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Preface

This is a book on holomorphic operator functions of a single variable and their ap-
plications, which is focussed on the relations between local and global theories. It is
based on methods and technics of Complex analysis of scalar and matrix functions
of several variables. The applications concern: interpolation, holomorphic families
of subspaces and frames, spectral theory of polynomials with operator coefficients,
holomorphic equivalence and diagonalization, and Plemelj-Muschelishvili factor-
ization. The book also contains a theory of Wiener-Hopf integral equations with
operator-valued kernels and a theory of infinite Töplitz matrices with operator
entries.

We started to work on these topics long ago when one of us was a Ph.D. stu-
dent of the other in Kishinev (now Cisinau) University. Then our main interests
were in problems of factorization of operator-valued functions and singular inte-
gral operators. Working in this area, we realized from the beginning that different
methods and tools from Complex analysis of several variables and their modifica-
tions are very useful in obtaining results on factorization for matrix and operator
functions. We have in mind different methods and results concerning connections
between local and global properties of holomorphic functions. The first period was
very fruitful and during it we obtained the basic results presented in this book.

Then World Politics started to interfere in our joint work in the new area. For
a long time the authors became separated. One emigrated to Israel, the other was
a citizen of East Germany, and the authorities of the second country prevented
further meetings and communications of the authors. During that time one of
us became more and more involved in Complex analysis of several variables and
finally started to work mainly in this area of mathematics. Our initial aims were
for a while frozen. Later the political situation in the world changed and after the
reunification of Germany the authors with pleasure continued the old projects.

During the time when our projects were frozen, the scientific situation
changed considerably. There appeared in the literature new methods, results and
applications. In order to cover the old and new material entirely in a modern form
and terminology we decided to write this book. As always happens in such cases,
during the writing new problems and gaps appear, and the material requires in-
clusion of additional material with new chapters containing new approaches, new
results and plenty of unification and polishing. This work was done by the authors.



xii Preface

We hope the book will be of interest to a number of large groups of experts in
pure and applied mathematics as well as for electrical engineers and physicists.

During the work on the book we obtained support of different kinds for
our joint activities from the Tel-Aviv University and its School of Mathemati-
cal Sciences, the Family of Nathan and Lilly Silver Foundation, the Humboldt
Foundation, the Deutsche Forschungsgemeinschaft and the Humboldt University
in Berlin and its Institute of Mathematics. We would like to express our sincere
gratitude to all these institutions for support and understanding. We would also
like to thank the Faculty of Mathematics and Computer Sciences of the Kishinev
University and the Institute of Mathematics and Computer Center of the Academy
of Sciences of Moldova, where the work on this book was started.

Berlin, Tel-Aviv, November 2008 The authors



Introduction

The book. This book contains a theory and applications of operator-valued holo-
morphic functions of a single variable. (By operators we always mean bounded
linear operators between complex Banach spaces.) The applications concern some
important problems on factorization, interpolation, diagonalization and others.
The book also contains a theory of Wiener-Hopf integral equations with operator-
valued kernels and a theory of infinite Töplitz matrices with operator entries.

Our main attention is focussed on the connection between local and global
properties of holomorphic operator functions. For this aim, methods from Complex
analysis of several variables are used. The exposition of the material appears in
style and terms of the latter field.

Multiplicative cocycles. Grauert’s theory. The theory of multiplicative cocycles
plays a central role in this book. It is a special case of the very deep and powerful
theory of cocycles (fiber bundles) on Stein manifolds (any domain in C is a Stein
manifold), which was developed in the 1950s by H. Grauert for cocycles with values
in a (finite dimensional) complex Lie group. This theory then was generalized into
different interesting directions. In 1968, L. Bungart obtained it for cocycles with
values in a Banach Lie group, for example, the group of invertible operators in a
Banach space.

One of the main statements of Grauert’s theory is a principle which is now
called theOka-Grauert principle. Non-rigorously, this principle can be stated as fol-
lows: If a holomorphic problem on a Stein manifold has no topological obstructions,
then it has a holomorphic solution. This important principle was first discovered
in 1939 by K. Oka in the case of scalar functions.

For domains in the complex plane C, Grauert’s theory is much easier but still
not simple. It is even not simple for the case of cocycles with values in the group
of invertible complex n× n-matrices when no topological obstructions appear.

For operators in infinite dimensional Banach spaces, we meet essential diffi-
culties, which are due to the fact that the group of invertible operators in a Banach
space need not be connected. This becomes a topological obstruction if the domain
in C is not simply connected. So, for operator functions, the Oka-Grauert principle
is meaningful also for domains in C.
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For the problem of Runge approximation, the Oka-Grauert principle claims
the following: Runge approximation of a holomorphic invertible operator function
by holomorphic invertible functions is possible if this is possible by continuous
invertible functions. From this it follows that such a Runge approximation always
holds when the domain is simply connected or the group of invertible operators is
connected. The latter is the case for the group of invertible operators in a Hilbert
space, and in particular, for the group of invertible complex n× n-matrices.

For simply connected domains, the proof of the Runge approximation theo-
rem for invertible operator functions is not difficult and can be obtained without
the theory of cocycles. We show this at the end of Chapter 2. For general domains
however, this proof is much more difficult (even in the case of matrix-valued func-
tions) and will be given only in Chapter 5 in the framework of the theory of
multiplicative cocycles.

A special type of multiplicative cocycles is given by two open sets D1 and D2

in C and an invertible holomorphic operator function on D1 ∩D2. For this type,
the following is proved:

0.0.1 Theorem. Let E be a Banach space, let GL(E) be the group of invertible
operators in E, let D1, D2 ⊆ C be two open sets, and let A : D1 ∩D2 → GL(E) be
holomorphic. Assume that at least one of the following two conditions is satisfied:

(i) The union D1 ∪D2 is simply connected.

(ii) All values of A belong to the same connected component of GL(E).

Then there exist holomorphic operator functions Aj : Dj → GL(E), j = 1, 2, such
that

A = A1A
−1
2 on D1 ∩D2 . (0.0.1)

If both topological conditions (i) and (ii) in Theorem 0.0.1 are violated, then
the assertion of Theorem 0.0.1 is not true. A simple counterexample will be given
in Section 5.6.2 for the case when D1 ∪D2 is an annulus.

The following operator version of the Weierstrass product theorem (on the
existence of holomorphic functions with given zeros) is a straightforward conse-
quence of Theorem 0.0.1.

0.0.2 Theorem. Let E be a Banach space, let GL(E) be the group of invertible
operators in E, and let GLI(E) be the connected component in GL(E) which
contains the unit operator I. Let D ⊆ C be an open set and let Z be a discrete and
closed subset of D. Suppose, for each w ∈ Z, a neighborhood Uw ⊆ D of w with
Uw ∩ Z = {w} and a holomorphic operator function Aw : Uw \ {w} → GL(E) are
given. Further assume that at least one of the following two conditions is fulfilled:

(i) The set D is simply connected.

(ii) The values of each Aw, w ∈ Z, belong to GLI(E).
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Then there exist a holomorphic operator function B : D\Z → GL(E) and a family
of holomorphic operator functions Hw : Uw → GL(E) such that

HwAw = B on Uw \ {w}, , w ∈ Z .

The classical Weierstrass product theorem we get for E = C and Hw(z) =
(z − w)κw , κw ∈ N∗.

There are also a “right-sided” and a “two-sided” version of Theorem 0.0.2.

Contents. The book consists of an introduction and eleven chapters. Let us now
describe in more detail the content of each chapter separately.

The first chapter contains the generalization to functions with values in Ba-
nach spaces of the traditional material from Complex analysis of one variable
which is usually contained in the beginning of a basic course.

Chapter 2 starts with Pompeiju’s integral formula for solutions of the in-
homogeneous Cauchy-Riemann equation, the Runge approximation theorem, the
Mittag-Leffler theorem, and the Weierstrass product theorem. Then, in Sections
2.6 and 2.7, we present the (less well known) “Anschmiegungsatz” of Mittag-Leffler
and a strengthening of the Weierstrass product theorem. In the case of the Weier-
strass product theorem and its generalization, in this chapter, we still restrict
ourselves to scalar functions. It is one of the main goals of this book, to generalize
these results to the case of operator functions, using Grauert’s theory of cocycles.

Chapter 3 is dedicated to the splitting problem with respect to a contour for
functions with values in a Banach space, as well as to the factorization problem
for scalar functions with respect to a contour.

In Chapter 4 we generalize to finite meromorphic Fredholm operator func-
tions the classical Rouché theorem from Complex analysis and the Smith factor-
ization form. The proof is based on the local Smith form.

Chapter 5 is entirely dedicated to the theory of multiplicative cocycles, which
were discussed in large before.

Chapter 6 contains a theory of families of subspaces of a Banach space E.
First we introduce a complete metric on the set G(E) of closed subspaces of E, the
so-called gap metric. A continuous family of subspaces of E then will be defined as
a continuous function with values in G(E), and a holomorphic family of subspaces
of E will be defined as a continuous family of subspaces which is locally the image
of a holomorphic operator function. Vector functions with values in such a family
are called sections of the family. Note that we do not require that the members of
a holomorphic family be complemented in the ambient space. It may even happen
they are not pairwise isomorphic. An example is given in Section 6.5.

First we prove the following results: any additive cocycle of holomorphic
sections in a holomorphic family of subspaces splits; for any holomorphic operator
function A whose image is a holomorphic family of subspaces, and any holomorphic
section f of this family, there exists a global holomorphic vector function u that
solves the equation Au = f ; for any holomorphic family of subspaces there exists
a global holomorphic operator function with this family as image. Proving this,
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the main difficulty is the solution of certain local problems (in this generality,
published for the first time in this book). In terms of Complex analysis of several
variables, the solution of these local problems means that any holomorphic family
of subspaces is a so-called Banach coherent sheaf (a generalization of the notion
of coherent sheaves). After solving this we proceed by standard methods that are
well-known in Complex analysis of several variables.

Then we consider holomorphic families of subspaces, which we call injective
and which have the additional property that, locally, the family can be represented
as the image of a holomorphic operator function with zero kernel. We study the
problem of a corresponding global representation. Here we need the theory of
multiplicative cocycles from Chapter 5. It turns out that this is not always possible,
but we have again an Oka-Grauert principle.

Then we study holomorphic families of complemented subspaces (which are
injective), where we can prove more precise results than for arbitrary injective
families. Again there is an Oka-Grauert principle.

At the end we consider the special case of families of subspaces which are finite
dimensional or of finite codimension. Here there are no topological restrictions.

Chapters 7 and 8 are dedicated to factorization of operator functions with
respect to a contour and the connection with Wiener-Hopf and Töplitz operators.
This type of factorization was in fact considered for the first time in the pioneer-
ing works of Plemelj and of Muschelishvili. Because of that we call it Plemelj-
Muschelishvili factorization. We start with the local principle, which quickly fol-
lows from the theory of multiplicative cocycles and which allows us to prove theo-
rems on factorization for different classes of operator functions. The local principle
reduces the problem to functions which are already holomorphic in a neighborhood
of the contour.

For further applications we need a generalization of the theory of multiplica-
tive cocycles. This is the topic of Chapter 9, where we introduce cocycles with
restrictions. Let us offer an example (which is basic for all cocycles with restric-
tions). Suppose that in Theorem 0.0.1 an additional set Z ⊆ D1∪D2, discrete and
closed in D, and positive integers mw, w ∈ Z, are given. Assume that the function
A−I has a zero of order mw at each w ∈ D1∩D2∩Z. Then the theory of cocycles
with restrictions gives the additional information that the functions A1 and A2 in
Theorem 0.0.1 can be chosen so that, for all w ∈ Dj ∩ Z, j = 1, 2, the function
Aj − I has a zero of order mw at w.

In Chapter 10, by means of the theory of cocycles with restrictions, we es-
sentially improve the Weierstrass product Theorem 0.0.2: The functions Hw in
this theorem now can be chosen so that, additionally, for each w ∈ Z, the func-
tion Hw − I has a zero of an arbitrarily given order mw at w. This has different
consequences that are discussed in this short chapter.

Chapter 11 is dedicated to holomorphic equivalence and its applications to
linearization and diagonalization. Let E be a Banach space, let L(E) be the space
of bounded linear operators in E, let GL(E) be the group of invertible operators
from L(E), let D ⊆ C be an open set, and let Z be a discrete and closed subset
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of D. Then two holomorphic operator functions A,B : D \ Z → L(E) are called
(globally) holomorphically equivalent over D if there exist holomorphic operator
functions S, T : D → GL(E) such that A = SBT on D.

In the first section, results are presented that explain the importance of
the notion of holomorphic equivalence in spectral theory of linear operators and
holomorphic operator functions. It contains the following two results: 1) For each
relatively compact open subset Ω of D, each holomorphic operator function A :
D → L(E), after an appropriate extension, becomes holomorphically equivalent
to a function of the form zI − T , z ∈ Ω, where T is a constant operator and I is
the identical operator (Theorem 11.2.1). 2) Two operators T, S ∈ L(E) with the
spectra σ(A) and σ(B) are similar if and only if some extensions of the functions
zI − T and zI − S are holomorphically equivalent over some neighborhood of
σ(A) ∪ σ(B) (Corollary 11.2.3).

The remainder of this section is devoted to the relation between global and lo-
cal holomorphic equivalence where two holomorphic operator functions are called
locally holomorphically equivalent if, for each point, they are holomorphically
equivalent over some neighborhood of this point. We prove that two meromorphic
operator functions with meromorphic inverse are locally holomorphically equiva-
lent if and only if they are globally holomorphically equivalent (Theorem 11.4.2),
and we prove that any finite meromorphic Fredholm operator function is globally
holomorphically equivalent to a diagonal function (Theorem 11.7.6). The local fact
behind this is the Smith representation of matrices of germs of scalar holomorphic
functions.

Acknowledgement. In the beginning of the 1970s, on an invitation of one of us,
M.A. Shubin visited Kishinev and gave two talks about applications of Grauert’s
theory and the theory of coherent analytic sheaves to different results for linear
operators. One of the talks was on the local principle for Plemelj-Muschelishvili
factorization of matrix functions and the second was about the analysis of holo-
morphic families of subspaces. These talks had on us an important influence. Very
soon after this we came up with a series of papers on operator-valued cocycles
in the case of one variable with new direct proofs and also with new results and
applications to operator functions. At the end this development led to this book.
It is our pleasure to thank M.A. Shubin providing us with the initial input.



Notation

Here we give a list of standard symbols and some remarks concerning the termi-
nology used in this book without further explanation:

– C is the complex plane, R is the real axis, C∗ := C \ {0}, R∗ := R \ {0}.
– N is the set of natural numbers (including 0), N∗ := N \ {0}.
– Z is the set of entire numbers.

– Banach spaces and Banach algebras are always complex.

– If E,F are Banach spaces, then we denote by L(E,F ) the Banach space of
bounded linear operators operators from E to F , endowed with the operator
norm. We set L(E) = L(E,E), and we denote by GL(E) the group of all
invertible operators from L(E). By a projector in E we always mean an
operator P ∈ L(E) with P 2 = P .

– By an operator we always mean a bounded linear operator between two Ba-
nach spaces.

– Let E,F be Banach spaces, and let A ∈ L(E,F ). Then we denote by ImA
the image, and by KerA the kernel of A. The operator A is called injective,
if KerA = {0}, and it is called surjective if ImA = F .

– The unit operator of a Banach space E will be denoted by I or IE .

– For n ∈ N∗ we denote by L(n, C) the algebra of complex n×n matrices, and
by GL(n, C) we denote the group of invertible elements of L(n, C).

– By a neighborhood we always mean an open neighborhood, if not explicitly
stated to be anything else.

– If U is a set in a topological space X, then U always denotes the topological
closure of U in X (and not the complement).
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– By C0-functions or functions of class C0 we mean continuous functions. If Γ
is a subset of C and M is a subset of a Banach space, then we denote by
CM (Γ) or by (C0)M (Γ) the set of all continuous functions f : Γ→ M .

– If U ⊆ C is an open set, U 	= ∅, and E is a Banach space, then a function
f : U → E is called Ck or of class Ck on U , k ∈ N∗ ∪ {∞}, if it is k times
continuously differentiable with respect to the canonical real coordinates of
C.

– If U ⊆ C is an open set, U 	= ∅, and M is a subset of a Banach space E,
then we denote by (Ck)M (U) the set of all Ck-functions f : U → E such that
f(z) ∈M for all z ∈ U , and by OM (U) we denote the set of all holomorphic
(Def. 1.1.1) functions f : U → E such that f(z) ∈M for all z ∈ U .

– We set O(U) = OC(U), Ck(U) = (Ck)C(U) and O∗(U) = OC
∗
(U) for each

open U ⊆ C and k ∈ N.

– If K ⊆ C is a (not necessarily open) set of uniqueness for holomorphic func-
tions (for example, the closure of an open set, or an interval) and E is a
Banach space, then we speak also about a holomorphic function f : K → E
to say that f is the restriction of an E-valued holomorphic function defined
in a neighborhood of K.

– If D ⊆ C is an open set with piecewise C1-boundary (Def. 1.4.1), then we
denote by ∂D the boundary of D endowed with the orientation defined by
D (Sect. 1.4.1), i.e., D lies on the left side of ∂D.



Chapter 1

Elementary properties of
holomorphic functions

This chapter is devoted to the basic facts usually contained in a basic course on
Complex analysis of one variable. The difference is that we do this for functions
with values in a Banach space. Many (not all) of these results will be deduced by
the Hahn-Banach theorem from the corresponding scalar fact.

Some care is necessary with respect to the maximum principle. The strong
version, that the norm of a non-constant holomorphic function does not admit
local maxima, is not true in general. For example, it fails for l∞ and it is true for
Hilbert spaces.

1.1 Definition and first properties

The notion of a holomorphic function with values in a Banach space can be defined
as in the scalar case by complex differentiability:

1.1.1 Definition. Let E be Banach space, and let U ⊆ C be an open set. A function
f : U → E is called complexly differentiable or holomorphic if, for each w ∈ U ,

f ′(w) := lim
z→w

f(z)− f(w)
z − w

exists. Clearly, then also the partial derivatives of f with respect to the canonical
real coordinates x, y exist, and the Cauchy-Riemann equation holds:

f ′(w) =
∂f

∂x
(w) = i

∂f

∂y
(w) , w ∈ D. (1.1.1)

The function f ′ : U → E, which is then defined, will be called the complex
derivative or simply the derivative of f .
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The space of all holomorphic functions from U to E will be denoted by
OE(U).

1.1.2. From this definition the following facts follow immediately:

– Each holomorphic function with values in a Banach space is continuous.1

– If U ⊆ C is open, E is a Banach space, f, g ∈ OE(U) and α, β ∈ OC(U),
then αf + βg ∈ OE(U), and (αf + βg)′ = α′f + αf ′ + β′g + βg′ on U .

– If U ⊆ C is open, A is a Banach algebra, and f, g ∈ OA(U), then fg ∈ OA(U)
and (fg)′ = f ′g + fg′ on U .

– If U ⊆ C is open, E,F are Banach spaces, f ∈ OE(U), and A ∈ OL(E,F )(U),
then Af ∈ OF (U) and (Ag)′ = A′g +Ag′ on U .

– If U ⊆ C is open, A is a Banach algebra with unit, GA is the group of
invertible elements of A, and f : U → GA is holomorphic, then f−1 is
holomorphic and (f−1)′ = −f−1f ′f−1 on U .

– If U, V ⊆ C are open, E is a Banach space, and α : U → V , f : V → E are
holomorphic, then the composition f ◦ α is holomorphic and

(f ◦ α)′ = α′(f ′ ◦ α) on U. (1.1.2)

– If I ⊆ R is an interval, U ⊆ C is open, E is a Banach space, α : I → U is
differentiable, and f : U → E is holomorphic, then the composition f ◦ α is
differentiable on I and

(f ◦ α)′ = α′(f ′ ◦ α) on I. (1.1.3)

The theorem on uniqueness of holomorphic functions is deeper, but by means
of the Hahn-Banach theorem it can be quickly obtained from the scalar fact:

1.1.3 Theorem. Let D ⊆ C be a connected open set, and let zn ∈ D, n ∈ N∗, be
a sequence which converges to a point z0 ∈ D such that zn 	= z0 for all n ∈ N∗.
Further let E be a Banach space, and let f, g : D → E be two holomorphic functions
such that f(zn) = g(zn) for all n ∈ N∗. Then f ≡ g on D.

Proof. Let E′ be the dual of E. Then it follows from the theorem on uniqueness
of scalar holomorphic functions that, for all Φ ∈ E′, Φ ◦ f ≡ Φ ◦ g. By the Hahn-
Banach theorem this implies that f ≡ g. �

The same is true for Liouville’s theorem:

1.1.4 Theorem. Let E be a Banach space, let E′ be the dual of E, and let f : C → E
be a holomorphic function. Suppose, for each Φ ∈ E′, the function Φ◦f is bounded
on C (which is the case, for example, if the function ‖f‖ is bounded). Then f is
constant.

1They are even of class C∞, but, as in the scalar case, this can be proved only after the
Cauchy formula is obtained.
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Proof. It follows from Liouville’s theorem for scalar holomorphic functions that
Φ ◦ f is constant for all Φ ∈ E′. By the Hahn-Banach theorem this implies that f
is constant. �

1.2 The maximum principle

The following (weak) version of the maximum principle again can be obtained by
means of the Hahn-Banach theorem immediately from the maximum principle for
scalar holomorphic functions:

1.2.1 Theorem. Let D ⊆ C be a bounded open set, let E be a Banach space, and
let f : D → E be a continuous function which is holomorphic in D. Denote by ∂D
the boundary of D. Then

max
z∈D

‖f(z)‖ = max
z∈∂D

‖f(z)‖. (1.2.1)

Proof. Let z0 be an arbitrary point in D, and let E′ be the dual of E. Then,
for each Φ ∈ E′, the function Φ ◦ f is holomorphic and hence, by the maximum
principle for scalar holomorphic functions,∣∣(Φ(f(z0)

)∣∣ ≤ max
z∈∂D

∥∥(Φ ◦ f)(z)
∥∥ ≤ ‖Φ‖ max

z∈∂D

∥∥f(z))∥∥.
By the Hahn-Banach theorem, this implies

|f(z0)| ≤ max
z∈∂D

∥∥f(z))∥∥.
As z0 was chosen arbitrarily in D, this implies (1.2.1). �

The strong maximum principle

“If a holomorphic function, defined on a connected open set, admits a local
maximum, then it is constant”

is not true for functions with values in an arbitrary Banach space. Indeed, take
the space C2 with the norm ‖(ξ1, ξ2)‖max = max{|ξ1|, |ξ2|} and consider the holo-
morphic function f(z) = (z, 1) defined for |z| < 1. Clearly f is not constant but
‖f‖max ≡ 1.

For functions with values in a Hilbert space we have the strong maximum
principle:

1.2.2 Theorem. Let D ⊆ C be a connected open set, let H be a Hilbert space, and
let f : D → H be a holomorphic functions such that, for some z0 ∈ D and ε > 0,

‖f(z0)‖ ≥ ‖f(z)‖ for all |z − z0| ≤ ε. (1.2.2)

Then f is constant.



4 Chapter 1. Elementary properties of holomorphic functions

To prove this we need some facts on scalar holomorphic functions, which are
not necessarily contained in a standard course on Complex analysis. We therefore
first present these facts with proofs.

1.2.3 Lemma. Let D ⊆ C be an open set, and let ϕ : D → C be a scalar holomorphic
function. Let x, y be the canonical real coordinates on C, and let

Δ :=
∂2

∂x2
+

∂2

∂y2

be the Laplace operator. Then

Δ|ϕ|2 = 4|ϕ′|2. (1.2.3)

Proof. We have

∂2

∂x2
|ϕ|2 = ∂2

∂x2
(ϕϕ) =

∂

∂x

(
ϕ

∂ϕ

∂x
+ ϕ

∂ϕ

∂x

)
=

∂ϕ

∂x

∂ϕ

∂x
+ ϕ

∂2ϕ

∂x2
+

∂ϕ

∂x

∂ϕ

∂x
+ ϕ

∂2ϕ

∂x2

and, in the same way,

∂2

∂y2
|ϕ|2 = ∂ϕ

∂y

∂ϕ

∂y
+ ϕ

∂2ϕ

∂y2
+

∂ϕ

∂y

∂ϕ

∂y
+ ϕ

∂2ϕ

∂y2
.

Since ϕ is holomorphic and therefore, by the Cauchy-Riemann equation,

ϕ′ =
∂ϕ

∂x
= i

∂ϕ

∂y
and ϕ′ =

∂ϕ

∂x
= −i

∂ϕ

∂y
,

this implies

∂2

∂x2
|ϕ|2 = ϕ′ϕ′ + ϕ

∂2ϕ

∂x2
+ ϕ′ϕ′ + ϕ

∂2ϕ

∂x2
= 2|ϕ′|2 + ϕ

∂2ϕ

∂x2
+ ϕ

∂2ϕ

∂x2

and, in the same way,

∂2

∂y2
|ϕ|2 = 2|ϕ′|2 + ϕ

∂2ϕ

∂y2
+ ϕ

∂2ϕ

∂y2
.

Hence

Δ|ϕ|2 = 4|ϕ′|2 + ϕ

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
+ ϕ

(
∂2ϕ

∂x2
+

∂2ϕ

∂y2

)
= 4|ϕ′|2 + ϕΔϕ+ ϕΔϕ.

Since Δϕ = Δϕ = 0 (real and imaginary part of ϕ are harmonic), this implies
(1.2.3). �
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1.2.4 Lemma. Let r0 > 0, and let ϕ be a scalar holomorphic function defined on
the disc |z| < r0. Set

M(r) =
1
2π

2π∫
0

∣∣∣ϕ(reit
)∣∣∣2dt for 0 ≤ t < r0. (1.2.4)

Then M is of class C∞ on [0, r0[, and

M ′(r) =
2
πr

∫
|z|<r

|ϕ′|2dλ for 0 < r < r0. (1.2.5)

Here dλ is the Lebesgue measure.

Proof. Since the function under the integral in (1.2.4) is of class C∞ with respect
to t and r, it is clear that M is of class C∞, where, by differentiation under the
integral sign, we get

M ′(r) =
1
2π

2π∫
0

∂

∂r
|ϕ|2dt =

1
2π

2π∫
0

(
∂|ϕ|2
∂x

∂x

∂r
+

∂|ϕ|2
∂y

∂y

∂r

)
dt, (1.2.6)

where x, y are the canonical real coordinates on C. Since x(reit) = r cos t and
y(reit) = r sin t and therefore

∂x

∂r
= cos t and

∂y

∂r
= sin t,

it follows from (1.2.6) that

M ′(r) =
1
2π

2π∫
0

∂

∂r
|ϕ|2dt =

1
2π

2π∫
0

(
∂|ϕ|2
∂x

cos t+
∂|ϕ|2
∂y

sin t

)
dt. (1.2.7)

Now we fix 0 < r < r0, and we denote by Sr the circle with radius r centered
at zero. Let τ : Sr → [0, 2π[ be the function defined by τ(reit) = t, 0 ≤ t < 2π.
Then (1.2.7) can be written

M ′(r) =
1
2π

∫
Sr

(
∂|ϕ|2
∂x

(cos ◦τ)dτ +
∂|ϕ|2
∂y

(sin ◦τ)dτ

)
.

Since, on Sr, x = r cos ◦τ , y = r sin ◦τ and therefore

dx
∣∣
Sr
= −r(sin ◦τ)dτ and dy

∣∣
Sr
= r(cos ◦τ)dτ,

this further implies that

M ′(r) =
1
2πr

∫
Sr

(
∂|ϕ|2
∂x

dy − ∂|ϕ|2
∂y

dx

)
.
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By Stokes’ theorem this yields

M ′(r) =
1
2πr

∫
|z|<r

(
∂2|ϕ|2
∂x2

dx ∧ dy − ∂|ϕ|2
∂y

dy ∧ dx

)
.

Since dx ∧ dy = −dy ∧ dx = dλ, this implies

M ′(r) =
1
2πr

∫
|z|<r

Δ|ϕ|2dλ.

By Lemma 1.2.3 this means (1.2.5). �

1.2.5 Lemma. Let z0 ∈ C and r > 0. Let ϕ be a scalar holomorphic function in a
neighborhood of the closed disc |z| ≤ r. Then

|ϕ(z0)|2 ≤
1
2π

2π∫
0

∣∣∣ϕ(z0 + reit
)∣∣∣2dt (1.2.8)

and (1.2.8) holds with equality, if and only if, ϕ is constant.

Proof. We may assume that z0 = 0. It is clear that (1.2.8) holds with equality if
ϕ is constant.

Assume that ϕ is not constant. Then ϕ′ has not more then a finite number
of zeros on |z| ≤ r. Therefore it follows from Lemma 1.2.4 that the function

M(r′) :=
1
2π

2π∫
0

∣∣∣ϕ(z0 + r′eit
)∣∣∣2dt

is strictly monotonicly increasing for 0 ≤ r′ ≤ r. Since M(0) = |ϕ(z0)|2, this
implies that

|ϕ(z0)|2 <
1
2π

2π∫
0

∣∣∣ϕ(z0 + reit
)∣∣∣2dt. �

Proof of Theorem 1.2.2. Let 〈·, ·〉 be the scalar product of H. Choose an orthonor-
mal basis {ej}j∈I of H. Set

fj(z) =
〈
f(z), ej

〉
, z ∈ D, j ∈ I.

Then each fj is holomorphic and, by (1.2.2),∑
j∈I

|fj(z0)|2 = ‖f(z0)‖2 ≥ ‖f(z)‖2 =
∑
j∈I

|fj(z)|2 , |z − z0| ≤ ε.
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It follows that

∑
j∈I

|fj(z0)|2 =
1
2π

2π∫
0

∑
j∈I

|fj(z0)|2dt

≥ 1
2π

2π∫
0

∑
j∈I

∣∣fj

(
z0 + εeit

)∣∣2dt =
∑
j∈I

1
2π

2π∫
0

∣∣fj

(
z0 + εeit

)∣∣2dt.

Since, on the other hand, by Lemma 1.2.5,

∣∣fj(z0)
∣∣2 ≤ 1

2π

2π∫
0

∣∣fj(z0 + εeit
)∣∣2dt for all j ∈ I, (1.2.9)

this implies that

|fj(z0)|2 =
1
2π

2π∫
0

∣∣fj

(
z0 + εeit

)∣∣2dt for all j ∈ I.

Again by Lemma 1.2.5 this means that fj is constant for all j ∈ I. Hence f is
constant. �

Note also the following:

1.2.6 Proposition. Let D ⊆ C be an open set, let E be a Banach space, and let
f : D → E be holomorphic. Then ‖f‖ is subharmonic in D.2

Proof. Let z0 ∈ D and r > 0 be given such that the closed disc |z − z0| ≤ r is
contained in D. Then we have to prove that

‖f(z0)‖ ≤
1
2π

2π∫
0

∥∥f(z0 + reit
)∥∥dt. (1.2.10)

Let E′ be the dual of E. Then, for each Φ ∈ E′, Φ ◦ f is holomorphic. Hence, for
each Φ ∈ E′, Φ ◦ f is subharmonic. Hence, for each Φ ∈ E′,

∥∥Φ(f(z0)
)∥∥ ≤ 1

2π

2π∫
0

∣∣∣Φ(f
(
z0 + reit

))∥∥∥dt ≤ ‖Φ‖ 1
2π

2π∫
0

∥∥f(z0 + reit
)∥∥dt.

By the Hahn-Banach theorem this implies (1.2.10). �
2Recall that a continuous function ρ : D → R is called subharmonic if, for all z0 ∈ D and

r > 0 such that the closed disc |z − z0| ≤ r is contained in D,

ρ(z0) ≤ 1

2π

2π∫
0

ρ
(
z0 + reit

)
dt.
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Therefore the maximum principle stated in Theorem 1.2.1 can be viewed also
as a consequence of the maximum principle for subharmonic functions.

1.3 Contour integrals

Here we collect a number of definitions for later reference.

1.3.1 Definition (C1-contours). A set Γ ⊆ C is called a connected C1-contour if
there exist real numbers a < b and a C1-function γ : [a, b]→ C with Γ = γ

(
[a, b]

)
such that:

(i) γ′(t) 	= 0 for all a ≤ t ≤ b;

(ii) γ(t) 	= γ(s) for all a ≤ t, s < b with t 	= s;

(iii) either γ(b) 	= γ(t) for all a ≤ t < b
or γ(b) = γ(a) and γ′(b) = γ′(a).

Then the function γ is called a C1-parametrization of Γ. If γ(b) = γ(a), then Γ is
called closed.

By a (not necessarily connected) C1-contour we mean the union of a finite
number of pairwise disjoint connected C1-contours.

1.3.2 Definition (Piecewise C1-contours). A set Γ ⊆ C is called a connected piece-
wise C1-contour in each of the following three cases:

(I) There exist real numbers a < b and a C1-function γ : [a, b] → C with Γ =
γ
(
[a, b]

)
such that:

(i) γ′(t) 	= 0 for all a ≤ t ≤ b;

(ii) γ(t) 	= γ(s) for all a ≤ t, s < b with t 	= s;

(iii) γ(b) = γ(a) and γ′(a)
γ′(b) ∈ C\]−∞, 0].3

(II) There exist finitely many real numbers a = t1 < . . . < tm = b and a continu-
ous function γ : [a, b]→ C with Γ = γ([a, b]) such that:

(i) For each 1 ≤ j ≤ m− 1, the function

γj := γ
∣∣
[tj ,tj+1]

is of class C1 on [tj , tj+1] and γ′j(t) 	= 0 for all tj ≤ t ≤ tj+1.

(ii) γ′
j(tj+1)

γ′
j+1(tj+1)

∈ C\]−∞, 0] for 1 ≤ j ≤ m− 2.

(iii) γ(t) 	= γ(s) for all a ≤ t, s ≤ b with t 	= s.

3i.e., either Γ is smooth at γ(b) = γ(a) or Γ forms a non-zero angle at γ(b) = γ(a).
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(III) If in case (II) condition (iii) is replaced by

(iii′) γ(t) 	= γ(s) for all a ≤ t, s < b with t 	= s, γ(b) = γ(a) and γ′(a)
γ′(b) ∈

C\]−∞, 0].

The contour Γ is called closed, if and only if, γ(b) = γ(a).

The function γ then is called a piecewise C1-parametrization of Γ.

By a (not necessarily connected) piecewise C1-contour we mean the union
of a finite number of pairwise disjoint connected piecewise C1-contours. Such a
contour is called closed if each connected component is closed.

1.3.3 Definition (Orientation of a contour). First let Γ ⊆ C be a connected piece-
wise C1-contour.

If γ : [a, b] → C and γ∗ : [a∗, b∗] → C are two piecewise C1-parametrizations
of Γ, then by definition of a piecewise C1-parametrization, on [a∗, b∗[, the function
γ−1 ◦ γ∗ is well defined, and, as it is continuous, it is either strictly monotonicly
increasing or strictly monotonicly decreasing. In the first case we call γ and γ∗
equivalent.

In this way the set of all piecewise C1-parametrizations of Γ is divided into
two equivalence classes.

We say that Γ is oriented if one of these two equivalence classes is chosen. If
this is done, then a piecewise C1-parametrization of Γ is called positively oriented
if it belongs to the chosen class.

A (not necessarily connected) piecewise C1-contour Γ is called oriented if on
each connected component of Γ an orientation is chosen.

1.3.4 Definition. Let Γ be an oriented piecewise C1-contour, let E be a Banach
space, and let f : Γ→ E be a continuous function.

If Γ is connected and γ : [a, b] → C is a positively oriented, piecewise C1-
parametrization of Γ, then it follows from the substitution rule (which follows as
in the scalar case from the chain rule) that

∫
Γ

f(z)dz :=

b∫
a

f
(
γ(z)

)
γ′(t)dt (1.3.1)

is independent of the choice of γ. Therefore, by (1.3.1) an integral
∫
Γ

f(z)dz is
well defined.

If Γ is not connected and Γ1, . . . ,Γn are the connected components of Γ, then
we define ∫

Γ

f(z)dz =
n∑

j=1

∫
Γj

f(z)dz. (1.3.2)
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If Γ is a circle of radius r centered at z0 ∈ C and if Γ is oriented by the
parametrization γ(t) := z0 + reit, 0 ≤ t ≤ 2π, then we define

∫
|z−z0|=r

f(z)dz :=
∫
Γ

f(z)dz = ir

2π∫
0

f
(
z0 + reit

)
eitdt. (1.3.3)

1.3.5 Definition. Let Γ be a piecewise C1-contour.
If Γ is connected and γ : [a, b] → C is a piecewise C1-parametrization of Γ,

then it follows from the substitution rule (which follows as in the scalar case from
the chain rule) that

|Γ| :=
b∫

a

|γ′(t)|dt (1.3.4)

is independent of the choice of γ. Therefore, by (1.3.4) a number |Γ| is well defined.
If Γ is not connected and Γ1, . . . ,Γn are the connected components of Γ, then

we define

|Γ| =
n∑

j=1

∣∣Γj

∣∣. (1.3.5)

The number |Γ| is called the length of Γ.

1.3.6 Proposition. Let Γ be a piecewise C1-contour, let E be a Banach space, and
let f : Γ→ E be a continuous function. Then∥∥∥∥∫

Γ

f(z)dz

∥∥∥∥ ≤ |Γ|maxz∈Γ
‖f(z)‖. (1.3.6)

Proof. We may assume that Γ is connected. Let γ : [a, b] → C be an oriented,
piecewise C1-parametrization of Γ, and let E′ be the dual of E. Then, for each
Φ ∈ E′ with ‖Φ‖ = 1,

∣∣∣∣∣Φ
(∫

Γ

f(z)dz

)∣∣∣∣∣ =
∣∣∣∣∣Φ
( b∫

a

f
(
γ(t)

)
γ′(t)dt

)∣∣∣∣∣ =
∣∣∣∣∣

b∫
a

Φ
(
f
(
γ(t)

))
γ′(t)dt

∣∣∣∣∣
≤

b∫
a

∣∣∣∣Φ(f
(
γ(t)

))
γ′(t)

∣∣∣∣dt ≤ max
a≤t≤b

∣∣∣f(γ(t))∣∣∣ b∫
a

|γ′(t)|dt = |Γ|max
z∈Γ

‖f(z)‖.

By the Hahn-Banach theorem, this implies (1.3.6). �
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1.4 The Cauchy integral theorem

1.4.1. Let D ⊆ C be an open set. We shall say that D has a piecewise C1-boundary
if the boundary of D (in C) is a closed piecewise C1-contour Γ (Def. 1.3.2) such
that each point of Γ is also a boundary point of C \D.

Let D ⊆ C be an open set with piecewise C1-boundary. Then different ori-
entations of Γ are possible (more than two if Γ is not connected). One of these
orientations is of particular interest: The orientation defined by D: This is the
orientation of Γ such that D is “on the left” of Γ with respect to this orientation.4

In this case, we also say that Γ is oriented by D or oriented as the boundary of
D.

By ∂D we denote the boundary of D if it is oriented by D.

1.4.2 Theorem (Cauchy integral theorem). Let D ⊆ C be a bounded open set with
piecewise C1-boundary, let E be a Banach space, and let f : D → E be a continuous
function which is holomorphic in D. Then∫

Γ

f(z)dz = 0. (1.4.1)

Proof. Let E′ be the dual of E. Then, for each Φ ∈ E′, Φ ◦ f is a scalar function
which is continuous on D and holomorphic in D. Hence, by the Cauchy integral
theorem for scalar functions,

Φ
( ∫

∂D

f(z)dz

)
=
∫

∂D

Φ
(
f(z)

)
dz = 0 for all Φ ∈ E′. (1.4.2)

By the Hahn-Banach theorem this implies (1.4.1). �

1.4.3. Recall that an open set D ⊆ C is called simply connected if it is connected
and, for any continuous function γ : [0, 1] → D with γ(0) = γ(1), there exists a
continuous function

H : [0, 1]× [0, 1] −→ D

such that H(0, t) = H(1, t) for all 0 ≤ t ≤ 1, H(·, 0) = γ for all 0 ≤ s ≤ 1 and
H(·, 1) is a constant.

We need also the following homotopy version of the Cauchy integral theorem
for functions with values in a Banach space.

4A possible formal definition: We say that D is on the left of Γ if the following condition is
satisfied: If γ : [a, b] → C is a positively oriented piecewise C1-parametrization of one of the
connected components of Γ, then εiγ′(t) ∈ D for each a ≤ t ≤ b such that γ(t) is a smooth point
of Γ and any sufficiently small ε > 0.
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1.4.4 Theorem. Let D ⊆ C be a simply connected open set, let E be a Banach
space, let f : D → E be holomorphic, and let γ1, γ2 : [0, 1] → D be two piecewise
C1-functions with γ1(0) = γ2(0) and γ1(1) = γ2(1).

5 Then

1∫
0

f
(
γ1(z)

)
γ′1(z)dz =

1∫
0

f
(
γ1(z)

)
γ′2(z)dz. (1.4.3)

Proof. Let E′ be the dual of E. Then, by the homotopy version of the Cauchy
integral theorem for scalar functions, for each Φ ∈ E′,

Φ
( 1∫

0

f
(
γ1(z)

)
γ′1(z)dz

)
=

1∫
0

Φ
(
f
(
γ1(z)

)
γ′1(z)dz

=

1∫
0

Φ
(
f
(
γ1(z)

)
γ′2(z)

)
dz = Φ

( 1∫
0

f
(
γ2(z)γ

′
2(z)dz

)
.

By the Hahn-Banach theorem this implies (1.4.3). �

1.5 The Cauchy formula

1.5.1 Theorem (Cauchy formula). Let D ⊆ C be a bounded open set with piecewise
C1-boundary, let E be a Banach space, and let f : D → E be a continuous function
which is holomorphic in D. Then

f(w) =
1
2πi

∫
∂D

f(z)
z − w

dz, w ∈ D. (1.5.1)

Proof. Let w ∈ D be given. Let E′ be the dual of E. Then, for each Φ ∈ E′, Φ ◦ f
is a scalar function which is continuous on D and holomorphic in D. Hence, by
the Cauchy formula for scalar functions,

Φ
(
f(w)

)
=

1
2πi

∫
∂D

Φ
(
f(z)

)
z − w

dz = Φ
(

1
2πi

∫
∂D

f(z)
z − w

dz

)
for all Φ ∈ E′.

By the Hahn-Banach theorem this implies (1.5.1). �
1.5.2 Lemma. Let Γ ⊆ C be an oriented, piecewise C1-contour (not necessarily
closed), let E be a Banach space, and let f : Γ → E be continuous. Let n ∈ N∗

and set

F (z) =
∫
Γ

f(ζ)
(ζ − z)n

dζ , z ∈ C \ Γ. (1.5.2)

5Here we do not assume that the images γ1

(
[0, 1]

)
and γ2

(
[0, 1]

)
are piecewise C1-contours in

the sense of Definition 1.3.2.
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Then F is holomorphic on C \ Γ and

F ′(z) = n

∫
Γ

f(ζ)
(ζ − z)n+1

dζ , z ∈ C \ Γ. (1.5.3)

Moreover
lim
|z|→∞

‖F (z)‖ = 0. (1.5.4)

Proof. Using the estimate from Proposition 1.3.6, we get

‖F (z)‖ ≤ |Γ|max
ζ∈Γ

‖f(ζ)‖
|ζ − z|n .

As Γ is compact and therefore

lim
|z|→∞

max
ζ∈Γ

1
|ζ − z|n = 0,

this implies (1.5.4).
It remains to prove that F is holomorphic on C \ Γ. Let w ∈ C \ Γ be given.

We must prove that

lim
z→w

∫
Γ

( 1
(ζ−z)n − 1

(ζ−w)n

z − w
− n

(ζ − w)n+1

)
f(ζ)dζ = 0. (1.5.5)

We have
1

(ζ−z)n − 1
(ζ−w)n

z − w
− n

(ζ − w)n+1

=
(ζ − w)n+1 − (ζ − z)n(ζ − w)− n(ζ − z)n(z − w)

(z − w)(ζ − z)n(ζ − w)n+1

=
(ζ − z + z − w)n+1 − (ζ − z)n(ζ − z + z − w)− n(ζ − z)n(z − w)

(z − w)(ζ − z)n(ζ − w)n+1

=
∑n+1

k=0

(
n+1

k

)
(ζ − z)n+1−k(z − w)k − (ζ − z)n+1 − (n+ 1)(ζ − z)n(z − w)

(z − w)(ζ − z)n(ζ − w)n+1

=
∑n+1

k=2

(
n+1

k

)
(ζ − z)n+1−k(z − w)k

(z − w)(ζ − z)n(ζ − w)n+1

=
∑n+1

k=2

(
n+1

k

)
(ζ − z)n+1−k(z − w)k−2

(ζ − z)n(ζ − w)n+1
(z − w).

If ε > 0 is chosen so small that the disc |z − w| ≤ ε is contained in C \ Γ, this
implies that, for some constant C <∞,∣∣∣∣ 1

(ζ−z)n − 1
(ζ−w)n

z − w
− n

(ζ − w)n+1

∣∣∣∣ ≤ C|z − w| if |z − w| < ε and ζ ∈ Γ.
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By the estimate from Proposition 1.3.6 this further implies∥∥∥∥∫
Γ

( 1
(ζ−z)n − 1

(ζ−w)n

z − w
− n

(ζ − w)n+1

)
f(ζ)dζ

∥∥∥∥ ≤ |Γ|maxζ∈Γ
‖f(ζ)‖C|z − w|

for |z − w| < ε, which proves (1.5.5). �
In view of this lemma, the Cauchy formula immediately implies:

1.5.3 Corollary. Any holomorphic function with values in a Banach space is in-
finitely times complexly differentiable (Def. 1.1.1). In particular, it is of class C∞.

Moreover, if D and f are as in Theorem 1.5.1 and if we denote by f (n) the
n-th complex derivative of f in D, then

f (n)(w) =
n!
2πi

∫
∂D

f(z)
(z − w)n+1

dz, w ∈ D. (1.5.6)

1.5.4 Theorem. Let D ⊆ C be an open set, and let M be a subset of D such that
there exists a piecewise C1-contour in C with M ⊆ Γ. Further, let E be a Banach
space, and let f : D → E be a continuous function which is holomorphic on D\M .
Then f is holomorphic on D.

Proof. Let w be an arbitrary point in M . Set

Δε =
{

z ∈ C

∣∣∣ |z − w| < ε
}

for ε > 0.

It is sufficient to prove that, for sufficiently small ε > 0, f is holomorphic on Δε.
By hypothesis there exists a piecewise C1-contour Γ in C with M ⊆ Γ. En-

larging Γ if necessary, we may achieve that w is an “inner point” of Γ, i.e., that,
for some ε0 > 0, the disc Δε0 is divided by Γ into two connected open sets Δ+

ε0

and Δ−ε0
. Moreover, we can choose 0 < ε < ε0 so small that the closed disc Δε is

contained in D, and the open sets

Δ+
ε := Δε ∩Δ+

ε0
and Δ−ε := Δε ∩Δ−ε0

have piecewise C1-boundaries ∂Δ+
ε and ∂Δ−ε . Then, by Cauchy’s formula and by

Cauchy’s integral theorem,

1
2πi

∫
∂Δ+

ε

f(ζ)
ζ − z

dζ =

{
f(z) if z ∈ Δ+

ε ,

0 if z ∈ Δ−ε

and
1
2πi

∫
∂Δ−

ε

f(ζ)
ζ − z

dζ =

{
f(z) if z ∈ Δ−ε ,

0 if z ∈ Δ+
ε .
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Since the orientation of Γ ∩Δε as a part of ∂Δ+
ε is different from its orientation

as a part of ∂Δ−ε , this implies that

1
2πi

∫
|ζ−w|=ε

f(ζ)
ζ − z

dζ = f(z) if z ∈ Δε \ Γ.

Since f is continuous on Δε, this further implies that

1
2πi

∫
|ζ−w|=ε

f(ζ)
ζ − z

dζ = f(z) for all z ∈ Δε.

In view of Lemma 1.5.2 this proves that f is holomorphic on Δε. �

1.6 The Hahn-Banach criterion

1.6.1 Theorem (Hahn-Banach criterion). Let D ⊆ C be an open set, let E be a
Banach space, let E′ be the dual of E, and let f : D → E be a function. Then the
following two conditions are equivalent:

(i) The function f is holomorphic on D.

(ii) For each Φ ∈ E′, the scalar function Φ ◦ f is holomorphic on D.

Proof. (i) ⇒ (ii) is obvious.
Suppose (ii) is satisfied.
We first prove that then f is continuous. Consider an arbitrary point z0 ∈ D

and choose r > 0 so small that the disc |z − z0| ≤ r is contained in D. Since, for
each Φ ∈ E′, Φ◦f is holomorphic on D and, hence, Φ◦f is bounded on |z−z0| ≤ r,
the set {

Φ
(
f(z)

) ∣∣∣ |z − z0| ≤ r
}

is bounded for each Φ ∈ E′. Since weakly bounded sets are strongly bounded, it
follows that the set {f(z) | |z − z0| ≤ r} is bounded in E, i.e., we have a constant
C <∞ such that

‖f(z)‖ ≤ C for all |z − z0| ≤ r. (1.6.1)

Now let zn, n ∈ N∗, be a sequence which converges to z0 such that |zn − z0| < r
for all n ∈ N∗. From the Cauchy formula, the estimate from Proposition 1.3.6 and
estimate (1.6.1) then it follows that, for all Φ ∈ E′,∣∣∣∣Φ(f(z0)− f(zn)

)∣∣∣∣ = 1
2π

∣∣∣∣∣
∫

|z−z0|=r

Φ
(
f(z)

)( 1
z − z0

− 1
z − zn

)
dz

∣∣∣∣∣
≤ r max

|z−z0|=r

∣∣∣Φ(f(z))∣∣∣∣∣∣∣ 1
z − z0

− 1
z − zn

∣∣∣∣ ≤ r‖Φ‖C max
|z−z0|=r

∣∣∣∣ 1
z − z0

− 1
z − zn

∣∣∣∣.
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By the Hahn-Banach theorem this implies that∥∥f(z0)− f(zn)
∣∣ ≤ rC max

|z−z0|=r

∣∣∣∣ 1
z − z0

− 1
z − zn

∣∣∣∣.
Hence limn→∞ f(zn) = f(z0).

To prove that f is holomorphic, we again consider an arbitrary point z0 ∈ D
and choose r > 0 so small that the disc |z − z0| ≤ r is contained in D. As f is
continuous, by Lemma 1.5.2 the function

F (z) :=
1
2πi

∫
|ζ−z0|=r

f(ζ)
ζ − z

dζ , |z − z0| < r,

is holomorphic. Therefore it remains to prove that f(z) = F (z) for |z − z0| < r.
Let such z be given. Since, for each Φ ∈ E′, the function Φ ◦ f is holomorphic, it
follows from the Cauchy formula and then from the definition of F that

Φ
(
f(z)

)
=

1
2πi

∫
|ζ−z0|=r

Φ
(
f(ζ)

)
ζ − z

dζ = Φ

(
1
2πi

∫
|ζ−z0|=r

f(ζ)
ζ − z

dζ

)
= Φ

(
F (z)

)

for all Φ ∈ E′. By the Hahn-Banach theorem this implies that f(z) = F (z). �
We conclude this section with some applications of Theorem 1.6.1.

1.6.2 Theorem. Let D ⊆ C be a simply connected open set (Section 1.4.3), let
E be a Banach space, and let f : D → E be holomorphic. Then there exists a
holomorphic function F : D → E such that F ′ = f .

Proof. Fix z0 ∈ D. Then, for each z ∈ D, we choose a C1-function γ : [0, 1] → D
with γ(0) = z0 and γ(1) = z and define

F (z) =

1∫
0

f
(
γ(ζ)

)
γ′(ζ)dζ.

As D is connected, such a function γ always exists, and, as D is even simply
connected, by the homotopy version of the Cauchy integral Theorem 1.4.4, this
definition does not depend on the choice of γ. So F is well defined. It remains to
prove that F is holomorphic and F ′ = f .

Let E′ be the dual of E. Then, by the corresponding scalar fact, for each
Φ ∈ E′, the function Φ ◦ F is holomorphic and (Φ ◦ F )′ = Φ ◦ f . By the Hahn-
Banach criterion, Theorem 1.6.1, this means that F itself is holomorphic, and thus
this implies that F ′ = f . �
1.6.3 Lemma. Let D ⊆ C be an open set, let E be a Banach space, and let f :
D → E be a function. Let E′ be the dual of E, and suppose there exists a sequence
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of holomorphic functions fn : D → E, n ∈ N, such that, for all Φ ∈ E′ and each
compact K ⊆ D,

lim
n→∞max

z∈K

∥∥∥Φ(f(z)
)
− Φ

(
fn(z)

)∥∥∥ = 0. (1.6.2)

Then f is holomorphic on D.

Proof. From (1.6.2) it follows that Φ ◦ f is holomorphic for each Φ ∈ E′. Hence,
by Theorem 1.6.1, f is holomorphic. �
1.6.4 Theorem. Let D ⊆ C be an open set, let E be a Banach space, and let
fn : D → E, n ∈ N, be a sequence of holomorphic functions, which converges,
uniformly on each compact subset of D, to some function f : D → E. Then
f is holomorphic on D, and the sequence of complex derivatives f ′n converges,
uniformly on each compact subset of D, to f ′.

Proof. It follows immediately from Lemma 1.6.3 that f is holomorphic. It remains
to prove that f ′n converges to f ′, uniformly on each compact subset of D. Let
z0 ∈ D and r > 0 be given such that the closed disc |z − z0| ≤ r is contained in
D. It is sufficient to prove that

lim
n→∞ max

|z−z0|≤r
‖f ′(z)− f ′n(z)‖ = 0. (1.6.3)

Choose r′ with r < r′ such that also the closed disc |z − z0| ≤ r′ is contained in
D. Then, by the Cauchy formula for the complex derivative (1.5.6),

f ′(z)− f ′n(z) =
1
2πi

∫
|ζ−z0|=r′

f(ζ)− fn(ζ)
(ζ − z)2

dζ

for |z − z0| ≤ r. By the estimate from Proposition 1.3.6 this implies that

‖f ′(z)− f ′n(z)‖ ≤ r′ max
|ζ−z0|=r′

‖f(ζ)− fn(ζ)‖
|ζ − z|2 ≤ r′

(r′ − r)2
max

|ζ−z0|=r′
‖f(ζ)− fn(ζ)‖

for |z − z0| ≤ r. As fn converges to f , uniformly on |z − z0| = r′, this implies
15.3.08. �

We already observed that also the holomorphic functions with values in a
Banach space satisfy the Cauchy-Riemann equation (1.1.1). If we additionally as-
sume that the function is continuously differentiable (with respect to the canonical
real coordinates), then, as in the scalar case, the Cauchy-Riemann equation is also
sufficient for holomorphy:

1.6.5 Theorem (Cauchy-Riemann criterion). Let D ⊆ C be an open set, let E be
a Banach space, and let f : D → E be a C1-function. Then f is holomorphic, if
and only if,

∂f

∂x
= i

∂f

∂y
on D. (1.6.4)
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Proof. We already observed that (1.6.4) is necessary for the holomorphy of f .
Now we assume that (1.6.4) is satisfied. Let E′ be the dual of E. Since f is

of class C1, then it follows from (1.6.4) that, for each Φ ∈ E′,

∂(Φ ◦ f)
∂x

= i
∂(Φ ◦ f)

∂y
on D.

Hence, Φ ◦ f is holomorphic for all Φ ∈ E′, and it follows from the Hahn-Banach
criterion, Theorem 1.6.1, that f is holomorphic. �

1.7 A criterion for the holomorphy of operator

functions

1.7.1 Theorem. Let D ⊆ C be an open set, let E,F be Banach spaces, let A : D →
L(E,F ) be a holomorphic operator function. Then the following two conditions
are equivalent:

(i) A is holomorphic on D.

(ii) For each vector x ∈ E, the vector function Ax is holomorphic on D.

Proof. (i) ⇒ (ii) is obvious.
Assume (ii) is satisfied.
We first prove that then A is continuous. Consider an arbitrary point z0 ∈ D

and choose r > 0 so small that the disc |z − z0| ≤ r is contained in D. Since, for
each x ∈ E, Ax is holomorphic on D and, hence, Ax is bounded on |z − z0| ≤ r,
the set {

A(z)x
∣∣∣ |z − z0| ≤ r

}
is bounded for each x ∈ E. By the Banach-Steinhaus theorem, it follows that the
set {

A(z)
∣∣∣ |z − z0| ≤ r

}
is bounded in L(E,F ), i.e., we have a constant C <∞ such that

‖A(z)‖ ≤ C for all |z − z0| ≤ r. (1.7.1)

Now let zn, n ∈ N∗, be a sequence which converges to z0 such that |zn − z0| < r
for all n ∈ N∗. From the Cauchy formula, the estimate from Proposition 1.3.6 and
estimate (1.7.1) then it follows that, for all x ∈ E,

∥∥A(z0)x−A(zn)x
∥∥ = 1

2π

∥∥∥∥ ∫
|z−z0|=r

A(z)x
(

1
z − z0

− 1
z − zn

)
dz

∥∥∥∥
≤ rC‖x‖ max

|z−z0|=r

∣∣∣∣ 1
z − z0

− 1
z − zn

∣∣∣∣.
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Hence

‖A(z0)−A(zn)‖ ≤ rC max
|z−z0|=r

∣∣∣∣ 1
z − z0

− 1
z − zn

∣∣∣∣,
which further implies that limn→∞A(zn) = A(z0).

To prove that A is holomorphic, we again consider an arbitrary point z0 ∈ D
and choose r > 0 so small that the disc |z − z0| ≤ r is contained in D. As A is
continuous, by Lemma 1.5.2 the function

F (z) :=
1
2πi

∫
|ζ−z0|=r

A(ζ)
ζ − z

dζ , |z − z0| < r,

is holomorphic. Therefore it remains to prove that A(z) = F (z) for |z − z0| < r.
Let such z be given. Since, for each x ∈ E, the function Ax is holomorphic, it
follows from the Cauchy formula and then from the definition of F that

A(z)x =
1
2πi

∫
|ζ−z0|=r

A(ζ)x
ζ − z

dζ =

(
1
2πi

∫
|ζ−z0|=r

A(ζ)
ζ − z

dζ

)
x = F (z)x

for all x ∈ E. Hence A(z) = F (z). �

1.8 Power series

1.8.1. Let E be a Banach space, and let

∞∑
n=0

an(z − z0)n , z0 ∈ C, (1.8.1)

be a power series with coefficients an ∈ E. The series (1.8.1) is called convergent
in a point ζ ∈ C if the series of vectors

∞∑
n=0

an(ζ − z0)n

converges in E (with respect to the norm), and it is called absolutely convergent
in ζ ∈ C if

∞∑
n=0

‖an‖|ζ − z0|n <∞.

1.8.2 Theorem (Abel’s lemma). Let E be a Banach space, and let

∞∑
n=0

(z − z0)nan , z0 ∈ C, (1.8.2)
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be a power series with coefficients an ∈ E. Set

ρ =
1

lim sup
n→∞

n
√
‖an‖

. (1.8.3)

If |ζ − z0| > ρ, then the series (1.8.2) does not converge in ζ. If |ζ − z0| < ρ, then
the series (1.8.2) converges absolutely in ζ. Moreover, then, for all r < ρ,

∞∑
n=0

max
|ζ−z0|≤r

|ζ − ζ0|n‖an‖ <∞. (1.8.4)

Proof. First let |ζ − z0| > ρ. This means that

|ζ − z0| lim sup
n→∞

‖an‖1/n > 1,

i.e.,
lim sup

n→∞
‖an‖|ζ − z0|n > 1.

Hence the sequence an(ζ − z0)n does not converge to zero.
Now let r < ρ be given. Then

r lim sup
n→∞

‖an‖1/n < 1.

Choose q with
r lim sup

n→∞
n
√
‖an‖ < q < 1.

Then we can find n0 ∈ N such that

r n
√
‖an‖ ≤ q for all n ≥ n0.

It follows that ∞∑
n=0

max
|ζ−z0|≤r

‖an‖|ζ − ζ0|n ≤
∞∑

n=0

qn <∞. �

1.8.3. The number ρ ∈ [0,∞] defined by (1.8.3) is called the radius of convergence
of the power series in (1.8.1).

1.8.4 Theorem. Let E be a Banach space, let

∞∑
n=0

(z − z0)nan , z0 ∈ C, (1.8.5)

be a power series with coefficients an ∈ E, and let ρ be the radius of convergence
of it. Then:
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(i) The power series
∞∑

n=1

n(z − z0)n−1an (1.8.6)

also has the radius of convergence ρ.

(ii) The function defined by

f(ζ) =
∞∑

n=0

(ζ − z0)nan , |ζ − z0| < ρ, (1.8.7)

is holomorphic on the open disc |z − z0| < ρ, and

f ′(ζ) =
∞∑

n=1

n(ζ − z0)n−1an , |ζ − z0| < ρ. (1.8.8)

(iii) If f is the holomorphic function defined by (1.8.6), then

an =
f (n)(z0)

n!
, n ∈ N. (1.8.9)

Proof. Part (i): By definition (1.8.3) of the radius of convergence, assertion (i) is
equivalent to the equality

1
lim sup

n→∞
n
√
‖an‖

=
1

lim sup
n→∞

n−1
√

n‖an‖
.

But the latter relation follows (for example) from the fact that the scalar power
series ∞∑

n=0

‖an‖(z − z0)n and
∞∑

n=1

n‖an‖(z − z0)n−1

have the same radius of convergence.
Part (ii): From (1.8.4) it follows that the sequence of partial sums

N∑
n=0

an(z − z0)n , N ∈ N,

converges to f , uniformly on each compact subset of the disc |z − z0| < ρ. By
Theorem 1.6.4 this implies that f is holomorphic and that the sequence of partial
sums

N∑
n=1

nan(z − z0)n−1 , N ∈ N,

converge to f ′, uniformly on each compact subset of the disc |z − z0| < ρ.
Part (iii): This follows, as in the scalar case, by repeated application of (i)

and (ii). �
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1.8.5 Theorem. Let D ⊆ C be an open set, let E be a Banach space, and let
f : D → E be a holomorphic function. Let z0 ∈ D and let r > 0 such that the
open disc |z − z0| < r is contained in D. Then there exists a uniquely determined
power series

∞∑
n=0

(z − z0)nfn

with coefficients fn ∈ E with radius of convergence such that

f(ζ) =
∞∑

n=0

(ζ − z0)nfn (1.8.10)

for all ζ in a neighborhood of z0. Then

fn =
f (n)(z0)

n!
=

1
2πi

∫
|z−z0|=r′

f(z)
(z − z0)n+1

dz for all 0 < r′ < r. (1.8.11)

Moreover, then ρ ≥ r and (1.8.10) holds for all ζ wtih |ζ − z0| < r.

Proof. The statement on uniqueness and the first equality in (1.8.10) follows from
part (iii) of Theorem 1.8.4. To prove the remaining statements, we define vectors
by

fn =
1
2πi

∫
|z−z0|=r′

f(z)
(z − z0)n+1

dz , n ∈ N , (1.8.12)

where 0 < r′ < r. (By the Cauchy integral theorem this is independent of the
choice of r′.) It remains to prove that, for |ζ − z0| < r, the series

∞∑
n0

(ζ − z0)nfn

converges to f(ζ). Let such ζ be given. Then, as in the scalar case, we choose r′

with |ζ − z0| < r′ < r and obtain by means of the Cauchy formula

f(ζ) =
1
2πi

∫
|z−z0|=r′

f(z)
z − ζ

dz =
1
2πi

∫
|z−z0|=r′

1
1− ζ−z0

z−z0

f(z)
z − z0

dz

=
1
2πi

∫
|z−z0|=r′

∞∑
n=0

(
ζ − z0

z − z0

)n
f(z)

z − z0
dz

=
∞∑

n=0

(ζ − z0)n
(

1
2πi

∫
|z−z0|=r

f(z)
(z − z0)n+1

dz

)
=

∞∑
n=0

(ζ − z0)nfn.

�
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1.9 Laurent series

1.9.1 Theorem. Let z0 ∈ C, let 0 ≤ r < R ≤ ∞, let E be a Banach space, and
let f be an E-valued function defined and holomorphic in r < |z − z0| < R. Then
there exists a uniquely determined Laurent series

∞∑
n=−∞

(z − z0)nfn (1.9.1)

with coefficients fn ∈ E such that

∞∑
n=−∞

max
r′≤|ζ−z0|≤R′

|ζ − z0|n‖fn‖ <∞ for r < r′ < R′ < R (1.9.2)

and

f(ζ) =
∞∑

n=−∞
(ζ − z0)nfn for r < |ζ − z0| < R. (1.9.3)

Moreover, then

fn =
1
2πi

∫
|z−z0|=ρ

f(z)
(z − z0)n+1

dz for r < ρ < R. (1.9.4)

Proof. Uniqueness and formula (1.9.4): Suppose we have a Laurent series with
(1.9.2) and (1.9.3). Then, for each r < ρ < R,

1
2πi

∫
|z−z0|=ρ

f(z)
(z − z0)n+1

dz =
∞∑

k=−∞

fk

2πi

∫
|z−z0|=ρ

(z − z0)k

(z − z0)n+1
dz = fn.

Existence: We define a function f+ on the disc |z − z0| < R as follows: If a
point z with |z−z0| < R is given, then we choose a number ρ with |z−z0| < ρ < R
and set

f+(z) =
1
2πi

∫
|ζ−z0|=ρ

f(ζ)
ζ − z

dζ. (1.9.5)

By the Cauchy integral theorem, this definition is independent of the choice of ρ,
and, by Lemma 1.5.2, f+ is holomorphic on the disc |z − z0| < R. Furthermore,
we define a function f− on |z − z0| > r as follows: If a point z with |z − z0| > r is
given, then we choose a number ρ with |z − z0| > ρ > r and set

f−(z) = −
1
2πi

∫
|ζ−z0|=ρ

f(ζ)
ζ − z

dζ. (1.9.6)
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Again, by the Cauchy integral theorem, this definition is independent of the choice
of ρ, and, by Lemma 1.5.2, f− is holomorphic on |z − z0| > r and

lim
|z|→∞

f−(z) = 0. (1.9.7)

Then
f(z) = f+(z) + f−(z) for r < |z − z0| < R. (1.9.8)

Indeed, let z with r < |z − z0| < R be given. Then we choose ρ+ and ρ− with
r < ρ− < |z − z0| < ρ+ < R and obtain, by the Cauchy-Integral formula,

f(z) =
1
2πi

∫
|ζ−z0|=ρ+

f(ζ)
(ζ − z)

dζ − 1
2πi

∫
|ζ−z0|=ρ−

f(ζ)
(ζ − z)

dζ = f+(z) + f−(z).

As f+ is holomorphic on the disc |z − z0| < R, it can be represented by a
power series (Theorem 1.8.5):

f+(z) =
∞∑

n=0

(z − z0)nfn, |z − z0| < R, (1.9.9)

where, by Abel’s lemma (Theorem 1.8.2),

∞∑
n=0

max
|z−z0|≤R′

|z − z0|n‖fn‖ <∞ for R′ < R. (1.9.10)

Now we consider the function

F (z) := f−

(
z0 +

1
z

)
,

which is defined and holomorphic for 0 < |z| < 1/r. As lim|z|→∞ f−(z) = 0,
this function extends continuously to 0 with F (0) := 0. By Theorem 1.5.4, this
extended F is holomorphic on the whole disc |z| < 1/r. Therefore also F can be
represented by a power series

F (z) =
∞∑

n=1

znFn , |z| < 1
r
, (1.9.11)

where ∞∑
n=1

max
|z|≤1/r′

|z|n‖Fn‖ <∞ , r′ > r. (1.9.12)

Set fn = F−n for n ≤ −1. Then it follows from (1.9.11) and (1.9.12) that

f−(z) = F

(
1

z − z0

)
=

∞∑
n=1

(
1

z − z0

)n

Fn =
−1∑

n=−∞
(z − z0)nfn , |z − z0| > r,
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and

−1∑
n=−∞

max
|z−z0|≥r′

|z − z0|n‖fn‖ =
∞∑

n=1

max
1/|z−z0|≤1/r′

∣∣∣∣ 1
z − z0

∣∣∣∣n ‖Fn‖ <∞ , r′ > r.

Together with (1.9.8), (1.9.9) and (1.9.10) this shows that the Laurent series

∞∑
n=−∞

(z − z0)nfn

has the required properties. �

1.10 Isolated singularities

1.10.1. Let D ⊆ C be an open set, let E be a Banach space, and let f be an
E-valued holomorphic function with the domain of definition D. Then, as in the
scalar case, a point z0 ∈ C is called an isolated singularity of f , if {z0}∪D is open
and z0 	∈ D.

1.10.2. Let z0 ∈ C, let U be a neighborhood of z0, let E be a Banach space, and
let f : U \ {z0} → E be a holomorphic function. (In other words, in the sense of
Section 1.10.1, we assume that z0 is an isolated singularity of some holomorphic
function f .) Further let ε > 0 be the maximal radius such that the punctured disc
0 < |z − z0| < ε is still contained in U .

By Theorem 1.9.1 then there exists a uniquely determined Laurent series

∞∑
n=−∞

(z − z0)nfn

which converges in 0 < |z − z0| < ε such that

f(ζ) =
∞∑

n=−∞
(ζ − z0)nfn for all 0 < |ζ − z0| < ε. (1.10.1)

This Laurent series will be called the Laurent series of f at z0, the formula
(1.10.1) will be called the Laurent expansion of f at z0, and the vector f−1 will be
called the residuum of f at z0. As in the scalar case one sees that, for each ε > 0
such that the punctured disc 0 < |z − z0| ≤ ε is contained in U ,

f−1 =
1
2πi

∫
|z−z0|=ε

f(z)dz. (1.10.2)

The isolated singularity z0 will be called a removable singularity of f if fn = 0
for all negative integers n. If, moreover, f0 = 0, then it will be called a zero of f .



26 Chapter 1. Elementary properties of holomorphic functions

If z0 is a zero of f and f 	≡ 0 in a neighborhood of z0, then (by uniqueness of the
Laurent expansion) there exist positive integers n with fn 	= 0 – the smallest of
them will be called the order of the zero z0.

The isolated singularity z0 will be called a pole of f if there exists a negative
integer p such that fp 	= 0 and fn = 0 for all integers n ≤ p − 1. The integer p
then is called the order of the pole z0.

If z0 is not a removable singularity of F and not a pole of f , then z0 is called
an essential singularity of f .

1.10.3 Theorem (Riemann’s theorem on removable singularities). Let E be a Ba-
nach space, and let z0 be an isolated singularity of an E-valued holomorphic func-
tion f defined in a deleted neighborhood of z0. If f is bounded, then z0 is removable
as a singularity of f .

Proof. Let

f(z) =
∞∑

n=−∞
fn(z − z0)n

be the Laurent series of f at z0. We have to prove that fn = 0 for n ≤ −1. Let
n ≤ −1 be given. Choose r > 0 sufficiently small. Then

C := sup
0<|z−z0|<r

|f(z)| <∞,

and, by (1.9.4),

fn =
1
2πi

∫
|z−z0|=ε

f(z)
(z − z0)n+1

dz for 0 < ε < r.

In view of the estimate given in Proposition 1.3.6, this implies

|fn| ≤ ε max
|z−z0|=ε

|f(z)| 1
εn+1

≤ C

εn
for 0 < ε < r.

As n ≤ −1, this further implies that fn = 0. �
1.10.4 Theorem. Let E be a Banach space, and let z0 be an isolated singularity of
an E-valued holomorphic function f defined in a deleted neighborhood of z0. Then
the following two conditions are equivalent.

(i) There exist constants C <∞ and c > 0 such that, for some ε > 0,

c|z − z0|N ≤ ‖f(z)‖ ≤ C|z − z0|N for 0 < |z − z0| < ε. (1.10.3)

(ii) The Laurent series of f at z0 is of the form

f(z) =
∞∑

n=N

fn(z − z0)n with fN 	= 0. (1.10.4)
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Proof. First assume that (i) is satisfied. Then

g(z) :=
f(z)

(z − z0)N

is a holomorphic function in a deleted neighborhood of z0 which is bounded from
above and below. This implies, by Riemann’s Theorem 1.10.3, that g extends
holomorphically to z0, where g(z0) 	= 0. Let

g(z) =
∞∑

n=0

(z − z0)ngn

be the potential series of g at z0. Then

f(z) = (z − z0)Ng(z) =
∞∑

n=0

(z − z0)n+Ngn =
∞∑

n=N

(z − z0)ngn−N

is the Laurent expansion of f . As g0 = g(z0) 	= 0, it is of the form (1.10.4).
Now we assume that condition (ii) is satisfied. Then

g(z) :=
f(z)

(z − z0)N
=

∞∑
n=N

(z − z0)n−Nfn =
∞∑

n=0

(z − z0)nfn+N

is holomorphic in a neighborhood of z0, where g(z0) = fN 	= 0. Choose ε > 0 so
small that

‖fN‖
2

≤ ‖g(z)‖ ≤ 2‖fN‖ for ‖z − z0‖ < ε.

As f(z) = (z − z0)Ng(z), then (1.10.4) holds with C = 2|fN | and c = |fN |/2. �
1.10.5 Theorem (Residue theorem). Let D ⊆ C be an open set with piecewise
C1-boundary ∂D, let z1, . . . , zn be a finite number of points in D, let E be a Ba-
nach space, and let f : D \ {z1, . . . , zn} → E be a continuous function which is
holomorphic in D. If we denote by reszj

f the residuum of f at zj, then

n∑
j=1

reszj
f =

1
2πi

∫
∂D

f(z)dz. (1.10.5)

Proof. Choose ε > 0 so small that the closed discs |z − zj | ≤ ε, 1 ≤ j ≤ n, are
pairwise disjoint and contained in D. Then by the Cauchy integral theorem∫

∂D

f(z)dz =
n∑

j=1

∫
|z−zj |=ε

f(z)dz.

By (1.10.2) this implies (1.10.5). �
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1.10.6. Let D ⊆ C be an open set, and let E be a Banach space. If we say that
f is an E-valued holomorphic function with isolated singularities on D, then we
mean that there is a set Z ⊆ D, which is discrete and closed in D (i.e., without
accumulation points in D), such that f is an E-valued holomorphic function on
D \ Z. In this case we say also that f : D → E is holomorphic with isolated
singularities. The points from Z (which then are isolated singularities of f in the
sense of Section 1.10.1) are called the singular points of f , and the points from
D \ Z are called the regular points of f .

If all singular points of f are either removable or poles, then f is called
meromorphic on D.

1.11 Comments

Except for Theorem 1.2.2 about the strong maximum principle in Hilbert spaces
(which is possibly new), the results of this chapter are coa.



Chapter 2

Solution of ∂u = f and
applications

In complex analysis of several variables, the inhomogeneous Cauchy-Riemann
equation is an important tool. For results in Complex analysis of one variable
this equation is also important, but it is missing in many standard books.

For the aim of the present book, the inhomogeneous Cauchy-Riemann equa-
tion is basic. Therefore we dedicate the present chapter to it and its applications.
We give these results with full proofs, not using the corresponding scalar fact, even
if it would be possible to deduce a result by the Hahn-Banach theorem from the
corresponding scalar fact.

Moreover, here we present also some results, which are specific for scalar
functions, with full proofs, as these results are difficult to find in the literature.

2.1 The Pompeiju formula for solutions of ∂u = f

on compact sets

In this section, E is a Banach space.
Let D ⊆ C be an open set, and let u : D → E be a C1-function. Then we

use the abbreviation

∂u =
∂u

∂z
=
1
2

(
∂u

∂x
+ i

∂u

∂y

)
where x, y are the canonical real coordinates on C and z = x+ iy. The function ∂u
is called the Cauchy-Riemann derivative of u. By the Cauchy-Riemann criterion
(Theorem 1.6.5), u is holomorphic if and only if ∂u = 0. This implies that, for all
holomorphic functions h : D → C,

∂(hu) = h∂u. (2.1.1)
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Moreover, if ϕ : D → C is a C1-function with compact support, then partial inte-
gration gives ∫

D

ϕ(∂u) dλ = −
∫

D

(∂ϕ)u dλ

where dλ is the Lebesgue measure.
This can be used to define ∂u in the sense of distributions if u is not of class

C1. In this book, we are interested only in the following special case:

2.1.1 Definition. Let D ⊆ C be an open set, and let u : D → E be a continuous
function. We say that u has a continuous Cauchy-Riemann derivative if there exists
a continuous function v : U → E such that∫

D

ϕv dλ = −
∫

D

(∂ϕ)u dλ (2.1.2)

for all C∞-functions ϕ : D → C with compact support. It is clear that this function
v then is uniquely determined. We call it the Cauchy-Riemann derivative of u and
denote it by ∂u.

Instead of “u has a continuous Cauchy-Riemann derivative” we say also “∂u
is continuous”. Moreover, if u and f are two continuous functions, then writing
“∂u = f” we mean that “u has a continuous Cauchy-Riemann derivative and
∂u = f”.

2.1.2 Proposition. Let D ⊆ C be an open set, let u : D → E be a continuous
function such that ∂u is continuous on D, and let ψ : D → C be a C1-function.
Then also ∂(ψu) is continuous on D, and

∂(ψu) = (∂ψ)u+ ψ∂u.

Proof. For all C∞-functions ϕ : D → C with compact support, we have∫
D

ϕ
(
(∂ψ)u+ ψ∂u

)
dλ =

∫
D

ϕ(∂ψ)u dλ+
∫
D

ϕψ∂u dλ

=
∫

D

ϕ(∂ψ)u dλ−
∫
D

∂(ϕψ)u dλ

=
∫

D

ϕ(∂ψ)u dλ−
∫
D

(∂ϕ)ψu dλ−
∫
D

ϕ(∂ψ)u dλ

= −
∫
D

(∂ϕ)ψu dλ.

�

2.1.3 Lemma. Let D ⊆ C be an open set, let u : D → E be a continuous function
such that also ∂u is continuous on D, and let K ⊆ D be compact. Then there
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exists a sequence (un)n∈N of C∞-functions un : D → E such that, uniformly on
K, both

lim
n→∞un = u and lim

n→∞ ∂un = ∂u.

Proof. Choose an open neighborhood V of K which is relatively compact in D.
Further, let ϕ be a real non-negative C∞-function on C with∫

C

ϕ dλ = 1 and ϕ(z) = 0 if |z| > 1.

Now let a continuous map u : D → E be given such that ∂u is also continuous on
D. Then we set

uε(z) = ε2

∫
V

ϕ

(
z − ζ

ε

)
u(ζ) dλ(ζ), z ∈ C , ε > 0. (2.1.3)

Since

ε2

∫
C

ϕ

(
z − ζ

ε

)
dλ(ζ) = 1 for all z ∈ C and ϕ

(
z − ζ

ε

)
= 0 if |z − ζ| > ε,

then, for sufficiently small ε > 0 and all z ∈ K,

∣∣uε(z)− u(z)
∣∣ ≤ ε2

∫
V

ϕ

(
z − ζ

ε

)∣∣u(ζ)− u(z)
∣∣ dλ(ζ) ≤ max

ζ∈V ,|z−ζ|≤ε

∣∣u(ζ)− u(z)
∣∣.

Since V is compact, it follows that limε→0 uε = u, uniformly on K. Since also ∂u
is continuous on D, then, in the same way, we get limε→0(∂u)ε = ∂u, uniformly on
K. This completes the proof, because ∂uε = (∂u)ε. Indeed, differentiating under
the integral in (2.1.3) we obtain

(∂uε)(z) = ε2

∫
V

∂zϕ

(
z − ζ

ε

)
u(ζ) dλ(ζ) = −ε2

∫
V

∂ζϕ

(
z − ζ

ε

)
u(ζ) dλ(ζ),

which implies, by (2.1.2),

(∂uε)(z) = ε2

∫
V

ϕ

(
ζ − z

ε

)
(∂u)(ζ) dλ(ζ) = (∂u)ε(z). �

2.1.4 Theorem (Cauchy formula for continuous functions). Let D be a bounded
open set with piecewise C1-boundary ∂D, and let u : D → E be a continuous
function such that also ∂u is continuous on D. Moreover we assume that ∂u admits
a continuous extension to D. Then

u(z) =
1
2πi

∫
∂D

u(ζ)
ζ − z

dζ − 1
π

∫
D

∂u(z)
ζ − z

dλ(ζ), z ∈ D. (2.1.4)
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Proof. First consider the case when u is of class C1 in a neighborhood of D. Let
z ∈ D. Set Dε = {ζ ∈ D | |ζ−z| > ε} for sufficiently small ε > 0. Then, by Stokes’
formula, with ζ = x+ iy,∫

∂Dε

u(ζ)
ζ − z

dζ =
∫

∂Dε

u(ζ)
ζ − z

dx + i

∫
∂Dε

u(ζ)
ζ − z

dy

= −
∫

Dε

∂

∂y

u(ζ)
ζ − z

dλ(ζ) + i

∫
Dε

∂

∂x

u(ζ)
ζ − z

dλ(ζ) = +2i
∫

Dε

(δu)(ζ)
ζ − z

dλ(ζ).

Since

lim
ε↘0

∫
∂Dε

u(ζ)
ζ − z

dζ =
∫

∂D

u(ζ)
ζ − z

dζ − lim
ε↘0

∫
|ζ−z|=ε

u(ζ)
ζ − z

dζ =
∫

∂D

u(ζ)
ζ − z

dζ − 2πi u(z),

this implies (2.1.4).
Now we consider the case when u admits a continuous extension ũ to a

neighborhood of D such that ∂ũ is also continuous in this neighborhood. Then by
Lemma 2.1.3 we can find a sequence (un)n∈N of C∞-maps un : C → E such that,
uniformly on D, both

lim
n→∞un = u and lim

n→∞ ∂un = ∂u.

Since the required equation(2.1.4) is already proved for each un, passing to the
limit, it follows for u.

Finally, consider the general case. Then we take a sequence of bounded open
sets (Dn)n∈N with piecewise C1-boundary such that Dn ⊆ D and

lim
n→∞

∫
∂Dn

u(ζ)
ζ − z

dζ =
∫

∂D

u(ζ)
ζ − z

dζ , lim
n→∞

∫
Dn

∂u(ζ)
ζ − z

dλ(ζ) =
∫
D

∂u(ζ)
ζ − z

dλ(ζ).

Since the required equation(2.1.4) is already proved for each u
∣∣
Dn
, passing to the

limit, it follows for u. �
2.1.5 Theorem. Let D ⊆ C be an open set, and let u : D → E be a continuous
function such that ∂u = 0 on D. Then u is holomorphic.

Proof. Since the assertion is local, we may assume that D is a disc and u is defined
and continuous in a neighborhood of D and that ∂u = 0 in this neighborhood.
Then the second integral in the Cauchy formula (2.1.4) vanishes, i.e.,

u(z) =
1
2πi

∫
∂D

u(ζ)
ζ − z

dζ , z ∈ D.

Now the assertion follows by differentiation under the integral. �
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2.1.6 Definition. Let 0 < α < 1. First let M ⊆ C be an arbitrary set. For any
function f : M → E, we set

‖f‖M,0 = sup
z∈M

‖f(z)‖

and

‖f‖M,α = ‖f‖M,0 + sup
z,w∈M,z 
=w

∥∥f(z)− f(w)
∥∥

|z − w|α .

We write ‖f‖0 instead of ‖f‖M,0 and ‖f‖α instead of ‖f‖M,α if it is clear which
set M we mean.

A function f : M → E is called (locally) Hölder continuous with exponent
α if, for each point z0 ∈M , there exists a neighborhood U of z0 such that

‖f‖U∩M,α <∞ .

The space of all such functions will be denoted by (Cα)E(M). Instead of Hölder
continuous with exponent α we say also Hölder-α continuous or of class Cα .

A function f : M → E will be called Hölder continuous if there exists
0 < α < 1 such that f is Hölder continuous with exponent α.

Sometimes, for practical reasons, continuous functions will be called Hölder
continuous functions with exponent 0 (although they are not Hölder continuous).

Now let D ⊆ C be an open set, and k ∈ N∗ ∪ {∞}. Recall that (Ck)E(D)
denotes the space of all E-valued Ck functions on D.

A function f : D → E is called of class Ck+α or simply Ck+α if f is Ck on D
and, moreover, the partial derivatives of order k of f are of class Cα on D. The
space of all such functions will be denoted by (Ck+α)E(D).

2.1.7 Definition (Pompeiju operator ΠD). Let D ⊆ C be a bounded open set.
Then, for any bounded continuous function f : D → E and each z ∈ C, we define

(ΠDf)(z) = − 1
π

∫
D

f(ζ)
ζ − z

dλ(ζ) .

The operator ΠD will be called the Pompeiju operator on D.

2.1.8 Lemma. Let d < ∞. Then there exists C <∞ such that∫
|ζ|<d

∣∣∣∣ 1
ζ − z

− 1
ζ − w

∣∣∣∣ dλ(ζ) ≤ C|z − w|
∣∣ log |z − w|

∣∣ (2.1.5)

for all z, w ∈ C.
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Proof. Let z, w ∈ C be given. Since, for z = w, the left-hand side of (2.1.5) is zero,
we may assume that z 	= w. We have

∫
|ζ−z|< 1

2 |z−w|

dλ(ζ)
|ζ − z| =

1
2 |z−w|∫

0

∫
|ζ−z|=r

|dζ|
r

dr = π|z − w| . (2.1.6)

Moreover, if |ζ − z| ≤ 1
2 |z − w|, then |ζ − w| > 1

2 |z − w|. Therefore∫
|ζ−z|< 1

2 |z−w|

dλ(ζ)
|ζ − w| ≤

2
|z − w|

∫
|ζ−z|< 1

2 |z−w|

dλ(ζ) =
π

2
|z − w| .

Together with (2.1.5) this yields∫
|ζ−z|< 1

2 |z−w|

∣∣∣∣ 1
ζ − z

− 1
ζ − w

∣∣∣∣ dλ(ζ) ≤ 3π
2
|z − w| .

Hence ∫
min(|ζ−z|,|ζ−w|)< 1

2 |z−w|

∣∣∣∣ 1
ζ − z

− 1
ζ − w

∣∣∣∣ dλ(ζ) ≤ 3π|z − w| . (2.1.7)

It remains to estimate

I(z, w) :=
∫

|ζ|<d

min(|ζ−z|,|ζ−w|)> 1
2 |z−w|

∣∣∣∣ 1
ζ − z

− 1
ζ − w

∣∣∣∣ dλ(ζ) .

If |ζ − w| ≥ 1
2 |z − w|, then

|ζ − z| ≤ |ζ − w|+ |z − w| ≤ |ζ − w|+ 2|ζ − w| = 3|ζ − w|

and therefore ∣∣∣∣ 1
ζ − z

− 1
ζ − w

∣∣∣∣ = |z − w|
|ζ − z||ζ − w| ≤

1
3
|z − w|
|ζ − z|2 .

Hence

I(z, w) ≤ |z − w|
3

∫
|ζ|<d

|ζ−z|> 1
2 |z−w|

dλ(ζ)
|ζ − z|2 ≤

|z − w|
3

∫
2d>|ζ−z|> 1

2 |z−w|

dλ(ζ)
|ζ − z|2

=
|z − w|

3

2d∫
1
2 |z−w|

∫
|ζ−z|=r

|dζ|
r2

dr =
2π
3
|z − w|

2d∫
1
2 |z−w|

dr

r
.
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Since

2d∫
1
2 |z−w|

dr

r
= log(2d)− log

(1
2
|z − w|

)
= log(4d)− log |z − w|

≤ log(4d) +
∣∣ log |z − w|

∣∣,
this yields

I(z, w) ≤ 2π log(4d)
3

|z − w|+ 2π
3
|z − w|

∣∣ log |z − w|
∣∣.

Together with (2.1.7) this implies that there is a constant C < ∞ (depending on
d) satisfying (2.1.5) �
2.1.9 Theorem. Let D ⊆ C be a bounded open set, let ΠD be the Pompeiju operator
(Def. 2.1.7), and let f : D → E be a bounded continuous function.

(i) Then there exists a constant C <∞ such that∥∥∥(ΠDf)(z)− (ΠDf)(w)
∥∥∥ ≤ C|z − w|

∣∣∣ log |z − w|
∣∣∣ (2.1.8)

for all z, w ∈ C. In particular,

ΠDf
∣∣∣
D
∈

⋂
0<α<1

(Cα)E(D) . (2.1.9)

(ii) If, moreover, f is of class Ck on D, k ∈ N∗, then

ΠDf
∣∣∣
D
∈

⋂
0<α<1

(Ck+α)E(D) . (2.1.10)

Proof. Part (i) follows immediately from Lemma 2.1.8.
We prove part (ii). Let k ∈ N be given. Since the statement is local, it is

sufficient to prove that, for each η ∈ D, there exists a neighborhood U ⊆ D of η
such that

ΠDf
∣∣∣
U
∈

⋂
0<α<1

(Ck+α)E(U) . (2.1.11)

Let η ∈ D be given. Choose a C∞-function χ with compact support suppχ ⊆ D
and χ ≡ 1 in a neighborhood U ⊆ D of η. We have

ΠDf = ΠD(χf) + ΠD

(
(1− χ)f

)
.

Since (1 − χ)f ≡ 0 in U , by differentiation under the integral, we see that
ΠD

(
(1 − χ)f

)
is C∞ in U . Therefore it remains to prove that ΠD(χf) is Ck+α

in U .
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As χ has compact support, the substitution ζ → ζ + z gives

(
ΠD(χf)

)
(z) = − 1

π

∫
D

(χf)(ζ)
ζ − z

dλ(ζ) = − 1
π

∫
C

(χf)(ζ + z)
ζ

dλ(ζ)

for all z ∈ U . Again by differentiation under the integral, we see that Π(χf) is of
class Ck on U , where, for all ν, μ ∈ N with 0 ≤ ν + μ ≤ k,

∂ν+μ
(
ΠD(χf)

)
∂xν∂yμ

(z) = − 1
π

∫
C

∂ν+μ(χf)
∂xν∂yμ

(ζ + z)
dλ(ζ)

ζ
, z ∈ U . (2.1.12)

So it is proved that ΠD(f) is of class Ck on U .
It remains to prove that the derivatives of order k of ΠD(χf) belong to⋂

0<α<1(C
α)E(U). Let ν, μ ∈ N with ν + μ = k be given. By the substitution

ζ → ζ − z, from (2.1.12) we get

∂ν+μ
(
ΠD(χf)

)
∂xν∂yμ

(z) = − 1
π

∫
C

∂ν+μ(χf)
∂xν∂yμ

(ζ)
dλ(ζ)
ζ − z

, z ∈ U . (2.1.13)

Since suppχ is a compact subset of D,

C := max
ζ∈supp χ

∥∥∥∥∥∂ν+μ
(
χf

)
∂xν∂yμ

(ζ)

∥∥∥∥∥ <∞,

and, by (2.1.13),∥∥∥∥∥∂ν+μ
(
ΠD(χf)

)
∂xν∂yμ

(z)− ∂ν+μ
(
ΠD(χf)

)
∂xν∂yμ

(w)

∥∥∥∥∥ ≤ C

∫
D

∣∣∣∣ 1
ζ − z

− 1
ζ − w

∣∣∣∣ dλ(ζ)

for all z, w ∈ Uη. Now it follows again from Lemma 2.1.8 that

∂ν+μ
(
ΠD(χf)

)
∂xν∂yμ

belongs to
⋂

0<α<1(C
α)E(U). �

2.1.10 Theorem. Let D ⊆ C be a bounded open set, and let f : D → E be con-
tinuous and bounded. Then ΠDf (Def. 2.1.7) has a continuous Cauchy-Riemann
derivative on D and

∂ΠDf = f on D. (2.1.14)

2.1.11 Remark. It is easy to see that the assertion of Theorem 2.1.10 is true for
any open set D and any continuous f such the integral∫

D

f(ζ)
ζ − z

dλ(ζ)
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converges (without the hypotheses on boundedness of D and f). We will not use
this generalization. Instead, in Section 2.3,we will use an approximation argument
to deduce from Theorem 2.1.10 the solvability of ∂u = f for arbitrary continuous
functions f on arbitrary open sets. For that we need the Runge approximation the-
orem presented in Section 2.2. First, in the next section, we give a first application
of Theorem 2.1.10 and Theorem 2.1.9.

Proof of Theorem 2.1.10. By Definition 2.1.1 we have to prove that∫
D

ϕf dλ = −
∫

D

(∂ϕ)(ΠDf) dλ

for any C∞-function ϕ : D → C with compact support in D. Let such ϕ be given.
Then, by the Cauchy formula (Theorem 2.1.4), ϕ = ΠD(∂ϕ). Interchanging the
order of integration, this yields the required relation:∫

D

ϕf dλ =
∫

D

ΠD(∂ϕ)f dλ =
∫

D

(
− 1

π

∫
D

(∂ϕ)(ζ)
ζ − z

dλ(ζ)
)

f(z) dλ(z)

=
∫

D

(∂ϕ)(ζ)
(
1
π

∫
D

f(z)
z − ζ

dλ(z)
)

dλ(ζ) = −
∫

D

(∂ϕ)(ΠDf) dλ.

�

2.1.12 Theorem (Regularity of ∂). Let D ⊆ C an open set, let f : D → E be of
class Ck on D, k ∈ N ∪ {∞}, and let u : D → E be a continuous function with
continuous Cauchy-Riemann derivative such that

∂u = f on D.

Then
u ∈

⋂
0<α<1

Ck+α(D).

Proof. Since the assertion is local, we may assume that both D and f are bounded.
Then it follows from theorems 2.1.10 and 2.1.9 that there exists

v ∈
⋂

0<α<1

Ck+α(D) with ∂v = f on D,

namely v = ΠDf . Then ∂(u − v) = f − f = 0 on D. By Theorem 2.1.5 this
means that u − v is holomorphic. As holomorphic functions are of class C∞ and
v ∈ ⋂

0<α<1 Ck+α(D), it follows that u ∈ ⋂
0<α<1 Ck+α(D). �

2.2 Runge approximation

In this section E is a Banach space.
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2.2.1 Theorem (Mergelyan approximation). Let D ⊆ C be a bounded open set
with piecewise C1-boundary, and let f : D → E be a continuous function which is
holomorphic in D. Then, for each ε > 0, there exists a neighborhood U of D and
a function f̃ ∈ OE(U) such that

‖f(z)− f̃(z)‖ < ε for all z ∈ D. (2.2.1)

Proof. Take a finite number of real non-negative C∞ functions χ1, . . . , χn on
C with sufficiently small supports suppχj (how small, we say below) such that∑n

j=1 χj = 1 in some neighborhood of ∂D. Set

fj(z) =
1
2πi

∫
∂D

χj(ζ)f(ζ)
ζ − z

dζ, z ∈ C \ (suppχj ∩ ∂D) , 1 ≤ j ≤ n.

Differentiation under the sign of integration shows that each fj is holomorphic on
C \ (suppχj ∩ ∂D). From Cauchy’s formula we get

n∑
j=1

fj(z) =
1
2πi

∫
∂D

∑n
j χj(ζ)f(ζ)

ζ − z
dζ =

1
2πi

∫
∂D

f(ζ)
ζ − z

dζ = f(z) (2.2.2)

for all z ∈ D. By Proposition 2.1.2, ∂(χjf) = (∂χj)f is continuous on D. There-
fore, by the Cauchy formula for continuous functions (Theorem 2.1.4) and by
Definition 2.1.7 of ΠD,

χjf = fj +ΠD

(
∂(χjf)

)
on D.

Since χjf is continuous on D and, by Theorem 2.1.9, also ΠD

(
∂(χjf)

)
is contin-

uous on D, this implies that each fj admits a continuous extension from D to
suppχj ∩ ∂D, which we denote by fD

j . Then it follows from (2.2.2) that

f(z) = fD
1 (z) + . . .+ fD

n (z) for all z ∈ D.

Since ∂D is piecewise C1 and each fD
j extends to a holomorphic function outside

suppχj ∩ ∂D, now we can choose the supports suppχj so small that, by small
shifts, for each j, we can find a neighborhood Uj of D and a function f̃j ∈ OE(Uj)
such that

‖fD
j (z)− f̃j(z)‖ <

ε

n
for z ∈ D.

Setting U = U1 ∩ . . . ∩ Un and f̃ = f̃1 + . . .+ f̃n, we complete the proof. �
2.2.2 Theorem (Runge approximation). Let D ⊆ C be a bounded open set (possibly
not connected) with piecewise C1-boundary, and let f : D → E be a continuous
function which is holomorphic in D.

(i) If C\D is connected, then f can be approximated uniformly on D by E-valued
polynomials.
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(ii) If C \ D is not connected and U1, . . . , UN are the bounded connected com-
ponents of C \ D, then for any choice of points p1 ∈ U1, . . . , pN ∈ UN , the
function f can be approximated uniformly on D by E-valued rational func-
tions which are holomorphic on C \ {p1, . . . , pN}.

Proof. Denote by U∞ the unbounded connected component of C \ D and set
R = maxz∈D |z|. We now proceed in 4 steps:

Step 1. First consider the case when f is holomorphic in some neighborhood
of the disc |z| ≤ R. Then the potential series of f at zero gives a uniform approx-
imation of f on this disc by E-valued polynomials. Since D is contained in this
disc, this completes the proof in this case.

Step 2. Now we consider the case when f is of the form

f(z) =
b

z − ξ
with b ∈ E and ξ ∈ U∞. (2.2.3)

Then we choose a continuous curve γ : [0, 1]→ C\D with γ(0) = ξ and |γ(1)| > R
and take 0 = t0 < t1 < . . . < tn = 1 such that

|tj−1 − tj | < min
z∈D , 0≤t≤1

∣∣z − γ(t)
∣∣ for 1 ≤ j ≤ n.

Then, for 1 ≤ j ≤ N ,

b

z − γ(tj)
=

b

z − γ(tj−1)
· 1

1− γ(tj)−γ(tj−1)
z−γ(tj−1)

=
b

z − γ(tj−1)

∞∑
k=0

(
γ(tj)− γ(tj−1)

z − γ(tj−1)

)k

where the series converges uniformly in z ∈ D. Therefore, for each j, the function
b/(z − γ(tj)) can be approximated uniformly on D by E-valued polynomials in
1/(z − γ(tj−1)). It follows that the map

b

z − ξ
=

b

z − γ(t0)

can be approximated uniformly on D by E-valued polynomials in

1
z − γ(tn)

=
1

z − γ(1)
.

Since γ(1) > R and therefore, as we saw in step 1,

1
z − γ(1)

can be approximated uniformly on D by polynomials, this completes the proof for
functions of the form (2.2.3).
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Step 3. Here we consider the case when C \D is not connected, U1, . . . , UN

are the bounded connected components of C \ D, p1 ∈ U1, . . . , pN ∈ UN are the
chosen points and, for some 1 ≤ j ≤ N , f is of the form

f(z) =
b

z − ξ
with b ∈ E and ξ ∈ Uj . (2.2.4)

Then we choose a continuous curve γ : [0, 1] → Uj with γ(0) = ξ and γ(1) = pj ,
and, in the same way as in step 2, we see that

b

z − ξ

can be approximated uniformly on D by E-valued polynomials in

1
z − pj

,

which completes the proof for functions of the form (2.2.4).
Step 4. Consider the general case. By Theorem 2.2.1 we may assume that f

is defined and holomorphic in some neighborhood V of D. Take a bounded open
set G with C1-boundary such that D ⊆ G and G ⊆ V . Then, by Cauchy’s formula,

f(z) =
1
2πi

∫
∂G

f(ζ)
ζ − z

dζ, z ∈ D.

If C \ D is connected, then passing to Riemann sums, this shows that f can be
approximated uniformly on D by linear combinations of functions of the form

f(ξ)
z − ξ

with ξ ∈ ∂G ⊆ U∞. Since, as we saw in step 2, such functions can be approxi-
mated uniformly on D by E-valued polynomials, this completes the proof if C \D
is connected. If C \ D is not connected, U1, . . . , UN are the bounded connected
components of C \ D and p1 ∈ U1, . . . , pN ∈ UN are the chosen points, then the
same argument with Riemann sums yields that f can be approximated uniformly
on D by linear combinations of functions of the form

f(ξ)
z − ξ

with ξ ∈ ∂G ⊆ U∞ ∪ U1 ∪ . . . ∪ UN . Since, as we saw in steps 2 and 3, all such
functions can be approximated uniformly onD by E-valued rational functions from
O
(
C \ {p1, . . . pN}, E

)
, this completes the proof also if C \D is not connected. �
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2.2.3 Remark. In the approximation Theorems 2.2.1 and 2.2.2, the hypothesis that
∂D is piecewise C1 can be essentially weakened. But then the proof of Theorem
2.2.1 (which is used in the proof of Theorem 2.2.2) becomes more difficult. Let us
mention also the following approximation theorem without any hypothesis on the
smoothness of the boundary:

2.2.4 Corollary (to Theorem 2.2.2). Let D ⊆ C be a bounded open set which
consists of a finite number of connected components D1, . . . , DN , each of which is
star shaped, such that Dj ∩Dk = ∅ for j 	= k, and let f : D → E be a continuous
function which is holomorphic in D. Then f can be approximated uniformly on D
by E-valued polynomials.

Proof. Since eachDj is star shaped, we have points zj ∈ Dj with zj+t(z−zj) ∈ Dj

for all z ∈ Dj and (consequently) zj + t(z − zj) ∈ Dj for all z ∈ Dj . Then, for
each ε > 0,

fε(z) := f
(
zj + (1− ε)(z − zj)

)
, z ∈ Dj , 0 ≤ t ≤ 1,

is holomorphic in a neighborhood of D and lim
ε→0

max
z∈D

‖f(z) − fε(z)‖ = 0. Now we

can continue as in the proof of Theorem 2.2.2 or we can apply Theorem 2.2.2 to
a slightly larger open set with C1-boundary. �

2.3 Solution of ∂u = f on open sets

In this section E is a Banach space.
By Theorem 2.1.10, for each bounded open set D ⊆ C and each bounded

continuous function f :→ E, there exists a continuous function u : D → E with
∂u = f . As a first important consequence of the Runge approximation Theorem
2.2.2 now we get the following stronger result:

2.3.1 Theorem. Let D ⊆ C be an arbitrary open set, and let f : D → E be an
arbitrary continuous function.

(i) Then there exists a continuous function u : D → E, which has a continuous
Cauchy-Riemann derivative on D (Def. 2.1.1), such that

∂u = f on D.

(ii) Any such function u is automatically of class Cα on D, for all 0 < α < 1.
Moreover, if f ∈ (Ck)E(D), k ∈ N∗, then any such function u is automati-
cally of class (Ck+α)E on D, for all 0 < α < 1.

Proof. Part (ii) follows from Theorem 2.1.12. We prove part (i). Take a sequence
(Dn)n∈N of open sets Dn ⊆ D such that:
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• For all n ∈ N, Dn is bounded, Dn has C1 boundary, Dn ⊆ Dn+1, and each
bounded connected component of C \ Dn (if there is any) contains at least
one point of C \D.

• ⋃∞
n=1 Dn = D.

Then, by Theorem 2.1.10, there is a sequence (ũn)n∈N of continuous functions
ũn : Dn → E with continuous Cauchy-Riemann derivatives such that ∂ũn = f

∣∣
Dn
.

Now we construct inductively a sequence (un)n∈N of continuous functions
un : Dn → E such that also

∂un = f
∣∣
Dn

(2.3.1)

for all n ∈ N, and moreover

max
z∈Dn−2

∣∣un(z)− un−1(z)
∣∣ ≤ 1

2n
(2.3.2)

if n ≥ 2.

Beginning of the induction: u0 := ũ0, u1 := ũ1.

Hypothesis of induction: Assume, for some k ∈ N∗, we already have continuous
functions un : Dn → E, 0 ≤ n ≤ k, such that (2.3.1) holds for all 0 ≤ n ≤ k, and
(2.3.2) holds if 2 ≤ n ≤ k.

Step of induction: Since ∂uk = f = ũk+1 on Dk, the difference uk − ũk+1 is
holomorphic on the neighborhood Dk of Dk−1. As each bounded connected com-
ponent of C \Dk−1 contains at least one point of C \D, we can apply the Runge
approximation Theorem 2.2.2 and obtain a holomorphic function h : D → E with

max
z∈Dk−1

∣∣uk(z)− ũk+1(z)− h(ζ)
∣∣ ≤ 1

2k+1
.

Setting uk+1 := ũk+1+h
∣∣
Dk+1

, we obtain a continuous function uk+1 : Dk+1 → E

such that (2.3.1) and (2.3.2) holds also for n = k + 1.

The sequence (un)n∈N is constructed.

By (2.3.2), there is a well-defined continuous function u : D → E such that,
for each k ∈ N, the sequence (un)n>k converges to u, uniformly on Dk. It remains
to prove that ∂u = f on D. It is sufficient to show this on each Dk. Let k ∈ N be
given. Then, uniformly on Dk,

u− uk = lim
k≤n→∞

(
un − uk

)
.

Since the functions un−uk, k ≤ n, are holomorphic on Dk, and the uniform limits
of holomorphic functions are holomorphic, it follows that u − uk is holomorphic
on Dk. Hence ∂u = ∂uk = f on Dk. �
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2.4 OE-cocycles and the Mittag-Leffler theorem

In this section E is a Banach space.
Let U ⊆ C be an open set. Recall that, in this book, for U 	= ∅, we denote

by OE(U) the space of E-valued holomorphic functions on U . For U = ∅, we set
OE(U) = {0}, where 0 is the zero vector of E.

2.4.1 Definition. Let D ⊆ C be an open set, and let U = {Uj}j∈I be an open
covering of D. Denote by C1(U ,OE) the space of families f = {fjk}j,k∈I with
fjk ∈ OE(Uj ∩ Uk). A family f = {fjk}j,k∈I ∈ C1(U ,OE) will be called an
(U ,OE)-cocycle if, for all j, k, l ∈ I with Uj ∩ Uk ∩ Ul 	= ∅,

fjk + fkl = fjl on Uj ∩ Uk ∩ Ul. (2.4.1)

Note that then, in particular,

fjk = −fkj on Uj ∩ Uk and fjj = 0 on Uj . (2.4.2)

The space of all (U ,OE)-cocycles will be denoted by Z1(U ,OE). If the covering U
is not specified, then we speak also about OE-cocycles over D.

We call such cocycles also additive to point out the difference from the multi-
plicative cocycles, which we introduce in Section 5.6. Due to P. Cousin the elements
of Z1(U ,OE) are also called additive Cousin problems. To call the elements of
Z1(U ,OE) problems is due to the fact that cocycles were first studied in Complex
analysis of several variables, where the elements of Z1(U ,OE) give rise to problems
which not always have solutions. In the case of a single variable however, these
problems always can be solved. This is the statement of the following theorem.

2.4.2 Theorem. Let D ⊆ C be an open set, let U = {Uj}j∈I be an open covering
of D, and let f ∈ Z1(U ,OE). Then there exists a family {hj}j∈I of functions
hj ∈ OE(Uj) with

fjk = hj − hk onUj ∩ Uk (2.4.3)

for all j, k ∈ I with Uj ∩ Uk 	= ∅.
Proof. Take a C∞-partition of unity {χj}j∈I subordinated to the covering {Uj}j∈I

and define C∞-maps ϕj : Uj → E setting

ϕj = −
∑
ν∈I

χνfνj .

Then, by (2.4.2),

ϕj − ϕk = −
∑
ν∈I

χν

(
fνj − fνk

)
=
∑
ν∈I

χν

(
fjν + fνk

)
=
∑
ν∈I

χνfjk = fjk.

Since the functions fjk are holomorphic, i.e., ∂fjk = 0, it follows that

∂ϕj = ∂ϕk on Uj ∩ Uk.
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Hence there is a well-defined C∞-function ϕ : D → E with ϕ = ∂ϕj on Uj . Now,
by Theorem 2.3.1, we can solve the equation ϕ = ∂u with some C∞-function
u : D → E. Setting hj = cj − u on Uj , we complete the proof. �

For many purposes the special case of Theorem 2.4.2 is sufficient when the
covering consists only of two sets:

2.4.3 Corollary (to Theorem 2.4.2). Let D1, D2 ⊆ C be two open sets with D1 ∩
D2 	= ∅. Then, for each holomorphic function f : D1 ∩ D2 → E, there exist
holomorphic functions fj : Dj → E, j = 1, 2, such that

f = f1 + f2 on D1 ∩D2.

An example of such an application is the Mittag-Leffler theorem:

2.4.4 Theorem (Mittag-Leffler theorem). Let D ⊆ C be an open set, let Z be a
discrete and closed subset of D, and assume that, for each w ∈ Z, a holomorphic
function fw : C \ {w} → E of the form

fw(z) =
−1∑

n=−∞
(z − w)nfwn

is given. Then there exists a holomorphic function f : D \ Z → E such that, for
each w ∈ Z, fw is the principal part of the Laurent expansion of f at w.

Proof. Since Z is discrete and closed in D, we can find a family {Uw}w ∈ Z of
open subsets of D such that, Uw is a neighborhood of w and Uw∩Uv = ∅ if w 	= v.
Set D1 =

⋃
w∈Z Uw and D2 = D \ Z. Then D2 ∩D2 is the disjoint union of the

punctured sets Uw \ {w}. Therefore, setting

g = fw on Uw \ {w},

we obtain a holomorphic function g : D1 ∩D2 → E. Now from Corollary 2.4.3 we
get holomorphic functions h : D1 → E and f : D2 → E such that g = f + h on
D1 ∩D2. Then, for all w ∈ Z,

f − fw = g − h− fw = −h on Uw \ {w},

and therefore fw is the principal part of the Laurent expansion of f at w. �

2.5 Runge approximation for invertible scalar functions

and the Weierstrass product theorem

Recall that, in this book, for a non-empty open set U ⊆ C, we denote by O∗(U) the
multiplicative group of holomorphic functions f : U → C∗, where C∗ := C \ {0}.
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2.5.1. Recall that an open set D ⊆ C, which is already connected, is simply con-
nected (Section 1.4.3) if and only if C\D is connected (see, for example, Theorem
13.11 in [Ru]). Together with the Riemann mapping theorem this implies the fol-
lowing facts, which will be used throughout this book without further reference:

(i) For a connected, bounded open set D ⊆ C with C1-boundary the following
are equivalent:

• D is simply connected.

• C \D is connected.

• The boundary of D is connected.

• The boundary of D is homeomorphic to the unit circle.

(ii) Let D ⊆ C be a bounded, connected open set with piecewise C1-boundary,
which is not simply connected, let U0, U1, . . . , Um be the connected compo-
nents of C \D, where U0 is the unbounded connected component of C \D,
and let Γj be the boundary of Uj , 0 ≤ j ≤ m. Then U1, . . . , Um and
D ∪ U1 ∪ . . . ∪ Um are simply connected, and the contours Γ0,Γ1, . . . ,Γm

are homeomorphic to the unit circle.

2.5.2 Lemma. Let D ⊆ C be a connected bounded open set with piecewise C1-
boundary. Suppose D is not simply connected. Let Γ0,Γ1, . . . ,Γm be the connected
components of the boundary of D where Γ0 is the boundary of the unbounded
component of C \ D. Suppose, for each 0 ≤ j ≤ m, a smooth1 point aj of Γj is
chosen. Let U be a neighborhood of D. Then there exist simply connected open sets
U0, . . . , Um such that:

• The sets U1, . . . , Um are pairwise disjoint,

• D ⊆ U0 ∪ . . . ∪ Um ⊆ U ,

and, for all 1 ≤ j ≤ m,

• aj ∈ Uj,

• Γj ∩ U0 = Γj \ {aj},
• Uj ∩ U0 consists of precisely two connected components.

Proof. Since Γ0 and Γ1 are parts of the piecewise C1-boundary of D and D is
connected, first we can find a contour γ1, diffeomorphic to the closed interval
[0, 1], which starts at a1, transversally to Γ1, which ends at some smooth point
b1 ∈ Γ0, transversally to Γ0, and which lies, except for these two points, in D.

Then Γ1 \ γ1 = Γ1 \ {a1} is still connected (as Γ1 is homeomorphic to the
circle). Since D is connected, this easily implies that D \ γ1 is still connected.

1It is not important that aj is a smooth point of Γj , but this simplifies the arguments in the
proof.
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Next, since also Γ2 is piecewise C1, since γ1 meets Γ0 and Γ1 transversally
and D \ γ1 is connected, we can find a contour γ2, which is diffeomorphic to [0, 1],
which starts at a2, transversally to Γ2, which ends at some smooth point b2 ∈ Γ0,
transversally to Γ0, and which lies, except for these two points, in D \ γ1.

Proceeding in this way, we get pairwise disjoint contours γ1, . . . , γm and
smooth points b1, . . . , bm of Γ0 such that D \ (γ1 ∪ . . . ∪ γm) is connected and,
for each 1 ≤ j ≤ m:

• γj is diffeormorphic to [0, 1];

• γj meets Γj transversally at aj ;

• γj meets Γ0 transversally at bj

• γj \ {aj , bj} ⊆ D .

Then Γ0 ∪ Γ1 ∪ . . .Γm ∪ γ1 ∪ . . . ∪ γm is connected. Since this is the boundary of
C \

(
D \ (γ1 ∪ . . . ∪ γm)

)
, it follows that C \

(
D \ (γ1 ∪ . . . ∪ γm)

)
is connected.

Hence D \ (γ1 ∪ . . . ∪ γm) is simply connected.
Since each γj is diffeormorphic to [0, 1] and meets Γ0 ∪ Γ1 ∪ . . .Γm transver-

sally, now we can find a neighborhood V of D such that, for 1 ≤ j ≤ m, there
exists a closed contour γ′j in V which is diffeomorphic to the open interval ]0, 1[
and such that γj ⊆ γ′j . Since D \ (γ1 ∪ . . .∪ γm) is simply connected, by shrinking
V , we may achieve that also

U0 := V \ (γ1 ∪ . . . ∪ γm)

is simply connected. Moreover, we can achieve that V has C1-boundary which is
met transversally by γ′1, . . . , γ

′
m. Choose ε > 0 sufficiently small and set

Uj =

{
z ∈W

∣∣∣∣∣ minw∈γ′
j

|z − w| < ε

}
.

Since γ′j is diffeomorphic to [0, 1], then it is clear that Uj is simply connected and
Uj \ γ′j is the union of two simply connected open sets Vj and Vj . �
2.5.3 Definition. Let D ⊆ C be a bounded, connected open set (possibly, not
simply connected) with piecewise C1 boundary. Let Γ be the union of some of the
connected components of the boundary of D. Assume Γ is oriented (not necessarily
by D). Let f : Γ→ C∗ be a holomorphic function2. Then we define

indΓ f :=
1
2πi

∫
Γ

f ′(z)
f(z)

dz . (2.5.1)

2By this we mean the following: If K ⊆ C is a set of uniqueness for holomorphic functions
(as, for example Γ, or the closure of an open set), then we say that f : K → E is a holomorphic

function if f = f̃
∣∣
Γ
, where f̃ is a holomorphic function defined in some neighborhood of K. By

f ′ then we mean the function f̃ ′∣∣
Γ

.
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We recall, with proofs, some well known facts about this index.

2.5.4 Proposition. Let D ⊆ C be a bounded, connected open set with piecewise C1

boundary ∂D.

(i) Let Γ be the union of some of the connected components of ∂D, oriented
somehow. Let f, g : Γ→ C∗ be two holomorphic functions. Then

indΓ(fg) = indΓ f + indΓ g . (2.5.2)

(ii) Let f : ∂D → C∗ be a holomorphic function which admits a meromorphic
extension to D, let N be the number of zeros of f in D, counted according to
their multiplicities, and let P be the number of poles of f in D, also counted
according to their multiplicities. If ∂D is oriented by D, then

ind∂D f = N − P . (2.5.3)

(iii) Let f : ∂D → C∗ be a holomorphic function which admits a meromorphic
extension to (C\D)∪{∞}, let N be the number of zeros of f in (C\D)∪{∞},
counted according to their multiplicities, and let P be the number of poles of
f in (C \D) ∪ {∞}, also counted according to their multiplicities. If ∂D is
oriented by D, then

ind∂D f = P −N . (2.5.4)

(iv) Let Γ be the union of some of the connected components of ∂D, oriented
somehow. Then, for any holomorphic functions f : ∂D → C∗, the index
indγ f is an integer.

Proof. (i)

indΓ(fg) =
1
2πi

∫
Γ

(fg)′(z)
(fg)(z)

dz =
1
2πi

∫
Γ

(f ′g + fg′)(z)
(fg)(z)

dz

=
1
2πi

∫
Γ

f ′(z)
f(z)

dz +
1
2πi

∫
Γ

g′(z)
g(z)

dz = indΓ f + indΓ g .

(ii) By Cauchy’s theorem we may pass to small circles surrounding the zeros
and poles of f . Therefore, we may assume that, for some w ∈ D, the function f is
of the form f(z) = (z−w)κg(z), where κ ∈ Z and g is holomorphic and invertible
on D. Then κ = N − P and

f ′(z)
f(z)

=
κ

z − w
+

g′(z)
g(z)

, z ∈ ∂D,

where g′/g is holomorphic on D. Hence

ind∂D f =
κ

2πi

∫
∂

D
dz

z − w
= κ = N − P.
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(iii) Set

D∗ =
{

z ∈ C

∣∣∣∣ 1z ∈ (C \D) ∪ {∞}
}

,

and let ∂D∗ be the boundary of D∗, oriented by D∗. Let −∂D be the boundary of
D oriented by C\D. Since 1/z maps a neighborhood of C\D biholomorphically to
a neighborhood of D

∗ \{0} and since biholomorphic maps respect the orientation,
−∂D is mapped by 1/z to ∂D∗. Therefore

ind∂D f = − 1
2πi

∫
−∂D

f ′(z)
f(z)

dz =
1
2πi

∫
∂D∗

f ′(1/z)
f(1/z)

1
z2

dz.

Setting

F (z) = f

(
1
z

)
, z ∈ ∂D∗,

this implies that

ind∂D f = − 1
2πi

∫
∂D∗

F ′(z)
F (z)

dz = − ind∂D∗ F = P −N,

where the last equality follows from part (ii) of the proposition, as F (z) = f(1/z)
admits a meromorphic extension to D

∗
, where N is the number of zeros of F and

P is the number of poles of F , both counted with multiplicities.

(iv) We may assume that D is simply connected, and Γ is the boundary of
D (Section 2.5.1). Let a holomorphic function f : Γ → C∗ be given. Choose a
neighborhood U of Γ such that U has a C1-boundary, C \ U consists of not more
than two connected components, and f is defined, holomorphic and invertible on
U . By the Runge approximation Theorem 2.2.2, we can find a sequence ρn of
rational functions which converges to f uniformly in U . We may assume that
ρn 	= 0 on U . Then the functions ρ′n/ρn converge to f ′/f uniformly on Γ. Hence

indΓ f = lim
n→∞ indΓ ρn .

This implies that indΓ f is an integer, as, by part (ii) of the proposition, each
indΓ ρn is an integer. �

Recall that (see, e.g., Theorem 13.11 in [Ru]), for each simply connected open
set D ⊆ C and any f ∈ O∗(D), there exists g ∈ O(D) with eg = f . In the case
of connected open sets, which are not simply connected, this is not always true.
There are topological obstructions, described in the following theorem.

2.5.5 Theorem. Suppose D is connected but not simply connected. Then for any
holomorphic function f : D → C∗ the following are equivalent:

(i) There exists a holomorphic function g : D → C with eg = f on D.
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(ii) For any connected component Γ of the boundary of D,

indΓ f = 0.

Proof. Let Γ0, . . . ,Γm be the connected components of the boundary of D such
that Γ0 is the boundary of the unbounded component of C \D.

If condition (i) is fulfilled, it is clear that

indΓj
f =

1
2πi

∫
Γj

f ′(z)
f(z)

dz =
1
2πi

∫
Γj

g′(z) dz = 0 , 0 ≤ j ≤ m.

Now assume that (ii) is satisfied.
For 1 ≤ j ≤ m, we fix a smooth point aj of Γj . Let U0, U1, . . . , Um be the

sets from Lemma 2.5.2. Since the sets Uj are simply connected, then we have
holomorphic functions gj : Uj → C such that

egj = f
∣∣
Uj

, 0 ≤ j ≤ m . (2.5.5)

It follows that
egj−g0 = 1 on U0 ∩ Uj , 1 ≤ j ≤ m . (2.5.6)

Since aj ∈ Uj and Γj ∩U0 = Γj \ {aj}, we can choose two different points bj , cj ∈
Γj ∩ Uj ∩ U0, so that one of the two closed connected contours Γ′j and Γ′′j with
the boundary points bj and cj , into which Γj is divided by bj and cj , is contained
in Uj and the other one is contained in U0, say Γ′j ⊆ Uj and Γ′′j ⊆ U0. Moreover,
by changing the notation if necessary, we may assume that, with respect to the
orientation of Γj , the point bj is the starting point of Γ′j and the endpoint of Γ

′′
j ,

and cj is the starting point of Γ′′j and the end point of Γ′j . Then∫
Γ′

j

g′j(z)dz = gj(cj)− gj(bj) and
∫
Γ′′

j

g′0(z)dz = g0(bj)− g0(cj) . (2.5.7)

Let Cj , Bj be the two connected components of Uj ∩U0. By changing the notation
if necessary, we may assume that cj ∈ Cj and bj ∈ Bj . Then it follows from (2.5.6)
that, for some integers kj , nj

gj − g0 ≡ kj2πi on Cj and gj − g0 ≡ nj2πi on Bj . (2.5.8)

Now, from condition (ii) we get

0 =
1
2πi

∫
Γj

f ′(z)
f(z)

dz =
1
2πi

∫
Γ′

j

f ′(z)
f(z)

dz +
1
2πi

∫
Γ′′

j

f ′(z)
f(z)

dz , 1 ≤ j ≤ m .
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Since egj = f
∣∣
Uj

for all 0 ≤ j ≤ m, this implies that

0 =
1
2πi

∫
Γ′

j

g′j(z) dz +
1
2πi

∫
Γ′′

j

g′0(z) dz , 1 ≤ j ≤ m .

Together with (2.5.7) and (2.5.8) this gives

0 = gj(cj)− gj(bj) + g0(bj)− g0(cj) = (kj − nj)2πi , 1 ≤ j ≤ m .

Hence kj = nj and therefore, again by (2.5.8),

gj ≡ g0 on Cj ∪Bj = Uj ∩ U0 , 1 ≤ j ≤ m .

Since D ⊆ U0 ∪ U1 ∪ . . . ∪ Um and the sets U1, . . . , Um are pairwise disjoint, it
follows that there is a global holomorphic function g on D with g = gj on Uj ,
0 ≤ j ≤ m, such that (by (2.5.5) eg = f on D. �
2.5.6 Theorem (Runge approximation for invertible functions). Let D ⊆ C be
a bounded open set with piecewise C1-boundary ∂D, and let f : D → C∗ be a
continuous function which is holomorphic in D.

(i) If C\D is connected, then f can be approximated uniformly on D by functions
from O∗(C).

(ii) If C \D is not connected and U1, . . . , Um are the bounded connected compo-
nents of C \D, then for any choice of points p1 ∈ U1, . . . , pm ∈ Um, f can be
approximated uniformly on D by functions from O∗

(
C \ {p1, . . . , pm}

)
.

Proof. By the Mergelyan approximation Theorem 2.2.1, we may assume that f is
holomorphic in some neighborhood of D. Let D1, . . . , Dk be the connected compo-
nents of D, and let U1

k , . . . , Umk

k be the bounded connected components of C \Dk

(if there are any), and let Γj
k be the boundary of U j

k endowed with the orientation
defined by D, i.e., Γj

k = −∂U j
k . Set (cf. Def. 2.5.3)

κj
k = ind

Γj
k

f.

By hypothesis, there are points pk
j ∈ Uk

j ∩{p1, . . . , pm}. Then, by Proposition 2.5.4
,

ind
Γj

k

(
(z − pk

j )
κj

kf(z)
)
= 0 .

Therefore, by Theorem 2.5.5, there exists a holomorphic function g : D → C with

eg(z) = (z − pk
j )

κj
kf(z) for all z ∈ D .

By the Runge approximation Theorem 2.2.2, the function g can be apporoximated
uniformly on D by functions from O

(
C \ {p1, . . . , pm}

)
. Hence the function

f(z) =
eg(z)

(z − pk
j )

κj
k
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can be approximated uniformly on D by functions of the form

egk(z) =
eh(z)

(z − pk
j )

κj
k

with h ∈ O
(
C \ {p1, . . . , pm}

)
, which belong to O∗

(
C \ {p1, . . . , pm}

)
. �

2.5.7 Theorem (Weierstrass product theorem). Let D ⊆ C be an open set, let Z
be a discrete and closed subset of D, and assume that, for each w ∈ Z, a number
mw ∈ N∗ is given. Then there exists a holomorphic function f : D → C such that
f(z) 	= 0 for z ∈ D \ Z and, for each w ∈ Z, f has a zero precisely of order mw.

Proof. Choose a sequence of open sets Dn ⊆ D, n ∈ N, such that, for all n ∈ N:

• Dn has piecewise C1-boundary ∂Dn.

• Dn ⊆ Dn+1.

• ⋃∞
n=0 Dn = D.

• Each bounded, connected component of C \ Dn contains at least one point
of C \D.

Next we inductively construct a sequence (fn)n∈N of functions fn ∈ O(D)
such that, for all n ∈ N:

(a) If w ∈ Z ∩Dn , then fn has a zero at w precisely of order mw.

(b) If z ∈ D \ (Z ∩Dn), then fn(z) 	= 0.

(c) If n ≥ 1, then we have εn ∈ O(D) such that

fn = (1 + εn)fn−1 (2.5.9)

|εn(z)| < 2−n
(
1 + max

ζ∈Dn−1

|fn−1(ζ)|
)

for all z ∈ Dn−1 . (2.5.10)

We start with f0(z) := (z − w1)mw1 . . . (z − ws)mws where {w1, . . . , ws} :=
Z∩D0. Now we assume that functions f0, . . . , fk−1 ∈ O(D) are already constructed
such that (a), (b), (c) hold for 0 ≤ n ≤ k−1. Then we set u(z) = (z−w1)mw1 . . . (z−
wr)mwr where {w1, . . . , wr} := Z∩Dk+1. Then uf−1

k−1 	= 0 on Dk−1. Hence, by the
Runge approximation Theorem 2.5.6, we can find g ∈ O∗(D) such that the function
εk := guf−1

k−1 − 1 satisfies (2.5.6) for n = k. It remains to set fk = (1 + εk)fk−1.
The sequence (fn)n∈N is constructed.

Now from property (c) of the sequence (fn)n∈N it follows that |fn+1 − fn| <
2−n−1 on Dn. Hence this sequence converges uniformly on the compact subsets
of D. Set f := lim

n→∞ fn. It remains to prove that f has precisely the prescribed
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zeros. It is sufficient to check this over each Dn. Let n ∈ N be given. By (2.5.9)
and (2.5.10), then for all m > n and z ∈ Dn,

fm(z) = fn(z)
m∏

j=n+1

(
1 + εj(z)

)
= fn(z) exp

( m∑
j=n+1

log
(
1 + εj(z)

))

and hence,

f
∣∣∣
Dn

= fn

∣∣∣
Dn

exp
( ∞∑

j=n+1

log(1 + εj)
∣∣∣
Dn

)
.

Since, over Dn, the function fn has precisely the prescribed zeros, this implies
that, over Dn, the function f has precisely the prescribed zeros. �

2.6 OE-cocycles with prescribed zeros and

a stronger version of the Mittag-Leffler theorem

In this section E is a Banach space.
The Weierstrass product Theorem 2.5.7 makes it possible to improve the

results of Section 2.4. Now we can consider additive Cousin problems (see Def.
2.4.1) with prescribed zeros and solve them with the same prescibed zeros. This is
the topic of the present section.

2.6.1 Definition. By a data of zeros we mean a pair (Z,m) where Z ⊆ C and
m = {mw}w∈z is a family of integers mw ≥ 0.

Let such a data be given.
Then, for an open set U ⊆ C, we denote by OE

Z,m(U) the space of functions
f ∈ OE(U) such that, for each w ∈ Z ∩ U , f has a zero of order ≥ mw at w. The
functions from OE

Z,m(U) will be called OE
Z,m-functions on U .

For E = C we write also OZ,m(U) instead of OE
Z,m(U).

Now let D ⊆ C be an open set, and let U = {Uj}j∈I be an open covering
of D. Then we denote by C1(U ,OE

Z,m) the space of all f ∈ C1(U ,OE) (see Def.
2.4.1) such that fjk ∈ OE

Z,m(Uj ∩ Uk) for all j, k ∈ I. Further we set (see again
Def. 2.4.1)

Z1(U ,OE
Z,m) = Z1(U ,OE) ∩ C1(U ,OE

Z,m).

The elements of Z1(U ,OE
Z.m) will be called (U ,OE

Z,m)-cocycles. If the covering U
is not specified, then we speak also about OE

Z,m-cocycles over D.

There is the following improvement of Theorem 2.4.2:

2.6.2 Theorem. Let D ⊆ C be an open set, and let (Z,m) be a data of zeros such
that Z ∩ D is discrete and closed in D. Let U = {Uj}j∈I be an open covering
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of D, and let f ∈ Z1(U ,OE
Z,m). Then there exists a family {hj}j∈I of functions

hj ∈ OE
Z,m(Uj) such that, for all j, k ∈ I with Uj ∩ Uk 	= ∅,

fjk = hj − hk on Uj ∩ Uk , j, k ∈ I. (2.6.1)

Proof. By the Weierstrass product Theorem 2.5.7, there exists a holomorphic func-
tion ϕ : D → C such that ϕ(z) 	= 0 for z ∈ D \ Z and, for each w ∈ Z, ϕ has
a zero precisely of order mw. Setting f̃jk = fjk/ϕ, j, k ∈ I, then we obtain an
(U ,OE)-cocycle, and from Theorem 2.4.2 we obtain a family {h̃j}j∈I of functions
h̃j ∈ OE

Z,m(Uj) such that, for all j, k ∈ I with Uj ∩ Uk 	= ∅,

f̃jk = h̃j − h̃k on Uj ∩ Uk , j, k ∈ I.

It remains to set hj = ϕh̃j . �

We point out again the special case of coverings by two sets:

2.6.3 Corollary (to Theorem 2.4.2). Let D ⊆ C be an open set, and let (Z,m) be a
data of zeros such that Z ∩D is discrete and closed in D. Let D1, D2 ⊆ D be two
open subsets with D = D1 ∪ D2 and D1 ∩ D2 	= ∅, and let f ∈ OE

Z,m(D1 ∩ D2).
Then there exist fj ∈ OE

Z,m(Dj), j = 1, 2, such that

f = f1 + f2 on D1 ∩D2.

By means of this corollary, now we obtain the following version of the Mittag-
Leffler theorem, which is stronger than Theorem 2.4.4, but also due to Mittag-
Leffler (see the historical remarks on page 116 of [Re]3)

2.6.4 Theorem (Mittag-Leffler theorem). Let D ⊆ C be an open set, let Z be
a discrete and closed subset of D, and assume that, for each w ∈ Z, a number
mw ∈ N and a holomorphic function fw : C \ {w} → E of the form

fw(z) =
mw∑

n=−∞
(z − w)nfwn

are given. Then there exists a holomorphic function f : D \ Z → E such that, for
each w ∈ Z, fw is the first part of the Laurent expansion of f , i.e., the difference
f − fw has a zero of order ≥ mw at w.

Proof. Since Z is discrete and closed in D, we can find a family {Uw}w ∈ Z of
open subsets of D such that, Uw is a neighborhood of w and Uw∩Uv = ∅ if w 	= v.

3This is the only book where we found the scalar case of Theorem 2.6.4. There, this theorem is
called Anschmiegungssatz von Mittag-Leffler. We do not know whether there is a corresponding
commonly used name in English. Therefore, we call it just Mittag-Leffler theorem.
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Set D1 =
⋃

w∈Z Uw and D2 = D \ Z. Then D2 ∩D2 is the disjoint union of the
punctured sets Uw \ {w}. Therefore, setting

g = fw on Uw \ {w},

we obtain a holomorphic function g : D1 ∩ D2 → E. Since D1 ∩ D2 ∩ Z = ∅,
the function g can be interpreted as a function from OE

Z,m(D1 ∩D2). Then from
Corollary 2.6.3 we get functions h ∈ OE

Z,m(D1) and f ∈ OE(D2) such that g =
f + h on D1 ∩D2. It follows that

f − fw = g − h− fw = −h on Uw \ {w}.

Since, for all w ∈ Z, the function h has a zero of order ≥ mw at w, this completes
the proof. �

2.7 Generalization of the Weierstrass product theorem

Recall that the theory of cocycles with prescribed zeros, which was developed in
the preceding Section 2.6, is based on the Weierstrass product Theorem 2.5.7. In
turn, this theory allows us to prove the following generalization of the Weierstrass
product theorem:

2.7.1 Theorem. Let D ⊆ C be an open set, and let Z be a discrete and closed subset
of D. Suppose, for each w ∈ Z, a neighborhood Uw ⊆ D of w and a holomorphic
function fw ∈ O∗(Uw \ {w}) are given such that Uw ∩ Z = {w}, w ∈ Z.

(i) Then there exists a family of holomorphic functions hw ∈ O∗(Uw), w ∈ Z,
and a holomorphic function f ∈ O∗(D \ Z) such that

hwfw = f on Uw \ {w} for all w ∈ Z . (2.7.1)

(ii) Moreover, for any given family of numbers mw ∈ N∗, w ∈ Z, we can achieve
that, for each w ∈ Z, the function hw − 1 has a zero of order ≥ mw.

The claim of the classical Weierstrass product Theorem 2.5.7 is the special
case of part (i) of Theorem 2.7.1 obtained by setting fw(z) = (z − w)mw .

Proof of Theorem 2.7.1. Let some family m = {mw}w∈Z of numbers mw ∈ N∗

be given. Choose small discs Vw around w such that V w ⊆ Uw, w ∈ Z, and
V w ∩ V v = ∅ for all w, v ∈ Z with w 	= v. Then it is sufficient to find holomorphic
functions hw ∈ O∗(Vw), w ∈ Z, and a holomorphic function f ∈ O∗(D \ Z) such
that

hwfw = f on Vw \ {w} for all w ∈ Z . (2.7.2)

Indeed, since f is holomorphic and invertible on D \ Z and fw is holomorphic
and invertible on Uw \ {w}, then it follows from (2.7.2) that each hw admits a
holomorphic extension to Uw, which is invertible on Uw \{w} and satisfies (2.7.1).
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Set κw = ind∂Vw
fw for w ∈ Z (cf. Def. 2.5.3). By the Weierstrass product

Theorem 2.5.7, we can find a holomorphic function ϕ : D \Z → C∗ such that, for
each w ∈ Z, ϕ has a zero precisely of order κw at w. Set

f̃w = ϕ−1fw on Vw \ {w}, w ∈ Z.

Then, by Proposition 2.5.4,

ind∂Vw
f̃w = ind∂Vw

ϕ−1 + ind∂Vw
fw = 0.

Hence, by Theorem 2.5.5, for each w ∈ Z, we can find a neighborhood Θw of ∂Vw

and a holomorphic function gw : Θw → C with

egw = f̃w on Θw .

Since the sets V w are pairwise disjoint, we may assume that also the sets Θw are
pairwise disjoint. Moreover, we may assume that w 	∈ Θw. Set

D1 =
⋃

w∈Z

(Vw ∪Θw) and D2 =
(
D \

⋃
w∈Z

Vw

)
∪

⋃
w∈Z

Θw.

Then
D1 ∩D2 =

⋃
w∈Z

Θw

and, since the sets Θw are pairwise disjoint, setting

g = gw on Θw,

we obtain a holomorphic function g : D1 ∩D2 → C. Since Z ∩D1 ∩D2 = ∅, this
function can be interpreted as a function fromOZ,m(D1∩D2) (see Def. 2.6.1). Then
from Corollary 2.6.3 we get functions gj ∈ OZ,m(Dj), j = 1, 2, with g = g1 + g2

on D1 ∩D2. Set

f = ϕeg2 on D2 and hw = e−g1 on Vw.

Since, for each w ∈ Z, the function g1 has a zero of order ≥ mw at w, then, for
each w ∈ Z, also the function hw − 1 = e−g1 − 1 has a zero of order ≥ mw at w,
and we have

hwfw = e−g1ϕf̃w = e−g1ϕegw = ϕeg2 = f on D2 ∩ Vw = Θw

on Θw. It remains to observe that from this relation it follows that f admits a
holomorphic and invertible extension to D \Z, and this extension satisfies (2.7.2).

�
We point out also the following generalization of the Weierstrass product

theorem, which follows from Theorem 2.7.1:
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2.7.2 Theorem. Let D ⊆ C be an open set, let Z be a discrete and closed subset
of D, and assume that, for each w ∈ Z, a number mw ∈ N and a holomorphic
function fw ∈ O∗(Uw \ {w}) are given such that Uw ∩ Z = {w}, w ∈ Z, and fw

has a pole or a removable singularity at w. Let

fw(z) =
∞∑

n=nw

fw,n(z − w)n

be the Laurent expansion of fw at z ∈ Z. Then, for each given family kw ∈ N∗,
z ∈ Z, there exists a holomorphic function f ∈ O∗(D \ Z) such that, for each
w ∈ Z, the Laurent expansion of f at w is of the form

f(z) =
kw∑

n=nw

fw,n(z − w)n +
∞∑

n=kw+1

fn(z − w)n .

The claim of the classical Weierstrass product Theorem 2.5.7 is the special
case obtained by setting fw(z) = (z − w)mw and kw = mw.

Proof of Theorem 2.7.2. By Theorem 2.7.1 we can find a family of holomorphic
functions hw ∈ O∗(Uw), w ∈ Z, and a holomorphic function f ∈ O∗(D \ Z) such
that, for all w ∈ Z,

hwfw = f on Uw \ {w} (2.7.3)

and, moreover, the Laurent expansion of hw at w is of the form

hw(z) = 1 +
∞∑

n=kw−nw+1

hw,n(z − w)n .

Hence, for the Laurent expansion of f at w, we get

f(z) =
∞∑

n=nw

fw,n(z − w)n +
∞∑

n=kw−nw+1

hw,n(z − w)n
∞∑

n=nw

fw,n(z − w)n

=
∞∑

n=nw

fw,n(z − w)n + hkw−nw+1fw,kw+1(z − w)kw+1 + . . . .

�
We conclude this section with a discussion of the relation between the Mittag-

Leffler Theorem 2.6.4 and the generalized Weierstrass product theorems 2.7.1 and
2.7.2.

There are two differences. The first difference is a disadvantage of the Mittag-
Leffler therem: Even if the given local functions fw are different from zero in a
punctured neighborhood of w, the global function f given by the Mittag-Leffler
Theorem 2.6.4 can have zeros outside Z, whereas the global function f given by
the generalized Weierstrass product theorems 2.7.1 and 2.7.2 is different from zero
everywhere on D \ Z.
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The second difference is a disadvantage of the generalized Weierstrass the-
orems: In the Mittag-Leffler Theorem 2.6.4, we do not require that the given
functions fw are different from zero in some punctured neighborhood of w. It is
even allowed that there is an infinite number of zeros in each punctured neigh-
borhood of w (in the case of an essential singularity this is possible). Moreover,
the Mittag-Leffler Theorem 2.6.4 preserves arbitrary starting pieces of the given
Laurent expansions, whereas for the generalized Weierstrass Theorem 2.7.2, this
is only true for poles and removable singularities.

We consider the simplest non-trivial example:

2.7.3 Example. Let D ⊆ C be a connected open set with Z := {0, 1} ⊆ D, and let

f0(z) := exp
(
1
z

)
and f1(z) :=

1
z − 1

.

Then there is no holomorphic function f : D \ {0, 1} → C∗ which has, at the same
time, the following two properties:

a) (as claimed in Theorem 2.7.1) There are neighborhoods Uj ⊆ D of j and
functions hj ∈ O∗(Uj), j = 0, 1, such that

f(z) = e1/zh0(z) for z ∈ U0 \ {0} ,

f(z) =
h1(z)
z − 1

for z ∈ U1 \ {1} .

b) (as claimed in the Mittag-Leffler Theorem 2.6.4) f(z)− e1/z is holomorphic
at 0, and f(z)− 1

z−1 is holomorphic at 1.

Indeed, assume there exists such a function f . Since e1/z is holomorphic at 1,
whereas f has the pole 1

z−1 there, then f(z) 	≡ e1/z. Since f(z) = e1/zh0(z),
it follows that h0(z) 	≡ 1. Choose a neighborhood V0 ⊆ U0 of 0 so small that
h0(z)− 1 	= 0 for z ∈ V0 \ {0}. Then

e1/z =
h0(z)e1/z − e1/z

h0(z)− 1
=

f(z)− e1/z

h0(z)− 1
for z ∈ V0 \ {0}.

Since f(z)−e1/z and h0(z)−1 are holomorphic at 0, this implies that the singularity
of e1/z at 0 is not essential, which is not true.

Moreover, if in this example, f is a function with the properties claimed in
the Mittag-Leffler Theorem 2.6.4, then this function has zeros in any punctured
neighborhood of 0 – in distinction to e1/z. This is due to the following proposition
which is a consequence of Picard’s theorem:

2.7.4 Proposition. Let w ∈ C, let W ⊆ C be a connected neighborhood of w, and let
fw : W \ {w} → C∗ be a holomorphic function which has an essential singularity
at w. Further let f : W \{w} → C be a holomorphic function such that f −fw has
a removable singularity at w. Then either f ≡ fw on W or f has zeros in each
punctured neighborhood of w.
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Proof. Assume f 	≡ fw on W .
Since fw 	= 0 on W \ {w} and fw has an essential singularity at w, 1/fw

is a well-defined holomorphic function on W \ {w} which also has an essential
singularity at w. Since f − fw is holomorphic and not identically zero on W , it
follows that also

g :=
fw − f

fw

has an essential singularity at w. Since f 	≡ fw on W , there is a punctured neigh-
borhood of w where g has no zeros. By Picard’s theorem this implies that 1 − g
has zeros in any punctured neighborhood of w. Hence

f

fw
= 1− fw − f

fw
= 1− g

has zeros in any punctured neighborhood of w. Since fw 	= 0 on W \ {w}, this
implies that f has zeros in any punctured neighborhood of w. �

2.8 Comments

The results of Sections 2.1–2.4 are well-known in the case of scalar functions. The
proofs given here are straightforward generalizations of the proofs in the scalar
case. In a large part, we follow the presentation of the corresponding scalar results
in the first chapter of Hörmanders book [Ho].

The theorem on Runge approximation for invertible functions (Section 2.5)
has also been well known for a long time, even in the case of several complex
variables, but in the literature we did not find a direct proof for it in the case of
one variable. (For several variables this result is widely published, but much more
difficult.)

The material of the last two sections, in this form, probably appears here for
the first time.



Chapter 3

Splitting and factorization with
respect to a contour

This chapter contains mostly well-known material presented in a form needed for
some of the further chapters. This material can not always be found concentrated
in one place with complete proofs. The main theme in this chapter is to study
continuous functions on a closed contour which admit an additive splitting as a
sum or a product (with additional properties) of two functions; one continuous and
analytic inside relative to the contour and the second outside. Not all continuous
functions admit a splitting. We give here complete descriptions when continuous
functions admit such representations and an example when this does not happen.
We prove that functions from the algebras of Hölder, differentiable, and Wiener
functions admit additive and multiplicative splittings inside these algebras under
natural conditions. A local principle is also deduced.

3.1 Splitting with respect to a contour

In this section, E is a Banach space and D+ ⊆ C is a bounded open set with
piecewise C1-boundary Γ (Section 1.4.1), and D− := C \D+.

3.1.1. Let U ⊆ C be an open set such that C \ U is bounded. We say that a
function f : U ∪ {∞} → E is holomorphic, continuous etc. if f is holomorphic,
continuous etc. on U and f(1/z) is holomorphic, continuous etc. on{

z ∈ C

∣∣∣ 1
z
∈ U

}
∪
{
0
}
.

3.1.2 Definition. Let f : Γ → E be a continuous function. We say that f splits
(additively) with respect to Γ if there exist functions f− : D− ∪ {∞} → E and
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f+ : D+ → E, where f− is continuous on D− and holomorphic in D− ∪ {∞} and
f+ is continuous on D+ and holomorphic in D+, such that

f = f+ + f− on Γ . (3.1.1)

The pair (f+, f−) or the expression f = f+ + f− then will be called a splitting of
f with respect to Γ. To underline the difference from Definition 3.7.1 below, in
this case we say also that f globally splits, and (f+, f−) is a global splitting of f
with respect to Γ.

3.1.3 Proposition. If (f+, f−) is a splitting of a continuous function f : Γ → E
with respect to Γ, then by adding a constant we can always achieve that f−(∞) = 0.
With this additional property, the splitting (f+, f−) is uniquely determined by f .

Proof. Indeed, let (f̃+, f̃−) be a second splitting of f with f̃−(∞) = 0. Then

f+ − f̃+ = f− − f̃− on Γ ,

and it follows from Theorem 1.5.4 that the function defined by

h =

{
f+ − f̃+ on D+ ,

f− − f̃− on D− ∪ {∞} ,

is a well-defined holomorphic function on C ∪ {∞} which vanishes at ∞. Hence,
by Liouville’s theorem, this function identically vanishes, i.e., f± = f̃±. �
3.1.4. This uniquely determined splitting with f−(∞) = 0 will be referred to as
the splitting with respect to a contour vanishing at infinity.

Not every continuous function f : Γ→ E splits with respect to Γ. In Section
3.6 we give an example.

There are different additional conditions which ensure the existence of a
splitting. For example, the class of Wiener functions:

3.1.5 Definition. Let T =
{
z ∈ C

∣∣ |z| = 1
}
be the unit circle. We denote by W (E)

the space of functions f : T −→ E of the form

f(z) =
∞∑

n=−∞
znfn with ‖f‖W :=

∞∑
n=−∞

‖fn‖ < ∞ . (3.1.2)

The functions in W (E) are called Wiener functions with values in E.

3.1.6. Each E-valued Wiener function splits with respect to the unit circle. Indeed,
if f is such a function and written in the form (3.1.2), then the pair (f+, f−) defined
by

f+(z) :=
∞∑

n=0

znfn , |z| ≤ 1 ,
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and

f−(z) :=
−1∑

n=−∞
znfn , |z| ≥ 1 ,

is a splitting of f with respect to the unit circle, where

‖f+‖W ≤ ‖f‖W and ‖f+‖W ≤ ‖f‖W . (3.1.3)

3.2 Splitting and the Cauchy Integral

As in the previous section, E is a Banach space, D+ ⊆ C is a bounded open set
with piecewise C1-boundary Γ oriented by D+ (Section 1.4.1), and D− = C \D+.

3.2.1. Let f : Γ→ E be a continuous function.
Then we set

f̂(z) =
1
2πi

∫
Γ

f(ζ)
ζ − z

dζ for z ∈ C \ Γ. (3.2.1)

This function f̂ will be called the Cauchy integral with respect to Γ of f .
Recall that, by Lemma 1.5.2, f̂ is holomorphic on C \ Γ, where the complex

derivative is given by

f̂ ′(z) =
1
2πi

∫
Γ

f(ζ)
(ζ − z)2

dζ , z ∈ C \ Γ. (3.2.2)

Moreover, by this lemma,
lim
|z|→∞

f̂(z) = 0.

By Riemann’s theorem on removable singularities 1.10.3, this implies that f̂ is
holomorphic on

(
C∪{∞}

)
\Γ, where f̂(∞) = 0 (in the sense as defined in Section

3.1.1).

3.2.2 Theorem. Let f : Γ→ E be continuous, and let

f̂+ := f̂
∣∣∣
D+

and f̂− := f̂
∣∣∣
D−∪{∞}

be the two parts of the Cauchy integral (3.2.1) of f . Then the following two con-
ditions are equivalent:

(i) The function f splits with respect to Γ.

(ii) The function f̂+ admits a continuous extension to D+, and f̂− admits a
continuous extension to D−.

In that case f = f̂+− f̂− on Γ, i.e., (f̂+,−f̂−) is the splitting of f which vanishes
at infinity (Section 3.2.1).
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Proof. (i)⇒(ii): Let f = f+ + f− be the splitting of f with f−(∞) = 0. As f− is
holomorphic at ∞ and f−(∞) = 0, then we have (Theorem 1.10.4)

f−(ζ) = O

(
1
|ζ|

)
for |ζ| → ∞.

By Cauchy’s integral theorem and the estimate established in Proposition 1.3.6,
this implies that, for every fixed z ∈ C \ Γ,

lim
R→∞

∫
|ζ|=R

f−(ζ)
ζ − z

dζ = 0. (3.2.3)

We have to prove that f+ = f̂+ on D+ and f− = f̂− on D−.
First let z ∈ D+. If 0 < R < ∞ is so large that D+ is contained in the disc

|ζ| < R, then, by Cauchy’s integral theorem,∫
Γ

f−(ζ)
ζ − z

dζ =
∫

|ζ|=R

f−(ζ)
ζ − z

dζ.

By (3.2.3) this implies that ∫
Γ

f−(ζ)
ζ − z

dζ = 0.

As f = f+ + f− on Γ and, by Cauchy’s integral formula,

1
2πi

∫
Γ

f+(ζ)
ζ − z

dζ = f+(z),

this further implies that

f̂+(z) =
1
2πi

∫
Γ

f(ζ)
ζ − z

dζ = f+(z).

Now let z ∈ D− be given. Then, by Cauchy’s integral theorem,∫
Γ

f+(ζ)
ζ − z

dζ = 0. (3.2.4)

First assume that z belongs to a bounded component of D−. Let Γ0 be the
part of the boundary of Γ which is the boundary of this component (endowed with
the orientation of Γ). Then, again by Cauchy’s integral theorem,∫

Γ\Γ0

f−(ζ)
ζ − z

dζ = 0 (3.2.5)

and, by Cauchy’s integral formula,

1
2πi

∫
Γ0

f−(ζ)
ζ − z

dζ = −f−(z). (3.2.6)
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From (3.2.4)–(3.2.6) and the definition of f̂− we obtain

f̂−(z) =
1
2πi

∫
Γ

f(ζ)
ζ − z

dζ =
1
2πi

∫
Γ

f+(ζ) + f−(ζ)
ζ − z

dζ = −f−(z).

Finally we consider the case when z belongs to the unbounded component of
D−. Let Γ∞ be the part of Γ which is the boundary of this component. Then, by
Cauchy’s integral theorem, ∫

Γ\Γ∞

f(ζ)
ζ − z

dζ = 0. (3.2.7)

By Cauchy’s integral formula, for all sufficiently large R < ∞,

f−(z) = −
∫

Γ∞

f−(ζ)
ζ − z

dζ +
∫
|ζ|=R

f−(ζ)
ζ − z

dζ.

Together with (3.2.3) and (3.2.7) this implies

f−(z) = −
∫

Γ∞

f−(ζ)
ζ − z

dζ = −
∫

Γ

f−(ζ)
ζ − z

dζ.

By (3.2.4) and the definition of f̂−, this further implies that

f−(z) = −
∫

Γ

f+(ζ) + f−(ζ)
ζ − z

dζ = −
∫

Γ

f(ζ)
ζ − z

dζ = −f̂−(z).

(ii)⇒(i): Let z0 ∈ Γ and ε > 0 be given. We have to prove that∣∣∣f̂+(z0)− f̂−(z0)− f(z0)
∣∣∣ < ε, (3.2.8)

where f̂+ denotes the continuous extension of f̂ from D+ to Γ, and f̂− denotes
the continuous extension of f̂ from D− to Γ. Let Γ0 be the connected component
of Γ with z0 ∈ Γ0 (endowed with the orientation of Γ), and let γ : [a, b]→ Γ0 be a
piecewise C1-parametrization of Γ (Def. 1.3.2). Since f, f+ and f− are continuous
on Γ, we may assume that z0 = γ(t0), where a < t0 < b is a smooth point of γ and
γ′(t0) 	= 0. Then we can find δ > 0, 0 < c < 1 and sequences z+

n ∈ D+, z−n ∈ D−,
n ∈ N∗, such that

|γ(t)− z0| ≥ c|t− t0| for |t− t0| < δ, (3.2.9)∣∣∣f(γ(t))− f(z0)
∣∣∣ <

c2 ε

32 max
|t−t0|≤δ

|γ′(t)| for |t− t0| < δ, (3.2.10)

lim
n→∞ z+

n = lim
n→∞ z−n = z0, (3.2.11)
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and, for all n ∈ N∗,

∣∣γ(t)− z+
n

∣∣ , ∣∣γ(t)− z−n
∣∣ ≥ 1

2

∣∣γ(t)− z0

∣∣+ 1
4

∣∣z+
n − z−n

∣∣ if |t− t0| ≤ δ. (3.2.12)

Since 0 < c < 1, it follows from (3.2.9) and (3.2.12) that, for all n ∈ N∗,∣∣γ(t)− z+
n

∣∣ , ∣∣γ(t)− z−n
∣∣ ≥ c

4

(∣∣t− t0
∣∣+ ∣∣z+

n − z−n
∣∣) if |t− t0| ≤ δ. (3.2.13)

Set

f̂ Γ0
+ (z+

n ) =
1
2πi

∫
Γ0

f(ζ)
ζ − z+

n
dζ and f̂ Γ0− (z−n ) =

1
2πi

∫
Γ0

f(ζ)
ζ − z−n

dζ.

Then it follows from (3.2.11) that

lim
n→∞

(
f̂+(z

+
n )− f̂−(z

−
n )−

(
f̂ Γ0
+ (z+

n )− f̂ Γ0− (z−n )
))

lim
n→∞

1
2πi

∫
Γ\Γ0

f(ζ)
(

1
ζ − z+

n
− 1

ζ − z−n

)
dζ = 0.

To prove (3.2.8), it is therefore sufficient to find nε such that∣∣∣f̂ Γ0
+ (z+

n )− f̂ Γ0− (z−n )− f(z0)
∣∣∣ < ε for n ≥ nε. (3.2.14)

If −Γ0 is the boundary of the unbounded component of D− and n is sufficiently
large, then, by Cauchy’s integral formula and Cauchy’s integral theorem,

1
2πi

∫
Γ0

f(z0)
ζ − z+

n
dζ = f(z0) and

1
2πi

∫
Γ0

f(z0)
ζ − z−n

dζ = 0.

If −Γ0 is the boundary of one of the bounded components of D−, then for all
sufficiently large n,

1
2πi

∫
Γ0

f(z0)
ζ − z+

n
dζ = 0 and

1
2πi

∫
Γ0

f(z0)
ζ − z−n

dζ = −f(z0).

In both cases, for all sufficiently large n,

1
2πi

∫
Γ0

f(z0)
(

1
ζ − z+

n
− 1

ζ − z−n

)
dζ = f(z0),
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and therefore

f̂ Γ0
+ (z+

n )−f̂ Γ0− (z−n )− f(z0) =
1
2πi

∫
Γ0

(
f(ζ)− f(z0)

)( 1
ζ − z+

n
− 1

ζ − z−n

)
dζ

=
1
2πi

b∫
a

(
f
(
γ(t)

)
− f(z0)

)( 1
γ(t)− z+

n
− 1

γ(t)− z−n

)
γ′(t) dt

=
1
2πi

(
I1(n) + I2(n)

)
,

where

I1(n) :=
∫

|t−t0|≥δ

(
f
(
γ(t)

)
− f(z0)

)( 1
γ(t)− z+

n
− 1

γ(t)− z−n

)
γ′(t) dt,

I2(n) :=
∫

|t−t0|≤δ

(
f
(
γ(t)

)
− f(z0)

)( 1
γ(t)− z+

n
− 1

γ(t)− z−n

)
γ′(t) dt.

From (3.2.11) it follows that limn→∞ I1(n) = 0. Therefore, to prove (3.2.14), it is
sufficient to prove that ∥∥I2(n)

∥∥ < ε for all n ∈ N∗.

Let n ∈ N∗ be given. Then it follows from (3.2.10) that∥∥I2(n)
∥∥ ≤ c2ε

32

∫
|t−t0|≤δ

∣∣∣∣ 1
γ(t)− z+

n
− 1

γ(t)− z−n

∣∣∣∣dt

=
c2ε

32

∫
|t−t0|≤δ

|z+
n − z−n |

|γ(t)− z+
n | |γ(t)− z−n |

dt.

In view of (3.2.13), this further implies that∥∥I2(n)
∥∥ ≤ ε

2

∣∣z+
n − z−n

∣∣ ∫
|t−t0|≤δ

dt(
|t− t0|+ |z+

n − z−n |
)2

= ε
∣∣z+

n − z−n
∣∣ δ∫

0

ds(
s+ |z+

n − z−n |
)2 < ε.

�

3.3 Hölder continuous functions split

As in the previous two sections, E is a Banach space,D+ ⊆ C is a bounded open set
with piecewise C1-boundary Γ oriented by D+ (Section 1.4.1), and D− = C \D+.
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Here we prove that each Hölder continuous function f : Γ → E splits with
respect to Γ.

3.3.1 Lemma. Let 0 < α < 1. Then there exists a constant C < ∞ such that, for
each Hölder-α continuous function f : Γ→ E (Def. 2.1.6) the Cauchy-integral f̂ ,
for all z ∈ C \ Γ, satisfies the estimate

‖f̂ ′(z)‖ ≤ C‖f‖Γ,α

(
dist(z,Γ)

)α−1

(3.3.1)

where dist(z,Γ) := minζ∈Γ |ζ − z|, and ‖f‖Γ,α is the Hölder norm introduced in
Definition 2.1.6.

Proof. Let a Hölder-α continuous function f : Γ→ E be given.
For z ∈ C and ε > 0, we denote by Δε(z) the open disc with radius ε centered

at z.
It follows from (3.2.2) (and the estimate from Proposition 1.3.6) that, for

each z ∈ C with dist(z,Γ) ≥ 1,

‖f̂ ′(z)‖ ≤ |Γ|
2π

max
ζ∈Γ

‖f(ζ)‖
(
dist(z,Γ)

)−2

≤ |Γ|
2π
‖f‖Γ,α

(
dist(z,Γ)

)α−1

.

Moreover, it is clear that, for each neighborhood U of Γ, there exists a constant
CU <∞ such that, for all z ∈ C \ U with dist(z,Γ) ≤ 1,

‖f̂ ′(z)‖ ≤ CU‖f‖Γ,α

(
dist(z,Γ)

)α−1

.

Therefore, it is sufficient to prove that, for each point z0 ∈ Γ there exists ε0 > 0
such that (3.3.1) holds for all z ∈ Δε0(z0) \ Γ with a constant C < ∞ which is
independent of f .

Let z0 ∈ Γ be given, and let Γ0 be the connected component of Γ with z0 ∈ Γ0.
Choose a piecewise C1-parametrization γ : [−3, 3]→ Γ0 of Γ0 with γ(0) = z0 (Def.
1.3.2). Then it follows from the properties of γ listed in Definition 1.3.2 that there
exist constants 0 < c1 < C1 <∞ such that

c1

∣∣t− s
∣∣ ≤ ∣∣γ(t)− γ(s)

∣∣ ≤ C1

∣∣t− s
∣∣ for all − 2 ≤ s, t ≤ 2. (3.3.2)

Choose 0 < ε0 < 1 so small that

ε0 < 2c1 (3.3.3)

and
Δ3ε0(z0) ∩

(
Γ \ γ([−1, 1]

)
= ∅. (3.3.4)

Now let z ∈ Δε0(z0) be given. Set ε = dist(z,Γ). As z0 ∈ Γ, then ε ≤ ε0. Take
a point z′ ∈ Γ with |z − z′| = dist(z,Γ) = ε. Since z ∈ Δε0(z0) and ε ≤ ε0, then
z′ ∈ Δ2ε0(z0). Since z′ ∈ Γ ∩Δ2ε0(z0), it follows from (3.3.4) that z′ ∈ γ([−1, 1]).
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Let −1 ≤ t′ ≤ 1 be the parameter with γ(t′) = z′ (which is uniquely determined
by (3.3.2)).

As Γ is closed and therefore∫
Γ

f(z′)
(ζ − z)2

dζ = f(z′)
∫
Γ

dζ

(ζ − z)2
= 0,

it follows (see (3.2.2)) that

f̂ ′(z) =
1
2πi

∫
Γ

f
(
ζ
)
− f(z′)

(ζ − z)2
dζ. (3.3.5)

Since −1 ≤ t′ ≤ 1 and, by (3.3.3), 2ε/c1 ≤ 2ε0/c1 < 1, we have

−2 ≤ t′ − 2ε
c1

< t′ +
2ε
c1

< 2.

Therefore (3.3.5) can be written

f̂ ′(z) = I1 + I2 + I3, (3.3.6)

where

I1 =
1
2πi

∫
Γ\γ([−2,2])

f
(
ζ
)
− f(z′)

(ζ − z)2
dζ,

I2 =
1
2πi

t′+2ε/c1∫
t′−2ε/c1

f
(
γ(t)

)
− f(z′)

(γ(t)− z)2
γ′(t)dt,

I3 =
1
2πi

t′−2ε/c1∫
−2

f
(
γ(t)

)
− f(z′)

(γ(t)− z)2
γ′(t)dt+

1
2πi

2∫
t′+2ε/c1

f
(
γ(t)

)
− f(z′)

(γ(t)− z)2
γ′(t)dt.

Since |z − z0| ≤ ε0 and, by (3.3.4), |ζ − z0| ≥ 3ε0 for ζ ∈ Γ \ γ([−2, 2]), we
have

|ζ − z| ≥ 2ε0 for ζ ∈ Γ \ γ([−2, 2]).
This implies (by Proposition 1.3.6)

‖I1‖ ≤
|Γ|
4πε2

0

max
ζ∈Γ

‖f(ζ)‖ ≤ |Γ|
4πε2

0

‖f‖Γ,α ≤
|Γ|
4πε2

0

‖f‖Γ,αεα−1, (3.3.7)

where the last inequality follows from 0 < ε < 1.
Set

C2 = max
−2≤t≤2

|γ′(t)|.
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Since |γ(t)− z| ≥ dist(z,Γ) = |z − z′| = ε for all −3 ≤ t ≤ 3, then it follows that

‖I2‖ ≤
C2

2πε2

t′+2ε/c1∫
t′−2ε/c1

∥∥f(γ(t))− f(z′)
∥∥dt. (3.3.8)

As
‖f(γ(t))− f(z′)‖ ≤ ‖f‖Γ,α|γ(t)− z′|α

and z′ = γ(t′), it follows from (3.3.2) that

‖f(γ(t))− f(z′)‖ ≤ ‖f‖Γ,αC1|t− t′|α for all − 3 ≤ t ≤ 3.

Together with (3.3.8) this gives

‖I2‖ ≤
C2‖f‖Γ,αC1

2πε2

t′+2ε/c1∫
t′−2ε/c1

|t− t′|αdt ≤
C2‖f‖Γ,αC1

2πε2

2
1 + α

(
2ε
c1

)1+α

≤ C2C122+α

2π(1 + α)c1+α
1

‖f‖Γ,αεα−1 ≤ C2C12
c2
1

‖f‖Γ,αεα−1. (3.3.9)

For |t− t′| ≥ 2ε/c1, we have by (3.3.2)

1
2
|γ(t)− γ(t′)| ≥ 1

2
c1|t− t′| ≥ ε.

As |γ(t′)− z| = |z′ − z| = ε, this implies that, for |t− t′| ≥ 2ε/c1,

|γ(t)− z| ≥ |γ(t)− γ(t′)| − |γ(t′)− z| = |γ(t)− γ(t′)| − ε ≥ 1
2
|γ(t)− γ(t′)|.

Hence

I3 ≤
t′−2ε/c1∫
−2

‖f
(
γ(t)

)
− f(z′)‖

|γ(t)− γ(t′)|2 γ′(t) dt+

2∫
t′+2ε/c1

‖f
(
γ(t)

)
− f(z′)‖

|γ(t)− γ(t′)|2 γ′(t) dt.

Taking into account that

‖f(γ(t))− f(z′)‖ = ‖f(γ(t))− f(γ(t′))‖ ≤ ‖f‖Γ,α|γ(t)− γ(t′)|α

and the definition of C2, this implies that

I3 ≤ ‖f‖Γ,αC2

( t′−2ε/c1∫
−2

|γ(t)− γ(t′)|α−2dt+

2∫
t′+2ε/c1

|γ(t)− γ(t′)|α−2dt

)
.
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By (3.3.2) this further implies that

I3 ≤‖f‖Γ,αC2C1

( t′−2ε/c1∫
−2

|t− t′|α−2dt+

2∫
t′+2ε/c1

|t− t′|α−2dt

)

≤2‖f‖Γ,αC2C1

∞∫
t′+2ε/c1

|t− t′|α−2dt = 8‖f‖Γ,αC2C1
1

1− α

(
2ε
c1

)α−1

≤2C2C1c
1−α
1

1− α
‖f‖Γ,αε1−α.

(3.3.10)

From (3.3.6), (3.3.7), (3.3.9) and (3.3.10) follows (3.3.1) if

C :=
|Γ|
4πε2

0

+
C2C12

c2
1

+
2C2C1c

1−α
1

1− α
.

This completes the proof of Lemma 3.3.1. �
Now we can prove that any Hölder continuous function f : Γ→ E splits with

respect to Γ. Moreover, we prove the following stronger result:

3.3.2 Theorem. Let 0 < α < 1, and let f : Γ → E be Hölder continuous with
exponent α. Set f+ = f̂

∣∣
D+

and f− = −f̂
∣∣
D−

where f̂ is the Cauchy integral of f

(Section 3.2.1). Then:

(i) f+ admits a Hölder-α continuous extension to D+, and f− admits a Hölder-α
continuous extension to D− ∪ {∞}.

(ii) If we denote these extensions also by f+ and f−, then

f = f+ + f− on Γ . (3.3.11)

Proof. By Theorem 3.2.2 we only have to prove part (i). For that it is sufficient
to find a neighborhood Θ of Γ and a constant C <∞ such that

‖f+(z1)− f+(z2)‖ ≤ C‖f‖Γ,α|z1 − z2|α (3.3.12)

for all z1, z2 ∈ Θ ∩D+ and

‖f−(z1)− f−(z2)‖ ≤ C‖f‖Γ,α|z1 − z2|α (3.3.13)

for all z1, z2 ∈ Θ ∩D−.
The proofs of these two estimates are analogous, and we may restrict our-

selves to (3.3.12). Let z0 be an arbitrary point in Γ. It is sufficient to find constants
ε0 > 0 and C < ∞ such that (3.3.12) holds true for all z1, z2 ∈ Δε0(z0) ∩ D+,
where we again denote by Δε(z) the open disc with radius ε centered at z.
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By Lemma 3.3.1, there is a constant C0 <∞ with

‖f ′+(z)‖ ≤ C0‖f‖Γ,α

(
dist(z,Γ)

)α−1

, z ∈ D+. (3.3.14)

Since Γ is piecewise C1, we can find constants 0 < ε1 , c < 1 and a complex number
v with |v| = 1 such that, for each z ∈ D+ ∩Δε0(z0),

Δct(z + tv) ⊆ D+ for all 0 ≤ t ≤ ε1. (3.3.15)

Set

ε0 = cε1/4 and C =
C02α+1

cα
+ C0.

We claim that, with this choice of ε0 and C, estimate (3.3.12) holds true for all
z1, z2 ∈ Δε0(z0) ∩D+.

Let z1, z2 ∈ Δε0(z0)∩D+ be given. Set ε = |z1−z2|. Then 2ε/c ≤ 4ε0/c = ε1

and it follows from (3.3.15) that

z1 + tv ∈ D+ and z2 + tv ∈ D+ for all 0 ≤ t ≤ 2ε
c

,

and

(1− t)
(

z1 +
2ε
c

v

)
+ t

(
z2 +

2ε
c

v

)
∈ D+ for all 0 ≤ t ≤ 2ε

c
.

Therefore∥∥f+(z1)− f+(z2)
∥∥ ≤ ∥∥∥f+(z1)− f+

(
z1 +

2ε
c

v
)∥∥∥+ ∥∥∥f+(z2)− f+

(
z2 +

2ε
c

v
)∥∥∥

+
∥∥∥∥f+

(
z1 +

2ε
c

v

)
− f+

(
z2 +

2ε
c

v

)∥∥∥∥
=
∥∥∥∥

2ε/c∫
0

f ′+
(
z1 + tv

)
v dt

∥∥∥∥+ ∥∥∥∥
2ε/c∫
0

f ′+
(
z2 + tv

)
v dt

∥∥∥∥
+
∥∥∥∥

1∫
0

f ′+

(
(1− t)

(
z1 +

2ε
c

v
)
+ t

(
z2 +

2ε
c

v
))

(z2 − z1) dt

∥∥∥∥.
Since |v| = 1 and |z2 − z1| = ε, this implies that

‖f+(z1)− f+(z2)‖ ≤
2ε/c∫
0

∥∥∥f ′+(z1 + tv
)∥∥∥ dt+

2ε/c∫
0

∥∥∥f ′+(z2 + tv
)∥∥∥ dt

+ ε

1∫
0

∥∥∥∥f ′+((1− t)
(
z1 +

2ε
c

v
)
+ t

(
z2 +

2ε
c

v
))∥∥∥∥dt.

(3.3.16)
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It follows from (3.3.14) and (3.3.15) that∥∥∥f ′+(zj + tv
)∥∥∥ ≤ C0‖f‖Γ,α(ct)

α−1 for 0 ≤ t ≤ 2ε
c
and j = 1, 2.

Hence

2ε/c∫
0

∥∥∥f ′+(zj + tv
)∥∥∥ dt ≤ C0c

α−1‖f‖Γ,α

2ε/c∫
0

tα−1dt =
C02α

cα
‖f‖Γ,αεα (3.3.17)

for j = 1, 2. Moreover it follows from (3.3.15) that

Δ2ε

(
z2 +

2ε
c

v
)
⊆ D+.

As ∥∥∥(z1 +
2ε
c

v
)
−
(
z2 +

2ε
c

v
)∥∥∥ = |z1 − z2| = ε

and therefore

(1− t)
(
z1 +

2ε
c

v
)
+ t

(
z2 +

2ε
c

v
)
∈ Δε

(
z2 +

2ε
c

v
)
, 0 ≤ t ≤ 1,

this yields

(1− t)
(
z1 +

2ε
c

v
)
+ t

(
z2 +

2ε
c

v
)
∈ D+, 0 ≤ t ≤ 1,

and

dist
(
(1− t)

(
z1 +

2ε
c

v
)
+ t

(
z2 +

2ε
c

v
)

, Γ
)
≥ ε, 0 ≤ t ≤ 1.

Together with (3.3.14) this implies that

ε

1∫
0

∥∥∥∥f ′+((1− t)
(
z1 +

2ε
c

v
)
+ t

(
z2 +

2ε
c

v
))∥∥∥∥dt ≤ C0‖f‖Γ,αεα. (3.3.18)

Estimate (3.3.12) now follows from (3.3.16), (3.3.17) and (3.3.18). �
3.3.3 Corollary. Let P ⊆ C be a set such that, in each connected component of D+

and in each connected component of D−, lies at least one point from P . Then any
continuous function f : Γ → E can be approximated uniformly on Γ by holomor-
phic functions defined in C \ P .

Proof. Since any continuous function on Γ can be approximated uniformly on Γ
by C∞-functions, we may assume that f is of class C∞. Then, by Theorem 3.3.2,
there exists a global splitting (f+, f−) of f with respect to Γ. It remains to apply
the Runge approximation Theorem 2.2.2 to f+ and f−. �
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3.3.4. From the proof of Theorem 3.3.2 it is clear that the constant C in (3.3.12)
and (3.3.13) is independent of f . Note also the following corollary of Theorem
3.3.2: If f+ : D+ → E (f : D−{∞} → E) is a continuous function which is
Hölder-α continuous on Γ and holomorphic in D+ (D−∪{∞}), then this function
is automatically also Hölder-α continuous on D+ (D− ∪ {∞}).

3.4 The splitting behavior of differentiable functions

3.4.1 Definition (Ck-contours). Let k ∈ N∗.
A set Γ ⊆ C is called a closed connected Ck-contour if there exist real numbers

a < b and a Ck-function γ : [a, b]→ C with Γ = γ
(
[a, b]

)
such that

(i) γ′(t) 	= 0 for a ≤ t ≤ b;

(ii) γ(t) 	= γ(s) for a ≤ t, s < b with t 	= s;

(iii) γ(n)(b) = γ(n)(a) for 0 ≤ n ≤ k.

The function γ then is called a Ck-parametrization of Γ.
By a (not necessarily connected) closed Ck-contour we mean the union of a

finite number of closed connected Ck-contours.
We shall say that an open set D ⊆ C has a Ck-boundary if the boundary of

D (in C) is a closed Ck-contour and each point of this boundary is also a boundary
point of C \D.

3.4.2. Let Γ ⊆ C be a closed Ck-contour, k ∈ N∗. Then, by the inverse function
theorem, for each z0 ∈ Γ, there is a neighborhood U of z0 and a Ck-diffeomorphism
Φ from U onto an open set V ⊆ C such that

Φ(U ∩ Γ) =
{

z ∈ V
∣∣∣ Im z = 0

}
.

3.4.3 Definition. Let Γ ⊆ C be a closed Ck-contour, k ∈ N∗, let E be a Banach
space, and let f : Γ → E be a function. It follows from the observation in the
preceding Section 3.4.2 that then the following two conditions are equivalent:

(a) If γ : [a, b]→ Γ0 is a Ck-parametrization of a connected component Γ0 of Γ,
then the composition f ◦ γ is k times continuously differentiable on [a, b].

(b) The function f admits an extension to a neighborhood of Γ which is of class
Ck.

If these two equivalent conditions are satisfied, then f is called of class Ck on Γ.
If f is of class C1 on Γ, then, for each ζ ∈ Γ, we define

f ′(ζ) =

(
f ◦ γ

)′(
γ−1(ζ)

)
γ′
(
γ−1(ζ)

) , (3.4.1)
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where γ : [a, b] → C is an arbitrary Ck-parametrization of the connected com-
ponent of Γ which contains the point ζ. It follows from the chain rule that this
definition does not depend on the choice of γ. The continuous function f ′ : Γ→ E
defined in this way will be called the derivative of f with respect to Γ. Note that
if f is holomorphic in a neighborhood of Γ, then this is the restriction to Γ of the
complex derivative of f .

We write also f (1) for f ′ and f (0) for f .
If f is of class Ck on Γ, then we define f (2), . . . , f (k), by setting

f (n) =
(
f (n−1)

)′
for 2 ≤ n ≤ k.

The function f is called of class Ck+α on Γ, 0 < α < 1 if f is of class Ck on
Γ, and f (k) is Hölder continuous with exponent α on Γ.

3.4.4 Definition. Let D+ ⊆ C be a bounded open set with Ck-boundary Γ, k ∈ N∗,
let D− := C \D+, let E be a Banach space, and let 0 < α < 1.

If f : D− → E is a holomorphic function, then we say that f is of class
Ck+α on D− if all complex derivatives f (n), 0 ≤ n ≤ k, (which are well defined
on D−) admit continuous extensions to D−, where f (k) is Hölder continuous with
exponent α on D−. If this is the case, then these extensions will be denoted also
by f (n). Note that then f (n)

∣∣
Γ
is of class Ck−n on Γ (in the sense of the preceding

definition) and
(
f (n)

∣∣
Γ

)′ = f (n+1)
∣∣
Γ
for 0 ≤ n ≤ k − 1.

Correspondingly we define what it means that a holomorphic function f :
D+ → E is of class Ck+α on D+.

It is the aim of the present section to prove the following

3.4.5 Theorem. Let D+ ⊆ C be a bounded open set with Ck-boundary Γ, k ∈ N∗,
let D− := C \D+, let E be a Banach space, and let f : Γ → E be of class Ck+α

on Γ, 0 < α < 1. Then f splits with respect to Γ (Def. 3.1.2).
Moreover, if f = f++f− is an arbitrary splitting of f with respect to Γ, then

f+ is of class Ck+α on D+, and f− is of class Ck+α on D−.

That then f splits with respect to Γ, we know already from Theorem 3.3.2.
To prove the additional assertion, we begin with the following

3.4.6 Lemma. Let Γ be an oriented closed Ck-contour. Let E be a Banach space,
let f : Γ→ E be of class Ck, and let

f̂(z) :=
1
2πi

∫
Γ

f(ζ)
ζ − z

dζ, z ∈ C \ Γ,

be the Cauchy integral of f with respect to Γ (which is a holomorphic function, by
Lemma 1.5.2). Then, for 0 ≤ n ≤ k,

(
f̂
)(n)(z) =

1
2πi

∫
Γ

f (n)(ζ)
ζ − z

dζ for all z ∈ C \ Γ. (3.4.2)
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Proof. For the proof we may assume that Γ is connected. Then we have a positively
oriented Ck-parametrization γ : [a, b]→ Γ of Γ.

For n = 0, (3.4.2) holds by definition. Assume (3.4.2) is already proved for
some n with 0 ≤ n ≤ k − 1, and let z ∈ C \ Γ be given. Then it follows from
Lemma 1.5.2 that

(
f̂
)(n+1)(z) =

1
2πi

∫
Γ

f (n)(ζ)
(ζ − z)2

dζ =
1
2πi

∫ b

a

f (n)(γ(t))
(γ(t)− z)2

γ′(t)dt

= − 1
2πi

∫ b

a

(f (n) ◦ γ)(t)
d

dt

1
γ(t)− z

dt.

As γ(a) = γ(b), integrating by parts, this implies

(
f̂
)(n+1)(z) =

1
2πi

b∫
a

(f (n) ◦ γ)′(t)
γ(t)− z

dt =
1
2πi

b∫
a

(f(n)◦γ)′(t)
γ′(t)

γ(t)− z
γ′(t) dt

=
1
2πi

∫
Γ

(f(n)◦γ)′(γ−1(ζ))
γ′(γ−1(ζ))

ζ − z
dζ =

1
2πi

∫
Γ

f (n+1)(ζ)
ζ − z

dζ.

�

Proof of Theorem 3.4.5. Let

(f̂)+(z) :=
1
2πi

∫
Γ

f(ζ)
ζ − z

dζ, z ∈ D+, (f̂)−(z) :=
1
2πi

∫
Γ

f(ζ)
ζ − z

dζ, z ∈ D−,

be the two parts of the Cauchy integral of f . By Theorem 3.2.2, we only have to
prove that (f̂)± is of class Ck+α on D±. Since the functions (f̂)± are holomorphic
in D±, this means that each of the functions (f̂)(n)

± , 1 ≤ n ≤ k, (here (f̂)(n)
±

denotes the n-th complex derivative of (f̂)± on D±) is Hölder-α continuous on
D±.

Let f (n), 1 ≤ n ≤ k, be the n-th derivative of f with respect to Γ (Def. 3.4.3),
and let

(f̂ (n))+(z) :=
1
2πi

∫
Γ

f(ζ)
ζ − z

dζ, z ∈ D+, (f̂ (n))−(z) :=
1
2πi

∫
Γ

f(ζ)
ζ − z

dζ, z ∈ D−,

be the two parts of the Cauchy integral of f (n). Since, by hypothesis, the functions
f (n), 1 ≤ n ≤ k, are Hölder-α continuous on Γ, it follows from Theorem 3.3.2 that
each of the functions

(
f̂ (n)

)
±, 1 ≤ n ≤ k, admits a Hölder-α continuous extension

to D±.

As, by Lemma 3.4.6, (f̂)(n)
± (z) =

(
f̂ (n)

)
±(z), z ∈ D±, 1 ≤ n ≤ k, this

completes the proof. �
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3.5 Approximation of Hölder continuous functions

In this section, D+ ⊆ C is a bounded open set with piecewise C1-boundary Γ,
D− := C \D+, and E is a Banach space.

For 0 < α < 1, the space of scalar Hölder-α continuous functions on Γ is not
separable. Therefore, it is impossible to approximate such functions in the norm
‖ · ‖Γ,α (Def. 2.1.6) by functions which are holomorphic in a neighborhood of Γ.
However, for 0 ≤ β < α, this is possible with respect to the norm ‖ · ‖Γ,β . In
the present section we prove this. Moreover, if Γ is a Ck-contour, k ∈ N∗, then
we obtain the corresponding fact for functions which are of class Ck+α on Γ (Def.
3.4.3). We prove:

3.5.1 Theorem. Let 0 ≤ β < α < 1, k ∈ N and let f : Γ→ E be a function.
If k = 0, then we assume that f is Hölder continuous with exponent α.
If k ≥ 1, then we assume that Γ is of class Ck and f is of class Ck+α on Γ

(Def. 3.4.3).
Then, for each ε > 0, there exist a neighborhood U of Γ and a holomorphic

function f̃ : U → E such that, for all 0 ≤ n ≤ k, (see Def. 2.1.6 for ‖ · ‖Γ,β)

‖f (n) − f̃ (n)‖Γ,β < ε. (3.5.1)

Here f (n) denotes the n-th complex derivative of f with respect to Γ (Def. 3.4.3)
and f̃ (n) is the n-th complex derivative of f̃ (as a holomorphic function on U).

In the proof of this theorem we use the following simple lemma:

3.5.2 Lemma. Let ω ⊆ K ⊆ C be two compact sets such that, for some vector
θ ∈ C, |θ| = 1, and some ε0 > 0,

ω ⊆ K + εθ if 0 ≤ ε ≤ ε0.

Let 0 ≤ β < α < 1, and let f : K → E be Hölder continuous with exponent α. Set

fε(z) = f(z − εθ) for z ∈ K + εθ and 0 ≤ ε ≤ ε0.

Then
lim
ε→0

‖f − fε‖ω,β = 0.

For the definition of ‖ · ‖ω,β, see Def. 2.1.6.

Proof. Let 0 ≤ ε < ε0 be given. As |θ| = 1 and z, z − εθ ∈ K for z ∈ ω, then

‖f − fε‖ω,0 = max
z∈ω

‖f(z)− f(z − εθ)‖ ≤ ‖f‖K,α εα.

Moreover, if z, w ∈ ω with ε ≤ |z − w|, then∥∥f(z)− fε(z)−
(
f(w)− fε(w)

)∥∥ ≤ ∥∥f(z)− f(z − εθ)
∥∥+ ∥∥f(w)− f(w − εθ)

∥∥
≤ 2‖f‖K,α εα ≤ 2‖f‖K,α εα−β |z − w|β ,
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and if z, w ∈ ω with ε ≥ |z − w|, then also∥∥f(z)− fε(z)−
(
f(w)− fε(w)

)∥∥ ≤ ∥∥f(z)− f(w)
∥∥+ ∥∥f(w − εθ−)− f(z − εθ−)

∥∥
≤ 2‖f‖K,α|z − w|α ≤ 2‖f‖K,α εα−β |z − w|β .

Hence

‖f − fε‖ω,β ≤ ‖f‖K,α

(
εα + 2εα−β

)
. �

Proof of Theorem 3.5.1. By Theorem 3.3.2, f = f+ + f− on Γ, where

f+(z) =
1
2πi

∫
Γ

f(ζ)
ζ − z

dζ , z ∈ D+, f−(z) = −
1
2πi

∫
Γ

f(ζ)
ζ − z

dζ , z ∈ D−, (3.5.2)

and the functions f± are Hölder-α continuous on D±. If k ≥ 1 (and hence, by
hypotheses of the theorem, Γ is of class Ck), then, by Theorem 3.4.5, these functions
are even of class Ck+α.

It is now sufficient to approximate each of the functions f+ and f− separately.
Since the proofs are the same, we restrict ourselves to the function f+. Note that
the following arguments are parallel to the proof of the Mergelyan approximation
Theorem 2.2.1.

Take a finite number of real non-negative C∞ functions χ1, . . . , χN on C with
sufficiently small supports suppχj (how small, we say below) such that

∑N
j=1 χj =

1 in some neighborhood of ∂D. Set

f+,j(z) =
1
2πi

∫
Γ

χj(ζ)f(ζ)
ζ − z

dζ, z ∈ C \ (suppχj ∩ Γ) , 1 ≤ j ≤ N.

Again by theorems 3.3.2 and 3.4.5, the functions f+,j admit extensions of class Cα

from D+ to D+, which are even of class Ck+α if k ≥ 1. We denote these extensions
by f

D+
+,j . Then it follows from the first equation in (3.5.2) that

f(z) = f
D+
+,1 (z) + . . .+ f

D+
+,n(z) for all z ∈ D+.

Since Γ is piecewise C1 and each f
D+
+j extends to a holomorphic function outside

suppχj ∩ Γ, now we can choose the supports suppχj so small that we can apply
Lemma 3.5.2 to this situation: By small shifts, for each j, we can find a bounded
neighborhood Uj of Γ and a function f̃j ∈ OE(Uj) such that∥∥(fD+

+,j

)(n) − f̃
(n)
j ‖Uj ,β <

ε

N
for 0 ≤ n ≤ k.

Setting U = U1 ∩ . . . ∩ UN and f̃ = f̃1 + . . .+ f̃N , we complete the proof. �
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3.6 Example: A non-splitting continuous function

Let T be the unit circle in the complex plane. In this section, we construct a
continuous function Ω : T → C which does not split with respect to T. We begin
with the following lemma of Abel: 1

3.6.1 Lemma. Let [a, b] be a real interval, and let ϕn : [a, b] → C, n ∈ N, be a
sequence of continuous functions such that

C := sup
a≤x≤b,n∈N

∣∣∣∣ n∑
k=0

ϕk(x)
∣∣∣∣ <∞. (3.6.1)

Further, let αn, n ∈ N, be a monotonicly decreasing sequence of real numbers
tending to zero. Then the series of functions

∞∑
k=0

αkϕk (3.6.2)

converges uniformly on [a, b] to a continuous function S : [a, b]→ C such that

max
a≤x≤b

|S(x)| ≤ Cα0. (3.6.3)

Proof. Set

Sn =
n∑

k=0

αkϕk and Φn =
n∑

k=0

ϕk.

Then ϕk = Φk − Φk−1 for k ≥ 1 and therefore

Sn = α0ϕ0 +
n∑

k=1

αk(Φk − Φk−1) =
n∑

k=0

αkΦk −
n∑

k=1

αkΦk−1

=
n∑

k=0

αkΦk −
n−1∑
k=0

αk+1Φk = αnΦn +
n−1∑
k=0

(αk − αk+1)Φk. (3.6.4)

Note that by (3.6.1)
max

a≤x≤b,n∈N

|Φn(x)| ≤ C. (3.6.5)

As limn→∞ αn = 0, this implies that

lim
n→∞ max

a≤x≤b
|αnΦn(x)| = 0. (3.6.6)

1Our source for this section is the book [Bar]. There this lemma is called Abel’s lemma, in
distinction to the present book, where by Abel’s lemma we mean Theorem 1.8.2.
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Since αk − αk+1 ≥ 0, (3.6.5) moreover yields

n−1∑
k=0

max
a≤x≤b

∣∣∣(αk − αk+1)Φk(x)
∣∣∣ ≤ C

n−1∑
k=0

(αk − αk+1) = C(α0 − αn).

Using again that limn→∞ αn = 0, this implies that the series

∞∑
k=0

(αk − αk+1)Φk

converges uniformly on [a, b] to a continuous function S : [a, b] → C satisfying
(3.6.3). Together with (3.6.4) and (3.6.2) this further implies that the series (3.6.2)
converges uniformly on [a, b] to S. �

Further we need the following lemma:

3.6.2 Lemma. Set Dn(x) =
∑n

k=1 sin(kx) for x ∈ R and n ∈ N∗. Then

|Dn(x)| ≤
4
|x| for all 0 < |x| ≤ π and n ∈ N∗. (3.6.7)

Proof. Recall that cos(s + t) = cos t cos s − sin t sin s, cos(s − t) = cos t cos s +
sin t sin s and therefore

2 sin t sin s = cos(s− t)− cos(s+ t)

for all s, t ∈ R. Hence

2 sin
x

2
Dn(x) =

n∑
k=1

2 sin
x

2
sin(kx) =

n∑
k=1

(
cos

(
kx− x

2

)
− cos

(
kx+

x

2

))

=
n−1∑
k=0

cos
(
kx+

x

2

)
−

n∑
k=1

cos
(
kx+

x

2

)
= cos

x

2
− cos

(
nx+

x

2

)
and

Dn(x) =
cos x

2 − cos
(
nx+ x

2

)
2 sin x

2

for 0 < |x| < 2π. As | sin t| ≥ |t|/2 for −π/2 < t < π/2, this implies (3.6.7). �
3.6.3 Theorem. (i) The series

∞∑
k=2

zk − z−k

k log k
, z ∈ T, (3.6.8)

converges uniformly on T to a continuous function Ω : T → C.
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(ii) The function Ω from part (i) does not split with respect to T (Def. 3.1.2).

Proof. We first prove part (i). Since, for z = eix, −π ≤ x ≤ π,

zk − z−k = eikx − e−ikx = 2i sin(kx),

this is equivalent to the assertion that the series
∞∑

k=2

sin(kx)
k log k

, −π ≤ x ≤ π, (3.6.9)

converges uniformly on [0, 2π] to a continuous function ω : [−π, π] → C. Recall
that by Lemma 3.6.2,

|Dk(x)| ≤
4
|x| for all 0 < |x| ≤ π and k ≥ 2, (3.6.10)

where Dk(x) :=
∑k

ν=1 sin(νx). By Lemma 3.6.1 this implies that, for each δ > 0,
the series (3.6.8) converges uniformly on [−π,−δ]∪ [δ, π]. In particular, this series
converges for each fixed x ∈ [−π, π] (for x = 0 this is trivial, as sin 0 = 0), and we
can define

ω(x) =
∞∑

k=2

sin(nx)
n log n

for all − π ≤ x ≤ π.

Let

rn(x) := ω(x)−
n∑

k=2

sin(kx)
k log k

=
∞∑

k=n+1

sin(kx)
k log k

for − π ≤ x ≤ π and n ≥ 2.

We have to prove that limn→∞ rn = 0 uniformly on [−π, π]. For that, it is sufficient
to prove that

|rn(x)| ≤
16
log n

for |x| ≤ π and n ≥ 2. (3.6.11)

For x = 0 this is trivial. Let n ≥ 2 and x 	= 0 with |x| ≤ π be given. We
distinguish two cases:

First Case: |x| ≥ 1
n . Then

rn(x) =
∞∑

k=n+1

1
k log k

(
Dk(x)−Dk−1(x)

)
=

∞∑
k=n+1

1
k log k

Dk(x)−
∞∑

k=n+1

1
k log k

Dk−1(x)

=
∞∑

k=n+1

1
k log k

Dk(x)−
∞∑

k=n

1
(k + 1) log(k + 1)

Dk(x)

=
1

(n+ 1) log(n+ 1)
Dn+1(x) +

∞∑
k=n

(
1

k log k
− 1
(k + 1) log(k + 1)

)
Dk(x).
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By (3.6.10) this implies that

|rn(x)| ≤
4

|x|(n+ 1) log(n+ 1)
+

4
|x|

∞∑
k=n

∣∣∣∣ 1
k log k

− 1
(k + 1) log(k + 1)

∣∣∣∣.
As

1
k log k

>
1

(k + 1) log(k + 1)
for k ≥ 2

and (therefore)
∞∑

k=n

∣∣∣∣ 1
k log k

− 1
(k + 1) log(k + 1)

∣∣∣∣ = 1
n log n

,

it follows that
|rn(x)| ≤

8
|x|n log n

.

Since |x| ≥ 1
n , this implies (3.6.11),

Second case: |x| < 1
n . Let N ≥ n be the number in N with

1
N

> |x| ≥ 1
N + 1

.

Since | sin(kx)| ≤ k|x|, then
N∑

k=n+1

sin(kx)
k log k

≤
N∑

k=n+1

|x|
log k

≤ (N − n)
|x|

log(n+ 1)
.

As |x| < 1/N and log(n+ 1) > log n, this yields

N∑
k=n+1

sin(kx)
k log k

≤
N∑

k=n+1

|x|
log k

≤ 1
log n

. (3.6.12)

Moreover, as in the first case, using (3.6.10), we get∣∣∣∣ ∞∑
k=N+1

sin(kx)
k log k

∣∣∣∣
≤ 1
(N + 1) log(N + 1)

|DN+1(x)|+
∞∑

k=N

(
1

k log k
− 1
(k + 1) log(k + 1)

)
|Dk(x)|

≤ 4
|x|(N + 1) log(N + 1)

+
4
|x|

1
N logN

.

As |x| ≥ 1/(N + 1) and N ≥ n, this implies∣∣∣∣ ∞∑
k=N+1

sin(kx)
k log k

∣∣∣∣ ≤ 4
log(N + 1)

+
4(N + 1)
N logN

≤ 12
log n

.
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Together with (3.6.12) this implies (3.6.11).
Now we prove part (ii). Set

D+ =
{

z ∈ C

∣∣∣ |z| < 1
}

and D− =
{

z ∈ C

∣∣∣ |z| > 1
}

.

Assume Ω splits with respect to T, i.e., Ω = Ω+ + Ω− where Ω+ : D+ → C and
Ω− : D− ∪ {∞} → C are continuous functions which are holomorphic in D+ and
D−∪{∞}, respectively. After adding a constant we may assume that Ω−(∞) = 0.
By the Cauchy formula, we have

Ω+(z) =
1
2πi

∫
T

Ω+(ζ)
ζ − z

dζ for z ∈ D+. (3.6.13)

By the Cauchy integral theorem, for all 1 < R < ∞ and z ∈ D+, we have∣∣∣∣ 1
2πi

∫
T

Ω−(ζ)
ζ − z

dζ

∣∣∣∣ = ∣∣∣∣ 1
2πi

∫
|ζ|=R

Ω−(ζ)
ζ − z

dζ

∣∣∣∣ ≤ 1
(R− 1)π

max
|ζ|=R

|Ω−(ζ)|.

As Ω−(∞) = 0, this implies that

1
2πi

∫
T

Ω−(ζ)
ζ − z

dζ = 0 for all z ∈ D+.

Together with (3.6.13), this gives

1
2πi

∫
T

Ω(ζ)
ζ − z

dζ = Ω+(z) for all z ∈ D+.

As, by part (i) of this theorem, the series (3.6.8) converges uniformly on T to Ω,
this further implies that

Ω+(z) = lim
n→∞

1
2πi

∫
T

( n∑
k=2

1
k log k

ζk − ζ−k

ζ − z

)
dζ for z ∈ D+.

Taking into account that

1
2πi

∫
T

ζ−k

ζ − z
dζ = 0 and

1
2πi

∫
T

ζk

ζ − z
dζ = zk for k ≥ 1 and z ∈ D+,

it follows that

Ω+(z) =
∞∑

k=2

zk

k log k
, z ∈ D+.

Since
∑∞

k=2 1/(k log k) =∞, from this we get

lim
ε↓0

Ω+(1− ε) =∞,

which is a contradiction to the assumption that Ω+ is continuous on D+. �
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3.7 The additive local principle

In this section, E is a Banach space and D+ ⊆ C is a bounded open set with
piecewise C1-boundary Γ oriented by D+ (Section 1.4.1), and D− = C \D+.

3.7.1 Definition. Let U ⊆ C be an open set with U ∩Γ 	= ∅, and let f : Γ∩U → E
be a continuous function. We say that f splits (additively) over U with respect
to Γ if there exists a pair of E-valued functions (f+, f−), where f+ is continuous
on U ∩ D+ and holomorphic in U ∩ D+, and f− is continuous on U ∩ D− and
holomorphic in U ∩D−, such that

f = f+ + f− on U ∩ Γ . (3.7.1)

Then the pair (f+, f−) or the representation f = f++ f− will be called a splitting
with respect to Γ over U .

Let f : Γ → E be a continuous function. Then we say that f splits locally
with respect to Γ if, for each w ∈ Γ, there exists a neighborhood U of w such that
f splits over U with respect to Γ.

3.7.2 Corollary (to Theorem 1.5.4). Let U ⊆ C be an open set with U ∩ Γ 	= ∅,
and let f : Γ ∩ U → E be a continuous function. Suppose (f+, f−) and (f̃+, f̃−)
are two splittings of f with respect to Γ over U . Then there exists a holomorphic
function h : U → E such that

f+ − f̃+ = h on D+ ∩ U and f− − f̃− = h on D− ∩ U .

Proof. Since f+ − f̃+ = f− − f̃− on Γ∩U , then there is a well-defined continuous
function h : U → E with

h =

{
f+ − f̃+ on D+ ∩ U ,

f− − f̃− on D− ∩ U .

By Theorem 1.5.4, this function is holomorphic on U . �

The fact established by the following theorem will be called the additive local
principle:

3.7.3 Theorem. Let f : Γ → E be a continuous function, which locally splits with
respect to Γ. Then f globally splits with respect to Γ.

In particular, all E-valued functions, which are holomorphic in some neigh-
borhood of Γ, globally split with respect to Γ.

Proof. Choose open sets U1, . . . , Um ⊆ C with Γ ⊆ U1 ∪ . . . ∪ Um such that, for
each 1 ≤ j ≤ m, over Uj there exists a local splitting (f+

j , f−j ) of f with respect
to Γ. Moreover, set

U0 = C \ Γ and f+
0 = f−0 = 0 on U0 .
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Then, for all 0 ≤ j, k ≤ m with Uj ∩ Uk ∩ Γ 	= ∅,

f+
j − f+

k = f−j − f−k on Uj ∩ Uk ∩ Γ. (3.7.2)

Indeed, if 1 ≤ j, k ≤ m, this is clear, since f+
j +f−j = f = f+

k +f−k on Uj ∩Uk ∩Γ,
and, for j = 0 or k = 0, this is trivial, as U0 ∩ Γ = ∅. Now, by (3.7.2), there is a
well-defined family gjk ∈ CE(Uj∩Uk), 0 ≤ j, k ≤ m, such that, for all 0 ≤ j, k ≤ m,

gjk =

{
f+

j − f+
k on Uj ∩ Uk ∩D+ if Uj ∩ Uk ∩D+ 	= ∅ ,

f−j − f−k on Uj ∩ Uk ∩D− if Uj ∩ Uk ∩D− 	= ∅ .
(3.7.3)

On (Uj ∩ Uk) \ Γ, these functions are holomorphic, since the functions f±j are
holomorphic on Uj ∩D±j . Hence, by Theorem 1.5.4,

gjk ∈ OE(Uj ∩ Uk) , 0 ≤ j, k ≤ m.

Moreover it is clear from (3.7.3) that, for all 0 ≤ j, k, l ≤ m with Uj ∩Uk ∩Ul 	= ∅,

gjk + gkl = gjl on Uj ∩ Uk ∩ Ul ,

i.e.,, the family {gjk}0≤j,k≤m is a ({U0, . . . , Um},OE)-cocycle (Definition 2.4.1).
Hence, from Theorem 2.4.2 we get a family hj ∈ OE(Uj), 0 ≤ j ≤ m, with

gjk = hj − hk on Uj ∩ Uk , 0 ≤ j, k ≤ m.

Then it follows from (3.7.3) that, for all 0 ≤ j, k ≤ m,

hj − hk =

{
f+

j − f+
k on Uj ∩ Uk ∩D+ if Uj ∩ Uk ∩D+ 	= ∅,

f−j − f−k on Uj ∩ Uk ∩D− if Uj ∩ Uk ∩D− 	= ∅,

and therefore

hj − f+
j = hk − f+

k on Uj ∩ Uk ∩D+ if Uj ∩ Uk ∩D+ 	= ∅

and
hj − f−j = hk − f−k on Uj ∩ Uk ∩D− if Uj ∩ Uk ∩D− 	= ∅ .

Hence, there are well-defined continuous functions f̃± : D± → E such that

f̃+

∣∣
Uj∩D+

= hj − f+
j , 0 ≤ j ≤ m , (3.7.4)

f̃−
∣∣
Uj∩D−

= hj − f+
j , 0 ≤ j ≤ m . (3.7.5)

Since U0, . . . , Um is an open covering of C, in view of the corresponding properties
of the functions hj and f±j , it follows from (3.7.4) and (3.7.5) that f̃+ is holo-
morphic in D+, and f̃− is holomorphic in D−. Since f = f+

j + f−j on Uj ∩ Γ,
1 ≤ j ≤ m, it follows from (3.7.4) and (3.7.5) that

f = f̃+ − f̃− on Γ . (3.7.6)
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Now we take a radius 0 < R < ∞ such that
{
z ∈ C

∣∣ |z| > R
}
⊆ D− , and let

f̃−(z) =
∞∑

n=−∞
f̃nzn

be the Laurent expansion of f̃− with respect to
{
z ∈ C

∣∣ |z| > R
}
. Set

h(z) =
∞∑

n=0

f̃nzn for z ∈ C and f−(z) =
−1∑

n=−∞
f̃nzn for |z| > R .

Then
f−(z) = f̃−(z)− h(z) for |z| > R.

As f̃− is continuous on D− and holomorphic in D− and h is holomorphic in C,
this shows that f− admits a continuous extension to D−, which is holomorphic in
D−. Moreover, by definition of f−, it is clear that f− extends holomorphically to
∞, where f−(∞) = 0. As f̃+ is continuous on D+ and holomoprhic in D+, and h
is holomorphic in C, in the same way we see that

f+ := f̃+ − h

is continuous on D+ and holomorphic in D+. Since f̃− = h + f−, from (3.7.6) it
follows that

f = f̃+ − f̃− = f̃+ − h− f− = f+ − f− on Γ .

�

3.8 Factorization of scalar functions with respect to a

contour. First remarks

In this section, D+ ⊆ C is a bounded open set with piecewise C1-boundary Γ
oriented by D+ (Section 1.4.1) such that 0 ∈ D+, and D− = C \D+. We denote
by Γ0, . . . ,Γm the connected components of Γ, endowed with the orientation of Γ,
so that −Γ0 is the boundary of the unbounded component of D−.

3.8.1 Definition. Let f : Γ→ C∗ be a continuous function. We say that f admits a
factorization with respect to Γ if there exist continuous functions f− : D−∪{∞} →
C∗ and f+ : D+ → C∗, which are holomorphic in D− ∪ {∞} (Section 3.1.1) and
D+, respectively, such that, for some integer κ,

f(z) = zκf+(z)f−(z) for z ∈ Γ . (3.8.1)

To underline the difference with Definition 3.11.1 below, in this case we also
say that f admits a global factorization with respect to Γ.



3.8. Factorization. First remarks 85

If f is a scalar rational function which is holomorphic and 	= 0 on Γ0∪. . .∪Γm,
then a factorization of f with respect to Γ0 ∪ . . .∪Γm is easy to find. Indeed, then
f is of the form

f =
p−p+

q−q+

where p−, q−, p+, q+ are polynomials such that p−, q− have no zeros on D− and
p+, q+ have no zeros on D+. Let deg p− and deg q− be the degrees of p− and q−,
respectively, and set

κ = deg p− − deg q− .

Then the functions p−/q− and p+/q+ are holomorphic on D− and D+, respec-
tively,

a := lim
z→∞ z−κ p−(z)

q−(z)

exists and a 	= 0. Therefore we obtain a factorization of f with respect to Γ0 ∪
. . . ∪ Γm, by setting

f−(z) = z−κ p−(z)
q−(z)

for z ∈ D− and f−(∞) = a,

f+(z) =
p+(z)
q+(z)

for z ∈ D+ .

Not every continuous function f : Γ0 ∪ . . .∪ Γm → C∗ admits a factorization
with respect to Γ0∪ . . .∪Γm (see Remark 3.11.4 below). To study the factorization
problem in the general case, now, also for continuous functions, we define the index,
which was introduced for holomorphic functions already in Definition 2.5.3.

For that let Γ′ be the union of some of the connected components Γ0, . . . ,Γm

of Γ, oriented in an arbitrary way. First consider two holomorphic functions f, g :
Γ′ → C∗ such that ∣∣f(z)g(z)−1 − 1

∣∣ < 1

for all z ∈ Γ′. Then this estimate holds also in some neighborhood of Γ′. Therefore
log

(
fg−1

)
is defined in this neighborhood, where log is the main branch of the

logarithm, and (
fg−1

)′
fg−1

=

(
elog(fg−1)

)′
fg−1

=
(
fg−1

)′
.

Hence

indΓ′ f − indΓ′ g = indΓ′
(
fg−1

)
=

1
2πi

∫
Γ′

(
f(z)g−1(z)

)′
dz = 0 .

Therefore the following definition is correct (and agrees with Definition 2.5.3 when
f is holomorphic):
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3.8.2 Definition. Let Γ′ be the union of some of the connected components Γ0, . . .,
Γm of Γ, oriented in an arbitrary way. Let f : Γ′ → C∗ be a continuous function.
Then we define

indΓ′ f = indΓ′ f̃ (3.8.2)

where f̃ : Γ′ → C∗ is a holomorphic function which is sufficiently close to f ,
uniformly on Γ′. (By Corollary 3.3.3 such a function f̃ exists.) This number indΓ′ f
is called the index of f with respect to Γ′. By Proposition 2.5.4 (iv), it is an integer.

3.8.3 Proposition. (i) Let Γ′ be the union of some of the connected components
Γ0, . . . ,Γm of Γ, oriented in an arbitrary way. Let f, g : Γ′ → C∗ be two
continuous functions. Then

indΓ′(fg) = indΓ′ f + indΓ′ g . (3.8.3)

(ii) Let f : Γ → C∗ be a continuous function which admits an extension to D+

which is continuous on Γ and meromorphic in D+. Denote this extension
also by f , let N be the number of zeros of f in D+, counted according to
their multiplicities, and let P be the number of poles of f in D, also counted
according to their multiplicities. Then (recall that Γ is oriented by D+)

indΓ f = N − P . (3.8.4)

(iii) Let f : Γ → C∗ be a continuous function which admits an extension to
D−∪{∞} which is continuous on Γ and meromorphic in D−∪{∞} (Section
3.1.1). Denote this extension also by f , let N be the number of zeros of f in
D−∪{∞}, counted according to their multiplicities, and let P be the number
of poles of f in D− ∪ {∞}, also counted according to their multiplicities.
Then (recall that Γ is oriented by D+) then

− indΓ f = N − P . (3.8.5)

Proof. By our definition of the index in the case of a continuous function, part (i)
follows immediately from part (i) of Proposition 2.5.4.

Consider part (ii). Using the Mergelyan approximation Theorem 2.2.1 and
Cauchy’s theorem it is easy to see that D+ can be replaced by a slightly smaller
set. Then the assertion follows from part (ii) of Proposition 2.5.4.

In the same way part (iii) follows from part (iii) of Proposition 2.5.4. �

3.8.4 Corollary. Let f : Γ→C be a continuous function, and let f(z)=zκf+(z)f−(z)
be a factorization of f with respect to Γ. Then the integer κ is uniquely determined,
namely (recall that Γ is oriented by D+)

κ = indΓ f.
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Proof. Since 0 ∈ D+, it follows from Proposition 3.8.3 that

indΓ f = indΓ zκ + indΓ f+ + indΓ f− = indΓ zκ = κ. �

3.8.5 Proposition. Let 0 ≤ j ≤ m, and let f : Γj → C∗ be a continuous function
with indΓj

f = 0. Then there is a continuous function log f : Γj → C with

elog f = f on Γj .

Note that log f is uniquely determined up to an additive constant of the form k2πi,
k ∈ Z.

Proof. Choose a holomorphic function f̃ : Γj → C∗ which is so close to f that∣∣∣f(z)f̃−1(z)− 1
∣∣∣ < 1 for z ∈ Γj ,

and
indΓj

f̃ = indΓj
f = 0 , 0 ≤ j ≤ m.

By the first relation log(ff̃−1) is well defined on Γj , and, by Theorem 2.5.5, from
the second relation it follows that there exists a holomorphic function h : Γ → C

with eh = f̃ . It remains to set log f = h+ log(ff̃−1), where the latter log denotes
the main branch of the complex logarithm. �
3.8.6. Let f : Γ → C be a continuous function, and let f(z) = zκf+(z)f−(z)
be a factorization of f with respect to Γ. By multiplying by a constant we can
always achieve that f−(∞) = 1. With this additional property, the factorization
of f with respect to Γ is uniquely determined. Indeed, let f = zκf̃+f̃− be a second
factorization of f . Then

f+f̃−1
+ = f̃−f−1

− on Γ .

Therefore (cf. Theorem 1.5.4) the function defined by

h =

{
f+f̃−1

+ on D+ ,

f̃−f−1
− on D− ∪ {∞} ,

is a well-defined holomorphic function on C∪{∞} which is equal to 1 at∞. Hence
this function is identically equal to 1, i.e., f± = f̃±.

3.8.7 Theorem. If the contour Γ is not connected, i.e., m ≥ 1, then, for 1 ≤ j ≤ m,
we denote by Uj the bounded connected component of D− with boundary −Γj and
we fix some point pj ∈ Uj.

Let f : Γ→ C be a continuous function. Set

κj := indΓj
f , 0 ≤ j ≤ m.
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Further, let g : Γ→ C be one of the continuous functions with

eg(z) =

{
z−κ0f(z) , for z ∈ Γ0,

(z − pj)κj f(z) , for z ∈ Γj , 1 ≤ j ≤ m,

(which exists by Proposition 3.8.5). Then the following are equivalent:

(i) The function f admits a factorization with respect to Γ.

(ii) The function g splits with respect to Γ.

Proof. First assume that there is a factorization f(z) = f−(z)zκf+(z) of f . Then

indΓj f− = 0 for 0 ≤ j ≤ m,

indΓ0 f+ = κ0 − κ,

indΓj f+ = κj for 1 ≤ j ≤ m.

Therefore it follows from the Mergelyan approximation Theorem 2.2.1 and Theo-
rem 2.5.5 that there exists a continuous function g− : D− ∪ {∞} → C, which is
holomorphic in D− ∪ {∞}, such that f− = eg− on D− ∪ {∞}. Moreover, set

f̃+(z) =

{
zκ−κ0f+(z), for z ∈ Γ0,

zκ(z − pj)κj f+(z), for z ∈ Γj , 1 ≤ j ≤ m.

Then indΓj
f̃j = 0 for 0 ≤ j ≤ m, and from Theorem 2.5.5 and the Mergelyan

Theorem 2.2.1 we get a contiunous function g+ : D+ → C, which is holomorphic
in D+, such that f̃+ = eg+ on D+. It follows

eg(z) = z−κ0f(z) = z−κ0f−(z)zκf+(z) = f̃−(z)f̃+(z) = eg−(z)+g+(z)

for z ∈ Γ0, and

eg(z) = (z − pj)κj f(z) = (z − pj)κj f−(z)zκf+(z) = f̃−(z)f̃+(z) = eg−(z)+g+(z)

for z ∈ Γj , 1 ≤ j ≤ m. Hence, there are some integers μj with

g(z) = g+(z) + g−(z) + μj for z ∈ Γj , 0 ≤ j ≤ m.

Setting
g̃−(z) = g−(z) + μj for z ∈ Γj , 0 ≤ j ≤ m,

we get a splitting (g+, g̃−) of g.
Now we assume that a splitting g = g+ + g− of g is given. Then

z−κ0f(z) = eg(z) = eg−(z)eg+(z) for z ∈ Γ0,

(z − pj)κj f(z) = eg(z) = eg−(z)eg+(z) for z ∈ Γj , 1 ≤ j ≤ m.
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Therefore it is sufficient to prove that the function ϕ defined by

ϕ(z) =

{
zκ0 if z ∈ Γ0,

(z − pj)−κj if z ∈ Γj , 1 ≤ j ≤ m,

admits a factorization. Let U0 be the unbounded connected component of D−,
and let Uj , 1 ≤ j ≤ m, be the bounded connected component of D− with the
boundary −Γj , 1 ≤ j ≤ m. Set

ϕ+(z) = (z − p1)−κ1 · . . . · (z − pm)−κm for D+,

and for z ∈ D− we define

ϕ−(z) =

{
zκ0−κ(z − p1)−κ1 · . . . · (z − pm)−κm if z ∈ U0,

z−κ(z − p1)κ1 · . . .
ĵ

. . . · (z − pj)κm if z ∈ U j , 1 ≤ j ≤ m.

Since pj ∈ U − j and 0 ∈ D+, then φ+ is holomorphic and 	= 0 on D+, ϕ− is
holomorphic and 	= 0 on D− ∪ {∞} and

ϕ(z) = zκϕ−(z)ϕ+(z) for z ∈ Γ. �

3.9 Factorization of Hölder functions

Here we use the notations and definitions introduced in the preceding Section 3.8,
and we prove:

3.9.1 Theorem. Let 0 < α < 1, and let f : Γ → C∗ be Hölder continuous with
exponent α (Def. 2.1.6).

Then f admits a factorization with respect to Γ.
If f = zκf+f− is an arbitrary factorization of f , then f+ is Hölder continuous

with exponent α on D+, and f− is Hölder continuous with exponent α on D−.
If, moreover, Γ is of class Ck and f is of class Ck+α on Γ (Def. 3.4.1) for

some k ∈ N∗, and f = zκf+f− is an arbitrary factorization of f , then f+ is of
class Ck+α on D+, and f− is of class Ck+α on D−.

Proof. Let k ∈ N and assume that if k = 0, then f is Hölder-α continuous, and
if k ≥ 1, then Γ is of class Ck and f is of class Ck+α. As observed in Section
3.8.6, up to a multiplicative constant, the solution of the factorization problem is
uniquely determined. Therefore it is sufficient to prove the existence of at least
one factorization f = zκf+f− such that the factors f± are of class Ck+α on D±.

Set

κj = indΓj
f, 0 ≤ j ≤ m, and κ = κ0 + κ1 + . . .+ κm.
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Let U1, . . . , Um be the bounded connected components of D− so that −Γj is the
boundary of Uj . Choose points pj ∈ Uj and set

f̃(z) = z−κ(z − p1)κ1 · . . . · (z − pm)κmf(z).

Since Γ0 is the boundary of the simply connected open set D+ ∪ U1 ∪ . . . ∪ Um

(Section 2.5.1) and 0, p1, . . . , pm ∈ D+∪U1∪ . . .∪Um, it follows from Proposition
3.8.3 (ii) that

indΓ0

(
z−κ(z − p1)κ1 · . . . · (z − pm)κm

)
= −κ+ κ1 + . . .+ κm = −κ0,

In the same way we get

indΓj

(
z−κ(z − p1)κ1 · . . . · (z − pm)κm

)
= −κj for 1 ≤ j ≤ m.

Hence, by Proposition 3.8.3 (i),

indΓj
f̃ = 0 for all 0 ≤ j ≤ m.

Therefore, by Proposition 3.8.5, we can find a continuous function g : Γ→ C with

eg = f̃ .

Since f̃ is of class Ck+α and, locally, the function g is of the form g = log f , where
log is a branch of the logarithm (which is a holomorphic function), it follows that
also g is of class Ck+α. Therefore, by theorems 3.3.2 and (3.4.5), there exists a
Ck+α-function g+ : D+ → C, which is holomorphic in D+, and a Ck+α-function
g− : D− ∪ {∞} → C, which is holomorphic in D− ∪ {∞}, such that g = g+ + g−
on Γ. Then

f̃ = eg+eg− on Γ.

Hence, by definition of f̃ ,

f =
zκeg+eg−

(z − p1)κ1 . . . (z − pm)κm

Setting

f− = eg− and f+ =
eg+

(z − p1)κ1 . . . (z − pm)κm

we get a factorization
f = zκf+f− (3.9.1)

of f with respect to Γ. Since the functions g± are of class Ck+α on D±, also the
functions f± are of class Ck+α on D±. �
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3.10 Factorization of Wiener functions

Here T is the unit circle, D+ is the open unit disc, and D− = C \D+. Denote by
W (C) the space of functions f : Γ −→ C of the form

f(z) =
∞∑

n=−∞
fnzn with ‖f‖W :=

∞∑
n=−∞

|fn| <∞ . (3.10.1)

It follows from Cauchy’s product theorem that if f, g ∈ W (C), then fg ∈ W (C)
and

‖fg‖W ≤ ‖f‖W ‖g‖W .

Hence, W (C) is a Banach algebra with the norm ‖ · ‖W . Moreover:

3.10.1 Proposition. If f ∈W (C) and f(z) 	= 0 for all z ∈ T, then f−1 ∈W (T).

Proof. Let f ∈ W (C) be given, which is not an invertible element of W (C). We
have to find θ ∈ T with f(θ) = 0.

Since f is not invertible as an element of W (A), by the theory of commutative
Banach algebras, there exits a multiplicative functional Φ on W (C) with

Φ(f) = 0.

For all fixed complex numbers λ ∈ C\T, the function z−λ is an invertible element
of W (C) (as (z − λ)−1 is holomorphic in a neighborhood of T). Hence, for each
fixed λ ∈ C \ T, Φ(z − λ) 	= 0 and, therefore,

Φ(z)− λ = Φ(z − λ) 	= 0.

Hence θ := Φ(z) ∈ T. Now let fn be the coefficients with f(z) =
∑∞

n=−∞ fnzn.
Since

∑ |fn| <∞, and, by definition, ‖zn‖W = 1, then it follows that

f(θ) =
∞∑

n=−∞
fnθn =

∞∑
n=−∞

fn

(
Φ(z)

)n =
∞∑

n=−∞
fnΦ(zn) = Φ(f) = 0. �

3.10.2 Theorem. Let f ∈ W (C) such that f(z) 	= 0 for all z ∈ Γ. Then f admits
a factorization f(z) = zκf+(z)f−(z) with respect to Γ such that f+, f− ∈W (C).

Moreover, if f(z) = zκf+(z)f−(z) is a factorization of f with respect to Γ,
then the factors f± automatically belong to W (C).

Proof. As observed in Section 3.8.6, up to a multiplicative constant, the solution of
the factorization problem is uniquely determined. Therefore it is sufficient to prove
the existence of at least one factorization f = zκf+f− such that f+, f− ∈W (C).

By Proposition 3.10.1, f−1 belongs to W (C). Since the functions, which are
holomorphic on Γ, are dense in W (C), we can find a holomorphic function h on Γ
with

‖h− f−1‖W <
1

‖f‖W

.
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As the set f−1(T) is a compact subset of C∗ and |f−1(z) − h(z)| ≤ ‖f−1 − h‖W

for all z ∈ T, we can moreover achieve that h(z) 	= 0 for all z ∈ T. Set

g = fh− 1.

Then
‖g‖W = ‖f(h− f−1)‖W ≤ ‖f‖W ‖h− f−1‖W < 1 (3.10.2)

and
f = h−1(1 + g).

From (3.10.2) it follows that the series

∞∑
n=1

(−1)n−1

n
gn

converges absolutely with respect to the norm ‖ · ‖W to some element of W (A),
which we denote by log(1 + g). Since convergence in W (A) implies pointwise con-
vergence, it follows that(

log(1 + g)
)
(z) = log

(
1 + g(z)

)
for all z ∈ T,

where the log on the right-hand side denotes the main branch of the complex
logarithm. Since log(1 + g) is an element of W (A), it can be written also in the
form

log
(
1 + g(z)

)
=

∞∑
n=−∞

znan with
∞∑

n=−∞
‖an‖W <∞.

Set

v−(z) =
−1∑

n=−∞
znan , v+(z) =

∞∑
n=0

znan,

w+ = ev+ and w− = ev− . So we get continuous functions w+ : D+ → C∗, w− :
D− ∪{∞} → C∗, which are holomorphic in D+ and D− ∪{∞}, respectively, such
that w+, w− ∈W (C), 1 + g = w−w+ and therefore

f = h−1w−w+ on Γ.

Since h is holomorphic on Γ, it follows from Theorem 3.9.1 that there exists a
factorization

h−1(z) = zκh−(z)h+(z) (3.10.3)

of h with respect to Γ. From (3.10.3) and Theorem 1.5.4 then we get that h+ and
h− are holomorphic on Γ. Hence h+ and h− belong to W (C). Setting f± = w±h±,
we get a factorization f(z) = zκf−(z)f+(z) of f with respect to Γ, where f+, f− ∈
W (C). �
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3.11 The multiplicative local principle

In this section we use the notations and definition introduced in Section 3.8.
In Section 3.7 we saw that there is a local principle for the splitting problem.

Here we will show that there is a local principle also for the factorization problem
(see Theorem 3.11.5 below).

3.11.1 Definition. Let U ⊆ C be an open set with U∩Γ 	= ∅, and let f : Γ∩U → C∗

be a continuous function. We say that f admits a factorization over U with respect
to Γ if there exist C∗-valued functions f− and f+, where f+ is continuous on U∩D+

and holomorphic in U ∩D+, and f− is continuous on U ∩D− and holomorphic in
U ∩D−, such that

f = f−f+ on U ∩ Γ . (3.11.1)

Then the pair (f−, f+) or the representation f = f−f+ will be called a factorization
of f over U with respect to Γ. Let f : Γ → C∗ be a continuous function. We say
that f admits local factorizations with respect to Γ if, for each w ∈ Γ, there exists
a neighborhood U of w such that f admits a factorization over U with respect to
Γ.

3.11.2 Lemma. Let f : Γ ∩ U → E be a continuous function, and let U ⊆ C be an
open set with U ∩ Γ 	= ∅. If (f−, f+) and (f̃−, f̃+) are two factorizations of f over
U with respect to Γ, then there is a (uniquely determined) holomorphic function
h : U → C∗ with

f̃− = hf− on U ∩D− and f̃+ = hf+ on U ∩D+ . (3.11.2)

Proof. By hypothesis f−f+ = f = f̃−f̃+ on U ∩ Γ. Then, setting

h :=

{
f̃+

/
f+ on U ∩D+,

f̃−
/
f− on U ∩D− ,

we get a continuous function h : U → C∗, which satisfies (3.11.2) and which is
holomorphic in U \ Γ. By Theorem 1.5.4, h is holomorphic on all of U . �

3.11.3 Lemma. Let g : Γ → C be a continuous function. Then the following are
equivalent:

(i) The function eg admits local factorizations with respect to Γ.

(ii) The function g locally splits (additively) with respect to Γ.

Proof. (i)⇒(ii): Let w ∈ Γ be given. As eg admits local factorizations with respect
to Γ, then there exist a neighborhood U of w and continuous functions u± :
U ∩D± → C∗, which are holomorphic in U ∩D±, such that

eg = u+u− on Γ ∩ U. (3.11.3)
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After shrinking U , we may assume that a certain branch of the logarithm is defined
on the values of u+, and a certain other branch of the logarithm is defined on the
values of u−, i.e., we have continuous functions v± : U ∩ D± → C, which are
holomorphic in U ∩D±, such that u± = ev± . Together with (3.11.4) and (3.11.3)
this implies

eg = ev++v− on Γ ∩ U.

Hence, for some k ∈ Z (we may assume that U ∩ Γ is connected), g = (k2πi +
v+) + v− on Γ ∩ U .

(ii)⇒(i): Let w ∈ Γ be given. As g locally splits additively with respect to Γ,
then there exist a neighborhood U of w and continuous functions v± : U∩D± → C,
which are holomorphic in U ∩D±, such that

g = v+ + v− on Γ ∩ U.

Then eg = ev+ev− . �

3.11.4 Remark. Together with the example from Section 3.6 this lemma shows
that not any continuous function f : Γ → C∗ admits local factorizations with
respect to Γ.

The fact stated by the following theorem will be called the multiplicative
local principle:

3.11.5 Theorem. Let f : Γ → C∗ be a continuous function which admits local
factorizations with respect to Γ. Then f admits a global factorization with respect
to Γ.

Proof. Recall that Γ = ∂D+ is oriented by D+ (by Definition 2.1.6) and that
Γ0, . . . ,Γm are oriented in the same way. Set

κj = indΓj
f, 0 ≤ j ≤ m, and κ = κ0 + κ1 + . . .+ κm.

Let U1, . . . , Um be the bounded connected components of D−. Choose points pj ∈
Uj and set

f̃(z) = z−κ(z − p1)κ1 · . . . · (z − pm)κmf(z).

Since Γ0 is the boundary of the simply connected open set D+ ∪ U1 ∪ . . . ∪ Um

(Section 2.5.1), the orientation included, and since 0, p1, . . . , pm ∈ D+ ∪U1 ∪ . . .∪
Um, it follows from Proposition 3.8.3 (ii) that

indΓ0

(
z−κ(z − p1)κ1 · . . . · (z − pm)κm

)
= −κ+ κ1 + . . .+ κm = −κ0,

In the same way we get

indΓj

(
z−κ(z − p1)κ1 · . . . · (z − pm)κm

)
= −κj for 1 ≤ j ≤ m.
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Hence, by Proposition 3.8.3 (i),

indΓj
f̃ = 0 for all 0 ≤ j ≤ m.

Therefore, by Proposition 3.8.5, we can find a continuous function g : Γ→ C with

eg = f̃ . (3.11.4)

By hypothesis, f admits local factorizations with respect to Γ. Hence f̃ admits local
factorizations with respect to Γ. By Lemma 3.11.3, this implies that g locally splits
additively with respect to Γ. Therefore, from Theorem 3.7.3 we get a continuous
function g+ : D+ → C, which is holomorphic in D+, and a continuous function
g− : D− ∪ {∞} → C, which is holomorphic in D− ∪ {∞}, such that g = g+ + g−
on Γ. Then

f̃ = eg+eg− on Γ.

Hence, by definition of f̃ ,

f =
zκeg+eg−

(z − p1)κ1 . . . (z − pm)κm
.

Setting

f− = eg− and f+ =
eg+

(z − p1)κ1 . . . (z − pm)κm

we get the required factorization f = zκf+f− of f with respect to Γ. �

3.12 Comments

In writing this chapter we used different sources. For sections 3.1–3.5, 3.8 and 3.9
see [Mu], [GKru], for Section 3.6 see [Bar]. The material of sections 3.7 and 3.11,
in this form, probably appears here for the first time. For Section 3.10 see [K].



Chapter 4

The Rouché theorem for
operator functions

In this chapter we generalize to finite meromorphic Fredholm operator functions
the classical Rouché theorem from Complex analysis and the Smith factorization
form. The proof is based on the local Smith form for matrix functions.

4.1 Finite meromorphic Fredholm functions

In this section E is a Banach space.

4.1.1 Definition. Let w ∈ C, let U be a neighborhood of w, and let A : U \ {w} →
L(E) be a holomorphic function which is meromorphic on U (Section 1.10.6).

Then we shall say that A is finite meromorphic at w if the Laurent expansion
of A at w is of the form

A(z) =
∞∑

n=m

(z − w)nAn ,

where (if m < 0) the operators Am, . . . , A−1 are finite dimensional.
If, in addition, A0 is a Fredholm operator, then A is called finite meromorphic

and Fredholm at w. The index of A0 then will be called the index of A at w.

4.1.2 Theorem. Let w ∈ C, and let W be a neighborhood of w. Let A : W \ {w} →
L(E) be a holomorphic function which is finite meromorphic and Fredholm at w.
Assume the index of A at w is zero. Then there exist a neighborhood U ⊆ W of
w and a finite dimensional projector1 P in E such that, with Q := I − P , the
following holds:

1By a projector in E we always mean a bounded linear projector in E, i.e., an operator
P ∈ L(E) with P 2 = P . A projector P in E is called finite dimensional if dim Im P < ∞.
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There exist holomorphic functions S, T : U → GL(E) and a holomorphic
function AP : U \ {w} → L(ImP ), which is meromorphic at w, such that

SAT = Q+ PAP P on U \ {w}. (4.1.1)

Proof. Let

A(z) =
∞∑

n=m

(z − w)nAn

be the Laurent expansion of A at w. Since A0 is a Fredholm operator with index
zero, by multiplication by an invertible operator (from the left or from the right),
we may assume that A0 is a projector with dimKerA0 < ∞. Using again that
the operators Am, . . . , A−1 are finite dimensional, we can find finite dimensional
projectors P and P0 in E such that

P0P = PP0 = P0 , (4.1.2)

and, with Q := I − P ,
A0 = Q+ P0 , (4.1.3)

AjQ = QAj = 0 for m ≤ j ≤ −1 . (4.1.4)

Choose a neighborhood U ⊆W of w so small that the Laurent expansion of A at
w converges on U \ {w}. Setting

A+(z) = Q+ P0 +
∞∑

n=1

(z − w)nAn and V (z) = A+(z)Q+ P

for z ∈ U , we get holomorphic functions A+, V : U → L(E). Then, by (4.1.3) and
(4.1.4),

A+Q = AQ on U \ {w} (4.1.5)

and hence
V Q = AQ on U \ {w}. (4.1.6)

Since A+(w) = Q + P0, it follows from (4.1.3) and (4.1.2) that V (w) = I. By
shrinking U we can achieve that

V (z) ∈ GL(E) for all z ∈ U . (4.1.7)

Then it follows from the definition of V that

V −1P = P on U, (4.1.8)

and from (4.1.6) it follows that

Q = V −1AQ on U \ {w}. (4.1.9)



4.1. Finite meromorphic Fredholm functions 99

Setting
S = I −QV −1A+P on U

and
AP = PV −1AP on U \ {w},

we obtain a holomorphic function S : U → L(E) and AP : U \ {w} → L(ImP ).
The values of S are invertible, namely:

S−1 = I +QV −1A+P on U.

Moreover,

V −1AS = V −1AQ+ V −1AP − V −1AQV −1A+P on U \ {w}.

By (4.1.9) this implies

V −1AS = Q+ V −1AP −QV −1A+P

= Q+ PV −1AP +QV −1AP −QV −1A+P

= Q+ PAP P +QV −1(A−A+)P on U \ {w}.
(4.1.10)

It follows from (4.1.4) that

A(z)−A+(z) =
−1∑

n=m

(z − w)An , z ∈ U \ {w} .

Since, by (4.1.4), AnP = PAn for m ≤ n ≤ −1, this implies that

(A−A+)P = P (A−A+)P

and therefore

QV −1(A−A+)P = QV −1P (A−A+)P on U \ {w}.

Since, by (4.1.8), V −1P = P , this further implies that

QV −1(A−A+)P = 0.

Together with (4.1.10) this gives

V −1AS = Q+ PAP P on U \ {w}. (4.1.11)

Setting T = V −1, we get the required relation (4.1.1). It remains to observe that
from (4.1.1) it follows that AP is meromorphic at w and holomorphic on U \ {w},
because A has these properties. �

The function AP in (4.1.1) can be represented by a meromorphic matrix
function. Since the inverse of such a function is again meromorphic (if it exists),
we immediately obtain the following
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4.1.3 Corollary (to Theorem 4.1.2). Let D ⊆ C be an open set, and let Z ⊆ D be
a discrete and closed subset of D. Let A be a holomorphic GL(E)-valued function
on D \Z which is finite meromorphic and Fredholm at each point of Z. Then A−1

is finite meromorphic and Fredholm at each point of Z.

4.1.4 Proposition. Let D ⊆ C be a connected open set, and let Z ⊆ D be a discrete
and closed subset of D. Let A be a holomorphic L(E)-valued function on D \ Z
which is finite meromorphic and Fredholm at each point of D. Suppose, there exists
at least one point z0 ∈ D \ Z such that A(z0) is invertible. Then there exists a
discrete and closed subset Z ′ of D with Z ′ ⊇ Z such that A(z) is invertible for
each z ∈ D \ Z ′, and the function A−1 : D \ Z ′ → GL(E) is finite meromorphic
and Fredholm at each point of D.

Proof. Denote by D′ the set of all w ∈ D\Z such that there exists a neighborhood
U ⊆ D with U \ {w} ⊆ D \ Z and A(z) ∈ GL(E) for all z ∈ U \ {w}.

We claim that D′ = D. Obviously, D′ is open and, by hypothethis, D′ ⊇
{z0} 	= ∅. Since D is connected, it remains to prove that D′ is relatively closed
in D. Let w ∈ D be a boundary point of D′. Since, by hypothesis, A is finite
meromorphic and Fredholm at w, first we can find a neighborhood W ⊆ D\Z such
that A is finite meromorphic and Fredholm at w. Then from Theorem 4.1.2 we get
a neighborhood U ⊆ W of w, a finite dimensional projector P in E, holomorphic
functions S, T : U → GL(E) and a holomorphic function AP : U \{w} → L(ImP ),
which is meromorphic at w, such that, with Q := I − P ,

A = S(Q+ PAP P )T on U \ {w}. (4.1.12)

Then the determinant detAP is holomorphic on U \ {w} and meromorphic at w.
Hence, there is a neighborhood V ⊆ U of w such that either

detAP ≡ 0 on V \ {w} (4.1.13)

or
detAP (z) 	= 0 for all z ∈ V \ {w}. (4.1.14)

By (4.1.12), from (4.1.13) it would follow that A is not invertible for all z ∈ V \{w}.
But this is impossible, as w is a boundary point of D′. Hence, we have (4.1.14).
Again by (4.1.12) this means that A(z) is invertible for all z ∈ V \{w}, i.e., w ∈ D′.

Let Z ′ be the set of all w ∈ D such that either w ∈ Z or w ∈ D \Z and A(w)
is not invertible. Since D = D′, it follows, by definition of D′, that Z ′ is discrete
and closed in D. �

4.1.5 Proposition. Let D ⊆ C be a bounded open set with piecewise C1-boundary.
Let Z ⊆ D be a finite set, and let M : D \ Z → L(E) be a holomorphic function
which is finite meromorphic at each point of Z, such that

‖M(z)‖ < 1 for all z ∈ ∂D. (4.1.15)
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Then I+M is finite meromorphic and Fredholm at each point of D, and the index
of I +M is zero at each point of D. Moreover, there exists a finite subset Z ′ of D
with Z ′ ⊇ Z such that A(z) is invertible for each z ∈ D \ Z ′,

Proof. Since M is finite meromorphic at each point of Z, it is clear that I + M
is finite moromorphic at each point of Z. Let K the sum of the principal parts
of M at the points of Z, and set A = I + M − K on D \ Z. Then A admits a
holomorphic extension to D, which we also denote by A.

Let F(E) be the ideal of finite dimensional operators in E, and let F∞(E)
be the closure of F(E) in L(E) with respect to the operator norm. Consider the
factor algebra L̂(E) := L(E)/F∞(E). For T ∈ L(E), we denote by T̂ the class of
T in L̂(E). Then K̂ ≡ 0, and it follows from (4.1.15) that

‖Â(z)− Î‖ = ‖M̂(z)‖ ≤ ‖M(z)‖ < 1 for all z ∈ ∂D.

Hence, by the maximum principle,

‖Â(z)− Î‖ < 1 for all z ∈ D.

Therefore Â(z) is invertible for all z ∈ D. Hence, A(z) is a Fredholm operator with
index zero for all z ∈ D, which implies that I +M = A+K is finite meromorphic
and Fredholm at each point of D, and the index of I +M is zero at each point of
D. Since I +M(z) is invertible for z ∈ ∂D, it follows from Proposition 4.1.4 that
there exists a finite subset Z ′ of D with Z ′ ⊇ Z such that I +M(z) is invertible
for each z ∈ D \ Z ′. �

4.2 Invertible finite meromorphic Fredholm functions

First recall the notion of the trace of a finite dimensional linear operator. For a
complex matrix

A =
(
ajk

)
1≤j,k≤n

∈ L(n, C),

the trace of A, which we denote by trA, is defined by

trA =
n∑

j=1

ajj . (4.2.1)

If
B =

(
Bjk

)
1≤j,k≤n

∈ L(n, C)

is a second matrix, then

tr(AB) =
n∑

j=1

n∑
ν=1

ajνbνj =
n∑

ν=1

n∑
j=1

bνjajν = tr(BA) . (4.2.2)
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In particular, if A ∈ L(n, C) and B ∈ GL(n, C), then

tr(BAB−1) = tr(A) . (4.2.3)

Therefore, for each finite dimensional complex vector space F and each operator
A ∈ L(F ), the trace of A is well defined: If f1, . . . , fn is a Basis of F and a =
(ajk)j,k=1,...,n is the matrix with

Afk =
n∑

j=1

ajkfj ,

then

trA :=
n∑

j=1

ajj .

From (4.2.2) it follows that

tr(AB) = tr(BA) for all A,B ∈ L(F ). (4.2.4)

Now let F an H be two finite dimensional complex vector spaces such that
F is a subspace of H.

If A ∈ L(F ), then we say that Ã ∈ L(H) is an extension by zero of A if
Ã
∣∣
F
= A and rank Ã = rankA. If A ∈ L(F ) and Ã ∈ L(H) is an extension by zero

of A, then
trA = tr Ã. (4.2.5)

Indeed, since Ã
∣∣
F
= A and rank Ã = rankA, we can find a basis f1, . . . , fn of

H such that, for some m ≤ n, the vectors f1, . . . , fm form a basis of F and
fm+1, . . . , fn ∈ Ker Ã. Let (ajk)j,k=1,...,n be the matrix with

Ãfk =
n∑

j=1

ajkfj for 1 ≤ k ≤ n. (4.2.6)

Since fm+1, . . . , fn ∈ Ker Ã and therefore ajk = 0 for k ≥ m+1, this implies that

tr Ã =
m∑

j=1

ajj . (4.2.7)

Since A = Ã
∣∣
F
, it follows from (4.2.6) that

Afk =
m∑

j=1

ajkfj for 1 ≤ k ≤ m. (4.2.8)

Taking into account also (4.2.7), this implies (4.2.5).



4.2. Invertible finite meromorphic Fredholm functions 103

Now let E be an arbitrary Banach space.
Let F(E) be the ideal of L(E) which consists of the finite dimensional oper-

ators. For A ∈ F(E), we denote by SA the set of all finite dimensional subspaces
F of E such that ImA ⊆ F and F ∩KerA = {0}. Then, for each A ∈ F(E) and
all F ∈ SA, we view A

∣∣
F
as an operator in F . We claim that

tr
(
A
∣∣
F

)
= tr

(
A
∣∣
G

)
for all A ∈ F(E) and F,G ∈ SA . (4.2.9)

Indeed, let A ∈ F(E) and F,G ∈ SA be given. Take H ∈ SA such that F ∪G ⊆ H.
Then A

∣∣
H
is an extension by zero both of A

∣∣
F
and A

∣∣
G
. Therefore it follows from

(4.2.5) that
tr
(
A
∣∣
F

)
= tr

(
A
∣∣
H

)
= tr

(
A
∣∣
G

)
.

In view of (4.2.9), the following definition is correct:

4.2.1 Definition. Let A ∈ L(E) be finite dimensional. Then we take a finite di-
mensional subspace F of E with ImA ⊆ F and F ∩KerA = {0}, and define

trA = tr
(
A
∣∣
F

)
.

Note that, by (4.2.4), for all operators A,B ∈ L(E) such that at least one of
them is finite dimensional,

tr(AB) = tr(BA) . (4.2.10)

4.2.2 Proposition. Let D ⊆ C be a bounded open set with piecewise C1-boundary,
let Z ⊆ D be a finite set, and let A,B : D \ Z → L(E) be two holomorphic
functions which are finite meromorphic at the points of Z. Then the integrals∫

∂D

A(z)B(z)dz and
∫

∂D

B(z)A(z)dz (4.2.11)

are finite dimensional, and

tr
∫

∂D

A(z)B(z) dz = tr
∫

∂D

B(z)A(z) dz . (4.2.12)

Proof. Since the functions AB and BA are finite meromorphic at Z, by Cauchy’s
theorem, it is clear that the integrals (4.2.11) are finite dimensional. To prove
(4.2.12), again by Cauchy’s theorem, we may assume that Z consists of a single
point w, and D is a disc centered at w. Since the functions A and B are finite
meromorphic at w, their Laurent expansions are of the form

A(z) =
∞∑

n=−m

(z − w)nAn , B(z) =
∞∑

n=−m

(z − w)nBn , z ∈ D \ {w},
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where m ∈ N∗ and the operators A−m, . . . , A−1 and B−m, . . . , B−1 are finite
dimensional. Then ∫

∂D

A(z)B(z) dz = 2πi
∑

−m≤j≤m−1

AjB−j−1

and ∫
∂D

B(z)A(z) dz = 2πi
∑

−m≤j≤m−1

BjA−j−1 .

Now it follows from (4.2.10) that

tr
∫

∂D

A(z)B(z) dz = 2πi
∑

−m≤j≤m−1

tr(AjB−j−1)

= 2πi
∑

−m≤j≤m−1

tr(BjA−j−1) = tr
∫

∂D

B(z)A(z) dz .

�

4.2.3 Proposition. Let D ⊆ C be a bounded open set with piecewise C1-boundary,
let Z ⊆ D be a finite set, and let A : D \ Z → GL(E) be a holomorphic function
which is finite meromorphic and Fredholm at the points of Z. Then the operators∫

∂D

A′(z)A−1(z)dz and

∫
∂D

A−1(z)A′(z)dz (4.2.13)

are finite dimensional and

tr
∫

∂D

A′(z)A−1(z)dz = tr
∫

∂D

A−1(z)A′(z)dz . (4.2.14)

Proof. By hypothesis, A is finite meromorphic and Fredholm at the points of Z.
This implies that A′ is finite meromorphic at Z. By Corollary 4.1.3, also A−1 is
finite meromorphic at Z. Hence A′A−1 and A−1A′ are finite meromorphic at Z.
Hence the operators (4.2.13) are finite dimensional.

To prove that they have the same trace, again by Cauchy’s theorem, we
may assume that Z consists only of one point w. Since, on D \ {w}, the values
of A are invertible and A is finite meromorphic and Fredholm at w, it is clear
that the index of A at w is zero. Therefore, by Theorem 4.1.2, there exist a
neighborhood U ⊆ D of w, a finite dimensional projector P in E, holomorphic
functions S, T : U → GL(E) and a holomorphic function AP : U \{w} → L(ImP ),
which is meromorphic at w, such that, with Q := I − P ,

A = S(Q+ PAP P )T on U \ {w}.
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From this representation it follows that the values of AP are invertible on U \{w}
and

A′A−1 = PA′P A−1
P P , A−1A′ = PA−1

P A′P P .

Therefore, it follows from (4.2.10) that

tr
∫

∂D

A′(z)A−1(z) dz =
∫

∂D

tr
(
PA′P (z)A

−1
P (z)P

)
dz

=
∫

∂D

tr
(
PA−1

P (z)A′P (z)P
)

dz = tr
∫

∂D

A−1(z)A′(z) dz .

�
4.2.4 Definition. Let D ⊆ C be a bounded open set with piecewise C1-boundary,
let Z ⊆ D be a finite set, and let A : D \ Z → GL(E) be a holomorphic function
which is finite meromorphic and Fredholm at the points of Z. Then, by Proposition
4.2.3, the following definition is correct:

ind∂D A :=
1
2πi

tr
∫

∂D

A′(z)A−1(z)dz =
1
2πi

tr
∫

∂D

A−1(z)A′(z)dz .

The number ind∂D A will be called the index of A with respect to the contour ∂D

In Section 4.4, we shall prove that this index is always an integer, using the
Smith factorization theorem from the following Section 4.3. The present section is
concluded with the following proposition:

4.2.5 Proposition. Let D ⊆ C be a bounded open set with piecewise C1-boundary,
let Z ⊆ D be a finite set, and let A,B : D \ Z → GL(E) be two holomorphic
functions which are finite meromorphic and Fredholm at the points of Z. Then

ind∂D(AB) = ind∂D A+ ind∂D B . (4.2.15)

Proof. Since (AB)′(AB)−1 = A′A−1 +AB′B−1A−1, we have

ind∂D(AB) = ind∂D A+
1
2πi

tr
∫

∂D

AB′B−1A−1 dz .

Since the functions A, B and B′ are finite meromorphic, and, by Corollary 4.1.3,
also the functions A−1 and B−1 are finite meromorphic, it follows from Proposition
4.2.2 that

1
2πi

tr
∫

∂D

AB′B−1A−1 dz =
1
2πi

tr
∫

∂D

B′B−1 dz = ind∂D B.

Together this proves (4.2.15). �
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4.3 Smith factorization

Recall that, in this book, we denote by L(n, C) the algebra of complex n × n
matrices, and by GL(n, C) we denote the group of invertible elements in L(n, C).

4.3.1 Theorem (Smith factorization). Let w ∈ C, let W be a neighorhood of w, and
let A be an n×m-matrix of scalar meromorphic functions on W such that at least
one of these functions does not identically vanish on W \ {w}. Then there exist
uniquely determined integers κ1 ≥ . . . ≥ κr, 1 ≤ r ≤ min(n, m), a neighborhood
U ⊆ W of w and holomorphic functions E : U → GL(n, C), F : U → GL(m, C)
such that

EAF =
(
Δ 0
0 0

)
where Δ is the r × r diagonal matrix with the diagonal

(z − w)κ1 , . . . , (z − w)κr .

4.3.2 Definition. The integers κ1 ≥ . . . ≥ κr from the preceding definition will be
called the powers of A at z0.2

Proof. Uniqueness: The number r is the rank of the matrix EAF over C \ {z0}.
Since the values of E and F are invertible, this implies that r is the rank of A
over U \ {z0}. Hence r is uniquely determined by A.

Now we assume that there are given two vectors of integers κ1 ≥ . . . ≥ κr

and κ̃1 ≥ . . . ≥ κ̃r such that, for some 1 ≤ p ≤ r,

κp > κ̃p, (4.3.1)

and such that, for some holomorphic functions E, Ẽ : U → GL(n, C), F, F̃ : U →
GL(m, C) in a neighborhood U ⊆ D of z0,

EAF =
(
Δ 0
0 0

)
and ẼAF̃ =

(
Δ̃ 0
0 0

)
(4.3.2)

where Δ and Δ̃ are the r × r diagonal matrices with the diagonals

(z − z0)κ1 , . . . , (z − z0)κr and (z − z0)κ̃1 , . . . , (z − z0)κ̃r ,

respectively. Since κ1 ≥ . . . ≥ κp and κ̃1 ≥ . . . ≥ κ̃p, then it follows from (4.3.1)
that

κν > κ̃μ for 1 ≤ ν ≤ p ≤ μ ≤ r. (4.3.3)

2This vector of powers is not identical with the numerical characteristic of A at w which we
introduce below (Def. 11.3.6), but it is closely related: The vector of powers and the numerical
characteristic uniquely determine each other (see the beginning of Section 11.5 for this relation.)
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Moreover it follows from (4.3.2) that

E−1

(
Δ 0
0 0

)
F−1 = A = Ẽ−1

(
Δ̃ 0
0 0

)
F̃−1

and therefore

ẼE−1

(
Δ 0
0 0

)
=
(
Δ̃ 0
0 0

)
F̃−1F on U \ {z0} . (4.3.4)

Let αμν be the elements of ẼE−1, and βμν the elements of F̃−1F , where μ is the
row index and ν is the column index. Then by (4.3.2)

(z − z0)κν αμν = (z − z0)κ̃μβμν on U \ {z0} if 1 ≤ μ, ν ≤ r .

By (4.3.3) this implies that βμν(z0) = 0 for ν ≤ p ≤ μ ≤ r. This is impossible,
because F̃−1(z0)F (z0) is invertible.

Existence: LetM be the ring of germs of scalar meromorphic functions at z0,
and let O be the subring of holomorphic germs. LetM(k) be the algebra of k×k-
matrices with elements from M, and let O(k) be the subalgebra matrices with
elements from O. Denote by GO(k) the group of invertible elements in O(k). Let
[z − z0] be the element in O defined by the function z − z0. Further, letM(n, m)
be the space of n×m-matrices with elements fromM.

Then A can be viewed as an element of M(n, m) and we have to find E ∈
GO(n) and F ∈ GO(m) such that, for some integers κ1 ≥ . . . ≥ κr, EAF is of
the block form such that EAF is of the block form

EAF =
(
Δ 0
0 0

)
where Δ is the r × r diagonal matrix with the diagonal

[z − z0]κ1 , . . . , [z − z0]κr .

Consider the following three row operations, which we will apply to matrices
fromM(n, m):

(I) Multiplying a row by an element g ∈ GO.
(II) Interchanging two rows.

(III) Taking two different rows a and b and an arbitrary element f ∈ O and
replacing the row b by b+ fa.

Operation (I) can be realized multiplying from the left by the diagonal matrix
obtained from the unit matrix after replacing the corresponding element of the
diagonal by g. Operation (II) can be realized multiplying from the left by the ma-
trix obtained from the unit matrix after interchanging the corresponding columns.
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Operation (III) can be realized multiplying from the left by the matrix obtained
from the unit matrix after replacing one of the zero elements outside the diagonal
by f . All these matrices belong to the group GO(n).

Multiplying the corresponding matrices of the group GO(m) from the right
we obtain the corresponding column operations, which we denote by (I′), (II′) and
(III′), respectively.

Therefore it is sufficient to prove that, by a finite number of the operations
(I), (II), (III), (I′), (II′) and (III′), the matrix A can be transformed to a matrix
of the required diagonal form.

If a ∈ M and a 	= 0, then there is a uniquely determined entire number N
such that the Laurent series of a is of the form

a =
∞∑

n=N

an[z − z0]n with aN 	= 0.

We call this number the order of a and denote it by ord a. For the zero element
0 ∈M we write ord 0 =∞. For a ∈M with a 	= 0, we define

â = [z − z0]− ord aa.

Then â ∈ GO for all a ∈M with a 	= 0.
Denote by N1 the minimal order of the elements of A. Since A is not the zero

matrix, N1 < ∞. Choose 1 ≤ p ≤ n and 1 ≤ q ≤ m such that at the place (p, q)
of A we have an element of order N1. Denote this element by a.

Now we proceed as follows: 1. We multiply the p-th row of A by â−1. 2. We
interchange the q− th column of the obtained matrix with the first column. 3. We
interchange the p − th row of the now obtained matrix with the first row. After
these operations, the orders of all elements of the matrix are still ≥ N1, and at
the place (1, 1) we have the element [z − z0]N1 .

Now consider the element b at the place (1, 2) (first row and second column).
Since ord b ≥ N1, then [z − z0]ord b−N1 b̂ belongs to O and we may multiply the
first column by [z − z0]ord b−N1 b̂ and then substract the result from the second
column. So we get a matrix with a zero at the place (1, 2). Doing the same with the
elements at the places (1, 3), . . . , (1,m), we end up with a matrix with [z − z0]N1

at the place (1, 1) and with zeros at the places (1, 2), . . . , (1,m). Then the same
procedure with row operations leads to a matrix of the form⎛⎜⎜⎜⎝

[z − z0]N1 0 . . . 0
0
... B
0

⎞⎟⎟⎟⎠
where B is an (n− 1)× (m− 1)-matrix with elements fromM and the orders of
all elements of B are still ≥ N1. If B = 0, the proof is complete. If not we apply
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the same procedure to the matrix B. If N2 is the minimal order of the elements
of B, then this gives a matrix of the form⎛⎜⎜⎜⎜⎜⎝

[z − z0]N1 0 0 . . . 0
0 [z − z0]N2 0 . . . 0
0 0
...

... C
0 0

⎞⎟⎟⎟⎟⎟⎠
where C is an (n − 2) × (m − 2)-matrix. If C = 0, we set κ1 = N2 and κ2 = N1,
interchange the first two columns and then the first two rows, and the proof is
complete. If not we proceed in this way and, for some 3 ≤ r ≤ min(n, m), we end
up with a block matrix of the form (

Δ 0
0 0

)
where Δ is the r × r diagonal matrix with the diagonal

(z − z0)N1 , . . . , (z − z0)Nr .

This completes the proof of Lemma 4.3.1. �
4.3.3 Corollary. Let w ∈ C, and let K : C \ L(n, C) be a rational matrix function
of the form

K(z) =
−1∑

n=−m

(z − w)nKn , (4.3.5)

where K−m, . . . ,K−1, 1 ≤ m < ∞, are constant complex n × n-matrices. Then
there exists a neighborhood U of w and a holomorphic matrix function A : U →
L(n, C) such that A(z) is invertible for all z ∈ U \{w} and K is the principal part
of the Laurent expansion of A−1 at w.

Proof. For K ≡ 0 this is trivial. Let K 	≡ 0. Then, by the Smith factorization
Theorem 4.3.1, there are integers κ1 ≥ . . . ≥ κr, 1 ≤ r ≤ n, a neighborhood U of
w and holomorphic functions E,F : U → GL(n, C), such that

K = EΔF

where Δ is the n× n diagonal matrix with the diagonal

(z − w)κ1 , . . . , (z − w)κr , 0, . . . , 0︸ ︷︷ ︸
(n−r) times

.

Let Δ+ be the n× n-diagonal matrix with the diagonal d1, . . . , dn where

dj =

{
(z − w)−κj if 1 ≤ j ≤ r and κj < 0 ,

1 if r + 1 ≤ j ≤ n or 1 ≤ j ≤ r and κj ≥ 0 .
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Then Δ+ is holomorphic on U , invertible on U \ {w}, and Δ−1
+ −Δ extends holo-

morphically to w. Set A = F−1Δ+E−1. Then A is holomorphic on U , invertible
on U \ {w}, and

A−1(z) = E(z)Δ−1
+ (z)F (z)

= E(z)Δ(z)F (z) + E(z)
(
Δ−1

+ (z)−Δ(z)
)
F (z)

= K(z) + E(z)
(
Δ−1

+ (z)−Δ(z)
)
F (z) for z ∈ U \ {w}.

Since E(Δ−1
+ −Δ)F extends holomorphically to w, this shows that K is the prin-

cipal part of the Laurent expansion of A−1 at w. �
It is impossible to replace in Corollary 4.3.3 the prescribed function (4.3.5)

by an arbitrary function of the form

K(z) =
0∑

n=−m

(z − w)nKn ,

with matricesK−m, . . . ,K0, 1 ≤ m <∞ whereK0 	= 0. We give a counterexample:

4.3.4 Example. Let

K(z) :=
(
1 z−1

0 1

)
. (4.3.6)

Then it is impossible to find a neighborhood U of 0 ∈ C and holomorphic functions
A,B : U → L(2, C) such that A(z) is invertible for z ∈ U \ {0} and

A−1(z) =
(
1 z−1

0 1

)
+ zB(z) , z ∈ U \ {0}.

Indeed, assume this is possible. Then(
1 0
0 1

)
=
(
1 z−1

0 1

)
A(z) + zB(z)A(z) , z ∈ U \ {0}. (4.3.7)

Let

A(z) =
(

a11(z) a12(z)
a21(z) a22(z)

)
and B(z) =

(
b11(z) b12(z)
b21(z) b22(z)

)
.

Then it follows from (4.3.7) that

0 = a12(z) + z−1a22(z) + zb11(z)a12(z) + zb12(z)a22(z)

and
1 = a22(z) + zb21(z)a12(z) + zb22(z)a22(z)

for z ∈ U \ {0}. This is impossible, as from the first relation it follows that
a22(0) = 0 and from the second relation it follows that a22(0) = 1.
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4.4 The Rouché theorem

4.4.1 Theorem. Let D ⊆ C be a bounded open set with piecewise C1-boundary, let
Z ⊆ D be a finite set, and let A : D \ Z → GL(E) be a holomorphic function
which is finite meromorphic and Fredholm at the points of Z. Then ind∂D A (Def.
4.2.4) is an integer.

Proof. By Cauchy’s theorem, we may assume that Z consists only of a single point
w. Since, on D \ {w}, the values of A are invertible and A is finite meromorphic
and Fredholm at w, it is clear that the index of A at w is zero. Therefore, by
Theorem 4.1.2, there exist a neighborhood U ⊆ D of w, a finite dimensional
projector P in E, holomorphic functions S, T : U → GL(E) and a holomorphic
function AP : U \ {w} → L(ImP ), which is meromorphic at w, such that, with
Q := I − P ,

A = S(Q+ PAP P )T on U \ {w}. (4.4.1)

We may assume that U is a disc. Then, again by Cauchy’s theorem,

ind∂D A = ind∂U A .

Since ind∂U T = ind∂U S = 0, this further implies, by (4.4.1) and Proposition
4.2.5, that

ind∂D A = ind∂U (Q+ PAP P ).

By Cauchy’s theorem this implies that

ind∂D A = ind∂U AP . (4.4.2)

By the Smith factorization Theorem 4.3.1, there exist uniquely determined integers
κ1 ≥ . . . ≥ κr, a neighborhood U ⊆ W of w and holomorphic functions E,F :
U → GL(ImP ) such that

EAP F =
(
Δ 0
0 0

)
(4.4.3)

where, with respect to an appropriate basis of ImP , Δ can be represented by the
r × r diagonal matrix with the diagonal

(z − w)κ1 , . . . , (z − w)κr .

Note that

ind∂U Δ =
1
2πi

∫
∂U

tr(Δ′Δ−1) dz =
1
2πi

∫
∂U

r∑
j=1

κj

z − w
dz =

r∑
j=1

κj .

By Proposition 4.2.5 and (4.4.3), this implies that

ind∂U AP =
r∑

j=1

κj .

Together with (4.4.2) this proves the theorem �
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4.4.2 Lemma. Let D ⊆ C be a bounded open set with piecewise C1-boundary. Let
Z ⊆ D be a finite set, and let M : D \Z → L(E) be a holomorphic function which
is finite meromorphic at each point of Z, such that

‖M(z)‖ < 1 for all z ∈ ∂D. (4.4.4)

Then I+M is finite meromorphic and Fredholm at each point of D, and the index
of I +M is zero at each point of D. Moreover, there exists a finite subset Z ′ of D
with Z ′ ⊇ Z such that I +M(z) is invertible for each z ∈ D \ Z ′. Moreover,

ind∂D(I +M) = 0 . (4.4.5)

Proof. Except for relation (4.4.5), this is precisely the statement of propositon
4.1.5. Moreover, by the same Proposition 4.1.5, for each 0 ≤ t ≤ 1, the function
I + tM has the same properties. Obviously, the function

[0, 1] � t −→ ind∂D(I + tM)

is continuous. Since, by Theorem 4.4.1, the values of this function are integers and
since ind∂D I = 0, it follows that ind∂D(I +M) = 0. �
4.4.3 Theorem. Let D ⊆ C be a bounded open set with piecewise C1-boundary, let
Z ⊆ D be a finite set, let A : D \ Z → GL(E) be a holomorphic function which is
finite meromorphic and Fredholm at the points of Z, and let S : D \ Z → GL(E)
be a holomorphic function which is finite meromorphic at each points of Z such
that

‖A−1(z)S(z)‖ < 1 for z ∈ ∂D . (4.4.6)

Then the function A+ S is finite meromorphic and Fredholm at each point of Z,
and

ind∂D(A+ S) = ind∂D A . (4.4.7)

Proof. By Lemma 4.4.2, the function I+A−1S is finite meromorphic and Fredholm
at each point of D, the index of I + A−1 is zero at each point of D, there exists
a finite subset Z ′ of D with Z ′ ⊇ Z such that I + A−1S(z) is invertible for each
z ∈ D \ Z ′, and

ind∂D(I +A−1S) = 0 .

Since A+ S = A(I +A−1S), by Proposition 4.2.5, this implies

ind∂D(A+ S) = ind∂D A+ ind∂D(I +A−1S) = ind∂D A . �

4.5 Comments

The material of this chapter is mostly taken from [GS].



Chapter 5

Multiplicative cocycles
(OG-cocycles)

Let A be a Banach algebra with unit 1, and let G be an open subgroup of the
group of invertible elements of A. The Runge approximation Theorem 2.5.6 for
invertible scalar functions admits the following generalization:

5.0.1 Theorem. Let D ⊆ C be a bounded open set with piecewise C1-boundary
(possibly not connected), and let f : D → G be a continuous function which is
holomorphic in D, such that all values of f belong to the same connected component
of G.

(i) If C\D is connected, then f can be approximated uniformly on D by G-valued
functions defined and holomorphic on C.

(ii) Suppose C \ D is not connected. Let U1, . . . , UN be the bounded connected
components of C \D, and assume that, for each 1 ≤ j ≤ N , a point pj ∈ Uj

is given. Then f can be approximated uniformly on D by G-valued functions
defined and holomorphic on C \ {p1, . . . , pN}.
Part (i) of this theorem will be proved at the end of Section 5.4, and part

(ii) will be obtained in Section 5.10 as a special case of Theorem 5.10.5. (Theorem
5.10.5 is the formulation of Theorem 5.0.1 on the Riemann sphere.)

Theorem 5.0.1 is one of the main statements of the theory developed in the
present chapter. The proof is much more difficult than the proof of Theorem 2.5.6,
and can be obtained only in the framework of the theory of OG-cocycles, developed
in this chapter.1 The reason is that the group G, in general, is not commutative.
After some preparation in Section 5.3, in Section 5.4 we only prove part (i) of
Theorem 5.0.1. Then, in Section 5.5, we prove the Cartan lemma, which can be
viewed as a special case of Theorem 0.0.1 stated in the introduction to this book.

1At least the authors do not see another way.
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Theorem 0.0.1 in turn can be considered as a special result on the triviality of
OGL(E)-cocycles (see Definition 5.6.1 below), because a GL(E)-valued function,
defined and holomorphic in the intersection of two open sets, may be viewed
as a special OGL(E)-cocycle. Using the language introduced in Definition 5.6.1,
Theorem 0.0.1 then says that this cocycle is OGL(E)-trivial.

To prove Theorem 0.0.1, however we have to pass to general multiplicative
cocycles (Def. 5.6.1). In Section 5.6 we introduce the language of multiplicative
cocycles and state the main result on such cocycles. This is Theorem 5.6.3, which
contains Theorem 0.0.1 as a special case. In Section 5.9 we prove it in the simply
connected case, whence also Theorem 0.0.1 is proved in the case when D1 ∪D2 is
simply connected. Using this, then in Section 5.10 we prove the Runge approxima-
tion Theorem 5.0.1 in its general form. At the end, using the Runge approximation
Theorem 5.0.1 in its general form, in Section 5.11 we prove Theorem 5.6.3 in its
general form, whence also Theorem 0.0.1 is proved in its general form.

In Section 5.13 we prove the generalized Weierstrass Theorem 0.0.2, stated
in the introduction to this book, as well as the corresponding right-sided and two-
sided versions. In Section 5.12 we prove Weierstrass theorems for functions of the
form I +K, where the values of K are compact.

5.1 Topological properties of GL(E)

5.1.1. Until now it was not important whether the group of invertible elements of
a Banach algebra is connected or not. This changes beginning with the present
chapter. Therefore we devote this section to this question.

First recall the following example of a Banach algebra with a non-connected
group of invertible elements: Let E be an infinite dimensional Banach space, and
let Fω(E) be the ideal of compact operators in L(E). Then the group of invertible
elements of L(E)/Fω(E) is not connected, because this group is the image under
the canonical map

L(E) −→ L(E)/Fω(E)

of the set of Fredholm operators in L(E) (see, e.g., [GGK2]), where Fredholm
operators with different indicies define different connected components of the group
G
(
L(E)/Fω(E)

)
.

For many Banach spaces, the group of invertible operators is connected. This
is the case, for example, for all Hilbert spaces, which we prove below (Theorem
5.1.5).

Note without proofs that for each of the following Banach spaces the group
of invertible operators is not only connected but even contractible:

Hilbert spaces of infinite dimension,

c0,

lp, 1 ≤ p ≤ ∞,
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Lp[0, 1], 1 ≤ p ≤ ∞,

C0(K) (K a compact metric space of continuum cardinality),

Ck(M), k ∈ N, (M a smooth compact manifold).

The proofs and more examples can be found in the original papers [A, Ku, N1,
Mi, MiE, EMS1, EMS2]. The interested reader is recommended to consult also the
review about these papers written by G. Neubauer [N2] .

But there are also quite natural Banach spaces with non-connected groups
of invertible operators. At the end of this section, we give an example.

We begin with the following simple lemma.

5.1.2 Lemma. Let E be a Banach space, let A ∈ GL(E), and let σ(A) be the
spectrum of A. Assume there exists a continuous curve γ : [0, 1]→ C \ σ(A) such
that γ(0) = 0 and |γ(1)| > ‖A‖. Then A belongs to the connected component of
the unit operator in GL(E).

Proof. Since γ(t) 	∈ σ(A) and therefore A − γ(t) ∈ GL(E) for all 0 ≤ t ≤ 1, the
operators A = A− γ(0)I and A− γ(1)I belong to the same connected component
of GL(E). Since |γ(1)| > ‖A‖, setting

α(t) = −γ(1)
(

I − t

γ(1)

)
, 0 ≤ t ≤ 1,

we obtain a continuous curve α : [0, 1] → GL(E) which connects the operator
A − γ(1)I = α(1) with −γ(1)I = α(0). As −γ(1)I and I belong to the same
connected component of GL(E), this completes the proof. �

5.1.3 Corollary. For each n ∈ N∗, the group GL(n, C) of invertible complex n×n-
matrices is connected.

Proof. This follows from Lemma 5.1.2, because the spectrum of a matrix is finite.
�

5.1.4. Now let H be a Hilbert space of infinite dimension. As already mentioned
above, thenGL(H) is even contractible [Ku] (in distinction to the groupsGL(n, C),
n ∈ N∗). In the present book we need only the simpler fact that GL(H) is con-
nected.2 Again using Lemma 5.1.2, this can be easily deduced from the spectral
representation of unitary operators:

5.1.5 Theorem. For each Hilbert space H, the group GL(H) of invertible operators
is connected.

2This is due to the fact that we deal with functions of one complex variable and that the
topology of a domain in the complex plane is simple compared to the topology of domains in
higher dimensional spaces. That GL(H) is even contractible becomes important if we pass to
several complex variables (see [Bu]).
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Proof. Let GLI(H) be the connected component of the unit operator in GL(H).
We have to prove that GL(H) = GLI(H). Let A ∈ GL(H) be given. Then A =
US, where S := (A∗A)1/2 is positive definite, and U := AS−1 is unitary. Since
the spectrum σ(S) of S is contained in the real line and 0 	∈ σ(S), it follows from
Lemma 5.1.2 that S ∈ GLI(H).

It remains to prove that U ∈ GLI(H). It follows from the spectral repre-
sentation of unitary operators (see, e.g., [GGK1]) that H can be written as an
orthogonal sum H = H1 ⊕ H2, where H1 and H2 are invariant subspaces of U
such that the spectrum of U

∣∣
H1

lies on the half circle |z| = 1, Im z ≥ 0, and
the spectrum of U

∣∣
H2

lies on the half circle |z| = 1, Im z < 0. Therefore, by
Lemma 5.1.2, U

∣∣
H1

belongs to the connected component of the unit operator of
H1, and U

∣∣
H2

belongs to the connected component of the unit operator of H2.
Hence U ∈ GLI(H). �

Next we give an example for a Banach space E such that GL(E) is not
connected:

5.1.6 Theorem. 3 Let c0 be the Banach space of sequences ξ = {ξn}n∈N of complex
numbers tending to zero with the norm

‖ξ‖∞ = max
n∈N

|ξn|,

and let lp, 1 ≤ p < ∞, be the Banach space of sequences {ξn}n∈N of complex
numbers with the norm

‖ξ‖p =
( ∞∑

n=0

|ξn|p
)1/p

<∞.

Then the group GL(c0⊕lp) consists of an infinite number of connected components.

To prove this theorem, we need the following three lemmas:

5.1.7 Lemma. Let c0 and lp, 1 ≤ p <∞ be as in Theorem 5.1.6, and let Pn be the
projector in c0, defined by

Pn

(
{ξn}n∈N

)
= (ξ1, . . . , ξn, 0, . . .). (5.1.1)

For j ∈ N, we denote by fj : lp → C the functional defined by

fj

(
{ξn}n∈N

)
= ξj .

Let A ∈ L(c0, lp) and j ∈ N be fixed. Then

lim
n→∞

∥∥fjA(I − Pn)
∥∥ = 0 (5.1.2)

3This example is due to A. Douady [Do1]. As observed in [Do1] instead of c0 and lp here one
could take an arbitrary pair of Banach spaces F and G such that each operator from L(F, G) is
compact, and F and G are isomorphic to their hyperplanes.
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where ∥∥fjA(I − Pn)
∥∥ := sup

ξ∈c0,‖ξ‖∞≤1

∣∣∣fj

(
A(ξ − Pnξ)

)∣∣∣.
Proof. Assume the contrary. Since∥∥fjA(I − Pn)

∥∥ ≥ ‖fjA(I − Pn+1)
∥∥ for all n ∈ N,

then there exists ε > 0 such that∥∥fjA(I − Pn)
∥∥ > ε for all n ∈ N. (5.1.3)

Choose a number n1 ∈ N (arbitrarily). Then, by (5.1.3), we can find a vector
η̃(1) ∈ Im(I − Pn1) with ‖η̃(1)‖∞ ≤ 1 and∣∣∣(fjA)(η̃(1))

∣∣∣ > ε. (5.1.4)

Since η̃(1) tends to zero, we have

lim
n→∞

∥∥(I − Pn)η̃(1)
∥∥
∞ = 0.

Therefore it follows from (5.1.4) that there exists n2 ∈ N so large that∣∣∣(fjA)(Pn2 η̃
(1))

∣∣∣ > ε.

Set

η(1) =

∣∣∣(fjA)(Pn2 η̃
(1))

∣∣∣
(fjA)(Pn2 η̃

(1))
Pn2 η̃

(1).

Then
η(1) ∈ Im(Pn2 − Pn1), ‖η(1)‖∞ ≤ 1 and (fjA)(η(1)) > ε.

If this way we get by induction an increasing sequence nμ ∈ N, μ ∈ N∗, and a
sequence of vectors η(μ) ∈ c0, μ ∈ N∗, such that

η(μ) ∈ Im(Pnμ+1 − Pnμ
), ‖η(μ)‖∞ ≤ 1 and (fjA)(η(μ)) > ε

for all μ. Now, for each N ∈ N∗, we set

φ(N) = η(1) + . . .+ η(N).

Then
‖φ(N)‖∞ = max

1≤μ≤N
‖η(μ)‖∞ ≤ 1

and
(fjA)(φ(N)) = (fjA)(η(1)) + . . .+ (fjA)(η(N)) > Nε.

This is a contradiction to the boundedness of fjA. �
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5.1.8 Lemma. Let c0 and lp, 1 ≤ p <∞, be as in Theorem 5.1.6. Then each oper-
ator A ∈ L(c0, lp) can be approximated in the operator norm by finite dimensional
operators, namely if Pn is the projector in c0 defined by (5.1.1), then

lim
n→∞ ‖A−APn‖ = 0. (5.1.5)

Proof. Assume that there exists a bounded linear operator A : c0 → lp such that
(5.1.5) is violated. Since

‖A−APn‖ ≥ ‖A−APn+1‖ for all n ∈ N,

then there exists ε > 0 with

‖A−APn‖ > ε for all n ∈ N. (5.1.6)

Let ‖A‖ be the operator norm on A.
Choose α̃ ∈ c0 with

‖α̃‖∞ ≤ 1 and ‖Aα̃‖p > ‖A‖ − ε

10
. (5.1.7)

As α̃ tends to zero, then limn→∞ ‖α̃−Pnα̃‖ = 0. Therefore and by (5.1.7) we can
find m ∈ N with

‖APmα̃‖p > ‖A‖ − ε

10
.

Set α = Pmα̃. Then

α ∈ ImPm, ‖α‖∞ ≤ 1 and ‖Aα‖p > ‖A‖ − ε

10
. (5.1.8)

Let Rn : lp → lp be the projector defined by

Rn

(
{ξn}n∈N

)
= ξj .

Since 1 ≤ p < ∞, then limn→∞ ‖(I − Rk)Aα‖p = 0. Hence, we can find k ∈ N∗

such that
‖(I −Rk)Aα‖p ≤

ε

10
. (5.1.9)

Together with (5.1.8) this implies that

‖RkAα‖p ≥ ‖A‖ −
ε

5
. (5.1.10)

From Lemma 5.1.7 it follows that limn→∞ ‖RkA(I − Pn)‖ = 0. Therefore, we can
find an integer l > m with

‖RkA(I − Pl)‖ ≤
ε

10
. (5.1.11)
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By (5.1.6) there exists β ∈ Im(I − Pl) such that

‖β‖∞ ≤ 1 and ‖Aβ‖p ≥ ε. (5.1.12)

Together with (5.1.11) this implies that

‖RkAβ‖p ≤
ε

10
(5.1.13)

and
‖(I −Rk)Aβ‖p ≥ ε− ε

10
. (5.1.14)

Since α ∈ ImPm, β ∈ Im(I − Pl) and l > m, now we have

‖α+ β‖∞ = max
(
‖α‖∞, ‖β‖∞

)
≤ 1,

and from (5.1.9), (5.1.10), (5.1.13) and (5.1.14) it follows that

‖A(α+β)‖p ≥ ‖RkAα‖p−‖(I−Rk)Aα‖p+‖(I−Rk)Aβ‖p−‖RkAβ‖p ≥ ‖A‖+
ε

2
.

This is a contradiction to the definition of ‖A‖. �
5.1.9 Lemma. Let c0 and lp, 1 ≤ p < ∞, be as in Theorem 5.1.6, and let P
be the projector in c0 ⊕ lp with ImP = c0 and KerP = lp. Set Q = I − P . Let
A ∈ GL(c0⊕lp). Then PA

∣∣
c0

is a Fredholm operator in c0 and QA
∣∣
lp

is a Fredholm
operator in lp.

Proof. We have

P = PAA−1P = PAPA−1P + PAQA−1P

and
P = PA−1AP = PA−1PAP + PA−1QAP.

Since, by Lemma 5.1.8, the operators PAQA−1P and PA−1QAP are compact,
this implies that both PAPA−1

∣∣
c0
and PA−1PA

∣∣
c0
are Fredholm operators. Hence

(see., e.g., [GGK2]), PA
∣∣
c0
is a Fredholm operator. In the same way we see that

QA
∣∣
lp
is a Fredholm operator. �

Proof of Theorem 5.1.6. We consider the space c0 ⊕ lp as the space of families{
ξn

}∞
h=−∞, ξm ∈ C, such that

lim
n→−∞ ξn = 0 and

∞∑
n=0

|ξn|p < ∞.

Then, for k ∈ Z, we have the shift operator Ak defined by

Ak

({
ξn}j=−∞∞

})
=
{
ξn+k}j=−∞∞

}
.
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Clearly, then Ak ∈ GL(c0 ⊕ lp) for all k ∈ Z. Moreover, if P is the projector from
Lemma 5.1.9, PAk

∣∣
c0
is a Fredholm operator with index k in c0.

Assume Ak and Am belong to the same connected component of GL(c0⊕ lp).
Then Ak−m = AkA−1

m belongs to the connected component of GL(c0 ⊕ lp) which
contains the unit operator. Hence, there is a continuous curve A : [0, 1]→ GL(c0⊕
lp) with A(0) = I and A(1) = Ak−m. Then, by Lemma 5.1.9, {PA(t)

∣∣
c0
}0≤t≤t,

is a continuous family of Fredholm operators in c0. Since A(0) = I has the index
zero, then also A(1) = Ak−m

∣∣
ck
0
has the index zero. Hence k = m.

Hence we proved that, for all k, m ∈ Z with k 	= m, the operators Ak and
Am belong to different connected components of GL(c0 ⊕ lp). �

5.2 Two factorization lemmas

The following lemma will be used several times in this book:

5.2.1 Lemma. Let A be a Banach algebra with unit 1 and the norm ‖ · ‖, and let
A1, A2 be two algebraic subalgebras of A with 1 ∈ A1 ∩ A2, which are Banach
algebras with respect to their own norms ‖·‖1 and ‖·‖2, respectively. Assume that:

(i) ‖x‖j ≥ ‖x‖ for each x ∈ Aj, j = 1, 2.

(ii) Each element x ∈ A can be written in the form x = x1 + x2 with xj ∈ Aj,
j = 1, 2.

Let C < ∞ be the smallest constant such that, for all x ∈ A, there exist xj ∈ Aj

with x = x1 + x2 and
‖xj‖j ≤ C‖x‖, j = 1, 2. (5.2.1)

(Such a constant then exists by the Banach open mapping theorem.)
Then, for each a ∈ A with

‖a‖ <
1
2C

,

there exist elements a1 ∈ A1 and a2 ∈ A2 such that 1−a1 is an invertible element
of A1, 1− a2 is an invertible element of A2, and

(1− a) = (1− a1)−1(1− a2). (5.2.2)

Moreover
‖a1‖1, ‖a2‖2 ≤ 2C‖a‖ < 1. (5.2.3)

Proof. By definition of C, we can find maps Pj : A → Aj (possibly nonlinear)
such that, for all x ∈ A,

P1x+ P2x = x and ‖Pjx‖j ≤ C‖x‖, j = 1, 2.
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Now let a ∈ A with ‖a‖ < 1/2C be given. Then C‖a‖ < 1/2. Hence, the series

a1 := −P1a− P1(aP1a)− P1

(
aP1(aP1a)

)
− . . .

and
a2 := P2a+ P2(aP1a) + P2

(
aP1(aP1a)

)
+ . . .

converge absolutely in A1 and A2, respectively, and we have the estimates (5.2.3):

‖a1‖1, ‖a2‖2 ≤
∞∑

n=1

(
C‖a‖

)n =
C‖a‖

1− C‖a‖ < 2C‖a‖ < 1.

Then 1− a1 is an invertible element of A1, and 1− a2 is an invertible element of
A2. Moreover

(1− a1)(1− a) = 1 + P1a+ P1(aP1a) + P1

(
aP1(aP1a)

)
+ . . .

− a − aP1a − aP1(aP1a) − . . .

= 1− P2a− P2(aP1a)− P2

(
aP1(aP1a)

)
− . . .

= 1− a2,

i.e., we have (5.2.2). �
5.2.2 Lemma. Let A be a Banach algebra with unit 1, and let f : [0, 1] → A be
continuous such that all f(t), 0 ≤ t ≤ 1, are right (left) invertible4 and f(0) is
invertible. Then all f(t), 0 ≤ t ≤ 1, are invertible.

Proof. It is sufficient to consider the case of right invertibility. The case of left
invertibility follows from changing the order of multiplication in A.

Assume there exists 0 ≤ t ≤ 1 such that f(t) is not invertible. Since the
group of invertible elements of A is open and f(0) is invertible, then there exists
0 < t0 ≤ 1 such that f(t0) is not invertible, but all f(t) with 0 ≤ t < t0 are
invertible. Since f(t0) is right invertible, we have b ∈ A with f(t0)b = 1. Fix
0 < t < t0 such that

‖f(t)− f(t0)‖ <
1
‖b‖ .

Then
c := f(t)b =

(
f(t0) + f(t)− f(t0)

)
b = 1 +

(
f(t)− f(t0)

)
b,

where ∥∥∥(f(t)− f(t0)
)
b
∥∥∥ < 1.

Hence, c is invertible. Since also f(t) is invertible, it follows that b =
(
f(t)

)−1
c

is invertible. Moreover, as f(t0)b = 1, we see that f(t0) is the inverse of b. Hence
f(t0) is invertible, which is a contradiction. �

4An element a ∈ A is called right (left) invertible if there exists b ∈ A with ab = 1 (ba = 1).
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5.2.3 Lemma. Let A be a Banach algebra with unit 1 and the norm ‖ · ‖, and let
A1, A2 be two closed subalgebras of A such that A is the direct sum of A1 and A2.
Let P1 be the linear projector from A to A1, let P2 := I − P1, and let a ∈ A such
that

‖a‖ <
1
C

where C := max {‖P1‖, ‖P2‖} . (5.2.4)

Then there exist elements a1 ∈ A1 and a2 ∈ A2 such that 1 − a1 and 1 − a2 are
invertible elements of A, and

(1− a) = (1− a1)−1(1− a2). (5.2.5)

Moreover, 1−a1 and 1−a2 belong to the connected component of the unit element
in the group of invertible elements of A, and

‖a1‖, ‖a2‖ <
C‖a‖

1− C‖a‖ . (5.2.6)

Proof. By (5.2.4), for all 0 ≤ t ≤ 1, the series

f1(t) := −tP1a− t2P1(aP1a)− t3P1

(
aP1(aP1a)

)
− . . . ,

f2(t) := tP2a+ t2P2(aP1a) + t3P2

(
aP1(aP1a)

)
+ . . .

(5.2.7)

converge absolutely in A1 and A2, respectively, where

‖f1(t)‖, ‖f2(t)‖ ≤
∞∑

n=1

tn
(
C‖a‖

)n =
tC‖a‖

1− tC‖a‖ <∞. (5.2.8)

Moreover, for all 0 ≤ t ≤ 1,(
1− f1(t)

)
(1− ta) = 1 + tP1a+ t2P1(aP1a) + t3P1

(
aP1(aP1a)

)
+ . . .

− ta − t2aP1a − t3aP1(aP1a) − . . .

= 1− tP2a− t2P2(aP1a)− t3P2

(
aP1(aP1a)

)
− . . .

= 1− f2(t).

(5.2.9)

As the convergence of the series (5.2.7) is uniformly in t, so we found continuous
functions f1 : [0, 1]→ A1 and f2 : [0, 1]→ A2 such that(

1− f1(t)
)
(1− ta) = 1− f2(t) for all 0 ≤ t ≤ 1, (5.2.10)

and a1(0) = a2(0) = 1. Changing the order of multiplication in A and the role
of A1 and A2, in the same way we get continuous functions g2 : [0, 1] → A2 and
g1 : [0, 1]→ A1 such that

(1− ta)
(
1− g2(t)

)
= 1− g1(t) for all 0 ≤ t ≤ 1, (5.2.11)
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and g2(0) = g1(0) = 1. (5.2.11) can be written also in the form

(1− ta)−1
(
1− g1(t)

)
= 1− g2(t) , 0 ≤ t ≤ 1. (5.2.12)

Multiplying (5.2.10) and (5.2.12) we obtain(
1− f1(t)

)(
1− g1(t)

)
=
(
1− f2(t)

)(
1− g2(t)

)
, 0 ≤ t ≤ 1,

or

f1(t)g1(t)− f1(t)− g1(t) = f2(t)g2(t)− f2(t)− g2(1) , 0 ≤ t ≤ 1.

As A1 ∩A2 = {0}, this implies that(
1− g1(t)

)(
1− g1(t)

)
= 1 and

(
1− f2(t)

)(
1− g2(t)

)
= 1 , 0 ≤ t ≤ 1.

Hence all 1 − f1(t) and all 1 − f2(t), 0 ≤ t ≤ 1, are right invertible. As f1(0) =
f2(0) = 1, this implies by Lemma 5.2.2 that all 1−f1(t) and all 1−f2(t), 0 ≤ t ≤ 1,
are invertible. In particular, setting a1 = f1(1) and a2 = f2(1), we get elements
a1 ∈ A1 and a2 ∈ A2 such that 1−a1 and 1−a2 belong to the connected component
of the unit element in the group of invertible elements of A. It follows from (5.2.10)
that these elements solve (5.2.5), and estimate (5.2.6) follows from (5.2.8). �

5.3 OE-cocycles

In this section E is a Banach space.
In this chapter we need a version of the theory of OE-cocycles (see Section

2.6) for holomorphic functions which admit continuous extensions to the boundary
of their domain of definition. This is the content of the present section.

5.3.1 Definition. Let X ⊆ C be an arbitrary non-empty set. Then we denote by
CE(X) the space of continuous E-valued functions on X. By OE(X) we denote
the subspace all functions from CE(X) which are holomorphic in the inner (with
respect to C) points of X. Moreover we set CE(∅) := OE(∅) := {0} where 0 is the
zero vector of E.

5.3.2 Definition. Let D ⊆ C be an open set, and let U = {Uj}j∈I be a covering
of D by relatively open subsets of D. Then we denote by C1(U ,OE) the space of
families f = {fjk}j,k∈I where fjk ∈ OE(Uj ∩ Uk), and by Z1(U ,OE) we denote
the subspace of all f ∈ C1(U , O

E
) with

fjk + fkl = fjl on Uj ∩ Uk ∩ Ul, (5.3.1)

for all j, k, l ∈ I with Uj ∩ Uk ∩ Ul 	= ∅. The elements of Z1(U ,OE) will be called
(U ,OE

)-cocycles. If the covering U is not specified, then we speak also about
OE

-cocycles on D.
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5.3.3 Theorem. Let D ⊆ C a bounded open set, let U = {Uj}j∈I be a covering
of D by relatively open subsets of D, and let f ∈ Z1(U ;OE

). Then there exists a
family {hj}j∈I of functions hj ∈ OE(Uj) with

fjk = hj − hk onUj ∩ Uk (5.3.2)

for all j, k ∈ I with Uj ∩ Uk 	= ∅.

Proof. Take a family Ũ = {Ũj}j∈I of open (in C) sets such that Uj = D ∩ Ũj for
all j ∈ I. Choose a C∞-partition of unity {χj}j∈I subordinated to Ũ . By setting

ϕj = −
∑
ν∈I

χνfνj ,

we obtain functions ϕj ∈ CE(Uj) which are of class C∞ in D∩Uj . Since f satisfies
(5.3.2) and

∑
ν∈I χν = 1 on D, we have

ϕj − ϕk = −
∑
ν∈I

χν(fνj − fνk) =

(∑
ν∈I

χν

)
fjk = fjk on Uj ∩ Uk (5.3.3)

for all j, k ∈ I with Uj∩Uk 	= ∅. Since fjk is holomorphic on D∩Uj∩Uk, it follows
that

∂ϕj = ∂ϕk on D ∩ Uj ∩ Uk.

Hence there is a well-defined C∞-function ψ : D → E with ψ = ∂ϕj on D ∩ Uj .
By Proposition 2.1.2, we have

ψ = ∂ϕj = −
∑
ν∈I

(∂χν)fνj on D ∩ Uj

for all j ∈ I. Hence, ψ admits a continuous extension to D, and, by theorems
2.1.10 and 2.1.9, we can find a continuous function u : D → E with ψ = ∂u on D.
Set hj = ϕj − u on Uj . Then hj is continuous on Uj , and, on D ∩ Uj , we have

∂hj = ∂ϕj − ∂u = ψ − ∂u = 0 .

Hence hj ∈ OE(Uj), and it follows from (5.3.3) that

hj − hk = (ϕj − u)− (ϕk − u) = ϕj − ϕk = fjk on Uj ∩ Uk

for all j, k ∈ I with Uj ∩ Uk 	= ∅. �
5.3.4 Proposition. Assume that under the hypotheses of Theorem 5.3.3 moreover
the following holds: For all j, k ∈ I with Uj ∩ Uk 	= ∅, the function fjk admits a
continuous extension to Uj ∩ Uk.

If then {hj}j∈I is a family of functions hj ∈ OE(Uj), which solves (5.3.2),
then hj ∈ OE(U j) for all j ∈ I.
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Proof. Let some j ∈ I be given and let (zn)n∈N be a sequence in Uj which converges
to some point z 	∈ Uj . Since D is closed and covered by U , then there exists at
least one index k ∈ I such that z ∈ Uk. Since Uk is relatively open in D, it follows
that, for some n0 ∈ N, zn ∈ Uk if n ≥ n0. Since hk is continuous on Uk,

lim
n0≤n→∞

hk(zn) = hk(z).

Since zn ∈ Uj ∩ Uk for n ≥ n0 and fjk admits a continuous extension to Uj ∩ Uk,
moreover

lim
n0≤n→∞

fjk(zn)

exists. Together this implies by (5.3.2) that

lim
n→∞hj(zn) = lim

n0≤n→∞
fjk(zn) + hk(z)

exists. �
For many purposes the following immediate corollary of Theorem 5.3.3 and

Proposition 5.3.4 is sufficient:

5.3.5 Corollary. Let D ⊆ C be a bounded open set, let U1, U2 ⊆ D be two relatively
open subsets of D such that D = U1∪U2 and U1∩U2 	= ∅, and let f ∈ OE(U1∩U2).
Then there exist fj ∈ OE(Uj), j = 1, 2, with

f = f1 − f2 on U1 ∩ U2. (5.3.4)

Moreover, if f ∈ OE(U1 ∩ U2) and if two functions fj ∈ OE(Uj), j = 1, 2, solve
(5.3.4), then automatically fj ∈ OE(U j), j = 1, 2.

5.4 Runge approximation of G-valued functions

First steps

5.4.1 Proposition. Let A be a Banach algebra with unit 1, and let G1A be the
connected component of the group of invertible elements of A which contains the
unit element. Then, for any ε > 0, each f ∈ G1A can be written as a finite product
of the form

f = (1 + g1) · . . . · (1 + gn) (5.4.1)

where gj ∈ A with ‖gj‖ < ε for 1 ≤ j ≤ n.

Proof. Let Θ be the set of all f ∈ G1A of the form (5.4.1). We have to prove that
Θ is open and closed in G1A.

Let f ∈ Θ be written in the form (5.4.1), and let Uf be the neighborhood of
f which consists of all g ∈ G1A with ‖f−1g − 1‖ < ε. Then, for each g ∈ Uf ,

g = ff−1g = (1 + g1) . . . (1 + gn)
(
1 + (f−1g − 1)

)
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is also of this form, i.e., g ∈ Θ. Hence Θ is open.
Now let (fj)j∈N be a sequence in Θ which converges to some f ∈ G1A. Then

we can find j0 ∈ N such that ∥∥f−1
j0

f − 1
∥∥ < ε.

Since fj0 is of the form

fj0 = (1 + g1) . . . (1 + gn) with ‖gj‖ < ε,

then also
f = fj0f

−1
j0

f = (1 + g1) . . . (1 + gn)
(
1 + (f−1

j0
f − 1)

)
is of this form. Hence Θ is also closed. �

5.4.2 Corollary. Let A be a Banach algebra with unit 1, let GA be the group of
invertible elements of A, and let G be an open subgroup of GA. For a ∈ GA, we
denote by Ga the connected component of a in GA. Then

Ga ⊆ G for all a ∈ G. (5.4.2)

Proof. Since G is an open subset of GA, there exists ε > 0 such that

Uε(1) :=
{

x ∈ A
∣∣∣ ‖1− x‖ < ε

}
⊆ G.

By Proposition 5.4.1, each element in G1A is a finite product of elements from
Uε(1). Since G is a subgroup of GA, it follows that G1A ⊆ G, and hence aG1A ⊆ G
for all a ∈ G. Since Ga = aG1 for all a ∈ GA, this implies (5.4.2). �

5.4.3. If A is a Banach algebra with unit 1, and GA is the group of invertible
elements of A, then we define

exp a = ea =
∞∑

n=0

an

n!
for all a ∈ A (5.4.3)

and

log a = −
∞∑

n=1

(1− a)n

n
for all a ∈ A with ‖1− a‖ < 1. (5.4.4)

5.4.4 Lemma. Let A be a Banach algebra with unit 1, let GA be the group of
invertible elements of A, and let G1A be the connected component of GA which
contains the unit element. Then:

(i) ea ∈ G1A for all a ∈ A, where
(
ea
)−1 = e−a.

(ii) If a ∈ A with ‖a− 1‖ < 1, then elog a = a.
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Proof. If A is commutative, this is well known. In the general case, we can pass to
the smallest closed subalgebra of A which contains a and the unit element. This
subalgebra is commutative. �

5.4.5 Definition. Let D ⊆ C be a bounded open set, let A be a Banach algebra
with unit 1, and let GA be the group of invertible elements of A.

Then we denote by OA(D) the algebra of continuous A-valued functions on
D which are holomorphic in D. By setting

‖f‖OA(D)
:= max

z∈D
‖f(z)‖A , f ∈ OA(D),

we introduce a norm in OA(D), where ‖ · ‖A is the norm of A. In this way, also
OA(D) becomes a Banach algebra with unit. If it is clear what we mean we simply
write ‖ · ‖ instead of ‖ · ‖OA(D).

If G is an open subgroup of GA, then we denote by OG(D) the subset of
OA(D) which consists of the functions with values in G. Note that then OGA(D)
is the group of invertible elements of OA(D), and, if G is an open subgroup of
GA, then OG(D) is an open subgroup of OGA(D).

5.4.6 Proposition. Let D ⊆ C be a bounded open set with piecewise C1-boundary,
and let P ⊆ C \ D be a set which contains at least one point of each bounded
connected component of C \D (if there is any5). Let A be a Banach algebra with
unit 1, and let G be an open subgroup of the group of invertible elements of A.
Then, for each f ∈ OG

(D), the following two conditions are equivalent:

(i) f can be approximated uniformly on D by functions from OG(C \ P ).

(ii) There exists f̃ ∈ OG(C \ P ) such that f and f̃ belong to the same connected
component of OG

(D).

Proof. Since the connected components of OG(D) are open, it is clear that (i) ⇒
(ii).

Suppose (ii) is satisfied. Since f and f̃ belong to the same connected com-
ponent of OG(D), the function ff̃−1 belongs to the connected component of the
unit element in OG(D). Therefore, by Proposition 5.4.1, it can be written in the
form

ff̃−1 = (1 + g1) . . . (1 + gn) (5.4.5)

where gj ∈ OA(D) with ‖gj‖ < 1. Set

hj = log(1 + gj) =
∞∑

ν=1

(−1)ν+1

ν
gν

j , 1 ≤ j ≤ n.

5If C \ D is connected, then P = ∅ is possible.
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Since, for any j, the series on the right-hand side converges uniformly on D, so we
obtain functions hj ∈ OA(D). By Lemma 5.4.4 (ii), 1+ gj = ehj and therefore, by
(5.4.5),

f = eh1 . . . ehn f̃ .

Now, by the Runge approximation Theorem 2.2.2, for each j, we can find a se-
quence (hj,ν)ν∈N which converges to hj uniformly on D. Then

gν := eh1,ν . . . ehn,ν f̃ , ν ∈ N,

is a sequence of functions from OA(C\P ) which converges to f uniformly on D. By
Lemma 5.4.4 (i) the values of each ehj,ν belong to G1A, the connected component
of GA which contains the unit element. Hence the values of

gf̃−1 = eh1 . . . ehn

belong to G1A. Since the values of f̃ belong to G, this means that also the values
of g belong to G. �

Using the Riemann mapping theorem, now we prove:

5.4.7 Lemma. Let D ⊆ C be a bounded, simply connected open set (Section 1.4.3)
with piecewise C1-boundary. Let A be a Banach algebra with unit 1, and let G1A
be the connected component of the unit element in the group of invertible elements
of A. Then the group OG1A

(D) is connected (with respect to uniform convergence
on D).

Proof. Let some f ∈ OG1A
(D) be given. We have to find a continuous curve in

OG1A
(D) which connects f and the constant function with value 1. Since G1A is

an open subset of A, we have ε > 0 such that the ball

Bε(f) :=
{

g ∈ OA
(D)

∣∣∣ ‖f − g‖OA
(D)

< ε
}

is contained in OG1A
(D). Moreover, by the Mergelyan approximation Theorem

2.2.1, there exists a holomorphic function f̃ : U → A defined in a neighborhood U
of D such that f̃ |D ∈ Bε(f). Therefore it is sufficient to find a continuous curve
in OG1A

(D) which connects f̃ |D with the constant function with value 1.
Since D is bounded, simply connected and with piecewise C1-boundary, af-

ter shrinking U , we may assume that also U is bounded and simply connected.
Therefore, by the Riemann mapping theorem, we can find a biholomorphic map
Φ from U onto the unit disc. Set(

λ(t)
)
(z) := f̃

(
Φ−1

(
(1− t)Φ(z)

))
for t ∈ [0, 1], z ∈ D. This defines a continuous curve λ : [0, 1] → OG1A(D)
with λ(0) = f̃ |D. The function λ(1) has the constant value f

(
Φ−1(0)

)
∈ G1A.
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Since G1A is connected, we can find a continuous curve γ : [1, 2] → G1A with
γ(1) = f

(
Φ−1(0)

)
and γ(2) = 1. Setting for z ∈ D,

(
γ(t)

)
(z) =

{(
λ(t)

)
(z) if t ∈ [0, 1] ,(

γ(t)
)
(z) if t ∈ [1, 2] ,

we get a continuous curve with the required properties. �
Now we can prove part (i) of Theorem 5.0.1.

Proof of Theorem 5.0.1 (i). Let G1A be the connected component of the group
of invertible elements of A which contains the unit element. Since all values of f
belong to the same connected component of G, after multiplying by a constant ele-
ment of G we may assume that f belongs to the group OG1A(D). By the preceding
Lemma 5.4.7, this group is connected. In particular, condition (ii) in Proposition
5.4.6 is satisfied (with P = ∅). Therefore it follows from this proposition that f
can be approximated uniformly on D by functions from OG1A(C). �

5.5 The Cartan lemma

5.5.1 Definition. A pair (D1, D2) of bonded open sets D1, D2 ⊆ C with piecewise
C1-boundaries will be called a Cartan pair if:

– The intersection D1 ∩D2 is not empty and has piecewise C1-boundary, and
C \D1 ∩D2 is connected.

– The union D1 ∪D2 has piecewise C1-boundary.

–
(
D1 \D2

)
∩
(
D2 \D1

)
= ∅.

For example, if D1, D2 ⊆ C are two open rectangles such that also D1 ∪D2

and D1∩D2 are non-empty rectangles, then (D1, D2) is a Cartan pair in the sense
of this definition.

If (D1, D2) are a Cartan pair, then the closures of the connected components
of D1 ∩ D2 are pairwise disjoint. This follows from the fact that D1 ∩ D2 has
piecewise C1-boundary. Moreover, since

(
D1\D2

)
∩
(
D2\D1

)
= ∅, then D1 ∩D2 =

D1 ∩D2.
In this section we prove the following

5.5.2 Lemma (Cartan lemma). Let (D1, D2) be a Cartan pair, let A be a Banach
algebra with unit 1, and let G be an open subgroup of the group of invertible
elements of A. Further, let f ∈ OG(D1 ∩D2) (Def. 5.4.5) such that all values of
f belong to the same connected component of G. Then there exist fj ∈ OG(Dj),
j = 1, 2, such that

f = f1f2 on D1 ∩D2. (5.5.1)

Moreover, then, for each ε > 0, the following two assertions are true:
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(i) There exist fj ∈ OG(Dj), j = 1, 2, with (5.5.1) and

max
z∈D1

‖f1(z)− 1‖ < ε. (5.5.2)

(ii) There exist fj ∈ OG(Dj), j = 1, 2, with (5.5.1) and

max
z∈D2

‖f2(z)− 1‖ < ε. (5.5.3)

We prove this lemma in two steps.

5.5.3 Lemma. Let (D1, D2) be a Cartan pair, and let A be a Banach algebra with
unit 1. Then, for each ε > 0, there exists δ > 0 such that, for each g ∈ O(D1 ∩
D2, A) (for the notation cf. 5.4.5) with

max
z∈D1∩D2

‖g(z)‖ < δ,

there exist gj ∈ O(Dj , A) with

max
z∈Dj

‖gj(z)‖ < ε , j = 1, 2,

such that
1 + g = (1 + g1)(1 + g2) on D1 ∩D2.

Proof. We consider OA
(D1 ∩D2), OA(D1) and OA(D2) as Banach algebras en-

dowed with the maximum norm. Then, by Corollary 5.3.5, each f ∈ OA
(D1∩D2)

can be written in the form f = f1+ f2 with fj ∈ OA(Dj). Therefore the assertion
follows from Lemma 5.2.1. �
Proof of Lemma 5.5.2. Let G1A be the connected component of the unit element
in the group of invertible elements A. Since all values of f belong to the same con-
nected component of G, by multiplication by a constant element, we may achieve
that f(z) ∈ G1A for all z ∈ W . Since D1 ∩ D2 has piecewise C1 boundary and
C \D1 ∩D2 is connected, we can apply part (i) of the Runge approximation The-
orem 5.0.1 (which was proved at the end of Section 2.2.2). So, for each δ > 0, we
can find fδ ∈ OG1A(C) with

max
z∈D1∩D2

‖f(z)f−1
δ (z)− 1‖ < δ and max

z∈D1∩D2

‖f−1
δ (z)f(z)− 1‖ < δ.

Therefore, by Lemma 5.5.3, for sufficiently small δ, we can find g
(1)
j , g

(2)
j ∈ OA

(Dj)
such that

‖g(k)
j ‖OA

(Dj)
< ε , j = 1, 2, k = 1, 2,

and

ff−1
δ =

(
1 + g

(1)
1

)(
1 + g

(1)
2

)
and f−1

δ f =
(
1 + g

(2)
1

)(
1 + g

(2)
2

)
on D1 ∩D2. To prove assertion (i) we set f1 = (1+ g

(1)
1 ) and f2 = (1+ g

(1)
2 )fδ. To

prove assertion (ii) we set f1 = fδ(1 + g
(2)
1 ) and f2 = 1 + g

(2)
2 . �
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5.6 OG-cocycles. Definitions and statement of the main

result

Here we introduce the notion of multiplicative cocycles and state the main result
on them, which will be proved in the subsequent sections.

Throughout this section, A is a Banach algebra with unit 1, and G is an open
subgroup of the group of invertible elements ofA. If U ⊆ C is a non-empty open set,
then we denote by OG(U) the group of holomorphic G-valued functions defined on
U (as everywhere in this book). For practical reasons, we set OG(∅) = {1} where
1 is the unit element of A.

5.6.1 Definition. Let D ⊆ C an open set, and let U = {Uj}j∈I be an open covering
of D.

(i) We denote by Z1(U , CG) the set of all families f = {fjk}j,k∈I of functions
fjk ∈ CG(Uj ∩ Uk) with

fjkfkl = fjl on Uj ∩ Uk ∩ Ul, (5.6.1)

for all j, k, l ∈ I with Uj ∩ Uk ∩ Ul 	= ∅. The elements of Z1(U , CG) will
be called (U , CG)-cocycles. Condition (5.6.1) is called the (multiplicative)
cocycle condition. Note that it in particular implies that

fjj = 1 and fjk = f−1
kj .

(ii) We denote by Z1(U ,OG) the set of all cocycles f ∈ Z1(U , CG) such that
fjk ∈ OG(Uj ∩ Uk) for all j, k ∈ I. The elements of Z1(U ,OG) will be called
(U , OG)-cocycles.

(iii) Two cocycles f, g ∈ Z1(U , CG) will be called CG-equivalent or continuously
equivalent if there exists a family {fj}j∈I of functions fj ∈ CG(Uj) such that

gjk = hjfjkh−1
k on Uj ∩ Uk

for all j, k ∈ I with Uj ∩ Uk 	= ∅.
(iv) Two cocycles f, g ∈ Z1(U ,OG) will be called OG-equivalent or holomorphi-

cally equivalent if there exists a family {fj}j∈I of functions fj ∈ OG(Uj)
such that

gjk = hjfjkh−1
k on Uj ∩ Uk

for all j, k ∈ I with Uj ∩ Uk 	= ∅.
(v) A cocycle f ∈ Z1(U , CG) will be called CG-trivial or continuously trivial if

there exists a family {fj}j∈I of functions fj ∈ CG(Uj) such that

fjk = fjf
−1
k on Uj ∩ Uk
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for all j, k ∈ I with Uj ∩Uk 	= ∅. In other words, f is called CG-trivial if it is
CG-equivalent to the cocycle e ∈ Z1(U , CG) defined by ejk ≡ 1, j, k ∈ I. In
this case we say also that f splits continuously.

(vi) A cocycle f ∈ Z1(U ,OG) will be called OG-trivial or holomorphically trivial
if there exists a family {fj}j∈I of functions fj ∈ OG(Uj) such that

fjk = fjf
−1
k on Uj ∩ Uk

for all j, k ∈ I with Uj ∩ Uk 	= ∅. In this case we say also that f splits
holomorphically.

Due to P. Cousin the elements of Z1(U ,OG) are also called multiplicative
Cousin problems. By Theorem 2.3.1, the additive Cousin problems have always
a solution. This is no more true for multiplicative Cousin problems. We give an
example:

5.6.2 Example. Let 0 < r < R <∞. Denote by D the annulus

D :=
{

z ∈ C

∣∣∣ r < |z| < R
}

,

which we cover by the open sets

U1 :=
{

z ∈ D
∣∣∣ Im z <

r

2

}
and U2 :=

{
z ∈ D

∣∣∣ Im z > −r

2

}
.

Then the intersection U1 ∩ U2 consists of two connected components

V1 :=
{

z ∈ U1 ∩ U2

∣∣∣Re z < 0
}

and
V2 :=

{
z ∈ U1 ∩ U2

∣∣∣Re z > 0
}

.

Take a Banach space X such that GL(X) is not connected. (By Theorem 5.1.6
such Banach spaces exist). Let GLI(E) be the connected component of GL(E)
which contains the unit operator I. Take any operator A ∈ GL(X) \GLI(X) and
define

F (z) =

{
I if z ∈ V1,

A if z ∈ V2.

We interpret F as a ({U1, U2},OGL(X))-cocycle, setting F12 = F and F21 = F−1

on U1 ∩ U2, F11 = I on U1 and F22 = I on U2. Then F is not CGL(X)-trivial.
Indeed, assume it is CGL(X)-trivial, i.e., F = C1C

−1
2 on U1 ∩ U2 for certain

continuous functions C1 : U1 → GL(X) and C2 : U2 → GL(X). Take r < ρ < R
and set

γ(t) = C1

(
ρe−it

)
C−1

2

(
ρeit

)
for 0 ≤ t ≤ π.

Then γ is a continuous curve in GL(X) connecting I and A, which is a contradic-
tion.
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On the positive side, there is the following theorem, which is the main result
of the present chapter:

5.6.3 Theorem. Let D ⊆ C be an arbitrary open set, let U be an arbitrary open
covering of D, and let f be a (U ,OG)-cocycle. Assume that at least one of the
following conditions is satisfied:

(i) D is simply connected.

(ii) G is connected.

(iii) f is CG-trivial.

Then f is OG-trivial.

We point out again the special case of a covering by two open sets, which is
sufficient for many applications:

5.6.4 Corollary. Let D1, D2 ⊆ C be two open sets, and let f : D1 ∩ D2 → G be
holomorphic. Assume that at least one of the following conditions is satisfied:

(i) D is simply connected.

(ii) G is connected.

(iii) There exist continuous functions cj : Dj → G with f = c1c
−1
2 on D1 ∩D2.

Then there exist holomorphic functions fj : Dj → G with f = f1f
−1
2 on D1 ∩D2.

Note that by well-known topological results, each of the conditions (i) and
(ii) in Theorem 5.6.3 implies condition (iii), but we do not use this topological fact.
We prove directly that each of the conditions (i), (ii) or (iii) yields OG-triviality
of f . In the case of condition (i) this will be done in Section 5.9, and in the case
of conditions (ii) and (iii) we prove this in Section 5.11.

Recall that, by Theorem 5.1.5, condition (ii) in Theorem 5.6.3 is satisfied if
G = GL(H) where H is an Hilbert space. Therefore we have

5.6.5 Corollary (to Theorem 5.6.3). For each Hilbert space H and each open set
D ⊆ C, any OGL(H)-cocycle over D is OGL(H)-trivial.

In particular, for each n ∈ N∗ and each open set D ⊆ C, any OGL(n,C)-cocycle
over D is OGL(n,C)-trivial.

5.7 Refinement of the covering

In this section we develop a technique which allows us to compare cocycles with
different coverings. Throughout this section, A is a Banach algebra with unit 1,
G a subgroup of the group of invertible elements of A, and D ⊆ C is an arbitrary
open set.
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5.7.1 Definition. Let U = {Uj}j∈I and V = {Vμ}μ∈J be two open coverings of D
such that V is a refinement of U . Then (by definition of a refinement) there is a
map τ : J → I with Vμ ⊆ Uτ(μ) for all μ ∈ J . For any such map τ and each cocycle
f ∈ Z1(U , CG) (Def. 5.6.1), we define a cocycle τ∗f ∈ Z1(V, CG) setting

(τ∗f)μν = fτ(μ)τ(ν)

∣∣∣
Vμ∩Vν

,

for all μ, ν ∈ J with Vμ ∩ Vν 	= ∅.
We shall say that a cocycle g ∈ Z1(V, CG) is induced by a cocycle f ∈

Z1(U , CG) if there exists a map τ : J → I with Vμ ⊆ Uτ(μ), μ ∈ J , such that
g = τ∗f .

Note that in this case g ∈ Z1(V,OG) if f ∈ Z1(U ,OG).
Note also that, in general, for a cocycle f ∈ Z1(U ,OG), there exist different

cocycles in Z1(V, CG), which are induced by f . However, there is the following

5.7.2 Proposition. Let D ⊆ C be an open set, let U = {Uj}j∈I and V = {Vν}ν∈J

be two open coverings of D such that V is a refinement of U , and let F = CG or
F = OG. Further, let f, g ∈ Z1(U ,F) and f̃ , g̃ ∈ Z1(V,F) such that f̃ is induced
by f and g̃ is induced by g. Then the following are equivalent:

(i) f and g are F-equivalent.

(ii) f̃ and g̃ are F-equivalent.

In particular, the following are equivalent:

(i′) f is F-trivial.

(ii′) f̃ is F-trivial.

Proof. By hypothesis, we have some maps τ, ϕ : J → I with f̃ = τ∗f and g̃ = ϕ∗g.
We first assume that f and g are F-equivalent. Then there is a family of

functions hj ∈ F(Uj), j ∈ I, with

h−1
j fjkhk = gjk on Uj ∩ Uk, (5.7.1)

for all j, k ∈ I with Uj ∩Uk 	= ∅. Then we define a family of functions h̃μ ∈ F(Vμ),
μ ∈ J , setting

h̃μ = hτ(μ)gτ(μ),ϕ(μ) on Vμ, μ ∈ J.

Then

h̃−1
ν f̃νμh̃μ = g−1

τ(ν),ϕ(ν)h
−1
τ(ν)fτ(ν),τ(μ)hτ(μ)gτ(μ),ϕ(μ) on Vμ ∩ Vν ,

for all μ, ν ∈ J with Vμ ∩ Vν 	= ∅. By (5.7.1) this implies

h̃−1
ν f̃νμh̃μ = g−1

τ(ν),ϕ(ν)gτ(ν),τ(μ)gτ(μ),ϕ(μ) on Vν ∩ Vμ ,
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for all μ, ν ∈ J with Vμ∩Vν 	= ∅. Since g satisfies the cocycle condition this further
implies

h̃−1
ν f̃νμh̃μ = gϕ(ν),ϕ(μ) = g̃νμ on Vν ∩ Vμ ,

for all μ, ν ∈ J with Vμ ∩ Vν 	= ∅, i.e., f̃ and g̃ are F-equivalent.
Now we assume that f̃ and g̃ are F-equivalent. Then there exists a family of

functions hμ ∈ F(Vμ), μ ∈ J , with

h̃−1
ν f̃νμh̃μ = g̃νμ on Vμ ∩ Vν ,

for all μ, ν ∈ J, with Vμ ∩ Vν 	= ∅. Since f̃ = τ∗f and g̃ = ϕ∗g, then

h̃−1
ν fτ(ν),τ(μ)h̃μ = gϕ(ν),ϕ(μ) on Vν ∩ Vμ ,

for all μ, ν ∈ J, with Vμ ∩ Vν 	= ∅. Since f and g satisfy the cocycle condition, this
implies

h̃−1
ν fτ(ν),jfj,τ(μ)h̃μ = gϕ(ν),jgj,ϕ(μ) on Vν ∩ Vμ ∩ Uj ,

and further,

fj,τ(μ)h̃μgϕ(μ),j = fj,τ(ν)h̃νgϕ(ν),j on Vν ∩ Vμ ∩ Uj ,

for all j ∈ I and ν, μ ∈ J with Vν ∩ Vμ ∩Uj 	= ∅. Therefore we can define a family
of functions hj ∈ F(Uj), j ∈ I, by setting

hj = fj,τ(μ)h̃μgϕ(μ),j on Vμ ∩ Uj ,

for all j ∈ I and μ ∈ J with Vμ ∩ Uj 	= ∅. Using again that f and g satisfy the
cocycle condition, we obtain

h−1
j fjkhk = gj,ϕ(μ)h̃

−1
μ fτ(μ),jfjkfk,τ(μ)h̃μgϕ(μ),k = gjk on Vμ ∩ Uj ∩ Uk ,

for all j, k ∈ I and μ ∈ J with Vμ∩Uj∩Uk 	= ∅. Hence f and g are F-equivalent. �
5.7.3 Definition. Let D ⊆ C be an open set. By a CG-cocycle over D we mean
a (U , CG)-cocycle such that U is an open covering of D. Correspondingly, by an
OG-cocycle over D we mean a (U ,OG)-cocycle such that U is an open covering of
D. The open covering U then will be called the covering of this cocycle.

In Definition 5.6.1 we introduced the notion of equivalence for cocycles with
the same covering. In view of Proposition 5.7.2, the following definition is correct.

5.7.4 Definition. Let D ⊆ C be an open set.

(i) Two CG-cocycles f and g over D will be called CG-equivalent or continuously
equivalent over D if there exists an open covering W of D which is a refine-
ment both of the covering of f and of the covering of g such that at least
one (W, CG)-cocycle induced by f is CG-equivalent to at least one (W, CG)-
cocycle induced by g (or, what is the same (by Proposition 5.7.2), such that
any (W, CG)-cocycle induced by f is CG-equivalent to any (W, CG)-cocycle
induced by g).



136 Chapter 5. Multiplicative cocycles (OG-cocycles)

(ii) Two OG-cocycles f and g over D will be called OG-equivalent or holomor-
phically equivalent over D if there exists an open covering W of D which
is a refinement both of the covering of f and of the covering of g such that
at least one (W,OG)-cocycle induced by f is OG-equivalent to at least one
(W,OG)-cocycle induced by g.

5.7.5 Definition. Let D ⊆ C an open set, let U = {Uj}j∈I be an open covering of
D, and let Y be an open subset of D. Set

U ∩ Y =
{

Uj ∩ Y
∣∣∣ j ∈ I

}
,

and let F = CG or F = OG. Then we define:

(i) Let f be an (U ,F)-cocycle over D.

Then we denote by f
∣∣
Y
the (U ∩ Y,F)-cocycle defined by

(f |Y )jk = fjk

∣∣
Uj∩Uk∩Y

for all j, k ∈ I with Uj ∩ Uk ∩ Y 	= ∅. This cocycle f
∣∣
Y
will be called the

restriction of f to Y . We shall say that f is F-trivial over Y if f
∣∣
Y
is F-trivial.

(ii) Let f, g be two F)-cocycles over D. Then we shall say that f and g are
F-equivalent over Y if the restricted cocycles f

∣∣
Y
and g

∣∣
Y
are F-equivalent.

5.7.6 Proposition. Let D ⊆ C be an open set, let U = {Uj}j∈I be an open covering
of D, let F = CG or F = OG, and let f be an F-cocycle over D, which is F-trivial
over each Uj.

Then f is F-equivalent to some (U ,F)-cocycle.
Proof. Let V be the covering of f . For each j ∈ I, we take an open covering
Wj = {Wjν}ν∈N of Uj so fine that W := {Wjν)}(j,ν)∈I×N is a refinement of V.
Let f ′ = {fjμ,kν}(j,μ),(k,ν)∈I×N be a (W,F)-cocycle induced by f . Then f ′ is F-
equivalent to f (by Definition 5.7.4), and therefore it is sufficient to prove that f ′

is F-equivalent to some (U ,F)-cocycle.
Since f is F-equivalent to f ′, each f |Uj

is F-equivalent to f ′|Uj
. Since each

f |Uj
is F-trivial, it follows that also each f ′|Uj

is F-trivial. Hence, for all j ∈ I,
we have a family hjν ∈ F (Wjν), ν ∈ N, such that, for each j ∈ I,

h−1
jν f ′jν,jμhjμ = 1 on Wjν ∩Wjμ (5.7.2)

for all ν, μ ∈ N with Wjν ∩Wjμ 	= ∅. Setting

f ′′jν,kμ = h−1
jν f ′jν,kμhkμ on Wjν ∩Wkμ ,

for all (j, ν), (k, μ) ∈ I × N with Wjν ∩Wkμ 	= ∅, we define a (W,F)-cocycle f ′′.
By its definition, f ′′ is F-equivalent to f ′. Hence f ′′ is F-equivalent to f . Since f ′
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satisfies the cocycle condition, we obtain that

f ′′jν,kμ = h−1
jν f ′jν,jμ′f ′jμ′,kμ′f ′kμ′,kμhkμ

=
(
h−1

jν f ′jν,jμ′hjμ′

)
h−1

jμ′f
′
jμ′,kμ′hkμ′

(
h−1

kμ′f
′
kμ′,kμhkμ

)
on Wjν ∩Wkμ ∩Wjν′ ∩Wkμ′

for all j, k ∈ I and ν, μ, ν′, μ′ ∈ N with Wjν ∩Wkμ ∩Wjν′ ∩Wkμ′ 	= ∅. By (5.7.2)
this implies

f ′′jν,kμ = h−1
jμ′f

′
jμ′,kμ′hkμ′ = f ′′jν′,kμ′ on Wjν ∩Wkμ ∩Wjν′ ∩Wkμ′

for all j, k ∈ I and ν, μ, ν′, μ′ ∈ N with Wjν ∩Wkμ ∩Wjν′ ∩Wkμ′ 	= ∅. Hence there
is a well-defined family of functions f ′′′jk ∈ F(Uj ∩ Uk), j, k ∈ I, defined by

f ′′′jk = f ′′jν,kμ on Wjν ∩Wkμ

for all j, k ∈ I and μ, ν ∈ N with Wjν ∩Wkμ 	= ∅. Since f ′′ satisfies the cocycle
condition, this implies

f ′′′jkf ′′′kl = f ′′jν,kμf ′′kμ,lλ = f ′′jν,lλ on Wjν ∩Wkμ ∩Wlλ

for all j, k, l ∈ I and ν, μ, λ ∈ N with Wjν ∩Wkμ ∩Wlλ 	= ∅. Hence

f ′′′jkf ′′′kl = f ′′′jl on Uj ∩ Uk ∩ Ul

for all j, k, l ∈ I with Uj ∩ Uk ∩Wl 	= ∅, i.e.,

f ′′′ ∈ Z1(U ,F).

Let τ : I × N → I be the map defined by τ(j, μ) = j for (j, μ) ∈ I × N. Since

Wjν ⊆ Uj = Uτ(j,ν) for all (j, ν) ∈ I × N

and since, by definition of f ′′′,

f ′′jν,kμ = f ′′′jk

∣∣∣
Wjν∩Wkμ

= f ′′′τ(jν)τ(kμ)

∣∣∣
Wjν∩Wkμ

, (j, ν), (k, μ) ∈ I × N,

then f ′′ is induced by f ′′′. Since f ′′ is F-equivalent to f , this implies that f is
F-equivalent to f ′′′. �

5.8 Exhausting by compact sets

Here we prove the following technical lemma which we shall use several times in
this book:
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5.8.1 Lemma. Let A be a Banach algebra with unit 1, let G be an open subgroup
of the group of invertible elements of A. Let D ⊆ C be an open set (possibly
unbounded), let f be an OG-cocycle over D, and let (Dn)n∈N be a sequence of
bounded open sets Dn ⊆ D such that:

(1) Dn ⊆ Dn+1 for all n ∈ N.

(2)
⋃

n∈N
Dn = D.

(3) For each n ∈ N, any function from OG(Dn+1) can be approximated uniformly
on Dn by functions from OG(D).

(4) The cocycle f is OG-trivial over each Dn, n ∈ N.

Then f is OG-trivial over D.

Proof. Let ‖ · ‖ be the norm of A and set

dist(a,A \G) = inf
b∈A\G

‖a− b‖ for a ∈ G.

Let U = {Uj}j∈I be the covering associated to f . By Proposition 5.7.2, after
passing to a refinement, we may assume that each Uj is a relatively compact open
disc in D and fjk ∈ OG(U j ∩ Uk) for all j, k ∈ I. Note that then, for each j ∈ I,
there exists nj ∈ N with

U j ⊆ Dn if n ≥ nj . (5.8.1)

Moreover we may assume that{
for each compact set K ⊆ D there exists only a
finite number of indices j ∈ I with Uj ∩K 	= ∅.

(5.8.2)

To prove the lemma it is sufficient to find a sequence
(
fn

)
n∈N

of families
fn =

{
fnj

}
j∈I

of functions fnj ∈ OG(Dn+1 ∩ U j) as well as a sequence (εn)n∈N

of positive numbers, such that, for all n ∈ N,

fjk = f−1
nj fnk on Dn+1 ∩ U j ∩ Uk , j, k ∈ I, (5.8.3)

εn <
1
4

min
z∈Dn∩Uj

dist
(
fnj(z), A \G

)
, j ∈ I, (5.8.4)

max
z∈Dn∩Uj

‖fnj(z)− fn−1,j(z)‖ < εn−1 if n ≥ 1 , j ∈ I, and (5.8.5)

εn <
εn−1

2
if n ≥ 1 . (5.8.6)

Indeed, then it follows from (5.8.1), (5.8.5) and (5.8.6) that, for all j ∈ I and
n, m ∈ N with nj ≤ n < m,

max
z∈Uj

‖fmj(z)− fnj(z)‖ < εn +
εn

2
+ . . .+

εn

2m−n−1
< 2εn,
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which implies that, for each j ∈ I, the sequence
(
fnj

)
n≥nj

converges uniformly on

U j to some function fj ∈ OA(U j) where

max
z∈Uj

‖fj(z)− fn,j(z)‖ ≤ 2εn for n ≥ nj .

By (5.8.4), the latter inequality implies that

max
z∈Uj

‖fj(z)− fnj(z)‖ <
1
2

inf
z∈Uj

dist
(
fnj(z), G \A

)
for n ≥ nj .

Hence fj ∈ OG(U j) , j ∈ I. It remains to observe that now we can pass to the
limit for n → ∞ in (5.8.3), which gives fjk = f−1

j fk on U j ∩ Uk for all j, k ∈ I.
Hence f is OG-trivial.

To prove the existence of such sequences, we first recall that, by hypothesis
of the lemma, each f |Dn+2 is OG-trivial. Therefore we can find a sequence

(
f̃n

)
n∈N

of families f̃n = {f̃nj}j∈I of functions f̃nj ∈ OG(Dn+2 ∩ Uj) such that

fjk = f̃−1
nj f̃nk on Dn+2 ∩ Uj ∩ Uk (5.8.7)

for all n ∈ N and j, k ∈ I. We claim that

f̃nj ∈ OG(Dn+2 ∩ U j) for all j ∈ I. (5.8.8)

Indeed, let (zν)ν∈N be a sequence in Dn+2 ∩ Uj which converges to some point
z ∈ Dn+2∩U j . Since U covers D, we can find k ∈ I with z ∈ Uk. Since Uk is open,
then zν ∈ Dn+2 ∩ U j ∩ Uk for sufficiently large ν, where, by (5.8.7),

f̃nj(zν) = f̃nk(zν) f−1
jk (zν).

Since both f̃nk and fjk are continuous on Dn+2 ∩ U j ∩ Uk and since z ∈ Dn+2 ∩
U j ∩ Uk, this implies that limν→∞ f̃nj(zν) exists.

Now we proceed by induction.

Beginning of the induction: Since f̃0j ∈OG(D2∩U j) we can define f0j = f̃0j

∣∣
D1∩Uj

.

It follows from condition (5.8.2) that
⋃

j∈I f0j(D0 ∩ Uj) is a compact subset of G.
Hence we can find ε0 > 0 such that

ε0 <
1
4

min
z∈D0∩Uj

dist
(
f0,j(z), G \A

)
for all j ∈ I.

With this choice of the family {f0j}j∈I and the number ε0 conditions (5.8.3)–
(5.8.6) are satisfied for n = 0.

Hypothesis of induction: Assume, for some m ∈ N, we already have families f0 =
{f0j}j∈I , . . . , fm = {fmj}j∈I of functions

f0j ∈ OG(D0 ∩ U j), . . . , fmj ∈ OG(Dm ∩ U j)
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as well as positive numbers ε0, . . . , εm such that (5.8.5) -(5.8.4) hold for n =
0, . . . , m.

Step of induction: Since the compact set Dm ∩U j is contained in Dm+1 ∩U j and
fmj is continuous on Dm+1 ∩ U j , the function fmj is bounded on Dm ∩ U j . By
condition (5.8.2), this implies that

max
j∈I

max
z∈Dm∩Uj

‖fmj(z)‖ <∞. (5.8.9)

By (5.8.7),
fjk = f̃−1

mj f̃mk on Dm+2 ∩ Uj ∩ Uk.

Moreover, by hypothesis of induction,

fjk = f−1
mjfmk on Dm+1 ∩ Uj ∩ Uk.

Since Dm+1 ⊆ Dm+2, this yields

f̃mkf−1
mk = f̃mjf

−1
m,j on Dm+1 ∩ Uj ∩ Uk.

Hence, there is a well-defined function Φ ∈ OG(Dm+1) with

Φ = f̃mjf
−1
mj (5.8.10)

on Dm+1 ∩Uj for all j ∈ I. Note that, since fmj is continuous on Dm+1 ∩U j and,
by (5.8.8), f̃mj is continuous on Dm+2 ∩ U j , (5.8.10) even holds on Dm+1 ∩ U j ,
j ∈ I. By hypothesis of the lemma, Φ can be approximated uniformly on Dm by
functions from OG(D). Therefore and by (5.8.9), we can find Ψ ∈ OG(D) such
that

max
Dm

‖ΨΦ− 1‖ <
εm

max
Dm∩Uj

‖fmj‖
for all j ∈ I.

Since (5.8.10) holds over Dm+1 ∩U j and Dm ∩U j ⊆ Dm+1 ∩U j , this implies that

max
Dm∩Uj

‖Ψf̃mjf
−1
mj − 1‖ <

εm

max
Dm∩Uj

‖fmj‖
for all j ∈ I. (5.8.11)

Setting
fm+1,j = Ψf̃mj on Dm+2 ∩ U j ,

now we obtain a family fm+1 = {fm+1,j}j∈I of functions fm+1,j ∈ OG(Dm+2 ∩
U j). Further, it follows from condition (5.8.2) that

⋃
j∈I fm+1,j(Dm+1 ∩ U j) is a

compact subset of G. Hence we can find εm+1 > 0 so small that condition (5.8.4)
is satisfied for n = m+ 1. As εm > 0, we may moreover assume that (5.8.6) holds
for n = p+ 1. From (5.8.7) we get

f−1
m+1,jfm+1,k = f̃−1

mjΨ
−1Ψf̃mk = f̃−1

mj f̃mk = fjk
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on Dm+2 ∩U j ∩Uk, i.e., (5.8.3) holds for n = m+1. From (5.8.11) it follows that

max
Dm∩Uj

∥∥fm+1,j − fmj

∥∥ = max
Dm∩Uj

∥∥∥(Ψf̃mjf
−1
mj − 1

)
fmj

∥∥∥ < εm.

Hence also (5.8.5) holds for n = m+ 1. �

5.9 Proof of Theorem 5.6.3 for simply connected open

sets

In this section A is a Banach algebra with unit 1, and G is an open subgroup of
the group of invertible elements of A.

The first step in the proof of Theorem 5.6.3 is the following

5.9.1 Lemma (Cartan lemma. Second version). Let (D1, D2) be a Cartan pair such
that C \ D1 ∪D2 is connected, and let f ∈ OG(D1 ∩ D2) such that all values of
f belong to the same connected component of G. Then there exist fj ∈ OG(Dj),
j = 1, 2, such that

f = f−1
1 f2 on D1 ∩D2. (5.9.1)

Proof. Take a sequence of Cartan pairs
(
(Dn,1, Dn,2)

)
n∈N

such that

• Dn,j ⊆ Dn+1,j ⊆ Dj for j = 1, 2 and all n ∈ N,

• ⋃
n∈N

Dn,j = Dj for j = 1, 2 and

• For each n ∈ N, C \ (D1,n ∪D2,n) is connected.

Set D = D1∪D2 and Dn = Dn,1∪Dn,2. Then, it follows from part (i) of the Runge
approximation Theorem 5.0.1 (which we already proved at the end of Section 5.4)
that the functions from OG(Dn+1) can be approximated uniformly on Dn by
functions from OG(D), i.e., we have the situation considered in Lemma 5.8.1.

Now we consider the
(
{D1, D2},OG

)
-cocycle F defined by F12 = f . We have

to prove that F is OG-trivial. By the Cartan Lemma 5.5.2, F is OG-trivial over
each Dn. Therefore, by Lemma 5.8.1, F is OG-trivial. �

Using this lemma and propositions 5.7.2 and 5.7.6, now we can prove the
following special case of Theorem 5.6.3:

5.9.2 Lemma. Let

K :=
{

z ∈ C

∣∣∣ 0 < Re z < 1 and 0 < Im z < 1
}

,

and let Ω an open neighborhood of K. Then each OG-cocycle over Ω is OG-trivial
over K.
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Proof. Let an OG-cocycle f over Ω be given, let V = {Vν}ν∈I be the covering of
f , and let V ∩K := {Vν ∩K}ν∈I . We choose n ∈ N sufficiently large and denote
by Ujk, j, k = 1, . . . , n, the open rectangle of all z ∈ K with(

k − 1− 1
3

)
1
n

< Re z <

(
k +

1
3

)
1
n

and (
j − 1− 1

3

)
1
n

< Im z <

(
j +

1
3

)
1
n

.

Then U := {Ujk}1≤j,k≤n is a refinement of V ∩ K. Let f ′ be a (U ,O)-cocycle
induced by f . By Proposition 5.7.2, it is sufficient to prove that f ′ is OG-trivial.

To do this we give the family U an order saying that Ujk < Uj′k′ , if and only
if, either j < j′ or j = j′ and k < k′. Let U1, . . . , Un2 be the family U numbered
in this way.

Now we prove by induction that, for all 1 ≤ j ≤ N2, the cocycle f ′ is OG-
trivial over U1 ∪ . . . ∪ Uj . (For j = n2 this is the assertion which we have to
prove.)

Since U1 belongs to the covering associated to f ′, it is clear that f ′ is OG-
trivial over U1.

Assume, for some 1 ≤ j ≤ N2−1, we already know that f ′ is OG-trivial over
U1 ∪ . . . ∪ Uj . As f ′ is also OG-trivial over Uj+1, then it follows from Proposition
5.7.6 that f ′ is OG-equivalent to some

(
{U1 ∪ . . . ∪ Uj , Uj+1},OG

)
-cocycle f ′′.

Since, clearly, (U1 ∪ . . . ∪ Uj , Uj+1) is a Cartan pair (Definition 5.5.1) such that
C \ (U1 ∪ . . . ∪ Uj) ∩ Uj+1 is connected, it follows from Lemma 5.9.1 that f ′′ is
OG-trivial. Hence f ′ is OG-trivial. �
Proof of Theorem 5.6.3 if D is simply connected. Since D is simply connected, by
the Riemann mapping theorem we may assume that either D = C or D is the open
unit disc. In both cases, there exists a sequence (Dn)n∈N of open discs Dn ⊆ C

such that:

• Dn ⊆ D,

• Dn ⊆ Dn+1 for all n ∈ N,

• ⋃
n∈N

Dn = D,

• by part (i) of the Runge approximation Theorem 5.0.1 (which we already
proved at the end of Section 5.4), for all n ∈ N, any f ∈ OG(Dn+1) can be
approximated uniformly on Dn by functions from OG(D).

Hence, by Lemma 5.8.1, it is sufficient to prove that any OG-cocycle over D
becomesOG-trivial after restriction to eachDn, which is indeed the case by Lemma
5.9.2 (again using the Riemann mapping theorem). �

Finally we point out the following special case of Theorem 5.6.3, which is
now proved:
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5.9.3 Corollary. Let D1, D2 ⊆ C be two open sets such that D1 ∪ D2 is simply
connected, and let f : D1 ∩D2 → G be holomorphic. Then there exist holomophic
functions fj : Dj → G, j = 1, 2, such that f = f−1

1 f2 on D1 ∩D2.

In particular, this proves the assertion of Theorem 0.0.1 if D1 ∪D2 is simply
connected.

5.10 Runge approximation of G-valued functions

General case

The aim of this section is to prove part (ii) of the Runge approximation Theorem
5.0.1. Recall that part (i) of Theorem 5.0.1 was proved already at the end of Section
5.4. Then, using part (i) of Theorem 5.0.1, at the end of the preceding section we
obtained Corollary 5.9.3, which now, in the present section, will be combined with
part (i) of Theorem 5.0.1 to prove part (ii) of Theorem 5.0.1.

Doing this, it is convenient to pass to the Riemann sphere and to prove the
slightly more general Runge approximation Theorem 5.10.5 below.6 First let us
shortly recall the notion of the Riemann sphere. The Riemann sphere is given by
the set P1 := C ∪ {∞} endowed with a topology and a notion of holomorphic
functions what we now are going to explain:

Definition of the topology: A subset U of P1 is called open if either ∞ 	∈ U
and U is open as a subset of C (with respect to the usual Euclidean topology of
C) or ∞ ∈ U and C \U is compact (again with respect to the Euclidean topology
of C). It is easy to see that in this way P1 becomes a topological space, which is,
by stereographic projection7, homeomorphic to the 2-dimensional sphere.

Definition of holomorphic functions: Set

1
0
=∞ ,

1
∞ = 0 and z ±∞ =∞± z =∞ for all z ∈ C.

Then, for each a ∈ P1, a map Ta : P1 → P1 is well-defined, by setting

Ta(z) =

{
1/(z − a) if a 	=∞,

z if a =∞.

6Theorem 5.0.1 is the special case ∞ �∈ D of Theorem 5.10.5 where part (i) corresponds to
the case of connected P1 \ D and part (ii) corresponds to the case of non-connected P1 \ D.

7Let us identify the complex plane C with the plane in R3 which consists of the points of
the form (x, y, 0), x, y ∈ R, and let S be the sphere of radius 1 centered at (0, 0, 1) ∈ R3. Let
N := (0, 0, 2) ∈ S be the ”north pole” of S. For each p ∈ S \ {N}, we denote by L(p) the line
through p and N . Then L(p) intersects C in precisely one point. Let us denote this point by
C ∩ L(p). The bijective map π : S → P1 defined by

π(p) =

{
C ∩ L(p) if p ∈ S \ {N},
∞ if p = ∞,

is called the stereographic projector.
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It is easy to see that, for each a ∈ P1, Ta is a homeomorphism of P1 with Ta(a) =∞
and Ta(P1 \ {a}) = C. If there is no danger of confusion, we use also the following
notation:

• The letter z denotes the identical map T∞.

• If a ∈ P1 and a 	=∞, then the expression 1
z−a denotes the map Ta.

Now let U ⊆ P1 be open, U 	= ∅, and let f : U → C be a function. If ∞ 	∈ U ,
i.e., U ⊆ C, then we already know what it means that f is holomorphic on U . If
∞ ∈ U , then we define: f is holomorphic on U if the following two conditions are
fulfilled:

• f is holomorphic on U \ {∞}.
• f ◦ T0 = f

(
1
z

)
is holomorphic on T−1

0 (U).

Note that, by Riemann’s removability theorem, this is the case, if and only if, f
is continuous on U , and the restriction of f to U \ {∞} is holomorphic. The ring
of all holomorphic functions defined on U will be again denoted by O(U).

We summarize:
The Riemann sphere P1 is given by the triplet

(
C ∪ {∞} , T , O

)
where

T is the family of open subsets of C ∪ {∞} defined above, and O is the map
T \ {∅} � U → O(U).

Now let E be a Banach space, and let U ⊆ P1 be an open set, U 	= ∅.
If ∞ 	∈ U , i.e., U ⊆ C, then we already defined what a holomorphic E-valued
function is. If ∞ ∈ U , then, as in the case of scalar functions, we define: f is
holomorphic on U , if and only if,

• f is holomorphic on U \ {∞}.
• f

(
1
z

)
is holomorphic on T−1

0 (U).

The space of all holomorphic E-valued functions on U will be again denoted by
OE(U).

Now let D ⊂ P1 be a non-empty open set, and let f be a map from D to
P1. If ∞ 	∈ f(D), i.e., f(D) ⊆ C, then we just defined what it means that f is
holomorphic. If∞ ∈ f(D), then we define: f is holomorphic on D if the restriction
of f to D \ f−1(∞) is holomorphic and, moreover, the function

f ◦ Tf−1(∞) = f

(
1

z − f−1(∞)

)
is holomorphic on T−1

f−1(∞). If D and D′ are two open sets in C, then we say that
f is biholomorphic from D onto D′, if and only if, f is bijective from D onto D′

such that f is holomorphic on D and f−1 is holomorphic on D′.
Note that, for each a ∈ P1, Ta is biholomorphic from P1 onto P1 where P1\{a}

is mapped onto C.



5.10. Runge approximation of G-valued functions 145

An open set D ⊆ P1 will be called an open set with piecewise C1-boundary
if D 	= P1 and, for a ∈ P1 \D, the open set Ta(D) (which is contained in C) is an
open set with piecewise C1-boundary as defined in Section 1.4.1.

Since, for each a ∈ P1, Ta is biholomorphic between P1 \{a} and the complex
plane, from the theory of holomorphic functions in the complex plane we get a
corresponding theory on each set of the form P1 \ {a} where a is an arbitrary
point in P1. For example, from part (i) of the Runge approximation Theorem
5.0.1 (which is already proved) we immediately get:

5.10.1 Proposition. Let D be an open set with piecewise C1 boundary in P1 such
that P1 \ D is connected, let G be an open subgroup of the group of invertible
elements of a Banach algebra with unit, and let f : D → G be a continuous
function which is holomorphic in D such that all values of f belong to the same
connected component of G. Then, for each a ∈ P1 \ D, f can be approximated
uniformly on D by functions from OG(P1 \ {a}).

Moreover, from Corollary 5.9.3 we immediately get:

5.10.2 Proposition. Let D1 and D2 be two open sets in P1 such that P1 \ (D1∪D2)
is connected and not empty. Then, for each holomorphic function f : D1∩D2 → G
there exist holomorphic functions fj : Dj → G, j = 1, 2, such that f = f−1

1 f2 on
D1 ∩D2.

5.10.3 Definition. If X is a subset of P1 and G an open subgroup of the group
of invertible elements of G, then we denote by OG(X) the group of continuous
G-valued functions on X which are holomorphic in the interior of X.

5.10.4 Lemma. Let D ⊆ P1 be an open set with piecewise C1-boundary, and let
U1, . . . , Un be the connected components of P1 \D. Let n ≥ 2 and let some points
aj ∈ Uj, 1 ≤ j ≤ n, be chosen. Further, let G be an open subgroup of the group
of invertible elements of a Banach algebra with unit, and let f ∈ OG(D). Then
there exist functions fj ∈ OG(P1 \ Uj), 1 ≤ j ≤ n, and a function h ∈ OG

(
P1 \

{a1, . . . , an}
)

such that f = hfn . . . f1 on D.

Proof. For 1 ≤ k ≤ n, we consider the following statement:

A(k): There exist functions fj ∈ OG
(
P1 \ Uj

)
, 1 ≤ j ≤ k, and a function hk ∈

OG
(
D ∪

(
U1 \ {a1}

)
∪ . . . ∪

(
Uk \ {ak}

))
such that f = hkfk . . . f1 on D.

Since
D ∪

(
U1 \ {a1}

)
∪ . . . ∪

(
Un \ {an}

)
= P1 \ {a1, . . . , an},

then A(n) is the assertion of the lemma. Therefore it is sufficient to prove A(1)
and the conclusions A(k)⇒ A(k + 1), 1 ≤ k ≤ n− 1.

Proof of A(1): Since(
P1 \ U1

)
∪
(
D ∪ (U1 \ {a1})

)
= P1 \ {a1}
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and (
P1 \ U1

)
∩
(
D ∪ (U1 \ {a1})

)
= D,

from Proposition 5.10.2 we get functions f1 ∈ OG
(
P1 \ U1

)
and h1 ∈ OG

(
D ∪(

U1 \ {a1}
)
such that

f = h1f1 (5.10.1)

on D. Since f is continuous and with values in G on D, since h1 is continuous
and with values in G on D ∪ ∂U1, since f1 is continuous and with values in G
on D \ ∂U1 and since (5.10.1) holds in D, it follows that f1 ∈ OG(P1 \ U1),
h1 ∈ OG

(
D ∪ (U1 \ {a1})

)
and (5.10.1) holds on D, i.e., assertion A(1) is valid.

Proof of A(k)⇒ A(k+1): Let 1 ≤ k ≤ n−1 be given, assume that statement
A(k) is valid, and let f1, . . . , fk and hk be as in this statement. Since(

P1 \ Uk+1

)
∪
(
D ∪

(
U1 \ {a1}

)
∪ . . . ∪

(
Uk+1 \ {ak+1}

))
= P1 \ {ak+1}

and(
P1 \ Uk+1

)
∩
(
D ∪

(
U1 \ {a1}

)
∪ . . . ∪

(
Uk+1 \ {ak+1}

))
= D ∪

(
U1 \ {a1}

)
∪ . . . ∪

(
Uk \ {ak}

)
,

from Proposition 5.10.2 we get functions

fk+1 ∈ OG
Z,m

(
P1 \ Uk+1

)
and

hk+1 ∈ OG
Z,m

(
D ∪

(
U1 \ {a1}

)
∪ . . . ∪

(
Uk+1 \ {ak+1}

))
such that

hk = hk+1fk+1 (5.10.2)

on D ∪
(
U1 \ {a1}

)
∪ . . . ∪

(
Uk \ {ak}

)
. Since hk is continuous and with values in

G on D, since hk+1 is continuous and with values in G on D ∪ ∂Uk+1, since fk+1

is continuous and with values in G on D \ ∂Uk+1 and since (5.10.2) holds in D, it
follows that

fk+1 ∈ OG
Z,m

(
P1 \ Uk+1

)
,

hk+1 ∈ OG
Z,m

(
D ∪

(
U1 \ {a1}

)
∪ . . . ∪

(
Uk+1 \ {ak+1}

))
and (5.10.2) holds on D. Since f = hkfk . . . f1 on D, this implies that

f = hk+1fk+1fk . . . f1

on D, i.e., assertion A(k + 1) is valid. �
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5.10.5 Theorem (Runge approximation). Let G be an open subgroup of the group
of invertible elements of a Banach algebra with unit. Let D ⊆ P1 be an open set
with piecewise C1-boundary, and let f : D → G be a continuous function which is
holomorphic in D such that all values of f belong to the same connected component
of G. Further, let U1, . . . , Un be the connected components of P1 \D, and let some
points aj ∈ Uj, 1 ≤ j ≤ n, be given. Then f can be approximated uniformly on D

by functions from OG
(
P1 \ {a1, . . . , an}).

Proof. If n = 1, the assertion of the theorem is that of Proposition 5.10.1. If n ≥ 2,
then, by Lemma 5.10.4, f can be written in the form

f = hfn . . . f1 on D, (5.10.3)

where fj ∈ OG(P1 \ Uj), 1 ≤ j ≤ n, and h ∈ OG
(
P1 \ {a1, . . . , an}

)
. Let V be

the interior of P1 \ Uj . Since the boundary of Uj is piecewise C1 (as a part of
the boundary of D), also the boundary of V is piecewise C1 and V = P1 \ Uj .
Since Uj is connected (as a connected component of some set), P1 \ V = Uj is
connected. Therefore, Proposition 5.10.1 can be applied to each Vj . Hence, each
fj can be approximated uniformly on V = P1\Uj by functions from OG

(
P1\{aj}

)
.

Since O
(
P1 \ {aj}, G

)
⊆ OG

(
P1 \ {p1, . . . , pn}

)
and D ⊆ P1 \ Uj), this means in

particular that each fj can be approximated uniformly on D by functions from
OG

(
P1 \ {p1, . . . , pn}

)
. Since h belongs to OG

(
P1 \ {p1, . . . , pn}

)
and by (5.10.3),

this implies the assertion of the theorem. �

5.11 Proof of Theorem 5.6.3 in the general case

Here we prove Theorem 5.6.3. Recall that the sufficiency of condition (i) in The-
orem 5.6.3 (that D is simply connected) was already proved at the end of Section
5.9. So it remains to prove that condition (ii) and condition (iii) in Theorem 5.6.3
are sufficient.

Throughout this section, A is a Banach algebra with unit 1, GA is the group
of invertible elements of A, G1A is the connected component of the unit element
in GA, and G is an open subgroup of GA.

5.11.1 Lemma. Let (D1, D2) be a Cartan pair (Definition 5.5.1) such that D1 and
D2 are connected, and let F ∈ OG(D1 ∩D2) (Def. 5.4.5). Then the following are
equivalent:

(i) All values of F belong to the same connected component of G.

(ii) There exist functions Fj ∈ OG(Dj), j = 1, 2, such that F = F−1
1 F2 on

D1 ∩D2.

(iii) There exist functions Cj ∈ CG(Dj), j = 1, 2, such that F = C−1
1 C2 on

D1 ∩D2.
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Proof. The conclusion (i)⇒(ii) is the assertion of the Cartan Lemma 5.5.2. The
conclusion (ii)⇒(iii) is trivial.

To prove (iii)⇒(i), we consider two arbitrary points z, w ∈ D1 ∩ D2. Since
D1 and D2 are connected, we can find continuous curves γj : [0, 1]→ Dj , j = 1, 2,
such that γj(0) = z and γj(1) = w, j = 1, 2. If now condition (iii) is satisfied,
then, by setting

γ(t) = C−1
1

(
γ1(t)

)
C2

(
γ(t)

)
, 0 ≤ t ≤ 1,

we can define a continuous curve in G, where

F (z) = C−1
1 (z)C2(z) = C−1

1

(
γ1(0)

)
C2

(
γ2(0)

)
= γ(0)

and
F (w) = C−1

1 (w)C2(w) = C−1
1

(
γ1(1)

)
C2

(
γ2(1)

)
= γ(1),

i.e., γ connects F (z) and F (w). �
5.11.2 Lemma. Let D ⊆ C be a bounded, connected open set with piecewise C1-
boundary such that C \D consists of n connected components, n ≥ 2. Then there
exists a Cartan pair (D1, D2) with D = D1 ∪ D2 and satisfying the following
conditions:

(1) D1 is simply connected;

(2) D2 is connected;

(3) C \D2 consists of n− 1 connected components.

Proof. Let U1, . . . , Un be the connected components of C \ D where U1 denotes
the unbounded component. Let ∂Uj be the boundary of Uj . Choose points a1 ∈
∂U1 and a2 ∈ ∂U2 which are smooth points of the boundary ∂D of D. Since
D is connected and hence (as an open set) arcwise connected and since ∂D is
piecewise C1, D is arcwise connected. Therefore we can find a continuous curve
ϕ : [0, 1] → D with ϕ(0) = a1 and ϕ(1) = a2. Moreover, since a1 and a2 are
smooth points of ∂D, we can achieve that ϕ is a C∞-diffeomorphism between [0, 1]
and ϕ([0, 1]) and ϕ([0, 1]) meets ∂D transversally (in both points, a1 and a2).
Choose a neighborhood V in C of the interval [0, 1] so small that there exists an
extension of ϕ to some C∞-diffeomorphism Φ from V onto some neighborhood W
of γ([0, 1]). If δ > 0 and ε < ε′, then we set

K(δ; ε, ε′) =
{

z = x+ iy ∈ C

∣∣∣ − δ < x < 1 + δ and ε < y < ε′
}

.

Choose δ0 > 0 and ε0 so small that K(δ0;−ε0, ε0) ⊆ V . Since γ([0, 1]) meets ∂D
transversally in the smooth points a1 and a2 and since D is connected, further
then we can choose 0 < ε1 < ε0 so small that, for all −ε1 < ε < ε′ < ε1,

D1(ε, ε′) := D ∩ Φ
(
K(δ0; ε, ε′)

)
and D2(ε, ε′) := D \D1(ε, ε′)
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are connected bounded open sets with piecewise C1-boundary. Since U1 ∪ U2 ∪
γ([0, 1]) is connected, then U1 and U2 are contained in the same connected com-
ponent of C \D2(ε, ε′) and the number of connected components of C \D2(ε, ε′)
is n− 1. Moreover, choosing this ε1 sufficiently small, we can achieve that, for all
−ε1 < ε < ε′ < ε1, the open set

Φ−1
(
D1(ε, ε′)

)
is star shaped with respect to point 1/2 and therefore simply connected. Hence,
D1(δ0; ε, ε′) is simply connected for all −ε1 < ε < ε′ < ε1. We summarize:

For all −ε1 < ε < ε′ < ε1, D1(ε, ε′) and D2(ε, ε′) are connected bounded open sets
with piecewise C1- boundary where the open set D1(ε, ε′) is simply connected and
C \D2(ε, ε) consists of n− 1 connected components.
Now we fix some 0 < ε < ε1/2 and set

D1 := D1(−2ε, 2ε) and D2 := D2(−ε, ε).

Then the intersection D1 ∩ D2 consists of the two connected components
D1(−2ε,−ε) and D1(ε, 2ε) and (as mentioned in the summary above) each of
these components is simply connected and has piecewise C1-boundary. Moreover,
it is clear that D1 ∪D2 = D and (D1 \D2) ∩ (D2 \D1) = ∅. Hence (D1, D2) is a
Cartan pair with D1 ∪D2. That this Cartan pair has the properties (1), (2) and
(3) was also already mentioned in the above summary. �
5.11.3 Lemma. Let D ⊆ C be an open set with piecewise C1-boundary, let U be
a neighborhood of D and f a OG-cocycle over U . Suppose at least one of the
following two conditions is fulfilled:

(a) G is connected.

(b) f is CG-trivial over U .

Then f is OG-trivial over D.

Proof. We may assume that D is connected. Further we proceed by induction over
the number of connected components of C \D.

Beginning of induction: Suppose this number is 1, i.e., C \D is connected. As the
boundary of D is piecewise C1, then also C \ D is connected, which means that
D is simply connected. Therefore the assertion of the lemma follows from the fact
that the claim of Theorem 5.6.3 was already proved (at the end of Section 5.9) if
condition (i) in Theorem 5.6.3 is satisfied.

Hypothesis of induction: Assume, for some n ∈ N with n ≥ 2, the assertion of the
lemma is already proved if the number of connected components of C \D is n− 1.
Step of induction: Assume that the number of connected components of C \ D
is equal to n. Then, by Lemma 5.11.2, we can find a Cartan pair (D1, D2) with
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D = D1 ∪ D2 satisfying conditions (1), (2), (3) (of Lemma 5.11.2). Since the
boundaries of D1, D2, D1 ∩ D2 and D are piecewise C1, we can find a Cartan
pair (D′1, D

′
2) satisfying the same conditions (1), (2), (3) such that Dj ⊆ D′j and

D
′
1 ∪D

′
2 ⊆ U .

Then f is OG-trivial over D′1, again by the fact that the claim of Theorem
5.6.3 was already proved (at the end of Section 5.9) if condition (i) in Theorem
5.6.3 is satisfied. Moreover, since the number of connected components of C\D′2 is
equal to n−1, it follows from the hypothesis of induction that f is also OG-trivial
over D′2. By Proposition 5.7.6, this implies that f

∣∣
D′

1∪D′
2
is OG-equivalent to a

certain ({D′1, D′2},OG)-cocycle f ′. Since D1 ∩D2 ⊆ D′1 ∩D′2, setting

F := f ′12
∣∣
D1∩D2

we obtain a function F ∈ OG(D1 ∩D2). We claim that all values of F belong to
the same connected component of G.

If G is connected, this is trivial. If not, then condition (b) in the lemma under
proof is satisfied, i.e., f is CG-trivial over U . As D′1 ∪D′2 ⊆ U , then f is also CG-
trivial over D′1∪D′1. Since f

∣∣
D′

1∪D′
2
is CG-equivalent to f ′ (it is even OG-equivalent

to f ′), this implies that also f ′ is CG-trivial, i.e., we can find Cj ∈ CG(D′j), j = 1, 2,
with

f ′12 = C−1
1 C2 on D′1 ∩D′2.

Hence condition (iii) in Lemma 5.11.1 is satisfied, and it follows from Lemma
5.11.1 that all values of F belong to the same connected component of G.

Since all values of F belong to the same connected component of G, it follows
from the Cartan Lemma 5.5.2 (or from Lemma 5.11.1) that there exist functions
Fj ∈ OG(Dj), j = 1, 2, with

F = F−1
1 F2 on Dj ∩Dj .

Since F |D1∩D2 = f ′12|D1∩D2 , this means in particular that f ′
∣∣
D
is OG-trivial.

Finally, as f
∣∣
D′

1∪D′
2
and f ′ are OG-equivalent and therefore f |D and f ′|D are

OG-equivalent, it follows that f is OG-trivial over D. �

Proof of Theorem 5.6.3. Since the sufficiency of condition (i) in Theorem 5.6.3
(that D is simply connected) was already proved at the end of Section 5.9, we
may assume that at least one of the following two conditions is fulfilled:

(a) G is connected.

(b) f is CG-trivial over U .

Take a sequence (Ωn)n∈N of bounded open sets with C1-boundaries such that
Ωn ⊆ Ωn+1 for all n ∈ N and

⋃
n∈N

Ωn = D. Let Un be the union of all bounded
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connected components of C\Ωn which are subsets ofD (if there are any – otherwise
Un := ∅), and set

Dn = Ωn ∪ Un.

Then also (Dn)n∈N is a sequence of bounded open sets with C1-boundaries such
that Dn ⊆ Dn+1 for all n ∈ N and

⋃
n∈N

Dn = D. Moreover this sequence has
the important property that each bounded connected component of C \ Dn (if
there are any) contains at least one point of C \D. By the Runge approximation
Theorem 5.0.1, this implies that, for each n, the functions from OG(Dn) can be
approximated uniformly onDn by functions fromOG(D). In particular we see that
the sequence (Dn)n∈N has the properties (1), (2), (3) of Lemma 5.8.1. Therefore,
by this lemma, for theOG-triviality of f it is sufficient that each f |Dn

is OG-trivial,
which is indeed the case, by Lemma 5.11.3. �

5.12 OG∞(E)-cocycles

In this section E is a Banach space.

5.12.1 Definition. (i) We denote by Fω(E) the ideal of all compact operators
from L(E), and by F∞(E) we denote the ideal of all operators from Fω(E),
which can be approximated by finite dimensional operators.

(ii) Let Gω(E) be the group of invertible operators of the form I + K with
K ∈ Fω(E), and let G∞(E) be the group of invertible operators of the
form I +K with K ∈ F∞(E).

(iii) We denote by Fω
I (E) the subalgebra of L(E) of operators of the form λI+K

with K ∈ Fω(E) and λ ∈ C, and by F∞I (E) we denote the subalgebra of
L(E) of operators of the form λI +K with K ∈ F∞(E) and λ ∈ C.

(iv) We set

GFω
I (E) = GL(E) ∩ Fω

I (E) and GF∞I (E) = GL(E) ∩ F∞I (E).

In the following proposition we collect some well-known facts on these al-
gebras and groups, which will be used without further reference throughout this
book.

5.12.2 Proposition. The operators from F∞(E) are compact. Hence, zero is the
only possible accumulation point of the spectrum of such an operator, and all other
points of the spectrum are eigenvalues of finite multiplicity. Therefore it is easy to
see that:

(i) For dimE <∞, the factor algebras F∞I (E)/F∞(E) and Fω
I (E)/Fω(E) are

isomorphic to C.

(ii) If dimE =∞ and λI +K = λ′I +K ′ where K, K ′ ∈ Fω(E) and λ, λ′ ∈ C,
then λ = λ′ and K = K ′.
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(iii) The algebras F∞I (E) and Fω
I (E) are closed in L(E) with respect to the op-

erator norm.

(iv) Let dimE = ∞, let D ⊆ C be an open set, and let f : D → FℵI (E) be a
holomorphic (continuous) function, where ℵ stands for one of the symbols ∞
or ω. Then f is of the form

f(z) = λ(z) +K(z) , z ∈ D,

where λ : D → C and K : D → Fℵ(E) are uniquely determined holomorphic
(continuous) functions.

(v) The sets GF∞I (E), G∞(E), GFω
I (E) and Gω(E) are connected and closed

subgroups of GL(E). The group GF∞I (E) is the group of invertible elements of
the Banach algebra F∞I (E), and the group GFω

I (E) is the group of invertible
elements of the Banach algebra Fω

I (E).

5.12.3 Remark. It is easy to see that there is no Banach algebra which contains
G∞(E) or Gω(E) as an open subgroup of its group of invertible elements. Therefore
we cannot immediately apply to G∞(E) and Gω(E) the theory of cocycles as
developed above. We circumvent this problem passing to the groups GF∞I (E)
and GFω

I (E) , which are groups of invertible elements of a Banach algebra. Note
however that G∞(E) and Gω(E) are complex Banach Lie groups and that the
theory of Grauert and Bungart mentioned in the introduction to this book is
developed for such groups. So, the theory ofOG-cocycles, presented in this chapter,
is valid for arbitrary Banach Lie groups. But, since G∞(E) and Gω(E) are the only
examples of true Banach Lie groups, which we meet in this book, for simplicity,
we avoid the notion of a general Banach Lie group.

5.12.4 Definition. Let D ⊆ C be an arbitrary open set, let U = {Uj}j∈I be an
open covering of D, let A = {Ajk}j,k∈I be a

(
U ,OGL(E)

)
-cocycle (Def. 5.6.1), and

let ℵ stand for one of the symbols ∞ or ω.

(i) The cocycle A will be called a
(
U ,OGℵ(E)

)
-cocycle or simply an OGℵ(E)-

cocycle, if for all j, k ∈ I with Uj ∩ Uk 	= ∅,

Ajk(z) ∈ Gℵ(E) for all z ∈ Uj ∩ Uk .

(ii) The cocycle A will be called OGℵ(E)-trivial, if there exists a family of holo-
morphic functions Aj : Uj → Gℵ(E), j ∈ I, such that

Ajk = AjA
−1
k on Uj ∩ Uk

for all j, k ∈ I with Uj ∩ Uk 	= ∅.
5.12.5 Theorem. Let D ⊆ C be an open set, let U be an open covering of D, and
let A be a

(
U ,OGℵ(E)

)
-cocycle, where ℵ stands for one of the symbols ∞ or ω.

Then A is OGℵ(E)-trivial.
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Proof. Since Gℵ(E) is contained in GFℵI (E), the cocycle A can be viewed as
a
(
U ,OGFℵ

I (E)
)
-cocycle. Since GFℵI (E) is connected, it follows from Theorem

5.6.3 that A is OGFℵ
I (E)-trivial. Hence we have a family of holomorphic functions

Ãj : Uj → GFℵI (E), j ∈ I, such that

Ajk = ÃjÃ
−1
k on Uj ∩ Uk (5.12.1)

for all j, k ∈ I with Uj ∩ Uk 	= ∅. For dimE < ∞ this completes the proof. Let
dimE = ∞, and let λj : Uj → C∗ and Kj : Uj → Fℵ(E) be the holomorphic
functions with

Ãj = λjI +Kj , j ∈ I.

Passing to the factor algebra L(E)/Fℵ(E), then it follows from (5.12.1) that

λj = λk on Uj ∩ Uk

for all j, k ∈ I with Uj ∩ Uk 	= ∅. Therefore it remains to set Aj = λ−1
j Ãj . �

We point out again the special case of Theorem 5.12.5 for coverings by two
open sets, which is sufficient for many applications:

5.12.6 Corollary. Let D1, D2 ⊆ C be two open sets, and let A : D1 ∩D2 → Gℵ(E)
be holomorphic, where ℵ stands for one of the symbols ∞ or ω. Then there exist
holomorphic functions Aj : Dj → Gℵ(E) with A = A1A

−1
2 on D1 ∩D2.

5.13 Weierstrass theorems

Here we prove Theorem 0.0.2 stated in the introduction to this book. We do this in
a more general setting of Banach algebras. Throughout this section, A is a Banach
algebra with unit 1, and G is an open subgroup of the group of invertible elements
of A. We prove:

5.13.1 Theorem. Let D ⊆ C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w ∈ Z, there are given a neighborhood Uw of w
with Uw ∩ Z = {w} and a holomorphic function fw : Uw \ {w} → G. Moreover,
we assume that at least one of the following conditions is fulfilled:

(i) D is simply connected.

(ii) G is connected.

Then there exist a holomorphic function h : D\Z → G and holomorphic functions
hw : Uw → G, w ∈ Z, such that

hwfw = h on Uw \ {w} . (5.13.1)

The topological conditions (i) and (ii) in Theorem 5.13.1 can be replaced by
the more general condition that the problem can be solved continuously, i.e., there
is the following Oka-Grauert principle:
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5.13.2 Theorem. Let D ⊆ C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w ∈ Z, there are given a neighborhood Uw of w
with Uw ∩Z = {w} and a holomorphic function fw : Uw \ {w} → G. Assume that:

(iii) There exist a continuous function c : D \ Z → G and continuous functions
cw : Uw → G, w ∈ Z, such that cwfw = c on Uw \ {w}, w ∈ Z.

Then there exist a holomorphic function h : D\Z → G and holomorphic functions
hw : Uw → G, w ∈ Z, such that

hwfw = h on Uw \ {w} . (5.13.2)

Proof of Theorems 5.13.1 and 5.13.2. We choose neighborhoods Vw ⊆ Uw, w ∈ Z,
so small that Vw ∩ Vv = ∅ for all v, w ∈ Z with w 	= v.

It is sufficient to find h ∈ OG(D \ Z) and hw ∈ OG(Vw), w ∈ Z, such that

hwfw = h (5.13.3)

on Vw \ {w}. Indeed, since Vw ∩ Z = Uw ∩ Z = {w}, then, by (5.13.3), each hw

admits an extension to a function from OG(Uw), which we also denote by hw, such
that (5.13.2) holds.

Set D1 =
⋃

w∈Z Vw and D2 = D \ Z. Since the sets Vw are pairwise disjoint
and Vw ∩ Z = {w}, the family of functions fw can be interpreted as a single
holomorphic function f ∈ OG(D1 \ Z) = OG(D1 ∩D2). Now, by Corollary 5.6.4,
there exist hj ∈ OG(Dj), j = 1, 2, with f = h−1

1 h2 on D1∩D2. Setting hw = h1

∣∣
Vw

and h = h2, we complete the proof. �
Since, in theorems 5.13.1 and 5.13.2, the multiplication by the functions hw

is carried out from the left, we call these theorems left-sided Weierstrass theorems.
There are also right- and two-sided versions.

If the multiplication in A is denoted by “·”, then we can pass to the Banach
Algebra Ã which consists of the same additive group A but with the multiplication
“ ·̃ ” defined by a ·̃ b = b · a. In this way, from theorems 5.13.1 and 5.13.2 we get
the following right-sided Weierstrass theorems:

5.13.3 Theorem. Let D ⊆ C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w ∈ Z, there are given a neighborhood Uw of w
with Uw ∩ Z = {w} and a holomorphic function fw : Uw \ {w} → G. Moreover,
we assume that at least one of the following conditions is fulfilled:

(i) D is simply connected.

(ii) G is connected.

Then there exist a holomorphic function h : D\Z → G and holomorphic functions
hw : Uw → G, w ∈ Z, such that

fwhw = h on Uw \ {w} . (5.13.4)
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5.13.4 Theorem. Let D ⊆ C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w ∈ Z, there are given a neighborhood Uw of w
with Uw ∩Z = {w} and a holomorphic function fw : Uw \ {w} → G. Assume that:

(iii) There exist a continuous function c : D \ Z → G and continuous functions
cw : Uw → G, w ∈ Z, such that fwcw = c on Uw \ {w}, w ∈ Z.

Then there exist a holomorphic function h : D\Z → G and holomorphic functions
hw : Uw → G, w ∈ Z, such that

fwhw = h on Uw \ {w} . (5.13.5)

Finally, we present a two-sided Weierstrass theorem:

5.13.5 Theorem. Let D ⊆ C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w ∈ Z, there are given a neighborhood Uw of w with
Uw ∩ Z = {w} and two holomorphic functions fw, gw : Uw \ {w} → G. Moreover,
we assume that at least one of the following conditions is fulfilled:

(i) D is simply connected.

(ii) G is connected.

Then there exist a holomorphic function h : D\Z → G and holomorphic functions
hw : Uw → G, w ∈ Z, such that

fwhwgw = h on Uw \ {w} . (5.13.6)

Proof. Let a family of positive integers mw, w ∈ Z, be given. Then from the left-
sided Weierstrass Theorem 10.1.1 we get a holomorphic function hl : D \ Z → G
and holomorphic functions hl

w : Uw → G, w ∈ Z, such that

hl
wgw = hl on Uw \ {w}. (5.13.7)

From the right-sided Weierstrass Theorem 10.2.1 we get a holomorphic function
hr : D \ Z → G and holomorphic functions hr

w : Uw → G, w ∈ Z, such that

fwhr
w = hr on Uw \ {w}. (5.13.8)

Set h = hlhr and hw = hr
whl

w, w ∈ Z. Then h ∈ OG(D \ Z), hw ∈ OG(Uw) and

fwhwgw = fwhr
whl

wgw = hrhl = h on Uw \ {w}.

�
5.13.6 Remark. Instead of conditions (i) or (ii) in Theorem 5.13.5 also the following
condition would be sufficient (Oka-Grauert principle):

(iii) There exist a continuous function c : D \ Z → G and continuous functions
cw : Uw → G, w ∈ Z, such that fwcwgw = c on Uw \ {w}, w ∈ Z.
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But to prove this we would need a generalization of the theory of multiplicative
cocycles where the group G in Definition 9.1.2 is replaced by a fiber bundle of
groups with characteristic fiber G. This generalization is well known in Complex
analysis of several variables, as a part of the theory of Grauert [Gr1, Gr2, Gr3]
and Bungart [Bu] mentioned in the introduction to the present book. To keep this
book simpler and shorter we omit this.

5.14 Weierstrass theorems for G∞(E) and Gω(E)-valued

functions

In this section, we use the notations introduced in Definition 5.12.1 and the simple
well-known facts listed in the subsequent Proposition 5.12.2, and ℵ will stand for
one of the symbols ∞ or ω.

We first prove the following left-sided version of the Weierstrass theorem for
the group Gℵ(E):

5.14.1 Theorem. Let D ⊆ C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w ∈ Z, there are given a neighborhood Uw of w
with Uw ∩ Z = {w} and a holomorphic function Aw : Uw \ {w} → Gℵ(E). Then
there exist a holomorphic function H : D \Z → Gℵ(E) and holomorphic functions
Hw : Uw → Gℵ(E), w ∈ Z, such that

HwAw = H on Uw \ {w} . (5.14.1)

Proof. Let a family of positive integers mw, w ∈ Z, be given. Since Gℵ(E) ⊆
GFℵI (E), the functions Aw can be interpreted as functions with values in GFℵI (E).
Since the latter group is the group of invertible elements of a Banach algebra and
since this group is connected, we can apply Theorem 5.13.1 to it and obtain a
holomorphic function H : D \ Z → GFℵI (E) and holomorphic functions Hw :
Uw → GFℵI (E), w ∈ Z, such that

HwAw = H on Uw \ {w}. (5.14.2)

If dimE <∞ and therefore Gℵ(E) = GL(E) = GFℵI (E), this completes the proof.
Let dimE = ∞, and let λw : Uw → C, λ : D \ Z → C, Kw : Uw → Fℵ

and K : D \ Z → Fℵ be the holomorphic functions with Hw = λwI + Kw and
H = λI+K. Then, passing to the factor algebra FI(E)/Fℵ(E) ∼= C, we see: Since
H and Hw are invertible, the functions λ and λw have no zeros, and from (5.14.2)
it follows that λw = λ on Uw. Hence the Hw/λ and H/λ are Gℵ-valued functions
with the required properties. �

Precisely in the same way, solely replacing the left-sided Theorem 5.13.1 by
the right-sided Theorem 5.13.3, we get the corresponding right-sided result:
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5.14.2 Theorem. Let D ⊆ C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w ∈ Z, there are given a neighborhood Uw of w
with Uw ∩ Z = {w} and a holomorphic function Aw : Uw \ {w} → Gℵ(E). Then
there exist a holomorphic function H : D \Z → Gℵ(E) and holomorphic functions
Hw : Uw → Gℵ(E), w ∈ Z, such that

AwHw = H on Uw \ {w} . (5.14.3)

Both theorems together again give a two-sided version:

5.14.3 Theorem. Let D ⊆ C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w ∈ Z, there are given a neighborhood Uw of w
with Uw ∩ Z = {w} and two holomorphic functions Fw, Gw : Uw \ {w} → Gℵ(E).
Then there exist a holomorphic function H : D \ Z → Gℵ(E) and holomorphic
functions Hw : Uw → Gℵ(E), w ∈ Z, such that

FwHwGw = H on Uw \ {w} . (5.14.4)

Proof. Let a family of positive integers mw, w ∈ Z, be given. Then from the left-
sided Theorem 5.14.1 we get a holomorphic function H l : D \ Z → Gℵ(E) and
holomorphic functions H l

w : Uw → Gℵ, w ∈ Z, such that

H l
wGw = H l on Uw \ {w}.

From the right-sided Theorem 5.14.2 we get a holomorphic function Hr : D \Z →
Gℵ(E) and holomorphic functions Hr

w : Uw → Gℵ(E), w ∈ Z, such that

FwHr
w = Hr on Uw \ {w}.

Setting H = H lHr and Hw = Hr
wH l

w, w ∈ Z, we get holomorphic functions
H : D \ Z → Gℵ(E)) and Hw : Uw → Gℵ(E), w ∈ Z, such that

FwHwGw = FwHr
wH l

wGw = HrH l = H on Uw \ {w}. �

5.15 Comments

This chapter is based on the theory of of multiplicative cocycles (fiber bundles)
on Stein manifolds (any domain in C is a Stein manifold), which was developed
in the 1950s by H. Grauert [Gr1, Gr2, Gr3] for cocycles with values in a (finite
dimensional) complex Lie group and generalized by L. Bungart [Bu] to cocycles
with values in a Banach Lie group. The Oka-Grauert principle was first discovered
by K. Oka [Ok] for cocycles of several complex variables with values in C∗. That
the Oka-Grauert principle holds also for non-commutative groups is a very deep
result due to H. Grauert [Gr1, Gr2, Gr3] (not easy even for one variable).

In the papers [GL1, GL2, GL3], the authors presented some of these results,
which are relevant for operator theory. Direct proofs for the case of one variable
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and also some new results were given there. This chapter is an extension and
completion of the material contained in these papers. Here style and presentation
are essentially improved. The first versions of the Weierstrass theorems from sec-
tion 3.8 were published in the papers of I. Gohberg and L. Rodman in [GR2] (for
matrices) and [GR2] (for infinite dimensional operators).



Chapter 6

Families of subspaces

Let E be a Banach space. We denote by G(E) the set of closed subspaces of E.
In this chapter we study functions with values in G(E).

Consider first the case E = Cn, n ∈ N∗. Let G(k, n) be the set of k-
dimensional subspaces of Cn, 0 ≤ k ≤ n. Then G(Cn) is the disjoint union of
the sets G(k, n), and it is well known (see, e.g., [HaGr]) that each of them is
a complex manifold called the (complex) Grassmann manifold of k-dimensional
subspaces of Cn. From this general point of view it is therefore clear what a holo-
morphic function with values in G(Cn) is. For a more direct definition (not using
Grassmann manifolds) of holomorphic G(Cn)-valued functions, we refer to sec-
tion 18.1 of the book [GLR]. Note that all values of such a holomorphic function
have the same dimension, except for the case that the domain of definition is not
connected.

If dimE =∞, then there are different reasonable definitions of holomorphic
G(E)-valued functions. We will discuss them in this chapter. First we introduce
the notion of continuous G(E)-valued functions. For that we use the gap metric
on G(E).

6.1 The gap metric

Let E be a Banach space. Recall that for two non-empty subsets X, Y ⊂ E, the
number

dist(X, Y ) = inf
x∈X,y∈Y

‖x− y‖ (6.1.1)

is called the distance between X and Y (here ‖ ·‖ is the norm of E). Note that the
distance between two subspaces of E is always zero, because any subspace contains
the zero-vector. For subspaces, there is another “distance” which is called the gap
(in order to avoid confusion with the distance):
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6.1.1 Definition. Let E be a Banach space. If X is a subspace of E (not necessarily
closed), then we denote by

S(X) :=
{

x ∈ X
∣∣∣ ‖x‖ = 1

}
the unit sphere of X. If X, Y are two subspaces, then we define the gap Θ(X, Y )
between X and Y as follows: If X 	= {0} and Y 	= {0}, then

θ(X, Y ) := max

{
sup

v∈S(X)

dist
(
v, S(Y )

)
, sup

v∈S(Y )

dist
(
v, S(X)

)}
. (6.1.2)

If X = {0} and Y 	= {0} or if X 	= {0} and Y = {0}, then we set θ(X, Y ) = 1, and
if X = Y = {0}, then we set θ(X, Y ) = 0. From this definition it is immediately
clear that

θ(X, Y ) ≤ 2 for all X, Y ∈ G(E). (6.1.3)

If X is a subspace of a Banach space E and X is the closure of X, then it is
clear that Θ(X, X) = 0. Therefore, on the set of all subspaces of E, the gap is not
a metric. However we have:

6.1.2 Theorem. Let E be a Banach space, and G(E) the set of all closed subspaces
of E. Then the gap Θ defined by (6.1.1) is a complete metric on G(E).

Proof. First we check the three axioms of a metric.
I. Suppose X, Y ∈ G(E) and θ(X, Y ) = 0. If at least one of the spaces X and

Y is the zero space, then this clearly implies (by the definition of θ(X, Y ) in this
case) that also the other one is the zero space and hence X = Y . Now let X 	= {0}
and Y 	= {0}. Then, in particular,

sup
x∈S(X)

dist
(
x, S(Y )

)
= 0,

i.e., dist
(
x, S(Y )

)
= 0 for all x ∈ S(X). Since S(Y ) is closed, this is possible, if

and only if, S(X) ⊆ S(Y ). In the same way we see that S(Y ) ⊆ S(X). Hence
S(X) = S(Y ), which means that X = Y .

II. If we interchange the letters X and Y in the expression of the right-
hand side of definition (6.1.2), then the value of this expression does not change.
Therefore it is clear that θ(X, Y ) = θ(Y,X) for all X, Y ∈ G(E) with X 	= {0}
and Y 	= {0}.

III. We prove the triangle inequality. Let X, Y, Z ∈ G(E).
First let Z = {0}. If X 	= {0} and Y 	= {0}, then θ(X, Z) = 1 and θ(Z, Y ) = 1

(by definition). Since θ(X, Y ) ≤ 2 (see (6.1.3)), this implies that

θ(X, Y ) ≤ 2 = θ(X, Z) + θ(Z, Y ).

If X = {0} and Y 	= {0}, then θ(X, Y ) = 1, θ(X, Z) = 0 and θ(Z, Y ) = 1 which
implies that

θ(X, Y ) = 1 = 0 + 1 = θ(X, Z) + θ(Z, Y ).
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Correspondingly we proceed if X 	= {0} and Y = {0}.
Now let Z 	= {0} and at least one of the spaces X, Y is the zero space. If

X = {0} and Y 	= {0}, then θ(X, Y ) = 1 and θ(X, Z) = 1 and therefore

θ(X, Y ) = θ(X, Z) ≤ θ(X, Z) + θ(Z, Y ).

Correspondingly we proceed if X 	= {0} and Y = {0}. If X = Y = {0}, then
θ(X, Y ) = 0 and therefore

θ(X, Y ) = 0 ≤ θ(X, Z) + θ(Z, Y ).

Finally we consider the case when none of the spaces X, Y, Z is the zero
space. Then at least one of the following relations is true:

θ(X, Y ) = sup
v∈S(X)

dist
(
v, S(Y )

)
or θ(X, Y ) = sup

v∈S(Y )

dist
(
v, S(X)

)
.

We may assume that this is the first one (otherwise we have to change the roles
of X and Y ). Now let ε > 0. Then we can choose x ∈ S(X) such that

θ(X, Y ) ≤ dist
(
x, S(Y )

)
+ ε. (6.1.4)

Moreover, then we can take z ∈ S(Z) with

dist
(
x, S(Z)

)
+ ε ≥ ‖x− z‖. (6.1.5)

Then, by the triangle inequality in E,

dist
(
x, S(Y )

)
= inf

v∈S(Y )
‖x− v‖ ≤ inf

v∈S(Y )

(
‖x− z‖+ ‖z − v‖

)
≤ ‖x− z‖+ inf

v∈S(Y )
‖z − v‖ = ‖x− z‖+ dist

(
z, S(Y )

)
.

By (6.1.4), this implies

θ(X, Y ) ≤ ‖x− z‖+ dist
(
z, S(Y )

)
+ ε,

and, by (6.1.5), we further get

θ(X, Y ) ≤ dist
(
x, S(Z)

)
+ dist

(
z, S(Y )

)
+ 2ε

≤ sup
v∈S(X)

dist
(
v, S(Z)

)
+ sup

v∈S(Z)

dist
(
v, S(Y )

)
+ 2ε ≤ θ(X, Z) + θ(Z, Y ) + 2ε.

Since ε > 0 can be chosen arbitrarily small, this completes the proof of the triangle
inequality for θ. Hence it is proved that θ is a metric.

We prove the completeness. Let (Xn)n∈N be a Cauchy sequence in (G(E), θ).
Passing to a subsequence we may assume that

θ(Xn, Xn+m) <
1
2n

for all n, m ∈ N. (6.1.6)
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This implies that either Xn = {0} for all n or Xn 	= {0} for all n. The first case is
trivial. Consider the second one.

Then, in particular,

dist
(
v, S(Xn)

)
<

1
2n

for all v ∈ S(Xn+m) and n, m ∈ N. (6.1.7)

Denote by X the set of all vectors x ∈ E such that there exists a sequence
(xn)n∈N with

xn ∈ Xn for all n ∈ N and lim
n→∞xn = x.

Obviously X is a linear subspace of E. Let X be the topological closure of X in
E. We will now prove that X is the required limit of the sequence (Xn)n∈N.

Let v ∈ S(X) and n ∈ N. Then, by definition of X, there is a sequence
(xm)m∈N with xm ∈ Xn+m and limxm = v. Since ‖v‖ 	= 1, then also

lim
m→∞

xm

‖xm‖
= v.

Since, by (6.1.7),

dist
(

xm

‖xm‖
, S(Xn)

)
<

1
2n

,

this implies that

dist (v, S(Xn)) ≤
1
2n

.

Since S(X) is the closure of S(X), this implies that

sup
v∈S(X)

dist (v, S(Xn)) ≤
1
2n

for all n ∈ N. (6.1.8)

Now let v ∈ S(Xn), n ∈ N. Then, by (6.1.6), we can find a sequence xm ∈
Xn+m, m ∈ N, such that x0 = v and, for each m ∈ N, we have the inequality

‖xm − xm+1‖ <
1
2m

.

Then x := limxm exists (E is complete) and

‖x− v‖ = ‖x− x0‖ ≤
1

2n−1
. (6.1.9)

Since ‖v‖ = 1, this further yields∣∣‖x‖ − 1
∣∣ = ∣∣‖x‖ − ‖v‖∣∣ ≤ ‖x− v‖ ≤ 1

2n−1
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and therefore ∥∥∥∥x− x

‖x‖

∥∥∥∥ = ∥∥∥∥(‖x‖ − 1
) x

‖x‖

∥∥∥∥ = ∣∣‖x‖ − 1
∣∣ ≤ 1

2n−1
.

Since, by definition of X, x ∈ X, and therefore x/‖x‖ ∈ S(X) ⊆ S(X), this implies
that

dist
(
x, S(X)

)
≤ 1
2n−1

and further, by (6.1.9),

dist
(
v, S(X)

)
≤ ‖v − x‖+ dist

(
x, S(X)

)
≤ 1
2n−2

.

Hence, it is proved that

sup
v∈S(Xn)

dist
(
v, S(X)

)
≤ 1
2n−2

for all n ∈ N.

Together with (6.1.8) this implies that

θ(Xn, X) ≤ 1
2n−2

for all n ∈ N.

Hence lim θ(Xn, X) = 0. �

In the following propositions we collect some further useful estimates and
relations for the gap.

6.1.3 Proposition. Let E be a Banach space, and let X, Y be two subspaces of E
such that X is closed, X ⊆ Y and X 	= Y . Then

Θ(X, Y ) ≥ 1. (6.1.10)

Proof. Since X is closed and a proper subspace of Y , for each ε > 0 we can find
y ∈ S(Y ) with

dist(y, X) > 1− ε.

Hence
sup

y∈S(Y )

dist
(
y, S(X)

)
≥ sup

y∈S(Y )

dist(y, X) ≥ 1,

which implies (6.1.10) by definition of Θ(X, Y ). �

6.1.4 Proposition. Let E be a Banach space, and let X, Y be two closed subspaces
of E, X 	= {0}, Y 	= {0}. Then

sup
v∈S(X)

dist(v, Y ) ≤ sup
v∈S(X)

dist
(
v, S(Y )

)
≤ 2 sup

v∈S(X)

dist(v, Y ) (6.1.11)
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and

max

{
sup

v∈S(X)

dist(v, Y ) , sup
v∈S(Y )

dist(v,X)

}

≤ θ(X, Y ) ≤ 2max

{
sup

v∈S(X)

dist(v, Y ) , sup
v∈S(Y )

dist(v,X)

}
. (6.1.12)

Further, if there exist bounded linear projectors PX and PY from E to X and Y ,
respectively, then

max

{
sup

v∈S(X)

dist(v, Y ) , sup
v∈S(Y )

dist(v,X)

}
≤ ‖PX − PY ‖ (6.1.13)

and therefore, by the right inequality in (6.1.12),

θ(X, Y ) ≤ 2‖PX − PY ‖. (6.1.14)

Finally, if E is a Hilbert space and PX , PY are the orthogonal projectors from E
to X and Y , respectively, then

‖PX − PY ‖ = max

{
sup

v∈S(X)

dist(v, Y ) , sup
v∈S(Y )

dist(v,X)

}
. (6.1.15)

and hence, by (6.1.12),

‖PX − PY ‖ ≤ θ(X, Y ) ≤ 2‖PX − PY ‖. (6.1.16)

Proof. Let ε > 0 be given. Then we can find x ∈ S(X) such that

sup
v∈S(X)

dist
(
v, S(Y )

)
< dist

(
x, S(Y )

)
+ ε. (6.1.17)

Further, then we can find y ∈ Y such that

‖x− y‖ < dist(x, Y ) + ε. (6.1.18)

Since ‖x‖ = 1, then also ∣∣1− ‖y‖∣∣ < dist(x, Y ) + ε

and therefore ∥∥∥∥ y

‖y‖ − y

∥∥∥∥ = ∥∥∥∥ y

‖y‖
(
1− ‖y‖

)∥∥∥∥ ≤ dist(x, Y ) + ε. (6.1.19)

Since y/‖y‖ ∈ S(Y ) and therefore

dist
(
x, S(Y )

)
≤
∥∥∥∥x− y

‖y‖

∥∥∥∥ ,
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now it follows from (6.1.17) that

sup
v∈S(X)

dist
(
v, S(Y )

)
<

∥∥∥∥x− y

‖y‖

∥∥∥∥+ ε ≤ ‖x− y‖+
∥∥∥∥y − y

‖y‖

∥∥∥∥+ ε.

Together with (6.1.18) and (6.1.19) this yields

sup
v∈S(X)

dist
(
v, S(Y )

)
< 2 dist(x, Y ) + 3ε ≤ 2 sup

v∈S(X)

dist(v, Y ) + 3ε.

Since ε > 0 can be chosen arbitrarily small, this proves the right inequality in
(6.1.11). The left inequality in (6.1.11) is trivial.

(6.1.12) follows from (6.1.11) and the inequality obtained from (6.1.11) in-
terchanging X and Y .

Now we assume that there exist bounded linear projectors PX and PY from
E to X and Y , respectively. Let ε > 0. Then we can choose x ∈ S(X) such that

sup
v∈S(X)

≤ dist(x, Y ) + ε.

Since dist(x, Y ) ≤ ‖x− PY x‖, PXx = x and ‖x‖ = 1, this yields

sup
v∈S(X)

dist(v, Y ) ≤ ‖x− PY x‖ = ‖(PX − PY )x‖+ ε ≤ ‖PX − PY ‖+ ε.

Since ε > 0 can be chosen arbitrarily small, this means that

sup
v∈S(X)

dist(v, Y ) ≤ ‖PX − PY ‖.

In the same way we get

sup
v∈S(Y )

dist(v,X) ≤ ‖PX − PY ‖.

Together this implies (6.1.13).
Finally we assume that E is a Hilbert space and PX , PY are the orthogonal

projectors from E to X and Y , respectively. In view of the general inequality
(6.1.13), we only have to prove that

‖PX − PY ‖ ≤ max

{
sup

v∈S(X)

dist(v, Y ) , sup
v∈S(Y )

dist(v,X)

}
. (6.1.20)

First note that, for all v ∈ E with PY v 	= 0,

‖(I − PX)PY v‖ = dist(PY v,X) = ‖PY v‖dist
(

PY v

‖PY v‖ , X

)
.
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Hence

‖(I − PX)PY v‖ ≤ ‖PY v‖ sup
w∈S(Y )

dist (w,X) for all v ∈ E. (6.1.21)

In the same way we get

‖(I − PY )PXv‖ ≤ ‖PXv‖ sup
w∈S(X)

dist (w, Y ) for all v ∈ E. (6.1.22)

Let 〈· , ·〉 be the scalar product in E. Since the projectors PX and PY are orthog-
onal, then

‖PY (I − PX)v‖2 =
〈
PY (I − PX)v, PY (I − PX)v

〉
=
〈
(I − PX)v, PY (I − PX)v

〉
=
〈
(I − PX)v, (I − PX)PY (I − PX)v

〉
≤ ‖(I − PX)v‖‖(I − PX)PY (I − PX)v‖

for all v ∈ E. Together with (6.1.21) this yields

‖PY (I − PX)v‖2 ≤ ‖(I − PX)v‖‖PY (I − PX)v‖ sup
w∈S(Y )

dist (w,X)

and therefore

‖PY (I − PX)v‖ ≤ ‖(I − PX)v‖ sup
w∈S(Y )

dist (w,X) for all v ∈ E. (6.1.23)

Since PY − PX = PY (I − PX)− (I − PY )PX and PY is orthogonal, we get

‖(PY − PX)v‖2 = ‖PY (I − PX)v‖2 + ‖(I − PY )PXv‖2 for all v ∈ E.

In view of (6.1.23) and (6.1.22) this implies

‖(PY − PX)v‖2

≤ ‖(I − PX)v‖2
(

sup
w∈S(Y )

dist (w,X)

)2

+ ‖PXv‖2
(

sup
w∈S(X)

dist (w, Y )

)2

≤ ‖v‖2
(
max

{
sup

w∈S(Y )

dist(w,X), sup
w∈S(X)

dist(w, Y )

})2

for all v ∈ E. Taking the square root we get (6.1.20) �

6.1.5 Proposition. The set of complemented subspaces1 of a Banach space is open
with respect to the gap metric. More precisely: Let E be a Banach space, and let

1A subspace X of a Banach space E is called complemented if there exists a closed subspace
Y of E such that E is the direct sum of X and Y .
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X, Y be two closed subspaces of E such that E is the direct sum of X and Y . Let
P be the linear projector from E to X parallel to Y , and let Q = I − P . Set

ε =
1

8‖P‖ .

Then, for all closed subspaces X ′, Y ′ of E with

θ(X, X ′) < ε and θ(Y, Y ′) < ε, (6.1.24)

E is the direct sum of X ′ and Y ′. Moreover, if P ′ is the projector from E to X ′

parallel to Y ′, then
‖P ′‖ ≤ 4‖P‖. (6.1.25)

Proof. We may assume that X 	= {0} and Y 	= {0}, because if, for example
X = {0}, then the inequality θ(X ′, X) < 1 means, by definition, that X ′ = {0}.

Now let X ′, Y ′ ∈ G(E) with (6.1.24) be given. First prove that X ′∩Y ′ = {0}.
Assume the contrary. Then we can find v ∈ X ′∩Y ′ with ‖v‖ = 1 and, by definition
of θ,

dist
(
v, S(X)

)
≤ sup

w∈S(X′)
dist

(
w,S(X)

)
≤ θ(X ′, X) < ε.

Therefore we can find x ∈ S(X) with

‖v − x‖ < ε. (6.1.26)

In the same way, we find y ∈ S(Y ) with

‖v − y‖ < ε.

Together with (6.1.26) this gives

‖y − x‖ < 2ε. (6.1.27)

Since ‖x‖ = 1, this implies

‖x+ y‖ = ‖2x+ (y − x)‖ ≥ ‖2x‖ − ‖y − x‖ > 2− 2ε

and further, as ε = 1/8‖P‖ ≤ 1/8,

‖x+ y‖ > 2− 1
4
. (6.1.28)

On the other hand

‖x+ y‖ = ‖Px+Qy‖ = ‖P (x− y) + y‖ ≤ ‖P‖‖x− y‖+ 1,

which implies, by (6.1.27),

‖x+ y‖ < ‖P‖2ε+ 1.
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Since ε = 1/8‖P‖, this means that

‖x+ y‖ <
1
4
+ 1,

which contradicts (6.1.28).
Since X ′∩Y ′ = {0}, we have the linear projector from X ′+Y ′ to X ′ parallel

to Y ′. We next prove that this projector is bounded where

‖P ′‖ ≤ 4‖P‖. (6.1.29)

Assume the contrary. Then we can find v ∈ X ′ + Y ′ such that

‖v‖ = 1 and ‖P ′v‖ > 4‖P‖. (6.1.30)

Set

x′ =
P ′v
‖P ′v‖ and y′ =

v − P ′v
‖P ′v‖ .

Take x ∈ S(X) with
‖x′ − x‖ < dist

(
x′, S(X)

)
+ ε.

Then it follows from the definition of θ that

‖x′ − x‖ ≤ sup
w∈S(X′)

dist
(
w,S(X)

)
+ ε ≤ θ(X ′, X) + ε. (6.1.31)

Since, by hypothesis θ(X ′, X ′) < ε, this yields

‖x′ − x‖ < 2ε. (6.1.32)

From (6.1.29) we get

‖y′‖ = ‖v − P ′v‖
‖P ′v‖ ≤ ‖v‖+ ‖P ′v‖

‖p′v‖ = 1 +
1

‖P ′v‖ < 1 +
1

2‖P‖ . (6.1.33)

By the left inequality in (6.1.4) and since θ(Y ′, Y ) < ε, we obtain

dist(y′, Y ) ≤ ‖y′‖ sup
w∈S(Y ′)

dist(w, Y )‖y′‖θ(Y ′, Y ) < ‖y′‖ε.

Together with (6.1.33) this yields

dist(y′, Y ) < ε+
ε

2‖P‖ . (6.1.34)

Therefore we can find y ∈ Y with

‖y′ − y‖ < 2ε+
ε

2‖P‖ . (6.1.35)
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From the definition of x′, y′ and (6.1.30) it follows that

‖x′ + y′‖ = ‖v‖
‖P ′v‖ <

1
4‖P‖ .

Together with (6.1.35) and (6.1.31) this further gives

‖y − x‖ ≤ ‖y − y′‖+ ‖x′ + y′‖+ ‖x− x′‖ < 2ε+
ε

2‖P‖ +
1

4‖P‖ + θ(X ′, X) + ε,

which implies, as θ(X ′, X) < ε,

‖y − x‖ ≤ 1
4‖P‖ +

ε

2‖P‖ + 4ε.

Since ε = 1/8‖P‖ and ‖P‖ ≥ 1, this implies that

‖y − x‖ ≤ 1
4‖P‖ +

1
16‖P‖2 +

1
2‖P‖ <

(
1
4
+

1
16

+
1
2

)
1
‖P‖ ,

which gives the contradiction

1 = ‖x‖ = ‖P (x− y)‖ ≤ ‖P (y − x)‖ ≤ ‖P‖‖y − x‖ <
1
4
+

1
16

+
1
2
.

Since the projector P ′ is bounded,X ′+Y ′ is topologically closed in E. Indeed,
let (vn)n∈N be a sequence in X ′ + Y ′, which converges to some v ∈ E. Since P ′ is
bounded, then also the sequences P ′vn ∈ X ′ and vn − P ′vn ∈ Y ′ converge in E
where, as the spaces X ′ and Y ′ are topologically closed in E,

lim
n→∞P ′vn ∈ X ′ and lim

n→∞(vn − P ′vn) ∈ Y ′.

Hence
lim

n→∞ vn = lim
n→∞P ′vn + lim

n→∞(vn − P ′vn) ∈ X ′ + Y ′.

To complete the proof of the proposition, now it remains to show that X +
Y ′ = E. ((6.1.25) then follows from (6.1.29).) Assume it is not. Since X ′ + Y ′ is
closed, then we can find x ∈ E with ‖x‖ = 1 and

dist(x,X ′ + Y ′) >
1
2
. (6.1.36)

Since Px ∈ X and x− Px ∈ Y , it follows from the left inequality in (6.1.12) that

dist(Px, X ′) ≤ ‖Px‖ sup
v∈S(X)

dist(v,X ′) ≤ ‖Px‖θ(X ′, X)

and

dist(x− Px, Y ′) ≤ ‖x− Px‖ sup
v∈S(Y )

dist(v, Y ′) ≤ ‖x− Px‖θ(Y ′, Y ).
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Since θ(X ′, X) < ε, θ(Y ′, Y ) < ε and ‖x‖ = 1, this further yields

dist(Px, X ′) < ‖P‖ε

and
dist(x− Px, Y ′) < (1 + ‖P‖)ε.

Therefore we can find x′ ∈ X ′ and y′ ∈ Y ′ such that

‖Px− x′‖ < ‖P‖ε and ‖x− Px− y′‖ < (1 + ‖P‖)ε.

Then
‖x− (x′ + y′)‖ = ‖Px− x′ + (x− Px)− y′‖ ≤ (1 + 2‖P‖)ε.

Taking into account that ε = 1/8‖P‖ and ‖P‖ ≥ 1, from this we get

‖x− (x′ + y′)‖ ≤ 1
8
+
1
4

<
1
2
.

Since x′ + y′ ∈ X ′ + Y ′, this contradicts (6.1.36). �
6.1.6 Proposition. Let E be a Banach space. Then the following sets are open with
respect to the gap metric:

(i) the set of infinite dimensional closed subspaces of E,

(ii) for each k ∈ N, the set of k-dimensional subspaces of E,

(iii) for each k ∈ N, the set of closed subspaces of E which are of codimension k
in E.

Proof. (i) Let Y be an infinite dimensional closed subspace of E. It is sufficient to
prove that, for any finite dimensional subspace X of E,

Θ(X, Y ) >
1
2
. (6.1.37)

So let a finite dimensional subspace X of E be given, and let ε > 0. Then S(X)
is compact. Therefore we can find a finite number of vectors x1, . . . , xN ∈ S(X)
with

min
1≤j≤N

∥∥x− xj

∥∥ < ε for all x ∈ S(X). (6.1.38)

Further, by definition of Θ(X, Y ), we can find y1, . . . , yN ∈ S(Y ) with∥∥yj − xj

∥∥ < Θ(X, Y ) + ε for 1 ≤ j ≤ N. (6.1.39)

Let F be the span of y1, . . . , yN . Since Y is of infinite dimension, this is a proper
subspace of Y . Therefore we can find y0 ∈ S(Y ) with

dist
(
y0, F

)
> 1− ε.
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In particular, ∥∥y0 − yj

∥∥ > 1− ε for 1 ≤ j ≤ N. (6.1.40)

Since, again by definition of Θ(X, Y ), dist
(
y0, S(X)

)
≤ Θ(X, Y ), we can find

x0 ∈ S(X) with ∥∥y0 − x0

∥∥ < dist
(
y0, s(X)

)
+ ε ≤ Θ(X, Y ) + ε. (6.1.41)

Further, by (6.1.38), we can find an index 1 ≤ j0 ≤ N such that∥∥x0 − xj0

∥∥ < ε. (6.1.42)

From (6.1.39)–(6.1.42) now it follows that

Θ(X, Y ) + ε ≥
∥∥y0 − x0

∥∥ ≥ ∥∥y0 − yj0

∥∥− ∥∥yj0 − xj0

∥∥− ∥∥xj0 − x0

∥∥
> 1− ε−Θ(X, Y )− ε− ε = 1− 3ε−Θ(X, Y ),

i.e.,

Θ(X, Y ) >
1
2
− 2ε.

Since ε > 0 is arbitrary, this proves (6.1.37).

(ii) Let k ∈ N and let X be a k-dimensional subspace of E. Since X is of
finite dimension, there is a continuous linear projector P from E onto X. Then k
is the codimension of KerP in E. Now let X ′ be an arbitrary closed subspace of
E with

Θ(X, X ′) <
1

8‖P‖ .

Then it follows from Proposition 6.1.5 (with Y = Y ′ = KerP ) that E is the direct
sum of X ′ and KerP . Therefore dimX ′ is the codimension of KerP in E, i.e.,
dimX ′ = k.

(iii) Let k ∈ N and let X be a closed subspace of E which is of codimension k
in E. Since X is closed and of finite codimension in E, there is a continuous linear
projector P from E onto X. Then dimKerP = k. Now let X ′ be an arbitrary
closed subspace of E with

Θ(X, X ′) <
1

8‖P‖ .

Then it follows from Proposition 6.1.5 (with Y = Y ′ = KerP ) that E is the
direct sum of X ′ and KerP . Therefore, the codimension of X ′ in E is equal to
dimKerP = k. �
6.1.7 Proposition. Let E be a Banach space, let X, Y be closed subspaces of E,
and let v ∈ E. Then∣∣∣ dist(v, Y )− dist(v,X)

∣∣∣ ≤ 2Θ(X, Y )‖v‖. (6.1.43)
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Proof. It is sufficient to prove that

dist(v, Y ) ≤ dist(v,X) + 2Θ(X, Y )‖v‖ (6.1.44)

and then to change the roles of X and Y . Let ε > 0 and x ∈ X with

‖v − x‖ < dist(v,X) + ε. (6.1.45)

Since dist(v,X) ≤ ‖v‖, then
‖x‖ ≤ 2‖v‖+ ε. (6.1.46)

Further, by definition of Θ(X, Y ), there exists y ∈ Y such that

‖x− y‖ < Θ(X, Y )‖x‖+ ε,

which yields, by (6.1.46),

‖x− y‖ < Θ(X, Y )(2‖v‖+ ε) + ε.

Together with (6.1.45) this implies that

dist(v, Y ) ≤ ‖v − y‖ ≤ dist(v,X) + ε+Θ(X, Y )(2‖v‖+ ε) + ε.

As ε can be chosen arbitrarily small, this proves (6.1.44). �
6.1.8 Proposition. Let E be a Banach space, let (Xn)n∈N be a sequence of subspaces
of E (possibly not closed), and let (xn)n∈N be a sequence of vectors xn ∈ Xn which
converges to some vector y ∈ E. If there exists a closed subspace Y of E such that

lim
n→∞Θ(Xn, Y ) = 0,

then y ∈ Y .

Proof. We may assume that xn ∈ S(Xn) for all n ∈ N. Then, by definition of Θ,
we can find a sequence yn ∈ S(Y ), n ∈ N, such that

‖xn − yn‖ ≤ 2Θ(Xn, Y ) , n ∈ N.

Since lim
n→∞Θ(Xn, Y ) = 0 and lim ‖xn − y‖ = 0, then it follows that also the

sequence (yn) converges to Y . As all yn belong to Y and Y is closed, this implies
that y ∈ Y . �

6.2 Kernel and image of operator functions

6.2.1 Definition. Let E be a Banach space, let D ⊆ C (possibly not open), and let
M = {M(z)}z∈D be a family of subspaces of E. M will be called continuous if,
for each z ∈ D, the space M(z) is closed in E, and if the map D � z → M(z) is
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continuous with respect to the gap matric (cf. Theorem 6.1.2). By a section of M
over D we mean a vector function f : D → E such that f(z) ∈M(z) for all z ∈ D.
Such a section will be called continuous if it is continuous as a vector function
with values in E.

Now let E,F be two Banach spaces, let D ⊆ C, and let A : D → L(E,F ) be
an operator function. Then we set

ImA =
{
ImA(z)

}
z∈D

and KerA =
{
KerA(z)

}
z∈D

.

The family ImA will be called the image of A, and KerA will be called the kernel
of A.

6.2.2. Let E,F be two Banach spaces, let D ⊆ C, and let A : D → L(E,F ) be an
operator function. Suppose A is continuous and, moreover, ImA(z) is closed for
all z ∈ D. Then nevertheless it is possible that the families ImA and KerA are
not continuous.

For example, assume that D ⊆ C is connected and A : D → L(Cn, Cm) is a
continuous matrix function, n, m ∈ N. If the rank of A(z) is not the same for all
z ∈ D, i.e., if the functions

D � z −→ dim ImA(z) and D � z −→ dimKerA(z)

are not constant, then neither ImA nor KerA is continuous. This follows from
Proposition 6.1.6. Hence the constancy of the rank of A is a necessary condition
for the continuity of ImA and KerA. This condition is also sufficient. We prove
this in the more general setting of Theorem 6.2.8 below.

6.2.3 Definition. Let E,F be two Banach spaces, and let A ∈ L(E,F ). Then we
define kA = 0 if A = 0 and

kA = inf
v∈E,dist(v,Ker A)=1

∥∥Av
∥∥ if A 	= 0. (6.2.1)

Recall the following fact which follows easily from the Banach open mapping
theorem: kA > 0 if and only if A 	= 0 and ImA is closed. If this is the case,
then the operator A0 : E/KerA → ImA induced by A is an invertible operator
between the factor space E/KerA and ImA and

kA =
1∥∥A−1
0

∥∥ . (6.2.2)

If E,F are two Banach spaces, D ⊆ C and A : D → L(E,F ) is an operator
function, then we denote by kA the function defined by kA(z) = kA(z), z ∈ D.
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6.2.4 Lemma. Let E,F be Banach spaces, let A,B ∈ L(E,F ), and let kB > 0.
Then

sup
v∈S(Ker A)

dist
(
v, S(KerB)

)
≤ 2

‖A−B‖
kB

, (6.2.3)

sup
v∈S(Im B)

dist
(
v, S(ImA)

)
≤ 2

‖A−B‖
kB

, (6.2.4)

kA ≥
(
1− 2

(
1

kB
+ 1

)
‖A−B‖ − 4Θ

(
ImA, ImB

))
kB , (6.2.5)

kA ≥
(
1− 2Θ(KerA,KerB)

)
kB − ‖A−B‖ . (6.2.6)

Proof of (6.2.3). Assume that

sup
v∈S(Ker A)

dist
(
v, S(KerB)

)
> 2

‖A−B‖
kB

.

Then it follows from (6.1.11) in proposition (6.1.4) that

sup
v∈S(Ker A)

dist
(
v,KerB

)
>
‖A−B‖

kB
.

Hence, we can find v ∈ S(KerA) with

dist(v,KerB) >
‖A−B‖

kB
. (6.2.7)

Since ‖v‖ = 1 and Av = 0, then

‖Bv‖ = ‖Bv −Av‖ ≤ ‖B −A‖.

On the other hand, (6.2.7) implies, by definition of kB , that ‖Bv‖ > ‖A−B‖. �
Proof of (6.2.4). Assume that

sup
v∈S(Im B)

dist
(
v, S(ImA)

)
> 2

‖A−B‖
kB

.

Then, it follows from (6.1.11) in proposition (6.1.4) that

sup
v∈S(Im B)

dist
(
v, ImA

)
>
‖A−B‖

kB
.

Hence, we can find v ∈ S(ImB) with

dist(v, ImA) >
‖A−B‖

kB
. (6.2.8)
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Let ε > 0. Since ‖v‖ = 1 and v ∈ ImB, then, by definition of kB , we can find
w ∈ E with

Bw = v and ‖w‖ ≤ 1
kB

+ ε.

Then

‖v −Aw‖ = ‖(B −A)w‖ ≤ ‖B −A‖‖w‖ ≤ ‖B −A‖
kB

+ ε‖B −A‖.

As ε can be chosen arbitrarily small, this implies that

‖v −Aw‖ ≤ ‖B −A‖
kB

.

Hence

dist(v, ImA) ≤ ‖B −A‖
kB

,

which contradicts (6.2.8). �
Proof of (6.2.5). Set

q = 2
(
1

kB
+ 1

)
‖A−B‖+ 4Θ(ImA, ImB).

We may assume that q < 1, because otherwise (6.2.5) is trivial. We have to prove
that then kA > 0 and

1
kA

≤ 1
1− q

· 1
kB

.

By definition (6.2.1) of kA, for that it is sufficient to find, for all ε > 0 and y ∈ ImA,
a vector x ∈ E such that

Ax = y and ‖x‖ ≤
(
1

kB
+ ε

)
· 1
1− q

‖y‖.

For the latter it is sufficient to construct, for all y ∈ ImA and ε > 0, a sequence
(xn)n∈N in E such that, for all n ∈ N,{

x0 = 0,
‖xn‖ ≤ (1/kB + ε) qn−1‖y‖ if n ≥ 1

(6.2.9)

and ∥∥∥∥∥y −
n∑

j=0

Axj

∥∥∥∥∥ ≤ qn‖y‖. (6.2.10)

Indeed, as 0 ≤ q < 1, then

x :=
∞∑

n=0

xn ∈ E
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exists and we have

‖x‖ ≤
∞∑

n=0

‖xn‖ ≤
(
1

kB
+ ε

)
(1 + q)‖y‖

∞∑
n=1

qn−1 =
(
1

kB
+ ε

)
1

1− q
‖y‖

and

‖y −Ax‖ = lim
n→∞

∥∥∥∥∥y −
n∑

j=0

Axj

∥∥∥∥∥ ≤ lim
n→∞ qn‖y‖ = 0,

i.e., Ax = y.
So let y ∈ ImA and ε > 0 be given. Proceeding by induction, we set x0 = 0.

It is clear that then (6.2.9) and (6.2.10) are valid for n = 0. Now we assume that,
for some k ∈ N, we already have x0, . . . , xk such that (6.2.9) and (6.2.10) are valid
for 0 ≤ n ≤ k.

Then y −∑k
j=0 Axj ∈ ImA. Therefore, by the definitions of Θ(ImA, ImB)

and kB , we can find xk+1 ∈ E such that

‖xk+1‖ ≤
(
1

kB
+ ε

)∥∥∥∥∥y −
k∑

j=0

Axj

∥∥∥∥∥
and ∥∥∥∥∥y −

k∑
j=0

Axj −Bxk+1

∥∥∥∥∥ ≤ 2Θ(ImA, ImB)

∥∥∥∥∥y −
k∑

j=0

Axj

∥∥∥∥∥.
Since, by induction hypothesis, (6.2.10) holds for n = k, the first inequality proves
(6.2.9) for n = k + 1, and the second inequality implies that∥∥∥∥∥y −

k∑
j=0

Axj −Bxk+1

∥∥∥∥∥ ≤ 2Θ(ImA, ImB)qk‖y‖.

As, by definition of q, 2Θ(ImA, ImB) ≤ q/2, this further implies that∥∥∥∥∥y −
k∑

j=0

Axj −Bxk+1

∥∥∥∥∥ ≤ 1
2

qk+1‖y‖. (6.2.11)

Since (6.2.9) is already proved for n = k + 1, we get

∥∥Axk+1 −Bxk+1

∥∥ ≤ ∥∥A−B
∥∥∥∥xk+1

∥∥ ≤ ∥∥A−B
∥∥( 1

kB
+ ε

)
qk‖y‖.

As, again by definition of q,

‖A−B‖
(
1

kB
+ ε

)
≤ q

2
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(we may assume that ε ≤ 1), this implies that∥∥Axk+1 −Bxk+1

∥∥ ≤ 1
2
qk+1‖y‖.

Together with (6.2.11) this proves (6.2.10) for n = k + 1. �
Proof of (6.2.6). Note that KerB 	= E, because of kB > 0. We may assume
that also KerA 	= E, because otherwise Θ(KerA,KerB) = Θ(E,KerB) ≥ 1 (cf.
Proposition 6.1.3) and (6.2.6) is trivial. Hence kA is defined by

kA = inf
v∈E , dist(v,Ker A)=1

∥∥Av
∥∥.

Therefore, we have to prove that, for each v ∈ E with

dist(v,KerA) = 1, (6.2.12)

‖Av‖ ≥
(
1− 2Θ(KerA,KerB)

)
kB − ‖A−B‖. (6.2.13)

So let v ∈ E with (6.2.12) be given. Moreover let ε > 0. Then, by (6.2.12), we can
find w ∈ KerA with

‖v − w‖ < 1 + ε. (6.2.14)

As w ∈ KerA, it follows from (6.2.12) that also

dist(v − w,KerA) = 1. (6.2.15)

By Proposition 6.1.7,∣∣∣ dist(v − w,KerB)− dist(v − w,KerA)
∣∣∣ ≤ 2Θ(KerA,KerB)‖v − w‖.

In view of (6.2.15), this implies that

dist(v − w,KerB) ≥ 1− 2Θ
(
KerA,KerB

)∥∥v − w
∥∥

and further, by definition of kB ,∥∥B(v − w)
∥∥ ≥ (

1− 2Θ(KerA,KerB)
∥∥v − w

∥∥)kB .

Hence

‖Av‖ = ‖A(v − w)‖ ≥ ‖B(v − w)‖ − ‖A−B‖‖v − w‖

≥
(
1− 2Θ(KerA,KerB)

∥∥v − w
∥∥)kB − ‖A−B‖‖v − w‖.

By (6.2.14) this implies that

‖Av‖ ≥
(
1− 2Θ(KerA,KerB)(1 + ε)

)
kB − ‖A−B‖(1 + ε).

As ε can be chosen arbitrarily small, this proves (6.2.13). �
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6.2.5 Corollary. Let E,E′, F be Banach spaces, and let An ∈ L(E,F ), A′n ∈
L(E,F ), n ∈ N, be two sequences such that

lim
n→∞ ‖An −A0‖ = lim

n→∞ ‖A
′
n −A′0‖ = 0 , (6.2.16)

KerAn = {0} , n ∈ N , (6.2.17)

ImAn ⊇ ImA′n , n ∈ N , (6.2.18)

and the spaces ImAn, n ∈ N, are closed. Let A
(−1)
n ∈ L(ImAn, E), n ∈ N, be the

operators with A
(−1)
n An = I. Then

lim
n→∞A(−1)

n A′n = A
(−1)
0 A′0 . (6.2.19)

Proof. Assume the contrary. Then, passing to subsequences we may assume that,
for some ε > 0, ∥∥A(−1)

n A′n −A
(−1)
0 A′0

∥∥ > ε .

Take a sequence of vectors xn ∈ E′ with ‖xn‖ = 1 and∥∥(A(−1)
n A′n −A

(−1)
0 A′0)xn

∥∥ > ε and ‖xn‖ = 1 , n ∈ N∗ . (6.2.20)

Then

‖(A′n −A′0)xn‖ =
∥∥∥(An

(
A(−1)

n A′n −A
(−1)
0 A′0

)
+
(
An −A0

)
A

(−1)
0 A′0

)
xn

∥∥∥
≥
∥∥∥An

(
A(−1)

n A′n −A
(−1)
0 A′0

)
xn

∥∥∥− ‖An −A0‖
∥∥∥A(−1)

0 A′0
∥∥∥ .

Since KerAn = {0}, this implies that

‖(A′n −A′0)xn‖ ≥ kAn

∥∥∥(A(−1)
n A′n −A

(−1)
0 A′0

)
xn

∥∥∥− ‖An −A0‖
∥∥∥A(−1)

0 A′0
∥∥∥ ,

and further, by (6.2.20),

‖(A′n −A′0)xn‖ ≥ kAn
ε− ‖An −A0‖

∥∥∥A(−1)
0 A′0

∥∥∥ , n ∈ N∗. (6.2.21)

Since KerAn = {0}, n ∈ N, it follows from estimate (6.1.45) in Lemma 6.2.4 that

kAn
≥ kA0 − ‖An −A0‖.

Together with (6.2.21) this implies that

‖(A′n −A′0)xn‖ ≥ kA0ε− ‖An −A0‖
(
ε+

∥∥∥A(−1)
0 A′0

∥∥∥) , n ∈ N∗,

which is a contradiction to (6.2.16). �
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6.2.6 Theorem. Let E be a Banach space and let {M(z}z∈D, D ⊆ C, be a family of
subspaces of E such that, for each point z0 ∈ D, there exist a neighborhood U ⊆ D
of z0, Banach spaces X, Y and continuous operator functions T : U → L(X, E),
S : U → L(E, Y ) such that, for all z ∈ U , ImS(z) is closed and

M(z) = ImT (z) = KerS(z).

Then {M(z}z∈D is continuous.

Proof. Let z0 be given, and let U,X, Y, T, S be as in the hypothesis of the theorem.
As ImS(z0) is closed, and M(z) = KerS(z) for all z ∈ U , then it follows from
(6.2.3) in Lemma 6.2.4 that, for all z ∈ U ,

sup
v∈S(M(z))

dist
(
v, S

(
M(z0)

))
≤ ‖S(z)− S(z0)‖

kS(z0)
.

Since also ImT (z0) is closed (as ImT (z0) = KerS(z0)) and M(z) = ImT (z) for
all z ∈ U , from (6.2.4) in Lemma 6.2.4 we get

sup
v∈S(M(z0))

dist
(
v, S

(
M(z)

))
≤ ‖T (z)− T (z0)‖

kT (z0)
.

Together this implies that

Θ
(
M(z),M(z0)

)
≤ max

{‖S(z)− S(z0)‖
kS(z0)

,
‖T (z)− T (z0)‖

kT (z0)

}
.

As both T and S are continuous at z0, this implies that {M(z}z∈D is continuous
at z0. �

6.2.7 Theorem. Let E,F be two Banach spaces, let D ⊆ C, and let A : D →
L(E,F ) be a continuous operator function such that, for all z ∈ D, ImA(z) is
closed. Then the following three conditions are equivalent:

(i) The function kA is continuous.

(ii) The family ImA is continuous.

(iii) The family KerA is continuous.

(iv) For each compact set K ⊆ D,

inf
z∈K

kA(z) > 0.

Proof. (i)⇒(iv): Since, by hypothesis of the theorem, ImA(z) is closed for all
z ∈ D,

kA(z) > 0 for all z ∈ D.
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Therefore, if kA is continuous, then, for each compact set K ⊆ D, min
z∈K

kA(z) exists

and is > 0.

(iv)⇒(ii) and (iv)⇒(iii): It follows from (6.2.3) in Lemma 6.2.4 that, for all
z, w ∈ D,

Θ
(
KerA(z),KerA(w)

)
≤ 2‖A−B‖max

{
1

kA(z)
,

1
kA(w)

}
,

and from (6.2.4) in the same lemma it follows that, for all z, w ∈ D,

Θ
(
ImA(z), ImA(w)

)
≤ 2‖A−B‖max

{
1

kA(z)
,

1
kA(w)

}
.

If condition (iv) is satisfied, these two inequalities imply that the families KerA
and ImA are continuous.

(ii)⇒(i): Set

q(z, w) = 2
(

1
kA(w)

+ 1
)
‖A(z)−A(w)‖+ 4Θ

(
ImA(z), ImA(w)

)
for z, w ∈ D. Fix z0 ∈ D. Then, by (6.2.5) in Lemma 6.2.4,

kA(z) ≥
(
1− q(z, z0)

)
kA(z0) , z ∈ D, (6.2.22)

and
kA(z0) ≥

(
1− q(z0, z)

)
kA(z) , z ∈ D. (6.2.23)

Since A is continuous and condition (ii) is satisfied, we have

lim
z→z0

q(z, z0) = 0. (6.2.24)

By (6.2.22) this implies that, for some ε > 0,

kA(z) ≥
kA(z0)
2

if z ∈ D and |z − z0| < ε.

Hence
q(z0, z) ≤ 2q(z, z0) if z ∈ D and |z − z0| < ε,

which implies, by (6.2.24), that also

lim
z→z0

q(z0, z) = 0. (6.2.25)

(6.2.22)–(6.2.25) together imply that lim
z→z0

kA(z) = kA(z0).
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(iii)⇒(i): Let z0 ∈ D. Then, by (6.2.6) in Lemma 6.2.4, for all z ∈ D,

kA(z) ≥ kA(z0)− 2Θ
(
KerA(z),KerA(z0)

)
kA(z0)− ‖A(z)−A(z0)‖ (6.2.26)

and

kA(z0) ≥ kA(z)− 2Θ
(
KerA(z),KerA(z0)

)
kA(z)− ‖A(z)−A(z0)‖. (6.2.27)

Since

lim
z→z0

‖A(z)−A(z0)‖ = 0 and lim
z→z0

Θ
(
KerA(z),KerA(z0)

)
= 0, (6.2.28)

it follows from (6.2.26) that, for some ε > 0,

kA(z) ≥
kA(z0)
2

if z ∈ D and |z − z0| < ε.

Together with (6.2.27) this implies that

kA(z0) ≥ kA(z)− 4Θ
(
KerA(z),KerA(z0)

)
kA(z0)− ‖A(z)−A(z0)‖ (6.2.29)

if z ∈ D and |z − z0| < ε. Now, from (6.2.26) and (6.2.28) it follows that

lim inf
z→z0

kA(z) ≥ kA(z0)

and from (6.2.29) and (6.2.28) it follows that

lim sup
z→z0

kA(z) ≤ kA(z0).

Hence
lim

z→z0
kA(z) = kA(z0).

�
6.2.8 Theorem. Let E,F be two Banach spaces, let D ⊆ C, and let A : D →
L(E,F ) be a continuous operator function such that, for some k ∈ N, at least one
of the following conditions is fulfilled:

(i) For all z ∈ D, dimKerA(z) = k and ImA(z) is closed.

(ii) For all z ∈ D, the codimension of ImA(z) in F is equal to k.

Then both the family ImA and the family KerA are continuous on D.

Proof. First assume that condition (i) is satisfied. Let z0 ∈ D. Since KerA(z0) is
of finite dimension, there is a closed subspace X of E such that E is the direct sum
of KerA(z0) and X. Since also ImA(z0) is closed, then the restriction A(z0)

∣∣
X
is

a bounded linear isomorphism between X and ImA(z0). Hence

c := inf
v∈S(X)

∥∥A(z0)v
∥∥ > 0. (6.2.30)
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Since A is continuous, we can find an open disc U centered at z0 such that

‖A(z)−A(z0)‖ <
c

2
if z ∈ U ∩D.

Then, by (6.2.30),

inf
v∈S(X)

∥∥A(z)v∥∥ >
c

2
if z ∈ U ∩D. (6.2.31)

In particular,
KerA(z) ∩X = {0} if z ∈ U ∩D.

Since dimKerA(z) = dimKerA(z0) = codimX, this implies that E is the di-
rect sum of KerA(z) and X if z ∈ U ∩ D. Hence, for z ∈ U ∩ D, A(z)

∣∣
X
is a

bounded linear isomorphism from X onto ImA. Denote by B(z) the inverse of
this isomorphism. Then, by (6.2.31),

‖B(z)‖ <
2
c

for all z ∈ U ∩D.

This implies that, for each z ∈ U ∩D and all v ∈ S
(
ImA(z)

)
,

∥∥v −A(z0)B(z)v
∥∥ = ∥∥A(z)B(z)v −A(z0)B(z)v

∥∥ ≤ 2
c

∥∥A(z)−A(z0)
∥∥.

Hence

sup
v∈S(Im A(z))

dist
(
v, ImA(z0)

)
≤ 2

c
‖A(z)−A(z0)‖ if z ∈ U ∩D.

Since, by (6.1.4) in Proposition 6.1.4,

sup
v∈S(Im A(z))

dist
(
v, S(ImA(z0))

)
≤ 2 sup

v∈S(Im A(z))

dist
(
v, ImA(z0)

)
,

this implies that

sup
v∈S(Im A(z))

dist
(
v, S(ImA(z0))

)
≤ 4

c
‖A(z)−A(z0)‖ if z ∈ U ∩D.

On the other hand, by (6.2.4) in Lemma 6.2.4,

sup
v∈S(Im A(z0))

dist
(
v, S(ImA(z))

)
≤ 2

kA(z0)
‖A(z)−A(z0)‖ if z ∈ U ∩D.

Together this yields

Θ
(
ImA(z), ImA(z0)

)
≤ max

{
2

kA(z0)
,
4
c

}∥∥A(z)−A(z0)
∥∥ for all z ∈ U ∩D.
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Since A is continuous, this implies that ImA is continuous at z0. By Theorem
6.2.7 this means that also KerA is continuous at z0.

Now we assume that condition (ii) is satisfied. Then, by the Banach open
mapping theorem, ImA(z) is closed for all z ∈ D.

Now let z0 ∈ D be given. As ImA(z0) is of the finite codimension k and closed
in F , we can find a continuous linear projector P from F onto ImA(z0). Consider
the continuous operator function PA : D → L(E, ImP ). Then ImPA(z0) = ImP .
Hence, as PA is continuous, we can find an open disc U centered at z0 such that

ImPA(z) = ImP for all z ∈ U ∩D. (6.2.32)

By Theorem 6.2.7 this implies that the family
{
KerPA(z)

}
z∈U∩D

is continuous.
To complete the proof, therefore it is sufficient to prove that

KerA(z) = KerPA(z) for all z ∈ U ∩D.

To do this, we assume that, for some z ∈ U ∩ D, KerA(z) 	= KerPA(z).
Since, clearly, KerA(z) ⊆ KerPA(z), then

M := KerP ∩ ImA(z) 	= {0}.

Let m = dimM . As dimKerP = k and M 	= {0}, then 1 ≤ m ≤ k <∞. Therefore
(ImA(z) is closed) we can find a closed subspace X of ImA(z) such that we have
the direct sum

ImA(z) = X
.
+M. (6.2.33)

Since X has codimension m in ImA(z) and ImA(z) has codimension k in F , the
codimension of X in F is k +m. By (6.2.33) and (6.2.32), the sum X +KerP is
a direct sum X

.
+KerP , where, as dimKerP = k, the codimension of X

.
+KerP

in F is m. Hence, there is an m-dimensional subspace V of F such that

F = X
.
+KerP

.
+ V. (6.2.34)

Since M ⊆ KerP , from (6.2.33) it follows that

PX = ImPA(z)

and further, by (6.2.32),
PX = ImP. (6.2.35)

Since V ∩ KerP = {0} (because of (6.2.34)) and V 	= {0} (because of dimV =
m ≥ 1), now we can find v ∈ V with Pv 	= 0. Moreover, by (6.2.35), there exists
x ∈ X with

Px = Pv. (6.2.36)

Since v ∈ V , x ∈ X and v 	= 0, it follows from (6.2.34) that v − x 	∈ KerP , which
contradicts (6.2.36). �
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6.3 Holomorphic sections of continuous families of

subspaces

6.3.1 Definition. Let E be a Banach space, let D ⊆ C be an open set, and let
{M(z)}z∈D be a continuous family of subspaces of E. A section f : D → M will
be called holomorphic if it is holomorphic as an E-valued map. If U ⊂ D is open
and 	= ∅, then the space of all holomorphic sections of M over U will be denoted
by OM (U). Note that this is a Fréchet space with respect to uniform convergence
on the compact subsets of U , as each of the spaces M(z), z ∈ D, is closed (by
Definition 6.2.1 of a continuous family of subspaces). Sometimes a Banach space
will be more convenient. Therefore we also introduce the Banach space OM

∞ (U) of
all bounded sections from OM (U) endowed with the norm

‖f‖∞ := sup
z∈U

‖f(z)‖E , f ∈ OM
∞ (U).

For practical reasons, we define also OM (∅) = 0 where 0 is the zero vector of E.

6.3.2 Definition. Let E be a Banach space, let D ⊆ C be an open set, and let
M = {M(z)}z∈D be a continuous family of subspaces of E. Then we define

Φ(z)(f) = f(z) for all z ∈ D and f ∈ OM
∞ (D)

and (
Ψ(z)f

)
(ζ) = (ζ − z)f(ζ) for all z, ζ ∈ D and f ∈ OM

∞ (D).

6.3.3 Proposition. Let E, D, M , Φ and Ψ be as in Definition 6.3.2, and assume
additionally that D is bounded. Then:

(i) For each z ∈ D, Φ(z) is a bounded linear operator from OM
∞ (D) to E, and

the operator function
Φ : D −→ L

(
OM
∞ (D), E

)
defined in this way, is holomorphic.

(ii) For each z ∈ D, Ψ(z) is a bounded linear operator in OM
∞ (D), and the oper-

ator function
Ψ : D −→ L

(
OM
∞ (D),OM

∞ (D)
)

defined in this way, is linear (and hence holomorphic).

(iii) ImΨ(z) = KerΦ(z) for all z ∈ D.

(iv) KerΨ(z) = {0} for all z ∈ D.

Proof. (i) It is clear that Φ(z) is linear for each fixed z ∈ D, and it follows from
the maximum principle that Φ(z) is bounded for each fixed z ∈ D. As, for each
fixed f in OM

∞ (D), the function D � z → Φ(z)f = f(z) is holomorphic, it follows
that Φ is holomorphic (Theorem 1.7.1).
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(ii) Since D is bounded and each of the spaces M(ζ), ζ ∈ D, is linear, it is
clear that, for each z ∈ D, Ψ(z) is a bounded linear operator in OM

∞ (D). For the
same reason, setting

(Af)(ζ) = ζf(ζ) for ζ ∈ D,

we get a bounded linear operator A in OM
∞ (D). As Ψ(z) = A−zI, this shows that

Ψ is linear.

(iii) For each f ∈ OM
∞ (D) we have(

Φ(z)
(
Ψ(z)f

))
(ζ) = (ζ − z)f(ζ)

∣∣∣∣
ζ=z

= 0 for all ζ, z ∈ D.

Hence
ImΨ(z) ⊆ KerΦ(z) for all z ∈ D.

It remains to prove that

ImΨ(z) ⊇ KerΦ(z) for all z ∈ D.

For that, let z ∈ D and f ∈ KerΦ(z) be given. Then f(z) = 0 and therefore

u(ζ) :=
f(ζ)
ζ − z

, ζ ∈ D,

is a holomorphic function on D. As f and D are bounded, also u is bounded.
Moreover, since f(ζ) ∈ M(ζ) and each of the spaces M(ζ) is a linear subspace of
E, it is clear that

u(ζ) ∈M(ζ) if ζ ∈ D \ {z}.
Since M is a continuous family of subspaces, this implies (cf. Proposition 6.1.8)
that also u(z) ∈ M(z). Hence u ∈ OM

∞ (D). Clearly, Ψ(z)u = f . This proves that
f ∈ ImΨ(z).

(iv) Let z ∈ D and f ∈ OM
∞ (D) be given. Now we assume that Ψ(z)f = 0.

(ζ − z)f(ζ) = 0 for all ζ ∈ D.

Then, for ζ 	= 0, we can divide by ζ − z and obtain that

f(ζ) = 0 for all ζ ∈ D \ {z}.

As z is an inner point of D and f is continuous, this implies that f ≡ 0 on D. �

6.4 Holomorphic families of subspaces

6.4.1 Definition. Let E be a Banach space, let D ⊆ C be an open set, and let
M = {M(z}z∈D be a family of subspaces of E. The family M will be called
holomorphic if
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(i) M is continuous (Def. 6.2.1);

(ii) for each z0 ∈ D, there exist a neighborhood U ⊆ D of z0, a Banach space
X and a holomorphic operator function A : U → L(X, E) such that M(z) =
ImA(z) for all z ∈ U .

The function A then will be called a resolution of M over U . If U 	= D, then we
also speak about a local resolution of M . By a global resolution of M we mean a
resolution of M over D.

Note that, by this definition, Theorem 6.2.8 immediately implies the following
corollary:

6.4.2 Corollary. Let E,F be two Banach spaces, let D ⊆ C, and let A : D →
L(E,F ) be a holomorphic operator function such that, for some k ∈ N, at least
one of the following conditions is fulfilled:

(i) For all z ∈ D, dimKerA(z) = k and ImA(z) is closed.

(ii) For all z ∈ D, the codimension of ImA(z) in F is equal to k.

Then both the family ImA and and the family KerA are holomorphic on D.

In this section we again study additive Cousin problems (Def. 2.4.1), but
with the additional property that the functions which form the Cousin problem
are sections of a holomorphic family of subspaces. Here is the definition:

6.4.3 Definition. Let E be a Banach space, let M = {M(z}z∈D be a holomorphic
family of subspaces of E, and let U = {Uj}j∈I be an open covering of D.

Denote by C1(U ,OM ) the space of families f = {fjk}j,k∈I with fjk ∈
OM (Uj ∩Uk) (Def. 6.3.1). A family f = {fjk}j,k∈I ∈ C1(U ,OM ) will be called an
(U ,OM )-cocycle if, for all j, k, l ∈ I with Uj ∩ Uk ∩ Ul 	= ∅,

fjk + fkl = fjl on Uj ∩ Uk ∩ Ul. (6.4.1)

Note that then, in particular,

fjk = −fkj on Uj ∩ Uk and fjj = 0 on Uj . (6.4.2)

The space of all (U ,OM )-cocycles will be denoted by Z1(U ,OM ). If the covering
U is not specified, then we speak also about OM -cocycles over D.

Due to P. Cousin the elements of Z1(U ,OM ) are also called additive Cousin
problems.

In this section we prove the following two theorems:

6.4.4 Theorem. Let E,F be Banach spaces, and let D ⊆ C be an open set. Suppose
A : D → L(E,F ) is holomorphic such that ImA = {ImA(z)}z∈D is a continuous
family of subspaces of F . (This means, by our Definition 6.4.1, we suppose that
A : D → L(E,F ) is holomorphic such that ImA = {ImA(z)}z∈D is a holomorphic
family of subspaces of F .) Then:
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(i) KerA is a holomorphic family of subspaces of E.

(ii) For each holomorphic section f : D → ImA, there exists a holomorphic
function u : D → E such that

Au = f on D. (6.4.3)

6.4.5 Theorem. Let F be a Banach space, let D ⊆ C be an open set, and let
M = {M(z}z∈D be a holomorphic family of subspaces of F . Then:

(i) Let K ⊆ D be a compact set such that each connected component of D \K
contains at least one point of C \ D. Then any section of M defined and
holomorphic in a neighborhood of K can be approximated uniformly on K by
sections from OM (D).

(ii) For each open covering U = {Uj}j∈I of D and each
(
U ,OM

)
-cocycle

{fjk}j,k∈I , there exists a family {fj}j∈I of sections fj ∈ OM (Uj) such that

fjk = fj − fk on Uj ∩ Uk, j, k ∈ I. (6.4.4)

The rest of this section is devoted to the proof of theorems 6.4.4 and 6.4.5.
We begin with the following local version of Theorem 6.4.4 (ii):

6.4.6 Lemma. Let E,F be Banach spaces, and let D ⊆ C be an open set. Suppose
A : D → L(E,F ) is holomorphic such that ImA = {ImA(z)}z∈D is a continuous
family of subspaces of F , and let z0 ∈ D. (This means, by our Definition 6.4.1,
we suppose that A : D → L(E,F ) is holomorphic such that ImA = {ImA(z)}z∈D

is a holomorphic family of subspaces of F .) Then there exists a neighborhood U ⊆
D of z0 such that, for each holomorphic section f : D → ImA, there exists a
holomorphic function u : U → E with

Au = f on U. 2

Proof. Take 0 < r < 1 so small that Kr(z0) ⊆ D. Multiplying by a constant, we
may assume that

max
|z−z0|≤r

‖A(z)‖ < 1. (6.4.5)

Let

A(z) =
∞∑

n=0

An(z − z0)n

be the Taylor expansion of A at z0. Then, by Cauchy’s inequality3 and (6.4.5),

‖An‖ ≤
1
rn

, n ∈ N. (6.4.6)

2We point out that U depends on A, but not on f .
3which follows, by means of the Hahn-Banach theorem, immediately from Cauchy’s inequality

in the scalar case.
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Note that ImA(z0) = M(z0) is closed and therefore kA(z0) > 0 (Def. 6.2.3). Set

C =
8

min{kA(z0), 1}

and let U be the open disc with radius r/C centered at z0. Now let a holomorphic
section f : D → ImA be given. Let

f(z) =
∞∑

n=0

fn(z − z0)n

be the Taylor expansion of f at z0, and

K := max
|z−z0|≤r

‖f(z)‖.

Then, by Cauchy’s inequality,

‖fn‖ ≤
K

rn
, n ∈ N. (6.4.7)

Now it is sufficient to construct a sequence (un)n∈N of vectors un ∈ E such that,
for all n ∈ N,

n∑
k=0

An−kuk = fn (6.4.8)

and

‖un‖ ≤ K
Cn+1

rn
. (6.4.9)

Indeed, then, by (6.4.9),

u(z) =
∞∑

k=0

uk(z − z0)k , z ∈ U,

is a well-defined holomorphic vector function u : U → E, and if

A(z)u(z) =
∞∑

n=0

bn(z − z0)n

is the Taylor expansion of Au at z0, then from (6.4.8) it follows that

bn =
(Au)(n)(z0)

n!
=

1
n!

n∑
k=0

(
n

k

)
A(n−k)(z0)u(k)(z0)

=
n∑

k=0

A(n−k)(z0)
(n− k)!

u(k)(z0)
k!

=
n∑

k=0

An−kuk = fn for all n ∈ N.
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Hence Au = f on U .
To construct the sequence (un)n∈N we proceed by induction.

Beginning of induction: Since, by hypothesis, kA(z0) > 0 and f0 = f(z0) ∈
ImA(z0), we can find u0 ∈ E such that

A0u0 = A(z0)u0 = f0 and ‖u0‖ <
2

kA(z0)
< C.

Clearly, then (6.4.8) and (6.4.6) are valid for n = 0.

Hypothesis of induction: Assume that, for some m ∈ N, vectors u0, . . . , um ∈ E
are already constructed such that (6.4.8) and (6.4.6) are valid for 0 ≤ n ≤ m.

Step of induction: Set

g(z) = f(z)−A(z)
m∑

k=0

uk(z − z0)k for z ∈ D.

Then g is holomorphic on D and g(z) ∈ ImA(z) for all z ∈ D. Let

g(z) =
∞∑

n=0

gn(z − z0)n

be the Taylor expansion of g at z0. Then

gn = fn −
min{n,m}∑

k=0

An−kuk for all n ∈ N. (6.4.10)

By hypothesis of induction this implies that gn = 0 if 0 ≤ n ≤ m. Hence there is
a holomorphic vector function h : D → F with

h(z) =
g(z)

(z − z0)m+1
for z ∈ D \ {z0}.

As g(z) ∈ ImA(z) for all z ∈ D, then h(z) ∈ ImA(z) for all z ∈ D \ {z0}. Since,
by hypothesis, ImA is continuous, this implies that

gm+1 = h(z0) ∈ ImA(z0) = ImA0

(cf. Proposition 6.1.8). Hence, by definition of kA(z0), we can find a vector um+1 ∈
E such that

A0um+1 = A(z0)um+1 = gm+1 (6.4.11)

and
‖um+1‖ ≤

2
kA(z0)

∥∥gm+1

∥∥ ≤ C

4

∥∥gm+1

∥∥. (6.4.12)
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By (6.4.10), we have

gm+1 = fm+1 −
m∑

k=0

Am−kuk,

which implies, by (6.4.7) and (6.4.6), that

‖gm+1‖ ≤
F

rm+1
+

m∑
k=0

1
rm−k

‖uk‖.

As, by induction hypothesis, (6.4.9) is valid for 0 ≤ n ≤ m, from this we further
get

‖gm+1‖ ≤
F

rm+1
+

m∑
k=0

1
rm−k

F
Ck+1

rk
=

F

rm+1
+

F

rm

m∑
k=0

Ck+1.

Since r < 1, this implies that

‖gm+1‖ ≤
F

rm+1

(
1 +

m∑
k=0

Cm+1

)
=

F

rm+1

Cm+2 − 1
C − 1

≤ F

C − 1
Cm+2

rm+1
.

Together with (6.4.12) this implies that

‖um+1‖ ≤ F
C

4(C − 1)
Cm+2

rm+1

and further, as C ≥ 8,

‖um+1‖ ≤ F
Cm+2

rm+1
,

i.e., (6.4.9) is valid also for n = m+ 1. �
6.4.7. Proof of statement (i) in Theorem 6.4.4. Since, by hypothesis, ImA is a
continuous family of subspaces of F , it follows from Theorem 6.2.7 that also KerA
is continuous. Therefore it remains to prove that, for each z0 ∈ D, there exist a
neighborhood U of z0, a Banach space X and a holomorphic operator function
Φ : U → L(X, E) such that

ImΦ(z) = KerA(z) for all z ∈ U. (6.4.13)

Let z0 ∈ D be given. Then, by Lemma 6.4.6, we can find a neighborhood U ′

of z0 such that:{
For each holomorphic section f : D → ImA, there exists
a holomorphic function u : U ′ → X with Au = f |U ′ .

(6.4.14)

Let U ⊆ U ′ be a second neighborhood of z0 which is relatively compact in U ′.
Since KerA is continuous, we have the Banach space

B := OKer A
∞ (U)
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of bounded holomorphic sections of KerA over U (cf. Definition 6.3.1). Further,
let

Φ : U → L(B,X)

be the holomorphic operator function defined by

Φ(z)f = f(z) , z ∈ U, f ∈ B,

(cf. Proposition 6.3.3). It remains to prove that, with this choice of B and Φ,
relation (6.4.13) is valid. Since the relation ImΦ(z) ⊆ KerA(z) is trivial, we only
have to prove that ImΦ(z) ⊇ KerA(z) for all z ∈ U .

Let z ∈ U and v ∈ KerA(z) be given. We have to find ϕ ∈ B with Φ(z)ϕ = v.
Setting

f(ζ) = A(ζ)v for all ζ ∈ D,

we get a holomorphic vector function f : D → F with

f(z) = A(z)v = 0.

Hence, there is a well-defined holomorphic vector function g : D → F with

g(ζ) =
f(ζ)
ζ − z

for ζ ∈ D \ {z}.

Since, for each ζ ∈ D, f(ζ) ∈ ImA(ζ) and ImA(ζ) is a linear subspace of F , it is
clear that

g(ζ) ∈ ImA(ζ) if ζ ∈ D \ {z}.
Since ImA is continuous, this implies (cf. Proposition 6.1.8) that also

g(z) ∈ ImA(z).

Hence g is a holomorphic section of ImA over D. Now from (6.4.14) we get a
holomorphic function u : U ′ → X with

A(ζ)u(ζ) = g(ζ) for all ζ ∈ U ′. (6.4.15)

Setting
ϕ(ζ) = v − (ζ − z)u(ζ) for ζ ∈ U,

we get a holomorphic function ϕ : U → X with ϕ(z) = v. As U is relatively
compact in U ′, ϕ is bounded. Moreover, by definition of f and g,

A(ζ)ϕ(ζ) = A(ζ)v − (ζ − z)A(ζ)u(ζ)
= f(ζ)− (ζ − z)g(ζ) = f(ζ)− f(ζ) = 0 for all ζ ∈ U.

Hence ϕ is a bounded holomorphic section of KerA over U , i.e., ϕ ∈ B. Clearly
Φ(z)ϕ = ϕ(z) = v. �
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6.4.8 Definition. Let F be a Banach space, let D ⊆ C an open set, and let M =
{M(z)}z∈D be a holomorphic family of subspaces of F .

(i) A resolution A : D → L(E,F ) of M will be called injective if KerA(z) = {0}
for all z ∈ D.

(ii) A resolution A : D → L(E,F ) of M will be called globally short if KerA 4

admits a global injective resolution.

Of course, any injective resolution is globally short.

6.4.9 Lemma. Let E,F be Banach spaces, let D ⊆ C be an open set, and let
A : D → L(E,F ) be a function such that, for all z ∈ D, ImA(z) is closed and

KerA(z) = {0}. (6.4.16)

Further, let f : D → ImA be a section of ImA, and let u : D → E be the function
with

A(z)u(z) = f(z) for all z ∈ D. 5

(i) Let k ∈ N ∪ {∞}. Suppose A and f are of class Ck on D. Then u is of class
Ck on D.

(ii) If A and f are holomorphic on D, then u is holomorphic on D.

Proof. (i) It is enough to prove the assertion for k ∈ N. We do this by induction.
For k = 0 the assertion follows from Corollary 6.2.5. Assume we have some m ∈ N

such that the assertion is already proved for k = m, and let A and f be of class
Cm+1. Let x, y be the canonical real coordinates on C, and let μ, ν ∈ N with
μ+ ν = m+ 1. We have to prove that

∂m+1u

∂xμ∂yν

exists and is continuous on D. At least one of the numbers μ and ν is ≥ 1. We may
assume that μ ≥ 1. By hypothesis of induction, u is of class Cm. Since f = Au
and f , A are of class Cm+1, this implies that

∂mf

∂xμ−1∂yν
=

μ−1∑
κ=0

ν∑
λ=0

(
μ− 1

κ

)(
ν

λ

)
∂κ+λA

∂xκ∂yλ

∂μ−1−κ+ν−λu

∂xμ−1−κ∂yν−λ

and therefore

A
∂mu

∂xμ−1∂yν
=

∂mf

∂xμ−1∂yν
−

∑
0≤κ≤μ−1,0≤λ≤ν

(κ,λ) 
=(0,0)

(
μ− 1

κ

)(
ν

λ

)
∂κ+λA

∂xκ∂yλ

∂μ−1−κ−ν−λu

∂xμ−1−κ∂yν−λ
,

4By the just proved Theorem 6.4.4 (i), Ker A is holomorphic.
5By (6.4.16) this u exists and is uniquely determined by f .
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where the right-hand side is of class C1. Hence the vector function

w := A
∂mu

∂xμ−1∂yν

is of class C1. In particular,
∂w

∂x
(6.4.17)

exists and is continuous on D. Set

v =
∂mu

∂xμ−1∂yν

and note that v is continuous on D (as u is of class Cm). We have to prove that
∂v/∂x exists and is continuous on D.

Let z0 be an arbitrary point in D, and let (Δn)n∈N∗ be an arbitrary sequence
of real numbers with Δn 	= 0 and limΔn = 0. We have to prove that

lim
n→∞

v(z0 +Δn)− v(z0)
Δn

(6.4.18)

exists. Note that w = Av, by definition of v and w. Therefore

w(z0 +Δn)− w(z0)
Δn

=
A(z0 +Δn)v(z0 +Δn)−A(z0)v(z0)

Δn

= A(z0 +Δn)
v(z0 +Δn)− v(z0)

Δn
+

A(z0 +Δn)−A(z0)
Δn

v(z0).

As ∂w/∂x and ∂A/∂x exist, this implies that

lim
n→∞A(z0 +Δn)

v(z0 +Δn)− v(z0)
Δn

=
∂w

∂x
(z0)−

∂A

∂x
(z0)v(z0). (6.4.19)

By Corollary 6.2.5, this implies that (6.4.18) exists. Since both the point z0 ∈ D
and the sequence (Δn)n∈N were chosen arbitrarily, this means that ∂v/∂x exists
everywhere on D. Moreover, from (6.4.19) we get

A
∂v

∂x
=

∂w

∂x
− ∂A

∂x
v on D.

As the right-hand side of this relation is continuous, again from Corollary 6.2.5 it
follows that ∂v/∂x is continuous.

(ii) If A and f are holomorphic, then from part (i) of the lemma we already
know that u is of class C∞. Since f = Au and therefore, by the product rule,

∂f

∂z
=

∂A

∂z
u+A

∂u

∂z
,
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and since ∂f/∂z = 0 and ∂A/∂z = 0, this implies that

A
∂u

∂z
= 0,

which means (as KerA(z) = 0 for all z ∈ D) that ∂u/∂z = 0. Hence u is holomor-
phic. �
6.4.10 Lemma. Let F be a Banach space, let D ⊆ C be an open set, and let
M = {M(z)}z∈D be a holomorphic family of subspaces of F , which admits a
global injective resolution. Then the splitting statement (ii) of Theorem 6.4.5 is
valid.

Proof. Let an open covering U = {Uj}j∈I of D and a
(
U ,OM

)
-cocycle {fjk}j,k∈I

be given. By hypothesis we can find a global injective resolution A : D → L(E,F )
of M . As A is injective, then there is a uniquely determined family {ujk}j,k∈I of
vector functions ujk : Uj ∩ Uk → E such that

Aujk = fjk on Uj ∩ Uk , j, k ∈ I. (6.4.20)

By Lemma 6.4.9, each ujk is holomorphic. Moreover, since {fjk}j,k∈I satisfies
the cocycle condition, it follows from (6.4.20) and the injectivity of A that also
{ujk}j,k∈I satisfies the cocycle condition. Hence {ujk}j,k∈I is a

(
U ,OE

)
-cocycle.

Therefore, by Theorem 2.4.2, we can find a family {uj}j∈I of holomorphic functions
uj : Uj → E with

ujk = uj − uk on Uj ∩ Uk , j, k ∈ I.

It remains to set fj = Auj . �
6.4.11 Lemma. Let E,F be Banach spaces, let D ⊆ C an open set, let M =
{M(z)}z∈D be a holomorphic family of subspaces of F , and let A : D → L(E,F )
be a globally short resolution of M . Then the lifting statement (ii) of Theorem
6.4.4 is valid.

Proof. Let f : D → M be a holomorphic section of M . As A is a resolution of
M , it follows from Lemma 6.4.6 that, for each z ∈ D, there exist a neighborhood
Uz ⊆ D of z and a holomorphic function uz : Uz → E with Auz = f on Uz. Set
fz,w = uz−uw on Uz ∩Uw, z, w ∈ D. Recall that, by the already proved Theorem
6.4.4 (i) (see subSection 6.4.7), KerA is a holomorphic family of subspaces of E.
Since

Afz,w = Auz −Auw = f − f = 0 on Uz ∩ Uw,

{fz,w}z,w∈D is a
(
{Uz}z∈D,OKer A

)
-cocycle. Since KerA admits a global injective

resolution (as A is a globally short resolution), from Lemma 6.4.11 (ii) we get a
family {fz}z∈D of holomorphic sections fz : Uz → KerA with

uz − uw = fz,w = fz − fw on Uz ∩ Uw , z, w ∈ D.

It remains to set u = fz − uz on Uz. �
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6.4.12 Lemma. Let F be a Banach space, let D ⊆ C be an open set, and let
M = {M(z)}z∈D be a holomorphic family of subspaces of F , which admits a
globally short resolution over D. Then the spitting statement (ii) of Theorem 6.4.5
is valid.

Proof. 6 By hypothesis, we can find Banach spaces B, E and holomorphic operator
functions Φ : D → L(E,F ), Ψ : D → L(B,E) such that Φ is a globally short
resolution of M , and Ψ is a injective resolution of KerΦ.

Let an open covering U = {Uj}j∈I and a (U ,OM )-cocycle f = {fjk}j,k∈I be
given. It is sufficient to find a (U ,OE)-cocycle {gjk}jk∈I such that

Φgjk = fjk on Uj ∩ Uk , j, k ∈ I. (6.4.21)

Indeed, from Theorem 2.3.1 we then get a family {gj}j∈I of holomorphic functions
gj : Uj → E with

gjk = gj − gk on Uj ∩ Uk , j, k ∈ I,

and, setting fj = Φgj , we obtain a family {fj}j∈I of holomorphic sections fj :
Uj → ImΦ = M with

fj − fk = Φgj − Φgk = Φ(gj − gk) = Φgjk = fjk on Uj ∩ Uk , j, k ∈ I.

Now we are going to construct this cocycle. By the just proved Lemma 6.4.11,
we can find a family {ujk}j,k∈I of holomorphic vector functions ujk : Uj ∩Uk → E
such that

Φujk = fjk. (6.4.22)

Since fjk = −fkj , we may choose the ujk in such a way that also

ujk = −ukj for all j, k ∈ I. (6.4.23)

However, in general, {ujk}j,k∈I is not yet a cocycle (except for the case KerΦ =
0)), i.e.,, possibly, the family {ujkl}j,k,l∈I of holomorphic vector functions ujkl :
Uj ∩ Uj ∩ Uk ∩ Ul → E defined by

ujkl = ujk + ukl + ulj

contains non-zero elements. Take a C∞-partition of unity {χj}j∈I subordinated to
U , and set

cjk =
∑
ν∈I

χνuνjk on Ujk, j, k ∈ I.

6Note that, by the abstract Oka-Weil theorem in the theory of sheaves, this lemma follows
immediately from Theorem 2.4.2. The proof given here is that what remains from the proof of
the abstract Oka-Weil theorem in our special case.
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(Observe that each χνuνjk is well defined and of class C∞ on Ujk, because χν ≡ 0
outside a compact subset of Uν .) In this way we get C∞-functions cjk : Ujk → E.
Since

cjk + ckl + clj =
∑
ν∈I

χν

(
uνjk + uνkl + uνlj

)
=
∑
ν∈I

χν

(
uνj + ujk + ukν + uνk + ukl + ulν + uνl + ulj + ujν

)
,

and in view of (6.4.23), we see that

cjk + ckl + clj =
∑
ν∈I

χν

(
ujk + ukl + ulj

)
=
∑
ν∈I

χνujkl = ujkl. (6.4.24)

Since f is a cocycle and therefore

Φujkl = Φujk +Φukl +Φulj = fjk + fkl + flj = 0,

we see that each ujkl is a holomorphic section of KerΦ. Since Ψ is injective, we have
uniquely determined vector functions u′jkl : Uj ∩ Uk ∩ Ul → B with Ψu′jkl = ujkl.
By part (ii) of Lemma 6.4.9, these functions are holomorphic.

Since each ujkl is a section of ImΨ, it follows (by definition of the cjk)
that also each cjk is is a section of KerΨ. Since Ψ is injective, we have uniquely
determined vector functions c′jk : Uj ∩ Uk → B with Ψc′jk = cjk. By part (i) of
Lemma 6.4.9, these functions are of class C∞, and it follows from (6.4.24) that

c′jk + c′kl + c′lj = u′jkl on Uj ∩ Uk ∩ Ul, j, k, l ∈ I. (6.4.25)

Since the u′jkl are holomorphic, this implies that the family {∂c′jk}j,k∈I satisfies
the cocycle condition:

∂c′jk + ∂c′kl + ∂c′lj = 0 on Uj ∩ Uk ∩ Ul, j, k, l ∈ I. (6.4.26)

Set
v′j = −

∑
ν∈I

χν∂c′νj .

Then

v′j − v′k =
∑
ν∈I

χν

(
− ∂c′νj + ∂c′νk

)
on Uj ∩ Uk j, k ∈ I.

In view of the cocycle condition (6.4.26), this implies that

v′j − v′k =
∑
ν∈I

χν∂c′jk = ∂c′jk on Uj ∩ Uk j, k ∈ I. (6.4.27)
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By Theorem 2.3.1, now we can find C∞-functions w′j : Uj → B such that ∂w′j = v′j
on Uj , j ∈ I. Set

h′jk = c′jk + w′k − w′j on Ujk , j, k ∈ I.

Then, by (6.4.27),

∂h′jk = ∂c′jk + ∂w′k − ∂w′j = ∂c′jk + v′k − v′j = 0 on Ujk , j, k ∈ I.

Hence the functions h′jk are holomorphic. Moreover,

h′jk + h′kl + h′lj
= (c′jk + w′k − w′j) + (c′kl + w′l − w′k) + (c′lj + w′j − w′l) = c′jk + c′kl + c′lj

and further, by (6.4.24),

h′jk + h′kl + h′lj = u′jkl on Uj ∩ Uk ∩ Ul , j, k, l ∈ I. (6.4.28)

Now we set
gjk = ujk −Ψh′jk on Uj ∩ Uk, j, k ∈ I.

Then it follows from (6.4.28) and the definition of the functions ujkl that

gjk + gkl + glj = ujkl −Ψu′jkl = 0 on Uj ∩ Uk, j, k ∈ I,

i.e., {gjk}j,k∈I is a (U ,OE)-cocycle. Moreover, since Φ ◦Ψ = 0,

Φgjk = Φujk − ΦΨh′jk = Φujk = fjk on Ujk , j, k ∈ I,

i.e., (6.4.21) is satisfied. �
6.4.13 Proposition. Let F be a Banach space, let D ⊆ C be an open set, and let
M = {M(z)}z∈D be a holomorphic family of subspaces of F , which admits a global
resolution over D. Moreover, let Ω ⊆ D be an open set which is relatively compact
in D.

Then, over Ω, M admits a globally short resolution.
Namely, if B := OM

∞ (Ω) and if

Φ : Ω −→ L(B,F ) and Ψ : Ω −→ L(B,B)

are the holomorphic operator functions (cf. Proposition 6.3.3) defined by

Φ(z)(f) = f(z) , z ∈ Ω , f ∈ B,

and (
Ψ(z)(f)

)
(ζ) = (ζ − z)f(ζ) , z ∈ Ω , f ∈ B,

then Φ is a globally short resolution of M , and Ψ is a global injective resolution
of KerΦ.
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Proof. Let z ∈ Ω and v ∈ M(z) be given. By hypothesis we have a Banach space
E and holomorphic operator function A : D → L(E,F ) which is a resolution of
M over D, i.e., ImA(ζ) = M(ζ) for all ζ ∈ D. In particular, there exists w ∈ E
with A(z)w = v. Consider the function

f(ζ) := A(ζ)w , ζ ∈ Ω.

Then it is clear that f ∈ B = OM
∞ (Ω) and

Φ(z)f = f(z) = A(z)w = v.

Hence Φ is a resolution of M over Ω. From Proposition 6.3.3 (iii) and (iv) it follows
that this resolution is even globally short over Ω where Ψ is a global injective
resolution of KerΦ. �

6.4.14. Proof of the approximation statement (i) in Theorem 6.4.5. Let a holo-
morphic section f of M in a neighborhood of K be given. Take a neighborhood Ω0

with C1-boundary of K which is so small that Ω0 ⊆ D and f is still defined and
holomorphic in a neighborhood of Ω0. Since each connected component of C \K
contains at least one point of C \D, we may assume that each connected compo-
nent of C \ Ω0 contains at least one point of C \ D. Further, choose a sequence
(Ωn)n∈N∗ of open sets with C1-boundaries such that:

– Ωn ⊆ Ωn+1 ⊆ D, for all n ∈ N.

– Each connected component of C \ Ωn contains at least one point of C \ D,
for all n ∈ N.

–
⋃∞

n=0 Ωn = D.

Now, clearly, it is sufficient to prove that, for each n ∈ N, the following statement
is valid:

• Each holomorphic section of M defined and holomorphic in a neighborhood
of Ωn can be approximated uniformly on Ωn by holomorphic sections of M
defined and holomorphic over a neighborhood of Ωn+1.

So, let n ∈ N and a holomorphic section g of M in a neighborhood U of Ωn be
given.

Since each connected component of C \ Ωn+2 contains at least one point of
C \D and M admits a resolution over D, it follows from Proposition 6.4.13 that,
over Ωn+2, there exists a globally short resolution Φ : Ωn+2 → L(E,F ) of M . By
Lemma 6.4.11 there exists a holomorphic vector function

h : U ∩ Ωn+2 −→ E

such that
Φh = g on U ∩ Ωn+2.
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Since each connected component of C\Ωn contains at least one point of C\D, from
the Runge approximation Theorem 2.2.2 we get a sequence (hν)ν∈N of holomorphic
functions hν : D → E such that

lim
ν→∞max

z∈Ωn

∥∥hν(z)− h(z)
∥∥ = 0.

Then (Φhν)ν∈N is a sequence of holomorphic sections of M over Ωn+2 (which is a
neighborhood of Ωn+1) such that

lim
ν→∞max

z∈Ωn

∥∥Φ(z)hν(z)− g(z)
∥∥ = lim

ν→∞max
z∈Ωn

∥∥Φ(z)(hν(z)− h(z)
)∥∥

≤ lim
ν→∞max

z∈Ωn

∥∥Φ(z)∥∥∥∥hν(z)− h(z)
∥∥ = 0.

�
6.4.15. Proof of the splitting statement (ii) in Theorem 6.4.5. Choose a sequence
(Ωn)n∈N of open sets such that

– Ωn ⊆ Ωn+1 ⊆ D for all n ∈ N,

– Each connected component of C \ Ωn contains at least one point of C \ D,
for all n ∈ N.

–
⋃∞

n=0 Ωn = D.

Now let an open covering ={Uj}j∈I of D and a (U ,OM )-cocycle f = {fjk}j,k∈I

be given. For each n ∈ N, we consider the open covering

U (n) :=
{
Uj ∩ Ωn

}
j∈I

of Ωn and the
(
U (n),OM

)
-cocycle f (n) =

{
f

(n)
jk

}
j,k∈I

defined by

f
(n)
jk = fjk

∣∣
Uj∩Uk∩Ωn

, j, k ∈ I.

Since each Ωn is relatively compact in D and M admits a resolution over D,
it follows from Proposition 6.4.13 that, over each Ωn, M admits a globally short
resolution. Hence, by Lemma 6.4.12, for each n ∈ N, we can find a family {f (n)

j }j∈I

of holomorphic sections f
(n)
j : U (n)

j → M with

fjk = f
(n)
jk = f

(n)
j − f

(n)
k on Uj ∩ Uk ∩ Ωn , j, k ∈ I. (6.4.29)

Hence

f
(n+1)
j − f

(n)
j = f

(n+1)
k − f

(n)
k on Uj ∩ Uk ∩ Ωn , j, k ∈ I.

Therefore, setting

h(n) = f
(n+1)
j − f

(n)
j on Uj ∩ Ωn , j ∈ I,
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we get holomorphic sections hn : Ωn → M . By the approximation statement (i) of
Theorem 6.4.4, we can find holomorphic sections h̃n : D → M such that

‖h(n)(z)− h̃(n)(z)‖ <
1
2n

for all z ∈ Ωn−1 , n ∈ N∗. (6.4.30)

Set

f̃
(n)
j = f

(n)
j −

n−1∑
k=0

h̃(k) on Uj ∩ Ωn.

Then

f̃
(n+1)
j − f̃

(n)
j =

(
f

(n+1)
j −

n∑
k=0

h̃(k)

)
−
(

f
(n)
j −

n−1∑
k=0

h̃(k)

)
= f

(n+1)
j − f

(n)
j − h̃(n) = h(n) − h̃(n).

By (6.4.30) this implies that∥∥f̃ (n+1)
j (z)− f̃

(n)
j (z)

∥∥ <
1
2n

for z ∈ Ωn−1 , j ∈ I, n ∈ N∗.

Since, for each j ∈ I, each compact subset of Uj is contained in all Ωn−1 with
n sufficiently large, this implies that, for each j ∈ I, the sequence

(
f

(n)
j

)
n∈N

converges, uniformly on the compact subsets of Uj , to some holomorphic section
fj : Uj → M . For these sections we have, by (6.4.29),

fj − fk = lim
n→

(
f

(n)
j − f

(n)
k

)
= lim

n→ f
(n)
j,k = fjk on Uj ∩ Uk j, k ∈ I,

which completes the proof of the splitting statement in Theorem 6.4.5. �
6.4.16. Proof of the lifting statement (ii) in Theorem 6.4.4. By Lemma 6.4.6 we
can find an open covering U = {Uj}j∈I of D and a family {uj}j∈I of holomorphic
vector functions uj : Uj → E such that

Auj = f on Uj , j ∈ I.

Setting
ujk = uj − uk on Uj ∩ Uk , j, k ∈ I,

then we get a
(
U ,OKer A

)
-cocycle. Since, by Theorem 6.4.4 (i), KerA is a holo-

morphic family of subspaces, from Theorem 6.4.5 (ii) we get a family {vj}j∈I of
holomorphic sections vj : Uj → KerA such that

uj − uk = ujk = vj − vk on Uj ∩ Uk , j, k ∈ I.

Therefore, setting
u = uj − vj on Uj , j ∈ I,

we obtain a holomorphic vector function u : D → E such that

Au = A(uj − vj) = Auj −Avj = Auj = f on each Uj

and, hence, Au = f everywhere on D. �
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6.5 Example: A holomorphic family of subspaces with

jumping isomorphism type

In this section we construct a holomorphic family {M(z)}z∈D of subspaces of a
Banach space E such that, for certain z0 ∈ D, the space M(z0) is not isomorphic
to the spaces M(z) with z ∈ D \ {z0}.

Let l1 be the Banach space of summable complex sequences ξ = {ξn}n∈N

with the norm

‖ξ‖1 :=
∞∑

n=0

|ξn|,

and let l2 be the Hilbert space of square summable complex sequences ξ = {ξn}n∈N

with the norm

‖ξ‖2 :=
( ∞∑

n=0

|ξn|2
)1/2

.

6.5.1 Lemma. Let E be a separable Banach space. Then there exists A ∈ L(l1, E)
with ImA = E.

Proof. Let S be the unit sphere in E. Since E is separable, we can find a sequence
s = {sn}n∈N in S which is dense in S. Then, setting

Aξ =
∞∑

n=0

ξnsn for ξ =
{
ξn}n∈N ∈ l1,

an operator A ∈ L(l1, E) with ‖A‖ = 1 is well defined. It remains to prove that
ImA = E.

Let Es be the set of all vectors x ∈ E of the form x = tsn, where n ∈ N and
t ∈ C. Then Es is dense in E and has the following property:

For each x ∈ Es, there exists ξ ∈ l1 with ‖ξ‖ = ‖x‖ and Aξ = x. (6.5.1)

Indeed, by definition of Es, for each x ∈ Es, there exists t ∈ C and m ∈ N with
x = tsm. Let ξ = {ξj}j∈N ∈ l1 be the sequence with

ξj =

{
t if j = m,

0 if j 	= m.

Then ‖ξ‖ = |t| = |t|‖sm‖ = ‖x‖ and Aξ = tsm = x.
To prove that ImA = E, now we consider an arbitrary vector v ∈ E. Since

Es is dense in E, then we can find a sequence vj ∈ Es, j ∈ N, with

∞∑
j=0

‖vj‖ <∞ and v =
∞∑

j=0

vj .
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By property (6.5.1), for each vj we can find ξ(j) ∈ l1 with ‖ξ(j)‖ = ‖vj‖ and
Aξ(j) = vj . Then

∞∑
j=0

‖ξ(j)‖ =
∞∑

j=0

‖vj‖ <∞

and

A
( ∞∑

j=0

ξ(j)
)
=

∞∑
j=0

vj = v. �

6.5.2 Lemma. There exists a closed subspace F of l1 such that l1 is not isomorphic
to F ⊕ l1/F , where F ⊕ l1/F is the direct sum of F and the factor space l1/F .

Proof. By Lemma 6.5.1 there exists A ∈ L(l1, l2) with ImA = l2. We claim that
F := KerA has the required property.

Indeed, assume F⊕l1/F and l1 are isomorphic. Then l1 has a closed subspace
E which is isomorphic to l1/F . As ImA = l2 and therefore l1/F = l1/KerA is
isomorphic to l2 (as a Banach space), this implies that E is isomorphic to l2.

But this is impossible, as l1 (and hence E) has the property that each weakly
convergent sequence is strongly convergent (see page 137 in [Ban]), whereas l2 does
not have this property. �

The example. Let E be a Banach space, let F be a closed subspace of E such
that E is not isomorphic to F ⊕ E/F (by lemma (6.5.2) this is possible), and let
π : E → E/F be the canonical map. We define a holomorphic operator function
A : C → L

(
E ⊕ E/F,E/F

)
, by setting(

A(z)
)
(x, y) = π(x) + zy for (x, y) ∈ E ⊕ E/F.

Then ImA(z) = E/F for all z ∈ C, and it follows from Theorem 6.4.4 (i) that
KerA = {KerA(z)}z∈C is a holomorphic family of subspaces of E⊕E/F . We have

KerA(0) = F ⊕ E/F,

which is not isomorphic to E. However, for z ∈ C\{0}, then KerA(z) is isomorphic
to E. Indeed, if z 	= 0, then for each (x, y) ∈ E ⊕ E/F ,

(x, y) ∈ KerA(z)⇐⇒ y = −π(x)
z

,

which yields that the map

E � x −→
(

x,−π(s)
z

)
∈ E ⊕ E/F

is an isomorphism from E onto KerA(z).
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6.6 Injective families

In this section E is a Banach space.

6.6.1 Definition. Let D ⊆ C be an open set, and let M = {M(z)}z∈D be a
holomorphic family of subspaces of E. We shall say that M is injective if, for each
z0 ∈ D, there exist a neighborhhood U ⊆ D of z0 and a holomorphic function
A : U → L

(
M(z0), E

)
such that KerA(z) = {0} and ImA(z) = M(z) for all

z ∈ U .
In other words, M is injective if and only if it admits an injective resolution

(Def. 6.4.8) over some neighborhood of each point of D.

6.6.2 Remark. Let M = {M(z)}z∈D be a holomorphic family of subspaces of E.
If D is connected, then the spaces of this family are pairwise isomorphic. This can
be seen as follows:

Fix z0 ∈ D and denote by X the set of all z ∈ D such that M(z) is isomorphic
to M(z0). Then z0 ∈ X and therefore X 	= ∅. Since M is injective, for each point
w ∈ D, there is a neighborhood U ⊆ D of w such that the spaces M(z), z ∈ U ,
are isomorphic to M(w). Therefore it is clear that X is open and relatively closed
in D.

6.6.3 Theorem. Let D ⊆ C be a connected open set, let M = {M(z)}z∈D be a
holomorphic family of subspaces of E, which is injective, and let z0 ∈ D. Suppose
at least one of the following two conditions is satisfied:

(i) D is simply connected.

(ii) The group GL
(
M(z0)

)
is connected.

Then there exists a holomorphic function A : D→L
(
M(z0), E

)
such that KerA(z)

= {0} and ImA(z) = M(z) for all z ∈ D.

Proof. Since D is connected and M is injective, we can find an open covering
U = {Uj}j∈I of D and holomorphic functions Aj : Uj → L

(
M(z0), E

)
with

KerAj(z) = {0} and ImAj(z) = M(z) for all z ∈ Uj , j ∈ I. Then Aj(z) is an
invertible operator from M(z0) onto M(z); let by A−1

j (z) be the inverse of this
operator, j ∈ I, z ∈ Uj .

Consider j, k ∈ I with Uj ∩ Uk 	= ∅. Then, for each z ∈ Uj ∩ Uk,

Gjk(z) := A−1
j (z)Ak(z)

is a well-defined operator from GL
(
M(z0)

)
. Moreover, the so-defined function

Gjk : Uj ∩ Uk → GL
(
M(z0)

)
is holomorphic. Indeed, let v be an arbitrary vector from M(z0). Then the func-
tion Ak(z)v is holomorphic, and it follows from Lemma 6.4.9 that Gjk(z)v =
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A−1
j (z)Ak(z)v is holomorphic. Hence Gjk is holomorphic (Theorem 1.7.1). So we

obtained a cocycle {Gjk}j,k∈I ∈ Z1
(
U ,OGL(M(z0))

)
.

Since at least one of the conditions (i) or (ii) is satisfied, we can apply The-
orem 5.6.3 and get holomorphic functions Bj : Uj → GL

(
M(z0)

)
, j ∈ I, with

A−1
j (z)Ak(z) = Gjk = BjB

−1
k on Uj ∩ Uk

for all j, k ∈ I with Uj ∩ Uk 	= ∅. It remains to set A = AjBj on Uj , j ∈ I. �

Moreover, there is the following Oka-Grauert principle:

6.6.4 Theorem. Let D ⊆ C be a connected open set, let M = {M(z)}z∈D be a
holomorphic family of subspaces of E, which is injective, and let z0 ∈ D. Suppose
the following condition is satisfied:

(iii) There exists a continuous function C : D → L
(
M(z0), E

)
such that KerC(z)

= {0} and ImC(z) = M(z) for all z ∈ D.

Then there exists a holomorphic function A : D→L
(
M(z0), E

)
such that KerA(z)

= {0} and ImA(z) = M(z) for all z ∈ D.

Proof. This is a repetition of the proof of Theorem 6.6.3 until the moment where
we use that one of conditions (i) or (ii) in Theorem 6.6.3 is satisfied. Instead here
we use the function C from condition (iii) and consider the functions Cj := A−1

j C,
which are continuous on Uj , by Corollary 6.2.5. Then

CjC
−1
k = A−1

j CC−1Ak = A−1
j Ak = Gjk on Uj ∩ Uk

for all j, k ∈ I with Uj∩Uk 	= ∅. Hence the cocycle {Gjk} is CGL(M(z0))-trivial. Now,
again from Theorem 5.6.3 we get holomorphic functions Bj : Uj → GL

(
M(z0)

)
,

j ∈ I, with
A−1

j (z)Ak(z) = Gjk = BjB
−1
k on Uj ∩ Uk

for all j, k ∈ I with Uj ∩ Uk 	= ∅. It remains to set A = AjBj on Uj , j ∈ I. �

6.7 Shubin families

In this section E is a Banach space.

6.7.1 Definition. Let D ⊆ C be an open set, and let M = {M(z)}z∈D be a
holomorphic family of subspaces of E. We shall say that M is a Shubin family
if, for each z0 ∈ D, there exist a neighborhhood U ⊆ D of z0 and a holomorphic
function A : U → GL(E) such that A(z)M(z0) = M(z) for all z ∈ U .

6.7.2 Remark. Let M = {M(z)}z∈D be a holomorphic family of subspaces of E,
which is a Shubin family. Suppose D is connected.
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Then M is injective (Def. 6.6.1) and the spaces of the family M are pair-
wise isomorphic. Moreover, then, for any pair of points z, w ∈ D, there exists an
operator T ∈ GL(E) with TM(z) = M(w).

This can be seen as follows: Fix z0 ∈ D and denote by X the set of all z ∈ D
such that M(z) = TM(z0) for some T ∈ GL(E). Then z0 ∈ X and therefore
X 	= ∅. Moreover, from the definition of a Shubin family it follows that, for each
w ∈ D, there exists a neighborhood W ⊆ D of w with the following property: If
z ∈ U , then M(z) = TM(w) for some T ∈ GL(E). From this it is clear that X is
open and relatively closed in D.

6.7.3 Theorem. Let D ⊆ C be a connected open set, let D be a Banach space, let
M = {M(z)}z∈D be a holomorphic family of subspaces of E, which is a Shubin
family, and let z0 ∈ D. Suppose at least one of the following two conditions is
satisfied:

(i) D is simply connected.

(ii) The group GLM(z0)(E) :=
{
T ∈ GL(E)

∣∣TM(z0) = M(z0)
}

is connected.

Then there exists a holomorphic function A : D → GL(E) such that A(z)M(z0) =
M(z) for all z ∈ D.

Proof. First note that GLM(z0)(E) is the group of invertible elements of a Banach
algebra, namely of the closed subalgebra of L(E) which consists of the operators
T with TM(z0) ⊆M(z0).

Since D is connected and M is a Shubin family, we can find an open cov-
ering U = {Uj}j∈I of D and holomorphic functions Aj : Uj → GL(E) with
Aj(z)M(z0) = M(z) for all z ∈ Uj , j ∈ I. Setting

Gjk = A−1
j Ak on Uj ∩ Uk

for all j, k∈I with Uj∩Uk 	= ∅, we obtain a cocycle {Gjk}j,k∈I ∈Z1
(
U ,OGLM(z0)(E)

)
.

Since GLM(z0)(E) is the group of invertible elements of a Banach algebra and at
least one of the conditions (i) or (ii) is satisfied, we can apply Theorem 5.6.3. So
we get holomorphic functions Bj : Uj → GLM(z0)(E), j ∈ I, with

A−1
j (z)Ak(z) = Gjk = BjB

−1
k on Uj ∩ Uk

for all j, k ∈ I with Uj ∩ Uk 	= ∅. It remains to set A = AjBj on Uj , j ∈ I. �

There is also the following Oka-Grauert principle:

6.7.4 Theorem. Let D ⊆ C be a connected open set, let M = {M(z)}z∈D be a
holomorphic family of subspaces of E, which is a Shubin family, and let z0 ∈ D.
Suppose the following condition is satisfied:

(iii) There exists a continuous function C : D → GL(E) such that C(z)M(z0) =
M(z) for all z ∈ D.
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Then there exists a holomorphic function A : D → GL(E) such that A(z)M(z0) =
M(z) for all z ∈ D.

Proof. This is a repetition of the proof of Theorem 6.7.3 until the moment where
we use that one of conditions (i) or (ii) in Theorem 6.7.3 is satisfied. Instead
here we use the function C from condition (iii), consider the continuous functions
Cj := A−1

j C and observe that the values of these functions belong to GLM(z0)(E).
Then

CjC
−1
k = A−1

j CC−1Ak = A−1
j Ak = Gjk on Uj ∩ Uk

for all j, k ∈ I with Uj ∩ Uk 	= ∅. Hence the cocycle {Gjk} is CGLM(z0)(E)-trivial.
Now, again from Theorem 5.6.3 we get a family of holomorphic functions Bj :
Uj → GLM(z0)(E) with

A−1
j Ak = Gjk = BjB

−1
k on Uj ∩ Uk

for all j, k ∈ I with Uj ∩ Uk 	= ∅. It remains to set A = AjBj on Uj , j ∈ I. �

6.8 Complemented families

In this section E is a Banach space.

6.8.1 Definition. LetD ⊆ C be an open set. A holomorphic familyM={M(z)}z∈D

of subspaces of E will be called a holomorphic family M = {M(z)}z∈D of com-
plemented subspaces of E if each of the spaces M(z), z ∈ D, is a complemented
subspace of E.

6.8.2 Lemma. Let D ⊆ C be an open set, let X be a second Banach space, let
A : D → L(X, E) be a holomorphic function such that, for all z ∈ D, A(z) is right
invertible, and let z0 ∈ D.

(i) Then there exists a neighborhood U ⊆ D of z0 and a holomorphic function
A(−1) : U → L(E,X) such that AA(−1) = I on U .

(ii) If U and A(−1) are as in part (i), then, for all z ∈ U , P (z) := A(−1)(z)A(z)
is a projector in E with KerP (z) = KerA(z).

Proof. (i) Let B ∈ L(E,X) be a right inverse of A(z0). Then there is a neigh-
borhood U of z0 such that A(z)B ∈ GL(E) for all z ∈ U . It remains to set
A(−1)(z) = B

(
A(z)B

)−1, z ∈ U .

(ii) Let z ∈ U . Then

P 2(z) = A(−1)(z)
(
A(z)A(−1)(z)

)
A(z) = A(−1)(z)A(z) = P (z).

Hence, P (z) is a projector. Further

P (z)KerA(z) = A(−1)(z)A(z)KerA(z) = {0}.
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Hence KerA(z) ⊆ KerP (z). Finally,

A(z)(I − P (z)) = A(z)−A(z)P (z)

= A(z)−
(
A(z)A(−1)(z)

)
A(z) = A(z)−A(z) = 0.

Hence KerP (z) = Im(I − P (z)) ⊆ KerA(z). �

6.8.3 Lemma. Let D ⊆ C be an open set, let
{
M(z)

}
z∈D

be a holomorphic family
of complemented subspaces of E, and let z0 ∈ D.

(i) Then there exist a neighborhood U of z0 and a closed subspace F of E such
that

E = F
.
+M(z) for all z ∈ U. (direct sum). (6.8.1)

(ii) Let U an F be as in part (i). For z ∈ U , we denote by P (z) the projector in
E with ImP (z) = M(z) and KerP (z) = F . Then the function U � z → P (z)
is holomorphic on U .

Proof. Assertion (i) follows from Proposition 6.1.5. We prove part (ii). It is suf-
ficient to prove that, for each v ∈ E, the function Pv is holomorphic (Theorem
1.7.1). Let v ∈ E be given.

Since M is a holomorphic family of subspaces of E, after shrinking U if
necessary, we can find a Banach space X and a holomorphic function A : U →
L(X, E) with ImA(z) = M(z) for all z ∈ U . Let X ⊕ F be the direct sum of X

and F , and define a holomorphic function Ã : U → L(X ⊕ F,E), setting

Ã(z)(x, f) = A(z)x+ f for x ∈ X and f ∈ F.

By (6.8.1), Ã(z) is surjective. By Lemma 6.4.6, after a further shrinking of U
(or by Theorem 6.4.4 without shrinking of U), we can find holomorphic functions
x : U → X and f : U → F such that Ã(z)

(
x(z), f(z)

)
= v for all z ∈ U .

By definition of Ã, this means that A(z)x(z) + f(z) = v for all z ∈ U . Since
A(z)x(z) ∈ ImA(z) = M(z) = ImP (z), f(z) ∈ F = KerP (z) and P (z) is a
projector, this implies that A(z)x(z) = P (z)v for all z ∈ U . Hence the function
Pv is holomorphic. �

6.8.4 Proposition. Each holomorphic family of complemented subspaces of E is a
Shubin family.

Proof. Let z0 ∈ D be given. Then, by Lemma 6.8.3, there exist a neighborhood
U ⊆ D of z0 and a holomorphic function P : U → L(E) such that the operators
P (z) are projectors with ImP (z) = M(z) for all z ∈ U . Set

A(z) = P (z) + I − P (z0) , z ∈ U.
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Since A(z0) = I, after shrinking U , we may assume that A(z) ∈ GL(E) for all
z ∈ U . Moreover,

A(z)M(z0) = P (z)M(z0) ⊆M(z) for all z ∈ U.

Since {A(z)M(z0)}z∈U and {M(z)}z∈U are continuous families of subspaces and
A(z0)M(z0) = M(z0), this implies, by Proposition 6.1.3, that A(z)M(z0) = M(z)
for all z ∈ U (assuming that U is connected). �
6.8.5 Theorem. Let D ⊆ C be an open set, and let M = {M(z)}z∈D be a holo-
morphic family of complemented subspaces of E. Then there exists a holomorphic
function P : D → L(E) such that, for all z ∈ D, the operator P (z) is a projector
with ImP (z) = M(z).

Proof. By Lemma 6.8.3 (ii), there exist an open covering U = {Uj}j∈I of D and
holomorphic functions Pj : Uj → L(E), j ∈ I, such that Pj(z) is a projector with
ImPj(z) = M(z) for all z ∈ Uj and j ∈ I. Set

N (z) =
{

T ∈ L(E)
∣∣∣ ImT ⊆M(z) ⊆ KerT

}
for z ∈ D,

and
Pj(z)T = Pj(z)T

(
I − Pj(z)

)
for T ∈ L(E), z ∈ Uj , j ∈ I.

For each j ∈ I, then Pj is a holomorphic L
(
L(E)

)
-valued function on Uj , where

the operators Pj(z) are projectors with ImPj(z) = N (z) for all z ∈ Uj . By
Proposition 6.1.4 this implies that N := {N (z)}z∈D is a holomorphic family of
subspaces of L(E).

Since Pj(z) − Pk(z) ∈ N (z) for z ∈ Uj ∩ Uk, the differences Pj − Pk define
a (U ,ON )-cocycle (Def. 6.4.3). Therefore, from Theorem 6.4.5 (ii) we get sections
Sj ∈ ON (Uj), j ∈ I, with

Pj − Pk = Sj − Sk on Uj ∩ Uk

for all j, k ∈ I with Uj ∩ Uk 	= ∅, and, setting
P = Pj − Sj on Uj , j ∈ I,

we can define a global holomorphic function P : D → L(E). This function has the
required properties.

Indeed, for each j ∈ I, we have

P 2 =
(
Pj − Sj

)2 = P 2
j + S2

j − PjSj − SjPj = Pj − Sj = P on Uj .

Hence, the values of P are projectors. Further, for each j ∈ I and z ∈ Uj , we have

ImP (z) ⊇ P (z)M(z) =
(
Pj(z)− Sj(z)

)
M(z) = Pj(z)M(z) = M(z)

and
ImP (z) = Im

(
Pj(z)− Sj(z)

)
⊆M(z).

Hence ImP (z) = M(z). �



6.9. Finite dimensional and finite codimensional families 209

6.8.6 Theorem. Let D ⊆ C be a connected open set, let M = {M(z)}z∈D be a
holomorphic family of complemented subspaces of E, and let z0 ∈ D. Suppose at
least one of the following two conditions is satisfied:

(i) D is simply connected.

(ii) The groups GL
(
M(z0)

)
and GL

(
E/M(z0)

)
are connected.

Then there exists a holomorphic function A : D → GL(E) such that A(z)M(z0) =
M(z) for all z ∈ D.

Proof. It is easy to see that from condition (ii) in Theorem 6.8.6 follows condition
(ii) in Theorem 6.7.3. Since M is a Shubin family (Proposition 6.8.4), therefore
Theorem 6.8.6 follows from Theorem 6.7.3. �

Since holomorphic families of complemented subspaces are Shubin families
(Proposition 6.8.4), from Theorem 6.7.4 we get the following Oka-Grauert princi-
ple:

6.8.7 Corollary (to Theorem 6.7.4). Let D ⊆ C be a connected open set, let M =
{M(z)}z∈D be a holomorphic family of complemented subspaces of E, and let
z0 ∈ D. Suppose the following condition is satisfied:

(iii) There exists a continuous function C : D → GL(E) such that C(z)M(z0) =
M(z) for all z ∈ D.

Then there exists a holomorphic function A : D → GL(E) such that A(z)M(z0) =
M(z) for all z ∈ D.

6.9 Finite dimensional and finite codimensional families

In this section E is a Banach space.

6.9.1 Theorem. Let D ⊆ C be a connected open set, let z0 ∈ D, and let
{
M(z)

}
z∈D

be a holomorphic family of subspaces of E such that at least one of the following
two conditions is satisfied:

(i) The spaces M(z), z ∈ D, are finite dimensional;

(ii) The spaces M(z), z ∈ D, are of finite codimension in E.

Then there exists a holomorphic function A : D → G∞(E) (Def. 5.12.1) with
A(z)M(z0) = M(z) for all z ∈ D.

Proof. Since M is a holomorphic family of complemented subspaces, we can apply
Theorem 6.8.5. Therefore we get a holomorphic function P : D → L(E) such
that the operators P (z) are projectors with ImP (z) = M(z) for all z ∈ D. Set
N(z) = KerP (z), z ∈ D, and N = {N(z)}z∈D. Then, by Proposition 6.1.4, N is
also a holomorphic family of subspaces of E.
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For each w ∈ D, we choose a sufficiently small connected neighborhood
Uw ⊆ D of w and set

AM
w (z) = P (z) + I − P (w) , AN

w (z) = I − P (z) + P (w), z ∈ Uw.

Since the neighborhoods Uw are sufficiently small, then the values of each AM
w and

each AN
w are invertible. Since at least one of the projectors P (w) or I − P (w) is

finite dimensional, these values even belong to G∞(E). Moreover

AM
w (z)M(w) = P (z)M(w) ⊆M(z)

and
AN

w (z)N(w) =
(
I − P (z)

)
N(w) ⊆ N(z)

for all z∈Uw and w∈D. Since the neighborhoods Uw are connected, AM (w)M(w)
= M(w) and AN (w)N(w) = N(w), by Proposition 6.1.3 this implies that

AM
w (z)M(w) = M(z) and AN

w (z)N(w) = N(z) , z ∈ Uw , w ∈ D.

The spaces M(w) and N(w) are finite dimensional or closed and finite codimen-
sional, and D is connected. Therefore we can find operators BM

w , BN
w ∈ G∞(E)

such that BM
w M(z0) = M(w) and BN

w N(z0) = N(w), w ∈ D. Setting

ÃM
w (z) = AM

w (z)BM
w and ÃN

w (z) = AN
w (z)B

N
w , z ∈ Uw, w ∈ D,

we obtain holomorphic functions ÃM
w , ÃN

w : Uw → G∞(E) with

ÃM
w (z)M(z0) = M(z) , ÃN

w (z)N(z0) = N(z) , z ∈ Uw , w ∈ D. (6.9.1)

Now we set

GM
vw =

(
ÃM

v

)−1
ÃM

w

∣∣∣
M(z0)

and GN
vw =

(
ÃN

v

)−1
ÃN

w

∣∣∣
N(z0)

on Uv ∩ Uw

for all v, w ∈ D with Uv ∩ Uw 	= ∅. Then, by (6.9.1), the family GM
vw is a(

{Uw}w∈D,OGL
(
M(z0)

))
-cocycle, and the family GN

vw is a
(
{Uw}w∈D,OGL

(
N(z0)

))
-

cocycle. Since the values of the functions GM
vw belong to G∞

(
M(z0)

)
and the values

of the functions GN
vw belong to G∞

(
N(z0)

)
, we can apply Theorem 5.12.5. There-

fore we get holomorphic functions GM
w : Uw → G∞

(
M(z0)

)
and GN

w : Uw →
G∞

(
N(z0)

)
such that(

ÃM
v

)−1
ÃM

w

∣∣∣
M(z0)

= GM
vw = GM

v (GM
w )−1

and (
ÃN

v

)−1
ÃN

w

∣∣∣
N(z0)

= GN
vw = GN

v (G
N
w )
−1
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on Uv ∩ Uw for all v, w ∈ D with Uv ∩ Uw 	= ∅. It follows that

ÃM
w GM

w P (z0) = ÃM
v GM

v P (z0) on Uv ∩ Uw

and
ÃN

w GN
w

(
I − P (z0)

)
= ÃN

v GN
v

(
I − P (z0)

)
on Uv ∩ Uw

for all v, w ∈ D with Uv ∩ Uw 	= ∅. Therefore, we have a global holomorphic
function A : D → G∞(E) defined by

A = ÃM
w GM

w P (z0) + ÃN
w GM

w

(
I − P (z0)

)
on Uw, w ∈ D.

It follows from (6.9.1) that A(z)M(z0) = M(z) and A(z)N(z0) = N(z) for all
z ∈ D. �

From Theorem 6.9.1 immediately follows:

6.9.2 Corollary. Let D ⊆ C be a connected open set, and let
{
M(z)

}
z∈D

be a
holomorphic family of subspaces of E.

(i) If the spaces M(z) are finite dimensional, then there exist holomorphic sec-
tions f1, . . . , fr : E → M such that f1(z), . . . , fr(z) is a basis of M(z), for
all z ∈ D.

(ii) If the spaces M(z) are of finite codimension in E, then there exist holomor-
phic functions f1, . . . , fr : E → E such that f1(z), . . . , fr(z) induces a basis
of E/M(z), for all z ∈ D.

6.10 One-sided and generalized invertible

holomorphic operator functions

In this section E and F are two Banach spaces, and D ⊆ C is an open set. Then
from Theorem 6.2.7 we obtain the following proposition:

6.10.1 Proposition. Let let A : D → L(E,F ) be holomorphic such that, for all
z ∈ D, ImA(z) is closed. Then the following are equivalent:

(i) The function kA (Def. 6.2.3) is continuous on D.

(ii) The family ImA (Def. 6.2.1) is continuous.

(iii) The family KerA (Def. 6.2.1) is continuous.

(iv) For each compact set K ⊆ D, infz∈K kA(z) > 0.

(v) The family ImA is holomorphic.

(vi) The family KerA is holomorphic.
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Proof. By Theorem 6.2.7, conditions (i)–(iv) are equivalent. Since here the func-
tion A is holomorphic, by definition of a holomorphic family of subspaces, (v) is
equivalent to (ii) and (vi) is equivalent to (iii). �
6.10.2. An operator A ∈ L(E,F ) is called generalized invertible if there exists
B ∈ L(F,E) such that ABA = A and BAB = B. The operator B then is called
a generalized inverse of A.

6.10.3 Proposition. An operator A ∈ L(E,F ) is generalized invertible, if and only
if, there exist projectors P ∈ L(E) and Q ∈ L(F ) such that ImP = ImA and
ImQ = KerA, i.e., if the spaces ImA and KerA are complemented.

Proof. First assume that A has a generalized inverse B. Then

(AB)2 = (ABA)B = AB and (BA)2 = B(ABA) = BA.

Hence AB and BA are projectors. Obviously, Im(AB) ⊆ ImA, and from A =
(AB)A it follows that also ImA ⊆ Im(AB), and thus P := AB is a projector
onto ImA. Moreover it is clear that KerA ⊆ KerBA and A(BA) = A implies
that KerBA ⊆ KerA. Thus BA is a projector whose kernel coincides with KerA.
Hence Q := I −BA is a projector onto KerA.

Conversely, if there exist such projectors P and Q, then the operator Â :=
A
∣∣
Ker Q

is an invertible operator from KerQ onto ImA = ImP . Let Â−1 ∈
L(ImP,KerQ) be the inverse of this operator, and set B := Â−1P . Then ABA =
(AÂ−1P )A = PA = A. Moreover, then Â−1PA(I − Q) = I − Q and Â−1P =
(I −Q)Â−1P , which implies that

BAB =
(
Â−1PA

)(
Â−1P

)
=
(
Â−1PA

)(
(I −Q)Â−1P

)
=
(
Â−1PA(I −Q)

)(
Â−1P

)
= (I −Q)Â−1P = Â−1P = B.

�
6.10.4 Theorem. (i) Let A : D → L(E,F ) be holomorphic such that, for all z ∈

D, A(z) is generalized invertible. Suppose the equivalent conditions (i)–(vi)
in Proposition 6.10.1 are satisfied. Then there exists a holomorphic function
B : D → L(F,E) with ABA = A on D.

(ii) Let A : D → L(E,F ) be holomorphic such that all values of A are left
invertible. Then there exists a holomorphic function B : D → L(F,E) with
BA = I on D.

(iii) Let A : D → L(E,F ) be holomorphic such that all values of A are right
invertible. Then there exists a holomorphic function B : D → L(F,E) with
AB = I on D.

Proof. (i) By Proposition 6.10.3, the spaces ImA(z) and KerA(z) are comple-
mented. Therefore, by Theorem 6.8.5, we have holomorphic functions P : D →
L(F ) and Q : D → L(E) such that, for all z ∈ D, the operators P (z) and Q(z)
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are projectors with ImP (z) = ImA(z) and KerQ(z) = KerA(z). Then, for each
z ∈ D, A(z) is invertible as an operator from ImQ(z) to ImA(z); let A(−1)(z) be
the inverse of this operator. Set B(z) = A(−1)(z)P (z) for z ∈ D. Then it is clear
that A(z)B(z)A(z) = A(z) for all z ∈ D.

It remains to prove that the function B is holomorphic. Let z0 ∈ D be
given. Since ImA and ImQ are Shubin families (Proposition 6.8.4), we can find a
neighborhood U of z0 and holomorphic functions T : U → GL(F ) and G : U →
GL(E) such that

T (z) ImA(z0) = ImA(z) and G(z) ImQ(z0) = ImQ(z) , z ∈ U.

Setting
S(z) = A(−1)(z0)T−1(z)A(z)G(z)

∣∣∣
Im Q(z0)

, z ∈ U,

then we get a holomorphic function S : U → GL
(
ImQ(z0)

)
. We claim that

B(z) = G(z)S−1(z)A(−1)(z0)T−1(z)P (z) , z ∈ U. (6.10.1)

Indeed, since P (z)A(z) = A(z), we get(
B(z)−G(z)S−1(z)A(−1)(z0)T−1(z)P (z)

)
A(z)Q(z)

=
(
A(−1)(z)P (z)−G(z)S−1(z)A(−1)(z0)T−1(z)P (z)

)
A(z)Q(z)

= Q(z)−G(z)S−1(z)
(
A(−1)(z0)T−1(z)A(z)G(z)

)
G−1(z)Q(z)

= Q(z)−G(z)S−1(z)S(z)G−1(z)Q(z) = 0 , z ∈ U.

This implies (6.10.1), as both sides of (6.10.1) vanish on KerP (z) and
Im

(
A(z)Q(z)

)
= ImP (z),

B(z)P (z) = S−1(z)A−1(z0)T−1(z)P (z) , z ∈ U.

Since the functions on the right-hand side of (6.10.1) are holomorphic, it follows
that B is holomorphic.

(ii) Since the values of A are left invertible, KerA(z) = {0} and ImA(z) is
complemented, for all z ∈ D. Hence, by Proposition 6.10.1, ImA is a holomorphic
family of complemented subspaces of F , and we can apply part (i) of the theorem.
Therefore we have a holomorphic function B : D → L(F,E) with ABA = A on
D. Since the values of A are injective, this implies BA = I on D.

(iii) Since the values of A are right invertible, ImA(z) = F and KerA(z) is
complemented, for all z ∈ D. Hence, by Proposition 6.10.1, KerA is a holomorphic
family of complemented subspaces of E, and we can apply part (i) of the theorem.
Therefore we have a holomorphic function B : D → L(F,E) with ABA = A on
D. Since the values of A are surjective, this implies AB = I on D. �
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6.11 Example: A globally non-trivial complemented

holomorphic family of subspaces

Here we construct a holomorphic family of complemented subspaces {M(z)}z∈D

of a Banach space E which is not “globally continuously injective”, by which we
mean that there does not exist a Banach space M0 and a continuous function
A : D → L(M0, E) with KerA(z) = {0} and ImA(z) = M(z) for all z ∈ D.

6.11.1 Example. We use the notation from example 5.6.2. Additionally here we
assume that

1√
8

< r <
1
2

.

Now, by the block matrices

Z(z) :=

⎛⎝(
1
2 − z

)
I −

(
1
2 + z

)
I(

1
2 + z

)
I

(
1
2 − z

)
I

⎞⎠ ,

F1(z) :=
(

A 0
0 I

)
Z and F2(z) := Z

(
I 0
0 A

)
,

we define holomorphic operator functions Z,F1, F2 : C → L(X ⊕X). Since

det

⎛⎝ 1
2 − z − 1

2 − z

1
2 + z 1

2 − z

⎞⎠ =
1
4
+ 2z2 	= 0 for z 	= ± i√

8
,

these operator functions are invertible on

C \
{

i√
8

, − i√
8

}
,

which is a neighborhood of D. Setting

H(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F2(z)

(
A 0
0 A−1

)
F−1

1 (z) for z ∈ V1 ,

F2(z)F−1
1 (z) for z ∈ V2 ,

we define a holomorphic operator function H : U1 ∩ U2 → GL(X ⊕ X). Since
−1/2 ∈ V1, 1/2 ∈ V2,

Z

(
−1
2

)
=
(

I 0
0 I

)
and Z

(
1
2

)
=
(
0 −I
I 0

)
,
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then we have

H

(
−1
2

)
= Z

(
−1
2

)(
I 0
0 A

)(
A 0
0 A−1

)
Z−1

(
−1
2

)(
A−1 0
0 I

)
=
(

I 0
0 I

)
and

H

(
1
2

)
= Z

(
1
2

)(
I 0
0 A

)
Z−1

(
1
2

)(
A−1 0
0 I

)
=
(
0 −I
I 0

)(
I 0
0 A

)(
0 I
−I 0

)(
A−1 0
0 I

)
=
(
0 −A
I 0

)(
0 I

−A−1 0

)
=
(

I 0
0 I

)
.

Hence all values of H lie in the connected component of the unit operator in
GL(X ⊕ X). Therefore, by Corollary 5.6.4, we can find holomorphic functions
Hj : Uj → GL(X⊕X) such that H = H−1

2 H1 on U1∩U2 = V1∪V2, and therefore

H2F2

(
A 0
0 A−1

)
= H1F1 on V1 (6.11.1)

and
H2F2 = H1F1 on V2 . (6.11.2)

Since H(−1/2) is the identical operator of X ⊕X, by multiplying by a constant
operator, we may assume that also

H1

(
−1
2

)
= H2

(
−1
2

)
=
(

I 0
0 I

)
. (6.11.3)

Set X0 := X ⊕ {0}, and let A0

(
(x, 0)

)
:= (Ax, 0) for (x, 0) ∈ X0. Since A0 is an

isomorphism of X0, then it follows from (6.11.1) that

H2F2

(
X0

)
= H2F2

(
A 0
0 A−1

)(
X0

)
= H1F1

(
X0

)
on V1.

Together with (6.11.2) this implies that

H2F2

(
X0

)
= H1F1

(
X0

)
on U1 ∩ U2 = V1 ∪ V2.

Hence, there is a well-defined holomorphic family {M(z)}z∈D of complemented
subspaces of X ⊕X defined by

M(z) = Hj(z)Fj(z)
(
X0

)
for z ∈ Uj , j = 1, 2. (6.11.4)
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By (6.11.3)

M

(
−1
2

)
= X0. (6.11.5)

We claim that there does not exist a continuous function C : D → L(X0, X ⊕X)
such that ImC(z) = M(z) and KerC(z) = {0} for all z ∈ D.

Indeed, assume we have such a function C. Then, by (6.11.5), we may assume
that

C

(
−1
2

)
= I. (6.11.6)

For all z ∈ D, now we denote by C(−1)(z) the operator in L(M(z), X0) with
C(−1)(z)C(z) = I. Then, by setting

γj(z) = C(−1)(z)Hj(z)Fj(z)
∣∣∣
X0

, z ∈ Uj ,

functions γj : Uj → GL(X0), j = 1, 2, are well defined. By Corollary 6.2.5, these
functions are continuous. From (6.11.2) we get

γ1

(
1
2

)
= γ2

(
1
2

)
, (6.11.7)

and from (6.11.3) and (6.11.6) it follows that

γ1

(
−1
2

)
= F1

(
−1
2

) ∣∣∣∣
X0

=
(

A 0
0 I

) ∣∣∣∣
X0

= A0 (6.11.8)

and

γ2

(
−1
2

)
= F2

(
−1
2

) ∣∣∣∣
X0

=
(

I 0
0 A

) ∣∣∣∣
X0

= I. (6.11.9)

Since both U1 and U2 are connected, it follows from (6.11.7)–(6.11.9) that A0 and
I belong to the same connected component of GL(X0). This is a contradiction.

6.12 Comments

The gap metric was introduced and studied in [KKM, GK, GM]. The results on
continuous (with respect to the gap metric) families of subspaces are not difficult
and were observed by many authors.

The starting point of the theory of holomorphic families of subspaces was the
paper of M.A. Shubin [Sh2], who gave the first definition and the first results, and
the papers of the authors [GL1, GL2, GL3, Le5]. In those papers already most
of the results for the more special families of subspaces studied in Sections 6.3,
6.4 and 6.6–6.11 can be found. Here this material is completed and extended in
different directions.
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Definition 6.4.1 and the local Lemma 6.4.6 are new in this generality. Using
a terminology from Complex analysis in several variables, Lemma 6.4.6 states
that the holomorphic families in the sense of Definition 6.4.1 are Banach coherent
sheaves in the sense of [Le6], and the results then obtained in Section 6.4 could
be viewed as special cases of that theory of Banach coherent sheaves. But we did
not proceed in this way. Instead the more simple direct proofs are given which are
possible in the case of one variable.

The example given in Section 6.5 is due to A. Douady [Do2].



Chapter 7

Plemelj-Muschelishvili
factorization

This factorization for operator functions with respect to a contour is defined in the
beginning of the first section. For scalar and matrix functions it was invented in
the beginning of the last century as a tool for solving the linear Riemann-Hilbert
boundary problem in complex analysis, singular integral equations and systems
of such equations. It serves also as a tool for solving Wiener-Hopf equations and
systems of Wiener-Hopf equations, both discrete and continuous. For details see
[GK] and [F].

This type of factorization can be also used to solve transport equations, see [F]
and [BGK]. For the plane symmetric case the mathematical equations describing
the transport of energy through a medium is a linear integral-differential equation,
which can be transformed into a Wiener-Hopf integral equation with an operator-
valued kernel. The latter equation can be solved with the help of factorization
of the mentioned earlier form of an operator-valued function acting in an infinite
dimensional space, see [BGK]. The results on factorization which are mentioned
here are also used in the spectral theory of operator polynomials, see [Ma] and
[Ro] and the literature cited therein.

To transfer from the factorization problem of scalar functions to finite matrix
functions already adds essential difficulties and appearance of the so-called partial
indexes with a very complex behavior. The next step: factorization of operator
functions is a much more difficult problem than the matrix function ones and in
fact requires all techniques and tools which were developed in the previous chapters
(except for Chapter 4). In fact these tools were started with this aim. As it turns
out they are useful for many other purposes. This chapter is entirely dedicated to
the factorization problem of operator functions [GL4, GL5].
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7.1 Definitions and first remarks about factorization

Here D+ ⊆ C is a bounded connected open set with piecewise C1-boundary Γ,
0 ∈ D+, and D− = C \D+.

7.1.1 Definition. Let E be a Banach space, let G be one of the groups GL(E),
G∞(E) or Gω(E) (Def. 5.12.1), and let A : Γ → G be a continuous function. A
representation of A in the form

A = A−ΔA+ (7.1.1)

will be called a factorization with respect to Γ and G of A if the factors A−, A+,Δ
have the following properties:

– Either Δ ≡ I or Δ is of the form

Δ(z) = P0 +
n∑

j=1

zκj Pj (7.1.2)

where n ∈ N∗, κ1 > . . . > κn are non-zero integers, P1, . . . , Pn are mutually
disjoint finite dimensional projectors1 in E, and P0 = I − P1 − . . .− Pn;

– A+ is a continuous G-valued function on D+, which is holomorphic in D+;

– A− is a continuous G-valued function on D− ∪ {∞}, which is holomorphic
in D− ∪ {∞} (Section 3.1.1).

If Δ ≡ I, then this factorization will be called canonical (see also Definition 7.1.3).
By a factorization of A with respect to Γ (without mentioning a group G)

we always mean a factorization of A with respect to Γ and GL(E).

7.1.2. The integers κ1, . . . , κn and the dimensions of the projectors P1, . . . , Pn in
this definition are uniquely determined by A. This will be established in Theorem
7.10.3 below. The numbers κ1, . . . , κn will be called the non-zero partial indices
of A (Def. 7.9.6), and dimPj will be called the multiplicity of κj (Def. 7.9.8).

7.1.3 Definition. Let G be an open subgroup of the group of invertible elements of
a Banach algebra with unit or let G be one of the groups G∞(E) or Gω(E), where
E is a Banach space (Def. 5.12.1), and let f : Γ→ G be continuous.

(i) For z0 ∈ Γ, we say that f admits a local factorization at z0 with respect
to Γ and G if there exist a neighborhood U of z0 and continuous functions
A+ : U ∩D+ → G and A− : U ∩D− → G, which are holomorphic in U ∩D−
and U ∩D+, respectively, such that

A = A−A+ on U ∩ Γ . (7.1.3)

We say that f admits local factorizations with respect to Γ and G if it admits
at each point of Γ a local factorization with respect to Γ and G.

1By a projector in E we always mean a bounded linear projector in E. A family P1, . . . , Pn

of projectors in E is called mutually disjoint if PjPk = 0 for all 1 ≤ j, k ≤ n with j �= k



7.1. Definitions and first remarks about factorization 221

(ii) If g : Γ → G is a second continuous function, then we say that f and g
are equivalent with respect to Γ and G if there exist continuous functions
h− : D−∪{∞} → G and h+ : D+ → G, which are holomorphic in D−∪{∞}
and D+, respectively, such that

f = h−gh+ on Γ . (7.1.4)

If, in this case, g ≡ 1, i.e., if (7.1.4) takes the form

f = h−h+ on Γ , (7.1.5)

then this representation will be called a canonical factorization of f with
respect to Γ and G.

As we already saw in the scalar case (Remark 3.11.4), not any continu-
ous function admits local factorizations with respect to Γ. However already weak
smoothness requirements ensure the existence of local factorizations with respect
to Γ. In Section 7.2 we see that Wiener functions admit local factorizations. In
Section 7.3 we prove that this is true also for Hölder functions.

7.1.4 Proposition. Let G an open subgroup of the group of invertible elements of
a Banach algebra with unit or let G be one of the groups G∞(E) or Gω(E), where
E is a Banach space (Def. 5.12.1), and let f : Γ→ G be continuous.

Assume, at some point z0 ∈ Γ, f admits two local factorizations with respect
to Γ and G, i.e.,

f = h−h+ and f = h̃−h̃+ on Γ ∩ U, (7.1.6)

where U is a neighborhood of z0 and h−, h̃− : U ∩ D− → GA and h+, h̃+ : U ∩
D+ → G are continuous functions, which are holomorphic in U ∩D− and U ∩D+,
respectively.

Then there is a holomorphic function g : U → G such that

h̃− = h−g−1 on D− ∩ U and h̃+ = gh+ on D+ ∩ U. (7.1.7)

Proof. By (7.1.6),
h̃−1
− h− = h̃+h−1

+ on Γ ∩ U.

Hence, there is a continuous function g : U → G defined by

g =

{
h̃−1
− h− on D− ∩ U,

h̃+h−1
+ on D+ ∩ U,

which satisfies (7.1.7) by definition. As this function is holomorphic in U \ Γ, it
follows from Theorem 1.5.4 that g is holomorphic on U . �
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7.1.5 Proposition. Let G an open subgroup of the group of invertible elements of
a Banach algebra with unit or let G be one of the groups G∞(E) or Gω(E), where
E is a Banach space (Def. 5.12.1), and let f : Γ→ G be continuous.

If f admits a canonical factorization f = f+f− with respect to Γ and G,
then setting f̃−(z) = f−(z)f

−1
− (∞) and f̃+(z) = f+(z)f−(∞) we get a canonical

factorization f = f̃−f̃+ with the additional property f̃−(∞) = 1.
With this additional property, the canonical factorization of f is uniquely

determined by f .

Proof. Assume there are two canonical factorizations f = f−f+ and f = f̃−f̃+ of
f with f−(∞) = f̃−(∞) = 1. Then f−f+ = f̃−f̃+ and therefore

f̃−1
− f− = f̃+f−1

+ on Γ.

By Theorem 1.5.4, the two sides of this relation define a holomorphic function on
C∪{∞} with value 1 at infinity. By Liouville’s theorem this implies that f̃− ≡ f−
and f̃+ ≡ f+. �

7.1.6 Proposition. Let E be a Banach space, and let A : Γ→ GL(E) be a contin-
uous function which admits a factorization with respect to Γ and GA.

Then there exists always a factorization A = A−ΔA+ with respect to Γ sat-
isfying the additional condition A−(∞) = I.

Proof. If A = Ã−Δ̃Ã+ is an arbitrary factorization with respect to Γ and GA,
then we obtain a factorization A = A−ΔA+ with A−(∞) = I by setting A−(z) =
A−(z)

(
A−(∞)

)−1, Δ(z) = A−(∞)Δ̃(z)
(
A−(∞)

)−1 and A+(z) = Ã−(∞)A+(∞).
�

7.1.7. Note however that the factorization with the extra condition A−(∞) = I
established in Proposition 7.1.6 is not uniquely determined, except for the case of
a canonical factorization (Proposition 7.1.5).

7.2 The algebra of Wiener functions and other splitting

R-algebras

In this section T is the unit circle, D+ is the open unit disc and D− = C \D+.

7.2.1. Let A be a Banach algebra, and let W (A) be the space of Wiener functions
with values in A (Def. 3.1.5), i.e., the space of functions f : T → A of the form

f(z) =
∞∑

n=−∞
znfn with ‖f‖W :=

∞∑
n=−∞

‖fn‖W < ∞.
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Then it follows from Cauchy’s product theorem that if f, g ∈ W (A), then the
pointwise defined product fg belongs again to W (A), where

‖fg‖W ≤ ‖f‖W ‖g‖W .

Hence W (A) is a Banach algebra.

In the present section we prove: If A is a Banach algebra with unit, then
each function f ∈ W (A) with invertible values is equivalent (Def. 7.1.3) to some
holomorphic function on T. If fact we prove the following stronger result:

7.2.2 Theorem. Let A be a Banach algebra with unit, let GA be the group of
invertible elements of A, and let f ∈ W (A) such that f(z) ∈ GA for all z ∈ T.
Then:

(i) The pointwise defined function f−1 again belongs to W (A).

(ii) The function f can be written in the form f = h−hh+, where: h : T →
GA is holomorphic, h− : D− ∪ {∞} → GA is continuous on D− ∪ {∞}
and holomorphic in D− ∪ {∞}, h+ : D+ → GA is continuous on D+ and
holomorphic in D+, and the functions h−, h−1

− , h+ and h−1
+ belong to W (A).

(The latter statement follows also from (i) and (iii).)

(iii) Let g : T → GA be a second function from W (A) which is equivalent to f
with respect to Γ and GA (Def. 7.1.3). Further, let g− : D− ∪ {∞} → GA

and g+ : D+ → GA be any functions which are holomorphic in D− ∪ {∞}
and D+, respectively, such that

g = g−fg+ on T. (7.2.1)

(Such functions then exist by definition of equivalence.) Then the functions
g−, g−1

− , g+ and g−1
+ belong to W (A).

The remainder of this section is devoted to the proof of this theorem. In fact
we immediately prove a generalization of it (a second interesting example, covered
by this generalization, we meet in Section 8.11).

7.2.3 Definition. Let E be a Banach space. By a rational function with values in E
or by a rational function f : C → E we mean an E-valued meromorphic function
on C (Section 1.10.6) such that f(1/z) is also meromorphic on C. It is easy to see
that any rational function with values in E can be written in the form

f =
p

ϕ
,

where p is a holomorphic polynomial with coefficients in E, and ϕ is a scalar
holomorphic polynomial. We shall say that ∞ is a pole of an E-valued rational
function f if 0 is a pole of the function f(1/z) (Section 1.10.6).
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7.2.4. Let A be a Banach algebra with the norm ‖ · ‖. Then we are interested in
Banach algebras R with the norm ‖ · ‖R, which are algebraic subalgebras of the
algebra of continuous functions f : T → A and which satisfy the following three
conditions:

(A) max
z∈T

‖f(z)‖ ≤ ‖f‖R for all f ∈ R.

(B) The algebra of all A-valued rational functions without poles on T is contained
in R as a dense subset.

(C) Each f ∈ R admits a splitting f = f+ + f− with respect to T (Def. 3.1.2),
where f−, f+ ∈ R.

Sometimes such algebras will be called splitting R-algebras.
Obviously, the Wiener algebra W (A) (Section 7.2.1) is a splitting R-algebra.

7.2.5 Theorem. Let A be a Banach algebra with unit, let GA be the group of
invertible elements of A, and let R be a Banach algebra of continuous functions
f : T → A satisfying conditions (A), (B) and (C) from Section 7.2.4. Let f ∈ R
such that f(z) ∈ GA for all z ∈ T. Then:

(i) The pointwise defined function f−1 again belongs to R.

(ii) The function f can be written in the form

f = h−hh+, (7.2.2)

where h− : D−∪{∞} → GA is continuous on D−∪{∞} and holomorphic in
D− ∪ {∞}, h+ : D+ → GA is continuous on D+ and holomorphic in D+, h
is an A-valued rational function without poles on T, h(z) ∈ GA for all z ∈ T,
and the functions h−, h−1

− , h+ and h−1
+ belong to R. (The latter statement

follows also from (i) and (iii).)

(iii) Let g : T → GA be a second function from R which is equivalent to f with
respect to Γ and GA (Def. 7.1.3). Further, let g− : D− ∪ {∞} → GA and
g+ : D+ → GA be any functions which are holomorphic in D− ∪ {∞} and
D+, respectively, such that

g = g−fg+ on T. (7.2.3)

(Such functions then exist by definition of equivalence.) Then the functions
g−, g−1

− , g+ and g−1
+ belong to R.

We first prove the corresponding generalization of Proposition 3.10.1:

7.2.6 Proposition. Let R be a Banach algebra of scalar continuous functions f :
T → C satisfying conditions (A), (B) and (C) from Section 7.2.4 (with A = C).

If f ∈ R and f(z) 	= 0 for all z ∈ T, then f−1 ∈ R.
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Proof. Let f ∈ R be given, which is not an invertible element of R. We have to
find θ ∈ T with f(θ) = 0.

Since f is not invertible, by the theory of commutative Banach algebras,
there exits a multiplicative functional Φ on R with

Φ(f) = 0.

By condition (B), for all fixed complex numbers λ ∈ C \ T, the function z − λ is
an invertible element of R. Hence, for each fixed λ ∈ C \ T, Φ(z − λ) 	= 0 and,
therefore,

Φ(z)− λ = Φ(z − λ) 	= 0.

Hence θ := Φ(z) ∈ T. Since Φ is multiplicative and linear, this implies that, for
each scalar rational function r without poles on T (by condition (B) such functions
belong to R), we have

r(θ) = Φ(r).

Since the rational functions are dense in R (condition (B)) and by condition (A),
this further implies that g(θ) = Φ(g) for all g ∈ R. Hence f(θ) = Φ(f) = 0. �

Further, the proof of Theorem 7.2.5 is based on the following

7.2.7 Lemma. Let B be a Banach algebra with unit, and let L be a maximal left
ideal of B. Further, let Z be a closed subalgebra of B such that 1 ∈ Z and zb = bz
for all b ∈ B and z ∈ Z (i.e., Z is a subalgebra of the center of B with 1 ∈ Z).
Then L ∩ Z is a maximal ideal of Z.

Proof. Here the unit element of B will be denoted by e. First we prove:

Proposition ♣: For each a ∈ Z \ L we have:

(i) There exits y ∈ B with ya− e ∈ L.

(ii) If y1, y2 ∈ B with y1a− e ∈ L and y2a− e ∈ L, then y1 − y2 ∈ L.

Part (i) follows from the hypotheses that L is maximal among the proper left
ideals of B. (Otherwise the set of elements of the form l+ ya, l ∈ L, y ∈ B, would
be a bigger proper left ideal.)

For part (ii), we first prove that

L =
{

y ∈ B
∣∣∣ ya ∈ L

}
. (7.2.4)

Let Ka be the set on the right-hand side of (7.2.4). It is clear that Ka is a left ideal
of B. Since 1 	∈ Ka, Ka is even a proper left ideal of B. If l ∈ L, then la = al ∈ L
(as a belongs to the center of B and L is a left ideal). Hence L ⊆ Ka. Since L is
maximal among the proper left ideals, this means that L = Ka.

Now let y1, y2 ∈ B with y1a − e ∈ L and y2a − e ∈ L be given. Then
(y1 − y2)a = y1a− e− (y2a− e) ∈ L, which implies by (7.2.4) that y1 − y2 ∈ L.

Proposition ♣ is proved.
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Now we prove that Z ∩L is a maximal ideal of Z. It is clear that Z ∩L is an
ideal of Z. Assume it is not maximal. Then there exists a ∈ Z with a− ze 	∈ L for
all z ∈ C. Therefore, by part (i) of proposition ♣, for each z ∈ C, we can choose
an element f(z) ∈ B with

f(z)(a− z)− e ∈ L. (7.2.5)

To complete the proof, now it is sufficient to show that

f(z) ∈ L for all z ∈ C, (7.2.6)

because then from (7.2.5) we get the contradiction e ∈ L.
Let B/L be the factor space of B with respect to L, and let π : B → B/L

be the canonical projector. (7.2.6) then is equivalent to the relation

(π ◦ f)(z) = 0 for all z ∈ C.

Therefore, by Liouville’s theorem, it is sufficient to prove the folllowing

Proposition ♠: The function π ◦ f is holomorphic on C and (π ◦ f)(∞) = 0.

Setting

f∗(z) =
1
z

(a

z
− e

)−1

for |z| > 1
‖a‖

we define a B-valued holomorphic function f∗ such that

f∗(z)(a− ze)− e = 0 ∈ L for all |z| > 1
‖a‖ .

By (7.2.5) and part (ii) of proposition ♣, this implies that f(z) − f∗(z) ∈ L for
|z| > 1/‖a‖. Hence π◦f is equal to π◦f∗ for |z| > 1/‖a‖. As f∗ is holomorphic and
f∗(∞) = 0, this proves that π◦f is holomorphic for |z| > 1/‖a‖ and (π◦f)(∞) = 0.

It remains to prove that π ◦ f is holomorphic everywhere on C. Let ξ ∈ C be
given, and let U be the open disc centered at ξ and with radius 1/‖f(ξ)‖. Then
for all z ∈ U , e− (z − ξ)f(ξ) is an invertible element of B, and, setting

fξ(z) = f(ξ)
(
e− (z − ξ)f(ξ)

)−1

we get a holomorphic function fξ : U → B. Note that

fξ(z) =
∞∑

k=0

(z − ξ)k
(
f(ξ)

)k+1
, z ∈ U.

Therefore
fξ(z)

(
(z − ξ)e−

(
f(ξ)

)−1
)
= −e
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and, further,

fξ(z)(a− ze)− e = fξ(z)
(
(a− ze) + (z − ξe)−

(
f(ξ)

)−1
)

= fξ(z)
(
(a− ξe)−

(
f(ξ)

)−1
)
= fξ(z)

(
f(ξ)

)−1
(
f(ξ)(a− ξe)− e

)
for all z ∈ U . Since, by (7.2.5), f(ξ)(a − ξe) − e ∈ L and L is a left ideal, it
follows that fξ(z)(a − ze) − e ∈ L for all z ∈ U . Again by (7.2.5) and by part
(ii) of proposition ♣, this implies that fξ(z) − f(z) ∈ L for all z ∈ U . Hence
π ◦ f = π ◦ fξ on U . As fξ is holomorphic in U , this further implies that π ◦ f is
holomorphic in U . Proposition ♠ is proved. �
7.2.8. Proof of Theorem 7.2.5 (i): Assume f is not an invertible element of the
algebra R. Then the set of elements of the form gf , g ∈ R, is a proper left ideal
of R. Let L be a maximal left ideal in R with{

gf
∣∣∣ g ∈ R

}
⊆ L. (7.2.7)

Further, let RC be the subalgebra of R, which consists of the functions of the form
ψe, where ψ is a scalar function and e is the unit element of A. By Lemma 7.2.7,
L ∩ RC is a maximal ideal of RC, and it follows from Proposition 7.2.6 (and the
theory of commutative Banach algebras) that there exists a point θ ∈ T such that

L ∩RC =
{

ϕ ∈ RC

∣∣∣ ϕ(θ) = 0
}

. (7.2.8)

Therefore, for all ϕ ∈ RC, the function

ϕ(z)− ϕ(θ), z ∈ T,

belongs to L ∩ RC. Since L is a left ideal, it follows that, for all a ∈ A and
ϕ ∈ L ∩RC, the function

aϕ(z)− aϕ(θ), z ∈ T,

belongs to L. Hence, for all rational functions r : C → A without poles on T

(which belong to R by condition (B)), the function

r(z)− r(θ), z ∈ T,

belongs to L.
Now we introduce the function g ∈ R defined by

g(z) :=
(
f(θ)

)−1
f(z), z ∈ T.

Then, by condition (B), there is a sequence rν : T → A of rational functions
without poles on T such that

lim
ν
‖g − rν‖R = 0.
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As g(θ) = e (the unit element of A), then it follows from condition (A), that also

lim
ν
‖e− rν(θ)‖ = lim

ν
‖g(θ)− rν(θ)‖ = 0.

Hence, the sequence of functions

rν(z)− rν(θ), z ∈ T,

converges to the function
g(z)− e, z ∈ T,

with respect to the norm of R. Since L is closed with respect to this norm and
each of the functions rν(z)− rν(θ) belongs to L, it follows that the function

g(z)− e, z ∈ T,

belongs to L. As, by definition of L, also g ∈ L, this implies that the constant
function with value e, i.e., the unit element of R, belongs to L. As L is a proper
ideal, this is a contradiction. �
7.2.9. Let A be a Banach algebra with unit, and let R be a Banach algebra of
continuous functions f : T → A satisfying conditions (A), (B) and (C) from
Section 7.2.4.

Then we denote by R+ the subalgebra of all f ∈ R, which admit a contin-
uous extension to D+, which is holomorphic in D+, and by R− we denote the
subalgebra of all f ∈ R, which admit a continuous extension to D− ∪ {∞}, which
is holomorphic in D− ∪ {∞}. Further, we denote by R0

− the subalgebra of all
f ∈ R−(A) with f(∞) = 0. Since all constant functions with value in A belong to
R (condition (B)), it follows from condition (C) that R is the direct sum of R+

and R0
−. We denote by P+ the linear projector from R to R+ parallel to R0

−, and
we set P− = I − P+.

We denote by ‖P±‖ the operator norms of P± with respect to the norm ‖·‖R
of R:

‖P±‖ := sup
f∈R,‖f‖R=1

‖P±f‖R. (7.2.9)

For R = W (A) (Section 7.2.1), obviously, ‖P±‖ = 1.

Now, as a special case of the factorization Lemma 5.2.3, we immediately
obtain:

7.2.10 Lemma. Let A be a Banach algebra with unit, let R be a Banach algebra
of continuous functions f : T → A satisfying conditions (A), (B) and (C) from
Section 7.2.4, and let

C = max
{
‖P+‖, ‖P−‖

}
,

where P+, P− are the projectors defined in Section 7.2.9. Then each f ∈ R with

‖f − 1‖R <
1
C

(7.2.10)
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admits a canonical factorization f = f−f+ with respect to T (Def. 7.1.3), where
f−, f+ ∈ R and

‖f−1
− − 1‖R <

C‖f − 1‖R
1− C‖f − 1‖R

and ‖f+ − 1‖R <
C‖f − 1‖R

1− C‖f − 1‖R
.

7.2.11. Proof of part (ii) of Theorem 7.2.5: Here we use without further references
that part (i) of the theorem is already proved. Let f ∈ R be given. We use the
notations introduced in Section 7.2.9, and set

C = max
{
‖P+‖, ‖P−‖

}
.

By part (i) of Theorem 7.2.5 (proved in Section 7.2.8), f is an invertible element
of R. By condition (B), we can find a rational function q : C → A without poles
on T such that ∥∥f−1 − q

∥∥
R <

1
C‖f‖R

. (7.2.11)

By condition (A) we can moreover assume that q(z) ∈ GA for all z ∈ T, where
GA is the group of invertible elements of A. Then it follows that∥∥qf − 1

∥∥
R ≤

∥∥f∥∥R∥∥f−1 − q
∥∥
R <

1
C

.

From (7.2.11) and Lemma 7.2.10 it follows that the function qf admits a canonical
factorization

qf = g−g+ (7.2.12)

with respect to T, where g− ∈ R− and g+ ∈ R+. By part (i) of Theorem 7.2.5
then also g−1

− ∈ R− and g−1
+ ∈ R+.

It follows that g−1
− q ∈ R, and from part (i) of Theorem 7.2.5 it follows that

also q−1g− ∈ R. By condition (B) we can find a rational function p : C → A
without poles on T with ∥∥g−1

− q − p
∥∥
R <

1
C‖q−1g−‖R

. (7.2.13)

Moreover, by condition (A), we may assume that p(z) ∈ GA for all z ∈ T. From
(7.2.13) it follows that∥∥q−1g−p− 1

∥∥
R ≤

∥∥q−1g−
∥∥
R
∥∥p− g−1

− q
∥∥
R <

1
C

.

Therefore, again by Lemma 7.2.10, q−1g−p admits a canonical factorization

q−1g−p = h−h+ (7.2.14)

with respect to T, where h± ∈ R. Then

h+p−1 = h−1
− q−1g−.
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Let U be a neighborhood of T such that p and q are holomorphic and with values in
GA on U . Then this equality shows (by Theorem 1.5.4) that there is an A-valued
rational function h such that h(z) ∈ GA for all z ∈ T which is defined by

h =

{
h+p−1 on U ∩D+,

h−1
− q−1g− on U ∩D−.

For this function we have, by (7.2.12) and (7.2.14),

f = q−1g−g+ = q−1g−pp−1g+ = h−h+p−1g+ = h−hg+ on T.

This completes the proof of part (ii) of Theorem 7.2.5. �
7.2.12. Proof of part (iii) of Theorem 7.2.5: By part (ii) of the theorem, the
functions f and g can be written in the form

f = u−pu+ and g = v−qv+, (7.2.15)

where p, q are A-valued rational functions, which are holomorphic and invertible in
some neighborhood of T, u−, v− : D− ∪ {∞} → GA are continuous on D− ∪ {∞}
and holomorphic in D− ∪ {∞}, u+, v+ : D+ → GA are continuous on D+ and
holomorphic in D+, and moreover

u±1
± , v±1

± ∈ R. (7.2.16)

From (7.2.15) and (7.2.3) we get

v−pv+ = g−u−qu+g+

and therefore

u−1
− g−1

− v− = qu+g+v−1
+ p−1 and u+g+v−1

+ = q−1u−1
− g−1

− v−p−1 on T.

Since the functions p and q are A-valued rational functions, which are holomorphic
and invertible in a neighborhood of T, these equalities imply (by Theorem 1.5.4 and
the corresponding properties of the functions u± and v±) that also u−1

− g−1
− v− and

u+g+v−1
+ are A-valued rational functions, which are holomorphic and invertible

in a neighborhood of T. Hence, these functions belong to R (by property (B)). In
view of (7.2.16), this further implies that g±1

+ and g±1
− belong to R. �

7.3 Hölder continuous and differentiable functions

In this section D+ ⊆ C is a bounded, connected, open set with piecewise C1-
boundary Γ such that 0 ∈ D+, and D− := C\D+. Further, A is a Banach algebra
with unit 1, and GA is the group of invertible elements of A.

In this section we prove that each Hölder-α continuous function f : Γ→ GA,
0 < α < 1, is equivalent (Def. 7.1.3) with respect to Γ to a function, which is
holomorphic in some neighborhood of Γ. If Γ is of class Ck (Def. 3.4.1) and f is of
class Ck+α (Def. 3.4.3), then the result is correspondingly stronger. We prove:
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7.3.1 Theorem. Let 0 < α < 1, k ∈ N, and let f : Γ → GA be a function such
that: If k = 0, then f is of class Cα (Def. 2.1.6). If k ≥ 1, then Γ is of class Ck

(Def. 3.4.1) and f is of class Ck+α (Def. 3.4.3). Then:

(i) The function f can be written in the form

f = f−hf+ on Γ, (7.3.1)

where f− : D− ∪ {∞} → GA is continuous on D− ∪ {∞} and holomorphic
in D− ∪ {∞}, f+ : D+ → GA is continuous on D+ and holomorphic in D+,
and h is a holomorphic GA-valued function in some neighborhood of Γ.

(ii) If two functions f− and f+ are as in part (i), then, automatically, f− is of
class Ck+α on D−, and f+ is of class Ck+α on D+.

The proof of this theorem will be given at the end of the section.

7.3.2 Definition. Let 0 ≤ α < 1.
Then we denote by (Cα)A(Γ) the Banach algebra of all Hölder-α continuous

functions f : Γ→ A, endowed with the norm ‖f‖Γ,α (Def. 2.1.6).
If Γ is of class Ck, k ∈ N∗, then we denote by (Ck+α)A(Γ) the algebra of all

functions f : Γ → A of class Ck+α (Def. 3.4.3). In (Ck+α)A(Γ) we introduce the
following norm

‖fg‖Γ,k+α :=
k∑

n=0

1
n!
‖(fg)(n)‖Γ,α. (7.3.2)

7.3.3 Lemma. Suppose Γ is of class Ck, k ∈ N∗, and let 0 ≤ α < 1. Then
(Ck+α)A(Γ), endowed with the norm (7.3.2), is a Banach algebra.

Proof. It is clear that (Ck+α)A(Γ) is a Banach space with the norm (7.3.2). Let
f, g ∈ (Ck+α)A(Γ). It remains to prove that

‖fg‖Γ,k+α ≤ ‖f‖Γ,k+α‖g‖Γ,k+α. (7.3.3)

As (Cα)A(Γ) is a Banach algebra with respect to ‖ · ‖Γ,α, we have

‖fg‖Γ,k+α =
k∑

n=0

1
n!
‖(fg)(n)‖Γ,α

=
k∑

n=0

1
n!

∥∥∥∥ n∑
j=1

(
n

j

)
f (j)f (n−j)

∥∥∥∥
Γ,α

=
k∑

n=0

∥∥∥∥ n∑
j=1

1
j!(n− j)!

f (j)f (n−j)

∥∥∥∥
Γ,α

≤
k∑

n=0

n∑
j=1

1
j!(n− j)!

‖f (j)‖Γ,α‖f (n−j)‖Γ,α

=
∑

0≤j≤n≤k

1
j!(n− j)!

‖f (j)‖Γ,α‖f (n−j)‖Γ,α.

(7.3.4)
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On the other hand

‖f‖Γ,k+α‖‖g‖Γ,k+α =
( k∑

n=0

1
n!
‖f (n)‖Γ,α

)( k∑
n=0

1
n!
‖g(n)‖Γ,α

)

=
k∑

n,m=0

1
n!m!

‖f (n)‖Γ,α‖f (m)‖Γ,α

(7.3.5)

Comparing (7.3.4) and (7.3.5) we get (7.3.3). �

7.3.4 Lemma. Let 0 ≤ α < 1 and k ∈ N. If k ≥ 1, then we additionally assume
that Γ is of class Ck. Let f, g ∈ (Ck+α)A(Γ). Then

‖fg‖Γ,k+α ≤ ‖f‖Γ,k‖g‖Γ,k+α + ‖f‖Γ,k+α‖g‖Γ,k. (7.3.6)

Proof. For all z, w ∈ Γ with z 	= w, we have∥∥f(z)g(z)− f(w)g(w)
∥∥

|z − w|α =

∥∥f(z)g(z)− f(z)g(w) + f(z)g(w)− f(w)g(w)
∥∥

|z − w|α

≤
∥∥f(z)∥∥∥∥g(z)− g(w)

∥∥
|z − w|α +

∥∥f(z)− f(w)
∥∥

|z − w|α
∥∥g(w)∥∥

≤
∥∥f∥∥

Γ,0

∥∥g(z)− g(w)
∥∥

|z − w|α +

∥∥f(z)− f(w)
∥∥

|z − w|α
∥∥g∥∥

Γ,0
.

Hence

‖fg‖Γ,α = ‖fg‖Γ,0 + sup
z,w∈Γ,z 
=w

∥∥f(z)g(z)− f(w)g(w)
∥∥

|z − w|α

≤ ‖fg‖Γ,0 + ‖f‖Γ,0 sup
z,w∈Γ,z 
=w

∥∥g(z)− g(w)
∥∥

|z − w|α + sup
z,w∈Γ,z 
=w

∥∥f(z)− f(w)
∥∥

|z − w|α ‖g‖Γ,0

= ‖f‖Γ,0

(
‖g‖Γ,0 + sup

z,w∈Γ,z 
=w

∥∥g(z)− g(w)
∥∥

|z − w|α

)
+ sup

z,w∈Γ,z 
=w

∥∥f(z)− f(w)
∥∥

|z − w|α ‖g‖Γ,0

≤ ‖f‖Γ,0‖g‖Γ,α + ‖f‖Γ,α‖g‖Γ,0,

which is the assertion of the lemma for k = 0. If k ≥ 1, then this further implies

‖fg‖Γ,k+α =
k∑

n=0

1
n!
‖(fg)(n)‖Γ,α =

k∑
n=0

∥∥∥∥ n∑
j=1

1
j!(n− j)!

f (j)f (n−j)

∥∥∥∥
Γ,α

≤
∑

0≤j≤n≤k

1
j!(n− j)!

(∥∥f (j)
∥∥

Γ,α

∥∥f (n−j)
∥∥

Γ,α
+
∥∥f (j)

∥∥
Γ,0
‖f (n−j)

∥∥
Γ,0

)
.

(7.3.7)
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On the other hand

‖f‖Γ,k‖g‖Γ,k+α + ‖f‖Γ,k+α‖‖g‖Γ,k

=
( k∑

n=0

1
n!
‖f (n)‖Γ,k

)( k∑
n=0

1
n!
‖g(n)‖Γ,α

)

+
( k∑

n=0

1
n!
‖f (n)‖Γ,α

)( k∑
n=0

1
n!
‖g(n)‖Γ,0

)

=
k∑

n,m=0

1
n!m!

(
‖f (n)‖Γ,k‖f (m)‖Γ,α + ‖f (n)‖Γ,α‖f (m)‖Γ,k

)
.

(7.3.8)

Comparing (7.3.7) and (7.3.8) we get (7.3.6). �
7.3.5 Lemma. Let 0 < β < α < 1 and k ∈ N, where, for k ≥ 1, we assume that
Γ is of class Ck. Then there exist constants δ > 0 and C < ∞ such that each
f : Γ→ GA which belongs to (Ck+α)A(Γ) and which satisfies the estimate

‖f − 1‖Γ,k+β < δ, (7.3.9)

admits a canonical factorization f = f−f+ with respect to Γ such that f− is of
class Ck+α on D−, and f+ is of class Ck+α on D+. Moreover

‖f± − 1‖Γ,k+β ≤ C‖f − 1‖Γ,k+β < 1. (7.3.10)

Proof. Let γ = α, β. Then we denote by (Ck+γ
+ )A(Γ) the algebra of all holomorphic

functions f : D+ → A, which are of class Ck+γ on D+ (Def. 3.4.4), and by (Ck+γ
− )A0

we denote the algebra of all holomorphic functions f : D− ∪ {∞} → A with
f(∞) = 0, which are of class Ck+γ on D−. It follows from the maximum principle
for holomorphic functions and from theorems 3.3.2 and 3.4.5 that these algebras
are closed subalgebras of the Banach algebra (Ck+γ)A(Γ), endowed with the norm
‖·‖Γ,k+γ . By Liouville’s theorem, (C

k+γ
+ )A(Γ)∩(Ck+γ

− )A0 = {0} (Proposition 3.1.3),
and again by theorems 3.3.2 and 3.4.5, each f ∈ (Ck+γ)A(Γ) can be written in the
form f = f+ + f− with f+ ∈ (Ck+γ

+ )A(Γ) and f− ∈ (Ck+γ
− )A0 . Hence (Ck+γ)A(Γ) is

the direct sum of (Ck+γ
+ )A(Γ) and (Ck+γ

− )A0 .
Now we could apply Lemma 5.2.1 or Lemma 5.2.3. This would give constants

δ > 0 and C <∞ with the following property: If f ∈ (Ck+α)A(Γ) satisfies (7.3.9),
then f admits a canonical factorization f = f+f− with f+ ∈ (Ck+β

+ )A(Γ) and
f− − 1 ∈ (Ck+β

− )A0 (Γ). But we want to prove that the factors f± also of class
Ck+α. Although this does not follow from lemmas 5.2.1 and 5.2.3, the main idea
of the proof of these lemmas will be used also here, however with more care to the
estimates.

Let P+ be the linear projector from (Ck+β)A(Γ) to (Ck+β
+ )A(Γ) parallel to

(Ck+β
− )A0 (Γ), and let P− := I−P+. As (Ck+β)A(Γ) is the direct sum of (Ck+β

+ )A(Γ)
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and (Ck+β
− )A0 , these projectors are continuous. Moreover, the restriction of these

projectors to (Ck+α)A(Γ) are continuous with respect to the norm ‖·‖Γ,k+α. There-
fore, we can find a constant C <∞ with

‖P±f‖Γ,k+β ≤ C‖f‖Γ,k+β if f ∈ (Ck+β)A(Γ),

‖P±f‖Γ,k+α ≤ C‖f‖Γ,k+α if f ∈ (Ck+α)A(Γ).
(7.3.11)

We set
δ =

1
4C

and prove that these constants δ and C have the required property.
Let f ∈ (Ck+α)A(Γ) with (7.3.9) be given. Set a = 1− f . Then

‖a‖Γ,k+β < δ =
1
4C

. (7.3.12)

We define a sequence a−n ∈ (Ck+α
− )A0 (Γ), n ∈ N∗, setting

a−1 = P−a and a−n = P−(aa−n−1) for n ≥ 2.

We claim that then, for all n ∈ N∗,

‖a−n ‖Γ,k+β ≤
C‖a‖Γ,k+β

2n−1
and ‖a−n ‖Γ,k+α ≤

C‖a‖Γ,k+α

2n−1
. (7.3.13)

Indeed, from (7.3.11) we get

‖a−1 ‖Γ,k+β = ‖P−a‖Γ,k+β ≤ C‖a‖Γ,k+β ,

and
‖a−1 ‖Γ,k+α = ‖P−a‖Γ,k+α ≤ C‖a‖Γ,k+α,

which proves (7.3.13) for n = 1. Now we assume that m ∈ N∗ and (7.3.13) is
already proved for n = m. Together with (7.3.11) and (7.3.12) this yields

‖a−m+1‖Γ,k+β = ‖P−(aa−m)‖Γ,k+β

≤ C‖a‖Γ,k+β‖a−m‖Γ,k+β ≤
C2‖a‖2Γ,k+β

2m−1
≤

C‖a‖Γ,k+β

2m
,

and, taking into account also Lemma 7.3.4,

‖a−m+1‖Γ,k+α = ‖P−(aa−m)‖Γ,k+α ≤ C‖aa−m‖Γ,k+α

≤ C
(
‖a‖Γ,k+β‖a−m‖Γ,k+α + ‖a‖Γ,k+α‖a−m‖Γ,k+β

)
≤ C2

(‖a‖Γ,k+β‖a‖Γ,k+α

2m−1
+
‖a‖Γ,k+α‖a‖Γ,k+β

2m−1

)
= C2

‖a‖Γ,k+β‖a‖Γ,k+α

2m−2
≤

C‖a‖Γ,k+α

2m
,
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i.e., (7.3.13) holds for n = m+ 1.
From (7.3.13) it follows that the series

a− :=
∞∑

n=1

a−n

converges absolutely both in (Ck+β
− )A0 (Γ) and in (Ck+α

− )A0 (Γ), where (taking into
account also (7.3.12))

‖a−‖Γ,k+β ≤ 2C‖a‖Γ,k+β <
1
2
. (7.3.14)

Define a second sequence a+
n ∈ (Ck+α

+ )A(Γ), n ∈ N∗, setting

a+
1 = P+a and a+

n = P+(aa−n−1) = if n ≥ 2.

Then it follows from (7.3.11), (7.3.12) and (7.3.13) that

‖a+
n ‖Γ,k+β ≤

C‖a‖Γ,k+β

2n−1
, n ∈ N∗,

and, taking into account also Lemma 7.3.4,

‖a+
n ‖Γ,k+α ≤ C‖aa−n−1‖Γ,k+α≤C

(
‖a‖Γ,k+α‖a−n−1‖Γ,k+β + ‖a‖Γ,k+β‖a−n−1‖Γ,k+α

)
≤ C2

(‖a‖Γ,k+α‖a‖Γ,k+β

2n−2
+
‖a‖Γ,k+β‖a‖Γ,k+α

2n−2

)
=

C2‖a‖Γ,k+β‖a‖Γ,k+α

2n−3
≤

C‖a‖Γ,k+α

2n−1
.

Hence the series

a+ :=
∞∑

n=1

a+
n

converges absolutely both in (Ck+β
+ )A(Γ) and in (Ck+α

+ )A(Γ), where (taking into
account also (7.3.12))

‖a+‖Γ,k+β ≤ 2C‖a‖Γ,k+β <
1
2
. (7.3.15)

From (7.3.14) and (7.3.15) it follows in particular that 1 − a−(z) ∈ GA for
all z ∈ D− ∪ {∞} and that 1 − a+(z) ∈ GA for all z ∈ D+. Therefore, setting
f− = (1 + a−)−1, we get a function f− : D− ∪ {∞} → GA, which is holomorphic
in D− ∪{∞} and of class Ck+α on D−, and setting f+ = 1− a+ we get a function
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f+ : D+ → GA, which is holomorphic in D+ and of class Ck+α on D+. By (7.3.14)
and (7.3.15) these functions satisfy (7.3.14). Moreover

f−1
− f = (1 + a−)(1− a) = 1 +

∞∑
n=1

a−n − a−
∞∑

n=1

aa−n

= 1 + a−1 +
∞∑

n=2

a−n − a−
∞∑

n=2

aa−n−1 = 1 + (a−1 − a) +
∞∑

n=2

(a−n − aa−n−1).

Since
a−1 − a = P−a− a = −P+a = a+

1

and

a−n − aa−n−1 = P−(aa−n−1)− aa−n−1 = −P+(aa−n−1) = −a+
n for n ≥ 2,

this implies that

f−1
− f = 1−

∞∑
n=1

a+
n = 1− a+ = f+,

i.e., f = f−f+. �

Proof of Theorem 7.3.1. Let δ > 0 be the constant from Lemma 7.3.5. Then, by
the approximation Theorem 3.5.1, we can find a neighborhood U of Γ and a
holomorphic function q : U → GA such that∥∥q−1f − 1

∥∥
Γ,k+β

< δ.

Then, by Lemma 7.3.5, q−1f admits a canonical factorization q−1f = g−g+ with
respect to Γ such that g± is of class Ck+α on D±. Now, again by Theorem 3.5.1 and
by Lemma 7.3.5, we can find a neighborhood V of Γ and a holomorphic function
p : V → GA such that ∥∥qg−p−1 − 1

∥∥
Γ,k+β

< δ

and, hence, qg−p−1 admits a canonical factorization qg−p−1 = h−h+ with respect
to Γ such that h± is of class Ck+α on D±. Then

h+p = h−1
− qg− on Γ.

This implies (by Theorem 1.5.4) that there is a holomorphic function h on U ∩ V
defined by

h =

{
h+p on U ∩ V ∩D+

h−1
− qg− on U ∩ V ∩D−.

Then
f = qg−g+ = qg−p−1pg+ = h−h+pg+ = h−hg+,
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which is a representation of f as required in part (i) of the theorem, where, addi-
tionally, we already know that the factors h− and g+ are of class Ckα on D− and
D+ respectively.

To prove part (ii), we assume that we have some other representation of f in
the form f = h̃−h̃g̃+, where h̃− : D−∪{∞} → GA is continuous on D−∪{∞} and
holomorphic in D− ∪ {∞}, g̃+ : D+ → GA is continuous on D+ and holomorphic
in D+, and h̃ is holomorphic in some neighborhood of Γ. Then

h̃−h̃g̃+ = h−hg+

and therefore
h−1
− h̃−h̃ = hg+g̃−1

+ on Γ.

The latter equality shows (by Theorem 1.5.4) that the two sides of this equality
define holomorphic function r in some neighborhood U of Γ such that

h̃− = h−rh̃−1 and g̃+ = r−1hg+.

Since the functions on the right-hand side of these relations are of class Ckα on
D− ∩ U and D+ ∩ U respectively, it follows that h̃− and g̃+ and of class Ckα on
D− and D+, respectively. �

7.4 Reduction of the factorization problem to functions,

holomorphic and invertible on C∗

In this section, D+ ⊆ C is a bounded, connected, open set with piecewise C1-
boundary Γ such that 0 ∈ D+, and D− := C \ D+. Further, throughout this
section, A is a Banach algebra with unit 1, and G is a (possibly not open) subgroup
of the group of invertible elements of A.

7.4.1 Lemma. Let P1 = C ∪ {∞} be the Riemann sphere (see the beginning of
Section 5.10), let p be an arbitrary point in P1 \ Γ, and let

D′+ := D+ and D′− :=
(
D− ∪ {∞}

)
\ {p} if p ∈ D− ∪ {∞} ,

D′+ := D+ \ {p} and D′− := D− ∪ {∞} if p ∈ D+ .

Denote by D′′− and D′′+ the closures in P1 \ {p} of D′− and D′+ , respectively.2

Let f : Γ → G be a continuous function which admits local factorizations
with respect to Γ and G (Def. 7.1.3), and suppose that at least one of the following
conditions is satisfied:

(I) G is open in A.

2If p = ∞, then D′′
− = D− and D′′

+ = D+. If p ∈ D−, then D′′
− =

(
D− ∪ {∞}) \ {p} and

D′′
+ = D+. If p ∈ D+, then D′′

− = D− ∪ {∞} and D′′
+ = D+ \ {p}.
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(II) A = L(E) for some Banach space E, and G = G∞(E) (Def. 5.12.1).

(III) A = L(E) for some Banach space E, G = Gω(E) (Def. 5.12.1).

Then there exist continuous functions f− : D′′− → G and f+ : D′′+ → G, which are
holomorphic in D′− and D′+, respectively, such that

f = f−f+ on Γ . (7.4.1)

Proof. By hypothesis, we can find open sets U1, . . . , Um ⊆ P1 \ {p}, continuous
functions f+

j : Uj ∩D′′+ → G, which are holomorphic in Uj ∩D′+, and continuous
functions f−j : Uj ∩ D′′− → G, which are holomorphic in Uj ∩ D′−, such that
Γ ⊆ U1 ∪ . . . ∪ Um and

f = f−j f+
j on Uj ∩ Γ , 1 ≤ j ≤ m.

Set
U0 =

(
P1 \ {p}

)
\ Γ and f+

0 = f−0 = 1 on U0 .

Then, for all 0 ≤ j, k ≤ m with Uj ∩ Uk ∩ Γ 	= ∅,

f+
j

(
f+

k

)−1 =
(
f−j

)−1
f−k on Uj ∩ Uk ∩ Γ. (7.4.2)

Indeed, for 1 ≤ j, k ≤ m this is clear, as f−j f+
j = A = f−k f+

k on Uj ∩ Uk ∩ Γ,
and, for j = 0 or k = 0 this is trivial, because U0 ∩ Γ = ∅. Now, by (7.4.2),
there is a well-defined family gjk ∈ CG(Uj ∩ Uk), 0 ≤ j, k ≤ m, such that, for all
0 ≤ j, k ≤ m,

gjk =

{
f+

j

(
f+

k

)−1 on Uj ∩ Uk ∩D′′+ if Uj ∩ Uk ∩D
′
+ 	= ∅,(

f−j
)−1

f−k on Uj ∩ Uk ∩D′′− if Uj ∩ Uk ∩D′′− 	= ∅.
(7.4.3)

On (Uj ∩ Uk) \ Γ, these functions are holomorphic, since the functions f±j and(
f±j

)−1 are holomorphic on Uj ∩D±j . Hence, by Theorem 1.5.4,

gjk ∈ OG(Uj ∩ Uk) , 0 ≤ j, k ≤ m.

Moreover it is clear from (7.4.3) that, for all 0 ≤ j, k, l ≤ m with Uj ∩Uk ∩Ul 	= ∅,

gjkgkl = gjl on Uj ∩ Uk ∩ Ul ,

i.e.,, the family {gjk}0≤j,k≤m is a
(
{U0, . . . , Um},OG

)
-cocycle (Def. 5.6.1). Since

U0 ∪ . . . ∪ Um = P1 \ {p} is simply connected, by theorems 5.6.3 and 5.12.5, this
cocycle is OG-trivial. Hence we have a family hj ∈ OG(Uj), 0 ≤ j ≤ m, with

gjk = hjh
−1
k on Uj ∩ Uk
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for all 0 ≤ j, k ≤ m with Uj ∩ Uk 	= ∅. Then it follows from (7.4.3) that, for all
0 ≤ j, k ≤ m,

hjh
−1
k =

{(
f−j

)−1
f−k on Uj ∩ Uk ∩D′′− if Uj ∩ Uk ∩D′′− 	= ∅,

f+
j

(
f+

k

)−1 on Uj ∩ Uk ∩D′′+ if Uj ∩ Uk ∩D′′+ 	= ∅,

and therefore

f−j hj = f−k hk on Uj ∩ Uk ∩D′′− if Uj ∩ Uk ∩D′′− 	= ∅

and
h−1

j f+
j = h−1

k f+
k on Uj ∩ Uk ∩D′′+ if Uj ∩ Uk ∩D′′+ 	= ∅.

Hence, there is a well-defined continuous function f− : D′′− → G, which is holo-
morphic in D′′−, and a well-defined continuous function f+ : D′′+ → G, which is
holomorphic in D′+, such that

f−
∣∣
Uj∩D′′

−
= f−j hj , 0 ≤ j ≤ m , (7.4.4)

f+

∣∣
Uj∩D′′

+
= h−1

j f+
j , 0 ≤ j ≤ m . (7.4.5)

Since f = f−j f+
j on Uj ∩ Γ, 1 ≤ j ≤ m, it follows from (7.4.4) and (7.4.5) that

(7.4.1) holds. �
7.4.2 Theorem. Let f : Γ→ G be a continuous function which admits local factor-
izations with respect to Γ and G (Def. 7.1.3), and suppose that at least one of the
following conditions is satisfied:

(I) G is open in A.

(II) A = L(E) for some Banach space E, and G = G∞(E) (Def. 5.12.1).

(III) A = L(E) for some Banach space E, and G = Gω(E) (Def. 5.12.1).

Then there exists a holomorphic function h : C∗ → G such that f and h are
equivalent with respect to Γ and G.

Proof. Setting p =∞ in Lemma 7.4.1, we get continuous functions h− : D− → G
and f+ : D+ → G, which are holomorphic in D− and D+, respectively, such that

f = h−f+ on Γ. (7.4.6)

Applying Lemma 7.4.1 with p = 0 to h−, we get continuous functions f− : D− ∪
{∞} → G and h : D+ \ {0} → G, which are holomorphic in D− ∪ {∞} and
D+ \ {0}, respectively, such that

h− = f−h on Γ (7.4.7)

and therefore
h = f−1

− h− on Γ .
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Since f−1
− and h− are continuous on D− and holomorphic in D−, from the latter

relation it follows that h admits a continuous G-valued extension to C\{0}, which
is holomorphic in D−, and which we also denote by h. Since h is also holomorphic
on D+ \{0}, it follows from Theorem 1.5.4 that h is holomorphic on C\{0}. From
(7.4.6) and (7.4.7) it follows that f and h are equivalent. �

7.5 Factorization of holomorphic functions close to the

unit

Let D+ ⊆ C be a bounded, connected, open set with piecewise C1-boundary Γ
such that 0 ∈ D+. Set D− = C \ D+. Further, let A be a Banach algebra with
unit 1, and let G be an open subgroup of the group of invertible elements of A.
Here we prove the following

7.5.1 Theorem. Let U be a bounded neighborhood of Γ, and let ε > 0. Then there
exists δ > 0 such that, for each g ∈ OA(U) (Def. 5.4.5) with

max
z∈U

‖g(z)‖ < δ , (7.5.1)

there exist g− ∈ OA(D− ∪ U ∪ {∞}) and g+ ∈ OA(D+ ∪ U) such that

max
z∈D+∪U

‖g+(z)‖ < ε , max
z∈D−∪U∪{∞}

‖g−(z)‖ < ε

and
(1 + g) = (1 + g−)(1 + g+) on U.

Proof. Set U+ = D+∪U and U− = D−∪U ∪{∞}. We consider OA(U−), OA(U+)
and OA(U) as Banach algebras endowed with the maximum norm. By Theorem
3.7.3, each function g ∈ OA(U) can be written in the form g = g++ g− with g± ∈
OA(U±). Therefore the assertion follows from the factorization Lemma 5.2.1. �

7.6 Reduction of the factorization problem

to polynomials in z and 1/z

In this section, D+ ⊆ C is a bounded, connected, open set with piecewise C1-
boundary Γ such that 0 ∈ D+, and D− = C \D+.

7.6.1 Theorem. Let A be a Banach algebra with unit, and let GA be the group of
invertible elements of A. Let 0 < r < R < ∞ such that

D+ ⊆W :=
{

z ∈ C

∣∣∣ r < |z| < R
}

, (7.6.1)

and let f : Γ → GA be a continuous function which admits local factorizations
with respect to Γ and GA (Def. 7.1.3). Then:
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(i) The function f is equivalent with respect to Γ and GA (Def. 7.1.3) to a
function h of the form

h(z) =
M∑

n=N

znhn , N,M ∈ Z, (7.6.2)

such that h(z) ∈ GA for all z ∈W .

(ii) The function f is equivalent with respect to Γ and GA to a function h such
that h−1 is of the form

h−1(z) =
M∑

n=N

znhn , N,M ∈ Z, (7.6.3)

and h−1(z) ∈ GA for all z ∈W .

Proof. It is sufficient to prove part (i). Part (ii) then follows by changing the order
of multiplication in A and applying part (i) to f−1. Set

W− =
{

z ∈ C

∣∣∣ r < |z|
}

and W+ =
{

z ∈ C

∣∣∣ |z| < R
}

.

Then, by Theorem 7.5.1, for some ε > 0, the following holds:

(*) For each ϕ ∈ OGA(W ) with maxz∈W ‖ϕ(z) − 1‖ < ε, there exist ϕ+ ∈
OG(W+) and ϕ− ∈ OGA(W− ∪ {∞}) with ϕ = ϕ−ϕ+ on W .

By Theorem 7.4.2 we may assume that f is a GA-valued holomorphic function on
C \ {0}. Let

f(z) =
∞∑

n=−∞
znfn

be the Laurent expansion of f at zero. Choose integers K < M such that the
function

u(z) :=
M∑

n=K

znfn

is so close to f over W that u(z) ∈ GA for all z ∈W and

max
z∈W

∥∥u−1(z)f(z)− 1
∥∥ < ε.

Then, by statement (*), we can find f+ ∈ OG(W+) and g− ∈ OG
(
W− ∪ {∞}

)
such that u−1f = g−f+ on W . Hence the function ff−1

+ = ug− has a Laurent
expansion of the form

f(z)f−1
+ (z) =

M∑
n=−∞

znan . (7.6.4)
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Choose an integer N such that the function

v(z) :=
M∑

n=N

znan

is so close to ff−1
+ over W that v(z) ∈ GA for all z ∈W and

max
z∈W

∥∥f(z)f−1
+ (z)v−1(z)− 1

∥∥ < ε.

Then, again by statement (*), we can find g+ ∈ OGA(W+) and f− ∈
OGA

(
W− ∪ {∞}

)
such that ff−1

+ v−1 = f−g+ on W . Set

h = f−1
− ff−1

+ .

Then h ∈ OGA(W ), as f is holomorphic and GA-valued on C \ {0}. Moreover,
since h = g+v, the Laurent expansion of h is of the form

h(z) =
∞∑

n=N

znhn .

On the other hand, as h = f−1
− ff−1

+ , it follows from (7.6.4) that the Laurent
expansion of h is of the form

h(z) =
M∑

n=−∞
znhn .

Hence, the Laurent expansion of h is of the form

h(z) =
M∑

n=N

znhn .

As f = f−hf+, this completes the proof. �

7.7 The finite dimensional case

In this section, L(n, C), n ∈ N∗, is the algebra of complex n×n-matrices, GL(n, C)
is the group of invertible complex n×n-matrices, D+ ⊆ C is a bounded, connected,
open set with piecewise C1-boundary Γ such that 0 ∈ D+, and D− = C\D+. Here
we prove the following theorem:

7.7.1 Theorem. Let A : Γ→ GL(n, C) be a continuous function which admits local
factorizations with respect to Γ. Then A admits a factorization with respect to Γ.
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Proof. By Theorem 7.6.1 (i) we may assume that A is of the form

A(z) =
M∑

j=N

zjAj , Aj ∈ L(n, C) , (7.7.1)

where −∞ < N ≤ M < ∞. We need here the following definition: For κ ∈ Z and
x ∈ Cn \ {0}, a pair (ϕ−, ϕ+) is called a κ-section of x if ϕ+ : D+ → Cn and
ϕ− : D− ∪ {∞} → Cn are holomorphic functions such that

zκϕ−(z) = A(z)ϕ+(z) for all z ∈ Γ and ϕ+(0) = x.

If κ ≥M , then, for each x ∈ Cn \ {0}, there exists a κ-section of x, namely

ϕ+(z) := x and ϕ−(z) := z−κA(z)x =
M−κ∑

j=N−κ

zjAj+κx .

On the other hand, if κ ≤ N − 1, then no x ∈ Cn \ {0} has a κ-section. Indeed,
let κ ≤ N − 1, and let (ϕ−, ϕ+) be a κ-section of a vector x ∈ Cn \ {0}. Then

ϕ−(z) = z−κ

( M∑
j=N

zjAj

)
ϕ+(z) for all z ∈ Γ .

Then the left-hand side of this equation is holomorphic on D− ∪ {∞} and, as
j − κ ≥ 1 for N ≤ j ≤ M , the right-hand side is holomorphic on D+. Hence, by
Liouville’s theorem, both sides vanish identically. It follows that

A(z)ϕ+(z) =
( M∑

j=N

zjAj

)
ϕ+(z) = 0 for z ∈ Γ .

Since the values of A on Γ are invertible, this implies that ϕ+ = 0 on Γ. Hence, by
uniqueness of holomorphic functions, ϕ+ ≡ 0 on D+. In particular x = ϕ+(0) = 0.

Hence, for each x ∈ Cn \ {0}, there exists a smallest integer κ such that x
has a κ-section. We denote this integer by κ(x). Note that, for each κ ∈ Z, the set{

0
}
∪
{
x ∈ Cn \ {0}

∣∣ κ(x) ≤ κ
}

is a linear subspace of Cn. Therefore, we can find a basis e1, . . . , en of Cn such
that

κ(en) = min
x∈Cn\{0}

κ(x),

κ(ej) = min
x∈Cn\span(ej+1,...,en)

κ(x) for 1 ≤ j ≤ n− 1.
(7.7.2)
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Fix a κ(ej)-section (ϕ−j , ϕ+
j ) of ej for each j. Denote by A+ and A− the matrices

formed by the columns ϕ+
j and ϕ−j , respectively, and let Δ be the diagonal matrix

with diagonal zκ(e1), . . . , zκ(en). Then

ΔA− = AA+ , (7.7.3)

and A+(0) is the matrix with the columns e1, . . . , en. It remains to prove that
A+(z) is invertible for all z ∈ D+, and A−(z) is invertible for all z ∈ D− ∪ {∞}.
To prove this we assume the contrary.

First assume that the matrix A+(z0) is not invertible for some z0 ∈ D+. Since
A+(0) is invertible, z0 	= 0. Then there exist 1 ≤ k ≤ n and numbers λk, . . . , λn

with
n∑

j=k

λjϕ
+
j (z0) = 0 and λk 	= 0,

and there is a holomorphic function ψ+ on D+ with

ψ+(z) =
1

z − z0

n∑
j=k

λjϕ
+
j (z) for z ∈ D+ \ {z0} .

Moreover, since κ(e1) ≥ . . . ≥ κ(en), there is a holomorphic function ψ− on
D− ∪ {∞} with

ψ−(z) =
z

z − z0

n∑
j=k

λjz
κ(ej)−κ(ek)ϕ−j (z) for z ∈ D− .

Since (ϕ−j , ϕ+
j ) is a κ(ej)-section of ej , we get

A(z)ψ+(z) =
1

z − z0

n∑
j=k

λjA(z)ϕ+
j (z) =

1
z − z0

n∑
j=k

λjz
κ(ej)ϕ−j (z)

= zκ(ek)−1 z

z − z0

n∑
j=k

λjz
κ(ej)−κ(ek)ϕ−j (z) = zκ(ek)−1ψ−(z) for z ∈ Γ.

Hence (ψ−, ψ+) is a (κ(ek)− 1)-section of the vector

ψ+(0) = − 1
z0

n∑
j=k

λjej .

Since λk 	= 0, this vector belongs to Cn \ span(ek+1, . . . , en), which is a contradic-
tion to (7.7.2).

Now we assume that the matrix A−(z0) is not invertible for some z0 ∈ D− ∪
{∞}. Then there exist 1 ≤ k ≤ n and numbers λk, . . . , λn with

n∑
j=k

λjϕ
−
j (z0) = 0 and λk 	= 0,
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and there is a holomorphic function ψ− on D− ∪ {∞} with

ψ−(z) =

⎧⎪⎪⎨⎪⎪⎩
z

z−z0

n∑
j=k

λjϕ
−
j (z) if z0 ∈ D− and z ∈ D− \ {z0} ,

z
n∑

j=k

λjϕ
−
j (z) if z0 =∞ and z ∈ D− .

Moreover, since κ(e1) ≥ . . . ≥ κ(en), there is a holomorphic function ψ+ on D+

with

ψ+(z) =

⎧⎪⎪⎨⎪⎪⎩
1

z−z0

n∑
j=k

λjz
κ(ek)−κ(ej)ϕ+

j (z) if z0 ∈ D− and z ∈ D+ ,

n∑
j=k

λjz
κ(ek)−κ(ej)ϕ+

j (z) if z0 =∞ and z ∈ D+ .

Using again that (ϕ−j , ϕ+
j ) is a κ(ej)-section of ej , for all z ∈ Γ we get

A(z)ψ+(z) =

⎧⎪⎪⎨⎪⎪⎩
1

z−z0

n∑
j=k

λjz
κ(ek)ϕ−j (z) = zκ(ek)−1ψ−(z) if z0 ∈ D− ,

n∑
j=k

λjz
κ(ek)ϕ−j (z) = zκ(ek)−1ψ−(z) if z0 =∞ .

Hence (ψ−, ψ+) is a (κ(ek)−1)-section of the vector ψ+(0). Letm be the index with
k ≤ n ≤ m such that κ(ej) = κ(ek) for k ≤ j ≤ m and, if m < n, κ(em+1) < κ(ek).
Then

ψ+(0) =

⎧⎪⎪⎨⎪⎪⎩
− 1

z0

m∑
j=k

λjej if z0 ∈ D− ,

m∑
j=k

λjej if z0 =∞ .

Since λk 	= 0, in both cases ψ+(0) belongs to Cn \ span(ek+1, . . . , en), which is
again a contradiction to (7.7.2). �

7.8 Factorization of G∞(E)-valued functions

In this section E is a Banach space with dimE = ∞, D+ ⊆ C is a bounded,
connected, open set with piecewise C1-boundary Γ such that 0 ∈ D+, and D− =
C \D+.

Here we study the factorization problem for functions with values in G∞(E)
or Gω(E) (Def. 5.12.1). For G∞(E) we obtain the complete solution (Theorem
7.8.6) at the end of this section. For Gω(E) this is more difficult and can be done
only later (Theorem 8.2.2). But a part of the argument works for both G∞(E) and
Gω(E). We start with these points of the argument.
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7.8.1 Proposition. Let ℵ =∞, ω, and let A : Γ→ Gℵ(E) be a continuous function
which admits a factorization with respect to Γ. Let A = A−ΔA+ be a factoriza-
tion of A with respect to Γ and GL(E). Assume moreover that A−(∞) = I (see
Proposition 7.1.6). Then, automatically, the values of A− and A+ belong to Gℵ(E).
Proof. Denote by 1 the unit element in the factor algebra L(E)/Fℵ(E), and let
π : L(E) → L(E)/Fℵ(E) be the canonical map. Then π(A) = π(Δ) = 1 and
therefore

1 = π(A−)π(A+) on Γ and π
(
A−(∞)

)
= 1 .

Hence
π
(
A−1
−
)
= π

(
A+

)
on Γ (7.8.1)

and
π
(
A−1
− (∞)

)
= 1 . (7.8.2)

By Theorem 1.5.4 the two sides of (7.8.1) define a holomorphic function f : C ∪
{∞} → L(E)/Fℵ(E). By (7.8.2), f(∞) = 1. It follows from Liouville’s theorem
that f ≡ 1, i.e.,

π
(
A−1
−
)
= 1 on D− ∪ {∞} and π

(
A+

)
= 1 on D+ .

This means that the values of A− and A+ belong to Gℵ(E). �
7.8.2 Theorem. Let ℵ =∞, ω, and let G

(
L(E)/Fℵ(E)

)
be the group of invertible

elements of the factor algebra L(E)/Fℵ(E), and let

π : L(E)→ L(E)/Fℵ(E)

be the canonical map. Further, let W ⊆ C be an open set, and let f : D →
G
(
L(E)/Fℵ(E)

)
be holomorphic. Then there exists a holomorphic function A :

D → GL(E) such that

f(z) = π
(
A(z)

)
for all z ∈W. (7.8.3)

Proof. We first prove this locally. Consider an arbitrary point z0 ∈W . Let

f(z) =
∞∑

n=0

(z − z0)nfn

be the Taylor expansion of f at z0. Since π is bounded and surjective, then, by the
Banach open mapping theorem, we can find operators Fn ∈ L(E) with π(Fn) = fn

and ‖Fn‖ < 2‖fn‖. Let U ⊆W be an open disc around z0. Then, setting

F (z) =
∞∑

n=0

(z − z0)nFn , z ∈ U,

we get a holomorphic function F : U → L(E) with π
(
F (z)

)
= f(z) for all z ∈ U .

Since f(z0) is invertible, then F0 is a Fredholm operator with index zero. Therefore
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we can find a finite dimensional operator K in E such that F0 +K is invertible.
Choose a neighborhood V ⊆ U so small that F (z) +K is invertible for all z ∈ V .
Setting A0(z) = F (z) + K, z ∈ V , we obtain a holomorphic function A0 : V →
GL(E) with f(z) = π

(
A0(z)

)
for z ∈ V .

By the local statement just proved, there exist an open covering U = {Uj}j∈I

of D and holomorphic functions Aj : Uj → GL(E) with π
(
Aj(z)

)
= f(z) for

z ∈ Uj . Then
π
(
AjA

−1
k

)
= π

(
ff−1

)
= 1 on Uj ∩ Uk

for all j, k ∈ I with Uj ∩ Uk 	= ∅. Therefore, the values of the functions AjA
−1
k lie

in Gℵ(E). Now, from Theorem 5.12.5 we get a family of functions Vj : Uj → Gℵ(E)
with

AjA
−1
k = VjV

−1
k on Uj ∩ Uk

for all j, k ∈ I with Uj ∩ Uk 	= ∅. Setting A = V −1
j Aj on Uj we complete the

proof. �
7.8.3 Lemma. Let ℵ = ∞, ω, and let A : Γ → Gℵ(E) be a continuous function
which admits local factorizations with respect to Γ and GL(E) (Def. 7.1.3). Then
A admits local factorizations with respect to Γ and Gℵ(E).
Proof. Let w ∈ Γ be given. By hypothesis there exist a neighborhood U of w and
continuous functions Ã− : U ∩D− → GL(E) and Ã+ : U ∩D+ → GL(E), which
are holomorphic in U ∩D− and U ∩D+, respectively, such that

A = Ã−Ã+ on U ∩ Γ . (7.8.4)

Let G
(
L(E)/Fℵ(E)

)
be the group of invertible elements of the factor algebra

L(E)/Fℵ(E), let 1 be its unit element, and let π : L(E) → L(E)/Fℵ(E) be the
canonical map. Since π(A) = 1, then it follows from (7.8.4) that

π
(
Ã−1
−
)
= π

(
Ã+

)
on U ∩ Γ . (7.8.5)

Hence, by Theorem 1.5.4, there is a holomorphic function f : U→G
(
L(E)/F∞(E)

)
with

f
∣∣
U∩D−

= π
(
Ã−1
−
)

and f
∣∣
U∩D+

= π
(
Ã+

)
. (7.8.6)

By Theorem 7.8.2 we can find a holomorphic function A : U → GL(E) such that

π(A) = f . (7.8.7)

Set A− = Ã−A on U ∩D− and A+ = A−1Ã+ on U ∩D+. Then it follows from
(7.8.4) that

A = A−A+ on Γ,

and from (7.8.7) and (7.8.6) it follows that π(A−) = 1 on U ∩D− and π(A+) = 1
on U ∩D+, i.e., the values of A− and A+ belong to Gℵ(E). �



248 Chapter 7. Plemelj-Muschelishvili factorization

7.8.4 Proposition. Let ℵ =∞, ω, let 0 < r < R < ∞ such that

D+ ⊆W :=
{

z ∈ C

∣∣∣ r < |z| < R
}

, (7.8.8)

and let A : Γ→ Gℵ(E) be a continuous function which admits local factorizations
with respect to Γ and GL(E) (Def. 7.1.3). Then:

(i) The function A can be written in the form

A = A−HA+, (7.8.9)

where the functions A± and H have the following properties:

A− : D− ∪{∞} → Gℵ(E) is continuous on D− ∪{∞} and holomorphic
in D− ∪ {∞};
A+ : D+ → Gℵ(E) is continuous on D+ and holomorphic in D+;

H is of the form

H(z) = I +
M∑

n=N

znHn , N,M ∈ Z, Hn ∈ Fℵ(E), (7.8.10)

and H(z) ∈ Gℵ(E) for all z ∈W ;

(ii) The function A can be written in the form

A = A−HA+, (7.8.11)

where the functions A± and H have the following properties:

A− : D− ∪{∞} → Gℵ(E) is continuous on D− ∪{∞} and holomorphic
in D− ∪ {∞};
A+ : D+ → Gℵ(E) is continuous on D+ and holomorphic in D+;

H−1 is of the form

H−1(z) = I +
M∑

n=N

znHn , N,M ∈ Z, Hn ∈ Fℵ(E), (7.8.12)

and H−1(z) ∈ Gℵ(E) for all z ∈ W .

Proof. The proofs of parts (i) and (ii) are similar (for (i) we use part (i) of Theorem
7.6.1, and for (ii) we use part (ii) of that theorem). We restrict ourselves to part
(i).

Let FℵI (E) be the Banach algebra of Definition 5.12.1. By Lemma 7.8.3, A
admits also local factorizations with respect to Γ and GFℵI (E). Therefore, we can
apply part (i) of Theorem 7.6.4 (with A = FℵI (E)), and we obtain a representation
of A in the form A = a−ha+, where
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a− : D− ∪ {∞} → GFℵI (E) is continuous on D− ∪ {∞} and holomorphic in
D− ∪ {∞};
a+ : D+ → GFℵI (E) is continuous on D+ and holomorphic in D+;

h is of the form

h(z) =
M∑

n=N

znhn , N, M ∈ Z,

and h(z) ∈ GFℵI (E) for all z ∈ W .

Let V : Γ → Fℵ(E), V− : D− ∪ {∞} → Fℵ(E), V+ : D+ → Fℵ(E), U : W →
Fℵ(E), λ− : D− ∪ {∞} → C∗, λ+ : D+ ∪ {∞} → C∗ and λ : W → C∗ be the
functions with A = I + V , a± = λ±I + V± and h = λI + U . Then

I + V =
(
λ−I + V−

)(
λI + U

)(
λ+I + V+

)
,

which implies (as dimE =∞) that λ−1 = λ−λ+. Hence

A =
(

I +
V−
λ−

)(
I + λ−1U

)(
I +

V+

λ+

)
.

Setting A± = λ−1
± a± and H = λ−1h, we conclude the proof. �

The following Lemma 7.8.5 as well as the subsequent theorem here will be
proved only for the group G∞(E). Below we obtain these results also for Gω(E)
(Theorem 8.2.2). But then the proof is more difficult, because then the approxi-
mation argument used in the proof of Lemma 7.8.5 does not work.

7.8.5 Lemma. Let A : Γ → G∞(E) be a continuous function which admits local
factorizations with respect to Γ and GL(E) (Def. 7.1.3). Moreover, let 0 < r <
R < ∞ be given such that

D+ ⊆W :=
{

z ∈ C

∣∣∣ r < |z| < R
}

. (7.8.13)

Then A is equivalent with respect to Γ and G∞(E) to a function of the form
Q+ PAP P , where:

– P is a finite dimensional projector in E and Q = I − P ;

– AP is a rational function with values in L(ImP ) such that AP (z) is invertible
for all z ∈W .

Proof. By part (i) of Proposition 7.8.4, we may assume that A is already of the
form

A(z) = I +
M∑

n=N

znAn , N, M ∈ Z, An ∈ F∞(E),
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and that A(z) is invertible for all z ∈W . Set

W− =
{

z ∈ C

∣∣∣ r < |z|
}

and W+ =
{

z ∈ C

∣∣∣ |z| < R
}

.

Then, by Theorem 7.5.1, for some ε > 0, the following holds:

(*) For each B ∈ OGL(E)(W ) with maxz∈W ‖B(z) − 1‖ < ε, there exist B+ ∈
OGL(E)(W+) and B− ∈ OGl(E)(W− ∪ {∞}) with B = B−B+ on W .

As An ∈ F∞(E), we can chose finite dimensional operators Fn so close to An

that, for the function

F (z) := I +
M∑

n=N

znFn

we have:

F (z) ∈ GL(E) for all z ∈ W, and max
z∈W

∥∥AF−1(z)− I
∥∥ < ε.

Then, by (*), AF−1 can be written in the form

AF−1 = B−B+ (7.8.14)

with B+ ∈ OGL(E)(W+) and B− ∈ OGL(E)(W− ∪ {∞}). Choose a finite dimen-
sional projector in E with ImFn ⊆ ImP and KerP ⊆ KerFn for N ≤ n ≤M , and
set Q = I − P . Then F = PFP +Q on W . Setting AP = PF

∣∣
Im P

, we conclude
the proof. �
7.8.6 Theorem. Let A : Γ → G∞(E) be a continuous function which admits local
factorizations with respect to Γ and GL(E). Then A admits a global factorization
with respect to Γ and G∞(E).
Proof. This follows immediately from the preceding Lemma 7.8.5 and Theorem
7.7.1. �

Under certain additional assumptions about the function A in Theorem 7.8.6,
we can say correspondingly more about the factors of the factorizations of A. We
have:

7.8.7 Corollary. Let 0 < α < 1 and k ∈ N, where, for k ≥ 1, we additionally
assume that Γ is of class Ck (Def. 3.4.1). Let A : Γ → G∞(E) be a function of
class Ck+α (Def. 3.4.3). Then:

(i) A admits a factorization with respect to Γ and G∞(E).
(ii) If A = A−ΔA+ is an arbitrary factorization of A with respect to Γ, then

automatically, the factors A− and A+ are of class Ck+α on D− and D+,
respectively.
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Proof. Part (i) of Theorem 7.3.1 in particular states that A admits local factoriza-
tions with respect to Γ. Therefore part (i) of the corollary follows from Theorem
7.8.6. Part (ii) of the corollary follows from part (ii) of Theorem 7.3.1 �

7.8.8 Corollary. Let Γ = T be the unit circle, and let R be a Banach algebra of
continuous L(E)-valued functions satisfying conditions (A), (B) and (C) in Section
7.2.4. For example, let R = W

(
L(E)

)
be the Wiener algebra (see Section 7.2.1).

Let A : Γ→ G∞(E) be a function which belongs to R. Then:

(i) A admits a factorization with respect to Γ and G∞(E).

(ii) If A = A−ΔA+ is an arbitrary factorization of A with respect to Γ, then
automatically, the factors A− and A+ belong to the algebra R.

Proof. Part (ii) of Theorem 7.2.5 in particular states that A admits local factor-
izations with respect to Γ. Therefore part (i) of the corollary follows from Theorem
7.8.6. Part (ii) of the corollary follows from part (iii) of Theorem 7.2.5. �

7.9 The filtration of an operator function

with respect to a contour

In this section E is a Banach space, D+ ⊆ C is a bounded connected open set
with piecewise C1-boundary Γ such that 0 ∈ D+. We set D− = C \D+.

7.9.1 Definition. Let A : Γ→ GL(E) be a continuous function, and let κ ∈ Z.

(i) A pair ϕ = (ϕ−, ϕ+) will be called a (Γ, κ)-section or simply a κ-section of A
if ϕ− : D−∪{∞} → E and ϕ+ : D+ → E are continuous E-valued functions
which are holomorphic in D− ∪ {∞} and D+, respectively, such that

zκϕ−(z) = A(z)ϕ+(z) for z ∈ Γ. (7.9.1)

(ii) We denote by M(κ, A) = M(κ,Γ, A) the space of all κ-sections of A. We
consider M(κ, A) as a Banach space endowed with the norm defined by

‖ϕ‖ := max
z∈D−∪{∞}

‖ϕ−(z)‖+ max
z∈D+

‖ϕ+(z)‖ (7.9.2)

for ϕ = (ϕ−, ϕ+) ∈M(κ, A).

(iii) We define

M−(z, κ,A) = M−(z, κ,Γ, A)

=
{

ϕ−(z)
∣∣∣ (ϕ−, ϕ+) ∈M(κ, A)

}
for z ∈ D− ∪ {∞}
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and

M+(z, κ,A) = M+(z, κ,Γ, A)

=
{

ϕ+(z)
∣∣∣ (ϕ−, ϕ+) ∈M(κ, A)

}
for z ∈ D+ .

Since 0 	∈ Γ, it follows from (7.9.1) that

M−(z, κ,Γ, A) = A(z)M+(z, κ,Γ, A) for all z ∈ Γ and κ ∈ Z. (7.9.3)

7.9.2. Let A : Γ → E be a continuous function, let κ, μ ∈ Z, and let (ϕ−, ϕ−) be
a κ-section of A. Since Γ is the boundary both of D− and D+, then it follows by
uniqueness of holomorphic functions from (7.9.1) that each of the two components
ϕ+ and ϕ− is uniquely determined by the other one.

7.9.3. Let A : Γ→ E be a continuous function, and let κ, μ ∈ Z with κ ≥ μ. Then

M−(z, κ,Γ, A) ⊇M−(z, μ,Γ, A) for z ∈ D− ∪ {∞} , (7.9.4)

M+(z, κ,Γ, A) ⊇M+(z, μ,Γ, A) for z ∈ D+ . (7.9.5)

This follows from two obvious statements:

(i) If (ω−, ω+) ∈M(μ,Γ, A) and z ∈ D−∪{∞}, then (φ−, φ+) := (ω−, ω̃+) with

ω̃+(ζ) := ζκ−μω+(ζ) , ζ ∈ D+ ,

is a κ-section of A with φ−(z) = ω−(z).

(ii) If (ω−, ω+) ∈M(μ,Γ, A) and z ∈ D+, then (φ−, φ+) := (ω̃−, ω+) with

ω̃−(ζ) := ζμ−κω−(ζ) , ζ ∈ D− ∪ {∞} ,

is a κ-section of A with φ+(z) = ω+(z).

7.9.4 Lemma. Let A : Γ → GL(E) be a continuous function which admits local
factorizations with respect to Γ. Then there exist integers κ− ≤ κ+ such that:

(i) If κ ∈ Z with κ < κ−, then

M(κ,Γ, A) = 0 , (7.9.6)

i.e.,

M−(z, κ,Γ, A) = 0 for all z ∈ D− ∪ {∞} ,

M+(z, κ,Γ, A) = 0 for all z ∈ D+ .
(7.9.7)

(ii) If κ ∈ Z with κ ≥ κ+, then

M−(z, κ,Γ, A) = E for all z ∈ D− ∪ {0} ,

M+(z, κ,Γ, A) = E for all z ∈ D+ .
(7.9.8)
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Proof. By Theorem 7.6.1, there exist integers N ≤ M , functions H,T : Γ →
GL(E) of the form

S(z) =
M∑

n=N

znSn and H(z) =
M∑

n=N

znHn ,

and functions A−, T−∈OGL(E)
(
D−∪{∞}

)
(Def. 5.4.5) and A+, T+∈OGL(E)

(
D+

)
such that

A = A−HA+ on Γ (7.9.9)

and
A = T−S−1T+ on Γ . (7.9.10)

Set
κ− = N and κ+ = max(−N,M) .

We now first prove part (i). Let κ ≤ κ− − 1 = N − 1 be given, and let
(ϕ−, ϕ+) ∈M(κ, A). Then it follows from (7.9.9) that

zκϕ−(z) = A−(z)
M∑

n=N

znHnA+(z)ϕ+(z) ,

and therefore

A−1
− (z)ϕ−(z) =

M∑
n=N

ζn−κHnA+(z)ϕ+(z) , z ∈ Γ .

Since n − κ ≥ n − N + 1 ≥ 1 for n ≥ N , the two sides of this relation define a
continuous function on C ∪ {∞} which is equal to zero for z = 0. This function is
holomorphic outside Γ and, hence, by Theorem 1.5.4, holomorphic on C ∪ {∞}.
Therefore, by Liouville’s theorem, it is identically zero. In particular A−1

− ϕ− ≡ 0.
Since the values of A− are invertible, it follows that ϕ− ≡ 0 and, consequently,
ϕ+ ≡ 0.

We prove part (ii). First let κ ≥ κ+ and z ∈ D− ∪ {∞} be given.
For n ≥ N , then n+ κ ≥ n−N ≥ 0. Therefore, setting

ϕ+(ζ) = ζκT−1
+ (ζ)S(ζ)T−1

− (z)v , ζ ∈ D+ ,

we get a function ϕ+ ∈ OE
(
D+

)
. Moreover, setting

ϕ−(ζ) = T−(ζ)T
−1
− (z)v , ζ ∈ D− ∪ {∞},

we get a function ϕ− ∈ OE
(
D− ∪ {∞}

)
. From (7.9.10) it follows that

A(ζ)ϕ+(ζ) = T−(ζ)S
−1(ζ)T+(ζ)ζ

κT−1
+ (ζ)S(ζ)T−1

− (z)v = ζκϕ−(ζ)
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for ζ ∈ Γ. Hence (ϕ−, ϕ+) ∈ MA(κ, A). It remains to observe that ϕ−(z) =
T−(z)T

−1
− (z)v = v.

Now let κ ≥ κ+ and z ∈ D+. For n ≤ M , then n − κ ≤ M − κ+ ≤ 0.
Therefore, setting

ϕ−(ζ) = ζ−κA−(ζ)H(ζ)A+(z)v , ζ ∈ D− ,

we get a function ϕ− ∈ OE
(
D− ∪ {∞}

)
. Moreover, setting

ϕ+(ζ) = A−1
+ (ζ)A+(z)v , ζ ∈ D+,

we get a function ϕ+ ∈ OE
(
D+

)
. From (7.9.9) it follows that

A(ζ)ϕ+(ζ) = A−(ζ)H(ζ)A+(ζ)A
−1
+ (ζ)A+(z)v = ζκϕ−(ζ)

for ζ ∈ Γ. Hence (ϕ−, ϕ+) ∈ MA(κ, A). It remains to observe that ϕ+(z) =
A−1

+ (z)A+(z)v = v. �

7.9.5. Let A, Ã : Γ → GL(E) be two continuous functions, which are equivalent
with respect to Γ and GL(E) (Def. 7.1.3) and which admit local factorizations with
respect to Γ (Def. 7.1.3), and let A− ∈ OGL(E)

(
D−∪{∞}

)
and A+ ∈ OGL(E)

(
D+

)
be functions (which then exist) such that Ã = A−AA+ on Γ. Then it is clear that:

(ϕ−, ϕ+) is a (Γ, κ)-section of A, if and only if,
(
A−ϕ−, A−1

+ ϕ+

)
is a (Γ, κ)-

section of Ã.

Hence

M−(z, κ,ΓÃ) = A−(z)M−(z, κ,Γ, A) for all z ∈ D− ∪ {∞} and κ ∈ Z,

M+(z, κ,Γ, Ã) = A−1
+ (z)M+(z, κ,Γ, A) for all z ∈ D+ and κ ∈ Z.

7.9.6 Definition. Let A : Γ → GL(E) be a continuous function. An integer κ will
be called a partial index of A relative to Γ or simply a partial index of A if there
exists a point z ∈ C ∪ {∞} such that:

if z ∈ D− ∪ {∞}, then M−(z, κ− 1,Γ, A) ⊂

=

M−(z, κ,Γ, A) ,

if z ∈ D+, then M+(z, κ− 1,Γ, A) ⊂

=

M+(z, κ,Γ, A) .

Note that if A admits local factorizations relative to Γ, then, by Lemma 7.9.4, the
set of partial indices of A is not empty and finite.

7.9.7 Theorem. Let A : Γ → GL(E) be a continuous function which admits local
factorizations with respect to Γ (Def. 7.1.3), and let k1 > . . . > kn be the partial
indices of A with respect to Γ. Then:
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(i) For all z ∈ D− ∪ {∞},

M−(z, k1,Γ, A) = E and M−(z, kn − 1,Γ, A) = {0} ,

and, for all z ∈ D+,

M+(z, k1,Γ, A) = E and M+(z, kn − 1,Γ, A) = {0} .

(ii) For each partial index kj, 1 ≤ j ≤ n, there exists dj ∈ N∗ ∪ {∞} such that

dj =

{
dim

(
M−(z, kj ,Γ, A)

/
M−(z, kj − 1,Γ, A)

)
if z ∈ D− ∪ {∞},

dim
(
M+(z, kj ,Γ, A)

/
M+(z, kj − 1,Γ, A)

)
if z ∈ D+ .

(iii) Let 1 ≤ j ≤ n, let d ∈ N∗, and let (ϕ−ν , ϕ+
ν ) ∈ M(kj ,Γ, A), 1 ≤ ν ≤ d.

Assume, for at least one point z ∈ C ∪ {∞}, the following condition C(z) is
satisfied:

C(z) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

If z ∈ D− ∪ {∞}, then the classes in the factor space
M−(z, kj ,Γ, A)

/
M−(z, kj − 1,Γ, A) , defined by the vectors

ϕ−1 (z), . . . , ϕ
−
d (z) , are linearly independent.

If z ∈ D+, then the classes in the factor space
M+(z, kj ,Γ, A)

/
M+(z, kj − 1,Γ, A) , defined by the vectors

ϕ+
1 (z), . . . , ϕ

+
d (z) , are linearly independent.

Then condition C(z) is satisfied for all z ∈ C ∪ {∞}.
Before proving this theorem, we use it for the following

7.9.8 Definition. With the notations from the preceding theorem we define: dj

will be called the multiplicity of kj (as a partial index of A with respect to Γ),
1 ≤ j ≤ n. The family of families of subspaces{

M+(z, kj ,Γ, A)
}

z∈D+

and
{

M−(z, kj ,Γ, A)
}

z∈D−∪{∞}
, 1 ≤ j ≤ n,

will be called the filtration of A relative to Γ or simply the filtration of A.

7.9.9 Remark. Let A, Ã : Γ → GL(E) be two continuous functions which are
equivalent relative to Γ and GL(E) (Def. 7.1.3), and which admit local factoriza-
tions with respect to Γ (Def. 7.1.3). Then it follows from Section 7.9.5 that A and
Ã have the same partial indices with the same multiplicities relative to Γ.

Proof of Theorem 7.9.7. Clearly, (ii) follows from (iii). Moreover, taking into ac-
count Lemma 7.9.4, assertion (i) follows from (ii). Therefore, it is sufficient to
prove (iii). By Theorem 7.4.2, A is equivalent with respect to Γ and GL(E) to a
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holomorphic function in a neighborhood of Γ. Therefore and by Section 7.9.5, we
may assume that A is holomorphic in a neighborhood of Γ.

To prove (iii), we assume that (iii) is not true, i.e., we assume that there are
two points z, w ∈ C ∪ {∞} such that C(z) is satisfied, but C(w) is not satisfied.

Since C(w) is not true, we can find a non-zero vector (λ1, . . . , λd) of complex
numbers such that:

d∑
ν=1

λνϕ−ν (w) ∈M−(w, kj − 1, A) if w ∈ D− ∪ {∞} ,

d∑
ν=1

λνϕ+
ν (w) ∈M+(w, kj − 1, A) if w ∈ D+ .

By definition of M±(w, kj − 1, A), then there exists a (kj − 1)-section (ω−, ω+) of
A such that

ω−(w) =
d∑

ν=1

λνϕ−ν (w) if w ∈ D− ,

ω+(w) =
d∑

ν=1

λνϕ+
ν (w) if w ∈ D+ .

As observed in 7.9.3, this (kj − 1)-section can be modified so that we get a kj-
section (ω̃−, ω̃+) of A such that still

ω̃−(w) =
d∑

ν=1

λνϕ−ν (w) if w ∈ D− ∪ {∞} ,

ω̃+(w) =
d∑

ν=1

λνϕ+
ν (w) if w ∈ D+ ,

(7.9.11)

but

ω̃−(ζ) ∈M−(ζ, kj − 1, A) for all ζ ∈ D− ∪ {∞} ,

ω̃+(ζ) ∈M−(ζ, kj − 1, A) for all ζ ∈ D+ .
(7.9.12)

If w 	=∞, then we set

ψ−(ζ) =
ζ

ζ − w

(
ω̃−(ζ)−

d∑
ν=1

λνϕ−ν (ζ)
)

for ζ ∈ D− \ {w},

and

ψ+(ζ) =
1

ζ − w

(
ω̃+(ζ)−

d∑
ν=1

λνϕ+
ν (ζ)

)
for ζ ∈ D+ \ {w} .
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If w =∞, then we set

ψ−(ζ) = ζ

(
ω̃−(ζ)−

d∑
ν=1

λνϕ−ν (ζ)
)

for ζ ∈ D−,

and

ψ+(ζ) = ω̃+(ζ)−
d∑

ν=1

λνϕ+
ν (ζ) for ζ ∈ D+ .

Since A is holomorphic in a neighborhood of Γ and therefore the functions ω̃± and
ϕ̃±ν are holomorphic in a neighborhood of Γ, then, by (7.9.11), we obtain a pair of
holomorphic functions ψ− : D− ∪ {∞} → E and ψ+ : D+ → E with

A(ζ)ψ+(ζ) = ζkj−1ψ−(ζ) for ζ ∈ Γ.

Hence (ψ−, ψ+) is a (kj − 1)-section of A, and therefore

ψ−(z) ∈M−(z, kj − 1, A) if z ∈ D− ∪ {∞} ,

ψ+(z) ∈M+(z, kj − 1, A) if z ∈ D+ .
(7.9.13)

On the other hand,

ψ−(z) =
z

z − w

(
ω̃−(z)−

d∑
μ=1

λμϕ−(z)
)

if w 	=∞ and z ∈ D− ,

ψ−(z) = ω̃−(z)−
d∑

μ=1

λμϕ−(z) if w 	=∞ and z =∞ ,

ψ+(z) =
z

z − w

(
ω̃+(z)−

d∑
μ=1

λμϕ+(z)
)

if w 	=∞ and z ∈ D+ ,

ψ−(z) = z
(
ω̃−(z)−

d∑
μ=1

λμϕ−(z)
)

if w =∞ and z ∈ D− ,

ψ+(z) = ω̃+(z)−
d∑

μ=1

λμϕ+(z) if w =∞ and z ∈ D+ .

By (7.9.12) and condition C(z), this implies that

ψ−(z) ∈M−(z, kj , A) \M−(z, kj − 1, A) if z ∈ D− ∪ {∞} ,

ψ+(z) ∈M+(z, kj , A) \M+(z, kj − 1, A) if z ∈ D+ ,

which contradicts (7.9.13). �
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Theorem 7.9.7 contains interesting information concerning the Riemann-
Hilbert boundary problem. To state it, we first give the following

7.9.10 Definition. Let A : Γ→ GL(E) be a continuous function, let z ∈ C ∪ {∞},
let v ∈ E, let κ ∈ Z, and let (ϕ+, ϕ−) be a κ-section of A (Def. 7.9.1). We shall
say that (ϕ+, ϕ−) is a (Γ, κ)-section of simply a κ-section of A through (z, v) if 3

ϕ−(z) = v if z ∈ D− ∪ {∞} and ϕ+(z) = v if z ∈ D+ .

With this definition, from Theorem 7.9.7 we immediately obtain:

7.9.11 Corollary (to Theorem 7.9.7). Let A : Γ→ GL(E) be a continuous function
which admits local factorizations with respect to Γ, let k1 > . . . > kn be the partial
indices of A (Def. 7.9.6), and let dj be the multiplicity of kj as a partial index of
A (Def. 7.9.8), 1 ≤ j ≤ n. Then, for each point z ∈ C∪ {∞}, there exist (possibly
not closed) linear subspaces E1, . . . , En of E such that E is the algebraically direct
sum of E1, . . . , En,

dimEj = dj for 1 ≤ j ≤ n

and such that, for each 1 ≤ j ≤ n and each v ∈ Ej with v 	= 0 the following hold:

(i) There exists a kj-section of A through (z, v).

(ii) If μ < kj, then there exists no μ-section of A through (z, v).

(iii) If (ϕ−, ϕ+) is a kj-section of A through (z, v), then

ϕ−(ζ) ∈M−(ζ, kj , A) \M−(z, kj − 1, A) for all ζ ∈ D− ∪ {∞} ,

ϕ+(ζ) ∈M+(ζ, kj , A) \M+(z, kj − 1, A) for all ζ ∈ D+ .

(iv) If (ϕ−, ϕ+) and (ψ−, ψ+) are two kj-section of A through (z, v), then

ϕ−(ζ)− ψ−(ζ) ∈M−(ζ, kj − 1, A) for all ζ ∈ D− ∪ {∞} ,

ϕ+(ζ)− ψ−(ζ) ∈M+(z, kj − 1, A) for all ζ ∈ D+ .

Proof. Let z ∈ C ∪ {∞} be given. Put

M(z, κ,A) =

{
M−(z, κ,A) if z ∈ D− ∪ {∞} ,

M+(z, κ,A) if z ∈ D+ ,
κ ∈ Z .

The space En is uniquely determined. We have to set En = M(z, kn, A). If 1 ≤ j ≤
n− 1, then for Ej we can (and have to) choose an arbitrary algebraic complement
of M(z, kj − 1, A) in Mj(z, kj , A). �

3For z ∈ Γ we have to make a choice. Just as well we could require that ϕ+(z) = v.
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7.10 A general criterion for the existence of

factorizations

In this section, E is a Banach space, D+ ⊆ C is a bounded, connected, open set
with piecewise C1-boundary Γ such that 0 ∈ D+, and D− = C \D+.

7.10.1 Theorem. Let A : Γ→ GL(E) be a continuous function which admits local
factorizations with respect to Γ. Then the following are equivalent:

(i) A admits a canonical factorization with respect to Γ.

(ii) Zero is the only partial index of A with respect to Γ (Def. 7.9.6).

Proof. (i)⇒(ii): Assume that A = A−A+ is a canonical factorization of A with
respect to Γ.

Let (ϕ−, ϕ+) be a −1-section of A. Then

1
z
A−1
− (z)ϕ−(z) = A+(z)ϕ+(z) for all z ∈ Γ.

Then, by Theorem 1.5.4, the two sides of this equation define a holomorphic func-
tion on C ∪ {∞} which vanishes at z = ∞. Hence, by Liouville’s theorem, this
function is identically zero. It follows that A−1

− ϕ− ≡ 0 on D−∪{∞} and A+ϕ+ ≡ 0
on D+. Since functions A−1

− and A+ are invertible, this implies that ϕ− ≡ 0 on
D− ∪ {∞} and ϕ+ ≡ 0 on D+. Hence

M(−1, A) = {0}. (7.10.1)

If z ∈ D− ∪ {∞} and v ∈ E, then, setting

ϕ−(ζ) = A−(ζ)A
−1
− (z)v for ζ ∈ D− ∪ {∞} ,

ϕ+(ζ) = A−1
+ (ζ)A−1

− (z)v for ζ ∈ D+ ,

we get a 0-section (ϕ−, ϕ+) of A with ϕ−(z) = v. Hence

M(z, 0, A) = E for all z ∈ D− ∪ {∞}. (7.10.2)

If z ∈ D+ and v ∈ E, then, setting

ϕ−(ζ) = A−(ζ)A+(z)v for ζ ∈ D− ∪ {∞}
ϕ+(ζ) = A−1

+ (ζ)A+(z)v for ζ ∈ D+ ,

we get a 0-section (ϕ−, ϕ+) of A with ϕ+(z) = v. Hence

M(z, 0, A) = {0} = E for all z ∈ D+. (7.10.3)

From (7.10.1)–(7.10.3) it follows that zero is the only partial index of A with
respect to Γ.
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(ii)⇒(i): Assume that zero is the only partial index of A. By Theorem 7.9.6
this means that

M(−1, A) = {0} (7.10.4)

and

M−(z, 0, A) = E for all z ∈ D− ∪ {∞} ,

M+(z, 0, A) = E for all z ∈ D+ .
(7.10.5)

For each ϕ = (ϕ−, ϕ+) ∈M(0, A), we define

Φ−(z)ϕ = ϕ−(z) for z ∈ D− ∪ {∞} ,

Φ+(z)ϕ = ϕ+(z) for z ∈ D+ .

Recall that we consider M(0, A) as a Banach space (cf. Def. 7.9.1). Then it follows
from the maximum principle that

Φ−(z) ∈ L
(
M(0,Γ, A), E

)
for all z ∈ D− ∪ {∞} ,

Φ+(z) ∈ L
(
M(0,Γ, A), E

)
for all z ∈ D+ .

By Theorem 7.9.7, the operators Φ−(z), z ∈ D− ∪ {∞}, and Φ+(z), z ∈ D+,
are injective. Moreover, by (7.10.5), these operators are surjective. Hence, by the
Banach open mapping theorem, they are invertible from M(0, A) onto E.

By Theorem 7.4.2 and Remark 7.9.9, in this proof, we may assume that A is
holomorphic in a neighborhood of Γ. Then, for each ϕ = (ϕ−, ϕ+) ∈ M(0, A), it
follows from the relation

ϕ−(z) = A(z)ϕ+(z) , z ∈ Γ ,

that Φ−ϕ = ϕ− is holomorphic on D− ∪ {∞}, and Φ+ϕ = ϕ+ is holomorphic on
D+. Hence the functions

Φ− : D− ∪ {∞} → L
(
M(0, A), E

)
,

Φ+ : D+ → L
(
M(0, A), E

)
are holomorphic (Theorem 1.7.1).

Now we fix some point z0 ∈ Γ, and set

A−(z) = Φ−(z)Φ−1
− (z0) for z ∈ D− ∪ {∞} ,

A+(z) = Φ+(z)Φ
−1
− (z0) for z ∈ D+ .

Then A = A−A−1
+ on Γ. Indeed, let v ∈ E and z ∈ Γ be given. Set

ϕ = (ϕ−, ϕ+) = Φ−1
+ (z)v.
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Then ϕ−(z) = A(z)ϕ+(z) and Φ+(z)ϕ = v, and therefore

A−(z)A−1
+ (z)v = Φ−(z)Φ−1

− (z0)Φ−(z0)Φ−1
+ (z)v = Φ−(z)ϕ

= ϕ−(z) = A(z)ϕ+(z) = A(z)Φ+(z)ϕ = A(z)v . �
7.10.2 Lemma. Let A : Γ → GL(E) be a continuous function which admits local
factorizations with respect to Γ. Suppose A has negative partial indices with respect
to Γ (Def. 7.9.6). Denote these negative partial indices by κ1 > . . . > κm. Let N
be the subspace of M(0, A) (Def. 7.9.1) which consist of the sections (ϕ−, ϕ+) ∈
M(0, A) with

ϕ−(z) ∈M−(z, κ1, A) for all z ∈ D− ∪ {∞} ,

ϕ+(z) ∈M+(z, κ1, A) for all z ∈ D+ .

If each of the negative partial indices κ1, . . . , κm has finite multiplicity (Def. 7.9.8),
then N is finite dimensional.

Proof. Let dj be the multiplicity of κj , 1 ≤ j ≤ m. Set κ0 = 0 and κm+1 = κm−1.
Suppose dj < ∞ for 1 ≤ j ≤ m. Then we can find vectors vj,1, . . . , vj,dj

∈
M(0, κj , A), 1 ≤ j ≤ m, which define a basis in the factor space

M(0, κj , A)
/

M(0, κj+1, A) .

Further, for 1 ≤ j ≤ m and 1 ≤ ν ≤ dj , we choose a section

ϕj,ν =
(
ϕ−j,ν , ϕ+

j,ν

)
∈M(κj , A)

with ϕ+
j,ν(0) = vj,ν . By Theorem 7.9.7, then, for 1 ≤ j ≤ m,

for all z ∈ D− ∪ {∞} , the vectors ϕ−j,1(z), . . . , ϕ
−
j,dj

(z)

define a basis in the factor space M−(z, κj , A)
/
M−(z, κj+1, A) ,

and, for all z ∈ D+ , the vectors ϕ+
j,1(z), . . . , ϕ

+
j,dj

(z)

define a basis in the factor space M+(z, κj , A)
/
M+(z, κj+1, A) .

(7.10.6)

Note that this in particular implies that

for all z ∈ D− ∪ {∞} , the vectors ϕ−j,ν(z) , 1 ≤ j ≤ m,

1 ≤ ν ≤ dj , form a basis of the space M−(z, κ1, A),

and, for all z ∈ D+ , the vectors ϕ+
j,ν(z), 1 ≤ j ≤ m,

1 ≤ ν ≤ dj , form a basis in the space M+(z, κ1, A) .

(7.10.7)

Moreover, for 1 ≤ j ≤ m, 1 ≤ ν ≤ dj and 0 ≤ s ≤ −κj , we define

ϕ−s,j,ν(z) = zκj+sϕ−j,ν(z) for z ∈ D− ,

ϕ+
s,j,ν(z) = zsϕ+

j,ν(z) for z ∈ D+ .
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Then each
(
ϕ−s,j,νϕ+

s,j,ν

)
belongs to the space N . To prove that dimN < ∞, now

it is sufficient to prove that the finite system{
ϕs,j,ν

}
1≤j≤m,1≤ν≤dj ,0≤s≤−κj

generates N .
For that we consider an arbitrary (φ−, φ+) ∈ N . By (7.10.7), there are

uniquely determined continuous functions λ−j,ν : D− ∪ {∞} → C and λ+
j,ν : D+ →

C, which are holomorphic in D− ∪ {∞} and D+, respectively, such that

φ−(z) =
∑

1≤j≤m,1≤ν≤dj

λ−j,ν(z)ϕ
−
j,ν(z) for z ∈ D− ∪ {∞} ,

φ+(z) =
∑

1≤j≤m,1≤ν≤dj

λ+
j,ν(z)ϕ

+
j,ν(z) for z ∈ D+ .

(7.10.8)

Since φ−(z) = A(z)φ+(z) and zκj ϕ−j,ν(z) = A(z)ϕ+
j,ν(z) for z ∈ Γ, this implies

that ∑
1≤j≤m,1≤ν≤dj

λ−j,ν(z)ϕ
−
j,ν(z) =

∑
1≤j≤m,1≤ν≤dj

zκj λ+
j,ν(z)ϕ

−
j,ν(z) for z ∈ Γ .

By (7.10.7) this implies that

λ−j,ν(z) = zκj λ+
j,ν(z) for z ∈ Γ , 1 ≤ j ≤ m, 1 ≤ ν ≤ dj .

It follows by Liouville’s theorem that, for some numbers αs,j,ν ,

λ−j,ν(z) =
−κj∑
s=0

αs,j,νzκj+s and λ+
j,ν(z) =

−κj∑
s=0

αs,j,νzs .

Together with (7.10.8) this implies

φ− =
∑

1≤j≤m,1≤ν≤dj ,0≤s≤−κj

αs,j,νϕ−s,j,ν ,

φ+ =
∑

1≤j≤m,1≤ν≤dj ,0≤s≤−κj

αs,j,νϕ+
s,j,ν .

�

7.10.3 Theorem. Let A : Γ→ GL(E) be a continuous function which admits local
factorizations with respect to Γ. Then the following are equivalent:

(i) A admits a factorization with respect to Γ.

(ii) If A has non-zero partial indices (Def. 7.9.6), then each of them has finite
multiplicity (Def. 7.9.8).
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Moreover: If these equivalent conditions are satisfied and if A = A−ΔA+ is a
factorization of A with respect to Γ, then:

(a) If zero is the only partial index of A with respect to Γ, then Δ ≡ I.

(b) If there exist non-zero partial indices of A with respect to Γ, then:

– The numbers κ1 > . . . > κn from Definition 7.1.1 are the non-zero
partial indices of A.

– If P1, . . . , Pn are the projections from Definition 7.1.1, the dimPj is the
multiplicity of κj (as a partial index of A), 1 ≤ j ≤ n.

- If zero is a partial index of A (which is always the case for dimE =∞),
then dimP0 is the multiplicity of zero (as a partial index of A).

Proof. First assume that there exists a factorization A = A−ΔA+ of A with re-
spect to Γ. Then, by Section 7.9.5, the diagonal factor Δ and A have the same
partial indices with the same multiplicities. If zero is the only non-zero partial
index of Δ, then it is clear that Δ ≡ I. If there exist non-zero partial indices of
Δ, then it is also clear that, with the notation from Definition 7.1.1, the num-
bers κ1 > . . . > κn are these non-zero partial indices with the multiplicities
dimP1, . . . ,dimPn, respectively. Further it is clear that zero is a partial index of
Δ, if and only if, P0 	= 0 and that then dimP0 is the multiplicity of zero.

Now we assume that condition (ii) is satisfied. It remains to prove that then
A admits a factorization. If zero is the only partial index of A, we know this from
Theorem 7.10.1.

Assume there exist non-zero partial indices of A. For simplicity we consider
only the case when there exist both positive and negative partial indices. (It is
clear how to modify the proof in the other cases.) Let κ1 > . . . > κm be the
positive partial indices of A, and let κm+1 > . . . > κn be the negative partial
indices of A. Let N be the subspace of M(0, A) defined in Lemma 7.10.2. By this
lemma, N is finite dimensional.

If (ϕ−, ϕ+) ∈M(0, A), then we define

Φ−(z)
(
(ϕ−, ϕ+)

)
= ϕ−(z) for z ∈ D− ∪ {∞} ,

Φ+(z)
(
(ϕ−, ϕ+)

)
= ϕ+(z) for z ∈ D+ .

It follows from the maximum principle for holomorphic functions that in this way
functions

Φ− : D− ∪ {∞} → L
(
M(0, A), E

)
,

Φ+ : D+ → L
(
M(0, A), E

) (7.10.9)

are defined.
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By Theorem 7.4.2 and Remark 7.9.9 we may assume that A is holomorphic
in a neighborhood of Γ. Then, for each ϕ = (ϕ−, ϕ+) ∈M(0, A), it follows from

ϕ−(z) = A(z)ϕ+(z) , z ∈ Γ ,

that Φ−ϕ = ϕ− is holomorphic on D− ∪ {∞}, and Φ+ϕ = ϕ+ is holomorphic on
D+. Hence the functions (7.10.9) are holomorphic (Theorem 1.7.1).

Note that, by definition,

M−(z, 0, A) = ImΦ−(z) for z ∈ D− ∪ {∞} ,

M+(z, 0, A) = ImΦ+(z) for z ∈ D+

(7.10.10)

and
Φ−(z) = A(z)Φ+(z) for z ∈ Γ . (7.10.11)

Since the positive partial indices of A have finite multiplicities, it follows from
Theorem 7.9.7 that the spaces M−(z, 0, A), z ∈ D− ∪ {∞}, and M+(z, 0, A),
z ∈ D+, are of finite codimension in E. Since the operators Φ−(z) and Φ+(z)
are linear and bounded, this implies together with (7.10.10) that these spaces are
closed in E.

Since N is finite dimensional, N is complemented in M(0, A). Therefore,
M(0, A) can be written as a direct sum

M(0, A) = N
.
+N⊥

with some closed subspace N⊥ of M(0, A). Set

E−0 (z) = Φ−(z)N
⊥ for z ∈ D− ∪ {∞} ,

E+
0 (z) = Φ+(z)N

⊥ for z ∈ D+ .
(7.10.12)

Then, by definition of N and by Theorem 7.9.7,

Φ−(z)N ⊆ M−(z, κm+1, A) , z ∈ D− ∪ {∞} ,

Φ+(z)N ⊆M+(z, κm+1, A) , z ∈ D+ ,

E−0 (z) ∩M−(z, κm+1, A) = {0} , z ∈ D− ∪ {∞} ,

E+
0 (z) ∩M+(z, κm+1, A) = {0} , z ∈ D+ .

Since the spaces M±(z, 0, A) are closed and the spaces M±(z, κm+1, A) are finite
dimensional, this together with (7.10.10) implies that also the spaces E−0 (z), z ∈
D− ∪ {∞}, and E+

0 (z), z ∈ D+, are closed and that

M−(z, 0, A) = E−0 (z)
.
+M−(z, κm+1, A) , z ∈ D− ∪ {∞} ,

M+(z, 0, A) = E+
0 (z)

.
+M+(z, κm+1, A) , z ∈ D+ .

(7.10.13)
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Moreover, by Theorem 7.9.7 and the definition of N ,

KerΦ−(z) ∩N⊥ = {0} , z ∈ D− ∪ {∞} ,

KerΦ+(z) ∩N⊥ = {0} , z ∈ D+ .
(7.10.14)

Hence, by the Banach open mapping theorem, for z ∈ D− ∪ {∞}, the operator
Φ−(z)

∣∣
N⊥ is invertible as an operator from N⊥ to E−0 (z), and, for z ∈ D+, the

operator Φ+(z)
∣∣
N⊥ is invertible as an operator from N⊥ to E+

0 (z).

Now we fix some point z0 ∈ Γ. Let Φ(−1)
− (z0) : E−0 (z0)→ N⊥ be the inverse

of Φ−(z0) as an operator from N⊥ to E−0 (z0), and let Φ
(−1)
+ (z0) : E+

0 (z0) → N⊥

be the inverse of Φ+(z0) as an operator from N⊥ to E+
0 (z0). Then, setting

A−0 (z) = Φ−(z)Φ
(−1)
− (z0) for z ∈ D− ∪ {∞} ,

A+
0 (z) = Φ+(z)Φ

(−1)
+ (z0)A−1(z0) for z ∈ D+ ,

we obtain holomorphic functions

A−0 : D− ∪ {∞} −→ L
(
E−0 (z0), E

)
,

A+
0 : D+ −→ L

(
E−0 (z0), E

)
,

with injective values and such that

A−0 (z)E
−
0 (z0) = E−0 (z) forz ∈ D− ∪ {∞} ,

A+
0 (z)E

−
0 (z0) = E+

0 (z) for z ∈ D+ .
(7.10.15)

Note that, by (7.10.11), for z ∈ Γ,

A(z)A+
0 (z) = A(z)Φ+(z)Φ

(−1)
+ (z0)A−1(z0) = Φ−(z)Φ

(−1)
+ (z0)A−1(z0).

Since, again by (7.10.11), Φ(−1)
+ (z0)A−1(z0) = Φ(−1)

− (z0), this implies that

A(z)A+
0 (z) = A−0 (z) for z ∈ Γ . (7.10.16)

Set
E−n (z0) = M−(z0, κn, A) (7.10.17)

and choose, for 1 ≤ j ≤ n− 1, a subspace E−j (z0) of M(z0, κj , A) such that

M−(z0, κj , A) = E−j (z0)
.
+M−(z0, κj+1, A) if j 	= m ,

M−(z0, κm, A) = E−m(z0)
.
+M−(z0, 0, A) .

(7.10.18)

From (7.10.13), (7.10.17) and (7.10.18) it follows that

E = E−0 (z0)
.
+ E−1 (z0)

.
+ . . .

.
+ E−n (z0) . (7.10.19)
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By (7.10.17) and (7.10.18), for 1 ≤ j ≤ n, we can find sections(
ϕ−j1, ϕ

+
j1

)
, . . . ,

(
ϕ−jdj

, ϕ+
jdj

)
∈M(z0, κj , A) , 1 ≤ j ≤ n ,

such that ϕ−j1(z0), . . . , ϕ−jdj
(z0) is a basis of E−j (z0). Let E−j (z), z ∈ D− ∪ {∞},

be the space spanned by ϕj−
1 (z), . . . , ϕj−

dj
(z), and let E+

j (z), z ∈ D+, be the space
spanned by ϕ+

1j(z), . . . , ϕ
+
jdj
(z). Then, from Theorem 7.9.7 and (7.10.19) it follows

that

E = E−0 (z)
.
+ E−1 (z)

.
+ . . .

.
+ E−n (z) , z ∈ D− ∪ {∞} ,

E = E+
0 (z)

.
+ E+

1 (z)
.
+ . . .

.
+ E+

n (z) , z ∈ D+ .

Now, for 1 ≤ j ≤ n, let

A−j : D− ∪ {∞} −→ L
(
E−j (z0), E

)
be the holomorphic function defined by

A−j (z)ϕ
−
jν(z0) = ϕ−jν(z) , z ∈ D− ∪ {∞} , 1 ≤ ν ≤ dj ,

and let
A+

j : D+ −→ L
(
E−j (z0), E

)
be the holomorphic function defined by

A+
j (z)ϕ

−
jν(z0) = ϕ+

jν(z) , z ∈ D+ , 1 ≤ ν ≤ dj .

Note that then
A−j (z)E

−
j (z0) = E−j (z) , z ∈ D− ∪ {∞} , 1 ≤ j ≤ n ,

A+
j (z)E

−
j (z0) = E+

j (z) , z ∈ D+ , 1 ≤ j ≤ n .
(7.10.20)

Moreover, then, for z ∈ Γ, 1 ≤ j ≤ n and 1 ≤ ν ≤ dj ,

A(z)A+
j (z)ϕ

−
jν(z0) = A(z)ϕ+

jν(z) = zκj ϕ−jν(z) = zκj A−j (z)ϕ
−
jν(z0) .

Hence
zκj A−j (z) = A(z)A+

j (z) , z ∈ Γ , 1 ≤ j ≤ n . (7.10.21)
By (7.10.19) there are mutually disjoint projectors Pj , 0 ≤ j ≤ n, in E with

I = P0 + P1 + . . .+ Pn and ImPj = E−j (z0) , 0 ≤ j ≤ n .

Set

A−(z) =
n∑

j=0

A−j (z)Pj for z ∈ D− ∪ {∞} ,

A+(z) =
n∑

j=0

A+
j (z)Pj for z ∈ D+ ,

Δ(z) = P0 +
n∑

j=1

zκj Pj .
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By (7.10.19), (7.10.15) and (7.10.20), in this way holomorphic functions

A− : D− ∪ {∞} −→ GL(E) and A+ : D− −→ GL(E)

are defined. It follows from (7.10.21) and (7.10.16) that

A(z)A+(z) = A−(z)Δ(z) for z ∈ Γ .

Hence A = A−ΔA−1
+ is a factorization of A with respect to Γ. �

7.11 Comments

This type of factorization written without the diagonal factor for matrix func-
tions was considered for the first time in the pioneering work of Plemelj [Pl]. The
complete proofs were given by N.I. Muschelishvili [Mu]. This was the motivation
behind the term Plemelj-Muschelishvili factorisation. This form of the factoriza-
tion which is considered here was first proposed for matrix functions in [GK]. In
some sources, this form of factorization is called Gohberg-Krein factorization or
Wiener-Hopf factorization or factorization along a contour. For connections with
Wiener-Hopf and Töplitz operators, see the next chapter. The example (8.13.2)
was given in [GK]. A general review for factorizations in algebras and applications
can be found in [Go4]. The first factorization theorem for operator-valued func-
tions (the result of Section 7.8) was proved in [Go2]. Another proof of this result
was given in [Le1, Le3] (see also [CG]). The local principle for matrix functions
was proposed by M.A. Shubin [Sh1]. The extension of this principle to operator
functions as well as applications one can find in [GL4]. For other directions of de-
velopments in matrix and operator functions, see [BGK, GKS, GLR, GGK1, CG].
Factorization theory of operator-valued functions represents also an important
tool in spectral theory of operator functions and operator polynomials (see, for
instance, [Ma] and [Ro]).



Chapter 8

Wiener-Hopf operators,
Toeplitz operators and
factorization

In this chapter we continue to study the factorization problem, where now the
emphasis is on the connection with Wiener-Hopf and Toeplitz operators. This
chapter also contains applications to operator-valued Wiener-Hopf equations and
equations with infinite Töplitz matrices. The local principle continues to play an
important role.

8.1 Holomorphic operator functions

In this section E is a Banach space, D+ ⊆ C is a bounded connected open set with
piecewise C1-boundary Γ such that 0 ∈ D+, and D− := C\D+. Further, we assume
that a bounded neighborhood W of Γ is fixed such that each connected component
of W contains at least one connected component of Γ.1 We set W+ = D+ ∪W
and W− = D− ∪W .

8.1.1 Definition. We denote by OE(W ) the Banach space of continuous E-valued
functions, which are holomorphic in W , endowed with the norm

‖f‖W := max
z∈W

‖f(z)‖ , f ∈ OE(W ) .

Further, let OE(W+) be the subspace of all functions in OE(W ) which admit
a holomorphic extension to W+, and let OE

0 (W− ∪ {∞}) be the subspace of all
1It is possible but not necessary that W is a small neighborhood of Γ. An important example

is also W =
{
z ∈ C

∣∣ r < |z| < R
}

with 0 < r < R < ∞ such that Γ ⊆ W .
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functions f ∈ OE(W ) which admit a holomorphic extension to W− ∪ (∞} with
f(∞) = 0.

Since each connected component of W contains at least one connected com-
ponent of Γ, it follows from Theorem 3.7.3 and Proposition 3.1.3 that OE(W ) is
the direct sum of OE(W+) and OE

0 (W− ∪ {∞}).
We denote by P the projector from OE(W ) onto OE(W+) parallel to

OE
0 (W−∪{∞}). As OE(W+) and OE

0 (W−∪{∞}) are closed subspaces of OE(W ),
this projector is continuous with respect to the topology of OE(W ) (by the Banach
open mapping theorem). We set Q = I − P.
8.1.2 Definition. Let A : W → L(E) be a continuous function which is holomorphic
in W , and letMA : OE(W ) −→ OE(W ) be the operator of multiplication by A:

(MAf)(z) = A(z)f(z) , f ∈ OE(W ) , z ∈W.

Then we denote by WA the bounded linear operator on OE(W+) defined by

(WA)f = P
(
MAf

)
, f ∈ OE(W+) .

This operator WA will be called the Wiener-Hopf operator defined by A on
OE(W+).

8.1.3 Lemma. Let A,B : W → GL(E) be continuous functions which are holomor-
phic in W , and let WA and WB be the Wiener-Hopf operators defined in OE(W+)
by A and B respectively. Suppose A and B are equivalent with respect to Γ (Def.
7.1.3). Then WA and WB are equivalent.2

Proof. By hypothesis there are continuous functions T− : D− ∪ {∞} → GL(E)
and T+ : D+ → GL(E) which are holomorphic in D−∪{∞} and D+, respectively,
such that

A(z) = T−(z)B(z)T+(z) (8.1.1)

for z ∈ Γ. Since A and B are continuous on W and holomorphic in W , and since
each connected component of W contains at least one connected component of Γ,
from this relation it follows that T− admits a continuous and invertible extension to
W−∪{∞} which is holomorphic in W−, and T+ admits a continuous and invertible
extension to W+ which is holomorphic in W+. We denote these extensions also
by T− and T+. Then (8.1.1) holds for all z ∈ W . It is clear that

PMT+
P =MT+

P and MT−1
+
P =MT−1

+
P . (8.1.2)

Also it is clear that PMT−Q = PMT−1
−
Q = 0, which implies that

PMT−P = PMT− and PMT−1
−
P = PMT−1

−
. (8.1.3)

2Two operators T and S in a Banach space X are called equivalent if there exist invertible
operators V, W in X such that T = V SW .
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From (8.1.2) and (8.1.3) it follows that WT− and WT+ are invertible, where

W−1
T− =WT−1

−
and W−1

T+
=WT−1

+
.

From (8.1.1)–(8.1.3) it follows that

WT−WBWT+ = PMT−PMBPMT+

∣∣
OE(W+)

= PMT−MBMT+

∣∣
OE(W+)

= PMA

∣∣
OE(W+)

=WA .

Hence WA and WB are equivalent. �
8.1.4 Theorem. Let A : W → GL(E) be a continuous function which is holomor-
phic in W , and let WA be the Wiener-Hopf operator defined by A in OE(W+).
Then:

(i) The function A admits a canonical factorization with respect to Γ, if and only
if, WA is invertible.

(ii) The function A admits a factorization with respect to Γ, if and only if, WA

is a Fredholm operator. If this is the case, with the notations from Definition
7.1.1,

dimCokerWA =
∑

1≤j≤n , κj>0

κj dimPj ,

dimKerWA = −
∑

1≤j≤n , κj<0

κj dimPj ,
(8.1.4)

where the term on the right means zero if there is no j with κj > 0 resp. if
there is no j with κj < 0.

Proof. First assume that A admits a factorization A = A−ΔA+. Then it is easy
to see (using Theorem 1.5.4) that WΔ is a Fredholm operator, where, with the
notations from Definition 7.1.1,

dimCokerWΔ =
∑

1≤j≤n , κj>0

κj dimPj ,

dimKerWΔ = −
∑

1≤j≤n , κj<0

κj dimPj .
(8.1.5)

Since by Lemma 8.1.3 the operators WA and WΔ are equivalent, this implies that
WA is invertible if Δ ≡ I and that WA is a Fredholm operator satisfying (8.1.4)
if Δ 	≡ I.

It remains to prove that A admits a factorization if WA is a Fredholm op-
erator, and that this factorization is canonical if WA is invertible. By theorems
7.10.1 and 7.9.9 for that it is sufficient to prove the following two statements (I)
and (II):
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(I) If there exists a negative partial index κ of A and if d is its multiplicity, then
dimKerWA ≥ d.

(II) If there exists a positive partial index κ of A and if d is its multiplicity, then
dimCokerWA ≥ d.

Proof of (I): Let κ < 0 be a partial index of A with multiplicity d. By
Corollary 7.9.11, then we can find a d-dimensional linear subspace V of E such
that, for each vector v ∈ V there exists a κ-section of A through (0, v). Let B be
an algebraic basis of V . For each b ∈ B, we fix a κ-section (ϕ−b , ϕ+

b ) of A with
ϕ+(0) = b. Since A is continuous on W , holomorphic in W and

zκϕ−b = A(z)ϕ+
b (z) (8.1.6)

for z ∈ Γ, it follows that ϕ−b is continuous on W− ∪ {∞} and holomorphic in
W− ∪ {∞}, the function ϕ+

b is continuous on W+ and holomorphic in W+, and
(8.1.6) holds for all z ∈W . Hence

ϕ+
b ∈ OE(W+) , b ∈ B, (8.1.7)

zκϕ−b (z) ∈ OE
0

(
W− ∪ {∞}

)
, b ∈ B , (8.1.8)

and
WAϕ+

b = P
(
zκϕ−b (z)

)
= 0 , b ∈ B .

Hence ϕ+
b ∈ KerWA for all b ∈ B. Since the set B is linearly independent and

ϕ+
b (0) = b for all b ∈ B, also the set

{
ϕ+

b

}
b∈B

is linearly independent. Hence
dimKerWA ≥ dimV = d.

Proof of (II): Let κ > 0 be a partial index of A with multiplicity d. By
Corollary 7.9.11, there is a d-dimensional linear subspace V of E such that, for
each vector v ∈ V with v 	= 0, there exists no (κ− 1)-section of A through (∞, v).
Since κ− 1 ≥ 0, it follows (cf. Remark 7.9.3) that there exist no 0-section through
(∞, v).

Now let V be the linear subspace of OE(W+) which consists of all constant
functions with value in V . Then

dimV = d . (8.1.9)

Moreover
V ∩ ImWA = {0} . (8.1.10)

Indeed, assume for some v0 ∈ V the constant function with value v0 belongs to
ImWA. Then there exist ϕ+ ∈ OE(W+) and ϕ− ∈ OE

0

(
W− ∪ {∞}

)
with

A(z)ϕ+(z) = v0 + ϕ−(z) for z ∈W .

Since ϕ−(∞) = 0 (by definition of OE
0 (W− ∪ {∞})), then (ϕ+, v0 + ϕ−) is a

0-section of A through (∞, v). Since there do not exist 0-sections of A through
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(∞, v) if v ∈ V and v 	= 0, it follows that v0 = 0. From (8.1.10) and (8.1.9) it
follows that CokerWA = d. �

8.2 Factorization of Gω(E)-valued functions

Here we use the same notation as in Section 7.8 and prove the result on factoriza-
tion of Gω(E)-valued functions announced already there.

8.2.1 Lemma. Let 0 < r < R < ∞ such that

Γ ⊆W :=
{

z ∈ C

∣∣∣ r < |z| < R
}

,

and let V : W → Fω(E) be holomorphic. Then, with the notations introduced at
the beginning of Section 8.1 and in Definition 8.1.2, the operators PMVQ and
QMV P are compact as operators on OE(W ).

Proof. Let

V (z) =
∞∑

n=−∞
znVn

be the Laurent expansion of V . Since V is holomorphic on W (i.e., in a neighbor-
hood of W ), this series converges uniformly on W . It follows that

PMVQ =
∞∑

n=−∞
PMznVn

Q and QMV P =
∞∑

n=−∞
QMznVn

P

where the sums converge with respect to the operator norm of L(OE(W )). There-
fore it is sufficient to prove that for all n ∈ Z the operators PMznVn

Q and
QMznVn

P are compact as operators on OE(W ).
Let n ∈ Z be given, and let (ϕν)ν∈N be a bounded sequence in OE(W ). We

have to find a subsequence ϕνj of it such that the sequences
(
PMznVn

Q
)
ϕνj and(

QMznVn
P
)
ϕνj

converge in OE(W ). Let

ϕν(z) =
∞∑

k=−∞
zkϕνk , z ∈W

be the Laurent expansion of ϕν . Then by Cauchy’s inequality, for each k ∈ Z, the
sequence (ϕνk)ν∈N is bounded in E. Since the operator Vn is compact, then there
exists a sequence ν1 ≤ ν2 ≤ . . . of numbers νj ∈ N such that, for all k ∈ Z with

−n ≤ k ≤ −1 if n ≥ 1 and 0 ≤ k ≤ −n− 1 if n ≤ −1 ,
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the subsequence (Vnϕνj ,k)j∈N∗ of (Vnϕν,k)ν∈N converges in E. Since(
PMznVn

Q
)
ϕνj

= 0 if n ≤ 0 ,(
PMznVn

Q
)
ϕνj

= PznVn

−1∑
k=−∞

zkϕνj ,k =
−1∑

k=−n

zk+nVnϕνj ,k if n ≥ 1 ,(
QMznVn

P
)
ϕνj = 0 if n ≥ 0 ,(

QMznVn
P
)
ϕνj

= QznVn

∞∑
k=0

zkϕνj ,k =
−n−1∑
k=0

zk+nVnϕνj ,k if n ≤ −1 ,

this implies that sequences
(
PMznVn

Q
)
ϕνj and

(
QMznVn

P
)
ϕνj converge in

OE(W ). �
8.2.2 Theorem. Let A : Γ → Gω(E) be a continuous function which admits local
factorizations with respect to Γ and GL(E). Then A admits a factorization with
respect to Γ and Gω(E).

Proof. By Theorem 7.4.2, we may assume that A is defined, holomorphic and with
values in Gω on C∗. Choose 0 < r < R < ∞ such that

Γ ⊆W :=
{

z ∈ C

∣∣∣ r < |z| < R
}

.

Let V : W → Fω(E) be the function with A = I + V . Let MA and MV be the
operators of multiplication by A and V , respectively. By Lemma 8.2.1, PMVQ
and QMV P are compact as operators on OE(W ). Since MA is invertible as an
operator on OE(W ) and

MA = PMAP +QMAQ+ PMVQ+ PMVQ ,

this implies that
PMAP +QMAQ

is Fredholm as an operator on OE(W ). In particular, the Wiener-Hopf operator
WA = PMA

∣∣
OE(W+)

defined by A in OE(W+) is a Fredholm operator. By Theo-
rem 8.1.4 this implies that A admits a factorization with respect to Γ and GL(E).
Finally, it follows from Proposition 7.8.1 that A admits a factorization with respect
to Γ and Gω(E). �

Under certain additional assumptions about the function A in Theorem 8.2.2,
we can say correspondingly more about the factors of the factorizations of A. We
have:

8.2.3 Corollary (to Theorem 8.2.2). Let 0 < α < 1 and k ∈ N, where, for k ≥ 1,
we additionally assume that Γ is of class Ck (Def. 3.4.1). Let A : Γ→ Gω(E) be a
function of class Ck+α (Def. 3.4.3). Then:
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(i) A admits a factorization with respect to Γ and Gω(E).

(ii) If A = A−ΔA+ is an arbitrary factorization of A with respect to Γ, then
automatically, the factors A− and A+ are of class Ck+α on D− and D+,
respectively.

Proof. Part (i) of Theorem 7.3.1 in particular states that A admits local factoriza-
tions with respect to Γ. Therefore part (i) of the corollary follows from Theorem
8.2.2. Part (ii) of the corollary follows from part (ii) of Theorem 7.3.1 �
8.2.4 Corollary (to Theorem 8.2.2). Let Γ = T be the unit circle, and let R be a
Banach algebra of continuous L(E)-valued functions satisfying conditions (A), (B)
and (C) in Section 7.2.4. For example, let R = W

(
L(E)

)
be the Wiener algebra

(see Section 7.2.1). Let A : Γ→ Gω(E) be a function which belongs to R. Then:

(i) The function A admits a factorization with respect to Γ and Gω(E).

(ii) If A = A−ΔA+ is an arbitrary factorization of A with respect to Γ, then
automatically, the factors A− and A+ belong to the algebra R.

Proof. Part (ii) of Theorem 7.2.5 in particular states that A admits local factor-
izations with respect to Γ. Therefore part (i) of the corollary follows from Theorem
8.2.2. Part (ii) of the corollary follows from part (iii) of Theorem 7.2.5. �

Theorem 8.2.2 admits the following generalization:

8.2.5 Theorem. Let A : Γ → GL(E) be a continuous function which admits local
factorizations with respect to Γ and GL(E). Let G

(
L(E)/Fω(E)

)
be the group of

invertible elements of the factor algebra L(E)/Fω(E), and let

π : L(E)→ L(E)/Fω(E)

be the canonical map. Then the following are equivalent:

(i) The function A admits a factorization with respect to Γ and GL(E).

(ii) The function π(A) admits a canonical factorization with respect to Γ and
G
(
L(E)/Fω(E)

)
.

Proof. (i)⇒(ii) is clear. We prove (ii)⇒(i). Assume there is a canonical factoriza-
tion π(A) = f−f+ of π(A) with respect to Γ and G

(
L(E)/Fω(E)

)
. By Theorem

7.4.2 we may assume that A is holomorphic in a neighborhood of Γ. Then also
π(A) is holomorphic in a neighborhood of Γ, and it follows from the relations

f− = π(A)f−1
+ and f+ = f−1

− π(A)

that f− is holomorphic in a neighborhood of D−∪{∞} and f+ is holomorphic in a
neighborhood of D+. Then, by Theorem 7.8.2, we can find holomorphic functions
A− : D− ∪ {∞} → GL(E) and A+ : D+ → GL(E) such that π(A−) = f− and
π(A+) = f+. Setting

Ã = A−1
− AA−1

+ ,
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we define a holomorphic function Ã : Γ→ GL(E). Since π(Ã) = f−1
− π(A)f−1

+ = 1
on Γ, where 1 is the unit element in L(E)/Fω(E), we see that the values of Ã

belong to Gω(E). By Theorem 7.7, Ã admits a factorization with respect to Γ and
GL(E). Since, by definition, Ã is equivalent to A with respect to Γ and GL(E),
this completes the proof. �

Note the following obvious corollary to Theorem 8.2.5 (which is not obvious
at all without this theorem):

8.2.6 Corollary. Let A : Γ → GL(E) be a continuous function which admits lo-
cal factorizations with respect to Γ. Suppose, there is a finite number of points
p1, . . . , pm ∈ D+ such that A admits a continuous extension to D+ \ {p1, . . . , pm}
(also denoted by A) which is holomorphic in D+ \ {p1, . . . , pm} and has the fol-
lowing property: For each z ∈ D+ \ {p1, . . . , pm}, the value A(z) is a Fredholm
operator, and, for all 1 ≤ j ≤ m, the Laurent expansion of A at pj is of the form

A(z) =
∞∑

n=−∞
(z − pj)nAn,

where A0 is a Fredholm operator and each of the coefficients An with n ≤ 0 is
compact.

Then A admits a factorization with respect to Γ.

Clearly, there is also a corresponding corollary with respect to D− ∪ {∞}.

8.3 The space L2(Γ, H)

The results on factorization obtained up to now can be essentially improved if we
restrict ourselves to Hilbert spaces. In the present section, we introduce a technical
tool for this: the Hilbert space of Hilbert space-valued functions on a contour. Here
we use the following notations:

– H is a separable Hilbert space with the scalar product 〈·, ·〉H and the norm
‖ · ‖H .

– D+ ⊆ C is a bounded connected open set with piecewise C1-boundary Γ. We
assume that 0 ∈ D+, and we set D− := C \D+.

– We give Γ the orientation as the boundary of D+, and we denote by |dz| the
Euclidean volume form of Γ.

– If U ⊆ C is an open set, then we denote by OH(U) the space of continuous
functions on U which are holomorphic in U , and by OH(U) we denote the
subspace of OH(U) which consists of the functions which admit a holomor-
phic extension to some neighborhood of U .

– C0(Γ,H) is the space of continuous H-valued functions on Γ.
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– OH(Γ) is the subspace of C0(Γ,H) which consists of the functions which
admit a holomorphic extension to some neighborhood of Γ.

– OH
0 (D−) is the subspace of OH(D−) which consists of the functions with

f(∞) = 0.

8.3.1. In C0(Γ,H) we introduce a scalar product 〈·, ·〉L2(Γ,H) and the corresponding
norm ‖ · ‖L2(Γ,H), setting

〈f, g〉L2(Γ,H) =
∫
Γ

〈
f(z), g(z)

〉
H
|dz| for f, g ∈ C0(Γ,H)

and
‖f‖L2(Γ,H) =

√
〈f, f〉L2(Γ,H) for f ∈ C0(Γ,H) .

We define L2(Γ,H) to be the completion of C0(Γ,H) with respect to the norm
‖ · ‖L2(Γ,H).

8.3.2. For the scalar case H = C, the space L2(Γ, C) is usually interpreted as
the space of square integrable complex-valued functions on Γ. We avoid such an
interpretation in the case of an arbitrary separable Hilbert space H (although this
is possible). By our definition, the elements of L2(Γ,H) are equivalence classes of
Cauchy sequences of continuous functions. Nevertheless, many operations which
can be defined pointwise in the case of a true function can be applied also to the
elements of L2(Γ,H).

For example, let ϕ : Γ → C be a scalar continuous function and let f ∈
L2(Γ,H) be represented by the Cauchy sequence {fn}n∈N of functions fn ∈
C0(Γ,H). Then ϕf is defined to be the element in L2(Γ,H) represented by the
Cauchy sequence {ϕfn}n∈N. Note that then∥∥ϕf

∥∥
L2(Γ,H)

= max
z∈Γ

∣∣ϕ(z)∣∣∥∥ϕf
∥∥
L2(Γ,H)

In the same way, for each continuous operator function A : Γ → L(H) and each
f ∈ L2(Γ,H), the product Af is well defined. Then∥∥Af

∥∥
L2(Γ,H)

= max
z∈Γ

∥∥A(z)∥∥
L(H)

∥∥ϕf
∥∥
L2(Γ,H)

.

Moreover, denote by L1(Γ, C) the Banach space of integrable complex-valued func-
tions on Γ with the norm

‖f‖L1(Γ,C) =
∫
Γ

|f ||dz| , f ∈ L1(Γ, C) .

Then, for any two elements f, g ∈ L2(Γ,H), a function 〈f, g〉H ∈ L1(Γ, C) is well
defined such that 〈

f, g〉L2(Γ,H) =
∫
Γ

〈f, g〉H |dz| .
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Indeed, let {fn}n∈N and {gn}n∈N be two sequences of functions from C0(Γ,H)
which represent f and g, respectively. Then, by the Cauchy-Schwarz inequality in
H, pointwise on Γ we have∣∣∣〈fn, gn

〉
H
−
〈
fm, gm

〉
H

∣∣∣ ≤ ∥∥fn − fm

∥∥
H

∥∥gn

∥∥
H
+
∥∥fm

∥∥
H

∥∥gn − gm

∥∥
H

,

which implies, by the Cauchy-Schwarz inequality in L2(Γ, C), that∥∥∥〈fn, gn

〉
H
−
〈
fm, gm

〉
H

∥∥∥
L1(Γ,C)

≤
∥∥fn − fm

∥∥
L2(Γ,H)

∥∥gn

∥∥
L2(Γ,H)

+
∥∥fm

∥∥
L2(Γ,H)

∥∥gn − gm

∥∥
L2(Γ,H)

.

Hence
{
〈fn, gn〉H

}
n∈N

is a Cauchy sequence in L1(Γ, C), and the function 〈f, g〉H
can be defined to be the limit of this sequence in L1(Γ, C).

Finally we note that, for each f ∈ L2(Γ,H), the function

‖f‖H :=
√
〈f, f〉H

belongs to L2(Γ, C) and ∥∥f‖2L2(Γ,H) =
∫
Γ

‖f‖2H |dz| .

8.3.3. Note that, by Corollary 3.3.3, OH(Γ) is dense in C0(Γ,H) with respect to
uniform convergence on Γ. Hence OH(Γ) is dense in L2(Γ,H) with respect to the
norm ‖ · ‖L2(Γ,H).

8.3.4. The linear map IΓ from C0(Γ,H) to H defined by

IΓ(f) :=
∫
Γ

f(z)dz , f ∈ C0(Γ,H) , (8.3.1)

is bounded with respect to the norm ‖ · ‖L2(Γ,H). As (by definition) C0(Γ,H) is
dense in L2(Γ,H), this implies that IΓ admits a uniquely determined continuous
linear extension to L2(Γ,H), which we denote also by IΓ. We define∫

Γ

f(z)dz := IΓ(f) for f ∈ L2(Γ,H) .

Indeed, let |Γ| be the Euclidean length of Γ. Then, for each f ∈ L2(Γ,H), we get
from the Cauchy-Schwarz inequality:

‖IΓ(f)‖ ≤
∫

Γ

‖f(z)‖H |dz| ≤
(∫

Γ

|dz|
)1/2(∫

Γ

‖f(z)‖2H |dz|
)1/2

=
√
|Γ| ‖f‖L2(Γ,H) .
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8.3.5 Definition. Let f ∈ L2(Γ,H), and let U ⊆ C∪ {∞} be a neighborhood of Γ.
(i) Let f− ∈ OH

(
U ∩ (D− ∪ {∞})

)
. We shall say that f− is a holomorphic

extension of f if there exist a neighborhood V ⊆ U of Γ and a sequence
f−n ∈ OH(Γ) ∩ OH(V ∩D−), n ∈ N, such that

lim
n→∞ ‖f − f−n ‖L2(Γ,H) = 0 (8.3.2)

and

lim
n→∞max

z∈K
‖f−(z)− f−n (z)‖H = 0 ifK ⊆ V ∩D− is compact . (8.3.3)

(ii) Let f+ ∈ OH(U ∩D+). We shall say that f+ is a holomorphic extension of
f if there exists a neighborhood V ⊆ U of Γ and a sequence f+

n ∈ OH(Γ) ∩
OH(V ∩D+), n ∈ N, such that

lim
n→∞ ‖f − f+

n ‖L2(Γ,H) = 0 (8.3.4)

and

lim
n→∞max

z∈K
‖f+(z)− f+

n (z)‖H = 0 ifK ⊆ V ∩D+ is compact . (8.3.5)

8.3.6 Proposition. Let f ∈ L2(Γ,H), let U ⊆ C ∪ {∞} be a neighborhood of Γ,
and let W be a neighborhood of Γ with piecewise C1-boundary ∂W , oriented by W ,
such that W ⊆ U ∩ C.

(i) Assume f− ∈ OH
(
U ∩ (D− ∪ {∞})

)
is a holomorphic extension of f . Then∫

D−∩ ∂W

f−(z) dz =
∫
Γ

f(z) dz . (8.3.6)

Moreover, if w ∈W ∩D−, then the Cauchy formula holds:

f−(w) =
1
2πi

∫
D−∩ ∂W

f−(z)
z − w

dz − 1
2πi

∫
Γ

f(z)
z − w

dz . (8.3.7)

(ii) Assume f+ ∈ OH
(
U ∩D+

)
is a holomorphic extension of f . Then∫

D+∩∂W

f+(z) dz = −
∫
Γ

f(z) dz . (8.3.8)

Moreover, if w ∈W ∩D+, then the Cauchy formula holds:

f+(w) =
1
2πi

∫
D+∩ ∂W

f+(z)
z − w

dz +
1
2πi

∫
Γ

f(z)
z − w

dz . (8.3.9)
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Proof. The proofs of parts (i) and (ii) are similar. We may restrict ourselves to
part (i).

By hypothesis, there exist a neighborhood V ⊆ U of Γ and a sequence f−n ∈
OH(Γ)∩OH(V ∩D−), n ∈ N, with (8.3.2) and (8.3.3). After shrinking V we may
assume that V ⊆ W and the boundary ∂V of V is also piecewise of class C1. We
orient ∂V by V . Then, by Cauchy’s theorem,∫

D−∩∂W

f−(ζ) dζ =
∫

D−∩∂V

f−(ζ) dζ . (8.3.10)

Moreover, by Cauchy’s theorem,∫
D−∩∂V

f−n (ζ) dζ =
∫
Γ

f−n (ζ) dζ for all n .

By (8.3.3) and (8.3.2), this implies∫
D−∩∂V

f−(ζ) dζ =
∫
Γ

f−(ζ) dζ .

Together with (8.3.10) this proves (8.3.6).
Now we consider some point w ∈ W ∩ D−. Choose a neighborhood W ′ of

Γ with piecewise C1-boundary ∂W ′, oriented by W ′, so small that W
′ ⊆ W and

w ∈W \W
′
. Then, by Cauchy’s formula,

f−(w) =
1
2πi

∫
D−∩ ∂W

f−(z)
z − w

dz − 1
2πi

∫
D−∩ ∂W ′

f−(z)
z − w

dz . (8.3.11)

Since f− is a holomorphic extension of f , it follows easily that the function

W ′ ∩D− � z → f−(z)/(z − w)

is a holomorphic extension of the function

Γ � z → f(z)/(z − w) .

Therefore, to the second integral in (8.3.11) we can apply (8.3.6) with W ′ instead
of W , f(z)/(z−w) instead of f(z) and f−(z)/(z−w) instead of f−(z). This gives
(8.3.7). �
8.3.7. Since holomorphic functions in a neighborhood of Γ are uniquely determined
by their values on Γ, from (8.3.7) and (8.3.9) we get: If f ∈ L2(Γ,H) admits a
holomorphic extension to some open set of the form W ∩D− or W ∩D+, where
W is a neighborhood of Γ such that each connected component of W intersects Γ,
then this extension is uniquely determined.
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The opposite is also true:

8.3.8 Proposition. (i) Let f, g ∈ L2(Γ,H), let U be a neighborhood of Γ, and let
h ∈ OH

(
U ∩ D−

)
such that h is both a holomorphic extension of f and a

holomorphic extension of g. Then f = g.

(ii) Let f, g ∈ L2(Γ,H), let U be a neighborhood of Γ, and let h ∈ OH
(
U ∩D+

)
such that h is both a holomorphic extension of f and a holomorphic extension
of g. Then f = g.

Proof. The proofs of (i) and (ii) are similar. We restrict ourselves to the proof of
part (i).

Set h = f − g. We have to prove that h = 0.
By hypothesis, the zero function on D− is a holomorphic extension of h.

This means, by definition, that there exist a neighborhood V of Γ and a sequence
hn ∈ OH(Γ) ∩ OH(V ∩D−), n ∈ N, such that

lim
n→∞ ‖h− hn‖L2(Γ,H) = 0 (8.3.12)

and
lim

n→∞max
z∈K

‖hn(z)‖H = 0 ifK ⊆ V ∩D− is compact . (8.3.13)

Let {ej}j∈I be an orthonormal basis of H, and let hj ∈ L2(Γ, C) and hnj ∈ OC(Γ)
be the functions with

h =
∑
j∈I

hjej and hn =
∑
j∈I

hnjej . (8.3.14)

For each j ∈ I, it follows from (8.3.12) and (8.3.13) that

lim
n→∞ ‖hj − hnj‖L2(Γ,C) = 0

and
lim

n→∞max
z∈K

∣∣hnj(z)
∣∣ = 0 ifK ⊆ V ∩D− is compact.

If W ⊆ V is a further (arbitrarily small) neighborhood of Γ and ϕ ∈ OC(W ), then
this yields, for all j ∈ I,

lim
n→∞ ‖hjϕ− hnjϕ‖L2(Γ,C) = 0 (8.3.15)

and
lim

n→∞max
z∈K

∣∣hnj(z)ϕ(z)
∣∣ = 0 ifK ⊆W ∩D− is compact. (8.3.16)

Hence, for each ϕ ∈ OC(Γ) and j ∈ I, the (scalar) zero function on D− is a
holomorphic extension of hjϕ. By (8.3.6) this implies that∫

Γ

hj(z)ϕ(z) dz = 0 for all ϕ ∈ OC(Γ) and j ∈ I . (8.3.17)
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Let θ : Γ→ C be the function with dz = θ|dz|. As Γ is piecewise C1, this function
is piecewise continuous and |θ| = 1. Then (8.3.17) takes the form〈

hj , ϕθ
〉
L2(Γ,C)

= 0 for all ϕ ∈ OC(Γ) and j ∈ I . (8.3.18)

Since OC(Γ) is dense in L2(Γ, C), also the functions of the form ϕ θ, ϕ ∈ OC(Γ),
are dense in L2(Γ, C). Therefore (8.3.18) means that hj = 0 for all j ∈ I. By
(8.3.14) this yields h = 0. �
8.3.9 Proposition. Let f ∈ L2(Γ,H), let U ⊆ C ∪ {∞} be a neighborhood of Γ,
and let h ∈ OH(U \Γ) such that both h

∣∣
U∩(D−∪{∞}) and h

∣∣
U∩D+

are holomorphic

extensions of f . Then h admits a holomorphic extension h̃ to U and h̃
∣∣
Γ
= f .

Proof. It is sufficient to prove that h admits a holomorphic extension h̃ to U . The
relation h̃

∣∣
Γ
= f then follows from Proposition 8.3.8. Choose a neighborhood W

of Γ with piecewise C1-boundary, oriented by W , such that W ⊆ U ∩C. We define
a holomorphic function F : W → C, setting

h̃(w) =
1
2πi

∫
∂W

h(z)
z − w

dz , w ∈W .

We have to prove that h̃(w) = h(w) for w ∈ W \ Γ. The proofs are similar for
w ∈W ∩D− and w ∈W ∩D+. Let w ∈ D− ∩W be given.

Since h
∣∣
U∩D+

is a holomorphic extension of f , it follows that the function

D+ ∩W � z −→ 1
2πi

h(z)
z − w

(8.3.19)

is a holomorphic extension of the function

Γ � z −→ 1
2πi

f(z)
z − w

. (8.3.20)

Therefore, by (8.3.8) (with (8.3.19) instead of f+ and (8.3.20) instead of f),

1
2πi

∫
D+∩ ∂W

h(z)
z − w

dz = − 1
2πi

∫
Γ

f(z)
z − w

dz .

Moreover, from the Cauchy formula (8.3.7) we get

h(w) =
1
2πi

∫
D−∩ ∂W

h(z)
z − w

dz − 1
2πi

∫
Γ

f(z)
z − w

dζ .

Together this proves that h(w) = h̃(w). �
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8.3.10 Theorem and Definition. Recall that, by Theorem 3.7.3 and Proposition
3.1.3, the space OH(Γ) is the (algebraic) direct sum of OH(D+) and OH

0 (D− ∪
{∞}). We denote by P = PΓ the linear projector from OH(Γ) to OH(D+) parallel
to OH

0 (D− ∪ {∞}), and we set Q = I − P.

(i) The projector P is continuous with respect to the norm ‖ · ‖L2(Γ,H).

Since OH(Γ) is dense in L2(Γ,H) (Section 8.3.3), it follows that P admits a
uniquely determined continuous linear extension to L2(Γ,H). This extension will
be also denoted by P, and we set Q = I − P, L2

+(Γ,H) = PL2(Γ,H) and
L2
−(Γ,H) = QL2(Γ,H).

(ii) For each f ∈ L2(Γ,H), there exist uniquely determined functions f− ∈
OH

0

(
D− ∪ {∞}

)
and f+ ∈ OH

(
D+

)
such that f+ is the holomorphic exten-

sion of Pf 3, and f− is the holomorphic extension of Qf . These functions
are given by

f+(z) =
1
2πi

∫
Γ

f(ζ)
ζ − z

dζ =
1
2πi

∫
Γ

(Pf)(ζ)
ζ − z

dζ , z ∈ D+ , (8.3.21)

and

f−(z) = −
1
2πi

∫
Γ

f(ζ)
ζ − z

dζ = − 1
2πi

∫
Γ

(Qf)(ζ)
ζ − z

dζ , z ∈ D− . (8.3.22)

(iii) Let Γ be the unit circle, and let {ej}j∈N be an orthonormal basis of H. Then
the functions

zn

√
2π

ej , n ∈ Z, j ∈ N, (8.3.23)

form an orthonormal basis of L2(Γ, C), and, hence, by Laurent decomposition,
the family

zn

√
2π

ej , n ∈ N, j ∈ N, (8.3.24)

forms an orthonormal basis of L2
+(Γ, C), and the family

zn

√
2π

, n ∈ Z, n ≤ −1, j ∈ N, (8.3.25)

forms an orthonormal basis of L2
−(Γ, C). In particular, then P is an orthog-

onal projector.

3By the observation in Section 8.3.7, here we may speak about the holomorphic extension.
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Proof. (iii) We have∫
|z|=1

∣∣∣∣ zn

√
2π

∣∣∣∣2 |dz| = 1
2π

∫
|z|=1

|dz| = 1 for all n ∈ Z ,

and∫
|z|=1

znzm |dz| =
∫

|z|=1

zn−m|dz| =
2π∫
0

ei(n−m)tdt

=
1

i(n−m)
ei(n−m)t

∣∣∣t=2π

t=0
= 0 for all n, m ∈ Z with n 	= m .

If Γ is the unit circle, this shows that

zn

√
2π

, n ∈ Z,

is an orthonormal system in L2(Γ, C), which further implies that (8.3.23) is or-
thonormal in L2(Γ,H). Moreover if Γ is the unit circle and

f(z) =
∞∑

n=−∞
zn fn

is the Laurent expansion of a function f ∈ OH(Γ), then

f(z) =
∞∑

n=−∞

∞∑
j=0

〈
fn, ej

〉
H

znej .

This implies that f belongs to the closed linear hull of (8.3.23). As OH(Γ) is dense
in L2(Γ,H), this completes the proof of part (iii).

(i) We first discuss the scalar case H = C, where the main difficulties already
appear. In this discussion, we may restrict ourselves to the case when Γ is connected
and, hence, D+ is simply connected. The general case then easily follows applying
this special case to each of the connected components of Γ.

If Γ is of class C1 (and not only piecewise C1, as usually in this book), for a
proof we can refer to the book [GKru]4, where the proof is reduced to the case
of the unit circle using a conformal mapping from D+ to the unit disc and its
boundary properties. For the general case (when Γ is only piecewise C1) we can
refer only to the original paper [CMM], where the much more general case of
Lipschitz contours is considered.5

4In [GKru] even the more general case of Ljapunov contours is considered.
5We do not know whether there exists in the literature a more simple direct proof for the

case of piecewise C1-contours.
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We now give a proof of part (i), using the fact that this is already known for
H = C.

Let {ej}j∈I be an orthonormal basis of H. Denote by F the subspace of
L2(Γ,H) which consists of the functions of the form

f =
∑
j∈J

ϕj(z)ej , z ∈ Γ ,

where J ⊆ I is finite and ϕj ∈ OC(Γ), j ∈ J . For such functions it is easy to see
that

‖f‖2L2(Γ,H) =
∑
j∈J

∥∥ϕj

∥∥2

L2(Γ,C)
, Pf =

∑
j∈J

(
Pϕj

)
ej

and
‖Pf‖2L2(Γ,H) =

∑
j∈J

∥∥Pϕj

∥∥2

L2(Γ,C)
≤
∥∥P∥∥2

L2(Γ,C)

∑
j∈J

∥∥ϕj

∥∥2

L2(Γ,C)
,

where ‖P‖L2(Γ,C) denotes the norm of P as an operator in L2(Γ, C). If ‖P‖L2(Γ,H)

is the norm of P as an operator in L2(Γ,H), this implies that

‖Pf‖L2(Γ,H) ≤ ‖P‖L2(Γ,C)‖f‖L2(Γ,H) for all f ∈ F . (8.3.26)

Set
fj(z) = 〈f(z), ej〉H for z ∈ Γ and f ∈ OH(Γ) .

Then
‖f‖2L2(Γ,H) =

∑
j∈I

‖fj‖2L2(Γ,C) .

for each f ∈ OH(Γ). Therefore, for each f ∈ OH(Γ) and each ε > 0, there exists
a finite set J ⊆ I with ∥∥∥f −∑

j∈J

fjej

∥∥∥
L2(Γ,H)

< ε .

Since OH(Γ) is dense in L2(Γ,H), this implies that F is dense in L2(Γ,H). To-
gether with (8.3.26) this completes the proof of part (i).

(ii) Let f ∈ L2(Γ,H) be given. We define f+ by the first equality in (8.3.21),
and we define f− by the first equality in and (8.3.22). It is clear that in this way
functions f+ ∈ OH(D+) and f− ∈ OH

0

(
D−∪{∞}

)
are well defined. It remains to

prove the second equality in (8.3.21), the second equality in (8.3.22) and the facts
that f+ is a holomorphic extension of Pf and f− is a holomorphic extension of
Qf .

Since OH(Γ) is dense in L2(Γ,H), we can choose a sequence hn ∈ OH(Γ),
n ∈ N, with

lim
n→∞ ‖hn − f‖L2(Γ,H) = 0 . (8.3.27)
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Since, by part (i) of the theorem, P and Q are continuous, this implies that

lim
n→∞ ‖Phn − Pf‖L2(Γ,H) = lim

n→∞ ‖Qhn −Qf‖L2(Γ,H) = 0 . (8.3.28)

Moreover, by Cauchy’s formula and Cauchy’s theorem,

(Phn)(z) =
1
2πi

∫
Γ

(Phn)(ζ)
ζ − z

dζ =
1
2πi

∫
Γ

hn(ζ)
ζ − z

dζ (8.3.29)

for z ∈ D+, and

(Qhn)(z) = −
1
2πi

∫
Γ

(Qhn)(ζ)
ζ − z

dζ = − 1
2πi

∫
Γ

hn(ζ)
ζ − z

dζ (8.3.30)

for z ∈ D−. The second equality in (8.3.21) follows passing to the limit in (8.3.29),
and the second equality in (8.3.22) follows passing to the limit in (8.3.30).

Now let K be a compact subset of D+. Then, by (8.3.29) and the definition
of f+,

max
z∈K

∥∥(Phn)(z)− f+(z)
∥∥

H
≤ 1
2π

∫
Γ

‖hn(ζ)− f(ζ)‖H

|ζ − z| |dζ| .

If |Γ| is the length of Γ and d is the distance between K and Γ, using the Cauchy-
Schwarz inequality, this further implies

max
z∈K

∥∥(Phn)(z)− f+(z)
∥∥

H
≤ 1
2πd

|Γ|1/2‖hn − f‖L2(Γ,H) .

Together with (8.3.28) this implies that

lim
n→∞max

z∈K

∥∥(Phn)(z)− f+(z)
∥∥

H
= 0 .

Hence f+ is a holomorphic extension of Pf .
In the same way it follows from (8.3.30) and (8.3.28) that f− is a holomorphic

extension of Qf . �

8.3.11 Corollary (to the preceding theorem and definition). Since OH(Γ) is dense
in L2(Γ,H) and P and Q are continuous with respect to the topology of L2(Γ,H),
it follows immediately from the definitions of L2

+(Γ,H) and L2
−(Γ,H) that the

space OH(D+) is dense in L2
+(Γ,H) and the space OH

0

(
D− ∪ {∞}

)
is dense in

L2
−(Γ,H).
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8.4 Operator functions with values acting in a Hilbert

space

In this section, H is a separable Hilbert space6, D+ ⊆ C is a bounded connected
open set with piecewise C1-boundary Γ such that 0 ∈ D+, and D− := C \ D+.
Further, throughout this section L2(Γ,H), L2

+(Γ,H) and L2
−(Γ,H) denote the

Hilbert spaces introduced in Section 8.3.1 and Theorem and Definition 8.3.10,
and P denotes the projector from L2(Γ,H) onto L2

+(Γ,H) parallel to L2
−(Γ,H).

8.4.1 Definition. Let A : Γ→ L(H) be a continuous function. Then we denote by
WA (or by WΓ

A) the bounded linear operator acting in L2
+(Γ,H) by

WAf = P
(
Af

)
, f ∈ L2

+(Γ,H) .

This operator WA will be called the Wiener-Hopf operator defined by A on
L2

+(Γ,H). Sometimes we use also the notationMA to denote the operator acting
in L2(Γ,H) by multiplication by A. Then

WA = PMA

∣∣
L2

+(Γ,H)
.

8.4.2 Theorem. Let A : Γ → GL(H) be a continuous function which admits local
factorizations with respect to Γ and GL(H) (Def. 7.1.3), and letWA be the Wiener-
Hopf operator defined by A on L2

+(Γ,H). Then:

(i) The function A admits a canonical factorization with respect to Γ and GL(H)
(Def. 7.1.1), if and only if, WA is invertible.

(ii) The function A admits a factorization with respect to Γ and GL(H) (Def.
7.1.1), if and only if, WA is a Fredholm operator. If this is the case, with the
notations from Definition 7.1.1,

dimCokerWA =
∑

1≤j≤n , κj>0

κj dimPj ,

dimKerWA = −
∑

1≤j≤n , κj<0

κj dimPj ,
(8.4.1)

where the term on the right means zero if there is no j with κj > 0 resp. if
there is no j with κj < 0.

The remainder of this section is devoted to the proof of this theorem. We
will deduce it from Theorem 8.1.4. The first step is the following lemma.

8.4.3 Lemma. Let W be a bounded neighborhood of Γ such that each connected
component of W contains at least one connected component of Γ. We set W+ =

6For simplicity we consider only separable Hilbert spaces, although the results can be gener-
alized to the non-separable case.
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D+ ∪ W and W− = D− ∪ W . Let A : W → GL(H) be a continuous function
which is holomorphic in W . Let WA be the Wiener-Hopf operator defined by A on
L2

+(Γ,H) (Def. 8.4.1), and let W̃A be the Wiener-Hopf operator defined by A on
OH(W+) (Def. 8.1.2). Then

KerWA = Ker W̃A (8.4.2)

and
OH(W+) ∩ ImWA = Im W̃A . (8.4.3)

Proof. (See Def. 8.1.1 for the notations.) We first prove (8.4.2). The relation

KerWA ⊇ Ker W̃A

is obvious. To prove the opposite relation, let f ∈ KerWA be given. Then g :=
Af ∈ L2

−(Γ,H). By statement (ii) in Theorem and Definition 8.3.10, g admits a
holomorphic extension g− to D−. Since A−1 is holomorphic on W and continuous
on W , this implies that f = A−1g admits the holomorphic extension A−1g− to
W ∩D−, which further extends continuously to W ∩D−. On the other hand, by
the same statement (ii) in Theorem and Definition 8.3.10, f admits a holomorphic
extension to D+. By Proposition 8.3.9, together this implies that

f ∈ OH(W+) . (8.4.4)

Hence Af ∈ OH(W ). Since, moreover, Af ∈ L2
−(Γ,H), it follows that Af ∈

OH
0 (W− ∪ {∞}). Together with (8.4.4) this means that f ∈ KerWA.

Now we prove (8.4.3). The relation

OH(W+) ∩ ImWA ⊇ ImWA

is obvious. To prove the opposite relation, let

f+ ∈ OH(W+) ∩ ImWA

be given. Then there exist u+ ∈ L2
+(Γ,H) and g− ∈ L2

−(Γ,H) such that

f+ + g− = Au+ . (8.4.5)

Hence g− = Au+ − f+. Since A is continuous on W and holomorphic in W , by
Proposition 8.3.9 this implies that g− ∈ OH

(
W
)
and hence (as g− ∈ L2

−(Γ,H))

g− ∈ OH
0

(
W− ∪ {∞}

)
. (8.4.6)

Since f+ ∈ OH
(
W+

)
, in view of (8.4.5) this further implies that Au+ ∈ OH

(
W
)
.

As A−1 is continuous on W and holomorphic in W , so we get u+ ∈ OH
(
W
)
and

hence (as u+ ∈ L2
+(Γ,H))

u+ ∈ OH
(
W+

)
. (8.4.7)

From (8.4.5)–(8.4.7) it follows that f ∈ Im W̃A. �
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8.4.4 Proposition. (see the beginning of Section 8.3 for the notations) The space
OH(D+) is contained in L2

+(Γ,H) as a dense subspace, and OH
0

(
D− ∪ {∞}

)
is

contained in L2
−(Γ,H) as a dense subspace.

Proof. By the Mergelyan approximation Theorem 2.2.1, OH(D+) is dense in
OH(D+) and OH

(
D−∪{∞}

)
is dense in OH

(
D−∪{∞}

)
with respect to uniform

convergence and, hence, with respect to the topology of L2(Γ,H). Since, by defini-
tion of P and Q, Pf = f for f ∈ OH(D+) andQf = f for f ∈ OH

(
D−∪{∞}

)
and

since P and Q are continuous on L2(Γ,H), this implies that OH(D+) is contained
in L2

+(Γ,H) and OH
(
D− ∪ {∞}

)
is contained in L2

−(Γ,H).
To prove the density, let f+ ∈ L2

+(Γ,H) and f− ∈ L2
−(Γ,H) be given. Since

OH(Γ) is dense in L2(Γ,H) (cf. Section 8.3.3), then there are sequences h+
n and

h−n in OH(Γ) such that

lim
n→∞ ‖h

+
n − f+‖L2(Γ,H) = 0 and lim

n→∞ ‖h
−
n − f−‖L2(Γ,H) = 0

and hence, as P and O are continuous,

lim
n→∞ ‖Ph+

n − f+‖L2(Γ,H) = 0 and lim
n→∞ ‖Qh−n − f−‖L2(Γ,H) = 0.

Since Ph+
n ∈ OH(D+) and Qh−n ∈ OH(D− ∪ {∞}), this completes the proof of

the density. �
8.4.5 Lemma. Let A,B : Γ → L(E) be continuous functions, and let T− : D− ∪
{∞} → GL(E) and T+ : D+ → GL(E) be continuous functions, which are holo-
morphic in D− ∪ {∞} and D+, respectively, such that

A = T−BT+ on Γ. (8.4.8)

Then:

(i) WA =WT−
WBWT+

.

(ii) If T−(z) is invertible for all z ∈ D− ∪ {∞}, then WT− is invertible and

W−1
T−

=W
T−1
−

.

(iii) If T+(λ) is invertible for all z ∈ D+, then WT+
is invertible and

W−1
T+

=W
T−1

+
.

In particular, if A and B are equivalent relative to Γ and GL(E) (Def. 7.1.3), then
WA and WB are equivalent.7

7Two operators T and S in a Banach space X are called equivalent if there exist invertible
operators V, W in X such that T = V SW .
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Proof. It is sufficient to prove part (i), because (ii) and (iii) then follow.
It follows from Proposition 8.4.4 that MT+

L2
+(Γ,H) ⊆ L2

+(Γ,H) and
MT−

L2
−(Γ,H) ⊆ L2

−(Γ,H). Therefore

PMT+
P =MT+

P (8.4.9)

and
PMT−(I − P) = 0 .

From the second relation it follows that

PMT−P = PMT− . (8.4.10)

From (8.4.8)–(8.4.10) together we obtain the assertion:

WT−WBWT+
= PMT−

PMBPMT+

∣∣∣
L2

+(Γ,H)

= PMT−
MBMT+

∣∣∣
L2

+(Γ,H)
= PMA

∣∣∣
L2

+(Γ,H)
=WA .

�

Proof of Theorem 8.4.2. First assume that A admits a factorization A = A−ΔA+

with respect to Γ and GL(H). Using Proposition 8.3.9, then it is easy to prove
that WΔ is a Fredholm operator, where, with the notations from Definition 7.1.1,

dimCokerWΔ =
∑

1≤j≤n , κj>0

κj dimPj ,

dimKerWΔ = −
∑

1≤j≤n , κj<0

κj dimPj .
(8.4.11)

Since, by Lemma 8.4.5, the operators WA and WΔ are equivalent, this implies
that WA is invertible if Δ ≡ I and that WA is a Fredholm operator satisfying
(8.4.1) if Δ 	≡ 0.

Now we assume that WA is a Fredholm operator on L2
+(Γ,H). By Theorem

7.4.2, A is equivalent with respect to Γ and GL(H) to some holomorphic function
B : C∗ → GL(H). LetWB be the Wiener-Hopf operator defined by B in L2

+(Γ,H).
Then, by Lemma 8.4.5, the operators WA and WB are equivalent. Hence WB is a
Fredholm operator, and if WA is invertible, then WB is invertible.

Now we choose a neighborhood W as in Lemma 8.4.3 and set W+ = D+∪W .
Let, as in this lemma, W̃B be the Wiener-Hopf operator defined by B in OH(W+).
Since WA is a Fredholm operator, it follows from relations (8.4.2) and (8.4.3) in
Lemma 8.4.3 that also W̃B is a Fredholm operator, which is invertible if WA is
invertible. Now the two assertions (i) and (ii) of the theorem under proof follow
from Theorem 8.1.4. �
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8.5 Functions close to the unit operator or with positive

real part

In this section, H is again a separable Hilbert space, D+ ⊆ C is a bounded
connected open set with piecewise C1-boundary Γ such that 0 ∈ D+, and D− :=
C \D+. For many results, we have to assume that Γ = T is the unit circle. If this
is the case, this will be mentioned explicitly.

The following theorem is true for general contours.

8.5.1 Theorem. There exists a constant ε > 0 such that the following holds: Any
continuous operator function A : Γ → GL(H), which admits local factorizations
with respect to Γ (Def. 7.1.3) and which satisfies

max
z∈Γ

‖A(z)− I‖L(H) < ε , (8.5.1)

admits a canonical factorization with respect to Γ (Def. 7.1.1).

Proof. Let L2(Γ,H), L2
+(Γ,H) and L2

−(Γ,H) be the Hilbert spaces introduced
in Section 8.3.1 and Theorem and Definition 8.3.10, and let P be the projector
from L2(Γ,H) onto L2

+(Γ,H) parallel to L2
−(Γ,H). Recall that (by Theorem and

Definition 8.3.10) P is a bounded linear operator on L2
−(Γ,H), and set

ε =
1

‖P‖L(L2(Γ,H))

.

Now let a continuous function A : Γ → GL(H) be given which satisfies (8.5.1),
and letMA−I : L2(Γ,H)→ L2(Γ,H) be the operator of multiplication by A− I,
and let WA be the Wiener-Hopf operator defined by A on L2

+(Γ,H) (Def. 8.4.1).
Then

‖MA−I‖L(L2(Γ,H)) < ε =
1

‖P‖L(L2(Γ,H))

.

Since WA − I = PMA−I

∣∣
L2

+(Γ,H)
, this implies

‖WA − I‖
L(L2

+(Γ,H)) ≤ ‖P‖L(L2(Γ,H))‖MA−I‖L(L2(Γ,H)) < 1 .

Hence WA is invertible. If, in addition, A admits local factorizations with respect
to Γ and GL(H), it follows from Theorem 8.4.2 that A admits a canonical factor-
ization with respect to Γ. �
8.5.2 Corollary (to Theorem 8.5.1). Let 0 < α < 1 and k ∈ N, where, for k ≥ 1,
we additionally assume that Γ is of class Ck (Def. 3.4.1). Then there exists ε > 0
such that, for any Ck+α-function A : Γ→ GL(H) (Def. 3.4.3), which satisfies

max
z∈Γ

‖A(z)− I‖L(H) < ε ,

the following holds:
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(i) A admits a canonical factorization with respect to Γ.

(ii) If A = A−A+ is an arbitrary canonical factorization of A with respect to Γ,
then automatically, the factors A− and A+ are of class Ck+α on D− and D+,
respectively.

Proof. Part (i) of Theorem 7.3.1 in particular yields that A admits local factoriza-
tions with respect to Γ. Therefore part (i) of the corollary follows from Theorem
8.5.1. Part (ii) of the corollary follows from part (ii) of Theorem 7.3.1 �
8.5.3 Theorem. Let Γ = T be the unit circle. Then any continuous function A :
T → GL(H), which admits local factorizations with respect to T (Def. 7.1.3) and
which satisfies

max
z∈Γ

‖A(z)− I‖L(H) < 1 , (8.5.2)

admits a canonical factorization with respect to T (Def. 7.1.1).

Proof. This is a repetition of the proof of Theorem 8.5.1, taking into account that
now (as Γ = T), by statement (iii) in definition and Theorem 8.3.10,

‖P‖L(L2(Γ,H)) = 1 .

�
8.5.4 Corollary (to Theorem 8.5.3). Let Γ = T be the unit circle, and let A : Γ→
GL(H) be a Ck+α-function, 0 < α < 1, k ∈ N (Def. 3.4.3), which satisfies

max
z∈T

‖A(z)− I‖L(H) < 1 .

Then:

(i) A admits a canonical factorization with respect to T.

(ii) If A = A−A+ is an arbitrary canonical factorization of A with respect to T,
then automatically, the factors A− and A+ are of class Ck+α on D− and
D+, respectively.

Proof. Part (i) of Theorem 7.3.1 in particular yields that A admits local factoriza-
tions with respect to T. Therefore part (i) of the corollary follows from Theorem
8.5.3. Part (ii) of the corollary follows from part (ii) of Theorem 7.3.1 �
8.5.5 Corollary (to Theorem 8.5.3). Let Γ = T be the unit circle, and let R be a
Banach algebra of continuous L(H)-valued functions satisfying conditions (A), (B)
and (C) in Section 7.2.4. For example, let R = W

(
L(H)

)
be the Wiener algebra

(see Section 7.2.1). Let A : T → GL(H) be a function which belongs to R and
satisfies

max
z∈T

‖A(z)− I‖L(H) < 1 .

Then:



8.5. Functions close to the unit operator or with positive real part 293

(i) A admits a canonical factorization with respect to T.

(ii) If A = A−A+ is an arbitrary canonical factorization of A with respect to Γ,
then automatically, the factors A− and A+ belong to the algebra R.

Proof of Theorem 8.5.1. Part (ii) of Theorem 7.2.5 yields that A admits local fac-
torizations with respect to Γ. Therefore part (i) of the corollary follows from The-
orem 8.5.3. Part (ii) of the corollary follows from part (iii) of Theorem 7.2.5. �

8.5.6. It is clear that the assertion of Theorem 8.5.3 remains valid if we replace the
unit circle T by an arbitrary circle in C. However this is not true for more general
contours. V.I. Macaev and A.I. Virozub [ViMa] even proved the following: If the
assertion of Theorem 8.5.3 is valid for any finite dimensional Hilbert space H with
T replaced by an arbitrary Jordan curve, then this Jordan curve is a circle.

However there is the following result for operator functions of a special form.

8.5.7 Theorem. Assume that the contour Γ (of the generality as described at the
beginning of this section) is connected, i.e., we assume that D+ is simply connected
(Section 2.5.1).

Let A : Γ→ GL(H) be a function of the form

A(z) =
T

z − z0
+B+(z) , z ∈ Γ , (8.5.3)

where z0 ∈ D+, T ∈ L(H) and B+ is a continuous L(H)-valued function on D+,
which is holomorphic in D+, and assume that

max
z∈Γ

‖A(z)− I‖L(H) < 1 . (8.5.4)

Then A admits a canonical factorization with respect to Γ and GL(H).

8.5.8. Of course, also for this theorem there is a corollary for functions of class
Ck+α corresponding to Corollary 8.5.2 of Theorem 8.5.1.

Proof of Theorem 8.5.7. As A is of the form (8.5.3), it is continuous on D+ \ {z0}
and holomorphic in D+ \ {z0}. Choose a neighborhood U ⊆ C \ {z0} of Γ so small
that

q := sup
z∈U∩D+

‖A(z)− I‖L(H) < 1 . (8.5.5)

Set
T =

{
z ∈ C

∣∣∣ |z| = 1
}

and D =
{

z ∈ C

∣∣∣ |z| < 1
}

.

Since D+ is simply connected, we can find a biholomorphic map ϕ from a neigh-
borhood of D onto D+ such that

Γ′ := ϕ(T) ⊆ U , z0 ∈ D+ := ϕ(D) and ϕ(0) = z0 .
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It is easy to see that then any canonical factorization of A with respect to Γ′ and
GL(H) is also a canonical factorization with respect to Γ and GL(H). Therefore
it is sufficient to prove that A admits a canonical factorization with respect to Γ′

and GL(H).
For that we want to apply theroem 8.4.2. Since A is holomorphic in a neigh-

borhood of Γ′, it is trivial that A admits local factorizations with respect to Γ′

and GL(H). Therefore, to apply this theroem, we only have to prove that the
Wiener-Hopf operator defined by A in L2

+(Γ
′,H) is invertible.

Since the derivative of a biholomorphic map does not vanish,

ρ(z) :=
|z − z0|2

|ϕ′ (ϕ−1(z))| , z ∈ Γ′ ,

is a well-defined continuous function on Γ′. Moreover, h(z) 	= 0 for all z ∈ Γ′ (as
z0 	∈ Γ′). Therefore, setting〈

f, g
〉

ρ
=
∫
Γ′

〈
f(z), g(z)

〉
H

ρ(z) |dz| ,

we get a scalar product 〈·, ·〉ρ on L2(Γ′,H), such that the corresponding norm ‖·‖ρ

is equivalent to the norm ‖ · ‖L2(Γ′,H) introduced in Definition 8.3.1.
Therefore, to prove the invertibility of the above mentioned Wiener-Hopf

operator, now it is sufficient to show that

‖P(Af)− f‖ρ ≤ q‖f‖ρ (8.5.6)

for all f ∈ L2
+(Γ

′,H), where P is the projector from L2(Γ′,H) onto L2
+(Γ

′,H)
parallel to L2

−(Γ
′,H). Since OH(D

′
+) is dense in L2

+(Γ
′,H) (Corollary 8.3.11), it

is sufficient to prove this for all f ∈ OH(D
′
+). Let such f be given. Let T be the

operator from (8.5.3), set

v = Tf(z0) and h(z) =
v

z − z0
, z ∈ C \D′+ .

Then〈
P(Af)− f, h

〉
ρ
=
∫
Γ′

〈(
P(Af)− f

)
(z) ,

v

z − z0

〉
H

|z − z0|2
|ϕ′ (ϕ−1(z))| |dz|

=
∫
T

〈(
P(Af)− f

)(
ϕ(z)

)
,

v

ϕ(z)− z0

〉
H

|ϕ(z)− z0|2∣∣ϕ′ (ϕ−1
(
ϕ(z)

))∣∣ |ϕ′(z)||dz|

=
∫
T

〈(
P(Af)− f

)(
ϕ(z)

)
,

v

ϕ(z)− z0

〉
H

∣∣ϕ(z)− z0|2
∣∣|dz|

=
∫
T

〈(
P(Af)− f

)(
ϕ(z)

)
, v
〉

H

(
ϕ(z)− z0

)
|dz| .
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Since f is holomorphic in a neighborhood of D
′
+ and A is holomorphic in a neigh-

borhood of Γ′, the function under the last integral is holomorphic in a neighbor-
hood of D. Moreover, as ϕ(0) = z0, this function vanishes at zero. Therefore the
Taylor expansion at zero of this function is of the form〈(

P(Af)− f
)(

ϕ(z)
)
, v
〉

H

(
ϕ(z)− z0

)
=

∞∑
n=1

anzn .

Since this series converges uniformly on T and

∫
T

zn|dz| =
2π∫
0

eintdt =
1
in

eint
∣∣∣t=2π

t=0
= 0 for n ≥ 1 ,

it follows that
〈
P(Af)− f, h

〉
ρ
= 0 . Hence

‖P(Af)− f‖ρ ≤ ‖P(Af)− f + h‖ρ .

Since, by (8.5.3), P(Af) + h = Af and therefore P(Af) − f + h = Af − f , it
follows that

‖P(Af)− f‖ρ ≤ ‖Af − f‖ρ .

As, by (8.5.5), ‖Af − f‖ρ ≤ q‖f‖ρ, this proves (8.5.6). �

8.5.9 Theorem. Let Γ = T be the unit circle. Assume A : T → GL(H) is a
continuous function which admits local factorizations with respect to T (Def. 7.1.3,
such that, for some c > 0,

Re
〈
A(z)v, v

〉
H
≥ c‖v‖H for all v ∈ H and z ∈ T , (8.5.7)

where 〈·, ·〉H denotes the scalar product of H. Then A admits a canonical factor-
ization with respect to T (Def. 7.1.1).

Proof. By Theorem 8.4.2 it is sufficient to prove that the Wiener-Hopf operator
WA defined by A on L2(T,H) is invertible. It follows from (8.5.7) that, for each
continuous function f : T → H,

Re
〈
Af, f

〉
L2(T,H)

=
∫
T

Re
〈
A(z)f(z), f(z)

〉
H
|dz|

≥ c

∫
T

‖f(z)‖H |dz| = c
∥∥f‖2L2(T,H).

Since the continuous functions are dense in L2(T,H), this implies that

Re
〈
Af, f

〉
L2(T,H)

≥ c
∥∥f‖2L2(T,H) for all f ∈ L2(T,H) .
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Since, by statement (iii) in Theorem and Definition 8.3.10, the projector P is
orthogonal and Pf = f for f ∈ L2

+(T,H), this implies that

Re
〈
WAf, f

〉
L2(T,H)

= Re
〈
P(Af), f

〉
L2(T,H)

= Re
〈
Af, f

〉
L2(T,H)

≥ c
∥∥f∥∥2

L2(T,H)
for all f ∈ L2

+(T,H) .

Hence the real part of WA is positive, which implies that WA is invertible. �

8.5.10 Theorem. Let Γ = T be the unit circle. Assume A : Γ → GL(H) is a
continuous function which admits local factorizations with respect to Γ (Def. 7.1.3),
such that at least one of the following two conditions is satisfied:

max
z∈T

‖A−1(z)− I‖L(H) < 1 , (8.5.8)

or, for some c > 0,

Re〈A−1(z)v, v〉H ≥ c‖v‖H for all v ∈ H and z ∈ T . (8.5.9)

Then A admits a canonical factorization with respect to T (Def. 7.1.1).

Proof. Set

B(z) = A−1

(
1
z

)
.

Since A admits local factorizations with respect to T, then B admits local factor-
izations with respect to T. Moreover, since A satisfies at least one of the conditions
(8.5.8) or (8.5.9), B satisfies at least one of the conditions

max
z∈T

‖B(z)− I‖L(H) < 1 ,

or
Re〈B(z)v, v〉H ≥ c‖v‖H for all v ∈ H .

Therefore, by theorems 8.5.3 and 8.5.9, B admits a canonical factorization B =
B−B+ with respect to T. Setting

A−(z) = B−1
+

(
1
z

)
and A+(z) = B−1

−

(
1
z

)
,

we obtain a required canonical factorization A = A−A+ of A with respect to
T. �

8.5.11. Finally we note that also theorems 8.5.9 and 8.5.10 have corollaries corre-
sponding to corollaries 8.5.4 and 8.5.4 of Theorem 8.5.3.
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8.6 Block Töplitz operators

In this section H is a separable Hilbert space and

l2(H) = H ⊕H ⊕H ⊕ . . .

is defined to be the Hilbert space of square integrable sequences v = (vn)n∈N of
vectors vn ∈ H, endowed with the scalar product

〈v, w〉 =
∞∑

n=0

〈vn, wn〉, v = (vn)n∈N ∈ l2(H), w = (wn)n∈N ∈ l2(H),

and the norm

‖v‖ =

√√√√ ∞∑
n=0

‖vn‖2, v = (vn)n∈N ∈ l2(H).

8.6.1. Let πn : l2(H)→ H, n ∈ N, be the projectors defined by

πnv = vn for v = (vj)∞j=0 ∈ l2(H),

and let τn : H → l2(H), n ∈ N, be the injections defined by

τnh = (δnjh)∞j=0, for h ∈ H,

where δnj is the Kronecker symbol. Then, with each operator T ∈ L
(
l2(H)

)
, we

associate the infinite matrix with elements from L(H) given by

(Tjk)∞j,k=0 =

⎛⎜⎜⎜⎝
T00 T01 T02 . . .
T10 T11 T12 . . .
T20 T21 T22 . . .
...

...
...

. . .

⎞⎟⎟⎟⎠ with Tjk = πjTτk.

This matrix will be called the block matrix of T . An operator T ∈ L
(
l2(H)

)
will

be called a block Töplitz operator if the elements Tjk of its block matrix depend
only on the difference j − k, i.e., if the block matrix of T is of the form

(
Tj−k

)∞
j,k=0

=

⎛⎜⎜⎜⎝
T0 T−1 T−2 . . .
T1 T0 T−1 . . .
T2 T1 T0 . . .
...

...
...

. . .

⎞⎟⎟⎟⎠ with Tn =

{
πnTτ0 if n ≥ 0,
π0Tτ−n if n ≤ 0.

8.6.2. Let T be the unit circle, and let L2(T,H), L2
+(T,H), L2

−(T,H) be the
Hilbert spaces introduced in Section 8.3.1 and in Theorem and Definition 8.3.10.



298 Chapter 8. Wiener-Hopf operators, Toeplitz operators

Recall that, by part (iii) of Theorem and Definition 8.3.10, we have the orthogonal
decomposition

L2(T,H) = L2
+(T,H)⊕ L2

−(T,H). (8.6.1)

Let {eν}∞ν=1 be an orthonormal basis of H. Recall that then, by part (iii)
of Theorem and Definition 8.3.10, the family {Ψnν}n∈N,ν∈N∗ of functions Ψnν ∈
L2

+(T,H) defined by

Ψnν(z) =
zn

√
2π

eν , z ∈ T, n ∈ N, ν ∈ N∗, (8.6.2)

forms an orthonormal basis of L2
+(T,H). On the other hand, by definition of l2(H),

the family {ψnν}n∈N,ν∈N∗ of sequences ψnν ∈ l2(H) defined by

ψnν =
(
δnjeν

)∞
j=0

, n ∈ N, ν ∈ N∗, (8.6.3)

forms an orthonormal basis of l2(H). We denote by M the linear isometry from
L2

+(T,H) onto l2(H) defined by

MΨnν = ψnν , n ∈ N, ν ∈ N∗. (8.6.4)

8.6.3 Lemma and Definition. Let A : T → L(H) be a continuous function, and let
WA be the Wiener-Hopf operator defined by A in L2

+(T,H) (cf. Section 8.4.1).
Then the operator TA defined by

TA = MWAM−1 (8.6.5)

is a block Töplitz operator, where

πjTAτk =
1
2πi

∫
T

A(z)
zj−k+1

dz, j, k ∈ N. (8.6.6)

The operator TA defined by (8.6.5) will be called the block Töplitz operator defined
by A.

Proof. We only have to prove (8.6.6). Let j, k ∈ N be given. First note that, for
all k ∈ N∗ and v ∈ H, (

M−1τkv
)
(z) =

zk

√
2π

v, z ∈ T. (8.6.7)

Indeed, for v = eν this holds by definition (8.6.4). Since {eν}ν∈N∗ , is an orthonor-
mal basis of H, it follows for all v ∈ H.

Next we prove that, for all f+ ∈ L2
+(T,H) and j ∈ N,

πjMf+ =
1

i
√
2π

∫
T

f+(z)
zj+1

dz. (8.6.8)
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Since the family {Ψmν}m∈N,ν∈N∗ is an orthonormal basis of L2
+(T,H) and

the two sides of (8.6.8) depend continuously on f+ with respect to the norm of
L2

+(T,H), it is sufficient to prove that this holds for f+ = Ψmν , m ∈ N, ν ∈ N∗,
which is the case, namely:

πjMΨmν = πjψmν = δmjeν =
δmj

2πi

(∫
T

1
z
dz

)
eν =

1
2πi

(∫
T

zm

zj+1
dz

)
eν

=
1

i
√
2π

∫
T

Ψmν(z)
zj+1

dz.

Now let P be the orthogonal projector from L2(T,H) onto L2
+(T,H). Then,

for all f ∈ L2(T,H), ∫
T

(Pf)(z)
zj+1

dz =
∫

T

f(z)
zj+1

dz, j ∈ N. (8.6.9)

Indeed, if f is a function of the form

f(z) =
v

zm
, z ∈ T,

where v ∈ H and m ∈ N∗, this is obviously the case. As the functions of this form
are dense in L2

−(T,H) (part (iii) of Theorem and Definition 8.3.10), this implies
(8.6.9) for all f ∈ L2(T,H). 8

From (8.6.9) and (8.6.8) it follows that, for all f ∈ L2(T,H),

πjMPf =
1

i
√
2π

∫
T

f(z)
zj+1

dz.

Hence, for all f+ ∈ L2
+(T,H),

πjMWAf+ = (πjMP)(Af+) =
1

i
√
2π

∫
T

A(z)f+(z)
zj+1

dz.

Together with (8.6.7) this further implies that, for all v ∈ H,

πjTAτkh = πjMWAM−1τkv =
1

i
√
2π

∫
T

A(z)zkv/
√
2π

zj+1
dz =

1
2πi

∫
T

A(z)v
zj−k+1

dz,

i.e., we have (8.6.6). �

8.6.4. If P ∈ L(H) is a projector, then we denote by Sκ,P , κ ∈ Z, the Töplitz
operator defined by the operator function zκP , z ∈ T.

8Of course, (8.6.9) follows also from the more general formula 8.3.21 in part (ii) of Theorem
and Definition 8.3.10.



300 Chapter 8. Wiener-Hopf operators, Toeplitz operators

Then it follows from (8.6.6) that, for all j, k ∈ N and κ ∈ Z,

πjSκ,P τk :=
1
2πi

∫
T

P

zj−k+1−κ
dz =

{
P if j = k + κ,

0 if j 	= k + κ.
(8.6.10)

Hence, for each projector P ∈ L(H) and each sequence v = (v0, v1, . . .) ∈ l2(H),

S0,P v = (Pv0, Pv1, . . .),

S1,P v = (0, Pv1, Pv2, . . .),

S−1,P v = (Pv2, Pv3, . . .),

(8.6.11)

which implies that, for each projector P ∈ L(H) and for all κ ∈ N,

Sκ,P = Sκ
1,P ,

S−κ,P = Sκ
−1,P ,

S−κ,P Sκ,P = Sκ
−1,P Sκ

1,P = S0,P ,

(8.6.12)

and, for all projectors P, P ′ ∈ L(H) with PP ′ = P ′P = 0 and all κ, κ′ ∈ Z,

Sκ,P Sκ′,P ′ = 0. (8.6.13)

From Lemma 8.4.5 we immediately obtain the following

8.6.5 Proposition. Let D+ be the open unit disc, let D− := C \D+, let A : T →
L(H) be a continuous function, let A− : D− ∪ {∞} → L(H) be a continuous
function which is holomorphic in D− ∪ {∞}, and let A+ : D+ ∪ {∞} → L(H) be
a continuous function which is holomorphic in D+. Then

(i) TA−AA+
= TA−

TATA+
.

(ii) If A−(z) is invertible for all z ∈ D− ∪ {∞}, then TA− is invertible and

T−1
A−

= T
A−1

−
.

(iii) If A+(z) is invertible for all z ∈ D+, then TA+
is invertible and

T−1
A+

= T
A−1

+
.

We also have the following

8.6.6 Proposition. Let A : T → L(H) be an arbitrary continuous function such that
WA and TA are Fredholm operators. (By definition of TA it is clear that if one of
them is Fredholm, then the other one is also Fredholm.) Then A(z) is invertible
for all z ∈ T.
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Proof. Assume the contrary, i.e., assume that, for some z0 ∈ T, A(z0) is not
invertible. This is equivalent to the statement that at least one of the operators
A(z0) and A∗(z0) is not left invertible, where A∗(z0) is the Hilbert space adjoint
A(z0).

Assume first that A(z0) is not left invertible.
By part (iii) of Theorem and Definition 8.3.10, the functions zn/

√
2π, n ∈

Z, form an orthonormal basis of L2(T,H). Let Pm, m ∈ N, be the orthogonal
projector from L2

+(T,H) onto the closed subspace of L2
+(T,H) spanned by the

functions zn/
√
2π, n ≥ m.

As WA is a Fredholm operator, we can find k ∈ N so large that

α := inf
u∈Im Pk , ‖u‖L2(T,H)=1

‖WAu‖L2(T,H) > 0. (8.6.14)

On the other hand, as A(z0) is not left invertible, we can find v0 ∈ H with

‖v0‖ = 1 and
∥∥(A(z0)

)
v0

∥∥ <
α

4
.

Choose δ > 0 so small that

δ

2
<

∫
z∈T,|z−z0|<δ

|dz| < 2δ

and ∥∥(A(z))v0

∥∥ <
α

4
if |z − z0| < δ,

and set

f(z) :=

{
v0√

δ
if |Φ−1(z)− λ0| < δ,

0 if |λ− λ0| ≥ δ.

Then
‖f‖L2(T,H) > 1, (8.6.15)

but
‖Af‖L2(T,H) <

α

2
. (8.6.16)

As the functions zn/
√
2π, n ∈ Z, form an orthonormal basis of L2(T,H), we

have
lim

n→∞
∥∥Pk

(
znf

)
− znf

∥∥
L2(T,H)

= 0. (8.6.17)

By (8.6.15) this implies that

lim
n→∞ ‖Pk(z

nf)‖L2(T,H) = lim
n→∞ ‖z

nf‖L2(T,H) = ‖f‖L2(T,H) > 1. (8.6.18)
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On the other hand, by (8.6.17),

lim
n→∞

∥∥∥WA

(
Pk(z

nf)
)∥∥∥
L2(T,H)

= lim
n→∞

∥∥∥WA(z
nf)

∥∥∥
L2(T,H)

= lim
n→∞

∥∥∥P(Aznf
)∥∥∥
L2(T,H)

.

As the projector P is orthogonal and in view of (8.6.16), this further implies that

lim
n→∞

∥∥∥WA

(
Pk(z

nf)
)∥∥∥
L2(T,H)

≤ lim
n→∞

∥∥∥Aznf
)∥∥∥
L2(T,H)

=
∥∥∥Af

∥∥∥
L2(T,H)

<
α

2
.

Together with (8.6.18) this is a contradiction to (8.6.14).
Now we assume that A∗(z0) is not left invertible. Since WA∗ is the Hilbert

space adjoint of WA, which is also a Fredholm operator (as WA is a Fredholm
operator), then, with A replaced by A∗, we get the same contradiction. �

We now can prove the following two theorems:

8.6.7 Theorem. Let A : T → GL(H) be a continuous function which admits lo-
cal factorizations relative to T and GL(H) (Def. 7.1.3). Then the following two
conditions are equivalent:

(i) The Töplitz operator TA defined by A is invertible.

(ii) A admits a canonical factorization relative to T and GL(H) (Def. 7.1.1).

If these two equivalent conditions are satisfied and A = A−A+ is a canonical
factorization of A relative to T and GL(H), then the inverse of TA is given by

T−1
A = T

A−1
+

T
A−1

+
. (8.6.19)

Moreover, the block matrix of the operator T
A−1

+
has the lower triangular form

⎛⎜⎜⎜⎝
Γ+

0 0 0 . . .
Γ+

1 Γ+
0 0 . . .

Γ+
2 Γ+

1 Γ+
0 . . .

...
...

...
. . .

⎞⎟⎟⎟⎠ with Γ+
n :=

1
2πi

∫
T

A−1
+ (z)
zn+1

dz , n ∈ N, (8.6.20)

the block matrix of the operator T
A−1

−
has the upper triangular form

⎛⎜⎜⎜⎝
Γ−0 Γ−−1 Γ−−2 . . .
0 Γ−0 Γ−−1 . . .
0 0 Γ−0 . . .
...

...
...

. . .

⎞⎟⎟⎟⎠ with Γ−−n :=
1
2πi

∫
T

A−1
− (z)

z−n+1
dz , n ∈ N, (8.6.21)
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and, hence, the block matrix
(
Γjk

)∞
j,k=0

of T−1
A can be computed by the finite sums

Γjk :=

{∑k
ν=0 Γ

+
j−νΓ

−
ν−k, j ≥ k,∑j

ν=0 Γ
+
j−νΓ

−
ν−k, j ≤ k.

(8.6.22)

8.6.8 Theorem. Let A : T → GL(H) be a continuous function which admits lo-
cal factorizations relative to T and GL(H) (Def. 7.1.3). Then the following two
conditions are equivalent:

(i) The Töplitz operator TA defined by A is a Fredholm operator.

(ii) A admits a factorization relative to T and GL(H) (Def. 7.1.1).

If these two equivalent conditions are satisfied, if

A(z) = A−(z)
(

P0 +
n∑

j=1

zκj Pj

)
A+(z), z ∈ T,

is a factorization of A relative to T and GL(H), and r is the index with κ1 >
. . . > κr > 0 > κr+1 > . . . > κn, then

dimKerTA = −
n∑

j=r+1

κj dimPj and dimCokerTA =
r∑

j=1

κj dimPj . (8.6.23)

Moreover, if Δ(z) := P0 +
∑n

j=1 zκj Pj , then

T
A−1

+
TΔ−1TA−1

−
(8.6.24)

is a generalized inverse (Section 6.10.2) of TA, where, with the notations introduced
in Section 8.6.4,

TΔ−1 = S0,P0
+

n∑
j=1

S−κj ,Pj
= S0,P0

+
r∑

j=1

S
κj

−1,j
+

n∑
j=r+1

S
−κj

1,Pj
. (8.6.25)

8.6.9. Proof of Theorem 8.6.7. By (8.6.6) it is clear that the statement on the
equivalence of conditions (i) and (ii) coincides with part (i) of Theorem 8.3.7.

Now let A = A−A+ be a canonical factorization of A relative to T and
GL(H). Then, by parts (ii) and (iii) of Proposition 8.6.5, the operators TA+

and

TA−
are invertible, where T−1

A+
= T

A−1
+

and T−1
A−

= T
A−1

−
. Since, by part (i) of this

proposition, TA = TA−
TA+

, this further implies that

T−1
A = T−1

A+
T−1

A−
= T

A−1
+

T
A−1

−
.
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Moreover, by (8.6.6), the block matrix of the operator T
A−1

+
is given by⎛⎜⎜⎜⎝

Γ+
0 Γ+

−1 Γ+
−2 . . .

Γ+
1 Γ+

0 Γ+
−1 . . .

Γ+
2 Γ+

1 Γ+
0 . . .

...
...

...
. . .

⎞⎟⎟⎟⎠ with Γ+
n :=

1
2πi

∫
T

A−1
+ (z)
zn+1

dz , n ∈ Z,

and the block matrix of the operator T
A−1

−
is given by⎛⎜⎜⎜⎝

Γ−0 Γ−−1 Γ−−2 . . .
Γ−1 Γ−0 Γ−−1 . . .
Γ−2 Γ−1 Γ−0 . . .
...

...
...

. . .

⎞⎟⎟⎟⎠ with Γ−n :=
1
2πi

∫
T

A−1
− (z)
zn+1

dz , n ∈ Z.

As

Γ+
n =

1
2πi

∫
T

A−1
+ (z)
zn+1

dz = 0 if n < 0,

and

Γ−n =
1
2πi

∫
T

A−1
− (z)
zn+1

dz = 0 if n > 0,

this implies (8.6.20) and (8.6.21). �
8.6.10. Proof of Theorem 8.6.8. Again in view of (8.6.6), the statement on the
equivalence of conditions (i) and (ii) coincides with part (ii) of Theorem 8.3.7.

Now let these two equivalent conditions be satisfied, let

A(z) = A−(z)
(

P0 +
n∑

j=1

zκj Pj

)
A+(z), z ∈ T,

be a factorization of A relative to T and GL(H), and let r be the index with
κ1 > . . . > κr > 0 > κr+1 > . . . > κn.

Then (8.6.23) follows from part (ii) of Theorem 8.3.7.
From part (i) of proposition (8.6.5) it follows that

TA = TA−TΔTA+
. (8.6.26)

By definition (see Section 8.6.4), we have

TΔ = S0,P0
+

n∑
j=1

Sκj ,Pj
and TΔ−1 = S0,P0

+
n∑

j=1

S−κj ,Pj
. (8.6.27)

By (8.6.13) and (8.6.12) this yields

TΔTΔ−1TΔ = S0,P0
+

n∑
j=1

Sκj ,Pj
S−κj ,Pj

Sκj ,Pj
= S0,P0

+
n∑

j=1

Sκj ,Pj
= TΔ.
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In the same way we get the relation

TΔ−1TΔTΔ−1 = TΔ−1 .

Hence TΔ−1 is a generalized inverse of TΔ. Taking into account (8.6.26) and the fact
that, by parts (ii) and (iii) of proposition (8.6.5), T−1

A+
= T

A−1
+

and T−1
A−

= T
A−1

−
,

this implies that the operator (8.6.24) is a generalized inverse of TA.
The first equality in (8.6.25) holds by (8.6.27) and the second follows from

(8.6.12). �

8.7 The Fourier transform of L1(R, E)

8.7.1. The space Lp(R, E). Let E be a Banach space, and let 1 ≤ p < ∞. We
denote by C0

0(R, E) the complex linear space of continuous functions f : R → E
with compact support. We introduce a norm ‖ · ‖Lp(R,E) on C0

0(R, E), setting

‖f‖p
Lp(R,A) =

∫ ∞

−∞
‖f(x)‖p dx, f ∈ C0

0(R, E),

and we denote by Lp(R, E) the completion of C0
0(R, E) with respect to this norm.

For E = C this is the usual space of scalar Lp-functions on R. In simple cases,
also for general Banach spaces E, we identify the elements of Lp(R, E) with E-
valued functions. For example, each piecewise continuous function f : R → E
with

∫∞
−∞ ‖F (x)‖pdx < ∞ will be viewed (in the obvious way) as an element of

Lp(R, E). Note that then

‖f‖p
Lp(R,A) =

∫ ∞

−∞
‖f(x)‖p dx.

Also the functions of the form ϕ·v, where v is a fixed vector in E and ϕ ∈ Lp(R, C),
will be identified with the corresponding element in Lp(R, E).

In general however, we view the elements of Lp(R, E) as equivalence classes of
Cauchy sequences rather than true functions (although the latter is also possible).

Nevertheless, for each element f ∈ L1(R, E), we define the integral∫ ∞

−∞
f(x) dx (8.7.1)

as follows: Take a Cauchy sequence fn ∈ C0
0(R, E) defining f . Then

lim
n→∞

∫ ∞

−∞
fn(x) dx

exists and is independent of the choice of the Cauchy sequence. We define the
integral (8.7.1) to be this limit.
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8.7.2. Convolution. Let A be a Banach algebra. For two functionsK, L ∈ L1
(
R,A

)
,

we introduce a product K ∗ L ∈ L1(R,A), called the convolution of K and L. If
K and L are piecewise continuous, this is defined (as usual) by

(K ∗ L)(y) :=
∫ ∞

−∞
K(x)L(y − x)dx =

∫ ∞

−∞
K(y − x)L(x)dx, y ∈ R.

By Fubini’s theorem, for such functions we have

‖K ∗ L‖L1(R,A) =
∫ ∞

−∞

∥∥∥∥∫ ∞

−∞
K(y − x)L(x)dx

∥∥∥∥dy

≤
∫ ∞

−∞

∫ ∞

−∞
‖K(y − x)‖ ‖L(x)‖dx dy

=
∫ ∞

−∞

(∫ ∞

−∞
‖K(y − x)‖ dy

)
‖L(x)‖ dx

=
∫ ∞

−∞

(∫ ∞

−∞
‖K(y)‖ dy

)
‖L(x)‖ dx = ‖K‖L1(R,A)‖L‖L1(R,A).

Therefore, we can extend the convolution by continuity to all of L1
(
R,A

)
, and

then
‖K ∗ L‖L1(R,A) ≤ ‖K‖L1(R,A)‖L‖L1(R,A) (8.7.2)

for all K, L ∈ L1
(
R,A

)
. Hence L1

(
R,A

)
is an algebra with respect to convolution.

8.7.3. The spaces Lp
±(R, E). Let E be a Banach space, let 1 ≤ p < ∞, and

let
(
C0
0

)
−(R, E) be the subspace of C0

0(R, E) which consists of the functions with
support in ]−∞, 0], and let

(
C0
0

)
+
(R, E) be the subspace of C0

0(R, E) which consists
of the functions with support in [0,∞[.

Then we denote by Lp
−(R, E) and Lp

+(R, E) the closures of
(
C0
0

)
−(R, E) and(

C0
0

)
+
(R, E) in Lp(R, E), respectively. Since Lp

−(R, E) ∩ L1
+(R, E) = {0} and the

functions of the form f+ + f− with f± ∈
(
C0
0

)
±(R, E) are dense in C0

0(R, E) with
respect to the norm ‖ · ‖Lp(R,E), we see that Lp(R, E) splits into the direct sum

Lp(R, E) = Lp
−(R, E)⊕ Lp

+(R, E). (8.7.3)

If A is a Banach algebra, then, obviously,

f ∗ g ∈ L1
+(R,A) if f, g ∈ L1

+(R,A),

f ∗ g ∈ L1
−(R,A) if f, g ∈ L1

−(R,A),
(8.7.4)

i.e., L1
+(R,A) and L1

−(R,A) are subalgebras of the algebra L1(R,A) with respect
to covolution.
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8.7.4. The Fourier transform of L1(R, E). Let E be a Banach space. For functions
f ∈ C0

0(R, E), we define by

f̂(λ) =
∫ ∞

−∞
eiλxf(x) dx , λ ∈ C, (8.7.5)

the Fourier transform of f . Differentiating under the sign of integration, we see
that f̂ is holomorphic on C for all f ∈ C0

0(R, E). Moreover, if f ∈ C0
0(R, E) and

λ ∈ R, then

‖f̂(λ)‖ ≤
∫ ∞

−∞
|eiλx|‖f(x)‖ dx = ‖f‖L1(R,E).

Therefore, the Fourier transformation extends by continuity to all of L1(R, E),
where, for all elements f ∈ L1(R, E), f̂ is a continuous E-valued function on R,
and

sup
λ∈R

‖f̂(λ)‖ ≤ ‖f‖L1(R,E) for all f ∈ f ∈ L1(R, E). (8.7.6)

We denote by L̂1(R, E), L̂1
+(R, E) and L̂1

−(R, E) the spaces of all continuous func-
tions ϕ : R → E of the form ϕ = f̂ with f ∈ L1(R, E), f ∈ L1

+(R, E) and
f ∈ L1

−(R, E), respectively. Note that

f̂ 	≡ 0 if f ∈ L1(R, E) and f 	≡ 0. (8.7.7)

This can be deduced by the Hahn-Banach theorem from the scalar case. Therefore
the Fourier transform is a linear isomorphism from L1(R, E) onto L̂1(R, E), and
we can introduce a norm in L̂1(R, E), setting

‖f̂‖L̂1(R,E)
= ‖f‖L1(R,E) for f ∈ L1(R, E). (8.7.8)

Note that then (8.7.6) takes the form

sup
λ∈R

‖ϕ(λ)‖ ≤ ‖ϕ‖L̂1(R,E)
for all ϕ ∈ L̂1(R, E). (8.7.9)

As L1(R, E) = L1
+(R, E)⊕L1

−(R, E), the space L1(R, E) splits into the direct sum

L̂1(R, E) = L̂1
+(R, E)⊕ L1

−(R, E). (8.7.10)

8.7.5. Now we consider again a Banach algebra A.
Then for K, L ∈ C0

0

(
R,A

)
, it follows from Fubini’s theorem that

(K̂ ∗ L)(λ) =
∫ ∞

−∞
eiλy

(∫ ∞

−∞
K(y − x)L(x)dx

)
dy

=
∫ ∞

−∞

(∫ ∞

−∞
eiλ(y−x)K(y − x) dy

)
eiλxL(x)dx

=
∫ ∞

−∞

(∫ ∞

−∞
eiλ(y)K(y) dy

)
eiλxL(x)dx = K̂(λ)L̂(λ)

(8.7.11)
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for all λ ∈ C. Since the convolution is continuous with respect to the L1-norm
(inequality (8.7.2)) and in view of estimate (8.7.6), this implies that

(K̂ ∗ L)(λ) = K̂(λ)L̂(λ) (8.7.12)

for all K, L ∈ L1
(
R,A

)
and λ ∈ R. Hence, for all K, L ∈ L̂1

(
R,A

)
, the pointwise

defined product AL belongs again to L̂1(R,A), and it follows from (8.7.2) and the
definition of the norm in L̂1(R,A) that

‖KL‖L̂1(R,A)
≤ ‖K‖L̂1(R,A)

‖L‖L̂1(R,A)
(8.7.13)

for all K, L ∈ L̂1
(
R,A

)
. Hence L̂1

(
R,A

)
is a Banach algebra, and, as L1

+

(
R,A

)
and L1

−
(
R,A

)
are subalgebras of L1

(
R,A

)
with respect to convolution, L̂1

+

(
R,A

)
and L̂1

−
(
R,A

)
are subalgebras of L̂1

(
R,A

)
.

8.7.6. We denote by H+ the upper open half plane, and by H− the lower open
half plane:

H+ :=
{

z ∈ C

∣∣∣ Im z > 0
}

, H− :=
{

z ∈ C

∣∣∣ Im z < 0
}

.

The closures of H+ and H− in C (and not in the Riemann sphere) will be denoted
by H+ and H−. If E is a Banach space, then a function

f : H+ ∪ {∞} → E

will be called continuous on H+ ∪ {∞} if f is continuous on H+ and f(1/z) is
also continuous on H+. In the same way we define what it means that a function
defined on H− ∪ {∞} or on R ∪ {∞} is continuous.

8.7.7 Theorem. Let E be a Banach space.

(i) A function ϕ ∈ L̂1(R, E) belongs to L̂1
+(R, E), if and only if it admits a

continuous extension to H+∪{∞} which is holomorphic in H+ and vanishes
at infinity. Moreover

max
λ∈H+∪{∞}

‖ϕ(λ)‖ ≤ ‖ϕ‖L̂1(R,E)
for each ϕ ∈ L̂1

+(R, E).

(ii) A function ϕ ∈ L̂1(R, E) belongs to L̂1
−(R, E), if and only if it admits a

continuous extension to H−∪{∞} which is holomorphic in H− and vanishes
at infinity. Moreover

max
λ∈H−∪{∞}

‖ϕ(λ)‖ ≤ ‖ϕ‖L̂1(R,E)
for each ϕ ∈ L̂1

−(R, E). (8.7.14)
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(iii) Each function ϕ ∈ L̂1(R, E) is continuous on R ∪ {∞} and ϕ(∞) = 0.
Moreover

max
λ∈R∪{∞}

‖ϕ(λ)‖ ≤ ‖ϕ‖L̂1(R,E)
for each ϕ ∈ L̂1(R, E).

Proof. As L1(R, E) = L1
−(R, E) ⊕ L1

+(R, E), part (iii) follows from parts (i) and
(ii) and estimate (8.7.6). By the same reason, for the proof of (i) and (ii), it is
sufficient to prove the “only if” parts of (i) and (ii).

Indeed, assume that this is proved.
Let ϕ+ ∈ L̂1(R, E) be a function which admits a continuous extension to

H+ ∪ {∞}, which is holomorphic in H+ and vanishes at infinity. Then it follows
from the decomposition L1(R, E) = L1

−(R, E)⊕ L1
+(R, E) that

ϕ+ = ϕ̃− + ϕ̃+ on R ∪ {∞}

with ϕ̃± ∈ L̂1
±(R, E). Then

ϕ+ − ϕ̃+ = ϕ̃− on R ∪ {∞}.

The two sides of this equation define a holomorphic function on C∪{∞} vanishing
at infinity (see Theorem 1.5.4). By Liouville’s theorem this implies that ϕ+ = ϕ̃+ ∈
L̂1

+(R, E).
In the same way, one proves that each ϕ− ∈ L̂1(R, E), which admits a contin-

uous extension to H−∪{∞}, which is holomorphic in H− and vanishes at infinity,
belongs to L1

−(R, E).
The proofs of the “only if” parts of (i) and (ii) are similar. We therefore

restrict ourselves to part (i). First we prove the following weaker statement:

(i′) Each function ϕ ∈ L̂1
+(R, E) admits a continuous extension to H+ ∪ {∞}

which is holomorphic in H+ and which satisfies the estimate

sup
λ∈H+

‖ϕ(λ)‖ ≤ ‖ϕ‖L̂1(R,E)
. (8.7.15)

To prove (i′), we first note that, for each u ∈
(
C0
0

)
+
(R, E) and λ ∈ H+,

‖û(λ)‖ ≤
∫ ∞

0

∣∣eiλx
∣∣∥∥u(x)∥∥ dx =

∫ ∞

0

∣∣e−x Im λ
∣∣∥∥u(x)∥∥ dx ≤ ‖u‖L1(R,A). (8.7.16)

Now let an arbitrary function ϕ ∈ L̂1
+(R, E) be given, and let f ∈ L1

+(R, E) be
the element with ϕ = f̂ . Choose a sequence uν ∈

(
C0
0

)
+
(R, E) with

lim
μ→∞ ‖f − uμ‖L1(R,E) = 0. (8.7.17)
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Then
lim

μ,ν→∞ ‖uμ − uν‖L1(R,E) = 0. (8.7.18)

Recall that ‖ϕ − ûμ‖L̂1(R,E)
= ‖f − uμ‖L1(R,E), by definition of the norm in

L̂1(R, E). Therefore it follows from (8.7.17) and (8.7.9) that

lim
μ→∞ sup

λ∈R

‖ϕ(λ)− ûμ(λ)‖ = 0. (8.7.19)

From (8.7.18) and (8.7.16) it follows that

lim
μ,ν→∞ sup

λ∈H+

‖ûμ(λ)− ûν(λ)‖ = 0.

Since the functions ûμ are holomorphic on C, this implies that the sequence ûν

converges uniformly on H+ to some continuous function which is holomorphic
in H+. By (8.7.19), on R, this function coincides with ϕ. So it is proved that ϕ

admits a continuous extension to H+ which is holomorphic in H+. We denote this
extension also by ϕ. Moreover, since, again by (8.7.16)

sup
λ∈H+

‖ûμ(λ)‖ ≤ ‖uμ‖L1(R,A),

we get also (8.7.17). The proof of statement (i′) is complete.

Now we consider a function u of the form

u(x) =

{
a if x ∈ [α, β],
0 if x 	∈ [α, β],

(8.7.20)

where 0 ≤ α < β <∞ and a ∈ E. Then, it follows immediately from the definition
of the Fourier transformation that, for all λ ∈ R with λ 	= 0,

û(λ) = a

∫ β

α

eiλxdx =
eiλx

iλ

∣∣∣x=β

x=α
= a

eiλβ − eiλα

iλ
.

Since α ≥ 0, this formula shows that û admits a continuous extension to C, which
can be expressed by the same formula for all λ ∈ C with λ 	= 0. For λ ∈ H+ with
λ 	= 0, this implies that

‖û+(λ)‖ ≤ ‖a‖
e−β Im λ + e−α Im λ

|λ| ≤ ‖a‖ 2|λ| .

Hence
lim

R→∞
sup

λ∈H+,|λ|≥R

‖û+(λ)‖ = 0 (8.7.21)
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for each function u of the form (8.7.20). Now letM be the space of all finite sums
of functions of the form (8.7.20). Then, for each u ∈ M, û is holomorphic on C,
and it follows from (8.7.21) that

lim
R→∞

sup
λ∈H+,|λ|≥R

‖û(λ)‖ = 0 for each u ∈M. (8.7.22)

Finally let an arbitrary function ϕ ∈ L̂1
+(R, E) be given. By statement (i′) we

already know that ϕ admits a continuous extension to H+ which is holomorphic
in H+ and which satisfies the estimate (8.7.15). It remains to prove that

lim
R→∞

sup
λ∈H+,|λ|≥R

‖ϕ(λ)‖ = 0. (8.7.23)

Let f ∈ L1
+(R, E) be the function with ϕ = f̂ . SinceM is dense in L1

+(R, E), then
we can find a sequence uν ∈M with lim

ν→∞ ‖uν − f‖L1(R,A) = 0. As

‖ûν − ϕ‖L̂1(R,E)
= ‖uν − f‖L1(R,E),

then it follows from (8.7.15) that

lim
ν→∞ sup

λ∈H+

‖ûν(λ)− ϕ(λ)‖ = 0,

and from (8.7.22) we get

lim
R→∞

sup
λ∈H+,|λ|≥R

‖ûν(λ)‖ = 0 for all ν.

Together this implies (8.7.23). �

We conclude this section by computing the Fourier transform of some special
functions, which we need in sections 8.9 and 8.10 below.

8.7.8. For all n ∈ N we define

θ+
n (x) =

{
xne−x for x ≥ 0,
0 for x < 0,

and θ−n (x) =

{
−xnex for x ≤ 0,
0 for x > 0.

(8.7.24)

Note that θ+
n ∈ L1

+(R, C) ∩ L2(R, C) and θ−n ∈ L1
−(R, C) ∩ L2(R, C).

8.7.9 Lemma.

θ+
n = (n+ 1)! θ+

0 ∗ . . . ∗ θ+
0︸ ︷︷ ︸

n+1 times

and θ−n = (n+ 1)! θ−0 ∗ . . . ∗ θ−0︸ ︷︷ ︸
n+1 times

, n ∈ N∗.
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Proof. We have for all n ∈ N,

(θ+
n ∗ θ+

0 )(y) =
∫ ∞

−∞
θ+
0 (y − x)θ+

n (x)dx =
∫ y

0

ex−yxne−xdx

= e−y

∫ y

0

xndx = e−y yn+1

n+ 1
=

1
n+ 1

θ+
n+1(y),

and

(θ−n ∗ θ−0 )(y) =
∫ ∞

−∞
θ−0 (y − x)θ−n (x)dx =

∫ 0

y

ey−xxnexdx

= ey

∫ 0

y

xndx = −ey yn+1

n+ 1
=

1
n+ 1

θ−n+1(y),

i.e., θ+
n+1 = (n+ 1)θ+

n ∗ θ+
0 and θ−n+1 = (n+ 1)θ−n ∗ θ−0 which implies the assertion

by induction. �
8.7.10. If ξ ∈ H+, then Re iξ < 0 and therefore, setting

ϑ−ξ (x) =

{
ie−iξx, if x ≤ 0,
0 if x > 0,

then we get a function ϑ−ξ ∈ L1
−(R, C). If ξ ∈ H−, then Re iξ > 0 and therefore,

setting

ϑ+
ξ (x) =

{
−ie−iξx, if x ≥ 0,
0 if x < 0,

then we get a function ϑ+
ξ ∈ L1

+(R, C). Note that

θ+
0 = iϑ+

−i and θ−0 = iϑ−i , (8.7.25)

where θ±0 are the functions introduced in Section 8.7.8.

8.7.11 Lemma. (i) We have

1
λ− ξ

=

{
ϑ̂−ξ (λ) if ξ ∈ H+,

ϑ̂+
ξ (λ) if ξ ∈ H−,

λ ∈ R.

(ii) For all n ∈ N∗, we have(
λ− i

λ+ i
− 1

)n

=
(−2)n

n!
θ̂+

n−1(λ) , λ ∈ R,(
λ+ i

λ− i
− 1

)n

=
2n

n!
θ̂−n−1(λ) , λ ∈ R.
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Proof. If ξ ∈ H+, then

ϑ̂−ξ (λ) =
∫ ∞

−∞
eiλxϑ−ξ (x)dx = i

∫ 0

−∞
e(iλ−iξ)xdx = i

e(iλ−iξ)x

iλ− iξ

∣∣∣∣x=0

x=−∞
=

1
λ− ξ

,

and if ξ ∈ H−, then

ϑ̂+
ξ (λ) =

∫ ∞

−∞
eiλxϑ+

ξ (x)dx = −i

∫ ∞

0

e(iλ−iξ)xdx = −i
e(iλ−iξ)x

iλ− iξ

∣∣∣∣x=∞

x=0

=
1

λ− ξ
.

This proves part (i). Setting ξ = ±i in part (i), we get

i

λ+ i
= θ̂+

0 (λ) and
i

λ− i
= θ̂−0 (λ).

Hence

λ− i

λ+ i
− 1 = − 2i

λ+ i
= −2θ̂+

0 (λ) and
λ+ i

λ− i
− 1 =

2i
λ− i

= 2θ̂−0 (λ).

By Lemma 8.7.9 this yields part (ii). �

8.8 The Fourier isometry U of L2
(
R, H

)
In this section H is a separable Hilbert space with the scalar product 〈·, ·〉 = 〈·, ·〉H .
8.8.1. The space L2(R,H) introduced in Section 8.7.1, then will be considered a
Hilbert space with the scalar product 〈·, ·〉L2(R,H) defined as follows: For functions
f, g ∈ C0

0(R,H), we set

〈f, g〉L2(R,H) =
∫ ∞

−∞
〈f(x), g(x)

〉
H

dx.

If f and g are two arbitrary elements of L2(Γ,H), then a function 〈f, g〉H ∈
L1(R, C) is well defined. Indeed, let {fn}n∈N and {gn}n∈N be two Cauchy sequences
of functions from C0(R,H) which represent f and g, respectively. Then, by the
Cauchy-Schwarz inequality in H, pointwise on R we have∣∣∣〈fn, gn

〉
H
−
〈
fm, gm

〉
H

∣∣∣ ≤ ∥∥fn − fm

∥∥
H

∥∥gn

∥∥
H
+
∥∥fm

∥∥
H

∥∥gn − gm

∥∥
H

,

which implies, by the Cauchy-Schwarz inequality in L2(R, C), that∥∥∥〈fn, gn

〉
H
−
〈
fm, gm

〉
H

∥∥∥
L1(Γ,C)

≤
∥∥fn − fm

∥∥
L2(Γ,H)

∥∥gn

∥∥
L2(Γ,H)

+
∥∥fm

∥∥
L2(Γ,H)

∥∥gn − gm

∥∥
L2(Γ,H)

.
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Hence
(
〈fn, gn〉H

)
n∈N

is a Cauchy sequence in L1(Γ, C), and the function 〈f, g〉H
can be defined to be the limit of this sequence in L1(Γ, C). We now define the
scalar product in L2(R,H) by

〈
f, g〉L2(Γ,H) =

∫ ∞

−∞
〈f, g〉H dx , f, g ∈ L2(Γ,H).

Finally we note that, for each f ∈ L2(Γ,H), the function

‖f‖H :=
√
〈f, f〉H

belongs to L2(Γ, C) and that, for the norm corresponding to the scalar product〈
f, g〉L2(Γ,H), we have

‖f‖2L2(R,H) =
∫ ∞

−∞
‖f‖2H dx.

8.8.2. Recall also the subspaces L2
+(R,H) and L2

−(R,H) introduced in Section
8.7.3, and note that (obviously) now the direct sum (8.7.3) is even orthogonal,
i.e., we have the orthogonal decomposition

L2(R,H) = L2
+(R,H)⊕ L2

−(R,H).

8.8.3. Let (en)∞n=1 be an orthonormal basis of H, and let Hn be the subspace of
H spanned by en. Then L2(R,H) splits into the orthogonal sum

L2(R,H) =
∞⊕

n=1

L2(R,Hn). (8.8.1)

Therefore each function f ∈ L2(R,H) has a uniquely determined representation
in the form

f =
∞∑

n=1

fnen with fn ∈ L2(R, C) (8.8.2)

and

‖f‖2L2(R,H) =
∞∑

n=1

‖fn‖2L2(R,C). (8.8.3)

8.8.4 Proposition. Let f ∈ C0
0(R,H). Then the series (8.8.1) converges uniformly.

Proof. We denote by Pn the orthogonal projector from H onto
⊕n

j=1 Hj . Let
ε > 0. Then, for each fixed x ∈ R, there exists nε(x) ∈ N with

‖f(x)− Pnf(x)‖ ≤ ε

2
for n ≥ nε(x).
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As f is continuous and ‖Pn‖ = 1, this implies that each x ∈ R has a neighborhood
U(x) such that, for y ∈ U(x) and n ≥ nε(x),

‖f(y)− Pnf(y)‖ ≤ ‖f(y)− f(x)‖+ ‖f(x)− Pnf(x)‖+ ‖Pnf(x)− Pnf(y)‖
≤ 2‖f(y)− f(x)‖+ ‖f(x)− Pnf(x)‖ ≤ ε.

Since the support of f is compact, this completes the proof. �

8.8.5. The Fourier transform on L2(R,H). As, by the preceding proposition, the
series (8.8.1) converges uniformly if f ∈ C0

0(R,H), for the Fourier transform (Sec-
tion 8.7.4) f̂ of a function f ∈ C0

0(R,H), it follows from (8.8.1) that

f̂(λ) =
∫ ∞

−∞
eiλxdx =

∞∑
n=1

(∫ ∞

−∞
eiλxfndx

)
en =

∞∑
n=1

f̂n(λ) en, λ ∈ R.

By (8.8.3) this implies that

‖f̂‖L2(R,C) =
∞∑

n=1

‖f̂n‖L2(R,H) for all f ∈ C0
0(R, C).

As, by the Plancherel theorem ([Ru], theorem 9.13), ‖f̂n‖L2(R,C) = ‖fn‖L2(R,C) for
all n, this further implies (again using (8.8.3))

‖f̂‖L2(R,H) = ‖f‖L2(R,H) for all f ∈ C0
0(R,H).

Since, by definition, C0
0(R,H) is dense in L2(R,H), it follows that the Fourier

transformation extends to an isometry of L2(R,H), which we denote by U. For
f ∈ L2(R,H) we write again f̂ = Uf .

8.8.6. Convolution between L1
(
R, L(H)

)
and L2(R,H).

First let K ∈ C0
0

(
R, L(H)

)
and f ∈ C0

0(R,H). Then we define (as usual)

(K ∗ f)(y) =
∫ ∞

−∞
K(x)f(y − x)dx =

∫ ∞

−∞
K(y − x)f(x)dx, y ∈ R,

and it follows from Fubini’s theorem that

(K̂ ∗ f)(λ) =
∫ ∞

−∞
eiλy

(∫ ∞

−∞
K(y − x)f(x)dx

)
dy

=
∫ ∞

−∞

(∫ ∞

−∞
eiλ(y−x)K(y − x) dy

)
eiλxf(x)dx

=
∫ ∞

−∞

(∫ ∞

−∞
eiλ(y)K(y) dy

)
eiλxf(x)dx = K̂(λ)f̂(λ) , λ ∈ C.

(8.8.4)
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Since the Fourier transformation is an isometry of L2(R,H), this implies

‖K ∗ f‖L2(R,H) = ‖K̂f̂‖L2(R,H) ≤ sup
λ∈R

‖K̂(λ)‖‖f̂‖L2(R,H)

and further, by (8.7.9) and (8.7.8),

‖K ∗ f‖L2(R,H) ≤ ‖K‖L1(R,L(H))‖f‖L2(R,H).

Since, by definition, C0
0(R,H) is dense in L2(R,H) and C0

0

(
R, L(H)

)
is dense in

L1
(
R, L(H)

)
, this implies that the convolution extends to a continuous bilinear

map
∗ : L1

(
R, L(H)

)
× L2(R,H) −→ L2(R,H)

(called convolution), where, for all K ∈ L1
(
R, L(H)

)
and f ∈ L2(R,H),

‖K ∗ f‖L2(R,H) ≤ ‖K‖L1(R,L(H))‖f‖L2(R,H) (8.8.5)

and, by (8.8.4),
K̂ ∗ f = K̂f̂ . (8.8.6)

.

This convolution is associative:

8.8.7 Proposition. If K, L ∈ L1
(
R, L(H)

)
and f ∈ L2(R,H), then

(K ∗ L) ∗ f = K ∗ (L ∗ f).

Proof. If K, L, f are continuous and with compact support, then this follows by
Fubini’s theorem:(

(K ∗ L) ∗ f
)
(y) =

∫ ∞

−∞
(K ∗ L)(y − x)f(x) dx

=
∫ ∞

−∞

(∫ ∞

−∞
K(t)L(y − x− t) dt

)
f(x) dx

=
∫ ∞

−∞
K(t)

(∫ ∞

−∞
L(y − x− t)f(x) dx

)
dt

=
∫ ∞

−∞
K(t)(L ∗ f)(y − t) dt =

(
K ∗ (L ∗ f)

)
(y) , y ∈ R.

By continuity (see estimate (8.8.5)), this implies that the assertion holds also in
the general case. �
8.8.8 Proposition. Let P+ be the orthogonal projector from L2(R,H) onto
L2

+(R,H). Then, for all f ∈L2(R,H), K+∈L1
+

(
R, L(H)

)
and K−∈L1

−
(
R, L(H)

)
,

K+ ∗ (P+f) = P+

(
K+ ∗ (P+f)

)
, (8.8.7)

P+

(
K− ∗ f

)
= P+

(
K− ∗ (P+f)

)
. (8.8.8)
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Proof. In view of (8.8.5), we may assume that the functions f,K+ and K− are
piecewise continuous. Then(

K+ ∗ (P+f)
)
(y) =

∫ ∞

−∞
K+(y − x)(P+f)(x) dx =

∫ y

0

K+(y − x)f(x) dx

for all y ∈ R. This implies that K+ ∗ (P+f) ∈ L2
+(R,H), i.e., we have (8.8.7).

Moreover

P+

(
K− ∗ f

)
(y) =

∫ ∞

−∞
K−(y − x)f(x) dx =

∫ ∞

y

K−(y − x)f(x) dx

for all y ∈ R. For y ≥ 0, this implies that

P+

(
K− ∗ f

)
(y) =

∫ ∞

y

K−(y − x)
(
P+f

)
(x) dx = P+

(
K− ∗ (P+f)

)
(y),

i.e., we have (8.8.8). �

8.9 The isometry V from L2(T, H) onto L2(R, H)

In this section, H is again a separable Hilbert space, and L2(R,H), L2
+(R,H),

L2
−(R,H) are the Hilbert spaces introduced in Section 8.8.1. Recall the (obvious)

orthogonal decomposition

L2(R,H) = L2
+(R,H)⊕ L2

−(R,H). (8.9.1)

Further, in this section, T is the unit circle, and L2(T,H), L2
+(T,H), L2

−(T,H)
are the Hilbert spaces introduced in Section 8.3.1 and in Theorem and Definition
8.3.10. Recall that, by part (iii) of Theorem and Definition 8.3.10, we have the
orthogonal decomposition

L2(T,H) = L2
+(T,H)⊕ L2

−(T,H). (8.9.2)

8.9.1. Let Φ be the Möbius transform defined by

Φ(z) = i
1 + z

1− z
if λ ∈ C \ {1}, Φ(∞) = −i and Φ(1) =∞.

Note that then

Φ−1(λ) =
λ− i

λ+ i
if λ ∈ C \ {−i}, Φ−1(−i) =∞ and Φ−1(∞) = 1.

Further, let C0
(
T \ {1},H

)
and C0(R,H) be the spaces of continuous H-valued

functions defined on T \ {1} and R, respectively. Set

(Vf)(λ) =
Φ−1(λ)− 1√

2
f
(
Φ−1(λ)

)
for f ∈ C0

(
T \ {∞}

)
and λ ∈ R. (8.9.3)

As Φ is a diffeomorphism from T \ {1} onto R, in this way a linear isomorphism
V from C0

(
T \ {1},H

)
onto C0(R,H) is defined.
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It is the aim of this section to study this linear isomorphism V. We begin
with the following

8.9.2 Theorem and Definition. For all f ∈ C0
(
T \ {1},H

)
,∫

T

‖f‖2|dz| =
∫ ∞

−∞
‖(Vf)(λ)‖2dλ. (8.9.4)

Since (by our definitions of L2(T,H) and L2(R,H)), the space L2(T,H)∩C0(T,H)
is dense in L2(T,H), and the space L2(R,H) ∩ C0(R,H) is dense in L2(R,H), it
follows from (8.9.4) that the restriction of V to L2(T,H)∩C0

(
T\{1},H

)
extends

to a linear isometry from L2(T,H) onto L2(R,H).
We denote this isometry also by V.
Moreover, also the isometry from L2(T, C) onto L2(R, C) (obtained for H =

C) will be denoted by V.

Proof. Set

ϕ(t) = Φ
(
eit
)
= i

1 + eit

1− eit
for 0 < t < 2π.

As Φ is a C∞-diffeomorphism from T \ {1} onto R and the map t → eit is a C∞
diffeomorphism from ]0, 2π[ onto T \ {1}, this is a C∞-diffeomorphism from ]0, 2π[
onto R. We have

ϕ′(t) = i
ieit(1− eit) + (1 + eit)ieit

(1− eit)2
= −2 eit

(1− eit)2
, t ∈]0, 2π[. (8.9.5)

Set ψ = ϕ−1. Then

λ = ϕ
(
ψ(λ)

)
= Φ

(
eiψ(λ)

)
, λ ∈ R,

and therefore
Φ−1(λ) = eiψ(λ), λ ∈ R. (8.9.6)

Further, by (8.9.5),

ψ′(λ) = − 1
ϕ′(ψ(λ))

= −2
(
1− eiψ(λ)

)2
eiψ(λ)

, λ ∈ R.

Together with (8.9.6) this implies that

ψ′(λ) = −
(
1− Φ−1(λ)

)2
2Φ−1(λ)

, λ ∈ R. (8.9.7)

Now let a function f ∈ C0
(
T \ {1},H

)
be given. Then, by definition of |dz|,∫

T

‖f(z)‖2|dz| =
∫ 2π

0

‖f
(
eit
)
‖2dt.
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Since ψ is a diffeomorphism from R onto ]0, 2π[ and by (8.9.6) and (8.9.7), this
yields ∫

T

‖f(z)‖2|dz| =
∫ ∞

−∞

∥∥f(eiψ(λ)
)∥∥2∣∣ψ′(λ)∣∣ dλ

=
∫ ∞

−∞

∥∥f(Φ−1(λ)
)∥∥2

∣∣∣∣∣
(
1− Φ−1(λ)

)2
2Φ−1(λ)

∣∣∣∣∣ dλ.

As
∣∣Φ−1(λ)

∣∣ = 1 for all λ ∈ R, this further implies that∫
T

‖f(z)‖2|dz| =
∫ ∞

−∞

∥∥∥∥1− Φ−1(λ)√
2

f
(
Φ−1(λ)

)∥∥∥∥2

dλ.

By definition of V this is (8.9.4). �
8.9.3. In what follows the functions ω+

n ∈ L2
+(T, C), n ∈ N, and ω−n ∈ L2

−(T, C),
n ∈ N, defined by

ω+
n (z) = (z − 1)n and ω−n (z) = −

1
z

(
1
z
− 1

)n

,

play a special role.
Recall that, by part (iii) of Theorem and Definition 8.3.10, the linear space

spanned by the functions zn, n ∈ N, is a dense subspace of L2
+(T,H), and the linear

space spanned by the functions 1/zn, n ∈ N∗, is a dense subspace of L2
−(T,H). As

each of the functions zn, n ∈ N, is a linear combination of some of the functions
ω+

n , n ∈ N, and each of the functions 1/zn, n ∈ N∗, is a linear combination of
some of the functions ω−n , n ∈ N, this implies:

The linear space spanned by the functions ω+
n , n ∈ N, is a dense subspace of

L2
+(T, C), and the linear space spanned by the functions ω−n , n ∈ N∗, is a dense

subspace of L2
−(T, C).

In view of the orthogonal decomposition (8.9.2), this further implies:
Then linear space spanned by the functions ω+

n and ω−n , n ∈ N, is a dense
subspace of L2(T,H).

Further note that, by definition of V, for all n ∈ N,

(
Vω+

n

)
(λ) =

1√
2

(
λ− i

λ+ i
− 1

)n+1

, λ ∈ R,

(
Vω−n

)
(λ) =

1√
2

(
λ+ i

λ− i
− 1

)n+1

, λ ∈ R,

(8.9.8)

and therefore, by lemma (8.7.11) (ii),

Vω+
n =

(−2)n+1

√
2(n+ 1)!

θ̂+
n and Vω−n =

2n+1

√
2(n+ 1)!

θ̂−n . (8.9.9)
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8.9.4 Theorem. Let θ+
n ∈ L2

+(R, C) and θ−n ∈ L2
−(R, C), n ∈ N, be the functions

introduced in Section 8.7.8. Then the linear space spanned by the functions θ+
n ,

n ∈ N, is dense in L2
+(R, C), and the linear space spanned by the functions θ−n ,

n ∈ N, is dense in L2
−(R, C).

Proof. Since the linear space spanned by the functions ω+
n and ω−n , n ∈ N, is

dense in L2(T, C) (Section 8.9.3), it follows from Theorem and Definition 8.9.2
that the linear space spanned by the functions Vω+

n and Vω−n , n ∈ N, is dense in
L2(R, C). By (8.9.9) this implies that the linear space spanned by the functions θ̂+

n

and θ̂−n , n ∈ N, is dense in L2(R, C). As the Fourier transformation is an isometry
of L2(R, C), this further implies that the linear space spanned by the functions
θ+

n and θ−n , n ∈ N, is dense in L2(R, C). Taking into account the orthogonal
decomposition (8.9.1) and the fact that θ+

n ∈ L2
+(R, C) and θ−n ∈ L2

−(R, C), this
completes the proof. �

8.9.5 Theorem. Let PT be the orthogonal projector from L2(T,H) onto L2
+(T,H),

let PR be the orthogonal projector from L2(R,H) onto L2
+(R,H) and let U be the

Fourier isometry of L2(R,H) (Section 8.8.5). Then

PR = U−1VPTV−1U. (8.9.10)

Proof. It follows from (8.9.9) that, for all n ∈ N,

U−1Vω+
n =

(−2)n+1

√
2(n+ 1)!

θ+
n and U−1Vω−n =

2n+1

√
2(n+ 1)!

θ−n . (8.9.11)

As the decomposition (8.9.2) is orthogonal, we have PTω+
n = ω+

n and PTω−n = 0
for all n ∈ N. Therefore it follows from (8.9.11) that, for all n ∈ N,

U−1VPTV−1Uθ+
n = θ+

n and U−1VPTV−1Uθ−n = 0.

Taking into account Theorem 8.9.4 and the fact that also the decomposition (8.9.1)
is orthogonal, this implies (8.9.10). �

8.10 The algebra of operator functions

L(H)⊕ L1
(
R, L(H)

)
In this section, H is again a Hilbert space.

8.10.1. Let L̂1
(
R, L(H)

)
, L̂1

+

(
R, L(H)

)
and L̂1

−
(
R, L(H)

)
be the Banach algebras

introduced in Section 8.7.5. Then we denote by L(H)⊕ L̂1
(
R, L(H)

)
the algebra

of functions W : R → L(H) of the form

W (λ) = A+ K̂(λ), λ ∈ R, (8.10.1)
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where K ∈ L1
(
R, L(H)

)
and A ∈ L(H) is a constant operator. Since K̂(∞) = 0

for all K ∈ L1
(
R, L(H)

)
(Theorem 8.7.7 (iii)), the representation of a function

W ∈ L(H)⊕ L̂1
(
R, L(H)

)
in the form (8.10.1) is uniquely determined. Therefore

we can introduce a norm ‖ · ‖
L(H)⊕L̂1(R,L(H))

in L(H)⊕ L̂1
(
R, L(H)

)
, setting

‖A+ K̂‖
L(H)⊕L̂1(R,L(H))

= ‖A‖L(H) + ‖K̂‖L̂1(R,L(H))

for A ∈ L(H) and K ∈ L1
(
R, L(H)

)
. Note that then, by definition of the norm in

L̂1
(
R, L(H)

)
(see (8.7.8)),

‖A+ K̂‖
L(H)⊕L̂1(R,L(H))

= ‖A‖L(H) + ‖K‖L1(R,L(H))

for all A ∈ L(H) and K ∈ L1
(
R, L(H)

)
. It is easy to see that in this way,

L(H) ⊕ L̂1
(
R, L(H)

)
becomes a Banach space and that, for all V,W ∈ L(H) ⊕

L̂1
(
R, L(H)

)
,

‖V W‖
L(H)⊕L̂1(R,L(H))

≤ ‖V ‖
L(H)⊕L̂1(R,L(H))

‖W‖
L(H)⊕L̂1(R,L(H))

. (8.10.2)

Hence, with this norm, L(H)⊕L̂1(R, L(H)) is a Banach algebra. As L̂1
+(R, L(H))

and L̂1
−(R, L(H)) are subalgebras of L̂1(R, L(H)), it follows that L(H) ⊕

L̂1
+(R, L(H)) and L(H)⊕ L̂1

(R, L(H)) are subalgebras of this Banach algebra.

We identify L(H) with the subalgebra of L(H)⊕L̂1(R, L(H)) which consists
of the constant L(H)-valued functions. As L̂1

(
R, L(H)

)
splits into the direct sum

L̂1
(
R, L(H)

)
= L̂1

−(R, L(H))⊕L̂1
+(R, L(H)), then L(H)⊕L̂1(R, L(H)) splits into

the direct sum

L(H)⊕ L̂1(R, L(H)) = L(H)⊕ L̂1
−(R, L(H))⊕ L̂1

+(R, L(H)). (8.10.3)

From Theorem 8.7.7 we immediately get the following

8.10.2 Theorem. (i) A function W ∈ L(H) ⊕ L̂1
(
R, L(H)

)
belongs to L(H) ⊕

L̂1
+

(
R, L(H)

)
, if and only if it admits a continuous extension to H+ ∪ {∞}

which is holomorphic in H+, and then

max
λ∈H+∪{∞}

‖W (λ)‖ ≤ ‖W‖
L(H)⊕L̂1(R,L(H))

.

(ii) A function W ∈ L(H)⊕L̂1
(
R, L(H)

)
belongs to L(H)⊕L̂1

−
(
R, L(H)

)
, if and

only if it admits a continuous extension to H− ∪ {∞} which is holomorphic
in H−, and then

max
λ∈H−∪{∞}

‖W (λ)‖ ≤ ‖W‖
L(H)⊕L̂1(R,L(H))

.
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(iii) Each function W ∈ L(H)⊕L̂1
(
R, L(H)

)
is continuous on R∪{∞}. Moreover,

for each W ∈ L(H)⊕ L̂1
(
R, L(H)

)
,

max
λ∈R∪{∞}

‖W (λ)‖ ≤ ‖W‖
L(H)⊕L̂1(R,L(H))

.

The main result of the present section is the following

8.10.3 Theorem. The space of L(H)-valued rational functions without poles on
R ∪ {∞} is contained in L(H)⊕ L̂1(R, L(H)) as a dense subset.

To prove this, we first deduce from Theorem 8.9.4 the following

8.10.4 Lemma. Let θ±n , n ∈ N, be the functions introduced in Section 8.7.8. Then
the linear space spanned by the functions θ+

n , n ∈ N, is dense in L1
+(R, C), and

the linear space spanned by the functions θ−n , n ∈ N, is dense in L1
−(R, C).

Proof. It is sufficient to prove that the functions θ+
n , n ∈ N, span a dense subspace

of L1
+(R, C), because the statement with respect to the functions θ−n then follows

by the substitution x→ −x.
Let f : [0,∞[→ C be an arbitrary bounded measurable function with∫ ∞

0

xne−xf(x) dx = 0 for all n ∈ N. (8.10.4)

By the Hahn-Banach theorem it is sufficient to prove that then f ≡ 0. Set

h(x) = e−xf(2x), x ≥ 0.

Then h belongs to L2
+(R, C), and, with the substituion x → x/2, it follows from

(8.10.4) that, for all n ∈ N,∫ ∞

0

xne−xh(x)dx =
∫ ∞

0

xne−2xf(2x)dx =
1

2n+1

∫ ∞

0

xne−xf(x)dx = 0.

Since, by Theorem 8.9.4, the space spanned by the functions θ+
n is dense in

L2
+(R, C), this implies that h ≡ 0. Hence f ≡ 0. �

8.10.5. Proof of Theorem 8.10.3. It is sufficient to prove this for H = L(H) = C.
By Lemma 8.7.11 (i), for each ξ ∈ C \ R, the function

1
λ− ξ

belongs to L̂1(R, C). Since C⊕ L̂1(R, C) is an algebra and since also the constant
functions belong to this algebra, this implies that C⊕L̂1(R, C) contains all rational
functions without poles on R ∪ {∞}.

It remains to prove the density. By Lemma 8.10.4, the space spanned by the
functions θ−n and θ+

n , n ∈ N, is dense in L1(R, C). Hence (by definition of the norm
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in L̂1(R, C)) the space spanned by the functions θ̂−n and θ̂+
n , n ∈ N, is dense in

L̂1(R, C). By part (ii) of Lemma 8.7.11, this implies that the space spanned by
the functions (

λ− i

λ+ i
− 1

)n

and
(

λ+ i

λ− i
− 1

)n

, n ∈ N∗, (8.10.5)

is dense in L̂1(R, C). Hence the space spanned by the functions (8.10.5) and the
constant functions is dense in C⊕ L̂1(R, C). Since all these functions are rational
and without poles on R ∪ {∞}, this completes the proof. �

Using again the Möbius transformation (λ − i)/(λ + i) (Section 8.9.1), we
now obtain the following version of Theorem 8.10.1:

8.10.6 Theorem. Let W ∈ L(H)⊕ L̂1
(
R, L(H)

)
such that W (λ) ∈ GL(H) for all

λ ∈ R ∪ {∞}. Then:

(i) The pointwise defined function W−1 again belongs to L(H)⊕ L̂1
(
R, L(H)

)
.

(ii) The function W can be written in the form

W = V−V V+,

where V− : H−∪{∞} → GL(H) is continuous on H−∪{∞} and holomorphic
in H− ∪ {∞}, V+ : H+ → GL(H) is continuous on H+ and holomorphic
in H+, V is an L(H)-valued rational function without poles on R ∪ {∞},
V (λ) ∈ GL(H) for all λ ∈ R ∪ {∞}, and the functions V−, V −1

− , V+ and
V −1

+ belong to L(H)⊕ L̂1
(
R, L(H)

)
.

(iii) Let W̃ ∈ L(H)⊕ L̂1
(
R, L(H)

)
be a second function with W (λ) ∈ GL(H) for

all λ ∈ R ∪ {∞}, and assume that

W = W−W̃W+ on R ∪ {∞},

where W− : H− ∪ {∞} → GL(H) and W+ : H+ → GA are continuous
functions which are holomorphic in H− ∪ {∞} and H+, respectively. Then

W−,W−1
− ∈ L(H)⊕L̂1

−
(
R, L(H)

)
and W+,W−1

+ ∈ L(H)⊕L̂1
−
(
R, L(H)

)
.

Proof. Let Φ be the Möbius transform introduced in Section 8.9.1, let T be the
unit disc, let D+ be the unit circle and let D− := C \ D+. We denote by R the
Banach algebra of all operator functions A : T → L(H) of the form A = W ◦ Φ
with W ∈ L(H)⊕ L̂1

(
R, L(H)

)
, endowed with the norm

‖A‖R := ‖W‖
L(H)⊕L̂1(R,L(H))

.

Since Φ maps T onto T ∪ {∞}, D+ onto H+ and D− onto H−, then it follows
from Theorem 8.10.2 (iii), Theorem 8.10.3 and the decomposition (8.10.3) that
R satisfies conditions (A), (B), (C) from Section 7.2.4. Therefore, we can apply
Theorem 7.2.5 to R, and we obtain:
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(i′) W−1 ◦ Φ ∈ L(H)⊕ L̂1
(
R, L(H)

)
.

(ii′) The function W ◦ Φ can be written in the form

W ◦ Φ = V T

−V TV T

+ ,

where V T
− : D−∪{∞} → GL(H) is continuous on D−∪{∞} and holomorphic

in D− ∪ {∞}, V T
+ : D+ → GL(H) is continuous on D+ and holomorphic in

D+, V T is an L(H)-valued rational function without poles on T, V T(z) ∈
GL(H) for all z ∈ T, and the functions V T

− , (V
T
−)
−1, V T

+ and (V T
+ )
−1 belong

to R.
(iii′) The functions W− ◦ Φ, W−1

− ◦ Φ, W+ ◦ Φ and W−1
+ ◦ Φ belong to R.

Then (i) and (iii) follow from (i′) and (iii′) by definition of R, and (ii) follows from
(ii′) setting V± := V T

± ◦ Φ−1 and V := V T ◦ Φ−1. �

8.11 Factorization with respect to the real line

Throughout this section, E is a Banach space.
Here we introduce the notion of factorization with respect to the real line,

and we show that this is equivalent to the notion of factorization with respect to
the unit circle.

8.11.1 Definition. Let G be one of the groups GL(E), G∞(E) or Gω(E) (Def.
5.12.1), and let A : R ∪ {∞} → G be a continuous function (cf. Section 8.7.6). A
representation of A in the form

A = A−ΔA+ (8.11.1)

will be called a factorization of A relative to R and G if the factors A−, A+,Δ
have the following properties:

– Either Δ ≡ I or Δ is of the form

Δ(λ) = P0 +
n∑

j=1

(
λ− i

λ+ i

)κj

Pj , λ ∈ R, (8.11.2)

where n ∈ N∗, κ1 > . . . > κn are non-zero integers, P1, . . . , Pn are mutually
disjoint finite dimensional projectors in E, and P0 = I − P1 − . . .− Pn;

– A+ is a continuous GL(E)-valued function on H+ ∪ {∞}, which is holomor-
phic in H+;

– A− is a continuous GL(E)-valued function on H− ∪ {∞}, which is holomor-
phic in H−.

If Δ ≡ I, then this factorization will be called canonical .
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8.11.2. Let Φ : C ∪ {∞} → C ∪ {∞} be the Möbius transform defined by

Φ(z) = i
1 + z

1− z

(cf. Section (8.9.1), let T be the unit circle, let D+ be the open unit disc, and
let D− := C \ D+. Since Φ

∣∣
D+

is a homeomorphism from D+ onto H+ ∪ {∞},
which is biholomorphic from D+ onto H+, and Φ

∣∣
D−∪{∞} is a homeomorphism

from D−∪{∞} onto H−∪{∞}, which is biholomorphic from D−∪{∞} onto H−,
we get the following simple but important

8.11.3 Proposition. Let G be one of the groups GL(E), G∞(E) or Gω(E) (Def.
5.12.1), and let A : R ∪ {∞} → G be a continuous function (cf. Section 8.7.6).
Then

A = A−ΔA+

is a factorization of A relative to R and G, if and only if,

A ◦ Φ =
(
A− ◦ Φ

)(
Δ ◦ Φ

)(
A+ ◦ Φ

)
is a factorization of A ◦ Φ relative to T and G.

8.11.4 Definition. In view of the corresponding fact for factorizations with respect
to T (see Section 7.1.2), this proposition implies that the integers κ1, . . . , κn and
the dimensions of the projectors P1, . . . , Pn in Definition 8.11.1 are uniquely de-
termined by A. The integers κ1, . . . , κn will be called the non-zero partial indices
of A, and the number dimPj will be called the multiplicity of κj .

Moreover, Proposition 8.11.3 shows that, for each factorization result relative
to T, there is a corresponding factorization result with respect to the real line. In
the following sections we use this fact to study the Wiener-Hopf integral equation
on the half line.

8.12 Wiener-Hopf integral operators in L2
(
[0,∞[, H

)
Let H be a separable Hilbert space. In this section we use without further reference
the notations introduced in sections 8.7.1, 8.8.1, and 8.8.6.

Here we study the Wiener-Hopf integral equation

u(y)−
∫ ∞

−∞
K(y − x)f(x) dx = f(y), y ≥ 0, (8.12.1)

where K ∈ L1
(
R, L(H)

)
and f ∈ L2

+(R,H) are given, and u ∈ L2(R,H) is sought.
Throughout this section we moreover use without further reference the no-

tations and facts given in the following Section 8.12.1.
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8.12.1. Let PR be the orthogonal projector from L2(R,H) onto L2
+(R,H). Then

KerPR = L2
−(R,H), because of the (obvious) orthogonal decomposition

L2(R,H) = L2
+(R,H)⊕ L2

−(R,H). (8.12.2)

If K ∈ L1
(
R, L(H)

)
, then the operator T acting in L2

+(R,H) by

Tu = u− PR(K ∗ u), u ∈ L2
+(R,H),

is called the Wiener-Hopf operator with kernel function K. With a Wiener-Hopf
operator with kernel function K we moreover associate the symbol of this Wiener-
Hopf operator, which is defined to be the operator function

I − K̂. (8.12.3)

Then we speak also about the symbol I − K̂ of the kernel function K and the
kernel function K of the symbol I − K̂

The set of all symbols with kernel function in L1
(
R, L(H)

)
, i.e., the set

of all functions of the form (8.12.3) with K ∈ L1
(
R, L(H)

)
will be denoted by

S
(
R, L(H)

)
. If L(H)⊕L̂1

(
R, L(H)

)
is the Banach algebra from Section 8.10, then

S
(
R, L(H)

)
=
{

W ∈ L(H)⊕ L̂1
(
R, L(H)

) ∣∣∣ W (∞) = I
}

. (8.12.4)

The Wiener-Hopf operator with symbol W ∈ S
(
R, L(H)

)
will be denoted by TW .

So, if K ∈ L1(R,H) and W is the symbol of K, then equation (8.12.1) takes the
form TW u = f .

We denote by S−
(
R, L(H)

)
and S+

(
R, L(H)

)
the subsets of S

(
R, L(H)

)
which consist of the symbols with kernel function in L1

−
(
R,L(H)

)
and L1

+

(
R,L(H)

)
,

respectively, i.e.,

S+

(
R, L(H)

)
=
{

W ∈ L(H)⊕ L̂1
+

(
R, L(H)

) ∣∣∣ W (∞) = I
}

,

S−
(
R, L(H)

)
=
{

W ∈ L(H)⊕ L̂1
−
(
R, L(H)

) ∣∣∣ W (∞) = I
}

.
(8.12.5)

From (8.12.5), we get the following simple

8.12.2 Proposition. Let W ∈ S
(
R, L(H)

)
admit a factorization W = W−ΔW+

relative to R and GL(H) (Def. 8.11.1). Then this factorization can be chosen with

W−,W−1
− ∈ S−

(
R, L(H)

)
and W+,W−1

+ ∈ S+

(
R, L(H)

)
. (8.12.6)

If W admits a canonical factorization, then the canonical factorization with
(8.12.6) is uniquely determined.
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Proof. Let

W (λ) = W̃−(λ)

⎛⎝P̃0 +
n∑

j=1

(
λ− i

λ+ i

)κj

P̃j

⎞⎠ W̃+(λ), λ ∈ R, (8.12.7)

be an arbitrary factorization of W . As W (∞) = I, then

I = W (∞) = W̃−(∞)W̃+(∞).

Set A = W̃−(∞), W− = W̃−A−1, W+ = AW̃+, and Pj = AP̃jA
−1 for 0 ≤ j ≤ n.

Then W−(∞) = W+(∞) = I. Therefore, by (8.12.5), we have (8.12.6). Moreover,
then we get a factorization

W (λ) = W̃−(λ)

⎛⎝P̃0 +
n∑

j=1

(
λ− i

λ+ i

)κj

P̃j

⎞⎠ W̃+(λ)

= W̃−(λ)A
−1

⎛⎝AP̃0A
−1 +

n∑
j=1

(
λ− i

λ+ i

)κj

AP̃jA
−1

⎞⎠AW̃+(λ)

= W−(λ)

⎛⎝P0 +
n∑

j=1

(
λ− i

λ+ i

)κj

Pj

⎞⎠W+(λ), λ ∈ R,

of the required form.
The assertion of uniqueness in the case of canonical factorizations follows

from the fact that holomorphic functions on C ∪ {∞} are constant (using first
Theorem 1.5.4). �

Moreover, in view of (8.12.4) and (8.12.5), we immediately obtain the follow-
ing corollaries of theorems 8.10.2 and 8.10.6:

8.12.3 Corollary. (i) A symbol W ∈ S
(
R, L(H)

)
belongs to S+

(
R, L(H)

)
, if and

only if it admits a continuous extension to H+ ∪ {∞} which is holomorphic
in H+, and then

max
λ∈H+∪{∞}

‖W (λ)‖ ≤ ‖W‖
L(H)⊕L̂1(R,L(H))

.

(ii) A symbol W ∈ S
(
R, L(H)

)
belongs to S−

(
R, L(H)

)
, if and only if it admits

a continuous extension to H− ∪ {∞} which is holomorphic in H−, and then

max
λ∈H−∪{∞}

‖W (λ)‖ ≤ ‖W‖
L(H)⊕L̂1(R,L(H))

.
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(iii) Each symbol W ∈ S
(
R, L(H)

)
is continuous on R∪{∞}. Moreover, for each

W ∈ S
(
R, L(H)

)
,

max
λ∈R∪{∞}

‖W (λ)‖ ≤ ‖W‖
L(H)⊕L̂1(R,L(H))

.

8.12.4 Corollary. Let W ∈ S
(
R, L(H)

)
such that W (λ) ∈ GL(H) for all λ ∈

R.9Then:

(i) The pointwise defined function W−1 again belongs to S
(
R, L(H)

)
.

(ii) The function W can be written in the form

W = V−V V+,

where

V−(λ) ∈ GL(H), λ ∈ H− ∪ {∞}, V−, V −1
− ∈ S−

(
R, L(H)

)
,

V+(λ) ∈ GL(H), λ ∈ H+ ∪ {∞}, V+, V −1
+ ∈ S+

(
R, L(H)

)
.

(iii) Let W̃ ∈ S
(
R, L(H)

)
be a second symbol with W̃ (λ) ∈ GL(H) for all λ ∈ R,

and assume that
W = W−W̃W+ on R,

where W− : H− ∪{∞} → GL(H) and W+ : H+ ∪{∞} → GA are continuous
functions which are holomorphic in H− and H+, respectively, and

W−(∞) = W+(∞) = I.

Then W−,W−1
− ∈ S−

(
R, L(H)

)
and W+,W−1

+ ∈ S+

(
R, L(H)

)
.

In this section we prove the following three theorems:

8.12.5 Theorem. Let W ∈ S
(
R, L(H)

)
. Then the following two conditions are

equivalent:

(i) W (λ) 	= 0 for all λ ∈ R, and W admits a canonical factorization relative to
R and GL(H) (Def. 8.11.1).

(ii) The Wiener-Hopf operator TW with symbol W is invertible.

In that case we have: If W = W−W+ is the canonical factorization of W with

W−,W−1
− ∈ S−

(
R, L(H)

)
and W+,W−1

+ ∈ S+

(
R, L(H)

)
, (8.12.8)

(see Proposition 8.12.2), then the inverse of TW is obtained in the following way:
If K± ∈ L1

±
(
R, L(H)

)
are the kernel functions of W−1

± , i.e.,

W−1
− (λ) = I −

∫ 0

−∞
eiλxK−(x) dx and W−1

+ (λ) = I −
∫ ∞

0

eiλxK+(x) dx,

9Note that then W (λ) ∈ GL(H) for all λ ∈ R ∪ {∞}, as always W (∞) = I.
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then, for all u ∈ L2
+(R,H),

(T−1
W u)(y) = u(y) +

∫ ∞

0

K(y, x)u(x) dx, y ≥ 0, (8.12.9)

where

K(y, x) =

⎧⎪⎪⎨⎪⎪⎩
−K+(y − x) +

x∫
0

K+(y − t)K−(t− x) dt if 0 ≤ x ≤ y < ∞,

−K−(y − x) +
y∫
0

K+(y − t)K−(t− x) dt if 0 ≤ y ≤ x <∞.

8.12.6 Theorem. Let W ∈ S
(
R, L(H)

)
. Then the following two conditions are

equivalent:

(i) W (λ) 	= 0 for all λ ∈ R, and W admits a factorization relative to R and
GL(H) (Def. 8.11.1).

(ii) The Wiener-Hopf operator TW with symbol W is a Fredholm operator.

In that case we have: If

W (λ) = W−(λ)
(

P0 +
n∑

j=1

(
λ− i

λ+ i

)κj

Pj

)
W+(λ), λ ∈ R,

is a factorization of W with respect to R and GL(H), and if r is the index with
κ1 > . . . > κr > 0 > κr+1 > . . . > κn, then

dimKerTW = −
r∑

j=1

κj dimPj and dimCokerTW =
n∑

j=r+1

κj dimPj .

(8.12.10)

8.12.7 Theorem. Let W ∈ S
(
R, L(H)

)
be a symbol satisfying the equivalent con-

ditions (i) and (ii) in Theorem 8.12.6, let

W (λ) = W−(λ)
(

P0 +
n∑

j=1

(
λ− i

λ+ i

)κj

Pj

)
W+(λ), λ ∈ R,

be a factorization of W relative to R and GL(H) with

W−,W−1
− ∈ S−

(
R, L(H)

)
and W+,W−1

+ ∈ S+

(
R, L(H)

)
(8.12.11)

(which then exists by Proposition 8.12.2), let r be the index with κ1 > . . . > κr >
0 > κr+1 > . . . > κn, and let

Δ(λ) := P0 +
n∑

j=1

(
λ− i

λ+ i

)κj

Pj , λ ∈ R.
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Then: Δ,Δ−1 ∈ S
(
R, L(H)

)
(this holds by (8.12.4)) and (assertion of the theorem)

T
W−1

+
TΔ−1TW−1

−

is a generalized inverse (Section 6.10.2) of TW , and the operator TΔ−1 is given by

TΔ−1 = I +
n∑

j=1

TjPj , (8.12.12)

where, for all u ∈ L2
+(R,H) and y ≥ 0,

(Tju)(y) = (Pju)(y)−
κj∑

ν=1

(
κj

ν

)
2ν

ν!

∫ ∞

y

(y − x)ν−1ey−x(Pju)(x)dx

if r + 1 ≤ j ≤ n,

(8.12.13)

and

(Tju)(y) = (Pju)(y) +
−κj∑
ν=1

(−κj

ν

)
(−2)ν

ν!

∫ y

0

(y − x)ν−1ex−y(Pj)u(x)dx

if r + 1 ≤ j ≤ n.

(8.12.14)

The remainder of this section is devoted to the proof of these three theorems.

8.12.8. Let Φ : C ∪ {∞} → C ∪ {∞} be the Möbius transform defined by

Φ(z) = i
1 + z

1− z
, z ∈ C,

(cf. Section (8.9.1)), let T be the unit circle, and let L2(T,H), L2
+(T,H), L2

−(T,H)
be the Hilbert spaces introduced in Section 8.3.1 and in Theorem and Definition
8.3.10. Recall that, by part (iii) of Theorem and Definition 8.3.10, then we have
the orthogonal decomposition

L2(T,H) = L2
+(T,H)⊕ L2

−(T,H). (8.12.15)

Let PT be the orthogonal projector from L2(T,H) onto L2
+(T,H). Note that then

KerPT = L2
−(T,H), as it follows from the orthogonal decomposition (8.12.15).

For each symbol S ∈ S
(
R, L(H)

)
, together with the Wiener-Hopf operator

TS acting in L2(R,H), we also consider the Wiener-Hopf operator WS◦Φ acting
in L2

+(T,H) by

WS◦Φf = PT

(
(S ◦ φ)f

)
, f ∈ L2

+(T,H),

which was studied already in Section 8.4.
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8.12.9 Proposition. Let V be the isometry introduced in Theorem and Definition
8.9.2, and let U be the Fourier isometry of L2(R,H) (Section 8.8.5). Then

WS◦Φ = V−1UTSU−1V for all S ∈ S
(
R, L(H)

)
. (8.12.16)

Proof. Let S ∈ S
(
R, L(H)

)
be given. First note that

(S ◦ φ)f = V−1
(
S(Vf)

)
for all f ∈ L2(T,H). (8.12.17)

Indeed, if f belongs to the linear space C0(T,H)∩L2(T,H), this follows from the
definition (8.9.3) of V. Since this space is dense in L2(T,H) (by our definition of
L2(T,H), it follows for all f ∈ L2(T,H).

Now let K be the kernel function of S. Then, for all u ∈ L2
+(R,H), it follows

from (8.8.6) and (8.12.17) that

TSu = PR(u−K ∗ u) = PRU−1
(
Uu−U(K ∗ u)

)
= PRU−1

(
Uu− K̂Uu

)
= PRU−1

(
(I − K̂)Uu

)
= PRU−1

(
S(Uu)

)
for all u ∈ L2

+(R,H).
Now let f ∈ L2(T,H) be given. Then this implies that

V−1UTSU−1Vf = V−1UPRU−1
(
S(UU−1Vf)

)
= V−1UPRU−1

(
S(Vf)

)
= V−1UPRU−1V

(
V−1

(
S(Vf)

))
.

As, by Theorem 8.9.5, V−1UPRU−1V = PT and, by (8.12.17), V−1
(
S(Vf)

)
=

(S ◦ φ)f , this further implies

V−1UTSU−1Vf = PT

(
(S ◦ φ)f

)
,

i.e.,
V−1UTSU−1Vf =WS◦Φf.

�

8.12.10 Lemma. Let W ∈ S
(
R, L(H)

)
such that TW is a Fredholm operator. Then

W (λ) is invertible for all λ ∈ R.

Proof. Let Φ be the Möbius transformation introduced in Section 8.9.1. Then, by
Proposition 8.12.9, also the Wiener-Hopf operator WW◦Φ is a Fredholm operator.
Therefore the assertion follows from Proposition 8.6.6. �

8.12.11. Proof of Theorem 8.12.5. By Lemma 8.12.10 we may already assume that

W (λ) ∈ GL(H) for all λ ∈ R. (8.12.18)
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Let

Φ(z) := z
1 + z

1− z
.

As W (∞) = I, then it follows from (8.12.18) that (W ◦ Φ)(z) is invertible for all
z ∈ T, where T is the unit circle. Moreover, part (ii) of Corollary 8.12.4 in particular
implies that W ◦Φ admits local factorizations with respect to T and GL(H) (Def.
7.1.3). Therefore, by Theorem 8.4.2, the Wiener-Hopf operatorWW◦Φ is invertible,
if and only if, W ◦ Φ admits a canonical factorization relative to T and GL(H).
As, by Proposition 8.12.9,

WW◦Φ = V−1UTW U−1V,

this implies that TW is invertible, if and only if, W ◦Φ admits a canonical factor-
ization relative to T and GL(H). Finally, by Proposition 8.11.3, this yields that
TW is invertible, if and only if, W admits a canonical factorization relative to R

and GL(H). So the equivalence of the conditions (i) and (ii) in Theorem 8.12.5 is
proved.

Now let W = W−W+ be the canonical factorization of W with (8.12.8). As
the constant function with value I belongs to S

(
R, L(H)

)
, then part (iii) of Corol-

lary 8.12.4 implies (8.12.8). Hence, by parts (ii) and (iii) of Proposition 8.12.14,
the operators TW− and TW+

are invertible, where

T−1
W−

= TW−1
−

and T−1
W+

= TW−1
+

,

and, by part (i) of this proposition,

TW = TW−
TW+

.

Together this implies that the inverse of TW is given by

T−1
W = T

W−1
+

T
W−1

−
. (8.12.19)

Let K+ and K− be the kernels of W−1
+ and W−1

− , respectively, and let u ∈
L2

+(R,H). Then, by (8.12.19),(
T−1

W u
)
(y) =

(
T

W−1
+

(
T

W−1
−

u
))
(y)

=
(
T

W−1
−

u
)
(y)−

∫ ∞

−∞
K+(y − x)

(
T

W−1
−

u
)
(x) dx

= u(y)−
∫ ∞

−∞

(
(K−(y − x) +K+(y − x)

)
u(x)dx

+
∫ ∞

−∞

(∫ ∞

−∞
K+(y − x)K−(x− t)u(t) dt

)
dx, y ≥ 0.

(8.12.20)
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First applying Fubini’s theorem and then changing the role of x and t, we get∫ ∞

−∞

(∫ ∞

−∞
K+(y − x)K−(x− t)u(t) dt

)
dx

=
∫ ∞

−∞

(∫ ∞

−∞
K+(y − x)K−(x− t)u(t) dx

)
dt

=
∫ ∞

−∞

(∫ ∞

−∞
K+(y − t)K−(t− x) dt

)
u(x) dx, y ≥ 0.

Therefore it follows from (8.12.20) that

(
T−1

W u
)
(y) = u(y) +

∫ ∞

−∞
L(y, x)u(x)dx, y ≥ 0, (8.12.21)

where

L(y, x) := −K−(x− y)−K+(x− y) +

∞∫
−∞

K+(y − t)K−(t− x) dt, y, x ≥ 0.

Since K+(s) = 0 if s ≤ 0 and K−(s) = 0 if s ≥ 0, we see that L(y, x) = K(y, x)
for all x, y ≥ 0. This completes the proof of Theorem 8.12.5. �

8.12.12. Proof of Theorem 8.12.6. By Lemma 8.12.10 we may already assume that

W (λ) ∈ GL(H) for all λ ∈ R. (8.12.22)

Let
Φ(z) := z

1 + z

1− z
.

As W (∞) = I, then it follows from (8.12.22) that (W ◦ Φ)(z) is invertible for
all z ∈ T, where T is the unit circle. Moreover, part (ii) of Corollary 8.12.4 in
particular implies that W ◦ Φ admits local factorizations with respect to T and
GL(H) (Def. 7.1.3).

Therefore, by Theorem 8.4.2, the Wiener-Hopf operatorWW◦Φ is a Fredholm
operator, if and only if, W ◦ Φ admits a factorization relative to T and GL(H).
As, by Proposition 8.12.9,

WW◦Φ = V−1UTW U−1V, (8.12.23)

this implies that TW is a Fredholm operator, if and only if W ◦Φ admits a factor-
ization relative to T and GL(H). Finally, by Proposition 8.11.3, this yields that
TW is a Fredholm operator, if and only if, W admits a canonical factorization rela-
tive to R and GL(H). So the equivalence of the conditions (i) and (ii) in Theorem
8.12.6 is proved.
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Now we assume that these two conditions are satisfied, that

W (λ) = W−(λ)
(

P0 +
n∑

j=1

(
λ− i

λ+ i

)κj

Pj

)
W+(λ), λ ∈ R,

is a factorization of W relative to R and GL(H), and that r is the index with
κ1 > . . . > κr > 0 > κr+1 > . . . > κn.

By Proposition 8.11.3, then

(W ◦ Φ)(z) = (W− ◦ Φ)(z)
(

P0 +
n∑

j=1

zκj Pj

)
(W+ ◦ Φ)(z), z ∈ T,

is a factorization of W ◦Φ relative to T and GL(H). By Theorem 8.4.2, this implies
that

dimKerWW◦Φ = −
n∑

j=r+1

κjPj and dimCokerWW◦Φ =
r∑

j=1

κjPj .

By (8.12.23), this further implies (8.12.10). This completes the proof of Theorem
8.12.6. �
8.12.13 Proposition. Let V,W ∈ S

(
R, L(H)

)
. Then V,W ∈ S

(
R, L(H)

)
and if

KV and KW are the kernel functions of V and W , respectively, then KV +KW −
KV ∗KW is the kernel function of V W .

Proof. As K̂V K̂W = ̂KV ∗KW (see (8.7.12)), we have

V W = (I−K̂V )(I−K̂W ) = I−K̂V −K̂W +K̂V K̂W = I−K̂V −K̂W + ̂KV ∗KW .

�
8.12.14 Proposition. Let W− ∈ S−

(
R, L(H)

)
, W+ ∈ S+

(
R, L(H)

)
and W ∈

S
(
R, L(H)

)
. Then

(i) TW−W = TW−TW and TWW+
= TW TW+

.

(ii) Suppose W−(λ) is invertible for all λ ∈ H− ∪ {∞}, and, hence (Corollaries
8.12.3 and 8.12.4), also W−1

− ∈ S−
(
R, L(H)

)
. Then TW− is invertible and

T−1
W−

= T
W−1

−
.

(iii) Suppose W+(λ) is invertible for all λ ∈ H+ ∪ {∞}, and, hence (Corollaries
8.12.3 and 8.12.4), also W−1

+ ∈ S+

(
R, L(H)

)
. Then TW+

is invertible and

T−1
W+

= T
W−1

+
.
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We only have to prove part (i), because (ii) and (iii) follow from (i).
Let K± and K be the kernel functions of W± and W , respectively. Then, for

all f ∈ L2
+(R,H),

TW−TW f = TW−

(
f − PR(K ∗ f)

)
= f − PR(K ∗ f)− PR

(
K− ∗

(
f − PR(K ∗ f)

))
= f − PR

(
(K +K−) ∗ f

)
+ PR

(
K− ∗ PR(K ∗ f)

)
and

TW TW+
f = TW

(
f − PR(K+ ∗ f)

)
= f − PR(K+ ∗ f)− PR

(
K ∗

(
f − PR(K+ ∗ f)

))
= f − PR

(
(K+ +K) ∗ f

)
+ PR

(
K ∗ PR(K+ ∗ f)

)
.

Since, by proposition (8.8.8),

PR

(
K− ∗ PR(K ∗ f)

)
= PR

(
K− ∗ (K ∗ f)

)
and

PR

(
K ∗ PR(K+ ∗ f)

)
= PR

(
K ∗ (K+ ∗ f)

)
,

this implies that

TW−TW f = f − PR

(
(K +K−) ∗ f

)
+ PR

(
K− ∗ (K ∗ f)

)
and

TW TW+
f = f − PR

(
(K+ +K) ∗ f

)
+ PR

(
K ∗ (K+ ∗ f)

)
.

As the convolution is associative (Proposition 8.8.7), this further implies

TW−TW f = f − PR

(
(K +K− −K− ∗K) ∗ f

)
and

TW TW+
f = f − PR

(
(K+ +K −K ∗K+) ∗ f

)
.

Since, by Proposition 8.12.13, K +K− −K− ∗K is the kernel function of TW−W

and K+ +K −K ∗K+ is the kernel function of TWW+
, this proves part (i) of the

proposition.

8.12.15. Proof of Theorem 8.12.6. We introduce the abbreviations

Ψ(λ) =
λ− i

λ+ i
and Θ(λ) =

λ+ i

λ− i
, λ ∈ C.
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Then, by definition of Δ,

Δ = P0 +
r∑

j=1

Ψκj Pj +
n∑

j=r+1

Θ−κj Pj ,

Δ−1 = P0 +
r∑

j=1

Θκj Pj +
n∑

j=r+1

Ψ−κj Pj ,

(8.12.24)

and, by (8.12.5),

Ψκ ∈ S+

(
R, C

)
and Θκ ∈ S−

(
R, C

)
, κ ∈ N∗.

By Proposition 8.12.14, the latter relation implies that

TΘκTΨκ = I, κ ∈ N∗. (8.12.25)

From (8.12.24) it follows that

TΔ = P0 +
r∑

j=1

TΨκj Pj +
r∑

j=r+1

T
Θ−κj Pj ,

TΔ−1 = P0 +
r∑

j=1

TΘκj Pj +
n∑

j=r+1

T
Ψ−κj Pj ,

(8.12.26)

and, further, by (8.12.25),

TΔ−1T
−1
Δ TΔ−1 = P0 +

r∑
j=1

TΘκj TΨκj TΘκj Pj +
r∑

j=r+1

T
Ψ−κj T

Θ−κj T
Ψ−κj Pj

= TΔ−1 ,

TΔT−1
Δ−1TΔ = P0 +

r∑
j=1

TΨκj TΘκj TΨκj Pj +
n∑

j=r+1

T
Θ−κj T

Ψ−κj T
Θ−κj Pj

= TΔ.

Moreover, again by Proposition 8.12.14,

T
W−1

−
TW−

= TW−
T

W−1
−

= I,

T
W−1

+
TW+

= TW+
T

W−1
+

= I,

TW = TW−
TΔTW+

.
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Together this yields

TW

(
T

W−1
+

TΔ−1TW−1
−

)
TW

=
(
TW−

TΔTW+

)(
T

W−1
+

TΔ−1TW−1
−

)(
TW−

TΔTW+

)
= T

W−1
−

TΔ−1TΔTΔ−1TW−1
+

= T
W−1

−
TΔ−1TW−1

+

= TW

and (
T

W−1
+

TΔ−1TW−1
−

)
TW

(
T

W−1
+

TΔ−1TW−1
−

)
=
(
T

W−1
+

TΔ−1TW−1
−

)(
TW−

TΔTW+

)(
T

W−1
+

TΔ−1TW−1
−

)
= T

W−1
+

TΔ−1TΔTΔ−1TW−1
−

= T
W−1

+
TΔ−1TW−1

−
,

which shows that T
W−1

+
TΔ−1TW−1

−
is a generalized inverse of TW .

It remains to prove (8.12.12).
It follows from Proposition 8.7.11 that

(Ψ− 1)ν =
(−2)ν

ν!
θ̂+

ν−1 and (Θ− 1)ν =
2ν

ν!
θ̂−ν−1, ν ∈ N∗,

and further

Ψκ − 1 = (Ψ− 1 + 1)κ − 1 =
κ∑

ν=1

(
κ

ν

)
(Ψ− 1)ν

=
κ∑

ν=1

(
κ

ν

)
(−2)ν

ν!
θ̂+

ν−1, κ ∈ N∗,

Θκ − 1 =
κ∑

ν=1

(
κ

ν

)
2ν

ν!
θ̂−ν−1, κ ∈ N∗.

This implies that, for all u ∈ L2
+(R,H),

(
TΨκu

)
(y) = u(y) +

κ∑
ν=1

(
κ

ν

)
(−2)ν

ν!

∫ ∞

−∞
θ̂+

ν−1(x)u(x)dx, y ≥ 0,

(
TΘκu

)
(y) = u(y) +

κ∑
ν=1

(
κ

ν

)
2ν

ν!

∫ ∞

−∞
θ̂−ν−1(x)u(x)dx, y ≥ 0.
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Since, by definition of the functions θ±ν−1 (Section 8.7.8), for all ν ∈ N∗,

θ+
ν−1(y − x) =

{
(y − x)ν−1ex−y if y − x ≥ 0,
0 if y − x < 0,

and

θ−ν−1(y − x) =

{
−(y − x)ν−1ey−x if y − x ≤ 0,
0 if y − x > 0,

and since u(x) = 0 for x < 0 if u ∈ L2
+(R, C), this further implies that, for all

ν ∈ N∗,

(TΨκu)(y) = u(y) +
κ∑

ν=1

(
κ

ν

)
(−2)ν

ν!

∫ y

0

(y − x)ν−1ex−yu(x)dx, y ≥ 0,

(
TΘκu

)
(y) = u(y)−

κ∑
ν=1

(
κ

ν

)
2ν

ν!

∫ ∞

y

(y − x)ν−1ey−xu(x)dx, y ≥ 0.

(8.12.27)

Set

Tj =

{
TΘκj for 1 ≤ j ≤ r,

T
Ψ−κj

for r + 1 ≤ n.

Then (8.12.12) follows from (8.12.26) and (8.12.27). �

8.13 An example

In this section, D+ ⊆ C is a bounded connected open set with piecewise C1-
boundary Γ such that 0 ∈ D+.

If E is a Banach space, and A ∈ L(E) is a Fredholm operator, then (see,
e.g., [GGK2]) there exists ε > 0 such that the following holds: If B ∈ L(E) with
‖A−B‖ < ε, then also B is a Fredholm operator, where indA = indB, and if A
is invertible, then also B is invertible.

In view of the connection with Wiener-Hopf operators, this implies different
stability statements for the factorization problem. For example, Theorem 8.4.2
immediately implies:

8.13.1 Corollary (to Theorem 8.4.2). Let H be a separable Hilbert space, and let
A : Γ→ GL(H) be a continuous function which admits a factorization with respect
to Γ (Def. 7.1.1). Then there exists ε > 0 such that the following holds:

Let B : Γ → GL(H) be a continuous function which admits local factoriza-
tions with respect to Γ (Def. 7.1.3) and which satisfies the estimate

max
z∈Γ

‖A(z)−B(z)‖L(H) ≤ ε .

Then also B admits a factorization with respect to Γ and, moreover:
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(i) If κ1(A), . . . , κn(A) and κ1(B), . . . , κm(B) are the non-zero partial indices of
A and B, respectively (Def. 7.9.6), if dj(A) is the multiplicity of κj(A) as a
partial index of A (Def. 7.9.8), and if dj(B) is the multiplicity of κj(B) as a
partial index of B, then

n∑
j=1

κj(A)dj(A) =
m∑

j=1

κj(B)dj(B) . (8.13.1)

(ii) If A admits a canonical factorization with respect to Γ, then also B admits
a canonical factorization with respect to Γ.

However, each partial index alone is not stable with respect to small pertu-
bations. Consider, for ε ∈ C, the following example of a 2× 2-matrix:

Aε(z) :=
(

z−1 0
ε z

)
, z ∈ C∗. (8.13.2)

For ε = 0, the partial indices with respect to Γ of this function are −1 and 1.
However, for all ε 	= 0, Aε admits a canonical factorization with respect to Γ,
namely: (

z−1 0
ε z

)
=
(

z−1 −ε−1

ε 0

)(
1 ε−1z
0 1

)
. (8.13.3)

This example is good to explain also some other questions.
Factorizations with respect to Γ as considered in this book, are also called

right factorizations with respect to Γ. The notion of a left factorization with respect
to Γ one obtains by interchanging the roles of A− and A+ in Definition 7.1.1, i.e.,
a left factorization of a continuous function A : Γ → GL(E) (E being a Banach
space) with respect to Γ is a representation of the form A = A+ΔA−, where A−,
A+ and Δ are as in Definition 7.1.1. We restrict ourselves to right factorizations
with respect to Γ, because the theories of right and left factorizations with respect
to Γ are equivalent.

But we point out that the partial indices (Def. 7.9.6) need not be the same
for the left and the right factorization with respect to Γ of the same function (if
both exist). An example is given by the function Aε above if ε 	= 0. Then (8.13.3)
shows that zero is the only “right” partial index of Aε with respect to Γ, whereas
the representation (

z−1 0
ε z

)
=
(
1 0
εz 1

)(
z−1 0
0 z

)
. (8.13.4)

shows that the “left” partial indices of Aε with respect to Γ are −1 and 1.
Finally, we discuss the following generalization.
Let E be a Banach space, and let A : Γ→ GL(E) be a continuous function.
A representation of the form A = A−ΔA+ will be called a generalized fac-

torization of A with respect to Γ if everything is as in Definition 7.1.1, with one
exception: We do not require that the projectors P1, . . . , Pn are finite dimensional.
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It is easy to see that in terms of the filtration of A with respect to Γ (Def.
7.9.8), this can be characterized as follows: A generalized factorization of A with
respect to Γ exists, if and only if A admits local factorizations with respect to Γ
and:

If k1 > . . . > kn are the partial indices of A with respect to Γ (Def.
7.9.6), then, for 1 ≤ j ≤ n − 1, the spaces M−(z, kj ,Γ, A), z ∈ D− ∪ {∞},
and M+(z, kj ,Γ, A), z ∈ D+, are topologically closed and complemented in
M−(z, kj+1,Γ, A) and M+(z, kj+1,Γ, A), respectively, and the families of sub-
spaces {

M−(z, kj ,Γ, A)
}

z∈D−∪{∞}
and

{
M+(z, kj ,Γ, A)

}
z∈D+

are continuous (Def. 6.2.1) and holomorphic (Def. 6.4.1) over D− ∪ {∞} and D+,
respectively.

It turns out that also a generalized factorization of A with respect to Γ does
not always exist, even if A is a polynomial in z and z−1. To show this, consider
the following infinite dimensional version of example (8.13.3): Let H be an infinite
dimensional separable Hilbert space and let V ∈ L(H) be an operator such that
KerV = {0} and ImV is not topologically closed in H, and let A : C∗ → L(H⊕H)
be defined by the block matrix

A(z) =
(

z−1I 0
V zI

)
, z ∈ C∗ , (8.13.5)

where I is the unit operator on H. It is easy to see that the only (Γ,−1) section of
A (Def. 7.9.1) is the zero section, and that the space of (Γ, 0)-sections of A consists
of all pairs (ϕ−, ϕ+) of the form

ϕ+(z) =
(

a+ zb
−V b

)
and ϕ−(z) =

(
z−1a+ b

V a

)
with a, b ∈ H .

Hence, 0 is a partial index of A with respect to Γ, and M+(0, 0,Γ, A) = H⊕ ImV ,
which is not topologically closed in H ⊕H (as ImV is not topologically closed in
H). Therefore, A does not admit a generalized factorization with respect to Γ.

8.14 Comments

The material of this chapter for matrix-valued functions was first presented in
[GK] (see also [Go4, CG]). It consists of an infinite dimensional generalization for
a wider set of functions. Some operator generalization of the Wiener-Hopf equation
one can find in the paper of Feldman [F]. The presented operator-valued general-
izations are used for the solution of the linear transport equation. The transport
theory concerns the mathematical analysis of equations that describe transport
phenomena in matter, e.g. a flow of electrons through a metal strip or radiated
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transport bin stellar atmosphere. This phenomenon concerns the migration of par-
ticles in a medium. For the finite dimensional case, see [BGK], chapter 6. For the
linear transport theory, see [KLH].



Chapter 9

Multiplicative cocycles with
restrictions (F-cocycles)

Here we present a generalization of the theory of cocycles developed in Chap-
ter 5. We study multiplicative cocycles with restrictions. To formulate this, it is
convenient to use the language of sheaves.

9.1 F-cocycles

In this section, A is a Banach algebra with unit 1, and G is an open subgroup of
the group of invertible elements of A. By P1 we denote the Riemann sphere (see
the beginning of Section 5.10). If U ⊆ P1 is a non-empty open set, then we denote
by OG(U) the group of G-valued holomorphic functions defined on U , and we set
OG(∅) = {1}.

9.1.1 Definition (OG-sheaf). Let D ⊆ P1 be an open set.
A map F , which assigns to each open set U ⊆ D a subgroup F(U) of OG(U),

will be called an OG-sheaf over D if, for each open U ⊆ D, the following two
conditions are satisfied:

(i) If f ∈ F(U), then f
∣∣
V
∈ F(V ) for each open V ⊆ U . Here f |∅ := 1.

(ii) Suppose f ∈ OG(U) such that, for each w ∈ U there exists a neighborhood
W ⊆ U of w with f

∣∣
W
∈ F(W ). Then f ∈ F(U).

If F is an OG-sheaf over D and U ⊆ D is open, then the functions from
F(U) are called sections of F over U .

If F is an OG-sheaf over D and Y ⊆ D is open, then we denote by F
∣∣
Y
the

restriction of F to the open subsets of Y .
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9.1.2 Definition (Sheaves defined by a data of zeros). A pair (Z,m) is called a
data of zeros if Z ⊆ P1 and m = {mw}w∈Z is a family of numbers mw ∈ N.

Let (Z,m) be a data of zeros. Then, for each open set U ⊆ P1, we denote by
OG

Z,m(U) the group of all f ∈ OG(U) such that, for each w ∈ U ∩ Z, the function
f −1 has a zero of order ≥ mw at w.1 The map OG

Z,m is an OG-sheaf over P1. The
restriction of OG

Z,m to the open subsets of an open set D ⊆ P1 will be denoted by
OG

D,Z,m.

9.1.3 Definition (OG-sheaves of finite order). Let D ⊆ P1 be an open set. An
OG-sheaf F over D will be called of finite order if there exists a data of zeros
(Z,m) such that Z ∩D is discrete and closed in D and, for each open set U ⊆ D,

F(U \ Z) = OG(U \ Z) , (9.1.1)

F(U) ⊇ OG
Z,m(U) . (9.1.2)

In particular, if (Z,m) is a data of zeros and D ⊆ P1 is an open set such that
Z ∩D is discrete and closed in D, then OG

D,Z,m is of finite order.

9.1.4 Definition ((U ,F)-cocycles). Let D ⊆ P1 be an open set, let F be an OG-
sheaf over D, and let U = {Uj}j∈I be an open covering of D.

Then we denote by Z1(U ,F) the set of all f ∈ Z1(U ,OG) (Def. 5.6.1) with
fjk ∈ F(Uj∩Uk), j, k ∈ I. The elements of Z1(U ,F) will be called (U ,F)-cocycles.
Two cocycles f, g ∈ Z1(U ,F) will be called F-equivalent if there exists a family
h = {hj}j∈I of functions hj ∈ F(Uj) such that

hjfjkh−1
k = gjk on Uj ∩ Uk (9.1.3)

for all j, k ∈ I with Uj ∩ Uk 	= ∅.
A cocycle f ∈ Z1(U ,F) will be called F-trivial if it is equivalent to the

cocycle {ejk}jk∈I defined by ejk ≡ 1 on Uj ∩ Uk for all j, k ∈ I with Uj ∩ Uk 	= ∅.
More directly, a cocycle f ∈ Z1(U ,F) will be called F-trivial if there exists

a family {hj}j∈I of sections fj ∈ F(Uj) such that

fjk = h−1
j hk on Uj ∩ Uk (9.1.4)

for all j, k ∈ I with Uj ∩Uk 	= ∅. The family {hj}j∈I then will be called a splitting
of f .

9.1.5 Definition (Passing to refinements). Let F be an OG-sheaf over an open set
D ⊆ P1, and let U = {Uj}j∈I and V = {Vj}j∈J be two open coverings of D such
that V is a refinement of U .

If τ : J → I is a map with Vj ⊆ Uτ(j) for all j ∈ J (by definition of a
refinement at least one such map exists), then, for each f ∈ Z1(U ,F), we define

1Since f−1 =
(
1− (1− f)

)−1
= 1+(1− f)

∑∞
n=0(1− f)n in some neighborhood of w if f − 1

has a zero at w, this is indeed a group.
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a cocycle τ∗f ∈ Z1(V,F), by setting

(τ∗f)jk = fτ(j)τ(k)

∣∣
Vj∩Vk

, j, k ∈ J .

Here again fτ(j)τ(k)

∣∣
∅ := 1. We shall say that g ∈ Z1(V,F) is induced by f ∈

Z1(U ,F) if there exists a map τ : J → I with Vj ⊆ Uτ(j), j ∈ J , and g = τ∗f .

There is the following generalization of Proposition 5.7.2:

9.1.6 Proposition. Let F be an OG-sheaf over an open set D ⊆ P1, and let U =
{Uj}j∈I and V = {Vj}j∈J be two open coverings of D such that V is a refinement
of U .

If f, g ∈ Z1(U ,F) and f̃ , g̃ ∈ Z1(V,F) such that f̃ is induced by f and g̃ is
induced by g, then the following are equivalent:

(i) f and g are F-equivalent.

(ii) f̃ and g̃ are F-equivalent.

In particular, the following are equivalent:

(i′) f is F-trivial.

(ii′) f̃ is F-trivial.

Proof. Repetition of the proof of Proposition 5.7.2. �

9.1.7 Definition (F-cocycles). Let D ⊆ P1 be an open set, and let F be an OG-
sheaf over D.

(i) By an F-cocycle we mean a (U ,F)-cocycle such that U is an open covering
of D. The covering U then is called the covering of this cocycle.

(ii) Let f and g be two F-cocycles over D (possibly with different coverings). The
cocycles f and g will be called F-equivalent if the following two equivalent
(by Proposition 9.1.6) conditions are satisfied:

1) There exists an open covering W of D, which is a refinement both of
the covering of f and of the covering of g, such that at least one of
the (W,F)-cocycles induced by f is F-equivalent to at least one of the
(W,F)-cocycles induced by g.

2) For each open covering W of D, which is a refinement both of the
covering of f and of the covering of g, each (W,F)-cocycle induced by
f is F-equivalent to each (W,F)-cocycle induced by g.

9.1.8 Definition (Restriction to subsets). Let D ⊆ C be an open set, let U =
{Uj}j∈I be an open covering of D, and let Y be an open subset of D. Set

U ∩ Y =
{

Uj ∩ Y
∣∣∣ j ∈ I

}
.
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Let F be an OG-sheaf over D. Then we define:
(i) Let f be an F-cocycle over D with the covering U . Then we denote by

f
∣∣
Y
the F

∣∣
Y
-cocycle with the covering U ∩ Y defined by

(f |Y )jk = fjk

∣∣
Uj∩Uk∩Y

for j, k ∈ I with Uj ∩ Uk ∩ Y 	= ∅. This cocycle f
∣∣
Y
will be called the restriction

of f to Y . We shall say that f is F-trivial over Y if f
∣∣
Y
is F-trivial.

(ii) Let f, g be two F-cocycles over D. Then we shall say that f and g are
F-equivalent over Y if f

∣∣
Y
and g

∣∣
Y
are F

∣∣
Y
-equivalent.

9.1.9 Proposition. Let D ⊆ C be an open set, let U = {Uj}j∈I be an open covering
of D, let F be an OG-sheaf over D, and let f be an F-cocycle over D, which is
F-trivial over each Uj.

Then f is F-equivalent to some (U ,F)-cocycle.
Proof. Repetition of the proof of Proposition 5.7.6 �

9.2 The main results on cocycles with restrictions.

Formulation and reduction to OD,Z,m

In this section we use the notations and definitions introduced in the preceding
section. The main results for cocycles obtained in this chapter can be stated as
follows:

9.2.1 Theorem. Let F be an OG-sheaf of finite order over an open set D ⊆ C, and
let f be an F-cocycle. Assume that at least one of the following three conditions
is satisfied:

(i) The cocycle f is CG-trivial over D (Definition 5.6.1).

(ii) The group G is connected.

(iii) D is simply connected.

Then f is F-trivial.

Note also the following corollary:

9.2.2 Corollary. Let F be an OG-sheaf of finite order over an open set D ⊆ C, and
let D1, D2 ⊆ D be two open sets with D = D1 ∪D2. Further let f ∈ F(D1 ∩D2)
and assume that at least one of the following three conditions is satisfied:

(i) There exist continuous functions cj : Dj → G, j = 1, 2, such that f = c−1
1 c2

on D1 ∩D2.

(ii) The group G is connected.

(iii) D1 ∪D2 is simply connected.
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Then there exist functions fj ∈ F(Dj), j = 1, 2, such that f = f−1
1 f2 on D1 ∩D2.

9.2.3 Remark. It is sufficient to prove Theorem 9.2.1 for the case when F is of
the form OG

D,Z,m, where (Z,m) is a data of zeros such that Z ∩D is discrete and
closed in D (Def. 9.1.2).

Indeed, assume this is done, and let F be an arbitrary OG-sheaf of finite
order over an open set D ⊆ C. Further, let f be an F-cocycle such that at least
one of the following three conditions (i)–(iii) in Theorem 9.2.1 is satisfied.

Let U be the open covering of D associated to f , and let (Z,m) be a data of
zeros as in Definition 9.1.3. Since Z ∩D is discrete and closed in D, then, for each
point w ∈ D, we can find a neighborhood Vw ⊆ D of w such that Vw is contained
in at least one of the sets of the covering U and

Vw ∩ Z =

{
{w} if w ∈ Z ,

∅ if w 	∈ Z .

Then V := {Vw}w∈D is an open covering of D and a refinement of U . Let f∗ be a
(V,F)-cocycle induced by f . If w, z are two different points inD, then Z∩Vw∩Vz =
∅. By (9.1.1) this implies that

F(Vw ∩ Vz) = OG(Vw ∩ Vz) = OG
Z,m(Vw ∩ Vz) if w, z ∈ D with w 	= z .

Therefore f∗ can be interpreted as a (V,OG
D,Z,m)-cocycle.

If one of the conditions (ii) or (iii) is satisfied for F , then it is clear that this
condition is satisfied for OG

D,Z,m (as it depends only on D resp. G). If condition
(i) is satisfied for the cocycle f , then it follows from Proposition 9.1.6 that this
condition is satisfied also for f∗.

Therefore, as Theorem 9.2.1 is already proved for the sheaf OG
D,Z,m (by our

hypothesis), it follows that f∗ is OG
D,Z,m-trivial. By (9.1.2) this implies that f∗ is

F-trivial, which means by Proposition 9.1.6 that f is F-trivial.
The following Sections 9.3–9.8 are devoted to the proof of Theorem 9.2.1 in

the case when F is of the form OG
D,Z,m, where (Z,m) is a data of zeros such that

Z∩D is discrete and closed in D. Then the assertion of Theorem 9.2.1 is contained
in Theorems 9.6.1 (if D is simply connected) and 9.8.1 (if f is CG-trivial or G is
connected).

9.3 The Cartan lemma with restrictions

In this section, A is a Banach algebra with unit 1, G is an open subgroup of the
group of invertible elements of A, G1A is the connected component of 1 in G, and
(Z,m) is a data of zeros (Def. 9.1.2).

Here we prove a version of the Cartan lemma for sections of the sheaf OG
Z,m.

To linearize the problem, we need the following definition:
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9.3.1 Definition. For each open set U ⊆ P1, we denote by OA
Z,m(U) the set of all

f ∈ OA(U) such that, for each point w ∈ U ∩Z, the function f has a zero of order
≥ mw at w.

9.3.2 Lemma. (For the definitions of log and exp, see Section 5.4.3). For each open
set U ⊆ P1, we have:

(i) If f ∈ OA
Z,m(U), then exp f ∈ OG1A

Z,m (U).

(ii) If f ∈ OG1A
Z,m (U) and ‖f(z)− 1‖ < 1, z ∈ U , then log f ∈ OA

Z,m(U).

Proof. (i) Let f ∈ OA
Z,m(U) and w ∈ Z. Then

exp f − 1 =
∞∑

n=1

fn

n!
.

As f has a zero of order ≥ mw at w and therefore each fn with n ≥ 1 has a zero
of order ≥ mw at w, this implies that exp f − 1 has a zero of order ≥ mw at w.

(ii) Let f ∈ OG1A
Z,m (U) with ‖f(z)−1‖ < 1 for all z ∈ U , and let w ∈ Z. Then

log f =
∞∑

n=1

(−1)n+1

n
(f − 1)n .

As f − 1 has a zero of order ≥ mw at w and therefore each (f − 1)n with n ≥ 1
has a zero of order ≥ mw at w, this implies that log f has a zero of order ≥ mw

at w. �

9.3.3 Definition. Let Γ be an arbitrary subset of P1, and let Γ0 be the set of interior
points of Γ.

(i) We denote by OG

Z,m(Γ) the group of continuous functions f : Γ → G such

that f |Γ0 ∈ OG
Z,m(Γ

0).2 If Γ is compact, then OG

Z,m(Γ) will be considered as
a topological group with respect to uniform convergence on Γ. It is easy to
see that this is a closed subgroup of CG(Γ) endowed with the same topology.

(ii) We denote by OA

Z,m(Γ) the algebra of continuous functions f : Γ → A such

that f |Γ0 ∈ OA
Z,m(Γ

0). If Γ is compact, then OA

Z,m(Γ) will be considered as
the Banach algebra endowed with the max-norm. It is easy to see that this
is indeed a Banach algebra, i.e., a closed subalgebra of the Banach algebra
CA(Γ) endowed with the same norm.

2Here it is allowed that points of Z lie on Γ \ Γ0, but for f ∈ OG
Z,m(Γ), the function f − 1

need not have zeros at such points.
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9.3.4 Proposition. Let D ⊆ C be a bounded open set with piecewise C1-boundary,
and let Ω ⊇ D be an open set such that each bounded connected component of C\D
contains at least one point of C \ Ω. Assume that Z ∩ Ω is discrete and closed in
Ω and Z ∩ ∂D = ∅.

Then each f ∈ OA

Z,m(D) can be approximated uniformly on D by functions
from OA

Z,m(Ω).

Proof. Let U1, . . . , Un be the bounded connected components of C \ D. By hy-
pothesis, we can find points aj ∈ Uj ∩ (C \ Ω), 1 ≤ j ≤ n. Since Z ∩ Ω is discrete
and closed in Ω, by the Weierstrass product Theorem 2.5.7, we can find a scalar
holomorphic function ϕ : Ω → C such that ϕ(z) 	= 0 for z ∈ Ω \ Z, and, for each
w ∈ Z, ϕ has a zero of order mw at w. Since Z ∩ ∂D = ∅, then

f̃ :=
f

ϕ

is continuous on D and holomorphic in D. Therefore, by the Runge approximation
Theorem 2.2.2 (ii), we can find a sequence (f̃ν)ν∈N of functions f̃ν ∈ OA

(
C \

{a1, . . . , an}
)
which converges to f̃ uniformly on D. Setting fν = ϕf̃ν on Ω, we get

a sequence (fν)ν∈N of functions fν ∈ OA
Z,m(Ω). Since D is compact and, therefore,

ϕ is bounded on D, this sequence converges to f = ϕf̃ uniformly on D. �
9.3.5 Lemma. Let Ω ⊆ C be a bounded open set with piecewise C1-boundary such
that C \ Ω is connected. Suppose that Z ∩ C is discrete and closed in C and

Z ∩ Ω = ∅. 3

Then each f ∈ OG1A(Ω) can be approximated uniformly on Ω by maps from
OG1A

Z,m (C).

Proof. Let f ∈ OG1A(Ω) be given. By Lemma 5.4.7, OG1A(Ω) is the connected
component of the unit in the group of invertible elements of the Banach algebra
OA(Ω). Therefore, by Proposition 5.4.1, f can be written as a finite product

f = g1 · . . . · gn

where gj ∈ OG1A(Ω) and ‖1 − gj‖OA(Ω) < 1 for 1 ≤ j ≤ n. By Lemma 5.4.4 (ii),
elog gj = gj . Hence

f = elog g1 · . . . · elog gn .

Since Z ∩ Ω = ∅, it is trivial that log gj ∈ OA
Z,m(Ω). Since C \ Ω is connected,

by Proposition 9.3.4 (i), for each j, we can find a sequence (ϕjν)ν∈N of functions
ϕjν ∈ OA

Z,m(C) which converges to log gj uniformly on Ω. Setting

fν = eϕjν . . . eϕjν

3We shall see below (Theorem 9.5.3) that this condition can be replaced by Z ∩ ∂Ω = ∅.
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then we get a sequence (fν)ν∈N of holomorphic functions fν : C → A which
converges to f uniformly on D. By Lemma 9.3.2 (i) each fν belongs to OG1A

Z,m (C).
�

A modification of the proof of Lemma 5.5.3 gives the following generalization
of this lemma:

9.3.6 Lemma. Let (D1, D2) be a Cartan pair such that

Z ∩ ∂D1 = Z ∩ ∂D2 = ∅ and Z ∩ (D1 ∪D2) is finite.

Let ε > 0. Then there exists δ > 0 such that, for all g ∈ OA

Z,m(D1 ∩D2) with

max
z∈D1∩D2

‖g(z)‖ < δ,

there exist gj ∈ O
A

Z,m(Dj) such that max
z∈Dj

‖gj(z)‖ < ε, j = 1, 2, and

1 + g = (1 + g1)(1 + g2) on D1 ∩D2. (9.3.1)

Proof. We consider OA

Z,m(D1∩D2), OA
Z,m(D1) and OA

Z,m(D2) as Banach algebras

endowed with the maximum norm. It is sufficient to prove that each f ∈ OA

Z,m(D1∩
D2) can be written in the form f = f1 + f2 with fj ∈ OA

Z,m(Dj), because then
the assertion follows from Lemma 5.2.1.

If Z ∩ (D1 ∪D2) = ∅, this follows from Corollary 5.3.5.
If Z ∩ (D1 ∪D2) = {w1, . . . , wn}, n ∈ N∗, then we set

p(z) = (z − z1)mw1 · . . . · (z − zn)mwn .

Now let an arbitrary f ∈ OA

Z,m(D1 ∩ D2) be given. Since Z does not meet the

boundaries of D1 and D2, then f/p ∈ OA
(D1∩D2), and, again by Corollary 5.3.5,

we can find functions hj ∈ O
A
(Dj) with f/p = h1 + h2. Setting fj = phj , we get

the required functions fj ∈ O
A

Z,m(Dj) with f = f1 + f2. �
Now we can prove the following generalization of the Cartan Lemma 5.5.2:

9.3.7 Lemma. Let (D1, D2) be a Cartan pair such that

Z ∩ ∂(D1 ∪D2) = ∅ and Z ∩ (D1 ∪D2) is finite.

Let f ∈ OG
Z,m(D1 ∩ D2) such that all values of f belong to the same connected

component of G. (This is always the case if D1 ∩ D2 is connected.) Then there
exist fj ∈ OG

Z,m(Dj), j = 1, 2, such that

f = f1f2 on D1 ∩D2.
4 (9.3.2)

4From the proof of this lemma it will be clear that also the more precise statements corre-
sponding to assertions (i) and (ii) of Lemma 5.5.2 are true. We omit these finer points, because
we will not use them.
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Proof. Since all values of f belong to the same connected component of G, after
multiplying by a constant, we may assume that all values of f belong to G1A. The
main problem compared to the proof of Lemma 5.5.2 is that, possibly, Z ∩D1 ∩
D2 	= ∅. We avoid this problem by the following trick:

Since Z ∩ (D1 ∪D2) is finite, we can find a ”smaller” Cartan pair (X1, X2)
such that Xj ⊆ Dj , X1 ∪X2 = D1 ∪D2 and

Z ∩X1 ∩X2 = ∅.

Now it is sufficient to find fj ∈ OG1A
Z,m (Xj), j = 1, 2, such that

f = f1f2 on X1 ∩X2. (9.3.3)

Indeed, then it follows from the equations

f1 = ff−1
2 and f2 = f−1

1 f

that the maps fj extend to maps fj ∈ OG1A
Z,m (Dj), and (9.3.2) follows from (9.3.3)

by uniqueness of holomorphic functions.
Now we continue as in the proof of Lemma 5.5.2:
Since Z ∩X1 ∩X2 = ∅, it follows from Lemma 9.3.5 that, for each δ > 0, we

can find fδ ∈ OG1A
Z,m (C) with

max
z∈U1∪...∪Un

‖f(z)f−1
δ (z)− 1‖ < δ and max

z∈U1∪...∪Un

‖f−1
δ (z)f(z)− 1‖ < δ.

Therefore, by the preceding Lemma 9.3.6, for sufficiently small δ, we can find
gj ∈ OA(Dj) such that

max
z∈Dj

‖gj(z) < 1

and
ff−1

δ = (1 + g1) (1 + g2)

on D1 ∩D2. Setting f1 = 1 + g1 and f2 = (1 + g2)fδ, we conclude the proof. �

9.3.8 Corollary. Let D ⊆ C be an open set such that Z ∩D is discrete and closed
in D. Let (D1, D2) be a Cartan pair such that

D1 ∪D2 ⊆ D.

Let U ⊆ D be a neighborhood of D1 ∩D2 and f ∈ OG
Z,m(U) such that all values

of f belong to the same connected component of G. (This is always the case if
U is connected.) Then there exist neighborhoods Uj ⊆ D of Dj and functions
fj ∈ OG

Z,m(Uj), j = 1, 2, such that

f = f1f2 on U1 ∩ U2. (9.3.4)
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Proof. Since Z∩D is discrete and closed in D, we can find a slightly larger Cartan
pair (U1, U2) such that Dj ⊆ Uj , U j ⊆ D, U1 ∩ U2 ⊆ U and

Z ∩ ∂(U1 ∪ U2) = ∅.

Then Z ∩ (U1 ∪U1) is finite, f |U1∩U2
∈ OG

Z,m(U1 ∩U2) and we can apply Lemma
9.3.7 to the Cartan pair (U1, U2). �

9.4 Splitting over simply connected open sets after

shrinking

In this section A is a Banach algebra with unit 1, G is an open subgroup of the
group of invertible elements of A, and (Z,m) is a data of zeros (Def. 9.1.2). By
G1A we denote again the connected component of 1 in the group of all invertible
elements of A.

Here we want to generalize the splitting Theorem 5.6.3 to OG
Z,m-cocycles.

The problem is that (at the moment) we do not have a generalization to OG
Z,m of

part (i) of the Runge approximation Theorem 5.0.1, which we used in the proof
of Lemma 5.9.1 and then again in the proof of Theorem 5.6.3. In the next section
we will prove this generalization, but first we have to prove the following splitting
statement “with shrinking”:

9.4.1 Lemma. Let D ⊆ C be a simply connected open set such that Z∩D is discrete
and closed in D, let Ω be a relatively compact open subset of D, and let f be an
OG

Z,m-cocycle over D. Then the restriction f |Ω is OG
Z,m-trivial (Def. 9.1.4).

Proof. We proceed similar to the proof of Lemma 5.9.2. But instead of the precise
factorization statement of the Cartan Lemma 5.9.1, here we can use only the
factorization statement “with shrinking” of Corollary 9.3.8. Therefore, in each of
the induction steps, we have to shrink the covering which makes the arguments
more technical. We give now the details.

Set

Kt =
{

z ∈ C

∣∣∣ − t < Re z < 1 + t and − t < Im z < 1 + t
}

, t > 0.

Since D is simply connected and Ω is relatively compact in D, by the Riemann
mapping theorem, we may assume that, for some ε > 0, D = Kε and Ω ⊆ K0.

Now let an OG
Z,m-cocycle f over D = Kε be given.

We choose n ∈ N∗ sufficiently large (will be specified some lines below) and
denote by U t

jk, j, k = 1, . . . , n, 0 < t < 1, the open rectangle of all z ∈ C with(
k − 1− t

3

)
1
n

< Re z <

(
k +

t

3

)
1
n
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and (
j − 1− t

3

)
1
n

< Im z <

(
j +

t

3

)
1
n

.

Then, for all 0 < t < 1, U t := {U t
jk}1≤j,k≤n is an open covering of Kt/3n. We

choose n so large that

Kt/3n ⊆ Kε/2 for all 0 < t < 1.

Let V = {Vν}ν∈I be the covering associated to f . Then

V ∩Kt/3n :=
{

Vν ∩Kt/3n

}
ν∈I

is a second open covering of Kt/3n. Since Kε/2 is a compact subset of D = Kε,
the covering V contains a finite subcovering which already covers Kε/2 ⊇ Kt/3n.
Therefore, we can n further enlarge (and now we fix it) so that each U t

jk is con-
tained in at least one of the sets Vν . Now, for all 0 < t < 1, the covering U t is a
refinement of V ∩Kt/3n.

We give the family U t an order saying that U t
jk < U t

j′k′ , if and only if, either
j < j′ or j = j′ and k < k′. Let U t

1, . . . U
t
n2 be the family U t numbered in this way.

For μ = 1, . . . , n2, we consider the statement

S(μ) : There exists 0 < t < 1 such that f
∣∣
Ut

1∪...∪Ut
μ

is OG
Z,m-trivial.

Since Ω ⊆ K0 ⊆ Kt = U t
1 ∪ . . . ∪ U t

n2 for all 0 < t < 1, it is sufficient to prove
S(n2). Since U t is a refinement of V ∩Kt/3n and V is associated to f , it is trivial
that f

∣∣
Ut

μ
is OG

Z,m-trivial for all 1 ≤ μ ≤ n2 and 0 < t < 1. In particular, S(1) is
true.

Therefore it is sufficient to prove that S(μ)⇒ S(μ+1) for all 1 ≤ μ ≤ n2−1.
Let 1 ≤ μ ≤ n2 − 1 be given such that S(μ) is true. Set W t

1 = U t
1 ∪ . . . ∪ U t

μ

and W t
2 = U t

μ+1 for 0 < t < 1. Since S(μ) is true, we can fix 0 < t < 1 such that
f
∣∣
W t

1
is OG

W t
1 ,Z,m-trivial. Since, trivially, also f

∣∣
W t

2
is OG

Z,m-trivial, it follows from

Proposition 9.1.9 that f
∣∣
W t

1∪W t
2
is OG

Z,m-equivalent to some
(
{W t

1 ,W t
2},OG

Z,m

)
-

cocycle g.
Now we choose some 0 < t′ < t. Then (W t′

1 ,W t′
2 ) is a Cartan pair with

W
t′

1 ∪W
t′

2 ⊆ D and W t
1∩W t

2 is a connected neighborhood of W
t′

1 ∪W
t′

2 . Therefore,
from Corollary 9.3.8 we get functions gj ∈ OG

Z,m(W
′
j), j = 1, 2, such that

g12 = g1g1 on W ′
1 ∩W ′

2,

which means that the restricted cocycle g|W ′
1∪W ′

2
is OG

Z,m-trivial. Since W ′
1∪W ′

2 =
U t′

1 ∪ . . . ∪ U t′
μ+1, it follows that S(μ+ 1) is true. �
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9.5 Runge approximation on simply connected open

sets

In this section A is a Banach algebra with unit 1, G is an open subgroup of the
group of invertible elements of A, G1A is the connected component of 1 in the
group of invertible elements of A, and (Z,m) is a data of zeros (Def. 9.1.2). Here
we prove part (i) of the Runge approximation Theorem 5.0.1 for sections of the
sheaf OG

Z,m. The first step is the following Mergelyan approximation theorem:

9.5.1 Theorem. Let D ⊆ C be a bounded open set with piecewise C1-boundary such
that Z ∩D is finite and Z ∩ ∂D = ∅. Then, for each f ∈ OG

Z,m(D) and all ε > 0,
there exists a neighborhood U of D and a function f̃ ∈ OG

Z,m(U) such that

max
z∈D

∥∥f(z)− f̃(z)
∥∥ < ε.

Proof. Since the assertion of the theorem does not change if we replace Z by
Z \ (C \D), we may assume that Z is a finite subset of D. Then we can find an
open set Ω ⊆ D with piecewise C1-boundary such that Ω ⊆ D and Z ⊆ Ω. (For
example, we can surround the points of Z by small discs.) Further, let � be an
open disc such that D ⊆ �.

Now let f ∈ OG
Z,m(D) and ε > 0 be given. Since G is an open subset of A,

by the Mergelyan approximation Theorem 2.2.1, we can find a sequence (Un)n∈N

of neighborhoods Un ⊆ � of D and a sequence (hn)n∈N of functions hn ∈ OG(Un)
such that

lim
n→∞max

z∈D

∥∥f(z)h−1
n (z)− 1

∥∥ = 0.

Then, in particular

lim
n→∞ max

z∈D∩(�\Ω)

∥∥f(z)h−1
n (z)− 1

∥∥ = 0.

Therefore, by Lemma 9.3.6, we can find n0 ∈ N, a sequence
(
g
(1)
n

)
n≥n0

of functions

g
(1)
n ∈ OA

Z,m(D) and a sequence
(
g
(2)
n

)
n≥n0

of functions g
(2)
n ∈ OA

Z,m(� \ Ω) =
OG(� \ Ω) such that

fh−1
n =

(
1 + g(1)

n

)(
1 + g(2)

n

)
on D ∩ (� \ Ω) , n ≥ n0, (9.5.1)

and
lim

n→∞max
z∈D

∥∥g(1)
n (z)

∥∥ = 0 (9.5.2)

and
lim

n→∞ max
z∈�\Ω

∥∥g(2)
n (z)

∥∥ = 0.
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Moreover we can assume that

1 + g(1)
n ∈ OG

Z,m(D) and 1 + g(2)
n ∈ OG(� \ Ω) , n ≥ n0.

Set
f̃n :=

(
1 + g(1)

n

)−1
f on D.

Then it follows from (9.5.1) that

f̃n :=
(
1 + g(2)

n

)
hn on D ∩ (� \ Ω) , n ≥ n0,

which shows that f̃n ∈ OG
Z,m(Un) for all n ≥ n0, and from (9.5.2) it follows that

lim
n→∞max

z∈D

∥∥f(z)− f̃n(z)
∥∥ = 0.

It remains to choose n1 ≥ n0 so large that

max
z∈D

∥∥f(z)− f̃n1(z)
∥∥ < ε

and to set U = Un1 and f̃ = fn1 . �
Now we can prove Lemma 5.4.7 for the sheaf OG

Z,m:

9.5.2 Lemma. Let D ⊆ C be a bounded simply connected open set with piecewise C1-
boundary. Suppose that Z ∩D is finite and Z ∩∂D = ∅. Then the group OG1A

Z,m (D)
is connected.

Proof. Let f ∈ OG1A
Z,m (D) be given. Since G1A is open and by the Mergelyan

Theorem 9.5.1, we may assume that f is defined and holomorphic, and with values
in G1A in some neighborhood Ω of D. Since D is a bounded simply connected open
set with piecewise C1-boundary, we may assume that also Ω is simply connected.
Choose an open covering U = {Uj}j∈I of Ω by open discs Uj with center zj such
that zj 	= zk if j 	= k and, for each j ∈ I, either Uj ∩ Z = ∅ or Uj ∩ Z = {zj}.
Then Uj ∩ Uk ∩ Z = ∅ for j 	= k.

Since G1A is connected, for each j ∈ I, we can find a continuous curve
γj : [−1, 0]→ G1A with γ(−1) = 1 and γ(0) = f(zj). Moreover, if Uj ∩ Z = {zj}
and hence f(zj) = 1, then we may assume that γj ≡ 1. Now, for all j ∈ I and
z ∈ Uj , we define

φj(z, t) =

{
γ(t) if −1 ≤ t ≤ 0 ,

f
(
zj + t(z − zj)

)
if 0 ≤ t ≤ 1 .

So we get continuous G1A-valued functions on Uj × [−1, 1], holomorphic for fixed
t, such that

φj(z,−1) = 1 and φj(z, 1) = f(z) , z ∈ Uj .



356 Chapter 9. Multiplicative cocycles with restrictions

Moreover

φj(·, t) ∈ OG1A
Z,m (Uj) for each fixed t ∈ [−1, 1] and j ∈ I. (9.5.3)

Indeed, if Uj ∩ Z = ∅, this is trivial. If Uj ∩ Z = {zj} and −1 ≤ t ≤ 0, this is also
trivial (because then γj ≡ 1). Now let Uj ∩ Z = {zj} and 0 ≤ t ≤ 1. Then f is of
the form

f(z) = 1 +
∞∑

ν=mzj

fjν(z − zj)ν , z ∈ Uj ,

and therefore φj(·, t) is of the form

φj(z, t) = 1 +
∞∑

ν=mzj

(
fjνtν

)
(z − zj)ν , z ∈ Uj .

This implies (9.5.3). Set

ψjk(z, t) = φ−1
j (z, t)φk(z, t) for z ∈ Uj ∩ Uk , j, k ∈ I . (9.5.4)

Now let Ã be the algebra of all continuous maps ϕ : [−1, 1] → A such that,
for some λ ∈ C,

ϕ(−1) = ϕ(1) = λ · 1 .

Endowed with the maximum norm, this is a Banach algebra with unit. Let GÃ
be the group of invertible elements of Ã. It consists of all continuous functions
ϕ : [−1, 1]→ G1A such that, for some λ ∈ C \ {0},

ϕ(−1) = ϕ(1) = λ · 1 . (9.5.5)

With this notation, ψ := {ψjk(z, t)}j,k∈I can be considered as a (U ,OGÃ)-
cocycle. Moreover, since Uj ∩ Uk ∩ Z = ∅ if j 	= k, it can be considered as a
(U ,OGÃ

Z,m)-cocycle.
Let W be a neighborhood of D with W ⊆ Ω. Since Ω is simply connected,

then it follows from Lemma 9.4.1 that ψ|W isOGÃ
Z,m-trivial. Hence we have functions

ψj ∈ OGÃ
Z,m(W ∩ Uj) such that, if we interpret them as functions ψj : W ∩ Uj ×

[−1, 1]→ G1A,

ψjk(z, t) = ψ−1
j (z, t)ψk(z, t) , z ∈W ∩ Uj ∩ Uk , j, k ∈ I .

Together with (9.5.4) this implies that

φj(z, t)ψ−1
j (z, t) = φk(z, t)ψ−1

k (z, t) , z ∈W ∩ Uj ∩ Uk , j, k ∈ I .

Therefore, we have a global continuous function F (z, t) : W × [−1, 1] → G1A
holomorphic for fixed t, such that, for each j ∈ I,

F (z, t) = φj(z, t)ψ−1
j (z, t) , z ∈ Uj , t ∈ [−1, 1]. (9.5.6)
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That ψj belongs to OGÃ
Z,m(W ∩ Uj), implies that

ψj(·, t) ∈ OG1A
Z,m (W ∩ Uj) for all t ∈ [−1, 1] .

Together with (9.5.3) this implies that

φj(·, t)ψ−1(·, t) ∈ OG1A
Z,m (W ∩ Uj) for all t ∈ [−1, 1] .

Hence, by (9.5.6),

F (·, t) ∈ OG1A
Z,m (W ) for all t ∈ [−1, 1] .

Therefore
[−1, 1] � t −→ F (·, t)

∣∣
D

(9.5.7)

is a continuous curve in OG1A

Z,m (D).

Let us look for the beginning and the end of this curve. Since ψj ∈ OGÃ
Z,m(W ∩

Uj) and by (9.5.5), we have non-vanishing holomorphic functions λj : W ∩Uj → C

with
ψj(z,−1) = ψj(z, 1) = λj(z) · 1 , z ∈W ∩ Uj , j ∈ I .

Since φj(z,−1) = 1 and φj(z, 1) = f(z), this shows that

φj(z,−1)ψ−1
j (z,−1) = λ−1

j (z) · 1 , z ∈W ∩ Uj , j ∈ I ,

and
φj(z, 1)ψ−1

j (z,−1) = λ−1
j (z)f(z) , z ∈W ∩ Uj , j ∈ I .

Together with (9.5.6) this gives

F (z,−1) = λ−1
j (z) and F (z, 1) = λ−1

j (z)f(z) , z ∈W ∩ Uj , j ∈ I .

This implies that there is a non-vanishing scalar holomorphic function λ globally
defined on W with

F (z,−1) = λ−1(z) · 1 and F (z, 1) = λ−1(z)f(z) , z ∈W ,

and the curve (9.5.7) connects the functions λ−1f and λ−1 · 1. Hence

[−1, 1] � t −→ λF (·, t)
∣∣
D

is a continuous curve in OG1A

Z,m (D) which connects f and the unit element of

OG1A

Z,m (D). �
9.5.3 Theorem. Let D ⊆ C be a bounded open set with piecewise C1-boundary such
that C\D is connected. Assume Z∩C is discrete and closed in C and Z∩∂D = ∅.
Let f ∈ OG

Z,m(D) such that all values of f belong to the same connected component
of G (which is always the case if D is connected). Then f can be approximated
uniformly on D by functions from OG

Z,m(C).
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Proof. Since all values of f belong to the same connected component of G, af-
ter multiplying by a constant element of G, we may assume that f belongs to
OG1A

Z,m (D). By Lemma 9.5.2, OG1A
Z,m (D) is connected. Therefore, by Proposition

5.4.1, f can be written in the form

f = g1 · . . . · gn

where gj ∈ OG1A
Z,m (D) and

max
z∈D

‖1− gj(z)‖ < 1 for 1 ≤ j ≤ n.

By Lemma 5.4.4 (ii), elog gj = gj . Hence

f = elog g1 · . . . · elog gn .

By Proposition 9.3.2, log gj ∈ OA
Z,m(D). Therefore and since C\D is connected, we

can apply Proposition 9.3.4 and get, for each j, a sequence (ϕjν)ν∈N of functions
ϕjν ∈ OA

Z,m(C) which converges to log gj uniformly on D. Setting

fν = eϕjν · . . . · eϕjν

then we get a sequence (fν)ν∈N of holomorphic functions fν : C → A which
converges to f uniformly on D. By Proposition 9.3.2, each fν belongs to OG1A

Z,m (C).
�

9.6 Splitting over simply connected open sets

without shrinking

In this section A is a Banach algebra with unit 1, G is an open subgroup of the
group of invertible elements of A, G1A is the connected component of 1 in the
group of invertible elements of A, and (Z,m) is a data of zeros (Def. 9.1.2). It is
the aim of this section to prove the following theorem:

9.6.1 Theorem. Let D ⊆ C be a simply connected open set such that Z ∩ D is
discrete and closed in D. Then any OG

Z,m-cocycle over D is OG
Z,m-trivial (Def.

9.1.4).

We will deduce this from Lemma 9.4.1. For that we need the following gen-
eralization of the technical Lemma 5.8.1 to the sheaf OG

Z,m:

9.6.2 Lemma. Let D ⊆ C be an open set such that Z ∩D is discrete and closed in
D, and let (Dn)n∈N be a sequence of bounded open sets such that

(0) Z ∩ ∂Dn = ∅ for all n ∈ N;

(1) Dn ⊆ Dn+1 for all n ∈ N;
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(2)
⋃

n∈N
Dn = D

(3) for each n, any function from OG
Z,m(Dn+1) can be approximated uniformly

on Dn by functions from OG
Z,m(D).

Further let f be an OG
Z,m-cocycle over D such that, for each n ∈ N, the restriction

f |Dn is OG
Z,m-trivial (Def. 9.1.4). Then f itself is OG

Z,m-trivial .

Proof. We denote by ‖ · ‖ the norm of A and set

dist(a,A \G) = inf
b∈A\G

‖a− b‖ for a ∈ G.

Let U = {Uj}j∈I be the covering associated to f . By Proposition 9.1.6, after
passing to a refinement, we may assume that each Uj is a relatively compact open
disc in D and fjk ∈ OG

Z.m(U j ∩Uk) for all j, k ∈ I. Note that then, for each j ∈ I,
there exists nj ∈ N with

U j ⊆ Dn if n ≥ nj . (9.6.1)

Moreover we may assume that{
for each compact set K ⊆ D there exists only a
finite number of indices j ∈ I with Uj ∩K 	= ∅.

(9.6.2)

To prove the lemma now it is sufficient to find a sequence
(
fn

)
n∈N

of families
fn =

{
fn,j

}
j∈I

of functions fn,j ∈ OG
Z,m(Dn+1∩U j) as well as a sequence (εn)n∈N

of positive numbers, such that, for all n ∈ N,

fjk = f−1
n,jfn,k on Dn+1 ∩ U j ∩ Uk , j, k ∈ I, (9.6.3)

εn <
1
4

min
z∈Dn∩Uj

dist
(
fn,j(z), A \G

)
, j ∈ I, (9.6.4)

max
z∈Dn∩Uj

‖fn,j(z)− fn−1,j(z)‖ < εn−1 if n ≥ 1 , j ∈ I, and (9.6.5)

εn <
εn−1

2
if n ≥ 1. (9.6.6)

Indeed, then it follows from (9.6.1), (9.6.5) and (9.6.6) that, for all n, p ∈ N with
nj ≤ n < p,

max
z∈Uj

‖fp,j(z)− fn,j(z)‖ < εn +
εn

2
+ . . .+

εn

2p−n−1
< 2εn,

which implies, by (9.6.6), that for each j ∈ I the sequence
(
fn,j

)
n≥nj

converges

uniformly on U j to some function fj ∈ OA(U j) where

max
z∈Uj

‖fj(z)− fn,j(z)‖ ≤ 2εn for n ≥ nj .
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By (9.6.4), this inequality implies that

max
z∈Uj

‖fj(z)− fn,j(z)‖ <
1
2

inf
z∈Uj

dist
(
fn,j(z), G \A

)
for n ≥ nj .

Hence fj ∈ OG(U j), j ∈ I. Moreover, since, for each j ∈ I, the functions fn,j with
n ≥ nj belong to OG

Z,m(U j) and the sequence
(
fn,j

)
n≥nj

converges uniformly on

U j to fj , it follows that even fj ∈ OG
Z,m(U j), j ∈ I. It remains to observe that

now we can pass to the limit for n → ∞ in (5.8.3), which gives fjk = f−1
j fk on

Uj ∩ Uk for all j, k ∈ I. Hence f is OG
Z,m-trivial.

To prove the existence of such sequences, we first recall that, by hypothesis of
the lemma, each f |Dn+2 is OG

Z,m-trivial. Therefore we can find a sequence
(
f̃n

)
n∈N

of families f̃n = {f̃n,j}j∈I of functions f̃n,j ∈ OG
Z,m(Dn+2 ∩ Uj) such that

fjk = f̃−1
n,j f̃n,k on Dn+2 ∩ Uj ∩ Uk (9.6.7)

for all n ∈ N and j, k ∈ I. We claim that even

f̃n,j ∈ OG
Z.m(Dn+2 ∩ U j) for all j ∈ I and n ∈ N. (9.6.8)

Indeed, let (zν)ν∈N be a sequence in Dn+2 ∩ Uj which converges to some point
z ∈ Dn+2∩U j . Since U covers D, we can find k ∈ I with z ∈ Uk. Since Uk is open,
then zν ∈ Dn+2 ∩ U j ∩ Uk for sufficiently large ν, where, by (9.6.7),

f̃n,j(zν) = f̃n,k(zν) f−1
jk (zν).

Since both f̃n,k and fjk are continuous on Dn+2 ∩ U j ∩ Uk and since z ∈ Dn+2 ∩
U j ∩ Uk, this implies that

lim
ν→∞ f̃n,j(zν) = f̃n,k(z) f

−1
jk (z) .

Now we proceed by induction.

Beginning of the induction: Since f̃0,j ∈ OG
Z,m(D2 ∩ U j) and D1 ⊆ D2, we can

define f0,j = f̃0,j

∣∣
D1∩Uj

. It follows from condition (9.6.2) that
⋃

j∈I f0,j(D0 ∩U j)
is a compact subset of G. Hence we can find ε0 > 0 such that

ε0 <
1
4

min
z∈D0∩Uj

dist
(
f0,j(z), G \A

)
for all j ∈ I.

With this choice of the family {f0,j}j∈I and the number ε0, conditions (9.6.3)–
(9.6.6) are satisfied for n = 0.

Hypothesis of induction: Assume, for some p ∈ N, we already have families f0 =
{f0,j}j∈I , . . . , fp = {fp,j}j∈I of functions

f0,j ∈ OG
Z,m(D0 ∩ U j), . . . , fp,j ∈ OG

Z,m(Dp ∩ U j)
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as well as positive numbers ε0, . . . , εp such that (9.6.3)–(9.6.6) hold for n =
0, . . . , p.

Step of induction: Since the compact set Dp ∩ U j is contained in Dp+1 ∩ U j and
fp,j is continuous on Dp+1 ∩ U j , the function fp,j is bounded on Dp ∩ U j . By
condition (9.6.2), this implies that

max
j∈I

max
z∈Dp∩Uj

‖fp,j(z)‖ <∞. (9.6.9)

By (9.6.7),
fjk = f̃−1

p,j f̃p,k on Dp+2 ∩ Uj ∩ Uk.

Moreover, by hypothesis of induction,

fjk = f−1
p,j fp,k on Dp+1 ∩ Uj ∩ Uk.

Since Dp+1 ⊆ Dp+2, this yields

f̃p,kf−1
p,k = f̃p,jf

−1
p,j on Dp+1 ∩ Uj ∩ Uk.

Hence, there is a well-defined function Φ ∈ OG
Z,m(Dp+1) with

Φ = f̃p,jf
−1
p,j (9.6.10)

on Dp+1 ∩ Uj for all j ∈ I. Note that, since fp,j is continuous on Dp+1 ∩ U j and,
by (9.6.8), f̃p,j is continuous on Dp+2 ∩ U j , (9.6.10) even holds on Dp+1 ∩ U j ,
j ∈ I. By hypothesis of the lemma, Φ can be approximated uniformly on Dp by
functions from OG

Z,m(D). Therefore and by (9.6.9), we can find Ψ ∈ OG
Z,m(D) such

that
max
Dp

‖ΨΦ− 1‖ <
εp

max
Dp∩Uj

‖fp,j‖
for all j ∈ I.

Since (9.6.10) holds over Dp+1 ∩ U j and Dp ∩ U j ⊆ Dp+1 ∩ U j , this implies that

max
Dp∩Uj

‖Ψf̃p,jf
−1
p,j − 1‖ <

εp

max
Dp∩Uj

‖fp,j‖
for all j ∈ I. (9.6.11)

Setting
fp+1,j = Ψf̃p,j on Dp+2 ∩ U j ,

now we obtain a family fp+1 = {fp+1,j}j∈I of functions fp+1,j ∈ OG
Z,m(Dp+2∩U j).

Further, it follows from condition (9.6.2) that
⋃

j∈I fp+1,j(Dp+1∩U j) is a compact
subset of G. Hence we can find εp+1 > 0 so small that condition (9.6.4) is satisfied
for n = p+1. As εp > 0, we may moreover assume that (9.6.6) holds for n = p+1.
From (9.6.7) we get

f−1
p+1,jfp+1,k = f̃−1

p,jΨ
−1Ψf̃p,k = f̃−1

p,j f̃p,k = fjk
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on Dp+2 ∩ U j ∩ Uk, i.e., (9.6.3) holds for n = p+ 1. From (9.6.11) it follows that

max
Dp∩Uj

∥∥fp+1,j − fp,j

∥∥ = max
Dp∩Uj

∥∥∥(Ψf̃p,jf
−1
p,j − 1

)
fp,j

∥∥∥ < εp.

Hence also (9.6.5) holds for n = p+ 1. �
Proof of Theorem 9.6.1. Since D is simply connected, by the Riemann mapping
theorem we may assume that either D = C or D is the open unit disc. In both
cases, there exists a sequence (Dn)n∈N of open discs Dn ⊆ C such that

• Dn ⊆ D,

• Dn ⊆ Dn+1 for all n ∈ N,

• ⋃
n∈N

Dn = D,

• by the Runge approximation Theorem 9.5.3, for all n∈N, any f ∈OG
Z,m(Dn+1)

can be approximated uniformly on Dn by functions from OG
Z,m(D).

Hence, by Lemma 9.6.2, it is sufficient to prove that for any OG
Z,m-cocycle f over

D, the restrictions f |Dn
, n ∈ N, are OG

Z,m-trivial, which is indeed the case by
Lemma 9.4.1. �

Finally we point out the following special case of Theorem 9.6.1:

9.6.3 Corollary. Let D1, D2 ⊆ C be two open sets such that D1 ∪ D2 is simply
connected and Z ∩ (D1 ∪ D2) is discrete and closed in D1 ∪ D2. Then, for each
f ∈ OG

Z,m(D1 ∩ D2), there exist functions fj ∈ OG
Z,m(Dj), j = 1, 2, such that

f = f−1
1 f2 on D1 ∩D2.

9.7 Runge approximation. The general case

In this section A is a Banach algebra with unit 1, G is an open subgroup of the
group of invertible elements of A, G1A is the connected component of 1 in the
group of invertible elements of A, and (Z,m) is a data of zeros (Def. 9.1.2).

Here we generalize part (ii) of the Runge approximation Theorem 5.0.1 to
sections of OG

Z,m. For that we pass again to the Riemann sphere P1 = C ∪ {∞}
and use the notation concerning the Riemann sphere introduced in the beginning
of Section 5.10.

Since, for each a ∈ P1, Ta is biholomorphic between P1 \{a} and the complex
plane, from the Runge approximation Theorem 9.5.3 we immediately get:

9.7.1 Proposition. Let a ∈ P1 be a fixed point. Let D be a relatively compact open
subset of P1\{a} with piecewise C1-boundary such that P1\D is connected. Assume
Z ∩

(
P1 \ {a}

)
is discrete and closed in P1 \ {a} and

Z ∩ ∂D = ∅.
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Let f ∈ OG
Z,m(D) such that all values of f belong to the same connected component

of G (which is always the case if D is connected). Then f can be approximated
uniformly on D by functions from OG

Z,m(P
1 \ {a}).

Moreover, from Corollary 5.9.3 we immediately get:

9.7.2 Proposition. Let a ∈ P1 and let D1, D2 ⊆ P1 \{a} be two open sets such that
D1 ∪D2 is simply connected and Z ∩ (D1 ∪D2) is discrete and closed in D1 ∪D1.
Then, for each f ∈ OG

Z,m(D1∩D2), there exist functions fj ∈ OG
Z,m(Dj), j = 1, 2,

such that f = f−1
1 f2 on D1 ∩D2.

9.7.3 Lemma. Let D ⊆ P1 be an open set with piecewise C1-boundary and let
U1, . . . , Un be the connected components of P1 \D. Let n ≥ 2 and let some points
aj ∈ Uj, 1 ≤ j ≤ n, be fixed such that Z ∩

(
P1 \ {a1, . . . , an}

)
is discrete and

closed in P1 \ {a1, . . . , an}. Then, for each f ∈ OG
Z,m(D), there exist functions

fj ∈ OG
Z,m(P

1 \ Uj), 1 ≤ j ≤ n, and a function h ∈ OG
Z,m

(
P1 \ {a1, . . . , an}

)
such

that f = hfn . . . f1 on D.

Proof. This proof is similar to the proof of Lemma 5.10.4. For 1 ≤ k ≤ n, we
consider the following statement:

A(k): There exist functions fj ∈ OG
Z,m

(
P1 \ Uj

)
, 1 ≤ j ≤ k, and a function

hk ∈ OG
Z,m

(
D ∪

(
U1 \ {a1}

)
∪ . . . ∪

(
Uk \ {ak}

))
such that f = hkfk . . . f1

on D.

Since
D ∪

(
U1 \ {a1}

)
∪ . . . ∪

(
Un \ {an}

)
= P1 \ {a1, . . . , an},

then A(n) is the assertion of the lemma. Therefore it is sufficient to prove A(1)
and the conclusions A(k)⇒ A(k + 1), 1 ≤ k ≤ n− 1.

Proof of A(1): Since(
P1 \ U1

)
∪
(
D ∪ (U1 \ {a1})

)
= P1 \ {a1}

and (
P1 \ U1

)
∩
(
D ∪ (U1 \ {a1})

)
= D,

from Proposition 9.7.2 we get functions f1 ∈ OG
Z,m

(
P1 \ U1

)
and h1 ∈ OG

Z,m

(
D ∪(

U1 \ {a1}
)
such that

f = h1f1 (9.7.1)

on D. Since f is continuous and with values in G on D, since h1 is continuous
and with values in G on D ∪ ∂U1, since f1 is continuous and with values in G

on D \ ∂U1 and since (9.7.1) holds in D, it follows that f1 ∈ OG

Z,m(P
1 \ U1),

h1 ∈ O
G

Z,m

(
D ∪ (U1 \ {a1})

)
and (9.7.1) holds on D, i.e., assertion A(1) is valid.
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Proof of A(k)⇒ A(k+1): Let 1 ≤ k ≤ n−1 be given, assume that statement
A(k) is valid, and let f1, . . . , fk and hk be as in this statement. Since(

P1 \ Uk+1

)
∪
(
D ∪

(
U1 \ {a1}

)
∪ . . . ∪

(
Uk+1 \ {ak+1}

))
= P1 \ {ak+1}

and(
P1 \ Uk+1

)
∩
(
D ∪

(
U1 \ {a1}

)
∪ . . . ∪

(
Uk+1 \ {ak+1}

))
= D ∪

(
U1 \ {a1}

)
∪ . . . ∪

(
Uk \ {ak}

)
,

from Proposition 9.7.2 we get functions

fk+1 ∈ OG
Z,m

(
P1 \ Uk+1

)
and

hk+1 ∈ OG
Z,m

(
D ∪

(
U1 \ {a1}

)
∪ . . . ∪

(
Uk+1 \ {ak+1}

))
such that

hk = hk+1fk+1 (9.7.2)

in D ∪
(
U1 \ {a1}

)
∪ . . . ∪

(
Uk \ {ak}

)
. Since hk is continuous and with values in

G on D, since hk+1 is continuous and with values in G on D ∪ ∂Uk+1, since fk+1

is continuous and with values in G on D \ ∂Uk+1 and since (9.7.2) holds in D, it
follows that

fk+1 ∈ OG
Z,m

(
P1 \ Uk+1

)
,

hk+1 ∈ OG
Z,m

(
D ∪

(
U1 \ {a1}

)
∪ . . . ∪

(
Uk+1 \ {ak+1}

))
and (9.7.2) holds on D. Since f = hkfk . . . f1 on D, this implies that

f = hk+1fk+1fk . . . f1

on D, i.e., assertion A(k + 1) is valid. �

9.7.4 Theorem. Let D ⊆ P1 be an open set with piecewise C1-boundary, and let
U1, . . . , Un be the connected components of P1 \D. Let n ≥ 2 and let some points
aj ∈ Uj, 1 ≤ j ≤ n, be fixed such that Z∩

(
P1 \{a1, . . . , an}

)
is discrete and closed

in P1 \ {a1, . . . , an} and
Z ∩ ∂D = ∅ .

Then the functions from OG
Z,m(D) can be approximated uniformly on D by func-

tions from OZ,m

(
P1 \ {a1, . . . , an} , G

)
.
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Proof. This proof is similar to the proof of Theorem 5.10.5. If n = 1, the assertion
of the theorem is that of Proposition 9.7.1. If n ≥ 2, then, by Lemma 9.7.3, each
f ∈ OG

Z,m(D) can be written in the form

f = hfn . . . f1 on D, (9.7.3)

where fj ∈ OG
Z,m(P

1 \ Uj), 1 ≤ j ≤ n, and h ∈ OG
Z,m

(
P1 \ {a1, . . . , an}

)
. Let V

be the interior of P1 \ Uj . Since the boundary of Uj is piecewise C1 (as a part of
the boundary of D), also the boundary of V is piecewise C1 and V = P1 \ Uj .
Since Uj is connected, P1 \ V = Uj is connected. Therefore, Proposition 9.7.1
can be applied to each Vj . Hence, each fj can be approximated uniformly on
V = P1 \Uj by functions from OG

Z,m

(
P1 \{aj}). Since OG

(
P1 \{aj}

)
⊆ OG

Z,m

(
P1 \

{p1, . . . , pn}
)
and D ⊆ P1 \ Uj), this means in particular that each fj can be

approximated uniformly on D by functions from OG
Z,m

(
P1 \ {p1, . . . , pn}

)
. Since

h belongs to OG
Z,m

(
P1 \ {p1, . . . , pn}

)
and by (9.7.3), this implies the assertion of

the theorem. �

9.8 The Oka-Grauert principle

In this section A is a Banach algebra with unit 1, G is an open subgroup of the
group of invertible elements of A, G1A is the group of invertible elements of A,
and (Z,m) is a data of zeros (Def. 9.1.2). Here we prove the following theorem:

9.8.1 Theorem. Let D ⊆ C be an open set such that Z ∩D is discrete and closed
in D, and let f be an OG

Z,m-cocycle. Then:

(i) If f is CG-trivial5 over D, then f is OG
Z,m-trivial.

(ii) If G is connected, then f is OG
Z,m-trivial.

First we prove the following generalization of Lemma 5.11.3:

9.8.2 Lemma. Let D ⊆ C be an open set with piecewise C1-boundary such that
Z ∩D is finite and Z ∩ ∂D = ∅. Further, let U be a neighborhood of D and f an
OG

Z,m-cocycle over U . Suppose that at least one of the following two conditions is
fulfilled:

(i) f is CG-trivial over U .

(ii) G is connected.

Then the restriction f |D is OG
Z,m-trivial.

5This is not a misprint. We really mean “if f is CG-trivial” and not “if f is CG
Z,m-trivial”.

The latter notion we even did not define, because we do not use it.
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Proof. We may assume that D is connected. We proceed by induction over the
number of connected components of C \D.

Beginning of induction: Suppose this number is 1, i.e., C \D is connected. As the
boundary of D is piecewise C1, then also C\D is connected, which means (cf., e.g.,
theorem 13.11 in Rudin’s book [Ru]) that D is simply connected. Therefore the
assertion of the lemma follows from Theorem 9.6.1. (Even if none of the conditions
(i) or (ii) is satisfied.)

Hypothesis of induction: Assume, for some n ∈ N with n ≥ 2, the assertion of the
lemma is already proved if the number of connected components of C \D is n− 1.
Step of induction: Assume that the number of connected components of C \D is
equal to n. Then, by Lemma 5.11.2, we can find a Cartan pair (D1, D2) with D =
D1 ∪D2 satisfying conditions (1), (2), (3) (of this lemma). Since the boundaries
of D1, D2, D1 ∩D2 and D are piecewise C1, we can find a Cartan pair (D′1, D

′
2)

satisfying the same conditions (1), (2), (3) such that Dj ⊆ D′j and D
′
1 ∪D

′
2 ⊆ U .

Then, again by Theorem 9.6.1, the cocycle f |D′
1
is OG

Z,m-trivial. Moreover,

since the number of connected components of C\D′2 is equal to n−1, it follows from
the hypothesis of induction that also f |D′

2
is OG-trivial. Hence both restrictions

f |D′
1
and f |D′

2
are OG-trivial. By Proposition 9.1.9, this implies that f

∣∣
D′

1∪D′
2
is

OG
Z,m-equivalent to certain

(
{D′1, D′2},OG

Z,m

)
-cocycle f ′. Since D1∩D2 ⊆ D′1∩D′2,

setting
F = f ′12|D1∩D2

,

we get a function F ∈ OG
Z,m(D1 ∩ D2). We claim that all values of F belong to

the same connected component of G.
If G = G1A, this is trivial. If not, then condition (i) in the lemma under proof

is satisfied, i.e., f is CG-trivial over U . As D′1 ∪D′2 ⊆ U , then also the restriction
f |D′

1∪D′
1
is CG-trivial over D′1 ∪ D′1. Since f |D′

1∪D′
1
is CG-equivalent to f ′ over

D′1 ∪D′2 (it is even OG
Z,m-equivalent to f ′), this implies that also f ′ is CG-trivial,

i.e., we can find Cj ∈ CG(D′j), j = 1, 2, with

f ′12 = C−1
1 C2 on D′1 ∩D′2.

Hence condition (iii) in Lemma 5.11.1 is satisfied, and it follows (from this lemma)
that all values of F belong to the same connected component of G.

Since all values of F belong to the same connected component of G, it follows
from the Cartan Lemma 9.3.7 that there exist functions Fj ∈ OG

Z,m(Dj), j = 1, 2,
with

F = F−1
1 F2 on Dj ∩Dj .

Since F |D1∩D2 = f ′12|D1∩D2 , this means in particular that f ′
∣∣
D
is OG

Z,m-trivial.
Finally, as f

∣∣
D′

1∪D′
2
and f ′ are OG

Z,m-equivalent and therefore f |D and f ′|D are

OG
Z,m-equivalent, it follows that also f |D is OG

Z,m-trivial. �
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Proof of Theorem 9.8.1. Take a sequence (Ωn)n∈N of bounded open sets with C1-
boundaries such that Ωn ⊆ Ωn+1 and Z∩∂Ωn = ∅ for all n ∈ N and

⋃
n∈N

Ωn = D.
Let Un be the union of all bounded connected components of C \ Ωn which are
subsets of D (if there is any – otherwise Un := ∅), and set

Dn = Ωn ∪ Un.

Then also (Dn)n∈N is a sequence of bounded open sets with C1-boundaries such
that Z ∩ ∂Dn = ∅, Dn ⊆ Dn+1 for all n ∈ N and

⋃
n∈N

Dn = D. Moreover this
sequence has the important property that each bounded connected component
of C \ Dn (if there is any) contains at least one point of C \ D. By the Runge
approximation Theorem 9.7.4, this implies that, for each n, the functions from
OG

Z,m(Dn) can be approximated uniformly on Dn by functions from OG
Z,m(D). In

particular we see that the sequence (Dn)n∈N has the properties (0)–(2) of Lemma
9.6.2. Therefore, by this lemma, f is OG

Z,m-trivial if each f |Dn
is OG

Z,m-trivial.
That each f |Dn

is OG
Z,m-trivial, follows from Lemma 9.8.2. �

9.9 Comments

The results of this chapter are practically new, and here they are published for
the first time, although they could be viewed as special cases of a much more
general theory (see [FoRa] for finite dimensional groups, and [Le2, Le7] for infinite
dimensional groups). However this is far not obvious. It is simpler to prove them
again. Note also that some elements of the theory of cocycles with restrictions can
be pointed out in the proofs in the papers [GR1, GR2]. The results of this chapter
are used in the consequent chapters only.



Chapter 10

Generalized interpolation
problems

Here we prove further generalizations of the Weierstrass product theorem.

10.1 Weierstrass theorems

10.1.1 Theorem. Let A be a Banach algebra with unit 1, let G be an open subgroup
of the group of invertible elements of A, let D ⊆ C be an open set, and let Z
be a discrete and closed subset of D. Suppose, for each w ∈ Z, there is given
a neighborhood Uw of w with Uw ∩ Z = {w} and a holomorphic function fw :
Uw \ {w} → G. Moreover, we assume that at least one of the following conditions
is fulfilled:

(i) G is connected.

(ii) D is simply connected.

Then there exist holomorphic functions hw : Uw → G, w ∈ Z, and a holomorphic
function h : D \ Z → G such that

hwfw = h on Uw \ {w} . (10.1.1)

Moreover, for any given family of positive integers mw, w ∈ Z, the functions hw

can be chosen so that, for each w ∈ Z, the functions hw − 1 and h−1
w − 1 have a

zero of order ≥ mw at w.

10.1.2. In this theorem, it would be sufficient to claim that one of the functions
hw − 1 or h−1

w − 1 has a zero of order ≥ mw at w. For the other one this follows
automatically. Indeed, assume, for example, that this is the case for hw−1. Then,
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in a neighborhood of w,

h−1
w = 1− (1− h−1

w ) =
∞∑

j=0

(1− hw)j = 1 + (1− hw)
∞∑

j=0

(1− hw)j ,

which shows that also h−1
w − 1 has a zero of order ≥ mw at w.

The topological conditions (i) and (ii) in Theorem 10.1.1 can be replaced by
the more general condition that the problem can be solved continuously, i.e., there
is the following Oka-Grauert principle:

10.1.3 Theorem. Let A be a Banach algebra with unit 1, let G be an open subgroup
of the group of invertible elements of A, let D ⊆ C be an open set, and let Z
be a discrete and closed subset of D. Suppose, for each w ∈ Z, there is given
a neighborhood Uw of w with Uw ∩ Z = {w} and a holomorphic function fw :
Uw \ {w} → G. Assume that:

(iii) There exist continuous functions cw : Uw → G and a continuous function
c : D \ Z → G such that cwfw = c on Uw \ {w}, w ∈ Z.

Then there exist holomorphic functions hw : Uw → G, w ∈ Z, and a holomorphic
function h : D \ Z → G such that

hwfw = h on Uw \ {w} . (10.1.2)

Moreover, for any given family of positive integers mw, w ∈ Z, the functions hw

can be chosen so that, for each w ∈ Z, the functions hw − 1 and h−1
w − 1 have a

zero of order ≥ mw at w.

The first parts of theorems 10.1.1 and 10.1.3 coincide with theorems 5.13.1
and 5.13.2, respectively. The additional information at the end about the zeros of
hw − 1 and (hw − 1)−1 has important consequences. For example, if the functions
fw are meromorphic at w and, hence, h is meromorphic at each w (which is already
clear by the first part of the theorem), then, for any given orders mw ∈ N∗, the
family of functions hw can be chosen so that h − fw has a zero of order mw,
i.e., it can be achieved that arbitrarily prescribed finite pieces of the Laurent
expansions of h and fw concide. The corresponding is true if the functions f−1

w are
meromorphic. This is contained in the following immediate corollary of theorems
10.1.1 and 10.1.3:

10.1.4 Corollary. Assume, under the hypotheses of Theorem 10.1.1 or under the
hypotheses of Theorem 10.1.3, two subsets Z+ and Z− of Z are given, where the
cases Z+ = ∅, Z− = ∅ and Z+ ∩ Z− 	= ∅ are possible. Moreover assume that:

• If w ∈ Z+, then fw is meromorphic at w.

• If w ∈ Z−, then f−1
w is meromorphic at w.

Then, for any given family of positive integers mw, w ∈ Z, in the claims of these
theorems, it can be shown that:
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• If w ∈ Z+, then f − fw has a zero of order mw at w.

• If w ∈ Z−, then f−1 − f−1
w has a zero of order mw at w.

Proof of Theorems 10.1.1 and 10.1.3. Let a family m = {mw}w∈Z of positive in-
tegers be given. Since Z is discrete and closed in D, then (Z,m) is a data of
zeros in the sense of Definition 9.1.2. In terms of this definition, we have to find
h ∈ OZ,m(D \ Z) and hw ∈ OZ,m(Uw), w ∈ Z, with hwfw = h on Uw \ {w}.

Choose neighborhoods Vw ⊆ Uw so small that Vw ∩ Vv = ∅ if w 	= v.
It is sufficient to find h ∈ OZ,m(D \ Z) and hw ∈ OZ,m(Vw), w ∈ Z, such

that
hwfw = h (10.1.3)

on Vw \ {w}. Indeed, since Vw ∩ Z = Uw ∩ Z = {w}, then, by (10.1.3), each hw

admits an extension to a function from OG
Z,m(Uw) such that (10.1.3) holds also for

this extension.
Set D1 =

⋃
w∈Z Vw and D2 = D \ Z. Since the sets Vw are pairwise disjoint

and Vw ∩ Z = {w}, the family of functions fw can be interpreted as a single
holomorphic function f ∈ OG(D1 \ Z). Since Z ∩ D1 ∩ D2 = ∅, the restriction
f
∣∣
D1∩D2

belongs to OG
Z,m(D1 ∩ D2). Now, by Corollary 9.2.2, there exist h1 ∈

OG
Z,m(Dj) and h2 ∈ OG

Z,m(D2) with f = h−1
1 h2 on D1 ∩D2. Setting hw = h1

∣∣
Vw

and h = h2, we complete the proof. �

Since, in theorems 10.1.1 and 10.1.3, the multiplication by the functions hw

is carried out from the left, we call these theorems left-sided Weierstrass theorems.
There are also right- and two-sided versions.

10.2 Right- and two-sided Weierstrass theorems

If A is a Banach algebra with the multiplication “·”, then we can pass to the
Banach Algebra Ã which consists of the same additive group A but with the
multiplication “ ·̃ ” defined by a ·̃ b = b · a. In this way, from theorems 10.1.1 and
10.1.3 we get the following right-sided Weierstrass theorems:

10.2.1 Theorem. Let A be a Banach algebra with unit 1, let G be an open subgroup
of the group of invertible elements of A, let D ⊆ C be an open set, and let Z
be a discrete and closed subset of D. Suppose, for each w ∈ Z, there is given
a neighborhood Uw of w with Uw ∩ Z = {w} and a holomorphic function fw :
Uw \ {w} → G. Moreover, we assume that at least one of the following conditions
is fulfilled:

(i) G is connected.

(ii) D is simply connected.
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Then there exist holomorphic functions hw : Uw → G, w ∈ Z, and a holomorphic
function h : D \ Z → G such that

fwhw = h on Uw \ {w} . (10.2.1)

Moreover, for any given family of positive integers mw, w ∈ Z, the functions hw

can be chosen so that, for each w ∈ Z, the functions hw − 1 and h−1
w − 1 have a

zero of order ≥ mw at w.

10.2.2 Theorem. Let A be a Banach algebra with unit 1, let G be an open subgroup
of the group of invertible elements of A, let D ⊆ C be an open set, and let Z
be a discrete and closed subset of D. Suppose, for each w ∈ Z, there is given
a neighborhood Uw of w with Uw ∩ Z = {w} and a holomorphic function fw :
Uw \ {w} → G. Moreover, we assume that:

(iii) There exist continuous functions cw : Uw → G and a continuous function
c : D \ Z → G such that fwcw = c on Uw \ {w}, w ∈ Z.

Then there exist holomorphic functions hw : Uw → G, w ∈ Z, and a holomorphic
function h : D \ Z → G such that

fwhw = h on Uw \ {w} . (10.2.2)

Moreover, for any given family of positive integers mw, w ∈ Z, the functions hw

can be chosen so that, for each w ∈ Z, the functions hw − 1 and h−1
w − 1 have a

zero of order ≥ mw at w.

Finally, we present a two-sided Weierstrass theorem:

10.2.3 Theorem. Let A be a Banach algebra with unit 1, let G be an open subgroup
of the group of invertible elements of A, let D ⊆ C be an open set, and let Z
be a discrete and closed subset of D. Suppose, for each w ∈ Z, there are given a
neighborhood Uw of w with Uw ∩Z = {w} and two holomorphic functions fw, gw :
Uw \ {w} → G. Moreover, we assume that at least one of the following conditions
is fulfilled:

(i) G is connected.

(ii) D is simply connected.

Then there exist holomorphic functions hw : Uw → G, w ∈ Z, and a holomorphic
function h : D \ Z → G such that

fwhwgw = h on Uw \ {w} . (10.2.3)

Moreover, for any given family of positive integers mw, w ∈ Z, the functions fw

and gw can be chosen so that, for each w ∈ Z, the functions fw−1, f−1
w −1, gw−1

and g−1
w − 1 have a zero of order ≥ mw at w.
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Proof. Let a family of positive integers mw, w ∈ Z, be given. Then from the left-
sided Weierstrass Theorem 10.1.1 we get holomorphic functions hl

w : Uw → G,
w ∈ Z, and a holomorphic function hl : D \ Z → G such that

hl
wgw = hl on Uw \ {w} (10.2.4)

and the functions hl
w − 1 have a zero of order ≥ mw at w. From the right-sided

Weierstrass Theorem 10.2.1 we get holomorphic functions hr
w : Uw → G, w ∈ Z,

and a holomorphic function hr : D \ Z → G such that

fwhr
w = hr on Uw \ {w} (10.2.5)

and the functions hr
w − 1 have a zero of order ≥ mw at w. Set h = hlhr and

hw = hr
whl

w, w ∈ Z. Then h ∈ OG(D \ Z), hw ∈ OG(Uw) and

fwhwgw = fwhr
whl

wgw = hrhl = h on Uw \ {w}

and the functions fw − 1, f−1
w − 1, gw − 1 and g−1

w − 1 have a zero of order ≥ mw

at w. �
10.2.4 Remark. Instead of conditions (i) or (ii) in Theorem 10.2.3 also the following
condition would be sufficient (Oka-Grauert principle):

(iii) There exist continuous functions cw : Uw → G, w ∈ Z, and a continuous
function c : D \ Z → G such that fwcwgw = c on Uw \ {w}, w ∈ Z.

But to prove this we would need a further generalization of the theory of
multiplicative cocycles where the group G in Definition 9.1.2 is replaced by a fiber
bundle of groups with characteristic fiber G. Also this generalization of Grauert’s
theory is known in Complex analysis of several variables (see [FoRa] for finite
dimensional groups, and [Le2, Le7] for infinite dimensional groups). But the direct
proof of this result for the case of one complex variable would require a further
chapter larger than Chapter 9. To keep the book shorter we omit this extension
of the theory of cocycles.

By the same arguments as in the case of Corollary 10.1.4, the above three
theorems lead to the following two corollaries:

10.2.5 Corollary. Assume, under the hypotheses of one of the Theorems 10.2.1 or
10.2.2, two subsets Z+ and Z− of Z are given, where the cases Z+ = ∅, Z− = ∅
and Z+ ∩ Z− 	= ∅ are possible. Moreover assume that:

• If w ∈ Z+, then fw is meromorphic at w.

• If w ∈ Z−, then f−1
w is meromorphic at w.

Then, for any given family of positive integers mw, w ∈ Z, in the claims of these
theorems, it can be shown that:

• If w ∈ Z+, then h− fw has a zero of order mw at w.
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• If w ∈ Z−, then h−1 − f−1
w has a zero of order mw at w.

10.2.6 Corollary. Assume, under the hypotheses of Theorem 10.3.3, two subsets
Z+ and Z− of Z are given, where the cases Z+ = ∅, Z− = ∅ and Z+ ∩Z− 	= ∅ are
possible. Moreover assume that:

• If w ∈ Z+, then the functions fw and gw are meromorphic at w.

• If w ∈ Z−, then the functions f−1
w and g−1

w are meromorphic at w.

Then, for any given family of positive integers mw, w ∈ Z, in the claim of this
theorem, it can be shown that:

• If w ∈ Z+, then the function h− fwgw has a zero of order mw at w.

• If w ∈ Z−, then the function h−1 − g−1
w f−1

w has a zero of order mw at w.

10.3 Weierstrass theorems for

G∞(E)- and Gω(E)-valued functions

Let E be a Banach space, let F∞(E) be the ideal in L(E) of operators which
can be approximated by finite dimensional operators, and let Fω(E) be the ideal
of compact operators in L(E). Throughout this section, ℵ stands for one of the
symbols ∞ or ω, Gℵ(E) is the group of invertible operators in E which are of the
form I +K, where K ∈ Fℵ(E).

We first prove the following strengthening of the left-sided Weierstrass The-
orem 5.14.1:

10.3.1 Theorem. Let D ⊆ C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w ∈ Z, there are given a neighborhood Uw of w
with Uw ∩ Z = {w} and a holomorphic function Aw : Uw \ {w} → Gℵ(E). Then
there exist holomorphic functions Hw : Uw → Gℵ(E), w ∈ Z, and a holomorphic
function H : D \ Z → Gℵ(E) such that

HwAw = H on Uw \ {w} . (10.3.1)

Moreover, for any given family of positive integers mw, w ∈ Z, the functions Hw

can be chosen so that, for each w ∈ Z, the functions Hw − I and H−1
w − I have a

zero of order ≥ mw at w.

Proof. Let a family of positive integers mw, w ∈ Z, be given. Since Gℵ(E) ⊆
GFℵI (E), the functions Aw can be interpreted as functions with values in GFℵI (E).
Since the latter group is the group of invertible elements of a Banach algebra
and since this group is connected, we can apply Theorem 10.1.1 to it and obtain
holomorphic functions H̃w : Uw → GFℵI (E), w ∈ Z, and a holomorphic function
H̃ : D \ Z → GFℵI (E) such that

H̃wAw = H̃ on Uw \ {w} (10.3.2)
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and , for each w ∈ Z, the functions H̃w−I and H̃−1
w −I have a zero of order ≥ mw

at w. If dimE <∞ and therefore Gℵ(E) = GL(E) = GFℵI (E), this completes the
proof.

Let dimE = ∞, and let λw : Uw → C, λ : D \ Z → C, Kw : Uw → Fℵ
and K : D \ Z → Fℵ be the holomorphic functions with H̃w = λwI + Kw and
H̃ = λI +K. Then, passing to the factor algebra FI(E)/Fℵ(E) ∼= C, we see:

– Since H̃ and H̃w are invertible, the functions λ and λw have no zeros.

– It follows from (10.3.2) that λw = λ on Uw.

– Since H̃w − I and H̃−1
w − I have a zero of order ≥ mw at w, the functions

λw − 1 and λ−1
w − 1 have a zero of order ≥ mw at w.

Hence the functions Hw := H̃w/λ and H := H̃/λ have the required properties. �
Precisely in the same way, replacing the left-sided Theorem 10.1.1 by the

right-sided Theorem 10.2.1, we get the corresponding left-sided result:

10.3.2 Theorem. Let D ⊆ C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w ∈ Z, there are given a neighborhood Uw of w
with Uw ∩ Z = {w} and a holomorphic function Aw : Uw \ {w} → Gℵ(E). Then
there exist a holomorphic function H : D \Z → Gℵ(E) and holomorphic functions
Hw : Uw → Gℵ(E), w ∈ Z such that

AwHw = H on Uw \ {w} . (10.3.3)

Moreover, for any given family of positive integers mw, w ∈ Z, the functions Hw

can be chosen so that, for each w ∈ Z, the functions Hw − I and H−1
w − I have a

zero of order ≥ mw at w.

Both theorems together again give a two-sided version:

10.3.3 Theorem. Let D ⊆ C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w ∈ Z, there are given a neighborhood Uw of w
with Uw ∩ Z = {w} and two holomorphic functions Fw, Gw : Uw \ {w} → Gℵ(E).
Then there exist a holomorphic function H : D \ Z → Gℵ(E) and holomorphic
functions Hw : Uw → Gℵ(E), w ∈ Z, such that

FwHwGw = H on Uw \ {w} . (10.3.4)

Moreover, for any given family of positive integers mw, w ∈ Z, the functions Fw

and Gw can be chosen so that, for each w ∈ Z, the functions Fw − 1, F−1
w − 1,

Gw − 1 and G−1
w − 1 have a zero of order ≥ mw at w.

Proof. Let a family of positive integers mw, w ∈ Z, be given. Then from the left-
sided Theorem 10.3.1 we get holomorphic functions H l

w : Uw → Gℵ, w ∈ Z, and a
holomorphic function H l : D \ Z → Gℵ(E) such that

H l
wGw = H l on Uw \ {w}
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and the functions H l
w − 1 have a zero of order ≥ mw at w. From the right-sided

Theorem 10.3.2 we get holomorphic functions Hr
w : Uw → Gℵ(E), w ∈ Z, and a

holomorphic function Hr : D \ Z → G∞(E) such that

FwHr
w = Hr on Uw \ {w}

and the functions Hr
w − 1 have a zero of order ≥ mw at w. Setting H = H lHr

and Hw = Hr
wH l

w, w ∈ Z, we get holomorphic functions H : D \ Z → Gℵ(E)),
Hw : Uw → Gℵ(E) such that

FwHwGw = FwHr
wH l

wGw = HrH l = H on Uw \ {w},

and the functions Fw−1, F−1
w −1, Gw−1 and G−1

w −1 have a zero of order ≥ mw

at w. �
By the same arguments as in the case of Corollary 10.1.4, the above three

theorems lead to the following two corollaries:

10.3.4 Corollary. Assume, under the hypotheses of one of the theorems 10.3.1 or
10.3.2, two subsets Z+ and Z− of Z are given, where the cases Z+ = ∅, Z− = ∅
and Z+ ∩ Z− 	= ∅ are possible. Moreover assume that:

• If w ∈ Z+, then Aw is meromorphic at w.

• If w ∈ Z−, then A−1
w is meromorphic at w.

Then, for any given family of positive integers mw, w ∈ Z, in the claims of these
theorems, it can be shown that:

• If w ∈ Z+, then H −Aw has a zero of order mw at w.

• If w ∈ Z−, then H−1 −A−1
w has a zero of order mw at w.

10.3.5 Corollary. Assume, under the hypotheses of Theorem 10.3.3, two subsets
Z+ and Z− of Z are given, where the cases Z+ = ∅, Z− = ∅ and Z+ ∩Z− 	= ∅ are
possible. Moreover assume that:

• If w ∈ Z+, then the functions Fw and Gw are meromorphic at w.

• If w ∈ Z−, then the functions F−1
w and G−1

w are meromorphic at w.

Then, for any given family of positive integers mw, w ∈ Z, in the claim of this
theorem, it can be shown that:

• If w ∈ Z+, then the function H − FwGw has a zero of order mw at w.

• If w ∈ Z−, then the function H−1 −G−1
w F−1

w has a zero of order mw at w.

10.3.6 Theorem. Let D ⊆ C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w ∈ Z, there is given a neighborhood Uw of w with
Uw ∩Z = {w} and a holomorphic function Aw : Uw \{w} → Gℵ(E) which is finite
meromorphic at w. Then there exist a holomorphic function H : D \ Z → Gℵ(E),



10.4. Holomorphic G∞(E)-valued functions 377

which is finite meromorphic and Fredholm (Def. 4.1.1) at the points of Z, and
holomorphic functions Hw : Uw → Gℵ(E), w ∈ Z, which are finite meromorphic
and Fredholm at w, such that

HwAw = H on Uw \ {w} . (10.3.5)

Moreover, for any given family of positive integers mw, w ∈ Z, the functions Hw

can be chosen so that, for each w ∈ Z, the functions H−Aw and H−1−A−1
w have

a zero of order ≥ mw at w.

Proof. By hypothesis, the functions Aw are finite meromorphic and Fredholm, and,
by Corollary 4.1.3, also the functions A−1

w are finite meromorphic and Fredholm.
In particular, these functions are meromorphic. Therefore, the assertion follows
from Corollary 10.2.5 with Z+ = Z− = Z. �

10.4 Holomorphic G∞(E)-valued functions

with given principal parts of the inverse

In this section E is a Banach space, F∞(E) is the ideal in L(E) of the operators
which can be approximated by finite dimensional operators, and G∞(E) is the
group of invertible operators in E which are of the form I+K, where K ∈ F∞(E)
(Def. 5.12.1). We first prove the following generalization of Corollary 4.3.3 to the
Smith factorization theorem:

10.4.1 Lemma. Let w ∈ C, and let K : C \L(E) be a rational function of the form

K(z) =
−1∑

n=−m

(z − w)nKn , (10.4.1)

where K−m, . . . ,K−1, 1 ≤ m < ∞, are finite dimensional operators. Then there
exists a neighborhood U of w and a holomorphic operator function V : U → F∞(E)
such that I + V (z) is invertible for all z ∈ U \ {w} and K is the principal part of
the Laurent expansion of (I + V )−1 at w.

Proof. Since the operators K−m, . . . ,K−1 are finite dimensional, we can find a
finite dimensional projector P in E such that K = PKP . Let K̃ : C \ {w} →
L(ImP ) be the function defined by

K̃(z) = K(z)
∣∣
Im P

for z ∈ C \ {w}.

Then K = PK̃P and, by Corollary 4.3.3, there exists a neighborhood U of w
and a holomorphic function Ã : U → L(ImP ) such that Ã(z) is invertible for all
z ∈ U \ {w} and K̃ is the principal part of the Laurent expansion of Ã−1 at w.
Then A := I − P + PÃP is the required function. �
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10.4.2 Theorem. Let D ⊆ C be an open set, and let Z be a discrete and closed
subset of D. Suppose, for each w ∈ Z, there is given a rational function K : C →
L(E) of the form

Kw(z) =
−1∑

n=−mw

(z − w)nKw
n , (10.4.2)

where Kw
−mw

, . . . ,Kw
−1, 1 ≤ mw <∞, are finite dimensional operators. Then there

exists a holomorphic function V : D → F∞ such that I +V (z) is invertible for all
z ∈ D \ Z and, for all w ∈ Z, the given function Kw is the principal part of the
Laurent expansion of (I + V )−1 at w.

Proof. By Lemma 10.4.1, for each w ∈ Z, there exists a neighborhood Uw of w
and a holomorphic operator function Vw : Uw → F∞(E) such that I + Vw(z)
is invertible for all z ∈ Uw \ {w} and Kw is the principal part of the Laurent
expansion of (I + Vw)−1 at w.

By Corollary 10.2.5, now we can find holomorphic functions Hw : Uw →
G∞(E), w ∈ Z, and a holomorphic function H : D \ Z → G∞(E), which is finite
meromorphic at the points of Z, such that, for each w ∈ Z,

Hw(I + Vw) = H on Uw \ {w},

and H−1 − (I + Vw)−1 has a zero of order mw at w. This implies, as Kw is
the principal part of the Laurent expansion of (I + Vw)−1 at w, that Kw is also
the principal part of the Laurent expansion of H−1 at w. It remains to set V =
H − I. �

It is impossible to replace in Theorem 10.4.2 the prescribed function (10.4.2)
by an arbitrary function of the form

K(z) =
0∑

n=−m

(z − w)nKn ,

where the operators K−m, . . . ,K−1 are finite dimensional and K0 	= 0. This follows
from counterexample 4.3.4.

10.5 Comments

In such a generality the material of this chapter is published here for the first
time. Less general versions of the interpolation theorems for matrix and operator
functions were published earlier in [GR1, GR2].



Chapter 11

Holomorphic equivalence,
linearization and diagonalization

11.1 Introductory remarks

11.1.1 Definition. Let X1, X2, Y1, Y2 be Banach spaces such that X1 is isomorphic
to X2 and Y1 is isomorphic to Y2. Let D ⊆ C be an open set, and let S : D →
L(X1, Y1), T : D → L(X2, Y2) be two holomorphic functions. The functions T
and S are called holomorphically equivalent over D if there exist holomorphic
functions E : D → L(X2, X1) and F : D → L(Y1, Y2) with invertible values such
that

T = FSE , on D . (11.1.1)

We give an example. Let X be a Banach space and

P (z) = znI + zn−1An−1 + . . .+A0

a polynomial where I is the identity operator in X and A0, . . . , An−1 are arbitrary
operators from L(X), n ∈ N∗. Set

Xn := X ⊕ . . .⊕X︸ ︷︷ ︸
n times

.

Then the L(Xn)-valued function

P̃ (z) :=

⎛⎜⎜⎜⎝
P (z) 0 · · · 0
0 I · · · 0
...

...
. . .

...
0 0 · · · I

⎞⎟⎟⎟⎠
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is equivalent to the linear L(Xn)-valued function zIXn − C where IXn is the
identity operator in Xn and

C :=

⎛⎜⎜⎜⎜⎜⎝
0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I
−A0 −A1 −A2 · · · −An−1

⎞⎟⎟⎟⎟⎟⎠ .

Indeed, set

E(z) :=

⎛⎜⎜⎜⎝
I 0 · · · 0
zI I · · · 0
...

...
. . .

...
zn−1I zn−2I · · · I

⎞⎟⎟⎟⎠
and

F (z) :=

⎛⎜⎜⎜⎜⎜⎝
Bn−1(z) Bn−2(z) · · · B1(z) B0(z)
−I 0 · · · 0 0
0 −I · · · 0 0
...

...
. . .

...
...

0 0 · · · −I 0

⎞⎟⎟⎟⎟⎟⎠
where

B0(z) := I and Bk+1(z) = zBk(z) +An−1−k for k = 0, 1, . . . , n− 2.

Then
P̃ (z) = F (z)

(
zIXn − C

)
E(z) , z ∈ D.

11.1.2 Definition. Let D ⊆ C be an open set, and X, Y, Z Banach spaces. Given
an operator function T : D → L(X, Y ), we call the operator function(

T 0
0 IZ

)
: D −→ L(X ⊕ Z, Y ⊕ Z)

the Z-extension of T . Here IZ is the identity operator of Z.

According to the example given above a suitable extension of an operator
polynomial is equivalent on C to a linear function. In the next section, a more
general example is given for linearization of analytic operator functions by exten-
sion and equivalence.

11.2 Linearization by extension and equivalence

11.2.1 Theorem. Let D ⊆ C be a bounded open set with piecewise C1-boundary and
such that 0 ∈ D. Let X be a Banach space, and

T : D −→ L(X)
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a continuous operator function which is holomorphic in D. Denote by C(∂D, X)
the Banach space of all X-valued continuous functions on ∂D endowed with the
maximum norm. Let

Z :=

⎧⎨⎩f ∈ C(∂D, X)

∣∣∣∣∣
∫

∂D

f(z)
z

dz = 0

⎫⎬⎭
and define an operator A on C(∂D, X) by setting

(Af)(z) = zf(z)− 1
2πi

∫
∂D

(
I − T (ζ)

)
f(ζ) dζ , z ∈ ∂D. (11.2.1)

Then X ⊕ Z and C(∂D, X) are isomorphic and the Z-extension of T is holo-
morphically equivalent on D to the linear operator function λ − A, λ ∈ D, i.e.,
there are holomorphic operator functions E : D → L

(
X ⊕ Z,C(∂D, X)

)
and

F : D → L
(
X ⊕ Z,C(∂D, X)

)
with invertible values such that

E(λ)
(
λ−A

)
F (λ) =

(
T (λ) 0
0 IZ

)
, λ ∈ D. (11.2.2)

Proof. Let τ : X → C(∂D,X) be the canonical embedding, i.e., (τx)(z) = x for
all x ∈ X and z ∈ ∂D. Furthermore, define an operator ω : C(∂D,X)→ X by

ωf =
1
2πi

∫
∂D

f(z)
z

dz .

Since 0 ∈ D, then ωτ = IX and P := τω is the projector in C(∂D, X) with ImP =
τ(X) and KerP = Z. Let J : X ⊕ Z → C(∂D, X) be given by J(x, g) = τx + g.
Then J is invertible and J−1f =

(
ωf, (I − P )f

)
.

Next, consider on C(∂D, X) the following auxiliary operator

(V f)(z) = zf(z) , z ∈ ∂D.

Then D is in the resolvent set of V , where(
(λ− V )−1f

)
(z) =

f(z)
λ− z

, λ ∈ D, z ∈ ∂D. (11.2.3)

Now we define holomorphic operator functions E : D → L
(
X⊕Z,C(∂D, X)

)
and

F : D → L
(
X ⊕ Z,C(∂D, X)

)
, setting for λ ∈ D:

E(λ) = (λ− V )−1J and F (λ) = J−1
(
I − PB(λ)(I − P )

)
.

It is clear that all values of E and F are invertible (as J is invertible, λI − V is
invertible for λ ∈ D and P is a projector). Moreover we introduce a holomorphic
operator function B : D → L

(
C(∂D,X)

)
defined by

B(λ) = I + PV (λ− V )−1 − PV (λ− V )−1T .
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(Here T means the operator of multiplication by the operator function T .) Note
that A = V − PV + PV T . Therefore

F (λ)(λ−A)E(λ) = F (λ)
(
I + PV (λI − V )−1 − PV T (λI − V )−1

)
J .

Since (λI − V )−1 is defined by multiplication by a scalar function, (λ − V )−1

commutes with the multiplication by T . Therefore it follows that

F (λ)(λI −A)E(λ) = F (λ)B(λ)J = J−1
(
I − PB(λ)(I − P )

)
B(λ)

and further, since (I − P )B(λ) = I − P ,

F (λ)(λ−A)E(λ) = J−1
(
B(λ)− PB(λ)(I − P )

)
J

= J−1
(
I − P +B(λ)P

)
J

= I − J−1PJ +
(
J−1B(λ)J

)
J−1PJ .

Since J−1PJ is the projector in X ⊕Z with image X and kernel Z, it remains to
prove that

J−1B(λ)Jx = T (λ)x

for all x ∈ X and λ ∈ D. Let such x and λ be fixed. Then, by (11.2.3),(
V (λ− V )−1τx

)
(z) =

zx

λ− z
, z ∈ ∂D,

and (
V (λ− V )−1Tx

)
(z) =

zT (z)x
λ− z

, z ∈ ∂D .

By the Cauchy formula this implies that

ωV (λ− V )−1τx =
1
2πi

∫
∂D

x

λ− z
dz = −x ,

ωV (λ− V )−1Tx =
1
2πi

∫
∂D

T (z)x
λ− z

dz = −T (λ)x ,

and therefore

PV (λ− V )−1τx = −τx and PV (λ− V )−1Tx = −τT (λ)x .

Hence

J−1B(λ)Jx = J−1B(λ)τx = J−1
(
τx+ PV (λ− V )−1τx− PV (λ− V )−1Tx

)
= J−1τT (λ)x = T (λ)x. �
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It can be shown (see [GKL]) that the spectrum σ(A) of the operator A defined
by (11.2.1) is given by

σ(A) =
{

λ ∈ D
∣∣∣ T (λ) not invertible

}
∪ ∂D .

The next theorem shows that for an operator function of the form λ − A the
procedure of linearization by extension and equivalence does not simplify further
the operator A and leads to operators that are similar to A.

11.2.2 Theorem. Let A1 and A2 be operators acting on the Banach spaces X1

and X2, respectively, and suppose that for some Banach spaces Z1 and Z2 the
extensions (λ−A1)⊕ IZ1 and (λ−A2)⊕ IZ2 are holomorphically equivalent over
some open set D containing σ(A1) ∪ σ(A2) (here σ(Aj) denotes the spectrum of
Aj). Then A1 and A2 are similar. More precisely: Let the holomorphic equivalence
be given by(

λ−A1 0
0 IZ1

)
= F (λ)

(
λ−A2 0

0 IZ2

)
E(λ) , λ ∈ D, (11.2.4)

let U be an open neighborhood of σ(A1) ∪ σ(A2) with piecewise C1-boundary such
that U ⊆ D, and let πj : Xj ⊕ Zj → Xj, τj : Xj → Xj ⊕ Zj be the canonical
projectors and embeddings, respectively. Then

S :=
1
2πi

∫
∂U

(λ−A2)−1π2F (λ)−1τ1 dλ (11.2.5)

is a well-defined operator S : X1 → X2 (as ∂U is contained in the resolvent set of
A2). Moreover, this operator is invertible, where

S−1 =
1
2πi

∫
∂U

π1E(λ)−1τ2(λ−A2)−1 dλ , (11.2.6)

and
SA1S

−1 = A2.

Proof. From the equivalence (11.2.4) it follows that the integrands in (11.2.5) and
(11.2.6) satisfy the following identities:

(λ−A2)−1π2F (λ)−1τ1 = π2E(λ)τ1(λ−A1)−1 , λ ∈ ∂U, (11.2.7)

π1E(λ)−1τ2(λ−A2)−1 = (λ−A1)−1π1F (λ)τ2 , λ ∈ ∂U. (11.2.8)

Since, by Cauchy’s theorem,∫
∂U

π2F (λ)−1τ1 dλ =
∫

∂U

π2E(λ)−1τ1 dλ = 0,
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we get

A2S =
1
2πi

∫
∂U

(A2 − λ+ λ)(λ−A2)−1π2F (λ)−1τ1 dλ

=
1
2πi

∫
∂U

λ(λ−A2)−1π2F (λ)−1τ1 dλ

and therefore, by (11.2.7),

A2S =
1
2πi

∫
∂U

λπ2E(λ)τ1(λ−A1)−1 dλ

=
1
2πi

∫
∂U

π2E(λ)τ1(λ−A1 +A1)(λ−A1)−1 dλ

=

(
1
2πi

∫
∂U

π2E(λ)τ1(λ−A1)−1dλ

)
A1 .

Again by (11.2.7), this gives A2S = SA1.
It remains to prove that S is invertible. To do this, we first note that, for

λ ∈ D \
(
σ(A1) ∪ σ(A2)

)
, we have the identities

π1E(λ)−1τ2(λ−A2)−1π2F (λ)−1τ1 − (λ−A1)−1

= −π1E(λ)−1

(
0 0
0 IZ2

)
F (λ)−1τ1 (11.2.9)

and

π2E(λ)τ1(λ−A1)−1π1F (λ)τ2 − (λ−A2)−1

= −π2E(λ)
(
0 0
0 IZ1

)
F (λ)τ2 . (11.2.10)

Indeed, from the equivalence (11.2.4) we get(
(λ−A1)−1 0

0 IZ1

)
= E(λ)−1

(
(λ−A2)−1 0

0 IZ2

)
F (λ)−1

and

E(λ)
(
(λ−A1)−1 0

0 IZ1

)
F (λ) =

(
(λ−A2)−1 0

0 IZ2

)
.

Multiplying the first equation from left by π1 and from the right by τ1 this gives
(11.2.9). Multiplying the second equation from left by π2 and from the right by τ2

this gives (11.2.10).
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Now we denote by T the operator defined by the right-hand side of (11.2.6),
and we choose two neighborhoods U1 and U2 of σ(A1) ∪ σ(A2) with piecewise
C1-boundary such that U1 ⊆ U2 and U2 ⊆ U . Then, by Cauchy’s theorem, S and
T can be written also in the form

S =
1
2πi

∫
∂U1

(λ−A2)−1π2F (λ)−1τ1 dλ

and

T =
1
2πi

∫
∂U2

π1E(μ)−1τ2(μ−A2)−1 dμ .

By (11.2.7) and (11.2.8), this implies that

S =
1
2πi

∫
∂U1

π2E(λ)τ1(λ−A1)−1 dλ

and

T =
1
2πi

∫
∂U2

(μ−A1)−1π1F (μ)τ2 dμ .

Hence

ST =
(

1
2πi

)2 ∫
∂U1

∫
∂U2

π2E(λ)τ1(λ−A1)−1(μ−A1)−1π1F (μ)τ2 dμdλ.

For λ ∈ ∂U1 and μ ∈ ∂U2, we have the so-called resolvent equation

(λ−A1)−1(μ−A1)−1 =
(λ−A1)−1 − (μ−A1)−1

μ− λ
.

(For the proof just multiply it from the left by λ − A1 and from the right by
μ−A1.) Therefore it follows that

ST = A−B,

where

A =
(

1
2πi

)2 ∫
∂U1

∫
∂U2

π2E(λ)τ1(λ−A1)−1π1F (μ)τ2

μ− λ
dμdλ

and

B =
(

1
2πi

)2 ∫
∂U1

∫
∂U2

π2E(λ)τ1(μ−A1)−1π1F (μ)τ2

μ− λ
dμdλ.
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We have

A =
1
2πi

∫
∂U1

π2E(λ)τ1(λ−A1)−1

⎛⎝ 1
2πi

∫
∂U2

π1F (μ)τ2

μ− λ
dμ

⎞⎠ dλ

=
1
2πi

∫
∂U1

π2E(λ)τ1(λ−A1)−1π1F (λ)τ2dλ.

Since the right-hand side of (11.2.10) is holomorphic in D and σ(A2) ⊆ U1 ⊆
U1 ⊆ D, this implies

A =
1
2πi

∫
∂U1

(λ−A2)−1π1dλ = IX2 .

Moreover,

B =
1
2πi

∫
∂U2

⎛⎝ 1
2πi

∫
∂U1

π2E(λ)τ1

μ− λ
dλ

⎞⎠ (μ−A1)−1π1F (μ)τ2dμ .

Since ∂U2 ∩U1 = ∅, this implies that B = 0. We have now proved that ST = IX2 .
In a similar way, using (11.2.9) instead of (11.2.10), one obtains TS = IX1 . �

For linear functions λ−A1 and λ−A2 global holomorphic equivalence on C

means just that A1 and A2 are similar. This follows from the next corollary.

11.2.3 Corollary. Two operators A1 and A2 are similar if and only if some ex-
tensions of λ − A1 and λ − A2 are holomorphically equivalent on some open set
containing σ(A1) and σ(A2).

Proof. If A1 and A2 are similar, then, obviously, λ−A1 and λ−A2 are equivalent
on C. Theorem 11.2.2 gives the reverse implication. �

11.3 Local equivalence

11.3.1 Definition. Let X, Y be Banach spaces, let D ⊆ C be an open set, and let
S, T : D → L(X, Y ) be meromorphic (Section 1.10.6).

(i) Let w ∈ D. The functions T and S are called holomorphically equivalent
at w if there exist a neighborhood Uw ⊆ D of w and holomorphic functions
E : Uw → GL(X), F : Uw → GL(Y ) such that

T = FSE on Uw \ {w} . (11.3.1)

(ii) The functions T and S are called locally holomorphically equivalent over D
if they are holomorphically equivalent at each point of D.
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(iii) The functions T and S are called holomorphically equivalent over D if there
exist holomorphic functions E : D → GL(X), F : D → GL(Y ) such that

T (z) = F (z)S(z)E(z) (11.3.2)

for all z ∈ D which are not singular for T and S. To point out the difference
from local holomorphic equivalence over D, then we speak also about global
holomorphic equivalence over D.

If T and S have no singular points, part (iii) of this definition coincides with
Definition 11.1.1 above.

11.3.2 Definition. (i) Let X be a Banach space, let D ⊆ C be an open set, and
let f : D → B be meromorphic. Let w ∈ D. If f identically vanishes in a
neighborhood of w, then we set ordw f =∞. If not, then we denote by ordw f
the uniquely determined integer such the Laurent expansion of f at w is of
the form

f(z) =
∞∑

n=ordw f

fn(z − w)n with fordw f 	= 0 .

We call ordw f the order of f at w.

(ii) Let X, Y be Banach spaces, let D ⊆ C be an open set, and let A : D →
L(X, Y ) be meromorphic.

Let w ∈ D. Then, for k ∈ Z, we denote by XA,w(k) the set of all x ∈ X
such that there exists a neighborhood U of w and a holomorphic function
f : U → X with

f(w) = x and ordw(Af) ≥ k.

Obviously, XA,w(k) is a linear subspace of X for all k ∈ Z. The family
{XA,w(k)}k∈Z will be called the characteristic filtration of A at w. We set

XA,w(∞) =
⋂
k∈Z

XA,w(k) .

Note that, obviously,

XA,w(k + 1) ⊆ XA,w(k) for all k ∈ Z (11.3.3)

and
X =

⋃
k∈Z

XA,w(k) . (11.3.4)

11.3.3 Proposition. Let X, Y be Banach spaces, let D ⊆ C be an open set, let
A,B : D → L(X, Y ) be meromorphic, and let w ∈ D. If A and B are holomor-
phically equivalent at w, then the characteristic filtrations of A and B at w are
“isomorphic” in the following sense: There exists M ∈ GL(X) with

XA,w(k) = MXB,w(k) for all k ∈ Z . (11.3.5)
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Moreover, if U ⊆ D is a neighborhood of w and E : U → GL(Y ), F : U → GL(X)
are holomorphic functions with EAF = B on U \ {w}, then (11.3.5) is valid for
M = F (w).

Proof. Let k ∈ Z∪{∞} and x ∈ XB,w(k) be given. By definition of XB,w(k), then,
after shrinking U if necessary, we have a holomorphic function f : U → X with
f(w) = x and ordw(Bf) ≥ k. Set g = Ff . Then g is a holomorphic function on U
with g(w) = F (w)f(w) = F (w)x. Moreover, since E is holomorphic and invertible,
it follows that ordw(Ag) = ordw(EAg) = ordw(EAFf) = ordw(Bf) ≥ k. Hence
F (w)x ∈ XA,w(k). This proves “⊇” in (11.3.5). In the same way we prove that

F−1(w)XA,w(k) ⊆ XB,w(k) for all k ∈ Z ,

i.e., “⊆”in (11.3.5). �

11.3.4 Definition. Let X, Y be Banach spaces, let D ⊆ C be an open set, and let
A : D → L(X, Y ) be meromorphic.

(i) (For X = Y , this is Definition 4.1.1) Let w ∈ D. The function A is called
finite meromorphic at w if the Laurent expansion of A at w is of the form

A(z) =
∞∑

n=m

(z − w)nAn , (11.3.6)

where (if m < 0) the operators Am, . . . , A−1 are finite dimensional. If, more-
over, m ≤ 0 and A0 is a Fredholm operator, then A is called finite meromor-
phic and Fredholm at w.

(ii) The function A is called a finite meromorphic Fredholm function on D if it
is finite meromorphic and Fredholm at each point of D.

(iii) If D is connected, and A is a finite meromorphic Fredholm function on D,
then it follows from the stability properties of Fredholm operators (see, e.g.,
[GGK2]) that the index of A0 in (11.3.6) does not depend on w. We call it
the index of A and denote it by indA.

Note that, obviously, this notion is invariant with respect to local holomorphic
equivalence (Def. 11.3.1), i.e., if two meromorphic operator functions A and B
are locally holomorphically equivalent, and A is a finite meromorphic Fredholm
function, then B is a finite meromorphic Fredholm function.

For finite meromorphic Fredholm functions the characteristic filtrations (Def.
11.3.2) are especially simple:

11.3.5 Proposition. Let X, Y be Banach spaces, let D ⊆ C be an open set, let
A : D → L(X, Y ) be a finite meromorphic Fredholm function, and let w ∈ D.
Then:

(i) There exists m ∈ Z with XA,w(k) = X for k ≤ m.
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(ii) For all k ≤ 0, the space XA,w(k) is closed and of finite codimension in X.

(iii) dimXA,w(k) <∞ for all k ≥ 1.

Proof. We may assume that A 	= 0. Since A is finite meromorphic and Fredholm
at w, then the Laurent expansion of A at w is of the form

A(z) =
∞∑

n=m

(z − w)nAn ,

where m ≤ 0 is finite, A0 is a Fredholm operator, and (if m < 0) the operators
Am, . . . , A−1 are finite dimensional. Then, it is clear that ordw(Af) ≥ m for each
X-valued holomorphic f in a neighborhood of w. Hence XA,w(k) = X if k ≤ m.
This proves part (i).

Since the operators Am, . . . , A−1 are finite dimensional (if m < 0), the space

L :=
⋂

m≤ν≤−1

KerAν

is closed and of finite codimension in X. Then, for each vector x ∈ L, the function
fx := Ax admits a holomorphic extension f̃x to w, where f̃x(w) = A0x. Hence
L ⊆ XA,w(0). By (11.3.3) this proves (ii).

Moreover, this implies that x 	∈ XA,w(1) if x ∈ L and x 	∈ KerA0. As A0 is
a Fredholm operator, it follows that XA,w(1) ∩ L ⊆ KerA0 and therefore

dimXA,w(1) ≤ dimKerA0 <∞ .

By (11.3.3) this proves (iii). �
11.3.6 Definition. Let X, Y be Banach spaces, let D ⊆ C be an open set, let
A : D → L(X, Y ) be a finite meromorphic Fredholm function, let w ∈ D, and let

A(z) =
∞∑

n=m

(z − w)nAn

be the Laurent expansion of A at w.

(i) By Proposition 11.3.5,
α := XA,w(∞) <∞ .

The number α will be called the generic kernel dimension of A at w.

(ii) As A0 is a Fredholm operator, we have the index indA0 = dimKerA0 −
dim(Y/ ImA0). The number

β := α− indA0

will be called the generic cokernel dimension of A at w.
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(iii) If XA,w(k) = XA,w(0) for k ≤ 0, then we say that A has no negative powers.

Assume this is not the case. Then, by Proposition 11.3.5, there are
uniquely determined negative integers 0 > s1 > . . . > sp such that

XA,w(0) ⊂
= XA,w(s1) ⊂
= XA,w(s2) ⊂
= . . . ⊂

=

XA,w(sp) = X ,

XA,w(ν) = XA,w(0) if 0 > ν > s1 ,

XA,w(ν) = XA,w(sj−1) if sj−1 ≥ ν > sj , 2 ≤ j ≤ p .

Again by Proposition 11.3.5 the dimensions

d1 := dim
(
XA,w(s1)

/
XA,w(0)

)
,

dj := dim
(
XA,w(sj)

/
XA,w(sj−1)

)
, 2 ≤ j ≤ p

are finite. Set d = d1+ . . .+dp and denote by κ1 ≥ . . . ≥ κd the integers such
that, for each 1 ≤ j ≤ p, precisely dj components of the vector (κ1, . . . , κd)
are equal to sj . These numbers κ1 ≥ . . . ≥ κd will be called the negative
powers of A at w.

(iv) If XA,w(k) = XA,w(∞) for k ≥ 1, then we say that A has no positive powers.

Assume this is not the case. Then, by Proposition 11.3.5, there are
uniquely determined positive integers s1 > . . . > sp > 0 such that

XA,w(∞) ⊂

=

XA,w(s1) ⊂
= XA,w(s2) ⊂
= . . . ⊂

=

XA,w(sp) ⊂
= XA,w(0) ,

XA,w(ν) = XA,w(∞) if ν > s1 ,

XA,w(ν) = XA,w(sj−1) if sj−1 ≥ ν > sj , 2 ≤ j ≤ p− 1 ,

XA,w(ν) = XA,w(sp) if sp ≥ ν ≥ 1 .

Again by Proposition 11.3.5 the dimensions

d1 := dim
(
XA,w(s1)

/
XA,w(∞)

)
,

dj := dim
(
XA,w(sj)

/
XA,w(sj−1)

)
, 2 ≤ j ≤ p ,

are finite. Set d = d1+. . .+dp , and denote by κ1 ≥ . . . ≥ κd the integers such
that, for each 1 ≤ j ≤ p, precisely dj components of the vector (κ1, . . . , κd)
are equal to sj . These numbers κ1 ≥ . . . ≥ κd will be called the positive
powers of A at w.
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(v) Let α be the generic kernel dimension of A at w, and let β be the generic
cokernel dimension of A at w.

If A has no negative and no positive powers at w, then the pair (α, β)
(defined in (i) and (ii)) will be called the numerical characteristic of A at w.

If A has powers at w (negative or positive or both), and if κ1 > . . . >
κn are all powers of A, then the vector (κ1, . . . , κn, α, β) will be called the
numerical characteristic of A at w.

11.3.7 Proposition. Let X, Y be Banach spaces, let D ⊆ C an open set, let A,A′ :
D → L(X, Y ) be two finite meromorphic Fredholm functions, and let w ∈ D.
Assume that A and A′ are holomorphically equivalent at w. Then A and A′ have
the same numerical characteristic at w.

Proof. Let (
κ1, . . . , κd, α, α

)
and (

κ′1, . . . , κ
′
d′ , α′, β′

)
be the numerical characteristics of A and A′, respectively.

By definition, the numbers κ1 ≥ . . . ≥ κd and α depend only on the sequence

dim
(
XA,w(k + 1)

/
XA,w(k)

)
, k ∈ Z .

By Proposition 11.3.3 this sequence is invariant with respect to holomorphic equiv-
alence at w. As A and A′ are holomorphically equivalent at w, this implies that

α′ = α , d′ = d and κ′j = κj for 1 ≤ j ≤ d .

It remains to prove that β′ = β. Let

A(z) =
∞∑

n=m′
(z − w)nAn and A′(z) =

∞∑
n=m′

(z − w)nA′n′

be the Laurent expansions of A and A′ at w. By hypothesis, we have a neighbor-
hood U ⊆ D of w and holomorphic functions E : U → GL(Y ), F : U → GL(X)
such that

A′(z) = E(z)A(z)F (z) for all z ∈ U \ {w} . (11.3.7)

From the stability properties of Fredholm operators it follows that

indA0 = indA(z) and indA′0 = indA′(z) for all z ∈ U \ {w} .

By (11.3.7) this implies that indA′0 = indA0. Hence

β′ = α′ − indA′0 = α− indA0 = β . �
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11.4 A theorem on local and global equivalence

In this section we prove that, under certain conditions, local holomorphical equiva-
lence of meromorphic operator functions implies global holomorphical equivalence.
We will state this result in a more general setting for Banach algebras.

Throughout this section, A is a Banach algebra with unit 1, and GA is the
group of invertible elements of A.

11.4.1 Definition. Let D ⊆ C be an open set, and let f : D → A be a meromorphic
operator function (Section 1.10.6). Let Z be the set of all w ∈ D such that either
f has a pole at w or f is holomorphic at w and f(w) 	∈ GA. The function f will
be called meromorphically invertible if Z is a discrete and closed subset of D, and
f−1 (which is well defined and holomorphic on D \Z) is meromorphic on D. The
set Z then will be called the spectrum of f .

If D ⊆ C is open and connected and A is the algebra of complex n × n-
matrices, then it is clear that any meromorphic function f : D → A, which is
invertible in at least one point, is meromorphically invertible. By Proposition 4.1.4
the same is true for all finite meromorphic Fredholm functions.

11.4.2 Theorem. Let D ⊆ C be an open set, let f, g : D → A be two meromor-
phically invertible meromorphic functions, and let G be an open subgroup of GA.
Suppose f and g have the same spectrum Z, and the following condition (of local
equivalence) is satisfied:

For each w ∈ D there exist a neighborhood U ⊆ D and
holomorphic functions aw, bw : U → G with awfbw = g on U \ Z .

(11.4.1)

Then there exist holomorphic functions a, b : D → G with afb = g on D \ Z.

Proof. By hypothesis we have an open covering {Uj}j∈I of D and families {aj}j∈I ,
{bj}j∈I of holomorphic functions aj , bj : Uj → G such that

ajfbj = g on Uj \ Z , j ∈ I. (11.4.2)

Then
f−1a−1

i ajf = bib
−1
j on Ui ∩ Uj \ Z , i, j ∈ I. (11.4.3)

Since both f and f−1 are meromorphic on D, for each w ∈ Z, we can choose
nw ∈ N such that both functions

(z − w)nwf(z) and (z − w)nwf−1(z) (11.4.4)

are holomorphic at w. Setting mw = 2nw +1, w ∈ Z, we introduce a data of zeros
as well as the corresponding sheaf Og

Z,m (cf. Definition 9.1.2).
Now, for each open set U ⊆ D, we denote by F(U) the set of all holomorphic

functions h ∈ OG(U) such that the function

f−1hf,
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which is a well-defined G-valued holomorphic function on U \Z, admits a G-valued
holomorphic extension to U . It is easy to see that in this way a OG-sheaf F over
D is defined (Def. 9.1.1).

We now prove that F is of finite order. It is clear that

F(U \ Z) = OG(U \ Z)

for each open set U ⊆ D. Since Z is a discrete and closed subset of D, therefore
it is sufficient to prove that

OG
Z,m(U) ⊆ F(U)

for all open sets U ⊆ D. Let an open set U ⊆ D and h ∈ OG
Z,m(U) be given. Since

mw = 2nw + 1, then, by definition of OG
Z,m, for each w ∈ Z, the function

h(z)− 1
(z − w)2nw+1

(11.4.5)

is holomorphic at w. Hence, for each w ∈ Z and z ∈ U \ Z, the function f−1hf
can be written in the form

f−1(z)h(z)f(z) = 1 + f−1(z)
(
h(z)− 1

)
f(z)

= 1 + (z − w)
(
(z − w)nwf−1(z)

(
h(z)− 1

(z − w)2nw + 1

)
(z − w)nwf(z)

)
.

Since the functions (6.8.3) and (11.4.5) are holomorphic at w, for all w ∈ Z, this
implies that h ∈ F(U). Hence it is proved that F is of finite order.

Therefore, Theorem 9.2.1 applies to F . As aj ∈ OG(Uj), j ∈ I, the family
{a−1

i aj}i,j∈I is an OG-trivial OG-cocycle. Since also bj ∈ OG(Uj), j ∈ I, it follows
from (11.4.3), that {a−1

i aj}i,j∈I is even an F-cocycle over D. As it is OG-trivial,
condition (i) in Theorem 9.2.1 is satisfied. It follows that {a−1

i aj}i,j∈I is F-trivial,
i.e., there are functions ãj ∈ F(Uj), j ∈ I with

a−1
i aj = ãiã

−1
j on Ui ∩ Uj , i, j ∈ I .

Therefore, setting
a = aj ãj on Uj , j ∈ I ,

we get a global holomorphic function a : D → G.
Moreover, we set b = f−1a−1g on D \ Z. Then, obviously,

afb = aff−1a−1g = g on D \ Z , (11.4.6)

and, on each Uj , we have
b = f−1ã−1

j a−1
j g.
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By (11.4.2), this implies that

b = f−1ã−1
j fb−1

j on Uj , j ∈ U . (11.4.7)

As ã−1
j ∈ F(Uj), the function f−1ã−1

j f extends to a G-valued holomorphic func-
tion on Uj . Since also b−1

j ∈ OG(Uj), this implies together with (11.4.7) that b
extends to a G-valued holomorphic function on D. In view of (11.4.6), this com-
pletes the proof. �

11.5 The finite dimensional case

11.5.1 Proposition. Let D ⊆ C be a connected open set, let A be an n×m matrix
of scalar meromorphic functions on D, and let P be the set of poles of A. Denote
by rankA(z), z ∈ D \ P , the rank of A(z), and set

r := max
z∈D\P

rankA(z)

Then
N :=

{
z ∈ D \ P

∣∣∣ rankA(z) < r
}

is a discrete and closed subset of D.

Clearly, this follows from the Smith factorization Lemma 4.3.1, but it can be
seen also more directly:

Proof of Proposition 11.5.1. Take a point z0 ∈ D \ P with

r = rankA(z0) .

Then there is an r × r submatrix B of A such that detB(z0) 	= 0. Since D is
connected and detB is meromorphic on D without poles in D \ P , then the set

M :=
{

z ∈ D \ P
∣∣∣ detB(z) = 0

}
is discrete and closed in D. As N ⊆M , it follows that N is discrete and closed in
D. �

11.5.2 Definition. We use the notation from the preceding Proposition 11.5.1, and
we set Z = P ∪N . Then the points in D \ Z will be called the generic points of
A, and the number r will be called the generic rank of A. The points in Z will be
called the non-generic points of A.

Obviously, a quadratic matrix of scalar meromorphic functions has maximal
generic rank if and only if it is meromorphically invertible in the sense of Definition
11.4.1. Therefore, the following lemma is a special case of Theorem 11.4.2:
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11.5.3 Lemma. Let D ⊆ C be a connected open set, and let A,B be two r × r-
matrices of scalar meromorphic functions of generic rank r on D which are lo-
cally holomorphically equivalent on D. Then A and B are globally holomorphically
equivalent on D.

Since any meromorphic matrix function is a finite meromorphic Fredholm
function in the sense of Definition 11.3.4, we have the notion of the numerical
characteristic (Def. 11.3.6) of a meromorphic matrix function. We now explain the
relation of this to the Smith factorization Lemma 4.3.1.

Let D ⊆ C be an open set, let A be an n×m matrix of scalar meromorphic
functions on D, and let w ∈ D be a point such that A is not identically zero in a
punctured neighborhood of w.

Using the notion of equivalence (Def. 11.3.1), now the Smith factorization
lemma can be stated as follows:

There are uniquely determined integers κ1 ≥ . . . ≥ κr such that, at w, the
matrix A is holomorphically equivalent to the (n×m)-matrix(

Δ 0
0 0

)
(11.5.1)

where Δ is the r × r diagonal matrix with the diagonal

(z − w)κ1 , . . . , (z − w)κr .

Obviously, r is the rank of the matrix (11.5.1) in a punctured neighborhood
of w. Therefore

r = rankA(z) (11.5.2)

for all z in a punctured neighborhood of w (which again proves Proposition 11.5.2).
Let p be the number of zero components of the vector (κ1, . . . , κr), and let

(κ̃1, . . . , κ̃r−p) be the vector obtained from (κ1, . . . , κr) omitting the zero compo-
nents. Then it is easy to see that

(κ̃1, . . . , κ̃r−p,m− r, n− r) (11.5.3)

is the numerical characteristic (Def. 11.3.6) of the matrix (11.5.1) at w. Since
the numerical characteristic is invariant with respect to holomorphic equivalence
(Proposition 11.3.7), this implies that (11.5.3) is also the numerical characteristic
of A at w.

Conversely, this also shows that from the numerical characteristic of A at w
one can obtain the powers (Def. 4.3.2) κ1 ≥ . . . ≥ κr in the Smith factorization
theorem. We summarize:

11.5.4 Proposition. Let D ⊆ C be an open set, let A,B be two n×m matrices of
scalar meromorphic functions on D and let w ∈ D be a point such that A and B
are not identially zero in a punctured neighborhood of w. Then A and B have the
same numerical characteristic at w if and only if they have the same powers at w.
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11.5.5 Lemma. Let D ⊆ C be a connected open set, and let A be an n×m-matrix
of scalar meromorphic functions on D. Let r be the generic rank of A, and assume
that r > 0. Then there exist holomorphic matrix functions E : D → GL(n, C) and
F : D → GL(m, C) such that EAF is a block matrix of the form

EAF :=
(

B 0
0 0

)
, (11.5.4)

where B is an r × r-matrix of maximal generic rank of scalar meromorphic func-
tions on D.

Proof. By the Smith factorization Theorem 4.3.1, for each w ∈ D, we have a
neighborhood Uw ⊆ D of w and holomorphic functions Ew : Uw → GL(n, C),
Fw : Uw → GL(m, C) such that

Ew(z)A(z)Fw(z) =
(
Δ(z) 0
0 0

)
, z ∈ Uw \ {w} ,

where Δ is the r × r diagonal matrix with the diagonal (z − w)κ1 , . . . , (z − w)κr .
Setting

R0 =
{

z ∈ Cn
∣∣∣ zr+1 = . . . = zn = 0

}
and

K0 =
{

z ∈ Cm
∣∣∣ z1 = . . . = zr = 0

}
,

this implies that, for all w ∈ D and z ∈ Uw \ {w},

ImA(z) = E−1
w (z)R0 and KerA(z) = Fw(z)K0 . (11.5.5)

Let P be the set of poles of A and let N be the set of all z ∈ D \ P such that
rankA(z) < r. If w ∈ D \ (P ∪N), then (11.5.5) holds also for z = w. Therefore,
we have a uniquely determined holomorphic family

{
R(z)

}
z∈D

of subspaces (see
Def. 6.4.1) of Cn as well as a uniquely determined holomorphic family

{
K(z)

}
z∈D

of subspaces of Cm such that

R(z) = ImA(z) and K(z) = KerA(z) for z ∈ D \ (P ∪N) .

Then, by Theorem 6.9.1, we can find holomorphic functions E : D → GL(n, C)
and F : D → GL(m, C) such that

E(z)R(z) = R0 and F (z)K0 = K(z) for all z ∈ D .

Then, for z ∈ D \ (P ∪N),

Im
(
E(z)A(z)F (z)

)
= E(z)A(z)F (z)Cn = E(z)A(z)F (z)

(
R0 ⊕K0

)
= R0

and
Im

(
E(z)A(z)F (z)

)
= R0 and Ker

(
E(z)A(z)F (z)

)
= K0 ,
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i.e.,, over D \ (P ∪N), EAF is of the form (11.5.4). Since N is discrete and closed
in D \ P , this implies by continuity that EAF is of the form (11.5.4) also in the
points of N . �
11.5.6 Lemma. Let D ⊆ C be a connected open set, and let A be an r × r-matrix
of scalar meromorphic functions of generic rank r on D. Then there exist not
identically vanishing scalar meromorphic functions ϕ1, . . . , ϕr on D, such that the
quotients ϕj/ϕj+1, 1 ≤ j ≤ r − 1, are holomorphic on D, and A is locally holo-
morphically equivalent over D to the diagonal matrix with the diagonal ϕ1, . . . , ϕr.
Supplement: If w ∈ D and κ1(w) ≥ . . . ≥ κr(w) is the vector of powers of A at w
(Def. 4.3.2), then the functions

ϕj(z)
(z − w)κj(w)

, 1 ≤ j ≤ r,

are holomorphic and 	= 0 in some neighborhood of w.

Proof. Since the generic rank of A is maximal, by the Smith factorization Lemma
4.3.1, for each w ∈ D, there exist integers κ1(w) ≥ . . . ≥ κr(w) such that A is
holomorphically equivalent at w to the diagonal matrix function with the diagonal

(z − w)κ1(w), . . . , (z − w)κr(w) . (11.5.6)

Let Z be the set of points w ∈ D such that at least one of the numbers
κ1(w), . . . , κr(w) is different from zero. Since Z is discrete and closed in D, then
by the Weierstraß product theorem we can find scalar meromorphic functions
ϕ1, . . . , ϕr on D which are holomorphic and 	= 0 on D \Z and such that, for each
w ∈ Z, there is a neighborhood Uw ⊆ D of w such that the functions

hw
j (z) :=

ϕj(z)
(z − w)κj(w)

, 1 ≤ j ≤ r,

are holomorphic and 	= 0 on Uw. Since κ1(w) ≥ . . . ≥ κr(w), then the quotients
ϕj/ϕj+1, 1 ≤ j ≤ r − 1, are holomorphic on D. Denote by Δ the diagonal matrix
with the diagonal

ϕ1, . . . , ϕk .

Further, for w ∈ Z, we denote by Hw the diagonal matrix with the diagonal

hw
1 , . . . , hw

r .

Then each Hw is a holomorphic and invertible matrix function on Uw such that
H−1

w Δ is the diagonal matrix with the diagonal (11.5.6). Therefore A is holomor-
phically equivalent to Δ at each point w ∈ Z. Moreover, it is clear that A is
holomorphically equivalent to Δ at each point w ∈ D \Z, because, on D \Z both
A and Δ are holomorphic and of maximal rank r. Hence A and Δ are locally
holomorphically equivalent over D. �
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Now we can prove the following global version of the Smith factorization
lemma:

11.5.7 Theorem. Let D ⊆ C be a connected open set, and let A be an n × m
matrix of scalar meromorphic functions on D. Let r be the generic rank of A, and
assume that r > 0. Then there exist not identically vanishing scalar meromorphic
functions ϕ1, . . . , ϕr on D such that the quotients ϕj/ϕj+1, 1 ≤ j ≤ r − 1, are
holomorphic on D, as well as holomorphic matrix functions E : D → GL(n, C)
and F : D → GL(m, C) such that

EAF =
(
Δ 0
0 0

)
(11.5.7)

where Δ is the r × r diagonal matrix with the diagonal ϕ1, . . . , ϕr.

Supplement: If w ∈ D and κ1(w) ≥ . . . ≥ κr(w) is the vector of powers of A at w
(Def. 4.3.2), then the functions

ϕj(z)
(z − w)κj(w)

, 1 ≤ j ≤ r, (11.5.8)

are holomorphic and 	= 0 in some neighborhood of w.

Proof. By Lemma 11.5.5 we may assume that r = n = m. By Lemma 11.5.6,
we can find not identically vanishing scalar meromorphic functions ϕ1, . . . , ϕr on
D, such that, for each w ∈ D, the functions (11.5.8) are holomorphic and 	= 0
in some neighborhood of w (and, hence, the quotients ϕj/ϕj+1, 1 ≤ j ≤ r − 1,
are holomorphic on D), and A is locally holomorphically equivalent over D to the
diagonal matrix Δ with the diagonal ϕ1, . . . , ϕr. Now the assertion follows from
Lemma 11.5.3. �

Taking into account also Proposition 11.5 from this theorem we get the fol-
lowing corollary:

11.5.8 Corollary. Let D ⊆ C be a connected open set, and let A1, A2 be two n×m-
matrices of scalar meromorphic functions on D. Then the following are equivalent:

(i) The matrix functions A1 and A2 are globally holomorphically equivalent over
D.

(ii) The matrix functions A1 and A2 are locally holomorphically equivalent over
D.

(iii) The matrix functions A1 and A2 have the same vectors of powers at each
point in D (Def. 4.3.2).

(iv) The matrix functions A1 and A2 have the same numerical characteristics at
each point in D.
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11.6 Local and global equivalence

for finite meromorphic Fredholm functions

First we generalize the Smith factorization Theorem 4.3.1 to finite meromorphic
Fredholm functions. For that we introduce the notion of a local diagonal power
function:

11.6.1 Definition. Let X be a Banach space.
By a projector in X we always mean a continuous linear projector in X, i.e.,

an operator P ∈ L(X) with P 2 = P . A family {Pj}j∈I of projectors in X will be
called mutually disjoint if PjPk = 0 for all j, k ∈ I with j 	= k.

Let X, Y be Banach spaces, and let w ∈ C. A function Δ : C\{w} → L(X, Y )
will be called a local diagonal power function at w if either Δ ∈ L(X, Y ) is a
constant Fredholm operator or, for some n ∈ N∗, Δ is of the form

Δ(z) = Q0B0P0 +
n∑

j=1

(z − w)κj QjBjPj , z ∈ C \ {w} (11.6.1)

where κ1 ≥ . . . ≥ κn are integers 	= 0, P0, . . . , Pn are non-zero mutually disjoint
projectors in X, Q0, . . . , Qn are non-zero mutually disjoint projectors in Y such
that

dimKerP0 <∞ and dimKerQ0 <∞ , (11.6.2)

dim ImPj = dim ImQj = 1 if 1 ≤ j ≤ n , (11.6.3)

and Bj is an invertible operator from ImPj onto ImQj , 0 ≤ j ≤ n.

11.6.2 Remark. It is clear that any local diagonal power function Δ at w ∈ C is a
finite meromorphic Fredholm function on C. Moreover it is easy to see that if Δ
is written in the form (11.6.1), then(

κ1, . . . , κn,dimKerP0,dimKerQ0

)
is the numerical characteristic of Δ at w (Def. 11.3.6).

11.6.3 Proposition. Let X, Y be Banach spaces, let w ∈ C, and let Δ, Δ̃ : C \
{w} → L(X, Y ) be two local diagonal power functions at w. Then the following
are equivalent:

(i) The functions Δ and Δ̃ have the same numerical characteristic at w.

(ii) There exist operators E ∈ GL(Y ) and F ∈ GL(X) with Δ̃ = EΔF . In
particular, Δ̃ and Δ are globally holomorphically equivalent over C in the
sense of Definition 11.3.1 (iii).
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Proof. The implication (ii)⇒(i) is a special case of Proposition 11.3.7.
We prove (i)⇒(ii). Let Δ be written in the form (11.6.1), and let

Δ̃(z) = Q̃0B̃0P̃0 +
ñ∑

j=1

(z − w)κ̃j Q̃jB̃jP̃j , z ∈ C \ {w}

be the corresponding representation of Δ̃. Since Δ̃ has the same numerical char-
acteristic at w, then ñ = n, κ̃j = κj ,

dimKer P̃0 = dimKerP0 and dimKer Q̃0 = dimKerQ0 .

Then we can find G ∈ GL(Y ) and H ∈ GL(X) with

P̃j = H−1PjH and Q̃j = GQjG
−1 for 0 ≤ j ≤ n,

and we obtain

Δ̃(z) = G

⎛⎝Q0G
−1B̃0H

−1P0 +
n∑

j=1

(z − w)κj QjG
−1B̃jH

−1Pj

⎞⎠H .

Since the operators G−1B̃jH
−1 are invertible from ImPj to ImQj , further we can

find operators Tj ∈ GL(ImQj and Sj ∈ GL(ImPj) such that

TjG
−1B̃jH

−1Sj = Bj for 0 ≤ j ≤ n .

Set

T = (I −Q0 − . . .−Qn) +
n∑

j=0

QjTjQj

and

S = (I − P0 − . . .− Pn) +
n∑

j=0

PjSjPj .

Then T ∈ GL(Y ), S ∈ GL(X) and

T

⎛⎝Q0G
−1B̃0H

−1P0 +
n∑

j=1

(z − w)κj QjG
−1B̃jH

−1Pj

⎞⎠S

= Q0B0P0 +
n∑

j=1

(z − w)κj QjBjPj = Δ(z) .

It remains to set E = GT and F = SH. �



11.6. Local and global equivalence 401

IfX and Y are finite dimensional Banach spaces, then the Smith factorization
Theorem 4.3.1 says that an L(X, Y )-valued meromorphic operator function, at any
point, is holomorphically equivalent to a local diagonal power function. This can
be generalized to arbitrary finite meromorhic Fredholm functions (Def. 11.3.4).

11.6.4 Theorem. Let X and Y be Banach spaces, let D ⊆ C be an open set and let
A : D → L(X, Y ) be a finite meromorphic Fredholm function. Then, at each point
w ∈ D, A is holomorphically equivalent to a local diagonal power function at w.

Proof. Let w ∈ D be given, and let

A(z) =
∞∑

n=m

(z − w)nAn

be the Laurent expansion of A at w. Since the operators Am, . . . , A−1 are finite
dimensional and A0 is a Fredholm operator, then there exists a projector PX in
X such that

dim (X/ ImPX) <∞ ,

AjPX = 0 if m ≤ j ≤ −1 ,

and A0

∣∣
Im PX

is an isomorphism between ImPX and A0 ImPX . Since A0 ImPX

is of finite codimension in Y , we can find a projector PY in Y with ImPY =
A0 ImPX . Then there is a neighborhood U of w such that the function

A′ : U \ {w} −→ L(ImPX , Y ) ,

defined by
A′(z) = A(z)

∣∣
Im PX

, z ∈ U \ {w} ,

admits a holomorphic extension to w (which we also denote by A′) where A′(w) =
A0

∣∣
Im PX

. Let
A′′ : U −→ L(ImPX , ImPY )

be the function defined by A′′ = PY A′. Then A′′(w) = A0

∣∣
Im PX

is invertible
and, after shrinking U , we may assume that each A′′(z), z ∈ U , is invertible. Let
QX := IX − PX and QY := IY − PY . Then, setting

E(z) = QY +A′(z)
(
A′′(w)

)−1
PY , z ∈ U ,

we get a holomorphic function E : U → L(Y ) with E(w) = IY . After a further
shrinking of U we may assume that E(z) ∈ GL(Y ) for all z ∈ U . Then E−1A is
holomorphically equivalent to A over U . Setting

B(z) = E−1(z)A′(z)
∣∣
Im PX

, z ∈ U ,

we get a holomorphic function

B : U −→ L(ImPX , ImPY ) ,
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such that
B(z) = E−1(z)A(z)

∣∣
Im PX

for z ∈ U \ {w} .

Since
B(w) = A0

∣∣
Im PX

is an isomorphism between ImPX and ImPY , after a further shrinking of U , we
may assume that B′(z) is an isomorphism between ImPX and ImPY for all z ∈ U .
Moreover,

E(z)
(
ImPY

)
= A′(z)

((
A′′(w)

)−1( ImPY

))
= ImA′(z) , z ∈ U ,

and therefore

ImPY = E−1(z)
(
ImA′(z)

)
= B(z)

(
ImPX

)
. z ∈ U .

Hence

E−1(z)A(z) = PY B(z)PX + PY E−1(z)A(z)QX +QY E−1(z)A(z)QX

for z ∈ U \ {w} and, setting

F (z) = PX − PX(B(z))−1PY E−1(z)A(z)QX +QX ,

for all z ∈ U , we get a holomorphic function F : U → GL(X) such that

E−1(z)A(z)F (z) = PY B(z)PX +QY E−1(z)A(z)QX , z ∈ U .

Since each B(z), z ∈ U , is invertible from ImPX to ImPY , and since the spaces
ImQX and ImQY are finite dimensional, now the assertion of the lemma fol-
lows from the Smith factorization Theorem 4.3.1 applied to the operator function
QY E−1(z)A(z)

∣∣
Im QX

. �

As a first consequence of Theorem 11.6.4 we obtain:

11.6.5 Corollary. Let X and Y be Banach spaces, let D ⊆ C be an open set, and
let A,B : D → L(X, Y ) be two finite meromorphic Fredholm functions. Then, for
each point w ∈ D, the following are equivalent:

(i) The functions A and B have the same numerical characteristics at w.

(ii) The functions A and B are holomorphically equivalent at w.

Proof. That (ii) implies (i) is the statement of Proposition 11.3.7. To prove (i)
⇒ (ii), we consider a point w ∈ D and assume that A and B have the same
numerical characteristics at w. By Theorem 11.6.4, then we have local diagonal
power functions Δw,A and Δw,B at w which are holomorphically equivalent at w
to A and B, respectively. By Proposition 11.3.7, then, at w, Δw,A has the same
numerical characteristic as A, and Δw,B has the same numerical characteristic
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as B. Since A and B have the same numerical characteristics at w, it follows
that also Δw,A and Δw,B have the same numerical characteristics at w. Hence,
by Proposition 11.6.3, the functions Δw,A and Δw,B are globally holomorphically
equivalent over C. Since, at w ∈ D, the function A is holomorphically equivalent
to Δw,A, and B is holomorphically equivalent to Δw,B , this implies that A and B
are holomorphically equivalent at w. �

The following corollary is an immediate consequence of Theorem 11.6.41 :

11.6.6 Corollary. Let X, Y be Banach spaces, let D ⊆ C be a connected open set,
let A : D → L(X, Y ) be a finite meromorphic Fredholm function, and let P be the
set of poles of A. Then there exist numbers n, m ∈ N and a discrete and closed
subset Z of D with P ⊆ Z such that

dimKerA(z) = n and dim
(
Y
/
ImA(z)

)
= m if z ∈ D \ Z

and

dimKerA(z) > n and dim
(
Y
/
ImA(z)

)
< m if z ∈ Z \ P .

In particular: If A(z0) is invertible for at least one point z0 ∈ D \ P , then there
exists a discrete and closed subset Z of D with P ⊆ Z such that A(z) is invertible
for all z ∈ D \ Z.

11.6.7 Definition. With the notation from the preceding corollary we define: The
points in D \ Z will be called the generic points of A and the points in Z will be
called the non-generic points of A.

Also from Theorem 11.6.4 we get the following

11.6.8 Theorem. Let X, Y be Banach spaces, let D ⊆ C be a connected open set,
and let A : D → L(X, Y ) be a finite meromorphic Fredholm function. Let P be the
set of poles of A, and let Z be the set of all non-generic points of A (Def. 11.6.7).
Then there exist a holomorphic family {K(z)}z∈D of finite dimensional subspaces
of X (Def. 6.4.1) and a holomorphic family {R(z)}z∈D of finite codimensional
subspaces of Y such that

KerA(z) = K(z) and ImA(z) = R(z) if z ∈ D \ Z , (11.6.4)

and

KerA(z) ⊃

=

K(z) and ImA(z) ⊂

=

R(z) if z ∈ Z \ P . (11.6.5)

1Note that this consequence can be obtained also in a more direct way without using the
Smith factorization Theorem 4.3.1 which is contained in Theorem 11.6.4. Namely, by the same
arguments as we deduced Theorem 11.6.4 from the Smith factorization lemma, one can deduce
it from the simpler Proposition 11.5.1.
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Proof. By Corollary 6.4.2 the families {KerA(z)}z∈D\Z and {ImA(z)}z∈D\Z are
holomorphic families of subspaces of X and Y , respectively. Therefore, over D\Z,
we can (and have to) define the required families K and R by (11.6.4).

Now consider a point w ∈ Z. Then, by Theorem 11.6.4, there exist a neigh-
borhood U ⊆ D of w, holomorphic functions E : U → GL(Y ), F : U → GL(X)
and a local diagonal power function

Δ(z) = Q0B0P0 +
n∑

j=1

(z − w)κj QjBjPj , z ∈ C \ {w} ,

(with the properties as in Def. 11.6.1) such that

A = EΔF on U \ {w} .

By (11.6.4), then

K(z) = F−1(z)Ker
(
P0 + . . .+ Pn

)
and R(z) = E(z) Im

(
Q0 + . . .+Qn

)
for z ∈ D \ Z. Therefore we can (and have to) define

K(w) = F−1(z)Ker
(
P0 + . . .+ Pn

)
and R(w) = E(w) Im

(
Q0 + . . .+Qn

)
.

Doing this for all points in Z, we obtain a holomorphic family {K(z)}z∈D of
subspaces of X and a holomorphic family {R(z)}z∈D of subspaces of Y such that
(11.6.4) is satisfied. Moreover, if w ∈ Z \ P , then κj > 0 for all 1 ≤ j ≤ n, which
implies (11.6.5). �
11.6.9 Definition. With the notation from the preceding theorem we define: The
family {K(z)}z∈D will be called the smoothing of the kernel of A. The family
{R(z)}z∈D will be called the smoothing of the image of A.

With this definition, as an immediate consequence of Theorem 6.9.1 we ob-
tain:

11.6.10 Theorem. Let X, Y be Banach spaces, let D ⊆ C be a connected open set,
let A : D → L(X, Y ) be a finite meromorphic Fredholm function, and let Z be the
set of non-generic points of A. Let {K(z)}z∈D be the smoothing of the kernel of A,
and let {R(z)}z∈D be the smoothing of the image of A, and let z0 ∈ D \ Z. Then
there exist holomorphic functions E : D → GL(Y ) and F : D → GL(X) with

K(z) = F (z)K(z0) and R(z) = E(z)R(z0) for all z ∈ D. (11.6.6)

11.6.11 Theorem. Let X, Y be Banach spaces, let D ⊆ C be a connected open set,
let A : D → L(X, Y ) be a finite meromorphic Fredholm function, and let Z be the
set of non-generic points of A (Def. 11.6.7). Then there exist

– a Banach space M ,
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– a surjective operator Ψ ∈ L(X, M) with dimKerΨ < ∞,

– an injective operator Φ ∈ L(M,Y ) with finite codimensional and, hence2,
closed image in Y ,

– a finite meromorphic Fredholm function BM : D → L(M) which is holomor-
phic and invertible on D \ Z,

such that A is holomorphically equivalent to ΦBMΨ over D.

Proof. We use the notation of the preceding theorem; for z ∈ D \ Z we put
Ã(z) = E−1(z)A(z)F (z). By (11.6.6), then

K(z0) = Ker Ã(z) and R(z0) = Im Ã(z) for z ∈ D \ Z. (11.6.7)

Choose the required space M as a direct complement of K(z0) in X. Then, by the
first relation in (11.6.6), F (z)M is a direct complement in E of K(z) = KerA(z)
for z ∈ D \Z. Hence A(z)F (z)M = ImA(z) = R(z) for z ∈ D \Z. By the second
relation in (11.6.6), this implies that

Ã(z)M = R(z0) for z ∈ D \ Z. (11.6.8)

Moreover, since K(z0) is the kernel of A(z0) and R(z0) is the image of A(z0),
A(z0)

∣∣
M
is an invertible operator from M onto R(z0). Set Φ = A(z0)

∣∣
M
. Then it

follows from (11.6.8) that, by setting

BM (z) = Φ−1Ã(z)
∣∣
M

for z ∈ D \ Z,

we obtain a holomorphic function BM : D \ Z → GL(M). Since Ã is finite
meromorphic and Fredholm at the points of Z also as a function with values
in L

(
X, R(z0)

)
, and since Φ−1 is an invertible operator from R(z0) to M , it fol-

lows that BM is finite meromorphic and Fredholm at the points of Z. Finally we
choose Ψ as the projector from X onto M parallel to K(z0). Then it is clear from
the definition of BM and (11.6.7) that

E−1(z)A(z)F (z)
∣∣
M
= Ã(z)

∣∣
M
= ΦBM (z)Ψ

∣∣
M

for all z ∈ D \ Z.

Moreover, by the first relation in (11.6.6),

E−1(z)A(z)F (z)K(z0) = E−1(z)A(z)K(z) = {0} for all z ∈ D \ Z .

Hence
E−1(z)A(z)F (z) = ΦBM (z)Ψ for all z ∈ D \ Z ,

i.e., A and ΦBM (z)Ψ are holomorphically equivalent on D. �
2It follows from the Banach open mapping theorem that ImΦ is closed if it is of finite codi-

mension in Y .
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11.6.12 Theorem. Let X, Y be Banach spaces, let D ⊆ C be a connected open set,
and let A,B : D → L(X, Y ) be finite meromorphic Fredholm functions. Then the
following are equivalent:

(i) The functions A and B have the same numerical characteristics at each point
in D.

(ii) The functions A and B are locally holomorphically equivalent on D.

(iii) The functions A and B are globally holomorphically equivalent over D.

Proof. The equivalence of (i) and (ii) follows from Corollary 11.6.5. The implica-
tion (iii) ⇒(ii) is trivial.

It remains to prove (ii) ⇒ (iii). Assume the functions A and B are locally
holomorphically equivalent on D. Then A and B have the same set of non-generic
points. We denote this set by Z. By Theorem 11.6.12, we may assume that X = Y ,
and A(z), B(z) ∈ GL(X) for all z ∈ D\Z. Then, by Corollary 11.6.6, the functions
A andB are meromorphically invertible in the sense of Definition 11.4.1. Therefore,
it follows from Theorem 11.4.2 that they are globally holomorphically equivalent
over D. �

11.7 Global diagonalization

of finite meromorphic Fredholm functions

Here we globalize the diagonalization Theorem 11.6.4. First we have to introduce
an appropriate notion of a “global diagonal”.

11.7.1 Definition. Let M be a Banach space, and let D ⊆ C be a connected
open set. A meromorphic function Δ : D → L(M) will be called an invertible
meromorphic diagonal function on D if, for some ω ∈ N ∪ {∞}, it is of the form

Δ = I +
ω∑

j=1

(ϕj − 1)Pj (11.7.1)

where:

• {Pj}ω
j=1 is a family of one-dimensional mutually disjoint projectors in M ;

• {ϕj}ω
j=r+1 is a family of not identically vanishing meromorphic functions on

D such that the functions ϕj/ϕj+1, r + 1 ≤ j ≤ ω − 1, are holomorphic on
D;

• if ω =∞, then the following condition is satisfied (which ensures the conver-
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gence of the infinite sum in (11.7.1)):

for each compact set K ⊆ D, there exists ωK ∈ N such that
the functions ϕj , j > ωK , are holomorphic on K, and

∞∑
j=ωK+1

‖Pj‖max
z∈K

∣∣ϕj(z)− 1
∣∣ <∞ .

(11.7.2)

11.7.2 Remark. If, in the preceding definition, ω < ∞ and if we set P :=
∑ω

j=1 Pj

and Q = I − P , then Δ can be written in the form

Δ = Q+ P

⎛⎝ ω∑
j=1

ϕjPj

⎞⎠P ,

which ”shows” the diagonal. For ω =∞ this is impossible, because then the series∑∞
j=1 ϕjPj does not converge, at least not in the operator norm. In the sense of

strong convergence however, this is sometimes possible.
For example, let M be a separable Hilbert space with the scalar product

(·, ·) and an orthonormal basis {ej}j∈N∗ , and let Pj(x) = (x, ej)ej for x ∈ H and
j ∈ N∗. Then, for each compact set K ⊆ D and sufficiently large ωK ∈ N, the
series ∞∑

j=ωK+1

ϕjPj x

converges uniformly on K for each vector x ∈ H. This is even the case if instead
of condition (11.7.2), we only require the following weaker condition:

For each compact set K ⊆ D, there exists ωK ∈ N such that the functions
ϕj , j > ωK , are holomorphic on K and

sup
j>ωK , z∈K

|ϕj(z)| <∞ .

Therefore, then Δ can be written in the form

Δ =
∞∑

j=1

ϕjPj .

11.7.3 Remark. We use the notation of Definition 11.7.1.
Then Δ is a finite meromorphic Fredholm function on D (Def. 4.1.1), which

can be seen as follows:
Let w ∈ D. Take a neighborhood Uw of w which is relatively compact in D.

Then, by (11.7.2), we can find ωw ∈ N such that the functions ϕj , j > ωw, are
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holomorphic in a neighborhood of Uw,
∞∑

j=ωw+1

‖Pj‖ max
z∈Uw

∣∣ϕj(z)− 1
∣∣ <

1
2

. (11.7.3)

Set P =
∑ωw

j=1 Pj and Q = I − P . Then Δ can be written in the form

Δ = Q

(
I +

∞∑
j=ωw+1

(ϕj(z)− 1)Pj

)
Q+ P

( ωw∑
j=1

ϕj(z)Pj

)
P ,

where, by (11.7.3),

Q

(
I +

∞∑
j=ωw+1

(ϕj(z)− 1)Pj

)
Q

∣∣∣∣
Im Q

is holomorphic and invertible on Uw as a function with values in L(ImQ). This
shows that Δ is a finite meromorphic Fredholm function on Uw. Moreover, the
numerical characteristic of Δ at w can be found as follows: Let 1 ≤ j1 < . . . <
jn ≤ ωw be the indices such that, for all 1 ≤ j ≤ ωw,

ordw ϕj

{
	= 0 if j ∈ {j1, . . . , jn},
= 0 if j 	∈ {j1, . . . , jn}.

Then (
ordw ϕj1

, . . . , ordw ϕjn
, 0 , 0

)
is the numerical characteristic of Δ at w.

Now we construct invertible meromorphic diagonal functions with given nu-
merical characteristics.

11.7.4 Lemma. Let M be an infinite dimensional Banach space, and let {Pj}∞j=1

be an infinite sequence of mutually disjoint one-dimensional projectors in M . Let
D ⊆ C be a connected open set, and let Z be a discrete and closed subset of D.
Suppose, for each w ∈ Z, a collection of non-zero integers κw

1 ≥ . . . ≥ κw
nw

is
given, nw ∈ N∗. Then there exists an invertible meromorphic diagonal function
Δ : D → L(M), where the projectors in (11.7.1) can be chosen from the family
{Pj}∞j=1, such that

• Δ is holomorphic and invertible on D \ Z;

• for w ∈ Z,
(
κw

1 , . . . , κw
nw

, 0, 0
)

is the numerical characteristic of Δ at w.

Proof. Let {wν}ω
ν=1 be the set Z numbered in some way, where ω ∈ N∗ if Z is

finite and ω =∞ if Z is infinite. Set

N∗ω =

{
{1, 2, . . . , ω} if ω < ∞ ,

N∗ if ω =∞ .
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By the Weierstrass product theorem (for example, by setting fw(z) = (z−w)κj in
Theorem 2.7.1), we can find a sequence {φj}∞j=1 of scalar meromorphic functions
on D, which are holomorphic and 	= 0 on D \ {wν}ω

ν=1, and such that, for all
ν ∈ N∗ω,

ordwν
φj =

{
κwν

j for 1 ≤ j ≤ nwν
,

0 for all j ∈ N∗ with j > nν .
(11.7.4)

As κwν
1 ≥ . . . ≥ κwν

nwν
, then the quotients φj/φj+1 are holomorphic on D.

First consider the case

m := sup
ν∈N∗

ω

nwν
<∞ .

Then

Δ := I −
m∑

j=1

Pj +
m∑

j=1

φjPj = I +
m∑

j=1

(φj − 1)Pj (11.7.5)

is a meromorphic diagonal function on D. Since each φj is holomorphic and 	= 0 on
D\{wν}ω

ν=1, and by (11.7.4), we see that Δ has the same numerical characteristics
as A.

Now let
sup

ν∈N∗
ω

nwν
=∞ . (11.7.6)

Then ω = ∞ and we have to modify the sequence {φj}∞j=1 in order to obtain a
sequence {ϕj}∞j=1 of meromorphic functions onD satisfying also condition (11.7.2).

Choose a sequence {Ks}∞s=1 of compact subsets of D such that

•
∞⋃

s=1
Ks = D,

and, for each s ∈ N∗,

• Ks is contained in the interior of Ks+1,

• Ks is simply connected with respect to D (i.e., each connected component of
C \Ks contains at least one point of C \D).

Since the sequence {wν}∞ν=1 is discrete and closed in D, each Ks contains at most
a finite number of wν ’s. Therefore

m(s) := sup
{
nwν

∣∣ ν ∈ N∗ and wν ∈ Ks

}
<∞

for all s ∈ N∗. Since the functions φj satisfy condition (11.7.4) and, onD\{wν}∞ν=1,
they are holomorphic and 	= 0, it follows that φj is holomorphic and 	= 0 in a
neighborhood of Ks if j > m(s), s ∈ N∗. Set

s(j) = max
{

s ∈ N∗
∣∣∣ j > m(s)

}
, j ∈ N∗.
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Then each φj is holomorphic and 	= 0 in a neighborhood of Ks(j). Therefore,
by the Runge approximation Theorem 5.0.1 for invertible functions, there exists
holomorphic functions ψj : D → C \ {0} such that

max
z∈Ks(j)

∣∣∣∣φj(z)
ψj(z)

− 1
∣∣∣∣ <

2−j

‖Pj‖
, j ∈ N∗ . (11.7.7)

Set

ϕj =
φj

ψj
, j ∈ N∗ .

Since the functions φj satisfy condition (11.7.4) and, on D \ {wν}∞ν=1, they are
holomorphic and 	= 0, then the same is true for the functions ϕj , i.e.,, for all
ν ∈ N∗,

ordwν
ϕj =

{
κwν

j for 1 ≤ j ≤ nwν ,

0 for all j ∈ N∗ with j > nwν
,

(11.7.8)

and, on D \ {wν}∞ν=1, each ϕj is holomorphic and 	= 0.
Since limj→∞ s(j) =∞, each compact set K ⊆ D is contained in some Ks(j).

Therefore it follows from (11.7.7) that the sequence {ϕj}∞j=1 satisfies condition
(11.7.2). Therefore, setting

Δ = I +
∞∑

j=1

(ϕj − 1)Pj , (11.7.9)

we can define a meromorphic diagonal function Δ on D. Since the functions ϕj

satisfy condition (11.7.8), and, on D \{wν}∞ν=1, they are holomorphic and 	= 0, we
see that Δ is holomorphic and invertible on D \ {wν}∞ν=1 and, at wν , ν ∈ N∗, Δ
has the numerical characteristic (cf. Remark 11.7.3)(

κwν
1 , . . . , κwν

nwν
, 0, 0

)
. �

11.7.5 Definition. Let X, Y be Banach spaces, and let D ⊆ C be a connected
open set. A meromorphic function Δ : D → L(X, Y ) will be called a meromor-
phic diagonal function on D if there exists a Banach space M and an invertible
meromorphic diagonal function ΔM : D → L(M) such that Δ is of the form

Δ = ΦΔMΨ , (11.7.10)

where Ψ ∈ L(X, M) is surjective with dimKerΨ < ∞, and Φ ∈ L(M,Y ) is
injective with finite codimensional and, hence3, closed image in Y ,

3It follows from the Banach open mapping theorem that ImΦ is closed if it is of finite codi-
mension in Y .
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It is easy to see that each meromorphic diagonal function Δ onD (notation as
in the preceding definition) is a finite meromorphic Fredholm function on D, where
if (κ1, . . . , κn, 0, 0) is the numerical characteristic of ΔM at some point w ∈ D
(cf. Remark 11.7.3), then

(
κ1, . . . , κn,dimKerΨ,dim(Y/ ImΦ)) is the numerical

characteristic of Δ at w.

11.7.6 Theorem. Let X, Y be Banach spaces, let D ⊆ C be a connected open set,
and let A : D → L(X, Y ) be a finite meromorphic Fredholm function. Then there
exists a meromorphic diagonal function Δ : D → L(X, Y ) such that A and Δ are
globally holomorphically equivalent over D. (Recall that then, by Theorem 11.6.12,
the functions A and Δ have the same numerical characteristics.)

Proof. Let Z be the set of non-generic points of A. Now we use the notation from
Theorem 11.6.11. Then, by Lemma 11.7.4, there exists an invertible meromorphic
diagonal function ΔM : D → L(M) which has the same numerical characteristics
as BM . By therorem 11.6.12, ΔM is globally holomorphically equivalent to BM

over D, i.e., we have holomorphic functions T, S : D → GL(M) with BM =
TΔMS. Let Φ(−1] be a left inverse of Φ, let Q be a projector from Y to ImΦ, let
Ψ(−1) be a right inverse of Ψ, and let P be the projector fromX to ImΨ(−1) parallel
to KerΨ. Define holomorphic functions F : D → GL(X) and D : D → Gl(Y ),
setting

F (z) = (I − P ) + PΨ−1S(z)ΨP and E(z) = (I −Q) +QΦT (z)Φ(−1)Q

for z ∈ D. Then

E(z)ΦΔM (z)ΨF (z) = QΦT (z)Φ(−1)QΦΔM (z)ΨPΨ(−1)S(z)ΨP

= ΦT (z)ΔM (z)S(z)Ψ = ΦBM (z)Ψ for all z ∈ D.

Hence ΦBMΨ and ΦΔMΨ are holomorphically equivalent over D, where, by defi-
nition, ΦΔMΨ is a meromorphic diagonal function. Since A and ΦBMΨ are holo-
morphically equivalent over D, this completes the proof. �

11.8 Comments

Holomorphic equivalence for polynomial matrix functions was introduced long ago
(see [Ge], for holomorphic matrix functions see [BGR]). For operator functions it
was considered probably for the first time in [Eni]. Developments concerned with
this term can be found in [GKL, GS, Go3, GGK1] and the literature cited there.

The first two sections together with the proofs are borrowed from [GGK1].
The local principle of section 8.3 is new and is published here for the first time.
The global diagonalization theorems for finite meromorphic Fredholm functions
were obtained in [Le4, Le5]. The corresponding local results were proved in [GS].
The fact that the kernel and the cokernel of such functions can be smoothed, which
follows from [GS], was established already in [Go1].
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Birkhäuser, Basel-Boston, Mass., 1979, 228 pp.

[BGK1] Bart, H., Gohberg, I, Kaashoek, M. A., Wiener-Hopf factorization, in-
verse Fourier transforms and exponentially dichotomous operators, J.
Functional Analyis, 68, No. 1 (1986), 1–42.

[BGK2] Bart, H., Gohberg, I, Kaashoek, M. A., Invariants for Wiener-Hopf
equvalence of analytic operator functions, Operator Theory: Advances
and Applications 21, Birkhäuser, 1986, 317–355.
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[Ru] Rudin, W., Real and complex analysis, McGraw-Hill 1987.

[Sh1] Shubin, M. A., On the local principle in the factorization problem, Mat.
Issled. 6 (1971), no. 1(28).

[Sh2] Shubin, M. A., On holomorphic families of subspaces of a Banach space,
translated from the Russian by K. Clancey, W. Kaballo and G. Ph. A.
Thijsse, Integral Equations and Operator Theory 2 (1979), no. 3, 407–
420.
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