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Preface

I want to begin with a defense or apology for the title of this book. It is the first part of
a two volume book. The two volumes together are meant to serve as an introduction into
modern algebraic geometry. But about two thirds of this first volume concern homological
algebra, cohomology of groups, cohomology of sheaves and algebraic topology. These
chapters 1 to 4 are more an introduction into algebraic topology and homological algebra
than an introduction into algebraic geometry. Only in the last Chapter 5 we will see some
algebraic geometry. In this last chapter we apply the results of the previous sections to the
theory of compact Riemann surfaces. Even this section does not look like an introduction
into modern algebraic geometry, large parts of the material covered looks more like 19’th
century mathematics. But historically the theory of Riemann surfaces is one of the roots
of algebraic geometry.

We will prove the Riemann-Roch theorem and we will discuss the structure of the divisor
class group. These to themes are ubiquitous in algebraic geometry. Finally I want to say
that the theory of Riemann surfaces is also in these days a very active area, it plays a
fundamental role in recent developments. The moduli space of Riemann surfaces attracts
the attention of topologists, number theorists and of mathematical physicists. To me
this seems to be enough justification to begin an introduction to algebraic geometry by
discussing Riemann surfaces at the beginning.

Only in the second volume we will lay the foundations of modern algebraic geometry. We
introduce the notion of schemes, I discuss the category of schemes, morphisms and so
on. But as we proceed the concepts of sheaves, cohomology of sheaves and homological
algebra, which we developed in this first volume, will play a predominant role. We will
resume the discussion of the Riemann-Roch theorem and discuss the Picard group or
jacobians of curves.

A few more words of defense. These books grew out of some series of lectures, which I
gave at the university of Bonn. The first lectures I gave were lectures on cohomology
of arithmetic groups and it was my original plan to write a book on the cohomology of
arithmetic groups. I still have the intention to do so. Actually there exists a first version
of such a book. It consists of a series of notes taken from a series of lectures I gave on
this subject. Arithmetic groups I' are groups of the form I' = SL,,(Z) C SL,,(R) or the
symplectic group I' = Sp,,(Z) C Sp,,(R)(See 5.2.24). These groups act on the symmetric
spaces X = G(R)/K and the quotient spaces I'\ X. The representations of the algebralc
group G define sheaves M on this space and the cohomology groups H*®(I'\ X,M ) will be
investigated in this third volume. Again the results in the first four chapters of the first
volume will be indispensable.

But in this third volume we will also need some background in algebraic geometry. In
some cases the quotient spaces I'\ X carry a complex structures, these are the Shimura
varieties. Then it is important to know, that these quotients are actually quasi projective
algebraic varieties and that they are defined over a much smaller field, namely a number
field. To understand, why this is so, we interpret this spaces as parameter spaces of cer-
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tain algebraic objects, i.e. they turn out to be ” moduli spaces”, especially the moduli
spaces of abelian varieties. This last subject is already briefly touched in this first volume
and will be resumed in the second and third volume.

Perhaps this is the right moment to confess that I consider myself as a number theorist.
Number theory is a broad field and for the kind of questions, I am interested in, the
methods and concepts algebraic geometry, cohomology of arithmetic groups, the theory
of automorphic forms are essential. Therefore it is my hope that these three volumes
together can serve as an introduction into an interesting branch of mathematics.

This book is addressed to students who have some basic knowledge in analysis, algebra
and basic set theoretic topology. So a student at a German university can read it after
the second year at the university.

I want to thank my former student Dr. J. Schlippe, who went through this manuscript
many times and found many misprint and suggested many improvements. I also thank
J. Putzka who ”translated” the original Plain-Tex file into Latex and made it consistent
with the demands of the publisher. But he also made many substantial suggestions con-
cerning the exposition and corrected some errors.

Giinter Harder Bonn, December 2007

Preface to the second edition

In the meantime the second volume of this book appeared and the publisher decided to
prepare a second edition of this first volume.

For this new edition I corrected a few misprints and modified the exposition at some
places. T also added a short section on moduli of elliptic curves with N-level structures.
Here I followed closely the presentation of this subject in the Diploma thesis of my former
student Christine Heinen.

This new paragraph anticipates some of the techniques of volume II. I originally planned
to include it into the second Volume. Since I already had a section on moduli of elliptic
curves with a differential and since the second volume became too long I abandoned this
plan. Therefore, I was quite happy when I got the opportunity to include this section
into the second edition of the first volume. It also helps a little bit to keep the balance
between the two volumes. This moduli space and some generalizations of it will play a
role in my book on ”Cohomology of arithmetic groups”.

Gilinter Harder Bonn, June 2011
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Introduction

This first volume starts starts with a very informal introduction into category theory. It
continues with an introduction into homological algebra. In view of the content of the
third volume Chapter 2 is an introduction into homological algebra based on the example
of cohomology of groups.

Chapter 3 introduces into the theory of sheaves. The role of sheaves is twofold: They
allow us to formulate the concepts of manifolds as locally ringed spaces (C°°-manifolds,
complex manifolds, algebraic manifolds... ); this is discussed in section 3.2. The concept
of locally ringed space will be indispensable when we introduce the concept of schemes
in the second volume.

The second role is played by the cohomology of sheaves which is covered in Chapter
4. My original notes gave only a very informal introduction into sheaf cohomology, but
after a while I felt the desire to give a rather self contained account. So it happened
that the introduction into sheaf cohomology became rather complete up to a certain
level. T included spectral sequences, the cup product and the Poincaré duality of local
systems on manifolds. I also discuss intersection products and the Lefschetz fixed point
formula for some special cases. So it happened that Chapter 4 became very long and it
has several subsections. Up to Chapter 4.7 the book may serve as an introduction into
algebraic topology but with a strong focus on applications to algebraic geometry and to
the cohomology of arithmetic groups. The discussion of singular homology is rather short.

In the final sections of Chapter 4 I discuss the analytic methods in the study of cohomol-
ogy of manifolds. I discuss the de Rham isomorphism, which gives a tool to understand
the cohomology of local systems. In analogy to that the Dolbeault isomorphism gives us
an instrument to investigate the cohomology of holomorphic bundles on complex mani-
folds. Finally I explain the basic ideas of Hodge theory. Only in the section on Hodge
theory I need to refer to some analytical results which are not proved in this book.

The last chapter 5 we apply these results and concepts to the theory of compact Riemann
surfaces. In the first section of Chapter 5 we prove the theorem of Riemann-Roch. We
want to make it clear that the hardest part in the proof of the theorem of Riemann-Roch
is the finite dimensionality of some cohomology groups and this proof requires some dif-
ficult analysis. We also give some indications how these analytic results can be proved in
our special case. From the theorem of Riemann-Roch it follows, that Riemann surfaces
may be viewed as purely algebraic objects, we prove that they are smooth projective
algebraic curves. At this point we see some concepts of commutative algebra entering
the stage. They will be discussed in more detail in volume II. We discuss Abel’s theorem
which explains the structure of the divisor class group. It turns out that the group of
divisor classes of degree zero is a complex torus with a principal polarization (Riemann
Period relations), this says that it is an abelian variety over C.

In the second section of Chapter 5 we discuss the meaning of this fact. We examine line
bundles on these Jacobians and more general line bundles on abelian varieties. Especially
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we describe the spaces of sections of line bundles in terms of spaces of theta-series. We
also explain in a very informal way the relationship to the moduli spaces of principally
polarized abelian varieties. I also have a section on the theory of Jacobi-Theta-functions.
This is the one dimensional case. It illustrates the connections to very old and classical
mathematics. But in the back of my mind I see this also as a preparation for the book on
cohomology of arithmetic groups. To say this differently, we see the connections between
the moduli spaces of abelian varieties and the theory of modular forms.

This last chapter goes beyond homological algebra and algebraic topology. But it shows
the enormous usefulness of these concepts. Chapter 5 can also be seen as a preparation
for the second volume, which is an introduction into algebraic geometry. In the second
half of Chapter 5 we discuss the structure of Jacobians, their Neron-Severi groups and
the structure of endomorphism rings. These arguments and methods will appear again
in the second volume, when we discuss the Jacobians of curves over arbitrary fields. In
the last section of this first volume we give some outlook on celebrated results, which will
also not be proved in the second volume, but for whose proof we provide some preparation.






1  Categories, Products, Projective and
Inductive Limits

1.1 The Notion of a Category and Examples

I want to give a very informal introduction to the theory of categories. The main problem
for a beginner is to get some acquaintance with the language and to get used to the
abstractness of the subject. As a general reference I give the book [McL ].

Definition 1.1.1. A category C is
(1) a collection of objects Ob(C).

We do not insist that this collection is a set. For me this means that we do not have
the notion of equality of two objects. If we write N € Ob(C) then we mean that N is an
object in the category C.

(ii) To any two objects N,M € Ob(C) there is attached a set Home (N, M) which is called
the set of morphisms between these two objects.

Usually we denote a morphism ¢ € Home(N,M) by an arrow ¢ : N — M.
(iii) For any three objects N,M,P we have the composition of morphisms
Home¢ (N,M) x Home(M,P) — Home(N,P)
(6,9) — Yog.

If a morphism n is a composition of ¢ and 1) then we denote this by a commutative
diagram (or commutative triangle)

P
We require that this composition is associative in the obvious sense (if we have four
objects. ..). The reader should verify that this associativity can be formulated in terms
of a tetrahedron all of whose four sides are commutative triangles. Here we use that the

morphisms between objects form a set. In a set we know what equality between elements
means.

(iv) For any object N € Ob(C) we have a distinguished element Idy € Home(N,N),
which is an identity on both sides under the composition.

G. Harder, Lectures on Algebraic Geometry I, DOI 10.1007/978-3-8348-8330-8_1,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011



2 1 Categories, Products, Projective and Inductive Limits

Everybody has seen the following categories
Example 1. The category Ens of all sets where the arrows are arbitrary maps.

Example 2. The category Vecty, of vector spaces over a given field k where the sets of
morphisms are the k-linear maps.

Example 3. The category Moda of modules over a ring A where the morphisms are
A-linear maps. We also have the category of abelian groups Ab, the category Groups of
all groups where the morphisms are the homomorphisms of groups.

Example 4. The category Top of topological spaces where the morphisms are the con-
tinuous maps.

I said in the beginning that we do not have the notion of equality of two objects M,N
in a category. But we we can say that two objects N,M € Ob(C) are isomorphic. This
means that we can find two arrows ¢ : N — M and ¢ : M — N such that Idy =
o @,Idpy = ¢ o). But in general it may be possible to find many such isomorphisms
between the objects and hence we have many choices to identify them. Then it is better
to refrain from considering them as equal.

For instance we can consider the category of finite dimensional vector spaces over a field
k. Of course two such vector spaces are isomorphic if they have the same dimension.
Since we may have many of these isomorphisms, we do not know how to identify them
and therefore the notion of equality does not make sense.

But if we consider the category of framed finite dimensional k—vector spaces, i.e. vector
spaces V equipped with a basis which is indexed by the numbers 1,2,...,n = dim(V).
Now morphisms which are linear maps which send basis elements to basis elements and
which respect the ordering. Then the situation is different. We can say the objects form
a set: If two such objects are isomorphic then the isomorphism is unique.

It is important to accept the following fact: The axioms give us a lot of flexibility, at no
point we require that the elements in Home (N,M) are actual maps between sets (with
some additional structure). Insofar all the above examples are somewhat misleading.
A simple example of a situation where the arrows are not maps is the following one:

Example 5. We may start from a an ordered set T = (I, <) and we consider its elements
as the objects of a category. For any pair i,j € I we say that Homz(i,j) consists of one
single element ¢; ; if i < j and is empty otherwise. The composition is the obvious one
obtained from the transitivity of the order relation.

The reader may say that this is not a good example, because the ¢; ; can be considered
as maps between the two sets {i},{j} but that is the wrong point of view. To make
this clear we can also construct a slightly different category J from our ordered set. We
assume that the order relation satisfies ¢ < j and j < i implies ¢ = j and hence we can
define i < j by i < j and 7 # j. Then we may define the sets of morphisms as:

Hom(i,5) are finite sequences {io,i1,. .. ,in} with i, < i,41 and i = ig,j = iy.
These sequences form a set. We leave it to the reader to verify that we have a composition

and an identity. Now we may have many arrows between two objects {i},{j} which are
sets consisting of one element.



1.2 Functors 3

We may also do the following which may look strange at the first glance. If we have a
category C we may revert the arrows and form the so called opposite category C°PP
which has the same objects but where

Homgope (N,M) = Home (M, N). (1.1)

1.2 Functors

We need the notion of a functor F from one category C to another category C’. A functor
is a rule that transforms an object N € Ob(C) into an object F(N) € Ob(C’) and for
any two objects N,M € Ob(C) it provides maps

FN,]VI : Homc(N,M) — HOIIlc/ (F(N),F(M))
In other words: For any ¢ : N — M the functor produces an arrow
Fnou(¢) = F(¢) : F(N) — F(M)

and this production should satisfy the obvious consistency conditions, namely respect
identity elements and composition. Such an F' together with the collection of maps be-
tween the sets of morphisms is called a covariant functor because direction of the arrows
is preserved. We also have the notion of a contravariant functor from C to C’ which
turns the arrows backwards or what amounts to the same: it is a functor from the opposite
category C°PP to C'.

Any object X of a category defines functors from this category to the category Ens: We
attach to it the covariant functor

hx(Z) = Home(X,Z).

If we have two objects Z,Z" and ¢ : Z — Z’ then the composition produces hx (1) :
Home(X,Z) — Home(X,Z’) which sends ¢ : X — Z to 1 o ¢. We may also put X into
the second free place in the Home( , ) and consider h% (Z) = Home(Z,X). This gives us
a contravariant functor.

Example 6. We have a contravariant functor from the category of vector spaces into
itself: We send a vector space V € Ob(Vecty,) to its dual space V¥ = Homy(V,k).

Example 7. A very clever example of a functor is the homology of a topological space (see
[Ei-St]Chap. IV 8.4.1.): To any topological space X (i.e an object in the category Top)
we may attach the homology groups Ho(X,Z),H1(X,Z),... H(X,Z),... the indices run
over all integers > 0. These homology groups are abelian groups which depend functorially
on the space X : A continuous map

f: X —Y
between spaces induces a homomorphism between their homology groups

fi  Hi(X,Z) — H,;(Y,Z) for all indices 1.
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This functor transforms a very complicated object -a topological space- into a simpler but
not too simple object namely a family of abelian group. This can be used to prove that
RR™ is not homeomorphic (not isomorphic in the category Top) to R™ if n # m. To see
this we remove the origin from R™ and from R™ and we will see that the resulting spaces
will have non-isomorphic homology groups if n # m. ( 4.4.5). On the other hand if we
had a homeomorphism between the two spaces we could arrange that it maps the origin
to the origin. Hence we would get a homeomorphism between the modified spaces which
then must induce isomorphisms on the homology groups and this is impossible.

If I am right then these homology groups are historically the first examples where the
concept of functors has been used.

We will see many more interesting functors in Chapter 2 on homological algebra.

1.3 Products, Projective Limits and Direct Limits in a Category

1.3.1 The Projective Limit

Let us assume that we have a category C and an ordered set Z = (I, <). Furthermore we
assume that to any 7 € I we have attached an object X; € Ob (C) and for any pair i < j
of indices we have an arrow ¢;; € Home(X;,X;). We assume that always ¢;; = Idx, and
for any triple ¢ < j < j' we have

Gij © Djj = bijr- (1.2)

We have seen in Example 7 that we may consider our ordered set (I, <) as a category
Z. Then we can summarize our assumptions by saying that ¢ — X, is a contravariant
functor from the category Z to the category C.

Such a family ({X; }ic1,¢i;) is called a projective system or sometimes inverse system
of objects in C. For any object Z € Ob (C) we define a set Home (Z,({ X }ier,¢45)) which
consists of families {¢;} ;ie} of morphisms

such that for any pair ¢ < j the diagram
]
7 et X
% ‘Aj
Xi

Z — Home(Z,({ X }icr,0i5))

commutes. It is clear that

is a contravariant functor from C to Ens : A morphism ¢ : Z/ — Z induces a map

Home (Z,({ Xi}ier,¢ij)) — Home (Z',({Xi}ier,9ij))

which is induced by the composition.
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We should think of ({X;}icr,¢:;) as a huge diagram

—

/\/’

\/
/'\

Xy

/X//*Yu\

where we did not draw the compositions because they are redundant and make the
picture complicated. Then an element ¢ € Home(Z,({X;}ier,¢45)) is a system of arrows
{¢v : Z — X, },er into this diagram:

—_— X

7

\/\
/\/

Pty
e

/\

so that every diagram induced by a ¢ < j commutes. Agaln we suppressed the composi-
tions.

Question: In the special diagram, are the two arrows from Z to X; and X, arbitrary or
are there constraints? If so, what kinds of constraints are there?

Definition 1.3.1 (Projective Limit). An object P € C together with an element ® €
Home (P,({ X }ier,¢i;)) is called a projective limit of the system ({X;}icr,¢ij)) if for
any Z € Ob(C) the map

Home(Z,P) — Home(Z,({Xi}ier,¢ij))
Y {®;io¢}uen

is a bijection. This is the so called universal property of (P,®). The element ® is called
universal morphism.

In terms of our above diagrams this means that a projective limit P is an object that is
squeezed between any Z and the diagram. Any ¢ from any Z into the diagram is obtained
by first giving an arrow Z — P and then composing it with the universal arrow ®.
Such a projective limit may not exist in our category. But if it exists then this gives us
a first example of a representable functor:



6 1 Categories, Products, Projective and Inductive Limits

Starting from the functor Z — Home(Z,({X;}ier,¢i;)) we find a P such that our
functor is equivalent to the functor h% which we attached to P. More precisely we have a
universal element ® € Home (P,({X;}ier,¢45)) such that the equivalence of the functors
is given by the universal property above (See also 1.3.4).

1.3.2 The Yoneda Lemma

We have a simple categorical argument which is called the Yoneda Lemma which shows
that such a (P,®) - if it exists - is unique up to a canonical isomorphism. If we have
a second pair (P’,®") then we get from the universal property that ®' is obtained from
a uniquely defined morphism v’ : P’ — P composed with ® and conversely we get ®
from @’ by composing with a unique 1 : P — P’. Finally the universal property yields
that the composition ¥’ o ¢ and 1 o ¢’ must be the identities.
So we can conclude: If a projective limit exists it is unique up to a canonical isomorphism
and is denoted by

P= @1 X;

iel

This limit is also called the inverse limit because the arrow points backwards. We also
should remember that the arrows in our system {X;} point from objects with a larger
index to objects with smaller index. The universal morphism @ is sometimes suppressed
in the notation.
I will discuss some examples of projective limits which belong to the general education
of anybody working in algebra or topology.

1.3.3 Examples
Example 8. We consider the case where C = Ens and the order relation on I is trivial,
i.e. 1 < j if and only if i = j. Then there are no constraints between the maps

(ﬁi 1 — X[.

We may take the product of these sets P = Hiej X; and the ®; : P — X; are the usual
set theoretic projections. Then {P,®;}icr is also the product in the categorical sense.

Example 9.

1. We take the set of positive natural numbers Ny and we define as order relation the
divisibility relation, i.e. n < m < n | m. For any m we can define the quotient
rings Z./mZ and if m | m' then we have the projection

Gmome 2 Lfm' L — T)m,
and O m: (T ) = T, means that x,,, = x,, mod m. We can define a ring
7 = {(...%n, . Jnen, | ®n € Z/NZ, 4 =z, mod n'if n'in}

where addition and multiplication are taken componentwise, and we have the pro-
jection map

Z 2 7/,
which is the projection to the n-th component. Then (i,gpn)nen\w is the projective
limit in the category of rings.
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2. We may also look at the ordered set {p”}{n:LQ’“_} where p is a prime. Then we get
or n < m the projective system

Z)p"L — L)p" L — ...
and the projective limit

Zp=A{(....¢n,...) | Zm =2, mod p" if n < m}.

FEach component x,, determines completely the x,, with m < n but if we go back-
wards we get more and more refined information. We can put a topology onto Zy,
where a basis of open sets is given by the elements of the form y + p*Z,.

The ring Z,, contains 7 as a dense subring. It is a local ring without zero divisors,
the unique mazximal ideal is pZ, = (p). Its quotient field is the field Q, of p-adic
numbers. (See[Neu]Chap. II)

1t follows from elementary number theory ( The Chinese remainder theorem) that
z.=1]%,.
P

This ring 7 is not integral, it has zero divisors.

Example 10. It is not too difficult to see that in Ens projective limits exist. One simply
forms the product
x=][x

iel
and takes the subset of those elements x = (... .z, ...)ier which satisfy ¢;j(x;) = x;. This
implies that also in such categories like the category of rings, the category of modules over
a giwen ring products and projective limits exist.

But in the category of fields we even cannot form the product of two fields, because we
cannot avoid zero divisors.

Example 11. A very important example of a projective limit is the Galois group of a
field k. We assume that we have constructed an algebraic closure k of k, this is a field
with the following two properties

(i) Bvery o € k is algebraic over k, i.e. it satisfies a nontrivial equation

a"+aad” . +a, =0 with a; € k.

(ii) The field k is algebraically closed.

Such a field can always be constructed if we use the aziom of choice.

We have the set of finite normal extensions k C K C k, this is an ordered set by inclusion.
For any normal extension k C ky C k let Gal(ky/k) be the group of automorphisms of
k1 whose restriction to k induces the identity. For a tower of finite normal extensions
k C K C L we have a surjective map

Gal(L/k) — Gal(K/k)
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which is simply given by restriction. We can form the projective limit

lim Gal(K /k)
K/k

of this system. It exists by the above remark. The restriction defines an isomorphism

Gal(F/k) — lim Gal(K /).
K/k

This is clear if we know that every automorphism o : K — K over k can be extended
to an automorphism of the algebraic closure. (See [Neu/Chap. IV.1)

Example 12. [t is of course obvious that in the category Ensfin of finite sets we cannot
have infinite products. But if we have a family ({X;}icr,0i5)} of finite sets we can form
the product in Ens and we define a topology on this product. This should be the coarsest
topology such that the projections

pi - HX] — Xz
jel

become continuous. (On X; we take the discrete topology, every subset is open). Hence
we get a basis for the topology if we take finite intersections

(' ()

<)

where E is finite and x; € X; a point.

It is not too difficult to prove that the product endowed with this topology becomes a com-
pact space. The same holds if we take projective limits of finite sets (groups, rings,.....),
these limits are compact topological spaces (groups, rings, ...). The resulting projective
limits are called profinite sets (groups, rings,.....). For instance the ring

Z = lim Z,/mZ

is such a profinite ring. The Galois group Gal(k/k) of a field k is a profinite group. The
topology of this groups is called the Krull topology.

1.3.4 Representable Functors

I want to say a few words about representable functors. We discussed the example of
projective limits. But the notion of representability for a functor is much more general.
It may be applied to any contravariant or covariant functor which takes values in the
category of sets.

If we have a contravariant functor F': C — Ens we may ask: Can we find an object X
and an element u € F'(X) such that for any Z € Ob(C) we get a bijection

Home(Z,X) = F(Z)

which is given by the universal rule ¢ — F(¢)(u) ?
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If such an object X together with w € F(X) exists, then the Yoneda Lemma asserts
that it is unique up to a canonical isomorphism. This means that the data provide a
distinguished isomorphism between two solutions of the problem. The proof is basically
the same as in the case of projective limits: If we have two such objects X, X’ we have
Home (X', X) = F(X'). Now the ' € F(X') provides a morphism in Home(X',X).
Interchanging the two arguments gives us a morphism in the opposite direction. The
compositions must be the identities.

1.3.5 Direct Limits

I begin with the simplest example. If we have a family {X;};c; of sets then we can form
the disjoint union
X=|]x.

iel
This construction satisfies
Hompns (| | Xi,2) = [ [ Hompns(Xi,2). (1.3)
iel iel

Here is becomes clear that the formation of a disjoint union and a product are dual to
each other. This means that the arrows are turned backwards. We formulate a principle:

The product s constructed so that we know what the arrows into it are, the disjoint union
so that we know what the arrows from it are.

To describe inductive (or direct) limits we start again from an ordered set (I, <). Now
we consider a covariant functor which attaches to any ¢ an X; € Ob(C) and to any pair
(4,7) with ¢ < j an element t;; € Home(X;,X;). So in contrast to the case of projective
limits the arrows point from objects with a smaller index to objects with a larger index.
Such a system (or functor) is called an inductive system.

This time we look at Home(({X;}icr,%i;),Z), these are now collections of morphisms
¥; + X; — Z from the diagram to objects in C. We say that an object L together with
amap ¥ = (...,¥;,...) € Home(({Xi}ier,¢i;),L) is a direct limit of ({X;}ier,ij) if

HOl’Ilc(L,Z) l> Homc(({Xi}ie[,’(/}ij),Z), (14)

where the bijection is given by the composition ¢; = 1 o ¥;. If such a limit exists we
write
L= thl
il

It is clear that in the category Ens direct limits exist: Starting from an inductive system
of sets ({Xi}ier,¢i;) we form the disjoint union [ |, , X;. We introduce an equivalence
relation ~ on this disjoint union. This equivalence relation will satisfy x; ~ 2; whenever
¢ij(x;) = ;. This is not necessarily an equivalence relation, but we simply take the
equivalence relation generated by the relation. Then it is not hard to see that the quotient
of the disjoint union by this relation is a direct limit.

Definition 1.3.2. An ordered set (I, <) is called directed if for any two i,j € I we can
find an element | € I such that i < l.j <.
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If we have an inductive system of sets ({X;}ier,¢ij) over a directed set, then the equiv-
alence relation in our construction above can be described directly

xi~ax; <= 3lelst i<lj<land ¢u(x;) = dj(xj). (1.5)

We may also look at the opposite case where the ordering relation on the set I is trivial,
i.e. we have i < j if and only if ¢ = j. If we have an inductive system ({Xj}ier,¢i;) over
such a set then the inductive limit should be called a disjoint union.

More examples of such direct limits will be constructed in Chapter 3 where we shall see
that stalks of sheaves are direct limits. Generally we had projective limits as subsets of
products, direct limits will be quotients of disjoint unions.

By the way in some sense this discussion of direct limits is superfluous: If we pass to the
opposite category the direct limits become projective limits.

1.4 Exercises

Exercise 1. Do we have disjoint unions in the category Vect;? If so how does the
disjoint union of two vector spaces look like.

Exercise 2.

(a) We may ask the same question for the category Rings of rings, for the category of
commutative rings and for the category of groups.

(b) In any category we can consider diagrams of the form

_r

A\

C

We can interpret this as an inductive system and we can ask whether the limit
exists.

If for instance our category is the category of groups then the limit does exist and
it is given by the almagamated product.

Exercise 3. Let us assume we have an index set (I, <) and a projective system
({X;}icr,¢i;) on it. Let us assume that the indexing set contains a maximal element
m, i.e. m > i for all elements ¢ € I. I claim that the projective limit exists. How does it
look like? Can you formulate an analogous assertion for injective limits?

Exercise 4. Let us assume that we have a directed set (I, <). We assume that we have
an inductive system of rings {R;};cr. Does the direct limit exist? Hint: Forget the ring
structure and consider the R; as sets. Form the limit in the category of sets. Now you
can reintroduce the ring structure on this limit by observing that any pair (or even finite
set ) of elements can be represented by elements in a suitable member R; of the family.

Exercise 5. We have seen that we may interpret an ordered set (A, <) as a category.
What does it mean for such a category that the product of two elements exists?
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2  Basic Concepts of Homological Algebra

In this chapter I want to explain the fundamental concepts of homological algebra. They
play a fundamental role in algebraic geometry and in various other fields. I will do this
for the specific case group (co-)homology.

This example will become important to us in the third volume of this book where we
discuss the cohomology of arithmetic groups. But since in this particular case the basic
principles of homological become very clear, I have chosen this example as introduction
into the subject. The cohomology of sheaves, which can serve as a second example, will
be discussed in Chapter 4. As a general reference for these two Chapters I can give the
books [Ge-Ma] and [Go].

2.1 The Category Modr of I'-modules

In the following I' will always be a group. A I'module is an abelian group M together
with an action of I': This means we have a map I' x M — M,(y,m) — ~ym, which
satisfies Ipm = m, (y172)m = v1(y2m) and v(mq +m2) = ymq + yme. These I'-modules
are the objects of the category of I-modules: If we write M € Ob(Modr), then this
means that M is a [-module.

If My,Ms € Ob(Modr), then we may consider the set

HomModF (Ml,MQ) = Homp (M17M2)

{(p : My — M5 | ¢ homomorphism of abelian groups
p(ym1) = yp(mi)for all vy € T'ymy € Ml}

On Homyp (M7,M>2) we have a natural structure of an abelian group: For any two elements
¢, € Homp(My,Mz) we put (¢ + ) (m1) = ¢(ma) + ¢(m1).

Here we have another typical example of a category: We have a collection of objects —
this collection is not a set in general — and for any two such objects we have a set of
morphisms. (In our special case these sets of morphisms are abelian groups.) A certain
bunch of axioms has to be satisfied: We have the identity Idy; € Homp(M,M), we have
a composition Homp(M7,Ms) x Homr(Mz,M3) — Homp (M;,M3) and Ids is neutral
with respect to this composition. (See the introduction in Chap. 1) In our special case
this composition is bilinear.

The special category Modr has some extra features: Given ¢ : M — N we can form
the kernel and the image

ker(p) = {m | ¢(m) = 0}, Im () = {p(m) [ m € M},

clearly these are also I'-modules.

G. Harder, Lectures on Algebraic Geometry I, DOI 10.1007/978-3-8348-8330-8_2,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011



12 2 Basic Concepts of Homological Algebra

If N C M is a I'-submodule of M, then we may form the quotient module
M/N = MmodN,

this is again a I'-module. Finally, we have direct sums and direct products

@Mi = {(...mji...)icr | my € M;, almost all m; = 0}
el
el

where the addition and the action of I" are defined componentwise.
All these properties of imply that Modr is an abelian category. The notion of abelian
categories can be axiomatized (see [Go]1.8).

Complexes of I'-Modules

Definition 2.1.1. If we have a sequence of maps between I'-modules

dy d,
i — My M, 2 M, —

then this is called a (homological) complex if d, od,+1 = 0 for all indices v, i.e. if
always Im (d,,11) C ker(d,). The maps d,, are the differentials of the complex. We often
denote such a complex by Mo or (Ma,d).

Definition 2.1.2 (Exactness). The complex is called exact if we have Im (dy41) =
ker(d,) for all indices v.

Definition 2.1.3 (Homology). We define the homology groups of such a complex as

Hy(M.) = ker(d, : M, — M, _1)
v S Im (dy+1 : My+1 — My)

The elements in the kernel of d, are called cycles (of degree v), the elements in the
image of d,11 are called boundaries (of degree v).

It is a tautology that
Lemma 2.1.4. A complex is exact if and only if its homology groups are trivial.

We can also consider complexes where the differentials raise the index by one then we
write the indices v as superscripts

av

v—1
s Mty vt (2.1)

then this is a cohomological complex.
Very often we abbreviate and simply write M*® or (M*,d®) for a (cohomological) complex.

Definition 2.1.5 (Cohomology). We define the cohomology groups of a cohomological
complex by
ker(d” : MV—sMV+1)
H"(M®) = .
M) = @ T 2T — a0
The elements in the kernel Z¥ (M) = ker(d¥ : MY — MY*1) are called the cocycles in
degree v and the elements in BY(M) = Im (d, M¥~! — M") are the coboundaries.
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Hence the cohomology is the group of cocycles modulo the coboundaries.

We abbreviate the graded direct sum over all cohomology groups by H*(M*®) = @, H"(M?*).
Actually we may also view these cohomology groups as a complex of abelian groups with
the differentials equal to zero. Again is clear that the following is true

Lemma 2.1.6. A complex is exact if and only if its cohomology groups are trivial.

Definition 2.1.7. A map between two complexes
p*: M®* — N*®
is a sequence of maps ¢¥ : MY — NV which commutes with the differentials.

It is clear that such a map induces a map between the cohomology groups H*®(¢®) :
He(M®) — H*(N°®).

Definition 2.1.8. A (short) exact sequence is an exact complex

0— M M -2 M — 0,
i.e. i is injective, Im (i) = ker(p) and p is surjective, i.e. M" is isomorphic to the quotient
of M by the submodule i(M') ~ M'.

2.2 More Functors

2.2.1 Invariants, Coinvariants and Exactness

As T explained already in the first chapter a functor is a rule that produces in a functorial
way an object in a target category from an object in the source category. If for instance
the source category is Modr and the target category is the category Ab of abelian
groups, then a functor

F:Modr — Ab

associates to any I'-module M € Ob(Modr) an abelian group F(M). Recall that func-
toriality means that for any M;,Ms € Ob(Modr) we have a map

FM1,M2 : HOl’rll\/[odr (Ml,MQ) — HOInAb(F(Ml),F(MQ)) (2.2)

which sends Id; to Idg(ar) and compositions into compositions. If we require in addition
that this map is a homomorphism Fy, ar, between the abelian groups, then this functor
is an additive functor between abelian categories.

There are two very simple functors between the category Modr and the category Ab of
the abelian group

Forget : Modr — Ab (2.3)
Trivial : Ab  — Modr

where the first factor “forgets” the I'-module structure on the abelian group M and the
second introduces the trivial I-action on an abelian group A, i.e. every element v € T'
induces the identity on A. These two functors are so called exact functors.
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Definition 2.2.1. A functor are called an exact functor if it maps exact sequences
into eract sequences.

Homological algebra owes its existence to the fact that many important additive functors
are not exact. Here comes the first example.

Definition 2.2.2. If M is a I'-module, we define the module of invariants by
MY = {m | ym =m for all v € T'}.
It is an abelian group and hence we defined a functor
Invariants Modr — Ab

from the category of I'-modules to the category of abelian groups. If A is a trivial I'-
module, then Hompgod, (4,M) = Homayp(A,M"), and this property also characterizes
the submodule MT in M.

Definition 2.2.3. The module Mt of coinvariants is defined as a quotient
M — Mp
where Mr is a trivial I'-module and for any I'-module with trivial action by I’ we have
Homnod, (M,A) = Homap (Mrp,A).

To give a different description of Mr we recall the notion of the group ring R = Z[I']
of our group I'. It consists of all finite linear combinations

Znﬂ/ ny € Z, almost all n, = 0,
yel

where we add componentwise (i.e. the additive group is the free abelian group over the
set), and where we multiply

(2; ”v”) ' (;mnﬁ> =Y nympyn=>_| > nymy | 6. (2.4)

v.m g yn=>6

This group ring contains the so called augmentation ideal It which is the kernel of
the augmentation map ¢ : Z[I'] — Z which is defined by

E:anal—)an.

It is clear that this ideal is generated as a Z-module by elements of the form 1 — ~.
For any I'module M the module ItM C M is a I'-submodule, and it is also an easy
exercise that

My = M/(Ir M)

has the desired property the module of coinvariants should have.
The following fact is the starting point of homological algebra:

Remark 1. In general the functors M — M" and M — Mt are not exact.
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To be more precise: If we start from a short exact sequence
0—M —M-—M—0
of I'-modules, then the sequence
0— (M) — M" — (M")"

is exact, but the last arrow is not surjective (in general).
A similar assertion holds for Mr. We only get an exact sequence

M{ — Mr — M{ — 0.

We say that M — MU is a left exact functor and M — M is a right exact functor.
The goal is to construct the so called derived functors which measure the deviation
from exactness. We motivate this by an example.

2.2.2 The First Cohomology Group

I want to explain why the functor M — M7 is not exact. Then I want to explain how
this more or less automatically leads to the definition of the derived functor.
Let us start from an exact sequence of I'-modules

0— M — M— M"—0.
We get an exact sequence of abelian groups
0— (M — MY — (M.

We pick an element m'” € (M")F', and we want to understand why this is not necessarily
in the image of M'. Of course we can find an element m € M which maps to m”. But
there is no reason why this element should be invariant under I', the only thing we know
is that for all v € I' the difference

m, =m—yme& M’ (2.5)
We get a map
— M
v o ml,

and this map satisfies m/, +~y1m/, =m/ . A map I' — M’ satisfying this relation is
called a 1-cocycle . On the set of all 1-cocycles we get a structure of an abelian group
if we add the values and we denote by Z(I',M’), the abelian group of 1-cocycles. Our
element m is in M if and only if the cocycle m; =m —ym = 0.

We notice that the choice of m is not unique, we may change m — m + m’ with
m/ € M’. This is the only possible modification. Then we also modify the cocycle defined
by m into v = m/, +m' —ym'. This leads to the definition of the group BY(T',M’) of 1-
coboundaries. It is the group of those cocycles v — b., for which we can find am’ € M’
such that b, = m’ —ym/ for all ~.
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Hence we see: The element m” € (M”)!' defines an element in Z*(I',M’) which is well
defined up to a coboundary. We introduce the first cohomology group (preliminary defi-
nition)

HYT',M') = Zz"(*,M")/B*(T',M"), (2.6)
and we have seen that any m” € (M")" defines a class 6(m') € H*(I',M’) which is zero
if and only if m” is in the image of M* — (M")!'. It is clear that § is a homomorphism,
and that we have extended our exact sequence one step further

0 — (M) — M" — (M) -2 HYT,M).

The next thing that can be checked easily is the functoriality of M’ — H'(I',M’). If we
have a ¢ € Hompgoa, (M',N) then this induces a map

oW HY(T,M') — HY(T,N),
and our above considerations also show that we get an even longer exact sequence
0— (M) — MY — (M"Y -2 YT, M) — HY(T,M) — H (T ,.M"),

the verification of exactness is left to the reader. But at the end it stops again: The last
map needs not to be surjective.

We also see that this longer exact sequence depends functorially on the short exact
sequence we started from. If we have a map between two exact sequences of I'-modules

0 M’ M M" 0
0 N’ N N 0

then this induces a map between the two resulting exact sequences (in the sense of maps
between complexes, i.e. all diagrams commute).

In principle we can try to extend our sequence beyond H'(I',M"). We pick an element
in H(T',M") and try to lift it to an element in H*(T',M), and then we will sece what the
obstruction to this lifting will be. This will suggest a definition of a cohomology group
H?(T,M’). But actually there is a much more elegant way to define the cohomology
functor which is also universal in the sense that it applies to many other cases. This will
be done in section 2.3.

2.2.3 Some Notation

At this point we introduce some new notation, instead of M1 we also write H°(I',M)
and Ho(I',M) will be the same as Mr. This is a very suggestive notation if we use it for
our exact sequence above.

Of course all this does not yet prove that M — M?" is not exact in general. For instance,
it could happen (in principle) that H'(I',M) = 0 for all T' and all M, or it could also
be that H(I',M’) — H'(T',M) is always injective. We will show in exercise 9 that for
I’ # {1} these functors are not trivial.
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2.2.4 Exercises

Exercise 6. If A is a trivial I-module, then H'(I',A) = Hom(I',A) where the last Hom
is the Hom in the category of groups.

This shows that for suitable A the module H'(I',A) # 0if I is not equal to its commutator
group [I.T7].

Let us now assume that I C T' is a subgroup. We have the important functor from the
category of I"-modules to the category of I-modules which is called induction. For any
I"-module Y we define an abelian group

Indl, Y ={f:T — Y | f(y/7) =+ f(y) forally/ e T’y T}, (2.7)

and we define the action of I on Ind}, Y by (vf)(71) = f(717). (Note that we do not
have a support condition on the functions f, if the index of IV in I is infinite, then we
may have infinitely many - mod IV with f(v) # 0.)

This is the induced I'-module from the I'-module Y. It is very easy to check that for
any I-module X we have an isomorphism (Frobenius reciprocity)

Homp (X, Indf, V) = Homp (X,Y)
which is given by ¢ — {z — ¢(x)(1)}.
Exercise 7. We have a canonical (this means functorial in Y') isomorphism
HYI,IndL V) = HYTY).

This isomorphism is obtained from the following map on the level of cocycles: For any
l-cocycle {y+~ f,} € ZYT,Ind} Y) we define the 1-cocycle {7 — [y} e ZYTY) by
[+ = fy/(1). Show that this map sends coboundaries into coboundaries and induces an
isomorphism on cohomology. (In the literature this and its generalisations run under the
name Lemma of Shapiro)

Hint: We have to combine several little observations:

(i) We consider an 1-cocycle {y — f,} € Z'(I',Ind}j Y), and we take into account that
f~ is actually a Y-valued function on I'. Then the cocycle relation reads

Fns (2) = [ (@) + (7 f52) () = fou (2) + frp (2m1)-

If we evaluate at z = 1 we get

f'yz(’Yl) = f’ymz(l) - fv1(1)7

and this relation tells us that we only need to know the values f,(1). Then the
cocycle relation gives us the values of the f, at any z € I'.

(ii) If we have any function
h:I' — Y
hiy = h,,
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we may put (think of hy as being f,(1)) H,(z) = hqgy — hs, then H, is a function
on I' with values in Y. If v — h,, satisfies

hyray = hyre = ’Y/(hz'y = hg),
then H, € Indg/ Y and v — H, it is a 1-cocycle.

(iii) If we have a 1-cocycle v — f, in Z'(T',Indy, Y), then '+ f..(1) for o/ € T" is a
one-cocycle in Z'(I",Y). Hence we have a map Z(I',Indj Y) — ZY(I,Y), and
it is clear that this map sends coboundaries into coboundaries.

(iv) If we have a 1-cocycle 7' — 77/ in ZY(I")Y), then we want to construct a 1-cocycle

v fy so that f,y, = f4/(1). To do this we choose a system ~; of representatives of
I"\I" where we choose the identity for the class I".

For v = 4'~; we put f,(1) = fy/(1) and apply (ii). The cocycle relation for v —
f~(1) provides the decisive relation in (ii).This proves the surjectivity of our map
between 1-cocycles in (iii).

(v) Finally, we have to check that v — £, is a coboundary if 4/ = f+' is a coboundary.
We can write f,/(1) =y —+'y with y € Y and for all v/ € T". If we want to write
v — f as a boundary, i.e. f, = ¢ — 7c¢, then this reads f,(z) = c(z) — c(z),
and evaluation at 1 yields fy(1) = ¢(1) — ¢(7y). Hence we choose ¢(1) = y and put
c(z) =y — fo(1) and verify that this ¢ bounds f,.

Exercise 8. Use the previous exercise to prove that for any group I' # {1} there is a
I-module M s.t. HY(T',M) # 0.

The group ring Z[I'] consists of linear combinations | ~er Ny where we have a support
condition: The coeflicients n, = 0 for almost all v. We add componentwise and the
support condition allows us to define a product:

QomMQ_m) =D > nymy)n
v€T yer noY'=n

Exercise 9. The group ring Z[I'] is also a I'-module by multiplication from the left. We
get an exact sequence of I'-modules

0— Ir — Z[I')| — Z — 0.

If we apply the functor Hy to this sequence and if we anticipate the left derived functor,
we find the exact sequence of abelian groups

Hy (D, Z[)) — Hy(0,Z) —> Ir /Ir Ir —> Z[0)/Ip —~— 7, —> 0
I

/
Show that

I — II‘/IFIF
vy — 1=

induces an isomorphism I'/[I',T'] = T, —Ir/IrIr ([I',] is the commutator subgroup).
This suggests that Hy(I',Z) = ap.
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2.3 The Derived Functors

After these motivating considerations we explain the fundamental problem to be solved
in homological algebra. We have the functor

M — M" = H(T',M) (2.8)
which is only left exact. We want to construct the right derived functor: This is a
collection of functors M — H*(I',M) for i = 0,1,2,... , such that for any short exact
sequence

0— M —M-—M'—0

we get a long exact sequence

0 —— HO(I,M') — HO(I,M) — HO(I',M")
5 S >

(2.9)

<;1I(F,M’) — H'(\M)—H' T M") — ---

which depends functorially on the exact sequence (see 2.3.4).

Finally we want this functor to be minimal (or universal) in the following sense:

If we have any other collection of functors M — H(I,M) for i = 0,1,2... with
HO(T,M) = fIO(F,M), and the same properties as above, then we find a natural trans-
formation H'(I',M) — H*(I',M), which is compatible with the connecting homomor-
phisms.

We want to indicate the main ideas how to construct these derived functors. The verifi-
cation that the new construction of the H! gives the same result as our previous H* will
be done in the exercises 2.4.3.

I want to explain a very simple principle that governs to the construction of these functors.

Definition 2.3.1. We say that the sequence splits if one of the following equivalent
assertions holds:

(i) We have a section to p. This is a I'-module homomorphism s : M" — M for which
pos=Idy.

(ii) The modules M splits, i.e. we have a T-submodule M" such that
MeM' = M
(m/;m")y — i(m’) +m".
(iii) We have a T'-module homomorphism j: M — M’ s.t. joi=1Idyp.
A simple observation: If we have an exact sequence of I'-modules
0— M -5 M- M —0

then our functors H, Hy will transform split exact sequences into split exact sequences,
in other words if we restrict them to split exact sequences then they are exact.
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2.3.1 The Simple Principle

This simple principle is based on the assumption that we have already constructed a

derived functor {M — H*(I',M)}. Let us assume we have a class of C of I'-modules
which are acyclic for this functor. This means

Definition 2.3.2. A module X is called acyclic for Hi if IA{/Z'(I‘,X) =0 for all i > 0.

Definition 2.3.3. An acyclic resolution of M € Ob(Modr) by objects in C is an
exact sequence of I'-modules

0—M—X" > X' X% ...
where the X" € C.

Then we have a lemma, on which our simple principle is based:

Lemma 2.3.4. IfC is a class of acyclic objects for the derived functor { M — I;Ti(F,M)},
and if
0—M— X" — X' — ...

is an acyclic resolution of M by objects in C, then we have an isomorphism
H{(D,M) ~ H'((X*)Y).
Proof: By induction on . For ¢ = 0 we get the exact sequence
0— M' — (X' — (xHl' — ...
and
M" = ker((XO)' — (X)) = HO((X*)N).

Now we cut the resolution into pieces. We get a short exact sequence

0—M—X°— X°M — 0,
and we have a resolution by objects in C

0— X'/M —Y° —vyH—...

where Y¥~1 = XV, The first sequence yields a long exact sequence which is interrupted
by many zeroes which come from the H*-acyclicity of the X°:

0 M (XO)F—>(X0/M)>
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We check the case i = 1. Here we find H (I',M) ~ (X°/M)T/(X°)F, but X°/M c X*
is the kernel of X! — X2 and (X°/M)" = ker((X1)F — (X?)!), and hence

ker((X1)F — (X2)1)
im((X0)F — (X))

Hence we proved our assertion for ¢ = 1 and then induction is clear. O

HY(T,M) ~ = H'(X*)").

We want to apply this principle to construct the derived functors. But in some sense we
are trapped: If we have not yet defined the derived functor, how can we know that certain
objects are acyclic? This difficulty is resolved by the notion of injective modules.

Definition 2.3.5. A I'-module I is called injective if it has the following property:
Whenever we have a diagram of I'-modules

A—<p+B

|

where ker(p) C ker(v), then we can extend the diagram to a commutative diagram

A—¢>B

wl/

I

Our assumption on @, is valid if ¢ is injective. If we want to check the injectivity of a
module it clearly suffices to check diagrams with ¢ injective.
Injective modules have a very important property: Whenever we have a short exact
sequence

0—1—M-—M —0,

and the module I is injective then the sequence splits. We simply apply the defining
property of injective modules to

0O — I — M

Ji

I
Our simple observation above implies that we get exact sequences
0 — HYI,I) — H°(T,M) — H°(T,M’) — 0 (2.10)
and
0 — Ho(T,1) — Ho(T,M) — Ho(I',M") — 0. (2.11)

whenever the module I on the left is injective. Since we require that the cohomology
modules should measure the deviation from exactness and that they should be minimal
in this respect, we expect them to vanish for injective modules. In other words we expect
that injective modules should be acyclic, hence the injective modules provide a candidate
for the a class C. In view of our simple principle above we try to define the derived functors
by using injective resolutions.

The following lemma is the starting point:
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Lemma 2.3.6. Every I'-module M can be embedded into an injective module I.

Sketch of the proof: First we consider the category Ab of abelian groups. This is the
case I' = {Id}. One proves that the abelian group Q/Z is injective (this requires Zorn’s
lemma), then we see that every abelian group A can be embedded into a suitable product

A—TJJe/z.

If we have a [-module M we forget the I'-module structure and embed it into an injective
abelian group, i.e. M — J. Now we get Indlgl} M — Indgl} J, and the module Indlfl} J
is injective in the category of I'-modules. This follows from Frobenius reciprocity. Then
we have achieved our goal since we have

M < Indjyy M = Indjyy J =: 1.

Now the actual construction of the cohomology functor (the universal derived functor)
becomes clear. We noticed that injective modules should be acyclic, i.e. H"(I',]) = 0 for
r > 0. But our Lemma 2.3.6 tells us that we can find an injective resolution of M, i.e.

0—M-—1°—T1"— ...

in short 0 — M — Z°. Then our Lemma 2.3.4 tells us

er v\T v+1\I'
HY(D.M) ~ H"((I*)") = li{m ((((IIVL)F_)_()I(IV))F)),

should be taken as the definition of the cohomology.
Of course we have to investigate how these cohomology groups depend on the injective
resolution and we have to show that M — H*(I',M) is a functor.

2.3.2 Functoriality

If we have two I-modules M,N and a ¢ € Homp(M,N) then we will construct a family of
homomorphisms H®(¢*) : H*(I',M) — H*(I',N). We choose two injective resolutions
0 — M —1I°and 0 — N — J*, I claim that we can extend the map ¢ to a map
between the complexes

0 M IO Il
0 N J JO J!

The existence of this extension is proved by induction on the degree. To get the first
arrow @Y @ I — J% we apply the defining property of injective modules to get the
arrow ¢ in the diagram

o
J J, (,00
JO
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Then we construct ' by the same principle and it is quite clear that at any step the
existence of the vertical arrow follows directly from the defining property of injective
modules (we only need that the J” are injective). This extension ¢® : [* — J* induces
of course a map between the cohomology group

H* (%) : H*((I°)") — H*((J*)").

Now we have to worry what happens if we take two different extensions @‘,? of our map
. I want to show that these two extensions induce the same map on the cohomology.
To see this we can easily reduce to the case where ¢ = 0, and where ¢°® is an arbitrary
extension of ¢ = 0. Then I have to show that ¢*® induces the zero map on the cohomology.
I prove this by showing that under this assumption the map ¢°® : I®* — J*® is actually
homotopic to zero. This means that we can construct maps h” : ¥ — J*~1 (h? = 0)
such that

@' =doh” +h" Tl od (2.12)

To construct k' we observe that our assumption ¢ = 0 implies that the kernel of 10 — I*
is contained in the kernel of the vertical arrow I° — J°. Since J° is injective we can
construct h' : I* — J° which produces a commutative diagram

IO%[I

| 4

JO

Now we modify the given vertical arrow I' — J' by subtracting the composition
of h' and the horizontal arrow I — J'. To this modified arrow we can apply the
previous argument and it becomes clear how to construct these h” by induction. Again
the existence of an h” satisfying Equation 2.12 in any degree follows from the injectivity
of the J”~1 and the construction of the previous ones. But if we now apply our functor
(invariants under I') we get

0 (IO)F (II)F (IQ)F
hO of At oR? NG
¥ ¥ ¥
0 (JO)F (Jl)l" (J2)1"

(We should have written ¢®" h*" to be absolutely correct.) But now it is clear that

¢*® induces zero in the cohomology. If we have a cycle ¢, € (IY)! representing a given
cohomology class then ¢”(¢,) = d o h(c,) and hence it represents the trivial class. If we
apply this to a module M and the identity Id : M — M and two different resolutions
of M, then we get a unique isomorphism between the resulting cohomology groups. In
this sense the cohomology groups do not depend on the chosen resolution. Since the
map H*®(¢®) does not depend on the choice of the extension of ¢ to the resolutions, the
construction gives a unique family of homomorphisms H®(¢*®). This is functoriality.
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2.3.3 Other Resolutions

If we start from an arbitrary resolution of our module M, say 0 — M — X0 —
X' — ... and if we also choose an injective resolution of M as above then our con-
siderations in section 1.3.5 on direct limits show that we can construct a morphism of
complexes of ['-modules

0 M XU Xl
4
J
0 M JO Jl

because we only need the injectivity of the J®. Therefore we get a canonical homomor-
phism
H®((X*)") — H*((J*)") = H*(I,M).

Our starting principle in section 2.3.1 says that this homomorphism will be an isomor-
phism if the modules X* are acyclic. But it is sometimes useful to consider such a resolu-
tion, even if it is not acyclic. It may be the case,that the cohomology groups H®((X*)")
are easier to understand than the the cohomology groups H*®(I', M) themselves. Then this
homomorphism gives us some kind of approximation of the cohomology group. We will
discuss this again in 4.6.1, the above homomorphism will be the edge homomorphism.

2.3.4 Injective Resolutions of Short Exact Sequences

Now we want to show that we get a long exact sequence in the derived functors if we
start from a short exact sequence

0— M —M-— M"—0. (2.13)

We write our short exact sequence vertically and choose injective resolutions of the two
modules M’ ,M" which we write horizontally. Imagine we have done this. Then we can
write the direct sum in the middle and we get short vertical exact sequences. It will look
like this:
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0 0 0 (2.14)

0O —— M I/O o) IIIO I/l D I”l

0 M 2 70 I

0 0 0

The horizontal arrows in the middle are still missing. Now the injectivity of I’ allows
an arrow ¥ from M to I'® which yields a commutative diagram

Let p” be the projection from M to M". Then ¥ & (i’ o p’’) gives us an injection

0—M-—T1°91",

which we can fill into the diagram above. This yields a diagram
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0 —> M —1°¢["— V — 0

0 M 10 w 0

0 0 0

We have U < I’V and W < I""" and again we construct as before an arrow
V N I/l @ I//l
This goes on forever and is that we call an injective resolution of the exact sequence
2.13.
A Fundamental Remark
We have to be aware that in general the homomorphisms in the middle row
I/y D I//u — I/qul D I//V+1

are not the direct sum of the two homomorphisms which are already given by the reso-
lution of the extreme modules. We have to add a homomorphism

o — vt (2.16)

to this direct sum (v is of course an upper index and not an exponent). These U will
satisfy a recursion relation: We will have

. 2.17
AU (z!) + Ut 2l)  forv >0 (2:17)

B {d’\II(m) + 003" o p”(m)) forv=0
We will not be able to get d’¥(m) = 0 unless the sequence splits. Therefore we see that
we will not be able to show that such a W**! can be chosen to be trivial if we do not
have d'(¥”) = 0. We come back to this point when we discuss the spectral sequence (see
sections 4.6.4 and 4.6.6).
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The Cohomology and the Long Exact Sequence

If we apply the functor H%(T, ) to the double complex 2.15 we get the diagram
0 0

0 ____)_(I/O)F (I/I)F

0 —>‘(I/O@I”0)F_>‘(I/1 EBI//])F—>.

0 4).(11/0)1“ (I//l)F

0 0

where the horizontal complexes compute the cohomology of M’,M and M" respectively
and where the vertical sequences are exact. From this we get a long exact sequence of
the cohomology groups

0 —> HYT,M") — HO(T',M) — HO(F,M’>

_,_,..,q_,& .......................................................

<;{1/(F,M’) e HYT, M) — HNT, M) —> ---

I just give a few indication how we get the connecting homomorphisms . A class in
¢ € HP(T,M") is represented by a cocycle 2" € (I"?)'". This element can be lifted to an
element 2 € (1”@ I""P)T'. This element is not necessarily a cocycle, under the coboundary
operator it maps to an element y € (I'"*1@ ["”"P+1)I' This element can obviously be lifted
to an element in z € I'?*! which must be a cocycle. The class of this element is the image
of &7 under the connecting homomorphism.

Now we have constructed a derived functor using these injective resolutions. It is universal
as one sees easily from the requirement that it vanishes on injective modules.

The Homology of Groups

Essentially the same strategy works for the construction of the left derived functor M —
H;(T',M) fori = 0,1,2, ..., of the right exact functor M — Hy(I',M) = Mry. The defining
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property of injective modules implies that an injective module is always a direct summand
if it sits in a bigger module. The dual notion is the notion of projective modules.

Definition 2.3.7 (Projective Module). A I'-module P is called projective if for any
diagram

Mi*N—>0

[i

P
where the top sequence is exact we can find a map j: P — M
p
M— N — 0
s
) Tz
/RN
P

so that poj =1.

It is easily seen that free I'-modules €, _; Z[I'] are projective. Hence we find

iel
(i) Every I'modules M has a projective resolution

i.. — P — P — Py— M —0.

(ii) Every projective I'-module P which is a quotient of a I'-module X is a direct sum-
mand, i.e. the sequence 0 — Y — X — P — 0 splits.

The assertion (ii) implies that the sequence
0—Y —Xr — Pr—0

is still exact. Hence we should require H;(I',P) = 0 for i = 1,2,.... Now we may apply
the same strategy as in the construction of the cohomology functor. For a module we
choose a projective resolution P, — M — 0 and put

H,(U,M) = H.((P.)r). (2.18)

The same arguments as before show that this gives a universal left derived functor for
the functor
M — Mr = Ho(F,M)

We get a long exact sequence where the arrows point in the opposite direction.

2.4 The Functors Ext and Tor

2.4.1 The Functor Ext

We may look at our previous constructions from a slightly more general point of view.
The category of I'-modules is the same as the category of R-modules where R = R[I'] is
the group ring. We now consider the category Modpr of modules over an arbitrary ring
R.
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To any pair of modules M,N € Ob(Modg) we can introduce the abelian group

Homp(N, M) {(p N—sMm| ¢ homomorphism of abelian groups}

p(rm) = ro(m) for all rm,

and if we fix N then this becomes a functor from the category Modpg to the category
of abelian groups. But we may also fix M and vary N, then our functor becomes a
contravariant functor:

A R-module homomorphism ¥ : N; — Ns induces a map

Hompg(N3,M) — Homp(N1,M)

by composition. (So far all our functors were covariant.) It is quite clear that the covariant
functor M — Hompg(N,M) is left exact and that the contravariant functor N —
Hompg(N,M) is right exact.

For a given N we may try to construct the right derived functor to M — Homp(N,M)
and for given M we may try to construct a left derived functor to the functor N —
Hompg(N,M). The same principles as before tell us that the right derived functor should
be zero on injective modules (same definition), and the left derived functor should be
trivial on projective modules. Hence we choose an injective resolution of 0 — M — I°®
and define the right derived functor by

RExt},(N,M) = H*(Hompg(N,I*)). (2.19)

I say again what this means: For a fixed R-module N and any exact sequence of R
modules
0—M —M-—M'—0,

we get a long exact sequence

(2.20)

(}{M}{(N,M’) > RExth(N,M)+ RExth(N,M") — ---

But by construction these groups RExt%(N ,M) are also functorial in N if we fix M, the
functors N — RExt'(N,M) are contravariant.
Analogously we choose a projective resolution P, — N — 0 and define

LExty(N,M) = Hy(Homp(P,,M)). (2.21)

Our previous arguments show that we get a left derived functor which has all functorial
properties. It is clear that the functors M — Hompg(P,M) resp. N — Hompg(N,I) are
exact if P is projective (resp. I is injective). Hence we have in this case

RExth(P,M) =0, LExth(N,I) = 0.
We will indicate briefly how this implies that we have a functorial isomorphism

LExtiy(N,M) ~ RExt%(N,M). (2.22)
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To see this we choose two resolutions: 0 — M — I°, P, — N — 0, and we form
the double complex Homg (P, — N — 0,0 — M — I*) which in full looks like

0 ——Hompg(P,M)—Hompg(P;,I°) — Homp (P, I') —— - -

0 —— Hompg(Py,M)— Hompg(Py,I°) — Homp(Py,I') —— -~

0 *————)-HOIHR(NaM) ———)HOIDR(N,IO) “*HomR(NJvl) E—

0 0 0

Now the first vertical Complex computes the L Exty(P,M) and the horizontal complex
at the bottom computes RExt%(P,M). All other vertical or horizontal complexes are
exact. Then a simple diagram chase shows that the cohomology of the bottom horizontal
complex and the first vertical complex are isomorphic.

We summarize

Lemma 2.4.1. The functor in two variables Ext{(N,M) can be be computed from an
an injective resolution of M or a projective resolution of N. The higher Exty (N,M) for
1 > 0 vanish if M is injective or if N is projective.

2.4.2 The Derived Functor for the Tensor Product

Another functor in two variables is given by the tensor product. Here we have to be a
little bit careful in case that our ring R is not commutative. We consider the categories
Modk , ModZ of left and right R-modules.

Definition 2.4.2 (Tensor Product). The tensor product of a right R-module N and
a left R-module M is an abelian group N @pr M together with a map

U: NXM-—N®rM
U: (n,m)—n®m

which has the following properties
(1) It is a biadditive, i.e.

U(ny + ng,m) (n1+n2)@m=n;@m+ny@m
U(n+mp+me) = m®e(mp+ms) =n®ms+n®ms.

(ii) For allr € Rin € Nom € M we have nr @ m = n ®@ rm. (This is the moment where
we need that N is a right R-module and M is a left R-module).
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(iii) This map is universal: If we have another W' : N x M — X with an abelian group
X which satisfies (i) and (i) then we can find a ¢ : N g M — X such that
U =poW.

It is easy to construct N ® g M, we form the free abelian group which is generated by
pairs (n,m) € N x M and divide by the subgroup generated by elements of the form

(n1 +n2,m) — (n1,m)— (n2,m)
(nym1 +ma) — (n,mi1)— (n,me)
(nrym) — (n,rm).

If our ring R is commutative then we can give N ® g M the structure of an R-module:
We simply define
r(n®m) =nr®m=n®rm. (2.23)

In this case of a commutative ring R we can assume that both variables N ,M are left
R-modules.
If we fix NV then the functor M — N ®pr M is a right exact functor but in general it is
not exact. This means that for a short exact sequence 0 — M’ — M — M" — 0
the sequence

N®RM/—)N®RM—)N®RMH%O

will be exact but the first arrow on the left will not be injective in general. We leave it as
an exercise to the reader to verify the right exactness. In the section on flat morphisms
of schemes we will discuss some examples which explain these phenomena (Volume 2).
But if the module M” is projective then the sequence stays exact if we tensorize by any
N because the sequence can be split.

This allows us to construct the derived functor. We work with a projective resolution
P, — M — 0, to define

RTor®(N,M) = H,(N ®r P,). (2.24)

This is a universal left derived functor of our functor above, it is clear that this is a
functor in the two variables N,M.
We can also choose a projective resolution Q¢ —> N — 0 define the functor

LTor®(N,M) = H,(Q, ®r M). (2.25)

Again it is not so difficult to prove that these two functors are indeed equivalent. To see
this we consider the double complex defined by the two resolutions and the vertical and
horizontal subcomplexes are acyclic in the ”interior”.

Again we summarize:

Lemma 2.4.3. The functor in two variables Tor™(N M) defined in that way can be
computed by a projective resolution of N or a projective resolution of M. The higher
Torf(N,M) vanish for i > 0 if one of the entries is a projective module.

Definition 2.4.4. A left R-module M is called flat if the functor N — N ®r M s
exact.

The following is obvious
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Lemma 2.4.5. The left R-module M is flat if and only if Torﬁ(N,M) =0 foralli>0
and all right R-modules N .

Lemma 2.4.6. The functors cohomology and homology of a group I' are special cases of
Ext® and Tor®.

We take for our ring the group ring R = Z[I'], and we observe: If Z is the abelian group
Z with trivial I'-action then
Homgr(Z,M) = M",

and hence we see 4 ,
EthZ[F](Z,M) = H'(T',M); (2.26)

and
M ®zr) Z = Mr,

hence

Torf(M,Z) = H,(T',M). (2.27)

We conclude this chapter with some extra remarks and some exercises. We observe that
we can compute the cohomology of a group also from a projective resolution

io— Pob— P —Py—7Z—0

Then Lemma 2.4.1 and our formula above implies H(I',M) = H*(Homr(P,,M)). We
can construct some kind of natural projective resolution of Z. For our module Py we
take the group ring Py = Z[I'] and the first arrow Py — Z is the augmentation map.
The group ring considered as an abelian group is the group of finitely supported maps
Mapg, (I, Z). We define

P, = Mapﬁn(rn+1az)a (228)

this becomes a projective I' module if we define (o f)(0o,...,0n) = f(oto0,...,0 7 on).
We define a boundary operator d,, : P, — P, _1 by

(dnf) (00, ... \Op_1) i= Z(—nif(ao, Ty One1), (2.29)

where 7 runs over I' and is inserted at the i—th place. It is easy to check, that this gives
a projective resolution.
2.4.3 Exercise

Exercise 10. Apply the previous paragraph to the case of a cyclic group I' = Z/nZ.
Let o be a generator of the group. We have the exact sequence

0— I —Zl'—Z—0
and It = Z[T](1 — o).

(a) In the case n = 0 (the infinite group) we have that It is a free module. This gives
simple formulae for the cohomology and shows H”(I',M) = 0 for v > 2.
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(b) In the case of a finite group the map
Zr — I
r — r(l—o0)

has the kernel Z[I'](1 + ... + ¢"~1). Construct a “periodic” resolution from this
and compute the cohomology.

Exercise 11. Compare our provisional cohomology groups H'(I',M) and the new ones.
This is not so difficult. Use the following

(a) We observe that our new cohomology groups obviously satisfy: For a subgroup IV C T’
and a I"-module ‘ .
HY(T,Ind, V) = H(I')Y).

(Choose an injective resolution of the I''-modules ¥ and ... .)

(b) We take I'" = {1}. Then H*(T, Indlfl} M) = 0. We constructed the sequence
0 — M — Ind{;; M — (Ind};y M)/M — 0,

and we find
T r T I 1
((Ind{l}M)/M) /(Ind? M)T ~ HY(T,M).

But in Exercise 7 we proved that we also have H 1(F,Indgl} M) = 0, the claim
follows if we apply the exact sequence for H to our exact seqence above.

Exercise 12. Let us consider the ring R = k[X]/(X?) where k is any field. Then the
category of R-modules is the same as the category of k-vector spaces V' together with an
k-linear endomorphism a : V. — V which satisfies o = 0. If dim;, V = 1, then o must
be zero. Compute Extp(k,k).

Does this ring a bell?
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3.1 Presheaves and Sheaves

3.1.1 What is a Presheaf?

We start from a topological Space X and we define the category Off(X) of open sets:
The objects are the open sets U,V C X and the morphisms

0 it VgU

3.1
{i} i is the inclusion if V C U. (3-1)

Homog(x)(V,U) = {

Definition 3.1.1. A presheaf on X with values in a category C is a contravariant
functor from the category Off (X) with values in the category C.
We say again what this means: To any open set U C X our presheaf F associates an

object F(U) € Ob(C). Whenever we have an inclusion V' —= U we get a so-called
restriction morphism

ryv s F(U) — F(V). (3.2)
Of course we have )y = Id and for V3 C Vo C U we get a commutative diagram

TU|Va

F(U) F(Va)
Tuwv,
TVQ‘Vl

F(Wi)

which can be written awkwardly

TU\Vl = TVQ\Vl o TU|V2' (ShO)

If this functor F takes values in the category Ab of abelian groups (rings, modules over
a ring, vector spaces, sets,...) we call it a presheaf of abelian groups (rings, modules over
a ring, vector spaces, sets,...). For us the target category will always be of one these
simpler categories. This means that the objects F(U) will be sets equipped with some
kind of additional structure and the morphisms will be maps which respect this additional
structure.

Under this assumption we know what the elements in F(U) are, they will be called the
sections of F over U.

Sometimes it is a nagging question what F(()) should be. Usually we can take for F(0) a
so called final object in the category, this is an object 2 such that for any other object
X € Ob(C) we have exactly one morphism from X to Q. For the category of sets we can
take any set consisting of just one element and for the category Modp we can take the
zero module.

G. Harder, Lectures on Algebraic Geometry I, DOI 10.1007/978-3-8348-8330-8_3,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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It is clear that presheaves with values in a given category C on X form a category PSx
by themselves. A morphism ¥ € Hompgs, (F,G) between two presheaves is a collection
of morphisms

Uy F(U) — G(U), (3.3)
which satisfies the obvious rule of consistency: whenever we have V' C U we get a com-
mutative diagram

FU)—Y s g(0) (3.4)
Tuwv Tu\w

v
F(V) ——6(V)
(If we were pedantic, we should also denote the 7y differently (TJUTW or s0).)

The category of presheaves (in a suitable target category C) contains a (so called “full”)
subcategory, this is the category of sheaves. Before I can define sheaves I need:

3.1.2 A Remark about Products and Presheaf

Let us assume we have two indexing sets I,J and two families of objects {X; }ier, {Y;}ies
in a category with products. Assume that we have a map 7 : J — I and in addition
that for every j € J we have a morphism f(j) : X-(;y — Yj. Then we get for j € J a
composition morphism

FG ep(): [[x —
icl
It is the definition of the product that this gives us a unique morphism
X — 1Y
icl jeJ

which for any j € J produces a commutative diagram

nxi_f 1V (3.5)
el jedJ
f()

Xoiy ——> Y]

Hence morphisms from one product into another product can be obtained from maps
between the indexing sets in the opposite direction and morphisms between the objects
indexed by indices related by this map. We say that this arrow is induced by the maps
between the indexing sets and the maps between the objects.

3.1.3 What is a Sheaf?

Now we explain the extra condition a presheaf has to satisfy if it wants to be a sheaf.
We need that the target category C has products. For our purpose it is good enough if it
is a category of rings or a category of modules.
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Let F be a C-valued presheaf on our space X. Let U C X be open, let U = UyecaU, be
an open covering. Then we get a diagram of maps

p1
FO) = [ F0) = [ FU.nU), (3.6)
acA P2 (a,B)€EAXA
where the arrows are given as follows: The arrow pq is induced by the maps

TU|Ug
—

F(U) F(Ua)

and pi,ps are induced by the two projections
AxA —X A
(,8) — «
(p) +— B

and the restriction maps F(U,) — F(Uy NUp). If we assume that our target category
is the category of sets, (abelian) groups, rings ... where the product is the simple-minded
product then we can see what happens to s € F(U): It is mapped to ( cTruu. (8), - )
For a section (...,8a,---)aca € [laca F(Ua) we have

a€cA.

P1
—>( .. era|UaﬁU@ (Sa), .. ')(a,B)GAXA

[TocaFWa) 3 (- 805+ )aea D2
—>( N ’TUH‘UamUﬁ (Sﬁ)7 .. ')(a7ﬁ)€A><A

In any case it is clear from condition ShO (see page 35) that the first arrow “equalizes”
the two arrows p1,p2. This means that p; o pg = p2 o po. Now we are ready to state the
condition a sheaf has to satisfy. For simplicity we assume that our target category is one
of the simple ones above.

Definition 3.1.2 (Sheaf). A presheaf F is a sheaf if and only if
(Shl) The arrow pg is injective.

(Sh2) The image of po is exactly the set of those elements where p1,pa take the same
values.

We summarize the two conditions into

p1
FO)S | [[F0) == J] FWanUs) | lpr =pal. (3.7)
acA P2 (a,B)EAXA

We will say that the above sequence is an exact sequence of sets.
Comment: In the case of an abstract target category C we would have to explain what
injectivity of pp means and how we define the object [p1 = po| for a pair of morphisms

Pr1
A = B. This is actually not so difficult.

P2
Now we fix a target category C. The sheaves with values in C form a “full” subcategory
Sx of the category of presheaves with values in C. This means that each sheaf is also

a presheaf and for any two sheaves F,G on X the sets of morphisms in the category of
sheaves and in the category of presheaves are the same, i.e.

Homps, (F,G) = Homs, (F,G).
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3.1.4 Examples

Example 13. On any topological Space X we have the sheaf C° of continuous R- or
C-valued functions.

For any open set U C X we put CY(U) = ring of real (or complex) valued continu-
ous functions on U. The restriction maps are given by the restriction of functions. The
properties (Sh1),(Sh2) are obvious because the continuity of a function can be checked
locally.

Example 14. We can define the sheaf U — Zx (U) as the sheaf of locally constant Z
- valued functions on U.

Note that
U — constant Z - valued functions on U

would only define a presheaf because condition Sh2 will not be satisfied in general. This
makes it clear what the general rule is: whenever we have a class of functions defined by
certain properties then they provide a sheaf if these properties can be checked locally.
Of course we can replace Z by any abelian group A and define the sheaf

U — Ax(U) = locally constant A-valued functions on U.

We may look at these sheaves from a different point of view. We can put the discrete
topology on A, and then we see that Ax(U) is simply the abelian group of continuous
functions on U with values in A. Sometimes we will write A instead of Ax.

If we have a point p € X then we can define the ring of germs of continuous functions in
this point p.

Definition 3.1.3 (Germ). A germ of a continuous function at p is a continuous function
f Uy, — C defined in an open neighborhood U, of p modulo the following equivalence
relation:

(f:Up — C)~(g:V, — C)

if and only if there is a neighborhood W, C U, NV}, of p such that and f|W, = g|W,.

It is clear that the germs form a ring which is called Co x ;. It is clear that this ring is
the direct limit

lim C°(U) = %P

Usp
(See section 1.3.5).
This ring is a local ring, which means that it has a unique maximal ideal. This maximal
ideal m,, is the kernel of the evaluation at p. To see this one has to observe that a germ f
which does not vanish at p also does not vanish in a small neighborhood of p and on this
neighborhood we can define the continuous function 1/ f. This means that f is invertible
in C%, and it follows that any ideal in C% , which is not contained in m,, is the entire
ring. Of course such a ring of germs is pretty big.
If we do the same thing with our sheaf Z x then it is clear that a germ at p is determined
by its value at p. Hence in this case the ring of germs is simply Zx , = 7Z. This is not a
local ring.
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3.2 Manifolds as Locally Ringed Spaces

3.2.1 What Are Manifolds?

At this point I want to explain that the concept of sheaves gives us a better way to think
of topological (C°—), differentiable (C*°—) or complex manifolds. I hope the explanation
will also be helpful for the understanding of the concept of sheaves.

Definition 3.2.1. A topological manifold X is a Hausdorff space such that for each
point p € X we can find an open neighborhood U, of p which is homeomorphic to an open
set in R": U, — U C R™.

This is also called a C%-manifold, on this space we can define the sheaf C% of germs of
continuous functions with values in R or C.

A non-trivial theorem in algebraic topology asserts that two non-empty open sets U C R™
and V' C R™ can only be homeomorphic if n = m (see section 4.4.5). This allows us to
speak of the dimension of the topological manifold provided it is connected.

I now recall the conventional definition of differentiable or complex manifolds.

Definition 3.2.2. A C*°-manifold of dimension n is a topological manifold X together
with a C®-atlas: This is a family {Vi,uataca of open subsets such that

(i) X = UuGA Va
(ii) The u, are homeomorphisms ug : Vo — V., where the V. are open subsets in R".
(i) If Vo N'Vg # 0 then we get a diagram

ua(Va NV3) C V!

ug(Vo N'V3) C Vé
and we demand that uag,ugs are C*°-maps.

The maps uq : Voo — V.. are called the local charts of the atlas. In this case it is easier
to see that the dimension is well defined.

We may define a complex manifold of dimension n in the same way. We demand that
the V! are open in €™ and the uqg,ugq are holomorphic maps. Of course it is clear that a
complex manifold of dimension n also carries a structure of a C*°-manifold of dimension
2n.

Once we have the notion of C°°-manifold (resp. complex manifold) we may define the
sheaves of germs of C*°— (resp. holomorphic) functions:

Definition 3.2.3. ForU C X and f : U — C, we say that f is C* (resp. holomorphic)
if for any p € U and any V,, with p € V,, the map

fazfouglzua(VaﬂU)—)C

is C* (resp. holomorphic).



40 3 Sheaves

Let us denote these sheaves by C and Ox respectively.
After defining a C*°- (resp. complex) manifold this way there is still a lot of talking
about how to compare different atlases, what are equivalence classes of atlases, what are
maximal atlases and so on.
With our definition we know what it means that a map A : X — Y between two
C® (resp. complex) manifolds is a C* (resp. holomorphic) map. Such a map should be
continuous and then we use the atlases to formulate what else should be true, namely
that the maps induced by the local charts should be C* (resp. holomorphic). But we see
that there is a different way of formulating that h is C*° (resp. holomorphic): Whenever
we have open sets U C X,V C Y such that h(U) C V, ie. h: U — V and a section
feCE(V) (resp. f € Ox(V)) then the composite f o h is certainly continuous. It is not
hard to check, that our map is C*> (resp. holomorphic) if and only if for any such pair
U,V and any f the composite map f o h is again C* (resp. holomorphic), i.e. we get a
map

oh:Cy? (V) — CX(U) (resp.oh: Oy (V) — Ox(U)).
A better formulation is obtained if we introduce the sheaf (see the following sections
on fi,f* and the adjointness formula) h*(C$°) on X: For any open subset U C X the
space of section h*(C5°)(U) consists of functions f : U — € which have the following
property:
For any point p € U we can find a neighborhood U, of p and an open set V},(,,) C Y such
that h(U,) C Vi (p) and we can find a section fecy (Viu(p)) s0 that

f= fo h.
Then we can say that a map h: X — Y is C* (resp. holomorphic) if it is continuous
and induces a map
oh:h*(Cy?) — C¥
(resp. oh:h*(Oy) — Ox).
Of course the composition with A always induces a map
h*(CYy) — CX

between the sheaves of continuous functions. A C* resp. holomorphic map h has to
respect the distinguished subsheaves which have been defined using the atlases.

I want to explain that these concepts of manifolds become much clearer if we follow
GROTHENDIECK and introduce the concept of locally ringed spaces. We turn the
whole thing around and formulate a new definition of a C*°— (resp. complex) manifold:

Definition 3.2.4. A C*>®— (resp. complexr) manifold is a topological space X together
with a subsheaf C¥ (resp. Ox ) in the sheaf of continuous functions such that for any
point p € X we have a neighborhood U, of p and a homeomorphism h between U, and
an open subset U’ of R™ (resp. C™) such that

UC%) ~ (WULCE)
(resp. (Up,0x) =~ (UI/?’OU;’J))

where Uy is open in R™ (resp. C") and the sheaves are the sheaves of C* (resp. holo-
morphic) functions on UT’, and where >~ means that the composition oh induces an iso-
morphism between the subsheaves.
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In very simple words: A so and so manifold is a topological manifold on which we have
a subsheaf of the sheaf of continuous functions which locally looks like the sheaf of so
and so functions on some simple model space. In our examples the stalks are local rings,
hence we get examples of so called locally ringed spaces.

It is not only so that we get a much clearer concept of C®°— or complex manifolds. It
turns out that this concept allows generalizations to cases where we cannot work with
atlases anymore. (see example 18)) and Chapter 6 in the second volume)

Let X be a C°°-manifold of dimension d and p € M a point. We still have charts.
By definition we can find a neighborhood U, and sections x1,z2,...,2q € C¥(U) such
that the map z : U, — R? which is given by z(q) = (21(q),v2(q),.-.,za(q)) is a
homeomorphism from U, to an open subset U’ C R? and such that a function f : U, —
R is in C¥(Up) if and only if foz™!: U’ — R is a C*°— function. Such a collection
1,To,...,xq will be called a system of local coordinates at p. We will then say that
f = f(z1,22,...,24) is a C* function in the variables x1,22,...,24.

It is possible to define the category of locally ringed spaces.

Definition 3.2.5 (Locally Ringed Space). A locally ringed space is a topological space
X together with a sheaf of rings whose stalks (see section 8.3.1) are local rings.

To define the morphisms we start from continous maps f : X — Y between the spaces.
Then we use the functors f.,f* (see section 3.4) to formulate what happens between the
sheaves. We will encounter these objects in the second volume Chapter 6.

3.2.2 Examples and Exercise

I want to discuss a couple of examples and exercises.
Example 15.

(a) We define the structure of a complex space on the one dimensional projective space
PY(C). As a topological space this is the space of lines in C? passing through the
origin. This is also the space of all pairs (zo0,z1) # (0,0) of complex numbers divided
by the equivalence relation

(20,21) ~ (AZO,)\21>, e C*.

We have the two open subsets Uy (respectively Uy ) where the coordinate zg # 0 (re-
spectively z1 # 0.) On these open subsets we can normalize the non-zero coordinate
to one and get bijections

Up— C, U3 —C,

(L2)— 2z, (u,l)—u

Now we define the sheaf Op:1 : For any open subset U C PY(TC) the sections of
Op1(U) consist of those C-valued functions whose restrictions to Uy N'U resp.
Ui NU are holomorphic.

(b) Of course we can define the n-dimensional projective space P™(C). Again it is the
space of lines in C" 1 passing through the origin. We can identify this to the space

{(z0, -+ ,2n) € cntt | notall z =0}/C*
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where C* acts diagonally. We define the subset

U, = {(Zo, cee ,Zn) S ®n+1 ‘ Z; 7& 0}/(]3*
and identify U;=—=C"™ by the map (20, ,2iy " 12n) — (z—o, e ,Zzi) The sheaf
of holomorphic functions on P™(C) is the sheaf of those functions whose restriction
to the U; is holomorphic.

Example 16. We choose a lattice
Q= {n1w1 + nows | ni,ng € Z}

in C, where wy,ws are linearly independent over R. This lattice operates by translations
in C, we form the quotient C/Q as a topological space, the projection

m:C— C/Q.

is locally a homeomorphism. We define

Oc/oU)={f:U—C |7 '(U) EAL holomorphic}.
Then it is clear that this gives C/Q the structure of a complex manifold.

Example 17. Let us assume that we have a holomorphic function f : U — C where
U C C is open and contains the origin. We assume f(0) = 0. We consider f as a
germ and we assume that its n-th iteration is the identity, i.e. f(f(...f(2))...) = z.
We assume the f is of exact order m, i. e. no earlier iteration gives the identity. Of
course f(z) = Cz+ar2%... where ( = et and (k;m) = 1. We can find a smaller open
set D C U such that f(D) = D. This defines a holomorphic action of the cyclic group
G =< f¥ > of order n on D and we can form the quotient under this action. This is
the space D/G = B. Let w: D — B the projection map. We define a sheaf Op on B :
For any open set V.C B we define Og(V) as the ring of holomorphic functions on the

inverse image 7~ (V') C D which are invariant under the action of the cyclic group G.

Exercise 13. Prove that this sheaf defines a structure of a one dimensional complex
manifold on B.

Hint: Consider the special case where U = C and f(z) = (z first. Of course the problem
arises only in a neighborhood of the origin 0. There the stalk of the sheaf Op is ring of
power series in w = 2" which have a strictly positive radius of convergence. Then return to
the general case and prove that you can find a germ of a function g(z) = z+b22+b323. ..
such that f(g(z)) = g({z) and show that this reduces the problem to the first case.

Example 18. Let us consider C? and consider the following action of our cyclic group:

fi(a,22) = (C21.( )

If we form the quotient # : C?> — ©2?/G = B we can try to play the same game.
Again we get the structure of a two dimensional complex variety except at the point
m(0) = 0. Here we see that the germ of our sheaf Op becomes a power series ring in
u = 200 = 25w = 2122 and we have uv = w™. This means u,v,w are not independent
variables anymore. At the point O our space is singular and not locally isomorphic to
(C2,0¢2). But our concepts of locally ringed spaces are strong enough to deal with this
situation. Our example has the structure of a complex space which may have singular
points.
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Example 19.

(a) I want to give an idea of what a complex space might be. This is more subtle, and I
need some difficult theorems from local complex analysis. We assume that U C C"
is an open subset and fi(z1,--- ,zn), -+ o fr(21, -+ ,2n) are holomorphic functions
on U. Then we can consider the ideal I C Ogn(U) which is generated by these
functions. We can look at the subset Y of common zeroes of the f;, i.e.

Y={z2=(z1,",2) | fi(z) =0 foralli=1---r}

and this is of course also the set of common zeroes of all the f € I.

Of course Y is a topological space, for any open subset V.C Y we can look at the
open sets U' C U with U'NY = V. For any such U' we form the quotient

OC"(U/)/(flv U hf?“)
where (f1,--- ,fr) is the Ogn (U’)-ideal generated by the f;. We put

Oy(V)= lim  Ocn(U)/(f1, - .fr)-

unu'ny=v

Now it follows from deep theorems in local complex analysis that V. — Oy (V) is
in fact a sheaf (see [Gr-Rel], we can avoid this reference if we use the construction
of quotient sheaves below). One checks that the stalk Oy, = hﬂv-yev Oy(V) is a

local ring and the pair (Y,Oy) is in fact a locally ringed space. It can serve as a local
model for a general complex space. I want to point out that we cannot interpret the
rings Oy (V') as rings of holomorphic functions on'Y . We may for instance consider
the case that U = C, and we take the single function f(z) = z%. Then' Y = {0} and
the local ring is C[z]/(2?). It contains nilpotent elements and cannot be interpreted
as ring of holomorphic functions.

But still our space (Y,Oy) is called a complex space (see [Gr-Rel], [Gr-Re2],
Chap. 1)).

(b) We say that our system of equations satisfies the Jacobi criterion in a pointy € Y
if the Jacobian matriz

ofi . o
(aZJ>Z’J(y) 1_17"'77"7.7_172"'7”

has mazximal rank r. Then this is still true in a small open neighborhood of y. The
theorem on implicit functions says that in a small neighborhood Uy C C" of y we
can perform a change of coordinates u; = g;(z1 - zn) fori=1,2,--- n such that
in the new coordinates our functions become fi(uy - up) = uy, - ,fr(ug - uy)

= u,. Hence we see that in this neighborhood

YU ={0,- ,0,upt1, - un) | u; suff. small},

and then (Y,Oy) is clearly an (n — r)-dimensional complex manifold in the neigh-
borhood of y € Y. In this case we do not have to invoke the above mentioned
theorem.
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We can turn this around and say that a subset' Y C U is a d-dimensional sub-
manifold of U if we can describe it locally as the common set of zeroes of n — d
holomorphic functions which satisfy the Jacobi criterion.

We come back to the situation in example 19 (a). We say that the ideal I defines a
(smooth) submanifold of dimension d if the set of common zeroes Y is a submanifold
of dimension d and if in addition at any point y € Y we can find g1, ...,gn—q € 1
which satisfy the Jacobi criterion at the point y. In this situation the argument in
example 19 (b) shows that these g1, ... ,gn—a generate the ideal I if we restrict it to
a small neighborhood of .

(c) A closed subset Y C P™(C) is a d dimensional complex projective manifold if for

any index i the intersection Y NU; is a d-dimensional complex submanifold of U;.

(d) A homogeneous polynomial of degree k is a polynomial

f(ZO, T 7Zn) = Z Aug---vp, 'ZOUO T ZZ"

where ay,...,, = 0 unless > v; = k. We cannot consider such a polynomial as a
function on P™(C). But of course it makes sense to speak of the zeroes of this
polynomial on P™(C). Therefore we may consider an ideal I = {f1,--- ,fs} which
is generated by s homogeneous polynomials. We can look at the common set of
zeroes

Y={z=(20"2n) | 2#0,fi(2) =0 for all }/C*.

Such a set'Y is called an algebraic subset of P™(C).

If we restrict a homogeneous polynomial f to one of the open sets U; above, then we
can interpret it as a function on U; because we can normalize the i-th coordinate of
a point to one. Hence our ideal I defines an ideal I; of holomorphic functions on
each of the U;.

Such a subset Y C P™(C) is called a smooth, projective (algebraic) variety of
dimension d if each of the ideals I; defines a smooth submanifold of dimension d
in the sense of example 19(b). This definition is not yet very satisfactory because it
needs input from analysis (the implicit function theorem), for a definition in purely
algebraic terms I refer to volume 2.

It can happen that we need more than n — d homogeneous equations to describe a
smooth projective variety of dimension d. Locally at a point y we can choose n — d
equations from our set of equations to describe Y but this subset may vary if the
point moves around.

If we have such a complex d-dimensional submanifold Y C C™ then the coordinate
functions z1, ...z, are of course holomorphic functions on C™. Therefore they are
also holomorphic after restriction to Y. If we have a point y € Y we may consider
the functions

Zi=zi—z(y) fori=1,....n

as holomorphic functions on'Y. Then it follows from example 19(b) that we can
pick d functions from this set - let us assume that these are z1,...,z2q - such that
the remaining functions can be written locally as convergent power series in these,
i.e.
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Ed+j:hj(317--~7gd) j:l...n—d

Then the

Zi=zi—z(y) fori=1,....n

are called a system of local parameters at y. We could also call them (analytic)
local coordinates.

3.3 Stalks and Sheafification

3.3.1 Stalks

In our examples above we had the notion of a germ of a function at a point p. This
notion can be extended to the more general classes of sheaves. Let us assume that we
consider the category of (pre-)sheaves on X with values in some nice category (abelian
groups, rings or sets). If we have a point p € X then we consider the set I, of open sets
containing our point p. We define an ordering on this set

V>U ifandonlyif V CU. (sic!)

Then this is an inductive system which is also directed: to any U;,Us we find a V' with
U<V, U< V.

Definition 3.3.1 (Stalk). If we have a (pre-)sheaf F on X we define the stalk in p by

Fo=lm  F(O),
Uel,

and this limit is simply the (abelian group, ring, set) of germs of sections.

It inherits the structure of an (abelian group, ring, set); this follows from this directedness
and is discussed in the Exercise 4 in section 1.4.

An element s, € F, is called a germ of a section. By definition it can always be
represented by a section sy € F(U) where U € &l,. If this is so we write sy|, = s, and
we say that s, is the restriction of sy to the stalk at p.

Let s be a section over the open set U. If we have s, = 0 at p € U then we find an open
neighborhood V' of p such that s restricted to this neighborhood is zero. Hence we can
define the support of s:

Definition 3.3.2 (Support). The support of a section s € F(U) is the closed subset of
U where s, # 0.

These stalks help to clarify the difference of the notion of sheaves and presheaves. For
any presheaf we can consider the map

FU) — [ % (3.9)
peU

which is given by restricting the sections to the stalks. Then we know:
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Lemma 3.3.3.
(1) This map is injective, if and only if our presheaf satisfies (Sh1).
(ii) If a presheaf F satisfies (Sh1) then it is a sheaf if and only if the following holds: A

collection of germs (...sp...)peu is the restriction of a section over U if for any p
we find a Uy, € 4, and a section 5, € F(Up) such that sp|q = sq for all ¢ € U,,.

We leave the verification of this fact to the reader.

3.3.2 The Process of Sheafification of a Presheaf

We will show that to any presheaf G on a space X we can construct a sheaf G# together
with a map j : G — G# (in the category of presheaves) such that for any sheaf F we
have

Homps, (G,F) = Homs, (G# ,F). (3.10)

This can also be seen as another example of a representable functor. Our presheaf G
defines a functor from the category S of sheaves (with values in the category of rings,
abelian groups, sets) into the category of sets, namely the functor F — Homps, (G,F).
Our sheaf G# is representing this functor. Hence by the Yoneda Lemma it is unique up
to isomorphism.

To see that G# exists we use the stalks. It is possible to define G# quite directly, we
define

For any point p € U 3 open U,
GFU) =4 (..sp...) € [[ Gn | pevsCUand5,e0(Wy). st 3. (3.11)
el Splg=sq for all geU

The reader should verify, that this defines indeed a sheaf, this sheaf has the same stalks
as our original presheaf, we have a map G — G# and it has the required property.
There exist some more abstract notions of sheaves on so called Grothendieck topologies,
these are in some sense “spaces” which sometimes do not have points anymore. In such a
case it is not possible to use the stalks, but still it is possible to construct G#. Therefore
I will give here another construction of G#* which does not use stalks.
We consider coverings U = {Ui}icr, U = J,c; U; of an open set U. We introduce the
category of coverings. An arrow from a covering U = {V,}aeca to the covering i =
{U;}ier is a map

T:A—1T

such that V., = U;. We write

aeT ()
T:0 — U

for such a morphism. In general the arrow 7 is not determined by the two coverings, but
many constructions using this arrow will give results not depending on it.

We will say that such an arrow defines a refinement of 4 by . Sometimes we will say
that U is a refinement of il if there is an arrow from U to il.

The arrow 7 defines a map between diagrams (see the general remark about maps between
products at the beginning of this section)
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(1)~ T, GV z:; [syeres 9N T;) (3.12)
GU) —— Taca 9Va) /% [(a.p)caxa 9(Va N Vp)

For any covering ${ = {U; };es of U we define

G U)[p1 = p2 :{se]'[g ) | pa(s) pg(s)}. (3.13)

i€l

If U is a refinement of 4 then our map 7 defines a map

GH(U)[pr = p2]
_— l
T

G¥(U)[pr = p2]

It is not difficult to see that the vertical arrow does not depend on the choice of 7. Now
we need the courage to believe that we can extend the notion of direct limit to this
situation where we do not have an indexing set but a category which is directed because
two coverings have always a common refinement. We put

GH(U) = lim *(U)[ps = pal. (3.14)
)it

g

We check that GT is again a presheaf, and it satisfies condition (Sh1). Moreover if the
original presheaf G satisfies already (Sh1) then G satisfies even (Sh2). Hence we see that
Gtt =G¥# is always a sheaf. We have

i:G— G”,

and G# has the required universal property.

3.4 The Functors f, and f*

Given two topological spaces X,Y and a continuous map f : X — Y, we construct
two functors fi,f* which transport sheaves on X to sheaves on Y and sheaves on Y to
sheaves on X respectively. Let us denote by Sx (resp. PSx) the category of sheaves
(resp. presheaves) on X with values in the category of abelian groups, rings or sets.

Definition 3.4.1. If we have a sheaf F on X we define the sheaf f.(F) on'Y by

FR)V)=F(FH(V)

for all open subsets V- .C Y. It is clear that f.(F) is a sheaf on'Y, it is called the direct
image of F.
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We also have the functor f*, this is called the inverse image or sometimes the pullback
of a sheaf. The functor f* transforms sheaves on Y into sheaves on X. The idea is that
the stalk of f*(G) in a point € X is equal to the stalk of the original sheaf G in the
point y = f(z), i.e. f*(G)z = Gf(a)- The actual construction is a little bit complicated.
At first we define a presheaf f/(G):
For U C X we put
FOW) = lim G(v). (3.15)

Vo £(U)
It is not difficult to verify that this is a presheaf and that for any covering U = U;¢1U;
we get an injective map

o) — T r@)w).

iel

It satisfies (Sh1) but not necessarily (Sh2).

Definition 3.4.2. We define by f*(G) = f'(G)*. the inverse image or pullback of a
sheaf G

We recall that the stalks of the sheafification of a presheaf are equal to the stalks of the
presheaf, hence we get

F@e=lm lm G0V)= lm G(V)=Gsu) (3.16)
zeU VD f(U) V:f(z)evV

3.4.1 The Adjunction Formula

The functors f.,f* are adjoint functors. To be more precise: The functor f* is left
adjoint to f.. This means that we have a functorial isomorphism

Homs, (f*(9),F) = Homs, (G, f+(F))- (3.17)

Here ” functorial” means that from morphisms v : G’ — G and v : F — F’, we get the
obvious commutative diagrams.

It is not very difficult to verify the adjointness formula. From the construction of the
sheafification we have Homps, (f'G,F) = Homs, (f*G,F). Hence a morphism ¢ in
Homps, (f'G,F) is a collection of ¢y : f'G(U) — F(U). It follows from the defini-
tion of f'G(U) and the properties of the direct limit that this is nothing else than a
collection of maps

Yoy G(V) — F(U) (3.18)

where U,V run over all open sets in XY which satisfy f(U) C V, and where the maps
in this collection satisfy the obvious compatibilities. We will call ¥y the evaluation
of 1 on U,V. Now we are allowed to evaluate on U = f~1(V) and we get a collection
Yy = ov 2 G(V) — fu(F)(V), ie. an element in Homs, (G, f«(F)). The other
direction is also clear.



3.5 Constructions of Sheaves 49

Remark 2. I find it always confusing and hard to memorize which functor is a left
(right) adjoint of which. The question is whether f* has to be placed into the source or
the target of the Hom(, ). Here is a simple rule that helps. We have to remember that f.
gives directly a sheaf while the construction of f*G involves the process of sheafification
and this uses direct limits. But as I explained in the chapter on categories direct limits
are made so that we know what the maps from them are. Hence the free place on the
left in Hom(, ) is the place where f*G belongs.

3.4.2 Extensions and Restrictions

We can consider the special case of an open subset U C X and let A = X \ U be its
complement. Then we have the two inclusions i : A <— X, j : U — X. For a sheaf F
on X the sheaf j*(F) is very easy to understand since for an open set V' C U we have
75 (F)(V) = F(V). This is called the restriction of F to U. The operation i*(F) is much
more delicate and will cause us some trouble (see section 4.4.1).

If we have a sheaf G on U then j.(G) is a delicate functor since it depends on the local
topology in the neighborhood of boundary points (see section 4.1.2). It is not necessarily
exact.

But for a sheaf G on A the i,(G) is easy to understand. Its stalks are zero outside of A
and equal to the stalks of G on A. It is called the extension by zero.

3.5 Constructions of Sheaves

If we have a family of sheaves {F,}oca the we can define the product: For any open set

U C X we put
OI&)W%:HIMW (3.19)

acA acA

and it is easy to verify that this is again a sheaf. If our sheaves have values in the category
of rings, modules, abelian groups etc. the product is again a sheaf with values in that
category.

We have to be a little bit careful at this point. We can not say in general that the stalks
of the product are isomorphic to the product of the stalks. But if the indexing set A is
finite we check easily that for any x € X

(Ha):ﬂa@ (3.20)

acA acA

(See also [McL | for a detailed discussion ). But if the F, are sheaves with values in
the category of abelian groups and if we know in addition the for any x € X the stalks
Fa,z =0 for almost all a € A, then 3.20 is still true.

If the F, are abelian groups or modules we might be tempted to take the direct sum
of sheaves. But this does not work in general. The naive definition gives only a presheaf
because (Sh2) may be violated if the indexing set A is infinite.
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Perhaps here is the right place to explain, that the sheaves on X with values in the
category of abelian groups form an abelian category . First of all this says that for two
such sheaves the set ¥ € Homg, (F,G) is an abelian group: If we have two morphisms
U = {Uy, Py }y,® = {Py,Py}y then ¥+ & = {Uy + $y}y. This group structure is
bilinear with respect to composition.

If we have a morphism ¥ : 7 — G then we can define the kernel ker(¥) as the subsheaf
U — ker(Uy ). This kernel has a categorical interpretation: For any other sheaf A

Homs, (-A7 ker(\Il)) = {¢ € Homg, (_7:'7g)|\IJ °0¢p= 0}

Now we may consider the presheaf
KU) =FU)/ker(¥)(U). (3.21)

It is fundamental that this presheaf is not necessarily a sheaf and this will be explained
in detail in the next Chapter. It is not hard to verify the first sheaf condition (Sh1) but
in general it does not satisfy the second condition (Sh2). Of course we can sheafify the
presheaf K and we get the quotient sheaf

F/ker(¥) := K# (3.22)

This quotient has again a categorical interpretation and it is called the coimage of ¥. We
can also define the image of W as a subsheaf of G. It is simply im(¥)(U) = W (K#(U))
and by construction it is isomorphic to the coimage. These two objects namely the
coimage and image can be defined in a categorical context and it is one of the axioms
for an abelian category that they should be canonically isomorphic (see [McL |).

In an abelian category we can define the notion of exact sequences but this will be
discussed in the following chapter.
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We consider sheaves with values in abelian groups. We can define the notion of an exact
sequence of sheaves.

Definition 4.0.1 (Exact Sequence of Sheaves). A sequence of sheaves on a space X
0—F —F—F' —0

is exact if for all points © € X the sequence of stalks is exact. It is easy to see that this
is equivalent to

(i) For all open sets U C X the sequence
0— F'(U)— FU) — F'(U)
1s exact.

if) For any s € F"(U) we can find a covering U = J, U; by open sets and s; € F(U;
i J J
such that sj — s"|Uj.

It is the decisive point that the exactness of the sequence of sheaves does not imply that
F(U) — F'(U) is surjective. We can only find local liftings for an s” € F"(U).
Applied to U = X this tells us that the functor of global sections F — F(X) will not be
exact in general. Hence we have to construct a right derived functor to it. As in Chapter 2
we introduce the notation H°(X,F) for F(X) and we want construct cohomology groups
HY(X,F),H*(X,F),... which have functorial properties and such that any short exact
sequence yields a long exact sequence

0— F(X) — F(X) — F'"(X) — H(X,F') — ... (4.1)

as in Chapter 2.

The following two examples are absolutely fundamental. In a nutshell we see everything
that makes sheaf cohomology work. I also want to stress the almost perfect analogy
between these two examples which will be explained in remark 3.

4.1 Examples

4.1.1 Sheaves on Riemann surfaces

In the previous section we introduced the notion of a complex manifold (see section
3.2.1). Here I want to consider a compact Riemann surface (X,0x). This means that
X is a compact connected complex manifold of dimension 1. For any P € X we find an
open neighborhood Up of P such that (see section 3.2)

(Up,Ox|Up) =~ (B,0p), (4.2)

G. Harder, Lectures on Algebraic Geometry I, DOI 10.1007/978-3-8348-8330-8_4,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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where B = {z € C | |z| < 1} is the open unit disc and where Op is the sheaf of
holomorphic functions on B. We assume that the homeomorphism between the spaces
maps P to the origin 0 in the disc.

The element z € Op(B) yields via the isomorphism an element zp € Ox(Up). This
element zp vanishes at P. Obviously the stalk Ox, p of the sheaf Ox at P is the local
ring of power series in zp which have a strictly positive radius of convergence. The
element zp generates the maximal ideal mp of the stalk Ox p. Such an element is called
a uniformizer or uniformizing element at P. Any power series

up = f(zp) = azp +bzh + ...

which has a positive radius of convergence and with a # 0 can serve as an uniformizer
as well.

Definition 4.1.1 (Meromorphic Function). A complex function

1s called meromorphic on Up if it is holomorphic and if we can find an integer n such
that 23 - g = h extends to a holomorphic function on Up. We say that g has o pole of
order n at P if n is the smallest value for such an integer. We write ordp(g) = —n and
by definition g € 25" Ox p, but g & z;”“(’)x,p.

If T is a finite subset of X and if f: X \ T — C is a holomorphic function then we say
that f is meromorphic if its singularities at the points of T" are at most poles (and not
essential singularities). For any point P € T' we have defined ordp(f).

Definition 4.1.2. We define the polar divisor of f by

Divao(f) = > ordp(f)P

PeT,ordp(f)<0

which we consider as an an element in the divisor group Div(X), this is the free abelian
group generated by the points of X. Since X is compact it follows that f can only have
a finite number of zeroes on U = X \ T and this implies that 1/f is also holomorphic
on some open set U' = X \ T" where T' is finite and then 1/f is also meromorphic. We
may also define the zero divisor of f as

Divo(f) = —Diveo(1/f)

and the divisor of f as
Div(f) = Divo(f) + Diva(f)-

Definition 4.1.3. We have a homomorphism called the degree of a divisor ,
deg : Div(X) — Z
which is given by deg: D => npP — > np.

Definition 4.1.4. A divisor D = ), npP which is the divisor of a non-zero meromor-
phic function will be called a principal divisor.
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We will see (see 5.1.4) that for a principal divisor D = Div(f) the degree deg(D) =
> np =0. To any divisor D =}, npP we attach the sheaf Ox (D) which is defined by

Ox(D)(U) = {f meromorphic on U | ordp(f) > —np for all P € U}. (4.3)
We could also say that f € 25" Ox p for all P.

Definition 4.1.5. A divisor D = > npP is called effective if all np > 0, we could also
call this a positive divisor and write D > 0.

The definition of Ox (D)(U) can be reformulated: It consists of those meromorphic func-
tions f on U for which the restriction Div(f)+D|U > 0. If D is an effective divisor we have
an inclusion of sheaves Ox C Ox (D). We form the quotient sheaf Lp = Ox(D)/Ox. It
is clear that the stalk at P is 25" Ox p/Ox,p.
For any point P

Z;nOX,p/Oxyp = ILE;L)

is the finite dimensional vector space of Laurent expansions at P of order < n, an element
(e ILgf) can be written as

=yl 4™ mod Oxp (4.4)
Zp Zp Zp

If a,, # 0, we say that £ has a pole of order n. So the stalk of this sheaf at a point P € X
is the vector space of all Laurent expansions of pole order < np. Especially the stalk
is zero at points where np = 0 and therefore the sheaf ILp has only a finite number of
non-zero stalks. It is called a skyscraper sheaf. We have the exact sequence of sheaves

0— Ox — Ox(D) — Lp —0. (4.5)

It is clear that the space of sections H(X,ILp) is simply the direct sum of the stalks in
the points P with np > 0. There is no interaction between the different points.
The question whether the sequence of global sections

0 — H°(X,0x) — H°(X,0x(D)) — H°(X,Lp) — 0

is exact amounts to whether a given collection of Laurent expansions at the finitely many
points P with np > 0 can be realized by a meromorphic function on X. In general the
answer is no and the discrepancy is controlled by the first cohomology group H'(X,0x)
which we will define later. To be more precise we will construct a map

§: H'(XLp) — HY(X,0x)
such that the extended sequence
0 — H°(X,0x) — H°(X,0x(D)) — H°(X,Lp) — H'(X,0x) (4.6)

becomes exact. The computation of H'(X,0x) is more or less equivalent to the Riemann-
Roch Theorem which we will discuss in the chapter 5 on compact Riemann surfaces.

Exercise 14. Prove that in the case X = P!(C) the above sequence of global sections
is always exact.

Exercise 15. Prove that in the case X = €/ the above sequence of global sections is
not always exact.
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4.1.2 Cohomology of the Circle
We consider the circle S' and the sheaf Z which is defined by
Z(V)={f:V —7Z | f islocally constant }. (4.7)
We pick a point P € S and let U = S*\{P}. We define a sheaf Z(*) on S! by
2P (V) = ZU V).

If i : U — S is the inclusion then this is the sheaf i,(Z) (see 3.4.2). Clearly we have
an inclusion Z C Z) and for all @ # P we have the equality of stalks

P
L,=125=1.
But in the point P we have
T7="0p— (LN =77

because on a little interval I, containing P we have Z(I.) = Z but Z(P) (I.) =Z(I.NU) =
7. ® 7.. Hence we get an exact sequence of sheaves

0—7%—7Z%F) —Sp—0

where Sp is the skyscraper sheaf whose stalk at P is Z and zero elsewhere. We get the
sequence of global sections

0 —>'HO(SI7Z)—N 9H0(51,Z(P)) BHO(SI,SP)
I I I

~

0 7 Z Z

and we see that the last arrow is not surjective. Again we need a non-zero H'(S*,7Z) to
control the discrepancy.
We even can have an idea what this group H'(S!,Z) should be. Intuitively we should
think that the sheaf Z() doubles the point P, so our circle becomes an interval I and it
is at least plausible that

HY(I1,7) = H(S*, 7).

But the interval is contractible (see 4.4.1,4.4.24), and we will see that this implies
HY(1,Z) = 0 (see 4.4.10). Hence we should expect (and we will prove this later) that

0/ql ~ rrl/gl N
OP Vi) = L. .
H(S'.Sp) = HY(S'7Z) ~ 7 (4.8)

I want to stress another important point. We can ask whether H'(S!,7Z) ~ 7 is a canoni-
cal isomorphism. The answer is no!
This becomes clear if we recall that

HY(S'.Sp) = (Z® L)/ (4.9)

where 7Z is embedded diagonally. There is no way to distinguish between the two possi-
bilities to identify HY(S*,Sp) to Z.
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But we can choose an orientation on S! (see page 62), this means that at each point
we choose a direction (i.e. non zero tangent vector to S' up to a positive scalar) which
varies continuously with the point. Then we have a distinction between the two intervals
in the intersection I. NU = UF U UZ : We say that US is the interval which the chosen
tangent vector at P points to. Then

Z(I.NU)=2Z{UF) @ LU ) = LS L, (4.10)
and we now have a canonical identification H'(S,Z) = 7Z where we send (a,b) mod Z + a.

Remark 3. I want to stress the analogy between the two examples: The sheaves Ox
and Z have a property in common: They are very rigid. This means that any section over
a connected open subset U is determined by its restriction to an arbitrarily small non
empty open subset V C U.

The analogy goes even further. If we consider the sheaf R on a manifold M, then we
can characterize IR as a subsheaf in the sheaf Cp: It is the subsheaf of functions with
zero derivatives. An analogous statement is true for Ox. We can characterize Ox as the
subsheaf in the sheaf of C°°-functions annihilated by the Cauchy-Riemann operator.

4.2 The Derived Functor

4.2.1 Injective Sheaves and Derived Functors

We want to define a universal derived functor to the functor 7 — F(X) = H(X,F).
To do this we use the same ideas as in Chapter 2. We define the notion of an injective
sheaf:

Definition 4.2.1. A sheaf T is injective if in any diagram

A— B

with ker(¢) C ker(v) we can find a map n : B — I which makes this diagram commu-
tative.

It is rather easy to see that every sheaf F can be embedded into an injective sheaf. The
following construction has been invented by GODEMENT (see [Go]4.3). For any point
x € X we embed the stalk F, by an injection ¢, into an injective abelian group I,. We
define the sheaf 7 by

) =[] (4.11)

zeU

and the restriction maps [[ o I — [[,¢y Lo are induced by the inclusion V' C U.
To prove the injectivity of Z we consider our diagram above stalk by stalk and choose
for each x € X an 7, such that the diagram
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commutes. The collection of the 7, is a homomorphism from B to Z.

By construction this collection of i, provides an embedding ¢ : F — Z, for any open set
U C X the homomorphism ny : F(U) — Z(U) is induced by the maps F(U) — F, — L.
Now it is obvious that we can find an injective resolution for any sheaf F:

0—F —70 —>7" — ..

Consequently we define
H*(X,F)=H*(Z*(X)). (4.12)

The same arguments as in the previous section show that this defines a universal right
derived functor.

The reader might (or should) be scared: How can we ever compute the cohomology of a
sheaf if we use such huge and bizarre sheaves to define it?

Our strategy will be to exhibit classes of smaller sheaves which have the property that
they are acyclic. One possibility to construct such sheaves is discussed in the following
exercise.

Exercise 16. Let us assume that we have a sheaf of commutative rings R on X, the
rings should have an identity, especially we have 1 € R(X). Let us assume that we have
a so called partition of 1: For any covering X = (J,c; U; we can find elements h; € R(X)
such that Supp(h;) C U;, for any point x € X we have only finitely many indices such
that hi; # 0 and finally 1 = 3", h,.

Show that sheaves F of R-modules are acyclic.

Hint: Assume we have a short exact sequence

0—F —F—F —0

of R-modules. Use the partition of unity to show that F(X) — F”(X) is surjective.
Then use the arguments above to show, that any sheaf of R-modules has an injective
resolution by sheaves of R-modules.

We will see that on a C*°-manifold M the sheaves of rings of C*°-functions have a partition
of unity. This will imply that for any C*°-vector bundle (see 4.3.2 ) £ and the sheaf C>(&)
of C*°-sections in it

HY(M,C>(&)) =0 for all i > 0. (4.13)

4.2.2 A Direct Definition of H!

We want to indicate briefly how we could approach the problem to define a right derived
functor for H°(X,F) more directly. The reader should notice the analogy between this
approach and the one used to define the first cohomology group in group cohomology
(see section 2.2.2).

Let us assume we have an exact sequence of sheaves
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0—F —F—F —0.

We look at F(X) — .7-"”(X) and pick a section s” € F”(X). We want to find an
s € F(X) which maps to s”. Locally we can solve this problem. This means we can find
a covering X = (J, 4 Ua and sections s, € F(U,) which map to s” | U,. But the s, do
not necessarily match: The difference

S5 =5a —5p | Ua NUp (4.14)

is a section in F'(U, NUg) because it goes to zero in F”. The collection {s}, 5} (a.5)cAxA
satisfies the cocycle relation, i.e. we have

Sa,6 = 8y T Sha | Ua NUg N U, = 0. (4.15)
This suggests the definition of the group of 1-cocycles with respect to a covering i =
{Ua}aeA:

Definition 4.2.2. The 1-cocycles with respect to a covering $4 = {Uy}aca are collec-
tions (... ta,g,---) € [L(a.p)eaxa T (UaNUg) which satisfy the cocycle relation (equation

4.15) above. They form a group which will be denoted by Z* (4, F").
We may also define the group of coboundaries:

Definition 4.2.3. An element (...tq 5. ..) is a coboundary if we can find s\, € F'(Uy)
such that t;, 5 = s;, — 8. They form a group which will be denoted by BY(W,F").

Definition 4.2.4 (Cohomology). We define H*(X U, F') to be the quotient
HYXMF') = ZYUWF') /B (F').

Now it is clear that s” defines an element &§(s”) € H*(S,4,F’), and it is clear that s” is
in the image of F(X) — F”(X) if and only if 6(s”) = 0.

If we start from a different covering L', then 4 and Y’ have a common refinement (see
section 3.3.2) 7: 20 — 8, 7/ : Q0 — Y. We get maps

HXUF) HY (X.W.F).
H'(X.20,F)

It is not difficult to see that these maps do not depend on the choice of of the arrows.
It is clear that these maps are compatible with § and hence we get a boundary operator

§: F'(X) — lim HY (X AF') := HY(X,F"). (4.16)
s
It is rather clear that we have a structure of an abelian group on the limit, the boundary
operator is a homomorphism and the sequence

0 — HYX,F) — H(X.F) — HO(X,F") -2 AYX,F) — H'(X.F) — H (X, F")

is exact.
Of course we need to compare this construction of cohomology groups with the other one
using injective resolutions, this will be done in the exercise 17 below.
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Definition 4.2.5. A sheaf F on a space X is called flabby if for any open set U C X
the restriction map F(X) — F(U) is surjective.

This is a very strange property of a sheaf. For instance the continuous functions on a
space almost never have this property.

Lemma 4.2.6. Injective sheaves are flabby.

Proof: To show this we consider an open subset U C X, we denote its inclusion by
j:U— X.Let A= X\U, let us denote the inclusion of the closed set by i : A — X.
For any sheaf F we can take its restriction to A and extend this restriction again to X
by using i.. (Extension by zero: See section 3.4.2) We have a surjective homomorphism
of sheaves F — 1,4 (F) and this gives us an exact sequence of sheaves

0 — ji(F) — F — ini*(F) — 0 (4.17)

where of course ji(F) is just the kernel.

A short digression: We may give a direct definition of this kernel and call it again the
extension of F|U to X by zero. To give this direct definition we recall the notion of the
support of a section (see section 3.3.1) and notice that for any open set V' C X we have
more or less by definition

J(F) (V) ={s e F(V) | the support of s does not meet V N A}. (4.18)

This means that this sheaf is a little bit delicate. By construction we have an inclusion
Ji(F)(V) < F. In a sense the sheaf ji(F) "knows” the boundary points of U.

Now we come back to our original problem, we wanted to show that injective sheaves are
flabby. We have an inclusion

GT — j. T (4.19)

and since 7 is injective we find a homomorphism ¢ : j.Z — Z which makes this diagram
commute. If we have a section s € Z(U) then this is by definition the same as a section
s € 1,(Z)(X) and then ¢(s) € Z(X). It is clear from the diagram that ¢(s) restricted to
U is s. Moreover we see that our section ¢(s) has support contained in the closure U,
the best we can expect. O

Exercise 17.
(a) Show that for a flabby sheaf F we have H'(X,F) = 0.

(b) Show that H'(X,Z) = 0 for an injective sheaf. Show that this implies that for any
sheaf 7
HY (X, F) = HY(X,F).

(c) Show that flabby sheaves are acyclic.
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I discussed this construction of the first cohomology groups in detail, because here we can
see how natural these constructions are. We meet a fundamental principle of homological
algebra which is applied again and again:

Fundamental principle of homological algebra: We want to lift a section s"” €
HO(X,F") to a section s € H°(X,F). We localize the problem by choosing a covering
for which we have local liftings. These are not unique and hence it can happen that they
do not match on the intersections. These differences on the intersections yield a cocycle,
and the class of this cocycle yields the obstruction to the global solution of the problem.

We have seen how the same principle works in group cohomology (section 2.2.1). There
we want to lift a T-invariant element m” € (M")' to a T-invariant section m € M'. In
this context localizing means that we drop the requirement that m should be I'—invariant.
Then we find a non unique lifting. The comparison of the local sections on the inter-
sections of the open sets in the geometric situation corresponds here to the comparison
of m with ym where vy runs through the group. This gives the cocycles v — m—~ym € M'.

This construction generalizes to higher cohomology groups. We can define the so called
Cech cohomology by means of coverings. The cohomology defined by means of injective
resolutions and the Cech cohomology coincide on reasonable spaces. We postpone this
discussion.

At this point we make a short detour. Since we discussed H' in some detail it may be
appropriate to discuss the non-abelian H', this means we discuss sheaves with values in
non commutative groups and their first cohomology sets. This non-abelian cohomology
plays an important role in the theory of bundles and I want to say some words about
this subject.

4.3 Fiber Bundles and Non Abelian H!

4.3.1 Fibrations
Fibre Bundle

I want to introduce the notion of fibre bundles.

Definition 4.3.1. We consider maps between topological spaces w: X — B. If we have
another such map ' : X' — B then a map over B is a continuous map [ : X' — X
for which wo f =n'.

If X’ = B and 7’ =Id then a a map f: B — X over B is also called a section to .

We could also say that we have the category of spaces over B, this are spaces X together
with a map 7 : X — B and the morphisms are maps over B.

Definition 4.3.2 (Fibration). Let F' (the fibre) be a space and B (the base) another
space. A continuous map 7 : X — B is called a (locally trivial) fibration with fibre F,
if we can find a covering B = J,.; U; such that for any i we can find a homeomorphism
W, over the base U;

i€l
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v,
T UU) —i U X F

N
U;

Locally in the base our space is a product of an open set in the base and the given fibre.
We also say that X — B is a fibre bundle with fibre F. The covering together with
the maps ¥; is called a local trivialization.

Definition 4.3.3. If V C B is open then a section to m over V is a continuous map
s:V — X for which mos =1Idy. We denote this set by C(V) and then the assignment
V — C(V) defines the sheaf X of sections of the bundle X — B.

It is important to consider fibers F' which are not only topological spaces but also carry
some extra structure.

Vector Bundles

For instance we can consider the case that F' is a finite dimensional R- or C-vector space
and where F'; R, C are equipped with the standard topology. For convenience we denote
by K a field which is either R or C. In this case we can make an additional assumption
on our local trivialization. We assume that we have a covering B = (J;.; U; and

v, - 7T_1(Ui) = Uy x F (420)
as before. But in addition we assume that for any pair 4,j of indices the map

Gij = (\I/j | U, N Uj) o (\I/Z_l I U, N Uj) : (Uz n Uj) x F — (U,‘ n Uj) x F (4.21)

has the form G;;(u,r) = (u,9:;(u)x) where g;;(u) is a linear automorphism of our vector
space F.

It is clear that u — g¢;;(u) must be a continuous map from U; NU; into the general linear
group G = Gl,(K). Moreover, it is obvious that we have a cocycle relation: For any
triplet 4,5,k of indices we have

gij(u) - gjk(u) = gix(uw) forall weU;NU; NU. (4.22)

Definition 4.3.4. If this assumption (eq. (4.22)) is fulfilled, we say that m: X — B is
an n-dimensional vector bundle.

I find this definition a little bit unsatisfactory because it needs the covering and the ¥;.
We will give a second definition which I think is better. Of course our data allow us to
introduce the structure of a vector space on each fibre 7=1(b) such that the vector space
structure “varies continuously with 4”. What do we mean by that? Our definition also
implies for any 7 that we can find sections

€1, ,en : Ui — ’/T_l(Ui) = Ui X F,

such that in each point u € U; the elements e1(u), -+ ,en(u) € 71 (u) form a basis of
this vector space. Now we can identify

7 (u) = K"
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by sending > aye,(u) — (a1, a,), and we get a map
7T71(UZ‘) — U; x K™, (423)

and the phrase “the vector space structure varies continuously with b” means that this
is a homeomorphism.

This allows us to give a different formulation of the concept of a vector bundle. We can
say that

Lemma 4.3.5 (Vector Bundle). 7 : X — B is an n-dimensional vector bundle if:

(a) For any b € B we have the structure of an n dimensional K-vector space on the fibre

7 1(b).
(b) For any b € B we can find a neighborhood V' of b and sections.
e1, - sen: V — a1 H(V)
such that these sections evaluated at any point v € V. form a basis of 7= (v).

(¢) The map 71 (V) — V x K", sending a point x = > a; e;(v) over v € B to
(v,a1,- -+ ,a,) € V x K", is a homeomorphism.

Definition 4.3.6 (Local Trivialization). If we have such a vector bundle w : X — B,
and if we have an open set V C B together with the sections

ei: V— 1 V), i=1,---n

which form a basis at any point v € V, then we call this a local trivialization of a
bundle.

The sheaf X of sections into X has the natural structure a module over the sheaf
of continuous functions C%: We can form the sum of two sections s1,s2 € X(V) and
multiply a section s € X (V) by a section f € C%(V). This module is in fact locally free.
If we have a trivialization ey, ... e, € X(V), then any section is of the form s = )", fe;,
with f; € C%(V). Tt is clear that we can define the concept of a locally free module
over any locally ringed space.

On the other hand it is rather clear that a locally free module € over C% also gives us a
vector bundle. This observation is certainly not very deep but important.

If the base space B is a C°° manifold, then we can define what a C*>° bundle is. In this
case X is also a C*° manifold, we have the same assumptions on the fibres, the local
sections are C*° and the map in c) is also C*°.

4.3.2 Non-Abelian H!

We know of course what it means that two vector bundles X — B are isomorphic.
Actually it is obvious that the vector bundles over a given base space form a category:
A continuous map

X—>X’

NS
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is a morphism of vector bundles, if ¢ restricted to the fibres is linear.

I want to explain the description of the set of isomorphism classes of vector bundles on
B in terms of non-abelian sheaf cohomology. Given our vector bundle we select a
covering U = {V; };es of B and local trivializations

ei,l,:Vi—Hr*l(Vi), v=1,---,n.
If we have an ordered pair (4,7) of indices, then we get a continuous map
Gij : Vin V} — GL(’I”L,IK)
such that
9i3 (v) - (€iw (V) = €50 (v). (4.24)
To avoid misunderstandings: The topology on GL(n,K) is the standard topology (see
Lemma 4.3.10)
This is clearly a one-cocycle, this means
Gij - 9jk = gk on ViNV;NV, and (4.25)
g = Id.
This suggests that we introduce the set of 1-cocycles with respect to our covering. We

introduce the sheaf of germs of continuous maps form our space B to the group G =
GL(n,K), we denote this sheaf by C°(G). Then we define as before

ZNBLUG) ={c= (- gij,--) € [[C(@)(ViNV;) | cis a l-cocycle}.  (4.26)

If we modify our local trivialization, then we modify the cocycle into ggj = higijhjfl on
V; NV;, where h € [[C%(G)(V;). This gives us an equivalence relation on C'(0,C%(G))
and dividing by this relation we get a set H'(B,20,C%(G)). Again we may change the
covering, we can pass to common refinements and we end up with

H'(BL(G)) =lim H'(BY.C°(G)). (4.27)

Since for n > 1 our sheaf C°(G) takes values in the category of non-abelian groups, we
cannot multiply cocycles and therefore we only get a set.
Now it follows from our considerations that:

Lemma 4.3.7. The elements in H'(B,C°(G)) are in one-to-one correspondence with the
set of isomorphism classes of n-dimensional vector bundles on B.

A completely analogous statement holds for C* vector bundles.

4.3.3 The Reduction of the Structure Group
Orientation

We may introduce different kinds of additional structures on the fibres of a vector bundle
7 : X — B. For instance we may choose a Euclidian metric < , >; on the fibres which
varies continuously with the point. Then we can choose local trivializations eq,...,e,
which are given by orthonormal basis vectors. If we compare two such local trivializations
then our functions g;; will be functions with values in the orthogonal group O(n) and
therefore it will correspond to an element in H'(B,C°(O(n))).
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In such a situation we say that the additional structure induces a reduction of the
structure group. In our special case above we have a reduction from GL,(RR) to the
orthogonal group O(n). (Compare [B-T] §6). If we have such a vector bundle with such
a euclidian metric on it, we call it a euclidian vector bundle.

If we have a bundle of C-vector spaces and we have a Hermitian metric on the fibres,
which varies continuously, then we get by the same procedure a reduction of the structure
group to U(n). Such a bundle is called a hermitian vector bundle. A euclidian (resp.
hermitian) form % is a family of euclidian (resp.hermitian) forms on the fibres, which
gives the bundle the structure of a euclidian (resp. hermitan) bundle. If the bundle is C*°
then we know what it means that h is C*.

Another such additional structure is an orientation. If we consider the highest exterior
power A" (X/B), i.e we take the highest exterior power fibre by fibre, then we get a bundle
of one dimensional vector spaces. On this bundle we have an action of the multiplicative
group of positive real numbers RY . If we divide the bundle by this action then the
quotient is a bundle B — B with fibres consisting of two points. If we can find a global
section s : B — B, then we say that X — B is orientable. If we choose such a section
then we say that X — B is oriented.

If we have an orientation on B then we may choose local trivializations eq, . .. e, for which
the ordered basis is positive with respect to the orientation. If we have done this then
our g;; will take values in the subgroup Gi,,(R)" of matrices with positive determinant
and thus we have another case of the reduction of the structure group.

On a C* manifold M we have the notion of the tangent bundle T;. Locally on M we have
coordinate functions x1, ... ,z, so that any differentiable function is a differentiable func-
tion in the variables x1, . ..,x, (see section 3.2). Then the vector fields 0/9x1,...,0/0xy,.
provide a local trivialization of this tangent bundle. (See [Hir|,[B-T] §6.)

(Actually T think there is no reason to look up a reference. A tangent vector Y at a point
p is by definition a map Y : C57 , — R which is R-linear and satisfies the Leibniz rule:
We have Y (fg) = f(p)Y(g9) + g(p)Y (f) for all f,g € C37,,. Such a Y is determined by
its values on local coordinates x1,zo, . ..x,. We define the tangent vectors a%i(xj) = ;5.

Then these % are also tangent vectors in the domain of validity of the local coordinates.)

Definition 4.3.8 (Riemannian Manifold, Oriented Manifold). If we have in addition a
FEuclidian metric on the tangent bundle then M is called ¢ Riemannian manifold. If
we have chosen an orientation (if possible) then we call M oriented.

A caveat Of course we know what it means that M is a C" manifold, here the local
rings consist of functions which are only r-times differentiable. Then we loose a degree
of differentiability if we define the tangent bundle, it is only a C"~! manifold.

Local Systems

If B is a topological space and A an abelian group, then we attached to A the sheaf
A = Ap of locally constant functions with values in A (see examples in 3.1.4).
We want to introduce the notion of local A-systems or local systems of A’s.

Definition 4.3.9. If A is a sheaf of abelian groups on B, then we call A a local A-
system, if for any point b € B we can find an open neighborhood Vi, such that the
restriction of A to Vj, is isomorphic to Ay, .
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This implies that for any point b € B the stalk A is isomorphic to A. At this point it is
reasonable to assume that our space B is locally connected, i.e. for any point b € B and
any open neighborhood V;, of b we can find a connected open neighborhood U, C V;, of b.
If we have that A | V}, is isomorphic to Ay, as above, and if we replace V}, by the connected
open neighborhood Uy, then A(Up) >~ A, and for any point u € Uy, we get an isomorphism
A(Uy) — Ay. If we now fix a covering B = |JV;, where the V; are connected and we
have isomorphisms
\I/i : A | ‘/z :-) AV“

then we may compare the ¥; on the intersections and we get
Gij * Vin VJ — Aut(A)

which are locally constant (or continuous if Aut(A) is endowed with the discrete topol-
ogy). Hence we see that the local A-systems are classified by the elements in H'(B,Aut(A))
where Aut(A) is the sheaf of locally constant functions in Aut(A).

Isomorphism Classes of Local Systems

We introduce the notion local systems of vector spaces. These are simply local
systems where the group A has the additional structure of an R— or C—vector space.
Hence such a local system is a vector bundle

mn: X — B

where each point p € B has an open connected neighborhood V, over which we have local
sections ey, ...,e,, which are called constant. If we pass to a different connected open
set V' over which we have constant sections ef,... e, , then on the intersection

6,1- = Z a;5€5 (428)

where now the a;; are locally constant functions on V' NV’. Of course we can describe
the set of isomorphism classes of local systems of vector spaces in terms of non-abelian
cohomology. We consider the group G4 = GL,(K)4 which is the general linear group but
endowed with the discrete topology. It is clear that

Lemma 4.3.10. The isomorphism classes of local systems of n-dimensional K-vector
spaces are given by H'(B,GL,(K)q4).

These local systems of vector spaces are the same kind of objects as bundles with a flat
connection (see also sections 4.10.1 and 4.10.2).

Principal G-bundels

Of course we can start from any topological group G, we can consider the sheaf of G-
valued functions on B and we can look at the cohomology set H'(B,C°(G)). This set
classifies so called principal G-bundles.



4.4 Fundamental Properties of the Cohomology of Sheaves 65

Definition 4.3.11. A bundle P — B with a left action of G such that G acts simply
transitively on the fibres is called a principal G-bundle. Then G is called the structure
group of P — B. Two such principal bundles P, — B and P» — B are isomorphic
if we have a a bundle isomorphism ¢ : Py = Py which commutes with the a ction of G.
The trivial bundle is G x B — B, with the left action of G on itself.

Giving a local trivialization over an open set U C B is the same as giving a section of
the bundle over U.

4.4 Fundamental Properties of the Cohomology of Sheaves

4.4.1 Introduction

I will now state some results concerning the cohomology of sheaves. They are not so easy
to prove. The proofs are sometimes a little bit sketchy, some steps are treated in the
exercises.

If we have any space X and an abelian group A then we have defined the sheaf Ax of
germs of locally constant A-valued functions: This is the constant sheaf attached to
A. Sometimes — if it is clear what the underlying space is — we simply write A. Then
the underlining is made to distinguish the abelian group from the sheaf. (I am not sure
whether this is actually necessary.)

Definition 4.4.1 (Cohomology of Sheaves). We define the cohomology of X with coef-
ficients in A as
H*(X,A) .= H*(X,Ax).

If A =7 then the cohomology groups H®(X,Z) are equal to the ones defined by singular
cochains, if the space X is reasonable. (This is a theorem, we come back to it later).
The first important result, which we will show, is that the cohomology of constant sheaves
vanishes on certain contractible spaces. We begin by stating a special case which is also
the starting point for the more general results:

If D={(z1,...,0,) € R" | Xa? < 1} and D the interior of D, then

H(D,A) = H(D ,A) =0 for i > 1.

We will prove this later (see section 4.4.5). The following exercise treats the case n = 1.
Let us consider the following property (€) of a sheaf A on the interval X = [—~1,1]: For
any open interval I C [—1,1] the restriction map A([—1,1]) — A(I) is surjective. (We
only require that I is open in [—1,1], i.e. it may contain the boundary points. Condition
(€) does not mean that A is flabby!)

Exercise 18. Show that the sheaves A;_; ;; and injective sheaves have property ().

Exercise 19. If A has property (£) and if we have an exact sequence
0—A—F—G—0

then F(I) — G(I) is surjective for any open interval in [—1,1].
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Exercise 20. If we have a sequence
0—A—B—C—0

where A and B have property (£) then C also has property (&).

Exercise 21. For any sheaf A which satisfies (£) we have H9(]—1,1]),,4) = 0 for all
q > 1. Especially we have H?([—1,1],A) = 0 for any abelian group A.

This is some progress, I think we justified the computation in 4.1.2. But we will prove a
stronger result which concerns a relative situation, i.e. the projection map X x I — X.
This stronger result will be provided by corollary 4.4.20 and the theorem 4.4.22, which
say that the cohomology groups are invariant under homotopies. To get to this point we
need to investigate a relative situation f: X — Y.

4.4.2 The Derived Functor to f,

Given two spaces X,Y and a continuous map f : X — Y, we constructed the two
functors fy,f* which transport sheaves on X to sheaves on Y and sheaves on Y to sheaves
on X respectively (see section 3.4). Now we denote by Sx the category of sheaves on X
with values in the category of abelian groups.

Definition 4.4.2 (Direct Image). If we have a sheaf F on X (with values in the category
of abelian groups), then we defined the sheaf f.(F) on'Y by

for all open subsets V. C Y.

It is clear that f.(F) is a sheafon Y. The functor f, is left exact but not exact in general.
We get our previous case if we take Y to be just one point, i.e. Y = {pt}. Then the stalk
of f«(F)p in this point is simply F(X) = H°(X,F).
Again we define a derived functor for f, by the same method as before. We choose an
injective resolution

0—F —10 — 1" — ...

of F, and we get a complex of sheaves on Y by taking the direct image
0 — fu(Z°) — fu(T") — ...
This is now a complex of sheaves on the space Y. We define the sheaves (see section 3.5)

_ ker(fi(Z9) — £(Z97))

B = 1 () = fan)

(4.29)

It is clear that the stalk of Rf.(F) in a point y is simply the degree g-cohomology of
the complex of stalks.
As before, we show that these sheaves do not depend on the choice of the resolution and
that for any morphism

u:F—G

we get the derived maps
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R : RUf (F) — RIf.(G).
Finally it is clear that f.(F) = R°f.(F), and that any short exact sequence of sheaves

0—F —F—F —0

leads to a long exact sequence

(4.30)

<;1'f*(?') —> RU(F) — R (F") = R fu(F) —> -

The intuitive idea — which in some cases is right in some cases wrong — (see Theorem
4.4.17) is that the stalk of RYf,(F), in a point y should be the cohomology of the fibre
71 (y) € X with coefficients in the restriction 4} (F) of F to this fibre.

The following special case is very important (see section 3.4.2). It is clear that the fol-
lowing lemma is true.

Lemma 4.4.3. Let A C X be a closed subspace and let i : A — X be the embedding of
A into X. Then i.(F) is a sheaf on X. The stalk of i,.(F) is given by

e 4 A

i(Fa = Tored
0 i z¢A

Hence it is clear that F — i,.(F) is an ezxact functor.

We also defined the functor f*. This functor transforms sheaves on Y into sheaves on X.

Lemma 4.4.4. The stalk of f*(G) in a point x € X is equal to the stalk of the original
sheaf G in the point y = f(x), i.e. f*(G)e = Gy and so f* is an exact functor.

Since the exactness of sequences of sheaves can be checked stalkwise, it is clear that f* is
an exact functor. We know that these two functors are adjoint and I recall the adjointness
formula

Homs, (f*(G),F) = Homs, (G,f.(F)).

We want to discuss the consequences of existence of f*, f. and the adjointness formula
for the cohomology and its functorial properties.

Lemma 4.4.5. If f: X — Y is continuous, and if Z is an injective sheaf on X, then
f+«(Z) is injective on Y .

Proof: This follows directly from the adjointness formula and the exactness of f*. O
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4.4.3 Functorial Properties of the Cohomology
If we start from a sheaf G on the target space Y, and if we take an injective resolution
0—G6—J"—J' —J>— ..,
then we get a resolution
0— f(G) — (T — [*(T") — [T} — ...
As we have seen earlier in section 2.3.3, this gives us a map
HY (0 — f(INX) — fH(IT)NX) —...) — HY(X,f(G)). (4.31)

On the other hand we have a map between the complexes

0 ——JUY) THY) T2(Y) T3(Y) . (4.32)

0 ——fJ°)—fT(Y)—fT)—[TV)—
this follows from the definition of f*. Hence we get a functorial map
HYY,G) — HY(X,f*G). (4.33)

There is an especially important case of this: If f : X — Y, and we consider the sheaf Zy
on Y, then we see easily that f*(Zy) = Zx. To see this we construct a homomorphism
from f'(Zy) to Zx: For U C X, U open, we have

F@U) = lim Z(V),
VO f(U)

For V O f(U) we have f~1(V) D U, and of course, we have maps
Ly (V) — Zx(fH(V)) — Zx (U),
and this provides a map
f(Zy)(U) — Zx(U).

This is a map from the presheaf f'(Zy) to the sheaf Zx, and this provides a unique map
f* (Zy) — ZX .

Looking at the stalks we see that this map is an isomorphism.
This yields the functoriality of the cohomology groups H4(X,Z). For any map f : X = Y
we get

f1:HY Y Z) — HYX,Z).

There is another case: We always get a map H4(Y,f.F) — HY(X,f*f.F) and the ad-
jointness provides the map f* f,F — F which corresponds to the identity f.JF — fi.F.
The composition of these two maps yields a map f?: HY(Y,f.F) — HY(X,F). For this
map we have an easy theorem:



4.4 Fundamental Properties of the Cohomology of Sheaves 69

Theorem 4.4.6. Let us assume that f : X — Y is continuous and F a sheaf on X. If
the higher derived sheaves R f.(F) =0 for ¢ > 1, then we get an isomorphism

[ HUY fo(F)) = HY(X,F)
for all ¢ > 1.
Proof: This is clear: We start from an injective resolution
0—F —I°—T" — .. ..
Then our assumption says that
0 — fu(F) — fu(I°) — fu(T") —
is a resolution, and Lemma 4.4.5 implies that this resolution is injective. Hence
HUY fo(F)) = HI(0 — f(Z°)(Y) — fuZ)Y) —..) =
0 —I%X) — IYX) — ...,
and this last complex computes the cohomology H?(X,F). |

One important consequence of this theorem is the case of an embedding
1A= X

where A is a closed subspace of X. In this case we have seen that i, is an exact functor
from sheaves on A to sheaves on X, hence R, (F) =0 for ¢ > 1 and

HYAF) = HY(X,i.(F)).

If we want to apply the above theorem we have to understand how to compute the
sheaves R? f, (F). We want to show that under certain assumptions the stalks R?f, (F), =
HI(f~(y),i5,(F)). A result of this kind is rather difficult to obtain, our goal is Theo-
rem 4.4.17 (Proper base change). This theorem is very important and it also plays a
fundamental role in algebraic geometry.

To get more precise informations which will allow us to compute cohomology groups in
certain cases we have to make assumptions on our spaces.

4.4.4 Paracompact Spaces

In general the sheaves R?f.(F) may be very difficult to compute. One possibility is to
relate the stalks RYf,(F), to the cohomology groups of the fibre f~!(y). This is possible
if our spaces satisfy certain finiteness and separatedness properties.

Definition 4.4.7 (Locally Finite Covering). A covering X = J,ca Ua is called locally
finite if for any point x € X we can find a neighborhood V,, of x such that V,, meets only
finitely many of the Uy, i.e. the set of indices a for which V, N U, # 0 is finite.
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Definition 4.4.8. A space X is called paracompact if it is Hausdorff and if for any
open U C X and any covering U = |J U; we can find a locally finite refinement of
i€l
the covering. Recall that a refinement of the covering is another covering U = |J W;
=
together with a map 7 : J — I such that for all j € J we have the inclusion Wj C U ).
We call such a refinement a strong refinement if even the closures W; are contained
mn U.,.(j).
I claim:

Lemma 4.4.9. If our space X is paracompact and locally compact then any covering
U= U U of an open set U has a strong refinement which is locally finite.
il
Proof: Since our space is Hausdorff and locally compact we know: For any point x € X
and any open neighborhood V,, of z we can find an open neighborhood W, such that its
closure W is contained in V,.. Now it is clear how to get a strong locally finite refinement
of a covering U = |J U;: We can construct a strong refinement of the covering and after
il
that we construct a locally finite refinement of this strong refinement. O

We have a simple criterion for paracompactness.

Definition 4.4.10. We say that an open subset U C X is exhaustible by compact
subsets if we we can find an increasing sequence of compact subsets

@IK()C...CKnCKn_H C ...
s. t. U = K, and for any n the compact set Ky, is contained in the interior K,+1 of

the next one. We say that our space X is exhaustible by compact sets, if the open
subset U = X has this property.

Lemma 4.4.11. A Hausdorff space X for which any open subset is exhaustible by
compact subsets is paracompact.
Proof: To see this we consider U C X and a covering U = |J U; by open subsets. We
il
choose an exhaustion by compact sets K, as above. We choose inductively finite coverings
of K,,. Assume we covered already K,,_1. For any = € K, \ K,,_1 we choose a V,, which
e has an empty intersection with K, _1

e is contained in one of the covering sets U;

o
e is contained in K 1.

We take a finite subcovering of the covering of K,, and we proceed. By construction the
resulting covering is locally finite. O

It is not difficult to show that the following is true.

Lemma 4.4.12. A Hausdorff space is paracompact if it is exhaustible by compact sets
and if any open set U can be exhausted by a sequence of sets

Wn C Wn+1 - Wn+1
where the W,, are only closed subsets of X.
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Proof: To see that this is true we observe that a closed subspace A C X is exhaustible
by compact sets. This implies that any covering of A by open sets has a locally finite
refinement. (Same proof as for Lemma 4.4.11) Assume that we have a covering of U by
open sets. We proceed as in the proof of Lemma 4.4.11 but now we construct locally
finite coverings of the W,, (instead of finite ones) where we obey the same precautions as
before. O

We come to a very technical lemma which says something about extension of sections.
Assume that we have a closed embedding i : A < X. For any sheaf 7 on X, we consider
the sheaf i* (F) on A. Recall that this is the sheafification of the presheaf V- — ' (F) (V)
(see Lemma 4.4.4) where V is open in A and

i'(F)(V) = lim (F(U)). (4.34)

Uosv

If s € F(U) and if s is its image in i*(F)(U N A) then we say that s is the restriction of
Sto ANU=V.
Now we say that

Definition 4.4.13. An embedding i : A — X is a nice embedding if for any open
subset V.C A any section s € i*(F)(V) can be extended into some neighborhood U of V
imn X.

In other words this means it is in the image of F(U) — ¢/ (F)(V) for some U which
satisfies UNAD V.
This condition can be reformulated by saying that i'(F) is already a sheaf.

Lemma 4.4.14 (Extension of Sections). If X is paracompact and locally compact then
any closed embedding i : A — X is nice.

Proof: We start with V' C A and our section s € F(V'). We know from the definition
of ¢*(F) that for any point p € V the image of s in the stalk s, € i*(F), is the re-
striction of a section s, € F(U,) where U, is an open neighborhood of p in X. Hence
we can find a covering |J, Ua D V and sections s, € F(U,) such that 5, maps to the
restriction s|U, N'V. We may assume that this covering is locally finite since our space
is paracompact. Let {W,},cs be a strong locally finite refinement of this covering. As
usual we denote the map between the indexing sets by 7: J — I.

Let ¢ € V, we can find an open neighborhood V, of ¢ in X such that V, meets only
finitely many of the W; and the U,. We choose an open neighborhood D, C V, which
is contained in W for all those (finitely many) j for which ¢ € W; and also in all those
finitely many U, with ¢ € U,. We may also choose Dy so small that D, N W, = 0 if
q & W, because D, meets only finitely many of them anyway. It follows from the defi-
nition of ¢* that we can take these D, so small that we have 5,|D, = 5g|D, whenever
g € Uy NUg. Let §p € F(D,) be the restriction of any of these s,. I claim that these

sections 5,54 restrict to the same section over D, N D, for any pair p,q. This is clear if
D, N Dy = 0 so we may assume that D, N D, # (. If D, C W, then ¢ € W because
otherwise we have Dy, N W; = 0 by construction and this implies D, N D, = ), a con-
tradiction. We have D, C W; C U,(;. Since the W; form a strong refinement of the U,
we even know that Wj C U.(j- Hence g € U, ;) and then we conclude that D, C U,(j
again by construction. Consequently we have that D, and D, are contained in U,(;y and
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this implies that the sections ?p ,?,1 are restrictions of s.(;). Hence the ?F define a section
sover U = |J D, and this is the element we were looking for. O

I want to discuss a variant of this Lemma 4.4.14.

Lemma 4.4.15. If we have a closed subset A which is locally compact and paracompact,
we assume that we can find an subset W C X with W D A and such that W = Wy x A
where Wy is a topological space and we assume furthermore that the isomorphism sends
A = {wo} x A for some point wy in Wy. Then the embedding i : A — X is nice.

Proof: This can be shown by a slight modification of the proof of Lemma 4.4.14. We
proceed as in the proof but we choose the open sets U, to be of the form U, =V, x W,
where V,, is open in V and W, is a neighborhood of wq in W,. Then we choose a strong
locally finite refinement of the covering V' = |J V,. Let us denote this refinement by

acl
V= U Yg and let 7:.J — I be the map for which Y3 C V(). This gives us a covering
peJ
of V by open sets in X: We have V' C |J Y3 x W, (. This covering now plays the role

ped
of the covering by the W; in the proof of the Lemma 4.4.14. We proceed essentially in

the same way as before. We choose neighborhoods D, which satisfy D, C Y x Wy gy if
q = (qwo) € Y x W gy and Dy MY x Wo(g) = () if — here we have a slight modification
-q¢ 75 X Wy (g)- From here on the argument is the same. O

Lemma 4.4.16. Let i : A < X be a nice embedding. If T is an injective sheaf on X
then i*(Z) is flabby and hence acyclic.

Proof: Let V' C A be an open set and s € i*(Z). We find an open subset U C X and
a section § € Z(U) which restricts to s. By Lemma 4.2.6 Z is flabby, we can extend the
section s to a section on X and the restriction of this extension to A extends s. O

These technical considerations will be applied to prove the following difficult theorem:

Theorem 4.4.17 (Proper Base Change). Let us assume that X is paracompact, that Y
is locally compact and Hausdorff and that

f: X—Y
is a proper map. Then for any sheaf F on X and any y € Y we have
RIf.(F), = HI(F~ (y).i3,(F)).
Recall that

Definition 4.4.18. A map f : X — Y is called proper if the inverse image of a compact
set in'Y 1is again compact.

Proof: We shall need a modification of the theorem, therefore we will also discuss to
what extent we really need our assumptions.

Let iy : f~'(y) = X be the inclusion of the (closed and compact) fibre. Then we know
from our assumptions that the embedding 4, is nice (Lemma 4.4.14). We formulate the
following condition on our map f
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(Cyl) For any open neighborhood of a fibre U O f~!(y) we find an open relatively
compact neighborhood Vi of y such that f~1(V5) C U .

We show that (Cyl) is valid under the assumption of the theorem. We consider the
intersections

X\U)NfH(V)

for all closures V of relatively compact open neighborhoods of y. Since f~*(V) is compact,
the intersection is also compact. Since U is a neighborhood of f~!(y) we know that for
r € X\ U we have f(r) # y. We may choose open neighborhoods W,V s.t. their
closure is compact and f(Wy(,)) NV, = 0, hence f(z) ¢ V. Hence z & (X \U)Nf~1(V )

and therefore -
N & \U)N (V) =0, (4.35)

Vay

Now it follows from a standard argument on compact spaces that there must be a neigh-
borhood Vp of y with f=(Vp) C U.

The following considerations prove the assertion of the theorem under the following two
assumptions

a) for all y the fibre f~!(y) is closed and the embedding is nice
b) The condition (Cyl) holds.

By definition we have
F(F)y = lim (V)

ViyeVv
and (Cyl) implies that
lim F(NV) = lm o F(U).
ViyeVv U:f~'(y)cU

Then the fact that the embedding of the fibre is nice yields
iy F(U) = i (F)
U:f=1(y)cU

and we conclude f.(F)y = i;(F).

This proves the theorem for ¢ = 0. To prove it in general, we start from an injective
resolution
0—F —1° -1 —71° -7 — ...

on X. Then (we sometimes drop the brackets in f)

is a complex of injective sheaves. If we pass to the sequence of stalks at a point y € Y,
we get a complex of abelian groups

0 — fuFy — D) — I, — [T, — ...,

and the cohomology of this complex is the stalk R?f,(F),. But this complex is equal to
the complex
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0 — iy (F)(f ) — 4 I°(f ) — L (FHY) — 42 (F 7 y) — .,
and this is the complex of global sections of the complex of sheaves on f~!(y):
0— i F— i3I0 — it T — it 17 — ...

which is a flabby and hence acyclic resolution of iy /. Hence the cohomology of the above
complex of global sections is HI(f~1(y),i%(F)). O

Yy

Corollary 4.4.19. If X,)Y and f: X — Y are as in the theorem and if
Hq(ffl(y),z';(}')) =0 for ¢g>1 andal yevy,
then
fHUY fF) = HY(X,F)
is an isomorphism.

This is the combination of the Base Change Theorem (Theorem 4.4.17) and the Theorem
4.4.6.
The following corollary is not a direct consequence of the Proper Base Change Theorem.

Corollary 4.4.20. If X is a Hausdorff space and if p: X x [0,1] — X is the projection
to the first factor then this projection induces isomorphisms in cohomology

p*: H*(X,Z) = H*(X x [0,1),Z).
For any t € [0,1] the inclusion x — x x {t} induces an isomorphism in cohomology.

Proof: This is not a direct consequence of the Proper Base Change Theorem as it is
stated since we do not make any assumption on X except that it is Hausdorff. But first
of all our modified Lemma 4.4.15 implies that for any point xy in X the embedding
{zo} x I — X x I is nice. (We need that the fibre is closed so we can get away with the
weaker assumption that points in X are closed.) Secondly it is clear that the condition
(Cyl) in the proof of the Base change theorem is also fulfilled. This means that the proof
is valid for the projection p.

The rest is clear since p.Z = Z, and since for ¢ > 0

Hi({z} x[0,1],Z) =0

P

by exercise 21.
The second assertion follows if we compose the inclusion with the projection. O

Definition 4.4.21. Two maps f,g: X — Y are called homotopic if there is a map
F:Xx[01]—Y

so that F(z,0) = g(x), F(z,1) = f(x).

Theorem 4.4.22 (The Homotopy Axiom). Let X be a Hausdor(f space. If we have two
homotopic maps f,g: X — Y then

f*=9¢* H*(Y,Z) — H*(X,Z).
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Proof: Look at
top

X 2xx[01] -5y
bot

where the arrows are x — (x,0), © — (x,1). If we compose these arrows with F' we get
f:9- O

Definition 4.4.23. A space X is called contractible to a point p € X if the two maps
f =1d and the map g which maps all the points in X to the point p are homotopic.

If we apply the homotopy axiom to this two maps we get
Lemma 4.4.24. For a contractible Hausdorff space X we have
HY(X,7Z) =0 for all i > 0.

It is clear that the space R™ is contractible. The same thing holds for any open ball
B" = {(x1,...,x,)| > 2% < 1} and also for its closure.

4.4.5 Applications

We have the tools to compute cohomology groups of spheres and other simple spaces.

Cohomology of Spheres
We consider the sphere
S" = {(zo,21,...,on) € R" a3 + 27 +... + 22 =1}.

We cover it by the two balls D which are defined by x,, > 0 or z,, < 0 respectively.
We have the two inclusions i+ : Dy < S™. These balls are contractible, we have the
sheaves Zp, which we extend to the two sheaves Z, = i+.(Zp,). We also have maps
Zgn — Z which on open sets V' C S™ are defined by the restriction Zgn (V) = Z (V) =
Zp.(V N Dy). This gives an inclusion Zg» — Z, @ Z_ which is an isomorphism in all
the stalks which are not in the intersection of the two balls, i.e. which are not in the
sphere S”~!. In the points x in the intersection the inclusion is given by the diagonal
Z,=7C (L, ®%_),=7&7Z. From this we get an exact sequence of sheaves on S™

0—Zgn — 72, DL —> Lgnr — 0,

where the map s: (Z, ®Z_), = ZOL — Lgn-1.- = Z is the difference between the +
and — component.
The cohomology of the two balls is trivial except in degree zero, hence we get

HYY(S" Y 7) = HY(S", Z) (4.36)

if v —1 > 0. In degree zero we find the exact sequence

0— H°S", Z) — H°(D,,Z)® H (D_, Z) — H°(S" ', Z) — H'(S", Z) — 0.
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We can prove rather easily that
H' (S, Z)=7292Z, H'(S'Z) =7 (4.37)
and putting all this information together we get for n > 0

0 forv#0mn

4.38
Z forv=0orv=n ( )

HY(S™, Z) = {
This is of course essentially the same calculation as the one in books on algebraic topology.
In these books the two essential ingredients are homotopy and the so called Mayer-
Vietoris sequence. Here the Mayer-Vietoris sequence is replaced by the construction of
suitable exact sequences of sheaves.
This settles a question raised in the first Chapter (See 1.2 ,example 7): Is the dimension
n of the space R" a topological invariant? The answer is yes because we can read it off
from the cohomology groups H”(R" \ {p},Z), where p € R" is any point.

Orientations

Of course we have to be aware that the isomorphism H"(S™ 7Z) = 7 is not canonical
(See also the example in section 4.1.2 at the beginning of this chapter). It depends on the
choice of the homomorphism s above and it also depends on the choice of the isomorphism
H1(S"17) = 7.

Definition 4.4.25. We can say that we have a topological orientation on S™, if we
have chosen an isomorphism

O, : H"(S™7Z) = 7.
(See also sections 4.7.2,4.7.3) .
It is elementary that for n > 0 an orientation of the tangent bundle of the sphere (see
4.3.3) gives us a rule to choose a topological orientation. We pick a point P € S™. It
is elementary that the choice of an orientation in the tangent space Tp at P defines a
unique orientation of the sphere S™. We choose a positively oriented orthonormal basis
{e1,...,en—1,6,} of tangent vectors in T'p.
It is clear that the intersection of S™ with the hyperplane spanned by {e1,...,en—1,,}
is a sphere S®~! C S™ which contains P and whose tangent space at P is spanned by
{e1,...,en—1}. This sphere separates S™ into the two half spheres D, ,D_, where Dy is
the half space where e, points to. As before the two half spheres define sheaves Z  ,Z .
The sheaf Z, @Z_/Z on S™~1 is identified to Z via the homomorphism s which in turn
is fixed by the choice of e,,.
If now n =1 then S = {P,Q}. We have our exact sequence

HYS"(Zy &2 )/Z) = H'({P}(Z,®Z )/Z)sH({Q}(Z, &L )/Z)
= Za7 -2 HY(S\Z).
The kernel of § is the diagonal A = {(z,z)|z € Z}. We have H'(S*Z) = Z & Z/A and
our rule will be:

Lemma 4.4.26. The boundary operator § maps the first summand H°({P},Z ®Z_|7) =
7. isomorphically to H' (S, 7). The inverse of this isomorphism is our topological orien-
tation induced by the given orientation.
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It is easy to verify that this identification does not depend on the choice of P, it only
depends on the orientation.

For n > 1 we use the first part {e1,...,en,—1} of the basis to put an orientation on
S™—1 this fixes a topological orientation on S™~!. The homomorphism s is fixed by e,,.
Therefore

Lemma 4.4.27. Forn > 1 the topological orientation on S™ is again given by the inverse
of the boundary operator

H Y (S" 1 7) =7 -5 H™(S™|7)

on 7 .

Compact Oriented Surfaces

Definition 4.4.28 (oriented surface). A two dimensional, compact, oriented manifold
is called an oriented surface.

The simplest example is the 2-sphere S2. If we have such a surface S we can construct
a new one by the following construction: We pick two different points p,g € S and we
choose two small neighborhoods D,,,D, which are homeomorphic to a two dimensional
disc. The boundaries dD,,,0D, can be identified to the oriented circle S*. We form a
cylinder S* x [0,1]. We remove the interior of the two disks from the surface S and map
A(St x [0,1]) = S x {0} U ST x {1} by taking the identity on each component to the
boundaries of our two discs in S\ D, U D,.

Using this map we glue the cylinder to our surface, we add a so called handle. There
is an obvious way to put an orientation onto the new surface if we have one on the old
surface. It is a theorem in two dimensional topology that any oriented surface S can be
obtained from the sphere by adding a certain number of handles.

Exercise 22. Let S be a compact oriented surface which has been obtained from the
sphere by adding g handles. Show that HY(S,Z) = H?(S,Z) = 7 and H'(S,Z) = 7.29.
Hint: Construct a sequence of sheaves on .S which is suggested by the process of adding

a handle and proceed by induction.

We can also understand the cohomology of our oriented surface without such an explicit
construction. This will be discussed in the section on Poincaré duality (see section 4.8.4).

4.5 Cech Cohomology of Sheaves

4.5.1 The Cech-Complex

For any space X, any sheaf F on X with values in the category of abelian groups and
any open covering

U={Utier, X = U U;
icl

of X, we will define the Cech-cohomology groups H9(X 4,F), for ¢ = 0,1,2. ..
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To define these cohomology groups we introduce the so-called Cech complex. For any set
of indices (i, ...,iq) € 197! we define

Uio...iq = U’io n Uil Nn...nU;

a°

Then we put
CUXUF) = I 7. (4.39)

(i0,...yiq)ETa+L

for ¢ =0,1,.... We define a boundary map
d: CUYXMUF) — CTHXUF)

by the following formula

q+1
(dC)ig...igsr = Z(—l)” res(c; . z'q+1)' (4.40)

v=0

Definition 4.5.1 (Cech Complex). The complex (C*(X i, F,d) is called the Cech com-
plex.

We have to explain why formula (4.39) makes sense:
An element ¢ € C9(X 4, F) is an element in a product and has components

Cjosnia € F(Ujo...jq)-

Hence dc will also have components which are indexed by elements in 7972, An element

(igy -+ yig+1) € 1912 provides ¢ + 2 elements in 7971 which are obtained by suppressing
one of the components. By (i, ... ,iy,...,ig+1) we denote the element in 79! where we

removed 7,,.
For all these g+2 possibilities we have the restriction associated to Us,..,,, C Ui G —
seea byt

which we simply denote by

res: F(U, = ) — F(U;

PPN IO RS 07~~~’7'q+1)'

Now it is clear that the formula gives the rule to compute the (ig...4¢+1)-component of
de. We leave it as an exercise to prove that d od = 0. Hence (C*(X U, F),d) is a complex
of abelian groups.

Let us look at the beginning of our complex

0— [[Frun) % ] Fuinuvy)—.... (4.41)
icl (i,§)€IxI

An element ¢ = (...,¢;,...) in the first term goes to zero if and only if
Ci|UiﬁUj=Cj‘UiﬂUj for all 7,5 (442)

But since F is a sheaf this implies that this is the case if and only if ¢ comes from a
uniquely defined global section s € F(X), i.e. s; = s|U; for all i.
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Definition 4.5.2 (Cech Cohomology). We define cycles Z9(X 5, F) to be the kernel
of d and boundaries are the elements b € CUXF) of the form b = dc with ¢ €
CTY X MF). The boundaries form a subgroup BI( X MF) of Z9(X F) and now we
define by

HY(XMF) = Z9(XUF)/BUXUF).

the Cech cohomology.

We just saw

HY(X UF) = F(X). (4.43)

Remark 4. In general these Cech cohomology groups do depend on {l. Later on we shall
see that under certain assumptions on the sheaves and on the space and the nature of
the covering they will be independent of the covering.

We have the notion of a refinement of a covering (see 3.3.1). If 7: 0 — £l is such a re-
finement, the map 7 between the indexing sets yields a map between the Cech complexes
T(C* (X UF),d) — (C*(X,0,F),d) and we get a map H*(X U F) — H*(X, U, F).

It is possible to show that on the level of cohomology this map does not depend on T,
but we do not need this fact here. Since the coverings form a category we can define the
Cech cohomology groups of a space as direct limit

ling H*(XUF) =: H*(X,F). (4.44)
it

We can also look at the so called alternating complex C2, (X 4, F). It is defined as
the subcomplex where the cochains satisfy

Cia,...,z,...,ac,...,iq = 0 (1)

and

Cigyers@yeeiYyeyiq — T Cigye Yy Tyeyig (11)

It is not too difficult to prove that C%, (X4, F) is a subcomplex, i.e. the coboundary
operator maps it into itself. It is a little bit more difficult to prove that

(X AUF) — C* (X LF)

induces an isomorphism in cohomology. Sometimes it is easier to do computations using
this smaller complex.

Exercise 23.

(a) Prove that

Cz:lt(X’u7f) — C.(X7L(,JT")
induces an isomorphism in cohomology.

(b) Consider the simplex

AM = (21, Tnge) € R 20, @y =1},
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Then we get a covering 4 of A"T! by the open sets
Ui ={(21,...,2n42) € A" |z; > 0}.
Show that the cohomology groups

0 ifm>0

Hm(An—Q—l’u’Z) — ]
7. ifm=0.

c¢) Now we remove the interior o and we get the n-dimensional sphere
N the interior of A™t! and we get the n-di ional sph
OA = {(x1,...,xny2)| at least one of the x; is zero} ~ S".
Our covering of A™*! induces a covering ' on S™.

Ui ={(z1,...,xnt2) € S"[x; > 0}.
Show that the Cech-cohomology groups H®(S™',Z) coincide with the cohomology
groups computed by injective resolutions.

A rather elegant solution of this exercise can be obtained if we use the following Lemma
whose proof I give for later references.

Lemma 4.5.3. Let 3 be a covering of an arbitrary space X and let us assume that
in our covering 3 = {U;}ier is a member y € I for which U, = X. Then we have
HYXMF)=0 for all ¢ > 1.

Proof: Let us assume we have a cocycle
¢ = ( < 3Cig,yigy e -)(z‘o,...,iq)el<1+1 € Zq(X,uJ-').

We construct a cochain b € C9=H(X U, F) by

bio,.osig—1 = Cyyioyeloos-

We have to observe that
Ui07~--7iq—1 = Uy,iow

g1~

Then
(db)io,n.,iq = Z(_l)ybim,_@,m,iq
Y(-1)"¢

= —(dC)yig,..siq T Cioyonsig = Cig,ovsiy-

Ys205-+3luy-05lg

|

To apply this to the exercise above we can consider the inclusion Uy — A"!. The
covering of A"t induces a covering of Uy and these two coverings yield the same Cech
complexes.
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4.5.2 The Cech Resolution of a Sheaf

Remark 5 (Heuristic Remark). Let F be a sheaf on X with coefficients in the category
of abelian groups. Let us assume that we have a resolution of F

0—F —G"—=¢g'— ... —G"— ...

A resolution of a sheaf may be very useful for the computation of the cohomology of F.
In Chapter 2 we showed: If the resolution above is acyclic then we can use it to compute
the cohomology groups of F, we have:

H*(X,F) = H*(G*(X)).
But even if a resolution is not acyclic it still may be helpful. For instance we still have a
homomorphism

H*(G* (X)) — H*(X,F)
which in general is neither injective nor surjective. But we have some kind of estimate for

the deviation from being an isomorphism and in these estimates the cohomology groups
H9(X,GP) will enter.

I want to put the Cech complex into this context. Let 8 = {U,}oea be a covering of our
space X by open sets. We assume that this covering is locally finite, i.e. for any x € X
we can find an open neighborhood V,, such that V,, N U, = 0 for almost all & € A. Let
F be a sheaf with values in the category of abelian groups. We give the indexing set A a
total order and we denote by Aq<Jrl the set of those sequences a = (a,a1, . . . ,0q) Where
ag < a... < ag. Again we put Uy = Usy NUq, N...NU,, and let iy : Uy = X be
the inclusion map. We restrict F to U, and take the direct image of this restriction, we
obtain the sheaves F) = iq.i}(F). I recall that these sheaves are defined by the rule
i0xi’ (F)(V) = F(V N U,). The stalk of this sheaf is equal to F,, if x € Uy; it is zero if
x & Ug. It depends on the local structure of Ug in the boundary points = € C?Ug. We
have always a homomorphism F, — F7,. I allow myself to write F7 for F7, ,.

Recall that we can define infnite products in the category of sheaves (see 3.5 and especially
3.20). Now we construct a resolution of our sheaf F

0—=F—=[]7— Il Fop—— I 7oa— (4.45)
a€A (a,B)EAZ acAL!

The first map is simply
Fo— [[ i
acA

d: [ 72— H]-"E

+1 +2
acAL BeAL

The boundary map

is given by the following rule: Let s = (...s4...) € ([[ F)z, then

q+1
(ds)g = Z(—l)zsﬂou,@,,ﬁw (4.46)
1=0

where we interpret s 5 as an element in F, 5 T0 s clear that this is a complex

05eesBiseesBat1
of sheaves.
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Exercise 24.

(a) Prove that this complex of sheaves is exact.

Hint: We have to check exactness in the stalks. If z € X we know that we can find
an element v € A with z € U,. Now we are in the same situation as in Lemma 4.5.3
abvove, except that we have modified the Cech complex since we have ordered the
index set. But it is not difficult to adapt the Lemma to this situation here.

(b) Let E be a finite totally ordered set, i.e. E = {0,1,...,n}. Let A be an abelian group,
for any r € Z we define
= @A
ICE, |I|=r+1

by definition we have C"(A) = 0 if r € {0,...,n} = E. For a subset I C E and
a € I we define p(a,I) as the position of « in I, i.e. p(a,]) =0 if o is the smallest
element, p(«,]) = |I| — 1 if « is the biggest one.

We define (co-)boundary operators

d:CT(A) —s C(A)
5:CT(A) — CTY(A)
by (da); = D (=1 ay s
BeJ
(6a); = D (~)PPIINa,
BEJ

where a; is the J-th component of a = (... ,az,...) € C*(A). We get two complexes

0 — C%A) -5 . Lo Lot L

0 — C"(A) Lot L L e0i) —o.

Show that these two complexes are exact using the ideas of the part (a) and the
previous exercises

Let me come back to the heuristic remark above. I said that the complexes of sections
G*(X) of a resolution contain some information concerning the cohomology of F. Now
we see that for the special case of the Cech resolution the resulting complex of global
sections is the ordered Cech complex. We know that the ordered Cech complex gives us
the same cohomology groups as the unordered Cech complex.

We see that coverings allow us to construct resolutions of sheaves. We already saw some
other constructions providing resolutions of sheaves. If for instance we look back to our
computation of the cohomology of the spheres (see section 4.4.5) then we see that our
first short exact sequence is a resolution. We could extend this resolution by resolving
Zgn-1 and so on. Also the computation of the cohomology of a surface is obtained from
a resolution of the sheaf Z on the surface.

This gives us the general idea that these resolutions in some sense provide a kind of
cutting a space into simpler pieces. (See Exercise 4.4.14.)

In the following sections we discuss the technique of spectral sequences, we return to the
Cech complex in 4.6.6..
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4.6 Spectral Sequences

4.6.1 Introduction

The method of spectral sequences is designed to extract information on the cohomology
of a sheaf from the cohomology of the sheaves in a resolution.
We consider a resolution of a sheaf F:

0—F—G" —¢g'— ... —g"— ...

We break the sequence
0—F —G"—K-—0

and we have seen in section 2.3.4 that we can find an injective resolution of this short
exact sequence

0 F Ggo K 0

0 —> 0 —>1q JO— jO —> 0

0 — 1 >I'gJ = J —> 0

0 ‘——>[2—‘>'1269J2—‘>J2——> 0

We have the second half of the exact sequence
0—K-—G'— ... —G¢"—

and we can apply the same to this sequence. Proceeding in the same way forever, we get
a diagram
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0 0 0 0
0 F GO gl gn
0 10 70,0 710 0.0
0 7! 70,1 I8! vl
0 12 70,2 T2 P2

where all the ¥ and I”? are injective, all squares commute.

Lemma 4.6.1. This double complex of sheaves has two properties

(a) all horizontal sequences are exact.

(b) The wvertical complexes IV'® are injective resolutions of G* and I® is an injective

resolution of F.

We apply_the functor global sections to this diagram and get the augmented double

complex I°*(X)
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0 —>F(X) —>G(X) =G (X) —> -+ —>G"(X) —> -+

0 s IO(X)—>IO70(X)—>]1’O(X)—>"' _>[P~,0(X)_>...

0 —> I (X) =%} (X) > [M(X) —> -+ —> [P(X) —> - -

0 ;12(X)—>Iov2(X)—>Il’2(X)—>---—>IP’2(X)—>--~

We replace the vertical complex on the left and the horizontal line on the top by zero
and then we get the (non augmented) double complex I°®

0 N IO(X) __)_I0,0(X) __)_Il,O(X) — s ... __+IP70(X) _ .

0 s Il(X)—>1071(X)—>Il’1(X)——>-~~——>Ip’1(X)—>"'

0 5 IQ(X)—>1072(X)—>1172(X)—>---—>I”’2(X)—>-“

All squares commute and all vertical and horizontal sequences are complexes. We give a
name to the differentials

‘qpa o [P9(X) — IPT19(X)  horizontal
(4.47)
ngpa . JPA(X) — IP9TH(X) vertical.

We get a simple complex I3, from I**: We put
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In.(X) = P mix) (4.48)
ptq=n
and we define
m mn n+1
d Isunp (X) Isnnp (X) (449)
by ar = Z P 4 (—=1)P " gP1 .
ptg=n

It is clear that the commuting of the squares implies that
A" od™ = 0. (4.50)

The following facts are more or less obvious from the construction in the previous part.

Lemma 4.6.2.
(a) The vertical complexes (IP*(X),"d) compute the cohomology of the sheaves GP, i.e.

HY(X,G7) = HY(I"*(X),"d)

(b) The horizontal complexes (I°%,'d) compute the cohomology of I? and hence they are
exact except in degree zero:

HO(X,1%) = I4X)=H°(I*YX)/d)  and
HP(I*(X)/d) = 0 forp > 0.
(¢) The inclusion I*(X) = I8,,,(X) given by x4 — (24,0, -+ ,0) induces an isomorphism

HA(I*(X)) = H® (I§,(X))

and hence we have
H.(X’f) H.( smlp( ))

The last assertion is not quite so obvious, it requires a little argument using (b). Let us
look at a class which is reprebented by the cocycle = (zgn, - - - ,2n,0). The entries of the
array are placed in our complex I2% (X)) like that:

51mp
0 0 Tn,0
Zn-11 0 (4.51)
0 . . :
Z0o,n 0 AN 0
The cocycle condition implies 'd™%(z,,0) = 0. Hence we find a b = (0,...,yn—10) €

I;mll) (X) such that 'd"=%%(y,_1 ) = 2,0 and z — d;mi(b) represents the same class but
has its last component in the upper right corner equal to zero. Repeating this we can
represent our element by a cocycle whose components are zero except the one in the

lower left corner. This implies (c).
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Summary: Starting from a resolution 0 — F — G°® of F we constructed a dou-
ble complex I°® consisting of injective sheaves, such that the resulting simple complex
I3, (X) computes the cohomology groups of H*(X,F). Of course we can compute these
cohomology groups directly from an injective resolution of F. Here we put a step in
between, by resolving F by a complex G®, which does not necessarily consist of acyclic
sheaves and then we resolve this complex. This procedure may have an advantage: Let
us assume that we find such a resolution G°®, where we have some information concerning
HP(X,GY) (for instance some finiteness, vanishing in certain degress..). Then we will see
in section 4.6.2 that this has consequences for the groups H?4(X,F). We give some first
indications how how this works.
We have the inclusion of the complex

g% (X) —GH(X) G"(X)
51mp(X) > snnp(X) —_> s > I;mp(X) —_—— ..

and hence we get from this construction a homomorphism

H"(G*(X)) — H"( X)) =H"(X,F) (4.52)

surnp(
This is the so called edge homomorphism.

If the sheaves GP are acyclic then section 2.3.1 tells us that this edge homomorphism is
an isomorphism. This can also be seen by looking at the the double complex, the same
argument which gave us (c) in the assertion above implies that the edge homomorphism
is an isomorphism.

If the GP are not acyclic then the edge homomorphism is neither injective nor surjective in
general. But still we may get some information concerning the cohomology H"(X,F) from
it. I recommend to the reader to solve the following exercise. It shows how these mecha-
nisms work and it deals with the computation of H' (I8, (X)). What I said above means
that can get information on H™(X,F) in terms of the cohomology groups H?(X,GP) for
p+qg=n.

The cocycles are the elements (x9,1,21,0) which satisfy 'dzy o = 0, "dzg 1 = 0 and "dz o+
d'zp,1 = 0. Now a simple calculation solves the following exercise

Exercise 25.

(a) Show that the edge homomorphism in degree 1
HY(G*(X)) — HY(X,F)

is injective. It provides an isomorphism to those classes which can be represented
by cocycles with zg 1 = 0.

(b) In other words: sending a class to xo 1 induces a a homomorphism

HYX,F) = X)) — HY(X,G%

( 31mp(

and the kernel of this map is the image of the map in (a).
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(c) The image of the map H'(X,F) — H'(X,G°) lands in the kernel of H(X,G%) —
H'(X,G') and we have a homomorphism

ker (H'(X,G%) — H'(X,G")) — H*(G*(X).

(d) Show that we get even an exact sequence
0— H'(G*(X)) — H'(X,F) — ker(H'(X,G°) — H'(X,G")) — H*(G*(X))

This extends to higher degrees, but the information we get is more complex. The basic
point is that the double complex has two filtrations, these filtrations induce filtrations
on the cohomology of the double complex. These filtrations are the horizontal filtration
and the vertical filtration. These two filtrations induce filtrations on the cohomology of
J A, (X) and we have some information on the graded pieces of these filtrations. Actually
we used already the horizontal filtration, essentially it provides the argument that proved
Lemma 4.6.2 (c).

4.6.2 The Vertical Filtration

In the following discussion I start from a slightly more general situation. We forget the
sheaf F and start from a complex of sheaves

0—G° —>¢gl— ... —Gg"— ...

we do not assume that it is exact. We want to construct an injective resolution of it. We
adapt the approach we used when we constructed the double complex for the resolution
G® of F in context of Lemma 4.6.1. The only difference is that we have to take the
cohomology sheaves of this complex into account. Hence we do not make the assumption
a) in Lemma 4.6.1.

We start at the left end of our complex and we break it

0— Z(G°) — G — B(G") — 0

and resolve this by the standard construction (Chapter 2.3.4). Observe that by definition
Z(G%) = H°(G*). Our injective resolution looks as follows

0 —H°(G*) g° B(G') 0
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For the following indices we always have the two short exact sequences
0 — B(G?) — Z(G?) — HY(G*) — 0

and
0 — Z(G%) — G7 — B(G") — 0.

We always resolve the first sequence by this method and then we use the resolution of
the term in the middle for the left term in the second sequence, resolve the term on the
right and then proceed by the standard construction to resolve the term in the middle.

This goes on forever and we get an injective resolution of the complex G°® .

0 0 0
0 GO Gr gntl
0 70,0 oo 770 L0 —
0 70,1 oo Il Ll —

We call such a resolution an adjusted injective resolution.
We apply the functor global sections and we get a double complex I**(X). From this
double complex we get the simple complex I (X) and we are interested in the co-
homology groups of this simple complex. On the double complex we define a filtration:
We define FP(I**(X)) to be the subcomplex where the entries in the first p — 1 vertical
columns are zero. By we denote FP(I3,, (X)) we denote the resulting simple complex.
The inclusion of complexes

FP(I

simp

(X)) = I}

simp

(X)
induces a homomorphism in cohomology

H* (FP(IGp(X))) — H" (I (X))-

simp simp
and we define FP(H"(I3, ,(X))) as the image of this homomorphism. This yields a

filtration of the cohomology, we have

0 n(re
F (H (Isimp

(X)) = H" (I§mp (X))

and FP(H" (I

simp

(X)) =0for p>n.
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Our final goal is to get some understanding of the quotients of the filtration
FP(H™(153 (X)) FPHH H™ (L1 (X))

We have an exact sequence of complexes

0 — PP (IS0 (X)) — FP (I8 (X)) — FP (I35, (X)) /7

simp

51mp( mmp(X)) — 0.

The complex on the right is simply the vertical complex given by the p-th column. Hence
we know

H™(FP (I, (X)) [P (15 (X))) = H"P(X.G7). (4.53)

simp

We rewrite the exact sequence in cohomology

X

) :

— S HM(FPHY(IS, (X)) ——> H(FP(

simp

mmp(

which yields an inclusion

H"(FP (I, (X)) /T (H™ (FPHH(IS,,,, (X)) € H'P(X,G7)

sSimp simp

By definition we have a homomorphism

H™(F (L, (X)) /T (H"™ (P15, (X)) — FP(H" (18, (X))/ FPH (H™ (110(X)))

simp simp simp

which gives us (the first little piece of information)

E1 The filtration steps FP(H™(1$,,,(X)))/FPT (H"(18,,,(X))) are isomorphic to sub-
quotients of H" P (X,GP).

We put n — p = g and write EV'? = H1(X,GP).

This assertion E1 sometimes allows us to draw conclusions in the sense of the Summary
above. If for instance we know that H9(X,GP) are finitely generated abelian groups, then
we know that the cohomology groups of the total complex are also finitely generated
abelian groups.

The next question is: How can we compute the subquotient of E{"? which is isomorphic
to the subquotient F?(H™ (I3, .(X)))/FPTH(H™(Ig,,,(X))) of the cohomology?

A subquotient of EV? is by definition of the form Z29/B?:% where B C ZP4 C EM

we have to compute these two submodules.

Our strategy will be to approximate these submodules Z2:7 (resp. B2?) by a sequence of
decreasing (resp. increasing ) submodules, i.e. we will construct sequences of submodules

Z0t oz 5 L Dz
and BYYcBY! c ...cCBEf

such that for large indices r we have ZP4 = ZP:9 BP9 = BP9,
The structure of a complex on G® induces a structure of a complex



4.6 Spectral Sequences 91

HY(X,G*)= ...— HY(X,G' ') — HYX,G?) — HYX,G"™) — ... . (4.54)

We denote the boundary operators by d? : EPY — EPTH and call the complex
(ED9.dY?), 4 the Ei-term of our double complex. Since this is a complex we have the
cocyles and coboundaries in it:

P,q p,q P,q
Byt cZyt C BV

We want to show that
BY? c B2 c zhd c ZP1.

First of all it is clear from the definition that Z%9 consists of those classes &, , € H(X,G")
which have a representative z, , € IP9(X), satisfying "dP(z,,4) = 0 which is the lower
left entry of a cocycle

0 0 0 Zpiqo
0
€Tr =
0 0 Zprig :
0 zpq 0 0
0 0 0 0
i.e. given z,, we want to place entries Zpi1,g—1,-- - .Zp+q,0 such that dr = 0. (We call

this Problem (C) for a given ) )
It is also clear that &, , € B2:? if and only if we can find an element y € IST.ILI:lIl) (X) ie. an
element

0 - 0 Ynrpo
: 0
y =
0 :
Yon—1 O .- 0
such that x — d"~'y € FPT (1% (X)). (Problem (B))

To solve (C) we we have at least to be able to fill the next spot, this is Problem (C1).
We analyze what the obstruction for solving (C1) is and then we try to solve (C2) under
the assumption that we have solved (C1). We proceed by induction.

To solve (C1) we have to find an 2yt -1 € IPTH971(X) for which

’ o
drpq = —"dzpr1,4-1.

The element 'dx, ; must be a cocycle for the vertical complex and therefore it represents
a class in H9(X,GP™1). We can find such an 41 41 if and only if 'dx, , represents the
trivial class. This means that the class &, , goes to zero under

a2 HY(X,GP) — HY(X,GPH1)

i.e. it lies in the kernel Z}"? = ker(d}'?) and this implies Z{"? D Z29. Now we look at a
class § € FP(H"(13,,,(X))) and represent it by a cocycle x as above.

Assume that the class &, ; represented by z, 4 is in the image

€pq € B =Tm (d?~"9: HI(X,GP™') — HI(X,GP)).
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Then this means that we can find an element y,,_; , which represents a class in H%(X,GP~!)
and therefore satisfies "d?~%(y,_1 4) = 0, and which maps to x, , under 'd?~9. Then
we can choose any element

0 0 ¥Yptq-1,0

y=" " ? (4.55)
0 Yp—14 :
0 0 0

then dP971y is zero in the cohomology and « — dPT9~1y € FPHI(I3, (X))
We conclude that BY"? ¢ B2 ¢ ZP? C Z7?, and we define

By = 20 /By = P (H(X.6")).

In other words we define E5? as the cohomology groups of the complex (EP?,d)?). We
get

E2 The filtration steps FP(H"(I$,,,(X)))/FPT (H"(I$,,,(X))) are isomorphic to sub-
quotients of E51.

(In view of applications we made some progress. I mentioned the applications to finiteness
results at (E1), now we get finiteness results if we only know that the EY'? are finitely
generated.)

The decisive point is that we can proceed and define

dy?: BP9 — BT
such that we get a complex

d§—2,q+1 dqu

p—2,q+1
E;

ED1 Eyreat (4.56)

such that the cocyles and coboundaries of this complex satisfy BY'? ¢ BE2 C zZ&4 C ZP1.
To construct this map we represent an element &, , € Z7'? by a matrix

Lp+1,q-1
T — oz where z = 'dPix, , = —"dPTH L (g )
P,q p+1.q p+1,q P,q p+1,q—1)-
0

This means that we encode the condition &,, € Z? by giving the solution of (C1). But
now we have to fill the next place (C2). We apply the horizontal boundary operator and
we get

"I (2 11,0-1) = 2prag-1 € PPRITHX).

This element 2,19, 1 represents a class in H9~1(X,GP*2) which is in the kernel ZF 27!
of d’f“’q*l because it is a boundary under the horizontal boundary operator. We can
fill the next spot if the class of z,12,4—1 is zero. But since we made some choices, this
is only a sufficient condition. We can modify the representatives for &, , by boundaries
which are the elements of the form
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Zp+1,q—1
I where "d(zp41,4-1) =0
"d(Yp-1,4) — 0

It is obvious that another choice modifies zp42 ¢—1 into zp12 q—1 + d(zpt1,q—1) i.. by an
element in BYT*97! Hence we get a homomorphism

P4 . P4 p+2,q—1
dy?: EyY — By ,

and we can solve (C2) for the class &, 4 if and only if it goes to zero under d5'?. This also
tells us that 27 > Z5'7 = ker(dy?) D Z%4. Tt is clear that we even get a complex

p—2,9+1 p.q
pp2atl % pra %2
2 2

EptRat (4.57)

We want to show that B2? = Im (d5~>"") ¢ B24. An element x € BY'? is the boundary
of an element in Z”~*%"! This means that we can find an element y € 1P+~ (X) which
in its lower left corner is of the form

Yp—1,q
d
Yp—2,q+1 T  Zp—1l,q+1 where //d(yp—27q+1) =0, /d(yp—2,q+1) = _Hd(yp—l,q)
1
0

(4.58)
and where 'd(y,—1,4) = ) 4. Hence x — dy represents a class in FPT (H"(I3,,.(X))).
Now we define E'? as the cohomology of the complex, i.e.

Ep;q ZP;Q/BP#I

Now it is clear - and I will not give the formal proof - that this construction can be
extended by induction to all » and we get

Lemma 4.6.3. Starting from EV? = HY(X,GP) and di'? : H1(X,GP) — H(X,GPT1)
we can define a sequence of terms
(EP9d,) db9: EP? — EPYRaTrHl o yhere @RI o gPd = ()

such that at any level

- ker(dp’q EP1 — Ep+r,q 7’+1)
=
r+ Im (dgz r,q+r—1 . E,Inj rq+r—1 EqZ};Q)

and such that for all v the subquotients FP(H™(I%,,,(X)))/FP (H"™( Slmp(X))) are iso-
morphic to subquotients of EP1. Since we are in the positive quadrant, i.e. p,q > 0 the
sequence of modules EYY becomes stationary after a while. This means that for r > 0 we
have

BP9 = FP(H (I8 (X)) (H (I8 (X))

simp simp

Now we return to the situation in Lemma 4.6.1. In Lemma 4.6.2 we noticed that

H(X,F) = H™(I2%, (X))

simp
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Therefore, we may replace in the statement above the cohomology of the double complex
by the cohomology groups H®(X,F) and the induced filtration. Usually one summarizes
the assertion in Lemma 4.6.3 by saying:

Lemma 4.6.4 (Spectral Sequence). We have a spectral sequence with E; term E7? =
H1(X,GP) which converges to H™(X,F) and this is abbreviated by

(Hq(ngq)vdl) = Hn(X7‘F)
If we happen to know the E5 term we also write this for the Fo term

(EY%.ds) = H™(X,F)

4.6.3 The Horizontal Filtration

Assume that we have a complex G® which starts in degree zero and that we have an
adjusted injective resolution G®* — I*® (see Lemma 4.6.1). We change the notation and
give the index ¢ to the vertical complexes. (We want a certain consistency therefore we
arrange things so that p is the index for the horizontal filtration.)

We can apply to it the same method which we applied for the vertical filtration. Let
'FP(I**) be the subcomplex where the entries in the first p — 1 lines are zero. Now
we use the specific form of the adjusted injective resolution. The horizontal complex
"FP(I**(X))/ FPT1(I**(X)) is of the form

I (X))@ I (X)) @ IFP(X) — IEP(X) @ IF(X) @ IETP(X) —

IFP(X) @ I (X) @ IE7 (X) —

where the differential is always zero on the first two summands and is the identity iso-
morphism between the third term in degree ¢ and the first term in degree ¢ + 1. This
makes it easy to compute the cohomology. We get

HY('FP(I%*)(X)/(FPHH(I**) (X)) = I"(X) (4.59)

and this is the 'E; term of the spectral sequence. The differential
, p+1
" TEN(X) — ITHPTH(X)

is the differential which obtained from the differential in the resolution H%(G*) — I};*
and then taking the induced complex on the global sections. Hence we see that the Ej
term of the spectral sequence is

~

'R HY(X,H(G")).

From now on the reasoning is exactly the same as in the case of the vertical filtration we

get a spectral sequence which converges to H*(I3,,,(X)). The differential d2 now goes

do : /Eg,q l E§+2>q71
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Two Special Cases

a) We may look at the computation in context of Lemma 4.6.2 from a slightly different
point of view. We start from the resolution

0—F—G¢° ¢! — ... —Gg"— ... (4.60)

from which we constructed the double complex. Then conditions a) and b) in
Lemma 4.6.1. are valid and our complex is acyclic (if we include F).

We now consider consider the horizontal filtration by subcomplexes 'F(I3,, (X)) C
I;lmp( ) where the entries in the first ¢— 1 horizontal lines are zero. If we apply the
same arguments to this horizontal filtration we get something that we have done
already. Since the I® are acyclic our arguments yield that

H®("F(I0p (X)) / FT (15305 (X))

simp

vanishes except we are in degree zero and
+1/7e —
HO (P15, (X)) F (150 (X)) = HI(X,F).

Hence we see that for this filtration

rpra = )0 p#0 (4.61)

We do not have any non trivial differentials. Hence we see again that the double
complex computes the cohomology H®(X,F) and we see that in this special case
the horizontal filtration is not of interest, we recovered the results in Lemma 4.6.2.
This is only true since we assumed a) in Lemma 4.6.1.

b) We have also a special situation where the vertical filtration is uninteresting. Let us
assume that the sheaves G? are acyclic for the functor global sections. Its E{? term
is as always HP(X,G7) but this is zero for p > 0 (remember p and ¢ have been
interchanged). Hence we have only the H°(X,GP). The differentials are given by
d: HY(X,G9) — H°(X,G7"1) and his gives us the E{'? term as

e _ HY(G* (X)) forp=20 (4.62)
! 0 forp >0 '

The higher differentials are zero.

So we find that under our assumption above the vertical filtration tells us that
the complex I, (X))) computes the cohomology of the complex G*(X) and the
horizontal filtration shows that we have a spectral sequence

HP(X,HY(G*)).dy) = H™(G*(X)). (4.63)
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Applications of Spectral Sequences

The method of the spectral sequence has many applications. We will apply spectral
sequences at many places lateron in this book.
Here we give some indications how such applications can look like.

a) We start from a sheaf F and a resolution

0—F—G" —¢— ... —g"— ...

One typical applications provides finiteness results. I indicated this already dur-
ing the discussion of the spectral sequence. For instance if we can show that
HY(X,GP) = EP"? or EY'? are finitely generated abelian groups or finite dimen-
sional vector spaces, then we can conclude that the same is true for the target
groups (vector spaces) H"(X,F).

b) Another typical application concerns Euler characteristics. If we know that the coho-
mology groups H"(X,F) are finite dimensional vector spaces over a field k which
vanish for n > 0 then we define the Euler characteristic

X(X.F) = (~1)"dimy(H" (X, F)).

v

It is of course clear that

XOCF) =0 > (—1)Pedimg (BRY).
n p+g=n
But if we have for a certain level r that the total dimension of the EP is finite
then it follows from simple principles in linear algebra that

> (—1)Pradimy (EP9) = > (= 1) dimy (EPY).

p.q p.q

Then we can conclude

(X, F) = Z(—l)PJrqdimk(Ef’q).
P
If already the H9(X,G9) have finite total dimension then

X(X.F) = (=) idimy,(H(X,GP)).

p,q

c) There are interesting cases where one knows the structure of the groups EP'? for
some 7 and one also knows that the d&? are zero. Then we have EPY = EI7 .
It can happen that the differentials on this level vanish again and that this goes
on forever. Then we say that the spectral sequence degenerates at level E,.
In such a case the EP'9 = EP:1 are equal to the subquotient in the filtration on
the target. If for instance the cohomology groups are finite dimensional vector
spaces then we can compute the dimensions of the cohomology dimy(H"(X,F)) =
2 pgiptq=n A (EP?).

There are important cases where we have degeneration at level F; and F,. But it
also happens in some cases that the computation of the higher differentials becomes
an extremely difficult task.
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d) A very important application is the following. We start from a space X and a sheaf
F of abelian groups on it. Furthermore we assume that we have a continuous map
f:X — Y. We know of course that H°(X,F) = H(Y,f.(F)).

We can compute the cohomology groups H"(X,F) and the derived sheaves R? f.(F)
from an injective resolution

0—F —1I° —T1' — 1> — ... (4.64)

If we apply f. to this resolution, then we get a complex of sheaves on Y
0 — fulF) — f(I°) — £.(T) — fu(T?) — ...

Now we choose an adjusted resolution of the complex f,(Z®) and apply the global
sections functor

0 0 0
0~ f(Z)(Y) f@MY) = f(THY)
0 —>I%9(Y) 7m0 (Y) —— I L0y ) ——— ...
0 —>I%4(Y) N Y) —— I (Y ) —— ...

We know that the sheaves f.(Z) are in fact acyclic for the functor global sections
(Lemma 4.4.5) and hence we are in the special case 4.6.3 b). The vertical filtration
tells us that the complex 78, (Y") computes the cohomology of f.(Z°)(Y) = Z°(X)
and this is H®*(X,F). The horizontal filtration gives us a spectral sequence which
converges to H"(X,F) where the E5 term is HP(Y,R?f.(F)), i.e.

(H? (Y,Rf.(F)) d2) = H" (X, F)
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4.6.4 The Derived Category
We consider complexes of sheaves on X
G*=...— G — gt — ...

where we may have positive and negative degrees v. Sometimes we assume that our
complexes satisfy some boundedness conditions, this means that the entries are zero for
large negative degrees or large positive degrees or even both.

We introduce the sheaves of cocycles Z(G”) = ker(G* — G”*!) and the sheaves of
coboundaries B(G¥) = im(G¥~! — G¥) and the cohomology sheaves

ey Ker(GY — gvth
H (g ) - im(gu—l N gu) .

If we have two such complexes we have an obvious notion of a morphism
P
gr — Gs.
It is clear that ¥ induces a morphism of sheaves between the cohomology sheaves
HY(GF) — H"(G3).

Now it is possible to construct a new category from this, namely the derived category
D(Sx). It is defined as a “quotient” category of the category of complexes: A morphism

VGl — G

is declared to be an isomorphism if it induces an isomorphism on the cohomology sheaves.
Such morphisms are called quasi-isomorphisms. A quasi-isomorphism v induces an in-
vertible morphism in the derived category and this inverse is not necessarily induced by
a morphism in the category of complexes.

This means that the objects are the complexes of sheaves but the sets of morphisms
Homps,)(G7,G5) become complicated.

If we have quasi-isomorphisms A°® N Gy and G3 %, B* and if we have a morphism
®: A* — B°® then we get an element

Yodogp ' € Hompe(sy)(G1,G3)

This construction of the derived category will not be discussed in further detail here.
(See for instance [Ge-Ma], Chap. III and IV.)
In the following discussion I want to consider the subcategory DT (Sx) of complexes
which have non zero entries only in positive degrees.
We have a new way to speak of resolutions. If we have a sheaf F we can view it as a
complex

FOol: 0—F—0—0—---

where the sheaf sits in degree zero. If we have a resolution
0—F —G —G'— ... —g¢"—

we write this as morphism ¢ : F[0] — G*:
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0 —>F—>0 —— 0 — -

b }

0 _>go_>gl_>_>gn_>

and the fact that G® is a resolution translates into the fact that v is an isomorphism in
the derived category.
We can introduce the notion of a resolution of a complex. This is a double complex

0 0 0

¥ v ¥
0 go e agr gn+1
0 .AO’O e An,O An+1,0 —_ ..
0 AO,l . An,l AnJrl,l —_— ..

V \ \

where the vertical complexes are exact.
We can drop the line on the top and consider the double complex of sheaves A®® and we

can pass to the simple complex A3, . Of course we have a morphism

r:Gt — AdL,
and I leave it as an exercise to the reader to prove that this is an isomorphism in the
derived category. (See Lemma 4.6.2)
If we now take an injective resolution G* — 7Z*°® then r : G* — I3, gives us an
isomorphism of our given complex with a complex whose components 7" are injective.
It is also rather clear that this construction is functorial in G°, if we have a morphism
between two complexes 1 : G — G3 then this extends to a morphism of the injective
resolutions _

VIt — I3
and if we pass to the simple complexes we get a diagram

1 °
g. —_— Il,simp

|k

T2 °
.
g2 —_— IQ,simp

this extension is unique by the definition of the derived category.

Once we have the notion of the derived category we find a new concept of what a derived
functor should be. I explain this in the context of sheaves on spaces and the global section
functor, but it works in a much more general context.
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If we have a complex of sheaves G® on our space X , then we choose an injective resolution
G* — I** and use the isomorphism r : G* — I8 . Now I3 (X) is a complex of
abelian groups and can be viewed as an object in the derived category of abelian groups.

The functor G* — I3,,,(X) is now the derived functor
RCHS : DT (Sx) — D' (Ab)

from the derived category of sheaves on X to the derived category of abelian groups. We
apply it to our sheaf F. We view it as a complex F[0] and consider R*H (F[0]). This
is a complex of abelian groups and we recover the cohomology groups H®(X,F) as the
cohomology groups of the complex R® HS (F[0]).

We may of course apply this also to the case of a continous map f: X — Y and a
sheaf F on X. We take an injective resolution F — I°®, we view this as an isomorphism
F[0] = I*® in the derived category and define

R*fu(F) = fu(I%),
this is now a sheaf in the derived category of sheaves on Y. Our ”old” derived functor is
now simply the cohomology of this complex.

Philosophical remark: Our ”old” derived functors transform a sheaf F on X into a
collection of sheaves {RfY(F)},=0,1... = R® f«(F). We can view this as a complex where
all the differentials are zero. Certainly this is an object of different nature. The "new”
derived functor R® f.() sends objects in the derived category of sheaves on X into the
derived category of sheaves on Y, so the nature of the object does not change: Complexes
go to complexes. Hence R*® f.(F[0]) is a “higher level object”, it contains more information
then just the cohomology groups R® f.(F).

In section 2.3.1 I explained that we may - after defining the derived functor by using
injective resolutions - compute it from acyclic resolutions. The same is of course true in
the context of derived categories.

Lemma 4.6.5. If we have a resolution of our complex G* — A**® as above and if the
AP9 are acyclic for the functor H°(X, ) then we have
REHY(G®) = HY (X, A%®) = A™*(X).

Proof: To see this we choose an injective resolution G®* — Z**® The definition of
injective sheaves allows us to construct a commutative diagram of complexes

go — A%

Lo

go —> T
which then induces a homomorphism of complexes
-A. (X)simp — I. (X)sirnp
which must be an isomorphism in the derived category. To see this we look at the vertical
filtration (see section 4.6.2) and find that we get the same EV'? term, namely H?(X,G?),
on both sides. Here we used the acyclicity of the A®*® resolution. Now the rest follows
from a simple argument of functoriality: We get an isomorphism for the EZ:? and hence

the homomorphism must be an isomorphism. O
Especially we see
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Corollary 4.6.6. If A® is a complezx of acyclic sheaves then

ROHY(A*) = A°(X)

The Composition Rule

The concept of derived categories allows a very elegant formulation of the content of the
theory of spectral sequences. I want to explain this in a special case but it will be clear
what happens in more general situations.

I recall the situation in b) on page 96. We start from a continuous map f : X — Y
between two topological spaces. We consider the abelian category of sheaves F on X with
values in the category of abelian groups. We have the functors 7 — HO(X,F) = H (F)
and f,. It is clear that H% () is the composition of f, and HY (). We want to understand
the resulting relation between the derived functor of HY( ) and the derived functors of
f« and H{().

We introduced the higher direct images R®f.(F) as the derived functor of the direct
image functor f. and this ist just a collection of sheaves on Y which are indexed by
degrees.

But we also defined the derived functor

R.f* : D(Sx) — D(Sy)

which sends a complex of sheaves on X to an object in the derived category of sheaves
on Y. It sends a sheaf F to R® f.(F) = f.(I°®) (see above) and the cohomology of this
object gives us the derived sheaves R® f(F).

We apply the derived functor R®*HY to f.(Z*). Lemma 4.4.5 tells us that the complex
of sheaves f.(I®) consists of injective sheaves. Therefore we can conclude that

REHY (fo(I%)) = f.(I*)(Y).
(See Remark 6 below.) Since f.(I*) = R*f.(F) and f.(I°)(Y) = I*(X) = R*H(F)

and we get the composition rule
ROHY o R® fo(F) =~ R*HS (F). (4.65)

Here it is of course clear and important to notice, that this rule does not only apply to
sheaves F on X but actually we should apply it to complexes of sheaves, i.e. to objects
in the derived category D (Sx). So the more conceptual way to write the composition
rule is

R°HY. o R*f.(G®) ~ R*H%(G*).

Remark 6. We should observe that we used Lemma 4.4.5, hence we knew that the
sheaves in the complex were injective. But we should be aware that in the next step we
only used that the sheaves f.(I®) are acyclic. (See Lemma 4.6.5.)

This gives us a general principle, which also applies in other situations:

If we pass to the derived category then the derived functor of a composition is the compo-
sition of the derived functors provided the first functor sends injective object into acyclic
objects.
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This may for instance be applied to the following situation: Let I" be a group and I
a normal subgroup in it. For any I'-module M the module M' is a I'/T’-module and
clearly we have that M = (MT)T/T" In other words we have HO(T', ) is the composite
of H(T’, ), which sends I'-modules to I'/T’ -modules, and H°(T'/T”, ), which sends
['/T’-modules to abelian groups. It is not hard to see that in this case we also get the
composition rule for the derived functors.

Of course this formulation of the content of the concept of spectral sequences is very
elegant. Actually it says more than point ¢) on page 96 but sometimes it may be necessary
to go back to the formulation involving the E?-4. The point is somehow that the objects
in the derived category contain much more information, but certainly also some extra
information, which is of no interest for us.

By the way, if we consider the case of group cohomology then we get a spectral sequence
with Ey term

HP(T/T" HYT',M)) = HPTI(T,M).

Ezxact Triangles

In the derived category of an abelian category (for instance D(Sx), D(Ab)) we do not
have the notion of a short exact sequence. The reason is basically that a short exact
sequence leads to a long exact sequence in cohomology. I recall the discussion in the
fundamental remark on page 26. We saw that in our injective resolution the differentials
in the middle are not necessarily the direct sums of the differentials of the two outer
resolutions, we need to add homomorphisms U¥ : [""¥ —s V1,

Now we may look at these U” from a different point of view. We introduce the translation
operator T' which transforms the complex I’® into I'*[1], this is our original complex
shifted by 1. In other words the p-th component of I’*[1] is equal to the (p — 1)-th
component of I'®. Then we see that the recursion relations for the ¥” simply say: The
negative sum of the ¥" defines a morphism of complexes

Ut I — I

This tells us that the resolution of an exact sequence has the structure of an exact
triangle. In this situation this says that we get a complex of complexes

=TI =T T —I1] — ...

and this is abbreviated by
I/. — I.
x
I//O

where the map I"”®* — I’® has degree one.
We can now easily define what a triangle in a derived category of an abelian category
should be. It consists of three complexes X°®Y*,Z® and a sequence of morphisms

e — 21— X' — Y — 72— X1 — ...

such that the compositum of two consecutive arrows is zero (in the derived category,
i.e. induces zero in cohomology). We call such a triangle exact if we get a long exact
sequence in cohomology after taking the cohomology of the complexes.
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4.6.5 The Spectral Sequence of a Fibration

This spectral sequence is especially useful if we can apply it in combination with base
change.

Definition 4.6.7. We say that the map
f: X —Y

is a cohomological fibration for the sheaf F if the sheaves Rf.(F) form local
systems on'Y (see Definition 4.3.9) whose stalk in y is given by H(f~(y),i(F)).

If our space Y is locally connected this means we have base change, i.e.
RUfu(F)y = HU(fH(y) sy (F)), (4.66)

and for any point y we can find a connected neighborhood V,, such that RY f,.(F) restricted
to Vj, is isomorphic to the sheaf of locally constant sections into RY f, (F),.

The intuitive meaning of this notion is that R?f.(F) is the system of cohomology
groups of the fibres.

To produce examples of such cohomological fibrations we consider maps f : X — Y
which are locally trivial fibrations with some fibre F. (See section 4.3.1.) Furthermore
we assume that for any local trivialization

U Y U) —=>U; x F

\/rl

the restriction of F to f~1(U;) is isomorphic to a pullback with respect to the projection
prp : U; x FF — F of a sheaf on the fibre F. For the following discussion we assume
that X,Y are Hausdorff and that Y is locally contractible, i.e. each point y € Y has
arbitrarily small contractible (see Lemma 4.4.24) neighborhoods. Then it is clear:

Lemma 4.6.8. Under these assumptions f : X — Y is a cohomological fibration for
F.

The assumption on the local structure of the sheaves is certainly satisfied if the sheaf F
is isomorphic to the sheaf Ay = A for an abelian group A.

If we assume in addition that our space Y is pathwise connected and if we pick a base
point yo € Y, then we will also show (see in 4.8.1) that our local system is basically the
same object as a representation of the fundamental group (see [Hat], Chap. I) m1 (Y,y0)
on HI(f1(yo),A). Especially for a simply connected base space Y (see [Hat], loc. cit.)
we even have

RIf.(A) = HI(f ' (y).A). (4.67)

I want to discuss some special cases where this spectral sequence for a fibration becomes
very useful.
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Sphere Bundles an Euler Characteristic

Let us consider a fibre space
m: X —Y

(see section 4.3) where the fibre F' is homeomorphic to a sphere S”~!. Then we have the
FEs-term in the spectral sequence

EP? = HP(Y,R'7,(Z)), (4.68)

and it is clear that RO7,(Z) = Z. We have Ri7,(Z) = 0 for ¢ # 0,n—1 and R" ', (Z) is
a local system where the stalks are isomorphic to Z. We say that this fibration by spheres
is orientable if the local system is trivial, and we say that the fibration is oriented if we

fix an isomorphism
R 'r.(2) = Z.

Now we consider the FEs-term of the spectral sequence. It looks like

0 0 0
HO(Y,Z) HY(Y,Z) . H?(Y,Z)
: : : (4.69)
0 0 0
HYY,R" 'm.(Z)) H'(Y.R"'m.(Z)) --- HP(Y,R" 'm.(Z))
0 0 0

and the differential operator ds is given by an arrow that points 2 steps to the right and
one step up. Thus it is zero (unless we have n — 1 = 1) and stays zero for a while. So
the terms FY? = ED'? ... stay constant for a while until we come to the differential d,,
which sends

dvn=t s  gP(Y, R, (7)) — HPT(Y,R7.(Z)), (4.70)

and now the EF', may be different from EZ9. After that the spectral sequence degener-
ates. Therefore we get an exact sequence

p—1,n—1

HP = (Y R () == HP = (Y, RO (L) —— %

............. > Hp(Y’Rn—lﬂ.*(Z)) n >Hp+"(Y,R07T*(Z)) >
(4.71)
which is the so called Gysin sequence. It contains relevant information concerning the
fibration. If for instance, one of the differentials d?~>"~1 is not zero and not surjective,

then the map
HP Y, ROm () = HPP " (V,2) — HE (X.Z)

is not injective. From this we can conclude that under this assumption the fibration

cannot have a section
s:Y — X

to m because the composition 7 o s would induce the identity on H*(Y,Z).
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If the bundle is oriented, then R""'m,(Z) = Z, and we have a canonical generator
e € R"'7.(Z). This gives a class in H°(Y,R"~'r,(Z)) which is mapped to a class

e=d>""Yeg) € H"(Y,Z), (4.72)

and this class is the so called Euler class of the fibration. If it is non zero, then the bundle
has no section.

Let M be a compact, oriented C°°-manifold of dimension n, we assume that we have a
Riemannian metric on the tangent bundle. (See 4.8.2.) We consider the bundle of tangent
vectors of length 1, this is denoted by S(Th;) — M and it gives us an example of a
sphere bundle, with spheres of dimension n — 1. Then the above class e = d%" 1(e) €
H"(M,Z) = 7 (see 4.8.5) In 4.9.1 is called the Euler class, it is a also a number. We
will give some indications is equal to the Euler characteristic

V(M) = 3 (~1)” dim H*(M,Q).

We conclude:

Lemma 4.6.9. If a compact, oriented manifold M has non zero Euler characteristic
X (M), then the bundle S(Th;) — M has no section. Hence a continous vector field (i.e.
a section in T M ) must have zeroes.

4.6.6 Cech Complexes and the Spectral Sequence

I return to the Cech resolutions constructed from coverings U = {U, }aea (see page 81):
Fi=0—F — IlaecaFy — U preaz Fo, — - (4.73)

In view of our previous discussion this means that we have an isomorphism in the derived
category

0 F 0 0

|

0 —>[Taea Foa —— apyeaz Fap—>apreas Fapy—> -

and hence these two complexes have isomorphic derived functors.

The sheaves .7-"; are concentrated on the closed subsets Ug = UsyN...NU,, and our
resolution is acyclic if and only if the sheaves F* on U, are acyclic. In this case we say
that the covering 4 provides an F-acyclic resolution.

We consider the vertical filtration (see 4.6.2 and 4.6.3). We get for our E;-term

EPt=HIX, [ Fo)= [] H'UF;) =HIU(XFS). (4.74)
QGA‘:rl QGA2+1
The EY 0 term is the Cech cohomology and the edge homomorphism yields a homomor-

phism
HP(X M F) — HP(X,F).
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Clearly we have

Lemma 4.6.10. If the covering provides an F-acyclic resolution then the edge homo-
morphism is an isomorphism or — in other words — the Cech complex computes the
cohomology of F.

In general this edge homomorphism needs not to be injective because we may have a
non-trivial differential

dy: E5™" — BP0 = AP(XAF).
But for p = 1 this differential is zero and it follows that the edge homomorphism
H' (X MF) — H'Y(X,F)

is injective (see Exercise 25). But of course it may be non surjective, its image is the
kernel of

H' (X, F)— [[ B'(X.Fa) = [ H' Ua,Fa).

a€A acA

I want to consider a special case. We cover our space X by two open sets X = U UV,
then our resolution becomes very short:

0 —F —FudDFyv — Funv — 0

where Fyy = iy.if;(F) and so on. Then our spectral sequence has only two columns: We
have as Fj-term

HYU,F) & HY(V,F) —— HI(U N V,F) —> 0

HUF) o H'(V.F) ____HUNV.F)__,
—————

p=0 p=1
and the horizontal boundary operator is taking the difference of the restriction maps.
Then we see that the spectral sequence degenerates on Fs level and we get a long exact
sequence

H"™YUNV,F) — HY(X.F) — HIUF)® H(V.F) — HI(UNV,F) — ...

which is called the Mayer-Vietoris sequence. It is of course nothing else than the long
exact sequence obtained from the short exact sequence which is given by the resolution.
With a slight modification we used this Mayer-Vietoris sequence already when we com-
puted the cohomology of spheres (see section 4.4.4).

Definition 4.6.11. A CW-complex is a space which is obtained by successive attach-
ment of cells.
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By this we mean the following;:
We start with a point, this is the simplest CW-complex. If Y is already a CW-complex,
and if

f:5" vy
is a continuous map, then we construct a new space X = D" Uy Y which is again a
CW-complex. To construct this new space X we consider S"~! as the boundary of D"
and X = D" Uy Y is obtained from the disjoint union D™ UY by identifying z € S"~!
to f(x) € Y. This process is called attaching an n-cell to Y.
We can relate the cohomology of the spaces X and Y. If we consider a tubular neighbor-
hood T of the boundary sphere (i.e. {(x1, - ,2,) |1 —e <Y 2? <1})then V=T U;Y
is open in X and clearly the inclusion Y <= V' is a homotopy equivalence. The open ball

o
D"=U is also open in X and we have a covering
X=UUVW.

The open set U is acyclic and U NV is homotopy equivalent to S™~'. Thus our spectral
sequence yields for ¢ > 1

e HTY (SN ) — HYX,Z) — HYY,Z) — HY(S" ' Z) — ...  (4.75)

This tells us that we have some control how the cohomology of Y changes if we attach
an n-cell. More precisely we can say that we can compute the cohomology of X if we
already know the cohomology of Y and if we understand the boundary operator on the
F1 term:

Hn_l(Y,Z) — Hn_l(sn_l,Z).

There is a very prominent example where this method of computing the cohomology
is especially successful. We consider the n-dimensional complex projective space P (C)
(see Example 15 in section 3.2.2).

Exercise 26.

(a) Show that the topological space P"(C) is obtained from P"~!(C) by attaching a
2n-cell.

(b) Show that
H*(P™(C),Z) = P Z e
i=0

where e; € H*(P"(C),Z) is a free generator.

A Criterion for Degeneration

Let us assume that our complex of sheaves has the following property: For any index ¢
we can find a splitting of the short exact sequance

0— Z(G%) — G — B(G'™) — 0. (4.76)

If we now construct our adjusted resolution, then we can achieve that the vertical differ-
entials
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q;p q+1,p
I7 ®© I

(4.77)
I%,erl @ I%Jrl,pﬂ

are the direct sum of the differentials of the resolutions of Z(G?) and B(G4*!) (see 2.3.4).
This means that we get for the adjusted resolution of the complex

, — q,p q,p q+1,p — q,p q+1,p
rer Igmely ©lp I77 @ 1Ip
1l = q,p+1 q,p+1 q+lp+1  _—  rq,p+1 q+1,p+1
I19r+ Iz D Iy @Iz Iy SFE

and the rightmost vertical arrow can be taken as the direct sum of the arrows in the
resolution of Z(G?) and B(GP*1).

I claim that this implies that the two spectral sequences for I§,
FEs-level.

We consider the horizontal filtration. The Es-term is given by H?(X,H9(G*)). An element
in this group is represented by the element &, ,, € If;”(X) which is mapped to zero under
the vertical boundary map

(X) degenerate on

5" (X)
IEPHH(X).

But if we view it as an element x4, = (0,24,,0) in I197(X), then it is mapped to an
element

Mot = (Mg.p+1,00) € IE7H(X) € IEPTH(X) @ T (X) @ TP (X)),

We look at the boundary map

[qfl,erl(X) [q,p+1(X)

H H
15 X @ 2 T (X) © T (X) ——— IE (0 @ T (00 @ T (X)

and we see that our element 7, 1 is the image of the element

o141 = (0,0,mgp41) € T7PHI(X)

under this boundary map. Now our assumption on the existence of the splitting im-
plies that this element goes to zero under the vertical differential, because this vertical
differential respects the decomposition

qul,erl(X) _ I%_l’p+1(X) a I%’p-ﬂ(X).

But then the element _
Eap = &qp T (_1)17_1511*1,p+1

is a cocycle. This implies that
EDt = pP1
%) I

and this is the degeneration of the spectral sequence.
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The argument for the vertical filtration is essentially the same.

We even get more. We know that the Fs term is a step in the filtration and hence

~

HP(X.HY(G") = 'FPH"(X.6%) /' F'T H"(X.G*).
But we just constructed a homomorphism
ipg s HP(X,HY(G*)) — H"(X,G*)

because to any class &, we constructed a cocycle Eq,p in I (X). Hence we even get

spl
Lemma 4.6.12. We have a splitting
H™(X.G*)~ @ HP(X,HIG*)). (4.78)

ptq=n

This splitting is not canonical because it may depend on the choice of the splitting
GP = Z(GP) @ B(GP*1) since this choice influences the correction term 7. But the images
of the HP(X,H1(G*)) are well defined modulo the horizontal filtration.

An Application to Product Spaces

We consider a product space Z = X x Y, let p1,p2 be the projections to the first and
second factor. We assume that Y has a finite covering Y = (J,,.; Ua by open sets which

is Z-acyclic (see 4.6.6). We get a covering of Z by the open set py 1 (Uy), with respect to
this covering we consider the Cech resolution of the sheaf Z on Z:

0—=2—[[2 — ][ Zoy —
o ()

as on page 81. We abbreviate the notation and denote the Cech complex simply by A°.
Then

is an isomorphism in the derived category and we get H®*(Z,Z) ~ H*(Z,A®).

Now it follows from our assumptions on the covering that the sheaves A? are acyclic for
the projection map p; to the factor X. We have that

pr(AP) = [[ 2o(X) = [[ 2(Uay 0 ... UL,




110 4 Cohomology of Sheaves

i.e. p1,+(A°®) is the complex of locally constant sheaves on X associated to the abelian
groups [, Z(Uqs, N---U,, ). This is a complex of finitely generated free Z modules, we
denote it by B*. Then we know H*(Z,Z) = H*(X,B").

We apply the previous observation. Since the complex B*® is a complex of finitely gen-
erated free Z modules, we can conclude that the quotient AP/Z(AP) is also free and
therefore we can split off the boundaries. Hence we know that the spectral sequence
degenerates, and we get an isomorphism

K: @ H(XHYY,Z) = H"(Z,2).
ptg=n

This isomorphism may depend on the splitting because this splitting influences the choice
of the correction term 7 above.
Under our assumptions the modules H4(Y,Z) are finitely generated abelian groups. This
allows us to write these groups as quotient of two finitely generated free abelian groups,
i.e. we have an exact sequence

0— M; — M, —)Hq(Y,Z) — 0
where My,M; are finitely generated and free. Now we have obviously
H?(X M;) = H?(X,Z) ® M;,

and hence we get an exact sequence

HP(X,Z) @ My ———— HP(X,7) @ M, —>Hp(ilji(X”,’Z’)’)>

~> HPtY(XZ) @ My ——— HPt (X, Z) @ M.

This yields a short exact sequence. We observe that the first arrow on the left yields a
cokernel

HY(X,Z) ® My/M; = HY(X,Z) © H?(Y,Z), (4.79)
and the last arrow on the right has the kernel Tory, (H9T(X,Z),H?(Y,Z)) (see section
2.4.3), and hence our short exact sequence will be

0 — HY(X,Z) ® HP(Y,Z) — HY(X,H"(Y,Z)) —> Tory(H""\ (X ,Z),H"(Y,Z)) —> 0.

If we make the further assumption that H®(X,Z) is finitely generated the module on the
right is finite. Then the restriction of K to the tensor products gives us a homomorphism

P = (X.Z)® H(Y,Z) — H"(X x Y7), (4.80)

pt+g=n

which is injective and has a finite cokernel.

This is the so called Kiinneth homomorphism. This homomorphism does not depend
on the choice of the splitting. To see that this is the case we assume that our space X
has a finite Z-acyclic covering {Vs}gep by open sets. In this case we can consider our
locally constant sheaves A” on X and take their Cech resolution provided by {Vs}sen-
Taking sections we get a double complex in which the (p,q) component is
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IT I ZvsxY)n(X xUa)),

BEBPT ae AL

and where the vertical and horizontal boundary operators are induced from the boundary
operators in the Cech complexes. But then it is clear: If we have cocycles

e I zve), ne ] ZWa),

peBrt! acA<atl

then we can define
eyt = (- '5577&’ ), (4.81)

and this is a cocycle for the resulting simple complex which computes H*®(Z,Z). Hence
we see that we do not need the correction in 4.6.12 which shows that the class does not
depend on the splitting.

In the next section I discuss products in a more general context and then we will see that
K does not depend on the choice of the covering.

We apply the same reasoning to the vertical filtration. A slightly different argument gives
us another construction of the canonical homomorphism

K: @ HY(X.72)® HI(Y,L) — H"(X x Y7).
ptq=n

We may interchange the role of XY this means we study the spectral sequence attached
to the map p2 : X x Y — Y. Now we assume that X also has a Z-acyclic covering by
open sets. Then the Ey term is HY(Y,H?(X,7Z)). We get homomorphisms

K: @ H(YV\Z) @ HY(X,Z) — H"(X x Y,7,).

ptg=n

If we compute the cohomology of the two spaces starting from Cech coverings, and if
we interchange the two spaces, then the two simple complexes resulting from the double
complexes are actually isomorphic. We simply have to reflect along the diagonal. But we
have to observe the sign convention in the definition of the differentials. This forces us
to put signs. This eventually results in the formula: If we look at the two product maps

HP(X,7) @ HY(Y,Z)

\i1>
H"(X xY,7),
HYY,Z) ® HP(X,Z) 12
then we have
i(a®p) = (-1)"Mix(f ® ). (4.82)

4.6.7 The Cup Product

We want to discuss products in a more general context. We start with a commutative
ring R with identity and we consider sheaves of R-modules on topological spaces. If we
have two such sheaves F,G on a space X, then we can consider the tensor product sheaf
F ®r G on X. It is plausible that this should be defined as the sheaf attached to the
presheaf
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U— FU)orGU)
(see 3.3.1), and it is really not too hard to show that the stalk of this sheaf is given by

for all points =z € X.

Now we consider two spaces X,Y and the two projections py,ps from X x Y to X and
Y respectively. If now F and G are sheaves of R-modules on X and Y respectively, then
we can define the exterior tensor product

F&rG = pi(F) ®@r p3(9) (4.83)

as a sheaf on X x Y.
We want to construct a R-module homomorphism

m: @ H(X.F)®HI(Y.6) — H"(X x V,FErJ).
1+j=n

It is not so entirely obvious how this can be done. We start in the obvious manner and
take injective resolutions

0 F 0 0

0 1° It I?
and

0 g 0 0

0 JO Jt J?

Then the resulting morphism of complexes
-F®Rg — (I.®RJ.)s11np

needs not to be an isomorphism in the derived category. In other words, the simple
complex of sheaves on the right hand side is not necessarily exact because the tensor
product is not exact.

Therefore it seems to be reasonable to assume that one of the sheaves is flat and admits
a flat acyclic resolution, say

<~ Q <— o

0 A° Al

where flat means of course that the stalks A% are flat R-modules. Then we find that the
double complex
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FORG —> FORA® = FRRA! = FRRA> —> -+

I"®RrG —> I°®rA° > QA > [OQ R A2 —> - -

Il(@Rg_).Il(/ngAO _>.11®RA1 _.).II®RA2 —_ ..

has exact rows and exact columns and hence we get a resolution of F® G by the simple
complex (I*®pA? which we write down

Simp)
0— FOrG — I'BrA’ — I'GpA" @ I'BrA — ... .
Hence we get a map (edge homomorphism)
mo : H((I"®rA)simp(X X Y)) — H'(X x Y,FRRG).
We have a morphism between double complexes
I'X)erA*(Y) — (I°@r A®)(X xY) (4.84)

and this induces a homomorphism in cohomology

m' s @ H'(I'(X)) @ H (A*(Y)) — H"((I*®rA*)(X x Y)), (4.85)

i+j=n

the composition m’ o my = m is the map which we want to construct. We notice that
neither mg nor m’ needs to be an isomorphism (See 4.80)

We want to show that this product does not depend on the resolution. To see that this
is so we first consider exact sequences

0 —Fr — Fo—F3—0
of sheaves on X. Since we assumed that G is flat we get an exact sequence
0 — Fi®rG — Fo®rG — F3@rG — 0,
and we get two exact sequences
o HTNX,Fy) — HTN(Fs) =5 HY(XF) — ...,
and

LCHTY(X X Y, FBRG) —5 HW (X x VF3®rG) — H(X x Y, Fi®rG). ...
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Now the formula
m(é(§) ®n) =d(m( @n)) (4.86)

for ¢ € H71(X,F3) and n € H/(Y,G) is obvious by construction. If we now take the
resolution of F and break it

0—F—I" SR —00—R —I' — Ry —0,...
and this reduces the proof of the uniqueness the map m to the assertion that
m: H(X,F)® H)(Y,G) — H' (X x Y,FOrG)

is independent of the resolution. But this is obvious because in this case m is the following
map: Any element s € H°(X,F) induces a morphism

m(s) : p3(G) — pi(F) ®r p3(9)
which is given by multiplication and clearly

m(s @ €) = m(s)’ (€) (4.87)

for all £ € H7(X,G).

Now it is clear that the general considerations fit into the context of our earlier discussion
of the Kiinneth-formula and the cup product in the previous section:

If we consider spaces X,Y which have a nice acyclic covering, then the acyclic resolutions

0—2Z—[[Z0y — [[ Ziapy — ---
a (a,B8)

are resolutions by free Z-modules and therefore they are also flat. Since we have
ZX®ZZY =ZLxxy

we see that the above considerations generalize the previous ones.
We may take X =Y, and we consider the product

HP?(X,Z) ® HY(X,Z) — H"T1(X x X,Z).
Now we consider the diagonal X Ay Xx X , and we can consider the restriction.
Definition 4.6.13. We can define the cup product of the two classes by
AMi(a® p) = aUp,
Now we have seen — at least for reasonable spaces — that the cohomology groups

H*(X,Z) = @ H" (X Z)

p

carry the additional structure of a graded anticommutative algebra. We want to deter-
mine the structure of this algebra in some special cases.



4.6 Spectral Sequences 115

4.6.8 Example: Cup Product for the Comology of Tori

Let us consider an n-dimensional vector space V over R and let I' C V' be a lattice, i.e.
a free submodule of rank n such that V/T' becomes a compact space. We can choose a
basis ey, -+ ,e, of I', this is also a basis for V' and we get an isomorphism

V/T ~ (R/Z)" = (S")™. (4.88)
The Kiinneth formula yields a homomorphism
H*(S'Z)®---® H*(S",Z) — H*((S")",Z).

Since the cohomology groups HY(S',Z) are free, it follows that this is indeed an iso-
morphism, hence H*((S')",Z) is a free module of rank 2" over Z. Especially we get
H"((SY)",Z) = 7. It remains to determine the structure as a graded algebra.

We give an orientation to the circles: The basis vector e; can be viewed as a tangent vector
at 0 of the i-th component circle {0} x ... .S* x {0} C (S!)" and this tangent vector gives
the positive orientation of this component. Now we notice that H*(R/%,Z) = 7 (see
section 4.1.2). We consider the cohomology in degree p. If we have a class £ € HP(V/T'\ZZ),
then we can attach to it an alternating p-linear map ¢, € Hom?) (I',Z). To define this
element we have to give the value @¢(y1,--- yp) for any p-tuple v = (y1,--- yp) of
elements in T'. We take these elements and construct a homomorphism

ay : RP/7P — V/T

which is given by
al(xl, Ce ) =Ty A+ TpYp. (4.89)
The class o (§) € HP(RP/ZP,Z) = 7, and this is our definition

905(715 T WP) = O‘:(ﬁ) (4.90)

We see rightaway that this value is zero if v - - -7, are linearly dependent because then
the image of a., is an (S*)?' with p’ < p.

We have to show that the map ¢ is p-linear. This is easily reduced to the following special
case: We consider RPT!/ZPT1 and we consider the three inclusions i1,i9,A : RP/ZP —
RPHL/7ZPTL given by

ir : (z1,...mp) — (21,0,22,. .., 2p)
i ¢ (x1,...xp) — (0,21,22,...,2p)
A (z1,.,1p) — (T1,21, 22, ... ,Tp)

and for a class ¢ € HPHL(RPH /7P 7)) we have to show that
i1(§) +i3(8) = A™(E). (4.91)
Both sides are linear in ¢ and hence we have to check this equality for classes
& € HY(R/Z,Z) ® H'(R/Z,Z) @ HP"' (R~ )z~ ' Z)

and
& e HO(R/Z,Z) @ H'(R/Z,Z) @ HP~Y(RP~1 /7P~ 7),
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and then it is obviously true. This gives us a homomorphism of graded modules
a: H*(V/T'\Z) — Homyy, (", Z).

It is a well known elementary fact that the right hand side has the structure of an
anticommutative graded algebra where the product is given by

(e AP) - vm) = D (=D Do, - vi,) - (v -3, (4.92)
t
where ¢ is a p-form, ¥ is a ¢-form m = p + ¢, the summation is over all partions of the
set {1,...,m} into a set of p elements and a set of ¢ elements and (—1)°®*) is the obvious
sign.

Perhaps it is not so much of a surprise that:
Lemma 4.6.14. The homomorphism
a: H*(V/T,Z) — Hom}) (T, Z)
s an isomorphism of graded algebras.
To verify this we write V/I' = (R/Z)", and we have the following basis for the cohomo-
logy: We look at ordered subsets i =iy < ig--- <14, of {1,---n} and form
1@ @1®e;, @ ey e, @1 @1=¢

where e;,, € HY(R/7%,Z) is the generator determined by the orientation. The e; can be
viewed as basis elements for I' at the same time, then

1 fi=41-ip=1Jp
0 else

)

we (€, e5,) = {
and clearly

£ UE = {O if 4 and i’ are not disjoint . (4.93)

(~1)fegy  else

This proves the assertion.

A Connection to the Cohomology of Groups

At this point it seems to be reasonable to explain the relationship between the group coho-
mology H*(T',Z), which is discussed in Chapter 2 and the cohomology groups H*(V/I',Z).
To any I'-module M we can attach a sheaf M on V/T'. This is simple: For an open subset
U C V/T we consider the inverse image U C V under the projection and put

M(U) = {f: U — M|f locally constant and f(u+~) = vf(u) for allu € U,y € T'}.

It is clear that for any point € V/I' we can find a contractible neighborhood U, such
that for any connected component of U, the projection to U, is a homeomorphism.
Hence M (Uy) ~ M, where the identification depends on the choice of such a component.
Furthermore it is quite clear that HO(V/T,M) = M", so it should not be such a surprise

that in fact H*(D,M) = H*® (V/F,M)
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Actually this can be derived from the spectral sequence of the fibration V. — V/T", we
have to exploit the fact that V is contractible.

This is a special instance of the cohomology theory of arithmetic groups, which will be
discussed (this is at least my plan) in the third volume of this book.

4.6.9 An Excursion into Homotopy Theory

We want to discuss briefly an application of the spectral sequence which is not directly
related to the goals of this book, but which is certainly important and beautiful.
For a pathwise connected space X together with a base point x one defines the homotopy
groups m,(X,z¢), on the other hand we have the singular homology groups H;(X,Z)
which are also not discussed here (except in the chapter on cohomology of manifolds (see
4.8.6). As a general reference I refer to [Hat]. We always have the so called Hurewicz
homomorphism

mn(X,x0) — Hp(X,7Z). (4.94)

A famous theorem of W. HUREWICZ asserts:

Theorem 4.6.15 (W. Hurewicz). Let X be pathwise connected with base point xo. Let
n > 0 be an integer. For n > 1 let us assume that m(X,x0) = 1 and

H{(X,Z)=0 for 1<i<n.

Then the Hurewicz homomorphism mn,(X,x0) — Hp(X,Z) is an isomorphism. For
n =1 we get an isomorphism

771(X,.Z’0)ab = 7T1(X,l‘o)/[ﬂ'l(X7$0),7T1(X,.Z‘())] = Hl(XaZ)
Here m1(X,x0)ap is the abelianized fundamental group, i.e. the mazimal abelian quotient.

We cannot prove this theorem here, since we neither defined the homotopy groups nor the
homology groups. But for any abelian group A we can also define the singular cohomology
group Hg,, (X,A) and for reasonable spaces we have

" (X,A) ~ H"(X,A),

sing

i.e. the singular cohomology with coefficients in A is isomorphic to sheaf cohomology.
Now the universal coeffient theorem implies (see [Hat], Chap. 3) that

HOHI(HAX,Z),Q/Z) = HZ(X,Q—/Z),

where we have to exploit the fact that Q/Z is injective in the category of abelian groups.
Hence we can reformulate the Hurewicz theorem:

An element [¢] € 7,(X,z0) is represented by a map of pointed spaces (the basepoints
are pt and xg) ¢ : (S™,pt) — (X,x0). Such a map induces a map

" H"(X,Q/Z) — H"(S",Q/Z) = Q/Z.
The map £ — ©*(&) defines a homomorphism
H"(X,Q/Z) — Hom(m,(X,x0),Q/Z).

(the dual of the Hurewicz map).
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Theorem 4.6.16 (Dual of Hurewicz Theorem). If H (X,Q/Z) =0 for 0 < i < n, and
m1(X,x0) =1 if n > 1, then this map is an isomorphism.

Indication of proof: We introduce the space (XX,z() of continuous path starting at
T, i.e. the space of all o
o:[0,1] — X
o(0) = xo.

The open neighborhoods of a path o are given by those paths which stay in an open
neighborhood of the image ¢([0,1]). Then this space is contractible and we have a map

e : (ZXux9) — X
: o — o(1).

This map is a cohomological fibration, the fibre over zq is the loop space Q(X,z¢). In
sense of the definition 4.3.9 we get a local system H®(Q(X,x0,Q/Z)) whose fibres over
xg are given by H®(Q(X,x0,Q/Z)). Hence have a spectral sequence

H* (X,H'(Q(X,xo),Q_/Z)> — H*(SX,Q/7).

We prove the Hurewicz theorem by induction on n. The key is the observation that
H'(YXX,Q/Z) =0 for ¢ > 0 since £X is contractible.
If n = 1, then we consider the Fs-term in our spectral sequence in degree one

HO(XHO(QUX,20),Q/2)  HYXH(QUX,20),Q/2)))  H*(X,H(QAUX,20),Q/7Z)))

HO<X’H1(Q(X’IO)7%> Hl(Xle(Q(X7IO>7%))) *

Since H'(XX,Q/7Z) = 0 we see that the two E% E1Y must become zero. It follows that

the term H'(X,H°(Q(X,x0)) = 0 because the differentials going into it and out of it are
zero. We also see that

HO(X AN (QUX 20),Q/Z)) — H*(XH (X 20),Q/7Z))

is an isomorphism, but this we will not need.

The local system H°(Q(X,70),Q/Z) is easy to compute, it is a module under the fun-
damental group I' = m1(X,xp). I recall the definition of the universal covering space
X —X , by definition this is the space of path-connected components of Q(X,zq). The
fundamental group m(X,z9) = I' is the group of automorphisms of X —» X. Then it
is easy to see that H°(Q(X,z¢)) is the local system given by the I'-module C(I',Q/Z) of
all Q/Z-valued functions on I' where I' acts by translations. This module contains the
constant functions and hence we get an exact sequence of sheaves on X

0 — Q/Z — HO(QUX,z0)) — M — 0,

where M is the quotient sheaf. We get a long exact sequence in cohomology
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0— H(X,Q/%) — H° (X,HO(Q(X,xO),%)) — HO(X,M) — HY(X,Q/Z) — 0.

For the local systems over X the sections H(X, )) are simply the invariants under T.
We get an exact sequence

(Q/z)" = (C(,Q/7))" — M" = HY(X,Q/Z) — 0,

the last zero is just our first observation above.
Now it follows from our results on the cohomology of groups that (See Exercise 2.2.4)

MY ~ Y (T,Q/7Z) = Hom(T,Q/7Z),

and hence we proved the result for n = 1.
For n > 1 we apply the same method. Now we know that Q(X,z¢) is pathwise connected,
because we also assumed the vanishing of the fundamental group. Hence we see that

HO(QUX,20),Q/7) ~ Q/Z.

Then we find many zeroes in the bottom row of the spectral sequence and the local
system of cohomology groups H*(Q2(X,x0),Q/Z) will be constant. This shows that the
FEs-term in the spectral sequence looks as follows

HO (X HOQAX,20),Q/Z)) 0 --- 0 H" (X,HO(Q(X,xO),Q_/Z))
H° X,Hl(Q(X,xO),%) R * (4.95)
HO(XH ™ (QX20).Q/T) + - = .

the zeroes in the first line a forced by our assumption. Again we exploit the fact that
¥ X is contractible. I claim that H'(Q(X,r0),Q/Z) = 0 for i < n — 1. This follows by
induction on 4, for i = 1 the differential ends up on the first row and hence is zero. Then
H(Q(X,20),Q/Z) = 0, and this put zeroes into the second line. Then we continue and
this argument breaks down at i = n — 1. Hence we conclude that our spectral sequence
looks as follows

HO (X,’HO(Q(X@O),Q_/Z)) 0 - 0 H" (X,%O(Q(X@o)»Q_/Z))
0 0 - 0 0
: (4.96)
0 0 0

HO (X H" N Q(X,20),Q/Z)) + -+ *

the lines from ¢ = 1 to ¢ = n — 2 are filled with zeroes. The differential
dn Tt O (XN QX 0) Q/Z) ) — H (X H(QAX.20).Q/2))

must be an isomorphism. (It is a little bit similar to filling a Sudoku puzzle).
This implies that
/Hn_l(Q(vaO)aQ/Z)xo = Hn(XvQ/Z)
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i.e.

H" N (UX,20),Q/Z) = H"(X,Q/Z).

Now we have the exact sequence for homotopy groups which say that
Ti—1 (Q(X7$U):Q/Z) =~ T (X,$0)7

and the Hurewicz theorem follows. O
It is quite amusing to consider the special case of X = S™. In this case we find

Q/Z fori=k(n-1)

4.97
0 else ( )

H(QS5",Q/7) = {

4.7 Cohomology with Compact Supports

4.7.1 The Definition

Let X be a locally compact space and F a sheaf of abelian groups on X. If we have a
section s € H°(X,F) then its support Supp(s) = |s| is the set of ¥ € X with s, # 0.
It is always closed. If we have an open subset U C X and a section s € F(U) then its
support |s| is closed in U but not necessarily in X.

We can define the submodule H?(X,F) of sections with compact support. This yields
a left exact functor and we define the cohomology with compact supports as the right
derived functor of H?(X,F). In accordance with our general principles we choose an
injective resolution

0—F —I1°—T1" — ...

of F and define ' 4
HI(X,F) = HI(HO(X,I*)).

The cohomology with compact supports has properties which are quite different from
those of the ordinary cohomology. For instance it does not satisfy the homotopy axiom.
We will see in the section on the cohomology of manifolds that it is dual to the ordinary
cohomology. Of course on a compact space X we have H? (X, F) = H*(X,F). If we have
open sets U C V C X then we have natural maps

here we see that the restriction maps which we had in the theory of sheaves are turned
backwards. On the other hand if we have a map f: X — Y then we will not be able to
define a map from H'(Y,Z) to H:(X,Z) unless the map is proper.

Let us assume that U < X is an open subset of our space, and let us assume that its
closure is compact, then its boundary U = U \ U is also compact. Let F be a sheaf on
U. We define two new sheaves on X: The direct image i.(F) where

i (F)V)=FUNV)

and the extension by zero
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WF)(V)={se€ F(VNU)]||s| does not meet V NOU}
One checks easily that 4(F) has the stalks
WF)y =F, if z€U
WF), =0 if yeU

We have a morphism of sheaves 4(F) — i.(F) which is an isomorphism in all stalks
except the ones on the boundary oU.

Proposition 4.7.1. If X is a locally compact space and i : U < X an open subset with
compact closure and if F is a sheaf of abelian groups on U then

H:(UF) = H*(X,u(F)).

Proof: This is almost clear from the definition. We choose an injective resolution of the
sheaf F on U
0—F —I" 1" —T1*— . ..

and we notice that
iW(I*)(X) = HY(UI*).

4.7.2 An Example for Cohomology with Compact Supports
The Cohomology with Compact Supports for Open Balls

Now we consider the sheaf Z on the open ball D™ C R™. We want to compute Hs (D", Z).

To do this we embed D™ <% D". On D" we have an exact sequence
0 — i(Z) — i(Z) — i.(Z)/i(Z) — O.

The sheaf i.(Z) is Zp» and the sheaf i.(Z)/i(Z) is concentrated on D"\ D* = §"~1
and on this space it is simply Zg.-1. We write the long exact sequence in cohomology,
exploit our Proposition 4.7.1 and get

...— HY(D™Z) — H"(D",Z) — H" (8" ' Z) — H'*Y(D" 7).
We have H”(D",Z) = 0 for v > 0 and hence we get for v = 0
0 — H'D"Z) — H°(S"'Z) —s HYD"Z) —0
%

and for v > 0
HY(S" ') = H/Y (D™ 7).

Our computation of the cohomology groups of spheres yields

Z forv=mn

HZ(D",Z) =
0 forv#n.
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Again we have to discuss these nagging questions of orientation. We can say that a
topological orientation is an isomorphism

O, : HY(D"Z) — Z.

If we have a homeomorphism f : D™ = D™ then it induces necessarily an isomorphism
f*: HY(D™Z) = HY(D"Z) which can only be multiplication by 4+1. We say that f
preserves the orientation, if it induces the identity on H¢(D",Z). If we take for instance
the homeomorphism that sends (x1,x9,...,z,) — (z1,22,..., — &), i.e. we change the
sign of the last coordinate then we get multiplication by —1 on HY(D",Z).

But again we have a rule to determine a topological orientation from an orientation on
the tangent space R™ of D™ at the origin. The tangent bundle of R™ is trivial, hence
we get an orientation at any point. This orientation provides an orientation on S™~! by
the following rule: A basis of tangent vectors {ey,...,e,_1} at some point P on S"~ 1 is
positively oriented if {np = outward normal vector, e1,...,e,—1} is positively oriented.
If n > 1 this orientation gives a topological orientation on S™~!. If n > 1 then the
isomorphism

Hn71(5n717z) = ng(Dn’Z)

provides the desired topological orientation.
If n = 1 we choose the orientation given by %. We have the exact sequence
0 —i(Z) — ix(Z) — L1y ®Ly_1y — 0
which provides the long exact sequence
0 —7—7O7 — H'(I,ii(Z)) — 0

and our convention is that we identify H'(I,i(Z)) = 7Z via the first summand (corre-
sponding to the point +1 € S°).

We can look at this rule to fix orientations from a slightly different point of view. Let
n > 1. If we pick a point P € S”~! we can find a small open ball Up around P, which
is diffeomorphic to D®~!. We take the same orientation on Up as above. Then we have
ip:Up < S" 1 and the inclusion ip,(Z) < Z. Hence we have

Lemma 4.7.2. The quotient sheaf Z/ip\(Z) has no cohomology in degree # 0. Hence
we get an isomorphism

Hn—l(Sn—ljiR!(Z)) l) Hn_l(sn_l,Z).

Then we can define the topological orientation on S™~! by the topological orientation
which we have on H?~Y(Up,Z).
We want to consider a relative situation. Let us assume that we have a diagram

™ Z_
™
Y

and we want to assume this is some kind of fibration by n-dimensional balls. By this we
mean that locally in Y we can trivialize our diagram
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VxDnClsy D"

Vv

If we choose a covering Y = UV, such that we have trivializations over the V,,, then we
get identifications (see 4.3.1): For v € V,, N V3 we have homeomorphisms

Jap(v) : (D", D") — (D",D") (4.98)

which means gq g(v) is a homeomorphism of D" which maps the interior to the interior
and the boundary to the boundary.

We call this fibration oriented if the g, g(v) preserve the orientation, and if we selected
a consistent orientation on the fibres. We consider the sheaf Z on X and its extension
i/(Z) to X. We want to compute the cohomology H*(X i|(Z)). We apply the spectral
sequence for a fibration (see section 4.6.6), and we have the Es-term HP(Y,Rm, (i1(Z))).
Our computation in the previous section yields

0 g#n

Rim,(i(Z)) = {Z i=n

(remember that we have the orientation) and consequently the spectral sequence degen-
erates and o
HP (X (1)) = HY(Y,R"m, (i) = HP(Y,Z). (4.99)

Formulae for Cup Products

We want to explain some formulae for cup products of certain classes. These formulae
will be important later, they help us to understand the intersection product of cycles.
It is technically convenient to replace the open (resp. closed) ball D™ (resp. ﬁn) by the
open (resp. closed) box

B = {(x1,++ xn) | |2:| <1} € B" = {(1,-+- an) | |2i] < 1}

the pairs (D", D") and (B",B") are homeomorphic. Of course B® = B° = {(0)} is a
point.
Let us assume that we have two numbers dy,dy with d; + dy > n. We consider products

—=d _ _ —d
B" xB" % and  B"% x B,

and we consider embeddings

. BY x pr-— — B"

21'((3317-“733d1),(y17-~7yn—d1)) (@1, T Ynedy)
and

- Bt x B — B"

s ned )y (@1 2d)) (Y Wnedao Ty Tay).
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We also have the projections
—d —d
m:B ' xB"% — B,

_ —d —d
7o B"" % x B? — BT

We can apply the results from the previous page. We have the sheaves i1,1(Z) and i (7Z)
on En, and clearly equation 4.99 give us

H" N (B" i (7)) = 7
H"%(B" iy (Z)) = 7

We select orientations as given by the ordering of the y-coordinates and on a y coordinate
we orient from —1 to +1. (See 4.7.2.) We want to consider the cup product

H" 1 (B" i1 () x H'%(B" ig)(Z)) — H?~1=%(B" i) |(Z) @ iz, (Z)).

The tensor product of the two sheaves is easy to compute. We have an embedding

§d1+d27n « g2n—di—ds i1,2 5"
(('rlv v ,$d1+d2—n) ) (yh T 7y2n—d1—d2))
(yla - Yn—dosT1y - - -5 Xdi+da—nsYn—da+1s - - - 7y2n—d1—d2)

and an isomorphism provided by the multiplication on the stalks
i10(Z) ® iz (Z) = i1,2,(Z).

We choose the orientation on B2"~91=42 which is given by the ordering of the coordinates.
Then all the cohomology groups in

H"(B" iy (Z)) x H"="(B" ig\(Z)) — H*" ="~ (B" i1 5.1(7)).
are identified to Z. Now I claim:

Proposition 4.7.3. Under these identifications the cup product is given by the multipli-
cation Z X 7 — 7.

Proof: The following argument may be considered as somewhat sketchy, I ask the reader
to fill the gaps. First of all we can restrict to the case dy + do = n, and now we have
enough flexibility to reduce to the case dy = n — 1, dy = 1. In this case the embedding is
i1,2 = Jn Where j,, : B" — B" is the standard embedding. Then we recall that

H(B'\1) = H'(B' (L))
can be computed from the exact sequence of sheaves on B' = [—1,1]
0—uZ) —2Z—7Z)i(Z) —0
where Z/i(Z) is the skyscraper with stalk Z on {—1,1}. Our rule of identification was

zZ=H({1}.2) = H'(B" ii(2)).
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Now we apply the principles developed in 4.6.7. We have B = B x [-1,1] and
i1,(Z) = Zzn—1®i(Z). Then our little exact sequence provides a new exact sequence

0 — i1,(Z) — Zgr — Lgn® Z[ir(Z) — 0.

The canonical generator ¢; (i.e. the element 1) in the first factor H'(B" iy (Z)) is the
image of 181 € H(B" " 2)®H({1},Z) under the boundary map

—=n—1

HB" Z)RH({-1,1},Z) — H'(B" ,i1.(Z)).

Now we have to multiply this generator with the canonical generator es in the second
factor H”’l(En,igyg(Z)). Recall that i : B™ 1 x B' = Bl x [-1,1] — B". Then
this canonical generator is €3 = ¢/®1 € H”fl(§n71,jn_l,g(Z))(@Ho(Bl,Z), where € €
H "*1(§n_1,jn_17g(Z)) is the generator provided by the standard orientation. We get an
exact sequence

0 — i1 2(Z) — jn-1,(B)DL — jn_1,(L)S(Z/ir(Z)) — 0.

The product m(e; @ e) € H"(B" iy 2.1(Z)) = H*(B"Z) (see 4.6.7) is the image under
the boundary operator

H" Y (B" jn_1.1(Z)BL)i(Z)) 5 H"(B" iy 2.(Z))

of the element m(e’ @ 1{13) where 1gqy is the canonical generator in H({1},Z). We
have shown that this is the canonical generator with respect to the standard orientation
in H*(B" i1 2.1(Z)) = H*(B" ,jn.1(Z)). This proves the assertion of Proposition 4.7.3. [

We have a diagram

H" (08" 1) ——— B"(B" ju(Z))

! !

H (871, 2) ——s (D" (2)
where the vertical arrows are isomorphisms which are induced by your favorite orientation
preserving homeomorphism (B",0B") = (D" ,5"~1). The embedding B" ' {1} c &B"
provides an isomorphism

n—1

HTL_I(E ,jnfl,!(Z)) ;H'rl—l(aE"’Z) l> Hn_l(Sn_l,Z).

These isomorphisms map the canonical generator in H"™~! (En_l, Jn—1.1(Z)) to the canon-
ical generator in H"=1(8"~1 7Z) which in turn is mapped by d to the canonical generator
in H*(D",jn1(Z)-

4.7.3 The Fundamental Class

Let M be a connected C%-manifold of dimension n. If we have a point p € M then we
can find a neighborhood V), of p which is homeomorphic to an open ball D C R". Then
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we have H%(V,,Z) < Z but this isomorphism is not canonical. If we have two points
p,q and two small open neighborhoods V),V of these points, then we have no consistent
way to identify H%(V},,Z) and HZ(V,,Z). But if we choose a path v : [0,1] — M which
starts at p and ends at ¢, then we get an identification along the path (see the discussion
of this argument in the following section on local systems). We say that M is orientable
if for any two points this identification does not depend on the path. If M is orientable
then we can choose a generator in HZ(V,,,Z) for all p which is consistent with the above
identification along paths. Once we have chosen such generators we call the manifold
oriented.

If our manifold has a differentiable structure, then we have another notion of orientation
on M (see sections 4.1.2, 4.3.3,4.4.5). In this case it is easy to see that the two concepts
of being oriented coincide.

In the next chapter we will prove that for a connected and oriented C°°-manifold M
of dimension n, any point p € M and any open ball D, C M containing p the map
HYD,,Z) — HZ(M,Z) is an isomorphism. This is the starting point to get Poincaré
duality.

Definition 4.7.4. The image of the generator in H3(D,,Z) is called fundamental
class of M.

This class does not depend on the point p.

4.8 Cohomology of Manifolds

4.8.1 Local Systems

I want to study the cohomology of local coefficient systems on C*°-manifolds. (See 4.3.3.)
In the following let M be a C*°-manifold of dimension d. At this point we do not assume
that M is compact, but we make some kind of finiteness assumption: We want to assume
that M is countable at infinity.

Definition 4.8.1. A manifold M is called countable at infinity if we can find an
increasing sequence of relatively compact open sets W, C Wy, 11 where W,, C W41 for
all n and which exhausts the manifold M, i.e. | JW,, = M.

This condition is close to the paracompactness of M.
Let M be connected, let V be a local system on it (see 4.3.3). We know that the stalks
at two different points x,y are always isomorphic to each other but in general we do
not have the possibility to identify them in a consistent way. This is explained by the
following argument which everybody has seen during the discussion of the principle of
analytic continuation in theory of complex functions:

Since M is connected, we can choose a path v : [0,1] — M with v(0) = z and v(1) = y.
We cover the path by finitely many sufficiently small open sets U;, on which V is trivial.
This gives us a subdivision 0 = ¢ty < t; < ... < t, = 1 such that the v[t;,t;+1] are entirely
in one of the covering sets U, and hence we can identify V,«,) = Vy«,,,) = V(U,). This
sequence of identifications yields an identification

UV, 5V,
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This identification depends on the path, but it is not difficult to see that it only depends
on the homotopy class [y] of the path.

If we choose a base point g € M and consider closed paths which start and end at xg.
We can compose such paths. Then it is a fundamental fact that the homotopy classes
of these closed paths form a group under composition. This is the fundamental group
m1(M,x0) (see for instance [Hat]). We get a representation of the fundamental group

p:mi(Mzo) — Aut(Vy,)
p: [’7] — (\II[W] Voo — V$())'

It is not hard to see that the local system can be reconstructed from this representation:
We consider the set of pairs ([y],v) where [7] is a homotopy class of paths from z¢ to z
and v € V. The stalk of V at a point x € M will be this set divided by the equivalence
relation

(B]0) ~ (Inlsen)

if and only if
p(ln] ™" o (Y (v1) = v. (4.100)

We can express this by saying that we have an equivalence of categories:
Abelian groups V' together with an action of m (M,xo)
and
local systems V whose stalk at xq is isomorphic to V.

If we have a local system V on our manifold M then under certain assumptions we can
construct a dual local system VV. We want to study

H'(M,V) and H!(M,VY)

and we will — again under certain assumptions — construct a duality between H®(M,V)
and HY=(M,VV), where d is the dimension of M. This will be Poincaré duality.

4.8.2 Cech Resolutions of Local Systems

We want to assume our d-dimensional C*°-manifold M from now on to be paracompact.

Lemma 4.8.2. On such a manifold M we can find a countable covering M = J,c Ua
by open sets which has the following two properties:

(1) The covering is locally finite, i.e. to any point p € M we can find an open neigh-
borhood V), containing p such that we have only finitely many o € A such that
Ua NV, # 0.

(2) For any finite set ag, . ..,aq € A the pair of spaces (U,,Uy) is homeomorphic to the

pair (Ed,Dd): (closed d-dimensional ball, open d-dimensional ball).

Before I can outline the proof I need a definition.
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Definition 4.8.3. A partition of unity is a family {h;}icr of positive C*°— functions
which has the following properties:

(i) The support of any h; is small so that we can find an open set U; C M which is
C>-isomorphic to an open ball D C R¢ and Supp(h;) C U;.

(i) For any point x € M there are only finitely many indices j € I with h;(x) # 0.
(iii) We have
> hi=1

iel

The construction of such a partition of unity is standard and quite easy.

Proof: I want to explain briefly why we can find such a covering.

We can use the paracompactness to introduce a Riemannian metric on M. To do this
we construct a partition of unity on M. We can construct a Riemannian metric g; on
each of the U; simply by transporting the standard metric on the ball by means of the
diffeomorphism. We multiply this metric by h;, then it extends to a quadratic form on
the tangent bundle of M which is positive definite on the support of h; and zero outside.
Adding up these metrics gives the desired Riemannian metric.

Now we invest some differential geometry. Any point € M has an open neighborhood
V. which is diffeomorphic to a ball (see [B-K], Prop. 6.4.6.) and which has the property
that it is geodesically convex: Any two points y,z € V, can be joined by a unique
geodesic which lies in V,, (see [B-K], 6.4.6). To find this we may simply take a small ball
B(x,e) = V,, these are all those points which have distance < & from z. The closure of
such a ball is diffeomorphic to a closed ball in R?, the boundary B (z,¢) is a sphere. It
is a smooth hypersurface in M.

Now we come back to the construction of a covering with the required properties. We
assume that M is countable at infinity. We can exhaust it by a sequence of relatively
compact open sets W,, which in addition have the property that W,, C W, 1.

We start at an index n and cover W, by a finite family of such small balls as above.
We require that these balls are contained in W, 1. Now we proceed with Wn+1 but we
require in addition that these balls have empty intersection with W, _;. Then it is clear
that the union of all these families provides a covering {U,}aea of M. The intersections
Uy = Uay N ...NU,, are diffeomorphic to open balls in R?. We will not verify that
(Ua,Uy) satisfies (2).

For us it is enough to know the following condition is true:

(locbound) For any point x in the boundary x € OUy = Uy \ Ua the intersection
B(z,e) NU, is contractible.

Each point in the intersection is joined to x by a unique geodesic lying in this intersec-
tion. ]

I propose to call such a covering also a convex covering. (See also [B-T], they call these
coverings good covers.)

We give the indexing set A a total order, in other words we identify it to {0,...,n} or N.
We consider (¢ + 1)-tuples @ = (ap,...,a;) € A% where the indices are increasing.
Let us denote this subset of indices by qul. For such an a = (ay, . ..,aq) we have the
inclusion
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to : Ug = M

and starting from our local system V we form the sheaf (see page 81)

Vi =il (V).

The sheaf V; has non-zero stalks only in the points z € U,, and in such a point the stalk
is equal to V,. Here we need that for any point = € U, and a small ball B(x,e) that

V(B(z)) = Vo (B(z,e) N Ug).

Outside of U, the sheaf has been mowed.
Now we consider the Cech resolution of our sheaf V' (see section 4.5.2 and 4.6.6):

O—>V—>HV§—> H Vieg) — - — H Vo —
agA (,8)EA XA acALH!

This is now an acyclic resolution (section see 4.5.2) since all the sheaves V) are acyclic
by the homotopy axiom. B

Hence we see that the cohomology groups H”(M,V) can be computed from the complex
of global sections (see 4.6.10)

[Toea Va(M) — H(aﬁ)eAxA< V(*a,ﬁ)(M) . T HueA‘yl Va(M) —
[ [ Il -
HaeA V(Ua) — H(a,ﬂ)eAxA< V(Ua N UB) . T HaeA‘ljl V(Ug)) — .-

which is the Cech complex attached to the resolution.

4.8.3 Cech Coresolution of Local Systems

We introduce the Cech coresolution. To do this we consider the sheaves

igrin(V) = V.

These sheaves are zero outside of the open sets U, and on these sets they coincide with
V.

For any a we define a morphism ¢, : V!, — V. To do this we choose an open set U C M
and a section s € V', (U). This is by definition a section s € V(U N U,) whose support
|s| = W is closed in U, and therefore also in U. Hence U \ W is open. But W is also
open since V is a local system. Hence we have a disjoint decomposition into open subsets
U=WU(U\W)and V(U)=V(W)& V(U \ W). Our morphism ¢, is now defined by
ta(s) = (s,0).

Hence we can define a complex of sheaves

o= I vi—— I Vie—]]Vv.—Vv—o0
acALt! (a.8)eAxAL a€A

where the boundary operator is given by
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(dsx)ozo,...,aq = Z(_1)E(ﬁ’g)Sz,ag,...,ﬁ,...,aq
B

where 8 runs over those indices which do not occur in « and where €(8,a) gives us the
position of 3 with respect to the ordering, where s; a,,...,,....a, 15 an element in the stalk
V(!xo,...,B,...,ozq,x' The last homomorphism on the right is simply summation 3 s; o. Again
it is clear that this is an exact complex of sheaves (see Exercise 24).

On these open sets our sheaves V!, are isomorphic to a constant sheaf. We now assume

that M is oriented, then we get for the cohomology with compact supports (see 4.7.2)

f d
LA I orv#d
= V(Uy) forv=d
and V(Uy) > V.
With a grain of salt we may consider this as an acyclic coresolution for the right exact
functor

YV — HY(MV),

it is called coresolution because all the arrows point in opposite directions. Of course we
have to show that the functor is right exact, this is the source for Poincaré duality.
I claim that we have HY (M, ], c et Vi) = 0if v # d and

aci <

mw, I v = € HAMY)). (4.101)

q+1 q+1
acAL acAL

To see this we take the injective resolution constructed by GODEMENT for the Vil (see
4.2.1). Then the product of the sheaves in the resolution gives a resolution of the product:

o— J[ vi— ] 28— ] o— -

QEAQ<+1 gEAq<+1 gEA‘?’l

and to compute the cohomology with compact support we look at the resulting complex
of global sections with compact support. But since any compact set meets only finitely
many of the open sets U, we see that

M, [ 19= @ HX(MIY).

acALH! acAL!

To see this we have to take into account that the stalks of the sheaves I & are zero outside
U, which is clear from the construction. Then the claim follows.

We apply the functor H¢ to our coresolution and get a complex

.— @ HU MY, — ... — P H(MY,) —0. (4.102)

+1
QEACI< acA

We introduce degrees on this complex by giving the degree i to @QGAE»I Hg(M,V;).
Hence the complex becomes a homological complex: the degree of the boundary operator
is —1. Furthermore I want to make the additional assumption:
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(Bound) The number of indices v for which U, contains a given x is not only finite but
even bounded independently of x.

This has the consequence that our complex of sheaves is bounded, i.e. it is trivial for
large i (and for ¢ < 0 anyway).

Theorem 4.8.4. Under the assumption (Bound) the cohomology of this complex is the
cohomology with compact supports

HITMV)=H'|...— @ HMV) — ... — PH MYV, —0

+1
a€AL acA

Proof: We use the same arguments which we used when we proved that we can compute
cohomology groups by acyclic resolutions. We break the complex of sheaves into pieces

= H Vi — ... — H VEQ,B)—)QHO
acAT! a,BEAZ
and

0—¢— [[V.—Vv—o
acA

The second short complex gives us a long exact sequence if we apply the cohomology
with compact supports. Since the sheaf in the middle has only cohomology with compact
supports in degree d we get

HYMY) ~ H(M,G) for i#d—1,d
and

0— HEYMY) — HY(M.G) — P HYMV,,) — HI(MY) — HIT(M,G) — 0.
acA

At first we want to conclude that H*(M,V) = H*(M,G) = 0 for m > d. If not we would
have H*(M,G) # 0 for some m > d. But G sits in a short exact sequence

0— G — H v;’ﬁ—>g—>0
oz,,GEA?<

and G is the end of the complex

! !
e H Via,8,7.8) H Ve — 91— 0.
(@,B8,7,86)€AL (a,8,7)€A%

We would get H™T1(M,G;) # 0 and applying the same procedure again and again we
get a contradiction, because the complex is finite to the left. Hence we get in degree d

0 — HITYMY) — HAM.G) — @ HY(M.,V,) — HI(M,V) — 0.

acA
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Induction on the length of the complex gives us that the complex

0—s ... —s @ HY MV, — ... — Hd(Mvv(!a,,B)) —0

aeAL!
computes the cohomology H?~*(M,G) and the theorem follows. O

During the proof we saw:

Corollary 4.8.5. Under the assumption of the theorem we have
H™(M,)V) =0 form > d,

this implies the right exactnes of HE(M,V).

4.8.4 Poincaré Duality

In this section we assume that our manifold M is oriented. Let R be a commutative ring
with identity. We assume that we have a local system V on M which has values in the
category of finitely generated projective R-modules. We can also consider the dual local
system VY = Hompg(V,R). Our assumptions imply that VYV = V. We assume that we
have a convex covering which satisfies (Bound). We compute the cohomology H®(M,V)
and the cohomology with compact support H?(M,VY) by means of the two complexes
which we obtain from a convex covering. We write the complexes

0 d ? HaGA V(Ua) _>d I_I(oz,ﬁ)eAz< V(Ua N UB) —>d s —d>ngAq<+1 V(Ug) —>d .

[ | [
Xl N X4

A Da VWU S o LB penz VUL NUR) S @, VW (Ua) —2> 0

o o d o

Yq e Y2 Yl 0

where we made the identification VV(Uy) = HZ(M,V)"'). We define a pairing
<,>Y"x X9 — R

which is given by the formula for s = (...,s4,...) € [[V(Uy) and t = (... tqa,...) €
P VY(U,) we define

<st>= So-te (4.103)

where s, -t is the pairing induced by the pairing on the coefficient systems. The expres-
sion makes sense because t has only finitely many non-zero entries. We have
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< ds,t >=< 5,0t > (4.104)

for s € X9t € Y9!, Since these complexes compute the cohomology and the cohomology
with compact supports respectively we get a pairing

HY(M,\V) x H"Y(M,VY) — R. (4.105)
We want to discuss the properties of this pairing. We need a finiteness condition:

Definition 4.8.6. We say that M is of finite cohomological type, if for any coeffi-
cient system V we can find a finite subset F C A such that the projection map

0 Lo Tlacn VUa) ~ T gyenz VWUa NUp) Lo T i V(Ua) —Ls

| | |

0~ Loep V(U) —d>'H(o¢,,6)eF2< V(U NUs) -4y ... —d>ngFg+1 V(U,)—L s ...
induces an injection in the cohomology of the two complezes.

Under this assumption it follows that the cohomology groups H?(M,V) are of of finite
type over R, i.e. they are of the form: submodule of a finitely generated free R module
divided by the image of a finitely generated free R-module.

Lemma 4.8.7. A manifold M is certainly of finite cohomological type if the following is
true

(a) The manifold M contains an open submanifold N whose closure N is compact and
whose boundary ON is a submanifold of codimension 1.

(b) The inclusion N < M is a homotopy equivalence.

This situation occurs if we consider the cohomology of arithmetic groups.
Of course a compact manifold is always of finite cohomological type.

Definition 4.8.8. For any R-module A we define the torsion subgroup Aios to be the
submodule of those elements x which are anihilated by a non zero divisor in R.

In the following theorem we write A/Tors for A/Aioys.

Theorem 4.8.9 (Poincaré Duality). Let M be a manifold of finite cohomological type.
We also assume that we have a convex covering which satisfies (Bound). We assume
that V is a local system of finite dimensional vector spaces over a field k. Then the pairing

HY(M,)V) x HZI(MVY) — k

is mon-degenerate for all q.

The wvector spaces HI=9(M,VY) and HY(M,V) are finite dimensional, the cohomology
H9(M,V) vanishes for g > d.

If R is a discrete valuation ring (or more generally a Dedekind ring) and if V is a local
system of free R-modules of finite rank then the pairing

HY(M,V)/Tors x H¥™9(M,V")/Tors — R

is non-degenerate.
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Here I mean non degenerate in the strong sense: For any element £ on one side, which
is not a proper multiple of another element, we can find an element 1 on the other side
such that < &,n >=1.

Proof: Our basic ring R is a field k or a discrete valuation ring. We compute the coho-
mology by means of the two complexes X*® and Y® respectively. We have the pairing

<,>YIx X1 — k.
These spaces may be of infinite dimension. We say that a linear form

A:X7= ] H'(M)V;) — R

q
acAl

is continuous if it factors over a quotient [], 5, H°(M,V?) where E) is a finite subset
of AZ. Then it is clear that Y7 is the space of continuous linear forms on X9. It is also
clear that X7 is the space of all linear forms on Y'9.

In X7 (resp. Y?) we have the subspaces of cocycles and of coboundaries

BY(X*) CZi(X°*)c X1
BYY®) cZiY*)cCY4

Since BY(X*®) = d(X97!) by definition we find that

Z9(Y*) ={y € Yoy = 0}
_ Bq(Xo)J_
={yeY! <BIX®),y>=0}

and by the same argument we find that
Z9(X®) = BI(Y*)*t.

We now assume that our ground ring is a field k. The spaces X2,Y ? are in perfect duality.
If they were finite dimensional we could conclude that for any subspace W of one of them
we have (W)L = W. This is always true for subspaces W C Y9. We also know that
always W C (W+)L. If y ¢ W then we have a finite set F C A of indices such that y
is already in @aqu<+1 V'(U,). This is a finite dimensional subspace of Y. Thus we can
find an x € HangJrl V(U,) with < W,z >=0 and < y,z ># 0. Hence y ¢ W1+,

But for subspaces W C X ¢ the same argument is only true for closed subspaces, which
means

W = {x € X?| Mx) = 0 for continuous linear forms A which vanish on W}.

We want to consider the case W = B?(X*). Here we use our assumption. Let x € Z9(X*®)

but x ¢ B?(X*), then we can find a finite subset F C A such that the projection zg of

x to [[,cpatr V(Uq) is not in the image of the boundary map dit Hang V(Uy) —
aeFs a o o

ngFg+l V(Uy). We find a y € @geFr1<+1 VVY(U,) which vanishes on the image of d% '

but not on zg, i.e. < y,Im (qu_l) >=0 and < y,x >7# 0. This element y is of course also
in Y7 and it vanishes on B?(X*®) but not on z.
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This proves that under our finiteness assumption we have

BIX*)* = BYX*)
Biy*)tt = BIY").

But then it is obvious that the pairing
HY(M,\V) x H"Y(M,VY) — k

is non-degenerate.

The next two statements follow easily: The vector spaces H4(M,V) are finite dimensional
because M is of finite cohomological type. By duality it follows that HI~7(M,V') are
finite dimensional. On the other hand HY(M,V') = 0 for v < 0 (definition) and v > d
(Corollary 4.8.5).

Now we come to the second half of the theorem, we assume that V is a local system of
free R-modules of finite rank where R is a discrete valuation ring. Let K be the quotient
field of R, let (w) be the maximal ideal of R, let k = R/(m) be the residue field. We will
apply the first half of the theorem twice, we can consider the local systems V ® K = Vi
and Ve k=V/rV.

We get an exact sequence of local systems

0—V5HVY ——V/7rY-—0.

From this short exact sequence we get two exact sequences in cohomology and in coho-
mology with compact supports which suitably interpreted give short exact sequences

0— HI(MYV)®k — H (MY ®k) — H™ (MV)[r] — 0 (mod)

and
0— HI Y MV)®k — HITU(MYY @ k) — HIP UM VYY) 7] — 0 (mod.)

where [7] means kernel under multiplication by 7.

Since M is of finite cohomological type we know that H?(M,V) is a finitely generated
R-module. I claim that this also implies that HZ~49(M,VV) is finitely generated. It fol-
lows from our exact sequence and the corollary above that HI=4(M,VV) ® k is finitely
generated. We lift generators to HZ~9(M,VV) and then these lifts generate a submodule
U of HE=9(M,VV). If we already knew that HZ~9(M,VV) is finitely generated, then the
lemma of Nakayama [Ei] would imply that these lifted generators generate HI=9(M,VV).
Hence we have to show that in the exact sequence

0—U— H7Y(MVY) — W —0

we have W = 0.

If we tensorize by k we get W = wW, this means that W is infinitely divisible. Now we
observe that HI=9(M, V)@ K = H™ (M, VY ® K) and HI(M,V)® K = HI(M,V® K),
these vector spaces are finite dimensional and dual to each other. We can find elements
V1. .05 € HI(M,V) (vesp. wy, ..., ws € HI9(M,VV)) whose images in HY(M,V) @ K
(resp. HI=9(M,VV)) form a K-basis. If we evaluate these basis elements by the pairing
we get an (s X s) matrix whose determinant is in R and non zero. Let U be the lattice
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generated by the images of wy,...,ws in HI=¢(M,VV)/Tors . If U, D Uisa larger R-
module then we can find a smallest integer a = a((jl,(}) such that 70U, C U. If now
W # 0 then this implies that we can find larger lattices U C U; such that a(ﬁl,ﬁ)
becomes arbitrarily large. If we now replace the elements w1, ..., ws € HI=4(M,VV) by
a basis of U; then we can again form the evaluation matrix as above but its determinant
gets multiplied by 7% where b goes to infinity if > a(U;,U) goes to infinity. But this
determinant must still be in R, this contradicts W # 0.

We get two more exact sequences

0 — HYMV)tors — HIY(M,V) — HY(M,V)/Tors — 0
and 0 — HTYMVY )iors — HTYMYVY) — HIY(M,VV)/Tors — 0.

The two modules on the right are free of finite rank, the two ranks are equal. We have
the R-valued pairing between the modules in the middle, this pairing vanishes on the
two torsion submodules. This gives us the pairing

H?(M,V)/Tors x H¥=9(M,V¥)/Tors — R (Poin)

and this is the pairing which we want to show to be non degenerate. To say it again this
means that for two bases v1,...,vs € H1(M,V)/tors and wy,...,ws € HI=9(M,VV) the
evaluation matrix has as determinant an element in R*.

Since any finitely generated module over R is the direct sum of its torsion submodule and
a free module we can tensorize our two sequences above by k and get exact sequences

0— HY (MWV)tors @k — HI(M,V) @ k — HI(M,V)/Tors @ k — 0
and
0 — HEYMVY iors @k — HII(MVY) @ k — HI79(M, V) /Tors @ k — 0.

Combining this with our two sequences (mod), (mod.) we see that for the cohomology
groups with coefficients we get filtrations

HI(MV)tors @k C HI(M,)V) @ k C HI{(M,V ® k)
and
HE (MY Yyors @ k € HEYMWVY) @ k € HI(MVY @ k).
In both filtrations the quotient of the rightmost module by the previous one is
HITY (M, V)[x] resp. HET1=9(M, V) 7).
We know already that the pairing
HY (MY ®k)x HITI(MVYY @ k) — k

is non degenerate. We also know that for the orthogonal complements of the leftmost
modules we have
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HYM,V) @k C (HII MV )iors @ k)
HIZU(MYVY) @k C (HI(M,V)tors @ )

This implies that for each of the two modules
HYY(M,V)[x] resp. HE19(M,VY)[x]
a certain quotient of this module is in perfect duality with
HEUMYVY )iors @ k vesp. HI(M,V)iors @ k.
This gives us two sets of inequalities

dimy (HI™H (M, V) [7]) > dimy, (HEU(MYVY Yiors @ k)

and
dimy (H=4(M,VY)[r]) > dimg (HY(M,V)ors @ k).

For a finitely generated torsion R-module A we have dimy(A ® k) = dimy(A[r]). This
implies that

> (dimg (HI (M) [x]) + dimy (HZT (M, VY)[x]))

q

= (dimp(HE 1MV )iors @ k) + dimp(H(MV)iors @ k) -

q

Hence we see that in our inequalities we have in fact equalities. But this in turn implies
that our inclusions above are even equalities

HIMY) @k = (HE (MY )iors @ k) -
HIZUMYY) @k = (HI(M,V)tors @ k).

Then it follows that the pairing

HY(M,V)/Tors @ k x H=9(M,VV)/Tors @ k — k

is non degenerate. But this is the original pairing (Poin) mod 7. If this reduction
mod 7 is non degenerate then also (Poin) must be non degenerate. O

I want to keep the following byproduct of the above proof:
Corollary 4.8.10. The non degenerate pairing

HI(MY®Fk)x HI(MVYY @k) — k
induces non degenerate pairings

H (M) 7] x HEZ (MY )iors @ k — k
HITUMYVY) 7] x HYMV) tors @ k — k.
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The extension of the theorem from discrete valuation rings to Dedekind rings is rather
clear, if one knows enough about Dedekind rings. They will be discussed in the second
volume.

At this point it is tempting to ask, whether these pairings are given by a cup product. We
should be aware, that this does not make sense because the cohomology with compact
support is not the cohomology of a sheaf (see 4.7.1). Only after a suitable compactification
of M we we have such an interpretation. We come back to this point in 4.8.7.

4.8.5 The Cohomology in Top Degree and the Homology

We assume that M is of finite cohomological type and oriented. We start from a local
system V) and we assume that we obtained it form an action of the fundamental group
m = m(M,xo) on an abelian group (or R-module) V. We do not make any further
assumption. We have V,, = V. We want to compute the cohomology with compact
support in top degree. We will see that this can be expressed completely in terms of
the action of m on V. Let I, be the augmentation ideal, we introduced the module of
coinvariants V/I = V. Our aim is to show that HZ(M,V) = V. But recall that this
quotient is Hy(m, V). (See page 28.) This makes it plausible that at least on manifolds
the cohomology with compact supports behaves like homology.

We start from our complex

.= P HU MY, ) — @ H(MYV.) — HA(M,V) — 0.
(o, B)EAZ acA
Let ag be an index such that g € U,,. I claim that the map
HYMV,,) ~V — HI(MV)
is surjective and induces an isomorphism
V/I,V =5 HY(M,V).

Let a be any other index. We can choose a sequence «q,aq,...,q, = « of indices such
that UOQQU&erl # () for all 7. For any pair of consecutive indices a;,a;11 we restrict the
boundary operator

. d ! d !
5 @ HUMV, ) — @ HI(MYY)
(a,8)€AZ yEA
to the direct summand
d !
H (M?V(a,j,a1;+1))

(we assume «; < ;41 otherwise we interchange the indices). It is clear that the image
of this restriction in the target module lies in the submodule

HYMYV,) P HI MY, ).

Qi1
We have a natural isomorphism

Vo aign Hd(M,Vé”) = Hd(M v, )-

(Ao TR |
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which is the composition of the isomorphisms

HY MV ) = HYMYY,)

Q041

d ! ~, r7d !
H (M7vaiuzi+1) _> H (M7V04i+1)
which are induced by the inclusions Ua, N Uq,,, =+ Uq, and Uy, N Uy, < Uq,,, - It is

clear from the definition that the image of § restricted to H(M,V} ) is the submodule

Q41
(Hd(M,VL!“), - \I’ai@iJrl (Hd(Mvlel)))’
and hence we see that this submodule is in the kernel of

HY MY, P H (MY, ) — HI(MV).

it
Now our chain of indices gives us by composition an isomorphism
Vagar -0t H(MYV, ) — HY(MV,)
and it is clear that the elements
(HYM V), = Yag,ar..a (HU (M V)

lie in the kernel of

HY MYV, & HY(M)V,) — HI(MY).
From this it follows that the summand H(M 7V(’)to) ~ V is mapped surjectively to
HY(M,Y).
Now we assume that our chain of indices comes back, i.e. @ = o, = ag. Then we can
construct a path

v:[01] — M

with v(0) = (1) = zo which is obtained by joining z( inside of U,, to a point in
Uao, N Uy, , this point to a point in U,, N U,, and so on and finally joining the point in
Ua,_, NU,,, to xg. The homotopy class of this path is uniquely determined by the chain
of indices.
Then it is clear from the construction of the local system from the action p : # — Aut(V)
that Woq 0y ---,0r = p([7]). Hence we see that all elements of the form (Id —p([7]))V lie
in the kernel of

HY MYV, ) — HI(MV)

and the surjective map factors

4 HI(MY):

VL,V
But now it follows that
V/L,V = HY(M,V)
must be an isomorphism, because the group @(a,B)GA’i H(‘f(M,V(!a B)) is generated by its
direct summands.
Especially we see again that under our assumptions above

HYM.Z) = Z.
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4.8.6 Some Remarks on Singular Homology

We can also define the singular homology groups H;(M.V). To do this we consider
continous maps
c: Ay — M

where Ay = {(to,...,tq) € IR.T'l| > t; = 1} is the ¢g-dimensional standard simplex. We
can consider the pull back ¢*(V) of our local system and since A, is contractible, we
have

7" V)(Ag) =" (V)p

where p is any point in our simplex. We form linear combinations

g Mg - O

where m, € 0*(V)(4,). These linear combinations form an abelian group C,(M,V). We
define a boundary operator

Oq : Cq(M)V) — Cyr(M,V).
To do this we observe that we have face maps
Ti © Aq—l — Aq
T; © (t(),...,tq) — (to,...,ti_l,o,ti,...,tq)

and we put
O (myo) = Z(—l)’:mg .o0oT;
where we use the fact that
(@o7)" (V)(Ag-1) = " (V)(Ay).
An easy computation yields 9,100, = 0 hence we get the chain complex with coefficients
inV
o — Cg(MY) — Cqut((M)Y) — -+ — Co(M V) — 0

and by definition the homology groups of this complex are the homology groups of M
with coefficients in V:
Hq(M,V) = Hy(C.(M,V)).

It is clear what Ho(M,V) is: we see that Cy(M,V) is the group of linear combinations
S s

where m,, € V,. Of course we see that m,x — myy is a boundary if we can find a path
v :10,1] — M with v(0) = z, v(1) = y and [y]my; = m,. Hence it is clear that
Ho(M,\V) = V/I,V ~ HY(M,V).
This suggests that for a manifold M and a local system V on it we have the equality
H;(M,\V) ~ HY(M,Y). (4.106)

We will come back to this point in the third volume, see also [Hat], Chap. 3 3.3.
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4.8.7 Cohomology with Compact Support and Embeddings

If we want to understand the cohomology H?(M,V) it is sometimes very useful to embed
M into a compact space. Let us consider an open embedding

i: M M,
where M is compact. Then we can consider the sheaf i,(V), and we know
H2(M,\V) = H*(M,i\(V)).

We may also consider the direct image i.(V). Here we have to be careful because the
functor i, is not exact in general. But if we assume that our local system is acyclic with
respect to i,, then we know that

H*(M)V) = H*(M i, (V)).

Especially we may have the situation that M is an oriented manifold with boundary and
M is the interior of M. Then it is clear that M < M is a homotopy equivalence and
a local system V on M extends to a local system on M, which we denote by V. Under
these circumstances we have

H*(M,V) = H*(M.i.(V)) = H*(M.V).

If now V is a local system of free R-modules of finite rank and V¥ = Hom(V,R) the dual
system, then we have the Poincaré pairing

HY(M,V) x H*=9(MVY) — HY(M,R) ~ R
which we may also write as
HIY(M,iy(V)) x H" (M ,i.(VY)) — R.

It should not be too much of a surprise that this pairing can also be expressed in terms
of the cup product.

We start with the observation that both sheaves 4(V) and .(VY) have flat acyclic reso-
lutions. In this situation we defined the product (see 4.6.10)

HY(M (V) x H=Y(M,i,(VY)) — H (M ,ii(V)@i.(VV)),
and we have the evaluation pairing
W(V)®i.(VY) — iy(R).
Now the cup product composed with the evaluation provides a pairing
HY(M (V) x H*=U(M,i,(VY)) — H (M ,i\(R)) = HY(M,R) = R.
We complement 4.8.9 by stating

This pairing is equal to the Poincaré duality pairing (4.107)

To see this we apply the same idea as in section 4.6.7 and reduce the comparison of the
two pairings to the case where one of the factors is in degree zero.
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We compute the cohomology groups from Cechresolutions. Our situation is a little bit
different from the previous one since now our manifold has a boundary. But we may put
a Riemannian metric on M as before and at first we cover a neighborhood of M by
small open “half-balls” with center on the boundary. Then the complement of the union
of these balls is compact, and we cover it by small balls whose closure does not hit the
boundary. Let us denote this covering by {Uq }aca-

For any ap - - - ag we consider Uy, N+ - N Uy, = Uy, and we remove the boundary points

from it (if there are any) and call the result U,. Then
i {Uy—> M
is the inclusion, and we define

igrin(V) = V.. (4.108)

&,

Now we compute our cohomology groups from the Cech resolution and the coresolution
as before. We have

! .
o= IV — v —av) —o,
B

and

0—>V—>HV§*> HV("‘Q@—>~-.
o (@.8)

Of course it is clear that the Poincaré pairing
H(M,i.(V)) x H{(M (V) — R

is given by the cup product. Then we proceed by induction on the degree. We break the
two resolutions

0 —— ¢ — PV —i(V)—> 0

0 Y [1, Vv H 0

and we get the following pieces of long exact sequences
0 — HY(M,i(WY)) 25 HYDL,G) — -+
and
H(M H) - HY(M,i, (V) — 0.

The pairing #;(VV) X i,(V) — 4(R) induces a pairing

(@vw «[[vi — i)
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(see section 4.8.4), and this induces a pairing
G xH — i(R).

If we look at the definition of the Poincaré pairing of two classes & € HYY(M,iy(VY))
and n = §(¢)) € H' (M i,(V)), then we have

(&m) = (3VE). (4.109)

But the right hand side is also the cup product of the classes §V¢ € HY(M,G) and
Y € H°(M,H) this means we have (§V&,10) = §¥€ U, The cup product satisfies the rule

VEUY =EUdY =EUn. (4.110)

Puting the equalities together we find ({,7) = {Un for § € H=Y(M,iy(VY)) and n =
5(p) € H*(M i, (V)). The general case follows by the same argument inductively.

4.8.8 The Fundamental Class of a Submanifold

The homology groups can be defined for any space X and they provide a covariant functor
from spaces to abelian groups: If we have a continuous map f: X — Y, then we get a
homomorphism

f*,i : H7(X,Z) — HAY,Z)

for all degrees 1.

This suggests that we should also have this kind of functoriality for the cohomology with
compact supports on an oriented manifold M.

I want to discuss a special case where we see this functoriality. We consider a connected
oriented manifold M and an oriented submanifold N C M, let m,n be the dimensions of
M and N respectively. Let us denote the inclusion map by 7. We allow that N has several
connected components, but the dimensions of the components should be all the same.
We choose an auxiliary Riemannian metric. This Riemannian metric splits the tangent
bundle of M along N into T = T @® Ty n, where Ty is the normal bundle. We
choose the orientation of the normal bundle Ty, such that the chosen orientation on
T is the one obtained from the above direct sum decomposition and the orientations
on the summands.

Let V be a local system on M, let V' be its restriction to N. If we consider the homology
groups then we get get - directly from the definition - a homomorphism

Now let us accept 4.106, which says that on our manifolds the homology groups are
isomorphic to cohomology groups with compact support, then we get

Corollary 4.8.11. We have a natural homomorphism
Hg (Navl) — Hgn—n—l-j (M7V)

Proof: I want to construct this homomorphism directly.
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Using the exponential map we can construct a tubular neighborhood iy : Ty n(€) C M
(see [Sp], p.465). We have the projection 7 : Tps/n(€) — N where the fibres 7~ (b) can
be identified to small open balls in T /n ,. By Th/n (€) we denote the closure of Th/y (€)
in M. This gives us a fibration by open and closed balls as in 4.7.2.

Let Vv be the restriction of our local system V' to the open subset T,y (€), then we put

Vi = in1(Vn), we have an inclusion Vi < V' and therefore a homomorphism

H (T (€),Vn) = H (Taryn (€), Vi) = H* (M, Vy) — HZ(M.V).
We are in the situation of 4.7.2 and get

HEF " (T () Vi) = HENR™ "1, (V).

and since obviously V' = R™ ", (VY) we constructed our homomorphism. O

Now we assume that N is compact and that V = Z. Then we get
Hg(NaZ) — Hgn_n+j(MaZ)a
and if 7o (V) is the set of connected components of N we have the map

P z=HONZ)— H (ML)
mo(N)

If N is connected and compact then the image of 1 under this map is a class [N] €
H*™(M,Z). It is called the fundamental class of N in M.

Let w be a cohomology class on M which sits in the complementary degree n = dim N,
then we can restrict it by the inclusion map i to N. If N is connected and compact then
i*(w) € H"(N,Z) = Z. Then we get

*(w) = [N]Uw € H™(M,Z) = 7. (4.111)

This is essentially Proposition 4.7.3.

4.8.9 Cup Product and Intersections

Let us assume we have two oriented compact submanifolds Ny,Ns of codimensions dy,ds
in our oriented manifold M. We get two classes [N1],[N2] in the cohomology with compact
support, they sit in degrees dy,ds. We want to understand the cup product of these two
classes. Now we put m = dim M.

We assume that our two submanifolds intersect transversally. This means that in any
point p of Ny N N the intersection of the two tangent spaces T, , N1'n,,p has dimension
¢ := m—dj—ds. This implies that the intersection N1N V3 is again a compact submanifold
of codimension d; + ds. It may have several connected components. We write

NlﬂNQZUCj

where the C; are the connected components. For any point p € C; we get an exact
sequence of tangent spaces

0— ch’p — Tth (o) TNz,p — TMyp — 0
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where the arrow from the direct sum to the tangent space of M is given by: First com-
ponent minus second component. This gives us an isomorphism

N To, e N ) 2 N Ty o N (To)

and this puts an orientation O; on C; for all j. Let [C}] be the fundamental class of the
manifold C; equipped with the orientation O;. I claim

> IC;] = [N U [N, (4.112)

We can look at the special case where d; + do = n. In this case the cup product lands
in H™(M,Z) and hence it is a number. If we keep the assumption of transversality then
the intersection is a finite number of points. Now the tangent space of a point has always
a canonical orientation. If now ¢ € Ny N Ny then we define

mic) = 1 ?f the orientation O, is canonical (4.113)
—1 if not
Our formula becomes
(NJUNo] = )" mle) (4.114)

ceEN1NNo
It is purely local problem to verify these formulae. According to Equation 4.111 we have
to restrict the class [IN2] to Ni. We recall the construction of [Ns], this class was the
image of a class in H" "% (T Ny,Z) = Hm’dz(M,Z!NZ). If we restrict this class we get a
class in H™~92(Ny 7Z®Z!N2)7 the rest is clear. We could also refer directly to Proposition
4.7.3.

Lemma 4.8.12 (The Degree of Maps). Let us assume that My,Ms are two compact and
oriented manifolds of the same dimension d. Let f : My — My be a C*° map which has
the following property: There is a point x € My such that the inverse image f~1(x) is
finite and that for all y € f~'(z) the derivative Dy : Tar, y — Tar, o 08 an orientation
preserving isomorphism. Under these conditions we have that the restriction map

f9D HY My, Z) = 7 — HYM,,Z) =7
is the multiplication by the cardinality |f~'(x)| of the fibre.

Proof: To see this we choose a small open ball x € D such that f~1(D) is a union of
disjoint balls D, around y, such that f : D, — D, is a diffeomorphism. We get a
commutative diagram

H*(Ms, ) ——————— H*(M,,Z.)

Zyeffl(z) Hg(DyﬂZ)
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The rest is clear, the generator 1 € H4(D,,Z) is mapped to the generator in H%(Ms,Z)
under the upwards arrow and to (1,1,...,1) under the horizontal arrow. The element
1 € HYD,,Z) is mapped to |f~!(z)| under the upwards arrow. O
The number |f~!(z)| is called the degree of the map f, we denote it by deg(f).

Of course this degree can be defined for f : M; — Ms, we simply define it by (@ (&) =
deg(f)¢, where 0 # & € H%(M,,7Z) and both cohomology groups are identified to Z via the
orientations. We may ask to what extend this degree is always-without our assumption
above- the number of points in a fibre f~!(x). We discuss a case, where this is true, but
we have to count the points in the fibres with multiplicities.

Let us assume that we have a point € My such that f~1(z) is a finite set. Then we can
find a neighborhood z € V;;, which is an open ball and neighborhoods W), of the points
y € f~'(x), which are also open balls, such that f : W, — V, and all these maps are
proper. Then we get for any y a homomorphism

HYV,,Z) =7 — HIW,,Z) =7,

which given by multiplication by an integer e(y). This integer may be zero or negative.
Then the same argument as the one in the proof of the above lemma yields

> ely) = deg(f). (4.115)

yef—t(z)

4.8.10 Compact oriented Surfaces

Let S be a compact oriented 2-dimensional manifold, these objects are also called (com-
pact oriented) surfaces. We have seen that for any ring R

H°(S,R) =R and H*(S.R) =R (4.116)

and the only unknown cohomology sits in degree one. For any prime p we have the exact
sequence of sheaves
0—%2—2Z—F,—0

and in the resulting long exact sequence we find the piece
1 1 1
0 — H (SZ) — H (S,Z) — H (SE,) — 0.

We have zeroes at both ends because HY(S,Z) — H°(SJE,) (resp. H*(S.Z) —
H?(S,Z)) is surjective (resp. injective). This implies that H'(S,Z) is torsion free. Since we
also know that these cohomology groups are finitely generated we conclude that H*(S,Z)
is free of some rank.

Now we have the Poincaré or cup product duality pairing

HY(S,Z) x H(S,Z) — 7,

which is non degenerate and alternating. A well known result from elementary algebra
tells us that we can find a basis e1,...,eq,f1,...,f; of H'(S,Z) such that the duality
pairing is given by

eiUfj :(Sij, e;Jej =0, fiUfj =0. (4.117)
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Figure 4.1 An example of a compact surface of genus 3

The number g is called the genus of the surface, the rank of H!(S,Z) is 2g. For a surface
of genus 3 we can draw the following picture.

We see three pairs of 1-cycles. They form a basis in homology. But we also may view
these cycles as submanifolds isomorphic to S which are oriented by the arrows. These
submanifolds have fundamental classes e1,f1,e2,f2,e3,f3 in H'(S,Z) and if we numerate
them in the right way we have the above values of the intersection pairing.

4.8.11 The Cohomology Ring of P"(C)

We are now able to determine the structure of the cohomology ring H®(P™(C),Z) (see
Exercise 26). The fundamental class of any hyperplane L ~ P"~}(C) c P"(C) gives
us a multiple of the generator ae; € H?(P"(T),Z). (Since we are dealing with complex
manifolds, all manifolds have a canonical orientation.) Now we can put n such hyperplanes
in general position such that they intersect transversally and L; N ---N L, is a point.
The fundamental class of a point is the generator in H*"(PP"(C),Z). We conclude that
aep Uey...eq is this generator, it follows that a = 1, e; is the fundamental class of the
hyperplane and

H* (P"(C),2) = Ze) /(). (4.115)

4.9 The Lefschetz Fixed Point Formula

Let M be a connected, compact and oriented manifold of dimension d. Let f : M — M
be a continuous map. It induces endomorphisms f¥ : H”(M,Q) — H"(M,Q). The
Lefschetz fixed point formula gives us an expression for the alternating sum of traces
(the Lefschetz number of f)

d
tr (flH(MQ)) = > (1) tr(f*|H"(M,Q)) (4.119)

v=0
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in terms of local data at the fixed points of f on M. I formulate a precise version in
the case of isolated fixed points and give some indications how this is proved. Actually
it is a rather formal consequence of our previous considerations on the cup product, the
Poincaré duality and the Kiinneth formula.

We consider the graph I'y = {(z,f(z)) C M x M|z € M} of f. It is a submanifold of
M x M and it is isomorphic to M via the projection to the first coordinate. We give it
the orientation of M. Hence it defines a cohomology class [I'y] € HY(M x M,Q). The
fixed point formula will come out if we compute the cup product of the class [Tf] and
the class of the diagonal A = I'q in two different ways.

We apply the Kiinneth homomorphism (see page 109), since we have rational coefficients
we get an isomorphism

HY (M x M,Q) é (H"(M,Q) x H™*(M,Q)) .
v=0
The cup product yields a non degenerate pairing H"(M,Q) x Hd”’(M,Q) — @, hence
we get isomorphisms
H"(M,Q) x H*™"(M,Q) = End(H"(M.Q)),
which are given by
0™ @ uld) {vm o (W@ U v(u))um} .

It is a formal consequence of our definitions that in fact

d
=Y € PEdH"(MQ)).

The diagonal A C M x M is the graph of the identity. A little bit of linear algebra shows
that the cup product of the classes f? € HP(M,Q) ® Hd*”(M,Q) and 1dP @ 1d? is
given by

FPUId™P = (=1)Ptr(fP). (4.120)
We conclude that
LU IA] = tr(f*|H*(M.Q)). (4.121)

Now we compute the cup product by interpreting it as an intersection number (see section
4.8.9). The points in the intersection of the two graphs are exactly the fixed points of
our map, i.e. Fix(f) = {& € M|f(z) = x}. Here we assume that the fixed points of f
are isolated, i.e. that f has finitely many fixed points and the graphs I'y and A intersect
transversally. We have the two derivatives which send the tangent space Ty, at = to
the tangent space at (z,z): The first one Diq . sends a tangent vector t € Thrp to
(t,Df»(t)) and the second one Diq 14 o does t — (t,t).
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Transversality means that we get a direct sum decomposition
Trrsat,(z,z) = Did .2 (Tarz) © Dia 1d o (Thrz)-

We have to compare the given orientation on T/ a7, (z,2) to the orientation obtained from
the orientation on the direct sum Dy o(Th,e) @ Did »(Twm,z), as I explained in section
4.8.9 this induces a sign m(x). The derivative Dy of f at the fixed point  induces an
endomorphism of the tangent space Ths,, and the assumption that x is isolated implies
det(Id =Dy 5 |Tar,») # 0. Now it is easy to see that this sign is equal to

sg(x) = sign(det(Id =Dy »|Thrz))- (4.122)

Hence we proved the fixed point formula for an f with isolated fixed points

tr(flH(MQ) = > ss(). (4.123)

z€Fix(f)

Actually it is not difficult to derive a more general fixed point formula for cohomology
with coefficients in a local system. Let M be as above and V a local system of finite
dimensional vector spaces over some field k£ on M. A differentiable map f: M — M
gives us a homomorphism f9: HY(M,V) — HY(M,f*(V)). (See 4.4.3.) If we now have as
an extra datum a homomorphism of sheaves g : f*(V) — V, then we get a composition

(f%9) : HI(MV) — HY(M.V).
Again we can define the Lefschetz number

d
tr((f*9)[H* (M V) = (=1)" tx((f*,9)[H" (M.V)). (4.124)

v=0

Now at a fixed point & € M our g gives us an endomorphism g(z) : V, = f*(V)z — Va.
Then we get under the same assumption of transversality the formula

w((fC9H (MY) = Y sp(@)tr(g(a)). (4.125)

zeFix(f)

The proof is essentially the same as in the case of trivial coefficients.

4.9.1 The Euler Characteristic of Manifolds

I recall the situation on page 104, I want to give some brief indications what is going on.
Let us assume that we have a C*-vector field X on M, this is simply a C*°-section in
the tangent bundle. It follows from the theory of differential equations, that we can find
a one parameter group g; = exp(tX) of diffeomorphisms g, : M — M such that

(%gt> By (z) = X () forall z€ M. (4.126)

We assume that this vector field has only isolated zeroes and that these zeroes are non
degenerate.
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Definition 4.9.1. If mg is a zero of the vector field, then we can choose local coordinates
at xg such that X = Zfi%, where all the f; vanish at mg. A zero is called non
degenerate if the matrizc

(50,95,
m
8xic’9xj 0 17
has non zero determinant. In this case we define the index ind(X)(mg) of the vector field
at mg to be (—1)™ times the sign of the determinant of this matriz.

If we now apply the Lefschetz fixed point formula to g; for sufficiently small values of
t, then the fixed points are exactly the zeroes of X and a simple calculation in local
coordinates shows that for a fixed point mg we have the equality ind(X)(mg) = s4, (mo).
On the other hand it is clear that the diffeomorphism g; is homotopic to the identity.
Therefore the sum of the alternating traces of g; on the cohomology is equal to the Euler
characteristic of M. Hence we get

Theorem 4.9.2 (Lefschetz fixed point formula for the identity). If M is a compact
oriented C*°-manifold and if X is a C>®-vector field with only isolated non degenerate
zeroes, then

X(M)= > nd(X)(mo).

mo€zeroes of X

This formula should be interpreted as the Lefschetz fixed point formula for the map
f=1d. If we try to carry over the computation of section 4.9 to this situation, then the
graph of Id is the diagonal A and clearly we have [A] U [A] = x(M). But now we have
the problem that we can not interpret the value of the cup product as an intersection
number, at least we can not interpret it as a finite sum of contributions over fixed points.
If we find a vector field with isolated non degenerate zeroes, then we use it to deform the
first factor in the product [A] U [A] and replace it by the graph of g;. The fundamental
class of the graph T'g, is equal to [A], but now we may apply section 4.9.

4.10 The de Rham and the Dolbeault Isomorphism

4.10.1 The Cohomology of Flat Bundles on Real Manifolds

Let M be a C*°-manifold and let V be a local system consisting of finite dimensional
RR- or C-vector spaces. (See 4.3.3.) Let us denote the dimension of M by m, let n be
the dimension of the vector spaces in the local system. Locally on small connected open
subsets U C M we have a trivialization of V by constant sections eq, - -- ,e, and

V({U) = {Xn: aie; | a; € IK} . (4.127)

We define
Voo (U) = {Z fiei | fi € C°°(U)}, (4.128)
i=1
and this gives us the sheaf of C*-sections in V.
Let QF, be the sheaf of C*°-p-forms on M. We can define a differential
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d: Vao(U) — Voo (U) @ Q2 (U)
by

i=1 i=1

If we pass to another open set U’ and if we choose a trivialization €}, - - - ,e/, over U’ then
we get expressions
/
€, = E Qi ej

over UNU’ where the a;; are locally constant. Therefore it is clear that the definition of
the differential does not depend on the choice of the constant sections. Thus we see that
we can define a global differential

d: Ve — Voo @ Q).
It is clear from the definition that for any open set Uy C M
V(Uy) = {s € Vo (U1) | ds = 0}.
We can extend our differential to forms of higher degree
5: Voo @O — Voo @ Q0

by

d(Zsl ®w2) = Zsz ®dwl + stz /\(,«.)Z'7
where ds; is of the form ds; = > g;; ®w§ and hence ds; Adw; =Y, gij ®w§- Aw;. Tt is well
known that dd = 0. We recall some rules for the exterior derivatives of differential forms:
In local coordinates we have d(f(x1,x2,...,xq)dz1 A ... Ndxp) = df ANdxi A... Adx, and
from this we get easily d(w1 A w2) = dwi Aws + (—1)Pwy A dwe where p = deg(w1).
We get the so called de Rham complex of sheaves

00—V —=Voo — Ve Q3 — ... — CZV)@ Q% — 0.

We introduce the notation Ve ® Qb = Q2 (V). A form w € Q2 (V)(U) is called closed if
dw = 0.

Definition 4.10.1. If we have a C*°-vector bundle € over M (see 4.3.1, here the gi;
have to be C>°-functions), then we may consider differentials

d:C®(&) — C>® (&),
which satisfy

d(Sl + 82) = d51 + d82
d(fsl) = fd51 + 51 ® df

for local sections s1,s2 and local C*°-functions f. Such differentials are called connec-
tions on €. A connection is called a flat connection if

d(ds1) =d (Z S ® wj)

:ZSj®de+dSi/\UJj:0.
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We saw that starting from a local coefficient system )V we have a canonical flat connection
on V.. But in turn, if we have a flat connection, then we can attach a local system &
to £ by defining

EU)={seC>=(&)U) |ds=0}.
It is of course clear that the flatness of the connection is necessary for the construction
of the de Rham complex.
It is not very hard to see that

Lemma 4.10.2. The de Rham complez is ezact.
This follows from the well-known Lemma of Poincaré which says the following;:

Lemma 4.10.3 (Poincaré). A closed p-form w of degree p > 0 on a conver open set

U CR™ can be written as dip = w with ¢ € Q2 (U). (See [B-T], Chap. I, §6.)

We can apply this here because our local system V is locally trivial. Therefore the de
Rham complex gives us a resolution of the sheaf V.
I claim that this resolution is also acyclic, we have

HY (M,QP (V) =0 for i > 1 and all p > 0. (4.129)

To see that this is the case we apply Exercise 16. We have (see 4.8.2) a partition of unity
for the sheaf C5y. If we have any C*°-vector bundle £ on M then the sheaf C>*(€) is a
sheaf of C37 modules. Then our Exercise 16 yields that the higher cohomology groups
C> (&) vanish.

We apply the functor global sections and then the resulting complex of global differential
forms computes the cohomology (see section 2.3.1). Hence we get the famous

Theorem 4.10.4 (de Rham). We have an isomorphism
 {w e Q) (M)|dw = 0}
{dyly € 05 (V) (M)}

HY(M,V) = H Q2 (V)(M))

This is called de Rham Isomorphism.
If we consider the same complex but with sections which have compact support, then we
get (see second example below)

0 — (Voo )e(M) — QL (V)o(M) —> ... — Q™ (V)o(M) <5 V(M) —> 0.

The argument in Exercise 16 applies as well to the cohomology with compact supports
and we get by the same token

H(M,V) = H'(Q3, .(V)(M)), (4.130)
provided we have the appropriate form of the Lemma of Poincaré (see the example below).
Example 20.

(a) If for instance we take the trivial system R on M = R™ then a closed form w of
degree p > 0 on R™ can be written as dip with ¢ € QP H(R™). If p = 0 then a
closed form is a constant function f = c # 0, then we can not write it as f = di,
because the space of forms of degree —1 is zero. Thus we get H'(R™ R) = R and
HY(R™R) =0 fori>0. (See 4.4.24.)
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(b) If we consider the cohomology with compact supports then a closed form in degree
zero which has compact support must vanish. Hence we get H2(R™ R) = 0. But if
we have a form w with compact support on R™ which is of degree m then we may
not be able to find a 1 with compact support such that w = dip. If we could do so

we would have
/ w:/w: Y =0 (4.131)
m D 6D

where D is a big closed ball which contains the supports of w and 1. Hence we get
a surjective linear form

int: HY(R™R) — R (4.132)

[w] +— w.
Rm
It is easy to see that a form w with compact support for which in addition f]Rm w=20
can be written as w = dip with ¢ € Q¥ (R™). We get that the above map int is an
isomorphism. If we take the entire de Rham complex with compact supports
0 — (R )e(R™) — OL (R)o(R™) —s ... — QL (R).(R™) -5 R — 0,
then it is easy to see that it is exact in degrees < d, i.e. we have a Lemma of

Poincaré for forms with compact support except in the top degree. Comparing this
to (a) above gives us the simplest version of Poincaré duality.

The Product Structure on the de Rham Cohomology

We want to discuss the product structure of the cohomology in the context of the de
Rham isomorphism. If we have two manifolds M and N, then the resolutions of the sheaf
R by the two de Rham complexes are flat (comp. the discussion in 4.6.7.). If we consider
the product M x N and the two projections pi,p2, then we have a homomorphism of
complexes

i) ©r p3 (%) = Q4 ERY — Qpun

which is given by the exterior multiplication of the differential forms. Hence it is clear
that the product

HP(M,R) x HY(N,R) —s H”*9(M x N,R)
(Oé7ﬂ) — a®]RB

is induced by the exterior multiplication of the differential forms which represent the
classes a,f3.

Especially it becomes clear that the cup product on H*(M,R) is induced by the structure
of an exterior algebra on the differential forms.

If we have a local system V of finite dimensional R-vector spaces and its dual V', then
we have the evaluation e : V ® V¥ — R and we get a pairing

HY{(M)V) x H" {(M,VY) — H™(M,Y @ V¥) — H.(M,R).
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Theorem 4.10.5. If M is a connected and oriented manifold, then we get the Poincaré
duality pairing which on two classes [w] € HY(M,V) and [n] € H™ *(M,VV), which are
represented by w and n, is given by

Wl — [ elwnn).
M

If we take this as definition for the Poincaré duality pairing it is not so clear why it is
non degenerate. We come back to this point in section 4.11.

The de Rham Isomorphism and the fundamental class

The de Rham isomorphism also provides a different way of looking at the notion of the
fundamental class and the formulae for the cup product (see 4.8.8, 4.8.9). Let us consider
an open ball D™ C M in our connected, oriented manifold of dimension m. We assume
it to be oriented. If we remove the origin p from D, then we have a diffeomorphism

D™\ {0} =~ (0,1) x §™!

which is given by

(1'17"' 7xm) — ( SC%

xr1 T
+"'+I2, AN = (ry).
m <1/1‘%+...+1‘?n I%+...+x72n>> ( )

On the oriented sphere S™~! we have a unique differential form w in degree m — 1 which
is invariant under the orthogonal group SO(m), and which satisfies

/ w=1.
Sm—l

Now we choose a C*°-function h(r) which is identically equal to one if r is close to zero
and identically equal to zero if r is close to one. This provides the differential form

h(r)w =1
on D™\ {0}. If we take its exterior derivative
dp = ag(r) dr Aw =0, (4.133)
r

then @ is a form on D™\ {0} which vanishes identically in a small open ball around zero
and near the boundary of D™. Therefore we can extend it to a differential form on M

and clearly we have
/ G=1.
M

Thus we constructed a form which represents the canonical generator in H*(M,Z), it is
also the fundamental class of the submanifold {p}.

Proposition 4.10.6. We see that we can represent the fundamental class of our con-
nected oriented manifold M by a differential form which has its support in a shell around
an arbitrary point, here I mean by a shell the difference set between a larger small ball
and a smaller small ball around p.
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Let us assume that M is an oriented manifold and N C M is an oriented submanifold, let
n,m be their respective dimensions. We have a similar interpretation of the fundamental
class (see 4.8.8) of N by differential forms which have their support in a bundle of shells.
We construct a tubular neighborhood T'y;/n (€) of N such that we have the projection

7 Tyyn(e) — N

and such that locally in N we have

~

(V) = VxDm™n
+
V.
On V x D™~ ™ we construct a m —n-form wy which is the pullback of a form w on D™~ ™
which is constructed as above.
Now we choose a covering N = [J;c; Vi which is locally finite and which trivializes

7w : TN(e) — N, and we choose a partition of unity 1 = >_ h; with Supp(h;) C V;. On
each 7=1(V;) we construct @; and we put

Oy =Y hili.
For any point in © € TN(e) we have
(d&n)e =D (dhi)s A@; — d(Shi)e AD; =0,
and we see that wy € Q™" (M) is a closed form. It is clear that this form represents

the fundamental class
[N]e H""(M,R).

If now N7,N5 are two oriented submanifolds in M, and if we assume that one of them is
compact, then we have the two classes

[N1] = [0, ],[N2] = [@n,]
where one of the forms has compact support. We just saw that
[Nl] U [N2} = (;N1 /\QNQ.

If now these two submanifolds are of complementary dimension, and if they intersect
transversally, then it is easy to see that

/(:)Nl/\fuNQZ > / G, A DN,
M D(c)

ceN1NN2

where D(c) is a small ball containing the local support of Wy, A Wn,. It is easy to verify
that these contributions from the points are equal to m(c) (see (4.113) for the definition
of m(c)).
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4.10.2 Cohomology of Holomorphic Bundles on Complex Manifolds

Let M be a complex manifold (see 3.2) of complex dimension m. From our discussion in
section 4.3.2 it is rather clear what a holomorphic vector bundle £ of rank n on M is. This
is of course a bundle 7 : £ — M of C-vector spaces for which the transition functions
gij : ViNV; — GL(n,C) are holomorphic. It follows from our general principles in 4.3.3
that the holomorphic vector bundles are classified by H*(M,GL,(Oyr)) where GL,(Onr)
is the sheaf of holomorphic functions from M to GL, (C).

To such a holomorphic vector bundle £ we have the sheaf of germs of holomorphic
sections, which will be denoted by the same letter. This sheaf will be a locally free Q-
module and in turn a locally free Ops-module gives a holomorphic vector bundle. Of
course we can forget the complex structure, we also have the sheaf O, of C*° sections
on M. If we speak about the C*°-manifold (M, ) we also denote it by M.

Now we can define the sheaf £, of C*-sections in the bundle, we have the inclusion of
sheaves £ — E.

The following discussion will show that considering the pair (£,€) is completely analo-
gous to the concept of local systems (V,Vs) (see Remark 3).

The Tangent Bundle
We pick a point p € M and an open neighborhood U, of p such that
(Up,Omv,) = (Dp,Op,),

where Dj, is an open ball in €™ whose center is p = (0,...,0). The tangent bundle Tas
is of course a holomorphic bundle which over U, can be trivialized by the derivations
0 9_ We write the complex coordinates by their real and imaginary parts

0z17" " 0zm

(Zla s 7Zm) = (:I/.l + Z'y17 <oy Tm + Z‘y’m,)-

Then the tangent bundle T of the C*°-manifold M, has a basis — locally at p — which
is given by
o 0 o 0
Ox1'0y1’ " 0% OYm
These sections are only sections in T/ _ . This bundle of 2m-dimensional real vector spaces
has the structure of a bundle of m-dimensional complex vector spaces where locally the
multiplication by 7 is given by

0 , 0. 9 , 0
ox1 B_yl’ 0y1 ox1
I: :
L o . _® 9
Oxm OYym’ OYm 0T,

We have a privileged orientation on the underlying C°°-manifold which is determined by
requiring that dz; Ady; A ...dzy, A dyy, is positive.
We can take the tensor product

Ty, Or C=Tm,¢ (4.134)
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and get a bundle of 2m-dimensional complex vector spaces. On this bundle of complex
2m-dimensional vector spaces we still have the linear transformation I above and T,¢
decomposes into two eigenspaces which are the eigenspaces with eigenvalues i and —i for
I:

T = Thi'e @ Thpes (4.135)

where TJ{/}?@ is the eigenspace for the eigenvalue ¢ for I and T}C}}C is the eigenspace for

the eigenvalue —i for I. It is easy to see that locally on M the bundle T]b"?@ has the basis
(fibre by fibre)

9 1®i —1® 4
D21 Ory Iy
o0 .o
Oz Oz By

This provides a structure of a holomorphic vector bundle on T]\l/lo@, the local trivialization
is given by the above basis. We say that I induces a complex structure. The composi-
tion map Tyy — Ty @ C — le’?@ induces an isomorphism of complex vector bundles.

The composition Ty — Ty  C — T](\)fc is an antilinear isomorphism.

Here we apply some very simple principleé of linear algebra which can be confusing and
their application requires some care.

If we have a C-vector space V, we may define the complex conjugate space V. Its under-
lying abelian group is V' but the scalar multiplication

CxV-—V
is given by
(z,0) —> Z - v,

where the dot on the right hand side denotes the scalar multiplication of v € V by z € C.
Hence we see that the identity map Id : V — V is antilinear.

If we consider our complex vector space V' over C as a real vector space together with a
linear transformation I with 72 = —Id, then we can extend I to a linear transformation
on V ®@g € and decomposes into the eigenspace V(é’o and ch’l of I with eigenvalues =i.
The vector spaces V,V considered as real vector spaces are isomorphic by the identity
map. In the following diagram the compositions of the horizontal maps

1,0

V Vo O V2o
|1
V———-—*V@R@ V

are isomorphisms of C-vector spaces.
The thing that may cause confusion is the following fact: On V @y C we have the complex
conjugation on the coefficients which may also be denoted by v — w. vfill
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Then we get obviously
Vit =vl (4.136)

but now putting a bar on Vé’o has a different meaning, we get a different underlying set
in contrast to our convention above.
On the other hand we can say that we constructed canonical isomorphisms

V50

V=St
which allow us to identify V to Vé’o and V to V(g’l. If we insert the map given by complex
conjugation on the right end of our diagram above, then we get a commutative diagram
and the inconsistency in notation dissolves.
Here I want to introduce a simplification in the notation. Instead of Vg’l,Vé’o I will
write V1 V1.0 The double superscript indicates already that these spaces lie in the

complexification of a tensor product of a complex vector space over R with C, so the
subscript ¢ is redundant.

The Bundle Q4

We can form the dual bundle Q}VI of Ths. Attached to this bundle we have the sheaf of
C*>-sections in this bundle which is denoted by Q}Wm. We have a decomposition

Qo= ®rC = Q) @ QY. (4.137)
The sheaf Q}; is locally generated by dz1, ... ,dzm,, we have

d 0
el 295, 41
<dz oz, 1® o, > 0y, (4.138)

0 0
<dzy,— +i1®@ — >=0.
Ox,, Oyu
We can define the fibres of Qzl\/[oc,co at a point p simply as

Q. ¢,p = Homg (Tas ., C) (4.139)
and then Q}\fp = {wlw(Ity) = iw(ty)} for all tangent vectors t, € Tasp, in other words
Opp = Home (Tap,C). (4.140)

Analogously we have that Q%’;p are the antilinear 1-forms. If we have a local section

wE Q}\"f(U ), then the complex conjugate @ is given by

alty) = o(t), (4.141)

where t, € T, is a tangent vector at the point p € U.
Again we can form the complex of differential forms
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k—1 k+1
AT @—>QM o= ¢ ...

The sheaf (vector bundle) of k-forms decomposes:

O o= P o (4.142)

ptq=k
where ors = Aok o NS o (4.143)

Locally a (p,q) form can be written as

w= 0. 8dzo, N...Ndzo NdZg, \...NdZ 4.144
Zf,ﬁ 1 P B Ba»
a,B

where the f, 3 are complex valued C*°-functions on U (the open set where we have these
local coordinates). We get a decomposition of the exterior differential operator

Ok k41
d:Qye— Q¢

as d = 3(d' + d"), where

Ofa
= Z afz’ﬁ dzy Ndzay ... Ndza, NdZg, A ... NdZg, (4.145)
gl
and d"w=(=1)? Z f"’ﬂd Zay A .. Ndza, NdZs ANdZg, A... N dZg,
s
The factor 7 1s explained by the fact that 7= ,aiz and dz,,dz, are not exactly dual

bases of each other. We have

! .O)P-q p+1,q
d -y — QY

1
O — QR

Now we come back to our holomorphic vector bundle £. We can embed the sheaf £ of
holomorphic sections into the sheaf of C*°-sections, we write

00— & — Ep = 00(E).

As in the case of local systems we can characterize the subsheaf of holomorphic sections
by a differential equation. We define the operator

A" e — V() = Eno @ QY

To do this we write a local section on U in &, in the form
s = Z fi8i7
i

where the f; are C°>°-functions and the s; form a basis of the holomorphic sections. Then
we put
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d's =" gg $i ® dz,. (4.146)

This is well-defined because (just as in the case of local systems where the corresponding
s; were constant) we put d”s; = 0. This is consistent with the change of trivializations
because holomorphic functions f are characterized by 38—3’1 = 0. As in the case of local
systems we get a complex of sheaves

0—E 6000 @Y — ... — Ea " — 0. (4.147)
We need an analogon of the Lemma of Poincaré, this is the
Lemma 4.10.7 (Dolbeault). The complex (4.147) of sheaves is exact.

For a proof I refer to [Gr-Hal, Chap. 0, section 2.
Combined with our previous observation, namely that the sheaves Q17 (E) are acyclic,
this gives us an acyclic resolution of the sheaf £. From our general principles we get

Theorem 4.10.8 (Dolbeault Isomorphism). We have an isomorphism
H(M.&) = H(933(£)(M)), (4.148)
which is called Dolbeault isomorphism.

Again we get the consequence

Theorem 4.10.9 (Dolbeault). The cohomology groups H*(M,E) of a holomorphic vector
bundle on a compact connected complex manifold M vanish for k > dim(M).

Since M is a complex manifold we mean of course by dim(M) its complex dimension,
this is half the dimension of the underlying C*°-manifold.

4.10.3 Chern Classes

Definition 4.10.10. A holomorphic line bundle £ on a compact complex manifold M
is a holomorphic vector bundle of rank 1. The isomorphism classes of these line bundles
form a group under the tensor product and this group is the first cohomology H*(M,0%,)
(see section 4.3.3).

We have a homomorphism from the sheaf of holomorphic functions Oys to O3, which is
given by the exponential function
OM(U) — OJ*\/I(U)
f — e27rif,

and this is a surjective homomorphism of sheaves. The kernel is the sheaf of locally
constant Z-valued functions , thus we get an exact sequence of sheaves

0 —7%Z— Oy — Oy — L.
This leads to the exact sequence in cohomology

. — HY(M,0y) — HY(M,0%,) -5 H2(M,Z) — . ... (4.149)



4.10 The de Rham and the Dolbeault Isomorphism 161

Definition 4.10.11. The group H'(M,0%,) is called the Picard group of M, the
kernel of the connecting homomorphism is denoted by PiCO(M).

Definition 4.10.12. If we have a line bundle L, and its isomorphism class corresponds
to [£] € HY(M,0%,), then the image under § is called the (first) Chern class c1(L£) of
L, ie.

5(1L]) = er(£) € H2(M,Z).

We want to give a geometric interpretation of this class. We assume that our holomorphic
bundle has a non zero section s € H'(M,£) which has an additional property, namely it
defines a smooth divisor. By this I mean the following: for any open set U C M over
which our bundle becomes trivial we select a nowhere vanishing section 1y € H(U,L).
Our section s can be written as

s=fv-1ly

where fr is a holomorphic function. Now we require that the differential dfy; is non zero
in all the points where fy — and therefore s — is zero. The implicit function theorem
implies that the set of zeroes of s is a complex submanifold Y € M which is of complex
codimension one. This is our smooth divisor.

Since we are in the complex case, we know that M and Y have natural orientations,
and this also defines a relative orientation (see 4.8.8). In this situation we attached a
fundamental class [Y] € H?(M,Z) to Y.

Proposition 4.10.13. Under these conditions we have the equality
Y] = c1(£).

Proof: Let p € Y be any point and a neighborhood U,, of the point p € M such that we
have an isomorphism
(UvaUp) = (3703)7

where B C C™ is an open polydisc, say
B={(z1, - ,zm) | |z:| < 1}.

Then it follows easily from the theorem on implicit functions that we can assume that
YNU, = {(0,22,...,2m)} and that the bundle L|U, is generated by z;. We find a covering
of a tubular neighnorhood

Yc|JUs=1Y

a€A

where the U, are of the above form U, = V, x D,,V, C Y, the coordinate z, on the
disk generates the bundle on U,.
We shrink this neighborhood T'Y slightly to a neighborhood T.Y by making the discs a
little bit smaller. We can achieve that the closure of the smaller neighborhood is contained
in the larger neighborhood. We get a covering of M if we include Uy = M \ T.Y into our
covering family. By assumption we can trivialize the bundle on each of these open sets
U,. On Uy we trivialize the bundle by using the section s. From this we get our 1-cocycle
Jap € O3, (Us NUg). We introduce an auxiliary Riemannian metric and we construct a
refined covering by convex sets (see section 4.8.2): For any p € Y we choose a convex
neighborhood whose closure is contained in a U,. For any point m ¢ Y we choose a
convex neighborhood whose closure does not meet Y. Let the indexing set of this second
covering be I'. With a slight change of notation we write
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M=Ju.u U,

aEA ~erT

The bundle is trivialized on the covering sets, the trivialization is simply the restriction.
We get a 1-cocycle by restriction.

Since the covering sets are convex we can find hog = % log gap on U, N Ug, and we
choose hy, =0 if 4,7" € T'. Then we get the Z-valued 2-cocycle

caps = hap — hgs + has on U,NUg,NUs (4.150)

and this 2-cocycle represents our class ¢;(£). But we notice that cogs = 0 if all three
open sets lie in the complement of Y. This means that ¢35 # 0 implies that at least one
of the indices lies in A. Consequently

Us.NUgnNUs CTY if caps #0.

Now we consider the sheaf i)(Z) on M where i : TY — M is the inclusion. We just
saw that our 2-cocycle takes its values in i1(Z), and we conclude that ¢;(£) is the image
of the class ¢}’ (£) € H?(M,i\Z), which is the class represented by our cocycle. But we
know that

H*(Mi\7) = H(Y,R*m. (i1 7))

(see 4.8.8). Since we have a relative orientation we have R?m,(i\(%Z)) = Z on Y and by
definition
[Y] = 1y = constant Z-valued function 1.

We want to show that ¢/ (£) = [Y]. This can be checked locally in the points p on Y.
This means that for any point p € Y we consider the neighborhood U, = V,, x D,, which
contains this point. We have to show that the restriction to the disk at p,

of (£) € H'({p},R*ir(Z)),

is the canonical generator.
We cover the disc D, = {z | |z| < 1} by open sets. The first one is Vy = {z | |2] < r}
where r < 1 but close to one. We set

Vi ={z1|Re(z1) >¢€,z1 € D}

where ¢ > 0 is small and

27 Ami

Vo=es Vi, Va=es V5.

This yields a covering of D,. We compute the 1-cocycle by the recipe given in our
discussion above. On the V; with ¢ = 1,2,3 the constant function 1 trivializes the bundle.
On Vj it is the function z. We get

gij =17 if 1<4,5<3
and goi =2 for ¢=1,23.

We have to write these g, as e2™has with some function hag on V,g. Of course we take

hij = 0 for 1 <+4,j < 3. To define the hg; we take a path v from 1 to a point z € Vo NV}
which goes counterclockwise around zero, and
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1 d¢
h()‘ - — - .

Toomi ), ¢
We have to compute the differences

coij = hoi — hoj + hij
and get Cp12 = C123 = 0

but Co13 — 1.
Now it is clear that this 2-cocycle with values in i)(Z) yields the positive generator in
H? (Dayit(Z)) = HO ({p} R2m.in(Z)

and this proves the proposition. I

Let us assume that dim M = d and let us assume that Lq,...,L4 are line bundles. We
assume that each of these line bundle has a section s; € H°(M,L£) which defines a smooth
divisor Y; = [s; = 0] and let us assume that these smooth divisors intersect transversally
(see section 4.8.9). This has the consequence that the intersections Y1 NY3...NY, = Z;
are smooth complex submanifolds. Let us consider a point p in the intersection of all the
Y; and local trivializations t; € H°(U,,L;) of the line bundles at p. Then locally at p
we have s; = fit;, where f; is holomorphic at p and f;(p) = 0. Then our transversality
assumption implies that f1,fs,...,fq is a system of local coordinates at p. The point
is isolated in the intersection. We can invoke our formula (4.113). This leads us to the
following proposition.

Proposition 4.10.14. Under the assumptions from above the Chern class is a class in
H?>™(M,7) and hence a number. This number is the cardinality of the intersection

01([:1) UCl(CQ) U...UCl(ﬁd) = ‘Yl NnYs ﬂ...ﬂYd|.

Of course we may always form the above cup product of d Chern classes of line bundles
and we call the result the intersection number of the line bundles. We may even take one
line bundle £ and call ¢;(£)? the d-fold or total selfintersection number of the line
bundle. We will indicate later (see section 5.3.1) that on projective smooth varieties this
cup product can always be interpreted as an intersection number of smooth divisors.

The Line Bundles Opn(c)(k)

I want to outline the construction of a familiy of line bundles Opn (g (k) on P™(C).
I begin with the construction of Opn(ry(1). We consider the coordinate functions z; :
C"*! — C as linear forms on C"*'. Starting from these linear forms we construct the
bundle Opn(¢y(1). This bundle becomes trivial when we restrict it to one of the open
subsets U; and over this subset z; is a trivializing section, i.e. it is nowhere zero. For
any pair 4,5 of indices we have the two trivializing sections z;,z; on U; N Uj. They are
related by the equation z; = (2;/2;)z; and 2;/z; = g,; is a holomorphic nowhere vanishing
function on U; N U;. These quotients define the transition functions (see section 4.3.1)
defining the bundle Opn(g)(1). It is clear that z; defines in fact a global section in
HO(P"(C),0pn(c)(1)) and this section defines a smooth divisor [z; = 0] and this is the
hyperplane at infinity for those people who live in U;. Hence we see that the Chern class
of the bundle Opn(¢)(1) is the fundamental class of an arbitrary hyperplane in P™(C).
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In view of our considerations in section 4.8.11 this means that the Chern class ¢1 (Opn (g (1))
is a generator in H?(P"(C),Z).
Hence we have

Lemma 4.10.15. The other bundles are simply the tensor products
O]pn(@)(l)(n) = Opn(@)(1)®n

and their Chern classes are given by n times the generator.

4.11 Hodge Theory

4.11.1 Hodge Theory on Real Manifolds

In this section I describe some very powerful analytical tools which provide insight into
the structure of cohomology groups. They are based on the construction of certain linear
elliptic differential operators (Laplace operators) which arise if we try to write down
an inverse for the operators d,d’,d” in the de Rham or Dolbeault complexes. We need
some results on elliptic linear differential operators which we do not prove here. (See for
instance [Wel], Chap. IV.)

We go back to the situation where we have an oriented C*°-manifold M, and a local
system of finite dimensional R- or C-vector spaces V on M. Let m be the dimension of
M.

We have the de Rham complex

00—V =V — Vo @ — ... — Voo @ QT — 0.

If we take global sections and if we drop the first term the resulting complex computes
the cohomology groups H” (M,V).

We have seen that we can construct a Riemannian metric < , > on M and using the
same method we construct a Euclidean (or Hermitian) metric < , > on V4. The metric
on the tangent bundle provides a metric on the bundle of differential forms Q4. This
allows us to define a scalar product on the sections f € Voo @ Q8 (M): It is clear that the
metric on Vo, and the Riemannian metric together give us a metric on the tensor product
of fibres V, ® Qﬁh at any point x. Hence we get a function z —< v1; ® wiy,V12 Q way >
on M for any two v1 ® wi,v2 @ wy € Vo & Qﬁ/[(M) Since our manifold M is oriented
and Riemannian we have a unique section wiop € Q47 (M) which has length one at each
point and is positive with respect to the orientation. Hence we can integrate

< VR Wwi,vg @ wy >= / < Vg, V25 >p< Wig,Waz > Wiop- (4.151)
M

Here we have to assume that the integral converges. This is certainly so if M is compact.
Otherwise we have to introduce the notion of integrable sections.
There is another way to describe this scalar product.

Definition 4.11.1. We have the Hodge-x-operator on the bundle of forms
Qb — QYTP
which is defined pointwise by the requirement

w1 A xwe =< W1,wW2 > ‘Wrop-
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It is straightforward that
*k = (_1)17("”—1’1).

The Euclidian metric h gives us an isomorphism ip : Vo = VY defined by the rule
in(w)(v) = < v,w >y, . This is not an isomorphism between the local systems ¥ and VV.
Using this isomorphism we define an operator

1t Voo @ QP(M) — VL @ Q™ P (M)
by the formula
*p(v @ W) =ip(v) ® *w. (4.152)
We define an operator going in the opposite direction by
(v @w) =i (vY) ® *w. (4.153)
Then we have as before
spk), = (—1)PmP), (4.154)

Let us denote by e, : Voo @ Voo — €57 (resp. €p : V@ VY — R) the evaluation maps
defined by h (resp. the canonical pairing). They define e, : Voo @ QP AV @ Q™ P —3 Q™
(resp. ep : Voo @ QP A VY @ QMP —3 Q™).

Hence we get for our scalar product for two sections v1 ® wi,v2 @ wa € Voo ® Q4 (M) the
formula

< V] Q@ Wi, @ wy > = / 6h(U1 ®v2)w1 N *wao
M

= /M eo((v1 @ wi) A xp(v2 @ wa)).
Now it becomes clear that we can define an adjoint operator to the exterior derivative
§: Voo @ O (M) — Voo @ Q21 (M)
we simply put
6= (—1)mPFOHL Y sy, (4.155)
We have to verify that for v @ w; € Voo ® QIJ’\Zl(M),vg R wz € Voo @ Q4 (M) we have
< d(v1 @ w1),v2 Q@wa > =< 11 Q@w1,0(v2 Qwa) > .
To see this we perform a simple calculation
< d(v1 @ wy),v2 @ wa >
= / en(d(v1 @ w1) Ave ® *wa)
M

= / eo(d(vl ® wl) N *xpU2 & UJQ)
M

= / eo(d(vl R wi N *xpU9 X (.UQ)) — (—1)p_11)1 @ wi N\ d(*hvg ®w2)).
M



166 4 Cohomology of Sheaves

From this moment on we assume that M is compact. Since the pairing eq is constant we
get

/ eo(d(wy @ vy Axp(va @ ws))) = / deo((w1 @ v1 A *p(va @ws))) =0
M M

and hence

< dvq X w1,V2 @ wg > :(71)1)/ w1 ® vy Ad*p V2 ® wa
M

= (—1)pHm=p+h(p-1) / <1 @wi A *p k), d(*pv2 ® wo)
M

=< w1 ®U17(5’l}2 R wo > .
Definition 4.11.2. We define the Laplace operator
A =dd+dd

which sends p-forms to p-forms.

It is clear that this is a linear operator of second order and it is elliptic (see [Wel], Chap.
IV). I do not give the definition of elliptic operators here because for the conclusions we
draw from ellipticity we refer to books which also give the definition.

From the theory of elliptic operators we get a result, which we formulate a little bit
informally (see also 4.11.3).

Theorem 4.11.3. We have a “decomposition” into eigenspaces

Voo @ Q8 (M) =Y Voo ® Q8 (M)(N),
A

where

Voo @ Q2 (M)(N) = {w € Voo @ 92, (M) | Aw = M}

All the eigenspaces have a finite dimension and the eigenvalues tend to infinity, i.e. for
any finite interval [0,T] we have only finitely many eigenvalues \. The sign >, means
that any w can be written as
w = Z(JJ}\
A

where the convergence is uniform on M and stays uniform if we apply a finite number
of derivatives.

Definition 4.11.4. The set of eigenvalues is called the spectrum of the operator, the
eigenvalues are positive as one sees from the equality

< w,Aw >=< dw,dw > + < dw,dw > .

The forms which are annihilated by A, i.e. which satisfy Aw = 0, are called harmonic
forms.

Once we believe this we can compute the cohomology very easily.

Proposition 4.11.5. The operators d and § respect the decomposition into eigenspaces,
they send eigenspaces into eigenspaces with the same eigenvalue.
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Let w € Voo @ QF (M) be a closed form. Write w in the form w = wy + w’, where wy is
the harmonic component, i.e. the component of w in the eigenspace to A = 0. Then

dw = dwy + dw’ =0

and hence dwg = 0 and dw’ = 0. But

/ /
(JJ:EQ})\,

A£O

where dw) = 0 for all \. Hence we get for A\ # 0

Awl = = (d6 + dd)wh = d%éwf\

> =
> =

[
Wy =

and therefore
!/ 1 /
w'= d(z X(;w)\).
A#£0
This means that wp represents the same cohomology class as w. Hence we have that

Theorem 4.11.6. The harmonic forms satisfy dw = dw = 0. Sending a harmonic form
to its cohomology class provides an isomorphism

HP (Voo ® O2,)(M) = {w € Voo @ Q8 (M)|Aw = 0} =5 HP(M,V).

It is clear how this follows from Theorem 4.11.3. We observe that A is a positive operator.
We have

<Aw,w > =< dw,dw > + < dw,0w > > 0.
If Aw = 0 then we conclude

0 =< dw,lw >=< dw,dw >

this implies the first assertion. Since harmonic forms are closed they define cohomology
classes. If w is harmonic and w = d¥ then < w,w >=< w,d¥ >=< dw,¥ >= 0 and hence
w = 0. The map from harmonic forms to cohomology is injective. The surjectivity has
been shown above. For a complete proof see [Wel] Chap IV, Thm. 5.2.

We can give some indications how Theorem 4.11.6. can be proved without using Theo-
rem 4.11.3. Since we introduced the scalar product on Voo @ QF (M) we may take the
completion with respect to this scalar product, and we get the Hilbert space

L (Voo © (M) = Voo ® Qz) (M)
of quadratically integrable differential forms with values on V.

If we have a closed form w € Voo @ Q8 (M), then we can modify it by a form di) and we
can try to minimize the square of the L%-norm
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o+ dip|3 = /M<w +dip o + d).

We look at the limes inferior of all the real numbers ||w+d||3 where ¥ varies. We can find
a sequence w + dib, = w, such that ||w,||3 converges to this infimum. Since the unit ball
in our Hilbert space is weakly compact, we can find a weakly convergent subsequence, i.e.
we may assume that w, converges weakly to a form wy € L*(Voo ® QF,(M)).We would
like to prove that wg is a C*°-form, that it is harmonic and that this form represents the
given class, i.e. wyg = w + diy.

Assume that we know that wq is a harmonic form. This means that it is C*° and satisfies
dwy = dwg = 0. Then this implies

(dwo,m) = (wo,6m) =0
(6wo ) = {(wo,dip) = 0

for all 1 € Voo @ Q271 (M),n € (V) @ QXY (M). The point is that the equalities
< wp,0n > =0 and < wp,dyp >=0
make sense for all wy € L2(Voo @ QF,(M)). And in our case they are true because
(wo,0m) = N {w + dipn,dn) = (dw + ddipn.m) =0

(this is the definition of weak convergence) and the second one follows from the minimality
of the norm ||wol|3.

This means that wq is a so called weak solution of the differential equations dw = dw =
0. The really deep input from analysis is that the validity of the two equations

{wo,0m) = {wo,dy) =0

for all i, implies that wy must be indeed C*>° and then it follows that wy must be
harmonic ([Wel]).

The rest is easy. We need to know that wy still represents the given cohomology class.
This follows from Poincaré duality. We consider the dual local system VY. We have the
non degenerate pairing

HP(M,V) x H" P(MVY) — R
which in terms of differential forms is given by integration over M. Hence we see that for

any cohomology class [w'] € H™™P(M, V") which is represented by a C*° — (m — p)-form
w’ that

WU W] = / trlwAw) = /tr((w +dipn) AW,
M
and weak convergence gives that this integral is equal to
/tr(wo AW') = [wo] U [w']. (4.156)

Theorem 4.11.6 has some consequences, for instance the finite dimensionality of the space
of harmonic forms implies
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Corollary 4.11.7. For a compact oriented C*°-manifold the cohomology HP(M,V) has
finite dimension for any local system of finite dimensional R- or C-vector spaces.

Of course it follows already from the de Rham isomorphism that

Corollary 4.11.8. For a compact manifold M and a local system V of real (or complez)
vector spaces HP(M,V) = 0 for p > dim(M).

Then it is clear from the construction that

Corollary 4.11.9. The operator *j induces an isomorphism
gy HP(M)V) = H™P(M,VY)
which depends of course on the choice of the metrics. We have the duality pairing
HP(MV) x H" P(M,VY) - R.

If we identify the cohomology groups to the spaces of harmonic forms, then we find that
for a non zero w € HP(M,V) we get wU j; (w) > 0 and this implies of course again, that
the Poincaré pairing is non-degenerate.

All these consequences were known to us, they even hold for more general local systems.
But in the next section where we discuss the analogous situation of holomorphic bundles
on complex manifolds the proofs really require some analysis. For instance the proofs for
the finite dimensionality of certain cohomology groups need analytic methods. It can be
obtained from the theory of elliptic operators or one uses methods from the theory of
topological vector spaces.

Finally I want to mention that the results of Hodge Theory allow an interpretation in
language of derived categories.

Corollary 4.11.10. The de Rham complex computes the cohomology, it is a complex of
infinite dimensional vector spaces. The harmonic forms provide a subcomplex where all
the differentials are zero and this subcomplex also computes the cohomology. Hence we
see that the de Rham complex is isomorphic to its cohomology in the derived category of
R-vector spaces.

4.11.2 Hodge Theory on Complex Manifolds

Now we consider a compact complex manifold M. We introduce a Hermitian metric h
on the tangent bundle T),.

Some Linear Algebra

I have to recall some simple facts from linear algebra which concern these metrics. There-
fore I start from a complex vector space V of finite dimension m. In the following I view
V as a real vector space of dimension 2m which is endowed with a linear transformation
I:V — V which satisfies I? = —Id. The structure as a C-vector space is regained if
we define scalar multiplication of v € V' by ¢ by v — I(v).
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If we have a Hermitian form h on V' then we can write

h(v1,v2) = Re h(v1,v2) + i - Im h(v1,v2)
and it is clear that

Reh:V xV — R is symmetric
Imh:V xV — R is alternating.

Since
h(IU1JU2) = h(ivl,ivg) = h(vlﬂ)g)
we see that both components satisfy

Re h([Uthg) = Re h(vlﬂ}z)
Im A(ITvy,lve) = Imh(vy,v2),

in other words: I is an isometry for the real part and for the imaginary part. But we may
also recover h from either part. We simply write

h(vi,Iv2) = Re h(vi,lve) 4 ilm h(v1,Iva)
and since
h(v1,Ive) = —ih(vy,v9)
this yields
h(v1,v3) = —Im h(vy,1vy) + iRe h(vy,lv9)
and from this we get

Re h(v1,v2) = —Im h(vy,lva)
Imh(vy,vg) = Reh(vy,lve).

Hence we see that a sesquilinear form h on V (this is a Hermitian form without the
requirement that it should be positive definite) is the same thing as a symmetric form or
an alternating form

Reh:VxV —1R Imh:VxV —1R

for which I is an isometry.

Proposition 4.11.11. The form h is Hermitian (positive definite) if and only if Re h is
FEuclidean.
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We complexify V' and extend Reh to a bilinear form
Reh@ : V@ X V@ — C.
We have the decomposition

Ve =vV0ovi

into i-eigenspaces for I and it is clear that V10,1 are isotropic with respect to Re hg,
ie.

Rehe (VIO V10) = Re he (VO V) = {0}.
This follows from the definition of the V19, V0:! as eigenspaces for I with eigenvalue 3.

But the pairing
Rehe : V'O x VOl — €

will be not trivial in general. If for instance the form h is positive definite then this
pairing is a perfect duality.
We have an isomorphism of complex vector spaces

7V — yLo

which is obtained by the embedding of V' into Vi followed by the projection. Under this
isomorphism we send

1
jrur— 5(1}—[1}@2’)
and we can recover the Hermitian form h from Re hg by the formula
]. . e~
h(viwz) = SRe he (5(v1).5(v2))
where T is of course the antilinear isomorphism from V19 to Vo' introduced by complex

conjugation on the factor C in the tensor product V.
We introduce a so-called Hodge structure on the pair (V,7). This is a homomorphism

hp : C* — GLg(V)
and it is defined as

hp(z) = hpla+bi)=a-1d+b- I.

It is clear that this map is a homomorphism. With respect to the Euclidean metric on V'
it has the property that

< hp(2)v1,hp(2)ve > = 2Z- < v1,09 >,

it is not an isometry but a similitude.
If we complexify the space to V¢ then it is obvious that
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VB0 = {o|hp(2)v = 20}
VOl = {y|hp(2)v = Z0}.

The action of C* commutes with complex conjugation: We have hp(z)v = hp(2)7 on
V. We can extend this action of C* to the exterior powers A" V and (A" V)¢ simply
by

hp(z)(v1 Ao Awvy) = hp(z)vr Ao Ahp(2)o,
and it is clear that we can characterize the subspace
vra= A" vioe ATvorc AT
as
/\p Vil /\q Vol = {w € /\p+q Velhp (2)w = szqw} .
Of course if we extend Re h¢g to a bilinear form on A" Vi by

Rehe (o)) =Rehg (01 A oo AUy A e oo A wy,)
= det (Re he (vi,w5))

then we have
Re he (hp(2)p,hp(2)Y) = (22)"Re ho(o,9).
This implies for the x-operator that
o NV0e NTVer S AT o g AT V0L
This must be so because the product v, 4 A *w,, 4 is in top degree and
hp(2)vp,q A *xwp g = (2Z2)™0p g A *Wp 4
We can extend our Hermitian form A to a Hermitian form on AP V10 @ A?VO! by

h(%z/’) = Re h’@ (907@)

Kdhler Manifolds and their Cohomology

Now we come back to our compact complex manifold M of dimension m, we assume
that we have introduced a Hermitian metric <, > on Th;. This introduces a Hermitian
metric on Q},. We have the decomposition

Ol = 04y 60 €= 03 Dy

and

/\n Qumc = @ /\p Qi}o ® /\q Q%}

ptg=n

P ox.

ptq=n
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We have the Euclidean metric Reh on Q}, oo and it induces a star operator

Nk — ANk

We have seen in the above section on linear algebra that we should extend this antilin-
earily to

n o 2m—n 1
* /\ Qe — /\ Qu,c

and that this operator sends
. QP-4 m—p,m—
o Qb — QY 1,

We define the scalar product on the sections Q47 (M) by
< Wi,wy >= / w1 N *wa.
M

Now we are able to define the adjoint operators to d’ and d”, we put

0 = —xdx

0" = —xd x.

The sign factor simplifies because our manifold has an even dimension when we consider
it as a real manifold. Of course we have to verify the adjointness formulas

< d'wl,wg > =< wl,é'wz >
< d"wl,wQ > =< wl,é”wg > .

To see this we observe that it is enough to check the case where w; € QP~L9(M),ws €
Qms(M).! Let us consider the first case. We see that both sides are zero unless p =
m—r,g = m—Ss. So we assume that this is the case. Now we perform the same calculation
as in the real case where at certain places we have to replace d’ by d and then again d
by d'. We observe that

< d/wl,wQ > =< dwl,wg >
=< UJ1,5W2 >
=< wl,élwg > .

This allows us to define the Laplace operators
A/ — d/(s/ + 6/d/ and A// — d//é"// _|_ 5//d//
We want to compare these operators to the real Laplacian. Here we find

A: (d/+dl1)(6/+5/1)+(5l+611)(dl+dﬂ)
:A/+A/,+6/,d/+d/5”+6/d”+d//6/
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This is not so good unless we know that the mixed contributions disappear. This is indeed
the case if our metric h satisfies a certain condition, which I now want to explain.
Our metric h on the tangent bundle has its imaginary part

Imh : T]\/[oo X T]uoo — RR.

Hence the imaginary part defines a 2-form wy on the manifold. If we complexify the
tangent bundle and if we observe that I is an isometry for wy, then we see that wy, is a
form of type (1,1) because it must be zero on TH? @ T*Y and T%! @ T%!. This is the
so-called Kahler form of the metric. Kahler discovered the following

Theorem 4.11.12. If the form wy is closed, i.e. dwp = 0, then the sum of the mixed
terms is zero and we have

A:}A/ZEA//
2 27

I will not prove this theorem here. (See [We2], Chap. II, Thm. II) But in our later
discussion of the special case of Riemann surfaces — in this case we have automatically
dwp, = 0 — I will carry out the necessary calculations in this special case.

Definition 4.11.13. A complex manifold is called Kdhler manifold if it is equipped
with a Hermitian metric for which dwp = 0.

The Theorem 4.11.12 has the following important consequences:
Theorem 4.11.14. Let M be a compact Kdhler manifold
(a) The operators A',A" respect the decomposition, in any degre k we have
Oy (M) = @ (M),
pt+a=k

and then A =37 AP where AP QUI (M) — QL (M).

(b) The harmonic forms w € Qf; (M) are sums of harmonic forms
W= Z Wp,q>
p+q=k

and
Aw =0 — Aw=A"w=0.

(c) A form w is harmonic if and only if it satisfies all the equations

dw=d'w=0

dYw=058w=0
This follows by the same positivity argument which we used in the real case.
This provides us the famous Hodge decomposition.
Theorem 4.11.15 (Hodge decomposition). Let M a compact complex Kihler manifold,
then we have the decomposition

H"(M,C)= @ HP(M,C).
ptg=n

of the cohomology.
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The Cohomology of Holomorphic Vector Bundles

We have methods to compute the cohomology of a holomorphic bundle £ on compact
Kahler manifolds M which are analogous to the methods in section 4.11.1, where we
computed the cohomology of local systems. We choose a positive definite Hermitian
metrics on the tangent bundle and on the bundle £ itself. If £¥ = Hom(€,0,) is the dual
bundle, then the Hermitian metric & on the bundle £ provides an antilinear isomorphism
in : € — €Y which is defined by v — {w —< w, >,}. We consider the Dolbeault
complex

0 — Exa(M) L €00 @ QM) L5 00 @ QU2 (M) — ...

As in section 4.11.1 we define the operators
¥ oo @ QDT — EY @ QTP and
%) 1 Eoo @OPT — £V @ QMTLTP
by
o Y =1V
xp (v @ w) = 1ip(v) @ *w and  #*; (v Qw) = (in)” (v") ® *w.

Again we introduce a scalar product on the sections €, ® QP4(M) by

< $1 Qw82 Qwy > = / en(s1,52)wi A *wa
M

= / eo(s1 @ w1 A *p(s2 ® wa))
M

We can construct the adjoint operator
6" Ene @ OA(M) — Eno @ Q017 H(M)
for d”’, it is given by
8" = — 5 d"s,
and we have the Laplacian
A// — 5//d// _"_ d//é//
We get in analogy with section 4.11.6.
Theorem 4.11.16. The cohomology groups are given by
HP(M,E) = HP (£ @ QP (M) = {w € Ee ® QP (M) | A'w = o} .

Especially we can conclude that these groups are finite dimensional.

The finite dimensionality is fundamental and there is no easy way to get it . We will give
proofs in the special case of tori in 4.11.3,( this is not so difficult) and we will prove it
for Riemann surfaces in the next chapter.
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Serre Duality

We apply this to the holomorphic line bundle Q™ of differentials of highest degree. Its
cohomology is computed from the complex

0— Q™M) — Q™M) — Q™Y (M) — ... — Q™" Y M) — Q™™(M) — 0.

We want to compute H™(M,Q™), this is the space of harmonic forms for A” in Q™™ (M).
The star operator sends Q™™ (M) to Q%%(M) and the A”-harmonic forms to the A’-
harmonic forms. But the A’-harmonic sections in this sheaf are the antiholomorphic
functions on M. Since M is compact we can conclude that these are the constants. It
follows that

Theorem 4.11.17 (Serre). On a compact, connected complex manifold M of dimension
m we have dim H™(M,QQ™) = 1 and we have a canonical isomorphism

H™(MQ™) = C,

which is induced by

w%/w.
M

This isomorphism does not depend on the choice of the metric. The cup product induces
a pairing

HP(M,E)x H™" P(M,EY@Q™) — H™(M,EREYRO™) — H™(M,Q™) = C. (4.157)
and this pairing is non degenerate.

This is §3 Thm.4. in [Se2] and is called Serre duality. We can also deduce this theorem
from 4.11.16 by the same argument which we used to show that Hodge Theory for local
systems implies Poincaré duality: We get the antilinear isomorphism j} : HP(M,£) =
H™P(M,EY ® Q™) induced by *p, and then we exploit the positive definteness of the
scalar product.

In his paper [Se2] also J.P. SERRE gives a proof of the finite dimensionality of the co-
homology groups HP(M,E) which is not based on Hodge Theory but uses results on
topological vector spaces instead. This proof of SERRE is more in the spirit of our dis-
cussion of the cohomology of manifolds in section 4.8. There we started from convex
coverings and used the fact that the Cech complex computes the cohomology. In this
approach it is central that constant sheaves on contractible spaces are acyclic. We have
to find a substitute for this in complex analysis, we indicate briefly how this works.

In the local theory of several complex variables one introduces certain simple types of
domains, for instance polycylinders P = {(z1,...,2,) € C" | |z < r;} or balls D =
{(z1,...,2n) € C" | Y |2]?> < r}. These are so called domains of holomorphy or
Stein manifolds (see [Gr-Rel]). These domains play a similar role as our convex balls
in the convex covering of a manifold (see 4.8.2). They satisfy certain finiteness conditions
and they are acyclic for so-called coherent sheaves, i.e. for a coherent sheaf we have
HP(D,F) =0 for p > 0. These are the famous theorems A and B which go back to OKaA
and CARTAN. (See [Gr-Rel],Chap. A. §2, Chap. III. §3.)
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Now we can try to compute the cohomology HP(M,E) by starting from suitable Cech
complexes obtained by coverings by open sets which are domains of holomorphy. Then
we encounter the problem that in contrast to the case of local systems the spaces of
sections H°(U,,E) are of infinte dimension. They have to be endowed with topologies,
they become Frechet spaces. We pass to a refinement of the covering and then certain
linear operators will be compact, which then eventually leads to finite dimensionality.
For details I refer to the paper [Se2] by J.P. SERRE.

4.11.3 Hodge Theory on Tori

We have a special case where the two main theorems of Hodge Theory (Theorem 4.11.6
and Theorem 4.11.14) are easy to prove. We consider a lattice I' C R™ (see 4.6.8), and
we consider the compact C*°-manifold

M =R"/T.

For any point u € M we have a canonical identification T,M = R"™. In the following
we take u = 0. If we take the standard Euclidean metric < , > on R™ then we get a
Riemannian metric on M. If x1,...,x, are the coordinates on R", then the differential
forms can be written as

w = Zflllp dIil VANRERAN dm,p

I want to consider complex valued differential forms, i.e. the f;,...; are complex valued

C*°-functions.
A basically simple and straightforward computation yields a formula for the Laplace

operator:
Aw= > O fir-iy d 4
w = - Txf dxi, A\« Ndx;,. (4.158)

Now we consider the dual lattice

P

FV

{eeR™ | {p.I) C Z},
then for ¢ € TV the function
ep(x) = 2mile) (4.159)
on M is an eigenfunction for the Laplacian
Aey(z) = 47°{p,p)ep ().

Now any C*°-function on M has a Fourier expansion

f= agey(a), (4.160)

el

where the absolute values |a,| tend to zero very rapidly. Consequently any differential
form can be written as convergent infinite sum
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w=Y w,, (4.161)
7}

where Aw, = +47%(p,p)w,,. This is the decomposition in 4.11.3. It has the required
property: There are only finitely many ¢ which satisfy 47%(p,p) < T. We apply our
arguments in the proof of Theorem 4.11.6. The harmonic forms are the constant forms

wo = Zair-'ipdxil VANERRIAN dl’ip,

where a;,..;, € €. We conclude that the cohomology ring H*(M,C) is the exterior
algebra of the complexified dual tangent space Hom(ToM,C). This agrees with 4.6.8, but
the result over there is slightly sharper because it gives the structure over Z.
If we consider a complex torus

M=C"/T
where I is a lattice of rank 2n, then M is a complex manifold and the tangent space is

the complex vector space C™ in any point of M. On this tangent space we introduce the

standard Hermitian metric
n

Z 2z, = h(z,2).

v=1

Again we perform a simple computation and find

021,
N =AY fapdea NdZs =w — S <Z — faf ) dza NdZg.  (4.162)
o B > vU<y

We have the dual lattice
I'V'={p e C"|Reh(p,y) €% for all vy € T},

and we can expand C°°-functions

f(z) =) agerve?™ Mo, (4.163)

Now we argue as before. We have the Dolbeault complex
0 — O — (M) L5 Q0% (M) — -+,

and we have the adjoint 6”. The operator A” = 6”d” + d”§" has the form above, we can
decompose into eigenspaces. If we take global sections, we find that
H*(M,0n) = H*(M,Qf} (M)
— {we HOMQY (M) | A"w = 0},

and again the harmonic forms are the constants.
We conclude that

H*(M,0y) = Hom&™ (Ty (M), T). (4.164)

This result will be used in the next chapter.
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5 Compact Riemann surfaces and Abelian
Varieties

5.1 Compact Riemann Surfaces

5.1.1 Introduction

Definition 5.1.1. A compact Riemann surface is a compact compler manifold of
dimension 1.

Let S be such a surface. It has a canonical orientation (see section 4.10.2). On pages 77
and 146 we have seen that the cohomology groups of such a surface are given by

HY(S,7) =17
HY(SZ) =172
H*(S7Z) =T

and in addition the Poincaré duality gives us an alternating perfect pairing
<, >eup: HY(S,Z) x H'(S,Z) — 7.

The number ¢ is called genus of the surface. The genus ¢ is also a measure for the
complexity of the Riemann surface. We will show that a Riemann surface S of genus
g = 0 is isomorphic to the so called Riemann sphere P!(C) (see section 3.2.2 Example
15 a) and section 5.1.6). In section 4.4.5 we showed that H*(IP*(C),Z) = 0 and therefore
P1(C) has genus zero.

Of course it is clear that a holomorphic function on a compact Riemann surface S must
be constant. We will work very hard to show that on any compact Riemann surface we
can find a nonconstant meromorphic function (see section 4.1.1 and Corollary 5.1.13). We
will achieve this goal in Corollary 5.1.13, when we prove the theorem of Riemann-Roch.
Once we have a nonconstant meromorphic function f we can cover S by the two open
sets Ug (resp. Uy) where f (resp. f~! = 1/f) is holomorphic. We get holomorphic maps

f:U0—>®
w— f(w)
and
f_12U1—>®

u— 7 (u)

and it is clear that these two maps provide a surjective map S — P*(C) which is also
denoted by f (see section 3.2). It will turn out that this map has finite fibres and the
number of points in the fibres (counted with the right multiplicities) is equal to the degree
of the polar divisor (see section 4.1.1,5.1.7). This kind of maps will become a decisive
tool for the understanding of Riemann surfaces (see section 5.1.7).

G. Harder, Lectures on Algebraic Geometry I, DOI 10.1007/978-3-8348-8330-8_5,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011



180 5 Compact Riemann surfaces and Abelian Varieties

5.1.2 The Hodge Structure on H!(S,C)

We study the cohomology with coefficients in C. I want to change the notation slightly.
On our Riemann surface Q}g will be the sheaf of holomorphic 1—forms. The sheaves of
C> differential forms will be denoted by Q% . We consider the de Rham complex

0—C—Qy —Q; —QF —0.
Then
H'(S,C) = H'(2%_(9)).

We recall our results from section 4.10.2. We have a complex structure on the tangent
bundle Ts this is a linear transformation I : Ty — T which satisfies I? = —Id. We get
a decomposition

Tsec =T @T"

This provides a decomposition of the complex of differential forms, which only effects
1-forms:

0— € — Q%0 L L0 6 0t L oLl g, (5.1)

The sheaf ng contains the sheaf Q of holomorphic 1-forms. (See the section on the
cohomology of holomorphic vector bundles in section 4.11.2 applied to £ = Q%)

In local coordinates at a point p we have

f of

5odzt 5z, (5.2)

0
df dlf+dllf_ 8

and for a 1-form
w=fdz+gdz=uw +u"

we get

0 0

dw=d"w' +dw'" = (a—é — a—Z)dz Adz. (5.3)
Especially we see that a (1,0)-form w = fdz is holomorphic if and only if dw = 0 or
d"w = 0. We introduce a Hermitian form h on the tangent bundle Ts (see section 4.11.2).
As T explained in general discussion such a Hermitian metric is the same as a Euclidian
metric Re h = hg on the tangent bundle Ts_ which satisfies ho(z,y) = ho(Iz,Iy) for any
two tangent vectors xz,y € Ts_ , at a point p. This induces a metric on the dual bundle
T& which we will denote by <, >.
If we pick a point p € S and a local coordinate z at p then it identifies a neighborhood
U, to a disc around zero in C. The differential dz is a generator of the Og(U,) module
of holomorphic differentials Q!(U,). In the neighborhood U, of p our Hermitian metric
is given by a strictly positive function (see in section 4.11.2)

u— Rehe < dz(u),dz(u) > (5.4)
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which we simply denote by < dz,dz >. Since we can view U, as an open disc in C we
have dz = dx + idy and

<dz,dz > =<dzr,dx >+ < dy,dy >=2 < dz,dx > (5.5)
because the complex structure I which sends dx to dy is an isometry. The metric and the

orientation give us a distinguished form wyo, in degree 2 which is positive with respect
to he orientation and has length 1 with respect to the metric. It is given by

. dzNdz (dz + idy) A (dx — idy)
wtop = — = (5.6)
< dz,dz > < dz.dr >+ < dy,dy >
dx N dy dxr N\ dy

= i(—) -

<dz,dr> <dzdz>

Of course dwyop = 0 and hence we see that our Riemann surface is a Kédhler manifold (see
Theorems 4.11.12 and 4.11.14). Now it is rather easy to check that the Hodge-*-operator
does the following

— dzNdz
* f—mf% (5.7)
* fdz — ifdz
* gdz — —igdz
* dzNdz — —i < dz,dz > .

We can introduce the adjoint operators ¢',0” (see 4.11.12) and define the Laplacian

A=(d+d") 6+ (5.8)
— d/(s/ + 6/d/ + d//(s// + 6//d// + d/(;// + 6//d/ + d//(s/ + 5/d//
=A + A"+ extra terms.

The extra terms add up to zero because the metric is a Kéhler metric. (See 4.11.12.)
I stated this result without proof in the general case, therefore I will carry out the
calculation for our special situation. On the forms of degree 0 or 2 this is rather clear. If
we consider for instance an f € Q%°(S) then

§'d f = (SN%dZ = xd" * %dz (5.9)
Y
=—ixd azdz—()

and the same principle works for the other combinations. But for forms of degree one we
have to work a little bit. Let us consider the case w = fdz. Then we see easily that two
of the four terms vanish, this we see by looking at the degree:

§"dw=d8"w =0. (5.10)

For the other two terms we have to compute.



182 5 Compact Riemann surfaces and Abelian Varieties

§'d" fdz 6’8fdz/\dz (5.11)
:—*d’*gdz/\dé
o2 —
*id/a—f <dz,dz > =i <8J; <dz,dz > —|—%§ <dz,dz >> Adz (5.12)
52 - 7
_ (9 of 9
= (82 <dzd—>—|—8 b <dz,dz > | dz.

Since < dz,dz > is positive and therefore real, we have

0 _ 0 _
5 < dz,dz > = 5 < dz,dz > . (5.13)

Now we treat the second term:

2= —d'xd % fdz = —d" x (—i)d fdz 1
d"s' fd 4"« d * fd d" % (—i)d'fd 5.14

of nOf
adz/\cl_— da < dz,dz >

2
= < f<dzd >+8f8

— _id//

77 7% 93 < dz,dz >> dz.

Hence we see that the two terms add up to zero and

(8'd" +d"8") fdz = 0. (5.15)

We apply our general theorem (Theorem 4.11.14) in the section on Hodge Theory to
this case. We are mainly interested the first cohomology group. We get that it is given
by the harmonic forms in degree one and these harmonic forms are sums of harmonic
forms in the degrees (1,0) and (0,1). I will give the proof of the following Theorem for our
special case. A reader, who is willing to take the general results on the theory of elliptic
operators for granted or knows how to prove them, should skip these proofs.

Theorem 5.1.2 (Hodge Decomposition for Compact Riemann Surfaces).

A form w = fdz € Q}gw(S) is harmonic if and only if dw = d"w = §w = §"w = 0.
Two of these equations are automatically fulfilled, the other two are equivalent to w being
holomorphic. We get the Hodge decomposition

HY(S,C) = H(S,Q5) ® HO(S,QL).

The C vector-space H'(S,C) = H'(S,R) ®r C has the complex conjugation on it as an
antilinear map and H(S,02}) is the complex conjugate of H°(S,Q24) under this complex
conjugation.(See section 4.11.2, especially the discussion concerning the formation of the
complex conjugate space of a C-vector space.) Then this implies

dim H°(S,Q%) = g. (5.16)
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Proof: (Theorem 5.1.2) 1 want to give an indication how this consequence of the general
Hodge Theory can be proved in this special situation. Only the last assertion has to be
proved, we have to show that any cohomology class can be represented as the sum of a
holomorphic and an antiholomorphic form. Of course there is no problem in degree zero
and degree 2. So we look at the case p = 1 and start from a 1-form

w=w? + WOl

which is closed and represents a cohomology class [w] € H'(S,C). We have seen that we
can construct a weakly convergent sequence w, = w + di),, (see page 167) such that the
weak limit wy € Q%Q)(S) satisfies

/wo/\dl/lzo
S

for all ¢ € C*°(S). We also have

/wo/\5n:0
S

for all n € Q}golc (S) because this is true for all w + di),. Now we decompose
wo = wé’o + wg’l.
I claim that even

/ we' A" = / we' Ao =0
S S

for all v € C=(S),n € Qg (S). We have

/ we' " A" + / wet Ad'p =0 (+.d)
s s
and
/ wé"o A&+ / wg’l ANS"'n=0 (+,9)
s s

for all ¥,7. We take i = %t and then we get from our local formulae (see equation 5.7)

and the second line becomes

i/wé’OAd”w—i/wg’l Ad'p=0. (—,d)
S S
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Subtracting i(+,d) from (—,d) we find

/ Ond"yp = / YAy

for all ¥ € Qg’i(S). These two orthogonality relations do not involve the Hermitian
metric anymore.

We want to conclude that these orthogonality relations 1mp1y that wy’ 19 ig itself a holo-
morphic 1-form. The holomorphicity is a local property of wo . We choose a point p and
a neighborhood U, such that we can identify (U,,Op,) with the disc (D Op). Let z be

the coordinate function on D. Our differential form can be written wo = f(z)dz and
since the restriction of f to D must be square integrable, we have

Jirer T

Since the function < dz,dz > is bounded and bounded away from zero the square inte-
grability condition is equivalent to

/ |f(2)|%i dz A dZ < oo
D

Now we exploit the orthogonality relation (w(l)’o,d’ ") = 0 for C*°-functions ) with com-
pact support in D, we have
/ we Ad"1h =0
D

for all compactly supported v € Q2 (D)
We introduce polar coordinates and write

1) = fr0) = 3 am(r)ei™s

meZ

and a,,(r) is square integrable on [0,1] with respect to rdr. Square integrability means

that .
Z/ |am (7)Prdr < oo
m 0
We can choose our function 1, and we take
U(z) = b(r)e”™"?

where b(r) is C* on [0,1) and has compact support in [0,1). Then an easy computation
shows

0 w0 ; 1/0 .
%z/)(z) =5 e (arb(T) + Zb(?“)) e " = B ((‘%b(r) + :b(r)> e~ in=D)¢

Consequently our assumption implies

/01 — (grb(r) + Zb(@) rdr = 0
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for all such choices of b(r) and n. But now we know enough elementary analysis to show
that this implies that for all b(r)

/01 <_Taar“"1(7") +”an1(7“)> b(r)dr =0

and therefore we can conclude that

an—1(r) = Cpgr™

with some constant ¢,,_;. It follows that a,(r) =0 for n < 0 since fol r?"r d = co. Hence
we get

S
f(Z) _ Z Cn,r,nenup
n=0

and .
Sl ot <
(2n +2)?

This is good enough to show that f is holomorphic on the disc. This finishes the proof
of Theorem 5.1.2. 1

The cup product < , >cup: HY(S,Z) x H*(S,Z) — H?(S,Z) = Z extends to a bilinear
pairing < , >cup: H'(S,C) x HY(S,C) — H?*(S,C) = C and we know (see section
4.10.1) that this pairing is given by

< wi],[wa] >cup= / w1 A w2
s

where wq,ws are closed forms which represent the classes [w1],[ws] in the cohomology.

Lemma 5.1.3. With respect to the pairing < , >cup the two subspaces H°(S,Q%),HO(S,QL)
are maximal isotropic spaces and hence the cup product induces a perfect bilinear pairing

<, Seupt HO(S,025) x HO(S,QL) — C.

5.1.3 Cohomology of Holomorphic Bundles

For any holomorphic vector bundle on £ on S we consider the Dolbeault complex

0— &2 0008 2 0% g) — 0. 5.17
S S

We changed our notation slightly and write Q27(€) instead of £ ®Q2P7. The cohomology
groups of £ are computed from the complex

0 — Q%°(8)(S) L Q%1(£)(S) — 0. (5.18)
Now choose in addition a Hermitian metric < , >5 on the bundle £ and on Tg.
The metrics on £ and on T provide an adjoint operator 6" : Q%1(€)(S) — Q%°(&)(S)

and now Hodge Theory implies (see section 4.11.2 and consequence (c¢) of Theorem
4.11.14.):
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Theorem 5.1.4. We have that:

HY(S,E) = {s € Q%°(&)|d"s = 0}
HY(S,£) = {s € Q%' (£)]6"s = 0}.

and the cohomology groups are finite dimensional.

Again I stress that the proof of this finite dimensionality even in this one dimensional
case needs some input from analysis. Either we use the theory of elliptic operators or
some results from the theory of topological vector spaces. (See [Fo] or [Se2] for the second
method.)

Actually for the cohomology in degree zero H°(S,£) the finite dimensionality is not
difficult but the finite dimensionality of H'(S,£) is by no means easy. To make this
book more selfcontained I will outline a proof of these finite dimensionality results for
our special case of compact Riemann surfaces. The reader who is willing to believe the
general results on elliptic operators may skip up to page 191.

The equality HY(S,£) = {s € QOS’O(8)|d”s = 0} is tautological. We prove the finite
dimensionality. We proceed by induction on the rank of the bundle. Let us assume that
we have a non zero section s € H°(S,€). Then we show

Lemma 5.1.5. To this non zero section s we can attach a line subbundle L C £ such
that £/L is again a vector bundle and s € H®(S,L).

Proof: The section s provides a map

Os%g
fr—fs

for any holomorphic function f on some open subset U C S. This yields indeed a line
subbundle £’ but it is not yet the one we want. If we are at a point « € S where s(z) =0,
then we can choose a neighborhood U, and a local trivialization of £ by local sections
e1,...,e, which are nowhere zero on U,. Our section s can be written as

n
s=Y_fie;
=1

with f; holomorphic at x and f;(x) = 0 for all 4 = 1,...,n. This implies that the set
of zeroes of s is a finite subset of S. But since dim S = 1 we have a local uniformizer
Ty € My C Og, and f; = 7 h; where h; € Og’z. Let m be the minimum of the n;. Then

—m — —_-m £ .
T S—E T, fi€i

extends to a section in & which is defined over U,. This section defines a subbundle
L&) |y, But this line subbundle coincides with the above bundle £’ if we restrict to
the complement of the point z. Hence we see that we can glue the £’ and the £(*) to a
line bundle £ on S. We have £ C &, the quotient £/L is a vector bundle of smaller rank
and s € H°(S,£). This reduces the proof of the finite dimensionality to the case of line
bundles. But if we have a line bundle £ and a section s # 0, then we look again at the
inclusion Og — L induced by the section, and we get an exact sequence
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0—0s —L—L/0Os—0

and now £/Og is a skyscraper sheaf (see section 4.1.1). Since H°(S,05) = C and obvi-
ously dim H°(S,£/0Og) < oo, we are through.

The proof of the second assertion in Theorem 5.1.4 is much more difficult. We begin by
the observation that the duality pairing gives us a linear map

U HY(S,E) — HS,EY @ QH)Y.
Since we are already in the highest degree we have

Q%1 (£)(8)/d" (A" (E)(S)) = H'(S.€)

and the linear map is induced by the map also called ¥

T Q%(E)(S) — HY(S,EY @ Q)Y

wy —> {w*—)/;eo(wl Aw)}

where w; Aw € QLL(EY ® £)(S) and eg is the evaluation of the duality pairing. If w # 0
then we can find an wy such that ¥(wq)(w) # 0, this implies that the homomorphism ¥
is surjective. Once we have shown that it is injective, then the proof is finished.

We have the operator
d" QY% (E)(S) — QLHE)(S)

and the image of d’ lands in the kernel of ¥. The pairing

Q0 (E)(S) x Qi (EV)(S) — €,

which is given by
(wi,w) — / eo(wi A w)
5

is a duality between the two Hilbert spaces. We see that ¥ extends to a continuous
linear map

U Q% (E)(S) — HO(S.EY @ 0h)Y

By definition the closure of the space spanned by the d” f is the orthogonal complement
of its orthogonal complement. This last subspace spanned by those w € 91,0(5\/)(2)(5)
which satisfy

/ eo(d’ f Aw)
s

for all f € Q%9(£)(S). This means that w is a weak solution for the equation d”w = 0.
Then the same reasoning as in the proof of Lemma 5.1.2 shows that w must indeed be
holomorphic. Hence we see that the closure of the space spanned by the d”f is in fact
the kernel of ¥, the d’f span a dense subspace.

Now we have to solve the differential equation d”f = w for a given element w € ker(¥) C
Q%1(E)(S). We try to solve the equation locally, we choose a small disc D such that the
bundle becomes trivial over D.

Let us assume we have a form w € Q%1(£)(D) and let us assume that this form is square
integrable.
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Then I claim that we can find an n € Q%(€)(D) such that d’n = w and that we can
bound the L?-norm of n:
1n(2)ll2,0 < Cllwll2,p-

It is clear that the validity of the L2-estimates does not depend on the Hermitian metric.
These two facts together allow us to restrict to the case where D is the unit disc, where
E|D = Op and the metric is the trivial metric. Then we have to show: If f: D — C
is a C*° -function on D which is square integrable, i.e.

1712 = /D (=) Pidz A dz < oo,

then we can find a C*°-function u on D which satisfies

ou
i f
and
[ull2 < C[[ ]2

The point is that we can write down an explicit solution for this differential equation:

u(z) = ! /D&dC/\dZ.

T 2mi (—=z

(I thank Ingo Lieb for showing me the following argument.) I claim that this is a solution
which fulfills the required estimates. It is easy to see that this function is C*°. If zg € D,
then we can find a C*°-function x on D which is one on a small neighborhood of 2y and
zero on a small neighborhood of the boundary of D. Then

o= g [y L[ XD

2mi Jp (—=z (—z

The second summand is holomorphic at zp and hence annihilated by 9/0z. The first
summand can be written as an integral over C and a substitution yields that we have

L[ x(QF(©) s_ 1 [ x(CH+2)f(C+2) T
R L

We can differentiate under the integral sign because x - f has compact support and
the singularity disappears if we change to polar coordinates. This proved that wu(z) is
differentiable and that 615(;) does not depend on .

Now it is an amusing exercise to show that for f = 1 we have u(z) = Z and from this it
follows easily that u satisfies the differential equation for all f.

We have to prove the estimate. I think it is also very easy to see that the integral

1 1 —
— ——d({ Nd
21 /D I — 2] Cnde
is bounded by a constant not depending on z. We may work with polar coordinates
around the point z.
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To get the L?-estimate we start from

(¢ ¢ 1 _
3R = | [ i e

This is the square of the scalar product of two L2-functions, and we get by Cauchys
integral formula that the right hand side is

([ 1P —)( 1 _)
S47r2<D|<—z|d“d< /D|<—z|d“d<'

We mentioned already that the second factor is bounded by a constant not depending
on z and consequently we get

2m/\u 2dzAd—<C// lf_d

and if we change integration and use our above estimate a second time, then we get

lull3 < €7 [I£113-

2

u(z)]* = d¢ A d<

471'2

Inside of our Hilbert space Q(();;( )(D) we can consider the holomorphic square integrable
functions. I claim that this subspace is closed and even better:

Lemma 5.1.6. Any weakly convergent sequence of holomorphic functions n,, with bounded
Q?Q?(E)(D)-norm converges locally uniformly to a holomorphic function on D.

Proof: This is an immediate consequence of Cauchys integral formula. We pick a point
@ € D and we put three concentric discs around @Q:

QED1CD2CD3CD

each of them is slightly bigger than the previous one. If we have a circle I' C D3 \ Do
then we get from Cauchys formula for z € Do

m(e) = 3 [ ml =

Now we integrate over all I',. between Dy and D3 and consider z € D;. We get

c

1 _
nn(2) = /Ds\D2 Un(()gjdﬁ A dC,

2mi

where ¢ is a constant depending on the width of the annulus. We can read this as a
scalar product, since the sequence 7, is weakly convergent to 1 we see that 7, converges
pointwise to the function

~ c 1 —

n:z— o— 1(¢)7——d¢ N dC,
211 Ds\Ds C —Zz

which is holomorphic on D;. But now the Cauchy formula also gives us that the n,, are

equicontinous and then it follows that the convergence 7, — 7 is locally uniform and

that n =1. O
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Lemma 5.1.7. For any open set U C S (this will be a disc D or the entire S) we have
a decomposition

0,0 0,0/ &
Q(g) E)U) = Q(g) €)U) @ &) ()
where the second summand is the closed space of the holomorphic square integrable sec-
tions and the first summand is its orthogonal complement. For U = S the second sum-
mand is of course the finite dimensional subspace H°(S,EY @ Q).

We choose an w € ker(¥), and we have seen that we can find a sequence of functions

hy, € Q00(E)(S) such that

ld" b, — wll2 — 0.

I claim that the sequence of L2-norms {||¢s]| }nen is bounded. To see this we cover S by
a finite family of discs

S=J Da.

acA

We restrict the members of the family {1y, }nen to the discs D, and call the restrictions
z/Jy(La) . Now we have an orthogonal decomposition of the restriction

P

0%)(E)(Da) = O%)(€)(Da) @ E)(Da) (5.19)

and accordingly we have 0% = (™" +4{*"Y We get d"y{™ = d"1*". From previous
results (see page 187 f.) we know that we have an 7],(10‘) € QOS’O(S)(DQ) for which d"n% =
d" % and

I3 ll2.00 < Cld"$R 12D, -

We have 8 = O 4 hy, with hy, € E2)(€)(Dq). The orthogonality of the above decom-

position implies that ||w7({l”)|| stays bounded. We get

15 2,0 < 105 12,0, - (5.20)

Hence we see: If the sequence {|[1,, |2} is unbounded, then there must be an « such that

sequence ||V |5 p. is unbounded.

Now we consider the sequence of functions ¢, /|[¢n]2. We can extract a subsequence
which is weakly convergent. On any D,, this sequence has the same limit as Plehoh /nll2,
hence it converges to a holomorphic function. This function must be zero because our
1, where chosen from the orthogonal complement of the holomorphic sections. It follows
from Lemma 5.1.6 that the sequence v, /||1),,| converges uniformly to zero. This can-
not be the case because the L2-norm of the members of the sequence is one. We get a
contradiction.

So we see that the sequence of norms |[|1),|| is bounded. Now we do what we always
do at this point. We extract a weakly convergent subsequence. If ¢ is the limit of this
subsequence we found the element which satisfies
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/S(wAd”n) =wAn=0 (5.21)

for all sections n € Q}S’O(S) which have compact support. Now an argument similar to
the one in the proof of Lemma 5.1.2 yields that 1) is C°° and that we have w = d”+). This
finishes the proof of Theorem 5.1.4. U

We have seen that ¥ is an isomorphism, so as a byproduct we get:
Lemma 5.1.8. The duality pairing in section 4.11.2
HY(S,) x HY(S5,£Y @ QL) — C
is non degenerate.
If our vector bundle is the structure sheaf Og then this gives us a canonical identification

HY(S,0%) = H(S,Q%)Y.

5.1.4 The Theorem of Riemann-Roch
On the Picard Group

Recall that the Picard group Pic(S) of a compact Riemann surface is the group of
isomorphism classes of holomorphic line bundles on the Riemann surface (See 4.10.3.
This group is isomorphic to H'(S,0%).

The exact sequence of sheaves (see 4.10.3 and section 4.3.3)

0—7Z—0s— 05 —1

on our Riemann surface provides a long exact cohomology sequence

(We have seen that H2(S,0g) = 0 because the Dolbeault complex stops in degree 1.) In
4.1.1 we definied a sheaf Og(D) to any divisor D. It is clear that we have:

Lemma 5.1.9. For any divisor D then Og(D) is a line bundle and we have that Og(D)®
Os(D1) = Og(D + D1) and that Os(D) = Og if and only if D is principal. Hence we
get

Div(S)/ principal divisors — Pic(S9).

If we have a line bundle £ and a divisor D we define £(D) = £ ® Og(D). For a line
bundle £, which we can view as an element [£] in H'(S,0%) we define the degree deg(L) =
5([L]) € H?(S,Z) = 7. (We have a canonical orientation on S.) This degree has various
properties.

Lemma 5.1.10. If we have a line bundle L on S and a point P then
deg(L(P)) = deg(L) + 1
Proof: This is a special case of Proposition 4.10.13. o
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FEzxercises

Exercise 27. If we choose a Hermitian metric h on our line bundle £, if we pick a point
P and a neighborhood Up and a local section s € L£(Up,) which is a generator for all
points in Up then we can form the expression

d"d'log h(s,s) = wp.

This is a (1,1)-form on S which is closed and it does not depend on the choice of the
generator s. Show that the class of this form in H?(S,C) is the Chern class

c1(L£) = deg(L).

Exercise 28. I refer to the proof of Lemma 5.1.10: We consider the holomorphic 1-form
z;leP on the annulus U; N Us. It is clear that we can extend this form to a C°°-form
7 on the disc Uz = Dp (we simply multiply it by a C*°-function which is one on the
annulus and zero in a neighborhood of P). If we consider d’n we get a (1,1) form on the
disc Dp which has compact support because it vanishes on the annulus. Hence it defines
a class in H2(Dp,C), this maps to H%(S,C).

Show that this class is the class §([Og(P)]). This way we can construct a form of type
(1,1) which represents the degree. This form can be written as a boundary on any open
set in S which misses a small disc around P.

Exercise 29. Let us assume that we have an arbitrary compact complex manifold X
and a divisor D C X which is locally given on the open sets of a covering 4 = {U,} by
one equation f, = 0. We choose a Hermitian metric on X. We choose our covering in such
a way that we place small balls around the points on D and choose a finite subcovering
I = {U,} of D. Then we supplement it by an open set Uy which is the set of points
having distance > ¢ from D.

Construct a (1,1)-form wp which has support in the complement of Uy and which repre-
sents the class ¢1(Ox(D)). Show that this form is a boundary outside of the support of
D.

Exercise 30. If we have divisors D1,Da,...,D4 (d = dim X) which intersect nicely then
we can consider the intersection number Dy - Dy - ... Dy.
Show that this intersection number can also be computed by the integral

/ wp, Nwp, N ... Nwp,.
X

Exercise 31. Of course we can attach to any line bundle £ its Chern class ¢;(£) €
H%(X,7Z). If we have d such bundles L1, ...,Lq we can compute their intersection num-
ber and we can take the cup product of their Chern classes which gives an element in
H?Y(X,7)) = 7.. Exercise 30 gives us the equality of these numbers

[,1'...',Cd:Cl(,Cl)U...Ucl([,d>

Show the equality of these numbers without using the de Rham isomorphism.
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The Theorem of Riemann-Roch

Lemma 5.1.10 from above implies:

If we have a line bundle £ and a non-zero section s € H%(S,£) then on a suitably small
open set U we can write s = ft where ¢ is a local generator and f is holomorphic. This
function f defines a divisor on U, it is the divisor of its zeroes (see section 4.1.1). Since
we can do this everywhere we get a divisor D = Div(s) and it is clear that £ ~ Og(D).
Then it follows from Lemma 5.1.10 that

deg(L) = deg(D). (5.22)

Hence we can conclude that the degree of a line bundle which has non zero sections must
be > 0.

If D is the divisor of a meromorphic function f then this function defines a section in
O(D) and f~! defines a section in O(—D) and consequently we must have

deg(Div(f)) = 0. (5.23)
We also can conclude that

Corollary 5.1.11. A line bundle of degree zero has a non zero section if and only if it
is trivial.

We can formulate the

Theorem 5.1.12 (Theorem of Riemann-Roch). If £ is a line bundle on a compact
Riemann surface S then

dimg H°(S,L) — dime H*(S,£) = deg(L) +1 — g.

We have
dime H'Y(S,L) = dimc H°(S,£7 @ Q).

Furthermore we have deg(§2y) = 2g — 2 and consequently dimg H'(S,£) = 0 if deg(L) >
2g — 1.

Proof: This is now more or less obvious. We proved the finite dimensionality of the
cohomology groups H? and H! in the previous section. We write x(£) for the left hand
side.

We have the isomorphism H°(S,QL) = H!(S,0g). This implies that

dimg H'(S,05) = g (5.24)

and hence the assertion is true for £ = Og. If we want to prove it for our given sheaf £
we pick a point P and consider the exact sequence

0— L— L(rP) — L(rP)/L —0 (5.25)

for a large value of r. Then the dimension of the space of sections of the skyscraper sheaf
becomes large and this space of sections is mapped to the finite dimensional H!(S,L).
This implies that eventually H°(S,L(rP)) will be non zero. But then a non zero section
gives us an inclusion Og < L(rP) with a skyscraper quotient S (see proof of Lemma
5.1.5). We have the exact sequence
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0— 05 — L(rP) — S —0 (5.26)
and a glance at the resulting exact sequence yields that
X(L(rP)) — x(0s) = dim H°(S,S). (5.27)

This is also the degree of £(rP) (Lemma 5.1.10 iterated). Hence we have proved the first
formula for £(rP). Then the same argument applied backwards proves it for L.

It remains to prove the formula for the degree of Qf. To get this we apply the first
formula in the theorem to the sheaf Q. We get

dimg HO(S,Q4) — dime H' (S,Q%) = deg(Q%) +1 — g. (5.28)
The left hand side is equal g — 1 and the theorem is proved. O
I would like to stress again that the real difficulty in the proof of the Riemann-Roch

Theorem is to show that H'(S,0g) is finite dimensional. In the course of this proof we
saw:

Corollary 5.1.13. For any line bundle L on a compact Riemann surface S and for
any point P € S, we can find an integer r > 0 such that dim H°(S,L(rP)) > 0. Even
more precisely, for r >> 0 we have dim H°(S,L((r +1)P)) = dim H°(S,L(rP)) + 1. This
implies that we can find a meromorphic function which has a first order zero or a first
order pole at a given point.

5.1.5 The Algebraic Duality Pairing

At this point we have proved a very strong finiteness result: Any line bundle £ on a
compact Riemann surface S has a very simple acyclic resolution, we take an effective
divisor D = Xn, P with sufficiently large degree and then

0—L—L(D)—Lp—0 (5.29)
is an acyclic resolution of £ (see section 4.1.1). We get the exact sequence
0 — H°(S.L) — H°(S,L(D)) — H°(SLp) — H'(S,L) — 0. (5.30)

We have seen that dim H*(S,£) = dim H°(S,L™! ® Q}) but we can prove a stronger
result. We construct a new non degenerate bilinear pairing

HY(S.L) x H (S, ' ® QL) — C. (5.31)

To get this pairing we represent an element ¢ € H'(S,L£) as the image under the boundary
map. We lift it to an element

§=(..&p...)peip € H(SLp)

where |D] is the support of D. We choose small discs Dp around these P such that we
can trivialize the bundle £ over these discs by non vanishing sections tp € H°(Dp,L).
Then the components £p can be written as
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=~ (b, b
&p = <—n+--~+—1>tp
Zp zZp

where zp is a local parameter at P. If now n € H°(S,L7! ® Q}), we can write the
restriction of n to D, in the form

1 lpp =1tp' - f(zp)dzp,
and we can consider the product

=~ b_ b_ a_ a_
Epn = <_n”++_1> - f(zp)dzp = <_n”+.‘._1+...)dzp—wpy

Zp zZp Zp zZp
this is a holomorphic 1-form on D, \ { P} which may have a pole (i.e. it is a meromorphic
1-form). To such a meromorphic 1-form we attach its residue at P, it is given by

Resp <a_nn+"'a_1'“>dZP:CL1. (5.32)
Zp zZp
It is not clear a priori that this residue is well defined but everybody who still wants to
continue reading this book should know the formula
! (5.33)
a1=— [ w .
Y oomi ST
where I' is a path in Dp\{P} which winds counterclockwise around P just once. The
integral on the right hand side is defined independently of the choice of a generator. Then
we define

(€m) = Resp(€pn) = Y Resp(wp). (5.34)

We have to show that the value of this pairing does not depend on the choice of the
lifting. If we replace £ by & + f where f € H°(S,L(D)), then fn = w is a meromorphic
1-form on S, it is an element in H°(S,Q%(D)). For such a form it is clear that the sum
of the residues vanishes. We simply observe that we can take the Dp so small that they
do not intersect and for the path I'p we take their boundaries with counterclockwise
orientation. Then

ZResP(w) = ﬁ Z/F w (5.35)

1
2’/72 S\UDP

This proves that we get a well defined pairing
HY(S.L) x H(S,L™' ® Qk) — C.

But it is also clear that any non zero element € H°(S,L7'®Q}) induces a non zero linear
form on H'(S,L). To see that this is so we simply compute this linear form on Lp, and
then it is obviously non zero. This implies that the map H°(S,L~'® QL) — H'(S,05)V
is injective and hence an isomorphism because the spaces have the same dimension.
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This non degenerate pairing is called the algebraic duality pairing, in this special case
it was certainly known to Riemann. It expresses the fact that the existence of holomorphic
differentials on a Riemann surface of higher genus provides an obstruction for a collection
of Laurent expansions £ € H°(5,05(D)/Og) to come from a meromorphic function (see
Exercise 15). I tried to find the following proposition in [Rie], Theorie der Abelschen
Funktionen:

Proposition 5.1.14 (Riemann). Such a { comes from a meromorphic function if and
only if for all holomorphic differentials w we have

Z Resp(£w) = 0.

But I could not dig it out!
Later in section 5.1.9 we will compare this algebraic duality pairing with the (analytic)
Serre duality pairing.

5.1.6 Riemann Surfaces of Low Genus

If the genus of the Riemann surface S is equal to zero and if P is any point, then it
follows from the Theorem of Riemann-Roch and Serre duality that

dim H°(S,05(P)) = 2,

and we conclude that we can find a meromorphic function f which is holomorphic ev-
erywhere except at the point P and at P it has a simple pole.
We saw already that this function gives us a map

f:8—PYD),

I claim that this map is an isomorphism between Riemann surfaces. To see this we
observe that there is exactly one point — namely the point P — which goes to infinity. If
U = S\ {P}, then we get for the restriction

f:U—C={(z1)]zecC}cPYD)
frur— (f(u),1)

(see Example 15 a)). For any ¢ € C we know that the polar divisor of f — ¢ is —P. Hence
the zero divisor is of degree one and is equal to @ where f(Q) = c. Since S is compact
it follows that this map is a homeomorphism.

We still have to show that it is biholomorphic. For any point @ we can find a neighborhood
Dg C S such that

(DQ,ODQ) ~ (D,OD)

where D is the unit disc in C. Let z be the resulting uniformizing element. Under the
map f this neighborhood is mapped to an open set f(Dg) which contains f(Q) € P(T).
We choose a uniformizing element zg, this is a holomorphic function defined in a neigh-
borhood of f(Q) which has a first order zero at f(Q). Then zg o f is a holomorphic
function on a smaller disc Db C Dg and hence a power series in z. Since the function
zq o f is injective we can conclude that
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2g o f = az + terms of higher order

with a # 0. Now Op1 (@) is the ring of convergent power series in 2 and Og q is the
ring of convergent power series in z. We see that the map

O]Plﬁf(Q) — OS7Q

(see Example 15 a)) is an isomorphism and this proves our assertion.

We can also give examples of Riemann surfaces of genus one. If Q C C is a lattice, then
the quotient S = €/ is a compact Riemann surface. It is homeomorphic to R?/Z?, and
hence we have H'(S,7Z) = 72 (see section 4.6.8) and hence we see that S has genus 1.
We know that the space of holomorphic differentials is of dimension one and clearly the
form w = dz is a generator.

If in turn S is a compact Riemann surface of genus one, then we may do the following:
We pick a point sg € S and we consider the following space

S = {(s,7) | s € S, homotopy class of a path starting in sy and ending in s}.
We have the projection
TS5 —S
and locally this projection is a horgeomorphism. (This construction can be done for any

connected Riemann surface, then S is the so called universal cover of S.) It is also clear

that we have a structure of a Riemann surface on S. We choose a non zero holomorphic
1-form w. Now we can construct a holomorphic map A from S to €. We simply send

h:5=(s7)— /w (5.36)

where we choose a differentiable path in the homotopy class. I leave it as an exercise
to the reader to show that this map is an isomorphism between S and C. It is also not
difficult to show that h=1(sg) = Q is a lattice in € (we will fill this gap in at the end of
5.1.11) and that the map factorizes over an isomorphism

g1
wl lw
s I oy

This makes it clear that all compact Riemann surfaces of genus 1 are of the form C/<Q.

5.1.7 The Algebraicity of Riemann Surfaces
From a Riemann Surface to Function Fields

We are now able to show that compact Riemann surfaces may be considered as purely
algebraic objects. More precisely we can say that compact Riemann surfaces are the same
objects as smooth, connected, projective curves over C. It will be discussed in the second
volume of this book what this exactly means.
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It is clear that the meromorphic functions on S form a field K = C(5). We will show
that this field is finitely generated over C and it is of trancendence degree 1 (See [Ei],
Chap. II and Appendix 1). We will see that we can reconstruct the Riemann surface S
from its function field. We will also show, that for any function field K of transcendence
degree one over C we can construct a unique Riemann surface S such that K = C(S5).
Finally we will see that we have a so called antiequivalence of categories. If we have two
compact Riemann surfaces 57,55 then the non constant holomorphic maps f : S — S
are in one-to-one correspondence with the homomorphisms *f : C(S2) — C(S1), which
are the identity on C.

Example 21. If we consider the Riemann sphere S = S? = PY(C) (see Ezample 15
a) or sections 5.1.1 and 5.1.6), then C(S?) = C(z) is the rational function field in
one variable. It is the quotient field of the polynomial ring C[z] which is the ring of
meromorphic functions which are holomorphic on Uy = P}(C) \ {oo}.

We have seen 5.1.13 that for point P € S and for n > 0 we can find a non-constant
function f € H°(S,05(nP)).

As I explained in the introduction to this chapter, a non-constant meromorphic function
f on S provides a surjective map f : S — P}(C). We put Uy = S\ {P}, then f is a
holomorphic function on Uy. Let U; be the complement of the set of zeroes of f.

If we have a point s € S where f is holomorphic, then the differential df is holomorphic
at this point. If it is non-zero at s then we know from the theorem of implicit functions
that f yields a biholomorphic map from a neighborhood of s to a neighborhood of f(s).

Definition 5.1.15. We say that a surjective map f : S — PY(C) given by a noncon-
stant meromorphic function f on S is unramified or not ramified in a point s € S,
where it is holomorphic, if df is not zero at this point s.

If f has a pole at s then we replace f by g = % and we say that f unramified at s if
dg # 0, i.e. the function g is unramified at s. In terms of f this can be reformulated: The
differential df has a pole of second order.

Definition 5.1.16. A map f as above is called unramified at a point z € P*(C) if
it is unramified in all points of the fibre f~1(z).

It is clear that the set of points where f is ramified is finite. If f is unramified at 2 € P1(C)
then we can apply Lemma 4.8.9 and get that the degree of f is equal to the cardinality
of the fibre f~!(x). This cardinality is also the degree of the zero divisor of f — z, if = is
a finite point, (i.e.  # co0) or the degree of the polar divisor if x is the point at infinity.
This makes it clear that the degree of f is equal to the zero divisor of f — ¢ for any finite
point ¢ € P1(C). By definition this zero divisor is

Divo(f —¢) = Z e(y)y.
y:f(y)=c

A straightforward computation shows, that these numbers e(y) are the same numbers as
the numbers defined subsequently to Lemma 4.8.9. We conclude

> ely) = deg(f) (5.37)

y:f(y)=c
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for all

ce PHC) (5.38)

az+b

citd where the matrix A =

We may change the coordinates on P1(C) by sending z to

<Z Z) is invertible with coefficients in ©. For any two different points py,ps € P*(C)

we can find such a fractional linear transformation A, which sends these two points to 0
and oo. This allows us to assume that our map is unramified at 0 and co. We give it a
new name and write
7.8 — PYD).

Let Vo (resp. V1) be the complement of 0 (resp. 00), let Uy = 7= (Vp), Uy = 7~ 1(V1).
For any set V' C S (or in P!(C)) which is the complement of a finite number of points
we define OF°*(V) to be the ring of those holomorphic functions on V' which have at
most poles in the points S\ V. For V,V4 € P}(C) these rings are polynomial rings in
one variable, we write

Opilc) (Vo) = Clz]
pic) (V1) = Clz".

We may also consider the rings O%"(Uy), 0% (U1) and these two rings are modules for

pi(c) (Vo) and Optic, (Vo) respectively. Our function f is now z o 7.

Proposition 5.1.17.

1. The modules O (Up) (resp.Og" (Ur)) over Opiic, (Vo) (resp. over Opiic (V1))
are finitely generated.

2. If {on,...,ar} C Vy is a finite subset and Vj = Vo \ {a1,...,cu} and Uy = n=1(Vy)
then
O™ (Uf) = OB (Uy) - Ot (V3).

3. The functions in O (Up) (resp.OF"(Uy) ) separate the points in Uy (resp. Uy),
i.e. for x #y € Uy we find an f € OF(Up) for which f(x)(# f(y).

Proof: We show that Og“"(Up) is a finitely generated Opf{r, (Vo) module. We consider
the divisor Do, = ZPerl(oo) P, it is the divisor of poles of the function f pulled back to
S. (Here we use that 7 is unramified at oo, actually this is only technical). For n > 0 we
consider the vector spaces H°(S,05(nDy)). They form an increasing sequence of vector
spaces exhausting OF°"(Up) if n — oo. The dimension of these spaces is given by the
Theorem of Riemann-Roch: If n > 0 then

dimg H(S,05(nDy)) = ndeg(Doo) +1 — g

We observe that the multiplication by z yields a linear map

xz: H(S,05(nDy)) — H°(S,05((n+1)Ds))



200 5 Compact Riemann surfaces and Abelian Varieties

and I claim that this map becomes surjective if we divide the space on the right hand
side by the subspace H°(S,0g(nDs)). We pick a function h € H°(S,0s((n + 1)Dx))
its polar divisor is of the form D = Zpeﬂ,l(oo) mpP with mp <n-+1. If even mp <n
for all n then this function is in the subspace, which we divide out. Now we observe that
it follows from our assumption n > 0 that

HY(S,05(nDy)) — H°(S,05(nDw)/Os((n —1)Dsy))

is surjective. Therefore we can find a function f € H°(S,0s(nDy)) which has an n-th
order pole at a given point P where mp = n + 1 and has at most an (n — 1)-th order
pole at all the other points in 7~!(c0). For a suitable combination h — azf the number
of mp which are equal to n 4+ 1 drops by one and our assertion follows by induction. Our
claim implies that the Opf(q,(Vo)-module O (Uy) is generated by H°(S,05(noDs))
for some sufficiently large ng and a) follows.

Now the second part is is not difficult anymore. Let f; be a meromorphic function in
OFr(U}). We can find a function h € Op1(¢)(Vy) which has a zero in the points oy, .. . a4
and nowhere else (take the inverse of a function which has poles in exactly these points).
If we pull it back to Up it has zeroes in all points in the fibres 771(«;), i.e. in all points in
Uo \ U}, and nowhere else. Hence f1 - Y will be holomorphic in all points of Uy \ U} and
this means f1hY € O2T(U]). The last assertion 3 is just another simple Riemann-Roch
exercise. O

Now we consider the function field K = C(S) of meromorphic functions. It is clear that
the function field of the Riemann sphere C(IP*(C)) = C(z) is the rational function field
in one variable. The assertion in the second part in Proposition 5.1.17 implies that any
meromorphic function h on S can be written as a quotient h = g/F where g € O (Uy)
and F is a meromorphic function in C(P(C)). Therefore we can conclude: If y1, ... y4
is a set of generators of the Opi(e,(Vo)-module OF(Up) then C(S) is generated by
these elements as a C(P!(C))-vector space. It follows that €(S) is a finite extension of
C(z) = C(PYT©)).

I summarize into a theorem whose first part is proved by the above considerations:

Theorem 5.1.18. The field of meromorphic functions on a compact Riemann S sur-
face is a finite extension of a rational function field C(f), where f is any nonconstant
meromorphic function on S. The choice of such a function f yields a holomorphic map
f: S — C(PYT)), which induces the inclusion C(f) — C(S). We have the equality
of degrees

[C(S) : C(f)] = deg(f)

Proof: It remains to prove the equality of the degrees. We invoke the theorem of the
primitive element: We can find an 6§ € C(S) such that C(S) = C(h)[f] and 0 is a zero of
the irreducible polynomial

P[X] = an(2)X™ + an_1(2) X" + -+ ap(2) € C(P(C))[X]

where the a;(z) are polynomials in z, we have a,,(z) # 0,a0(z) # 0, and n = [C(S) : C(2)].
Then the ©(2) vector space K has the basis 1,6,...,0" 1. We can express the above
generators yi, . . .,yq as linear combinations
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n—1
yi =Y ai,(2)0",
v=0
where the coefficients a; ., (2) are in C(z). If we remove a finite number of points {a, ... ,a:} C

Vb as above, then we may assume that

a) the coefficients a;,(2) € Opf{ey (V5)

b) the coefficient a,(z) does not vanish on V{

c) at all points o in Vj the polynomial a,(a)X™ + a,—1(a) X" + -+ + ag(a) € C[X]
has n different roots.

Then our proposition above yields
05 (Ug) = 05 (Vo)[6)]-

Now we consider the fibre 771(a), it is clear that 6 is holomorphic in the points 3 €
71 (a)and the values 6(3) are roots of the polynomial a, (@) X™ + a,_1(a) X" 1 +--- +
ap(c). Our theorem is proved if we can show that

B 0(8)

is a bijection between the points in the fibre and the roots.
Since 0 separates the points in the fibre, the map is injective. Hence we have to prove
that it is surjective. We introduce another Riemann surface namely

Ul = {(a,w)|(e,w) € V§ x C,an(a)w™ + an_1(@)w™ ' + -+ ag(a) = 0}.

This is a Riemann surface because for any point (a,8) € U} we can find a small disk
D, around o and a holomorphic function wg : Dy, — C such that v — (u,wg(u)) is a
homeomorphism from D, to a neighborhood D, g of (o,3) in U{. (This is of course the
implicit function theorem, we have P’[f] # 0 if we evaluate at z = o)

A heuristic formulation: For u € D,, the root of @, (u) X" +a,—1(u) X" 1+ +ag(u) =0
which is ”close” to § is given by a holomorphic function wg(u) in u.

Our aim is to show that U{ is connected. We have the inclusion U C U{j as an open subset
and also the complement is open. Then the connectedness implies Uj =C U[/. Assume it
is not. Now let U} any connected component and 7 be the projection from U} to V;. For
any a € V§ we divide the set of roots of a,(a) X" + ap—1() X" 1+ +ag(a) = 0 into
the subset 7! () and its complement 7.1 (o). We choose an starting point o. We choose
a small disk D, around « as above and we have the holomorphic functions v +— wg(u).
We consider the polynomials

QX]= ] X —ws(w)=X"+bi(w) X"+ +bo(u)
pem—1(a)
Quotl X = J[ (X —wpw)=X"+er()X4 4+ colu).
Bgm—1(c)

Clearly we have P[X]| = Q[X]Qnot[X], this holds over D,. Our considerations above
imply that the numbers d,d; are locally constant and hence constant. Now we will show
that the holomorphic functions u — b;(u),u — ¢;(u), which are defined on the disk D,
extend to holomorphic and even meromorphic functions on V. It is clear that this yields
U = U/ because we assumed that P[X] is irreducible.
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But it is clear that these functions extend. We can cover Vj by disks D,, such that we

have the local roots wé”). Then we have the coefficients ¢\’ (u),b{") (u) on D,,. But if
we have two such disks D, ,D,, we clearly have that the restrictions of the coefficients

ng)’bgy) and cgﬂ),bl(.”) to D, N Dy, are equal. Therefore any of these coefficients defines
a holomorphic function on V{. It remains to show that they are meromorphic. Let us
first consider one of the point «; € Vj, which has been removed. The roots are the the
zeroes of an,(2)X"™ + ap—1(2) X"t + -+ + ag(z). The coefficient a,,(z) may have a zero
at «y, we write a,(2) = (2 — ;)™ a,(z), where a,(a;) # 0. We multiply the polynomial
by (z — ;)™= then our highest coefficient becomes (z — ;)""a@, (). We make a
substitution and put ¥ = (z — ;)™ X then we get the polynomial in Y

()Y + Gt (2)Y™ -+ g(2)

where the @;(z) are holomorphic in «;. We can find a small disk D,, around «; and
a number ¢ > 0 such that this polynomial in Y has n different roots and such that
|@,(2)| > ¢ > 0. Then it is elementary to show, that the n roots of this polynomial in YV’
stay bounded in the punctured disk. This implies that for all roots of the old polynomial
in X we have that (z — ;)™ wg(z) stays bounded in the pinctured disk. This implies
that (z — a;)™bi(2),(z — a;)™ci(z) stay bounded in the punctured disk, provided m is
sufficiently large. But then we know that these coefficients have at most a pole in «a;. It
remains the point at infinity, but here we carry out the same argument on V. O

The reconstruction of S from K

We explain how we can reconstruct S from K. To do this we will use in an ad hoc manner
some arguments from commutative algebra which will be explained in a more systematic
way in chapter 7 in the second volume of this book. As a general reference I recommend
the books [Ei], [Neu] and [A-McD], the book of M. ATTyAH and I. G. MACDONALD con-
tains in its Chap. 9 the briefest exposition of the results which we will need in this section.

The finiteness of OF"(Up) as an Opf*(Vp)-module implies by a standard argument of
commutative algebra that any element h € O™ (Uy)s is integral over Opf*(Vj). This
means by definition that any element h € O™°*(Uy) satisfies an equation of the form

A"+ ah" P+ ... +a,=0,

where the a; € Opfie, (Vo) and n > 0. (See [Ei},Chap. 1.4 , [Neu|, Chap. I. 2.)
But if in turn & € €(S) is integral over Opt{r, (Vo) then it must be holomorphic on Uy,
to see this we simply look at the possible order of a pole. We conclude

Proposition 5.1.19. The ring O%°"(Up) is the integral closure of Op* (V) in K and
this means that it consists of all the elements in K which are integral over OPT* (Vo).
(See [Neu/, 1.2.)

The principal observation is that a point P € S defines a subring OB C K, it is the
ring of meromorphic functions which are regular at P. This ring is a valuation ring
(see [Ei], I1.11.7, [Neu], II. §3) with quotient field K and this means:

a) For any f € K we have f or f~1is in Q%
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In addition to this we know that the ring satisfies a second condition
b)The ring OB is not equal to K and it contains the constant functions C.

Such a ring OB has a unique maximal ideal which consists of the elements

mp = {f c Oger‘ffl € Oger} (539)
= {f € K|f vanishes at P}.

This maximal ideal is non zero and it is generated by any function which has a first order
zero at P. This means that the ring is even a discrete valuation ring (see, [Neu], §3).
The elements which are not in the maximal ideal are invertible. The property (a) implies
that the quotient field of such a ring is K.

We consider the set Val(K) of subrings of K, which satisfy the conditions a) and b). Our
next aim is to show

Theorem 5.1.20. The map P +— OB gives a bijection S — Val(K).

The proof of this theorem will take a while. To start we forget the Riemann surface and
consider any field K over C which is a finite extension of a rational function field C(x).
We can write K = C(z)[y] where y satisfies an irreducible polynomial equation

Y+ ar(z)y" "t an(x) =0
with a;(z) € C(z). We study the set Val(K).

Proposition 5.1.21. a)All A € Val(K) are discrete valuation rings, i.e. the mazimal
ideal my is always a principal ideal.

b) The composition C — A — A/m 4 is an isomorphism and this means that the residue
field is canonically isomorphic to C. This also means that we can evaluate an f € A at
A and the result is f(A) = f mod ma4.

¢) Furthermore for any f € K the set of A such that f & A is finite.

Before entering the proof of this proposition I want to discuss the fundamental conse-
quences of this fact. If we have any non zero element f € K and an element A € Val(K),
then we know that either f € A or f~! € A. In the first case we say that f is regular
at A. If f & we say that has a pole at A. If f is regular, and it w4 is a generator of the
maximal ideal, then we can write f = n’ju with u € A* and we say that f has a zero of
order n at A. If f & A the we say that f has a pole of order n at A, if f~! has a zero of
order n. We also denote this number by ord, (f).

Of course any A is determined by its maximal ideal ma = {f € K|f € A,f~' ¢ A}
and these maximal ideals are traditionally also denoted by p,q, . ... We will freely switch
between these notations.

Finally I want to say that now we have a completely algebraic notion of the divisor of an
element f € K*, it is simply Div(f) = Zp ordy (f)p. The sum is finite because we may

apply ¢) to f and f~1.
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To prove the proposition we have to invest a little bit of commutative algebra. If Ky =
C(z) then an A € Val(K,) contains C[x] or C[z~!]. Let us assume that A O C[xz]. The
maximal ideal my intersected with C[z] gives us a non zero prime ideal in C[z]. It is
an elementary fact that the non zero prime ideals in C[z] are of the form (z — «). This
implies that the elements of Val(K) are in one-to-one correspondence with the points in
PL(C) = C U {oo} : For any a € C we have the ring

Ao = {1 = 565

Q(a) #0}, (5.40)

and for co we have

Ax={f= 53

deg(P) < deg(Q)} (5.41)

where P, are polynomials and f(A,) = f(a). Clearly these valuation rings are discrete
valuation rings. We also saw that we have a map Val(K) — Val(C(z)) which is defined
by the intersection 4 — A N C(x).

Proposition 5.1.22. The rings C[z] and C[x~!] are Dedekind rings (see [Neu], Chap.
183, [Ei], II, §11).

We consider the integral closures By (resp. By ) of C[z] (resp. Clz~1]) in the field K.
Then the theory of Dedekind rings (see [Neu], Chap. 1.§8) implies that these integral
closures are finitely generated modules over C[z] (resp. Clz~1]).

Since the polynomial rings have unique factorization, it follows that these modules are
even free of rank [K : C(z)]. This fact has the following consequence:

Lemma 5.1.23. If p is a non zero prime ideal in By then p is maximal and By/p = C.
The ring

Boy = {J;"fvg € Bo.g ¢P}
1s a discrete valuation ring.

To see that this is so we consider pg = maNCJz]. It is clear that pg is non zero. Then By/p
is an integral domain and a finite dimensional vector space over C = C[z]/po. This implies
that Bo/p = C[z]/po = C. The fact that By, is a discrete valuation ring is perhaps the
fundamental result for Dedekind rings, we refer to [Ei] Chap.II. 11, [Neu],Chap. L. §11,
Prop. 11.5 or Chap. 7 in the second volume of this book.

Now we pick an A € Val(K) and assume A D C[z]. (Otherwise it contains the other

ring.) I claim that this implies A D By. To see this we take an f € By and write down
the polynomial equation

a4 Fan(z)=0

with a;(x) € C[z]. If now f & A then f~! lies in the maximal ideal m4 of A and our
polynomial equation yields

—an(@)f T (@) =1
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which gives a contradiction. Now A D By, we consider the prime ideal p = m4 N By and
and p must be maximal. Then

a={1|rgeBoger}. (5.42)

We define Valg(K) to be the set of A € Val(K) which contain C[z] and hence By. Our
considerations above make it clear that we can identify

Valy(K) = { non zero prime ideals in By} — {C—linear homomorphisms from By to C}

This proves the second assertion in Proposition 5.1.21 above. Now we consider the prime
ideals p € By which lie over a given prime ideal (x — ) = (z — «)C|[z], i.e. for which
pNClz] = (r—a). The ring By, is a discrete valuation ring, its maximal ideal is generated
by an element 7,. Then we get integers ey, so that

(z = a)Bop = (m,")

this are the ramification indices. Again we have a result from commutative algebra:

The number of prime ideals lying over (x — «) is finite and the projections define an
isomorphism

Bo/(x—a)Bo = [ Bos/(m")

pO(z—a)

is an isomorphism. See [Neu], Chap L§8.

Actually this almost clear at this point.

It is also clear that the complements of Valy(K) and Valy (K) in Val(K) are finite because
it is rather obvious that there are only finitely many prime ideals in By (resp. By, ) which
lie above (x) (resp.(z~!)). This implies the finiteness assertion in Proposition 5.1.21 if
we apply our consideration to x = f and therefore the proposition is proved.

Definition 5.1.24. We define a topology on Val(K). The open sets U C Val(K) are
defined as the complements of finite sets, and of course we have to add the empty set.
This topology is called the Zariski topology.

We can define the sheaf of meromorphic functions. For any open set U C Val(K) we put

ow) =) 4
AeU

this is the ring of functions which are reqular on U and meromorphic on S. This gives
(Val(K), Zar ,0) the structure of a locally ringed space.

If we take any f € K which is not constant, i.e. f & C, then Dy is the set of points where
f is regular. Then

O(Dy) = the integral closure of C[f] in K. (5.43)

This equality follows from the fact that a Dedekind ring is the intersection of the discrete
valuation rings in the quotient field which contain it. (See [Neu], Chap. I, Theorem 3.3.
or look at the divisor h € K*.)
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A brief comment: This object (Val(K), Zar ,0) is almost what is called a smooth, projec-
tive, connected curve over € in modern algebraic geometry. The only thing missing is the
so called generic point. This generic point is simply the field K. We can just drop the
assumption A # K for our valuation rings and put Val(K) = Val(K) U {K}. We define
the Zariski topology on @(K ), the open sets are the complements of finite subsets in
Val(K) and the empty set. We define the sheaf as before and now (Val(K), Zar,0) is a
locally ringed space and this is now really a smooth, connected, projective curve. The
stalks of the structure sheaf are discrete valuation rings in the closed points and the stalk

in {K}is K.

Back to the Riemann surface: Now we assume again that K is the field of mero-
morphic functions on our compact Riemann surface S. We observed earlier that we have
a map

S — Val(K)

and we want to show that this is a bijection. Here it is clear that we have to use the
compactness of the Riemann surface.
We pick a valuation ring A C K, let

my={fecA|ftgA} (5.44)

be its maximal ideal. Our goal is to show that there is a unique point P € S such that
A = Op°". We will show that this point P is the common zero of the f € m4 and it also
can be characterized as the unique point where all the elements of A are regular.

We pick a generator f € my and consider the intersection ANC[f] then maNC[f] = (f),
because the principal ideal (f) is maximal and

B=ANnC(f) = {2 |gh e Clflh ¢ (£)}.

We consider the diagram
s ——TPHO)

Val(K) < Val(C(f))
induced by f. As before Vi = P1(C) \ {oo} and Uy = 7~ (V;). Then our ring B consists
of those meromorphic functions on P!(C) which are regular in 0. Our ring A € 771(0).
It suffices to show that the map 7=1(0) — 71(0) is surjective. The integral closure A;
of B in K is a free module of rank [K : C(f)]. The points in the fibre are exactly the
A’ € Val(K), which contain 4; and as before we have

A/ALf = @D Ar/pe, (5.45)
p

where the p are the maximal ideals in A;, they are in one-to-one correspondence to the
elements in 7(0). Since dime(A1/p®) = e, we get [K : C(z)] = 3, ep. For the zero
divisor of the function f on the Riemann surface S we have ) __ pi—1(0) €27 and it is clear
that e(z) = e(p) if z maps to p. From 5.1.7 follows that the degree of the divisor on the
Riemann surface is also [K : C(x)], this implies the equality of the fibres.
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The Recovery of the Analytic Topology: The set S has some further structure,
it has a topology and a sheaf of complex valued functions on it. We want to reconstruct
this structure starting from K. In principle we have done this during the proof of 5.1.18.
The detailed exposition may be a little bit boring, so the reader could skip this section
Our Riemann surface is also a locally ringed space, and it is clear that the map

(5,05) — (Val(K), Zar ,OF")

is a morphism between locally ringed spaces. This is of course not an isomorphism because
on the left hand side we have many more functions, the ring Og p is much larger than
03P = Aif P maps to A.
We still go one step further. Again we forget the compact Riemann surface S, and we
start from a function field

K =C(2)ly]
where

0=9"+a(x)y" ' +... +an(x).

We put S = Val(K), on this set we have the Zariski topology and our sheaf Og with
respect to the Zariski topology. We want to construct a finer topology on S. then S
together with this finer topology will be called S,,,. Of course the identity Sy, — S will
now be continuous. Furthermore we want to construct a sheaf O%" of C-valued functions
on Sqp such that we get a locally ringed space and such that (Sa,,0%") will be a compact
Riemann surface.

Finally we can restrict meromorphic functions f € Og(U) to the open sets in S,,, and
this will induce a morphism of locally ringed spaces

(San,0%") — (5, Zar ,Og).

We come to the construction of the analytic topology. For any open subset U C S we
have the ring Og(U), and we can interpret Og(U) as ring of C-valued functions on U.
We introduce the coarsest topology on U for which all these functions are continuous.
If we have two different points A,B € S, then it is clear that we cannot have A O B or
B C A. Hence we can find an f € A for which f ¢ B. Since we can add a constant, we
can assume f & mu. Then ¢ =1/f € Abut ¢ € ma and g € mp. In other words, the
element g is regular at A and at B and g(A) # 0 and g(B) = 0. Hence we have A,B € D¢
and from the definition of the analytic topology follows that we can find neighborhoods
of A and B whose intersection is empty and we have proved that our analytic topology
is Hausdorff.

We want to describe a neighborhood of a point A € S, and we want to show that A has
neighborhoods isomorphic to a disc in C.

This is of course clear if K = C(x), in this case we could identify
Val(K) = P}(C) (5.46)

and the analytic topology is of course the usual topology on P1(C).
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We reduce the general case to this one. We have our point A € S. We choose an element
f € my which generates the ideal. Again we consider the integral closure O(Dy) of C[f]

in K. We have
Clf1-f < Clf]
N N
(f) < oDy

Since C[f] is principal it follows that the C[f]-module O(Dy) is free of rank n = [K :
C]

O(Dy) = EB@[f]yi =Clfy1,92- - Yn] (5.47)

where the elements f,y1,. ...y, satisfy some polynomial identities

P(f7y17"'7yn):07

with some polynomials P(F,Y7,...,Y,) from the polynomial ring C[F\Y1,...Y,]. If I is
the ideal generated by all these polynomials then we get an isomorphism

C[EYq,...Y,]/T = O(Dy). (5.48)
We introduce the evaluation map

E:Dy — ¢! (5.49)
E e (f(u)y1(u), ... yn(u)).

Then the elements of O(Dy) separate the points in Dy because the points correspond
to the maximal ideals of O(Dy). Therefore the evaluation map is injective. The image
consists of those points (29,21, ..,2,) € C*"! which satisfy P(zg,21,...,2,) = 0 for all
elements P € I.

Our point A is mapped to an element (0,a1, .. .,an) = (f(A),y1(A4),...,yn(A)). We have a
finite set of distinct points A = Ap,A1,...,A,, in S for which f(A1) =...= f(A,) =0.
We can find an r > 0 such that for all ¢,«,5 we have |y;(Ag) — yi(Aa)| > 2r whenever
these two numbers are not equal. We consider the open set U C S which is defined by
the requirement

U={B||yi(B) —yi(A)| <rforall 1=12,...n}.

We consider the projection to the first coordinate

p:U—C
B+ f(B)

and this projection is by construction a homeomorphism to the image. Now we observe
that we can write any of our y; in the form

yi = yi(A) +vif + Ri,
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where v; € C and R; = f2g;/h; where g;,h; € O(Dy) and h;(A) # 0. We represent
these elements by polynomials G;,H; € C[F,Y1,...Y,] and then we know that the ideal
I above contains elements of the form

Li = Hi(F,Yl, - ,Yn)(Y; — yz(A)) — ]JIL'(F‘,YE7 - 7Yn)'YzF — FZG(F,Yl, e ,Yn)

for i = 1,...,n. The independent variables are F' and the Y; for ¢ = 1...,n, and the

partial Jacobi matrix (gf,?) (A);; is a diagonal matrix with non zero entries on the

diagonal and therefore it has maximal rank. Hence we can conclude from the theorem
of implicit functions that for a suitably small ¢ > 0 we can construct an inverse to the
projection p above

q:D() —U
22— (2,01(2), .- - yn(2)),

where now yi(2),...,yn(2) are convergent power series and ¢ identifies D(g) to an open
neighborhood U(e) of A in S. On this open neighborhood we can define the sheaf
0% (U(e)) of holomorphic functions, this is simply the sheaf of holomorphic functions
on our small disc. Hence we constructed the structure of a compact Riemann surface
(San,0%") and clearly the identity map

(San,0%") — (S, Zar ,0g)
is a morphism of locally ringed spaces.
One word concerning the notation. Here we think that the algebraic object (S, Zar,0g)
is given first and to denote the analytic object we put the sub- and superscripts and

write San,0%". In the beginning of this section we did the opposite. There the Riemann
surface was given and we had to introduce the sub- and superscripts Zar, mer.

Connection to Algebraic Geometry

Finally I want to say a few words about the connection to algebraic geometry. I come
back to the description of

O(Dy) = Clfyi1,---yn] = C[EY1,....Y,]/1.

We described the image of Dy under the evaluation map as a set of solutions of polynomial
equations

Y = E(Dy) = {(ao,a1,--.,an) | Plag,a1,...,an) =0 forall P eI},

and this means (by definition) that this image is an affine algebraic variety over C. I claim
that for any point B = (ag,-..,a,) € Y we can pick an index i such that y; — a; = ; is
a local parameter: In a small neighborhood the other coordinates of a point b € Y can
be expressed as holomorphic functions in ;. We simply apply our arguments above to
B. Therefore our variety is in fact one dimensional and smooth (see Example 19).
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Actually we can say even more. Since O(Dy) is the integral closure of C[f] in the function
field we know that the elements y; satisfy an equation

T a g e Fan, =0

where the coefficients a; € C[f|. We may assume that this polynomial is irreducible.
We must have a,,;(A) = 0. It is not entirely obvious but true that the previous coefli-
cient an,—1 does not vanish at A. We can conclude that for the points B in our small
neighborhood of A the polynomial Y™ + a;(B)Y ™~ ... + a,,(B) has exactly one root
which is close to one. This means in classical terms that ;" is an algebraic function in
the variable z = f(B), it is a root of the polynomial which is distinguished and depends
analytically on z.

Of course a few points are missing, namely, the points in S\ Dy. But we can find an
element g € K which is regular at these missing points. We have a second evaluation
map which identifies

D, =Y, cCcmt?

and O(Dy) = Clg,u1,- - ,um]. In Y we have the open subset Y, where g is regular and
in Y7 the open subset Y; ; where f is regular and these two open sets are identified to
Dy N Dy under the evaluation maps.

We have to say in terms of the two data what the regular functions on Dy N D, are. I
claim that

Os(Dy N Dy) = Clg,un, - - stim, fy1; - - - Ynls (5.50)
and this means that the regular functions on Dy Dy can be written as sums of products
of elements in O(Dy) and O(Dy). If h € Og(DyNDy), then this function may have poles
in Ty UT, where Ty = S\ Dy, Ty = S\ Dy. We want to modify h by sums of products
uju2 where u; has poles only in Ty and up has poles only in Tj. Let us pick a point
t € Ty with t ¢ T, and s € T, s ¢ Ty such that h has a pole at t. If such a pair (s,t)
does not exist there is nothing to prove. We produce a function u; which has a pole at
t and nowhere else. This is possible by the Theorem of Riemann-Roch (Theorem 5.1.4).
We produce a function us which has a pole at s and nowhere else but which in addition
has a simple zero at t. Then ujuj* has a simple pole at ¢ for a suitable choice of m. Now
we can modify h by subtracting a suitable power of u;u"™,

h=7- (™),

such that the pole order of h at ¢ drops. This means that the total pole order at points
in Ty \ (Ty NTy) drops. We repeat this process until k& does not have any pole in the set
Ty \ (Tf NT,), and then the modified function has only poles in T,. Then we achieved
our goal.

I summarize: Our space S together with the sheaf Og is covered by two affine varieties
D¢,Dy (or affine schemes) and the ring of reqular functions on the intersection D¢ N D,
is generated by the regular functions on Dy and Dg. With a corn of salt this means that
we constructed a separated scheme.

For this see [Ha], IL. 4. or in the second volume of this book. Actually it is even projective
this will be discussed in the second volume, too.
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Elliptic Curves

We have a brief look at the case of Riemann surfaces of genus one. We have seen (5.1.6)
that they are of the form S = C/Q where Q is a lattice in C. Notice that in this
description the surface has a distinguished point O € S, which is the image of 0 € C and
the addition on C induces on S the structure of a complex analytic abelian group.

Definition 5.1.25. A compact Riemann surface of genus one with a distinguished point
O is called an elliptic curve.

Definition 5.1.26. The meromorphic functions on S = C/Q are called elliptic func-
tions.

It is not so difficult to produce meromorphic functions on S, in a first semester course
on function theory it is taught that we have the two special meromorphic functions (see
for instance [La], Chap. 1,§2 and Chap. III for the following)

1 1 1
p(z) = 2 +WGQ <m - E) (5.51)
w#0
plz)=-2) % (5.52)
foverd (z —w)

on S. The functions p,p’are called Weierstrafl g,o'-function. It is clear that p €
H°(C/9,0(20)),0" € H°(C/Q,0(30)), hence we have that the seven functions

Lo, 0% 00 0% 0° € H(C/Q,0(60))

and the theorem of Riemann-Roch implies, that this space has dimension 6. Hence the 7
functions are linearily dependent. A simple computation gives, that they are related by
an equation

0 (2)* = 4p(2)° — g2(Q)p(2) — g3(?) (5.53)

where the coefficients g2(2), g3(€2) can be expressed in terms of the lattice, they are given
by the convergent series

1
g2(2) =60 > i (5.54)
w#0
we
1
g3(Q) =140 —
w#0
weN
The functions g2(2) and g3(€2) can be viewed as functions on the space of lattices they
are called modular forms.
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Furthermore we know:

Lemma 5.1.27. These two functions @ and their derivation @' generate the field of
meromorphic functions on S. We get an embedding into the projective space, we map

2o W = (155 ) epe)

This map provides an analytic isomorphism
S {(x,ym) € (C*\ 0)/C*|yPu — 42® — g2(Q)zu? — g3(Q)u® = 0} € P?(C).

This description of an elliptic curve as a projective curve is called the Weierstraf3
normal form of the elliptic curve. We can think of S as being an object in analytic
complex geometry, the right hand side is an algebraic object. The point co = (z,y,u) =
(0,1,0) corresponds to O € C/Q.

Our covering of the projective variety by the two affine varieties looks as follows: We have
the subset, where we have u # 0 (here only the point O is missing) and y # 0 (Which are
the missing points in this case?). The rings of meromorphic functions on the two pieces
are Clx,y,1] and C[%,l,i].

On the left hand side we have the structure of an analytic group (multiplication and ta-
king the inverse are holomorphic maps). This gives us a group structure on the right hand
side. This group structure is given by the classical addition theorems for the Weierstrafl
p-function. Therefore we can say that S gets the structure of an algebraic group (see
5.3.1). The neutral element for this group structure is the point O. We come back to this
point in 5.2.8.

Here we see that the genus is only a very weak invariant for a Riemann surface. If we
have two elliptic curves S; = €C/Q4,5 = C/Q2 then we may ask whether we can find a
holomorphic map f : Sy — So, which is not constant. It is not hard to see that we can
find such a map if and only if we can find a complex number « # 0 such that a2y C Q.
We can find a holomorphic isomorphism, if and only if af2; = €25. Hence we see that the
elliptic curves are parameterized by the space of lattices 2 € € modulo the equivalence
relation 0y ~ Qs if and only if Q1 = af)s. This is the moduli space of elliptic curves
(see also 5.2.5). It has the structure of a one dimensional complex variety.

5.1.8 Géométrie Analytique et Géométrie Algébrique - GAGA

Definition 5.1.28. An analytic sheaf 2™ on Sayn is called a coherent sheaf if it is a
sheaf of O ~modules, and if for any point P € S we can find an open neighborhood Dp
and finitely many sections ti,...,ts such that for any Q € Dp these sections generate
the OF'g-module E¢".

We have the same notion for Zariski sheaves on S and clearly any coherent Zariski sheaf
& provides a coherent analytic sheaf £ = £®@pmer OF". The following simple observation
is important and holds in both cases

Lemma 5.1.29. Assume we have sections uy, ... u, C E(Vp) for an open neighborhood
Vp of P (in either topology). Assume that the images of these sections in the stalk Ep
generate the stalk as Og p-module. Then these sections also generate the stalks in all
points of an open neighborhood Vi, C Vp.
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I think this is rather obvious.

Remark: If we apply the Lemma of Nakayama ([Ei], [A-McD]), then we see that we only
need that the images of the @; in Ep ® Og p/mp generate the Og p/mp-vector space.
Now we encounter the simplest case of the so called GAGA—principle. In our situation
this principle says that this construction provides an equivalence of categories.

Definition 5.1.30. A coherent sheaf £ is called a torsion sheaf if for all points P the
stalk EFY (or Ep = EPT) consists of torsion elements, i.e. each element is annihilated by
a non zero element in the local ring.

We will see further down that any coherent £ sheaf has a maximal torsion subsheaf and
the quotient by this torsion subsheaf is locally free.

Proposition 5.1.31. For any coherent sheaf £ on S we can find a unique coherent
Zariski sheaf € such that

gan _ g ®(’)g’”” 0%".
For any pair F,G of coherent Zariski sheaves the map

Homs(f7g) — HOmSan (]:an’gan)
s a bijection.

Proof: Starting from a coherent sheaf £ we have to construct & = £™°" such that
this sheaf gives back £*" under the process above.

The strategy is simple: For a Zariski open subset U = S\ T, we have to say what £(U)
should be. We have to say what it means for a section s € £(U) to have at most poles
in 7. Then we simply say that £(U) consists of those sections of £2*(U), which have at
most poles at the finitely many missing points in 7'. Finally we have to prove that we
have enough sections to generate the vector space E&* @ Og p/mp.

At first we prove our result for torsion sheaves. We pick a point P € S, an open neigh-
borhood Dp and sections t1,ta, ... ,ts € E*(Dp) which generate the stalks in the neig-
borhood. Their image in the stalk is annihilated by a non zero element f € Op (the local
ring is integral). But then this element f can be extended into a small neighborhood Dp
such that it is non zero at any point Q) € Dp where Q # P. Hence we see that the stalks
&yt = 0for all @ # P in a small neighborhood of P. Since S is compact we can conclude
that torsion sheaves are the skyscraper sheaves. Now we observe that for any point P
and any positive integer r > 0 we have the equality

O/ ()" = OB/ (mp)',
and therefore analytic and Zariski torsion sheaves are the same objects.

We come to the general case. Since 0% is a discrete valuation ring, we can find gener-
ators ui, ..., um, such that the stalk £§" is the direct sum

£ = P OFpus.
7
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We apply Lemma 5.1.29 and write the u; as restrictions of some w; which are defined in
a neighborhood Dp. Now some of the u; are torsion elements and these elements define a
torsion subsheaf if we restrict to this neighborhood. If we still shrink this neighborhood
further then this torsion subsheaf has support in P and the quotient is free. This happens
in a small neighborhood of an arbitrary point P and shows us that we can define a finite
skyscraper sheaf E0¢ C £*" such that the quotient £*" /Eiors = £ is locally free. But
if we have a locally free sheaf £®" and a section s which is defined in a punctured disc
Dp = Dp\ {P}, then we know what it means that s has at most a pole at P. We express
s = > giU;, where g; is holomorphic on Dp. Then s has at most a pole if the g; have
at most a pole in P. We say that s € Ep(Dp) has at most a pole at P if its image in
E(Dp) has at most a pole.

Hence for any Zariski open subset U C S we can define the Og(U)-module of meromor-
phic sections £(U) = £™¢*(U), these are the analytic sections which have at most poles in
the finitely many missing points. Now we need to prove that the sections in £(U) generate
the stalk at any point Q € U. We saw before that it suffices to show that these sections
generate £ ® Og,g/mg. Once we have shown this, it is clear that £ ®o, OF = £*".

To prove this surjectivity we consider the case of a locally free sheaf £ first. We pick a
point P € S, we can form the sheaf £2* @ Og(rP) = £**(rP), this is the larger sheaf,
where the sections are allowed to have a pole of order < r at P (compare the proof of
the Theorem of Riemann-Roch (Theorem 5.1.12)). Then we get the exact sequence

0 — H(S,£%") — HO(S,£2"(rP)) —s HO(S,£™(rP)/E™) —s H(S,E™).

Since we have dim H'(S,£%") < oo (Theorem 5.1.4) we conclude that for 7 > 0 the space
HO(S,£2(rP)/£*) has a non zero section. We apply Lemma 5.1.5 and conclude that we
can find a line subbundle £ C £ ® Og(rP) such that £ ® Og(rP)/L is again locally free.
Hence we get an exact sequence of locally free sheaves

0— L& Og(—1P) — £ — £ /(L @ Og(—1P)) — 0.

The rank of the quotient bundle is the rank of £*" minus 1. We conclude that £ has a
filtration by locallay free subsheaves 0 C £ C £3" C ... C £%" such that the successive
quotients are line bundles. From this we can conclude easily, that H'(S,£2(rP)) = 0
provided r > 0. We simply write the exact sequences resulting from the filtration. Then
we pick any point @ € U and a second point P € T'. We have the locally free submodule
EM @ Og(—Q) C £ consisting of those sections which vanish at Q. We get an exact
sequence

0— E(rP)® 0Os(—Q) — EM(rP) — EM/EM™ ® Os(—Q) — 0.
For 7 > 0 we know that
H' (8,£™(rP) ® 0s(-Q)) = 0,
we conclude that the map

HY (S,£™(rP)) — H°(5,£* /(£ ® 0s(-Q)))
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is surjective. By definition we have H°(S,£2"(rP)) C £(U) and hence we see that we find
enough sections to generate HY(S9,£%" /2% © O5(—Q)), we get from Lemma 5.1.29 and
the remark following that

£ = £ Qoge OF.

The same argument also works if £3" has torsion because the H! of a torsion sheaf
vanishes.

We observe that for the global sections we have H?(S,£2") = HY(S,£). Now we also
know that for two coherent sheaves we can define the coherent sheaf Hom(F?",G")
(resp.Hom(F,G) and then

HomSa“ (].'311792111) = HO(Sana Hom(]_—an’gan))
= H°(S,Hom(F,G)) = Homgs(F,G),

this gives us the last statement in Proposition 5.1.31. O

What we have seen here is a special case of a general principle which is called the
GAGA-principle (see the headline of this section). In a very rough form it says that
compact complex manifolds are in fact algebraic, provided they have enough meromorphic
functions. Especially a complex subvariety Y C P"*(C) is always algebraic (Theorem of
Chow [Ch]). In such a case the coherent algebraic and the coherent analytic sheaves form
equivalent categories (see [Sel]). We will come back to this principle in the second half
of this chapter.

5.1.9 Comparison of Two Pairings

We apply Theorem 5.1.4 to the case £ = Os and get

H'(S,05) ~ HO(S,QL). (5.55)

We have the Hodge decomposition of H!(S,C) = H?(S,Q}) & HO(5,Q%) (5.1.2). If we
compute the cohomology H!(S,C) using the de Rham complex then the cup product

HY(S,C) x H'(S,€) — C
on the cohomology is given by integrating cup products of representing forms. (See
4.10.1.) If we consider the above decomposition, the two summands are isotropic and
we get the C-linear pairing

H°(S,QY) x HY(S,QL) — €

which is given by
(w1,W2) < wi,wg > = /w1 A Wa.

The combination of the isomorphism above and the pairing yields a C-bilinear pairing
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H°(S,QL) x H'(S,05) — C.

We will call this pairing the analytic pairing. In section 5.1.5 we constructed the Serre
duality pairing between these two vector spaces, this pairing is defined in purely algebraic
terms.

Theorem 5.1.32. The analytic pairing is —2mi times the Serre duality pairing.

Proof: To see this we need some simple considerations which in principle concern the
comparison between Cech cohomology of sheaves and the cohomology groups obtained
by injective (or acyclic) resolutions, for instance the de Rham resolution.

We pick a point P € S and an n > 0 such that the map

HO(S7OS(TLP)/(')5) — Hl(S,Os)

becomes surjective. We choose an element n € H'(S,0g) and we lift it to an element
¢ € H°(S,05(nP)/Os). We choose a disc Dp around P and a local coordinate zp which
is zero at P. Now we represent an element £ by a Laurent series

a
f(z):Z—ZJr...JraoJraler....

We cover S by two open sets Uy,Us, where Uy = D), and Uy is the complement of a smaller

closed disc D,(e) around P, hence U3 NUs is an annulus. We have that f € Og(U; NUs)
and it defines a 1-cocycle for the covering S = U; U Us. This cocycle maps to n under
the edge homomorphism (see Lemma 4.6.10). Now we proceed and use the de-Rham
resolution, we get a diagram

Os(Uy) ® Og(Ug) ————— O (U1 NU3)

0%°(U) @ Q%0 (U) ———— Q%0 (U, N U,)
d// d//
Qg”l(Ul) S Q%’l(UQ) _—————>Q%’1(U1 N U2)

d// d//

We send f to Q%O(Ul N Us) and I claim that we may write f|U; N Uz as the restriction
of a C*°-function hy on Uy = D,,. To see this we simply multiply the function f, which is
actually defined on the punctured disk, by a C*°-function which is identically equal to 1
on the annulus and which is identically zero in a neighborhood of zero. This C'*°-function
on the disc is holomorphic on the annulus, but if we go into the interior it certainly loses
this property. This means that d”h; = v is an element in Q%!(U;) which has compact
support and therefore it can be extended by zero to S. Then v € Q%1(S9), it is closed
and it represents our given class in H'(S,0g) via the Dolbeault isomorphism.
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The integral [ gw At for a holomorphic 1-form w on S gives the value of the analytic
pairing between ¢ and w. We compute this integral. We observe that

/Sw/\wz/Dpw/\i/J

and the integrand has compact support in D,. We choose a circle 9D, (r) which lies in
the annulus, we still have

/Dwm/): W AP.

P Dp(T)

But now we write again ¢» = d”hy and we have w Adh; = w A (d'h1 +d"h1) = w Ad"hy.
Therefore

/ w/\d”hlz/ w/\dhlz—/ d(hlw)
Dp(r) Dy (r) Dy (r)

—/ hiw = —/ fw
8Dp("') aDp(T)

= —27i Resp(fw).

and now the right hand side is by definition the value of the Serre duality pairing multi-
plied by 2mi. O

Since our pairings are non degenerate we conclude that we have two different ways of
producing an identification H'(5,05) — H°(S,Q%)" which differ by a factor —2mi. We
could call the one produced by the cup product the analytic identification and the
other one the algebraic identification. We will mostly use the analytic identification.

5.1.10 The Jacobian of a Compact Riemann Surface

Let S be a compact Riemann surface of genus g. We defined the Picard group of S
Pic(S) = H'(S,0%) to be the group of isomorphism classes of holomorphic line bundles
on S. Our exact sequence in section 5.1.4 provides the homomorphism

H'(S,0%) = Pic(S) — H?*(S,Z) = 7.

Definition 5.1.33. The kernel of Pic(S) — 7 is denoted by Pic’(S) and it is called
the Jacobian of the curve and sometimes we write J = Pic’(S).

The exact sequence yields
Pic’(S) = H'(S,05)/H*(S,Z). (5.56)

Here we divide a g-dimensional C-vector space by a free Z-module of rank 2g, I claim
that we are in fact dividing by a lattice, i.e. the submodule is in fact discretely embedded.
To see this we recall the Hodge decomposition (Lemma 5.1.2) and get inclusions

HY(S,7) — H'(SR) — H'(S,C) = H(S,Qk) & HO(S,0L).



218 5 Compact Riemann surfaces and Abelian Varieties

Since H(S,R) = H!(S,Z) ® R, we see that H'(S,Z) is a lattice in H'(S,R). On the
other hand it is clear that the projection of H'(S,R) to any of the two summands in the
decomposition of H!(S,C) is an isomorphism since the summands are complex conjugate.
This implies that the inclusions followed by the projection

HY(S,Z) — HO(S,Q%) = H'(5,05) (5.57)

maps H'(S,7Z) isomorphically to a lattice I' in H'(S,0g). We want to denote this iso-
morphism by

j:HYS,Z) = T.

Of course it is clear that the multiplication of line bundles in Pic’(S) induces the addition
on H1(S,0g)/T and hence we see that the quotient

J = Pic’(S) = H'(S,05)/T

has a natural structure of a connected, compact complex-analytic group of dimension g.
Such a group is called a complex torus. Hence we summarize

Theorem 5.1.34. The Jacobian of a compact Riemann surface of genus g has the struc-
ture of a complex torus of dimension g.

5.1.11 The Classical Version of Abel’s Theorem

In the previous section we described the group of line bundles Pic’ in terms of the
cohomology group H'(S,0%). Our main tool was the exact sequence

0 — H'(S,Z) — H'(S,0s) — H'(S,0%) — H*(S,Z)
which allowed us to define the degree of the line bundle and gave us the description

Pic’(S) = H'(S,05)/H'(S, 7).

Now we recall (see section 5.1.4) that the group of line bundles Pic(S) may also be
described as the group of divisor classes

Div(S)/ principal divisors — Pic(S).
For a divisor D =), npP the degree of the line bundle is
§(0s(D)) = deg(Os(D)) = deg(D) = > np
and by composition we get the isomorphism
DivY(S)/principal divisors — H*(S,05)/H'(S,Z).

We want to compute this isomorphism. If Og(D) € Pic’(S), how can we compute the
corresponding element in H'(S,0g)/H(S,Z)?
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We reformulate our problem slightly. The analytic pairing gives us an identification
HY(S,05) = H°(S,QL)V, the Poincaré duality gives an identification H;(S,Z) — H'(S,Z)
(see section 4.8.6). The resulting embedding 41 : Hy(S,Z) — H°(S,QL)Y is obtained by
the following rule: We represent a homology class [¢] by a cycle ¢ and to this class we
attach the linear form

Pt w > /w. (5.58)

Then the homomorphism [¢] — .. is our embedding 4. Hence our problem is to compute
the isomorphism

Div"(S)/ principal divisors — H®(S,0%)" /H,(S,Z).

Let D be a divisor of degree zero. We write it as Y ;| P, — > .| Q;. We find C*°-maps
o; : [0,1] — S with 04(0) = P;,04(1) = Q;. We identify [0,1] to the standard 1-simplex
Aq (see section 4.8.6) by ¢ — (t,1 —t). Then 3p = >, 0; is a 1-chain whose boundary
is 93p = D. This means this 1-chain provides a map

©psn t HY(SQE) — C (5.59)

¥YD.3p :wH/ w.
3D

If we have a second 1-cycle 3, which also satisfies 93}, = D then 3}, = 3p +cp where ¢p
is a closed 1-cycle, i.e. dcp = 0. Hence we see that

©D;p — 0,3, € Hi(S,Z) C HO(S ).

Hence we see that D defines a well-defined element pp € H°(S,Q%)"/H1(S,Z).

Theorem 5.1.35 (Theorem of Abel). The isomorphism
Div®(S)/ principal divisors ~ H°(S,Q%)Y/H,(S,7).
is given by [D] — @p.

Proof: To prove this it suffices to consider the case of two points P, on our Riemann
surface S which lie in a small disc Dp. This is clear because our map D — ¢p is a
homomorphism from the group of divisors of degree zero to H°(S,Q4)Y/H:(S,Z) and
these divisors generate the group of divisors of degree zero.

We assume that our local coordinate z is zero at P and 1 at (). We want to compute the
class of the line bundle Os(Q — P) in H'(S,05)/H'(S,Z). To be more precise we want
to find a representative of this class in Q%’l(S) and identify it as a linear form on the
space of holomorphic differentials.

We draw the straight path v from P to @ in our disc and we cover S by Uy = S\v and
Uy = Dp. The meromorphic function %5 trivializes our bundle on U; and the constant
function 1 trivializes it on Us. Hence the holomorphic function Zfl on Uy NUy; = D\«
defines a Cech cocycle with values in O% and its image in H'(5,0%) is the class of
Os(Q— P). I claim that we can define the function log on D\~. This is so because we

z
z—1
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can write down integrals faz % and f: del along a path from a point a to z which avoids

~. The values of these integrals depend not only on z but also on the homotopy class
of the path. But the multivaluedness drops out if we take the difference of the integrals,
which then gives us the function log 5. The element 7 log %5 € Og(D\{7}) is a
l-cocycle with values in Og. It defines a class in épg € H'(S,0g) which maps to the
class of Og(Q — P) in H*(S,0%). This class {p can be represented by a closed form of
type (0,1). To find such a form we shrink the set Uy a little bit to a set U so that it is

the complement of a little neighborhood N of ~.

Figure 5.1 In the picture above this neighborhood is the ”cigar” containing the path from P
to @ and Uj is the complement of the ”cigar”. This ”cigar” is obtained by drawing half circles
of radius € > 0 around P,@) and then joining the endpoints by straight lines parallel to +. The
boundary is a Ci-manifold.

By the same argument as in section 5.1.9 we extend the restriction of ﬁ log %5 to
U,NDp to a Coo-function h on Dp and put p = d”h. This form p has compact support in
U, hence it can be extended to a (0,1)—form on S which then represents {p.g € H'(5,05)
(a special case of the argument in Theorem 5.1.32). Again we have that the pairing of
this class with a holomorphic 1-form w is given by || gw A . To compute this integral we
observe that w A p has support in the neighborhood N of v, hence it suffices to integrate
over this neighborhood. But now we can write w A i = w A dh and our integral becomes
— faN“’ A h where h = QLM log -%7 on the boundary of N.
Letting this neighborhood shrink to ~y the values of log —*5
of our path ~. Hence we get that

differ by 27¢ on the two sides

<Epo.w >= /w (5.60)
v

and this is Abel’s theorem in the case that our divisor is Q — P, and P,Q close to each
other. U

Of course the theorem of Abel tells us that on a Riemann surface of genus zero any divisor
of degree zero is principal because there are no holomorphic differentials. This we know
already. We can exploit this fact to construct isomorphisms f : S = P(C) for any Rie-
mann surface S of genus zero. We simply take two points P # @ and find a meromorphic
function f with divisor Div(f) = P — Q. This function is such an isomorphism.
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This last argument also shows:

Lemma 5.1.36. On a Riemann surface of genus g > 0 a divisor of the form P — Q with
P # @ is never principal.

The theorem of Abel is the source for the so called self-duality of the Jacobian, which
will be discussed in detail later in section 5.2.3. We pick a point Py and consider the
morphism

ipy S —J (5.61)

P+— (P) — (Py).
This is clearly a holomorphic map. We just saw that for Riemann surfaces S of genus
g > 0 this map is injective. We want to explain how Abels theorem gives us its differential.
The tangent space of J at any point is H!(S,0g) and hence we see that the space of

holomorphic 1-forms on J is H%(S,Qg). Therefore ip, yields a C-linear map between the
spaces of holomorphic 1-forms

iy, HO(JQ)) = H°(5,Q%) — H°(S,Q%) (5.62)

and I claim that this map must be the identity. If w € H°(J,Q2}) is a holomorphic 1-form
and if X € Tp is a tangent vector at Py we compute ip, (w)p(X). We choose a local
coordinate z at P, then we may assume that X = 2. Then ip, (P +h- 2 is the linear

form
P+hZ P P+hZ
W — w = / w + / w,
Py Py P

and this yields

and hence ip, (w) = w.

We see that ip, gives us a holomorphic embedding of the curve into its Jacobian. This
map also induces a homomorphism between the Picard groups

ip, : Pic(J) — Pic(9).

We will define a subgroup Pic’(.J) (see Proposition 5.2.3) and we will prove that the
restriction

tipy : Pic’(J) — Pic?(S)

is an isomorphism. This is the so called self duality of J.

In section 5.1.6. I stated the theorem that Riemann surfaces S of genus 1 are of the form
S = C/Q. To get this description I stated that the universal cover S is the complex plane
and I gave it as an exercise to verify this. Our considerations above solve this exercise.
For surfaces of genus g = 1 that map ip, is an isomorphism.
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This has an important consequence: If we pick a point Py € S, then we get a group
structure on the Riemann surface by transporting the group structure from J to S. The
point Py will then be the neutral element for this group structure.

The sublattice I'V = H;(S,Z) C H°(S,Q%)Y is called the period lattice. Recall that
it consists of linear forms on H°(S,Q2}) and these linear forms are given by the period
integrals

7»—>w0—>/w
Y

where v is a closed 1-cycle representing a homology class.

These period integrals are historically the origin of the whole theory of Riemann surfaces.
Let us consider the special case of an elliptic curve, which we write in a slightly modified
Weierstrafy form

v =z —1)(z—N\) =2°— (14 N2 + Az,

we assume that A € [—00,1]. In the complex plane we choose a straight path 47 from 0
to 1, this is our intervall [0,1] and a straight path 75 from 1 to A. Now we produce closed
cycles in our elliptic curve. We start at zero and go to one. For any x we choose a square
root y(z) = \/x(z — 1)(x — A\) which varies continuously with . At 1 we turn back, but
now we take the other root. The path z — y(z) for 0 < z < 1/2 and =z — —y(x) for
1/2 <z <1 gives us a closed path 7;. If we project it to the z-plane then we get 41 going
from zero to 1 and back. We can do the same thing with 4. The differential w = 9% is

T
Y
holomorphic and we get two period integrals

w1 ()\

):fh”ﬂ/olm

= [ ome [ ety

where the notation is traditional but a little bit sloppy. For further information on this
subject we recommend [Hu] Chapter 9.

5.1.12 Riemann Period Relations

The cup product < , > defines a non degenerate alternating pairing on our lattice T'.
On the other hand we have ' @ R = I'g — H'(5,0s) and this identification provides a
complex structure I on 'y, namely the one which is induced by the multiplication by 4
on H1(S,05).

We will show that the complex structure I is an isometry for the extension of <, > to
I'r. To get this information we show that the pairing is the imaginary part of a Hermitian
form h on (T'r,I) (see 4.11.2). We define this form h and show that —Imh =<, >_. In
addition it will turn out that A is positive definite.

We define a Hermitian scalar product on HO(S,Q}). If we have two antiholomorphic
forms wq,w, € HO(S,Q2}) we put
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h < wi,og > = —Qi/ w1 N\ wa. (563)
S

If we write locally Wy = f1dz and Wy = f2dZ then the integrand becomes

fildz —idy) A fo(dx + idy) = 2if1fodz A dy,
hence we see that h is a positive definite Hermitian form.

Now we take two cohomology classes &,n € H'(S,Z). Using the de Rham isomorphism,
we can represent them by differential forms which we can decompose

we = wg’l + wg’l (5.64)

— 01 0,1
Wy =Wy +wy.

The cup product pairing is given by integrating the representing differential forms
<En>yu= / we A wyy (5.65)
s

_ 0,1 0,1 0,1 0,1
*7/5“117 /\wé Jr/so.)f A wn

= —Im h(wg’l,wg’l).
We have the isomorphism
j:HY(S,Z) =T c H'(S,05) = HO(S,Q%)

and it is clear the the classes j(§) (resp. j(n)) are represented by wg’l (resp. wi!). We
can transport the cup product pairing via j to I', then we get the famous

Theorem 5.1.37 (Riemann period relations). The restriction of the imaginary part of
the Hermitian form h to I' is the cup product times -1. Especially we can conclude that
the values of Imh on I' X I' are integers and this form is a perfect pairing.

5.2 Line Bundles on Complex Tori

5.2.1 Construction of Line Bundles

The presentation of the material in this section is greatly inspired by the work of David
Mumford ([Mul], [Mu2]).

The period relations are of great importance, because they allow the construction of line
bundles on J. The positivity of the form h will ensure that these bundles will be ample
and this means roughly that high positive powers of this bundle have many sections (see
below section 5.2.4). To explain this construction of line bundles we consider a more
general situation.
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Let V be a complex vector space of dimension g and let I' C V' be a lattice in V, this
means that ' is a free Z-module of rank 2¢g which sits in V' as a discrete submodule.
The quotient A = V/I' is a compact complex analytic variety which also carries the
structure of a complex analytic abelian group, it is a complex torus (section 5.1.10). We
have ’'r — V as real vector space and as usual we denote by I the complex structure
on I'g induced by this isomorphism.

We change our point of view slightly. Our starting point is a free abelian group I' of rank
2g on which we have an alternating 2-form

(,):I'xI —Z.

A second datum is a complex structure I : ' — I'g which is an isometry for the
pairing, i.e. (Iz,ly) = (z,y) for all z,y € I'g. In the sequel I will say that ( , ) and I are
compatible.

We put V = (I'g,I) and consider it as a complex vector space. Then A = V/T" is our
complex torus. Let H on V = (I'r,I) be the Hermitian form obtained from ({, ),I) (see
pages 169 f.).

The pairing ( , ) allows us to construct certain line bundles

‘CH(( ) >a77’90) = ﬁ((( ) >,I),’I],(p)

which depend on additional data ¢ and n where ¢ € Hom(I',C) and where 7 is a map
n:T/2I' — %Z /7
which satisfies the compatibility relation
2y 10 +72) —n(n) —n(2) =0 mod Z (5.66)
for all y1,72 € I'. We say that 7 is adapted to the alternating form ( , ).
These data allow us to construct a line bundle. We consider an open connected neigh-
borhood U of a point © € A which is so small that the connected components U, in the

inverse image of U map isomorphically to U under the projection

p:V — A

For any two such components U,,Us C p~1(U) there is exactly one element v € I' such
that v+ U, = Ug. We define a sheaf L ((, ).n,) = L({, ),n,¢) whose sections over U
are the holomorphic functions

fip7'(U)—C

which satisfy the transformation rule

Fz+7) = f(z)emHENTZHOM+2mile(n)+n(7) (5.67)

The reader should notice that e2™(") is well defined and is equal to +1.
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I claim that giving such a function is the same as giving a holomorphic function on any of
the connected components U, in p~!(U) and then extending it to the other components
by the transformation rule. To see this we have to check consistency which means we
have to verify that

fz+m+72)=f((z+71) +72).
We compute both sides:

fz47 +72) = f(z)eﬂ(H(szrWz)Jr%H(%+vzm+vz))+27ri(v>(71+72)+n(71+72)) (5.68)

= f(z)eﬂ(H(zm)JrH(z,vz)Jr%(H(“/l771)+H(72772)+H(71»72)+H(vz,71)))+27ri(4>(“/1)+w(72)+n(v1+72))_

For the other side we get

F((z+m) +72) = f(z +m)emHEH2)+ 5 H 2 02)+2mi(0(12) +1(32) (5.69)

= f(z) - e"HEWFHOL ) HHz72) HH(192)+ 5 Hive ) +2mile(rn) +o(r2) +n(n) +1(12))

The exponential factors are equal because their quotient is
e‘ff(%(H(’Yzy’h)*H(’Yl,72)))+27Ti(77(71+’72)*77(71)*77(’Yz)) (5.70)
— 2mi(FIm H(y2,71)+n(v1+72) —n(v1) —n(72))

and this is equal to 1 since we required equation (5.66) for n. The result of this compu-
tation can be formulated differently: The map

Cr(om) : T — Oy (V) (5.71)
v (H(zy) + 3H(v)) + 2mi ((v) +1(7))

is a 1-cocycle on I' with values in the holomorphic functions on V' modulo the constant
functions which have values in 27iZ. This shows that

Lu((,)me)U) ~O0Ua)
for any component in U, C p~!(U). This means that Ly (( , ),n,¢) is a (holomorphic)
line bundle. Now we see why the integrality of Im H on I' X I is so important.

The data H and I determine each other, therefore we may either suppress the subscript
H or the I in the notation. On the other hand it follows from the considerations on pages
169 ff. that the pair of R-bilinear forms < , > ,H determines the complex structure
which is not directly visible in the definition of the line bundle. Hence it may be some-
times useful to keep the H.

In section 4.6.8 we have shown that the second cohomology group is
H?*(A,Z) = H*(V/T',Z) = Hom(A®T',7Z). (5.72)

We have the exact sequence
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0 — HY(AZ) —H'(A,04) — H'(A,0%) — H*(AZ) (5.73)
and we leave it as an exercise to the reader to verify that

Cl(‘cH« ) >a77’(p)) = ImH|F x I (574)

It is not too difficult to show that for a given ( , ) we can find an 7). It is not unique, but
it is easy to see that for two choices ng,ny we can find a homomorphism 6 : I' = C so
that 6(I') C 37 and 6(v) = nu(y) — 0}y () € Z. Then it is clear that

['H(< ) >v77790) ; £H(< ’ >777/,(P+5)-

Our next aim is to show that this construction gives us all line bundles on A. More
precisely we want to give a description of the Picard group (see section 5.1.10) Pic(A) in
terms of these data <, >, I, i, ¢. The bilinear form gives us the Chern class and once
the bilinear form is fixed the ¢ will give the line bundles with a given Chern class. In any
case it is clear that we have:

Proposition 5.2.1. The group of Chern classes of line bundles is the kernel of the
homomorphism
H?*(A,Z) — H*(A,0,4).

We have seen that H?(A,Z) = Hom(A?T",Z) and it is an easy exercise in linear algebra
to show that an element

c € H*(AZ) = Hom(A’T,Z)
goes to zero in H?(A,0,4) if and only if the extension
cr:T@R)AT®R) — R

satisfies cg (Ix,ly) = cr(z,y), i.e. the complex structure is an isometry. It is of course
clear that these alternating forms ¢ which satisfy cg([z,ly) = cr(z,y) form a finitely
generated subgroup NS(A) of Hom(A%I',Z).

Definition 5.2.2. This group NS(A) is called the Neron-Severi group.

We should be aware that this group NS(A) can be trivial, actually this is the case for a
generic choice of the complex structure on I'g.

But for the classes ¢ in the Neron-Severi group we gave an explicit construction of line
bundles with Chern class c¢. We can take any L(c,n,¢).

Proposition 5.2.3. The homomorphism from the subgroup generated by the L(c,n,p) to
the Neron-Severi group NS(A) is surjective.

To get the group of all line bundles we return to its description as H'(A4,0%) and put:

Pic’(A) = ker (6 : Pic(A) — H*(A,Z))

From our familiar exact sequence we get
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Pic’(A) = HY(A,04)/H (A,Z).

Again we get from section 4.6.8 that H'(A,Z) = H'(CY/T',Z) = Hom(T',Z). To compute
H'(A,04) we consider the Dolbeault complex

0 — Q4,(0a)(A) — Q47 (0a)(A) — Q7 (Oa)(A) — ... (5.75)

The tangent bundle of A is trivial. Using the translations we can identify the tangent
space at any point to T4 0 ~ V, the tangent space at zero.

Hence the bundle of differentials is also trivial and at any point
Q) ., = Home(V,0). (5.76)

Of course the bundle Q%’l is also trivial and if we give a basis to V and write z =
(.. Za,...) € ©9 =V then the global sections Q%! (A) are given by

W= fadZa (5.77)

where f, is a Coo-function on A. We apply the principles of Hodge theory: we choose a
positive definite Hermitian form on the tangent bundle, which we get from a Hermitian
form on V = T4 . We choose it in such a way that the basis vectors above form an
orthonormal basis. Then it is an easy computation to show that

9% fo .
82’,3825

A'w=(d"s" +§"d")w Za- (5.78)

In section 4.11.3 we proved that

HO! (Q%1(A4)) = {Z cadZal ca € (D} (5.79)
and that we get an isomorphism

{andza| Ca € o:}  HY(A,04). (5.80)

It does not depend on the metric, it is induced from the embedding of the translation
invariant differential form into the space of all differential forms.

We consider the R-vector space VY = Hompg(V,R). On this vector space we define a
complex structure by Ip(Iv) = ¢(v), i.e I¢(v) = —¢p(Iv). Then we have

VY — Hom(V @ C,C) = Hom(V!'? C) & Hom(V%!,0) (5.81)

and the composition with the two projections is bijective. The projection to the second
summand is C-linear, i.e. [¢(v) = i¢(v). This means that we have C-linear isomorphisms

VY 5 Hom(VOE C) = HY(A,04). (5.82)
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To get the group Pic’(4) we have to divide the group H'(A,04) by the subgroup
H'(A,7Z) and this means that we have to divide VV by I'V = Hom(I',Z) C V. Hence
we get an isomorphism

c¢: Pic’(4) = vV/IV = Hom(I,€)/(Home (V10,€) + Hom(T,7)). (5.83)
Here I recall that Home (V10,C) = Homg (V,C) = {¢ | ¢(Iv) = id(v)}.

We want to invert this isomorphism. We constructed the line bundles Ly ((, ),7,¢) where
¢ € Hom(I',C). We denote the restrictions of ¢ to V10 and V1 respectively by ¢1.0,¢0.1

and hence ¢ = (¢1,0,00,1)-
It is clear from the construction that we have

Lemma 5.2.4.

(a) The two line bundles L ({ , ),np) and Ly ({, )n¢") are isomorphic if
o —¢' = (1,0).
(b) The bundles Ly ({ , )m,p) and Lu((, ),n¢’) are actually the same line bundles if

¢ — ¢’ € Hom(T',Z).

Proof: To see (a) we observe that e2™¥(2) is holomorphic on V' and multiplication by
this function provides an isomorphism between Ly (( , },n,¢) and Ly ((, ),n,¢’).

The assertion b) is obvious because e2™#(7) = ¢27i% () for all v € T.

O
If now the alternating form ( , ) = O is the trivial nullform then we choose 7o = 0. We
find

L(0,0,0) ® L(0,0,¢") = L(0,0,¢ + ¢'),
i.e. our construction of line bundles yields a homomorphism
Hom(I',C) — Pic’(A)

which by the previous Lemma factors through Homg (V,C) + Hom(T',Z). Hence our con-
struction yields a homomorphism

d : Hom(T',C)/(Home (V,C) + Hom(T',Z)) — Pic(A).

The remaining part of the proof follows from Proposition 5.2.5.
I leave it as an exercise to the reader to show:

Proposition 5.2.5. The two homomorphisms c,d defined in the proof of Lemma 5.2.4
are inverse to each other.

Corollary 5.2.6. If A= V/I" is a complex torus then the group Pic®(A) has again the
structure of a complex torus and is canonically isomorphic to VV/FV.
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Definition 5.2.7. This torus is called the dual torus and is denoted by AV.

Our considerations also imply that the bundles with a given Chern class form a principal
homogeneous space under

Homg (T',C)/(Homg (V,C) @ Hom(T',7Z)). (5.84)
But this description requires a choice of an 1 adapted to (, ). We have seen that changing
1 can be corrected by the modification of the linear form ¢.
Now it is clear that all line bundles £ on A are of the form Ly ((, ),n.¢) = L((, ),L1.n,¢).

The Poincaré Bundle

We see that the line bundles on A with Chern class zero are parameterized by the points
of the dual torus AY. We want to make this statement more precise. We construct a
line bundle N on A x AV which has the following property: For any point y € AV the
isomorphism class of the line bundle N restricted to A x {y} = A is the isomorphism
class corresponding to the point y € AY = Pic’(A).

We know what we have to do: we have to construct the right line bundle on

Ax A =V I x VYTV =(VaoVY)/TarY).

To do this we have to find the right alternating form. Starting from the non degenerate
pairing (evaluation)

r'xTV — 7 (5.85)
(7:4) — ¥ ()

we get the tautological alternate pairing
e:TaolV)yx(TalY) —17Z, (5.86)
which is defined by

e ((v1,%1),(v2,%2)) = ¥2(11) — ¥1(y2)-

Of course it is clear that I is an isometry for this alternating form on (I'®@T'V) ® R. Now
we have to find an n which is adapted to e. An easy calculation shows that we can take
n((v,4)) = 24(7). We consider the line bundle £(e,n,0) on A x AY.
We write down the Hermitian form on V @ V'V:

H((zw),(z1,w1)) = —Tun(2) + w(lz1) +i(wi(z) — w(z1)) (5.87)

and hence we get for the local sections of our bundle £(e,n,0) on A x AV.

Flz 47w+ ) = f(zw)emTIPEFUINFIGE) —w))+rivy), (5.88)
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If we now fix the second variable w and restrict the bundle to A x {w} then we get

F((z + yw)) = f(zw)emwINFil=w) (5.89)
= f(z,w)emi(Zi®Tw=w)()

This is now the bundle £(0,0, — i ® Iw — w). To get its isomorphism class we have to
project —i ® Tw — w to Homg (V1,C). This projection is clearly the projection of —2w
and hence we see that the restriction is isomorphic to the line bundle which corresponds
to —w under the homomorphism V¥ — Pic’(A).

If we exchange the roles of A and AVand fix the variable z and restrict to {z} x AV then
we get the line bundle

Fl(zw + ) = f(zw)emTIVEFED (5.90)

on AY. This is clearly the line bundle on AV which corresponds to z under the homo-
morphism VYV =V — Pic’(4Y) — A.

Definition 5.2.8. The bundle L(e,n,0) is called the Poincaré bundle and gets the new
name N.

Proposition 5.2.9. The Poincaré bundle realizes isomorphisms

AY = Pic(A)
wr— N | Ax {w}

and
A 5 Pic’(AY)

z— N | {z} x AY.

Universality of N
We briefly discuss another property of the bundle A/, which is called universality, we
will skip some details. Let us assume that we have a line bundle £ on A x T where T

is a complex analytic variety. We assume that 7" is connected, and we also assume that
L | A x tyis in Pic’(A) for some point to. Now we can define a map

Y: T — AY =Pic’(A)
which is defined by
L | A X {t} ’:Nw(t).

I claim that ¢ is indeed an analytic map, and that in addition for any point ¢y € T we
can find a neighborhood V of ¢y such that

LIAXV ~Idxyp*)(N)|AxV.
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We introduce the following notation: If we have two line bundles £1,£5 on X x T then
we write

Ly ~1 Lo

if these bundles are isomorphic locally in 7. This means that for any point t € T' we can
find a neighborhood V' such that

,C1|X><V2,CQ‘XXV
Hence we can find a line bundle M on T such that

L1~ Lo ® p5(M),
where po is the projection to T'. We can reformulate the claim

Proposition 5.2.10. Let T be a connected complex manifold (or even only a connected
complex space). For any line bundle £ on AXT, which satisfies L | Ax{to} for some point
to € To, we have a unique holomorphic map v : T — AV such that L ~7 (Id x)*(N).

This looks very plausible but in fact it not so easy. I will gives a somewhat sketchy
argument why this is true. The assertion is local in T', hence we can restrict our attention
to an open neighborhood U of a given point ¢ty € T. We assume that we have local
coordinates uq, . .. ,u,. We introduce a relative Dolbeault-complex, this will be the family
of Dolbeault complexes along the fibres of the projection A x U — U. To define this
complex we observe that in any point (z,u) € A x U we have the space TA of vertical
tangent vectors along A x {u}. We also choose a neighborhood V;, of 2 and assume that we
have local coordinates z1,...,zq4, we actually take the linear coordmateb in a connected
component of the inverse image of U in V = CY9. We define QoP Axuvyu o be the sheaf of
forms, which on this neighborhood are given by

w = Z f’:lqw-"’:p (Z,u)dfil VANRRIVAN df,‘p.

where the coefficients f;, .. i, (z,u) are C* and holomorphic in the variables u;, evaluated
at (z,u) these are multilinear alternating forms of type (0,p) on T4,
Now it is clear that we get a complex

00 d’ 01
0 > Oaxu >QA><U/U4)QA><U/U4)""

Now we have to use a relative lemma of Dolbeault, which gives us that this complex is
a resolution and we have to use a relative version of Exercise 16 to prove that this is
indeed an acyclic resolution for the functor po, of Oaxyr.

Now it is rather clear that our line bundle £ is given by a cohomology class in H'(A x
U,Oaxu). This class can now be represented (locally) by an element

w= Zfi(m,u)déi,

where f;(z,u) is C* and holomorphic in the uq, ... ,u,. Now we use the same arguments
as in 4.11.3, 5.1.1 and conclude that this form defines the same class as
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W0 = Z 2 (2,u)dz;,

where f(x,u) = f2(u) is the constant Fourier-coefficient of f;(z,u), i.e. it does not depend
on z (we assumed that the coordinates z1,...,z4 are linear) and since it is given by an
integral in the z-direction is holomorphic in u. But now we know that the coefficients
f2(u) are local coordinates for £ | A x {u} considered as a point in AV and this finishes
the proof.

I should say that this is not the ”"right” proof of the lemma above. It is much more
natural to prove it starting from the finiteness results for coherent sheaves in complex
analytic geometry. These finiteness results imply so called semi-continuity theorems for
the cohomology of coherent sheaves and these give a much more transparent proof of the
lemma. These finiteness results are very deep (See [Gr-Re2], Chap. 10)

We will encounter a similar situation in 5.3.1, where we discuss the Picard group on
certain products X x Y. In the second volume we will analogous statements in the context
of algebraic geometry. In that case the truth of the assertion will be a consequence of
the construction, and we will need the full strength of the finiteness results in algebraic
geometry. In the context of algebraic geometry the finiteness results are easier to prove.

5.2.2 Homomorphisms Between Complex Tori
If we have two such tori
Vi/Ty = Ay Vo /Ty = Ay

then an analytic homomorphism ¢ : A7 — As is of course the same thing as a C-linear
map ¢ : Vi — V5 which maps the lattice I'; into I';. We may also view ¢ as an element
¢ : 'y — I's which after extension to a linear map I't ® R — I's ® R respects the complex
structureson 't @ R=V;, s @ R = V5.

We summarize:

Proposition 5.2.11. The module Hom(A;,As) is a submodule of Hom(I'1,I'2). It con-
sists of those elements which after extension to R commute with the complex structures.

(This looks rather innocent, but it is not. The reader should look at the discussion on
the last page of the book in section 5.3.4.) A homomorphism ¢ : A; — Ay also induces
a homomorphism between the Picard groups

©* : Pic(A2) — Pic(Aq)
which is induced by the pull back of line bundles.

We can restrict this homomorphism to the groups Pic’(As) = Ay and Pic’(4;) = AY
and denote this restriction by

oV Ay — AY.
A priori this is a homomorphism between abstract groups, but from the explicit descrip-
tion of the isomorphism Pic’(A4;) =+ AY it becomes clear:
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Proposition 5.2.12. The element ¢V is a homomorphism of complex tori. This homo-
morphism — viewed as an element in Hom(T'y ,I'Y) — is simply the adjoint of the element
¢ € Hom(T'1,I'2). Especially we see that the function ¢ — ¢ is additive.

Proof: To see that this is true, we consider an element z € Pic’(As). We gave an explicit
construction of a line bundle £, corresponding to . We choose a linear map

Ag : To — €,
which after extension to I's ® C and restriction to V5 maps to x.
For an open set V' C Ay the space of sections is
L.(V)= {f N (V) — (D’ f is holomorphic and f(z +~) = f(z)eQTrM“”(W)}
and the fibre of £, in a point y € H'(S,05)/T is given by
(Lo)y = {F 177 W) — C|fly+7) = Flp)er™>O].

If now ¢ : Ay — Ay and if y; € Ay, then

O (La)y, = (ﬁz)w(yl)'

If we consider the diagram

rn % r, ¢
\ \

Vi 5 W
then we see that ¢*(£) is the line bundle defined by the composition

Agop: T —C

and this proves the desired formula. O

We may also consider the induced map

This homomorphism is easy to describe: An element e € NS(A;) is an alternating form
e: Ty x 'y — Z and $*(e) is simply the form on I'y x I'y induced by ¢, i.e.

2 (e)(m) = e(e(1),¢(72))-
Therefore we get

Lemma 5.2.13. The function ¢ — 5* is quadratic, i.e. we have
+Y =4+ + <o >
where (p,)) —< pb > is a bilinear map

HOII’I(Al,AQ) X HOHI(Al,AQ) — HOHI(NS(AQ),NS(Al))
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The Neron Severi group and Hom(A,AY).

We come to another interpretation of the Neron-Severi group. An element e € NS(A)
defines a homomorphism
Ple): T — TV
v— {7 = e(va)}
The condition that I is an isometry for the extension eg to I'g implies that ®(e) extends

to a C-linear homomorphism B
Ple): V — VY

We have the inclusions I' € V and TV € VV and it is clear that ®(e) maps I' into T'
and induces ®(e) on the lattices.

Therefore we see that we have a canonical homomorphism
® : NS(A) — Hom(A4,AY).
Any element ¢ : ' — I'V has a transpose

¢V TV =T — TV,

We can define the alternating elements Hom,i(A,AY) to be the elements which satisfy
¢V = —¢ and it is an easy exercise in linear algebra to show that our above map &
provides an isomorphism

@ : NS(A) — Homy(A4,AY). (5.91)

If we have a homomorphism ¢ : A; — As between two complex tori and consider
the induced homomorphism ¢* : NS(As) — NS(A4;), then we get a homomorphism
®1 0 ¢* o ®;' : Homay(A2,AY) — Homaie(A1,A4Y) and it is straightforward from the
definition that this homomorphism sends

Y — tpohop. (5.92)

The inverse of this homomorphism ® is given by the map that sends an alternating
element ¢ to the form

es(1:7) = () (7). (5.93)

We have another homomorphism ¥ : Hom(A,AY) — NS(A). To get this homomorphism
we start from the line bundle " on A x AY. For any ¢ : A — AV we get an embedding
ig: A — Ax AV by z + (2,6(2)). We get a bundle i%(N) on A and its Chern class is
U(¢). The resulting form

<72 >e= 0(1)(v2) — d(12) (M) = ep < Y172 > —egv < 1,72 > (5.94)

on I is alternating. It depends only on the alternating component of ¢ and for alternating
¢ the map ¢ =< , >4 is twice the inverse of ®.
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The construction of ¥ starting from a line bundle

We want to give a different construction of the homomorphism ® which works with the
line bundles themselves rather than with their Chern classes.

To our element e € NS(A) we choose a line bundle £ with ¢;(£) = e, in other words we
choose an adapted n and a ¢ : I' — C and consider the line bundle

L= L(en,p).

Any element z € A induces a translation T, : y — = + y on A and we can consider the
line bundle 77 (£) ® £L~!. To compute this line bundle we choose an element Z in the
fibre p~*(z). Let H, the attached Hermitian form then the fibre of T} (L) at a point z is
equal to the fibre of £ at x + z and therefore it is given by the functions which satisfy

- 1 .
f('5+ ZE""Y) — f(5~+ 5)67"<Hc(z+1»’7)+2Hc('Y"Y)>+27”(‘P('7)+77He('Y)) (595)
for all Z € p~1(2).

Comparing this to the fibre of £ at z yields that the fibre of T(£) ® £~! is given by the
functions

fE+7) = fE)e . (5.96)

This line bundle is obtained from the linear form ¢z : v — H.(Z,y), in other words it
is isomorphic to Lo(pz). An easy calculation shows that this linear form is of the type
(0,1,0), in other words it is trivial on the first component in the decomposition

Homg(I' ® C,C) = Home(V @ V,C). (5.97)

The same calculation shows that the linear form vz : v — H(v,Z) is of type (40,1,0).
Therefore we do not change the isomorphism class of the line bundle if we replace pz by

¢z(v) =H(@Zy) — H(v,2) = 2(lm H (Z,y) = 2ie < T,y > . (5.98)

Hence we see that T (L) ® L1 = £(0,0,e < Z,- >) where e < Z,_ > is a linear map
from I to C.

Therefore it is clear that we have

Lemma 5.2.14. The map
v TN L)@ L1
from A to AV is a homomorphism and this homomorphism is equal to ®(e).
This new description of ® has the advantage that it is constructed in terms of the

bundles rather than in terms of the Chern classes. It is of course important that this
homomorphism depends only on the Chern class of the line bundle L.

Definition 5.2.15. An element ¢ = ¢1(L) of the Neron-Severi group is called rationally
non degenerate if the alternating pairing cq : I'q x I'q — Q is non degenerate.
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Proposition 5.2.16. Let ¢ = ¢1(L) be a rationally non degenerate element in the Neron-
Severi group. Then the induced homomorphism ¢. : I' — T'V is injective and the image
¢c(T) C TV has finite index. From our description of the complex tori it is immediately
clear that the kernel of

r— THL) @ L1
is canonically isomorphic to TV /¢.(T'). Hence we have an isomorphism

ker(¢c) = T /¢e(T).

I want to mention, that the order of this index is a perfect square. This follows easily, if we
believe that we can find a basis e1,...,eq4,f1,...,fq such that e(e,,f,) = —e(fo,90) = n;
and all other values give zero. Then we get as a basis for the dual module I'V the elements
er/ni,....eq/ng,f1/ni,....fqg/ng and [['V : T| = [[n2. The number |[], n,| is called the
Pfaffian Pf(e) of e.

5.2.3 The Self Duality of the Jacobian

We specialize these considerations to the Jacobian .J of our Riemann surface S. We
resume our considerations in section 5.1.10. We saw that

J=H'(S,0s)/T = H(S,Q%)/T

where we identify H'(S,05) = H°(5,Q2}) by means of the Dolbeault isomorphism. The
submodule T is the image of H'(S,Z) under the homomorphism j : H'(S,Z) — I'. The
complex structure I on I'g — H'(5,0s) is the one induced from H!(S,0g).

On this module I' we have the privileged alternating form given by the cup product
eo: I'x I' = Z. It provides an isomorphism

Veo : T —> TV,

The Riemann period relations (see section 5.1.12) say that the complex structure on I'g
is an isometry for eg. Hence we get an isomorphism

Jeo J — JY
I |
H'(S,05)/T — H(S,Qk)V/IV

The isomorphism or — what is the same — the class eg € NS(J) is called the canonical
polarization of J (see Definition 5.2.21). It is an additional datum attached to the
complex torus.

At the end of the discussion of Abel’s theorem we discussed the embedding

1 Py : S —J
which provided a homomorphism

tip, : Pic’(J) — Pic’(9)
| |

JY — J
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and now it is clear from these computations that ip, is the inverse of the canonical
polarization.

The polarization j., induces an isomorphism Hom(J,J) — Hom(J,JV) and combining
this with the isomorphism (5.91) gives us an isomorphism

NS(J) = Endaym (J,J]) (5.99)

where the subscript sym refers to the pairing eg. Using this isomorphism we can interpret
the induced morphism * as endomorphism &* of Endgym(J,J) and it is clear from the
definition that

@ () = ‘opp (5.100)

5.2.4 Ample Line Bundles and the Algebraicity of the Jacobian
The Kodaira Embedding Theorem

Let us assume that we have an alternating form e =< , >: I'xI' — 7Z and a compatible
complex structure I. So far it did not play any role that the Hermitian form H attached
to this form e was positive definite. We want to discuss the implication of the positivity
and we will see that it implies that sufficiently high powers of this bundle will have many
sections.

Before I discuss this implication of the positivity I want to place this positivity into a
general context. I refer to the section 4.11.2 on K&hler manifolds. There we attached a
2-form wy, to any (positive definite) Hermitian form h on the tangent bundle. In our case
here the tangent bundle of A = V/T" is trivial and isomorphic to I' ® R at the origin.
Then our 2-form wy, on A is invariant by translation and at the origin it is our form e. It
is clear that wy, is closed, it defines a class [wy,] € H%(A,Z) and of course

[wh] =e.

If now in addition the Hermitian form H obtained from the alternating form and the
complex structure is positive definite, then < , > gives us a Kéahler metric on A = V/T’
whose class is integral.

I want to formulate the famous embedding theorem of Kodaira. Before I can do this I
have to make a short comment on the coordinate free definition of the projective space.

Definition 5.2.17. If V is any C-vector space of finite dimension, then we define P(V')
to be the space of linear hyperplanes H C V.

We have to say what the holomorphic functions in a neighborhood of a point H € P(V)
are. This point is defined as the set of zeroes of a linear form Agy. If v € V' \ H and
v € V then then A — A(v)/A(vg) defines a function on the set of those A € V'V for
which A(vg) # 0, hence for those A in a small neighborhood of Ay. We choose a basis
V1,02, ...,0n—1 of H, then we define z;(\) = A(v;)/A(vo). These functions vanish at
Ao = H.

Definition 5.2.18. The local ring of germs of holomorphic functions at H is now defined
as the ring of power series in the x; which have a strictly positive radius of convergence.
In other words these x;(\) form a system of local coordinates at H.
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Now we see that

P(V) = (VY \{0})/C" (5.101)

and if we choose a basis for V'V then we get back our previous definition. We have the
tautological line bundle whose fibre over H is simply the line A with A(H) = 0. It is
easy to see that this gives us the bundle Op(y)(—1). The dual bundle is Op (1) and
we have a canonical isomorphism

HY(P(V),0p (1)) = V.
Now we state the famous embedding theorem of Kodaira.

Theorem 5.2.19 (Kodaira Embedding Theorem). Let X be a compact complex mani-
fold. Let us assume that we have a Hermitian metric h on Tx whose corresponding class
wp, s closed and defines an integral class in H?(X,Z). Then we can find a line bundle L
on X whose Chern class c¢1(L) = [wp]. For n > 0 we have that HY(X,LZ™) = 0 for all
q > 0 and for any x € X we can find a section s € HY(X,L%™) which does not vanish at
x. Then we get a holomorphic map

On(L) : X — P(HO(X,L%™))
x— H, = {s € H*(X,L%")|s(x) = 0},

which for suitably large values of n is an embedding, i.e. it defines an isomorphism between
X and a smooth closed complex submanifold Y of P(H°(X,L%™)).

This theorem will not be proved here, for a proof see [Sel]
We have a tautological example for this theorem.

Example 22. If our manifold X is the projective space P™(C) itself and the bundle is
L = Opn(c)(1), then we can take n = 1 and already this bundle provides an embedding.
A closer look shows that this embedding is simply the identity.

In the general case it is clear from the construction that the restriction by ©,,(£) of the
bundle Op go(x,con)) (1) to X is our bundle £L#". We will give a few more comments on
this theorem when we discuss the Theorem of Lefschetz. We apply this theorem to our
complex tori.

Corollary 5.2.20. The class wy is given by e =< , > and the Hermitian metric h is
given by H = H. -, hence H has to be positive definite. Any bundle L = Ly ({ , ),n.p)
is of the type as in the theorem and provides a projective embedding.

Definition 5.2.21. If we can find such a compatible alternating form e on (V,I) for which
the attached Hermitian form is positive definite, then we say that our complex torus is an
abelian variety. The class e is called a polarization of A = V/I'. Two polarizations
e1,eo are considered to be equivalent if we can find integers n,m > 0 such that ne; = mes.
If the alternating form e is non degenerate, then we will call it a principal polarization.
The canonical polarization on a Jacobian J of a Riemann surface is principal.

We will almost prove the above theorem of Kodaira in the special case of abelian varieties
(see Theorem 5.2.35). This will be done by showing that the bundles have a lot of sections.
After that we will make it more precise what a projective embedding is.
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The Spaces of Sections

We want to compute the space of global sections in our line bundles £({ , ),n,¢). To do
this we give a different description of these bundles: we modify the cocycle Ci(z,y) by
a boundary.

To get this modification we choose a sublattice G C T of rank g such that I'/G is free and
the alternating form < , > is trivial on G. This is possible because our form is alternating.
Then our Hermitian form H restricted to G takes real values and is symmetric. Since we
have G @ IG =V we can extend this restriction to a symmetric C-bilinear form h on V.
Since H is C-linear in the first variable we have

H(z,y) = h(z,y) for all v € G. (5.102)

For simplicity I want to assume that the restrictions of n and ¢ to G are trivial. Actually
we can assume this without loss of generality. To see this we apply Lemma 5.2.4. The
function 7)|G satisfies (g1 + g2) = 1(g1) + n(g2) for g1,92 € G. We can construct a linear
form ¢’ : I' — %Z such that 7|G = ¢'|G mod 2. Now we modify n by ¢’ such that
n(y) = 0 for all v € G. Once we have done this we also modified ¢ to p1. We can restrict
the form ¢ : I' — € to G and extend this ¢ to a linear C-form ¢ on V. We have
seen that L(< , > m,p) ~ L(< , > 0,401 — 1) and hence we may also assume that ¢
restricted to G is trivial.

We look at our 1-cocycle mod 27iZ

v m(H(zy) + 3H(v7)) + 27i(e(y) + n(v)) =: Cu(z,7). (5.103)

Proposition 5.2.22. This cocycle is uniquely determined by ', < , >, the complex
structure I, n and .

We change our notation slightly and denote the resulting bundle by L£(Cw,n,p). Now
we consider global sections in this bundle and this means that we consider holomorphic
functions which satisfy

flz47) = f(z)eCH(zﬂ)Jr?m(v(an(v))_ (5.104)
We modify these functions and consider
F(2) = f(z) - e"Bh=2), (5.105)

These functions can be considered as sections in a new bundle £(Chol,n,¢) which is
isomorphic to the given one but which is described by a different 1-cocycle. If we put

Chotl27) = 7(H(2,7) = h(z7)) + & (H(7:7) = h(37)) (5.106)
then the sections of the bundle £(Cho1,n,p) are functions which satisfy

f(z +9) = f(z) . ¢Cnot(zM)+2mi(p(v)+n(7)) (5.107)

This new 1-cocycle has the disadvantage that it depends on the choice of G but it has
several advantages:
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1. We have H(z,y) = h(z,y) forallz € V,v € G and §(y) =0, p(y) =0 forally € G.

Hence we see that f(z + ) = f(z) for all ¥ € G, the function f is periodic with
respect to the sublattice G.

2. We will show that the cocycle depends “holomorphically” on I and this means
that we can view the abelian varieties together with the bundles as a holomorphic
family.

Further down we will give a rather explicit description of the space of sections of these
line bundles. Before I carry out this computation in detail I want to explain how we can
view the variable I as a variable in a complex variety and what it means, that the cocycle
depends holomorphically on I.

5.2.5 The Siegel Upper Half Space

We explain how we can view the complex structures as points in a complex variety, this
variety will be the Siegel upper half space. In accordance with our previous definitions
we say

Definition 5.2.23. A principally polarized abelian variety is a triplet A = (I',( , ),I)
where

1. T is a free Zi-module of rank 2g and ( , ) is a skew symmetric form
(,):I'xT —7Z

which is non degenerate over Z. This means that we can write our lattice

g
I‘:@Zel,@Zfl,
v=1

where {e,,f,) = —1 = —(fu,e,) and where all other { , ) between basis elements are
zero.
2. The element I is a complex structure on I'r, we have I? = —Id and it respects the

alternating form { , )r : 'r x 'r — R.

3. On the complex vector space V = (I'g,I) we can define a Hermitian form Hy on'V
by
Im Hl(x7y) = <$,y>

for all x;y € T'r. It is part of our assumption that this form is positive definite.

Clearly these data provide a complex torus A = V/T'. We want to explain that these data
can be viewed as points in a complex manifold. The datum that varies is the element
I, we want to show that we can interpret these I as points on a complex manifold. We
extend the scalars to C, we extend the form ( , ) bilinearily to I'c = I' ® C. If such an
element [ is given, then ' decomposes

10 0,1
o =T aT%,



5.2 Line Bundles on Complex Tori 241

where I‘}E’O is the eigenspace for I with eigenvalue i and F%l is the eigenspace with
eigenvalue —i. Hence we see that I defines a subspace F%l, which is maximal isotropic,
i.e. all scalar products of two elements in F%l are zero. We introduce the Grassmann
variety Gry of maximal isotropic subspaces (with respect to <, >) in I'¢. This is a set.
These subspaces have dimension g. We can define the structure of a complex manifold on
Gr, : Let X C I'c be such a maximal isotropic subspace. We can find a second maximal
isotropic subspace Yy such that I'c = X & Y. We say that Y; is in general position
(or in opposition) to X. We choose a basis {z1,z2,...,24} of X and {y1,y2,...,yg} of
Yo such that

< Ty, Yu > = Opp-

If now Y is any maximal isotropic subspace which is in opposition to X, then it has a
unique basis of the form

gy =Y+ ZTV,;LI;L'

An easy computation shows that a subspace generated by elements y1,y2, . ..,y, of the
above form is isotropic if and only if the 7, , are symmetric, i.e. 7,,,, = 7,,,,,. Hence we
see that the 7, , with v < p can serve as local coordinates for a complex structure on
Gr, in a neigborhood of the point Yy. The point Y has coordinates 7,,,, = d,,,. These
local coordinates are valid on the set of those maximal isotropic subspaces which are
in opposition to X. If we have an element Y € Gr,, which is not in opposition to X,
then we choose another X’. It is elementary to check that the two complex structures
restricted to those Y, which are in opposition to X and X’ are the same.

Of course our maximal isotropic sublattices G for which I'/G is free yield points G& C in
the Grassmannian. These are the integral points in the Grassmannian. In the second
volume we will learn that the Grassmannian is actually a ”projective scheme over the
integers Z”. Then the set of our G above will be the Z-valued points of this scheme.

Definition 5.2.24. The symplectic group Sp,(7Z) is the group of linear transforma-
tions in GLag(Z) which leave the alternating form <, > invariant.

For any commutative ring R with identity the group Sp,(R) is the corresponding sub-
group of GLag(R). This means that Sp, is an algebraic group over Z. It is elementary
that Sp,(Z) acts transitively on the set of all sublattices G’ as above. The group Sp,(C)
acts transitively on Gr,.

The stabilizer P, of a point z € Gr, is a parabolic subgroup of Sp,(C). It is a special
type of parabolic subgroup, it is maximal and a so called Siegel parabolic subgroup.
Since Sp,(C) acts transitively on Gr, the Siegel parabolic subgroups are conjugate to
each other. We say that two Siegel parabolic subgroups P.,,P,, are in opposition to each
other, if the two corresponding maximal isotropic subspaces Z1,Z5 satisfy Z3 N Zy = {0},
or if they span I'c.

To any element I we can attach a point in Gry. Actually we have two choices — namely
we can attach 1—%0 or F%’l to I — but in our situation we choose

I —T8 ={uelp | Iu=—-i®u}.

On Gr, we have complex conjugation, it interchanges the two spaces in the decomposi-

tion and sends the element I to —I. This means that the two parabolic subgroups (the
.. 1,0 0,1 . ..

stabilizers of I'i;” and I';") are in opposition.
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If in turn we have a point z € Gry, and the corresponding parabolic subgroup P, and
if P, and Ps are in opposition, then we get a decomposition

Ic=WaW

where W = z. Then we can consider the automorphism J which acts by multiplication
by i on W and —i on W. Clearly this defines a complex structure on I'g: The elements
of I'g are the elements of the form vy =w+w and Iy = wRi+wWR (—i) = w®i+w Q1.
We conclude that:

Proposition 5.2.25. We have a bijection
{1 ?=-1d,(Iz,Iy) = (zy)} = Gr,

where Grg is the set of points z for which z and z are in opposition. This induces a
complex structure on the set of all I.

On Grg we have an action of Sp,(IR) by conjugation, we want to determine the orbits.

Recall that we know:

Proposition 5.2.26. An element I defines a Hermitian form Hj on the complex vector
space (I'r,I) and the stabilizer of the element I is the unitary group Ur C Sp,(IR) of the
Hermitian form.

This Hermitian form H; has a signature (p,q) with p+ ¢ = g and H; ~ U(p,q). Now it
is an easy — or perhaps better — a well known theorem that:

Theorem 5.2.27. The orbits under Sp,(R) on Gr, are given by the signatures (p,q) of
the Hermitian forms Hy.

Especially we have the open orbit H, C Grg where the form Hj is positive definite. This
is the orbit which is hit by the principally polarized abelian varieties. It is elementary to
show that Sp,(IR) acts transitively on H,.

We see that two such principally polarized abelian varieties (I',< , > ,I) and (I, < , > ,I")
are isomorphic if we can find an automorphism of (', < , >) which sends I to I’. The
group of these automorphisms is the symplectic group G(7Z) = Sp,(Z) and this gives us
a hint that we can formulate a theorem, which roughly says:

Theorem 5.2.28. Abelian varieties with a principal polarization are parameterized by
G(Z)\H,.

I stated this result because I want to give a first idea what a so called moduli space
is. In general moduli spaces are complex spaces (later on they will be algebraic varieties
or even schemes), whose points classify objects of given type. In our case above the ob-
jects are principally polarized abelian varieties of dimension g and the moduli space is
the above quotient. It is in fact a complex space and to any of its points we construct
in a certain natural way an isomorphism class of a principally polarized abelian variety
and any isomorphism class corresponds to a unique point. Hence the set of isomorphism
classes of principally polarized abelian varieties has in a certain natural way the structure
of a complex space. It would be better if we could attach to any point z € G(Z)\H, in
a canonical way an abelian variety A, and not only an isomorphism class. This abelian
variety should vary ”holomorphically” with z. This touches a subtle point in the theory
of moduli spaces. We come back to this point in volume II.
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Actually it turns out that now we are asking to much, we discuss this in the following
section.

Elliptic curves with level structure

I want to invite the reader to a short excursion. We want to make the above consideration
more precise for the case g = 1, this means for elliptic curves. We return to the situation
discussed in5.2.8. There we explained that elliptic curves can be written as € = C/Q
where the period lattice ) = Zw; ® Zw- and where wi,wy € C are linearly independent
over R. If we have a second lattice 7 then £ and £&; = €/ are isomorphic if and only
if we can find an o € C such that af) = Q5.

The real vector space € = IR? has an orientation: the ordered basis {1,i} is positively
oriented. For a given lattice Q = Zw, @ Zws we can require that the ordered basis {w1,ws}
is positively oriented. This means that “? = 7 = x + iy has positive imaginary part, i.e.
y > 0, in other words 7 is an element in the upper half plane

H={r=xz+1iy|y>0}.

It is clear from above that C/Q = C/Z1 @ Z7. We may choose another oriented basis
for our lattice. We get these basis if we take a matrix

y = (Z Z) € SLy(7)

and the new basis is given by {a1 + b,cr + d}. Then put 7/ = y7 =
get an isomorphism

at+b
ct+d

and clearly we

iy: C/71 & Zr = C)71 @ 7'

which given by multiplication by a = ﬁ.

Let us put I' = SLy(Z). The group I' acts on H by (vy,7) — ff;‘fg and we established
a bijection between the set of isomorphism classes of elliptic curves and the points in
SLo(2)\H, and this is our theorem 5.2.28 for g = 1.

The following facts can be found in [La] or any other book on elliptic functions. The

action of I' on the upper half plane is properly discontinuous, and this means that

For any 7 € H we can find an open neighborhood V. of T such that for all v € T' we
have YV NV, = 0 unless y7 = 1. For any 7 the group T'y = {y|yT = 7} is a finite cyclic
group.

A point 7 is called a fixed point if there is a v € I',y # +1d such that v7 = 7. The fixed
points form two orbits under I' : We have the two fixed points 7 =i , p = 1%\/5, we take
the positive root. The set of fixed points consists of the orbits of these two points.

We can define the structure of a complex space on I'\H, it is clear what the holomorphic
functions in a neighborhood of a point z € I'\H are: Choose a 7 which lies above z,
choose a neighborhood V.- as above, which is invariant under I';. Let W, be the image of
V.. Then the holomorphic functions on W, are the holomorphic functions on V. which
are invariant under I'.. If we use the arguments from 3.2.2 and example 17 and exercise

13 then it is even clear that the quotient is a (non compact) Riemann surface.



244 5 Compact Riemann surfaces and Abelian Varieties

We want to make the assertion of the above theorem 5.2.28 more precise. We try to
attach to any point z € I'\H an actual elliptic curve £,, not only an isomorphism class.
This seems to be easy: We pick a point 7 € H which projects to z and choose the elliptic
curve C/7Z1 ® Zt and try £, = C/Z1 @ Z7. What happens if we choose another point 7/
projecting to z? We find a v with v7 = 7/ and identify the two elliptic curves by the rule
given above. At this point we encounter a fundamental problem. The element ~ is never
unique, we always can replace it by —v and this gives another isomorphism —i., between
our two elliptic curves. This tells us that there is no consistent choice of &,.

We have a remedy. We choose an integer N > 3 and consider the homomorphism I' —
SLo(Z/NZ) it turns out to be surjective and its kernel is denoted by I'(IV), the principal
congruence subgroup mod N. It is an easy lemma that I'(/N') does not contain elements
of finite order different from Id. Therefore, it is clear that I'(N) acts fixed point free on
H.

Any elliptic curve & = €/ has the endomorphism N1Id : &€ — £,z — Nz, it has the
kernel £[N] = +Q/Q = 7Z/N7 & 7/NZ. THis allows us to introduce a new kind of
object, namely elliptic curves with some extra structure, so called N— level structures.
This are pairs (£,{e1,e2}) , where e1,eo € E[N] and where these two points generate E[N],
in other words they provide an isomorphism E[N] = Z/NZ & Z/NZ, whose inverse is
given by (a,b) — aeq + bes. The elements in E[N] are called N-division points.

To such an elliptic curve with N-level structure we can attach a topological invariant.
We observe that we have an alternating pairing < , >: Q0 x Q — Z which is defined
by the rule < wy,ws >+ 1 (recall that we have the orientation on C), this can also be
interpreted as an intersection of the two homology classes (See also 4.6.8) ) provided by
w1,ws. If we now have our two IN-division points e1,eo we can lift them to points in %Q:

b c+d
—T
N’

G=gtyRsy
and because they generate E[N] the number ad — bc must be prime to N. Actually it is
clear that the quantity < ej,es >xn:= ad — bc mod N is well defined and an element in
(Z/NZ)*. This is our topological invariant attached to (€,{e1,e2}).
We resume the discussion from above, we want to make the assertion of theorem 5.2.28
more precise, but now for elliptic curves with N-level structure. We consider the action of
['(N) on H, the action is fixed point free, the quotient I'(IV)\H is a Riemann surface and
the projection 7 : H — T'(IV)\H is an unramified covering. We pick an a € (Z/N7Z)*.
For any z € I'(V)\H we pick a point 7 projecting to it and (C/Z1 + Z7,{£,%}) is an
elliptic curve with N-level structure. If we pick another point 7/ € 7~1(z) then we find
a unique v € I'(N) such that v(7) = 7’ and 1, provides an isomorphism between the
two curves with level structure. We can say that we constructed a curve £, with N-level
structure for any z € I'(/V)\IH. On the other hand it is clear that (C/Z1 4 Z7,{%,%})
and (C/Z1 + Z7',{%,7%}) are isomorphic if and only if we find a v € T'(V) such that
v(T)=7"
We form the product I'(N)\H x (Z/NZ)* let p1; be the projection to the first coordinate.
Consider B

En = {(uy(2,a))|(2,0) e T(N)\H X (Z/NZ)* u € E, }.

We have an obvious complex structure on this set, the holomorphic coordinates are local
lifts from z to 7TH and from u to w € C. Hence it is a surface, we have the projection
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7N i En — D(N)\H x (Z/NZ)*.

We have two sections 4.3.1 e1,es to mny whose values at any z X a are given by

ei1(z,a) = %,62(2,&) = % e C/Z1 + Zr.
This object 7 : Ey — D(N)\H x (Z/NZ)*, together with the two sections ej,es can
be viewed as the ”universal elliptic curve” with N-level structure. By this we mean the
following:

Let us consider a morphism p : X — S between two complex spaces such that for any
x € S the fiber 77!(z) = X, is a smooth curve of genus one. Let us assume in addition
that we have a holomorphic section O : S — X to p. Then the fibers are elliptic curves
and p: X — S is called a family of elliptic curves. Especially we know that these fibers
come with a group structure. If we now have two sections f; : § — X, fo : S — X
to p, such that for any = € S the two elements fi(z),f2(z) € X [N] and are a pair of
generators, then we say that (p : X — S,{f1,f2}) is a family of elliptic curves with
N-level structure.

Now we can state a result which a much more precise version of theorem 5.2.28

Theorem 5.2.29. Let (p : X — S.{f1,f2}) be a family of elliptic curves with N -level
structure. Then there exists a unique holomorphic maps ®,¥ which provide a commutative
diagram

X gN (5108)

& . § ——— T (N)\H x (Z/NZ)*

such that for any point x € S the restriction ¥, : X, — ((Z/‘VN)@(S) is an isomorphism
and maps fi(x) to e;(P(x)).

This is of course highly plausible, essentially we have to show that the period lattice
depends holomorphically on the variable z € S. We do not give a detailed proof this fact
here, we come back to this kind of problem in Volume II, 9.6.2. A similar problem is
discussed in this Volume I in 5.2.10.

In some cases we can give a rather explicit description of T'(N)\H and the universal
elliptic curve with N-level structure over it. I include this discussion in the second edition
of this volume I, because I wanted to present this in volume II, but finally there was some
lack of space (and energy).

Let N > 3, we consider the elliptic curve with N-level structure & = (C/Z1+Z1 {5 })-
We have a minor problem of notation: We have a group structure on £ and we denote
the addition of two points P,Q € E by P& Q and me P=P® P& --- @& P. We do this
because we want to keep the usual notation D = ny Py +noPs+ - - - + n,, Py, for a divisor.
The theorem of Abel (see 5.1.35) says that a divisor is principal, if its degree deg(D) =
Sn;=0and if nye P, ®ngs e Py---®n, e P.=0. We put % =15 =Ss For any z € £
we consider the divisor
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D,=z4+:z2®r+z02er+---+20(N—-1)er.

The divisor D, — Dy is principal if and only if z is a N division point. The space of
sections H?(E,0¢(D.)) has dimension N and of course it contains the constants. The
divisors D, are invariant under translations by the cyclic group < r > generated by r,
therefore, we have an action of < r > on H°(£,0¢(D.)) for any z, we denote this action
by p(r), ie. p(r) =T,.
We pick z = 0. For any a = 1,2,...,(N — 1) the divisor D,.s — Dy is principal, we choose
a meromorphic function f, having this divisor. It is unique up to a scalar, we put fy = 1.
It is clear that f, € HY(E,0¢(Dy)) is an eigenvector under the translation by r, and
more precisely o

T,(fa)(2) = falz +7) = %" fo.
(This relation follows from the properties of the Weierstrass o -function and the formulae
in [La] Chap. 18 §1)
We normalize the choice of these f,. We pick an eigenvector fy_;. Using this eigen-
vector we define an action of the cyclic group < s > on H°(£,0¢(Dy)). We simply
put p(s)(f) = Ts(f)fn-1, keeping track of the polar part of the divisors we see that
p(s)(f) € H°(E,0¢(Dy)). Clearly p(s)N fy—1 = afo = a. If we modify the choice of
fn—1 by a factor B then o — aBY and hence may assume that o« = 1. Then fy_; is
unique up a N—th root of unity.
We get a group H[N] of automorphisms of H?(£,0¢(Dy)), it is the group generated
by p(r),p(s), both of order N. Under the action of p(r) we have a decomposition into
eigenspaces

HO(E,OE(DO)) = @OSaSNfl(Dfa
and p(8)fa = fa—1. We have commutation rule

2pii

[0(s),p(r)] = p(s)p(r)p(s)~ p(r) ™" = e~ 1d.

The group H[N] is called the Heisenberg group.
We get an holomorphic map (see 5.2.7)

Z = (fO(Z)nfl(z)? ce 7fN71(Z)a®N (&= IPN_l((D)a

and this is in fact an embedding of £ into the projective space. This embedding is
canonical, it is determined by the elliptic curve together with its level structure. What
remains is to find are the equations defining £ as a curve in the projective space.

This means we introduce independent variables Xo,X1,--- ,Xny_1, and define the action
of the Heisenberg group such that X; — f; becomes an H[N] isomorphism. For k£ > 0
we look at the linear map from the homogenous polynomials of degree k

(E[Xo,Xl, L) ,XNfl][k} — H0(5705(1€D0))

given by sending X; to f;. It has a kernel I}, and the elements in these kernels yield the
equations defining £. It follows from general finiteness results (See also Volume II) that
finitely many of these equations suffice to describe £. The difficult problem is to find
these equations, but in the cases N = 3,N = 4, the action of the Heisenberg is very
helpful and we can write down these equations explicitly.
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The following is taken from the Bonn Diploma thesis of Christine Heinen ([Hei], in which
she carries out following computations in detail. We begin with the case N = 3. The
space of homogenous polynomials of degree 3 in X(,X7,X5 has dimension 10 and the
dimension of H°(E,0¢(3Dy)) has dimension 9 by Riemann-Roch. Hence we must have
an non trivial polynomial F' of degree 3 that goes to zero. We still have the action
of H[3]. The monomials are eigenvectors under the action of < r >, the 4 monomials
X3, X3, X3 and X¢X; X, have eigenvalue 1, then we have 3 monomials having eigenvalue
¢ = ¢*%" and three monomials having eigenvalue (2. If we look at F and the action of

< r > on it, then it is a sum of three terms which are eigenvectors with eigenvalues
2pii  4pii

l,e™s ,e73 and each of these terms vanishes on £. But a simple inspection of pole
orders shows that the terms with eigenvalue different from 1 must be identically zero,
hence our polynomial only involves monomials with eigenvalue one. We conclude that
our polynomial is of the form

F =aX3+bX} +cX3 —dXoX 1 Xo.

Again looking at pole orders yields that abc # 0 and this implies immediately that F is
unique up to a scalar. But we still have the action of < s > . This cyclic group permutes
the x; and then it is easy to see that we must have a = b = ¢ and hence we can assume
a =0b=c=1 and our equation defining the curve becomes

F=X34+ X} + X3 — dXo X1 Xo.

We compute the coordinates of the origin and the two points r,s. Recall that we still have
not yet pinned down fs, it is only determined up to a third root of unity. By construction
we have

L= Jole) = fole+ Tl + D02, 1(2) = ol + D) (2)

and z — (#(Z),fg(z + %),1). Evaluation at z = 0 yields 0 + (0,f2(%),1) and we have the

equation f2(§)3 +1 = 0. Since we still have option to multiply f» by a third root of unity
we can normalize f>(3) = —1. With this choice of f the origin becomes

0= (0, - 1,1).

Now we really pinned down the embedding.

Remark: We could have chosen this normalization right from the beginning, then we have

the problem to show that the above number o = 1.

The computation of the coordinates of r,s is easy. We have to evaluate (fo(2), f1(z), f2(2))

at z = %,% In the first case we have to observe that f1,fs have a pole, hence we evaluate

(+4.1 f2(2)
f1(2)7 fi(z)

by < r > with eigenvalue p,p? and hence

R _ R

fl('z)z:’l‘ fl(z)z=0’
and this last ratio is —1 as follows from the coordinates of the origin. The second point is
easier we have (fo(s),f1(s),f2(s)) = (1,0,—1). Therefore we see that under the embedding
the two chosen 3-division points go to

) at z = % We know that the fi,f2 are eigenvectors under the translation
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r+— (0,1, — p), s— (1,0, —1).

We have still the parameter d and it is at least plausible that d = d(7) is a holomorphic
function in the variable 7. We want our curve to be smooth (see example 19 ) an easy
calculation shows that this means d® # 27. If on the other hand d with d® # 27 is
given then we may consider object the curve £ defined by the equation X@ + X7 + X35 —
dXoX1X5 = 0, it is smooth. It contains the point O = (0, — 1,1), we choose this as the
origin and hence (£,0) is now an elliptic curve. It also contains e; = (0,1,—p),e2 = (1,0,—
1), they form a system of generators of the 3-division points, we have < eq,eq >3= 1.
Hence we can say that the object

E={E: =X+ X} + X3 —dXoX X5 =0,0=(0,—1,1),e; = (0,1, — p),es = (1,0, — 1)}

is a family of elliptic curves with 3-level structure with < ej,es >3= 1 over the Riemann
surface X (3) := €\ {3,3p,3p%} = P}(C)\ {0,3,3p,3p*}. If we apply theorem 5.2.29 then
the map

O:X(3) —T(3)\Hx {1}

is obviously the inverse of the map 7 — d(7). We see that the restriction of &3 to
['(3)\H x {1} is canonically isomorphic to &€ — X (3).

We have a brief look at the case N = 4. Again we put r = 3,5 = Z. We choose f3(2)
such that f(2s) = —1. Then fo(2) = p*(s)(f3(2)) = f(z +3s)f(z +28)f(z + 5)f(z) = ¢
is a non zero complex number. Our embedding £ < IP? is given by

2= (fo(2),/1(2).f2(2),f3(2) = (. f (2 + 28) f (2 + 8) f(2), (2 + 5) f(2),f (2))

We introduce the indeterminates Xo,X1,X2,X3 as before we choose k = 2 and consider
the linear map
52 = (D[XQ,Xl,XQ,X:;][Q] — Ho(g,Og(QDo))

We observe that the space of homogenous polynomials of degree 2 has dimension 18,
whereas H°(€,0¢(2Dy)) has dimension 16. There must be a kernel Z[2], whose dimension
is > 2. This kernel must be invariant under the action of the Heisenberg group. If we
decompose the action of H[4] on Sz we easily see that it decomposes into 3 non isomorphic
modules of rank 2 and a 4 dimensional module which is given by

W = (C(X5 + cX3) & C(XT + cX3)) P(CXo Xy ® CX1 X3).

A simple inspection of the other eigenspaces shows that we must have Z[2] C W. It can
not be the entire space W hence we see easily that it is spanned by two elements

X2 +cX3 —bX1 X3, cX?+ X2 —bXoXo

these are eigenvectors for p(r) with eigenvalues 1, — 1 respectively. We get the second
expression if we apply p(s) to the first one. Here b is just another non zero complex
number. Hence we have three unknown numbers namely ¢,b and the value f3(s) = a. We
have the three points O,r,s on the curve, they have the coordinates

0 = (0, - a,a,1), r=(0,a,¢%a,1) s = (c,0, — a,a)

and hence they satisfy the above equations. This yields the two relations b+ ac =0, ¢ =
—a? and hence b = a®. Therefore, we see that our curve is given by the two equations
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X2 —a*X2 —a*X,1X3=0, - X} +a*X2 —aXoX2 =0,

coordinates of the origin and the two 4-division points are given above. Again we have
to prove that the parameter a is a holomorphic function 7 +— a(7) it is invariant under
the action I'(4). A straightforward computation shows (example 19 b), (apply the Jacobi
criterion) that a has to avoid the five values 0, £ 2, + 2i. We define X (4) := C\ {£2,+
2i,0} = PY(C) \ {£2, £ 2i,0,00} and we have the curve

£ = {Xg —a’X3 - a*X1X3=0, — X{ +a’X3 —aXoXy = 0,}
o O = (Oa - a,a71)7 r= (07a7C3a71) s = (C;Oa - a’va)

is a family of elliptic curves over X (4) with < r,s >4= 1 and this family is isomorphic to
the restriction of &4 restricted to I'(4)\H x {1}. Especially we get again an isomorphism
O X(4) = D(4)\H.

The following considerations anticipate some of the concepts from volume II, actually
they are complementary to the discussion of moduli spaces in Volume II, 9.6.2. They
provide an example for the general principle that some objects, which belong to complex
analysis, can be considered as objects in the realm of abstract algebra and algebraic
geometry.

We start from a commutative ring A with identity, let S = Spec(A) be the set of prime
ideals endowed with the Zariski topology (See Volume II, Chap. 6). This space S will be
the replacement of our complex space S above. We have the notion of an elliptic curve
over S (see Volume II, 9.6.2). Again we choose an integer N > 3, we assume that 3 € A.
If this ring is an algebraically closed field k£ and if £ is an elliptic curve over k then we
still know that the group of N-division points £[N|(k) = Z/N7Z & 7 /N7Z. Therefore, we
know what an elliptic curves p : &€ — S with N- level structure is: This means that we
have two sections e1,es to p which lie in £[N](S), and which at any point s € S generate
the N-division points in E[N](k(s)), where k(s) is an algebraic closure of the residue field
k(s). Again we have a alternating pairing, which now takes values in the group py of
N-th roots of unity (See Volume II, 7.5.7) and denoted by

This pairing is related to our old pairing by the relation

27i

w(e,f) = e<eI7NE

We can translate the above arguments, which essentially prove theorem 5.2.29, into the
context of algebraic geometry. The essential tool is provided by the semicontinuity the-
orems and reasoning is based on the same strategy that is used in Volume II, 9.6.2.

We can write down the "universal” elliptic curve with 3-level structure. Consider the
ring Z[p] = Z[T)/(T? + T + 1), i. e. we adjoin a third root of unity. Then we adjoin an
indeterminate, let us call it Y, and we invert Y3 — 27, so we get a ring

1
As =7Zp,Y,——].
3= L[pY. 55 o]

Over this ring we write down our curve with 3-level structure

E={E=X3+X}+ X} -YX0X1X5=0,0=(0,—1,1),e1 = (0,1, — p),ez = (1,0, — 1)},
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we have w(e,e2) = p.

If we now have an elliptic curve (p : &€ — Spec(A4),{t1,t2}) with 3-level structure over
any ring A (with identity and % € A), we assume that A contains a primitive third root
of unity, call it p; and assume that w(t1,t2) = p1. We use these sections to write down
the divisors Dy, as above (See also Volume I1,9.6.2 where we use the zero sections to
write down divisors). We apply the semicontinuity theorems and see that Dy, — Dy are
principal, i.e. divisors of a function f,. (Here is a minor technical point, the semicontinuity
theorems only yield that they locally trivial in the base. This means that for any point
x € S we find an open neighborhood V,; such that the restriction of Dy, — Dy to p’l(V:,,.)
is the divisor of a function féT) For a = 2 we normalized fQ(m)(tl) = —1, and hence these

féx) fit together on the different open sets). We can proceed as in the complex analytic
case and find

Theorem 5.2.30. For any commutative ring with identity and % € A and any elliptic
curve (p : € — Spec(A),{t1,t2}) with 3-level structure we find a ring homomorphism
O : A3 — A such that p — w(t1,t2) and with ®(Y) = d we have

(p: & — Spec(A),{t1,t2}) =
{E=X3+ X} + X5 —dXoX1X2 =0,0=(0,— 1,1),t; = (0,1, — py),t2 = (1,0, — 1)}

Basically the same reasoning provides an explicit universal curve with 4-level structure.
We define Z[i] = Z[T]/(T? + 1), we adjoin the indeterminate Y and define the ring
1 1

A4 = Z[Z,ﬁ,}im}.

Over this ring we write a curve with 4-level structure

_ (X Y2X2 YV3X1X5 =0, — X2+ V2X2 - Y X0 X, = 0.,
=(0,-Y,Y,1), r=(0Y,—iV,1) s=(c0,-VY) T

Then we get again

Theorem 5.2.31. For any commutative ring with identity and % € A and any elliptic
curve (p : € — Spec(A),{t1,t2}) with 4-level structure we find a ring homomorphism
O : Ay — A such that i — w(t1,t2) and with ®(Y) = a we have

£ .= { 2X2 — a3X1X3 =0, X12 + a2X§ —aXgXo = 0,}.
(Oa - a7a71)a r= (07a7 - la’al) §= (C7Oa - ava)

We can consider the problem of finding a universal elliptic curve for any integer N > 3.
We consider commutative rings R with identity and a homomorphism Z[%] — R.
We consider elliptic curves £ over R which come with a N-level structure. If two such
elliptic curves with N-level structure are isomorphic then the isomorphism is unique and
hence these objects form a set My (R). We can ask the question whether this functor is
representable by a ring or better by an affine scheme (see 1.3.4) The above arguments
show that for N = 3,N = 4 the functor R — My(R) is representable by an affine scheme
of finite type. From here it it is not too difficult to show that this functor is representable
for all values of N > 3 by a scheme of finite type over Z[%] The representing affine
scheme is called the moduli scheme (or moduli space), in our case we also denote it by
My.



5.2 Line Bundles on Complex Tori 251

We come back to the beginning of this excursion and recall that we actually wanted to
understand the case N = 1, i.e. elliptic curves with no level structure and to construct
a moduli space M;. We have studied this problem also in Volume IT 9.6.2. where we
consider elliptic curves endowed with a nowhere vanishing differential.

We have an obvious action of the group GL2(Z/NZ) on the level structures of an elliptic
curve with N-level structure, hence we get an action of this group on M. So we get an ac-
tion of this group on My, and we ask whether we can form the quotient My /GL2(Z/NZ)
and this quotient can be our moduli space Mj. It it explained in Volume II, 9.6.2 that
this can not work.

The way out of this dilemma is to define more complicated objects, these will be the

stacks. The stack Ml(g)/ Spec(Z[%] will simply be the object M3 together with action of

GL2(7Z/37Z), we just do not form the quotient. Accordingly the stack M1(4)/ Spec(Z[2] is

My together with action of GL2(Z/47Z). We can also construct M1(12)/ Spec(Z[§]. We get
a diagram

M® M2 M® (5.109)

Spec(Z|[3]) < Spec(Z[g]) > Spec(Z[1])
and the stack M7/ Spec(Z) is - in a certain sense - this diagram of schemes together with
the group actions.

The end of the excursion

Here is the end of the excursion. We return to the discussion before theorem 5.2.28. We
had chosen a basis e1,...eg,fq,...,f1 for I'. If we have selected an element I, we write

fv= Z (xl/,,u + yu,,ul)e,ua (5.110)
we put 7, = Ty + Yoo 7.
The element I gives the decomposition I'¢ = F}EZOEB F%’l. We attached the space F%’l € Gr,

to I, and we want to write ”coordinates” for this point. In view of our considerations
above we choose X = G¢. We observe that

o =Ge Y. (5.111)
The map V — '/ F%l is an isomorphism by construction and hence

fo=Y mu®e, €T (5.112)

We mentioned already that F%l is maximal isotropic if and only if the matrix Z = (7,,,,)
is symmetric and our Hermitian form is positive definite if and only if the real part of
this matrix is positive definite. Therefore the 7, ,, are the holomorphic coordinates for
the possible choices of I.
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Hence we get a new description of I, it can be identified to the points in the Siegel
half space

H, = {Z|Z =X +iY}

where Z is symmetric and Y is positive definite.

5.2.6 Riemann-Theta Functions

We counsider the cocycle v — Choi(z,y) and I want to explain that this cocycle depends
holomorphically on I. To be more precise we can fix an element v € I' and consider this
cocycle as a function in the variables z and I. Then we want to show that this cocycle is
holomorphic in both variables.

We have the two forms
H F]R X FR — C
h:Tr xI'g — C,

where H is Hermitian with respect to the element I and where h is linear in both variables
with respect to I. Now we extend these forms to I'c = I'r ® C bilinearly, i.e. we have

He(y® 2,0 @ w) = zw H(%,9) (5.113)
he (v ® 2,0 @ w) = zw h(v,0)

for v, € I and z,w € C.
We observe that the inclusion I'g — I'¢ induces an isomorphism

g — Do /T8,
and this map is C-linear if we give 'y the complex structure where multiplication by
is given by I.
We can decompose I'c = G¢ @ F%l, and hence we can write any element v € I'c as a
sum
¥ =17 +%,1 =pc() +Ppo,1(7) (5.114)

Now we consider the expression He(z,y) — he(2,y), and we observe that this depends
only on v mod Gg in the second variable in (5.102). On the other hand we see: If z € I'¢
is in F%l, then

This is clear because z = § + Id ® 7 with some 6§ € I'r and
Heo(5+ 15 ®ipy) = H(S) +i H(I6) = H(5) — H(6:7) =0, (5.116)

and the same holds for h¢. Hence we conclude that He (z,7) — he(z,7y) defines a bilinear
form

Fc/F%l X qu/G@ — C.

We can express this form in terms of the original alternating form:
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Lemma 5.2.32. We write as above v = g + 70,1, then I claim that

HC(Zaf)/) - h»@(Z,'Y) = 2i<Z770,1>®
where (, )¢ is of course the bilinear extension of { , ) to T'c.

Proof: To see that this is the case it suffices to show that
He(29,1) = he(27,1) = 2i(z70,1)c-
In this case 79,1 = 0 + 1d ® i and because h¢ is bilinear with respect to I, we get
ho(z,0+16®1i) =0
as above. Hence we have to show that

He(z,70,1) = 2i(z,%0.1) C-
We may assume that z € I'g and again we write v = + [0 ® i. Then
He(2,0+ 10 ®i) = H(2,0)+i-H(2,16) =i H(2,16) + H(z,9).
We invoke our formulae for H and get

i((2,0) +1i(2,10)) — (2,I8) +i(2,0) = 2i(z,0) — 2(z,I9)
=2((z,0 ®i)c — (2,10))
=2i((2,0) + (2,16 ®i)¢) = 2i(z,70.1)C-

0
This function (z,I) — 2i(z,70,1)c is now clearly holomorphic in the variables z,I. We get
for our 1-cocycle

Chol(2,7) + 2mi(n(7) + (7)) = 2mi(z,y0,1)c + mi(y,70,1)c + 2mi(n(y) + ¢(7)). (5.117)

I want to give an indication how we can describe the space of sections in the d’th power
in the bundle defined by this cocycle.

Recall that we have a basis e1,...,eq4,fg,...,f1 as in the beginning of section 5.2.5 and
that G is spanned by the eq,...,eq. Let Chol(2,7) be the cocycle obtained from these
data. Our basis eq,...,e, of G is also a C-basis of V. We choose a positive integer d. We

look for solutions of

flz+7) = f(z)eUCralzm+2mile(n)+n(n)) (5.118)

these are the sections of the bundle L’(Chol,n,go)@)d. The periodicity of fwith respect to

G means that f(z1+n1,...,2g+ng) = f(21,...,2¢) for all ny, ... ,ng € Z9. We introduce
the new variables

2wz _ 2wty
U, =€ v, Qg =€ Vit
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We have the symmetry relation ¢, , = qu,,. We define h(ui,...,uqy) = f(zl, CiZg)-

In these new variables we have a different description of our complex torus. The holo-
morphic map

IT: (21,...,2g) — (ut,...,ug)
yields an isomorphism
II:V/G= (C*)Y
and by definition A o IT = f. Then we get a biholomorphic map
II: V/T =5 (©%)7/Q, (5.119)
where @ is the free abelian subgroup generated by the arrays {(gu,1, ... ,qv.g) }r=1,....g- We
rewrite the transformation rule in terms of these new variables. We can write an element

v = Z§:1 ne; + EZ:1 1, f. If we pass to the variables u, then the first summand does
not contribute and can be ignored. Then

Z4vy = (2;1 —|—n’1—I—an,ﬂ,l,...,zg+nlg+znuﬂ/,g> .
v v

Such a translation by ~ has the following effect on the new variables

. Ny
Ly:u, — uu'qu.

v

We obtain
h (Ul H qy, ..U H q§g> = h(uq,... ’ug)ed(ﬂ'Chul(Z,'Y)+27Tiip("/))' (5.120)

We compute the exponential factors on the right hand side. The relation (5.112) says
that

70,1 = Znu(fu - ZTM,V ®ey).
If z=3 zue, = > (x, +yul)e,, then it follows that

H(z>7) - h(ZfY) =2 Z 2y

and

H(y,7) = h(v,7) = 2i{v,p0,1(7)) (5.121)
=2 <Znufu, Znu (f“ — ZTW ® eu>>

= -0 E NNy Typ-
v,
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We conclude that for z =" z,e, and v =Y n,fu

Chot(zyy) = m(H(2,7) — h(2,7)) + F(H(vy) — h(7,7)) (5.122)

= ur E 2Ny, — T E NNy Ty,
v,p

Then our recursion formula for sections in £(dCho1,dn,dp) becomes

g
h (Ul H a0, Uy H q, ) = h(uy,... H udm ( H ”Ad”~)62ﬂd(v(v)+n(v))
v , Ak=1
(5.123)
Now we expand the function h into a Laurent series
h(ug, . g) = >ty mg ™)' (5.124)

Our transformation rule for an element v =Y n, f, yields the following recursion:

Amy,...;mg Hq;l;,m“ = Qmy—dni,...,mg—dn, 1_[(]7n>\dn"i 277id(80(7)+77("/)).
(5.125)

From this we conclude that the coefficients a,, ... ., for 0 < v; < d—1 determine the rest
of the coeflicients. On the other hand we can choose values for the coefficients aq,, - . . ,0a
arbitrarily for the indices 0 < o; < d — 1 and then we define the other coefficients by

g9

Aoy —dny,...,ag—dng = Qaq,...,aq Hqnuoc,d»dnunm)€27'rid(ga('y)+n('y)). (5126)

Now we make the fundamental observation that the positive definiteness of our matrix
Y above implies an estimate

> TL2 ...Tl2
P I (5.127)

with some constant ¢ > 0 depending on Y = (y,,,.), where y,, ,, = Im (7, ;). To see this we
rewrite qﬁﬁf‘“*d”””*‘ e2mid(¢(M)+1(") in terms of the Tu,u- We compute the absolute value
of this factor. Observe that the factor

H |qdn,,nn’ — o Y s ) (5.128)

This gives an estimate of the form above for this term because Y is positive definite. The
other contributions are of the form e®("1:-:"s) where L is linear.

This implies that the Laurent series will be convergent for all ug,...,u; € C* and we
conclude:

Proposition 5.2.33. We can write down explicitly all sections in a line bundle of the
form L(Cho1,n,0)%% on A = VT as infinite Laurent series. These series converge for all
(u1,u2, ... uy) € (C*)9 and are determined by its coefficients a,, ..., for 0 <v; <d—1.
These coefficients can be given arbitrarily, i.e. the dimension of the space of sections in
the line bundle L(Cyo1,n,0)%? is d9.
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These sections are called Riemann-Theta functions.

We only considered line bundles, which are powers of a a line bundle attached to a
principal polarization. Not all abelian varieties (See 5.2.21) admit a principal polarization.
Nevertheless the same considerations apply to arbitrary abelian varieties. With a little
bit more effort in linear algebra it is not difficult to show:

Theorem 5.2.34. Let A =V/T be a complex torus. If e € NS(A) is an alternating form
on T for which the corresponding Hermitian form H. is positive definite, then

dim H (V/T. Ly, ,(nm.,¢)) = Pf(< , >).

We want to return to our Jacobian J. There we have the cup product pairing on
HY(S,Z) ~ T. If Hy is the corresponding Hermitian form then we can form the line
bundle P = Ly, (eo,n,¢) with an arbitrary ¢ and suitable ng, . Our theorem yields

dime HY(J,P) = 1. (5.129)
If we take powers of this line bundle then det(r <, >) = r?¢ and it follows that

dimg H(J,P®") = 1?9, (5.130)

5.2.7 Projective embeddings of abelian varieties

This can be used to construct an embedding into the projective space:

Theorem 5.2.35 (Lefschetz). If we take r = 3 then the morphism

©:J — P (H(J,P?))
x+— H, = {s € H'(J,P¥?)|s(x) = 0}

is everywhere defined and yields an embedding of J into the projective space.

I want to comment on this theorem without proving it, its proof will be discussed in the
second volume in the section on Jacobians. I give an outline of the steps which have to
be carried out.

1. At first we need to know that for any x € J we can find a section s € HY(.J,P®?)
which does not vanish at this point.

2. Secondly we have to prove that for any pair of points x # y we can find a section
which vanishes at  but not at y.

3. Finally we need to know the following: If we pick a point x and a section sy which
does not vanish at x then the ratios s/s¢ are function on J which are defined in
a suitable neighborhood of x. Then we have to show that we can find sections
$1,...,8¢ which vanish at x such that the differentials d(s1/so),....d(sy/s0) gen-
erate the dual tangent space. This implies that the local ring O, is the ring of
convergent power series in s1/5o, . . .,84/50.
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( It is in fact not too difficult to prove these assertions with our present knowledge. In
the definition of P we have the freedom of choosing the element ¢, let us take ¢ = 0. We
consider the set of zeroes of a non trivial section s € H°(J,P). Since two such sections
are proportional this is well defined, locally it is described by one equation, hence it is
a divisor ©p. It is the so called ©-divisor . We know that choosing another value of ¢
amounts to translating P by an element x € J. If we know choose =, —z € J or z1,x2,x3
such that 1 + 22 + x5 = 0, then we have isomorphisms

T (P)RT_o(P) = PP T, (P) ® Ty (P) @ Ty (P) = PP3.

The factors on the left hand side have a one dimensional space of sections, which vanish
on a translate of ©p. This allows us to construct sections in HY(J,P®3) for which we
know the set of zeroes. This is good enough to prove 1) and 2), the point 3) is a little bit
more delicate.)

If all this is shown then it is clear that

Lemma 5.2.36. The image of J under the map © is a complex analytic submanifold in
Y C P (H(J,P®?)) and

0:J5Y
is in fact an analytic isomorphism.

Now we use the classical Theorem of Chow which says that a smooth and closed sub-
manifold of P*(C) is in fact a smooth projective algebraic variety (see [Ch],[Sel] and
section 5.1.7.) Hence we can define the image ©(J) =Y as the set of common zeroes of
a finite number of homogeneous polynomials {Fy,Fs, ..., F;} in n + 1 variables. Further-
more for any point z € Y we take a linear form L which does not vanish at = and then
the functions F; /L4 Fi generate the ideal Zy., of germs of holomorphic functions which
vanish on Y in a neighborhood of . Then the pair (J,P®3) = (Y,0Op~(1)|Y) becomes
an object in algebraic geometry. To make this precise we have to say a few words about
the comparison between algebraic and analytic geometry.

As in the case of Riemann surfaces (see section 5.1.8) we define a new topology on Y,
namely the Zariski topology. If we have a homogeneous polynomial f(zo,...,z,) then we
can look at the set V(f) C P™(C) where it vanishes and the set D(f) C P™(C) where
it does not vanish. These sets D(f) form a basis for the Zariski topology on IP"(C), i.e.
the Zariski open subsets in P (C) are unions of sets of the form D(f). The Zariski open
subsets in Y are the intersections of Zariski open subsets in P™(C) with Y. As in the
case of Riemann surfaces we know that the identity map Y., — Yz, is continuous.

If now U C P™*(C) is a Zariski open subset we say that a holomorphic function f : U — C
is meromorphic if for any point y € U we can find homogeneous polynomials g,h of the
same degree, such that h(y) # 0 and such that f = g/h on the open set U N D(h). We
put as before

Opiiey(U) ={f : U — C|f is meromorphic} . (5.131)

We can do the same thing with Y and define the sheaf Oy°". As in the case of Riemann
surfaces the identity map
(Yan70Y> — (YZar>O$6r>

is a morphism between locally ringed spaces.
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A meromorphic function on Y is an element in some OP*(U) where U # () is Zariski open
in Y. Now Y was special, namely it was the image of J under ©. Hence it is connected as
a topological space and from this it follows easily that the intersection of two non empty
Zariski open sets is again non empty. This allows us to define the field C(Y) = C(J) of
meromorphic functions on J. We state without proof:

Theorem 5.2.37. The field of meromorphic functions on J is a finitely generated ex-
tension of C of trancendence degree d.

As in the case of Riemann surfaces we can define coherent sheaves of Oy-modules (resp.
Op°-modules) on Y, (resp. Yzar). In both cases this are sheaves of modules under the
structure sheaf which locally are finitely generated.

It is the content of Serre’s paper “Géométrie algébrique et géométrie analytique” (in
short GAGA) that these two categories are equivalent. In simple words: To any coher-
ent Opn an-sheaf Fp, on P"(C) we can find a unique subsheaf F of Opn-modules (i.e.
F(U) is an Opn-module for any U C P™, Zariski open) such that F** = F ®opn Opn an-

A first consequence of the GAGA-principle is that the sheaf Ty ,, which defines the
analytic subspace Y is the extension of a sheaf of ideals Zy C Opn, and this is of course
the statement of Chow’s theorem.

The sheaf Ty 4, is a coherent sheaf (see section 5.1.8) and the clue to the GAGA-principle
is the following theorem.

Theorem 5.2.38. For any coherent sheaf F*"* on P™(C) we can find an integer r > 0
such that H1(P™(C),F* @ Opn(cy(r)) = 0 for ¢ > 0 and the sections H(P"(T),
F @ Opn(qy(r)) generate the stalks F3" at all points x.

Once we have this result, then the general results from GAGA can be proved by a strategy
which generalizes the arguments in section 5.1.8.

If we now consider line bundles on J we have the freedom to look at them as complex
analytic bundles or as line bundles on the projective varieties (J,0y), i.e. as bundles with
respect to the Zariski topology. Hence we will not make any distinction between these
two kinds of line bundles, we identify

Picya (.J) = Pic(J) = Pic(J™) (5.132)
H%ar(J>Oj) = Hl(‘LOj',an)
where actually H'(J,0% ) was exactly what we called H'(.J,0%) before.

J,an
Mutatis mutandis these considerations apply to arbitrary abelian varieties, i.e. for com-

plex tori A = V/I', for which we can find an e € NS(A) with H, positive definite.

I anticipate a few concepts that will be explained in more detail in the second volume.
We can define regular maps between projective varieties, this are of course holomorphic
maps, which preserve the subsheaves of meromorphic functions. Actually the GAGA-
principle tells us that this is automatically true for holomorphic maps. We can define
the product X x Y of two projective varieties. This allows us to define abelian varieties
as projective algebraic varieties X which are connected and which have a product map
m: X x X — X, which puts a group structure on X. Forming the inverse must also
be a regular map, this is probably automatically true, once we defined m. Hence we see
that the notion of an abelian variety is a completely algebraic concept.
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5.2.8 Degeneration of Abelian Varieties

At this point we achieved also something else. We can consider the 7, , as complex ana-
lytic variables and our considerations show that we can consider our abelian varieties as a
holomorphic family of abelian varieties. We have the new description V/T' = (€*)9/Q.
(See 5.119.)Of course we have the constraint that the imaginary part Im (7,,,) must be
positive definite. This gives the constraint for the free abelian subgroup @: The (sym-
metric) matrix

(—loglquul)vp

has to be positive definite. This is an open subset S, in the complex variety of symmetric
(9,9) matrices with coefficients in C*. For any @ € S, we constructed a projective
embedding of C*/@Q by Theta functions. Of course we may consider the graded ring of
Theta functions

@ e Q).

r=0
It can be shown that this ring is finitely generated, it is generated by the sections in
HO(C*/Q,P®™) with r = 0,1,2,3. Then we can consider a ”free” graded ring

(D[Xl,Yh .. .ng,Zl, e ,Zgg]

where X sits in degree one, the Y; sit in degree 2 and the Z; sit in degree 3. We can
construct a surjective homomorphism from this graded ring

CIX1,Y,. . Y1, Yao, 21, Zse] — @D HO(CX/Q,PP")
r=0

by sending the X1,Y,,Z, to a basis of sections in H*(C*/Q,P®") for r = 1,2,3 respec-
tively. The kernel of this homomorphism consists the relations satisfied by linear com-
binations of products of Theta functions. These relations can be explicitely given (See
[B-L]], Chap. 7 ). Moreover the coefficients of these linear combinations depend on ) and
we can write the relations in such a way that these coefficients depend holomorphically
on Q.

Now it is an interesting question to ask: What happens if some of the g, , tend to zero?
We say that the abelian variety degenerates and it is of great importance to understand
this degeneration process. The point is that this degeneration can be given an arithmetic
meaning. It is also important if we want to construct a compactification of the moduli
space (see [Fa-Ch]). We discuss this process in detail in the case of genus one in the
following section.

The Case of Genus 1

I want to discuss these constructions in the special case of curves of genus one. We can
assume that the Jacobian is of the form

J=C/{1,7}
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where 7 € C, Im (7) > 0 and where {1,7} =T is the Z-lattice generated by the elements
1,7. Any alternating pairing is determined by its value on the basis elements. We have a
canonical generator defined by

(1,7) = —1.

All other alternating pairings are of the form d( , ) with some integer d. In this case it
is clear that ( , ) is the imaginary part of a hermitian form H on C. If y = Im (7), then
this form is given by

1
H(Zl,ZQ) = —21Z29. (5133)
Y
It is positive definite, this explains the minus sign. We consider maps 7

1
n:T/2I — §Z /7
which satisfies the compatibility relation

%hwﬁ +n( +72) —n(n) —n(y2) =0 mod Z (5.134)

for all 71,72 € I'. We say that 7 is adapted to the alternating form < , > . Now we
consider line bundles £(d( , ),dn,0) on C/T" which are defined by the following rule: For
an open subset U C €/I" and its inverse image 7~ (U) =V C C we have

L(d(,),dn,0)(U) = {f : V. — €| f holomorphic, f(z +~) = ed(fzﬁ'%ya'%i"('y))f(z)} .
If d is even the n term drops out.

Let us look at the case d = 1 first. In this case we must have a non trivial n. One

possibility is to take
1
(1) =n(r) =nl+7) =3,
and there are three other choices, namely, taking the value % on exactly one of the ele-
ments {1,7,1 + 7} and zero on the two others.

I want to stick to the first choice, it is in a sense the most canonical. We investigate the
line bundle £(< , > ,,0). We have to look at functions which satisfy

flz+7) = €§ZV+2%VW+2M7I(W)JL’(Z). (5.135)

The factor in front has to be interpreted as a 1-cocycle I' = (Og (C))*. We modify this
cocycle. We choose the submodule G C I' to be the module generated by 1. Now 7 is
not trivial on the vector 1. This forces us to make some minor modifications. For a local
section f of our line bundle we put

F2)=e 57 f(2) (5.136)
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and then we find
flz+1)=—f(2). (5.137)

Here we have to take into account that n(1) = % Now a simple computation shows

flz+n7) = efﬁ(ZjL"T)Zf(z—i—nT) (5.138)
= 67%(Z+n7)26%Zn?+%n27?+ﬂinf(z)

_ e—27rinz€—7rin27—+7rinf~(z).

We introduce variables u = e™?* and p = ™. Then our first relation above says that

our function f has a Laurent expansion

fuy=" > apu™ (5.139)

m=1 mod 2

The second relation gives a recursion for the coefficients a,, which says

Flup™) = (—=1)"u=2" - p=™" f(u). (5.140)

This means for the expansion
"™ = (— 1) (L ™), (5.141)

and hence for any choice n,m

Amaan = (—1)"p™ " g, (5.142)
Since the coefficients with an even index are vanishing, we see that the coefficient a;
determines all the others. We put it equal to one and then we get

Flu) = D" (=1ym . pramiyleam, (5.143)
meZ

Since we have Im (7) > 0 we have |p| < 1 and hence our power series converges for all
u € C*. This function is one of the Jacobi Theta functions. We change the notation
and write

Joo(up) = D (~1)mpmtmiyltm, (5.144)
meZ

We have seen that in modern language this Theta function is a section in a line bundle
on the Riemann surface J = C/{1,7}.

We can ask ourselves whether we have a different description of this line bundle. Clearly
it is of degree one. Hence it should be of the form O;(P) with some point P € C/{1,7}.
The bundle O;(P) has a non trivial section which vanishes at P. Hence we see that our
Jo,0(u,p) must vanish for some value of u. A simple computation yields



262 5 Compact Riemann surfaces and Abelian Varieties

Jo,0(1,p) = 0, (5.145)
and hence we conclude

L((,).0,) = 0,4(0) (5.146)

where O € C/{1,7} is the zero element.

Now it becomes clear what the other choices of i will give. In section 5.2.1 I explained
that different choices of n can be compensated by changing ¢. In this case we can consider
¢ :I'— € such that ¢(I') C 3Z, of course what matters is the resulting homomorphism
(see Lemma 5.2.4)

p:T/2l' — %Z/Z.
We have three non zero such homomorphisms and

E(( ) >>0777I) = ‘C(< > >,<P,77)

if ' = @p+n. We could carry out the same calculations and get three more Theta functions

Joa(up) = Y (~1)"p™ u?™" (5.147)
meZ
2
19170(U7p) _ Z pm +mu2m+1
meEZ
V1,1 (u,p) = Z Py
MEZ

and they correspond to the linear forms with @; ;(1) = & mod 7Z, @, ;(7) = I mod Z.
These give the four Jacobi Theta functions. The kernel of ¢; ; defines a 2-torsion point
P, j € J, and we must have that 9; ; is a non zero section in H° (J,L({ , )i ;,n) and

L5 )pigm) = Os(Pij)- (5.148)

In the section 5.2.6 we learned how to write down sections in H® (J,£(dCho1,dn,0)). We
know from the Riemann-Roch Theorem that this space of sections has dimension d. We
get the same result from the recursion formulae, we always can choose d coefficients and
they define all the others. For sections in H°(J,L(d{ , ),dn,0)) the recursion is

Fl-u) = (~1)f(w) (5.149)
Flup™) = (~1yimu=2mip=in’ fy)

If we expand f into a Laurent series in u the coefficients with even (resp. odd) indices
vanish if d is odd (resp. even).
Remark 7. The reader should notice that the recursion defines a line bundle on C*/ <p2>

and not on C*/(p) . The ratio of two sections f/§ satisfies f/j(u) = f/§(—u) and is there-
fore a meromorphic function in u? which is invariant under multiplication by p?. Hence
it is a meromorphic function on C*/ <p2> . This has to be so because we have the isomor-

phism €/(1,7) = €*/(p*) which is given by z — ™% = 2.
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If d = 2 then

01 =0 =...— (3 prem)ud 4 (30 g2t 4

meZ me7Z

is a section and we find a second section where the coefficient ag = 1 and as = 0, namely

Oy =3 p*mutm (5.150)

meZ

(We will sometimes suppress the variables w,p in our notation).We consider d = 3, we
have already two sections, namely, 3 and 665, and we can write a third section

O3 = > (—1)mpPmimyltom, (5.151)
meZ

We are now in exactly the same situation as in the discussion of the Weierstral normal
form (5.1.7). We have the sections

0, € H°(J,05(0)) CcH(J,05(30))
0 € H(J,05(20)) CH°(J,0,(30)

and 03 € H°(J,0;(30)).
We must have linear relations among the monomials 63, 036201, 0303, 03, 0302, 0207, 65.
Now we take into account that our curve depends on a parameter 7 and hence on ™7 = p,
the coefficients of the relations must be holomorphic functions in the variable p. We look
at specific sections in our line bundle for d = 2. We have the two division points %, 5
and HTT in ©/{1,7}, we call them P o, Pp1 and P;; respectively. Then Py, = O. For
z € C we put u(z) = e™*. The ratios

192 u\z),
€)= Eup(2p) = M

2 (ul(z)p) (5.152)

are meromorphic functions on C/{1,7} and Div(¢,,,) = 2P, , — 20.

We choose one of these points, say P9, we put « = &0 and we consider the function
r(z,p) = z(z,p) (x(z,p) — 2(Po1,p)) - (x(2,p) — 2(P11,p)) - (5.153)

We have Div (z — z(Pp1)) = Po1 + @ — 20, but since this divisor is principal we have

Q = Py,1. The same argument holds for the third factor. Therefore this function has
divisor 2Py 1 + 2P0 + 2P;,;1 — 60. The function

_ 791,0(11/(2),]9)?90,1 (u(z)7p)191»1 (U(Z)J?)
93.0(u(2).p)

has the divisor Py 1 + P1,0 + P1,1 — 30 and hence

y=y(2) (5.154)

Div(y?) = 2Py 1 + 2Py o + 2Py 1 — 60. (5.155)



264 5 Compact Riemann surfaces and Abelian Varieties

We get Div(y?) = Div(r(z,p)) and conclude that
v=a-z(x—2(P1)) (x—2(Pr11)). (5.156)

T

Our division points are P o = %, Py = % and Pp1 = 3. A simple calculation shows
2

. 9
that 91 0(P1,0) = 0. Since x = 5> and we have
’ 0,0

191 0 % Z pm +77L 7\'7"' (27n+1) _ Z p T (5.157)
me7z meZ
meZ meZ
Dro(u(Fh)p) = D pmrmenE A = (Z prmen ’”) red
me7. me7Z
— (Z(—l)umZ)Hm) e eT = <Z(—1)m+1pm2> e e
me7, meZ

The same calculation for J¢ o yields

Yo,0(w(F1,0).p) (Z p" +m> il (5.158)

meZ
2 TET
Do,0(u(Po,1),p) = (Z (=1)™p™ +2m> e
mez
Po,0(u(Pr1),p) = (Z p" +2m) el
meZ

We get

(Senr™)’ (S~

2 _
y =a-z|xz— (Zmez(—l)mﬂpm2)2 x— s pm2)2 . (5.159)
We can compute the factor a. We look at the leading term in the expansion for
_ (191,0>2 and y = V1,001,101
Yo,0 9 0
at z=0,1ie. u=11If
Yo.0(u(z),p) = Bz ~+higher order terms (5.160)

then
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Y1.0(1,p)?
T = % +higher order terms (5.161)
Y1 0(1,p)%1 1(1,p)0%0.1(1
Y= 10(1,p) 1’53( ?:p) 0.1(L,p) +higher order terms.
z

Hence we get

_ 91,1(1,p)? - 9o,1(1,p)?
Y1,0(1,p)*

=& (1—12p* + 66p> —232p" +.. ). (5.162)
This power series is a square, we check easily that
a= (21 —6p*+15p* +...)*

and we substitute y by W and get

Ty o (Z’”ezpmz) ~ x—(zm’EZ(l)mHZmz) . (5.163)
(Zmez(_l)mﬂpmz) (Zmezpmz)

Now it follows from a simple calculation that

(Enear™) | (Smeamtom)’

=24 64p” + 512p* +2816p° + ... = A(q)
21\ 2 21 2
(ZmEZ(il)mJ’_lpm ) (ZmGZ pm >

(5.164)
is a power series in p?, we get a family of curves which depend on a parameter p
y? = (2® — (2+64p° +512p* + 2816p° +...) z + 1). (5.165)

This is now an equation for an elliptic curve. The distinguished point is the point at
infinity. The projective curve is given by

gp v =1x (x2 — (2 + 64p* + 512p* + .. ) v+ v2) . (5.166)

We make this a little bit more explicit. We write the expansions

Yo,0(u.p) = (u — u_l) (1 — (u_2 +u?+ 1) P2+ (u_4 +ut+u w4+ 1) P8 — .. )
(5.167)

and

Do(up) = (ut+u)(T+u? =1+ p°+ (v +u' —uw?—u®+1)p° +...).
(5.168)

The other two series are of the form (e = 0,1)
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1+Z m —m+u)

m=1

If we multiply them together we get only even powers of u and p.

We see that in the expressions for ¥ 1(u,p), ¥1,1(u.p) and in the second factors of
Yo,0(u,p), ¥1,0(u,p) we only have even powers of p and the coefficients of the powers
of p and are always polynomials in u2, u=2 whose degree is the summation index and
whose coefficients are +£1. (This is good enough for convergence for any choice u € C*

and p with |p| < 1.) We introduce new functions

_(u— u™1)3

y1(u,p) TR y(u,p). (5.169)
(u—u1)2

z1(u,p) mx(uap) (5.170)

and for them get the expressions

_(w=um)3 9 0(up)) o (up)dia(wp) 93 o(Lp)
yi(wp) =g -1 o3 Po1(Lp)di.(1
(’U,+’LL ) 070(u:p) 0,1( 7p) 171( 7p)
=1+ (=4 +u') +u? +u® +6)p?
+ (4w u®) + 3wt +ut) + 24w + u?) + 38)p" +

=1+ i Yy (u?u2

m=1

(5.171)

and

(u—u=1)2 93 o(u,p)
(u+u™)2 95 o (u,p)
—1+4( fu ) p*+

(3 (7 4 %) + 4 () 49 (u 4 u?) 4 8) pt 4

z1(u,p) = (5.172)

S04 Y Xl

where Y, (u?,u~2), X, (u?,u~2) are polynomials in u?, u~2, invariant under u — u~! with

integer coefficients. We have an estimate for the degree of the Y, the absolute values of
the coefficients of the Y;,: They can be estimated by C+/m for some constant C.

We introduce new variables ¢ =p?, w=wu?, recall that this now means q = €™ ,w = €272,
We rewrite all the occuring expressions in the variables ¢ and w, i.e.
Ag) = A(p), Ty (w,q) = 21 (u,p), y1(w,q) = y1(up),

)N(m(wﬂu_l) = X, (u?u™?), Y, (w7w_1) = Y (u?u=?),

We rewrite our original functions x(u,p), y(u,p) in the new variables and get
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~ wrw 42 wHw 2 o
x(w7Q):mI1(qu)—w+w _21+ZX w,w” )
) = A(w+1) 4(w—|—1) .

m=1

Now we know that Z(w,q),y(w,q) satisfy the equation
J(w,q)? = Z(w,q) (T(w,q)* — (24 64p* + 512p* + 2816p° +...) Z(w,q) + 1)
and we have proved

Proposition 5.2.39. For any point q in the punctured disc we get an elliptic curve gq,
the map

C* — &,
w —> (T(w,q)71’~ L ) if w is near 1
Y(w,q) " "y(w,q)

provides an isomorphism of complex analytic groups
C*/<qg>38,

I write this map (and other similar ones ) in a more suggestive form

w i (F(w,q) §(w,),1) = <% . @) '

But we may also consider the product of the punctured disc D with the projective plane
P?(C). The homogeneous coordinates of the plane are (x,y,v). Then we have constructed
a family of elliptic curves — namely

£ 20 =3 — M) + 702 “—— D x P%(C) (5.173)

T b

D.

Here éi is a smooth complex variety and the fibre over the point ¢ € D is our elliptic
curve &;. Now we discuss the degeneration of the curve. What happens if ¢ — 07
Of course we can extend our diagram to

g: 720 = B — Nq)T%v + 702 C— D x P%(C) (5.174)

xipl

D.

We define £ by the same equation. We can put ¢ = 0, then we get the curve
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Eo PP =30 = 20%0 + 3? = (T —v)?, (5.175)

this is not an elliptic curve, because it has a singularity. We see that we have a morphism
from the projective line P*(C) to &:

. 2,02 _ t 1
fot— (P —1),1) = <t2 — b 1~ 1>> : (5.176)
Proposition 5.2.40. The morphism

is biholomorphic. The points t = +1 both map to (1,0,1).

The point (1,0,1) is a so called double point on &.. In a small neighborhood of (1,0,1)
the curve looks like

y? = (z —1)% and thisis (y — (z — 1))(y + (z — 1))

and this are two crossing straight lines.

Therefore we can say that for ¢ — 0 the elliptic curve degenerates into a rational curve
with an ordinary double point. The curve & is called the special fiber. It looks as if it
has genus zero, but a closer look shows that the singular point raises the genus back to
1. We consider smaller discs D(r) = {q | |g| < r}. A germ of a holomorphic section in
£ is a holomorphic map s : D(rr) — & defined on some D(r) such that s(q) € E for all
q € D7 ie. ppos = Id. As usual two germs are considered as equal if they are equal
on their common domain of definition. We say that such a section is meromorphic if it
extends to a holomorphic section from D to P?(C). These meromorphic sections define
a group & (DO), where Dy is a notation for the “germ of the punctured disc”. It is clear
how we get such germs. We consider non zero Laurent series

Z ang"

which are convergent on some D(r). They form a field O(Dg)*. We define a map

0:0(Dy)* — E(D) (5.177)
by (@) —{a— @(f(9),2),9(f(q).9), 1)}

@00, L)
y(f(@)a)”  y(f(a). )
Now it is clear that the Laurent series {¢™ },ecz go to the identity. I claim (without proof,

it is rather clear anyway):

Lemma 5.2.41. The map © induces an isomorphism

0 : O(Do)* flg) =+ E(D)

Any f € O(Dy)* is modulo (g) of the form
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f(q) = ap + a1q + asq® + azq® + . ..
where ap # 0. We define a homomorphism which can be considered as evaluation at 0
Oy : ED) — & (5.178)

which sends

f(Q) — (f(f(()), 0)727(.]0(0)70)71) =

(f(f(())’()) 1 1 >
y(£(0),0))" " y(£(0),0)
N <a0+a01+2 4(ap +1) >
ao—l—ao_l—Q’(ao—l)(aQ—i-agl—2)’
_ <a0+a51+2 ) (ao—l)(a0+a51—2)>
4(ap+1) 77 4(ap + 1)

This also defines a morphism PY{(©) —>6~'0, where now the two points 0, co are mapped
to the singular point. We see that the evaluation map ©¢ induces a biholomorphic iso-
morphism C* = &\{(1,0,1)}, and this allows us to put a group structure on £\{(1,0,1)},
such that ©¢ becomes a homomorphism.

The Algebraic Approach

The point, of the previous consideration is, that the objects which we constructed are
essentially purely algebraic objects. To explain this I need to anticipate some of the con-
cepts of the second volume. The holomorphic functions on the “germ of discs” are simply
the power series with some positive radius of convergence, the meromorphic functions
are the Laurent series, also with some positive radius of convergence. But we can ignore
convergence, we may consider the ring of all (formal) power series and the field of all
Laurent series in the variable ¢. But if we do not care about convergence, then there is
no reason why the coeffients should be complex numbers. We can consider the rings of
formal power series and formal Laurent series with coefficients in 7, these are the rings

Z[[q]] and Z[[q]] [ﬂ . For reasons which will become clear in a moment, we will need that

2 is invertible in our rings, so we enlarge Z to R = Z[1], i.e. we consider the rings

A= R[lq] and B = Rllq] [4].
The units in A are the power series whose constant term is £2” and the units in B are
of the form ¢"(+2" + Y, . arq®). Now we can attach some kind of geometric objects

Spec(4) = Spec (Z[[q]]) and Spec(B) = Spec (Z[q]] [1])

to these rings. The reader may think of them as an infinitesimally small (punctured) disc,
they are “affine schemes”.

We have the scheme P? / Spec(Z). T do not give the definition, but I formulate its essential
property. One may think of PP™/Spec(Z) as a covariant functor from the category of
commutative rings .S with unit element to the category of sets. For any such ring S the
set P™(S) is the set of (n + 1)-tuples
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{(ag,al, co.ap) |3 1o, ..o v € S such that Zriai = 1}/:,
i

where the equivalence relation identifies two such tuples (ag,a1,...an), (bo,b1,...b,) if
and only if there is a unit ¢ € S* such that a; = ¢b; for all i = 0,1,...,n. If S = C, then
this is our earlier definition, if S is a local ring, i.e. it has a unique maximal ideal (# 5),
then the condition about the existence of the r; says that at least one of the entries is
not in the maximal ideal. Now I want to explain that our constructions above provide a
diagram

¢ \ z — (5.179)

Spec(B) ><Spec(R) IP2 Spec(A) ><Spec(R) ]P2
Spec(B) Spec(A)

the meaning of this will be explained now. We consider the categories of rings over A
and over B. This means that we consider rings S with identity together with a homo-
morphism i : A — S (this is a ring over A) or together with a morphism j : B — S.

Question: What is the relation between these two kind of rings? Is any ring over A
automatically also ring over B?

Now we define £ and £ as subfunctors of the projective plane: We put

E(S) = {(m,y,v) € P2(S) | y?v = 2® — i(A(q))zv + va} (5.180)

|

and (S) = {(x,y,v) e P%(S) | y*v = 2® — j(X(q))xQU + xv2} .

Of course we can replace both rings by smaller rings. We consider the polynomial ring
R[t] we embed it into A by sending ¢ to A(q) — 2 = 64¢ + 512¢*... and then R [t,}]
embeds into B. (Here we need that 2 is invertible.) Then we can write the same diagrams
over these smaller rings:

£ \ z \ (5.181)

Spec(R[t,t‘l]) ><Spec(R) IP2 Spec(R[t]) ><Spec(R) IP2
Spec(R[t,t1]) ¢ Spec(R][t])

and this now means that £, £ now define functors from the category of rings over Rl[t]
(resp. R [t,%] ). It turns out, that £ — R [t,%] is in fact an elliptic curve, if we remove the
point ¢t = —4. We will discuss this example in the second volume. Now the reader may
wonder, why we work with the large rings, whereas the situation with the small rings

seems to be much simpler.
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If we work over the rings A,B then we still can write down sections, or in other words
we can describe the groups of values £(A) and £(B). If we consider power series

Q) = Z anq"

n>n

whose lowest order term ang® has a coefficient a;, € R*, then we may substitute this
power series for w into Z(w,q), y(w,q) and we get a point

Eaaro0n = (THas ) (5.182)

in £(A). Actually we have to look a little bit closer to this process of substitution. We
can multiply by a power of ¢, this does not change the point in the projective space. So
we assume that & = 0 and we get

_ f@+fl@~ "+
z(f(q).q) = )+ fla) = ﬂfl(f(Q),(J% (5.183)
~ ( ( )—I— 1) -

Of course there is no problem substituting f( ) for w into x1 (w,q), y1(w,q), but the factor
in front may cause trouble. We attach to the power series the point in projective space
with coordinates

(fl@+ (@) +2)(f (@)= D1 (f(2).9), 4(f (@) + D1 (f(0):0).(f (@) + F(@) " +2)(f(q)—1)).

To get a point in the projective space we must be able to find 79,r1,72 which combine
the entries in the coordinate vector to one, and it is an amusing exercise to verify that
this is the case under our assumptions.

We will come back to this in the second volume.

5.3 Towards the Algebraic Theory

5.3.1 Introduction

During our discussion of the Jacobian J of a Riemann surface S and the description
of the Picard group of J we made use of transcendental methods. We worked in the
category of (compact) complex manifolds. Especially we described the complex manifold
J as quotient J = C9/T" where then I' = Hy(J,Z).

On the other hand we have seen that the Riemann surface S can be viewed as the set of
points of a non singular projective curve over the complex numbers. We also have stated
the result that the Jacobian J of S is a projective algebraic variety. We also know that
J has the structure of an algebraic group (see 5.2.7). We have a holomorphic line bundle
P, which has the property that T,,(P) ® P~! is not trivial unless z is the neutral element
and P®3 provides a projective embedding. In this section we will aim at an algebraic
formulation of our central results, starting from these algebraic data. We still use the
transcendental arguments in the proofs.
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To illustrate what I mean I consider an endomorphism ¢ : J — J. If we look at it in
the trancendental context, we know that it is an endomorphism ¢ : I' — I'. Hence we
can define the trace tr(¢), our lattice is free of rank 2g. But we will show that this trace
can also be expressed in terms of intersection numbers of certain line bundles obtained
from P and ¢, this is then an algebraic definition of tr(¢).

It is the content of Chapter 10 in the second volume that the main results of the present
chapter here can be formulated and proved in purely algebraic terms. This implies that
we can replace the ground field C by an arbitrary field k.

Our starting objects in this section will be a compact Riemann surface S, its Jacobian
J and its dual JV. On J we have the canonical polarization ey given by the Riemann
period relations, it defines a line bundle P whose class in the Neron-Severi group is ep.
It also yields the isomorphism je, : J — JV.

The key to an algebraic approach to understand J and the Riemann surface S itself is
the investigation of the Picard group of varieties of the form S x S, S x J, J x J and
J x JVY.

Let X be any smooth, projective, connected variety over C (see Example 15 a)). We use
the above mentioned principles from GAGA. Then we have

0 — HY(X,Z) — H'(X,0x) — H'(X,0%) — H*(X,Z) — ... (5.184)
and from here
0 — Pic®(X) —> Pic(X) - H2(X,7). (5.185)

Of course this sequence makes only sense in the analytic context. The class (L) is the
Chern class of £ and the subgroup generated by the Chern classes is called the Neron-
Severi group NS(X).

The Algebraic Definition of the Neron-Severi Group

If X is any smooth projective algebraic variety then the group H?(X,Z) is of course
a transcendental object, it needs the concept of continuity in its definition. But if we
believe in GAGA then the group Pic(X) is defined in the context of algebraic geometry.
We also can give an algebraic definition of subgroups which are close to Pic’ (X).

For instance we can define the subgroup Pic®®(X) of those line bundles which are alge-
braically equivalent to zero:

Definition 5.3.1. We say that a line bundle L on X is algebraically equivalent to
zero if we can find a connected projective algebraic variety T' over C and a line bundle
L on X x T such that there are two points ti,tg on T for which Ly, = £|X Xt — L
and Eto = £|X X to —) Ox.

Naively speaking this means that we can deform our bundle into the trivial bundle. It is of
course clear that during such a deformation process the Chern classes of the bundles stay
constant. This means that the group Pic”?(X) of lines bundles algebraically equivalent
to zero is always contained in Pic’(X).

If we divide Pic(X) by this subgroup we get a modified Neron-Severi group

NS.1¢(X) = Pic(X)/Pic”°(X) (5.186)
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which is defined in the context of algebraic geometry.

Our results (for instance in section 5.2.1) imply that for abelian varieties A over C we
have in fact Pic’(A4) = Pic®’(A) and thus we have an algebraic definition of NS(A) for
abelian varieties.

Hence we see that the Neron-Severi group NS(X) € H?(X,Z), which is only defined in
the analytic context, is a quotient of NS,i,(X) which can be defined in the context of
algebraic geometry. If in the following sections we formulate a result, then we say that
we have an algebraic result, if we can state in terms of elements of NS, (X). For a
first example see our construction in 5.2.2. This does not mean that the proof is purely
algebraic.

The Algebraic Definition of the Intersection Numbers

At this point I want to outline how we can define in purely algebraic terms the intersection
numbers of line bundles on a smooth connected projective variety X C P™(C). We put
d=dimX.

Let L4,...,L4 be line bundles on X, let ¢1(L1), -+ ,c1(Ly) be their Chern classes. We can
form the cup product ¢1(£1) U+ Ucy(Lq) € H*}(X,Z) = 7Z, and the result is a number.
We have already seen that under certain favorable circumstances we can interpret this
number as the number of points in the intersection of d smooth divisors (see Proposition
4.10.14)

Cl(ﬁl)U"'UC1(£d) =YiNn---NYy, (5187)

I want to explain that it is always possible to interpret this cup product of Chern classes as
intersection numbers. I have to appeal to some theorems in projective algebraic geometry
(Theorem of Bertini) which will be discussed in more detail in the second volume.

Our projective space IP"(C) has the line bundle Opn(¢)(1) = H on it (see page 163).
We will show that for any bundle £ on X we can find an integer £ > 0 and a non zero
section s € HY(X,L£ @ H®k) such that [s = 0] is a smooth divisor (see section 4.10.3).
We take our bundle £; and choose sections s; € H(X,£; ® H®*) and t; € HO(X,H®¥)
which both provide a smooth divisor on X.

If we look at the cup product of the Chern classes, we find the equality

Cl(ﬁl)U. ..U (ﬁd) = Cl(£1 ®’H®k)U01 (LQ)U' --Uey (Ed)—Cl (H®k)UCl(£2)U' --Uey (Ed)

Now the two divisors [s; = 0] and [t; = 0] are again smooth projective varieties. They are
perhaps not connected but their connected components Z,...,Z,,... are also smooth
projective varieties by the Theorem of Chow. We can restrict the remaining line bundles
Lo, ..., L4 to these components.

Now we assume by induction that we have an algebraic definition of the intersection
number of £),... L}, of d —1 line bundles on smooth projective varieties of dimension
d — 1. Then the above argument gives us an algebraic definition for the intersection
number of d line bundles on X.

Here we have to observe that in view of our result in Proposition 4.10.14 we know
that this definition does not depend on the choices of n and of the sections s; and t;
because the intersection numbers are also given by the cup product. But in the context
of algebraic geometry, when cohomology groups are not available, then we have to work
a little bit more to show this independence. In other words: We propose a definition of
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an intersection product NS,is(X)? — Z, but to see, that it is well defined we need
topology.

Proposition 5.3.2. If we have d line bundles L1, . ..,Lq on a smooth projective algebraic
variety X of dimension d. Assume that Ly is not the trivial bundle, that H°(X,L1) # 0
and that Ls, ... ,Lq are ample. Then we know that their intersection product

Cl(Cl) U---u Cl(ﬁd) > 0.

This is clear if d = 1, because a non zero section s € H°(S,£;) must have a zero, because
L1 is not trivial. The rest follows by induction. We can choose an integer k£ > 0 such that
L$* has a section t such that t = 0 defines a smooth divisor Y on X. We can choose t
such that [s = 0] € [t = 0] = Y. (This is again the Theorem of Bertini.) Now we need
that the restriction of £ to Y is again not trivial, then we can apply induction. We have
to show that [s = 0] N [t = 0] # (). Assume this is not the case. We know by definition
that [s = 0] is an algebraic subset. Any section t; € HO(X,L$") defines a holomorphic
function ¢;/t on [s = 0]. Since we can assume that £5* provides an embedding we can
achieve that t1(z) = 0, t1(y) # 0 where z,y are two arbitrarily given points on [s = 0].
On the other hand we know that [s = 0] is compact, hence any such function restricted
to [s = 0] has a maximum for its absolute value on [s = 0]. Here we encounter a little
difficulty. Since we can not assume that [s = 0] is smooth, we can not apply the maximum
principle from the theory of functions. But in fact it can be shown that it also holds for
arbitrary algebraic subsets Z C X: A bounded holomorphic function on Z is constant on
the connected components of Z. If we accept this fact, then we have proved the above
proposition.

The Study of some Special Neron-Severi groups

If X is equal to one of our four varieties S x S, S x J, J x J and J x JV and if we write
it as a product X =Y x Z. We want to study the Picard group Pic(Y x Z), its subgroup
Pic’(Y x Z) and its Neron Severi quotient NS(Y x Z) = Pic(Y x Z)/Pic’(Y x Z).
We apply the considerations from 4.6.7 to X = Y x Z. Clearly we have a morphism
OyR0z — Oyxz. Moreover our sheaves are a of R-vector spaces so the injective
resolutions are also flat. Hence we get a homomorphism
HY(Y,0y) ® H*(Z,0z) ® H(Y,0y) ® H'(Z,02) =
HYY,0Oy)® HY(Z,05) — HYY x Z,0yxz) (5.188)

and this homomorphism is in fact an isomorphism. This implies
Pic’(X) = Pic’(Y x Z) = Pic’(Y) @ Pic®(2). (5.189)

We say that Pic® is linear.



5.3 Towards the Algebraic Theory 275

We will not use that 5.188 is an isomorphism and we will not prove it. But I want to make
a few comments. It is easy to see that is injective: We simply choose points yo € Y,2o € Z
and restrict the classes H(Y x Z,0yxz) to H ({yo} x Z,0z) and H*(Y x {20},0y).
The composition of arrows H'(Y,0y )& HY(Z,07) — H'(Y x Z,0yxz) — H*({yo} x
Z,07)®HY(Y x{20},0y) is an isomorphism. This shows the injectivity. The surjectivity
is more difficult. It becomes easy if we accept the following result, which seems to be
very plausible.

Let py be the projection from X =Y x Z — Z. Then Rpy .(Oy«z) is a free coherent
sheaf on Z and for any point z € Z we have

Ry (Oyxz)®(0z,./m.) = Rips . (Oy xz)@C = H(p; " (2),0yx(2}) — HI(Y,0y).

This result looks rather innocent and has the flavour of a base change theorem 4.4.17.
It again related to the deep finiteness results in complex analytic geometry (See the
discussion in 5.2.1). It is a consequence of the so called semi continuity theorem. These
results will be proved in volume II in the context of algebraic geometry, they are much
more difficult to prove in complex analytic geometry.

If we accept this fact then we apply the spectral sequence and get for the Fy term See
4.6.3,d))

(Hp (Z,qu*(Osz)) ,dg) = Hn(Y X Z,OYXz)

If n = 1 then we get two steps in the filtration, namely H'(Y,p2 .(Oyxz) = H(Y,0y)
and H°(Z,R'ps . (Oy x z). It follows that the dimension H(Y x Z,0y x z) is less or equal
to sum of the dimensions of H!(Y,0y) and H'(Z,0z) and this combined with the injec-
tivity proves the assertion.

We may also derive the isomorphism 5.188 from the results in 5.2.1 if one of the factors is
an abelian variety. There we gave a hint how such a semicontinuity can be proved under
certain assumptions.

The isomorphism 5.189 is called the theorem of the square and will be proved in the
context of algebraic geometry in volume II.

We are more interested in the Neron Severi group. We recall the notation I' ~ H'(S,Z)
and then
H?*(J,7) = Hom(AT',7)
H?*(S x S,Z) = H*(S,Z) ® (H'(S,Z) ® H'(S,Z)) & H*(S,Z)
=Ze (el e
H?*(S x J/Z) = H*(S,Z) & (H'(S,Z) ® H'(J,Z)) ® H*(J,Z)
=7Z& (TeTV)® Hom(AT 7).
We have to find out what the Neron-Severi group will be in our four cases. I claim that

we have a submodule NS'(Y x Z) € HY(Y,Z) ® H'(Z,Z) such that we get a direct sum
decomposition into three summands

NS(Y x Z) = NS(Y) & NS'(Y x Z) & NS(Z).
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To see this we observe that we have pullbacks pi(£1), p3(L2) of line bundles on the two
factors, which have Chern classes (¢1,0,0), (0,0,c2) with respect to the above decomposi-
tion. On the other hand we can choose points yg € Y and 2y € Z and restrict a bundle
LonY X Ztoygx Z,Y X zyg. The Chern classes of these restrictions do not depend on
the selected points (because Y, Z are connected) and if we modify £ by the product of
the inverses of the pullbacks we get a bundle whose Chern class is (0,c2,0).

The first and the third summand are considered as less interesting at this point since
they are filled up by the Chern classes of line bundles which are pull backs from the two
factors. We are interested in the summand in the middle.

We have the morphisms

Id XiPO ipOXId

d X je
§x§ LRy g g Jx J 0 g v,

This induces a sequence of isomorphisms between the H' ® H' component of the second
cohomology groups

Il «+— IV +—TVeIV+«—IVelV

where the isomorphism is always the tensor product of the identity and the Poincaré du-
ality. It is clear that this sequence of isomorphisms also induces homomorphisms between
the corresponding subgroups NS'(Y x Z) and we have:

Proposition 5.3.3. With the obvious notation we get a sequence of isomorphisms
NS'(S x S) +— NS'(S x J) +— NS'(J x J) +— NS'(J x JY).

Proof: To see that this is indeed the case we recall that the Neron-Severi group is always
the kernel of

H*(X,Z) — H*(X,0x).

In our situation we have to apply the Kiinneth formula and look at the kernel of

HY(Y.Z)® H'(Z,2) — H'(Y,Oy) ® H'(2,07)
and then the claim follows because the maps

HY(JY,0v) = HY(J,05) — H'(S,05)

are isomorphisms. O
There is a slightly different way of looking at this proposition. We have seen that we
have to study the alternating 2-forms on T @ T', T TV, 'V @ T'V. If our two summands
are I'1,I's then we denote the space of those alternating 2-forms which are trivial on
Iy x I'y1,T'y x Ty by Althy(I'; @ T'y,Z). We get an isomorphism

I'Y @ Ty = Althy(I'; @ T'y,7Z)
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which sends an element 11 ® 19 = ¥ to the alternating form

ew : (11,72),(11:72)) — Y1 (71)P2(7s) — U1 (1) (7).

To get the Neron-Severi group we have to look at those alternating forms which after
tensorization by R are compatible with the complex structure. Then we have to translate
it back into a condition for ¥ € I'Y ® I'y.

If for instance I'y = T and I'y = T then the we get ' @ I'V = End(T"). Then it is obvious
that the alternating form W is compatible with the complex structure on (I'®I'V)y if and
only if the corresponding element in End(I") is compatible with the complex structure
on I'r. Hence we have shown

NS'(J x JY) =5 End(J). (5.190)

To get this identification we did not use the polarization.

Now we consider the case J x J. In this case we have to look at I' ® I and this is the
module of bilinear forms on I'V and via Poincaré duality this is the same as the module of
bilinear forms on I'. Following the identifications we see that an element v, ® 2 € T ® I
gives us the bilinear form (n1,m2) — eg < y1,m1 > €o < Ya,72 >.

Now it is an easy exercise that under the identification

ol STl = End)

the element Id € End(I") corresponds to the polarization form e € T @ T' = TV @ I'V.
This element eq therefore defines an element Fy in Alty(I' @ I',Z) which is given by

Eo((m1:72),(71,72)) = eo{71,72) — €o(v2,:71)- (5.191)
This alternating form is the Chern class of the line bundle £(Ep,0,0) =N on J X J.
More generally it is now obvious that under the identification
ol S TelY = End)
an element ¢ € End(T") corresponds to the bilinear form E,, given by

E, <2 >=Ey <m,p(y2) >. (5.192)
We can summarize this discussion and say
Theorem 5.3.4. We have a canonical identification
NS'(J x J) = End(J)

which is given by the map which sends an element v € End(J) to the class of the line
bundle (Id x)*(N).

This should be seen in conjunction with our earlier result

NS(J) <5 Endgym(J).
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The previous theorem is already close to an algebraic statement. But the bundle N has
been constructed in the transcendental context, we described it in terms of the 2-cocycle
obtained from the alternating form FEjy. I want to point out that we have a construction
of our line bundle N on J x J in algebraic terms using only the bundle P: We consider
the product and three maps

ii
J x J —py > J
_
and we put
N =m*(P)@pi(P)" ' @p5(P)"". (5.193)

It is quite clear that this bundle has a Chern class, the class Ey. But it is also clear that
this bundle does not depend on the choice of P: If we modify P by a line bundle £ which
has Chern class zero then this amounts to changing the linear form in the construction.
But this change cancels in the construction of A/, this means that A is a canonical bundle
on J x J.

We have seen the construction of a similar bundle — which also was called A/ — in section
5.2.1. This was called the Poincaré bundle and it lives on J x JY. This bundle can be
constructed for any complex torus A and is an analytic object. Now the polarization
bundle P provides the isomorphism

op :J — JY =Pic’(J) (5.194)
which is given by
r— T (P)@P L
We get an isomorphism

Idxpp:JxJ = JxJY

and we can take the pullback of the Poincaré bundle by this map. Of course we then
get the above bundle N on J x J. Since we think of J as the Jacobian of a curve and
therefore the polarization is canonical, we allow ourselves to give the two bundles on
J x Jand J x JY the same name.

5.3.2 The Structure of End(J)

The Rosati Involution

Since we have an inclusion End(J) € Hom(I',I'), we know that End(J) is a finitely
generated algebra over Z.
For any ¢ € End(J) there is an endomorphism

©* : Pic(J) — Pic(J)

of the Picard group which is given by the pull back of line bundles. We denote by ‘¢
the restriction of ¢* to the subgroup Pico(J ). We use the canonical polarization of the
Jacobian and get the transposed

b J — J.
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I want to point out that these assertions make sense in the context of algebraic geometry.
We have seen that the group NS'(J x J) has an algebraic definition and this is also the
case for End(J). We have seen that ty corresponds to the transpose of ¢ : I' — I' with
respect to eg.

Definition 5.3.5. The map o — Y is called the Rosati involution (with respect to
the standard polarization).

Proposition 5.3.6. The Rosati involution has the properties

Ho+y) =Tp+"
Hpp) = "le.

It is of course clear that ¢* also induces an endomorphism
@ : NS(J) — NS(J).
We use the identification (equation (5.99)) combined with the selfduality and get
NS(J) ~ Endgym(.J), (5.195)

it is clear that the selfduality turns alternating homomorphisms from J to JV into sym-
metric endomorphisms of J. We saw in equation (5.91) that

Y — Ty
We know that ¢ — $* is quadratic, this means that we can consider 1 + @2 and then

(b1 +p2)" =] + 05 + (P1,02)

where (p1,p2) : NS(J) — NS(J) depends bilinearily on the two variables.

To any ¢ € End(J) we can define ¢r(p) and deg(y) simply as the trace and the determi-
nant of ¢ considered as endomorphism of ', i. e.

tr(p) =tr(p: I — 1) (5.196)
deg(p) =det(p: T — T).

These functions have the obvious properties

tr(*p) = tr(p) (5.197)
det("p) = det(yp)
det(p1¢2) = det(p1) det(p2).

We have the following fundamental result:

Theorem 5.3.7 (Positivity of the Rosati-Involution). For any ¢ € End(J), ¢ # 0 we
have

tr(¢'p) > 0.
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Proof: At first we give a transcendental proof which uses the lattice I'. We consider
I'r as a C-vector space and choose an orthonormal basis (with respect to the Hermitian
form) {ey,e2, - ,eq}. Then we put f; = Ie; and {e1,f1,...,eq,fq} is an R basis for I'g.
Our alternating form will have the values (e;,f;) = —1 = —(fi,e;) and all other values
are zero. Then it is clear that for any endomorphism 1 we have

tr(y) = =Y (e, fi) + > _(W(fi).ei)-

If ¢ = tpp then we get

g

(led)(£)) + > _(e(fi)p(e:))

i=1

|
M-

tr("pp)

Since ¢ commutes with I, the last sum is equal to

=2 (p(e) Iple:)) =+ Y 2h( y(plei)ple)).

The terms are > 0 and since at least one of the p(e;) # 0 (¢(fi) = e(lei) = p(ei)!) we
conclude that the sum must be strictly positive. O

A Trace Formula

Our definitions of the degree and of the trace are given in terms of the lattice I'. Hence
they are transcendental and the positivity of the Rosati involution does not make sense
in algebraic geometry at this point.
Therefore we have to give a definition of the degree and the trace in algebraic terms. For
the degree this is easy. We consider

g —7 . (5.198)

H'(S,05)/T ~2> H'(S,05)/T.
and then we see easily:

Proposition 5.3.8. The degree of ¢ is non zero if and only if the morphism ¢ is finite.
If the degree of ¢ is non zero, then we have

deg () = number of points in o~ 1(0).

Proof: This is rather clear: The determinant of ¢ is equal to the index of ¢(T") in I'. If
I C H'(Og,Z) is the inverse image of T, then I'"/T" ~ I'/¢(T") and this proves that the
order of the kernel ¢~1(0) is also equal to det(y). O
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It is also clear that the derivative of ¢ induces an isomorphism of the tangent spaces at
at the points in ¢~1(0) and zero. We apply Lemma 4.8.12.

The morphism ¢ also induces an inclusion of the field of meromorphic functions on J
into itself C(J) < C(J). The subfield is the field of invariants under I'V/T". Since we also
know that the meromorphic functions on J separate the points in ¢ ~1(0) it follows from
Galois theory that

deg(y) = degree of the extension C(J) — C(J). (5.199)
From the definition of the degree as a determinant it follows that
deg(p +nld) = ag(p) + - - agn—1(p)n* " + 09, (5.200)
and then by definition the trace is given by

tr(p) = azn—1(p). (5.201)

The point of this formula is that deg(p + nId) is a polynomial in n of degree 2g and
highest coefficient = 1. We want to derive such an expression for the degree deg(¢+n1d)
from its algebraic definition, namely as the number of points in a fibre.

The decisive point in the following considerations will be, that for an element
¢ € End(J) the element i) (eg) € NS(J) contains relevant information on the
endomorphism .

In a first step we will show that we can express the degree of the endomorphism 1 in
terms of this class. The g-th power with respect to the cup product is an element in
H?9(J7Z) = 7. Hence it is a number. But from the point of view of algebraic geometry
we think of 1" (eg) as an element in NS(.J), which can be represented by a line bundle.
The g-fold selfintersection of this line bundle in the context of algebraic geometry (see
pages 273 f.) is also a number. We explained in the sections 4.8.9 and 5.3.1 that these
two numbers are the same.

The element eq is an alternating form on I'V. If dim .J = g, then we can raise this element
into the gth power in the cohomology ring and we have seen in 4.6.8 that this means
that we have to take its gth exterior power

ed=egNep... ey € Hom> (T, 7Z) ~ 7. (5.202)

This is the selfintersection number of the class eg. Further down we will compute it, but
here we do not need it. Actually in the following consideration we can replace eg by any
polarization. Its image under ¢ is given by

& (e0)(m72) = eo( (1) (12)), (5.203)

and it is an elementary exercise in linear algebra that we have

0" (e0)? = deg(t)) - €, (5.204)
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where det(v) is of course the determinant of the endomorphism 1 on the free module T’
which is of rank 2g. Since e > 0 we found an algebraic formula for the degree of 1. We
apply this to the endomorphism ¢ + nId.
We consider the map

(Y +nld) : NS(J) — NS(J).

If we invoke the identification NS(J) ~ Endgym(J) then for ¢ € Endsym(J) we have
(¢ + n1d)*(¢) = (Y1) + n1d)d() + n1d) and hence this map is

W+ nld) =3 +n,Id) +n? - 1d. (5.205)
From this we get the formula for the degree

deg(v +nld) - el = ((¢ +nld)(eg))? (5.206)
(%" (o) +n(v, Id) (o) +n* - e0)?
o gn®T el A (9, Td) (e) + 0?9 - €

and hence we get the formula

tr(y) - ef = ged = A (1, 1d) (o), (5.207)

and this gives us the trace as a cup product of classes in the cohomology evaluated on
the fundamental cocycle. Hence we found a formula for the trace in algebraic terms, since
we can represent the Chern classes by bundles and then we interpret the cup product in
terms of intersection numbers.

Let us assume that the endomorphism ) is a product of the form ¢ = ‘pp. Then

eo{(¥ + 1d)y1,(¥ + Id)y2) = (¢ + Id)"eo(71,72)
=P eo(71,72) + eo(y1,72) + eo(v1,¥72) + eo(¥y1,72)

and the sum of the last two terms is (¢, Id)(eo)(7y1,72). Hence we get

(¥, 1d)(e0){71,72) = 2€0(p71,072),
and this means that
(1, 1d)(e0) = " (eo).
This gives us the formula
tr("ep) - ef = 2gef " A " (eo). (5.208)
We return to the interpretation in terms of algebraic geometry. We know that eq is the
class of an ample line bundle P and we have seen that the highest intersection numbers

of line bundles are equal to the highest cup product of their Chern classes. Hence we can
say that

tr(tpp) - P9 = 29P9 1. p* (P). (5.209)
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This formula gives us an algebraic approach to the positivity of the Rosati involution.
I claim that the right hand side must be positive if ¢ # 0. We apply Proposition 5.3.2.
We may replace P by a translate T3 (P) because this does not change the Chern class
and hence it does not change the value of the intersection product. We have a non zero
section s € HY(J,P), the set [s = 0] is not empty. We may assume that p(J) ¢ [s = 0]
because we can modify P by a translation. Hence we see that H°(J,¢*(P)) has a non
trivial section. This section must have zeroes: As in the proof of Proposition 5.3.2 we
show that ¢(J) N [s = 0] # (. Since ¢ # 0, we can find points z1,z2 € J, for which
o(x1) # o(x2). We can find sections t € HO(J,P¥) for k > 0 and then ¢/s®* defines
nonconstant holomorphic functions on ¢(J), and hence on J. This is not possible because
©(J) has strictly positive dimension.

Finally we want to give a formula for the trace of an endomorphism in terms of intersec-
tion numbers of two divisors on the surface S x .S. We return to our bundle

N =m*(P)@pi(P)" @pi(P)~"

on J x J. It has Chern class zero when restricted to e x J and J x e and its Chern class
is Ey. If we pick an element ¢ € End(J), then we can consider the bundle (Id x1)*(N)
on J x J. We have the inclusion ip, X ip, : S x S — J x J and get the line bundle

(ip, % ip,)" o (Id x1b)*(N) = Ly (5.210)

on SxS. The Chern class of this line bundle sits in NS'(S x S) C H'(S,Z)@H*(S,Z)=TgI .
Of course this homomorphism ¢ — Ly, realizes the isomorphism
NS'(S x S) = End(J)

which we gave in Proposition 5.3.3.

Now we can state the famous

Theorem 5.3.9 (Trace formula).
ALy =—tr(y).

Proof: This is a rather formal consequence of the definitions. The following compu-
tations have been indicated in our discussion of the Lefschetz fixed point formula (see
section 4.9). We have seen that the intersection product of two divisors is equal to the
cup product of the Chern classes evaluated on the fundamental class. The cup product
of the classes & @y, &a @1 € T @ T C H%(S) x S1,Z) is given by —&& U n1mz where
now &1&2 € H?(S,Z) @ H°(S,Z) and mne € H°(S,Z) ® H?(S,Z).

Since we have the alternating 2-form, we can choose as a standard basis on I' a Z-basis
UL, ... ,Ug,V1, .. .,Ug such that

eo(uiv;) = —eo(vi,ui) = 1

and all other products are zero. Under this identification the element

EZZU,Z@’UZ—Z’UZ@’MZEF@F

i
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becomes the identity element in TV @ I' = Hom(I',I'): The element E applied to an
element v € I" yields

E(y) = Z<um>w - Z<vm>ui.

Then it is clear that F(u;) = u; and E(v;) = v;. Then the Chern class of Ly, is given by
c1(Ly) =D wi @) = > v @ p(u;)
and

EUci(Ly) = (Zuu@vl Zw@m) U <Zui®¢(vi) Zvi®¢(ui)>

A %

= Z ul,vz ’Ul, uz + Z 'Um'Uz uZ? UZ)>
= Z i (ug)) — Z<Uz’,¢(vi)> = —tr(y).

i

This ends the proof of the trace formula. ]

The Fundamental Class [S] of S under the Abel Map

Let us consider the Abel map i, : S — J which induces a map on the first cohomology

Z‘*
H'(J,7) —2 H'(S,7) (5.211)
| [

rv———7T

which we identified as the inverse of the polarization map. It induces a map

H2(J,7,) — H2(S,7.) (5.212)
[ I

A21—\\/ — T
and this map is by definition the evaluation by the dual form

OAY — e’ (pa)).

This linear form on H?(J,Z) is the fundamental class [S] of the Riemann surface (See
page 144) in Hy(J,Z) or in H*972(J,7Z). We want to give a formula for this class in terms
of the intersection product of the polarization class.

If we choose a basis eq, - - - ,eq,f1 - fg on I' such that (e;,f;) = 1 = —(fi,e;) and all other
pairings give zero, then the —fi,---, — fg,e1, -+ ,e4 are the elements of the dual basis if
we identify I" and T'V by the polarization map. Then the form eq is given by >, e; A f;
again and our form in H?972(.J,Z) which is the fundamental class of S is given by
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S e Aficei AfiN-eeg Ay,

%

i.e. the factor e; A f; is left out.

The polarization class e € A?T' itself maps to g in H?(S,Z), and it is clear that

(eg)' ! = (Z ei N f¢> AR (Z ei N f;) = (g —1)[S] (5.213)

and  (eJ)? =g (5.214)
Now recall the formula for the trace

) =P L)

We have seen that P9~ = (g — 1)![S] and P9 = g!, hence we get

tr(y) = [S]U (Id ,¥)(P) (5.215)

5.3.3 The Ring of Correspondences

We have the isomorphism Pic(S x S)/ (p;(Pic(S)) + p3(Pic(S))) ~ End(J). We want to
explain how we can define a ring structure on the left hand side directly.

If we have an irreducible divisor D C S x S we can look at it as a so called correspon-
dence: To any point z € S we can consider the points (z,2;) € D and call the points z;
counted with multiplicity as the points corresponding to z. We can form the free group of
these divisors and mod out by the divisors of the form S x D" or D" x S where D’ (resp.
D") is a divisor in the first or second factor, let us call this R. After we have done this,
we can introduce a product on this group: We choose suitable representatives D1,Ds of
two elements and consider the divisors in D1 x S, S x Dy on S x S x S. Now we take the
intersection — this makes sense if we made a careful choice — and project this intersection
to the two outer factors.

This induces a ring structure on R with identity which is given by the class of the
diagonal. It is clear that this ring has an involution which is obtained by interchanging
the two factors.

We can also define a trace: For any [D] € R we choose a representative D for which
D |z xS and D|S x z are both in Pic?(S). Then we put

—tr([D]) =A-D. (5.216)
Now it is clear that
—tr(*[D] % [D]) = (*[D] x [D])-A =D - D. (5.217)

We will show in the second volume that this last number is strictly negative if D # 0.
This is of course the positivity of the Rosati involution.

We know that R ~ End(J), our considerations show that we can define this ring of
correspondences without reference to the Jacobian.
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5.3.4 An Algebraic Substitute for the Cohomology

I think that I convinced the reader that the cohomology groups H(S,Z)=T, HY(J,Z)=T"
play a fundamental role in understanding the structure of S and J. Therefore we should
have a substitute for these cohomology groups in the algebraic context. This will be
explained in volume 2. Here we give an indication how we can get an algebraic definition
of cohomology groups, if we enlarge the coefficient ring 7 to a larger ring.

We have

J=H'(S,0s)/H"(S,Z) = H*(S,05)/T.

The module I" does not make sense in the context of algebraic geometry. Now we consider
the endomorphism

nld:J — J,
and we consider the kernel
Jn] =ker(nld: J — J). (5.218)
This kernel is obviously isomorphic to
LT/T =~ (Z/n7)*. (5.219)

But this kernel has an algebraic definition. We consider J as a projective variety over
C which has the structure of an abelian algebraic group and then the kernel of nld is a
finite algebraic group over C.

Once we have done this, we observe that we have for n | ny a map Jn] — J[ni], and
we can define

Tors(J) = lim Jn], (5.220)

where the ordering on N is given by divisibility. Of course it is clear that

Tors(J) =T ® Q/Z, (5.221)
this is the group of torsion points and we conclude:

Proposition 5.3.10. Even if the module I' cannot be defined in terms of algebraic ge-
ometry, the module

reQ/z
is an algebraic geometric object.

We can pass to the dual module, we consider Hom(Tors(J),Q/Z). It is an elementary
fact that

Hom(Q/%,Q/7) ~ §im Z/n 7, = 7,

n

and therefore we get
Hom(Tors(J),Q/%) =T ® 7. (5.222)

Now we can define the so called Tate module.
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Definition 5.3.11. The Tate module is defined as
T(J) = lim J[n,

where now for n | ny the map J[n1] — J[n] is given by multiplication by nq/n.

(See example 9.) The Chinese remainder theorem yields

Q/Z= P Q% (5.223)

£:¢prime

where ¢ runs over the primes, Q is the f-adic completion and Z; is the ring of (-adic
integers. This yields a decomposition

Tors(J) = @ Tors(J)e
4
where Tors(.J); = lim J[¢*] and dually Z = [], Z¢ and
() =[] Te().
14

Definition 5.3.12. For any prime { we define the {—adic cohomology groups of our
Riemann surface S by

HO(szZ) = Zl
HI(S,Zg) = HOI’II(T@(J),Zz)
H*(S,Z) = Zy.

Now we are back at the opening line of this chapter, the only difference is that the
coeflicients 7Z are replaced by Z,.

In section 5.1.7 we worked very hard to show that a compact Riemann surface S is the
same kind of object as a projective algebraic curve C' C IP"(C). Such a curve can be
defined as the set of common zeroes of a set of algebraic equations. We can interpret our
results above by saying that the {—adic cohomology groups are in fact attached to the
algebraic curve C. Why is this of any relevance?

Let us assume that the defining equations of our Riemann surface can be chosen in such a
way that the coefficients are in Q. For example we may assume that our curve is embedded
into P?(C) and defined as the set of zeroes of the somewhat famous homogenous equation

" 4+ y" + 2" = 0 where n is an integer > 1

For any subfield K C € we may consider the set C(K) of K-valued points, this is simply
the set of solutions of the equations for which the coordinates are in K, i.e. the points
on the curve, which lie in P*(K). Then S = C(C). It clear that the automorphisms
of € map the curve C(C) = S C P"(C) into itself. Since these automorphisms are
not continuous (except the identity and the complex conjugation), they do not induce
automorphisms on the cohomology groups H”(S,Z). But the it can be shown that they
induce automorphisms on the cohomology groups H”(S,Z;) = HY(C,Z¢). We see this
action in the case of H'(S,Z;) because these automorphisms induce automorphisms on
the group of torsion points and hence on the Tate module. Actually it is clear that the
torsion points have coordinates in @, hence this action factorizes over the action of the
Galois group Gal(Q/Q) (see Example 11).
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This means that the cohomology groups H*(S,Z¢) have a much richer structure than the
plain cohomology groups H*(S,Z). They are modules for the Galois group Gal(Q/Q).
Of course we already noticed that Hodge theory provides an additional structure on
the cohomology: The tensor product H!(S,7) ® C contains the distinguished maximal
isotropic subspace of holomorphic differentials H%(S,0Q%).

To illustrate the importance of this fact I formulate a result of Faltings, we anticipate
some definitions from volume II.

An abelian variety A is defined over a number field K C @, if we can find a projective
embedding and a defining set of equations, which have coefficients in K. Then it is clear
that we can find a finite extension K C L C @, such that all endomorphisms are defined
over L. We have an embedding

End(A) ® Z; < End(Ty(A)).

Since the endomorphisms are defined over L we know that End(A) ® Z,; commutes with
the action of the Galois group Gal(Q/L). The theorem of Faltings asserts (see [Fal)

Under the above hypothesises End(A) @ Zy is the commutant of the action of the Galois
group, i.e. consists of those elements, which commute with the action of the Galois group.

This theorem can be used to decide questions of the following kind. Assume that we have
two projective, smooth and irreducible curves C; (C) = S1,C2(C) = Sz and let us assume
that the defining equations have coefficients in Q. Can we decide whether there exists a
non constant holomorphic map f : S; — S5 or more generally whether we can find a
third curve S which has non constant holomorphic maps f; : S — S; and f : S — S5.
In principle we get an answer from Hodge theory. We apply the considerations on page
274 to the product of our two curves. Then we see that we have to find out whether we
can find C-linear maps ¢ : H°(S1,Q%, )" — H?(S1,Q%, )" which map the lattice I'Y into
'Y (see 5.2.3). But this may be difficult to decide, because we have to compute the period
lattices and hence we have to compute the period integrals (See 5.1.11). Therefore we see
that finding such a ¢ means that we have to find certain linear relations with rational
coefficients among the period integrals of the two Riemann surfaces. This is difficult if
not impossible. For instance we have no way to decide whether two irrational numbers,
which may be obtained from certain integrals, are linearly dependend over ©). One way to
establish such relations is to transform these period integrals into other ones by making
clever substitutions. But this throws us back to our original problem.

On the other hand we may also try to compare the two actions of the Galois group
Gal(Q/Q) on H'(S1,Z¢) and H'(S2,Z¢). We may try to decide whether there are non
trivial homomorphisms between these two Galois modules. Now number theory provides
at least theoretically some tools to decide this question. But then the theorem of Faltings
implies that we also can find a curve S which has non trivial holomorphic maps to Sy
and SQ.

I do not know, whether this the right place to formulate a final exercise, I will come back
to it in the second volume, there are also places in the literature, where it is solved:

Exercise 32. Is there a non constant holomorphic map between the two elliptic curves

P4y=2%—2%and y? +y =2° — 22 — 10z — 20
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The above result concerning the endomorphism rings is also the key to Faltings’ proof of
the Mordell conjecture. This Mordell conjecture says:

If C is a smooth, irreducible projective curve over some number field K C C (this means
that C(C) is a compact Riemann surface and the defining equation can taken with coef-
ficients in K ) and if the genus is greater than one, then the number K rational points

#C(K) is finite.

Finally T want to mention that Wiles’ proof of Fermat’s last theorem [Wi] is based on
the understanding of the action of the Galois group on ¢-adic cohomology groups. In this
case Wiles studies the action on the first cohomology of elliptic curves defined over @Q.



290

Bibliography

[A-McD]

[B-L]

[B-T]

[Ca-Se]

[Ca-Ei]

Atiyah, M. F.; Macdonald, I. G. Introduction to commutative algebra
Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969
ix+128 pp 1995

Birkenhake, Christina; Lange, H. Complex abelian varieties.
Second edition. Grundlehren der Mathematischen Wissenschaften, 302.
Springer-Verlag, Berlin, 2004. xii+635 pp.

Bott, R ; Tu, Loring W. Differential forms in algebraic topology.
Graduate Texts in Mathematics, 82. Springer-Verlag, New York-Berlin, 1982.
xiv+331 pp.

Buser, P.; Karcher, H. Gromouv’s almost flat manifolds.
Astérisque, 81. Société Mathématique de France, Paris, 1981. 148 pp.

Cartan, H. Variétés analytiques complexes et cohomologie.
Colloque sur les fonctions de plusieurs variables, tenu a Bruxelles, 1953, pp.
41-55

Cartan,H.; Serre, J.-P. Un théoréme de finitude concernant les variétés ana-
lytiques compactes.
C. R. Acad. Sci. Paris 237, (1953). 128-130

Cartan, H.; Eilenberg, S. Homological algebra.
With an appendix by David A. Buchsbaum. Princeton Landmarks in Mathe-
matics. Princeton University Press, Princeton NJ, 1999. xvi+390 pp.

Chow, W.-L. On compact complex analytic varieties.
Amer. J. Math. 71, (1949). 893-914

Eilenberg, S.; Steenrod, N. Foundations of algebraic topology.
Princeton University Press, Princeton, New Jersey, 1952. xv+328 pp

FEisenbud, D. Commutative algebra. With a view toward algebraic geometry.
Graduate Texts in Mathematics, 150. Springer-Verlag, New York, xvi+785 pp.

Faltings, G. Endlichkeitssétze fiir abelsche Varietaten iiber Zahlkoérpern. In-
vent. Math. 73 (1983), no. 3, 349-366.

Faltings, G.; Chai, C.-L. Degeneration of abelian varieties. With an appendix
by David Mumford.

Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 22. Springer-Verlag,
Berlin, 1990. xii+-316 pp.

Forster, O. Lectures on Riemann surfaces.
Graduate Texts in Mathematics, 81. Springer-Verlag, New York-Berlin, 1981.
viii+254 pp.

G. Harder, Lectures on Algebraic Geometry I, DOI 10.1007/978-3-8348-8330-8,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011



291

[Ge-Ma|

[Go]

[Gr-Ha

[Gr-Rel]

[Gr-Re2]

[Hat]

[Hei]

[Hir]

Gelfand, S. I.; Manin, Y. I. Homological algebra, Algebra, V,
1-222, Encyclopaedia Math. Sci., 38, Springer, Berlin, 1994

Godement, R. Topologie algébrique et théorie des faisceaux.

Publications de I'Institut de Mathématique de 1'’Université de Strasbourg,
XIII.Actualités Scientifiques et Industrielles, No. 1252. Hermann, Paris, 1973.
viii4283 pp.

Griffiths, Ph.; Harris, J. Principles of Algebraic Geometry.
John Wiley & Sons Inc, 1994. 814 pp.

Grauert, H.; Remmert, R. Theory of Stein spaces.
Grundlehren der Mathematischen Wissenschaften 236. Springer-Verlag,
Berlin-New York, 1979. xxi+249 pp.

Grauert, H.; Remmert, R. Coherent analytic sheaves.
Grundlehren der Mathematischen Wissenschaften 265. Springer-Verlag,
Berlin, 1984. xviii+249 pp.

Hartshorne, R. Algebraic geometry.
Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-
Heidelberg, 1977. xvi+496 pp.

Hatcher, A. Algebraic topology.
Cambridge University Press, Cambridge, 2002. xii+544 pp.

Heinen, Ch. Fine Konstruktion des feinen Modulschemas fiir
elliptische Kurven mit voller n-Struktur
Diplomarbeit Bonn, 1986

Hirsch, M. W. Differential topology.
Graduate Texts in Mathematics, No. 33. Springer-Verlag, New York-
Heidelberg, 1976. x+221 pp.

Hitchin, N. Global differential geometry.
Mathematics unlimited—2001 and beyond, 577-591, Springer, Berlin, 2001.

Hodge, W. V. D. The Theory and Applications of Harmonic Integrals.
Cambridge University Press, Cambridge,England; Macmillan Company, New
York, 1941. ix+281 pp.

Husemoller, D. Elliptic Curves
Graduate Texts in Mathematics, 111 Springer-Verlag, New York, 1987.
xvi+350 pp.

Iversen, B. Cohomology of sheaves.
Universitext. Springer-Verlag, Berlin, 1986. xii+464 pp.

Lang, S. FElliptic Functions
Addison-Wesley Publishing Company, INC.

Mac Lane, S. Categories for the working mathematician.
Second edition. Graduate Texts in Mathematics, 5. Springer-Verlag, New York,
1998. xii+314 pp.



292

5 Bibliography

[Mul]

[Mu2]

[Neu]

[Rie]

[Sel]

[Se2]

[We2]

[Wel]

Mumford, D. Abelian varieties.

Tata Institute of Fundamental Research Studies in Mathematics, No. 5 Pub-
lished for the Tata Institute of Fundamental Research, Bombay; Oxford Uni-
versity Press, London 1970 viii+242 pp.

Mumford, D. Tata lectures on theta. I-1I-I1T
Progress in Mathematics, 28, 43, 97. Birkh&user Boston, Inc., Boston, MA

Neukirch, J. Algebraic number theory.
Grundlehren der Mathematischen Wissenschaften 322. Springer-Verlag,
Berlin, 1999

Palais, R. S. Seminar on the Atiyah-Singer index theorem.

With contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley,
W. Shih and R. Solovay. Annals of Mathematics Studies, No. 57 Princeton
University Press, Princeton, N.J. 1965 x+366 pp

Riemann, B. Gesammelte mathematische Werke
Springer-Verlag, Berlin,Heidelberg, New York, 1990

Serre, J.-P. Géométrie algébrique et géométrie analytique.
Ann. Inst. Fourier, Grenoble 6 (1955-1956), 1-42.

Serre, J.-P. Un théoréme de dualité
Comment. Math. Helv. 29, (1955). 9-26

Spivak, M. A comprehensive introduction to Differential Geometry, vol 1
Publish or Perish, Inc., Berkeley, 1979

Weil, A. On the projective embedding of Abelian varieties.
Algebraic geometry and topology. A symposium in honor of S. Lefschetz, pp.
177-181. Princeton University Press, Princeton, N. J., 1957.

Weil, A. Introduction a I’étude des variétés kihlériennes.
Publications de I'Institut de Mathématique de I’Université de Nancago, VI.
Actualités Sci. Ind. no. 1267 Hermann, Paris 1958 175 pp.

Wells, R. O., Jr. Differential analysis on complex manifolds.
Second edition. Graduate Texts in Mathematics, 65. Springer-Verlag, New
York-Berlin, 1980. x+260 pp.

Wiles, A Modular elliptic curves and Fermat’s Last Theorem
Annals of Mathematics, 142 (1995), 443-551



Index

293

Index

Abel

— map, 284

— Theorem, 219

abelian

— category, 12

— variety, 238, 242
abelianized fundamental group, 117
acyclic, 72

— module, 20

— resolution, 20, 105, 194
adapted, 224

additive functor, 13
adjoint

— functor, 48

— operator, 165

adjusted injective resolution, 89
algebraic

— duality pairing, 196

— identification, 217

— subset, 44

— variety, 44
almagamated product, 10
alternating complex, 79
alternating form, 240
ample, 223

analytic

— identification, 217

— pairing, 216

atlas, 39

attachment of cells, 106
augmentation

— ideal, 14

— map, 14

augmented double complex, 84

base, 59

— change, 72
boundary, 12

— operator, 57

— map, 78

— operator, 129, 140
bundle

— fibre, 59, 60

— holomorphic, 175
— — line bundle, 160
— — vector bundle, 160
— normal, 143

— sphere, 104

— tangent, 143, 156
— vector, 60

C*°-manifold, 39

canonical

— isomorphism, 6
— polarization, 236
category, 1

— abelian, 12

— derived, 98

— opposite, 3
Cauchy

— integral formula, 189
Cauchy-Riemann
— operator, 55
Cech

— cohomology, 79
— complex, 78, 109
— coresolution, 129
— resolution, 127

Chern class, 160, 161, 163, 164, 192, 226

Chinese remainder theorem, 287
class

— fundamental, 125, 126, 284
— homotopy, 127
coboundary, 12, 15, 57

— operator, 27

cocycle, 12, 15, 27, 57, 87, 239, 252
— relation, 57

coherent sheaf, 176, 212, 258
cohomological fibration, 103
cohomology, 57

— Cech, 79

— (—adic, 287

— of manifolds, 126

— of sheaves, 65

— ring, 147, 178

cohomology group, 12
coimage, 50

coinvariants, 14, 138
commutative diagram, 1
compatible pairings, 224
complex

— Cech, 78

— de Rham, 151, 164, 215
— Dolbeault, 175, 178, 227
— double, 85

— homological complex of I'-modules, 12

— of differential forms, 158
— of global sections, 129
complex

— manifold, 156, 178

— space, 42, 43

— structure, 157, 237

— torus, 178, 218, 228
composition, 1

G. Harder, Lectures on Algebraic Geometry I, DOI 10.1007/978-3-8348-8330-8,
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011



294

Index

connection, 151

— flat, 64, 151

constant sheaf, 65
continuous

— linearform, 134
contractible to a point, 75
contravariant functor, 3
convex

— covering, 128

— geodesically, 128
coresolution

— Cech, 129

countable at infinity, 126
covariant functor, 3
covering, 46

— convex, 128

— locally finite, 69

cup product, 114, 123, 124, 144, 154, 185, 215,

222
CW-complex, 106
cycle, 12

de Rham

— complex, 151, 164, 215
— isomorphism, 152, 223
Dedekind rings, 204
degree of a divisor, 52
degree of a map, 146
derived

— category, 98

— functor, 15, 66, 101
diagonal, 76

differential form, 154

— harmonic, 166

— quadratically integrable, 167
direct

— image, 47, 66

— product, 12

— sum, 12

directed set, 9

discrete

— valuation ring, 203, 206
disjoint union, 10

divisor, 191, 193

— class, 218

— group, 52

— polar, 52

— smooth, 161, 163

— zero, b2

Dolbeault

— complex, 175, 178, 191, 227
— isomorphism, 160

— Lemma, 160

domains of holomorphy, 176
double

— complex, 85

— point, 268

dual

— lattice, 177

— local system, 168
— torus, 229

edge homomorphism, 87
effective divisor, 53
eigenfunction

— for the Laplacian on tori, 177
elliptic

— curve, 265

— function, 211

— operator, 166
embedding

— nice, 71

euclidian

— form, 63

— vector bundle, 63
Euler

— characteristic, 96, 105, 150
— class, 105

exact, 12

— complex, 12

— functor, 14

— sequence

— — of sets, 37

— — of sheaves, 51

— triangle, 102

exhaustible by compact subsets, 70

exponential map, 144
Ext, 29, 30

extension by zero, 49, 120
exterior

— derivative, 154, 165
— differential, 159

— power, 63

Fermat’s last theorem, 289
fibration, 59

fibre, 59

— bundle, 59, 60

filtration

— horizontal, 88

— vertical, 88

final object, 35

finite cohomological type, 133
finitely supported maps, 32
flabby, 72

— sheaf, 58

flat

— connection, 64, 151

— module, 31

Fourier expansion, 177



Index

295

Frechet space, 177
Frobenius

— reciprocity, 17
function

— holomorphic, 39
— meromorphic, 52

functor, 3
— additive, 13
— adjoint, 48

— contravariant, 3

— covariant, 3

— derived, 15, 30, 66, 101
— exact, 14

— Ext, 29, 30

— left adjoint, 48

— left exact, 15

— representable, 5, 8
— right derived, 19, 56
— right exact, 15

— Tor, 31
fundamental

— class, 125, 126, 143, 144, 154, 161, 163, 284

— group, 127
— — abelianized, 117

GAGA, 213, 215, 258, 272
Galois group, 287, 289
— of a field, 7
I'-module, 11

general position, 241
generic point, 206
genus, 179

geodesically convex, 128
germ, 38, 39

— of a section, 45
Grassmann variety, 241
Grassmannian, 241
Grothendieck topology, 46
group

— orthognal, 63

— parabolic, 242

— Picard, 191, 232

— ring, 28

— symplectic, 241, 242
— unitary, 242

group ring, 14

Gysin sequence, 104

handle, 77

harmonic

— form, 166, 167, 174, 178
Heisenberg group, 246
hermitian

— form, 63

— vector bundle, 63

Hodge

— x-operator, 164, 173, 181
— decomposition, 174, 182
— structure, 171

— Theory

— — on Tori, 177
holomorphic

— bundle, 175

— vector bundle, 160
— function, 39

— line bundle, 160

— vector bundle, 157
homogeneous space

— principal, 229
homological

— algebra, 11

— complex of I'-modules, 12
homology

— of groups, 27
homology group, 143
— of a complex, 12
homomorphism

— Kiinneth, 110
homotopic

— maps, 74

— to zero, 23
homotopy

— group, 117

— axiom, 74

— class, 127

— theory, 117
horizontal filtration, 88
Hurewicz

— homomorphism, 117
— theorem, 117

image, 11

— direct, 47, 66

— inverse, 48

induced I'-module, 17
induction, 17

inductive

— system, 9

injective

— module, 21

— resolution, 21, 26, 89
— sheaf, 55, 58
integral

— closure, 202

— over, 202

integral points, 241
intersect transversally, 144

intersection number, 148, 273

invariants, 14
inverse



296 Index
— image, 48 — parameters, 45

— system, 4 — ring, 38

involution local system, 63, 126

— Rosati, 279, 283
isolated fixed point, 148
isomorphic, 2

isotropic

— maximal, 251

Jacobi

— criterion, 43, 44

— matrix, 209

— Theta functions, 261
Jacobian, 217, 256, 278
— matrix, 43

Kahler

— form, 174
Kahler

— metric, 181
Kahler

— manifold, 174
kernel, 11, 50
Kodaira

— embedding theorem, 238

Krull topology, 8
Kiinneth
— formula, 114, 276

— homomorphism, 110, 148

{—adic cohomology groups, 287

Laplace
— operator, 166

Laplace operator, 164, 173

— on tori, 177
Laplace-Operator
— eigenvalues, 166
Laplacian, 181
lattice, 177, 218, 260
— dual, 177
Laurent

— expansion, 53

— series, 269
Lefschetz

— fixed point formula, 147, 283

— number, 147

left adjoint functor, 48
left exact functor, 15
line bundle, 191

— ample, 223

— holomorphic, 160
— tautological, 238
local

— chart, 39

— coordinates, 45

— of vector spaces, 64
— dual, 168

local trivialization, 60, 61
locally

— finite covering, 69

— ringed space, 257
locally constant sheaf, 38

locally ringed space, 41, 206

locally ringed spaces, 40

manifold, 39, 40
—C*, 39

— complex, 39, 156
— Kaébhler, 174

— Stein, 176

— topological, 39
map over, 59

maximal isotropic, 241, 251
Mayer-Vietoris sequence, 106

meromorphic

— function, 52
metric

— Euclidean, 164
— Hermitian, 164
— Kabhler, 181

— Riemannian, 128, 164, 177

modular form, 211
module

— acyclic, 20

— flat, 31

— I"-module, 11

— injective, 21

— locally free, 61

— over sheaves, 61

— projective, 28

— quotient, 12

— Tate, 287

moduli space, 212, 242
Mordell conjecture, 289
morphism, 1

— restriction, 35

Nakayama Lemma, 213

Neron-Severi group, 226, 234, 272, 276

— algebraic, 272
nice embedding, 71
non degenerate form, 240

non degenerate zeroes, 150
non-abelian sheaf cohomology, 62

normal bundle, 143

operator
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— adjoint, 165

— boundary, 57

— Cauchy-Riemann, 55
— elliptic, 166

— Laplace, 166

— — on a torus, 177

— positive, 167

opposite category, 3
opposition, 241

order

— pole, 52

orientation, 55, 62, 63, 115, 126, 143
— topological, 76, 122
oriented surface, 77
orthogonal group, 63, 154

p-adic numbers, 7
pairing

— analytic, 216

— compatible, 224

— Poincaré, 141

— Serre duality, 216
parabolic subgroup, 242
paracompact, 69, 126
— space, 70

partition of unity, 128
path, 126

period integrals, 222
period lattice, 222, 243
Pfaffian, 236

Picard group, 161, 191, 217, 226, 232
Poincaré

— bundle, 230

— duality, 126, 127, 132, 133, 153, 179, 219

— Lemma, 152

— pairing, 141, 169

polar divisor, 52

polarization, 238

— canonical, 236

— principal, 242

polarization class, 284

pole, 52

positive

— operator, 167

— divisor, 53

presheaf, 35

principal divisor, 52

principal G-bundle, 65

principal homogeneous space, 229
principal polarization, 238, 242
principally polarized abelian variety, 240
product

— almagamated, 10

— cohomology, 153

— cup, 114, 123, 124, 144, 185, 215, 222

— direct, 12

— of presheafs, 36
— of Sheaves, 49
— tensor, 30
projective, 44

— curve, 206

— limit, 5

— module, 28

— system, 4
proper

— base change, 72
— map, 72
pullback, 48, 67

quotient module, 12

rationally non degenerate, 235
Real Manifolds, 150

reduction of the structure group, 63
refinement, 46, 57, 79

— strong, 70

regular, 203

representable functor, 5, 8
resolution, 66

— acyclic, 20, 194

— Cech, 127

— injective, 21, 26, 89
restriction, 49

— morphism, 35

Riemann

— period relations, 223

— sphere, 179, 198, 200

— surface, 51

— — compact, 179

— Theta functions, 252
Riemann-Roch Theorem, 53, 193
Riemannian

— manifold, 63

— metric, 128, 143, 177

right

— derived functor, 56

— derived functor, 19

— exact functor, 15

ring

— cohomology, 178

— discrete valuation, 206

— group, 28

— local, 38

Rosati involution, 279, 283, 285

scalar product, 165
section, 35, 60, 156
section to m, 59
self-duality, 221
selfintersection number
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— total, 163 Tate module, 287
sequence tautological

— short exact, 13 — alternate pairing, 229
— spectral, 103 — line bundle, 238
Serre tensor product, 30

— duality, 176, 194, 216 Theorem

— — pairing, 216 — of Abel, 219

set — of Bertini, 273, 274
— directed, 9 — of Chow, 215

sheaf, 37 — Fermat’s Last Theorem, 289
— coherent, 176, 212, 258 — of Kodaira, embedding, 238
— flabby, 58 — of Lefschetz, 256

— injective, 55, 58 — of proper base change, 72
— locally constant, 38 — of Riemann-Roch, 193
— of continuous functions, 38, 40 Theta

— of germs of continuous maps, 62 — divisor, 257

— of germs of holomorphic sections, 156 Theta function, 256

— of holomorphic functions, 40, 160 — of Jacobi, 261

— of meromorphic functions, 205 — of Riemann, 252

— of smooth functions, 40 topological

— sheafification, 46 — manifold, 39

— skyscraper, 54, 187, 193, 213 — orientation, 76

— torsion, 213 topology

short exact sequence, 13 — Grothendieck, 46
Siegel half space, 240, 252 — Krull, 8

simplex, 79 — Zariski, 205, 257
singular Tor, 31

— homology groups, 140 torsion

— space, 42 — points, 286

skew symmetric form, 240 — sheaf, 213

skyscraper sheaf, 53, 54, 187, 193, 213 — subgroup, 133
smooth, 44 torus

— divisor, 161, 163 — complex, 178, 218, 228
space, 69 — dual, 229

— singular, 42 — Laplace on, 177

— complex, 42, 43 trace, 281

— Frechet, 177 — formula, 283

— locally ringed, 257 trivial bundle, 65

— paracompact, 70

— principal homogeneous, 229 uniformizer, 52

spectral sequence, 94, 103 uniformizing element, 52
— degenerates, 96 unitary group, 63, 242
spectrum of an operator, 166 universal

sphere — morphism, 5

— bundle, 104 — property, 5

splitting sequence, 19 universality, 230

stalk, 41, 45, 206 unramified, 198
standard simplex, 140 — at a point, 198

Stein manifold, 176 upper half plane, 243
structure group, 65

support, 45 valuation ring, 202
symplectic group, 241, 242 — discrete, 203, 206
system of local coordinates, 41 variety

— abelian, 238, 240, 242
tangent bundle, 63, 143, 156 — algebraic, 44
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— Grassmann, 241
vector bundle, 60

— euclidian, 63

— hermitian, 63

— holomorphic, 157, 160
vertical filtration, 88

weak

— convergence, 168

— solution, 168

weakly

— compact, 168

Weierstrafl normal form, 212
Weierstrafl

— p-function, 211

Yoneda lemma, 6

Zariski topology, 205, 257
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