) will be called an
U, OF)-cocycle if, for all j,k,1 € I with U; N U, NU; # 0,

fik + fro = fi on U; NU,NU,. (2.4.1)
Note that then, in particular,
fik = —frj on U; NU and fi; =0 on Uj. (2.4.2)
The space of all (U, OF)-cocycles will be denoted by Z* (U, OF). If the covering U
is not specified, then we speak also about OF-cocycles over D.

We call such cocycles also additive to point out the difference from the multi-
plicative cocycles, which we introduce in Section 5.6. Due to P. Cousin the elements
of Z1(U,OF) are also called additive Cousin problems. To call the elements of
ZY (U, OF) problems is due to the fact that cocycles were first studied in Complex
analysis of several variables, where the elements of Z*(U, OF) give rise to problems
which not always have solutions. In the case of a single variable however, these
problems always can be solved. This is the statement of the following theorem.

2.4.2 Theorem. Let D C C be an open set, let U = {U;}jer be an open covering
of D, and let f € Z'(U,OF). Then there exists a family {h;};cr of functions
h; € OF(U;) with

fjk = hj — hy Ont NUy (243)

for all j,k € I with U; NUy, # 0.

Proof. Take a C*°-partition of unity {x;};er subordinated to the covering {U;};er
and define C*-maps ¢; : U; — E setting

0 == Xulv

vel

Then, by (2.4.2),

Y — Pk = _ZXV(ij _fuk) = ZXV(fjl/+ka) = ZXufjk = fjk:-

vel vel vel
Since the functions f;; are holomorphic, i.e., P) fir =0, it follows that

dpj = Opi, on U; NUy.
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Hence there is a well-defined C**-function ¢ : D — E with ¢ = ¢, on U;. Now,
by Theorem 2.3.1, we can solve the equation ¢ = Ju with some C°°-function
u:D — E. Setting h; = ¢; —u on Uj;, we complete the proof. (I

For many purposes the special case of Theorem 2.4.2 is sufficient when the
covering consists only of two sets:

2.4.3 Corollary (to Theorem 2.4.2). Let D1, Dy C C be two open sets with Dy N
D> # 0. Then, for each holomorphic function f : Dy N Dy — E, there exist
holomorphic functions f; : D; — E, j = 1,2, such that

f=h+f on Dy N Ds.

An example of such an application is the Mittag-Leffler theorem:

2.4.4 Theorem (Mittag-Leffler theorem). Let D C C be an open set, let Z be a
discrete and closed subset of D, and assume that, for each w € Z, a holomorphic
function f,, : C\ {w} — E of the form

-1

fw(z): Z (z_w)nfwn

n=—oo

is given. Then there exists a holomorphic function f : D\ Z — E such that, for
each w € Z, fy, is the principal part of the Laurent expansion of f at w.

Proof. Since Z is discrete and closed in D, we can find a family {U,}., € Z of
open subsets of D such that, U, is a neighborhood of w and U, NU, = () if w # v.
Set D1 = UwEZ Uy and Dy = D\ Z. Then Do N Dy is the disjoint union of the
punctured sets Uy, \ {w}. Therefore, setting

9= fw on Uw\{w}’7

we obtain a holomorphic function g : D; N Dy — E. Now from Corollary 2.4.3 we
get holomorphic functions h : D; — E and f: Dy — E such that g = f + h on
Dy N Dy. Then, for all w € Z,

fffw:gfhffw:*h OnUw\{w}a

and therefore f,, is the principal part of the Laurent expansion of f at w. O

2.5 Runge approximation for invertible scalar functions
and the Weierstrass product theorem

Recall that, in this book, for a non-empty open set U C C, we denote by O*(U) the
multiplicative group of holomorphic functions f : U — C*, where C* := C\ {0}.
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2.5.1. Recall that an open set D C C, which is already connected, is simply con-
nected (Section 1.4.3) if and only if C\ D is connected (see, for example, Theorem
13.11 in [Ru]). Together with the Riemann mapping theorem this implies the fol-
lowing facts, which will be used throughout this book without further reference:

(i) For a connected, bounded open set D C C with C!-boundary the following
are equivalent:

e D is simply connected.

e C\ D is connected.

e The boundary of D is connected.

e The boundary of D is homeomorphic to the unit circle.

(ii) Let D C C be a bounded, connected open set with piecewise C*-boundary,
which is not simply connected, let Uy, Uy, ..., U, be the connected compo-
nents of C \ D, where Uy is the unbounded connected component of C \ D,
and let I'; be the boundary of U;, 0 < j < m. Then Uy,...,U, and
DUU,U...UU,, are simply connected, and the contours I'g,T'1,..., ),
are homeomorphic to the unit circle.

2.5.2 Lemma. Let D C C be a connected bounded open set with piecewise C'-
boundary. Suppose D is not simply connected. Let T'g,T'1,..., Ty, be the connected
components of the boundary of D where Ty is the boundary of the unbounded
component of C\ D. Suppose, for each 0 < j < m, a smooth! point aj of I'; is
chosen. Let U be a neighborhood of D. Then there exist simply connected open sets
Uy, ..., Uy such that:

o The sets Uy, ...,U,, are pairwise disjoint,
e DCUyU...UU, CU,
and, for all1 < j <m,
e a; €Uj,
o InUo=T;\{a;},
o U; NUy consists of precisely two connected components.

Proof. Since I'y and I'; are parts of the piecewise C!-boundary of D and D is
connected, first we can find a contour -, diffeomorphic to the closed interval
[0,1], which starts at a1, transversally to I';, which ends at some smooth point
by € Ty, transversally to I'g, and which lies, except for these two points, in D.
Then T'; \ y1 = 'y \ {a1} is still connected (as I’y is homeomorphic to the
circle). Since D is connected, this easily implies that D \ -1 is still connected.

11t is not important that a; is a smooth point of I'j, but this simplifies the arguments in the
proof.
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Next, since also I'y is piecewise C!, since 7; meets Iy and T'; transversally
and D \ 7 is connected, we can find a contour 7, which is diffeomorphic to [0, 1],
which starts at as, transversally to I's, which ends at some smooth point by € T'g,
transversally to I'g, and which lies, except for these two points, in D \ ;.

Proceeding in this way, we get pairwise disjoint contours ~1,...,7, and
smooth points by,...,b, of Ty such that D\ (y1 U...U",,) is connected and,
foreach 1 <j < m:

e ~; is diffeormorphic to [0, 1];
e 7; meets I'; transversally at a;;

e ~; meets I'y transversally at b;

e 7 \{a;,0;} € D.
Then Ty UT; U...T U~ U... U,y is connected. Since this is the boundary of
C\(D\ (mU...U%p)), it follows that C\ (D \ (71 U...U~y)) is connected.
Hence D\ (1 U...U"y,) is simply connected.

Since each +; is diffeormorphic to [0, 1] and meets I'o UT'; U... T, transver-
sally, now we can find a neighborhood V' of D such that, for 1 < j < m, there
exists a closed contour 7; in V' which is diffeomorphic to the open interval ]0, 1]
and such that v; C 7}. Since D\ (y1 U...U"p,) is simply connected, by shrinking
V', we may achieve that also

Up=V\(mU...Uvn)

is simply connected. Moreover, we can achieve that V' has C'-boundary which is
met transversally by ~{,...,7,,. Choose € > 0 sufficiently small and set

Uj:{zEW' min|z—w|<5}.
wE’Y;

Since «;} is diffeomorphic to [0, 1], then it is clear that U; is simply connected and
U; \7; is the union of two simply connected open sets V; and V;. ([

2.5.3 Definition. Let D C C be a bounded, connected open set (possibly, not
simply connected) with piecewise C! boundary. Let ' be the union of some of the
connected components of the boundary of D. Assume I' is oriented (not necessarily
by D). Let f: T — C* be a holomorphic function?. Then we define

indp f := % ];((ZZ)) dz.

r

(2.5.1)

2By this we mean the following: If K C C is a set of uniqueness for holomorphic functions
(as, for example I', or the closure of an open set), then we say that f : K — E is a holomorphic

function if f = ﬂl” where f is a holomorphic function defined in some neighborhood of K. By
f’ then we mean the function f/|F .
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We recall, with proofs, some well known facts about this index.

2.5.4 Proposition. Let D C C be a bounded, connected open set with piecewise C*
boundary 0D.

(i)

(i)

(iii)

(iv)

Let T' be the union of some of the connected components of 0D, oriented
somehow. Let f,g: T — C* be two holomorphic functions. Then

indp(fg) =indp f +indp g. (2.5.2)

Let f : 0D — C* be a holomorphic function which admits a meromorphic
extension to D, let N be the number of zeros of f in D, counted according to
their multiplicities, and let P be the number of poles of f in D, also counted
according to their multiplicities. If 0D 1is oriented by D, then

indgp f =N —P. (2.5.3)

Let f : 0D — C* be a holomorphic function which admits a meromorphic
extension to (C\D)U{oo}, let N be the number of zeros of f in (C\D)U{oo},
counted according to their multiplicities, and let P be the number of poles of
fin (C\ D) U {oo}, also counted according to their multiplicities. If 8D is
oriented by D, then

indpp f=P—N. (2.5.4)

Let T' be the union of some of the connected components of 0D, oriented
somehow. Then, for any holomorphic functions f : 0D — C*, the index
ind,, f is an integer.

Proof. (i)

indr(fg) = 5 - / / To

_ 1 L[4, . .
_27m'/f(z) dz + / dz =indp f +indpg.
r r

(ii) By Cauchy’s theorem we may pass to small circles surrounding the zeros

and poles of f. Therefore, we may assume that, for some w € D, the function f is
of the form f(z) = (2 —w)"g(z), where x € Z and g is holomorphic and invertible
on D. Then kK = N — P and

F&__n g6 o

flz) z—w o g(2)

where ¢’ /g is holomorphic on D. Hence

d
indan:%/D  _k=N-P
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(iii) Set
D*{zéC‘iE(C\D)U{OO}},

and let 9D* be the boundary of D*, oriented by D*. Let —9D be the boundary of
D oriented by C\ D. Since 1/z maps a neighborhood of C\ D biholomorphically to

a neighborhood of D" \ {0} and since biholomorphic maps respect the orientation,
—dD is mapped by 1/z to dD*. Therefore

. R N AN O D S I (VO R Y
oo I =50 | T ¥ 2m / D
9D oD*

Setting

this implies that

. 1 F'(2) )

indgp f = ~omi / F2) dz = —indyp. FF =P — N,
aD*

where the last equality follows from part (ii) of the proposition, as F(z) = f(1/2)

admits a meromorphic extension to ﬁ*, where N is the number of zeros of F' and

P is the number of poles of F', both counted with multiplicities.

(iv) We may assume that D is simply connected, and T is the boundary of
D (Section 2.5.1). Let a holomorphic function f : I' — C* be given. Choose a
neighborhood U of T' such that U has a C!'-boundary, C \ U consists of not more
than two connected components, and f is defined, holomorphic and invertible on
U. By the Runge approximation Theorem 2.2.2, we can find a sequence p, of
rational functions which converges to f uniformly in U. We may assume that
pn # 0 on U. Then the functions p/, /p, converge to f’/f uniformly on T'. Hence

indp f = lim indp p,,
n—oo
This implies that indp f is an integer, as, by part (ii) of the proposition, each
indp py, is an integer. (Il

Recall that (see, e.g., Theorem 13.11 in [Ru]), for each simply connected open
set D C C and any f € O*(D), there exists g € O(D) with ¢4 = f. In the case
of connected open sets, which are not simply connected, this is not always true.
There are topological obstructions, described in the following theorem.

2.5.5 Theorem. Suppose D is connected but not simply connected. Then for any
holomorphic function f: D — C* the following are equivalent:

(i) There exists a holomorphic function g : D — C with e9 = f on D.
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(ii) For any connected component ' of the boundary of D,
Proof. Let I'g,...,I';, be the connected components of the boundary of D such

that Ty is the boundary of the unbounded component of C\ D.
If condition (i) is fulfilled, it is clear that

1 "(z 1
indpjf—m/‘;((z))dz—m g (2)dz=0, 0<j<m.
Ty r;
Now assume that (ii) is satisfied.
For 1 < j < m, we fix a smooth point a; of I';. Let Uy, Uy, ...,U, be the
sets from Lemma 2.5.2. Since the sets U; are simply connected, then we have
holomorphic functions g; : U; — C such that

e =f|, 0<j<m. (2.5.5)

It follows that
€79 =1 on UyNU;, 1<j<m. (2.5.6)

Since a; € U; and I'; NUp =T'; \ {a;}, we can choose two different points b;,c; €
['; N U; N Uy, so that one of the two closed connected contours I'; and I'} with
the boundary points b; and c¢;, into which I'; is divided by b; and ¢;, is contained
in U; and the other one is contained in Uy, say I‘; C Uj and I‘;-’ C Uyp. Moreover,
by changing the notation if necessary, we may assume that, with respect to the
orientation of I';, the point b; is the starting point of I'; and the endpoint of I'/,
and c¢; is the starting point of I'} and the end point of I';. Then

/ 6(2)dz = gi(c;) — g;(b;) and / ab()dz = golby) — gole;) . (25.7)
1"3. 1";.’

Let Cj, B;j be the two connected components of U; NUy. By changing the notation
if necessary, we may assume that ¢; € C; and b; € B;. Then it follows from (2.5.6)
that, for some integers k;,n;

9j — 9o = k;2mi on Cj and gj —go =n;2mi on Bj. (2.5.8)

Now, from condition (ii) we get

_ L (/=) 1 [F(?) 1 [ f(z) ,
= 5= B dz_2m'/f(z) dz+27ri/f(z) dz, 1<j<m.
r T T

J J J
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Since e97 = f|U_ for all 0 < j < m, this implies that
J

1

1
!/ / .
=5 gj(z)dz—l—%/go(z)dz, 1<j<m.
I

ry
Together with (2.5.7) and (2.5.8) this gives
0=g;(¢;) = 95(bj) + 90(bj) = go(cj) = (kj —ny)2mi,  1<j<m.
Hence kj = n; and therefore, again by (2.5.8),
95 = 9o OHCjUBj:Uijo, 1§j§m

Since D C Uy UU; U...UU,, and the sets Uy,...,Un, are pairwise disjoint, it
follows that there is a global holomorphic function g on D with g = g; on Uj,
0 < j < m, such that (by (2.5.5) ¢ = f on D. O

2.5.6 Theorem (Runge approximation for invertible functions). Let D C C be

a bounded open set with piecewise C'-boundary 0D, and let f : D — C* be a
continuous function which is holomorphic in D.

(i) IfC\D is connected, then f can be approzvimated uniformly on D by functions
from O*(C).

(i) If C\ D is not connected and Uy, ..., Uy, are the bounded connected compo-
nents of C\ D, then for any choice of points p1 € U, ...,pm € Up, f can be
approzimated uniformly on D by functions from O*(C\ {p1,...,pm}).

Proof. By the Mergelyan approximation Theorem 2.2.1, we may assume that f is
holomorphic in some neighborhood of D. Let Dy, ..., Dy be the connected compo-
nents of D, and let U,i, ..., U™ be the bounded connected components of C\ Dy,

(if there are any), and let Fi be the boundary of U,z endowed with the orientation
defined by D, i.e., I'j, = —9U}. Set (cf. Def. 2.5.3)

Jo_ )
Ky, = 1ndF§c f.

By hypothesis, there are points p? € Uf N{p1,-..,Pm} Then, by Proposition 2.5.4

ind,, ((z - pf)“if(z)) ~0.
Therefore, by Theorem 2.5.5, there exists a holomorphic function g : D — C with
eI = (z —p?)“if(z) forall 2 € D.

By the Runge approximation Theorem 2.2.2, the function g can be apporoximated
uniformly on D by functions from O((C \ {p1,... ,pm}). Hence the function

f(z) = _ e
(= = pf)r
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can be approximated uniformly on D by functions of the form

h(z
egk(z) = 76 ( ) -
(2 — pf)"
with h € (’)((C \ {pl,...,pm}), which belong to O*((C\{pl,...,pm}). O

2.5.7 Theorem (Weierstrass product theorem). Let D C C be an open set, let Z
be a discrete and closed subset of D, and assume that, for each w € Z, a number
my, € N* is given. Then there exists a holomorphic function f: D — C such that
f(z) #0 for z€ D\ Z and, for each w € Z, f has a zero precisely of order my,.

Proof. Choose a sequence of open sets D,, C D, n € N, such that, for all n € N:
e D, has piecewise C'-boundary 0D,,.
e D, CDy,.
e U yD,=D.

e Each bounded, connected component of C\ D,, contains at least one point

of C\ D.

Next we inductively construct a sequence (f,)nen of functions f,, € O(D)
such that, for all n € N:

(a) If w € ZN D, , then f, has a zero at w precisely of order m,,.
(b) If z€ D\ (ZN D,,), then f,(z) # 0.
(¢) If n > 1, then we have ¢, € O(D) such that

fo=04¢en)fn1 (2.5.9)
len(2)] < 2-n(1 + max \fn,1(<)|) forall 2 € Dy_y.  (2.5.10)
CEanl
~ We start with fy(2) :== (z —w1)™1 ... (2 — wy)™s where {wy,...,ws} =
ZNDy. Now we assume that functions f, ..., f,._; € O(D) are already constructed

such that (a), (b), (c) hold for 0 < n < k—1. Then we set u(z) = (z—wy)™1 ... (2—
w,.)™wr where {w1,...,w,} := ZNDjy1. Then uf,;_l1 # 0 on Dj,_,. Hence, by the
Runge approximation Theorem 2.5.6, we can find g € O*(D) such that the function
er = guf, ', — 1 satisfies (2.5.6) for n = k. It remains to set f, = (1 + ex)fr—1.
The sequence (fn,)nen is constructed.

Now from property (c) of the sequence (fy,)nen it follows that |fr+1 — fn] <
2"~ on D,,. Hence this sequence converges uniformly on the compact subsets

of D. Set f := lim f,. It remains to prove that f has precisely the prescribed
n—oo
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zeros. It is sufficient to check this over each D,,. Let n € N be given. By (2.5.9)
and (2.5.10), then for all m > n and z € D,,,

fm(2) = fu(2) H (1+¢;(2)) = ful(2) exp < Z log (1 +5j(z)))
j=n+1 j=n+1
and hence,
flg = fuly exp (j_zn;llogu +e5) Dn) :

Since, over | D,,, the function f, has precisely the prescribed zeros, this implies
that, over D,,, the function f has precisely the prescribed zeros. (I

2.6 OF-cocycles with prescribed zeros and
a stronger version of the Mittag-Leffler theorem

In this section E is a Banach space.

The Weierstrass product Theorem 2.5.7 makes it possible to improve the
results of Section 2.4. Now we can consider additive Cousin problems (see Def.
2.4.1) with prescribed zeros and solve them with the same prescibed zeros. This is
the topic of the present section.

2.6.1 Definition. By a data of zeros we mean a pair (Z,m) where Z C C and
m = {my, }we- is a family of integers m,, > 0.

Let such a data be given.

Then, for an open set U C C, we denote by (’)g_’m(U) the space of functions
f € OF(U) such that, for each w € ZNU, f has a zero of order > m,, at w. The
functions from OF , (U) will be called OF ,, -functions on U.

For E = C we write also Oz, (U) instead of OF, (U).

Now let D C C be an open set, and let & = {U;};cr be an open covering
of D. Then we denote by Cl(u,(’)gm) the space of all f € C1(U, OF) (see Def.

2.4.1) such that fjz € OF, (U; NUy) for all j,k € I. Further we set (see again
Def. 2.4.1)

ZNU,0%,,) = Z2' U, 0%)n CH U, OF )

The elements of Z'(U, OF ) will be called (U, OF ,,)-cocycles. If the covering U
is not specified, then we speak also about Ogm-cocycles over D.

There is the following improvement of Theorem 2.4.2:

2.6.2 Theorem. Let D C C be an open set, and let (Z,m) be a data of zeros such
that Z N D is discrete and closed in D. Let U = {U,};er be an open covering
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of D, and let | € Zl(U,Ogm). Then there exists a family {h;};er of functions
hj € Ogm(Uj) such that, for all j,k € I with U; N Uy # 0,

fjk = hj — hy, on Uj NUy, 7 kel (261)

Proof. By the Weierstrass product Theorem 2.5.7, there exists a holomorphic func-
tion ¢ : D — C such that ¢(z) # 0 for z € D\ Z and, for each w € Z, ¢ has

a zero precisely of order my,. Setting fjr = fir/p, j,k € I, then we obtain an
U, OF)-cocycle, and from Theorem 2.4.2 we obtain a family {h;},c; of functions
hj € Og,m(Uj) such that, for all j,k € I with Uj N Uy 7é @,

J?jkzﬁj—%k on U;NU;, j kel
It remains to set h; = gaﬁj. d

We point out again the special case of coverings by two sets:

2.6.3 Corollary (to Theorem 2.4.2). Let D C C be an open set, and let (Z,m) be a
data of zeros such that Z N D is discrete and closed in D. Let D1, Dy C D be two
open subsets with D = Dy U Dy and D1 N Dy # 0, and let [ € Ogym(Dl N Ds).
Then there exist f; € Ogm(Dj), j=1,2, such that

f=h+/f on D1 N Ds.

By means of this corollary, now we obtain the following version of the Mittag-
Leffler theorem, which is stronger than Theorem 2.4.4, but also due to Mittag-
Leffler (see the historical remarks on page 116 of [Re]?®)

2.6.4 Theorem (Mittag-Leffler theorem). Let D C C be an open set, let Z be
a discrete and closed subset of D, and assume that, for each w € Z, a number
my € N and a holomorphic function f,, : C\ {w} — E of the form

m.,

fu(z)= Y (2= w)" fun

n=—oo

are given. Then there exists a holomorphic function f: D\ Z — E such that, for
each w € Z, f,, is the first part of the Laurent expansion of f, i.e., the difference
f = fw has a zero of order > m,, at w.

Proof. Since Z is discrete and closed in D, we can find a family {Uy}y € Z of
open subsets of D such that, U,, is a neighborhood of w and U,, NU, = () if w # v.

3This is the only book where we found the scalar case of Theorem 2.6.4. There, this theorem is
called Anschmiegungssatz von Mittag-Leffler. We do not know whether there is a corresponding
commonly used name in English. Therefore, we call it just Mittag-Leffler theorem.
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Set D1 = J,yez Uw and Dy = D\ Z. Then Dy N D; is the disjoint union of the
punctured sets Uy, \ {w}. Therefore, setting

9=fo onUy,\{w}

we obtain a holomorphic function g : Dy N Dy — E. Since D1 N Dy N Z = (),
the function g can be interpreted as a function from OF, (Dy N D). Then from
Corollary 2.6.3 we get functions h € (’)gm(Dl) and f € OF(Dy) such that g =
f+hon DiNDsy. It follows that

f—fo=9g—h—fu=-h OnUw\{w}'

Since, for all w € Z, the function h has a zero of order > m,, at w, this completes
the proof. 0

2.7 Generalization of the Weierstrass product theorem

Recall that the theory of cocycles with prescribed zeros, which was developed in
the preceding Section 2.6, is based on the Weierstrass product Theorem 2.5.7. In
turn, this theory allows us to prove the following generalization of the Weierstrass
product theorem:

2.7.1 Theorem. Let D C C be an open set, and let Z be a discrete and closed subset
of D. Suppose, for each w € Z, a neighborhood Uy, C D of w and a holomorphic
function f, € O*(Uy \ {w}) are given such that U, N Z = {w}, w € Z.

(i) Then there exists a family of holomorphic functions h,, € O*(Uy), w € Z,
and a holomorphic function f € O*(D\ Z) such that

hwfow =f on Uy \ {w} forallw e Z. (2.7.1)

(ii) Moreover, for any given family of numbers m,, € N*, w € Z, we can achieve
that, for each w € Z, the function hy, — 1 has a zero of order > my,.

The claim of the classical Weierstrass product Theorem 2.5.7 is the special
case of part (i) of Theorem 2.7.1 obtained by setting f.,(z) = (z — w)™».

Proof of Theorem 2.7.1. Let some family m = {my }yez of numbers m,, € N*
be given. Choose small discs V,, around w such that V,, C U,, w € Z, and
VunV, =0 for all w,v € Z with w # v. Then it is sufficient to find holomorphic
functions h,, € O*(V,,), w € Z, and a holomorphic function f € O*(D \ Z) such
that

hwfo=Ff  onVy\{w} for all w e Z. (2.7.2)

Indeed, since f is holomorphic and invertible on D \ Z and f, is holomorphic
and invertible on U, \ {w}, then it follows from (2.7.2) that each h, admits a
holomorphic extension to Uy, which is invertible on U,, \ {w} and satisfies (2.7.1).
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Set ry = indyy, fu for w € Z (cf. Def. 2.5.3). By the Weierstrass product
Theorem 2.5.7, we can find a holomorphic function ¢ : D\ Z — C* such that, for
each w € Z, ¢ has a zero precisely of order k,, at w. Set

fw:@_lfw on Vw\{'lU}, wE .

Then, by Proposition 2.5.4,
indavw fw = indavw gp_l + indavw fw=0.

Hence, by Theorem 2.5.5, for each w € Z, we can find a neighborhood ©,, of 9V,,
and a holomorphic function g,, : ©,, — C with

edv = fw on O, .

Since the sets V', are pairwise disjoint, we may assume that also the sets ©,, are
pairwise disjoint. Moreover, we may assume that w & ©,,. Set

D= |J(V,u®,) and D2=(D\ U Vw)u U ..

wezZ wezZ wezZ

Then
DinDy= | ] 6,
weZ

and, since the sets ©,, are pairwise disjoint, setting
g = gu on Oy,

we obtain a holomorphic function g : D1 N Dy — C. Since Z N Dy N Dy = B, this
function can be interpreted as a function from Oy, (D1ND2) (see Def. 2.6.1). Then
from Corollary 2.6.3 we get functions g; € Oz, (D;), j = 1,2, with g = g1 + g2
on D1 N D2. Set

f=e?? on Dy and hy =€ 9 on V,,.

Since, for each w € Z, the function g; has a zero of order > m,, at w, then, for
each w € Z, also the function h,, — 1 = e79* — 1 has a zero of order > m,, at w,
and we have

hw fw = e_glgofw =e eI =ped?2 =f on DoNV, =0,

on O,. It remains to observe that from this relation it follows that f admits a
holomorphic and invertible extension to D\ Z, and this extension satisfies (2.7.2).
O

We point out also the following generalization of the Weierstrass product
theorem, which follows from Theorem 2.7.1:
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2.7.2 Theorem. Let D C C be an open set, let Z be a discrete and closed subset
of D, and assume that, for each w € Z, a number m,, € N and a holomorphic
function f, € O*(Uy \ {w}) are given such that U, N Z = {w}, w € Z, and fy
has a pole or a removable singularity at w. Let

fu(2) = D fonlz—w)"

N="Nq

be the Laurent expansion of f,, at z € Z. Then, for each given family k,, € N*,
z € Z, there exists a holomorphic function f € O*(D \ Z) such that, for each
w € Z, the Laurent expansion of f at w is of the form

kaw oo
fE) =Y fonlz—w)"+ > falz—w)".

N="Nqy n=k,+1
The claim of the classical Weierstrass product Theorem 2.5.7 is the special
case obtained by setting f,,(z) = (z — w)™ and ky, = Mmy,.

Proof of Theorem 2.7.2. By Theorem 2.7.1 we can find a family of holomorphic
functions h,, € O*(Uy), w € Z, and a holomorphic function f € O*(D \ Z) such
that, for all w € Z,

hwfw=f on U, \ {w} (2.7.3)
and, moreover, the Laurent expansion of h,, at w is of the form

o0

ho(z) =14+ > hun(z—w)".

n=ky—"Nyw+1

Hence, for the Laurent expansion of f at w, we get

oo [ 0o
FR) =D fonlz=w)"+ D hyn(z=w)" Y fyn(z—w)
N=Toy N=ky—"qyp+1 N=Tey
= Z fw,n(z_w)n+hkwfnw+1fw,kw+1(z_w)kw+l +...
N=MNq O

We conclude this section with a discussion of the relation between the Mittag-
Leffler Theorem 2.6.4 and the generalized Weierstrass product theorems 2.7.1 and
2.7.2.

There are two differences. The first difference is a disadvantage of the Mittag-
Leffler therem: Even if the given local functions f,, are different from zero in a
punctured neighborhood of w, the global function f given by the Mittag-Leffler
Theorem 2.6.4 can have zeros outside Z, whereas the global function f given by
the generalized Weierstrass product theorems 2.7.1 and 2.7.2 is different from zero
everywhere on D \ Z.
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The second difference is a disadvantage of the generalized Weierstrass the-
orems: In the Mittag-Lefller Theorem 2.6.4, we do not require that the given
functions f,, are different from zero in some punctured neighborhood of w. It is
even allowed that there is an infinite number of zeros in each punctured neigh-
borhood of w (in the case of an essential singularity this is possible). Moreover,
the Mittag-Leffler Theorem 2.6.4 preserves arbitrary starting pieces of the given
Laurent expansions, whereas for the generalized Weierstrass Theorem 2.7.2; this
is only true for poles and removable singularities.

We consider the simplest non-trivial example:

2.7.3 Example. Let D C C be a connected open set with Z := {0,1} C D, and let

fo(z) = exp (1) and  fi(z) = Zi -

z

Then there is no holomorphic function f : D\ {0,1} — C* which has, at the same
time, the following two properties:

a) (as claimed in Theorem 2.7.1) There are neighborhoods U; C D of j and
functions h; € O*(U;), j = 0,1, such that

f(2) = e*hy(z) for z € Uy \ {0},

f(z)zle%(zl) for z € Uq \ {1}.

b) (as claimed in the Mittag-Leffler Theorem 2.6.4) f(z) — e'/# is holomorphic

at 0, and f(z) — 15 is holomorphic at 1.

Indeed, assume there exists such a function f. Since e/ is holomorphic at 1,
whereas f has the pole L7 there, then f(z) # e'/*. Since f(z) = e'/*hy(z2),
it follows that ho(z) # 1. Choose a neighborhood Vy C Up of 0 so small that
ho(z) —1#0 for z € Vp \ {0}. Then

e ho()eT el f(z) — el

= = for z € ¥y \ {0}.

‘ ho(z) — 1 ho(2) — 1

Since f(z)—e'/# and ho(z)—1 are holomorphic at 0, this implies that the singularity
of e}/# at 0 is not essential, which is not true.

Moreover, if in this example, f is a function with the properties claimed in
the Mittag-Leffler Theorem 2.6.4, then this function has zeros in any punctured
neighborhood of 0 — in distinction to e'/#. This is due to the following proposition
which is a consequence of Picard’s theorem:

2.7.4 Proposition. Letw € C, let W C C be a connected neighborhood of w, and let
fw : W\ {w} — C* be a holomorphic function which has an essential singularity
at w. Further let f : W\ {w} — C be a holomorphic function such that f — f,, has
a removable singularity at w. Then either f = f, on W or f has zeros in each
punctured neighborhood of w.
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Proof. Assume f # f,, on W.

Since f, # 0 on W \ {w} and f, has an essential singularity at w, 1/f,
is a well-defined holomorphic function on W \ {w} which also has an essential
singularity at w. Since f — f, is holomorphic and not identically zero on W, it
follows that also

fw - f

fu
has an essential singularity at w. Since f #Z f,, on W, there is a punctured neigh-
borhood of w where g has no zeros. By Picard’s theorem this implies that 1 — g
has zeros in any punctured neighborhood of w. Hence

has zeros in any punctured neighborhood of w. Since f,, # 0 on W \ {w}, this
implies that f has zeros in any punctured neighborhood of w. (I

2.8 Comments

The results of Sections 2.1-2.4 are well-known in the case of scalar functions. The
proofs given here are straightforward generalizations of the proofs in the scalar
case. In a large part, we follow the presentation of the corresponding scalar results
in the first chapter of Hérmanders book [Ho].

The theorem on Runge approximation for invertible functions (Section 2.5)
has also been well known for a long time, even in the case of several complex
variables, but in the literature we did not find a direct proof for it in the case of
one variable. (For several variables this result is widely published, but much more
difficult.)

The material of the last two sections, in this form, probably appears here for
the first time.



Chapter 3

Splitting and factorization with
respect to a contour

This chapter contains mostly well-known material presented in a form needed for
some of the further chapters. This material can not always be found concentrated
in one place with complete proofs. The main theme in this chapter is to study
continuous functions on a closed contour which admit an additive splitting as a
sum or a product (with additional properties) of two functions; one continuous and
analytic inside relative to the contour and the second outside. Not all continuous
functions admit a splitting. We give here complete descriptions when continuous
functions admit such representations and an example when this does not happen.
We prove that functions from the algebras of Holder, differentiable, and Wiener
functions admit additive and multiplicative splittings inside these algebras under
natural conditions. A local principle is also deduced.

3.1 Splitting with respect to a contour

In this section, F' is a Banach space and D C C is a bounded open set with
piecewise C!-boundary ' (Section 1.4.1), and D_ := C\ D4.

3.1.1. Let U C C be an open set such that C\ U is bounded. We say that a
function f : U U {o0} — E is holomorphic, continuous etc. if f is holomorphic,
continuous etc. on U and f(1/z) is holomorphic, continuous etc. on

{zec'ieU}U{O}.

3.1.2 Definition. Let f : I' — E be a continuous function. We say that f splits

(additively) with respect to I" if there exist functions f_ : D_ U {oc0} — E and
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f+: Dy — E, where f_ is continuous on D_ and holomorphic in D_ U {oo} and
f+ is continuous on D4 and holomorphic in D, such that

f=rf++f- onT. (3.1.1)

The pair (f4, f—) or the expression f = fi + f_ then will be called a splitting of
f with respect to I'. To underline the difference from Definition 3.7.1 below, in
this case we say also that f globally splits, and (fy, f—) is a global splitting of f
with respect to I'.

3.1.3 Proposition. If (fy, f-) is a splitting of a continuous function f : T' — E
with respect to T', then by adding a constant we can always achieve that f_(o0) = 0.
With this additional property, the splitting (f+, f—) is uniquely determined by f.

Proof. Indeed, let (ﬁr, f,) be a second splitting of f with f,(oo) = 0. Then
f“r_};“:f*_ff onl,

and it follows from Theorem 1.5.4 that the function defined by

h—{er_J? on Dy,
f-—f= on D_ U {oo},

is a well-defined holomorphic function on C U {oo} which vanishes at co. Hence,
by Liouville’s theorem, this function identically vanishes, i.e., f+ = fi. (]

3.1.4. This uniquely determined splitting with f_(o0) = 0 will be referred to as
the splitting with respect to a contour vanishing at infinity.

Not every continuous function f : I' — FE splits with respect to I". In Section
3.6 we give an example.

There are different additional conditions which ensure the existence of a
splitting. For example, the class of Wiener functions:

3.1.5 Definition. Let T = {z € C | |2| = 1} be the unit circle. We denote by W (E)
the space of functions f : T — FE of the form

oo oo

n=—oo n=—oo

The functions in W (E) are called Wiener functions with values in E.

3.1.6. Each E-valued Wiener function splits with respect to the unit circle. Indeed,
if f is such a function and written in the form (3.1.2), then the pair (f;, f—) defined
by

f+(2) ::Zznfvu |Z|§17
n=0
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and
1

f=(2):= Z 2" f s |z| > 1,

n=—oo

is a splitting of f with respect to the unit circle, where

[fellw < I fllw and i fellw < [1Fllw- (3.1.3)

3.2 Splitting and the Cauchy Integral

As in the previous section, F is a Banach space, D C C is a bounded open set
with piecewise C!-boundary I' oriented by Dy (Section 1.4.1), and D_ = C\ D.

3.2.1. Let f:T' — E be a continuous function.
Then we set

flo) = L /&dg for z € C\T. (3.2.1)
r

T omi (—z

This function fwﬂl be called the Cauchy integral with respect to I' of f.
Recall that, by Lemma 1.5.2, f is holomorphic on C\ ', where the complex
derivative is given by

PIRE f(©)
Moreover, by this lemma, R
‘ l‘im f(z)=0.

By Riemann’s theorem on removable singularities 1.10.3, this implies that f is

o~

holomorphic on (CU{oc}) \T, where f(co) = 0 (in the sense as defined in Section
3.1.1).

3.2.2 Theorem. Let f:I' — E be continuous, and let

d f_:=Ff
Dy an f f D7U{OO}

J?+ ::f

be the two parts of the Cauchy integral (3.2.1) of f. Then the following two con-
ditions are equivalent:

(i) The function f splits with respect to T.

(ii) The function f+ admits a continuous extension to D, and f_ admits a
continuous extension to D _.

In that case f = ﬁr —f onT,ie., (ﬁr, —ff) is the splitting of f which vanishes
at infinity (Section 3.2.1).
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Proof. ()=(ii): Let f = f+ + f— be the splitting of f with f_(c0) = 0. As f_ is
holomorphic at co and f_(o0) = 0, then we have (Theorem 1.10.4)

1
q

By Cauchy’s integral theorem and the estimate established in Proposition 1.3.6,
this implies that, for every fixed z € C\ T,

: Q. _
lim /c —=*d( =0. (3.2.3)

R—o0 =R C—Z

ro=0(%)  wold-

We have to prove that f, = f+ on D and f_ :j_ on D_.
First let z € D;. If 0 < R < oo is so large that D is contained in the disc
|| < R, then, by Cauchy’s integral theorem,

[, f-(©)
/C_ng— C_ch.
r I<I=R
By (3.2.3) this implies that
Q)
/ - d¢ = 0.
r
As f = fy + f- on I" and, by Cauchy’s integral formula,
L fL@dC = f+(2),

211 FC_Z

this further implies that

fil(z) = %/r Cf(cldC = f+(2).

Now let z € D_ be given. Then, by Cauchy’s integral theorem,

F© e, (3.2
r(—=z
First assume that z belongs to a bounded component of D_. Let I'y be the
part of the boundary of T which is the boundary of this component (endowed with
the orientation of I'). Then, again by Cauchy’s integral theorem,

f=(©)
d¢ = 2.
/1“\1"0<Z ¢=0 (3.2.5)
and, by Cauchy’s integral formula,
R B S (VY (3.2.6)

2mi Jp, C— 2
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From (3.2.4)—(3.2.6) and the definition of f_ we obtain

L[ 10y L [EOTEQ,

C—z > 2miJp (—=z

f-(2) =

T 2mi

—f-(2).

Finally we consider the case when z belongs to the unbounded component of
D_. Let I' be the part of I' which is the boundary of this component. Then, by
Cauchy’s integral theorem,

/ &dg =0. (3.2.7)
Moo C—z

By Cauchy’s integral formula, for all sufficiently large R < oo,

HZ):_/F J;(C,z)d<+/| 1(Q) g

¢=r € — %

Together with (3.2.3) and (3.2.7) this implies

o =- [ - [

r¢—=z

By (3.2.4) and the definition of f_, this further implies that

RO Q[ Qs
foto) == [P g - - [ T - F (o).

(ii)=(i): Let zp € I" and € > 0 be given. We have to prove that

‘ o~ o~

Fi(z0) = F-(20) = f(z0)| < &, (3.28)

where f+ denotes the continuous extension of f from D, to I', and f_ denotes
the continuous extension of J?from D_ toI'. Let T'g be the connected component
of " with zy € T’y (endowed with the orientation of I'), and let v : [a,b] — T'g be a
piecewise Cl-parametrization of I' (Def. 1.3.2). Since f, f, and f_ are continuous
on I', we may assume that zo = y(¢g), where a < ty < b is a smooth point of vy and
v'(to) # 0. Then we can find § > 0, 0 < ¢ < 1 and sequences z," € Dy, 2, € D_,
n € N* such that

[v(t) — zo] > c|t — to for |t — o] < 9, (3.2.9)
e

‘f(y(t)) - f(zo)‘ < Sme @ <6 (3.2.10)
lt—to] <

lim z[ = lim 2, = 2, (3.2.11)

n—oo n—oo
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and, for all n € N*,
N 1 1
() ==, |v() — 2 | = §|7(t) — 20| + 1’2774 —z,| if[t—to| <6 (3.2.12)

n

Since 0 < ¢ < 1, it follows from (3.2.9) and (3.2.12) that, for all n € N*,

v(t) = =], () — 2| > g(h—tojﬂz:—zﬂ) if [t —to| <5, (3.2.13)
Set

FTo _ 1 f(Q) PTo(,—y _ L f(Q)

Do) = g [ fpde and PR = o [ A

Then it follows from (3.2.11) that
Tim (fmt) P - (e - P <zn>>)
. 1 1 1

To prove (3.2.8), it is therefore sufficient to find n. such that

‘ %) 1ﬂo(zn) f(zo)‘ <e for n > n.. (3.2.14)

If —T'g is the boundary of the unbounded component of D_ and n is sufficiently
large, then, by Cauchy’s integral formula and Cauchy’s integral theorem,

1 f(20) .
2m/<_ d¢ = f(z0) and 27TiF/C—anC_0.

If —T'y is the boundary of one of the bounded components of D_, then for all
sufficiently large n,

1 [ f(20)
% C— ——d(=0 and /C_ang_ —f(20)-

In both cases, for all sufficiently large n,

o / ool g~ o ) = flen),
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and therefore

P =TT ) = ) = 5 [ (10 = stan)) (g = = Jae

27TZF — C—zn
b
B 2im/ (£60) - ) (7(15)1 o () - 2 )7/“) “
= o (B + ),
where
o= [ (00) = ) sz~ s O
[t—to|>6
noy= [ (£00) = 160) (sarg ~ s O
[t—to|<o

From (3.2.11) it follows that lim, . I1(n) = 0. Therefore, to prove (3.2.14), it is
sufficient to prove that

| Z2(n)|| < & for all n € N*.

Let n € N* be given. Then it follows from (3.2.10) that

e 1 1
L(n)| < — dt
H 2( )H - 32 t) =zt () =z
[t—to|<6
_ % |2t — 2
32 Iy(t) — 28| () — 2|
|t7t0|§6

In view of (3.2.13), this further implies that
dt
(It — to] + |zt — zE|)2

|2m)| < 5= - =]
[t—to|<8

)

zgyz,j—z;|/$2<€.
s (54|t —2n)

3.3 Holder continuous functions split

As in the previous two sections, F is a Banach space, D, C C is a bounded open set
with piecewise C!-boundary I' oriented by D (Section 1.4.1), and D_ = C\ D.
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Here we prove that each Holder continuous function f : I' — E splits with
respect to I'.

3.3.1 Lemma. Let 0 < o < 1. Then there exists a constant C < oo such that, for
each Hoélder-a continuous function f : T' — E (Def. 2.1.6) the Cauchy-integral f,
for all z € C\T, satisfies the estimate

1PN < Ol dist(z0) T (33.1)

where dist(z,T') := mincer |C — 2|, and || f|lp, is the Hélder norm introduced in
Definition 2.1.6.

Proof. Let a Holder-a continuous function f : I' — E be given.

For z € C and € > 0, we denote by A.(z) the open disc with radius € centered
at z.

It follows from (3.2.2) (and the estimate from Proposition 1.3.6) that, for
each z € C with dist(z,T) > 1,

|

~ -2 T a—1
1@ < 5 mas 7O (st 1) < P, (st )™

Moreover, it is clear that, for each neighborhood U of I', there exists a constant
Cy < oo such that, for all z € C\ U with dist(z,T) < 1,

-~ a—1
17 < Collflp.a(dist(zT))

Therefore, it is sufficient to prove that, for each point zy € I' there exists eg > 0
such that (3.3.1) holds for all z € A, (z0) \ I" with a constant C' < co which is
independent of f.

Let zg € T be given, and let 'y be the connected component of I" with zg € T'y.
Choose a piecewise Cl-parametrization v : [—3,3] — T'g of [y with v(0) = 2o (Def.
1.3.2). Then it follows from the properties of v listed in Definition 1.3.2 that there
exist constants 0 < ¢; < (7 < oo such that

cl|t—s| < h(t)—'y(s)} §C’1|t—s| forall —2 <s,t<2. (3.3.2)
Choose 0 < g9 < 1 so small that
gy < 2¢1 (3.3.3)

and o
Aseq(20) N (T\ y([-1,1]) = 0. (3.3.4)
Now let z € A, (z0) be given. Set ¢ = dist(z,I"). As zp € T, then e < g¢. Take
a point 2z’ € T with |z — 2/| = dist(z,T') = . Since z € A, (20) and & < &g, then
z' € Agey(20). Since 2 € T'N Ay, (20), it follows from (3.3.4) that 2’ € v([-1,1)).



3.3. Hélder continuous functions split 67

Let —1 < ¢’ <1 be the parameter with v(¢') = 2’ (which is uniquely determined

by (3.3.2)).
As T is closed and therefore

/(Cf( zde =1z /
T N

it follows (see (3.2.2)) that

ﬁ@?P/“gjﬁﬂﬂ. (3.3.5)

Since —1 < ¢’ <1 and, by (3.3.3), 2¢/c1 < 2¢y/c1 < 1, we have

2e
—2<t—f<t +7<2

C1
Therefore (3.3.5) can be written
F)=hL+L+1Is (3.3.6)
where
_ 1 F(Q) - f(&)
h=om (S
M ([-2,2])
t'+2e/cq
_ 1 (v@®) - (=),
b=om ()= 1O
t'—2e/cq
T rew) - e FG0) = )
1 ¥ — f(z o )
I3 = G / W’Y t)dt + % / (4(0) —2)2 — LA (t)dt.
-2 t'+2¢e/cq

Since |z — 2| < g¢ and, by (3.3.4), |¢ — zo| > 3ep for ¢ € T'\ ¥([-2,2]), we
have
[(—2]>2e0  for (€T \([-2,2]).
This implies (by Proposition 1.3.6)

T T T o
I < < < « 3.3.7
101 < g SO < g5l < 55l leas™, (337)

where the last inequality follows from 0 < € < 1.

Set

@Zggyﬂﬂ
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Since |y(t) — z| > dist(2,T") = |z — 2’| = € for all =3 < ¢ < 3, then it follows that

t'+2¢e/cq
C !
Il < 5 % /'Hme)—ﬂzmw. (3.3.8)
t'—2e/cy

As
1f(v@) = £ < 1 fllp ol () — 2

and z/ = v(t'), it follows from (3.3.2) that

1F(®) = FE < W llpaCalt =™ forall —3<t<3.

Together with (3.3.8) this gives

t'+2e/c1
¢ c C C 14+a
HIQ” < M |t o t/|adt < 2||f||1",a 1 2 2£
< 2me? - 2me?2 1+ al\qg
t'—2e/cq
MWH co-1 o 02012”fH el (33.9)
T 2n(1+4 Oz)c%"'o‘ Ta > C% Ta . 3.

For |t —t'| > 2¢/cq, we have by (3.3.2)

1 1
5\7@) () = §Cl|t —t|>e

As |y(t') — z| = |2’ — z| = €, this implies that, for |t — /| > 2¢/¢y,

[y(t) = 2] = [y (t) =) = [v(t') = 2| = [y(t) = ()| —e > %Iw(t) =)
Hence

t'—2e/cq

I () = £, [ 160 -1
IgS_/2 T 7(t)dt+t/+2€// o W

Taking into account that

If (@) = FE = (@) = FENDT < 1 lp v (@) — @)
and the definition of Cs, this implies that

t,726/C1 2

BllaCe( [ O -a@F s [ -t

—2 tl+28/C1
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By (3.3.2) this further implies that

t'—2e/cy 2

BelfleaCeth( [ e [e-rpa)

—2 t'+28/01
o0

1 /2e\“7" (3.3.10
<2[|flIr o C2Ch / It —¢'|*72dt = 8| f||r,aC2Ch () ( )

l—al\cg

t’+2€/61

2020101_0‘ _
<= fllras’ ™

l—«

From (3.3.6), (3.3.7), (3.3.9) and (3.3.10) follows (3.3.1) if

‘F| 02012 + 202016%_0.

= 2 2
4meg ct 1-a

C:

This completes the proof of Lemma 3.3.1. O

Now we can prove that any Holder continuous function f : I' — FE splits with
respect to I'. Moreover, we prove the following stronger result:

3.3.2 Theorem. Let 0 < o < 1, and let f : I' — E be Holder continuous with
exponent «. Set f, = ﬂ and f_ = 7ﬂD, where f is the Cauchy integral of f
(Section 3.2.1). Then:

Dy

(i) fy admits a Holder-o continuous extension to Dy, and f_ admits a Holder-o
continuous extension to D_ U {oo}.

(ii) If we denote these extensions also by f, and f_, then

f=fH+f onT. (3.3.11)

Proof. By Theorem 3.2.2 we only have to prove part (i). For that it is sufficient
to find a neighborhood © of I' and a constant C' < co such that

[f4(21) = fr(22) | < Cl[fllp,alzr — 22| (3.3.12)
for all 21,29 € ©N D4 and
[f-(21) = f-(z2)Il < CllflIp,alz1 — 22|* (3.3.13)

for all z1,20 € ©ND_.

The proofs of these two estimates are analogous, and we may restrict our-
selves to (3.3.12). Let zg be an arbitrary point in I'. Tt is sufficient to find constants
gy > 0 and C' < oo such that (3.3.12) holds true for all 21,20 € A, (20) N Dy,
where we again denote by A.(z) the open disc with radius ¢ centered at z.
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By Lemma 3.3.1, there is a constant Cy < co with
a—1
I£ ) < Collfllp o (dist(=1)) ", ze Dy (3.3.14)

Since I is piecewise C!, we can find constants 0 < &, , ¢ < 1 and a complex number
v with |v] = 1 such that, for each z € Dy N A, (20),

Ag(z+tv) C Dy for all 0 <t <e. (3.3.15)

Set
0020¢+1

ca
We claim that, with this choice of g9 and C, estimate (3.3.12) holds true for all
21,29 € Aso (Zo) N D+.
Let 21,22 € Az, (20) N D be given. Set € = |z1 — z2|. Then 2¢/c < deg/c = &1
and it follows from (3.3.15) that

go =ce1/4 and C = + Cph.

z71+tve Dy and ze+tve Dy fora110§t§2—c€,
and
(1—t)(zl+2§v>+t<z2+2§v)eD+ forallogtg%g.
Therefore

140 = o)l < || o) = £ (214 Z0) ||+ 7o) = 71 (22 + 20|

I+ (21 + Q(fv) - f+ (22 + 251)) H

2e/c 2e/c

—H/f_’ir(zlthv>vdtH+H /fj_(ZQnLtv)vdtH
0 5
+Ho/1fjr((1—t)(21+265’[))+t(22+2§v)>(22_21)dt”-

Since |v| =1 and |22 — 21| = ¢, this implies that

+

2 /c 2 /c
1f+(21) = fi(z2)l| < / |71 (1 + 20) | i + / |5 (22 + t0) |
0 0

£l <(1 — 1) (z1 n 2—0‘5@) + t(zz n fv)) ”dt.

(3.3.16)

1
+5/‘
0
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It follows from (3.3.14) and (3.3.15) that

2
Lz 4 00)| < Collflealer)®™ foro<t< = andj=1,2,
’ C

Hence
2e/c 2e/c

’(zj+tv)Hdt§Coc0‘*1||f|\M / t*ldt =
0

C’02a

[fllrae®  (3.3.17)

for j = 1,2. Moreover it follows from (3.3.15) that

2
AP (2’2 + —Ev) CD,.
&

2e 2e
|Gt Zo) = (st To) | =l = 2l =
c c

2e — 2
(1—t)(z1+?v)+t(22+—v)6A5(22+§v), 0<t<1,

As

and therefore

this yields
2 2
(1—t)(z1+—v> +t(22+—v) eD,, 0<t<l,
C

and
dist ((1 —t)(zl n —v) +t(z2 + —v) F) >e. 0<t<l.

Together with (3.3.14) this implies that

1
0

Estimate (3.3.12) now follows from (3.3.16), (3.3.17) and (3.3.18). O

Ih <(1 — ) (21 + 2—081)) + t(zz + 2(51))) Hdt < Collfllr,ac™ (3.3.18)

3.3.3 Corollary. Let P C C be a set such that, in each connected component of D
and in each connected component of D_, lies at least one point from P. Then any
continuous function f : T' — E can be approzimated uniformly on I' by holomor-
phic functions defined in C\ P.

Proof. Since any continuous function on I' can be approximated uniformly on T’
by C*°-functions, we may assume that f is of class C*°. Then, by Theorem 3.3.2,
there exists a global splitting (fy, f—) of f with respect to I'. It remains to apply
the Runge approximation Theorem 2.2.2 to f; and f_. O
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3.3.4. From the proof of Theorem 3.3.2 it is clear that the constant C' in (3.3.12)
and (3.3.13) is independent of f. Note also the following corollary of Theorem
332 If fy : Dy — E (f : D_{oco} — E) is a continuous function which is
Holder-« continuous on I' and holomorphic in Dy (D_ U{co}), then this function
is automatically also Holder-« continuous on Dy (D_ U {oo}).

3.4 The splitting behavior of differentiable functions

3.4.1 Definition (C*-contours). Let k € N*.
A set T' C C is called a closed connected C*-contour if there exist real numbers
a < band a C*-function v : [a,b] — C with I = v([a, b]) such that

(i) v'(t) #0for a <t < b
(i) y(t) #v(s) for a <t,s < b with t # s;
(iii) ™ (b) = ™ (a) for 0 < n < k.

The function + then is called a C*-parametrization of I'.

By a (not necessarily connected) closed C*-contour we mean the union of a
finite number of closed connected C*-contours.

We shall say that an open set D C C has a C*-boundary if the boundary of
D (in C) is a closed C*-contour and each point of this boundary is also a boundary
point of C \ D.

3.4.2. Let I' C C be a closed CF-contour, k € N*. Then, by the inverse function
theorem, for each zy € I, there is a neighborhood U of zy and a C*-diffeomorphism
® from U onto an open set V' C C such that

@(UﬂF):{zeV’Imzzo}.

3.4.3 Definition. Let I' C C be a closed C*-contour, k& € N*, let E be a Banach
space, and let f : I' — E be a function. It follows from the observation in the
preceding Section 3.4.2 that then the following two conditions are equivalent:

a : [a,b] — Ty is a C®-parametrization of a connected component I'g of T,
If v b] — Ty is a C* trization of ted t Tg of T
then the composition f oy is k times continuously differentiable on [a, b].

(b) The function f admits an extension to a neighborhood of I" which is of class
ck.

If these two equivalent conditions are satisfied, then f is called of class C* on T.
If f is of class C! on T, then, for each ¢ € T, we define

(fon) (=1(0)

flo= Y(r Q)

(3.4.1)
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where 7 : [a,b] — C is an arbitrary C*-parametrization of the connected com-
ponent of I' which contains the point (. It follows from the chain rule that this
definition does not depend on the choice of v. The continuous function f' : T — E
defined in this way will be called the derivative of f with respect to I". Note that
if f is holomorphic in a neighborhood of I, then this is the restriction to I' of the
complex derivative of f.

We write also f() for f* and f© for f.

If £ is of class C* on I, then we define @, ..., f*) by setting

/
F) = (f<"—1>) for 2 <n < k.

The function f is called of class C**® on T', 0 < o < 1 if f is of class C* on
I, and f) is Holder continuous with exponent o on I

3.4.4 Definition. Let D, C C be a bounded open set with C*-boundary I, k € N*,
let D_:=C)\ D, let E be a Banach space, and let 0 < o < 1.

If f: D_ — E is a holomorphic function, then we say that f is of class
Ck+e on D_ if all complex derivatives f), 0 < n < k, (which are well defined
on D_) admit continuous extensions to D_, where f (k) is Holder continuous with
exponent o on D_. If this is the case, then these extensions will be denoted also
by f("). Note that then f(™ ’1‘ is of class C*~" on T' (in the sense of the preceding
definition) and (f(].) = f"*+V| for 0<n <k - 1.

Correspondingly we define what it means that a holomorphic function f :
D, — E is of class Ck*® on D,

It is the aim of the present section to prove the following

3.4.5 Theorem. Let D, C C be a bounded open set with C*-boundary T, k € N*,
let D_ :=C\ D, let E be a Banach space, and let f : T — E be of class CFT
onT, 0< a<1. Then f splits with respect to T’ (Def. 3.1.2).

Moreover, if f = f1 4+ f— is an arbitrary splitting of f with respect to T", then
f+ is of class C¥** on D, and f_ is of class C*+* on D_.

That then f splits with respect to I', we know already from Theorem 3.3.2.
To prove the additional assertion, we begin with the following

3.4.6 Lemma. Let I' be an oriented closed C*-contour. Let E be a Banach space,
let f:T — E be of class C*, and let

oy 1 f(Q)
f(z).—% L C—z

d¢, z€eC\T,

be the Cauchy integral of f with respect to T (which is a holomorphic function, by
Lemma 1.5.2). Then, for 0 <n <k,

N ”
(f )(”)(z) _ % A fC( 7(2) d¢ for all z € C\T. (3.4.2)
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Proof. For the proof we may assume that I is connected. Then we have a positively
oriented C*-parametrization v : [a,b] — T of T.

For n = 0, (3.4.2) holds by definition. Assume (3.4.2) is already proved for
some n with 0 < n < k—1, and let z € C\ T be given. Then it follows from
Lemma 1.5.2 that

NCES PR S B ACI (ONPSE S L AL GTO) Y
R e
1

= [ &t

o

b (f™Mon) (@)

b

Py gy 2 L A ov 1 CHONY

() 27 / dt 27 ~y(t) — z v (¢) dt
f(">°“f) (W’I(C))
1 B )
%/ A= | rm, e
r r 0
Proof of Theorem 3.4.5. Let
n _ L[] A _ 1 [ fQ)
(Do) =5 [ e senis D@m= [ Hac 2 ep,

be the two parts of the Cauchy integral of f. By Theorem 3.2.2, we only have to
prove that (f )i is of class C¥T® on D. Since the functions (f )i are holomorphic

in DL, this means that each of the functions (f)(i), 1 < n <k, (here (f)(in)
denotes the n-th complex derivative of (f)i on D) is Holder-a continuous on
Da.

Let f, 1 <n <k, be the n-th derivative of f with respect to I (Def. 3.4.3),
and let

=1 [ f© () e L[S
O)(e) = gz | Fode 2 €Dy () () o= g | 2

d¢, =€ D_,

be the two parts of the Cauchy integral of f(™. Since, by hypothesis, the functions
f™ 1 < n <k, are Holder-o continuous on T, it follows from Theorem 3.3.2 that

each of the functions (f(™)) +» 1 <n <k, admits a Holder-a continuous extension
to Ei.

As, by Lemma 3.4.6, (A)il)(z) = (f®™) (), 2 € Dy, 1 < n <k, this
completes the proof. O
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3.5 Approximation of Holder continuous functions

In this section, D, C C is a bounded open set with piecewise C'-boundary T,
D_:=C\ Dy, and E is a Banach space.

For 0 < a < 1, the space of scalar Holder-« continuous functions on I is not
separable. Therefore, it is impossible to approximate such functions in the norm
Il - [Ir,a (Def. 2.1.6) by functions which are holomorphic in a neighborhood of T
However, for 0 < § < «, this is possible with respect to the norm || - ||p . In
the present section we prove this. Moreover, if I' is a C*-contour, k € N*, then
we obtain the corresponding fact for functions which are of class C¥* on T' (Def.
3.4.3). We prove:

3.5.1 Theorem. Let0 < < a<l,keNandlet f:T — E be a function.

If k =0, then we assume that f is Holder continuous with exponent .

If k > 1, then we assume that T is of class C* and f is of class C*¥T® on T’
(Def. 3.4.3).

Then, for each € > 0, there exist a neighborhood U of I' and a holomorphic
function f : U — E such that, for all 0 <n <k, (see Def. 2.1.6 for | - |lr.5)

1F™ — F™ g < e (3.5.1)

Here f™ denotes the n-th complex derivative of f with respect to T' (Def. 3.4.3)
and f) is the n-th complex derivative of f (as a holomorphic function on U).

In the proof of this theorem we use the following simple lemma:

3.5.2 Lemma. Let w C K C C be two compact sets such that, for some vector
0 eC, |0l =1, and some gy > 0,

wC K +¢e if 0 <e<eg.
Let 0 < B <a<l,andlet f: K — E be Holder continuous with exponent o. Set
fe(z) = f(z—€b) for z€ K +¢e6 and 0 < e < gp.

Then
lim || f — fellw,s = 0.
e—0

For the definition of || - ||w.3, see Def. 2.1.6.
Proof. Let 0 < e < gg be given. As |#| =1 and z,z — €6 € K for z € w, then
If = felloo = max|f(2) = f(z = €0) | < [ fllx,a

Moreover, if z,w € w with € < |z — w]|, then

1) = 1) = (F(w) = L)) < () = £z = 0)]| + [ (w) = Flw —=0)]

<2 fllxa e < 20 fllxa &Pz — wl?,
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and if z,w € w with £ > |z — w|, then also

1£(2) = f=(2) = (f(w) = o) [| < [|£(2) = Fw)[| +[|f(w = e0-) = f(z = 0)

< 2Y|fllx.alz = w]* < 20 f [0 e Plz = wl”.

Hence
1f = Fellos < 1Fll k0 (e® +26%77). O
Proof of Theorem 3.5.1. By Theorem 3.3.2, f = f. + f_ on I', where
1 1
10 =g [Lacsenn =g [Mazen 6o

and the functions fi are Holder-a continuous on D.. If k& > 1 (and hence, by
hypotheses of the theorem, I' is of class C*), then, by Theorem 3.4.5, these functions
are even of class CF+2.

It is now sufficient to approximate each of the functions f; and f_ separately.
Since the proofs are the same, we restrict ourselves to the function f. Note that
the following arguments are parallel to the proof of the Mergelyan approximation
Theorem 2.2.1.

Take a finite number of real non-negative C'*° functions x1, ..., xny on C with
sufficiently small supports supp x; (how small, we say below) such that Zjvzl Xj =
1 in some neighborhood of dD. Set

f—s—,j(z):;m/FXJéCzJ;(OdC, ze€C\ (suppy,; NT), 1<j<N.

Again by theorems 3.3.2 and 3.4.5, the functions f; ; admit extensions of class C*
from Dy to D4, which are even of class CF+e if k > 1. We denote these extensions

by ff; Then it follows from the first equation in (3.5.2) that
5+ B+ Y
f(2)=fii(z)+.. .+ fin(2) for all z € Dy.

Since T is piecewise C' and each ffj+ extends to a holomorphic function outside
supp x; NI', now we can choose the supports supp x; so small that we can apply
Lemma 3.5.2 to this situation: By small shifts, for each j, we can find a bounded
neighborhood U; of I' and a function f; € OF(U;) such that

120" = Tl < = for0<n <k

Setting U = U1 N...N Uy and f: fl +...+ fN, we complete the proof. O
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3.6 Example: A non-splitting continuous function

Let T be the unit circle in the complex plane. In this section, we construct a
continuous function ) : T — C which does not split with respect to T. We begin
with the following lemma of Abel: !

3.6.1 Lemma. Let [a,b] be a real interval, and let ¢, : [a,b] — C, n € N, be a
sequence of continuous functions such that

n

> on(x)
k=0

C:= sup < 0. (3.6.1)

a<z<bmneN

Further, let a,, n € N, be a monotonicly decreasing sequence of real numbers
tending to zero. Then the series of functions

oo
> arpr (3.6.2)
k=0

converges uniformly on [a,b] to a continuous function S : [a,b] — C such that

max |S(z)| < Cay. (3.6.3)

a<x<b
Proof. Set
n n
SZ/ZZEE:(Ik@k and @, ::§£:¢%-
k=0 k=0

Then ¢, = @ — P for k > 1 and therefore

Sp = appo + Zak(@k —Dpq) = Zak@k - Zakq)kfl
=1 =0 =1

n n—1 n—1
= Zakfbk — Z p+1Pr = an,®y + Z(Ozk —agr1)Pr. (3.6.4)
k=0 k=0 k=0

Note that by (3.6.1)
max |®,(z)| < C. (3.6.5)

a<z<bneN

As lim,,_. o a,, = 0, this implies that

lim max |o,®,(z)| = 0. (3.6.6)

n—oo a<x<b

LOur source for this section is the book [Bar]. There this lemma is called Abel’s lemma, in
distinction to the present book, where by Abel’s lemma we mean Theorem 1.8.2.
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Since ap — ag41 > 0, (3.6.5) moreover yields
n—1

Z max ’(ak — Qpy1) P (z ‘ Z ap —ag1) = Clag — ap).
k=0

a<z<b
=0

Using again that lim,,_. ., a,, = 0, this implies that the series
o0
> (o — k1) @y
k=0

converges uniformly on [a,b] to a continuous function S : [a,b] — C satisfying
(3.6.3). Together with (3.6.4) and (3.6.2) this further implies that the series (3.6.2)
converges uniformly on [a,b] to S. O

Further we need the following lemma:
3.6.2 Lemma. Set D, (z) =) ,_,sin(kz) for € R and n € N*. Then
4
[ Dn(2)] < —
||

Proof. Recall that cos(s +t) = costcoss — sintsins, cos(s — t) = costcoss +
sintsin s and therefore

for all 0 < |z| <7 and n € N*. (3.6.7)

2sintsins = cos(s — t) — cos(s + )

for all s, € R. Hence

n

2sin — D Z2s1nfsm (kx) :kz_1<cos( x—i)—cos(k:H—;))
—Zcos(km+ )

M:

(i 5) <o )
. CcO T —COS2 Cos | nx D)

Il
_

and
cos £ — cos (nx + £>
Dy(z) = 2 2

in &
251n2

for 0 < |z| < 2m. As |sint| > |t|/2 for —7/2 < t < w/2, this implies (3.6.7). O
3.6.3 Theorem. (i) The series

YIS zerT (3.6.8)

converges uniformly on T to a continuous function Q : T — C.
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(ii) The function Q from part (1) does not split with respect to T (Def. 3.1.2).
Proof. We first prove part (i). Since, for z = e, —7 < x < 7,
2h R = et Tk — 9jgin(ka),

this is equivalent to the assertion that the series

. sin(kx)
—rm<zx< .0.
;klogM r<z<m, (3.6.9)
converges uniformly on [0,27] to a continuous function w : [—m, 7] — C. Recall
that by Lemma 3.6.2,
4
|Dy(z)] < Tl for all 0 < |z| <7 and k > 2, (3.6.10)
x

where Dy (x) := 25:1 sin(vz). By Lemma 3.6.1 this implies that, for each § > 0,
the series (3.6.8) converges uniformly on [—m, —d] U [d, ]. In particular, this series
converges for each fixed x € [—m, 7] (for x = 0 this is trivial, as sin0 = 0), and we
can define

w(r) = Z S::L()ZZ) forall —m <z <.
k=2

Let

sin( sin(k
(@ Z klogk Z klogk: for —m <z <mandn>2

We have to prove that lim,, o r,, = 0 uniformly on [—, 7]. For that, it is sufficient

to prove that
16
(@) < ot

For & = 0 this is trivial. Let n > 2 and = # 0 with |z| < 7 be given. We
distinguish two cases:
First Case: |x| > -. Then

for |x| <7 and n > 2. (3.6.11)

o0

=2 %

k=n+

(z) = Dy—1())

oo

- klong’“(””)_ Z
k=n-+1 =

oo 1 oo
B TR S D)
k:m_lklogk = (k+1) log (k+1)

k—1(7)

1 1 1
~ (n+1)log(n+ 1>D"+1(x) i ,;L <klogk  (k+1)log(k + 1))Dk(x)'
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By (3.6.10) this implies that

4 4 ) 1 1
[rn ()] < Ty - :
|z|(n+1)log(n +1) || = |klogk (k+1)log(k+1)

As
1 1

Klogk ~ (k+ Dlog(k+ 1)

for k> 2

and (therefore)

| 1 1 1
;‘klogk (k4 1)log(k + 1)‘ ~ nlogn’
it follows that
ru(e)| <
= z|nlogn
Since |z| > 1, this implies (3.6.11),
Second case: |x| < L. Let N > n be the number in N with

n

N . N
Z sm(kx)S Z 2| < 1 ) (3.6.12)

1 s 1 1

< D - D

S NI Dlog W+ D) N+1(x)|+1§;v<klogk (k+1)10g(k+1))| k(@)
4 41

< T —

~ |z|(N +1)log(N +1)  |z| Nlog N

As|z| > 1/(N + 1) and N > n, this implies

4 AN +1) _ 12
“log(N+1) NlogN ~ logn’




3.6. Example: A non-splitting continuous function 81

Together with (3.6.12) this implies (3.6.11).
Now we prove part (ii). Set

D+:{zE(C’|z\<1} and D_Z{ZEC’|Z|>1}.

Assume 2 splits with respect to T, i.e., Q = Q, + Q_ where Q, : D, — C and
Q_:D_U{oc} — C are continuous functions which are holomorphic in D, and
D_U{oo}, respectively. After adding a constant we may assume that Q_(c0) = 0.
By the Cauchy formula, we have

_ 1909
Q4 (2) = omi ) (-2
T

d¢ for z€ Dy. (3.6.13)

By the Cauchy integral theorem, for all 1 < R < oo and z € D, we have

2m/ = dg] e a0 Q)

As Q_(o0) = 0, this implies that

27 (—z ‘
T

= for all D
27TZ/C—ZdC 0 or all z € D;.

Together with (3.6.13), this gives

QWZ/C—de Q4 (2) for all z € D,.

As, by part (i) of this theorem, the series (3.6.8) converges uniformly on T to {2,
this further implies that

Q4 (2) = i L/ i 1 Md( for € D
HE = % o klogk C— 2 o e s P
T

Taking into account that

1 k
/ =0 and —/ ¢ d¢ = 2F for k>1and z € Dy,
2i ) (—z
T
it follows that
Q = D
+(2) kzﬂklogk’ ze Dy

Since >"p2,1/(klog k) = oo, from this we get

lmQ, (1 —¢) =
lim 0. (1 —€) = oo,

which is a contradiction to the assumption that Q, is continuous on D . (]
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3.7 The additive local principle

In this section, ' is a Banach space and D C C is a bounded open set with
piecewise C!-boundary I oriented by D, (Section 1.4.1), and D_ =C\ Dj,.

3.7.1 Definition. Let U C C be an open set with UNT # @, and let f : T'NU — E
be a continuous function. We say that f splits (additively) over U with respect
to I if there exists a pair of E-valued functions (f, f—), where f is continuous
on U N D, and holomorphic in U N D, and f_ is continuous on U N D_ and
holomorphic in U N D_, such that

f=fr+f onUNT. (3.7.1)

Then the pair (f1, f—) or the representation f = fi + f_ will be called a splitting
with respect to I" over U.

Let f: ' — E be a continuous function. Then we say that f splits locally
with respect to I if, for each w € T, there exists a neighborhood U of w such that
f splits over U with respect to T
3.7.2 Corollary (to Theorem 1.5.4). Let U C C be an open set with UNT # 0,
and let f : TNU — E be a continuous function. Suppose (f+, f—) and (]1,]?,)
are two splittings of f with respect to I' over U. Then there exists a holomorphic
function h : U — E such that

f+—f+:h on D, NU and fo—f-=h onD_NU.

Proof. Since fi — f+ =f_— f_ on I'NU, then there is a well-defined continuous
function h : U — E with

b fo—1r on Dy NU,
-1 on D_NU.
By Theorem 1.5.4, this function is holomorphic on U. (]

The fact established by the following theorem will be called the additive local
principle:

3.7.3 Theorem. Let f : I' — E be a continuous function, which locally splits with
respect to I'. Then f globally splits with respect to I'.

In particular, all E-valued functions, which are holomorphic in some neigh-
borhood of T', globally split with respect to T'.

Proof. Choose open sets Uy, ..., U, C C with ' C U; U...UU,, such that, for
each 1 < j < m, over U; there exists a local splitting (f;' f;) of f with respect
to I'. Moreover, set

Up=C\T and ff=f=0 onUj.
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Then, for all 0 < j,k <m with U; N U, NT # 0,
T =f=f—f  omUnUyNT. (3.7.2)

Indeed, if 1 < j, k < m, this is clear, since f;r +f=f= flj +fr onU;NULNT,
and, for j = 0 or k = 0, this is trivial, as Uy N T' = (. Now, by (3.7.2), there is a
well-defined family g, € CE(U;NnU), 0 < j, k < m, such that, for all 0 < j, k < m,

-t - D, it U D
gjk:{f] ff omU;NU.ND, if UnUnND, #0, (3.7.3)

fi=fe onUnU.ND_ if UynUpND_#0.

On (U; NU;) \ T, these functions are holomorphic, since the functions fjjE are
holomorphic on U; N Dji. Hence, by Theorem 1.5.4,

g € OP(U; NUL), 0<j,k<m.
Moreover it is clear from (3.7.3) that, for all 0 < j, k,1 < m with U; NU, NU; # 0,
9k T 9kt = 9it onU;NU,NU;,

i.e.,, the family {g;r}o<jr<m is a ({Uo,.. . U}, OF)-cocycle (Definition 2.4.1).
Hence, from Theorem 2.4.2 we get a family h; € OF(U;), 0 < j < m, with

9ik = hj — Iy, onU;NU;, 0< 5,k <m.
Then it follows from (3.7.3) that, for all 0 < j,k < m,
hj_hk:{f;”f,j on U; N U N D, if U;nUxND, #0,
fi =1 onU;NnU,ND_ if UnUy,ND_#0,
and therefore
hy=ff=h,—ff onUnUyND, if UiNnU,ND; #0

and

hj—fji:hk—f]; OntﬂUkﬂﬁf if UjﬂUkﬂﬁ,;é(Z).

Hence, there are well-defined continuous functions fi : D, — E such that

~ B N .
Feloop, =P =17 0<j<m, (3.7.4)
Flys =hi=1 0<j<m. (3.7.5)
Since Uy, ..., Un, is an open covering of C, in view of the corresponding properties

of the functions h; and fji, it follows from (3.7.4) and (3.7.5) that f,_ is holo-

morphic in D, , and f_ is holomorphic in D_. Since f = f;' +f; onU;NT,
1 < j <m, it follows from (3.7.4) and (3.7.5) that

f=f+—f- onl. (3.7.6)
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Now we take a radius 0 < R < oo such that {z € C|[z| > R} € D_, and let

Fo=3 fer

n=—oo

be the Laurent expansion of f: with respect to {z eC | |z] > R}. Set

- -1
h(z) = Z fnz” for € C and f_(z)= Z J?nzn for [2] > R.
n=0

n=—oo

Then _
f-(2) = f-(2) = h(2) for |z| > R.

As f, is continuous on D_ and holomorphic in D_ and h is holomorphic in C,
this shows that f_ admits a continuous extension to D_, which is holomorphic in
D_. Moreover, by definition of f_, it is clear that f_ extends holomorphically to
00, where f_(00) = 0. As ﬁ_ is continuous on D and holomoprhic in D, and h
is holomorphic in C, in the same way we see that

fe=fr—h
is continuous on D, and holomorphic in D . Since f_ =h+ f_, from (3.7.6) it
follows that
f=fi—f =Ffr—h—f =f—f  onT.
(I

3.8 Factorization of scalar functions with respect to a
contour. First remarks

In this section, D, C C is a bounded open set with piecewise C'-boundary I'
oriented by D, (Section 1.4.1) such that 0 € D, , and D_ = C\ D,. We denote
by I'g,...,I,, the connected components of I', endowed with the orientation of T,
so that —I"g is the boundary of the unbounded component of D_.

3.8.1 Definition. Let f : I' — C* be a continuous function. We say that f admits a
factorization with respect to I if there exist continuous functions f_ : D_U{co} —
C* and fy : D, — C*, which are holomorphic in D_ U {00} (Section 3.1.1) and
D, respectively, such that, for some integer &,

f(z)=2"f(2)f=(2) for z € T. (3.8.1)

To underline the difference with Definition 3.11.1 below, in this case we also
say that f admits a global factorization with respect to T.
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If f is a scalar rational function which is holomorphic and # 0 on I'gU. . .UT,,,
then a factorization of f with respect to I'oU...UT", is easy to find. Indeed, then
f is of the form

_ b-p+
q-4q+

where p_, ¢, p+, ¢+ are polynomials such that p_, g have no zeros on D_ and
P+, ¢+ have no zeros on D . Let degp_ and degg_ be the degrees of p_ and ¢_,
respectively, and set

k =degp_ —degq_ .
Then the functions p_/q_ and p, /g, are holomorphic on D_ and D, respec-
tively,

a:= lim Z?,{p_(z)

e

exists and a # 0. Therefore we obtain a factorization of f with respect to I'g U
...UT,,, by setting

f-(z)= = (2) forz€ D_ and f_(c0) =a,

q-(2)
_r+(?) or » €D
f+(z>_q+(2’) fi ED+'

Not every continuous function f: TgU...UT,,, — C* admits a factorization
with respect to ToU...UT,, (see Remark 3.11.4 below). To study the factorization
problem in the general case, now, also for continuous functions, we define the index,
which was introduced for holomorphic functions already in Definition 2.5.3.

For that let IV be the union of some of the connected components Iy, ...,T,,
of T, oriented in an arbitrary way. First consider two holomorphic functions f, g :
I — C* such that

[f(2)g(x) 7" —1] <1

for all z € T”. Then this estimate holds also in some neighborhood of I”. Therefore
log ( f g_l) is defined in this neighborhood, where log is the main branch of the

logarithm, and
(fg_l)l (elog(fgf1)>/

foot  fg!

=(fo")".
Hence

indp, f —indp g = indp, (fg~') = / (f(z)g_l(z))ldz =0.

T 2mi

Therefore the following definition is correct (and agrees with Definition 2.5.3 when
f is holomorphic):
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3.8.2 Definition. Let I be the union of some of the connected components Iy, .. .,
T, of T, oriented in an arbitrary way. Let f : I — C* be a continuous function.
Then we define

indl—v f = indl—\/ f (38.2)

where f : IY — C* is a holomorphic function which is sufficiently close to f,
uniformly on I'. (By Corollary 3.3.3 such a function f exists.) This number ind, f
is called the index of f with respect to I". By Proposition 2.5.4 (iv), it is an integer.

3.8.3 Proposition. (i) Let I be the union of some of the connected components
To,..., Iy of T, oriented in an arbitrary way. Let f,g : IV — C* be two
continuous functions. Then

indp (fg) = indp f +indp. g (3.8.3)

(i) Let f: T — C* be a continuous function which admits an extension to D
which is continuous on I' and meromorphic in D,. Denote this extension
also by f, let N be the number of zeros of f in Dy, counted according to
their multiplicities, and let P be the number of poles of f in D, also counted
according to their multiplicities. Then (recall that T is oriented by D)

indp f =N — P. (3.8.4)

(iii) Let f : T — C* be a continuous function which admits an extension to
D_U{oo} which is continuous on T' and meromorphic in D_U{co} (Section
3.1.1). Denote this extension also by f, let N be the number of zeros of f in
D_U{oo}, counted according to their multiplicities, and let P be the number
of poles of f in D_ U {oo}, also counted according to their multiplicities.
Then (recall that T is oriented by D, ) then

—indr f=N-—P. (3.8.5)

Proof. By our definition of the index in the case of a continuous function, part (i)
follows immediately from part (i) of Proposition 2.5.4.

Consider part (ii). Using the Mergelyan approximation Theorem 2.2.1 and
Cauchy’s theorem it is easy to see that Dy can be replaced by a slightly smaller
set. Then the assertion follows from part (ii) of Proposition 2.5.4.

In the same way part (iii) follows from part (iii) of Proposition 2.5.4. O

3.8.4 Corollary. Let f: T'—C be a continuous function, and let f(z2)=2z"f1(2)f-(2)
be a factorization of f with respect to I'. Then the integer k is uniquely determined,
namely (recall that T is oriented by D, )

K = indp f.



3.8. Factorization. First remarks 87

Proof. Since 0 € D, it follows from Proposition 3.8.3 that
indp f = indp 2° + indp f4 4+ indp f- = indp 2" = k. O

3.8.5 Proposition. Let 0 < j < m, and let f : I'; — C* be a continuous function
with indp, f =0. Then there is a continuous function log f : I'; — C with

eel = f on T';.

Note that log f is uniquely determined up to an additive constant of the form k2mi,
keZ.

Proof. Choose a holomorphic function f: I'; — C* which is so close to f that
fRf ') -1 <1 for z € I'y,

and

indp, f =indp, f =0, 0<j<m.

By the first relation log(ff_l) is well defined on I'j, and, by Theorem 2.5.5, from
the second relation it follows that there exists a_holomorphic function A : I' — C
with e? = f. It remains to set log f = h +log(ff~!), where the latter log denotes
the main branch of the complex logarithm. O

3.8.6. Let f : I' — C be a continuous function, and let f(z) = 2" f1(2)f-(2)
be a factorization of f with respect to I'. By multiplying by a constant we can
always achieve that f_(oco) = 1. With this additional property, the factorization
of f with respect to I' is uniquely determined. Indeed, let f = z"f; f_ be a second
factorization of f. Then

fofit=Ff"  onT.
Therefore (cf. Theorem 1.5.4) the function defined by

h = fj—f;l OHE+,
fof=t on D_ U{co},

is a well-defined holomorphic function on CU{co} which is equal to 1 at co. Hence
this function is identically equal to 1, i.e., f+ = f4.

3.8.7 Theorem. If the contour I is not connected, i.e., m > 1, then, for1 < j < m,
we denote by U; the bounded connected component of D_ with boundary —I'; and
we fix some point p; € Uj.

Let f: T — C be a continuous function. Set

H’j::indl—‘jfa OSJSm
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Further, let g : I' — C be one of the continuous functions with

O ERRFOF for z € Ty,
(z=pj)" f(2), forzel;, 1<j<m,

(which exists by Proposition 3.8.5). Then the following are equivalent:
(i) The function f admits a factorization with respect to T.
(ii) The function g splits with respect to T.
Proof. First assume that there is a factorization f(z) = f_(2)z" f1(z) of f. Then

indpjf,zo for 0 < j <m,
indpr, f+ = ko — K,
indpj f+=kK; for 1 <j<m.

Therefore it follows from the Mergelyan approximation Theorem 2.2.1 and Theo-
rem 2.5.5 that there exists a continuous function g— : D_ U {co} — C, which is
holomorphic in D_ U {oo}, such that f_ = e9~ on D_ U {co}. Moreover, set

}T—&-(Z) = {ZH_KOer(Z)v for z € Iy,

2(z = ;)™ f4(2), forzel;, 1<j<m.

Then indr, fj =0 for 0 < j < m, and from Theorem 2.5.5 and the Mergelyan
Theorem 2.2.1 we get a contiunous function g, : D, — C, which is holomorphic
in D, such that f, = e9+ on D,. It follows

€9 = 2R f(z) = 2T (2)2 fi(2) = - () (2) = €9~ ()92
for z € T'y, and
€)= (2= )i f(2) = (2 = ) f(2)2" F1(2) = F-(2)F (2) = €9~ (D+04)
for z € I';, 1 < j < m. Hence, there are some integers p; with
9(2) = g+(2) + 9-(2) + 5 forzeT;, 0<j<m.

Setting
g-(2)=9g-(2)+p; forzel;, 0<j<m,
we get a splitting (g4,g-) of g.
Now we assume that a splitting g = g4 + g_ of g is given. Then
27" f(2) = e9(2) = 9-(2) 9+ (2) for z € T'y,

(Z —pj)"éjf(z) = 69(2) = eg—(Z)69+(Z) for z € Fj, 1<j<m.



3.9. Factorization of Hélder functions 89

Therefore it is sufficient to prove that the function ¢ defined by

z"o if z €Ty,
p(z) = . . .
(z—p;)— " ifzely, 1<j<m,

admits a factorization. Let Uy be the unbounded connected component of D_,
and let U;, 1 < j < m, be the bounded connected component of D_ with the
boundary —I';, 1 < j < m. Set

oi(2)=(z—p1) " ... (2= pm) "™ for Dy,
and for z € D_ we define

(2) = 2RO (z —p)TEL L (2= ) T if z € Uy,
p-lE = 27 (z—p1) .. 5 oo (z=py)im if2€eU;, 1<j<m.
Since p; € U —j and 0 € Dy, then ¢, is holomorphic and # 0 on Dy, ¢ is
holomorphic and # 0 on D_ U {oco} and

0(z) = 2%p_(2)p4(2) for z €T O

3.9 Factorization of Holder functions

Here we use the notations and definitions introduced in the preceding Section 3.8,
and we prove:

3.9.1 Theorem. Let 0 < a < 1, and let f : I' — C* be Holder continuous with
exponent « (Def. 2.1.6).

Then f admits a factorization with respect to T'.

If f = 2" fL f_ is an arbitrary factorization of f, then f is Holder continuous
with exponent o on Dy, and f_ is Hélder continuous with exponent o on D_.

If, moreover, T is of class C* and f is of class C*¥T on T (Def. 3.4.1) for
some k € N*, and f = 2"f, f_ is an arbitrary factorization of f, then fi is of
class C**® on D, and f_ is of class C*T on D_.

Proof. Let k € N and assume that if £k = 0, then f is Holder-a continuous, and

if & > 1, then T is of class C* and f is of class C¥T®. As observed in Section

3.8.6, up to a multiplicative constant, the solution of the factorization problem is

uniquely determined. Therefore it is sufficient to prove the existence of at least

one factorization f = 2% f, f_ such that the factors fi are of class C¥*® on D..
Set

ki =indp f, 0<j<m, and K=Ko+ K1+ ...+ Em-
b r;
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Let Uy, ..., U, be the bounded connected components of D_ so that —I'; is the
boundary of U;. Choose points p; € U; and set

f(z)=z""(z=p)™ ... (2 — pm)"" f(2).

Since I'g is the boundary of the simply connected open set D U U,U...uU,
(Section 2.5.1) and 0,p1,...,pm € DL UUU...UU,,, it follows from Proposition
3.8.3 (ii) that

indp, (z_”(z —p1)™ (2 —pm)”"”) =—k+K1+ ...+ Km = —Ko,
In the same way we get
indrj (z_K(Z —p)™ (2 —pm)“"") = —K; for 1 <j<m.

Hence, by Proposition 3.8.3 (i),

indpjf:0 forall 0 <j <m.
Therefore, by Proposition 3.8.5, we can find a continuous function g : I' — C with
e =f.

Since fis of class C*** and, locally, the function g is of the form g = log f, where
log is a branch of the logarithm (which is a holomorphic function), it follows that
also g is of class C**®. Therefore, by theorems 3.3.2 and (3.4.5), there exists a
Ck+e-function g, : Dy — C, which is holomorphic in Dy, and a C¥+*-function
g_ : D_U{oc} — C, which is holomorphic in D_ U {co}, such that g = g, +g_
on I'. Then

f=eI+ed- on I

Hence, by definition of f,

Setting

— o9 d =
f o=e and f, (z=p1)" ...(2 — pm)im

we get a factorization

f=2f 1 (3.9.1)

of f with respect to I'. Since the functions g1 are of class Ck*e on Dy, also the
functions fi are of class C** on Dy. O
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3.10 Factorization of Wiener functions

Here T is the unit circle, D is the open unit disc, and D_ = C\ D, . Denote by
W (C) the space of functions f : I' — C of the form

oo

FE) =Y faz" with [fly = D |fal < oo. (3.10.1)

It follows from Cauchy’s product theorem that if f,g € W(C), then fg € W(C)
and

Ifgllw <1 flwllglw-

Hence, W(C) is a Banach algebra with the norm || - ||;;,. Moreover:
3.10.1 Proposition. If f € W(C) and f(z) # 0 for all z € T, then f~* € W(T).

Proof. Let f € W(C) be given, which is not an invertible element of W (C). We
have to find # € T with f(¢) = 0.

Since f is not invertible as an element of W (A), by the theory of commutative
Banach algebras, there exits a multiplicative functional ® on W(C) with

() = 0.

For all fixed complex numbers A € C\T, the function z — A is an invertible element
of W(C) (as (z — A\)~! is holomorphic in a neighborhood of T). Hence, for each
fixed A € C\'T, ®(z — \) # 0 and, therefore,

O(z) —A=d(z— ) #0.

Hence 6 := ®(z) € T. Now let f,, be the coefficients with f(z) = > 02 fn.2".
Since Y |fn| < 00, and, by definition, 2", = 1, then it follows that

FO)= D fab"= D fu(@(2)" = D f22(z") =(f) =0. O

n=-—oo n=-—oo n=—oo

3.10.2 Theorem. Let f € W(C) such that f(z) # 0 for all z € T'. Then f admits
a factorization f(z) = 2" f+(2) f-(z) with respect to T such that fy, f— € W(C).

Moreover, if f(z) = 2" f1(2)f-(2) is a factorization of f with respect to T,
then the factors fi automatically belong to W(C).

Proof. As observed in Section 3.8.6, up to a multiplicative constant, the solution of
the factorization problem is uniquely determined. Therefore it is sufficient to prove
the existence of at least one factorization f = z*fy f_ such that fy, f- € W(C).

By Proposition 3.10.1, f~! belongs to W(C). Since the functions, which are
holomorphic on I, are dense in W (C), we can find a holomorphic function h on I'
with

1
he Yy < .
| Iw < 17T
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As the set f~!(T) is a compact subset of C* and |f~(z) — h(2)| < |f~' — hlly
for all z € T, we can moreover achieve that h(z) # 0 for all z € T. Set

g=fh—1.
Then
lgllw = IF(h = F~Dllw < [ fllwllh = FHw <1 (3.10.2)
and
f=h"1+g).

From (3.10.2) it follows that the series
(o)
(_1) n
d
n=1

converges absolutely with respect to the norm || - ||, to some element of W (A),
which we denote by log(1 4+ g). Since convergence in W (A) implies pointwise con-
vergence, it follows that

(log(1+ g))(z) =log (1+ g(2)) for all z € T,

where the log on the right-hand side denotes the main branch of the complex
logarithm. Since log(1 + g) is an element of W(A), it can be written also in the
form

oo
log (1+g(z Z 2"ay with Z lan||w < oo.
n=-—00 n=—o0
Set
—1 o)
Z 2"y, ve(z) = Z 2"anp,
n=-—oo n=0
wy = e+ and w_ = e’~. So we get continuous functions wy : D, — C*, w_ :

D_U{oo} — C*, which are holomorphic in Dy and D_ U{occ}, respectively, such
that wy,w_ € W(C), 1 + g = w_w and therefore

f=h"tw_w, onI'.

Since h is holomorphic on T, it follows from Theorem 3.9.1 that there exists a
factorization

h=1(2) = 2°h_(2)hy(2) (3.10.3)

of h with respect to I'. From (3.10.3) and Theorem 1.5.4 then we get that h, and
h_ are holomorphic on I'. Hence h and h_ belong to W(C). Setting f+ = wih,
we get a factorization f(z) = 2" f_(2)f1(2) of f with respect to ', where fy, f_ €
W (C). O
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3.11 The multiplicative local principle

In this section we use the notations and definition introduced in Section 3.8.

In Section 3.7 we saw that there is a local principle for the splitting problem.
Here we will show that there is a local principle also for the factorization problem
(see Theorem 3.11.5 below).

3.11.1 Definition. Let U C C be an open set with UNT # (), and let f : T'NU — C*
be a continuous function. We say that f admits a factorization over U with respect
to I if there exist C*-valued functions f_ and f,, where f, is continuous on UND_
and holomorphic in U N D, and f_ is continuous on U N D_ and holomorphic in
U N D_, such that

f=r-r+ onUNT. (3.11.1)

Then the pair (f_, f1) or the representation f = f_ f, will be called a factorization
of f over U with respect to I'. Let f : I' — C* be a continuous function. We say
that f admits local factorizations with respect to I' if, for each w € T, there exists

a neighborhood U of w such that f admits a factorization over U with respect to
I.

3.11.2 Lemma. Let f:I'NU — E be a continuous function, and let U C C be an
open set with UNT #£ 0. If (f—, f+) and (f—, f+) are two factorizations of f over

U with respect to T, then there is a (uniquely determined) holomorphic function
h:U — C* with

f-=hf- onUND_ and fie=nhfy onUNDy,. (3.11.2)
Proof. By hypothesis f_fy = f = f,f; on U NT. Then, setting

- {J?/ﬂ on UNDy,
/= onUND_,

we get a continuous function h : U — C*, which satisfies (3.11.2) and which is

holomorphic in U \ I'. By Theorem 1.5.4, h is holomorphic on all of U. (]

3.11.3 Lemma. Let g : I' — C be a continuous function. Then the following are
equivalent:

(i) The function €9 admits local factorizations with respect to T.
(ii) The function g locally splits (additively) with respect to T.

Proof. (i)=-(ii): Let w € T be given. As e admits local factorizations with respect
to I', then there exist a neighborhood U of w and continuous functions uy :
U N D4 — C*, which are holomorphic in U N D4, such that

el =uju_ onI'nU. (3.11.3)
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After shrinking U, we may assume that a certain branch of the logarithm is defined
on the values of uy, and a certain other branch of the logarithm is defined on the
values of u_, i.e., we have continuous functions vy : U N Dy — C, which are
holomorphic in U N Dy, such that uy = e¥*. Together with (3.11.4) and (3.11.3)
this implies

ed = e+t onI'nU.

Hence, for some k € Z (we may assume that U N T is connected), g = (k27mi +
vy)+v_onI'NU.

(ii)=(i): Let w € " be given. As g locally splits additively with respect to I',
then there exist a neighborhood U of w and continuous functions vy : UNDy — C,
which are holomorphic in U N D, such that

g=v4+v_ onI'NU.
Then e9 = e"+e"~. (]

3.11.4 Remark. Together with the example from Section 3.6 this lemma shows
that not any continuous function f : I' — C* admits local factorizations with
respect to T'.

The fact stated by the following theorem will be called the multiplicative
local principle:

3.11.5 Theorem. Let f : I' — C* be a continuous function which admits local
factorizations with respect to I'. Then f admits a global factorization with respect
to T

Proof. Recall that I' = 9D is oriented by Dy (by Definition 2.1.6) and that
Iy,...,I, are oriented in the same way. Set

/ijzindrjf, 0<j<m, and K=FKo+ Kl +...+FEmnm-

Let Uy, ..., Uy, be the bounded connected components of D_. Choose points p; €
U; and set
f(Z)=2""(z=p)™ - ... (2 = pm)"" [ (2).

Since Ty is the boundary of the simply connected open set Dy U U, u...u Unn,
(Section 2.5.1), the orientation included, and since 0,p1,...,pm € Dy UUU. ..U

U, it follows from Proposition 3.8.3 (ii) that
indp, (z*"(z —p1)* (2 —pm)""") =—Kk+ K1+ ...+ Em = —FKo,
In the same way we get

indp, (zf'{(z —p1) (2 fpm)”’") = —K; for 1 <j <m.
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Hence, by Proposition 3.8.3 (i),

indrjf:O forall0 <j <m.

Therefore, by Proposition 3.8.5, we can find a continuous function g : I' — C with

ed=Ff. (3.11.4)

By hypothesis, f admits local factorizations with respect to I'. Hence fadmits local
factorizations with respect to I'. By Lemma 3.11.3, this implies that g locally splits
additively with respect to I". Therefore, from Theorem 3.7.3 we get a continuous
function g4 : Dy — C, which is holomorphic in D, and a continuous function
g— : D_U{oc} — C, which is holomorphic in D_ U {00}, such that g = g, + g_
on I'. Then B

f=e9ted- on I

Hence, by definition of f,
Z’ieg+ 697

(z—=p1)ft ... (2 — pm)rim’

Setting
; ’ 4 f o9+
_=¢9" an L=
(z—=p1)" ... (2 = pm)tim
we get the required factorization f = 2" fy f_ of f with respect to I'. O

3.12 Comments

In writing this chapter we used different sources. For sections 3.1-3.5, 3.8 and 3.9
see [Mu], [GKru], for Section 3.6 see [Bar|. The material of sections 3.7 and 3.11,
in this form, probably appears here for the first time. For Section 3.10 see [K].



Chapter 4

The Rouché theorem for
operator functions

In this chapter we generalize to finite meromorphic Fredholm operator functions
the classical Rouché theorem from Complex analysis and the Smith factorization
form. The proof is based on the local Smith form for matrix functions.

4.1 Finite meromorphic Fredholm functions

In this section F is a Banach space.

4.1.1 Definition. Let w € C, let U be a neighborhood of w, and let A : U \ {w} —
L(E) be a holomorphic function which is meromorphic on U (Section 1.10.6).

Then we shall say that A is finite meromorphic at w if the Laurent expansion
of A at w is of the form

Alz) =D (z—w)"An,

n=m

where (if m < 0) the operators A,,,..., A_; are finite dimensional.
If, in addition, Ay is a Fredholm operator, then A is called finite meromorphic
and Fredholm at w. The index of A then will be called the index of A at w.

4.1.2 Theorem. Let w € C, and let W be a neighborhood of w. Let A : W\ {w} —
L(E) be a holomorphic function which is finite meromorphic and Fredholm at w.
Assume the index of A at w is zero. Then there exist a neighborhood U C W of
w and a finite dimensional projectort P in E such that, with Q := I — P, the
following holds:

1By a projector in E we always mean a bounded linear projector in E, i.e., an operator
P € L(E) with P2 = P. A projector P in E is called finite dimensional if dim Im P < oo.
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There exist holomorphic functions S, T : U — GL(E) and a holomorphic
function Ap : U\ {w} — L(Im P), which is meromorphic at w, such that

SAT =Q+ PApP on U\ {w}. (4.1.1)
Proof. Let
Az) = (z—w)"4,

be the Laurent expansion of A at w. Since Ag is a Fredholm operator with index
zero, by multiplication by an invertible operator (from the left or from the right),
we may assume that Ag is a projector with dim Ker Ag < oco. Using again that
the operators A,,,..., A_; are finite dimensional, we can find finite dimensional
projectors P and Fp in F such that

PyP = PPy =Py, (4.1.2)

and, with Q :=1 — P,
Ay =Q+ Fy, (4.1.3)
AiQ=0QA;=0 form<j<-1. (4.1.4)

Choose a neighborhood U C W of w so small that the Laurent expansion of A at
w converges on U \ {w}. Setting

Ay(2)=Q+ Py + Z(z —w)"A, and V(z)=A.(2)Q+ P
n=1

for z € U, we get holomorphic functions A,V : U — L(E). Then, by (4.1.3) and
(4.1.4),
A;Q=AQ onU\{w} (4.1.5)

and hence

VQ =AQ onU\{w}. (4.1.6)

Since A} (w) = Q + Py, it follows from (4.1.3) and (4.1.2) that V(w) = I. By
shrinking U we can achieve that

V(z) € GL(E) forall z € U. (4.1.7)
Then it follows from the definition of V' that
ViP=P onU, (4.1.8)
and from (4.1.6) it follows that

Q=V"rAQ on U\ {w}. (4.1.9)
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Setting
S=I1-QV'A,P onU

and
Ap =PV 'AP on U\ {w},

we obtain a holomorphic function S : U — L(E) and Ap : U \ {w} — L(Im P).
The values of S are invertible, namely:

St=14+Qv'tA,P onU.
Moreover,
VT3IAS =VIAQ+VIAP —VIAQV AL P on U\ {w}.
By (4.1.9) this implies
V3IAS=Q+ VAP - QV AP
=Q+ PV AP+ QVTIAP —QV AL P (4.1.10)
=Q+PApP+QV Y A—-A )P onU\ {w}.
It follows from (4.1.4) that

-1

A) = As(z) =) (z—w)d,, z€U\{w}.

Since, by (4.1.4), A,P = PA,, for m <n < —1, this implies that

(A—A)P=PA-A)P
and therefore

QV HA-A)P=QV 'P(A-A)P onU)\{w}.
Since, by (4.1.8), V"1P = P, this further implies that
QVHA-A )P =0.
Together with (4.1.10) this gives
VIAS =Q + PApP on U\ {w}. (4.1.11)

Setting T'= V!, we get the required relation (4.1.1). It remains to observe that
from (4.1.1) it follows that Ap is meromorphic at w and holomorphic on U \ {w},
because A has these properties. O

The function Ap in (4.1.1) can be represented by a meromorphic matrix
function. Since the inverse of such a function is again meromorphic (if it exists),
we immediately obtain the following
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4.1.3 Corollary (to Theorem 4.1.2). Let D C C be an open set, and let Z C D be
a discrete and closed subset of D. Let A be a holomorphic GL(E)-valued function
on D\ Z which is finite meromorphic and Fredholm at each point of Z. Then A~}
18 finite meromorphic and Fredholm at each point of Z.

4.1.4 Proposition. Let D C C be a connected open set, and let Z C D be a discrete
and closed subset of D. Let A be a holomorphic L(E)-valued function on D\ Z
which is finite meromorphic and Fredholm at each point of D. Suppose, there exists
at least one point zg € D\ Z such that A(zo) is invertible. Then there ezists a
discrete and closed subset Z' of D with Z' O Z such that A(z) is invertible for
each z € D\ Z', and the function A=' : D\ Z' — GL(E) is finite meromorphic
and Fredholm at each point of D.

Proof. Denote by D’ the set of all w € D\ Z such that there exists a neighborhood
UCDwithU\{w} CD\Z and A(z) € GL(E) for all z € U \ {w}.

We claim that D’ = D. Obviously, D’ is open and, by hypothethis, D’ D
{20} # 0. Since D is connected, it remains to prove that D’ is relatively closed
in D. Let w € D be a boundary point of D’. Since, by hypothesis, A is finite
meromorphic and Fredholm at w, first we can find a neighborhood W C D\ Z such
that A is finite meromorphic and Fredholm at w. Then from Theorem 4.1.2 we get
a neighborhood U C W of w, a finite dimensional projector P in E, holomorphic
functions S,T : U — GL(E) and a holomorphic function Ap : U\{w} — L(Im P),
which is meromorphic at w, such that, with Q := 1 — P,

A=5(Q+ PApP)T on U\ {w}. (4.1.12)

Then the determinant det Ap is holomorphic on U \ {w} and meromorphic at w.
Hence, there is a neighborhood V' C U of w such that either

det Ap =0 on V\ {w} (4.1.13)

or

det Ap(z) #0  for all z € V' \ {w}. (4.1.14)

By (4.1.12), from (4.1.13) it would follow that A is not invertible for all z € V\{w}.
But this is impossible, as w is a boundary point of D’. Hence, we have (4.1.14).
Again by (4.1.12) this means that A(z) is invertible for all z € V\{w}, i.e.,w € D".

Let Z’ be the set of all w € D such that either w € Z or w € D\ Z and A(w)
is not invertible. Since D = D’ it follows, by definition of D', that Z’ is discrete
and closed in D. O

4.1.5 Proposition. Let D C C be a bounded open set with piecewise C*-boundary.
Let Z C D be a finite set, and let M : D\ Z — L(E) be a holomorphic function
which is finite meromorphic at each point of Z, such that

IM(2)] <1 for all z € OD. (4.1.15)
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Then I+ M is finite meromorphic and Fredholm at each point of D, and the index
of I + M is zero at each point of D. Moreover, there exists a finite subset Z' of D
with Z' O Z such that A(z) is invertible for each z € D\ Z’,

Proof. Since M is finite meromorphic at each point of Z, it is clear that I + M
is finite moromorphic at each point of Z. Let K the sum of the principal parts
of M at the points of Z, and set A =T+ M — K on D\ Z. Then A admits a
holomorphic extension to D, which we also denote by A.

Let F(E) be the ideal of finite dimensional operators in E, and let F*°(E)
be the closure of F(FE) in L(E) with respect to the operator norm. Consider the
factor algebra L(E) := L(E)/F>(E). For T € L(E), we denote by T the class of

<

T in Z(E) Then K =0, and it follows from (4.1.15) that
|A(z) = T)| = | M(2)|| < |IM(z)|]| <1 for all z € dD.
Hence, by the maximum principle,
|A(z) =TIl <1  forall z€ D.

Therefore A(z) is invertible for all z € D. Hence, A(z) is a Fredholm operator with
index zero for all z € D, which implies that I + M = A+ K is finite meromorphic
and Fredholm at each point of D, and the index of I 4+ M is zero at each point of
D. Since I + M(z) is invertible for z € 9D, it follows from Proposition 4.1.4 that
there exists a finite subset Z’ of D with Z’ O Z such that I + M (z) is invertible
for each z € D\ Z'. O

4.2 Invertible finite meromorphic Fredholm functions

First recall the notion of the trace of a finite dimensional linear operator. For a
complex matrix

A= € L(n,C),

(ajk)1§j,kgn

the trace of A, which we denote by tr A, is defined by
n
tI‘A = Z ajj B (421)
j=1

If

B = € L(n,C)

(Bjk)lgj,kgn
is a second matrix, then

n n n n

tr(AB) = > a;,b,; =Y > b,a;, = tr(BA). (4.2.2)

j=1lv=1 v=1j=1
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In particular, if A € L(n,C) and B € GL(n,C), then
tr(BAB™') = tr(A). (4.2.3)

Therefore, for each finite dimensional complex vector space F' and each operator
A € L(F), the trace of A is well defined: If fi,..., f,, is a Basis of F and a =
(@jk); k=1, 18 the matrix with

Afe =Y arf;,

j=1
then .
trA = Z ajj -
j=1
From (4.2.2) it follows that
tr(AB) = tr(BA) for all A,B € L(F). (4.2.4)

Now let F' an H be two finite dimensional complex vector spaces such that
F' is a subspace of H. B

If A € L(F), then we say that A € L(H) is an extension by zero of A if
E|F — Aand rank A = rank A. If A € L(F) and A € L(H) is an extension by zero
of A, then

trA=trA. (4.2.5)
Indeed, since E|F = A and rank A = rank A, we can find a basis fi,..., fn of
H such that, for some m < n, the vectors fi,..., f,, form a basis of F' and

fmt1, -+, fn € Ker A. Let (ajk)ﬁk:l“_,n be the matrix with

ﬁfk = Z ajkf; for1 <k <n. (4.2.6)

Jj=1

Since frt1y.--5fn € Ker A and therefore aj = 0 for K > m + 1, this implies that
trA=> aj;. (4.2.7)

j=1

Since A = A‘F, it follows from (4.2.6) that
Afy = Zajkfj for 1 < k < m. (4.2.8)

J=1

Taking into account also (4.2.7), this implies (4.2.5).
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Now let E be an arbitrary Banach space.

Let F(FE) be the ideal of L(E) which consists of the finite dimensional oper-
ators. For A € F(FE), we denote by Sa the set of all finite dimensional subspaces
F of E such that Im A C F and F N Ker A = {0}. Then, for each A € F(F) and
all ' € Sy, we view A|F as an operator in F. We claim that

tr (A|F) =tr (A|G) forall Ae F(FE)and F,G€ S4. (4.2.9)

Indeed, let A € F(E) and F,G € S4 be given. Take H € S4 such that FUG C H.
Then A| 5 is an extension by zero both of A| » and A| - Therefore it follows from

(4.2.5) that
tr (4] ;) =tr(4],) =tr (A’G) '
In view of (4.2.9), the following definition is correct:

4.2.1 Definition. Let A € L(E) be finite dimensional. Then we take a finite di-
mensional subspace F of F with ImA C F' and F NKer A = {0}, and define

tr A = tr (A‘F)

Note that, by (4.2.4), for all operators A, B € L(E) such that at least one of
them is finite dimensional,

tr(AB) = tr(BA) . (4.2.10)

4.2.2 Proposition. Let D C C be a bounded open set with piecewise Ct-boundary,
let Z C D be a finite set, and let A,B : D\ Z — L(E) be two holomorphic
functions which are finite meromorphic at the points of Z. Then the integrals

/A(Z)B(z)dz and /B(z)A(z)dz (4.2.11)

oD oD

are finite dimensional, and

tr/A(z)B(z) dz:tr/B(z)A(z) dz. (4.2.12)

oD oD

Proof. Since the functions AB and BA are finite meromorphic at Z, by Cauchy’s
theorem, it is clear that the integrals (4.2.11) are finite dimensional. To prove
(4.2.12), again by Cauchy’s theorem, we may assume that Z consists of a single
point w, and D is a disc centered at w. Since the functions A and B are finite
meromorphic at w, their Laurent expansions are of the form

o0 o0

Az) = Z (z—w)"A,, B(z)= Z (2 —w)"B,, z¢€D\{w},

n=—m n=—m
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where m € N* and the operators A_,,,...,A_1 and B_,,,...,B_1 are finite
dimensional. Then

/A(Z)B(z) dz=2mi Y = A;B_j,
oD

—m<j<m-—1

and

/ B(z)A(z) dz = 2mi Z BjA_; 1.

9D —m<j<m—1

Now it follows from (4.2.10) that

tr / A(2)B(z) dz = 2mi z tr(A;B_j_1)

oD —m<j<m—1

= 27i Z tr(B;A_j_1) =tr / B(2)A(z) dz.
—m<j<m-1 6D

O

4.2.3 Proposition. Let D C C be a bounded open set with piecewise Cl-boundary,
let Z C D be a finite set, and let A: D\ Z — GL(E) be a holomorphic function
which is finite meromorphic and Fredholm at the points of Z. Then the operators

/A'(z)Ail(z)dz and /Ail(z)A’(z)dz (4.2.13)
oD oD

are finite dimensional and

tr/A’(z)Ail(z)dz:tr/Ail(z)A'(z)dz. (4.2.14)

oD oD

Proof. By hypothesis, A is finite meromorphic and Fredholm at the points of Z.
This implies that A’ is finite meromorphic at Z. By Corollary 4.1.3, also A™! is
finite meromorphic at Z. Hence A’A~! and A~'A’ are finite meromorphic at Z.
Hence the operators (4.2.13) are finite dimensional.

To prove that they have the same trace, again by Cauchy’s theorem, we
may assume that Z consists only of one point w. Since, on D \ {w}, the values
of A are invertible and A is finite meromorphic and Fredholm at w, it is clear
that the index of A at w is zero. Therefore, by Theorem 4.1.2, there exist a
neighborhood U C D of w, a finite dimensional projector P in E, holomorphic
functions S, T : U — GL(E) and a holomorphic function Ap : U\{w} — L(Im P),
which is meromorphic at w, such that, with @ := 1 — P,

A=5(Q+ PApP)T on U\ {w}.
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From this representation it follows that the values of Ap are invertible on U \ {w}
and
AA™ = PARLAL'P, AT'A = PAMALP.

Therefore, it follows from (4.2.10) that

tr / A()A N 2)dz = /tr (PA/P(Z)A;l(z)P) dz

oD oD
= /tr (PA;l(z)A’P(z)P> dz = tr / AT (2) A (2) dz.
oD oD O

4.2.4 Definition. Let D C C be a bounded open set with piecewise C'-boundary,
let Z C D be a finite set, and let A: D\ Z — GL(E) be a holomorphic function
which is finite meromorphic and Fredholm at the points of Z. Then, by Proposition
4.2.3, the following definition is correct:

3 e L / —1 _ L —1 /
indyp A := 57 tr / A(2)A7 (2)dz = 57 tr / A7 (2)A(2)d=.
oD oD

The number indyp A will be called the index of A with respect to the contour 9D

In Section 4.4, we shall prove that this index is always an integer, using the
Smith factorization theorem from the following Section 4.3. The present section is
concluded with the following proposition:

4.2.5 Proposition. Let D C C be a bounded open set with piecewise Cl-boundary,
let Z C D be a finite set, and let A,B : D\ Z — GL(E) be two holomorphic
functions which are finite meromorphic and Fredholm at the points of Z. Then

Proof. Since (AB)(AB)™! = A’A=' + AB'B71A~!, we have

indyp(AB) = indyp A + % tr / AB'B™'A 1 dz.
i
oD

Since the functions A, B and B’ are finite meromorphic, and, by Corollary 4.1.3,
also the functions A~ and B~! are finite meromorphic, it follows from Proposition
4.2.2 that

1 1
—,tr/AB’B’lA’ldz = —,tr/B'Bfldz =indyp, B.
2m 21

oD oD

Together this proves (4.2.15). O



106 Chapter 4. The Rouché theorem for operator functions

4.3 Smith factorization

Recall that, in this book, we denote by L(n,C) the algebra of complex n x n
matrices, and by GL(n,C) we denote the group of invertible elements in L(n,C).

4.3.1 Theorem (Smith factorization). Let w € C, let W be a neighorhood of w, and
let A be an n x m-matrixz of scalar meromorphic functions on W such that at least
one of these functions does not identically vanish on W\ {w}. Then there exist

uniquely determined integers k1 > ... > Kk, 1 < r < min(n,m), a neighborhood
U CW of w and holomorphic functions E : U — GL(n,C), F : U — GL(m,C)
such that
A0
par= (& 0)

where A is the r x r diagonal matriz with the diagonal

K1 Ko

(z—w)™,... (2 —w)

4.3.2 Definition. The integers k1 > ... > Kk, from the preceding definition will be
called the powers of A at zy.2

Proof. Uniqueness: The number r is the rank of the matrix EAF over C\ {2}.
Since the values of E and F are invertible, this implies that r is the rank of A
over U \ {z}. Hence r is uniquely determined by A.

Now we assume that there are given two vectors of integers k1 > ... > K,
and K1 > ... > K, such that, for some 1 <p <,

Kp > Fip, (4.3.1)

and such that, for some holomorphic functions F, E:U— GL(n,C), F, F:U—
GL(m,C) in a neighborhood U C D of z,

(A0 =~ =~ (A 0
EAF_(O 0) and EAF_(O 0) (4.3.2)

where A and A are the r x r diagonal matrices with the diagonals

(z—20)" ..., (2= 20)" and (z-— zo)%l, cony (2= 20)%
respectively. Since k1 > ... > kK, and K1 > ... > Ky, then it follows from (4.3.1)
that

Ky > Ky for1<v<p<pu<r (4.3.3)

2This vector of powers is not identical with the numerical characteristic of A at w which we
introduce below (Def. 11.3.6), but it is closely related: The vector of powers and the numerical
characteristic uniquely determine each other (see the beginning of Section 11.5 for this relation.)
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Moreover it follows from (4.3.2) that

B! <€ 8) FleA=E" (ﬁ 8) P!

and therefore
~ (A O A 0\ =
1 _ 1
EE (O O> = <O 0) F'F on U\ {z}. (4.3.4)

Let o, be the elements of EE_17 and 3, the elements of ﬁ_1F7 where p is the
row index and v is the column index. Then by (4.3.2)

(z = z0)™ oy = (2 — zo)%“ﬂm, on U\ {2z} if1<puv<r.

By (4.3.3) this implies that §,.,(z0) = 0 for v < p < p < r. This is impossible,
because F~1(z9)F(zp) is invertible.

Existence: Let M be the ring of germs of scalar meromorphic functions at zg,
and let O be the subring of holomorphic germs. Let M (k) be the algebra of k x k-
matrices with elements from M, and let O(k) be the subalgebra matrices with
elements from O. Denote by GO(k) the group of invertible elements in O(k). Let
[z — z0] be the element in O defined by the function z — zo. Further, let M(n,m)
be the space of n x m-matrices with elements from M.

Then A can be viewed as an element of M(n,m) and we have to find FE €
GO(n) and F' € GO(m) such that, for some integers k1 > ... > k,, FAF is of
the block form such that EAF is of the block form

A0
par- (3 )

where A is the r x r diagonal matrix with the diagonal
[z — 20]"Y, ..., [z — 20]"" .
Consider the following three row operations, which we will apply to matrices
from M(n, m):
(I) Multiplying a row by an element g € GO.
(IT) Interchanging two rows.

(ITI) Taking two different rows a and b and an arbitrary element f € O and
replacing the row b by b+ fa.

Operation (I) can be realized multiplying from the left by the diagonal matrix
obtained from the unit matrix after replacing the corresponding element of the
diagonal by g. Operation (IT) can be realized multiplying from the left by the ma-
trix obtained from the unit matrix after interchanging the corresponding columns.
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Operation (III) can be realized multiplying from the left by the matrix obtained
from the unit matrix after replacing one of the zero elements outside the diagonal
by f. All these matrices belong to the group GO(n).

Multiplying the corresponding matrices of the group GO(m) from the right
we obtain the corresponding column operations, which we denote by (I'), (II') and
(IIT"), respectively.

Therefore it is sufficient to prove that, by a finite number of the operations
(I), (I1), (I1I), (T'), (II') and (III"), the matrix A can be transformed to a matrix
of the required diagonal form.

If a € M and a # 0, then there is a uniquely determined entire number N
such that the Laurent series of a is of the form

o0

a= Z anlz — zo]™ with ay # 0.
n=N

We call this number the order of a and denote it by ord a. For the zero element
0 € M we write ord 0 = oo. For a € M with a # 0, we define

a= [Z _ZO]—orda

a.
Then a € GO for all a € M with a # 0.

Denote by N; the minimal order of the elements of A. Since A is not the zero
matrix, N1 < co. Choose 1 < p < n and 1 < ¢ < m such that at the place (p,q)
of A we have an element of order Ni. Denote this element by a.

Now we proceed as follows: 1. We multiply the p-th row of A by a—!. 2. We
interchange the ¢ — th column of the obtained matrix with the first column. 3. We
interchange the p — th row of the now obtained matrix with the first row. After
these operations, the orders of all elements of the matrix are still > N;p, and at
the place (1,1) we have the element [z — 2] V1.

Now consider the element b at the place (1,2) (first row and second column).
Since ordb > Ny, then [z — z]°™d b=N1} helongs to @ and we may multiply the
first column by [z — zo]or4—N 1D and then substract the result from the second
column. So we get a matrix with a zero at the place (1, 2). Doing the same with the
elements at the places (1,3),...,(1,m), we end up with a matrix with [z — z]™
at the place (1,1) and with zeros at the places (1,2),...,(1,m). Then the same
procedure with row operations leads to a matrix of the form

[z — 2™ 0 0
0

: B
0

where B is an (n — 1) x (m — 1)-matrix with elements from M and the orders of
all elements of B are still > Ny. If B = 0, the proof is complete. If not we apply
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the same procedure to the matrix B. If Ny is the minimal order of the elements
of B, then this gives a matrix of the form

[z — 29]V 0 0 0
0 [z — zo) V2 0 0
0 0
: : C
0 0

where C'is an (n — 2) X (m — 2)-matrix. If C' = 0, we set k1 = Ny and ko = Ny,
interchange the first two columns and then the first two rows, and the proof is
complete. If not we proceed in this way and, for some 3 < r < min(n,m), we end
up with a block matrix of the form
A0
(6 0)

where A is the r x r diagonal matrix with the diagonal

(z—20)™M, ..., (z—20)"".

This completes the proof of Lemma 4.3.1. (]

4.3.3 Corollary. Let w € C, and let K : C\ L(n,C) be a rational matriz function

of the form
-1

K(z) = Z (z—w)"K,, (4.3.5)

n=-—m
where K_p,,...,K_1, 1 < m < oo, are constant complexr n X n-matrices. Then
there ezists a neighborhood U of w and a holomorphic matriz function A : U —
L(n,C) such that A(z) is invertible for all z € U\ {w} and K is the principal part
of the Laurent expansion of A~ at w.

Proof. For K = 0 this is trivial. Let K # 0. Then, by the Smith factorization
Theorem 4.3.1, there are integers k1 > ... > k., 1 <71 < n, a neighborhood U of
w and holomorphic functions E, F : U — GL(n,C), such that

K = EAF
where A is the n x n diagonal matrix with the diagonal
(z—w)™, ..., (z—w)", 0,...,0
——
(n—r) times
Let A4 be the n x n-diagonal matrix with the diagonal dy, ..., d, where

g — (z —w)™" if1<j<randsk; <0,
T ifr+1<j<norl<j<randx; >0.
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Then A is holomorphic on U, invertible on U \ {w}, and AT' — A extends holo-
morphically to w. Set A = F~!A,E~!. Then A is holomorphic on U, invertible
on U\ {w}, and

E(2)A(2)F(2) + E(2) (A;l(z) - A(z))F(z)
— K(2) + E() (A;l(z) - A(z))F(z) for z € U\ {w}.

Since F (A;l — A)F extends holomorphically to w, this shows that K is the prin-
cipal part of the Laurent expansion of A~! at w. ([l

It is impossible to replace in Corollary 4.3.3 the prescribed function (4.3.5)
by an arbitrary function of the form

0
K(z)= Y (z—w)"Kn,
with matrices K_,,,..., Ko, 1 < m < co where Ky # 0. We give a counterexample:
4.3.4 Example. Let
Ke=(t (43.6)
2) =1, 1 . 3.

Then it is impossible to find a neighborhood U of 0 € C and holomorphic functions
A,B:U — L(2,C) such that A(z) is invertible for z € U \ {0} and

A7N(z) = (é j_l) +2B(z),  zeU\{0}.

Indeed, assume this is possible. Then

((1) (1)) = ((1) il) A(2) +2B(2)A(z),  z€U\{0}. (4.3.7)

Let

A= () o) e me= (0 b))

Then it follows from (4.3.7) that
0 = a1a(2) + 27  age(2) + 2b11(2)a12(2) + 2b12(2)aga(2)

and
1 = a92(2) + 2b21(2)a12(z) + zbaa(2)age(2)

for z € U\ {0}. This is impossible, as from the first relation it follows that
a22(0) = 0 and from the second relation it follows that az2(0) = 1.
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4.4 The Rouché theorem

4.4.1 Theorem. Let D C C be a bounded open set with piecewise C'-boundary, let
Z C D be a finite set, and let A : D\ Z — GL(E) be a holomorphic function
which is finite meromorphic and Fredholm at the points of Z. Then indyp A (Def.
4.2.4) is an integer.

Proof. By Cauchy’s theorem, we may assume that Z consists only of a single point
w. Since, on D \ {w}, the values of A are invertible and A is finite meromorphic
and Fredholm at w, it is clear that the index of A at w is zero. Therefore, by
Theorem 4.1.2, there exist a neighborhood U C D of w, a finite dimensional
projector P in E, holomorphic functions S,T : U — GL(E) and a holomorphic
function Ap : U \ {w} — L(Im P), which is meromorphic at w, such that, with
Q:=1-P,

A=S5(Q+ PApP)T on U\ {w}. (4.4.1)
We may assume that U is a disc. Then, again by Cauchy’s theorem,

indgp A =indy; A.

Since indy, T = indgy S = 0, this further implies, by (4.4.1) and Proposition
4.2.5, that
indyp A = indgy(Q + PApP).

By Cauchy’s theorem this implies that

By the Smith factorization Theorem 4.3.1, there exist uniquely determined integers
K1 > ... > Ky, a neighborhood U C W of w and holomorphic functions E, F' :

U — GL(Im P) such that
A0
EApF = <0 0) (4.4.3)

where, with respect to an appropriate basis of Im P, A can be represented by the
r X r diagonal matrix with the diagonal

(z—w)™,. .., (z —w)
Note that

, 1 _ 1 ~ K .
mdaUA:%/tr(A'A 1)dz=%/§ Z_]wdz: g Kj.
ou =1 i=1

ou

By Proposition 4.2.5 and (4.4.3), this implies that

indyy Ap = Z Kj .

=1

Together with (4.4.2) this proves the theorem O



112 Chapter 4. The Rouché theorem for operator functions

4.4.2 Lemma. Let D C C be a bounded open set with piecewise Cl-boundary. Let
Z C D be a finite set, and let M : D\ Z — L(FE) be a holomorphic function which
s finite meromorphic at each point of Z, such that

IM(2)] <1 for all z € OD. (4.4.4)

Then I+ M is finite meromorphic and Fredholm at each point of D, and the index
of I+ M ‘s zero at each point of D. Moreover, there exists a finite subset Z' of D
with Z' O Z such that I + M (z) is invertible for each z € D\ Z'. Moreover,

indyp, (I + M) =0. (4.4.5)

Proof. Except for relation (4.4.5), this is precisely the statement of propositon
4.1.5. Moreover, by the same Proposition 4.1.5, for each 0 < ¢t < 1, the function
I + tM has the same properties. Obviously, the function

[0,1] 2t — indyp (I +tM)

is continuous. Since, by Theorem 4.4.1, the values of this function are integers and
since indyp I = 0, it follows that indyp (I + M) = 0. O

4.4.3 Theorem. Let D C C be a bounded open set with piecewise C'-boundary, let
Z C D be a finite set, let A: D\ Z — GL(E) be a holomorphic function which is
finite meromorphic and Fredholm at the points of Z, and let S : D\ Z — GL(E)
be a holomorphic function which is finite meromorphic at each points of Z such
that

[A™(2)S(2)]| < 1 for z € 0D. (4.4.6)

Then the function A+ S is finite meromorphic and Fredholm at each point of Z,

and
indgp(A+S) =indyp A. (4.4.7)

Proof. By Lemma 4.4.2, the function I+A~1S is finite meromorphic and Fredholm
at each point of D, the index of I + A™! is zero at each point of D, there exists
a finite subset Z’ of D with Z' O Z such that I + A=1S(z) is invertible for each
z€ D\ Z', and

indyp(I+A71S) =0.

Since A+ S = A(I + A~1S), by Proposition 4.2.5, this implies

indyp(A+S) =indyp A +indyp (I + A71S) =indyp A. O

4.5 Comments

The material of this chapter is mostly taken from [GS].



Chapter 5

Multiplicative cocycles
(OC-cocycles)

Let A be a Banach algebra with unit 1, and let G be an open subgroup of the
group of invertible elements of A. The Runge approximation Theorem 2.5.6 for
invertible scalar functions admits the following generalization:

5.0.1 Theorem. Let D C C be a bounded open set with piecewise Cl-boundary
(possibly not connected), and let f : D — G be a continuous function which is
holomorphic in D, such that all values of f belong to the same connected component

of G.

(i) If C\ D is connected, then f can be approximated uniformly on D by G-valued
functions defined and holomorphic on C.

(ii) Suppose C\ D is not connected. Let Uy, ..., Un be the bounded connected
components of C\ D, and assume that, for each 1 < j < N, a point p; € U;
is given. Then f can be approvimated uniformly on D by G-valued functions
defined and holomorphic on C\ {py,...,py}-

Part (i) of this theorem will be proved at the end of Section 5.4, and part
(ii) will be obtained in Section 5.10 as a special case of Theorem 5.10.5. (Theorem
5.10.5 is the formulation of Theorem 5.0.1 on the Riemann sphere.)

Theorem 5.0.1 is one of the main statements of the theory developed in the
present chapter. The proof is much more difficult than the proof of Theorem 2.5.6,
and can be obtained only in the framework of the theory of O%-cocycles, developed
in this chapter.! The reason is that the group G, in general, is not commutative.
After some preparation in Section 5.3, in Section 5.4 we only prove part (i) of
Theorem 5.0.1. Then, in Section 5.5, we prove the Cartan lemma, which can be
viewed as a special case of Theorem 0.0.1 stated in the introduction to this book.

LAt least the authors do not see another way.
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Theorem 0.0.1 in turn can be considered as a special result on the triviality of
OGLE) _cocycles (see Definition 5.6.1 below), because a GL(FE)-valued function,
defined and holomorphic in the intersection of two open sets, may be viewed
as a special OFL(F)_cocycle. Using the language introduced in Definition 5.6.1,
Theorem 0.0.1 then says that this cocycle is OFLE) _trivial.

To prove Theorem 0.0.1, however we have to pass to general multiplicative
cocycles (Def. 5.6.1). In Section 5.6 we introduce the language of multiplicative
cocycles and state the main result on such cocycles. This is Theorem 5.6.3, which
contains Theorem 0.0.1 as a special case. In Section 5.9 we prove it in the simply
connected case, whence also Theorem 0.0.1 is proved in the case when Dy U D5 is
simply connected. Using this, then in Section 5.10 we prove the Runge approxima-
tion Theorem 5.0.1 in its general form. At the end, using the Runge approximation
Theorem 5.0.1 in its general form, in Section 5.11 we prove Theorem 5.6.3 in its
general form, whence also Theorem 0.0.1 is proved in its general form.

In Section 5.13 we prove the generalized Weierstrass Theorem 0.0.2, stated
in the introduction to this book, as well as the corresponding right-sided and two-
sided versions. In Section 5.12 we prove Weierstrass theorems for functions of the
form I + K, where the values of K are compact.

5.1 Topological properties of GL(FE)

5.1.1. Until now it was not important whether the group of invertible elements of
a Banach algebra is connected or not. This changes beginning with the present
chapter. Therefore we devote this section to this question.

First recall the following example of a Banach algebra with a non-connected
group of invertible elements: Let E be an infinite dimensional Banach space, and
let 7¥(E) be the ideal of compact operators in L(E). Then the group of invertible
elements of L(E)/F“(E) is not connected, because this group is the image under
the canonical map

L(E) — L(E)/F“(E)

of the set of Fredholm operators in L(E) (see, e.g., [GGK2]), where Fredholm
operators with different indicies define different connected components of the group
G(L(E)/]—"”(E)).

For many Banach spaces, the group of invertible operators is connected. This
is the case, for example, for all Hilbert spaces, which we prove below (Theorem
5.1.5).

Note without proofs that for each of the following Banach spaces the group
of invertible operators is not only connected but even contractible:

Hilbert spaces of infinite dimension,

Co,

lp, 1 < p < oo,
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L,[0,1], 1 < p < o0,
C°(K) (K a compact metric space of continuum cardinality),
C*(M), k € N, (M a smooth compact manifold).

The proofs and more examples can be found in the original papers [A, Ku, N1,
Mi, MiE, EMS1, EMS2]. The interested reader is recommended to consult also the
review about these papers written by G. Neubauer [N2] .

But there are also quite natural Banach spaces with non-connected groups
of invertible operators. At the end of this section, we give an example.

We begin with the following simple lemma.

5.1.2 Lemma. Let E be a Banach space, let A € GL(E), and let o(A) be the
spectrum of A. Assume there exists a continuous curve v : [0,1] — C\ o(A) such
that v(0) = 0 and |y(1)| > ||Al|. Then A belongs to the connected component of
the unit operator in GL(E).

Proof. Since «(t) ¢ o(A) and therefore A — ~(t) € GL(FE) for all 0 < ¢ < 1, the
operators A = A —~(0)I and A —~(1)I belong to the same connected component
of GL(E). Since |y(1)| > ||Al|, setting

a(t)——w)(f—vfl)), 0<t<l,

we obtain a continuous curve « : [0,1] — GL(E) which connects the operator
A —~(D)I = a(1) with —y(1)I = «(0). As —y(1)I and I belong to the same
connected component of GL(FE), this completes the proof. |

5.1.3 Corollary. For each n € N*, the group GL(n,C) of invertible complex n X n-
matrices is connected.

Proof. This follows from Lemma 5.1.2, because the spectrum of a matrix is finite.
O

5.1.4. Now let H be a Hilbert space of infinite dimension. As already mentioned
above, then GL(H) is even contractible [Ku] (in distinction to the groups GL(n, C),
n € N*). In the present book we need only the simpler fact that GL(H) is con-
nected.? Again using Lemma 5.1.2, this can be easily deduced from the spectral
representation of unitary operators:

5.1.5 Theorem. For each Hilbert space H, the group GL(H) of invertible operators
s connected.

2This is due to the fact that we deal with functions of one complex variable and that the
topology of a domain in the complex plane is simple compared to the topology of domains in
higher dimensional spaces. That GL(H) is even contractible becomes important if we pass to
several complex variables (see [Bu]).
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Proof. Let GL;(H) be the connected component of the unit operator in GL(H).
We have to prove that GL(H) = GL;(H). Let A € GL(H) be given. Then A =
US, where S := (A*A)'/? is positive definite, and U := AS~' is unitary. Since
the spectrum o(S) of S is contained in the real line and 0 ¢ o(5), it follows from
Lemma 5.1.2 that S € GL;(H).

It remains to prove that U € GL;(H). It follows from the spectral repre-
sentation of unitary operators (see, e.g., [GGK1]) that H can be written as an
orthogonal sum H = H; ® Hy, where H; and Hs are invariant subspaces of U
such that the spectrum of U’Hl lies on the half circle |z| = 1, Imz > 0, and

the spectrum of U|H2 lies on the half circle |z| = 1, Imz < 0. Therefore, by
Lemma 5.1.2, U | o belongs to the connected component of the unit operator of

Hy, and U | H, belongs to the connected component of the unit operator of Hs.
Hence U € GL;(H). O

Next we give an example for a Banach space E such that GL(E) is not
connected:

5.1.6 Theorem. 3 Let cq be the Banach space of sequences & = {&, }nen of complex
numbers tending to zero with the norm

1€lloc = max |nl,

and let 1,, 1 < p < oo, be the Banach space of sequences {&,}nen of complex
numbers with the norm

o 1/p
el = (Z w) < oo,
n=0

Then the group GL(co®l,) consists of an infinite number of connected components.
To prove this theorem, we need the following three lemmas:

5.1.7 Lemma. Let cy andl,, 1 < p < oo be as in Theorem 5.1.6, and let P, be the
projector in cq, defined by

Pn({ﬁn}neN) = (&, &m0, .0). (5.1.1)
For j € N, we denote by f; : 1, — C the functional defined by
fi({&ntnen) =&
Let A € L(cy,lp) and j € N be fized. Then
lim ||f;A(I = P,)|| =0 (5.1.2)

n—oo

3This example is due to A. Douady [Dol]. As observed in [Dol] instead of ¢, and I, here one
could take an arbitrary pair of Banach spaces F' and G such that each operator from L(F, Q) is
compact, and F' and G are isomorphic to their hyperplanes.
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where

AT = Po)l| = sup ’fj (a¢ - Pg)) ‘

56507”5Hm§

Proof. Assume the contrary. Since
| fi A = Po)|| = IIf;A(I = Poy1)||  forallm €N,
then there exists € > 0 such that
|f;A(I = P,)|| >e  forallmeN. (5.1.3)

Choose a number n; € N (arbitrarily). Then, by (5.1.3), we can find a vector
7V € Im(I — P,,,) with |7, < 1 and

(5G| > e (5.1.4)

Since (M) tends to zero, we have

lim ||(T - P,)7" | =0.

n—oo

Therefore it follows from (5.1.4) that there exists no € N so large that

(55 (Poii™)| > .

Set
|54 (Pacii)

nM =
(f;A) (P, ™)

P, 7.
Then
n® em(Py, = P,), IVl <1 and (f;4)5") > e.
If this way we get by induction an increasing sequence n, € N, u € N*, and a

sequence of vectors n(*) € ¢y, € N*, such that

7™ € Tm(P,

MNp+1

= Pu,), %l <1 and (f;4A) (") > ¢
for all u. Now, for each N € N*, we set
o) =M g,

Then

(M) — W) <
6%l = mavx 7)o < 1

and
(f5A) (@) = (f) W) + ..+ (£ (™) > Ne.
This is a contradiction to the boundedness of f;A. O
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5.1.8 Lemma. Let cy and l,, 1 < p < oo, be as in Theorem 5.1.6. Then each oper-
ator A € L(cy,lp) can be approzimated in the operator norm by finite dimensional
operators, namely if P, is the projector in co defined by (5.1.1), then

lim |A— AP,| =0. (5.1.5)

Proof. Assume that there exists a bounded linear operator A : ¢y — [, such that
(5.1.5) is violated. Since

|A— AP,| > ||A— AP,11]| for all n € N,
then there exists € > 0 with
|A—AP,|| > ¢ for all n € N. (5.1.6)

Let ||A|| be the operator norm on A.
Choose a € ¢, with

_ _ 5

olloe <1 and  [lA&]lp > (|4l = £5- (5.1.7)
As @ tends to zero, then lim,, ., ||&@ — P,&|| = 0. Therefore and by (5.1.7) we can
find m € N with

€
APa Al - —=.
lAPmall, > Al = 35
Set o = P,,,a. Then
a€lm P, lafloo <1 and |Aall, > [|A]l - 16—0 (5.1.8)

Let R, : I, — I, be the projector defined by

Ry ({gn}neN) = fj-

Since 1 < p < oo, then lim, . [|({ — Ry)Aa|, = 0. Hence, we can find k € N*
such that -

(7 - Ri)dal], < = (5.19)
Together with (5.1.8) this implies that

1>
|RiAall, > 4] - <. (5.1.10)

From Lemma 5.1.7 it follows that lim,, . ||RxA(I — P,)|| = 0. Therefore, we can
find an integer [ > m with
€

RiLA(I - P)| <
|RAC - P < =

(5.1.11)
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By (5.1.6) there exists 8 € Im(I — P;) such that
[Bloe <1 and  [JAB[l, > e. (5.1.12)

Together with (5.1.11) this implies that

g
1BxABll, < 75 (5.1.13)
and .
I = R)AB, = & - 1. (5.1.14)

Since a € Im P,,, f € Im(I — P;) and [ > m, now we have

lae + Blloe = max (oo, 18ll0) < 1,

and from (5.1.9), (5.1.10), (5.1.13) and (5.1.14) it follows that
5
lACa+5)llp 2 || BeAall, = |[(1 — Bi)Aally + [[(1 = Be) ABll, — | Re Al = Al + 5

This is a contradiction to the definition of || AJ|. O

5.1.9 Lemma. Let ¢y and l,, 1 < p < oo, be as in Theorem 5.1.6, and let P

be the projector in cy @ I, with ImP = ¢, and Ker P = 1,. Set Q = I — P. Let

A€ GL(cy®l,). Then PA‘ s a Frredholm operator in c, and QA|1 is a Fredholm
co P

operator in l,.

Proof. We have
P=PAA P =PAPA 'P+ PAQA~'P

and
P=PA'AP = PA"'PAP + PAT1QAP.

Since, by Lemma 5.1.8, the operators PAQA™'P and PA QAP are compact,
this implies that both PAPA~! ‘C and PAflPA‘C are Fredholm operators. Hence
(0] 0

(see., e.g., [GGK2]), PA|c is a Fredholm operator. In the same way we see that
0
QA|Z is a Fredholm operator. (I

Proof of Theorem 5.1.6. We consider the space ¢, @ I, as the space of families
{gn}:’:_m’ &, € C, such that

n——oo

lim &,=0 and Z [€,]P < o0.
n=0
Then, for k € Z, we have the shift operator Ay defined by

A ({€ndim-ooe}) = {Entnlimmooe }.
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Clearly, then Ay € GL(cy & [,) for all k € Z. Moreover, if P is the projector from

Lemma 5.1.9, PAk| is a Fredholm operator with index k in ¢,.
€o

Assume Ay, and A,, belong to the same connected component of GL(cy®1,,).
Then Ag_,, = ArA,;,;! belongs to the connected component of GL(cy & ,,) which
contains the unit operator. Hence, there is a continuous curve A : [0,1] — GL(¢y @
l,) with A(0) = I and A(1) = Aj_,,. Then, by Lemma 5.1.9, {PA(t)\CO}OStSt,

is a continuous family of Fredholm operators in ¢,. Since A(0) = I has the index
zero, then also A(1) = Ak_m|ck has the index zero. Hence k = m.
0

Hence we proved that, for all k,m € Z with k # m, the operators A; and
A,, belong to different connected components of GL(cy, & I,,). O

5.2 Two factorization lemmas

The following lemma will be used several times in this book:

5.2.1 Lemma. Let A be a Banach algebra with unit 1 and the norm || - ||, and let
Ay, As be two algebraic subalgebras of A with 1 € Ay N As, which are Banach
algebras with respect to their own norms ||-||1 and ||-||2, respectively. Assume that:

(i) llz|l; > ||lz|| for each x € Aj, j =1,2.

(ii) Each element x € A can be written in the form x = x1 + x2 with x; € Aj,
7=12.

Let C < oo be the smallest constant such that, for all x € A, there exist x; € A
with x = x1 + x2 and

lz;ll; < Cllzll,  j=1,2. (5.2.1)
(Such a constant then exists by the Banach open mapping theorem.)

Then, for each a € A with

lall < 5
a YR
2C
there exist elements a1 € A1 and as € A such that 1 — ay is an invertible element
of A1, 1 — as is an invertible element of As, and

(1—a)=(1—a) *(1—ay). (5.2.2)

Moreover
lally, lazlz < 2C]lal| < 1. (5.2.3)

Proof. By definition of C, we can find maps P; : A — A; (possibly nonlinear)
such that, for all z € A,

Pix+ Py =x and |1Pix|; <Cllz|l, j=1,2.
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Now let a € A with ||a|| < 1/2C be given. Then C|la|| < 1/2. Hence, the series
ay = —Pla — Pl(aPla) — P1 (aPl(aPla)) —

and
as = Pya + PQ(aPla) + Py (aPl(aPla)) +

converge absolutely in A; and A,, respectively, and we have the estimates (5.2.3):

Clla
. sl < Z Clal)" = 1= it < 2Clal <1

Then 1 — ay is an invertible element of Ay, and 1 — ao is an invertible element of
As. Moreover

(1—a1)(1 —a) =1+ Pia+ Pi(aPia) + Pi(aPi(aPra)) +

—a —aPa —aPi(aPra) —-...
=1- PQCL — Pg(apld) — Pg (aPl(aPla)) —
=1- a2,
i.e., we have (5.2.2). O

5.2.2 Lemma. Let A be a Banach algebra with unit 1, and let f : [0,1] — A be
continuous such that all f(t), 0 < t < 1, are right (left) invertible* and f(0) is
invertible. Then all f(t), 0 <t <1, are invertible.

Proof. 1t is sufficient to consider the case of right invertibility. The case of left
invertibility follows from changing the order of multiplication in A.

Assume there exists 0 < ¢ < 1 such that f(¢) is not invertible. Since the
group of invertible elements of A is open and f(0) is invertible, then there exists
0 < to < 1 such that f(to) is not invertible, but all f(¢) with 0 < t < to are
invertible. Since f(tg) is right invertible, we have b € A with f(¢to)b = 1. Fix
0 < t < tg such that

Then
ci= f(O) = (Flto) + () = f(to) )b =1+ (f(1) = [(t0) )b,

| (= stan)p] <1 |

Hence, c is invertible. Since also f(t) is invertible, it follows that b = (f(t)) "¢
is invertible. Moreover, as f(tg)b = 1, we see that f(to) is the inverse of b. Hence
f(to) is invertible, which is a contradiction. O

where

4An element a € A is called right (left) invertible if there exists b € A with ab=1 (ba = 1).
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5.2.3 Lemma. Let A be a Banach algebra with unit 1 and the norm || - ||, and let
Ay, As be two closed subalgebras of A such that A is the direct sum of Ay and As.
Let Py be the linear projector from A to Ay, let P, :=1 — Py, and let a € A such
that

1
la]| < ° where C := max {||P1]|, || P2} - (5.2.4)

Then there exist elements a1 € Ay and as € Ay such that 1 —ay; and 1 — as are
invertible elements of A, and

(1—a)=(1—a) (1 —ay). (5.2.5)

Moreover, 1 —ay1 and 1 —as belong to the connected component of the unit element
in the group of invertible elements of A, and

Cllall
lall; lazll < —=- (5.2.6)
1= Cllal|
Proof. By (5.2.4), for all 0 <t <1, the series
fi(t) :== —tPia — t*Py(aPya) — 3P (aP1 (aPla)) -, (5.27)
fg(t) = tPQG, + tZPQ(aPla) + tSPQ (aP1 (aPla)) =+ ... -
converge absolutely in A; and As, respectively, where
- n tCllal
t 1) < t"(C = — . 5.2.8
IAOIIRONS X e (Clol)” = gy <o 628)
Moreover, for all 0 <t <1,
(1-f1(1)(1 —ta) =1+ tPia+ t*Pi(aPia) + t* Py (aPi (aPra)) + ...
—ta —t?aPa —t3aP(aPia — ...
o \ 1(aFra) (5.2.9)
=1- tPQ(Z —t Pg(apla) —t Pg(apl(apla)) — ...
=1— fo(t).

As the convergence of the series (5.2.7) is uniformly in ¢, so we found continuous
functions f; : [0,1] — A; and fo : [0,1] — A3 such that

(1= f@)(1—ta) =1— fo(t) forall0<t<1, (5.2.10)

and a1(0) = a2(0) = 1. Changing the order of multiplication in A and the role
of A; and As, in the same way we get continuous functions g5 : [0,1] — As and
g1 :[0,1] — A; such that

(1—ta)(1—g2(t) =1—g1(t) foral0<t<1, (5.2.11)
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and g2(0) = ¢1(0) = 1. (5.2.11) can be written also in the form
(I—ta) '(1—gi(t)) =1—ga(t), 0<t<1 (5.2.12)
Multiplying (5.2.10) and (5.2.12) we obtain

(1=H®) A —g(t) = (1= fa(t) (1 — g2(t)) 0<t<1,

or

fi®)gi(t) = f1(t) — g1 (t) = fa(t)g2(t) — f2(t) — g2(1), 0<t< 1.
As Ay N Ay = {0}, this implies that

(1-=910) (1 = g:(t)) = Land (1 - fo(t)) (1 — g2(t)) = 1, 0<t<l

Hence all 1 — f1(¢) and all 1 — fo(t), 0 < ¢ < 1, are right invertible. As f;(0) =
f2(0) = 1, this implies by Lemma 5.2.2 that all 1— f(¢) and all 1— f5(¢), 0 <t < 1,
are invertible. In particular, setting a; = f1(1) and as = fa(1), we get elements
a1 € Ay and ag € As such that 1—a; and 1—as belong to the connected component
of the unit element in the group of invertible elements of A. It follows from (5.2.10)
that these elements solve (5.2.5), and estimate (5.2.6) follows from (5.2.8). O

5.3 OF-cocycles

In this section E is a Banach space.

In this chapter we need a version of the theory of OF-cocycles (see Section
2.6) for holomorphic functions which admit continuous extensions to the boundary
of their domain of definition. This is the content of the present section.

5.3.1 Definition. Let X C C be an arbitrary non-empty set. Then we denote by
CE(X) the space of continuous E-valued functions on X. By OF(X) we denote
the subspace all functions from C¥(X) which are holomorphic in the inner (with
respect to C) points of X. Moreover we set CF(()) := OF () := {0} where 0 is the
zero vector of E.

5.3.2 Definition. Let D C C be an open set, and let U = {U;};e; be a covering
of D by relatively open subsets of D. Then we denote by C*(U,OF) the space of
families f = {fjr}jrer where f;r € OF(U; NUy), and by Z'(U,OF) we denote
the subspace of all f € Cl(Z/I,@E) with

fjk+fkl:fjl on U; NU, N, (5.3.1)

for all j, k,1 € I with U; N Uy NU; # 0. The elements of Z*(U, OF) will be called
(U,@E)-cocycles. If the covering U is not specified, then we speak also about

O -cocycles on D.
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5.3.3 Theorem. Let D C C a bounded open set, let U = {U;};er be a covering

of D by relatively open subsets OJLﬁ, and let f € Zl(L[;aE). Then there exists a
family {h;};er of functions h; € OF(U;) with

fjk = hj — hy Ont NUy (5.3.2)
for all j, k € I with U; NUy, # 0.

Proof. Take a family U = {ﬁj}jel of open (in C) sets such that U; = DN ﬁj for
all j € I. Choose a C*-partition of unity {x;};er subordinated to U. By setting

w5 = 72Xufuj7

vel

we obtain functions ¢; € C¥(U;) which are of class C> in DNU;. Since f satisfies
(5.3.2) and >, .; x» = 1 on D, we have

Yj— Pk = — ZXu(fuj — fuk) = <Z xy> fik="Ffixk onUNU, (53.3)

vel vel

for all j, k € I with U; U}, # 0. Since [y, is holomorphic on DNU; NUy, it follows
that B 7
0w = Oy, on DNU; NU.

Hence there is a well-defined C*°-function ¢ : D — E with ¢ = 5% on DNUj.
By Proposition 2.1.2, we have

vel

for all j € I. Hence, ¢ admits a continuous extension to D, and, by theorems
2.1.10 and 2.1.9, we can find a continuous function u : D — E with ¢ = 0u on D.
Set h;j = ¢; —u on U;. Then h; is continuous on Uy, and, on D N Uj;, we have

Ohj =dp; —Ou=1—ou=0.
Hence h; € OF(U;), and it follows from (5.3.3) that
hj —hi = (p; —u) = (pr, —u) = p; — ¢, = fj on U; NUy
for all j,k € I with U; N Uy, # 0. O

5.3.4 Proposition. Assume that under the hypotheses of Theorem 5.3.3 moreover
the following holds: For all j,k € I with U; N Uy # 0, the function f;, admits a
continuous extension to U; N U.

If then {h;}jer is a family of functions h; € OF(U;), which solves (5.3.2),
then h; € OF(U;) for all j € I.
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Proof. Let some j € I be given and let (z,,),en be a sequence in U; which converges
to some point z ¢ Uj;. Since D is closed and covered by U, then there exists at
least one index k € I such that z € Uy. Since Uy, is relatively open in D, it follows
that, for some ng € N, z,, € Uy if n > ng. Since hy is continuous on Uy,

lm  hg(z,) = he(2).

no<n—oo

Since z, € U; N Uy, for n > ng and fj, admits a continuous extension to U; N Uy,
moreover

lim fjk (Zn)

no<n—oo

exists. Together this implies by (5.3.2) that

lm hj(z,) = lim  fix(za) + ha(2)

n—oo no<n—oo
exists. (]

For many purposes the following immediate corollary of Theorem 5.3.3 and
Proposition 5.3.4 is sufficient:

5.3.5 Corollary. Let D C C be a bounded open set, let Uy, Us C D be two relatively
open subsets of D such that D = U;UUz and UyNUz # 0, and let f € OF(UNUS).
Then there exist f; € OF(U;), j = 1,2, with

f=h—-f onUiNUs. (5.3.4)

Moreover, if f € OF(U; NUy) and if two functions f; € OF(U;), j = 1,2, solve
(5.3.4), then automatically f; € OF(U;), j =1,2.

5.4 Runge approximation of G-valued functions
First steps

5.4.1 Proposition. Let A be a Banach algebra with unit 1, and let G1 A be the
connected component of the group of invertible elements of A which contains the
unit element. Then, for any e > 0, each f € G1 A can be written as a finite product
of the form

f=Q+ag) ...-(1+g,) (5.4.1)

where g; € A with ||g;|| < e for1 <j <n.

Proof. Let © be the set of all f € G1A of the form (5.4.1). We have to prove that
O is open and closed in G A.

Let f € © be written in the form (5.4.1), and let Uy be the neighborhood of
f which consists of all g € G1A with ||f~'g — 1|| < e. Then, for each g € Uy,

g=flg=0+g)...(1 +gn)<1 +(flg— 1))
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is also of this form, i.e., g € ©. Hence © is open.
Now let (f;);jen be a sequence in © which converges to some f € G1A. Then
we can find jy € N such that

17557 = 1l < e.
Since fj, is of the form
fio=0+g1)...(0+gs)  with |lg;]| <e,

then also

f:fjofjﬁlf: (1—|—gl)...(1+gn)(1+(szlf_1))
is of this form. Hence © 1is also closed. O

5.4.2 Corollary. Let A be a Banach algebra with unit 1, let GA be the group of
invertible elements of A, and let G be an open subgroup of GA. For a € GA, we
denote by G, the connected component of a in GA. Then

G, C@qG foralla € G. (5.4.2)

Proof. Since G is an open subset of GA, there exists € > 0 such that
U.(1) == {x cA ] 11—z < 5} caG.

By Proposition 5.4.1, each element in G1A is a finite product of elements from
U:(1). Since G is a subgroup of G A, it follows that G1 A C G, and hence aG1 A C G
for all a € G. Since G, = aG; for all a € GA, this implies (5.4.2). |

5.4.3. If A is a Banach algebra with unit 1, and GA is the group of invertible
elements of A, then we define

X n
expa = e = z;) % forallae A (5.4.3)
and
o~ (1—a)"
loga = — Z — for all a € A with ||1 —al| < 1. (5.4.4)
n=1 n

5.4.4 Lemma. Let A be a Banach algebra with unit 1, let GA be the group of
invertible elements of A, and let G1 A be the connected component of GA which
contains the unit element. Then:

(i) e* € G1A for all a € A, where (ea)*l .
(i) If a € A with ||a — 1|| < 1, then €'°8? = q.
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Proof. If A is commutative, this is well known. In the general case, we can pass to
the smallest closed subalgebra of A which contains a and the unit element. This
subalgebra is commutative. ([

5.4.5 Definition. Let D C C be a bounded open set, let A be a Banach algebra
with unit 1, and let GA be the group of invertible elements of A.

Then we denote by O4(D) the algebra of continuous A-valued functions on
D which are holomorphic in D. By setting

1flga@) = maxlf)lar  f€OAD).

we introduce a norm in O4(D), where || - || ; is the norm of A. In this way, also
O4(D) becomes a Banach algebra with unit. If it is clear what we mean we simply
write | - [| instead of || - [|z.4 5)-

If G is an open subgroup of GA, then we denote by O%(D) the subset of
OA4(D) which consists of the functions with values in G. Note that then O%4(D)
is the group of invertible elements of O4(D), and, if G is an open subgroup of
G A, then O%(D) is an open subgroup of O“4(D).

5.4.6 Proposition. Let D C C be a bounded open set with piecewise C'-boundary,
and let P C C\ D be a set which contains at least one point of each bounded
connected component of C\ D (if there is any®). Let A be a Banach algebra with
unit 1, and let G be an open subgroup of the group of invertible elements of A.

Then, for each f € @G (D), the following two conditions are equivalent:
(i) f can be approzimated uniformly on D by functions from O%(C \ P).

(ii) There exists f € OF(C\ P) such that f and f belong to the same connected
component of o° (D).

Proof. Since the connected components of O (D) are open, it is clear that (i) =
(ii).
Suppose (ii) is satisfied. Since f and f belong to the same connected com-

ponent of O¢ (El the function ff_l belongs to the connected component of the
unit element in O (D). Therefore, by Proposition 5.4.1, it can be written in the
form

I =0+g1) . (14gn) (5.4.5)
where g; € O4(D) with ||g;|| < 1. Set

h; 10g1+gj=z gy, 1<j<n

v=1

51f C\ D is connected, then P = §) is possible.
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Since, for any j, the series on the right-hand side converges uniformly on D, so we
obtain functions h; € O4(D). By Lemma 5.4.4 (ii), 1+ g; = € and therefore, by
(5.4.5),

f=eM ...eh"f
Now, by the Runge approximation Theorem 2.2.2, for each j, we can find a se-
quence (h;,)ven which converges to h; uniformly on D. Then

gy = e et f veN,

is a sequence of functions from O“(C\ P) which converges to f uniformly on D. By
Lemma 5.4.4 (i) the values of each e belong to G A, the connected component
of GA which contains the unit element. Hence the values of

gf_l =Mt ehn

belong to G1 A. Since the values of fbelong to G, this means that also the values
of g belong to G. O

Using the Riemann mapping theorem, now we prove:

5.4.7 Lemma. Let D C C be a bounded, simply connected open set (Section 1.4.3)
with piecewise C'-boundary. Let A be a Banach algebra with unit 1, and let G1 A
be the connected component of the unit element in the group of invertible elements

AGLA — . .
of A. Then the group o (D) is connected (with respect to uniform convergence
on D).

-AG1A — . . .
Proof. Let some f € O (D) be given. We have to find a continuous curve in
<G A — . . . . .
O '"(D) which connects f and the constant function with value 1. Since G1 A is

an open subset of A, we have € > 0 such that the ball
A —
B.(f)i={g€ 0" D) | If - gl < =}

is contained in @GIA(E). Moreover, by the Mergelyan approximation Theorem
2.2.1, there exists a holomorphic function f: U — A defined in a neighborhood U
of D such that f|5 € B.(f). Therefore it is sufficient to find a continuous curve
in 6G1A(5) which connects ﬂﬁ with the constant function with value 1.

Since D is bounded, simply connected and with piecewise C!-boundary, af-
ter shrinking U, we may assume that also U is bounded and simply connected.
Therefore, by the Riemann mapping theorem, we can find a biholomorphic map
® from U onto the unit disc. Set

(A®) (=)= F(27 (1 - He(2)))

for t € [0,1], z € D. This defines a continuous curve A : [0,1] — O%4(D)
with A(0) = flp. The function A(1) has the constant value f(®71(0)) € G1A.
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Since G1A is connected, we can find a continuous curve v : [1,2] — G A with
v(1) = f(®71(0)) and ¥(2) = 1. Setting for z € D,

=1 G0)E) ifte0,1],
bO)E) {(’y(t))(Z) if ¢t €[1,2],

we get a continuous curve with the required properties. O
Now we can prove part (i) of Theorem 5.0.1.

Proof of Theorem 5.0.1 (i). Let G1A be the connected component of the group
of invertible elements of A which contains the unit element. Since all values of f
belong to the same connected component of G, after multiplying by a constant ele-
ment of G we may assume that f belongs to the group O%14(D). By the preceding
Lemma 5.4.7, this group is connected. In particular, condition (ii) in Proposition
5.4.6 is satisfied (with P = @)). Therefore it follows from this proposition that f
can be approximated uniformly on D by functions from O%14(C). (]

5.5 The Cartan lemma

5.5.1 Definition. A pair (D7, D) of bonded open sets D1, Dy C C with piecewise
C'-boundaries will be called a Cartan pair if:

— The intersection D; N Dy is not empty and has piecewise C'-boundary, and
C\ Dy N Dy is connected.

— The union D; U D, has piecewise C'-boundary.
(D1 \ D2) 1 (D2 \ D) = 0.

For example, if D, Dy C C are two open rectangles such that also Dy U Do
and Dj N Dy are non-empty rectangles, then (Dy, D2) is a Cartan pair in the sense
of this definition.

If (D1, D2) are a Cartan pair, then the closures of the connected components
of D1 N Dy are pairwise disjoint. This follows from the fact that D; N Dy has
piecewise C'-boundary. Moreover, since (51 \Dg) N (Eg\Dl) =, then D1 N Dy =
Dy N Ds.

In this section we prove the following

5.5.2 Lemma (Cartan lemma). Let (Dy, D3) be a Cartan pair, let A be a Banach
algebra with unit 1, and let G be an open subgroup of the group of invertible
elements of A. Further, let f € O%(Dy N D) (Def. 5.4.5) such that all values of
f belong to the same connected component of G. Then there ezist f; € O%(D;),
j=1,2, such that

f = f1f2 on D1 N DQ. (551)

Moreover, then, for each € > 0, the following two assertions are true:
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(i) There exist f; € OY(D;), j = 1,2, with (5.5.1) and
max || f1(z) — 1| < e. (5.5.2)

zeD1

(ii) There exist f; € O%(D;), j = 1,2, with (5.5.1) and
max || f2(z) — 1| < e. (5.5.3)

zeDo

We prove this lemma in two steps.

5.5.3 Lemma. Let (D1, D2) be a Cartan pair, and let A be a Banach algebra with
unit 1. Then, for each € > 0, there exists 6 > 0 such that, for each g € O(D1 N
Doy, A) (for the notation cf. 5.4.5) with

max_ |lg(2)| <,
z€D1NDy

there exist g; € O(D;, A) with

max lg;(2)] <&,  j=12,
z€D;
such that -
1+g9g=0104+g1)(1+ g2) on D1 N Day.
Proof. We consider o' (Dy N Dy), OA(D;) and O4(D3) as Banach algebras en-
dowed with the maximum norm. Then, by Corollary 5.3.5, each f € o' (DN Dy)

can be written in the form f = fi + f» with f; € O“(D;). Therefore the assertion
follows from Lemma 5.2.1. (Il

Proof of Lemma 5.5.2. Let G1 A be the connected component of the unit element
in the group of invertible elements A. Since all values of f belong to the same con-
nected component of G, by multiplication by a constant element, we may achieve
that f(z) € G1A for all 2 € W. Since D; N D3 has piecewise C* boundary and
C\ D1 N D5 is connected, we can apply part (i) of the Runge approximation The-
orem 5.0.1 (which was proved at the end of Section 2.2.2). So, for each § > 0, we
can find f; € O94(C) with
max_ [|f(2)f; '(2) =1 <6 and  max [f7'(2)f(2) — 1l <O
z€D1ND3y z€D1NDy

Therefore, by Lemma 5.5.3, for sufficiently small §, we can find g§1), g](-z) € o’ (D;)
such that

) e, j=12 k=12

”9]( °4(D,) <
and
= (14 0) (14 68) and £ = (1407 (14087

on D; N Dy. To prove assertion (i) we set f; = (1 +g§1)) and f, = (1 +gél))f5. To

prove assertion (ii) we set f; = f5(1 + g§2)) and fo =14 952). O
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5.6 (O%-cocycles. Definitions and statement of the main
result

Here we introduce the notion of multiplicative cocycles and state the main result
on them, which will be proved in the subsequent sections.

Throughout this section, A is a Banach algebra with unit 1, and G is an open
subgroup of the group of invertible elements of A. If U C C is a non-empty open set,
then we denote by O%(U) the group of holomorphic G-valued functions defined on
U (as everywhere in this book). For practical reasons, we set O%()) = {1} where
1 is the unit element of A.

5.6.1 Definition. Let D C C an open set, and let &« = {U, }jer be an open covering
of D.

(i) We denote by Z1(U,C%) the set of all families f = {f;x};rer of functions
fjk S CG(Uj N Uk) with
firfw = i on U; NU, NU,, (5.6.1)

for all j,k,l € I with U; N U, NU;, # 0. The elements of Z*(U,C%) will
be called (U,C%)-cocycles. Condition (5.6.1) is called the (multiplicative)
cocycle condition. Note that it in particular implies that

fj» =1 and fjk = f];jl

(ii) We denote by Z'(U,O%) the set of all cocycles f € Z'(U,C%) such that
fir € OF(U; NUy) for all 4,k € I. The elements of Z(U, OF) will be called
(U, O%)-cocycles.

(iii) Two cocycles f,g € Z'(U,C%) will be called C%-equivalent or continuously
equivalent if there exists a family {f;},e; of functions f; € C%(U;) such that
9jx = hjfjkhgl on U; NUy
for all j,k € I with U; N Uy, # 0.

(iv) Two cocycles f,g € Z'(U,O) will be called O%-equivalent or holomorphi-
cally equivalent if there exists a family {f;};es of functions f; € O%(U;)
such that

gjr =h;fhyt on U; N U

for all j,k € I with U; N U, # 0.

(v) A cocycle f € Z'(U,C) will be called C&-trivial or continuously trivial if
there exists a family {f;};es of functions f; € C%(U;) such that

fik=1Ffx" onU;NU
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for all j,k € I with U; N Uy # 0. In other words, f is called C¢-trivial if it is
CC-equivalent to the cocycle e € Z'(U,C%) defined by ejr=1,4,kel. In
this case we say also that f splits continuously.

(vi) A cocycle f € Z1 (U, O%) will be called O%-trivial or holomorphically trivial
if there exists a family {f;};es of functions f; € O%(U;) such that

fjk:fjflgl on U; NU

for all j,k € I with U; N Uy # 0. In this case we say also that f splits
holomorphically.

Due to P. Cousin the elements of Z1(U, O%) are also called multiplicative
Cousin problems. By Theorem 2.3.1, the additive Cousin problems have always
a solution. This is no more true for multiplicative Cousin problems. We give an
example:

5.6.2 Example. Let 0 < r < R < co. Denote by D the annulus
D::{ze@)r<|z\<R},
which we cover by the open sets
Ulsz{zeD‘Imz<g} and UQ::{ZED‘ImZ>7g}.

Then the intersection Uy N Uy consists of two connected components
Vii= {zeUmU2 ‘Rcz<0}

and
VQ::{zeUlﬁUg‘Rez>O}.

Take a Banach space X such that GL(X) is not connected. (By Theorem 5.1.6
such Banach spaces exist). Let GL;(E) be the connected component of GL(E)
which contains the unit operator I. Take any operator A € GL(X)\ GL;(X) and

define
F(z): I 1.fZ€V1,
A if z € Vs.

We interpret F' as a ({Uy, Ua}, OGL(X))—cocycle, setting Fio = F and Fy; = F!
on Uy NUsy, F11 =1 on Uy and Fy3 = I on Us. Then F' is not CEL(X) _trivial.
Indeed, assume it is CELX) trivial, i.e., F = Clcgl on U; NUs for certain
continuous functions C; : Uy — GL(X) and Cy : Us — GL(X). Take r < p < R
and set
v(t) = Cy (pe™™) cyt (peit) for 0 <t <.

Then 7 is a continuous curve in GL(X) connecting I and A, which is a contradic-
tion.
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On the positive side, there is the following theorem, which is the main result
of the present chapter:

5.6.3 Theorem. Let D C C be an arbitrary open set, let U be an arbitrary open
covering of D, and let f be a (U,O%)-cocycle. Assume that at least one of the
following conditions is satisfied:

(i) D is simply connected.
(ii) G is connected.

(iii) f is CY-trivial.
Then f is OF -trivial.

We point out again the special case of a covering by two open sets, which is
sufficient for many applications:

5.6.4 Corollary. Let Dy, Dy C C be two open sets, and let f : Dy N Dy — G be
holomorphic. Assume that at least one of the following conditions is satisfied:

(i) D is simply connected.

(ii) G is connected.
(iii) There exist continuous functions ¢; : D; — G with f = clcgl on Dy N Dsy.
Then there exist holomorphic functions f; : D; — G with f = f1f2_1 on D1 N Ds.

Note that by well-known topological results, each of the conditions (i) and
(ii) in Theorem 5.6.3 implies condition (iii), but we do not use this topological fact.
We prove directly that each of the conditions (i), (ii) or (iii) yields O%-triviality
of f. In the case of condition (i) this will be done in Section 5.9, and in the case
of conditions (ii) and (iii) we prove this in Section 5.11.

Recall that, by Theorem 5.1.5, condition (ii) in Theorem 5.6.3 is satisfied if
G = GL(H) where H is an Hilbert space. Therefore we have

5.6.5 Corollary (to Theorem 5.6.3). For each Hilbert space H and each open set
D C C, any OFLH) _cocycle over D is OFLH) trivial.

In particular, for eachn € N* and each open set D C C, any OFLO) _cocycle
over D is OFLO) trivial.

5.7 Refinement of the covering

In this section we develop a technique which allows us to compare cocycles with
different coverings. Throughout this section, A is a Banach algebra with unit 1,
G a subgroup of the group of invertible elements of A, and D C C is an arbitrary
open set.
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5.7.1 Definition. Let & = {U;},c; and V = {V,,},c; be two open coverings of D
such that V is a refinement of ¢/. Then (by definition of a refinement) there is a
map 7 : J — I with V, C U, for all u € J. For any such map 7 and each cocycle
f € ZYU,CC) (Def. 5.6.1), we define a cocycle 7* f € Z1(V,CY) setting

(T*f)/u/ = fT(H)T(lI) VuﬂV,,,

for all p,v € J with V, NV, # 0.

We shall say that a cocycle g € Z'(V,C%) is induced by a cocycle f €
ZYU,CY) if there exists a map 7 : J — I with V,, C Ur(uy, 1 € J, such that
g=r1"Ff.

Note that in this case g € Z1(V, 0%) if f € Z1 (U, O%).

Note also that, in general, for a cocycle f € Z'(U, OF), there exist different
cocycles in Z'(V,C%), which are induced by f. However, there is the following
5.7.2 Proposition. Let D C C be an open set, let U = {Uj},c; and V = {V,},¢;

be two open coverings of D such that V is a refinement of U, and let F = CC or
F = O%. Further, let f,g € Z'(U,F) and f,g € Z*(V,F) such that f is induced
by f and g is induced by g. Then the following are equivalent:

(i) f and g are F-equivalent.
(i) f and g are F-equivalent.
In particular, the following are equivalent:
(i") f is F-trivial.
(ii') f is F-trivial.
Proof. By hypothesis, we have some maps 7, : J — I with f: 7" f and g = ¢*g.

We first assume that f and g are F-equivalent. Then there is a family of
functions h; € F(U;), j € I, with

W' fikhe = g on Uy N U, (5.7.1)

for all j, k € I with U;NUy # 0. Then we define a family of functions 7L,L € F(Vu),
€ J, setting

= he9rwyowy 00 Vi wE .
Then

T-17 7o -1 -1
b fouhis = 920 p) Pr ) Frw) w0 Pr o 9z m,pny O Vi Ve

for all p,v € J with V,, NV, # 0. By (5.7.1) this implies

17 7 _ -1
b fouln = 920 00 Irw) m () Iy 0 Ve M Vs
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for all p, v € J with V,,NV,, # 0. Since g satisfies the cocycle condition this further
implies o

! oy, = o) o) = Jvu onV, NVy,
for all p,v € J with V,, NV, # 0, i.e., f and § are F-equivalent.

Now we assume that f and g are F-equivalent. Then there exists a family of
functions h, € F(V,,), n € J, with

mt fyuhy =Gy, o0 VNV,
for all u,v € J, with V,, NV, # (. Since f: 7*f and g = p*g, then

~_3 -~
hy frw)rwhn = 9oy o o Vo N Vi,

for all p,v € J, with V,,N'V,, # 0. Since f and g satisfy the cocycle condition, this
implies

~_ 3 ~

hy fewy.iliou i = 9ow).i%ew o0 Ve NV U,
and further,

Firwhudew s = Tizwm/wdow,; — on Ve NV U,
for all j € I and v, pn € J with V,, NV, NU; # (. Therefore we can define a family
of functions h; € F(U;), j € I, by setting

hj = fjﬁ(u)hugw(u)d on V,NUj,

for all j € I and p € J with V,, NU; # (. Using again that f and g satisfy the
cocycle condition, we obtain

Wi Fihe = 9ol Fr s Fiefhrudoon = 9in - on VuNU; N Uk,
forall j,k € I and p € J with V,,NU;NU}, # 0. Hence f and g are F-equivalent. [J

5.7.3 Definition. Let D C C be an open set. By a C%-cocycle over D we mean
a (U,C%)-cocycle such that U is an open covering of D. Correspondingly, by an
O%-cocycle over D we mean a (U, O%)-cocycle such that U is an open covering of
D. The open covering U then will be called the covering of this cocycle.

In Definition 5.6.1 we introduced the notion of equivalence for cocycles with
the same covering. In view of Proposition 5.7.2, the following definition is correct.

5.7.4 Definition. Let D C C be an open set.

(i) Two C%-cocycles f and g over D will be called C%-equivalent or continuously
equivalent over D if there exists an open covering VW of D which is a refine-
ment both of the covering of f and of the covering of g such that at least
one (W, C%)-cocycle induced by f is C%-equivalent to at least one (W, C%)-
cocycle induced by g (or, what is the same (by Proposition 5.7.2), such that
any (W,C%)-cocycle induced by f is C%-equivalent to any (W,C%)-cocycle
induced by g).
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(ii) Two O%-cocycles f and g over D will be called O%-equivalent or holomor-
phically equivalent over D if there exists an open covering W of D which
is a refinement both of the covering of f and of the covering of g such that
at least one (W, 0%)-cocycle induced by f is O%-equivalent to at least one
(W, 0%)-cocycle induced by g.

5.7.5 Definition. Let D C C an open set, let & = {U; }c; be an open covering of
D, and let Y be an open subset of D. Set

uny ={v;nv|jer},

and let F = C% or F = O%. Then we define:
(i) Let f be an (U, F)-cocycle over D.
Then we denote by f|Y the (U NY, F)-cocycle defined by

(f|Y)jk = fjk’anUknY

for all j,k € I with U; N U, NY # (. This cocycle f|Y will be called the
restriction of f to Y. We shall say that f is F-trivial over Y if f |Y is F-trivial.

(ii) Let f,g be two F)-cocycles over D. Then we shall say that f and g are
F-equivalent over Y if the restricted cocycles f ‘Y and g’Y are JF-equivalent.

5.7.6 Proposition. Let D C C be an open set, let U = {U;}jer be an open covering
of D, let F = CY or F = O%, and let f be an F-cocycle over D, which is F-trivial
over each Uj.

Then f is F-equivalent to some (U, F)-cocycle.

Proof Let V be the covering of f. For each j € I, we take an open covering

= {Wj,}ven of Uj so fine that W := {W),)}()erxn is a refinement of V.

Let I = A iurv G, (kyerxn be a (W, F)-cocycle induced by f. Then f" is F-

equivalent to f (by Definition 5.7.4), and therefore it is sufficient to prove that f’

is F-equivalent to some (U, F)-cocycle.

Since f is F-equivalent to f', each f|y, is F-equivalent to f’|y,. Since each

flu; is F-trivial, it follows that also each f’ |, is F-trivial. Hence, for all j € I,
we have a family h;, € F (Wj,), v € N, such that, for each j € I,

ot fh b =1 on W, NW,, (5.7.2)

JV LIV IR
for all v, p € N with W;,, N W, # 0. Setting
f]l/ kp — h jl/ k#hky on le/ N Wku ’

for all (j,v), (k,p) € I x N with W;,, N Wy, # 0, we define a (W, F)-cocycle f”.
By its definition, f” is F-equivalent to f’. Hence f” is F-equivalent to f. Since f’
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satisfies the cocycle condition, we obtain that

fJV kp — h JV Ju fyu’ kp fku/ k#hku

1
= (hw va’hm )hw fJN o P (hku f’w kuhku)
on ij n Wku n ij/ N Wk#’

for all j,k € I and v, pu, v/, 1/ € N with Wj, N Wy, N W, N Wy # 0. By (5.7.2)
this implies
P = M5 Fjr b P = £ g 00 Wiy 0 Wiy 0 Wiy 0 Wy

for all j,k € I and v, u, ', i/ € N with Wﬂ, N Wiy "Wj N Wy, # 0. Hence there
is a well-defined family of functions f} € F(U; NUy), j, k € I, defined by

" 1"
fjk == fju,kp, on ij n Wkll«

for all j,k € I and p,v € N with Wj, N Wy, # 0. Since f” satisfies the cocycle
condition, this implies

Fietel = Fvp i = o on Wiy, N Wi, N Wy
for all j,k,l € I and v, u, A € N with W;,, N Wy, N Wy # (0. Hence
fivf = £l onU; NU,NT,
for all j,k,l € I with U; NU, N W, # 0, i.e.,
ez u,F).
Let 7: I x N — I be the map defined by 7(j, u) = j for (j,u) € I x N. Since
W;, CUj =U;.) for all (j,v) € I x N

and since, by definition of f"”,

1 _ 111 _ " .
Fivaow = Fjk . FrGvyren) W, (4,v), (k) € I X N,

then f” is induced by f”’. Since f” is F-equivalent to f, this implies that f is
F-equivalent to f". O
5.8 Exhausting by compact sets

Here we prove the following technical lemma which we shall use several times in
this book:
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5.8.1 Lemma. Let A be a Banach algebra with unit 1, let G be an open subgroup
of the group of invertible elements of A. Let D C C be an open set (possibly
unbounded), let f be an O%-cocycle over D, and let (D,)nen be a sequence of
bounded open sets D,, C D such that:

(1) D,, € Dy41 for all n € N.

(2) Unen Dn = D.

(3) For eachn € N, any function from O (D, 1) can be approzimated uniformly
on D,, by functions from O% (D).

(4) The cocycle f is OF-trivial over each D, n € N.
Then f is O -trivial over D.

Proof. Let || - || be the norm of A and set
dist(a, A\ G) 12

= lla — b for a € G.
be

f
\G
Let U = {U;}jer be the covering associated to f. By Proposition 5.7.2, after
passing to a refinement, we may assume that each U; is a relatively compact open
disc in D and fj;, € O%(U; NUy) for all j, k € I. Note that then, for each j € I,
there exists n; € N with

U;CD, ifn>n;. (5.8.1)

Moreover we may assume that

for each compact set K C D there exists only a (5.8.2)
finite number of indices j € I with U; N K # 0. e
To prove the lemma it is sufficient to find a sequence (f,) _ of families

fn = {fnj}jef of functions f,; € OF(D,+1 NU;) as well as a sequence (£,)nen
of positive numbers, such that, for all n € N,

fjk:f;jlfnk on D"+1mﬁjmﬁkv Jkel, (583)
1 . . .
en < - min_ dist (fnj(z),A \ G) , jel, (5.8.4)
4 .eD,.nT;
max | fn;(2) = fu—1,j(2)|| <en—1ifn>1, jel, and (5.8.5)
ZED-,LﬁUj
en < 5”2*1 ifn>1. (5.8.6)

Indeed, then it follows from (5.8.1), (5.8.5) and (5.8.6) that, for all j € I and
n,m € N with n; <n <m,

€ €
max || fm;(2) — fuj(2)| <en+ — +...+ D < 2ep,

2€U; 2 gm—n—1



5.8. Exhausting by compact sets 139

which implies that, for each j € I, the sequence ( f”j)n> converges uniformly on

— _ n;
U; to some function f; € O4(U;) where

max || fj(z) = fo; ()| < 2en  forn = mn;.
zeU;

By (5.8.4), the latter inequality implies that

mas [£5(2) ~ Fag(2)ll < 5 inf dist (s (:).G\A)  forn>n,.
2€U, 2 .eU;
Hence f; € o< (Uj) , 7 € I. It remains to observe that now we can pass to the
limit for n — oo in (5.8.3), which gives f;r = fjflfk on U; NUy, for all j, k € 1.
Hence f is O%-trivial.

To prove the existence of such sequences, we first recall that, by hypothesis
of the lemma, each f|p,, is O%-trivial. Therefore we can find a sequence (f,)

of families fn = {fnj}jel of functions fnj € O%Dpi2 N U;) such that

neN

fie = Foi Fore o0 Dy NU; N U (5.8.7)
for all n € N and j,k € I. We claim that
fnj € 0%(D, 2NT,) foralljel (5.8.8)

Indeed, let (z,),en be a sequence in D,1o N U; which converges to some point

2 € Dp12NUj. Since U covers D, we can find k € I with z € Uy. Since Uy, is open,
then z, € D, 1o NU; N Uy, for sufficiently large v, where, by (5.8.7),

Foi(z0) = Far(2) £ (z0)-
Since both fnk and fjk are continuous on D49 N Uj N Uy and since z € Dy o N
U; N Uy, this implies that lim, . fnj(z,,) exists.
Now we proceed by induction.
Beginning of the induction: Since ﬁ)j € 0%(D2NU ;) we can define fo; = ﬁ)j |Dmﬁj'

It follows from condition (5.8.2) that (J;<; fo;(Do N Uj) is a compact subset of G.
Hence we can find €9 > 0 such that

1
e < - min dist (fo,j(z),G\A) for all j € I.
z€DoNU;

With this choice of the family {fo;};er and the number ¢y conditions (5.8.3)—
(5.8.6) are satisfied for n = 0.

Hypothesis of induction: Assume, for some m € N, we already have families fy =
{ij}jEI: ey fm = {fmj}jel Of quCtiOIlS

ij S 6G(DO mUj)v“wfnLj eéG(Dm mU])
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as well as positive numbers ¢, ...,&,, such that (5.8.5) -(5.8.4) hold for n =
0,...,m.

Step of induction: Since the compact set Dy, N U is contained in Dy, 41 NU; and
fmj is continuous on D,, 1 N Uj, the function f,,; is bounded on D,, NU;. By
condition (5.8.2), this implies that

max max_ || fm;(2)| < co. (5.8.9)
Jjel :eD,,NU; |
By (5.8.7), o
fik = Fomj i 00 Diya NU; N Uy

Moreover, by hypothesis of induction,

fjk:f*1 on Dy NU; NU.

myjJ mk

Since Dy,4+1 € Dy 2, this yields
fmk r;llc:fmj 7;,13 on Dm+1mU]mUk
Hence, there is a well-defined function ® € O%(D,,,41) with
r|
¢ = anjfmj (5810)

on Dy, 11 NUj for all j € I. Note that, since fmj is continuous on D, 41 OUJ- and,
by (5.8.8), fmj is continuous on D,,12 N U, (5.8.10) even holds on Dy, 411 NU;,
j € 1. By hypothesis of the lemma, ® can be approximated uniformly on D,, by
functions from O% (D). Therefore and by (5.8.9), we can find ¥ € O%(D) such
that

max || 0P — 1 <« —™  foralljel
Do _max || fmgll

mNU

Since (5.8.10) holds over D,,4+1 NU; and D,, NU; C D,,41 NU;, this implies that

~ £,
max |OFf . Ff 1 _1ll< —" for all j € I. 5.8.11

mN J

m

Setting B -
Jm15 = \I/fmj on Dy, 2N Uy,

now we obtain a family fp,41 = {fm41,;}jer of functions f,41,; € O% Dy N
U,). Further, it follows from condition (5.8.2) that U;c; fm+1,j(Dm+1 NU;) is a
compact subset of G. Hence we can find &,,11 > 0 so small that condition (5.8.4)
is satisfied for n = m + 1. As €, > 0, we may moreover assume that (5.8.6) holds

for n = p+ 1. From (5.8.7) we get

Frirjhmein = T O U = ok o = Fin
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on Dy, o NU;NUy, i.e., (5.8.3) holds for n = m + 1. From (5.8.11) it follows that

ra —1
o (s = Sl = e || (s o = 1) | < 2

Hence also (5.8.5) holds for n =m + 1. O

5.9 Proof of Theorem 5.6.3 for simply connected open
sets

In this section A is a Banach algebra with unit 1, and G is an open subgroup of
the group of invertible elements of A.
The first step in the proof of Theorem 5.6.3 is the following

5.9.1 Lemma (Cartan lemma. Second version). Let (D1, D3) be a Cartan pair such
that C\ Dy U Dy is connected, and let f € OF(Dy N D) such that all values of
f belong to the same connected component of G'. Then there exist f; € (’)G(Dj),
7 =1,2, such that

f=f'  on DiNDs,. (5.9.1)

Proof. Take a sequence of Cartan pairs ((Dn 1, Dp2)), <y Such that

¢ D,;CDpi;CDjforj=12andallneN,
® UpenDnj = Dj for j =1,2 and
e For each n € N, C\ (D1, U Da,,) is connected.

Set D = D1UD; and D,, = Dy, 1UD,, 5. Then, it follows from part (i) of the Runge
approximation Theorem 5.0.1 (which we already proved at the end of Section 5.4)
that the functions from O%(D,4;) can be approximated uniformly on D, by
functions from O% (D), i.e., we have the situation considered in Lemma 5.8.1.
Now we consider the ({Dl, Do}, (’)G)—cocycle F defined by Fj5 = f. We have
to prove that F'is OC%-trivial. By the Cartan Lemma 5.5.2, F is OC-trivial over
each D,,. Therefore, by Lemma 5.8.1, F is O%-trivial. (|

Using this lemma and propositions 5.7.2 and 5.7.6, now we can prove the
following special case of Theorem 5.6.3:

5.9.2 Lemma. Let

K::{ze(C‘O<Rez<1and0<1mz<1},

and let Q an open neighborhood of K. Then each OF -cocycle over Q is OF -trivial
over K.
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Proof. Let an O%-cocycle f over () be given, let V = {V, }, s be the covering of
f,and let VN K :={V, N K},c;. We choose n € N sufficiently large and denote
by Ujx, 7,k = 1,...,n, the open rectangle of all z € K with

1\ 1 1\ 1
k—1—<-)— k+ =) —
( 3>n<Rez<(+3>n
j—1 L 1<I < '+1 !
e m =] —.
J 3)n : J 3/ n

Then U := {Uji}1<jr<n is a refinement of ¥V N K. Let f’ be a (U, O)-cocycle
induced by f. By Proposition 5.7.2, it is sufficient to prove that f’ is O%-trivial.

To do this we give the family ¢/ an order saying that U;, < Uj/, if and only
if, either j < 7/ or j = 5/ and k < k’. Let Uy,...,U,2 be the family &/ numbered
in this way.

Now we prove by induction that, for all 1 < j < N2, the cocycle f’ is OF-
trivial over Uy U ... U U; . (For j = n? this is the assertion which we have to
prove.)

Since U; belongs to the covering associated to f’, it is clear that f’ is O¢-
trivial over Uj.

Assume, for some 1 < j < N? —1, we already know that f’ is O%-trivial over
UrU...UUj. As f’ is also OC%-trivial over Uji1, then it follows from Proposition
5.7.6 that f’ is O%-equivalent to some ({Uy U...UU;, Ujj1}, O%)-cocycle f”.
Since, clearly, (U1 U...UUj, Uj41) is a Cartan pair (Definition 5.5.1) such that
C\ (U1 U...UU;)NUj4 is connected, it follows from Lemma 5.9.1 that f” is
OC%-trivial. Hence f’ is O%-trivial. d

and

Proof of Theorem 5.6.3 if D is simply connected. Since D is simply connected, by
the Riemann mapping theorem we may assume that either D = C or D is the open
unit disc. In both cases, there exists a sequence (D,,)nen of open discs D,, € C
such that:

e D, C

o D

o UneNDn:D’

by part (i) of the Runge approximation Theorem 5.0.1 (which we already
proved at the end of Section 5.4), for all n € N, any f € O%(D,41) can be
approximated uniformly on D,, by functions from O%(D).

ni1 for all n € N;

Hence, by Lemma 5.8.1, it is sufficient to prove that any O%-cocycle over D
becomes O%-trivial after restriction to each D,,, which is indeed the case by Lemma
5.9.2 (again using the Riemann mapping theorem). O

Finally we point out the following special case of Theorem 5.6.3, which is
now proved:
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5.9.3 Corollary. Let D1, Dy C C be two open sets such that D1 U Do is simply
connected, and let f: Dy N Dy — G be holomorphic. Then there exist holomophic
functions f; : Dj — G, j =1,2, such that f = fl_lf2 on Dy N Ds.

In particular, this proves the assertion of Theorem 0.0.1 if D1 U D5 is simply
connected.

5.10 Runge approximation of GG-valued functions
General case

The aim of this section is to prove part (ii) of the Runge approximation Theorem
5.0.1. Recall that part (i) of Theorem 5.0.1 was proved already at the end of Section
5.4. Then, using part (i) of Theorem 5.0.1, at the end of the preceding section we
obtained Corollary 5.9.3, which now, in the present section, will be combined with
part (i) of Theorem 5.0.1 to prove part (ii) of Theorem 5.0.1.

Doing this, it is convenient to pass to the Riemann sphere and to prove the
slightly more general Runge approximation Theorem 5.10.5 below.5 First let us
shortly recall the notion of the Riemann sphere. The Riemann sphere is given by
the set P! := C U {oo} endowed with a topology and a notion of holomorphic
functions what we now are going to explain:

Definition of the topology: A subset U of P! is called open if either co & U
and U is open as a subset of C (with respect to the usual Euclidean topology of
C) or co € U and C\ U is compact (again with respect to the Euclidean topology
of C). It is easy to see that in this way P! becomes a topological space, which is,
by stereographic projection”, homeomorphic to the 2-dimensional sphere.

Definition of holomorphic functions: Set

- =00, — =0 and z+too=o00=xz=oc forall zeC.
0 00

Then, for each a € P!, a map T, : P! — P! is well-defined, by setting

Ta(z)_{l/(za) if a # oo,

z if a = 0.

STheorem 5.0.1 is the special case oo € D of Theorem 5.10.5 where part (i) corresponds to
the case of connected P!\ D and part (ii) corresponds to the case of non-connected P! \ D.

"Let us identify the complex plane C with the plane in R3 which consists of the points of
the form (z,y,0), ,y € R, and let S be the sphere of radius 1 centered at (0,0,1) € R3. Let
N :=(0,0,2) € S be the "north pole” of S. For each p € S\ {N}, we denote by L(p) the line
through p and N. Then L(p) intersects C in precisely one point. Let us denote this point by
C N L(p). The bijective map 7 : S — P! defined by

7r(p)_{CmL(p) if pe S\ {N},

[e's] if p = o0,

is called the stereographic projector.
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It is easy to see that, for each a € P!, T}, is a homeomorphism of P! with T, (a) = co
and T, (P! \ {a}) = C. If there is no danger of confusion, we use also the following
notation:

e The letter z denotes the identical map T .

e If a € P! and a # oo, then the expression zfla denotes the map T,.

Now let U C P! be open, U # 0, and let f : U — C be a function. If co ¢ U,
i.e., U C C, then we already know what it means that f is holomorphic on U. If
oo € U, then we define: f is holomorphic on U if the following two conditions are
fulfilled:

e f is holomorphic on U \ {oo}.
e foTy=f (%) is holomorphic on T, H(U).

z

Note that, by Riemann’s removability theorem, this is the case, if and only if, f
is continuous on U, and the restriction of f to U \ {oco} is holomorphic. The ring
of all holomorphic functions defined on U will be again denoted by O(U).

We summarize:

The Riemann sphere P! is given by the triplet ((C U {oo}, 7, (9) where
7T is the family of open subsets of C U {00} defined above, and O is the map
T\ {0} 5 U — O(U).

Now let E be a Banach space, and let U C P! be an open set, U # 0.
If oo € U, ie., U C C, then we already defined what a holomorphic FE-valued
function is. If co € U, then, as in the case of scalar functions, we define: f is
holomorphic on U, if and only if|

e f is holomorphic on U \ {oo}.
e f (1) is holomorphic on Ty HU).

The space of all holomorphic E-valued functions on U will be again denoted by
OE ().

Now let D C P! be a non-empty open set, and let f be a map from D to
Pl If o & f(D), i.e., f(D) C C, then we just defined what it means that f is
holomorphic. If co € f(D), then we define: f is holomorphic on D if the restriction
of f to D\ f~!(c0) is holomorphic and, moreover, the function

1
ot =5 ()

is holomorphic on T' f_—ll(oo)' If D and D’ are two open sets in C, then we say that
f is biholomorphic from D onto D', if and only if, f is bijective from D onto D’
such that f is holomorphic on D and f~! is holomorphic on D’.

Note that, for each a € P!, T, is biholomorphic from P! onto P* where P!\ {a}

is mapped onto C.
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An open set D C P! will be called an open set with piecewise C'-boundary
if D # P! and, for a € P!\ D, the open set T, (D) (which is contained in C) is an
open set with piecewise C'-boundary as defined in Section 1.4.1.

Since, for each a € P!, T, is biholomorphic between P!\ {a} and the complex
plane, from the theory of holomorphic functions in the complex plane we get a
corresponding theory on each set of the form P!\ {a} where a is an arbitrary
point in P!. For example, from part (i) of the Runge approximation Theorem
5.0.1 (which is already proved) we immediately get:

5.10.1 Proposition. Let D be an open set with piecewise C* boundary in P! such
that P\ D is connected, let G be an open subgroup of the group of invertible
elements of a Banach algebra with unit, and let f : D — G be a continuous
function which is holomorphic in D such that all values of f belong to the same
connected component of G. Then, for each a € P'\ D, f can be approzimated
uniformly on D by functions from OF (P \ {a}).

Moreover, from Corollary 5.9.3 we immediately get:

5.10.2 Proposition. Let Dy and Do be two open sets in P! such that P1\ (D; U Ds)
1s connected and not empty. Then, for each holomorphic function f: D1NDy — G
there exist holomorphic functions f; : D; — G, j = 1,2, such that f = fl_lfQ on
DN Ds.

5.10.3 Definition. If X is a subset of P! and G ~an open subgroup of the group
of invertible elements of G, then we denote by O%(X) the group of continuous
G-valued functions on X which are holomorphic in the interior of X.

5.10.4 Lemma. Let D C P! be an open set with piecewise C'-boundary, and let
Ui,...,U, be the connected components of P\ D. Let n > 2 and let some points
a; € Uj, 1 < j < n, be chosen. Further, let G be an open subgroup of the group
of invertible elements of a Banach algebra with unit, and let f € OF(D). Then
there exist functions f; € OF(P1\ U;), 1 < j <n, and a function h € OF (]P’1 \
{ar,...,an}) such that f = hf, ... f1 on D.

Proof. For 1 < k < n, we consider the following statement:

A(k): There exist functions f; € O%(P*\Uj), 1 < j <k, and a function h,, €
o¢ (EU (Ui \ {a}) U...U (U \ {ak})) such that f =h, f, ... f, on D.

Since
DU (Ui \{a1})U...U (U \ {an}) =P'\ {a1,...,an},

then A(n) is the assertion of the lemma. Therefore it is sufficient to prove A(1)
and the conclusions A(k) = A(k+1),1 <k <n-—1
Proof of A(1): Since

(Pl \U1) U (D U (Ul \ {al})) = Pl \ {al}
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and

(P'\T1) N (DU U1\ {a1})) =D,

from Proposition 5.10.2 we get functions f, € O¢ (]P’1 \Ul) and h, € O¢ (D U
(U1 \ {a1}) such that

on D. Since f is continuous and with values in G' on D, since h, is continuous
and with values in G on D U 90Uy, since f; is continuous and with values in G
on D\ dU; and since (5.10.1) holds in D, it follows that f; € O%(P!\ Uy),
hy € OY(DU (Uy \ {a1})) and (5.10.1) holds on D, i.e., assertion A(1) is valid.

Proof of A(k) = A(k+1):Let 1 <k <n—1 be given, assume that statement
A(k) is valid, and let f1,..., fr and hy be as in this statement. Since

(Pl \U,m) U (D U0\ {ar}) U...U (Tesr \ {ak+1})) = P!\ {aks1}

and

(Pl \Uk“) N (D U0\ {a1}) U...U (Tpsr \ {ak+1})>
= DU (T \{a}) U...U T\ {ar}),

from Proposition 5.10.2 we get functions

Jes1 € Og,m (Pl \Uk+1)
and
hisr € 0%, (D UU\{a1}) U...U (Txs1 \ {ak+1}))

such that
hy, = M1 frn (5.10.2)

on DU (Ui \{a1})U...U (U \ {ax}). Since h,, is continuous and with values in
G on D, since h,_, is continuous and with values in G on D U 0Uj41, since f,

is continuous and with values in G on D \ OUj41 and since (5.10.2) holds in D, it
follows that

fri1€0%,, (Pl \ Uk+1>7
hiy € 0%, (Eu U\ {a1}) U... U (Upa \ {ak+1}))
and (5.10.2) holds on D. Since f = h, f; ... f; on D, this implies that
f = hk+1fk+1fk . ~f1

on D, i.e., assertion A(k + 1) is valid. O
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5.10.5 Theorem (Runge approximation). Let G be an open subgroup of the group
of invertible elements of a Banach algebra with unit. Let D C P! be an open set
with piecewise C'-boundary, and let f : D — G be a continuous function which is
holomorphic in D such that all values of f belong to the same connected component
of G. Further, let Uy, ...,U, be the connected components of P\ D, and let some
points a; € Uj, 1 < j < n, be given. Then f can be approzimated uniformly on D
by functions from OF(P*\ {ay,...,a,}).

Proof. If n = 1, the assertion of the theorem is that of Proposition 5.10.1. If n > 2,
then, by Lemma 5.10.4, f can be written in the form

f=hfn...f1 on D, (5.10.3)

where f; € OY(P'\U;), 1 < j < n,and h € OY(P' \ {a1,...,an}). Let V be
the interior of P! \ U;. Since the boundary of U; is piecewise C' (as a part of
the boundary of D), also the boundary of V is piecewise C' and V = P!\ Uj.
Since U; is connected (as a connected component of some set), P! \ V = Uj is
connected. Therefore, Proposition 5.10.1 can be applied to each Vj. Hence, each
fj can be approximated uniformly on V' = P*\U; by functions from O% (P*\ {a;}).
Since O (P! \ {a;},G) € O%(P*\ {p1,...,pn}) and D C P'\ U;), this means in
particular that each f; can be approximated uniformly on D by functions from
o¢ (]P’l \ {p1,... ,pn}). Since h belongs to O (IP’l \ {p1,... ,pn}) and by (5.10.3),
this implies the assertion of the theorem. [

5.11 Proof of Theorem 5.6.3 in the general case

Here we prove Theorem 5.6.3. Recall that the sufficiency of condition (i) in The-
orem 5.6.3 (that D is simply connected) was already proved at the end of Section
5.9. So it remains to prove that condition (ii) and condition (iii) in Theorem 5.6.3
are sufficient.

Throughout this section, A is a Banach algebra with unit 1, GA is the group
of invertible elements of A, G1 A is the connected component of the unit element
in GA, and G is an open subgroup of GA.

5.11.1 Lemma. Let (D1, D2) be a Cartan pair (Definition 5.5.1) such that D1 and
Dy are connected, and let F € O%(D; N Dy) (Def. 5.4.5). Then the following are
equivalent:

(i) All values of F' belong to the same connected component of G.

(ii) There exist functions F; € 0%(D;), j = 1,2, such that F = F{'F, on
D, N Ds.

(iii) There exist functions C; € C%(D;), j = 1,2, such that F = C;'Cy on
DN Ds,.
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Proof. The conclusion (i)=-(ii) is the assertion of the Cartan Lemma 5.5.2. The
conclusion (ii)=>(iii) is trivial.

To prove (iii)=>(i), we consider two arbitrary points z,w € D; N Dj. Since
D and D, are connected, we can find continuous curves v; 0 [0,1] — Ej, 7=12
such that 7;(0) = z and 7;(1) = w, j = 1,2. If now condition (iii) is satisfied,
then, by setting

() =Cr () Co(yt),  0<t<1,

we can define a continuous curve in G, where

F(2) = O '(2)Ca(2) = C1 1 (711(0)) Cy (72(0)) = 4(0)

and
F(w) = C7H(w)Cy(w) = CT ™ (1(1)) Gy (12(1)) = 1(1),
i.e., v connects F(z) and F(w). O

5.11.2 Lemma. Let D C C be a bounded, connected open set with piecewise C!-
boundary such that C\ D consists of n connected components, n > 2. Then there
exists a Cartan pair (D1, Ds) with D = Dy U Dy and satisfying the following
conditions:

(1) Dy is simply connected;
(2) Dy is connected;
(3) C\ Dy consists of n — 1 connected components.

Proof. Let Uy,...,U, be the connected components of C\ D where U; denotes
the unbounded component. Let 0U; be the boundary of U;. Choose points a1 €
Uy and ay € OUs which are smooth points of the boundary 0D of D. Since
D is connected and hence (as an open set) arcwise connected and since 9D is
piecewise C', D is arcwise connected. Therefore we can find a continuous curve
¢ : [0,1] — D with ¢(0) = a; and ¢(1) = ap. Moreover, since a; and ay are
smooth points of D, we can achieve that ¢ is a C*°-diffeomorphism between [0, 1]
and ¢([0,1]) and ¢([0,1]) meets OD transversally (in both points, a; and as).
Choose a neighborhood V' in C of the interval [0, 1] so small that there exists an
extension of ¢ to some C*>°-diffeomorphism ® from V onto some neighborhood W
of v([0,1]). If § > 0 and € < &', then we set

K(é;s,s’):{z:x—i—iye(c —5<x<1—|—5and5<y<5'}.

Choose §y > 0 and &g so small that K (8o; —£9,£0) C V. Since ([0, 1]) meets 9D
transversally in the smooth points a; and as and since D is connected, further
then we can choose 0 < €1 < £g so small that, for all —e; < e <&’ < ey,

Di(e,e') :==DN®(K(bp;e,¢")) and Dy(e,e’) :== D\ Di(e, ')
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are connected bounded open sets with piecewise C'-boundary. Since U; U Uy U
~([0,1]) is connected, then U; and U, are contained in the same connected com-
ponent of C\ Dz(e,e’) and the number of connected components of C\ Ds(e,e’)
is n — 1. Moreover, choosing this e; sufficiently small, we can achieve that, for all

—&1 < e < ¢’ < g1, the open set
! (Di(e,€"))

is star shaped with respect to point 1/2 and therefore simply connected. Hence,
D1 (d0;¢€,¢") is simply connected for all —e; < e < &’ < g1. We summarize:

For all —e1 < e < &' < &1, Di(e,€') and Da(g,e’) are connected bounded open sets
with piecewise C1- boundary where the open set D1(g,€') is simply connected and
C\ Dz(e,e) consists of n — 1 connected components.

Now we fix some 0 < € < £1/2 and set
Dy := D1(—2¢,2¢) and Dy := Da(—¢,¢).

Then the intersection D; N Do consists of the two connected components
D;y(—2e,—¢) and Dq(e,2¢) and (as mentioned in the summary above) each of
these components is simply connected and has piecewise C'-boundary. Moreover,
it is clear that D; U Dy = D and (D; \ D2) N (D2 \ Dy) = 0. Hence (Dy, D) is a
Cartan pair with Dy U Dy. That this Cartan pair has the properties (1), (2) and
(3) was also already mentioned in the above summary. (]

5.11.3 Lemma. Let D C C be an open set with piecewise Cl-boundary, let U be
a neighborhood of D and f a O%-cocycle over U. Suppose at least one of the
following two conditions is fulfilled:

(a) G is connected.
(b) f is CE-trivial over U.
Then f is O -trivial over D.

Proof. We may assume that D is connected. Further we proceed by induction over
the number of connected components of C\ D.

Beginning of induction: Suppose this number is 1, i.e., C\ D is connected. As the
boundary of D is piecewise C!, then also C \ D is connected, which means that
D is simply connected. Therefore the assertion of the lemma follows from the fact
that the claim of Theorem 5.6.3 was already proved (at the end of Section 5.9) if
condition (i) in Theorem 5.6.3 is satisfied.

Hypothesis of induction: Assume, for some n € N with n > 2, the assertion of the
lemma is already proved if the number of connected components of C\ D is n — 1.

Step of induction: Assume that the number of connected components of C\ D
is equal to n. Then, by Lemma 5.11.2, we can find a Cartan pair (D1, Dy) with



150 Chapter 5. Multiplicative cocycles (O%-cocycles)

D = D; U Dy satisfying conditions (1), (2), (3) (of Lemma 5.11.2). Since the
boundaries of Dy, Dy, D; N Dy and D are piecewise C', we can find a Cartan
pair (D}, D) satisfying the same conditions (1), (2), (3) such that D; € D} and
D,uD,CU.

Then f is O%-trivial over D}, again by the fact that the claim of Theorem
5.6.3 was already proved (at the end of Section 5.9) if condition (i) in Theorem
5.6.3 is satisfied. Moreover, since the number of connected components of C\ﬁ; is
equal to n — 1, it follows from the hypothesis of induction that f is also O%-trivial
over D). By Proposition 5.7.6, this implies that f|D,1uD,2 is O%-equivalent to a
certain ({D}, D4}, 0%)-cocycle f'. Since Dy N Dy C D N D}, setting

R !
F = flal5mps

we obtain a function F € O%(D; N Dy). We claim that all values of I belong to
the same connected component of G.

If G is connected, this is trivial. If not, then condition (b) in the lemma under
proof is satisfied, i.e., f is C%-trivial over U. As D} U D} C U, then f is also C¢-
trivial over D} UD]. Since f| pyupy 18 CC-equivalent to f’ (it is even O%-equivalent
to f'), this implies that also f’ is C%-trivial, i.e., we can find C; € CG(DQ), i=1,2,
with

fia=C7*Cy,  on D, N Dj.
Hence condition (iii) in Lemma 5.11.1 is satisfied, and it follows from Lemma
5.11.1 that all values of F' belong to the same connected component of G.
Since all values of F' belong to the same connected component of G, it follows

from the Cartan Lemma 5.5.2 (or from Lemma 5.11.1) that there exist functions
F; € 09(D;), j = 1,2, with

F=F'F, onD;nD;.

Since F|p,np, = fialpinD,, this means in particular that f’|D is O%-trivial.
Finally, as f | pup: and f'oare OC%-equivalent and therefore f|p and f’|p are
1 2

O%-equivalent, it follows that f is O%-trivial over D. O

Proof of Theorem 5.6.3. Since the sufficiency of condition (i) in Theorem 5.6.3
(that D is simply connected) was already proved at the end of Section 5.9, we
may assume that at least one of the following two conditions is fulfilled:

(a) G is connected.
(b) f is C%-trivial over U.

Take a sequence (€2,)nen of bounded open sets with C'-boundaries such that
Q, C Qp4q for all n € N and UneN Q,, = D. Let U,, be the union of all bounded
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connected components of C\Q,, which are subsets of D (if there are any — otherwise
U, :=0), and set B
D, =Q,UU,.

Then also (D,,)nen is a sequence of bounded open sets with C!-boundaries such
that D,, C D, 41 for all n € N and UneN D,, = D. Moreover this sequence has
the important property that each bounded connected component of C \ D,, (if
there are any) contains at least one point of C\ D. By the Runge approximation
Theorem 5.0.1, this implies that, for each n, the functions from O%(D,,) can be
approximated uniformly on D,, by functions from O%(D). In particular we see that
the sequence (Dy,)nen has the properties (1), (2), (3) of Lemma 5.8.1. Therefore,
by this lemma, for the O%-triviality of f it is sufficient that each f| D, 1s OC-trivial,
which is indeed the case, by Lemma 5.11.3. (]

5.12 09 (F)_cocycles

In this section FE is a Banach space.

5.12.1 Definition. (i) We denote by F“(E) the ideal of all compact operators
from L(E), and by F*°(E) we denote the ideal of all operators from F*(E),
which can be approximated by finite dimensional operators.

(ii) Let GY(FE) be the group of invertible operators of the form I + K with
K € F¥(E), and let G*(FE) be the group of invertible operators of the
form I + K with K € F>(E).

(iii) We denote by F¢¥(E) the subalgebra of L(E) of operators of the form A\ + K
with K € FY(E) and A € C, and by F°(F) we denote the subalgebra of
L(E) of operators of the form A + K with K € F*°(FE) and X € C.

(iv) We set
GFY(E)=GL(E)NF{(E) and GF°(E)=GL(E)NFF(E).

In the following proposition we collect some well-known facts on these al-
gebras and groups, which will be used without further reference throughout this
book.

5.12.2 Proposition. The operators from F°(E) are compact. Hence, zero is the
only possible accumulation point of the spectrum of such an operator, and all other
points of the spectrum are eigenvalues of finite multiplicity. Therefore it is easy to
see that:

(i) For dim E < oo, the factor algebras F°(E)/F*(E) and F¥(E)/F“(E) are

isomorphic to C.

(ii) If dim E = oo and A\ + K = NI + K' where K, K' € F“(E) and \,\ € C,
then A= X and K = K'.
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(iii) The algebras F°(E) and Fy¥(E) are closed in L(E) with respect to the op-
erator norm.

(iv) Let dimE = oo, let D C C be an open set, and let f : D — Fr(E) be a
holomorphic (continuous) function, where X stands for one of the symbols co
or w. Then f is of the form

f) =Xz + K(2), z€D,

where \: D — C and K : D — FX(E) are uniquely determined holomorphic
(continuous) functions.

(v) The sets GFP(E), G®(E), GF¥(E) and G¥(E) are connected and closed
subgroups of GL(E). The group GF°(E) is the group of invertible elements of
the Banach algebra F7°(E), and the group GF¥ (E) is the group of invertible
elements of the Banach algebra Fy¥(E).

5.12.3 Remark. It is easy to see that there is no Banach algebra which contains
G*(FE) or G¥(F) as an open subgroup of its group of invertible elements. Therefore
we cannot immediately apply to G*®°(E) and G¥(FE) the theory of cocycles as
developed above. We circumvent this problem passing to the groups GF°(E)
and GFY(E) , which are groups of invertible elements of a Banach algebra. Note
however that G*°(E) and G“(F) are complex Banach Lie groups and that the
theory of Grauert and Bungart mentioned in the introduction to this book is
developed for such groups. So, the theory of O%-cocycles, presented in this chapter,
is valid for arbitrary Banach Lie groups. But, since G*°(E) and G¥(FE) are the only
examples of true Banach Lie groups, which we meet in this book, for simplicity,
we avoid the notion of a general Banach Lie group.

5.12.4 Definition. Let D C C be an arbitrary open set, let & = {U;};er be an
open covering of D, let A = {A;;}; rer be a (L{, OGL(E))—cocycle (Def. 5.6.1), and
let N stand for one of the symbols oo or w.

(i) The cocycle A will be called a (U,(’)gN(E))-cocycle or simply an 09" (E).
cocycle, if for all j, k € I with U; N Uy, # 0,

Ajr(2) €GME)  forall z € U;NUy.
(ii) The cocycle A will be called 09" (E)_trivial, if there exists a family of holo-
morphic functions A; : U; — GX(E), j € I, such that
Ajk = A]-Alzl on Uj n Uk
for all j,k € I with U; N U, # 0.

5.12.5 Theorem. Let D C C be an open set, let U be an open covering of D, and
let A be a (U,OQN(E))-cocycle, where N stands for one of the symbols 0o or w.

Then A is O9" (E) _trivial.
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Proof. Since G¥(E) is contained in GFR(E), the cocycle A can be viewed as
a (L{,OG}- T (E))—cocycle. Since GF}(E) is connected, it follows from Theorem

5.6.3 that A is OG7T(E)_trivial. Hence we have a family of holomorphic functions
A; 1 U; — GFY(E), j € I, such that

A= LAY onU;NU, (5.12.1)

for all j,k € I with U; N Uy, # 0. For dim E < oo this completes the proof. Let
dimE = oo, and let \; : U; — C* and K, : U; — F*(E) be the holomorphic
functions with B
Aj =M1+ K, j €l
Passing to the factor algebra L(FE)/F(E), then it follows from (5.12.1) that
)\j =\ on Uj NU

for all j,k € I with U; N Uy, # 0. Therefore it remains to set A; = )\j_lﬁj. O

We point out again the special case of Theorem 5.12.5 for coverings by two
open sets, which is sufficient for many applications:

5.12.6 Corollary. Let D, Dy C C be two open sets, and let A : D1 N Dy — GN(E)
be holomorphic, where R stands for one of the symbols co or w. Then there exist
holomorphic functions A; : D; — GN(E) with A = A1A2_1 on D1 N Ds.

5.13 Weierstrass theorems

Here we prove Theorem 0.0.2 stated in the introduction to this book. We do this in
a more general setting of Banach algebras. Throughout this section, A is a Banach
algebra with unit 1, and G is an open subgroup of the group of invertible elements
of A. We prove:

5.13.1 Theorem. Let D C C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w € Z, there are given a neighborhood U, of w
with Uy N Z = {w} and a holomorphic function f,, : Uy \ {w} — G. Moreover,
we assume that at least one of the following conditions is fulfilled:

(i) D is simply connected.
(ii) G is connected.
Then there exist a holomorphic function h : D\ Z — G and holomorphic functions
hy : Uy — G, w € Z, such that
hyfw="n on Uy \ {w}. (5.13.1)

The topological conditions (i) and (ii) in Theorem 5.13.1 can be replaced by
the more general condition that the problem can be solved continuously, i.e., there
is the following Oka-Grauert principle:
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5.13.2 Theorem. Let D C C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w € Z, there are given a neighborhood U, of w
with Uy N Z = {w} and a holomorphic function f, : Uy \{w} — G. Assume that:

(iii) There exist a continuous function ¢ : D\ Z — G and continuous functions
cw Uy — G, w € Z, such that ¢y fu, = ¢ on Uy \ {w}, w e Z.

Then there exist a holomorphic function h : D\ Z — G and holomorphic functions
hy Uy — G, w e Z, such that

hwfw="h on Uy \ {w}. (5.13.2)

Proof of Theorems 5.13.1 and 5.13.2. We choose neighborhoods V,, C U,,, w € Z,
so small that V,, NV, = 0 for all v,w € Z with w # v.
It is sufficient to find h € O%(D \ Z) and h,, € O%(V,,), w € Z, such that

B fuo = h (5.13.3)

on V, \ {w}. Indeed, since V;, N Z = U, N Z = {w}, then, by (5.13.3), each h,,
admits an extension to a function from O%(U,,), which we also denote by h,,, such
that (5.13.2) holds.

Set D1 = ez Vw and Dy = D\ Z. Since the sets V,, are pairwise disjoint
and V,, N Z = {w}, the family of functions f, can be interpreted as a single
holomorphic function f € O%(D; \ Z) = O%(D; N Dy). Now, by Corollary 5.6.4,
there exist h; € O9(D;), j = 1,2, with f = hi'hy on DyNDy. Setting hy, = h1|v
and h = ho, we complete the proof. 0

Since, in theorems 5.13.1 and 5.13.2, the multiplication by the functions h,,
is carried out from the left, we call these theorems left-sided Weierstrass theorems.
There are also right- and two-sided versions.

If the multiplication in A is denoted by “”, then we can pass to the Banach
Algebra A which consists of the same additive group A but with the multiplication
“7” defined by a~ b = b- a. In this way, from theorems 5.13.1 and 5.13.2 we get
the following right-sided Weierstrass theorems:

5.13.3 Theorem. Let D C C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w € Z, there are given a neighborhood U, of w
with Uy, N Z = {w} and a holomorphic function f,, : U, \ {w} — G. Moreover,
we assume that at least one of the following conditions is fulfilled:

(i) D is simply connected.
(ii) G is connected.

Then there exist a holomorphic function h : D\ Z — G and holomorphic functions
hy : Uy — G, w e Z, such that

fwhw =h on Uy \ {w}. (5.13.4)
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5.13.4 Theorem. Let D C C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w € Z, there are given a neighborhood U, of w
with Uy, N Z = {w} and a holomorphic function f, : Uy \{w} — G. Assume that:

(iii) There exist a continuous function ¢ : D\ Z — G and continuous functions
cw Uy — G, w € Z, such that fycy, =c on Uy, \ {w}, we Z.

Then there exist a holomorphic function h : D\ Z — G and holomorphic functions
hy : Uy — G, w e Z, such that

fwhw =h on Uy \ {w}. (5.13.5)

Finally, we present a two-sided Weierstrass theorem:

5.13.5 Theorem. Let D C C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w € Z, there are given a neighborhood U, of w with
Uw N Z = {w} and two holomorphic functions f, gy : Uy \ {w} — G. Moreover,
we assume that at least one of the following conditions is fulfilled:

(i) D is simply connected.
(ii) G is connected.

Then there exist a holomorphic function h : D\ Z — G and holomorphic functions
hy Uy — G, w e Z, such that

fwhwgw = h on Uy \ {’LU} . (5136)

Proof. Let a family of positive integers m,,, w € Z, be given. Then from the left-
sided Weierstrass Theorem 10.1.1 we get a holomorphic function h! : D\ Z — G
and holomorphic functions hl, : U, — G, w € Z, such that

Rl g = R on Uy, \ {w}. (5.13.7)

From the right-sided Weierstrass Theorem 10.2.1 we get a holomorphic function
h": D\ Z — G and holomorphic functions hl, : U, — G, w € Z, such that

fwhi, = h" on U, \ {w}. (5.13.8)

Set h = h'A" and h,, = AL k!, w € Z. Then h € O%(D\ Z), h,, € O%(U,,) and

wlhtwiw — Jw w — — w wry.
f h [ f hwhiug h hl h on U
O

5.13.6 Remark. Instead of conditions (i) or (ii) in Theorem 5.13.5 also the following
condition would be sufficient (Oka-Grauert principle):

(iii) There exist a continuous function ¢ : D\ Z — G and continuous functions
cw : Uy — G, w € Z, such that fi,cpgyw =con Uy, \ {w}, w e Z.
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But to prove this we would need a generalization of the theory of multiplicative
cocycles where the group G in Definition 9.1.2 is replaced by a fiber bundle of
groups with characteristic fiber G. This generalization is well known in Complex
analysis of several variables, as a part of the theory of Grauert [Grl, Gr2, Gr3]
and Bungart [Bu] mentioned in the introduction to the present book. To keep this
book simpler and shorter we omit this.

5.14 Weierstrass theorems for G*°(F) and G“( F)-valued
functions

In this section, we use the notations introduced in Definition 5.12.1 and the simple
well-known facts listed in the subsequent Proposition 5.12.2, and N will stand for
one of the symbols oo or w.

We first prove the following left-sided version of the Weierstrass theorem for
the group GX(E):

5.14.1 Theorem. Let D C C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w € Z, there are given a neighborhood U, of w
with U, N Z = {w} and a holomorphic function A, : U, \ {w} — GY(E). Then
there exist a holomorphic function H : D\ Z — GY(E) and holomorphic functions
Hy : Uy — GNE), w € Z, such that

H,A,=H on Uy \ {w}. (5.14.1)

Proof. Let a family of positive integers m.,,, w € Z, be given. Since GN(E) C
GF}(E), the functions A,, can be interpreted as functions with values in GFy (E).
Since the latter group is the group of invertible elements of a Banach algebra and
since this group is connected, we can apply Theorem 5.13.1 to it and obtain a
holomorphic function H : D\ Z — GFy(E) and holomorphic functions H,, :
Uy — GFY(E), w € Z, such that

H,A,=H on Uy, \ {w}. (5.14.2)

If diim E < oo and therefore G¥(E) = GL(E) = GFY(E), this completes the proof.

Let dimE = oo, and let A\, : Uy, — C, A\: D\ Z — C, Ky, : U, — F*
and K : D\ Z — F® be the holomorphic functions with H, = A\, + K, and
H = A+ K. Then, passing to the factor algebra F;(E)/F*(E) = C, we see: Since
H and H,, are invertible, the functions A and \,, have no zeros, and from (5.14.2)
it follows that A\, = A on U,,. Hence the H,, /A and H/\ are GX-valued functions
with the required properties. ([l

Precisely in the same way, solely replacing the left-sided Theorem 5.13.1 by
the right-sided Theorem 5.13.3, we get the corresponding right-sided result:
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5.14.2 Theorem. Let D C C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w € Z, there are given a neighborhood U, of w
with Uy, N Z = {w} and a holomorphic function A, : U, \ {w} — GX(E). Then
there exist a holomorphic function H : D\ Z — GY(E) and holomorphic functions
Hy : U, — GNE), w € Z, such that

AyHy,=H on Uy \ {w}. (5.14.3)

Both theorems together again give a two-sided version:

5.14.3 Theorem. Let D C C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w € Z, there are given a meighborhood U, of w
with Uy, N Z = {w} and two holomorphic functions Fy,, G, : Uy, \ {w} — GX(E).
Then there exist a holomorphic function H : D\ Z — GX(E) and holomorphic
functions Hy, : Uy, — GN(E), w € Z, such that

F,H,G,=H on Uy \ {w}. (5.14.4)

Proof. Let a family of positive integers m,,, w € Z, be given. Then from the left-
sided Theorem 5.14.1 we get a holomorphic function H! : D\ Z — GX(E) and
holomorphic functions H. : U, — GX, w € Z, such that

H! G, =H on Uy, \ {w}.

From the right-sided Theorem 5.14.2 we get a holomorphic function H" : D\ Z —
G¥(E) and holomorphic functions H’, : U,, — G¥(E), w € Z, such that

F,H, =H" on Uy, \ {w}.

Setting H = H'H" and H, = HJ,H,,, w € Z, we get holomorphic functions

H:D\Z — GYFE)) and H,, : U, — G¥(E), w € Z, such that

F,H,G,=F,H H G, =HH =H  onU,)\ {w}. O

5.15 Comments

This chapter is based on the theory of of multiplicative cocycles (fiber bundles)
on Stein manifolds (any domain in C is a Stein manifold), which was developed
in the 1950s by H. Grauert [Grl, Gr2, Gr3] for cocycles with values in a (finite
dimensional) complex Lie group and generalized by L. Bungart [Bu] to cocycles
with values in a Banach Lie group. The Oka-Grauert principle was first discovered
by K. Oka [Ok] for cocycles of several complex variables with values in C*. That
the Oka-Grauert principle holds also for non-commutative groups is a very deep
result due to H. Grauert [Grl, Gr2, Gr3] (not easy even for one variable).

In the papers [GL1, GL2, GL3], the authors presented some of these results,
which are relevant for operator theory. Direct proofs for the case of one variable
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and also some new results were given there. This chapter is an extension and
completion of the material contained in these papers. Here style and presentation
are essentially improved. The first versions of the Weierstrass theorems from sec-
tion 3.8 were published in the papers of I. Gohberg and L. Rodman in [GR2] (for
matrices) and [GR2] (for infinite dimensional operators).



Chapter 6

Families of subspaces

Let E be a Banach space. We denote by G(F) the set of closed subspaces of E.
In this chapter we study functions with values in G(FE).

Consider first the case E = C", n € N*. Let G(k,n) be the set of k-
dimensional subspaces of C", 0 < k < n. Then G(C") is the disjoint union of
the sets G(k,n), and it is well known (see, e.g., [HaGr]) that each of them is
a complex manifold called the (complex) Grassmann manifold of k-dimensional
subspaces of C™. From this general point of view it is therefore clear what a holo-
morphic function with values in G(C") is. For a more direct definition (not using
Grassmann manifolds) of holomorphic G(C™)-valued functions, we refer to sec-
tion 18.1 of the book [GLR]. Note that all values of such a holomorphic function
have the same dimension, except for the case that the domain of definition is not
connected.

If dim E' = oo, then there are different reasonable definitions of holomorphic
G(E)-valued functions. We will discuss them in this chapter. First we introduce
the notion of continuous G(F)-valued functions. For that we use the gap metric
on G(E).

6.1 The gap metric

Let E be a Banach space. Recall that for two non-empty subsets X, Y C E, the
number

dist(X,Y) = |z — | (6.1.1)

inf |
rzeX,yeY
is called the distance between X and Y (here ||| is the norm of F). Note that the
distance between two subspaces of F is always zero, because any subspace contains
the zero-vector. For subspaces, there is another “distance” which is called the gap
(in order to avoid confusion with the distance):
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6.1.1 Definition. Let E be a Banach space. If X is a subspace of E (not necessarily
closed), then we denote by

S(X) = {x e X ‘ || = 1}

the unit sphere of X. If X, Y are two subspaces, then we define the gap ©(X,Y)
between X and Y as follows: If X # {0} and Y # {0}, then

0(X,Y) := max{ sup dist (v, S(Y)), sup dist (U,S(X))}. (6.1.2)
veS(X) veS(Y)

If X ={0}and Y # {0} or if X # {0} and Y = {0}, then we set (X,Y) =1, and
if X =Y = {0}, then we set §(X,Y) = 0. From this definition it is immediately
clear that

0(X,Y) <2 for all X|Y € G(E). (6.1.3)

If X is a subspace of a Banach space E and X is the closure of X, then it is
clear that ©(X, X) = 0. Therefore, on the set of all subspaces of E, the gap is not
a metric. However we have:

6.1.2 Theorem. Let E be a Banach space, and G(FE) the set of all closed subspaces
of E. Then the gap © defined by (6.1.1) is a complete metric on G(E).

Proof. First we check the three axioms of a metric.

I. Suppose X,Y € G(F) and 8(X,Y) = 0. If at least one of the spaces X and
Y is the zero space, then this clearly implies (by the definition of §(X,Y") in this
case) that also the other one is the zero space and hence X =Y. Now let X # {0}
and Y # {0}. Then, in particular,

sup dist (z,S(Y)) =0,
z€S(X)

i.e., dist (z, S(Y)) = 0 for all z € S(X). Since S(Y) is closed, this is possible, if
and only if, S(X) C S(Y). In the same way we see that S(Y) C S(X). Hence
S(X) = S5(Y), which means that X =Y.

II. If we interchange the letters X and Y in the expression of the right-
hand side of definition (6.1.2), then the value of this expression does not change.
Therefore it is clear that 0(X,Y) = 0(Y, X) for all X,Y € G(F) with X # {0}
and Y # {0}.

ITII. We prove the triangle inequality. Let X,Y,Z € G(E).

Firstlet Z = {0}. If X # {0} and Y # {0}, then (X, Z) =1and §(Z,Y) =1
(by definition). Since 6(X,Y’) < 2 (see (6.1.3)), this implies that

O(X,Y)<2=0(X,2)+0(Z,Y).

If X ={0} and Y # {0}, then §(X,Y) =1, 0(X,Z) =0 and 6(Z,Y) = 1 which
implies that
0(X,Y)=1=0+1=0(X,Z)+0(Z,Y).
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Correspondingly we proceed if X # {0} and Y = {0}.
Now let Z # {0} and at least one of the spaces X,Y is the zero space. If
X ={0} and Y # {0}, then 0(X,Y) =1 and 0(X, Z) = 1 and therefore

0(X,Y) =0(X,Z) < 0(X,Z)+0(Z,Y).

Correspondingly we proceed if X # {0} and ¥ = {0}. If X =Y = {0}, then
A(X,Y) = 0 and therefore

0(X,Y)=0<0(X,2)+0(ZY).

Finally we consider the case when none of the spaces X,Y,Z is the zero
space. Then at least one of the following relations is true:

0(X,Y) = sup dist(v,5(Y)) or 0(X,Y) = sup dist(v,S(X)).
veS(X) veS(Y)

We may assume that this is the first one (otherwise we have to change the roles
of X and Y). Now let ¢ > 0. Then we can choose = € S(X) such that

0(X,Y) < dist (z,5(Y)) +e. (6.1.4)
Moreover, then we can take z € S(Z) with

dist (z,5(2)) + & > || — 2. (6.1.5)
Then, by the triangle inequality in F,

dist (2,5(¥)) = inf e~ v < inf (2] + |z~ o]

<|lz—z|| + veié'l(fY) [z — vl = ||z — 2| + dist (2, S(Y)).
By (6.1.4), this implies
0(X,Y) < |lz— 2| +dist (2,5(Y)) +e,
and, by (6.1.5), we further get

0(X,Y) < dist (z,5(Z)) + dist (z,5(Y)) + 2

< sup dist (v,5(2)) + sup dist (v, S(Y)) 426 <O(X,2)+6(Z,Y) + 2.
veS(X) veES(Z)

Since € > 0 can be chosen arbitrarily small, this completes the proof of the triangle
inequality for 8. Hence it is proved that € is a metric.

We prove the completeness. Let (X, )nen be a Cauchy sequence in (G(E), 0).
Passing to a subsequence we may assume that

1
(X, Xntm) < on for all n,m € N. (6.1.6)
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This implies that either X,, = {0} for all n or X,, # {0} for all n. The first case is
trivial. Consider the second one.
Then, in particular,

1
dist (v, S(Xn)) < on for all v € S(Xy4m) and n,m € N. (6.1.7)

Denote by X the set of all vectors x € F such that there exists a sequence
(xn)neN with

z, € X, forallneN and lim z, = z.

n—oo

Obviously X is a linear subspace of E. Let X be the topological closure of X in
E. We will now prove that X is the required limit of the sequence (X,,)nen-
Let v € S(X) and n € N. Then, by definition of X, there is a sequence
(Tm)men with z,, € X1, and lim x,,, = v. Since ||v|| # 1, then also
LT

lim =
m—0 ||y |

Since, by (6.1.7),
. T 1
dist ( S(Xn)> < —,

[z’ 2"
this implies that

1
dist ('U7 S(Xn)) S 27

Since S(X) is the closure of S(X), this implies that

sup dist (v, S(X,)) <
veS(X)

2% for all n € N. (6.1.8)

Now let v € S(X,), n € N. Then, by (6.1.6), we can find a sequence xz,, €
Xn+m, m € N, such that o = v and, for each m € N, we have the inequality

|Zm — Tma1ll < 5

S
Then z := lim z,, exists (F is complete) and
1
o~ ol = e — ol < g (6.19)
Since ||v|| = 1, this further yields
ol = 1] = [llzll = oll] < = = vll <

- 2n71
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Since, by definition of X, z € X, and therefore z/||z| € S(X) C S(X), this implies
that

and therefore

T 1
el = et = 0] = et =11 <

1

dist (z, (X)) < 5T

and further, by (6.1.9),

1
on—2"

dist (v, S(X)) < [Jv — x| + dist (=, S(X)) <

Hence, it is proved that

1
n—2

sup dist (v, S(X)) < for all n € N.

vES(Xn) 2
Together with (6.1.8) this implies that

1

0(X,, X) < 53

for all n € N.

Hence lim §(X,,, X) = 0. O

In the following propositions we collect some further useful estimates and
relations for the gap.

6.1.3 Proposition. Let E be a Banach space, and let X,Y be two subspaces of E
such that X is closed, X CY and X #Y. Then
O(X,Y)>1. (6.1.10)

Proof. Since X is closed and a proper subspace of Y, for each € > 0 we can find
y € S(Y) with
dist(y, X) > 1 —e.

Hence
sup dist (y, S(X)) > sup dist(y,X) > 1,
yeS(Y) yesS(Y)
which implies (6.1.10) by definition of ©(X,Y). O

6.1.4 Proposition. Let E be a Banach space, and let X, Y be two closed subspaces
of E, X # {0}, Y # {0}. Then

sup dist(v,Y) < sup dist (v,S(Y)) <2 sup dist(v,Y) (6.1.11)
veS(X) vES(X) vES(X)
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and

max < sup dist(v,Y), sup dist(v,X)
vES(X) veS(Y)

<O(X,Y) <2max< sup dist(v,Y), sup dist(v,X),. (6.1.12)
vES(X) veS(Y)

Further, if there exist bounded linear projectors Px and Py from E to X and Y,
respectively, then
max ¢ sup dist(v,Y), sup dist(v,X)p <|[Px — Py|| (6.1.13)
veS(X) veS(Y)
and therefore, by the right inequality in (6.1.12),
0(X,Y) < 2||Px — Py (6.1.14)

Finally, if E is a Hilbert space and Px, Py are the orthogonal projectors from E
to X and Y, respectively, then

|Px — Py|| = max< sup dist(v,Y), sup dist(v,X) . (6.1.15)
vES(X) veS(Y)
and hence, by (6.1.12),
[Px — Py|| < 6(X,Y) <2|Px — Py||. (6.1.16)

Proof. Let € > 0 be given. Then we can find « € S(X) such that

sup dist (v, S(Y)) < dist (z, S(Y)) +e. (6.1.17)
veS(X)

Further, then we can find y € Y such that

|z — y|| < dist(z,Y) +e. (6.1.18)
Since ||z|| = 1, then also

|1 — Hy||| < dist(z,Y) 4+ ¢

and therefore
Yy |y _
HHy - yH = HHyH(l - IIyII)H < dist(z,Y) +e. (6.1.19)

Since y/||ly|| € S(Y") and therefore

Y

—
Iyl

dist (z,S(Y)) <

)
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now it follows from (6.1.17) that

sup dist (v, S(Y)) <
veS(X)

xH+s_||x y||+Hy H+s
[yl Tyl

Together with (6.1.18) and (6.1.19) this yields

sup dist (v, S(Y)) < 2dist(z,Y) +3e <2 sup dist(v,Y) + 3e.
veS(X) veS(X)

Since € > 0 can be chosen arbitrarily small, this proves the right inequality in
(6.1.11). The left inequality in (6.1.11) is trivial.

(6.1.12) follows from (6.1.11) and the inequality obtained from (6.1.11) in-
terchanging X and Y.

Now we assume that there exist bounded linear projectors Px and Py from
E to X and Y, respectively. Let € > 0. Then we can choose x € S(X) such that

sup < dist(z,Y) +e.
veS(X)

Since dist(z,Y) < || — Pyz|, Pxx = « and ||z|| = 1, this yields

sup dist(v,Y) < |z — Pyz| = ||(Px — Py)z||+ ¢ < ||Px — Py| +e.
veS(X)

Since € > 0 can be chosen arbitrarily small, this means that

sup dist(v,Y) < ||Px — Py]|.
veS(X)

In the same way we get

sup dist(v, X) < ||Px — Py|.
veS(Y)

Together this implies (6.1.13).

Finally we assume that F is a Hilbert space and Px, Py are the orthogonal
projectors from E to X and Y, respectively. In view of the general inequality
(6.1.13), we only have to prove that

|Px — Py|| <max< sup dist(v,Y), sup dist(v,X) . (6.1.20)
vES(X) veS(Y)

First note that, for all v € E with Pyv # 0,

Py
(I — Px)Pyv|| = dist(Pyv, X) = || Pyv|| dist (IIP ”” X> .
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Hence

|(I = Px)Pyv|| < ||Pyv|| sup dist(w,X) for all v € E. (6.1.21)
weS(Y)

In the same way we get

(I — Py)Pxv| < ||Pxv| sup dist(w,Y) forall v € E. (6.1.22)
weS(X)

Let (-, ) be the scalar product in E. Since the projectors Px and Py are orthog-
onal, then

HPy(I—Px)U”2 = <Py(I—Px)’U,Py(I—Px)U> = <(I—Px)’U,Py(I— Px)v>
= ((I = Px)v,(I — Px)Py(I — Px)v) < ||(I = Px)v|||({ = Px)Py (I — Px)v||

for all v € E. Together with (6.1.21) this yields

[Py (I = Px)ol|* < (I = Px)vll|Py (I — Px)v|| sup )dist (w, X)
weS (Y

and therefore

|1Py (I — Px)v| <||(I — Px)v| sup dist(w,X) forallv e E. (6.1.23)
weS(Y)

Since Py — Px = Py (I — Px) — (I — Py)Px and Py is orthogonal, we get
|(Py — Px)v|*> = ||Py(I — Px)v||> + ||(I — Py)Pxv||*>  forallv e E.

In view of (6.1.23) and (6.1.22) this implies
I(Py = Px)ol?

2 2
< (I = Px)v|*| sup dist(w,X) | +||Pxv||*| sup dist(w,Y)
wes(Y) weS(X)

2
< ||v||? (max{ sup dist(w,X), sup dist(w,Y)})

wes(Y) weS(X)
for all v € E. Taking the square root we get (6.1.20) O

6.1.5 Proposition. The set of complemented subspaces' of a Banach space is open
with respect to the gap metric. More precisely: Let E be a Banach space, and let

LA subspace X of a Banach space E is called complemented if there exists a closed subspace
Y of E such that E is the direct sum of X and Y.



6.1. The gap metric 167

X, Y be two closed subspaces of E such that E is the direct sum of X and Y. Let
P be the linear projector from E to X parallel to Y, and let Q =1 — P. Set

o1
8[1PII

Then, for all closed subspaces X' Y’ of E with
O(X.X')<e and O(Y,Y') <e, (6.1.24)

E is the direct sum of X' and Y'. Moreover, if P’ is the projector from E to X'
parallel to Y’ then
1P < 4P (6.1.25)

Proof. We may assume that X # {0} and Y # {0}, because if, for example
X = {0}, then the inequality (X', X) < 1 means, by definition, that X’ = {0}.
Now let X', Y’ € G(F) with (6.1.24) be given. First prove that X’NY’ = {0}.
Assume the contrary. Then we can find v € X’NY” with |Jv|| = 1 and, by definition
of 6,
dist (v, S(X)) < sup dist (w, S(X)) < (X', X) <e.
weS(X’)

Therefore we can find x € S(X) with
lv—z| <e. (6.1.26)
In the same way, we find y € S(Y) with
o -yl <e.
Together with (6.1.26) this gives
ly — || < 2e. (6.1.27)
Since ||z|| = 1, this implies
e +yll = 122+ (y — )| = [122] - [ly — 2] > 2—2¢

and further, as e = 1/8||P|| < 1/8,

1
lz+yll >2 - 7 (6.1.28)

On the other hand
lz+yll = [Pz + Qyll = [P(z —y) +yll < Pz —yll + 1,
which implies, by (6.1.27),

[z +yll < [1P[|2e + 1.
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Since € = 1/8|| P||, this means that
|z +y| < E +1
Y 1 )
which contradicts (6.1.28).

Since X’ NY’ = {0}, we have the linear projector from X’ +Y” to X’ parallel
to Y. We next prove that this projector is bounded where

1Pl < )P (6.1.29)

Assume the contrary. Then we can find v € X’ + Y’ such that

lv =1  and  ||P'v| > 4|P|. (6.1.30)
Set , Pv d , v—Pv
= an y = .
[P0 [P

Take x € S(X) with
" — || < dist (2/, S(X)) +e.

Then it follows from the definition of 6 that

|2 —z|| < sup dist (w,S(X)) +e< (X', X) +e. (6.1.31)

S
weS(X)

Since, by hypothesis (X', X’) < ¢, this yields

2" — 2| < 2e. (6.1.32)
From (6.1.29) we get
o= Poll _ [l + 7'l i i
1yl = < =1+ <14 =—— (6.1.33)
[[P"o] Ip"o [P"o] 2|

By the left inequality in (6.1.4) and since 8(Y',Y") < &, we obtain

dist(y", V) < ||| sup, )dist(va)Hy'IW(Y’,Y) < ly'lle.
we ’

Together with (6.1.33) this yields

€
dist(y',Y) <e 4+ ——-. (6.1.34)
2||P||
Therefore we can find y € Y with
ly =yl < 2 + = (6.1.35)

2|PII
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From the definition of 2/, ¢’ and (6.1.30) it follows that

ol _ 1
[Pl = 41PT

2" + 'l =

Together with (6.1.35) and (6.1.31) this further gives

€ 1
ly =zl < lly =yl + 2" + ¥l + Iz — 2| <26+ o0 + 75 00X, X) +e,
2IP 4P
which implies, as (X', X) < e,
1 €
ly —z|| < —== + + 4e.
a1pl 2P|

Since € = 1/8||P|| and ||P|| > 1, this implies that

I | < 1 n 1 L 1 <<1+1+1> 1
y—x| = Tt =T 5 o

AllPl - 16llP)* 2P - \4 16 2) [P
which gives the contradiction

1 1 1
1=z =[Pz =yl < 1Py —2)| <[1Plllly -2z < 7+ 35+ 5
Since the projector P’ is bounded, X’+Y" is topologically closed in E. Indeed,
let (vn)nen be a sequence in X’ + Y, which converges to some v € E. Since P’ is
bounded, then also the sequences P'v, € X’ and v,, — P'v,, € Y’ converge in E
where, as the spaces X’ and Y’ are topologically closed in E,
lim P'v, € X' and lim (v, — P'v,) € Y'.
Hence
lim v, = lim P'v, + lim (v, — P'v,) € X' +Y".

n—oo n— oo n—oo

To complete the proof of the proposition, now it remains to show that X +
Y’ = E. ((6.1.25) then follows from (6.1.29).) Assume it is not. Since X' + Y is
closed, then we can find z € E with [|z|| = 1 and

1
dist(z, X' +Y’) > 3 (6.1.36)

Since Pz € X and x — Pz € Y, it follows from the left inequality in (6.1.12) that

dist(Pz, X') < ||Pz| sup dist(v, X') < ||Pz|0(X’, X)
veS(X)

and

dist(z — Px,Y’) < ||z — Px|| sup dist(v,Y’) < ||z — Pz||0(Y',Y).
veS(Y)
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Since (X', X) < ¢, 0(Y',Y) < ¢ and ||z|| = 1, this further yields
dist(Pz, X') < || P|e
and
dist(x — Pz, Y") < (1 + || P|)e.
Therefore we can find 2’ € X’ and y’ € Y’ such that
1Pz -/l < |Plle and iz~ Pa—y|l < (1+ | P])e.
Then
le = (@' + )| = |1Pz — 2’ + (z — Px) = /[| < (1+2[|P|])e.
Taking into account that e = 1/8||P|| and ||P| > 1, from this we get
1 1 1
! /
_ <4<z
) LR
Since 2’ + 1y’ € X' +Y”, this contradicts (6.1.36). O

6.1.6 Proposition. Let E be a Banach space. Then the following sets are open with
respect to the gap metric:

(i) the set of infinite dimensional closed subspaces of F,
(ii) for each k € N, the set of k-dimensional subspaces of E,

(iii) for each k € N, the set of closed subspaces of E which are of codimension k
in E.

Proof. (i) Let Y be an infinite dimensional closed subspace of E. It is sufficient to
prove that, for any finite dimensional subspace X of F,

0(X,Y) > % (6.1.37)
So let a finite dimensional subspace X of E be given, and let ¢ > 0. Then S(X)
is compact. Therefore we can find a finite number of vectors z1,...,zny € S(X)
with
min ||z — ;|| <e for all z € S(X). (6.1.38)
1<5<N

Further, by definition of ©(X,Y), we can find y1,...,yn € S(Y) with
llyj — =] <OX,Y)+e for1<j<N. (6.1.39)

Let F be the span of y1,...,yn. Since Y is of infinite dimension, this is a proper
subspace of Y. Therefore we can find yo € S(Y) with

dist (yo, F) >1-e
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In particular,
lyo—y;|]| >1—¢ for1<j<N. (6.1.40)

Since, again by definition of ©(X,Y), dist (yo,S(X)) < ©(X,Y), we can find
To € S(X) with

|yo — wol| < dist (yo, s(X)) +e < O(X,Y) +e. (6.1.41)
Further, by (6.1.38), we can find an index 1 < jo < N such that
|zo — a4, || <e. (6.1.42)
From (6.1.39)—(6.1.42) now it follows that

OX,Y) +e = [lyo = @of| = [lyo = joll =l — 250l = [l = o]
>1—-e—-09(X,)Y)—e—ec=1-3-0(X,Y),

i.e.,

O(X,Y) > % — 2.

Since € > 0 is arbitrary, this proves (6.1.37).

(ii) Let k¥ € N and let X be a k-dimensional subspace of E. Since X is of
finite dimension, there is a continuous linear projector P from E onto X. Then k
is the codimension of Ker P in E. Now let X’ be an arbitrary closed subspace of
FE with

!

0(X,X') < STPI

Then it follows from Proposition 6.1.5 (with Y = Y’ = Ker P) that F is the direct

sum of X’ and Ker P. Therefore dim X’ is the codimension of Ker P in FE, i.e.,
dim X' = k.

(iii) Let £ € N and let X be a closed subspace of E which is of codimension k
in E. Since X is closed and of finite codimension in F, there is a continuous linear

projector P from E onto X. Then dimKer P = k. Now let X’ be an arbitrary
closed subspace of E with .
!/
0(X,X') < STPI
Then it follows from Proposition 6.1.5 (with Y = Y’ = Ker P) that E is the
direct sum of X’ and Ker P. Therefore, the codimension of X’ in F is equal to
dimKer P = k. (]

6.1.7 Proposition. Let E be a Banach space, let X,Y be closed subspaces of E,
and let v e E. Then

dist(v,Y) — dist(v, X)| < 20(X,Y)|v|l. (6.1.43)
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Proof. 1t is sufficient to prove that
dist(v,Y) < dist(v, X) + 20(X,Y)||v]| (6.1.44)
and then to change the roles of X and Y. Let € > 0 and x € X with
lv — z|| < dist(v, X) + &. (6.1.45)

Since dist(v, X) < ||v||, then
=]l < 2[lv[| +e. (6.1.46)

Further, by definition of ©(X,Y), there exists y € Y such that
[z —yll <OX,Y)llz] +e,
which yields, by (6.1.46),
[z —yll <X, Y)(2[lv] +¢) + e
Together with (6.1.45) this implies that
dist(v,Y) < |lv —y|| < dist(v,X) +e+O(X,Y)(2||v] +¢) +e.

As e can be chosen arbitrarily small, this proves (6.1.44). O

6.1.8 Proposition. Let E be a Banach space, let (X, )nen be a sequence of subspaces
of E (possibly not closed), and let (zy)nen be a sequence of vectors x,, € X,, which
converges to some vector y € E. If there exists a closed subspace Y of E such that

lim O(X,,Y) =0,

n—oo
theny €Y.

Proof. We may assume that x,, € S(X,,) for all n € N. Then, by definition of O,
we can find a sequence y, € S(Y), n € N, such that

|zn — ynll < 20(X,,Y), n € N.
Since lim ©(X,,Y) = 0 and lim ||z, — y|| = 0, then it follows that also the
n—oo
sequence (y,) converges to Y. As all y,, belong to Y and Y is closed, this implies
that y € Y. O

6.2 Kernel and image of operator functions

6.2.1 Definition. Let F be a Banach space, let D C C (possibly not open), and let
M = {M(z)}.ep be a family of subspaces of E. M will be called continuous if,
for each z € D, the space M (z) is closed in E, and if the map D 3 z — M (z) is
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continuous with respect to the gap matric (cf. Theorem 6.1.2). By a section of M
over D we mean a vector function f : D — E such that f(z) € M(z) for all z € D.
Such a section will be called continuous if it is continuous as a vector function
with values in F.

Now let E, F be two Banach spaces, let D C C, and let A: D — L(E, F) be
an operator function. Then we set

ImA = {ImA(z)} and Ker A = { Ker A(z) }

zeD zeD’

The family Im A will be called the image of A, and Ker A will be called the kernel
of A.

6.2.2. Let E, F be two Banach spaces, let D C C, and let A: D — L(E, F) be an
operator function. Suppose A is continuous and, moreover, Im A(z) is closed for
all z € D. Then nevertheless it is possible that the families Im A and Ker A are
not continuous.

For example, assume that D C C is connected and A : D — L(C",C™) is a
continuous matrix function, n,m € N. If the rank of A(z) is not the same for all
z € D, i.e., if the functions

D>z — dimIm A(z) and D > z — dimKer A(z)

are not constant, then neither Im A nor Ker A is continuous. This follows from
Proposition 6.1.6. Hence the constancy of the rank of A is a necessary condition
for the continuity of Im A and Ker A. This condition is also sufficient. We prove
this in the more general setting of Theorem 6.2.8 below.

6.2.3 Definition. Let F, F be two Banach spaces, and let A € L(E, F). Then we
define k4 =0if A =0 and

kA - UGE,dist%E,ﬁ(er A):l ||A’U|| lf A # 0 (621)

Recall the following fact which follows easily from the Banach open mapping
theorem: k4 > 0 if and only if A # 0 and Im A is closed. If this is the case,
then the operator Ag : E/Ker A — Im A induced by A is an invertible operator
between the factor space E// Ker A and Im A and

1

T

(6.2.2)

If E,F are two Banach spaces, D C C and A : D — L(FE

, is an operator
function, then we denote by k4 the function defined by k4 (z)

F)
= kA(z); z€D.
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6.2.4 Lemma. Let E, F be Banach spaces, let A,B € L(E,F), and let kg > 0.
Then

A-B
sup  dist (v, S(Ker B)) < 2M , (6.2.3)
veS(Ker A) kp
A-B
sup  dist (v, S(Im A)) < 2M , (6.2.4)
veS(Im B) B
1
ka > <12<k+1) ||AB4®(ImA,ImB)) ks | (6.2.5)
B
ka > (1 — 20(Ker A, Ker B))kB —|lA-B]. (6.2.6)
Proof of (6.2.3). Assume that
A-B
sup  dist (v, S(Ker B)) > 2M.
veS(Ker A) kp
Then it follows from (6.1.11) in proposition (6.1.4) that
A-B
sup  dist (U,Ker B) > M
veS(Ker A) kg
Hence, we can find v € S(Ker A) with
A-B
dist(v, Ker B) > M (6.2.7)

kp
Since ||v|| =1 and Av = 0, then

[Bv]| = [[Bv — Av|| < [|B - Al|.
On the other hand, (6.2.7) implies, by definition of kg, that |Bv|| > ||[A—BJ|. O
Proof of (6.2.4). Assume that

A-B
sup  dist (v, S(Im A)) > ZM.
veS(Im B) kp

Then, it follows from (6.1.11) in proposition (6.1.4) that

A-B
sup dist (U7Im A) > M
veS(Im B) kp
Hence, we can find v € S(Im B) with

|- B|

dist(v,Im A) >
kg

(6.2.8)
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Let € > 0. Since ||v]| = 1 and v € Im B, then, by definition of kg, we can find
w € E with

1
Bw=wv and lwl| < — +e.
kg
Then

1B

—A
[o = Aw|| = [[(B = A)w|| < |B = Af[w]| < T” +elB = Al

As e can be chosen arbitrarily small, this implies that

v — Aw]| < M
kg

Hence
1B — Al
B b
which contradicts (6.2.8). O

Proof of (6.2.5). Set

dist(v,Im A) <

q=2 <k1 + 1) |A — B| +40(Im A, Im B).
B

We may assume that ¢ < 1, because otherwise (6.2.5) is trivial. We have to prove
that then k4 > 0 and
1 1 1
i
ka = 1—q kg
By definition (6.2.1) of k 4, for that it is sufficient to find, for alle > 0 and y € Im A,
a vector x € F such that

1 1
Az =y  and l|lz|| < (kB +E> 1quyH

For the latter it is sufficient to construct, for all y € Im A and ¢ > 0, a sequence
(Zn)nen in E such that, for all n € N,

{xo =0, (6.2.9)

|zl < (1/kp+e) " Hyll  ifn>1

and

y—Zij

Jj=0

< q"llyl. (6.2.10)

Indeed, as 0 < ¢ < 1, then

o
x::aneE
n=0
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exists and we have
= 1 1
n—1 __
2] < n§ Ol\an < ( +a> (1 +q)||y||n§:1q = (kB +s> T qHyII

and

zn:AlL'j

Jj=0

ly — Az| = lim ||y — < lim ¢"|ly[| = 0,
n—oo n—oo

ie., Az =y.

So let y € Im A and £ > 0 be given. Proceeding by induction, we set ¢ = 0.
It is clear that then (6.2.9) and (6.2.10) are valid for n = 0. Now we assume that,
for some k € N, we already have xo, ..., zx such that (6.2.9) and (6.2.10) are valid
for0<n<k.

Then y — Zf:o Az; € Tm A. Therefore, by the definitions of ©(Im A, Im B)
and kp, we can find xx41 € F such that

1
el < {7 +e
k

ZAx] B$k+1

7=0

Z Ax;

and

<20(Im A,Im B)

Z Azl

Since, by induction hypothesis, (6.2.10) holds for n = k, the first inequality proves
(6.2.9) for n = k + 1, and the second inequality implies that

k
— 3" Az — Bajg || < 20(Im A,Im B)g"|ly||.

=0

As, by definition of ¢, 20(Im A,Im B) < ¢/2, this further implies that

k
— Y Awj = Bapg| < = ¢" Pyl (6.2.11)

Jj=0

Since (6.2.9) is already proved for n = k + 1, we get
1
st = Bawial| < }A - Blllowl < 14 - 5] (5 +<) Il

As, again by definition of ¢,

q
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(we may assume that € < 1), this implies that

1
|Azks1 — Bappa || < §qk+1Hy||-

Together with (6.2.11) this proves (6.2.10) for n = k + 1. O

Proof of (6.2.6). Note that Ker B # FE, because of kg > 0. We may assume
that also Ker A # E, because otherwise ©(Ker A, Ker B) = O(E,Ker B) > 1 (cf.
Proposition 6.1.3) and (6.2.6) is trivial. Hence k4 is defined by

ka= inf ||A’UH
veEE , dist(v,Ker A)=

Therefore, we have to prove that, for each v € E with
dist(v, Ker A) =1, (6.2.12)
| Av]| > (1 - 2@(KerA,KerB))kB —|lA - BJ. (6.2.13)

So let v € E with (6.2.12) be given. Moreover let € > 0. Then, by (6.2.12), we can
find w € Ker A with
lv—w|| <1+e. (6.2.14)

As w € Ker A, it follows from (6.2.12) that also
dist(v —w,Ker A) = 1. (6.2.15)
By Proposition 6.1.7,
dist(v — w, Ker B) — dist(v — w, Ker A)) < 20(Ker A, Ker B)||v — w|.

In view of (6.2.15), this implies that

dist(v — w,Ker B) > 1 — 20 (Ker A, Ker B) ||v — w||
and further, by definition of kg,

|1B(v = w)|| = (1~ 20(Ker 4, Ker B)||v — w]| ) k.
Hence

[Av[| = [[A(v = w)|| = | B(v = w)[| = |A = Blf|lv — w]|
> (1 — 20(Ker A, Ker B)||v — w”)kB |4 = B||[lv — wl.
By (6.2.14) this implies that
| Av] = (1 - 20(Ker 4, Ker B)(1+ ) )kp — |4 = BJ|(1 +¢).

As e can be chosen arbitrarily small, this proves (6.2.13). O
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6.2.5 Corollary. Let E,E',F be Banach spaces, and let A, € L(E,F), A, €
L(E,F), n € N, be two sequences such that

lim ||4, — Aol = lim [A), — A)|| =0, (6.2.16)
Ker A,, = {0}, neN, (6.2.17)
ImA, DImA!,, neN, (6.2.18)

and the spaces Im A, n € N, are closed. Let AGY ¢ L(ImA,,E), n €N, be the
operators with A%_l)An =1. Then

lim ACDAL = A0 A (6.2.19)

n—oo

Proof. Assume the contrary. Then, passing to subsequences we may assume that,
for some € > 0,
A AL — AT Ay > e

Take a sequence of vectors x,, € E' with ||z,| =1 and

1(ASVAL = AS DAYz, > e and |z, =1, neN. (6.2.20)

n

Then

1A, = Ag)wall = || (40 (A4, = AT A45) + (An — 40) AV 4G)

> |An(aG D4, - A5 Ap)a,

~ 1145 = Aoll |45 4

Since Ker 4,, = {0}, this implies that

)

(A7 = Ag)aall 2 ka, || (ASD 45 = AT Af)a,

— 140 - Aol [ 457" 4

and further, by (6.2.20),

145 = Al 2 ha,e = 140 - Aol ATV 45|, nent. (6221)

Since Ker 4,, = {0}, n € N, it follows from estimate (6.1.45) in Lemma 6.2.4 that
ka, = ka, = [[An — Aoll

n —

Together with (6.2.21) this implies that

(A% = A) @all 2 kage = 1 4n = Aol (= + |45 44

), n € N*,

which is a contradiction to (6.2.16). O
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6.2.6 Theorem. Let E be a Banach space and let {M(z}.ep, D C C, be a family of
subspaces of E such that, for each point zy € D, there exist a neighborhood U C D
of zo, Banach spaces X, Y and continuous operator functions T : U — L(X, E),
S:U — L(E,Y) such that, for all z € U, Im S(2) is closed and

M(z) =ImT(z) = Ker S(z).

Then {M(z},cp is continuous.

Proof. Let zy be given, and let U, X, Y, T, S be as in the hypothesis of the theorem.
As Im S(zp) is closed, and M(z) = Ker S(z) for all z € U, then it follows from
(6.2.3) in Lemma 6.2.4 that, for all z € U,

< 15() — Stz

sup  dist (U,S(M(ZO))) ks(zo0)

veS(M(z))

Since also Im T'(zg) is closed (as ImT'(zg) = Ker S(zp)) and M(z) = ImT(z) for
all z € U, from (6.2.4) in Lemma 6.2.4 we get

: 17(z) = T(20)ll
o dist (0. 5(M())) < SRR

Together this implies that

O (M (2), M(2)) < max { 15(2) = SCo)ll T(2) = T(z0)l } ,

ks(20) 7 kr(z0)

As both T and S are continuous at zp, this implies that {M(z}.cp is continuous
at zg. O

6.2.7 Theorem. Let E,F be two Banach spaces, let D C C, and let A : D —
L(E,F) be a continuous operator function such that, for all z € D, Im A(z) is

closed. Then the following three conditions are equivalent:
(i) The function k4 is continuous.
(ii) The family Im A is continuous.
(iii) The family Ker A is continuous.
)

(iv) For each compact set K C D,

inf ka(z) > 0.
z€K

Proof. (i)=(iv): Since, by hypothesis of the theorem, Im A(z) is closed for all
z€D,
ka(z) >0 for all z € D.
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Therefore, if k4 is continuous, then, for each compact set K C D, milr(l ka(z) exists
z€E

and is > 0.

(iv)=(ii) and (iv)=-(iii): It follows from (6.2.3) in Lemma 6.2.4 that, for all
z,w € D,

o1 Aoy e Aw) <214~ sl {5 i |

and from (6.2.4) in the same lemma it follows that, for all z,w € D,

If condition (iv) is satisfied, these two inequalities imply that the families Ker A
and Im A are continuous.

(ii)=(i): Set

0(v0) =2 (s +1) 146) = Aw)] +40(1m A(). I A(w)
for z,w € D. Fix z9 € D. Then, by (6.2.5) in Lemma 6.2.4,
ka(z) > (1 —q(z, z0)> ka(z), ze€D, (6.2.22)
. ka(z0) > (1 pre z))kA(z) . zeD. (6.2.23)

Since A is continuous and condition (ii) is satisfied, we have

lim q(z,zp) = 0. (6.2.24)

zZ—20
By (6.2.22) this implies that, for some & > 0,

kA(Zo)
2

ka(z) > if z€ D and |z — 2| < €.

Hence
q(z0,2) < 2q(z, 20) if z€ D and |z — 2| < g,
which implies, by (6.2.24), that also

lim ¢(zo,2) =0. (6.2.25)

zZ—2z0

(6.2.22)—(6.2.25) together imply that lim ka(z) = ka(20)-

z—20
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(iii)=(i): Let zo € D. Then, by (6.2.6) in Lemma 6.2.4, for all z € D,
ka(2) > ka(z0) — 20 (Ker A(z), Ker A(20))ka(z0) — [ A(z) — A(z)]|  (6.2.26)
and
ka(z0) > ka(z) — 20 (Ker A(z), Ker A(z0))ka(2) — | A(z) — A(z)||.  (6.2.27)
Since

lim ||A(z) — A(z0)|| =0 and lim O (Ker A(z),Ker A(z)) =0, (6.2.28)

z—20 zZ—20
it follows from (6.2.26) that, for some € > 0,

k’A(ZQ)
2

Together with (6.2.27) this implies that

kA(Z) >

if z€ D and |z — 2| < e.

ka(zo0) > ka(z) — 40 (Ker A(z), Ker A(20))ka(z0) — [|A(z) — A(20)||  (6.2.29)
if z € D and |z — 29| < e. Now, from (6.2.26) and (6.2.28) it follows that

lim inf kA(Z) Z k‘A(Zo)

zZ—20
and from (6.2.29) and (6.2.28) it follows that

limsupka(z) < ka(zo)-

zZ—20

Hence
lim ka(z) = ka(z0).

Z—Z0

O

6.2.8 Theorem. Let E,F be two Banach spaces, let D C C, and let A : D —
L(E, F) be a continuous operator function such that, for some k € N, at least one
of the following conditions is fulfilled:

(i) For all z € D, dimKer A(z) = k and Im A(z) is closed.
(ii) For all z € D, the codimension of Im A(z) in F is equal to k.
Then both the family Im A and the family Ker A are continuous on D.

Proof. First assume that condition (i) is satisfied. Let zp € D. Since Ker A(zp) is
of finite dimension, there is a closed subspace X of E such that FE is the direct sum
of Ker A(zp) and X. Since also Im A(zp) is closed, then the restriction A(zo)|X is
a bounded linear isomorphism between X and Im A(z). Hence

c:= veiél(f:X) | Az0)v|| > 0. (6.2.30)
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Since A is continuous, we can find an open disc U centered at zg such that
|A(2) — A(z0)|| < g if e UND.
Then, by (6.2.30),

. c .
Uelg(fx) |A(z)v]| > 5 ifzeUnD. (6.2.31)

In particular,
Ker A(z) N X = {0} itzeUND.

Since dim Ker A(z) = dimKer A(zp) = codim X, this implies that E is the di-
rect sum of Ker A(z) and X if z € U N D. Hence, for z € UN D, A(z)|X is a
bounded linear isomorphism from X onto Im A. Denote by B(z) the inverse of
this isomorphism. Then, by (6.2.31),

1B(2)]l <% forall ze UND.
This implies that, for each z € U N D and all v € S(Im A(z)),
2
[v = A(z0) B(2)v|| = ||A(2) B(2)v — A(z0) B(2)v|| < EHA(Z) — A(z0)]]-
Hence

2
sup  dist (v,Im A(z9)) < =||A(z) — A(z0)|| ifzeUND.
vES(Im A(z)) c

Since, by (6.1.4) in Proposition 6.1.4,

sup  dist (v, S(ImA(z))) <2 sup  dist (v,Im A(z)),
veS(Im A(z)) veS(Im A(z))

this implies that

4
sup  dist (v, S(Im A(20))) < —[|A(z) — A(z0)|| ifzeUND.
veS(Im A(z)) c

On the other hand, by (6.2.4) in Lemma 6.2.4,

2
sup dist (v, S(Im A(2))) <
veS(Im A(zp)) ( ( ( ))) kA(ZO)

|A(z) — A(z0)|| itzeUND.

Together this yields

O(Im A(z),Im A(z)) < max { - 2

) i} |A(z) — A(z0)|| for all z€ UN D.
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Since A is continuous, this implies that Im A is continuous at zy. By Theorem
6.2.7 this means that also Ker A is continuous at zg.

Now we assume that condition (ii) is satisfied. Then, by the Banach open
mapping theorem, Im A(z) is closed for all z € D.

Now let zg € D be given. As Im A(z) is of the finite codimension k and closed
in F, we can find a continuous linear projector P from F onto Im A(zg). Consider
the continuous operator function PA : D — L(E,Im P). Then Im PA(z) = Im P.
Hence, as PA is continuous, we can find an open disc U centered at zy such that

ImPA(z) =ImP forall ze UND. (6.2.32)

By Theorem 6.2.7 this implies that the family { Ker PA(Z)}zeUmD is continuous.

To complete the proof, therefore it is sufficient to prove that
Ker A(z) = Ker PA(z) forall ze UND.

To do this, we assume that, for some z € U N D, Ker A(z) # Ker PA(z).
Since, clearly, Ker A(z) C Ker PA(z), then

M :=Ker PNIm A(z) # {0}.

Let m = dim M. As dimKer P = k and M # {0}, then 1 < m < k < oo. Therefore
(Im A(z) is closed) we can find a closed subspace X of Im A(z) such that we have

the direct sum '
ImA(z) = X + M. (6.2.33)

Since X has codimension m in Im A(z) and Im A(z) has codimension k in F, the
codimension of X in F' is k +m. By (6.2.33) and (6.2.32), the sum X + Ker P is
a direct sum X + Ker P, where, as dim Ker P = k, the codimension of X + Ker P
in F' is m. Hence, there is an m-dimensional subspace V' of F such that

F=X+4KerP+V. (6.2.34)
Since M C Ker P, from (6.2.33) it follows that
PX =ImPA(z)
and further, by (6.2.32),

PX =ImP. (6.2.35)

Since V N Ker P = {0} (because of (6.2.34)) and V # {0} (because of dimV =
m > 1), now we can find v € V with Pv # 0. Moreover, by (6.2.35), there exists
x € X with

Px = Pu. (6.2.36)

Since v € V, z € X and v # 0, it follows from (6.2.34) that v — x ¢ Ker P, which
contradicts (6.2.36). O
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6.3 Holomorphic sections of continuous families of
subspaces

6.3.1 Definition. Let E be a Banach space, let D C C be an open set, and let
{M(2)}.ep be a continuous family of subspaces of E. A section f: D — M will
be called holomorphic if it is holomorphic as an E-valued map. If U C D is open
and # (), then the space of all holomorphic sections of M over U will be denoted
by OM(U). Note that this is a Fréchet space with respect to uniform convergence
on the compact subsets of U, as each of the spaces M(z), z € D, is closed (by
Definition 6.2.1 of a continuous family of subspaces). Sometimes a Banach space
will be more convenient. Therefore we also introduce the Banach space OX (U) of
all bounded sections from OM (U) endowed with the norm

Ifllo = sup [ f(2)le,  f€OLU).
zeU

For practical reasons, we define also O™ () = 0 where 0 is the zero vector of E.
6.3.2 Definition. Let E be a Banach space, let D C C be an open set, and let
M = {M(z)}.ep be a continuous family of subspaces of E. Then we define
O(2)(f) = f(2) for all z € D and f € O (D)
and
(P)1)(©) = (€= 2)f(Q)  forall 2,¢ € D and f € OX(D),

6.3.3 Proposition. Let E, D, M, ® and ¥ be as in Definition 6.3.2, and assume
additionally that D is bounded. Then:

(i) For each z € D, ®(z) is a bounded linear operator from OM (D) to E, and
the operator function
®: D — L(OX(D),E)

defined in this way, is holomorphic.

(ii) For each z € D, U(z) is a bounded linear operator in OM (D), and the oper-
ator function
v : D — L(0Y(D),0) (D))

defined in this way, is linear (and hence holomorphic).
(iii) Im ¥(z) = Ker ®(z) for all z € D.
(iv) Ker¥(z) = {0} for all z € D.

Proof. (i) It is clear that ®(z) is linear for each fixed z € D, and it follows from
the maximum principle that ®(z) is bounded for each fixed z € D. As, for each
fixed f in OM (D), the function D > z — ®(z)f = f(z) is holomorphic, it follows
that @ is holomorphic (Theorem 1.7.1).
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(ii) Since D is bounded and each of the spaces M(¢), ¢ € D, is linear, it is
clear that, for each z € D, ¥(z) is a bounded linear operator in O (D). For the
same reason, setting

(ANC) =¢f(¢)  for Ce D,

we get a bounded linear operator A in OM (D). As ¥(z) = A — zI, this shows that
¥ is linear.

(iii) For each f € OM(D) we have
(tl)(z) (\I’(z)f)) ()= —2)f()| =0 forall¢,zeD.
(==

Hence
Im ¥(z) C Ker @(2) for all z € D.

It remains to prove that
Im ¥(z) D Ker ®(z) for all z € D.
For that, let z € D and f € Ker ®(z) be given. Then f(z) = 0 and therefore

f(Q)
(—=z’
is a holomorphic function on D. As f and D are bounded, also u is bounded.

Moreover, since f(¢) € M(¢) and each of the spaces M (() is a linear subspace of
E, it is clear that

u(C) := (eD,

u(C) e M(¢)  if¢eD\{z}.
Since M is a continuous family of subspaces, this implies (cf. Proposition 6.1.8)
that also u(z) € M(z). Hence u € OM (D). Clearly, ¥(z)u = f. This proves that
feImP(z).

(iv) Let z € D and f € OY (D) be given. Now we assume that ¥(z)f = 0.
(C—2)f(¢)=0 for all ¢ € D.
Then, for { # 0, we can divide by { — z and obtain that

f(©)=0 for all ( € D\ {z}.

As z is an inner point of D and f is continuous, this implies that f =0 on D. [

6.4 Holomorphic families of subspaces

6.4.1 Definition. Let E be a Banach space, let D C C be an open set, and let
M = {M(z},ep be a family of subspaces of E. The family M will be called
holomorphic if
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(i) M is continuous (Def. 6.2.1);

(ii) for each zy € D, there exist a neighborhood U C D of 2y, a Banach space
X and a holomorphic operator function A : U — L(X, E) such that M(z) =
Im A(z) for all z € U.

The function A then will be called a resolution of M over U. If U # D, then we
also speak about a local resolution of M. By a global resolution of M we mean a
resolution of M over D.

Note that, by this definition, Theorem 6.2.8 immediately implies the following
corollary:

6.4.2 Corollary. Let E, F be two Banach spaces, let D C C, and let A : D —
L(E,F) be a holomorphic operator function such that, for some k € N, at least
one of the following conditions is fulfilled:

(i) For all z € D, dimKer A(z) = k and Im A(z) is closed.
(ii) For all z € D, the codimension of Im A(z) in F is equal to k.
Then both the family Im A and and the family Ker A are holomorphic on D.

In this section we again study additive Cousin problems (Def. 2.4.1), but
with the additional property that the functions which form the Cousin problem
are sections of a holomorphic family of subspaces. Here is the definition:

6.4.3 Definition. Let E be a Banach space, let M = {M(z}.cp be a holomorphic
family of subspaces of E, and let i = {U,},cs be an open covering of D.

Denote by C'(U,OM) the space of families f = {fjr}jrer With fjr €
OM(U; NUy) (Def. 6.3.1). A family f = {fjx}jrer € C* (U, OM) will be called an
U, OM)-cocycle if, for all j,k,l € I with U; N Uy NU; # 0,

fik + = fi on U; NU, NU;. (6.4.1)
Note that then, in particular,
fik = —fxj on U; NU and fi;i =0 on Uj. (6.4.2)

The space of all (U, OM)-cocycles will be denoted by Z'(U, OM). If the covering
U is not specified, then we speak also about OM-cocycles over D.

Due to P. Cousin the elements of Z!(U, OM) are also called additive Cousin
problems.

In this section we prove the following two theorems:

6.4.4 Theorem. Let E, F' be Banach spaces, and let D C C be an open set. Suppose
A: D — L(E,F) is holomorphic such that Im A = {Im A(2)}.ep is a continuous
family of subspaces of F'. (This means, by our Definition 6.4.1, we suppose that
A: D — L(E, F) is holomorphic such that Im A = {Im A(z)}.ep is a holomorphic
family of subspaces of F.) Then:
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(i) Ker A is a holomorphic family of subspaces of E.

(ii) For each holomorphic section f : D — Im A, there exists a holomorphic
function u : D — E such that

Au=f on D. (6.4.3)

6.4.5 Theorem. Let F' be a Banach space, let D C C be an open set, and let
M = {M(z}.ep be a holomorphic family of subspaces of F. Then:

(i) Let K C D be a compact set such that each connected component of D\ K
contains at least one point of C\ D. Then any section of M defined and
holomorphic in a neighborhood of K can be approximated uniformly on K by
sections from OM (D).

-cocycle
i) such that

(ii) For each open covering U = {U;}jer of D and each (U,OM)
(

{fir}jker, there exists a family {f;};jer of sections f; € OM

fiw =1 — fx onU; NU, j,kel. (6.4.4)

The rest of this section is devoted to the proof of theorems 6.4.4 and 6.4.5.
We begin with the following local version of Theorem 6.4.4 (ii):

6.4.6 Lemma. Let E, F be Banach spaces, and let D C C be an open set. Suppose
A:D — L(E,F) is holomorphic such that Im A = {Im A(z)}.ep is a continuous
family of subspaces of F, and let zo € D. (This means, by our Definition 6.4.1,
we suppose that A : D — L(E, F) is holomorphic such that Im A = {Im A(z)},ep
is a holomorphic family of subspaces of F'.) Then there exists a neighborhood U C
D of zy such that, for each holomorphic section f : D — Im A, there exists a
holomorphic function v : U — E with

Au=f onU. 2

Proof. Take 0 < r < 1 so small that K,.(z9) C D. Multiplying by a constant, we

may assume that
max ||A(z)] < 1. (6.4.5)

|z—z0|<r

Let -
A(z) = An(z — 20)"
n=0

be the Taylor expansion of A at zy. Then, by Cauchy’s inequality® and (6.4.5),

1
l4nl <=, neN (6.4.6)

2We point out that U depends on A, but not on f.
3which follows, by means of the Hahn-Banach theorem, immediately from Cauchy’s inequality
in the scalar case.
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Note that Im A(z9) = M (20) is closed and therefore k4(.,) > 0 (Def. 6.2.3). Set

8
o min{kA(ZO), 1}

and let U be the open disc with radius r/C' centered at zp. Now let a holomorphic
section f: D — Im A be given. Let

z) = Z fulz — 20)"
n=0

be the Taylor expansion of f at zg, and

K= max [f(2)].

lz—zo|<r

Then, by Cauchy’s inequality,
K
Ifall < =5 meN (6.4.7)

Now it is sufficient to construct a sequence (u,)nen of vectors u, € E such that,
for all n € N,

ZAnfkuk = fn (6.4.8)

k=0
and

Cn+1

fuall < K< (6.4.9)

Indeed, then, by (6.4.9),
u(z) = Zuk(z — 2)", zeU,
k=0

is a well-defined holomorphic vector function u : U — E, and if

= Z bn(z — 20)"
n=0

is the Taylor expansion of Au at zp, then from (6.4.8) it follows that

= =05 ) )A<“ O e

A(n k) (ZO
= E A, = for all .
2 (= k! _kug = fn oralln € N
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Hence Au= f on U.
To construct the sequence (uy,)nen we proceed by induction.

Beginning of induction: Since, by hypothesis, ka;,) > 0 and fo = f(20) €
Im A(zg), we can find ug € E such that

Aguo = A(z0)uo = fo and [luol| < <C.
e
Clearly, then (6.4.8) and (6.4.6) are valid for n = 0.
Hypothesis of induction: Assume that, for some m € N, vectors ug, ..., U, € E

are already constructed such that (6.4.8) and (6.4.6) are valid for 0 < n < m.
Step of induction: Set

m

9(z) = f(Z)—A(Z)Zuk(z—zo)k for z € D.

k=0

Then g is holomorphic on D and ¢(z) € Im A(z) for all z € D. Let

9(2) =D gnl(z —20)"
n=0

be the Taylor expansion of g at zg. Then

min{n,m}

In = fn — Z A, _pug for all n € N. (6.4.10)
k=0

By hypothesis of induction this implies that g, = 0 if 0 < n < m. Hence there is
a holomorphic vector function h : D — F with

h(z) = (zg,ij))mﬂ for z € D\ {z}.

As g(z) € Im A(z) for all z € D, then h(z) € Im A(z) for all z € D\ {z}. Since,
by hypothesis, Im A is continuous, this implies that

Im+1 = h(z0) € Im A(zp) = Im Ag

(cf. Proposition 6.1.8). Hence, by definition of k4., we can find a vector u, 1 €
FE such that

Aoum+1 = A(Zo)um+1 = gm+1 (6.4.11)

and

C
[Um1]l < | gms|| < Z||gm+1”~ (6.4.12)

= ka(zo)
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By (6.4.10), we have

m
dm+1 = fm+1 - § Am—k“kn

which implies, by (6.4.7) and (6.4.6), that

F 1
lgmill € s+ 3 gl
k=0

As, by induction hypothesis, (6.4.9) is valid for 0 < n < m, from this we further
get
1 Ck+1 F

_ k1
lgm1ll < m+1 e = rk pmtl +W;C :

Since r < 1, this implies that

F m F Ccmt2_1 F Cmt2
m—+1 _
||gm+1H < pmtl <1 +kZ_OC > T opmtl 021 S C —1 ypm+l’

Together with (6.4.12) this implies that

C Cm+2
| S P T
”u +1|| = 4(0 — 1) pmtl
and further, as C > 8,
m—+2
fumarll < FE
i.e., (6.4.9) is valid also for n =m + 1. O

6.4.7. Proof of statement (i) in Theorem 6.4.4. Since, by hypothesis, Im A is a
continuous family of subspaces of F', it follows from Theorem 6.2.7 that also Ker A
is continuous. Therefore it remains to prove that, for each zy € D, there exist a
neighborhood U of zp, a Banach space X and a holomorphic operator function
®: U — L(X, E) such that

Im ®(z) = Ker A(z) for all z € U. (6.4.13)
Let zg € D be given. Then, by Lemma 6.4.6, we can find a neighborhood U’

of zy such that:

{For each holomorphic section f : D — Im A, there exists (6.4.14)

a holomorphic function v : U’ — X with Au = f|y.

Let U C U’ be a second neighborhood of zy which is relatively compact in U’.
Since Ker A is continuous, we have the Banach space

B:= 05" 4(U)
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of bounded holomorphic sections of Ker A over U (cf. Definition 6.3.1). Further,
let
®:U — L(B,X)

be the holomorphic operator function defined by
®(2)f=f(2), =z€U [feB,

(cf. Proposition 6.3.3). It remains to prove that, with this choice of B and @,
relation (6.4.13) is valid. Since the relation Im ®(z) C Ker A(z) is trivial, we only
have to prove that Im ®(z) DO Ker A(z) for all z € U.
Let z € U and v € Ker A(z) be given. We have to find ¢ € B with ®(z)p = v.
Setting
F(O)=A(Qw  forall ¢ €D,

we get a holomorphic vector function f : D — F with

Q(C)Zj for ¢ € D\ {z}.

Since, for each ¢ € D, f({) € Im A(¢) and Im A(() is a linear subspace of F, it is
clear that

9(¢) €eIm A(¢)  if ¢ D\ {z}.
Since Im A is continuous, this implies (cf. Proposition 6.1.8) that also
g(z) € Im A(2).

Hence ¢ is a holomorphic section of Im A over D. Now from (6.4.14) we get a
holomorphic function u : U" — X with

A(Q)u(¢) = g(¢) for all ¢ € U'. (6.4.15)

Setting
p(Q)=v—(C—2u(() for¢el,

we get a holomorphic function ¢ : U — X with ¢(z) = v. As U is relatively
compact in U’, ¢ is bounded. Moreover, by definition of f and g,

A(Qp(C) = A(Qv = (¢ = 2)A(¢)u(C)
=J(Q) = (€ =2)g(Q) = F(Q) = f([()=0  forall(eU.

Hence ¢ is a bounded holomorphic section of Ker A over U, i.e., ¢ € B. Clearly
D(2)p = p(z) = v. O
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6.4.8 Definition. Let F' be a Banach space, let D C C an open set, and let M =
{M(2)}.ep be a holomorphic family of subspaces of F.

(i) A resolution A: D — L(E, F) of M will be called injective if Ker A(z) = {0}
for all z € D.

(ii) A resolution A : D — L(E, F) of M will be called globally short if Ker A
admits a global injective resolution.

Of course, any injective resolution is globally short.

6.4.9 Lemma. Let E,F be Banach spaces, let D C C be an open set, and let
A:D — L(E,F) be a function such that, for oll z € D, Im A(z) is closed and

Ker A(z) = {0}. (6.4.16)
Further, let f : D — Im A be a section of Im A, and let u : D — E be the function
with
A(2)u(z) = f(z)  forall z€D.?
(i) Let k € NU{oco}. Suppose A and f are of class C¥ on D. Then u is of class
Ck on D.
(ii) If A and f are holomorphic on D, then u is holomorphic on D.

Proof. (i) It is enough to prove the assertion for k € N. We do this by induction.
For k = 0 the assertion follows from Corollary 6.2.5. Assume we have some m € N
such that the assertion is already proved for £k = m, and let A and f be of class
C™+1. Let x, y be the canonical real coordinates on C, and let p,v € N with
uw+ v =m+ 1. We have to prove that

oty
dxHIy

exists and is continuous on D. At least one of the numbers p and v is > 1. We may
assume that g > 1. By hypothesis of induction, u is of class C™. Since f = Au
and f, A are of class C™*!, this implies that

f e Y\ 9 greirtreay
dxn=19y ZZ < )(A) dxrdy> Qrr—1=royr—2A

rk=0 A=0

and therefore

A o™ omf Z p—1\ [v\ 0FFrA gr—l-rmv=Ay,
Oxr—1oy” = Drh— 1gyv pene, T ns UK A) OxrOy* OpH—1-royr—A "’

(1,2)#(0,0)

4By the just proved Theorem 6.4.4 (i), Ker A is holomorphic.
5By (6.4.16) this u exists and is uniquely determined by f.
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where the right-hand side is of class C!. Hence the vector function

o"Mu
=A—
v Oxr—19yv
is of class C!. In particular,
ow
— 6.4.17
o ( )
exists and is continuous on D. Set
_ 8Wlu
o Ozr—loyv

and note that v is continuous on D (as w is of class C™). We have to prove that
Ov/0x exists and is continuous on D.

Let zp be an arbitrary point in D, and let (A,,),en+ be an arbitrary sequence
of real numbers with A,, # 0 and lim A,, = 0. We have to prove that

v(zo + Ayn) — v(20)

nleréo A, (6.4.18)
exists. Note that w = Av, by definition of v and w. Therefore
w(zo + Apn) —w(z0)  A(zo + Ap)v(zo0 + Apn) — A(20)v(20)
ATL B An
Ay) — A A,)— A
= Az + A, B ZtlR0) | Aot Ba) Z AR,

As Ow/0x and A /Ox exist, this implies that

lim A(z + A,) 0 E ) Zvz0) _ Ow %(zo)v(zo). (6.4.19)

By Corollary 6.2.5, this implies that (6.4.18) exists. Since both the point zg € D
and the sequence (A;,)nen were chosen arbitrarily, this means that dv/0x exists
everywhere on D. Moreover, from (6.4.19) we get

Jv  Ow O0A D

— = — - —v on D.

Ox Ox Oz
As the right-hand side of this relation is continuous, again from Corollary 6.2.5 it
follows that dv/0x is continuous.

(ii) If A and f are holomorphic, then from part (i) of the lemma we already
know that w is of class C*°. Since f = Au and therefore, by the product rule,
af 0A ou

A -
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and since 0f/0z = 0 and 0A/0z = 0, this implies that

ou
A—=0
oz
which means (as Ker A(z) = 0 for all z € D) that du/0%z = 0. Hence u is holomor-
phic. (I

6.4.10 Lemma. Let F be a Banach space, let D C C be an open set, and let
M = {M(2)}.ep be a holomorphic family of subspaces of F, which admits a
global injective resolution. Then the splitting statement (ii) of Theorem 6.4.5 is
valid.

Proof. Let an open covering U = {U;};er of D and a (U, OM)-cocycle { fjr})ker
be given. By hypothesis we can find a global injective resolution A : D — L(E, F)
of M. As A is injective, then there is a uniquely determined family {w;x};rer of
vector functions ujy : U; N U, — E such that

Aujr, = f onU;NUg, j,kel. (6.4.20)

By Lemma 6.4.9, each wj; is holomorphic. Moreover, since {fjr};rer satisfies
the cocycle condition, it follows from (6.4.20) and the injectivity of A that also
{u;r};ker satisfies the cocycle condition. Hence {u;x};rer is a (u, OE)—cocycle.
Therefore, by Theorem 2.4.2, we can find a family {u; } jer of holomorphic functions
u; : U; — E with

Ujl = Uj — Uk onU;NU ,j,k el
It remains to set f; = Au;. O

6.4.11 Lemma. Let E,F be Banach spaces, let D C C an open set, let M =
{M(2)}.ep be a holomorphic family of subspaces of F', and let A: D — L(E,F)
be a globally short resolution of M. Then the lifting statement (ii) of Theorem
6.4.4 is valid.

Proof. Let f: D — M be a holomorphic section of M. As A is a resolution of
M, it follows from Lemma 6.4.6 that, for each z € D, there exist a neighborhood
U, C D of z and a holomorphic function u, : U, — E with Au, = f on U,. Set
fow =z —uy on U, NU,, z,w € D. Recall that, by the already proved Theorem
6.4.4 (i) (see subSection 6.4.7), Ker A is a holomorphic family of subspaces of E.
Since

Afoy =Au, —Auyy = f— f=0 on U, NU,,

{few}zwep is a ({Uz}zeD, OKerA)—Cocycle. Since Ker A admits a global injective
resolution (as A is a globally short resolution), from Lemma 6.4.11 (ii) we get a
family {f.}.ep of holomorphic sections f, : U, — Ker A with

Uy — Uy = fow = f2 — fu onU,NU,, zwéeD.

It remains to set u = f, — u, on U,. U
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6.4.12 Lemma. Let F' be a Banach space, let D C C be an open set, and let
M = {M(2)}.ep be a holomorphic family of subspaces of F, which admits a
globally short resolution over D. Then the spitting statement (ii) of Theorem 6.4.5
1s valid.

Proof. ® By hypothesis, we can find Banach spaces B, E and holomorphic operator
functions ® : D — L(E,F), ¥V : D — L(B,E) such that ® is a globally short
resolution of M, and ¥ is a injective resolution of Ker ®.

Let an open covering U = {U;}jes and a (U, OM)-cocycle f = {f;r}jrer be
given. It is sufficient to find a (U, OF)-cocycle {g;x}jrer such that

‘I)gjk = fjk on Uj NU,, j,kel. (6421)

Indeed, from Theorem 2.3.1 we then get a family {g,} e of holomorphic functions
g; : Uj — E with

ik = 95 — 9k onU;NU;, jkel,

and, setting f; = ®g;, we obtain a family {f;};er of holomorphic sections f; :
U; - Im® = M with

fi—fr=29; — g = ®(9; —gx) = Pgje = fir ~ onU;NUg, j kel
Now we are going to construct this cocycle. By the just proved Lemma 6.4.11,

we can find a family {u;}; xer of holomorphic vector functions w,; : U;NU, — E
such that

(I)Ujk = fjk~ (6422)
Since fjr = — fij, we may choose the u;; in such a way that also
Ujk = —Ukj for all j,k e 1. (6.4.23)

However, in general, {u;;}; xer is not yet a cocycle (except for the case Ker & =
0)), i.e.,, possibly, the family {w;xi};k1er of holomorphic vector functions w;x; :
U; nU; NU, NU; — E defined by

Uikl = Ujk + Ukt + Uiy

contains non-zero elements. Take a C*-partition of unity {x;},cr subordinated to
U, and set

Cik = Zx,juyjk onUj,, j,kel.
vel

SNote that, by the abstract Oka-Weil theorem in the theory of sheaves, this lemma follows
immediately from Theorem 2.4.2. The proof given here is that what remains from the proof of
the abstract Oka-Weil theorem in our special case.
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(Observe that each x,u, i is well defined and of class C* on Uji, because x, =0
outside a compact subset of U,.) In this way we get C*°-functions c;j : Uj, — E.
Since

Cjk + Crl + cij = E Xv (quk + upgr + Uz/lj)
vel

= ZXV (qu + Ujk + Ugy + Upk + Ugr + Uy + Uy + U + uju),
vel

and in view of (6.4.23), we see that

Cik + Cpi + iy = Z Xv (Ujk + ug + Ulj) = Z XvUjkl = WUjki- (6.4.24)
vel vel

Since f is a cocycle and therefore
Dujp = Puj + Pugy + Puyy = fik + fru + f1; =0,

we see that each u;y, is a holomorphic section of Ker ®. Since W is injective, we have
uniquely determined vector functions u’y, : U; N Uy N U, — B with Yuly; = ujk.
By part (ii) of Lemma 6.4.9, these functions are holomorphic.

Since each ujy; is a section of Im ¥, it follows (by definition of the c;i)
that also each c;i, is is a section of Ker W. Since V¥ is injective, we have uniquely
determined vector functions ¢ : U; N Uy, — B with W), = c;i,. By part (i) of
Lemma 6.4.9, these functions are of class C*, and it follows from (6.4.24) that

i+ Chy + ¢y = uiyy on U;NU,NU,, j,klel. (6.4.25)

Since the u/,,; are holomorphic, this implies that the family {d¢}, }; rer satisfies
the cocycle condition:

0y +0ch, +9c; =0 onU;NUNU,  jik,lel (6.4.26)
Set
v = — Z Xl,gc:,j.
vel
Then

vé—vész,,(—gc'Vj—Fgc’uk) on U; N Uy J. kel
vel

In view of the cocycle condition (6.4.26), this implies that

v;- -y, = le,gc;k = 5c;k on U; NU j kel (6.4.27)
vel
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By Theorem 2.3.1, now we can find C*-functions wj : U; — B such that 5w§- =]
on Uj, j € 1. Set
Wy = Cy, + wy, — W) onUj,, j kel
Then, by (6.4.27),
Ohfy, = Ocly, + Qwj, — Owly = Oy, + v, —v; =0 on Uy, j kel
Hence the functions h;k are holomorphic. Moreover,
ik T P + D

= (g, + wp — wj) + (€l +wp — wy) + (cpy +wj —wp) =y +cly + ¢y
and further, by (6.4.24),

Wi + hig 4 hiy = Wiy onU;NU,NU;, j kel (6.4.28)

Now we set
gjk:ujk—\l'h;k on U; N Uy, j kel.

Then it follows from (6.4.28) and the definition of the functions w;; that
ik + g1+ 915 = wjr — Py =0 on U; NUg, j,kel,
i.e., {gjr}jrer is a (U, OF)-cocycle. Moreover, since ® o ¥ = 0,
Dgjr = Pujp — PUR), = dujp = fjr onUje, j ke,
i.e., (6.4.21) is satisfied. O

6.4.13 Proposition. Let F' be a Banach space, let D C C be an open set, and let
M = {M(2)}.ep be a holomorphic family of subspaces of F, which admits a global
resolution over D. Moreover, let 2 C D be an open set which is relatively compact
m D.

Then, over ), M admits a globally short resolution.

Namely, if B := OM(Q) and if

:Q0— L(B,F) and U:Q— L(B,B)
are the holomorphic operator functions (cf. Proposition 6.3.3) defined by
2(2)(f)=f(2), =2€Q, feB,

and
(PN =(C—-2)f(C), =2€Q, feb,

then ® is a globally short resolution of M, and ¥ is a global injective resolution
of Ker ®.
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Proof. Let z € Q and v € M(z) be given. By hypothesis we have a Banach space
E and holomorphic operator function A : D — L(FE, F) which is a resolution of
M over D, ie., ImA({) = M(() for all ¢ € D. In particular, there exists w € E
with A(z)w = v. Consider the function

f(O)=AQuw, (e

Then it is clear that f € B = 0X(Q) and
D(2)f = f(2) = AlzJw = v.

Hence ® is a resolution of M over €. From Proposition 6.3.3 (iii) and (iv) it follows
that this resolution is even globally short over 2 where ¥ is a global injective
resolution of Ker . O

6.4.14. Proof of the approximation statement (i) in Theorem 6.4.5. Let a holo-
morphic section f of M in a neighborhood of K be given. Take a neighborhood Qg
with C!'-boundary of K which is so small that Qg C D and f is still defined and
holomorphic in a neighborhood of €. Since each connected component of C \ K
contains at least one point of C\ D, we may assume that each connected compo-
nent of C \ Qy contains at least one point of C\ D. Further, choose a sequence
() nen- of open sets with Cl-boundaries such that:

~ 0, € Q1 CD, for all n € N.

— Each connected component of C \ §,, contains at least one point of C \ D,
for all n € N.

- UnZo @ =D.

Now, clearly, it is sufficient to prove that, for each n € N, the following statement
is valid:

e Each holomorphic section of M defined and holomorphic in a neighborhood
of €2, can be approximated uniformly on €2,, by holomorphic sections of M
defined and holomorphic over a neighborhood of €, .

So, let n € N and a holomorphic section g of M in a neighborhood U of €2,, be
given.

Since each connected component of C \ €,,,2 contains at least one point of
C\ D and M admits a resolution over D, it follows from Proposition 6.4.13 that,
over (), 12, there exists a globally short resolution ® : Q,, 15 — L(E, F) of M. By
Lemma 6.4.11 there exists a holomorphic vector function

h:UNQpio — FE

such that
dh =g on UN Q0.
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Since each connected component of C\Q,, contains at least one point of C\ D, from
the Runge approximation Theorem 2.2.2 we get a sequence (h,),en of holomorphic
functions h, : D — FE such that

lim max ||k, (2) — h(z)|| = 0.

V=00 2eQ,

Then (®h,),en is a sequence of holomorphic sections of M over €2, 1o (which is a
neighborhood of €2,,11) such that

lim max H@(z)hy(z) - g(z)H = lim max H@(z)(hl,(z) — h(2)) H

v—00 0, V=00 zeQ,

< lim max ||<I>(z)Hth,(z) - h(z)H = 0.

v—00 0, 0
6.4.15. Proof of the splitting statement (ii) in Theorem 6.4.5. Choose a sequence
(2, )nen of open sets such that
~ 0, C Q1 €D foralln €N,

— Each connected component of C \ ,, contains at least one point of C\ D,
for all n € N.

- Upo Q0 = D.

Now let an open covering ={U,}jes of D and a (U, OM)-cocycle f = {fix}jrer
be given. For each n € N, we consider the open covering

Z/{(”) = {UJ an}jEI

of ©,, and the (U("), OM)—cocycle f = {f](,?)}y el defined by

(n) _ .
Fik *fjk|anUan’ ik el

Since each €2, is relatively compact in D and M admits a resolution over D,
it follows from Proposition 6.4.13 that, over each €2,,, M admits a globally short
resolution. Hence, by Lemma 6.4.12, for each n € N, we can find a family {fj(") Yier

of holomorphic sections f;n) : U;n) — M with
Fe= 10 =W (M onUjnUknQ, jikel (6.4.29)
Hence
FUED ) = gt on Uy N 0N, Gk e L

Therefore, setting

K= w0, e,
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we get holomorphic sections h,, : 2, — M. By theNapproximation statement (i) of
Theorem 6.4.4, we can find holomorphic sections h,, : D — M such that
1™ (2) — R (2)]| < 2% forall € 0y 1, neNN (6.4.30)
Set -
fj(") = f]w) - Zﬁ(k) on U; NQy,.

Then

n n—1
f](n+1) . J’c‘](n) _ <fj(n+1) . Z’ﬁ(k)) - (Jt-;n) . ZE(k))
k=0 k=0

= D g R — ) R,
By (6.4.30) this implies that
177 (2) - ()| < for 2 € Qn_1, je€l,neN".

Since, for each j € I, each compact subset of U; is contained in all Q,_; with

n sufficiently large, this implies that, for each j € I, the sequence (f;n))neN
converges, uniformly on the compact subsets of Uj, to some holomorphic section
fj : U; — M. For these sections we have, by (6.4.29),

fj = fr = lim (f](n) - f,E")) = ggf;l) =fir omU;NU jkel,

which completes the proof of the splitting statement in Theorem 6.4.5. (Il

6.4.16. Proof of the lifting statement (ii) in Theorem 6.4.4. By Lemma 6.4.6 we
can find an open covering U = {U, }jer of D and a family {u;};cr of holomorphic
vector functions u; : U; — E such that

Auj = f on Uj , jel.
Setting
Ujk = Uj — Ug onU; NU;, j,kel,
then we get a (U, O¥*4)-cocycle. Since, by Theorem 6.4.4 (i), Ker A is a holo-

morphic family of subspaces, from Theorem 6.4.5 (ii) we get a family {v;};er of
holomorphic sections v; : U; — Ker A such that

Uj — Up = Uji, = Vj — Vg, onU;NU,, jkel.
Therefore, setting
U= u; —v; onU;, jel,
we obtain a holomorphic vector function u : D — E such that
Au= A(uj; —vj) = Au; — Av; = Au; = f on each U;

and, hence, Au = f everywhere on D. O
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6.5 Example: A holomorphic family of subspaces with
jumping isomorphism type

In this section we construct a holomorphic family {M(z)}.cp of subspaces of a
Banach space E such that, for certain zy € D, the space M (z) is not isomorphic
to the spaces M (z) with z € D\ {20}.

Let I; be the Banach space of summable complex sequences £ = {&, }nen

with the norm
o0
1€l == I&nl,
n=0

and let [, be the Hilbert space of square summable complex sequences & = {&, }nen

with the norm
o 1/2
lels = (X lea)
n=0

6.5.1 Lemma. Let E be a separable Banach space. Then there exists A € L(l1, E)
with InA = FE.

Proof. Let S be the unit sphere in E. Since E is separable, we can find a sequence
$ = {8p}nen in S which is dense in S. Then, setting

Ag = ansn for = {fn}nEN € ly,
n=0

an operator A € L(l1, E) with ||A]| = 1 is well defined. It remains to prove that
ImA=F.

Let Es be the set of all vectors z € E of the form z = ts,,, where n € N and
t € C. Then Ej is dense in E and has the following property:

For each = € E;, there exists £ € Iy with ||€] = ||z|| and A§ = «. (6.5.1)

Indeed, by definition of Ej, for each x € F, there exists t € C and m € N with
& = tsp. Let £ = {&;}jen € l1 be the sequence with

t if j =m,
&= .
0 if j #m.

Then |[¢]| = [t| = [t[[[sm]| = [|z|| and AE = tsn = .
To prove that Im A = E, now we consider an arbitrary vector v € E. Since
E is dense in F, then we can find a sequence v; € F,, j € N, with

o (o)
Z||ij<oo and UzZvj.
7=0 3=0
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By property (6.5.1), for each v; we can find £9) € I} with ||¢)]| = ||v;|| and

AgY) = ;. Then
DD =" llogll < o0
=0 =0

and
A(Zf(j)):Zvj:U. O
§=0 j=0

6.5.2 Lemma. There exists a closed subspace F of Iy such that Iy is not isomorphic
to F® U, /F, where F &1, /F is the direct sum of F and the factor space l,/F.

Proof. By Lemma 6.5.1 there exists A € L(l;,l;) with Im A = [,. We claim that
F := Ker A has the required property.

Indeed, assume F@®!l; /F and l; are isomorphic. Then l; has a closed subspace
E which is isomorphic to I;/F. As Im A = I, and therefore I, /F = [;/Ker A is
isomorphic to I, (as a Banach space), this implies that F is isomorphic to I,.

But this is impossible, as I; (and hence E) has the property that each weakly
convergent sequence is strongly convergent (see page 137 in [Ban]), whereas lo does
not have this property. (I

The example. Let E be a Banach space, let F' be a closed subspace of E such
that E is not isomorphic to F' @ E/F (by lemma (6.5.2) this is possible), and let
7w : E — E/F be the canonical map. We define a holomorphic operator function
A:C— L(E® E/F,E/F), by setting

(A(2))(z,y) = 7(z) + 2y for (z,y) € E® E/F.

Then Im A(z) = E/F for all z € C, and it follows from Theorem 6.4.4 (i) that
Ker A = {Ker A(2)}.ec is a holomorphic family of subspaces of E® E/F. We have

Ker A(0) = F @ E/F,

which is not isomorphic to E. However, for z € C\ {0}, then Ker A(z) is isomorphic
to E. Indeed, if z # 0, then for each (z,y) € E® E/F,

(x,y) e Ker A(z) <=y = _ﬂix),

which yields that the map
7(s)
Esz— (z,—— | € E®QE/F
z

is an isomorphism from E onto Ker A(z2).
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6.6 Injective families

In this section F is a Banach space.

6.6.1 Definition. Let D C C be an open set, and let M = {M(z)}.ep be a
holomorphic family of subspaces of E. We shall say that M is injective if, for each
zg € D, there exist a neighborhhood U C D of zy and a holomorphic function
A: U — L(M(2),E) such that Ker A(z) = {0} and Im A(z) = M(z) for all
zeU.

In other words, M is injective if and only if it admits an injective resolution
(Def. 6.4.8) over some neighborhood of each point of D.

6.6.2 Remark. Let M = {M(z)}.cp be a holomorphic family of subspaces of E.
If D is connected, then the spaces of this family are pairwise isomorphic. This can
be seen as follows:

Fix zg € D and denote by X the set of all z € D such that M (z) is isomorphic
to M(z0). Then zg € X and therefore X # (). Since M is injective, for each point
w € D, there is a neighborhood U C D of w such that the spaces M (z), z € U,
are isomorphic to M (w). Therefore it is clear that X is open and relatively closed
in D.

6.6.3 Theorem. Let D C C be a connected open set, let M = {M(2)},ep be a
holomorphic family of subspaces of E/, which is injective, and let zo € D. Suppose
at least one of the following two conditions is satisfied:

(i) D is simply connected.
(ii) The group GL(M(z)) is connected.

Then there exists a holomorphic function A: D— L(M(z), E) such that Ker A(z)
= {0} and Im A(z) = M(z) for all z € D.

Proof. Since D is connected and M is injective, we can find an open covering
U = {U;}jer of D and holomorphic functions A; : U; — L(M(z), E) with
Ker Aj(z) = {0} and Im A;(z) = M(z) for all z € Uj;, j € I. Then Aj(z) is an
invertible operator from M (z) onto M (z); let by Aj_l(z) be the inverse of this
operator, j € I, z € Uj.

Consider j, k € I with U; N Uy, # (. Then, for each z € U; N Uy,

Gjr(z) == A1 (2) Ag(2)
is a well-defined operator from GL (M 20)). Moreover, the so-defined function
G :U;NU, — GL(M(ZO))

is holomorphic. Indeed, let v be an arbitrary vector from M (zg). Then the func-
tion Ag(z)v is holomorphic, and it follows from Lemma 6.4.9 that Gx(z)v =
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Aj_l(z)Ak (2)v is holomorphic. Hence Gy, is holomorphic (Theorem 1.7.1). So we
obtained a cocycle {Gji}jker € Z* (u, C’)GL(M(ZO))).

Since at least one of the conditions (i) or (ii) is satisfied, we can apply The-
orem 5.6.3 and get holomorphic functions B; : U; — GL(M(ZO)), j €I, with

ATY(2)AL(z) =G = B;B;'  onU; NUy
for all j,k € I with U; N Uy # (. It remains to set A= A;B; on Uj, j € I. g

Moreover, there is the following Oka-Grauert principle:

6.6.4 Theorem. Let D C C be a connected open set, let M = {M(z)}.cp be a
holomorphic family of subspaces of E, which is injective, and let zg € D. Suppose
the following condition is satisfied:

(iii) There ezists a continuous function C' : D — L(M (z), E) such that Ker C(z)
={0} and ImC(z) = M (%) for all z € D.

Then there exists a holomorphic function A: D— L(M(z), E) such that Ker A(z)
= {0} and Im A(z) = M(z) for all z € D.

Proof. This is a repetition of the proof of Theorem 6.6.3 until the moment where
we use that one of conditions (i) or (ii) in Theorem 6.6.3 is satisfied. Instead here
we use the function C' from condition (iii) and consider the functions C; := Aj_lC ,
which are continuous on Uj, by Corollary 6.2.5. Then

C,Crt = A7ICCT Ay = A7 A, = Gy on U N U

for all j, k € I with U;NU}, # (0. Hence the cocycle {G i } is CGL(M(20))_trivial. Now,
again from Theorem 5.6.3 we get holomorphic functions B; : U; — GL (M (zo)),
j €I, with

A;l(z)Ak(z) =G, = BJ-B,;1 on U;NU

for all j,k € I with U; N Uy, # (. It remains to set A= A;B; on Uj, j € I. O

6.7 Shubin families

In this section F is a Banach space.

6.7.1 Definition. Let D C C be an open set, and let M = {M(z)}.ep be a
holomorphic family of subspaces of E. We shall say that M is a Shubin family
if, for each zy € D, there exist a neighborhhood U C D of zy and a holomorphic
function A : U — GL(FE) such that A(z)M(z9) = M(z) for all z € U.

6.7.2 Remark. Let M = {M(z)}.cp be a holomorphic family of subspaces of E,
which is a Shubin family. Suppose D is connected.
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Then M is injective (Def. 6.6.1) and the spaces of the family M are pair-
wise isomorphic. Moreover, then, for any pair of points z,w € D, there exists an
operator T' € GL(E) with TM(z) = M (w).

This can be seen as follows: Fix zg € D and denote by X the set of all z € D
such that M (z) = TM(z) for some T' € GL(E). Then z, € X and therefore
X # (. Moreover, from the definition of a Shubin family it follows that, for each
w € D, there exists a neighborhood W C D of w with the following property: If
z € U, then M(z) = TM(w) for some T' € GL(FE). From this it is clear that X is
open and relatively closed in D.

6.7.3 Theorem. Let D C C be a connected open set, let D be a Banach space, let
M = {M(2)}.ep be a holomorphic family of subspaces of E, which is a Shubin
family, and let z9 € D. Suppose at least one of the following two conditions is
satisfied:

(i) D is simply connected.
(i) The group GLa(.)(E) := {T € GL(E) | TM(z0) = M(z0)} is connected.

Then there exists a holomorphic function A : D — GL(E) such that A(z)M (zp) =
M (z) for all z € D.

Proof. First note that G Ly (.)(E) is the group of invertible elements of a Banach
algebra, namely of the closed subalgebra of L(E) which consists of the operators

Since D is connected and M is a Shubin family, we can find an open cov-
ering U = {U;}jer of D and holomorphic functions A; : U; — GL(E) with
Aj(z)M(z0) = M(z) for all z € U;, j € I. Setting

ij = A;lAk on Uj n Uk

for all j, k € I with U Uj= 0, we obtain a cocycle {G i };rer € Z* (U, (’)GLM<20>(E)).
Since GL sz, (E) is the group of invertible elements of a Banach algebra and at
least one of the conditions (i) or (ii) is satisfied, we can apply Theorem 5.6.3. So
we get holomorphic functions B; : U; — G Lz (E), j € I, with

Ag_l(z)Ak(z) :ij :BjBk_l on U]ﬂUk
for all j,k € I with U; N Uy # 0. It remains to set A= A;B; on Uj, j € . O

There is also the following Oka-Grauert principle:

6.7.4 Theorem. Let D C C be a connected open set, let M = {M(z)}.cp be a
holomorphic family of subspaces of E, which is a Shubin family, and let z9 € D.
Suppose the following condition is satisfied:

(iii) There exists a continuous function C' : D — GL(E) such that C(z)M(zy) =
M (z) for all z € D.
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Then there exists a holomorphic function A : D — GL(E) such that A(z)M (z) =
M(z) for all z € D.

Proof. This is a repetition of the proof of Theorem 6.7.3 until the moment where
we use that one of conditions (i) or (ii) in Theorem 6.7.3 is satisfied. Instead
here we use the function C' from condition (iii), consider the continuous functions
C; = A;lC and observe that the values of these functions belong to G Ly (., (E).
Then

C,Crt =AJICCT Ay = AJM AL = G on U; N U

for all j,k € I with U; N Uy # 0. Hence the cocycle {Gji} is CELmo) (F)_trivial.
Now, again from Theorem 5.6.3 we get a family of holomorphic functions B; :
U; — GLM(Z())(E) with

A7'AL =G =B;B,'  onU;NUj

for all j,k € I with U; N Uy # 0. It remains to set A= A;Bj onUj, j € I. O

6.8 Complemented families

In this section E is a Banach space.

6.8.1 Definition. Let D C C be an open set. A holomorphic family M ={M(z)}.ep
of subspaces of E will be called a holomorphic family M = {M(z)},cp of com-
plemented subspaces of F if each of the spaces M(z), z € D, is a complemented
subspace of F.

6.8.2 Lemma. Let D C C be an open set, let X be a second Banach space, let
A: D — L(X,E) be a holomorphic function such that, for all z € D, A(z) is right
invertible, and let zg € D.

(i) Then there exists a neighborhood U C D of zy and a holomorphic function
ACY U — L(E, X) such that AACYD =T on U.

(ii) If U and A=Y are as in part (i), then, for all z € U, P(z) := ACD(2)A(z)
is a projector in E with Ker P(z) = Ker A(z).

Proof. (i) Let B € L(E, X) be a right inverse of A(zp). Then there is a neigh-
borhood U of zy such that A(z)B € GL(E) for all z € U. It remains to set

ACD(z) = B(A(z)B) ', z € U.
(ii) Let 2 € U. Then
P2(z) = ACD(2) (A(z)A<—1>(z))A(z) = ACD(2)A(2) = P(2).
Hence, P(z) is a projector. Further

P(z)Ker A(z) = ATY(2)A(z) Ker A(z) = {0}.
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Hence Ker A(z) C Ker P(z). Finally,
A(z)(I = P(2)) = A(z) — A(2) P(2)
= A(2) - (A(Z)A<—1>(z))A(z) = A(2) — A(z) = 0.
Hence Ker P(z) = Im(I — P(z)) C Ker A(2). O

6.8.3 Lemma. Let D C C be an open set, let {M(z)}
of complemented subspaces of E, and let zg € D.

2D be a holomorphic family

(i) Then there exist a neighborhood U of zg and a closed subspace F of E such
that

E=F+ M(z) forall z € U. (direct sum). (6.8.1)

(ii) Let U an F be as in part (i). For z € U, we denote by P(z) the projector in
E with Im P(z) = M(2) and Ker P(z) = F. Then the function U > z — P(z)
is holomorphic on U.

Proof. Assertion (i) follows from Proposition 6.1.5. We prove part (ii). It is suf-
ficient to prove that, for each v € E, the function Pv is holomorphic (Theorem
1.7.1). Let v € E be given.

Since M is a holomorphic family of subspaces of E, after shrinking U if
necessary, we can find a Banach space X and a holomorphic function A : U —
L(X, E) with Im A(z) = M(z) for all z € U. Let X & F' be the direct sum of X
and F, and define a holomorphic function A:U— L(X @ F,E), setting

AR)(x, f) = ARR)z + f forz € X and f € F.
By (6.8.1), E(Z) is surjective. By Lemma 6.4.6, after a further shrinking of U
(or by Theorem 6.4.4 without shrinking of U), we can find holomorphic functions
x : U — X and f : U — F such that /T(z)(x(z),f(z)) = v for all z € U.
By definition of A, this means that A(z)z(z) 4+ f(z) = v for all z € U. Since
A(z)x(z) € ImA(z) = M(z) = ImP(z), f(z) € F = KerP(z) and P(z) is a
projector, this implies that A(z)x(z) = P(z)v for all z € U. Hence the function
Pv is holomorphic. O

6.8.4 Proposition. Each holomorphic family of complemented subspaces of E is a
Shubin family.

Proof. Let zy € D be given. Then, by Lemma 6.8.3, there exist a neighborhood
U C D of zp and a holomorphic function P : U — L(E) such that the operators
P(z) are projectors with Im P(z) = M (z) for all z € U. Set

A(z) = P(2) + I — P(z), zeU.
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Since A(zg) = I, after shrinking U, we may assume that A(z) € GL(E) for all
z € U. Moreover,

A(2)M(20) = P(2)M (z0) C M(z) for all z € U.

Since {A(2)M(z0)}.cv and {M(2)},cu are continuous families of subspaces and
A(z0)M (z0) = M (z0), this implies, by Proposition 6.1.3, that A(z)M (z9) = M(2)
for all z € U (assuming that U is connected). O
6.8.5 Theorem. Let D C C be an open set, and let M = {M(z)},ep be a holo-
morphic family of complemented subspaces of E. Then there exists a holomorphic

function P : D — L(E) such that, for all z € D, the operator P(z) is a projector
with Im P(z) = M(z).

Proof. By Lemma 6.8.3 (ii), there exist an open covering U = {U;};er of D and
holomorphic functions P; : U; — L(E), j € I, such that P;(z) is a projector with
Im P;(z) = M(z) for all z € U; and j € I. Set

N(z) = {T € L(E) | ImT € M(2) C Kex T} for z € D,
and
P;(2)T = Pj(2)T (I — Pj(z)) for T € L(E), z€ Uj, jel.
For each j € I, then P; is a holomorphic L(L(E))—Valued function on Uj;, where
the operators Pj(z) are projectors with ImP;(z) = N(z) for all z € U;. By
Proposition 6.1.4 this implies that N := {N(z)}.ep is a holomorphic family of
subspaces of L(E).
Since Pj(z) — Px(z) € N(z) for z € U; N Uy, the differences P; — P, define
a (U, ON)-cocycle (Def. 6.4.3). Therefore, from Theorem 6.4.5 (ii) we get sections
S; € ON(U;), j € I, with
Pj—PkZSj—Sk on U; NU
for all j,k € I with U; N Uy, # 0, and, setting
P:ijSj Ont7 jGI,
we can define a global holomorphic function P : D — L(E). This function has the
required properties.

Indeed, for each j € I, we have
P2:(Pj—Sj)ZZPJZ—FS?—Pij—SjP]‘:Pj—Sj:P Ol’lUj.
Hence, the values of P are projectors. Further, for each j € I and z € U;, we have
Im P(2) 2 P(2)M(2) = (Py(2) — §,(2)) M(2) = P;(2)M(2) = M(z)

and
Im P(z) = Im (Pj(z) — S;(2)) € M(2).
Hence Im P(z) = M (z2). O
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6.8.6 Theorem. Let D C C be a connected open set, let M = {M(z)}.ep be a
holomorphic family of complemented subspaces of E, and let z9 € D. Suppose at
least one of the following two conditions is satisfied:

(i) D is simply connected.
(ii) The groups GL(M (z)) and GL(E/M(z)) are connected.

Then there exists a holomorphic function A : D — GL(E) such that A(z)M () =
M(z) for all z € D.

Proof. Tt is easy to see that from condition (ii) in Theorem 6.8.6 follows condition
(ii) in Theorem 6.7.3. Since M is a Shubin family (Proposition 6.8.4), therefore
Theorem 6.8.6 follows from Theorem 6.7.3. g

Since holomorphic families of complemented subspaces are Shubin families
(Proposition 6.8.4), from Theorem 6.7.4 we get the following Oka-Grauert princi-
ple:

6.8.7 Corollary (to Theorem 6.7.4). Let D C C be a connected open set, let M =
{M(2)}.ep be a holomorphic family of complemented subspaces of E, and let
zo € D. Suppose the following condition is satisfied:

(iii) There exists a continuous function C' : D — GL(E) such that C(z)M(zy) =
M (z) for all z € D.

Then there exists a holomorphic function A : D — GL(E) such that A(z) M (zp) =
M (z) for all z € D.

6.9 Finite dimensional and finite codimensional families

In this section E is a Banach space.

6.9.1 Theorem. Let D C C be a connected open set, let zg € D, and let {M(Z)}zeD
be a holomorphic family of subspaces of EE such that at least one of the following
two conditions is satisfied:

(i) The spaces M(z), z € D, are finite dimensional;
(ii) The spaces M (z), z € D, are of finite codimension in E.

Then there exists a holomorphic function A : D — G°°(FE) (Def. 5.12.1) with
A(z)M(z9) = M(z) for all z € D.

Proof. Since M is a holomorphic family of complemented subspaces, we can apply
Theorem 6.8.5. Therefore we get a holomorphic function P : D — L(E) such
that the operators P(z) are projectors with Im P(z) = M(z) for all z € D. Set
N(z) =Ker P(z), z € D, and N = {N(2)}.ep. Then, by Proposition 6.1.4, N is
also a holomorphic family of subspaces of E.
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For each w € D, we choose a sufficiently small connected neighborhood
U, € D of w and set

AM(2) = P(2) + T — P(w), AN(2) =T - P(2) + P(w), 2z € Uy.

Since the neighborhoods U, are sufficiently small, then the values of each AY and
each AN are invertible. Since at least one of the projectors P(w) or I — P(w) is
finite dimensional, these values even belong to G*°(E). Moreover

Ay ()M (w) = P(2)M (w) € M (2)

and
AY (2)N(w) = (I = P(2))N(w) € N(2)

for all z€U,, and w € D. Since the neighborhoods U,, are connected, AM (w)M (w)
= M(w) and AN (w)N(w) = N(w), by Proposition 6.1.3 this implies that

AM ()M (w) = M(z) and AN (2)N(w) = N(z), z€U,, we D.

The spaces M (w) and N(w) are finite dimensional or closed and finite codimen-
sional, and D is connected. Therefore we can find operators BM BY ¢ G>(E)
such that BM M (z9) = M(w) and BY N(z) = N(w), w € D. Setting

AM() = AM()BY  and AN(z) = AN(z)BY, 2€U,, weD,

we obtain holomorphic functions AM, AN : U,, — G=(E) with

AM ()M (z) = M(z), AN(2)N(z) =N(z), ze€U,,weD. (6.9.1)
Now we set

Gl = (A A

and GN = (ijv)_lgﬁf‘ on U, NU,

‘M(zo) N(z0)

for all v,w € D with U, N U, # (. Then, by (6.9.1), the family GM is a
({Uw}wep, ot (M(Z")))—Cocycle, and the family G7), is a ({Uw }web, 0%t (N(Z“)))—
cocycle. Since the values of the functions G2 belong to G> (M (z)) and the values
of the functions G, belong to G> (N(zo)), we can apply Theorem 5.12.5. There-
fore we get holomorphic functions G2/ : U, — G (M(z)) and GY : U, —
G>°(N(zp)) such that

(anay|,  =an=eren?

and )
AN - AVN _ GN _ GN GN —1
( v ) w ‘N(zo) vw v ( w)
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on U, NU, for all v,w € D with U, NU,, # (. It follows that
AMGM P(2) = AMGM P(2) on U, NU,
and N N
AYGY(I—P(20)) = AYGY (I — P(20)) onU,NU,
for all v,w € D with U, N U, # (. Therefore, we have a global holomorphic
function A : D — G*°(FE) defined by
A=AMGMP(z) + ANGM(I — P(2))  on Uy, we D.

It follows from (6.9.1) that A(z)M(z9) = M(z) and A(z)N(z9) = N(z) for all
zeD. g

From Theorem 6.9.1 immediately follows:

6.9.2 Corollary. Let D C C be a connected open set, and let {M(z)}zeD be a
holomorphic family of subspaces of E.

(i) If the spaces M(z) are finite dimensional, then there exist holomorphic sec-
tions f1,...,fr + E — M such that fi(2),..., fr(2) is a basis of M(z), for
all z € D.

(ii) If the spaces M(z) are of finite codimension in E, then there exist holomor-
phic functions fi,...,fr : E — E such that fi1(z),..., fr(2) induces a basis
of E/M(z), for all z € D.

6.10 One-sided and generalized invertible
holomorphic operator functions

In this section F and F' are two Banach spaces, and D C C is an open set. Then
from Theorem 6.2.7 we obtain the following proposition:

6.10.1 Proposition. Let let A : D — L(E,F) be holomorphic such that, for all
z € D, Im A(z) is closed. Then the following are equivalent:

(i
(ii) The family Tm A (Def. 6.2.1) is continuous.

) The function ka (Def. 6.2.3) is continuous on D.

)
(iii) The family Ker A (Def. 6.2.1) is continuous.

)

)

)

(iv) For each compact set K C D, inf,cx ka(z) > 0.

(v

(vi

The family Im A is holomorphic.
The family Ker A is holomorphic.
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Proof. By Theorem 6.2.7, conditions (i)—(iv) are equivalent. Since here the func-
tion A is holomorphic, by definition of a holomorphic family of subspaces, (v) is
equivalent to (ii) and (vi) is equivalent to (iii). O

6.10.2. An operator A € L(E,F) is called generalized invertible if there exists
B € L(F,E) such that ABA = A and BAB = B. The operator B then is called
a generalized inverse of A.

6.10.3 Proposition. An operator A € L(E, F) is generalized invertible, if and only
if, there exist projectors P € L(E) and Q € L(F) such that In P = Im A and
ImQ = Ker A, i.e., if the spaces Im A and Ker A are complemented.

Proof. First assume that A has a generalized inverse B. Then
(AB)? = (ABA)B=AB  and  (BA)? = B(ABA) = BA.

Hence AB and BA are projectors. Obviously, Im(AB) C Im A, and from A =
(AB)A it follows that also InA C Im(AB), and thus P := AB is a projector
onto Im A. Moreover it is clear that Ker A C Ker BA and A(BA) = A implies
that Ker BA C Ker A. Thus BA is a projector whose kernel coincides with Ker A.
Hence @ := I — BA is a projector onto Ker A. R
Conversely, if there exist such projectors P and @, then the operator A :=
A|KerQ is an invertible operator from Ker@ onto ImA = ImP. Let A~! €

L(Im P, Ker Q) be the inverse of this operator, and set B := A=1P. Then ABA =
(AA*IP)A PA = A. Moreover, then A'PA(I — Q) =1 — Q and A™'P =
(I — Q)A~1P, which implies that

BAB = (ﬁ‘lPA> (ﬁ—lp) - (A 1PA) ((I Q)ﬁ-lp)

- (A LpA(I — Q))( P) (I-Q)A"'P=A"'p=8. -
6.10.4 Theorem. (i) Let A: D — L(E, F) be holomorphic such that, for all z €
D, A(z) is generalized invertible. Suppose the equivalent conditions (1)—(vi)
in Proposition 6.10.1 are satisfied. Then there exists a holomorphic function

B:D — L(F,E) with ABA= A on D.

(ii) Let A : D — L(E,F) be holomorphic such that all values of A are left
invertible. Then there exists a holomorphic function B : D — L(F, E) with
BA=1 onD.

(iii) Let A : D — L(E,F) be holomorphic such that all values of A are right
invertible. Then there exists a holomorphic function B : D — L(F, E) with
AB=1 on D.

Proof. (i) By Proposition 6.10.3, the spaces Im A(z) and Ker A(z) are comple-
mented. Therefore, by Theorem 6.8.5, we have holomorphic functions P : D —
L(F) and Q : D — L(FE) such that, for all z € D, the operators P(z) and Q(z)



6.10. One-sided and generalized invertible ... 213

are projectors with Im P(z) = Im A(z) and Ker Q(z) = Ker A(z). Then, for each
z € D, A(z) is invertible as an operator from Im Q(z) to Im A(2); let AV (2) be
the inverse of this operator. Set B(z) = D(2)P(2) for z € D. Then it is clear
that A(z)B(z)A(z) = A(z) for all z € D

It remains to prove that the function B is holomorphic. Let zg € D be
given. Since Im A and Im @ are Shubin families (Proposition 6.8.4), we can find a
neighborhood U of zg and holomorphic functions T : U — GL(F) and G : U —
GL(E) such that

T(z)ImA(z) =ImA(z) and G(z)ImQ(z) =ImQ(z), =zeU.
Setting

S(z) = A(’l)(zO)T’l(z)A(z)G(z)‘ImQ(zo) . zeU,

then we get a holomorphic function S : U — GL(Im Q(zo)). We claim that
B(2) = G(2)S7 ' (2) AV ()T 1 (2)P(2), zeU. (6.10.1)
Indeed, since P(z)A(z) = A(z), we get
( (2) = G()S (DA ()T~ (2) P(2)) A(2) Q=
ATV (2)P(z) — G(Z)S_l(Z)A(_l)(Zo)T_l(Z)P(Z)>A(Z)Q(Z)
Q) = G(2)87 () (A (20) T (2)A(:)G(2) ) G () Q=)
=Q(2) — G(2)S7(2)8(2)G7H(2)Q(x) =0, z€U.

This implies (6.10.1), as both sides of (6.10.1) vanish on Ker P(z) and
Im (A(2)Q(2)) = Im P(z),

B(2)P(2) = S71(2) A7 (20) T (2) P(2), zeU.

Since the functions on the right-hand side of (6.10.1) are holomorphic, it follows
that B is holomorphic.

(ii) Since the values of A are left invertible, Ker A(z) = {0} and Im A(2) is
complemented, for all z € D. Hence, by Proposition 6.10.1, Im A is a holomorphic
family of complemented subspaces of F', and we can apply part (i) of the theorem.
Therefore we have a holomorphic function B : D — L(F, E) with ABA = A on
D. Since the values of A are injective, this implies BA =1 on D.

(iii) Since the values of A are right invertible, Im A(z) = F' and Ker A(z) is
complemented, for all z € D. Hence, by Proposition 6.10.1, Ker A is a holomorphic
family of complemented subspaces of E, and we can apply part (i) of the theorem.
Therefore we have a holomorphic function B : D — L(F, E) with ABA = A on
D. Since the values of A are surjective, this implies AB = I on D. O
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6.11 Example: A globally non-trivial complemented
holomorphic family of subspaces

Here we construct a holomorphic family of complemented subspaces {M(z)}.ep
of a Banach space E which is not “globally continuously injective”, by which we
mean that there does not exist a Banach space My and a continuous function
A: D — L(My, E) with Ker A(z) = {0} and Im A(z) = M () for all z € D.

6.11.1 Example. We use the notation from example 5.6.2. Additionally here we

assume that .

—<r<
V8

N |

Now, by the block matrices
(=21 -G+

G+ G-2)1

Fi(z) = (61 IO>Z and  Fo(2) ::Z(é g)

we define holomorphic operator functions Z, Fy, Fy : C — L(X @ X). Since

1 i
det = - 422240 for z # +—,
1 1 4 V8
these operator functions are invertible on
i

)

which is a neighborhood of D. Setting

A
Fy(z) (0 A0_1> Fl(2) for z € V1,
H(z) =
Fy(2)F(2) for z € V3,

we define a holomorphic operator function H : Uy N Uz — GL(X & X). Since
—1/2e€ V1, 1/2 € Vs,

()G )2
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then we have
1\ 1 I 0 A 0 -1 1 A"t 0
i(-3)=2(=3) (0 D) )7 () (% )
(I 0
N0 I

n(3)=2() 06 D7 @)
()6 D90
(1 ) 0= 9

Hence all values of H lie in the connected component of the unit operator in
GL(X @ X). Therefore, by Corollary 5.6.4, we can find holomorphic functions
H;:U; - GL(X & X) such that H = H{lHl on Uy NUy = V7 U V3, and therefore

and

HyFy A (11 =HFy, onV (6.11.1)
0 A
and
HyFy = HiFy onVs. (6.11.2)

Since H(—1/2) is the identical operator of X & X, by multiplying by a constant
operator, we may assume that also

m(-)-m(-D)- () o111

Set X := X & {0}, and let A((z,0)) := (Az,0) for (z,0) € Xo. Since Ay is an
isomorphism of Xy, then it follows from (6.11.1) that

HyF) (XO) — HyF, (61 Aol) <X0> — H\F, (XO) on V.

Together with (6.11.2) this implies that
HQFQ(X0> :HlFl(Xo) on UlmU2:V1U‘/2.

Hence, there is a well-defined holomorphic family {M(z)}.cp of complemented
subspaces of X & X defined by

M(z) = H;(2)F;(2) (XO) for z € U;, j=1,2. (6.11.4)
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By (6.11.3)

M <—;) = X,. (6.11.5)

We claim that there does not exist a continuous function C': D — L(Xo, X @ X)
such that ImC(z) = M (z) and Ker C(z) = {0} for all z € D.
Indeed, assume we have such a function C'. Then, by (6.11.5), we may assume

that
c (_;) _ 1 (6.11.6)

For all z € D, now we denote by C(~1)(z) the operator in L(M(z),X,) with
C=Y(2)C(z) = I. Then, by setting

v;(2) = CUD(2)Hy(2) Fy(2)

s Z€Uj
Xo

functions ~; : U; — GL(Xy), j = 1,2, are well defined. By Corollary 6.2.5, these
functions are continuous. From (6.11.2) we get

(D)= (h). 1)

and from (6.11.3) and (6.11.6) it follows that

(DALY
A6 L e

Since both U; and Uz are connected, it follows from (6.11.7)—(6.11.9) that Ay and
I belong to the same connected component of GL(Xj). This is a contradiction.

= A, (6.11.8)

6.12 Comments

The gap metric was introduced and studied in [KKM, GK, GM]. The results on
continuous (with respect to the gap metric) families of subspaces are not difficult
and were observed by many authors.

The starting point of the theory of holomorphic families of subspaces was the
paper of M.A. Shubin [Sh2], who gave the first definition and the first results, and
the papers of the authors [GL1, GL2, GL3, Le5]. In those papers already most
of the results for the more special families of subspaces studied in Sections 6.3,
6.4 and 6.6-6.11 can be found. Here this material is completed and extended in
different directions.
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Definition 6.4.1 and the local Lemma 6.4.6 are new in this generality. Using
a terminology from Complex analysis in several variables, Lemma 6.4.6 states
that the holomorphic families in the sense of Definition 6.4.1 are Banach coherent
sheaves in the sense of [Le6|, and the results then obtained in Section 6.4 could
be viewed as special cases of that theory of Banach coherent sheaves. But we did
not proceed in this way. Instead the more simple direct proofs are given which are
possible in the case of one variable.

The example given in Section 6.5 is due to A. Douady [Do2].



Chapter 7

Plemelj-Muschelishvili
factorization

This factorization for operator functions with respect to a contour is defined in the
beginning of the first section. For scalar and matrix functions it was invented in
the beginning of the last century as a tool for solving the linear Riemann-Hilbert
boundary problem in complex analysis, singular integral equations and systems
of such equations. It serves also as a tool for solving Wiener-Hopf equations and
systems of Wiener-Hopf equations, both discrete and continuous. For details see
[GK] and [F].

This type of factorization can be also used to solve transport equations, see [F]
and [BGK]. For the plane symmetric case the mathematical equations describing
the transport of energy through a medium is a linear integral-differential equation,
which can be transformed into a Wiener-Hopf integral equation with an operator-
valued kernel. The latter equation can be solved with the help of factorization
of the mentioned earlier form of an operator-valued function acting in an infinite
dimensional space, see [BGK]. The results on factorization which are mentioned
here are also used in the spectral theory of operator polynomials, see [Ma] and
[Ro] and the literature cited therein.

To transfer from the factorization problem of scalar functions to finite matrix
functions already adds essential difficulties and appearance of the so-called partial
indexes with a very complex behavior. The next step: factorization of operator
functions is a much more difficult problem than the matrix function ones and in
fact requires all techniques and tools which were developed in the previous chapters
(except for Chapter 4). In fact these tools were started with this aim. As it turns
out they are useful for many other purposes. This chapter is entirely dedicated to
the factorization problem of operator functions [GL4, GL5].
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7.1 Definitions and first remarks about factorization
Here Dy C C is a bounded connected open set with piecewise C'-boundary T,
0e D+, and D_ :C\DJ,_

7.1.1 Definition. Let E be a Banach space, let G be one of the groups GL(E),
G*(E) or G¥(FE) (Def. 5.12.1), and let A : T' — G be a continuous function. A
representation of A in the form

will be called a factorization with respect to I' and G of A if the factors A_, A, A
have the following properties:

— Either A = I or A is of the form

n
A(z) =P+ ) 2" P (7.1.2)
j=1
where n € N*, k1 > ... > Kk, are non-zero integers, Py, ..., P, are mutually
disjoint finite dimensional projectors! in E, and Py =1 — P, — ... — Py;

— A, is a continuous G-valued function on D, which is holomorphic in D ;

— A_ is a continuous G-valued function on D_ U {co}, which is holomorphic
in D_ U {oo} (Section 3.1.1).

If A = I, then this factorization will be called canonical (see also Definition 7.1.3).
By a factorization of A with respect to I' (without mentioning a group G)
we always mean a factorization of A with respect to I and GL(E).

7.1.2. The integers k1, ..., k, and the dimensions of the projectors Pi,..., P, in
this definition are uniquely determined by A. This will be established in Theorem
7.10.3 below. The numbers «1, ..., k, will be called the non-zero partial indices
of A (Def. 7.9.6), and dim P; will be called the multiplicity of «; (Def. 7.9.8).

7.1.3 Definition. Let G be an open subgroup of the group of invertible elements of
a Banach algebra with unit or let G be one of the groups G*(F) or G¥(E), where
E is a Banach space (Def. 5.12.1), and let f : I' — G be continuous.

(i) For zp € T, we say that f admits a local factorization at z, with respect
to I' and G if there exist a neighborhood U of zy and continuous functions
A, :UND, — Gand A_ : UND_ — G, which are holomorphic in U N D_
and U N Dy, respectively, such that

A=A_A, onUNT. (7.1.3)

We say that f admits local factorizations with respect to I' and G if it admits
at each point of I" a local factorization with respect to I' and G.

1By a projector in E we always mean a bounded linear projector in E. A family Pi,..., Pp
of projectors in E is called mutually disjoint if P; P, = 0 for all 1 < j,k <n with j # k
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(ii) If g : T' — G is a second continuous function, then we say that f and g
are equivalent with respect to I' and G if there exist continuous functions
h_:D_U{oo} — G and hy : Dy — G, which are holomorphic in D_ U{co}
and D, respectively, such that

f=h_ghy onI. (7.1.4)
If, in this case, g = 1, i.e., if (7.1.4) takes the form
f=h_h, onT, (7.1.5)

then this representation will be called a canonical factorization of f with
respect to I' and G.

As we already saw in the scalar case (Remark 3.11.4), not any continu-
ous function admits local factorizations with respect to I'. However already weak
smoothness requirements ensure the existence of local factorizations with respect
to I'. In Section 7.2 we see that Wiener functions admit local factorizations. In
Section 7.3 we prove that this is true also for Holder functions.

7.1.4 Proposition. Let G an open subgroup of the group of invertible elements of
a Banach algebra with unit or let G be one of the groups G (E) or G¥(E), where
E is a Banach space (Def. 5.12.1), and let f : T’ — G be continuous.

Assume, at some point zg € T', f admits two local factorizations with respect
tol' and G, i.e.,

f=h_hy and f=h_hy onT'NU, (7.1.6)

where U is a neighborhood of zy and h_,ﬁ_ :UND_ — GA and h+7ﬁ+ :UN
D, — G are continuous functions, which are holomorphic in UND_ and UND .,
respectively.

Then there is a holomorphic function g : U — G such that

h.=h_g' on D_NU and hy =gh, on D,NU. (7.1.7)

Proof. By (7.1.6),
h=th_ =7L+hjrl onI'nU.

Hence, there is a continuous function g : U — G defined by

B h'h_ on D_NU,
9= h_%hjr1 on D, NU,

which satisfies (7.1.7) by definition. As this function is holomorphic in U \ T, it
follows from Theorem 1.5.4 that g is holomorphic on U. ]
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7.1.5 Proposition. Let G an open subgroup of the group of invertible elements of
a Banach algebra with unit or let G be one of the groups G=(E) or G¥(E), where
E is a Banach space (Def. 5.12.1), and let f : T — G be continuous.

If f admits a canonical factorization f = fif_ with respect to I' and G,
then setting f_(z) = g (2)f="(c0) and f;( ) = f+( z)f_(oc0) we get a canonical
factorization f = f f+ with the additional property f (c0) =1.

With this additional property, the canonical factorization of f is uniquely
determined by f.

Proof. Assume there are two canonical factorizations f = f_fi and f = ffﬁr of
f with f_(oc0) = f_(o0) = 1. Then f_f, = f_f, and therefore

7' =Ff 7" onT.

By Theorem 1.5.4, the two sides of this relation define a holomorphic function on
CU{oo} with value 1 at infinity. By Liouville’s theorem this implies that f_ = f_

and fy = fi. d

7.1.6 Proposition. Let E be a Banach space, and let A : T — GL(E) be a contin-
wous function which admits a factorization with respect to ' and GA.

Then there exists always a factorization A = A_AA, with respect to I sat-
isfying the additional condition A_(c0) = 1I.

Proof. If A = A_ K/Lr is an arbitrary factorization with respect to I' and G A,
then we obtain a factorization A = A_AA, with A (00) =1 by setting A_(z) =

A_(2)(A-(0))

LA() = A-(00)A(2)(A-(00)) " and Ay (2) = A_(00) Ay (o0 )

7.1.7. Note however that the factorization with the extra condition A_(c0) = I
established in Proposition 7.1.6 is not uniquely determined, except for the case of
a canonical factorization (Proposition 7.1.5).

7.2 The algebra of Wiener functions and other splitting
‘R-algebras

In this section T is the unit circle, D is the open unit disc and D_ = C\ Dj.

7.2.1. Let A be a Banach algebra, and let W (A) be the space of Wiener functions
with values in A (Def. 3.1.5), i.e., the space of functions f : T — A of the form

oo o0

f@)= Y 2o with  |fllw:= D lfallw < oo

n=—oo n=—oo
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Then it follows from Cauchy’s product theorem that if f,g € W(A), then the
pointwise defined product fg belongs again to W(A), where

Ifgllw < 11w llgllw-

Hence W (A) is a Banach algebra.

In the present section we prove: If A is a Banach algebra with unit, then
each function f € W(A) with invertible values is equivalent (Def. 7.1.3) to some
holomorphic function on T. If fact we prove the following stronger result:

7.2.2 Theorem. Let A be a Banach algebra with unit, let GA be the group of
invertible elements of A, and let f € W(A) such that f(z) € GA for all z € T.
Then:

(i) The pointwise defined function f=' again belongs to W (A).

(ii) The function f can be written in the form f = h_hh,, where: h : T —
GA is holomorphic, h_ : D_ U {00} — GA is continuous on D_ U {oo}
and holomorphic in D_ U {co}, hy : Dy — GA is continuous on Dy and
holomorphic in D, and the functions h_, h™", h, and hjrl belong to W(A).
(The latter statement follows also from (i) and (iii).)

(iii) Let g : T — GA be a second function from W (A) which is equivalent to f
with respect to T' and GA (Def. 7.1.3). Further, let g_ : D_ U {0} — GA
and g, : Dy — GA be any functions which are holomorphic in D_ U {co}
and D, respectively, such that

g=9_-fg9,  onT. (7.2.1)

(Such functions then exist by definition of equivalence.) Then the functions
g_, g ", g4 and gj_l belong to W(A).

The remainder of this section is devoted to the proof of this theorem. In fact
we immediately prove a generalization of it (a second interesting example, covered
by this generalization, we meet in Section 8.11).

7.2.3 Definition. Let E be a Banach space. By a rational function with values in £
or by a rational function f : C — F we mean an E-valued meromorphic function
on C (Section 1.10.6) such that f(1/z) is also meromorphic on C. It is easy to see
that any rational function with values in E can be written in the form

where p is a holomorphic polynomial with coefficients in E, and ¢ is a scalar
holomorphic polynomial. We shall say that oo is a pole of an E-valued rational
function f if 0 is a pole of the function f(1/z) (Section 1.10.6).
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7.2.4. Let A be a Banach algebra with the norm || - ||. Then we are interested in
Banach algebras R with the norm || - ||, which are algebraic subalgebras of the
algebra of continuous functions f : T — A and which satisfy the following three
conditions:

(A) max | £()]| < |l for all f € R.

(B) The algebra of all A-valued rational functions without poles on T is contained
in R as a dense subset.

(C) Each f € R admits a splitting f = fy + f— with respect to T (Def. 3.1.2),
where f_, f,. € R.

Sometimes such algebras will be called splitting R-algebras.
Obviously, the Wiener algebra W(A) (Section 7.2.1) is a splitting R-algebra.

7.2.5 Theorem. Let A be a Banach algebra with unit, let GA be the group of
invertible elements of A, and let R be a Banach algebra of continuous functions
f: T — A satisfying conditions (A), (B) and (C) from Section 7.2.4. Let f € R
such that f(z) € GA for all z € T. Then:

(i) The pointwise defined function f~! again belongs to R.

(ii) The function f can be written in the form
f=h_hh,, (7.2.2)

where h_ : D_U{oo} — GA is continuous on D_U{oc} and holomorphic in
D_U{o}, hy : Dy — GA is continuous on D and holomorphic in D, , h
is an A-valued rational function without poles on'T, h(z) € GA for all z € T,
and the functions h_, h_", hy and h;l belong to R. (The latter statement
follows also from (i) and (iii).)

(iii) Let g : T — GA be a second function from R which is equivalent to f with
respect to T' and GA (Def. 7.1.3). Further, let g_ : D_ U {oc0} — GA and
g : D, — GA be any functions which are holomorphic in D_ U {oo} and
D, respectively, such that

9=9_f9, on T. (7.2.3)

(Such functions then exist by definition of equivalence.) Then the functions
9-, 9~ g, and g_,__1 belong to R.

We first prove the corresponding generalization of Proposition 3.10.1:

7.2.6 Proposition. Let R be a Banach algebra of scalar continuous functions f :
T — C satisfying conditions (A), (B) and (C) from Section 7.2.4 (with A= C).
If f€R and f(2) #0 for all z € T, then f~1 € R.
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Proof. Let f € R be given, which is not an invertible element of R. We have to
find § € T with f(0) =0.

Since f is not invertible, by the theory of commutative Banach algebras,
there exits a multiplicative functional ® on R with

B(f) = 0.

By condition (B), for all fixed complex numbers A € C\ T, the function z — X is
an invertible element of R. Hence, for each fixed A € C\ T, ®(z — A) # 0 and,
therefore,

D(z) = A=d(z—)\) #0.

Hence 6 := ®(z) € T. Since ® is multiplicative and linear, this implies that, for
each scalar rational function r without poles on T (by condition (B) such functions
belong to R), we have

r(0) = o(r).

Since the rational functions are dense in R (condition (B)) and by condition (A),
this further implies that g(6) = ®(g) for all g € R. Hence f(0) = ®(f) = 0. O

Further, the proof of Theorem 7.2.5 is based on the following

7.2.7 Lemma. Let B be a Banach algebra with unit, and let L be a maximal left
ideal of B. Further, let Z be a closed subalgebra of B such that 1 € Z and zb = bz
for allb € B and z € Z (i.e., Z is a subalgebra of the center of B with 1 € Z).
Then LN Z is a mazimal ideal of Z.

Proof. Here the unit element of B will be denoted by e. First we prove:
Proposition &: For each a € Z \ L we have:

(i) There exits y € B with ya —e € L.

(ii) If y1,y2 € B with y1ja — e € L and yaa — e € L, then y; — yo € L.

Part (i) follows from the hypotheses that L is maximal among the proper left
ideals of B. (Otherwise the set of elements of the form [+ ya, ! € L,y € B, would
be a bigger proper left ideal.)

For part (ii), we first prove that

Lz{yeB’yaeL}. (7.2.4)

Let K, be the set on the right-hand side of (7.2.4). It is clear that K|, is a left ideal
of B. Since 1 € K,, K, is even a proper left ideal of B. If [ € L, then la =al € L
(as a belongs to the center of B and L is a left ideal). Hence L C K,. Since L is
maximal among the proper left ideals, this means that L = K.
Now let y1,y2 € B with yja —e € L and ysa — e € L be given. Then
(y1 — y2)a = y1a — e — (y2a — e) € L, which implies by (7.2.4) that y; — y2 € L.
Proposition & is proved.
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Now we prove that Z N L is a maximal ideal of Z. It is clear that Z N L is an
ideal of Z. Assume it is not maximal. Then there exists a € Z with a — ze ¢ L for
all z € C. Therefore, by part (i) of proposition &, for each z € C, we can choose
an element f(z) € B with

f(z)(a—2)—ee L. (7.2.5)

To complete the proof, now it is sufficient to show that

f(z)eL for all z € C, (7.2.6)

because then from (7.2.5) we get the contradiction e € L.
Let B/L be the factor space of B with respect to L, and let 7 : B — B/L
be the canonical projector. (7.2.6) then is equivalent to the relation

(mo f)(2) =0 for all z € C.

Therefore, by Liouville’s theorem, it is sufficient to prove the folllowing

Proposition #: The function 7 o f is holomorphic on C and (7 o f)(c0) = 0.

Setting
1/a -1 1
fi(z)=- (f - e) for |z| > —
z \z lal
we define a B-valued holomorphic function f* such that
" 1
ff(z)(a—ze)—e=0€L for all |z\>m.

By (7.2.5) and part (ii) of proposition &, this implies that f(z) — f*(2) € L for
|z| > 1/||a]|. Hence mo f is equal to 7o f* for |z| > 1/||a||. As f* is holomorphic and
f*(00) = 0, this proves that mo f is holomorphic for |z| > 1/||a|| and (7o f)(c0) = 0.

It remains to prove that 7o f is holomorphic everywhere on C. Let £ € C be
given, and let U be the open disc centered at ¢ and with radius 1/||f(£)||. Then
forall z € U, e — (z — £) f(&) is an invertible element of B, and, setting

) =10 (- (- 05©)

we get a holomorphic function f¢: U — B. Note that

o0

R =3G-o e,  -eu

Therefore
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and, further,
@)= ze) e = 1) ((a = 2e) + (= = &) = (£(€) ")
= 1) ((a=ge) = (F0) ") = () (FO)a — ge) — e)

for all z € U. Since, by (7.2.5), f(§)(a — &e) —e € L and L is a left ideal, it
follows that f%(z)(a — ze) —e € L for all z € U. Again by (7.2.5) and by part
(ii) of proposition &, this implies that f&(z) — f(z) € L for all z € U. Hence
mof=mo fSonU. As f¢ is holomorphic in U, this further implies that 7o f is
holomorphic in U. Proposition # is proved. (I

7.2.8. Proof of Theorem 7.2.5 (i): Assume f is not an invertible element of the
algebra R. Then the set of elements of the form gf, g € R, is a proper left ideal
of R. Let L be a maximal left ideal in R with

{gf ‘ g€ R} C L. (7.2.7)

Further, let R¢ be the subalgebra of R, which consists of the functions of the form
e, where 1 is a scalar function and e is the unit element of A. By Lemma 7.2.7,
L NR¢ is a maximal ideal of R¢, and it follows from Proposition 7.2.6 (and the
theory of commutative Banach algebras) that there exists a point 8 € T such that

LnRe = {o e Re | p(0) =0} (7.2.8)
Therefore, for all ¢ € R¢, the function

p(z) —90), z€T,

belongs to L N R¢. Since L is a left ideal, it follows that, for all a € A and
w € LN R¢, the function

ap(z) —ap(0),  z€T,

belongs to L. Hence, for all rational functions r : C — A without poles on T
(which belong to R by condition (B)), the function

r(z) —r(6), zeT,

belongs to L.
Now we introduce the function g € R defined by

9(z) == (f(0))

Then, by condition (B), there is a sequence r, : T — A of rational functions
without poles on T such that

_1f(z), z€T.

lim [lg — 7o}z = 0.
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As g(0) = e (the unit element of A), then it follows from condition (A), that also
lim e — 1, (6)]| = lim [g(6) — 1, (6)]] = 0.
Hence, the sequence of functions
ro(2) =ru(0),  z€eT,

converges to the function
g(z) -6 kAS Ta

with respect to the norm of R. Since L is closed with respect to this norm and
each of the functions r,(z) — r,(6) belongs to L, it follows that the function

g(Z)—G, ZGT,

belongs to L. As, by definition of L, also g € L, this implies that the constant
function with value e, i.e., the unit element of R, belongs to L. As L is a proper
ideal, this is a contradiction. ([l

7.2.9. Let A be a Banach algebra with unit, and let R be a Banach algebra of
continuous functions f : T — A satisfying conditions (A), (B) and (C) from
Section 7.2.4.

Then we denote by R, the subalgebra of all f € R, which admit a contin-
uous extension to D, which is holomorphic in Dy, and by R_ we denote the
subalgebra of all f € R, which admit a continuous extension to D_ U {co}, which
is holomorphic in D_ U {co}. Further, we denote by R® the subalgebra of all
fe€R_(A) with f(co) = 0. Since all constant functions with value in A belong to
R (condition (B)), it follows from condition (C) that R is the direct sum of R4
and R . We denote by P, the linear projector from R to R, parallel to R®, and
we set P_ =1— P,.

We denote by || Py || the operator norms of Py with respect to the norm || - || 5
of R:

IPeli=  sup  |Pufl. (7.2.9)
FER|IflIg=1

For R = W(A) (Section 7.2.1), obviously, ||Py|| = 1.

Now, as a special case of the factorization Lemma 5.2.3, we immediately
obtain:

7.2.10 Lemma. Let A be a Banach algebra with unit, let R be a Banach algebra
of continuous functions f : T — A satisfying conditions (A), (B) and (C) from
Section 7.2.4, and let

C = maz{||P|, | P-|},

where Py, P_ are the projectors defined in Section 7.2.9. Then each f € R with

1
1f=1llz < e (7.2.10)
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admits a canonical factorization f = f_f, with respect to T (Def. 7.1.3), where
f=, [+ € R and

Cllf ~1lp
=l 1l

Cllf ==

G =R g =1 <
Tl —1In I+ =1l

1= =1l <

7.2.11. Proof of part (ii) of Theorem 7.2.5: Here we use without further references
that part (i) of the theorem is already proved. Let f € R be given. We use the
notations introduced in Section 7.2.9, and set

C = maz{|[P.], |P-]}

By part (i) of Theorem 7.2.5 (proved in Section 7.2.8), f is an invertible element
of R. By condition (B), we can find a rational function ¢ : C — A without poles
on T such that

_ 1
| =l < TS (7.2.11)

By condition (A) we can moreover assume that ¢(z) € GA for all z € T, where
G A is the group of invertible elements of A. Then it follows that

_ 1
HCIf - 1HR = HfHRHf = qH’R < C

From (7.2.11) and Lemma 7.2.10 it follows that the function ¢f admits a canonical
factorization
af =9-94 (7.2.12)

with respect to T, where g_ € R_ and g, € R4. By part (i) of Theorem 7.2.5
then also g~* € R_ and gfrl € R4.

It follows that g—'q € R, and from part (i) of Theorem 7.2.5 it follows that
also ¢"1'g_ € R. By condition (B) we can find a rational function p : C — A
without poles on T with

1

- . 7.2.13
Cla o T (7.2.13)

9= a = p|l 5 <

Moreover, by condition (A), we may assume that p(z) € GA for all z € T. From
(7.2.13) it follows that

_ _ _ 1
la™"g-p =1z < lla”"g-|lzllp —9="dll < &
Therefore, again by Lemma 7.2.10, ¢~ 'g_p admits a canonical factorization
g lg_p="h_h, (7.2.14)

with respect to T, where h, € R. Then

hop ™t =hTlq g .
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Let U be a neighborhood of T such that p and ¢ are holomorphic and with values in
GA on U. Then this equality shows (by Theorem 1.5.4) that there is an A-valued
rational function h such that h(z) € GA for all z € T which is defined by

o h+p*1 on UNDy,
rZl¢ly. omUND_.

For this function we have, by (7.2.12) and (7.2.14),

f=a'9-9g.=a"'g_pp g, =h_hp'g, =h_hg, onT.
This completes the proof of part (ii) of Theorem 7.2.5. O

7.2.12. Proof of part (iii) of Theorem 7.2.5: By part (ii) of the theorem, the
functions f and g can be written in the form

f=u_pu, and g=v_qu,, (7.2.15)

where p, q are A-valued rational functions, which are holomorphic and invertible in
some neighborhood of T, u_,v_ : D_ U {oco} — GA are continuous on D_ U {cc}
and holomorphic in D_ U {co}, uy,vy : Dy — GA are continuous on D, and
holomorphic in D, and moreover

ufl v e R. (7.2.16)
From (7.2.15) and (7.2.3) we get

V_pUy =g u_quigy
and therefore

1 1

u:lgzlv_ = qu+g+v;1p71 and u+g+v;1 =q u:lgzlv_pf on T.

Since the functions p and ¢ are A-valued rational functions, which are holomorphic
and invertible in a neighborhood of T, these equalities imply (by Theorem 1.5.4 and
the corresponding properties of the functions u, and v, ) that also u”tg~tv_ and
uyLg +v;1 are A-valued rational functions, which are holomorphic and invertible
in a neighborhood of T. Hence, these functions belong to R (by property (B)). In
view of (7.2.16), this further implies that gfl and ¢g*! belong to R. O

7.3 Holder continuous and differentiable functions

In this section D, C C is a bounded, connected, open set with piecewise C!-
boundary I' such that 0 € D, and D_ := C\ D. Further, A is a Banach algebra
with unit 1, and GA is the group of invertible elements of A.

In this section we prove that each Holder-a continuous function f : I' — GA,
0 < a < 1, is equivalent (Def. 7.1.3) with respect to I' to a function, which is
holomorphic in some neighborhood of I'. If T" is of class C*¥ (Def. 3.4.1) and f is of
class C*+® (Def. 3.4.3), then the result is correspondingly stronger. We prove:
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7.3.1 Theorem. Let 0 < a < 1, k € N, and let f : T' — GA be a function such
that: If k = 0, then f is of class C® (Def. 2.1.6). If k > 1, then T is of class C*
(Def. 3.4.1) and f is of class C*** (Def. 3.4.3). Then:

(i) The function f can be written in the form
f=Ff_hfy  onl, (7.3.1)

where f_ : D_ U {oo} — GA is continuous on D_ U {oo} and holomorphic
in D_U{oo}, ft : Dy — GA is continuous on D and holomorphic in D,
and h is a holomorphic G A-valued function in some neighborhood of T'.

(ii) If two functions f_ and fy are as in part (i), then, automatically, f— is of
class C¥*® on D_, and fy is of class C*** on D,

The proof of this theorem will be given at the end of the section.

7.3.2 Definition. Let 0 < o < 1.

Then we denote by (C*)“(T") the Banach algebra of all Hélder-o continuous
functions f : I' — A, endowed with the norm [|f|p , (Def. 2.1.6).

If T is of class C*, k € N*, then we denote by (C¥T*)4(T") the algebra of all
functions f : I' — A of class C*T® (Def. 3.4.3). In (C***)4(I") we introduce the

following norm
k

=3 o)

n=0

(7.3.2)

7.3.3 Lemma. Suppose I' is of class C*, k € N*, and let 0 < o < 1. Then
(Ck*+)A(T), endowed with the norm (7.3.2), is a Banach algebra.

Proof. Tt is clear that (C***)4(I") is a Banach space with the norm (7.3.2). Let
f,g € (C*t*)A(I). It remains to prove that

191t o (7.3.3)

1£9llrkta <
As (C*)A(I") is a Banach algebra with respect to || - Ir o> we have

k

1
19l s = 3~ 1(7)

n=0
ISR (RS () £(n—3) SIks () $(n—3)
-3 Z()f 19| =SS

=t (7.3.4)

k
< ZZ |f(J)HFaan MNir.a
1
S T

(n j)”l" a*
| s
0<j<n<k'].(n )
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On the other hand

k k
1 n 1 n
e sallolsen = (3 0 lea ) (3 3160 )

n=0 n=0

k (7.3.5)
1 n m
= Y el
n,m=0
Comparing (7.3.4) and (7.3.5) we get (7.3.3). O

7.3.4 Lemma. Let 0 < a <1 and k € N. If k > 1, then we additionally assume
that T is of class C*. Let f,g € (C*t*)A(T). Then

1£9llr o < F e pllglepra + 11 prallglle k- (7.3.6)

Proof. For all z,w € T with z # w, we have

[£(2)9(2) — Fw)g(w)|| _ [|£(2)g(2) — f(2)g(w) + f(2)g(w) — f(w)g(w)]
IZ*W\"‘ |z —wl|*
||g w)| Hf Ll

oot . s

Dol MBI =y, ,

< | f(2)

<[l
Hence

[£(2)g(2) = f(w)g(w)]|

1f9llr.o = 1 Fgllro+  sup

z,wel  z£w ‘Z - w|o¢
llg(=) =g [£(z) = F(w)]|
< nrA=7 JA70
*”fg”F’“Hf”n%,wilpl}z#w P w|°‘ sztrl’r;éw = —wp l9lr,0
_ llg(z) = g(w)| 1£) = f )|
||f||F,0< ,+Z1w§£¢w |Z_w‘a sztrlgiw =l llgllr,0

which is the assertion of the lemma for £ = 0. If £ > 1, then this further implies

k k

Folesea = 3 1070 = >
n=0 " n=0
< 2

0<j<n<k

n

2.7

Jj=1

T J)'f(J)f(" 7)

B (7.3.7)

1 . . _ o
T (O 19 e
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On the other hand

||f||r,k||g||r,k+a + ||f||1“,k+a”||9||r,k

k 1 k 1
~ (2 21 (3 25
n=0 " n=0
k k
Lo Lo (7.3.8)
(2 21l ) (2 o)
n=0"" n=0
LIS
= 3 = (I ekl o+ 1 ol )
n,m=0
Comparing (7.3.7) and (7.3.8) we get (7.3.6). O

7.3.5 Lemma. Let 0 < f < a <1 and k € N, where, for k > 1, we assume that
' is of class C*. Then there exist constants § > 0 and C < oo such that each
f: T — GA which belongs to (C*+*)A(T") and which satisfies the estimate

1f = pes <9 (7.3.9)

admits a canonical factorization [ = f_fi with respect to I' such that f- is of
class C** on D_, and f is of class C*¥T® on D,. Moreover

1f£ = Urrrs <CIf = Upgsp <1 (7.3.10)

Proof. Let v = a, . Then we denote by (Cf—'y)A(F) the algebra of all holomorphic
functions f : D, — A, which are of class C** on D (Def. 3.4.4), and by (C*T7)4
we denote the algebra of all holomorphic functions f : D_ U {co} — A with
f(c0) = 0, which are of class C**7 on D_. It follows from the maximum principle
for holomorphic functions and from theorems 3.3.2 and 3.4.5 that these algebras
are closed subalgebras of the Banach algebra (C*+7)4(T'), endowed with the norm
I Iy 44 By Liouville’s theorem, (C*7)A(I)N(C**7)4 = {0} (Proposition 3.1.3),
and again by theorems 3.3.2 and 3.4.5, each f € (C*+7)4(T) can be written in the
form f = fy + f_ with f, € (C¥™)A(D") and f_ € (C**7)¢". Hence (C*7)A(T) is
the direct sum of (C$+7)A(F) and (C"T)4.

Now we could apply Lemma 5.2.1 or Lemma 5.2.3. This would give constants
§ >0 and C < oo with the following property: If f € (C¥+*)4(T") satisfies (7.3.9),
then f admits a canonical factorization f = f,f_ with f, € (C_IT_J“B)A(I‘) and
f-—-1¢ (Cf+'6)64(1“). But we want to prove that the factors fi also of class
Ckte. Although this does not follow from lemmas 5.2.1 and 5.2.3, the main idea
of the proof of these lemmas will be used also here, however with more care to the
estimates.

Let Py be the linear projector from (C*+7)4(T) to (C5T7)4(T) parallel to
(C*PYAT), and let P_ := I — P,. As (C¥*9)4(T) is the direct sum of (Ci+6)A(F)
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and (CF+F° )3', these projectors are continuous. Moreover, the restriction of these
projectors to (C¥+*)4(T) are continuous with respect to the norm ||- Ir &+a- There-
fore, we can find a constant C' < oo with

1P fllr s < Clifllopss  if £ € CHHAD),

7.3.11
1Pefllr ko < Clflopsa  if £ € (CFHAD). | :

We set
1

T ac
and prove that these constants § and C' have the required property.
Let f € (CF*)4(T) with (7.3.9) be given. Set a = 1 — f. Then

1
lallr k45 <6 = 75 (7.3.12)

We define a sequence a;, € (C*)¢ ("), n € N*, setting

5

a; =P_a and a, = P_(aa,_;) forn>2.

We claim that then, for all n € N*,

_ Cllally k+8 _ C||a|Fk+a
e L [ P N (R RE)

Indeed, from (7.3.11) we get

lay [Irk+s = HP—aHF,k+6 < C”a”F,kJ,-ﬂa
and
lat Irkta = I1P-allr ko < Cllalr gt

which proves (7.3.13) for n = 1. Now we assume that m € N* and (7.3.13) is
already proved for n = m. Together with (7.3.11) and (7.3.12) this yields

lamitllekrs = 1P-(aa,) v ki s

C?llallf kys _ Cllall
- k+8 Ik+p6
< Cllalir ks sllam e ks < gm—1 = om

and, taking into account also Lemma 7.3.4,

@il kra = 1P-(aam)llr k+a < Cllaay|Ir kta

< C(llalle spllam e sra + ol ialom v s )

<o lallr kisllalivera | Nallp grallalle ps
— ( 2m—1 2m—1 )

_ o lallr gssllalrpra _ Cllalrira
om—2 — om ’
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i.e., (7.3.13) holds for n = m + 1.
From (7.3.13) it follows that the series

converges absolutely both in (C'Trﬂ)g‘(l") and in (C*"*)¢{(T"), where (taking into
account also (7.3.12))

1
la-llrk+p < 2Clallr prp < 5- (7.3.14)

Define a second sequence a;; € (C5T*)4(T), n € N*, setting
af =P,a and af =P, (aq, ;)= ifn>2.
Then it follows from (7.3.11), (7.3.12) and (7.3.13) that

Cllallr k+5
lat lIr s < Ton 1 n € N,

and, taking into account also Lemma 7.3.4,

o e i < Cllaa_y e pra SC (lalle rallan e es + lale pslar e )

2 Ha||F,k+a”aHI‘,k+ﬁ HG'HF,kJrﬁHaHI‘,kJra
S c < an—2 + an—2

C2||aHF,k+B”aHF,k+a C||a||r,k+a
= <
on—3 - gn—1

Hence the series
oo
ay = E a;’;
n=1

converges absolutely both in (CT’B)A(F) and in (CT*)4(T), where (taking into
account also (7.3.12))

1
latllress < 2Callp pqp < 3 (7.3.15)

From (7.3.14) and (7.3.15) it follows in particular that 1 —a_(z) € GA for
all 2 € D_ U {oo} and that 1 — a;(2) € GA for all z € D. Therefore, setting
f-=(1+a_)"t, we get a function f_ : D_ U{oco} — GA, which is holomorphic
in D_U{oo} and of class C**® on D_, and setting f, = 1 —a, we get a function
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f+ : Dy — GA, which is holomorphic in D and of class C¥*® on D . By (7.3.14)
and (7.3.15) these functions satisfy (7.3.14). Moreover

f—_lf:(1+a—)(1—a)=1+§:a;—a—§:aa;
n=1 n=1

o0 oo oo
:1+a1_+Za;fafZaa;71:1+(a1_fa)+2(a;faa;71).
n=2 n=2

n=2
Since
aj —a=P.a—a=—Pra=af
and
a, —aa, | =P_(aa, |)—aa, ;=—Pi(aa, ;)= —a for n > 2,
this implies that
[e.¢]
FU=1=)ar =1-ay = f,
n=1
ie, f=f_f+. O

Proof of Theorem 7.3.1. Let § > 0 be the constant from Lemma 7.3.5. Then, by
the approximation Theorem 3.5.1, we can find a neighborhood U of I and a
holomorphic function ¢ : U — GA such that

Hq_lf - 1HF,k+ﬁ <.

Then, by Lemma 7.3.5, ¢~ f admits a canonical factorization ¢~ ' f = g_g, with
respect to I' such that g is of class C¥T® on D. Now, again by Theorem 3.5.1 and
by Lemma 7.3.5, we can find a neighborhood V' of I and a holomorphic function
p:V — GA such that

lag-p™" =1l oy 5 <

1 1

and, hence, gg_p~" admits a canonical factorization qg_p~
to I such that h is of class C¥*® on D,. Then

= h_h_ with respect

hyp= h=tqg_ on .

This implies (by Theorem 1.5.4) that there is a holomorphic function h on U NV
defined by

b hyp onUNVND,
| hZlqg. omUNVND_.

Then
f=a9-9y =q9_p 'pg, =h_h,pg, =h_hg,,
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which is a representation of f as required in part (i) of the theorem, where, addi-
tionally, we already know that the factors h_ and g, are of class C** on D_ and
D respectively.

To prove part (ii), we assume that we have some other representation of f in
the form f = E_E@_, where h_ : D_U{oo} — GA is continuous on D_ U{oo} and
holomorphic in D_ U {cc}, g4+ : D+ — GA is continuous on D and holomorphic
in D, and h is holomorphic in some neighborhood of I'. Then

h_hg, =h_hg,
and therefore o
h='h_h=hg,g;' onT.

The latter equality shows (by Theorem 1.5.4) that the two sides of this equality
define holomorphic function 7 in some neighborhood U of I' such that

h_=h_rh™' and g, = r_lhg+.

Since the functions on the right-hand side of these relations are of class Cke on
D_NU and Dy NU respectively, it follows that h_ and g, and of class Ck® on
D_ and D, respectively. [

7.4 Reduction of the factorization problem to functions,
holomorphic and invertible on C*

In this section, D, C C is a bounded, connected, open set with piecewise C!-
boundary I' such that 0 € D, and D_ := C\ D,. Further, throughout this
section, A is a Banach algebra with unit 1, and G is a (possibly not open) subgroup
of the group of invertible elements of A.

7.4.1 Lemma. Let P! = C U {cc} be the Riemann sphere (see the beginning of
Section 5.10), let p be an arbitrary point in P\ T, and let

DY :=D; and D_:=(D_U{oco})\ {p} if p€ D_U{co},
D' :=D;\{p} and D' :=D_U{oco} ifpe Dy.

Denote by D” and D'| the closures in P* \ {p} of D" and D', , respectively.?

Let f : T' — G be a continuous function which admits local factorizations
with respect to T' and G (Def. 7.1.3), and suppose that at least one of the following
conditions is satisfied:

(I) G is open in A.

*If p = oo, then D” = D_ and DY = D4.1f p € D—, then D” = (D_ U {co}) \ {p} and
D" =Dy.Ifpe Dy, then D” =D_ U{co} and D =Dy \ {p}.
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(I1) A = L(E) for some Banach space E, and G = G (E) (Def. 5.12.1).
(III) A= L(E) for some Banach space E, G = G¥(E) (Def. 5.12.1).

Then there exist continuous functions f_ : D" — G and fi : D] — G, which are
holomorphic in D' and D'_, respectively, such that

f=r-r+ onT. (7.4.1)

Proof. By hypothesis, we can find open sets Uy, ...,U,, C P\ {p}, continuous
functions f;r :U; N D!l — G, which are holomorphic in U; N D/_, and continuous

functions f;~ : U; N D" — @G, which are holomorphic in U; N D, such that
rcv,u...ul,, and

f:f{f;r onU; NI, 1<j<m.

Set
Up= (P'\ {p})\T and fif=fy =1 onU.

Then, for all 0 < j,k <m with U; N U, NT # 0,
-1 R
) =) kK on U; NU, NT. (7.4.2)
Indeed, for 1 < j,k < m this is clear, as f;fj+ =A= f,;fk+ onU; NU,NT,
and, for 7 = 0 or k = 0 this is trivial, because Uy N T' = @. Now, by (7.4.2),

there is a well-defined family g, € CY(U; NUy), 0 < 4,k < m, such that, for all
0<j,k<m,

-1 . -/
gjk:{ff(f,j) on UjNUNDL i UinUNDL A0, oo

(/7)) ' onU;NUyND" if U;NU.ND" #0.

On (U; N Ug) \ T, these functions are holomorphic, since the functions fji and
( fji)_l are holomorphic on U; N D;[. Hence, by Theorem 1.5.4,

9k €OC(U; NU),  0<jk<m.
Moreover it is clear from (7.4.3) that, for all 0 < j, k,I < m with U; NU, NU; # 0,
9ik9r = 9ji on U; NU,NU,
i.e.,, the family {g;i}o<jk<m is a ({Uo,...,Un}, O%)-cocycle (Def. 5.6.1). Since
UgU...UU,, =P\ {p} is simply connected, by theorems 5.6.3 and 5.12.5, this

cocycle is O%-trivial. Hence we have a family h; € O%(U;), 0 < j < m, with

9k = hjh;! on U; NU
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for all 0 < j,k < m with U; N Uy # 0. Then it follows from (7.4.3) that, for all
0<j,k<m,
N1 .
hohel - (f7) J}l onU;NU,ND" if U;NnU,ND" #9,
T 05D on U; NU,NDY if U;NU,NDYL#0,
and therefore
fihy=fihy, onU;nU,ND” if U;nUxND” #0
and
=R S onUynULNDY if UynU,NDY #0.

Hence, there is a well-defined continuous function f_ : D” — G, which is holo-

morphic in D”, and a well-defined continuous function fy : DY/ — G, which is

holomorphic in D', , such that

f_‘UijZ =T hy, 0<j<m, (7.4.4)
=1t )
=h; ff 0<jsm. (7.4.5)

f+|Uij1
Since f = f;ff on U; NT, 1 < j < m, it follows from (7.4.4) and (7.4.5) that
(7.4.1) holds. O

7.4.2 Theorem. Let f : ' — G be a continuous function which admits local factor-
izations with respect to T' and G (Def. 7.1.3), and suppose that at least one of the
following conditions is satisfied:

(I) G is open in A.
(I) A= L(E) for some Banach space E, and G = G>®(E) (Def. 5.12.1).
(III) A = L(E) for some Banach space E, and G = G¥(E) (Def. 5.12.1).

Then there exists a holomorphic function h : C* — G such that f and h are
equivalent with respect to I and G.

Proof. Setting p = oo in Lemma 7.4.1, we get continuous functions h_ : D_ — G
and f; : D4 — @, which are holomorphic in D_ and D, respectively, such that

f=h_f, onT. (7.4.6)

Applying Lemma 7.4.1 with p = 0 to h_, we get continuous functions f_ : D_uU
{0} — G and h : Dy \ {0} — G, which are holomorphic in D_ U {co} and
D, \ {0}, respectively, such that

h_=fh onT (7.4.7)

and therefore
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Since f=! and h_ are continuous on D_ and holomorphic in D_, from the latter
relation it follows that h admits a continuous G-valued extension to C\ {0}, which
is holomorphic in D_, and which we also denote by h. Since h is also holomorphic
on D4 \ {0}, it follows from Theorem 1.5.4 that & is holomorphic on C\ {0}. From
(7.4.6) and (7.4.7) it follows that f and h are equivalent. O

7.5 Factorization of holomorphic functions close to the
unit

Let D, C C be a bounded, connected, open set with piecewise C!-boundary I'

such that 0 € Dy. Set D_ = C\ D,. Further, let A be a Banach algebra with

unit 1, and let G be an open subgroup of the group of invertible elements of A.
Here we prove the following

7.5.1 Theorem. Let U be a bounded neighborhood of I', and let € > 0. Then there
exists § > 0 such that, for each g € OA(U) (Def. 5.4.5) with

masx||g(2)l| < 6., (7.5.1)
zeU

there ezist g_ € O4(D_UU U{oc}) and g, € OA(D4 UU) such that

max_|[g, (2)[| <e, max |lg_(2)]| <e
z€DLUU z€D_UUU{oco}

and
(I+g9)=0+g-)1+gy) onT.

Proof. Set Uy = Dy UU and U_ = D_UU U{oo0}. We consider O4(U_), O4(U )
and O4(U) as Banach algebras endowed with the maximum norm. By Theorem
3.7.3, each function g € O4(U) can be written in the form g = g4 +g_ with g4 €
OA(Ux). Therefore the assertion follows from the factorization Lemma 5.2.1. O

7.6 Reduction of the factorization problem
to polynomials in z and 1/z

In this section, D, C C is a bounded, connected, open set with piecewise C!-

boundary I' such that 0 € D, and D_ =C\ Dy.

7.6.1 Theorem. Let A be a Banach algebra with unit, and let GA be the group of

invertible elements of A. Let 0 < r < R < oo such that
ﬁ+§W::{zEC‘T<|z|<R}, (7.6.1)

and let f : T' — GA be a continuous function which admits local factorizations
with respect to T' and GA (Def. 7.1.3). Then:
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(i) The function f is equivalent with respect to T' and GA (Def. 7.1.3) to a
function h of the form

M
hz)=Y_ z"hn, N,ME€cZ, (7.6.2)
n=N

such that h(z) € GA for all z € W.

(ii) The function f is equivalent with respect to I' and GA to a function h such
that h=1 is of the form

Wl (z) =) 2"hn, N,M € Z, (7.6.3)

and h™1(2) € GA for all z € W.

Proof. 1t is sufficient to prove part (i). Part (ii) then follows by changing the order
of multiplication in A and applying part (i) to f~1. Set

W_:{ZG(C‘r<|z\} and W+:{z€C’|z|<R}.
Then, by Theorem 7.5.1, for some € > 0, the following holds:

@ For each ¢ € 6GALW) with max, w7 [[¢(2) — 1| < ¢, there exist py €
O%(W,) and ¢_ € O4(W_ U {oc}) with ¢ = ¢_¢ on W.

By Theorem 7.4.2 we may assume that f is a GA-valued holomorphic function on

C\ {0}. Let

oo

n=—oo

be the Laurent expansion of f at zero. Choose integers K < M such that the

function
M

u(z) = Z 2" fn

n=K
is so close to f over W that u(z) € GA for all z € W and

max Hu_l(z)f(z) —1|| <e.

zeW
Then, by statement (*), we can find fy € OY(W,) and g_ € OF (W_ U {oo})
such that v~ 'f = g_f, on W. Hence the function ff;1 = ug_ has a Laurent
expansion of the form

M
RN = Y an. (7.6.4)

n=—oo
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Choose an integer N such that the function

M
v(z) == Z z"an
n=N
is so close to ff ' over W that v(2) € GA for all z € W and

max | £(2) f7 ()0 (2) — 1] < <.

zeW

_ Then, again by statement (*), we can find g, € O%A(W,) and f_ €
O%A (W_ U{cc}) such that ff;'v™' = f_g, on W. Set
h=f2lrf

Then h € OY4(W), as f is holomorphic and G A-valued on C \ {0}. Moreover,
since h = ¢g4v, the Laurent expansion of h is of the form

h(z) = i 2"y,
n=N

On the other hand, as h = f__lffJ:l7 it follows from (7.6.4) that the Laurent
expansion of h is of the form

M

h(z) = Z 2" hy

n=—oo

Hence, the Laurent expansion of & is of the form

M
h(z) = z 2"y,
n=N
As f = f_hf,, this completes the proof. O

7.7 The finite dimensional case

In this section, L(n,C), n € N*| is the algebra of complex n x n-matrices, GL(n, C)
is the group of invertible complex n x n-matrices, D4 C C is a bounded, connected,
open set with piecewise Cl-boundary I such that 0 € Dy, and D_ = C\ D... Here
we prove the following theorem:

7.7.1 Theorem. Let A: T — GL(n,C) be a continuous function which admits local
factorizations with respect to I'. Then A admits a factorization with respect to T.
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Proof. By Theorem 7.6.1 (i) we may assume that A is of the form

M
A(z) =Y 214;,  A;€L(n,C), (7.7.1)

Jj=N

where —oo < N < M < oo. We need here the following definition: For x € Z and
x € C"\ {0}, a pair (¢, ") is called a s-section of z if o™ : D, — C™ and
¢~ : D_U{oo} — C™ are holomorphic functions such that

2o (2) = A(2)pt(2) forallzeTl and 01 (0) = .

If kK > M, then, for each x € C™ \ {0}, there exists a x-section of x, namely

M-k
ot (z) =2 and o (2):=2""A(z)z = Z AT
vl

J K

On the other hand, if Kk < N — 1, then no € C™ \ {0} has a s-section. Indeed,
let kK <N —1, and let (¢~, ") be a k-section of a vector z € C" \ {0}. Then

M
v (z) = z_”( Z szj)<p+(z) forall z e I'.
=N

Then the left-hand side of this equation is holomorphic on D_ Li{oo} and, as
j—rk>1for N <j < M, the right-hand side is holomorphic on D, . Hence, by
Liouville’s theorem, both sides vanish identically. It follows that

M

Az)pt(2) = ( > szj)w(z) =0 forzel.

J=N

Since the values of A on I' are invertible, this implies that ¢ = 0 on I'. Hence, by
uniqueness of holomorphic functions, o™ = 0 on D . In particular z = p*(0) = 0.

Hence, for each z € C™\ {0}, there exists a smallest integer s such that x
has a k-section. We denote this integer by x(x). Note that, for each x € Z, the set

{0} u{zeC"\{0} | k(z) < Kk}

is a linear subspace of C". Therefore, we can find a basis eq,...,e, of C" such
that
K(en) = Lo K(x),
, _ (7.7.2)
k(ej) = min k(x) for1<j<n-1.

zeCn\span(ejt1,...,en)
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Fix a ri(e;)-section (¢, gpj‘) of e; for each j. Denote by A4 and A_ the matrices
formed by the columns gp;' and ¢}, respectively, and let A be the diagonal matrix
with diagonal z#(¢1) . z%(en) Then

- = AA+ 5 (773)

and A4 (0) is the matrix with the columns ey, ...,e,. It remains to prove that
A4 () is invertible for all z € Dy, and A_(z) is invertible for all z € D_ U {oo}.
To prove this we assume the contrary.

First assume that the matrix A4 (z) is not invertible for some zg € D . Since
A4 (0) is invertible, zg # 0. Then there exist 1 < k& < n and numbers Ag,..., \,
with

Z )\jgo;r(zo) =0 and A, # 0,
and there is a holomorphic function ¢+ on D, with

VF(z) = ! Z)\jcpj(z) for 2 € Dy \ {20} .

Z— Z
Oj:k

Moreover, since #(e1) > ... > k(ey), there is a holomorphic function 3~ on
D_ U {0} with

n
Y (2) = . ZZ Z/\jz“(ef)f"(e"‘)@;(z) for € D_.
— 20 4
j=k

Since (¢}, gaj) is a k(e;)-section of e;, we get

+ H("J)
A=) ( —ZszAA )of (2 —ZszZAz ()

— Z"i(ek

$ A e (o) = ey (2) for 2 € T
Z— 20 =k

Hence (¢~,97) is a (k(ex) — 1)-section of the vector

n

1
+(0) = E iy
0) e k)\]e].

Since Ag # 0, this vector belongs to C™ \ span(egy1, ..., €e,), which is a contradic-
tion to (7.7.2).

Now we assume that the matrix A_(zp) is not invertible for some 2o € D_ U
{o0}. Then there exist 1 < k < n and numbers A, ..., A\, with

Z)\jgpj_(zo) =0 and A # 0,
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and there is a holomorphic function ¢~ on D_ U {cc} with

n

-3 Nip; () ifzpeD_and z€ D_\ {20},

z—z0 £
Y (2) = n =k —
ZZkAjSD;(Z) ifzp=o00and z€ D_.
ji=k
Moreover, since x(e1) > ... > k(e,), there is a holomorphic function ¢ on D
with
ﬁ > )\jz“(e’“)*“(ej)ga?(z) if 0€ D_and z € D,
vH(e) = o

)\jz"(ek)_”(eﬂ')goj(z) if 0 =o0cand z € Dy .
j=k

Using again that (¢}, gpj‘) is a k(e;)-section of e;, for all z € I we get

L )\jz"(e’f)goj_ (2) = 28R~ 1= (2) if z0€D_,

Z—Zz0 *
Jj=k

AW (2) =4 =
| k/\jzﬁ,(ek)(p;(z) — Zﬁ(ek)—lw—(z) if 2 = 00
j=

Hence (1), 9 ") is a (k(ex)—1)-section of the vector 17 (0). Let m be the index with
k <n < msuch that k(e;) = k(eg) for k < j <mand, it m < n, k(ems1) < K(ex).
Then

m —
—% Z)\jej ifZOGD,,
GO =4 m "

m
E )\j@j if Zp — O
j=Fk

Since \g # 0, in both cases ¥+ (0) belongs to C" \ span(egy1,...,€y,), which is
again a contradiction to (7.7.2). O

7.8 Factorization of G*°(F)-valued functions

In this section E is a Banach space with dimE = oo, Dy C C is a bounded,
connected, open set with piecewise C!'-boundary I' such that 0 € D, and D_ =
C \ D+.

Here we study the factorization problem for functions with values in G*°(E)
or G¥(E) (Def. 5.12.1). For G (E) we obtain the complete solution (Theorem
7.8.6) at the end of this section. For G¥(F) this is more difficult and can be done
only later (Theorem 8.2.2). But a part of the argument works for both G*(E) and
G¥(E). We start with these points of the argument.
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7.8.1 Proposition. Let R = co,w, and let A: T — GN(E) be a continuous function
which admits a factorization with respect to I'. Let A = A_AA, be a factoriza-
tion of A with respect to I' and GL(E). Assume moreover that A_(o0) = I (see
Proposition 7.1.6). Then, automatically, the values of A_ and A, belong to G¥(E).

Proof. Denote by 1 the unit element in the factor algebra L(E)/F™(E), and let
7 : L(E) — L(E)/FX(E) be the canonical map. Then (A) = 7(A) = 1 and
therefore
l=n(A_)m(Ay) onT and T(A_(c0)) =1.

Hence

W(Afl) =m(AL) onT (7.8.1)
and

m(AZ'(00)) = 1. (7.8.2)

By Theorem 1.5.4 the two sides of (7.8.1) define a holomorphic function f : CU
{00} — L(E)/FX(E). By (7.8.2), f(0) = 1. It follows from Liouville’s theorem
that f =1, i.e.,

m(AZ") =1 on D_ U {oc} and m(Ay)=1lon Dy.
This means that the values of A_ and A, belong to GX(E). O

7.8.2 Theorem. Let X = oo,w, and let G(L(E)/F(E)) be the group of invertible
elements of the factor algebra L(E)/FX(E), and let

7n: L(E) — L(E)/FYE)

be the canonical map. Further, let W C C be an open set, and let f : D —
G(L(E)/FX(E)) be holomorphic. Then there exists a holomorphic function A :
D — GL(E) such that

f(z) =n(A(2)) for all z € W. (7.8.3)

Proof. We first prove this locally. Consider an arbitrary point zg € W. Let

oo

F()=> (z=20)"fn

n=0

be the Taylor expansion of f at zy. Since 7 is bounded and surjective, then, by the
Banach open mapping theorem, we can find operators F,, € L(F) with n(F,) = f,
and [|Fy,|| < 2]/ fn]]- Let U € W be an open disc around zp. Then, setting

oo

F(z)=) (z—20)"F., z€U,

n=0

we get a holomorphic function F : U — L(E) with 7(F(z)) = f(z) for all z € U.
Since f(zp) is invertible, then Fy is a Fredholm operator with index zero. Therefore
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we can find a finite dimensional operator K in E such that Fy + K is invertible.
Choose a neighborhood V' C U so small that F(z) + K is invertible for all z € V.
Setting Ag(z) = F(z) + K, z € V, we obtain a holomorphic function 4g : V —
GL(E) with f(z) = n(Ag(2)) for z € V.

By the local statement just proved, there exist an open covering U = {U, }jer
of D and holomorphic functions A; : U; — GL(E) with 7(A;(2)) = f(z) for
z € U;. Then

W(AjAgl) :w(fffl) =1 on U; N Uy
for all j, k € I with U; N Uy # 0. Therefore, the values of the functions AjA;1 lie
in G¥(E). Now, from Theorem 5.12.5 we get a family of functions V; : U; — GX(E)
with
AAT=VVTE o UjnU
for all j,k € I with U; N Uy # 0. Setting A = Vj_lAj on U; we complete the
proof. O

7.8.3 Lemma. Let X = co,w, and let A : T' — GX(E) be a continuous function
which admits local factorizations with respect to T and GL(E) (Def. 7.1.3). Then
A admits local factorizations with respect to T and GN(E).

Proof. Let w € I' be given. By hypothesis there exist a neighborhood U of w and
continuous functions A_ : UND_ — GL(F) and Ay : UN Dy — GL(FE), which
are holomorphic in U N D_ and U N D, respectively, such that

A=A_A, onUNT. (7.8.4)

Let G(L(E)/F®(E)) be the group of invertible elements of the factor algebra
L(E)/FX(E), let 1 be its unit element, and let 7 : L(E) — L(E)/FY(E) be the
canonical map. Since 7(A4) = 1, then it follows from (7.8.4) that

m(AZY) =7(Ay)  onUNT. (7.8.5)

Hence, by Theorem 1.5.4, there is a holomorphic function f: U—G(L(E)/F>(E))
with B N
f|Uﬂ5, = W(Azl) and f|Umﬁ+ = 7T(A+) . (7.8.6)

By Theorem 7.8.2 we can find a holomorphic function A : U — GL(E) such that
m(A)=f. (7.8.7)

Set A =A AonUND_ and A = A‘lg+ on U N D. Then it follows from
(7.8.4) that
A=A_A, on T,

and from (7.8.7) and (7.8.6) it follows that m(A_) =1 on UND_ and w(A;) =1
on UN Dy, i.e., the values of A_ and A, belong to GX(E). O
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7.8.4 Proposition. Let X = co,w, let 0 <1 < R < 0o such that
5+§W::{ZE(C‘T<|Z|<R}, (7.8.8)
and let A: T — GX(E) be a continuous function which admits local factorizations

with respect to T' and GL(E) (Def. 7.1.3). Then:

(i) The function A can be written in the form
A=A_HA,, (7.8.9)

where the functions Ay and H have the following properties:

A_:D_U{cc} — GX(E) is continuous on D_U{oc} and holomorphic
in D_ U {oo};

Ay : Dy — GX(E) is continuous on D and holomorphic in Dy ;
H is of the form

M
H(z)=1+> z"H,, NMecZ, H,eF\E), (78.10)
n=N

and H(z) € GX(E) for all z € W;
(ii) The function A can be written in the form

A=A_HA,, (7.8.11)

where the functions Ay and H have the following properties:
A_:D_U{co} — GY(E) is continuous on D_U{oc} and holomorphic
in D_ U {oo};
Ay : Dy — GN(E) is continuous on D and holomorphic in Dy ;
H™' is of the form

M
H'2)=I+> 2"H,, NMecZ H,cFYE), (7812
n=N

and H=1(2) € GN(E) for all z € W.

Proof. The proofs of parts (i) and (ii) are similar (for (i) we use part (i) of Theorem
7.6.1, and for (ii) we use part (ii) of that theorem). We restrict ourselves to part
(i).

Let FX(E) be the Banach algebra of Definition 5.12.1. By Lemma 7.8.3, A
admits also local factorizations with respect to T' and GFY(E). Therefore, we can
apply part (i) of Theorem 7.6.4 (with A = F3(FE)), and we obtain a representation
of A in the form A = a_ha,, where
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a_:D_U{c} — GF}(E) is continuous on D_ U {oc} and holomorphic in
D_ U{oo};
ay : Dy — GFR(E) is continuous on D and holomorphic in D ;
h is of the form

M
hz)=Y_ z"hn, N,MEcZ,
n=N

and h(z) € GFY(E) for all z € W.
Let V: T — FYE), V- : D_U{oo} — FXNE), Vy : Dy — FYNE), U : W —
FYE), \- : D_U{co} = C*, Ay : Dy U{oc} — C* and A : W — C* be the
functions with A=14+V,ayx = A1+ VL and h = A + U. Then
T+V=MT+V) A +U)(Aed+V4),

which implies (as dim E = 0o) that A™! = A_\;. Hence

a=(1+%= (I+A7'0) I+ %),
A At
Setting A+ = Ai'ay and H = A~'h, we conclude the proof. O

The following Lemma 7.8.5 as well as the subsequent theorem here will be
proved only for the group G*°(E). Below we obtain these results also for G¥(FE)
(Theorem 8.2.2). But then the proof is more difficult, because then the approxi-
mation argument used in the proof of Lemma 7.8.5 does not work.

7.8.5 Lemma. Let A : ' — G°(E) be a continuous function which admits local
factorizations with respect to I' and GL(E) (Def. 7.1.3). Moreover, let 0 < r <
R < 00 be given such that

D, CW:= {ze@‘r<|z|<R}. (7.8.13)
Then A is equivalent with respect to T' and G™(E) to a function of the form
Q + PApP, where:
— P is a finite dimensional projector in E and Q = I — P;

- Ap is a rational function with values in L(Im P) such that Ap(z) is invertible
forallze W.

Proof. By part (i) of Proposition 7.8.4, we may assume that A is already of the
form

M
Az) =1+ 2"A,, N,MeZ A,eF=(E),
n=N
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and that A(z) is invertible for all 2 € W. Set
W_:{zE(C‘r<|z\} and W+:{ZEC‘|Z|<R}.
Then, by Theorem 7.5.1, for some € > 0, the following holds:

(*) For each B € OFLE)(W) with max__y; | B(z) — 1| < ¢, there exist By €
OCLE)Y W ) and B_ € OFUE)(W_ U {oo}) with B= B_By on W.

As A, € F>*(FE), we can chose finite dimensional operators F, so close to A,
that, for the function

M
F(z):=1+ Z 2" F,
n=N
we have:

F(z) € GL(E) forall z€ W, and max HAFfl(z) - IH <e.
zeW

Then, by (*), AF~! can be written in the form
AF~'=B_B, (7.8.14)

with B, € OYHE) (W, ) and B_ € OFHE)(W_ U {cc}). Choose a finite dimen-
sional projector in E with Im F,, C Im P and Ker P C Ker F,, for N <n < M, and
set @Q =1 — P. Then F = PFP + Q on W. Setting Ap = PF}ImP, we conclude
the proof. ([

7.8.6 Theorem. Let A : T' — G*®°(E) be a continuous function which admits local
factorizations with respect to I' and GL(E). Then A admits a global factorization
with respect to T' and G (F).

Proof. This follows immediately from the preceding Lemma 7.8.5 and Theorem
7.7.1. O

Under certain additional assumptions about the function A in Theorem 7.8.6,
we can say correspondingly more about the factors of the factorizations of A. We
have:

7.8.7 Corollary. Let 0 < o < 1 and k € N, where, for k > 1, we additionally
assume that T is of class C* (Def. 3.4.1). Let A : T' — G>(E) be a function of
class CkT< (Def. 3.4.3). Then:

(i) A admits a factorization with respect to T' and G (E).

(ii) If A = A_AA, is an arbitrary factorization of A with respect to I', then
automatically, the factors A_ and A, are of class C*¥* on D_ and D,
respectively.
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Proof. Part (i) of Theorem 7.3.1 in particular states that A admits local factoriza-
tions with respect to I'. Therefore part (i) of the corollary follows from Theorem
7.8.6. Part (ii) of the corollary follows from part (ii) of Theorem 7.3.1 O

7.8.8 Corollary. Let I' = T be the unit circle, and let R be a Banach algebra of
continuous L(E)-valued functions satisfying conditions (A), (B) and (C) in Section
7.2.4. For ezample, let R = W (L(E)) be the Wiener algebra (see Section 7.2.1).
Let A: T — G*®(E) be a function which belongs to R. Then:

(i) A admits a factorization with respect to T' and G (E).

(ii) If A = A_AA, is an arbitrary factorization of A with respect to T', then
automatically, the factors A_ and Ay belong to the algebra R.

Proof. Part (ii) of Theorem 7.2.5 in particular states that A admits local factor-
izations with respect to I'. Therefore part (i) of the corollary follows from Theorem
7.8.6. Part (ii) of the corollary follows from part (iii) of Theorem 7.2.5. O

7.9 The filtration of an operator function
with respect to a contour

In this section E is a Banach space, Dy C C is a bounded connected open set
with piecewise C*-boundary I' such that 0 € D,. We set D_ = C\ D,.

7.9.1 Definition. Let A : ' — GL(F) be a continuous function, and let x € Z.

(i) A pair p = (¢, ¢4) will be called a (T', x)-section or simply a -section of A
ifo_:D_U{oo} — F and ¢ : Dy — E are continuous E-valued functions
which are holomorphic in D_ U {oco} and D, respectively, such that

2"p_(2) = A(2)p+(2) for z €I (7.9.1)

(ii) We denote by M(x,A) = M(k,T', A) the space of all k-sections of A. We
consider M (k, A) as a Banach space endowed with the norm defined by

el ;= max }||<P—(Z)|| + max [ (2)]| (7.9.2)

zeD_U zeDy

for ¢ = (p—, 1) € M(k, A).
(iii) We define

M_(z,k,A) = M_(z,k,T, A)
—{¢-2)

(p—,p4) € M(ﬁ,A)} for 2 € D_ U {00}



252 Chapter 7. Plemelj-Muschelishvili factorization

and
My(z,k,A) = My (z,k,T, A)
= {e+() | (o= p4) € Mk, 4)} forz €Dy

Since 0 ¢ T, it follows from (7.9.1) that

M_(z,k,T,A) = A(z)M;(z,k,T,A) forallzeT andk €Z. (7.9.3)

7.9.2. Let A: T — F be a continuous function, let k, u € Z, and let (p_,p_) be
a k-section of A. Since I is the boundary both of D_ and D., then it follows by
uniqueness of holomorphic functions from (7.9.1) that each of the two components
w4+ and @_ is uniquely determined by the other one.

7.9.3. Let A: ' — E be a continuous function, and let s, u € Z with £ > p. Then
M_(z,k,T,A) D M_(z,u,T,A) for 2 € D_ U {0}, (7.9.4)
My(z,k,T,A) D My(z,u,T, A) for € Dy . (7.9.5)

This follows from two obvious statements:

(i) If (w_,wy) € M(u,T,A) and z € D_U{oc}, then (¢_, ¢ ) := (w_,>) with
G4(Q) =C""wi(C),  C€D4,
is a k-section of A with ¢_(z) = w_(2).
(i) If (w—,wy) € M(u,T', A) and z € D, then (¢_, ¢ ) := (0_,w) with
B-(Q)=¢""w_(¢),  ¢€D-U{oo},
is a k-section of A with ¢4 (2) = wy(2).

7.9.4 Lemma. Let A : ' — GL(FE) be a continuous function which admits local
factorizations with respect to I'. Then there exist integers k_ < ki such that:

(i) If k € Z with k < K_, then
M(k,T,A) =0, (7.9.6)
i.e.,

M_(z,k,T,A)=0 for all z € D_ U {cx},

_ (7.9.7)
Mi(z,kT,A)=0 forallz € Dy .
(ii) If k € Z with k > k4, then
M_(z,k,T,A)=F or all z € D_ U {0},
( ) f {0y (7.9.8)

M (2,k,T,A)=FE  forallz€ D, .
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Proof. By Theorem 7.6.1, there exist integers N < M, functions H,T : I' —
GL(E) of the form

M M
S(z) = Z 2" S, and H(z) = Z 2"H, ,
n=N n=N

and functions A_,T_ € OLE) (D_U{oo}) (Def. 5.4.5) and Ay, Ty € OLE) (D)
such that
A=A_HA, onT (7.9.9)

and
A=T_S7'T, onT. (7.9.10)

Set
k=N and ky+ = max(—N, M).

We now first prove part (i). Let K < k_ —1 = N — 1 be given, and let
(p—,o4+) € M(k,A). Then it follows from (7.9.9) that

M
Fo () = A(2) Y] S Ha AL () (2)
n=N
and therefore
M
ATN2)p_(2) = > C"FHpAL(2)ps(2),  z€T.
n=N

Sincen —x >n—N+1 > 1 for n > N, the two sides of this relation define a
continuous function on CU {oo} which is equal to zero for z = 0. This function is
holomorphic outside T' and, hence, by Theorem 1.5.4, holomorphic on C U {o0}.

Therefore, by Liouville’s theorem, it is identically zero. In particular A~ p_ = 0.
Since the values of A_ are invertible, it follows that ¢_ = 0 and, consequently,
v, =0.

We prove part (ii). First let x > r; and z € D_ U {oco} be given.
For n > N, then n + k > n — N > 0. Therefore, setting

21 () =CTHHOSOT (=)o, (e Dy,

we get a function ¢ € OF (D). Moreover, setting
¢_(O)=T_((T='(2)v,  ¢(eD-U{co},

we get a function ¢_ € OF (D_ U {oo}). From (7.9.10) it follows that

AQp1(Q) =T_(Q)SHOTLOC T (OS(OT (2)v = ¢Fp_(C)
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for ( € T. Hence (p_,p1) € Ma(k,A). It remains to observe that ¢_(z) =
T ()T~ (2)v = .

Now let K > k4 and z € Dy. Forn < M, then n —x < M — ky < 0.
Therefore, setting

e (Q)=C"A(QH(C)A (2)v,  (€D_,

we get a function ¢_ € OF(D_ U {oo}). Moreover, setting

v ()= AT QAL (v, (eDy,

we get a function ¢4 € OF (D). From (7.9.9) it follows that

A(Qp4(¢) = A_(QH(OAL(OAT(OA (2)v = "o (0)

for ¢ € I'. Hence (p_,p1) € Ma(k,A). It remains to observe that ¢, (z) =
AT (2) AL (2)v = 0. O

7.9.5. Let A,A: I — GL(E) be two continuous functions, which are equivalent
with respect to I and GL(E) (Def. 7.1.3) and which admit local factorizations with
respect to I' (Def. 7.1.3), and let A_ € OFLE) (D_U{oc}) and A, € OLE) (D)
be functions (which then exist) such that A = A_ AA, on I. Then it is clear that:

(p—,py) is a (T, k)-section of A, if and only if, (A7<p7,A11<p+) is a (T, k)-
section of A.

Hence
M_(z,k,TA) = A_(2)M_(z,k,T,A) for all z€ D_U{oo} and € Z,
M,y (z,k,T, g) = Ajrl(z)MJr(z, k, T, A) for all z € Dy and k € Z.

7.9.6 Definition. Let A : I' — GL(E) be a continuous function. An integer £ will
be called a partial index of A relative to I' or simply a partial index of A if there
exists a point z € CU {oco} such that:

if z€ D_U{oco}, then M_(z,k—1,T, A) ; M_(z,k,T,A),
if z€ Dy, then M (z,k— 1,1, A) § My(z,k,T,A).
Note that if A admits local factorizations relative to I, then, by Lemma 7.9.4, the

set of partial indices of A is not empty and finite.

7.9.7 Theorem. Let A: T — GL(FE) be a continuous function which admits local
factorizations with respect to T (Def. 7.1.3), and let kv > ... > k, be the partial
indices of A with respect to I'. Then:
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(i) For all z € D_ U {00},
M_(z,k;,TA)=E and M_(zk,—1,T,A) ={0},
and, for all z € D,

My(z,k,I'A)=FE and Mi(z,k, —1,T,A) ={0}.

(ii) For each partial index kj, 1 < j < mn, there exists d; € N* U {oo} such that

6= dim (M_(z,k;,T, A)/M_(z,k; —1,T,A)) if 2 € D_ U {oc},
7\ dim (Mg (2, k5, T, A) /My (2,k; — 1,T,A)) ifz€ Dy

(iii) Let 1 < j < n, let d € N*, and let (¢, ,¢}) € M(k;,T,A), 1 < v <d.
Assume, for at least one point z € CU {0}, the following condition C(z) is

satisfied:
If z € D_U{oco}, then the classes in the factor space
M_(z,k;,T, A)/M_(z, k; —1,T', A), defined by the vectors
c(2) 01 (2),...,¢,(2), are linearly independent.

If z € D, then the classes in the factor space
M+(z,l<:j,F,A)/M+(z,kj —1,T,A), defined by the vectors
0T (2),...,05(2), are linearly independent.

Then condition C(z) is satisfied for all z € CU {o0}.
Before proving this theorem, we use it for the following

7.9.8 Definition. With the notations from the preceding theorem we define: d;
will be called the multiplicity of k; (as a partial index of A with respect to I'),
1 < j < n. The family of families of subspaces

1<j<n

— - b

{M+(z,kj,I‘,A)} and {M,(z,kj,F,A)}

2€D4 2€D_U{oo}

will be called the filtration of A relative to I' or simply the filtration of A.

7.9.9 Remark. Let A, A : I' — GL(E) be two continuous functions which are
equivalent relative to I' and GL(E) (Def. 7.1.3), and which admit local factoriza-
tions with respect to I' (Def. 7.1.3). Then it follows from Section 7.9.5 that A and
A have the same partial indices with the same multiplicities relative to I.

Proof of Theorem 7.9.7. Clearly, (ii) follows from (iii). Moreover, taking into ac-
count Lemma 7.9.4, assertion (i) follows from (ii). Therefore, it is sufficient to
prove (iii). By Theorem 7.4.2, A is equivalent with respect to T' and GL(FE) to a
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holomorphic function in a neighborhood of I'. Therefore and by Section 7.9.5, we
may assume that A is holomorphic in a neighborhood of T
To prove (iii), we assume that (iii) is not true, i.e., we assume that there are
two points z,w € CU {oco} such that C(z) is satisfied, but C'(w) is not satisfied.
Since C(w) is not true, we can find a non-zero vector (A1,...,Aq) of complex
numbers such that:

d
ZAVSDJ(U}) €M_(w,kj —1,A) if we D_U{cc},
v=1
d
SN (w) € My(w,k; —1,4)  ifweD,.
v=1

By definition of My (w,k; — 1, A), then there exists a (k; — 1)-section (w™,w™) of
A such that

d
w (w) = Z AL, (w) ifweD_,
v=1
d
wh(w) = Z Aot (w) ifwe Dy .
v=1

As observed in 7.9.3, this (k; — 1)-section can be modified so that we get a k;-
section (W™, @™) of A such that still

d
o (w) = Z Ay, (w) if we D_U{cc},
vl (7.9.11)

d
Gtw) =Y M\ef(w)  ifweDy,
v=1

but

0 (¢) e M_(¢,kj —1,A) forall ¢ € D_U{oo},

. = (7.9.12)
0T (¢) e M_(¢,k; —1,A) forall (e D,.

If w # oo, then we set

d
510= 75 (T O -2 A ©) oD,

and

1 d _
(O = (w+<<> - Zwm) for ¢ € Dy \ {w}.

(—w
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If w = oo, then we set

d
6 (¢) = c(a—(o -y w;@)) for e D_,
and

d
PO =) = D> Neh(¢) for¢eDy.
v=1

Since A is holomorphic in a neighborhood of T' and therefore the functions &+ and
@+ are holomorphic in a neighborhood of T, then, by (7.9.11), we obtain a pair of
holomorphic functions 4~ : D_ U {cc} — E and 4" : D, — E with

AP =¢H9m () forCeT.
Hence (¢p~,47) is a (k; — 1)-section of A, and therefore

Y (z) € M_(2,k; —1,A) if z€ D_U{cc},

] _ (7.9.13)
V(z) € My(2,kj —1,A) ifzeD,.
On the other hand,
d
w(z)zzjw(@(z)—;AH¢(z)> if w#ooandz€ D_,
d
1/17(2):&*(2)72)\#g0*(z) if w+# oo and z =00,
p=1
d
YH(z) = wa(&+(z);A#¢+(z)> if w#ooand z€ Dy,
d
P~ (2) :z(&*(z) —Z)\ugp*(z)> if w=o00and z€ D_,
=1
du
¢+(z):a~u+(z)—2)\ugp+(z) ifw=o0and z€ D, .
pn=1

By (7.9.12) and condition C/(z), this implies that

Vv (2) € M_(z,kj, A)\ M_(z,k; —1,A) if z€ D_U{o0},
1/1+<Z)6M+<Zakj7A)\M+(z7kj_17A) ifZEEJra

which contradicts (7.9.13). O
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Theorem 7.9.7 contains interesting information concerning the Riemann-
Hilbert boundary problem. To state it, we first give the following

7.9.10 Definition. Let A:T' — GL(E) be a continuous function, let z € CU {o0},
let v € E, let k € Z, and let (p4,p_) be a xk-section of A (Def. 7.9.1). We shall
say that (o4, ¢_) is a (', k)-section of simply a s-section of A through (z,v) if 3

o_(2)=vifze D_U{cx} and  py(z)=vifze D;.

With this definition, from Theorem 7.9.7 we immediately obtain:

7.9.11 Corollary (to Theorem 7.9.7). Let A : ' — GL(FE) be a continuous function
which admits local factorizations with respect to I, let k1 > ... > k, be the partial
indices of A (Def. 7.9.6), and let d; be the multiplicity of k; as a partial index of
A (Def. 7.9.8), 1 < j < n. Then, for each point z € CU{oo}, there exist (possibly
not closed) linear subspaces En, ..., E, of E such that E is the algebraically direct
sum of Eq,...,Ey,

dim E; = d; for1<j<n
and such that, for each 1 < j <n and each v € E; with v # 0 the following hold:
(i) There exists a k;-section of A through (z,v).
(ii) If p < kj, then there exists no p-section of A through (z,v).
(iii) If (¢—,¢+) is a kj-section of A through (z,v), then

(p*(C) € M*(CJCWA) \M*(Z?kj - 1?A) fOT all C € D_u {OO},
() € My (G, kj, A)\ My (2,k; —1,A) forall( €Dy .

(iv) If (o=, p+) and (Y—_,y) are two kj-section of A through (z,v), then

SD*(C)_w*(C)GM*(Cukj_lﬂA) fO’f‘ CLHCEE,U{OO},
@4 (Q) —¥-(¢) € My(2,kj —1,A) forall¢ € Dy .

Proof. Let z € CU {00} be given. Put

M_(z,k,A) if z€ D_U{o0},

_ eZ.
M+(Z,I€,A) if z € D+, "

M(z,k, A) :{

The space F,, is uniquely determined. We have to set E, = M(z,k,, A). If 1 <j <
n—1, then for E; we can (and have to) choose an arbitrary algebraic complement
of M(z,k; —1,A) in M;(z,k;,A). O

3For z € T’ we have to make a choice. Just as well we could require that ¢4 (2) = v.
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7.10 A general criterion for the existence of
factorizations

In this section, E is a Banach space, Dy C C is a bounded, connected, open set
with piecewise C'-boundary I' such that 0 € D, and D_ =C\ D,.

7.10.1 Theorem. Let A:T' — GL(E) be a continuous function which admits local
factorizations with respect to I'. Then the following are equivalent:

(i) A admits a canonical factorization with respect to T'.
(ii) Zero is the only partial index of A with respect to T' (Def. 7.9.6).

Proof. (i)=>(ii): Assume that A = A_A, is a canonical factorization of A with
respect to T'.
Let (¢—, ¢4 ) be a —1-section of A. Then

%A:l(z)gp,(z) = A (2)p1(2) forall z €T\

Then, by Theorem 1.5.4, the two sides of this equation define a holomorphic func-
tion on C U {oo} which vanishes at z = co. Hence, by Liouville’s theorem, this
function is identically zero. It follows that A~'¢_ = 0on D_U{oo} and A, ¢, =0
on D,. Since functions A~! and A, are invertible, this implies that ¢ = 0 on
D_U{oo} and ¢, =0 on D, . Hence

M(~1, A) = {0}. (7.10.1)
If z€ D_U{oo} and v € E, then, setting
p_(()=A_(O)AZ (2)v  for (€ D_U{oo},
v () =AT QA (2)v for (e D.,
we get a O-section (p_,p4) of A with ¢_(z) = v. Hence
M(z,0,A)=FE  forall z€ D_U/{oo}. (7.10.2)
If z€ D, and v € E, then, setting
6 () =A_(QA (=)0 forCeD_U{oo)
p1(Q) = ATNOA, (=)0 for €Dy,
we get a O-section (p_, ) of A with ¢ (2) = v. Hence
M(z,0,A)={0}=F forall z € Dy. (7.10.3)

From (7.10.1)—(7.10.3) it follows that zero is the only partial index of A with
respect to I'.
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(ii)=-(i): Assume that zero is the only partial index of A. By Theorem 7.9.6
this means that
M(-1,A) = {0} (7.10.4)
and
M_(z,0,A)=F for all z € D_ U {0},
_ (7.10.5)
My(2,0,A)=F forall z€ D .

For each ¢ = (p_,¢4) € M(0, A), we define
D_(2)p =p_(2) for 2 € D_ U {0},
D, (2)p=pi(2) for z€ D, .

Recall that we consider M (0, A) as a Banach space (cf. Def. 7.9.1). Then it follows
from the maximum principle that

B_(2) € L(M(O,F,A),E) for all z € D_ U {oo},

B, (z) € L(M(O,F, A), E) for all z € D .
By Theorem 7.9.7, the operators ®_(z), 2 € D_ U {oc}, and ®,(z), z € Dy,
are injective. Moreover, by (7.10.5), these operators are surjective. Hence, by the
Banach open mapping theorem, they are invertible from M (0, A) onto E.
By Theorem 7.4.2 and Remark 7.9.9, in this proof, we may assume that A is

holomorphic in a neighborhood of T'. Then, for each ¢ = (¢_,¢4+) € M(0, A), it
follows from the relation

p-(2) = A(2)ps(2),  z€l,

that ®_¢ = ¢_ is holomorphic on D_ U{oo}, and @, = ¢, is holomorphic on
D . Hence the functions

&_:D_U{c0} — L(M(O,A),E) :
®,:Dy — L(M(QA),E)

are holomorphic (Theorem 1.7.1).
Now we fix some point zg € I', and set

A_(2) = D_(2)®""(20) for 2 € D_ U {oo},
Ap(2) = @, (2)2=" (20) for € Dy .

Then A = AfA;1 on I'. Indeed, let v € F and z € I be given. Set

o =(p_,p4) =07 (2)0.
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Then ¢_(z) = A(2)¢+(2) and @4 (z)p = v, and therefore
A_(2)ATM(2)v = @_(2) 7 (20)@_(20) @1 (2)v = D_(2)p
— o (2) = A (1) = AR () = Ao, o

7.10.2 Lemma. Let A : T — GL(FE) be a continuous function which admits local
factorizations with respect to T'. Suppose A has negative partial indices with respect
to ' (Def. 7.9.6). Denote these negative partial indices by k1 > ... > K. Let N
be the subspace of M(0,A) (Def. 7.9.1) which consist of the sections (p_,¢4) €
M (0, A) with

v_(z) € M_(z,k1,A) for all z € D_ U {0},

0(2) € My(z,K1,A) forall z € D, .

If each of the negative partial indices K1, . . . , Ky has finite multiplicity (Def. 7.9.8),
then N is finite dimensional.

Proof. Let d; be the multiplicity of x£;, 1 < j < m. Set kg = 0 and K11 = K — 1.
Suppose d; < oo for 1 < j < m. Then we can find vectors vj1,...,vj4;, €
M(0,k;,A), 1 <j < m, which define a basis in the factor space

M(0, k5, A) / M0, 51, 4) .
Further, for 1 < j <m and 1 < v < d;, we choose a section

G = (95 9]) € M(k;, A)
with cp;fV(O) = v, ,. By Theorem 7.9.7, then, for 1 <j <m,

for all z € D_ U {oc}, the vectors ¢}, (2),.. ., ©;a,(2)
define a basis in the factor space M_(z,k;, A)/M_(z,kj41,A),

_ (7.10.6)
and, for all z € D, , the vectors 90;,1 (2)y..., gp;dj (2)
define a basis in the factor space M (z, k;, A) /M (2, kjt1, A) .
Note that this in particular implies that
for all z € D_ U {oo}, the vectors ¢; ,(2),1 < j <m,
1 <v <dj, form a basis of the space M_(z, k1, A),
(7.10.7)

and, for all z € D, , the vectors <p;fl,(z), 1<j<m,
1 <wv <dj, form a basis in the space My (z, k1, A).
Moreover, for 1 <j <m, 1 <v <d; and 0 < s < —kj, we define
Pqin(2) =207 (2) forze D_,
go::j,y(z) = zscpzy(z) for z € Dy .
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Then each (gas_’j’ygoj’j’y) belongs to the space N. To prove that dim N < oo, now
it is sufficient to prove that the finite system

{‘Psd,u}1gj§m,1gugdj,ogsgfnj

generates N.

For that we consider an arbitrary (¢— ¢+) € N. By (7.10.7), there are
uniquely determined continuous functions A} _U{oo} — C and )\ : Dy —
C, which are holomorphic in D_ U {oo} and D+, 1respectlvely7 such that

b= Y AL(ep(s) forzeDU{oo},
1<j<m,1<v<d;
B (7.10.8)
¢+(Z) = Z )\IV(Z)QOIV(Z) for z € D+ .

1<j<m,1<v<d;

Since ¢_(2) = A(2)d+(2) and 2% ¢; (2) = A(z)goj'y(z) for z € T, this implies
that

S L@ = Y 29AL (e, () forzel.

1<j<m,1<v<d; 1<j<m,1<v<d;
By (7.10.7) this implies that
)\;V(z):z”j/\j:u(z) forzel', 1<j<m,1<v<d;.
It follows by Liouville’s theorem that, for some numbers a5 ; .,

Ry —Rj

9= S AL = Yo,
s=0
Together with (7.10.8) this implies

¢- = > O P jw

1<j<m,1<v<d;,0<s<—k;

_ +
P+ = Z Qs jvPs,jv -

1<j<m,1<v<d;,0<s<—K;

]

7.10.3 Theorem. Let A :T' — GL(E) be a continuous function which admits local
factorizations with respect to I'. Then the following are equivalent:

(i) A admits a factorization with respect to I.

(ii) If A has non-zero partial indices (Def. 7.9.6), then each of them has finite
multiplicity (Def. 7.9.8).
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Moreover: If these equivalent conditions are satisfied and if A = A_AAL is a
factorization of A with respect to T', then:

(a) If zero is the only partial index of A with respect to T', then A =1.
(b) If there exist non-zero partial indices of A with respect to I', then:

— The numbers k1 > ... > Ky from Definition 7.1.1 are the non-zero
partial indices of A.

— If Pr,..., P, are the projections from Definition 7.1.1, the dim P; is the
multiplicity of k; (as a partial index of A), 1 < j < n.

- If zero is a partial index of A (which is always the case for dim E = o),
then dim Py is the multiplicity of zero (as a partial index of A).

Proof. First assume that there exists a factorization A = A_AA, of A with re-
spect to I'. Then, by Section 7.9.5, the diagonal factor A and A have the same
partial indices with the same multiplicities. If zero is the only non-zero partial
index of A, then it is clear that A = I. If there exist non-zero partial indices of
A, then it is also clear that, with the notation from Definition 7.1.1, the num-
bers k1 > ... > Kk, are these non-zero partial indices with the multiplicities
dim Py, ...,dim P,, respectively. Further it is clear that zero is a partial index of
A, if and only if, Py # 0 and that then dim Py is the multiplicity of zero.

Now we assume that condition (ii) is satisfied. It remains to prove that then
A admits a factorization. If zero is the only partial index of A, we know this from
Theorem 7.10.1.

Assume there exist non-zero partial indices of A. For simplicity we consider
only the case when there exist both positive and negative partial indices. (It is
clear how to modify the proof in the other cases.) Let k1 > ... > Kk, be the
positive partial indices of A, and let k,,4+1 > ... > Kk, be the negative partial
indices of A. Let N be the subspace of M (0, A) defined in Lemma 7.10.2. By this
lemma, N is finite dimensional.

If (p—, 1) € M(0,A), then we define

o (2)((¢-s94)) =9-(s)  forze D_U{oo},
,(2)((por94)) =p4()  forz€Dy.

It follows from the maximum principle for holomorphic functions that in this way
functions

&_:D_U{c0} — L(M(O,A),E) :
_ (7.10.9)
®,:Dy — L(M(O,A),E)

are defined.
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By Theorem 7.4.2 and Remark 7.9.9 we may assume that A is holomorphic
in a neighborhood of T'. Then, for each ¢ = (p_,p4) € M(0, A), it follows from

p-(2) = A(2)p+(2),  z€l,

that ®_¢ = ¢_ is holomorphic on D_ U{oo}, and @, = ¢, is holomorphic on
D . Hence the functions (7.10.9) are holomorphic (Theorem 1.7.1).
Note that, by definition,

M_(2,0,A) =Im®_(z) for 2 € D_ U {0},

_ (7.10.10)
My(2,0,A) =Im®, (2) for z € Dy

and
D_(2) = A(2)P4(2) for zeT. (7.10.11)

Since the positive partial indices of A have finite multiplicities, it follows from
Theorem 7.9.7 that the spaces M_(z,0,4), z € D_ U {co}, and M, (2,0, A),
2z € Dy, are of finite codimension in E. Since the operators ®_(z) and ®,(2)
are linear and bounded, this implies together with (7.10.10) that these spaces are
closed in FE.

Since N is finite dimensional, N is complemented in M (0, A). Therefore,
M (0, A) can be written as a direct sum

M(0,A) = N+ N*
with some closed subspace Nt of M (0, A). Set

_ - n —
Ey(z) = i(z)N for z € D_ U {00}, (7.10.12)

L(z)N*t forz€ Dy .

Then, by definition of N and by Theorem 7.9.7,

O_(2)N C M_(z,km+1,A4), z€ D_U{oc},

‘1>+(z)NCM+(z KEm+1,4), z€Dy,

Ey (z)NM_(z, km+1,A) = {0}, z€ D_U{o0},
(2)

Ef (2 ﬂM+(z Km+1,4) = {0}, z€Dy.

Since the spaces My (z,0, A) are closed and the spaces M4 (z, k1, A) are finite
dimensional, this together with (7.10.10) implies that also the spaces E; (z), 2z €
D_U{oo}, and Ej (2), z € Dy, are closed and that

M_(2,0,A) = Ey (2) + M_(2,km+1,A), 2z € D_U{oo},

. _ (7.10.13)
M (2,0,A) = Ef (2) + My (2, kmy1,A), z€ Dy .
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Moreover, by Theorem 7.9.7 and the definition of N,

Ker®_(z) NN+ = {0}, z€ D_U{x},

. - (7.10.14)
Ker®,(z)NN— = {0}, ze€Dy.

Hence, by the Banach open mapping theorem, for 2 € D_ U {cc}, the operator
®_(z)|,. is invertible as an operator from N=t to E; (2), and, for 2 € D, the

operator <I>+(z)|NL is invertible as an operator from N+ to Eg (2).

Now we fix some point zg € I'. Let <I>(__1)(zo) : By (20) — N+ be the inverse
of ®_(z) as an operator from N1 to Ej (z), and let @iﬁl)(zo) : Ef (20) — N*
be the inverse of ®, (zp) as an operator from N* to EJ (z0). Then, setting
Aj(z) = <I>,(z)<I>(:1)(ZO) for 2 € D_ U {0},
AT (2) = @4 ()0 (20)A N (2)  for z€ Dy,

we obtain holomorphic functions

Ay :D_U{oo} — L(Eo_(zo),E),
Af : Dy — L(Ey (20), E) ,

with injective values and such that

Ag (2)Eq (20) = By (2)  forz € DU {oo}, (7.10.15)

A (2)Eg (20) = By () forz€ Dy
Note that, by (7.10.11), for z € T,
A(2)AT () = A(2) 04 ()0 (20) A (20) = D (2)@(V (20) A7 (20).
Since, again by (7.10.11), &V (29) A~ (z9) = " (2), this implies that
A(2)Ag(2) = Ay (2)  forz €. (7.10.16)

Set
E; (20) = M_(20, ki, A) (7.10.17)

and choose, for 1 < j7 < n — 1, a subspace Ej_(zo) of M(zo, kj, A) such that

M_(z0,k:,A) = E7 (20) + M_(20, k41, A) if j #m,
(20, K5, A) = E (20) | (20, K41, 4) i j# (7.1018)
M_(Zo, Klm,A) = E;l(ZQ) + M_(Zo,O,A) .

From (7.10.13), (7.10.17) and (7.10.18) it follows that

E=E;(20) + Ey (20) + ...+ E; (20) - (7.10.19)
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By (7.10.17) and (7.10.18), for 1 < j < n, we can find sections
(@;‘_1730?1)a"'a(()0;dj790;_dj) GM(ZO7H’j7A)a 1§]§n7

such that ¢ (20), .- '790;dj(20) is a basis of E; (20). Let E; (2), 2 € D_ U {oo},
be the space spanned by cpjf(z), cee gpfg (2), and let Ej (2), z € Dy, be the space

spanned by (pirj (2)y. .., cp;rdj (2). Then, from Theorem 7.9.7 and (7.10.19) it follows
that

E=E;(2)+E[(2)+...+E;(2), z€D_U{cx},
E=Ef(2)+Ef()+...+Ef(z2), 2€D,.
Now, for 1 < j <mn, let
A D_U{occ} — L (Ej_(zo), E)
be the holomorphic function defined by
A7 (2)p5,(20) = 95, (2), z€D_U{oo}, 1<v<dy,

and let o
A;‘ Dy — L (Ej_(zo),E)

be the holomorphic function defined by

AL (2)p5,(20) = ¢}, (2),  z€Dy, 1<v<d;.
Note that then
AT (2)E; (20) = E; (2), ze€D_U{x}, 1<j<n,

P " — , (7.10.20)
AT (2)E; (20) = B (2), z€Dy, 1<j<n.
Moreover, then, for z €', 1 <j <nand 1 <v <dj,
A(2)AS (2)¢5,(20) = A2)¢},, (2) = 2" 0}, (2) = 2 Af (2) 5, (20) -
Hence
ZMAL(2) = A(Z)A;_(Z), zel', 1<j<n. (7.10.21)

By (7.10.19) there are mutually disjoint projectors P;, 0 < j < n, in E with
I=F+P+...+PFP, and ImPF; :E;(zo)7 0<j<n.
Set

A_(z) = ZA; (2)P; for z € D_U{oo},
=0

Ap(2) =) Af(2)P; forzeDy,
=0

A(z):PO—i—Zz’“JPJ
Jj=1
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By (7.10.19), (7.10.15) and (7.10.20), in this way holomorphic functions
A :D_U{x} —GL(E) and Ay;:D_ — GL(E)
are defined. It follows from (7.10.21) and (7.10.16) that
A(2)AL(z) = A_(2)A(z) for zeT.

Hence A = A,AA;1 is a factorization of A with respect to I'. O

7.11 Comments

This type of factorization written without the diagonal factor for matrix func-
tions was considered for the first time in the pioneering work of Plemelj [Pl]. The
complete proofs were given by N.I. Muschelishvili [Mu]. This was the motivation
behind the term Plemelj-Muschelishvili factorisation. This form of the factoriza-
tion which is considered here was first proposed for matrix functions in [GK]. In
some sources, this form of factorization is called Gohberg-Krein factorization or
Wiener-Hopf factorization or factorization along a contour. For connections with
Wiener-Hopf and Téplitz operators, see the next chapter. The example (8.13.2)
was given in [GK]. A general review for factorizations in algebras and applications
can be found in [Go4]. The first factorization theorem for operator-valued func-
tions (the result of Section 7.8) was proved in [Go2]. Another proof of this result
was given in [Lel, Le3] (see also [CG]). The local principle for matrix functions
was proposed by M.A. Shubin [Shl]. The extension of this principle to operator
functions as well as applications one can find in [GL4]. For other directions of de-
velopments in matrix and operator functions, see [BGK, GKS, GLR, GGK1, CG].
Factorization theory of operator-valued functions represents also an important
tool in spectral theory of operator functions and operator polynomials (see, for
instance, [Ma] and [Ro]).



Chapter 8

Wiener-Hopf operators,
Toeplitz operators and
factorization

In this chapter we continue to study the factorization problem, where now the
emphasis is on the connection with Wiener-Hopf and Toeplitz operators. This
chapter also contains applications to operator-valued Wiener-Hopf equations and
equations with infinite T6plitz matrices. The local principle continues to play an
important role.

8.1 Holomorphic operator functions

In this section E is a Banach space, D4 C C is a bounded connected open set with
piecewise C1-boundary I' such that 0 € D, and D_ := C\ D Further, we assume
that a bounded neighborhood W of T is fixed such that each connected component
of W contains at least one connected component of I'."! We set W, = D, UW
and W_=D_UW.

8.1.1 Definition. We denote by OF (W) the Banach space of continuous E-valued
functions, which are holomorphic in W, endowed with the norm

I/l == max [[f(=)],  feOFW).
zeW

Further, let OF (W) be the subspace of all functions in OF (W) which admit
a holomorphic extension to W, and let OF (W _ U {oo}) be the subspace of all

1t is possible but not necessary that W is a small neighborhood of I'. An important example
isalso W= {z€C|r<|z <R} with0<r < R < ocosuch that ' C W.
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functions f € OF (W) which admit a holomorphic extension to W_ U (co} with
f(o0) =0.

Since each connected component of W contains at least one connected com-
ponent of T', it follows from Theorem 3.7.3 and Proposition 3.1.3 that OF (W) is
the direct sum of OF (W) and OF (W _ U {oo}).

We denote by P the projector from OF (W) onto OF(W,) parallel to
OF(W_uU{cc}). As OF (W) and OF (W _U{oo}) are closed subspaces of OF (W),
this projector is continuous with respect to the topology of OF (W) (by the Banach
open mapping theorem). We set Q@ =T — P.

8.1.2 Definition. Let A : @H L(@ be a continuous function which is holomorphic
in W, and let M4 : OF (W) — OF(W) be the operator of multiplication by A:

(Maf)(z) = A(2)f(z), feOP(W), zeW.
Then we denote by W4 the bounded linear operator on OF (W ) defined by
Wa)f=P(Maf), feOPW,).

This operator W, will be called the Wiener-Hopf operator defined by A on
OE(IT,).

8.1.3 Lemma. Let A, B : W — GL(E) be continuous functions which are holomor-
phic in W, and let W4 and Wg be the Wiener-Hopf operators defined in OF (W )
by A and B respectively. Suppose A and B are equivalent with respect to I' (Def.
7.1.3). Then W4 and Wg are equivalent.?

Proof. By hypothesis there are continuous functions T_ : D_ U {0} — GL(E)
and Ty : D4 — GL(E) which are holomorphic in D_U{cc} and D, respectively,
such that

A(z) =T_(2)B(2)Ty(2) (8.1.1)

for z € T'. Since A and B are continuous on W and holomorphic in W, and since
each connected component of W contains at least one connected component of T,
from this relation it follows that 7_ admits a continuous and invertible extension to
W _U{oo} which is holomorphic in W_, and T’y admits a continuous and invertible
extension to W, which is holomorphic in W,. We denote these extensions also
by T_ and T'y. Then (8.1.1) holds for all z € W. It is clear that

PMTJr'P = MT+P and MT;{P = MTJIP. (8.1.2)
Also it is clear that PMp Q = PMT_—l Q = 0, which implies that

PMp P=PMrp and PMT:lp = PMT:1 . (8.1.3)

2Two operators T and S in a Banach space X are called equivalent if there exist invertible
operators V, W in X such that T'=V.SW.
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From (8.1.2) and (8.1.3) it follows that Wr_ and Wr, are invertible, where

Wrl=Wp and - Wyl =Wpo

From (8.1.1)—(8.1.3) it follows that

Wr- WpWr, = PMr_ PMpPMr, |55,
= 73./\/17“‘7./\/(B./\/lT+ |6E(W+) = PMA’@E(W+) == WA .

Hence W4 and Wp are equivalent. O

8.1.4 Theorem. Let A: W — GL(E) be a continuous function which is holomor-
phic in W, and let W4 be the Wiener-Hopf operator defined by A in OF(W ).
Then:

(i) The function A admits a canonical factorization with respect to T, if and only
if, Wa is invertible.

(ii) The function A admits a factorization with respect to T, if and only if, Wa
is a Fredholm operator. If this is the case, with the notations from Definition

7.1.1,
dimCoker Wa = > k;dimP;,
1<j<n,k;>0
S (8.1.4)
dimKerWs=— > rk;dimP;,
1<j<n, ;<0

where the term on the right means zero if there is no j with x; > 0 resp. if
there is no j with k; < 0.

Proof. First assume that A admits a factorization A = A_AA,. Then it is easy
to see (using Theorem 1.5.4) that Wa is a Fredholm operator, where, with the
notations from Definition 7.1.1,

dimCoker Wa = Y r;dim P;,

1<j<n,k;>0

S (8.1.5)
dim Ker Wa = — Z k; dim P; .

1<j<n,k;<0

Since by Lemma 8.1.3 the operators W4 and Wa are equivalent, this implies that
Wy is invertible if A = I and that W, is a Fredholm operator satisfying (8.1.4)
ifA#£I

It remains to prove that A admits a factorization if W, is a Fredholm op-
erator, and that this factorization is canonical if W, is invertible. By theorems
7.10.1 and 7.9.9 for that it is sufficient to prove the following two statements (I)
and (II):
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(I) If there exists a negative partial index k of A and if d is its multiplicity, then
dim Ker Wy > d.

(IT) If there exists a positive partial index x of A and if d is its multiplicity, then
dim Coker W4 > d.

Proof of (I): Let k < 0 be a partial index of A with multiplicity d. By
Corollary 7.9.11, then we can find a d-dimensional linear subspace V' of E such
that, for each vector v € V' there exists a k-section of A through (0,v). Let B be
an algebraic basis of V. For each b € B, we fix a x-section (¢, , ;) of A with
¢+(0) = b. Since A is continuous on W, holomorphic in W and

gy = Al2)e (2) (8.1.6)

for z € I, it follows that ¢, is continuous on I W_ U {oc} and holomorphic in
W_ U {oo}, the function ¢ cpb+ is continuous on W and holomorphic in W, and
(8.1.6) holds for all z € W. Hence

o €OE(W,), beB, (8.1.7)
oy (2) € O (W-U{oc}),  be B, (8.1.8)

and
Wap) = P(z“cp{(z)) =0, be B.

Hence @ZF € Ker W, for all b € B. Since the set B is linearly independent and
@i (0) = b for all b € B, also the set {¢;" is linearly independent. Hence
dimKer Wy, > dimV =d.

Proof of (II): Let x > 0 be a partial index of A with multiplicity d. By
Corollary 7.9.11, there is a d-dimensional linear subspace V of E such that, for
each vector v € V with v # 0, there exists no (x — 1)-section of A through (oo, v).
Since kK —1 > 0, it follows (cf. Remark 7.9.3) that there exist no O-section through
(00, v).

Now let V be the linear subspace of OF (W) which consists of all constant
functions with value in V. Then

Yoes

dimV = d. (8.1.9)

Moreover
YNImWwy = {0}. (8.1.10)

Indeed, assume for some vy € V the constant function with value vy belongs to
Im Wy. Then there exist o € OF (W) and ¢ € OF (W_ U {oo}) with

A(2)p+(2) = vo + o—(2) for € W.

Since ¢_(o0) = 0 (by definition of OF (W_ U {c0})), then (p4,v9 + ¢_) is a
0O-section of A through (oco,v). Since there do not exist 0-sections of A through
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(co,v) if v € V and v # 0, it follows that vy = 0. From (8.1.10) and (8.1.9) it
follows that Coker W4 = d. O

8.2 Factorization of G“(FE)-valued functions

Here we use the same notation as in Section 7.8 and prove the result on factoriza-
tion of G¥(E)-valued functions announced already there.

8.2.1 Lemma. Let 0 < r < R < oo such that

FQW:Z{ZEC‘T<|Z|<R}7

and let V : W — F*(E) be holomorphic. Then, with the notations introduced at
the beginning of Section 8.1 and in Definition 8.1.2, the operators PMy Q and
OMy P are compact as operators on OF(W).

Proof. Let

V(z) = Z 2"V,

n=—oo

be the Laurent expansion of V. Since V' is holomorphic on W (i.e., in a neighbor-
hood of W), this series converges uniformly on W. It follows that

’PMVQ: Z ,PMZ"V”Q and QM\/PZ Z QMZ’"VW,P

n=—oo n=—oo

where the sums converge with respect to the operator norm of L(OF(W)). There-
fore it is sufficient to prove that for all n € Z the operators PM .\, Q and

QM .y, P are compact as operators on OF (W).
Let n € Z be given, and let (¢,),en be a bounded sequence in OF (W). We
have to find a subsequence ¢, of it such that the sequences (PMZnVn Q) ¢y, and

(QMznVn 73) ¢y, converge in OF (W). Let

oo (z) = Z zkga,,k, zeW

k=—o00

be the Laurent expansion of ¢,. Then by Cauchy’s inequality, for each k& € Z, the
sequence (¢puk)yen is bounded in E. Since the operator V,, is compact, then there
exists a sequence v; < vy < ... of numbers v; € N such that, for all £ € Z with

—n<k<-1 ifn>1 and 0<k<-—n—-1 ifn<-1,
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k=—o00 k=—n

—n—1

(

)

(PM.v, Q) = P2V, S = 3o Vg inz 1,
(QM.ny, P, =0 it n >0,

( )

OM .y, Py, = Q2"V, Zz e = Z 2V, ifn < -1,

this implies that sequences (P./\/lznvn Q) ¢u; and (QMznVnP) ¢y; converge in
OF (W), -
8.2.2 Theorem. Let A : T' — G¥(E) be a continuous function which admits local

factorizations with respect to T' and GL(E). Then A admits a factorization with
respect to I' and G¥(E).

Proof. By Theorem 7.4.2, we may assume that A is defined, holomorphic and with
values in G¥ on C*. Choose 0 < r < R < oo such that

FQW::{ZGC’T<|Z|<R}.

Let V : W — F¥(E) be the function with A = I + V. Let M4 and My be the
operators of multiplication by A and V, respectively. By Lemma 8.2.1, PMy Q
and QMy P are compact as operators on OF(W). Since M4 is invertible as an
operator on OF (W) and

My =PMsP+ OMAQ +PMyQ+PMyQ,

this implies that
PMUP + OMAQ

is Fredholm as an operator on OF (Wl In particular, the Wiener-Hopf operator

A =PMy |5E W) defined by A in OF (W) is a Fredholm operator. By Theo-
rem 8.1.4 this implies that A admits a factorization with respect to I' and GL(E).
Finally, it follows from Proposition 7.8.1 that A admits a factorization with respect
to I and G¥(E). O

Under certain additional assumptions about the function A in Theorem 8.2.2,
we can say correspondingly more about the factors of the factorizations of A. We
have:

8.2.3 Corollary (to Theorem 8.2.2). Let 0 < a < 1 and k € N, where, for k > 1,
we additionally assume that T is of class C* (Def. 3.4.1). Let A: T — G*(E) be a
function of class Ck+ (Def. 3.4.3). Then:
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(i) A admits a factorization with respect to T and G¥(F).

(ii) If A = A_AA, is an arbitrary factorization of A with respect to T, then
automatically, the factors A_ and A, are of class C*** on D_ and D,
respectively.

Proof. Part (i) of Theorem 7.3.1 in particular states that A admits local factoriza-
tions with respect to I'. Therefore part (i) of the corollary follows from Theorem
8.2.2. Part (ii) of the corollary follows from part (ii) of Theorem 7.3.1 O

8.2.4 Corollary (to Theorem 8.2.2). Let I' = T be the unit circle, and let R be a
Banach algebra of continuous L(E)-valued functions satisfying conditions (A), (B)
and (C) in Section 7.2.4. For ezample, let R = W (L(E)) be the Wiener algebra
(see Section 7.2.1). Let A: T — G¥(FE) be a function which belongs to R. Then:

(i) The function A admits a factorization with respect to T' and G¥(E).

(ii) If A = A_AA, is an arbitrary factorization of A with respect to T', then
automatically, the factors A_ and Ay belong to the algebra R.

Proof. Part (ii) of Theorem 7.2.5 in particular states that A admits local factor-
izations with respect to I'. Therefore part (i) of the corollary follows from Theorem
8.2.2. Part (ii) of the corollary follows from part (iii) of Theorem 7.2.5. O

Theorem 8.2.2 admits the following generalization:

8.2.5 Theorem. Let A: T — GL(E) be a continuous function which admits local
factorizations with respect to I' and GL(E). Let G(L(E)/F*(E)) be the group of
invertible elements of the factor algebra L(E)/F“(E), and let

m: L(E) — L(E)/F“(E)
be the canonical map. Then the following are equivalent:
(i) The function A admits a factorization with respect to I' and GL(E).
(ii) The function w(A) admits a canonical factorization with respect to T' and
G(L(E)/F*(E)).

Proof. (i)=-(ii) is clear. We prove (ii)=-(i). Assume there is a canonical factoriza-
tion m(A) = f_ fy of m(A) with respect to I' and G(L(E)/F*(E)). By Theorem
7.4.2 we may assume that A is holomorphic in a neighborhood of I'. Then also
7(A) is holomorphic in a neighborhood of T', and it follows from the relations

fo=mA)f and  fp = fTln(A)

that f_ is holomorphic in a neighborhood of D_U{co} and f+ is holomorphic in a
neighborhood of D . Then, by Theorem 7.8.2, we can find holomorphic functions
A_:D_U{oo} - GL(E) and Ay : Dy — GL(FE) such that m(A_) = f_ and
m(AL) = fi. Setting

A=AT"AATY,
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we define a holomorphic function A : T' — GL(E). Since 7(A) = oAt =1
on I', where 1 is the unit element in L(E)/F“(E), we see that the values of A
belong to G¥(F). By Theorem 7.7, A admits a factorization with respect to I" and

GL(E). Since, by definition, A is equivalent to A with respect to I and GL(E),
this completes the proof. (I

Note the following obvious corollary to Theorem 8.2.5 (which is not obvious
at all without this theorem):

8.2.6 Corollary. Let A : T' — GL(E) be a continuous function which admits lo-
cal factorizations with respect to I'. Suppose, there is a finite number of points
D1y Pm € Dy such that A admits a continuous extension to Dy \ {p1,...,Pm}
(also denoted by A) which is holomorphic in Dy \ {p1,...,pm} and has the fol-
lowing property: For each z € Dy \ {p1,...,pm}, the value A(z) is a Fredholm
operator, and, for all 1 < j < m, the Laurent expansion of A at p; is of the form

oo

Az) = Y (z=p)"An,

n=—oo

where Ay is a Fredholm operator and each of the coefficients A, with n < 0 is
compact.
Then A admits a factorization with respect to T.

Clearly, there is also a corresponding corollary with respect to D_ U {o0}.

8.3 The space L*(T', H)

The results on factorization obtained up to now can be essentially improved if we
restrict ourselves to Hilbert spaces. In the present section, we introduce a technical
tool for this: the Hilbert space of Hilbert space-valued functions on a contour. Here
we use the following notations:

— H is a separable Hilbert space with the scalar product (-, ), and the norm
-l

— D4 C Cis a bounded connected open set with piecewise C _boundary I'. We
assume that 0 € D, and we set D_ :=C\ D.

— We give I the orientation as the boundary of D, and we denote by |dz| the
Euclidean volume form of I'.

~ If U C C is an open set, then we denote by O (U) the space of continuous
functions on U which are holomorphic in U, and by O (U) we denote the
subspace of O (U) which consists of the functions which admit a holomor-
phic extension to some neighborhood of U.

CO(T', H) is the space of continuous H-valued functions on T.
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— OH(I") is the subspace of C°(I", H) which consists of the functions which
admit a holomorphic extension to some neighborhood of I'.
— O (D_) is the subspace of O¥(D_) which consists of the functions with
f(o0) = 0.
8.3.1. In C°(T", H) we introduce a scalar product (-, “)c2(r, iy and the corresponding
norm || - || z2(p, ay, setting

<fag>£2(F,H) = /<f(z),g(z)>H |d2" for fvg € CO<F’H)

T

and
I fllz2o,my = A/ fs £ ez m for f€C(T, H).

We define £2(T', H) to be the completion of C%(I", H) with respect to the norm
I N2 e, m)-

8.3.2. For the scalar case H = C, the space £2(I',C) is usually interpreted as
the space of square integrable complex-valued functions on I'. We avoid such an
interpretation in the case of an arbitrary separable Hilbert space H (although this
is possible). By our definition, the elements of £L2(I', H) are equivalence classes of
Cauchy sequences of continuous functions. Nevertheless, many operations which
can be defined pointwise in the case of a true function can be applied also to the
elements of £2(T', H).

For example, let ¢ : ' — C be a scalar continuous function and let f €
L?(T',H) be represented by the Cauchy sequence {f,}nen of functions f, €
Co(T, H). Then ¢f is defined to be the element in L?(I", H) represented by the
Cauchy sequence {¢fy}nen. Note that then

H‘Pchz(r,H) = max |¢(Z)‘H‘pf”£2(r,H)

In the same way, for each continuous operator function A : I' — L(H) and each
f € L2(T', H), the product Af is well defined. Then

||Af||L2(F,H) = rax HA(Z)HL(H)HSDfHLQ(F,H) :

Moreover, denote by £1(T', C) the Banach space of integrable complex-valued func-
tions on I' with the norm

1 les e = / flldl,  fecL\r,C).
N

Then, for any two elements f,g € L%(T, H), a function (f,g); € £1(T',C) is well
defined such that

<f7g>z:2(r7H) = /<fag>H|dZ|'

T
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Indeed, let {f,}nen and {g,}nen be two sequences of functions from C°(T, H)
which represent f and g, respectively. Then, by the Cauchy-Schwarz inequality in
H, pointwise on I'" we have

[P ) i = s | < = Fnll il 1 ol N =

which implies, by the Cauchy-Schwarz inequality in L?(T',C), that

(P05 = s )

£1(T,C)
< an - meE?(F,H)Hg”Hﬁ?(F,H) + Hmez:?(nH)Hg" - gmHﬁ?(F,H) :

Hence {<fn’g”>H}n6N is a Cauchy sequence in £1(I",C), and the function (f, g)
can be defined to be the limit of this sequence in £}(T, C).
Finally we note that, for each f € £L3(T', H), the function

1fllz = o
belongs to £2(T, C) and

11120y = / 1 131dz]
N

8.3.3. Note that, by Corollary 3.3.3, OF (') is dense in C°(T', H) with respect to
uniform convergence on I'. Hence O (T) is dense in £2(T", H) with respect to the

norm || - {| c2(r -
8.3.4. The linear map It from C°(I", H) to H defined by

/f z, fec'T, H, (8.3.1)

is bounded with respect to the norm [ - || z2(r g). As (by definition) C°(T', H) is
dense in £L2(T', H), this implies that It admits a uniquely determined continuous
linear extension to £2(T, H), which we denote also by Ir. We define

/f(z)dz = Ir(f) for f € L*(T,H).
r

Indeed, let || be the Euclidean length of I'. Then, for each f € £L2(T', H), we get
from the Cauchy-Schwarz inequality:

el < [ 15 @llds] < ( / |dz|)1/2( / ||f<z>||%1dz|)
I T

=V ‘F| ||sz:2(F,H)~

1/2
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8.3.5 Definition. Let f € £?(I', H), and let U C CU {oo} be a neighborhood of T'.

(i) Let f= € O¥(U n (D- U {oo})). We shall say that f~ is a holomorphic
extension of f if there exist a neighborhood V' C U of I and a sequence
fre0H(MNOH(VND_), neN, such that

Jim [ f = f 20y = 0 (8.3.2)
and

lim max||f (2) = [y =0 ifK CVND_iscompact. (8.3.3)

n—oo zeK

(i) Let f* € OH(U N D). We shall say that f* is a holomorphic extension of
f if there exists a neighborhood V' C U of I' and a sequence f € Of(I') N
OH(V N D,), n €N, such that

Jim [ f — falleze,my =0 (8.3.4)
and
lim n1€ax|\f+( 2)— fF(2)|ly =0 ifK CVND, iscompact. (8.3.5)

8.3.6 Proposition. Let f € L2(T,H), let U C CU {0} be a neighborhood of T,
and let W be a neighborhood of ' with piecewise Cl-boundary OW , oriented by W,
such that W C U NC.

(i) Assume f~ € O (UN(D-U{oc})) is a holomorphic extension of f. Then

“(2)dz = /f(z) dz. (8.3.6)

D_now

Moreover, if w € W N D_, then the Cauchy formula holds:

f*(w):i. / f;@dz—i Mdz. (8.3.7)

211 zZ—w 211 Z—w
D_NowW r

(ii) Assume fT € O (UNDy) is a holomorphic estension of f. Then
/ fH(z)dz = /f (8.3.8)
D4NOW

Moreover, if w € W N Dy, then the Cauchy formula holds:
1 + 1
fH(w)=— / O dz + — /(z) dz. (8.3.9)

211 Z—w 211 Z—w
DyNow r
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Proof. The proofs of parts (i) and (ii) are similar. We may restrict ourselves to
part (i).

By hypothesis, there exist a neighborhood V' C U of I" and a sequence f,, €
OHM)NOH(VND_), neN, with (8.3.2) and (8.3.3). After shrinking V' we may
assume that V C W and the boundary 9V of V is also piecewise of class C'. We
orient @V by V. Then, by Cauchy’s theorem,

FQ)d¢ = / F (0 dc. (8.3.10)

D_now D_NoVv

Moreover, by Cauchy’s theorem,

fn‘(C)dC:/f;(c)dg for all n.

D_noVv r

By (8.3.3) and (8.3.2), this implies

F(Q)d¢ = / F(Qde.

D_nov r

Together with (8.3.10) this proves (8.3.6).

Now we consider some point w € W N D_. Choose a neighborhood W’ of
I’ with piecewise C'-boundary OW’, oriented by W', so small that w C W and
weWw \W/. Then, by Cauchy’s formula,

F(w) = —— / 7@y, oL / I7G) g (8.3.11)

Z—w 21
D_NowW D_Now’

Since f~ is a holomorphic extension of f, it follows easily that the function
W' ND_3z— f(2)/(z —w)
is a holomorphic extension of the function
I'sz— f(2)/(z—w).

Therefore, to the second integral in (8.3.11) we can apply (8.3.6) with W’ instead
of W, f(2)/(z —w) instead of f(z) and f~(2)/(z —w) instead of f~(z). This gives
(8.3.7). 0

8.3.7. Since holomorphic functions in a neighborhood of I' are uniquely determined
by their values on T, from (8.3.7) and (8.3.9) we get: If f € £2(T', H) admits a
holomorphic extension to some open set of the form W N D_ or W N D, where
W is a neighborhood of T" such that each connected component of W intersects I,
then this extension is uniquely determined.
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The opposite is also true:

8.3.8 Proposition. (i) Let f,g € L2(I',H), let U be a neighborhood of T', and let
h e Of (U N D,) such that h is both a holomorphic extension of f and a
holomorphic extension of g. Then f =g.

(ii) Let f,g € L2(T,H), let U be a neighborhood of T', and let h € O (U N D)
such that h is both a holomorphic extension of f and a holomorphic extension
of g. Then f=g.
Proof. The proofs of (i) and (ii) are similar. We restrict ourselves to the proof of
part (i).

Set h = f — g. We have to prove that h = 0.

By hypothesis, the zero function on D_ is a holomorphic extension of h.

This means, by definition, that there exist a neighborhood V of I" and a sequence
h, € OH(T)NOH(V N D_), n €N, such that

lim ||h — Aol 20,y =0 (8.3.12)

and
lim max ||h,(2)||z =0 ifK CV ND_ is compact. (8.3.13)

n—oo zeK

Let {e;};er be an orthonormal basis of H, and let h; € £2(I',C) and h,,; € O%(T)
be the functions with

h=> hje; and  h, =Y hyje;. (8.3.14)
jEI jEI
For each j € I, it follows from (8.3.12) and (8.3.13) that
Jim [ = Bl g2(r,c) = 0

and

lim max |hy;(2)| =0 if K €V N D_ is compact.

n—oo z€
If W C V is a further (arbitrarily small) neighborhood of " and ¢ € OF(W), then
this yields, for all j € I,

Jim {|hj = hnjoll 2 ey = 0 (8.3.15)
and
lim max ’hn](z)ap(z)‘ =0 ifK CWnND_ is compact. (8.3.16)

Hence, for each ¢ € O%(T') and j € I, the (scalar) zero function on D_ is a
holomorphic extension of h;p. By (8.3.6) this implies that

/hj(z) p(2)dz=0 for all g € OF(I") and j € I. (8.3.17)
r



282 Chapter 8. Wiener-Hopf operators, Toeplitz operators

Let 6 : T — C be the function with dz = 0|dz|. As T is piecewise C!, this function
is piecewise continuous and || = 1. Then (8.3.17) takes the form

50 _ C .
<h] , 90 >£2(m) 0 forallpeOS(I) andjel. (8.3.18)

Since O%(T') is dense in £2(I",C), also the functions of the form ¢ 8, ¢ € O(I),
are dense in £2(I",C). Therefore (8.3.18) means that h; = 0 for all j € I. By
(8.3.14) this yields h = 0. O

8.3.9 Proposition. Let f € L2(T,H), let U C CU {0} be a neighborhood of T,
and let h € O (U\T) such that both h‘Um(D,u{oo}) and h’UﬂD+ are holomorphic

extensions of f. Then h admits a holomorphic extension h to U and E’r = f.

Proof. 1t is sufficient to prove that h admits a holomorphic extension hto U. The
relation h|r = f then follows from Proposition 8.3.8. Choose a neighborhood W
of T with piecewise C'-boundary, oriented by W, such that W C U NC. We define
a holomorphic function F : W — C, setting

= dz, weW.
2mi z—w
ow
We have to prove that h(w) = h(w) for w € W \ I'. The proofs are similar for
weWND_andweWnND,. Let we D_NW be given.
Since h‘U D is a holomorphic extension of f, it follows that the function

1)

DiNnW3z— — (8.3.19)
21z —w
is a holomorphic extension of the function
1
rs, L 1% (8.3.20)
2z —w

Therefore, by (8.3.8) (with (8.3.19) instead of fT and (8.3.20) instead of f),
i. / he) dz = _ L [SE) dz.

zZ—w 211 Z—w
DyNOW r

Moreover, from the Cauchy formula (8.3.7) we get

Together this proves that h(w) = h(w). O
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8.3.10 Theorem and Definition. Recall that, by Theorem 3.7.3 and Proposition
3.1.3, the space O (T) is the (algebraic) direct sum of O (D, ) and O (D_ U
{o0}). We denote by P = Pr the linear projector from O (T') to O (D) parallel
to O (D_ U {o0}), and we set Q =1 — P.

(i) The projector P is continuous with respect to the norm || - ||, m)-

Since O (T) is dense in £?(T, H) (Section 8.3.3), it follows that P admits a
uniquely determined continuous linear extension to Lo(I", H). This extension will
be also denoted by P, and we set Q@ = I — P, L3(I',H) = PL*(I',H) and
L2 (T,H) = QL*(T, H).

(ii) For each f € L*(T,H), there erist uniquely determined functions f~ €
Of (D- U {oc}) and f+ € O (D) such that f* is the holomorphic exten-
sion of Pf 3, and f~ is the holomorphic extension of Qf. These functions
are given by

9 d¢ = — ! /(Pf)(odc, zeD,, (8.3.21)

+Z:% (—z 271 ¢ —
r r

and

1 1[N
d D_. 8.3.22
271'1/ 27ri/ (—z ¢, =€ ( )
r r
(i) LetT' be the unit circle, and let {e;};en be an orthonormal basis of H. Then
the functions

Z’ﬂ

V2r

form an orthonormal basis of L*(T',C), and, hence, by Laurent decomposition,
the family

ej, nez,jeN, (8.3.23)

ZTL

~ e,
V2T /

forms an orthonormal basis of L2 (T, C), and the family

neN, jeN, (8.3.24)

Zn

Vor’

forms an orthonormal basis of L2 (T',C). In particular, then P is an orthog-
onal projector.

neZ n<—1,jeN, (8.3.25)

3By the observation in Section 8.3.7, here we may speak about the holomorphic extension.
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Proof. (iii) We have

n 12

z 1
dz| = — dz| =1 foralln € Z,
| o] ae= 5 [ el
|z|=1 |z|=1
and
27
/ 2"z |dz| = / 2" "M dz| = /ei("_m)tdt
|z|=1 |z|=1 0
1 . t=2m
= ——_¢in—m)t =0 foralln,meZ with n #m.
i(n —m) t=0

If T" is the unit circle, this shows that

ZTL

Vor’

is an orthonormal system in £2(T',C), which further implies that (8.3.23) is or-
thonormal in £2(T, H). Moreover if T is the unit circle and

n €7,

oo

fE) =Y 2" fa

n=—oo

is the Laurent expansion of a function f € O¥(T'), then

f(z) = Z Z<fn76j>H Znej :

n=-—o0 j=0

This implies that f belongs to the closed linear hull of (8.3.23). As O (T") is dense
in £2(T', H), this completes the proof of part (iii).

(i) We first discuss the scalar case H = C, where the main difficulties already
appear. In this discussion, we may restrict ourselves to the case when I is connected
and, hence, D is simply connected. The general case then easily follows applying
this special case to each of the connected components of T'.

If T is of class C! (and not only piecewise C!, as usually in this book), for a
proof we can refer to the book [GKru]*, where the proof is reduced to the case
of the unit circle using a conformal mapping from D, to the unit disc and its
boundary properties. For the general case (when I' is only piecewise C!) we can
refer only to the original paper [CMM], where the much more general case of
Lipschitz contours is considered.?

4In [GKru] even the more general case of Ljapunov contours is considered.
5We do not know whether there exists in the literature a more simple direct proof for the
case of piecewise Cl-contours.
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We now give a proof of part (i), using the fact that this is already known for
H=C.

Let {ej}jer be an orthonormal basis of H. Denote by F the subspace of
L2(T', H) which consists of the functions of the form

f:ngj(z)ej, zel,

JjeJ

where J C I is finite and ¢; € O%(T'), j € J. For such functions it is easy to see

that

JjeJ jeJ

and

||7)f||252(1“,H) = Z ||P('0j”2£2(1“,(c) < ||P||i2(F,(C) Z ||S0j||iz(r7(c> ’

JjeJ jeJ

where ||P|| z2(r ) denotes the norm of P as an operator in £2(T', C). If | P| z2(r i)
is the norm of P as an operator in £2(T', H), this implies that

IPfllcze,my < WPllczeoylfllc2o,my  forall f e F. (8.3.26)

Set
[i(z) =(f(2),ej) for z € T and f € OF(T).

Then
2
”f“zL?(I‘,H) = Z ||fsz:2(F,C) :

Jjel

for each f € O (T'). Therefore, for each f € O (T) and each ¢ > 0, there exists

a finite set J C I with
Sl
JjeJ

Since OH(T') is dense in £L2(T, H), this implies that F is dense in £L3(T, H). To-
gether with (8.3.26) this completes the proof of part (i).

(ii) Let f € £L%(T", H) be given. We define f* by the first equality in (8.3.21),
and we define f~ by the first equality in and (8.3.22). It is clear that in this way
functions f* € O”(D;) and f~ € Of (D- U{oo}) are well defined. It remains to
prove the second equality in (8.3.21), the second equality in (8.3.22) and the facts
that f* is a holomorphic extension of Pf and f~ is a holomorphic extension of

Qf.

£2(T,H)

Since O(T) is dense in £*(T, H), we can choose a sequence h,, € OH(T),
n € N, with
nhllgo ||hn - f”L?(F,H) =0. (8327)
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Since, by part (i) of the theorem, P and Q are continuous, this implies that
lim ||Phn - PfHEZ(F,H) = lim ||th - QfH[?(F,H) =0. (8328)
n—oo n—od

Moreover, by Cauchy’s formula and Cauchy’s theorem,

(Pha)(2) = 5 / (Pch)iodg_ — / Cizdg (8.3.29)
r
for z € Dy, and
(Qhn)(2) = _;m/(QChz)Z(C)dC: —2%/ Z”_(Cz)dg (8.3.30)
r r

for z € D_. The second equality in (8.3.21) follows passing to the limit in (8.3.29),
and the second equality in (8.3.22) follows passing to the limit in (8.3.30).

Now let K be a compact subset of Dy. Then, by (8.3.29) and the definition
of f7,

B (
maXH Ph f+ HH < 271— / ” ‘C |( )”HIdCI

zeK

If |T| is the length of T’ and d is the distance between K and T, using the Cauchy-
Schwarz inequality, this further implies

max [|(Phy)(2) = f*(2 HH<—|FI1/2Hh = fllezw,m) -

Together with (8.3.28) this implies that

lim maXH (Phn)(2) — fH(2)||,, = 0.

n—oo zeK HH
Hence f¥ is a holomorphic extension of Pf.

In the same way it follows from (8.3.30) and (8.3.28) that f~ is a holomorphic
extension of Qf. O

8.3.11 Corollary (to the preceding theorem and definition). Since O (T) is dense
in L2(T, H) and P and Q are continuous with respect to the topology of L2(T', H),
it follows immediately from the definitions of L3 (I, H) and L2 (I, H) that the
space O (D) is dense in L3 (I, H) and the space O (D_ U {oc}) is dense in
L2 (T, H).
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8.4 Operator functions with values acting in a Hilbert
space

In this section, H is a separable Hilbert space®, D, C C is a bounded connected
open set with piecewise C'-boundary I' such that 0 € Dy, and D_ := C\ Dj.
Further, throughout this section £*(I', H), £%(T',H) and £ (T, H) denote the
Hilbert spaces introduced in Section 8.3.1 and Theorem and Definition 8.3.10,
and P denotes the projector from £2(T', H) onto £3 (', H) parallel to £ (T, H).

8.4.1 Definition. Let A :T' — L(H) be a continuous function. Then we denote by
W, (or by WY) the bounded linear operator acting in £2 (I, H) by

Waf=P(Af),  feLi(T,H).

This operator W, will be called the Wiener-Hopf operator defined by A on
L2 (T, H). Sometimes we use also the notation M 4 to denote the operator acting
in £2(T', H) by multiplication by A. Then
WA == ,PMA|£2+(F,H)'
8.4.2 Theorem. Let A:T' — GL(H) be a continuous function which admits local

factorizations with respect to T and GL(H) (Def. 7.1.3), and let W4 be the Wiener-
Hopf operator defined by A on L2 (I', H). Then:

(i) The function A admits a canonical factorization with respect to T and GL(H)
(Def. 7.1.1), if and only if, Wa is invertible.

(ii) The function A admits a factorization with respect to T' and GL(H) (Def.
7.1.1), if and only if, Wa is a Fredholm operator. If this is the case, with the
notations from Definition 7.1.1,

dim Coker W, = Z Ky dim Py,

<j<n,k;

tsgsnr =0 (8.4.1)
dim Ker W4 = — Z k; dim Pj

1<j<n,k;<0
where the term on the right means zero if there is no j with x; > 0 resp. if
there is no j with k; < 0.

The remainder of this section is devoted to the proof of this theorem. We
will deduce it from Theorem 8.1.4. The first step is the following lemma.

8.4.3 Lemma. Let W be a bounded neighborhood of T' such that each connected
component of W contains at least one connected component of I'. We set W, =

SFor simplicity we consider only separable Hilbert spaces, although the results can be gener-
alized to the non-separable case.
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D,UW and W = D_UW. Let A: W — GL(H) be a continuous function
which is holomorphic in W. Let W4 be the Wiener-Hopf operator defined by A on
Ei(ILH) (Def. 8.4.1), and let W4 be the Wiener-Hopf operator defined by A on
OH(W ) (Def. 8.1.2). Then

Ker Wy = Ker Wy (8.4.2)

and o .
OHW  )NImW, =TmWy . (8.4.3)

Proof. (See Def. 8.1.1 for the notations.) We first prove (8.4.2). The relation

Ker W4 D Ker Wa

is obvious. To prove the opposite relation, let f € Ker W4 be given. Then g :=
Af € L2 (T, H). By statement (ii) in Theorem and Definition 8.3.10, g admits a
holomorphic extension g_ to D_. Since A~ is holomorphic on W and continuous
on W, this implies that f = A~'g admits the holomorphic extension A~'g_ to
W N D_, which further extends continuously to W N D_. On the other hand, by
the same statement (ii) in Theorem and Definition 8.3.10, f admits a holomorphic
extension to D, . By Proposition 8.3.9, together this implies that

feowy). (8.4.4)

Hence Af € OH(W). Since, moreover, Af € L2 (T, H), it follows that Af €
OF(W_ U{oc}). Together with (8.4.4) this means that f € Ker W 4.
Now we prove (8.4.3). The relation

OF(W,)NnImWa D ImW,
is obvious. To prove the opposite relation, let
fr e 0T (WL )NImWy
be given. Then there exist uy € £3(I', H) and g_ € £2 (', H) such that
fr+9-=Au,. (8.4.5)

Hence g = Auy — f4. Since A is continuous on W and holomorphic in W, by
Proposition 8.3.9 this implies that g_ € Of (W) and hence (as g_ € L% (T, H))

g- € O (W_U{oc}). (8.4.6)

Since f, € O (WQ, in view of (8.4.5) this further implies that Au, € O (W)
As A~! is continuous on W and holomorphic in W, so we get uy € O (W) and
hence (as uy € L2 (T, H))

up € O (W), (8.4.7)

From (8.4.5)—(8.4.7) it follows that f € Im W,. O
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8.4.4 Proposition. (see the beginning of Section 8.3 for the notations) The space
OH"(Dy) is contained in L% (I, H) as a dense subspace, and O (D_ U {cc}) is
contained in L2 (T, H) as a dense subspace.

Proof. By the Mergelyan approximation Theorem 2.2.1, O¥(D,) is dense in
O" (D) and OF (D_U{occ}) is dense in O (D_U{o0}) with respect to uniform
convergence and, hence, with respect to the topology of £2(T, H). Since, by defini-
tion of P and Q, Pf = f for f € O# (D) and Qf = f for f € O (D_U{oc}) and
since P and Q are continuous on £2(T, H), this implies that O (D, ) is contained
in £2(', H) and O (D_ U {oc}) is contained in £2 (T, H).

To prove the density, let f* € £3 (T, H) and f~ € L2 (T, H) be given. Since
OH(T) is dense in £2(T', H) (cf. Section 8.3.3), then there are sequences h;} and
h,, in OH(T') such that

Jim [[A7 = fTlleay =0 and - lim [lhy = £l c2,my =0
and hence, as P and O are continuous,
Jim [[PhT = fT |2y =0 and - lim [ Qhy — 7|2 = 0.

Since Pht € OF(D,) and Qh;, € OF(D_ U {cc}), this completes the proof of
the density. O

8.4.5 Lemma. Let A, B : ' — L(E) be continuous functions, and let T_ : D_U
{00} = GL(E) and Ty : Dy — GL(E) be continuous functions, which are holo-
morphic in D_ U {oo} and D, respectively, such that

A=T_BT, on T (8.4.8)

Then:
(i) Wy = Wr WpWr_.
(ii) If T_(2) is invertible for all z € D_ U {oco}, then Wy is invertible and

Wit =W, .

(iii) If Ty (\) is invertible for all z € D, then Wr, s invertible and
-1
Wr, = WTIL

In particular, if A and B are equivalent relative to T and GL(E) (Def. 7.1.3), then
Wy and Wg are equivalent.”

"Two operators T and S in a Banach space X are called equivalent if there exist invertible
operators V, W in X such that T'=V.SW.
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Proof. Tt is sufficient to prove part (i), because (ii) and (iii) then follow.
It follows from Proposition 8.4.4 that MT+£i( JH) C L£3(T,H) and

MT_Eg(RH) C £2(T, H). Therefore

PMz, P = Mrp, P (8.4.9)

and

PMr (I—P)=0.

From the second relation it follows that
PMgy P=PMrp . (8.4.10)

From (8.4.8)—-(8.4.10) together we obtain the assertion:

WT_ WBWT+ - PMTL PMBPMT

+

£2 (1, H)

- PMA == WA .
£2(T,H)

:PMT MBMT .
- +1c2(r,H)

]

Proof of Theorem 8.4.2. First assume that A admits a factorization A = A_AA,
with respect to T' and GL(H). Using Proposition 8.3.9, then it is easy to prove
that Wa is a Fredholm operator, where, with the notations from Definition 7.1.1,

dim Coker Wa = Z k; dim P;
tsgsn =0 (8.4.11)
dim Ker W = — Z k; dim P; .

1<j<n,k;<0

Since, by Lemma 8.4.5, the operators W4 and Wa are equivalent, this implies
that W, is invertible if A = I and that W, is a Fredholm operator satisfying
(8.4.1) if A £0.

Now we assume that W, is a Fredholm operator on £2 (T, H). By Theorem
7.4.2, A is equivalent with respect to I' and GL(H) to some holomorphic function
B:C* — GL(H). Let Wg be the Wiener-Hopf operator defined by B in £% (', H).
Then, by Lemma 8.4.5, the operators W4 and Wp are equivalent. Hence Wp is a
Fredholm operator, and if W, is invertible, then Wpg is invertible.

Now we choose a neighborhood W as in Lemma 8.4.3 and set W, = D, UW.
Let, as in this lemma, WB be the Wiener-Hopf operator defined by B in O (W ).
Since Wy is a Fredholm operator, it follows from relations (8.4.2) and (8.4.3) in
Lemma 8.4.3 that also WB is a Fredholm operator, which is invertible if W, is
invertible. Now the two assertions (i) and (ii) of the theorem under proof follow
from Theorem 8.1.4. O
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8.5 Functions close to the unit operator or with positive
real part

In this section, H is again a separable Hilbert space, D, C C is a bounded
connected open set with piecewise C'-boundary I' such that 0 € D, and D_ :=
C\ D4 For many results, we have to assume that I' = T is the unit circle. If this
is the case, this will be mentioned explicitly.

The following theorem is true for general contours.

8.5.1 Theorem. There exists a constant € > 0 such that the following holds: Any
continuous operator function A : I' — GL(H), which admits local factorizations
with respect to T (Def. 7.1.3) and which satisfies

max [[A(z) — Il < e (8.5.1)

admits a canonical factorization with respect to T' (Def. 7.1.1).

Proof. Let £2(I',H), £3(I',H) and L2 (T, H) be the Hilbert spaces introduced
in Section 8.3.1 and Theorem and Definition 8.3.10, and let P be the projector
from £*(T, H) onto £2 (', H) parallel to £2 (', H). Recall that (by Theorem and
Definition 8.3.10) P is a bounded linear operator on £2 (I, H), and set

1
E =

Pz,

Now let a continuous function A : T' — GL(H) be given which satisfies (8.5.1),
and let M, _;: L*(T,H) — L*(T, H) be the operator of multiplication by A — I,
and let W, be the Wiener-Hopf operator defined by A on £ (I', H) (Def. 8.4.1).

Then
1

IMa—illLic2my <e= wr
Pz e2r.m)

this implies

Since W, — I = PMA—I’Li(F,H)’

W4 — I||L(£i(p’H)) < Plpcze,mpIMa-ill ez, my <1-

Hence W, is invertible. If, in addition, A admits local factorizations with respect
to I' and GL(H), it follows from Theorem 8.4.2 that A admits a canonical factor-
ization with respect to I'. ([

8.5.2 Corollary (to Theorem 8.5.1). Let 0 < a < 1 and k € N, where, for k > 1,
we additionally assume that T is of class C* (Def. 3.4.1). Then there exists € > 0
such that, for any C¥**-function A:T — GL(H) (Def. 3.4.3), which satisfies

Alz) -1
glgg(” (2) = Illpay <€,

the following holds:
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(i) A admits a canonical factorization with respect to T'.

(ii) If A= A_Ay is an arbitrary canonical factorization of A with respect to T,
then automatically, the factors A_ and A, are of class C*** on D_ and D,
respectively.

Proof. Part (i) of Theorem 7.3.1 in particular yields that A admits local factoriza-
tions with respect to I'. Therefore part (i) of the corollary follows from Theorem
8.5.1. Part (ii) of the corollary follows from part (ii) of Theorem 7.3.1 O

8.5.3 Theorem. Let I' = T be the unit circle. Then any continuous function A :
T — GL(H), which admits local factorizations with respect to T (Def. 7.1.3) and
which satisfies

max [AGz) = Il <1, (8.5.2)

admits a canonical factorization with respect to T (Def. 7.1.1).
Proof. This is a repetition of the proof of Theorem 8.5.1, taking into account that
now (as I' = T), by statement (iii) in definition and Theorem 8.3.10,
HP”L(LZ(F,H)) =1.
O

8.5.4 Corollary (to Theorem 8.5.3). Let I' =T be the unit circle, and let A: T —
GL(H) be a CF*_function, 0 < a < 1, k € N (Def. 3.4.3), which satisfies

A(z) =T 1.
max [[A(z) = Il <

Then:
(i) A admits a canonical factorization with respect to T.

(ii) If A= A_A, is an arbitrary canonical factorization of A with respect to T,
then automatically, the factors A_ and Ay are of class CF*+™ on D_ and
D, respectively.

Proof. Part (i) of Theorem 7.3.1 in particular yields that A admits local factoriza-
tions with respect to T. Therefore part (i) of the corollary follows from Theorem
8.5.3. Part (ii) of the corollary follows from part (ii) of Theorem 7.3.1 O

8.5.5 Corollary (to Theorem 8.5.3). Let I' = T be the unit circle, and let R be a
Banach algebra of continuous L(H)-valued functions satisfying conditions (A), (B)
and (C) in Section 7.2.4. For ezample, let R = W (L(H)) be the Wiener algebra
(see Section 7.2.1). Let A : T — GL(H) be a function which belongs to R and
satisfies

max | A(z) ~ Ty < 1.

Then:
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(i) A admits a canonical factorization with respect to T.

(ii) If A= A_Ay is an arbitrary canonical factorization of A with respect to T,
then automatically, the factors A_ and A4 belong to the algebra R.

Proof of Theorem 8.5.1. Part (ii) of Theorem 7.2.5 yields that A admits local fac-
torizations with respect to I'. Therefore part (i) of the corollary follows from The-
orem 8.5.3. Part (ii) of the corollary follows from part (iii) of Theorem 7.2.5. O

8.5.6. It is clear that the assertion of Theorem 8.5.3 remains valid if we replace the
unit circle T by an arbitrary circle in C. However this is not true for more general
contours. V.I. Macaev and A.I. Virozub [ViMa] even proved the following: If the
assertion of Theorem 8.5.3 is valid for any finite dimensional Hilbert space H with
T replaced by an arbitrary Jordan curve, then this Jordan curve is a circle.

However there is the following result for operator functions of a special form.

8.5.7 Theorem. Assume that the contour T' (of the generality as described at the
beginning of this section) is connected, i.e., we assume that D is simply connected
(Section 2.5.1).

Let A:T — GL(H) be a function of the form

A(z) = T + Bi(2), zel, (8.5.3)

Z— 20

where zg € Dy, T € L(H) and By is a continuous L(H)-valued function on D,
which is holomorphic in Dy, and assume that

max [A(2) = Il )y < 1. (8.5.4)

Then A admits a canonical factorization with respect to I' and GL(H).

8.5.8. Of course, also for this theorem there is a corollary for functions of class
Ck+e corresponding to Corollary 8.5.2 of Theorem 8.5.1.

Proof of Theorem 8.5.7. As A is of the form (8.5.3), it is continuous on D \ {29}
and holomorphic in Dy \ {z0}. Choose a neighborhood U C C\ {2} of ' so small
that
q= sup |[[A(z) = Il <1. (8.5.5)
zeUND 4
Set
T:{ZG(C‘M:I} and D:{ze@‘|z\<1}.

Since D is simply connected, we can find a biholomorphic map ¢ from a neigh-
borhood of D onto D such that

I":=p(T)CU, 20 € Dy = (D) and  (0) = z.
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It is easy to see that then any canonical factorization of A with respect to IV and
GL(H) is also a canonical factorization with respect to I and GL(H). Therefore
it is sufficient to prove that A admits a canonical factorization with respect to I/
and GL(H).

For that we want to apply theroem 8.4.2. Since A is holomorphic in a neigh-
borhood of TV, it is trivial that A admits local factorizations with respect to I'
and GL(H). Therefore, to apply this theroem, we only have to prove that the
Wiener-Hopf operator defined by A in £2% (I, H) is invertible.

Since the derivative of a biholomorphic map does not vanish,

|z — 202
p(z) :

Tl e i)

is a well-defined continuous function on I'V. Moreover, h(z) # 0 for all z € T’ (as
zo € I). Therefore, setting

(£.9), = [ (£G).9())y 02) .

Ind

eI,

we get a scalar product (-, -), on £2(I", H), such that the corresponding norm ||-||,
is equivalent to the norm || - [| ;2 z introduced in Definition 8.3.1.

Therefore, to prove the invertibility of the above mentioned Wiener-Hopf
operator, now it is sufficient to show that

IPAS) = fll, <4l £, (8.5.6)

for all f € £2(I',H), where P is the projector from £2(I', H) onto L% (I", H)
parallel to £2 (I”, H). Since (’)H(ﬁ;) is clj?se in £2 (I, H) (Corollary 8.3.11), it
is sufficient to prove this for all f € OH(D+). Let such f be given. Let T be the
operator from (8.5.3), set

v="Tf(20) and h(z)zz_vzo, ze C\D..

Then

B v |z — 202
U%Afy—ﬂhn—}/<(PuUd—f)@),z%>H¢¢%¢Q@”m4

’

= v lo(2) —20l* |
_T/<<7’(Af) —f> ((2)) W)ZO>H yw,f@_l(w)))’up (2)]|dz]
:!<@Mﬁ_ﬁW@%wwi%>gﬂa—mmw

— /<(P(Af) - f) (¢(2)), v>H (¢(2) — 20)|d2] .

T
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Since f is holomorphic in a neighborhood of Eg_ and A is holomorphic in a neigh-
borhood of TV, the function under the last integral is holomorphic in a neighbor-
hood of D. Moreover, as ¢(0) = 2, this function vanishes at zero. Therefore the
Taylor expansion at zero of this function is of the form

((PCAN=1)(e(2) . v)  (o(z) = =) Z an?

Since this series converges uniformly on T and

2
r 1 t=2m
/z”|dz| = / eMdt = —e't =0 forn>1,
in t=0
T 0

it follows that <P(Af) - f, h>p = 0. Hence
IPCAS) = fll, < IP(Af) = f+hll,-

Since, by (8.5.3), P(Af) + h = Af and therefore P(Af) — f+h = Af — f, it
follows that

IP(AF) = fll, < 1AF = fllp-
As, by (8.5.5), [|Af — fll, < qllf]l,, this proves (8.5.6). O

8.5.9 Theorem. Let I' = T be the unit circle. Assume A : T — GL(H) is a
continuous function which admits local factorizations with respect to T (Def. 7.1.3,
such that, for some ¢ > 0,

Re <A(z)v,v>H > c||v|| g forallve H and z € T, (8.5.7)

where (-,-)g denotes the scalar product of H. Then A admits a canonical factor-
ization with respect to T (Def. 7.1.1).

Proof. By Theorem 8.4.2 it is sufficient to prove that the Wiener-Hopf operator
Wa defined by A on L2(T, H) is invertible. It follows from (8.5.7) that, for each
continuous function f: T — H,

Re (Af, ) gy = [ Re (AR (), () gl

T

>0 / 1F ) 2] = || £112 o
T

Since the continuous functions are dense in £2(T, H), this implies that

Re (Af, f) pap gy = llfZ2emy forall f € L2(T, H).
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Since, by statement (iii) in Theorem and Definition 8.3.10, the projector P is
orthogonal and Pf = f for f € L3 (T, H), this implies that

Re (W, f, f>,cz(1r,H) =Re (P(Af), f>£2(T7H) =Re (Af, f>£2(11',H)
> |l |2y, forall f e £3(TH).

Hence the real part of Wy is positive, which implies that W, is invertible. (]

8.5.10 Theorem. Let I' = T be the unit circle. Assume A : T — GL(H) is a
continuous function which admits local factorizations with respect to T (Def. 7.1.3),
such that at least one of the following two conditions is satisfied:

—1 _
max [ A7 (2) = Il <1, (8.5.8)
or, for some ¢ > 0,
Re(A™ (2)v,v) i > c|jv| 5 forallve H and z € T. (8.5.9)

Then A admits a canonical factorization with respect to T (Def. 7.1.1).

B(z)=A"" (i) :

Since A admits local factorizations with respect to T, then B admits local factor-
izations with respect to T. Moreover, since A satisfies at least one of the conditions
(8.5.8) or (8.5.9), B satisfies at least one of the conditions

Proof. Set

max 1B(z) = Il gy < 1,

or

Re(B(z)v,v) g > c||v| g forallve H.

Therefore, by theorems 8.5.3 and 8.5.9, B admits a canonical factorization B =
B_ By with respect to T. Setting

we obtain a required canonical factorization A = A_A, of A with respect to
T. O

8.5.11. Finally we note that also theorems 8.5.9 and 8.5.10 have corollaries corre-
sponding to corollaries 8.5.4 and 8.5.4 of Theorem 8.5.3.
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8.6 Block Toplitz operators
In this section H is a separable Hilbert space and

PH=HoHoH®...

is defined to be the Hilbert space of square integrable sequences v = (v, )nen Of
vectors v,, € H, endowed with the scalar product

<v,w> = Z<Un>wn>, v = (Un)neN € lQ(H), w = (wn)neN € lz(H)a

n=0

and the norm

ol = | 3" lval?, v = (Un)nen € 2(H).
n=0

8.6.1. Let m, : I>(H) — H, n € N, be the projectors defined by
Tpl = Up, for v = (v;)52, € I*(H),
and let 7,, : H — [>(H), n € N, be the injections defined by
Tnh = (6nh)520, for h € H,

where 4,,; is the Kronecker symbol. Then, with each operator T' € L(I*(H)), we
associate the infinite matrix with elements from L(H) given by

Too Tor To2
- Tvo Tn T ... .
(T’jk)j,k:O = T20 T21 TQQ e with Tjk = TroTk'

This matrix will be called the block matrix of 7. An operator T € L(I*(H)) will
be called a block Téplitz operator if the elements T} of its block matrix depend
only on the difference j — k, i.e., if the block matrix of T is of the form

To T-1 T2

T T, T ... waT70  ifn>0
Tip) = ith T,=1¢ " "° =
(T k)],k:O o T To ... wi {'/TOTTn if n <0.

8.6.2. Let T be the unit circle, and let £2(T,H), L3 (T, H), £L%(T,H) be the
Hilbert spaces introduced in Section 8.3.1 and in Theorem and Definition 8.3.10.
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Recall that, by part (iii) of Theorem and Definition 8.3.10, we have the orthogonal
decomposition
L2(T,H) = L%(T,H) ® £2 (T, H). (8.6.1)

Let {e,}>2, be an orthonormal basis of H. Recall that then, by part (iii)
of Theorem and Definition 8.3.10, the family {¥,,, }nen pven+ of functions ¥, €
L2 (T, H) defined by

ZTL

ez

forms an orthonormal basis of £ (T, H). On the other hand, by definition of I?(H),
the family {¢, tnen,ven= of sequences ¢y, € [*(H) defined by

U,.(2) = ey, z€T, neN, veN, (8.6.2)

Vv = (bnjer) gy nEN, vEN, (8.6.3)

forms an orthonormal basis of [2(H). We denote by M the linear isometry from
L% (T, H) onto [*(H) defined by

MY, =Y., neN, veN*, (8.6.4)

8.6.3 Lemma and Definition. Let A: T — L(H) be a continuous function, and let
Wa be the Wiener-Hopf operator defined by A in £3 (T, H) (cf. Section 8.4.1).
Then the operator T4 defined by

Ty =MW, M (8.6.5)

is a block To6plitz operator, where

1 A(2) .
The operator T4 defined by (8.6.5) will be called the block Toplitz operator defined
by A.

Proof. We only have to prove (8.6.6). Let j,k € N be given. First note that, for
all ke N* and v € H,

(M*lTkv) (2) = \/Z;rv, zeT. (8.6.7)

Indeed, for v = e, this holds by definition (8.6.4). Since {e,}, -, is an orthonor-
mal basis of H, it follows for all v € H.
Next we prove that, for all f, € Ei(’ﬂ‘, H) and j € N,

1 f+(2)
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Since the family {W,.,},,cn e+ 15 an orthonormal basis of £3 (T, H) and
the two sides of (8.6.8) depend continuously on f, with respect to the norm of
L% (T, H), it is sufficient to prove that this holds for fy = ¥,,,, m € N, v € N*,
which is the case, namely:

O 1 1 m
oMY, =70, = 0,6, = — / —dz |e, = — / © _dx e,
21t \Jp 2 2wt \ Jp 2911

Now let P be the orthogonal projector from £3(T, H) onto £ (T, H). Then,
for all f € L%(T, H),

(Pf)(=) (2) ,
/T s, dz = fure dz, jeN (8.6.9)
Indeed, if f is a function of the form
v
= — T
f@)=—5  2€T,

where v € H and m € N*, this is obviously the case. As the functions of this form
are dense in £2 (T, H) (part (iii) of Theorem and Definition 8.3.10), this implies
(8.6.9) for all f € L*(T, H).

From (8.6.9) and (8.6.8) it follows that, for all f € L(T, H),

LG,

m,MPf = i Jp 2t z.

Hence, for all f1 € £L3(T, H),

1 A(2)f
%W%h:memm:W%A BLG,,

Together with (8.6.7) this further implies that, for all v € H,

_ 1 A(2)2kv/V/2m 1 A(z)v
—_ 1 _ —_
T Tpmh = m, MW, M™ 1.0 = on /T s dz = 3t Jp 2 —EHD dz,

i.e., we have (8.6.6). O

8.6.4. If P € L(H) is a projector, then we denote by S, p, k € Z, the Téplitz
operator defined by the operator function 2P, z € T.

80f course, (8.6.9) follows also from the more general formula 8.3.21 in part (ii) of Theorem
and Definition 8.3.10.
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Then it follows from (8.6.6) that, for all j,k € N and « € Z,

1 P P ifj=k+n
S =— | ——/—dz = 8.6.10
TRk, PTk 27 /]l' 2i—k+l—k z {O 1f] ;é k + k. ( )

Hence, for each projector P € L(H) and each sequence v = (vg,v1,...) € [2(H),

Sy pv = (Pvgy, Pvy,...),
Sy pv = (0, Pvy, Pvy,...), (8.6.11)
S_1 pv = (Pvy, Pug, ...),

which implies that, for each projector P € L(H) and for all x € N,

SK,P = Sf,Pa
S_wp =5 p; (8.6.12)

S—I{,PSK,P - Sil,PSf,P = SO,P?
and, for all projectors P, P’ € L(H) with PP’ = P’'P =0 and all x,x’ € Z,

S ,PSK',P/ == O (8613)

From Lemma 8.4.5 we immediately obtain the following

8.6.5 Proposition. Let D, be the open unit disc, let D_ := C\ Dy, let A: T —
L(H) be a continuous function, let A_ : D_ U {oco} — L(H) be a continuous
function which is holomorphic in D_ U {occ}, and let Ay : Dy U{oco} — L(H) be
a continuous function which is holomorphic in D4. Then

(i) T,LLAA+ = TAfTATAJr'

(i) If A_(z) is invertible for all z € D_ U{oo}, then T, is invertible and

Ty =T,

(iii) If A, (2) is invertible for all z € D, then Ty, is invertible and

T'=T,_..
AL A+1

We also have the following

8.6.6 Proposition. Let A: T — L(H) be an arbitrary continuous function such that
W, and T are Fredholm operators. (By definition of T4 it is clear that if one of
them is Fredholm, then the other one is also Fredholm.) Then A(z) is invertible
for all z € T.
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Proof. Assume the contrary, i.e., assume that, for some zy € T, A(zp) is not
invertible. This is equivalent to the statement that at least one of the operators
A(zp) and A*(zg) is not left invertible, where A*(zp) is the Hilbert space adjoint
A(Z(]).

Assume first that A(zg) is not left invertible.

By part (iii) of Theorem and Definition 8.3.10, the functions 2"/v/2m, n €
Z, form an orthonormal basis of £2(T, H). Let P,, m € N, be the orthogonal
projector from £% (T, H) onto the closed subspace of £2 (T, H) spanned by the
functions z”/\/%, n>m.

As W, is a Fredholm operator, we can find k € N so large that

Q= lIlf HWAUH,CQ(T,H) > O (8614)

w€Im Py, |lull p2 (p, gy =1
On the other hand, as A(zp) is not left invertible, we can find vy € H with

Jooll =1 and  [|(A(z0))vol| < 5

Choose § > 0 so small that

g < / |dz| < 26

2€T,|z—2z0|<§

and
| (A(z))wvo]| < % if |z — zo] < 4,
and set
Yo =1 (r) _
fo)mdvs  AHIETHE = dl <o,
0 if |A— Aol > 6.
Then
1Al z2en,m) > 1, (8.6.15)
but
e
A 2 r,mry < 9 (8.6.16)

As the functions 2" /v/2m, n € Z, form an orthonormal basis of £%(T, H), we
have

T ([P (=" ) = 2" F o gy = O (8.6.17)

By (8.6.15) this implies that

7}520 1P (2" )l 221,10y = nhjgo 12" fll c2 e,y = Wl 22 ol > 1 (8.6.18)
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On the other hand, by (8.6.17),

= lim_ [Waz1)]

Jm a(Rn)

L£2(T,H) n—00 £2(T,H)
= lim H'P(Az”f)‘ .
n—oo £2(T,H)

As the projector P is orthogonal and in view of (8.6.16), this further implies that
")l
< —.

(0%
L£2(T,H) 2

< lim ‘Az”f)‘
L2(T,H) n—o0

m HWA (Pk(z !

li
n—oo

=4

£2(T,H)

Together with (8.6.18) this is a contradiction to (8.6.14).

Now we assume that A*(zg) is not left invertible. Since W,. is the Hilbert
space adjoint of Wa, which is also a Fredholm operator (as W4 is a Fredholm
operator), then, with A replaced by A*, we get the same contradiction. O

We now can prove the following two theorems:

8.6.7 Theorem. Let A : T — GL(H) be a continuous function which admits lo-
cal factorizations relative to T and GL(H) (Def. 7.1.3). Then the following two
conditions are equivalent:

(i) The Toplitz operator Ta defined by A is invertible.
(ii) A admits a canonical factorization relative to T and GL(H) (Def. 7.1.1).

If these two equivalent conditions are satisfied and A = A_A, is a canonical
factorization of A relative to T and GL(H), then the inverse of Tx is given by

-1
Tyl =T, T, (8.6.19)

Moreover, the block matriz of the operator TA,1 has the lower triangular form
+

o o0 ..
rf ry o .. 1 [ AT
; + . +
ry 7oy with ry:= 271'1'/ g dz, neN, (8.6.20)

the block matriz of the operator T ,_, has the upper triangular form

r; I, I'’, ..
0 0o Iy .. with T'Z, = i - Z_THdz, neN, (8.6.21)
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and, hence, the block matrix (ij);ok:() of T;l can be computed by the finite sums

k - .
F o= {Z){—O F;lyry_k;a ] 2 k7 (8 6 22)
jk = _ X .0.
Jy:O F;—uru—k’ J § k.

8.6.8 Theorem. Let A : T — GL(H) be a continuous function which admits lo-
cal factorizations relative to T and GL(H) (Def. 7.1.3). Then the following two
conditions are equivalent:

(i) The Toplitz operator T4 defined by A is a Fredholm operator.
(ii) A admits a factorization relative to T and GL(H) (Def. 7.1.1).

If these two equivalent conditions are satisfied, if
Alz) = A_(2) (Po + ZZ”J'PJ->A+(Z), zeT,
j=1

is a factorization of A relative to T and GL(H), and r is the index with k; >
o>k >0> kK, > ... > Ky, then

n T
dimKerT, = — Z kjdimP; and dim CokerT, = Z k;jdim P;. (8.6.23)
j=r+1 j=1

Moreover, if A(z) := P+ 3_7_, 2" Pj, then

TAIITA71 A:l (8624)

is a generalized inverse (Section 6.10.2) of T 4, where, with the notations introduced
in Section 8.6.4,

n s n
Tas=Sop+ D S b, =Som+ 2.5 + > S5 (8.6.25)
j=1

j=1 j=r+1

8.6.9. Proof of Theorem 8.6.7. By (8.6.6) it is clear that the statement on the

equivalence of conditions (i) and (ii) coincides with part (i) of Theorem 8.3.7.
Now let A = A_A, be a canonical factorization of A relative to T and

GL(H). Then, by parts (ii) and (iii) of Proposition 8.6.5, the operators Ty, and

T, are invertible, where TX: =T, . and T,' = T, .. Since, by part (i) of this
_ n - Z

proposition, Ty = TA,TA+’ this further implies that

;' = T;jT;j =Ty Ty
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Moreover, by (8.6.6), the block matrix of the operator T ,-. Is given by
+

ry rt, v, ..
ry o rt, ... 1 AT (2)
'+ i + . +
F; Fir Far N with Fn T AT T Zn+1 dZ, ne Zv

and the block matrix of the operator T', _, is given by

Fa F_l FZZ

F; Fa F:I . B 1 A:l(z)
ry Iy Tg ... with Ije=o— dea n € Z.
As )
1 AT (2)
+_ L + _ .
F”_2m' ot dz=0 if n <0,
and .
_ 1 AT (2) i
n:Tﬂ'Z dezzo 1fn>0,
this implies (8.6.20) and (8.6.21). O

8.6.10. Proof of Theorem 8.6.8. Again in view of (8.6.6), the statement on the
equivalence of conditions (i) and (ii) coincides with part (ii) of Theorem 8.3.7.
Now let these two equivalent conditions be satisfied, let

A(z) = A_(2) (Po + Zznjpj)AJr(Z), z €T,
j=1
be a factorization of A relative to T and GL(H), and let r be the index with
K> > 6, >0> K> ... > K,
Then (8.6.23) follows from part (ii) of Theorem 8.3.7.
From part (i) of proposition (8.6.5) it follows that

Ty =Ty TaTy,. (8.6.26)
By definition (see Section 8.6.4), we have
TA = SO,PO + ZS’{JWPJ' and TA—l = S(LPO + Z S*l‘éjypj' (8627)
j=1 j=1

By (8.6.13) and (8.6.12) this yields

n n
TATATx = So,p, + Z S POy, P Sk P, = So,py Z Si;.p; = T

Jj=1 Jj=1
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In the same way we get the relation
TA—ITATA—I == TA—1~

Hence T, _, is a generalized inverse of T . Taking into account (8.6.26) and the fact

that, by parts (ii) and (iii) of proposition (8.6.5), T;+1 =T 4 and T;' =T Pt
this implies that the operator (8.6.24) is a generalized inverse of T4.
The first equality in (8.6.25) holds by (8.6.27) and the second follows from

(8.6.12). O

8.7 The Fourier transform of £!(R, F)

8.7.1. The space LP(R, E). Let E be a Banach space, and let 1 < p < oo. We
denote by CJ(R, E) the complex linear space of continuous functions f : R — F
with compact support. We introduce a norm || - || zo (g, ) on C§(R, E), setting

11 n = [ I5@IPde. £ eCl®.E),

and we denote by LP(R, E) the completion of CJ(R, E) with respect to this norm.
For EE = C this is the usual space of scalar L£P-functions on R. In simple cases,
also for general Banach spaces F, we identify the elements of LP(R, F) with E-
valued functions. For example, each piecewise continuous function f : R — FE
with [*_||F(z)[[Pdz < co will be viewed (in the obvious way) as an element of
LP(R, E) Note that then

110 (i, ) /_ £ ()| da.

Also the functions of the form ¢-v, where v is a fixed vector in F and ¢ € LP(R, C),
will be identified with the corresponding element in LP(R, E).
In general however, we view the elements of LP (R, E) as equivalence classes of
Cauchy sequences rather than true functions (although the latter is also possible).
Nevertheless, for each element f € £!(R, E), we define the integral

/_00 f(z)dx (8.7.1)

as follows: Take a Cauchy sequence f,, € CJ(R, E) defining f. Then

oo

lim fn(z)dx

n—oo | _

exists and is independent of the choice of the Cauchy sequence. We define the
integral (8.7.1) to be this limit.
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8.7.2. Convolution. Let 2 be a Banach algebra. For two functions K, L € £! (R, QJ.),
we introduce a product K * L € £}(R,2l), called the convolution of K and L. If
K and L are piecewise continuous, this is defined (as usual) by

(K = L)( / K(x fxd:rf/ K(y — z)L(z)dz, yeR.
By Fubini’s theorem, for such functions we have

dy

1 * Ll o ) = H/ K(y— ) L(x)da

s;/f:/F:nnyxnnL@»MMdy
[ ([ s -ola)izw)

-/ (/IW@M@M@WMﬂKummLumm

— 00 — 00

Therefore, we can extend the convolution by continuity to all of £! (IR,Q[)7 and
then

1K * Ll ooy < I 2o ooy 11| 21,0y (8.7.2)
forall K,L € £* (]R, 91) Hence £1 (R, 91) is an algebra with respect to convolution.
8.7.3. The spaces L', (R, E). Let E be a Banach space, let 1 < p < oo, and
let (C§)_(R, E) be the subspace of C§(R, E) which consists of the functions with
support in | —oo, 0], and let (C8)+(R, E) be the subspace of CJ(R, E) which consists

of the functions with support in [0, col.
Then we denote by £” (R, E) and L% (R, E) the closures of (CJ)_(R, E) and

((38)+(R,E) in LP(R, E), respectively. Since L7 (R, E) N L4 (R, E) = {0} and the
functions of the form f + f_ with fi € (Cg)i(R, E) are dense in CJ(R, E) with
respect to the norm || - ||z, g 5, We see that LP(R, E) splits into the direct sum

LP(R,E) =LY (R,E) & L (R, E). (8.7.3)
If % is a Banach algebra, then, obviously,

frge LLR,A)  if fge LL(R,A),

frge L (RA) if f,g € L1 (R, ), (8.7.4)

ie., L1 (R,A) and L1 (R,2A) are subalgebras of the algebra £!(R,2) with respect
to covolution.
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8.7.4. The Fourier transform of £!(R, E). Let E be a Banach space. For functions
f € CQ(R, E), we define by

7O = [ T e f(n)dr,  A€C, (8.7.5)

the Fourier transform of f. Differentiating under the sign of integration, we see
that f is holomorphic on C for all f € CY(R, E). Moreover, if f € CJ(R, E) and
A € R, then

IFOI S/ e Nf @)l dz = [1f 1l 22 (g, y-

Therefore, the Fourier transformation extends by continuity to all of £L}(R, E),
where, for all elements f € L1(R, E), f is a continuous E-valued function on R,

and
ilelg\\f(/\)\l <|fllgrwp — forall fefell (R E). (8.7.6)

We denote by Lt (R, E), E}r (R, E) and Lt (R, E) the spaces of all continuous func-
tions ¢ : R — E of the form ¢ = f with f € L'(R,E), f € LL(R,E) and
f € LY (R, E), respectively. Note that

F#£0 if feLYR,E)and f #0. (8.7.7)

This can be deduced by the Hahn-Banach theorem from the scalar case. Therefore
the Fourier transform is a linear isomorphism from £!(R, E) onto £!(R, E), and
we can introduce a norm in £'(R, F), setting

1z gy = Il cry  for £ € LR, B). (8.7.8)

Note that then (8.7.6) takes the form
W eI < lIgllzgpy  forall v € L'(R, EB). (8.7.9)
As LY(R,E) = LL (R, E)® LL (R, E), the space L (R, E) splits into the direct sum
LR, E) = L1 (R, E) ® L1 (R, E). (8.7.10)

8.7.5. Now we consider again a Banach algebra 2.
Then for K, L € CJ (R, Q[), it follows from Fubini’s theorem that

(Im)()\) = /_O:O e ( /_Z K(y— x)L(w)d:v) dy

_ /_ ‘: ( /_ Z M=) f (4 — ) dy) € L (2)da (8.7.11)
_ / - ( / T WK () dy>eWL(x)dx — ROWVEW)
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for all A € C. Since the convolution is continuous with respect to the £-norm
(inequality (8.7.2)) and in view of estimate (8.7.6), this implies that

(K «L)(\) = K(\)L(\) (8.7.12)

for all K,L € £! (R,Ql) and A € R. Hence, for all K, L € Ll (R,Ql), the pointwise
defined product AL belongs again to £ (R, ), and it follows from (8.7.2) and the
definition of the norm in £!(R,2l) that

IKLl ., (8.7.13)

R,2) < |‘KH21(RQ[) HLHEI(R’Q[)
for all K,L € £'(R,2). Hence L' (R,2) is a Banach algebra, and, as £ (R, 2)
and £L (R, 91) are subalgebras of £! (R, 91) with respect to convolution, [Al_l|r (R, Ql)
and L1 (R, Ql) are subalgebras of Ll (R,Ql).

8.7.6. We denote by H, the upper open half plane, and by H_ the lower open
half plane:

H+::{Z€C‘Imz>0}7 ]HL::{ZE(C‘Imz<O}.

The closures of Hy and H_ in C (and not in the Riemann sphere) will be denoted
by H; and H_. If E is a Banach space, then a function

f:H U{c} = E

will be called continuous on H, U {oo} if f is continuous on Hy and f(1/2) is
also continuous on H. In the same way we define what it means that a function
defined on H_ U {oo} or on R U {oo} is continuous.

8.7.7 Theorem. Let E be a Banach space.

(i) A function ¢ € LY (R, E) belongs to EL(R,E), if and only if it admits a
continuous extension to H, U{oo} which is holomorphic in H, and vanishes
at infinity. Moreover

max A < ~ or each ¢ € L} (R, E).
2 o S Wellpe ) Jor ench o € EL(R, )

(ii) A function ¢ € LY(R,E) belongs to L* (R, E), if and only if it admits a
continuous extension to H_ U{oo} which is holomorphic in H_ and vanishes
at infinity. Moreover

max oW < el zipp  for cachp € LLRE).  (87.14)
AeH_U{oo} ’



8.7. The Fourier transform of L!(R, E) 309

(iii) Bach function ¢ € LY(R,E) is continuous on R U {oo} and p(c0) = 0.
Moreover

-
< - .
\max leW < Nlellz1 gy Jfor each o € L1(R, E)

Proof. As L*(R,E) = LL(R,E) ® LY (R, E), part (iii) follows from parts (i) and
(ii) and estimate (8.7.6). By the same reason, for the proof of (i) and (ii), it is
sufficient to prove the “only if” parts of (i) and (ii).

Indeed, assume that this is proved.

Let ¢4 € LY(R,E) be a function which admits a continuous extension to
H + U {oo}, which is holomorphic in H, and vanishes at infinity. Then it follows
from the decomposition £}(R, E) = L1 (R, E) ® L4 (R, E) that

o+ =¢-+¢+  onRU{co}
with &+ € L1 (R, E). Then

Y — Py =p- on R U {oo}.

The two sides of this equation define a holomorphic function on CU{co} vanishing
at infinity (see Theorem 1.5.4). By Liouville’s theorem this implies that o4 = ¢4 €
LL(R,E).

In the same way, one proves that each ¢_ € Ll (R, E'), which admits a contin-
uous extension to H_ U{oco}, which is holomorphic in H_ and vanishes at infinity,
belongs to L (R, E).

The proofs of the “only if” parts of (i) and (ii) are similar. We therefore
restrict ourselves to part (i). First we prove the following weaker statement:

(i) Each function ¢ € 2}‘_(]1%, E) admits a continuous extension to H, U {co}
which is holomorphic in H, and which satisfies the estimate

sup [le(V)| < 12l 21 g, gy (8.7.15)
A€H,

To prove (i'), we first note that, for each u € (C8)+(R, E)and A € H,,

||ﬂ(/\)||§/0 }ei*f|||u(x)y|dx=/0 =1 [|u(e)|| dz < [lull 1 gay- (8:7.16)

Now let an arbitrary function ¢ € E}r (R, E) be given, and let f € L1 (R, E) be
the element with ¢ = f. Choose a sequence u, € (C) (R, E) with

00
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Then
i ngoo Hu# — UV”,CI(]R,E) = O (8718)

Recall that |l — a""”l‘:l(R,E) = |f - uMHU(R,E)v by definition of the norm in

LY(R, E). Therefore it follows from (8.7.17) and (8.7.9) that

lim sup | o(A) — @, (A)] = 0. (8.7.19)
=00 )\E]R

From (8.7.18) and (8.7.16) it follows that

lim sup ||u,(X) —u,(N)| =0.
M, V—00 A€H+

Since the functions @, are holomorphic on C, this implies that the sequence u,
converges uniformly on H 4 to some continuous function which is holomorphic
in H,. By (8.7.19), on R, this function coincides with ¢. So it is proved that ¢
admits a continuous extension to H 4 which is holomorphic in H, . We denote this
extension also by ¢. Moreover, since, again by (8.7.16)

sup [, (M < llupll 21 (r, 4y,
AeH,

we get also (8.7.17). The proof of statement (i’) is complete.

Now we consider a function u of the form

wla) = 19 if x € [a, B],
(z) {O it ¢ o). (8.7.20)

where 0 < a < § < oo and a € E. Then, it follows immediately from the definition
of the Fourier transformation that, for all A € R with A\ # 0,

62’)\30

- A A
a0\ = a/ﬁ T 10 — wep_ M et
3 B

r=o A

Since o > 0, this formula shows that @ admits a continuous extension to C, which
can be expressed by the same formula for all A € C with A # 0. For A € H with
A # 0, this implies that

[ (M) < [lall

Hence
lim sup  |lup(N)]| =0 (8.7.21)
R—00 \cH, |A>R
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for each function u of the form (8.7.20). Now let M be the space of all finite sums
of functions of the form (8.7.20). Then, for each u € M, @ is holomorphic on C,
and it follows from (8.7.21) that

lim sup  |[a(\)]| =0 for each u € M. (8.7.22)
R—00 \cH, |A>R

Finally let an arbitrary function ¢ € Eﬁ_(R, E) be given. By statement (i') we

already know that ¢ admits a continuous extension to H, which is holomorphic
in H; and which satisfies the estimate (8.7.15). It remains to prove that

lim sup  |leN)| =0. (8.7.23)
R=00 \cH, |A>R

Let f € L1 (R, E) be the function with ¢ = f. Since M is dense in LY (R, E), then
we can find a sequence u, € M with lim [u, — f[| 21z 4) = 0. As

[ = ¢l gy = s = Fll sy
then it follows from (8.7.15) that

lim sup [|@,(A) —@(N)| =0,

and from (8.7.22) we get

lim sup  |lu,(N)||=0 for all v.
R=00 \el, AIZR

Together this implies (8.7.23). O

We conclude this section by computing the Fourier transform of some special
functions, which we need in sections 8.9 and 8.10 below.

8.7.8. For all n € N we define

and 6, (z) = (8.7.24)

0 for x > 0.

z"e ™  for x >0,
0 for x < 0,

{—x”em for x <0,

Note that 6,7 € L1 (R,C) N L*(R,C) and 6,, € L1 (R,C) N L*(R,C).
8.7.9 Lemma.

OF =(n+D! 05 *...% 0 and 0, =(n+1)! 65 *...% 0, neN*.
—— ——

n+1 times n+1 times
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Proof. We have for all n € N|

Y
9+ * 9+ 9+ — )0 (x)dx = e Yz"e " dr
(
0
ey/ "dx—eyy :71 0 L (y)
0 n+1 n41

and

0
0., / 0y (m)dazz/ eV Tx"e"dx
y

ynt 1
—ev [ atde=-—evL = g
e /?; € e n+1 n+1 TL-‘rl(y)?

ie, 0 = (n+1)6 6 and 6, , = (n+1)6,, * 6, which implies the assertion
by induction. [

8.7.10. If £ € Hy, then Rei€ < 0 and therefore, setting

je— %7 ifz <0
95 (z) = ’ -7
e () {0 if z >0,

then we get a function J; € LY (R,C). If ¢ € H_, then Rei¢ > 0 and therefore,

setting
—je % if z >0,
0 (z) = .
0 if x <0,

then we get a function 192“ € L (R,C). Note that
O =it, and 0y =iV, (8.7.25)

where QSE are the functions introduced in Section 8.7.8.

8.7.11 Lemma. (i) We have

(ii) For all n € N*, we have

(B5-1) -, ek

A+

A+ oo
-1 =—86 A A€eR.
()\—’L ) 71()7 €
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Proof. If £ € H,, then

=0 1

o e g— 0 i) eliA—id)e
195()\):/ e 195(;v)dm:z/ e dx:zm

— o0 -0 T=—00

and if £ € H_, then

~y 0o et . oo (ir—it)e .e(i)\—ig)m r=00 1
19€ (A):/;OOB 195 (x)dl':—'l/(; € d.x:—lm . :)\7_5
This proves part (i). Setting £ = +i in part (i), we get
b 65(\)  and - 05 (N).
Ati 0 A—i °
Hence
A—1i 24 ~ A+ 2 ~
—1=— = 207 —-1= =26, ().
Ati A+ b0 (\) and S i W
By Lemma 8.7.9 this yields part (ii). O

8.8 The Fourier isometry U of £(R, H)

In this section H is a separable Hilbert space with the scalar product (-,-) = (-,-) 5.

8.8.1. The space L2(R, H) introduced in Section 8.7.1, then will be considered a
Hilbert space with the scalar product (-, -) c2(r, i) defined as follows: For functions

f,9 € CO(R, H), we set

Ushem = [ 0)9(0)

If f and g are two arbitrary elements of £2(T, H), then a function (f,g)y €
L1(R, C) is well defined. Indeed, let { f, }nen and {gy, }nen be two Cauchy sequences
of functions from C°(R, H) which represent f and g, respectively. Then, by the
Cauchy-Schwarz inequality in H, pointwise on R we have

| (Fs gy = (s g g | < 160 = Fllgll gl + [l g9 = gl

which implies, by the Cauchy-Schwarz inequality in L?(R, C), that

H<fn’g">H - <fm’gm>H’

< || fu - fm||£2(F,H)||g”H£2(I‘,H) + ||fm||z:2(1“,H)||9" - gm”p(nH) :

£1(T,C)
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Hence ({fn, gn>H)n€N is a Cauchy sequence in £'(I",C), and the function (f, g) 4
can be defined to be the limit of this sequence in £!(I',C). We now define the
scalar product in £2(R, H) by

(gl = [ (Fouds,  fgeiw.m.

—0o0

Finally we note that, for each f € £2(T, H), the function

£l ==/ (S f>H

belongs to £2(T',C) and that, for the norm corresponding to the scalar product
<f, g>£2(F7H), we have

s = [ 161 da.

8.8.2. Recall also the subspaces £2 (R, H) and £ (R, H) introduced in Section
8.7.3, and note that (obviously) now the direct sum (8.7.3) is even orthogonal,
i.e., we have the orthogonal decomposition

L2R,H) =L2(R,H) @ L2 (R, H).

8.8.3. Let (e,,)22; be an orthonormal basis of H, and let H,, be the subspace of
H spanned by e,,. Then £?(R, H) splits into the orthogonal sum

L3(R,H) = é L3(R, H,). (8.8.1)

Therefore each function f € £2(R, H) has a uniquely determined representation
in the form

=Y faen  with f, € L3(R,C) (8.8.2)
n=1
and
||fH%2(R,H) = Z an||2£2(R,cc)~ (8.8.3)
n=1

8.8.4 Proposition. Let f € CJ(R, H). Then the series (8.8.1) converges uniformly.

Proof. We denote by P, the orthogonal projector from H onto @;L:l H;. Let
g > 0. Then, for each fixed z € R, there exists n.(z) € N with

1f(2) = Puf(z)]| <

for n > n.(z).

| ™
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As f is continuous and || P, || = 1, this implies that each x € R has a neighborhood
U(x) such that, for y € U(z) and n > n.(z),

1£(y) = Paf W < 1F(w) = F@) |+ 1S (2) = Puf (@)l + 1P f (2) = Puf ()|
<2f(y) = f@lI+ /(=) = Puf(2)] <e.

Since the support of f is compact, this completes the proof. ([

8.8.5. The Fourier transform on £2(R, H). As, by the preceding proposition, the
series (8.8.1) converges uniformly if f € CJ(R, H), for the Fourier transform (Sec-

A~

tion 8.7.4) f of a function f € CJ(R, H), it follows from (8.8.1) that
f()\) = / eiALEd{E = Z (/ ei/\mfndm) €n = Z .]/C;‘L(A) €n, AeR
oo n=1 o0 n=1

By (8.8.3) this implies that
—~ > —~
12wy = Z I fall g2,y forall f € CO(R,C).
n=1

As, by the Plancherel theorem ([Ru], theorem 9.13), ||]?,L||£2(R’C) = ||anz:2(R,<C) for
all n, this further implies (again using (8.8.3))

||f”z:2(R,H) = ||sz:2(R,H) for all f € CO(R, H).

Since, by definition, CJ(R, H) is dense in £L2(R, H), it follows that the Fourier
transformation extends to an isometry of £2(R, H), which we denote by U. For
f € L%(R, H) we write again f = Uf.

8.8.6. Convolution between £ (R, L(H)) and L*(R, H).
First let K € CJ(R, L(H)) and f € C§(R, H). Then we define (as usual)

)= [ K@iw-ot= [ Ky-a@d,  yer
and it follows from Fubini’s theorem that
&= [~ ([ K- )y
= / h ( / h eV K (y — ) dy> e f(2)da (8.8.4)

— o0 — 00

_ / - ( /_ O:o ) dy> X f(2)de = RO)F(N), AeC.
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Since the Fourier transformation is an isometry of £2(R, H), this implies
K * f||L2(R,H) = ||Kf||£2(R,H) < f\lelg HK(/\)||||fHL2(R,H)
and further, by (8.7.9) and (8.7.8),

| K f||£2(R,H) < HKHEl(]R,L(H))||f||£2(R,H)‘

Since, by definition, CJ(R, H) is dense in £*(R, H) and CJ (R, L(H)) is dense in
L'(R,L(H)), this implies that the convolution extends to a continuous bilinear

e x: L' (R,L(H)) x L*(R,H) — L*(R, H)

(called convolution), where, for all K € £' (R, L(H)) and f € L*(R,H),
1K fll c2mmy < 1K 22wy 1 1 22wy (8.8.5)
and, by (8.8.4),

— o~ o~

K«f=KF. (8.8.6)

This convolution is associative:
8.8.7 Proposition. If K,L € L'(R,L(H)) and f € L*(R,H), then
(K* L)« f=Kx(Lxf).

Proof. If K, L, f are continuous and with compact support, then this follows by
Fubini’s theorem:

(@)= [ ®s -1

/i (/ZK(t)L(yxt)dt)f(a:)dx
:/ZK(t)(/ZL(y—x—t)f(a:)dx)dt

:/_O;K(t)(L*f)(y—t)dt: (K*(L*f))(y), yER.

By continuity (see estimate (8.8.5)), this implies that the assertion holds also in
the general case. [

8.8.8 Proposition. Let P, be the orthogonal projector from L2(R,H) onto
L% (R, H). Then, for all feL*(R,H), K, €L} (R,L(H)) and K_€ L' (R,L(H)),

Ky« (Pyf) =Py (K+ * (P+f))’ (8.8.7)
P, (K_ x f) =P, (K_ x (79+f)). (8.8.8)
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Proof. In view of (8.8.5), we may assume that the functions f, K, and K_ are
piecewise continuous. Then

(K*P+f /K —2) (P, f)(x dasf/K — ) f(z) da

for all y € R. This implies that K * (P, f) € L3 (R, H), i.e., we have (8.8.7).
Moreover

77+<K *f / K_(y—x) (m)dx:/ K (y—x)f(z)dx
for all y € R. For y > 0, this implies that
PK s D))= [T K =)@ dr =P, (K + (P) ).

i.e., we have (8.8.8). O

8.9 The isometry V from L*(T, H) onto L*(R, H)

In this section, H is again a separable Hilbert space, and £*(R, H), L3 (R, H),
L2 (R, H) are the Hilbert spaces introduced in Section 8.8.1. Recall the (obvious)
orthogonal decomposition

LR, H) =L2(R,H) @ L2 (R, H). (8.9.1)

Further, in this section, T is the unit circle, and £*(T, H), £3(T, H), £%(T, H)
are the Hilbert spaces introduced in Section 8.3.1 and in Theorem and Definition
8.3.10. Recall that, by part (iii) of Theorem and Definition 8.3.10, we have the
orthogonal decomposition

L2(T,H) = L%(T,H) ® L2 (T, H). (8.9.2)
8.9.1. Let @ be the Mobius transform defined by
A4z .
D(z) = T if AeC\{1}, ®(c0)=—i and &(1)= occ.
Note that then
o1\ = i: if AeC\{-i}, & '(—i)=o00 and @ '(c0)=1.

Further, let C°(T \ {1}, H) and C°(R, H) be the spaces of continuous H-valued

functions defined on T \ {1} and R, respectively. Set

1)) -1
V2

As ® is a diffeomorphism from T \ {1} onto R, in this way a linear isomorphism
V from C°(T \ {1}, H) onto C®(R, H) is defined.

(VHN) = f(@7 ') for feC(T\ {oo}) and A € R. (8.9.3)
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It is the aim of this section to study this linear isomorphism V. We begin
with the following

8.9.2 Theorem and Definition. For all f € C°(T \ {1}, H),

/T 1121z = / T VA . (8.9.4)

Since (by our definitions of £2(T, H) and £L2(R, H)), the space £2(T, H)NC°(T, H)
is dense in £2(T, H), and the space L3(R, H) N C°(R, H) is dense in £L*(R, H), it
follows from (8.9.4) that the restriction of V to £*(T, H)NC®(T\ {1}, H) extends
to a linear isometry from £?(T, H) onto L*(R, H).

We denote this isometry also by V.

Moreover, also the isometry from £2(T, C) onto £L3(R,C) (obtained for H =
C) will be denoted by V.

Proof. Set

: 1+4e"

t)=o(e") =i :

410( ) (6 ) 1— ezt

As @ is a C*®-diffeomorphism from T\ {1} onto R and the map ¢ — e is a C*>®

diffeomorphism from |0, 27| onto T \ {1}, this is a C*°-diffeomorphism from |0, 27|
onto R. We have

for 0 <t < 2.

Zezt(l _ eit) + (1 + eit)ieit 6it
o(t) =1 DL = 72<1 — e t €]0, 2. (8.9.5)

Set 1 = ¢ 1. Then
A= p(P(N) = @(eiw(’\)), AER,

and therefore

I\ =™, XeR. (8.9.6)
Further, by (8.9.5),
1 (1—ev)?
"(\) = — =_-2 . AeR.
v ="Smm) a0 €

Together with (8.9.6) this implies that

(1-a-1())”

P'(A) =— TRV AeR. (8.9.7)

Now let a function f € C°(T\ {1}, H) be given. Then, by definition of |dz|,

Jhr@iRis = [ e par
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Since 1 is a diffeomorphism from R onto ]0, 27| and by (8.9.6) and (8.9.7), this
yields

[ - [ A Pl )] an
T —00

2

> 2 (1 —(I)_l A
3 B ICSCVIRE R
As |®71(X\)| =1 for all A € R, this further implies that
PRI bl ek S VP
Lusenpias = [~ 2R @) o

By definition of V this is (8.9.4). O

8.9.3. In what follows the functions w;} € £3(T,C), n € N, and w,, € L2(T,C),
n € N, defined by

play a special role.

Recall that, by part (iii) of Theorem and Definition 8.3.10, the linear space
spanned by the functions 2™, n € N, is a dense subspace of £3 (T, H), and the linear
space spanned by the functions 1/2", n € N*, is a dense subspace of L2 (T, H). As
each of the functions z™, n € N, is a linear combination of some of the functions
wt, n € N, and each of the functions 1/2", n € N*  is a linear combination of
some of the functions w,,, n € N, this implies:

The linear space spanned by the functions w,, n € N, is a dense subspace of
Ei(’]l‘,(C), and the linear space spanned by the functions w, , n € N*, is a dense
subspace of L2 (T,C).

In view of the orthogonal decomposition (8.9.2), this further implies:

Then linear space spanned by the functions w,” and w, , n € N, is a dense
subspace of L*(T,H).

Further note that, by definition of V, for all n € N,

(Vw+)()\)—1()\_i—1>n+l AER

AN APEY | |
L ai _— (8.9.8)

i
V) = — —1 R
Ve =5 (3 -1) . ek
and therefore, by lemma (8.7.11) (ii),
_2)n+1 R 2n+1 R

Vuwl = Gy and Vw, = ——90,. 8.9.9
"NV 2n+ 1) " "2 1) " ( )



320 Chapter 8. Wiener-Hopf operators, Toeplitz operators

8.9.4 Theorem. Let 0 € L3 (R,C) and 6, € L2 (R,C), n € N, be the functions
introduced in Section 8.7.8. Then the linear space spanned by the functions 0.,
n € N, is dense in Li(R,(C), and the linear space spanned by the functions 6.,
n €N, is dense in L2 (R, C).

Proof. Since the linear space spanned by the functions w;! and w,;, n € N, is

dense in L£2(T,C) (Section 8.9.3), it follows from Theorem and Definition 8.9.2
that the linear space spanned by the functions Vw; and Vw,;, n € N, is dense in
£2(R,C). By (8.9.9) this implies that the linear space spanned by the functions 6
and 5; ,n €N, is dense in £L2(R,C). As the Fourier transformation is an isometry
of £L2(R,C), this further implies that the linear space spanned by the functions
0 and 6,, n € N, is dense in £L2(R,C). Taking into account the orthogonal

n

decomposition (8.9.1) and the fact that 6,7 € £3 (R,C) and 0, € L2 (R,C), this
completes the proof. O

8.9.5 Theorem. Let P be the orthogonal projector from L2(T, H) onto L3 (T, H),
let P® be the orthogonal projector from L?(R, H) onto L2 (R, H) and let U be the
Fourier isometry of L2(R, H) (Section 8.8.5). Then

PE=U"'VvPIV-lU. (8.9.10)

Proof. 1t follows from (8.9.9) that, for all n € N,

2n+1

Syt o DT
vy V2(n +1)!

= —" and U 'Vu, =
n \/i(’/l—‘rl)' n n

0-.  (8.9.11)
As the decomposition (8.9.2) is orthogonal, we have PTw! = wt and PTw, =0
for all n € N. Therefore it follows from (8.9.11) that, for all n € N,

U 'vPIv-lugf =6F  and  U'VPTV-IUG, =o0.
Taking into account Theorem 8.9.4 and the fact that also the decomposition (8.9.1)

is orthogonal, this implies (8.9.10). O

8.10 The algebra of operator functions
L(H)® LY(R,L(H))
In this section, H is again a Hilbert space.

8.10.1. Let £ (R,L(H)), /33_ (R,L(H)) and Lt (R, L(H)) be the Banach algebras
introduced in Section 8.7.5. Then we denote by L(H) & L (R,L(H)) the algebra
of functions W : R — L(H) of the form

W) =A+K(\), MeR, (8.10.1)
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where K € £'(R, L(H)) and A € L(H) is a constant operator. Since K(c0) =0
for all K € £*(R,L(H)) (Theorem 8.7.7 (iii)), the representation of a function
WeLH)® Lt (R,L(H)) in the form (8.10.1) is uniquely determined. Therefore
in L(H) & L (R,L(H)), setting

we can introduce a norm || - HL(H)@El(R L)

A+ KH myeii @ ooy = 1Al + ||K”U(R L(H))

for A€ L(H) and K € L' (R, L(H)). Note that then, by definition of the norm in
L' (R, L(H)) (see (8.7.8)),

||A + K”L(H)EBZl(]R,L(H)) = HAHL(H) + ||K||£1(R,L(H))

for all A € L(H) and K € L'(R,L(H)). It is easy to see that in this way,
L(H) & L (R, L(H)) becomes a Banach space and that, for all V,W € L(H) &
L' (R, L(H)),

VWi, <V (810.2)

®L'(R,L(H L(H)®LY(R,L(H)) HWHL(H)@EI(R,L(H))'

Hence, with this norm, L(H) oL (R, L(H)) is a Banach algebra. As E}k (R, L(H))
and L1 (R,L(H)) are subalgebras of L (R,L(H)), it follows that L(H) &
LL(R,L(H)) and L(H) ® LA%R, L(H)) are subalgebras of this Banach algebra.

We identify L(H) with the subalgebra of L(H)® L' (R, L(H)) which consists
of the constant L(H)-valued functions. As £* (R, L(H)) splits into the direct sum
L' (R,L(H)) = L1 (R, L(H))® L. (R, L(H)), then L(H) ® L' (R, L(H)) splits into
the direct sum

L(H)® LY(R,L(H)) = L(H) ® L (R, L(H)) ® L (R, L(H)). (8.10.3)

From Theorem 8.7.7 we immediately get the following

8.10.2 Theorem. (i) A function W € L(H) & L* (R,L(H)) belongs to L(H) ®
/3_ (R,L(H)), if and only if it admits a continuous extension to H, U {oo}
which is holomorphic in H,, and then

max [[W(A)[| < [W]|

A€H, U{oo} L(H)®L(R,L(H))’

(ii) A function W € L(H)® L (R, L(H)) belongs to L(H)® LY (R,L(H)), if and
only if it admits a continuous extension to H_ U {oo} which is holomorphic
in H_, and then

max [[W)|| < [[W]|

AEE?U{OO} L(H)@/El(]R,L(H))'
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(iii) Each function W € L(H)®L* (R, L(H)) is continuous on RU{oo}. Moreover,
for each W € L(H) ® L* (R, L(H)),

max [|[W(A)] < ||WHL(

AERU{o0} H)®L'(R,L(H))’

The main result of the present section is the following

8.10.3 Theorem. The space of L(H)-valued rational functions without poles on
R U {oo} is contained in L(H) & LY(R,L(H)) as a dense subset.

To prove this, we first deduce from Theorem 8.9.4 the following

8.10.4 Lemma. Let 0, n € N, be the functions introduced in Section 8.7.8. Then

the linear space spanned by the functions 0, n € N, is dense in L}r(R, C), and

n’

the linear space spanned by the functions 6, , n € N, is dense in L1 (R, C).

n’

Proof. Tt is sufficient to prove that the functions 6, n € N, span a dense subspace
of L1 (R, C), because the statement with respect to the functions ¢, then follows
by the substitution x — —z.

Let f :[0,00[— C be an arbitrary bounded measurable function with

/ a"e " f(x)dx =0 for all n € N. (8.10.4)
0

By the Hahn-Banach theorem it is sufficient to prove that then f = 0. Set
h(z) = e " f(2x), x> 0.

Then h belongs to £2 (R, C), and, with the substituion 2 — x/2, it follows from
(8.10.4) that, for all n € N,

o0 oo 1 o0
n_—x _ n_—2x _ n_—x _
/0 2"e "h(z)dr = /0 e T f(2z)dx = Jntl /0 e ¥ f(x)dr = 0.

Since, by Theorem 8.9.4, the space spanned by the functions 6 is dense in
L% (R,C), this implies that & = 0. Hence f = 0. O

8.10.5. Proof of Theorem 8.10.3. It is sufficient to prove this for H = L(H) = C.
By Lemma 8.7.11 (i), for each £ € C\ R, the function

1
A=¢

belongs to El(R, C). Since C @ ct (R,C) is an algebra and since also the constant
functions belong to this algebra, this implies that CaL! (R, C) contains all rational
functions without poles on R U {oo}.

It remains to prove the density. By Lemma 8.10.4, the space spanned by the
functions 6, and 0,7, n € N, is dense in £! (R, C). Hence (by definition of the norm
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in £! (R,C)) the space spanned by the functions 5; and 0, n € N, is dense in

no

Zl(R, C). By part (ii) of Lemma 8.7.11, this implies that the space spanned by

the functions
(A_Z_1> and (i—H_l) . neN, (8.10.5)

—1

is dense in £*(R,C). Hence the space spanned by the functions (8.10.5) and the
constant functions is dense in C @ L(R, C). Since all these functions are rational
and without poles on R U {oo}, this completes the proof. O

Using again the Mobius transformation (A —¢)/(A + ¢) (Section 8.9.1), we
now obtain the following version of Theorem 8.10.1:

8.10.6 Theorem. Let W € L(H) @ L' (R, L(H)) such that W(\) € GL(H) for all
A€ RU{oo}. Then:
(i) The pointwise defined function W1 again belongs to L(H) @ L (R,L(H)).
(ii) The function W can be written in the form

W=V_VV,,

where V_ : H_U{oc} — GL(H) is continuous on H_U{oo} and holomorphic
in H_ U {oo}, V} : Hy — GL(H) is continuous on Hy and holomorphic
in Hy, V is an L(H)-valued rational function without poles on R U {oo},
V(X)) € GL(H) for all A\ € RU {oo}, and the functions V_, V=', V. and

V! belong to L(H) @ L (R,L(H)).

(iii) Let W e L(H)® L} (R,L(H)) be a second function with W(X) € GL(H) for
all A € RU {oo}, and assume that

W=W_WW,  onRU {oc},

where W_ : H_ U {co} — GL(H) and W, : Hy — GA are continuous
functions which are holomorphic in H_ U {oco} and H, respectively. Then

W_,W-'e L(H)®L" (R,L(H)) and W, ,W;'e L(H)®L" (R, L(H)).

Proof. Let ® be the Mobius transform introduced in Section 8.9.1, let T be the
unit disc, let D, be the unit circle and let D_ := C\ D, . We denote by R the
Banach algebra of all operator functions A : T — L(H) of the foorm A = Wo @
with W € L(H) @ L (R, L(H)), endowed with the norm

1A= = Wl irye 21 211y

Since ® maps T onto T U {oo}, D4 onto Hy and D_ onto H_, then it follows
from Theorem 8.10.2 (iii), Theorem 8.10.3 and the decomposition (8.10.3) that
R satisfies conditions (A), (B), (C) from Section 7.2.4. Therefore, we can apply
Theorem 7.2.5 to R, and we obtain:
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(i) Wlod e L(H)® L' (R, L(H)).

(ii") The function W o ® can be written in the form
Wod=VvVIvTve,

where VI : D_U{oc} — GL(H) is continuous on D_U{co} and holomorphic
in D_U{oo}, VI : Dy — GL(H) is continuous on D and holomorphic in
Dy, VT is an L(H)-valued rational function without poles on T, VT(z) €
GL(H) for all z € T, and the functions V', (VT)=1, VI and (V])~! belong
to R.

(iii’) The functions W_ o ®, W-' o ®, W, o ® and W' o ® belong to R.

Then (i) and (iii) follow from (i') and (iil’) by definition of R, and (ii) follows from
(ii') setting V. :=VFo® Land V:i=VTod~ 1 O

8.11 Factorization with respect to the real line

Throughout this section, F is a Banach space.

Here we introduce the notion of factorization with respect to the real line,
and we show that this is equivalent to the notion of factorization with respect to
the unit circle.

8.11.1 Definition. Let G be one of the groups GL(E), G®(E) or G¥(E) (Def.
5.12.1), and let A : RU {oc0} — G be a continuous function (cf. Section 8.7.6). A
representation of A in the form

A=A_AA, (8.11.1)

will be called a factorization of A relative to R and G if the factors A_, A, A
have the following properties:

— Either A = I or A is of the form

NS AN
A(N) =P, — P;, A ER, 8.11.2
™ 0+;()\+i> J (s.11.2)
where n € N*, k1 > ... > Kk, are non-zero integers, P, ..., P, are mutually
disjoint finite dimensional projectors in E, and Py =1 — P, — ... — Py;

— A, is a continuous GL(E)-valued function on H, U {oo}, which is holomor-
phic in H;

~ A_ is a continuous GL(E)-valued function on H_ U {oo}, which is holomor-
phic in H_.

If A =1, then this factorization will be called canonical .
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8.11.2. Let & : CU {oco} — C U {00} be the Mobius transform defined by

1+=2
D(z) =1
(2) =i7—

(cf. Section (8.9.1), let T be the unit circle, let Dy be the open unit disc, and
let D_ := C\ Dy. Since @‘5+ is a homeomorphism from D onto Hy U {oco},

which is biholomorphic from D, onto H,, and (I)‘B,u (o0} is a homeomorphism

from D_ U{oc} onto H_ U{oo}, which is biholomorphic from D_ U{occ} onto H_,
we get the following simple but important

8.11.3 Proposition. Let G be one of the groups GL(E), G=¥(E) or G¥(E) (Def.
5.12.1), and let A : RU {0} — G be a continuous function (cf. Section 8.7.6).
Then

A=A_AA,

is a factorization of A relative to R and G, if and only if,
Ao®=(A_o®)(Ao®) (AL o)

1s a factorization of Ao ® relative to T and G.

8.11.4 Definition. In view of the corresponding fact for factorizations with respect
to T (see Section 7.1.2), this proposition implies that the integers k1, ..., k, and
the dimensions of the projectors Pi,..., P, in Definition 8.11.1 are uniquely de-
termined by A. The integers k1, ..., K, will be called the non-zero partial indices
of A, and the number dim P; will be called the multiplicity of x;.

Moreover, Proposition 8.11.3 shows that, for each factorization result relative
to T, there is a corresponding factorization result with respect to the real line. In
the following sections we use this fact to study the Wiener-Hopf integral equation
on the half line.

8.12 Wiener-Hopf integral operators in ,CZ([O, oo, H )

Let H be a separable Hilbert space. In this section we use without further reference
the notations introduced in sections 8.7.1, 8.8.1, and 8.8.6.
Here we study the Wiener-Hopf integral equation

uty) - [ T Ky - o) f@)de = 1), y>0, (8.12.1)

where K € £!(R, L(H)) and f € £3 (R, H) are given, and u € £L*(R, H) is sought.
Throughout this section we moreover use without further reference the no-
tations and facts given in the following Section 8.12.1.
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8.12.1. Let P® be the orthogonal projector from £*(R, H) onto £% (R, H). Then
Ker PR = £2 (R, H), because of the (obvious) orthogonal decomposition

L2R,H) = L2(R,H) @ L% (R, H). (8.12.2)
If K € £'(R,L(H)), then the operator T" acting in £2 (R, H) by
Tu=u—P*K *u), ue L3 (R, H),

is called the Wiener-Hopf operator with kernel function K. With a Wiener-Hopf
operator with kernel function K we moreover associate the symbol of this Wiener-
Hopf operator, which is defined to be the operator function

~

I-K. (8.12.3)

Then we speak also about the symbol I — K of the kernel function K and the
kernel function K of the symbol [ — K

The set of all symbols with kernel function in £'(R,L(H)), i.e., the set
of all functions of the form (8.12.3) with K € £'(R,L(H)) will be denoted by

S(R,L(H)).If L(H) oL (R, L(H)) is the Banach algebra from Section 8.10, then
S(R, L(H)) = {W € L(H) & L' (R, L(H)) ‘ W (o0) = I} . (8.12.4)

The Wiener-Hopf operator with symbol W € S(R, L(H)) will be denoted by Ty, .
So, if K € LY(R, H) and W is the symbol of K, then equation (8.12.1) takes the
form Ty,u = f.

We denote by S_(R,L(H)) and Sy (R,L(H)) the subsets of S(R,L(H))
which consist of the symbols with kernel function in £1 (R,L(H)) and £} (R,L(H)),
respectively, i.e.,

S+ (R, L(H)) = {W € L(H)
S_(R, L(H)) = {W € L(H)

From (8.12.5), we get the following simple

8.12.2 Proposition. Let W € S(R,L(H)) admit a factorization W = W_AW,
relative to R and GL(H) (Def. 8.11.1). Then this factorization can be chosen with

W_,W='eS_(R,L(H)) and W, W;'eS, (R L(H)). (8.12.6)

If W admits a canonical factorization, then the canonical factorization with
(8.12.6) is uniquely determined.
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Proof. Let

W) =W_(\) | P+ f: (i;z) P | Wi\,  AeR, (8.12.7)
j=1

be an arbitrary factorization of W. As W(oo) = I, then
I =W(o0) =W_(c0)W, (c0).

Set A=W_(c0), W_ =W_A"Y, W, = AW, , and P; = AP;A~" for 0 < j < n.
Then W_(oc0) = W, (00) = I. Therefore, by (8.12.5), we have (8.12.6). Moreover,
then we get a factorization

W) = (\) ﬁﬁz(i;;)jﬁj W\

—~ ~ A=
- A7 [ AaRyat
W_(\) 0 +;(A+Z_

Rj . .
> APA | AW, (N)

SO
- P, 2 ) p R
W_(\) 0+;(AH) 2l WL (N, AeER,

of the required form.

The assertion of uniqueness in the case of canonical factorizations follows
from the fact that holomorphic functions on C U {oco} are constant (using first
Theorem 1.5.4). O

Moreover, in view of (8.12.4) and (8.12.5), we immediately obtain the follow-
ing corollaries of theorems 8.10.2 and 8.10.6:

8.12.3 Corollary. (i) A symbol W € S(R, L(H)) belongs to S (R, L(H)), if and
only if it admits a continuous extension to ﬁ_,_ U {oo} which is holomorphic
m H,, and then

max }”W(/\)” < ”W”L(H)eazl(R,L(H))'

A€, U{oo

(i) A symbol W € S(R, L(H)) belongs to S_(R, L(H)), if and only if it admits
a continuous extension to H_ U {oo} which is holomorphic in H_, and then

max [[W)|| < [[W]|

AEE?U{OO} L(H)@/El(R,L(H))'
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(iii) Each symbol W € S(R, L(H)) is continuous on RU{oc}. Moreover, for each
W e S(R,L(H)),

max W) < (W],

AERU{o0} H)®L'(R,L(H))’

8.12.4 Corollary. Let W € S(R,L(H)) such that W(\) € GL(H) for all X\ €
R.% Then:
(i) The pointwise defined function W1 again belongs to S(R, L(H)).
(ii) The function W can be written in the form
W=V VvV,
where
V_(\) €GL(H), XeH_u{oc}, V_,V7'eS_ (R,L(H)),
V.(\) € GL(H), XeHyuU{cc}, V. Vi'eS, (R, L(H)).

(i) Let W € S(R,L(H)) be a second symbol with W(\) € GL(H) for all X\ € R,
and assume that N
W=W_Ww, on R,

where W_ : H_U{oo} — GL(H) and W, : Hy U{oo} — GA are continuous
functions which are holomorphic in H_ and H,., respectively, and

W_(00) =W, (c0) =1.
Then W_,W-' € S_(R,L(H)) and W, W' € S (R, L(H)).

In this section we prove the following three theorems:

8.12.5 Theorem. Let W € S(R,L(H)). Then the following two conditions are
equivalent:

(i) W(X) #0 for all X € R, and W admits a canonical factorization relative to
R and GL(H) (Def. 8.11.1).

(ii) The Wiener-Hopf operator Ty, with symbol W is invertible.
In that case we have: If W = W_W,_ s the canonical factorization of W with
W_W-'eS_(R,L(H)) and W, W;'eS, (R L(H)), (8.12.8)

(see Proposition 8.12.2), then the inverse of Tw is obtained in the following way:
IfKy e Ll (R, L(H)) are the kernel functions of Wi*, i.e.,

W=\ = If/

— 00

0 [eS)
EMEK_(v)dr and Wit(\)=1-— / e K (z) de,
0

9Note that then W()\) € GL(H) for all A\ € RU {oo}, as always W (c0) = 1.
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then, for allu € L3 (R, H),

(T u) / K(y,x)u(zx) dz, y >0, (8.12.9)

where

“Ki(y—a)+ [Kily—OK_(t—a)dt  f0<z<y<oo,

K(yvx): Oy

~K_(y—2)+ [Ki(y—t)K_(t — x)dt if0<y<ux<oc.
0

8.12.6 Theorem. Let W € S(R,L(H)). Then the following two conditions are
equivalent:

(i) W(A) # 0 for all A € R, and W admits a factorization relative to R and
GL(H) (Def. 8.11.1).

(ii) The Wiener-Hopf operator Ty, with symbol W is a Fredholm operator.

In that case we have: If

W(A) = W_(A)(PO +il G;j)n Pj)W+()\), A ER,

is a factorization of W with respect to R and GL(H), and if r is the index with
K> .. >k, >0>K.1>...> then

n )

dim Ker Ty, = — Z K, dim Pj and dim Coker Ty, = Z K, dim Pj.
j=1 j=r+1
(8.12.10)

8.12.7 Theorem. Let W € S(R, L(H)) be a symbol satisfying the equivalent con-
ditions (i) and (ii) in Theorem 8.12.6, let

W) = W_ () (Po + Zj; (i:)ﬁjpj) Wo()), A€ER,

be a factorization of W relative to R and GL(H) with
W_,W='e S_(R,L(H)) and W, W;'e Sy (R,L(H)) (8.12.11)

(which then exists by Proposition 8.12.2), let r be the index with k1 > ... > K, >
0>k, > ... > kK,, and let

PO+Z()\—H) s A eR.

n’
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Then: A,A™' € S(R, L(H)) (this holds by (8.12.4)) and (assertion of the theorem)

Ty Taa Ty

is a generalized inverse (Section 6.10.2) of Ty, and the operator T _, is given by

Tho =1+ TP, (8.12.12)

Jj=1

where, for all u € L3 (R, H) and y > 0,

e Ky 2v o v—1_y—=x .
(Tiu)(y) = (Pu)(y) — ; (V)V!/y (y =)™ " (Pju)(w)da (8.12.13)

ifr+1<j<n,

and

@ = e + Y ()25 [u-or e

v
ifr+1<j<n
(8.12.14)

The remainder of this section is devoted to the proof of these three theorems.

8.12.8. Let & : CU {00} — CU {00} be the Mobius transform defined by

1+z
i
1—27

D(z) = z € C,

(cf. Section (8.9.1)), let T be the unit circle, and let £2(T, H), £3 (T, H), L2 (T, H)
be the Hilbert spaces introduced in Section 8.3.1 and in Theorem and Definition
8.3.10. Recall that, by part (iii) of Theorem and Definition 8.3.10, then we have
the orthogonal decomposition

L2(T,H) = L%(T,H) ® L2 (T, H). (8.12.15)

Let PT be the orthogonal projector from £2(T, H) onto £2 (T, H). Note that then
Ker PT = £2 (T, H), as it follows from the orthogonal decomposition (8.12.15).

For each symbol S € S(R, L(H )), together with the Wiener-Hopf operator
Ts acting in £L2(R, H), we also consider the Wiener-Hopf operator Wgeo acting
in £2 (T, H) by

Weend =PT((S09)f), [ e LAT,H),

which was studied already in Section 8.4.
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8.12.9 Proposition. Let 'V be the isometry introduced in Theorem and Definition
8.9.2, and let U be the Fourier isometry of L?*(R, H) (Section 8.8.5). Then

Weoo = V'UTSU'V  forall S € S(R,L(H)). (8.12.16)

Proof. Let S € S(R,L(H)) be given. First note that
(Sod)f =V1 (S(Vf)) for all f € £2(T, H). (8.12.17)

Indeed, if f belongs to the linear space C°(T, H) N £L2(T, H), this follows from the
definition (8.9.3) of V. Since this space is dense in £L2(T, H) (by our definition of
L2(T, H), it follows for all f € L%(T, H).

Now let K be the kernel function of S. Then, for all u € Ei (R, H), it follows
from (8.8.6) and (8.12.17) that

Tqu=P*(u— K xu) = PPUT (Uu — U(K *u)) = PRU (Uu — KUu)
= PRU~Y((I — K)Uu) = PFU! (S(Uu))

for all u € L2 (R, H).

Now let f € £2(T, H) be given. Then this implies that

V-IUT,U IV = V-lupRu—! (S(UU*IVf)) = v-lupku-! (S(Vf))
= VIUPFUTV(VI(S(V))) ).

As, by Theorem 8.9.5, V-'UP*U~!'V = PT and, by (8.12.17), V-1 (S(V[f)) =
(S o ¢)f, this further implies

VIUT,U 'V = PT((S o ¢)f),
ie.,
VIUTU 'V =W f
O

8.12.10 Lemma. Let W € S(R, L(H)) such that Ty, is a Fredholm operator. Then
W (A) is invertible for all A € R.

Proof. Let ® be the Mobius transformation introduced in Section 8.9.1. Then, by
Proposition 8.12.9, also the Wiener-Hopf operator Wy, .4 is a Fredholm operator.
Therefore the assertion follows from Proposition 8.6.6. (]

8.12.11. Proof of Theorem 8.12.5. By Lemma 8.12.10 we may already assume that

W(\) € GL(H) for all A € R. (8.12.18)



332 Chapter 8. Wiener-Hopf operators, Toeplitz operators

Let
142

1—-2

As W(oo) = I, then it follows from (8.12.18) that (W o ®)(z) is invertible for all
z € T, where T is the unit circle. Moreover, part (ii) of Corollary 8.12.4 in particular
implies that W o ® admits local factorizations with respect to T and GL(H) (Def.
7.1.3). Therefore, by Theorem 8.4.2, the Wiener-Hopf operator Wy, 4 is invertible,
if and only if, W o & admits a canonical factorization relative to T and GL(H).
As, by Proposition 8.12.9,

O(z) =2

Wios = VIUT,, UV,

this implies that Ty, is invertible, if and only if, W o ® admits a canonical factor-
ization relative to T and GL(H). Finally, by Proposition 8.11.3, this yields that
Ty, is invertible, if and only if, W admits a canonical factorization relative to R
and GL(H). So the equivalence of the conditions (i) and (ii) in Theorem 8.12.5 is
proved.

Now let W = W_W,. be the canonical factorization of W with (8.12.8). As
the constant function with value I belongs to S(R, L(H)), then part (iii) of Corol-
lary 8.12.4 implies (8.12.8). Hence, by parts (ii) and (iii) of Proposition 8.12.14,
the operators Ty, and TW+ are invertible, where

Tyl =Ty and Tyl =Ty,
and, by part (i) of this proposition,
Ty =Ty TW+.
Together this implies that the inverse of Ty, is given by

Tt = Ty 1Ty (8.12.19)

Let K4 and K_ be the kernels of W;l and W_1, respectively, and let u €
L3 (R, H). Then, by (8.12.19),

(T3 ) () = (T (Tyy-10) ) ()

= (TW__lu)(y) -/ K (y— Q:)(Tw:lu) (x)dz

—uty) = [ (Ky=)+ Koy )ulw)ds e

— 00

+/°° < - K+(y—x)K(x—t)u(t)dt> dr, y>0.

— 00 — 00
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First applying Fubini’s theorem and then changing the role of = and ¢, we get

/_O; (/_O;K+(y —2)K_(z — ) u(t) dt)dm
_ /_O; (/: K, (y—2)K_(x —t)u(t)dx) dt

:/: (/_ZK+(y—t)K(t—x)dt) u(z) de, y>0.

Therefore it follows from (8.12.20) that
oo
(T u) (y) = uly) + / Ly, z)u(z)dz, y >0, (8.12.21)

— 00

where

oo

L) = —K (s-) K (e =)+ [ Kly=OK (t-2)db, yz>0,

Since K (s) = 01if s <0 and K_(s) = 0if s > 0, we see that L(y,z) = K(y,x)
for all x,y > 0. This completes the proof of Theorem 8.12.5. (]

8.12.12. Proof of Theorem 8.12.6. By Lemma 8.12.10 we may already assume that

W(\) € GL(H)  forall A€ R. (8.12.22)
Let )
D(z) := 1 i_ z

As W(o0) = I, then it follows from (8.12.22) that (W o ®)(z) is invertible for
all z € T, where T is the unit circle. Moreover, part (ii) of Corollary 8.12.4 in
particular implies that W o ® admits local factorizations with respect to T and
GL(H) (Def. 7.1.3).

Therefore, by Theorem 8.4.2, the Wiener-Hopf operator Wy, 4 is a Fredholm
operator, if and only if, W o ® admits a factorization relative to T and GL(H).
As, by Proposition 8.12.9,

Wives = V 1UT,, UV, (8.12.23)

this implies that Ty, is a Fredholm operator, if and only if W o ® admits a factor-
ization relative to T and GL(H). Finally, by Proposition 8.11.3, this yields that
Ty, is a Fredholm operator, if and only if, W admits a canonical factorization rela-
tive to R and GL(H). So the equivalence of the conditions (i) and (ii) in Theorem
8.12.6 is proved.
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Now we assume that these two conditions are satisfied, that
W()\)—W()\)P—irzn: AmY Wi () AER
= _ 0 ot 2\ +Z J + ’ )

is a factorization of W relative to R and GL(H), and that r is the index with
k> .. > 6, >0> K, > ... > K,
By Proposition 8.11.3, then

(o)) = V- 00)(e) (R + 3P ) (W 0®)(0), 2 €T,
j=1

is a factorization of Wo® relative to T and GL(H). By Theorem 8.4.2, this implies
that

dimKerWyyoq = — »_ #;P; and  dim Coker Wy = » 5, P;.
j=r+1 j=1

By (8.12.23), this further implies (8.12.10). This completes the proof of Theorem
8.12.6. -

8.12.13 Proposition. Let V,W € S(R,L(H)). Then V,W € S(R,L(H)) and if
Ky and Ky are the kernel functions of V. and W, respectively, then Ky + Ky —
Ky « Ky is the kernel function of VW.

Proof. As Ky Ky = Kﬁw (see (8.7.12)), we have
VW = (I—kv)([—f?w) = I—I?V_l?w+f?vf?w = I—I?V_Kw—l-me.

(]
8.12.14 Proposition. Let W_ € S_(R,L(H)), Wy € S4(R,L(H)) and W €
S(R,L(H)). Then
(i) Ty w = Tw. Ty and Ty, = Ty Ty,

(ii) Suppose W_(A) is invertible for all X\ € H_ U {oo}, and, hence (Corollaries
8.12.3 and 8.12.4), also W-' € S_ (R,L(H)). Then Ty, _ is invertible and

Ty' =Ty

(iii) Suppose W (A) is invertible for all A € H; U {oc}, and, hence (Corollaries
8.12.3 and 8.12.4), also W;l € Si(R,L(H)). Then Ty, is invertible and

=T _,.
w, W+1
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We only have to prove part (i), because (ii) and (iii) follow from (i).
Let K+ and K be the kernel functions of W, and W, respectively. Then, for
all f € £2 (R, H),

Ty Ty = Tw_(f = PR+ 1))
= [=PHE + )= PH(K_+ (f = PHKE 1))
= [=P((K + K_)+ ) + PR (K_+ PR(K « )
and
Ty Ty f = Tw (f = PHE, )
= f—PRK, *f) —PR(K* (f—PR(K+*f)))
= f—PR((K+ +K) *f) +PR<K*PR(K+ *f)).
Since, by proposition (8.8.8),
PE(K_« PR « ) = PR (K_« (K« f))

and
PR(K*PR(K+ *f)) = PR(K* (K, *f)>7
this implies that

Ty Ty f = f = PH(( + K« ) + PR (K_x (K « f)

and

TWTW+f:f—PR<(K++K)*f) +PR(K*(K+*]’)).

As the convolution is associative (Proposition 8.8.7), this further implies
TW_TWf:f—PR((K+K, K *K)*f)

and
TWTW+f:ffPR((KJrJrK—K*KJF)*f).

Since, by Proposition 8.12.13, K + K_ — K_ * K is the kernel function of Ty,
and K, + K — K x K__is the kernel function of T}y, , this proves part (i) of the
proposition.

8.12.15. Proof of Theorem 8.12.6. We introduce the abbreviations

A—i A+

TU(N) = and O\ = Pt recC.
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Then, by definition of A,

A=Py+) WP+ > ©°%P,
j=1

. = (8.12.24)
AP =R+ Y 08P+ Y TP,
j=1 j=r+1
and, by (8.12.5),
U* e Sy (R,C) and ©" € S_(R,C), k € N*.
By Proposition 8.12.14, the latter relation implies that
ToxTyr =1, k€N (8.12.25)
From (8.12.24) it follows that
TA ::Pb'%jz:jkﬁj}?'+ j{: Ib*”jfyv
= = (8.12.26)

T n
Tos=Po+ Y TouPi+ > Ty, P,
j=1 j=r+1

and, further, by (8.12.25),
T T
Ta s TA Ta s = Po+ Y Tor, Tyr; Tors P+ > Tyw; T, Ty, Py
j=1 j=r+1
= TA717
TATA M Ta = Po+ Y Tyr, Tor; Ty P+ > Ty, Ty, Ty, Py
Jj=1 j=r+1

Moreover, again by Proposition 8.12.14,

T :1Tw_ :Tw_T :1 :I,

W w
TWJ:ITW+ = TW+TWJ:1 = I,

TW == TW7 TA TW+ .
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Together this yields
Ty (TW;ITA,lTW:I)TW
- (TW_ Ts TW+) (TW;ITA,ITW:I) (TW_ Ty TW+)
= Ty T Ta Lo Ty
= TyyiTai Ty s
= TW
and
(TW;lTA,lTW?)TW (TW;ITA,ITW:I)
- (TW;ITA,ITW:I) (TW_ TATW+) (TWJ:lTA,lijl)
= Ty s T TaTa Ty

== W;lTA—lTW—l,

which shows that TW_1

It remains to prove (8.12.12).
It follows from Proposition 8.7.11 that

A-11 w1 is a generalized inverse of Ty, .

(U —1)” = (*j) 67, and (©—1)" = 5 v e N,

|l/1’

and further

\1:”—1:(\If—1+1)“—1=§:(”>(x1:—1)”

= () Vl, Kk € N*,

@K_lzi:(/; 2”9\_

—1
vl Y
v=1

Kk € N*,

This implies that, for all u € £2 (R,

),

H
) / 0 (x)dz, y =0,
)

)
R
(T () = uly) + Z ¢
— u(y) ( % /_ O @),y >0

(T@~“) (y)
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Since, by definition of the functions # | (Section 8.7.8), for all v € N*,
R (e I
vt ify—x <0,

and
—(y —x)" " tev® ify—x <0,
0 ify—a>0,

0, (y—z)= {

and since u(z) = 0 for z < 0 if uw € £2 (R, C), this further implies that, for all
v e N

Ty =a)+ > ()28 [—mp e i, y20

v ) (8.12.27)
K 3 > v— —x
(Toru)(y) = uly) = (V) !/y (y — )" ! u(z)de, y>0.
v=1
Set
T — Tyr, for1<j<r,
J T\P,N]. forr+1<n.
Then (8.12.12) follows from (8.12.26) and (8.12.27). O

8.13 An example

In this section, D, C C is a bounded connected open set with piecewise C!-
boundary I' such that 0 € D,..

If £ is a Banach space, and A € L(FE) is a Fredholm operator, then (see,
e.g., [GGK2]) there exists £ > 0 such that the following holds: If B € L(F) with
|A — B|| < ¢, then also B is a Fredholm operator, where ind A = ind B, and if A
is invertible, then also B is invertible.

In view of the connection with Wiener-Hopf operators, this implies different
stability statements for the factorization problem. For example, Theorem 8.4.2
immediately implies:

8.13.1 Corollary (to Theorem 8.4.2). Let H be a separable Hilbert space, and let
A:T — GL(H) be a continuous function which admits a factorization with respect
to T (Def. 7.1.1). Then there exists € > 0 such that the following holds:

Let B: T — GL(H) be a continuous function which admits local factoriza-
tions with respect to T’ (Def. 7.1.3) and which satisfies the estimate

max [ A(2) = Bl < €

Then also B admits a factorization with respect to I' and, moreover:
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(i) If k1(A), ..., kn(A) and k1(B), ..., km(B) are the non-zero partial indices of
A and B, respectively (Def. 7.9.6), if d;(A) is the multiplicity of k;(A) as a
partial index of A (Def. 7.9.8), and if d;(B) is the multiplicity of k;(B) as a
partial index of B, then

Z rj(A)d;(A) = Z kj(B)d;(B). (8.13.1)

(ii) If A admits a canonical factorization with respect to T, then also B admits
a canomnical factorization with respect to I'.

However, each partial index alone is not stable with respect to small pertu-
bations. Consider, for € € C, the following example of a 2 x 2-matrix:

2710 "
Ac(2) = I z e C". (8.13.2)
For ¢ = 0, the partial indices with respect to I' of this function are —1 and 1.
However, for all ¢ # 0, A, admits a canonical factorization with respect to T,

namely: ) ) X )
z=+ 0 o 1 e 'z
< ] z) _ ( o ) (0 : ) . (8.13.3)

This example is good to explain also some other questions.

Factorizations with respect to I' as considered in this book, are also called
right factorizations with respect to I'. The notion of a left factorization with respect
to I' one obtains by interchanging the roles of A_ and A, in Definition 7.1.1, i.e.,
a left factorization of a continuous function A : I' — GL(E) (F being a Banach
space) with respect to I' is a representation of the form A = AL AA_ | where A_,
A, and A are as in Definition 7.1.1. We restrict ourselves to right factorizations
with respect to I, because the theories of right and left factorizations with respect
to I' are equivalent.

But we point out that the partial indices (Def. 7.9.6) need not be the same
for the left and the right factorization with respect to I' of the same function (if
both exist). An example is given by the function A. above if € # 0. Then (8.13.3)
shows that zero is the only “right” partial index of A, with respect to I', whereas

the representation
2710 1 0 2710
( . z) = (62 1) ( 0 z) . (8.13.4)

shows that the “left” partial indices of A, with respect to I" are —1 and 1.
Finally, we discuss the following generalization.
Let E be a Banach space, and let A : T' — GL(E) be a continuous function.
A representation of the form A = A_AA, will be called a generalized fac-
torization of A with respect to I' if everything is as in Definition 7.1.1, with one
exception: We do not require that the projectors P, ..., P, are finite dimensional.
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It is easy to see that in terms of the filtration of A with respect to T' (Def.
7.9.8), this can be characterized as follows: A generalized factorization of A with
respect to I' exists, if and only if A admits local factorizations with respect to I
and:

If k4 > ... > k, are the partial indices of A with respect to I' (Def.
7.9.6), then, for 1 < j < n — 1, the spaces M_(z,k;,T,A), = € D_ U {cc},
and M, (z,k;,I',A), = € D, are topologically closed and complemented in
M_(z,kjt1,T,A) and My(z,k;q1,T, A), respectively, and the families of sub-
spaces

{M,(z,kj,P,A)} and {M+(z,kj,I‘,A)}

2€D_U{co} 2€D4+

are continuous (Def. 6.2.1) and holomorphic (Def. 6.4.1) over D_ U {oo} and Dy,
respectively.

It turns out that also a generalized factorization of A with respect to I' does
not always exist, even if A is a polynomial in z and z~!. To show this, consider
the following infinite dimensional version of example (8.13.3): Let H be an infinite
dimensional separable Hilbert space and let V' € L(H) be an operator such that
Ker V = {0} and Im V is not topologically closed in H, and let A : C* — L(H®H)
be defined by the block matrix

-1
Alz) = (zvl ZOI) . zecCr, (8.13.5)

where [ is the unit operator on H. It is easy to see that the only (I', —1) section of
A (Def. 7.9.1) is the zero section, and that the space of (T, 0)-sections of A consists
of all pairs (¢, ™) of the form

4.0 [a+2zb _. . (zla+b )
¥ (Z)(—Vb> and ¥ (Z)< Va Wltha,bGH.

Hence, 0 is a partial index of A with respect to I'; and M, (0,0, A) = H®ImV,
which is not topologically closed in H @ H (as Im V' is not topologically closed in
H). Therefore, A does not admit a generalized factorization with respect to T.

8.14 Comments

The material of this chapter for matrix-valued functions was first presented in
[GK] (see also [Go4, CG]). It consists of an infinite dimensional generalization for
a wider set of functions. Some operator generalization of the Wiener-Hopf equation
one can find in the paper of Feldman [F]. The presented operator-valued general-
izations are used for the solution of the linear transport equation. The transport
theory concerns the mathematical analysis of equations that describe transport
phenomena in matter, e.g. a flow of electrons through a metal strip or radiated
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transport bin stellar atmosphere. This phenomenon concerns the migration of par-
ticles in a medium. For the finite dimensional case, see [BGK], chapter 6. For the
linear transport theory, see [KLH].



Chapter 9

Multiplicative cocycles with
restrictions (F-cocycles)

Here we present a generalization of the theory of cocycles developed in Chap-
ter 5. We study multiplicative cocycles with restrictions. To formulate this, it is
convenient to use the language of sheaves.

9.1 F-cocycles

In this section, A is a Banach algebra with unit 1, and G is an open subgroup of
the group of invertible elements of A. By P! we denote the Riemann sphere (see
the beginning of Section 5.10). If U C P! is a non-empty open set, then we denote
by O%(U) the group of G-valued holomorphic functions defined on U, and we set
O%(0) = {1}.

9.1.1 Definition (O-sheaf). Let D C P! be an open set.

A map F, which assigns to each open set U C D a subgroup F(U) of O%(U),
will be called an O@%-sheaf over D if, for each open U C D, the following two
conditions are satisfied:

(i) If f € F(U), then f|,, € F(V) for each open V C U. Here f|y := 1.

(ii) Suppose f € OY(U) such that, for each w € U there exists a neighborhood
W C U of w with f|,, € F(W). Then f € F(U).

If F is an O%-sheaf over D and U C D is open, then the functions from
F(U) are called sections of F over U.

If F is an O%-sheaf over D and Y C D is open, then we denote by f’Y the
restriction of F to the open subsets of Y.
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9.1.2 Definition (Sheaves defined by a data of zeros). A pair (Z,m) is called a
data of zeros if Z C P! and m = {my, }wez is a family of numbers m,, € N.

Let (Z,m) be a data of zeros. Then, for each open set U C P!, we denote by
Ogm(U) the group of all f € O%(U) such that, for each w € U N Z, the function
f —1 has a zero of order > m,, at w.! The map Og,m is an O%-sheaf over P'. The
restriction of (’)gm to the open subsets of an open set D C P! will be denoted by
Og,Z,m'

9.1.3 Definition (O%-sheaves of finite order). Let D C P! be an open set. An
O%-sheaf F over D will be called of finite order if there exists a data of zeros
(Z,m) such that Z N D is discrete and closed in D and, for each open set U C D,

FU\2)=0%U\2),
F(U)20%,,U). (9.1.2)

In particular, if (Z,m) is a data of zeros and D C P! is an open set such that
Z N D is discrete and closed in D, then Og,z,m is of finite order.

9.1.4 Definition ((U, F)-cocycles). Let D C P! be an open set, let F be an O%-
sheaf over D, and let U = {U; };cr be an open covering of D.

Then we denote by Z'(U, F) the set of all f € Z1 (U, OF) (Def. 5.6.1) with
fir € F(U;NUy), j,k € I. The elements of Z' (U, F) will be called (U, F)-cocycles.
Two cocycles f,g € Z*(U,F) will be called F-equivalent if there exists a family
h ={h;};er of functions h; € F(U;) such that

hifihet =g,  onU;NUg (9.1.3)

for all j, k € I with U; N Uy, # 0.
A cocycle f € ZY(U,F) will be called F-trivial if it is equivalent to the
cocycle {e;r}jrer defined by ejr, =1 on U; N Uy, for all j, k € I with U; N Uy, # 0.
More directly, a cocycle f € Z*(U, F) will be called F-trivial if there exists
a family {h;},cs of sections f; € F(U;) such that

fig=h;"hy  onU;NU (9.1.4)

for all j, k € I with U; NUy, # (0. The family {h;},c; then will be called a splitting
of f.

9.1.5 Definition (Passing to refinements). Let F be an O%-sheaf over an open set
D C P!, and let U = {U;},c; and V = {Vj},c; be two open coverings of D such
that V is a refinement of Uf.

If 7:J — Iisamap with V; C U, for all j € J (by definition of a
refinement at least one such map exists), then, for each f € Z(U,F), we define

1Since f71=(1—-(1— f))71 =1+1—f)> 21— f)™ in some neighborhood of w if f —1
has a zero at w, this is indeed a group.
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a cocycle 7* f € ZY(V, F), by setting
(T e = fT(j)T(k)’ijVk ; Jkeld.

Here again fT(j)T(k)|@ := 1. We shall say that g € Z*(V,F) is induced by f €
ZY(U, F) if there exists a map 7 : J — I with Vi CU;;y,j €J,and g=7"f.

There is the following generalization of Proposition 5.7.2:

9.1.6 Proposition. Let F be an OF-sheaf over an open set D C P!, and let U =
{Uj}jer andV = {V;},c; be two open coverings of D such that V is a refinement
of U.
If f,g € ZY(U,F) and f,g € Z*(V,F) such that f is induced by f and g is
induced by g, then the following are equivalent:

(i) f and g are F-equivalent.
(ii) f and § are F-equivalent.
In particular, the following are equivalent:
(i") f is F-trivial.
(ii’) [ is F-trivial.
Proof. Repetition of the proof of Proposition 5.7.2. O

9.1.7 Definition (F-cocycles). Let D C P! be an open set, and let F be an O%-
sheaf over D.

(i) By an F-cocycle we mean a (U, F)-cocycle such that U is an open covering
of D. The covering U then is called the covering of this cocycle.

(ii) Let f and g be two F-cocycles over D (possibly with different coverings). The
cocycles f and g will be called F-equivalent if the following two equivalent
(by Proposition 9.1.6) conditions are satisfied:

1) There exists an open covering W of D, which is a refinement both of
the covering of f and of the covering of g, such that at least one of
the (W, F)-cocycles induced by f is F-equivalent to at least one of the
(W, F)-cocycles induced by g.

2) For each open covering W of D, which is a refinement both of the
covering of f and of the covering of g, each (W, F)-cocycle induced by
f is F-equivalent to each (W, F)-cocycle induced by g.

9.1.8 Definition (Restriction to subsets). Let D C C be an open set, let U =
{U,}jer be an open covering of D, and let Y be an open subset of D. Set

Z/{ﬂY:{UjﬂY‘jel}.
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Let F be an O%-sheaf over D. Then we define:
(i) Let f be an F-cocycle over D with the covering . Then we denote by
f|Y the f|y—cocycle with the covering 4 N'Y defined by

(f‘Y)jk = fjk|U]~mUka

for j,k € I with U; NU, NY # (. This cocycle f|y will be called the restriction
of f to Y. We shall say that f is F-trivial over Y if f|,, is F-trivial.

(ii) Let f,g be two F-cocycles over D. Then we shall say that f and g are
F-equivalent over Y if f ’Y and g|Y are F |Y—equivalent.

9.1.9 Proposition. Let D C C be an open set, let U = {U;}jer be an open covering
of D, let F be an OF-sheaf over D, and let f be an F-cocycle over D, which is
F-trivial over each Uj.

Then f is F-equivalent to some (U, F)-cocycle.

Proof. Repetition of the proof of Proposition 5.7.6 O

9.2 The main results on cocycles with restrictions.
Formulation and reduction to Op z,,

In this section we use the notations and definitions introduced in the preceding
section. The main results for cocycles obtained in this chapter can be stated as
follows:

9.2.1 Theorem. Let F be an OF-sheaf of finite order over an open set D C C, and
let f be an F-cocycle. Assume that at least one of the following three conditions
18 satisfied:

(i) The cocycle f is CE-trivial over D (Definition 5.6.1).
(ii) The group G is connected.
(iif) D is simply connected.
Then f is F-trivial.
Note also the following corollary:

9.2.2 Corollary. Let F be an OC-sheaf of finite order over an open set D C C, and
let D1,Dy C D be two open sets with D = D1 U Dy. Further let f € F(D1 N Dy)
and assume that at least one of the following three conditions is satisfied:

i) There exist continuous functions ¢, : D; — G, j = 1,2, such that f = ¢j'c
J J 1 C2
on D1 N Ds.

(ii) The group G is connected.
(iii) D1 U Do is simply connected.
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Then there exist functions f; € F(Dj), j = 1,2, such that f = fitfy on D1NDs.

9.2.3 Remark. It is sufficient to prove Theorem 9.2.1 for the case when F is of
the form Og,Z,rm where (Z,m) is a data of zeros such that Z N D is discrete and
closed in D (Def. 9.1.2).

Indeed, assume this is done, and let F be an arbitrary O%-sheaf of finite
order over an open set D C C. Further, let f be an F-cocycle such that at least
one of the following three conditions (i)—(iii) in Theorem 9.2.1 is satisfied.

Let U be the open covering of D associated to f, and let (Z,m) be a data of
zeros as in Definition 9.1.3. Since Z N D is discrete and closed in D, then, for each
point w € D, we can find a neighborhood V,, C D of w such that V,, is contained
in at least one of the sets of the covering U and

VonZ— {w} waGZ,
0 ifwdgZ.

Then V := {V4, }wep is an open covering of D and a refinement of U. Let f* be a
(V, F)-cocycle induced by f. If w, z are two different points in D, then ZNV,,NV, =
(0. By (9.1.1) this implies that

F(VunV.) =0%(V,nV,) =0%,,(VunV.)  ifw,2z€D withw # 2.

Therefore f* can be interpreted as a (V, Og,zym)—cocycle.

If one of the conditions (ii) or (iii) is satisfied for F, then it is clear that this
condition is satisfied for Og, z.m (as it depends only on D resp. G). If condition
(i) is satisfied for the cocycle f, then it follows from Proposition 9.1.6 that this
condition is satisfied also for f*.

Therefore, as Theorem 9.2.1 is already proved for the sheaf (’)g’ 7m (by our
hypothesis), it follows that f* is Ogyz’m-trivial. By (9.1.2) this implies that f* is
JF-trivial, which means by Proposition 9.1.6 that f is F-trivial.

The following Sections 9.3-9.8 are devoted to the proof of Theorem 9.2.1 in
the case when F is of the form OF , . where (Z,m) is a data of zeros such that
ZND is discrete and closed in D. Then the assertion of Theorem 9.2.1 is contained
in Theorems 9.6.1 (if D is simply connected) and 9.8.1 (if f is C%-trivial or G is
connected).

9.3 The Cartan lemma with restrictions

In this section, A is a Banach algebra with unit 1, G is an open subgroup of the
group of invertible elements of A, G A is the connected component of 1 in G, and
(Z,m) is a data of zeros (Def. 9.1.2).

Here we prove a version of the Cartan lemma for sections of the sheaf Og,m.
To linearize the problem, we need the following definition:
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9.3.1 Definition. For each open set U C P!, we denote by (’)é’m(U) the set of all
f € OA(U) such that, for each point w € U N Z, the function f has a zero of order
> My, at w.

9.3.2 Lemma. (For the definitions of log and exp, see Section 5.4.3). For each open
set U C P!, we have:

(i) If f € 0%, (U), then exp f € Og’lrf(U).

(i) If f € OFNU) and ||f(z) — 1| < 1, z € U, thenlog f € 04, (U).

,1

Proof. (i) Let f € Oém(U) and w € Z. Then

OOfn
expfflzzﬁ.
n=1

As f has a zero of order > m,, at w and therefore each f™ with n > 1 has a zero
of order > m,, at w, this implies that exp f — 1 has a zero of order > m,, at w.

(ii) Let f € (’)g}n‘j(U) with [|f(z) —1|| < 1 for all z € U, and let w € Z. Then

o/ =3 C (e,

n=1

As f — 1 has a zero of order > m,, at w and therefore each (f — 1)" with n > 1
has a zero of order > m,, at w, this implies that log f has a zero of order > m,,
at w. O

9.3.3 Definition. Let I' be an arbitrary subset of P!, and let I'° be the set of interior
points of T'.

(i) We denote by @g’m(F) the group of continuous functions f : I' — G such

. AG . .
that flro € OF , (°).2 If T is compact, then O, (T') will be considered as
a topological group with respect to uniform convergence on I'. It is easy to
see that this is a closed subgroup of C%(I") endowed with the same topology.

(ii) We denote by 62,,” (T") the algebra of continuous functions f : I' — A such

that flro € 07, ([°). If T' is compact, then 627m(f‘) will be considered as
the Banach algebra endowed with the max-norm. It is easy to see that this
is indeed a Banach algebra, i.e., a closed subalgebra of the Banach algebra
CA(T") endowed with the same norm.

2Here it is allowed that points of Z lie on T'\ T°, but for f € 5CZ;’m(F), the function f — 1
need not have zeros at such points.
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9.3.4 Proposition. Let D C C be a bounded open set with piecewise C'-boundary,
and let Q O D be an open set such that each bounded connected component of C\ D
contains at least one point of C\ Q. Assume that Z N Q) is discrete and closed in
Q and ZNOD = ().

Then each f € OZm(i) can be approzimated uniformly on D by functions

from Oz,m (Q).

Proof. Let Uy, ...,U, be the bounded connected components of C \ D. By hy-
pothesis, we can find points a; € U; N (C\ Q), 1 < j < n. Since Z N is discrete
and closed in 2, by the Weierstrass product Theorem 2.5.7, we can find a scalar
holomorphic function ¢ : @ — C such that ¢(z) # 0 for z € Q\ Z, and, for each
w € Z, o has a zero of order m,, at w. Since Z N dD = (), then

is continuous on D and holomorphic in D. Therefore, by the Runge approximation
Theorem 2.2.2 (ii), we can find a sequence (f,),en of functions f, € O4 (C\

{ai,.. an}) which converges to f uniformly on D. Setting f, = ¢ f,, on §2, we get
a sequence (f,)yen of functions f, € OZ (). Since D is compact and, therefore,

¢ is bounded on D, this sequence converges to f = <pf uniformly on D. O

9.3.5 Lemma. Let Q C C be a bounded open set with piecewise C'-boundary such
that C\ Q is connected. Suppose that Z N C is discrete and closed in C and

ZNnQ=40.3

Then each f € O“A(Q) can be approzimated uniformly on € by maps from
07 (©)-

Proof. Let f € O%14(Q) be given. By Lemma 5.4.7, O%14(Q) is the connected
component of the unit in the group of invertible elements of the Banach algebra
OA(€Q)). Therefore, by Proposition 5.4.1, f can be written as a finite product

f=091-... Ggn

where g; € O 4(Q) and ||1 - gjllgag < 1 for 1 < j < n. By Lemma 5.4.4 (ii),
elogdi — g;. Hence
f=elsor. . eloggn,

Since Z N = 0, it is trivial that logg; € Oz, (€). Since C \ Q is connected,
by Proposition 9.3.4 (i), for each j, we can find a sequence (¢;,),en of functions
Yy € Oé)m(C) which converges to log g; uniformly on Q. Setting

[, =ePiv .. e¥iv

3We shall see below (Theorem 9.5.3) that this condition can be replaced by Z N oQ = (.
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then we get a sequence (f,),en of holomorphic functions f, : C — A which

converges to f uniformly on D. By Lemma 9.3.2 (i) each f, belongs to Og}f (©).
O

A modification of the proof of Lemma 5.5.3 gives the following generalization
of this lemma:

9.3.6 Lemma. Let (D1, Ds) be a Cartan pair such that
ZNODy=2ZN0Dy=0 and ZnN(DyUDy) is finite.
Let € > 0. Then there exists § > 0 such that, for all g € @é,m(ﬁ1 N Dy) with

max_ |lg(2)| <4,
z€D1NDo

there exist g; € @ﬁ’m(ﬁj) such that max ||g;(2)|| <e, j =1,2, and
2€D;

J

l+g=01+g)(1+g2)  onDiNDs. (9.3.1)

Proof. We consider @g,m (D1NDy), @é,m (Dy) and 6é,m (D2) as Banach algebras

endowed with the maximum norm. It is sufficient to prove that each f & 62,77; (DN
D) can be written in the form f = f; + f» with f; € @gm(ﬁj), because then
the assertion follows from Lemma 5.2.1.

If ZN (D1 U Dy) =0, this follows from Corollary 5.3.5.

If ZN (D1 UDg) ={ws,...,wy}, n € N* then we set

p(z) =(z—21)™r .- (2 — zp) "
Now let an arbitrary f € @gm(ﬁl N D3) be given. Since Z does not meet the
boundaries of D and Do, then f/p € [ (D1NDy), and, again by Corollary 5.3.5,
we can find functions h; € o’ (D) with f/p = hy + hq. Setting f; = ph;, we get
the required functions f; € 6§,m(ﬁj) with f = f1 + fa. |
Now we can prove the following generalization of the Cartan Lemma 5.5.2:
9.3.7 Lemma. Let (Dy, D) be a Cartan pair such that
ZNO(D1UDy)=0 and ZnN(D1UDsy) is finite.

Let f € 5§7m(b1 N D) such that all values of f belong to the same connected
component of G. (This is always the case if D1 N Dy is connected.) Then there
exist f; € Og,m(Dj)7 j=1,2, such that

f=rr on DyND,. * (9.3.2)

4From the proof of this lemma it will be clear that also the more precise statements corre-
sponding to assertions (i) and (ii) of Lemma 5.5.2 are true. We omit these finer points, because
we will not use them.
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Proof. Since all values of f belong to the same connected component of G, after
multiplying by a constant, we may assume that all values of f belong to G1A. The
main problem compared to the proof of Lemma 5.5.2 is that, possibly, Z N D; N
Dy # (). We avoid this problem by the following trick:

Since Z N (D7 U Dy) is finite, we can find a "smaller” Cartan pair (X1, X2)
such that Xj - Dj, X1 U X2 = D1 ] D2 and

ZN Yl N YQ = .
Now it is sufficient to find f; € 5gyln’?(yj), j =1,2, such that
f = f1f2 on Yl QYQ. (933)
Indeed, then it follows from the equations

fi=fft and  fo=fi'f

that the maps f; extend to maps f; € @g},ﬁ(ﬁj), and (9.3.2) follows from (9.3.3)
by uniqueness of holomorphic functions.

Now we continue as in the proof of Lemma 5.5.2:

Since ZN X, N X, = 0, it follows from Lemma 9.3.5 that, for each § > 0, we
can find f; € Og}n’;‘ (C) with

max _ |[f(2)f5'(2) 1 <& and  max _ [|f5(2)f(2) — 1]l <.
2€U0,U...UT, 2€U0,U...U0,

Therefore, by the preceding Lemma 9.3.6, for sufficiently small J, we can find
g; € OA4(D;) such that

max || g;(z) <1
z€D;

and
ff(s_1 =1+g1)(1+g2)

on Di N Dy. Setting f; =1+ g1 and fy, = (1 + g2) f5, we conclude the proof. O

9.3.8 Corollary. Let D C C be an open set such that Z N D is discrete and closed
in D. Let (D1, D3) be a Cartan pair such that

D,uUD, CD.

Let U C D be a neighborhood of D1 N Dy and f € (’)gm(U) such that all values
of f belong to the same connected component of G. (This is always the case if
U is connected.) Then there exist neighborhoods U; C D of D; and functions
fi € 0%,,(U;), j = 1,2, such that

f=rl on Uy NUs. (9.34)
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Proof. Since ZN D is discrete and closed in D, we can find a slightly larger Cartan
pair (Ul,UQ) such that Dj - Uj, Uj - D, U1 n U2 - U and

Zﬂa(Ul UUQ) = 0.

Then Z N (U UUL) is finite, flz 7, € 637,”(@ NU,) and we can apply Lemma
9.3.7 to the Cartan pair (U, Uz). O

9.4 Splitting over simply connected open sets after
shrinking

In this section A is a Banach algebra with unit 1, G is an open subgroup of the
group of invertible elements of A, and (Z,m) is a data of zeros (Def. 9.1.2). By
G1 A we denote again the connected component of 1 in the group of all invertible
elements of A.

Here we want to generalize the splitting Theorem 5.6.3 to Ogm—cocycles.
The problem is that (at the moment) we do not have a generalization to OF . of
part (i) of the Runge approximation Theorem 5.0.1, which we used in the proof
of Lemma 5.9.1 and then again in the proof of Theorem 5.6.3. In the next section
we will prove this generalization, but first we have to prove the following splitting
statement “with shrinking”:

9.4.1 Lemma. Let D C C be a simply connected open set such that ZND is discrete
and closed in D, let Q be a relatively compact open subset of D, and let f be an
OF n-cocycle over D. Then the restriction flo is OF , -trivial (Def. 9.1.4).

Proof. We proceed similar to the proof of Lemma 5.9.2. But instead of the precise
factorization statement of the Cartan Lemma 5.9.1, here we can use only the
factorization statement “with shrinking” of Corollary 9.3.8. Therefore, in each of
the induction steps, we have to shrink the covering which makes the arguments
more technical. We give now the details.

Set

Kt:{ze(C‘ —t<Rez<1l+tand —t<Imz<1—|—t}, t> 0.

Since D is simply connected and € is relatively compact in D, by the Riemann
mapping theorem, we may assume that, for some € > 0, D = K, and 2 C K.
Now let an Ogm—cocycle f over D = K, be given.
We choose n € N* sufficiently large (will be specified some lines below) and
denote by Ujy, j,k =1,...,n, 0 <t < 1, the open rectangle of all z € C with

t\ 1 t\ 1
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j— 1 t 1<I < ’+t 1
—-1—-=)= mz - —.
J 3/ n J 3/ n

Then, for all 0 < ¢t < 1, U" := {Uj; }1<jk<n is an open covering of K/s,. We
choose n so large that

and

Kijzn € Kepo forall 0 <t < 1.

Let V = {V, },er be the covering associated to f. Then
yn Kt/Sn = {Vu N Kt/3n} S
ve

is a second open covering of K,/s3,. Since FE/Q is a compact subset of D = K,
the covering V contains a finite subcovering which already covers K, 2 2 Kiysn-
Therefore, we can n further enlarge (and now we fix it) so that each U}, is con-
tained in at least one of the sets V,,. Now, for all 0 < ¢t < 1, the covering U? is a
refinement of VN Ky /3.

We give the family U* an order saying that U}, < UJ,,,, if and only if, either
j<jlorj=j andk <k.LetUi,...Ul; be the family 4* numbered in this way.
For ;1 =1,...,n%, we consider the statement

S(p): There exists 0 < ¢t < 1 such that f|U{u...uU};
is Ogﬁm—trivial.

Since @ C Ko C Ky = UfU...UU!; for all 0 < ¢t < 1, it is sufficient to prove
S(n?). Since U is a refinement of VN K3, and V is associated to f, it is trivial
that f|Ut is (’)gm—trivial for all 1 < < n? and 0 < t < 1. In particular, S(1) is
true. ’

Therefore it is sufficient to prove that S(u) = S(u+1) forall 1 < p < n?-—1.

Let 1 < < n? —1 be given such that S(u) is true. Set W{ = UfU...UU},
and W§ = U/, for 0 <t < 1. Since S(u) is true, we can fix 0 < ¢ < 1 such that
f|W1t is O‘?V{, 7 Z’m—trivial. Since, trivially, also f|W2t is Ogm—trivial, it follows from
Proposition 9.1.9 that f|W1,5 OF ,.-equivalent to some ({W{, W3}, 0F  )-
cocycle g.

Now we choose some 0 < # < t. Then (W}, W{') is a Cartan pair with

W, UW, C D and WfNWY is a connected neighborhood of W UTW . Therefore,
from Corollary 9.3.8 we get functions g; € (’)g’m(W;), j =1,2, such that

uwy 18

g12 = 9191 on Wi NWj,

which means that the restricted cocycle glw,uw; is Ogm—trivial. Since W{UWJ =
Uf'u...u U;i/+lv it follows that S(u + 1) is true. O
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9.5 Runge approximation on simply connected open
sets

In this section A is a Banach algebra with unit 1, G is an open subgroup of the
group of invertible elements of A, G1A is the connected component of 1 in the
group of invertible elements of A, and (Z,m) is a data of zeros (Def. 9.1.2). Here
we prove part (i) of the Runge approximation Theorem 5.0.1 for sections of the
sheaf Og}m. The first step is the following Mergelyan approximation theorem:

9.5.1 Theorem. Let D C C be a bounded open set with piecewise C'-boundary such

that Z N D is finite and Z N 0D = (). Then, for each f € 6§,m(D) and all € > 0,
there exists a neighborhood U of D and a function fe Og,m(U) such that

max | £() - F(2)] < e
zeD

Proof. Since the assertion of the theorem does not change if we replace Z by
Z \ (C\ D), we may assume that Z is a finite subset of D. Then we can find an
open set 1 C D with piecewise C'-boundary such that @ C D and Z C Q. (For
example, we can surround the points of Z by small discs.) Further, let A be an
open disc such that D C A.

Now let f € 662;%(5) and € > 0 be given. Since G is an open subset of A,
by the Mergelyan approximation Theorem 2.2.1, we can find a sequence (U, )nen
of neighborhoods U,, C A of D and a sequence (A, )nen of functions h,, € O%(U,,)
such that

lim max }|f(z)h*1(z) 1| =o.

n
n—oo ZeD

Then, in particular

lim  max ||f(z)h;1(z) - lH = 0.
n—00 e DA(A\Q)

Therefore, by Lemma 9.3.6, we can find ng € N, a sequence (g,(}))n>no of functions

gtV € 0% (D) and a sequence (97(12))n>n0 of functions ¢\ € O (A\Q) =
O%(A\ Q) such that
it =1+¢P)(1+4¢P)  omDN(A\Q), n>ne, (9.5.1)
and
lim max Hg%”(z)“ =0 (9.5.2)
n—oo ZED
and

lim max HgT(LQ)(z)H =0.
n—00 ;e A\Q
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Moreover we can assume that
1+ e 6gm(ﬁ) and 1+¢? e OYA\Q), n>ne.
Set
fr = (1+g 1)) f onD.
Then it follows from (9.5.1) that

fo = (1—|—gg))hn on DN (A\Q), n>ng,
which shows that f, € OG m(Uy) for all n > ng, and from (9.5.2) it follows that

lim max“f (z)” =0.

It remains to choose ny; > ng so large that

max|| f(2) — Fou (2)]| <2
z€D

and to set U = U, and f= S d
Now we can prove Lemma 5.4.7 for the sheaf Ogm:

9.5.2 Lemma. Let D C C be a bounded simply connected open set with piecewise C* -

boundary. Suppose that ZN D is finite and ZNOD = (). Then the group @;ﬁ(ﬁ)
is connected.

Proof. Let f € (9 ( ) be given. Since G1A is open and by the Mergelyan
Theorem 9.5.1, we may assume that f is defined and holomorphic, and with values
in G1 A in some neighborhood Q of D. Since D is a bounded simply connected open
set with piecewise C'-boundary, we may assume that also © is simply connected.
Choose an open covering U = {U; }jer of by open discs U; with center z; such
that z; # 2 if j # k and, for each j € I, either U; N Z =0 or U; N Z = {z;}.
Then U; NU,NZ =0 for j # k.

Since G1A is connected, for each j € I, we can find a continuous curve
v+ [-1,0] = G1 A with v(—1) = 1 and v(0) = f(z;). Moreover, if U; N Z = {z;}
and hence f(z;) = 1, then we may assume that v, = 1. Now, for all j € I and
z € Uj, we define

pnt = {f(zj ti(z-z)) Ho<t<l.

So we get continuous G A-valued functions on U; x [—1, 1], holomorphic for fixed
t, such that

¢i(z,—1)=1 and ¢,(z,1) = f(z), zeU;.
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Moreover
@i, t) € Og;f(Uj) for each fixed t € [-1,1] and j € I. (9.5.3)

Indeed, if U; N Z = 0, this is trivial. If U; N Z = {z;} and —1 < ¢ < 0, this is also
trivial (because then v; = 1). Now let U; N Z = {z;} and 0 <t < 1. Then f is of
the form

f(Z):]_—|— Z ij(Z—Zj)U, ZGUj,

and therefore ¢;(-,t) is of the form

Bi(zt) =1+ > (fint")(z—2)", z€Uj.

This implies (9.5.3). Set
Yik(z,t) = ¢;1(z,t)¢k(2,t) forzcU;NU,, jkel. (9.5.4)

Now let A be the algebra of all continuous maps ¢ : [—1,1] — A such that,
for some X € C,

p(-1) =p(1)=A-1.

Endowed with the maximum norm, this is a Banach algebra with unit. Let GA
be the group of invertible elements of A. It consists of all continuous functions
¢ : [—1,1] — G1A such that, for some A € C\ {0},

e(=1) =p(1)=A-1. (9.5.5)

With this notation, ¢ := {¢,x(z,t)};ker can be considered as a (L{,(’)G;‘)—
cocycle. Moreover, since U; NU, N Z = 0 if j # k, it can be considered as a

u, (’)(Z;";N‘n)—cocycle.
Let W be a neighborhood of D with W C (2. Since (2 is simply connected,
then it follows from Lemma 9.4.1 that 9|y is Ogﬁ‘;‘n—trivial. Hence we have functions

p; € O(Z;”gl(W N Uj) such that, if we interpret them as functions ¢; : W N U; x
[—1, 1] — GlA,

'(/ij(zat):'(/)j_l(zvt)wk(zat)7 ZemejﬂUka j,kEI.
Together with (9.5.4) this implies that
0;(z, )05 (2,t) = (2, 1)y, ' (2,1) zeWnNU;NU, jkel.

Therefore, we have a global continuous function F(z,t) : W x [-1,1] — G1A
holomorphic for fixed ¢, such that, for each j € I,

F(z,t) = ¢ (2, t); ' (2,1), zeUj, te[-1,1]. (9.5.6)
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That ; belongs to (’) (W N U,), implies that
$i(1) € OFAWNU;)  forallt € [-1,1].
Together with (9.5.3) this implies that
Gi(n YT (1) € OF AW NU;)  forall t € [-1,1].
Hence, by (9.5.6),
F(,t) € Oglrf(W) for all t € [-1,1].
Therefore
1,13t — F(-,t)|5 (9.5.7)

. . . AG1A —
is a continuous curve in Oy, (D).

Let us look for the beginning and the end of this curve. Since ¢; € (’) (Wﬂ
U;) and by (9.5.5), we have non-vanishing holomorphic functions A; WﬂU —C
with
Yi(z,—1) =¢;(z,1) = Aj(2) - 1 zeWnU;, jel.

Since ¢;(z,—1) =1 and ¢;(z,1) = f(z), this shows that

¢i(z, =)y Yz, —1) = )\;1(2)-1, zeWnU;, jel,

and
¢;(z, D)y Mz, —1) = A1 (2) f(2) zeWNU;, jel.
Together with (9.5.6) this gives

F(z,fl):)\j_l(z) and F(z,l):/\j_l(z)f(z), zeWnuU;, jel.

This implies that there is a non-vanishing scalar holomorphic function A globally
defined on W with

F(z,-1)=X"Y2)-1 and F(z,1)=X"1(2)f(2), zeW,
and the curve (9.5.7) connects the functions A= f and A~! - 1. Hence

[—1,1] 3t — AF(,t)|5

. . . AGIA — . .
is a continuous curve in O, (D) which connects f and the unit element of
“AG1A

OZ m ( ) O
9.5.3 Theorem. Let D C C be a bounded open set with piecewise C'-boundary such
that (C\ﬁ is connected. Assume ZNC is discrete and closed in C and ZNOD = (.
Let f € 0%, (D) such that all values of f belong to the same connected component
of G (whzch is always the case if D is connected). Then f can be approrimated
uniformly on D by functions from (’)(Z;’m((C).
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Proof. Since all values of f belong to the same connected component of G, af-
ter multlplymg by a constant element of G, we may assume that f belongs to
OG1 (D). By Lemma 9.5.2, Oglm (D) is connected. Therefore, by Proposition
5. 4 1 f can be written in the form

=091 .. 0n

where g; € Ogﬂf(D) and

max [|1 —g;(z)[| <1  for1<j<n.
2€D

By Lemma 5.4.4 (ii), €!°#9% = g;. Hence

f=eloso. . eloson

By Proposition 9.3.2, log g; € OZ m( ). Therefore and since C\ D is connected, we
can apply Pr0p051t10n 9.3.4 and get for each j, a sequence (¢;,)ven of functlons
Yy € OZ . (C) which converges to log g; uniformly on D. Setting

f, =efiv. . . .ePiv

then we get a sequence (f,)yen of holomorphic functions f, : C — A which
converges to f uniformly on D. By Proposition 9.3.2, each f, belongs to Oglm (©).
O

9.6 Splitting over simply connected open sets
without shrinking

In this section A is a Banach algebra with unit 1, G is an open subgroup of the
group of invertible elements of A, G1A is the connected component of 1 in the
group of invertible elements of A, and (Z,m) is a data of zeros (Def. 9.1.2). It is
the aim of this section to prove the following theorem:

9.6.1 Theorem. Let D C C be a simply connected open set such that Z N D is
discrete and closed in D. Then any Og’m-cocycle over D s (’)gm-tm‘vial (Def.
9.1.4).

We will deduce this from Lemma 9.4.1. For that we need the following gen-
eralization of the technical Lemma 5.8.1 to the sheaf C’)g’m

9.6.2 Lemma. Let D C C be an open set such that Z N D is discrete and closed in
D, and let (Dy,)nen be a sequence of bounded open sets such that

(0) ZNdD,, =0 for alln € N;
(1) D,, € Dy41 for alln € N;
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(2) UpenDn =D
(3) for each m, any function from Ogm(DnH) can be approrimated uniformly
on D,, by functions from (’)g’m(D).

Further let f be an Ogﬂn—cocycle over D such that, for each n € N, the restriction
flp, is OF . -trivial (Def. 9.1.4). Then f itself is OF  -trivial .

Proof. We denote by || - || the norm of A and set

dist(a, A\ G) = big{GHafbH for a € G.
€

Let U = {U,};er be the covering associated to f. By Proposition 9.1.6, after
passing to a refinement, we may assume that each Uj is a relatively compact open
disc in D and f;, € 0%, (U;NUy) for all j, k € I. Note that then, for each j € I,
there exists n; € N with

U,CD, ifn>n,. (9.6.1)

Moreover we may assume that

(9.6.2)

for each compact set K C D there exists only a
finite number of indices j € I with U; N K # 0.

To prove the lemma now it is sufficient to find a sequence ( f“)n en of families
fo={fn; }jGI of functions f, ; € OF , (Dny1NU;) as well as a sequence (e, )nen
of positive numbers, such that, for all n € N,

fik="tnjlur  omDnnNU;NUy, jkel, (9.6.3)
1

en < - min  dist ( fw(z),A\G), jel, (9.6.4)

4 zeD,NU;
max  ||fn;(2) — fa-1,;(2)]| <en—1ifn>1, je€lI, and (9.6.5)

ZEDnmUj
En—1 .

en < 5 ifn>1. (9.6.6)

Indeed, then it follows from (9.6.1), (9.6.5) and (9.6.6) that, for all n,p € N with
n; <n <p,

€ €,
max || fp;(2) = fn ()| <en+ 4+t ,;,1 < 2ey,
zeU; 2 2P

which implies, by (9.6.6), that for each j € I the sequence (fn’j)n>n' converges
. _ o ="
uniformly on U; to some function f; € O4(U;) where

max || f;(2) — fn,;(2)| < 2ep for n > n;.

zeU;
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By (9.6.4), this inequality implies that

max [1£5(2) ~ fug(2)| < 5 int dist (£5(2),G\A) forn >

zeU; zeU;

Hence f; € [ (U;), j € I. Moreover, since, for each j € I, the functions f, ; with
n > n; belong to @g,m (U;) and the sequence ( fmj)nan converges uniformly on
U, to fj, it follows that even f; € 6§,m(ﬁj)’ j € I. It remains to observe that
now we can pass to the limit for n — oo in (5.8.3), which gives f;, = f;lfk on
U; NUy for all j, k € I. Hence f is Ogm—trivial.

To prove the existence of such sequences, we first recall that, by hypothesis of
the lemma, each f|p, ., is (’)g,m—trivial. Therefore we can find a sequence (f,)

of families f, = {fn.;}jer of functions f, ; € 0% 1o (Dpi2 NU;) such that

neN

fie=Fotfur  on DuponU; MU (9.6.7)
for all n € N and j,k € I. We claim that even
fn; €0%, (DnyanU;)  foralljelandneN. (9.6.8)

Indeed, let (2z,),en be a sequence in D, 19 N U; which converges to some point

2 € DpionUj. SirEe U covers D, we can find k € I with z € Uy. Since Uy, is open,
then z, € Dy,42 NU; N Uy for sufficiently large v, where, by (9.6.7),

ﬁz,j (2) = ﬁm,k(zu) fﬁcl (20).

Since both fnk and fjk are continuous on D, 42 N Uj N Uy and since z € Dy 42 N
U, N Uy, this implies that

lim f,5(20) = fan(2) [ (2)

Now we proceed by induction.
Beginning of the induction: Since ]?O,j € 5§7m(D2 NU,;) and D; C Dy, we can
define fy; = ‘%J‘Dmﬁ-' It follows from condition (9.6.2) that (J,<; fo,; (DoNU,)
J
is a compact subset of G. Hence we can find ¢ > 0 such that

1
€0 < — min  dist (fo7j(z),G\A) for all j € I.
zEDoﬂUj

With this choice of the family {fo ;}jer and the number ¢, conditions (9.6.3)—
(9.6.6) are satisfied for n = 0.

Hypothesis of induction: Assume, for some p € N, we already have families f, =
{foj}tier, -, fp = {fp,j}jer of functions

foj € 62,7,1(1)0 ﬂUj), oo fpi € 6%7”(1)1, ﬁﬁj)
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as well as positive numbers ¢, ...,e, such that (9.6.3)—(9.6.6) hold for n =
0,...,p.

Step of induction: Since the compact set D, NU, is contained in Dpi1 N E‘ and
fp,j is continuous on D, N Uj, the function f,; is bounded on D, N U;. By
condition (9.6.2), this implies that

max max | £, (2)] < oc. (9.6.9)
Je€l 2eD,NU;
By (9.6.7),
fjk:f;jlfp,k on DpioNU; NUg.

Moreover, by hypothesis of induction,
fik = tpifore o0 Dy NU; N U

Since Dp11 C Dpo, this yields
fordon = Fpifn; o Dya NU; NU.

Hence, there is a well-defined function ® € OF | (Dp11) with

o= f;,jf;;; (9.6.10)

on Dp1 NUj for all j € I. Note that, since f, ; is continuous on Dp4q N Uj and,
by (9.6.8), fp’j is continuous on D,y N Uj , (9.6.10) even holds on D,1 N U,

j € I. By hypothesis of the lemma, ® can be approximated uniformly on D, by
functions from OF (D). Therefore and by (9.6.9), we can find ¥ € OF (D) such
that .
max [0 — 1] < — 2
b, max 7,1

for all j € I.

Since (9.6.10) holds over D, 11 NU; and D, NU; C D,1 NU;, this implies that

~ €

max [[Of,f5 1] < ;

D,NU; P3P lnr?% | fp.s
p J

for all j € 1. (9.6.11)

Setting

fp+17j = \Iffp,j on Dp+2 N Uj,
now we obtain a family fp41 = {fp+1,;}jer of functions f,11; € 6§7m(Dp+2 nU;).
Further, it follows from condition (9.6.2) that ;¢ fp+1,5 (Dp4+1NU;) is a compact
subset of G. Hence we can find €p41 > 0 so small that condition (9.6.4) is satisfied
for n = p+1. As e, > 0, we may moreover assume that (9.6.6) holds for n = p+1.
From (9.6.7) we get

Fotrghorie = Fog O 0 = Fo i fok = Fin
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on DyioNU; NUy, ie., (9.6.3) holds for n = p+ 1. From (9.6.11) it follows that
_ 71
phax [ Fpr1s = Foill = ohax H (‘I’fp,jfp,j - 1) fm” < ép-

Hence also (9.6.5) holds for n = p + 1. O

Proof of Theorem 9.6.1. Since D is simply connected, by the Riemann mapping
theorem we may assume that either D = C or D is the open unit disc. In both
cases, there exists a sequence (D), )nen of open discs D,, C C such that

L4 ﬁ'rL cD,
e D, C D, foralln¢€N,
L4 UneND" =D,

e by the Runge approximation Theorem 9.5.3, for alln €N, any f € Og’m(DnH)
can be approximated uniformly on D,, by functions from (’)g’m(D).

Hence, by Lemma 9.6.2, it is sufficient to prove that for any (’)gm-cocycle f over

D, the restrictions f|p,, n € N, are (’)g’m—trivial, which is indeed the case by
Lemma 9.4.1. O

Finally we point out the following special case of Theorem 9.6.1:

9.6.3 Corollary. Let Di,Ds; C C be two open sets such that D1 U Dy is simply
connected and Z N (D1 U Dy) is discrete and closed in Dy U Dy. Then, for each
f e Og}m(Dl N Do), there exist functions f; € Ogjm(Dj), j = 1,2, such that
f = f;lfQ on D1 ﬂDQ,

9.7 Runge approximation. The general case

In this section A is a Banach algebra with unit 1, G is an open subgroup of the
group of invertible elements of A, G1A is the connected component of 1 in the
group of invertible elements of A, and (Z, m) is a data of zeros (Def. 9.1.2).

Here we generalize part (ii) of the Runge approximation Theorem 5.0.1 to
sections of OF . For that we pass again to the Riemann sphere P! = C U {oo}
and use the notation concerning the Riemann sphere introduced in the beginning
of Section 5.10.

Since, for each a € P!, T, is biholomorphic between P!\ {a} and the complex
plane, from the Runge approximation Theorem 9.5.3 we immediately get:

9.7.1 Proposition. Let a € P! be a fized point. Let D be a relatively compact open
subset of P*\ {a} with piecewise C*-boundary such that P\ D is connected. Assume
Z 0 (P'\ {a}) is discrete and closed in P* \ {a} and

ZNnoD = 0.
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Let f € (’)G m (D) such that all values of f belong to the same connected component
of G (whzch is always the case if D is connected). Then f can be approximated
uniformly on D by functions from OZ (P {a}).

Moreover, from Corollary 5.9.3 we immediately get:

9.7.2 Proposition. Let a € P' and let Dy, Dy C P\ {a} be two open sets such that
D1 U Dy is simply connected and Z N (D1 U Ds) is discrete and closed in Dy U Dy .
Then, for each f € Og,m(Dl N Dy), there exist functions f; € O§7m(Dj), i=1,2,
such that f = fflf2 on D1 N Ds.

9.7.3 Lemma. Let D C P! be an open set with piecewise C'-boundary and let
Ui,...,U, be the connected components of P\ D. Let n > 2 and let some points
a; € Uj, 1 < j < n, be fized such that Z N (P \ {a1,...,a,}) is discrete and

closed in P* \ {a1,...,an}. Then, for each f € OF, (D), there exist functions

fi € 05,,(P*\U;), 1 < j <n, and a function h € OF  (P*\ {a1,...,an}) such

that f = hf,...f1 on D.

Proof. This proof is similar to the proof of Lemma 5.10.4. For 1 < k < n, we

consider the following statement:

A(k): There exist functions f; € 5§7m(IP’1 \ Uj), 1 < j <k, and a function
h; € 6g7m (EU (Ui \{a1}) U...U (Ui \ {ak})) such that f = h;f, ... f
on D.

Since

DU (Ui \{a:})U...U (U \{an}) =P'\ {ay,...,as},

then A(n) is the assertion of the lemma. Therefore it is sufficient to prove A(1)
and the conclusions A(k) = A(k+1),1 <k <n-—1
Proof of A(1): Since

(Pl \U1) U (D U (ﬁl \ {al})) = ]P)l \ {al}

and
(Pl \Ul) (DU U1 \{al}))
from Proposition 9.7.2 we get functions f, € (’)gm (P! \Ul) and h; € Ogm (Du
(U1 \ {a1}) such that
f=hity (9.7.1)

on D. Since f is continuous and with values in G' on D, since h; is continuous
and with values in G on D U 90Uy, since f; is continuous and with values in G

on D\ 9U; and since (9.7.1) holds in D, it follows that f, € @gym(]?l \ Uh),
hy € @gm (DU (Ur\ {a1})) and (9.7.1) holds on D, i.e., assertion A(1) is valid.
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Proof of A(k) = A(k+1): Let 1 <k < n—1 be given, assume that statement
A(k) is valid, and let f1,..., fr and hy be as in this statement. Since

(]P’l \Uk“) U (D U0\ {ar}) U...U (Tesr \ {akﬂ})) = P!\ {ags1)

and

(Pl \UkJrl) N (D U (Ul \ {(Ll}) Uu...u (UkJrl \ {ak+1})>
:DU(Ul\{al})U...U(ﬁk\{ak}),

from Proposition 9.7.2 we get functions

Jre41 € Og,m (Pl \Ukﬂ)

and
hir € 0% (D U T\ {a1}) U... U (T \ {akﬂ}))

such that
hy, = hi 1 frn (9.7.2)

in DU (Uy\ {a1}) U...U (Ui \ {ax}). Since hy, is continuous and with values in

G on D, since h;,_,, is continuous and with values in G on D U QUy 1, since f; 4

is continuous and with values in G on D \ OUx,; and since (9.7.2) holds in D, it
follows that

Jrp1 € @%m (Pl \ Uk+1),
hisy € 0%, (ﬁ U0\ {a}) U...U (U1 \ {ak+1}))

and (9.7.2) holds on D. Since f = h; f, ... f; on D, this implies that

f=hepifoi S
on D, i.e., assertion A(k + 1) is valid. O

9.7.4 Theorem. Let D C P! be an open set with piecewise C'-boundary, and let
Ui,...,U, be the connected components of P\ D. Let n > 2 and let some points
a; € U;, 1 < j <n, be fizred such that ZN (Pl\{al, cel, an}) 1s discrete and closed
in P\ {a1,...,a,} and

ZNoD =1.

Then the functions from 5%)7,1(5) can be approzimated uniformly on D by func-
tions from Oz (P \ {ay,...,a,}, G).
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Proof. This proof is similar to the proof of Theorem 5.10.5. If n = 1, the assertion
of the theorem is that of Proposition 9.7.1. If n > 2, then, by Lemma 9.7.3, each

fe @gm(D) can be written in the form

f=hfn...f1 on D, (9.7.3)

where f; € OF  (P'\U;), 1 < j < n,and h € OF, (P'\ {a1,...,a,}). Let V
be the interior of P! \ U;. Since the boundary of U; is piecewise C! (as a part of
the boundary of D), also the boundary of V is piecewise C! and V = P!\ Uj,.
Since U; is connected, P! \V = U; is connected. Therefore, Proposition 9.7.1
can be applied to each Vj. Hence, each f; can be approximated uniformly on
V =P\ U; by functions from OF , (P*\{a;}). Since O (P*\ {a;}) € OF . (P*\
{p1,...,pn}) and D C P!\ U;), this means in particular that each f; can be
approximated uniformly on D by functions from Og,m, (IP’1 \ {p1,... ,pn}). Since

h belongs to C’)(Z;’m (P*\ {p1,--.,pn}) and by (9.7.3), this implies the assertion of
the theorem. O

9.8 The Oka-Grauert principle

In this section A is a Banach algebra with unit 1, G is an open subgroup of the
group of invertible elements of A, G1A is the group of invertible elements of A,
and (Z,m) is a data of zeros (Def. 9.1.2). Here we prove the following theorem:

9.8.1 Theorem. Let D C C be an open set such that Z N D is discrete and closed
in D, and let [ be an Ogym—cocycle. Then:

() If f is CC-trivial’ over D, then f is Og)m—tm'm'al.
(ii) If G is connected, then f is OF , -trivial.
First we prove the following generalization of Lemma 5.11.3:

9.8.2 Lemma. Let D C C be an open set with piecewise C'-boundary such that
Z N D is finite and Z N 0D = (). Further, let U be a neighborhood of D and f an
Ogm-cocycle over U. Suppose that at least one of the following two conditions is
fulfilled:

(i) f is CC-trivial over U.
(ii) G is connected.

Then the restriction f|p is Ogm—tm'm’al.

5This is not a misprint. We really mean “if f is C&-trivial” and not “if f is Cg i -trivial”.
The latter notion we even did not define, because we do not use it.
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Proof. We may assume that D is connected. We proceed by induction over the
number of connected components of C\ D.

Beginning of induction: Suppose this number is 1, i.e., C\ D is connected. As the
boundary of D is piecewise C!, then also C\ D is connected, which means (cf., e.g.,
theorem 13.11 in Rudin’s book [Ru]) that D is simply connected. Therefore the
assertion of the lemma follows from Theorem 9.6.1. (Even if none of the conditions
(i) or (ii) is satisfied.)

Hypothesis of induction: Assume, for some n € N with n > 2, the assertion of the
lemma is already proved if the number of connected components of C\ D is n— 1.

Step of induction: Assume that the number of connected components of C\ D is
equal to n. Then, by Lemma 5.11.2, we can find a Cartan pair (Dy, Dy) with D =
D, U D5 satisfying conditions (1), (2), (3) (of this lemma). Since the boundaries
of D1, Dy, Dy N Dy and D are piecewise C!, we can find a Cartan pair (D}, D})
satisfying the same conditions (1), (2), (3) such that D; C D’ and Ell U E’Q cUu.

Then, again by Theorem 9.6.1, the cocycle f|Di is (’)gm—trivial. Moreover,

since the number of connected components of (C\E; is equal to n—1, it follows from
the hypothesis of induction that also f|p; is OC-trivial. Hence both restrictions
ies tha uD, is
OF n-equivalent to certain ({D}, D5}, 0F ,)-cocycle f'. Since DyNDy € DiND3,
setting

flp; and f|p, are OC%-trivial. By Proposition 9.1.9, this implies that f|D,
1

/
F= f12|510527

we get a function F € @g’m(ﬁ1 N D3). We claim that all values of F belong to
the same connected component of G.

If G = G1 A, this is trivial. If not, then condition (i) in the lemma under proof
is satisfied, i.e., f is C%-trivial over U. As D} U D} C U, then also the restriction
flpjupy is CC-trivial over D} U D). Since flpjupy is CC-equivalent to f’ over
D7 U Dj (it is even Ogm—equivalent to f'), this implies that also f’ is C&-trivial,
i.e., we can find C; € CG(D;)7 j=1,2, with

fio = CCy on D} N Dj.

Hence condition (iii) in Lemma 5.11.1 is satisfied, and it follows (from this lemma)
that all values of F' belong to the same connected component of G.

Since all values of F' belong to the same connected component of G, it follows
from the Cartan Lemma 9.3.7 that there exist functions F}; € @Cz;,m (Dj),j=1,2,
with

F=F'F, onD;nD;.

. Y . . . ’ . a ..
Since F|p,np, = fia|pinD,, this means in particular that f |D is OF ,-trivial.

Finally, as f’ o and f’ are OF  -equivalent and therefore f|p and f’|p are
1 :

uD}
Og)m—equivalent, it follows that also f|p is Og)m—trivial. O
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Proof of Theorem 9.8.1. Take a sequence (£2,,)nen of bounded open sets with C!-
boundaries such that ,, € Q,, 11 and ZNdK, = ( for all n € N and Unen Q0 = D.
Let U, be the union of all bounded connected components of C \ €2,, which are
subsets of D (if there is any — otherwise U,, := ), and set

D,=Q,uUU,.

Then also (D, )nen is a sequence of bounded open sets with C'-boundaries such
that ZNaD, =0, D, C D, for all n € N and Unen Dn = D. Moreover this
sequence has the important property that each bounded connected component
of C\ D, (if there is any) contains at least one point of C\ D. By the Runge
approximation Theorem 9.7.4, this implies that, for each n, the functions from
6%7” (D,,) can be approximated uniformly on D,, by functions from Ogm(D). In
particular we see that the sequence (D), )nen has the properties (0)—(2) of Lemma
9.6.2. Therefore, by this lemma, f is (’)gm—trivial if each f|p, is (’)gm—trivial.

That each f|p, is Ogm—trivial, follows from Lemma 9.8.2. g

9.9 Comments

The results of this chapter are practically new, and here they are published for
the first time, although they could be viewed as special cases of a much more
general theory (see [FoRa] for finite dimensional groups, and [Le2, Le7] for infinite
dimensional groups). However this is far not obvious. It is simpler to prove them
again. Note also that some elements of the theory of cocycles with restrictions can
be pointed out in the proofs in the papers [GR1, GR2]. The results of this chapter
are used in the consequent chapters only.



Chapter 10

Generalized interpolation
problems

Here we prove further generalizations of the Weierstrass product theorem.

10.1 Weierstrass theorems

10.1.1 Theorem. Let A be a Banach algebra with unit 1, let G be an open subgroup
of the group of invertible elements of A, let D C C be an open set, and let Z
be a discrete and closed subset of D. Suppose, for each w € Z, there is given
a neighborhood Uy, of w with Uy, N Z = {w} and a holomorphic function f, :
Uw \ {w} — G. Moreover, we assume that at least one of the following conditions
is fulfilled:

(i) G is connected.
(ii) D is simply connected.

Then there exist holomorphic functions h,, : Uy, — G, w € Z, and a holomorphic

function h: D\ Z — G such that
hwf'w =h on Uy \ {w} . (1011)

Moreover, for any given family of positive integers m,,, w € Z, the functions hy,
can be chosen so that, for each w € Z, the functions hy, — 1 and h;* — 1 have a
zero of order > my, at w.

10.1.2. In this theorem, it would be sufficient to claim that one of the functions
hy — 1 or hy' — 1 has a zero of order > m,, at w. For the other one this follows
automatically. Indeed, assume, for example, that this is the case for h,, — 1. Then,
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in a neighborhood of w,

hpt=1—(1-hyh) =§:(1 — )’ = 1+(1_hw)§:(1_hw)j>
— —

J J
which shows that also h;,! — 1 has a zero of order > m,, at w.

The topological conditions (i) and (ii) in Theorem 10.1.1 can be replaced by
the more general condition that the problem can be solved continuously, i.e., there
is the following Oka-Grauert principle:

10.1.3 Theorem. Let A be a Banach algebra with unit 1, let G be an open subgroup
of the group of invertible elements of A, let D C C be an open set, and let Z
be a discrete and closed subset of D. Suppose, for each w € Z, there is given
a neighborhood Uy, of w with Uy, N Z = {w} and a holomorphic function f, :
Uy \ {w} — G. Assume that:

(iii) There exist continuous functions ¢, : Uy, — G and a continuous function
¢: D\ Z — G such that ¢y fuy = c on Uy \ {w}, w e Z.

Then there exist holomorphic functions hy, : Uy, — G, w € Z, and a holomorphic
function h: D\ Z — G such that

hwfuw =h on Uy \ {w}. (10.1.2)

Moreover, for any given family of positive integers m,,, w € Z, the functions hy,
can be chosen so that, for each w € Z, the functions hy, — 1 and h,* — 1 have a
zero of order > my, at w.

The first parts of theorems 10.1.1 and 10.1.3 coincide with theorems 5.13.1
and 5.13.2, respectively. The additional information at the end about the zeros of
hy — 1 and (hy, — 1)7! has important consequences. For example, if the functions
fuw are meromorphic at w and, hence, h is meromorphic at each w (which is already
clear by the first part of the theorem), then, for any given orders m,, € N* the
family of functions h,, can be chosen so that h — f,, has a zero of order m,,,
i.e., it can be achieved that arbitrarily prescribed finite pieces of the Laurent
expansions of h and f,, concide. The corresponding is true if the functions f; ! are
meromorphic. This is contained in the following immediate corollary of theorems
10.1.1 and 10.1.3:

10.1.4 Corollary. Assume, under the hypotheses of Theorem 10.1.1 or under the
hypotheses of Theorem 10.1.3, two subsets Z, and Z_ of Z are given, where the
cases Z1 =0, Z_ =0 and Zy N Z_ # 0 are possible. Moreover assume that:

o Ifwe Zy, then f,, is meromorphic at w.
o Ifwe Z_, then f;* is meromorphic at w.

Then, for any given family of positive integers m.,, w € Z, in the claims of these
theorems, it can be shown that:
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o Ifwe Zy, then f — f, has a zero of order m,, at w.

o Ifwe Z_, then f=* — f ! has a zero of order m,, at w.

Proof of Theorems 10.1.1 and 10.1.3. Let a family m = {m, }wez of positive in-
tegers be given. Since Z is discrete and closed in D, then (Z,m) is a data of
zeros in the sense of Definition 9.1.2. In terms of this definition, we have to find
h€Ozm(D\Z)and hy € Oz,m(Uy), w € Z, with hy fr, = h on Uy, \ {w}.
Choose neighborhoods V,, C U,, so small that V,, NV, = 0 if w # v.
It is sufficient to find h € Oz, (D \ Z) and hy, € Oz m(Vy), w € Z, such
that

b fuw = h (10.1.3)

on V, \ {w}. Indeed, since V;, N Z = U, N Z = {w}, then, by (10.1.3), each h,,
admits an extension to a function from Ogm(Uw) such that (10.1.3) holds also for
this extension.

Set D1 = ez Vw and Dy = D\ Z. Since the sets V,, are pairwise disjoint
and V,, N Z = {w}, the family of functions f,, can be interpreted as a single
holomorphic function f € O%(D;y \ Z). Since Z N Dy N Dy = (), the restriction
f|DmD2 belongs to Ogm(Dl N D3). Now, by Corollary 9.2.2, there exist h; €
0§ ,.(D;) and hy € OF  (Ds) with f = hy'hy on Dy N Dy. Setting hy, = hy|,,
and h = ho, we complete the proof.

Since, in theorems 10.1.1 and 10.1.3, the multiplication by the functions h,,
is carried out from the left, we call these theorems left-sided Weierstrass theorems.
There are also right- and two-sided versions.

10.2 Right- and two-sided Weierstrass theorems

If A is a Banach algebra with the multiplication “”, then we can pass to the
Banach Algebra A which consists of the same additive group A but with the
multiplication “~” defined by a~b = b- a. In this way, from theorems 10.1.1 and
10.1.3 we get the following right-sided Weierstrass theorems:

10.2.1 Theorem. Let A be a Banach algebra with unit 1, let G be an open subgroup
of the group of invertible elements of A, let D C C be an open set, and let Z
be a discrete and closed subset of D. Suppose, for each w € Z, there is given
a neighborhood Uy, of w with Uy, N Z = {w} and a holomorphic function f, :
Uy \ {w} — G. Moreover, we assume that at least one of the following conditions

1s fulfilled:
(i) G is connected.

(ii) D is simply connected.
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Then there exist holomorphic functions hy, : Uy, — G, w € Z, and a holomorphic
function h: D\ Z — G such that

fwhw =h on Uy \ {w}. (10.2.1)

Moreover, for any given family of positive integers m.,, w € Z, the functions hy,
can be chosen so that, for each w € Z, the functions hy, — 1 and h,* — 1 have a
zero of order > my, at w.

10.2.2 Theorem. Let A be a Banach algebra with unit 1, let G be an open subgroup
of the group of invertible elements of A, let D C C be an open set, and let Z
be a discrete and closed subset of D. Suppose, for each w € Z, there is given
a neighborhood Uy, of w with Uy, N Z = {w} and a holomorphic function f, :
Uw \ {w} — G. Moreover, we assume that:

(iii) There exist continuous functions ¢, : Uy, — G and a continuous function
¢: D\ Z — G such that fycy, =c on Uy, \ {w}, we Z.

Then there exist holomorphic functions hy, : Uy, — G, w € Z, and a holomorphic
function h: D\ Z — G such that

fwhw =h on Uy \ {w}. (10.2.2)

Moreover, for any given family of positive integers m.,, w € Z, the functions hy,
can be chosen so that, for each w € Z, the functions hy, — 1 and hy,* — 1 have a
zero of order > my, at w.

Finally, we present a two-sided Weierstrass theorem:

10.2.3 Theorem. Let A be a Banach algebra with unit 1, let G be an open subgroup
of the group of invertible elements of A, let D C C be an open set, and let Z
be a discrete and closed subset of D. Suppose, for each w € Z, there are given a
neighborhood Uy, of w with U, N Z = {w} and two holomorphic functions fu, guw :
Uw \ {w} — G. Moreover, we assume that at least one of the following conditions

1s fulfilled:
(i) G is connected.
(ii) D is simply connected.
Then there exist holomorphic functions h,, : Uy, — G, w € Z, and a holomorphic
function h: D\ Z — G such that
fwhwgw =h on Uy \ {w}. (10.2.3)

Moreover, for any given family of positive integers m.,, w € Z, the functions f,
and g, can be chosen so that, for each w € Z, the functions fu,—1, fot—1, gy —1
and g;' — 1 have a zero of order > m,, at w.
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Proof. Let a family of positive integers m,,, w € Z, be given. Then from the left-
sided Weierstrass Theorem 10.1.1 we get holomorphic functions hﬁu Uy — G,
w € Z, and a holomorphic function h' : D\ Z — G such that

hl g = h! on Uy, \ {w} (10.2.4)

and the functions hﬁu — 1 have a zero of order > m,, at w. From the right-sided
Weierstrass Theorem 10.2.1 we get holomorphic functions b}, : U, — G, w € Z,
and a holomorphic function h™ : D\ Z — G such that

fwhi, = R" on U, \ {w} (10.2.5)

and the functions hj, — 1 have a zero of order > m,, at w. Set h = h'h™ and
hy = hI bl w € Z. Then h € OY(D\ Z), h,, € 0% (U,,) and

w""w?

fohwgw = fuhl bl gw =h"A ' =h  on U, \ {w}

w

and the functions f, — 1, fu' — 1, gw — 1 and g,' — 1 have a zero of order > m,,
at w. (]

10.2.4 Remark. Instead of conditions (i) or (ii) in Theorem 10.2.3 also the following
condition would be sufficient (Oka-Grauert principle):

(iii) There exist continuous functions ¢, : U, — G, w € Z, and a continuous
function ¢ : D\ Z — G such that f,cygw = con Uy, \ {w}, w e Z.

But to prove this we would need a further generalization of the theory of
multiplicative cocycles where the group G in Definition 9.1.2 is replaced by a fiber
bundle of groups with characteristic fiber G. Also this generalization of Grauert’s
theory is known in Complex analysis of several variables (see [FoRa| for finite
dimensional groups, and [Le2, Le7] for infinite dimensional groups). But the direct
proof of this result for the case of one complex variable would require a further
chapter larger than Chapter 9. To keep the book shorter we omit this extension
of the theory of cocycles.

By the same arguments as in the case of Corollary 10.1.4, the above three
theorems lead to the following two corollaries:

10.2.5 Corollary. Assume, under the hypotheses of one of the Theorems 10.2.1 or
10.2.2, two subsets Zy and Z_ of Z are given, where the cases Z, =0, Z_ =0
and Zy NZ_ # () are possible. Moreover assume that:

o Ifwe Zy, then f,, is meromorphic at w.
o Ifwe Z_, then f,;* is meromorphic at w.

Then, for any given family of positive integers m.,,, w € Z, in the claims of these
theorems, it can be shown that:

o Ifwe Zy, then h — f,, has a zero of order m,, at w.
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o Ifwe Z_, then h™t — f;} has a zero of order m,, at w.

10.2.6 Corollary. Assume, under the hypotheses of Theorem 10.3.3, two subsets
Zy and Z_ of Z are given, where the cases Z =0, Z_ =0 and Zy NZ_ # () are
possible. Moreover assume that:

o Ifw e Zy, then the functions f,, and g, are meromorphic at w.
o Ifw e Z_, then the functions f,1 and g,* are meromorphic at w.

Then, for any given family of positive integers my,, w € Z, in the claim of this
theorem, it can be shown that:

o Ifwe Zy, then the function h — f,,g, has a zero of order m,, at w.

o Ifw e Z_, then the function h=' — g 1 fo! has a zero of order m., at w.

10.3 Weierstrass theorems for
G>®(FE)- and G¥(FE)-valued functions

Let E be a Banach space, let F*°(E) be the ideal in L(E) of operators which
can be approximated by finite dimensional operators, and let F“(E) be the ideal
of compact operators in L(F). Throughout this section, X stands for one of the
symbols oo or w, GX(E) is the group of invertible operators in E which are of the
form I+ K, where K € FY(E).

We first prove the following strengthening of the left-sided Weierstrass The-
orem 5.14.1:

10.3.1 Theorem. Let D C C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w € Z, there are given a neighborhood U, of w
with Uy, N Z = {w} and a holomorphic function A, : U, \ {w} — GX(E). Then
there exist holomorphic functions Hy, : U, — GN(E), w € Z, and a holomorphic
function H : D\ Z — G¥(E) such that

H,A,=H on Uy \ {w}. (10.3.1)

Moreover, for any given family of positive integers m,, w € Z, the functions H,,
can be chosen so that, for each w € Z, the functions Hy, — I and H,' — I have a
zero of order > my, at w.

Proof. Let a family of positive integers m,,, w € Z, be given. Since G¥(E) C
GF}(E), the functions A,, can be interpreted as functions with values in GF} (E).
Since the latter group is the group of invertible elements of a Banach algebra
and since this group is connected, we can apply Theorem 10.1.1 to it and obtain
holomorphic functions H,, : U, — GFY(E), w € Z, and a holomorphic function
H:D\ Z — GFX(E) such that

HyAy,=H  onU,\ {w} (10.3.2)
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and , for each w € Z, the functions H,—1I and f[;l — I have a zero of order > my,,
at w. If dim E < oo and therefore G¥(E) = GL(E) = GFY(E), this completes the
proof.

Let dimE = oo, and let A\, : Uy, — C, A : D\ Z — C, K,, : U, — F*
and K : D\ Z — F® be the holomorphic functions with ﬁ[w = Aol + K, and
H = M + K. Then, passing to the factor algebra F;(E)/FX(E) = C, we see:

— Since H and PNIw are invertible, the functions A and \,, have no zeros.

— It follows from (10.3.2) that A, = A on Uy,.

— Since I;Tw — I and ﬁ;l — I have a zero of order > m,, at w, the functions
Aw — 1 and A\,;' — 1 have a zero of order > m,, at w.

Hence the functions H,, := I;Tw//\ and H := ﬁ/x\ have the required properties. [

Precisely in the same way, replacing the left-sided Theorem 10.1.1 by the
right-sided Theorem 10.2.1, we get the corresponding left-sided result:

10.3.2 Theorem. Let D C C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w € Z, there are given a neighborhood U, of w
with U, N Z = {w} and a holomorphic function A, : U, \ {w} — GX(E). Then
there exist a holomorphic function H : D\ Z — GY(E) and holomorphic functions
Hy : Uy, — GY(E), w € Z such that

A H,=H on Uy \ {w}. (10.3.3)

Moreover, for any given family of positive integers m.,, w € Z, the functions Hy,
can be chosen so that, for each w € Z, the functions Hy, — I and H;* — I have a
zero of order > my, at w.

Both theorems together again give a two-sided version:

10.3.3 Theorem. Let D C C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w € Z, there are given a neighborhood U, of w
with Uy, N Z = {w} and two holomorphic functions F,,, Gy : U, \ {w} — GY(E).

Then there exist a holomorphic function H : D\ Z — GY(E) and holomorphic
functions Hy, : U, — GN(E), w € Z, such that

FyH,Gy=H  onU,\{w}. (10.3.4)

Moreover, for any given family of positive integers m.,, w € Z, the functions F
and Gy, can be chosen so that, for each w € Z, the functions F,, — 1, F;* —1,
Gw — 1 and G;' — 1 have a zero of order > m,, at w.

Proof. Let a family of positive integers m,,, w € Z, be given. Then from the left-
sided Theorem 10.3.1 we get holomorphic functions H', : U,, — G, w € Z, and a
holomorphic function H' : D\ Z — GY(E) such that

H.G, =H on Uy, \ {w}
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and the functions Hfﬂ — 1 have a zero of order > m,, at w. From the right-sided
Theorem 10.3.2 we get holomorphic functions H!, : U, — GX(E), w € Z, and a
holomorphic function H" : D\ Z — G*(FE) such that

F,H, =H" on Uy, \ {w}

and the functions H;, — 1 have a zero of order > m,, at w. Setting H = H'H"
and H, = HLH., w € Z, we get holomorphic functions H : D\ Z — GX(E)),

w wr

Hy, : Uy, — GX(E) such that

F,H,G,=F,H H G, =HH =H  onU, )\ {w},
and the functions F, — 1, F,;1 =1, G, — 1 and G,;' — 1 have a zero of order > m,,
at w. O

By the same arguments as in the case of Corollary 10.1.4, the above three
theorems lead to the following two corollaries:

10.3.4 Corollary. Assume, under the hypotheses of one of the theorems 10.3.1 or
10.3.2, two subsets Zy and Z_ of Z are given, where the cases Z, =0, Z_ =0
and Zy N Z_ # 0 are possible. Moreover assume that:

o Ifwe Zy, then A, is meromorphic at w.
o Ifw e Z_, then Ayl is meromorphic at w.

Then, for any given family of positive integers m.,,, w € Z, in the claims of these
theorems, it can be shown that:

o Ifwe Zy, then H— A, has a zero of order m,, at w.
o Ifwe Z_, then H* — A, has a zero of order m,, at w.

10.3.5 Corollary. Assume, under the hypotheses of Theorem 10.3.3, two subsets
Zy and Z_ of Z are given, where the cases Zy =0, Z_ =0 and Zy NZ_ # () are
possible. Moreover assume that:

o Ifw e Zy, then the functions F,, and G, are meromorphic at w.
o Ifw e Z_, then the functions F;' and G,' are meromorphic at w.

Then, for any given family of positive integers m,,, w € Z, in the claim of this
theorem, it can be shown that:

o Ifwe Zy, then the function H — F,G,, has a zero of order m,, at w.
o Ifw € Z_, then the function H=' — G F 1 has a zero of order m,, at w.

10.3.6 Theorem. Let D C C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w € Z, there is given a neighborhood U, of w with
UpoNZ = {w} and a holomorphic function A, : U, \ {w} — GX(E) which is finite
meromorphic at w. Then there exist a holomorphic function H : D\ Z — GX(E),
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which is finite meromorphic and Fredholm (Def. 4.1.1) at the points of Z, and
holomorphic functions H, : U, — GN(E), w € Z, which are finite meromorphic
and Fredholm at w, such that

H,A,=H on Uy \ {w}. (10.3.5)

Moreover, for any given family of positive integers m.,, w € Z, the functions H,,
can be chosen so that, for each w € Z, the functions H— A,, and H=' — A have
a zero of order > my, at w.

Proof. By hypothesis, the functions A,, are finite meromorphic and Fredholm, and,
by Corollary 4.1.3, also the functions A,! are finite meromorphic and Fredholm.
In particular, these functions are meromorphic. Therefore, the assertion follows
from Corollary 10.2.5 with Z, = Z_ = Z. ]

10.4 Holomorphic G*°(F)-valued functions
with given principal parts of the inverse

In this section E is a Banach space, F°°(E) is the ideal in L(E) of the operators
which can be approximated by finite dimensional operators, and G®(FE) is the
group of invertible operators in F which are of the form I+ K, where K € F*(E)
(Def. 5.12.1). We first prove the following generalization of Corollary 4.3.3 to the
Smith factorization theorem:

10.4.1 Lemma. Let w € C, and let K : C\ L(E) be a rational function of the form

-1

K(z)= > (z=w)"K,, (10.4.1)

n—=—m

where K_.,,...,K_1, 1 < m < oo, are finite dimensional operators. Then there
exists a neighborhood U of w and a holomorphic operator functionV : U — F>(E)
such that I +V (z) is invertible for all z € U \ {w} and K is the principal part of
the Laurent expansion of (I + V)~ at w.

Proof. Since the operators K_,,,...,K_; are finite dimensional, we can find a
finite dimensional projector P in E such that K = PKP. Let K : C\ {w} —
L(Im P) be the function defined by

K(z):K(z)’ImP for z € C\ {w}.

Then K = PKP and, by Corollary 4.3.3, there exists a_neighborhood U of w
and a holomorphic function A : U — L(Im P) such that A(z) is invertible for all
z € U\ {w} and K is the principal part of the Laurent expansion of A1 at w.
Then A :=1 — P+ PAP is the required function. O
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10.4.2 Theorem. Let D C C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w € Z, there is given a rational function K : C —

L(E) of the form

—1

Ku(z)= Y (z—w)"K}, (10.4.2)
where KY,, ..., K%, 1<m, < o0, are finite dimensional operators. Then there

exists a holomorphic function V : D — F° such that I +V(z) is invertible for all
z € D\ Z and, for all w € Z, the given function K,, is the principal part of the
Laurent expansion of (I + V)~ at w.

Proof. By Lemma 10.4.1, for each w € Z, there exists a neighborhood U,, of w
and a holomorphic operator function V,, : U, — F*(E) such that I + V,(2)
is invertible for all z € U, \ {w} and K, is the principal part of the Laurent
expansion of (I + V,,)~! at w.

By Corollary 10.2.5, now we can find holomorphic functions H,, : U, —
G*(E), w € Z, and a holomorphic function H : D\ Z — G°°(F), which is finite
meromorphic at the points of Z, such that, for each w € Z,

H,(I+V,)=H on U, \ {w},

and H=! — (I + V,,)~! has a zero of order m,, at w. This implies, as Kv is
the principal part of the Laurent expansion of (I + V,,)~! at w, that K™ is also
the principal part of the Laurent expansion of H~! at w. It remains to set V =
H-1. |

It is impossible to replace in Theorem 10.4.2 the prescribed function (10.4.2)
by an arbitrary function of the form

0
K(z)= > (z—w)"K,,
where the operators K_,,, ..., K_; are finite dimensional and Ky # 0. This follows

from counterexample 4.3.4.

10.5 Comments

In such a generality the material of this chapter is published here for the first
time. Less general versions of the interpolation theorems for matrix and operator
functions were published earlier in [GR1, GR2].



Chapter 11

Holomorphic equivalence,
linearization and diagonalization

11.1 Introductory remarks

11.1.1 Definition. Let X7, X5, Y7, Y5 be Banach spaces such that X is isomorphic
to X5 and Y is isomorphic to Y5. Let D C C be an open set, and let S : D —
L(X1,Y1), T : D — L(X5,Y2) be two holomorphic functions. The functions T
and S are called holomorphically equivalent over D if there exist holomorphic
functions E : D — L(X5,X;) and F : D — L(Y7,Ys) with invertible values such
that

T=FSE, onD. (11.1.1)

We give an example. Let X be a Banach space and
P(2)=2"T+2""1A, 1+...+ A

a polynomial where I is the identity operator in X and Ag, ..., A, _1 are arbitrary
operators from L(X), n € N*. Set

X" =Xeo..0X.
—_———

n times
Then the L(X™)-valued function
P(z) 0 0
~ 0 I 0
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is equivalent to the linear L(X")-valued function zIx» — C where Ix~ is the
identity operator in X™ and

0 I 0 0
0 0 I 0
C =
0 0 0 I
—Ay —A1 —A —An1
Indeed, set
I 0 0
2l I 0
E(z):=
Pty B | I
and
Bn—l(z) Bn—Q(Z) Bl(z) BO(Z)
—I 0 0 0
F(z) = 0 —I 0 0
0 0 —I 0
where

By(z):=1 and Bpi1(z) = 2Br(2) + Ap—1—x for k=0,1,...,n—2.
Then _
P(z) = F(2)(2Ix» — C)E() ,z € D.

11.1.2 Definition. Let D C C be an open set, and X,Y, Z Banach spaces. Given
an operator function T': D — L(X,Y), we call the operator function

o D —LX®ZY®Z)
0 Iy
the Z-extension of T. Here Iz is the identity operator of Z.

According to the example given above a suitable extension of an operator
polynomial is equivalent on C to a linear function. In the next section, a more
general example is given for linearization of analytic operator functions by exten-
sion and equivalence.

11.2 Linearization by extension and equivalence

11.2.1 Theorem. Let D C C be a bounded open set with piecewise C*-boundary and
such that 0 € D. Let X be a Banach space, and

T:D — L(X)
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a continuous operator function which is holomorphic in D. Denote by C(0D, X)
the Banach space of all X-valued continuous functions on 0D endowed with the

mazimum norm. Let
/ O
z
oD

and define an operator A on C(0D, X) by setting

(ANE =4C) - 5 [ (1-T@) 8@ A, zeop.  (121)

21
oD

Then X & Z and C(0D, X) are isomorphic and the Z-extension of T is holo-
morphically equivalent on D to the linear operator function A — A, A € D, i.e.,
there are holomorphic operator functions E : D — L(X d Z,C(@D,X)) and
F:D— L(X®Z,C(0D, X)) with invertible values such that

Z:={ fecC(dD,X)

EN(A—A)F(\) = (TE)A) IOZ) , A€ D. (11.2.2)

Proof. Let 7 : X — C(9D, X)) be the canonical embedding, i.e., (72)(z) = x for
all z € X and z € 9D. Furthermore, define an operator w : C(0D, X) — X by

_ 1 [ (=)
wf—%/7dz.
oD

Since 0 € D, then wt = Ix and P := 7w is the projector in C(0D, X ) with Im P =
7(X) and Ker P = Z. Let J : X ® Z — C(0D, X) be given by J(z,g9) = 7 + g.
Then J is invertible and J='f = (wf, (I — P)f).
Next, consider on C(0D, X) the following auxiliary operator
VHz) =z2f(2), z € 0D.

Then D is in the resolvent set of V', where

((/\ - V)_1f>(z) = % , ANED,z€dD. (11.2.3)

Now we define holomorphic operator functions E : D — L(X & Z,C(0D, X )) and
F:D— L(X®Z,C(0D, X)), setting for A € D:

EN)=M=V)"'J and F(\)=J'(I-PBA\(I-P)).

It is clear that all values of E and F are invertible (as J is invertible, A\ — V is
invertible for A € D and P is a projector). Moreover we introduce a holomorphic
operator function B : D — L(C(@D, X)) defined by

BN =I+PVA-V) ' —PV(A-V)"!T.
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(Here T means the operator of multiplication by the operator function T'.) Note
that A=V — PV 4+ PVT. Therefore

FO) — A)E() = F(\) (1 F PV — V)L — PVT(A — V)—l)J.

Since (Al — V)~ is defined by multiplication by a scalar function, (A — V)~!
commutes with the multiplication by 7. Therefore it follows that

FOV — A)E(\) = FO\)BO)J = J ! (I — PB\)(I — P))B(A)
and further, since (I — P)B(\) = I — P,
FOY(A = AE)) = J! (B(A) — PB\)(I — p))J
= J! (I P+ B()\)P) J
—1-JPJ+ (J‘lB()\)J) JpJ.

Since J~!PJ is the projector in X @ Z with image X and kernel Z, it remains to
prove that
JIBN)Jx =T(\)x

for all x € X and A € D. Let such z and X be fixed. Then, by (11.2.3),

o1 oz
(V()\ V) T:r)(z) - . zeoD,
and ()
-t 2T (2)x
(V(A V) Tx)(z)f . z€dD.
By the Cauchy formula this implies that
1 x
— -1 —_ —
WwVA=V)" 1z 5 | N dz x,
aD
_ 1 T(2)x
—V) T = — —_T
WV A=V)"'Tx 5 | dz Nz,

oD
and therefore

PVON=V) Yo = -7z and PVA=V) ' Tx = —7T(\)z.
Hence
T Bz = J I B(N)re = J ! (m +PV(A=V)lre = PV(A — V)*lTx)

=J TNz =T(\)z. O
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It can be shown (see [GKL]) that the spectrum o (A) of the operator A defined
by (11.2.1) is given by

o(A) = {)\ €D } T()) not invertible} UaD.

The next theorem shows that for an operator function of the form A — A the
procedure of linearization by extension and equivalence does not simplify further
the operator A and leads to operators that are similar to A.

11.2.2 Theorem. Let A; and As be operators acting on the Banach spaces X
and Xo, respectively, and suppose that for some Banach spaces Zy and Zy the
extensions (A — A1) ® Iz, and (A — A3) & Iz, are holomorphically equivalent over
some open set D containing o(Aq) Uo(As) (here o(A;) denotes the spectrum of
Aj). Then Ay and Ao are similar. More precisely: Let the holomorphic equivalence
be given by

()\ —0A1 Igl) = F()) (A —OAz 12) E(\), AeD, (11.2.4)

let U be an open neighborhood of o(A1) U o(As) with piecewise C'-boundary such
that U C D, and let mj : X; @ Z; — X;, 75+ X; — X; @ Z; be the canonical
projectors and embeddings, respectively. Then

g zi (A = As) ' F(N) 171 dA (11.2.5)
YINA
oU

is a well-defined operator S : X1 — Xo (as QU is contained in the resolvent set of
As ). Moreover, this operator is invertible, where

g1 _ 2% MEN) (A — Ag) "L dA, (11.2.6)
oU

and

SA ST = A,

Proof. From the equivalence (11.2.4) it follows that the integrands in (11.2.5) and
(11.2.6) satisty the following identities:

(A — A9) ' FN) T rr = m E(OA\) 1 (A — A) 7, A€ aU, (11.2.7)
’/TlE()\)ilTQ(AfAQ)il = (A*Al)ilﬂ'lF()\)TQ, A €8U (1128)

Since, by Cauchy’s theorem,

/WQF(A)*lﬁ d\ = /mE(A)*n d\ =0,
oU oU
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we get
1
Ap8 = o /(A2 — AN = A) I F(N) " d

Y
oU

1

=5 A = Ag) "t F(N) "Ly dA

oU

and therefore, by (11.2.7),

1
ApS = 5 / Mo E(A) (A — Ap)~Ld)

oU
= ZLM T E\) 1 (A — Ay 4+ A (A — A7 HdA
U
1
= <,/772E(/\)T1(>\—A1)1d>\>141.
211
oU

Again by (11.2.7), this gives A2S = SA;.
It remains to prove that S is invertible. To do this, we first note that, for
A€ D\ (¢(A1) Ua(Az)), we have the identities

WlE()\)ilTQ()\ — A2)717T2F()\)71T1 — ()\ — Al)il

0 O

= -—mE\)! (0 I, ) FO)™'r (11.2.9)

2

and

7T2E(/\)7'1(/\ — Al)_lﬂ'lF()\)Tg — ()\ — AQ)_l
— _mE() (8 12

Indeed, from the equivalence (11.2.4) we get

(()\(1)41)1 Igl — E(\)~! (O\OAQ)l 122>F()\)_1

) F(\)7m. (11.2.10)

1

and

(0 )= (P 2)

I,

Multiplying the first equation from left by 71 and from the right by 71 this gives
(11.2.9). Multiplying the second equation from left by 7o and from the right by 7
this gives (11.2.10).
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Now we denote by T the operator defined by the right-hand side of (11.2.6),
and we choose two neighborhoods U; and Us of o(A;) U o(Az) with piecewise
C'-boundary such that U; C Us and Uy C U. Then, by Cauchy’s theorem, S and
T can be written also in the form

1

S =— A — Ay) T e F(N) "y d
57 ( 2) mlF(\)T
6U1
and
1 —1 —1
= 9mi mE(p)” T2 (p — A2) " dp.
T
U,

By (11.2.7) and (11.2.8), this implies that

1
= % WgE()\)Tl(/\—Al)_ld)\
3U1
and )
T'=o— (b= A) " 'miF ()2 dp .
8U2
Hence

1 2
ST_(%J / /@Eumu—An4m—An*mmmwdmx
aUl 6U2

For A € QU; and p € QU,, we have the so-called resolvent equation

A-A) T = (p-A)7!
= A '

A ) (- Ay =

(For the proof just multiply it from the left by A — A; and from the right by
u— Aj.) Therefore it follows that

ST = A— B,
where )
A (21> / / T EN) 711 (A — Ay) " 'm F(u) dpd)
i w—A
U, dU>
and )
B— L / / mE\)1i(p — A1) 'miF () dpd».
2mi w—A

oU; U2
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We have

1 _ 1 7T1F(/J,)T2
= ENmA=—ADN | — [ =22 qu | da
A 271 / mEA)7 1) 271 / b= A #
8U1 BUZ
L [ B = A tm F(\)rad).
271
8U1

Since the right-hand side of (11.2.10) is holomorphic in D and o(A2) C U; C
U, C D, this implies

1

A=— — -1 = .
i ()\ AQ) 7T1d)\ IXz
oUy
Moreover,
]. 1 7T2E()\)7—1 1
B=— — ———dA —A F di .
ori 2ri / = (= AT mEu)radp
6U2 aUl

Since U, NU; = 0, this implies that B = 0. We have now proved that ST = Ix,.
In a similar way, using (11.2.9) instead of (11.2.10), one obtains T'S = Iy,. O

For linear functions A — A; and A — A5 global holomorphic equivalence on C
means just that A; and Ay are similar. This follows from the next corollary.

11.2.3 Corollary. Two operators A1 and As are similar if and only if some ex-
tensions of A — A1 and A\ — Ay are holomorphically equivalent on some open set
containing o(A1) and o(As).

Proof. If A; and A, are similar, then, obviously, A — A; and A — A5 are equivalent
on C. Theorem 11.2.2 gives the reverse implication. t

11.3 Local equivalence

11.3.1 Definition. Let X, Y be Banach spaces, let D C C be an open set, and let
S,T:D — L(X,Y) be meromorphic (Section 1.10.6).

(i) Let w € D. The functions T and S are called holomorphically equivalent
at w if there exist a neighborhood U,, C D of w and holomorphic functions
E:U, - GL(X), F:U, — GL(Y) such that

T=FSE onU,\{w}. (11.3.1)

(ii) The functions T and S are called locally holomorphically equivalent over D
if they are holomorphically equivalent at each point of D.
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(iii) The functions T' and S are called holomorphically equivalent over D if there
exist holomorphic functions F : D — GL(X), F': D — GL(Y') such that

T(z) = F(2)S(2)E(2) (11.3.2)

for all z € D which are not singular for 7" and S. To point out the difference
from local holomorphic equivalence over D, then we speak also about global
holomorphic equivalence over D.

If T and S have no singular points, part (iii) of this definition coincides with
Definition 11.1.1 above.

11.3.2 Definition. (i) Let X be a Banach space, let D C C be an open set, and
let f: D — B be meromorphic. Let w € D. If f identically vanishes in a
neighborhood of w, then we set ord,, f = oco. If not, then we denote by ord,, f
the uniquely determined integer such the Laurent expansion of f at w is of
the form

fE) = > falz—w)"  with foa, s #0.

n=ord,, f

We call ord,, f the order of f at w.

(ii) Let X,Y be Banach spaces, let D C C be an open set, and let A : D —
L(X,Y) be meromorphic.

Let w € D. Then, for k € Z, we denote by X 4 ,,(k) the set of all z € X
such that there exists a neighborhood U of w and a holomorphic function
f:U — X with

flw)y==x and ord, (Af) > k.

Obviously, X4 (k) is a linear subspace of X for all & € Z. The family
{Xa,w(k)}rez will be called the characteristic filtration of A at w. We set

X A w(00) = ﬂ Xaw(k).

kEZ
Note that, obviously,
Xawk+1) C X4 k) forall k€ Z (11.3.3)
and
X = Xaw(k). (11.3.4)

kEZ
11.3.3 Proposition. Let X,Y be Banach spaces, let D C C be an open set, let
A, B:D — L(X,Y) be meromorphic, and let w € D. If A and B are holomor-
phically equivalent at w, then the characteristic filtrations of A and B at w are
“lsomorphic” in the following sense: There exists M € GL(X) with

Xawk)=MXp (k) forallk € Z. (11.3.5)
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Moreover, if U C D is a neighborhood of w and E : U — GL(Y), F : U — GL(X)
are holomorphic functions with EAF = B on U \ {w}, then (11.3.5) is valid for
M = F(w).

Proof. Let k € ZU{oo} and x € Xp 4, (k) be given. By definition of X ,,(k), then,
after shrinking U if necessary, we have a holomorphic function f : U — X with
f(w) =z and ord,,(Bf) > k. Set g = F f. Then g is a holomorphic function on U
with g(w) = F(w) f(w) = F(w)x. Moreover, since E is holomorphic and invertible,
it follows that ord, (Ag) = ord,(EAg) = ord,(EAF f) = ord,,(Bf) > k. Hence
F(w)x € X 4,,(k). This proves “2” in (11.3.5). In the same way we prove that

F Y (w)Xaw(k) C Xp k) forallkeZ,

i.e., “C’in (11.3.5). O

11.3.4 Definition. Let X,Y be Banach spaces, let D C C be an open set, and let
A:D — L(X,Y) be meromorphic.

(i) (For X =Y, this is Definition 4.1.1) Let w € D. The function A is called
finite meromorphic at w if the Laurent expansion of A at w is of the form

A(z) =D (z—w)"A,, (11.3.6)

n=m

where (if m < 0) the operators A,,, ..., A_; are finite dimensional. If, more-
over, m < 0 and Ay is a Fredholm operator, then A is called finite meromor-
phic and Fredholm at w.

(ii) The function A is called a finite meromorphic Fredholm function on D if it
is finite meromorphic and Fredholm at each point of D.

(iii) If D is connected, and A is a finite meromorphic Fredholm function on D,
then it follows from the stability properties of Fredholm operators (see, e.g.,
[GGK2]) that the index of Ay in (11.3.6) does not depend on w. We call it
the index of A and denote it by ind A.

Note that, obviously, this notion is invariant with respect to local holomorphic
equivalence (Def. 11.3.1), i.e., if two meromorphic operator functions A and B
are locally holomorphically equivalent, and A is a finite meromorphic Fredholm
function, then B is a finite meromorphic Fredholm function.

For finite meromorphic Fredholm functions the characteristic filtrations (Def.
11.3.2) are especially simple:

11.3.5 Proposition. Let X,Y be Banach spaces, let D C C be an open set, let
A: D — L(X,Y) be a finite meromorphic Fredholm function, and let w € D.
Then:

(i) There exists m € Z with X a,,(k) =X for k < m.
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(ii) For all k <0, the space X 4, (k) is closed and of finite codimension in X.
(iii) dim X4 (k) < 0o for all k > 1.

Proof. We may assume that A # 0. Since A is finite meromorphic and Fredholm
at w, then the Laurent expansion of A at w is of the form

A(z) = Z (z—w)"A,,

where m < 0 is finite, Ay is a Fredholm operator, and (if m < 0) the operators
A, ..., A_y are finite dimensional. Then, it is clear that ord, (Af) > m for each
X-valued holomorphic f in a neighborhood of w. Hence X4 (k) = X if &k < m.
This proves part (i).

Since the operators A,,, ..., A_1 are finite dimensional (if m < 0), the space

L= ﬂ Ker A,
m<v<-—1

is closed and of finite codimension in X . Then, for each vector = € L, the function
fz := Az admits a holomorphic extension fx to w, where fx( ) = Apx. Hence
L C X 4.,(0). By (11.3.3) this proves (ii).

Moreover, this implies that © & X 4,,(1) if z € L and = ¢ Ker Ag. As Ay is
a Fredholm operator, it follows that X4 ,,(1) N L C Ker Ay and therefore

dim X 4 ,,(1) < dimKer 4p < c0.

By (11.3.3) this proves (iii). O

11.3.6 Definition. Let X,Y be Banach spaces, let D C C be an open set, let
A:D — L(X,Y) be a finite meromorphic Fredholm function, let w € D, and let

be the Laurent expansion of A at w.

(i) By Proposition 11.3.5,
o= X4 ,(00) < 0.

The number a will be called the generic kernel dimension of A at w.

(ii) As Ag is a Fredholm operator, we have the index ind 4p = dimKer Ay —
dim(Y/Im Agp). The number

B :=a—ind Ay

will be called the generic cokernel dimension of A at w.
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(iil) If Xa,(k) = X4,,(0) for k <0, then we say that A has no negative powers.

(iv)

Assume this is not the case. Then, by Proposition 11.3.5, there are
uniquely determined negative integers 0 > s; > ... > s, such that

XAaw(0) C Xaw(s1) CXaw(se) C...C Xaw(sy,) =X,
A,()7é A,(1)7é A,(2)7é 7514,(10)

Xawv) = Xa,0(0) if0>v> s,

s

XawV) =Xaw(sj-1) ifs; 1 >2v>s;, 2<75<p.

Again by Proposition 11.3.5 the dimensions

d; := dim (XA,w(sl)/XA,w(O)) :

d; := dim (XA,w(sj)/XA,w(sj_l)) , 2<j<p
are finite. Set d = d; +...+d, and denote by k1 > ... > kg the integers such
that, for each 1 < j < p, precisely d; components of the vector (k1,...,Kq)

are equal to s;. These numbers k1 > ... > kg will be called the negative
powers of A at w.

If X4.(k)=X4,(00) for k> 1, then we say that A has no positive powers.

Assume this is not the case. Then, by Proposition 11.3.5, there are
uniquely determined positive integers s; > ... > s, > 0 such that

XA,w(OO) ; XAyw(sl) ; XA,w(S2) ; ; XA@(SP) ; XA,w(O),

Xa,w) =X4 () ifv> sy,
XawW)=Xaw(sj—1) ifsj1>v>s;, 2<j<p-1,
Xaw() = Xaw(sp) ifs,>v>1.

Again by Proposition 11.3.5 the dimensions

dy = dim (XA,w(sl)/XA,w(oo)) ,
dj := dim (XA,w(Sj)/XA,w(Sj—l)) , 2Zj<p,

are finite. Set d = d1+...4d,, and denote by k1 > ... > kq the integers such
that, for each 1 < j < p, precisely d; components of the vector (ki,...,kq)
are equal to s;. These numbers k1 > ... > kg will be called the positive
powers of A at w.
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(v) Let « be the generic kernel dimension of A at w, and let 8 be the generic
cokernel dimension of A at w.

If A has no negative and no positive powers at w, then the pair («, )
(defined in (i) and (ii)) will be called the numerical characteristic of A at w.

If A has powers at w (negative or positive or both), and if k1 > ... >
kn are all powers of A, then the vector (ki,...,kn,a, ) will be called the
numerical characteristic of A at w.

11.3.7 Proposition. Let X,Y be Banach spaces, let D C C an open set, let A, A’ :
D — L(X,Y) be two finite meromorphic Fredholm functions, and let w € D.
Assume that A and A’ are holomorphically equivalent at w. Then A and A’ have
the same numerical characteristic at w.

Proof. Let
(m, ceey md,a7a)

and
(I{/la ceey ’V‘:;l’a O/aﬂ/)

be the numerical characteristics of A and A’, respectively.
By definition, the numbers k1 > ... > k4 and « depend only on the sequence

dim (XAyw(k + 1)/XA,w(k)) . keZ.

By Proposition 11.3.3 this sequence is invariant with respect to holomorphic equiv-
alence at w. As A and A’ are holomorphically equivalent at w, this implies that

o =a, d=d and Ky =rjfor1<j<d.

It remains to prove that 8’ = 3. Let
Az) = Z (z —w)"A, and Al(z) = Z (z —w)" AL,

be the Laurent expansions of A and A’ at w. By hypothesis, we have a neighbor-
hood U C D of w and holomorphic functions £ : U — GL(Y), F : U — GL(X)
such that

A'(2) = E(2)A(2)F(z)  forallze U\ {w}. (11.3.7)

From the stability properties of Fredholm operators it follows that
ind 4p =ind A(z) and indAj=indA'(z) forallz €U\ {w}.
By (11.3.7) this implies that ind Aj, = ind Ag. Hence

B =a —ind A = a —ind 4g = 3. O
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11.4 A theorem on local and global equivalence

In this section we prove that, under certain conditions, local holomorphical equiva-
lence of meromorphic operator functions implies global holomorphical equivalence.
We will state this result in a more general setting for Banach algebras.

Throughout this section, A is a Banach algebra with unit 1, and GA is the
group of invertible elements of A.

11.4.1 Definition. Let D C C be an open set, and let f : D — A be a meromorphic
operator function (Section 1.10.6). Let Z be the set of all w € D such that either
f has a pole at w or f is holomorphic at w and f(w) ¢ GA. The function f will
be called meromorphically invertible if Z is a discrete and closed subset of D, and
1 (which is well defined and holomorphic on D \ Z) is meromorphic on D. The
set Z then will be called the spectrum of f.

If D C C is open and connected and A is the algebra of complex n x n-
matrices, then it is clear that any meromorphic function f : D — A, which is
invertible in at least one point, is meromorphically invertible. By Proposition 4.1.4
the same is true for all finite meromorphic Fredholm functions.

11.4.2 Theorem. Let D C C be an open set, let f,g : D — A be two meromor-
phically invertible meromorphic functions, and let G be an open subgroup of GA.
Suppose [ and g have the same spectrum Z, and the following condition (of local
equivalence) is satisfied:

For each w € D there exist a neighborhood U C D and

11.4.1
holomorphic functions ay, by : U — G with a,fby, =g on U\ Z. ( )
Then there exist holomorphic functions a,b: D — G with afb=g on D\ Z.

Proof. By hypothesis we have an open covering {U,} jcr of D and families {a;}er,
{b;};er of holomorphic functions a;,b; : U; — G such that

a;fbj =g onU;\Z, jel. (11.4.2)

Then
fra7taf =bibyt on U;NU;\Z, ijel (11.4.3)

Since both f and f~! are meromorphic on D, for each w € Z, we can choose
nyw € N such that both functions

(z—w)™ f(z) and (z —w)™ f~1(2) (11.4.4)

are holomorphic at w. Setting m,, = 2n,, + 1, w € Z, we introduce a data of zeros
as well as the corresponding sheaf O%,m (cf. Definition 9.1.2).

Now, for each open set U C D, we denote by F(U) the set of all holomorphic
functions h € O%(U) such that the function

f7inf,
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which is a well-defined G-valued holomorphic function on U\ Z, admits a G-valued
holomorphic extension to U. It is easy to see that in this way a O%-sheaf F over
D is defined (Def. 9.1.1).

We now prove that F is of finite order. It is clear that

FU\2Z)=0%U\ 2)

for each open set U C D. Since Z is a discrete and closed subset of D, therefore
it is sufficient to prove that

0% ,.(U) C F(U)

for all open sets U C D. Let an open set U C D and h € Ogm(U) be given. Since
My = 204 + 1, then, by definition of Ogm, for each w € Z, the function

h(z)—1

EEmE (11.4.5)

is holomorphic at w. Hence, for each w € Z and z € U \ Z, the function f~'hf
can be written in the form

IR ) =14 171G (h(2) = 1) £(2)
14w (w6 (U ) G- re)

z—w)?ne +1
Since the functions (6.8.3) and (11.4.5) are holomorphic at w, for all w € Z, this
implies that h € F(U). Hence it is proved that F is of finite order.

Therefore, Theorem 9.2.1 applies to F. As a; € O%(U;), j € I, the family
{ai_laj}iﬁjej is an O%-trivial O%-cocycle. Since also b; € O%(U;), j € I, it follows
from (11.4.3), that {a{laj}i7j61 is even an F-cocycle over D. As it is O%-trivial,
condition (i) in Theorem 9.2.1 is satisfied. It follows that {ai_laj}we] is F-trivial,
i.e., there are functions a; € F(Uj), j € I with

ai_laj = Eiﬁj_l onU;NU;, i,jel.
Therefore, setting

a=aja; onU;, jel,

we get a global holomorphic function a: D — G.
Moreover, we set b = f~'a~'g on D\ Z. Then, obviously,

afb=afflalg=g on D\ Z, (11.4.6)
and, on each U;, we have

b=f""a;'a;lyg.
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By (11.4.2), this implies that
b=[f"ta;'fo;t onUj, jeU. (11.4.7)

As 5;1 € F(Uj), the function f ’1'@_1 f extends to a G-valued holomorphic func-

tion on Uj. Since also bj_1 € 0%(U;), this implies together with (11.4.7) that b
extends to a G-valued holomorphic function on D. In view of (11.4.6), this com-
pletes the proof. |

11.5 The finite dimensional case

11.5.1 Proposition. Let D C C be a connected open set, let A be an n X m matrizc
of scalar meromorphic functions on D, and let P be the set of poles of A. Denote
by rank A(2), z € D\ P, the rank of A(2), and set

r:= max rank A(z)
z€D\P

Then
N = {zeD\P

rank A(z) < 7“}

1s a discrete and closed subset of D.

Clearly, this follows from the Smith factorization Lemma 4.3.1, but it can be
seen also more directly:

Proof of Proposition 11.5.1. Take a point zo € D \ P with
r = rank A(zg) .

Then there is an r x r submatrix B of A such that det B(zp) # 0. Since D is
connected and det B is meromorphic on D without poles in D\ P, then the set

M = {zeD\P‘ detB(z):O}

is discrete and closed in D. As N C M, it follows that N is discrete and closed in
D. O

11.5.2 Definition. We use the notation from the preceding Proposition 11.5.1, and
we set Z = P U N. Then the points in D \ Z will be called the generic points of
A, and the number r will be called the generic rank of A. The points in Z will be
called the non-generic points of A.

Obviously, a quadratic matrix of scalar meromorphic functions has maximal
generic rank if and only if it is meromorphically invertible in the sense of Definition
11.4.1. Therefore, the following lemma is a special case of Theorem 11.4.2:
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11.5.3 Lemma. Let D C C be a connected open set, and let A, B be two r X r-
matrices of scalar meromorphic functions of generic rank r on D which are lo-
cally holomorphically equivalent on D. Then A and B are globally holomorphically
equivalent on D.

Since any meromorphic matrix function is a finite meromorphic Fredholm
function in the sense of Definition 11.3.4, we have the notion of the numerical
characteristic (Def. 11.3.6) of a meromorphic matrix function. We now explain the
relation of this to the Smith factorization Lemma 4.3.1.

Let D C C be an open set, let A be an n X m matrix of scalar meromorphic
functions on D, and let w € D be a point such that A is not identically zero in a
punctured neighborhood of w.

Using the notion of equivalence (Def. 11.3.1), now the Smith factorization
lemma can be stated as follows:

There are uniquely determined integers k1 > ... > Kk, such that, at w, the
matriz A is holomorphically equivalent to the (n x m)-matriz

<% 8) (11.5.1)

where A is the r X r diagonal matriz with the diagonal

K1 Koy
y .

(z—w)™,... (2 —w)

Obviously, r is the rank of the matrix (11.5.1) in a punctured neighborhood
of w. Therefore

r = rank A(z) (11.5.2)

for all z in a punctured neighborhood of w (which again proves Proposition 11.5.2).
Let p be the number of zero components of the vector (k1, ..., k), and let
(R1,...,Kr—p) be the vector obtained from (k1,...,x,) omitting the zero compo-

nents. Then it is easy to see that
(R1,.. s Ry—p,m —7,m —7) (11.5.3)

is the numerical characteristic (Def. 11.3.6) of the matrix (11.5.1) at w. Since
the numerical characteristic is invariant with respect to holomorphic equivalence
(Proposition 11.3.7), this implies that (11.5.3) is also the numerical characteristic
of A at w.

Conversely, this also shows that from the numerical characteristic of A at w
one can obtain the powers (Def. 4.3.2) k1 > ... > K, in the Smith factorization
theorem. We summarize:

11.5.4 Proposition. Let D C C be an open set, let A, B be two n x m matrices of
scalar meromorphic functions on D and let w € D be a point such that A and B
are not identially zero in a punctured neighborhood of w. Then A and B have the
same numerical characteristic at w if and only if they have the same powers at w.
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11.5.5 Lemma. Let D C C be a connected open set, and let A be an n X m-matriz
of scalar meromorphic functions on D. Let r be the generic rank of A, and assume
that r > 0. Then there exist holomorphic matriz functions E : D — GL(n,C) and
F:D — GL(m,C) such that EAF is a block matriz of the form

B 0
EAF := (0 0> : (11.5.4)

where B is an v X r-matriz of mazximal generic rank of scalar meromorphic func-
tions on D.

Proof. By the Smith factorization Theorem 4.3.1, for each w € D, we have a
neighborhood U,, € D of w and holomorphic functions E,, : U, — GL(n,C),
F, : Uy, — GL(m,C) such that

A(z) 0
Eu(2)A(2) Fo(2) = < ) O> . zeU,\{w},
where A is the r x r diagonal matrix with the diagonal (z — w)"*, ..., (z — w)"r.
Setting
Ro:{zecn‘zr+1:...:zn20}
and
KOZ{ZECm’Zli...:ZTZO},

this implies that, for all w € D and z € U, \ {w},

Im A(z) = E_l(z)RO and Ker A(z) = F,(2) Ky . (11.5.5)

w

Let P be the set of poles of A and let N be the set of all z € D\ P such that
rank A(z) <r.If we D\ (PUN), then (11.5.5) holds also for z = w. Therefore,
we have a uniquely determined holomorphic family {R(z)}z cp of subspaces (see
Def. 6.4.1) of C™ as well as a uniquely determined holomorphic family {K (z)}
of subspaces of C™ such that

zeD

R(z) =ImA(z) and K(z)=KerA(z) forze D\ (PUN).

Then, by Theorem 6.9.1, we can find holomorphic functions E : D — GL(n,C)
and F : D — GL(m,C) such that

E(z)R(z) =Ry and F(z)Ky,= K(z) forallze D.
Then, for z € D\ (PUN),
Im (E(Z)A(Z)F(z)) = B(2)A(z)F(2)C" = B(2)A(2)F(2) (RO ® Ko) = Ry

nd
) Im (E(Z)A(Z)F(z)) =R, and Ker (E(Z)A(Z)F(z)) = Ko,
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i.e.,, over D\ (PUN), EAF is of the form (11.5.4). Since N is discrete and closed
in D\ P, this implies by continuity that EAF is of the form (11.5.4) also in the
points of N. ([l

11.5.6 Lemma. Let D C C be a connected open set, and let A be an r X r-matrizc
of scalar meromorphic functions of generic rank r on D. Then there exist not
identically vanishing scalar meromorphic functions @1, ..., on D, such that the
quotients ¢; /1, 1 < j < r —1, are holomorphic on D, and A is locally holo-
morphically equivalent over D to the diagonal matriz with the diagonal ©1,. .., ;.

Supplement: If w € D and k1 (w) > ... > k.(w) is the vector of powers of A at w
(Def. 4.3.2), then the functions

pj(2)

m7 1<5<m,

are holomorphic and # 0 in some neighborhood of w.

Proof. Since the generic rank of A is maximal, by the Smith factorization Lemma
4.3.1, for each w € D, there exist integers x1(w) > ... > k,(w) such that A is
holomorphically equivalent at w to the diagonal matrix function with the diagonal

(z—w)m W (2 —w)rr ) (11.5.6)

Let Z be the set of points w € D such that at least one of the numbers
k1(w), ..., ke(w) is different from zero. Since Z is discrete and closed in D, then
by the Weierstral} product theorem we can find scalar meromorphic functions
©1,...,¢r on D which are holomorphic and # 0 on D\ Z and such that, for each
w € Z, there is a neighborhood U,, C D of w such that the functions

WL . ;i (2) < i<
h (Z) T (z—w)”j(w)’ 1__7_7",

are holomorphic and # 0 on U,,. Since k1(w) > ... > k,.(w), then the quotients
©;/ej+1, 1 < j <r—1, are holomorphic on D. Denote by A the diagonal matrix
with the diagonal

P15 Pk -
Further, for w € Z, we denote by H,, the diagonal matrix with the diagonal

w w
WY, LR

Then each H,, is a holomorphic and invertible matrix function on U, such that
H_ 1A is the diagonal matrix with the diagonal (11.5.6). Therefore A is holomor-
phically equivalent to A at each point w € Z. Moreover, it is clear that A is
holomorphically equivalent to A at each point w € D\ Z, because, on D\ Z both
A and A are holomorphic and of maximal rank r. Hence A and A are locally

holomorphically equivalent over D. O
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Now we can prove the following global version of the Smith factorization
lemma:

11.5.7 Theorem. Let D C C be a connected open set, and let A be an n X m
matriz of scalar meromorphic functions on D. Let r be the generic rank of A, and
assume that r > 0. Then there exist not identically vanishing scalar meromorphic
functions ¢1,...,¢r on D such that the quotients ¢;/jy1, 1 < j <r —1, are
holomorphic on D, as well as holomorphic matriz functions E : D — GL(n,C)
and F : D — GL(m,C) such that

A 0
EAF = (O O) (11.5.7)
where A is the r X r diagonal matriz with the diagonal o1, ..., @;.

Supplement: If w € D and k1(w) > ... > k,.(w) is the vector of powers of A at w
(Def. 4.3.2), then the functions

(2; —w)“y(w)

are holomorphic and # 0 in some neighborhood of w.

Proof. By Lemma 11.5.5 we may assume that r = n = m. By Lemma 11.5.6,
we can find not identically vanishing scalar meromorphic functions ¢, ..., ¢, on
D, such that, for each w € D, the functions (11.5.8) are holomorphic and # 0
in some neighborhood of w (and, hence, the quotients ¢;/@;11, 1 < j <r —1,
are holomorphic on D), and A is locally holomorphically equivalent over D to the
diagonal matrix A with the diagonal ¢q,...,¢,. Now the assertion follows from
Lemma 11.5.3. O

Taking into account also Proposition 11.5 from this theorem we get the fol-
lowing corollary:

11.5.8 Corollary. Let D C C be a connected open set, and let Ay, As be two n X m-
matrices of scalar meromorphic functions on D. Then the following are equivalent:

(i) The matrixz functions Ay and Ay are globally holomorphically equivalent over
D.

(ii) The matriz functions Ay and As are locally holomorphically equivalent over
D.

(iii) The matriz functions A1 and Ay have the same vectors of powers at each

point in D (Def. 4.3.2).

(iv) The matriz functions A1 and Az have the same numerical characteristics at
each point in D.
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11.6 Local and global equivalence
for finite meromorphic Fredholm functions

First we generalize the Smith factorization Theorem 4.3.1 to finite meromorphic
Fredholm functions. For that we introduce the notion of a local diagonal power
function:

11.6.1 Definition. Let X be a Banach space.

By a projector in X we always mean a continuous linear projector in X i.e.,
an operator P € L(X) with P2 = P. A family {P;};e; of projectors in X will be
called mutually disjoint if P; P, = 0 for all j, k € I with j # k.

Let X,Y be Banach spaces, and let w € C. A function A : C\{w} — L(X,Y)
will be called a local diagonal power function at w if either A € L(X,Y) is a
constant Fredholm operator or, for some n € N*, A is of the form

A(z) = QoBoPo+ Y (2 —w)¥Q;B;P;,  z€C\{w} (11.6.1)
j=1
where k1 > ... > K, are integers # 0, Py, ..., P, are non-zero mutually disjoint
projectors in X, Qq,...,Q, are non-zero mutually disjoint projectors in Y such
that
dimKer Py < oo and dimKerQy < oo, (11.6.2)
dimIm P; =dimIm@; =1 it1<j<n, (11.6.3)

and Bj; is an invertible operator from Im P; onto Im@);, 0 < j < n.

11.6.2 Remark. It is clear that any local diagonal power function A at w € C is a
finite meromorphic Fredholm function on C. Moreover it is easy to see that if A
is written in the form (11.6.1), then

(Hl, ..y kn,dim Ker Py, dim Ker QO)

is the numerical characteristic of A at w (Def. 11.3.6).

11.6.3 Proposition. Let X,Y be Banach spaces, let w € C, and let A,ﬁ : C\
{w} — L(X,Y) be two local diagonal power functions at w. Then the following
are equivalent:

(i) The functions A and A have the same numerical characteristic at w.

(ii) There exist operators E € GL(Y) and F € GL(X) with A = EAF. In
particular, A and A are globally holomorphically equivalent over C in the
sense of Definition 11.3.1 (iii).
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Proof. The implication (ii)=-(i) is a special case of Proposition 11.3.7.
We prove (i)=(ii). Let A be written in the form (11.6.1), and let

A(z) = QoBoPy + Z w)™ Q; B, 2eC\ {w}

be the corresponding representation of A. Since A has the same numerical char-
acteristic at w, then n =n, k; = kj,

dim Ker ﬁo =dimKer Py and dimKer @0 = dim Ker Qg .
Then we can find G € GL(Y) and H € GL(X) with
P;=H 'PjH and Q;=GQ;G' for0<j<n,

and we obtain

A(Z) =G QoGilBO 1P0+Z Z— NJQJ léjHil.Pj H.

Since the operators GiléjH ~! are invertible from Im P; to Im Q;, further we can
find operators T; € GL(Im Q; and S; € GL(Im P;) such that

TjG_léjH_lsj = BJ for 0 S j S n.

Set .
=(I-Qo—...—Qu)+ Y QiT;Q;
=0
and .
S=(I~Py—...—P,)+ > P;S;P;.
=0

Then T' € GL(Y), S € GL(X) and
T Q0G7130 1P0+Z Z— HJQ] 1§jH71Pj S

_QOBOP(H—ZZ— %iQ,;B;P; = A(z).

j=1

It remains to set £ = GT and F' = SH. |
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If X and Y are finite dimensional Banach spaces, then the Smith factorization
Theorem 4.3.1 says that an L(X,Y)-valued meromorphic operator function, at any
point, is holomorphically equivalent to a local diagonal power function. This can
be generalized to arbitrary finite meromorhic Fredholm functions (Def. 11.3.4).

11.6.4 Theorem. Let X and Y be Banach spaces, let D C C be an open set and let
A:D — L(X,Y) be a finite meromorphic Fredholm function. Then, at each point
w € D, A is holomorphically equivalent to a local diagonal power function at w.

Proof. Let w € D be given, and let

A(z) = Z (z—w)"A,

n=m

be the Laurent expansion of A at w. Since the operators A,,,..., A_; are finite
dimensional and Ag is a Fredholm operator, then there exists a projector Px in
X such that
dim (X/Im Px) < o0,
AjPx =0 ifm<j<-—1,
and Ao|Im Py is an isomorphism between Im Px and AgIm Px. Since AgIm Py

is of finite codimension in Y, we can find a projector Py in Y with Im Py =
ApIm Px. Then there is a neighborhood U of w such that the function

A" U\ {w} — L(Im Px,Y),
defined by
Al(z) = A(z)‘ImPX , 2e U\ {w},

admits a holomorphic extension to w (which we also denote by A’) where A’ (w) =

AO‘Im Py’ Let

A" .U — L(Im Px,Im Py)

be the function defined by A” = Py A'. Then A”(w) = Aql,_ py I8 invertible

and, after shrinking U, we may assume that each A”(z), z € U, is invertible. Let
Qx :=Ix — Px and Qy := Iy — Py. Then, setting

E(z) = Qy + A(2)(A"(w)) 'Py, z€U,

we get a holomorphic function E : U — L(Y) with E(w) = Iy. After a further
shrinking of U we may assume that E(z) € GL(Y) for all z € U. Then E~'A is
holomorphically equivalent to A over U. Setting

B(z) = Eil(z)A'(z)hmpx , zeU,
we get a holomorphic function

B:U — L(Im Px,Im Py),
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such that
B(z2) = Eil(z)A(z)|Im Py for z € U\ {w}.

Since
B(U/) = AO |Im Px

is an isomorphism between Im Px and Im Py, after a further shrinking of U, we
may assume that B’(z) is an isomorphism between Im Px and Im Py for all z € U.
Moreover,

E(z)(Im Py) = A’(z)((A”(w))_l(ImPy)) =ImA'(z), z€U,

and therefore
ImPy = E'(2)(ImA'(z)) = B(2)(ImPx). z€U.
Hence
E~Y(2)A(2) = Py B(2)Px + Py E™'(2)A(2)Qx + Qv B~ (2) A(2)Qx
for z € U\ {w} and, setting
F(z) = Px — Px(B(2)) "' Py E71(2) A(2)Qx + Qx

for all z € U, we get a holomorphic function F : U — GL(X) such that

E~Y2)A(2)F(2) = Py B(2)Px + Qv E ' (2)A(2)Qx , zeU.

Since each B(z), z € U, is invertible from Im Px to Im Py, and since the spaces
ImQ@Qx and ImQy are finite dimensional, now the assertion of the lemma fol-
lows from the Smith factorization Theorem 4.3.1 applied to the operator function

QyE_l(z)A(z)fImQX. O
As a first consequence of Theorem 11.6.4 we obtain:

11.6.5 Corollary. Let X and Y be Banach spaces, let D C C be an open set, and
let A,B: D — L(X,Y) be two finite meromorphic Fredholm functions. Then, for
each point w € D, the following are equivalent:

(i) The functions A and B have the same numerical characteristics at w.
(ii) The functions A and B are holomorphically equivalent at w.

Proof. That (ii) implies (i) is the statement of Proposition 11.3.7. To prove (i)
= (ii), we consider a point w € D and assume that A and B have the same
numerical characteristics at w. By Theorem 11.6.4, then we have local diagonal
power functions A, 4 and A, p at w which are holomorphically equivalent at w
to A and B, respectively. By Proposition 11.3.7, then, at w, A, 4 has the same
numerical characteristic as A, and A, p has the same numerical characteristic
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as B. Since A and B have the same numerical characteristics at w, it follows
that also A, 4 and A, p have the same numerical characteristics at w. Hence,
by Proposition 11.6.3, the functions A,, 4 and A, g are globally holomorphically
equivalent over C. Since, at w € D, the function A is holomorphically equivalent
to Ay, 4, and B is holomorphically equivalent to A,, g, this implies that A and B
are holomorphically equivalent at w. O

The following corollary is an immediate consequence of Theorem 11.6.4! :

11.6.6 Corollary. Let X, Y be Banach spaces, let D C C be a connected open set,
let A: D — L(X,Y) be a finite meromorphic Fredholm function, and let P be the
set of poles of A. Then there exist numbers n,m € N and a discrete and closed
subset Z of D with P C Z such that

dimKer A(z) =n and dim (Y/ Im A(z)) =m ifze D\ Z
and
dimKer A(z) >n and dim (Y/ImA(z)) <m  ifzeZ\P.

In particular: If A(zg) is invertible for at least one point zg € D\ P, then there
exists a discrete and closed subset Z of D with P C Z such that A(z) is invertible
forallze D\ Z.

11.6.7 Definition. With the notation from the preceding corollary we define: The
points in D \ Z will be called the generic points of A and the points in Z will be
called the non-generic points of A.

Also from Theorem 11.6.4 we get the following

11.6.8 Theorem. Let X, Y be Banach spaces, let D C C be a connected open set,
andlet A: D — L(X,Y) be a finite meromorphic Fredholm function. Let P be the
set of poles of A, and let Z be the set of all non-generic points of A (Def. 11.6.7).
Then there exist a holomorphic family {K(z)}.ep of finite dimensional subspaces
of X (Def. 6.4.1) and a holomorphic family {R(z)}.cp of finite codimensional
subspaces of Y such that

KerA(z) = K(2) and ImA(z) = R(z) ifze D\ Z, (11.6.4)
and

Ker A(z) 2 K(z) and ImA(z) % R(z) ifz€ Z\P. (11.6.5)

INote that this consequence can be obtained also in a more direct way without using the
Smith factorization Theorem 4.3.1 which is contained in Theorem 11.6.4. Namely, by the same
arguments as we deduced Theorem 11.6.4 from the Smith factorization lemma, one can deduce
it from the simpler Proposition 11.5.1.
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Proof. By Corollary 6.4.2 the families {Ker A(z)}.ep\z and {Im A(2)}.cp\z are
holomorphic families of subspaces of X and Y, respectively. Therefore, over D\ Z,
we can (and have to) define the required families K and R by (11.6.4).

Now consider a point w € Z. Then, by Theorem 11.6.4, there exist a neigh-
borhood U C D of w, holomorphic functions E : U — GL(Y), F : U — GL(X)
and a local diagonal power function

A(z) = QuBoPy+ » (2 —w)"Q;B;P;,  z€C\{uw},

j=1
(with the properties as in Def. 11.6.1) such that
A= EAF on U\ {w}.

By (11.6.4), then
K(z)=F'(z)Ker (Py+...+P,) and R(z)=E()Im(Qo+...+ Qn)
for z € D\ Z. Therefore we can (and have to) define
K(w)=F'(2)Ker (P +...+P,) and R(w)=E(w)im (Qo+...+ Qn) .

Doing this for all points in Z, we obtain a holomorphic family {K(2)}.ep of
subspaces of X and a holomorphic family {R(z)}.ep of subspaces of Y such that
(11.6.4) is satisfied. Moreover, if w € Z \ P, then x; > 0 for all 1 < j < n, which
implies (11.6.5). |

11.6.9 Definition. With the notation from the preceding theorem we define: The
family {K(2)}.ep will be called the smoothing of the kernel of A. The family
{R(2)}:ep will be called the smoothing of the image of A.

With this definition, as an immediate consequence of Theorem 6.9.1 we ob-
tain:

11.6.10 Theorem. Let X, Y be Banach spaces, let D C C be a connected open set,
let A: D — L(X,Y) be a finite meromorphic Fredholm function, and let Z be the
set of non-generic points of A. Let {K(2)}.cp be the smoothing of the kernel of A,
and let {R(z)}.ep be the smoothing of the image of A, and let zo € D\ Z. Then
there exist holomorphic functions E : D — GL(Y) and F : D — GL(X) with

K(z) =F(2)K(z) and R(z)= E(z)R(z0) forall z € D. (11.6.6)

11.6.11 Theorem. Let X, Y be Banach spaces, let D C C be a connected open set,
let A: D — L(X,Y) be a finite meromorphic Fredholm function, and let Z be the
set of non-generic points of A (Def. 11.6.7). Then there exist

— a Banach space M,
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- a surjective operator ¥ € L(X, M) with dimKer ¥ < oo,

~ an injective operator ® € L(M,Y) with finite codimensional and, hence?,
closed image in'Y,

- a finite meromorphic Fredholm function By : D — L(M) which is holomor-
phic and invertible on D \ Z,

such that A is holomorphically equivalent to @By ¥ over D.

Iiroof. We use the notation of the preceding theorem; for z € D\ Z we put
A(z) = E71(2)A(2)F(2). By (11.6.6), then

K(z) =Ker A(z) and R(z) =1Im A(z) for ze D\ Z. (11.6.7)

Choose the required space M as a direct complement of K (zp) in X. Then, by the
first relation in (11.6.6), F(z)M is a direct complement in E of K(z) = Ker A(z)
for z € D\ Z. Hence A(z)F(z2)M =Im A(z) = R(z) for z € D\ Z. By the second
relation in (11.6.6), this implies that

A(z)M = R(z) for ze D\ Z. (11.6.8)

Moreover, since K(zg) is the kernel of A(zp) and R(zp) is the image of A(z),
A(Zo)|M is an invertible operator from M onto R(zp). Set ® = A(z Then it
follows from (11.6.8) that, by setting

ar

By (z) = ¢_1g(z)|M for ze D\ Z,

we obtain a holomorphic function By : D\ Z — GL(M). Since A is finite
meromorphic and Fredholm at the points of Z also as a function with values
in L(X, R(zo)), and since ®~! is an invertible operator from R(zg) to M, it fol-
lows that Bj; is finite meromorphic and Fredholm at the points of Z. Finally we
choose ¥ as the projector from X onto M parallel to K(2p). Then it is clear from
the definition of Bjps and (11.6.7) that

E_l(z)A(z)F(z)’M = Z(z)|M = @BM(Z)\I/‘M forall ze D\ Z.
Moreover, by the first relation in (11.6.6),
E Y (2)A(2)F(2)K(20) = E7*(2)A(2) K (2) = {0} forall ze D\ Z.

Hence
E7Y2)A(2)F(2) = ®By(2)¥  forallz€ D\ Z,

i.e., A and ®Bj;(z)¥ are holomorphically equivalent on D. O

21t follows from the Banach open mapping theorem that Im & is closed if it is of finite codi-
mension in Y.
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11.6.12 Theorem. Let X, Y be Banach spaces, let D C C be a connected open set,
and let A,B: D — L(X,Y) be finite meromorphic Fredholm functions. Then the
following are equivalent:

(i) The functions A and B have the same numerical characteristics at each point

i D.
(ii) The functions A and B are locally holomorphically equivalent on D.
(iii) The functions A and B are globally holomorphically equivalent over D.

Proof. The equivalence of (i) and (ii) follows from Corollary 11.6.5. The implica-
tion (iii) =(ii) is trivial.

It remains to prove (ii) = (iii). Assume the functions A and B are locally
holomorphically equivalent on D. Then A and B have the same set of non-generic
points. We denote this set by Z. By Theorem 11.6.12, we may assume that X =Y,
and A(z), B(z) € GL(X) for all z € D\ Z. Then, by Corollary 11.6.6, the functions
A and B are meromorphically invertible in the sense of Definition 11.4.1. Therefore,
it follows from Theorem 11.4.2 that they are globally holomorphically equivalent
over D. (]

11.7 Global diagonalization
of finite meromorphic Fredholm functions

Here we globalize the diagonalization Theorem 11.6.4. First we have to introduce
an appropriate notion of a “global diagonal”.

11.7.1 Definition. Let M be a Banach space, and let D C C be a connected
open set. A meromorphic function A : D — L(M) will be called an invertible
meromorphic diagonal function on D if, for some w € NU {co}, it is of the form

A=T+> (p;— 1P (11.7.1)
j=1

where:
o {P;}%_; is a family of one-dimensional mutually disjoint projectors in M;

e {p;}¥_, ., is a family of not identically vanishing meromorphic functions on
D such that the functions ¢; /@1, 7 +1 < j < w — 1, are holomorphic on
D;

e if w = 0o, then the following condition is satisfied (which ensures the conver-
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gence of the infinite sum in (11.7.1)):

for each compact set K C D, there exists wx € N such that

the functions ¢;, j > wgk, are holomorphic on K, and

o (11.7.2)
> IBlmax|e;(2) — 1] < 0.
j=wr+1

11.7.2 Remark. If, in the preceding definition, w < oo and if we set P := Z;J:l P;
and @ = I — P, then A can be written in the form

A::(Q+‘P E:gﬁf? P,
j=1

which ”shows” the diagonal. For w = oo this is impossible, because then the series
2;11 @ P; does not converge, at least not in the operator norm. In the sense of
strong convergence however, this is sometimes possible.

For example, let M be a separable Hilbert space with the scalar product
(-,-) and an orthonormal basis {€;};en+, and let Pj(z) = (z,e;)e; for x € H and
j € N*. Then, for each compact set K C D and sufficiently large wx € N, the

series
oo

Y ¢iPix
j=wk+1

converges uniformly on K for each vector x € H. This is even the case if instead
of condition (11.7.2), we only require the following weaker condition:

For each compact set K C D, there exists wxg € N such that the functions
¢j, j > wk, are holomorphic on K and

sup  [ipj(2)] < oo.
J>wi , 2z€K

Therefore, then A can be written in the form

A;ZZE:Q%}?.
Jj=1

11.7.3 Remark. We use the notation of Definition 11.7.1.

Then A is a finite meromorphic Fredholm function on D (Def. 4.1.1), which
can be seen as follows:

Let w € D. Take a neighborhood U, of w which is relatively compact in D.
Then, by (11.7.2), we can find w,, € N such that the functions ¢;, j > w,,, are
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holomorphic in a neighborhood of U,

oo

1
Y I max o) — 1] < 5 (11.7.3)
U

j=ww+1 #€Uw

Set P = Z;J;”l Pj and Q =1 — P. Then A can be written in the form

A= Q(I + Z (pj(z) — 1)Pj)Q + P(Zgaj(z)Pj)P,
J=wet1 j=1
where, by (11.7.3),
o1+ X i-vp)e
j=we+1 ImQ@

is holomorphic and invertible on U,, as a function with values in L(Im Q). This
shows that A is a finite meromorphic Fredholm function on U,,. Moreover, the

numerical characteristic of A at w can be found as follows: Let 1 < j; < ... <
Jn < wy be the indices such that, for all 1 < j < w,,,
0 if 5 € {j1,---,Jn}s
ord, 0, 47 W)
=0 if 5 & 4{j1,.- . dn}
Then

(ordw Pjoee yord, ¢; 0, O)
is the numerical characteristic of A at w.

Now we construct invertible meromorphic diagonal functions with given nu-
merical characteristics.

11.7.4 Lemma. Let M be an infinite dimensional Banach space, and let {P; };”:1
be an infinite sequence of mutually disjoint one-dimensional projectors in M. Let
D C C be a connected open set, and let Z be a discrete and closed subset of D.
Suppose, for each w € Z, a collection of non-zero integers Ky’ > ... > K, s
given, n, € N*. Then there exists an invertible meromorphic diagonal function
A : D — L(M), where the projectors in (11.7.1) can be chosen from the family
{Pj}32,, such that

e A is holomorphic and invertible on D\ Z;
o forwe Z, (/{11”, Y e U 0) is the numerical characteristic of A at w.

Proof. Let {w,}¥_; be the set Z numbered in some way, where w € N* if Z is
finite and w = oo if Z is infinite. Set

. {1,2,...,w} if w< o0,
NY = .
N* if w=o00.
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By the Weierstrass product theorem (for example, by setting f,,(2) = (z —w)" in
Theorem 2.7.1), we can find a sequence {¢;}72; of scalar meromorphic functions
on D, which are holomorphic and # 0 on D \ {w,}%_;, and such that, for all
ve N,

Wy for 1 < j < ny, ,
ord,, ¢; = " i md = e (11.7.4)
0 for all j € N* with j > n,, .

As Ky > ... > kv, then the quotients ¢;/¢;+1 are holomorphic on D.
First consider the case

M 1= SUp Ny, < 00.

veNy
Then . . .
A=T-Y"Pi+> ¢;Pi=1+> (¢; - 1P (11.7.5)
j=1 j=1 j=1

is a meromorphic diagonal function on D. Since each ¢; is holomorphic and # 0 on
D\{w,}¥_,, and by (11.7.4), we see that A has the same numerical characteristics
as A.

Now let

SUD Ty, = 00. (11.7.6)
veNy

Then w = oo and we have to modify the sequence {¢;}72, in order to obtain a

sequence {(;}52; of meromorphic functions on D satisfying also condition (11.7.2).
Choose a sequence {K}52, of compact subsets of D such that

(o)
e |J K,=D,
s=1
and, for each s € N*,
e K is contained in the interior of K41,

e K, is simply connected with respect to D (i.e., each connected component of
C\ K contains at least one point of C\ D).

Since the sequence {w, }32, is discrete and closed in D, each K, contains at most
a finite number of w,’s. Therefore

m(s) :=sup {ny, | v € N* and w, € K,} < o0

for all s € N*. Since the functions ¢; satisty condition (11.7.4) and, on D\{w, }32;,
they are holomorphic and # 0, it follows that ¢; is holomorphic and # 0 in a
neighborhood of K if j > m(s), s € N*. Set

s(4) = max{s e N”

j>m(s)} , JjeN".



410 Chapter 11. Holomorphic equivalence

Then each ¢; is holomorphic and # 0 in a neighborhood of Kj;). Therefore,
by the Runge approximation Theorem 5.0.1 for invertible functions, there exists
holomorphic functions ¢; : D — C\ {0} such that

¢ (2) ’ 277 R
max -1 < , JeN". 11.7.7
R SN R I VoY LT
Set 5
J . *
==, JjeN".
90.7 w]

Since the functions ¢; satisfy condition (11.7.4) and, on D \ {w,}32, they are
holomorphic and # 0, then the same is true for the functions ¢;, i.e.,, for all
v e N

v for 1 <j <y, ,
ord,, ¢; =49 ori=J =N, (11.7.8)
v 0 for all j € N* with j > n,,,, ,

and, on D\ {w, }72,, each ¢, is holomorphic and # 0.

Since lim; . 5(j) = 00, each compact set K C D is contained in some Kjy.
Therefore it follows from (11.7.7) that the sequence {(;}32, satisfies condition
(11.7.2). Therefore, setting

A=T+> (¢;-1)P;, (11.7.9)
j=1

we can define a meromorphic diagonal function A on D. Since the functions ¢;
satisfy condition (11.7.8), and, on D\ {w, }52,, they are holomorphic and # 0, we
see that A is holomorphic and invertible on D \ {w,}32, and, at w,, v € N*, A
has the numerical characteristic (cf. Remark 11.7.3)

(n?v,,..,n;‘fl“uy,QO). O

11.7.5 Definition. Let X, Y be Banach spaces, and let D C C be a connected
open set. A meromorphic function A : D — L(X,Y) will be called a meromor-
phic diagonal function on D if there exists a Banach space M and an invertible
meromorphic diagonal function Ay : D — L(M) such that A is of the form

A=dAyT, (11.7.10)

where ¥ € L(X, M) is surjective with dimKer¥ < oo, and ® € L(M,Y) is
injective with finite codimensional and, hence?, closed image in Y,

31t follows from the Banach open mapping theorem that Im & is closed if it is of finite codi-
mension in Y.
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It is easy to see that each meromorphic diagonal function A on D (notation as
in the preceding definition) is a finite meromorphic Fredholm function on D, where
if (k1,...,Kn,0,0) is the numerical characteristic of A at some point w € D
(cf. Remark 11.7.3), then (k1,..., Ky, dimKer ¥,dim(Y/Im ®)) is the numerical
characteristic of A at w.

11.7.6 Theorem. Let X, Y be Banach spaces, let D C C be a connected open set,
and let A: D — L(X,Y) be a finite meromorphic Fredholm function. Then there
exists a meromorphic diagonal function A : D — L(X,Y) such that A and A are
globally holomorphically equivalent over D. (Recall that then, by Theorem 11.6.12,
the functions A and A have the same numerical characteristics.)

Proof. Let Z be the set of non-generic points of A. Now we use the notation from
Theorem 11.6.11. Then, by Lemma 11.7.4, there exists an invertible meromorphic
diagonal function Ay : D — L(M) which has the same numerical characteristics
as Bjs. By therorem 11.6.12, Ay, is globally holomorphically equivalent to Bjs
over D, i.e., we have holomorphic functions 7,5 : D — GL(M) with By =
TAwpS. Let -1 be a left inverse of ®, let Q be a projector from Y to Im @, let
U= be aright inverse of ¥, and let P be the projector from X to Im ¥(~b parallel
to Ker W. Define holomorphic functions F' : D — GL(X) and D : D — GI(Y),
setting

F(z)=( —P)+PU7'S(2)UP and E(z)= (I -Q)+QdT(2)21Q
for z € D. Then

E(2)®Ap(2)UF(2) = QOT(2)® Y QPA  (2) U PT -V S(2) TP
= OT(2)Ap(2)S(2)¥ = OBy (2)¥ for all z € D.

Hence ®By; ¥ and ®A ;¥ are holomorphically equivalent over D, where, by defi-
nition, ®A ;¥ is a meromorphic diagonal function. Since A and ®Bj; V¥ are holo-
morphically equivalent over D, this completes the proof. ([

11.8 Comments

Holomorphic equivalence for polynomial matrix functions was introduced long ago
(see [Ge], for holomorphic matrix functions see [BGR]). For operator functions it
was considered probably for the first time in [Eni]. Developments concerned with
this term can be found in [GKL, GS, Go3, GGK1] and the literature cited there.

The first two sections together with the proofs are borrowed from [GGK1].
The local principle of section 8.3 is new and is published here for the first time.
The global diagonalization theorems for finite meromorphic Fredholm functions
were obtained in [Le4, Leb]. The corresponding local results were proved in [GS].
The fact that the kernel and the cokernel of such functions can be smoothed, which
follows from [GS], was established already in [Gol].
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