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Preface

The present book deals with various types of factorization problems for matrix and
operator functions. The problems appear in different areas of mathematics and its
applications. A unified approach to treat them is developed. The main theorems
yield explicit necessary and sufficient conditions for the factorizations to exist and
explicit formulas for the corresponding factors. Stability of the factors relative to
a small perturbation of the original function is also studied in this book.

The unifying theory developed in the book is based on a geometric approach
which has its origins in different fields. A number of initial steps can be found in:

(1) the theory of non-selfadjoint operators, where the study of invariant sub-
spaces of an operator is related to factorization of the characteristic matrix
or operator function of the operator involved,

(2) mathematical systems theory and electrical network theory, where a cascade
decomposition of an input-output system or a network is related to a factor-
ization of the associated transfer function, and

(3) the factorization theory of matrix polynomials in terms of invariant subspaces
of a corresponding linearization.

In all three cases a state space representation of the function to be factored is
used, and the factors are expressed in state space form too. We call this approach
the state space method. It has a large number of applications. For instance, besides
the areas referred to above, Wiener-Hopf factorizations of some classes of symbols
can also be treated by the state space method.

The present book is the second book which is devoted to the state space
factorization theory. The first was published in 1979 as the monograph by H. Bart,
I. Gohberg and M.A. Kaashoek, “Minimal factorization of matrix and operator
functions,” Operator Theory: Advances and Applications 1, Birkhäuser Verlag.
This 1979 book appeared very soon after the first main results were obtained. In
fact, some of these results where published in the 1979 book for the first time.

This second book, which is written by the authors of the first book jointly
with A.C.M. Ran, consists of four parts. Parts I, II and IV contain a substantial
selection from the first book, in a reorganized and updated form. Part III, which
covers more than a quarter of the book, is entirely new. This third part is devoted



xii Preface

to the theory of factorization into degree one factors and its connection to the
combinatorial problem of job scheduling in operations research. It also contains
Maple procedures to calculate degree one factorizations. In contrast to the other
parts, this third part is completely finite-dimensional and can be considered as
a new advanced chapter of Linear Algebra and its Applications. Almost each
chapter in this book offers new elements and in many cases new sections, taking
into account a number of new results in state space factorization theory and its
applications that have appeared in the period of 25 years after publication of the
first book. On the other hand in the present book there is less emphasis on Wiener-
Hopf integral equation and its applications than in the first book. However these
topics are not entirely absent but, for instance, the applications to transport do
not appear in this book. The text is largely self-contained, and will be of interest
to experts and students in Mathematics, Sciences and Engineering.

The authors are in the process of writing another book, also devoted to the
state space approach to factorization. There the emphasis will be on canonical
factorization and symmetric factorization with applications to different classes of
convolution equations. For the latter we have in mind the transport equation, sin-
gular integral equations, equations with symbols analytic in a strip, and equations
involving factorization of non-proper rational matrix functions. Furthermore, a
large part of this third book will deal with factorization of matrix functions satis-
fying various symmetries. A main theme will be the effect on factorization of these
symmetries and how the symmetries can be used in effective way to get state space
formulas for the factors. Applications to H-infinity control theory, which have been
developed in the eighties and nineties, will also be included.

The authors gratefully acknowledge a visitor fellowship for the second au-
thor from the Netherlands Organization for Scientific Research (NWO), and the
financial support from the School of Economics of the Erasmus University at Rot-
terdam, from the School of Mathematical Sciences of Tel-Aviv University and the
Nathan and Lily Silver Family Foundation, and from the Mathematics Depart-
ment of the Vrije Universiteit at Amsterdam. These funds allowed us to meet and
to work together on the book for different extended periods of time in Amsterdam
and Tel-Aviv.

In conclusion, we would like to express our gratitude to Johan Kaashoek who
wrote for this book two new sections with Maple procedures for computing certain
degree one factorizations. Without his help these sections would not have been.
He also read Part III of the book in detail and provided us with several useful
comments. We thank our friends and colleagues who made comments on earlier
drafts of this book. In particular, we would like to mention Sanne ter Horst for
his corrections to the first part of the book, Leonia Lerer for his comments on the
first two parts, and Rob Zuidwijk for his remarks about the third part.

The authors Amsterdam – Rotterdam – Tel-Aviv
Spring 2007





Chapter 0

Introduction

This monograph is devoted to theory and applications of various types of fac-
torizations for matrix and operator functions belonging to different classes. The
types of factorizations described in the book appear in several branches of algebra,
analysis and applications. Let us mention a few examples.

In the theory of non-selfadjoint operators [30, 108] there exists the notion of
regular factorization of the characteristic matrix or operator function of a given op-
erator. This type of factorization leads to the description of an invariant subspace
of the operator involved and, what is more important, to triangular representation
of this operator [61]. In systems theory and electrical network theory [27, 84] one
encounters the notion of minimal factorization of the transfer function of a system
or a network. Such a factorization allows one to represent a system or a network
as a cascade connection of systems or networks with simpler synthesis. Sometimes,
the situation allows for so-called complete factorizations. These are minimal factor-
izations where the factors are of the simplest possible type, namely of (McMillan)
degree one. Dropping the minimality requirement, factorizations into degree one
factors are always possible. Those that have the least possible number of factors
are called quasicomplete. Via this notion a connection is made with the two ma-
chine flow shop problem from the theory of combinatorial job scheduling. Another
type of factorization that we shall consider is that of canonical Wiener-Hopf fac-
torization [45, 57] of some classes of symbols. This factorization, when it exists,
allows one to invert Wiener-Hopf, Toeplitz and singular integral operators, and
when the factors are known one can also build explicitly the inverses of these op-
erators. Factorization of matrix or operator polynomials into polynomials of lower
degree [69, 101] is also a type of factorization we shall discuss.

The matrix and operator functions that are considered have in common that
they appear in a natural way as functions of the form

W (λ) = D + C(λI − A)−1B (1)
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or (after some transformations) can be represented in this form. In the above for-
mula λ is a complex variable, and A, B, C, and D are matrices or (bounded) linear
operators acting between appropriate Banach or Hilbert spaces. When A, B, C,
and D are matrices or the underlying spaces are all finite-dimensional, the function
W is a rational matrix function which is analytic at infinity. From mathematical
systems theory it is known that conversely any rational matrix function which is
analytic at infinity admits a representation of the above form. In systems theory
the right-hand side of (1) is called a state space realization of the function W , and
one refers to the space in which A is acting as the state space. For this reason we
call the method that we are using in this book the state space method.

The state space approach has been used very successfully in mathematical
systems theory and network theory. In this book we use the method to deal with
various classes of factorization problems. The method has also been used in other
branches of analysis, for instance, in interpolation theory [8, 43].

Realizations allow us to deal with factorization from a geometric point of
view. Special attention is paid to various types of factorizations, for example, to
canonical factorization, minimal and non-minimal factorizations, pseudo-canonical
factorization, degree one factorizations and others. The problem of numerical com-
putations of the factors of a given matrix or operator function leads in a natural
way to questions of stability of divisors under small perturbations. It turns out
that in general the factors are unstable. In this book the stable cases are described
and estimates are given for the measures of stability.

Not only motivations but also applications play an important role in the
book. We shall deal with applications to problems in mathematical systems the-
ory and control, to problems in the theory of algebraic Riccati equations, and to
inversion problems for convolution operators. Another special feature is the con-
nection between (generally non-minimal) factorizations into elementary factors
and a problem of job scheduling from combinatorial operations research. Appli-
cations to the theory of matrix and operator polynomials and rational matrix
functions are included too.

Our intention was to make this monograph accessible for readers working
in different areas of mathematics. We have in mind Linear Algebra, Linear Op-
erator Theory, Integral Equations, Mathematical Systems Theory and Applied
Mathematics. This forced us to make the exposition reasonably self-contained. In
particular, we included some known material about characteristic operator func-
tions, angular operators, minimal factorizations of rational matrix functions, the
gap between subspaces et cetera.

We shall now give a short description of the contents of the book. Not count-
ing the present introduction, the book consists of four parts.

Part I. The first part has a preparatory character. The motivating problems are
described, and the underlying concepts are developed. In this part also the notions
of nodes and characteristic function, and of systems and transfer functions are



Chapter 0. Introduction 3

introduced. The main operations on nodes and systems are studied, and the effect
of these operations on the characteristic or transfer functions are described. The
basic factorization principle used throughout the book already appears in this
part, including its version in terms of angular subspaces and Riccati equations.
The problem of realization is also addressed, and the connection with linearization
of operator functions is clarified.

Part II. The second part deals with the notions of minimality of realizations and
minimality of factorizations. For finite-dimensional systems minimality is equiv-
alent to controllability and observability. For rational matrix functions minimal
realizations are constructed in terms of the pole-zero structure of the given func-
tion, and minimal factorizations are described in terms of pole-zero cancellation.
This part contains also a study of the notion of minimality for various classes of
finite- and infinite-dimensional systems. Using the notion of local minimality, the
concept of a pseudo-canonical factorization relative to a curve is introduced and
analyzed for rational matrix functions with singularities on the given curve.

Part III. The third part is devoted to the problem of factorization into elementary
functions, that is, into factors that have a minimal realization with a state space
of dimension one, the so-called degree one factors. A new feature is the connec-
tion to a job scheduling issue, namely to the two machine flow shop problem from
operations research. The latter involves quasicomplete factorizations, that is, gen-
erally non-minimal factorizations into degree one factors with the smallest number
of factors. Maple procedures are provided to calculate degree one factorizations,
complete as well as quasicomplete, of companion based 2×2 rational matrix func-
tions. This part is completely finite-dimensional and can be considered as a new
advanced chapter of Linear Algebra and its Applications.

Part IV. The fourth part deals with the behavior of the factors in a factoriza-
tion under small perturbations of the original function. Canonical factorization
is stable in the sense that a rational matrix function which has a canonical fac-
torization keeps this property under small perturbation. In this part we analyze
the dependence of the factors on the perturbations using state space realizations.
For minimal factorization the situation is different. It can happen that a rational
matrix function admits a non-trivial minimal factorization while after a small per-
turbation the perturbed function has no such factorization. Using the realization
theory the minimal factorizations that do not have this kind of instability are iden-
tified. The notions of stable, Lipschitz stable and isolated invariant subspaces turn
out to play an important role in the analysis. Applications to Riccati equations
are included. The case of factorization of real matrix functions is also treated in
this part and yields results that differ from the case when the underlying field is
complex.





Part I

Motivating Problems,
Systems and Realizations

An important notion in this book is that of a time-invariant linear, discrete or
continuous, input-output system. This notion is taken from mathematical systems
theory. A related notion is that of an operator node. The latter originates from the
theory of non-selfadjoint operators. Nodes can be considered as finite- or infinite-
dimensional systems with some additional restrictions on the system coefficients.
In the two theories different terminologies have been developed for objects that
are essentially the same. For instance, the transfer function of a system is the same
as the characteristic function of a node. On the other hand the type of problems
considered in the two theories are quite different.

This first part, which consists of six chapters, is of a preparatory character.
It presents in a unified way various aspects of the two theories. In Chapters 1
and 2 systems and nodes are introduced. The notions of transfer function and
characteristic function are defined and discussed. The main operations on sys-
tems and nodes – inversion, product, factorization – are introduced and studied
in detail. The effects of these operations on the transfer function or characteristic
function are analyzed. The main principle of state space factorization theory, used
throughout this book, already appears in Chapter 2 (see Section 2.4). Chapter 1
contains also a number of motivating problems. These problems and their varia-
tions reappear in different parts of the book. Chapter 3 contains the classification
of systems and nodes. Chapter 4 is dedicated to the problem of linearization of
analytic operator functions and of transfer functions of systems. In Chapter 5
the state space factorization theorem from Chapter 2 is reformulated in terms of
angular subspaces and solutions of algebraic Riccati equations. The final chapter
(Chapter 6) presents a first analysis of canonical factorization in terms of the state
space method. Included are also applications to convolution equations.





Chapter 1

Motivating Problems

This chapter has an introductory character. It presents a number of problems
involving factorization of matrix- and operator-valued functions of different types.
The functions considered appear as transfer functions of input output systems
(Section 1.1), as characteristic functions of Hilbert space operators (Sections 1.2
and 1.3), as monic matrix polynomials (Section 1.4) or as symbols of Wiener-Hopf
and singular integral equations of various types (Sections 1.5 and 1.6). For each
of these classes the corresponding factorization is described. This chapter also
motivates the state space setting for solving factorization problems.

1.1 Linear time invariant systems and

cascade connection

A system Σ can be considered as a physical object which produces an output in
response to an input. Schematically,

yu
Σ

where u denotes the input and y denotes the output. Mathematically, the input u
and the output y are vector-valued functions of a parameter t. The input can be
chosen freely (at least in principle), but the output is uniquely determined by the
choice of the input. Hence the map u �→ y is a well-defined transformation, which
is called the input output operator of the system.

The way in which the output is generated by the input can be quite compli-
cated. In this section we consider the simplest model and assume that the relation
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between input and output is described by a system of differential equations of the
following type:

Σ

⎧
⎪⎪⎨
⎪⎪⎩

x′(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t), t ≥ 0,

x(0) = 0.

(1.1)

Here the coefficients are linear operators acting between Euclidean spaces,

A : Cm → Cm, B : Cp → Cm, C : Cm → Cq, D : Cp → Cq.

Whenever convenient, we identify these operators with the corresponding matrices
(using the standard bases in the Euclidean spaces).

The space Cm is called the state space, and its elements (vectors) are called
states . The spaces Cp and Cq will be referred to as the input space and output
space, respectively. The operator A is the so-called state operator or main op-
erator of (1.1), B is the input operator , C is the output operator , and D is the
external operator , which is also called the feed through coefficient . In what follows
we shall call (1.1) a finite-dimensional linear time-invariant system or just a sys-
tem. The qualification “finite-dimensional” refers to the finite dimensionality of
the underlying spaces, and the word “time-invariant” is reflected by the fact that
the coefficients A, B, C and D do not depend on the variable t.

We shall assume that the inputs u of (1.1) are taken from the space PCE(Cp)
which consists of all piecewise continuous Cp-valued functions on [0,∞) that are
exponentially bounded. The latter means that for each u ∈ PCE(Cp) there exists
real constants M and γ (depending on u), M ≥ 0, such that ‖u(t)‖ ≤ Meγt, t ≥ 0.
Then the output y belongs to the space PCE(Cq) which consists of all piecewise
continuous exponentially bounded Cq-valued functions. In fact, the input output
operator of (1.1) is the operator T : PCE(Cp) → PCE(Cq) given by

y(t) = (Tu)(t) = Du(t) +

∫ t

0

Ce(t−s)ABu(s) ds, t ≥ 0, (1.2)

To see this, note that

x(t) =

∫ t

0

e(t−s)ABu(s) ds, t ≥ 0, (1.3)

is the unique solution of the first equation in (1.1) satisfying the initial condition
x(0) = 0. Inserting (1.3) into the second equation in (1.1) yields formula (1.2) for
the input output operator.

From (1.2) it follows that the input output operator is linear. This explains
the use of the term “linear” in connection with (1.1). Furthermore, one sees that
(1.1) is causal . This means that future inputs do not affect past outputs, i.e., for
each τ > 0 the output y(t) on [0, τ ] does not depend on the input u(t), t > τ .
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Taking Laplace transforms in (1.1) we arrive at the equivalent form in fre-
quency domain: {

λx̂(s) = Ax̂(λ) + Bû(λ),

ŷ(λ) = Cx̂(λ) + Dû(λ).
(1.4)

Here, for any exponentially bounded vector-valued function v the symbol v̂ denotes
its Laplace transform

v̂(λ) =

∫ ∞

0

e−λtv(t) dt, ℜλ ≥ c,

where c is some constant depending on v. From (1.4) one can solve ŷ(λ) in terms
of û(λ). Indeed, on some open open right half-plane of C we have

ŷ(λ) =
(
D + C(λIm − A)−1B

)
û(λ),

where Im is the m×m identity matrix (or, if one prefers, the identity operator on
Cm). So in the frequency domain the input output behavior of (1.1) is determined
by the function

W (λ) = D + C(λIm − A)−1B, (1.5)

which is called the transfer function of the system (1.1). Since the system is finite-
dimensional, the transfer function is a q × p matrix function all of whose entries
are rational functions. Such a function will be referred to as a rational matrix
function. Notice that the rational matrix function W in (1.5) is analytic at infinity.
A rational matrix function with this additional property is said to be proper .

We shall see later (in Chapter 4) that any proper rational matrix function
is the transfer function of a finite-dimensional time-invariant linear system. That
is, given a proper rational matrix function W , one can find matrices A, B, C,
D such that (1.5) holds. In this case we call the right-hand side of (1.5) or the
corresponding system (1.1) a realization of W . This connection allows one to
study problems involving a rational matrix function in terms of the four matrices
appearing in its realization. We refer to this approach as the state space method .
In particular, we shall use the state space method to solve factorization problems.

The problem to factorize a rational matrix function into factors of simpler
type appears naturally in system theory when one considers cascade connections.
By definition the cascade connection of two systems is the system which one ob-
tains when the output of the first system is taken to be the input of the second
system. Schematically:

u y

2 1
Σ Σ
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Let W1 and W2 be the transfer functions of the systems Σ1 and Σ2, respectively.
Then, given the input u, the output y2 of Σ2 is given by ŷ2(λ) = W2(λ)û(λ). Since
the input of Σ1 is the output of Σ2, it follows that the output y is given ŷ(λ) =
W1(λ)ŷ2(λ). Clearly then, the transfer function W of the cascade connection of
these two systems is given by the product W = W1W2 of W1 and W2, that is,

ŷ(λ) = W1(λ)W2(λ)û(λ) = W (λ)û(λ).

Let us analyze this in terms of the operators appearing in the representation
(1.1). For j = 1, 2, let Wj be the transfer function of the system

Σj

⎧
⎪⎪⎨
⎪⎪⎩

x′
j(t) = Ajxj(t) + Bjuj(t),

yj(t) = Cjxj(t) + Djuj(t), t ≥ 0,

x(0) = 0.

We take y2 = u1, in other words, we form the cascade connection. Taking

x =

[
x1

x2

]

as the state vector for the system thus obtained, we have

x′(t) =

[
A1x1(t) + B1u1(t)

A2x2(t) + B2u2(t)

]
=

[
A1x1(t) + B1C2x2(t) + B1D2u2(t)

A2x2(t) + B2u2(t)

]

=

[
A1 B1C2

0 A2

]
x(t) +

[
B1D2

B2

]
u2(t)

and

y(t) = y1(t) = C1x1(t) + D1u1(t)

= C1x1(t) + D1C2x2(t) + D1D2u2(t)

=
[

C1 D1C2

]
x(t) + D1D2u2(t).

Thus the transfer function W = W1W2 is also given by

W (λ) = D1D2 +
[

C1 D1C2

]
(

λ −
[

A1 B1C2

0 A2

])−1 [
B1D2

B2

]
. (1.6)

The fact that the transfer function of the cascade connection is the product
of the transfer functions of the corresponding systems is the basis for the state
space approach to factorization used in this monograph. We shall develop the state
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space factorization method for various types of factorization, including canonical
factorization (Chapter 6), minimal factorization (Chapter 9), and factorization
of rational matrix functions into a product of elementary ones (see Chapter 10
and also Theorems 2.7 and 8.15). Factorization of the latter type corresponds to
cascade synthesis (of systems) involving components of simplest possible type (cf.,
[39] and the references therein)

As can be expected from (1.6) the problem of finding a factorization of W is
related to presence of invariant subspaces of the main operator in a realization of
W . This relation is one of the leading principles of this monograph. It also turns
up in the theory of characteristic operator functions which we shall discuss in the
next two sections.

1.2 Characteristic operator functions and
invariant subspaces (1)

In the theory of characteristic functions the main object is a bounded linear oper-
ator acting on a Hilbert space, and the characteristic function serves as a unitary
invariant for the operator. In this section we consider operators close to selfadjoint
ones.

Let A be a bounded linear operator acting on a Hilbert space H . The adjoint
of A will be denoted by A∗. The imaginary part of A, given by 1

2i(A − A∗), is a
selfadjoint operator on H , and hence there exists a Hilbert space G and operators
K : G → H and J : G → G such that

KJK∗ =
1

2i
(A − A∗)

and J is a signature operator . By definition, the latter means that J is invertible
and J−1 = J = J∗. From A, K and J we construct the following operator-valued
function:

W (λ) = I + 2iK∗(λ − A)−1KJ, λ ∈ ρ(A). (1.7)

Here ρ(A) is the resolvent set of A, that is, the set of λ ∈ C such that λ − A is
(boundedly) invertible.

The operator-valued function W defined by (1.7) is called the Livsic-Brodskii
characteristic operator function of A or, more precisely, of the operator node
(A, KJ, 2iK∗, I; H, G). A Hilbert space operator J satisfying J = J∗ = J−1 is
called a signature operator . This function has special symmetry properties. In-
deed, using KJK∗ = 1

2i (A − A∗) one easily checks that

W (λ)∗JW (λ) = J − 2i(λ − λ̄)JK∗(λ̄ − A∗)−1(λ − A)−1KJ.

It follows that

W (λ)∗JW (λ) = J, λ ∈ ρ(A) ∩ R,

W (λ)∗JW (λ) ≤ J, λ ∈ ρ(A), ℑλ ≤ 0.
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These formulas remain true if the positions of W (λ) and W (λ)∗ are interchanged.
It is possible, using the above formulas, to give an intrinsic characterization of the
class of functions that appear as Livsic-Brodskii characteristic functions (see [30]).

The characteristic operator function can be viewed as the transfer function
of the following system

⎧
⎪⎪⎨
⎪⎪⎩

x′(t) = Ax(t) + KJu(t),

y(t) = 2iK∗x(t) + u(t), t ≥ 0,

x(0) = 0.

The above system will be called a Brodskii J-system; this term will also be used
for the corresponding operator node (A, KJ, 2iK∗, I; H, G).

Suppose that A is unitary equivalent to an operator B, i.e., A = UBU∗,
where U : H1 → H is unitary. Then

KJK∗ =
1

2i
(A − A∗) =

1

2i
(UBU∗ − UB∗U∗) =

1

2i
U(B − B∗)U∗.

Taking L = U∗K, we see that the system (B, LJ, 2iL∗, I; H1, G) is also a Brodskii
J-system, and that this system has the same transfer function W as the system
(A, KJ, 2iK∗, I; H, G). So the characteristic operator function W does not change
under unitary equivalence. Under a certain additional minimality condition the
converse is also true. Indeed, if two characteristic operator functions W1 and W2

given by

W1(λ) = I + 2iK∗
1 (λ − A1)

−1K1J, λ ∈ ρ(A1),

W2(λ) = I + 2iK∗
2 (λ − A2)

−1K2J, λ ∈ ρ(A2),

coincide in some neighborhood of infinity and the corresponding systems are sim-
ple (cf., Subsection 7.5.1) then the operators A1 and A2 are unitary equivalent.
Actually there exists a unitary operator U such that UA1 = A2U and UK1 = K2

(see [30], Theorem I.3.2). This fact is of particular interest when the imaginary
part of A is small. For instance, when A has rank one, then W reduces to a
scalar function, and hence the infinite-dimensional operator A is determined up
to unitary equivalence by a scalar function.

The product of two Brodskii characteristic operator functions W1 and W2 is
again a Brodskii characteristic operator function. To see this, write

W1(λ) = I + 2iK∗
1 (λ − A1)

−1K1J, λ ∈ ρ(A1),

W2(λ) = I + 2iK∗
2 (λ − A2)

−1K2J, λ ∈ ρ(A2),

Here A1 : H1 → H1 and A2 : H2 → H2. As in the previous section it straight-
forward to check that the function W = W1W2 is the transfer function of the
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system

([
A1 2iK1JK∗

2

0 A2

]
,

[
K1

K2

]
J, 2i

[
K∗

1 K∗
2

]
, I; H1 ⊕ H2, G

)
.

Here H1 ⊕ H2 is the Hilbert space direct sum of H1 and H2. Put

A =

[
A1 2iK1JK∗

2

0 A2

]
, K =

[
K1

K2

]
.

Then 1
2i(A − A∗) = KJK∗. So the function W is the characteristic operator

function of the operator A.

Notice that the operator A constructed in the previous paragraph has the
space H1 as an invariant subspace. This fact contains a hint for constructing
factorizations within the class of characteristic operator functions.

To be more precise, let Θ = (A, KJ, 2iK∗, I; H, G) be a Brodskii system, and
assume that H0 is an invariant subspace of A. Let Π be the orthogonal projection
onto H0. Put

A =

[
A11 A12

0 A22

]
, K =

[
K1

K2

]

with respect to the decomposition H = H0 ⊕ H⊥
0 . Then

Θ1 = (A11, K1J, 2iK∗
1 , I; H0, G), Θ2 = (A22, K2J, 2iK∗

2 , I; H⊥
0 , G)

are Brodskii J-systems. Indeed, the imaginary part of A is given by

1

2i

([
A11 A12

0 A22

]
−
[

A∗
11 0

A∗
12 A∗

22

])
=

[
K1JK∗

1 K1JK∗
2

K2JK∗
1 K2JK∗

2

]
,

so in particular 1
2i (A11 −A∗

11) = K1JK∗
1 and 1

2i(A22 −A∗
22) = K2JK∗

2 . Moreover,
1
2iA12 = K1JK∗

2 . This implies that the product of the characteristic operator
function of A11 and the characteristic operator function of A22 (i.e., the product
of the transfer function of the systems Θ1 and Θ2) is the characteristic operator
function of A.

Under appropriate minimality conditions there is a one-one correspondence
between invariant subspaces of A and factorizations of the characteristic operator
function W of A as the product of two characteristic operator functions. Thus, in
certain cases, the problem of finding invariant subspaces of an operator A may be
solved by factorization of its characteristic operator function. For an example of
the application of this technique involving the unicellularity of a Volterra operator,
see Section XXVIII.11 in [47].
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1.3 Characteristic operator functions and
invariant subspaces (2)

The Livsic-Brodskii characteristic operator function has been designed to study
operators that are not far from being selfadjoint. There are also characteristic
operator functions that have been introduced in order to deal with operators that
are close to unitary operators. Among them are the characteristic operator function
of Sz.-Nagy and Foias and the one of M.G. Krěın (see [33] and [108] for references).
Here we shall only discuss the characteristic operator function of Krěın.

The Krěın characteristic operator function has the form

V (λ) = J(K∗)−1
(
J − R∗(I − λA)−1R

)
. (1.8)

Here A : H → H , R : G → H , J : G → G, K : G → G are operators, the
underlying spaces G and H are complex Hilbert spaces,

J = J∗ = J−1, I − AA∗ = RJR∗, J − R∗R = K∗JK, (1.9)

and the operators A and K are invertible. Instead of (K∗)−1 we also write K−∗.
With this (1.8) becomes V (λ) = JK−∗

(
J − R∗(I − λA)−1R

)
.

Obviously, (1.8) does not directly fit into the framework developed in Section
1.1. However, replacing λ by λ−1 and using (1.9), one can transform (1.8) into

U(λ) = K − JK−∗R∗A(λ − A)−1R.

This is the transfer function of the system

⎧
⎪⎪⎨
⎪⎪⎩

x′(t) = Ax(t) + Ru(t),

y(t) = −JK−∗R∗Ax(t) + Ku(t), t ≥ 0,

x(0) = 0.

The above system will be called a Krěın J-system; this term will also be used for
the corresponding operator node

Θ = (A, R,−JK−∗R∗A, K; H, G). (1.10)

Observe that the external operator of a Krěın J-system is invertible.

The product of two Krěın characteristic operator functions is again a Krěın
characteristic operator function. To see this, suppose

Uj(λ) = Ki − JK−∗
j R∗

jAi(λ − Aj)
−1Rj , j = 1, 2,

where

I − AjA
∗
j = RjJR∗

j , J − R∗
jRj = K∗

j JKj . (1.11)
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Then U = U1U2 is the transfer function of the operator node

([
A1 −R1JK−∗

2 R∗
2A2

0 A2

]
,

[
R1K2

R2

]
,

[
−JK−∗

1 R∗
1A1 −K1JK−∗

2 R∗
2A2

]
, K1K2

)
.

Moreover, this operator node is a Krěın J-system. Indeed, using (1.11) we have

I −
[

A1 −R1JK−∗
2 R∗

2A2

0 A2

] [
A∗

1 0

−A∗
2R2K

−1
2 JR∗

1 A∗
2

]

=

[
R1K2

R2

]
J
[

K∗
2R∗

1 R∗
2

]
,

and

J −
[

K∗
2R∗

1 R∗
2

]
[

R1K2

R2

]
= K∗

2K∗
1JK1K2,

while finally

[
−JK−∗

1 R∗
1A1 −K1JK−∗

2 R∗
2A2

]

= −JK−∗
1 K−∗

2

[
K∗

2R∗
1 R∗

2

]
[

A1 −R1JK−∗
2 R∗

2A2

0 A2

]
.

This proves that U = U1U2 is the transfer function of a Krěın J-system. Notice
that the main operator A is given by

A =

[
A1 −R1JK−∗

2 R∗
2A2

0 A2

]
,

and hence the space on which A1 acts is an invariant subspace for A.

Let us consider the reverse implication. Our starting point is a Krěın J-
system as in (1.10), with A acting on the Hilbert space H and A being invertible.
Assume that H0 is an invariant subspace of A. With respect to the decomposition
H0 ⊕ H⊥

0 of the state space H , write

A =

[
A1 A12

0 A2

]
, R =

[
B1

R2

]
.

Suppose that A1 or, equivalently, A2 is invertible. From RJR∗ = I − AA∗ one
easily deduces that R2JR∗

2 = I −A2A
∗
2. Since A2 is assumed to be invertible, this



16 Chapter 1. Motivating Problems

shows that I − R2JR∗
2 is invertible. But then I − JR∗

2R2 is invertible, and hence
the same holds true for J −R∗

2R2. The invertibility of J −R∗
2R2 implies (see [33])

the existence of an invertible operator K2 such that J − R∗
2R2 = K∗

2JK2. Put
K1 = KK−1

2 and R1 = B1K
−1
2 . Then K1 is also invertible. We claim that A12 =

−R1JK−∗
2 R∗

2A2. In order to prove this, we first note that A12 = −B1JR∗
2A

−∗
2 =

−R1K2JR∗
2A

−∗
2 . Furthermore we have

K2JR∗
2A

−∗
2 = JK−∗

2 (K∗
2JK2)JR∗

2A
−∗
2

= JK−∗
2 (J − R∗

2R2)JR∗
2A

−∗
2

= JK−∗
2 (R∗

2 − R∗
2R2JR∗

2)A
−∗
2

= JK−∗
2 R∗

2(I − R2JR∗
2)A

−∗
2 = JK−∗

2 R∗
2A2.

Thus A12 = −R1JK−∗
2 R∗

2A2. It follows that one can decompose the function
U(λ) = K − JK−∗R∗A(λ − A)−1R as a product of two functions corresponding
to Krěın J-systems. In fact, U = U1U2, where

Uj(λ) = Kj − JK−∗
j R∗

jAj(λ − Aj)
−1Rj , j = 1, 2

with the coefficients satisfying (1.11).

We conclude this section with an interesting characterization of Krěın J-
systems. Let G and H be complex Hilbert spaces, and let J be a signature operator
on G, that is, J = J∗ = J−1. A bounded linear operator T on G is called J-unitary
if T is invertible and T−1 = JT ∗J . By definition, a node Θ = (A, B, C, D; H, G)
is a Krěın J-system if A and D are invertible and

I − AA∗ = BJB∗, J − B∗B = D∗JD, C = −JD−∗B∗A.

A straightforward calculation shows that these conditions are equivalent to the
requirement that the external operator D of Θ is invertible and the operator

[
A B

C D

]
(1.12)

on H ⊕ G is J̃-unitary. Here J̃ = I ⊕ J . Notice that J̃ = J̃∗ = J̃−1. The class of
nodes Θ = (A, B, C, D; H, G) for which the operator (1.12) is J̃-unitary (but D
not necessarily invertible) is closed under multiplication. Characteristic operator
functions of the form D + λC(I −λA)−1B = D + C(λ−1 −A)−1B, where A, B, C
and D are such that (1.12) is unitary, have been investigated (cf., [31]; see also
Section 3.3 below).

Observe that if (1.12) is J̃-unitary and U(λ) = D + C(λ − A)−1B, then

U(λ)∗(−J)U(λ) = −J − (1 − |λ|2)B∗(λ̄ − A−∗(λ − A)−1B.
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So we have

U(λ)∗(−J)U(λ) = −J, |λ| = 1

U(λ)∗(−J)U(λ) ≤ −J, |λ| < 1.

It is possible to give an intrinsic characterization of the class of functions that
appear as transfer functions of Krěın J-systems (cf., [33]; see also [1] for the case
of matrix functions).

1.4 Factorization of monic matrix polynomials

By definition a monic m × m matrix polynomial of degree ℓ is a function of the
form

L(λ) = λℓIm + λℓ−1Aℓ−1 + · · · + λA1 + A0,

where A0, . . . , Aℓ−1 are m × m matrices. Given such a function, introduce

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Im 0 · · · 0

. . .
. . .

. . .
...

. . .
. . . 0

0 · · · · · · 0 Im

−A0 −A1 · · · · · · −Aℓ−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1.13)

the first companion operator matrix associated with L, and

C =
[

0 · · · 0 Im

]
, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

...

0

Im

⎤
⎥⎥⎥⎥⎥⎥⎦

. (1.14)

Then the (pointwise) inverse L−1 of L, given by L−1 = L(λ)−1, has the realization

L−1(λ) = C(λIm − A)−1B (1.15)

(see [66]).

To prove this identity, consider the set of differential equations in Cn-valued
vector functions y given by

{
y(ℓ)(t) + Aℓ−1y

(ℓ−1)(t) + · · · + A1y
′(t) + A0y(t) = u(t),

y(0) = 0, y ′(0) = 0 , . . . , y(ℓ−1)(0) = 0.
(1.16)
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Let us transform this to a higher-dimensional first-order system in the usual way,
by introducing

x(t) =
[

y(t)⊤ y′(t)⊤ . . . y(ℓ−1)(t)⊤
]⊤

.

Then, because of (1.16), we have

⎧
⎪⎨
⎪⎩

x′(t) = Ax(t) + Bu(t),

y(t) = Cx(t), t ≥ 0,

x(0) = 0,

(1.17)

where A, B, and C are defined by (1.13) and (1.14). Taking Laplace transform in
(1.17) and eliminating x̂(s) we obtain that

ŷ(s) = C(s − A)−1Bû(s).

On the other hand, taking Laplace transform in (1.16) we get L(s)ŷ(s) = û(s).
Thus (1.15) has been established.

We shall consider the problem of finding and describing factorizations of
L(λ) of the form L(λ) = L2(λ)L1(λ), where L1 and L2 are again monic matrix
polynomials. Certain invariant subspaces of the operator A play an important role
in solving this problem (see Section 3.4).

1.5 Wiener-Hopf integral operators and factorization

In this section we outline the factorization method of [59] to solve systems of
Wiener-Hopf integral equations. Such a system may be written as a single Wiener-
Hopf equation

φ(t) −
∫ ∞

0

k(t − s)φ(s) ds = f(t), 0 ≤ t < ∞, (1.18)

where φ and f are m-dimensional vector functions and k ∈ Lm×m
1 (−∞,∞),

that is, the kernel function k is an m × m matrix function whose entries are
in L1(−∞,∞). We assume that the given vector function f has its component
functions in Lp[0,∞), and we express this property by writing f ∈ Lm

p [0,∞).
Throughout this section p will be fixed and 1 ≤ p < ∞. The problem we shall
consider is to find a solution φ of equation (1.18) that also belongs to the space
Lm

p [0,∞).

Equation (1.18) has a unique solution φ ∈ Lm
p [0,∞) for any right-hand side

f ∈ Lm
p [0,∞) if and only if the Wiener-Hopf integral operator I−K : Lm

p [0,∞) →
Lm

p [0,∞) is invertible, where

(
Kφ

)
(t) =

∫ ∞

0

k(t − s)φ(s) ds, t ≥ 0.
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The usual method (see [59]) to solve equation (1.18) is as follows. First assume
that (1.18) has a solution φ in Lm

p [0,∞). Extend φ and f to the full real line by
putting

φ(t) = 0, f(t) = −
∫ ∞

0

k(t − s)φ(s) ds, t < 0.

Then φ, f ∈ Lm
p (−∞,∞) and the full line convolution equation

φ(t) −
∫ ∞

−∞

k(t − s)φ(s) ds = f(t), −∞ < t < ∞

is satisfied. By applying the Fourier transformation and leaving the part of f that
is given in the right-hand side, one gets

(
Im − K(λ)

)
Φ+(λ) − F−(λ) = F+(λ), λ ∈ R, (1.19)

where

K(λ) =

∫ ∞

−∞

eiλtk(t) dt, F+(λ) =

∫ ∞

0

eiλtf(t) dt,

Φ+(λ) =

∫ ∞

0

eiλtφ(t) dt, F−(λ) =

∫ 0

−∞

eiλtf(t) dt.

Note that the functions K and F+ are given, but the functions Φ+ and F− have
to be found. In fact in this way the problem to solve (1.18) is reduced to that of
finding two functions Φ+ and F− such that (1.19) holds, while furthermore Φ+

and F− must be as above with φ ∈ Lm
p [0,∞) and f ∈ Lm

p (−∞, 0].

To find Φ+ and F− of the desired form such that (1.19) holds, one factorizes
the m × m matrix function Im − K(λ). This function is called the symbol of the
integral equation (1.18). Assume that the symbol admits a factorization of the
form

Im − K(λ) =
(
Im + G−(λ)

)(
Im + G+(λ)

)
, λ ∈ R, (1.20)

where

G+(λ) =

∫ ∞

0

eiλtg+(t) dt, G−(λ) =

∫ 0

−∞

eiλtg−(t) dt,

with g+ ∈ Lm×m
1 [0,∞) and g− ∈ Lm×m

1 (−∞, 0] while, in addition, the determi-
nants det

(
Im + G+(λ)

)
and det

(
Im + G−(λ)

)
do not vanish in the closed upper

and lower half-plane, respectively. We shall refer to the factorization (1.20) as a
right canonical factorization of Im −K(λ) with respect to the real line. Under the

conditions stated above the functions
(
Im +G+(λ)

)−1
and

(
Im +G−(λ)

)−1
admit

representations as Fourier transforms:

(
Im + G+(λ)

)−1
= Im +

∫ ∞

0

eiλtγ+(t) dt, (1.21)

(
Im + G−(λ)

)−1
= Im +

∫ 0

−∞

eiλtγ−(t) dt, (1.22)
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with γ+ ∈ Lm×m
1 [0,∞) and γ− ∈ Lm×m

1 (−∞, 0]. Using the factorization (1.20)
and suppressing the variable λ, equation (1.19) can be rewritten as

(Im + G+)Φ+ − (Im + G−)−1F− = (Im + G−)−1F+. (1.23)

Let P be the projection acting on the Fourier transforms of Lm
p (−∞,∞)-functions

according to the following rule

P
(∫ ∞

−∞

eiλth(t) dt

)
=

∫ ∞

0

eiλth(t) dt.

Applying P to (1.23), one gets

(Im + G+)Φ+ = P
(
(Im + G−)−1F+

)
,

and hence
Φ+ = (Im + G+)−1P

(
(Im + G−)−1F+

)
,

which is the formula for the solution of equation (1.19). To obtain the solution φ
of the original equation (1.18), i.e., to obtain the inverse Fourier transform of Φ+,
one can employ the formulas (1.21) and (1.22). In fact,

φ(t) = f(t) +

∫ ∞

0

γ(t, s)f(s) ds, t ≥ 0,

where the kernel γ(t, s) is given by

γ(t, s) =

⎧
⎪⎪⎨
⎪⎪⎩

γ+(t − s) +

∫ s

0

γ+(t − r)γ−(r − s) dr, 0 ≤ s < t,

γ−(t − s) +

∫ t

0

γ+(t − r)γ−(r − s) dr, 0 ≤ t < s.

(1.24)

We conclude the description of this factorization method by mentioning that the
equation (1.18) has a unique solution in Lm

p [0,∞) for each f in Lm
p [0,∞) if and

only if its symbol admits a factorization as in (1.20). For details, see [45], [59].

To illustrate the method, let us consider a special choice for the right-hand
side f (cf., [59]). Take

f(t) = e−iqtx0, (1.25)

where x0 is a fixed vector in Cm and q is a complex number with ℑq < 0. Then

F+(λ) =

∫ ∞

0

ei(λ−q)tx0 dt =
i

λ − q
x0, ℑλ ≥ 0.

Now observe that

i

λ − q

((
Im + G−(λ)

)−1 −
(
Im + G−(q)

)−1
)
x0
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is the Fourier transform of an Lm
p (−∞, 0]-function and hence it vanishes when

applying the projection P . It follows that in this case the formula for Φ+ may be
written as

Φ+(λ) =
i

λ − q

(
Im + G+(λ)

)−1(
Im + G−(q)

)−1
x0.

Recall that the solution φ is the inverse Fourier transform of Φ+. So we have

φ(t) = e−iqt

(
Im +

∫ t

0

eiqsγ+(s) ds

) (
Im + G−(q)

)−1
x0. (1.26)

1.6 Block Toeplitz equations and factorization

In this section we consider the discrete analogue of a Wiener-Hopf integral equa-
tion, that is, a block Toeplitz equation. So we consider an equation of the type

∞∑

k=0

aj−kξk = ηj , j = 0, 1, 2, . . . . (1.27)

Throughout we assume that the coefficients aj are given complex m×m matrices
satisfying

∞∑

j=−∞

‖aj‖ < ∞,

and η = (ηj)
∞
j=0 is a given vector from ℓm

p = ℓp(Cm). The problem is to find
ξ = (ξk)∞k=0 ∈ ℓm

p such that (1.27) is satisfied. We shall restrict ourselves to the
case when 1 ≤ p ≤ 2; the final results however are valid for 2 < p ≤ ∞ as well.

Assume ξ ∈ ℓm
p is a solution of (1.27). Then one can write (1.27) in the form

∞∑

k=−∞

aj−kξk = ηj , j = 0,±1,±2, . . . , (1.28)

where ξk = 0 for k < 0 and ηj is defined by (1.28) for j < 0. Multiplying both
sides of (1.28) by λj with |λ| = 1 and summing over j, one gets

a(λ)ξ+(λ) − η−(λ) = η+(λ), |λ| = 1, (1.29)

where the functions a, η+, η−, ξ+ and ξ+ are given by

a(λ) =
∑∞

j=−∞ λjaj , η+(λ) =
∑∞

j=0 λjηj ,

ξ+(λ) =
∑∞

j=0 λjξj , η−(λ) =
∑−1

j=−∞ λjηj .

In this way the problem to solve (1.27) is reduced to that of finding two functions
ξ+ and η− such that (1.29) holds, while moreover, ξ+ and η− must be as above
with (ξj)

∞
j=0 and (η−j−1)

∞
j=0 from ℓm

p .
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The usual way (cf., [59] or the book [42]) of solving (1.29) is again by fac-
torizing the symbol a of the given block Toeplitz equation. Assume that a admits
a right canonical factorization with respect to the unit circle . By definition this
means that a can be written as

a(λ) = h−(λ)h+(λ), |λ| = 1, (1.30)

h+(λ) =
∞∑

j=0

λjh+
j , h−(λ) =

0∑

j=−∞

λjh−
j ,

where (h+
j )∞j=0 and (h−

−j)
∞
j=0 belong to the space ℓm×m

1 of all absolutely convergent
sequences of complex m × m matrices such that det h+(λ) �= 0 for |λ| ≤ 1 and
deth−(λ) �= 0 for |λ| ≥ 1 (including λ = ∞). Then h−1

+ and h−1
− also admit a

representation of the form

h−1
+ (λ) =

∞∑

j=0

λjγ+
j , h−1

− (λ) =
0∑

j=−∞

λjγ−
j ,

with (γ+
j )∞j=0 and (γ−

−j)
∞
j=0 from ℓm×m

1 . Defining the projection P by

P
(

∞∑

j=−∞

λjbj

)
=

∞∑

j=0

λjbj ,

one gets from (1.29) and (1.30) the identity ξ+ = h−1
+ P

(
h−1
− η+

)
. Here, for conve-

nience, the variable λ is suppressed. The solution of the original equation (1.27)
can now be written as

ξk =

∞∑

s=0

γksηs, k = 0, 1, . . . , (1.31)

where

γks =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑s
r=0 γ+

k−rγ
−
r−s, s < k,

∑s=k
r=0 γ+

s−rγ
−
r−s, s = k,

∑k
r=0 γ+

k−rγ
−
r−s, s > k.

(1.32)

The assumption that a admits a right canonical factorization as in (1.30) is
equivalent to the requirement that for each η = (ηj)

∞
j=0 in ℓm

p the equation (1.27)
has a unique solution ξ = (ξk)∞k=0 in ℓm

p . For details we refer to [59], [42].

By way of illustration, we consider the special case when

ηj = qjη0, j = 0, 1, . . . .
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Here η0 is a fixed vector in Cm and q is a complex number with |q| < 1. Then
clearly

η+(λ) =
1

1 − λq
η0, |λ| ≤ 1,

and one checks without difficulty that formula (1.31) becomes

ξk = qk
k∑

s=0

q−sγ+
s h−1

− (q−1)η0, k = 0, 1, . . . .

This is the analogue of formula (1.26) in the previous section.

Notes

The material in this chapter is standard, and can be found in much more detail in
various monographs, books, and papers. For the theory of time invariant systems
we refer to the books [84], [114], and the more recent [36]. Further information
on the theory of characteristic operator functions can be found in the books [30]
and [108]; see also the survey paper [7] and the references therein. For the general
theory of matrix polynomials, including the monic case, we refer to the book
[69]. For the corresponding theory of operator polynomials, see [101]. The idea to
think of the inverse of a monic matrix or operator polynomial as a characteristic
function appears and has been developed in [11]. Sections 5–7 contain standard
material about Wiener-Hopf integral equations and block Toeplitz equations. For
more information on these equations and the corresponding operators see the
monographs [45], [62], [63], [64] and [29]. A first introduction to the theory of
Wiener-Hopf integral equations and the theory of (block) Toeplitz operators can
be found in Chapters XII and XIII of [46] and Chapters XXIII–XXV of [47],
respectively. For an extensive review (with many additional references) of the
factorization theory of matrix functions relative to a curve and its applications to
inversion of singular integral operators of different types, including Wiener-Hopf
and block Toeplitz operators, the reader is referred to the recent survey paper [57].





Chapter 2

Operator Nodes, Systems,
and Operations on Systems

In this chapter the concepts of an operator node (abstract system) and its trans-
fer function are introduced and developed systematically. Important operations
on operator nodes (abstract systems) and the corresponding operations on the as-
sociated transfer functions are studied in detail: inversion (Section 2.2), products
(Section 2.3) and factorization (Section 2.4). With an eye on future applications,
a detailed analysis of the relationships between the various results is given in the
final section.

2.1 Operator nodes, systems and transfer functions

An operator node is a collection of three complex Banach spaces X, U, Y , and four
bounded linear operators

A : X → X, B : U → X, C : X → Y, D : U → Y.

We shall denote such a node by Θ = (A, B, C, D; X, U, Y ). Whenever convenient,
we shall think about the operators in an operator node as the coefficients of a
(possibly infinite-dimensional) time invariant system, either in continuous time,
that is ⎧

⎪⎪⎨
⎪⎪⎩

x′(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t), t ≥ 0,

x(0) = 0,
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or in a discrete time setting, i.e.,
⎧
⎪⎨
⎪⎩

x(n + 1) = Ax(n) + Bu(n),

y(n) = Cx(n) + Du(n), n = 0, 1, 2, . . . .

x(0) = 0.

Therefore, in the sequel, we shall use the word system also to denote an operator
node. Furthermore, we shall freely use the terminology of system theory in the
operator node setting.

Let Θ = (A, B, C, D; X, U, Y ) be a system (or operator node). The spaces
U, X and Y are called the input space, state space and output space of the system,
respectively. The operator A is referred to as the state space operator or main
operator of the system Θ. When A is given or can be viewed as a matrix, the
terms main matrix and state matrix will be used too. We call D the external
operator of Θ.

In the situation where U = Y , we denote Θ by (A, B, C, D; X, Y ). When, in
addition, D is the identity operator I = IY on Y , we simply write (A, B, C; X, Y )
instead of (A, B, C, I; X, Y ), and in that case we refer to Θ as a unital system.
When no confusion can arise, the spaces X, U and Y will sometimes be dropped
altogether, resulting in the notation Θ = (A, B, C, D).

By definition, the transfer function of Θ = (A, B, C, D; X, U, Y ) is the func-
tion WΘ given by

WΘ(λ) = D + C(λ − A)−1B, λ ∈ ρ(A).

Here ρ(A) is the resolvent set of A. Note that the transfer function is proper in
the sense that

lim
λ→∞

WΘ(λ) = D (2.1)

exists. The transfer function WΘ has to be considered as an analytic operator
function, defined on an open neighborhood of ∞ on the Riemann sphere C∪{∞}.
Instead of (2.1), we often write WΘ(∞) = D.

When the external operator D is invertible, we say that the system is biproper ;
when D = 0, the system is called strictly proper . Mutatis mutandis, these terms
are also used for the transfer function .

Two systems

Θ1 = (A1, B1, C1, D1; X1, U, Y ), Θ2 = (A2, B2, C2, D2; X2, U, Y ),

having the same input and output space, are said to be similar , written Θ1 ≃ Θ2,
if D1 = D2 and there exists an invertible operator S : X1 → X2 such that

A1 = S−1A2S, B1 = S−1B2, C1 = C2S.

In this case we say that S is a system similarity from Θ1 to Θ2. Notice that ≃
is reflexive, symmetric and transitive. Obviously, similar systems have the same
transfer function.
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Let W be an operator function, analytic on an open subset Ω of C ∪ {∞}.
We say that the system Θ = (A, B, C, D; X, U, Y ) is a realization for W on Ω if
Ω ⊂ ρ(A) ∪ {∞} and W (λ) = WΘ(λ) for each λ ∈ Ω. If there is no danger of
confusion (e.g., when W is a rational matrix function), we shall simply use the
term “realization” and omit the additional qualifiers. The term realization will
also be used to denote any expression of the form W (λ) = D + C(λ − A)−1B.

2.2 Inversion

Let Θ = (A, B, C, D; X, U, Y ) be a system which is biproper, that is, the external
operator D is invertible. Consider the corresponding linear time invariant system

⎧
⎪⎨
⎪⎩

x′(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t), t ≥ 0,

x(0) = 0.

(2.2)

As D is invertible, we can solve u in terms of y from the second equation in (2.2).
Inserting the solution into the first equation yields

⎧
⎪⎨
⎪⎩

x′(t) = (A − BD−1C)x(t) + BD−1y(t),

u(t) = −D−1Cx(t) + D−1y(t), t ≥ 0,

x(0) = 0.

The corresponding node will be denoted by Θ×, i.e.,

Θ× = (A − BD−1C, BD−1,−D−1C, D−1; X, Y, U),

and Θ× will be called the associate or inverse system of Θ. By slight abuse of
notation we write A× for A − BD−1C , and we call A× the associate state space
operator or associate main operator of Θ. Whenever this is feasible, the terms
associate main matrix and associate state matrix will also be employed.

The slight abuse of notation we mentioned lies in the fact that A× does not
depend on A only, but also on the other operators appearing in the system Θ. A
direct computation gives (Θ×)× = Θ.

Theorem 2.1. Let Θ = (A, B, C, D; X, U, Y ) be a biproper system, and let W = WΘ

be its transfer function. Put A× = A − BD−1C, and take λ ∈ ρ(A). Then W (λ)
is invertible if and only if λ belongs to ρ(A×). In that case, for λ ∈ ρ(A)∩ ρ(A×),
the following identities hold

W (λ)−1 = D−1 − D−1C(λ − A×)−1BD−1,

(λ − A×)−1 = (λ − A)−1 − (λ − A)−1BW (λ)−1C(λ − A)−1.
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Moreover,

W (λ)D−1C(λ − A×)−1 = C(λ − A)−1,

(λ − A×)−1BD−1W (λ) = (λ − A)−1B,

where again λ ∈ ρ(A) ∩ ρ(A×).

The first expression says that on ρ(A)∩ρ(A×), the (pointwise) inverse W−1

of W , given by W−1(λ) = W (λ)−1, coincides with the transfer function WΘ×

of the system Θ×. The last two identities can be written in different forms, for
instance as

W (λ)−1C(λ − A)−1 = D−1C(λ − A×)−1,

(λ − A)−1BW (λ)−1 = (λ − A×)−1BD−1.

We shall give two proofs of the theorem.

First proof of Theorem 2.1. Put W× = WΘ× . For λ ∈ ρ(A) ∩ ρ(A×), one has

W (λ)W×(λ) =
(
D + C(λ − A)−1B

) (
D−1 − D−1C(λ − A×)−1BD−1

)

= IY + C(λ − A)−1BD−1 − C(λ − A×)−1BD−1 +

−C(λ − A)−1BD−1C(λ − A×)−1BD−1.

Now use that
BD−1C = A − A× =

(
λ − A×

)
− (λ − A) .

It follows that W (λ)W×(λ) = IY . Analogously one has W×(λ)W (λ) = IU . The
expression for (λ − A×)−1 as well as the last two identities in the theorem are
obtained in a similar way. �

For the second proof of Theorem 2.1 we use Schur complements. First we
define this notion. Consider the 2 × 2 operator matrix

M =

[
M11 M12

M21 M22

]
: Z1 ∔ U → Z2 ∔ Y.

Here Mij , i, j = 1, 2, are bounded linear operators acting between complex Banach
spaces, M11 maps Z1 into Z2, M12 maps U into Z2, and so on. Assume that M22

is invertible. Then by Gauss elimination, M admits the following factorization

M =

[
IZ2 M12M

−1
22

0 IY

][
∆ 0

0 M22

][
IZ1 0

M−1
22 M21 IU

]
, (2.3)

where ∆ = M11 − M12M
−1
22 M21. The operator ∆ is called the Schur complement

of M22 in M . Since the first and third factor in the right-hand side of (2.3) are



2.2. Inversion 29

invertible operators, the operator M is invertible if and only if ∆ is invertible, and
in that case

M−1 =

⎡
⎣

∆−1 −∆−1M12M
−1
22

−M−1
22 M21∆

−1 M−1
22 + M−1

22 M21∆
−1M12M

−1
22

⎤
⎦ .

Similarly, if M11 is invertible, then the operator Λ = M22 −M21M
−1
11 M12 is called

the Schur complement of M11 in M . Since M11 is invertible, we have

M =

[
IZ2 0

M21M
−1
11 IY

][
M11 0

0 Λ

][
IZ1 M−1

11 M12

0 IU

]
. (2.4)

Hence, when M11 is invertible, we see that M is invertible if and only if the Schur
complement Λ is invertible, and in this case

M−1 =

⎡
⎣

M−1
11 + M−1

11 M12Λ
−1M21M

−1
11 −M−1

11 M12Λ
−1

−Λ−1M21M
−1
11 Λ−1

⎤
⎦ .

Thus if both M11 and M22 are invertible, then ∆ is invertible if and only if the
same holds true for Λ. Moreover, by comparing the two formulas for M−1, we see
that

∆−1 = M−1
11 + M−1

11 M12Λ
−1M21M

−1
11 , (2.5)

Λ−1 = M−1
22 + M−1

22 M21∆
−1M12M

−1
22 . (2.6)

Besides these inversion formulas, we also have the intertwining relations

ΛM−1
22 M21 = M21M

−1
11 ∆, M12M

−1
22 Λ = ∆M−1

11 M12. (2.7)

Second proof of Theorem 2.1. We apply the results about Schur complements
mentioned above to the operator matrix

M(λ) =

[
A − λIX B

C D

]
: X ∔ U → X ∔ Y.

According to our hypothesis, D is invertible. Thus the Schur complement of D in
M(λ) is well defined and is given by

∆(λ) = A − λIX − BD−1C = A× − λIX .

Now take λ ∈ ρ(A). Then A − λIX is invertible, and the Schur complement of
A−λIX in M(λ) exists and is equal to W (λ). It follows that W (λ) is invertible if
and only if ∆(λ) is invertible, that is, W (λ) is invertible if and only if λ ∈ ρ(A×).
Next assume that λ ∈ ρ(A)∩ρ(A×). Then (2.5) and (2.6), specified for M = M(λ),
yield the inversion formulas in Theorem 2.1. The last two identities in the theorem
are immediate from the intertwining relations (2.7). �
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By applying the Schur complement results mentioned above to

M =

[
−A B

C D

]
: X ∔ U → X ∔ Y,

we obtain another useful identity. Indeed, assume that A and D are invertible.
Then D + CA−1B is invertible if and only if A+ BD−1C is invertible, and in this
case (2.6) yields

(
D + CA−1B

)−1
= D−1 − D−1C

(
A + BD−1C

)−1
BD−1.

2.3 Products

Let Θ1 = (A1, B1, C1, D1; X1, U1, Y ) and Θ2 = (A2, B2, C2, D2; X2, U, Y2) be two
systems such that the output space Y2 of Θ2 coincides with the input space U1 of
Θ1. Let W1 and W2 be the transfer functions of Θ1 and Θ2, respectively. Because
of the assumption Y2 = U1, the product W (λ) = W1(λ)W2(λ) is well defined
whenever λ ∈ ρ(A1) ∩ ρ(A2).

The next theorem shows how to obtain the product function W = W1W2

from Θ1 and Θ2. Let Θ = (A, B, C, D; X, U, Y ) be the system built from Θ1 and
Θ2 by putting X = X1+̇X2 and

A =

[
A1 B1C2

0 A2

]
: X1 +̇ X2 → X1 +̇ X2,

B =

[
B1D2

B2

]
: U → X1 +̇ X2,

C =
[

C1 D1C2

]
: X1 +̇ X2 → Y,

D = D1D2 : U → Y.

The system Θ is called the product of Θ1 and Θ2 and is denoted by Θ = Θ1Θ2.

Theorem 2.2. Let

Θ1 = (A1, B1, C1, D1; X1, U1, Y ), Θ2 = (A2, B2, C2, D2; X2, U, Y2)

be two systems and assume that the output space Y2 of Θ2 coincides with the input
space U1 of Θ1. Write W1, W2 and W for the transfer function of Θ1, Θ2 and
Θ = Θ1Θ2, respectively. Then

W (λ) = W1(λ)W2(λ), λ ∈ ρ(A1) ∩ ρ(A2) ⊂ ρ(A),

where A is the main operator of Θ.
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Proof. Take λ ∈ ρ(A1) ∩ ρ(A2). Then, as can be verified by direct computation,

(λ − A)−1 =

⎡
⎣

(λ − A1)
−1

H(λ)

0 (λ − A2)
−1

⎤
⎦ : X1 +̇ X2 → X1 +̇ X2,

where H(λ) = − (λ − A1)
−1

B1C2 (λ − A2)
−1

. Using this and the expressions for
B, C and D given prior to the theorem, we have W (λ) = D + C(λ−A)−1B. The
right-hand side of the latter identity transforms into

D1D2 +
[

C1 D1C2

]
⎡
⎣

(λ − A1)
−1 H(λ)

0 (λ − A2)
−1

⎤
⎦
⎡
⎣

B1D2

B2

⎤
⎦

= D1D2 +
[

C1 (λ − A1)
−1 C1H(λ) + D1C2 (λ − A2)

−1
]
[

B1D2

B2

]

=
(
D1 + C1(λ − A1)

−1B1

)(
D2 + C2(λ − A2)

−1B2

)
.

Thus W (λ) = W1(λ)W2(λ), as desired. �

Note that the product W1W2 is defined on the intersection ρ(A1) ∩ ρ(A2)
of the resolvent sets of A1 and A2, whereas W is defined for λ ∈ ρ(A). We have
ρ(A1) ∩ ρ(A2) ⊂ ρ(A), and in general this inclusion is strict. Equality occurs when,
for instance, ρ(A) is connected or σ(A1) ∩ σ(A2) = ∅. Note that ρ(A1) ∩ ρ(A2) is
a neighborhood of infinity.

One verifies easily that (Θ1Θ2)
× ≃ Θ×

2 Θ×
1 , the natural identification of

X1+̇X2 and X2+̇ X1 being a system similarity between (Θ1Θ2)
× and Θ×

2 Θ×
1 .

Modulo standard identifications of direct sums of Banach spaces, the product
of systems is associative. So, when systems Θ1, . . . ,Θk are given, one can unam-
biguously define the product Θ1 · · ·Θk. In general, one has to assume that the
appropriate output and input spaces are coinciding, so that (in particular) the
product of the external operators in question is well defined. We give details for
the situation where all the input and output spaces are one and the same, while
all given systems Θ1, . . . ,Θk are unital.

For j = 1, . . . , k write Θj = (Aj , Bj , Cj ; Xj , Y ), and introduce

A =

⎡
⎢⎢⎢⎢⎢⎣

A1 B1C2 · · · B1Cn

0 A2
. . .

...

...
. . .

. . . Bn−1Cn

0 · · · 0 An

⎤
⎥⎥⎥⎥⎥⎦

: X1+̇ · · · +̇Xk → X1 +̇ · · · +̇Xk,
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B =

⎡
⎢⎢⎢⎣

B1

B2

...

Bn

⎤
⎥⎥⎥⎦ : Y → X1+̇ · · · +̇ Xk → X1 +̇ · · · +̇Xk,

C =
[

C1 C2 · · · Cn

]
: X1+̇ · · · +̇ Xk → Y.

The product of the (unital) systems Θ1, . . . ,Θk, in that order, is now the (unital)
system

Θ1 · · ·Θk = (A, B, C; X1+̇ · · · +̇Xk, Y ).

Again the transfer function of the product is the product of the transfer functions:

WΘ1···Θk
(λ) = WΘ1(λ) · · ·WΘk

(λ), λ ∈ ρ(A) ⊂
k⋂

j=1

ρ(Aj).

This follows by a repeated application of Theorem 2.2.

2.4 Factorization and matching of invariant subspaces

In this section we study factorization of biproper systems and their transfer func-
tions. The main theorem will serve as the basis for the more involved factorization
results to be given in the sequel. Subspaces of Banach spaces are always assumed
to be closed , otherwise we use the term linear manifold.

Theorem 2.3. Let Θ = (A, B, C, D; X, Y ) be a biproper system, let M and M× be
subspaces of X, and assume

X = M ∔ M×. (2.8)

Write

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
(2.9)

for the operator matrix representations of A, B and C with respect to the decom-
position X = M ∔ M×. Assume D = D1D2, where D1 and D2 are invertible
operators on Y and introduce

Θ1 = (A11, B1D
−1
2 , C1, D1; M, Y ), (2.10)

Θ2 = (A22, B2, D
−1
1 C2, D2; M

×, Y ). (2.11)

Then Θ = Θ1Θ2 if and only if

A[M ] ⊂ M, A×[M×] ⊂ M×, (2.12)
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where, as before, A× = A−BD−1C. In that case the transfer function WΘ admits
the factorization

WΘ(λ) = WΘ1(λ)WΘ2 (λ), λ ∈ ρ(A11) ∩ ρ(A22) ⊂ ρ(A).

The above identity, holding on ρ(A11) ∩ ρ(A22), can be rewritten as

D + C(λ − A)−1B =
(
D1 + C1(λ − A11)

−1B1

)(
D2 + C2(λ − A22)

−1B2

)
.

The left-hand side of this expression is defined and analytic on ρ(A), while the
two factors in the right-hand side are defined and analytic on the sets ρ(A11)
and ρ(A22), respectively. In particular, the factors may be defined and analytic
on domains where the left-hand side is not. This will turn out to be relevant in
applications. For a more detailed discussion, see Section 2.5 (cf., the remark made
after Theorem 2.5 below).

We shall refer to (2.8) as the matching condition, and when this condition
is satisfied we refer to M, M× as a pair of matching subspaces. A pair of match-
ing subspaces M, M× satisfying (2.12) will be called a supporting pair of sub-
spaces for Θ.

Proof. The first part of this theorem is an immediate consequence of the definition
of the product of two systems. The details are as follows.

Assume Θ = Θ1Θ2. Then we know from the definition of the product that
M is invariant under A. Identifying M ∔M× and M×∔M , we have Θ× = Θ×

2 Θ×
1 ,

and hence we conclude that M× is invariant under A×. This proves the only if
part of the theorem.

To prove the if part, we argue as follows. The fact that M is invariant under
A implies that A21 = 0. As

A× = A − BD−1C =

⎡
⎢⎣

A11 − B1D
−1
2 D−1

1 C1 A12 − B1D
−1
2 D−1

1 C2

−B2D
−1
2 D−1

1 C1 A22 − B2D
−1
2 D−1

1 C1

⎤
⎥⎦

leaves the space M× invariant, we have A12 = B1D
−1
2 D−1

1 C2. But then the conclu-
sion Θ = Θ1Θ2 follows directly from the definition of the product of two systems.

The second statement in the theorem follows immediately from the first and
Theorem 2.2. �

Elaborating on Theorem 2.3, we consider the case when the input/output
space Y is finite-dimensional. In that case the second part of (2.12) is equivalent
to a rank condition, an observation that will be used in an essential way in Section
9.3. Here are the details.

Proposition 2.4. Let Θ = (A, B, C, D; X, Y ) be a biproper system, let M and M×

be subspaces of X, and assume X = M ∔ M×. Suppose, in addition, that the



34 Chapter 2. Operator Nodes, Systems, and Operations on Systems

dimension dimY of the input/output space Y is finite. Then A×M× ⊂ M× if and
only if

rank

[
A12 B1

C2 D

]
= dimY. (2.13)

Here A12, B1 and C2 are as in (2.9).

Proof. To see this we use Schur complements (cf., Section 2.2). Since D is invert-
ible, we can use formula (2.3) to show that

rank

[
A12 B1

C2 D

]
= rankD + rank

(
A12 − B1D

−1C2

)
.

Now rank D is equal to the dimension of Y which is assumed to be finite. Thus
(2.13) amounts to A12 −B1D

−1C2 = 0 which, in turn, is equivalent to the second
part of (2.12). �

In a certain sense Theorem 2.3 gives a complete description of all possible
factorizations of a system Θ. Indeed, if Θ ≃ Θ′

1Θ
′
2 for some systems Θ′

1 and
Θ′

2 having invertible external operators, then there exists a supporting pair of
subspaces M, M× for Θ such that Θ1 ≃ Θ′

1 and Θ2 ≃ Θ′
2, where Θ1 and Θ2 are

as in Theorem 2.3. In this sense Theorem 2.3 gives a complete description of all
possible factorizations of Θ.

Matching pairs of subspaces correspond to projections. So Theorem 2.3 can
also be formulated in terms of projections. In fact, we have the following result.

Theorem 2.5. Let Θ = (A, B, C, D; X, Y ) be a biproper system, and let W be its
transfer function. Put A× = A − BD−1C, and let Π be a projection on X such
that

A[KerΠ] ⊂ KerΠ, A×[Im Π] ⊂ ImΠ. (2.14)

Assume D = D1D2, where D1 and D2 are invertible operators on Y and introduce,
for λ ∈ ρ(A),

W1(λ) = D1 + C(λ − A)−1(I − Π)BD−1
2 ,

W2(λ) = D2 + D−1
1 CΠ(λ − A)−1B.

Then W (λ) = W1(λ)W2(λ) for all λ ∈ ρ(A).

This factorization can be rewritten as

D + C(λ − A)−1B =
(
D1 + C(λ − A)−1(I − Π)BD−1

2

)
×

×
(
D2 + D−1

1 CΠ(λ − A)−1B
)
.

It holds on ρ(A), the resolvent set of A. However, in many cases (relevant for
applications), the factors in the right-hand side have an analytic extension to
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larger domain. This is already suggested by Theorem 2.3. In fact, one may wonder
how exactly the two factorization results Theorems 2.3 and 2.5 relate to each
other. We shall discuss this point in detail in Section 2.5 below.

A projection Π satisfying (2.14) will be called a supporting projection for the
system Θ.

Proof. For λ ∈ ρ(A), we have

W1(λ)W2(λ) = D + C(λ − A)−1(I − Π)B + CΠ(λ − A)−1B +

+C(λ − A)−1(I − Π)BD−1CΠ(λ − A)−1B

= D + C(λ − A)−1(I − Π)B + CΠ(λ − A)−1B +

+C(λ − A)−1(I − Π)(A − A×)Π(λ − A)−1B.

Now ΠA = ΠAΠ and A×Π = ΠA×Π, hence (I − Π)A×Π = 0 and

(I − Π)(A − A×)Π = AΠ − ΠA = Π(λ − A) − (λ − A)Π.

From this, the desired identity is immediate. �

Suppose Θ = (A, B, C; X, Y ) is a unital system, so the external operator
of Θ is I = IY . Let Π be a supporting projection for Θ. With respect to the
decomposition X = KerΠ+̇Im Π, write A, B, C as in (2.9). The system

prΠ(Θ) = (A22, B2, C2; Im Π, Y ) (2.15)

will be called the projection of Θ associated with Π (the terminology is taken from
[30]). Observe that

prI−Π(Θ) = (A11, B1, C1; KerΠ, Y ). (2.16)

One easily verifies that prΠ(Θ×) = prΠ(Θ)×. Note that (2.15) and (2.16) are
defined for any projection Π of the state space X . By Theorem 2.3, the projection
Π is a supporting projection for the system Θ if and only if Θ = prI−Π(Θ)prΠ(Θ).
In fact, the following slightly more general theorem, involving a product of possibly
more than two factors (see the end of Section 2.3), holds true.

Theorem 2.6. Let Θ = (A, B, C; X, Y ) be a unital system (i.e., the external oper-
ator is the identity on Y ), and let Π1, . . . ,Πn be mutually disjoint projections of
X such that Π1 + · · · + Πn is the identity on X. Then

Θ = prΠ1
(Θ)prΠ2

(Θ) · · ·prΠn
(Θ)

if and only if for j = 1, . . . , n − 1, the projection Πj+1 + · · · + Πn is a supporting
projection for Θ.
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Proof. To prove the theorem one can employ the same arguments as in the prove
of Theorem 2.3. Of course the decomposition X = KerΠ+̇Im Π has to be replaced
by the decomposition X = X1+̇ · · · +̇Xn, where Xj = ImΠj , and with respect to
the latter decomposition one writes A, B and C in block matrix form. �

Theorem 2.6 is formulated as a factorization result for systems, this in line
with the first part of Theorem 2.3. We could as well have stated it as a factorization
result for transfer functions, thereby generalizing the second part of Theorem 2.3
or Theorem 2.5.

As an application of Theorem 2.6 we prove the following result.

Theorem 2.7. Let Θ = (A, B, C; X, Cm) be a unital system with a finite-dimen-
sional state space X, and let W be the transfer function of Θ. Assume that A is
diagonalizable. Then W admits a factorization of the following form

W (λ) = (Im +
1

λ − λ1
R1) · · · (Im +

1

λ − λn
Rn),

where λ1, . . . , λn are the eigenvalues of A counted according to algebraic multiplic-
ity, and R1, . . . , Rn are m × m matrices of rank at most one.

Recall that A is called diagonalizable if A is similar to a diagonal matrix. In
other words, A is diagonalizable if and only if its Jordan matrix is diagonal.

Proof. Since A is diagonalizable, we can find a basis e1, . . . , en of the finite-
dimensional space X such that the matrix of A with respect to this basis is
diagonal, say

A =

⎡
⎢⎣

λ1

. . .

λn

⎤
⎥⎦ .

Here λ1, . . . , λn are the eigenvalues of A counted according to algebraic multi-
plicity. Next, we consider the associate main operator A×. We can choose a basis
f1, . . . , fn of X such that the matrix of A× has lower triangular form. Then clearly
fn is an eigenvector of A×. We may assume that the vectors e1, . . . , en are ordered
in such a way that

X = span {e1, . . . , en−1} +̇ span {fn}.

Here span {V } denotes the linear hull of V . For convenience we put

X0 = span {e1, . . . , en−1}, Xn = span {fn}.

Clearly, X = X0 +̇ Xn, the space X0 is invariant under A, and the space Xn is
invariant under A×.

Let Π be the projection of X onto Xn along X0. Then Π is a supporting pro-
jection for Θ. Let W = W0Wn be the corresponding factorization of W . Then Wn is
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the transfer function of the node Θn = pr Π(Θ). Write Θn = (An, Bn, Cn; Xn, Cm).
The matrix of A with respect to the basis {e1, . . . , en−1, fn} of X is given by

A =

⎡
⎢⎢⎢⎣

λ1 ∗
. . .

...
λn−1 ∗

an

⎤
⎥⎥⎥⎦ ,

and it follows that an = λn. Now an = λn may be viewed as the matrix of the
operator An : Xn → Xn with respect to the basis singleton {fn} of Xn. Hence
σ(An) = {λn} and

Wn(λ) = I +
1

λ − λn
Rn,

where Rn is an operator on Cm of rank at most one.

Next consider the factor W0 which is the transfer function of the system
Θ0 = pI−Π(Θ). Write Θ0 = (A0, B0, C0; X0, Cn). Then A0 is the restriction of A
to X0 = span {e1, . . . , em−1}. Note that A0 is again diagonalizable. Therefore we
can repeat the above argument with W0 and Θ0 in place of W and Θ, respectively.
In a finite number of steps, we thus obtain the desired result. �

A factorization of the type appearing in Theorem 2.7 is called a factorization
into elementary factors. An in depth analysis of such factorizations, including
connections with problems of job scheduling, will given in Part III of this book.
See also Theorem 8.15 for an alternative version of Theorem 2.7.

2.5 Factorization and inversion revisited

The previous section contains two factorization results: Theorems 2.3 and 2.5.
These theorems contain different expressions for the factors, and they also fea-
ture different domains on which the factorizations are valid. For systems with a
finite-dimensional state space the differences are not substantial. In the infinite-
dimensional case, however, the situation is more involved. We shall now analyze
the situation in detail by presenting a synthesis of Theorems 2.3 and 2.5. Along
the way, we will also clarify the relationship between these factorization results on
the one hand and the inversion result Theorem 2.1 on the other. The analysis in
question should be kept in mind whenever the results of the previous two sections
are applied.

It is convenient to fix some notation. Throughout Θ = (A, B, C, D; X, Y )
stands for a biproper system. Recall that a projection Π on X is a supporting
projection for Θ if KerΠ is A-invariant and ImΠ is A×-invariant. Clearly this
is equivalent to the requirement that the complementary projection I − Π is a
supporting projection for Θ× = (A×, BD−1,−D−1C, D−1; X, Y ), the inverse or
associate system of Θ. Here, as usual, A× = A − BD−1C.
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Theorem 2.8. Let W and W× be the transfer functions of the (biproper) systems
Θ and Θ×, respectively, i.e.,

W (λ) = D + C(λ − A)−1B, λ ∈ ρ(A),

W×(λ) = D−1 − D−1C(λ − A×)−1BD−1, λ ∈ ρ(A×).

Suppose Π is a supporting projection for Θ or, equivalently, I −Π is a supporting
projection for Θ×. Write

A =

[
A1 A0

0 A2

]
, A× =

[
A×

1 0

A×
0 A×

2

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]

for the operator matrix representations of A, A×, B and C with respect to the
decomposition X = KerΠ ∔ ImΠ, thus, in particular,

A×
1 = A1 − B1D

−1C1, A×
2 = A2 − B2D

−1C2.

Assume D = D1D2, where D1 and D2 are invertible operators on Y , and introduce

W̃1(λ) =

{
D1 + C(λ − A)−1(I − Π)BD−1

2 , λ ∈ ρ(A),

D1 + C1

(
λ − A1

)−1
B1D

−1
2 , λ ∈ ρ(A1),

W̃2(λ) =

{
D2 + D−1

1 CΠ(λ − A)−1B, λ ∈ ρ(A),

D2 + D−1
1 C2

(
λ − A2

)−1
B2, λ ∈ ρ(A2),

W̃×
1 (λ) =

{
D−1

1 − D−1
1 C(I − Π)(λ − A×)−1BD−1, λ ∈ ρ(A×),

D−1
1 − D−1

1 C1

(
λ − A×

1

)−1
B1D

−1, λ ∈ ρ(A×
1 ),

W̃×
2 (λ) =

{
D−1

2 − D−1C(λ − A×)−1ΠBD−1
2 , λ ∈ ρ(A×),

D−1
2 − D−1C2

(
λ − A×

2

)−1
B2D

−1
2 , λ ∈ ρ(A×

2 ).

The following statements hold true:

(i) The functions W̃1, W̃2 are well defined and analytic on their domains Ω1 =
ρ(A) ∪ ρ(A1), Ω2 = ρ(A) ∪ ρ(A2), respectively, and

W (λ) = W̃1(λ)W̃2(λ), λ ∈ Ω1 ∩ Ω2 = ρ(A).

Similarly, the functions W̃×
1 , W̃×

2 are well defined and analytic on their do-
mains Ω×

1 = ρ(A×) ∪ ρ(A×
1 ), Ω×

2 = ρ(A×) ∪ ρ(A×
2 ), respectively, and

W×(λ) = W̃×
2 (λ)W̃×

1 (λ), λ ∈ Ω×
1 ∩ Ω×

2 = ρ(A×).
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(ii) The operators W (λ) and W×(λ) are invertible for the same values of λ and
for these they are each others inverse. In fact,

{λ ∈ ρ(A) | W (λ) invertible} = {λ ∈ ρ(A×) | W×(λ) invertible}

= ρ(A) ∩ ρ(A×),

and for λ in these coinciding sets we have W (λ)−1 = W×(λ).

(iii) The sets ρ(A) \ ρ(A1), ρ(A) \ ρ(A2) and ρ(A) \
(
ρ(A1)∩ρ(A2)

)
coincide; also,

for λ in one (and hence all) of these sets, the operators

W̃1(λ) = D1 + C(λ − A)−1(I − Π)BD−1
2 ,

W̃2(λ) = D2 + D−1
1 CΠ(λ − A)−1B

are not invertible. Similarly, the sets ρ(A×) \ ρ(A×
1 ), ρ(A×) \ ρ(A×

2 ) and
ρ(A×) \

(
ρ(A×

1 )∩ρ(A×
2 )

)
coincide; also, for λ in one (and hence all) of these

sets, the operators

W̃×
1 (λ) = D−1

1 − D−1
1 C(I − Π)(λ − A×)−1BD−1,

W̃×
2 (λ) = D−1

2 − D−1C(λ − A×)−1ΠBD−1
2

are not invertible.

(iv) The operators W̃1(λ) and W̃×
1 (λ) are invertible for the same values of λ and

for these they are each others inverse. In fact,

{λ ∈ Ω1 | W̃1(λ) invertible} = {λ ∈ Ω×
1 | W̃×

1 (λ) invertible}

= ρ(A1) ∩ ρ(A×
1 )

and, for λ in these coinciding sets, W̃1(λ)−1 = W̃×
1 (λ). Analogously, the

operators W̃2(λ) and W̃×
2 (λ) are invertible for the same values of λ and for

these they are each others inverse. In fact,

{λ ∈ Ω2 | W̃2(λ) invertible} = {λ ∈ Ω×
2 | W̃×

2 (λ) invertible}

= ρ(A2) ∩ ρ(A×
2 )

and, for λ in these coinciding sets, W̃2(λ)−1 = W̃×
2 (λ).

Theorem 2.8 contains the earlier factorization results as special cases. Indeed,
for Theorem 2.5 restrict in (i) to ρ(A), for Theorem 2.3 (second part), restrict

to ρ(A1) ∩ ρ(A2). In general, the factors W̃1(λ) and W̃2(λ) appearing in (i) are
defined and analytic on domains which are larger than ρ(A). This is of significance
for obtaining such special factorizations as those needed for solving Wiener-Hopf,
Toeplitz or singular integral equations (cf., Chapter 6 below). In that context, it
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is also necessary to have information on the sets where the factors take invertible
values and to have expressions for the inverses. These issues are covered by (iii)
and (iv). Statement (ii) is added for completeness and is a reformulation of part
of Theorem 2.1.

In certain important cases, assertion (iii) is redundant (completely or partly)
because the coinciding sets mentioned there are empty. Restricting ourselves to
the first part of (iii), the point in question is the relationship between ρ(A), ρ(A1)
and ρ(A2). It is convenient to clear this issue up first. We begin by recording the
following simple lemma (in which X1 may be read as KerΠ and X2 as ImΠ).

Lemma 2.9. Let X1 and X2 be Banach spaces, and let

A =

[
A1 A0

0 A2

]
: X1 +̇ X2 → X1 +̇ X2

be a bounded linear operator. Suppose two of the operators A1, A2 and A are
invertible. Then so are all three of them.

The same conclusion is of course valid when the zero in the representation
of A is in the upper right instead of in the lower left corner.

Proof. Our hypotheses implies that at least one of the operators A1 and A2 is
invertible. Suppose A1 is. Then the Schur complement of A1 in A exists. In view
op the (block) upper triangular form of A, this Schur complement is just the
operator A2. From the intermezzo on Schur complements in Section 2.2 it is now
clear that A is invertible if and only if A2 is. The case when A2 is invertible, can
be dealt with analogously: use that the Schur complement of A2 in A is A1. �

Next we pass to resolvent sets. In Theorem 2.3 we already came across the
inclusion ρ(A1) ∩ ρ(A2) ⊂ ρ(A). Now we see from Lemma 2.9 that this inclusion
can be made more precise as follows

ρ(A1) ∩ ρ(A2) = ρ(A) ∩ ρ(A1) = ρ(A) ∩ ρ(A2). (2.17)

From this it is clear that the three sets mentioned in the first part of statement
(iii) of Theorem 2.8 do indeed coincide, that is,

ρ(A) \
(
ρ(A1) ∩ ρ(A2)

)
= ρ(A) \ ρ(A1) = ρ(A) \ ρ(A2). (2.18)

These (coinciding) sets are empty if and only if ρ(A) ⊂ ρ(A1) ∩ ρ(A2) which,
together with the inclusion mentioned in the beginning of this paragraph, comes
down to ρ(A) = ρ(A1)∩ ρ(A2) or, if one prefers, σ(A) = σ(A1)∪ σ(A2). However,
more strikingly, we see from (2.17) that the set determined by (2.17) is already
empty under the weaker requirement ρ(A) ⊂ ρ(A1) ∪ ρ(A2). In terms of spectra,
this condition may be rewritten as

σ(A1) ∩ σ(A2) ⊂ σ(A).
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We conclude that one relevant case where Theorem 2.8 (iii) is redundant occurs
when the state space of the given system Θ is finite-dimensional (and hence one
can work with matrices and determinants). Another such situation occurs in the
important case of Wiener-Hopf factorization (see Chapter 6 below). The reason
there is that the spectra of A1 and A2 are disjoint and likewise those of A×

1 and A×
2 .

From (2.17) it is also clear that when Ω1 and Ω2 are as in Theorem 2.8 (i),
then indeed, as is stated there, Ω1∩Ω2 = ρ(A). The analogous identity Ω×

1 ∩Ω×
2 =

ρ(A×) comes about in the same way.

Proof of Theorem 2.8. Take λ in ρ(A) ∩ ρ(A1) = ρ(A) ∩ ρ(A2). With

H(λ) = −
(
λ − A1

)−1
A0

(
λ − A2

)−1
,

we have

(λ − A)−1(I − Π) =

⎡
⎣

(
λ − A1

)−1
H(λ)

0
(
λ − A2

)−1

⎤
⎦
⎡
⎣

IKerΠ 0

0 0

⎤
⎦

=

[
(λ − A1)

−1
0

0 0

]
,

which leads to

D1 + C(λ − A)−1(I − Π)BD−1
2 = D1 + C1(λ − A1)

−1B1D
−1
2 .

Thus W̃1 is well defined. The same conclusion hold for W̃2. Indeed, for λ ∈ ρ(A)∩
ρ(A2) we have

Π(λ − A)−1 =

⎡
⎣

0 0

0 IIm Π

⎤
⎦
⎡
⎣

(
λ − A1

)−1
H(λ)

0
(
λ − A2

)−1

⎤
⎦

=

[
0 0

0 (λ − A2)
−1

]
,

and hence

D2 + D−1
1 CΠ(λ − A)−1B = D2 + D−1

1 C2

(
λ − A2

)−1
B2.

The analyticity of the functions W̃1 and W̃2 on, respectively, the (open) sets Ω1 =
ρ(A)∪ ρ(A1) and Ω2 = ρ(A) ∪ ρ(A2) is obvious. With respect to the factorization
in the first part of (i), recall that Ω1 ∩ Ω2 = ρ(A), and use the conclusion of
Theorem 2.5.
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This proves the first part of statement (i). The second part is just the first, re-
formulated for the inverse system Θ×. Further (ii) comes down to part of Theorem
2.1. So we can move on to (iii).

The equality of the sets in (iii) has already been established above. Take
λ ∈ ρ(A) \ ρ(A1). Then

W̃1(λ) = D1 + C(λ − A)−1(I − Π)BD−1
2 .

Suppose W̃1(λ) is invertible. By Theorem 2.1, this can only happen when λ belongs
to the resolvent set of

A − (I − Π)BD−1
2 D−1

1 C = A − (I − Π)BD−1C

= ΠA + (I − Π)A×

=

[
0 0

0 A2

]
+

[
A×

1 0

0 0

]

=

[
A×

1 0

0 A2

]
,

and it follows that λ ∈ ρ(A×
1 ) ∩ ρ(A2). Given the choice of λ, we now have that

λ /∈ ρ(A1) on the one hand and λ ∈ ρ(A)∩ρ(A2) on the other. By (2.17), however,
ρ(A)∩ρ(A2) = ρ(A)∩ρ(A1). So λ ∈ ρ(A1), and we have arrived at a contradiction.

Thus for the values of λ considered here, W̃1(λ) is never invertible. A similar

reasoning gives the same conclusion for W̃2(λ) = D2 + D−1
1 CΠ(λ − A)−1B.

This proves the first part of statement (iii). The second part is just the first,
reformulated for the inverse system Θ×. The arguments for the two parts of (iv)
are analogous. We concentrate on the first.

By (iii), the operator W̃1(λ) is not invertible whenever λ belongs to the set
ρ(A) \ ρ(A1). So we can restrict our attention to the complement of this set in
Ω1 = ρ(A) ∪ ρ(A1). This complement coincides with ρ(A1). Apply now Theorem

2.1 to the system (A1, B1D
−1
2 , C1, D1; KerΠ, Y ) which has the restriction of W̃1

to ρ(A1) as its the transfer function. The conclusion is that, for λ ∈ ρ(A1), the

operator W̃1(λ) is invertible if and only if λ belongs to ρ(A1) ∩ ρ(A×
1 ). Also, for

these values of λ,

W̃1(λ)−1 = D−1
1 − D−1

1 C1

(
λ − (A1 − B1D

−1
2 D−1

1 C1)
)−1

B1D
−1

= D−1
1 − D−1

1 C1

(
λ − A×

1

)−1
B1D

−1,

in other words, W̃1(λ)−1 = W̃×
1 (λ). �
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In the above considerations, we came across the sets (2.17) and (2.18). Let
us, for convenience, denote them by Ω and Ω0:

Ω = ρ(A1) ∩ ρ(A2) = ρ(A) ∩ ρ(A1) = ρ(A) ∩ ρ(A2),

Ω0 = ρ(A) \
(
ρ(A1) ∩ ρ(A2)

)
= ρ(A) \ ρ(A1) = ρ(A) \ ρ(A2).

Here

A =

[
A1 A0

0 A2

]

as before. Without going into the proof, we note that the sets Ω and Ω0 have
a special structure in relation to ρ(A). Indeed, Ω is the union of the connected
components of ρ(A) that have a nonempty intersection with both ρ(A1) and ρ(A2),
and these are the connected components of Ω. Likewise, Ω0 is the union of the
connected components of ρ(A) that do not intersect ρ(A1) or ρ(A2), and these are
the connected components of Ω0. As a consequence, the unbounded components of
ρ(A) and Ω coincide. In the finite-dimensional case, these unbounded components
are the only ones that exist.

We illustrate Theorem 2.8 with an example exhibiting the different aspects
of the result.

Example. Write Z, Z− and Z+ for the set of integers, (strictly) negative integers
and non-negative integers (including zero) , respectively. The system Θ that we will
consider has ℓ1(Z) for its state space, C for its input/output space and the identity
operator on C as external operator. The other operators in Θ = (A, B, C; ℓ1(Z), C)
are

A : ℓ1(Z) → ℓ1(Z),

(Ax)j = xj+1, x ∈ ℓ1(Z), j ∈ Z,

B : C → ℓ1(Z),

(Bz)−1 = z, (Bz)1 = −z, (Bz)j = 0, j ∈ Z, j �= −1, 1,

C : ℓ1(Z) → C,

Cx = x0 − (x−2 + x−3 + x−4 + · · · ) , x ∈ ℓ1(Z).

We refrain from giving the analogous expressions for A× = A − BC as they can
be obtained directly from those for A, B and C.

The spaces ℓ1(Z+) and ℓ1(Z−) will be viewed in the customary manner as
subspaces of ℓ1(Z). Doing this, we have the direct sum decomposition

ℓ1(Z) = ℓ1(Z−) ∔ ℓ1(Z+). (2.19)
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As is easily verified ℓ1(Z−) is an invariant subspace for A, and ℓ1(Z+) is an in-
variant subspace for A×. So the projection Π of ℓ1(Z) along ℓ1(Z−) onto ℓ1(Z+)
is a supporting projection for Θ. Also I − Π is a supporting projection for Θ× =
(A×, B,−C; ℓ1(Z), C).

We shall now explain what Theorem 2.8 means for the situation specified
above, thereby taking for D1 and D2 the identity operator on C. In line with the
theorem, we write

A =

[
A1 A0

0 A2

]
: ℓ1(Z−) ∔ ℓ1(Z+) → ℓ1(Z−) ∔ ℓ1(Z+),

A× =

[
A×

1 0

A×
0 A×

2

]
: ℓ1(Z−) ∔ ℓ1(Z+) → ℓ1(Z−) ∔ ℓ1(Z+),

B =

[
B1

B2

]
: C → ℓ1(Z−) ∔ ℓ1(Z+),

C =
[

C1 C2

]
: ℓ1(Z−) ∔ ℓ1(Z+) → C.

Our first task is to determine the spectra of A1, A2, A, A×
1 , A×

2 and A×.

First note that A1 and A2 are unilateral shifts. So, as is well known, these
operators have the closed unit disc D as their spectrum. Since A is the (bilateral)
backward shift on ℓ1(Z), the spectrum of A is T, the unit circle in the complex
plane.

Next consider A×
1 : ℓ1(Z−) → ℓ1(Z−). For x ∈ ℓ1(Z+) we have

(A×
1 x)−1 = x−2 + x−3 + x−4 + · · · ,

A×
1 x)j = xj+1, j = −2,−3, . . . ,

and so, modulo the standard identification of ℓ1(Z−) and ℓ1(Z+), it is the “Fi-
bonacci operator” featuring in [110], Section V.4, Problem 11. Thus, as is stated
there, its spectrum is D ∪ {φ} with φ = 1

2 + 1
2

√
5 (golden ratio). To see this, we

argue as follows. For |λ| < 1, the ℓ1(Z−)-sequence (. . . , 0, 0, 0, 1) does not belong
to the image of λ−A×

1 . So D ⊂ σ(A×
1 ). Clearly, A×

1 is a rank one perturbation of a
unilateral shift. So, for |λ| > 1, the operator λ−A×

1 is a rank one perturbation of
an invertible operator, hence Fredholm of index zero. Therefore the only way for
λ, taken outside the closed unit disc, to be in the spectrum of A×

1 is to be an eigen-
value of A×

1 . It is easily verified that this is the case if and only if λ2 − λ− 1 = 0,
that is λ = φ, and in that case, the essentially unique eigenvector associated with
φ is the ℓ1(Z−)-sequence

(
. . . , φ−3, φ−2, φ−1, 1

)
.
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We now turn to A×
2 : ℓ1(Z+) → ℓ1(Z+). If x ∈ ℓ1(Z+), then

(A×
2 x)0 = x1,

(A×
2 x)1 = x0 + x2,

(A×
2 x)j = xj+1, j = 2, 3, 4, . . . ,

and it is clear that A×
2 is a contraction. Hence σ(A×

2 ) ⊂ D. Also, each λ in the
open unit disc is an eigenvalue of A×

2 with eigenvector

(
1, λ, (λ2 − 1), λ(λ2 − 1), λ2(λ2 − 1), λ3(λ2 − 1), . . .

)
.

As spectra are closed, it follows that σ(A×
2 ) = D.

It remains to determine the spectrum of A×. From what we now know about
A×

2 and the matrix representation of A× with respect to the decomposition (2.19),
it is clear that each λ in the open unit disc is an eigenvalue of A×. It follows that
D ⊂ σ(A×), which can be rewritten as σ(A×

2 ) ⊂ σ(A×). But then

σ(A×) = σ(A×) ∪ σ(A×
2 ) = σ(A×

1 ) ∪ σ(A×
2 ),

with the second identity based on (2.17), and hence σ(A×) = D ∪ {φ}.
As an intermediate step and aid for the reader, we summarize the results

obtained about the spectra of the operators A, A1, A2, A
×, A×

1 and A×
2 . With an

eye on the formulation of Theorem 2.8, we do this in terms of their resolvent sets:

ρ(A) = {λ ∈ C | |λ| �= 1},

ρ(A1) = ρ(A2) = ρ(A×
2 ) = {λ ∈ C | |λ| > 1},

ρ(A×) = ρ(A×
1 ) = {λ ∈ C | |λ| > 1, λ �= φ}

where, as before, φ = 1
2 + 1

2

√
5 . The different sets featuring in the theorem are now

easy to determine. For instance, focussing on the first part of Theorem 2.8 (iii),
the three coinciding sets ρ(A) \ ρ(A1), ρ(A) \ ρ(A2) and ρ(A) \

(
ρ(A1) ∩ ρ(A2)

)

are all equal to the open unit disc.

Next we compute the transfer function W of Θ. Identifying operators on C
with complex numbers (via the action of multiplication), W is a scalar function.
The resolvent of A is given by

(λ − A)−1 =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑

k=1

λ−kAk−1, |λ| > 1,

∞∑

k=0

−λkSk+1, |λ| < 1.
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Here S is the inverse of the operator A, i.e., S = A−1 is the forward shift on ℓ1(Z).
For |λ| > 1, we now get

W (λ) = 1 +

∞∑

k=1

λ−kCAk−1B = 1 − 2

λ2
− 1

λ3
=

λ3 − 2λ − 1

λ3
.

A similar argument, using that CSB = 1 and CSjB = 0 for j > 1, yields that W
vanishes on the interior of D.

For the transfer function W× of the system Θ× =
(
A×, B,−C; ℓ1(Z), C

)
, we

have

W×(λ) = W (λ)−1 =
λ3

λ3 − 2λ − 1
, λ ∈ ρ(A×) = {λ ∈ C | |λ| > 1, λ �= φ}.

Bearing in mind that ρ(A×) ⊂ ρ(A), the quickest way to see this is to use Theorem
2.8 (ii) or Theorem 2.1. If one prefers to avoid the use of these theorems, the
statement can also be checked by computing the Laurent expansion of W× at
infinity from

W×(λ) = 1 −
∞∑

k=1

λ−kC
(
A×

)k−1
B, |λ| > φ,

and applying the uniqueness theorem for analytic functions.

We end the example by considering the factorizations of W and W× induced
by the decomposition (2.19) and the associated projections Π and I −Π. In other
words, using the notation of Theorem 2.8, we analyze the situation with respect
to W̃1, W̃2, W̃×

1 and W̃×
2 . First let us consider W̃1 and W̃2.

The domain of W̃1 is

Ω1 = ρ(A) ∪ ρ(A1) = {λ ∈ C | |λ| �= 1}.

For |λ| > 1, we have

W̃1(λ) = 1 + C1

(
λ − A1

)−1
B1 = 1 +

∞∑

k=1

λ−kC1A
k−1
1 B1

= 1 −
∞∑

k=2

λ−k = 1 − 1

λ2

(
1

1 − 1
λ

)
=

λ2 − λ − 1

λ2 − λ
.

Also, calculating CSj(I − Π)B, we see that for |λ| < 1,

W̃1(λ) = 1 + C(λ − A)−1(I − Π)B = 1 −
∞∑

k=0

λkCSk+1(I − Π)B = 0.

This is in line with Theorem 2.8 (iii). The domain Ω2 of W̃2 is

Ω2 = ρ(A) ∪ ρ(A2) = {λ ∈ C | |λ| �= 1}.
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For |λ| > 1, we have

W̃2(λ) = 1 + C2

(
λ − A2

)−1
B2 = 1 +

∞∑

k=1

λ−kC2A
k−1
2 B2

= 1 − 1

λ2
=

λ2 − 1

λ2
.

Taking |λ| < 1 and computing CΠSjB, we get

W̃2(λ) = 1 + CΠ(λ − A)−1B = 1 −
∞∑

k=0

λkCΠSk+1B = 0,

again in agreement with Theorem 2.8 (iii). In connection with Theorem 2.8 (i),

we note that W (λ) = W̃1(λ)W̃2(λ) on ρ(A) = {λ ∈ C | |λ| �= 1}. For values of λ
in ρ(A1), i.e., for |λ| > 1, this is corroborated by the simple identity

λ3 − 2λ − 1

λ3
=

(
λ2 − λ − 1

λ2 − λ

)(
λ2 − 1

λ2

)
. (2.20)

For values of λ in ρ(A) \ ρ(A1), i.e., for |λ| < 1, the factorization has the trivial
form 0 = 0 × 0.

Next we turn to W̃×
1 and W̃×

2 . The domain of W̃×
1 is

Ω×
1 = ρ(A×) ∪ ρ(A×

1 ) = {λ ∈ C | |λ| > 1, λ �= φ},

and for λ in this set

W̃×
1 (λ) = W̃1(λ)−1 =

λ2 − λ

λ2 − λ − 1
.

A fast way to see this is via Theorem 2.8 (iv), but (if one wants to avoid the use of

the theorem) one can also use the Laurent expansion of the resolvent
(
λ − A×

1

)−1

for |λ| > φ (cf., what was said about the computation of W×). The domain of

W̃×
2 is

Ω×
2 = ρ(A×) ∪ ρ(A×

2 ) = {λ ∈ C | |λ| > 1},
and for λ in this set

W̃×
1 (λ) = W̃1(λ)−1 =

λ2

λ2 − 1
.

For this, one can rely on Theorem 2.8 (iv), but again an alternative approach can

be taken via the Laurent expansion of
(
λ − A×

2

)−1
for |λ| > 1. The factorization

W×(λ) = W̃×
2 (λ)W̃×

1 (λ) on

ρ(A×) = {λ ∈ C | |λ| > 1, λ �= φ}
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exhibited in Theorem 2.8 (i) is corroborated by taking reciprocals in (2.20). The
second part of Theorem 2.8 (iii) is redundant because the three coinciding sets
ρ(A×) \ ρ(A×

1 ), ρ(A×) \ ρ(A×
2 ) and ρ(A×) \

(
ρ(A×

1 )∩ ρ(A×
2 )

)
happen to be empty

here. This finishes the example.

We conclude this section by comparing the two original forms that we have
of the factorization principle – Theorems 2.3 and 2.5 – in light of what we have
seen above. When invertibility of the factors plays a role, Theorem 2.3 is the
more effective of the two. On the other hand, the representation of the factors in
Theorem 2.5 is somewhat more straightforward than that in Theorem 2.3 and will
be often used, tacitly having in mind the above considerations and Theorem 2.8.
The latter is concerned with representations of the type D + C(λI − A)−1B but,
via the necessary modifications, it can be made to hold also for the more general
realizations of the form D + C(λG − A)−1B which are appropriate for handling
non-proper functions (cf., Section 9.3). We will refrain from giving further details
later on. To keep things in perspective: in dealing with rational matrix functions
and finite-dimensional realizations, the finer details that are involved do not play
a role.

Notes

This chapter is based on the text of the first chapter of [14]. Here the presentation
of the material has been made more systematic. Some of the ideas are inspired by
the theory of characteristic operator functions; see the references in the notes to
the previous chapter. The final section is new. For linear fractional decompositions
in state space form we refer to [81]. For a brief description of the history of the
factorization principle presented in this chapter, we refer to the book I. Gohberg,
M.A. Kaashoek (Eds), Constructive methods of Wiener-Hopf factorization, OT 21,
Birkhäuser Verlag, Basel, 1986.



Chapter 3

Various Classes of Systems

In this chapter we review the notions and results from the previous chapter for
various classes of systems. Included are Brodskii systems (Section 3.1), Krěın sys-
tems (Section 3.2), unitary systems (Section 3.3), monic systems (Section 3.4) and
polynomial systems (Section 3.5). The final section (Section 3.6) concerns a change
of variable in the transfer function defined by a Möbius transform.

3.1 Brodskii systems

In this section we shall see how the results on inversion, products, and factorization
obtained in the previous chapter apply to the Brodskii systems introduced in
Section 1.2. By definition, a system Θ = (A, B, C; H, G) is a Brodskii J-system if
H and G are Hilbert spaces, J = J∗ = J−1 and

A − A∗ = BC, C = 2iJB∗.

A system which is similar to a Brodskii J-system need not be of this type, but it
is a Brodskii J-system provided that the system similarity is a unitary operator
(cf., [30], page 11). On the other hand, if two Brodskii J-systems are similar, say
with system similarity S, then one can prove that there exists a unitary operator
U that provides the similarity too. In fact for U one may take the unitary operator
appearing in the polar decomposition S = U

√
S∗S of S.

Let Θ = (A, B, C; H, G) be a Brodskii J-system. As the external operator is
equal to the identity operator on G, the associate system Θ× = (A×, B,−C; H, G)
is well defined. Note that A× = A − BC = A∗. So in this case the associate main
operator of Θ depends exclusively on A and coincides with the adjoint of A. From
the relationships between the operator A, B and C in Θ it follows that the associate
system Θ× is a Brodskii (−J)-system.

Suppose now that Π is an orthogonal projection of H and A[Ker Π] ⊂ Ker Π.
Then automatically A∗[Im Π] ⊂ ImΠ, and hence Π is a supporting projection for
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Θ. So we can apply Theorem 2.6 to show that

Θ = pr I−Π(Θ)pr Π(Θ).

The systems pr Π(Θ) and pr I−Π(Θ) are Brodskii J-systems again (cf., [30], page
6). This result leads to an important multiplicative representation of the Livsic-
Brodskii characteristic operator function (cf., [30], page 143).

3.2 Krěın systems

Next we consider Krěın J-systems introduced in Section 1.3. By definition, a sys-
tem Θ = (A, R,−JK−∗R∗A, K; H, G) is a Krěın J-system if J is a signature
operator,

I − AA∗ = RJR∗, J − R∗R = K∗JK,

and the operators A and K are invertible. Since A is invertible, I − RJR∗ is
invertible. But then we can apply the operator identity (2.5) and J = K∗JK+R∗R
to obtain that

I + RK−1JK−∗R∗ = (I − RJR∗)−1.

Hence

(AA∗)−1 = (I − RJR∗)−1 = I + RK−1JK−∗R∗.

It follows that Θ× =
(
A−∗, RK−1, JR∗A−∗, K−1; H, G

)
. From this we see that

Θ× is a Krěın (−J)-system. Observe that in this case the associate main operator
A× depends again exclusively on A and coincides with A−∗.

Let Π be an orthogonal projection of H . With respect to the decomposition
H = Ker Π ⊕ ImΠ, we write

A =

[
A11 A12

A21 A22

]
, R =

[
R1

R2

]
.

Suppose now that A21 = 0 (i.e., Ker Π is an invariant subspace for A) and A11

is invertible. Then A22 is invertible too and ImΠ is an invariant subspace for
A× = A−∗. From RJR∗ = I − AA∗ it follows that R2JR∗

2 = I − A22A
∗
22. But

this implies (see [33]) the existence of an invertible operator K2 on G such that
J−R∗

2R2 = K∗
2JK2. Put K1 = KK−1

2 . Then K1 is also invertible and K = K1K2.
We are now in a position to apply Theorem 2.6 (with n = 2). The result is a
factorization Θ = Θ1Θ2, where Θ1 and Θ2 can be described explicitly with the
help of formulas (2.10) and (2.11). It can be shown that Θ1 and Θ2 are Krěın
J-systems (cf., [32]).
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3.3 Unitary systems

A system or operator node (A, B, C, D; X, U, Y ) with X, U and Y Hilbert spaces
is said to be unitary if the operator

[
A B

C D

]
: X ⊕ U → X ⊕ Y

is unitary. The operator matrix in this formula is usually referred to as the system
matrix .

Let Θ = (A, B, C, D; X, U, Y ) be a unitary system. Then its main operator
A is a contraction, that is, ‖A‖ ≤ 1. It follows that the corresponding transfer
function WΘ(λ) = D + C(λ − A)−1B is analytic on the exterior |λ| > 1 of the
closed unit disc. It can be shown (see, e.g., Theorem XXVIII.2.1 in [47]) that

‖WΘ(λ)‖ ≤ 1, |λ| > 1.

The converse statement is also true, that is, if W is analytic on the exterior of the
closed unit disc (including the point ∞), and its values are contractions from the
Hilbert space U to the Hilbert space Y , then W = WΘ for some unitary system Θ.
Moreover, under some additional minimality conditions, the system Θ is unique
up to unitary equivalence.

As we mentioned above the main operator of a unitary system is a contrac-
tion. Conversely, any contraction appears as the main operator of a unitary system.
To see this, let A on X be a contraction. Put DA∗ = DA∗X and DA = DAX. Here,
for a contraction T , the operator DT is the defect operator DT = (I − T ∗T )1/2.
Since A∗DA∗ = DAA∗, the operator A∗ maps DA∗ into DA. Now define B :
DA∗ → X, C : X → DA and D : DA∗ → DA by Bu = DA∗u, Cx = DAx and
Du = −A∗u. Then the system (A, B, C, D; X,DA∗ ,DA) is unitary and has A as
its main operator. For this system the transfer function is given by

W (λ) = −A∗ + DA(λ − A)−1DA∗ : DA∗ → DA,

that is, up to the change of variable λ �→ λ−1 it coincides with the Sz-Nagy-Foias
characteristic operator function for A; see [108].

Notice that the external operator D of a unitary system does not have to be
invertible, and hence Theorem 2.1 need not apply to unitary systems. However (see
Proposition XXVIII.2.7 in [47]), if Θ = (A, B, C, D; X, U, Y ) is a unitary system
and |λ| > 1, then WΘ(λ) is invertible if and only if λ̄−1 ∈ ρ(A), and in that case

WΘ(λ)−1 = D∗ + λB∗(I − λA∗)−1C∗.

The product of two unitary systems is again a unitary system (Theorem
XXVIII.6.1 in [47]). Also, invariant subspaces of the main operator of a unitary
system induce factorizations but to get the factors another method than the one
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of Section 2.4 has to be used because the external operator may not be invertible.
To get an analogue of Theorem 2.3 for unitary systems one proceed as follows.

Let Θ = (A, B, C, D; X, U, Y ) be a unitary system, and let X1 be an invariant
subspace of A. Let X2 be the orthogonal complement of X1 in X . Put

U2 = U, Y1 = Y,

and consider the following block operator matrix representations

A =

[
A11 A12

0 A22

]
: X1 ⊕ X2 → X1 ⊕ X2,

B =

[
B12

B22

]
: U2 → X1 ⊕ X2,

C =
[

C11 C12

]
: X1 ⊕ X2 → Y1.

Thus
[

A B

C D

]
=

⎡
⎢⎢⎣

A11 A12 B12

0 A22 B22

C11 C12 D

⎤
⎥⎥⎦ . (3.1)

Since this operator is unitary, A∗
11A11 + C∗

11C11 = IX1 . Now put

U1 =

{[
x1

y1

]
∈ X1 ⊕ Y1

∣∣A∗
11x1 + C∗

11y1 = 0

}
,

and define B1 : U1 → X1 and D1 : U1 → Y1 by

B1

[
x1

y1

]
= x1, D1

[
x1

y1

]
= y1.

Then the system Θ1 = (A11, B1, C11, D1; X1, U1, Y1) is a unitary system, which is
called the left projection of Θ associated to invariant subspace X1.

Next, consider the product

⎡
⎢⎢⎣

A∗
11 C∗

11 0

B∗
1 D∗

1 0

0 0 IX2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

A11 B12 A12

C11 D C12

0 B22 A22

⎤
⎥⎥⎦ , (3.2)

which acts as an operator from X1 ⊕ U2 ⊕ X2 to X1 ⊕ U1 ⊕ X2. Since (3.1) is
unitary, the (1, 1)-entry in the 3 × 3 operator matrix defined by the product in
(3.2) is equal to IX1 . On the other hand, the product in (3.2) defines a unitary
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operator, because both its factors are unitary. Hence the product in (3.2) is of the
form ⎡

⎢⎢⎣

IX1 0 0

0 D2 C2

0 B22 A22

⎤
⎥⎥⎦

for certain operators C2 : X2 → Y1 and D2 : U2 → U1. Now put Y2 = U1. Then
the operators A22, B22, C2 and D2 form a unitary system Θ2,

Θ2 = (A22, B22, C2, D2; X2, U2, Y2),

which is called the right projection of Θ associated to the invariant subspace H1.
The following theorem is the analogue of Theorem 2.3 for unitary systems.

Theorem 3.1. Let Θ be a unitary system, and let X1 be an invariant subspace for
the main operator of Θ. Then the left projection Θ1 and the right projection Θ2 of
Θ associated with X1 are unitary systems, and Θ = Θ1Θ2.

Proof. We continue to use the notation introduced in the two paragraphs preceding
the theorem. We already know that Θ1 and Θ2 are unitary systems. From (3.2)
and the fact that Θ1 is unitary it follows that

⎡
⎢⎢⎣

A11 B12 A12

C11 D C12

0 B22 A22

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

A11 B1 0

C11 D1 0

0 0 I

⎤
⎥⎥⎦

⎡
⎢⎢⎣

I 0 0

0 D2 C2

0 B22 A22

⎤
⎥⎥⎦ .

This identity is equivalent to the statement that Θ = Θ1Θ2. �

3.4 Monic systems

Let T : X → X , R : Y → X and Q : X → Y be operators, the underlying spaces
X and Y being complex Banach spaces, and let ℓ be a positive integer. The system
Θ = (T, R, Q, 0; X, Y ) is called a monic system of degree ℓ if the operator

col
(
QT j−1

)ℓ

j=1
=

⎡
⎢⎢⎢⎢⎣

Q

QT

...

QT ℓ−1

⎤
⎥⎥⎥⎥⎦

: X → Y ℓ

is invertible and its inverse is of the form

row(Uj−1)
ℓ
j=1 = [U0, . . . , Uℓ−1] : Y ℓ → X
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with Uℓ−1 = R. The integer ℓ is uniquely determined by these properties. Monic
systems have been introduced and studied in [11], [12]. Its external operator being
zero, a monic system is strictly proper.

To justify our terminology we make the following remark. Suppose Θ =
(T, R, Q, 0; X, Y ) is a monic system of degree ℓ, and let U0, . . . , Uℓ−1 be as above.
Then the transfer function WΘ of Θ,

WΘ(λ) = Q(λ − T )−1R, λ ∈ ρ(A),

coincides with the inverse L−1 of the monic operator polynomial L defined by

L(λ) = λℓI −
ℓ−1∑

j=0

λjQT ℓUi.

Furthermore, it can be shown that L can also be written as

L(λ) = λℓI −
ℓ−1∑

j=0

λjViT
ℓR,

where col(Vℓ−j)
ℓ
j=1 is the inverse of the invertible operator row(T ℓ−jR)ℓ

j=1. For
the proofs of these statements we refer to [11] and [12].

Suppose now, conversely, that L is a given monic operator polynomial the
coefficients of which are operators on Y . Then one can construct a monic system
Θ for which WΘ = L−1. Indeed, if

L(λ) = λℓI +
ℓ−1∑

j=0

λjAj

and

C1,L =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 I 0

...
...

. . .
...

0 0 I

−A0 −A1 . . . −Aℓ−1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

then
Θ =

(
C1,L, col(δjℓI)ℓ

j=1, row(δjℓI)ℓ
j=1, 0 ; Y ℓ, Y

)
(3.3)

has the desired properties. Here δij is the Kronecker delta. The operator C1,L

is known as the first companion operator associated with L, and for that reason
(3.3) will be called the first companion system corresponding to L. When Y is
finite-dimensional it is possible to construct a system Θ with WΘ = L−1 from
the spectral data (eigenvalues, eigenvectors and associated eigenvectors) of L. The
construction may be found in [66], [69] (see also Chapter 8).
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As was mentioned before the external operator of a monic system is equal to
the zero operator, and hence, as for the unitary systems in the previous section,
the system Θ× is not defined. Nevertheless, as we have seen in the preceding
paragraphs, there still is a construction of the inverse of the transfer function in
terms of the system.

If Θ1 and Θ2 are monic systems of degree ℓ1 and ℓ2, respectively, then Θ1Θ2

is a monic system of degree ℓ1 + ℓ2. A system which is similar to a monic system
of degree ℓ is again a monic system of degree ℓ.

In Section 2.4 we introduced the notion of a supporting projection for systems
having invertible external operator. This notion does not apply to monic systems
because its external operator, being the zero operator, is not invertible. Still, a
similar concept has been introduced in [11], [12]. We shall review some of the
material presented there.

Let Θ = (T, R, Q, 0; X, Y ) be a monic system of degree ℓ, and let Π be a
projection of X . We say that Π is a monic supporting projection for Θ if Ker Π
is a non-trivial invariant subspace for T and there exists a positive integer m
(necessarily unique and less than ℓ) such that

col(QT j−1)m
j=1

∣∣
Ker Π : Ker Π → Y m (3.4)

is invertible. We call m the degree of the monic supporting projection. The operator
(3.4) is invertible if and only if this is the case for the operator

Π row(T k−1R)k
j=1 : Y k → Im Π. (3.5)

Here k = ℓ − m.

Let Θ = (T, R, Q, 0; X, Y ) be a monic system, and let Π be a monic sup-
porting projection for Θ. Let m be the degree of Π. Put X1 = Ker Π, and define
T1 : X1 → X1 and Q1 : X1 → Y by T1x = Tx and Q1x = Qx. The invertibility of
the operator in (3.4) now implies that col(Q1T

j−1
1 )m

j=1 is invertible. Hence there
exists a unique R1 : Y → X1 such that Θ1 = (T1, R1, Q1, 0; X1, Y ) is a monic sys-
tem. This system, which has degree m, is called the left projection of Θ associated
with Π.

Put X2 = ImΠ, k = ℓ − m, and define T2 : X2 → X2 and R2 : Y → X2

by T2x = ΠTx and R2y = ΠRy. Since Ker Π is invariant under T , we have
ΠTΠ = ΠT . This, together with the invertibility of the operator in (3.5), implies

that row(T k−j
2 R2)

k
j=1 is invertible. Therefore there exists a unique Q2 : X2 → Y

such that Θ2 = (T2, R2, Q2, 0; X2, Y ) is a monic system. This system, which has
degree k = ℓ − m, is called the right projection of Θ associated with Π.

Let Θ = (T, R, Q, 0; X, Y ) be a monic system, and let Π be a monic sup-
porting projection for Θ. Let Θ1 and Θ2 be the associated left and right pro-
jections. Then Θ and Θ1Θ2 are similar (see [12], Theorem 2.2). Conversely, if
Θ1 = (T1, R1, Q1, 0; X1, Y ) and Θ2 = (T2, R2, Q2, 0; X2, Y ) are monic systems
such that Θ and Θ1Θ2 are similar, then there exists a monic supporting projec-
tion for Θ such that the associated left and right projections of Θ are similar to
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Θ1 and Θ2, respectively. To prove this we may assume that Θ = Θ1Θ2. But then
one can take Π to be the canonical projection of X1 ∔ X2 along X1 onto X2.

By Theorem 2.2, the factorization of a monic system implies a factorization
of the corresponding transfer function. Since in this case the transfer functions
are inverses of monic operator polynomials, we can employ the theory explained
above to derive factorizations for monic operator polynomials with the factors
being monic operator polynomials too. In fact, the following factorization result
holds true (cf., Theorem 8 in [65], Theorem 13 in [67]; see also the book [69]). Let
L(λ) = A0 + λA1 + · · ·+ λℓ−1Aℓ−1 + λℓI be a monic operator polynomial, and let
Θ = (T, R, Q, 0; X, Y ) be a fixed monic system such that WΘ = L−1. Let Π be a
monic supporting projection for Θ of degree m, and let Θ1 = (T1, R1, Q1, 0; X1, Y )
and Θ2 = (T2, R2, Q2, 0; X2, Y ) be the associated left and right projections of Θ.
Put

L1(λ) = λmI −
m−1∑

j=0

λjQ1T
m
1 Wj ,

where row(Wi)
m−1
j=0 =

(
col(Q1T

j−1
1 )m

j=1

)−1
, and

L2(λ) = λℓ−mI −
ℓ−m−1∑

j=0

λiQ2T
ℓ−m
2 Vj ,

with row(Vj)
ℓ−m−1
j=0 =

(
col(Q2T

j−1
2 )ℓ−m

j=1

)−1
. Note that WΘ1 = L−1

1 and WΘ2 =

L−1
2 . As Θ ≃ Θ1Θ2, we may conclude from Theorem 2.2 that L = L2L1.

Conversely, given a factorization L = L2L1 where L1 and L2 are monic
operator polynomials, there exists a monic supporting projection Π of Θ such
that for the associated left and right projections Θ1 and Θ2 we have L−1

1 = WΘ1

and L−1
2 = WΘ2 . In fact, for Π we may take the projection Π = I − P , the

projection P being defined by

P =
(
col(QT j)ℓ−m

j=0

)−1
col

(
Q1T

j
1

)ℓ−1

j=0

(
col

(
Q1T

j
1

)m−1

j=0

)−1

col(QT j)m−1
j=0 ,

where m is the degree of L1 and (T1, Q1, R1) is a monic system with transfer
function L−1

1 (see [65], Section 5 and [69]). By using an appropriate Möbius trans-
formation (see the final section of this chapter), this factorization theorem for
monic operator polynomials can also be deduced from Theorem 2.3; see Theorem
3.5 in Section 3.6 below.

In the previous paragraph the correspondence between the monic supporting
projections Π of Θ and the right divisors L1 of L is not one-one. The reason
may be explained as follows. Suppose Π is a monic supporting projection for Θ
of degree m, and let Π′ be another projection of X such that Ker Π = Ker Π′.
Then it is immediately clear from the definition that Π′ is also a monic supporting
projection for Θ of degree m. Furthermore, the left projections of Θ associated
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with Π and Π′ coincide. So what really matters in the definition of the monic
supporting projection Π is the existence of a T -invariant complemented subspace
X1 of X such that the operator

col(QT j−1)m
j=1

∣∣
X1

: X1 → Y m

is invertible. Such a subspace X1 is called a supporting subspace for Θ (cf., [65],
Section 5). The correspondence between the supporting subspaces of Θ and the
right divisors of L, L−1 = WΘ, is one to one (cf., [67] or [12]; see also the discussion
in the paragraph after the proof of Theorem 9.3.

For the companion type system (3.3) the supporting subspaces may be char-
acterized in a simple way. Indeed, a closed subspace X1 of Y ℓ is a supporting
subspace for (3.3) if and only if X1 is invariant under the first companion operator
C1,L and X1 is an algebraic complement in Y ℓ of the subspace of Y ℓ consisting
of all vectors for which the first m coordinates are zero. This is the contents of
the first part of Theorem 1.6 in [67]. Note that condition (iii) in this theorem is
superfluous (see also [69]).

3.5 Polynomial systems

In the previous section we have seen that the inverses of monic operator polyno-
mials can be seen as transfer functions of certain systems. Now we shall deal with
arbitrary polynomials. A system Θ = (A, B, C, D; X, Y ) is called a polynomial
system if its main operator A is nilpotent. If, in addition, D = I, we say that Θ
is a comonic polynomial system. The transfer function of a (comonic) polynomial
system is obviously a (comonic) polynomial in λ−1. An operator polynomial is
said to be comonic if its constant term is the identity operator on the underlying
space.,

Now conversely. Let P be a regular operator polynomial of degree ℓ whose
coefficients are operators on Y . Here regular means that P (λ) is invertible for at
least one λ. In order to show that P (λ−1) is the transfer function of a polynomial
system, it suffices to consider the comonic case, where P (0) is the identity operator
on Y . Put L(λ) = λℓP (λ−1). Then L is a monic operator polynomial of degree ℓ.
Let ∆ = (T, R, Q, 0; X, Y ) be a monic system such that the transfer function W∆

is equal to L−1. Then

L(λ) = λℓI −
ℓ−1∑

j=0

λjQT ℓUj,

where
row(Uj−1)

ℓ
j=1 =

(
col(QT j−1)ℓ

j=1

)−1
. (3.6)

Further, Uℓ−1 = R (see the previous section). So

U0Q + · · · + Uℓ−2QT ℓ−2 + RQT ℓ−1 = I,
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and hence

T − RQT ℓ =
(
col (QT j−1)ℓ

j=1

)−1[
δi,j−1I

]l
i,j=1

(
col (QT j−1)ℓ

j=1

)
.

It follows that T − RQT ℓ is nilpotent of order ℓ. Also, using (3.6), one sees that
(T − RQT ℓ)Uj = Uj−1 for j = 1, . . . , ℓ − 1. But then

I − QT ℓ(λ − T + RQT )−1R = I −
ℓ∑

j=1

λ−jQT ℓUℓ−j

= λ−ℓL(λ) = P (λ−1).

So P (λ−1) is the transfer function of the comonic polynomial system

Θ =
(
T − RQT ℓ, R,−QT ℓ; X, Y

)
. (3.7)

Summarizing we obtain: the class of transfer functions of (comonic) polyno-
mial systems coincides with that of the (comonic) polynomials in λ−1. We observe
that the system Θ = (T − T ℓRQ, T ℓR,−Q; X, Y ) is also a comonic polynomial
system and its transfer function is also equal to P (λ−1).

Consider the system (3.7). Note that Θ× = (T, R,−QT ℓ; X, Y ) is the cor-
responding associate system. On ρ(T ) \ {0} the transfer function of Θ× coincides
with P (λ−1)−1. From this fact one easily infers that P (λ−1) = QT ℓ−1(I−λT )−1R.

The product of two (comonic) polynomial systems is again a (comonic) poly-
nomial system. A system that is similar to a (comonic) polynomial system is also a
(comonic) polynomial system. If Θ = (A, B, C; X, Y ) is a comonic polynomial sys-
tem, then for any supporting projection Π of Θ the systems pr Π(Θ) and pr I−Π(Θ)
are comonic polynomial systems.

3.6 Möbius transformation of systems

From the definition of the transfer function of a system it is clear that such a
function is analytic at infinity. Therefore, in general, the theory developed in the
previous sections can be applied to an arbitrary analytic operator function after
a suitable transformation of the independent variable. For this reason we study in
this section the effect of a Möbius transformation on complex variable λ.

Throughout this section ϕ will be the Möbius transformation

ϕ(λ) =
pλ + q

rλ + s
. (3.8)

Here p, q, r and s are complex numbers and ps − qr �= 0. We consider ϕ as a map
from the Riemann sphere C ∪∞ onto itself. The inverse map ϕ−1 is given by

ϕ−1(λ) =
−sλ + q

rλ − p
.
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Theorem 3.2. Let W (λ) = D+C(λ−A)−1B be the transfer function of the system
Θ = (A, B, C, D; X, Y ), and let ϕ be the Möbius transformation (3.8). Assume that
T = p − rA (= pIX − rA) is invertible. Then Wϕ(λ) = W

(
ϕ(λ)

)
is the transfer

function of the system

Θϕ =
(
(−(q − sA)T−1, T−1B, (ps − qr)CT−1, D + rCT−1B ; X, Y

)
. (3.9)

Proof. As T = p−rA is invertible, the inverse map ϕ−1 is analytic on the spectrum
σ(A) of (A). So ϕ−1(A) is well defined. In fact, the operator ϕ−1(A) = −(q −
sA)T−1 is equal to the main operator of Θϕ. By the spectral mapping theorem,
the resolvent set of ϕ−1(A) is given by

ρ
(
ϕ−1(A)

)
=
{
λ ∈ C | ϕ(λ) ∈ ρ(A) ∪ {∞}

}
.

It follows that the function Wϕ as well as the transfer function of Θϕ are defined
on the same open set, namely on ρ(ϕ−1(A)).

To prove that the two functions coincide there, take λ in ρ(ϕ−1(A)). Assume
first that rλ + s �= 0. Then

W (λ) = D + C

(
λp + q

rλ + s
− A

)−1

B

= D + (rλ + s)C
(
λ(p − rA) + q − sA

)−1
B

= D + (rλ + s)C
(
λ − ϕ−1(A)

)−1
T−1B

= D + C
(
r
(
λ − ϕ−1(A)

)
+ rϕ−1(A) + s

)(
λ − ϕ−1(A)

)−1
T−1B

= D + rCT−1B + (ps − qr)CT−1
(
λ − ϕ−1(A)

)−1
T−1B,

where we use that rϕ−1(A) + s = (ps − qr)(p − rA)−1.

Next, assume that λ ∈ ρ(ϕ−1(A)) and rλ + s = 0. In this case, r = 0 implies
s = 0, because λ ∈ C. Since ps − qr �= 0, we cannot have r = s = 0. So r �= 0.
Notice that ϕ(λ) = ∞ and Wϕ(λ) = D. On the other hand, it is not difficult to
check that the value of the transfer function of Θϕ in λ = −sr−1 is equal to D
too. This completes the proof. �

The system Θϕ introduced in formula (3.9) has several interesting properties;
some of them will be discussed below.

Proposition 3.3. For j = 1, 2, let Θj = (Aj , Bj , Cj , Dj ; Xj, Y ) be a system such
that both (Θ1)ϕ and (Θ2)ϕ exist. Then (Θ1Θ2)ϕ exists too and

(Θ1Θ2)ϕ = (Θ1)ϕ(Θ2)ϕ. (3.10)
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Proof. Recall that Θ1Θ2 = (A, B, C, D; X1 ∔ X2, Y ), where

A =

[
A1 B1C2

0 A2

]
, B =

[
B1D2

B2

]
,

C =
[

C1 D1C2

]
, D = D1D2.

The fact that (Θ1)ϕ and (Θ2)ϕ exist comes down to the invertibility of p − rA1

and p − rA2. Since σ(A) is a subset of σ(A1) ∪ σ(A2), it follows that p − rA is
invertible too. Thus (Θ1Θ2)ϕ is well defined. Equality (3.10) follows now by a
direct computation. �

Let C be a class of systems such that for each Θ ∈ C the system Θϕ is well
defined. Assume that C is closed under multiplication. For instance, we could take
for C the class of Brodskii systems for which Θϕ exists. Then we can form the class
Cϕ = {Θϕ | Θ ∈ C}, and by Proposition 3.3 the new class Cϕ is again closed under
multiplication. In this way one can also establish certain relationships between
different classes of systems.

For example (cf., [33]), let Θ = (A, R, C, K; H, G) be a Krěın J-system, and
let Ψ be the Möbius transformation

Ψ(λ) = α

(
λ + i

λ − i

)
.

Here |α| = 1, and we assume that α ∈ ρ(A). It follows that ΘΨ is well defined.
Put

AΨ = −i(α + A)(α − A)−1,

BΨ = (α − A)−1R,

CΨ = −2iαC(α − A)−1,

DΨ = K + C(α − A)−1R.

Using the properties of Krěın J-systems, one sees that

BΨJB∗
Ψ = (α − A)−1(I − AA∗)(ᾱ − A∗)−1. (3.11)

It follows that
AΨ − A∗

Ψ = −2iBΨJB∗
Ψ. (3.12)

This last identity is one of the defining properties of a Brodskii (−J)-system.
However, note that in general ΘΨ is not a Brodskii system, because its external
operator DΨ may not be equal to the identity operator. As A× = (A∗)−1 for Krěın
systems, we have α ∈ ρ(A∗), and hence DΨ is invertible. We shall prove that the
system

∆ = (AΨ, BΨ, D−1
Ψ CΨ; H, G) (3.13)
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is a Brodskii(−J)-system. In view of (3.12) it suffices to prove that D−1
Ψ CΨ =

−2iJB∗
Ψ. In other words we have to show that CΨ = −2iDΨJB∗

Ψ. To do this,
observe that

BΨJB∗
Ψ = A∗(ᾱ − A∗)−1 + α(α − A)−1

(cf., (3.11)). It follows that

CΨ = −2i
(
− CA∗(ᾱ − A∗)−1 + CBΨJB∗

Ψ

)
. (3.14)

From the definition of ΘΨ it is clear that DΨ = K + CBΨ. So −2iDΨJB∗
Ψ =

−2i(KJB∗
Ψ + CBΨJB∗

Ψ). Employing the properties of Krěın J-systems, we have

KJR∗ = J(K∗)−1(J − R∗R)JR∗

= J(K∗)−1R∗ − J(K∗)−1R∗(I − AA∗)

= J(K∗)−1R∗AA∗ = −CA∗.

Combining this with (3.14) yields CΨ = −2iDΨJB∗
Ψ, and hence the system (3.13)

is a Brodskii (−J)-system. The relationship between the systems ∆ and Θ can
also be expressed in terms of the corresponding characteristic operator functions
W∆ and WΘ. We have

W∆(λ) = JWΘ(α)∗JWΘ

(
ᾱ

λ + i

λ − i

)
.

This is clear from the definition of ∆ and the fact that D−1
Ψ = WΘ(α)−1 =

JWΘ(α)∗J .

In the next couple of paragraphs we will consider the effect of the Möbius
transformation on inversion and factorization.

Proposition 3.4. Let Θ = (A, B, C, D; X, Y ) be a system such that Θϕ exists.
Assume that the external operators of Θ and Θϕ are invertible. Then (Θ×)ϕ and
(Θϕ)× exist while, moreover,

(Θ×)ϕ = (Θϕ)×. (3.15)

Proof. Let W and Wϕ be the transfer functions of Θ and Θϕ, respectively. By
assumption the operators W (∞) = D and Wϕ(∞) = D + rC(p − rA)−1B are
invertible. If r �= 0, then W (pr −1) = Wϕ(∞), and so pr −1 ∈ ρ(A×), where
A× is the main operator of Θ×. Hence p − rA× is invertible. This conclusion is
also correct if r = 0, because then p �= 0. It follows that (Θ×)ϕ exists. Also, as
D + rC(p − rA)−1B is invertible, (Θϕ)× exists too. Finally, using

(
D + rC(p − rA)−1B

)−1
= D−1 − rD−1C(p − rA×)−1BD−1,

formula (3.15) is proved by a direct computation. �
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Let Θ = (A, B, C, D; X, Y ) be a system such that Θϕ exists. Assume that the
external operators of Θ and Θϕ are invertible. Let Π be a supporting projection
for Θ, i.e.,

A[Ker Π] ⊂ Ker Π, A×[Im Π] ⊂ ImΠ.

In general one may not conclude that Π is a supporting projection for Θϕ too. But
if the state space of X is finite-dimensional, then the conclusion is correct. So let
us assume that dim X is finite. Let Θ1 and Θ2 be the factors of Θ corresponding
to Π, and let D = D1D2 be a factorization of D with D1 and D2 invertible (i.e.,
Θ1 and Θ2 are given by formulas (2.10) and (2.11), respectively). As X is finite-
dimensional, the systems (Θ1)ϕ and (Θ2)ϕ are well defined, and we have (cf.,
Proposition 3.3)

Θϕ = (Θ1)ϕ(Θ2)ϕ. (3.16)

This factorization corresponds to Π (as a supporting projection for Θϕ) and a
special factorization of D + rC(p − rA)−1B into invertible factors induced by
D = D1D2. In the particular case that ϕ is a translation and the external operator
of Θ is the identity operator we may replace (3.16) by

pr Π(Θϕ) = (pr Π(Θ))ϕ, pr I−Π(Θϕ) = (pr I−Π(Θ))ϕ.

Möbius transformations may be employed to derive from Theorem 2.3 factor-
ization theorems for transfer functions that do not take an invertible value at in-
finity. To illustrate this we shall give a new proof of the division theorem for monic
operator polynomials (cf., [67], Theorem 13, see also [69]) based on Theorem 2.3.

Theorem 3.5. Suppose L is a monic operator polynomial of degree ℓ, and let ∆ =
(T, R, Q, O; X, Y ) be a monic system such that the transfer function of ∆ is equal
to L−1. Let X1 ⊂ X be a supporting subspace, i.e., the space X1 is a non-trivial
(complemented) invariant subspace for T such that for some positive integer m
(necessarily unique and less than ℓ)

col(QT j−1)m
j=1

∣∣
X1

: X1 → Y m

is invertible. Define T1 : X1 → X1 and Q1 : X1 → Y by T1x = Tx and Q1x = Qx.
Then col(Q1T

j−1
1 )m

j=1 is invertible, say with inverse row (Wj−1)
m
j=1. Introduce

L1(λ) = λmI −
m−1∑

j=0

λjQ1T
m
1 W1.

Then L1 is a right divisor of L.

Proof. Consider the Möbius transformation Ψ(λ) = (αλ+1)λ−1. Here α is a fixed
complex number in the unbounded component of the resolvent set of T . As T −α
is invertible, the system Θ = ∆ϕ is well defined. Put A = −(α − T )−1, B = (α −
T )−1R, C = −Q(α − T )−1 and D = Q(α − T )−1R. Then Θ = (A, B, C, D; X, Y ),
and the external operator D of Θ is equal to L(α)−1. Further, the associate main
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operator of Θ is equal to

A× = A − BD−1C = −(α − T )−1 + (α − T )−1RL(α)Q(α − T )−1. (3.17)

With the supporting subspace X1 we associate the projection P defined by

Px =
(
col (Q1T

j−1
1 )m

j=1

)−1 (
col (QT j−1)m

j=1

)
x.

We know that ImP = X1 is invariant under T . As α is in the unbounded compo-
nent of T , it follows that X1 is also invariant under A = −(α−T )−1. Furthermore,
we see that

A
∣∣
X1

= −(α − T1)
−1. (3.18)

Next we consider X2 = KerP . From the theory of monic systems we know that
X2 = Im

(
row (T j−1R)ℓ−m

j=1

)
. We shall prove that X2 is invariant under A×. In

order to do this, recall that QT jR = 0, j = 0, . . . , ℓ − 2 and QT ℓ−1R = I. It
follows that, for s = 0, . . . , ℓ − 1,

Q(α − T )−1T sR = αsQ(α − T )−1R = αsL(α)−1.

Using (3.17) we obtain A×R = 0. Also, for 1 ≤ s ≤ ℓ − 1, we have

A×T sR = −(α − T )−1T sR + (α − T )−1RL(α)Q(α − T )−1T sR

= −(α − T )−1T sR + αs(α − T )−1R

= T s−1R + αT s−2R + · · · + αs−1R.

So we know the action A× on T sRy, 0 ≤ s ≤ ℓ− 1. It follows that X2 is invariant
under A×. Furthermore, we see that the restriction of A× to X2 is nilpotent of
order ℓ−m. Observe that by now we have proved that Π = I −P is a supporting
projection for Θ.

As α − T1 is invertible, the same is true for the operator L1(α). Put D1 =
L1(α)−1 and D2 = L1(α)L(α)−1. Then D = D1D2. Let

A =

[
A11 B12

0 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]

be the operator matrix representations for A, B and C with respect to the decom-
position X = X1 ∔ X2. Consider the systems

Θ1 = (A11, B1D
−1
2 , C1, D1; X1, Y ),

Θ2 = (A22, B2, D
−1
1 C2, D2; X2, Y ),

and, for j = 1, 2, let Wj be the transfer function of Θj . As AX1 ⊂ X1 and
A×X2 ⊂ X2, we can apply Theorem 2.3 to show that Θ = Θ1Θ2, and hence

L
(
Ψ(α)

)−1
= W1(λ)W2(λ). (3.19)
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First we shall prove that L1(Ψ(λ))−1 = W1(λ). Let ∆1 be the system ∆1 =
(T1, R1, Q1, 0; X1, Y ), where T1 and Q1 are as before and R1 = Wm−1. So ∆1 is
a monic system whose transfer function is equal to L−1

1 . Thus in order to prove
that L(Ψ(λ))−1 is equal to W1(λ), it suffices to show that (∆1)Ψ = Θ1. Note that

(∆1)Ψ =
(
− (α − T1)

−1, (α − T1)
−1R1,−Q1(α − T1)

−1, L1(α)−1; X1, Y
)
.

From (3.18) we know that A11 = −(α − T1)
−1. By definition D1 = L1(α)−1.

Further
C1 = −Q(α − T )

∣∣
X1

= −Q1(α − T1).

It remains to prove that B1D
−1
2 = (α−T1)

−1R1. Take y ∈ Y . By applying (3.18),
first for T, Q, R and next for T1, Q1, R1, we obtain

(
col(QT j−1)m

j=1

)
(α − T )−1RL(α)L1(α)−1y =

=
(
col

(
αj−1L(α)−1

)m

j=1

)
L(α)L1(α)−1y

=
(
col(Q1T

j−1
1 )m

j=1

)
(α − T1)

−1R1y.

But then B1D
−1
2 y = PBD−1

2 y = (α − T1)
−1R1y, and we have proved that Θ1 =

(∆1)Ψ.

As the restriction of A× to X2 is nilpotent of order ℓ − m, we know that
W2(λ)−1 is a polynomial in λ−1 of degree at most ℓ − m. Put

L2(λ) = W2(Ψ
−1(λ))−1,

where Ψ−1 is the inverse map of the Möbius transformation Ψ. In other words,
Ψ−1(λ) = (λ − α)−1. It follows that L2(λ) is a polynomial in λ of degree at most
ℓ−m. From (3.19) we see that L(λ) = L2(λ)L1(λ), and hence L1 is a right divisor
of L. �

Notes

The main references for Sections 3.1 and 3.2 are [30] and [32], respectively. Section
3.3 follows [47], Section XXVIII.7. The results in Section 3.4 originate from [11],
[12]. These two papers were inspired on the one hand by the theory of character-
istic operator functions and on the other hand by the theory of monic operator
polynomials developed in [65], [66] (see also the books [69] and [101]). The con-
cept of a monic system does not appear in the latter publications but its role
is played by the notion of a standard triple. We note that a triple (Q, T, R) of
operators is a standard triple for a monic operator polynomial L if and only if
Θ = (T, R, Q, 0; X, Y ) is a monic system and WΘ = L−1. Sections 3.5 and 3.6 are
taken from [14], Chapter 1.



Chapter 4

Realization and Linearization
of Operator Functions

The main problem addressed in this chapter is the realization problem for operator-
valued functions. Given such a function the problem is to find a system for which
the transfer function coincides with the given function. In the first section we
consider rational operator functions, and in the second analytic ones. In Section
4.3 it is shown that, in a certain sense, the transfer function of a system with an
invertible external operator can be reduced to a linear function, and we use this
reduction to describe the singularities of the transfer function. In the final section
a connection between Schur complements and linearization is described.

4.1 Realization of rational operator functions

We start our considerations with he following result.

Theorem 4.1. Given the operator polynomials

H(λ) =
ℓ−1∑

j=0

λjHj , L(λ) = λℓI +
ℓ−1∑

j=0

λjLj,

with coefficients acting on the complex Banach space Y , let

A =

⎡
⎢⎢⎢⎢⎣

0 I . . . 0

...
. . .

0 0 I

−L0 −L1 . . . −Lℓ−1

⎤
⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎣

0

...

0

I

⎤
⎥⎥⎥⎥⎦

, C =
[

H0 . . . Hℓ−1

]
. (4.1)
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Then Θ = (A, B, C, 0; Y ℓ, Y ) is a system such that

WΘ(λ) = H(λ)L(λ)−1, λ ∈ ρ(A).

Proof. We know already (see Section 3.4) that

L−1(λ) = Q(λ − A)−1B, λ ∈ ρ(A), (4.2)

where Q =
[

I 0 · · · 0
]
. For λ ∈ ρ(A), define C1(λ), . . . , Cℓ(λ) by

col
(
Cj(λ)

)ℓ

j=1
= (λ − A)−1B.

From (4.2) we see that C1(λ) = L−1(λ). As (λ − A)
(
col

(
Cj(λ)

)ℓ

j=1

)
= B, the

special form of A in (4.1) yields

Cj(λ) = λj−1C1(λ), j = 1, . . . , ℓ.

It follows that C(λ − A)−1B =
∑ℓ−1

j=0 HjCj+1(λ) = H(λ)L(λ)−1, and the proof is
complete. �

Let us employ Theorem 4.1 to obtain a realization for a proper rational
operator function W , the values of which act on a complex Banach space Y .
By definition, an operator function is rational if it can be transformed into an
operator polynomial by multiplication with a scalar polynomial. Such a function
is meromorphic with a finite set of poles.

Theorem 4.2. Let W be a proper rational operator function whose values act on the
complex Banach space Y , and put D = W (∞). Then there is a Banach space X,
and there are bounded linear operators A : X → X, B : Y → X and C : X → Y
such that ρ(A) coincides with the (finite) set of poles of A and

W (λ) = D + C(λ − A)−1B, λ ∈ ρ(A).

Proof. By the definition given above, there exist a scalar polynomial q and an
operator polynomial P such that

W (λ) =
1

q(λ)
P (λ), λ ∈ C, q(λ) �= 0.

Put D = W (∞) and introduce

H(λ) = q(λ)
(
W (λ) − D

)
= P (λ) − q(λ)D.

Then H is an operator polynomial with coefficients acting on Y . Obviously we
may assume q to be monic. Then, clearly, the operator polynomial L(λ) = q(λ)IY

is monic and

W (λ) = D + H(λ)L(λ)−1, λ ∈ C, q(λ) �= 0.

Moreover, as W (∞) = D, we have limλ→∞ H(λ)L(λ)−1 = 0, and hence the degree
of H is strictly less than that of L. The desired conclusion now comes about by
applying Theorem 4.1. �
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The case when W is a proper rational matrix function corresponds to the
situation where Y is finite-dimensional and X can be taken to be finite-dimensional
too. A deeper analysis of the relation between the poles of a rational matrix
function W and the eigenvalues of the main operator A in a realization of W will
be given in Chapter 8.

4.2 Realization of analytic operator functions

By a Cauchy contour Γ we shall mean the positively oriented boundary of a
bounded Cauchy domain in C. Such a contour consists of a finite number of non-
intersecting closed rectifiable Jordan curves.

Let Γ be a Cauchy contour around zero, and let Y be a complex Banach
space. With Γ and Y we associate the space C(Γ, Y ) of all Y -valued continuous
functions on Γ endowed with the supremum norm. The canonical embedding of
Y into C(Γ, Y ) will be denoted by τ , i.e., τ(y)(z) = y for each y ∈ Y and z ∈ Γ.
Further we define ω : C(Γ, Y ) → Y by setting

ω(f) =
1

2πi

∫

Γ

1

ζ
f(ζ) dζ.

Since 0 is assumed to be in the interior domain of Γ, we may conclude that ωτ is
the identity operator on Y . This observation will be used in Section 4.3 below.

By L(Y ) we mean the Banach algebra of all bounded linear operators on Y .

Theorem 4.3. Let Ω be the interior domain of Γ, and let W be an operator function,
analytic on Ω, continuous towards the boundary Γ, and with values in L(Y ). Define
operators V and M on C(Γ, Y ) by

(
V f

)
(z) = zf(z),

(
Mf

)
(z) = W (z)f(z).

Then
W (λ) = I + ω(V − V M)(λ − V )−1τ, λ ∈ Ω ⊂ ρ(V ).

In other words, the system Θ = (V, τ, ω(V − V M); C(Γ, Y ), Y ) is a realization for
W on Ω.

Proof. First observe that Ω ⊂ ρ(V ). In fact, σ(V ) = Γ,

[
(λ − V )−1g

]
(z) =

1

λ − z
g(z), λ /∈ Γ; z ∈ Γ.

It follows that for λ /∈ Γ we have

ω(V − V M)(λ − V )−1τy =

(
1

2πi

∫

Γ

1

λ − ζ

(
I − W (ζ)

)
dζ

)
y. (4.3)

For λ ∈ Ω the right-hand side of (4.3) is equal to W (λ)y − y, and the theorem is
proved. �
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The associate main operator V × of the system Θ introduced in the above
theorem is V × = V − τω(V − V M). It follows that

(V ×f)(z) = zf(z)− 1

2πi

∫

Γ

(
I − W (ζ)

)
f(ζ) dζ. (4.4)

In the next section (see Theorem 4.6) we shall show that, in a sense to be made
precise, V × is a linearization of W on Ω.

Theorem 4.3 can be proved for any bounded open set Ω in C, regardless of
possible boundary conditions. In that case the space C(Γ, Y ) must be replaced by
an appropriate Banach space, which one has to define in terms of the behavior of
W near the boundary (cf., [97]; see also the next theorem).

If Ω is an unbounded open set containing zero, then one cannot expect that
W admits a representation of the form D + C(λ − A)−1B, because the behavior
of W near infinity may be irregular. However one can always write W in the
alternative form D + λC(I − λA)−1B. This follows from the next theorem by
changing λ into λ−1.

Theorem 4.4. Let Ω be an open neighborhood of infinity in the Riemann sphere
C ∪ {∞} not containing the origin, and let W : Ω → L(Y ) be analytic. Define X
to be the space of all Y -valued functions, analytic on Ω, such that

‖f‖• = sup
z∈Ω

‖f(z)‖
max(1, ‖W (z)‖) < ∞.

The space X endowed with norm ‖·‖• is a Banach space. The canonical embedding
of Y into X is denoted by τ . Further γ : X → Y is defined by γ(f) = f(∞).
Finally, let M and V be the operators on X given by

(Mf)(z) = W (z)f(∞), z ∈ Ω,

(V f)(z) =

{
z
(
f(z) − f(∞)

)
, z ∈ Ω \ {∞},

lim
z→∞

z
(
f(z) − f(∞)

)
, z = ∞.

Then

W (λ) = W (∞) + γ(λ − V )−1V Mτ, λ ∈ Ω ⊂ ρ(V ) ∪ {∞}.
In other words, the system (V, V Mτ, γ, W (∞); X, Y ) is a realization for W on Ω.

Proof. It is straightforward to check that the operators τ, γ, V and M are well
defined bounded linear operators. Next we prove that for each λ ∈ Ω \ {∞} the
operator λ − V is invertible. Indeed, take λ ∈ Ω \ {∞}. For g ∈ X , put

h(z) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

zg(λ) − λg(z)

z − λ
, z ∈ Ω \ {λ,∞},

g(λ) − λg′(λ), z = λ,

g(λ), z = ∞.
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Then h ∈ X , and by direct computation one sees that
(
(λ − V )h

)
(z) = λg(z), z ∈ Ω.

Now λ is nonzero (since Ω does not contain the origin), and it follows that λ−V is
surjective. As is easily verified, λ− V is injective too. We conclude that λ ∈ ρ(V )
and (λ − V )−1g = λ−1h.

Now take g = V Mτy, i.e., g(z) = z
(
W (z)y − W (∞)y

)
for each z ∈ Ω. Then

(
(λ − V )−1g

)
(z) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z

λ − z

(
W (z) − W (λ)

)
y, z ∈ Ω \ {λ,∞},

−λW ′(λ)y, z = λ,

(
W (λ) − W (∞)

)
y, z = ∞,

and so γ(λ − V )−1g =
(
(λ − V )−1g

)
(∞) =

(
W (λ) − W (∞)

)
y. Thus

γ(λ − V )−1V Mτ = W (λ) − W (∞), λ ∈ Ω \ {∞} ⊂ ρ(V ),

and the theorem is proved. �

In the previous theorem the condition that Ω does not contain the origin may
be replaced by the requirement that C \Ω �= ∅. In the latter case one takes a point
in C \Ω, and with appropriate changes the theorem remains valid. If C \Ω = ∅,
i.e., if Ω is the full Riemann sphere, the theorem does not go through, but on the
other hand in that case the function W is constant.

4.3 Linearization

Let W be the transfer function of a system Θ = (A, B, C, D; X, Y ) with invertible
external operator D. Then W−1(λ) = D−1 − D−1C(λ − A×)−1BD−1 for λ in a
neighborhood of ∞. Here A× = A − BD−1C is the associate main operator. In
this section we shall point out another connection between W and A×. In fact we
shall prove that A× appears as a linearization of W .

First we define the notion of linearization. Let Ω be an open set in C, and
let W : Ω → L(Y ) be analytic. An operator T ∈ L(X) is called a linearization of
W on Ω if there exist a Banach space Z and analytic operator functions E and F
on Ω such that

W (λ) +̇ IZ = E(λ)
(
λ − T

)
F (λ), λ ∈ Ω, (4.5)

while the maps E(λ), F (λ) : Y +̇Z → X are bijective for each λ in Ω. Here we
follow the convention that for operators R : Y → Y and Q : Z → Z the operator
R +̇Q stands for the diagonal operator on Y +̇Z build from R and Q, that is,

R+̇Q =

[
R 0

0 Q

]
: Y +̇Z → Y +̇Z.
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The operator function W (λ) +̇ Iz in (4.5) is called the Z-extension of W . If two
operator functions W1 and W2, analytic on Ω, are connected as in (4.5), i.e., if
W1(λ) = E(λ)W2(λ)F (λ) for λ ∈ Ω, with E, F analytic on Ω and E(λ), F (λ)
invertible for each λ ∈ Ω, then W1 and W2 are said to be analytically equivalent
on Ω.

Theorem 4.5. Let Θ = (A, B, C, D; X, Y ) be a system with an invertible external
operator D, and assume that B has a left inverse. Then A× is a linearization
on ρ(A) of the transfer function WΘ. In fact, if B+ is a left inverse of B and
Z = KerB+, then the Z-extension of WΘ is analytically equivalent to (λ − A)−1

on ρ(A).

Further relevant details can be found in the proof.

Proof. For λ ∈ ρ(A), define E(λ), F (λ) : Y +̇Z → X by

E(λ)(y, z) = BD−1y + z + BD−1C(λ − A)−1z,

F (λ)(y, z) = (λ − A)−1(By + z),

where y ∈ Y and z ∈ Z. Then E(λ) and F (λ) are bounded linear operators de-
pending analytically on the parameter λ ∈ ρ(A). Also E(λ) and F (λ) are invertible
with inverses E(λ)−1, F (λ)−1 : X → Y +̇Z given by

E(λ)−1x =
(
DB+x − C(λ − A)−1

(
IX − BB+

)
x,

(
IX − BB+

)
x
)
,

F (λ)−1x =
(
B+(λ − A)x,

(
IX − BB+

)
(λ − A)x)

)
,

where x ∈ X . Finally,

E(λ)
(
WΘ(λ) +̇ IZ

)
= (λ − A×)F (λ), λ ∈ ρ(A). (4.6)

The (straightforward) computations are left to the reader. �

By applying Theorem 4.5 to the associate system Θ× we may conclude that
under the conditions of Theorem 4.5 the operator A is a linearization on ρ(A×)
of the transfer function WΘ× . So, roughly speaking, the operator A appears as a
linearization of W−1

Θ (λ) and A× as a linearization of WΘ. For finite-dimensional
systems this corresponds to the fact that the eigenvalues of A are related to the
poles of WΘ and the eigenvalues of A× are related to the zeroes of WΘ. We shall
return to this relation in more detail in Chapter 8.

Theorem 4.5 has a counterpart for the situation where C has a right inverse
C+, say. One then takes Z = KerC and proves (4.6) with the equivalence operators
E(λ), F (λ) : Y +̇Z → X given by

E(λ)(y, z) = (λ − A)
(
C+y + z

)
,

F (λ)(y, z) = C+Dy −
(
IX − C+C

)
(λ − A)−1By + z,
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where y ∈ Y and z ∈ Z. For the inverses E(λ)−1, F (λ)−1 : X → Y +̇Z of these
operators, we have the expressions

E(λ)−1x =
(
C(λ − A)−1x,

(
IX − C+C

)
(λ − A)−1x

)
,

F (λ)−1x =
(
D−1Cx,

(
IX − C+C

)(
IX + (λ − A)−1BD−1C

)
x
)
,

where x ∈ X .

If B or C has a generalized inverse then one has to allow for extensions on
both sides (see [96] for details). Always, irrespective of any invertibility condition
on B or C, the functions WΘ(λ) +̇ IX and (λ−A×) +̇ IY are analytically equivalent
on ρ(A). In fact (cf., [52], Theorem 4.5),

WΘ(λ) +̇ IX = E(λ)
(
(λ − A×) +̇ IY

)
F (λ), λ ∈ ρ(A), (4.7)

where the equivalence operators and their inverses are given by

E(λ) =

[
−C(λ − A)−1 WΘ(λ)

(λ − A)−1 −(λ − A)−1B

]
: X+̇Y → Y +̇X,

F (λ) =

[
(λ − A)−1B IX

D−1WΘ(λ) D−1C

]
: Y +̇X → X+̇Y,

E−1(λ) =

[
BD−1 λ − A×

D−1 D−1C

]
: Y +̇X → X+̇Y,

F−1(λ) =

[
−D−1C IY

(λ − A)−1(λ − A×) −(λ − A)−1B

]
: X+̇Y → Y +̇X.

In all these expressions, the dependance of the parameter λ ∈ ρ(A) is analytic.

The equivalence after two-sided extension embodied in (4.7) sheds new light
on Theorem 2.1. Indeed, it is now clear that WΘ(λ) and λ − A× share not only
the property of being (non-)invertible, but WΘ(λ) and λ − A× have all Fredholm
characteristics in common. Further details can be derived from [18], Section 2.
We give two examples. The first is about the nullity and says that the operator
(λ−A)−1B maps KerWΘ(λ) one-to-one onto Ker(λ−A×), hence KerWΘ(λ) and
Ker(λ−A×) have the same (possibly infinite) dimension. The second is concerned
with the defect and reads as follows. If M is a (closed) complement of Im WΘ(λ)
in Y , then BD−1[M ] is a (closed) complement of Im(λ − A×) in X and BD−1

maps M one-to-one onto BD−1[M ], hence Im WΘ(λ) and Im(λ − A×) have the
same (possibly infinite) codimension in Y and X , respectively.

We now make the connection with Theorem 4.3 (see reference [52], Theorems
2.2 and 2.3).



72 Chapter 4. Realization and Linearization of Operator Functions

Theorem 4.6. Let Γ be a Cauchy contour around zero in C, and let W be an
operator function, analytic on the interior domain of Ω of Γ, continuous towards
the boundary Γ and with values in L(Y ). Let T on C(Γ, Y ) be defined by

(
Tf

)
(z) = zf(z)− 1

2πi

∫

Γ

(
IY − W (ζ)

)
f(ζ) dζ.

Then T is a linearization of W on Ω and

σ(T ) = Γ ∪ {λ ∈ Ω | W (λ) not invertible}. (4.8)

Proof. With the notation of Theorem 4.3, we have

W (λ) = I + ω(V − V M)(λ − V )−1τ, λ ∈ Ω ⊂ ρ(V ).

Since 0 is in the interior domain of Γ, the operator τ has a left inverse. In fact, as
noted in the beginning of Section 4.2, we have ωτ = IY . As Ω ⊂ ρ(V ), Theorem
4.5 shows that W (λ) +̇ IKer ω is analytically equivalent to λ − V × on Ω, in other
words V × is a linearization of W on Ω. Here V × is the associate main operator of
the system Θ =

(
V, τ, ω(V − V M); C(Γ, Y ), Y

)
. So V × is given by formula (4.4),

and hence V × = T .

To prove (4.8), recall that σ(V ) = Γ and consider the transfer function WΘ

of the system Θ =
(
V, τ, ω(V − V M); C(Γ, Y ), Y

)
. We know that WΘ(λ) = W (λ)

for λ ∈ Ω. For λ ∈ C \Ω we have WΘ(λ) = I. This is clear from (4.3). So WΘ(λ) is
invertible for each λ in the exterior domain of Γ. As ρ(V ) = C \Γ, we may apply
Theorem 2.1 to show that

σ(V ×) ∩ Ω = {λ ∈ Ω | W (λ) not invertible},

and σ(V ×) ∩ [C \Ω] = ∅. So to prove(4.8) it remains to show that Γ is contained
in σ(V ×).

Take λ0 ∈ Γ, and assume that λ0 ∈ ρ(V ×). So WΘ×(λ) is defined in some
connected open neighborhood of U of λ0. Observe that on [C \Ω] ∩ U the function
WΘ× is identically equal to I. By analyticity WΘ×(λ) = I for each λ ∈ U . But then,
applying Theorem 2.1 to Θ×, one obtains λ0 ∈ ρ(V ). This contradicts Γ = σ(V ),
and the proof is complete. �

Theorem 4.5 is applicable only to systems with an invertible external op-
erator. To obtain a linearization of the transfer function of a system with a
non-invertible external operator one can employ an appropriate Möbius trans-
formation. In some cases a linearization can be given directly. For example, if
Θ = (T, R, Q, 0; X, Y ) is a monic system, then T is a linearization on C of W−1

Θ .
Recall (cf., Section 3.4) that in this case W−1

Θ is a monic operator polynomial. To
describe the linearization in more detail, put Z = Y ℓ−1 where ℓ is the degree of



4.4. Linearization and Schur complements 73

Θ, and let E(λ), F (λ) : X → Y +̇Z be given by

E(λ)x =
(
Qx, col

(
QT j(T − λ)x

)ℓ−2

j=0

)
,

F (λ)x =

(
QT ℓ−1x +

ℓ−1∑

j=1

Lj(λ)QT j−1x, −col (QT jx)ℓ−2
j=0

)
.

Here Lj(λ) = λℓ−jI −∑ℓ−1−j
s=0 λsQT ℓUs+j , where

[
U0 · · · Uℓ−1

]
=
(
col (QT j−1)ℓ

j=1

)−1
.

Then (cf., [12], Theorem 3.1; see also [11]) the operators E(λ) and F (λ) are in-
vertible and

F (λ)(λ − T ) = [W−1
Θ (λ) +̇ IZ ]E(λ), λ ∈ C.

Notice that Theorem 4.5 is also applicable to the Livsic-Brodskii character-
istic operator function

W (λ) = I + 2iK∗(λ − A)−1KJ,

provided K has a left inverse, and in that case the adjoint operator A∗ is a lin-
earization on ρ(A) of W . A similar remark holds for Krěın nodes.

4.4 Linearization and Schur complements

Let X1, X2, Y1 and Y2 be Banach spaces and K : X1 → X2 and L : Y1 → Y2 be
bounded linear operators. The operators K and L are called equivalent when there
exist invertible operators G : X2 → Y2 and H : Y1 → X1 such that L = GKH .
Extending this notion, we say that K and L are equivalent after extension if there
exist Banach spaces X0 and Y0 such that

K ∔ IX0 =

[
K 0

0 IX0

]
: X1 ∔ X0 → X2 ∔ X0

and

L ∔ IY0 =

[
L 0

0 IY0

]
: Y1 ∔ Y0 → Y2 ∔ Y0

are equivalent. Equivalence and equivalence after extension are reflexive, symmet-
ric and transitive properties.
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In this section we apply the notions of equivalence and equivalence after
extension to Schur complements (see the paragraph after the first proof of Theorem
2.1), and explain the connection with the linearization results from the previous
section. Throughout M is the following 2× 2 operator matrix

M =

[
M11 M12

M21 M22

]
: X1 ∔ Y1 → X2 ∔ Y2. (4.9)

We shall assume that both M11 and M22 are invertible. In this case the Schur
complements of M11 and M22 in M are well defined and given by

Λ = M22 − M21M
−1
11 M12, ∆ = M11 − M12M

−1
22 M21,

respectively.

Theorem 4.7. Let M be given by (4.9), and assume that M11 and M22 are invert-
ible. Then the Schur complement Λ of M11 in M is equivalent after extension to
the Schur complement ∆ of M22 in M .

In fact

Λ ∔ IX1 = E(∆ ∔ IY1)F

with the invertible operators E and F and their inverses given by

E =

⎡
⎣

−M21M
−1
11 Λ

M−1
11 M−1

11 M12

⎤
⎦ : X2 ∔ Y1 → Y2 ∔ X1,

F =

⎡
⎣

−M−1
11 M12 IX1

IY1 − M−1
22 M21M

−1
11 M12 M−1

22 M21

⎤
⎦ : Y1 ∔ X1 → X1 ∔ Y1,

E−1 =

⎡
⎣

−M12M
−1
22 ∆

M−1
22 M−1

22 M21

⎤
⎦ : Y2 ∔ X1 → X2 ∔ Y1,

F−1 =

⎡
⎣

−M−1
22 M21 IY1

IX1 − M−1
11 M12M

−1
22 M21 M−1

11 M12

⎤
⎦ : X1 ∔ Y1 → Y1 ∔ X1.

Proof. The verification can be done by direct computation. The following reason-
ing, however, gives more insight (cf. the remark made after the proof).
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From the basic identities (2.3) and (2.4), one immediately gets

[
M11 0

0 Λ

]
=

=

⎡
⎣

IX2 M12M
−1
22

−M21M
−1
11 G

⎤
⎦
⎡
⎣

∆ 0

0 M22

⎤
⎦
⎡
⎣

IX1 −M−1
11 M12

M−1
22 M21 H

⎤
⎦

with G = IY2 −M21M
−1
11 M12M

−1
22 and H = IY1 −M−1

22 M21M
−1
11 M12. We also have

the simple equalities

[
M11 0

0 Λ

]
=

[
0 IX2

IY2 0

][
Λ 0

0 M11

][
0 IY1

IX1 0

]
,

[
Λ 0

0 M11

]
=

[
IY2 0

0 M11

][
Λ 0

0 IX1

]
=

[
Λ 0

0 IY2

][
IY1 0

0 M11

]
,

[
∆ 0

0 M22

]
=

[
IX2 0

0 M22

][
∆ 0

0 IY1

]
=

[
∆ 0

0 IY1

][
IX1 0

0 M22

]
.

The desired result is now easily obtained by appropriately combining parts of these
identities. �

Now let Θ = (A, B, C, D; X, U, Y ) be a system with an invertible external
operator D, and put

M(λ) =

[
A − λ B

C D

]
.

Take λ ∈ ρ(A). Then both A−λ and D are invertible, and we can apply Theorem
4.7. In this case the Schur complement of A−λ in M(λ) is equal to WΘ(λ), where
WΘ is the transfer function of Θ, and the Schur complement of D in M(λ) is
equal to A× −λ. Thus Theorem 4.7 shows that WΘ(λ) and λ−A× are equivalent
after extension whenever λ ∈ ρ(A). From the way the equivalence operators were
constructed, we see that the (invertible) operators establishing the equivalence
depend analytically on the parameter λ. Hence in this way we recover (4.7) as a
corollary of Theorem 4.7.

One can also combine other parts of the identities given in the proof of
Theorem 4.7. This gives three additional results. The four results thus obtained
differ slightly from each other. There is no need to present all details here.

Theorem 4.7 is concerned with equivalence after two-sided extension. In cer-
tain situations, as in Theorem 4.5, one can make do with one sided extension.
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Theorem 4.8. Let M be given by (4.9) with M11 and M22 being invertible, and let
Λ and ∆ be the Schur complements of M11 and M22 in M , respectively. Assume,
in addition, that either M12 : Y1 → X2 is left invertible or M21 : X1 → Y2

right invertible. Then there exists a Banach space Z such that Λ ∔ IZ and ∆ are
equivalent.

The proof of the above result is similar to that of Theorem 4.5. The details,
which are omitted, can be found in [18].

Notes

The problem of realization is a classical problem in system theory, and has many
different faces. The literature on this subject is rich. For references we refer to the
text books [84], [36]. The material of the first section is standard, cf., [9], Theorem
4.20. Sections 4.2 and 4.3 are based on the paper [52]. Theorem 4.4 is related to the
linearization result proved in [28]. For other versions of the realization theorems
in Section 4.2 we refer to [96]. The material in Section 4.4 is taken from [18]. We
return to the topic of realization in Chapters 7 and 8.



Chapter 5

Factorization and
Riccati Equations

In this chapter the state space factorization theory from Section 2.4 is presented
using a different terminology. Here it will be based on the notion of an angular
operator and the algebraic Riccati equation.

5.1 Angular subspaces and angular operators

Throughout this chapter, X is a complex Banach space and P is a given fixed
projection of X along X1 onto X2, so KerP = X1 and Im P = X2. Matrix rep-
resentations of operators acting on X will always be taken with respect to the
decomposition X = X1+̇X2.

A closed subspace N of X is called angular (with respect to P) if X =
KerP +̇N = X1 +̇N . If R is a bounded linear operator from X2 into X1, then the
space

NR = {Rx + x | x ∈ X2} = Im

[
R
I

]
(5.1)

is angular with respect to P. The next proposition shows that any angular subspace
is of this form. The operator R appearing here is uniquely determined. It is called
the angular operator for N . In the next proposition we shall describe a few different
ways to express the angular operator.

Proposition 5.1. Let N be a closed subspace of X. The following statements are
equivalent:

(i) N is angular with respect to P,

(ii) N = NR for some bounded linear operator R from X2 into X1,

(iii) the restriction P
∣∣
N : N → X2 is bijective.
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In that case the angular operator R for N is given by

Rx = (I − P)
(
P
∣∣
N
)−1

x =
(
P
∣∣
N
)−1

x − x, x ∈ X2. (5.2)

Proof. As already observed, if N = NR, then N is angular. To prove the converse,
assume that N is angular with respect to P, and let Q be the projection of X onto
N along X1. Put Rx = (Q − P)x for x ∈ X2. Then N = NR.

Suppose that N is angular with angular operator R. The bijectivity of P
∣∣
N

is clear from the fact that P(Rx + x) = x for all x ∈ X2.

Next assume that P
∣∣
N is bijective and define R by (5.2). We shall prove that

N = NR. First, take x ∈ X2. Then Rx + x = (P
∣∣
N )−1x ∈ N , and hence NR ⊂ N .

Conversely, if u ∈ N , then v = Pu ∈ X2 and Rv + v = u. It follows that N ⊂ NR,
and the proof is complete. �

The next proposition tells us when the kernel of a given projection is an
angular subspace with respect to P.

Proposition 5.2. Let Q be a another projection of X. Then Ker Q is angular with
respect to P if and only if the restriction Q

∣∣
Ker P : Ker P → Im Q is bijective, and

in that case the angular operator R for Ker Q is given by

Rx = −
(
Q
∣∣
Ker P

)−1
Qx, x ∈ X2. (5.3)

Proof. Observe that KerQ is angular with respect to P if and only if KerP is
angular with respect to Q. So the first part of the proposition follows by applying
Proposition 5.1 to KerP and Q.

Next, assume that Q
∣∣
Ker P is bijective. To determine the angular operator

R for Ker Q, note that

0 = Q(Rx + x) =
(
Q
∣∣
KerP

)
Rx + Qx

for each x ∈ X2. From this, formula (5.3) is clear. �

In the next proposition we consider the image of X2 under a general operator,
and give conditions under which it is angular with respect to P.

Proposition 5.3. Let

S =

[
S11 S12

S21 S22

]
: X1+̇X2 → X1+̇X2

be an invertible bounded linear operator on X = X1+̇X2. Then S[X2] is angular
with respect to P if and only if S22 is bijective, and in that case R = S12S

−1
22 is its

angular operator.
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Proof. Put N = S[X2], and let S0 be the restriction of S to X2 considered as an
operator from X2 into N . Then S0 is bijective. Also, let P

∣∣
N be the restriction of

P to N considered as an operator into X2. Since
(
P
∣∣
N
)
S0 = S22, we see that P

∣∣
N

is bijective if and only if this is the case for S22. Apply now Proposition 5.1 and
use that (I − P)S0u = S12u, u ∈ X2. �

5.2 Angular subspaces and the algebraic
Riccati equation

The following question is of interest in view of Theorem 5.5 below. Given an
angular subspace N of X and an operator T on X , when is N invariant under
T ? The next proposition shows that the answer involves an algebraic (operator)
Riccati equation.

Proposition 5.4. Let N be an angular subspace of X with respect to P, and let

T =

[
T11 T12

T21 T22

]
: X1+̇X2 → X1+̇X2 (5.4)

be an operator on X = X1+̇X2. Then N is invariant under T if and only if the
angular operator R for N satisfies

RT21R + RT22 − T11R − T12 = 0. (5.5)

Moreover, in that case the operators T
∣∣
N and T22 + T21R are similar.

Equation (5.5) is usually referred to as an algebraic Riccati equation, or more
precisely, a nonsymmetric version of it. The 2× 2 operator matrix in (5.4) is often
referred to as the Hamiltonian of (5.5).

Proof. Let R be the angular operator for N , and let E be the operator given by

E =

[
I R

0 I

]
: X1+̇X2 → X1+̇X2. (5.6)

Note that E is invertible and maps X2 in a one to one way onto N . It follows
that T leaves N invariant if and only if E−1TE leaves X2 invariant. A direct
computation yields

E−1TE =

[
T11 − RT21 −RT21R − RT22 + T11R + T12

T21 T22 + T21R

]
. (5.7)

This formula shows that E−1TE leaves X2 invariant if and only if (5.5) is satisfied.
This proves the first part of the proposition.
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Next, let E2 be the restriction of E to X2 considered as an operator from X2

into N . Then E2 is invertible. In fact, E−1
2 is the restriction of E−1 to N viewed as

an operator from N into X2. Using (5.7) we see that E−1
2 (T

∣∣
N )E2 = T22 + T21R,

and hence T
∣∣
N and T22 + T21R are similar. �

5.3 Angular operators and factorization

In this section we use the concepts introduced in the previous section to bring the
factorization theorem for systems in a somewhat different form. The main point
is that throughout we work with a fixed decomposition X = X1+̇X2 of the state
space X of the system that has to be factorized and the factors are described with
respect to this decomposition. In the finite-dimensional case this corresponds to
working with a fixed coordinate system.

Theorem 5.5. Let W (λ) = D+C(λI−A)−1B be the transfer function of a biproper
system Θ = (A, B, C, D; X, Y ). Let P be a projection of X along X1 onto X2, and
let N be an angular subspace of X with respect to P with angular operator R. So
R : X2 → X1 and N = NR as in (5.1). Assume that

A[X1] ⊂ X1, A×[N ] ⊂ N, (5.8)

and let D = D1D2 with D1 and D2 invertible operators on Y . Write

A =

[
A11 A12

0 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]

for the matrix representations of A, B and C with respect to the decomposition
X = X1+̇X2. Then R satisfies the algebraic Riccati equation

RB2D
−1C1R − R(A22 − B2D

−1C2) + (A11 − B1D
−1C1)R (5.9)

+ (A12 − B1D
−1C2) = 0.

Furthermore W = W1W2, where

W1(λ) = D1 + C1(λ − A11)
−1(B1 − RB2)D

−1
2 ,

W2(λ) = D2 + D−1
1 (C1R + C2)(λ − A22)

−1B2,

W−1
1 (λ) = D−1

1 − D−1
1 C1(λ − A×

1 )−1(B1 − RB2)D
−1,

W−1
2 (λ) = D−1

2 − D−1(C1R + C2)(λ − A×
2 )−1B2D

−1
2 ,

with A×
1 = A11 − (B1 − RB2)D

−1C1 and A×
2 = A22 − B2D

−1(C1R + C2).
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Proof. Put

Θ1 =
(
A11, (B1 − RB2)D

−1
2 , C1, D1; X1, Y

)
,

Θ2 =
(
A22, B2, D

−1
1 (C1R + C2), D2; X2, Y

)
.

Then Θ ≃ Θ1Θ2. More precisely Θ1Θ2 = (E−1AE, E−1B, CE, D; X, Y ), where E
is the invertible operator

E =

[
I R

0 I

]
.

To see this, for convenience introduce

Â = E−1AE =

[
A11 A12 − RA22 + A11R

0 A22

]
,

B̂ = E−1B =

[
B1 − RB2

B2

]
, Ĉ = CE =

[
C1 C1R + C2

]
,

and set Θ̂ = (Â, B̂, Ĉ, D; X, Y ). Observe that

Â× = E−1A×E

=

[
A11 − (B1 − RB2)D

−1C1 H

−B2D
−1C1 A22 − B2D

−1(C1R + C2)

]
,

where H is the left-hand side of (5.9). Now E maps X1 onto X1 and X2 onto N .
Thus (5.8) implies that

Â[X1] ⊂ X1, Â×[X2] ⊂ X2.

It follows that (5.9) is satisfied (see also Proposition 5.4).

Apply now Theorem 2.3 to show that Θ̂ = Θ1Θ2. As Θ̂ ≃ Θ, the proof of
the first part of the theorem is complete. The formulas for the factors and their
inverses are now immediate. �

Suppose that the angular subspace N in Theorem 5.5 is the image of X2

under the invertible operator

S =

[
S11 S12

S21 S22

]
: X1+̇X2 → X1+̇X2.
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Then we know from Proposition 5.3 that S22 is invertible and the angular operator
R for N is given by R = S12S

−1
22 . So then the formulas for Θ1 and Θ2 become

Θ1 =
(
A11, (B1 − S12S

−1
22 B2)D

−1
2 , C1, D1; X1, Y

)
,

Θ2 =
(
A22, B2, D

−1
1 (C1S12S

−1
22 + C2), D2; X2, Y

)
.

Obviously, corresponding formulas for the factors W1 and W2 hold. In fact, for the
particular case when D = D1 = D2 = I, we get

Θ1 = (A11, B1 − S12S
−1
22 B2, C1; X1, Y ) (5.10)

Θ2 = (A22, B2, C1S12S
−1
22 + C2; X2, Y ). (5.11)

We shall use this to prove the following analogue of Theorem 4 in the L. Sakhnovich
paper [104]; see also [87].

Corollary 5.6. Let Θ = (A, B, C; X, Y ) and Θ̃ = (Ã, B̃, C̃; X, Y ) be systems such
that

AS − SÃ = BC̃, SB̃ = B, CS = −C̃ (5.12)

for some operator S : X → X. Let P be a projection of X along X1 onto X2, and
assume that

A[X1] ⊂ X1, Ã[X2] ⊂ X2.

If the operators S : X → X and S22 = PSP
∣∣
X2

: X2 → X2 are invertible, then

Θ ≃ Θ1Θ2, where Θ1 and Θ2 are given by (5.10) and (5.11), respectively.

Proof. Formula (5.12) and the invertibility of S imply that the associate system
Θ× and Θ̃ are similar, the similarity being given by S. As

S−1A×S = S−1AS − S−1BCS = Ã,

the space N = SX2 is invariant under A×. The fact that S22 is invertible implies
that N is angular with respect to P. But then the remarks made in the paragraph
preceding this corollary yield the desired factorization. �

The next theorem is a two-sided version of Theorem 5.5.

Theorem 5.7. Let W (λ) = D+C(λI−A)−1B be the transfer function of a biproper
system Θ = (A, B, C, D; X, Y ), and let P be a projection of X along X1 onto X2.
Further, let N1 and N2 be closed subspaces of X such that

X = X1+̇N2 = N1+̇X2,

i.e., N2 is angular with respect to P and N1 is angular with respect to I − P. Let
R12 : X2 → X1 and R21 : X1 → X2 be the corresponding angular operators.
Assume

X = N1+̇N2, A[N1] ⊂ N1, A×[N2] ⊂ N2, (5.13)
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and let D = D1D2 with D1 and D2 invertible operators on Y . Write

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]

for the matrix representations of A, B and C with respect to the decomposition
X = X1+̇X2. Introduce R1 = I −R12R21 and R2 = I −R21R12. Then R1 : X1 →
X1 and R2 : X2 → X2 are invertible. Also put

A×
1 = A11 − B1D

−1C1 − R12A21 + R12B2D
−1C1,

A×
2 = A22 − B2D

−1C2 + A21R12 − B2D
−1C1R12.

Then W = W1W2, where

W1(λ) = D1 + (C1 + C2R21)
(
λ − (A11 + A12R21)

)−1 ×
×R−1

1 (B1 − R12B2)D
−1
2 ,

W2(λ) = D2 + D−1
1 (C1R12 + C2)R

−1
2

(
λ − (A22 − R21A12)

)−1 ×
×(B2 − R21B1),

W−1
1 (λ) = D−1

1 − D−1
1 (C1 + C2R21)R

−1
1 (λ − A×

1 )−1(B1 − R12B2)D
−1,

W−1
2 (λ) = D−1

2 − D−1(C1R12 + C2)(λ − A×
2 )−1R−1

2 (B2 − R21B1)D
−1
2 .

Before proving the theorem we present a lemma.

Lemma 5.8. Let N1 and N2 be closed subspaces of X such that

X = X1+̇N2 = N1+̇X2,

that is, N2 is angular with respect to P and N1 is angular with respect to I − P
where P be a projection of X along X1 onto X2. Let R12 : X2 → X1 and R21 :
X1 → X2 be the corresponding angular operators. Then the following statements
are equivalent.

(i) X = N1+̇N2,

(ii) I − R21R12 is invertible,

(iii) I − R12R21 is invertible,

(iv) F =

[
I R12

R21 I

]
: X1+̇X2 → X1+̇X2 is invertible.

In case the equivalent conditions (i)–(iv) hold, the projection PN of X along N1

onto N2 is given by

PN =

[
R12

I

]
(
I − R21R12

)−1 [ −R21 I
]
,
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while the complementary projection I − PN can be written as

I − PN =

[
I

R21

]
(
I − R12R21

)−1 [
I −R12

]
.

Proof. The equivalence of (ii), (iii) and (iv) is straightforward. Observe that F
maps X1 and X2 in a one-one manner onto N1 and N2, respectively. As X =
X1+̇X2, it is clear that X = N1+̇N2 if and only if F is invertible. So (i) and (iv)
are equivalent.

To complete the proof it remains to prove the formula for PN . Observe that
the given formula does define a projection. Its image and kernel are given by

Im

[
R12

I

]
, Im

[
I

R21

]
,

respectively, so it is indeed equal to the projection PN . �

Proof of Theorem 5.7. From Lemma 5.8 we know that the operator

F =

[
I R12

R21 I

]
: X1+̇X2 → X1+̇X2

is invertible. Introduce Θ̂ =
(
Â, B̂, Ĉ, D; X, Y

)
with

Â = F−1AF, B̂ = F−1B, Ĉ = CF.

Then the biproper systems Θ̂ and Θ are similar, and so they have the same transfer
function, namely W . Note that

Â[X1] ⊂ X1, Â×X2 ⊂ [X2]

where, following standard convention Â× = Â− B̂D−1Ĉ, and so Â× = F−1A×F .
Write

Â =

[
Â11 Â12

0 Â22

]
, B̂ =

[
B̂1

B̂2

]
, Ĉ =

[
Ĉ1 Ĉ2

]
,

and put

Θ1 =
(
Â11, B̂1D

−1
2 , Ĉ1, D1; X1, Y

)
,

Θ2 =
(
Â22, B̂2, D

−1
1 Ĉ2, D2; X2, Y

)
.

Then Θ = Θ1Θ2, and on ρ(Â11) ∩ ρ(Â22) ⊂ ρ(Â) = ρ(A), the function W is the
product of the transfer functions of the biproper systems Θ1 and Θ2.
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The inverse of F is given by

F−1 =

⎡
⎣

R−1
1 −R−1

1 R12

−R21R
−1
1 I + R21R

−1
1 R12

⎤
⎦ : X1+̇X2 → X1+̇X2.

Using this and the expression for F , one easily sees that

Â11 = R−1
1

(
A11 + A12R21 − R12A21 − R12A22R21

)
,

B̂1D
−1
2 = R−1

1

(
B1 − R12B2

)
D−1

2 , Ĉ1 = C1 + C2R21.

Now R21 satisfies the algebraic Riccati equation

R21A12R21 + R21A11 − A22R21 − A21 = 0,

and it follows that Â11 = A11 + A12R21. Thus, for the transfer function of Θ1, we
have

D1 + Ĉ1(λ − Â11)
−1B̂1D

−1
2

= D1 +
(
C1 + C2R21

)(
λ − (A11 + A12R21)

)−1
R−1

1

(
B1 − R12B2

)
D−1

2 ,

that is, it is precisely the factor W1 in the theorem.

Next we compute the transfer function of Θ2. Using the alternative formula

F−1 =

⎡
⎣

I + R12R
−1
2 R21 −R12R

−1
2

−R−1
2 R21 R−1

2

⎤
⎦ : X1+̇X2 → X1+̇X2

for the inverse of F , we obtain

Â22 = R−1
2 (−R21A11R12 − R21A12 + A21R12 + A22)

= R−1
2 (A22 − R21A12)R

−1
2 ,

B̂2 = R−1
2 (B2 − R21B1), D−1

1 Ĉ1 = D−1
1 (C1R12 + C2).

Hence the transfer function of Θ2 is given by

D2 + D−1
1 Ĉ2(λ − Â22)

−1B̂2

= D2 + D−1
1 (C1R12 + C2)R

−1
2

(
λ − (A22 − R21A12)

)−1
(B1 − R12B2)D

−1
2 ,

so it coincides with the factor W2 in the theorem.

This proves that the factorization claimed in the theorem holds on

ρ(A11 + A12R21) ∩ ρ(A22 − R21A12) ⊂ ρ(A).

What remains to be done is deducing the formulas for the inverses. But this
amounts to repeating the work with Θ replaced by its associate system Θ×, thereby
employing the Riccati equation

R12(A21 − B2D
−1C1)R12 + R12(A22 − B2D

−1C2)

−(A11 − B1D
−1C1)R12 − (A12 − B1D

−1C2) = 0,

for R12 instead of the one for R21 used above. The details are omitted. �
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5.4 Angular spectral subspaces and the algebraic
Riccati equation

In this section Proposition 5.4 is specified further for the case when the angular
subspace N is a spectral subspace of T . We begin with some preliminaries that
will be useful in the next chapter too.

Let Γ be a Cauchy contour (see Section 4.2). We say that Γ splits the spectrum
σ(S) of a bounded linear operator S if Γ and σ(S) have empty intersection. In
that case σ(S) decomposes into two disjoint compact sets σ+ and σ− such that
σ+ is in the inner domain of Γ and σ− is in the outer domain of Γ. If Γ splits
the spectrum of S, then we have a Riesz projection, also called spectral projection,
associated with S and Γ, namely

P (S; Γ) =
1

2πi

∫

Γ

(λ − S)−1 dλ.

The subspace N = Im P (S; Γ) will be called the spectral subspace for S corre-
sponding to the contour Γ (or to the spectral set σ+).

Lemma 5.9. Let Y1 and Y2 be complex Banach spaces, and consider the operator

S =

[
S11 S12

0 S22

]
: Y1+̇Y2 → Y1+̇Y2. (5.14)

Let Π be any projection of Y = Y1+̇Y2 such that KerΠ = Y1. Then the compression
ΠS

∣∣
ImΠ : ImΠ → ImΠ and S22 : Y2 → Y2 are similar. Furthermore, Y1 is

a spectral subspace for S if and only if σ(S11) ∩ σ(S22) = ∅, and in that case
σ(S) = σ(S11) ∪ σ(S22) while, in addition,

Y1 = ImP (S; Γ) = Im

(
1

2πi

∫

Γ

(λ − S)−1 dλ

)
, (5.15)

where Γ is a Cauchy contour around σ(S11) separating σ(S11) from σ(S22).

Proof. Let P be the projection of Y = Y1+̇Y2 along Y1 onto Y2. As KerP = KerΠ,
we have P = PΠ and the map

E = P
∣∣
ImΠ : ImΠ → Y2

is an invertible operator. Write S0 for the compression ΠS
∣∣
ImΠ of S to Im Π

viewed as an operator from ImΠ into ImΠ, and take x = Πy. Then

ES0x = PΠSΠy = PSΠy = PSPΠy = S22Ex,

hence S0 and S22 are similar.
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Now suppose σ(S11) ∩ σ(S22) = ∅. Let λ be an arbitrary complex number.
Since σ(S11) ∩ σ(S22) = ∅, at least one of the two operators λ − S11 and λ − S22

is invertible. But then, by applying Lemma 2.9 with X1 = Y1, X2 = Y2 and
A = λ − S, we see that λ − S is invertible if and only both λ − S11 and λ − S22

are invertible. It follows that ρ(S11) ∩ ρ(S22) = ρ(S), an identity which can be
rewritten as σ(S) = σ(S11) ∪ σ(S22).

Still under the assumption that σ(S11)∩ σ(S22) = ∅, let Γ be a Cauchy con-
tour Γ around σ(S11) separating σ(S11) from σ(S22). Then Γ splits the spectrum
of S. In fact, if λ ∈ Γ, then both λ − S11 and λ − S22 are invertible and

(λ − S)−1 =

⎡
⎣

(λ − S11)
−1 (λ − S11)

−1S12(λ − S22)
−1

0 (λ − S22)
−1

⎤
⎦ ,

which leads to an expression of the type

P (S; Γ) =

[
I ∗
0 0

]

for the Riesz projection associated with S and Γ. In particular, it is clear that
Y1 = ImP (S; Γ). So Y1 is a spectral subspace for S and (5.15) holds.

Finally, assume that Y1 = ImQ, where Q is a Riesz projection for S. Put
Π = I−Q, and let S0 be the restriction of S to ImΠ. Then σ(S11)∩ σ(S0) = ∅. By
the first part of the proof, the operators S0 and S22 are similar. So σ(S0) = σ(S22),
and we have shown that σ(S11) ∩ σ(S22) = ∅. �

Next we present the analogue of Proposition 5.4 for spectral subspaces. Recall
that P is a projection of X along X1 onto X2.

Proposition 5.10. Let N be an angular subspace of X with respect to P, and let T
be the operator on X given by (5.4). Then N is a spectral subspace for T if and
only if the angular operator R for N satisfies the algebraic Riccati equation (5.5)
and

σ(T11 − RT21) ∩ σ(T22 + T21R) = ∅.

More precisely the following holds. If N = ImP (T ; Γ), where Γ is a Cauchy contour
that splits σ(T ), then σ(T22 + T21R) is inside Γ and σ(T11 − RT21) is outside Γ.
Conversely, if Γ is a Cauchy contour such that σ(T22 + T21R) is inside Γ and
σ(T11 − RT21) is outside Γ, then the spectrum of T does not intersect with Γ and
N = ImP (T ; Γ).

Proof. Let R be the angular operator for N , and let E be the operator given by
(5.6). We know that E is invertible and maps X2 in a one to one way onto N . Since
a spectral subspace of T is invariant under T , we may without loss of generality
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assume that the angular operator R for N satisfies the Riccati equation (5.5).
Then formula (5.7) shows that

E−1TE =

[
T11 − RT21 0

T21 T22 + T21R

]
. (5.16)

Since E maps X2 in a one to one way onto N , the space N is a spectral subspace
for T if and only if X2 is a spectral subspace for E−1TE. and we can apply Lemma
5.9 to get the desired result. �

Notes

The notion of an angular operator is standard in operator theory and goes back to
[90]. The theory of Riccati equations is important in system theory; see, e.g., the
text books [84], [36]. For more details on this subject we also refer to the mono-
graph [91] or Section 1.6 in [70]. For the basic facts about Cauchy domains, Riesz
projections and spectral subspaces used in Section 5.4 we refer to Sections I.1–I.3
in [46]. This chapter is a rewritten and reorganized version of Chapter 5 in [14].



Chapter 6

Canonical Factorization
and Applications

As we have seen in Chapter 1 canonical factorization serves as tool to solve Wiener-
Hopf integral equations and their discrete analogues, the block Toeplitz equations.
In this chapter the state space factorization method developed in Chapter 2 is used
to solve the problem of canonical factorization (necessary and sufficient conditions
for its existence) and to derive explicit formulas for its factors. This is done in
Section 6.1 for rational matrix functions. The results are applied to invert Wiener-
Hopf integral equations (Section 6.2) and block Toeplitz operators (Section 6.3)
with a rational matrix symbol.

6.1 Canonical factorization of rational matrix functions

In this section we shall consider the factorization theorems of Section 2.4 (see also
Section 2.5) for the special case when the two factors have disjoint spectra. First
we introduce some additional terminology.

For a Cauchy contour Γ we let F+ denote the interior domain of Γ and F−

will be the complement of F+ in the Riemann sphere C ∪ {∞}. Note that it is
assumed that ∞ ∈ F−.

Let W be a rational m × m matrix function, with W (∞) = I, analytic on
an open neighborhood of Γ, whose values on Γ are invertible matrices. By a right
canonical factorization of W with respect to Γ we mean a factorization

W (λ) = W−(λ)W+(λ), λ ∈ Γ, (6.1)

where W− and W+ are rational m × m matrix functions, analytic and taking
invertible values on an open neighborhood of F− and F+, respectively.
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F

Γ

F

−
F F

−

− +

If in (6.1) the factors W− and W+ are interchanged, then we speak of a left
canonical factorization.

Theorem 6.1. Let W (λ) = Im + C(λIn − A)−1B be the transfer function of the
unital system Θ = (A, B, C; Cn, Cm), and let Γ be a Cauchy contour. Assume that
Γ splits the spectra of A and A×. Then W admits a right canonical factorization
with respect to Γ if and only if

Cn = Im P (A; Γ) +̇ KerP (A×; Γ). (6.2)

In that case, such a right canonical factorization is given by

W (λ) = W−(λ)W+(λ), λ ∈ ρ(A),

where the factors and their inverses are given by

W−(λ) = Im + C(λIn − A)−1(In − Π)B,

W+(λ) = Im + CΠ(λIn − A)−1B,

W−1
− (λ) = Im − C(In − Π)(λIn − A×)−1B,

W−1
+ (λ) = Im − C(λIn − A×)−1ΠB,

with Π the projection of Cn along Im P (A; Γ) onto KerP (A×; Γ).

For left canonical factorizations an analogous theorem holds. In the result
in question, the direct sum decomposition (6.2) is replaced by the decomposition
Cn = KerP (A; Γ) +̇ Im P (A×; Γ).

Proof. Let Θ be as in the first part of the theorem. Assume that (6.2) holds. Note
that X1 = ImP (A; Γ) is invariant for A and X2 = KerP (A×; Γ) is invariant for
A×. So, by definition, the projection Π is a supporting projection for Θ. Let

A =

[
A11 A12

0 A22

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
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be the matrix representations of A, B and C with respect to the decomposition
Cn = X1+̇X2. Then

pr Π(Θ) = (A22, B2, C2; X2, C
m),

pr I−Π(Θ) = (A11, B1, C1; X1, C
m),

and we know that Θ = pr I−Π(Θ)pr Π(Θ). It follows (see Sections 2.4 and 2.5) that

W (λ) = WΘ(λ) = W−(λ)W+(λ) (6.3)

for each λ ∈ ρ(A11) ∩ ρ(A22).

As X1 is a spectral subspace for A, we can apply Lemma 5.9 to show that
σ(A11) ∩ σ(A22) = ∅. But then ρ(A) = ρ(A11) ∩ ρ(A22) and it follows that (6.3)
holds for each λ ∈ ρ(A). Also, we see from Lemma 5.9 that

σ(A11) = σ(A) ∩ F+, σ(A22) = σ(A) ∩ F−. (6.4)

In a similar way one proves that

σ(A×
11) = σ(A×) ∩ F+, σ(A×

22) = σ(A×) ∩ F−. (6.5)

As W−(λ) = I + B1(λ − A11)
−1C1, we know that W− is defined and analytic

on the complement of σ(A11) and W−(λ) is invertible for λ /∈ σ(A×
11). So using

the first parts of (6.4) and (6.5), it follows that W− is analytic and has invertible
values on an open neighborhood of F−. In the same way, using the second parts
of (6.4) and (6.5), one proves that W+ is analytic and has invertible values on an
open neighborhood of F+.

Conversely, let W = W−W+ be a right canonical factorization with re-
spect to Γ. By a simple modification of the factors we can reach the situa-
tion where W−(∞) = W+(∞) = W (∞) = Im. It is our task to show that
Cn = Im P (A; Γ) +̇ KerP (A×; Γ). First the identity

Im P (A; Γ) ∩ KerP (A×; Γ) = {0}

will be established.

Suppose x ∈ Im P (A; Γ) ∩ KerP (A×; Γ), and consider (λ − A)−1x. This
function is analytic on an open neighborhood of F−. On the other hand (λ −
A×)−1x is analytic on an open neighborhood of F+. For λ in the intersection of
ρ(A) and ρ(A×), we have

W (λ)C(λ − A×)−1 = C(λ − A×)−1 + C(λ − A)−1BC(λ − A×)−1

= C(λ − A×)−1 + C(λ − A)−1(A − A×)(λ − A×)−1

= C(λ − A)−1,

and it follows that W+(λ)C(λ − A×)−1 = W−(λ)−1C(λ − A)−1. The analyticity
properties of the factors W−, W+ and their inverses now imply that the function
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W+(λ)C(λ−A×)−1x = W−(λ)−1C(λ−A)−1x is analytic on the extended complex
plane. By Liouville’s theorem it must be constant. As the function in question has
the value zero at infinity, it is identically zero. Hence both C(λ − A×)−1x and
C(λ − A)−1x vanish. Next use the identity

(λ − A×)−1BC(λ − A)−1 = (λ − A)−1 − (λ − A×)−1

to obtain (λ − A×)−1x = (λ − A)−1x. But then this function is analytic on the
extended complex plane too. Using Liouville’s theorem again, we see that it must
be identically zero. Thus x = 0.

Observe that up to this point in the proof we have not used the finite dimen-
sionality of the state space.

We now finish the proof by a duality argument. Introduce

W ∗(λ) = Im + B∗(λIn − A∗)−1C∗,

and let Γ∗ be the adjoint curve of Γ, i.e., the curve obtained from Γ by complex
conjugation. Then W ∗(λ) = W ∗

+(λ)W ∗
−(λ) is a left canonical factorization. On

the basis of a similar argument as above, we may conclude that KerP (A∗, Γ∗) ∩
Im P

(
(A×)∗, Γ∗

)
= 0. It follows that

KerP (A∗, Γ∗) + ImP ((A×)∗, Γ∗) = Cn.

In first instance, this holds for the closure of KerP (A∗, Γ∗) + Im P ((A×)∗, Γ∗),
but in Cn all linear manifolds are closed. �

With minor modifications we could have worked in Theorem 6.1 with two
curves, one splitting the spectrum of A and the other splitting the spectrum of
A× (cf., [87]).

Finally, let us mention that Theorem 6.1 remains true if the Cauchy contour
Γ is replaced by the closure of the real line on the Riemann sphere C∪∞. In that
case F+ is the open upper half-plane and F− is the open lower half-plane.

6.2 Application to Wiener-Hopf integral equations

In this section the general factorization result proved in the preceding sections is
used to provide explicit formulas for solutions of the vector-valued Wiener-Hopf
equation

φ(t) −
∫ ∞

0

k(t − s)φ(s) ds = f(t), 0 ≤ t < ∞, (6.6)

where φ and f are m-dimensional vector functions and k ∈ Lm×m
1 (−∞,∞), i.e.,

the kernel function k is an m × m matrix function of which the entries are in
L1(−∞,∞). We assume that the given vector function f has its component func-
tions in Lp[0,∞), and we express this property by writing f ∈ Lm

p [0,∞). Through-
out this section p will be fixed and 1 ≤ p < ∞. Given the kernel function k and the
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right-hand side f , the problem we shall consider is to find a solution φ for equation
(6.6) that also belongs to the space Lm

p [0,∞). As was mentioned in Section 1.5,
equation (6.6) has a unique solution in Lm

p [0,∞) for each f in Lm
p [0,∞) if and

only if its symbol Im − K(λ) admits a factorization as in (1.25).

Our aim is to apply the factorization theory developed in the previous sec-
tions to get the canonical factorization (1.25). Therefore, in the sequel we assume
that the symbol is a rational m × m matrix function. As K(λ) is the Fourier
transform of an Lm×m

1 (−∞,∞)–function, the symbol is continuous on the real
line. In particular, Im − K(λ) has no poles on the real line. Furthermore, by the
Riemann-Lebesgue lemma,

lim
λ∈R, |λ|→∞

K(λ) = 0,

which implies that the symbol Im − K(λ) has the value Im at ∞.

The assumption that Im − K(λ) is rational is equivalent to the requirement
that the kernel function k is in the linear space spanned by all functions of the
form

h(t) =

⎧
⎨
⎩

p(t)eiαt, t > 0,

q(t)eiβt, t < 0,

where p(t) and q(t) are matrix polynomials in t with coefficients in Cm×m, and α
and β are complex numbers with ℑα > 0 and ℑβ < 0.

Since Im − K(λ) is rational, continuous on the real line, and takes the value
Im at ∞, one can construct (see Section 4.1) a system Θ = (A, B, C; Cn, Cm) such
that A has no real eigenvalues and

Im − K(λ) = Im + C(λIn − A)−1B.

In the next theorem we express the solvability of equation (6.6) in terms of such
a realization and give explicit formulas for its solutions in the same terms.

Theorem 6.2. Let Im−K(λ) = Im+C(λIn−A)−1B be a realization for the symbol
of equation (6.6), and assume A has no real eigenvalues. In order that (6.6) has a
unique solution φ in Lm

p [0,∞) for each f in Lm
p [0,∞) the following two conditions

are necessary and sufficient:

(i) A× = A − BC has no real eigenvalues;

(ii) Cn = M+̇M×, where M is the spectral subspace of A corresponding to the
eigenvalues of A in the upper half-plane, and M× is the spectral subspace of
A× corresponding to the eigenvalues of A× in the lower half-plane.

Assume conditions (i) and (ii) hold true, and let Π be the projection of Cn along
M onto M×. Then the symbol Im − K(λ) admits a right canonical factorization
with respect to the real line that has the form

Im − K(λ) =
(
Im + G−(λ)

)(
Im + G+(λ)

)
, λ ∈ R,
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where the factors and their inverses are given by

Im + G+(λ) = Im + CΠ(λIn − A)−1B,

Im + G−(λ) = Im + C(λIn − A)−1(In − Π)B,

(
Im + G+(λ)

)−1
= Im − C(λIn − A×)−1ΠB,

(
Im + G−(λ)

)−1
= Im − C(In − Π)(λIn − A×)−1B.

The functions γ+ and γ− in (1.26) and (1.27) have the representation

γ+(t) = +iCe−itA×

ΠB, t > 0,

γ−(t) = −iC(In − Π)e−itA×tB, t < 0.

Finally, the solution φ to (6.6) can be written as

φ(t) = f(t) +

∫ ∞

0

γ(t, s)f(s) ds,

where

γ(t, s) =

⎧
⎨
⎩

+iCe−itA×

ΠeisA×

B, s < t,

−iCe−itA×

(In − Π)eisA×

B, s > t.

Proof. We have already mentioned that equation (6.6) has a unique solution in
Lm

p [0,∞) for each f in Lm
p [0,∞) if and only if the symbol Im − K(λ) admits a

right canonical factorization as in (1.25). So to prove the necessity and sufficiency
of the conditions (i) and (ii), it suffices to show that the conditions (i) and (ii)
together are equivalent to the statement that Im −K(λ) admits a right canonical
factorization as in (1.25). We first observe that condition (i) is equivalent to the
requirement that Im − K(λ) is invertible for all λ ∈ R (see Theorem 2.1). But
then we can apply the version of Theorem 6.1 referred to in the remark made at
the end of Section 6.1 to prove the first part of the theorem.

Next assume that conditions (i) and (ii) hold true. Applying Theorem 6.1
once again, we get the desired formulas for Im + G+(λ), Im + G−(λ) and their
inverses. The formulas for γ+ and γ− are now obtained by noticing that for λ ∈
ρ(A×), ℑλ ≥ 0, ∫ ∞

0

eiλte−itA×

Π dt = i(λIn − A×)−1Π,

while for λ ∈ ρ(A×), ℑλ ≤ 0,

∫ 0

−∞

eiλt(In − Π)e−itA×

dt = −i(In − Π)(λIn − A×)−1.

The proof of the latter identity uses (the first conclusion in) Lemma 5.9.
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It remains to prove the final formula for γ(t, s). We use (1.24), and compute
first that

γ+(t − r)γ−(r − s) = Ce−i(t−r)A×

ΠBC(I − Π.)e−i(r−s)A×

B

Here and below I = In. Now KerΠ = M is A-invariant and ImΠ = M× is
A×-invariant. Thus ΠA(I − Π) = 0 and (I − Π)A×Π = 0, from which it follows
that

ΠBC(I − Π) = Π(A − A×)(I − Π) = ΠA× − A×Π.

But then

γ+(t − r)γ−(r − s) = Ce−i(t−r)A×

(A×Π − ΠA×)e−i(r−s)A×

B

= −i
d

dr
Ce−i(t−r)A×

Πe−i(r−s)A×

B.

Inserting this in (1.24) we obtain for s < t that

γ(t, s) = iCe−i(t−s)A×

ΠB −
∫ s

0

i
d

dr
Ce−i(t−r)A×

Πe−i(r−s)A×

B dr

= iCe−i(t−s)A×

ΠB − Ce−i(t−r)A×

Πe−i(r−s)A×

B|sr=0

= iCe−itA×

ΠeisA×

B,

while for s > t we get

γ(t, s) = −iC(I − Π)e−i(t−s)A×

B +

∫ t

0

i
d

dr
Ce−i(t−r)A×

Πe−i(r−s)A×

B dr

= −iC(I − Π)e−i(t−s)A×

B − Ce−i(t−r)A×

Πe−i(r−s)A×

B|tr=0

= −iCe−itA×

(I − Π)eisA×

B.

This completes the proof. �

Corollary 6.3. Let Im − K(λ) = Im + C(λIn − A)−1B be a realization for the
symbol of equation (6.6). Assume that A and A× = A−BC have no spectrum on
the real line, and that

Cn = ImP +̇ KerP×,

where P and P× are the Riesz projections of A and A×, respectively, corresponding
to the spectra in the upper half-plane. Fix x ∈ KerP , and let f(t) = Ce−itAx, t ≥
0. Then f belongs to Lm

p [0,∞) and the unique solution φ in Lm
p [0,∞) of equation

(6.6) with this particular f in the right-hand side is given by

φ(t) = Ce−itA×

Πx, 0 ≤ t < ∞.

Here Π is the projection of Cn onto KerP× along Im P .
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Proof. Since x ∈ KerP , the vector e−itAx is exponentially decaying in norm when
t → ∞, and thus the function f belongs to Lm

p [0,∞). Furthermore, the conditions
(i) and (ii) in Theorem 6.2 are fulfilled, and hence for this f equation (6.6) has
a unique solution φ ∈ Lm

p [0,∞). Moreover from Theorem 6.2 we know that φ is
given by

φ(t) = f(t) + iCe−itA×

(∫ t

0

ΠeisA×

BCe−isAx ds

)

−iCe−itA×

(∫ ∞

t

(I − Π)eisA×

BCe−isAx ds

)
.

Now use that

eisA×

BCe−isA = ieisA×

(iA× − iA)e−isA = i
d

ds
eisA×

e−isA.

It follows that

φ(t) = f(t) − Ce−itA×
(
ΠeisA×

e−isAx
∣∣t
0

)

+Ce−itA×
(
(I − Π)eisA×

e−isAx
∣∣∞
t

)
.

Since (I − Π) = (I − Π)P×, the function (I − Π)eisA×

= (I − Π)P×eisA×

is
exponentially decaying for s → ∞. As we have seen, the same holds true for
e−isAx. Thus

φ(t) = f(t) − Ce−itA×

ΠeitA×

e−itAx + Ce−itA×

Πx

−Ce−itA×

(I − Π)eitA×

e−itAx

= f(t) + Ce−itA×

Πx − Ce−itAx = Ce−itA×

Πx,

which completes the proof. �

Finally, let us return to the special case that the known function f is given
by formula (1.25), and assume that the conditions (i) and (ii) in the Theorem 6.2
hold true. Then the solution φ admits the following representation

φ(t) = e−iqt

(
Im + i

∫ t

0

Cei(q−A×)sΠB ds

)

×
(
Im − C(I − Π)(q − A×)−1B

)
x0;

see the expression (1.32).
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6.3 Application to block Toeplitz operators

In the previous section the factorization theory was applied to Wiener-Hopf in-
tegral equations. In this section we carry out a similar program for their discrete
analogues, block Toeplitz equations (cf., Section 1.6). So we consider an equation
of the type

∞∑

k=0

aj−kξk = ηj , j = 0, 1, 2, . . . . (6.7)

Throughout we assume that the coefficients aj are given complex m×m matrices
satisfying

∞∑

j=−∞

‖aj‖ < ∞,

and η = (ηj)
∞
j=0 is a given vector from ℓm

p = ℓp(Cm). The problem is to find
ξ = (ξk)∞k=0 ∈ ℓm

p such that (6.7) is satisfied.

As before, we shall apply our factorization theory. For that reason we assume
that the symbol a(λ) =

∑∞
j=−∞ λjaj is a rational m × m matrix function whose

value at ∞ is Im. Note that a has no poles on the unit circle. Therefore the
conditions on a are equivalent to the following assumptions:

(j) the sequence (aj − δj0Im)∞j=0 is a linear combination of sequences of the form
(
αjjrD

)∞
j=0

,

where |α| < 1, r is a non-negative integer and D is a complex m×m matrix;

(jj) the sequence (a−j)
∞
j=1 is a linear combination of sequences of the form

(β−jjsE)∞j=1, (δjkF )∞j=1,

where |β| > 1, s and k are nonnegative integers and E and F are complex
m × m matrices.

Since a(λ) is rational and a(∞) = I, one can construct (see Section 4.1) a
system Θ = (A, B, C, ; Cn, Cm) such that A has no unimodular eigenvalues and

a(λ) = Im + C(λIn − A)−1B (6.8)

is a realization for a. The next theorem is the analogue of Theorem 6.2.

Theorem 6.4. Let (6.8) be a realization for the symbol a of the equation (6.7),
and assume A has no unimodular eigenvalues. Then (6.7) has a unique solution
ξ = (ξk)∞k=0 in ℓm

p for each η = (ηj)
∞
j=0 in ℓm

p if and only if the following two
conditions are satisfied:

(i) A× = A − BC has no unimodular eigenvalues;

(ii) Cn = M+̇M×, where M is the spectral subspace of A corresponding to the
eigenvalues of A inside the unit circle, and M× is the spectral subspace of
A× corresponding to the eigenvalues of A× outside the unit circle.
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Assume conditions (i) and (ii) are satisfied, and let Π be the projection of Cn along
M onto M×. Then the symbol a admits a right canonical factorization with respect
to the unit circle that has the form

a(λ) = h−(λ)h+(λ), |λ| = 1,

where the factors and their inverses are given by

h+(λ) = Im + CΠ(λ − A)−1B,

h−(λ) = Im + C(λ − A)−1(I − Π)B,

h−1
+ (λ) = Im − C(λ − A×)−1ΠB,

h−1
− (λ) = Im − C(I − Π)(λ − A×)−1B.

The sequences (γ+
j )∞j=0 and (γ−

−j)
∞
j=0 in (1.32) have the representation

γ+
0 = Im + C(A×)−1ΠB,

γ+
j = C(A×)−(j+1)ΠB, j = 1, 2, . . . ,

γ−
0 = Im,

γ−
j = −C(In − Π)(A×)−(j+1)B, j = −1,−2, . . . .

Finally, the solution ξ to (6.7) can be written as ξk =
∑∞

s=0 γksηs where

γks =

⎧
⎪⎪⎨
⎪⎪⎩

C(A×)−(k+1)Π(A×)sB, s < k,

Im + C(A×)−(s+1)Π(A×)sB, s = k,

−C(A×)−(k+1)(In − Π)(A×)sB, s > k.

Proof. The proof of Theorem 6.4 is similar to that of Theorem 6.2. Here we only
derive the final formula for γks.

With respect to the formulas for γ+
j , we note that ImΠ is A×-invariant and

the restriction of A× to ImΠ is invertible. So, with slight abuse of notation as far
as inverses of A× is involved,

h+(λ)−1 = Im − C(λ − A×)−1ΠB

= Im + C
(
I − λ(A×)−1

)−1
(A×)−1ΠB

= Im +

∞∑

j=0

λjC(A×)−(j+1)ΠB.
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Now compare coefficients with h+(λ)−1 =
∑∞

j=0 λjγ+
j . Similarly, the formulas for

γ−
j are obtained by comparing

h−(λ)−1 = Im − C(I − Π)(λ − A×)−1B

= Im − C(I − Π)

∞∑

j=1

1

λj
(A×)j−1B

= Im −
−1∑

j=−∞

λjC(I − Π)(A×)−(j+1)B

with h−(λ)−1 =
∑0

j=−∞ λjγ−
j .

To obtain the formulas for γks, we use formula (1.32). For s < k we have to
find

γks = γ+
k−sγ

−
0 +

s−1∑

r=0

γ+
k−rγ

−
r−s,

while for s > k we need to calculate

γks = γ+
0 γ−

k−s +

k−1∑

r=0

γ+
k−rγ

−
r−s.

Again by slight abuse of notation

γ+
k−rγ

−
r−s = −C(A×)−(k−r+1)ΠBC(I − Π)(A×)−(r−s+1)B

= −C(A×)−(k−r+1)(A×Π − ΠA×)(A×)−(r−s+1)B

= −C(A×)−(k−r)Π(A×)−(r−s+1)B +

+C(A×)−(k−r+1)Π(A×)−(r−s)B.

Observe that if we replace r by r +1 in the last one of the latter two terms we get
the first one. So the summation in the formula for γks is telescoping and collapses
into just a few terms. We proceed as follows.

For s < k we get

γks = γ+
k−sγ

−
0 − C(A×)−(k−s+1)ΠB + C(A×)−(k+1)Π(A×)sB.

Since γ−
0 = I and γ+

k−s = C(A×)−(k−s+1)ΠB, this results into

γks = C(A×)−(k+1)Π(A×)sB.
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For s > k the computation is a little more involved as γ+
0 = In+C(A×)−1ΠB.

Using that ΠBC
(
I − Π) = A×Π − ΠA×, it runs as follows:

γks = −
(
I + C(A×)−1ΠB

)
C
(
I − Π)(A×)−(k−s+1)B +

+C(A×)−(k+1)Π(A×)sB − C(A×)−1Π(A×)−(k−s)B

= −C
(
I − Π)(A×)−(k−s+1)B +

+C(A×)−1(ΠA× − A×Π)(A×)−(k−s+1)B +

+C(A×)−(k+1)Π(A×)sB − C(A×)−1Π(A×)−(k−s)B

= C(A×)−(k+1)Π(A×)sB − C(A×)−(k−s+1)B

= −C(A×)−(k+1)(I − Π)(A×)sB.

It remains to consider the case k = s. Then we have

γss = γ+
0 γ−

0 +

k−1∑

r=0

γ+
s−rγ

−
r−s.

Following the line of argument as in the case s < k this yields

γss = Im + C(A×)−1ΠB − C(A×)−1ΠB + C(A×)−(k+1)Π(A×)kB

= Im + C(A×)−(k+1)Π(A×)kB,

which completes the proof. �

The main step in the factorization method for solving the equation (6.7)
is to construct a right canonical factorization of the symbol a with respect to
the unit circle. In Theorem 6.4 we obtained explicit formulas for the case when
a is rational and has the value In at ∞. The latter condition is not essential.
Indeed, by a suitable Möbius transformation one can transform the symbol α(λ)
into a function which is invertible at infinity (see Section 3.6). Next one makes
the Wiener-Hopf factorization of the transformed symbol relative to the image
of the unit circle under the Möbius transformation. Here one can use the same
formulas as in Theorem 6.4. Finally, using the inverse Möbius transformation, one
can obtain explicit formulas for the factorization with respect to the unit circle,
and hence also for the solution of equation (6.7).

Notes

The material in this chapter is taken from [14] and [15]. The notion of a canonical
factorization can be viewed as a special case of minimal factorization which we
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shall treat later in Chapter 9. In Section 9.2 we shall resume the discussion of
canonical factorizations. Theorem 6.2 is a slightly changed version of Theorem
I.3.4 in [15]. With natural appropriate modifications Theorem 6.2 is also valid
in the infinite-dimensional case. Moreover in the infinite-dimensional case we can
sometimes allow for spectrum on the real line or (when the state space operators
are unbounded) at infinity. Finally, we note that the results of Section 6.1 extend
to operator-valued functions that are analytic on an open neighborhood of the
given contour. In fact, for such functions non-canonical Wiener-Hopf factorization
relative to the contour can also be described explicitly in terms of realizations. For
this and related results we refer to [16].





Part II

Minimal Realization and
Minimal Factorization

This part is concerned with minimality of systems and minimality of factorization
of rational matrix functions. An analysis of rational matrix functions in terms of
spectral data (eigenvalues, eigenvectors and Jordan chains) is also included. This
part consists of three chapters (7–9).

Chapter 7 is devoted to minimality of systems. For finite-dimensional sys-
tems minimality is equivalent to controllability and observability. For various other
classes of systems the notion of minimality is analyzed. In particular, this done for
the classes of systems introduced in Chapter 3. Special attention is paid to Hilbert
space systems, that is, systems for which the input space, the output space and
the state space are (possibly infinite-dimensional) Hilbert spaces. In Chapter 8
finite-dimensional systems are studied in terms of the zero and pole data of their
transfer functions. This includes the construction of minimal realizations in terms
of the pole data, and a spectral analysis of rational matrix functions in terms of
eigenvalues, eigenvectors and Jordan chains. Here the notions of McMillan degree
and local degree are introduced. The final chapter (Chapter 9) contains the theory
of minimal factorization, with special attention for systems that are not biproper.
Also in this chapter, using the notion of local minimality, the concept of a pseudo-
canonical factorization relative to a curve is introduced and analyzed for rational
matrix functions with singularities on the given curve.





Chapter 7

Minimal Systems

In this chapter the notion of a minimal system is considered. If two systems are
similar, then they have the same transfer function. The converse statement is
not true. In fact, systems with rather different state spaces may have the same
transfer function. For minimal systems this phenomenon does not occur. In Section
7.1 minimal systems are defined as systems that are controllable and observable.
The latter two notions are explained in more detail for finite-dimensional systems
in Section 7.2. In the finite-dimensional case the connection between a minimal
system Θ and its transfer function WΘ is very close. For example in that case Θ
is uniquely determined up to similarity by WΘ. This result, which is known as
the state space similarity theorem, will be proved in Section 7.3. Several examples,
presented in Section 7.4, show that a generalization of the finite-dimensional theory
to an infinite-dimensional setting is not possible in a straightforward way. An
appropriate generalization requires a further refinement of the state space theory.
In Section 7.5 the notion of minimality is considered for Brodskii systems, Krěın
systems, unitary systems, monic systems, and polynomial systems.

7.1 Minimality of systems

Two similar systems have the same transfer function. On the other hand, the trans-
fer function will in general not determine the system up to similarity. For example,
consider the unital systems Θ1 = (A1, B1, 0; X1, Y ) and Θ2 = (A2, 0, C2; X2, Y ).
The transfer functions of Θ1 and Θ2 are both identically equal to the identity
operator on Y , but if either B1 or C2 is nonzero, then Θ1 and Θ2 will not be
similar.

More generally, let Θ0 = (A0, B0, C0, D; X0, U, Y ) be a system, and let X1

and X2 be arbitrary complex Banach spaces. Put X = X1+̇X0+̇X2, and let
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A : X → X , B : U → X and C : X → Y be operators of the form

A =

⎡
⎢⎣

∗ ∗ ∗
0 A0 ∗
0 0 ∗

⎤
⎥⎦ , B =

⎡
⎢⎣

∗
B0

0

⎤
⎥⎦ , C =

[
0 C0 ∗

]
, (7.1)

where the stars ∗ denote unspecified operators acting between appropriate spaces.
Now consider the system Θ = (A, B, C, D; X, U, Y ). One easily verifies that the
transfer function of Θ coincides on a neighborhood of ∞ with the transfer func-
tion of Θ0. However, after a suitable choice of the spaces X1 and X2 or of the
unspecified operators, the systems Θ and Θ0 will not be similar. Under certain
minimality conditions, to be discussed below, positive results on similarity do exist
(cf., Section 7.3)

When the system Θ = (A, B, C, D; X, U, Y ) is related to the system Θ0 =
(A0, B0, C0, D; X0, U, Y ) as in (7.1), then Θ is called a dilation of Θ0, and, con-
versely, Θ0 is called a restriction of Θ. If the space X0 is strictly contained in X
or, equivalently, X1 or X2 (or both these spaces) contain nonzero vectors, then Θ
is called a proper dilation of Θ0, and in this case we also say that Θ0 is a proper
restriction of Θ.

Let Θ = (A, B, C, D; X, U, Y ) be a system. In the sequel we let Ker (C|A)
and Im (A|B) be the linear submanifolds of X defined by

Ker (C|A) = KerC ∩ KerCA ∩ KerCA2 ∩ · · · ,

Im (A|B) = ImB + Im AB + Im A2B + · · · ,

where the right-hand side of the latter expression denotes the linear hull of the
linear manifolds ImAjB, j = 0, 1, 2, . . . . If Θ is a proper dilation of a system
Θ0, then Ker (C|A) �= {0} or Im (A|B) is not dense in X (and possibly even both
these properties hold true). We call Θ approximately observable if Ker (C|A) = {0}
and we call Θ approximately controllable if Im (A|B) is dense in X . In this case
we also say that the pairs (C, A) and (A, B) are approximately observable and
approximately controllable, respectively. In the sequel we shall omit the adverb
approximately and simply speak about observable and controllable. We say that
Θ is minimal if Θ is both observable and controllable. The terms observable and
controllable come from system theory, and for finite-dimensional systems they will
be explained in more detail in the next section.

Proposition 7.1. Let Θ = (A, B, C, D; X, U, Y ) be a biproper system, and assume
that the spectra of A and A× = A − BD−1C are disjoint. Then the system Θ is
minimal.

Proof. Let K = Ker (C|A). Obviously, K is a closed subspace of X which is
invariant under A. Thus K is a Banach space in its own right, and A|K is a
bounded linear operator on K.
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Assume that K = Ker (C|A) �= {0}. Then the spectrum of A|K is nonempty.
Choose λ0 in the boundary of the spectrum of A|K . Then (see Theorem V.4.1 in
[110]) the point λ0 is in the approximate point spectrum of A|K , that is, there
exists a sequence of vectors, x1, x2, . . ., in K such that ‖xn‖ = 1 for each n and
(λ0−A|K)xn → 0 if n → ∞. Obviously, A|Kxn = Axn for n = 1, 2, . . .. Since K ⊂
KerC, the operators A and A× coincide on K. Thus for our sequence x1, x2, . . .
we have

‖xn‖ = 1, n = 1, 2, . . . , lim
n→∞

(λ0 − A)xn = 0,

‖xn‖ = 1, n = 1, 2, . . . , lim
n→∞

(λ0 − A×)xn = 0.

From the first part of the above formula we see that λ ∈ σ(A), and from the
second part that λ ∈ σ(A×). Thus λ0 is a common point of the spectra of A and
A×, which contradicts our hypotheses. Hence Ker (C|A) = {0}.

Next, we consider the system Θ′ = (A′, C′, B′, D′; X ′, Y ′, U ′), where the
prime means that one has to take the Banach space conjugate (see [48], Sections
11.4 and 13.5). Since a Banach space operator is invertible if and only if its Ba-
nach dual is invertible, the operators A′ and (A×)′ have no common spectra. But
(A×)′ = A′−C′(D′)−1B′, and therefore the result of the previous paragraph shows
that Ker (B′|A′) = {0}. Now assume that Im (A|B) is not dense in X . Then, by the
Hahn-Banach theorem (see [48], Section 11.5), there exists a nonzero f ∈ X ′ such
that f(AnBu) = 0 for each n and each u ∈ U . It follows that B′(A′)nf = 0, and
thus f ∈ Ker (B′|A′). Therefore f = 0 which is a contradiction. Hence Im (A|B)
is dense in X .

From the results of the two previous paragraphs we conclude that Θ is min-
imal. �

The converse of Proposition 7.1 is not true. To see this, take X = C, U =
Y = C2, and

A = 1, B =
[

0 1
]
, C =

[
1

0

]
, D =

[
1 0

0 1

]
.

Then Θ = (A, B, C, D; C, C2, C2) is a biproper minimal system. However, we have
BD−1C = 0, and hence A = A×. In particular, the spectra of A and A× are not
disjoint.

The fact that minimality is not the same as disjointness of the spectra of the
main and associate main operator makes the notion of minimality an interesting
one.

By a minimal realization of an operator function W we mean a minimal
system that is a realization for W . Also, if W is given by

W (λ) = D + C(λ − A)−1B, (7.2)
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we say that (7.2) is a minimal realization for W if the system determined by the
operators A, B, C and D is minimal. In the same way one can define the notions
of an observable and a controllable realization.

Below we present some elementary facts concerning minimal systems. With
appropriate modifications the results are also valid for systems that are observable
or controllable only.

Suppose Θ1 = (A1, B1, C1, D1; X1, Y ) and Θ2 = (A2, B2, C2, D2; X2, Y ) are
similar systems. Then Θ1 is minimal if and only if Θ2 is minimal. If S and S′ are
system similarities between Θ1 and Θ2, then

Im (S − S′) ⊂ Ker (C2|A2).

So S = S′, provided that Θ1 and Θ2 are minimal. This proves the following result.

Proposition 7.2. A system similarity between two minimal systems is uniquely
determined by the given two systems.

If Θ = (A, B, C, D; X, Y ) is a system with an invertible external operator
D, then Θ is minimal if and only if Θ× is minimal. This is immediate from the
identities

Ker (C|A) = Ker (−D−1C|A×), Im (A|B) = Im (A×|BD−1).

The product of two minimal systems need not be minimal. To see this, mul-
tiply the minimal systems (0, 1, 1; C, C) and (−1, 1,−1; C, C). On the other hand,
we have the following proposition.

Proposition 7.3. If the product of two systems Θ1 and Θ2 is minimal, then so are
the factors Θ1 and Θ2.

Proof. For j = 1, 2, write Θj = (Aj , Bj , Cj , D1; Xj , U, Y ). Then the product Θ1Θ2

is given by Θ1Θ2 = (A, B, C, D; X1 ∔ X2, Y ) with

A =

[
A1 B1C2

0 A2

]
, B =

[
B1D2

B2

]
, C =

[
C1 D1C2

]
, D = D1D2.

Assume Θ is minimal. We shall prove that Θ1 and Θ2 are both observable and
both controllable.

Take x in Ker (C1|A1). Then the column vector [x 0 ]⊤ belongs to the space
Ker (C|A). But Ker (C|A) = {0}, and so x = 0. This proves that Θ1 is observable.
Next, we show that also Θ2 is observable. Take x in Ker (C2|A2). This implies that
C2x = 0 and A2x ∈ Ker (C2|A2). Thus one shows by induction that

Aj

[
0

x

]
=

[
0

Aj
2x

]
.
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From this it follows that [ 0 x ]⊤ is in Ker (C|A) = {0}. Hence x = 0, which proves
that Θ2 is observable.

Next take z in X1. Then [ z 0 ]⊤ is in the closure of Im (A|B). So the vector

[ z 0 ]⊤ can be approximated arbitrarily close by sums of the form
∑n−1

j=0 AjByj

with y0, . . . , yn−1 in Y . The first coordinate of such a sum is easily seen to belong
to Im (A1|B1). Thus z is in the closure of Im (A1|B1), and we conclude that Θ1 is
controllable. To show that Θ2 is controllable, take z in X2. Then [ z 0 ]⊤ is in the
closure of Im (A|B), and it follows from this that z is in the closure of Im (A2|B2).
Thus Θ2 is controllable as well. �

If Π is a supporting projection for a unital system Θ (i.e., the external oper-
ator is the identity), then

Θ = prI−Π(Θ)prΠ(Θ).

Thus, if Θ is minimal, then so are prI−Π(Θ) and prΠ(Θ). An arbitrary projection of
a minimal system need not be minimal, not even when the image of the projection
is an invariant subspace for the main operator of the system. Indeed, if Θ =
(A, B, C; C3, C2) and Π are given by

A =

⎡
⎣

1 0 0
1 0 0
0 0 0

⎤
⎦ , B =

⎡
⎣

1 0
0 1
0 1

⎤
⎦ , C =

[
0 1 0
0 0 1

]
, Π =

⎡
⎣

0 0 0
0 1 0
0 0 1

⎤
⎦ ,

then Θ is minimal, but

prΠ(Θ) =

([
0 0
0 0

]
,

[
0 1
0 1

]
,

[
1 0
0 1

]
; C2, C2

)

is not. Note that Im Π is an invariant subspace for A.

7.2 Controllability and observability for
finite-dimensional systems

In the previous section we defined controllability and observability in a rather
formal way. In this section we present alternative definitions of these notions
for finite-dimensional systems. The new definitions, which reflect better the sys-
tem theoretical contents, will be shown to be equivalent to the ones appearing
in the previous section. Throughout this section we restrict ourselves to finite-
dimensional systems.

A system is called controllable (in systems theoretical sense) if (roughly
speaking) starting from an arbitrary initial state x0 any other state x1 can be
reached by applying a suitable input. To make this more precise, let

Θ = (A, B, C, D; X, Cp, Cq)
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be a finite-dimensional system. For a given x0 in the state space X and a given
input u we let x(t; x0, u) denote the unique solution of

{
x′(t) = Ax(t) + Bu(t), t ≥ 0,

x(0) = x0.
(7.3)

In other words,

x(t; x0, u) = etAx0 +

∫ t

0

e(t−s)ABu(s) ds, t ≥ 0. (7.4)

The system Θ is said to be controllable (in systems theoretical sense) if for any
x0, x1 in X there exist t1 > 0 and u in PCE(Cp) such that x1 = x(t1; x0, u).

Note that controllability does not involve the output operator C. The next
proposition shows that for finite-dimensional systems the above definition of con-
trollability coincides with the one given in the previous section.

Proposition 7.4. Let Θ = (A, B, C, D; X, Cp, Cq) be a finite-dimensional system.
Then Θ is controllable (in systems theoretical sense) if and only if Im (A|B) = X.

Proof. Let τ > 0 be fixed, and let S(τ) be the set of states in X that can be
reached at time t = τ starting from the initial state x0 = 0. Thus

S(τ) = {x(τ ; 0, u) | u ∈ PCE(Cp)}.

Obviously, S(τ) is a linear subspace of the state space X . Endow X with an inner
product, and consider the input

u0(t) = B∗e(τ−t)A∗

x, t ≥ 0,

where x is an arbitrary vector in X . Here A∗ and B∗ denote the adjoints of A and
B, respectively. Note that u ∈ PCE(Cp). One computes that

x(τ ; 0, u0) =

(∫ τ

0

etABB∗etA∗

dt

)
x.

Thus S(τ) ⊃ Im
( ∫ τ

0 etABB∗etA∗

dt
)
. We shall prove that

S(τ) = Im

(∫ τ

0

etABB∗etA∗

dt

)
= Im (A|B). (7.5)

Let z ∈ X , and assume z ⊥ Im
( ∫ τ

0 etABB∗etA∗

dt
)
. To prove the first equality

in (7.5), it suffices to show that z ⊥ S(τ). Our hypothesis on z implies that∫ τ

0
‖B∗etA∗

z‖2 dt = 0, and hence B∗etA∗

z = 0 for each t ∈ [0, τ ]. In particular,
z ⊥ Im etAB for each 0 ≤ t ≤ τ Now, take an arbitrary u ∈ PCE(Cp). Then

x(τ ; 0, u) =

∫ τ

0

e(τ−s)ABu(s) ds =

∫ τ

0

etABu(τ − t) dt,
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and thus z ⊥ x(τ ; 0, u). Since u is arbitrary, we conclude that z ⊥ S(τ). The first
equality in (7.5) is proved.

By definition AjBy ∈ Im (A|B) for each j ≥ 0 and y ∈ Cp. Since etAB =∑∞
j=0

1
j!A

jB and Im (A|B) is closed because of finite dimensionality, we conclude

that Im
( ∫ τ

0 etABB∗etA∗

dt
)
⊂ Im (A|B). Again take z ⊥ Im

( ∫ τ

0 etABB∗etA∗

dt
)
.

To prove the second equality in (7.5) it remains to show that z ⊥ Im (A|B). We
have already seen that our hypothesis on z implies that

B∗etA∗

z =

∞∑

j=0

1

j!
tjB∗(A∗)jz = 0, 0 ≤ t ≤ τ.

But then B∗(A∗)jz = 0 and hence z ⊥ Im AjB for j = 0, 1, 2, . . . , which proves
that z ⊥ Im (A|B).

We have now proved (7.5). Note that (7.5) implies that the space S(τ) does
not depend on the choice of τ .

Assume that Θ = (A, B, C, D; X, Cp, Cq) is controllable in the systems the-
oretical sense. Take x ∈ X . According to the definition given above, there exists
t1 > 0 and u ∈ PCE(Cp) such that x1 = x(t1; 0, u). In other words, x ∈ S(t1).
But then we can use (7.5) to show that x ∈ Im (A|B). Since x is arbitrary, we
conclude that Im (A|B) = X .

Next, suppose that Im (A|B) = X . Take x0, x1 in X . Choose any τ > 0.
According to (7.5) there exists u ∈ PCE(Cp) such that x1 − eτAx0 = x(τ ; 0, u).
But then x1 = x(τ ; x0, u). Since x0 and x1 are arbitrary, we have proved that Θ
is controllable. �

We now turn to observability. Roughly speaking a system is observable (in
systems theoretical sense) if the output determines uniquely the state of the system
at time t = 0. To make this more precise, let Θ = (A, B, C, D; X, Cp, Cq) be a
finite-dimensional system. Consider the system equations

⎧
⎪⎪⎨
⎪⎪⎩

x′(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t), t ≥ 0,

x(0) = x0.

(7.6)

For a given input u and initial state x0 we denote the output of (7.6) by y(t; x0, u).
Thus

y(t; x0, u) = Cx(t; x0, u) + Du(t),

where x(t; x0, u) is given by (7.4). Note that

y(t; x0, u) = y(t; x0, 0) +

∫ t

0

Ce(t−s)ABu(s) ds.

Hence y(t; x0, u) = y(t; x̃0, u) if and only if y(t; x0, 0) = y(t; x̃0, 0). Thus to de-
termine the initial state from the output, the role of the input is irrelevant. This
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leads to the following definition. The system Θ is observable (in systems theoret-
ical sense) if there exists τ > 0 such that y(t; x0, 0) = y(t; x̃0, 0) on 0 ≤ t ≤ τ
implies that x0 = x̃0.

Note that observability does not involve the input operator B and the exter-
nal operator D. The next proposition shows that for finite-dimensional systems
the above definition of observability coincides with the one given in the previous
section.

Proposition 7.5. Let Θ = (A, B, C, D; X, Cp, Cq) be a finite-dimensional system.
Then Θ is observable (in systems theoretical sense) if and only if Ker (C|A) = {0}.

Proof. Assume Θ is observable. Take x0 ∈ Ker (C|A). Thus CAjx0 = 0 for each
j ≥ 0. It follows that

y(t; x0, 0) = CetAx0 =

∞∑

j=0

1

j!
tjCAjx0 = 0, t ≥ 0.

In particular, y(t; x0, u) = y(t; 0, 0) for all t ≥ 0. Since Θ is observable, this implies
x0 = 0. Hence Ker (C|A) = {0}.

To prove the reverse implication, assume that Ker (C|A) = {0}. Take an
arbitrary τ > 0, and let y(t; x0, 0) = y(t; x̃0, 0) for 0 ≤ t ≤ τ . Then

CetA(x0 − x̃0) = 0, 0 ≤ t ≤ τ

and hence CAj(x0− x̃0) = 0 for j ≥ 0. In other words, x0− x̃0 ∈ Ker (C|A). Hence
xo = x̃0, and Θ is observable. �

For operators acting between finite-dimensional spaces we shall sometimes
use the terms “null kernel pair” and “full range pair” in place of observable pair
and controllable pair. Thus a pair (C, A) of finite-dimensional operators is called
a null kernel pair if Ker (C|A) = {0}, and a pair (A, B) of finite-dimensional
operators is called a full range pair if Im (A|B) = X , where X is the space on
which A acts.

7.3 Minimality for finite-dimensional systems

Let Θ = (A, B, C, D; X, U, Y ) be a finite-dimensional system. Thus Θ is a system
and the spaces X , U and Y are finite-dimensional. Let n be an integer larger than
or equal to the degree of the minimal polynomial of A (for instance n ≥ dimX).
Then, by the Cayley-Hamilton theorem,

Ker (C|A) = KerC ∩ KerCA ∩ KerCA2 ∩ · · · ∩ KerCAn−1,

Im (A|B) = ImB + Im AB + Im A2B + · · · + ImAn−1B.
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From this it is obvious that Θ is minimal if and only if the right hand sides of
these expressions are {0} and X , respectively, i.e.,

KerC ∩ KerCA ∩ KerCA2 ∩ · · · ∩ KerCAn−1 = {0},

Im B + Im AB + Im A2B + · · · + ImAn−1B = X.

An equivalent requirement is that the operators defined by col (CAj)n=1
j=0 and

row (Aj)n−1
j=0 are left and right invertible, respectively.

Theorem 7.6. Any finite-dimensional system is a dilation of a finite-dimensional
minimal system. In particular, a finite-dimensional system is minimal if and only
if it does not have a proper restriction.

Proof. Let Θ = (A, B, C, D; X, U, Y ) be a finite-dimensional system, and let n
be the degree of the minimal polynomial of A. Put Ω = col (CAj)n−1

j=0 and ∆ =

row (AjB)n−1
j=0 . Then Ω : X → Y n, ∆ : Un → X and

A[KerΩ] ⊂ KerΩ, A[Im ∆] ⊂ Im∆.

Put X1 = KerΩ, and let X0 be a direct complement of X1∩Im ∆ in Im ∆. Further,
choose X2 such that

X = X1 ∔ X0 ∔ X2.

With respect to this decomposition the operators A, B and C can be written in
the form

A =

⎡
⎢⎢⎣

A1 ∗ ∗
0 A0 ∗
0 0 A2

⎤
⎥⎥⎦ , B =

⎡
⎢⎣

∗
B0

0

⎤
⎥⎦ , C =

[
0 C0 ∗

]
. (7.7)

Put Θ0 = (A0, B0, C0, D; X0, Y ). Then the transfer functions of Θ0 and Θ coincide
(on a neighborhood of ∞). One verifies without difficulty that

KerC0 ∩ KerC0A0 ∩ KerC0A
2
0 ∩ · · · ∩ KerC0A

n−1
0 = {0},

Im B0 + Im A0B0 + Im A2
0B0 + · · · + Im An−1

0 B0 = X0.

Thus Θ0 is a minimal system (obviously finite-dimensional), and Θ is a dilation
of Θ0.

Next we consider the final statement. Let Θ be as in the previous paragraph,
and assume that Θ does not have a proper restriction. Then the system Θ0 con-
structed in previous paragraph must be equal to Θ. But Θ0 is observable and
controllable. It follows that the same holds true for Θ, and thus Θ is minimal.

Conversely, assume Θ = (A, B, C, D; X, U, Y ) is a finite-dimensional minimal
system, and Θ0 be a restriction of Θ. Then (7.1) shows that X1 ⊂ Ker (C|A)
and Im (A|B) ⊂ X1 +̇ X0. But, because of minimality, Ker (C|A) = {0} and
Im (A|B) = X . It follows that X1 = {0} and X2 = {0}. Hence Θ = Θ0, and
thus Θ does not have a proper restriction. �
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Theorem 7.6 can be used to give a simple proof of Proposition 7.1 for finite-
dimensional systems. Indeed, let Θ = (A, B, C, D; X, U, Y ) be a biproper finite-
dimensional system, and assume that the finite-dimensional operators A and A× =
A−BD−1C do not have a common eigenvalue. We have to show that Θ is minimal.
By Theorem 11.5 the system Θ is a dilation of a minimal system. Thus the state
space X admits a direct sum decomposition X = X1∔X0∔X2 such that relative to
this decomposition the operators A, B and C can be written in the form (7.7) with
the system Θ0 = (A0, B0, C0, D; X0, Y ) being minimal. Note that (7.7) implies
that

A× = A − BD−1C =

⎡
⎢⎢⎣

A1 ∗ ∗
0 A×

0 ∗
0 0 A2

⎤
⎥⎥⎦ ,

where A×
0 = A0 − B0D

−1C0. From the block matrix representations of A and
A× we see that each eigenvalue of A1 and each eigenvalue of A2 is a common
eigenvalue of A and A×. But, according to our assumptions, A and A× do not
have a common eigenvalue. Thus the spaces X1 and X2 consist of the zero vector
only, that is, X = X0. Hence Θ = Θ0, and thus Θ is minimal.

The construction of the minimal system Θ0 presented in the proof of Theo-
rem 7.6 can also be carried out by taking quotients instead of complements. This
approach also works in the infinite-dimensional case. The next result is known as
the state space similarity theorem.

Theorem 7.7. For k = 1, 2, let Θk = (Ak, Bk, Ck, Dk; Xk, U, Y ) be a finite-dimen-
sional minimal system. Assume that the transfer functions of Θ1 and Θ2 coincide
(on some open set and hence on a neighborhood of ∞). Then Θ1 and Θ2 are
similar. Moreover, the (unique) system similarity S between Θ1 and Θ2 is given by

S =
(
col

(
C2A

j
2

)n−1

j=0

)+(
col

(
C1A

j
1

)n−1

j=0

)

=
(
row

(
Aj

2B2

)n−1

j=0

)(
row

(
Aj

1B1

)n−1

j=0

)†

,

where n is a positive integer larger than or equal to the degree of the minimal
polynomial of A1, the superscript + indicates a left inverse and the superscript †
indicates a right inverse.

Proof. For k = 1, 2, put

Ωk = col
(
CkAj

k

)n−1

j=0
, ∆k = row

(
Aj

kBk

)n−1

j=0
,

where n is a positive integer larger than or equal to the maximum of the degrees
of the minimal polynomials of A1 and A2. Since Θk is minimal, the operators Ωk

and ∆k are left and right invertible, respectively. Let Ω+
k be a left inverse of Ωk

and let ∆†
k be a right inverse of ∆k.
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Comparing the Laurent expansions of the transfer functions of Θ1 and Θ2 at
∞, we obtain

D1 = D2, C1A
j
1B1 = C2A

j
2B2, j = 0, 1, 2, . . . .

It follows that Ω1∆1 = Ω2∆2. But then Ω+
2 Ω1 = ∆2∆

†
1. We denote the operator

appearing in this equality by S. Observe that S : X1 → X2. A direct computation
shows that S is invertible with inverse Ω+

1 Ω2 = ∆1∆
†
2 and that Ω2S = Ω1, S∆1 =

∆2. The last two identities yield

A2S = SA1, SB1 = B2, C2S = C1.

Thus Θ1 and Θ2 are similar. Moreover we proved that S is of the form indicated
in the theorem for n larger than or equal to the maximum of the degrees of the
minimal polynomials of A1 and A2. But these polynomials are the same since A1

and A2 are similar. So the proof is complete. �

By combining Theorems 7.6 and 7.7 we obtain the following result.

Corollary 7.8. The transfer functions of two finite-dimensional systems coincide
if and only if these systems are dilations of similar systems.

We conclude this section with a discussion of Möbius transformations of
finite-dimensional systems as defined in Section 3.6. We begin with a remark.

Let p, q, r and s be complex numbers. For n = 1, 2, . . . and t, j = 0, . . . , n−1,

let the complex number a
(n)
t, j be given by the expression

∑

k = 0, . . . , n − 1 − t
m = 0, . . . , t
k + m = j

(−1)k+t−m

(
n − 1 − t

k

)(
t
m

)
pn−1−t−kqt−mrksm.

In other words a
(n)
t, 0 , . . . , a

(n)
t, n−1 are the coefficients of the polynomial

(p − rx)n−1−t(sx − q)t.

The n × n matrix
[
a
(n)
t, j

]n−1

t,j=0
will be denoted by [p, q, r, s]n. For what follows it is

important to note that

det[p, q, r, s]n = (ps − qr)n(n−1)/2.

The proof goes by an induction argument involving the following recurrence rela-
tions

a
(n+1)
t, 0 = −qa

(n)
t−1, 0,

a
(n+1)
t, k = sa

(n)
t−1, k−1 − qa

(n)
t−1, k, k = 1, . . . , n − 1,

a
(n+1)
t, n = sa

(n)
t−1, n−1.
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Theorem 7.9. Let Θ = (A, B, C, D; X, Y ) be a system, and let

ϕ(λ) =
pλ + q

rλ + s

be a Möbius transformation. Suppose rA − p is invertible. Then Θϕ is minimal if
and only if Θ is minimal.

Proof. Write Θϕ = (A1, B1, C1, D1; X, Y ). Then, see formula (3.14),

A1 = −(q − sA)(p − rA)−1, C1 = (ps − qr)C(p − rA)−1.

A simple computation shows that for n = 1, 2, . . .

(
col

(
C1A

j
1

)n−1

j=0

)
(p − rA)n = (ps − qr)[p, q, r, s]ncol

(
CAj

)n−1

j=0
.

Since ϕ is a Möbius transformation, we have ps− qr �= 0. So the matrix [p, q, r, s]n

is invertible. By hypothesis, p − rA is invertible. It follows that col
[
C1A

j
1

]n−1

j=0
is

left invertible if and only if col
(
CAj

)n−1

j=0
is left invertible. Thus Θϕ is observable if

and only if Θ is observable. In the same way one can show that Θϕ is controllable
if and only if Θ is controllable. �

7.4 Minimality for Hilbert space systems

In this section we consider Hilbert space systems, that is, systems for which the
input space, the output space and the state space are Hilbert spaces. We present
an example showing that the state space similarity theorem for finite-dimensional
systems does not hold in this (possibly infinite-dimensional) Hilbert space setting.
To get an appropriate generalization of this result pseudo-similarity, a weaker
form of the usual similarity, has to be used. But even with this weaker similarity
it can happen that two minimal Hilbert space systems with the same transfer
function in a neighborhood of infinity are pseudo-similar but (in contrast to the
finite-dimensional case) the pseudo-similarity does not have to be unique.

A system Θ = (A, B, C, D; X, U, Y ) is said to be a Hilbert space system
if the underlying spaces X , U , and Y are Hilbert spaces. The class of Hilbert
space systems is a subclass of the systems considered in Section 7.1, and hence
all terminology and notation introduced in that section applies to Hilbert space
systems. For instance, by definition, a Hilbert space systems is minimal if and
only if it is approximately observable and approximately controllable. The class
of Hilbert space systems is closed under taking restrictions, that is, the restriction
of a Hilbert space system is again a Hilbert space system. The latter does not
hold for dilations. A dilation Θ of a Hilbert space system is again a Hilbert space
system only when the state space of Θ is a Hilbert space. The following result is
a generalization of Theorem 7.6.
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Theorem 7.10. Any Hilbert space system is a dilation of a Hilbert space system
that is minimal. In particular, a Hilbert space system is minimal if and only if it
does not have a proper restriction.

Proof. With some modifications the proof follows the same line of reason as that of
the proof of Theorem 7.6. Let Θ = (A, B, C, D; X, U, Y ) be a Hilbert space system.
Put X1 = Ker (C|A), and let X0 be the orthogonal complement of X1 ∩ Im (A|B)
in the closed subspace Im (A|B). Obviously, X1 and X0 are orthogonal closed
subspaces of X . We define X2 to be the orthogonal complement of X1 ⊕ X0 in
X . Then X2 is also a closed subspace of X , and we see that X = X1 ⊕ X0 ⊕ X2.
Furthermore, relative to this decomposition A, B, and C partition as follows:

A =

⎡
⎢⎢⎣

∗ ∗ ∗
0 A0 ∗
0 0 ∗

⎤
⎥⎥⎦ , B =

⎡
⎢⎣

∗
B0

0

⎤
⎥⎦ , C =

[
0 C0 ∗

]
.

Since X0 is a closed subspace of the Hilbert space X , the space X0 is a Hilbert
space in its own right. Thus the system Θ0 = (A0, B0, C0, D; X0, U, Y ) is a Hilbert
system and it is a restriction of Θ.

We claim that Θ0 is also minimal. To see this, let x0 be a vector in the space
Ker (C0, A0). Thus C0A

j
0x0 = 0 for j = 0, 1, 2 . . .. Since

CAj =
[

0 C0A
j
0 ∗

]
, j = 0, 1, 2 . . . ,

it follows that the vector x = 0⊕x0⊕0 belongs to Ker (C, A) = X1. This can only
happen when x0 = 0. Hence Θ0 is approximately observable. Next, take y0 in X0

such that y0 ⊥ Im (A0, B0). Notice that

AjB =

⎡
⎢⎢⎣

∗
Aj

0B0

0

⎤
⎥⎥⎦ , j = 0, 1, 2 . . . .

Since y0 ⊥ X1, we conclude that y0 ⊥ Im (A, B). But X0 is contained in Im (A|B).
So y0 = 0, and Θ0 is approximately controllable. We have proved that Θ0 is
minimal.

The final statement of the theorem is proved in the same way as the final
statement of Theorem 7.6. One only has to replace Im (A|B) by its closure. �

Next, we present an example showing that two minimal Hilbert space systems
of which the transfer functions coincide in a neighborhood of infinity do not have
to be similar. For this purpose let ℓ2 be the Hilbert space of all square summable
sequences x = (xn)∞n=0 with entries in C. By T we denote the backward shift on
ℓ2, that is, T is the operator defined by

T (xn)∞n=0 = (yn)∞n=0, where yn = xn+1 for n = 0, 1, 2, . . .
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We shall need the following lemma.

Lemma 7.11. For a real number r > 0, let ϕ(r) be the element in ℓ2 given by

ϕ(r) =

(
r−n

(n + 1)!

)∞

n=0

. (7.8)

The element ϕ(r) is cyclic with respect to the backward shift T , that is, the smallest
closed T -invariant subspace containing ϕ(r) is the full space ℓ2.

Proof. Let ϕn(r) be the nth entry in the sequence ϕ(r). Then

ϕn+k(r)

ϕk(r)
=

r−n

(n + k + 1) · · · (1 + k + 1)
≤ r−n

n!

It follows that

sk =
1

|ϕk(r)|2
∞∑

n=1

|ϕn+k(r)|2 < ∞.

Moreover the sequence s1, s2, s3, . . . is decreasing, and hence limk→∞ sk exists. But
then we can use the solution to Problem 160 in [77] to show that ϕ(r) is cyclic
with respect to the backward shift on ℓ2. �

Now consider the Hilbert space system Θr = (Ar, Br, C, D; ℓ2, C, C), where

Ar : ℓ2 → ℓ2, Ar = rT,

Br : C → ℓ2, Bra = aϕ(r), a ∈ C,

C : ℓ2 → C, C
(
(xn)∞n=0

)
= x0,

D : C → C, Da = a, a ∈ C.

Proposition 7.12. The Hilbert space systems Θr = (Ar, Br, C, D; ℓ2, C, C), r > 0,
are all minimal and their transfer functions coincide in a neighborhood of infinity.
Nevertheless, the systems Θr, r > 0, are mutually non-similar.

Proof. Fix r > 0. Note that

CAj
r

(
(xn)∞n=0

)
= rjxj , j = 0, 1, 2, . . . .

Thus, if x = (xn)∞n=0 belongs to Ker (C|Ar), then xj = 0 for each j = 0, 1, 2, . . ..
Hence Θr is approximately observable. Next, observe that

Im
[

Br ArBr · · · An
r Br

]

= span {ϕ(r), rTϕ(r), . . . , rnT nϕ(r)}

= span {ϕ(r), Tϕ(r), . . . , T nϕ(r) }, n = 0, 1, 2, . . . .
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This implies that

Im (Ar|Br) = span {T nϕ(r) | n = 0, 1, 2, . . .}.

But the latter space is dense in ℓ2 by Lemma 7.11. Thus Θr is approximately
controllable. We have proved that Θr is minimal.

Next we compute the transfer function of Θr. First note that for each a ∈ C
we have

CAj
rBra = aCAj

rϕ(r) = arj r−j

(j + 1)!
=

a

(j + 1)!
, j = 0, 1, 2, . . . .

Using this and taking |λ| > ‖Ar‖ we get

WΘr
(λ) = D + C(λ − Ar)

−1Br = D +
∞∑

j=0

( 1

λ

)j+1

CAj
rBr

= 1 +
∞∑

j=0

( 1

λ

)j+1 1

(j + 1)!
=

∞∑

j=0

1

j!

( 1

λ

)j

= e1/λ.

We conclude that for any pair r1 and r2 of positive numbers the transfer functions
of Θr1 and Θr2 coincide in a neighborhood of infinity.

Finally, if r1 and r2 are different positive numbers, then Θr1 and Θr2 are not
similar. Indeed, if Θr1 and Θr2 would be similar, then their state operators Ar1

and Ar2 would be similar too, but this can only happen when r1 = r2. �

To deal with the phenomenon appearing in the previous proposition we in-
troduce a weaker type of system similarity. Consider two systems

Θj = (Aj , Bj , Cj , Dj ; Xj, U, Y ), j = 1, 2.

We say that the systems Θ1 and Θ2 are pseudo-similar if D1 = D2, and there
exists an injective closed linear operator S(X1 → X2) with domain D(S) in the
Hilbert space X1 and range in the Hilbert space X2 such that

D(S) = X1, Im (S) = X2, (7.9)

A1[D(S)] ⊂ D(S), SA1|D(S) = A2S, (7.10)

B1[U ] ⊂ D(S), B2 = SB1, (7.11)

C1

∣∣D(S) = C2S. (7.12)

In this case we call S a pseudo-similarity from Θ1 to Θ2. (Some authors use the
term weak similarity, see, e.g., [106], however the term quasi-similarity is usually
used for the case when D(S) is the full space and hence S is bounded.)
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Conditions (7.10) and (7.11) imply that Aj
1B1U ⊂ D(S) and SAj

1B1 = Aj
2B2

for each j ≥ 0, and thus

Im (A1|B1) ⊂ D(S), S
[
Im (A1|B1)

]
= Im (A2|B2). (7.13)

From (7.10)–(7.12) we get that C1A
j
1B1 = C2SAj

1B1 = C2A
j
2B2 for each j ≥ 0.

Hence, if two Hilbert space systems Θ1 and Θ2 are pseudo-similar, then their
transfer functions coincide in a neighborhood of infinity. The next theorem shows
that the converse is also true.

Theorem 7.13. Let Θ1 and Θ2 be minimal Hilbert space systems, and suppose that
their transfer functions coincide in a neighborhood of infinity. Then Θ1 and Θ2

are pseudo-similar.

Proof. Define R from Im (A1|B1) into Im (A2|B2) by setting

R

( n∑

j=0

Aj
1B1uj

)
=

n∑

j=0

Aj
2B2uj .

Then R is well defined. To see this it suffices to show that

n∑

j=0

Aj
1B1uj = 0 ⇒

n∑

j=0

Aj
2B2uj = 0. (7.14)

Assume the left-hand side of (7.14) holds. Then for each k = 0, 1, 2, . . . we have∑n
j=0 C1A

k+j
1 B1uj = 0. The fact that the transfer functions of Θ1 and Θ2 coincide

in a neighborhood of infinity is equivalent to the statement that

C1A
n
1B1 = C2A

n
2B2, n = 0, 1, 2, . . . . (7.15)

Thus

C2A
k
2

( n∑

j=0

Aj
2B2uj

)
= 0, n = 0, 1, 2, . . . .

But Ker (C2|A2) =
⋂

k≥0 KerC2A
k
2 = {0}, because Θ2 is minimal. Thus the right-

hand side of (7.14) is proved.

Next, we show that R is closable. Let x1, x2, . . . be a sequence in Im (A1|B1)
such that xn → 0 and Rxn → y for n → ∞. We have to show that y = 0. Again
using (7.15), we see that for each n we have

C1A
k
1xn = C2A

k
2Rxn, k = 0, 1, 2, . . . . (7.16)

Fix k ≥ 0. Then C1A
k
1xn → 0 and C2A

k
2Rxn → C2A

k
2y for n → ∞. Thus (7.16)

yields C2A
k
2y = 0 for k = 0, 1, 2, . . .. But Ker (C2|A2) consists of the zero element

only, because Θ2 is minimal. Therefore y = 0, and thus R is closable.
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Let S be the closure of R. Then S is a closed operator. The operator S is
also injective. Indeed, assume x ∈ D(S) and Sx = 0. Then there exists a sequence
x1, x2, . . . in Im (A1|B1) such that xn → x and Rxn → 0 for n → ∞. For these
vectors xn formula (7.16) holds, and hence

C1A
k
1x = lim

n→∞
C1A

k
1xn = lim

n→∞
C2A

k
2Rxn = 0, k = 0, 1, 2, . . . .

Since Θ1 is minimal, this shows that x = 0, and thus S is injective.

We proceed by showing that (7.9)–(7.12) are fulfilled. By definition, we have
Im (A1|B1) ⊂ D(S), and thus the minimality of Θ1 yields D(S) = X1. Similarly,
Im S ⊃ Im R = Im (A2|B2), and thus Im S = X2 because of the minimality of
Θ2. Thus (7.9) holds. Next, take x ∈ D(S). So there exist x1, x2, . . . in Im (A1|B1)
such that xn → x and Rxn → Sx for n → ∞. Now

A1xn ∈ Im (A1|B1) ⊂ D(S), A1xn → A1x (n → ∞);

SA1xn = RA1xn = A2Rxn → A2Sx (n → ∞).

Since S is closed, this shows that A1x ∈ D(S) and SA1x = A2Sx. Thus (7.10)
holds. Since B1U ⊂ Im (A1|B1), we have B1U ⊂ D(S) and SB1 = RB1 = B2,
because of the definition of R. Finally, to prove (7.12), take x ∈ D(S). So there
exist x1, x2, . . . in Im (A1|B1) such that xn → x and Rxn → Sx for n → ∞. For
the vectors xn formula (7.16) is valid. It follows that

C1x = lim
n→∞

C1xn = lim
n→∞

C2Rxn = C2Sx,

which proves (7.12), and we are done. �

We conclude this section with two examples. The first shows that, in contrast
to the usual similarity, pseudo-similarity does not necessarily preserve minimality
of a Hilbert space system (see Proposition 7.14 below). The second example shows
(see Proposition 7.15 below) that, in general, the pseudo-similarity in Theorem
7.13 is not unique. Both examples use the same general setup which we will describe
first.

In the sequel S(X1 → X2) is a closed and injective linear operator with
domain D(S) in the Hilbert space X1 and range in the Hilbert space X2. We shall
assume that

D(S) �= X1, D(S) = X1, Im S �= X2. (7.17)

Fix v ∈ X1, v �∈ D(S), and w ∈ X2, w �∈ Im (S). Let Ŝ(X1 → X2) be the operator
with domain

D(Ŝ) = {λv + d | λ ∈ C, d ∈ D(S)},
defined by Ŝ(λv + d) = λw + Sd. We claim the operator Ŝ is also closed. To see
this, let G(S) and G(Ŝ) denote the graphs of S and Ŝ, that is,

G(S) =

{[
x

Sx

]
| x ∈ D(S)

}
, G(Ŝ) =

{[
x

Ŝx

]
| x ∈ D(Ŝ)

}
.
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Since S is closed, its graph G(S) is a closed subspace of the Hilbert space direct
sum X1 ⊕ X2. The definition of Ŝ implies that

G(Ŝ) = G(S) +̇ span

[
v
w

]
⊂ X1 ⊕ X2.

Thus G(Ŝ) is a one-dimensional extension of the closed subspace G(S). It follows
that G(Ŝ) is closed too (cf., Theorem XI.2.5 in [48]), and hence Ŝ is a closed
operator. Obviously, we have

G(S) � G(Ŝ), D(Ŝ) is dense in X1. (7.18)

The operator Ŝ is also injective, because S is injective and w �∈ Im S. Since D(S) ⊂
D(Ŝ) and D(S) is dense in X1, we also know that D(Ŝ) is dense in X1. However,
D(Ŝ) �= X1. Indeed, if D(Ŝ) = X1, then Ŝ is bounded by the closed graph theorem.
This implies that the closed operator S = Ŝ|D(S) is also bounded. It follows that

D(S) = D(S) = X1, which contradicts the first part of (7.17).

Next we use the operators S and Ŝ to construct two Hilbert space systems.
For both systems the input space U is defined to be the space D(S) endowed with
the graph norm

‖x‖U = (‖x‖2 + ‖Sx‖2)1/2, where x ∈ D(S).

Analogously, by definition, the output space Y is the space D(Ŝ∗) endowed with
graph norm

‖y‖Y = (‖Ŝ∗y‖2 + ‖y‖2)1/2, where y ∈ D(Ŝ∗).

Here, as before the ∗ means that one has to take the Hilbert space adjoint. Now
define the following operators:

B1 : U → X1, B1x = x; B2 : U → X2, B2x = Sx, (7.19)

Γ1 : Y → X1, Γ1y = Ŝ∗y; Γ2 : Y → X2, Γ2y = y, (7.20)

and put
C1 = Γ∗

1 : X1 → Y, C2 = Γ∗
2 : X2 → Y. (7.21)

Obviously, the operators defined by (7.19) and (7.20) are bounded linear operators
with operator norm of at most one. It follows that the same holds true for the
operators in (7.21). We shall consider the following two Hilbert space systems:

Θ1 = (0, B1, C1, 0; X1, U, Y ), Θ2 = (0, B2, C2, 0; X2, U, Y ). (7.22)

Let us show that the transfer functions of these two systems coincide in a
neighborhood of infinity. Note that the state operators and the external coefficients
of Θ1 and Θ2 are all zero operators. Thus in order to show that the transfer
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functions of Θ1 and Θ2 coincide in a neighborhood of infinity, it suffices to show
that B1C1 = B2C2. The latter identity follows from

Im

[
B1

B2

]
= G(S) ⊂ G(Ŝ) = Ker

[
C1 C2

]
. (7.23)

The first equality and first inclusion in (7.23) are trivial. The second equality
follows from

Ker
[

C1 C2

]
=

(
Im

[
C∗

1

−C∗
2

])⊥

=

(
Im

[
Γ1

−Γ2

])⊥

=

{
−
[

−Ŝ∗y

y

] ∣∣∣ y ∈ D(Ŝ∗)

}⊥

= G(Ŝ).

The last identity is a well-known property of a densely defined closed linear oper-
ator acting in Hilbert spaces (see Proposition XIV.2.1 in [46]). From (7.23) we see
that

[
C1 C2

]
[

B1

B2

]
u = 0, u ∈ U.

Hence B1C1 = B2C2, and the transfer functions of Θ1 and Θ2 are both equal to
λ−1K, where K = B1C1 = B2C2.

Proposition 7.14. In general, minimality of a Hilbert space system is not preserved
under pseudo-similarity.

Proof. We continue to use the notation introduced in the three paragraphs pre-
ceding this proposition. Let Θ1 and Θ2 be the Hilbert space systems defined by
(7.22). Assume additionally that

X2 = span {w} ⊕ Im S. (7.24)

It is straightforward to construct such an operator S. We claim that in this case
Θ1 is minimal, Θ2 is not minimal, and Ŝ is a pseudo-similarity from Θ1 to Θ2.

We first show that Ŝ is a pseudo-similarity. We have already seen that
Ŝ(X1 → X2) is a densely defined injective closed linear operator. The additional
assumption (7.24) implies that Im Ŝ is dense in X2. Indeed, since w ⊥ Im S and

Im S ⊂ Im Ŝ, the space Im S is properly contained in the space Im Ŝ. But then

(7.24) yields Im Ŝ = X2. Thus (7.9) holds with Ŝ in place of S. Since A1 and A2

are both zero operators, condition (7.10) also holds with Ŝ in place of S. To show
that Ŝ satisfies (7.11) and (7.12), note that according to (7.23) we have

Im

[
B1

B2

]
⊂ G(Ŝ) ⊂ Ker

[
C1 C2

]
.
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The first inclusion implies that B1U ⊂ D(Ŝ) and B2u = ŜB1u for each u ∈ U .
The second inclusion yields C1x − C2Ŝx = 0 for each x ∈ D(Ŝ). Thus (7.11) and
(7.12) are satisfied for Ŝ in place of S. Thus Ŝ is a pseudo-similarity.

Notice that ImB2 = ImS, and hence ImB2 is not dense in X2 because of
(7.24). It follows that Θ2 is not minimal. On the other hand ImB1 = D(S), and
hence by (7.17) the space Im B1 is dense in X1. Also

KerC1 = (ImΓ1)
⊥ = (Im Ŝ∗)⊥ = Ker Ŝ = {0},

because Ŝ is injective. Thus Θ1 is minimal too.

Hence the Hilbert space systems Θ1 to Θ2 are pseudo-similar, Θ1 is minimal
and Θ2 is not minimal. We conclude that minimality is not preserved under pseudo-
similarity. �

Proposition 7.15. It can happen that two pseudo-similar minimal systems have two
different pseudo-similarities.

Proof. Again we use notation introduced in the three paragraphs preceding Propo-
sition 7.14. Let Θ1 and Θ2 be the Hilbert space systems given by (7.22). In this
case we assume additionally that

Im S = X2. (7.25)

We claim that Θ1 and Θ2 are both minimal, and that both S and Ŝ provide a
pseudo-similarity from Θ1 to Θ2.

As in the one but last paragraph of the proof of the preceding proposition,
one shows that Θ1 is minimal. Since Im B2 = ImS, the space Im B2 is dense in
X2 because of (7.25). Furthermore,

KerC2 = (ImΓ2)
⊥ = D(Ŝ∗)⊥ = {0}.

Thus the system Θ2 is also minimal.

Note that both S and Ŝ are injective, closed, densely defined, and have dense
range. Thus (7.9) is satisfied for both S and Ŝ. Since the state operators of Θ1

and Θ2 are both zero operators, condition (7.10) is also satisfied for both S and Ŝ.
Using (7.23) it is straightforward to check (again see the proof of Proposition 7.14)
that (7.11) and (7.12) hold for both S and Ŝ. Thus S and Ŝ are pseudo-similarities
from Θ1 to Θ2. The first part of (7.18) implies that S �= Ŝ.

We conclude that Θ1 and Θ2 are pseudo-similar minimal Hilbert space sys-
tems which have two different pseudo-similarities. �

With minor modifications one can transform the example in the above proof
into an example of two pseudo-similar minimal systems Θ1 and Θ2 for which
there exist infinitely many different pseudo-similarities from Θ1 to Θ2. In fact,
this can already been achieved by choosing Ŝ in such a way that the quotient
space G(Ŝ)/G(S) has dimension two.
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7.5 Minimality in special cases

In this section we discuss the notion of minimality for the classes of systems
considered in Chapter 3.

7.5.1 Brodskii systems

Let Θ = (A, KJ, 2iK∗; H, G) be a Brodskii J-system. Following [30] we call
Θ simple if Im (A|K) is dense in H . Thus simplicity is here synonymous to
controllability. However, in view of the fact that A − A∗ = 2iKJK∗, we have
Im (A|K) = Im (A∗|K), and hence Ker (K∗|A) is the orthogonal complement
Im (A|K)⊥ of Im (A|K). Therefore, in this particular case, the notions of sim-
plicity (controllability) and minimality coincide.

In [30] it is shown that, given a Brodskii J-system Θ, there exists a sim-
ple Brodskii J-system Θ0 of which the characteristic operator function (trans-
fer function) coincides with that of Θ on a neighborhood of ∞. In fact, if Θ =
(A, KJ, 2iK∗; H, G) and Π is the orthogonal projection of H onto the closure of
Im (A|K), then Π commutes with A and A∗ and Θ0 = pr Π(Θ) has the desired
properties. Observe that

Θ = pr I−Π(Θ)Θ0 = Θ0pr I−Π(Θ).

The systems pr Π(Θ) and pr I−Π(Θ) are called the principal part and excess part
of Θ, respectively.

In [30] it is also shown that two simple Brodskii J-systems whose character-
istic operator functions coincide on a neighborhood of ∞ are similar, the (unique)
similarity transformation being a unitary operator. This fact plays an important
role in [30]. For instance, it is used to prove the unicellularity of the Volterra
integral operator on L2(0, 1).

7.5.2 Krěın systems

It can be shown that two minimal Krěın J-systems whose transfer function coincide
on a neighborhood of ∞ are similar, the (unique) similarity transformation being
a unitary operator. In fact, this conclusion can be reached under the somewhat
weaker assumption that the systems are prime. Following [33], we call a Krěın
J-system Θ = (A, R,−J(K∗)−1R∗A, K; H, G) prime if

Im (A|R) + Im (A∗|R)

is dense in H . In order to clarify this notion we make some general remarks.

To facilitate the discussion, we introduce a notation. Let Nj, j ∈ J be a
family of linear manifolds in a Banach space indexed with the help of the index
set J . The closure of the linear hull of these manifolds will be denoted by

∨
j∈J Nj .

In case the underlying space is finite-dimensional, the linear hull in question is itself
already closed.
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Suppose Θ = (A, B, C, D; X, Y ) is a system with an invertible main operator
A. We say that Θ is biminimal if

∞⋂

j=−∞

KerCAj = 0,

∞∨

j=−∞

Im AjB = H.

Obviously, if Θ is minimal, then Θ is biminimal too. The converse is also true
if, for example, A is an algebraic operator. The latter condition is automatically
fulfilled when X is finite-dimensional.

Now, returning to the subject of this subsection, assume that

Θ = (A, R,−J(K∗)−1R∗A, K; H, G)

is a Krěın J-system. Using the relationship between A, A∗ and R appearing in
Section 3.2, one can show that

( ∞∨

j=−∞

Im AjR

)⊥

=

∞⋂

j=−∞

KerR∗Aj ,

while Im (A|R)+Im (A∗|R) is the linear hull of ImAjR, j = 0,±1,±2, . . .. Hence Θ
is prime if and only if Θ is biminimal. In particular, if Θ is minimal, then certainly
Θ is prime.

Finally we mention that if Θ is a Krěın J-system, then there exists a prime
Krěın J-system Θ0 whose transfer function coincides with that of Θ on a neigh-
borhood of ∞. The construction of Θ0 is suggested in [33], Sections 3 and 4.

7.5.3 Unitary systems

Given the unitary system Θ = (A, B, C, D; X, U, Y ), define R(Θ) to be the closed
linear hull of the vectors AnBu and (A∗)kC∗y, where u and y are arbitrary vectors
in U and Y , respectively, and n, k = 0, 1, 2, . . . . The space R(Θ) is called the
principal subspace of Θ, and its orthogonal complement in X is called the excessive
subspace and is denoted by N (Θ). Both subspaces are invariant under A.

To explain the terminology, consider the orthogonal direct sum X = N (Θ)⊕
R(Θ), and write A, B, and C as operator matrices relative to this decomposition.
It is straightforward to check that the operator matrices for A, B, and C are of
the following form:

A =

[
A11 0

0 A00

]
: N (Θ) ⊕R(Θ) → N (Θ) ⊕R(Θ), (7.26)

B =

[
0

B0

]
: U → N (Θ) ⊕R(Θ), (7.27)

C =
[

0 C0

]
: N (Θ) ⊕R(Θ) → Y. (7.28)
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It follows that the system matrix of Θ partitions as

[
A B

C D

]
=

⎡
⎢⎢⎣

A11 0 0

0 A00 B0

0 C0 D

⎤
⎥⎥⎦ : N (Θ) ⊕R(Θ) ⊕ U → N (Θ) ⊕R(Θ) ⊕ Y.

Since the system matrix is unitary, we conclude that A11 on N (Θ) and
[

A00 B0

C0 D

]
: R(Θ) ⊕ U → R(Θ) ⊕ Y

are both unitary operators. In particular, the system

Θ0 = (A00, B0, C0, D;R(Θ), U, Y )

is unitary. Furthermore, from the partitionings (7.26), (7.27) and (7.28) it follows
that Θ is a dilation of Θ0, and hence Θ and Θ0 have the same transfer function.
The system Θ0 is called the principal part of Θ.

A unitary system is called pure if its excessive subspace consists of the zero
vector only. One can show that the system Θ0 constructed in the previous para-
graph is pure. Hence one can restrict any unitary system to a pure one without
changing its transfer function.

The following result is the analogue of Theorem 7.7 for unitary systems; its
proof can be found in [47], Section XXVIII.3.

Theorem 7.16. Two pure unitary systems have the same transfer function if and
only if these systems are unitarily equivalent, and in this case the unitary operator
establishing the unitary equivalence is unique.

If a unitary system is observable and controllable, then its excessive part
consists of the zero vector only, and hence such a system is pure. Thus a minimal
unitary system is pure. For a finite-dimensional unitary system the converse is also
true. In other words, a finite-dimensional unitary system is minimal if and only if it
is pure. For arbitrary infinite-dimensional unitary systems this result is not true. In
fact, it may happen that a pure unitary system with an infinite-dimensional state
space is neither observable nor controllable. An example is provided by Corollary
5.3 in Section XXVIII.5 of [47].

7.5.4 Monic systems

From the definition of a monic system it is clear that such a system is always
minimal. So it is not surprising that the notion of minimality does not appear
in [11], [12]. Note however that a monic system Θ is determined up to similarity
by its transfer function (cf., [12], Theorem 1.2). Also, because of linearization,
the spectral properties of the main operator of a monic system Θ are determined
completely by W−1

Θ .
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7.5.5 Polynomial systems

Let P be a comonic polynomial of degree ℓ whose coefficients are m × m ma-
trices (i.e., operators acting on Cm). Put L(λ) = λℓP (λ−1). Then L is a monic
polynomial of degree ℓ. Let ∆ = (T, R, Q, 0; Cmℓ, Cm) be a finite-dimensional
monic system whose transfer function coincides with L−1. Then the unital system
Θ = (T, T ℓR, Q; Cmℓ, Cm) and its associate Θ× = (T −T ℓRQ, T ℓR,−Q; Cmℓ, Cm)
are realizations for P (λ−1)−1 and P (λ−1), respectively (cf., Subsection 3.5). As
col (QT j)ℓ−1

j=0 and row (T jR)ℓ−1
j=0 are both invertible, we have

Ker (Q |T ) = {0}, Im (T ℓR |T ) = ImT ℓ.

So Θ is observable, but generally not controllable. The same is true for Θ×.

In order to obtain minimal realizations for P (λ−1)−1 and P (λ−1), we apply
the method indicated in the proof of Theorem 7.6. Put X0 = ImT ℓ. Then X0 is
invariant under T . Let T0 be the restriction of T to X0 considered as an operator
on X0. For convenience we write B instead of T ℓR. Note that B maps Cn into
X0. Let B0 be the operator B viewed as an operator from Cm into X0. Finally,
let Q0 be the restriction of Q to X0. Then Θ0 = (T0, B0, Q0; X0, Cm) and Θ×

0 =
(T0−B0Q0, B0,−Q0; X0, Cm) are minimal realizations for P (λ−1)−1 and P (λ−1),
respectively.

Minimal realizations for P
(
λ−1

)−1
and P (λ−1) can also be obtained by ap-

plying the method of Section 8.3 in the next chapter. The alternative construction
presented above however is somewhat more direct. Observe that it can also be
used to produce a minimal realization for P (λ−1) when P is an arbitrary, possi-
bly non-comonic, n× n matrix polynomial. Indeed, one just constructs a minimal
realization for I − P (0) + P (λ−1) and adds P (0) − I to the external operator.

Notes

This chapter is based on the text of Chapter 3 in [14] with Sections 7.2 and 7.4,
and Subsection 7.5.3 as new additions. The notions of controllability, observability
and minimality are standard in system and control theory; see, e.g., the textbooks
[84] and [36]. Section 7.4 is taken from [4]. A full description of all vectors in ℓ2

that are cyclic with respect to the backward shift can be found in [41]. Theorem
7.13 has appeared as Theorem 3b.1 in [79], and as Theorem 3.2 in [7] (see Theorem
9.2.3 in [106] for a continuous time version). The fact that the pseudo-similarity
constructed in the proof of Theorem 7.13 is closed can be found in [2], Proposi-
tion 6. Propositions 7.14 and 7.15 can also be viewed as results about minimal
representations of an operator as a product of two bounded operators; see [4]. For
more information about pseudo-similarity, see Sections 3.2 and 3.3 in [5]). With
appropriate modifications Theorem 7.6 and Corollary 7.8 hold for various classes
of time varying systems; see, e.g., [53] and [3].



Chapter 8

Minimal Realizations and
Pole-Zero Structure

In this chapter finite-dimensional systems are studied in terms of the zero or pole
data of their transfer functions. In the first two sections we describe the local zero
and pole data, and related Jordan chains, of a meromorphic m×m matrix function
of which the determinant does not vanish identically. In the third section these
results are used to construct minimal realizations of rational matrix functions in
terms of the zero or pole data of the function. The fourth section deals with the
notions of local degree of a transfer function and local minimality of a finite-
dimensional system. The global versions of these notions are studied in the final
section.

8.1 Zero data and Jordan chains

Throughout this section M is an m × m matrix function which is meromorphic
on the connected open set Ω in C. We assume that M is regular on Ω, that is,
detM(λ) �≡ 0. As usual the values of M are identified with their canonical action
on Cm.

Let λ0 be a point in Ω, and let

M(λ) =

∞∑

j=−q

(λ − λ0)
jAj

be the Laurent expansion of M . Here it is assumed that q ≥ 0. Notice that q = 0
corresponds to the case when M is analytic at λ0. Although q is not unique, the
definitions given below do not depend on the choice of q.
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We call λ0 a zero or eigenvalue of M if there exist vectors x0, x1, . . . , xq in
Cm, x0 �= 0, such that

A−qxj + · · · + A−q+jx0 = 0, j = 0, . . . , q. (8.1)

In that case the vector x0 is called an eigenvector or root vector of M at the
eigenvalue λ0.

Proposition 8.1. The vector x �= 0 is an eigenvector of M at λ0 if and only if there
exists a Cm-valued function ϕ, analytic at λ0, such that ϕ(λ0) = x, the function
M(λ)ϕ(λ) is analytic at zero, and

lim
λ→λ0

M(λ)ϕ(λ) = 0. (8.2)

Proof. Let ϕ be an arbitrary Cm-valued function which is analytic at λ0, and
consider its Taylor expansion at λ0:

ϕ(λ) = ϕ0 + (λ − λ0)ϕ1 + (λ − λ0)
2ϕ2 + · · · .

Then (8.2) holds if and only if

A−qϕj + · · · + A−q+jϕ0 = 0, j = 0, . . . , q.

By comparing this with (8.1) the proof of the lemma is immediate. �

The linear space of all eigenvectors of M at λ0 together with the zero vector
will be denoted by Ker (M ; λ0). The dimension of the space Ker (M ; λ0) is called
the geometric multiplicity of λ0 as a zero of M . If M is analytic at λ0, we can
take q = 0, and then λ0 is an eigenvalue of M if and only if M(λ0)x0 = 0 for some
x0 �= 0 in Cm. Furthermore in that case Ker (M ; λ0) = KerM(λ0). In general, we
have Ker (M ; λ0) ⊂ KerL(λ0), where L(λ) = (λ − λ0)

qM(λ). For q sufficiently
large, this becomes the trivial inclusion Ker (M ; λ0) ⊂ Cm = KerL(λ0).

An ordered set (x0, x1, . . . , xk−1) of vectors in Cm is called a Jordan chain
for M at λ0 if x0 �= 0 and there exist vectors xk, xk+1, . . . , xq+k−1 in Cm such that

A−qxj + · · · + A−q+jx0 = 0, j = 0, . . . , q + k − 1. (8.3)

The number k is the length of the chain. Note that x0 is an eigenvector of M at
λ0 if and only if x0 is the first vector in a Jordan chain for M at λ0.

The following observation extends Proposition 8.1.

Proposition 8.2. The vector x �= 0 is the first vector in a Jordan chain for M at
λ0 of length k > 0 if and only if there exists a Cm-valued function ϕ, analytic at
λ0, such that ϕ(λ0) = x and

lim
λ→λ0

1

(λ − λ0)k−1
M(λ)ϕ(λ) = 0. (8.4)



8.1. Zero data and Jordan chains 131

The proof of Proposition 8.2 is analogous to that of Proposition 8.1. The two
propositions show that the definitions given above do not depend on the particular
choice of q.

A function ϕ with the properties described in Proposition 8.2 is called a root
function of M at λ0 of order at least k. Thus a Cm-valued function ϕ, analytic at
λ0, is called a root function of M at λ0 of order at least k if and only if ϕ(λ0) �= 0
and M(λ)ϕ(λ) has a zero at λ0 of order al least k. If the order of λ0 as zero of
M(λ)ϕ(λ) is equal to k, then ϕ is root function of order k.

Given an eigenvector x0 of M at λ0, there are in general many Jordan chains
for M at λ0 which have x0 as their first vector. However, as the next lemma shows,
the lengths of these Jordan chains have a finite supremum which we shall call the
rank of the eigenvector x0.

Lemma 8.3. The length of a Jordan chain of M at λ0 is less than or equal to ν−q,
where ν is the order of λ0 as a zero of detL(λ) with L(λ) = (λ − λ0)

qM(λ).

Proof. Note that L(λ) = (λ−λ0)
qM(λ) is analytic at zero. Also detL(λ) �≡ 0 and

so the order ν of λ0 as a zero of the analytic scalar function detL(λ) is finite. Put

ϕ(λ) = x0 + (λ − λ0)x1 + · · · + (λ − λ0)
q+k−1xq+k−1,

where x0, x1, . . . , xq+k−1 satisfy (8.3). It follows that L(λ)ϕ(λ) is analytic at λ0,
and that the analytic vector function L(λ)ϕ(λ) has a zero at λ0 of order at least q+
k. Since x0 �= 0, we can choose y2, . . . , ym such that x0, y2, . . . , ym is a basis of Cm.
Let X(λ) be the m×m matrix of which the columns are given by ϕ(λ), y2, . . . , ym.
From ϕ(λ0) = x0 and the choice of the vectors y2, . . . , ym, we conclude that
detX(λ) �= 0 for λ sufficiently close to λ0. Next observe that

detL(λ) detX(λ) = det
(
L(λ)X(λ)

)

= det
[

L(λ)ϕ(λ) L(λ)y2 · · · L(λ)yn

]
.

Since detX(λ) �= 0 for λ sufficiently close to λ0, the order of λ0 as a zero of the
term in the left-hand side is equal to ν. On the other hand, (λ−λ0)

q+k is a factor
of the first column of the matrix in the right-hand side, and therefore also of the
determinant. It follows that q + k ≤ ν. �

To bring appropriate structure in the collection of Jordan chains correspond-
ing to the eigenvalue λ0, we proceed as follows. Choose an eigenvector x1, 0 in
Ker (M ; λ0) such that the rank r1 of x1, 0 is maximal, and let (x1, 0, . . . , x1, r1−1)
be a corresponding Jordan chain of M . Next we choose among all vectors x in
Ker (M ; λ0), with x not a multiple of x1, 0, a vector x2, 0 of maximal rank, r2

say, and we select a corresponding Jordan chain (x2, 0, . . . , x2, r2−1). We go on
inductively. Assume

(x1, 0, . . . , x1, r1−1), . . . , (xj−1, 0, . . . , xj−1, rj−1−1)
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have been chosen. Then, among all vectors in Ker (M ; λ0) not belonging to the
linear space span {x1, 0, . . . , xj−1, 0}, we pick xj, 0 having maximal rank, and we let
(xj, 0, . . . , xj, rj−1) be a corresponding Jordan chain. In this way, in a finite number
of steps, we obtain a system

(x1, 0, . . . , x1, r1−1), (x2, 0, . . . , x2, r2−1), . . . , (xp, 0, . . . , xp, rp−1) (8.5)

of Jordan chains for M at λ0 with the following properties:

(i) the vectors x1, 0, . . . , xp, 0 form a basis for Ker (M ; λ0) and they have ranks
r1, . . . , rp, respectively,

(ii) for j = 1, . . . , p, the vector xj, 0 has maximal rank among all eigenvectors in
Ker (M ; λ0) that do not belong to span {x1, 0, . . . , xj−1, 0}; in particular the
rank of the eigenvector x1, 0 in Ker (M ; λ0) has the maximal possible value.

A system with these characteristics will be called a canonical system of Jordan
chains for M at λ0. The above reasoning shows that such canonical systems of
Jordan chains always exist. They are not unique, however, and so it makes sense
to ask what can be said about the numbers p and r1, . . . , rp .

For p the situation is easy: p = dimKer (M ; λ0), a number which is completely
determined by M and independent of certain choices that can be made. With
respect to the ranks of the chains, we note the following. Clearly r1 ≥ r2 ≥ · · · ≥ rp.
Further, if

x ∈ span {x1, 0, . . . , xj, 0} \ span {x1, 0, . . . , xj−1, 0},
then the rank r of x is equal to rj . The argument is as follows. The fact that x is a
linear combination of x1, 0, . . . , xj, 0 implies that there is a Jordan chain for M at
λ0, starting with x, which has length rj . Just take an appropriate linear combina-
tion of Jordan chains starting with the vectors x1, 0, . . . , xj, 0. Hence rj does not ex-
ceed r. But clearly we have r ≤ rj too, because x is not in span {x1, 0, . . . , xj−1, 0}.
So r = rj .

We can now conclude that the set {r1, . . . , rp} coincides with the collection of
all possible ranks of eigenvectors of M at λ0, and is thus completely determined by
M . In fact, as our next result shows, uniqueness holds even for the (not necessarily
distinct) numbers r1, . . . , rp themselves.

Proposition 8.4. Consider a canonical system of Jordan chains for M at λ0 given
by (8.5), and let

(y1, 0, . . . , y1, ρ1−1), (y2, 0, . . . , y2, ρ2−1), . . . , (yν, 0, . . . , yν, ρν−1) (8.6)

be another system of Jordan chains for M at λ0 with lengths ρ1, . . . , ρν , respec-
tively, where ρ1 ≥ ρ2 ≥ · · · ≥ ρν . Assume y1, 0, . . . , yν, 0 are linearly independent.
Then ν ≤ p and ρj ≤ rj , j = 1, . . . , ν. Moreover, (8.6) is a canonical system of
Jordan chains for M at λ0 if and only if ν = p and ρj = rj , j = 1, . . . , ν.
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Proof. Since y1, 0, . . . , yν, 0 are linearly independent vectors, they are all nonzero,
and hence {y1, 0, . . . , yν, 0} is a linear independent set in Ker (M ; λ0). It follows
that ν ≤ p.

The eigenvector x1, 0 of M at λ0 has maximal possible rank. In particular,
ρ1 ≤ r1. Next fix 1 < j ≤ ν. The vectors y1, 0, . . . , yj, 0 are linearly independent in
Ker (M ; λ0) and the dimension of span{x1, 0, . . . , xj−1, 0} is j − 1. So at least one
of the vectors y1, 0, . . . , yj, 0 does not belong to span {x1, 0, . . . , xj−1, 0}, say yk, 0.
Since xj, 0 is of maximal rank among all eigenvectors in Ker (M ; λ0) that do not
belong to span {x1, 0, . . . , xj−1, 0}, we conclude that rj ≥ ρk. But then rj ≥ ρj too
as ρk ≥ ρj .

Assume that (8.6) is a canonical system of Jordan chains of M at λ0. Then
we may interchange the roles of the systems (8.5) and (8.6), and we can apply the
results obtained so far to (8.6) in place of (8.5). This yields, p ≤ ν and rj ≤ ρj for
j = 1, . . . , p. Hence in this case we have ν = p and ρj = rj , j = 1, . . . , ν.

Finally, suppose ν = p and ρj = rj for j = 1, . . . , ν. Assume (8.6) is not a
canonical system of Jordan chains of M at λ0. This means that for some k the
vector yk, 0 is not an eigenvector of maximal rank among all vectors in Ker (M ; λ0)
that do not belong to span{y1, 0, . . . , yk−1, 0}. So we can choose a vector ŷk, 0 in
Ker (M ; λ0) outside span {y1, 0, . . . , yk−1, 0} such that the rank of ŷk, 0 is larger
than ρk = rk. This allows us to construct a canonical system of Jordan chains of
M at λ0 with ranks ν1 ≥ · · · ≥ νp such that νk > rk, contrary to the conclusion
of the previous paragraph. �

As we have seen now, the numbers r1, . . . , rp in a canonical system (8.5) are
uniquely determined by M . They are called the partial zero-multiplicities of M at
λ0. Their sum r1 + · · · + rp is called the zero-multiplicity of M at λ0. The next
result provides a further motivation for this terminology.

Theorem 8.5. There exist m×m matrix functions Φ(λ) and E(λ), analytic at λ0,
such that Φ(λ0) and E(λ0) are invertible while, for λ in a neighborhood of λ0,

M(λ)Φ(λ) = E(λ)D(λ), (8.7)

where D(λ) is an m × m diagonal matrix given by

D(λ) = diag
(
(λ − λ0)

κ1 , (λ − λ0)
κ2 , . . . , (λ − λ0)

κm
)

(8.8)

with exponents κ1 ≥ κ2 ≥ · · · ≥ κm. These exponents are uniquely determined by
M and do not depend on the particular choice of Φ and E in (8.7). Furthermore,
λ0 is a zero of M if and only if κ1 > 0, and in that case the (strictly) positive
exponents in D(λ) are the partial zero-multiplicities of M at λ0.

We shall refer to the diagonal matrix function D(λ) in (8.8) as the local
Smith-McMillan form of M at λ0.
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Proof. We split the proof into three parts. In the first part we derive the identity
(8.7). In the second part we prove the uniqueness of the exponents in (8.8). The
third part concerns the final statement involving the strictly positive exponents.

Part 1. Let L be an m×m matrix function which is analytic at λ0. Later we shall
make a particular choice for L, namely L(λ) = (λ− λ0)

qM(λ), which is obviously
analytic at λ0, but for the time being L is arbitrary. Let

(x1, 0, . . . , x1, ℓ1−1), (x2, 0, . . . , x2, ℓ2−1), . . . , (xt, 0, . . . , xt, ℓt−1) (8.9)

be a canonical system of Jordan chains for L at λ0. We know that the vectors
x1, 0, . . . , xt, 0 form a basis of Ker (L; λ0) = KerL(λ0), and hence we can choose
vectors xt+1, 0, . . . , xm, 0 such that x1, 0, . . . , xm, 0 form a basis of Cm. Write

ϕj(λ) =

{
xj, 0 + (λ − λ0)xj, 1 + · · · + (λ − λ0)

ℓj−1xj, ℓj−1, j = 1, . . . , t,

xj, 0, j = t + 1, . . . , m,

and let Φ(λ) be the m×m matrix for which the jth column vector is equal to ϕj(λ).
Then Φ is analytic at λ0, and Φ(λ0) is invertible because the vectors ϕj(λ0) = xj, 0,
j = 1, . . . , m, form a basis of Cm. From the definition of a Jordan chain it follows
that

L(λ)ϕj(λ) = (λ − λ0)
ℓj ej(λ), (8.10)

where ej is a Cm-valued function which is analytic at λ0. Here, in first instance,
j = 1, . . . , t. For j = t+1, . . . , m, we take the index ℓj equal to zero, and hence we
can use the equality (8.10) to define an Cm-valued function ej which is analytic
at λ0 and satisfies (8.10). Put E(λ) =

[
e1(λ) e2(λ) · · · em(λ)

]
. Then

L(λ)Φ(λ) = E(λ)∆(λ), (8.11)

where ∆(λ) is the m × m diagonal matrix given by

∆(λ) = diag
(
(λ − λ0)

ℓ1 , . . . , (λ − λ0)
ℓm

)
.

Obviously, E is analytic at λ0. Let us prove that E(λ0) is invertible.

To the contrary, assume E(λ0)z = 0 for a vector z �= 0. Without loss of
generality we may assume that, for appropriately chosen j,

z = (0, . . . , 0, 1, zj+1, . . . , zm)⊤.

Consider the function ϕ̃j given by

ϕ̃j(λ) = ϕj(λ) +

m∑

i=j+1

(λ − λ0)
ℓj−ℓiziϕk(λ).
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Note that the vector ϕ̃j(λ0) does not appear as a linear combination of the vectors
ϕ1(λ0), . . . , ϕj−1(λ0). Furthermore,

L(λ)ϕ̃j(λ) = L(λ)ϕj(λ) +

m∑

i=j+1

(λ − λ0)
ℓj−ℓiziL(λ)ϕi(λ)

= (λ − λ0)
ℓj

(
ej(λ) +

m∑

i=j+1

ziei(λ)
)

= (λ − λ0)
ℓj E(λ)z.

Since E(λ0)z = 0, it follows that x̃j, 0 = ϕ̃j(λ0) belongs to KerL(λ0). This im-
plies 1 ≤ j ≤ t. Indeed, if j > t, then the fact that ϕ̃j(λ0) does not belong to
span {ϕ1(λ0), . . . , ϕj−1(λ0)} implies that

x̃j, 0 /∈ span {ϕ1(λ0), . . . , ϕt(λ0)} = span {x1, 0, . . . , xt, 0} = KerL(λ0).

Contradiction, and thus 1 ≤ j ≤ t. Notice that x̃j, 0 is an eigenvalue of L at
λ0 of rank at least ℓj + 1. But this contradicts the choice of the vector xj, 0,
which is of maximal rank ℓj among all vectors in KerL(λ0) that do not belong to
span {ϕ1(λ0), . . . , ϕj−1(λ0)}. Thus E(λ0) is invertible.

From the identity (8.11) and the fact that Φ(λ0) and E(λ0) are invertible we
see that

m∑

j=1

ℓj = order of λ0 as a zero of detL(λ). (8.12)

Now, we specialize to L(λ) = (λ−λ0)
qM(λ). Since L(λ) is analytic at λ0, we

can apply the previous results for this choice of L(λ). Put D(λ) = (λ−λ0)
−q∆(λ).

Then (8.7) holds, the matrices Φ(λ) and E(λ) have the desired properties, and
D(λ) is the diagonal m×m matrix given by (8.8) with κj = ℓj − q, j = 1, . . . , m.

Part 2. Here we prove the uniqueness of the exponents κ1 ≥ κ2 ≥ · · · ≥ κm in
(8.8). Assume (8.7) is satisfied with Φ and E being analytic and invertible at λ0.
Put Γ(λ) = (λ − λ0)

γM(λ), where γ is an integer such that ρj = κj + γ > 0, j =
1, . . . , m. Note that

Γ(λ)Φ(λ) = E(λ)Λ(λ),

where Λ(λ) is the diagonal m × m matrix

Λ(λ) = diag
(
(λ − λ0)

ρ1 , (λ − λ0)
ρ2 , . . . , (λ − λ0)

ρm
)
.

Since ρ1, . . . , ρm are all positive, Γ is analytic at λ0 and KerΓ(λ0) = Cm. Let ϕj(λ)
and ej(λ) denote the jth columns of Φ(λ) and E(λ), respectively. The functions
ϕj and ej are analytic at λ0, and

Γ(λ)ϕj(λ) = (λ − λ0)
ρj ej(λ). (8.13)

Consider the Taylor expansion

ϕj(λ) = ϕj, 0 + (λ − λ0)ϕj, 1 + (λ − λ0)
2ϕj, 2 + · · · .
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As Φ(λ0) is a invertible, the vectors ϕ1, 0, . . . , ϕm, 0 form a basis of Cm = KerΓ(λ0).
From (8.13) it follows that

(ϕ1, 0, . . . , ϕ1, ρ1−1), (ϕ2, 0, . . . , ϕ2, ρ2−1), . . . , (ϕn, 0, . . . , ϕn, ρm−1)

is a set of Jordan chains of Γ at λ0. Let γ1, . . . , γr be the partial zero-multiplicities
of Γ at λ0. Since KerΓ(λ0) = Cm, we have r = m. Now, apply Proposition 8.4 to
Γ at λ0. It follows that ρj ≤ γj for j = 1, . . . , m. By applying the results of Part 1
to Γ in place of L, we can use (8.12) to show that

∑m
j=1 γj is equal to order of λ0

as a zero of det Γ(λ). But Γ(λ)Φ(λ) = E(λ)Λ(λ) shows that the same holds true
for

∑m
j=1 ρj. Thus

∑m
j=1 ρj =

∑m
j=1 γj . This can only happen when ρj = γj for

j = 1, . . . , m. We conclude that the numbers ρ1, . . . , ρm are uniquely determined
by Γ, and hence the same is true for κ1, . . . , κm.

Part 3. In this part we prove the final statement of the proposition. Since the
exponents in (8.8) are uniquely determined by M , we may assume without loss
of generality that κj = ℓj − q, where ℓj is defined in Part 1 of the proof. Here
j = 1, . . . , m and, as in the last paragraph of Part 1, L(λ) = (λ− λ0)

qM(λ). Note
that x0, . . . , xr−1 is a Jordan chain for M at λ0 if and only if there exist vectors
xr, . . . , xq+r−1 such that x0, . . . , xq+r−1 is a Jordan chain for L at λ0 and, in that
case, the ranks of x0 as an eigenvector of L and as an eigenvector of M differ by q.

Assume λ0 is a zero of M . Then there exist vectors x0, . . . , xq, x0 �= 0,
such that (8.1) holds. But x0 �= 0 and (8.1) are equivalent to the statement that
(x0, . . . , xq) is a Jordan chain of L at λ0 of length q + 1. Since (x1, 0, . . . , x1, ℓ1−1)
is a Jordan chain of L at λ0 of maximal length, we have ℓ1 ≥ q + 1, and thus
κ1 = ℓ1− q ≥ 1. Therefore κ1 is (strictly) positive provided that λ0 is a zero of M .

Conversely, assume κ1 = ℓ1 − q ≥ 1. Then ℓ1 ≥ q + 1. This implies that the
truncation (x1, 0, . . . , x1, q) of the chain (x1, 0, . . . , x1, ℓ1−1) is well defined and is
a Jordan chain of L at λ0 too. As we have seen in the previous paragraph, this
implies that x1, 0 is a zero vector of M at λ0, and hence λ0 is a zero of M .

Again assume that λ0 is a zero of M . Define

p = max{j = 1, . . . , m, κj = ℓj − q > 0}.

Then p does not exceed the number t in (8.9) for, by definition, ℓt+1 = · · · = ℓm =
0. Truncating the chains from (8.9) we obtain the following system of Jordan
chains for M at λ0:

(x1, 0, . . . , x1, κ1−1), (x2, 0, . . . , x2, κ2−1), . . . , (xp, 0, . . . , xp, κp−1). (8.14)

The vectors x1, 0, . . . , xp, 0 ∈ Ker (M ; λ0) are linearly independent and have ranks
κ1, . . . , κp, respectively. Also, for j = 1, . . . , p, the vector xj, 0 has maximal rank
among all eigenvectors in Ker (M ; λ0) that do not belong to the linear space
span {x1, 0, . . . , xj−1, 0}. Suppose x1, 0, . . . , xp, 0 is not a basis for Ker (M ; λ0) and
take x in the space Ker (M ; λ0) ⊂ KerL(λ0) but outside span {x1, 0, . . . , xp, 0}.
Clearly the rank r of x as an eigenvector of L does not exceed ℓp+1, and so
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r − q ≤ ℓp+1 − q ≤ 0. On the other hand r − q is the rank of x as an eigen-
vector of M , hence a positive integer, and we have reached a contradiction. We
conclude that x1, 0, . . . , xp, 0 is a basis for Ker (M ; λ0), and so (8.14) is a canonical
system of Jordan chains for M at λ0. In particular κ1, . . . , κp are the partial zero-
multiplicities of M at λ0. But these numbers κ1, . . . , κp are precisely the strictly
positive exponents in (8.8). �

Theorem 8.5 is a very useful one. To illustrate this, first note that the local
Smith-McMillan form of M at λ0 is equal to the local Smith-McMillan form at λ0

of the transposed matrix function M⊤, M⊤(λ) = M(λ)⊤. To see this, assume (8.7)
holds with D(λ) given by (8.8) and with Φ and E being analytic and invertible at
λ0. Then in a sufficiently small open neighborhood of λ0 we have

M⊤(λ)Ψ(λ) = F (λ)D(λ)⊤,

where Ψ(λ) =
(
E(λ)−1

)⊤
and F (λ) =

(
Φ(λ)−1

)⊤
. Since D(λ) is a diagonal matrix,

D = D⊤, and hence D is also the the local Smith-McMillan form of M⊤ at λ0.
Thus, by Theorem 8.5, if λ0 is a zero of M it is also a zero of M⊤, and conversely.
Moreover, in that case, the partial zero-multiplicities of λ0 as a zero of M are the
same as the partial zero-multiplicities of λ0 as a zero of the transposed matrix
function M⊤.

The information contained in the canonical system (8.5) can be put into a
pair of matrices. In order to do this, let Qi be the m× ri matrix of which the jth
column is equal to the column vector xi, j−1. Thus Qi =

[
xi, 0 xi, 1 · · · xi, rk−1

]
.

Put Q = [Q1 Q2 · · · Qp]. Further, let J be the block diagonal matrix

J = diag
(
J1, J2, . . . , Jp

)

where Jk stands for the upper triangular ri × ri Jordan block with λ0 on the
main diagonal. Note that J is a Jordan matrix with one single eigenvalue, namely
λ0. The orders of its blocks are equal to the partial zero-multiplicities of M at
λ0. Hence the order of J is precisely equal to the zero-multiplicity of λ0 as an
eigenvalue of M . Furthermore,

dimKer (λ0 − J) = p = dimKer (M ; λ0).

So the geometric multiplicity of λ0 as a zero of M is equal to the geometric
multiplicity of λ0 as an eigenvalue of J .

The pair (Q, J) is called a Jordan pair of M at λ0. The name Jordan pair
will also be used for any pair of matrices which is obtained from (Q, J) by some
permutation of the blocks Jk in J and the same permutation of the corresponding
blocks in Q. Since the initial vectors x1, 0, . . . , xp, 0 are linearly independent and
each Jk − λ0 is an upper triangular nilpotent rk × rk Jordan block, it is straight-
forward to show that

∞⋂

j=0

KerQ(λ0 − J)j = {0}.
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It follows that a Jordan pair (Q, J) is an observable pair, that is,

∞⋂

i=0

KerQJ i = {0}. (8.15)

Next we define the notion of a dual pair. Assume λ0 is a zero of M , and
hence also of the transposed matrix functions M⊤. Let

(y1, 0, . . . , y1, r1−1), (y2, 0, . . . , y2, r2−1), . . . , (yp, 0, . . . , yp, rp−1) (8.16)

be a canonical system of Jordan chains for M⊤ at λ0. The fact that the numbers
p, r1, . . . , rp are the same numbers as those appearing is (8.5) is justified by the
circumstance that the partial zero-multiplicities of M and M⊤ at λ0 are the same
(see the paragraph directly after the proof of Theorem 8.5) . For i = 1, . . . , p , let
Ri be the ri×m matrix of which the kth row is formed by the entries of the vector
yi, ri−k. In other words,

Rj =
[

yj, rj−1 yj, rj−2 · · · yj, 0

]⊤
.

As before, let Ji be the upper triangular ri × ri Jordan block with λ0 on the main
diagonal. Define

R =

⎡
⎢⎢⎢⎣

R1

R2

...
Rp

⎤
⎥⎥⎥⎦ , J = diag

(
J1, J2, . . . , Jp

)
. (8.17)

The pair (J, R) is called a dual Jordan pair of M at λ0. This term will also be used
for any pair of matrices which is obtained from (J, R) by some permutation of the
blocks in (8.17). From the properties of a canonical system of Jordan chains, it
follows that

∞∨

i=0

Im J iR = Cr, (8.18)

where r = r1 + · · · + rp is equal to the order of the matrix J . In other words the
pair (J, R) is controllable.

Observe that a Jordan pair (Q, J) and a dual Jordan pair (J, R) have the
same Jordan matrix J . We conclude that (J, Q, R, 0; Cr, Cm) is a system, and
(8.15) and (8.18) imply that this system is minimal.

Theorem 8.6. Assume that λ0 is a zero of M . Then given a Jordan pair (Q, J) of
M at λ0, there exists a dual Jordan pair (J, R) of M at λ0 such that Q(λ−J)−1R
is a minimal realization of the principal part of the Laurent expansion of M(λ)−1

at λ0.
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Proof. Without loss of generality we may assume the Jordan pair (Q, J) is deter-
mined by the canonical system of Jordan chains (8.5). Thus

Q =
[

Q1 Q2 · · · Qp

]
, J = diag

(
J1, J2, . . . , Jp

)
,

where Qi =
[
xi, 0 xk, 1 · · · xi, ri−1

]
and Ji is the upper triangular nilpotent ri×ri

Jordan block.

Put L(λ) = (λ − λ0)
qM(λ). From the type of reasoning presented in Part

3 of the proof of Theorem 8.5, we see that L has a canonical system of Jordan
chains at λ0,

(x1, 0, . . . , x1, ℓ1−1), (x2, 0, . . . , x2ℓ2−1), . . . , (xt, 0, . . . , xt, ℓt−1), (8.19)

such that, for i = 1, . . . , p , the chain (xi, 0, . . . , xi, ℓi−1) is a continuation with q
vectors of the jth chain in (8.5). In particular,

ℓi − q = ri, i = 1, . . . , p, ℓi − q ≤ 0, i = p + 1, . . . , t. (8.20)

Now, using the chains in (8.19), we construct, as in Part 1 of the proof of Theorem
8.5, matrix functions Φ(λ) and E(λ), analytic and invertible at λ0, such that

M(λ)Φ(λ) = E(λ)D(λ),

where D(λ) is the local Smith-McMillan form of M at λ0. Put Θ(λ) = E(λ)−1,
and write

Θ(λ) =

⎡
⎢⎢⎢⎢⎣

θ1(λ)

θ2(λ)

...

θm(λ)

⎤
⎥⎥⎥⎥⎦

, Φ(λ) =
[

ϕ1(λ) ϕ2(λ) · · · ϕm(λ)
]
.

It follows that

M(λ)−1 = Φ(λ)D(λ)−1Θ(λ) =
m∑

i=1

(λ − λ0)
q−ℓiϕi(λ)θi(λ).

Using (8.20), we conclude that the Laurent principal part P (λ) of M(λ)−1 at
λ0 is given by P (λ) =

∑p
i=1 Pi(λ), where Pk(λ) is the Laurent principal part

of (λ − λ0)
−riϕi(λ)θk(λ). Thus in matrix form P (λ) is given by the following

expression:

P (λ) =

p∑

k=1

[
ϕk, 0 ϕk, 1 · · · ϕk, rk−1

](
λ − Jk

)−1

⎡
⎢⎢⎢⎢⎣

θk, rk−1

θk, rk−2

...

θk, 0

⎤
⎥⎥⎥⎥⎦

. (8.21)
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Here, for i = 1, . . . , p, the matrix Ji is the upper triangular ri × ri Jordan block
with λ0 on the main diagonal, and the vectors ϕi, j and θi, j are the jth coefficients
in the Taylor expansions of ϕi(λ) and θi(λ) at λ0, respectively.

Next, observe that M⊤(λ)Ψ(λ) = F (λ)D(λ), where

Ψ(λ) =
(
E(λ)−1

)⊤
= Θ(λ)⊤, F (λ) =

(
Φ(λ)−1

)⊤
.

Let ψj(λ) be the jth column of Ψ(λ), and consider the Taylor expansion

ψj(λ) = yj, 0 + (λ − λ0)yj, 1 + (λ − λ0)
2yj, 2 + · · · .

Then the chains

(y1, 0, . . . , y1, r1−1), (y2, 0, . . . , y2, r2−1), . . . , (yp, 0, . . . , yp, rp−1)

form a set of Jordan chains for M⊤ at λ0. Since Ψ(λ0) is invertible, the vectors
y1, 0, . . . , yp, 0 are linearly independent. Recall that r1, . . . , rp are the partial zero-
multiplicities of M and of M⊤ at λ0. It follows that the above set of chains is
actually a canonical system of Jordan chains for M⊤ at λ0. Now put,

Rj =

⎡
⎢⎢⎢⎢⎢⎢⎣

y⊤
j, rj−1

y⊤
j, rj−2

...

y⊤
j, 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, j = 1, . . . , p, R =

⎡
⎢⎢⎢⎢⎢⎢⎣

R1

R2

...

Rp

⎤
⎥⎥⎥⎥⎥⎥⎦

Then, by definition, the pair (J, R) is a dual Jordan pair of M at λ0.

It remains to show that P (λ) = Q(λ − J)−1R. To do this we first observe
that

Q(λ − J)−1R =

p∑

i=1

Qi(λ − Ji)
−1Ri.

From the construction of Φ in Part 1 of the proof of Theorem 8.5 we know that
for i = 1, . . . , p and j = 0, . . . , ri the vector xi, j is equal to the jth coefficient in
the Taylor expansion of ϕi at λ0. It follows that

Qi =
[

ϕi, 0 ϕi, 1 · · · ϕi, ri−1

]
, i = 1, . . . , p .

Next, recall that Θ(λ) = Ψ(λ)⊤. Thus θj(λ) = ψj(λ)⊤ for j = 1, . . . , m. It follows
that, for j = 1, . . . , p and k = 0, . . . , rj , the vector y⊤

j, k is equal to the kth coefficient
in the Taylor expansion of θj at λ0. But then we see that

Rj =

⎡
⎢⎢⎢⎢⎢⎢⎣

θj, rj−1

θj, rj−2

...

θj, 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, j = 1, . . . , p .
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Using the above expressions for Qi and Ri in (8.21) yields

P (λ) =

p∑

i=1

Qi

(
λ − Ji

)−1
Ri = Q(λ − J)−1R,

which completes the proof. �

Let (Q, J) be a Jordan pair and (J, R) a dual Jordan pair of M at λ0 such
that Q(λ − J)−1R is equal to the Laurent principal part of M(λ)−1 at λ0. Then
we refer to the triple (Q, J, R) as a canonical Jordan triple of M(λ)−1 at λ0. The
previous theorem shows that a canonical Jordan triple always exists.

So far λ0 has been a point in the finite complex plane. We conclude this
section by considering the case when λ0 = ∞. Thus let M be an m × m matrix
function which is meromorphic on a connected open subset of the Riemann sphere
C ∪∞. In that case M has an expansion at ∞ of the form

M(λ) =

q∑

j=−∞

λjMj

where q is a non-negative integer. As before, it is assumed that M(λ) �≡ 0. We call
λ0 = ∞ a zero or eigenvalue of M if there exist vectors x0, . . . , xq in Cm, x0 �= 0,
such that

Mqxj + · · · + Mq−jx0 = 0, j = 0, . . . , q.

In that case the vector x0 is called an eigenvector (or root vector) of M at the
eigenvalue ∞. Clearly, λ0 = ∞ is a zero of M if and only if the origin is an
eigenvalue of the function M ♯ defined by

M ♯(λ) = M(λ−1). (8.22)

This fact allows us (without any further explanation) to introduce for the point
λ0 = ∞ all notions defined above for a finite eigenvalue. For example, we define
the partial zero-multiplicities of M at λ0 = ∞ to be equal to the partial zero-
multiplicities of M ♯ at the point 0. Similarly, a triple (Q∞, J∞, R∞) is called a
canonical Jordan triple of M at λ0 = ∞ if (Q∞, J∞, R∞) is a canonical Jordan
triple of M ♯ at the point 0. Observe that in that case J∞ is a nilpotent matrix.
Furthermore we have the following corollary.

Corollary 8.7. Let λ0 = ∞ be a zero of M at ∞, and let (Q∞, J∞, R∞) be a
corresponding canonical Jordan triple of M at ∞. Then the system

(J∞, Q∞, R∞, 0; Cρ∞ , Cm)

is minimal and λQ∞(I − λJ∞)−1R∞ is equal to the principal part of M(λ)−1 at
∞, that is, M(λ)−1 − λQ∞(I − λJ∞)−1R∞ is analytic at ∞.
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8.2 Pole data

As in the previous section, M is an m×m matrix function which is meromorphic on
a connected open set Ω, det M(λ) �≡ 0, and λ0 is a point Ω. Thus in a neighborhood
of λ0 the function M has the following expansion

M(λ) =
∞∑

j=−q

(λ − λ0)
jAj .

As before, the definitions given below do not depend on the choice of q which is
again assumed to be a non-negative integer.

A nonzero vector x ∈ Cm is called a pole-vector of M at λ0 if there exist
vectors ϕ1, . . . , ϕq in Cm such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A−1 A−2 · · · A−q

A−2 . .
.

0

... . .
.

. .
. ...

A−q 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1

ϕ2

...

ϕq

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (8.23)

The linear space consisting of all pole-vectors of M at λ0 together with the zero
vector will be denoted by Pol (M ; λ0). Note that there exists a pole-vector of M
at λ0 if and only if M has a pole at λ0, that is, at least one of the coefficients
A−q, . . . , A−1 is nonzero.

The pointwise inverse M−1 of M is given by M−1(λ) = M(λ)−1. From
Cramer’s rule for inverting a matrix it is clear that M−1 is meromorphic on Ω.

Lemma 8.8. The vector x is a pole-vector of M at λ0 if and only if x is an
eigenvector of M−1 at λ0. In other words,

Pol (M ; λ0) = Ker (M−1; λ0).

Proof. Assume x ∈ Cm is a pole-vector of M at λ0. Put

ϕ(λ) = (λ − λ0)ϕ1 + · · · + (λ − λ0)
qϕq,

where ϕ1, . . . , ϕq are as in (8.23), and set ψ(λ) = M(λ)ϕ(λ). Consider the Taylor
expansion of ψ at λ0:

ψ(λ) = ψ0 + (λ − λ0)ψ1 + (λ − λ0)ψ2 + · · · .

From (8.23) we see that ψ0 = x. Furthermore, we have

M−1(λ)ψ(λ) = M(λ)−1M(λ)ϕ(λ) = ϕ(λ).
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Write

M−1(λ) =

∞∑

j=−q̃

Ãj(λ − λ0)
j ,

where q̃ ≥ 0. The identity M−1(λ)ψ(λ) = ϕ(λ) implies that

Ã−q̃ψj + · · · + Ã−q̃+jψ0 = 0, j = 0, . . . , q̃.

Thus x = ψ0 is an eigenvector of M−1 at λ0.

Conversely, assume x is an eigenvector of M−1 at λ0. Then we can find
vectors x0, . . . , xq̃ in Cm, x0 = x, such that

Ã−q̃xj + · · · + Ã−q̃+jx0 = 0, j = 0, . . . , q̃.

Put ψ(λ) = x0 + (λ− λ0)x1 + · · ·+ (λ − λ0)
q̃xq̃. Then M−1(λ)ψ(λ) is analytic at

λ0 and its Taylor expansion at λ0 is of the form

M−1(λ)ψ(λ) = (λ − λ0)y1 + (λ − λ0)
2y2 + · · · .

It follows that

M(λ)

( ∞∑

j=1

(λ − λ0)
jyj

)
= x0 + (λ − λ0)x1 + · · · .

Hence (8.23) holds with x = x0 and ϕj = yj, j = 1, . . . , q. Thus x is a pole-vector
of M at λ0. �

By applying the above lemma to M−1 in place of M we also see that λ0 is a
zero of M if and only if λ0 is a pole of M−1.

The dimension of the space Pol (M ; λ0) is called the geometric multiplicity
of λ0 as a pole of M . By definition the rank of a pole-vector x of M at λ0 is the
rank of x as an eigenvector of M−1 at λ0. Similarly, the partial pole-multiplicities
of M at λ0 are by definition equal to the partial zero-multiplicities of M−1 at λ0,
and their sum is called the pole-multiplicity of M at λ0. Using Lemma 8.8 and the
above definitions, the following addition to Theorem 8.5 is immediate.

Proposition 8.9. Let D(λ) = diag
(
(λ−λ0)

κ1 , (λ−λ0)
κ2 , . . . , (λ−λ0)

κn
)
, κ1 ≥ κ2 ≥

· · · ≥ κn, be the local Smith-McMillan form of M at λ0. Then λ0 is a pole of M
if and only if κn < 0, and in that case the absolute values of the strictly negative
exponents in D(λ) are the partial pole-multiplicities of M at λ0. In particular,
the order of λ0 as a pole of M is equal to the largest partial pole-multiplicity of
M at λ0.

Corollary 8.10. The order of λ0 as a pole of M is equal to the pole-multiplicity of M
at λ0 if and only if the geometric multiplicity of λ0 as a pole of M is equal to one.
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Proof. Let π1 ≥ π2 ≥ · · · ≥ πr > 0 be the partial pole-multiplicities of M at λ0.
Then

π1 = the order of λ0 as a pole of M,
∑r

j=1πj = the pole-multiplicity of M at λ0,

r = the geometric multiplicity of λ0 as a pole of M.

Since each πj is strictly positive, we see that the order of λ0 as a pole of M is
equal to the pole-multiplicity of M at λ0 if and only if r = 1, that is, if and only
if the geometric multiplicity of λ0 as a pole of M is one. �

The next result, which is a supplement to Theorem 8.6, shows that the pole-
multiplicity is equal to the rank of the block matrix in the left-hand side of (8.23).

Proposition 8.11. Let λ0 be a pole of M , and let (Q, J, R) be a canonical Jordan
triple of M−1 at λ0. Then Q(λ−J)−1R is equal to the principal part of the Laurent
expansion of M at λ0, and

rank

⎡
⎢⎢⎢⎢⎣

A−1 A−2 · · · A−q

A−2 . .
.

0
... . .

.
. .

. ...
A−q 0 · · · 0

⎤
⎥⎥⎥⎥⎦

= pole-multiplicity of M at λ0. (8.24)

Proof. The first statement is immediate from the definition of canonical Jordan
triple. It implies that the principal part of the the Laurent expansion of M at λ0

is given by
∞∑

i=1

1

(λ − λ0)i
Q(J − λ0)

i−1R.

Hence Q(J − λ0)
i−1R = A−i for i = 1, . . . , q, while Q(J − λ0)

i−1R = 0 for
i = q + 1, q + 2, . . . . Write

Ω1(s) = col
(
Q(J − λ0)

i−1
)s

i=1
, Ω2(s) = row

(
J − λ0)

i−1R
)s

i=1
,

where s = q, q + 1, q + 2, . . . . Then the block matrix in the left-hand side of (8.24)
can be written as Ω1(q)Ω2(q). Thus the left-hand side of (8.24) is equal to the rank
of the product Ω1(q)Ω2(q). For s > q, the matrix Ω1(s)Ω2(s) is obtained from
Ω1(q)Ω2(q) by adding s− q zero columns and zero rows. Since these operations do
not affect the rank, the left-hand side of (8.24) is equal to rank

(
Ω1(s)Ω2(s)

)
, s > q.

From (8.15) and (8.18) we see that, for s sufficiently large, Ω1(s) is injective and
Ω2(s) is surjective. Therefore the left-hand side of (8.24) is equal to the order of
J , which in turn is equal to the pole-multiplicity of M at λ0. �

We conclude this section by defining the various pole notions for the case
when λ0 = ∞. To do this we use again (8.22). So, for example, a nonzero vector x



8.3. Minimal realizations in terms of zero or pole data 145

in Cm is called a pole-vector of M at ∞ if x is a pole vector for M ♯ at the point 0.
Similarly, the partial pole-multiplicities of M at ∞ are by definition equal to the
partial pole-multiplicities of M ♯ at 0. In the same way one can define the other
notions too.

8.3 Minimal realizations in terms of zero or pole data

In this section W is a rational m × m matrix function which is assumed to be
regular, i.e., detW (λ) �≡ 0. We apply the results of the preceding two sections to
obtain minimal realizations of W−1 in terms of the zero data of W , and of W in
terms of the pole data. The following results are the main theorems of this section.

Theorem 8.12. Let W be a regular rational m×m matrix function. Let λ1, . . . , λk

be the finite zeros of W , let ρ1, . . . , ρk be the corresponding zero-multiplicities and,
for i = 1, . . . , k, let (Qi, Ji, Ri) be a canonical Jordan triple of W at λi. Put
r = ρ1 + · · · + ρk, and set

Q = row (Qi)
k
i=1, J = diag

(
J1, . . . , Jk

)
, R = col (Ri)

k
i=1.

Furthermore, let (Q∞, J∞, R∞) be a canonical Jordan triple of W at ∞. Then

W (λ)−1 = Q(λ − J)−1R + D + λQ∞(I − λJ∞)−1R∞

for a suitable choice of D. Moreover, if W−1 is proper, then D = W−1(∞), and
the system Θ = (J, R, Q, D; Cr, Cm) is a minimal realization of W−1.

Theorem 8.13. Let W be a regular rational m×m matrix function. Let λ1, . . . , λℓ

be the finite poles of W , let σ1, . . . , σℓ be the corresponding pole-multiplicities and,
for i = 1, . . . , ℓ, let (Qi, Ji, Ri) be a canonical Jordan triple of W−1 at λi. Put
s = σ1 + · · · + σℓ, and set

Q = row (Qi)
ℓ
i=1, J = diag (J1, . . . , Jℓ), R = col (Ri)

ℓ
i=1.

Furthermore, let (Q∞, J∞, R∞) be a canonical Jordan triple of W−1 at ∞. Then

W (λ) = Q(λ − J)−1R + D + λQ∞(I − λJ∞)−1R∞

for a suitable choice of D. Moreover, if W is proper, then D = W (∞) and the
system Θ = (J, R, Q, D; Cs, Cm) is a minimal realization of W .

It suffices to prove Theorem 8.12. Indeed, one obtains Theorem 8.13 by ap-
plying Theorem 8.12 to W−1 in place of W .

Proof of Theorem 8.12. Observe that

Q(λ − J)−1R =

k∑

i=1

Qi(λ − Ji)
−1Ri. (8.25)
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Theorem 8.6 gives that for each i ∈ {1, . . . , k} the function Qi(λ − Ji)
−1Ri is

a minimal realization of the principal part of the Laurent expansion of W (λ)−1

at λi. In particular, W (λ)−1 − Q(λ − J)−1R has no poles in the complex plane
C. According to Corollary 8.7, the function λQ∞(I − λJ∞)−1R∞ is equal to the
principal part of W (λ)−1 at ∞. Since J∞ is a nilpotent matrix, the function
λQ∞(I − λJ∞)−1R∞ is analytic on C. We conclude that the function

W (λ)−1 − Q(λ − J)−1R − λQ∞(I − λJ∞)−1R∞

is analytic on C and at ∞. But then Liouville’s theorem implies that this function
must be identically equal to a constant matrix, D say. Thus W (λ)−1 has the
desired form. If W (λ)−1 is proper, the term λQ∞(I − λJ∞)−1R∞ is missing, and
we obtain

W (λ)−1 = D + Q(λ − J)−1R.

It remains to show that Θ = (J, Q, R, D; Cr, Cm) is minimal. Put

N =

∞⋂

i=0

KerQJ i.

We need to show that N = {0}. Assume not. Since N is invariant under J , there
exist a nonzero x ∈ N and a complex number µ such that Jx = µx. Clearly µ is
an eigenvalue of J . Recall that J = diag (J1, . . . , Jk) where, for i = 1, . . . , k, the
matrix Ji is an upper triangular Jordan matrix which has λi as its only eigenvalue.
We conclude that µ = λt for some t ∈ {1, . . . , k}. Write x as a sum x = x1+· · ·+xm

corresponding to the partitioning J = diag (J1, . . . , Jk) of J . Then, as λ1, . . . , λk

are distinct, Jx = λtx implies that xk = 0 for k �= t. Thus x = xt, and QJ ix =
QtJ

i
txt. But QJ ix = 0, and hence QtJ

i
txt = 0, i = 0, 1, . . . . Now recall that the

system (Jt, Qt, Rt) is minimal. It follows that x = xt = 0.

We have established that
⋂∞

i=0 KerQJ i = {0}. In a similar way one can
show that

⋂∞
i=0 KerR⊤(J⊤)i = {0} too. Thus the system (J, Q, R, D; Cr, Cm) is

minimal. �

Combining the above results with those about minimal realizations in Section
7.3 we obtain the following corollary.

Corollary 8.14. Let W be the transfer function of the minimal finite-dimensional
system Θ = (A, B, C, D; X, Y ). Suppose D is invertible, and let λ0 ∈ C. Then λ0

is an eigenvalue of A if and only if λ0 is a pole of W and the partial multiplicities
of λ0 as an eigenvalue of A are the same as the partial pole-multiplicities of W at
λ0. Also, λ0 is an eigenvalue of A× = A − BD−1C if and only if λ0 is a zero of
W and the partial multiplicities of λ0 as an eigenvalue of A× are the same as the
partial zero-multiplicities of W at λ0.

Proof. We apply Theorem 8.13. Since two minimal realizations of W are similar,
the system Θ is similar to the system (J, Q, R, D; Cδ, Cm) constructed in Theorem
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8.13. In particular, A and J are similar, and hence A and J have the same eigen-
values with the same partial multiplicities. But then the first part of the corollary
(about A) is an immediate consequence of the construction of the triple (Q, J, R).

To prove the second part of the theorem, notice that the system Θ× is min-
imal too. The transfer function of Θ× coincides with W−1. Now apply the first
part of the theorem to W−1 and Θ×. �

The preceding corollary can be used to prove the following addition to The-
orem 2.7.

Theorem 8.15. Let W be a proper rational m × m matrix function such that
W (∞) = I. Assume that W has simple poles only. Then W admits a factorization
of the following form

W (λ) =
(
I +

1

λ − λ1
R1

)
· · ·

(
I +

1

λ − λn
Rn

)
,

where R1, . . . , Rn are rank one m×m matrices and n is the state space dimension
of a minimal realization of W .

Here we use the convention that a pole of W is said to be simple if it is of
order one.

Proof. Since W is proper and W (∞) = I, we can choose a unital minimal real-
ization Θ = (A, B, C; Cn, Cm) for W . Note that the state space dimension is n;
so finite in particular. As W has first-order poles only, we see from Corollary 8.14
that for each eigenvalue of A the algebraic multiplicity is equal to the geometric
multiplicity. It follows that the Jordan matrix for A is diagonal, and hence A is
diagonalizable. So we can apply Theorem 2.7 to get the desired result. �

The factorization of W constructed in the proof of Theorem 8.15 is a minimal
factorization in the sense of the first section of the next chapter (Section 9.1). This
implies that the points λ1, . . . , λn are precisely the poles of W counted according
to the pole-multiplicity (see Section 9.1). With minor modifications Theorem 8.15
can be extended to the case where det W (λ) does not vanish identically and W
has a simple pole at ∞.

For further information of the type of factorizations appearing in Theorem
8.15 we refer to Chapter 10; in particular, see Section 10.3.

8.4 Local degree and local minimality

Let W be a rational m × m matrix function, and let λ0 ∈ C. In a deleted neigh-
borhood of λ0 we have the following expansion

W (λ) =

∞∑

j=−q

(λ − λ0)
jWj . (8.26)
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Here q is some positive integer. By the local degree of W at λ0 we mean the number
δ(W ; λ0) = rankΩ, where Ω is the block Hankel matrix

Ω =

⎡
⎢⎢⎢⎢⎢⎢⎣

W−1 W−2 · · · W−q

W−2 . .
.

0

... . .
.

. .
. ...

W−q 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (8.27)

Of course this definition does not depend on the choice of q. We also introduce
δ(W ;∞) by putting δ(W ;∞) = δ(W ♯; 0), where W ♯(λ) = W (λ−1). Observe that
W is analytic at a point µ in the Riemann sphere C∪{∞} if and only if δ(W ; µ) = 0.
If detW (λ) �≡ 0, then δ(W ; µ) is just the pole-multiplicity of W at µ as defined in
Section 8.2.

The local degree enjoys a sublogarithmic property. To see this, let W1 and
W2 be rational m×m matrix functions, suppose W = W1W2, and take λ0 ∈ Cm.
Write

Wk(λ) =

∞∑

j=−p

(λ − λ0)
jW

(k)
j , k = 1, 2,

for some positive integer p. Then W admits an expansion of the form (8.26) with
q = 2p. Although the definition of the local degree has been given in terms of
block Hankel matrices, it is now convenient to change to block Toeplitz matrices.
So we introduce

Ω̃ =

⎡
⎢⎢⎢⎢⎢⎣

W−q · · · W−2 W−1

0 W−q · · · W−2

...
. . .

. . .
...

0 · · · 0 W−q

,

⎤
⎥⎥⎥⎥⎥⎦

Ω̃k =

⎡
⎢⎢⎢⎢⎢⎢⎣

W
(k)
−p · · · W

(k)
−2 W

(k)
−1

0 W
(k)
−p · · · W

(k)
−2

...
. . .

. . .
...

0 · · · 0 W
(k)
−p

⎤
⎥⎥⎥⎥⎥⎥⎦

, k = 1, 2.

Then δ(W ; λ0) = rank Ω̃ and δ(Wk; λ0) = rank Ω̃k, k = 1, 2. Observe thatΩ̃ can
be written as

Ω̃ =

[
Ω̃1 ∗
0 Ω̃1

][
Ω̃2 ∗
0 Ω̃2

]
=

[
Ω̃1

0

] [
Ω̃2 ∗

]
+

[ ∗
Ω̃1

] [
0 Ω̃2

]
,
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where the ∗’s denote matrices that we do not need to specify explicitly. It follows
that rank Ω̃ ≤ rank Ω̃1 + rank Ω̃2. In other words

δ(W1W2; λ0) ≤ δ(W1; λ0) + δ(W2; λ0). (8.28)

Obviously, we also have δ(W1W2;∞) ≤ δ(W1;∞) + δ(W2;∞).

The definitions and statements of the preceding two paragraphs also apply
to rational functions of which the values are operators on an arbitrary finite-
dimensional space Y . Indeed, if dim Y = m, such functions can be identified with
rational m × m matrix functions.

The next result shows that the difference between the left- and right-hand
side in (8.28) is the same for the product W = W1W2 and for the product W−1 =
W−1

2 W−1
1 . In fact, the result holds for products of two or more factors.

Theorem 8.16. Let W1, . . . , Wk and W be proper rational m×m matrix functions,
all having the value Im at infinity, and suppose that W (λ) = W1(λ) · · ·Wk(λ).
Then, for each α ∈ C,

k∑

j=1

δ(Wj ; α) − δ(W ; α) =

k∑

j=1

δ(W−1
j ; α) − δ(W−1; α). (8.29)

Roughly speaking, this theorem says the following. The poles of W (pole-
multiplicities counted) are among the poles of W1, . . . , Wk, the zeros of W (zero-
multiplicities counted) are among the zeros of W1, . . . , Wk, and the additional poles
in the factorization W = W1 · · ·Wk coincide with the additional zeros (again the
appropriate multiplicities counted).

Proof. For j = 1, . . . , k, let Wj(λ) = Im + Cj(λ−Aj)
−1Bj be minimal realization

of Wj . Define the matrices A, B and C by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1 B1C2 · · · B1Ck

0 A2
. . .

...

...
. . .

. . . Bk−1Ck

0 · · · 0 Ak

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (8.30)

B =

⎡
⎢⎢⎢⎢⎣

B1

B2

...
Bk

⎤
⎥⎥⎥⎥⎦

, C =
[

C1 C2 · · · Ck

]
.

Then, as can be seen by a repeated application of Theorem 2.2,

W (λ) = Im + C(λ − A)−1B
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is a realization of W . The matrix A is block upper triangular while A× = A−BC,
being of the form

A× =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A×
1 0 · · · 0

−B2C1 A×
2

. . .
...

...
. . .

. . . 0

−BkC1 · · · −BkCk−1 A×
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (8.31)

is block lower triangular.

As an intermediate step, it is useful to fix some notation. If α is a complex
number and T is a square matrix, then mT (α) will denote the algebraic multiplicity
of α as an eigenvalue of T when α ∈ σ(T ), and mT (α) = 0 otherwise. We are now
prepared to make the connection with the poles and zeros of W .

Recall from the material on dilation of Section 7.3 that there exists an in-
vertible n × n matrix S such that S−1AS, S−1B and CS have the form

S−1AS =

⎡
⎢⎢⎣

A− ∗ ∗
0 A0 ∗
0 0 A+

⎤
⎥⎥⎦ , S−1B =

⎡
⎢⎢⎣

∗
B0

0

⎤
⎥⎥⎦ , CS =

[
0 C0 ∗

]
,

where W (λ) = Im + C0(λ − A0)
−1B0 is a minimal realization of W . The block

matrix representation of S−1AS implies that the characteristic polynomial of A is
the product of the characteristic polynomials of A−, A0 and A+, i.e.,

det(λ − A) = det(λ − A−) det(λ − A0) det(λ − A+).

Thus, for α a complex number,

mA(α) = mA−
(α) + mA0(α) + mA+(α). (8.32)

From the block upper triangular form of A in (8.30) it is clear that

mA(α) =
k∑

j=1

mAj
(α).

Also, as the realization of W involving A0, B0 and C0 is minimal, mA0(α) =
δ(W ; α), and likewise mAj

(α) = δ(Wj ; α), j = 1, . . . , k (cf., Section 8.3). But then
(8.32) can be rewritten as

k∑

j=1

δ(Wj ; α) − δ(W ; α) = mA−
(α) + mA+(α). (8.33)
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Turning to A×, we note that

mA×(α) =

k∑

j=1

mA×

j
(α).

This is obvious from (8.31). Further, with A×
0 = A0 − B0C0, we have mA×

0
(α) =

δ(W−1; α). Now S−1A×S = S−1AS − S−1BCS has the form

S−1A×S =

⎡
⎢⎢⎣

A− ∗ ∗
0 A×

0 ∗
0 0 A+

⎤
⎥⎥⎦ .

Hence mA×(α) = mA−
(α) + mA×

0
(α) + mA+(α), and it follows that

k∑

j=1

δ(W−1
j ; α) − δ(W−1; α) = mA−

(α) + mA+(α). (8.34)

Combining (8.33) and (8.34), we see that the left-hand side and the right-hand
side of (8.29) are both equal to mA−

(α) + mA+(α). �

We shall be interested in factorizations W1W2 such that

δ(W1W2; λ0) = δ(W1; λ0) + δ(W2; λ0) (8.35)

regardless of the choice of λ0 ∈ C∪{∞}. Such factorizations are called minimal. We
shall come back to this concept in the next chapter. To understand the meaning
of condition (8.35), we introduce the notion of local minimality of a system.

Let Θ = (A, B, C, D; X, Y ) be a finite-dimensional system and λ0 ∈ C. We
say that Θ is minimal at the point λ0 if

∞⋂

j=0

KerCAjP = KerP,
∞∨

j=0

Im PAjB = ImP, (8.36)

where P is the Riesz projection of A at λ0. Note that Θ is minimal at each point in
the resolvent set ρ(A) of A. If the external operator of Θ is the identity operator on
Y , then Θ is minimal at λ0 if and only if the projection prP (Θ) of Θ is a minimal
system.

For later purposes we present the following local version of Proposition 7.1.

Proposition 8.17. Let Θ = (A, B, C, D; X, Y ) be a biproper finite-dimensional
system, and assume that λ0 ∈ C is not a common eigenvalue of A and A× =
A − BD−1C. Then Θ is minimal at the point λ0.
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Proof. We already noted that Θ is minimal at each point in the resolvent set ρ(A)
of A. Thus we may assume that λ0 is an eigenvalue of A but not of A×.

Put X1 = Ker (C|A), and let X0 be some linear complement of X1 in X .
Relative to the decomposition X = X1 +̇ X0 the operators A, B and C can be
written as block matrices

A =

[
A1 ∗
0 A0

]
, B =

[
∗

B0

]
, C =

[
0 C0

]
.

Here we used that X1 ⊂ KerC and that X1 is invariant under A. The ∗’ s denote
operators that will not be specified any further. From the block matrix represen-
tations of A, B and C we see that

A× = A − BD−1C =

[
A1 ∗
0 A×

0

]
,

where, following our standard convention, A×
0 = A0 − B0D

−1C0. Since λ0 an
eigenvalue of A but not of A×, we know that λ0 is not an eigenvalue of A1. It
follows that the Riesz projection P of A at λ0 partitions as

P =

[
0 R

0 P0

]
,

where P0 is the Riesz projection of A0 at λ0. The fact that P is a projection implies
that the operator R in the block matrix representation of P satisfies RP0 = R.
Thus KerP = X1 +̇KerP0. Next, note that

CAjP =
[

0 C0A
j
0P0

]
, j = 0, 1, 2, . . . .

Since X1 = Ker (C|A), we have Ker (C0|A0) = {0}. Using this in the previous
formula, we see that

∞⋂

j=0

KerCAjP = X1 +̇
∞⋂

j=0

KerC0A
j
0P0 = X1 +̇ KerP0 = KerP.

Thus the first identity in (8.36) is proved.

To prove the second identity in (8.36) put X2 = Im (A|B), and let X0 be some
linear complement of X2 in X . Note that X2 is invariant under A and contains
Im B. Hence relative to the decomposition X = X0 +̇ X2 the operators A, B and
C can be written as block matrices

A =

[
A0 0

∗ A2

]
, B =

[
0

B2

]
, C =

[
∗ C2

]
.
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As before ∗’ s denote operators that will not be specified any further. From these
block matrix representations it follows that

A× = A − BD−1C =

[
A0 0

∗ A×
2

]
,

with A×
2 = A2 − B2D

−1C2. Since λ0 an eigenvalue of A but not of A×, we know
that λ0 is not an eigenvalue of A0. It follows that the Riesz projection P of A at
λ0 partitions as

P =

[
0 0

Q P2

]
,

where P2 is the Riesz projection of A2 at λ0 and Q = P2Q. It follows that

Im PAjB = Im

[
0

P2A
j
2B2

]
, j = 0, 1, 2, . . . .

As X2 = Im (A2|B2), we see that

∞∨

j=0

Im PAjB =
∞∨

j=0

Im

[
0

P2A
j
2B2

]
= {0} +̇ Im P2 = ImP.

This proves the second identity in (8.36). �

The connection between local minimality and local degree is expressed by
the following theorem.

Theorem 8.18. Let W be the transfer function of the finite-dimensional system
Θ = (A, B, C, D; X, Y ), let λ0 ∈ C, and let P be the Riesz projection of A at λ0.
Then δ(W ; λ0) ≤ rankP , equality occurring if and only if Θ is minimal at λ0.

Proof. Write W in the form (8.26) and note that

W−j = CP (A − λ0)
jB, j = 1, 2, . . . .

Here W−j = 0 for j = q + 1, q + 2, . . . . It follows that

col
(
C(λ0 − A)j−1

)q

j=1
P row

(
(λ0 − A)q−jB

)q

j=1
= Ω, (8.37)

where Ω is as in (8.27). From this and the definition of δ(W1; λ0) we conclude
δ(W ; λ0) ≤ rankP . We may assume that q is larger than or equal to the degree of
the minimal polynomial of A. In that case one has that Θ is minimal at λ0 if and
only if the rank of the operator

col (CAj−1)q
j=1 P row (Aq−jB)q

j=1 (8.38)

is equal to the rank of P . Moreover, the operator appearing in the left-hand side
of (8.37) has the same rank as the operator (8.38). Hence Θ is minimal at λ0 if
and only δ(W ; λ0) = rankP . �
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Suppose Θ1 and Θ2 are systems with the same input/output space. Let
λ0 ∈ C. If the product Θ1Θ2 is minimal at λ0, then so are the factors Θ1 and Θ2.
The converse of this is not true. In the next theorem we present a necessary and
sufficient condition for Θ1Θ2 to be minimal at λ0. Part of the condition involves
the logarithmic property of the local degree; cf., formula (8.28).

Theorem 8.19. For j=1,2, let Wj be the transfer function of the finite-dimensional
system Θj = (Aj , Bj , Cj , Dj; Xj , Y ), and let λ0 ∈ C. Then Θ1Θ2 is minimal at λ0

if and only if Θ1 and Θ2 are minimal at λ0 and, in addition,

δ(W1W2; λ0) = δ(W1; λ0) + δ(W2; λ0). (8.39)

Proof. Recall that Θ1Θ2 = (A, B, C, D; X1 ∔ X2, Y ), where A, B, C, and D are
given by

A =

[
A1 B1C2

0 A2

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
, D = D1D2.

Let P , P1 and P2 be the Riesz projections of A, A1 and A2 at λ0, respectively.
Then, for a sufficiently small circle Γ around λ0, we have

P =

⎡
⎢⎣

P1
1

2πi

∫

Γ

(λ − A1)
−1B1C2(λ − A2)

−1 dλ

0 P2

⎤
⎥⎦ .

Let Q be the operator given by the integral in the right upper corner of the block
matrix for P . Since P 2 = P , we have Q = P1Q + QP2. It follows that

P =

[
I Q

0 I

][
P1 0

0 P2

][
I Q

0 I

]
. (8.40)

But then
rankP = rankP1 + rankP2, (8.41)

because the first and the last factor in the right-hand side of (8.40) are invertible.

Suppose now that Θ1 and Θ2 are minimal at λ0 and that (8.39) is satisfied.
Then δ(W1; λ0) = rankP1 and δ(W2; λ0) = rankP2 by Theorem 8.18. Together
with the above identity and (8.41) this gives rankP = δ(W1W2; λ0). By applying
Theorem 8.18 again, we arrive at the conclusion that Θ1Θ2 is minimal at λ0.

Conversely, assume that Θ1Θ2 is minimal at λ0. Combining Theorem 8.18
and formulas (8.28) and (8.41), we get

rankP = δ(W1W2; λ0)

≤ δ(W1; λ0) + δ(W2; λ0)

≤ rankP1 + rankP2 = rankP.
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Since the first and last quantity in this expression are the same, all the inequalities
are in fact equalities. In particular, we have (8.39). Moreover, it is clear from
Theorem 8.18 that δ(W1; λ0) = rankP1 and δ(W2; λ0) = rankP2. So, by the same
theorem, Θ1 and Θ2 are minimal at λ0. �

If Θ is a minimal system, then clearly Θ is minimal at each point of C. The
converse of this is also true.

Theorem 8.20. Let Θ = (A, B, C, D; X, Y ) be a finite-dimensional system, and
suppose that Θ is minimal at each eigenvalue of A. Then Θ is a minimal system.

Proof. Let λ be an eigenvalue of A, and let P be the corresponding Riesz projec-
tion. In view of (8.36), we have

P−1[Ker (C|A)] = KerP, P [Im (A|B)] = ImP.

Observe that Ker (C|A) and Im (A|B) are invariant subspaces for A. Since X is
finite-dimensional, it follows that they are invariant for P too. Hence

Ker (C|A) ⊂ P−1[Ker (C|A)] = KerP

Im P = P [Im (A|B)] ⊂ Im (A|B).

If A has just a single eigenvalue KerP is the zero space, and Im P = X , so in
this case Θ is minimal. If A has more than one eigenvalue the intersections of the
kernels of the corresponding Riesz projections is zero, proving that Θ is observable.
Also, the direct sum of the images of the corresponding Riesz projections is the
whole state space X , proving that Θ is controllable. Hence Θ is minimal. �

Let Θ = (A, B, C, D; X, Y ) be a finite-dimensional system and λ0 ∈ C. De-
note the Riesz projection of A at λ0 by P . Then for k sufficiently large Im P =
Ker (λ0 − A)k and KerP = Im (λ0 − A)k. Using this one easily verifies that Θ is
minimal at the point λ0 if and only if the operators

[
C

λ0 − A

]
: X → Y +̇X,

[
λ0 − A B

]
: X+̇Y → X

are injective and surjective, respectively. Applying now the preceding theorem we
obtain the so-called Hautus test for minimality: The system Θ is minimal if and
only if

rank

[
C

λ − A

]
= rank

[
λ − A B

]
= dimX

for each eigenvalue λ of A.

Let W be as in (8.26), and let ϕ be a Cm-valued function which is analytic at
λ0 and such that ϕ(λ0) = 0. We call ϕ a co-pole function of W at λ0 if W (λ)ϕ(λ)
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is analytic at λ0 and y = limλ→λ0 W (λ)ϕ(λ) is nonzero. Note that in this case the
vector y is a pole vector of W at λ0 (see Section 8.2). Furthermore, if det W (λ) �≡ 0
in a neighborhood of λ0, then the function ψ, given by ψ(λ) = W (λ)ϕ(λ), is a
root function of W−1 at λ0. A root function of W−1 at λ0 is also referred to as
a pole function of W at λ0; see [8], page 67. The next proposition shows how
co-pole functions of W at λ0 are related to Jordan chains of the main operator in
a realization for W which is minimal at λ0.

Proposition 8.21. Let W be the transfer function of the finite-dimensional system
Θ = (A, B, C, D; X, Cm), and let λ0 be an eigenvalue of A. Assume Θ is minimal
at λ0. Let k ≥ 1, and let

ϕ(λ) = (λ − λ0)
kϕk + (λ − λ0)

k+1ϕk+1 + · · ·

be a co-pole function of W at λ0. Put

xj =

∞∑

i=k

P (A − λ0)
i−j−1Bϕi, j = 0, . . . , k − 1, (8.42)

where P is the Riesz projection of A corresponding to λ0. Then x0, . . . , xk−1 is a
Jordan chain of A at λ0, that is, x0 �= 0 and

(A − λ0)x0 = 0, (A − λ0)
rxk−1 = xk−1−r , r = 0, . . . , k − 1. (8.43)

Moreover, each Jordan chain of A at λ0 is obtained in this way. Finally, if the
chain (8.42) is maximal, that is, xk−1 �∈ Im (A − λ0), then ϕk �= 0.

Proof. Since ϕ is a co-pole function of W at λ0, we know that

∞∑

i=k

W−j−iϕi = 0, j = 1, 2, . . . . (8.44)

Here W−j is the coefficient of (λ − λ0)
−j in the Laurent expansion of W at λ0.

Observe that only a finite number of the terms in (8.44) are nonzero. Since W is
the transfer function of the system Θ, we have

W−j = CP (A − λ0)
j−1B, j = 1, 2, . . . . (8.45)

Using that P and A − λ0 commute we see that

C(A − λ0)
rx0 =

∞∑

i=k

C(A − λ0)
rP (A − λ0)

i−1Bϕi

=

∞∑

i=k

CP (A − λ0)
i+r−1Bϕi

=

∞∑

i=k

W−(i+r)ϕi, r = 1, 2, . . . .
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We conclude that (A − λ0)x0 ∈ Ker (C|A). By definition, x0 ∈ Im P , and thus
(A−λ0)x0 ∈ Im P . It follows that (A−λ0)x0 ∈ Ker

(
C|Im P , A|Im P

)
, and the fact

that Θ is minimal at λ0 yields (A−λ0)x0 = 0. This proves the first part of (8.43).

To prove the second part of (8.43), we note that for 1 ≤ j ≤ k we have

(A − λ0)xj =

∞∑

i=k

P (A − λ0)
i−(j−1)−1ϕi = xj−1.

Thus (A − λ0)
rxk−1 = xk−1−r for r = 0, . . . , k − 1. From (8.42) we also see that

xk−1 − Bϕk =
∞∑

i=k+1

P (A − λ0)
i−kBϕi ∈ Im (A − λ0).

Thus xk−1 /∈ Im (A − λ0) implies Bϕk �= 0, and hence ϕk �= 0.

To deal with the converse statement, let x0, . . . , xk−1 be a Jordan chain of A
at λ0. In particular, the vectors x0, . . . , xk−1 belong to ImP . Since Θ is minimal
at λ0, we have Im (A|Im P , PB) = ImP , and hence there exists ϕk, ϕk+1, . . . in
Cm, with only a finite number ϕj ’s being nonzero, such that

xk−1 =

∞∑

i=k

P (A − λ0)
i−kϕi. (8.46)

Put ϕ(λ) =
∑∞

j=k(λ − λ0)
jϕj . Using (8.45) it follows that for j = 0, 1, 2, . . . we

have
∞∑

i=k

W−j−iϕi =

∞∑

i=k

CP (A − λ0)
j+i−1Bϕi

= CP (A − λ0)
j+k−1

∞∑

i=k

P (A − λ0)
i−kBϕi

= CP (A − λ0)
j+k−1xk−1.

Since x0, . . . , xk+1 is a Jordan chain of A at λ0, we conclude that

∞∑

i=k

W−j−iϕi =

{
Cx0, j = 0,

0, j = 1, 2, . . . .
(8.47)

Thus W (λ)ϕ(λ) is analytic at λ0, and limλ→λ0 W (λ)ϕ(λ) = Cx0. To prove that
ϕ is a co-pole function of W at λ0, it remains to show that Cx0 �= 0. Assume
not, i.e., Cx0 = 0. Since (A − λ0)x0 = 0 and x0 ∈ Im P , it follows that x0 is in
Ker

(
C|Im P , A|Im P

)
. Using again the minimality of Θ at λ0, this yields x0 = 0.

But x0, . . . , xk−1 is a Jordan chain of A at λ0, and thus x0 �= 0 by definition.
Therefore, Cx0 �= 0.

Finally, since x0, . . . , xk−1 is a Jordan chain of A at λ0 and xk−1 is given by
(8.46) it is clear that (8.42) holds. �
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Let W (λ) = D + C(λ − A)−1B. Given a Jordan chain x0, . . . , xk−1 of A at
λ0, any co-pole function ϕ(λ) =

∑∞
j=k(λ−λ0)

jϕj satisfying (8.42) will be called a
co-pole function corresponding to the Jordan chain x0, . . . , xk−1. Using (8.42) and
(8.45) it is clear that in this case Cxj (j = 0, . . . , k − 1) is precisely the coefficient
of (λ− λ0)

r in the Taylor expansion of W (λ)ϕ(λ) at λ0. This yields the following
corollary.

Corollary 8.22. Let W be the transfer function of the finite-dimensional system
Θ = (A, B, C, D; X, Cm), and assume detW (λ) �≡ 0. Let λ0 be an eigenvalue of
A, and assume Θ is minimal at λ0. If x0, . . . , xk−1 is a Jordan chain of A at
λ0, then Cx0, . . . , Cxk−1 is a Jordan chain of W−1 at λ0, and each Jordan chain
of W−1 at λ0 is obtained in this way. Furthermore, C maps Ker (λ0 − A) in a
one-to-one way onto Pol (W ; λ0).

Proof. Let x0, . . . , xk−1 be a Jordan chain of A at λ0. Let ϕ be a corresponding
co-pole function. Put ψ(λ) = W (λ)ϕ(λ), and for j = 0, . . . , k − 1 let yj be the
coefficient of (λ − λ0)

j in the Taylor expansion of ψ at λ0. From the remark
made in the paragraph preceding this proposition we know that yj = Cxj for
j = 0, . . . , k − 1. As ϕ is a co-pole function, ψ is analytic at λ0, the vector ψ(λ0)
is nonzero, and

lim
λ→λ0

1

(λ − λ0)k−1
W (λ)−1ψ(λ) = 0.

Thus we know from Propositions 8.1 and 8.2 that ψ is a root function of W−1 at
λ0 of order at least k. This implies that y0 . . . , yk−1 is a Jordan chain of W−1 at
λ0. Thus Cx0, . . . , Cxk−1 is a Jordan chain of W−1 at λ0.

Conversely, assume y0 . . . , yk−1 is a Jordan chain of W−1 at λ0. Then there
exists a root function ψ of W−1 at λ0 of order at least k such that

ψ(λ) = y0 + (λ − λ0)y1 + · · · + (λ − λ0)
k−1yk−1 + · · · .

Define ϕ(λ) = W (λ)−1ψ(λ). Then ϕ is analytic at λ0, has a zero of order at least
k at λ0, and W (λ)ϕ(λ) = ψ(λ). Thus ϕ is a co-pole function. Let x0, . . . , xk−1 be
the vectors defined by ϕ via formula (8.42). Then by Proposition 8.21, the vectors
x0, . . . , xk−1 form a Jordan chain of A at λ0, and ϕ is a corresponding co-pole
function. Moreover, we have Cxj = yj for j = 0, . . . , k − 1.

Next we prove the final statement. First, let us recall from Lemma 8.8 that
Pol (W ; λ0) = Ker (W−1; λ0). Thus it suffices to prove that C maps the space
Ker (λ0 − A) in a one-to-one way onto Ker (W−1; λ0). By specifying the results
obtained so far for k = 1 we see that C[Ker (λ0 − A)] = Ker (W−1; λ0). Hence
it remains to show that C is one-to-one on Ker (λ0 − A). To do this, take x0 ∈
Ker (λ0 − A), and assume that Cx0 = 0. Then CAjx0 = λj

0Cx0 = 0 for each
j = 0, 1, 2 . . .. But the system Θ is minimal at λ0, and x0 ∈ Im P , where P is the
Riesz projection of A at λ0. Note that Px0 = x0. But then the first identity in
(8.36) shows that Px0 = x0 ∈ KerP . This can only happen when x0 = 0. Thus C
is one-to-one on Ker (λ0 − A). �



8.4. Local degree and local minimality 159

Let W be a proper rational m × m matrix function with realization

W (λ) = D + C(λ − A)−1B. (8.48)

Fix λ0 ∈ C. As before, mA(λ0) denotes the algebraic multiplicity of λ0 as an
eigenvalue of A and mA(λ0) = 0 when λ0 is not an eigenvalue of A. Note that
always mA(λ0) ≥ δ(W ; λ0), and we have mA(λ0) = δ(W ; λ0) if and only if the
realization (8.48) is minimal at λ0 (see Theorem 8.18). Now let λ0 be a pole of W
in (8.48). Then necessarily λ0 is an eigenvalue of A, and the order of λ0 as a pole
of W does not exceed the order of λ0 as pole of (λ − A)−1. When the latter two
numbers are equal, we say that the realization (8.48) is pole order preserving at
λ0. The phrase “the realization (8.48) is pole order preserving at λ0” will also be
used when λ0 is neither a pole of W nor a pole of (λ − A)−1.

Proposition 8.23. Let W be a proper rational m × m matrix function with real-
ization (8.48), and let λ0 be a pole of W . Then the realization (8.48) is minimal
at λ0 if and only λ0 is an eigenvalue of A and the partial multiplicities of λ0 as
a pole of W coincide with the partial multiplicities of λ0 as an eigenvalue of A.
Moreover, in that case, the realization (8.48) is pole order preserving at λ0.

Proof. If the realization (8.48) is minimal at λ0, then we know from Corollary 8.22
(cf., Theorem 8.6) that the partial multiplicities of λ0 as a pole of W coincide with
the partial multiplicities of λ0 as an eigenvalue of A.

For the converse, recall that δ(W ; λ0) is equal to the sum of the partial
multiplicities of λ0 as a pole of W (see the first paragraph of Section 8.4; also
Proposition 8.11). On the other hand, the sum of the partial multiplicities of λ0

as an eigenvalue of A is equal to the algebraic multiplicity mA(λ0) of λ0 as an
eigenvalue of A. Thus, if the partial multiplicities of λ0 as a pole of W and as an
eigenvalue of A coincide, then δ(W ; λ0) = mA(λ0), and hence the realization is
minimal at λ0. Since the order of λ0 as pole of W is equal to the largest partial
multiplicity of λ0 as a pole of W and the order of λ0 as pole of (λ−A)−1 is equal
to the largest partial multiplicity of λ0 as an eigenvalue of A, the final statement
is trivially true. �

Corollary 8.24. Let W be a proper rational m×m matrix function with realization
(8.48), and let λ0 be an eigenvalue of A of geometric multiplicity one. Then the
realization (8.48) is minimal at λ0 if and only if the realization (8.48) is pole order
preserving at λ0.

Proof. Since λ0 is an eigenvalue of A of geometric multiplicity one, we have
dimKer (λ0 −A) = 1 and mA(λ0) is equal to the order of λ0 as pole of (λ−A)−1.

Assume the realization (8.48) is minimal at λ0. Then dimPol (W ; λ0) =
dimKer (λ0 − A), and hence the geometric multiplicity of λ0 as a pole of W is
equal to one. It follows (Corollary 8.10 above) that the order of λ0 as a pole of W
is equal to the pole-multiplicity, which in turn is equal to δ(W ; λ0). By minimality,
δ(W ; λ0) = mA(λ0). We conclude that the order λ0 as a pole of W is equal to the
order of λ0 as a pole of (λ − A)−1.
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To prove the converse implication, assume the realization (8.48) is pole order
preserving at λ0. Since λ0 is an eigenvalue of A, the function (λ−A)−1 has a pole
at λ0. Our pole order preserving assumption implies that λ0 as a pole of W and the
orders of λ0 as a pole of W and as a pole of (λ−A)−1 coincide. By the result of the
first paragraph, the order of λ0 as a pole of (λ − A)−1 is equal to mA(λ0). Recall
from Theorem 8.18 that mA(λ0) ≥ δ(W ; λ0). On the other hand it is clear from
the definition given in the first paragraph of the present section that the order of
λ0 as a pole of W does not exceed δ(W ; λ0). Hence δ(W ; λ0) ≥ mA(λ0), and it
follows that δ(W ; λ0) and mA(λ0) coincide. But then the realization is minimal at
λ0 by Theorem 8.18. �

By applying the previous corollary to each eigenvalue of the state matrix A
we get the following result.

Corollary 8.25. Let W be a proper rational m×m matrix function with realization
(8.48), and assume A is nonderogatory. Then the realization (8.48) is minimal if
and only if it is pole order preserving at each eigenvalue of A.

8.5 McMillan degree and minimality of systems

Let W be a rational m× m matrix function. Recall that the local degree δ(W ; λ)
of W at λ vanishes if and only if W is analytic at λ. Therefore it makes sense to
put

δ(W ) =
∑

λ∈ C∪{∞}

δ(W ; λ).

This number is known in the literature as the McMillan degree of W . It plays an
important role in network theory. Of course the definition applies to any rational
operator function of which the values act on a finite-dimensional space. A change
of parameter involving a Möbius transformation does not affect the McMillan
degree. Therefore we concentrate on the case when W is analytic at ∞. The next
theorem is an immediate consequence of Theorems 8.18 and 8.20.

Theorem 8.26. Let W be the transfer function of the finite-dimensional system Θ,
and let X be the state space of Θ. Then δ(W ) ≤ dimX, equality occurring if and
only if Θ is minimal.

Let W be analytic at ∞. From Theorem 7.6 it is clear that the minimal real-
izations for W are just the realizations with smallest possible state space dimen-
sion. Theorem 8.26 adds to this that the smallest possible state space dimension
is equal to the McMillan degree of W .

Suppose W (λ) is invertible for some λ ∈ C ∪ {∞}. Then W−1 is also a
rational m × m matrix function. We claim that

δ(W ) = δ
(
W−1). (8.49)
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To see this, we may assume that W is analytic at ∞ and W (∞) invertible. Other-
wise we apply a suitable Möbius transformation. Let Θ = (A, B, C, D; X, Cm) be a
minimal system of which the transfer function coincides with W . Since D = W (∞),
we have that D is invertible. But then Θ× is well defined and its transfer func-
tion is W−1. The minimality of Θ implies that of Θ×. Formula (8.49) is now an
immediate consequence of Theorem 8.26.

As a second application of Theorem 8.26, we deduce another description of
the McMillan degree for the case when W is analytic at ∞. Let

W (λ) = D +
1

λ
D1 +

1

λ2
D2 + · · ·

be the Laurent expansion of W at ∞, and let Hm be the block Hankel matrix
given by

Hm =
[
Di+j−1

]m
i,j=1

.

Then, for m sufficiently large, we have δ(W ) = rankHm. To prove this, choose a
minimal system Θ = (A, B, C, D; X, Cm) of which the transfer function coincides
with W . Then

Dj = CAj−1B, j = 1, 2, . . . .

Hence Hm = col (CAj−1)m
j=1 row (Aj−1B)m

j=1. As Θ is minimal, we see that for m
sufficiently large rankHm = dimX . But dimX = δ(W ) by Theorem 8.26, and the
proof is complete.

From (8.28) we know that δ has the sublogarithmic property, that is

δ(W1W2) ≤ δ(W1) + δ(W2). (8.50)

The next theorem is the global analogue of Theorem 8.19; it is one of the main
tools for studying minimal factorizations (see the next chapter).

Theorem 8.27. For j=1,2, let Wj be the transfer function of the finite-dimensional
system Θj = (Aj , Bj , Cj , Dj; Xj , Y ). Then Θ1Θ2 is minimal if and only if Θ1 and
Θ2 are minimal and δ(W1W2) = δ(W1) + δ(W2).

Proof. Combine the results of Section 8.4. �

Notes

The results in the first two sections are taken from [74]. For analytic matrix func-
tions the results of the first section can also be found in the Appendix of [56].
Section 8.3 is based on Section 2.1 in [14]. For earlier material related to Theo-
rem 8.15 see [39], the references therein, and [104]. Sections 8.4 and 8.5 are based
on Sections 4.1 and 4.2 in [14]. Theorem 8.16 and the final part of Section 8.4
(starting from Proposition 8.21) are new.





Chapter 9

Minimal Factorization of
Rational Matrix Functions

In this chapter the notion of minimal factorization of rational matrix functions,
which has its origin in mathematical system theory, is introduced and analyzed.
In Section 9.1 minimal factorizations are identified as those factorizations that
do not admit pole zero cancellation. Canonical factorization is an example of
minimal factorization but the converse is not true. In Section 9.2 we use minimal
factorization to extend the notion of canonical factorization to rational matrix
functions that are allowed to have poles and zeros on the curve. In Section 9.3 (the
final section of this chapter) the concept of a supporting projection is extended
to finite-dimensional systems that are not necessarily biproper. This allows us to
prove one of the main theorems of the first section also for proper rational matrix
functions of which the value at infinity is singular.

9.1 Minimal factorization

Let W, W1 and W2 be rational n × n matrix functions, and assume that

W (λ) = W1(λ)W2(λ). (9.1)

Then we know from Section 8.5 that δ(W ) ≤ δ(W1) + δ(W2). The factorization
(9.1) is called minimal if δ(W ) = δ(W1) + δ(W2). An equivalent requirement is
that this equality holds pointwise

δ(W ; λ) = δ(W1; λ) + δ(W2; λ), λ ∈ C ∪ {∞}. (9.2)

Minimal factorizations are important in network theory (see [113] and the refer-
ences therein).
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Applying, if necessary, a suitable Möbius transformation, we may assume that
W is analytic at ∞. But then, if (9.1) is a minimal factorization, the factors W1

and W2 are analytic at ∞ too. Indeed, from 0 = δ(W ;∞) = δ(W1;∞)+ δ(W2;∞)
it follows that δ(W1;∞) = δ(W2;∞) = 0. In view of this we shall concentrate on
the case when the rational matrix functions are analytic at ∞. In other words we
assume that they appear as transfer functions of finite-dimensional systems.

For such functions there is an alternative way of defining the notion of a
minimal factorization. The definition is suggested by Theorem 8.27 and reads as
follows: The factorization (9.1) is minimal if (and only if) from Θ1 and Θ2 being
minimal realizations for W1 and W2, respectively, it follows that Θ1Θ2 is a minimal
realization for W .

It is of interest to note that this alternative definition makes sense in a more
general context. One just has to specify a suitable class of systems together with
the corresponding transfer functions. For the Livsic-Brodskii characteristic oper-
ator function this leads to the concept of a factorization into regular factors. For
details, see [30] Section I.5. One could also consider Krěın systems and the corre-
sponding transfer functions. However, for such systems biminimality rather than
minimality seems to be the natural property. As a final special case we mention
the class of transfer functions of monic systems with given fixed (possibly infinite-
dimensional) input/output space Y . This class coincides with that of the inverses
of monic operator polynomials having as coefficients bounded linear operators on
Y . Recall that monic systems are always minimal. So in this context every factor-
ization is minimal. For the finite-dimensional case this can also be seen directly
from the behavior of the McMillan degree. The argument may then be based on
the fact that the McMillan degrees of a function and its inverse coincide and the
observation that if L is a monic n×n matrix polynomial, then δ(L) = δ(L;∞) = nℓ
where ℓ is the degree of L.

Now let us return to the study of minimal factorizations of rational matrix
functions. So suppose W, W1 and W2 are rational m × m matrix functions. In
the remainder of this section we shall always suppose that det W (λ) �≡ 0. This

implies the existence of a scalar a ∈ C such that W (a) is invertible. Put W̃ (λ) =

W (a)−1W (λ−1 + a). Then W̃ (∞) = Im. There is a one-to-one correspondence

between the (minimal) factorizations of W and those of W̃ . Therefore there is no
loss of generality in assuming that W (∞) = Im.

Suppose W (∞) = Im. We are interested in the minimal factorizations of
W . We claim that it suffices to consider only those factorizations (9.1) for which
W1(∞) = W2(∞) = Im. To make this claim more precise, assume that (9.1)
is a minimal factorization of W . Then W1 and W2 are analytic at ∞, and we
have W1(∞)W2(∞) = Im. So W1(∞) and W2(∞) are each others inverse. By
multiplying W1 from the right with W2(∞) and W2 from the left by W1(∞), we
obtain a minimal factorization of W of which the factors have the value Im at ∞.

These considerations justify the fact that in this section, from now on, without
further notice, we only deal with rational matrix functions that are analytic at
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∞ with value the identity matrix. In other words the rational matrix functions
considered below appear as transfer functions of unital finite-dimensional systems.

Intuitively, formula (9.2) means that in the product W1W2 pole-zero cancel-
lations do not occur. The following theorem makes this statement more precise.
Recall that A⊤ stands for the transpose of the matrix A. The meaning of the
symbols Ker (W ; λ) and Pol (W ; λ) has been explained in Sections 8.1 and 8.2,
respectively.

Theorem 9.1. The factorization W = W1W2 is a minimal factorization if and only
if for each λ in C we have

(i) Ker (W1; λ) ∩ Pol (W2; λ) = {0},
(ii) Pol (W⊤

1 ; λ) ∩ Ker (W⊤
2 ; λ) = {0}.

To prove this theorem we need the following lemma.

Lemma 9.2. Let W be the transfer function of the unital minimal system Θ =
(A, B, C; Cn, Cm). Then C maps Ker (A−λ) in a one-one manner onto Pol (W ; λ).

Proof. Using a similarity transformation we may assume without loss of generality
that A = J , B = R and C = Q, where J , R and Q are the operators constructed in
Theorem 8.12. But for the minimal system (J, R, Q; Cn, Cm) the lemma is trivial.

�

Let W and Θ be as in the preceding lemma, and apply this lemma to the
associate system Θ×. Then one sees that C maps Ker (A×−λ) in a one-one manner
onto Ker (W ; λ0).

Proof of Theorem 9.1. Let

Θ1 = (A1, B1, C1; C
n1 , Cm), Θ2 = (A2, B2, C2; C

n2 , Cm)

be minimal realizations for W1 and W2, respectively, and write

Θ = (A, B, C; Cn1 ∔ Cn2 , Cm)

for the product Θ1Θ2. So

A =

[
A1 B1C2

0 A2

]
,

[
B1

B2

]
,

[
C1 C2

]
.

Fix k ≥ 1. By induction one proves that

Ak =

[
Ak

1 Tm

0 Ak
2

]
, Tk =

k−1∑

j=0

Ak−1−j
1 B1C2A

j
2.
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It follows that CAk =
[

C1A
k
1 Zk

]
, where

Zk = C2A
k
2 +

k−1∑

j=0

C1A
k−1−j
1 B1C2A

j
2. (9.3)

Again employing induction one shows that

C1A
j
1 = C1(A

×
1 )j +

j−1∑

i=0

C1(A
×
1 )j−1−iB1C1A

i
1, j = 1, 2, . . . . (9.4)

Using this in (9.3) one obtains

Zk = C2A
k
2 +

k−1∑

j=0

C1(A
×
1 )k−1−jB1Zj . (9.5)

As CAk =
[

C1A
k
1 Zk

]
, we see from (9.4) and (9.5) that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 · · · 0

−C1B1 I 0
...

−C1A
×
1 B1 −C1B1 I

...

...
...

. . .
. . . 0

−C1(A
×
1 )k−1B1 −C1(A

×
1 )k−2B1 · · · −C1B1 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

CAk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1 C2

C1A
×
1 C2A2

C1(A
×
1 )2 C2(A2)

2

...
...

C1(A
×
1 )k C2(A2)

k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In particular,

k⋂

j=0

KerCAj =

k⋂

j=0

Ker
[

C1(A
×
1 )j C2(A2)

j
]
. (9.6)

Using (9.6) we shall prove that the system Θ is observable if and only if
Ker (W1; λ) ∩ Pol (W2; λ) = {0} for each λ ∈ C. First, assume

0 �= y0 ∈ Ker (W1; λ0) ∩ Pol (W2; λ0). (9.7)
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Note that Ker (W1; λ0) = Pol (W−1
1 ; λ0). So applying Lemma 9.2 to Θ×

1 and Θ2,
we see that there exist x1 ∈ Ker (A×

1 − λ0) and x2 ∈ Ker (A2 − λ0) such that
C1x1 = C2x2 = y0. As y0 �= 0, we have x1, x2 �= 0. Furthermore,

C1(A
×
1 )jx1 = λj

0y0 = C2(A2)
jx2, j = 0, 1, 2, . . . .

But then we can use (9.6) to show that

x0 =

[
x1

−x2

]

is a nonzero element in Ker (C|A), and it follows that Θ is not observable.

Next, assume that Θ is not observable. Applying (9.6) we conclude that the
space K =

⋂∞
j=0 Ker

[
C1(A

×
1 )j C2(A2)

j
]

is non-trivial. By [54] Lemma 2.2 (see
also [55], Theorem 9.1) we have

K =

{[
x1

−Sx1

]
| x1 ∈ M

}
,

where M is a non-trivial A×
1 -invariant subspace of Cn1 and S : M → Cn2 is a

linear map such that

C1|M = C2S, S(A×
1 |M ) = A2S. (9.8)

Since M is non-trivial, the operator A×
1 has an eigenvector, x1 say, in M . Let λ0

be the corresponding eigenvalue. Put x2 = Sx1 and y0 = C1x1. Employing (9.8),
we see that A2x2 = λ0x2 and y0 = C2x2. But then, we can apply Lemma 9.7 to
both Θ×

1 and Θ2 to show that

0 �= y0 ∈ Pol (W−1
1 ; λ0) ∩ Pol (W2; λ0).

As Pol (W−1
1 ; λ0) = Ker (W1; λ0), we obtain (9.7). So we have proved that Θ is

observable if and only if condition (i) is satisfied for each λ ∈ C.

To finish the proof, observe that Θ is controllable if and only if Θ⊤ =
(A⊤, C⊤, B⊤; Cn, Cm) is observable. Since W⊤ = W⊤

2 W⊤
1 , we see from the first

part of the proof that Θ⊤ is observable if and only if

Ker (W⊤
2 ; λ) ∩ Pol (W⊤

1 ; λ) = {0}, λ ∈ C.

In other words Θ is controllable if and only if condition (ii) is satisfied for each
λ ∈ C. This completes the proof �

From Theorem 9.1 it follows that canonical factorization is a special case of
minimal factorization. Indeed, if W (λ) = W−(λ)W+(λ) is a canonical factorization
of an m×m rational matrix function, then W+ has its pole and zeros in the open
lower half-plane and W− has its pole and zeros in the open upper half-plane. Hence
there is no pole-zero cancellation between the factors W+ and W−, and thus the
factorization is minimal.
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We now come to the main theorem of this section. It gives a complete de-
scription of minimal factorizations in terms of supporting projections (see Section
2.4) of minimal systems.

Theorem 9.3. Let the unital system Θ be a minimal realization of the rational
m × m matrix function W .

(i) If Π is a supporting projection for Θ, W1 is the transfer function of pr I−Π(Θ)
and W2 is the transfer function of pr Π(Θ), then W = W1W2 is a minimal
factorization of W .

(ii) If W = W1W2 is a minimal factorization of W , then there exists a unique
supporting projection Π for the system Θ such that W1 and W2 are the trans-
fer functions of pr I−Π(Θ) and pr Π(Θ), respectively.

Proof. Let Π be a supporting projection for Θ. Then

Θ = pr I−Π(Θ)pr Π(Θ).

Since Θ is minimal, it follows that pr I−Π(Θ) and pr Π(Θ) are minimal. But then
one can apply Theorems 2.2 and 8.27 to show that W = W1W2 is a minimal
factorization. This proves (i).

Next assume that W = W1W2 is a minimal factorization. For i = 1, 2, let
Θi be a minimal realization of Wi with state space Cni . Here ni = δ(Wi) is the
McMillan degree of Wi (see Theorem 8.26). By Theorem 8.27 the product Θ1Θ2

is minimal. Note that Θ1Θ2 is a realization for W . Hence Θ1Θ2 and Θ are similar,
say with system similarity S : Cn1+̇Cn2 → Cn, where n = n1 + n2 = δ(W ).
Let Π be the projection of Cn along S[Cn1 ] onto S[Cn2 ]. Then Π is a supporting
projection for Θ. Moreover pr I−Π(Θ) is similar to Θ1 and pr Π(Θ) is similar to
Θ2. It remains to prove the unicity of Π.

Suppose P is another supporting projection of Θ such that pr I−P (Θ) and
pr P (Θ) are realizations of W1 and W2, respectively. Then pr I−P (Θ) and pr P (Θ)
are minimal again. Hence pr I−Π(Θ) and pr I−P (Θ) are similar, say with system
similarity U : KerΠ → KerP , and pr Π(Θ) and pr P (Θ) are similar, say with
system similarity V : ImΠ → Im P . Define T on Cδ by

T =

[
U 0

0 V

]
: KerΠ +̇ ImΠ → KerP +̇ Im P.

Then T is a system similarity between Θ and itself. Since Θ is minimal it follows
that T is the identity operatory on Cn. But then Π = P , as desired. �

Theorem 9.3 may be viewed as an analogue of Theorem 5.4 and Theorem 5.6
in [30], where the one-one correspondence between regular divisors of the Livsic-
Brodskii characteristic operator function and the left divisors of a simple Brodskii
system is described. The one-one correspondence between the supporting sub-
spaces of a monic system Θ and the right divisors of L = W−1

Θ (cf., Subsection 3.4
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and the references given there) is the variant of Theorem 9.3 for monic operator
polynomials.

We conclude this section with an example that will be useful in later chapters.
Let n be an integer, n ≥ 2, and consider the rational 2 × 2 matrix function

W (λ) =

⎡
⎢⎣

1
1

λn

0 1

⎤
⎥⎦ . (9.9)

We shall show that this rational matrix function does not admit any non-trivial
minimal factorization.

Note that W is proper and has only one pole, namely at zero. Using the
definition of the local degree (see Section 8.4) we see that the local degree of W
at zero is equal to n. It follows that McMillan degree of W is equal to n too.
Next, consider the following matrices (which have sizes n × n, n × 2 and 2 × n,
respectively):

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1
0 1

. . .
. . .

. . . 1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

...
...

0 0

0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, C =

[
1 0 0 · · · 0
0 0 0 · · · 0

]
.

The empty spots in the matrix for A stand for zero entries. It is straightforward
to check the system Θ = (A, B, C, I2; Cn, C2) is a realization of W . Since δ(W )
is equal to the order of A, it follows that this realization is minimal, by Theorem
8.26. Now observe BC = 0, and so the matrices A and A× coincide. From the
special form of A it follows that the non-trivial invariant subspaces are the space
Mj = span {e1, . . . , ej}, j = 1, . . . , n, where e1, . . . , en is the standard basis of Cn.
Since A and A× have the same invariant subspaces, the only supporting projections
for Θ are the zero operator and the identity operator on Cn. Hence, by Theorem
9.3, the matrix function W has no non-trivial minimal factorization.

9.2 Pseudo-canonical factorization

Let Γ be a Cauchy contour in C. Denote by F+ the interior domain of Γ, and by
F− the exterior domain of Γ. As usual, if Γ is the closure of the real line F+ is
the open upper half-plane, and F− is the open lower half-plane, while if Γ is the
closure of the imaginary line, F+ is the open left half-plane and F− is the open
right half-plane.

Let W be an m×m rational matrix function, analytic on an open neighbor-
hood of Γ and at infinity, and having invertible values on Γ and at infinity. By a



170 Chapter 9. Minimal Factorization of Rational Matrix Functions

right pseudo-canonical factorization of W with respect to Γ we mean a factoriza-
tion

W (λ) = W−(λ)W+(λ), λ ∈ Γ, (9.10)

where W− and W+ are rational m × m matrix functions such that W− has no
poles and zeros in F−, W+ has no poles and zeros in F+, and the factorization
(9.10) is locally minimal at each point of Γ. If in (9.10) the factors W− and W+

are interchanged, we speak of a left pseudo-canonical factorization.

Observe the differences with a right canonical factorization of W . In that case
W has no poles and zeros on Γ, while in the case of pseudo-canonical factorization
it is allowed that W has poles and zeros on Γ. Further, in a canonical factorization
the factors are required to have no poles and zeros on Γ as well. If W has no poles
and zeros on Γ, then a pseudo-canonical factorization is a canonical factorization
because of the minimality condition: it follows from this condition that the factors
will not have poles and zeros on Γ either.

Also observe that since W− has no poles and zeros in F−, and W+ has no
poles and zeros in F+, the factorization (9.10) is minimal at each point in F−,
as well as at each point of F+. Hence the condition that the factorization (9.10)
is locally minimal at each point of Γ can be replaced by the condition that the
factorization is minimal.

The following theorem describes all right pseudo-canonical factorizations of
W in terms of a minimal realization of W .

Theorem 9.4. Let W (λ) = D + C(λIn − A)−1B be the transfer function of the
minimal system Θ = (A, B, C, D; Cn, Cm), and let Γ be a Cauchy contour. Let D =
D1D2, with D1 and D2 square matrices. Then there is a one-to-one correspondence
between the right pseudo-canonical factorizations W = W−W+ of W with respect
to Γ with W−(∞) = D1 and W+(∞) = D2, and the set of pairs of subspaces
(M, M×) with the following properties

(i) M is an A-invariant subspace such that the restriction A|M of A to M has
no eigenvalues in F−, and M contains the span of all eigenvectors and gen-
eralized eigenvectors of A corresponding to eigenvalues in F+,

(ii) M× is an A×-invariant subspace such that the restriction A×|M× of A× to
M× has no eigenvalues in F+, and M× contains the span of all eigenvectors
and generalized eigenvectors of A× corresponding to eigenvalues in F−,

(iii) M+̇M× = Cn.

The correspondence is as follows: given a pair of subspaces (M, M×) with the
properties (i), (ii) and (iii), a right pseudo-canonical factorization of W with respect
to Γ is given by W (λ) = W−(λ)W+(λ), where

W−(λ) = D1 + C(λ − A)−1(I − Π)BD−1
2 , (9.11)

W+(λ) = D2 + D−1
1 Π(λ − A)−1B, (9.12)

where Π is the projection along M onto M×.
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Conversely, given a right pseudo-canonical factorization of W with respect to
Γ and with W−(∞) = D1, W+(∞) = D2, there exists a unique pair of subspaces
M and M× with the properties (i), (ii) and (iii) above, such that the factors W−

and W+ are given by (9.11) and (9.12), respectively.

Observe that in general a pair of subspaces M , M× for which (i), (ii) and
(iii) hold need not be unique. Consequently, also pseudo-canonical factorizations
need not be essentially unique. An example of this phenomenon will be given after
the proof.

In comparison with the main theorem on canonical factorization (Theorem
6.1) we restrict attention here to minimal systems. This condition may be relaxed
to systems that are locally minimal at each point of Γ; the same result holds for
such systems. For details we refer to Theorem 3.1 in [103].

Proof. First assume that M and M× are subspaces with the properties (i), (ii) and
(iii), and denote by Π the projection onto M× along M . Define W− and W+ by
(9.11) and (9.12). Then the factorization W = W−W+ is a minimal factorization
because of (iii) and Theorem 9.3, and the factorization is a right pseudo-canonical
factorization because of (i) and (ii). Indeed, the poles of W− are the eigenvalues of
(I −Π)A(I −Π), while the zeros of W− are the eigenvalues of (I −Π)A×(I −Π).
So, the poles of W− are in F+ ∪ Γ, and the zeros of W− are in the same set.
Likewise, the poles of W+ are the eigenvalues of ΠAΠ, while the zeros of W+ are
the eigenvalues of ΠA×Π. So, the poles and zeros of W+ are in the set F− ∪ Γ.
Hence the factorization is a right pseudo-canonical factorization.

Conversely, assume that the factorization is a right pseudo-canonical factor-
ization. As the factorization is minimal, by Theorem 9.3 there exist two subspaces
M and M× such that (iii) holds, and such that M is A-invariant and M× is A×-
invariant. Because the factorization is a right pseudo-canonical factorization the
poles of W− lie in F+ ∪Γ, while the poles of W+ lie in F− ∪Γ. As the poles of W−

are precisely the eigenvalues of A|M (the appropriate multiplicities counted), this
proves (i). A similar argument applied to the zeros of W− and W+ proves (ii). �

Let W = W−W+ and W = W̃−W̃+ be two right pseudo-canonical factoriza-
tions with respect to Γ. These two factorizations are called equivalent if W−(∞) =
W̃−(∞), and there exists an invertible matrix E such that W−(λ) = W̃−(λ)E,
W+(λ) = E−1W̃+(λ). Canonical factorizations, when they exist, are equivalent
in this sense. The following example shows that this is not the case for pseudo-
canonical factorizations.

Example. Let

W (λ) =

⎡
⎢⎢⎢⎣

λ

λ + 2i

3iλ

(λ − i)(λ + 2i)

0
λ

λ − i

⎤
⎥⎥⎥⎦ .
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We are interested in right pseudo-canonical factorization with respect to the real
line of W . A minimal realization of W is given by

A =

[
−2i 0

0 i

]
, B =

[
−i i

0 i

]
, C =

[
2 1

0 1

]
, D =

[
1 0

0 1

]
.

One checks that A× = 0. Hence, the poles of W are −2i and i, and the only zero
is 0, with double multiplicity.

For M we have only one choice, being the space spanned by the column
vector [ 0 1 ]⊤. For M× we can take the space spanned by any column vector of
the form [ 1 α ]⊤. One computes that the corresponding factorization is given by

W (λ) = W
(α)
− (λ)W

(α)
+ (λ),

where

W
(α)
− (λ) =

⎡
⎢⎢⎢⎣

λ − i(1 + α)

λ − i

i(1 + α)

λ − i

−iα

λ − i

λ + iα

λ − i

⎤
⎥⎥⎥⎦ ,

W
(α)
+ (λ) =

⎡
⎢⎢⎢⎣

λ + iα

λ + 2i

i(2 − α)

λ + 2i

iα

λ + 2i

λ + i(2 − α)

λ + 2i

⎤
⎥⎥⎥⎦ .

Thus, for any complex number α we have a right pseudo-canonical factorization.
Now suppose that the two factorizations corresponding to α and β are equiva-

lent. Then W
(α)
+ (λ)W

(β)
+ (λ)−1 = W

(α)
− (λ)−1W

(β)
− (λ) would have to be a constant

matrix. However, this product is given by

W
(α)
+ (λ)W

(β)
+ (λ)−1 =

⎡
⎢⎢⎢⎣

λ + i(α − β)

λ

−i(α − β)

λ

i(α − β)

λ

λ − i(α − β)

λ

⎤
⎥⎥⎥⎦ ,

which clearly is not a constant when α �= β.

9.3 Minimal factorization in a singular case

In Section 2.4 we have introduced the notion of a supporting projection for sys-
tems that are biproper. In this section we extend this notion to finite-dimensional
systems with equal input and output space that are not necessarily biproper. More
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precisely, we shall consider systems of the form

Θ = (A, B, C, D; X, Cm), (9.13)

where dim X is finite, and D is allowed to be singular.

Let Θ be as in (9.13). Given a projection Π of X we define M(Π; Θ) to be
the operator from ImΠ +̇ Cm into KerΠ +̇ Cm given by

M(Π; Θ) =

[
(I − Π)AΠ (I − Π)B

CΠ D

]
. (9.14)

As we have seen in Section 2.4 (see the proof of Proposition 2.4), if Θ is biproper,
i.e., the external coefficient D is non-singular, then

rankM(Π; Θ) = rankD + rank
(
(I − Π)A×Π

)
,

where A× = A − BD−1C. Since rankD = m, it follows that for D non-singular

rankM(Π; Θ) ≤ m ⇔ A×[Im Π] ⊂ ImΠ.

This proves the following proposition (which is a reformulation of Proposition 2.4).

Proposition 9.5. Let Θ in (9.13) be biproper. Then a projection Π of X is a sup-
porting projection for Θ if and only if

A[KerΠ] ⊂ KerΠ, rankM(Π; Θ) ≤ m. (9.15)

Note that in (9.15) the inverse of D does not appear. Hence we can use (9.15)
to extend the notion of supporting projections to systems Θ that are not biproper.
In the sequel, if Θ is as in (9.13), then a projection Π of X is called a supporting
projection for Θ whenever (9.15) is satisfied.

The first condition in (9.15) allows us to write the operators in Θ in block
form, namely

Θ =

([
A1 A12

0 A2

]
,

[
B1

B2

]
,
[

C1 C2

]
, D ; X, Cm

)
, (9.16)

where the block matrix representations are taken with respect to the decomposi-
tion X = KerΠ +̇ Im Π. We shall refer to (9.16) as the block matrix representation
of Θ induced by the supporting projection Π. Notice that in the notation of (9.16)
we have

M(Π; Θ) =

[
A12 B1

C2 D

]
. (9.17)

From the second condition in (9.15) it follows that M(Π; Θ) admits a factor-
ization over Cm, that is, there exist operators

[
F

D1

]
: Cm →

[
KerΠ

Cm

]
,

[
G D2

]
:

[
ImΠ

Cm

]
→ Cm (9.18)
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such that

M(Π; Θ) =

[
F

D1

]
[

G D2

]
. (9.19)

We shall refer to (9.19) as a Cm-factorization associated with the supporting pro-
jection Π.

Now, let Π be a supporting projection for Θ, let (9.16) be the block matrix
representation of Θ induced by Π, and let (9.19) be a Cm-factorization associated
with Π. Consider the systems

Θ1 = (A1, F, C1, D1; KerΠ, Cm), (9.20)

Θ2 = (A2, B2, G, D2; Im Π, Cm), (9.21)

We call Θ1 the left factor of Θ associated with Π and the given Cm-factorization
of M(Π; Θ). Similarly, Θ2 is called the right factor of Θ associated with M and
the given Cm-factorization. The next theorem justifies the use of this terminology.

Theorem 9.6. Let Π be a supporting projection for Θ, let (9.16) be the block matrix
representation of Θ induced by Π, and let (9.19) be a Cm-factorization associated
with Π and Θ. Then Θ admits the factorization Θ = Θ1Θ2, where Θ1 and Θ2 are
given by (9.20) and (9.21), respectively. Conversely, if Θ = Θ1Θ2 is a factorization
of Θ, with

Θ1 = (A1, B1, C1, D1; X1, C
m),

Θ2 = (A2, B2, C2, D2; X2, C
m),

then the state space of X of Θ is given by X = X1+̇X2, the projection Π of X
along X1 onto X2 is a supporting projection of Θ,

M(Π; Θ) =

[
B1

D1

] [
C2 D2

]
(9.22)

is a Cm-factorization associated with Π and Θ, and the left and right factors of
Θ associated with Π and the Cm-factorization (9.22) are equal to Θ1 and Θ2,
respectively.

Proof. Let Θ1 and Θ2 be given by (9.20) and (9.21), respectively. By definition
(see Section 2.3), the product Θ1Θ2 is given by

Θ1Θ2 =

([
A1 FG

0 A2

]
,

[
FD2

B2

]
,

[
C1 D1G

]
, D1D2 ; KerΠ +̇ ImΠ, Cm

)
.

The Cm-factorization (9.19) of M(Π; Θ) yields

FG = A12, FD2 = B1, D1G = C2, D1D2 = D.
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Since X = KerΠ +̇ ImΠ, it follows that Θ1Θ2 is precisely equal to the system
given by (9.16), that is, Θ1Θ2 = Θ.

To prove the converse statement, let Θ = Θ1Θ2, where Θ1 and Θ2 are as in
the second part of the theorem. Again using the product definition we have

Θ =

([
A1 B1C2

0 A2

]
,

[
B1D2

B2

]
,

[
C1 D1C2

]
, D1D2 ; KerΠ +̇ ImΠ, Cm

)
.

Then (9.22) holds, and it is straightforward to check that Θ1 is the left factor and
Θ2 is the right factor of Θ associated with Π and the Cm-factorization (9.22). �

Let Θ be a finite-dimensional system as in (9.13), and let Π be a supporting
projection of Θ. Consider the block matrix representation (9.16) of Θ induced by
Π. Then the transfer function WΘ of Θ admits the following representation

WΘ(λ) =
[

C1(λ − A1)
−1 Im

]
M(Π; Θ)

[
(λ − A2)

−1B2

Im

]
. (9.23)

To see this, let (9.19) be a Cm-factorization of M(Π; Θ), and let Θ1 and Θ2 be
the finite-dimensional systems defined by (9.20) and (9.21), respectively. From
Theorem 9.6 we know that Θ = Θ1Θ2, and hence the transfer function WΘ of Θ
admits the factorization WΘ(λ) = WΘ1(λ)WΘ2 (λ). Notice that

WΘ1(λ) = D1 + C1(λ − A1)
−1F,

WΘ2(λ) = D2 + G(λ − A1)
−1B2.

Using (9.19), we see that WΘ1(λ)WΘ2 (λ) is precisely equal to the right-hand side
of (9.23), and hence (9.23) is proved.

In general, the matrix M(Π, Θ) has many different Cm-factorizations. Hence
a single supporting projection of Θ yields many different factorizations of the
transfer function WΘ. Given a supporting projection Π of Θ we say that a pair
of proper rational m × m matrix functions {W1, W2} is a pair of factors of WΘ

induced by Π if there exists a Cm-factorization of M(Π; Θ) such that W1 = WΘ1 ,
where Θ1 is the left factor of Θ associated with Π and the given factorization, and
W2 = WΘ2 , where Θ2 is the right factor of Θ associated with Π and the given
factorization. In that case, by Theorem 9.6, we have WΘ(λ) = W1(λ)W2(λ). If
WΘ is regular (that is, when there exists a complex number λ0, not a pole of WΘ,
such that det WΘ(λ0) �= 0), then the set of factors {W1, W2} induced by a single
supporting projection is relatively simple to describe. We have the following result.

Proposition 9.7. Let Θ be a finite-dimensional system as in (9.23), let Π be a
supporting projection of Θ, let (9.19) be a given Cm-factorization of M(Π; Θ), and



176 Chapter 9. Minimal Factorization of Rational Matrix Functions

let Θ1, Θ2 be given by (9.20) and (9.21), respectively. Assume WΘ is regular. Then
the set of all pairs of factors {W1, W2} of WΘ induced by Π is given by

{{
WΘ1(·)E, E−1WΘ2(·)

} ∣∣E is a non-singular m × m matrix
}
. (9.24)

Proof. We first show that the regularity of WΘ implies that

rankM(Π; Θ) = m. (9.25)

To do this we use the representation (9.23). Since WΘ is regular, we can choose
λ ∈ C in such a way that the three matrices WΘ(λ), λ−A1, and λ−A2 are all non-
singular. For such a choice of λ the equality (9.23) is valid, and its left-hand side
has rank equal to m. The latter can only happen when rankM(Π; Θ) ≥ m. But Π
is a supporting projection. Thus, by definition, rankM(Π; Θ) ≤ m. It follows that
(9.25) holds.

Next we use the given Cm-factorization (9.19). Since (9.25) holds, any other
Cm-factorization of M(Π; Θ) is of the form

M(Π; Θ) =

[
FE
D1E

] [
E−1G E−1D2

]
, (9.26)

where E is an arbitrary non-singular m×m matrix. The representation (9.24) now
follows from (9.26) and Theorem 9.6. �

Next we consider minimal factorization. The following result is the analogue
of Theorem 9.3 for finite-dimensional systems that are not necessarily biproper.

Theorem 9.8. Let Θ in (9.13) be a minimal realization of the rational m×m matrix
function W .

(i) Assume that Π is a supporting projection for Θ, and let (9.19) be a Cm-
factorization associated with Π and Θ. Then W = WΘ1WΘ2 , where Θ1 is
the left factor and Θ2 is the right factor associated with Π and the given
Cm-factorization (9.19), and the factorization W = WΘ1WΘ2 is minimal.

(ii) Assume that W = W1W2 is a minimal factorization of W . Then there exists
a unique supporting projection Π for Θ and a unique Cm-factorization asso-
ciated with Π and Θ such that W1 = WΘ1 and W2 = WΘ2 , where Θ1 is the
left factor and Θ2 is the right factor of Θ associated with Π and the given
Cm-factorization.

Proof. We split the proof in three parts. In the first part we prove statement (i),
the two other parts concern item (ii).

Part 1. Let the conditions of (i) be satisfied. Then it follows from the first part of
Theorem 9.6 that Θ = Θ1Θ2, and hence WΘ = WΘ1WΘ2 . Since W = WΘ and Θ
is minimal, we can apply Theorem 8.27 to show that W = WΘ1WΘ2 is a minimal
factorization.
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Part 2. Let W = W1W2 be a minimal factorization. Since W = WΘ, we know that
W is analytic at infinity. The minimality of the factorization then implies that the
same holds true for factors W1 and W2. Let Θ′

1 and Θ′
2 be minimal realizations of

W1 and W2, respectively. Since the factorization W = W1W2 is minimal, it follows
(see Theorem 8.27) that Θ′ = Θ′

1Θ
′
2 is a minimal realization of W = WΘ. Using

the minimality of Θ, it follows that Θ and Θ′ are similar, and the similarity from
Θ to Θ′ is unique. Write

Θ′
j = (A′

j , B
′
j , C

′
j , D

′
j ; X

′
j , C

m), j = 1, 2.

Then

Θ′ =

([
A′

1 B′
1C

′
2

0 A′
2

]
,

[
B′

1D2

B′
2

]
,
[

C′
1 D1C

′
2

]
, D1D2 ; X ′

1+̇X ′
2, C

m

)
.

Put X ′ = X ′
1+̇X ′

2, and let Π′ be the projection of X ′ along X ′
1 unto X ′

2. Notice
that

M(Π′; Θ′) =

[
B′

1

D1

]
[

C′
2 D2

]
.

Now, let S from X to X ′ be the (unique) similarity from Θ to Θ′, and put Π =
S−1Π′S. Then Π is a supporting projection for Θ, and

M(Π, Θ) =

[
S−1

1 0

0 Im

]
M(Π′; Θ′)

[
S2 0

0 Im

]

where S1 is the restriction of S to KerΠ viewed as a map from KerΠ into KerΠ′,
and S2 is the restriction of S to Im Π viewed as a map from Im Π into Im Π′. Both
S1 and S2 are invertible. Put

F = S−1
1 B′

1, G = C′
2S2.

Then

M(Π; Θ) =

[
F

D1

]
[

G D2

]
. (9.27)

Let Θ1 be the left factor and Θ2 the right factor associated with Π and the Cm-
factorization (9.27). Then it is straightforward to check that S1 is a similarity from
Θ1 to Θ′

1, and that S2 is a similarity from Θ2 to Θ′
2. We conclude that WΘ1 = WΘ′

1

and W2 = WΘ2 , as desired.

Part 3. It remains to prove the uniqueness of Π and the Cm-factorization associated
with Π and Θ. To prove this uniqueness, let Π̃ be a supporting projection for Θ,
and let

M(Π̃; Θ) =

[
F̃

D̃1

] [
G̃ D̃2

]
(9.28)
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be a corresponding Cm-factorization such that W1 = WΘ̃1
and W2 = WΘ̃2

, where

Θ̃1 is the left factor and Θ̃2 the right factor associated with Π̃ and the Cm-
factorization (9.28). First of all, note that

D1 = W1(∞) = WΘ̃1
(∞) = D̃1, D2 = W2(∞) = WΘ̃2

(∞) = D̃2.

For j = 1, 2 the systems Θj and Θ̃j are minimal realizations of Wj . Hence there

exists a similarity Sj from Θj to Θ̃j . From the first part of the proof we know that

Θ = Θ̃1Θ̃2 and Θ = Θ1Θ2. Thus

S =

[
S1 0

0 S2

]

is a self-similarity of Θ. For minimal systems the similarity is unique. Thus S is
an identity operator. Hence both S1 and S2 are identity operators. It follows that
Θ1 = Θ̃1 and Θ2 = Θ̃2. We conclude that Π = Π̃ and that the Cm factorizations
(9.27) and (9.28). �

Theorem 9.8 contains Theorem 9.3 as a special case. To see this, recall that
in Theorem 9.3 the systems are required to be unital, and the rational matrix
functions are assumed to be proper and to have the value Im at infinity. Now
let Θ be a unital finite-dimensional system, and let Π be a supporting projection
for Θ. Then the transfer function W = WΘ is regular, and hence Proposition 9.7
applies. It follows that the set of all pairs of factors {W1, W2} of WΘ induced by
Π is given by (9.24). But in Theorem 9.3 we are only interested in factors that
have the value Im at infinity. This restricts the choice of the invertible matrix E in
the set (9.24) to one matrix only, namely to the m×m identity matrix. It follows
that (9.24) contains only one pair of factors {W1, W2} with W1 and W2 having
the value Im at infinity. From these remarks we see that Theorem 9.3 is covered
by Theorem 9.8.

We conclude this section with an example which is not covered by Proposition
9.7. Let W be the 2 × 2 rational matrix function given by

W (λ) =

⎡
⎢⎣

0 0

1 − λ2

λ2

1 − λ2

λ2

⎤
⎥⎦ .

A minimal realization of W is provide by the following system

Θ =

([
0 1

0 0

]
,

[
−1 −1

1 1

]
,

[
0 0

1 1

]
,

[
0 0

−1 −1

]
; C2, C2

)
.



9.3. Minimal factorization in a singular case 179

Let Π be the projection of C2 along the first coordinate space onto the second.
Identifying both KerΠ and Im Π with C, the matrix M(Π; Θ) is given by

M(Π; Θ) =

⎡
⎢⎢⎣

1 −1 −1

0 0 0

1 −1 −1

⎤
⎥⎥⎦

Note that rankM(Π; Θ) = 1, and hence (9.25) is not fulfilled in this case. Since
W is not regular, Proposition 9.7 also does not apply. To illustrate this further we
consider the following C2-factorizations of M(Π; Θ):

M(Π; Θ) =

⎡
⎢⎢⎢⎣

1 1

0 0

1 1

⎤
⎥⎥⎥⎦

[
1 0 0

0 −1 −1

]
=

⎡
⎢⎢⎢⎣

1 0

0 1

1 0

⎤
⎥⎥⎥⎦

[
1 −1 −1

0 0 0

]

These two C2 factorizations of M(Π; Θ) yield, respectively, the following factor-
izations of W :

W (λ) =

⎡
⎢⎣

0 0

λ + 1

λ

λ + 1

λ

⎤
⎥⎦

⎡
⎢⎣

1

λ

1

λ

−1 −1

⎤
⎥⎦ , (9.29)

W (λ) =

⎡
⎢⎣

0 1

λ + 1

λ
0

⎤
⎥⎦

⎡
⎢⎣

1 − λ

λ

1 − λ

λ

0 0

⎤
⎥⎦ . (9.30)

Since Θ is a minimal realization of W , the two factorizations above are both
minimal. Note that the first factor in (9.30) is regular while the first factor in
(9.30) is not. Thus the set of all pairs of factors of W = WΘ induced by Π cannot
not be described by a formula like (9.24).

Notes

The material in Section 9.1 is taken from the first part of Chapter 4 in [14], in
particular from Section 4.3. Section 9.2 is based on the paper [102]; see also the
dissertation [103] which contains some additional applications of pseudo-canonical
factorization. For connections between contractive matrix functions and pseudo-
canonical factorization, see [72]. Section 9.3 originates from [35].





Part III

Degree One Factors,
Companion Based Rational
Matrix Functions,
and Job Scheduling

This part is devoted to the study of factorization into degree one factors, that
is, into factors that have a minimal realization with a state space of dimension
one. A second main theme is the connection between the problem of degree one
factorization and a problem of job scheduling from operations research.

There are three chapters (10, 11 and 12) in this part. In Chapter 10 the
problem to factorize a rational matrix function in degree one factors is analyzed
in a state space setting. The notions of complete and quasicomplete degree one
factorizations are introduced. In general, the latter factorizations are non-minimal.
The results are specified further for so-called companion based matrix functions
in Chapter 11. Finally, in Chapter 12 it is shown that the issue of quasicomplete
degree one factorization of companion based matrix functions is intimately con-
nected to a particular job scheduling problem, namely the two machine flow shop
problem. Maple procedures to calculate degree one factorizations for companion
based matrix functions complement the text.





Chapter 10

Factorization into
Degree One Factors

In this chapter we study the factorization of a proper rational m × m matrix
function having the value Im at infinity into elementary factors satisfying the same
constraints. These elementary factors are of McMillan degree one by definition.
It turns out, by using realization, that the problem of factorizing a function in
such degree one factors is intimately connected with the issue of simultaneous
reduction to complementary triangular forms of pairs of matrices. We prove that
factorization into elementary factors is always possible.

In general, however, pole-zero cancellations occur so that the factorizations
in question are non-minimal. This is further underlined by the fact that one has to
allow for the introduction of new poles and zeros not present in the given function.
Such new poles and zeros do not occur in the situation where the factorization
has the additional property of being minimal. In that case the factorization is
called complete and the number of elementary factors in it is equal to the McMil-
lan degree of the function that is factorized. In general, complete factorization is
not possible. A quasicomplete factorization is one where the number of elementary
factors is as small as possible. The number of factors involved is called the quaside-
gree and we give an upper bound for it. Examples are presented to illustrate the
material.

This chapter consists of four sections. The main topic of the first section is
simultaneous reduction to complementary triangular forms of pairs of matrices.
A number of conditions for such reductions to exist are given. In the second sec-
tion factorization into elementary factors is studied in terms of realizations, and
the connection with simultaneous reduction to complementary triangular forms is
described. The third section is devoted to complete factorizations and the final
section deals with quasicomplete factorizations.
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10.1 Simultaneous reduction to complementary
triangular forms

We say that two complex n × n matrices A and Z admit simultaneous reduction
to complementary triangular forms if there exists an invertible n × n matrix S
such that S−1AS is an upper triangular matrix and S−1ZS is a lower triangular
matrix. As will become clear in the next section, this definition is inspired by
Theorem 2.6. It will turn out to be useful in the study of factorizations of rational
matrix functions involving factors of McMillan degree one only.

We begin with a proposition presenting a number of equivalent conditions
for the above notion. The first is geometric in nature and requires the following
terminology. A chain M0 ⊂ M1 ⊂ · · · ⊂ Mn of subspaces of Cn is called complete
if dimMj = j for j = 0, 1, . . . , n (in particular, M0 = {0} and Mn = Cn).

Proposition 10.1. Let A and Z be complex n × n matrices. Then A and Z admit
simultaneous reduction to complementary triangular forms if and only if one (or
all ) of the following conditions is (are) satisfied.

(a) There exist complete chains M0 ⊂ M1 ⊂ · · · ⊂ Mn and N0 ⊂ N1 ⊂ · · · ⊂ Nn

of subspaces of Cn such that, for j = 1, . . . , n,

AMj ⊂ Mj, ZNj ⊂ Nj , Mj ∔ Nn−j = Cn.

(b) There exist bases f1, . . . , fn and g1, . . . , gn of Cn such that, for j = 1, . . . , n,
f1, . . . , fj, gj+1, . . . , gn is a basis for Cnwhile, in addition,

Afj ∈ span {f1, . . . , fj}, Zgj ∈ span {gj, . . . , gn}.

(c) There exist invertible n × n matrices F and G such that F−1AF is upper
triangular, G−1ZG is lower triangular, and G−1F admits a lower-upper fac-
torization.

Proof. We split the proof into four parts corresponding to the following list of im-
plications: (b)⇒ (a)⇒ (SR)⇒ (c)⇒ (b). Here (SR) is a shorthand notation for the
property that A and Z admit simultaneous reduction to complementary triangular
forms.

Part 1. We prove (b)⇒ (a). Let f1, . . . , fn and g1, . . . , gn be bases of Cn as in (b).
For j = 1, . . . n, put

Mj = span {f1, . . . , fj}, Nj = span {gn−j+1, . . . , gn}.

Then M0 ⊂ M1 ⊂ · · · ⊂ Mn and N0 ⊂ N1 ⊂ · · · ⊂ Nn are complete chains of
subspaces of Cn. Note that for each j = 1, . . . n, the statement that the vectors
f1, . . . , fj , gj+1, . . . , gn form a basis for Cn is equivalent to the equality Mj ∔

Nn−j = Cn. Finally, the inclusion properties in (b) show that the spaces Mj and
Nj are invariant under A and Z, respectively. Thus (a) holds.
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Part 2. We prove (a)⇒ (SR). Let M0 ⊂ M1 ⊂ · · · ⊂ Mn and N0 ⊂ N1 ⊂ · · · ⊂ Nn

be complete chains of subspaces of Cn with the additional properties mentioned
in (a). It is an elementary matter to check that

dim
(
Mj ∩ Nn−j+1

)
= 1, j = 1, . . . , n.

Pick sj �= 0 from Mj ∩ Nn−j+1, and let S =
[

s1 s2 · · · sn

]
, that is, S is the

matrix of which the jth column is equal to sj where j = 1, . . . , n. Then s1, . . . , sn

form a basis for Cn and S is invertible. The invariance conditions on the subspaces
Mj and Nj imply that S−1AS is upper triangular and S−1ZS is lower triangular.
Thus (SR) holds.

Part 3. We prove (SR)⇒ (c). Let S be an invertible matrix such that S−1AS
is upper triangular and S−1ZS is lower triangular. Put F = G = S. Then all
conditions of (c) are fulfilled.

Part 4. We prove (c)⇒ (b). Let F and G be invertible n × n matrices such that
F−1AF is upper triangular and G−1ZG is lower triangular. Suppose G−1F can be
written as LU where L is an invertible lower triangular matrix and U is an invert-
ible upper triangular matrix. Put S = FU−1. Then S−1AS = U

(
F−1AF

)
U−1 is

upper triangular. Since S = GL, the matrix product S−1ZS is equal to the matrix
L−1

(
G−1ZG

)
L, and hence S−1ZS is lower triangular. Now, for j = 1, . . . , n, take

fj = gj = sj , where sj is the jth column of S. Then f1, . . . , fn and g1, . . . , gn have
all the properties required in (b). �

Next we present two theorems with sufficient conditions for a pair of matrices
to admit simultaneous reduction to complementary triangular forms.

Theorem 10.2. Let A and Z be complex n× n matrices, one of which is diagonal-
izable. Then A and Z admit simultaneous reduction to complementary triangular
forms. In fact, if A is diagonalizable, then, given an ordering ζ1, . . . , ζn of the
eigenvalues of Z (algebraic multiplicities taken into account) there exists an in-
vertible n× n matrix S such that S−1AS is upper triangular and S−1ZS is lower
triangular with diagonal elements ζ1, . . . , ζn (again algebraic multiplicities taken
into account).

Here and elsewhere diagonal elements of matrices are read from top left to
bottom right.

It suffices to prove the second part of the theorem. Indeed, if two n × n
matrices A and Z admit simultaneous reduction to complementary triangular
forms, then so do Z and A. To see this, use the n×n reversed identity matrix having
ones on the antidiagonal and zeros everywhere else (cf., the proof of Corollary 10.7
below).

Proof of Theorem 10.2. For n = 1, there is nothing to prove. So assume n is at
least two. Whenever convenient, we shall view A and Z as linear operators on Cn.
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Let a1, . . . , an be a basis in Cn such that the matrix representation of A with
respect to this basis has diagonal form. So

Aaj = αjaj , j = 1, . . . , n,

where α1, . . . , αn are the eigenvalues of A counted according to algebraic multi-
plicity. Also, let z1, . . . , zn be a basis in Cn such that the matrix representation
of Z with respect to this basis has lower triangular form. So, for j = 1, . . . , n, the
vector Zzj is in the linear hull of zj , . . . , zn. In particular zn is an eigenvector of
Z. In fact, the basis z1, . . . , zn can be chosen in such a way that Zzn = ζnzn. We
may assume too that the basis a1, . . . , an is ordered in such a way that the vectors
a1, . . . , an−1, zn form a basis of Cn as well. Let X0 be the linear hull of a1, . . . , an−1

and let X1 be the linear hull of the single vector zn. Then Cn = X0+̇X1 and with
respect to this decomposition, the matrix representations of A and Z have the
form [

A0 A+

0 A1

]
,

[
Z0 0

Z− Z1

]
.

The space X0 has dimension n − 1 and with respect to its basis a1, . . . , an−1,
the linear operator A0 has diagonal form. Further, the eigenvalues of Z0 are
ζ1, . . . , ζn−1. We may assume (using induction) that there is a basis u1, . . . , un−1

in X0 with respect to which A0 has upper triangular and Z0 has lower triangular
form with ζ1, . . . , ζn−1 on the diagonal (read from top left to bottom right). But
then u1, . . . , un−1, zn is a basis of Cn for which the matrix representations of A
and Z are upper and lower triangular, respectively, and the proof is complete. �

Theorem 10.3. Let A and Z be complex n × n matrices. Suppose A and Z have
no common eigenvalue and, in addition, rank (A − Z) = 1. Then A and Z ad-
mit simultaneous reduction to complementary triangular forms. In fact, given an
ordering α1, . . . , αn of the eigenvalues of A and an ordering ζ1, . . . , ζn of the eigen-
values of Z (in both cases algebraic multiplicities taken into account), there exists
an invertible n × n matrix S such that S−1AS is upper triangular with diago-
nal elements α1, . . . , αn and S−1ZS is lower triangular with diagonal elements
ζ1, . . . , ζn.

The above theorem will be proved in the next section, by using the connec-
tion between reduction to complementary triangular forms and factorization into
elementary factors.

Another sufficient condition for a pair of matrices to admit simultaneous
reduction to complementary triangular forms is presented in Theorem 10.14 of
Section 10.3.

The equivalence of statements (b) and (c) in Proposition 10.1 can also be
obtained as a corollary of the following more general result. For the sake of com-
pleteness we present the result with a full proof, although it will not play a role
in the sequel.
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Proposition 10.4. Let F and G be invertible n × n complex matrices, and for
j = 1, . . . , n, let fj and gj be the jth column of F and G, respectively. Then G−1F
admits a lower-upper factorization if and only if for j running from 1 to n − 1,
the vectors f1, . . . , fj, gj+1, . . . , gn form a basis for Cn.

Proof. Suppose G−1F admits a lower-upper factorization, say G−1F = LU with
L and U invertible matrices, L lower triangular, U upper triangular. Putting H =
FU−1 = GL we obtain an invertible n × n matrix. Clearly F = HU and G =
HL−1. Let j be an integer among 1, . . . , n−1, let U+ be the j× j matrix obtained
from U by omitting the last n− j rows and columns, and let the (n− j)× (n− j)
matrix L− be obtained from L−1 by omitting the first j rows and columns. Since
U is invertible and upper triangular, the matrix U+ is invertible. Similarly, as L−1

is invertible and lower triangular, the matrix L− is invertible. Now

[
f1 · · · fj gj+1 · · · gn

]
= H

[
U+ 0

0 L−

]
,

and it follows that the matrix
[

f1 · · · fj gj+1 · · · gn

]
is invertible. This proves

the only if part of the proposition.

Moving on to the if part, we assume that for j running from 1 to n, the n
vectors f1, . . . , fj , gj+1, . . . , gn are linearly independent, i.e., the matrix

Rj =
[

f1 · · · fj gj+1 · · · gn

]

is invertible. Putting R0 = G and Rn = F , we have

G−1F =
(
R−1

0 R1

)
· · ·

(
R−1

n−2Rn−1

)(
R−1

n−1Rn

)
.

Now, by a straightforward argument,

R−1
j−1Rj = In + rje

⊤
j , j = 1, . . . , n,

where rj = R−1
j−1fj and ej is the jth unit vector in Cn (having 1 on the jth position

and zeros everywhere else). Note that 1 + e⊤j rj �= 0, j = 1, . . . , n as the matrix

R−1
j−1Rj = In + rje

⊤
j is invertible and its determinant is equal to 1 + e⊤j rj . It now

suffices to prove that the kth leading principal minor of the matrix
(
In + r1e

⊤
1

)
· · ·

(
In + rn−1e

⊤
n−1

)(
In + rne⊤n

)
(10.1)

is given by (1 + e⊤1 r1) · · · (1 + e⊤k rk), k = 1, . . . , n. Indeed, this follows from the
well-known fact that a matrix allows lower-upper factorization if and only if all
its leading principal minors are invertible.

The argument for this employs induction (on n). For n = 1, the statement
is obviously correct. Suppose n ≥ 2. The nth leading principal minor and the
determinant of (10.1) coincide and the value in question is

(1 + e⊤1 r1) · · · (1 + e⊤n−1rn−1)(1 + e⊤n rn),
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as desired. Now let us look at the other leading principal minors of (10.1). These
coincide with the leading principal minors of the matrix R obtained from (10.1) by
omitting its last column and row. For j = 1, . . . , n−1, the last column of In +rje

⊤
j

is en. Also the matrix obtained from In + rne⊤n by omitting the last column and
row is In−1. It follows that

R =
(
In−1 + r̂1ê

⊤
1

)
· · ·

(
In−1 + r̂n−1ê

⊤
n−1

)
,

where r̂j ∈ Cn−1 is obtained from rj by omitting the last component and the
vectors ê1, . . . , ên−1 are the unit vectors in Cn−1. For k = 1, . . . , n−1, (by induction
hypothesis) the kth leading principal minor of R is (1 + ê⊤1 r̂1) · · · (1 + ê⊤k r̂k). But
this is clearly equal to (1 + e⊤1 r1) · · · (1 + e⊤k rk), again as desired. �

10.2 Factorization into elementary factors
and realization

A rational m×m matrix function E is called elementary whenever the McMillan
degree of E is equal to one. Throughout this chapter an elementary rational m×m
matrix function is also assumed to be proper and to have the value Im at infinity.
This allows us to write such a function E in the form

E(λ) = Im +
1

λ − α
R, (10.2)

where R is a rank one m × m matrix and α is the unique pole of E which is
necessarily simple (i.e., of order one). To describe the inverse E−1(λ) = E(λ)−1

of E(λ), we put α× = α − traceR. Then E(λ) is invertible if and only if λ �= α×,
and in that case

E−1(λ) = Im − 1

λ − α×
R. (10.3)

This identity can be verified by direct computation, but one can also make a
connection with the material developed in Section 2.2. Here are the details. Write
R in the form R = cb⊤, where b and c are nonzero vectors in Cm and the superscript
⊤ denotes the operation of taking the transpose. Then E(λ) = Im + c(λ−α)−1b⊤,
which is a minimal realization of E with state space C and main operator (the
multiplication by) α. Now traceR = b⊤c, so α× = α − b⊤c, and we can apply
Theorem 2.1. Clearly the function E−1 is again elementary and has α× = α −
traceR as its (unique) pole.

As we shall see in Section 10.4 below (see Theorem 10.15) any proper rational
m × m matrix function W with W (∞) = Im can be written as a product of
elementary factors. For the scalar case (m = 1) this fact is easy to prove.

Indeed, let w be a scalar rational function with w(∞) = 1. Then w is the
quotient of two scalar polynomials a× and a with the same leading coefficient 1
and of the same degree, n say. We shall assume, as we may do without loss of
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generality, that these polynomials are relatively prime, i.e., they have no common
zero. Writing

a×(λ) = (λ − a×
1 ) · · · (λ − a×

n ), a(λ) = (λ − a1) · · · (λ − an),

we have

w(λ) =
a×(λ)

a(λ)
=

(
1 +

α1 − α×
1

λ − α1

)
· · ·

(
1 +

αn − α×
n

λ − αn

)
, (10.4)

and this is a factorization of w into n scalar rational functions of McMillan degree
one, that is, a factorization into n scalar elementary factors. Note that in this
case n is precisely equal to the McMillan degree of w, and hence the factorization
is a minimal one. Factorizations into elementary factors that are minimal are of
special interest and will be studied in Section 10.3.

In the present section we analyze factorization into elementary factors in
terms of realizations. The following theorem, which is inspired by Theorem 2.6,
is our first main result. It clarifies the connection between simultaneous reduction
to complementary triangular forms (for pairs of matrices) and factorization into
elementary factors.

Theorem 10.5. Let W be a proper rational m × m matrix function with W (∞) =
Im, and let n be a non-negative integer. The following statements are equivalent:

(i) W admits a factorization into at most n elementary factors,

(ii) W admits a factorization into precisely n elementary factors,

(iii) W has a realization W (λ) = Im + C(λIn − A)−1B such that A and A×(=
A − BC) are upper and lower triangular, respectively,

(iv) W has a realization W (λ) = Im + C(λIn − A)−1B such that A and A×(=
A − BC) admit simultaneous reduction to complementary triangular forms.

We begin with a lemma that will be needed in the proof.

Lemma 10.6. Each elementary rational m × m matrix function can be written as
the product of two functions of the same type.

Proof. Consider E given by (10.2) with rankR = 1. Write R in the form R = cb⊤,
where b and c are nonzero vectors in Cm. Let β be a complex number different
from α and α× = α − b⊤c, and choose f ∈ Cm such that f⊤c = β − α×. As
β − α× �= 0, the vector f is a nonzero vector in Cm. Also (f⊤ − b⊤)c = β − α
and f⊤ − b⊤ �= 0. Now introduce the rank one matrices R1 = c(b⊤ − f⊤) and
R2 = cf⊤. Then

R1 + R2 = c(b⊤ − f⊤) + cf⊤ = cb⊤ = R,

R1R2 = c(b⊤ − f⊤)cf⊤ = c[(b⊤ − f⊤)c]f⊤ = (α − β)cf⊤ = (α − β)R2.
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This yields

Im +
1

λ − α
R =

(
Im +

1

λ − α
R1

)(
Im +

1

λ − β
R2

)
, (10.5)

as can be verified via a straightforward computation. �

Note that each of the statements (i)-(iv) in Theorem 10.5 implies that n is
larger than or equal to δ(W ), the McMillan degree of W . For (i) and (ii) this
follows from the sublogarithmic property (8.50) of the McMillan degree, for (iii)
and (iv) from Theorem 8.26. Further relevant details will be provided in the proof
below.

Proof of Theorem 10.5. The case n = 0 corresponds to the trivial situation where
W is constant with value Im. Therefore we assume n to be positive. The proof
will be divided into three parts.

Part 1. First let us note some simple relations between the statements (i)–(iv).
The implications (ii)⇒ (i) and (iii)⇒ (iv) are trivial. The implication (iv)⇒ (iii)
comes about by applying the appropriate similarity transformation to the given
realization. Hence (iii) and (iv) amount to the same. If W can be written as the
product of at most n elementary factors, then Lemma 10.6 guarantees that (at
the possible expense of introducing additional poles) W also admits a factorization
into precisely n elementary factors. Thus (i)⇒ (ii), and we conclude that (i) and
(ii) are equivalent. It remains to prove (ii)⇒ (iii) and (iii)⇒ (i).

Part 2. We prove (ii)⇒ (iii). Suppose W can be written as a product of elementary
factors,

W (λ) =

(
Im +

1

λ − α1
R1

)
· · ·

(
Im +

1

λ − αn
Rn

)
. (10.6)

For j = 1, . . . , n, write Rj = cjb
⊤
j with bj and cj nonzero vectors in Cm, so that

(10.6) becomes

W (λ) =
(
Im + c1(λ − α1)

−1b⊤1
)
· · ·

(
Im + cn(λ − αn)−1b⊤n

)
.

Define matrices A, B and C by

A =

⎡
⎢⎢⎢⎢⎣

α1 b⊤1 c2 · · · b⊤1 cn

0 α2
. . .

...
...

. . .
. . . b⊤n−1cn

0 · · · 0 αn

⎤
⎥⎥⎥⎥⎦

, (10.7)

B =

⎡
⎢⎢⎢⎢⎣

b⊤1

b⊤2
...

b⊤n

⎤
⎥⎥⎥⎥⎦

, C =
[

c1 c2 · · · cn

]
.
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Then W (λ) = Im + C(λIn − A)−1B, as can be seen by a repeated application of
Theorem 2.2. Next, put α×

j = αj − traceRj (j = 1, . . . , n). Then

A× = A − BC =

⎡
⎢⎢⎢⎢⎣

α×
1 0 · · · 0

−b⊤2 c1 α×
2

. . .
...

...
. . .

. . . 0

−b⊤n c1 · · · −b⊤n cn−1 α×
n

⎤
⎥⎥⎥⎥⎦

. (10.8)

Note that the matrix A is upper triangular while A× is lower triangular. Thus (ii)
implies (iii).

Part 3. We prove (iii)⇒ (i) We begin by relating the notion of simultaneous reduc-
tion to complementary triangular forms with Theorem 2.6. The matrices A and
Z admit simultaneous reduction to complementary triangular forms if and only if
there exist a chain

{0} ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂ Cn

of invariant subspaces for A and a chain

{0} ⊂ N1 ⊂ · · · ⊂ Nn−1 ⊂ Cn

of invariant subspaces for Z such that, for j = 1, . . . , n− 1, the spaces Mj and Nj

have (the same) dimension j while, moreover, Cn = Mj+̇Nn−j . But this, in turn,
is equivalent to the existence of mutually disjoint rank one projections Π1, . . . ,Πn

of Cn such that Π1 + · · · + Πn = Cn and, for j = 1, . . . , n − 1,

A[Ker (Πj+1 + · · · + Πn)] ⊂ Ker (Πj+1 + · · · + Πn) ,

Z[Im (Πj+1 + · · · + Πn)] ⊂ Im (Πj+1 + · · · + Πn) .

From this the connection with Theorem 2.6 is obvious.

Now assume that (iii) is satisfied, and let

W (λ) = Im + C(λIn − A)−1B (10.9)

be a realization with A and A× upper and lower triangular, respectively. From
what we saw in the previous paragraph and Theorem 2.6, it is already clear that
(i) holds, i.e., W admits a factorization into at most n elementary factors. For
later reference, however, it is useful to give some details.

Write

A =

⎡
⎢⎢⎢⎢⎣

α1 a12 · · · a1n

0 α2
. . .

...
...

. . .
. . . an−1,n

0 · · · 0 αn

⎤
⎥⎥⎥⎥⎦

, (10.10)
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A× =

⎡
⎢⎢⎢⎢⎢⎣

α×
1 0 · · · 0

a×
21 α×

2

. . .
...

...
. . .

. . . 0

a×
m1 · · · a×

m,m−1 α×
n

⎤
⎥⎥⎥⎥⎥⎦

, (10.11)

B =

⎡
⎢⎢⎢⎢⎣

b⊤1
b⊤2
...

b⊤n

⎤
⎥⎥⎥⎥⎦

, C =
[

c1 c2 · · · cn

]
, (10.12)

where b1, . . . , bn and c1, . . . , cn are in Cm. Since A× = A − BC, it follows that

α×
j = αj − b⊤j cj , j = 1, . . . , n,

aij = b⊤i cj , i, j = 1, . . . , n, i < j,

a×
ij = −b⊤i cj , i, j = 1, . . . , n, i > j.

From this we conclude that

W (λ) =

(
Im +

1

λ − α1
c1b

⊤
1

)
· · ·

(
Im +

1

λ − αn
cnb⊤n

)
, (10.13)

W−1(λ) =

(
Im − 1

λ − α×
n

cnb⊤n

)
· · ·

(
Im − 1

λ − α×
1

c1b
⊤
1

)
. (10.14)

Some of the factors in these expressions may coincide with Im. Thus (10.13) and
(10.14) are factorizations of W and W−1 into at most n elementary factors. In
particular (i) is satisfied. �

Notice that the eigenvalues α1, . . . , αn of A in (10.10) and the eigenvalues
α×

1 , . . . , α×
n of A× in (10.11) are related by

αj − α×
j = b⊤j cj = trace (cjb

⊤
j ), j = 1, . . . , n.

It follows that the jth factor in (10.14) read from left to right is the inverse of the
(n + 1 − j)th factor in (10.13).

Combining Theorems 10.5 and 10.2 we arrive at the following result.

Corollary 10.7. Let W be a proper rational m × m matrix function, let

W (λ) = Im + C(λIn − A)−1B

be a realization of W , and assume A× = A − BC is diagonalizable. Then, given
an ordering α1, . . . , αn of the eigenvalues of A (algebraic multiplicities taken into
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account), there exist factorizations of W and W−1 of the form

W (λ) =

(
Im +

1

λ − α1
R1

)
· · ·

(
Im +

1

λ − αn
Rn

)
, (10.15)

W−1(λ) =

(
Im − 1

λ − α×
n

Rn

)
· · ·

(
Im − 1

λ − α×
1

R1

)
, (10.16)

where R1, . . . , Rn are m×m matrices of rank at most one and α×
1 , . . . , α×

n are the
eigenvalues of A× (again algebraic multiplicities taken into account).

Proof. Apply Theorem 10.2 with A replaced by A×, Z by A and ζ1, . . . , ζn by
αn, . . . , α1. This gives an invertible n × n matrix T such that T−1A×T is up-
per triangular and T−1AT is lower triangular with diagonal elements αn, . . . , α1

(read, as always, from top left to bottom right). Let E be the n × n reversed
identity matrix, and put S = TE. Then S−1A×S is lower triangular and S−1AS
is upper triangular with diagonal elements α1, . . . , αn. In other words, S−1AS and
S−1A×S are of the form appearing in the right-hand sides of (10.10) and (10.11),
respectively. From (the final part of) the proof of Theorem 10.5 we know that this
implies the existence of factorizations of the desired type. �

Using the remark made in the paragraph after the proof of Theorem 10.5,
we see that the jth factor in (10.16) read from left to right is the inverse of the
(n + 1 − j)th factor in (10.15). Deleting in (10.15) and (10.16) possible factors
that are constant with value Im, one obtains factorizations of W and W−1 into
elementary factors.

There is an alternative version of Corollary 10.7 where it is assumed that A
(instead of A×) is diagonalizable. In this case we just consider

W−1(λ) = Im − C(λIn − A×)−1B

in place of W . In this alternative version, which clearly is a refinement of Theorem
2.7, the order of the eigenvalues of A× can be chosen at will.

To illustrate another (reverse) way of using Theorem 10.5 we prove now
Theorem 10.3 which is stated at the end of the previous section.

Proof of Theorem 10.3. Let A and Z be complex n × n matrices with rank (A −
Z) = 1, and assume that A and Z have no common eigenvalue. Write A−Z = bc⊤

with b, c ∈ Cn, and put

w(λ) = 1 + c⊤(λIn − A)−1b. (10.17)

The associate main operator for this realization of the rational scalar function w is
A× = A− bc⊤ = Z and, by assumption, this matrix has no eigenvalue in common
with A. But then we know from Theorem 7.6 that the realization is minimal. In
particular, n = δ(w).
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Now, let α1, . . . , αn and ζ1, . . . , ζn be given orderings of the eigenvalues of A
and Z, respectively. By a well-known identity for the determinant, we have

w(λ) = det
(
1 + c⊤(λIn − A)−1b

)
= det

(
In + (λIn − A)−1bc⊤

)
.

It follows that

w(λ) = det
(
In + (λIn − A)−1(A − Z)

)

= det
(
In + (λIn − A)−1

(
(λIn − Z) − (λIn − A)

))

= det
(
(λIn − A)−1(λIn − Z)

)

=
det(λIn − Z)

det(λIn − A)
=

(λ − ζ1) · · · (λ − ζn)

(λ − α1) · · · (λ − αn)

=

(
1 +

α1 − ζ1

λ − α1

)
· · ·

(
1 +

αn − ζn

λ − αn

)
.

Using this factorization of w into elementary factors, we see from Part 2 of the
proof of Theorem 10.5, with Rj = αj −ζj for j = 1, . . . , n, that w has a realization

w(λ) = 1 + c̃⊤(λIn − Ã)−1b̃, (10.18)

such that Ã is upper triangular with diagonal elements α1, . . . , αn, and the matrix
Ã×(= Ã − b̃c̃⊤) is lower triangular with diagonal elements ζ1, . . . , ζn. Since n =
δ(W ), the realizations in (10.17) and (10.18) are both minimal realizations of the
same function, and hence they are similar. Thus there exists an invertible n × n
matrix S such that

Ã = S−1AS, b̃ = S−1b, c̃⊤ = c⊤S.

It follows that S−1ZS = S−1(A − bc⊤)S = Ã×. Since Ã is upper triangular

and Ã× is lower triangular, we see that A and Z admit simultaneous reduction
to complementary forms. Moreover, the matrices S−1AS and S−1ZS have the
desired triangular structure with desired diagonal entries. �

We conclude this section with a few remarks related to Lemma 10.6. The
factorization (10.5) is non-minimal and has been obtained at the expense of intro-
ducing a “non-essential” pole β (cf., the systematic analysis of “pole-zero cancel-
lation” presented in Chapter 8). Taking inverses in (10.5) leads to

(
Im +

1

λ − α
R

)−1

= Im − 1

λ − α×
R

=

(
Im − 1

λ − α×
R2

)(
Im +

1

λ − β
R1

)
.

Note that this factorization features the same “non-essential” pole β too.



10.3. Complete factorization (general) 195

The phenomenon referred to above can be put in a more general context.
Indeed, by specifying Theorem 8.16 in Section 8.4 to factorization in elementary
factors, we obtain the following result.

Proposition 10.8. Let W be a proper rational m×m matrix function with W (∞) =
Im. Suppose W is given as a product of elementary factors,

W (λ) =

(
Im +

1

λ − α1
R1

)
· · ·

(
Im +

1

λ − αn
Rn

)
. (10.19)

Put α×
j = αj − traceRj (j = 1, . . . , n). Then, for each α ∈ C, we have

♯{j | αj = α} − δ(W ; α) = ♯{j | α×
j = α} − δ(W−1; α), (10.20)

and these coinciding numbers are non-negative integers.

Here ♯ stands for number of elements, δ(W ; α) is the pole-multiplicity of W
at α, and δ(W−1; α) is the pole-multiplicity of W−1 at α, which is equal to the
zero-multiplicity of W at α. If α is not a pole of W , respectively not a zero of W ,
then δ(W ; α), respectively δ(W−1; α), is zero by definition.

Roughly speaking, the second conclusion in Proposition 10.8 says the follow-
ing. The poles of W (pole-multiplicities counted) are among α1, . . . , αn, the zeros of
W (zero-multiplicities counted) are among α×

1 , . . . , α×
n , and the additional poles in

the factorization coincide with the additional zeros (again multiplicities counted).

The question arises whether, in general, for an arbitrary biproper rational m×
m matrix function one can obtain factorizations into elementary factors without
adding new poles and new zeros. We shall prove later that the answer is negative;
see the final example in Section 12.4.

10.3 Complete factorization (general)

Let W be a rational m × m matrix function having the value Im at infinity. A
complete factorization of W is a minimal factorization of W involving elementary
factors only. Thus a factorization of W is complete if it has the form

W (λ) =

(
Im +

1

λ − α1
R1

)
· · ·

(
Im +

1

λ − αn
Rn

)
, (10.21)

where n = δ(W ) is the McMillan degree of W , α1, . . . , αn are complex numbers,
and R1, . . . , Rn are rank one m × m matrices. Recall from the discussion in the
paragraph preceding the proof of Theorem 10.5 that in a factorization of the type
(10.21) the number of elementary factors is always at least δ(W )

In view of (10.3), the factorization (10.21) of W brings with it the factoriza-
tion

W−1(λ) =

(
Im − 1

λ − α×
n

Rn

)
· · ·

(
Im − 1

λ − α×
1

R1

)
. (10.22)
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Here α×
j = αj − traceRj , j = 1, . . . , n. As W and W−1 have the same McMillan

degree, the factorization (10.22) is complete if and only if this is the case for
(10.21). We conclude that W−1 admits a complete factorization if and only if W
does.

From the result presented in the third paragraph of the previous section
(see (10.4)) we know that each proper rational scalar function (with the value
at infinity being one) admits a complete factorization. For matrix functions this
result does not hold true. Indeed, as we know from the example mentioned at the
end of Section 9.1, the McMillan degree two function

⎡
⎣ 1

1

λ2

0 1

⎤
⎦ (10.23)

does not admit any non-trivial minimal factorization. In particular, (10.23) cannot
be written as the product of two elementary functions. On the other hand, as we
shall see in the next section, dropping the requirement of minimality, one can write
(10.23) as the product of three elementary functions.

In this section we use the results of the previous sections to present four theo-
rems on complete factorization. The first makes the connection with simultaneous
reduction to complementary triangular forms.

Theorem 10.9. Let W be a rational m × m matrix function, and let

W (λ) = Im + C(λIn − A)−1B

be a minimal realization of W . Then W admits a complete factorization if and only
if A and A× admit simultaneous reduction to complementary triangular forms.

Proof. Since the given realization of W is minimal, we have n = δ(W ). Suppose
W admits a complete factorization, i.e., a factorization into n elementary factors.
Then, by the implication (ii)⇒ (iii) in Theorem 10.5, there is a realization

W (λ) = Im + Ĉ(λIn − Â)−1B̂ (10.24)

with upper triangular Â and lower triangular Â× = Â − B̂Ĉ. As n = δ(W ), the
realization (10.24) is minimal. Applying Theorem 7.7 ( the state space isomorphism
theorem), one sees that A and A× admit simultaneous reduction to complementary
triangular forms. This proves the only if part of the theorem.

The if part can be immediately related to the implication (iv)⇒ (ii) in The-
orem 10.5, but it is instructive to follow a slightly different path. Assume A and
A× admit simultaneous reduction to complementary triangular forms. Then the
proof of the implication (iv)⇒ (ii) in Theorem 10.5 yields a factorization (10.13)
of W into at most n elementary factors. However, as already mentioned before
(and because of the sublogarithmic property of the McMillan degree), the number
of factors cannot be smaller than n = δ(W ). So the factorization in question is
complete. �
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The next two theorems can be viewed as additions to Theorem 8.15. As in
Theorem 8.15, let W be a rational m×m matrix function with W (∞) = Im. Since
the state space dimension of a minimal realization of W is equal to the McMillan
degree of W , Theorem 8.15 tells us that W admits a complete factorization when-
ever the poles of W are all simple. Using the fact that W admits a complete factor-
ization if and only if W−1 admits a complete factorization, the role of the poles in
the previous result can be taken over by the zeros. Indeed, defining a zero z of W
to be simple whenever z is a simple pole of W−1, we see that W admits a complete
factorization whenever either all poles of W are simple or all zeros of W are sim-
ple. The next two theorems add to this statement that the poles of the elementary
factors in a complete factorization of W or W−1 can be chosen in prescribed order.

Theorem 10.10. Let W be a proper m×m rational matrix function with W (∞) =
Im. Assume W has simple poles only. Then, given an ordering α×

1 , . . . , α×
n of

the zeros of W (zero-multiplicities taken into account), there exists a complete
factorization of W−1 of the form

W−1(λ) =

(
Im +

1

λ − α×
1

R1

)
· · ·

(
Im +

1

λ − α×
n

Rn

)
,

where R1, . . . , Rn are rank one m × m matrices.

Theorem 10.11. Let W be a proper rational m×m matrix function with W (∞) =
Im. Assume W has simple zeros only. Then, given an ordering α1, . . . , αn of the
poles of W (pole-multiplicities taken into account), there exists a complete factor-
ization of W of the form

W (λ) =

(
Im +

1

λ − α1
R1

)
· · ·

(
Im +

1

λ − αn
Rn

)
,

where R1, . . . , Rn are rank one m × m matrices.

Proofs. Let W (λ) = Im + C(λIn − A)−1B be a minimal realization of W , so n
is the McMillan degree of W . Suppose W has simple zeros only. Then we see
from Corollary 8.14 that A× = A − BC is diagonalizable. By the same corollary,
α1, . . . , αn are the eigenvalues of A counted according to algebraic multiplicity.
Apply now Corollary 10.7 to obtain Theorem 10.11. Applying the latter to W−1

one arrives at Theorem 10.10. �

Theorem 10.12. Let W be a rational m × m matrix function, and let

W (λ) = Im + C(λIn − A)−1B (10.25)

be a realization of W such that rankBC = 1 or, what amounts to the same,
rank (A − A×) = 1. Suppose, in addition, that A and A× have no common eigen-
value. Then the given realization is minimal (i.e., δ(W ) = n) and W admits a
complete factorization. In fact, given an ordering α1, . . . , αn of the eigenvalues of
A and an ordering α×

1 , . . . , α×
n of the eigenvalues of A× (in both cases algebraic
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multiplicities taken into account), there exist complete factorizations of W and
W−1 of the form

W (λ) =

(
Im +

1

λ − α1
R1

)
· · ·

(
Im +

1

λ − αn
Rn

)
,

W−1(λ) =

(
Im − 1

λ − α×
n

Rn

)
· · ·

(
Im − 1

λ − α×
1

R1

)
,

where R1, . . . , Rn are rank one m × m matrices.

Since in the above theorem A and A× have no common eigenvalue, it follows
from Theorem 7.6 that the realization (10.25) of W is minimal. Hence, by Corollary
8.14, the poles of W are the eigenvalues of A and the poles of W−1 are the
eigenvalues of A×, the appropriate multiplicities taken into account. Thus the
condition in the above theorem that A and A× have no common eigenvalue implies
that W and W−1 have no common pole. Conversely, if W and W−1 have no
common pole and the realization (10.25) is minimal, then A and A× have no
common eigenvalue. Thus Theorem 10.12 remains true if the phrase A and A×

have no common eigenvalue is replaced by W and W−1 have no common pole
and the realization (10.25) is minimal. Moreover, in that case one can take for
α1, . . . , αn any ordering of the poles of W and for α×

1 , . . . , α×
n any ordering of the

poles of W−1.

Proof. As mentioned in the preceding paragraph, since A and A× have no common
eigenvalue, we know from Theorem 7.6 that the given realization of W is mini-
mal. By Theorem 10.3, the matrices A and A× admit simultaneous reduction to
complementary triangular forms. Applying the if part of Theorem 10.9 we now see
that W admits a compete factorization. This proves the first part of the theorem.
The more detailed second part can be obtained by combining the second part of
Theorem 10.3 with Part 3 of the proof of Theorem 10.5. �

Rational matrix functions of the type appearing in the above theorem form
a subclass of the so-called companion based matrix functions. We shall come back
to this fact in the next chapter, Section 11.3.

As was remarked (and made more precise) in Section 9.1, minimal factor-
ization amounts to the absence of pole-zero cancellations. The next proposition
underlines this point for factorizations into elementary factors.

Proposition 10.13. Let W be a rational m × m matrix function, and let (10.21)
be a factorization of W into elementary factors. The following statements are
equivalent:

(i) the factorization (10.21) is complete,

(ii) α1, . . . , αn are the poles of W counted according to pole-multiplicity,

(iii) α×
1 , . . . , α×

n are the zeros of W counted according to zero-multiplicity.

Here α×
j = αj − traceRj , j = 1, . . . , n.
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Proof. From Part 2 of the proof of Theorem 10.5 we know that the factorization
(10.21) induces a realization

W (λ) = Im + C(λIn − A)−1B

of W such that A is upper triangular with α1, . . . , αn on the diagonal. If (10.21) is
complete, n = δ(W ) and the realization is minimal. But then Corollary 8.14 gives
that the poles of W and the eigenvalues of A coincide, taking the appropriate
multiplicities for poles and eigenvalues into account. From the special form of
A indicated above, it is clear however that α1, . . . , αn are the eigenvalues of A
counted according to algebraic multiplicity.

Thus (i) implies (ii). To establish the converse, let α1, . . . , αn be the poles of
W counted according to pole-multiplicity. Then Theorem 8.13 shows that there is
a minimal realization of W with state space dimension n. It follows that n = δ(W ),
and (10.21) is complete.

The factorization (10.21) of W induces the factorization (10.22) of W−1.
Applying what we established above to W−1, we get that (10.22) is complete if
and only if α×

1 , . . . , α×
n are the poles of W−1 counted according to pole-multiplicity.

But this is the same as saying that (10.22) is complete if and only if α×
1 , . . . , α×

n

are the zeros of W counted according to zero-multiplicity. The equivalence of (i)
and (iii) now follows from our earlier observation that the factorization (10.22) is
complete provided this is the case for (10.21). �

10.4 Quasicomplete factorization (general)

As before, let W be a proper m×m rational matrix function having the value Im

at infinity. In this section we show that there is always a factorization of W into
elementary factors, and we give an estimate for the minimal number of factors in
such a factorization (see Theorem 10.15 and Corollary 10.16 below). The case of
an empty product of such factors corresponds to the trivial situation δ(W ) = 0.
Therefore, in what follows, it will be assumed that the McMillan degree of W is
positive.

We begin with some preparations. Let T be an n×n matrix. By the spectral
polynomial of T we mean the (scalar) polynomial

pT (λ) = (λ − τ1) · · · (λ − τs)

where τ1, . . . , τs are the distinct eigenvalues of T . It is the monic (scalar) polyno-
mial of minimal degree vanishing on the spectrum of T . Along with the spectral
polynomial comes the matrix

pT (T ) = (T − τ1In) · · · (T − τsIn)

which will play an important role in what follows. Note that pT (T ) is nilpotent,
and if T is nilpotent, then pT (T ) = T . Also pT (T ) = 0 if and only if T is diag-
onalizable. Finally, the subspace Ker pT (T ) of Cn is spanned by the eigenvectors
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of T . In particular, it has a basis consisting of eigenvectors of T . To see this, note
that, whenever S is an invertible n × n matrix,

pS−1TS = pT , pS−1TS(S−1TS) = S−1pT (T )S,

and pass to the Jordan form. With an eye on later use, we also observe that
pT (T )∗ = pT∗(T ∗).

Theorem 10.14. Let A and Z be n × n matrices, and suppose that (at least) one
of the following identities is satisfied

Ker pA(A) + Ker pZ(Z) = Cn, Im pA(A) ∩ Im pZ(Z) = {0}. (10.26)

Then A and Z admit simultaneous reduction to complementary triangular forms.

If A is diagonalizable, then pA(A) = 0 and both identities in (10.26) are
trivially satisfied. Thus the first part of Theorem 10.2 is a special case of Theorem
10.14.

Proof. Assume that the first identity in (10.26) holds true. We shall prove that this
implies that A and Z admit simultaneous reduction to complementary triangular
forms. Let u1, . . . , uk be a basis of Ker pA(A) consisting of eigenvectors of A, and
let α1, . . . , αk in C be such that

Auj = αjuj, j = 1, . . . , k.

Similarly, let v1, . . . , vm be a basis of Ker pZ(Z) consisting of eigenvectors of Z,
and let ζ1, . . . , ζm in C be such that

Zvj = ζjvj , j = 1, . . . , m.

Then the first identity in (10.26) implies that Cn is spanned by the vectors
u1, . . . , uk, v1, . . . , vm. From this collection of vectors, we now extract a basis
w1, . . . , wn for Cn in such a way that, for an appropriate choice of s, the ele-
ments w1, . . . , ws are eigenvectors of A, while ws+1, . . . , wn are eigenvectors of Z.
Now let S0 be the n × n matrix having wj as its jth column. Then S−1

0 AS0 and
S−1

0 ZS0 have the form

S−1
0 AS0 =

[
A1 A0

0 A2

]
, S−1

0 ZS0 =

[
Z1 0

Z0 Z2

]

with A1 an s× s diagonal matrix and Z2 an (n− s)× (n− s) diagonal matrix. By
Theorem 10.2, applied to A1, Z1 and A2, Z2, there exist an invertible s× s matrix
S1 and an invertible (n− s)× (n− s) matrix S2 such that S−1

1 A1S1 and S−1
2 A2S2

are upper triangular while S−1
1 Z1S1 and S−1

2 Z2S2 are lower triangular. Now put

S = S0

[
S1 0

0 S2

]
.
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Then S is an invertible n × n matrix, S−1AS is upper triangular and S−1ZS is
lower triangular.

Next, assume that the second identity in (10.26) holds. Passing to orthogonal
complements and adjoints, we see that

Ker pA∗(A∗) + Ker pZ∗(Z∗) = Cn.

Thus, by what we just proved, A∗ and Z∗ admit simultaneous reduction to comple-
mentary triangular forms. Let T be an invertible n×n matrix such that T−1A∗T
and T−1Z∗T are upper and lower triangular,respectively. Put S = (T ∗)−1E, where
E is the n × n reversed identity matrix. Then S−1AS is upper triangular and
S−1ZS is lower triangular. �

Neither of the identities in (10.26) implies the other. To that see this, consider
the matrices

A =

⎡
⎢⎣

0 0 0

0 0 1

0 0 0

⎤
⎥⎦ , Z =

⎡
⎢⎣

0 0 0

1 0 0

0 0 0

⎤
⎥⎦ (10.27)

and their adjoints.

To state the main theorem of this section about factorization into elementary
factors we introduce the following notation. Let W be an m × m rational matrix
function with W (∞) = Im. Write W in the form

W (λ) = Im + C(λIn − A)−1B,

and assume that this realization is minimal, i.e., n = δ(W ). By κ(W ) we now
mean the integer

κ(W ) = min{κ−(W ), κ+(W )},
where

κ−(W ) = δ(W ) + codim
(
Ker pA(A) + Ker pA×(A×)

)
, (10.28)

κ+(W ) = δ(W ) + dim
(
Im pA(A) + Im pA×(A×)

)
, (10.29)

or, what amounts to the same,

κ−(W ) = 2δ(W ) − dim
(
KerpA(A) + KerpA×(A×)

)

κ+(W ) = 2δ(W ) − codim
(
Im pA(A) + Im pA×(A×)

)
.

The state space isomorphism theorem guarantees that κ(W ) does not depend on
the choice of the minimal realization for W . An example where κ−(W ) and κ+(W )
do not coincide will be given at the end of the section.

Theorem 10.15. Let W be an m×m rational matrix function having the value Im

at infinity. Then W admits a factorization into κ(W ) elementary factors.



202 Chapter 10. Factorization into Degree One Factors

Proof. We split the proof into two parts. In the first part we consider the case
κ(W ) = κ−(W ) ≤ κ+(W ); in the second the situation κ(W ) = κ+(W ) ≤ κ−(W ).

Part 1. In this part we suppose that κ−(W ) ≤ κ+(W ) and so κ(W ) = κ−(W ).
Write W in the form

W (λ) = Im + C(λIn − A)−1B,

and assume that this realization is minimal, i.e., n = δ(W ). As (by definition; cf.,
Section 7.1) minimality implies controllability, the spectral assignment theorem
(Theorem 6.5.1 in [70]) applies to the pair of matrices A, B. Therefore, given an
n−tuple of complex numbers ζ1, . . . , ζn, there exists an m×n matrix F , such that
A + BF has eigenvalues ζ1, . . . , ζn. Henceforth we will assume these eigenvalues
to be distinct, so that A+ BF is diagonalizable. We will also assume that none of
ζ1, . . . , ζn is an eigenvalue of A or A×.

Put k = κ−(W )− δ(W ) = codim
(
KerpA(A) + Ker pA×(A×)

)
. As A+BF is

diagonalizable, there exist k eigenvectors x1, . . . , xk of A + BF such that
(
Ker pA(A) + Ker pA×(A×)

)
∔ span {x1, . . . , xk} = Cn.

Renumbering the eigenvalues of A + BF (if necessary), we may write

(A + BF )xj = ζjxj , j = 1, . . . , k.

Now introduce the n×k matrix X = −
[

x1 · · · xk

]
. Then (A+BF )X = XG,

where G is the k × k diagonal matrix with diagonal elements ζ1, . . . , ζk. With
K = FX , we arrive at XG − AX = BK.

Consider the matrices

Â =

[
A BK

0 G

]
, B̂ =

[
B

0

]
, Ĉ =

[
C K

]
.

Note that W (λ) = Im + Ĉ(λIn+k − Â)−1B̂. We have

Â =

[
A XG − AX
0 G

]

=

[
In X

0 Ik

][
A 0

0 G

][
In −X

0 Ik

]

=

[
In X

0 Ik

][
A 0

0 G

][
In X

0 Ik

]−1

.

It follows that

pÂ(Â) =

[
In X

0 Ik

][
pÂ(A) 0

0 pÂ(G)

][
In X

0 Ik

]−1

,
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and, consequently,

Ker pÂ(Â) =

[
In X

0 Ik

]
Ker

[
pÂ(A) 0

0 pÂ(G)

]
.

From the expression for Â, it also follows that σ(Â) = σ(G) ∪ σ(A). Furthermore,
note that our choice of ζ1, . . . , ζk is such that σ(G) and σ(A) are disjoint. Thus
pÂ(λ) = pG(λ)pA(λ). But then

pÂ(A) = pG(A)pA(A), pÂ(G) = pG(G)pA(G) = 0.

In the latter identity we used that pG(G) = 0 which follows from the fact that G is
a diagonal matrix. Note also that pG(A) is invertible. A straightforward argument
now gives

Ker

[
pÂ(A) 0

0 pÂ(G)

]
= Ker

([
pA(A) 0

0 0

])
,

and we arrive at

Ker pÂ(Â) =

[
Im X

0 Ik

]
Ker

([
pA(A) 0

0 0

])
.

Next consider the matrix

Â× = Â − B̂Ĉ =

[
A× 0

0 G

]
.

A similar reasoning as the one given above yields

Ker pÂ×(Â×) = Ker

([
pA×(A×) 0

0 0

])
.

Combining this with the description of Ker pÂ(Â) obtained in the previous para-
graph, we see that

Ker pÂ(Â) + Ker pÂ×(Â×) = Cn+k

if and only if

Ker pA(A) + Ker pA×(A×) + ImX = Cn.

By construction, the latter is the case. Theorem 10.14 now yields that the matrices
Â and Â× admit simultaneous reduction to complementary triangular forms. Next,
use Theorem 10.5 to see that W admits a factorization into n + k elementary
factors. Since κ−(W ) = n + k (by definition), we can conclude that W admits a
factorization into κ(W ) = κ−(W ) factors.
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Part 2. In this part we suppose that κ+(W ) ≤ κ−(W ) and so κ(W ) = κ+(W ). The
argument goes by taking adjoints. Thus we consider the rational m × m matrix
function W ∗ given by W ∗(λ) = W (λ̄)∗. Obviously

W ∗(λ) = Im + B∗(λIn − A∗)−1C∗,

and this is a minimal realization. Also A∗ − C∗B∗ = (A×)∗. But then

κ−(W ∗) = n + codim
(
KerpA∗(A∗) + Kerp(A×)∗

(
(A×)∗

))
.

Since pA∗(A∗) = pA(A)∗ and, similarly, p(A×)∗
(
(A×)∗

)
= pA×(A×)∗, we have

κ−(W ∗) = n + codim
(
Ker pA(A)∗ + Ker pA×(A×)∗

)

= n + codim
(
Im pA(A)⊥ + Im pA×(A×)⊥

)

= n + codim
(
Im pA(A) ∩ Im pA×(A×)

)⊥

= n + dim
(
Im pA(A) ∩ Im pA×(A×)

)

= κ+(W ).

In a similar fashion, κ+(W ∗) = κ−(W ). Hence

κ−(W ∗) = κ+(W ) ≤ κ−(W ) = κ+(W ∗),

and it follows that W ∗ admits a factorization into κ−(W ∗) = κ+(W ) = κ(W )
elementary factors. But then so does W . �

Again, let W be a proper m×m rational matrix function with W (∞) = Im.
A factorization of W into elementary factors will be called quasicomplete if the
number of factors involved is minimal. This minimal number of factors will be
denoted by δq(W ). We call it the quasidegree of W . Evidently the quasidegree
is sublogarithmic. Note that W admits a complete factorization if and only if
δq(W ) = δ(W ). We have the following estimates for δq(W ).

Corollary 10.16. Let W be a proper m×m rational matrix function with W (∞) =
Im and δ(W ) > 0. Then

δ(W ) ≤ δq(W ) ≤ κ(W ) ≤ 2δ(W ) − 1. (10.30)

Proof. From the sublogarithmic property of the McMillan degree it is obvious that
δ(W ) ≤ δq(W ). From Theorem 10.15 it is clear that δq(W ) ≤ κ(W ). In the case
of positive McMillan degree considered here, it follows that δq(W ) ≤ 2δ(W ) − 1.
Indeed, pA(A), being nilpotent, has a non-trivial kernel, so κ(W ) ≤ 2δ(W )−1. �

We conclude this section with three illuminating examples. The first illus-
trates Theorem 10.15 and its proof.
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Example. Consider the rational 2 × 2 matrix function

W (λ) =

⎡
⎣ 1

1

λ2

0 1

⎤
⎦ . (10.31)

Introducing the matrices

A =

[
0 1

0 0

]
, B =

[
0 0

0 1

]
, C =

[
1 0

0 0

]
,

we have the representation W (λ) = I2 + C(λI2 − A)−1B, and this realization
is minimal (both observable and controllable). Hence δ(W ) = 2. From Section
9.1 we know that the function W does not admit a complete factorization. Thus
δq(W ) ≥ 3. Following up on what was already announced in the paragraph in the
previous section containing (10.23), we shall now prove that equality holds, i.e.,
δq(W ) = 3. This will be done by concretely factorizing W into three elementary
factors along the lines suggested by the proof of Theorem 10.15. Note that here
κ(W ) = κ−(W ) = κ+(W ) = 3. Indeed, A = A× and both KerA and ImA are
one-dimensional.

Put

F =

[
0 0

1 0

]
.

Then

A + BF =

[
0 1

1 0

]
,

and A + BF is diagonalizable with eigenvalues 1 and -1 both different from the
unique eigenvalue 0 of A = A×. The number k = κ−(W ) − δ(W ) in the proof of
Theorem 10.15 is here equal to 1. So the matrix X appearing there is a vector in
C2 and the matrix G can be identified with a scalar. In fact, with

X =

[
1

1

]
, G = 1, K =

[
0

1

]
,

we have XG − AX = BK as desired. Now construct

Â =

[
A BK

0 G

]
=

⎡
⎢⎢⎣

0 1 0

0 0 1

0 0 1

⎤
⎥⎥⎦ , B̂ =

[
B
0

]
=

⎡
⎢⎢⎣

0 0

0 1

0 0

⎤
⎥⎥⎦ ,

Ĉ =
[

C K
]

=

[
1 0 0

0 0 1

]
.
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Then W (λ) = I2 + Ĉ(λI3 − Â)−1B̂ and

Â× = Â − B̂Ĉ =

⎡
⎢⎢⎣

0 1 0

0 0 0

0 0 1

⎤
⎥⎥⎦ .

The matrices Â and Â× admit simultaneous reduction to complementary triangu-
lar forms. In fact, with

S =

⎡
⎢⎢⎣

1 1 0

1 0 0

1 0 1

⎤
⎥⎥⎦ , S−1 =

⎡
⎢⎢⎣

0 1 0

1 −1 0

0 −1 1

⎤
⎥⎥⎦

we have

S−1ÂS =

⎡
⎢⎢⎣

1 0 1

0 0 −1

0 0 0

⎤
⎥⎥⎦ , S−1Â×S =

⎡
⎢⎢⎣

0 0 0

1 0 0

1 0 1

⎤
⎥⎥⎦ .

As explained in the proof of Theorem 10.5, the realization

W (λ) = I2 + ĈS(λI3 − S−1ÂS)−1S−1B̂

can now be used to obtain a factorization W (λ) = W1(λ)W2(λ)W3(λ) into three
elementary factors W1, W2 and W3. Using that

S−1B̂ =

⎡
⎢⎢⎣

0 1

0 −1

0 −1

⎤
⎥⎥⎦ , ĈS =

[
1 1 0

1 0 1

]
,

these factors can be computed as follows:

W1(λ) =

[
1 0

0 1

]
+

[
1

1

]
1

λ − 1

[
0 1

]
=

⎡
⎢⎢⎣

1
1

λ − 1

0
λ

λ − 1

⎤
⎥⎥⎦ ,

W2(λ) =

[
1 0

0 1

]
+

[
1

0

]
1

λ

[
0 −1

]
=

⎡
⎢⎢⎣

1 − 1

λ

0 1

⎤
⎥⎥⎦ ,

W3(λ) =

[
1 0

0 1

]
+

[
0

1

]
1

λ

[
0 −1

]
=

⎡
⎢⎢⎣

1 0

0
λ − 1

λ

⎤
⎥⎥⎦ .
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For W given by (10.31), we have δq(W ) = 2δ(W ) − 1. As we shall see in
Section 12.4, this equality remains true when the term λ2 in (10.31) is replaced
by λn, where n is any positive integer. This shows that the estimate δq(W ) ≤
2δ(W )− 1 is sharp in the sense that for every value of the McMillan degree δ(W )
equality can occur. On the other hand, there are situations with strict inequality
δq(W ) < 2δ(W ) − 1. The next example presents such a case.

Example. In this example we show that it may happen that δq(W ) < κ(W ) =
κ−(W ) = κ+(W ) < 2δ(W ) − 1. Consider the 2 × 2 rational matrix function

W (λ) =

⎡
⎢⎢⎢⎣

1 +
1

λ2

2

λ
+

1

λ3

1

λ
1 +

1

λ2

⎤
⎥⎥⎥⎦ .

Introducing the matrices

A =

⎡
⎢⎢⎣

0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 1

1 0

0 1

⎤
⎥⎥⎦ , C =

[
1 0 1

0 1 0

]
,

we have the representation W (λ) = I2 + C(λI3 − A)−1B, and this realization is
easily seen to be minimal (both observable and controllable). Hence δ(W ) = 3.
Note that A is nilpotent, and so is

A× = A − BC =

⎡
⎢⎢⎣

0 0 0

−1 0 0

0 −1 0

⎤
⎥⎥⎦ .

Thus pA(A) = A and pA×(A×) = A×. It is now easy to check that κ−(W ) =
κ+(W ) = 4. However δq(W ) = δ(W ) = 3 because W admits the complete factor-
ization

⎡
⎢⎢⎣

1 +
1

λ2

2

λ
+

1

λ3

1

λ
1 +

1

λ2

⎤
⎥⎥⎦ =

⎡
⎢⎣

1
1

λ

0 1

⎤
⎥⎦

⎡
⎢⎣

1 0

1

λ
1

⎤
⎥⎦

⎡
⎢⎣

1
1

λ

0 1

⎤
⎥⎦ ,

which is readily obtained from the fact the A is upper and A× is lower triangular.

Recall from (10.30) that δq(W ) ≤ 2δ(W ) − 1. This inequality can be sharp-
ened to

δq(W ) ≤ 2δ(W ) − ν(W ), (10.32)
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where ν(W ) stands for the maximal number of non-trivial factors that can occur in
a minimal factorization of W . To verify (10.32), consider a minimal factorization
W = W1 · · ·Wν(W ) of W involving ν(W ) non-trivial factors. For j = 1, . . . , ν(W ),
we then have δq(Wj) ≤ 2δ(Wj) − 1, and so

δq(W ) ≤
ν(W )∑

j=1

δq(Wj) ≤
ν(W )∑

j=1

(
2δ(Wj) − 1

)
= 2δ(W ) − ν(W ).

For completeness, note that 1 ≤ ν(W ) ≤ δ(W ). We conclude with an example
featuring a situation where the inequality (10.32) is strict.

Example. This example shows that it may happen that κ−(W ) < κ+(W ) and
δq(W ) ≤ 2δ(W ) − ν(W ). Consider the 3 × 3 rational matrix function

W (λ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0

1

λ2
− 1

λ3
1 − 1

λ

2

λ
− 1

λ2

1

λ
− 1

λ3
− 1

λ
1 +

1

λ
− 1

λ2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Introducing the matrices

A =

⎡
⎢⎢⎣

0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 1 −1

0 0 1

1 0 0

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣

0 0 0

−1 1 0

−1 0 1

⎤
⎥⎥⎦ ,

we have the representation W (λ) = I3 + C(λI3 − A)−1B, and this realization is
easily seen to be minimal (both observable and controllable). Thus δ(W ) = 3. Also

A× = A − BC =

⎡
⎢⎢⎣

0 0 1

1 0 0

0 0 0

⎤
⎥⎥⎦ = SAS−1,

where

S = S−1 =

⎡
⎢⎢⎣

0 1 0

1 0 0

0 0 1

⎤
⎥⎥⎦ .

Obviously both A and A× are nilpotent. Hence pA(A) = A and pA×(A×) = A×.
It is now easy to check that κ−(W ) = 4 and κ+(W ) = 5. So this is a case where
κ−(W ) and κ+(W ) are different. The matrices A and A× are unicellular. The



10.4. Quasicomplete factorization (general) 209

non-trivial invariant subspaces of A are span {e1} and span {e1, e2}, where ej is
the vector in C3 with the jth entry equal to one and the other two entries equal
to zero. The non-trivial invariant subspaces of A× are span {Se1} = span {e2}
and span {Se1, Se2} = span {e2, e1}. Hence there are no non-trivial supporting
projections for the minimal realization of W under consideration. But then W does
not admit any non-trivial minimal factorization (see Theorem 9.3), i.e., ν(W ) = 1.
It also follows that δq(W ) > 3. On the other hand, δq(W ) ≤ κ(W ) ≤ κ−(W ) = 4,
and we arrive at δq(W ) = 4 < 5 = 2δ(W ) − ν(W ).

Notes

This chapter has its roots in a number of theorems on factorization of rational
m × m matrix functions into elementary factors appearing in [14]. However, the
problem of simultaneous reduction of two matrices into complementary triangular
forms, which is a core element in constructing such factorizations, appears in [14]
only implicitly. This second problem was introduced and studied in [19]; see also
the survey paper [10]. Section 10.1 is based on [19]. Sections 10.2 and 10.3 originate
from Sections 1.1, 1.3 and 3.2 of [14]; see also [39], the references therein, and [104]
for earlier material in this direction.

Theorem 10.2, which appears implicitly in the proof of Theorem 1.6 in [14],
is taken from Section 7.2 in the survey paper [10] (see also Section 1 in [19], where
an alternative proof using lower-upper factorization is given). For an extension of
the first part of Theorem 10.2 to commuting families of matrices, see Theorem 1.4
in [19]. Theorem 10.3 can be found in Section 7 of [19], though in a slightly differ-
ent form. Other results on reduction to complementary triangular forms, mainly
concerned with special classes of matrices, can be found in various publication: see
[24], [111], [121], [26], and references therein. Section 2 in [19] contains a complete
analysis of the case where the given matrices have order 2. In [119] and [120] some
aspects of the infinite-dimensional case are treated.

A non-trivial general characterization of simultaneous reduction to comple-
mentary triangular forms is as yet not available. This differs from the situation
where one looks for simultaneous reduction to the same (say upper) triangular
form. For that type of reduction an algebraic characterization exists in the form
of McCoy’s theorem, see [95]. We note that there does exist a rather straight-
forward connection between simultaneous reduction to complementary triangular
forms and simultaneous reduction to upper (or lower) triangular form. This has
been established in [26], but the result given there does not combine with Mc-
Coy’s theorem so as to produce an effective non-trivial general characterization of
simultaneous reduction to complementary triangular forms.

There is no direct reference for Theorem 10.5, but it is closely related to
Theorem 1.3 in [14], and the material presented in Section 6 of [19]. Corollary 10.7
is a refined version of Theorem 1.6 in [14]; see also Section 7.2 in [10]. The fact
that in Section 10.3 the elementary factors are required to be square is important.
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Indeed, minimal factorization involving elementary factors only is always possible
if one allows for non-square elementary factors. This result has been established
in [109]. We also note that it can happen that a real rational m × m matrix
function which has simple pole only or simple zeros only, does not have a complete
factorization with real factors. In other words, Theorems 10.10 and 10.11 do not
have real counterparts. An example illustrating this point is given at the end of
Section 15.1.

Theorem 10.9 is a reformulation of Theorem 6.1 in [19]; see also Section 7.2
in [10]. Theorem 10.10 is a somewhat stronger version of Theorem 3.4 in [14], and
Theorem 10.11 is a modification of the same result (the role of the poles being
taken over by the zeros). Theorem 10.12 goes back to the material of Sections 6
and 7 in [19] (cf., the remark made at the end of Section 7 in [19], in particular).

The result that any proper rational m×m matrix function W with W (∞) =
Im can be written as a product of elementary factors is due to [39]. The upper
bound for the minimal number of factors in such a factorization given in Theorem
10.15 was proved in [119]; see also [121]. An example in [121] shows that this upper
bound is sharper than the one which is obtained via the approach presented in
[39]. The analysis in Section 10.4 follows the lines set out in [119] and [121]. In
particular, Theorem 10.14 is identical to Proposition 2.3.3 in [119], and Theorem
3.3 in [121]. The example in Section 10.4 involving the function

⎡
⎣ 1

1

λ2

0 1

⎤
⎦

appears in [119] and [121]. A concrete factorization of this function into three
elementary factors (as given in the example) was already known to G.Ph.A. Thijsse
(personal communication).



Chapter 11

Complete Factorization
of Companion Based
Matrix Functions

In this chapter results of the previous chapter are specified further for rational
matrix functions of a special type, namely for the so-called companion based func-
tions. These are characterized by the fact that they are rational matrix function
having a minimal realization in which both the main matrix and the associate main
matrix are (first) companions. A description of such functions is presented for the
2 × 2 case, and necessary and sufficient conditions are given for such functions to
admit a complete factorization. The factorization results in this chapter are based
on a detailed analysis of simultaneous reduction to complementary forms of pairs
of companion matrices.

The present chapter consists of seven sections. The first contains preliminar-
ies about companion matrices, including a description of all complete chains of
invariant subspaces for such a matrix. The second section deals with simultaneous
reduction to complementary forms of companion matrices. Companion based ma-
trix functions are introduced and studied in the third and fourth section. The fifth
section is devoted to complete factorization of companion based matrix functions,
and the six section presents Maple procedures to calculate such factorizations ex-
plicitly. The final section has the character of an appendix; in this section, as a
preparation for the next chapter, detailed information is given about the lattice
of invariant subspaces of a companion matrix.
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11.1 Companion matrices: preliminaries

A matrix is called an n × n first companion (matrix) if it has the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 0

...
...

. . .

0 0 0 1

−a0 −a1 −a2 · · · −an−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (11.1)

where a0, . . . , an−1 are complex numbers. More specifically, we sometimes call
(11.1) the first companion (matrix) associated with the monic polynomial a(λ) =
λn+an−1λ

n−1+· · ·+a0. This polynomial is precisely the characteristic polynomial
of (11.1). First companion matrices are nonderogatory, i.e., their eigenvalues have
geometric multiplicity one. In fact, a matrix is nonderogatory if and only if it is
similar to a first companion matrix. If α is an eigenvalue of the n×n first companion
matrix A, then Ker (αIn −A) is spanned by the column vector (1, α, . . . , αn−1)⊤.
Here the symbol ⊤ stands for taking the transpose.

A matrix is called an n × n second companion (matrix) if it has the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 0 −a2

...
. . .

...

0 0 1 −an−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (11.2)

Clearly, second companion matrices are just the transposes of first companions.
Hence what is said above for first companion matrices holds, with appropriate
modifications, for second companions. For instance, if α is an eigenvalue of the
n× n second companion matrix A, then Ker (αIn − A) is spanned by the column
vector (x1, . . . , xn−1, xn)⊤ if and only

[
1 λ · · · λn−1

]

⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦ =

a(λ)

λ − α
xn, and xn �= 0, (11.3)

where a(λ) = a0 + · · · + an−1λ
n−1 + λn.

It is well known that a square matrix and its transpose are always similar.
For companion matrices, this statement can be made more explicit. Indeed, if A
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and A⊤ are given by (11.1) and (11.2), respectively, then HA = A⊤H where

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 · · · an−1 1

a2 . .
.

. .
.

0
... . .

.
. .

. ...

an−1 . .
.

0

1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.4)

Since H is invertible, this proves that A and A⊤ are similar. The matrix H is a
Hankel matrix and it is called the symmetrizer of A.

We shall now discuss similarity to the transpose for pairs of first companion
matrices. There is an analogous result for second companion matrices; just take
transposes.

Proposition 11.1. Let A and Z be n × n first companion matrices. Then there
exists an invertible n × n matrix S such that S−1A⊤S = A and S−1Z⊤S = Z
if and only if either A and Z are identical or (the other extreme) A and Z do
not have a common eigenvalue. In the latter case, the similarity S is unique up to
multiplication with a nonzero scalar.

Proof. First we deal with the only if part. So let S be an invertible n×n matrix such
that S−1A⊤S = A and S−1Z⊤S = Z, and assume that α is a common eigenvalue
of A and Z. Then the vector v = (1, α, . . . , αn−1)⊤ is a common eigenvector of
A and Z corresponding to the eigenvalue α. Hence Sv is a common eigenvector
of the second companion matrices A⊤ and Z⊤ corresponding to the eigenvalue α.
Let xn is be the nth entry of the column vector x = Sv. Using the remark made
at end of the second paragraph of this section (see formula (11.3)) we know that
xn �= 0 and

[
1 λ · · · λn−1

]
Sv =

a(λ)

λ − α
xn,

[
1 λ · · · λn−1

]
Sv =

z(λ)

λ − α
xn,

But then the fact that xn �= 0 yields that a and z coincide. Hence A (the first
companion associated with a) and Z (the first companion associated with z) are
identical too. This proves the only if part of the proposition.

Next we turn to the if part. The case when A = Z is covered by the material
on the symmetrizer presented prior to the proposition. So we assume that A and
Z have no common eigenvalue.

As before, let a and z be the characteristic polynomials of A and Z, re-
spectively, and let Bez(a, z) be the Bezoutian associated with a and z. The latter
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means (see, e.g., [92], Section 13.3) that Bez(a, z) is the n × n matrix (bij)
n
i,j=1

determined by

a(λ)z(µ) − a(µ)z(λ)

λ − µ
=

n∑

i,j=1

bijλ
i−1µj−1.

By the Barnett factorization theorem (Proposition 13.3.2 in [92]), the Bezoutian
admits the factorization Bez(a, z) = Hz(A) where H is the symmetrizer of A given
by (11.4). Using that HA = A⊤H , we obtain

Bez(a, z)A = Hz(A)A = HAz(A) = A⊤Hz(A) = A⊤Bez(a, z).

Interchanging the roles of A and Z, we get Bez(z, a)Z = Z⊤Bez(z, a). But,
as is obvious from the definition, Bez(z, a) = −Bez(a, z), and it follows that
Bez(a, z)Z = Z⊤Bez(a, z). Recall now that that Bez(a, z) is invertible if (and
only if) a and z do not have a common zero. In other words, Bez(a, z) is invertible
if (and only if) A and Z do not have a common eigenvalue. The latter has been
assumed in this part of the proof.

This proves the following: under the assumption that A and Z do not have a
common eigenvalue, the matrix S = Bez(a, z) is invertible and indeed transforms
the pair A, Z into the pair A⊤, Z⊤. Of course, every nonzero scalar multiple of
Bez(a, z) will do too. It remains to prove that this is all the freedom there is.

Let S be any invertible n×n matrix such that S−1A⊤S = A and S−1Z⊤S =
Z. Write A − Z = bc⊤ where b and c are nonzero vectors in Cn such that the
n × n matrix B =

[
b Ab · · · An−1b

]
is invertible. This is possible, since A

and Z are different first companion matrices. In fact, one can take for b the nth
unit vector in Cn with last entry one and all others equal to zero. Now cb⊤ =
A⊤ − Z⊤ = S(A − Z)S−1 = (Sb)(c⊤S−1). Since c⊤S−1 is a nonzero vector, it
makes sense to put

σ =
b⊤

(
c⊤S−1

)⊤

c⊤S−1
(
c⊤S−1

)⊤ ,

so that Sb = σc with σ necessarily nonzero because Sb �= 0. It follows that

SB =
[

Sb SAb · · · SAn−1b
]

=
[

Sb A⊤Sb · · ·
(
A⊤

)n−1
Sb

]

= σ
[

c A⊤c · · · (A⊤)n−1c
]
.

Replacing S by Bez(a, z), we also get

Bez(a, z)B = τ
[

c A⊤c · · · (A⊤)n−1c
]
,

where τ is again a nonzero scalar. Hence τSB = σBez(a, z)B. Since B is invertible,
this gives S = σ

τ Bez(a, z), so indeed S is a nonzero scalar multiple of the Bezoutian
Bez(a, z). �
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Note that the above proof shows that for the case when A and Z do not have
a common eigenvalue, the essentially unique similarity S appearing in Proposition
11.1 can be identified as the Bezoutian Bez(a, z) associated with the characteristic
polynomials a and z of A and Z, respectively.

In general, for A = Z the similarity S appearing in Proposition 11.1 is not
unique up to multiplication by a nonzero scalar. To see this, let A = Z be the
upper triangular 2 × 2 Jordan block. Then S−1A⊤S = A and S−1Z⊤S = Z for
any S of the form [

0 a

a b

]
, a �= 0.

The next proposition will be useful in the next two sections.

Proposition 11.2. Let A and Z be n × n matrices with rank (A − Z) = 1. Then
A and Z have no common eigenvalue if and only if there exist invertible n × n
matrices S1 and S2 such that

(i) S−1
1 AS1 and S−1

1 ZS1 are first companion matrices, and

(ii) S−1
2 AS2 and S−1

2 ZS2 are second companion matrices.

Proof. Suppose there exist S1 and S2 with the properties (i) and (ii). Introduce

A1 = S−1
1 AS1, Z1 = S−1

1 ZS1, A2 = S−1
2 AS2, Z2 = S−1

2 ZS2.

Then A1 and Z1 are first companion matrices. Also, A2 and Z2 are second compan-
ion matrices. Since the characteristic polynomials of A1 and A2 are the same (both
equal to that of A), we have that A2 = A⊤

1 . Similarly Z2 = Z⊤
1 . Put S = S−1

2 S1.
Then S is invertible and

A1 = S−1A2S = S−1A⊤
1 S, Z1 = S−1Z2S = S−1Z⊤

1 S.

The rank condition on A and Z implies that A1 and Z1 are different. Proposition
11.1 now gives that A1 and Z1 do not have a common eigenvalue. But then the
same is true for A and Z. This settles the if part of the proposition.

Next we focus on the only if part. So assume that, besides the rank condition
rank (A − Z) = 1, the matrices A and Z have no common eigenvalue. Write
A − Z = bc⊤ with b, c ∈ Cn. The expression w(λ) = 1 + c⊤(λIn − A)−1b is a
minimal realization as, by assumption, A and A× = Z have no common eigenvalue
(cf., the proof of Theorem 10.3). In particular, the n × n matrix

V =

⎡
⎢⎢⎢⎢⎣

c⊤

c⊤A
...

c⊤An−1

⎤
⎥⎥⎥⎥⎦
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is invertible, with inverse V −1 =
[

v0 v1 · · · vn−1

]
. Notice that here the

entries v0, v2, . . . , vn−1 belong to Cn. Let A1 and A2 be the companion matrices
(11.1) and (11.2), respectively, where

aj = −c⊤Anvj , j = 0, . . . , n − 1.

A straightforward computation, using that

n−1∑

j=0

vjc
⊤Aj = In,

shows that A1V = V A. With H as in (11.4), we have HA1 = HA⊤
1 = A2H . Put

S2 = V −1H−1. Then S2 is invertible and

S−1
2 AS2 = HV AV −1H−1 = HA1H

−1 = A2.

Thus S−1
2 AS2 is a second companion matrix.

The matrix S−1
2 ZS2 is second companion too. To see this we argue as follows.

Clearly

S−1
2 ZS2 = S−1

2 AS2 − S−1
2 bc⊤S2

and we need to show that the first n − 1 columns of the matrix S−1
2 bc⊤S2 have

only zero entries. For this it is sufficient to establish that the first n− 1 entries in
the row vector c⊤S2 are equal to zero. This, however, is clear from the identity

c⊤V −1 =
[

1 0 · · · 0
]

=
[

1 0 · · · 0
]
H.

This proves (ii).

Statement (i) can be now be obtained in several ways. One way is to employ
that the matrix

[
b Ab · · · An−1b

]
is invertible and mimic the above reason-

ing. Another way is to consider transposes, using that a matrix and its transposed
have the same eigenvalues and rank. Finally, one can resort to Proposition 11.1.
Indeed, with S2 as above, (S−1

2 AS2)
⊤ and (S−1

2 ZS2)
⊤ are different first compan-

ion matrices without a common eigenvalue, and hence there is an invertible matrix
T such that T−1(S−1

2 AS2)T = (S−1
2 AS2)

⊤ and T−1(S−1
2 ZS2)T = (S−1

2 ZS2)
⊤ are

first companions. Now put S1 = S2T , and we are done. �

11.2 Simultaneous reduction to complementary
triangular forms

In this section we deal with simultaneous reduction to complementary triangular
forms of pairs of companion matrices (of the same type). The first main results
are the following two theorems.
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Theorem 11.3. Let A and Z be n×n first companion matrices. Then A and Z admit
simultaneous reduction to complementary triangular forms if and only if there exist
orderings α1, . . . , αn of the eigenvalues of A and ζ1, . . . , ζn of the eigenvalues of
Z (in both cases algebraic multiplicities taken into account)such that

αk �= ζj , k, j = 1, . . . , n, k < j. (11.5)

Theorem 11.4. Let A and Z be n × n second companion matrices. Then A and
Z admit simultaneous reduction to complementary triangular forms if and only if
there exist orderings α1, . . . , αn of the eigenvalues of A and ζ1, . . . , ζn of the eigen-
values of Z (in both cases algebraic multiplicities taken into account) such that

αk �= ζj , k, j = 1, . . . , n, k > j. (11.6)

One can derive the first theorem from the second and conversely. In other
words, the two theorems are equivalent. To see this we make a few observations.
First, by the remark made in the paragraph preceding the proof of Theorem 10.2,
two n × n matrices A and Z admit simultaneous reduction to complementary
triangular forms if and only if Z and A admit simultaneous reduction to comple-
mentary triangular forms. But the latter is equivalent to A⊤ and Z⊤ admitting
simultaneous reduction to complementary triangular forms. Next, note that A and
Z are first (second) companion matrices if and only if A⊤ and Z⊤ are second (first)
companion matrices. Finally, conditions (11.5) and (11.6) on the orderings of the
eigenvalues of A and Z are equivalent in the following sense. There exist orderings
of the eigenvalues of A and of the eigenvalues of Z such that (11.6) holds if and
only there are orderings for which (11.5) is satisfied. This follows by just reversing
the order. Since the eigenvalues of A (of Z) are the same as those of A⊤ (Z⊤)
with algebraic multiplicities taking into account, we see that Theorems 11.4 and
11.3 are equivalent. Thus it suffices to prove Theorem 11.4.

In order to prove Theorem 11.4 we first introduce some notation and prove
a few auxiliary results. Let n be positive integer. Given complex numbers

µ1, . . . , µn−1, ν1, . . . , νn−1,

we let U(µ1, . . . , µn−1; ν1, . . . , νn−1) be the n×n matrix
[
uk,j

]n−1

k,j=0
determined by

n−1∑

k=0

uk,jλ
k = (λ − ν1) · · · (λ − νj)(λ − µj+1) · · · (λ − µn−1). (11.7)

For j = 0 the right side of the above formula reduces to (λ − µ1) · · · (λ − µn−1).
An analogous interpretation holds for j = n − 1. Note that the n × n matrix
U = U(µ1, . . . , µn−1; ν1, . . . , νn−1) is uniquely determined by the equation

[
1 λ · · · λn−1

]
U (11.8)

=
[

u0(λ) u1(λ) · · · un−1(λ)
]
, λ ∈ C,
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where for j = 0, . . . , n − 1 the entry uj(λ) is the polynomial defined by the right-
hand side of (11.7).

Lemma 11.5. For any choice of µ1, . . . , µn−1 and ν1, . . . , νn−1 we have

detU(µ1, . . . , µn−1; ν1, . . . , νn−1) =

n−1∏

j=1

n−1∏

k=j

(νj − µk). (11.9)

In particular, U(µ1, . . . , µn−1; ν1, . . . , νn−1) is non-singular if and only if

µk �= νj , k, j = 1, . . . , n − 1, k ≥ j. (11.10)

Proof. Note that both sides of the identity (11.9) depend continuously on the pa-
rameters µ1, . . . , µn−1 and ν1, . . . , νn−1. Thus, in order to prove the equality (11.9),
we may assume without loss of generality that the numbers ν1, . . . , νn−1 are all
different. Let νn be any complex number different from the numbers ν1, . . . , νn−1,
and let V be the n × n matrix defined by

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ν1 · · · νn−1
1

1 ν2 · · · νn−1
2

...
...

...

1 νn−1 · · · νn−1
n−1

1 νn · · · νn−1
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix V is a Vandermonde matrix, and hence

detV =

n∏

j=1

j−1∏

k=1

(νj − νk).

Put U = U(µ1, . . . , µn−1; ν1, . . . , νn−1). Using (11.8) we see that

V U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0(ν1) u1(ν1) · · · un−1(ν1)

u0(ν2) u1(ν2) · · · un−1(ν2)

...
...

...

u0(νn−1) u1(νn−1) · · · un−1(νn−1)

u0(νn) u1(νn) · · · un(νn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence V U is a lower triangular n×n matrix, and for j = 1, . . . , n the jth diagonal
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entry ∆j of V U is given by

∆j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−1∏

k=1

(ν1 − µk), j = 1,

( j−1∏

k=1

(νj − νk)

) n−1∏

k=j

(νj − µk), j = 2, . . . , n − 1,

n−1∏

k=1

(νn − νk), j = n.

It follows that

detV U =
( n∏

j=1

j−1∏

k=1

(νj − νk

) n−1∏

j=1

n−1∏

k=j

(νj − µk).

Since detV �= 0, we have det U = detV U/ detV . This, together with the formulas
for detV U and det V , yields the desired expression for detU . �

Lemma 11.6. Let A be an n × n second companion matrix, let α1, . . . , αn be the
eigenvalues of A (algebraic multiplicities taken into account), let ζ1, . . . , ζn be com-

plex numbers, and let Ã be the upper triangular n × n matrix given by

Ã =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 α1 − ζ1 · · · · · · α1 − ζ1 α1 − ζ1

0 α2 · · · α2 − ζ2 α2 − ζ2

...
. . .

...
...

...
. . .

...
0 0 · · · αn−1 αn−1 − ζn−1

0 0 · · · · · · 0 αn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.11)

Put S = U(α2, . . . , αn; ζ1, . . . , ζn−1), that is, S =
[
sk,j

]n−1

k,j=0
is the n × n matrix

determined by

n−1∑

k=0

sk,jλ
k = (λ − ζ1) · · · (λ − ζj)(λ − αj+2) · · · (λ − αn). (11.12)

Then SÃ = AS.
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Proof. We begin with a few observations. Introduce the n × n matrix

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0 0

0 1 −1 0

...
. . .

. . .
...

...
...

. . .
. . .

0 0 1 −1

0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Clearly F is invertible. Furthermore,

ÃF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 −ζ1 0 · · · 0 0

0 α2 −ζ2 0

...
. . .

. . .
...

...
...

. . .
. . .

0 0 αn−1 −ζn−1

0 0 · · · 0 αn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus both F and ÃF are simple two-diagonal matrices. Also, note that

SF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s00 s01 − s00 · · · s0, n−1 − s0, n−2

s10 s11 − s10 · · · s1, n−1 − s1, n−2

...
...

...

...
...

...

sn−2, 0 sn−2, 1 − sn−2, 0 · · · sn−2, n−1 − sn−2, n−2

sn−1, 0 sn−1, 1 − sn−1, 0 · · · sn−1, n−1 − sn−1, n−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Finally, since F is invertible, the identity SÃ = AS is equivalent to SÃF = ASF .

Next, for each λ ∈ C let Λ(λ) be the one row matrix appearing as the first
factor in the left-hand side of (11.8), that is, Λ(λ) =

[
1 λ · · · λn−1

]
. It

is sufficient to prove that, regardless of the choice of λ, the one row matrices
Λ(λ)SÃF and Λ(λ)ASF are the same. Write A in the form (11.2). Then

λn +

n−1∑

k=0

λkak = det(λ − A) = (λ − α1)(λ − α2) · · · (λ − αn). (11.13)
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Using this identity, we have

Λ(λ)A =
[

λ λ2 · · · λn−1 λn − a(λ)
]
,

where a(λ) = (λ − α1)(λ − α2) · · · (λ − αn). Furthermore,

Λ(λ)S =
[

s0(λ) s1(λ) · · · sn−1(λ)
]
,

where for j = 0, . . . , n − 1 the element sj(λ) is equal to the right-hand side of

(11.12). Now using the matrix representations of ÃF and SF in the first paragraph

of the proof it is straightforward to show that Λ(λ)SÃF = Λ(λ)ASF for any choice
of λ. �

Lemma 11.7. Let Z be an n × n second companion matrix, let ζ1, . . . , ζn be the
eigenvalues of Z (algebraic multiplicities taken into account), let α1, . . . , αn be

complex numbers, and let Z̃ be the lower triangular n × n matrix given by

Z̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ1 0 · · · · · · 0 0

ζ2 − α2 ζ2 · · · 0 0
...

. . .
...

...
...

. . .
...

ζn−1 − αn−1 ζn−1 − αn−1 · · · ζn−1 0

ζn − αn ζn − αn · · · · · · ζn − αn ζn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11.14)

Also let S = U(α2, . . . , αn; ζ1, . . . , ζn−1), that is, S =
[
sk,j

]n−1

k,j=0
is the n × n

matrix determined by (11.12). Then SZ̃ = ZS.

Proof. Clearly, it is possible to give a direct argument along the lines of the proof
of Lemma 11.6. However, we shall follow another approach and derive the lemma
as a corollary of Lemma 11.6.

Introduce the n × n matrix T =
[
tk,j

]n−1

k,j=0
by stipulating that

n−1∑

k=0

tk,jλ
k = (λ − αn) · · · (λ − αn+1−j)(λ − ζn−1−j) · · · (λ − ζ1). (11.15)

Thus T is defined in the same way as S in Lemma 11.6 with the understanding
that the eigenvalues α1, . . . , αn of A and the complex numbers ζ1, . . . , ζn there
are replaced here by the eigenvalues ζn, . . . , ζ1 of Z and the complex numbers
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αn, . . . , α1. It follows that T Ẑ = ZT , where

Ẑ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζn ζn − αn · · · · · · ζn − αn ζn − αn

0 ζn−1 · · · ζn−1 − αn−1 ζn−1 − αn−1

...
. . .

...
...

...
. . .

...
0 0 · · · ζ2 ζ2 − α2

0 0 · · · · · · 0 ζ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Observe now that (11.15) can be rewritten as

n−1∑

k=0

tk,jλ
k = (λ − ζ1) · · · (λ − ζn−1−j)(λ − αn+1−j) · · · (λ − αn).

Comparing this with the defining expression for S, we see that

tk,j = sk,n−1−j , k, j = 0, . . . , n − 1.

In other words T = SE, where E is the n×n reversed identity matrix (having ones

on the antidiagonal and zeros everywhere else). Combining this with T Ẑ = ZT ,

we get SEẐ = ZSE, and it follows that S(EẐE) = ZS. The argument is now

completed by observing that EẐE = Z̃. �

Proof of Theorem 11.4. Let A and Z be second companion matrices. Assume
that there exist an ordering α1, . . . , αn of the eigenvalues of A and an order-
ing ζ1, . . . , ζn of the eigenvalues of Z such that (11.6) is satisfied. Put S =
U(α2, . . . , αn; ζ1, . . . , ζn−1). Using the final part of Lemma 11.5, we see that (11.6)
is equivalent to the invertibility of S. But then we can use Lemmas 11.6 and 11.7 to
show that S−1AS and S−1ZS are upper triangular and lower triangular, respec-
tively. Thus A and Z admit simultaneous reduction to complementary triangular
forms.

Next, we prove the reverse implication. Assume S is an invertible n × n
matrix such that S−1AS is upper triangular with diagonal elements α1, . . . , αn

and S−1ZS is lower triangular with diagonal elements ζ1, . . . , ζn. Suppose also,
contrary to (11.6), that αk = ζj for some k > j. Put T = (S⊤)−1. Then T−1A⊤T =
(S−1AS)⊤ is lower triangular with diagonal elements α1, . . . , αn. Write T−1A⊤T
in the form

T−1A⊤T =

[
A1 0

∗ A2

]
,

with A1 a (k − 1) × (k − 1) matrix and A2 an (n − k + 1) × (n − k + 1) matrix.
Clearly A2 is lower triangular with αk on the diagonal (actually as first entry).
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Hence αk is an eigenvalue of A2. Note that a corresponding eigenvector can be
transformed into an eigenvector for the full matrix T−1A⊤T , again corresponding
to the eigenvalue αk, by adding k − 1 zeros at the beginning. The upshot of this
is that there exists a nonzero vector a = (a1, . . . , an)⊤ in Ker (αkIn − T−1A⊤T )
such that

ai = 0, i = 1, . . . , k − 1. (11.16)

Analogously, by virtue of the upper triangularity of T−1Z⊤T , there is a nonzero
vector z = (z1, . . . , zn)⊤ in Ker (ζjIn − T−1A⊤T ) for which

zi = 0, i = j + 1, . . . , n. (11.17)

Now Ta ∈ Ker (αkIn−A⊤) and Tz ∈ Ker (ζjIn−Z⊤). Since A⊤ is a first compan-
ion matrix, the space Ker (αkIn−A⊤) is spanned by the vector (1, αk, . . . , αn−1

k )⊤.
Similarly, the space Ker (ζjIn − Z⊤) is spanned by the vector (1, ζj , . . . , ζ

n−1
j )⊤.

But we have assumed that αk = ζj . It follows that the one-dimensional spaces
Ker (αkIn − A⊤) and Ker (ζjIn − Z⊤) are spanned by one and the same vector.
Hence Ta and Tz are scalar multiples of each other. As T is invertible, we conclude
that a and z are scalar multiples of each other. Combining this with (11.16) and
(11.17), and using that k > j, we see that a = z = 0, contradicting the fact that
a and z are nonzero vectors. �

The above proof provides some additional information on both parts of The-
orem 11.4. Indeed, for n×n second companion matrices A and Z, we have proved
the following two facts.

(a) If α1, . . . , αn is an ordering of the eigenvalues of A and ζ1, . . . , ζn is an order-
ing of the eigenvalues of Z such that the conditions in (11.6) are satisfied, then

S = U(α2, . . . , αn; ζ1, . . . , ζn−1) is invertible, S−1AS = Ã is upper triangular

with diagonal elements α1, . . . , αn, and S−1ZS = Z̃ is lower triangular with
diagonal elements ζ1, . . . , ζn. Here Ã and Z̃ are as in (11.11) and (11.14).

(b) If there exists an invertible n × n matrix S such that S−1AS is upper tri-
angular with diagonal elements α1, . . . , αn and S−1ZS is lower triangular
with diagonal elements ζ1, . . . , ζn, then the inequalities (11.6) hold (i.e., the
matrix U(α2, . . . , αn; ζ1, . . . , ζn−1) is invertible).

In this form Theorem 11.4 can be seen as a generalizations of Theorem 10.3.
Indeed, the hypotheses of Theorem 10.3 imply (by Proposition 11.2) that the given
matrices A and Z admit simultaneous reduction to second companion forms, which
allows us to derive Theorem 10.3 as a corollary of Theorem 11.4.

In a similar way Theorem 11.3 can be specified further. In fact, by taking
transposes (cf., the observations made in the paragraph directly after Theorem
11.4) we see that for n × n first companion matrices A and Z, the following two
statements hold true.
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(c) If α1, . . . , αn is an ordering of the eigenvalues of A and ζ1, . . . , ζn is an or-
dering of the eigenvalues of Z such that the conditions in (11.5) are satisfied,
then T = U(ζ2, . . . , ζn; α1, . . . , αn−1)

⊤ is invertible, TAT−1 is upper triangu-
lar with diagonal elements α1, . . . , αn, and TZT−1 is lower triangular with
diagonal elements ζ1, . . . , ζn.

(d) If there exists an invertible n × n matrix T such that TAT−1 is upper tri-
angular with diagonal elements α1, . . . , αn and TZT−1 is lower triangular
with diagonal elements ζ1, . . . , ζn, then the inequalities (11.5) hold (i.e., the
matrix U(ζ2, . . . , ζn; α1, . . . , αn−1) is invertible).

The next theorem is the third main result of this section. Its proof will provide
further insight in orderings of the eigenvalues of A and Z satisfying (11.5) or (11.6).

Theorem 11.8. Let A and Z be n × n companion matrices of the same type (so
either both first or both second companions). Then A and Z admit simultaneous
reduction to complementary triangular forms if and only if there exists an ordering
µ1, . . . , µs of the (different) elements of σ(A) ∪ σ(Z) such that

t∑

i=1

mZ(µi) ≤ 1 +

t−1∑

i=1

mA(µi), t = 1, . . . , s. (11.18)

Here, as before, mA(µ) denotes the algebraic multiplicity of µ as an eigenvalue
of A (taken to be zero when µ is not in the spectrum of A), and likewise with A
replaced by Z. At first sight, the theorem seems to be non-symmetric in A and Z,
but in fact it is not. This can be seen by taking the elements of σ(A) ∪ σ(Z) in
the reversed order µs, . . . , µ1 and using that the algebraic multiplicities for A, as
well as those for Z, add up to n. Indeed, for t = 1, . . . , s we have

t∑

i=1

mA(µs+1−i) = n −
s−t∑

i=1

mA(µi)

≤ n + 1 −
s−t+1∑

i=1

mZ(µi) = 1 +

t−1∑

i=1

mZ(µs+1−i).

Proof. As has been established earlier in this section, A and Z admit simultaneous
reduction to complementary triangular forms if and only if there exist orderings
α1, . . . , αn of the eigenvalues of A and ζ1, . . . , ζn of the eigenvalues of Z such that
(11.5) is satisfied. So we need to prove the equivalence of this condition on the
eigenvalues of A and Z with the one mentioned in the present theorem which
concerns the algebraic multiplicities of the eigenvalues of A and Z. In view of our
needs later (see the proof of Theorem 12.8), we shall establish a somewhat more
general result. In fact we shall prove that, for h an arbitrary non-negative integer,
the following two statements are equivalent:
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(A) There exist orderings α1, . . . , αn of the eigenvalues of A and ζ1, . . . , ζn of the
eigenvalues of Z such that

αk �= ζj , k, j = 1, . . . , n, k ≤ j − h. (11.19)

(B) There exists an ordering µ1, . . . , µs of the different elements of σ(A) ∪ σ(Z)
such that

t∑

i=1

mZ(µi) ≤ h +

t−1∑

i=1

mA(µi), t = 1, . . . , s. (11.20)

Note that (11.19) reduces to (11.5) and, likewise, (11.20) boils down to (11.18) by
taking h = 1. We split the argument into two parts.

Part 1. In this part we prove that (B) implies (A). Assume that there is an ordering
µ1, . . . , µs of the (different) elements of σ(A) ∪ σ(Z) such that (11.20) is satisfied.
First we introduce an ordering α1, . . . , αn of the eigenvalues of A. Take k among
the integers 1, . . . , n. Then there exists a unique integer t(k) among 1, . . . , s such
that

1 +

t(k)−1∑

i=1

mA(µi) ≤ k ≤
t(k)∑

i=1

mA(µi),

and we put αk = µt(k). Note that, for t = 1, . . . , s,

αk = µt for k = 1 +

t−1∑

i=1

mA(µi) , . . . ,

t∑

i=1

mA(µi).

In this way, indeed, α1, . . . , αn is an ordering of the eigenvalues of A (algebraic
multiplicities taken into account). This ordering can also be written as

µ1, . . . , µ1︸ ︷︷ ︸ µ2, . . . , µ2︸ ︷︷ ︸ . . . µs−1, . . . , µs−1︸ ︷︷ ︸ µs, . . . , µs︸ ︷︷ ︸
mA(µ1) mA(µ2) . . . mA(µs−1) mA(µs)

(11.21)

of course with the (natural) convention that an underbraced subsequence of length
zero is just absent. In the same vein,

µ1, . . . , µ1︸ ︷︷ ︸ µ2, . . . , µ2︸ ︷︷ ︸ . . . µs−1, . . . , µs−1︸ ︷︷ ︸ µs, . . . , µs︸ ︷︷ ︸
mZ(µ1) mZ(µ2) . . . mZ(µs−1) mZ(µs).

(11.22)

is an ordering ζ1, . . . , ζn of the eigenvalues of Z (algebraic multiplicities taken into
account) with

ζk = µt for k = 1 +
t−1∑

i=1

mZ(µi) , . . . ,
t∑

i=1

mZ(µi).

We claim that (11.19) is satisfied.
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Let k and j be integers among 1, . . . , n, and suppose that αk = ζj . Let t be
the unique integer among 1, . . . , s for which µt = αk = ζj . Then

1 +

t−1∑

i=1

mA(µi) ≤ k ≤
t∑

i=1

mA(µi)

and

1 +

t−1∑

i=1

mZ(µi) ≤ j ≤
t∑

i=1

mZ(µi).

Combining the appropriate parts of these inequalities with (11.20) gives

j ≤
t∑

i=1

mZ(µi) ≤ h +

t−1∑

i=1

mA(µi) ≤ k + h − 1,

so k > j − h, as desired.

Part 2. Next we prove that (A) implies (B). Suppose that α1, . . . , αn is an ordering
of the eigenvalues of A and ζ1, . . . , ζn is an ordering of the eigenvalues of Z such
that (11.19) is satisfied. We shall first make clear that there is no loss of generality
in assuming that the ordering α1, . . . , αn of the eigenvalues of A has the clustered
form

µ1, . . . , µ1︸ ︷︷ ︸ µ2, . . . , µ2︸ ︷︷ ︸ . . . µp−1, . . . , µp−1︸ ︷︷ ︸ µp, . . . , µp︸ ︷︷ ︸
mA(µ1) mA(µ2) . . . mA(µp−1) mA(µp)

(11.23)

where µ1, . . . , µp are the different eigenvalues of A. As there is nothing to prove
when p = 1, we will consider the case p > 1.

Put µ1 = α1. Then µ1 appears at exactly mA(µ1) positions in α1, . . . , αn.
Let l be the largest integer among 1, . . . , n such that αl = µ1. Then l ≥ mA(µ1).
If l = mA(µ1), the sequence α1, . . . , αn has the form

µ1, . . . , µ1︸ ︷︷ ︸ ∗ . . . . . . . . . . . . . . . . . . . . . . . .∗︸ ︷︷ ︸,
mA(µ1) n − mA(µ1)

(11.24)

with µ1 not appearing among the entries denoted by a star. Now suppose l >
mA(µ1). Then mA(µ1) > 1 (hence l > 2) and there must be an integer t among
2, . . . , l − 1 such that αt �= µ1. With the help of such a t – which in practice is
best taken as small as possible – we produce a new ordering α̂1, . . . , α̂n of the
eigenvalues of A. Namely by putting µ1 on the tth position, αt on the lth position,
and leaving the rest intact. One verifies easily that

α̂k �= ζj , k, j = 1, . . . , n, k ≤ j − h.

Also the largest integer l̂ among 1, . . . , n such that αl̂ = µ1 is strictly smaller than
l. Proceeding in this way, one arrives in a finite number of steps at an ordering –
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written again as α1, . . . , αn by slight abuse of notation – of the eigenvalues of A
of the form (11.24) and still satisfying (11.19).

Next, put µ2 = α1+mA(µ1). Using the same type of reasoning as in the pre-
vious paragraph, one sees that it may be assumed that the ordering α1, . . . , αn of
the eigenvalues of A has the form

µ1, . . . , µ1︸ ︷︷ ︸ µ2, . . . , µ2︸ ︷︷ ︸ ∗ . . . . . . . . . . . . . . . . . . . . . ∗︸ ︷︷ ︸
mA(µ1) mA(µ2) n − mA(µ1) − mA(µ2)

with µ1 and µ2 not among the entries denoted by a star. In case A has only two
distinct eigenvalues (so p = 2) we are ready. In the situation where p > 2, we
continue the process, thereby arriving at (11.23) after a finite number of steps.
The reasoning (as well as certain arguments given below) can be formalized by
using finite induction.

For what follows it is relevant to note that the construction can be arranged
in such a way that (11.23) starts with the possible eigenvalues of A not belonging
to the spectrum of Z. Indeed, if necessary shift these eigenvalues to the left. Thus,
from now on, we assume that the ordering α1, . . . , αn has the form

µ1, . . . , µ1︸ ︷︷ ︸ . . . µr, . . . , µr︸ ︷︷ ︸ µr+1, . . . , µr+1︸ ︷︷ ︸ . . . µp, . . . , µp︸ ︷︷ ︸
mA(µ1) . . . mA(µr) mA(µr+1) . . . mA(µp),

(11.25)

with µ1, . . . , µr the r different eigenvalues of A that are not in σ(Z), and with
µr+1, . . . , µp the p − r different common eigenvalues of σ(A) and σ(Z). Here we
have 0 ≤ r ≤ p , with the cases r = 0 and r = p corresponding to the situation
where σ(A) ⊂ σ(Z) and σ(A) ∩ σ(Z) = ∅, respectively. The eigenvalues µ1, . . . , µr

of A (but not of Z) can be taken in any order.

Next we turn to Z. Carrying out the procedure described above, with the
necessary alteration of details, the ordering ζ1, . . . , ζn of the eigenvalues of Z can
be brought in clustered form too. This time the construction can be carried out
in such a way that the ordering ends with the (possible) eigenvalues of Z that
do not belong to σ(A) and starts with the common eigenvalues of A and Z. In
first instance, however, these common eigenvalues do not necessarily appear in the
order µr+1, . . . , µp in which they come in (11.25). Thus the clustered ordering for
Z has the form

µσ(r+1), . . . , µσ(r+1)︸ ︷︷ ︸
. . . µσ(p), . . . , µσ(p)︸ ︷︷ ︸

µp+1, . . . , µp+1︸ ︷︷ ︸ . . . µs, . . . , µs︸ ︷︷ ︸
mZ

(
µσ(r+1)

)
. . . mZ

(
µσ(p)

)
mZ(µp+1) . . . mZ(µs)

(11.26)
where σ is a suitable permutation of r+1, . . . , p, and µp+1, . . . , µs are the different
eigenvalues of Z that do not belong to σ(A). Here r ≤ p ≤ s, with the cases p = r
and p = s corresponding to the (extreme) situation where σ(A) ∩ σ(Z) = ∅ and
σ(Z) ⊂ σ(A), respectively. The eigenvalues µp+1, . . . , µs of Z (but not of A) can
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be taken in any order. As we have the disjoint union

σ(A) ∪ σ(Z) =
(
σ(A) \ σ(Z)

)
∪
(
σ(A) ∩ σ(Z)

)
∪
(
σ(Z) \ σ(A)

)
,

the number of different elements in σ(A) ∪ σ(Z) is r +(p− r)+ (s−p), hence this
number is equal to s. In line with this, µ1, . . . , µs is an ordering of the different
elements of σ(A) ∪ σ(Z). This ordering satisfies (11.20). However, to see this, the
above ordering of the eigenvalues of Z needs to be cleaned up first.

Suppose the permutation σ is not the identity mapping on r + 1, . . . , p (so
in particular p > r + 1), and let k be the unique integer among r + 1, . . . , p such
that σ(j) = j, j = k + 1, . . . , p and σ(k) �= k (in particular k = p when σ(p) �= p).
Write σ(k) = q. Then r + 1 ≤ q < k and the ordering (11.25) of the eigenvalues of
A has the form

µ1, . . . , µ1︸ ︷︷ ︸ . . . . . . . . . µr, . . . , µr︸ ︷︷ ︸
mA(µ1) . . . . . . . . . mA(µr)

µr+1, . . . , µr+1︸ ︷︷ ︸ . . . . . . . . . µq−1, . . . , µq−1︸ ︷︷ ︸
mA(µr+1)) . . . . . . . . . mA(µq−1))

µq, . . . , µq︸ ︷︷ ︸ µq+1, . . . , µq+1︸ ︷︷ ︸ . . . µk−1, . . . , µk−1︸ ︷︷ ︸ µk, . . . , µk︸ ︷︷ ︸
mA(µq) mA(µq+1) . . . mA(µ−1) mA(µk)

µk+1, . . . , µk+1︸ ︷︷ ︸ . . . . . . . . . µp, . . . , µp︸ ︷︷ ︸
mA(µq) . . . . . . . . . mA(µp)

.

Also, k = σ(l) for some l among the numbers (r +1), . . . , (k−1), and the ordering
of the eigenvalues of Z obtained in the preceding paragraph looks like

µσ(r+1), . . . , µσ(r+1)︸ ︷︷ ︸
. . . . . . . . . µσ(l−1), . . . , µσ(l−1)︸ ︷︷ ︸

mZ

(
µσ(r+1)

)
. . . . . . . . . mZ

(
µσ(l−1)

)

µk, . . . , µk︸ ︷︷ ︸ µσ(l+1), . . . , µσ(l+1)︸ ︷︷ ︸
. . . µσ(k−1), . . . , µσ(k−1)︸ ︷︷ ︸

µq, . . . , µq︸ ︷︷ ︸
mZ(µk) mZ

(
µσ(l+1)

)
. . . mZ

(
µσ(k−1)

)
mZ(µq)

µσ(k+1), . . . , µσ(k+1)︸ ︷︷ ︸
. . . . . . . . . µσ(p), . . . , µσ(p)︸ ︷︷ ︸

mZ

(
µσ(k+1)

)
. . . . . . . . . mZ

(
µσ(p)

)

µp+1, . . . µp+1︸ ︷︷ ︸ . . . . . . . . . , µs, . . . , µs︸ ︷︷ ︸
mZ(µp+1) . . . . . . . . . mZ(µs)

.

At this point it is crucial to observe that, without violating the property embodied
in (11.19), one can replace

µk, . . . , µk︸ ︷︷ ︸ µσ(l+1), . . . , µσ(l+1)︸ ︷︷ ︸
. . . µσ(k−1), . . . , µσ(k−1)︸ ︷︷ ︸

µq, . . . , µq︸ ︷︷ ︸
mZ(µk) mZ

(
µσ(l+1)

)
. . . mZ

(
µσ(k−1)

)
mZ(µq)
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in the ordering for Z by

µσ(l+1), . . . , µσ(l+1)︸ ︷︷ ︸
. . . µσ(k−1), . . . , µσ(k−1)︸ ︷︷ ︸

µq, . . . , µq︸ ︷︷ ︸ µk, . . . , µk︸ ︷︷ ︸
mZ

(
µσ(l+1)

)
. . . mZ

(
µσ(k−1)

)
mZ(µq) mZ(µk)

and it can be concluded that we may change the permutation σ, already satisfying
σ(j) = j, j = k + 1, . . . , p, so that σ(k) = k too. To be precise, if σ̂ is the
permutation of r + 1, . . . , p given by

σ̂(j) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ(j), j = r + 1, . . . , l − 1,

σ(j + 1), j = l, . . . , k − 1,

σ(l), j = k,

σ(j), j = k + 1, . . . , p

(so σ̂(k − 1) = σ(k) = q and σ̂(k) = σ(l) = k), then the ordering (11.26) of the
eigenvalues of Z may be replaced by

µσ̂(r+1), . . . , µσ̂(r+1)︸ ︷︷ ︸
. . . µσ̂(p), . . . , µσ̂(p)︸ ︷︷ ︸

µp+1, . . . , µp+1︸ ︷︷ ︸ . . . µs, . . . , µs︸ ︷︷ ︸
mZ

(
µσ̂(r+1)

)
. . . mZ

(
µσ̂(p)

)
mZ(µp+1) . . . mZ(µs)

where σ̂(j) = j, j = k, . . . , p. It follows, formally by finite induction, that σ can be
taken to be the identity mapping on r + 1, . . . , p. Thus, from now on, we assume
that the ordering ζ1, . . . , ζn of the eigenvalues of Z has the form

µr+1, . . . , µr+1︸ ︷︷ ︸ . . . µp, . . . , µp︸ ︷︷ ︸ µp+1, . . . , µp+1︸ ︷︷ ︸ . . . µs, . . . , µs︸ ︷︷ ︸
mZ(µr+1) . . . mZ(µp) mZ(µp+1) . . . mZ(µs)

(11.27)

(cf., the ordering (11.25) of the eigenvalues of A), and we are ready to establish
(11.20).

Take t from the integers 1, . . . , s. If t ≤ r, the complex numbers µ1, . . . , µt do
not belong to σ(Z), and the inequality in (11.20) holds trivially because its left-
hand side vanishes (and h is non-negative by assumption). If t > p, the complex
numbers µp+1, . . . , µt−1 do not belong to σ(A). Hence the right-hand side of the
inequality in (11.20) comes down to

h +

t−1∑

i=1

mA(µi) = h +

p∑

i=1

mA(µi) = h + n.

As the left-hand side of the inequality in (11.20) certainly does not exceed n,
the desired inequality is again trivial. Suppose now that r + 1 ≤ t ≤ p. Then
µt ∈ σ(A) ∩ σ(Z) and µt appears in (11.25) and (11.27) at the positions

k = 1 +

t−1∑

i=1

mA(µi), j =

t∑

i=1

mZ(µi), (11.28)
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respectively. But then, as the condition (11.19) is met, it is impossible that k ≤
j − h. Thus j ≤ h + k − 1, which is exactly what (11.20) says. �

Part 2 of the above proof actually contains an algorithm. Given orderings
α1, . . . , αn of the eigenvalues of A and ζ1, . . . , ζn of the eigenvalues of Z such
that (11.5) is satisfied, the algorithm produces new orderings featuring a special
structure, and it does so keeping the property embodied in (11.5) intact. Roughly
speaking, the special structure in question comes down to the following: the eigen-
values are clustered in blocks (possibly empty), and these come in the same order
for A as for Z. For a graphic depiction, see the expressions (11.21) and (11.22). In
the next chapter (Section 12.3) we shall encounter a basically identical situation in
the context of job scheduling. It is for that reason that Part 2 of the proof of The-
orem 11.8 has been given in considerable detail. This enables us to be brief on the
point in question later. We complete the discussion with an example illustrating
the algorithm.

Example. Let A and Z be the 10 × 10 (first) companion matrices associated with
the polynomials

a(λ) = (λ − 1)(λ − 3)4(λ − 4)(λ − 5)3(λ − 6),

z(λ) = (λ − 2)2(λ − 3)3(λ − 4)(λ − 5)2(λ − 6)2,

respectively. The eigenvalues of A are the zeros of a, and the eigenvalues of Z
are the zeros of z (the appropriate multiplicities counted in both cases). Here are
orderings of the eigenvalues of A and Z respecting (11.19) with h = 2:

A : 1 3 3 3 5 5 3 4 5 6,

Z : 3 3 3 5 4 5 2 6 2 6.

We now follow the algorithm developed in Part 2 of the proof of Theorem 11.8.
Accordingly, we begin by dealing with the eigenvalues of A. First, the eigenvalue
3 in the seventh position is interchanged with the eigenvalue 5 in the fifth:

A : 1 3 3 3 3 5 5 4 5 6,

Z : 3 3 3 5 4 5 2 6 2 6.

Next interchange the eigenvalue 5 in the ninth position with the eigenvalue 4 in
the eighth:

A : 1 3 3 3 3 5 5 5 4 6,

Z : 3 3 3 5 4 5 2 6 2 6.

With this, our operations on the eigenvalues of A are completed, and we turn
to those of Z. Here, consecutively, we interchange the eigenvalue 6 in the eighth
position with the eigenvalue 2 in the ninth position, and the eigenvalue 5 in the
fourth position with the eigenvalue 4 in the fifth:

A : 1 3 3 3 3 5 5 5 4 6,

Z : 3 3 3 4 5 5 2 2 6 6.
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Although both orderings now feature the desired block structure, the process has
not been finished yet. One issue is the position of the eigenvalues having zero-
multiplicity for either A or Z. These are the eigenvalue 1 of A and 2 of Z. Now
1 is already in the desired leftmost position, but the eigenvalues 2 do not yet
appear at the far right. This, however, can easily be arranged by shifting the two
eigenvalues 2 to the right, i.e., by replacing the sequence 2 2 6 6 in the ordering
for Z by 6 6 2 2:

A : 1 3 3 3 3 5 5 5 4 6,

Z : 3 3 3 4 5 5 6 6 2 2.

The next (and final) point to be addressed is that in the ordering of the eigenvalues
of Z, the eigenvalue 4 precedes the eigenvalues 5, while in the ordering of the
eigenvalues of A this is the other way around. The remedy consists of replacing
the sequence 4 5 5 in the ordering for Z by 5 5 4:

A : 1 3 3 3 3 5 5 5 4 6,

Z : 3 3 3 5 5 4 6 6 2 2.

With µ1 = 1, µ2 = 3, µ3 = 5, µ4 = 4, µ5 = 6 and µ6 = 2, we now have an ordering
µ1, . . . , µ6 (i.e, 1, 3, 5, 4, 6, 2) of the different elements of σ(A) ∪ σ(Z) satisfying
(11.20) with h = 2.

This is not the only ordering of this type. Indeed, another one is obtained by
interchanging the eigenvalues 3 and 5:

A : 1 5 5 5 3 3 3 3 4 6,

Z : 5 5 3 3 3 4 6 6 2 2.
. (11.29)

In fact, the ordering in question (i.e., 1, 5, 3, 4, 6, 2) of the different elements of
σ(A) ∪ σ(Z) even satisfies (11.20) with h = 1, and it follows from Theorem 11.8
that the companion matrices A and Z admit simultaneous reduction to comple-
mentary triangular forms (cf., the Examples in Sections 11.5 and 12.3.

11.3 Preliminaries about companion based
matrix functions

From the material presented in Section 4.1 it is clear that a proper rational op-
erator function can be realized in such a way that both the main operator and
the associate main operator have the form of an operator companion (cf., the
expressions (4.1) for A, B and C in Theorem 4.1). This holds in particular for
proper rational matrix functions, and there block matrix companions take the
role of operator companions. In general, however, one cannot make realizations
with ordinary companions of the type discussed in the preceding section. Here we
shall study the case when one can, even when the extra condition of minimality is
imposed.
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A rational m × m matrix function W will be called (first) companion based
if it admits a minimal realization

W (λ) = Im + C(λIn − A)−1B (11.30)

with A and A× = A − BC first companion matrices.

Clearly, there is an alternative concept where first companions are replaced
by their transposes, the second companions, but there is no need to pursue this
issue here. Therefore in the following we will usually drop the qualifier “first” and
simply speak about companion based matrix functions meaning all the time first
companion based matrix functions.

We begin with two preliminary propositions. The first is a simple uniqueness
result.

Proposition 11.9. Let W be a companion based m × m matrix function, and for
j = 1, 2, let

W (λ) = Im + Cj(λIn − Aj)
−1Bj

be a minimal realization of W such that Aj and A×
j = Aj − BjCj are first com-

panions. Then A1 = A2 and A×
1 = A×

2 .

Proof. By the state space isomorphism theorem, the matrices A1 and A2 are sim-
ilar. Hence the characteristic polynomials of A1 and A2 are the same. As A1 and
A2 are first companions, A1 = A2 follows. The identity A×

1 = A×
2 is obtained in

the same way using the similarity of A×
1 and A×

2 . �

Next we investigate in how far some simple operations leave the property of
being companion based intact. If W is a rational m×m matrix function, then the
functions W−1 and W⊤ are given by W−1(λ) = W (λ)−1 (when detW (λ) does not
vanish identically) and W⊤(λ) = W (λ)⊤. Also, for T an invertible m×m matrix,
WT denotes the function defined by WT (λ) = T−1W (λ)T . Note that a companion
based matrix function W is biproper, and hence W−1 exists.

Proposition 11.10. Assume W is a companion based m×m matrix function. Then
the following holds.

(i) The matrix function W−1 is companion based.

(ii) The matrix function W⊤ is companion based if and only if either W and
W−1 have no common pole, or (the other extreme) W and W−1 have the
same poles, pole-multiplicities taken into account.

(iii) For T an invertible m × m matrix, WT is companion based.

Recall that the poles of W−1 coincide with the zeros of W , with pole-
multiplicities and zero-multiplicities corresponding to each other (see Chapter 8).
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Proof. Let (11.30) be a minimal realization of W with A and A× = A − BC first
companion matrices. Then

W−1(λ) = Im − C(λIn − A×)−1B

is a minimal realization of W−1 for which both A× and (A×)× = A× + BC = A
are first companions. This proves the first item of the proposition.

Turning to the second item, we first assume that the poles of W and W−1

meet the requirement mentioned in the theorem. In terms of the minimal realiza-
tion (11.30), involving first companions A and A×, this means that either A and
A× have no common eigenvalue, or (the other extreme) A and A× have the same
characteristic polynomial and are therefore the same. But then Proposition 11.1
guarantees that there exists an invertible n× n matrix S such that S−1A⊤S = A
and S−1(A×)⊤S = A×. Now

W⊤(λ) = Im + B⊤(λIn − A⊤)−1C⊤ (11.31)

is a minimal realization of W⊤. Replacing A⊤ by SAS−1, we obtain another
minimal realization for W⊤, namely

W⊤(λ) = Im + B⊤S(λIn − A)−1S−1C⊤.

As A−S−1C⊤B⊤S = S−1(A⊤−C⊤B⊤)S = S−1(A×)⊤S = A×, we can conclude
that W⊤ is companion based.

Next, assume that W⊤ is companion based. Then W⊤ admits a minimal
realization

W⊤(λ) = In + Ĉ(λIm − Â)−1B̂ (11.32)

with Â and Â× = Â − B̂Ĉ first companions. The state space similarity theorem,
applied to (11.31) and (11.32), guarantees the existence of an invertible n × n
matrix S such that

SÂS−1 = A⊤, Â×S−1 = S
(
A⊤ − C⊤B⊤

)
S−1 = (A×)⊤,

In particular, the characteristic polynomials of Â and A coincide, and the same
is true for those of Â× and A×. As we are dealing here with first companions,
we may conclude that Â = A and Â× = A×. But then SAS−1 = A⊤ and
SA×S−1 = (A×)⊤. Proposition 11.1 now gives that either A and A× do not have
a common eigenvalue, or (the other extreme) A and A× are identical. In view of
the minimality of (11.30), this amounts exactly to what should be established for
the poles of W and W−1. This completes the proof of item (ii).

To prove that WT is companion based, we start with the minimal realization
(11.30) for W , assuming (as before) that A and A× = A−BC are first companions.
The function WT can be represented as

WT (λ) = Im + T−1C(λIn − A)−1BT,

and this again is a minimal realization. The desired conclusion is now immediate
from A − (BT )(T−1C) = A − BC = A×. �
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In Section 10.3, we already mentioned that rational matrix functions of the
type featuring in Theorem 10.12 form a subclass of the companion based matrix
functions introduced in the present section. The next two propositions make this
statement explicit.

Proposition 11.11. Let W be a rational m × m matrix function, and let

W (λ) = Im + C(λIn − A)−1B

be a realization of W such that rankBC = 1 or, what amounts to the same,
rank (A − A×) = 1. Suppose, in addition, that A and A× have no common eigen-
value. Then W is companion based.

Proof. Since A and A× have no common eigenvalue, it follows from Theorem 7.6
that the given realization of W is minimal. Also, by Proposition 11.2 there exists
an invertible n × n matrix such that S−1AS and S−1A×S are first companion
matrices. Write Â = S−1AS, B̂ = S−1B and Ĉ = CS. Then

W (λ) = Im + Ĉ(λIn − Â)−1B̂

is a minimal realization of W for which Â = S−1AS and Â× = Â−B̂Ĉ = S−1A×S
are first companions. Hence W is companion based. �

Proposition 11.12. Let W be a rational m × m matrix function, let

W (λ) = Im + C(λIn − A)−1B

be a minimal realization of W , and assume rankBC = 1 or, what amounts to the
same, rank (A−A×) = 1. Suppose, in addition, that W and W−1 have no common
pole or, equivalently, that the set of poles of W is disjoint from the set of zeros of
W . Then W is companion based.

Proof. As the given realization is minimal, the poles of W and W−1 coincide
with the eigenvalues of A and A×, respectively. Hence A and A× have no common
eigenvalue. With this we are back in the situation of the previous proposition. �

11.4 Companion based matrix functions:
poles and zeros

In this section we deal with the problem of describing companion based matrix
functions with prescribed poles and zeros. We start with some terminology.

Let W be a rational m × m matrix function having the value Im at infinity.

By the pole-polynomial of W we mean the (monic) scalar polynomial
(λ−α1) · · · (λ−αn), where α1, . . . , αn are the poles of W , pole-multiplicities (see
Section 8.2) taken into account. The pole-polynomial of W−1 will be referred to as
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the zero-polynomial of W . It has the form (λ−α×
1 ) · · · (λ−α×

n ), where α×
1 , . . . , α×

n

are the zeros of W , zero-multiplicities (see Section 8.1) taken into account. The
pole-polynomial and the zero-polynomial of W have the same degree, namely the
McMillan degree δ(W ) of W . Actually, if (11.30) is a minimal realization of W ,
then the pole-polynomial of W coincides with the characteristic polynomial of A,
and the zero-polynomial of W is identical to the characteristic polynomial of A×.

Suppose W is a companion based m×m matrix function. By Proposition 11.9,
a companion based matrix function uniquely determines a pair of first companion
matrices. As a matter of fact, if (11.30) is a minimal realization of W with A
and A× first companions, the pair in question is A, A×. These companions are
completely determined by the pole-polynomial and zero-polynomial of W ; the
converse is also true.

We now turn to the issue of describing the companion based matrix functions
having a given pole and zero-polynomial. So the problem is the following: given two
monic scalar polynomials p and p× of the same degree, find all companion based
m×m matrix functions having p as pole-polynomial and p× as zero-polynomial. In
this connection, we will especially pay attention to the size m. One more prelimi-
nary remark (showing that with any m each larger integer will do) is in order here.

Suppose W is a companion based m × m matrix function having pole-
polynomial p and zero-polynomial p×, let I be an identity matrix of arbitrary
size, k say, and define Wext by

Wext(λ) =

[
I 0

0 W (λ)

]
. (11.33)

Then Wext is again companion based. Indeed, if (11.30) is a minimal realization
of W with A and A× first companions, then,

Wext(λ) = Im+k +

[
0

C

]
(λIn − A)−1

[
0 B

]
.

This is again a minimal realization, and the desired conclusion comes from

A −
[

0 B
]
[

0

C

]
= A − BC = A×.

It also follows that Wext has p as its pole-polynomial and p× as its zero-polynomial.

We are now ready to deal with the problem formulated above. In light of the
remark contained in the preceding paragraph, we add as an additional requirement
that the size m of the companion based functions sought for should be as small as
possible. As we will see, this brings us to the low-dimensional cases m = 1 (scalar
functions) and m = 2 (2 × 2 matrix functions).
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Theorem 11.13. Let p and p× be monic scalar polynomials of the same positive
degree, n say. Then there exists a scalar companion based function having p as pole-
polynomial and p× as zero-polynomial if and only if p and p× have no common
zero. In that situation, the function w given by

w(λ) =
p×(λ)

p(λ)
. (11.34)

is the unique scalar companion based function having p as pole-polynomial and p×

as zero-polynomial.

Proof. Assume p and p× have no common zero. As is explained in the first para-
graph of Section 10.3, the scalar function w given by (11.34) admits a minimal
realization of the type w(λ) = 1 + c⊤(λIn − A)−1b with b, c ∈ Cn, A an upper
triangular n×n matrix having the zeros of p on the diagonal, and A× = A−bc⊤ a
lower triangular n×n matrix having the zeros of p× on the diagonal. In particular
A and A× have no common eigenvalue, and it also follows that A−A× = bc⊤ has
rank one. Proposition 11.11 now gives that w is companion based. Also w has p as
its pole-polynomial and p× as its zero-polynomial. This can be seen directly from
(11.34), but it is clear as well from the fact that the characteristic polynomial of
A is p and that for A× is p×.

Now suppose that w is a a scalar companion based function having p as
pole-polynomial and p× as zero-polynomial. We shall prove that p and p× have
no common zero and, in addition, that w is necessarily given by (11.34).

Clearly, the McMillan degree of W is n. Let

w(λ) = 1 + c⊤(λIn − A)−1b, (11.35)

with b, c ∈ Cn, be a minimal realization such that A and A× = A − bc⊤ are first
companions. From the proof of Theorem 10.3 we know that

w(λ) =
det(λIn − A×)

det(λIn − A)
.

However, the characteristic polynomials of A and A× are p and p×, respectively,
and it follows that w is given by (11.34). Assume now that p and p× do have
a common eigenvalue. Then w can be written as a quotient of two polynomials
of degree less than n. Again referring to the first paragraph of Section 10.3, we
conclude that w has a realization with state space dimension less than n. But that
is impossible in view of the minimality of (11.35). �

Next we consider the more complicated situation when the given polynomials
p and p× do have a common zero. In that case scalar companion based functions
are ruled out (by Theorem 11.13). The next result shows that one can always make
do with 2 × 2 matrix functions.
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Theorem 11.14. Let W be a rational 2× 2 matrix function, let p and p× be monic
polynomials of the same positive degree, n say, and suppose p and p× have at least
one common zero. Then the following statements are equivalent:

(i) W is companion based with pole-polynomial p and zero-polynomial p×,

(ii) W is of the form

W (λ) = T−1

⎡
⎢⎢⎢⎣

1
r(λ)

p(λ)

0
p×(λ)

p(λ)

⎤
⎥⎥⎥⎦T, (11.36)

where T is an invertible 2 × 2 matrix, r is a scalar polynomial of degree not
exceeding n − 1 while, moreover, p, p× and r do not have a common zero.

The latter requirement implies, given the assumption that p and p× have
a zero in common, that r cannot be the zero-polynomial. Scalar polynomials of
degree zero (so nonzero constants) are not ruled out, however.

In order to prove Theorem 11.14 it will be convenient to prove first the
following auxiliary result.

Lemma 11.15. Let W be a proper rational 2 × 2 matrix function of the form

W (λ) =

[
1 w12(λ)

0 w22(λ)

]
and lim

λ→∞
W (λ) =

[
1 0

0 1

]
. (11.37)

Then W is companion based, its pole-polynomial p(λ) is equal to the least common
multiple of the denominators of w12(λ) and w22(λ), and its zero-polynomial p×(λ)
is given by p×(λ) = p(λ)w22(λ).

Proof. Let q(λ) be the least common multiple of the denominators of w12(λ) and
w22(λ). Thus q(λ) is a monic polynomial, q(λ)w12(λ) and q(λ)w22(λ) are polyno-
mials, and there is no monic polynomial of smaller degree with the same properties.
Put

r(λ) = q(λ)w12(λ), q×(λ) = q(λ)w22(λ). (11.38)

We split the (remaining part of the) proof into three parts. The first part has a
preliminary character. In the second part we prove that q is the pole-polynomial
of W , and the final part we show that W is companion based and that q× is its
zero-polynomial.

Part 1. We claim that the polynomials q, q× and r do not have a common zero.
Indeed, assume that α is a common zero of these three polynomials. Then there
exists polynomials q1, q×1 and r1 such that

q(λ) = q1(λ)(λ − α), q×(λ) = q×1 (λ)(λ − α), r(λ) = r1(λ)(λ − α).
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It follows that

w12(λ) =
r(λ)

q(λ)
=

r1(λ)

q1(λ)
, w22(λ) =

q×(λ)

q(λ)
=

q×1 (λ)

q1(λ)
.

Thus q1(λ)w12(λ) and q1(λ)w22(λ) are polynomials, and q1(λ) is a monic polyno-
mial of degree strictly less than the degree of q(λ), which is impossible. Thus q,
q× and r do not have a common zero.

From (11.38) and the first identity in (11.37) we see that

W (λ) =

⎡
⎢⎢⎢⎣

1
r(λ)

q(λ)

0
q×(λ)

q(λ)

⎤
⎥⎥⎥⎦ . (11.39)

The second identity in (11.37) implies that q(λ) and q×(λ) have the same degree
and that the degree of r(λ) is strictly less than the degree of q(λ).

Part 2. In this part we show that q is the pole-polynomial of W . The poles of W
are certainly zeros of q. Hence (cf., Chapter 8) the McMillan degree δ(W ) of W is
given by

δ(W ) =
∑

α zero of q

δ(W, α),

where δ(W, α) is the local degree of W at α. Write n(α) for the multiplicity of α
as a zero of q. It suffices to prove that δ(W, α) = n(α).

Let α be a zero of q. It is clear from (11.39) that the order of α as a (possible)
pole of W does not exceed n(α), and so the Laurent expansion of W at α has the
form

W (λ) =

∞∑

j=−n(α)

(λ − α)jWj . (11.40)

By definition (cf., Section 8.4), the local degree δ(W ; α) of W at α is the rank of
the block upper triangular block matrix

⎡
⎢⎢⎢⎢⎢⎢⎣

W−1 W−2 · · · W−n(α)

W−2 . .
.

0

... . .
.

. .
. ...

W−n(α) 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Now, obviously, W1, . . . , W−n(α) are 2 × 2 matrices with vanishing first column.
Hence δ(W, α) ≤ n(α), equality holding if and only if W−n(α) �= 0. The latter,
however, is the case because α is not a common zero of q, q× and r. Thus q is the
pole-polynomial of W .
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Part 3. Let n be the degree of q(λ). Then the degree of q×(λ) is also n and the
degree of r is strictly less than n (see the last paragraph of the first part of the
proof). Since both q(λ) and q×(λ) are monic, the degree of q(λ) − q×(λ) is also
strictly less than n.

Since q is the pole-polynomial of W , we know that the McMillan degree of
W is equal to n. Now, let A denote the n × n first companion matrix associated
with the polynomial p, and put

B =

⎡
⎢⎢⎢⎢⎢⎣

0 0
0 0
...

...
0 0
0 1

⎤
⎥⎥⎥⎥⎥⎦

, C =

[
r0 r1 . . . rn−1

v0 v1 . . . vn−1

]
, (11.41)

where r0, . . . , rn−1 are the coefficients of r(λ), and v0, . . . , vn−1 are the coefficients
of q(λ) − q×(λ). As A is first companion, we have (cf., the proof of Theorem 4.1)

(λIn − A)−1

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦

=
1

q(λ)

⎡
⎢⎢⎢⎢⎢⎣

1
λ
...

λn−2

λn−1

⎤
⎥⎥⎥⎥⎥⎦

.

Using the above identity, a straightforward calculation shows that

C(λ − A)−1B =

⎡
⎢⎢⎢⎣

0
r(λ)

q(λ)

0
q×(λ) − q(λ)

q(λ)

⎤
⎥⎥⎥⎦ .

It follows that W (λ) = I2+C(λIn−A)−1B and this realization is minimal because
W has McMillan degree n. Note that BC has [v0 v1 . . . vn−1] as its last row and
zeros everywhere else. Hence, along with A, the matrix A× = A − BC is a first
companion. In fact, A× is the first companion associated with q×. Thus W is
companion based and q× is the zero-polynomial of W . �

Proof of Theorem 11.14. We split the proof into five parts. The first part concerns
the implication (ii)⇒ (i). The other four parts deal with the reverse implication.

Part 1. From Proposition 11.10 we know that it suffices to prove the implication
(ii)⇒ (i) for

W̃ (λ) = TW (λ)T−1 =

⎡
⎢⎢⎣

1
r(λ)

p(λ)

0
p×(λ)

p(λ)

⎤
⎥⎥⎦ .
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But then we can apply Lemma 11.15 with

w12(λ) =
r(λ)

p(λ)
, w22(λ) =

p×(λ)

p(λ)
.

The fact that the three polynomials p(λ), p×(λ) and r(λ) do not have a common
zero implies that p is the least common multiple of the denominators of w12(λ)
and w22(λ). Hence Lemma 11.15 yields (i).

Part 2. In the remainder of the proof it is assumed that (i) is satisfied, and we
show that (i)⇒ (ii). We begin with some preliminary observations. The McMillan
degree of W is n and there is a minimal realization W (λ) = I2 + C(λIn − A)−1B
of W such that both A and A× are first companion matrices. The latter implies
that BC = A − A× has rank at most one. Now B is an n × 2 and C is a 2 × n
matrix. Hence, if B and C have both rank 2, then BC has rank 2 as well. Thus
either B or C has rank at most one. On the other hand, none of these matrices can
be the zero matrix because this would conflict with δ(W ) = n and the assumed
positivity of n. Thus either B or C has rank one.

Part 3. Suppose rankB = 1, and write B = bβ⊤ with b and β nonzero vectors in Cn

and C2, respectively. On account of Cramer’s rule, and using that the characteristic
polynomial of A is p, we can write C(λ − A)−1b in the form

C(λ − A)−1b =
1

p(λ)

[
w(λ)

w̃(λ)

]
,

where w and w̃ are scalar polynomials of degree at most n − 1. Let T be an
invertible 2 × 2 matrix having the non zero row vector β⊤ as its last row, i.e.,
β⊤ =

[
0 1

]
T . Define the scalar polynomials r and r̃ by

[
r(λ)

r̃(λ)

]
= T

[
w(λ)

w̃(λ)

]
.

Then r and r̃ have degree at most n − 1. Also

W (λ) = I2 + C(λIn − A)−1bβ⊤ = I2 +
1

p(λ)

[
w(λ)

w̃(λ)

]
β⊤

= I2 +
1

p(λ)
T−1

[
r(λ)

r̃(λ)

]
[

0 1
]
T

= T−1

⎡
⎢⎢⎢⎣

1
r(λ)

p(λ)

0
p(λ) + r̃(λ)

p(λ)

⎤
⎥⎥⎥⎦T.
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Taking determinants, we get

p(λ) + r̃(λ)

p(λ)
= detW (λ) =

det(λIn − A×)

det(λIn − A)
, (11.42)

where for the latter identity we refer to the proof of Theorem 10.3. As the char-
acteristic polynomials of A and A× are p and p×, respectively, it follows that
p(λ) + r̃(λ) = p×(λ). So W has the form (11.36). Now the matrix function

W̃ (λ) = TW (λ)T−1 has the same McMillan degree as W , that is n. But

W̃ (λ) =

⎡
⎢⎢⎢⎣

1
r(λ)

p(λ)

0
p×(λ)

p(λ)

⎤
⎥⎥⎥⎦ .

It follows that p, p× and r cannot have a common zero.

Part 4. In this part we consider the situation rankC = 1. We shall show that
this condition implies p = p×. In the previous paragraph we did not use the fact
that A and A× are first companions. The reasoning only depended on the fact
that rankB = 1 and that the characteristic polynomials of A and A× are p and
p×, respectively. Thus, under the assumption rankC = 1, the arguments can be
repeated for W⊤, which is given by the realization W⊤(λ) = I2+B⊤(λ−A⊤)−1C⊤.
Hence W⊤ has the form

W⊤(λ) = T−1

⎡
⎢⎢⎢⎣

1
r(λ)

p(λ)

0
p×(λ)

p(λ)

⎤
⎥⎥⎥⎦ T,

where T is an invertible 2 × 2 matrix, r is a scalar polynomial of degree not
exceeding n− 1 while, moreover, p, p× and r do not have a common zero. By the
implication (ii)⇒ (i) which has already been established, this implies that W⊤

is companion based. Proposition 11.10 now gives that either W and W−1 have
no common pole, or (the other extreme) W and W−1 have the same poles, pole-
multiplicities taken into account. In other words, either p and p× have no common
zero, or (the other extreme) p and p× have the same zeros, multiplicities taken
into account. The first possibility is ruled out by the hypothesis that p and p× do
have a common zero. So rankC = 1 implies p = p×, and we have to find out what
happens in this special case. This we do in the next and final part of the proof.

Part 5. Assume p = p×. Since A and A× are first companions with characteristic
polynomial p and p×, respectively, it follows that A = A× or, what amounts to
the same, BC = 0. Let T be an invertible 2 × 2 matrix such that the second
row of the 2 × n matrix TC is zero. Then the first row of the rank one matrix
TC does not vanish. Now (BT−1)(TC) = BC = 0, and it follows that the first
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column in the n× 2 matrix BT−1 is zero. Once again applying Cramer’s rule, we
conclude that there exists a polynomial r of degree not exceeding n− 1, such that
TW (λ)T−1 = I2 + TC(λ − A)−1BT−1 has the form

TW (λ)T−1 =

⎡
⎢⎣

1
r(λ)

p(λ)

0 1

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

1
r(λ)

p(λ)

0
p×(λ)

p(λ)

⎤
⎥⎥⎥⎦ .

This can be rewritten in the desired form

W (λ) = T−1

⎡
⎢⎢⎢⎣

1
r(λ)

p(λ)

0
p×(λ)

p(λ)

⎤
⎥⎥⎥⎦T = T−1W̃ (λ)T.

As before, W̃ has McMillan degree n, and it follows that p = p× and r cannot
have a common zero. �

Implicitly the material presented above contains complete information about
2×2 companion based matrix functions, also for the case when the pole and zero-
polynomial do not have a common zero. The details for the latter case are covered
by the following result.

Theorem 11.16. Let W be a rational 2× 2 matrix function, let p and p× be monic
polynomials of the same positive degree, n say, and suppose p and p× have no
common zero. Then the following statements are equivalent:

(i) W is companion based with pole-polynomial p and zero-polynomial p×,

(ii) W or W⊤ is of the form

T−1

⎡
⎢⎢⎢⎣

1
r(λ)

p(λ)

0
p×(λ)

p(λ)

⎤
⎥⎥⎥⎦T, (11.43)

where T is an invertible 2 × 2 matrix and r is a scalar polynomial of degree
not exceeding n − 1.

Taking for r the zero-polynomial, (11.43) gets the form

T−1

⎡
⎢⎣

1 0

0
p×(λ)

p(λ)

⎤
⎥⎦T.

This is in line with Proposition 11.10, Theorem 11.13 and the remark made in
connection with (11.33).
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Proof. The implication (i)⇒ (ii) is contained in Parts 2–4 of the proof of Theorem
11.14.

Next, assume (ii) is satisfied. Note that the conditions of the Theorem imply
that the polynomials p, p×, and r have no common zero. Thus, if W is of the form
(11.43), the argument given in Part 1 of the proof of Theorem 11.14 shows that W
is companion based. Suppose W⊤ is of the form (11.43). Then (by same argument)
W⊤ is companion based. By hypothesis, p and p× do not have a common zero.
However, from the expression (11.43) for W⊤, it is clear that the poles of W⊤ are
zeros of p and that those of (W⊤)−1 are zeros of p×. Hence W⊤ and (W⊤)−1 do
not have a common pole. The second part of Proposition 11.10 applied to W⊤

now gives that W = (W⊤)⊤ is companion based too. �

We close this section with a few comments about rational 2× 2 matrix func-
tions of the form [

1 w12(λ)

0 w22(λ)

]
. (11.44)

As we have seen, such functions appear in a prominent way in Theorem 11.14 and
its proof, in Lemma 11.15, and in Theorem 11.16.

In what follows we say that a rational matrix function W has a λ-independent
fixed point if there exists a nonzero vector u such that

W (λ)u = u, λ not a pole of W. (11.45)

Note that a rational 2 × 2 matrix function W has the form (11.44) if and only
if (11.45) holds with u equal to the first unit vector e = [1 0]⊤ in C2. We shall
write FP for the class of all proper rational 2 × 2 matrix functions W such that
W (∞) = I2 and W has a λ-independent fixed point.

First, we note that W ∈ FP if and only if there exists an invertible matrix T
such that T−1W (λ)T has the form (11.44). Indeed, if such an operator T exists,
then clearly u = Te is a λ-independent fixed point of W . Conversely, if u is a
λ-independent fixed point of W , then we can choose v ∈ C2 so that the vectors
u and v form a basis of C2. Given such a vector v, put T = [u v], i.e., T is given
by the 2 × 2 matrix of which the first column is given by u and the second by v.
Then T is invertible, and e = T−1u is a λ-independent fixed point of the function
T−1W (λ)T .

Given the result of the previous paragraph, we can use Lemma 11.15 and
item (iii) of Proposition 11.10 to show that W ∈ FP implies that W is companion
based. The converse implication is not true. To see this, take

W (λ) =

⎡
⎢⎣

1 0

1

λ2

(λ − 1)2

λ2

⎤
⎥⎦ .
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Note that W⊤ ∈ FP , and hence W⊤ is companion based. But then, since W⊤

and (W⊤)−1 have no common pole, we can apply item (ii) of Proposition 11.10
with W⊤ in place of W to show that W is companion based. On the other hand,
it is a simple matter to verify that W does not have a λ-independent fixed point
in C2. Thus, in this case W is companion based and W �∈ FP .

Returning to the general case, we can use Theorems 11.14 and 11.16 to show
that W is companion based implies that W or W⊤ belongs to the class FP . More
precisely, when W and W−1 do not have a common pole, then W is companion
based if and only if W or W⊤ has a global fixed point, and when W and W−1

have a common pole, then W is companion based if and only if W has a global
fixed point. We omit the details.

In conclusion we mention that the case when W and W−1 do have a common
pole is of special interest in view of the connection with the two machine flow shop
problem from combinatorial job scheduling theory to be made in the next chapter
(Section 12.4 in particular).

11.5 Complete factorization (companion based)

In this section, combining the results from Section 11.2 with those of Section
10.3 , we derive necessary and sufficient conditions for the existence of complete
factorizations of companion based matrix functions.

Theorem 11.17. Let W be a companion based rational m × m matrix function,
and let n be the McMillan degree of W (assumed to be positive in order to avoid
trivialities). Then W admits a complete factorization if and only if there exist an
ordering α1, . . . , αn of the poles of W (pole-multiplicities taken into account) and
an ordering α×

1 , . . . , α×
n of the zeros of W (zero-multiplicities taken into account)

such that
αk �= α×

j , k, j = 1, . . . , n, k < j. (11.46)

In fact, given such orderings, there exist complete factorizations of W and W−1

of the form

W (λ) =

(
Im +

1

λ − α1
R1

)
· · ·

(
Im +

1

λ − αn
Rn

)
,

W−1(λ) =

(
Im − 1

λ − α×
n

Rn

)
· · ·

(
Im − 1

λ − α×
1

R1

)
,

where R1, . . . , Rn are rank one m × m matrices.

Proof. Let W (λ) = Im + C(λIn − A)−1B be a minimal realization of W with A
and A× = A−BC first companion matrices. The condition on the poles and zeros
of W can be rephrased as a requirement on the eigenvalues of A and A×. In fact
it amounts to the existence of orderings α1, . . . , αn of the eigenvalues of A and
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α×
1 , . . . , α×

n of the eigenvalues of A× (in both cases algebraic multiplicities taken
into account) such that (11.46) holds. In turn, this requirement is equivalent to
the condition that the first companion matrices A and A× admit simultaneous
reduction to complementary triangular forms (see Theorem 11.3). The first part
of the theorem is now immediate from Theorem 10.9. The second part follows
by combining the details contained in the notes (c) and (d) (see the one but last
paragraph preceding Theorem 11.8) with the proof of Theorem 10.5. �

From the above proof, it is clear that Theorem 11.17 can also be formulated
in terms of realization (so that one obtains a formulation in the same vein as, for
instance, Theorem 10.12). The following reformulation of the first part of Theorem
11.17 is along this tack.

Theorem 11.18. Let W be a companion based rational m × m matrix function,
and let W (λ) = Im + C(λIn −A)−1B be a minimal realization of W , so that n is
the McMillan degree of W (assumed to be positive in order to avoid trivialities).
Then W admits a complete factorization if and only if there exists an ordering
µ1, . . . , µs of the (different) elements of σ(A) ∪ σ(A×) such that

t∑

i=1

mA×(µi) ≤ 1 +
t−1∑

i=1

mA(µi), t = 1, . . . , s.

Proof. On account of the state space similarity theorem, we may assume that A
and A× = A−BC are first companions. By Theorem 11.8, the above requirement
on (the algebraic multiplicities of) the eigenvalues of A and A× then amounts
to the condition that A and A× admit simultaneous reduction to complementary
triangular forms. Again the desired result is immediate from Theorem 10.9. �

We conclude this section with an example illustrating the above theorem.
Let W be given by

W (λ) =

⎡
⎢⎢⎢⎣

1
1

(λ − 1)(λ − 3)4(λ − 4)(λ − 5)3(λ − 6)

0
(λ − 2)2(λ − 6)

(λ − 1)(λ − 3)(λ − 5)

⎤
⎥⎥⎥⎦ .

From the material presented in Section 11.4, we see that W is companion based,
its pole and zero-polynomial are

p(λ) = (λ − 1)(λ − 3)4(λ − 4)(λ − 5)3(λ − 6),

p×(λ) = (λ − 2)2(λ − 3)3(λ − 4)(λ − 5)2(λ − 6)2,

respectively, and the McMillan degree of W is 10. Also, taking for A and Z the
first companion matrices associated with p and p×, respectively, and appropriately
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choosing the matrices B and C, we can produce a minimal realization W (λ) =
I + C(λ − A)−1B of W such that A× = Z. Note that A and Z are precisely
the matrices featuring in the example given at the end of Section 11.2. From
the last paragraph of that example it is now clear that Theorem 11.18 can be
applied to show that W admits a complete factorization. In fact, retracing the
steps in the argument leading to (the if part of) Theorem 11.18, one gets complete
factorizations of W and W−1 where the poles of the elementary factors appear
in the order 1, 5, 3, 4, 6 and 2, 6, 4, 3, 5, respectively (see (11.29) or the formulas
in Theorem 11.17). We shall return to this example in Subsection 11.6.5 below,
where the factors will be calculated explicitly using Maple procedures.

11.6 Maple procedures for calculating complete
factorizations

In this section Maple procedures are presented to calculate complete factorizations
of a proper rational 2 × 2 matrix function W of the form

W (λ) =

[
1 w12(λ)

0 w22(λ)

]
and lim

λ→∞
W (λ) =

[
1 0

0 1

]
. (11.47)

We know from Lemma 11.15 that W is companion based, its pole-polynomial p(λ)
is equal to the least common multiple of the denominators of w12(λ) and w22(λ),
and its zero-polynomial p×(λ) is given by p×(λ) = p(λ)w22(λ). Hence we can apply
Theorems 11.17 and 11.18 to check whether W admits a complete factorization,
and if this the case, to construct such factorizations. Throughout n is the McMillan
degree of W .

In the first part of Subsection 11.6.2 a Maple procedure is provided which
calculates the least common multiple polynomial of the denominators of the entries
of any rational square matrix function. When applied to W (λ), this yields the pole-
polynomial p(λ). Subsequently, the zero-polynomial p×(λ) is constructed, the poles
and zeros of W (λ) are calculated using the polynomials p(λ) and p×(λ), and the
set of different poles and zeros is determined.

The second step is to find an ordering α1, . . . , αn of the poles of W (pole-
multiplicities taken into account) and an ordering ζ1, . . . , ζn of the zeros of W
(zero-multiplicities taken into account) such that

αk �= ζj , k, j = 1, . . . , n, k < j. (11.48)

In the second part of Subsection 11.6.2 we shall present a Maple procedure which
produces an ordering α1, . . . , αn of the poles of W and an ordering ζ1, . . . , ζn of
the zeros of W such that

αk �= ζj , k, j = 1, . . . , n, k ≤ j − h, (11.49)
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with the positive integer h as small as possible (cf., formula (11.19)). The procedure
given provides first an ordering µ1, . . . , µs of the different elements of σ(A)∪σ(Z)
such that (11.20) holds, where A and Z are the first companion matrices associated
with p(λ) and p×(λ), respectively. In fact, all such orderings are obtained.

Next, a Maple procedure is given (see Subsection 11.6.3) to find a transfor-
mation matrix T such that the matrix TAT−1 is in upper-triangular form and the
matrix TZT−1 is in lower-triangular form. This procedure is a Maple implemen-
tation of formula (11.12) which will return a matrix

T = U(ζ2, . . . , ζn; α1, . . . , αn−1)
⊤,

which does the job; see item (c) in the second paragraph preceding Theorem 11.8.

As a fourth step, a procedure (Subsection 11.6.4) is implemented to calculate
degree one factors, given a realization of W (λ) with the state matrix and associate
state matrix in complementary triangular form. In this case the code is a trans-
lation into Maple of formula (10.13), and the preceding formulas (10.10)–(10.12),
where the identities described by the formulas (10.10)–(10.12) are the result of the
triangularization previously calculated. Here, the starting point is the realization
described in Part 3 of the proof of Lemma 11.15, which is transformed into the
desired form by using the state space similarity given by the matrix T appearing
in the previous paragraph.

Finally (see Subsection 11.6.5), we conclude with the example appearing at
the end of Section 11.5. Although an ordering of poles and zeros is already given
by (11.29), we will ignore this knowledge and use Maple to calculate all orderings
(based on multiplicities; see (11.20) with h = 1) instead. As we know such orderings
satisfy (11.48), and hence the corresponding W admits a complete factorization.
We use Maple to calculate such a factorization for two different orderings.

All procedures and calculations in this section are tested under Maple, ver-
sion 9, [93]. In the text the Maple command lines start with the symbol > . For
introductory texts on Maple, see [78], [107]. The Maple worksheet containing all
procedures and commands presented in this section is available on request by email
from the fourth author (ACM.Ran@few.vu.nl).

11.6.1 Maple environment and procedures

First the Maple environment is defined by loading some Maple packages.
> restart; # almost clean start
> with(LinearAlgebra):
> with(MatrixPolynomialAlgebra):

11.6.2 Poles, zeros and orderings

The Maple procedure LCMDenomMatrixPolynom returns the least common de-
nominator of W (that is, the least common multiple of the denominators of the
entries of W ) as a monic Maple expression in a Maple name x.
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LCMDenomMatrixPolynom least common denominator
of a rational matrix function

Calling sequence LCMDenomMatrixPolynom(W,x)
Parameters W - square rational matrix function

x - name (unevaluated)
Output expression in x with leading coefficient 1.

> LCMDenomMatrixPolynom:=proc(W,x)
> local k,m,nc,D0,D1,cofmax,mat; mat := convert(W(x),Matrix):
> nc := ColumnDimension(mat): D0:=[]:for k from 1 to nc do
> for m from 1 to nc do D0:=[op(D0),denom(mat[k,m])];
> end do end do;
> D1:=lcm(op(D0)): cofmax:=coeff(D1,x,degree(D1,x)):
> return(expand(D1/cofmax));end;

The procedure GetPolesandZeros extracts from given pole- and zero-polynomial
functions, the poles and zeros, multiplicities included and the set of different poles
and zeros. The output is a list of Vectors of Maple type.

GetPolesandZeros calculate
Calling sequence GetPolesandZeros(pf,zf)
Parameters pf - polynomial function (= pole polynomial)

zf - polynomial function (= zero polynomial)
Output list:

first element: Vector of poles (multiplicities included)
second element: Vector of zeros (multiplicities included)
third element: Vector of different poles and zeros

> GetPolesandZeros:=proc(pf,zf)
> local poles, zeros, mu;
> poles:=[solve(pf(x),x)]: print(’poles’=poles);
> zeros:=[solve(zf(x),x)]: print(’zeros’=zeros);
> mu:=convert([op(op(convert(poles,list)),
> op(convert(zeros,list)))],Vector[row]): print(‘Set of different
> poles and zeros‘=mu); return([convert(poles,Vector[row]),
> convert(zeros,Vector[row]),mu]);
> end proc;

The next step is to convert the vectors of poles and zeros of W into vectors of
multiplicities. For this purpose we use Maple procedure GetMultiplicity.

GetMultiplicity calculate for each member of a given (second) vector,
how many times it is a member of an other (first) vector

Calling sequence GetMultiplicity(p,mu)
Parameters p - Vector

mu - Vector
Output Vector mP such that mPi = #{k | pk = mui}.
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> GetMultiplicity:=proc(p::Vector,mu::Vector)
> local dimp,dimgv,mP,k,m;
> dimp:=Dimension(p): dimgv:=Dimension(mu):
> mP:=Vector[row](dimgv,0):
> for k from 1 to dimgv do for m from 1 to dimp do
> if evalb(p[m]=mu[k]) then mP[k]:=mP[k]+1; end if:
> end do: end do: return(mP);end;

For the conversion of the vectors of poles and zeros of W (λ) into vectors of multi-
plicities the starting point is the Maple Vector mu build from the set {µ1, . . . , µs} =
σ(A) ∪ σ(Z). The Vector p is then either the vector of the poles of W (λ) or the vec-
tor of zeros of W (λ). E.g, the Maple command muA:=GetMultiplicity(poles,mu)
will return a Maple vector muA such that muAt = #{k | polesk = mut, k =
1, . . . , n} for t = 1, . . . , s. Analogously, muZ:=GetMultiplicity(zeros,mu) will re-
turn a Maple vector muZ such that muZt = #{k | zerosk = mut, k = 1, . . . , n}
for t = 1, . . . , s.

The actual search for a feasible ordering, satisfying condition (11.20), is performed
in the procedure GetAllMOrderings. In this procedure, starting with h = 1, the
procedure GetMOrderingsH is called with increasing h till an ordering is found
satisfying (11.20). Actually, if for some (minimal) h an ordering is found, all or-
derings satisfying (11.20) are returned.

GetAllMOrderings calculate all feasible, see condition (11.20),
orderings of poles and zeros for minimal h

Calling sequence GetAllMOrderings(mA,mZ,mu)
Parameters mA - Vector (of multiplicties of poles)

mZ - Vector (of multiplicties of zeros)
mu - Vector (of different poles and zeros)

Output List, with first element is h and
the other elements are the output
of GetMOrderingsH.

> GetAllMOrderings:=proc(mA::Vector,mZ::Vector,mu::Vector)
> local h,kordering,orderings, newperm;
> newperm:=true:h:=0:kordering:=0:while (kordering=0) do
> h:=h+1:orderings:=GetMOrderingsH(mA,mZ,mu,h,newperm):
> newperm:=false: kordering:=orderings[1]: end do:
> return(h,orderings);end;

The procedure GetMOrderingsH needs some further explanation. For a given pos-
itive integer h, all permutations of {µ1, . . . , µs} = σ(A) ∪ σ(Z) (see the Maple
variable mu), are tested; this test is performed in the procedure TestOrdering-
MAZ. If the test is successful, then a variable counting the number of admissible
permutations (i.e., those permutations that yield a feasible ordering) is increased
by one. Subsequently, the vectors of multiplicities of poles and zeros are converted
back to vector of poles and zeros with multiplicities included and ordered (with
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blocks of equal poles and zeros, respectively) according to the found ordering of
{µ1, . . . , µs}; see procedure GetOrderedVector. The resulting vectors are added
to an output list.
Since in Maple the calculation of permutations is very time- and cpu-consuming,
a boolean variable is added to the arguments list such that only one, initial call
to Maple’s procedure permute is needed; the output of permute is assigned to the
Maple variable allperm which is defined as global.

GetMOrderingsH calculate all feasible orderings of poles and zeros for
given h

Calling sequence GetMOrderingsH(muA,muZ,mu,h,newperm)
Parameters muA - Vector (of multiplicities of poles)

zeros - Vector (of multiplicities of zeros)
mu - Vector: different poles and zeros
h - positive integer
newperm - boolean

Output If orderings are found, the output is a list, of which the
first element is the number of feasible orderings and
the second and third elements are list with entries the
ordering of poles and zeros respectively.
If no ordering is found, the output is just 0.

> GetMOrderingsH:=proc(muA,muZ,mu,h,newperm)
> local nmu,nperm,kk,k,perm,orderingP,orderingZ; global allperm;
> nmu:= Dimension(mu): if newperm=true then
> allperm:= combinat[permute](nmu): end if:
> nperm:= combinat[numbperm](nmu):
> kk:=0: for k from 1 to nperm do perm:=allperm[k]:
> if (TestOrderingMAZ(muA,muZ,perm,h)) then kk:=kk+1:
> orderingP[kk]:=GetOrderedVector(muA,mu,convert(perm,list)):
> orderingZ[kk]:=GetOrderedVector(muZ,mu,convert(perm,list)):
> end if: end do: if kk>0 then return(kk,orderingP,orderingZ)
> else return(kk); end if: end proc;

Let {µ1, . . . , µs} = σ(A) ∪ σ(Z) and let ma and mz be vectors such that mat

and mzt, t = 1, . . . , s, denote the multiplicity of µt as pole and zero of W (λ),
respectively, and let perms be a permutation of (1, . . . , s). Then a call to the
Maple procedure TestOrderingMAZ(ma,mz,perms,h) will test whether the order-
ing perms satisfies condition (11.20) for given h. To be specific, the following
condition is tested:

t∑

i=1

mzperms(i) ≤ h +

t−1∑

i=1

maperms(i), t = 1, . . . , s.
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TestOrderingMAZ test whether a given ordering
satisfies condition (11.20) for a given h.

Calling sequence TestOrderingMAZ(ma,mz,perms,h)
Parameters ma - Vector of multiplicities of poles

mz - Vector of multiplicities of zeros
perms - Vector; permutation vector, ordering
h - positive integer

Output boolean: true if ordering for given h
satisfies condition (11.20) otherwise false

> TestOrderingMAZ:= proc(ma,mz,perms,h)
> local s, bol, t;
> s:=Dimension(mz): bol:=true: t:=0: while (t<s) and bol do
> t:=t+1: bol:=not((add(mz[perms[m1]],m1=1..t)-
> add(ma[perms[m2]],m2=1..(t-1)))>(h)): end do;return(bol);end;

GetOrderedVector calculate a vector V such that, for a given ordering,
the multiplicity vector of V equals a given ordered
(multiplicity) vector (reverse of GetMultiplicity).

Calling sequence GetOrderedVector(ma,mu,ordering)
Parameters ma - Vector (multiplicity vector)

mu - Vector of different elements
ordering - List: permutation list

Output Vector

> GetOrderedVector:=proc(ma,mu,ordering)
> local no,n1,tk,nc, k, m, mup, mpp, orderedV;
> mup:=mu[ordering]: mpp:=ma[ordering]: no:=Dimension(mu):
> n1:=add(ma[k],k=1..no): nc:=0: orderedV:=Vector[row](n1,0):
> for k from 1 to no do tk:=mpp[k]: for m from 1 to tk do
> nc:=nc+1: orderedV[nc]:=mup[k]: end do: end do:
> return(orderedV);end proc;

11.6.3 Triangularization routines (complete)

This part implements the triangularization of a companion matrices A and Z, given
an ordering of poles and zeros of W satisfying condition (11.46). The Maple code
is based on the construction exposed in the second paragraph preceding Theorem
11.8. This involves the calculation of the matrix T=U(ζ2, . . . , ζn; α1, . . . , αn−1)

T

where (ζ1, . . . , ζn) are ordered zeros and (α1, . . . , αn) ordered poles; see (11.12).
The code is split in two: the procedure Scol(oZ,oA,j) outputs the jth column of
the matrix U(ζ2, . . . , ζn; α1, . . . , αn−1). The second and main procedure is called
Tcomplete which calls Scol for k = 1, . . . , n, and collects the returned vectors in a
n × n matrix.



252 Chapter 11. Complete Factorization of Companion Based Matrix Functions

Tcomplete calculate transpose of U(ζ2, . . . , ζn; α1, . . . , αn−1)
Calling sequence Tcomplete(oZ,oA)
Parameters oZ - Vector (of ordered zeros)

oA - Vector (of ordered poles)
Output Matrix T such that TAT−1 is upper triangular,

TZT−1 is lower-triangular

> Tcomplete:=proc(oZ::Vector,oA::Vector)
> local k,nc,S;
> nc:=Dimension(oA): if not (Dimension(oZ)=nc) then
> error "Input vectors should have equal length"; end if:
> S:=Scol(oZ,oA,0): for k from 2 to nc do S:=<S|Scol(oZ,oA,k-1)>:
> end do: return(Transpose(S));end;

Scol calculate one column of U(ζ2, . . . , ζn; α1, . . . , αn−1)
Calling sequence Scol(oZ,oA,j)
Parameters oZ - Vector (e.g. ordered zeros)

oA - Vector (e.g. ordered poles)
j - integer 0 ≤ j < Dimension(oA)

Output Vector

> Scol:=proc(oZ,oA,j)
> local pol, k, nc, vj, x;
> nc:=Dimension(oA);vj:=Vector(nc):pol:=1:
> if (j>0) then for k from 1 to j do pol:=pol*(x-oA[k])
> end do: end if: if ((j+1)<nc) then
> for k from (j+1) to (nc-1) do pol:=pol*(x-oZ[k+1]):
> end do: end if:
> for k from 1 to nc do vj[k]:=coeff(pol,x,k-1);end do:
> return(vj); end;

11.6.4 Factorization procedures

We begin with some general remarks. In constructing factorizations into elemen-
tary factors for concrete examples (see, e.g., the next subsection) the starting
point will be the minimal realization W (λ) = I2 + C(λIn − A)−1B given in Part
3 of the proof of Lemma 11.15. Thus A is the first companion matrix associated
with the pole-polynomial p(λ), and B and C are given by (11.41). Note that in
this case A× = A − BC = Z, the first companion matrix associated with the
zero-polynomial p×(λ). In what follows we write

Amin = A, Bmin = B, Cmin = C, Amincross = A×.

We do not use subscripts here because in Maple subscripts play a different role.
Furthermore, we shall use the state space transformation T constructed in the
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preceding subsection, to produce the matrices

Atr = TAminT−1, Btr = TBmin, Ctr = CminT−1,

Atrcross = TAmincrossT−1.

Thus we have a minimal realization W (λ) = I2 + Ctr(λIn − Atr)−1Btr, where
Atr is upper triangular and Atrcross = Atr − BtrCtr is lower triangular.

The Maple procedures to create a factorization of W (λ) into elementary factors
given in this section calculate the elementary factors from the upper triangular
form of Atr and lower triangular form of Atrcross, using formula (10.13) and the
preceding formulas (10.10)–(10.12). In the present subsection, with some abuse of
notation, the label tr will be omitted. Thus we start with a minimal realization
W (λ) = I2 + C(λIn −A)−1B with A in upper triangular form and A× = A−BC
is lower triangular form.

For each k = 1, . . . , n, a factor is of the form

I2 +
1

λ − αk
Rk

where I2 is the 2×2 identity matrix, Rk is a 2×2 matrix and αk is kth pole which
is equal to the kth main diagonal element of A.
The main procedure is called MakeFactorization while, for each k = 1, . . . , n, the
Rk-matrix is calculated in the procedure MakeRmatrix; this procedure is based
on formula (10.13). The output of MakeFactorization is a vector of length n with
each entry is a realization factor (as matrix function).
As a test facility, the procedure Factors2Transfer is written; it returns, for a vector
of realization factors, a transfer function equal to the product of those factors. The
factors itself should be matrix functions.

MakeFactorization calculate a factorization if (at least) state space
matrices are in complementary triangular form

Calling sequence MakeFactorization(A,B,C,x)
Parameters A - Matrix (state space matrix in triangular form)

B,C - Matrices (input- and output-matrices)
x - name (unevaluated Maple name)

Output Vector, containing all the factors as
matrix expressions in x

> MakeFactorization:=proc(A,B,C,x)
> local WW, nv, m, Im, k, R, oa;
> m:=RowDimension(C);nv:=Dimension(A):Im:=IdentityMatrix(m):
> WW:=Vector(nv): for k from 1 to nv[1] do R:=MakeRmatrix(B,C,k):
> WW[k]:=
> unapply(map(factor,Im+ScalarMultiply(R,1/(x-A[k,k]))),x):
> end do: return(WW);end;
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MakeRmatrix calculate R matrix for kth pole
Calling sequence MakeRmatrix(B,C,k)
Parameters B,C - Matrices (input- and output-matrices)

k - integer, index
Output Matrix (kth R matrix)

> MakeRmatrix:=proc(B,C,k)
> local nc, mat, i, j;
> nc:=RowDimension(C); mat:=Matrix(nc,nc,0); for i from 1 to
> nc do for j from 1 to nc do mat[i,j]:=C[i,k]*B[k,j]; end do end
> do: return(mat);end;

Factors2Transfer Calculate from given factorization factors
the transfer function

Calling sequence Factors2Transfer(AllFactors,x)
Parameters AllFactors - Vector: elements are Matrix functions

x - name (unevaluated Maple name)
Output Matrix: rational matrix function

> Factors2Transfer := proc(AllFactors,x)
> local Wtest, DimS, k, n, Wdum, ResultW;
> DimS:=ColumnDimension(AllFactors[1](x)):
> n:=Dimension(AllFactors): Wtest:=IdentityMatrix(DimS):
> for k from 1 to n do
> Wtest:=map(simplify,Wtest.AllFactors[k](x)): end do:
> Wdum:=convert(map(factor,map(simplify,evalm(Wtest))),Matrix):
> ResultW:=unapply(Wdum,x): return(ResultW);end proc;

11.6.5 Example

The above defined procedures are applied to the example given at the end of
Section 11.5:

> W:=x-><<1,0>|<1/((x-1)*(x-3)^4*(x-4)*(x-5)^3*(x-6)),
> (x-2)^2*(x-6)/((x-1)*(x-3)*(x-5))>>: ‘W(lambda)‘=W(lambda);

W (λ) =

⎡
⎢⎢⎢⎣

1
1

(λ − 1)(λ − 3)4(λ − 4)(λ − 5)3(λ − 6)

0
(λ − 2)2(λ − 6)

(λ − 1)(λ − 3)(λ − 5)

⎤
⎥⎥⎥⎦ (11.50)

We will use Lemma 11.15 to calculate first the least common denominator poly-
nomial q of W . Then the pole-polynomial p is q. Subsequently, again using
Lemma 11.15, we calculate the zero-polynomial p×.
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> q:=unapply(LCMDenomMatrixPolynom(W,x),x):
> ppoles:=q:pzeros:=unapply(simplify(W(x)[2,2]*q(x)),x):
> ’p(lambda)’=sort(collect(ppoles(lambda),lambda),lambda);
> ’(p^(x))(lambda)’=sort(collect(pzeros(lambda),lambda),lambda);

p (λ) = λ10 − 38 λ9 + 640 λ8 − 6284 λ7 + 39778 λ6 − 169304 λ5 +

489456 λ4 − 945684 λ3 + 1162485 λ2 − 814050 λ + 243000

p× (λ) = λ10 − 39 λ9 + 674 λ8 − 6794 λ7 + 44217 λ6 − 194071 λ5 +

581556 λ4 − 1174536 λ3 + 1529712 λ2 − 1159920 λ + 388800

The next step is the calculation of poles and zeros and orderings, satisfying con-
dition (11.20):

> res1:=GetPolesandZeros(ppoles,pzeros):
> poles:=res1[1]:zeros:=res1[2]:mu:=res1[3]:
> npoles:=Dimension(poles);nzeros:=Dimension(zeros);
> nmu:=Dimension(mu);
> muA:=GetMultiplicity(poles,mu);muZ:=GetMultiplicity(zeros,mu);
> AllMOrderings:=GetAllMOrderings(muA,muZ,mu):AllMOrderings;

AllMOrderings = 1, 12, orderingP , orderingZ

Hence, we found 12 orderings of poles and zeros which satisfy condition (11.20)
for h = 1, the first element of AllMOrderings. As actual ordering we take the
sixth found ordering and use this ordering in the Maple variables orderedA and
orderedZ ; this ordering is just equal to the one in (11.29):

> orderedA:=AllMOrderings[3][6]:‘alpha‘=orderedA;
> orderedZ:=AllMOrderings[4][6]:‘zeta‘=orderedZ;

α = [1, 5, 5, 5, 3, 3, 3, 3, 4, 6]

ζ = [5, 5, 3, 3, 3, 4, 6, 6, 2, 2]

This concludes the search for a feasible ordering with h = 1.

To construct a minimal companion based realization of W (λ), we start from the
minimal realization of W (λ) given in Part 3 of the proof of Lemma 11.15. This
minimal realization is written (cf., the first paragraph of the preceding subsec-
tion) as

W (λ) = Dmin + Cmin(λIn − Amin)−1Bmin.

Thus Amin is the first companion matrix associated with the pole-polynomial
p, Bmin and Cmin are as in (11.41), Dmin the (2 × 2) identity matrix, and
Amincross is the first companion matrix associated with the zero-polynomial p×.
The Maple commands are as follows.
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> r:=unapply(simplify(W(lambda)[1,2]*ppoles(lambda)),lambda):
> Amin:=Transpose(CompanionMatrix(ppoles(lambda),lambda));
> Bmin:=Matrix(npoles,2):Bmin[npoles,2]:=1:
> Cmin:=Matrix(2,npoles,0): for k from 1 to npoles do
> Cmin[1,k]:=coeff(r(lambda),lambda,k-1):
> Cmin[2,k]:=coeff(pzeros(lambda)-ppoles(lambda),lambda,k-1):
> end do: Dmin:=IdentityMatrix(2,2):
> Amincross:=Transpose(CompanionMatrix(pzeros(lambda),lambda));

Note that the standard Maple procedure CompanionMatrix gives the second com-
panion matrix.

By Theorem 11.3, Amin and Amincross, with the given ordering of poles and ze-
ros, allow for simultaneously triangularization in complementary triangular forms.
Calling the procedure Tcomplete with arguments orderedZ and orderedA, with
Z = Amincross and A = Amin will output a transformation matrix which is
needed to bring Amin in upper-triangular form. In Maple this matrix carries the
name Tr.

> Tr:=Tcomplete(orderedZ,orderedA):‘T‘=Tr;

Tr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−77760 216432 −262656 182376 −79836 22847 −4274 504 −34 1

−15552 55728 −84672 72072 −38028 12931 −2838 388 −30 1

−25920 89424 −129888 105048 −52388 16765 −3452 442 −32 1

−43200 143280 −198528 152200 −71596 21539 −4162 500 −34 1

−72000 229200 −302240 219096 −97028 27421 −4976 562 −36 1

−54000 176400 −239880 179912 −82567 24181 −4542 530 −35 1

−27000 92700 −133890 107621 −53332 16963 −3474 443 −32 1

−13500 48600 −74295 63743 −33979 11707 −2613 365 −29 1

−20250 69525 −100980 82272 −41704 13698 −2924 392 −30 1

−40500 128925 −172260 128904 −60092 18202 −3596 448 −32 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Next one calculates the inverse of Tr and put Amin in upper-triangular form (and
Amincross in lower-triangular form) and apply corresponding transformations to
Bmin and Cmin; the resulting matrices are named Atr, Btr, Ctr and Atrcross.

> Trinv:=MatrixInverse(Tr):
> Atr:=Tr.Amin.Trinv:‘A‘=Atr; Btr:=Tr.Bmin:Ctr:=Cmin.Trinv:
> Atrcross:=Tr.(Amincross).Trinv:’A^(x)’=Atrcross;
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For our example this yields:

Atr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 2 2 0 −1 −3 −3 2 4

0 5 2 2 0 −1 −3 −3 2 4

0 0 5 2 0 −1 −3 −3 2 4

0 0 0 5 0 −1 −3 −3 2 4

0 0 0 0 3 −1 −3 −3 2 4

0 0 0 0 0 3 −3 −3 2 4

0 0 0 0 0 0 3 −3 2 4

0 0 0 0 0 0 0 3 2 4

0 0 0 0 0 0 0 0 4 4

0 0 0 0 0 0 0 0 0 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

Atrcross =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 0 0 0 0 0 0 0 0 0

4 5 0 0 0 0 0 0 0 0

4 0 3 0 0 0 0 0 0 0

4 0 −2 3 0 0 0 0 0 0

4 0 −2 −2 3 0 0 0 0 0

4 0 −2 −2 0 4 0 0 0 0

4 0 −2 −2 0 1 6 0 0 0

4 0 −2 −2 0 1 3 6 0 0

4 0 −2 −2 0 1 3 3 2 0

4 0 −2 −2 0 1 3 3 −2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Finally, with Amin and Amincross in triangular form, the factorization proce-
dure MakeFactorization is called with arguments the Maple variables Atr, Ctr,
Btr and name λ. With the given ordering of poles and zeros, the factorization is
complete (see Theorem 11.17).

> Allfactors:=
> map(simplify,MakeFactorization(Atr,Btr,Ctr,lambda)):

and the result is printed on the console:

> afactors:=Vector[row](npoles,0):
> for k from 1 to npoles do afactors[k]:=Allfactors[k](lambda):
> end do: print(‘Elementary factors‘=afactors);
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The elementary factors are:

⎡
⎢⎢⎣

1 − 1

2400
(λ − 1)

−1

0
λ − 5

λ − 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1

288
(λ − 5)

−1

0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 − 13

1350
(λ − 5)

−1

0
λ − 3

λ − 5

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
29

900
(λ − 5)

−1

0
λ − 3

λ − 5

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1

144
(λ − 3)−1

0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 − 14

675
(λ − 3)

−1

0
λ − 4

λ − 3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
4

225
(λ − 3)−1

0
λ − 6

λ − 3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
16

135
(λ − 3)−1

0
λ − 6

λ − 3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 −1

6
(λ − 4)

−1

0
λ − 2

λ − 4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1

54
(λ − 6)

−1

0
λ − 2

λ − 6

⎤
⎥⎥⎦ .

With these factors (ordered from left to right and top to bottom) we have a
complete factorization of the rational matrix function W considered at the end of
Section 11.5.

To test whether the foregoing calculations are indeed a factorization of the ini-
tially given rational matrix function, give the following Maple commands. Note
that Factors2Transfer will return a rational matrix function which should be
equal to (11.50).

> Wtest:=Factors2Transfer(Allfactors,lambda): print(‘Product
> elementary factors‘=Wtest(lambda));

This concludes the test of the calculations related to the sixth ordering.

It will be convenient to put the triangularization and factorization commands in
one procedure.
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> MakeCompleteFactors:=proc(Amin,Bmin,Cmin,orderP,orderZ,x)
> local Tr,Trinv,Atr,Btr,Ctr,Allfactors,afactors,k,np;
> np:=Dimension(orderP): Tr:=Tcomplete(orderZ,orderP):
> Trinv:=MatrixInverse(Tr): Atr:=Tr.Amin.Trinv:
> Btr:=Tr.Bmin:Ctr:=Cmin.Trinv:
> Allfactors:=map(simplify,MakeFactorization(Atr,Btr,Ctr,x)):
> afactors:=Vector[row](np,0): for k from 1 to np do
> afactors[k]:=Allfactors[k](x): end do:
> print(‘Elementary factors‘=afactors);end proc;

The procedure MakeCompleteFactors has as arguments the companion pole and
zero polynomial based realization matrices A, B, C of W , see (11.41), (in Maple
named Amin, Bmin and Cmin), a vector of ordered poles, a vector of ordered
zeros and a Maple name x.

Since all orderings have been calculated and were collected in the Maple variable
AllMOrderings, the next commands will give a factorization. As an example the
5th ordering is taken which differ from the original ordering only in the zero’s:

> orderP:=AllMOrderings[3][5]:orderZ:=AllMOrderings[4][5]:
> print(‘ordering poles‘=orderP);print(‘ordering zeros‘=orderZ);
> MakeCompleteFactors(Amin,Bmin,Cmin,orderP,orderZ,lambda);

The orderings are:

ordering poles = [1, 5, 5, 5, 3, 3, 3, 3, 4, 6],

ordering zeros = [5, 5, 3, 3, 3, 4, 2, 2, 6, 6].

The elementary factors are (again ordered from left to right and top to bottom):

⎡
⎢⎢⎣

1 − 1

2400
(λ − 1)

−1

0
λ − 5

λ − 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1

288
(λ − 5)

−1

0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 − 13

1350
(λ − 5)

−1

0
λ − 3

λ − 5

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
29

900
(λ − 5)

−1

0
λ − 3

λ − 5

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1

144
(λ − 3)

−1

0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 − 14

675
(λ − 3)−1

0
λ − 4

λ − 3

⎤
⎥⎥⎦ ,
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⎡
⎢⎢⎣

1 − 4

675
(λ − 3)−1

0
λ − 2

λ − 3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
32

6075
(λ − 3)−1

0
λ − 2

λ − 3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

1 − 151

12150
(λ − 4)

−1

0
λ − 6

λ − 4

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1

810
(λ − 6)

−1

0 1

⎤
⎥⎥⎦ .

11.7 Appendix: invariant subspaces of

companion matrices

In this section we present detailed information about the lattice of invariant sub-
spaces of n × n first companion matrices. For a large part the material presented
here is standard. It will be used in the next chapter, in particular, it will play an
important role in the proof of Theorem 12.2. Whenever there is reason to do so,
n×n matrices are identified in the customary manner with linear operators on Cn.

First we fix some notation. As before, if α is a complex number and A is
a square matrix, then mA(α) will denote the algebraic multiplicity of α as an
eigenvalue of A when α ∈ σ(A), and mA(α) = 0 otherwise. For n and k integers,
0 ≤ k < n, and α ∈ C, write vk(α) for the vector in Cn having for its jth
component (

j − 1
k

)
αj−1−k

when j is among (k + 1), . . . , n, and zero otherwise. An alternative way of intro-
ducing vk(α) is via the expression

vk(α) =
1

k!

dk

dαk

⎡
⎢⎢⎢⎢⎢⎢⎣

1

α

α2

...
αn−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, k = 0, . . . , n − 1.

Let A be an n × n first companion matrix, and let α be an eigenvalue
of A. Then v0(α) is the unique (up to a nonzero scalar multiple) eigenvector
corresponding to A and α. More generally, for k = 1, . . . , mA(α), the vectors
v0(α), . . . , vk−1(α) form a basis for Ker (A−αIn)k. In fact, v0(α), . . . , vmA(α)−1(α)
form a Jordan chain for A, that is,

Av0(α) = αv0(α), Avk(α) = αvk(α) + vk−1(α), (11.51)
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where k is in the range 1 up to mA(α)− 1. Using this result, we shall describe the
invariant subspaces of A.

Fix an ordering a1, . . . , as of the different eigenvalues of A, write m1, . . . ,ms

for the corresponding algebraic multiplicities, and introduce

V =
[

v0(a1) · · · vm1−1(a1) · · · v0(as) · · · vms−1(as)
]
. (11.52)

Then V is an n × n matrix (because m1 + · · · + ms = n) and

detV =

s∏

k=2

k−1∏

j=1

(ak − aj)
mjmk , (11.53)

where the empty product (appearing when s = 1) is read as 1. Since a1, . . . , as

are different, the matrix V is invertible. Also (11.51) gives that VAV−1 has upper
triangular Jordan form. In fact,

VAV−1 =

⎡
⎢⎢⎢⎢⎢⎣

J1 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 Js

⎤
⎥⎥⎥⎥⎥⎦

, (11.54)

where, for j = 1, . . . , s, the matrix Jt is the mt × mt upper triangular Jordan
block with eigenvalue at. Since each eigenvalue has geometric multiplicity one, for
each eigenvalue there is only one Jordan block, and hence the lattice of invariant
subspaces of A is finite. In fact, as the following proposition shows, it consists of
m1 × · · · × ms members.

Proposition 11.19. Let A be an n×n first companion matrix, and let a1, . . . ,as be
an ordering of the different eigenvalues of A with m1, . . . ,ms being the correspond-
ing algebraic multiplicities. If m1, . . . , ms are non-negative integers not exceeding
the numbers m1, . . . ,ms, respectively, then

M = span {v0(a1), . . . ,vm1−1(a1) , . . . ,v0(as), . . . ,vms−1(as)} (11.55)

is an invariant subspace for A. Conversely, if M is an invariant subspace of A, then
there exist unique non-negative integers m1, . . . , ms, not exceeding m1, . . . ,ms re-
spectively, such that (11.55) holds.

Proof. Let M be an invariant subspace for A. Then V−1[M ] is an invariant sub-
space for the upper triangular Jordan matrix J appearing in the right-hand side of
(11.54). Since the upper triangular Jordan blocks J1, . . . , Js correspond to different
eigenvalues, we can decompose V−1[M ] in a unique way as V−1[M ] = M1∔· · ·∔Ms

with Mt an invariant subspace for Jt. Put mt = dimMt, so that mt is a non-
negative integer not exceeding mt. Now Jt is unicellular, i.e., it has only one



262 Chapter 11. Complete Factorization of Companion Based Matrix Functions

complete chain of invariant subspace. In particular, Jt has only one invariant sub-
space of dimension mt, and this subspace is the span of the first mt elements in
the standard basis for Cmt , the space on which the mt × mt matrix Jt acts as a
linear operator. For Mt viewed as as subspace of Cn, this means

Mt = span {em̃1+···+m̃t−1+1, . . . , em̃1+···+m̃t−1+mt
},

where e1, . . . , en is the standard basis (consisting of the unit vectors) in Cn. Hence
V[Mt] is spanned by the vectors v0(at), . . . , vmt−1(at), and the representation
(11.55) follows from M = V[M1]∔ · · ·∔V[Ms]. So far about existence. Uniqueness
is clear from the fact that, if M is given by (11.55) and V−1[M ] is written in the
form of a direct sum M1 ∔ · · ·∔ Ms as above, then necessarily mt = dim Mt. �

Now let α1, . . . , αn be an ordering of the eigenvalues of A (algebraic multi-
plicities taken into account). We introduce the generalized Vandermonde matrix
associated with this ordering as the n × n matrix V = V (α1, . . . , αn) for which
the jth column is the vector vν(j)(αj) where ν(j) is the number of times that the
eigenvalue αj appears among its predecessors α1, . . . , αj−1. Clearly V can be ob-
tained from the matrix V appearing above by an appropriate permutation of the
columns. Therefore, modulo a plus or minus sign, the determinant of V is equal to
the product in the right-hand side of (11.53). In particular, V is invertible. Up to
a permutation similarity, V −1AV is an upper triangular Jordan matrix. A closer
look reveals that V −1AV is upper triangular with diagonal elements α1, . . . , αn.
The argument, using (11.51), runs as follows. Let j ∈ {1, . . . , n}. If ν(j) = 0,
then the jth column of AV is Av0(αj) = αjv0(αj), and so the jth column of
V −1AV has αj as its jth component and zeros everywhere else. Now assume ν(j)
is positive, hence j > 1. Then the jth column of AV is

Avν(j)(αj) = αjvν(j)(αj) + vν(j)−1(αj).

It follows that the jth column of V −1AV has αj on the jth position and zeros
everywhere else, except the number 1 on the kth position where

k = max{l | l = 1, . . . , (j − 1), αl = αj} < j,

and so ν(k) = ν(j) − 1.

We proceed this review by discussing complete chains of invariant subspaces
of a first companion n×n matrix A. Let α1, . . . , αn be an ordering of the eigenvalues
of A (algebraic multiplicities counted) and write Ml for the span of the first l
columns of the generalized Vandermonde V = V (α1, . . . , αn). Then, as V −1AV is
upper triangular, {0} = M0 ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂ Mn = Cn is a complete chain
of invariant subspaces for A. As the next proposition shows, the converse is also
true.

Proposition 11.20. Let A be an n × n first companion matrix, and let

{0} = M0 ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂ Mn = Cn (11.56)
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be a complete chain of A-invariant subspaces. Then there exists a unique ordering
α1, . . . , αn of the eigenvalues of A (algebraic multiplicities counted) such that, for
l = 0, . . . , n, the subspace Ml is the span of the first l columns of the generalized
Vandermonde matrix V (α1, . . . , αn).

We shall refer to V (α1, . . . , αn) as the generalized Vandermonde matrix for
the chain (11.56). An alternative formulation of the conclusion of the proposition
reads this way: there exists a unique ordering α1, . . . , αn of the eigenvalues of A
(algebraic multiplicities counted) such that, for l = 0, . . . , n,

Ml = span {vν(1)(α1), . . . , vν(l)(αl)}, l = 0, . . . , n, (11.57)

where ν(j) is the number of times that the eigenvalue αj appears among its pre-
decessors α1, . . . , αj−1.

Proof. For the sake of completeness we present the full proof, which will be split
into two parts. The first part deals with the uniqueness statement. Throughout
we use the notations introduced above.

Part 1. Suppose we have two orderings α̂1, . . . , α̂n and α̌1, . . . , α̌n of the eigen-
values of A (algebraic multiplicities counted) such that, for l = 0, . . . , n, the sub-
space spanned by the first l columns of V (α̂1, . . . , α̂n) coincides with the subspace
spanned by the first l columns of V (α̌1, . . . , α̌n). Thus, for l = 0, . . . , n,

span {vν̂(1)(α̂1), . . . , vν̂(l)(α̂l)} = span {vν̌(1)(α̌1), . . . , vν̌(l)(α̌l)}, (11.58)

where ν̂(j) is the number of times that the eigenvalue α̂j appears among its pre-
decessors α̂1, . . . , α̂j−1, and ν̌(j) is the number of times that the eigenvalue α̌j

appears among α̌1, . . . , α̌j−1. For t = 0, . . . , s and l = 0, . . . , n, introduce

m̂t[l] = ♯{k | k = 1, . . . , l, α̂k = at},

m̌t[l] = ♯{k | k = 1, . . . , l, α̌k = at},

where, as before, the symbol ♯ stands for number of elements. Fix (for the time
being) t ∈ {1, . . . , s}, l ∈ {0, . . . , n}, and consider the m̂t[l] vectors among

vν̂(1)(α̂1), . . . , vν̂(l)(α̂l) (11.59)

corresponding to the eigenvalue at. Writing

{k | k = 1, . . . , l, α̂k = at} = {k1, . . . , km̂t[l]},

with k1 < · · · < km̂t[l], these vectors are vν̂(k1)(at), . . . , vν̂(km̂t[l])(at). But ν̂(kj) =
j−1 for j = 1, . . . , m̂t[l], and we conclude that the vectors under consideration are
v0(at), . . . , vm̂t[l]−1(at). Letting t now run from 1 to s, we see that via a suitable
reordering, (11.59) can be transformed into

v0(a1), . . . , vm̂1[l]−1(a1) , . . . , v0(as), . . . , vm̂s[l]−1(as).
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So the latter vectors span the subspace in the left-hand side of (11.58). In the
same vein we have that

v0(a1), . . . , vm̌1[l]−1(a1) , . . . , v0(as), . . . , vm̌s[l]−1(as).

span the subspace in the right-hand side of (11.58). However, the left and right-
hand side of (11.58) are the same, and it follows that

m̂t[l] = m̌t[l], t = 1, . . . , s, l = 0, . . . , n.

From this it is clear that the orderings α̂1, . . . , α̂n and α̌1, . . . , α̌n must coincide.
Indeed, if α̂l = at, then m̌t[l] = m̂t[l] = m̂t[l− 1]+1 = m̌t[l− 1]+1, and it follows
that ǎl = at = âl.

Part 2. We now prove existence. Given the complete chain of A-invariant subspaces
as in the proposition, write Ml in the form

Ml = span {v0(a1), . . . , vm1[l]−1(a1) , . . . , v0(as), . . . , vms[l]−1(as)},

where m1[l], . . . , ms[l] are non-negative integers not exceeding the algebraic mul-
tiplicities m1, . . . ,ms, respectively. Note that

s∑

t=1

mt[l] = dim Ml = l, l = 0, . . . , n,

while, for the extreme values l = 0 and l = n,

mt[0] = 0, mt[n] = mt, t = 1, . . . , s.

Further it is clear from our considerations concerning (11.55) that

mt[l − 1] ≤ mt[l] ≤ mt[l − 1] + 1, t = 1, . . . , s, j = 1, . . . , n.

Thus the value of mt[l] − mt[l − 1] is either 0 or 1. Also

s∑

t=1

(
mt[l] − mt[l − 1]

)
= l − (l − 1) = 1, j = 1, . . . , n.

Hence the differences mt[l] − mt[l − 1] are 0, except for one which is equal to 1.

For l = 1, . . . , n, write τ(l) for the unique integer t among 1, . . . , s such that
mt[l] − mt[l − 1] = 1 for t = τ(l). A little later, we shall see that

mt[l] = ♯{k | k = 1, . . . , l, τ(k) = t}, t = 1, . . . , s, l = 1, . . . , n. (11.60)

assuming this for the moment, we proceed as follows. Put αk = aτ(k). Then αk is
an eigenvalue of A. For t = 1, . . . , s, we have

♯{k | k = 1, . . . , n, αk = at} = ♯{k | k = 1, . . . , n, τ(k) = t},
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and the latter, by (11.60), is equal to mt[n] which, in turn, is just mt. Thus
α1, . . . , αn is an ordering of the eigenvalues of A, algebraic multiplicities taken
into account. As we shall see, the associated generalized Vandermonde matrix
V (α1, . . . , αn) has the desired property.

Take l among the integers 1, . . . , n, and consider the subspace of Cn spanned
by the first l columns of V (α1, . . . , αn), that is, by the vectors

vν(1)(α1), . . . , vν(l)(αl), (11.61)

where ν(j) is the number of times that the eigenvalue αj appears among its prede-
cessors α1, . . . , αj−1. Take t ∈ {1, . . . , s}. Then, as we see by another application
of (11.60),

♯{k | k = 1, . . . , l, αk = at} = ♯{k | k = 1, . . . , l, τ(k) = t} = mt[l],

and it follows (see the first paragraph of the proof) that via a suitable change of
order (11.61) can be rearranged into

v0(a1), . . . , vm1[l]−1(a1) , . . . , v0(as), . . . , vms[l]−1(as).

So the latter vectors span the same subspace as those of (11.61). They also span
Ml. Thus Ml is given by (11.57), as desired.

We still have to establish (11.60). Recall that τ(l) is the unique integer t
among 1, . . . , s such that mt[l] − mt[l − 1] = 1 for t = τ(l). Thus, employing the
familiar Kronecker delta notation, the property uniquely determining τ(l) can be
expressed as follows:

mt[l] = mt[l − 1] + δt,τ(l), t = 1, . . . , s, l = 1, . . . , n. (11.62)

The proof of (11.60) now goes by finite induction (on l).

Let t ∈ {1, . . . , n}, and take l = 1. Then the right-hand side of the identity
in (11.60) is equal to the number of integers k in the singleton set {1} such that
τ(k) = t. If τ(1) = t, this number is 1; if τ(1) �= t, it is equal to 0. So in this
situation (l = 1), the right-hand side of the identity in (11.60) equals δt,τ(1).
However, by (11.62), together with mt[0] = 0, we have that mt[1] = δt,τ(1) too.
Hence (11.60) is true for l = 1.

Turning to the induction step, let t ∈ {1, . . . , n} and l ∈ {1, . . . , n − 1}.
Clearly ♯{k | k = 1, . . . , (l + 1), τ(k) = t} is equal to

♯{k | k = 1, . . . , l, τ(k) = t} + ♯{k | k = l + 1, τ(k) = t}.
If τ(l + 1) = t, the second term in the latter expression is 1; if τ(l + 1) �= t, it
is equal to 0. In other words, the number in question is δt,τ(l+1). Combining this
with (11.60), which may be assumed to hold by induction hypothesis, we get

♯{k | k = 1, . . . , l + 1, τ(k) = t} = mt[l] + δt,τ(l+1).

By (11.62), the right-hand side of this identity is mt[l + 1], and the desired result
follows. �
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Notes

Propositions 11.1 and 11.2 can be found in somewhat different form in [24]. The
latter paper also deals with simultaneous reduction to companion forms of an
arbitrary number (instead of just pairs) of matrices. The proof of Proposition 11.1
given here, exhibiting a connection with the Bezout matrix, is from [20]; see also
[122]. Section 11.2 is based on Section 3 of [19]. Observations strongly related to
Theorem 11.8 can be found in Section 2 of [24], and Section 4 of [20].

The material on companion based matrix functions of Sections 11.3 and 11.4
is inspired by Section 3 in [20]. The approach there is more general in that also com-
panion based matrix functions of size larger than two are considered. The results
of Section 11.5 on complete factorization of companion based matrix functions can
be traced back to Sections 3 and 6 in [19], and to Section 4 in [20]. In the latter
paper (possibly non-complete) minimal factorization of companion based matrix
functions is discussed in detail, including (canonical) Wiener-Hopf factorization. It
is interesting to note (see Theorem 4.1 in [20]) that the class of companion based
matrix functions behaves well under minimal factorization: If W = W1W2 is a
minimal factorization of a companion based matrix function W , then W1 and W2

are companion based too. The proofs of Theorems 11.17 and 11.18 are construc-
tive as long as the poles and zeros of the companion based matrix function W
are known. This fact is illustrated by the Maple procedures presented in Section
11.6 which have been written by Johan F. Kaashoek. The material on invariant
subspaces of companion matrices in Section 11.7 is of text book type (cf., Section
2.11, Exercises 21 and 22 in [92]) but not readily available in the specific form
needed for Chapter 12. A similar (though less elaborate) exposition can be found
in the proof of Lemma 1.1 in [24].



Chapter 12

Quasicomplete Factorization
and Job Scheduling

In this chapter a connection is made between the issue of quasicomplete factoriza-
tion discussed in Section 10.4 and a problem from the theory of combinatorial job
scheduling. The problem in question is the so-called two machine flow shop prob-
lem (2MFSP for short) where one wants to find optimal schedules for processing
jobs on two machines, given certain precedence constraints. It turns out that such
problems are in correspondence (one-to-one, essentially) with the companion based
rational matrix functions considered in the previous chapter. We show that the
number of factors in a quasicomplete factorization of a companion based matrix
function is directly related to the minimum makespan (i.e., the time needed for
carrying out a optimal schedule) of the associated instance of 2MFSP. Illustrative
examples are given. In one of them the (computationally fast) algorithm called
Johnson’s rule for 2MFSP is used to compute the quasidegree of a companion
based function.

The present chapter consists of five sections. The first presents a combina-
torial lemma that will be used in the analysis of quasicomplete factorization of
companion based matrix functions. The latter topic is the main subject of the sec-
ond section. In the third section we introduce the two machine flow shop problem
and review some of the related results, including Johnson’s rule. In the fourth sec-
tion we establish the relation to quasicomplete factorization of companion based
matrix functions. The final section presents Maple procedures to calculate explic-
itly quasicomplete factorization of a companion based 2 × 2 matrix function.
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12.1 A combinatorial lemma

In the next section we shall consider quasicomplete factorization (into elemen-
tary factors) of companion based rational matrix functions. Here we present a
combinatorial auxiliary result to be used in that context.

Lemma 12.1. Let p be positive integer, and let â1, . . . , âp and ǎ1, . . . , ǎp be two
(finite) sequences of elements (not specified at the moment but later to be taken
from the complex numbers). Let r be a positive integer not exceeding p, and assume
that for l = r, . . . , p the sequences â1, . . . , âl and ǎ1, . . . , ǎp+r−l have at most r− 1
entries in common, multiplicities counted. Then there exist permutations π̂ and π̌
of the set {1, . . . , p} such that

âπ̂(ŝ) �= ǎπ̌(š), ŝ, š = 1, . . . , p ; ŝ + š ≤ p + 2 − r.

It is helpful to clarify the hypotheses of the lemma via some notations that
will also be used in the proof. For l = r, . . . , p and α ∈ A = {â1, . . . , âp, ǎ1, . . . , ǎp},
introduce

ν̂α(l) = ♯ {j | j = 1, . . . , l; âj = α},
ν̌α(l) = ♯ {j | j = 1, . . . , l; ǎj = α},

(where, as in Section 11.1, the symbol ♯ stands for number of elements) and

µ̂α(l) = min{ν̂α(l), ν̌α(p + r − l)},
µ̌α(l) = min{ν̌α(l), ν̂α(p + r − l) }.

Note in this context that when l runs through r, . . . , p, then p+ r− l runs through
p, . . . , r. Obviously µ̌α(l) = µ̂α(p + r − l), and the overlap assumptions of the
lemma can be expressed as

∑

α∈A

µ̂a(l) =
∑

α∈A

µ̌a(p + r − l) < r, l = r, . . . , p. (12.1)

Clearly there is symmetry here with respect to the two given sequences â. and ǎ.

(replace l by p+ r− l). In line with this, the conclusion of the lemma is symmetric
in â. and ǎ. too.

Proof. As everywhere else in this section where this is convenient, we use the
notation introduced above. Take α ∈ A and write

{j | j = 1, . . . , p; âj = α} = {t̂α[1], t̂α[2], . . . , tα[ν̂α(p)]},
{j | j = 1, . . . , p; ǎj = α} = {ťα[1], ťα[2], . . . , tα[ν̌α(p)]},

with t̂α[1] < t̂α[2] < · · · < tα[ν̂α(p)] and ťα[1] < ťα[2] < · · · < tα[ν̌α(p)]. Then, for
l = r, . . . , p,

{j | j = 1, . . . , l; âj = α} = {t̂α[1], t̂α[2], . . . , tα[ν̂α(l)]},
{j | j = 1, . . . , l; ǎj = α} = {ťα[1], ťα[2], . . . , tα[ν̌α(l)]}.
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Now put

Ôα(l) = {t̂α[1], t̂α[2], . . . , t̂α[µ̂α(l)]},
Ǒα(l) = {ťα[1], ťα[2], . . . , ťα[µ̌α(l)]}.

As µ̂α(l) ≤ ν̂α(l) and µ̌α(l) ≤ ν̌α(l), both Ôα(l) and Ǒα(l) are subsets of {1, . . . , l}.
Taking (disjoint) unions, we obtain

Ô(l) =
⋃

α∈A

Ôα(l), Ǒ(l) =
⋃

α∈A

Ǒα(l),

again both are subsets of {1, . . . , l}. We now claim that

ât̂ �= ǎť (12.2)

whenever t̂ ∈ {1, . . . , l̂} \ Ô(l̂), ť ∈ {1, . . . , ľ} \ Ǒ(ľ) with l̂ and ľ from {r, . . . , p}
satisfying l̂ + ľ ≤ p + r. The proof goes by contradiction. Assume ât̂ = ǎť = α.
Then

t̂ ∈ {1, . . . , l̂} \ Ôα(l̂), ť ∈ {1, . . . , ľ} \ Ǒα(ľ).

Clearly t̂ ∈ {j | j = 1, . . . , l̂; âj = α} = {t̂α[1], . . . , tα[ν̂α(l̂)]}. Also

{t̂α[1], . . . , tα[ν̂α(l̂)]} = {t̂α[1], . . . , tα[µ̂α(l̂)], . . . , tα[ν̂α(l̂)]}

= Ôα(l̂) ∪ {t̂α[µ̂α(l̂) + 1], . . . , tα[ν̂α(l̂)]},

and, since t̂ /∈ Ôα(l̂), it follows that ν̂α(l̂) > µ̂α(l̂) = ν̌α(p+ r− l̂). As p+ r− l̂ ≥ ľ,
we have

ν̌α(p + r − l̂) = ♯ {j | j = 1, . . . , p + r − l̂; ǎj = α}
≥ ♯ {j | j = 1, . . . , ľ; ǎj = α} = ν̌α(ľ),

and so ν̂α(l̂) > ν̌α(ľ). In the same vein (or, if one prefers, by reasons of symmetry),

we also have ν̌α(ľ) > µ̌α(ľ) = ν̂α(p + r − ľ) ≥ ν̂α(l̂), and a contradiction has been
obtained which shows that (12.2) does indeed hold.

Next we turn to the construction of the permutation π̂. Here the overlap
assumptions (12.1) come into play. Note that

♯ Ô(l) =
∑

α∈A

♯ Ôα(l) =
∑

α∈A

µ̂α(l), l = r, . . . , p.

Thus (12.1) gives ♯ Ô(l) < r. Specializing to l = r, we have ♯ Ô(r) < r. On the
other hand Ô(r) ⊂ {1, . . . , r}. So Ô(r) is a proper subset of {1, . . . , r} and we can
take π̂(1) ∈ {1, . . . , r} \ Ô(r). In case r ≤ p − 1, we proceed as follows. Clearly

♯
(
{π̂(1)} ∪ Ô(r + 1)

)
≤ 1 + ♯ Ô(r + 1) < 1 + r.
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Combining this with {π̂(1)} ∪ Ô(r+1) ⊂ {1, . . . , r+1} leads to the choice of π̂(2)
satisfying π̂(2) �= π̂(1) and π̂(2) ∈ {1, . . . , r + 1} \ Ô(r + 1). When r ≤ p − 2, this
procedure can be continued. Indeed, let s ∈ {1, . . . , p − r} and assume that the
different integers π̂(1), . . . , π̂(s) have been chosen in such a way that

π̂(j) ∈ {1, . . . , r + j − 1} \ Ô(r + j − 1), j = 1, . . . , s.

Then {π̂(1), . . . , π̂(s)} ∪ Ô(r + s) ⊂ {1, . . . , r + s}. The number of elements in
the left-hand side of this inclusion is at most s + ♯ Ô(r + s), hence smaller than
s + r. Therefore it is possible to pick π̂(s + 1) from {1, . . . , r + s} such that
π̂(s + 1) �= π̂(1), . . . , π̂(s) and π̂(s + 1) ∈ {1, . . . , r + s} \ Ô(r + s). In other words,
the above expression (displayed) is also valid for j = s + 1.

In this way (more formally, by finite induction), the existence has been es-
tablished of an injective function π̂ : {1, . . . , p − r + 1} → {1, . . . , p} with

π̂(j) ∈ {1, . . . , r + j − 1} \ Ô(r + j − 1), j = 1, . . . , p − r + 1.

We complete this function to a permutation of {1, . . . , p} by choosing mutually
different values π̂(p − r + 2), . . . , π̂(p) from the set

{1, . . . , p} \ {π(1), . . . , π̂(p − r + 1)}.

Analogously (or, if one prefers, by symmetry) there exists a permutation π̌ of
{1, . . . , p} satisfying

π̌(j) ∈ {1, . . . , r + j − 1} \ Ǒ(r + j − 1), j = 1, . . . , p − r + 1.

Now suppose ŝ, š ∈ {1, . . . , p} and ŝ + š ≤ p + 2 − r. Put

t̂ = π̂(ŝ), ť = π̌(š), l̂ = r + ŝ − 1, ľ = r + š − 1.

Then l̂, ľ ∈ {1, . . . , p} and

l̂ + ľ = 2r − 2 + ŝ + š ≤ 2r − 2 + p + 2 − r = p + r.

Also ŝ, š ∈ {1, . . . , p + r − 1} and so

t̂ = π̂(ŝ) ∈ {1, . . . , l̂} \ Ô(l̂), ť = π̌(š) ∈ {1, . . . , ľ} \ Ǒ(ľ).

Thus we have the situation considered in the second paragraph of this proof.
Therefore (12.2) holds, i.e., âπ̂(ŝ) �= ǎπ̌(š), as desired. �

We close this section with an example illustrating Lemma 12.1 and its proof.
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Take p = 9 and let the (finite) sequences â1, . . . , â9 and ǎ1, . . . , ǎ9 be given –
schematically – by

1 2 3 4 5 6 7 8 9

â. : ♣ ♠ ♠ ♣ � ♥ ♣ ♦ �

ǎ. : ♥ � � � ♥ � ♣ ♦ ♠

For l = 4, . . . , 9, the sequences â1, . . . , âl and ǎ1, . . . , ǎ13−l have at most 3 entries
in common, multiplicities counted. Thus the overlap conditions of the lemma are
fulfilled for r = 4. It is not hard to verify that

Ô4 = {1, 2}, Ǒ4 = {1, 2, 3},
Ô5 = {1, 5}, Ǒ5 = {1, 2},
Ô6 = {1, 5, 6}, Ǒ6 = {1, 2},
Ô7 = {5, 6}, Ǒ7 = {1, 2, 7},
Ô8 = {5, 6}, Ǒ8 = {2, 7},
Ô9 = {5, 6, 9}, Ǒ9 = {7, 9}.

One can now construct permutations π̂ and π̌ of {1, . . . , 9} along the lines indicated
in the above proof. In the present case different choices can be made. One of the
possible outcomes is given – schematically – by

1 2 3 4 5 6 7 8 9

π̂(.) : 3 4 2 1 7 8 5 6 9

π̌(.) : 4 3 6 5 1 8 7 9 2

The sequences âπ̂(1), . . . , âπ̂(9) and ǎπ̌(1), . . . , ǎπ̌(9) can now be displayed as

1 2 3 4 5 6 7 8 9

âπ̂(.) : ♠ ♣ ♠ ♣ ♣ ♦ � ♥ �

ǎπ̌(.) : � � � ♥ ♥ ♦ ♣ ♠ �

A simple check shows that

âπ̂(ŝ) �= ǎπ̌(š), ŝ, š = 1, . . . , 9, ŝ + š ≤ 7

as required.
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12.2 Quasicomplete factorization (companion based)

In this section we consider quasicomplete factorization of companion based func-
tions. For the relevant definitions, see Section 10.4.

Theorem 12.2. Let W be a companion based rational m × m matrix function,
and let n be the McMillan degree of W (assumed to be positive in order to avoid
trivialities). Then the quasidegree δq(W ) of W is the smallest integer d larger than
or equal to n for which there exist an ordering α1, . . . , αn of the poles of W (pole-
multiplicities taken into account) and an ordering α×

1 , . . . , α×
n of the zeros of W

(zero-multiplicities taken into account) such that

αk �= α×
j , k, j = 1, . . . , n, k < j − (d − n). (12.3)

If (12.3) holds for a certain integer d, then so it does when one replaces d by
any larger integer. Also (12.3) is vacuously satisfied for d = 2n− 1. This is in line
with the estimate δq(W ) ≤ 2δ(W ) − 1 of the quasidegree given in (10.30).

The proof of Theorem 12.2 is quite involved and will be split in two parts.
The first depends heavily on the combinatorial lemma of the previous section. We
begin with a few lemmas.

Lemma 12.3. Let X−, X0, X+ and X be finite-dimensional Banach spaces, and
assume X = X−∔X0∔X+. For M a subspace of X, write M [0] = (M+X−) ∩X0.
Then M [0] = P0[M ∩ (X− ∔ X0)], where P0 is the projection of X onto X0 along
X− ∔ X+. In addition, assume that T : X → X is a (bounded) linear operator
whose 3×3 operator matrix representation with respect to the given decomposition
has the upper triangular form

T =

⎡
⎢⎢⎣

∗ ∗ ∗
0 T0 ∗
0 0 ∗

⎤
⎥⎥⎦ : X− ∔ X0 ∔ X+ → X− ∔ X0 ∔ X+,

with the stars denoting unspecified (possibly nonzero) entries acting between the
appropriate spaces, and with T0 : X0 → X0. Then a sufficient condition for M [0]
to be invariant for T0 is that M is invariant for T .

Proof. Take x ∈ M [0]. Then x ∈ X0, so P0x = x. Also x = m+x− for some m ∈ M
and x− ∈ X−. Now m = −x−+x ∈ X−∔X0 and P0m = −P0x−+P0x = P0x = x.
Thus M [0] ⊂ P0[M ∩ (X− ∔ X0)]. For the reverse inclusion, assume y = P0m
with m ∈ M ∩ (X− ∔ X0). Write m = x− + x0 with x− ∈ X− and x0 ∈ X0. Then
y = P0m = P0x0 = x0 = m − x− ∈ M + X−. Also y = P0m ∈ X0, and it follows
that P0[M ∩ (X− ∔ X0)] ⊂ M [0], as desired.

Suppose now that M is an invariant subspace for T . Then, as X− ∔ X0 is
T -invariant too, so is M ∩ (X−∔X0). This will be used to prove the T0-invariance
of M [0] = P [M ∩ (X− ∔ X0)].
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With respect to the decomposition X = X− ∔ X0 ∔ X+, the operators P0T
and P0TP0 have the form

P0T =

⎡
⎢⎢⎣

0 0 0

0 T0 ∗
0 0 0

⎤
⎥⎥⎦ , P0TP0 =

⎡
⎢⎢⎣

0 0 0

0 T0 0

0 0 0

⎤
⎥⎥⎦ .

From the first identity we see that X− ⊂ KerP0T , from the second that T0x0 =
P0TP0x0 for all x0 ∈ X0. Take m0 ∈ M [0] ⊂ X0. Then m0 = P0m for some
m ∈ M ∩ (X− ∔ X0). Now T0m0 = P0TP0m0 = P0TP0m. Also m − P0m ∈ X−

(for m ∈ X− ∔ X0), so m − P0m ∈ KerP0T . Hence T0m0 = P0TP0m = P0Tm.
But Tm belongs to M ∩ (X− ∔ X0), and so T0m0 ∈ P0[M ∩ (X− ∔X0)] = M [0],
as desired. �

With the same notation as above, we also have the following result.

Lemma 12.4. Let X−, X0, X+ and X be finite-dimensional Banach spaces such
that X = X− ∔ X0 ∔ X+, and let M and N be subspaces of X. Then

dim
(
M [0] ∩ N [0]

)
≤ dim(M ∩ N) + dim X−, (12.4)

dim

(
X0

M [0] + N [0]

)
≤ dim

(
X

M + N

)
+ dim X+. (12.5)

Also, if M ⊂ N , then M [0] ⊂ N [0] and dim
(
N [0]/M [0]

)
≤ dim(N/M).

Proof. The argument for (12.4) goes as follows. Choose a basis m0
1, . . . , m

0
s in

M [0]. Note here that we may assume that M [0] (as well as N [0]) is non-trivial,
otherwise (12.4) is evident. For j = 1, . . . , s, choose m−

j in X− such that m0
j−m−

j ∈
M . Then, clearly, (m0

1 − m−
1 ), . . . , (m0

s − m−
s ) ∈ M ∩

(
M [0] + X−

)
. Suppose

z1(m
0
1 − m−

1 ) + · · · + zs(m
0
s − m−

s ) = 0, where z1, . . . , zn ∈ C. Then

z1m
0
1 + · · · + zsm

0
s = z1m

−
1 + · · · + zsm

−
s .

The left-hand side of this identity is in M [0] ⊂ X0, the right-hand side in X−.
But X0 ∩ X− = {0}. So (z1m

0
1 + · · · + zsm

0
s) = (z1m

−
1 + · · · + zsm

−
s ) = 0. Since

m0
1, . . . , m

0
s are linearly independent, it follows that z1 = · · · = zs = 0. Thus the

elements (m0
1 − m−

1 ), . . . , (m0
s − m−

s ) are linearly independent too.

Putting M̂ = span {(m0
1 −m−

1 ), . . . , (m0
s −m−

s )}, we obtain a subspace M̂ of

X for which M̂ ⊂ M ∩
(
M [0]+X−

)
and dim M̂ = dim M [0]. In the same vein there

is a subspace N̂ of X satisfying N̂ ⊂ N ∩
(
N [0] + X−

)
and dim N̂ = dimN [0].

By a standard identity

dim M̂ + dim N̂ = dim
(
M̂ ∩ N̂

)
+ dim

(
M̂ + N̂

)
,
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and it follows that dimM [0] + dimN [0] = dim
(
M̂ ∩ N̂

)
+ dim

(
M̂ + N̂

)
. As

M̂ +N̂ ⊂ M [0]+N [0]+X−, the dimension of M̂ +N̂ does not exceed dim
(
M [0]+

N [0]
)
+ dim X−. Hence

dimM [0] + dimN [0] ≤ dim
(
M̂ ∩ N̂

)
+ dim

(
M [0] + N [0]

)
+ dimX−.

Together with dim(M [0] ∩ N [0]) = dimM [0] + dimN [0] − dim
(
M [0] + N [0]

)
,

(again the standard identity), this gives

dim
(
M [0] ∩ N [0]

)
≤ dim

(
M̂ ∩ N̂

)
+ dim X−.

As the dimension of M̂ ∩ N̂ does not exceed that of M ∩ N inequality (12.4)
follows.

Next, we deal with (12.5). Let P+ be the projection of X onto X+ along
X− ∔ X0. Choose m1, . . . , mt in M such that the vectors P+m1, . . . , P+mt span
the subspace P+[M ]. Take m ∈ M . Then there exist γ1, . . . , γt ∈ C such that
P+m = γ1P+m1 + · · · + γtP+mt. Put y = m − (γ1m1 + · · · + γtmt). Then y ∈ M
and y ∈ KerP+ = X− ∔ X0. Now

m = (y − P0y) + P0y + (γ1m1 + · · · + γtmt).

The second term P0y in the right-hand side belongs to P0[M ∩ (X−∔X0)] = M [0]
(see Lemma 12.3). For the first term y−P0y the following holds. On the one hand
it belongs to KerP0 = X−∔X+, on the other hand it is a member of (X−∔X0)+
X0 = X− ∔X0. Hence y−P0y ∈ (X− ∔X+) ∩ (X− ∔X0) = X−, and we conclude
that m ∈ X− + M [0] + span {m1, . . . , mt}. In case P+[M ] is non-trivial, one can
take t equal to the dimension of P+[M ] ⊂ X+ so that dim

(
span {m1, . . . , mt}

)
≤

dimX+. The latter can also be arranged when P+[M ] = {0}. Just take t = 1 and
m1 = 0.

Putting M̃ = span {m1, . . . , mt}, we obtain a subspace M̃ of X such that

M ⊂ X− + M [0] + M̃ and dim M̃ ≤ dimX+. In the same vein there is a subspace

Ñ of X satisfying N ⊂ X− + N [0] + Ñ and dim Ñ ≤ dim X+. Let L be a linear
complement of M +N in X . Then X = L∔ (M +N) = L+X− +

(
M [0]+N [0]

)
+

M̃ + Ñ, and it follows that

dimX ≤ dimL + dimX− + dim
(
M [0] + N [0]

)
+ 2 dimX+.

Combining this with the identity dimX = dim X− +dimX0 +dimX+, we get the
inequality dim X0 − dim

(
M [0] + N [0]

)
≤ dimL + dimX+, which amounts to the

same (12.5).

Finally, assume M ⊂ N . Then evidently M [0] ⊂ N [0]. By standard quotient
space arguments, there exist an injective linear mapping

(N + X−) ∩ X0

(M + X−) ∩ X0
→ N + X−

M + X−
,
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and a surjective linear mapping

N

M
→ N + X−

M + X−
.

It follows that

dim
N [0]

M [0]
= dim

(
(N + X−) ∩ X0

(M + X−) ∩ X0

)
≤ dim

(
N + X−

M + X−

)
≤ dim

N

M
,

and the proof is complete. �

Let us mention that in the application of Lemma 12.4 given below, the di-
mension of X0 is strictly larger than the dimensions of X− and X+. Note that in
that case the inequalities (12.4) and (12.5) are non-trivial.

First part of the proof of Theorem 12.2. Put q = δq(W ). Then δ(W ) = n ≤ q ≤
2n−1 and we shall prove that there exist an ordering α1, . . . , αn of the poles of W
(pole-multiplicities taken into account) and an ordering α×

1 , . . . , α×
n of the zeros of

W (zero-multiplicities taken into account) such that (12.3) is satisfied with d = q.
When q = 2n − 1, there is nothing to prove. So we shall assume that q ≤ 2n − 2
(and n ≥ 2). It is convenient to break up the argument into a number of steps.

Step 1. Since W admits a factorization into q elementary factors, Theorem 10.5
guarantees that W can be written as W (λ) = Im + C(λIq − A)−1B with A an
upper and A× = A−BC a lower triangular q× q matrix. As has been discussed in
detail in Section 10.1, these triangularity conditions come down to the existence of
a complete chain M0 ⊂ M1 ⊂ · · · ⊂ Mq of A-invariant subspaces, and a complete
chain M×

0 ⊂ M×
1 ⊂ · · · ⊂ M×

q of A×-invariant subspaces, such that

Mj ∔ M×
q−j = Cq, j = 0, . . . , q. (12.6)

Here, as everywhere else where this is convenient, matrices are identified in the
usual way with operators acting between Euclidean spaces.

Step 2. Put X = Cq. By the material on dilations presented in Section 7.3, we
know that X admits a decomposition X = X− ∔ X0 ∔ X+ such that A, B and C
have the form

A =

⎡
⎢⎢⎣

∗ ∗ ∗
0 A0 ∗
0 0 ∗

⎤
⎥⎥⎦ : X− ∔ X0 ∔ X+ → X− ∔ X0 ∔ X+,

B =

⎡
⎢⎢⎣

∗
B0

0

⎤
⎥⎥⎦ : Cm → X− ∔ X0 ∔ X+,

C =
[

0 C0 ∗
]

: X− ∔ X0 ∔ X+ → Cm,



276 Chapter 12. Quasicomplete Factorization and Job Scheduling

with the stars denoting unspecified (possibly nonzero) entries acting between the
appropriate spaces, and with

W (λ) = Im + C0(λIX0 − A0)
−1B0 (12.7)

being a minimal realization of W , so in particular dimX0 = n. Given the com-
plete chains of subspaces from Step 1, we now construct comparable chains in
the space X0.

Step 3. For this we employ the material (including the notation) contained in
Lemmas 12.3 and 12.4. So we apply the [0]-operation introduced in Lemma 12.3
to the complete chains of invariant subspaces featuring in Step 1. In other words,
we consider the subspaces

Mj[0] = (Mj + X−) ∩ X0, M×
j [0] = (M×

j + X−) ∩ X0.

Note that Mj [0] is A0-invariant and M×
j [0] is A×

0 -invariant (see Lemma 12.3).

Here it should be taken into account that the operator A× = A − BC has the
representation

A× =

⎡
⎢⎢⎣

∗ ∗ ∗
0 A×

0 ∗
0 0 ∗

⎤
⎥⎥⎦ : X− ∔ X0 ∔ X+ → X− ∔ X0 ∔ X+,

again with the stars denoting possibly nonzero entries, and with A×
0 being the as-

sociate main operator of the unital system (A0, B0, C0, Cm, Cn) underlying (12.7),
i.e., A×

0 = A0 − B0C0.

Step 4. For j = 0, . . . , q − 1, we have

Mj[0] ⊂ Mj+1[0], dim

(
Mj+1[0]

Mj [0]

)
≤ dim

(
Mj+1

Mj

)
= 1,

(see Lemma 12.4). Put dj = dimMj [0]. Then d0 = 0 (for M0 = {0}) and
dq = dimX0 = n (because Mq = X). Further d0 ≤ d1 ≤ · · · ≤ dq−1 ≤ dq

and two consecutive elements in this (finite) sequence differ at most one. Hence
{d0, . . . , dq} = {0, . . . , n}. For k = 0, . . . , n, let

j(k) = min{j | j = 0, . . . , q; dj = k}, Nk = Mj(k)[0].

Then N0 ⊂ N1 ⊂ · · · ⊂ Nn is a complete chain of A0-invariant subspaces. Intro-
ducing

j×(k) = min{j | j = 0, . . . , q; dim M×
j [0] = k}, N×

k = M×
j×(k)[0]

we obtain a complete chain N×
0 ⊂ N×

1 ⊂ · · · ⊂ N×
n of A×

0 -invariant subspaces as
well.
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Step 5. Let M, N be a pair of subspaces of X , and consider the pair of associated
subspaces M [0], N [0] of X0. In view of the matching conditions (12.6) we are
interested in the cases M ∩ N = {0} and M + N = X . Here is what results from
the inequalities (12.4) and (12.5) in Lemma 12.4. If M ∩ N = {0}, then

dim(M [0] ∩ N [0]) ≤ d−, (12.8)

where d− = dimX−; if M + N = X , then

dim

(
X0

M [0] + N [0]

)
≤ d+, (12.9)

where d+ = dimX+.

In line with the remark immediately following the proof of Lemma 12.4,
we note that (12.8) and (12.9) are trivial when dim X0 ≤ d− = dim X−. This,
however, is not the case here. Indeed, by assumption q ≤ 2n−2, where n = dim X0,
hence dimX− = q − n − d+ ≤ n − 2 and dimX+ = q − n − d− ≤ n − 2 .

Step 6. Consider the inequality

dim
(
Nl ∩ N×

k

)
≤ d−. (12.10)

Because its left-hand side is bounded above by min{l, k}, the inequality is certainly
valid when l or k does not exceed d−. The estimate, however, also holds in non-
trivial cases. In fact, (12.10) is satisfied for l, k = (d− + 1), . . . , n with l + k ≤
n+d−−d+ (where it should be noted that 2(d−+1) = q−n−d+ +d− +2 ≤ 2n−
2−n−d++d−+2 = n+d−−d+ and d−+1 = q−n−d++1 ≤ 2n−2−n+1 = n−1).
The reasoning, employing the matching conditions (12.6), runs this way.

Recall that
Nl = Mj(l)[0], N×

k = M×
j×(k)[0].

Now Mj(l) ∔ M×
q−j(l) = Cq. If j(l) + j×(k) ≤ q, we have Mj(l) ∩ M×

j×(k) ⊂ Mj(l) ∩
M×

q−j(l) = {0} and (12.10) follows from (12.8). When j(l) + j×(k) ≥ q, we have

Mj(l) + M×
j×(k) ⊃ Mj(l) + M×

q−j(l) = X , and (12.9) gives

n − dim
(
Mj(l)[0] + M×

j×(k)[0]
)
≤ d+.

Thus dim(Nl + N×
k ) ≥ n − d+. But then

dim
(
Nl ∩ N×

k

)
= dimNl + dimN×

k − dim
(
Nl + N×

k

)

= l + k − dim
(
Nl + N×

k

)

≤ l + k − n + d+.

As the last expression is bounded above by d− when l + k ≤ n + d− − d+ =, the
desired inequality (12.10) follows.



278 Chapter 12. Quasicomplete Factorization and Job Scheduling

Step 7. Recall that (12.7) is a minimal realization of W . The function W is com-
panion based. Therefore, by the state space isomorphism theorem, we may assume
that X0 = Cn and that the matrix representations of A0 and A×

0 = A0 − B0C0

with respect to the standard basis in Cn are first companions. As was indicated
in Proposition 11.20, complete chains of invariant subspaces of first companion
matrices can be described with the help of generalized Vandermonde matrices.
This is the key for the rest of the argument.

Let V (a1, . . . , an) be the generalized Vandermonde matrix for the complete
chain N0 ⊂ N1 ⊂ · · · ⊂ Nn of A0-invariant subspaces. Thus a1, . . . , an is an
appropriate ordering of the eigenvalues of A0 (algebraic multiplicities counted)
and, using the notation of Section 11.7,

Nl = span {vν(1)(a1), . . . , vν(l)(al)}, l = 0, . . . , n,

where ν(j) is the number of times that the eigenvalue aj appears among its prede-
cessors a1, . . . , aj−1. Similarly, let V (a×

1 , . . . , a×
n ) be the generalized Vandermonde

matrix for the complete chain N×
0 ⊂ N×

1 ⊂ · · · ⊂ N×
n of A×

0 -invariant subspaces.
So a×

1 , . . . , a×
n is a suitable ordering of the eigenvalues of A×

0 (algebraic multiplic-
ities counted) and

N×
k = span {vν×(1)(a

×
1 ), . . . , vν×(k)(a

×
k )}, k = 0, . . . , n,

where ν×(j) is the number of times that the eigenvalue a×
j appears among the

numbers a×
1 , . . . , a×

j−1.

We are now ready to set things up for the application of the combinatorial
lemma of the preceding section. Put p = n − (d+ + 1) and r = d− + 1. Then
p ≤ n − 1 and r is a positive integer not exceeding p (for d− + 1 = q − n −
d+ + 1 ≤ n − d+ − 1). For l = r, . . . , p (hence p + r − l in the same range) and
α ∈ A = {a1, . . . , ap, a

×
1 , . . . , a×

p }, introduce

να(l) = ♯ {j | j = 1, . . . , l; aj = α},
ν×

α (l) = ♯ {j | j = 1, . . . , l; a×
j = α},

and µα(l) = min{να(l), ν×
α (p + r − l)}. Note that

∑
α∈A µα(l) is the number

of common entries in a1, . . . , al and a×
1 , . . . , a×

p+r−l (multiplicities counted). Take
α ∈ A. Then v0(α), . . . , vνα(l)(α) appear among the first l columns of V (a1, . . . , an)
which span Nl. Similarly, v0(α), . . . , vν×

α (p+r−l)(α) appear among the first p+r− l

columns of V (a×
1 , . . . , a×

n ) which span N×
p+r−l. Thus the vectors

v0(α), . . . , vµα(l)(α), α ∈ A
belong to Nl ∩ N×

p+r−l. These vectors, being different columns of V (a1, . . . , an) or,

for that matter, of V (a×
1 , . . . , a×

n ), are linearly independent. Their total number is∑
α∈A µα(l), and so

∑

α∈A

µα(l) ≤ dim
(
Nl ∩ N×

p+r−l

)
.
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The integers l and p + r − l are in the range r = (d− + 1) up to p, with p not
exceeding n. Also, l + (p + r − l) = p + r = n + d− − d+. Hence (12.10) holds
with k = p+ r− l (see Step 6). It follows that

∑
α∈A µα(l) ≤ d−, and we conclude

that the number of common entries in a1, . . . , al and a×
1 , . . . , a×

p+r−l (multiplicities
counted) is at most d− = r − 1.

Now apply Lemma 12.1. This gives two permutations σ and σ× of {1, . . . , p}
for which

aσ(s) �= a×
σ×(t), s, t = 1, . . . , p , s + t ≤ p + 2 − r. (12.11)

We complete σ to a permutation of {1, . . . , n} and do likewise with σ×. By slight
abuse of notation, these extended permutations are again denoted by σ and σ×.
For k = 1, . . . , n, put

αk = aσ(k), α×
k = α×

σ×(n+1−k).

Clearly α1, . . . , αn is an ordering of the eigenvalues of A0 and α×
1 , . . . , α×

n is an
ordering of the eigenvalues of A×

0 , algebraic multiplicities taken into account. We
claim that (12.3) is satisfied with d = q. Let k, j ∈ {1, . . . , n}, and assume k <
j + n − q. Then

k + (n + 1 − j) ≤ 2n − q = n − (d− + d+) = p + 2 − r.

As p + 2 − r ≤ p + 1, both k and n + 1 − j do not exceed p. Taking s = k and
t = n + 1 − j in (12.11), it follows that αk �= α×

j .

In closing we recall the fact that the eigenvalues of A0 coincide with the poles
of W and those of A×

0 coincide with the zeros of W , in both cases the appropriate
multiplicities taken into account (cf., Chapter 8). �

Next, we turn to the second part of the proof of Theorem 12.2. First we
establish some auxiliary results.

Proposition 12.5. Let A be an n×n first companion matrix and let B be an n×m
matrix. The following statements are equivalent:

(i) the pair (A, B) is controllable,

(ii) there exists an invertible n×n matrix T such that AT = TA and, in addition,

⎡
⎢⎢⎢⎣

0
...

0

1

⎤
⎥⎥⎥⎦ ∈ Im T−1B.

The latter can be rephrased as: the last column of T is a linear combination
of the columns of B.
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Proof. The column vector appearing in the displayed formula in (ii) will be denoted
by en. Since A is a first companion, the n × n matrix

[
en Aen · · · An−1en

]

is invertible. Hence, given a vector x ∈ Cn, there exist (unique) complex numbers

p0, . . . , pn−1 (depending on x) such that
∑n−1

j=0 pjA
jen = x. The latter can be

rewritten as p(A)en = x, where p is the scalar polynomial p(λ) = p0 + λp1 + · · ·+
λn−1pn−1.

By assumption, the pair (A, B) is controllable, in particular B �= 0. Let
x1, . . . , xr be vectors in Cn that span ImB. With x1, . . . , xr, we associate scalar
polynomials p1, . . . , pr in the way indicated above. Thus

pj(A)en = xj , j = 1, . . . , r.

We claim that a common zero α of p1, . . . , pr can not be an eigenvalue of A.
Suppose it is. For j = 1, . . . , r, the polynomial pj is divisible by the linear factor
λ − α, and so Im pj(A) ⊂ Im (A − αIn). Hence

xj = pj(A)en ∈ Im (A − αIn), j = 1, . . . , r,

and, as a consequence, Im B ⊂ Im (A − αIn). Along with (A, B), the pair (A −
αIn, B) is controllable, and we conclude that A−αIn has to be invertible. In other
words, α is not an eigenvalue of A.

Let α be an eigenvalue of A. Then at least one of the complex numbers
p1(α), . . . , pr(α) is nonzero. Hence the set of vectors (β1, . . . , βr) in Cr deter-
mined by

r∑

k=1

βkpk(α) �= 0

is open and dense in Cr. But then the (finite) intersection of these sets over all
α in the spectrum of A is (open and) dense too. In particular, this intersection is
nonempty. Thus there exist complex numbers β1, . . . , βr such that the polynomial
q =

∑r
j=1 βjpj does not vanish on the spectrum of A. Define T = q(A). Then T

is invertible and, of course, AT = TA. As,

Ten = q(A)en =

r∑

j=1

βjpj(A)en =

r∑

j=1

βjxj ∈ Im B,

the lemma is proved. �

Underlying the definition of quasicomplete factorization and quasidegree is
Theorem 10.15. In the proof of that theorem, the spectral assignment theorem
(Theorem 6.5.1 in [70]) is used. The next proposition is a specialization of the
latter result to first companions.
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Proposition 12.6. Let A be an n × n first companion matrix, let B be an n × m
matrix, and assume ⎡

⎢⎢⎢⎣

0
...

0

1

⎤
⎥⎥⎥⎦ ∈ Im B. (12.12)

Then, given complex numbers γ1, . . . , γn (not necessarily distinct), there exists an
m× n matrix K such that A + BK is again a first companion and γ1, . . . , γn are
the eigenvalues of A + BK (algebraic multiplicities taken into account).

Note that (12.12), together with the fact that A is a first companion matrix,
implies that the pair (A, B) is controllable.

Proof. Write A in the form (11.1), and take v ∈ Cm such that Bv = en. Here en

stands for the left-hand side of (12.12). Let c0, . . . , cn−1 be the complex numbers
determined by

λn +
n−1∑

j=0

cjλ
j = (λ − γ1) · · · (λ − γn), (12.13)

and introduce the m × n matrix K via

K =
[

(a0 − c0)v (a1 − c1)v · · · (an−1 − cn−1)v
]
.

Observe that

A + BK = A + B
(
v
[

(a0 − c0) (a1 − c1) · · · (an−1 − cn−1)
])

= A + en

[
(a0 − c0) (a1 − c1) · · · (an−1 − cn−1)

]
.

Hence A + BK is a first companion matrix. In fact, A + BK is (11.1) with
a0, . . . , an−1 replaced by c0, . . . , cn−1. The characteristic polynomial of A + BK
is given by (12.13). Hence the eigenvalues of A + BK are γ1, . . . , γn (algebraic
multiplicities taken into account). �

After these preparations, we are ready for the second part proof of the proof
of Theorem 12.2.

Second part of the proof of Theorem 12.2. Let d ≥ n be an integer for which there
exist an ordering α1, . . . , αn of the poles of W (pole-multiplicities taken into ac-
count) and an ordering α×

1 , . . . , α×
n of the zeros of W (zero-multiplicities taken

into account) such that (12.3) is satisfied, i.e.,

αk �= α×
j , k, j = 1, . . . , n, k < j + n − d.

In this second part of the proof of Theorem 12.2, we show that δq(W ) ≤ d.
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Note that the case d = n is already covered by Theorem 11.17 (complete
factorization, hence δq(W ) = δ(W ) = n). So we may assume d ≥ n + 1. It may be
assumed as well that d ≤ 2n − 1. This is clear from the remark made right after
Theorem 12.2.

By assumption, W is companion based. Let W (λ) = Im + C(λIn − A)−1B
be a minimal realization of W such that A and A× = A−BC are first companion
matrices. Then α1, . . . , αn is an ordering of the eigenvalues of A and α×

1 , . . . , α×
n is

one for the eigenvalues of A× (cf., Chapter 8). We shall now appropriately change
the realization of W to suit our purpose.

First we shall show that without loss of generality it may be assumed that
Im B contains the vector en, where en is the column vector in Cn given by the
left-hand side of (12.12). When A �= A×, the proof is simple. Indeed, the difference
of the first companions A and A× then has a nonzero column of which all entries
are zero except the last. Hence

en ∈ Im (A − A×) = Im BC ⊂ Im B,

and so we can even leave the realization as it is. In case A = A×, the argument
is somewhat more involved. Let T be an invertible n × n matrix, and put Ã =
T−1AT, B̃ = T−1B and C̃ = CT . Then

W (λ) = Im + C̃(λIn − Ã)−1B̃

is a minimal realization of W and Ã× = T−1A×T = T−1AT = Ã. As the pair
(A, B) is controllable, we can apply Proposition 12.5 to choose T in such a way

that all four matrices Ã, A, Ã× and A× are the same while, in addition, en ∈ Im B̃.
Thus what we desire can be reached by replacing B by T−1B and C by CT .

From now on it is assumed that en ∈ Im B, that is, condition (12.12) is
satisfied. Let γ1, . . . , γn be complex numbers such that γ1, . . . , γd−n are distinct
and outside the spectra of A and A×. Applying Proposition 12.6 we obtain an
m × n matrix K such that A + BK is a first companion having γ1, . . . , γn as its
eigenvalues. Introduce the n × (d − n) matrix

X =
[

v0(γ1) v0(γ2) . . . v0(γd−n)
]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1

γ1 γ2 . . . γd−n

γ2
1 γ2

2 . . . γ2
d−n

...
...

...

γn−1
1 γn−1

2 . . . γn−1
d−n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12.14)

and let G be the diagonal (d − n) × (d − n) matrix with diagonal elements
γ1, . . . , γd−n. Then (A + BK)X = XG. With F equal to the m × (d − n) ma-
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trix KX , the identity (A+BK)X = XG transforms into the intertwining relation
XG − AX = BF .

Introduce the matrices

Â =

[
A BF
0 G

]
, B̂ =

[
B
0

]
, Ĉ =

[
C F

]
. (12.15)

having dimensions d × d, d × m and m × d, respectively. Since

W (λ) = Im + Ĉ(λId − Â)−1B̂

(cf., the material on dilation in Section 7.1), it suffices to prove that Â and Â× =

Â−B̂Ĉ admit simultaneous reduction to complementary triangular forms. Indeed,
Theorem 10.5 then gives that W admits a factorization into d elementary factors,
so that δq(W ) ≤ d as desired. The approach we take is via chains of matching
subspaces (cf., Section 10.1, in particular, Proposition 10.1; see also the proof of
Theorem 10.5).

With the ordering α1, . . . , αn of the eigenvalues of the first companion A, we
associate the generalized Vandermonde matrix V = V (α1, . . . , αn) as in Section
11.7. Then V is invertible and V −1AV is upper triangular with diagonal elements
α1, . . . , αn. Analogously, putting V × = V (α×

n , . . . , α×
1 ), the matrix (V ×)−1A×V ×

is upper triangular with diagonal elements α×
n , . . . , α×

1 . For clarity, we emphasize
that the eigenvalues of A× have been taken here in the (reversed) order α×

n , . . . , α×
1 .

We will now construct a complete chain of invariant subspaces for Â, and one for
Â× as well. Let us consider Â first.

Recall from Section 11.7 that V =
[

v1 v2 · · · vn

]
with

vj = vν(j)(αj), j = 1, . . . , n,

where ν(j) is the number of times that the eigenvalue αj appears among its pre-
decessors α1, . . . , αj−1. For j = 1, . . . , d − n, let ej be the vector in Cd−n having
1 in the jth position and zeros everywhere else. We now introduce the vectors
a1, . . . , ad−n, ad−n+1, . . . , ad ∈ Cd = Cn ∔ Cd−n as follows:

aj =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
v0(γj)

ej

]
, j = 1, . . . , d − n,

[
vj+n−d

0

]
, j = d − n + 1, . . . , d.

(12.16)

As is easily seen, these vectors form a basis for Cd. With respect to this basis,
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Â has upper triangular form. Indeed, for j = 1, . . . , d − n, we have

Âaj =

[
Av0(γj) + BFej

Gej

]
=

[
Av0(γj) + BKXej

γjej

]

=

[
(A + BK)v0(γj)

γjej

]
=

[
γjv0(γj)

γjej

]

= γjaj .

Also, for j = d − n + 1, . . . , d,

Âaj =

[
Avj+n−d

0

]
∈ span

{[
v1

0

]
, . . . ,

[
vj+n−d

0

]}

= span {ad−n+1, . . . , aj} .

Here we used that V −1AV is upper triangular. Now put

M̂k = span {a1, . . . , ak} , k = 0, . . . , d. (12.17)

Then {0} = M̂0 ⊂ M̂1 ⊂ M̂2 ⊂ · · · ⊂ M̂d−1 ⊂ M̂d = Cd is a complete chain of

Â-invariant subspaces.

For Â× = Â − B̂Ĉ the construction is analogous. Note that

Â× =

[
A BF

0 G

]
−
[

B

0

]
[

C F
]

=

[
A× 0

0 G

]
.

Let V × be the n × n matrix V × =
[

v×n v×n−1 · · · v×1
]

with

v×j = vν×(j)(α
×
j ), j = 1, . . . , n,

where ν×(j) is the number of times that the eigenvalue α×
j appears among the

numbers α×
n , . . . , α×

j+1. Furthermore, set

a×
j =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
0

ej

]
, j = 1, . . . , d − n,

[
v×d+1−j

0

]
, j = d − n + 1, . . . , d.

(12.18)

Then a×
1 , . . . , a×

d is a basis for Cd, and with respect to this basis Â× has upper
triangular form. Hence, with

M̂×
k = span

{
a×
1 , . . . , a×

k

}
, k = 0, . . . , d, (12.19)



12.2. Quasicomplete factorization (companion based) 285

we have that {0} = M̂×
0 ⊂ M̂×

1 ⊂ M̂×
2 ⊂ · · · ⊂ M̂×

d−1 ⊂ M̂×
d = Cd is a complete

chain of Â×-invariant subspaces.

We need to prove that

M̂k ∔ M̂×
d−k = Cd, k = 1, . . . , d − 1. (12.20)

It is convenient to distinguish three cases, depending on the value of k. Recall
here that we assumed n + 1 ≤ d ≤ 2n − 1. From these inequalities we see that
1 ≤ d − n < n ≤ d − 1.

Case 1. Let 1 ≤ k ≤ d − n. In this case M̂k is spanned by the k vectors

[
v0(γ1)

e1

]
, . . . ,

[
v0(γk)

ek

]
, (12.21)

and M̂×
d−k by the d − k vectors

[
0

e1

]
, . . . ,

[
0

ed−n

]
,

[
v×n
0

]
, . . . ,

[
v×k+1

0

]
. (12.22)

Note here that the assumption k ≤ d − n, taken together with d − n < n, implies
d−k > d−n. The vectors v×n , . . . , v×k+1 are the first n−k columns in the generalized

Vandermonde matrix V × = V (α×
n , . . . , α×

1 ). Also γ1, . . . , γk do not appear among
the numbers α×

n , . . . , α×
k+1. Thus

[
v0(γ1) · · · v0(γk) v×n · · · v×k+1

]

is a matrix of generalized Vandermonde type, and so the n vectors

v0(γ1), . . . , v0(γk), v×n , . . . , v×k+1

are linearly independent. As the same is true for e1, . . . , ed−n, the d vectors given
by (12.21) and (12.22) together are linearly independent, and (12.20) is indeed
satisfied.

Case 2. Let d − n < k < n. In this situation M̂k is spanned by the k vectors

[
v0(γ1)

e1

]
, . . . ,

[
v0(γd−n)

ed−n

]
,

[
v1

0

]
, . . . ,

[
vn+k−d

0

]
, (12.23)

and M̂×
d−k by the d − k vectors

[
0

e1

]
, . . . ,

[
0

ed−n

]
,

[
v×n
0

]
, . . . ,

[
v×k+1

0

]
. (12.24)



286 Chapter 12. Quasicomplete Factorization and Job Scheduling

Note that the assumption k < n is the same as d − k > d − n. As before, the
vectors v×n , . . . , v×k+1 are the first n − k columns in the generalized Vandermonde

matrix V × = V (α×
n , . . . , α×

1 ). Similarly, the vectors v1, . . . , vn+k−d are the first
n + k − d columns in V = V (α1, . . . , αn). Also, the condition (12.3) implies that
the sets {α×

k+1, . . . , α
×
n } and {α1, . . . , αn+k−d} are disjoint. Finally, the numbers

γ1, . . . , γd−n do not appear among the numbers

α1, . . . , αn+k−d, α
×
k+1, . . . , α

×
n .

Thus the matrix
[

v0(γ1) · · · v0(γd−n) v1 · · · vn+k−d v×n · · · v×k+1

]

is of generalized Vandermonde type, and hence the n vectors

v0(γ1), . . . , v0(γd−n), v1, . . . , vn+k−d, v×n , . . . , v×k+1

are linearly independent. As the same is true for e1, . . . , ed−n, the d vectors given
by (12.23) and (12.24) together are linearly independent, and we conclude again
that (12.20) holds.

Case 3. Let n ≤ k ≤ d − 1. Now M̂k is spanned by the k vectors
[

v0(γ1)

e1

]
, . . . ,

[
v0(γd−n)

ed−n

]
,

[
v1

0

]
, . . . ,

[
vn+k−d

0

]
, (12.25)

and M̂×
l−k by the d − k vectors

[
0

e1

]
, . . . ,

[
0

ed−k

]
. (12.26)

Note that in the present case k > d − n and d − k ≤ d − n. To prove that the d
vectors given by (12.25) and (12.26) together are linearly independent, it suffices
to show that the linear independency condition is satisfied for the vectors

[
v0(γ1)

0

]
, . . . ,

[
v0(γd−k)

0

]
,

[
v0(γd−k+1)

ed−k+1

]
, . . . ,

[
v0(γd−n)

ed−n

]
,

[
v1

0

]
, . . . ,

[
vn+k−d

0

]
,

[
0

e1

]
, . . . ,

[
0

ed−k

]
.

Now e1, . . . , ed−n are linearly independent, and what we have to establish is the
linear independence of v0(γ1), . . . , v0(γd−k), v1, . . . , vn+k−d. As γd−k+1, . . . , γd−n

do not appear among α1, . . . , αn+k−d, the vectors in question form again a matrix
of generalized Vandermonde type, and once more we conclude that (12.20) is
satisfied. �

Theorem 12.2 can be reformulated a follows.
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Theorem 12.7. Let W be a companion based rational m × m matrix function and
let n be the McMillan degree of W (assumed to be positive in order to avoid triv-
ialities). Furthermore, let α1, . . . , αn be an arbitrary ordering of the poles of W
(pole-multiplicities counted), and let α×

1 , . . . , α×
n be an arbitrary ordering of the

zeros of W (zero-multiplicities counted). Then

δq(W ) = n + min
σ,τ ∈S(n)

max
{
j − k | k < j, ασ(k) = α×

τ(j)

}
, (12.27)

where S(n) stands for the collection of all permutations of {1, . . . , n} and max ∅
is defined to be zero.

Proof. By Theorem 12.2 there are permutations σ, τ ∈ S(n) such that

ασ(k) �= α×
τ(j), k, j = 1, . . . , n, k < j − (δq − n),

where δq = δq(W ). For these permutations we clearly have

max
{

j − k | k < j, ασ(k) = α×
τ(j)

}
≤ δq − n.

Hence the right-hand side in (12.27) does not exceed the left-hand side.

Now conversely. Let σ, τ ∈ S(n), and put

mσ,τ = max
{
j − k | k < j, ασ(k) = α×

τ(j)

}
.

If ασ(k) = α×
τ(j), then either k < j and j − k ≤ mσ,τ or k ≥ j. In the latter

situation, we have j − k ≤ mσ,τ too, because mσ,τ is non-negative (as max ∅ is
zero by definition). So ασ(k) = α×

τ(j) implies j − k ≤ mσ,τ which one may also
write as

ασ(k) �= α×
τ(j), k, j = 1, . . . , n, k < j − mσ,τ .

Theorem 12.2 now gives n + mσ,τ ≥ δq(W ), and it follows that the left-hand side
of (12.27) does not exceed the right-hand side. �

Theorems 12.2 and 12.7 are stated in terms of poles and zeros of the given
function W . Clearly they can also be formulated in terms of realizations (cf., the
remark made after the proof of Theorem 11.17). The following result is phrased
along this line. It is a counterpart (in fact, a generalization) of Theorem 11.18.

Theorem 12.8. Let W be a companion based rational m×m matrix function, and
let W (λ) = Im + C(λIn − A)−1B be a minimal realization of W , so that n is
the McMillan degree of W (assumed to be positive in order to avoid trivialities).
Then the quasidegree δq(W ) of W is the smallest integer d larger than or equal
to n for which there exists an ordering µ1, . . . , µs of the (different) elements of
σ(A) ∪ σ(A×) such that

t∑

i=1

mA×(µi) ≤ (d − n) + 1 +
t−1∑

i=1

mA(µi), t = 1, . . . , s.
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Proof. From the proof of Theorem 11.8 (take h = d−n+1 there), we see that the
above requirement on the (algebraic multiplicities of the) eigenvalues of A and A×

is equivalent to the existence of orderings of the type mentioned in Theorem 12.2.
Recall in this connection that the eigenvalues of A and A× = A−BC correspond
to the poles and zeros of W , respectively (the appropriate multiplicities taken into
account). �

For an integer k, we let k+ = 1
2 (k + |k|). In other word, k+ is the maximum

of k and zero.

Theorem 12.9. Let W be a companion based rational m×m matrix function, and
let W (λ) = Im + C(λIn − A)−1B be a minimal realization of W , so that n is
the McMillan degree of W (assumed to be positive in order to avoid trivialities).
Furthermore, let µ1, . . . , µs be an arbitrary ordering of the (different) elements of
σ(A) ∪ σ(A×). Then

δq(W ) = n + min
σ ∈S(s)

max
t=1,...,s

(
−1 +

t∑

i=1

mA×

(
µσ(i)

)
−

t−1∑

i=1

mA

(
µσ(i)

)
)

+

,

where S(s) stands for the collection of all permutations of {1, . . . , s}.

Proof. The proof is similar to that of Theorem 12.8 but based on Theorem 12.7
instead of Theorem 12.2. �

Theorems 12.7 and 12.9 suggest that calculating the quasidegree is a task
of high computational complexity. No matter how this may be in general, for the
class of companion based rational matrix functions to which the theorems apply,
the computational complexity is actually very low (assuming that its poles and
zeros are known). The key to this is a connection with the theory of job scheduling
which will be made in the next two sections.

12.3 A review of the two machine flow shop problem

In this section we introduce the two machine flow shop problem and review some
related results.

The two machine flow shop problem – 2MFSP for short – is concerned with
two machines, written M1 and M2, and a number of jobs, indexed by the integers
1, . . . , k say. The jobs have to be processed by the two machines. Each job j involves
(at most) two operations: a (possible) first operation O1

j to be processed on the

first machine M1, and a (possible) second operation O2
j to be processed on the

second machine M2. Each machine can be processing at most one operation at the
same time. In standard 2MFSP, it is required that for every job j processing O2

j on

M2 cannot start until processing O1
j on M1 has been completed. In non-standard

versions of 2MFSP other constraints may be imposed.
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The processing times of the operations are given and fixed. That of O1
j is

denoted by sj , and the processing time of O2
j is denoted by tj . Hence, formally,

an instance J of 2MFSP involving k jobs consists of k tuples

(s1, t1), . . . , (sk, tk) (12.28)

specifying the processing times of the operations. Of course these processing times
are taken to be non-negative numbers. As already suggested above, we do allow for
the possibility that one of the numbers sj, tj is zero, meaning that the job indexed
j does not require the machine in question (M1 when sj = 0, M2 when tj = 0).
However, in order to avoid trivialities, we assume that for each j, either sj or tj is
nonzero (i.e., for each job something has to be done). There is another assumption
that we will adopt in the present exposition, namely that the processing times are
integers. In practical situations, they will usually be rational numbers which can
be made into integers by an appropriate choice of the time unit.

A schedule for J is a rule indicating in what order the jobs are carried out
on the two machines. This is an informal definition which can be made precise
by using two functions (one for M1 and one for M2) mapping a time interval
into the set {1, . . . , k} indexing the collection of jobs. We refrain from burdening
the discussion with the details. A schedule is said to be feasible if it satisfies the
specified constraints. The length of the time interval required to carry out all jobs
is called the makespan of the schedule. Of course such a makespan is always larger
than or equal to the maximum of the numbers

s(J) =
k∑

j=1

sj , t(J) =
k∑

j=1

tj ,

where it is assumed that J is given by (12.28). In the versions of 2MFSP considered
here (including the standard one), the objective is to find an optimal schedule, that
is a feasible schedule with smallest possible makespan, the so-called minimum
makespan.

To give a feel for what is going on, let us first concentrate on the standard
version of 2MFSP and indicate some properties of the optimal schedules for this
case. The minimum makespan of an instance J of standard 2MFSP will be denoted
by µ(J). Clearly

max{s(J), t(J)} ≤ µ(J) ≤ s(J) + t(J).

Also, the hypotheses that all processing times are integers, implies that µ(J) is an
integer too. Indeed, if ǫ is a number strictly between 0 and 1 such that µ(J) − ǫ
is integer, there would exist a feasible schedule with makespan µ(J) − ǫ, strictly
smaller than µ(J), which is impossible.

Next, let us turn to some less trivial observations. It is known that each
instance J of standard 2MFSP has an optimal non-preemptive schedule (see the



290 Chapter 12. Quasicomplete Factorization and Job Scheduling

textbook [6]). By this we mean that the optimal schedule has the additional prop-
erty that, once a machine has started processing an operation, it does not start
processing another operation until the one it has begun working on has been com-
pleted. Additionally it may be assumed that once a machine has been activated,
it works uninterrupted until all the operations to be carried out on the machine
in question have been completed. This can be achieved by appropriately shifting
the jobs on M1 to the left (i.e., backward in time) and those on M2 to the right
(i.e., forward in time). In this way, M1 is occupied during the time interval from
0 to s(J), while M2 is occupied during the time interval from µ(J)− t(J) to µ(J)
with s(J), t(J) and µ(J) as above.

A schedule is a permutation schedule if it is non-preemptive and for all i �= j
with strictly positive processing times si, ti, sj and tj , the operation O2

i is pro-
cessed before the operation O2

j on the second machine M2 if (and only if) the

operation O1
i is processed before the operation O1

j on the first machine M1. Thus
the order of the operations on the first machine is the same as the order of the
operations on the second machine. It is known that the optimal schedule can be
chosen to be a permutation schedule.

Again these definitions can be formalized by using functions mapping a time
interval into the set of integers indexing the collection of jobs, but for our purposes
here, it is not necessary to do so. Also we refrain from giving proofs of the obser-
vations contained in the preceding paragraph. In fact, using the type of arguments
employed in the proof of Theorem 11.8, any schedule can be transformed into a
permutation schedule without increasing the makespan.

An optimal permutation schedule for an instance of 2MFSP can be obtained
by the application of Johnson’s rule (see Johnson [82]; also [6]). According to this
algorithm, an optimal schedule can be constructed as follows:

Step 1: Introduce V1 = {j | sj < tj} and V2 = {j | sj ≥ tj}.

Step 2: Put the jobs in V1 in order of increasing processing time (sj) on
M1, and put the jobs in V2 in order of decreasing processing time
(tj) on M2.

Step 3: Process the jobs in V1 first, and those in V2 thereafter.

The running time of Johnson’s rule is O(k log k). Thus 2MFSP belongs to the
class of tractable problems that can be solved in polynomial time (cf., Garey and
Johnson [44]).

Example. Let J be an instance of 2MPSP involving 6 jobs (so k = 6), the tuples
specifying the processing times being

(s1, t1) = (0, 1), (s2, t2) = (2, 0), (s3, t3) = (3, 4),

(s4, t4) = (1, 1), (s5, t5) = (2, 3), (s6, t6) = (2, 1).
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Note that job 1 does not require any action on M1 and job 2 not on M2. Further
s(J) = t(J) = 10 (cf., the standing assumption introduced at the end of the one
but last paragraph of this section). Combining Steps 1 and 2 in Johnson’s rule, we
obtain V1 = {1, 5, 3} and V2 = {4, 6, 2}. An optimal permutation schedule is now
obtained by processing the jobs in the order 1, 5, 3, 4, 6, 2 (Step 3); schematically:

M2 : ∗ 1 5 5 5 3 3 3 3 4 6 (2)
M1 : (1) 5 5 3 3 3 4 6 6 2 2 ∗

Time : 1 2 3 4 5 6 7 8 9 10 11

Here a job number between parenthesis means that for that job no action is re-
quired (processing time zero) on the machine in question, and a star indicates that
the machine is idle. We conclude that the minimum makespan µ(J) of this par-
ticular instance J of the 2MFSP is equal to 11. The specifics (i.e., the processing
times) of this example are inspired by the material contained in the example given
at the end of Section 11.2. To facilitate the comparison of the above scheme with
(11.29) from the earlier example, the schedule for M2 has been put on top and
that for M1 at the bottom.

In the above example, the sum of the processing times on the two machines is
the same: s(J) = t(J). As far as the minimum makespan is concerned, this equality
may be assumed without loss of generality. To see this, consider an instance J of
standard 2MFSP, given by (12.28), and assume s(J) and t(J) do not coincide.
We now augment J to another instance of 2MFSP by adding a ”dummy job” as
follows: the job listed (sk+1, tk+1) with

sk+1 =

k∑

j=1

(tj − sj), tk+1 = 0

in case s(J) < t(J), the job listed (s0, t0) with

s0 = 0, t(0) =
k∑

j=1

(sj − tj)

in case s(J) > t(J). The instance Jext of 2MFSP obtained this way meets the
desired condition s(Jext) = t(Jext) and is essentially identical to J , satisfying
µ(J) = µ(Jext) in particular.

So far about the standard 2MFSP. As was already indicated, there are vari-
ants of 2MFSP. One of them, actually very closely related to the standard version,
is especially appropriate for making the connection with the phenomenon of qua-
sicomplete factorization discussed earlier in this chapter. It is what we shall call
the Reduced two machine flow shop problem which we will describe in a moment.
But first let us put things in a somewhat wider framework.
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The non-standard versions of the two machine flow shop problem come about
by relaxation of the predecessor constraints. Thus it is allowed that the processing
of O2

j already starts before that of O1
j has been completed, resulting in an infeasi-

bility max{0, F (O1
j ) − S(O2

j )}, where F (O1
j ) denotes the finish time of operation

O1
j on M1 and S(O2

j ) stands for the start time of O2
j on M2. Here, of course, only

those jobs are taken into account for which the processing times on both machines
are positive. The infeasibilities introduced in this way should now be minimized in
some prescribed sense. For standard 2MFSP, the requirement is that they are all
zero, but there is a variety of other possibilities (see [22] and the references given
therein).

Staying still very close to the standard version of 2MFSP, one can require
that the infeasiblities do not surpass a given threshold τ . In other words, instead
of the standard predecessor restriction we have the relaxed constraint: for each
job j in the given instance of 2MFSP, processing O2

j on M2 cannot start until τ

time units before processing O1
j on M1 has been completed. An optimal schedule

is then obtained by taking one for standard 2MFSP and shifting the jobs on M2

backwards over a time interval of length min{τ, µ(J)− t(J)}, resulting in a mini-
mum makespan max{s(J), t(J), µ(J)−τ }. As a consequence, an optimal schedule
can be obtained via Johnson’s rule of low computational complexity. Note that
for this variant of 2MFSP, the instances J and Jext (see the paragraph directly
following the example) are again essentially identical, their minimum makespans
coinciding in particular. Thus, from now on, we adopt as a standing assump-
tion that the sum of the processing times on the two machines is the same:
s(J) = t(J).

We now specialize to the situation pertinent to the connection with quasicom-
plete factorization, the case τ = 1 where it is required that non of the infeasibilities
exceeds 1. This version of 2MFSP will be named reduced two machine flow shop
problem – abbreviated 2MFSPred. We shall denote the minimum makespan of an
instance J of 2MFSPred by µred(J) and call it the reduced minimal makespan of
J . For later use, we explicitly record that

µred(J) = max{v(J), µ(J) − 1 }, (12.29)

where v(J) = s(J) = t(J). Hence v(J) ≤ µred(J) ≤ 2v(J) − 1. Again it may be
assumed that once a machine has been activated, it works uninterrupted until all
the operations to be carried out on it have been completed. In that case M1 is
occupied during the time interval from 0 to v(J), while M2 is occupied during
the time interval from µred(J) − v(J) to µred(J). Since the processing times are
integers, both v(J) and µ(J) are integers as well. Also µ(J) ≥ v(J). Thus µred(J) =
v(J) when µ(J) = v(J), and µred(J) = µ(J) − 1 when µ(J) �= v(J). It is also
worthwhile to recall from the previous paragraph that 2MFSPred has the same
(low!) computational complexity as standard 2MFSP.
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Finally, for the example presented above, now considered as an instance of
2MFSPred, we have the optimal permutation schedule

M2 : 1 5 5 5 3 3 3 3 4 6 (2)
M1 : (1) 5 5 3 3 3 4 6 6 2 2

Time : 1 2 3 4 5 6 7 8 9 10

corroborating the identity (12.29): µred(J) = µ(J)−1 = 10. As before, a job num-
ber between parenthesis means that for that job no action is required (processing
time zero) on the machine in question.

12.4 Quasicomplete factorization and the 2MSFP

This section is devoted to the connection of the two machine flow shop problem
(2MFSP) with quasicomplete factorization. The discussion will draw heavily upon
the material on companion based rational matrix functions presented in Sections
11.4 and 12.2.

First we indicate how a companion based matrix function can be associated
with an instance of 2MFSP and vice versa. Let W be a companion based m × m
matrix function, of positive McMillan degree to avoid trivialities, and let J be an
instance of 2MFSP, determined by (12.28) and satisfying the standing assumptions
formulated above. Thus, for j = 1, . . . , k, the processing times sj and tj are non-
negative integers, not both vanishing, and the sum of the processing times on the
two machines M1 and M2 is the same. As before, these coinciding sums will be
denoted by v(J), so,

v(J) =

k∑

j=1

sj =

k∑

j=1

tj . (12.30)

We say that the companion based function W and the instance J of 2MFSP are
associated if the pole-polynomial p of W and the zero-polynomial p× of W can be
written in the form

p(λ) = (λ − β1)
t1(λ − β2)

t2 · · · (λ − βk)tk , (12.31)

p×(λ) = (λ − β1)
s1(λ − β2)

s2 · · · (λ − βk)sk , (12.32)

with β1, . . . , βk different complex numbers. Note that in this definition all three
standing assumptions have a role. First, the processing times sj and tj must be
integers in view of (12.31) and (12.32). Second, the pole-polynomial p and the zero-
polynomial p× need to have the same degree, and this is guaranteed by (12.30).
Indeed, the common degree of p and p× is v(J) = s(J) = t(J) and coincides with
the McMillan degree δ(W ) of W . Third, the number k, i.e., the number of jobs in
J , is also the number of different elements is the union of the set of poles of W
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and the set of zeros of W . Here it is used that for each job in J at least one of the
processing times is nonzero.

For a given companion based matrix function W (of positive McMillan de-
gree) there exists an instance J of 2MFSP such that W and J are associated. To
see this, write the pole and zero-polynomial of W in the form (12.31) and (12.32),
respectively, and take for J the instance of 2MFSP given by (12.28). This instance
of 2MFSP is uniquely determined by W up to the ordering of the jobs in (12.28),
an irrelevant feature from the point of view of job scheduling. Conversely, if J is
an instance of 2MFSP with k jobs as in the preceding paragraph, then there do
exist companion based matrix functions W such that W and J are associated.
This can be seen as follows. First, choose k different complex numbers β1, . . . , βk

(for example βj = j, j = 1, . . . , k). Next, introduce the polynomials p(λ) =
(λ− β1)

t1(λ− β2)
t2 · · · (λ− βk)tk and p×(λ) = (λ− β1)

s1(λ− β2)
s2 · · · (λ− βk)sk .

Finally, define the 2 × 2 rational matrix function W by

W (λ) =

⎡
⎢⎢⎢⎣

1
1

p(λ)

0
p×(λ)

p(λ)

⎤
⎥⎥⎥⎦ . (12.33)

Then W is a companion based with pole-polynomial p and zero-polynomial p×

(see Section 11.4). Hence W and J are associated.

The function W in (12.33) is completely determined by the given instance J
of 2MFSP. There are, however, more possibilities to produce a companion based
function associated with J . For example, if T is any invertible 2 × 2 matrix, then
T−1WT and J are associated as well. Still other possibilities are provided by the
material in Section 11.4. In any case, if J is an instance of 2MFSP (satisfying our
standing assumptions), there exist several companion based matrix functions W
such that W and J are associated. However, all these functions have basically the
same factorization properties. So, from a factorization point of view, the differences
between them are irrelevant and in this relaxed sense, we have uniqueness here as
well.

After these preparations, we come to the result we have been aiming at.

Theorem 12.10. Let W be a companion based rational matrix function of positive
McMillan degree, let J be an instance of the two machine flow shop problem, and
suppose W and J are associated. Then

δq(W ) = µred(J). (12.34)

In other words, the quasidegree of W is precisely equal to the reduced minimum
makespan of J where the latter is viewed as an instance of 2MFSPred.

In terms of the standard minimum makespan µ(J), the conclusion of the
theorem reads as

δq(W ) = max{δ(W ), µ(J) − 1}.
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This is clear from (12.29) and the identity v(J) = δ(W ). Thus Theorem 12.10
says that either W admits a complete factorization (namely when µ(J) ≤ v(J) +
1 = δ(W ) + 1), or the function W has a non-minimal quasicomplete factorization
involving δq(W ) = µ(J) − 1 elementary factors (namely when µ(J) > v(J) + 1 =
δ(W ) + 1).

Proof. We begin by fixing notation. Write n = δ(W ) and d = µred(J). Then
n = v(J) too and n ≤ d ≤ 2n− 1. Also, let p be the pole-polynomial of W and let
p× be the zero-polynomial of W . Then p and p× have the same (positive) degree
n. Finally, let β1, . . . , βk be as in the paragraphs above where we discussed the
association of companion based functions and instances of 2MFSP, so (12.31) and
(12.32) hold.

Consider an optimal schedule for the given instance J of 2MFSPred, so one
with makespan d = µred(J), and assume (without loss of generality) that M1 is
occupied during the time interval from 0 to n, while M2 is occupied during the
time interval from d−n to d. Also assume that the schedule is non-preemptive (or
even a permutation schedule, if one desires). Then, in particular, for l = 1, . . . , n,
the machine M1 is working on a single job during the time interval from l− 1 to l,
say the one indexed by j1(l) ∈ {1, . . . , k}. Set α×

l = βj1(l). In this way, we obtain

an ordering α×
1 , . . . , α×

n of the zeros of W , zero-multiplicities counted. Similarly,
put αl = βj2(l) where j2(l) is the integer among 1, . . . , k uniquely determined by
the requirement that M2 is processing the job indexed by j2(l) during the time
interval from d−n+ l− 1 to d−n+ l. Then α1, . . . , αn is an ordering of the poles
of W , pole-multiplicities counted.

Suppose now that αi = α×
l for some l and i in {1, . . . , n}. Then M1 is busy

with the job indexed j1(l) during the time interval from l − 1 to l. Also M2 is
working on the job indexed j2(i) during the time interval from d − n + i − 1 to
d − n + i. But βj2(i) = αi = α×

l = βj1(l), and so j2(i) = j1(l). Thus the two jobs
in question are the same, indexed by j = j2(i) = j1(l). Hence, by the predecessor
constraints imposed in the case of 2MFSPred,

d − n + i − 1 ≥ S(O2
j ) ≥ F (O1

j ) − 1 ≥ l − 1,

where, as before, S(O2
j ) denotes the start time of operation O2

j on M2 and F (O1
j )

stands for the finish time of O1
j on M1. The conclusion is that αi = α×

l implies
i ≥ l − (d − n) and Theorem 12.2 gives δq(W ) ≤ d = µred(J).

It remains to establish the converse inequality. Write δq = δq(W ). Again on
the basis of Theorem 12.2, we know that there exist an ordering α1, . . . , αn of the
poles of W (pole-multiplicities counted) and an ordering α×

1 , . . . , α×
n of the zeros

of W (zero-multiplicities counted) such that

αi �= α×
l , i, l = 1, . . . , n, i < l − (δq − n) .

In the next paragraph these orderings will be used to produce a feasible schedule
for J , viewed as an instance of 2MFSPred.
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For l = 1, . . . , n, there exist unique integers j(l) and j×(l) in the set {1, . . . , k}
such that αl = βj(l) and α×

l = βj×(l). We now stipulate that machine M1 processes
the job indexed j×(l) during the time interval from l − 1 to l, and that M2 works
on the job indexed j(l) during the time interval from δq−n+l−1 to δq−n+l. The
schedule obtained this way satisfies the predecessor constraints imposed in the case
of 2MFSPred. To see this, consider the job from J indexed by j ∈ {1, . . . , k}, and
assume that sj and tj are both positive. So βj is both a zero and a pole of W . Hence
there are i and l in {1, . . . , n} such that βj = αi = α×

l . But then j = j(i) = j×(l),
and so the job indexed by j is processed on machine M1 during the time interval
from l−1 to l and on M2 during the time interval from δq −n+ i−1 to δq −n+ i.
As αi = α×

l , we have i ≥ l − (δq − n). Taking for i and l the smallest and largest
possible value, respectively, it follows that

S(O2
j ) = δq − n + i − 1 ≥ l − 1 = F (O1

j ) − 1,

as required in the case of 2MFSPred. The feasible schedule thus obtained has
makespan δq, and so µred(J) ≤ δq = δq(W ) as desired. �

Elaborating on the second part of the proof, we note that the feasible sched-
ule constructed there need not be non-preemptive. However, by first reordering
α1, . . . , αn and α×

1 , . . . , α×
n along the lines indicated in the proof of Theorem 11.8,

one can see to it that the schedule becomes not only non-preemptive, but even a
permutation schedule.

We conclude this section with three examples. The first illustrates Theorem
12.10.

Example. Let J be an instance of 2MPSP involving 5 jobs, the tuples specifying
the processing times being

(s1, t1) = (2, 2), (s2, t2) = (3, 4), (s3, t3) = (1, 0),

(s4, t4) = (5, 4), (s5, t5) = (1, 2),

so that s(J) = t(J) = 12 and the standing assumption introduced at the end of
the all but last paragraph in the previous section section is satisfied. Choose five
distinct complex numbers β1, β2, β3, β4 and β5, and introduce

W (λ) =

⎡
⎢⎢⎢⎢⎢⎣

1
1

(λ − β1)2(λ − β2)4(λ − β4)4(λ − β5)2

0
(λ − β3)(λ − β4)

(λ − β2)(λ − β5)

⎤
⎥⎥⎥⎥⎥⎦

.
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Then W is companion based, the pole and zero-polynomial of W are

p(λ) = (λ − β1)
2(λ − β2)

4(λ − β4)
4(λ − β5)

2

= (λ − β1)
2(λ − β2)

4(λ − β3)
0(λ − β4)

4(λ − β5)
2,

p×(λ) = (λ − β1)
2(λ − β2)

3(λ − β3)(λ − β4)
5(λ − β5)

= (λ − β1)
2(λ − β2)

3(λ − β3)
1(λ − β4)

5(λ − β5)
1,

respectively, and δ(W ) = 12. Clearly W and J are associated. Thus, by Theorem
12.10, the quasidegree δq(W ) of W is equal to the reduced minimum makespan
µred(J) of J . Now µred(J) is the maximum of δ(W ) and µ(J) − 1, where µ(J) is
the minimum makespan of J viewed as an instance of standard 2MFSP. So we
need to determine µ(J).

Combining Steps 1 and 2 in Johnson’s rule described in Section 12.3, we
obtain V1 = {j | sj < tj} = {5, 2} and V2 = {j | sj ≥ tj} = {4, 1, 3}. An
optimal permutation schedule is now obtained by processing the jobs in the order
5, 2, 4, 1, 3, (Step 3); schematically (with the schedule for M2 on top and that for
M1 at the bottom, to keep in line with an earlier example):

M2 : ∗ ∗ ∗ 5 5 2 2 2 2 4 4 4 4 1 1
M1 : 5 2 2 2 4 4 4 4 4 1 1 3 ∗ ∗ ∗

Time : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

where a star indicates that the machine is idle. Note that job 3 (with t3 = 0) does
not require any action on machine M2.

We conclude that the (standard) minimum makespan µ(J) of J is equal to
15. Recall that δq(W ) = max{δ(W ), µ(J) − 1}. In the present situation, we have
δ(W ) = 12 and µ(J) = 15. Hence δq(W ) = 14. In particular δq(W ) > δ(W ),
so W does not admit a complete factorization. It is worth stressing that these
conclusions have been reached by the application of Johnson’s rule.

Our second example demonstrates that the general estimate

δq(W ) ≤ 2δ(W ) − 1

appearing in the inequalities (10.30), is sharp in the sense that for every positive
value of the McMillan degree δ(W ) equality can occur (cf., the examples in Section
10.4, the first one in particular).

Example. Let n be a positive integer, and consider the 2×2 rational matrix function
W given by

W (λ) =

⎡
⎢⎣

1
1

λn

0 1

⎤
⎥⎦ .
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This function, which has McMillan degree n, also features in the example given at
the end of Section 9.1. It was proved there that W does not admit any non-trivial
minimal factorization, so δq(W ) > δ(W ) = n whenever n ≥ 2. Note that W is of
the form (12.33) with p(λ) = p×(λ) = λn. In particular W is companion based.
Let J be the instance of 2MFSP consisting of just one job with processing time n
on both machines. Then evidently µred(J) = 2n− 1, and it follows from Theorem
12.10 that δq(W ) = 2n − 1 too.

For the case n = 2, hence δq(W ) = 3, the following quasicomplete factoriza-
tion ⎡

⎢⎢⎣

1
1

λ2

0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
1

λ − 1

0
λ

λ − 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 − 1

λ

0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0

0
λ − 1

λ

⎤
⎥⎥⎦

has been obtained in Section 10.4. For n = 3, hence δq(W ) = 5, we have

⎡
⎢⎢⎣

1
1

λ3

0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
1

λ − 1

0
λ

λ − 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
2

2λ + 1

0
2λ

2λ + 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 − 2

λ

0 1

⎤
⎥⎥⎦×

×

⎡
⎢⎢⎣

1 0

0
λ − 1

λ

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0

0
2λ + 1

2λ

⎤
⎥⎥⎦

as a quasicomplete factorization.

Note that these explicit factorizations are in accordance with Proposition
10.8. Indeed, for the case n = 2 we have

α1 = 1, α2 = 0, α3 = 0,

α×
1 = 0, α×

2 = 0, α×
3 = 1.

and for the case n = 3 we have

α1 = 1, α2 = −1/2, α3 = 0, α4 = 0, α5 = 0,

α×
1 = 0, α×

2 = 0, α×
3 = 0, α×

4 = 1, α×
5 = −1/2.

In the above quasicomplete factorizations, poles and zeros occur that are
not present in the given function that is factorized. On the one hand, this differs
from the case of complete (more generally, minimal) factorization. On the other
hand, the phenomenon is completely in line with the proof of Theorem 10.15, where
the overall possibility of factorization into elementary factors was established. The
question is: can one do without such additional new poles and zeros? We shall now
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see that the answer is generally negative and that a counterexample is provided
by the function W from the previous example with n = 2.

Example. Consider the 2 × 2 rational matrix function W given by

W (λ) =

⎡
⎢⎣

1
1

λ2

0 1

⎤
⎥⎦ .

This function has the origin as its only pole and zero, both with multiplicity two.
Let

W (λ) =

(
I +

1

λ − α1
R1

)(
I +

1

λ − α2
R2

)(
I +

1

λ − α3
R3

)

be factorization of W involving three rank one 2× 2 matrices R1, R2 and R3 and
three poles α1, α2 and α3 in the right-hand side. Then

W−1(λ) =

(
I − 1

λ − α×
3

R3

)(
I − 1

λ − α×
2

R2

)(
I − 1

λ − α×
1

R1

)

is a factorization of W−1 and the poles in the right-hand side are the complex
numbers α×

j = αj − traceRj , j = 1, 2, 3. The claim is that one cannot have

α1 = α2 = α3 = 0 or α×
1 = α×

2 = α×
3 = 0.

We shall prove this by reductio ad absurdum.

Suppose one of the collection of identities in question holds. Then, in fact,
both of them are satisfied. Indeed, specializing the conclusion of Proposition 10.8
by taking α = 0 yields

♯{j | αj = 0} − 2 = ♯{j | α×
j = 0} − 2 ≥ 0,

so, in particular, ♯{j | αj = 0} = ♯{j | α×
j = 0}. Now αj = α×

j if and only if
traceRj = 0. Thus we need to establish the impossibility of a factorization of the
form ⎡

⎢⎣
1

1

λ2

0 1

⎤
⎥⎦ =

(
I +

1

λ
R1

)(
I +

1

λ
R2

)(
I +

1

λ
R2

)
(12.35)

in which R1, R2 and R3 are rank one matrices having zero trace. The latter means
that Rj has the form

Rj =

⎡
⎣

cj bj

aj −cj

⎤
⎦ , (12.36)
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where aj, bj and cj do not simultaneously vanish and c2
j + ajbj = 0. Substituting

(12.36) into (12.35), the right-hand side of the latter becomes
⎡
⎢⎢⎣

1 +
c1

λ

b1

λ

a1

λ
1 − c1

λ

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 +
c2

λ

b2

λ

a2

λ
1 − c2

λ

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 +
c3

λ

b3

λ

a3

λ
1 − c3

λ

⎤
⎥⎥⎦ ,

and this can be written as[
1 + w11(λ) w12(λ)

w21(λ) 1 + w22(λ)

]
,

with w11(λ), w12(λ), w21(λ), and w22(λ) given by

w11(λ) =
1

λ
(c1 + c2 + c3) +

1

λ2
(b1a2 + b1a3 + b2a3 + c1c2 + c1c3 + c2c3)

+
1

λ3
(b1a2c3 − b1c2a3 + c1b2a3 + c1c2c3),

w12(λ) =
1

λ
(b1 + b2 + b3) +

1

λ2
(c1b3 + c2b3 + c1b2 − b1c2 − b1c3 − b2c3)

+
1

λ3
(b1a2b3 + b1c2c3 + c1c2b3 − c1b2c3),

w21(λ) =
1

λ
(a1 + a2 + a3) +

1

λ2
(a1c2 + a1c3 + a2c3 − c1a2 − c1a3 − c2a3)

+
1

λ3
(a1c2c3 + a1b2a3 + c1c2a3 − c1a2c3),

w22(λ) =
−1

λ
(c1 + c2 + c3) +

1

λ2
(a1b2 + a1b3 + a2b3 + c1c2 + c1c3 + c2c3)

+
1

λ3
(a1c2b3 − a1b2c3 − c1a2b3 − c1c2c3).

Inspection of the coefficients of 1/λ yields

a1 + a2 + a3 = 0, b1 + b2 + b3 = 0, c1 + c2 + c3 = 0,

and it follows that

2c1c2 = c2
3 − c2

1 − c2
2

= −a3b3 + a1b1 + a2b2

= −(a1 + a2)(b1 + b2) + a1b1 + a2b2

= −(a1b2 + b1a2).
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By straightforward computations, the expressions for the functions wij(λ), can
now be simplified to

w11(λ) =
1

λ2
(b1a2 + c1c2), w12(λ) =

1

λ2
(c1b2 − b1c2),

w21(λ) =
1

λ2
(a1c2 − c1a2), w22(λ) =

1

λ2
(a1b2 + c1c2),

(where we note that in the simplification process the coefficients of the powers of
1/λ3 are becoming zero). Again by comparison of coefficients, this time of 1/λ2,
we find the identities

b1a2 + c1c2 = 0, c1b2 − b1c2 = 1, a1b2 + c1c2 = 0

(and, of course, also a1c2 − c1a2 = 0 but that one does not play a role in the
further derivation). It follows that

1 = c1b2 − b1c2 = c1(c1b2 − b1c2)b2 − b1(c1b2 − b1c2)c2

= (c2
1b2 − b1c1c2)b2 − b1(c1b2c2 − b1c

2
2)

= −(a1b1b2 + b1c1c2)b2 − b1(c1b2c2 + b1a2b2)

= −b1(a1b2 + c1c2)b2 − b1(c1c2 + b1a2)b2 = 0,

which is an obvious contradiction.

12.5 Maple procedures for quasicomplete factorizations

This section gives Maple procedures to calculate quasicomplete factorizations of a
proper rational 2 × 2 matrix function W of the form

W (λ) =

[
1 w12(λ)

0 w22(λ)

]
and W (∞) =

[
1 0

0 1

]
. (12.37)

From Section 10.4 we know that W always admits quasicomplete factorizations.
The fact that W is companion based (see Lemma 11.15) allows us to use the
method described in Section 12.2 to get such a factorization. The topic of this
section is the implementation of the method of Section 12.2 in Maple procedures.
Throughout n is the McMillan degree of W .

We assume the reader to be familiar with the contents of Section 11.6.
There we have given Maple procedures to get the pole-polynomial and the zero-
polynomial of W , its poles and zeros itself, and procedures to get orderings of the
poles and zeros for minimal h, h > 0, satisfying condition (11.20). Since the McMil-
lan degree of W is equal to n, the quasidegree δq(W ) is given by δq(W ) = n+h−1,
where h is smallest positive integer satisfying (11.20); see Theorems 12.2 and 12.9.
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Hence from the procedure GetAllMorderings in Subsection 11.6.2, especially its
first output element, we can calculate the quasidegree of W .

Again, as in Section 11.6, we denote by A the first companion matrix corre-
sponding to the pole-polynomial p(λ) of W , and by Z(= A×) the first companion
matrix corresponding to the zero-polynomial p×(λ) of W . Thus it remains to pro-

vide Maple procedures for the construction of the matrices Â and Â× appearing
in the second part of the proof of Theorem 12.2, and the triangularization of those
matrices in complementary triangular form. From that point on we can apply the
Maple factorization procedure MakeFactorization presented in Subsection 11.6.4
to get a quasicomplete factorization of W .

The Maple procedures in this section fall apart in three. First, the matrices
Â and Â× = Â − B̂Ĉ are constructed; see formula (12.15). The starting point is
a companion based rational matrix function W as in Theorem 12.2. The Maple
procedure QCmatrices presented in Subsection 12.5.2 follows directly the second
part of the proof of Theorem 12.2. This means that a matrix K as in Proposition
12.6 and a matrix X as in formula (12.14) are calculated, and subsequently, Â, B̂

and Ĉ are constructed according to formula (12.15).

The second step is the construction in Maple of the vectors

a1, . . . , ad−n, ad−n+1, . . . , ad,

where d is the quasidegree, in (12.16). These vectors are in Maple collected in
one matrix denoted by TA; see Maple procedure MakeBasisA. Analogously, the
vectors a×

1 , . . . , a×
d−n, a×

d−n+1, . . . , a
×
d in (12.18) are calculated and collected in a

Maple matrix denoted by TZ ; see procedure MakeBasisZ. As linear transforma-
tions, the matrices TA and TZ will bring Â and Â× in upper-triangular form; see
Subsection 12.5.3.

In the third step a procedure is implemented to extract from the previously
calculated matrices TA and TZ the matrix S such that Â and Â× can be brought in
complementary triangular form. The procedure is based on the proof of Proposition
10.1 (c); see Subsection 12.5.4.

Finally, in Subsection 12.5.5 the use of the procedures is elucidated by an
example of quasicomplete factorization of a rational matrix function defined in
Maple symbols.

As in Section 11.6 all procedures and calculations in this section are tested
under Maple, version 9, [93] and, as usual, the Maple command lines start with
the symbol >. Also, the Maple worksheet containing all procedures and commands
presented in the present section is available on request by email from the fourth
author (ACM.Ran@few.vu.nl).

12.5.1 Maple environment
> restart;# almost clean start
> with(LinearAlgebra):
> with(MatrixPolynomialAlgebra):
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Note: To run an example as included in this section, or a newly defined one, one
needs to activate all the poles and zeros Maple procedures of Section 11.6.2 and
the Maple factorization procedures of Section 11.6.4.

12.5.2 Triangularization routines (quasicomplete)

The starting point for this subsection is a companion based rational matrix func-
tion W as in Theorem 12.2. We assume that we have a realization

W (λ) = D + C(λIn − A)−1B,

where D is the m-dimensional identity matrix and A and A× are first companion
n × n matrices. The aim is to construct Â, B̂ and Ĉ as in (12.15). This task is
performed by the Maple procedure QCmatrices.

The first four arguments of QCmatrices are the companion based realization ma-
trices, in Maple named Amin, Bmin, Cmin and Dmin; see Section 11.6. The fifth
argument is the quasidegree (in Maple denoted by dqw). The sixth argument gam-
mav needs some attention: it should be a vector of length n with the first δq(W )−n
entries distinct and outside the spectra of A and A×; see the paragraph containing
(12.14). Let mu be the Maple vector of which the entries are the different elements
of the spectra of A and A×. Here, for the sake of simplicity, we shall take gammav
so that all its entries are distinct and unequal any element of mu. Always, we
can take the entries of gammav to be Maple symbols γ1, . . . , γn different from the
elements of mu. In case one wants gammav to be a vector of complex numbers,
the construction of the vector gammav given here proceeds as follows. First, define
maxmu to be the maximum over the real part of the elements of mu that are com-
plex numbers (and set maxmu = 0 if mu consists of Maple symbols only). Next
gammav is then defined as gammav[k]=k + maxmu, k = 1, . . . , n; see procedure
MakeGamma. Of course, gammav should be calculated before any call is made
to QCmatrices but it is also used (as an argument) to routines which follow up
QCmatrices and it should not be altered in between.

The procedure QCmatrices heavily makes use of generalized Vandermonde ma-
trices which are calculated from a separate procedure. If the quasidegree δq(W )
equals the McMillan degree δ(W ), the procedure does nothing and returns just the
matrices given as arguments of QCmatrices. This allows us to use this procedure
and the following procedures also for the case of a complete case factorization, i.e.,
when δq(W ) = δ(W ) = n.

Finally, the procedure QCmatrices calls the procedure MakeKmatrix with second
argument a vector v; this vector v should be such that

Bmin v =

⎡
⎢⎢⎢⎢⎣

0
...

0

1

⎤
⎥⎥⎥⎥⎦
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see Proposition 12.6. Because of the special structure of Bmin, see (11.41), one
may take v = [0, 1], which is done in QCmatrices.

QCmatrices calculate matrices Â, B̂, Ĉ (and D̂)
Calling sequence QCmatrices(Amin,Bmin,Cmin,Dmin,dqw,gammav)
Parameters Amin,Bmin,Cmin,Dmin - Realization matrices

with Amin companion form
dqw - scalar: quasidegree
gammav - Vector

Output list of Matrices Ahat, Bhat, Chat, Dhat.
Note If dqw = Column Dimension(Amin) = McMillan degree,

then the returned matrices are just the matrices
(Amin,Bmin,Cmin,Dmin).

> QCmatrices:=proc(Amin,Bmin,Cmin,Dmin,dqw,gammav)
> local v, k, Kmat, Xmat, Fmat, Gmat, Ahat, Bhat, Chat, Dhat,
> LastRowA, na;
> if not (IsCompanionForm(Amin)) then error "First
> input matrix should be in companion form but get %1",Amin; end
> if; na:=Dimension(Amin): if (dqw>na[2]) then
> LastRowA:=Row(Amin,na[1]): v:=Vector([0,1]);
> Kmat:=MakeKmatrix(LastRowA,v,gammav):
> Xmat:=MakeXmatrix(gammav,dqw,na[2]):
> Gmat:=DiagonalMatrix(gammav[1..(dqw-na[2])],(dqw-na[2]),
> (dqw-na[2])): Fmat:=Kmat.Xmat:
> Ahat:=<<Amin,ZeroMatrix(dqw-na[2],na[2])>|<Bmin.Fmat,Gmat>>:
> Bhat:=<Bmin,ZeroMatrix(dqw-na[2],ColumnDimension(Bmin))>:
> Chat:=<<Cmin>|<Fmat>>: else Ahat:=Amin: Bhat:=Bmin: Chat:=Cmin:
> end if: Dhat:=Dmin: return(Ahat,Bhat,Chat,Dhat); end proc;

Secondary routines used in QCmatrices
The procedure MakeGamma constructs a vector with entries outside the spectra
of A and A×.

MakeGamma calculate a vector of length dw = δ(W )
Calling sequence MakeGamma(dw,mu,symbols)
Parameters dw: scalar (McMillan degree δ(W ))

mu: Vector of different poles and zeros
symbols: boolean (true or false).
If symbols is true then the output vector
is a Maple Vector of symbols (γ1, . . . , γdw).
Otherwise, the output vector is a Maple Vector with
numerical entries only.

Output Vector(dw)
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> MakeGamma:=proc(dw,mu,symbols)
> local nmu,mm,k,numval,gammav;
> if symbols then gammav:=Vector(dw,symbol=gamma): else
> gammav:=Vector(dw):nmu:=Dimension(mu):k:=0: numval:=[0]:
> for k from 1 to nmu do if (type(mu[k],complex)) then
> numval:=[op(numval),Re(mu[k])]: end if: end do:
> mm:=max(op(numval)): for k from 1 to dw do gammav[k]:=mm+k:
> end do: end if: return(gammav);end proc;

The procedure IsCompanionMatrix outputs true if the input matrix is in compan-
ion form, otherwise false.

IsCompanionMatrix test whether a (square) matrix is of companion form
Calling sequence IsCompanionForm(A)
Parameters A - Matrix
Output true, if A has companion form, else false

> IsCompanionForm:=proc(A)
> local na, zm, tm, k, bol;
> na:=Dimension(A): zm:=Matrix(na[1]-1,na[2],0):
> for k from 1 to (na[1]-1) do zm[k,k+1]:=1: end do:
> tm:=SubMatrix(A,[1..na[1]-1],[1..na[2]]):
> bol:=Equal(map(simplify,(tm-zm)),ZeroMatrix(na[1]-1,na[2])):
> return(bol);end proc;

The procedure GenVandermondeMatrix returns a generalized Vandermonde ma-
trix according to the definition in the paragraph after the proof of Proposition
11.19.

GenVandermondeMatrix calculate the generalized Vandermonde matrix
Calling sequence GenVandermondeMatrix(r,av)
Parameters r - scalar (row dimension returned matrix)

av - Vector of algebraic values
Output Matrix(r,c) M with c is dimension of av;

Mj,k =
(
j−1

k

)
avj−1−k

k , j = (k + 1), . . . , r,
zero otherwise

> GenVandermondeMatrix:=proc(r,av::Vector)
> local GVM,m,v,j,c;
> c:=Dimension(av):v:=0:GVM:=GenVandermondeVector(r,av[1],v):
> for j from 2 to c do v:=0:for m from 1 to (j-1) do
> if (av[m]=av[j]) then v:=v+1: end if: end do:
> GVM:=<GVM|GenVandermondeVector(r,av[j],v)>:end do:
> return(GVM);end proc;

The actual calculation of the columns of a generalized Vandermonde matrix is
done by the procedure GenVandermondeVector.
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GenVandermondeVector calculate a column (vector) of the
generalized Vandermonde matrix

Calling sequence GenVandermondeVector(r,a,k)
Parameters r - scalar (dimension (length) output vector)

a - scalar value
k - integer (column index)

Output Vector(r) V with V is kth column of a
generalized Vandermonde matrix

> GenVandermondeVector:=proc(r,a,k)
> local colgvm,j;
> colgvm:=Vector(r,0): for j from 1 to r do if (j>k) then
> colgvm[j]:=binomial(j-1,k)*a^(j-1-k):end if: end do:
> return(colgvm); end proc;

The next two procedures will output a matrix K with the properties described in
Proposition 12.6 and a matrix X defined as in formula (12.14).

MakeKmatrix calculate matrix K as in Proposition 12.6
Calling sequence MakeKmatrix(a,v,gammav)
Parameters a - Vector: final row of companion matrix

v - Vector: solution of B.v = en;
see Proposition 12.6
gammav - Vector: output of MakeGamma

Output Matrix K

> MakeKmatrix:= proc(a,v,gammav)
> local nc,k,Kmat,pol;
> nc:=Dimension(a):pol:=1: for k from 1 to (nc) do
> pol:=pol*(lambda-gammav[k]):end do: pol:=expand(pol):
> Kmat:=ScalarMultiply(v,-a[1]-coeff(expand(pol),lambda,0)):
> for k from 2 to (nc) do Kmat:=
> <Kmat|ScalarMultiply(v,-a[k]-coeff(expand(pol),lambda,k-1))>:
> end do:return(Kmat);end proc;

MakeXmatrix calculate matrix X , see formula (12.14)
Calling sequence MakeXmatrix(gammav,d,n)
Parameters gammav - Vector: output of MakeGamma

d - scalar (d > n)
n - scalar

Output Matrix X(n, d − n).

> MakeXmatrix:=proc(gammav,d,n)
> local gd,k,m,X;
> X:=GenVandermondeVector(n,gammav[1],0):
> for k from 2 to (d-n) do
> X:=<X|GenVandermondeVector(n,gammav[k],0)>: end do:
> return(convert(X,Matrix)); end proc;
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12.5.3 Transformations into upper triangular form

The two procedures MakeBasisA and MakeBasisZ (where Z refers to A×) con-

struct bases such that Â and Â× are in upper-triangular form with respect to
those bases.
MakeBasisA calculate a basis (transformation matrix) as in the

paragraph containing formula (12.16)
Calling sequence MakeBasisA(orderedA,dqw,gammav)
Parameters orderedA - Vector of ordered poles

dqw - scalar: quasi degree
gammav - Vector: output of MakeGamma

Output Matrix(dqw,dqw).
If dqw=Dimension(orderedA)=McMillan degree then
this matrix is just the generalized
Vandermonde matrix with vector orderedA.

> MakeBasisA:=proc(orderedA,dqw,gammav)
> local BasisMat,id,zerod,n,j,jj,GVM,npoles,k;
> npoles:=Dimension(orderedA):
> GVM:=GenVandermondeMatrix(npoles,orderedA):
> n:=Dimension(GVM)[1]: if dqw>n then id:=IdentityMatrix(dqw-n):
> zerod:=Vector(dqw-n,0):
> BasisMat:=<GenVandermondeVector(n,gammav[1],0),Column(id,1)>:
> for j from 2 to (dqw-n) do BasisMat:=
> <BasisMat|<GenVandermondeVector(n,gammav[j],0),Column(id,j)>>:
> end do: for j from (dqw-n+1) to dqw do jj:=j+n-dqw:
> BasisMat:=<BasisMat|<Column(GVM,jj),zerod>>:end do: else
> BasisMat:=GVM: end if: return(BasisMat);end proc;

MakeBasisZ calculate a basis (transformation matrix) as in the
paragraph containing formula (12.12.17)

Calling sequence MakeBasisZ(orderedZ,dqw,gammav)
Parameters orderedZ - Vector of ordered zeros

dqw - scalar : quasi degree
gammav - Vector: output of MakeGamma

Output Matrix(dqw,dqw).
If dqw=Dimension(orderedZ)= McMillan degree then
this matrix is just the generalized Vandermonde
matrix with vector orderedZ in reverse order.

> MakeBasisZ:=proc(orderedZ,dqw,gammav)
> local BasisMat,id,zerod,n,j,jj,nzeros,ReorderedZ,GVM,k;
> nzeros:=Dimension(orderedZ):
> ReorderedZ:=ReverseOrder(orderedZ):
> GVM:=GenVandermondeMatrix(nzeros,ReorderedZ):
> n:=Dimension(GVM)[1]: if dqw>n then
> id:=IdentityMatrix(dqw-n):zerod:=Vector(n,0):
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> BasisMat:=<zerod,Column(id,1)>: for j from 2 to (dqw-n) do
> BasisMat:=<BasisMat|<zerod,Column(id,j)>>: end do:
> zerod:=Vector(dqw-n,0): for j from (dqw-n+1) to dqw do
> jj:=dqw+1-j:jj:=j-dqw+n:
> BasisMat:=<BasisMat|<Column(GVM,jj),zerod>>: end do: else
> BasisMat:=GVM:end if; return(BasisMat);end proc;

The procedure ReverseOrder reverts the order of elements of a vector.

ReverseOrder calculate vector with elements in reverse order
of a given vector

Calling sequence ReverseOrder(v)
Parameters v - Vector or list
Output Vector rv such that rvk = vn−k+1, k = 1, · · · , n,

with n is dimension of v.

> ReverseOrder:=proc(v)
> local rv,n,k;
> n:=Dimension(v): rv:=Vector(n): for k from 1 to n do
> rv[k]:=v[n-k+1]: end do: return(rv);end proc;

12.5.4 Transformation into complementary triangular forms

In Maple we use the name TA for the output of MakeBasisA; it is a transformation
which brings Â in upper-triangular form. Similarly, TZ is the output of MakeBa-
sisZ; it is a the transformation which brings Â× in upper-triangular form. Then the
procedure UpperLowerTransformation extracts from TA and TZ a transformation
which allows for a simultaneous reduction to upper- and lower-triangularization
of Â and Â×, respectively; see Proposition 10.1 (c).

UpperLowerTransformation calculate a matrix S which brings Â and

Â× in upper- and
lower triangular form (see Section 10.1)

Calling sequence UpperLowerTransformation(TA,TZ,dqw)
Parameters TA - Matrix: output of MakeBasisA

TZ - Matrix: output of MakeBasisZ
dqw - quasidegree

Ouput Matrix(dqw,dqw)

> UpperLowerTransformation:=proc(TA,TZ,dqw)
> local S1,S,k;
> S:=op(IntersectionBasis([[Column(TA,1)],
> [Column(TZ,[1..dqw])]])):
> for k from 2 to dqw do
> S1:=op(IntersectionBasis([[Column(TA,[1..k])],
> [Column(TZ,[1..dqw-k+1])]])): S:=<S|S1>:end do:
> return(map(simplify,S));end proc;
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12.5.5 An example: symbolic and quasicomplete

The next lines define a rational 2 × 2 matrix function W of the form (12.37) in
symbolic variables (unevaluated names). We start with two polynomials q(λ) and
q×(λ) of degree n; in this example n = 3. We take the degree of the numerator of
w12 to be equal to n − 2.

> n:=3:
> p:=’p’:r:=’r’:q:=’q’:
> sw1:=<<1,0>|<’s’(lambda)/ ’q(lambda)’, ’(q^(x))(lambda)’/
> ’q(lambda)’>>: ’W(lambda)’=sw1;
> ppol:=proc(x,p,nn) local r,k; r:=1: for k from 1 to (nn) do r:=
> r*(x-p[k-1]): end do: return(r); end proc:
> p:=’p’: p:=array(0..(n-1)):
> pp:=x->ppol(x,p,n): ’q(lambda)’=pp(lambda);
> z:=’z’: z:=array(0..(n-1)):
> zz:=x->ppol(x,z,n): ’q^(x)’(lambda) = zz(lambda);
> r:=’r’: r:=array(0..(n-1)):
> rs:=x->ppol(x,r,n-2): ’s(lambda)’=rs(lambda);

W (λ) =

⎡
⎢⎢⎢⎣

1
s (λ)

q (λ)

0
q× (λ)

q (λ)

⎤
⎥⎥⎥⎦

q (λ) = (λ − p0) (λ − p1) (λ − p2)

q× (λ) = (λ − z0) (λ − z1) (λ − z2)

s (λ) = λ − r0.

In this example, we assume that the polynomial q has two equal zeros (p1 =
p0) and that all zeros of the polynomial q× are equal to the zeros of q, that is
zi = pi, i = 0, 1, 2. If one wants to change or leave out any condition, one has
to rerun the foregoing Maple lines and change (or comment out) the next two
lines. Note that Maple will consider variables with different, unevaluated names
as different.

> p:=’p’: z:=’z’: r:=’r’: p[1]:=p[0];
> z[0]:=p[0]; z[1]:=p[1]; z[2]:=p[2];

Next the rational function is defined:

> W:=x-><<1,0>|<rs(x)/pp(x),zz(x)/pp(x)>>:
> ’W(lambda)’=W(lambda);

W (λ) =

⎡
⎢⎢⎣

1
λ − r0

(λ − p0)
2 (λ − p2)

0 1

⎤
⎥⎥⎦ . (12.38)
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Now we will start our example showing how to use the previously defined Maple
procedures, with W as defined in (12.38) (and neglecting any knowledge about
how W is constructed). As before, most of the actual output is not shown. The
Maple variable DimS is used throughout this subsection.

> DimS:=ColumnDimension(W(x));

Next we get the pole-polynomial and zero-polynomial of W in (12.38), and its
poles and zeros itself, just as in Section 11.6. So we will give the following Maple
lines without any comment.

> q:=unapply(LCMDenomMatrixPolynom(W,x),x):
> ppoles:=q:pzeros:=unapply(simplify(W(x)[2,2]*q(x)),x):
> ’p(lambda)’=sort(collect(ppoles(lambda),lambda),lambda);
> ’(p^(x))(lambda)’=sort(collect(pzeros(lambda),lambda),lambda);

p (λ) = λ3 + (−2 p0 − p2) λ2 +
(
p0

2 + 2 p0p2

)
λ − p0

2p2

p× (λ) = λ3 + (−2 p0 − p2) λ2 +
(
p0

2 + 2 p0p2

)
λ − p0

2p2

> res1:=GetPolesandZeros(ppoles,pzeros):
> poles := res1[1]: zeros:=res1[2]:
> mu:=res1[3]:
> npoles:=Dimension(poles);nzeros:=Dimension(zeros);
> nmu:=Dimension(mu);

The calculation of companion based realization matrices results from a Maple
implementation of Lemma 11.15; see again Section 11.6. Again, the realization
matrices are named in Maple Amin, Bmin, Cmin and Dmin.

> r:=unapply(simplify(W(x)[1,2]*ppoles(x)),x):r(lambda):
> Amin:=Transpose(CompanionMatrix(ppoles(x),x)):
> Bmin:=Matrix(npoles,DimS,0):Bmin[npoles,DimS]:=1:
> Cmin:= Matrix(DimS,npoles):
> for k from 1 to npoles do
> Cmin[1,k]:= coeff(r(lambda),lambda,k-1):
> Cmin[2,k] := coeff(pzeros(lambda)-ppoles(lambda),lambda,k-1):
> end do: Dmin:=IdentityMatrix(DimS,DimS):
> Amincross:=Transpose(CompanionMatrix(pzeros(x),x)):
> ’A’=Amin;
> ‘transpose(B)‘=Transpose(Bmin);
> ‘C‘=Cmin;

A =

⎡
⎢⎢⎣

0 1 0

0 0 1

p0
2p2 −p0

2 − 2p0p2 2p0 + p2

⎤
⎥⎥⎦

transpose (B) =

[
0 0 0

0 0 1

]
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C =

[
−r0 1 0

0 0 0

]
.

The next step, see again Section 11.6, is getting feasible orderings of poles and
zeros.

> muA:=GetMultiplicity(poles,mu);
> muZ:=GetMultiplicity(zeros,mu);
> ResultOrdering:=GetAllMOrderings(muA,muZ,mu);
> h:=ResultOrdering[1];
> ‘number of
> orderings‘=ResultOrdering[2];
> orderedA:=ResultOrdering[3][1];
> orderedZ:=ResultOrdering[4][1];

h = 2

number of orderings = 2

orderedA = [p0, p0, p2]

orderedZ = [p0, p0, p2]

The Maple variables orderedA and orderedZ are the used orderings of poles and
zeros of W , respectively. In this case, we have taken the first found ordering.
If one would like to have results on a different ordering, one should change the
Maple variables orderedA and orderedZ, e.g., orderedA:=ResultOrdering[3][2] and
orderedZ:=ResultOrdering[4][2], and re-run the worksheet from this point on.

The Maple variable dw is the McMillan degree δ(W ) and is equal to 3. The quaside-
gree δq(W ) is denoted in Maple as dqw. The value of dqw is 4 since h = 2.

> dw := npoles: dqw:=h-1+npoles:
> ’delta[q](W)’ = dqw;
> print(’delta[q](W)-delta(W)’=dqw-dw);

δq (W ) = 4

δq (W ) − δ (W ) = 1

Triangularization: quasicomplete case
First the matrices Â, B̂, Ĉ and D̂ are made by calling QCmatrices with arguments
the previously calculated matrices Amin,Bmin, Cmin, Dmin and the quasidegree
value dqw. In Maple the output matrices are named Ahat, Bhat, Chat and Dhat.
The matrix Â× is named Ahatcross.

> gammav:=MakeGamma(dw,mu,true):

In this case, gammav is a vector with elements γ1, γ2, γ3.
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> Allhat:=QCmatrices(Amin,Bmin,Cmin,Dmin,dqw,gammav):
> Ahat := map(simplify,Allhat[1]): Bhat :=
> Allhat[2]: Chat := map(simplify,Allhat[3]): Dhat := Allhat[4]:
> Ahatcross:=Ahat-Bhat.Chat:

For typographical reasons we show only the transpose of Â:

Â⊤ =

⎡
⎢⎢⎢⎣

0 0 p0
2p2 0

1 0 −p0
2 − 2 p0p2 0

0 1 2 p0 + p2 0

0 0 −p0
2p2 + γ1p0

2 + 2 γ1p0p2 − 2 γ1
2p0 − γ1

2p2 + γ1
3 γ1

⎤
⎥⎥⎥⎦ .

Next, we calculate the matrices TA and TZ which bring Â and Â× in upper-
triangular form.

> TA:=MakeBasisA(orderedA,dqw,gammav):
> TZ:=MakeBasisZ(orderedZ,dqw,gammav):

Finally, the matrix S which will bring Â and Â× in complementary triangular
form, is constructed. Applying S to to previously calculated matrices Ahat etc.,
will result in matrices Atr, Atrcross, Btr, Ctr (and Dtr) with Atr and Atrcross
indeed in complementary triangular form.

> S:=UpperLowerTransformation(TA,TZ,dqw);
> Sinv:=MatrixInverse(S):
> Atr:=convert(map(simplify,Sinv.Ahat.S),Matrix):
> Atrcross:=convert(map(simplify,Sinv.Ahatcross.S),Matrix):
> Btr:=convert(Sinv.Bhat,Matrix);
> Ctr:=convert(map(simplify,Chat.S),Matrix):
> Dtr:=Dhat;

Â =

⎡
⎢⎢⎢⎢⎢⎣

γ1 0 α1 α2

0 p0 α3 α4

0 0 p0 α5

0 0 0 p2

⎤
⎥⎥⎥⎥⎥⎦

,

where

α1 = p2
2 − γ1p2 − p0p2 + γ1p0,

α2 =
−p0

2p2 + p0
2γ1 + 2 p0γ1p2 − 2 γ1

2p0 − γ1
2p2 + γ1

3

p0 − p2
,

α3 = −p2
2 − γ1p2 − p0p2 + γ1p0

−p0 + γ1
,

α4 = −p0p2 − γ1p0 − γ1p2 + γ1
2

p0 − p2
,

α5 =
p0

2 + γ1
2 − 2 γ1p0

p0 − p2
,
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and

Â× =

⎡
⎢⎢⎢⎢⎢⎣

p0 0 0 0

1 p0 0 0

β1 0 p2 0

β2 0 β3 γ1

⎤
⎥⎥⎥⎥⎥⎦

with

β1 = −−p0 + γ1

−p2 + γ1
,

β2 =
p0 − p2

−p0 + γ1
,

β3 =
−p0

2p2 + 2 p0p2
2 − p2

3 + p0
2γ1 − 2 p0γ1p2 + p2

2γ1

(−p0 + γ1)
2 .

Having obtained a realization (Atr,Btr,Ctr,Dtr) with Atr and Atrcross in comple-
mentary triangular form, the elementary factors follow from a call to MakeFactor-
ization; see Subsection 11.6.4.

> Allfactors:=
> map(simplify,MakeFactorization(Atr,Btr,Ctr,lambda)):

Finally, the factors in the factorization can be shown:

> afactors := Vector[row](dqw,0): for k
> from 1 to dqw do afactors[k]:=Allfactors[k](lambda): end do:
> print(‘Elementary factors‘=afactors);

The elementary factors (with ordering left to right and top to bottom) are:

⎡
⎢⎢⎣

1
−r0 + γ1

(λ − γ1)(p0 − γ1)(p2 − γ1)

0
λ − p0

λ − γ1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
−r0 + p0

(λ − p0)(p0 − p2)(p0 − γ1)

0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
r0 − p2

(λ − p0)(p2 − γ1)(p0 − p2)

0
λ − p2

λ − p0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1 0

0
λ − γ1

λ − p2

⎤
⎥⎥⎦ .

One may apply a final test:

> Wtest:=Factors2Transfer(Allfactors,lambda):

and show that Wtest is equal to W .
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12.5.6 Concluding remarks

The implementation of the method of Section 12.2 in Maple, as done in the fore-
going Sections 12.5 and 11.6, has two main features.

First of all, it allows for getting (quasi-)complete factorizations of a proper
rational 2 × 2 matrix function W as in formula (12.37), completely defined in
symbolic names. Secondly, one can calculate all feasible orderings of the set of the
different elements of σ(A) ∪ σ(Z) such that (11.20) holds, where A and Z are the
first companion matrices associated with the pole polynomial and zero-polynomial
of W , respectively. From there on, one can calculate the corresponding orderings
of poles and zeros of W and subsequently, the corresponding factorizations.

The advantages referred to above have also their drawbacks. We have already
mentioned in Section 11.6 that in Maple the calculation of all permutations (i.e.
orderings) is very much time- and cpu-consuming for sets with more than, say,
8 elements. To overcome this problem, one could get one ordering by applying
Johnson’s rule, see Section 12.3. Note that Johnson’s rule is of order k log(k),
where k is the number of different elements of σ(A) ∪ σ(Z), while our procedure
is at least of order k!. On the other hand, as soon as Johnson’s rule has been used
to produce a desired ordering, the Maple procedures given in this section can be
used to calculate corresponding quasicomplete factorizations. We also note that
this Maple implementation of Johnson’s rule in producing one valid ordering can
be used in the same manner in the case of complete factorizations, h = 1, cf.,
Section 11.6.

For the sake of completeness, a Maple implementation of Johnson’s rule is provided
here. The calling sequence of the Maple procedure JohnsonRule is just the same as
the procedure GetAllMOrderings in Section 11.6. Although not part of the specific
Johnson algorithm, the first element of the Maple output will be the value of h as
used in condition (11.20). Moreover, to be completely in line with the procedure
GetAllMOrderings which has as second output argument, the number of found
orderings, we add also in the output of the procedure JohnsonRule as second
argument the value 1 since in contrast with our implementation, this procedure
will give only one ordering.

JohnsonRule calculate ordering of poles and zeros
Calling sequence JohnsonRule(mA,mZ,mu)
Parameters mA - Vector (of multiplicties of poles)

mZ - Vector (of multiplicties of zeros)
mu - Vector (of different poles and zeros)

Output List, with first element is h, see condition (11.20) and
with second argument, the number 1
third element, a list with the ordering of poles
and the ordering of zeros
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> JohnsonRule:=proc(mA,mZ,mu)
> local V1,V2,VZ1,VA2,S,lv1,nm,k,h;
> nm:=Dimension(mu):VZ1:=[]:VA2:=[]:V1:=[]:V2:=[]:
> for k from 1 to nm do if (mZ[k]<mA[k]) then
> V1:=[op(V1),k]:VZ1:=[op(VZ1),mZ[k]] :
> else V2:=[op(V2),k]:VA2:=[op(VA2),-1*mA[k]]: end if:end do:
> lv1:=ord(VZ1)[2]:S:=[]:for k from 1 to nops(V1) do
> S:=[op(S),V1[lv1[k]]]:end do: lv1:=ord(VA2)[2]:
> for k from 1 to nops(V2) do
> S:=[op(S),V2[lv1[k]]]:end do: h:=1: while (h<nm) and
> not (TestOrderingMAZ(mA,mZ,S,h)) do h:=h+1: end do:
> return(h,1,[GetOrderedVector(muA,mu,S),
> GetOrderedVector(muZ,mu,S)]);
> end proc;

The procedure JohnsonRule uses the following sorting procedure ord.
ord sort a list in increasing order
Calling sequence ord(x)
Parameters x - Maple list
Output List, with first element is the sorted list

and second element, the reordered index positions,
the permutation vector

> ord:= proc(x) local i,s;
> s:=sort([seq([x[i],i],i=1..nops(x))],(a,b)->evalb(a[1]<b[1]));
> [map(x->x[1],s),map(x->x[2],s)] end:

A second point of consideration is the use of the built in Maple procedure In-
tersectionBasis in our procedure UpperLowerTransformation. In case of symbolic
names for the poles and zeros, this procedure is again very slow. For instance, a
problem with McMillan degree n is 6, and quasidegree δq(W ) = 8 it takes about
3 minutes to calculate for all three found orderings their minimal factorizations.

Notes

For the largest part the first four sections in this chapter are based on and an
elaboration of [23]. The Maple procedures presented in Section 12.5 were made by
Johan F. Kaashoek. As we have mentioned the running time of Johnson’s rule is
O(k log k) for a 2MFSP with k jobs. The analogous problem with three or more
machines is NP-hard.





Part IV

Stability of Factorization and
of Invariant Subspaces

Numerical computations of the factors in a factorization lead in a natural way to
the problem of stability of factors under small perturbations of the initial matrix
function. The entire present part is devoted to this problem. The state space
approach to factorization allows one to deal with the problem of stable factors in
terms of stability of invariant subspaces of matrices or operators. It turns out that
in general the factors of a minimal factorization of a rational matrix function are
unstable. Only in some special cases, including the case of canonical factorization,
we have stability of the factors. A full description of these stable cases is given.
This part consists of three chapters (13–15).

Chapter 13 has partly a preparatory character. Some illustrative examples are
given, and the theory of distances between subspaces is reviewed. The stability of
the factors in a canonical factorization is proved. Applications to transfer functions
and to Riccati equations are included. Chapter 14 is the main chapter of this part.
The notion of a stable invariant subspace is introduced, and all stable invariant
subspaces of a matrix are described. The stronger notion of Lipschitz stability
of subspaces is studied separately. For a matrix it is shown that the Lipschitz
stable invariant subspaces coincide with the spectral subspaces. On the basis of
these theorems a full description is given of all minimal factorizations of finite-
dimensional systems with stable and Lipschitz stable factors. Applications are
given for factorizations of rational matrix function and matrix polynomials. The
results are specified further for Riccati equations. Chapter 15 contains the study
of factorization and stability of the factors in the real case. The results are based
on the study of the stability of real invariant subspaces.





Chapter 13

Stability of Spectral Divisors

In numerical computations of minimal factors of a given transfer function questions
concerning the conditioning of the factors turn up naturally. According to the
division theory developed in the previous chapters, all minimal factorizations may
be obtained in an explicit way in terms of supporting projections of minimal
systems. This fact allows one to reduce questions concerning the conditioning of
minimal factorizations to questions concerning the stability of divisors of a system.
In the present chapter we study the matter of stability of spectral divisors mainly.
In this case the investigation can be carried out for finite- as well as for infinite-
dimensional state spaces. The invariant subspace method employed in this chapter
will also be used to prove that “spectral” solutions of an operator Riccati equation
are stable. The case of minimal non-spectral factorizations will be considered in
the next chapter.

13.1 Examples and first results for the

finite-dimensional case

The property of having non-trivial minimal factorizations is ill-conditioned. For
example it may happen that a transfer function admits non-trivial minimal fac-
torizations while after a small perturbation the perturbed function has no such
factorizations. On the other hand it may also happen that the perturbed function
admits non-trivial minimal factorizations while the original function does not have
this property. To see this we consider the following examples. Let

Wε(λ) =

⎡
⎢⎢⎢⎣

1 +
1

λ

ε

λ2

0 1 +
1

λ

⎤
⎥⎥⎥⎦ . (13.1)
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For each ε this matrix function is the transfer function of the unital minimal
system Θε = (Aε, I, I; C2, C2), where I is the identity on C2 and

Aε =

[
0 ε

0 0

]
.

Note that the associate main operator A×
ε of Θε is given by A×

ε = Aε−I. To find a
non-trivial minimal factorization of the function (13.1), we have to find non-trivial
divisors of the system Θε (cf., Theorem 9.3), i.e., we must look for non-trivial
subspaces M and M× of C2, invariant under Aε and Aε − I, respectively, such
that

M ∔ M× = C2.

Note that Aε and Aε − I have the same invariant subspaces, and for ε �= 0 there is
only one such space of dimension one, namely the first coordinate space. It follows
that for ε �= 0 the function (13.1) has no non-trivial minimal factorizations. For
ε = 0 we have

W0(λ) =

⎡
⎢⎣

1 +
1

λ
0

0 1

⎤
⎥⎦

⎡
⎢⎣

1 0

0 1 +
1

λ

⎤
⎥⎦

and this factorization is minimal, because the McMillan degree of W0(λ) is equal
to 2 and the McMillan degree of each of the factors is one.

Next consider the function

Wε(λ) =

⎡
⎢⎣

1
1

λ2 − ε2

0 1

⎤
⎥⎦ .

Put

Aε =

[
ε 1

0 −ε

]
, B =

[
0 0

0 1

]
, C =

[
1 0

0 0

]
.

Then Wε is the transfer function of the unital system Θε = (Aε, B, C; C2, C2). As
Θε is minimal, the McMillan degree of Wε is equal to 2. For ε �= 0 we have the
following factorization

Wε(λ) =

⎡
⎢⎣

1
1

2ε(λ − ε)

0 1

⎤
⎥⎦

⎡
⎢⎣

1
−1

2ε(λ + ε)

0 1

⎤
⎥⎦ .

By comparing the McMillan degrees of the factors with the McMillan degree of
Wε, we see that this factorization is minimal. On the other hand, as has been
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established at the end of Section 9.1, the function

W0(λ) =

⎡
⎢⎣

1
1

λ2

0 1

⎤
⎥⎦ .

does not admit any non-trivial minimal factorization.

Although the first example proves that in general minimal factorizations are
not stable, the next theorem shows that in an important case the possibility to
factorize in a minimal way is stable under small perturbations. This theorem will
appear as a corollary to the main stability theorem to be proved in this chapter.

Theorem 13.1. Consider the minimal realization

W0(λ) = Im + C0(λIn − A0)
−1B0,

and assume that W0 admits a (minimal) factorization

W0 = W01W02, W0j(λ) = Im + C0j(λInj
− A0j)

−1B0j ,

where n = n1 + n2 and the factors W01 and W02 have neither common zeros nor
common poles. Then, given ε > 0, there exists ω > 0 with the following property.
If A, B and C are matrices of appropriate sizes, with

‖A − A0‖ + ‖B − B0‖ + ‖C − C0‖ < ω, (13.2)

then the realization W (λ) = Im + C(λIn − A)−1B is minimal and W admits a
(minimal) factorization:

W (λ) = W1W2, Wj(λ) = Im + Cj(λInj
− Aj)

−1Bj ,

such that the factors W1 and W2 have no common zeros and no common poles
and

‖A0j − Aj‖ < ε, ‖B0j − Bj‖ < ε, ‖C0j − Cj‖ < ε

for j = 1, 2.

Later we shall avoid the ε/ω-language and give more explicit formulas for the
relation between the quantity in the left-hand side of (13.2) and the perturbation of
the factors (see Theorem 13.7). In Section 13.4 it will also be shown that the factors
change analytically whenever the operators appearing in the minimal realization
of the original function do so (see Theorem 13.8).

The results referred to above will appear as corollaries to infinite-dimensional
stability theorems for certain divisors of systems, which deal mainly with the case
of spectral factorization (see Section 13.3). In the next chapter the case of stable
non-spectral minimal factorizations will be completely described (see Theorem
14.9).

The next section is of preliminary nature; there we describe the relation
between angular operators and the minimal and maximal opening between sub-
spaces. In Section 13.5 we employ the method of Section 13.3 to prove stability
for certain solutions of the Riccati equation.
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13.2 Opening between subspaces and angular operators

From the description of the factors of a system in terms of angular operators
(see Theorem 5.5) it is clear that for our purposes it is important to know how
the angular operator changes when the operators in the system are perturbed a
little. For this reason we study the properties of angular operators in terms of the
minimal and maximal opening between certain subspaces.

Let M1 and M2 be closed subspaces of the Banach space X . The number

η(M1, M2) = inf{‖x + y‖ | x ∈ M1, y ∈ M2, max(‖x‖, ‖y‖) = 1}

will be called the minimal opening between M1 and M2. Note that always 0 ≤
η ≤ 1 except when both M1 and M2 are the zero space in which case η = ∞. It is
well known (see [71], Lemma 1) that η(M1, M2) > 0 if and only if M1 ∩M2 = {0}
and M1 ∔ M2 is closed. If Π is a projection of the space X , then

max{‖Π‖, ‖I − Π‖} ≤ 1

η(Im Π, KerΠ)
. (13.3)

To see this, note that for each z ∈ X we have

‖z‖ = ‖Πz + (I − Π)z‖ ≥ η(Im Π, KerΠ) · max(‖Πz‖, ‖(I − Π)z‖).

Sometimes it will be convenient to describe η(M1, M2) in terms of the minimal
angle ϕmin between M1 and M2. By definition (cf., [71]) this quantity is given by
the following formulas:

0 ≤ ϕmin ≤ π

2
, sin ϕmin = η(M1, M2).

Now let us assume that M1 and M2 are closed subspaces of a Hilbert space
H with inner product < ., . >, and let Q1 and Q2 be the orthogonal projections
of H onto M1 and M2, respectively. Note that

inf{‖x + y‖ | y ∈ M2} = ‖x − Q2x‖, x ∈ M1.

It follows that

η(M1, M2) = min

{
inf

0
=x∈M1

‖x − Q2x‖
‖x‖ , inf

0
=y∈M2

‖y − Q1y‖
‖y‖

}
.

If both M1 and M2 are non-trivial, then the two infima in the right-hand side of
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the previous identity are equal. This follows from

inf
0
=x∈M1

(‖x − Q2x‖
‖x‖

)2

= inf
0
=x∈M1

‖x‖2 − ‖Q2x‖2

‖x‖2
= 1 − sup

0
=x∈M1

‖Q2x‖2

‖x‖2

= 1 − sup
x∈M1
x 
=0

sup
y∈M2
y 
=0

| < x, y > |2
‖x‖2‖y‖2

= 1 − sup
y∈M2
y 
=0

sup
x∈M1
x 
=0

| < x, y > |2
‖x‖2‖y‖2

= 1 − sup
0
=y∈M2

‖Q1y‖2

‖y‖2
= inf

0
=y∈M2

(‖y − Q1y‖
‖y‖

)2

.

From the previous equalities it also follows that

1 − η(M1, M2)
2 = sup

0
=x∈M1

‖Q2x‖2

‖x‖2
= sup

0
=y∈M2

‖Q1y‖2

‖y‖2
, (13.4)

provided both M1 and M2 contain nonzero elements.

Returning to the Banach space case, put

ρ(M1, M2) = sup
0
=x∈M1

inf
y∈M2

‖x − y‖
‖x‖ .

If M1 = {0}, then ρ(M1, M2) = 0 by definition. When P and Q are projections of
X , then for x ∈ Im P and y ∈ Im Q we have

inf
y∈Im Q

‖x − y‖ ≤ ‖Px − Qx‖ ≤ ‖P − Q‖ · ‖x‖,

and thus ρ(Im P, Im Q) ≤ ‖P − Q‖. The number

gap (M1, M2) = max{ρ(M1, M2), ρ(M2, M1)}

is the so-called gap (or maximal opening) between the subspaces M1 and M2.
There exists an extensive literature on this concept, see, e.g., [86] and the references
given there. From what we remarked above we see that the gap has the following
property: if P and Q are projections of X , then gap (ImP, Im Q) ≤ ‖P − Q‖.

In the Hilbert space case we actually have gap (Im P, Im Q) = ‖P − Q‖,
provided that the projections P and Q are orthogonal. Furthermore

ρ(M2, M
⊥
1 ) =

√
1 − η(M1, M2)2 = cosϕmin (13.5)

whenever M1 �= {0}. To see this, note that for M2 �= {0}

ρ(M2, M
⊥
1 ) = sup

0
=y∈M2

‖y − (I − Q1)y‖
‖y‖ = sup

0
=y∈M2

‖Q1y‖
‖y‖ ,
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where Q1 is the orthogonal projection onto M1. But then we can use (13.4) to get
formula (13.5). If M2 = {0}, then (13.5) holds trivially.

The next lemma is well known, but explicit references are difficult to give.
For this reason it will be presented with full proof.

Lemma 13.2. Let Π0, Π and Π1 be projections of the Banach space X, and assume
that KerΠ0 = KerΠ = KerΠ1. Let R and R1 be the angular operator relative to Π0

of the angular subspaces ImΠ and ImΠ1, respectively. The following statements
hold true:

(i) η(Ker Π0, ImΠ0) · ρ(Im Π1, Im Π) ≤ ‖R1 − R‖;
(ii) if ρ(Im Π1, Im Π) < η(KerΠ, Im Π), then

‖R1 − R‖ ≤ ρ(Im Π1, Im Π)(1 + ‖R‖)
η(KerΠ, Im Π) − ρ(Im Π1, Im Π)

.

In particular, if ρ(Im Π1, ImΠ0) < η(KerΠ0, ImΠ0), then

‖R1‖ ≤ ρ(Im Π1, ImΠ0)

η(Ker Π0, ImΠ0) − ρ(Im Π1, ImΠ0)
. (13.6)

Finally, if X is a Hilbert space and Π0 is an orthogonal projection, then ‖R1‖ =
ctgϕmin, where ϕmin is the minimal angle between KerΠ0 and ImΠ1.

Proof. First we present the proof of the second part of the lemma. We begin with
formula (13.6). Put ρ0 = ρ(Im Π1, ImΠ0) and η0 = η(KerΠ0, ImΠ0). Recall (cf.,
Proposition 5.1) that

R1 = (Π1 − Π0)|Im Π0
. (13.7)

For x ∈ ImΠ1 and z ∈ ImΠ0 we have

‖(Π1 − Π0)x‖ = ‖(I − Π0)x‖ = ‖(I − Π0)(x − z)‖ ≤ ‖I − Π0‖ · ‖x − z‖.

Taking the infimum over all z ∈ ImΠ0 and using inequality (13.3), one sees that

‖(Π1 − Π0)x‖ ≤ ρ0

η0
‖x‖, x ∈ ImΠ1. (13.8)

Now recall that R1y + y ∈ ImΠ1 for each y ∈ ImΠ0. As R1y ∈ KerΠ0 = KerΠ1,
we see from (13.7) that

(Π1 − Π0)(R1y + y) = R1y.

So, using (13.8), we obtain

‖R1y‖ ≤ ρ0

η0
‖R1y + y‖, y ∈ ImΠ0.
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It follows that (1 − ρ0η
−1
0 )‖R1y‖ ≤ ρ0η

−1
0 ‖y‖ for each y ∈ ImΠ0, which proves

the inequality (13.6).

Next, assume that X is a Hilbert space, and that Π0 is an orthogonal pro-
jection. If KerΠ0 = {0}, then R1 = 0 and ϕmin = π

2 , and hence, in that case,
we certainly have ‖R1‖ = ctg ϕmin. So we assume that KerΠ0 �= {0}. Then, by
(13.4),

cos2 ϕmin = 1 − η(KerΠ0, ImΠ1)
2 = sup

0
=x∈Im Π1

(‖(I − Π0)x‖
‖x‖

)2

.

Given x ∈ ImΠ1, there exists y ∈ ImΠ0 such that x = R1y+y. As (I−Π0)x = R1y,
this implies that

cos2 ϕmin = sup
0
y∈ImΠ0

‖R1y‖2

‖R1y + y‖2

= sup
0
=y∈ImΠ0

‖R1y‖2

‖y‖2 + ‖R1y‖2
=

‖R1‖2

1 + ‖R1‖2
.

Hence, ‖R1‖ = ctg ϕmin, and we have proved the second part of the theorem.

Next we establish (i). Take an arbitrary y ∈ ImΠ1. Then y = R1x + x for
some x ∈ ImΠ0. Note that Rx + x ∈ Im Π. So

inf
z∈Im Π

‖y − z‖ ≤ ‖y − (Rx + x)‖ ≤ ‖R1 − R‖ · ‖x‖.

Then ‖y‖ = ‖R1x + x‖ ≥ η0‖x‖, where η0 = η(KerΠ0, ImΠ0). It follows that
η0d(y, Im Π) ≤ ‖R1 − R2‖ · ‖y‖. This proves (i).

Finally, we turn to statement (ii). Recall that

R1 = (Π1 − Π0)|ImΠ0
, R = (Π − Π0)|ImΠ0

.

So, (R1 − R)x = (Π1 − Π)x for each x ∈ ImΠ0. Let R̃ be the angular operator

of ImΠ1 with respect to Π. Note that R̃y = (Π1 − Π)y for all y ∈ Im Π. Take
x ∈ ImΠ0. As Im (I −Π) = KerΠ = KerΠ1, we have (Π1 −Π)x = (Π1 −Π)Πx =

R̃Πx. Now
‖Πx‖ ≤ ‖(Π − Π0)x + ‖Π0x‖ ≤ (‖R‖ + 1) ‖x‖.

It follows that
‖(R1 − R)x‖ ≤ ‖R̃‖

(
‖R‖ + 1

)
‖x‖. (13.9)

As ρ(Im Π1, Im Π) < η = η(Ker Π, ImΠ), we can use formula (13.6) for Π instead
of Π0 to show that

‖R̃‖ ≤ ρ(Im Π1, Im Π)

η − ρ(Im Π1, Im Π)
.

Substituting this in (13.9) gives the desired inequality. �

The following lemma will be useful in the next section.
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Lemma 13.3. Let P , P×, Q and Q× be projections of the Banach space X, and
put α0 = 1

6η(Im P, Im P×)(‖P×‖ + 1)−1. Assume X = ImP ∔ Im P× and

‖P − Q‖ + ‖P× − Q×‖ < α0. (13.10)

Then X = ImQ∔ Im Q× and there is an invertible operator S : X → X such that

(i) S[Im Q] = ImP, S[Im Q×] = Im P×,

(ii) max{‖S − I‖, ‖S−1 − I‖} ≤ β
(
‖P − Q‖ + ‖P× − Q×‖

)
,

where β = 2
(
α0η(Im P, Im P×)

)−1
.

Proof. Recall that

gap (Im P, Im Q) ≤ ‖P − Q‖, gap (Im P×, ImQ×) ≤ ‖P× − Q×‖.
Thus condition (13.10) implies that

2gap (Im P, Im Q) + 2gap (ImP×, Im Q×) < η(Im P, Im P×).

But then we may apply [71], Theorem 2 to show that X = ImQ ∔ Im Q×.

Note that (13.10) implies that ‖P − Q‖ < 1/4. Hence S1 = I + P − Q is
invertible, and we can write S−1

1 = I +V with ‖V ‖ ≤ 4
3‖P −Q‖ < 1

3 . As I−P +Q
is invertible too, we have

Im P = P (I − P + Q)X = PQX = (I + P − Q)QX = S1(Im Q). (13.11)

Moreover,

S1Q
×S−1

1 − P× = (I + P − Q)Q×(I + V ) − P×

= Q× + (P − Q)Q× + Q×V + (P − Q)Q×V − P×

= Q× − P× + (P − Q)(Q× − P×) + (P − Q)P× +

+ (Q× − P×)V + P×V + (P − Q)(Q× − P×)V +

+ (P − Q)P×V.

So ‖S1Q
×S−1

1 − P×‖ ≤ 3‖Q× − P×‖ + 3‖P − Q‖ · ‖P×‖. But then

ρ(Im S1Q
×S−1

1 , ImP×) ≤ ‖S1Q
×S−1

1 − P×‖

≤ 3
(
‖P − Q‖ + ‖P× − Q×‖

)
(‖P×‖ + 1

)

≤ 1

2
η(Im P, Im P×).

Let Π0 be the projection of X along ImP onto ImP×, and let Π be the
projection of X along ImQ onto Im Q×. Put Π̃ = S1ΠS−1

1 . Then Π̃ is a projection

of X , and by (13.11) we have Ker Π̃ = KerΠ0. Furthermore, Im Π̃ = Im S1Q
×S−1

1 ,
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and so we have

ρ(Im Π̃, ImΠ0) ≤ 1

2
η(KerΠ0, ImΠ0).

Hence, if R denotes the angular operator of Im Π̃ with respect to Π0, then because
of formula (13.6) in Lemma 13.2, we get

‖R‖ ≤ 1

α0
(‖P − Q‖ + ‖P× − Q×‖). (13.12)

Next, put S2 = I −RΠ0, and set S = S2S1. Clearly, S2 is invertible, in fact,
S−1

2 = I + RΠ0. It follows that S is invertible too. From the properties of the
angular operator one easily sees that with this choice of S statement (i) holds
true. It remains to prove (ii).

To prove (ii) we simplify our notation. Put d = ‖P − Q‖ + ‖P× − Q×‖,
and let η = η(Im P, Im P×). From S = (I − RΠ0)(I + P − Q) and the fact that
‖P − Q‖ < 1

4 one deduces that ‖S − I‖ ≤ ‖P − Q‖ + 5
4‖R‖ · ‖Π0‖. For ‖R‖ an

upper bound is given by (13.12), and from (13.3) we know that ‖Π0‖ ≤ η−1. It
follows that

‖S − I‖ ≤ d +
5

4
d(α0η)−1. (13.13)

Finally, we consider S−1. Recall that S−1
1 = I + V with ‖V ‖ ≤ 4

3‖P − Q‖ ≤ 1
3 .

Hence

‖S−1 − I‖ ≤ ‖V ‖ + ‖V ‖ · ‖Π0‖ · ‖R‖ + ‖R‖ · ‖Π0‖

≤ 4

3
‖P − Q‖ +

4

3
‖R‖ · ‖Π0‖

≤ 4

3
d +

4

3
d(α0η)−1.

Using the fact that α0η ≤ 1
6 , it is easy to derive statement (ii) from (13.13) and

the previous inequality. �

13.3 Stability of spectral divisors of systems

To state the main theorem of this section we need the following definition. If Θ =
(A, B, C; X, Y ) and Θ0 = (A0, B0, C0; X, Y ) are two systems, then the distance
between Θ and Θ0 is defined to be

‖Θ − Θ0‖ = ‖A − A0‖ + ‖B − B0‖ + ‖C − C0‖.
In particular, we set ‖Θ‖ = ‖A‖+‖B‖+‖C‖. If W (λ) and W0(λ) are the transfer
functions of Θ and Θ0, respectively, then

‖W (λ) − W0(λ)‖ ≤ ‖Θ − Θ0‖ · ‖Θ‖ · ‖Θ0‖
‖A‖ · ‖A0‖

,

provided |λ| > 2 max{‖A‖, ‖A0‖}.
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Theorem 13.4. Let Θ0 = (A0, B0, C0; X, Y ) be a system with a supporting projec-
tion Π0, and put A×

0 = A0 − B0C0. Assume that

KerΠ0 = ImP (A0; Γ), ImΠ0 = ImP (A×
0 ; Γ×),

where Γ and Γ× are Cauchy contours which split the spectra of A0 and A×
0 , re-

spectively. Then there exist positive constants α, β1 and β2 such that the following
holds. If Θ = (A, B, C; X, Y ) is a system such that ‖Θ − Θ0‖ < α, then Γ splits
the spectrum of A, Γ× splits the spectrum of A× = A − BC,

X = Im P (A; Γ) ∔ Im P (A×; Γ×),

the projection Π of X along Im P (A; Γ) onto Im P (A×; Γ×) is a supporting pro-
jection for Θ, and there exists a similarity transformation S such that

‖S − I‖ ≤ β1‖Θ − Θ0‖,

Π0 = SΠS−1, and the projection Π0 is a supporting projection for the system
Θ̃ = (SAS−1, SB, CS−1; X, Y ) while for the corresponding factors we have

(i) ‖pr I−Π0
(Θ0) − pr I−Π0

(Θ̃)‖ ≤ β2‖Θ − Θ0‖,
(ii) ‖pr Π0

(Θ0) − pr Π0
Θ̃)‖ ≤ β2‖Θ − Θ0‖.

Furthermore, if Θ0 is minimal and the spaces X and Y are finite-dimensional,
then α can be chosen such that Θ is minimal whenever ‖Θ − Θ0‖ < α.

From the proof of the theorem it will become clear that in the first part of
the theorem we may take for the constant α the following quantity:

α =
1

1 + ‖Θ0‖
min

{
1,

1

2γ
,

α0π

2γ2ℓ

}
,

where ℓ is the maximum of the lengths of the curves Γ and Γ×,

γ = max
{

max
λ∈Γ

‖(λ − A0)
−1‖, max

λ∈Γ×

‖(λ − A×
0 )−1‖

}
,

and α0 = 1
6η(KerΠ0, ImΠ0)(‖P (A×

0 ; Γ)‖ + 1)−1. Furthermore, we may take

β1 = 4
(
1 + ‖Θ0‖

)
γ2ℓ

(
πα0η(Ker Π0, ImΠ0)

)−1

,

β2 =
9

η(KerΠ0, ImΠ0)3

(
1 +

2γ2ℓ

πα0
‖Θ0‖

(
1 + ‖Θ0‖

))
.

To prove Theorem 13.4 we first establish the following auxiliary result.



13.3. Stability of spectral divisors of systems 329

Theorem 13.5. Let Θ0 = (A0, B0, C0; X, Y ) be a system with supporting projection
Π0, and assume that

KerΠ0 = Im P, ImΠ0 = ImP×,

where P and P× are given projections of X. Put

α0 =
1

6
η(Im P, Im P×)

(
‖P×‖ + 1

)−1
.

Let Θ = (A, B, C; X, Y ) be another system, and let Q and Q× be projections of X
such that

A[Im Q] ⊂ Im Q, A×[Im Q×] ⊂ Im Q×, (13.14)

‖P − Q‖ + ‖P× − Q×‖ < α0. (13.15)

Then X = ImQ∔ ImQ×. Moreover there exists an invertible operator S : X → X
such that S−1Π0S is the projection Π of X onto Im Q× along Im Q, the projection
Π0 is a supporting projection for the system Θ̃ = (SAS−1, SB, CS−1; X, Y ), while
for the corresponding factors we have

max
{
‖pr I−Π0

(Θ0) − pr I−Π0
(Θ̃)‖, ‖pr Π0

(Θ) − pr Π0
(Θ̃)‖

}
≤ (13.16)

≤ 9

η(Im P, Im P×)3

(
‖Θ − Θ0‖ +

1

α0
‖Θ0‖ ·

(
‖P − Q‖ + ‖P× − Q×‖

))
.

Proof. From Lemma 13.3 we know that X = ImQ ∔ Im Q×. Let Π be the projec-
tion of X along Im Q onto Im Q× . Then (13.14) implies that Π is a supporting
projection for Θ. Take S as in Lemma 13.3. Then we see from statement (i) in
Lemma 13.3 that SΠS−1 = Π0. But then it is clear that Π0 is a supporting
projection for Θ̃.

Let Θ01 and Θ̃1 be the left factors of Θ0 and Θ̃ associated with Π0, and let
Θ02 and Θ̃2 be the corresponding right factors. From the definition of the factors
(see Section 2.4) it is clear that

‖Θ01 − Θ̃1‖ ≤ ‖I − Π0‖
(
‖A0 − Ã‖ + ‖B0 − B̃‖ + ‖C0 − C̃‖

)
.

It follows that ‖Θ01 − Θ̃1‖ ≤ ‖I − Π0‖ · ‖Θ0 − Θ̃‖. Similarly, ‖Θ02 − Θ̃2‖ ≤
‖Π0‖ · ‖Θ0 − Θ̃‖. Using (13.3) we obtain

max
i=1,2

‖Θ0i − Θ̃i‖ ≤ ‖Θ0 − Θ̃‖
η(Im P, Im P×)

. (13.17)

As ‖Θ0−Θ̃‖ ≤ ‖Θ0−Θ‖+‖Θ−Θ̃‖, it remains to compute a suitable upper bound

for ‖Θ − Θ̃‖.
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Put S = I + V and S−1 = I + W . Note that

‖Θ − Θ̃‖ = ‖A − SAS−1‖ + ‖B − SB‖ + ‖C − CS−1‖

≤ ‖A‖ ·
(
‖V ‖ + ‖W‖ + ‖V ‖ · ‖W‖

)
+ ‖B‖ · ‖V ‖ + ‖C‖ · ‖W‖.

By Lemma 13.3(ii) we have max{‖V ‖, ‖W‖} ≤ 2d
(
α0η

)−1
, where d = ‖P −Q‖+

‖P× − Q×‖ and η = η(Im P, Im P×). It follows that

‖Θ − Θ̃‖ ≤ 4d

α0η

(
1 +

d

α0η

)
‖Θ‖. (13.18)

Since dα−1
0 < 1 and η ≤ 1, we can use (13.18) to show that

‖Θ0 − Θ̃‖ ≤ ‖Θ0 − Θ‖ +
8d

α0η2
‖Θ‖

≤ ‖Θ0 − Θ‖ +
8d

α0η2
‖Θ − Θ0‖ +

8d

α0η2
‖Θ0‖

≤ 9

η2
‖Θ − Θ0‖ +

8d

α0η2
‖Θ0‖

≤ 9

η2

(
‖Θ − Θ0‖ +

d

α0
‖Θ0‖

)
.

By using this in (13.17) we obtain the desired inequality (13.16). �

Proof of Theorem 13.4. Take γ, ℓ, α0 and α as in the first paragraph after Theorem
13.4, and take ‖Θ − Θ0‖ < α. In particular, we have ‖Θ − Θ0‖ < 1. Note that

‖A× − A×
0 ‖ ≤ ‖A − A0‖ + ‖B − B0‖ · ‖C − C0‖ +

+‖B0‖ · ‖C − C0‖ + ‖C0‖ · ‖B − B0‖

≤ ‖Θ − Θ0‖ ·
(
1 + ‖Θ0‖

)
.

It follows that

max{‖A − A0‖, ‖A× − A×
0 ‖} ≤ ‖Θ − Θ0‖ ·

(
1 + ‖Θ0‖

)
=

ν

2γ
, (13.19)

where 0 ≤ ν < 1. Using elementary spectral theory, we may conclude from (13.19)
that the curves Γ and Γ× split the spectra of A and A×, respectively, while in
addition

‖(λ − A)−1 − (λ − A0)
−1‖ ≤ 2γ2‖Θ − Θ0‖ ·

(
1 + ‖Θ0‖

)
, λ ∈ Γ,

‖(λ − A×)−1 − (λ − A×
0 )−1‖ ≤ 2γ2‖Θ − Θ0‖ ·

(
1 + ‖Θ0‖

)
, λ ∈ Γ×.
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Hence for the corresponding Riesz projections we have,

‖P (A; Γ) − P (A0; Γ)‖ + ‖P (A×; Γ×) − P (A×
0 ; Γ×)‖ ≤ (13.20)

≤ 2
γ2ℓ

π
‖Θ − Θ0‖

(
1 + ‖Θ0‖

)
< α0.

So, for P = P (A0; Γ), P× = P (A×
0 , Γ×), Q = P (A; Γ) and Q× = P (A×; Γ×), the

coinciding conditions (13.10) and (13.15) are satisfied. Hence we can apply Lemma
13.3 and Theorem 13.5 to the four projections P , P×, Q and Q×.

It follows that X = ImP (A; Γ)∔Im P (A×; Γ×). Further, if Π is the projection
of X along ImP (A; Γ) onto ImP (A×; Γ×), then Π is a supporting projection for
the system Θ. Also there exists a similarity transformation S such that Π0 =
SΠS−1 and Π0 is a supporting projection for the system

Θ̃ = (SAS−1, SB, CS−1; X, Y ).

Finally, by virtue of Lemma 13.3(ii) and formulas (13.16) and (13.20), we have
‖S − I‖ ≤ β1‖Θ − Θ0‖ and

max
{
‖prI−Π0

(Θ0) − prI−Π0
(Θ̃0)‖, ‖prΠ0

(Θ0) − prΠ0
(Θ̃0)‖

}
≤

≤ β2‖Θ − Θ0‖,

where β1 and β2 are as in the paragraph after Theorem 13.4.

Now suppose that Θ0 is minimal, and that X and Y are finite-dimensional.
The minimality of Θ0 and the finite dimensionality of X imply that for some k the
operator col(C0A

j
0)

k
j=0 is injective and the operator row(Aj

0B0)
k
j=0 is surjective.

As Y is finite-dimensional too, it follows that for

‖Θ − Θ0‖ = ‖A − A0‖ + ‖B − B0‖ + ‖C − C0‖

sufficiently small the operator col(CAj)k
j=0 will be injective and the operator

row(AjB)k
j=0 will be surjective. This implies that Θ will be minimal whenever

‖Θ − Θ0‖ is sufficiently small. This completes the proof of Theorem 13.4. �

Theorem 13.6. Let Θε = (Aε, Bε, Cε; X, Y ) be a system, and assume that the
operators Aε, Bε, and Cε depend analytically on ε in a neighborhood of ε = 0. Put
A×

0 = A0 − B0C0, and let Π0 be a supporting projection of Θ0. Assume that

KerΠ0 = ImP (A0; Γ), Im P0 = ImP (A×
0 ; Γ×),

where Γ and Γ× are Cauchy contours that split the spectra of A0 and A×
0 , respec-

tively. Then for |ε| sufficiently small, there exists a similarity transformation Sε,
depending analytically on ε, such that S0 = I and the projection Π0 is a supporting
projection for the system

Θ̃ε = (SεAεS
−1
ε , SεBε, CεS

−1
ε ; X, Y ).
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In particular, if

prI−Π0
(Θ̃ε) = (Ã1ε, B̃1ε, C̃1ε; KerΠ0, Y ),

prΠ0
(Θ̃ε) = (Ã2ε, B̃2ε, C̃2ε; ImΠ0, Y ),

the operators Ã1ε, Ã2ε, B̃1ε, B̃2ε, C̃1ε and C̃2ε depend analytically on ε.

Proof. We know already that for |ε| sufficiently small the Cauchy contours Γ and
Γ× split the spectra of Aε and A×

ε , respectively. Put

Pε = P (Aε; Γ), P×
ε = P (A×

ε , Γ×).

From the Cauchy integral formulas for the Riesz projections Pε and P×
ε it follows

that Pε and P×
ε depend analytically on ε.

Now we proceed as in the proof of Lemma 13.3. Put S1ε = I +P0−Pε. Then
S1ε depends analytically on ε, the operator S10 = I, and hence S1ε is invertible
for |ε| sufficiently small.

Let Πε be the projection of X along ImPε onto Im P×
ε . As both Pε and P×

ε

are analytic functions of ε, the same is true for Πε (cf., [105]). It follows that

Π̃ε = S1εΠεS
−1
1ε is analytic in ε also. Note that Π̃0 = Π0.

Next we consider the angular operator Rε of Im Π̃ε with respect to Π0. Recall
(see Section 5.1) that

Rε = (Π̃ε − Π0)|ImΠ0
.

It follows that Rε depends analytically on ε and R0 is the zero operator. So the
operator S2ε = I−RεΠ0 is analytic in ε and S20 = I. In particular, we see that S2ε

is invertible for |ε| sufficiently small. Now put Sε = S2εS1ε. Then for |ε| sufficiently
small Sε has all desired properties. �

13.4 Applications to transfer functions

In this section we shall prove Theorem 13.1. We begin with its infinite-dimensional
analogue. Throughout this section X and Y are Banach spaces.

Theorem 13.7. Consider the transfer function

W0(λ) = IY + C0(λIX − A0)
−1B0, (13.21)

and assume that W0 admits a factorization

W0 = W01W02, W0j(λ) = IY + C0j(λIXj
− A0j)

−1B0j ,

such that (with A×
0j = A0j − B0jC0j as usual)

σ(A01) ∩ σ(A02) = ∅, σ(A×
01) ∩ σ(A×

02) = ∅, (13.22)
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while, in addition, the system Θ0 = (A0, B0, C0; X, Y ) is similar to the product
Θ01Θ02, where Θ0j = (A0j , B0j , C0j ; Xj, Y ). Then there exist positive constants
α0 and β0 such that the following holds. If A, B and C are matrices of appropriate
sizes, with

‖A − A0‖ + ‖B − B0‖ + ‖C − C0‖ < α0, (13.23)

then the transfer function W (λ) = IY + C(λIX − A)−1B admits a factorization

W = W1W2, Wj(λ) = IY + Cj(λIXj
− Aj)

−1Bj , (13.24)

such that (with A×
j = Aj − BjCj as usual)

σ(A1) ∩ σ(A2) = ∅, σ(A×
1 ) ∩ σ(A×

2 ) = ∅, (13.25)

and, for j = 1, 2,

‖Aj − A0j‖ + ‖Bj − B0j‖ + ‖Cj − C0j‖ ≤ (13.26)

≤ β0(‖A − A0‖ + ‖B − B0‖ + ‖C − C0‖). (13.27)

Proof. Let T : X → X1 ∔ X2 be a system similarity between Θ0 and Θ01Θ02.
Assume (13.23) holds, and put

Θ = (TAT−1, TB, CT−1; X1 ∔ X2, Y ).

Note that for the system distance ‖Θ01Θ02 − Θ‖, we have

‖Θ01Θ02 − Θ‖ = ‖(TA0T
−1 − TAT−1‖ + ‖TB0 − TB‖ +

+ ‖C0T
−1 − CT−1‖

≤ (‖A − A0‖ + ‖B − B0‖ + ‖C − C0‖) ·
·
(
‖T ‖ · ‖T−1‖ + ‖T ‖ + ‖T−1‖

)
.

Relative to the direct sum X1 ∔ X2 the main operator of the system Θ0 =
Θ01Θ02 and the associated main operator (respectively) have the following form

A0 =

⎡
⎣

A01 ∗

0 A02

⎤
⎦ , A

×

0 =

⎡
⎣

A×
01 0

∗ A×
02

⎤
⎦ .

Put a Cauchy contour Γ around σ(A01) that separates the spectrum σ(A01) from
σ(A02). Similarly, put a Cauchy contour Γ× around σ(A×

02) such that Γ× separates
σ(A×

02) from σ(A×
01). Then we can apply Lemma 5.9 to show that

X1 = ImP (A0; Γ), X2 = Im P (A
×

0 ; Γ×).

It follows that we may apply Theorem 13.4 to the system Θ0 = Θ01Θ02.
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Let α and β2 be the positive numbers that according to Theorem 13.4 cor-
respond to the system Θ0. Put

α0 = α
(
‖T ‖ · ‖T−1‖ + ‖T ‖ + ‖T−1‖

)−1
.

Now assume that (13.23) holds. Then ‖Θ0 − Θ‖ < α. So by Theorem 13.4 there
exists a similarity transformation S such that for the system

Θ̃ = (STAT−1S−1, STB, CT−1S−1; X1 ∔ X2, Y )

the projection Π0 of X1 ∔ X2 along X1 onto X2 is a supporting projection. This
shows that W admits a factorization of the form (13.24). Moreover we know that

‖prI−Π0
(Θ0) − prI−Π0

(Θ̃)‖ ≤ β2‖Θ0 − Θ‖,

‖prΠ0
(Θ) − prΠ0

(Θ̃)‖ ≤ β2‖Θ0 − Θ‖.

But this is the same as

‖A0i − Ai‖ + ‖B0i − Bi‖ + ‖C0i − Ci‖ ≤ β2‖Θ0 − Θ‖, i = 1, 2.

So, if we take

β0 = β2

(
‖T ‖ · ‖T−1‖ + ‖T ‖ + ‖T−1‖

)
,

then (13.26) holds true.

Let A be the main operator of Θ, and let A
×

be the main operator of the

associated system Θ
×

. As ‖Θ0−Θ‖ < α, we can apply Theorem 13.4 to show that

the curves Γ and Γ× split the spectra of A and A
×

, respectively, and

X1 ∔ X2 = Im P (A; Γ) ∔ Im P (A
×

; Γ×).

Let Π be the projection of X1 ∔ X2 along Im P (A; Γ) onto ImP (A
×

; Γ×). Then
Π0 = SΠS−1. It follows that σ(A1) is inside the contour Γ and σ(A2) is outside the
contour Γ. Similarly, σ(A×

2 ) is inside Γ× and σ(A×
1 ) is outside Γ×. In particular,

we see that (13.25) holds true. This completes the proof of the theorem. �

To prove Theorem 13.1, we shall show that Theorem 13.1 appears as a
corollary of Theorem 13.7. To do this, let us assume that X and Y are finite-
dimensional. Further, let us assume that the realization (13.21) is minimal. Ap-
plying the last paragraph of Theorem 13.4, we see that in Theorem 13.7 the pos-
itive number α0 may be chosen such that (13.23) implies that the realization
W (λ) = IY + C(λIX −A)−1B is also minimal. Next we observe that the assump-
tion in Theorem 13.7 that Θ0 is similar to the product Θ01Θ02 may be replaced by

dimX = dimX1 + dimX2, (13.28)
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because we have assumed that Θ0 is minimal. Moreover, again because of mini-
mality, the condition (13.22) is equivalent to the requirement that the factors W01

and W02 have no common zeros and no common poles, and, similarly, (13.25) is
equivalent to the statement that the factors W1 and W2 have no common zeros
and no common poles. By virtue of (13.28), the minimality of the realizations of
W0 and W implies that W0(λ) = W01(λ)W02λ and W (λ) = W1(λ)W2λ are mini-
mal factorizations (cf., Section 9.1). Using the above remarks it is simple to obtain
Theorem 13.1 as a corollary of Theorem 13.7.

Using Theorem 13.6 in the same way as Theorem 13.4 has been used in the
proof of Theorem 13.7, one can see that the following analytic version of Theorem
13.7 holds true.

Theorem 13.8. Consider the transfer function

Wε(λ) = IY + Cε(λIX − Aε)
−1Bε,

with the operators Aε, Bε and Cε depending analytically on ε in a neighborhood
of ε = 0. Assume that W0 admits a factorization

W0 = W01W02, W0j(λ) = IY + C0j(λIXj
− A0j)

−1B0j ,

such that (with A×
0j = A0j − B0jC0j as usual)

σ(A01) ∩ σ(A02) = ∅, σ(A×
01) ∩ σ(A×

02) = ∅,

while, in addition, the system Θ0 = (A0, B0, C0; X, Y ) is similar to the product
Θ01Θ02, where Θ0j = (A0j , B0j , C0j ; Xj, Y ). Then for |ε| sufficiently small the
transfer function Wε admits a factorization,

Wε = W1εW2ε, Wjε(λ) = IY + Cε
j (λXIε

− Aε
j)

−1Bε
j ,

such that (with (Aε
0j)

× = Aε
0j − Bε

0jC
ε
0j as usual)

σ(Aε
01) ∩ σ(Aε

02) = ∅, σ
(
(Aε

01)
×
)
∩ σ

(
(Aε

02)
×
)

= ∅,

the operators Aε
1, A

ε
2, B

ε
1, B

ε
2 , C

ε
1 and Cε

2 depend analytically on ε, and for ε = 0
they are equal to A01, A02, B01, B02, C01 and C02, respectively.

13.5 Applications to Riccati equations

In this section we show that the method of Sections 5.4 and 13.3 can also be used to
prove stability theorems for certain solutions of the Riccati equation. Throughout
this section X1 and X2 are Banach spaces, and we use the symbol L(Xj , Xi) to
denote the space of all bounded linear operators from Xj into Xi.
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Theorem 13.9. For i, j = 1, 2, let Tij ∈ L(Xj , Xi), and let R ∈ L(X2, X1) be a
solution of

RT21R + RT22 − T11R − T12 = 0. (13.29)

Assume σ(T11 − RT21) and σ(T22 + T21R) are disjoint, and let Γ be a Cauchy
contour with σ(T22 + T21R) in the inner domain of Γ and σ(T11 − RT21) in the
outer domain. Then there exist positive constants α and β such that the following
holds. If Sij ∈ L(Xj , Xi), and

‖Sij − Tij‖ ≤ α, i, j = 1, 2, (13.30)

then the equation
QS21Q + QS22 − S11Q − S12 = 0 (13.31)

has a solution Q ∈ L(X2, X1) such that σ(S22 + S21Q) lies in the inner domain
of Γ, the set σ(S11 − QS21) lies in the outer domain of Γ, and

‖R − Q‖ ≤ β max
i,j=1,2

‖Tij − Sij‖. (13.32)

Proof. Consider the operators

T =

[
T11 T12

T21 T22

]
, S =

[
S11 S12

S21 S22

]

on X = X1 ∔ X2. Assume that X is endowed with the norm ‖(x1, x2)‖ = ‖x1‖ +
‖x2‖. Then

‖T − S‖ ≤ max
i,j=1,2

‖Tij − Sij‖. (13.33)

As the Riccati equation (13.29) has a solution R such that σ(T11 − RT21) and
σ(T22 + T21R) do not intersect, we know from Proposition 5.10 that the space

NR = {(Rz, z) | z ∈ X2}

is a spectral subspace for T . In fact, if Γ is as in the statement of the theorem,
then Γ splits the spectrum of T and NR = Im P (T ; Γ).

Let ℓ be the length of Γ, and put γ = maxλ∈Γ ‖(λ−T )−1‖. Take S such that
‖T − S‖ < (2γ)−1. By elementary spectral theory this implies that Γ splits the
spectrum of S and

‖(λ − T )−1 − (λ − S)−1‖ ≤ 2γ2‖S − T ‖, λ ∈ Γ.

But then ‖P (T ; Γ)− P (S; Γ)‖ ≤ γ2ℓ

π
‖S − T ‖.

As X = X1 ∔ NR, the number η(X1, NR) is positive. Put

α = min

{
1

4γ
,

π

4γ2ℓ
η(X1, NR)

}
,
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and assume that (13.30) holds true. By (13.33) this implies that ‖T − S‖ < 2α ≤
(2γ)−1, and we can apply the result of the previous paragraph to show that

‖P (T ; Γ)− P (S; Γ)‖ ≤ 1

2
η(X1, NR).

In particular we see that

gap (NR, Im P (S; Γ)) ≤ 1

2
η(X1, NR). (13.34)

By [71], Theorem 2 this implies that X = X1 ∔ Im P (S; Γ). It follows that there
exists Q ∈ L(X2, X1) such that

NQ = {Qz + z
∣∣z ∈ X2} = Im P (S; Γ).

By Proposition 5.10, this operator Q is a solution of equation (13.31), the spectrum
σ(S22+S21Q) is in the inner domain of Γ and σ(S11−QS21) is in the outer domain
of Γ.

According to (13.34), we have gap (NR, NQ) ≤ 1
2η(X1, NR). So we can apply

Lemma 13.2(ii) to show that

‖R − Q‖ ≤ 2(1 + ‖R‖)
η(X1, NR)

gap (NR, NQ). (13.35)

But

gap (NR, NQ) ≤ ‖P (T ; Γ)− P (S; Γ)‖ ≤ γ2ℓ

π
‖T − S‖ (13.36)

≤ 2
γ2ℓ

π
max

i,j=1,2
‖Tij − Sij‖.

Put

β = 4
(
1 + ‖R‖

) γ2ℓ

πη(X1, NR)
.

Then we see from (13.35) and (13.36) that (13.32) holds true. This completes the
proof of the theorem. �

Using arguments similar to the ones employed in the proof of Theorem 13.6,
one can see that the following analytic analogue of the previous theorem holds
true.

Theorem 13.10. For i, j = 1, 2, let Tij(ε) : Xj → Xi be bounded linear operators
depending analytically on ε in a neighborhood of ε = 0. Let R ∈ L(X2, X1) be a
solution of

RT21(0)R + RT22(0) − T11(0)R − T12(0)R = 0,
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and assume that σ
(
T11(0)−RT21(0)

)
and σ

(
T22(0)+ T21(0)R

)
are disjoint. Then

for |ε| sufficiently small, there exists R(ε) ∈ L(X1, X2), depending analytically on
ε, such that R(0) = R,

R(ε)T21(ε)R(ε) + R(ε)T22(ε) − T11(ε)R(ε) − T12(ε) = 0,

and
σ
(
T11(ε) − R(ε)T21(ε)

)
∩ σ(T22

(
ε) + T21(ε)R(ε)

)
= ∅.

Notes

The material in this chapter is taken from Chapter VII in [14]. The notion of a gap
between subspaces has been introduced and developed in [89]. It was developed
further and used in Fredholm theory in [58] and [85]. As our main sources for
topological properties of subspaces we used [71] and [86]. For Euclidean spaces
they can also been found in Chapter 13 of [70].



Chapter 14

Stability of Divisors

In this chapter we shall prove that there exist stable factorizations which are
not spectral factorizations. In fact, for the finite-dimensional case we shall give
a complete description of all possible stable minimal factorizations. It will also
be shown that stability amounts to the same as the property of being isolated
provided the underlying field is complex (which will be the case in this chapter).

14.1 Stable invariant subspaces

In the previous chapter we have implicitly been dealing with invariant subspaces
which have a certain stability property. In this section we shall investigate this
matter explicitly.

Let T be a bounded linear operator on a Banach space X . A closed T -
invariant subspace N of X is called stable if given ε > 0, there exists δ > 0 such
that the following holds. If S is a bounded linear operator on X and ‖S − T ‖ <
δ, then S has a closed invariant subspace M such that gap (M, N) < ε. The
property of being a stable invariant subspace is similarity invariant in the following
sense. Let E be an invertible operator on X , and introduce T̃ = E−1TE, Ñ =
E−1[N ]. Then Ñ is a stable invariant subspace for T̃ if (and only if) N is a
stable invariant subspace for T . The argument is straightforward and involves the
condition number ‖E−1‖ · ‖E‖ of E.

If N is the image of a Riesz projection corresponding to T , then N is clearly
a stable invariant subspace for T . In general, not every stable T -variant subspace
is of this form. For the finite-dimensional case we shall give a complete description.

Let A be a k× k matrix. As usual we identify A with its canonical action on
Ck. The generalized eigenspace Ker (λ0−A)k of A corresponding to the eigenvalue
λ0 will be denoted by N(λ0).
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Theorem 14.1. Let λ1, . . . , λr be the different eigenvalues of the k × k matrix
A. A subspace N of Ck is a stable A-invariant subspace if and only if N =
N1 +̇ · · · +̇Nr, where for each j the space Nj is an arbitrary A-invariant sub-
space of N(λj) whenever dimKer (λj − A) = 1, while otherwise Nj = {0} or
Nj = N(λj).

The proof of Theorem 14.1 will be based on a series of lemmas and an aux-
iliary theorem which is of some interest in itself. To state the latter theorem we
recall the following notion. Given a k × k matrix A, a chain

M0 ⊂ M1 ⊂ · · · ⊂ Mk−1 ⊂ Mk

of A-invariant subspaces in Ck, written in shorthand as {Mj}, is said to be com-
plete if dimMj = j for j = 0, . . . , k.

Theorem 14.2. Given ε > 0, there exists δ > 0 such that the following holds true. If
B is a k×k matrix with ‖B−A‖ < δ and {Mj} is a complete chain of B-invariant
subspaces, then there exists a complete chain {Ni} of A-invariant subspaces such
that gap (Nj , Mj) < ε for j = 1, . . . , k − 1.

In general, the chain {Nj} for A will depend on the choice of B. To see this,
consider

A =

[
0 0
0 0

]
, B−

ν =

[
0 0
ν 0

]
, B+

ν =

[
0 ν
0 0

]
,

where ν ∈ C. For ν �= 0 the unique one-dimensional invariant subspace of B−
ν is

{0}∔ C, while the only one-dimensional invariant subspace for B+
ν is C ∔ {0}.

Proof. Assume that the conclusion of the theorem is not correct. Then there exists
ε > 0 with the property that for every positive integer m there exists a k×k matrix
Bm satisfying ‖Bm − A‖ < 1/m and a complete chain {Mmj} of Bm-invariant
subspaces such that for every complete chain {Nj} of A-invariant subspaces we
have

max
1≤j≤k−1

gap (Nj , Mmj) ≥ ε, m = 1, 2, . . . . (14.1)

Denote by Pmj the orthogonal projection of Ck onto Mmj. Since Ck is finite-
dimensional and all Pmj are in the unit ball of L(Ck, Ck), there exist a subsequence
m1, m2, . . . of the sequence of positive integers and operators P1, . . . , Pk−1 on Ck

such that
lim

i→∞
Pmij = Pj , j = 0, . . . , k.

Note that P1, . . . , Pk−1 are orthogonal projections and that Nj = ImPj has
dimension j. By passing to the limits it follows from BmPmj = PmjBmPmj

that APj = PjAPj . Hence Nj is A-invariant. Since Pmj = Pm,j+1Pmj we have
Pj = Pj+1Pj , and thus Nj ⊂ Nj+1. It follows that Nj is a complete chain of
A-invariant subspaces. Finally, gap (Nj , Mmij) = ‖Pj − Pmij‖ → 0 for i → ∞.
But this contradicts (14.1), and the proof is complete. �
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Corollary 14.3. If A has only one eigenvalue, λ0 say, and if Ker (λ0 − A) is one-
dimensional, then each invariant subspace of A is stable.

Proof. The conditions on A are equivalent to the requirement that for each j =
0, . . . , k, the operator A has only one j-dimensional invariant subspace and the non-
trivial invariant subspaces form a complete chain. So we may apply the previous
theorem to get the desired result. �

Lemma 14.4. If A has only one eigenvalue, λ0 say, and if Ker (λ0 − A) has di-
mension at least two, then the only stable A-invariant subspaces are {0} and Ck.

Proof. Let J = diag (J1, . . . , Js) be a Jordan matrix for A. Here Ji is a simple
Jordan block with λ0 on the main diagonal and of size κi, say. As dim Ker (λ0 −
A) ≥ 2 we have s ≥ 2. By similarity, it suffices to prove that J has no non-trivial
stable invariant subspace.

Let e1, . . . , ek be the standard basis for Ck. Define on Ck the operator Tε

by setting Tεei = εei−1 if i = κ1 + · · · + κj + 1, j = 1, . . . , s − 1, and Tεei = 0
otherwise. Put Bε = J + Tε. Then Bε → J as ε → 0. For ε �= 0 the operator
Bε has exactly one j-dimensional invariant subspace namely, Nj = sp {e1, . . . , ej}.
Here j = 0, . . . , k. It follows that Nj is the only candidate for a stable J-invariant
subspace of dimension j.

Now consider J̃ = diag (Js, . . . , J1). Repeating the argument of the previous

paragraph for J̃ instead of J , we see that Nj is the only candidate for a stable

J̃-invariant subspace of dimension j. But J = SJ̃S−1, where S is the similarity
transformation that reverses the order of the blocks in J . It follows that SNj is
the only candidate for a stable J-invariant subspace of dimension j. However, as
s ≥ 2, we have SNj �= Nj for j = 1, . . . , k − 1, and the proof is complete. �

Corollary 14.3 and Lemma 14.4 together prove Theorem 14.1 for the case
when A has one eigenvalue only. The next two lemmas will show that the gen-
eral version of the theorem may be proved by reduction to the case of a single
eigenvalue.

In the remainder of this section X will be a complex Banach space and T
will be a bounded linear operator on X .

Lemma 14.5. Let Γ be a Cauchy contour splitting the spectrum of T , let T0 be
the restriction of T to Im P (T ; Γ), and let N be a closed subspace of Im P (T ; Γ).
Then N is a stable invariant subspace for T if and only if N is a stable invariant
subspace for T0.

Proof. Suppose N is a stable invariant subspace for T0, but not for T . Then one
can find ε > 0 such that for every positive integer m there exists Sm ∈ L(X)
satisfying

‖Sm − T ‖ <
1

m
, (14.2)
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while in addition

gap (N, M) ≥ ε, M ∈ Ωm. (14.3)

Here Ωm denotes the collection of all closed invariant subspaces of Sm. From (14.2)
it is clear that Sm → T . By assumption Γ splits the spectrum of T . Thus, for m
sufficiently large, the contour Γ will split the spectrum of Sm as well. Moreover,
P (Sm, Γ) → P (T ; Γ), and hence Im P (Sm; Γ) tends to Im P (T ; Γ) in the gap topol-
ogy. But then, for m sufficiently large,

KerP (T ; Γ) +̇ ImP (Sm; Γ) = X

(cf, [71], Theorem 2).

Let Rm be the angular operator of ImP (Sm; Γ) with respect to P (T ; Γ). Here,
as in the sequel, m is supposed to be sufficiently large. Recall that P (Sm; Γ) →
P (T ; Γ). Thus we have Rm → 0. Put

Em =

[
I Rm

0 I

]
,

where the matrix representation corresponds to the decomposition

X = KerP (T ; Γ) +̇ Im P (T ; Γ). (14.4)

Then Em is invertible with inverse

E−1
m =

[
I −Rm

0 I

]
.

Furthermore, Em[Im P (T ; Γ)] = ImP (Sm; Γ) and Em → I when m → ∞.

Put Tm = E−1
m SmEm. Then TmIm P (T ; Γ) ⊂ Im P (T ; Γ) and Tm → T . Let

Tm0 be the restriction of Tm to Im P (T ; Γ). Then Tm0 → T0. As N is a stable
invariant subspace for T0, there exists a sequence N1, N2, . . . of closed subspaces
of Im P (T ; Γ) such that each Nm is Tm0-invariant and gap (Nm, N) → 0. Note
that Nm is also Tm-invariant.

Now put Mm = EmNm. Then Mm is a closed invariant subspace for Sm. Thus
Mm ∈ Ωm. Since Em → I if m → ∞, one can easily deduce that gap (Mm, Nm) →
0. Together with gap (Nm, N) → 0 this gives gap (Mm, N) → 0, which contradicts
(14.3).

Next assume that N is a stable invariant subspace for T , but not for T0. Then
one can find ε > 0 such that for every positive integer m there exists a bounded
linear operator Sm0 on ImP (T ; Γ) satisfying

‖Sm0 − T0‖ <
1

m
, (14.5)
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while in addition
gap (N, M) ≥ ε, M ∈ Ωm0. (14.6)

Here Ωm0 denotes the collection of all closed invariant subspaces of Sm0. Let T1

be the restriction of T to KerP (T ; Γ) and write

Sm =

[
T1 0

0 Sm0

]
,

where the matrix representation corresponds to the decomposition given in (14.4).
From the inequality (14.5) it is clear that Sm → T . Hence, as N is a stable invariant
subspace for T , there exists a sequence N1, N2, . . . of closed subspaces of X such
that Nm is Sm-invariant and gap (Nm, N) → 0. Put Mm = P (T ; Γ)Nm. Since
P (T ; Γ) commutes with Sm, we have that Mm is an invariant subspace for Sm0. As
N is a closed subspace of Im P (T ; Γ), the minimal opening η = η(N, KerP (T ; Γ))
is strictly positive. From Lemma 2 in [71], we know that gap (Nm, N) → 0 implies
that η(Nm, KerP (T ; Γ)) ≥ 1

2η > 0. It follows that Nm + KerP (T ; Γ) is closed.
But then Mm is also closed by Lemma IV.2.9 in [75]. Hence Mm is a closed
invariant subspace for Sm0. In other words Mm ∈ Ωm0. We shall now prove that
gap (Mm, N) → 0, thus obtaining a contradiction to (14.6).

Take y ∈ Mm with ‖y‖ ≤ 1. Then y = P (T ; Γ)x for some x ∈ Mm. As

‖y‖ = ‖P (T ; Γ)x‖ ≥ inf{‖x − u‖ | u ∈ KerP (T ; Γ)}

≥ η(Nm, KerP (T ; Γ)) · ‖x‖,

we see that ‖y‖ ≥ 1
2η‖x‖ for m sufficiently large. Using this it is not difficult to

deduce that

gap (Mm, N) ≤
(

1 +
2

η

)
‖P (T ; Γ)‖ · gap (Nm, N)

for m sufficiently large. We conclude that gap (Nm, N) → 0 when m → ∞, and
the proof is complete. �

Lemma 14.6. Let N be a complemented invariant subspace for T , and assume that
the Cauchy contour Γ splits the spectrum of T and the spectrum of the restriction
operator T |N . If N is stable for T , then P (T ; Γ)N is a stable closed invariant
subspace for the restriction T0 of T to Im P (T ; Γ).

Proof. It is clear that M = P (T ; Γ)N is T0-invariant. For each λ ∈ Γ we have
(λ − T |N )−1 = (λ − T )−1|N . This implies that

M = P (T ; Γ)N = Im P (T |N ; Γ) ⊂ N,

and it follows that M is closed.
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Assume that M is not stable for T0. Then M is neither stable for T by Lemma
14.5. Hence there exist ε > 0 and a sequence S1, S2, . . . such that

gap (L, M) ≥ ε, L ∈ Ωm, (14.7)

where Ωm denotes the set of all closed invariant subspaces of Sm, while moreover
Sm → T for m → ∞.

As N is stable for T , one can find a sequence N1, N2, . . . of closed subspaces
such that SmNm ⊂ Nm and gap (Nm, N) → 0. Also, since Γ splits the spectrum of
T and Sm → T , the contour Γ will split the spectrum of Sm for m sufficiently large.
But then, without loss of generality, we may assume that Γ splits the spectrum of
each Sm. Again using Sm → T , it follows that P (Sm; Γ) → P (T ; Γ).

Let Z be a closed complement of N in X , that is, X = Z +̇N . Because
gap (Nm, N) → 0, we have X = Z +̇Nm for m sufficiently large. So, without loss
of generality, we may assume that X = Z +̇ Nm for each m. Let Rm be the angular
operator of Nm with respect to the projection of X along Z onto N , and put

Em =

[
I Rm

0 I

]
,

where the matrix representation corresponds to the decomposition X = Z +̇N .
Note that Tm = E−1

m SmEm leaves invariant N . Since Rm → 0, we have Em → I,
and so Tm → T .

By assumption Γ splits the spectrum of T |N . As Tm → T and N is invariant
under Tm, the contour Γ will split the spectrum of Tm|N as well, provided m is
sufficiently large. But then we may assume that this happens for all m. Also, we
have

lim
m→∞

P (Tm|N ; Γ) → P (T |N ; Γ).

Hence Mm = ImP (Tm|N ; Γ) → Im P (T |N ; Γ) = M in the gap topology.

Now consider Lm = EmMm. Then Lm is a closed Sm-invariant subspace of
X . In other words, Lm ∈ Ωm. From Em → I it follows that gap (Lm, Mm) → 0.
The latter, together with gap (Mm, M) → 0, implies that gap (Lm, M) → 0. So we
arrive at a contradiction to (14.7) and the proof is complete. �

Proof of Theorem 14.1. Suppose N is a stable invariant subspace for A. Put Nj =
PjN , where Pj is the Riesz projection corresponding to A and λj . Then N =
N1 +̇ · · · +̇Nr. By Lemma 14.6 the space Nj is a stable invariant subspace for the
restriction Aj of A to N(λj). But Aj has one eigenvalue only, namely λj . So we
may apply Lemma 14.4 to prove that Nj has the desired form.

Conversely, assume that each Nj has the desired form, and let us prove that
N = N1 +̇ · · · +̇ Nr is a stable invariant subspace for A. By Corollary 14.3, the
space Nj is a stable invariant subspace for the restriction Aj of A to Im Pj . Hence
we may apply Lemma 14.5 to show that each Nj is a stable invariant subspace for
A. But then the same is true for the direct sum N = N1 +̇ · · · +̇Nr. �
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For shortness sake, the proofs of Lemmas 14.5 and 14.6 were given by reductio
ad absurdum. It is of some practical interest to note that they could have been
given in a more constructive way.

The next theorem indicates the way in which Theorem 14.1 will be applied
in the context of minimal factorization theory.

Theorem 14.7. Let X1 and X2 be finite-dimensional spaces, and let

A =

[
A1 A0

0 A2

]

be a linear operator acting on X = X1 +̇X2. Then X1 is a stable invariant subspace
for A if and only if each common eigenvalue of A1 and A2 is an eigenvalue of A
of geometric multiplicity one.

Proof. It is clear that X1 is an invariant subspace for A. We know from Theorem
14.1 that X1 is stable if and only if for each Riesz projection P of A corresponding
to an eigenvalue λ0 with dimKer (λ0−A) ≥ 2, we have PX1 = {0} or PX1 = ImP .

Let P be a Riesz projection of A corresponding to an arbitrary complex
number λ0. Also, for i = 1, 2, let Pi be the Riesz projection associated with Ai

and λ0. Then P has the form

P =

⎡
⎣

P1 P1Q1 + Q2P2

0 P2

⎤
⎦ ,

where Q1 and Q2 are certain linear operators acting from X2 into X1 (cf., the
proof of Theorem 8.19). It follows that {0} �= PX1 �= ImP if and only if λ0 is a
common eigenvalue of A1 and A2. This proves the theorem. �

14.2 Lipschitz stable invariant subspaces

In this section we consider a different concept of stability. Let T be a bounded
linear operator on a Banach space X . A closed T -invariant subspace N of X is
called Lipschitz stable if there exist δ > 0 and K > 0 such that the following
statement holds true. If S is a bounded linear operator on X and ‖S − T ‖ < δ,
then S has a closed invariant subspace M such that gap (M, N) ≤ K‖S − T ‖.
Clearly, a Lipschitz stable invariant subspace is also a stable one.

If N is the image of a Riesz projection corresponding to T , then N is a
Lipschitz stable invariant subspace for T . To see this, we argue as follows. Let Γ
be a closed positively oriented Jordan curve not intersecting the spectrum of T
such that N = ImP (T ; Γ). For δ small enough and S a bounded linear operator
on X such that ‖S − T ‖ < δ also S will have no spectrum on Γ. Thus the Riesz
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projection P (S; Γ) is well defined too. Put M = Im P (S; Γ). From the material on
the gap presented in Section 13.2 we recall that gap (M, N) ≤ ‖P (S; Γ)−P (T ; Γ)‖,
and so

gap (M, N) ≤ ‖ 1

2πi

∫

Γ

(λI − S)−1 − (λI − T )−1 dλ‖

= ‖ 1

2πi

∫

Γ

(λI − S)−1(T − S)(λI − T )−1 dλ‖.

Now let C be such that maxλ∈Γ ‖(λI −T )−1‖ < C. Such a C exists as (λI −T )−1

is continuous on Γ and Γ is compact. Take δ small enough so that δC < 1. Since
λ− S = (λ− T )

(
I − (λ− T )−1(S − T )

)
, and as ‖(λ− T )−1(S − T )‖ < δC < 1 for

λ ∈ Γ, we see that ‖(λI − S)−1‖ < C(1 − δC)−1, λ ∈ Γ. Hence

gap (M, N) ≤ 1

2π
ℓ(Γ)

C2

1 − δC
‖S − T ‖,

where ℓ(Γ) denotes the length of Γ. Thus the spectral subspace N is a Lipschitz
stable T -invariant subspace.

Not every stable T -variant subspace is Lipschitz stable. In fact, for the finite-
dimensional case we shall show that the Lipschitz stable subspaces are precisely
the images of Riesz projections.

Theorem 14.8. Let X be a finite-dimensional Hilbert space, let T be a linear op-
erator on X, and let N be a T -invariant subspace. Then N is Lipschitz stable if
and only if it is the image of a Riesz projection for T .

Proof. The arguments above show that a spectral subspace is Lipschitz stable.
Hence we only need to show the converse. Let N be a Lipschitz stable T -invariant
subspace. Since N is stable, we know (see Theorem 14.1) that for every eigenvalue
λ of T with dimKer (λ − T ) ≥ 2 either N contains the spectral subspace of T
corresponding to λ, or N has zero intersection with that spectral subspace.

As in the proof of Lemma 14.6 one shows that for every eigenvalue λ of T the
subspace Im Pλ(T )N is Lipschitz stable for the restriction of T to Im Pλ(T ). Here
Pλ(T ) is the Riesz projection of T corresponding to the eigenvalue λ. Recall that
the spectral subspace Im Pλ(T ) of T corresponding to an eigenvalue λ is given by
Ker (λ−T )n, where n is the dimension of X . Also note that N is Lipschitz stable
for T if and only if S−1N is Lipschitz stable for S−1TS.

Now consider an eigenvalue λ of T with dimKer (λ−T ) = 1, and assume that
N∩Ker (λ−T )n �= {0}. We have to show that Ker (λ−T )n ⊂ N . Assume this is not
the case. Let x1, . . . , xp be a Jordan chain for T corresponding to the eigenvalue
λ such that x1, . . . , xp form a basis for the spectral subspace Ker (λ−T )n. By our
assumption and the fact that N is a stable invariant subspace, we see from the
previous section that N ∩Ker (λ−T )n = span {x1, . . . , xj} for some j < p. By the
arguments of the previous paragraph we may assume that X = span {x1, . . . , xp},
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and that T is in Jordan normal form. More precisely, we may assume that X = Cp

and N = span {e1, . . . , ej}, where ei is the ith unit vector in Cp, while T = λIp +J
where J is a single Jordan block of order p with 0 on the main diagonal, i.e,

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . . 0 1

0 · · · · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Now consider the perturbation T (ε) obtained from T by changing the zero in the
lower left-hand corner to ε > 0, that is,

T (ε) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0
. . . λ 1

ε 0 · · · 0 λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

It is easily checked that the eigenvalues of T (ε) are the pth roots of ε, i.e., they
are given by ε1/pexp(ℓ 2iπ

p ) for ℓ = 1, . . . , p. The eigenvector of T (ε) corresponding

to λℓ = ε1/pexp(ℓ 2iπ
p ) is given by

yℓ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
λℓ

λ2
ℓ

...

λp−1
ℓ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Thus, any j-dimensional invariant subspace of T (ε) is spanned by j of these vec-
tors. Let M be any one of them. Then M is spanned by, say, yℓ1 , . . . , yℓj

. Denote
by P the orthogonal projection onto N , and by Q the orthogonal projection onto
M . Let yk be any one of the eigenvectors spanning M . Then

gap (N, M) = ‖P − Q‖ ≥ 1

‖yk‖
‖Pyk − Qyk‖ =

√√√√√√√√√√

p−1∑

i=j

|λi
k|2

p−1∑

i=0

|λi
k|2

.
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Since |λk| = ε1/p, we see that for ε sufficiently small

gap (N, M) ≥ 1

2

p
√

εj.

On the other hand, ‖T − T (ε)‖ = ε. From this it becomes clear that for j =
1, . . . , n − 1 the space N cannot be Lipschitz stable. �

14.3 Stable minimal factorizations of rational

matrix functions

Throughout this section W0, W01 and W02 are proper rational m × m matrix
functions with value Im at infinity. We assume that W0 = W01W02 and that this
factorization is minimal. In view of Theorems 13.1 and 13.7 the following definition
is natural. Let

W0(λ) = Im + C0(λIn − A0)
−1B0, (14.8)

W0j(λ) = Im + C0j(λInj
− A0j)

−1B0j , j = 1, 2, (14.9)

be minimal realizations of W0, W01 and W02. The factorization W0 = W01W02 is
called stable if for each ε > 0 there exists ω > 0 such that ‖A−A0‖+ ‖B−B0‖+
‖C − C0‖ < ω implies that the realization

W (λ) = Im + C(λIn − A)−1B (14.10)

is minimal and W admits a minimal factorization W = W1W2,

Wj(λ) = Im + Cj(λInj
− Aj)

−1Bj , j = 1, 2, (14.11)

with the extra property that ‖Aj−A0j‖+‖Bj−B0j‖+‖Cj−C0j‖ < ε for j = 1, 2.

We make a few comments. The fact that the realization of W0 in (14.8) is
minimal, implies that the realization of W in (14.10) will also be minimal whenever
the quantity ‖A − A0‖ + ‖B − B0‖ + ‖C − C0‖ is sufficiently small (regardless
of ε). Next, note that the minimality of the factorization W = W1W2 with Wi

given by (14.10) is clear from the minimality of the realization (14.10) and the
identity n = n1 + n2 holding for the state space dimensions. Finally, since in the
finite-dimensional case all minimal realizations of a given transfer function are
mutually similar, the above definition does not depend on the particular choice of
the minimal realizations (14.8) and (14.9).

From Theorem 13.1 we see that a sufficient condition for the factorization
W0 = W01W02 to be stable is that W01 and W02 have no common poles and no
common zeros. The next theorem characterizes stability of minimal factorization
in terms of spectral data.

Theorem 14.9. Suppose W0 = W01W02 is a minimal factorization. This factoriza-
tion is stable if and only if each common pole (respectively zero) of W01 and W02

is a pole (respectively zero) of W0 of geometric multiplicity one.
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In connection with this result (and a number of theorems below) we recall
from Sections 8.2 and 8.4 (see Corollary 8.10 and the last sentence of the first
paragraph of Section 8.4 ) that a pole (zero) λ0 of W0 has geometric multiplicity
one if and only if the order of λ0 as a pole of W0 (W−1

0 ) is equal to the local degree
δ(W0; λ0) (δ(W−1

0 ; λ0)).

The proof of Theorem 14.9 will be given in a number of steps. Recall that
there is a one-one correspondence between minimal factorizations and supporting
projections of minimal realizations (see Theorem 9.3). Therefore we begin by char-
acterizing stability of minimal factorizations in terms of supporting projections.
This leads to the notion of a stable supporting projection.

Let Π0 be a supporting projection for the system Θ0 = (A0, B0, C0; X, Y ).
We call Π0 stable if, given ε > 0, there exists ω > 0 such that the following is
true. If Θ = (A, B, C; X, Y ) is a system satisfying ‖Θ − Θ0‖ < ω, then Θ has a
supporting projection Π such that ‖Π − Π0‖ < ε.

Lemma 14.10. Let W0(λ) = Im + C0(λIn − A0)
−1B0 be a minimal realization,

and let Π0 be the supporting projection for the system Θ0 = (A0, B0, C0; Cn, Cm)
corresponding to the minimal factorization W0 = W01W02. This factorization is
stable if and only if Π0 is stable.

Proof. We know already that for ‖A − A0‖ + ‖B − B0‖ + ‖C − C0‖ sufficiently
small the realization W (λ) = Im + C(λIn − A)−1B will be minimal. So, if Π0 is
stable, we can apply Theorem 13.5 to show that the factorization W0 = W01W02

is stable too.

Conversely, let the factorization W0 = W01W02 be a stable factorization,
and assume Π0 is not stable. Then there exist ε > 0 and a sequence Θ1, Θ2, . . . of
systems such that ‖Θk−Θ0‖ → 0 for k → ∞ and ‖Π−Π0‖ ≥ ε for each supporting
projection Π of Θk. Since Θ0 is minimal and ‖Θk −Θ0‖ → 0, we may assume that
Θk is minimal for all k. Also we may assume that for each k the transfer function
Wk = WΘk

admits a minimal factorization Wk = Wk1Wk2,

Wkj(λ) = Im + Ckj(λInj
− Akj)

−1Bkj , j = 1, 2,

such that for j = 1, 2 we have

Akj → A0j , Bkj → B0j , Ckj → C0j , (k → ∞). (14.12)

Here Im + C0j(λInj
− A0j)

−1B0j is a minimal realization of W0j .

Let Πk be the supporting projection for Θk corresponding to the minimal
factorization Wk = Wk1Wk2. Write Θki = (Aki, Bki, Cki; Cnj , Cm). Then Θk1Θk2

and Θk are similar, say with system similarity Sk : Cni ⊕ Cn2 → Cn. For k =
0, 1, 2, . . . , we have Πk = SkPS−1

k , where P is the projection of Cn1 ⊕ Cn2 along
Cn1 onto Cn2 . From Theorem 7.7 we know how Sk can be described explicitly.
This description, together with (14.12) and ‖Θk − Θ0‖ → 0, gives Sk → S0. So
Πk → Π0, which contradicts the fact that ‖Πk − Π0‖ ≥ ε for all n. We conclude
that Π0 must be stable. �
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Next we make the connection with stable invariant subspaces.

Lemma 14.11. Let Θ0 = (A0, B0, C0; X, Y ) be a given system, and let Π0 be a
supporting projection for this system. Then Π0 is stable if and only if KerΠ0 and
ImΠ0 are stable invariant subspaces for A0 and A×

0 = A0 − B0C0, respectively.

Proof. Let KerΠ0 and ImΠ0 be stable invariant subspaces for A0 and A×
0 , respec-

tively. Assume Π0 is not stable. Then there exist ε > 0 and a sequence Θ1, Θ2, . . .
of systems such that ‖Θk − Θ0‖ → 0 and ‖Π − Π0‖ ≥ ε for every supporting
projection Π of Θk. Write Θk = (Ak, Bk, Ck; X, Y ). Then clearly

Ak → A0, A×
k = Ak − BkCk → A0 − B0C0 = A×

0 , (k → ∞).

But then our hypothesis ensures the existence of two sequences M1, M2, . . . and
M×

1 , M×
2 , . . . of closed subspaces of X such that

Ak[Mk] ⊂ Mk, A×
k [M×

k ] ⊂ M×
k , k = 1, 2, . . . ,

while in addition

gap (Mk, KerΠ0) → 0, gap (M×
k , ImΠ0) → 0, (k → ∞). (14.13)

By [71], Theorem 2 we may assume that X = Mk +̇ M×
k for all k. Let Πk be the

projection of X along Mk onto M×
k . Then Πk is a supporting projection for Θk.

Moreover, it follows from (14.13) that Πk → Π0. This contradicts the fact that
‖Πk − Π0‖ ≥ ε for all k. So Π0 must be stable.

Now conversely, let Π0 be a stable supporting projection for Θ0 and assume
KerΠ0 is not stable for A0. Then there exist ε > 0 and a sequence A1, A2, . . .
of bounded linear operators on X such that Ak → A0 and gap (M, KerΠ0) ≥ ε
for each closed invariant subspace M of Ak. Put Θk = (Ak, B0, C0; X, Y ). Then
‖Θk −Θ0‖ → 0. So we can find a sequence Π1, Π2, . . . of projections such that Πk

is a supporting projection for Θk and Πk → Π0 when k → ∞. Hence KerΠk is a
closed invariant subspace for Ak and gap (KerΠk, KerΠ0) → 0. But this conflicts
with gap (KerΠk, KerΠ0) ≥ ε, k = 1, 2, . . . . So KerΠ0 must be stable for A0.
Likewise ImΠ0 is a stable invariant subspace for A×

0 . �

We now come to the proof of Theorem 14.9. Recall that W0, W01 and W02

are proper rational m×m matrix functions that are analytic at ∞ with value Im.
Moreover W0 = W01W02, and this factorization are minimal.

Proof of Theorem 14.9. Let W0(λ) = Im + C0(λIn − A0)
−1B0 be a minimal re-

alization for W0, and let Π0 be the supporting projection for the system Θ0 =
(A0, B0, C0; Cn, Cm) corresponding to the minimal factorization W0 = W01W02.
From Lemma 14.10 we know that this factorization is stable if and only if Π0 is
stable.



14.3. Stable minimal factorizations of rational matrix functions 351

With respect to the decomposition Cn = KerΠ0 +̇ ImΠ0, we write

A0 =

[
A1 ∗

0 A2

]
.

Applying Theorem 14.7 we see that KerΠ0 is a stable invariant subspace for A0

if and only if each common eigenvalue of A1 and A2 is an eigenvalue of A0 of
geometric multiplicity one. But then Lemma 9.2 gives that KerΠ0 is stable for A0

if and only if each common eigenvalue of A1 and A2 is a pole of W0 of geometric
multiplicity one. Observe now that A1 and A2 are the main operators in the
systems pr Π0

(Θ) and pr In−Π0
(Θ), respectively. Since these systems are minimal,

we have that σ(A1) and σ(A2) coincide with the sets of poles of W01 and W02,
respectively. Hence KerΠ0 is stable for A0 if and only if each common pole of W01

and W02 is a pole of W0 of geometric multiplicity one. Likewise Im Π0 is stable for
A×

0 if and only if each common zero of W01 and W01 is a zero of W0 of geometric
multiplicity one. The desired result is now immediate from Lemma 14.11. �

In the remainder of this section we deal with Lipschitz stability. As before,
W0, W01 and W02 are proper rational m × m matrix functions with value Im at
infinity, and we assume that W0 = W01W02 is a minimal factorization. Let

W0(λ) = Im + C0(λIn − A0)
−1B0,

W0j(λ) = Im + C0j(λInj
− A0j)

−1B0j , j = 1, 2,

be minimal realizations of W0, W01 and W02. The factorization W0 = W01W02

is called Lipschitz stable if there are positive constants ω and K such that the
inequality ‖A − A0‖ + ‖B − B0‖ + ‖C − C0‖ < ω implies that the realization

W (λ) = Im + C(λIn − A)−1B

is minimal and W admits a minimal factorization W = W1W2,

Wj(λ) = Im + Cj(λInj
− Aj)

−1Bj , j = 1, 2,

with the extra property that

‖Aj − A0j‖ + ‖Bj − B0j‖ + ‖Cj − C0j‖

≤ K
(
‖A − A0‖ + ‖B − B0‖ + ‖C − C0‖

)
, j = 1, 2.

The comments that have been made in the second paragraph of this section (about
the definition given in the beginning of that section) apply here too. In particular,
the definition of Lipschitz stability given above does not depend on the particular
choice of the minimal realizations for W0, W01 and W02. Note that we already
encountered a Lipschitz stable factorization in Theorem 13.7 above, without using
the term there (cf., Theorem 14.12 below).

Given the above realization of W0, one has that the minimal factorization
W0 = W01W02 is Lipschitz stable if and only if for the corresponding supporting
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projection Π0, the kernel KerΠ0 is a Lipschitz stable A0-invariant subspace and
the range ImΠ0 is a Lipschitz stable A×

0 -invariant subspace. Here, as usual, we
have A×

0 = A0 − B0C0. This is analogous to the situation for stable invariant
subspaces (cf., Lemma 14.11). The results of Section 14.2 now imply that the
factorization W0 = W01W02 is Lipschitz stable if and only if both KerΠ0 and
ImΠ0 are images of Riesz projections for A0 and A×

0 , respectively. This leads to
the following result.

Theorem 14.12. The minimal factorization W0 = W01W02 is Lipschitz stable if
and only if W01 and W02 have no common poles and no common zeros.

14.4 Stable complete factorizations

Let W0 be a rational m × m matrix function with minimal realization

W0(λ) = Im + C0(λIn − A0)
−1B0. (14.14)

Suppose

W0(λ) =

(
Im +

1

λ − α01
R01

)
· · ·

(
Im +

1

λ − α0n
R0n

)
(14.15)

is a complete factorization of W0. We say that this complete factorization (14.16)
is stable if for all ε > 0 there exists ω > 0 such that

‖A − A0‖ + ‖B − B0‖ + ‖C − C0‖ < ω

implies that the realization W (λ) = Im+C(λIn−A)−1B is minimal and W admits
a complete factorization

W (λ) =

(
Im +

1

λ − α1
R1

)
· · ·

(
Im +

1

λ − αn
Rn

)
(14.16)

with the extra property that

|αj − α0j | + ‖Rj − R0j‖ < ε, j = 1, . . . , n. (14.17)

Note that this definition is not completely analogous to the one of a stable
minimal factorization involving just two factors as given in Section 14.3. To mimic
that one, we should write the complete factorizations (14.15) and (14.16) in the
form

W0(λ) =

(
Im +

1

λ − α01
c01b

⊤
01

)
· · ·

(
Im +

1

λ − α0n
c0nb⊤0n

)
, (14.18)

W (λ) =

(
Im +

1

λ − α1
c1b

⊤
1

)
· · ·

(
Im +

1

λ − αn
cnb⊤n

)
, (14.19)
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with b0j, c0j , bj, cj nonzero vectors in Cn, and the estimates (14.17) as

|αj − α0j | + ‖bj − b0j‖ + ‖cj − c0j‖ < ε, j = 1, . . . , n.

A routine argument shows that the two possibilities amount to the same.

Theorem 14.13. Let W0 be a proper rational m×m matrix function with W0(∞) =
Im. A necessary condition for W0 to admit a stable complete factorization is that
the poles and zeros of W0 all have geometric multiplicity one. In that case there
are only finitely many complete factorizations of W0 and these are all stable.

Note that the theorem does not guarantee that W0 admits a complete fac-
torization. The number of these factorizations might be zero.

Recall from Section 8.2 that a complex number λ0 is a pole of W0 of geometric
multiplicity one if and only if dim Pol (W ; λ0) = 1. Similarly (see Section 8.1), λ0

is a zero of W0 of geometric multiplicity one if and only if dimKer (W ; λ0) = 1.

Now assume that W0 is given by the minimal realization (14.14). Then,
using the final statement of Corollary 8.22 we see that dimKer (λ0 − A0) =
dimPol (W ; λ0). It follows that λ0 is a pole of W0 of geometric multiplicity one
if and only if λ0 is an eigenvalue of geometric multiplicity one of A0. Applying
this result to W−1

0 and using Lemma 8.8, we obtain that λ0 is a zero of W0 of
geometric multiplicity one if and only λ0 is an eigenvalue of geometric multiplicity
one of the associate state matrix A×

0 . Therefore the poles and zeros of W0 all have
geometric multiplicity one if and only if both A0 and A×

0 are nonderogatory. Hence
an equivalent way to formulate Theorem 14.13 is as follows.

Theorem 14.14. Let W0 be a proper rational m×m matrix function with minimal
realization W0(λ) = Im + C0(λIn − A0)

−1B0. A necessary condition for W0 to
admit a stable complete factorization is that both A0 and A×

0 = A0 − B0C0 are
nonderogatory. In that case there are only finitely many complete factorizations of
W0 and these are all stable.

Companion matrices are nonderogatory. Thus we have the following imme-
diate consequence of Theorem 14.14.

Corollary 14.15. Let W0 be a companion based rational m × m matrix function.
Then there are only finitely many complete factorizations of W0 and these are all
stable.

Again Theorem 14.14 and Corollary 14.15 do not guarantee that W0 admit
a complete factorization.

From Sections 10.1–10.3 we know that complete factorizations are closely
related to complete chains of invariant subspaces. The proof of Theorem 14.13 is
therefore similar to that of Theorem 14.9 provided one has an analogue of Theorem
14.1, where the single invariant subspace featuring there is replaced by a complete
chain of invariant subspaces. Thus our task here is to analyze stability of complete
chains of invariant subspaces. First we give the formal definition.
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Let A be an n× n matrix, whenever convenient identified with its canonical
action on Cn, considered here as a Hilbert space. Suppose M = {Ml}n

l=0 is a
complete chain of A-invariant subspaces, i.e.,

{0} = M0 ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂ Mn = Cn

and, for l = 1, . . . , n − 1, dimMl = l and A[Ml] ⊂ Ml. We call M stable (for
A) if given ε > 0, there exists δ > 0 such that the following is true: if B is a an
n × n matrix and ‖B − A‖ < δ, then there exists a complete chain N = {Nl}k

l=0

of B-invariant subspaces for which the gap between M and N defined by

GAP (M,N ) = max
l=1,...,n−1

gap (Nl, Ml) (14.20)

does not exceed ε. Note that the values 0 and n for l do not play a role in (14.20)
because all chains start with {0} and end with Cn.

Theorem 14.16. The matrix A has a stable complete chain of invariant subspaces
if and only if A is nonderogatory. In that case, A has a finite number of complete
chains of invariant subspaces and all these chains are stable.

Proof. Suppose A has a stable complete chain {Ml}k
l=0 of invariant subspaces.

From the definition given above it is clear that M0, . . . , Mk are then stable invari-
ant subspaces for A. Assume that A is derogatory, and let λ0 be an eigenvalue of
A with dimKer (λ0−A) ≥ 2. Write P for the spectral projection corresponding to
λ0 and A0 for the restriction of A (viewed as an operator) to ImP . According to
Lemma 14.6, the subspaces PM0, . . . , PMk are stable for A0. Hence, on account
of Lemma 14.4, these subspaces are either trivial or have dimension at least two.
However, as {Ml}k

l=0 is a complete chain of A-invariant subspaces, there must be
at least one j for which the dimension of PMj is one (cf., first part of the proof of
Theorem 12.2, Step 4). Contradiction. The conclusion is that A is nonderogatory.

Next assume that A is nonderogatory and let M = {Ml}k
l=0 be a complete

chain of A-invariant subspaces. By Theorem 14.1 each A-invariant subspace is
stable. In particular, all members Ml of M are stable. But then M is a stable
complete chain of invariant subspaces for A by an observation made on page 464
of the book [70], in a comment connected to Theorem 15.6.1 in the same book
[70], which is concerned with the more general notion of a stable lattice.

To complete the proof, we recall that if the matrix A is nonderogatory, it has
only a finite number of invariant subspaces and hence the collection of all complete
chains of A-invariant subspaces is a finite set. In fact, if the nonderogatory matrix
A has s different eigenvalues with algebraic multiplicities m1, . . . , ms, the number
of complete chains of A-invariant subspaces is

(m1 + m2 + · · · + ms)!

m1! × m2! × · · · × ms!
.

This follows from Proposition 11.19 by virtue of the well-known fact that the
nonderogatory matrices are precisely those that are similar to first companions.

�
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Proof of Theorems 14.13 and 14.14. We shall focus on Theorem 14.14 which is
nothing else than a reformulation of Theorem 14.13.

Let W0(λ) = Im + C0(λ − A0)
−1B0 be a minimal realization of W0. As we

know, there is a one-to-one correspondence between minimal factorizations of W0

and direct sum decompositions Cn = M+̇M× where the subspaces M and M×

are invariant for A and A×, respectively. From Lemmas 14.10 and 14.11 we see that
a minimal factorization is stable if and only if the corresponding subspaces M and
M× are stable for A and A×, respectively. This fact has a straightforward analogue
for complete factorizations. Indeed, a complete factorization of W0 corresponds
with two complete chains of subspaces: a chain

{0} = M0 ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂ Mn = Cn (14.21)

of A-invariant subspaces, and a chain

{0} = M×
0 ⊂ M×

1 ⊂ · · · ⊂ M×
n−1 ⊂ M×

n = Cn (14.22)

of A×-invariant subspaces, such that for j = 1, . . . , n − 1 the subspaces Mj and
M×

n−j match in the sense that Mj +̇ M×
n−j = Cn. Now the complete factorization

in question is stable if and only if (14.21) is a stable complete chain for A and
(14.22) is a stable complete chain for A×. In view of this, Theorem 14.14 is an
immediate consequence of Theorem 14.16. �

Next, we consider Lipschitz stability of complete chains of invariant sub-
spaces. Let M = {Ml}k

l=0 be a complete chain of A-invariant subspaces. This
chain is called Lipschitz stable if there are positive constants δ and K such that
the following holds: if B is a k×k matrix with ‖A−B‖ < δ, then B has a complete
chain of invariant subspaces N = {Nl}k

l=0 with GAP (M,N ) ≤ K‖A− B‖.
Theorem 14.17. The k × k matrix A has a Lipschitz stable complete chain of
invariant subspaces if and only if A has k distinct eigenvalues. In that case all
complete chains of invariant subspaces are Lipschitz stable.

Proof. Suppose that A has a Lipschitz stable complete chain of invariant sub-
spaces. From the above definition it follows that each of the invariant subspaces
Ml is Lipschitz stable, and hence must be a spectral subspace (see Theorem 14.8).
Then it is easily seen that A must have k distinct eigenvalues.

Conversely, assume that A has k distinct eigenvalues. Then, for δ small
enough, if ‖A − B‖ < δ also B has k distinct eigenvalues. Now selecting a com-
plete chain of invariant subspaces of such a matrix is equivalent to choosing an
ordering of the eigenvalues. Suppose that the eigenvalues λ1, . . . , λk of A are or-
dered so that for the corresponding unit eigenvectors xl, l = 1, . . . , k we have
Ml = span {x1, . . . , xl}. Let µ1, . . . µk be the eigenvalues of B ordered so that
|λl − µl| is small, and let yl, l = 1, . . . , k be the corresponding eigenvalues. Con-
sider Nl = span {y1, . . . , yl}. Then, letting B tend to A and using the fact that all
Ml’s are Lipschitz stable we see that the chain M is Lipschitz stable. �
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Next, we define Lipschitz stability of complete factorizations. Suppose W0 is
a rational m×m matrix function with minimal realization (14.14). The complete
factorization (14.15) of W0 is called Lipschitz stable if there are positive constants
ω and K such that ‖A−A0‖+‖B−B0‖+‖C−C0‖ < ω implies that the realization
W (λ) = Im + C(λIn − A)−1B is minimal and W admits a complete factorization
(14.16) with the property that

|αj − α0j | + ‖Rj − R0j‖ ≤ K
(
‖A − A0‖ + ‖B − B0‖ + ‖C − C0‖

)
,

where j is allowed to take the values 1, . . . , n. An equivalent definition using (14.18)
and (14.19) is, of course, again possible.

Theorem 14.18. Let W0 be a proper rational m×m matrix function with W0(∞) =
Im. A necessary condition for W0 to admit a Lipschitz stable complete factorization
is that the poles and zeros of W0 all have geometric and algebraic multiplicity one.
In that case all complete factorizations are Lipschitz stable.

Proof. Like in the proof of Theorem 14.14 we see that a complete factorization
is Lipschitz stable if and only if the corresponding complete chains of invariant
subspaces for A0 and A×

0 are Lipschitz stable. The theorem is then a direct con-
sequence of Theorem 14.17. �

14.5 Stable factorizations of monic matrix polynomials

Throughout this section m will be a fixed positive integer. Given a positive integer
ℓ, we denote the set of all monic m× m matrix polynomials of degree ℓ by MPℓ.
If L1 and L2 are in MPℓ, say

Lj(λ) = λℓI +
ℓ−1∑

i=0

λjAji, j = 1, 2,

we put

‖L1 − L2‖ =

ℓ−1∑

i=0

‖A1i − A2i‖.

This defines a metric on MPℓ.

Suppose L0, L01 and L02 are monic m × m matrix polynomials of degree
p, q and r, respectively. So L0 ∈ MPp, L01 ∈ MPq and L02 ∈ MPr. Assume
L0 = L02L01. We say that this factorization is stable if, given ε > 0, there exists
δ > 0 with the following property. If L ∈ MPp and ‖L − L0‖ < δ, then L admits
a factorization L = L2L1 with L1 ∈ MPq, L2 ∈ MPr and

‖Lj − L0j‖ < ε, j = 1, 2.

The aim of this section is to characterize stability of a factorization in terms of
spectral data. We begin by making the connection with stable invariant subspaces.



14.5. Stable factorizations of monic matrix polynomials 357

This will be done via the notion of a supporting subspace, here always taken with
respect to first companion systems (see Section 3.4). For briefness sake we shall
simply speak about supporting subspaces (of the first companion operator) of the
given monic matrix polynomial L0. Recall that there is a one-one correspondence
between the supporting subspaces of L0 and the factorizations of L0 into monic
operator polynomials.

Lemma 14.19. Let L0, L01 and L02 be monic m × m matrix polynomials, and
assume L0 = L02L01. This factorization is stable if and only if the corresponding
supporting subspace is stable for the first companion operator of L0.

Proof. It is possible to give a rather quick proof based on [68], Theorem 3. We
prefer however to present a more direct argument.

As before, we write p for the degree of L0 and q for that of L01. Further, the
first companion operator of L0 is indicated by C0, the supporting subspace of L0

corresponding to the factorization L0 = L02L01 by M0.

Suppose the factorization is stable. In order to prove that M0 is a stable
invariant subspace for C0 we consider a sequence C1, C2, . . . of operators converging
to C0. Using the Kronecker delta notation, put

Q = row (δj1I)p
j=1, Sn = col (QCj

n)p−1
j=0 , n = 0, 1, 2, . . . .

Then S1, S2, . . . converges to S0 which is equal to the identity operator on Cmp.
So, passing if necessary to a subsequence, we may assume that Sn is invertible for
all n. Write S−1

n = row (Uni)
p
i=1. Then

Uni → col (δjiI)p
j=1, i = 1, . . . , p. (14.23)

A straightforward calculation shows that SnCnS−1
n is the first companion operator

associated with the monic operator polynomial

Ln(λ) = λpI −
p∑

i=1

λi−1QCp
nUni.

From (14.23) and the fact that Cn → C0 it follows that ‖Ln−L0‖ → 0. But then we
may assume that for all n the polynomial Ln admits a factorization Ln = Ln2Ln1

with Ln1 ∈ MPq, Ln2 ∈ MPr, r = p − q, and

‖Lnj − L0j‖ → 0, j = 1, 2.

Let Mn be the supporting subspace corresponding to the factorization Ln =
Ln2Ln1. We shall show that Mn → M0 in the gap topology. In order to do this we
describe Mn as follows. Let Dn be the first companion operator of Ln1. Then Mn

is the image of the operator

col (QDi
n)p−1

i=0 : Ckr → Ckp
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(see Section 3.4). Define P to be the projection from Cmp = Cmr ∔ Cm(p−r) onto
Cmr given by P =

[
I 0

]
. Since P is surjective, we have that Mn = Im Pn,

where Pn =
(
col (QDi

n)p−1
i=0

)
P has the form

Pn =

[
I 0

Fn 0

]
: Cmr ∔ Cm(p−r) → Cmr ∔ Cm(p−r).

Observe that Pn is a projection. Now ‖Ln1 − L01‖ → 0 implies that Fn → F0.
Hence Pn → P0. But gap (Mn, M0) = gap (ImPk, Im P0) ≤ ‖Pn − P0‖, and so
gap (Mn, M0) → 0.

Put Vn = S−1
n Mn. Then Vn is an invariant subspace for Cn. Moreover, it

follows from Sn → I that gap (Vn, Mn) → 0. But then gap (Vn, M) → 0, and the
first part of the proof is complete.

Next assume that M0 is a stable invariant subspace of C0, and let L1, L2, . . .
be a sequence in MPp converging to L0. Denote the first companion operator of
Ln by Cn. Then Cn → C0, and hence there exists a Cn-invariant subspace Mn of
Cmp such that gap (Mn, M0) → 0. Recall now that Cmp = M0 +̇Nq, where

Nq =

⎧
⎪⎨
⎪⎩

x =

⎡
⎢⎣

x1

...
xp

⎤
⎥⎦ ∈ Cmp

∣∣∣xj ∈ Cm, x1 = · · · = xq = 0

⎫
⎪⎬
⎪⎭

. (14.24)

So, passing if necessary to a subsequence, we may assume that

Cmp = Mn +̇Nq, n = 0, 1, 2, . . . . (14.25)

This means that Mn is a supporting subspace for Ln. Let Ln = Ln2Ln1 be the
corresponding factorization. We need to show that ‖Ln1 − L01‖ → 0 and ‖Ln2 −
L02‖ → 0.

With respect to the decomposition (14.24) we write

Cn =

[
Cn1 Cn0

0 Cn2

]
, Qn =

[
Qn1 Qn2

]
.

The polynomial Ln1 can be explicitly expressed in terms of Cn1 and Qn1 (cf.,
Section 3.4). A complication here is that the decomposition (14.25) depends on
n. This difficulty however can be easily overcome by the usual angular operator
argument. From the expression for Ln1 one then sees that ‖Ln1 − L01‖ → 0. In
the same way one shows that ‖Ln2 − L02‖ → 0, and the proof is complete. �

Recall that a complex number λ0 is an eigenvalue of the matrix polynomial L
if L(λ0) is not invertible. In that case KerL(λ0) is non-trivial and its dimension is
the geometric multiplicity of λ0 as an eigenvalue of L. This number is also equal to
the geometric multiplicity of λ0 as an eigenvalue of the first companion operator
of L.
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Theorem 14.20. Let L0, L01 and L02 be monic m × m matrix polynomials, and
assume L0 = L02L01. This factorization is stable if and only if each common
eigenvalue of L01 and L02 is an eigenvalue of L0 of geometric multiplicity one.

Proof. Let M0 be the supporting subspace of L0 corresponding to the factorization
L0 = L02L01. From Lemma 14.19 we know that this factorization is stable if and
only if M0 is a stable invariant subspace for the first companion operator C0 of L0.
Let p be the degree of L0, let q be the degree of L01, and let Nq be as in (14.24).
Then Cmp = M0 +̇Nq. With respect to this decomposition we write

C0 =

[
C01 C00

0 C02

]
.

Then it is known (cf., Section 3.4 and the one but last paragraph of Section 4.3)
that a complex number is an eigenvalue of C0i if and only if it is an eigenvalue of
L0i, i = 1, 2. The desired result is now obtained by applying Theorem 14.7. �

Next, we discuss Lipschitz stability. Let L0 = L02L01 be a factorization of the
monic matrix polynomial L0 into monic factors, as above in the definition of stable
factorization given at the start of this section. We shall say that this factorization
is Lipschitz stable if there are positive constant K and δ such that L ∈ Mp

with ‖L − L0‖ < δ admits a factorization L = L2L1 with L1 ∈ Mq, L2 ∈ Mr

and ‖Li − L0i‖ ≤ K‖L − L0‖. One can prove (see Theorem 17.3.1 in [70]) that
the factorization is Lipschitz stable if and only if the corresponding supporting
subspace is Lipschitz stable. This gives the following theorem.

Theorem 14.21. The factorization L0 = L02L01 is Lipschitz stable if and only if
L01 and L02 have no common eigenvalues.

14.6 Stable solutions of the operator Riccati equation

Consider the operator Riccati equation

XT21X + XT22 − T11X − T12 = 0. (14.26)

Here Tij ∈ L(Yj , Yi), i, j = 1, 2, where Y1 and Y2 are assumed to be finite-
dimensional Banach spaces. A solution R : Y2 → Y1 of (14.26) is said to be
stable if for each ε > 0 there exists δ > 0 such that the following is true: if
Sij ∈ L(Yj , Yi), i, j = 1, 2, and maxi,j=1,2 ‖Sij − Tij‖ < δ, then the Riccati
equation

XS21X + XS22 − S11X − S12 = 0

has a solution Q : Y2 → Y1 for which ‖Q − R‖ < ε.
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Theorem 14.22. A solution R of the operator Riccati equation (14.26) is stable if
and only if each common eigenvalue of T11−RT21 and T22 +T21R is an eigenvalue
of geometric multiplicity one of the operator

T =

[
T11 T12

T21 T22

]
: Y1 +̇Y2 → Y1 +̇ Y2.

Proof. Let R be an operator from Y2 into Y1. Put N = {Rz + z | z ∈ Y2}.
Then Y1 +̇N = Y1 +̇ Y2 and R is the angular operator for N with respect to the
projection of Y1 +̇Y2 along Y1 onto Y2. By Proposition 5.4, the hypothesis that
R is a solution of (14.26) is equivalent to the assumption that N is an invariant
subspace for T . It is not difficult to prove that R is a stable solution of (14.26) if
and only if N is a stable invariant subspace for T . The latter is the case if and only
if Y2 is a stable invariant subspace for the operator given by the right-hand side of
(5.7). The desired result is now an immediate consequence of Theorem 14.7. �

A solution R of (14.26) is called Lipschitz stable if there are positive constants
K and δ such that maxi,j=1,2 ‖Sij − Tij‖ < δ implies that the Riccati equation

XS21X + XS22 − S11X − S12 = 0

has a solution Q with ‖Q−R‖ ≤ K(maxi,j=1,2 ‖Sij −Tij‖). The proof of Theorem
14.22 shows that R is Lipschitz stable if and only if the subspace N = {Rz + z |
z ∈ Y2} is a Lipschitz stable invariant subspace for T . This observation is the main
ingredient of the proof of the following theorem. Compare also Proposition 5.10.

Theorem 14.23. A solution R of the Riccati equation (14.26) is Lipschitz stable if
and only if T11 − RT21 and T22 + T21R have no eigenvalues in common.

14.7 Stability of stable factorizations

Let X be a finite-dimensional Banach space, and let T be a bounded linear operator
on X . If N is a stable invariant subspace for T then, by definition for each ε > 0
there exists δ > 0 such that ‖S −T ‖ < δ implies that S has an invariant subspace
M with gap (M, N) < ε. On the basis of Theorem 14.7 one can prove that for an
appropriate choice of δ the space M may always be chosen to be stable for S. This
is the contents of the next theorem.

Theorem 14.24. Let N be a stable invariant subspace for a linear operator T acting
on a finite-dimensional space X. Then, given ε > 0, there exists δ > 0 such
that ‖S − T ‖ < δ implies that S has a stable invariant subspace M such that
gap (M, N) < ε.

Proof. Suppose not. Then there exist ε > 0 and a sequence S1, S2, . . . of linear
operators on X converging to T such that for k = 1, 2, . . .

gap (M, N) ≥ ε, M ∈ Ωk.
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Here Ωk denotes the collection of all stable invariant subspaces for Sk. Since N
is stable for T and Sk → T there exists a sequence N1, N2, . . . of subspaces of
X with Sk[Nk] ⊂ Nk and gap (Nk, N) → 0. For k sufficiently large, we have
gap (Nk, N) < ε, and hence Nk �∈ Ωk. So, passing if necessary to a subsequence,
we may assume that for all k the Sk-invariant subspace Nk is not stable.

Let Z be an algebraic complement of N in X . Since Nk converges to N in
the gap topology, we may assume that Z +̇Nk = Z +̇N = X for all k. Let Rk be
the angular operator of Nk with respect to the projection of X onto N along Z.
Then Rk → 0. Write

Ek =

[
I Rk

0 I

]
,

where the matrix representation is taken relative to the decomposition X = Z +̇N .
Then Ek is invertible, Ek[N ] = Nk and Ek → I. Put Tk = E−1

k SkEk. Obviously,
Tk → T and Tk[N ] ⊂ N . Note that N is not stable for Tk.

With respect to the decomposition X = N +̇ Z, we write

T =

[
U V

0 W

]
, Tk =

[
Uk Vk

0 Wk

]
.

Then Uk → U and Wk → W . Since N is not stable for Tk, Theorem 14.7 ensures
the existence of a common eigenvalue λk of Uk and Wk such that

dim Ker (λkI − Tk) ≥ 2, k = 1, 2, . . . . (14.27)

Now |λk| ≤ ‖Uk‖ and Uk → U . Hence, the sequence λ1, λ2, . . . is bounded. Passing,
if necessary, to a subsequence, we may assume that λk → λ0 for some λ0 ∈ C. But
then

λkI − Uk → λ0I − U, λkI − Wk → λ0I − W, (k → ∞).

It follows that λ0 is a common eigenvalue of U and W . Again applying Theorem
14.7, we see that λ0 is an eigenvalue of T of geometric multiplicity one. But
this cannot be true in view of (14.27) and the fact that for k → ∞ we have
λkI −Tk → λ0I −T . This can be proved by using a standard rank argument. �

With the help of Theorem 14.24 one can sharpen Theorem 14.9 as follows.

Theorem 14.25. Suppose W0 = W01W02 is a stable minimal factorization involving
proper rational m × m matrix functions that have the value Im at infinity. Let

W0(λ) = Im + C0(λIn − A0)
−1B0,

W0j(λ) = Im + C0j(λInj
− A0j)

−1B0j , j = 1, 2,
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be minimal realizations for W0, W01 and W02. Then for each ε > 0 there exists
ω > 0 with the following property. If

‖A − A0‖ + ‖B − B0‖ + ‖C − C0‖ < ω,

then W (λ) = Im +C(λIn−A)−1B is a minimal realization and W admits a stable
minimal factorization W = W1W2,

Wj(λ) = Im + Cj(λInj
− Aj)

−1Bj, j = 1, 2,

with the extra property that ‖Aj − A0j‖ + ‖Bj − B0j‖ + ‖Cj − C0j‖ < ε.

Note that each common pole (zero) of W1 and W2 is a pole (zero) of W
of geometric multiplicity one. So Theorem 14.25 extends Theorem 13.1. Similar
refinements can be formulated for Theorems 14.20 and 14.22. For the exact formu-
lation, see [13], Theorems 4.2 and 4.3. The arguments are again based on Theorem
14.24.

Theorem 14.25 has also a counterpart for complete factorizations.

Theorem 14.26. Let W0 be a rational m×m matrix function given by the minimal
realization W0(λ) = Im + C0(λIn − A0)

−1B0, and suppose

W0(λ) =

(
Im +

1

λ − α01
R01

)
· · ·

(
Im +

1

λ − α0n
R0n

)
(14.28)

is a stable complete factorization of W0. Then for each ε > 0 there exists ω > 0
with the following property. If

‖A − A0‖ + ‖B − B0‖ + ‖C − C0‖ < ω, (14.29)

then W (λ) = Im +C(λIn−A)−1B is a minimal realization and W admits a stable
complete factorization

W (λ) =

(
Im +

1

λ − α1
R1

)
· · ·

(
Im +

1

λ − αn
Rn

)
(14.30)

with the extra property that

|αj − α0j | + ‖Rj − R0j‖ < ε, j = 1, . . . , n. (14.31)

Proof. Let ε be a positive number. As (14.28) is a stable complete factorization of
W0, there exists ω > 0 such that (14.29) implies that W (λ) = Im+C(λIn−A)−1B
is a minimal realization and W admits a complete factorization (14.30) which
satisfies (14.31). According to Theorem 14.14, both the matrices A0 and A×

0 =
A0 − B0C0 are nonderogatory, i.e., all their eigenspaces are one-dimensional. As
is easily seen via a simple rank argument, this is a property that is retained under
small perturbations. Thus if ω is taken sufficiently small, then (14.29) implies that
A and A× = A−BC are nonderogatory too. But then the complete factorization
(14.30) is stable by Theorem 14.14. �
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The proof of Theorem 14.26 can also be based on the analogue of Theorem
14.24 for stable complete chains of invariant subspaces. This result is interesting
in its own right. Employing matrix terminology (just as in Section 14.4), it reads
as follows.

Theorem 14.27. Suppose the n × n matrix A has a stable complete chain of in-
variant subspaces M. Then, given ε > 0, there exists δ > 0 with the following
property. If B is an n × n matrix with ‖B − A‖ < δ, then B has a stable sta-
ble complete chain of invariant subspaces M for which GAP(M,N ) < ε, where
GAP(M,N ) is as defined in (14.20).

Proof. Let ε be a positive number. As M is a stable complete chain of invariant
subspaces for A, there exists δ > 0 such that ‖B − A‖ < δ implies that B has
a complete chain N of invariant subspaces such that GAP (M,N ) < ε. Accord-
ing to Theorem 14.16, the matrix A is nonderogatory, i.e., all its eigenspaces are
one-dimensional. As mentioned earlier, this property is retained under small per-
turbations. Thus if δ is taken sufficiently small, ‖B − A‖ < δ implies that B is
nonderogatory too. But then the complete chain N referred to above is stable for
B by Theorem 14.16. �

14.8 Isolated factorizations and related topics

In the previous sections of this chapter we studied invariant subspaces, factoriza-
tions and solutions of the Riccati equation from the point of view of stability. In
the present section, we deal with another property, namely that of being isolated
which, apart from bearing a certain resemblance to stability, turns out to be equiv-
alent to stability. For reasons of systematic presentation, the material has been
divided in four subsections.

14.8.1 Isolated invariant subspaces

Let T be a bounded linear operator on a complex Banach space X . A closed
invariant subspace N of T is called isolated if there exists ε > 0 such that the
following holds. If M is a closed invariant subspace of T and gap (M, N) < ε, then
M = N . In the same way as for stability, the property of being an isolated invariant
subspace is similarity invariant in the following sense. Let E be an invertible
operator on X , and introduce T̃ = E−1TE, Ñ = E−1[N ]. Then Ñ is an isolated

invariant subspace for T̃ if (and only if) N is an isolated invariant subspace for
T . The argument, which involves the condition number ‖E−1‖ · ‖E‖ of E, is
straightforward.

In the remainder of this subsection we will restrict ourselves to the finite-
dimensional case. Whenever convenient, matrices will be considered as operators.
Recall that the generalized eigenspace Ker (λ0 − A)k of a k × k matrix A corre-
sponding to the eigenvalue λ0 is denoted by N(λ0).
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Theorem 14.28. Let λ1, . . . , λr be the different eigenvalues of the k × k matrix
A. A subspace N of Ck is an isolated A-invariant subspace if and only if N =
N1 +̇ · · · +̇Nr, where for each j the space Nj is an arbitrary A-invariant subspace
of N(λj) whenever dimKer (λj−A) = 1, while otherwise Nj = {0} or Nj = N(λj).

Proof. First we deal with the case when A has only one eigenvalue, without loss
of generality taken to be zero. So r = 1, λ1 = 0 and N(λ1) = Ck. There are two
different situations that have to be dealt with: dim KerA = 1 (nonderogatory A)
and dimKerA ≥ 2 (derogatory A). The first is trivial because there are only a
finite number of A-invariant subspaces then. So assume dim KerA ≥ 2. Obviously
the trivial subspaces {0} and Ck are isolated invariant subspaces for A. What we
need to show is that the non-trivial A-invariant subspaces are not isolated.

Let N be a non-trivial A-invariant subspace. In the case when N = KerAp

for some positive integer p we argue as follows. Let

{xjk}q j
j=1, k=0 (14.32)

be a basis of Ck such that the corresponding matrix representation of A has Jordan
form. In other words, for j = 1, . . . , q, we have

Axj0 = 0, Axjk = xj,k−1, k = 1, . . . , rj . (14.33)

For convenience we assume that r1 ≥ r2 ≥ · · · ≥ rq. Observe that KerAp is the
span of

{xjk}q rj∧(p−1)
j=1, k=0 . (14.34)

Here rj ∧ (p − 1) is the minimum of rj and p − 1. We claim that r1 ≥ p. Indeed,
for if not N = KerAp would be all of Ck . For ε �= 0, let Nε be the span of

{xjk}q−1 rj∧(p−1)
j=1, k=0 ∪ {xqk}[rq∧(p−1)]−1

k=0 ∪ {xq,rq∧(p−1) + εx1p},

where the middle term in the union is absent when rq ∧ (p − 1) = 0. Since
q = dimKerA ≥ 2, we have that Nε is an invariant subspace of T . Moreover,
gap (Nε, N) → 0 when ε → 0. As all Nε are different from N , it follows that N is
not isolated.

Next assume that N is not of the form KerAm. Since KerAm = Ck for m
sufficiently large and N �= Ck, there exists a unique non-negative integer p such
that

KerAp ⊂ N, KerAp+1 �⊂ N.

Consider the restriction A0 of A to N . The spectrum of A0 consists of zero only. Let
(14.32) now denote a basis of N such that the corresponding matrix representation
for A0 has Jordan form. This means that (14.32) is a basis of N for which (14.33)
holds. Again we assume that r1 ≥ r2 ≥ · · · ≥ rq. Now KerAp = KerAp

0 is the span
of (14.34). Since N �= KerAp, it follows that r1 ≥ p. Choose u ∈ KerAp+1 \N ,
and put

uk = Ap−ku, k = 0, . . . , p.
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Then clearly
Au0 = 0, Auk = uk−1, k = 1, . . . , p.

Moreover, up = u �∈ N . For ε �= 0, we now define Nε to be the span of

{xjk}q rj

j=2,k=0 ∪ {x1k}r1−p−1
k=0 ∪ {x1,r1−p+k + εuk}p

k=0,

where the middle term in the union is absent when p = r1. Then Nε is well defined
for r1 ≥ p. Observe that Nε is A-invariant and gap (Nε, N) → 0 when ε → 0. Since
all Nε are different from N , it follows that N is not isolated, as desired.

We now drop the restriction that A has only one eigenvalue, so r is allowed to
be larger than one. Write X1, . . . , Xr for the generalized eigenspaces corresponding
to the different eigenvalues λ1, . . . , λr of A. Thus Xj = N(λj) for j = 1, . . . , r.
Then Ck = X1 +̇ · · · +̇ Xr, and relative to this decomposition A has the (diagonal)
form

A =

⎡
⎢⎢⎢⎢⎢⎣

A1 0 · · · 0

0
. . .

...

...
. . . 0

0 · · · 0 Ar

⎤
⎥⎥⎥⎥⎥⎦

: X1 +̇ · · · +̇Xs → X1 +̇ · · · +̇ Xs,

with σ(Aj) = {λj} for all j.

Let N be an isolated invariant subspace for A. For j = 1, . . . , r, put Nj =
N ∩ Xj . Then Nj is an A-invariant subspace of Xj and N = N1 +̇ · · · +̇ Nr. We
need to prove that Nj is either {0} or Xj whenever dimKer (λj −A) ≥ 2. Suppose
the latter is the case and {0} �= Nj �= Xj . Then Nj is a non-trivial Aj-invariant
subspace where Aj is derogatory and has only one eigenvalue. Hence Nj is not
isolated for Aj . But this immediately implies that, contrary to our assumption, N
cannot be isolated for A.

Next, assume N = N1 +̇ · · · +̇Nr, where for each j the space Nj is an ar-
bitrary A-invariant subspace of Xj whenever dim Ker (λj − A) = 1, while other-
wise Nj = {0} or Nj = Xj . Then, by the preliminary observations made above
about the single eigenvalue case, N1, . . . , Nr are isolated invariant subspaces for
A1, . . . , Ar, respectively. Suppose now that N is not isolated for A. This means
that there is a sequence of A-invariant subspaces N (1), N (2), . . ., all different from

N , such that gap (N (n), N) → 0 when n → ∞. Put N
(n)
j = N (n) ∩Xj . Then N

(n)
j

is an invariant subspace for Aj . Also N (n) = N
(n)
1 +̇ · · · +̇N

(n)
r and

lim
n→∞

gap
(
N

(n)
j , Nj

)
= 0, j = 1, . . . , r.

As Nj is isolated for Aj , we may conclude that N
(n)
j = Nj for n sufficiently large,

depending on j. Now j takes only a finite number of values. It follows that there
exists n0 such that

N
(n)
j = Nj, j = 1, . . . , r, n = n0, n0 + 1, . . . .
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But then N (n) = N for n larger than or equal to n0 . This yields a contradiction,
and we conclude that N is an isolated A-invariant subspace. �

Comparing Theorem 14.28 to the characterization of stability given in The-
orem 14.1, one obtains the conclusion that an invariant subspace is isolated if and
only if it is stable. This result is typical for the case of spaces over C. In fact, as
we shall see in the next chapter (Section 15.3), when the underlying scalar field
is R instead of C, then stable invariant subspaces are isolated, but the converse is
no longer true.

Returning to the situation where the underlying field is C, we note that
Theorem 14.7 remains true when the word stable is replaced by isolated. The
argument is the same as that for Theorem 14.7 where, of course, one has to read
stable instead of isolated and with the reference to Theorem 14.1 replaced by one
to Theorem 14.28.

We close this subsection with one additional remark. From Theorem 14.28
one immediately has the following two observations. If σ(T ) consists of exactly
one eigenvalue of geometric multiplicity one, then each invariant subspace of T
is isolated; if σ(T ) consists of exactly one eigenvalue of geometric multiplicity at
least two, then no non-trivial invariant subspace of T is isolated. This can be used
to give a quick elementary proof of [40], Theorem 9.

14.8.2 Isolated chains of invariant subspaces

Next we turn to chains of subspaces. A complete chain N of invariant subspaces
for the n × n matrix A is said to be isolated (for A) if there exists ε > 0 with
the following property. If M is a complete chain of A-invariant subspaces and
GAP (M,N ) < ε, then M = N . In analogy to what was observed above about
isolated subspaces, a complete chain of A-invariant subspaces is isolated if and
only if it is stable. This is immediate from the following result combined with
Theorem 14.16.

Theorem 14.29. The matrix A has an isolated complete chain of A-invariant sub-
spaces if and only if A is nonderogatory. In that case, A has a finite number of
complete chains of invariant subspaces and all these chains are isolated.

Proof. Suppose A is nonderogatory. Then, as we already have seen in the last
paragraph of the proof of Theorem 14.16, the (nonempty) collection of all complete
chains of A-invariant subspaces is finite, and it is obvious that each complete chain
of A-invariant subspaces is isolated.

In the remainder of this proof it is assumed that A is derogatory. The aim is
to show that there are no isolated complete chains of A-invariant subspaces. First
we deal with the case when A has only one eigenvalue, without loss of generality
taken to be zero.
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Let M = {Ml}n
l=0 be a complete chain of A-invariant subspaces, and choose

a basis u1, . . . , un of Cn such that

Ml = span {u1, . . . , ul}, l = 0, . . . , n,

where following standard practice span {∅} = {0}. Let U = [u1 u2 · · · un] be the
n × n matrix whose lth column is ul. Then U is invertible and U−1AU is upper
triangular. Clearly U−1AU has the eigenvalues of A on the diagonal. Now (as
assumed for the time being) A has zero as its only eigenvalue. Thus the diagonal
of U−1AU features only zeros. But then U−1AU is strictly upper triangular and

Aul ∈ span {u1, . . . , ul−1}, l = 1, . . . , n. (14.35)

Clearly, U−1AU has the zero vector in Cn as its first column. If the other columns
in U−1AU were linearly independent, the rank of U−1AU would be n− 1 contra-
dicting the fact that A is derogatory. Indeed, the latter means that dim KerA is
a least 2 so the (coinciding) ranks of A and U−1AU are at most n − 2. Choose p
among the integers 1, . . . , n−1 such that the (p+1)th column in U−1AU is a linear
combination of the columns of U−1AU in the positions 1 up to (and including) p.
Note that one can take p = 1 if and only if U−1AU has the zero vector in Cn not
only as its first, but also as its second column. For the specific value l = p+1, the
expression (14.35) can now be sharpened into

Aup+1 ∈ span {u1, . . . , up−1}. (14.36)

For k = 1, 2, . . . , put vl = ul for l = 1, . . . , n, l �= p and (with slight abuse of
notation because the dependance on k is suppressed)

vp = up +
1

k
up+1. (14.37)

Then, for l = 1, . . . , n, l �= p, p + 1,

Avl = Aul ∈ span {u1, . . . , ul−1} = span {v1, . . . , vl−1}.

This is evident from (14.35) and the definition of v1, . . . , vn. Further,

Avp = Aup +
1

k
Aup+1 ∈ span {u1, . . . , up−1} = span {v1, . . . , vp−1}.

Here we used not only (14.35) but also (14.36). Finally, based on (14.36),

Avp+1 = Aup+1 ∈ span {u1, . . . , up−1} = span {v1, . . . , vp−1}.

We conclude that that the subspaces span {v1, . . . , vl} form a complete chain of
A-invariant subspaces. We shall denote this chain, which via (14.37) depends on

k, by N (k) =
{
N

(k)
l

}n

l=0
. For l = 0, . . . , n, l �= p, we have

N
(k)
l = span {v1, . . . , vl} = span {u1, . . . , ul} = Ml,
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and so GAP (N (k),M) = gap (N
(k)
p , Mp). Now

N (k)
p = span {u1, . . . , up−1, up +

1

n
up+1},

Mp = span {u1, . . . , up−1, up},

and it follows that limk→∞ GAP (N (n),M) = limk→∞ gap (N
(k)
p , Mp) = 0. For all

k, the subspaces N
(k)
p and Mp are different, hence the chains N (k) and M are

different too. We conclude that the complete chain M of A-invariant subspaces is
not isolated.

We now drop the restriction that A has only one eigenvalue. Write α1, . . . , αs

for the different eigenvalues of A and P1, . . . , Ps for the corresponding spectral
projections. For j = 1, . . . , s, put X(j) = Im Pj . Then X(1), . . . , X(s) are the
generalized eigenspaces corresponding to the different eigenvalues α1, . . . , αs of A.
Hence Ck = X(1) +̇ · · · +̇ X(s) and with respect to this decomposition A has the
(diagonal) form

A =

⎡
⎢⎢⎢⎢⎢⎣

A(1) 0 · · · 0

0
. . .

...

...
. . . 0

0 · · · 0 A(s)

⎤
⎥⎥⎥⎥⎥⎦

: X(1) +̇ · · · +̇X(s) → X(1) +̇ · · · +̇X(s),

with σ
(
A(j)

)
= {αj} for all j and at least one of the diagonal entries A(1), . . . , A(s)

derogatory, say A(1) (without loss of generality).

Let M = {Ml}n
l=0 be a complete chain of A-invariant subspaces. Taking the

intersection of the subspaces Ml with the generalized eigenspace Xj we obtain a

complete chain M(j) = {M (j)
l }nj

l=0 of A(j)-invariant subspaces. Here dim Xj = nj .
The subspaces constituting the chain M can now be written in the form

Ml = M
(1)
νl(1)

+̇M
(2)
νl(2)

+̇ · · · +̇M
(s)
νl(s)

, l = 0, . . . , n, (14.38)

with νl(j) among 0, . . . , nj , and this representation is unique. The nonnegative

integers νl(1), . . . , νl(s), being the dimensions of M
(1)
νl(1)

, . . . , M
(1)
νl(s)

, add up to the

dimension l of Ml. Also νl(j) = νl−1(j) for all j = 0, . . . , s except one, written κl,
for which ν(l)(κl) = νl−1(κl) + 1. Here l = 1, . . . , n.

As A(1) is derogatory and has only one eigenvalue, the complete chain of A(1)-
invariant subspaces M(1) is not isolated. This means that there exist complete

chains of A(1)-invariant subspaces N (1)
1 ,N (1)

2 , . . . , all different from M(1), such

that limk→∞ GAP (N (1)
n ,M(1)) = 0. Write N (1)

k = {N (1)
kl }n1

l=0 and introduce

Nkl = N
(1)
k,νl(1)

+̇N
(2)
k,νl(2)

+̇ · · · +̇N
(s)
k,νl(s)

, l = 0, . . . , n,
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with νl(1), . . . , νl(s) as in (14.38). Then Nk = {Nkl}n
l=0 is a complete chain of

A-invariant subspaces and

lim
k→∞

GAP (Nk,M) = 0.

Now N1,N2, . . . are all different from M, and we may conclude that M is not
isolated. �

14.8.3 Isolated factorizations

Next we consider factorizations. Let W0 be a proper rational m×m matrix function
with W0(∞) = Im, and let W0 = W01W02 be a minimal factorization. Further-
more, let

W0j(λ) = Im + C0j(λInj
− A0j)

−1B0j , j = 1, 2, (14.39)

be minimal realizations of W01 and W02. The factorization W0 = W01W02 is called
isolated if the following condition (IF) is fulfilled:

(IF) There exists ε > 0 such that if W0 = W1W2, while W1 and W2 admit
minimal realizations

Wj(λ) = Im + Cj(λInj
− Aj)

−1Bj , j = 1, 2,

satisfying

‖Aj − A0j‖ + ‖Bj − B0j‖ + ‖Cj − C0j‖ < ε, j = 1, 2,

then W1 = W01 and W2 = W02.

As for stable minimal factorization, the definition of isolated minimal factorization
does not depend on the particular choice of the minimal realization in (14.39).
Indeed, consider another pair of minimal realizations

W0j(λ) = Im + C̃0j(λInj
− Ã0j)

−1B̃0j , j = 1, 2, (14.40)

and assume condition (IF) is fulfilled. We have to show that this condition is
also fulfilled when the minimal realizations in (14.39) are replaced by the minimal
realizations in (14.40). As a first step, note that by the state space isomorphism
theorem there exist invertible matrices S1 and S2 (of appropriate size) such that

A0j = SjÃ0jS
−1
j , B0j = SjB̃0j , C0j = C̃0jS

−1
j , j = 1, 2.

Put ε̃ = ε/α, where

α = max
{
‖S1‖ · ‖S−1

1 ‖, ‖S1‖, ‖S−1
1 ‖, ‖S2‖ · ‖S−1

2 ‖, ‖S2‖, ‖S−1
2 ‖

}
.

We claim that with the minimal realizations in (14.39) being replaced by the
minimal realizations in (14.40), condition (IF) is fulfilled with ε̃ in place of ε.
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To see this, let W0 = W̃1W̃2, where W̃1 and W̃2 are given by the minimal
realizations

W̃j(λ) = Im + C̃j(λInj
− Ãj)

−1B̃j , j = 1, 2,

and assume that

‖Ãj − Ã0j‖ + ‖B̃j − B̃0j‖ + ‖C̃j − C̃0j‖ < ε̃, j = 1, 2.

Using the invertible matrices S1 and S2 we introduce the matrices:

Aj = SjÃjS
−1
j , Bj = SjB̃j, Cj = C̃jS

−1
j , j = 1, 2.

Then W̃j(λ) = Im + Cj(λInj
− Aj)

−1Bj , j = 1, 2, and these realizations are
minimal. Furthermore, we have

‖Aj − A0j‖ + ‖Bj − B0j‖ + ‖Cj − C0j‖

= ‖SjÃjS
−1
j − SjÃ0jS

−1
j ‖ + ‖SjB̃j − SjB̃0j‖ + ‖C̃jS

−1
j − C̃0jS

−1
j ‖

≤ ‖Sj‖ · ‖S−1
j ‖ · ‖Ãj − Ã0j‖ + ‖Sj‖ · ‖B̃j − B̃0j‖ + ‖S−1

j ‖ · ‖C̃j − C̃0j‖

≤ α
(
‖Ãj − Ã0j‖ + ‖B̃j − B̃0j‖ + ‖C̃j − C̃0j‖

)

< α ε̃ = ε.

Since (IF) is fulfilled, we conclude that W̃1 = W01 and W̃1 = W01, as desired.

Theorem 14.9 remains true with the word stable replaced by isolated.

Theorem 14.30. Suppose W0 = W01W02 is a minimal factorization. This factor-
ization is isolated if and only if each common pole (zero) of W01 and W02 is a
pole (zero) of W0 of geometric multiplicity one.

Thus a minimal factorization of a rational matrix function is isolated if and
only if it is stable. This is different when the underlying scalar field is R instead of
C. In that situation stable minimal factorizations are isolated, but the converse is
no longer true; see the next chapter (Section 15.4). The proof of Theorem 14.30 is
along similar lines as that of Theorem 14.9 but uses Theorem 14.7 with the word
stable replaced by isolated (cf., the last paragraph of Subsection 14.8.1).

The next topic to be treated in this subsection is isolated complete factor-
izations. Let W0 be a rational m × m matrix function with W0(∞) = Im, and
let

W0(λ) =

(
Im +

1

λ − α01
R01

)
· · ·

(
Im +

1

λ − α0n
R0n

)
(14.41)
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be a complete factorization of W0. We say that this complete factorization is
isolated if there exists ε > 0 such that the following holds. If

W (λ) =

(
Im +

1

λ − α1
R1

)
· · ·

(
Im +

1

λ − αn
Rn

)
(14.42)

is a complete factorization of W0 and

|αj − α0j | + ‖Rj − R0j‖ < ε, j = 1, . . . , n, (14.43)

then (14.41) and (14.42) coincide, i.e., aj = α0j and Rj = R0j , j = 1, . . . , n.
Again (see the second paragraph in Section 14.4) this definition is not completely
analogous to the one given of an isolated minimal factorization involving just two
factors. It can, however, also be given along these lines using representations of
the form (14.18) and (14.19).

As might be expected by now, Theorems 14.13 and 14.14, remain true when
the word stable is replaced by isolated, and this is true for Corollary 14.15 as well.
The precise statements are covered by the following results.

Theorem 14.31. Let W0 be a rational m × m matrix function with W0(∞) = Im.
A necessary condition for W0 to admit an isolated complete factorization is that
the poles and zeros of W0 all have geometric multiplicity one. In that case there
are only finitely many complete factorizations of W0 and these are all isolated.

Theorem 14.32. Let W0 be a rational m × m matrix function with minimal real-
ization

W0(λ) = Im + C0(λIn − A0)
−1B0.

A necessary condition for W0 to admit an isolated complete factorization is that
both A0 and A×

0 = A0 − B0C0 are nonderogatory. In that case there are only
finitely many complete factorizations of W0 and these are all isolated.

Corollary 14.33. Let W0 be a companion based rational m × m matrix function.
Then there are only finitely many complete factorizations of W0 and these are all
isolated.

Note that these results do not guarantee that W0 admits a complete factor-
ization. The number of these factorizations might be zero. Observe also that for
complete factorizations, the stable and the isolated ones coincide.

As in Section 14.5, let L0 = L02L01 where L0, L01 and L02 are monic m×m
matrix polynomials of degree p, q and r, respectively, so L0 ∈ MPp, L01 ∈ MPq

and L02 ∈ MPr. We say that the factorization L0 = L02L01 is isolated if there
exists ε > 0 with the following property. If L0 = L2L1 with L1 ∈ MPq and
L2 ∈ MPr, and

‖Lj − L0j‖ < ε, j = 1, 2,

then L1 = L01 and L2 = L02. Theorem 14.20 remains true with the word stable
replaced by isolated.
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Theorem 14.34. Let L0, L01 and L02 be monic m × m matrix polynomials, and
assume L0 = L02L01. This factorization is isolated if and only if each common
eigenvalue of L01 and L02 is an eigenvalue of L0 of geometric multiplicity one.

Thus a minimal factorization of monic matrix polynomials is stable if and
only if it is isolated. In the case when the underlying scalar field is R instead of
C, things are different. Stable minimal factorizations are then always isolated, but
the converse is no longer true. For details, we refer to the next chapter.

14.8.4 Isolated solutions of the Riccati equation

A solution R of a given operator Riccati equation is called isolated if there exists
ε > 0 such that the following holds. If Q is also a solution of the Riccati equation
in question and ‖Q − R‖ < ε, then Q = R. Theorem 14.22 remains true with the
word stable replaced by isolated.

Theorem 14.35. Consider the operator Riccati equation

XT21X + XT22 − T11X − T12 = 0,

with Tij ∈ L(Yj , Yi), i, j = 1, 2, where Y1 and Y2 are finite-dimensional Banach
spaces. A solution R of this equation is isolated if and only if each common eigen-
value of T11 −RT21 and T22 + T21R is an eigenvalue of geometric multiplicity one
of the operator

T =

⎡
⎣

T11 T12

T21 T22

⎤
⎦ : Y1 +̇ Y2 → Y1 +̇ Y2.

Thus as far as solutions of the operator Riccati equation is concerned, the
stable and the isolated ones are the same. In the case when the underlying scalar
field is R instead of C, the situation is different. Then stable solutions are isolated,
but the converse is no longer true. For details, we refer once more to the next
chapter.

Notes

This chapter covers the material from Chapter VIII in [14], with Sections 14.2,
14.4 and a large part of 14.8 as substantial novel additions. For further informa-
tion about stability of invariant spaces we refer to [70]; see also Chapter S4 in [69].
The notion of Lipschitz stability (Section 14.2) was introduced in [83], where one
also can find Theorem 14.8 and its proof. Theorem 14.21 is a particular case of
Theorem 17.3.3 in [70]; Theorem 14.23 is Theorem 17.9.3 in [70]. The fact, men-
tioned in Section 14.8, that in the finite-dimensional case an invariant subspace is
stable if and only if it is isolated has been proved in [34] too (see also [37]). The
main theorem in [34] contains the characterization given in Theorem 14.1. For
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related material, see [40]. Analytic properties of invariant subspaces depending on
a complex parameter, also with applications to factorizations of rational matrix
functions and to quadratic matrix equations can be found in Part Four of [70].
Stability of chains (more generally, of lattices) of invariant subspaces has been
considered in [70], Section 15.6. The results in Section 14.4 on (Lipschitz) stability
of complete factorizations are new. Also new are the results in Section 14.8 on iso-
lated complete chains of invariant subspaces and isolated complete factorizations.

As a further development we mention the notion of α-stability of invariant
subspaces which originated from [70], Exercise 16.7. An A-invariant subspace M
is called α-stable if there exist positive constants δ and K such that ‖A−B‖ < δ
implies the existence of a B-invariant subspace N with gap(M, N) ≤ K‖A−B‖α.
It follows that the notion of α-stability is weaker than Lipschitz stability and
stronger than usual stability. A full characterization of α-stable invariant subspaces
was first given in [98]. The related concept of strong α-stability was introduced
and studied in [100]. Other related notions of stability and applications can be
found in [99] and the references cited therein. The paper [99], which has survey
character, also points the way to the literature on stability of invariant subspaces
of matrices with symmetry properties in indefinite inner product spaces. The latter
can be applied to study stability of symmetric factorizations for rational matrix
functions W (λ) that have selfadjoint values for real values of λ.

For the connections with computational aspects, we refer to [17], where
among other things rough estimates are given for the number of computations
involved in the construction of a minimal factorization of a transfer function.





Chapter 15

Factorization of Real
Matrix Functions

In this chapter we review the factorization theory for the case of real matrix
functions with respect to real divisors. As in the complex case the minimal fac-
torizations are completely determined by the supporting projections of a given
realization, but in this case one has the additional requirement that all linear
transformations must be representable by matrices with real entries. Due to the
difference between the real and complex Jordan canonical form the structure of
the stable real minimal factorizations is somewhat more complicated than in the
complex case. This phenomenon is also reflected by the fact that for real matrixes
there is a difference between the stable and isolated invariant subspaces.

15.1 Real matrix functions

We begin with some notation and terminology. Let x = (x1, . . . , xn)⊤ be a vector
in Cn. Then x = (x1, . . . , xn)⊤ is called the conjugate of x. We say that x is real
if x = x. So the real vectors in Cn are just the elements of Rn.

Let M be a subspace of Cn. Then, by definition, M = {x | x ∈ M}. Note
that M is also a subspace of Cn. We call M self-conjugate if M = M . This notion
will be used in Sections 15.2 and 15.3. It is easy to see that M is self-conjugate
if and only if there exists a subspace N (uniquely determined by M) of the real
vector space Rn such that M = {x + iy | x, y ∈ N}.

Suppose A = [ajk]n m
j=1,k=1 is a complex matrix. By the conjugate A of A, we

mean the matrix
A = [ajk]n m

j=1,k=1.

The matrix A is called real if A = A. In other words, A is real if and only if all
its entries are real numbers. Now specify bases e1, . . . , em of Cm and f1, . . . , fn of
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Cn consisting of real vectors. Then the matrix A defines a linear operator from
Cm into Cn. Note that A is a real matrix if and only if this operator maps real
vectors in Cm into real vectors in Cn.

Let W be a rational m × m matrix function. We say that W is real if W (λ)
is a real matrix for all real λ in the domain of W (i.e., not being a pole of W ). A
realization

W (λ) = D + C(λIn − A)−1B (15.1)

is called a (minimal) real realization of W if (it is minimal in the sense of Section
7.1 and) A, B, C and D are real matrices. Clearly, if W admits a real realization,
then W is a real matrix function. The converse of this is also true; in fact, one can
always make a minimal real realization (cf., [116], Lemma 1).

Theorem 15.1. Let W be a proper rational m× m matrix function. Assume W is
real. Then W admits a minimal real realization.

Proof. Let n be the McMillan degree of W . Then W admits a minimal realization
of the form (15.1), where A, B, C and D are complex matrices of appropriate

sizes. Define the rational m × m matrix function W by W (λ) = W (λ). Then
clearly W (λ) = D + C(λ − A)−1B is a minimal realization for W . For all real
λ in the domain of W , we have W (λ) = W (λ). It follows that W = W , and
hence W (λ) = D + C(λ − A)−1B is a minimal realization for W . So the systems
(A, B, C, D; Cn, Cm) and (A, B,C, D; Cn, Cm) are similar. In particular D = D,
thus D is a real matrix.

Let U be an invertible complex matrix such that

U−1AU = A, U−1B = B, CU = C. (15.2)

Put Ω = col (CAj−1)n
j=1. Then Ω = col (C A

j−1
)n
j=1, and so ΩU = Ω. Due to the

minimality, the matrix Ω has rank n. Now we construct a special left inverse Ω(−1)

of Ω and an invertible n × n matrix S such that

Ω(−1)Ω = S−1S.

Write Ω = [ωij ]
kn n
i=1,j=1. Choose 1 ≤ i1 < i2 < · · · < in ≤ kn such that

S = [ωiαβ]nα,β=1

is invertible. Define Ω(−1) to be the n × kn matrix all of whose columns are zero
except those with index i1, . . . , in, while together the latter form the inverse of S.
Then Ω and S have the desired properties, and hence

U = Ω(−1)Ω = S−1S.

Using this in (15.2) we get

SAS−1 = SAS−1, SB = SB, CS−1 = CS−1.
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Thus SAS−1, SB, and CS−1 are real matrices. But then

W (λ) = D + CS−1(λIn − SAS−1)−1SB

is clearly a minimal real realization for W . This completes the proof. �

Let W be a rational m × m matrix function, and write

W (λ) = [wij(λ)]mi,j=1.

If the functions wij may be written as quotients of (scalar) polynomials having
real coefficients, then obviously W is real. The converse is also true. For the special
case when W is proper, this is an easy consequence of Theorem 15.1. For arbitrary
real rational m×m matrix functions, not necessarily proper, the result follows by
applying a suitable Möbius transformation mapping the extended real line onto
itself.

Next we study real factorizations of rational matrix functions. Let W , W1 and
W2 be rational m× m functions, and suppose that W = W1W2. We say that this
factorization is a (minimal) real factorization if (it is a minimal factorization and)
the factors W1 and W2 are real. We shall characterize minimal real factorizations
in terms of supporting projections. For convenience we restrict ourselves to the
case where the functions W , W1 and W2 are proper and have the value Im at
infinity.

Theorem 15.2. Suppose W (λ) = Im+C(λIn−A)−1B is a minimal real realization.
Let Π be a supporting projection of the system Θ = (A, B, C; Cn, Cm), and let
W = W1W2 be the corresponding (minimal) factorization of W . This factorization
is real if and only if Π is a real matrix.

Proof. One checks without difficulty that Π is also a supporting projection of the
system Θ. The corresponding (minimal) factorization is W = W 1W 2, where

Wj(λ) = Wj(λ), j = 1, 2.

The desired result is now immediate from Theorem 9.3. �

Let us remark that it may happen that W has plenty of minimal factorizations
with non-real factors, but no minimal real factorization. To give an example, let
W be the real rational 3 × 3 matrix function given by

W (λ) =

⎡
⎢⎢⎢⎢⎢⎣

λ3 + 2λ2 + 1

λ(λ2 + 1)

3λ2 + 1

λ(λ2 + 1)

−2λ2 − 1

λ(λ2 + 1)

λ3 − 2λ2 − 1

λ(λ2 + 1)

⎤
⎥⎥⎥⎥⎥⎦

,
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and introduce

A =

⎡
⎢⎣

0 1 0

−1 0 0

0 0 0

⎤
⎥⎦ , B =

⎡
⎢⎣

1 1

0 1

1 1

⎤
⎥⎦ , C =

[
1 1 1

−1 0 −1

]
.

Then W (λ) = I2 + C(λI3 − A)−1B is a minimal real realization for W . Observe
that

A× = A − BC =

⎡
⎢⎣

0 0 0

0 0 1

0 −1 0

⎤
⎥⎦ .

The non-trivial invariant subspaces of A, considered as an operator on R3 are
R∔R∔{0} and {0}∔{0}∔R. The non-trivial invariant subspaces of A×, considered
as an operator on R3, are R∔{0}∔{0} and {0}∔R∔R. From this it is clear that
the system Θ = (A, B, C; C3, C2) has no real supporting projections. But then the
function W does not admit any minimal real factorization. In particular W has no
minimal factorization involving real elementary factors. This is in contrast with
the situation where complex factorizations are considered. Indeed, as the function
W has simple poles, it can be written as a product of three complex elementary
factors (Section 10.2). In fact, one such factorization into degree one factors is
given by

W (λ) =

⎡
⎢⎢⎣

λ + 1

λ

1 − i

λ

−1

λ

λ − λ + i

λ

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
1 + 2i

λ + i

0
λ − i

λ + i

⎤
⎥⎥⎦

⎡
⎢⎢⎣

λ − 1 + i

λ − 1

1 − i

λ − 1

−1

λ − 1

λ − 1

λ − i

⎤
⎥⎥⎦ .

Note that from the above example it follows that Theorems 10.10 and 10.11 do
not have real counterparts.

15.2 Real monic matrix polynomials

Throughout this section L will be a monic m×m matrix polynomial. We say that
L is real if L(λ) is a real matrix for all λ ∈ R. An equivalent requirement is that
all coefficients of L are real matrices.

Let l be the degree of L. If there exists a monic system Θ,

Θ = (T, R, Q, 0; Cml, Cm),

such that the transfer function of Θ is L−1 and T , R and Q are real matrices,
then clearly L is real. The converse is also true. To see this, just take the first
companion system (3.3) corresponding to L. This characterization of real monic
matrix polynomial could also have been obtained from Theorem 15.1.
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Assume that L = L2L1, where L1 and L2 are monic m×m matrix polynomi-
als. We say that the factorization L = L2L1 is real if the factors L1 and L2 (and
therefore also L) are real. The next theorem is the analogue of Theorem 15.2.

Theorem 15.3. Suppose that Θ = (T, R, Q, 0; Cml, Cm) is a monic system such that
the transfer function of Θ is L−1, and let T , R and Q be real matrices. Let M be
a supporting subspace for Θ, and let L = L2L1 be the corresponding factorization
of L. This factorization is real if and only if M is self-conjugate.

Proof. Write M = {x | x ∈ M}. Then M is also a supporting subspace for Θ and
the corresponding factorization of L is L = L2L1, where

Lj(λ) = Lj(λ), j = 1, 2.

This implies the desired result. �

15.3 Stable and isolated invariant subspaces

In this section we study stable invariant subspaces and isolated invariant subspaces
of operators acting on finite-dimensional real spaces. We refrain from giving the
explicit definition of these notions because they are formally the same as those
presented in Sections 14.1 and 14.8. In the one but last paragraph of Subsection
14.8.1 we mentioned that in the complex case each stable invariant subspace is
isolated and conversely. When the underlying scalar field is the real line, this is no
longer true.

We shall begin our investigation by considering some simple special cases.
But first we introduce some notation and terminology.

Let E be a real Banach space. The complexification of E will be denoted by
Ec. As a set, Ec consists of all (ordered) pairs (x, y) with x and y in E. Instead of
(x, y) we shall write x + iy. If η = x + iy belongs to Ec, then η = x − iy is called
the conjugate of η. We call η = x + iy real if η = η or, equivalently, y = 0. The
real vectors are identified with those of E in the usual way.

If N is a subspace of E, then N c is a subspace of Ec. Let M be a subspace
of Ec. Then M = {η | η ∈ M} is also a subspace of Ec. We call M self-conjugate
if M = M . Observe that M is self-conjugate if and only if there exists a subspace
N of E such that M = N c.

Suppose T is a (bounded) linear operator from E into F . Here E and F
are real Banach spaces. Define T c : Ec → F c by T c(x + iy) = Tx + iT y. Then
T c is a (bounded) linear operator which is called the complexification of T . For
an arbitrary (bounded) linear operator S : Ec → F c, we define the conjugate
S : Ec → F c by S(η) = S(η). Observe that S is a (bounded) linear operator. We
call S real if S = S. One checks without difficulty that S is real if and only if
S = T c for some (bounded) linear operator T : E → F . Also, S is real if and only
if S maps real vectors in E into real vectors in F .
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Assume now that E and F are finite-dimensional real spaces with bases
e1, . . . , em and f1, . . . , fn, respectively. Note that e1, . . . , em and f1, . . . , fn form
bases of Ec and F c, respectively. With respect to these bases a linear operator
S : Ec → F c can be represented by a matrix, say

S = [sjk]n m
j=1,k=1.

A straightforward calculation shows that S is then given by

S = [sjk]n m
j=1,k=1.

Thus S is real if and only if all entries sjk in the matrix representation for S
are real. So, after specification of bases consisting of real vectors, real operators
between complexifications of finite-dimensional real spaces can be identified with
real matrices.

Let T be a linear operator acting on a finite-dimensional real space E. The
spectrum of T is by definition the spectrum of T c. It is denoted by σ(T ). Since the
characteristic polynomial of T c has real coefficients, the spectrum of T is symmetric
with respect to the real line. The points of σ(T ) are called the eigenvalues of T .
If λ0 is a real eigenvalue of T , the geometric and algebraic multiplicity of λ0 are
equal to dim Ker (λ0 − T ) and dim Ker (λ0 − T )n, respectively. Here n = dim E.

Lemma 15.4. Suppose dim E is odd and σ(T ) consists of exactly one real eigenvalue
of geometric multiplicity one. Then each invariant subspace of T is both stable and
isolated.

Proof. The hypothesis on T implies that T is unicellular. Hence each invariant
subspace of T is isolated.

Let N be an invariant subspace of T . Put k = dimN . Since dimE is odd each
operator S on E has an invariant subspace of dimension k. To see this, observe
that σ(S) contains at least one real point and use the real Jordan normal form
for S (cf.,[88], 36.2). The proof that N is stable is now similar to that of Theorem
14.2 (see also the proof of Corollary 14.3). �

Lemma 15.5. Suppose dim E is even and σ(T ) consists of exactly one real eigen-
value of geometric multiplicity one. Then the even-dimensional invariant subspaces
of T are stable and the odd-dimensional invariant subspaces of T are not stable.
All invariant subspaces of T are isolated.

Proof. The last statement of the theorem is clear from the fact that T is unicellular.

Let N be an invariant subspace of T , and put k = dimN . Assume k is even.
Then each operator S on E has an invariant subspace of dimension k. This follows
from the hypothesis that dimE is even and the real Jordan normal form of S.
Using the same method as in the proof of Lemma 15.4 we can now show that N
is stable.
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Next assume that k is odd. In order to prove that N is not stable, we may
suppose that σ(T ) = {0}. With respect to a suitable basis for E, the matrix
representation of T has the upper triangular nilpotent Jordan form

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . . 0 1

0 · · · · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Now let ε be positive a positive number, and let Tε be the matrix which one
obtains if for even j from 2 to n, the (j, j − 1)th entry in T is set to be −ε2

while all other entries remain unchanged. Here n is the order of T , and according
to our hypotheses this number is even. Clearly Tε → T as ε ↓ 0. One checks
without difficulty that σ(Tε) = {iε,−iε}. So σ(Tε) ∩ R = ∅. Recalling that a
(scalar) polynomial with real coefficients and odd degree has at least one real
zero, we see that Tε has no invariant subspaces of odd dimension. This completes
the proof. �

From Lemma 15.5 it is already clear that not every isolated invariant subspace
will be stable.

Lemma 15.6. Suppose σ(T ) consists of exactly one real eigenvalue of geometric
multiplicity at least two. Then T has neither stable nor isolated non-trivial invari-
ant subspaces.

Proof. Let N be a non-trivial invariant subspace of T . The proof that N is not
stable is almost verbatim the same as that of Lemma 14.4. To establish that N is
also not isolated, use the argument presented in the second and third paragraph
of the proof of Theorem 14.28 with Ck replaced by E and A by T . �

From Lemmas 15.4–15.6, we obtain the following two observations. If σ(T )
consists of exactly one real eigenvalue of geometric multiplicity one, then each
invariant subspace of T is isolated. Also, if σ(T ) consists of exactly one real eigen-
value of geometric multiplicity at least two, then no non-trivial invariant subspace
of T is isolated. In Subsection 14.8.1 we have seen that in the complex case the
same conclusions hold even when the single eigenvalue is non-real.

Lemma 15.7. Suppose σ(T ) consists of two non-real eigenvalues of geometric mul-
tiplicity one. Then each invariant subspace of T is both stable and isolated.

Proof. First of all, note that T is unicellular. Hence each invariant subspace of T
is isolated. Next observe that all invariant subspaces of T are even-dimensional.
In particular the dimension of E is even. The rest of the argument is now similar
to that presented in the second paragraph of the proof of Lemma 15.5. �
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Lemma 15.8. Suppose σ(T ) consists of two non-real eigenvalues of geometric mul-
tiplicity at least two. Then T has neither stable nor isolated non-trivial invariant
subspaces.

Proof. Let N be a non-trivial invariant subspace of T . The proof that N is not
stable is analogous to that of Lemma 14.4. In order to prove that N is also not
isolated, we argue as follows.

Consider N c = {x+ iy | x, y ∈ N}. Observe that N c is a non-trivial invariant
subspace of T c. The spectrum of T c consists of two non-real eigenvalues of geo-
metric multiplicity at least two. Denote these eigenvalues by α + iβ and α − iβ,
and let N+, respectively N−, be the generalized eigenspace corresponding to T c

and α + iβ, respectively α − iβ. The non-trivial stable invariant subspaces of T c

are N+ and N−. In the complex case, however, the notion of a stable and that of
an isolated invariant subspace coincide. So the only non-trivial isolated invariant
subspaces of T c are N+ and N−. Now N− = {η | η ∈ N+} and Ec = N++̇N−.
From this it is clear that N− �= N c �= N+. It follows that the T c-invariant subspace
N c is not isolated.

Let M1, M2, . . . be a sequence of T c-invariant subspace all different from N c,
such that gap (Mk, N c) → 0. For k = 1, 2 . . ., we put

M+
k = Mk ∩ N+, M−

k = Mk ∩ N−.

Then Mk = M+
k +̇M−

k , gap (M+
k , N c ∩N+) → 0 and gap (M−

k , N c ∩N−) → 0 for
k → ∞. From Mk �= N c and

N c = [N c ∩ N+] +̇ [N c ∩ N−],

we see that either M+
k �= N c ∩N+ or M−

k �= N c ∩N−. Assume, for instance, that
M+

k �= N c ∩N+ for infinitely many k. Then, by passing to a subsequence, we may
assume that M+

k �= N c ∩ N+ for all k. Put

Lk = M+
k +̇ {η | η ∈ M+

k }.

Then Lk is T c-invariant. Moreover, Lk is self-conjugate and hence we have Lk =
N c

k = {x + iy | x, y ∈ Nk} for some T -invariant subspace Nk of E.

Observe that
N c

k = [N c
k ∩ N+] +̇ [N c

k ∩ N−],

where N c
k ∩ N+ = M+

k and N c
k ∩ N− = {η | η ∈ M+

k }. So

gap (N c
k ∩ N+, N c ∩ N+) → 0, (k → ∞),

gap (N c
k ∩ N−, N c ∩ N−) → 0, (k → ∞).

It follows that gap (N c
k , N c) → 0. But then gap (Nk, N) → 0 too. Since N c

k ∩N+ =
M+

k �= N c ∩ N+, we have that Nk �= N for all k. We conclude that N is not
isolated, and the proof is complete. �
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In order to deal with an arbitrary linear operator T on a finite-dimensional
real space E, we introduce some more notation and terminology. Let λ0 be a real
eigenvalue of T . Recall that the algebraic multiplicity of λ0 is equal to dim Ker (λ0−
T )n, where n = dimE. The space Ker (λ0 −T )n can be described as follows. Con-
sider the spectral projection of T c corresponding to λ0. It is easy to see that
this spectral projection is a real operator. Hence it is of the form P (T ; λ0)

c for
some projection P (T ; λ0) of E. We call P (T ; λ0) the spectral projection of T cor-
responding to λ0. The image of P (T ; λ0) is the space Ker (λ0 − T )n; it is called
the generalized eigenspace corresponding to T and λ0.

Next let α + iβ be a non-real eigenvalue of T . Then α − iβ is an eigenvalue
of T too, and the geometric (algebraic) multiplicities of α + iβ and α − iβ are
the same. The spectral projections of T c corresponding to α + iβ and α − iβ
are non-real. However, their sum is real. In other words, there exists a projection
P (T ; α, β) of E such that P (T ; α, β)c is the spectral projection corresponding to
T and the spectral set {α + iβ, α− iβ}. We call P (T ; α, β) the spectral projection
corresponding to a ± iβ. Note that

(
Im P (T ; α, β)

)c
= Ker (α + iβ − T c)n +̇ Ker (α − iβ − T c)n.

The image Im P (T ; α, β) of P (T ; α, β) is called the generalized eigenspace corre-
sponding to T and α± iβ; its dimension is two times the algebraic multiplicity of
α ± iβ as an eigenvalue of T c. Write

σ(T ) = {λj}r
j=1 ∪ {αk ± iβk}s

k=1,

where λ1, . . . , λr are the distinct real eigenvalues of T and α1 + iβ1, . . . , αs + iβs

are the different eigenvalues of T lying in the upper half-plane. Put

P (λj) = P (T ; λj), P (αk, βk) = P (T ; αk, βk),

N(λj) = ImP (T ; λj), N(αk, βk) = ImP (T ; αk, βk).

So N(λ1), . . . , N(λr) and N(α1, β1), . . . , N(αs, βs) are the different generalized
eigenspaces of T . Note that the projections

P (λ1), . . . , P (λr), P (α1, β1), . . . , P (αs, βs)

are mutually disjoint and add up to the identity. Hence

E = N(λ1) +̇ · · · +̇N(λr) +̇ N(α1, β1) +̇ · · · +̇ N(αs, βs).

The invariant subspaces for T are the subspaces of E of the form

N = N1 +̇ · · · +̇ Nr +̇ Ñ1 +̇ · · · +̇ Ñs, (15.3)

where, for j = 1, . . . , r, the space Nj is a T -invariant subspace of N(λj) and, for

k = 1, . . . , s, the space Ñk is a T -invariant subspace of N(αk, βk).
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Theorem 15.9. A subspace N of E is T -invariant and stable if and only if N is of
the form (15.3), where for j = 1, . . . , r and k = 1, . . . , s we have

(i) Nj is an arbitrary even-dimensional T -invariant subspace of N(λj) whenever
the algebraic multiplicity of λj is even and the geometric multiplicity of λj is
one;

(ii) Nj is an arbitrary T -invariant subspace of N(λj) whenever the algebraic
multiplicity of λj is odd and the geometric multiplicity of λj is one;

(iii) Nj = {0} or Nj = N(λj) whenever λj has geometric multiplicity at least
two;

(iv) Ñk is an arbitrary T -invariant subspace of N(αk, βk) whenever αk + iβ and
αk − iβ have geometric multiplicity one;

(v) Ñk = {0} or Ñk = N(αk, βk) whenever αk + iβk and αk− iβk have geometric
multiplicity at least two.

Also, N is an isolated invariant subspace of T if and only if N is of the form
(15.3), where for j = 1, . . . , r and k = 1, . . . , s the conditions (iii), (iv), (v) and,
moreover,

(vi) Nj is an arbitrary T -invariant subspace of N(λj) whenever the geometric
multiplicity of λj is one

are satisfied.

Proof. Let N be an invariant subspace of T , and write N in the form (15.3),
where Nj = P (λj)N, j = 1, . . . , r, and Ñk = P (αk, βk)N, k = 1, . . . , s. For
j = 1, . . . , r let Tj be the restriction of T to N(λj). Also, for k = 1, . . . , s, let

T̃k be the restriction of T to N(αk, βk). It is easy to see that N is isolated if
and only if for j = 1, . . . , r, the space Nj is an isolated invariant subspace of

Tj and for k = 1, . . . , s the space Ñk is an isolated invariant subspace of T̃k.
This statement remains true if isolated is replaced by stable. The proof of this
involves the analogues for the real case of Lemmas 14.5 and 14.6. Observe now
that σ(T ) = {λj} and σ(T̃k) = {αk + iβk, αk − iβk}. Here j = 1, . . . , r and
k = 1, . . . , s. The desired result is now immediate from Lemmas 15.5–15.8. �

Theorem 15.9 implies that every stable invariant subspace is also isolated.
As we already observed, the converse of this is not true. The next theorem is a
reformulation of Theorem 15.9.

Theorem 15.10. Let N be an invariant subspace for T . Then N is stable if and
only if N meets the following requirements:

(i) If {0} �= P (λj)N �= N(λj), then the geometric multiplicity of λj is one,
j = 1, . . . , r;

(ii) If P (λj)N has odd dimension, then the algebraic multiplicity of λj is odd too,
j = 1, . . . , r;
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(iii) If {0} �= P (αk, βk)N �= N(αk, βk), then the geometric multiplicity of αk±iβk

is one, k = 1, . . . , s.

Also N is isolated if and only if (i) and (iii) are satisfied.

In the next section we shall deal with stable and isolated real factorizations
of rational matrix functions and of monic matrix polynomials, and also with sta-
ble and isolated solutions of the real operator Riccati equation. The version of
Theorem 15.9 most fitted for studying these notions reads as follows.

Theorem 15.11. Let E1 and E2 be finite-dimensional real spaces, and let

T =

[
T1 T0

0 T2

]

be a linear operator acting on E = E1 +̇ E2. Then E1 is a stable invariant subspace
for T if and only if the following conditions are satisfied:

(i) each common eigenvalue of T1 and T2 is an eigenvalue of T of geometric
multiplicity one;

(ii) each common real eigenvalue of T1 and T2 of which the algebraic multiplicity
with respect to T1 is odd, has odd algebraic multiplicity with respect to T .

Also, E1 is an isolated invariant subspace for T if and only if (i) is satisfied.

Proof. The proof is similar to that of Theorem 14.7. Use Theorem 15.10 instead
of Theorem 14.1. �

15.4 Stable and isolated real factorizations

In this section we discuss stable and isolated real factorizations of rational matrix
functions and monic matrix polynomials. Also we deal with stable and isolated so-
lutions of the real operator Riccati equation. We begin by considering real rational
matrix functions.

Suppose
W0 = W01W02 (15.4)

is a minimal real factorization. Here W0, W01 and W02 are real proper rational
m × m matrix functions which have the value Im at infinity. For j = 1, 2, let

W0j(λ) = Im + C0j(λInj
− A0j)

−1B0j (15.5)

be a minimal real realization for W0j . We say that the factorization (15.4) is
isolated (with respect to real perturbations) if there exists ε > 0 with the following
property. If W0 = W1W2, where W1 and W2 admit minimal real realizations

Wj(λ) = Im + Cj(λInj
− Aj)

−1Bj , j = 1, 2,
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such that

‖Aj − A0j‖ + ‖Bj − Boj‖ + ‖Cj − C0j‖ < ε, j = 1, 2,

then W1 = W01 and W2 = W02. By Theorem 7.7, this definition does not depend
on the choice of the minimal realizations (15.5). The definition of the notion of a
minimal factorization that is stable (with respect to real perturbations) is analogous
to that of a stable minimal factorization given in Section 14.3. The only difference
is that now all (minimal) realizations are required to be real. We omit the details.

Closely related to the concepts introduced in the preceding paragraph are
those of an isolated and of a stable real supporting projections. Let A0, B0 and C0

be real matrices of appropriate sizes, and consider the corresponding system Θ0 =
(A0, B0, C0; Cn, Cm). Here, as usual, the matrices A0, B0 and C0 are identified with
their canonical actions between the corresponding Euclidean spaces. Suppose Π0

is a real n×n matrix whose canonical action on Cn is a supporting projection for
Θ0. In other words, Π0 is a real supporting projection for Θ0. We say that Π0 is
isolated (with respect to real perturbations) if there exists ε > 0 such that each real
supporting projection Π for Θ0 different from Π0 satisfies ‖Π−Π0‖ ≥ ε. Similarly,
we call Π0 stable (with respect to real perturbations) if, given ε > 0, there exists
ω > 0 such that the following is true. If Θ0 = (A0, B0, C0; Cn, Cm) is a system
with real matrices A, B, C and ‖Θ − Θ0‖ < ω, then Θ has a real supporting
projection Π such that ‖Π − Π0‖ < ε.

In the next theorem W0, W01 and W02 are real proper rational m×m matrix
functions with value Im at infinity.

Theorem 15.12. Suppose W0 = W01W02 is a minimal real factorization. This
factorization is stable with respect to real perturbations if and only if the following
conditions are satisfied:

(i) each common pole (zero) of W0 and W02 is a pole (zero) of W0 of geometric
multiplicity one;

(ii) each common real pole of W01 and W02 of which the order with respect to
W01 is odd has odd order as a pole of W0;

(iii) each common real pole of W−1
01 and W−1

02 of which the order with respect to
W−1

02 is odd has odd order as a pole of W−1
0 .

Also, W0 = W01W02 is isolated with respect to real perturbation if and only if (i)
is satisfied.

Proof. We only present an outline of the proof. Let

W (λ) = Im + C0(λIn − A0)
−1B0

be a minimal real realization of W . Denote the supporting projection for Θ0 =
(A0, B0, C0; Cn, Cm) corresponding to the factorization (15.4) by Π0. From Theo-
rem 15.2 we know that Π0 is real. Using the techniques of Section 14.3, one can
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show that (15.4) is stable (isolated) with respect to real perturbations if and only
if the same is true for Π0. Consider the matrices A0, B0, C0 and Π0 now as op-
erators from Rn into Rn, from Rm into Rn, from Rn into Rm and from Rn into
Rn, respectively. Then Π0 is stable (isolated) with respect to real perturbations if
and only if KerΠ0 and ImΠ0 are stable (isolated) invariant subspaces for A0 and
A0 −B0C0, respectively. From Theorem 15.11 we conclude that Theorem 15.12 is
correct if (ii) and (iii) are replaced by

(ii)′ each common real pole (zero) of W01 and W02 of which the pole- (zero-)
multiplicity with respect to W01(W02) is odd, is a pole (zero) of W0 of odd
pole- (zero-) multiplicity,

Note that a pole of W0 has geometric multiplicity one if and only if its order
and pole-multiplicity are the same (cf., Corollary 8.10). The desired result is now
immediate from the fact that if λ0 is a pole of W0 of geometric multiplicity one,
then the geometric multiplicity of λ0 with respect to W01 does not exceed one. �

In Theorems 14.9 and 15.12 poles of geometric multiplicity one play an im-
portant role. If λ0 is a pole of a rational matrix function W0 of (positive) order p,
then always p ≤ δ(W0; λ0), where δ(W0; λ0) is the local degree (pole-multiplicity)
of W0 at λ0; equality occurs if and only if the geometric multiplicity of λ0 is one.
This fact was used in the proof of Theorem 15.12. It is also useful in dealing with
specific examples.

Example. Consider the case where

W0(λ) =

⎡
⎢⎢⎣

1
1

λ
+

1

λ2

0 1 +
1

λ

⎤
⎥⎥⎦

W01(λ) =

⎡
⎢⎣

1
1

λ

0 1

⎤
⎥⎦ , W02(λ) =

⎡
⎢⎣

1 0

0 1 +
1

λ

⎤
⎥⎦ .

Then W0 = W01W02 and this factorization is minimal. Indeed, δ(W0) = δ(W0; 0) =
2 and δ(W01) = δ(W01; 0) = δ(W02) = δ(W02; 0) = 1. The (only) common pole
of W01 and W02 is 0 and the order of 0 as a pole of W0 is equal to δ(W0; 0),
namely 2. Moreover, W01 and W02 have no common zeros. So the factorization
W0 = W01W02 is isolated with respect to real perturbations. It is clear that (ii) is
not satisfied, so this factorization is not stable with respect to real perturbations.
Note that it is a stable factorization in the sense of Section 14.3.

Next we consider factorizations of real monic matrix polynomials that are
stable or isolated (with respect to real perturbations). The definition of these no-
tions is straightforward, see Section 14.5 and the closing paragraph of Section 14.6.
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Therefore we omit the details. The crucial point is that now all factorizations are
required to be real. The proof of the next theorem may be based on the material
contained in Section 15.3 and involves the techniques of Section 14.5.

Theorem 15.13. Let L0, L01 and L02 be real monic k × k matrix polynomials,
and suppose that L0 = L02L01. This factorization is stable with respect to real
perturbations if and only if the following conditions are satisfied:

(i) each common eigenvalue of L01 and L02 is an eigenvalue of L0 of geometric
multiplicity one;

(ii) each common real eigenvalue of L01 and L02 with odd zero-multiplicity rela-
tive to L01, is an eigenvalue of L0 with odd zero-multiplicity.

Also, the factorization L0 = L02L01 is isolated with respect to real perturbations if
and only if condition (i) is satisfied.

Note that the zero-multiplicity of an eigenvalue λ0 of a monic matrix poly-
nomial L is equal to the order of λ0 as zero of the scalar polynomial detL(λ).
Using this one can easily construct examples showing that an isolated factoriza-
tion of a real monic matrix polynomial need not be stable (with respect to real
perturbations). Finally, we consider the real operator Riccati equation

XT21X + XT22 − T11X − T12 = 0. (15.6)

Here Tjk is a linear operator from the finite-dimensional real space Ek into the
finite-dimensional real space Ej (j, k = 1, 2). The definition of a stable solution of
(15.6) is formally the same as that given in Section 14.6. The only difference is
that here the underlying spaces are real instead of complex.

Theorem 15.14. Let R be a solution of the Riccati equation (15.6), and put

T =

[
T11 T12

T21 T22

]
: E1 +̇ E2 → E1 +̇ E2.

Then R is stable if and only if the following conditions are satisfied:

(i) each common eigenvalue of T11 − RT21 and T22 + T21R is an eigenvalue of
T of geometric multiplicity one;

(ii) each common real eigenvalue of T11 − RT21 and T22 + T21R for which the
algebraic multiplicity with respect to T22 + T21R is odd, is an eigenvalue of
odd algebraic multiplicity of T .

It is also possible to introduce the notion of an isolated solution of of (15.6).
The definition goes along the lines indicated at the end of Section 14.6, with the
understanding that in the present situation the underlying spaces are real instead
of complex. We refrain from further pursuing this point here.
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15.5 Stability of stable real factorizations

In order to simplify the following discussion we introduce some terminology. Let
T be a linear operator on a finite-dimensional real space E. An invariant subspace
N of T is called perfectly stable if for each ε > 0 there exists δ > 0 such that
‖S−T ‖ < δ implies that S has a stable invariant subspace M with gap (M, N) < ε.
This terminology will be only of temporary use because we shall show that the
notion of a stable and that of a perfectly stable invariant subspace coincide. It is
clear that perfect stability implies stability.

Lemma 15.15. Suppose that all eigenvalues of T have geometric multiplicity one.
Put n = dimE. If n is odd, then for each integer k between 0 and n, the operator
T has a stable invariant subspace of dimension k. If n is even, then for each
even integer m between 0 and n, the operator T has a stable invariant subspace of
dimension m.

Proof. Consider the real Jordan normal form of S (cf., [88], 36.2) and apply The-
orem 15.9. �

From the material contained in Section 15.3, we recall the following facts. If
σ(T ) consists of one real eigenvalue of geometric multiplicity one and dimE is even,
then an invariant subspace for T is stable if and only if it has even dimension. If
either σ(T ) consists of one real eigenvalue of geometric multiplicity one and dimE
is odd, or σ(T ) consists of two non-real eigenvalues of geometric multiplicity one,
then each invariant subspace for T is stable. Also note that if T has no real
eigenvalue, then each T -invariant subspace (so in particular E itself) has even
dimension.

Lemma 15.16. Suppose that either σ(T ) consists of exactly one real eigenvalue of
geometric multiplicity one, or σ(T ) consists of two non-real eigenvalues of geomet-
ric multiplicity one. Then each stable invariant subspace of T is perfectly stable.

Proof. Let N be a stable invariant subspace for T , and put k = dimN . Since T
is unicellular, N is the only T -invariant subspace of dimension k. Let T1, T2, . . .
be a sequence of operators on E converging to T . A simple rank argument (cf.,
the proof of Theorem 14.24) shows that for n sufficiently large all eigenvalues of
Tn have geometric multiplicity one. But then Lemma 15.15 guarantees that for n
sufficiently large the operator Tn has a stable invariant subspace Mn of dimension
k. The method used to prove Theorem 14.2 can now be employed to show that
there exists a subsequence of M1, M2, . . . converging in the gap topology to a k-
dimensional invariant subspace M for T . Since M must be equal to N , the proof
is complete. �

Theorem 15.17. Let N be a stable invariant subspace for a linear operator T acting
on a finite-dimensional real space E. Then, given ε > 0, there exists δ > 0 such
that ‖S − T ‖ < δ implies that S has a stable invariant subspace M satisfying
gap (M, N) < ε.
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Proof. The conclusion of the theorem which we have to establish is that N is
perfectly stable. We only present an outline of the proof.

Let us adopt the notation of Section 15.3. Write N in the form (15.3), where
Nj = P (λj)N, j = 1, . . . , r, and Ñk = P (αk, βk)N, k = 1, . . . , s. For j = 1, . . . , r,

let Tk be the restriction of T to N(λj). Also, for k = 1, . . . , s, let T̃k be the
restriction of T to N(αk, βk). From the proof of Theorem 15.9 and Lemma 15.16
it follows that Nj is a perfectly stable invariant subspace for Tj , and Ñk is a

perfectly stable invariant subspace for T̃k.

Fix j between 1 and r, and let S1, S2, . . . be a sequence of operators on E
converging to T . Further, let Γ be a circle centered at λj such that all eigenvalues
of T different from λj are outside Γ. For m sufficiently large, the circle Γ will split
the spectrum of Sm. Moreover,

lim
m→∞

P (Sc
m; Γ) = P (T c; Γ) = P (λj)

c,

where P (λj) is as defined in Section 15.3. Note that P (Sc
m; Γ) is a real operator,

so P (Sc
m; Γ) = P c

m for some projection Pm of E. We obviously have

lim
m→∞

Pm = P (λj).

Put Fm = P (λj)Pm +
(
I − P (λj)

)(
I − Pm

)
. Then Fm → I. By passing to a

subsequence (if necessary) we may assume that Fm is invertible for all m. It is
clear that FmPm = P (λj)Fm, so

P (λj) = FmPmF−1
m , m = 1, 2, . . . .

Set Tm = FmSmF−1
m . Then Tm → T . Moreover,

P (λj)
c = P (T c

m; Γ), m = 1, 2, . . . .

Let Tmj be the restriction of Tm to N(λj) = ImP (λj). Then Tmj → Tj as m → ∞.
Since Nj is a perfectly stable invariant subspace for Tj, there exists a sequence
L1, L2, . . . of subspaces of N(λj) such that Lm is a stable Tmj-invariant subspace
and gap (Lm, Nj) → 0 as m → ∞. Observe now that Lm is also a stable invariant
subspace for Tm. This we know from the real analogue of Lemma 14.5. Put Mm =
F−1

m Lm. Then Mm is a stable invariant subspace for Sm. From Fm → I one
gets that gap (Mm, Lm) → 0. Together with gap (Lm, Nj) → 0, this gives that
gap (Mm, Nj) → 0 as m → ∞.

We have now proved that the spaces Nj are perfectly stable invariant sub-

spaces for T . In the same way one can show that the spaces Ñk are of this type.
Since N has the form (15.3), it follows that N is a perfectly stable invariant sub-
space for T , and the proof is complete. �

One might think that Theorem 15.17 could be proved in the same way as
Theorem 14.24, using Theorem 15.11 instead of Theorem 14.7. This method of
proof however does not work.
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With the help of Theorem 15.17 one can sharpen Theorems 15.12, 15.13
and 15.14. By way of example, we present the details concerning the extension of
Theorem 15.14 (see also Theorem 14.25 and [13], Theorems 4.2 and 4.3).

Theorem 15.18. Let R be a stable solution of the Riccati equation (15.6). Then,
given ε > 0, there exists δ > 0 such that ‖Sjk − Tjk‖ < δ for j, k = 0, 1 implies
that the Riccati equation

XS21X + XS22 − S11X − S12 = 0

admits a stable solution Q for which ‖Q − R‖ < ε.

We emphasize that the solution Q is stable. This can also be expressed as
follows. Each common eigenvalue of S11−QS21 and S22 +S21Q is an eigenvalue of

S =

[
S11 S12

S21 S22

]

of geometric multiplicity one, and each common real eigenvalue of S11 −QS21 and
S22 +S21Q for which the algebraic multiplicity with respect to S22 +S21Q is odd,
is an eigenvalue of odd algebraic multiplicity of S.

Notes

This chapter is practically identical to Chapter XI in [14], except for the proof of
Lemma 15.6 which has been shortened considerably via a reference to the proof of
Theorem 14.28. The real invariant subspaces of a real matrix are also discussed in
[70]; Sections 14.6 and 15.9 in the latter book study the topology of the set of real
invariant subspaces, and the stability issue, while applications are given in Section
17.10. Further developments, including α-stability and stability of special classes
of subspaces for matrices that have symmetries with respect to an indefinite inner
product, can be found in [99] and the references cited therein.
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Verlag, Basel, 1988, pp. 175–222.

[2] D.Z. Arov, Scattering theory with dissipation of energy. Dokl. Akad. Nauk
SSSR 216 (4) (1974), 713–716 (Russian); English translation with addenda:
Sov. Math. Dokl. 15 (1974), 848–854.

[3] D.Z. Arov, M.A. Kaashoek, D.R. Pik, Optimal time-variant systems and fac-
torization of operators, I, minimal and optimal systems. Integral Equations
and Operator Theory 31 (1998), 389–420.

[4] D.Z. Arov, M.A. Kaashoek, D.R. Pik, Minimal representation of a contrac-
tive operator as a product of two bounded operators. Acta Sci. Math (Szeged)
71 (2005), 313–336.

[5] D.Z. Arov, M.A. Kaashoek, D.R. Pik, The Kalman-Yakubovich-Popov in-
equality for discrete time systems of infinite dimension. J. Operator Theory
55 (2006), 393–438.

[6] K.R. Baker, Introduction to sequencing and scheduling. John Wiley, New
York, 1975.

[7] J.A. Ball, N. Cohen, De Branges-Rovnyak operator models and systems the-
ory, a survey. In: Topics in Matrix and Operator Theory, OT 50, Birkhäuser
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Basel, 1995.

[57] I. Gohberg, M.A. Kaashoek, I.M. Spitkovsky, An overview of matrix fac-
torization theory and operator applications. In: Factorization and integrable
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Symbol Description

Z set of integers
Z− set of (strictly) negative integers
Z+ set of non-negative integers (including zero)
R real line
C complex plane
D closed unit disc in complex plane
Cn Euclidean space of complex n−vectors
ℜλ real part of complex number λ
ℑλ imaginary part of complex number λ
λ̄ complex conjugate of complex number λ

♯V number of elements in (finite) set V
spanV span or linear hull of set V
V closure of subset V of topological space
dimM dimension of linear manifold M
codimM codimension of linear manifold M
M⊥ orthogonal complement of subspace M in Hilbert space
z ⊥ M element z perpendicular to set M (Hilbert space)

M/N quotient space of M over N (also denoted by
M

N
)

M

N
quotient space of M over N (also denoted by M/N)

⊕ orthogonal direct sum (of subspaces) of Hilbert spaces
+̇ algebraic (possibly non-orthogonal) direct sum of

linear manifolds or (sub)spaces

X ′ conjugate of Banach space X
A′ conjugate of Banach space operator A
I identity matrix or identity operator on a Hilbert or Banach space
In n × n identity matrix or identity operator on Cn

KerA kernel or null space of operator or matrix A
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Im A range or image of operator or matrix A
rankA rank of operator or matrix A
detA determinant of matrix A
traceA trace of matrix A
A⊤ transpose of matrix A
A∗ adjoint of (complex) Hilbert space operator or

(complex) matrix
A−1 inverse of invertible operator or matrix
A−∗ stands for (A∗)−1

DT defect operator (I − T ∗T )1/2

λ − A shorthand for λI − A (standard practice)
ρ(A) resolvent set of operator or matrix
σ(A) spectrum of operator or matrix A
mA(α) algebraic multiplicity of α as an eigenvalue of square

matrix A; is zero when λ0 is not an eigenvalue
pA spectral polynomial of square matrix A
P (A; Γ) stands for 1

2πi

∫
Γ(λ − A)−1 dλ, the spectral or Riesz

projection associated with A and Γ
AM image of M under operator A (also denoted by A[M ])
A[M ] image of M under operator A (also denoted by AM)
A−1[M ] inverse image of M under operator A
A|M restriction of operator A to subspace M
A(X1 → X2) (possibly) unbounded operator A with domain in X1

and range in X2

D(A) domain of (possibly) unbounded operator A
N(λ) generalized eigenspace for eigenvalue λ of a matrix
NR angular subspace associated with (angular) operator R
R+̇Q diagonal operator built from R and Q

L(Y ) Banach algebra of all bounded linear operators
on Banach space Y

L(X, Y ) Banach space of all bounded operators from Banach
space X into Banach space Y

C(Γ, Y ) Banach space of all Y -valued continuous functions on Γ
endowed with the supremum norm

MPℓ set of all monic m × m matrix polynomials of degree ℓ

(A, B, C, D; X, U, Y ) system
(A, B, C, D; X, Y ) system with coinciding input/output space
(A, B, C; X, Y ) unital system with coinciding input/output space and

the identity operator as external operator
(A, B, C, D) system (no underlying spaces specified)
Θ system
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WΘ transfer function of system Θ
Θ× associate or inverse system
A× associate main or state (space) matrix (operator)
Θ1Θ2 product of two systems
Θ1 · · ·Θk product of k systems
prΠ(Θ) projection of system Θ associated with supporting

projection Π
Ker (C|A) stands for KerC ∩ KerCA ∩ KerCA2 ∩ · · ·
Im (A|B) stands for ImB + Im AB + Im A2B + · · ·
Θϕ Möbius transformation of system Θ
‖Θ − Θ0‖ distance between systems Θ and Θ0

≃ similarity between systems

W rational matrix or operator-valued function
W−1 pointwise inverse of W (defined by W−1(λ) = W (λ)−1)

W ∗ pointwise adjoint of W (defined by W ∗(λ) = W (λ)∗)
W⊤ pointwise transpose of W (defined by W⊤(λ) = W (λ)⊤)
W# matrix function defined by W#(λ) = W (λ−1)
δ(W ; λ0) local degree of W at λ0

δ(W ;∞) local degree of W at ∞
δ(W ) McMillan degree of W
δq(W ) quasidegree of W
ν(W ) maximal number of non-trivial factors that can occur

in a minimal factorization of W
Ker (W ; λ0) space of eigenvectors or root vectors of W at λ0

Pol (W ; λ0) space of pole-vectors of W at λ0

κ−(W ) stands for δ(W ) + codim
(
Ker pA(A) + Ker pA×(A×)

)
; see (10.28)

κ+(W ) stands for δ(W ) + dim
(
Im pA(A) + Im pA×(A×)

)
; see (10.29)

κ(W ) stands for min{κ−(W ), κ+(W )}
V stands for the matrix given by (11.52)
V (α1, . . . , αn) generalized Vandermonde matrix

2MFSP two machine flow shop problem
2MFSPred reduced two machine flow shop problem
Ok

j operation involving job j in (instance) of 2MFSP to be
processed on the kth machine

s(J) sum of processing times of first machine in instance J of 2MFSP
t(J) sum of processing times of second machine in instance J 2MFSP
µ(J) minimal makespan (i.e., smallest possible makespan) of

instance J of 2MFSP
Jext augmented instance of 2MFSP
F (O1

j ) finish time of operation O1
j in (instance of) 2MFSP

S(O1
j ) start time of operation O1

j in (instance of) 2MFSP
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µred(J) reduced minimal makespan (i.e., smallest possible makespan) of
instance J of 2MFSPred

ν(J) coinciding sums of processing times of the two machines in
instance J 2MFSP

η(M1, M2) minimal opening between subspaces M1 and M2

ϕmin(M1, M2) minimal angle between subspaces M1 and M2

ρ(M1, M2) stands for sup0
=x∈M1
infy∈M2

‖x−y‖
‖x‖

gap (M1, M2) gap or maximal opening between subspaces M1 and M2

i.e., max{ρ(M1, M2), ρ(M2, M1)}
GAP(M,N ) gap between complete chains M and N of subspaces

x conjugate (x1, . . . , xn)⊤ of vector x ∈ Cn

M stands for {x | x ∈ M} of a subspace of Cn (not to be
confused with the closure operation)

A conjugate of matrix A

W pointwise conjugate of W (defined by W (λ) = W (λ))
Ec complexification of real Banach space E
x − iy conjugate of vector x + iy in complexification of real

Banach space
T c complexification of (bounded) linear operator between

real Banach spaces (defined by T c(x + iy) = Tx + iT y)
T conjugate of (bounded) linear operator T between

complexifications of real Banach spaces

(defined by T (η) = T (η))
P (T ; λ0) spectral projection of operator T corresponding to real

eigenvalue λ0 (real spaces) of matrix T
P (T ; α, β) the range of P (T ; λ0)



Index

2MFSP, 288
2MFSPred, 292

algebraic Riccati equation, 79
analytic equivalence of operator

functions, 70
analytically equivalent operator

functions, 70
angular operator, 77
angular subspace, 77
approximately controllable,

controllable system, 106
approximately observable,

observable system, 106
associate main matrix (of system),

27
associate main operator (of system),

27
associate state matrix (of system),

27
associate state space operator (of

system), 27
associate system, 27
associated companion based

function, 293

biminimal system, 126
biproper system, 26
biproper transfer system, 26
Brodskii J-system, 12

canonical Jordan triple, 141
canonical Jordan triple at infinity,

141

canonical system of Jordan chains,
132

cascade connection of systems, 9
Cauchy contour, 67
causal (system), 8
co-pole function, 155, 158
comonic operator polynomial, 57
comonic polynomial system, 57
companion based, 232
complete chain, 184
complete chain of invariant

subspaces, 340
complete factorization, 195
complexification of (bounded) linear

operator between real Banach
spaces, 379

conjugate (in complexification of
real Banach space), 379

conjugate matrix, 375
conjugate of (bounded) linear

operator between
complexifications of real Banach
spaces, 379

conjugate vector, 375
controllable, 106, 110
controllable realization, 108

defect operator, 51
degree of monic matrix polynomial,

17
degree of monic supporting

projection, 55
degree of monic system, 53
diagonalizable, 36
dilation of a system, 106
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distance (between systems), 327
dual Jordan pair, 138

eigenvalue (real case), 380
eigenvalue of a matrix function, 130
eigenvector of a matrix function, 130
elementary rational matrix function,

188
equivalence after extension of

operators, 73
equivalence of operators, 73
equivalent operators, 73
extension of operator function, 70
external operator (of system), 8, 26

factorization into elementary
factors, 37

feasible schedule, 289
feed through coefficient (of system),

8
Fibonacci operator, 44
finite-dimensional linear

time-invariant system, 8
first companion, 212
first companion operator associated

with monic (operator)
polynomial, 54

first companion operator matrix
associated with monic matrix
polynomial, 17

first companion system
corresponding to monic
(operator) polynomial, 54

frequency domain, 9
full range pair, 112

gap (between subspaces), 323
gap between complete chains of

subspaces, 354
generalized eigenspace (real case),

383
generalized eigenspace

corresponding to conjugate pair
of eigenvalues (real case), 383

generalized Vandermonde matrix,
262

generalized Vandermonde matrix for
a chain of subspaces, 263

geometric multiplicity as a pole, 143
geometric multiplicity as a zero, 130

Hamiltonian of Riccati equation, 79
Hautus test, 155
Hilbert space system, 116

infeasibility, 292
input operator (of system), 8
input output operator (of system), 7
input space (of system), 8, 26
inverse of matrix function

(pointwise), 17
inverse of operator function

(pointwise), 28
inverse system, 27
isolated complete chain of invariant

subspaces, 366
isolated complete factorization, 371
isolated factorization (with respect

to real perturbations), 385
isolated factorization of monic

matrix polynomial (with respect
to real perturbations), 387

isolated factorization of monic
matrix polynomials, 371

isolated invariant subspace, 363
isolated invariant subspace (real

case), 379
isolated minimal factorization, 369
isolated solution of Riccati equation,

372
isolated supporting projection (with

respect to real perturbations),
386

J-unitary , 16
Johnson’s rule, 290
Jordan chain of a matrix function,

130
Jordan pair, 137
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Krěın characteristic operator
function, 14

Krěın J-system, 14

left canonical factorization, 90
left projection of monic system, 55
left projection of unitary system, 52
left pseudo-canonical factorization,

170
linear manifold, 32
linearization of operator function, 69
Lipschitz invariant subspace, 345
Lipschitz stable complete chain, 355
Lipschitz stable factorization of

monic matrix polynomials, 359
Lipschitz stable minimal

factorization, 351
Lipschitz stable solution of Riccati

equation, 360
Livsic-Brodskii characteristic

operator function, 11
local degree, 148
local Smith-McMillan form, 133

main matrix (of system), 26
main operator (of system), 8, 26
makespan, 289
matching condition, 33
maximal opening (between

subspaces), 323
McMillan degree, 160
minimal, 116
minimal angle (between subspaces),

322
minimal factorization, 163
minimal opening (between

subspaces), 322
minimal realization, 107
minimal realization at a point, 151
minimal system, 106
minimal system at a point, 151
minimum makespan, 289
monic matrix polynomial, 17

monic supporting projection for
monic system, 55

monic system, 53

non-preemptive schedule, 289
null kernel pair, 112

observable, 106, 112
observable realization, 108
operator node, 25
operator node (Livsic-Brodskii), 11
optimal schedule, 289
order of a root function, 131
output operator (of system), 8
output space (of system), 8, 26

partial pole-multiplicities, 143
partial pole-multiplicities at infinity,

145
partial zero-multiplicities, 133
partial zero-multiplicities at infinity,

141
perfectly stable invariant subspace

(real case), 389
permutation schedule, 290
pole function, 156
pole order preserving, 159
pole-multiplicity, 143
pole-polynomial, 234
pole-vector, 142
pole-vector at infinity, 145
polynomial system, 57
prime Krěın system, 125
product of operator nodes, 30
product of systems, 30
projection of system (or operator

node), 35
proper dilation, 106
proper function, 26
proper rational matrix function, 9
proper restriction, 106
pseudo-similar realizations, 119
pseudo-similarity, 119
pure unitary system, 127
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quasicomplete factorization, 204
quasidegree, 204

rank of eigenvector, 131
rank of pole-vector, 143
rational matrix function, 9
rational operator function, 66
real (bounded) linear operator

between complexifications of real
Banach spaces, 379

real (in complexification of real
Banach space), 379

real factorization (minimal), 377
real factorization of monic matrix

polynomial, 379
real matrix, 375
real monic matrix polynomial, 378
real rational matrix function, 376
real realization (minimal), 376
real vector, 375
realization, 27
realization of operator function, 27
realization of transfer function, 9
reduced minimal makespan, 292
reduced two machine flow shop

problem, 292
regular matrix function, 129
regular operator polynomial, 57
resolvent set of operator, 11
restriction of a system, 106
Riesz projection, 86
right canonical factorization, 89
right canonical factorization (of

symbol) with respect to real line,
19

right canonical factorization (of
symbol) with respect to the unit
circle, 22

right projection of monic system, 55
right projection of unitary system,

53
right pseudo-canonical factorization,

170
root function, 131

root vector, 130

schedule, 289
Schur complement, 28, 29
second companion, 212
self-conjugate (in complexification

of real Banach space), 379
self-conjugate subspace, 375
signature operator, 11
similar systems, 26
similarity of systems, 26
simple Brodskii J-system, 125
simple pole, 147
simple zero, 197
simultaneous reduction, 184
spectral polynomial, 199
spectral projection, 86
spectral projection (real case), 383
spectral projection corresponding to

conjugate pair of eigenvalues (real
case), 383

spectral subspace, 86
spectrum (real case), 380
splitting of spectrum, 86
stable complete chain of invariant

subspaces, 354
stable complete factorization, 352
stable factorization (with respect to

real perturbations), 386
stable factorization of monic matrix

polynomial (with respect to real
perturbations), 387

stable factorization of monic matrix
polynomials, 356

stable invariant subspace, 339
stable invariant subspace (real case),

379
stable minimal factorization, 348
stable solution of Riccati equation,

359
stable solution of Riccati equation

(real case), 388
stable supporting projection, 349
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stable supporting projection (with
respect to real perturbations),
386

state matrix (of system), 26
state operator (of system), 8
state space (of system), 8, 26
state space method, 9
state space operator (of system), 26
state space similarity theorem, 114
states (of system), 8
strictly proper system, 26
strictly proper transfer function, 26
subspace, 32
supporting pair of subspaces for

system (or operator node), 33
supporting projection, 173
supporting projection for system (or

operator node), 35
supporting subspace for monic

system, 57
symbol of (block) Toeplitz equation,

22
symbol of Wiener-Hopf integral

equation, 19

symmetrizer, 213

system, 8, 26

system matrix of system (or
operator node), 51

system similarity, 26

Sz-Nagy-Foias characteristic
operator function, 51

Toeplitz equation, 21

transfer function (of system), 9, 26

two machine flow shop problem, 288

unital system, 26

unitary system (or operator node),
51

Wiener-Hopf integral equation, 18

Wiener-Hopf integral operator, 18

zero, 130

zero-multiplicity, 133

zero-polynomial, 235


