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Preface

I want to begin with a defense or apology for the title of this book. It is the first part of
a two volume book. The two volumes together are meant to serve as an introduction into
modern algebraic geometry. But about two thirds of this first volume concern homological
algebra, cohomology of groups, cohomology of sheaves and algebraic topology. These
chapters 1 to 4 are more an introduction into algebraic topology and homological algebra
than an introduction into algebraic geometry. Only in the last Chapter 5 we will see some
algebraic geometry. In this last chapter we apply the results of the previous sections to the
theory of compact Riemann surfaces. Even this section does not look like an introduction
into modern algebraic geometry, large parts of the material covered looks more like 19’th
century mathematics. But historically the theory of Riemann surfaces is one of the roots
of algebraic geometry.
We will prove the Riemann-Roch theorem and we will discuss the structure of the divisor
class group. These to themes are ubiquitous in algebraic geometry. Finally I want to say
that the theory of Riemann surfaces is also in these days a very active area, it plays a
fundamental role in recent developments. The moduli space of Riemann surfaces attracts
the attention of topologists, number theorists and of mathematical physicists. To me
this seems to be enough justification to begin an introduction to algebraic geometry by
discussing Riemann surfaces at the beginning.

Only in the second volume we will lay the foundations of modern algebraic geometry. We
introduce the notion of schemes, I discuss the category of schemes, morphisms and so
on. But as we proceed the concepts of sheaves, cohomology of sheaves and homological
algebra, which we developed in this first volume, will play a predominant role. We will
resume the discussion of the Riemann-Roch theorem and discuss the Picard group or
jacobians of curves.

A few more words of defense. These books grew out of some series of lectures, which I
gave at the university of Bonn. The first lectures I gave were lectures on cohomology
of arithmetic groups and it was my original plan to write a book on the cohomology of
arithmetic groups. I still have the intention to do so. Actually there exists a first version
of such a book. It consists of a series of notes taken from a series of lectures I gave on
this subject. Arithmetic groups Γ are groups of the form Γ = SLn(�) ⊂ SLn(�) or the
symplectic group Γ = Spn(�) ⊂ Spn(�)(See 5.2.24). These groups act on the symmetric
spaces X = G(�)/K∞ and the quotient spaces Γ\X. The representations of the algebraic

group G define sheaves M̃ on this space and the cohomology groups H•(Γ\X,M̃) will be
investigated in this third volume. Again the results in the first four chapters of the first
volume will be indispensable.

But in this third volume we will also need some background in algebraic geometry. In
some cases the quotient spaces Γ\X carry a complex structures, these are the Shimura
varieties. Then it is important to know, that these quotients are actually quasi projective
algebraic varieties and that they are defined over a much smaller field, namely a number
field. To understand, why this is so, we interpret this spaces as parameter spaces of cer-
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tain algebraic objects, i.e. they turn out to be ” moduli spaces”, especially the moduli
spaces of abelian varieties. This last subject is already briefly touched in this first volume
and will be resumed in the second and third volume.

Perhaps this is the right moment to confess that I consider myself as a number theorist.
Number theory is a broad field and for the kind of questions, I am interested in, the
methods and concepts algebraic geometry, cohomology of arithmetic groups, the theory
of automorphic forms are essential. Therefore it is my hope that these three volumes
together can serve as an introduction into an interesting branch of mathematics.

This book is addressed to students who have some basic knowledge in analysis, algebra
and basic set theoretic topology. So a student at a German university can read it after
the second year at the university.

I want to thank my former student Dr. J. Schlippe, who went through this manuscript
many times and found many misprint and suggested many improvements. I also thank
J. Putzka who ”translated” the original Plain-Tex file into Latex and made it consistent
with the demands of the publisher. But he also made many substantial suggestions con-
cerning the exposition and corrected some errors.

Günter Harder Bonn, December 2007

Preface to the second edition
In the meantime the second volume of this book appeared and the publisher decided to
prepare a second edition of
For this new edition I corrected a few misprints and modified the exposition at some
places. I also added a short section on moduli of elliptic curves with N -level structures.
Here I followed closely the presentation of this subject in the Diploma thesis of my former
student Christine Heinen.
This new paragraph anticipates some of the techniques of volume II. I originally planned
to include it into the second Volume. Since I already had a section on moduli of elliptic
curves with a differential and since the second volume became too long I abandoned this
plan. Therefore, I was quite happy when I got the opportunity to include this section
into the second edition of the first volume. It also helps a little bit to keep the balance
between the two volumes. This moduli space and some generalizations of it will play a
role in my book on ”Cohomology of arithmetic groups”.

Günter Harder Bonn, June 2011

is first volume.th
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4.5.1 The Čech-Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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Introduction

This first volume starts starts with a very informal introduction into category theory. It
continues with an introduction into homological algebra. In view of the content of the
third volume Chapter 2 is an introduction into homological algebra based on the example
of cohomology of groups.

Chapter 3 introduces into the theory of sheaves. The role of sheaves is twofold: They
allow us to formulate the concepts of manifolds as locally ringed spaces (C∞-manifolds,
complex manifolds, algebraic manifolds... ); this is discussed in section 3.2. The concept
of locally ringed space will be indispensable when we introduce the concept of schemes
in the second volume.

The second role is played by the cohomology of sheaves which is covered in Chapter
4. My original notes gave only a very informal introduction into sheaf cohomology, but
after a while I felt the desire to give a rather self contained account. So it happened
that the introduction into sheaf cohomology became rather complete up to a certain
level. I included spectral sequences, the cup product and the Poincaré duality of local
systems on manifolds. I also discuss intersection products and the Lefschetz fixed point
formula for some special cases. So it happened that Chapter 4 became very long and it
has several subsections. Up to Chapter 4.7 the book may serve as an introduction into
algebraic topology but with a strong focus on applications to algebraic geometry and to
the cohomology of arithmetic groups. The discussion of singular homology is rather short.

In the final sections of Chapter 4 I discuss the analytic methods in the study of cohomol-
ogy of manifolds. I discuss the de Rham isomorphism, which gives a tool to understand
the cohomology of local systems. In analogy to that the Dolbeault isomorphism gives us
an instrument to investigate the cohomology of holomorphic bundles on complex mani-
folds. Finally I explain the basic ideas of Hodge theory. Only in the section on Hodge
theory I need to refer to some analytical results which are not proved in this book.

The last chapter 5 we apply these results and concepts to the theory of compact Riemann
surfaces. In the first section of Chapter 5 we prove the theorem of Riemann-Roch. We
want to make it clear that the hardest part in the proof of the theorem of Riemann-Roch
is the finite dimensionality of some cohomology groups and this proof requires some dif-
ficult analysis. We also give some indications how these analytic results can be proved in
our special case. From the theorem of Riemann-Roch it follows, that Riemann surfaces
may be viewed as purely algebraic objects, we prove that they are smooth projective
algebraic curves. At this point we see some concepts of commutative algebra entering
the stage. They will be discussed in more detail in volume II. We discuss Abel’s theorem
which explains the structure of the divisor class group. It turns out that the group of
divisor classes of degree zero is a complex torus with a principal polarization (Riemann
Period relations), this says that it is an abelian variety over �.

In the second section of Chapter 5 we discuss the meaning of this fact. We examine line
bundles on these Jacobians and more general line bundles on abelian varieties. Especially



x

we describe the spaces of sections of line bundles in terms of spaces of theta-series. We
also explain in a very informal way the relationship to the moduli spaces of principally
polarized abelian varieties. I also have a section on the theory of Jacobi-Theta-functions.
This is the one dimensional case. It illustrates the connections to very old and classical
mathematics. But in the back of my mind I see this also as a preparation for the book on
cohomology of arithmetic groups. To say this differently, we see the connections between
the moduli spaces of abelian varieties and the theory of modular forms.

This last chapter goes beyond homological algebra and algebraic topology. But it shows
the enormous usefulness of these concepts. Chapter 5 can also be seen as a preparation
for the second volume, which is an introduction into algebraic geometry. In the second
half of Chapter 5 we discuss the structure of Jacobians, their Neron-Severi groups and
the structure of endomorphism rings. These arguments and methods will appear again
in the second volume, when we discuss the Jacobians of curves over arbitrary fields. In
the last section of this first volume we give some outlook on celebrated results, which will
also not be proved in the second volume, but for whose proof we provide some preparation.

iiiIntroduction
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1 Categories, Products, Projective and

Inductive Limits

1.1 The Notion of a Category and Examples

I want to give a very informal introduction to the theory of categories. The main problem
for a beginner is to get some acquaintance with the language and to get used to the
abstractness of the subject. As a general reference I give the book [McL ].

Definition 1.1.1. A category C is

(i) a collection of objects Ob(C).

We do not insist that this collection is a set. For me this means that we do not have
the notion of equality of two objects. If we write N ∈ Ob(C) then we mean that N is an
object in the category C.
(ii) To any two objects N,M ∈ Ob(C) there is attached a set HomC(N,M) which is called

the set of morphisms between these two objects.

Usually we denote a morphism φ ∈ HomC(N,M) by an arrow φ : N −→ M .

(iii) For any three objects N,M,P we have the composition of morphisms

HomC(N,M) × HomC(M,P ) −→ HomC(N,P )

(φ,ψ) �−→ ψ ◦ φ.

If a morphism η is a composition of φ and ψ then we denote this by a commutative
diagram (or commutative triangle)

M N

P

.......................................................................................................................................... .....
.......

φ

.............................................................................................................. .......
.....

η

.........................................................................................................
.....
............

ψ

We require that this composition is associative in the obvious sense (if we have four
objects. . .). The reader should verify that this associativity can be formulated in terms
of a tetrahedron all of whose four sides are commutative triangles. Here we use that the
morphisms between objects form a set. In a set we know what equality between elements
means.

(iv) For any object N ∈ Ob(C) we have a distinguished element IdN ∈ HomC(N,N),
which is an identity on both sides under the composition.

G. Harder, Lectures on Algebraic Geometry I, DOI 10.1007/978-3-8348-8330-8_1, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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Everybody has seen the following categories

Example 1. The category Ens of all sets where the arrows are arbitrary maps.

Example 2. The category Vectk of vector spaces over a given field k where the sets of
morphisms are the k-linear maps.

Example 3. The category ModA of modules over a ring A where the morphisms are
A-linear maps. We also have the category of abelian groups Ab, the category Groups of
all groups where the morphisms are the homomorphisms of groups.

Example 4. The category Top of topological spaces where the morphisms are the con-
tinuous maps.

I said in the beginning that we do not have the notion of equality of two objects M,N
in a category. But we we can say that two objects N,M ∈ Ob(C) are isomorphic. This
means that we can find two arrows φ : N −→ M and ψ : M −→ N such that IdN =
ψ ◦ φ, IdM = φ ◦ ψ. But in general it may be possible to find many such isomorphisms
between the objects and hence we have many choices to identify them. Then it is better
to refrain from considering them as equal.
For instance we can consider the category of finite dimensional vector spaces over a field
k. Of course two such vector spaces are isomorphic if they have the same dimension.
Since we may have many of these isomorphisms, we do not know how to identify them
and therefore the notion of equality does not make sense.
But if we consider the category of framed finite dimensional k−vector spaces, i.e. vector
spaces V equipped with a basis which is indexed by the numbers 1,2, . . . ,n = dim(V ).
Now morphisms which are linear maps which send basis elements to basis elements and
which respect the ordering. Then the situation is different. We can say the objects form
a set: If two such objects are isomorphic then the isomorphism is unique.

It is important to accept the following fact: The axioms give us a lot of flexibility, at no
point we require that the elements in HomC(N,M) are actual maps between sets (with
some additional structure). Insofar all the above examples are somewhat misleading.
A simple example of a situation where the arrows are not maps is the following one:

Example 5. We may start from a an ordered set I = (I, ≤) and we consider its elements
as the objects of a category. For any pair i,j ∈ I we say that HomI(i,j) consists of one
single element φi,j if i ≤ j and is empty otherwise. The composition is the obvious one
obtained from the transitivity of the order relation.

The reader may say that this is not a good example, because the φi,j can be considered
as maps between the two sets {i},{j} but that is the wrong point of view. To make
this clear we can also construct a slightly different category J from our ordered set. We
assume that the order relation satisfies i ≤ j and j ≤ i implies i = j and hence we can
define i < j by i ≤ j and i �= j. Then we may define the sets of morphisms as:

HomJ (i,j) are finite sequences {i0,i1, . . . ,in} with iν < iν+1 and i = i0,j = in.

These sequences form a set. We leave it to the reader to verify that we have a composition
and an identity. Now we may have many arrows between two objects {i},{j} which are
sets consisting of one element.
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We may also do the following which may look strange at the first glance. If we have a
category C we may revert the arrows and form the so called opposite category Copp

which has the same objects but where

HomCopp(N,M) = HomC(M,N). (1.1)

1.2 Functors

We need the notion of a functor F from one category C to another category C ′. A functor
is a rule that transforms an object N ∈ Ob(C) into an object F (N) ∈ Ob(C′) and for
any two objects N,M ∈ Ob(C) it provides maps

FN,M : HomC(N,M) −→ HomC′(F (N),F (M)).

In other words: For any φ : N −→ M the functor produces an arrow

FN,M (φ) = F (φ) : F (N) −→ F (M)

and this production should satisfy the obvious consistency conditions, namely respect
identity elements and composition. Such an F together with the collection of maps be-
tween the sets of morphisms is called a covariant functor because direction of the arrows
is preserved. We also have the notion of a contravariant functor from C to C′ which
turns the arrows backwards or what amounts to the same: it is a functor from the opposite
category Copp to C′.
Any object X of a category defines functors from this category to the category Ens: We
attach to it the covariant functor

hX(Z) = HomC(X,Z).

If we have two objects Z,Z ′ and ψ : Z −→ Z ′ then the composition produces hX(ψ) :
HomC(X,Z) −→ HomC(X,Z ′) which sends φ : X −→ Z to ψ ◦φ. We may also put X into
the second free place in the HomC( , ) and consider h◦X(Z) = HomC(Z,X). This gives us
a contravariant functor.

Example 6. We have a contravariant functor from the category of vector spaces into
itself: We send a vector space V ∈ Ob(Vectk) to its dual space V ∨ = Homk(V,k).

Example 7. A very clever example of a functor is the homology of a topological space (see
[Ei-St]Chap. IV 8.4.1.): To any topological space X (i.e an object in the category Top)
we may attach the homology groups H0(X,�),H1(X,�), . . . ,Hi(X,�), . . . the indices run
over all integers ≥ 0. These homology groups are abelian groups which depend functorially
on the space X: A continuous map

f : X −→ Y

between spaces induces a homomorphism between their homology groups

fi : Hi(X,�) −→ Hi(Y,�) for all indices i.
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This functor transforms a very complicated object -a topological space- into a simpler but
not too simple object namely a family of abelian group. This can be used to prove that
�

n is not homeomorphic (not isomorphic in the category Top) to �m if n �= m. To see
this we remove the origin from �n and from �m and we will see that the resulting spaces
will have non-isomorphic homology groups if n �= m. ( 4.4.5). On the other hand if we
had a homeomorphism between the two spaces we could arrange that it maps the origin
to the origin. Hence we would get a homeomorphism between the modified spaces which
then must induce isomorphisms on the homology groups and this is impossible.
If I am right then these homology groups are historically the first examples where the
concept of functors has been used.

We will see many more interesting functors in Chapter 2 on homological algebra.

1.3 Products, Projective Limits and Direct Limits in a Category

1.3.1 The Projective Limit

Let us assume that we have a category C and an ordered set I = (I, ≤). Furthermore we
assume that to any i ∈ I we have attached an object Xi ∈ Ob(C) and for any pair i ≤ j
of indices we have an arrow φij ∈ HomC(Xj ,Xi). We assume that always φii = IdXi

and
for any triple i ≤ j ≤ j′ we have

φij ◦ φjj′ = φij′ . (1.2)

We have seen in Example 7 that we may consider our ordered set (I, ≤) as a category
I. Then we can summarize our assumptions by saying that i −→ Xi is a contravariant
functor from the category I to the category C.
Such a family ({Xi}i∈I ,φij) is called a projective system or sometimes inverse system
of objects in C. For any object Z ∈ Ob(C) we define a set HomC(Z,({Xi}i∈I ,φij)) which
consists of families {φi}{i∈I} of morphisms

φi : Z −→ Xi

such that for any pair i ≤ j the diagram

Z Xj

Xi

............................................................................................................ .......
.....

φi

.......................................................................................................................................... .....
.......

φj

.................................................................................................
.....
............

φij

commutes. It is clear that

Z −→ HomC(Z,({Xi}i∈I ,φij))
is a contravariant functor from C to Ens : A morphism φ : Z ′ −→ Z induces a map

HomC(Z,({Xi}i∈I ,φij)) −→ HomC(Z ′,({Xi}i∈I ,φij))
which is induced by the composition.
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We should think of ({Xi}i∈I ,φij) as a huge diagram

Xj

Xi

Xa

Xb

Xc

Xr

Xu

................................................................................................................................................................... ......
......

..........
..........
..........
..........
..........
....................
............

...................................................................... ........
....

...................................................................... ........
....

...........
..........
..........
..........
..........
...................
............

..........
..........
..........
..........
..........
....................
............

...................................................................... ........
....

..........
...........
..........
..........
..........
...................
............

...................................................................... ........
....

........................
........................

.........................
........................

........................
........................

.........................
........................

........................
.........................

..............

............

..........
..........
..........
..........
..........
....................
............

...................................................................... ........
....

where we did not draw the compositions because they are redundant and make the
picture complicated. Then an element φ ∈ HomC(Z,({Xi}i∈I ,φij)) is a system of arrows
{ϕν : Z −→ Xν}ν∈I into this diagram:

Z

Xj

Xi

Xa

Xb

Xc

Xr

Xu

................................................................................................................................................................... ......
......

..........
..........
..........
..........
..........
....................
............

...................................................................... ........
....

...................................................................... ........
....

..........
..........
..........
..........
..........
....................
............

..........
..........
..........
..........
..........
....................
............

...................................................................... ........
....

..........
..........
..........
..........
..........
....................
............

...................................................................... ........
....

........................
........................

........................
........................

.........................
........................

........................
.........................

........................
........................

...............
............

..........
..........
..........
..........
..........
....................
............

...................................................................... ........
....

...................................................................................................................................................................................................... .......
.....

.....................
....................

....................
....................

....................
....................

....................
.....................

....................
................
............

........
........
........
.........
.........
........
.........
.........
........
.........
........
.........
.........
........
.........
........
.........
....................
............

............................................................................................................................................................. .......
.....

so that every diagram induced by a i ≤ j commutes. Again we suppressed the composi-
tions.
Question: In the special diagram, are the two arrows from Z to Xj and Xb arbitrary or
are there constraints? If so, what kinds of constraints are there?

Definition 1.3.1 (Projective Limit). An object P ∈ C together with an element Φ ∈
HomC(P,({Xi}i∈I ,φij)) is called a projective limit of the system ({Xi}i∈I ,φij)) if for
any Z ∈ Ob(C) the map

HomC(Z,P ) −→ HomC(Z,({Xi}i∈I ,φij))
ψ �−→ {Φi ◦ ψ}{i∈I}

is a bijection. This is the so called universal property of (P,Φ). The element Φ is called
universal morphism.

In terms of our above diagrams this means that a projective limit P is an object that is
squeezed between any Z and the diagram. Any φ from any Z into the diagram is obtained
by first giving an arrow Z −→ P and then composing it with the universal arrow Φ.
Such a projective limit may not exist in our category. But if it exists then this gives us
a first example of a representable functor:
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Starting from the functor Z −→ HomC(Z,({Xi}i∈I ,φij)) we find a P such that our
functor is equivalent to the functor h◦P which we attached to P . More precisely we have a
universal element Φ ∈ HomC(P,({Xi}i∈I ,φij)) such that the equivalence of the functors
is given by the universal property above (See also 1.3.4).

1.3.2 The Yoneda Lemma

We have a simple categorical argument which is called the Yoneda Lemma which shows
that such a (P,Φ) - if it exists - is unique up to a canonical isomorphism. If we have
a second pair (P ′,Φ′) then we get from the universal property that Φ′ is obtained from
a uniquely defined morphism ψ′ : P ′ −→ P composed with Φ and conversely we get Φ
from Φ′ by composing with a unique ψ : P −→ P ′. Finally the universal property yields
that the composition ψ′ ◦ ψ and ψ ◦ ψ′ must be the identities.
So we can conclude: If a projective limit exists it is unique up to a canonical isomorphism
and is denoted by

P = lim←−
i∈I

Xi

This limit is also called the inverse limit because the arrow points backwards. We also
should remember that the arrows in our system {Xi} point from objects with a larger
index to objects with smaller index. The universal morphism Φ is sometimes suppressed
in the notation.
I will discuss some examples of projective limits which belong to the general education
of anybody working in algebra or topology.

1.3.3 Examples

Example 8. We consider the case where C = Ens and the order relation on I is trivial,
i.e. i ≤ j if and only if i = j. Then there are no constraints between the maps

φi : Z −→ XI .

We may take the product of these sets P =
∏

i∈I Xi and the Φi : P −→ Xi are the usual
set theoretic projections. Then {P,Φi}i∈I is also the product in the categorical sense.

Example 9.

1. We take the set of positive natural numbers �+ and we define as order relation the
divisibility relation, i.e. n ≤ m ⇔ n | m. For any m we can define the quotient
rings �/m� and if m | m′ then we have the projection

φm,m′ : �/m′� −→ �/m�,

and ϕm,m′(xm′ ) = xm means that xm′ ≡ xm mod m. We can define a ring

�̂ = {(. . . ,xn, . . .)n∈�+
| xn ∈ �/n�, xn′ = xn mod n′ if n′|n}

where addition and multiplication are taken componentwise, and we have the pro-
jection map

�̂
φn−−→ �/n�,

which is the projection to the n-th component. Then (�̂,ϕn)n∈�+ is the projective
limit in the category of rings.
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2. We may also look at the ordered set {pn}{n=1,2,...} where p is a prime. Then we get
or n ≤ m the projective system

�/pn� −→ �/pm� −→ . . .

and the projective limit

�p = {(. . . ,xn, . . .) | xm ≡ xn mod pn if n ≤ m}.

Each component xn determines completely the xm with m ≤ n but if we go back-
wards we get more and more refined information. We can put a topology onto �p,
where a basis of open sets is given by the elements of the form y + pk�p.

The ring �p contains � as a dense subring. It is a local ring without zero divisors,
the unique maximal ideal is p�p = (p). Its quotient field is the field �p of p-adic
numbers. (See[Neu]Chap. II)

It follows from elementary number theory ( The Chinese remainder theorem) that

�̂ =
∏
p

�p.

This ring �̂ is not integral, it has zero divisors.

Example 10. It is not too difficult to see that in Ens projective limits exist. One simply
forms the product

X =
∏
i∈I

Xi

and takes the subset of those elements x = (. . . ,xi, . . .)i∈I which satisfy φij(xj) = xi. This
implies that also in such categories like the category of rings, the category of modules over
a given ring products and projective limits exist.
But in the category of fields we even cannot form the product of two fields, because we
cannot avoid zero divisors.

Example 11. A very important example of a projective limit is the Galois group of a
field k. We assume that we have constructed an algebraic closure k of k, this is a field
with the following two properties

(i) Every α ∈ k is algebraic over k, i.e. it satisfies a nontrivial equation

αn + a1α
n−1 + . . . + an = 0 with ai ∈ k.

(ii) The field k is algebraically closed.

Such a field can always be constructed if we use the axiom of choice.
We have the set of finite normal extensions k ⊂ K ⊂ k, this is an ordered set by inclusion.
For any normal extension k ⊂ k1 ⊂ k let Gal(k1/k) be the group of automorphisms of
k1 whose restriction to k induces the identity. For a tower of finite normal extensions
k ⊂ K ⊂ L we have a surjective map

Gal(L/k) −→ Gal(K/k)
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which is simply given by restriction. We can form the projective limit

lim←−
K/k

Gal(K/k)

of this system. It exists by the above remark. The restriction defines an isomorphism

Gal(k/k) −→ lim←−
K/k

Gal(K/k).

This is clear if we know that every automorphism σ : K −→ K over k can be extended
to an automorphism of the algebraic closure. (See [Neu]Chap. IV.1)

Example 12. It is of course obvious that in the category Ensfin of finite sets we cannot
have infinite products. But if we have a family ({Xi}i∈I ,φij)} of finite sets we can form
the product in Ens and we define a topology on this product. This should be the coarsest
topology such that the projections

pi :
∏
j∈I

Xj −→ Xi

become continuous. (On Xi we take the discrete topology, every subset is open). Hence
we get a basis for the topology if we take finite intersections⋂

i∈E
p−1i ({xi})

where E is finite and xi ∈ Xi a point.
It is not too difficult to prove that the product endowed with this topology becomes a com-
pact space. The same holds if we take projective limits of finite sets (groups, rings,.....),
these limits are compact topological spaces (groups, rings, ...). The resulting projective
limits are called profinite sets (groups, rings,.....). For instance the ring

�̂ = lim←−
m

�/m�

is such a profinite ring. The Galois group Gal(k/k) of a field k is a profinite group. The
topology of this groups is called the Krull topology.

1.3.4 Representable Functors

I want to say a few words about representable functors. We discussed the example of
projective limits. But the notion of representability for a functor is much more general.
It may be applied to any contravariant or covariant functor which takes values in the
category of sets.
If we have a contravariant functor F : C −→ Ens we may ask: Can we find an object X
and an element u ∈ F (X) such that for any Z ∈ Ob(C) we get a bijection

HomC(Z,X)
∼−→ F (Z)

which is given by the universal rule φ −→ F (φ)(u) ?
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If such an object X together with u ∈ F (X) exists, then the Yoneda Lemma asserts
that it is unique up to a canonical isomorphism. This means that the data provide a
distinguished isomorphism between two solutions of the problem. The proof is basically
the same as in the case of projective limits: If we have two such objects X,X ′ we have
HomC(X ′,X)

∼−→ F (X ′). Now the u′ ∈ F (X ′) provides a morphism in HomC(X ′,X).
Interchanging the two arguments gives us a morphism in the opposite direction. The
compositions must be the identities.

1.3.5 Direct Limits

I begin with the simplest example. If we have a family {Xi}i∈I of sets then we can form
the disjoint union

X =
⊔
i∈I

Xi.

This construction satisfies

HomEns(
⊔
i∈I

Xi,Z) =
∏
i∈I

HomEns(Xi,Z). (1.3)

Here is becomes clear that the formation of a disjoint union and a product are dual to
each other. This means that the arrows are turned backwards. We formulate a principle:

The product is constructed so that we know what the arrows into it are, the disjoint union
so that we know what the arrows from it are.

To describe inductive (or direct) limits we start again from an ordered set (I, ≤). Now
we consider a covariant functor which attaches to any i an Xi ∈ Ob(C) and to any pair
(i,j) with i ≤ j an element ψij ∈ HomC(Xi,Xj). So in contrast to the case of projective
limits the arrows point from objects with a smaller index to objects with a larger index.
Such a system (or functor) is called an inductive system.
This time we look at HomC(({Xi}i∈I ,ψij),Z), these are now collections of morphisms
ψi : Xi −→ Z from the diagram to objects in C. We say that an object L together with
a map Ψ = (. . . ,Ψi, . . .) ∈ HomC(({Xi}i∈I ,φij),L) is a direct limit of ({Xi}i∈I ,ψij) if

HomC(L,Z)
∼−→ HomC(({Xi}i∈I ,ψij),Z), (1.4)

where the bijection is given by the composition ψi = ψ ◦ Ψi. If such a limit exists we
write

L = lim−→
i∈I

Xi.

It is clear that in the category Ens direct limits exist: Starting from an inductive system
of sets ({Xi}i∈I ,φij) we form the disjoint union

⊔
i∈I Xi. We introduce an equivalence

relation ∼ on this disjoint union. This equivalence relation will satisfy xi ∼ xj whenever
φij(xi) = xj . This is not necessarily an equivalence relation, but we simply take the
equivalence relation generated by the relation. Then it is not hard to see that the quotient
of the disjoint union by this relation is a direct limit.

Definition 1.3.2. An ordered set (I, ≤) is called directed if for any two i,j ∈ I we can
find an element l ∈ I such that i < l,j < l.
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If we have an inductive system of sets ({Xi}i∈I ,φij) over a directed set, then the equiv-
alence relation in our construction above can be described directly

xi ∼ xj ⇐⇒ ∃ l ∈ I s.t. i ≤ l,j ≤ l and φil(xi) = φjl(xj). (1.5)

We may also look at the opposite case where the ordering relation on the set I is trivial,
i.e. we have i ≤ j if and only if i = j. If we have an inductive system ({Xi}i∈I ,φij) over
such a set then the inductive limit should be called a disjoint union.
More examples of such direct limits will be constructed in Chapter 3 where we shall see
that stalks of sheaves are direct limits. Generally we had projective limits as subsets of
products, direct limits will be quotients of disjoint unions.
By the way in some sense this discussion of direct limits is superfluous: If we pass to the
opposite category the direct limits become projective limits.

1.4 Exercises

Exercise 1. Do we have disjoint unions in the category Vectk? If so how does the
disjoint union of two vector spaces look like.

Exercise 2.

(a) We may ask the same question for the category Rings of rings, for the category of
commutative rings and for the category of groups.

(b) In any category we can consider diagrams of the form

A
B

C
.................................................... ........

....

..................
..................

................
............

We can interpret this as an inductive system and we can ask whether the limit
exists.

If for instance our category is the category of groups then the limit does exist and
it is given by the almagamated product.

Exercise 3. Let us assume we have an index set (I, ≤) and a projective system
({Xi}i∈I ,φij) on it. Let us assume that the indexing set contains a maximal element
m, i.e. m ≥ i for all elements i ∈ I. I claim that the projective limit exists. How does it
look like? Can you formulate an analogous assertion for injective limits?

Exercise 4. Let us assume that we have a directed set (I, ≤). We assume that we have
an inductive system of rings {Ri}i∈I . Does the direct limit exist? Hint: Forget the ring
structure and consider the Ri as sets. Form the limit in the category of sets. Now you
can reintroduce the ring structure on this limit by observing that any pair (or even finite
set ) of elements can be represented by elements in a suitable member Ri of the family.

Exercise 5. We have seen that we may interpret an ordered set (A, ≤) as a category.
What does it mean for such a category that the product of two elements exists?
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2 Basic Concepts of Homological Algebra

In this chapter I want to explain the fundamental concepts of homological algebra. They
play a fundamental role in algebraic geometry and in various other fields. I will do this
for the specific case group (co-)homology.
This example will become important to us in the third volume of this book where we
discuss the cohomology of arithmetic groups. But since in this particular case the basic
principles of homological become very clear, I have chosen this example as introduction
into the subject. The cohomology of sheaves, which can serve as a second example, will
be discussed in Chapter 4. As a general reference for these two Chapters I can give the
books [Ge-Ma] and [Go].

2.1 The Category ModΓ of Γ-modules

In the following Γ will always be a group. A Γ-module is an abelian group M together
with an action of Γ: This means we have a map Γ × M �→ M,(γ,m) −→ γm, which
satisfies 1Γm = m, (γ1γ2)m = γ1(γ2m) and γ(m1 +m2) = γm1 + γm2. These Γ-modules
are the objects of the category of Γ-modules: If we write M ∈ Ob(ModΓ), then this
means that M is a Γ-module.
If M1,M2 ∈ Ob(ModΓ), then we may consider the set

HomModΓ(M1,M2) = HomΓ(M1,M2)

=
{
ϕ : M1 −→ M2 | ϕ homomorphism of abelian groups

ϕ(γm1) = γϕ(m1)for all γ ∈ Γ,m1 ∈ M1

}
On HomΓ(M1,M2) we have a natural structure of an abelian group: For any two elements
ϕ,ψ ∈ HomΓ(M1,M2) we put (ϕ + ψ)(m1) = ϕ(m1) + ψ(m1).
Here we have another typical example of a category: We have a collection of objects –
this collection is not a set in general – and for any two such objects we have a set of
morphisms. (In our special case these sets of morphisms are abelian groups.) A certain
bunch of axioms has to be satisfied: We have the identity IdM ∈ HomΓ(M,M), we have
a composition HomΓ(M1,M2) × HomΓ(M2,M3) −→ HomΓ(M1,M3) and IdM is neutral
with respect to this composition. (See the introduction in Chap. 1) In our special case
this composition is bilinear.
The special category ModΓ has some extra features: Given ϕ : M −→ N we can form
the kernel and the image

ker(ϕ) = {m | ϕ(m) = 0}, Im (ϕ) = {ϕ(m) | m ∈ M} ,

clearly these are also Γ-modules.

G. Harder, Lectures on Algebraic Geometry I, DOI 10.1007/978-3-8348-8330-8_2, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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If N ⊂ M is a Γ-submodule of M , then we may form the quotient module

M/N = MmodN,

this is again a Γ-module. Finally, we have direct sums and direct products⊕
i∈I

Mi = {(. . .mi . . .)i∈I | mi ∈ Mi, almost all mi = 0}∏
i∈I

Mi = {(. . .mi . . .)i∈I | mi ∈ Mi}

where the addition and the action of Γ are defined componentwise.
All these properties of imply that ModΓ is an abelian category. The notion of abelian
categories can be axiomatized (see [Go]1.8).

Complexes of Γ-Modules

Definition 2.1.1. If we have a sequence of maps between Γ-modules

. . . −→ Mν+1
dν+1−−−→ Mν

dν−→ Mν−1 −→ . . .

then this is called a (homological) complex if dν ◦ dν+1 = 0 for all indices ν, i.e. if
always Im (dν+1) ⊂ ker(dν). The maps dν are the differentials of the complex. We often
denote such a complex by M• or (M•,d•).

Definition 2.1.2 (Exactness). The complex is called exact if we have Im (dν+1) =
ker(dν) for all indices ν.

Definition 2.1.3 (Homology). We define the homology groups of such a complex as

Hν(M•) =
ker(dν : Mν −→ Mν−1)

Im (dν+1 : Mν+1 −→ Mν)
.

The elements in the kernel of dν are called cycles (of degree ν), the elements in the
image of dν+1 are called boundaries (of degree ν).

It is a tautology that

Lemma 2.1.4. A complex is exact if and only if its homology groups are trivial.

We can also consider complexes where the differentials raise the index by one then we
write the indices ν as superscripts

. . . −→ Mν−1 dν−1−−−→ Mν dν−→ Mν+1 −→ . . . , (2.1)

then this is a cohomological complex.
Very often we abbreviate and simply write M• or (M•,d•) for a (cohomological) complex.

Definition 2.1.5 (Cohomology). We define the cohomology groups of a cohomological
complex by

Hν(M•) =
ker(dν : Mν−→Mν+1)

Im (dν−1 : M ν−1 −→ Mν)
.

The elements in the kernel Zν(M) = ker(dν : Mν −→ Mν+1) are called the cocycles in
degree ν and the elements in Bν(M) = Im (dνM

ν−1 −→ Mν) are the coboundaries.
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Hence the cohomology is the group of cocycles modulo the coboundaries.
We abbreviate the graded direct sum over all cohomology groups by H•(M•) =

⊕
ν H

ν(M•).
Actually we may also view these cohomology groups as a complex of abelian groups with
the differentials equal to zero. Again is clear that the following is true

Lemma 2.1.6. A complex is exact if and only if its cohomology groups are trivial.

Definition 2.1.7. A map between two complexes

ϕ• : M• −→ N•

is a sequence of maps φν : Mν −→ Nν which commutes with the differentials.

It is clear that such a map induces a map between the cohomology groups H•(ϕ•) :
H•(M•) −→ H•(N•).

Definition 2.1.8. A (short) exact sequence is an exact complex

0 −→ M ′ i−→ M
p−→ M ′′ −→ 0,

i.e. i is injective, Im (i) = ker(p) and p is surjective, i.e. M ′′ is isomorphic to the quotient
of M by the submodule i(M ′) � M ′.

2.2 More Functors

2.2.1 Invariants, Coinvariants and Exactness

As I explained already in the first chapter a functor is a rule that produces in a functorial
way an object in a target category from an object in the source category. If for instance
the source category is ModΓ and the target category is the category Ab of abelian
groups, then a functor

F : ModΓ −→ Ab

associates to any Γ-module M ∈ Ob(ModΓ) an abelian group F (M). Recall that func-
toriality means that for any M1,M2 ∈ Ob(ModΓ) we have a map

FM1,M2
: HomModΓ(M1,M2) −→ HomAb(F (M1),F (M2)) (2.2)

which sends IdM to IdF (M) and compositions into compositions. If we require in addition
that this map is a homomorphism FM1,M2

between the abelian groups, then this functor
is an additive functor between abelian categories.
There are two very simple functors between the category ModΓ and the category Ab of
the abelian group

Forget : ModΓ −→ Ab (2.3)

Trivial : Ab −→ ModΓ

where the first factor “forgets” the Γ-module structure on the abelian group M and the
second introduces the trivial Γ-action on an abelian group A, i.e. every element γ ∈ Γ
induces the identity on A. These two functors are so called exact functors.



14 2 Basic Concepts of Homological Algebra

Definition 2.2.1. A functor are called an exact functor if it maps exact sequences
into exact sequences.

Homological algebra owes its existence to the fact that many important additive functors
are not exact. Here comes the first example.

Definition 2.2.2. If M is a Γ-module, we define the module of invariants by

MΓ = {m | γm = m for all γ ∈ Γ}.

It is an abelian group and hence we defined a functor

Invariants ModΓ −→ Ab

from the category of Γ-modules to the category of abelian groups. If A is a trivial Γ-
module, then HomModΓ(A,M) = HomAb(A,M

Γ), and this property also characterizes
the submodule MΓ in M .

Definition 2.2.3. The module MΓ of coinvariants is defined as a quotient

M −→ MΓ

where MΓ is a trivial Γ-module and for any Γ-module with trivial action by Γ we have

HomModΓ(M,A) = HomAb(MΓ,A).

To give a different description of MΓ we recall the notion of the group ring R = �[Γ]
of our group Γ. It consists of all finite linear combinations∑

γ∈Γ
nγγ nγ ∈ �, almost all nγ = 0,

where we add componentwise (i.e. the additive group is the free abelian group over the
set), and where we multiply(∑

γ

nγγ

)
·
(∑

η

mηη

)
=
∑
γ,η

nγmηγη =
∑
δ

⎛⎝∑
γη=δ

nγmη

⎞⎠ δ. (2.4)

This group ring contains the so called augmentation ideal IΓ which is the kernel of
the augmentation map ε : �[Γ] −→ � which is defined by

ε :
∑

nσσ �→
∑

nσ.

It is clear that this ideal is generated as a �-module by elements of the form 1 − γ.
For any Γ-module M the module IΓM ⊂ M is a Γ-submodule, and it is also an easy
exercise that

MΓ = M/(IΓM)

has the desired property the module of coinvariants should have.
The following fact is the starting point of homological algebra:

Remark 1. In general the functors M −→ MΓ and M −→ MΓ are not exact.
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To be more precise: If we start from a short exact sequence

0 −→ M ′ −→ M −→ M ′′ −→ 0

of Γ-modules, then the sequence

0 −→ (M ′)Γ −→ MΓ −→ (M ′′)Γ

is exact, but the last arrow is not surjective (in general).
A similar assertion holds for MΓ. We only get an exact sequence

M ′Γ −→ MΓ −→ M ′′Γ −→ 0.

We say that M −→ MΓ is a left exact functor and M −→ MΓ is a right exact functor.
The goal is to construct the so called derived functors which measure the deviation
from exactness. We motivate this by an example.

2.2.2 The First Cohomology Group

I want to explain why the functor M −→ MΓ is not exact. Then I want to explain how
this more or less automatically leads to the definition of the derived functor.
Let us start from an exact sequence of Γ-modules

0 −→ M ′ −→ M −→ M ′′ −→ 0.

We get an exact sequence of abelian groups

0 −→ (M ′)Γ −→ MΓ −→ (M ′′)Γ.

We pick an element m′′ ∈ (M ′′)Γ, and we want to understand why this is not necessarily
in the image of MΓ. Of course we can find an element m ∈ M which maps to m′′. But
there is no reason why this element should be invariant under Γ, the only thing we know
is that for all γ ∈ Γ the difference

m′γ = m − γm ∈ M ′. (2.5)

We get a map

Γ −→ M ′

γ �−→ m′γ ,

and this map satisfies m′γ1 + γ1m
′
γ2 = m′γ1γ2 . A map Γ −→ M ′ satisfying this relation is

called a 1-cocycle . On the set of all 1-cocycles we get a structure of an abelian group
if we add the values and we denote by Z1(Γ,M ′), the abelian group of 1-cocycles. Our
element m is in MΓ if and only if the cocycle m′γ = m− γm = 0.
We notice that the choice of m is not unique, we may change m −→ m + m′ with
m′ ∈ M ′. This is the only possible modification. Then we also modify the cocycle defined
by m into γ �→ m′γ +m′ − γm′. This leads to the definition of the group B1(Γ,M ′) of 1-
coboundaries. It is the group of those cocycles γ �→ bγ for which we can find a m′ ∈ M ′

such that bγ = m′ − γm′ for all γ.
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Hence we see: The element m′′ ∈ (M ′′)Γ defines an element in Z1(Γ,M ′) which is well
defined up to a coboundary. We introduce the first cohomology group (preliminary defi-
nition)

Ȟ1(Γ,M ′) = Z1(Γ,M ′)/B1(Γ,M ′), (2.6)

and we have seen that any m′′ ∈ (M ′′)Γ defines a class δ(m′′) ∈ Ȟ1(Γ,M ′) which is zero
if and only if m′′ is in the image of MΓ −→ (M ′′)Γ. It is clear that δ is a homomorphism,
and that we have extended our exact sequence one step further

0 −→ (M ′)Γ −→ MΓ −→ (M ′′)Γ δ−→ Ȟ1(Γ,M ′).

The next thing that can be checked easily is the functoriality of M ′ −→ Ȟ1(Γ,M ′). If we
have a ϕ ∈ HomModΓ(M

′,N) then this induces a map

ϕ̌(1) : Ȟ1(Γ,M ′) −→ Ȟ1(Γ,N),

and our above considerations also show that we get an even longer exact sequence

0 −→ (M ′)Γ −→ MΓ −→ (M ′′)Γ δ−→ Ȟ1(Γ,M ′) −→ Ȟ1(Γ,M) −→ Ȟ1(Γ,M ′′),

the verification of exactness is left to the reader. But at the end it stops again: The last
map needs not to be surjective.
We also see that this longer exact sequence depends functorially on the short exact
sequence we started from. If we have a map between two exact sequences of Γ-modules

0 M ′ M M ′′ 0

0 N ′ N N ′′ 0

........................................................................................ .....
....... ........................................................................................ .....

............................................................................................... .....
....... ........................................................................................ .....

.......

........................................................................................ .....
....... ........................................................................................ .....

............................................................................................... .....
....... ........................................................................................ .....

.......

..................................................................................
......
......
......

..................................................................................
......
......
......

..................................................................................
......
......
......

then this induces a map between the two resulting exact sequences (in the sense of maps
between complexes, i.e. all diagrams commute).
In principle we can try to extend our sequence beyond Ȟ1(Γ,M ′′). We pick an element
in Ȟ1(Γ,M ′′) and try to lift it to an element in Ȟ1(Γ,M), and then we will see what the
obstruction to this lifting will be. This will suggest a definition of a cohomology group
Ȟ2(Γ,M ′). But actually there is a much more elegant way to define the cohomology
functor which is also universal in the sense that it applies to many other cases. This will
be done in section 2.3.

2.2.3 Some Notation

At this point we introduce some new notation, instead of MΓ we also write H0(Γ,M)
and H0(Γ,M) will be the same as MΓ. This is a very suggestive notation if we use it for
our exact sequence above.
Of course all this does not yet prove that M −→ MΓ is not exact in general. For instance,
it could happen (in principle) that Ȟ1(Γ,M) = 0 for all Γ and all M , or it could also
be that Ȟ1(Γ,M ′) −→ Ȟ1(Γ,M) is always injective. We will show in exercise 9 that for
Γ �= {1} these functors are not trivial.
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2.2.4 Exercises

Exercise 6. If A is a trivial Γ-module, then Ȟ1(Γ,A) = Hom(Γ,A) where the last Hom
is the Hom in the category of groups.

This shows that for suitable A the module Ȟ1(Γ,A) �= 0 if Γ is not equal to its commutator
group [Γ,Γ].
Let us now assume that Γ′ ⊂ Γ is a subgroup. We have the important functor from the
category of Γ′-modules to the category of Γ-modules which is called induction. For any
Γ′-module Y we define an abelian group

IndΓΓ′ Y = {f : Γ −→ Y | f(γ′γ) = γ′f(γ) for all γ′ ∈ Γ′,γ ∈ Γ} , (2.7)

and we define the action of Γ on IndΓΓ′ Y by (γf)(γ1) = f(γ1γ). (Note that we do not
have a support condition on the functions f , if the index of Γ′ in Γ is infinite, then we
may have infinitely many γ- mod Γ′ with f(γ) �= 0.)
This is the induced Γ-module from the Γ′-module Y . It is very easy to check that for
any Γ-module X we have an isomorphism (Frobenius reciprocity)

HomΓ(X, IndΓΓ′ Y )
∼−→ HomΓ′(X,Y )

which is given by ϕ �→ {x �→ ϕ(x)(1)}.
Exercise 7. We have a canonical (this means functorial in Y ) isomorphism

Ȟ1(Γ, IndΓΓ′ Y )
∼−→ Ȟ1(Γ′,Y ).

This isomorphism is obtained from the following map on the level of cocycles: For any
1-cocycle {γ �→ fγ} ∈ Z1(Γ, IndΓΓ′ Y ) we define the 1-cocycle {γ′ �→ fγ′} ∈ Z1(Γ′,Y ) by

fγ′ = fγ′(1). Show that this map sends coboundaries into coboundaries and induces an
isomorphism on cohomology. (In the literature this and its generalisations run under the
name Lemma of Shapiro)

Hint: We have to combine several little observations:

(i) We consider an 1-cocycle {γ �−→ fγ} ∈ Z1(Γ, IndΓΓ′ Y ), and we take into account that
fγ is actually a Y -valued function on Γ. Then the cocycle relation reads

fγ1γ2(x) = fγ1(x) + (γfγ2)(x) = fγ1(x) + fγ2(xγ1).

If we evaluate at x = 1 we get

fγ2(γ1) = fγ1γ2(1) − fγ1(1),

and this relation tells us that we only need to know the values fγ(1). Then the
cocycle relation gives us the values of the fγ at any x ∈ Γ.

(ii) If we have any function

h : Γ −→ Y

h : γ �−→ hγ,
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we may put (think of hγ as being fγ(1)) Hγ(x) = hxγ − hx, then Hγ is a function
on Γ with values in Y . If γ �→ hγ satisfies

hγ′xγ − hγ′x = γ′(hxγ − hx),

then Hγ ∈ IndΓΓ′ Y and γ �→ Hγ it is a 1-cocycle.

(iii) If we have a 1-cocycle γ �→ fγ in Z1(Γ, IndΓΓ′ Y ), then γ′ �→ fγ′(1) for γ′ ∈ Γ′ is a

one-cocycle in Z1(Γ′,Y ). Hence we have a map Z1(Γ, IndΓΓ′ Y ) −→ Z1(Γ′,Y ), and
it is clear that this map sends coboundaries into coboundaries.

(iv) If we have a 1-cocycle γ′ �→ fγ′ in Z1(Γ′,Y ), then we want to construct a 1-cocycle

γ �→ fγ so that fγ′ = fγ′(1). To do this we choose a system γi of representatives of
Γ′\Γ where we choose the identity for the class Γ′.

For γ = γ′γi we put fγ(1) = fγ′(1) and apply (ii). The cocycle relation for γ′ �→
fγ′(1) provides the decisive relation in (ii).This proves the surjectivity of our map
between 1-cocycles in (iii).

(v) Finally, we have to check that γ �→ fγ is a coboundary if γ′ �→ fγ′ is a coboundary.
We can write fγ′(1) = y − γ′y with y ∈ Y and for all γ′ ∈ Γ′. If we want to write
γ �→ fγ as a boundary, i.e. fγ = c − γc, then this reads fγ(x) = c(x) − c(xγ),
and evaluation at 1 yields fγ(1) = c(1) − c(γ). Hence we choose c(1) = y and put
c(x) = y − fx(1) and verify that this c bounds fγ.

Exercise 8. Use the previous exercise to prove that for any group Γ �= {1} there is a
Γ-module M s.t. Ȟ1(Γ,M) �= 0.

The group ring �[Γ] consists of linear combinations
∑

γ∈Γ nγγ where we have a support
condition: The coefficients nγ = 0 for almost all γ. We add componentwise and the
support condition allows us to define a product:

(
∑
γ∈Γ

nγγ)(
∑
γ∈Γ

mγγ) =
∑
η

(
∑

γ,γ′:γγ′=η

nγmγ′)η

Exercise 9. The group ring �[Γ] is also a Γ-module by multiplication from the left. We
get an exact sequence of Γ-modules

0 −→ IΓ −→ �[Γ] −→ � −→ 0.

If we apply the functor H0 to this sequence and if we anticipate the left derived functor,
we find the exact sequence of abelian groups

H1(Γ,�[Γ]) H1(Γ,�) IΓ/IΓIΓ �[Γ]/IΓ �

‖
�

0......................................................................... .....
....... ........................................................................... .....

....... ................................................................. .....
....... .......................................................................................... .....

.......∼
.................................................................... .....

.......

Show that

Γ −→ IΓ/IΓIΓ

γ −→ 1 − γ

induces an isomorphism Γ/[Γ,Γ] = Γab−̃→IΓ/IΓIΓ ([Γ,Γ] is the commutator subgroup).
This suggests that H1(Γ,�) = Γab.
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2.3 The Derived Functors

After these motivating considerations we explain the fundamental problem to be solved
in homological algebra. We have the functor

M −→ MΓ = H0(Γ,M) (2.8)

which is only left exact. We want to construct the right derived functor: This is a
collection of functors M −→ Hi(Γ,M) for i = 0,1,2, . . . , such that for any short exact
sequence

0 −→ M ′ −→ M −→ M ′′ −→ 0

we get a long exact sequence

0 H0(Γ,M ′) H0(Γ,M) H0(Γ,M ′′)

H1(Γ,M ′) H1(Γ,M) H1(Γ,M ′′) . . .

........................................................................... ......
...... ........................................... ......

...... ........................................ ......
......

......................................................................... ......
................................................. ......

...... ........................................ ......
......


......

δ

(2.9)

which depends functorially on the exact sequence (see 2.3.4).
Finally we want this functor to be minimal (or universal) in the following sense:

If we have any other collection of functors M −→ H̃ i(Γ,M) for i = 0,1,2 . . . with

H0(Γ,M) = H̃0(Γ,M), and the same properties as above, then we find a natural trans-

formation Hi(Γ,M) −→ H̃i(Γ,M), which is compatible with the connecting homomor-
phisms.
We want to indicate the main ideas how to construct these derived functors. The verifi-
cation that the new construction of the H1 gives the same result as our previous Ȟ1 will
be done in the exercises 2.4.3.
I want to explain a very simple principle that governs to the construction of these functors.

Definition 2.3.1. We say that the sequence splits if one of the following equivalent
assertions holds:

(i) We have a section to p. This is a Γ-module homomorphism s : M ′′ −→ M for which
p ◦ s = IdM ′′ .

(ii) The modules M splits, i.e. we have a Γ-submodule M̃ ′′ such that

M ′ ⊕ M̃ ′′ ∼−→ M

(m′,m̃′′) �−→ i(m′) + m̃′′.

(iii) We have a Γ-module homomorphism j : M −→ M ′ s.t. j ◦ i = IdM ′ .

A simple observation: If we have an exact sequence of Γ-modules

0 −→ M ′ i−→ M
p−→ M ′′ −→ 0

then our functors H0, H0 will transform split exact sequences into split exact sequences,
in other words if we restrict them to split exact sequences then they are exact.
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2.3.1 The Simple Principle

This simple principle is based on the assumption that we have already constructed a

derived functor {M −→ H̃ i(Γ,M)}. Let us assume we have a class of C of Γ-modules
which are acyclic for this functor. This means

Definition 2.3.2. A module X is called acyclic for H̃i if H̃i(Γ,X) = 0 for all i > 0.

Definition 2.3.3. An acyclic resolution of M ∈ Ob(ModΓ) by objects in C is an
exact sequence of Γ-modules

0 −→ M −→ X0 −→ X1 −→ X2 −→ · · ·
where the Xν ∈ C.
Then we have a lemma, on which our simple principle is based:

Lemma 2.3.4. If C is a class of acyclic objects for the derived functor {M −→ H̃ i(Γ,M)},
and if

0 −→ M −→ X0 −→ X1 −→ · · ·
is an acyclic resolution of M by objects in C, then we have an isomorphism

H̃i(Γ,M) � Hi((X•)Γ).

Proof: By induction on i. For i = 0 we get the exact sequence

0 −→ MΓ −→ (X0)Γ −→ (X1)Γ −→ . . .

and
MΓ−̃→ ker((X0)Γ −→ (X1)Γ) = H0((X•)Γ).

Now we cut the resolution into pieces. We get a short exact sequence

0 −→ M −→ X0 −→ X0/M −→ 0,

and we have a resolution by objects in C
0 −→ X0/M −→ Y 0 −→ Y 1 −→ · · ·

where Y ν−1 = Xν . The first sequence yields a long exact sequence which is interrupted
by many zeroes which come from the H̃•-acyclicity of the X0:

0 MΓ (X0)Γ (X0/M)Γ

H̃1(Γ,M) 0 H̃1(Γ,X0/M)

H̃2(Γ,M) 0 H̃3(Γ,X0/M)

H̃3(Γ,M) 0 . . .

.............................................................................................................. .....
....... ............................................................................................... .....

....... ............................................................... .....
.......

................................................................................ .....
....... .......................................................... .....

.......

................................................................................ .....
....... .......................................................... .....

.......

................................................................................ .....
....... ................................................................................................................. .....

.......



.......

∼


.......

∼
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We check the case i = 1. Here we find H̃1(Γ,M) � (X0/M)Γ/(X0)Γ, but X0/M ⊂ X1

is the kernel of X1 −→ X2, and (X0/M)Γ = ker((X1)Γ −→ (X2)Γ), and hence

H̃1(Γ,M) � ker((X1)Γ −→ (X2)Γ)

im((X0)Γ −→ (X1)Γ)
= H1((X•)Γ).

Hence we proved our assertion for i = 1 and then induction is clear.

We want to apply this principle to construct the derived functors. But in some sense we
are trapped: If we have not yet defined the derived functor, how can we know that certain
objects are acyclic? This difficulty is resolved by the notion of injective modules.

Definition 2.3.5. A Γ-module I is called injective if it has the following property:
Whenever we have a diagram of Γ-modules

A B

I

............................................................... .....
.......

ϕ

.........................................................

......

......
......

ψ

where ker(ϕ) ⊂ ker(ψ), then we can extend the diagram to a commutative diagram

A B

I

............................................................... ......
......

ϕ
................................................................................................

.....
............

λ

.........................................................

......

......
......

ψ

Our assumption on ϕ,ψ is valid if ϕ is injective. If we want to check the injectivity of a
module it clearly suffices to check diagrams with ϕ injective.
Injective modules have a very important property: Whenever we have a short exact
sequence

0 −→ I −→ M −→ M ′ −→ 0,

and the module I is injective then the sequence splits. We simply apply the defining
property of injective modules to

0 I M

I

............................................................... ......
...... ............................................................... ......

......

.........................................................
......
......
......
Id

Our simple observation above implies that we get exact sequences

0 −→ H0(Γ,I) −→ H0(Γ,M) −→ H0(Γ,M ′) −→ 0 (2.10)

and
0 −→ H0(Γ,I) −→ H0(Γ,M) −→ H0(Γ,M

′) −→ 0. (2.11)

whenever the module I on the left is injective. Since we require that the cohomology
modules should measure the deviation from exactness and that they should be minimal
in this respect, we expect them to vanish for injective modules. In other words we expect
that injective modules should be acyclic, hence the injective modules provide a candidate
for the a class C. In view of our simple principle above we try to define the derived functors
by using injective resolutions.
The following lemma is the starting point:
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Lemma 2.3.6. Every Γ-module M can be embedded into an injective module I.

Sketch of the proof: First we consider the category Ab of abelian groups. This is the
case Γ = {Id}. One proves that the abelian group �/� is injective (this requires Zorn’s
lemma), then we see that every abelian group A can be embedded into a suitable product

A −→
∏
α

�/�.

If we have a Γ-module M we forget the Γ-module structure and embed it into an injective
abelian group, i.e. M ↪→ J . Now we get IndΓ{1}M ↪→ IndΓ{1} J , and the module IndΓ{1} J
is injective in the category of Γ-modules. This follows from Frobenius reciprocity. Then
we have achieved our goal since we have

M ↪→ IndΓ{1}M ↪→ IndΓ{1} J =: I.

Now the actual construction of the cohomology functor (the universal derived functor)
becomes clear. We noticed that injective modules should be acyclic, i.e. Hr(Γ,I) = 0 for
r > 0. But our Lemma 2.3.6 tells us that we can find an injective resolution of M , i.e.

0 −→ M −→ I0 −→ I1 −→ · · ·
in short 0 −→ M −→ I•. Then our Lemma 2.3.4 tells us

Hν(Γ,M) � Hν((I•)Γ) =
ker

(
(Iν)Γ −→ (Iν+1)Γ

)
im ((Iν−1)Γ −→ (Iν)Γ)

,

should be taken as the definition of the cohomology.
Of course we have to investigate how these cohomology groups depend on the injective
resolution and we have to show that M −→ H•(Γ,M) is a functor.

2.3.2 Functoriality

If we have two Γ-modules M,N and a ϕ ∈ HomΓ(M,N) then we will construct a family of
homomorphisms H•(φ•) : H•(Γ,M) −→ H•(Γ,N). We choose two injective resolutions
0 −→ M −→ I• and 0 −→ N −→ J•, I claim that we can extend the map ϕ to a map
between the complexes

0 M I0 I1 . . .

0 N J0 J1 . . .

........................................................................................ ......
...... ........................................................................................ ......

......
i

........................................................................................ ......
...... ........................................................................................ ......

......

........................................................................................ .....
....... ........................................................................................ .....

.......
j

........................................................................................ .....
....... ........................................................................................ .....

.......

..................................................................................
......
......
......

ϕ

..................................................................................
......
......
......

..................................................................................

......

......
......

The existence of this extension is proved by induction on the degree. To get the first
arrow ϕ0 : I0 −→ J0 we apply the defining property of injective modules to get the
arrow ϕ0 in the diagram

M I0

J0

........................................................................................ ......
......

i
...................................................................................................................................

.....
............

ϕ0

..................................................................................
......
......
......

j ◦ φ
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Then we construct ϕ1 by the same principle and it is quite clear that at any step the
existence of the vertical arrow follows directly from the defining property of injective
modules (we only need that the Jν are injective). This extension ϕ• : I• −→ J• induces
of course a map between the cohomology group

H•(ϕ•) : H•((I•)Γ) −→ H•((J•)Γ).

Now we have to worry what happens if we take two different extensions ϕ•,ϕ̃• of our map
ϕ. I want to show that these two extensions induce the same map on the cohomology.
To see this we can easily reduce to the case where ϕ = 0, and where ϕ• is an arbitrary
extension of ϕ = 0. Then I have to show that ϕ• induces the zero map on the cohomology.
I prove this by showing that under this assumption the map ϕ• : I• −→ J• is actually
homotopic to zero. This means that we can construct maps hν : Iν −→ Jν−1 (h0 = 0)
such that

ϕν = d ◦ hν + hν+1 ◦ d (2.12)

To construct h1 we observe that our assumption ϕ = 0 implies that the kernel of I0 −→ I1

is contained in the kernel of the vertical arrow I0 −→ J0. Since J0 is injective we can
construct h1 : I1 −→ J0 which produces a commutative diagram

I0 I1

J0

........................................................................................ ......
......

i
...................................................................................................................................

.....
............

h1

..................................................................................
......
......
......

Now we modify the given vertical arrow I1 −→ J1 by subtracting the composition
of h1 and the horizontal arrow I0 −→ J1. To this modified arrow we can apply the
previous argument and it becomes clear how to construct these hν by induction. Again
the existence of an hν satisfying Equation 2.12 in any degree follows from the injectivity
of the Jν−1 and the construction of the previous ones. But if we now apply our functor
(invariants under Γ) we get

0 (I0)Γ (I1)Γ (I2)Γ . . .

0 (J0)Γ (J1)Γ (J2)Γ . . .

....................................................................................................... ......
......

...........................................................................................................
......
......
......

ϕ0

................................................................................................................................................................
.....
............

h0

.................................................................................................... ......
......

............................................................................................. ......
......

...........................................................................................................
......
......
......

ϕ1

........................................................................................................................................................
.....
............

h1

........................................................................................ ......
......

............................................................................................. ......
......

...........................................................................................................

......

......
......

ϕ2

........................................................................................................................................................
.....
............

h2

........................................................................................ ......
......

....................................................................................................... ......
......

................................................................................................................................................................
.....
............

h3

.................................................................................................... ......
......

(We should have written ϕ•Γ,h•Γ to be absolutely correct.) But now it is clear that
ϕ• induces zero in the cohomology. If we have a cycle cν ∈ (Iν)Γ representing a given
cohomology class then ϕν(cν) = d ◦ h(cν) and hence it represents the trivial class. If we
apply this to a module M and the identity Id : M −→ M and two different resolutions
of M , then we get a unique isomorphism between the resulting cohomology groups. In
this sense the cohomology groups do not depend on the chosen resolution. Since the
map H•(ϕ•) does not depend on the choice of the extension of ϕ to the resolutions, the
construction gives a unique family of homomorphisms H•(ϕ•). This is functoriality.
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2.3.3 Other Resolutions

If we start from an arbitrary resolution of our module M , say 0 −→ M −→ X0 −→
X1 −→ · · · and if we also choose an injective resolution of M as above then our con-
siderations in section 1.3.5 on direct limits show that we can construct a morphism of
complexes of Γ-modules

0 M X0 X1 . . .

0 M J0 J1 . . .

................................................................................................................. ......
...... ................................................................................................................. ......

......
i

................................................................................................................. ......
...... ................................................................................................................. ......

......

...........................................................................................................
......
......
......

ϕ

...........................................................................................................
......
......
......

...........................................................................................................

......

......
......

................................................................................................................. ......
...... ................................................................................................................. ......

......
j

................................................................................................................. ......
...... ................................................................................................................. ......

......

because we only need the injectivity of the J•. Therefore we get a canonical homomor-
phism

H•((X•)Γ) −→ H•((J•)Γ) = H•(Γ,M).

Our starting principle in section 2.3.1 says that this homomorphism will be an isomor-
phism if the modules Xν are acyclic. But it is sometimes useful to consider such a resolu-
tion, even if it is not acyclic. It may be the case,that the cohomology groups H•((X•)Γ)
are easier to understand than the the cohomology groups H•(Γ,M) themselves. Then this
homomorphism gives us some kind of approximation of the cohomology group. We will
discuss this again in 4.6.1, the above homomorphism will be the edge homomorphism.

2.3.4 Injective Resolutions of Short Exact Sequences

Now we want to show that we get a long exact sequence in the derived functors if we
start from a short exact sequence

0 −→ M ′ −→ M −→ M ′′ −→ 0. (2.13)

We write our short exact sequence vertically and choose injective resolutions of the two
modules M ′,M ′′ which we write horizontally. Imagine we have done this. Then we can
write the direct sum in the middle and we get short vertical exact sequences. It will look
like this:
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0 0 0

0 M ′ I ′0 I ′1 . . .

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

........................................................................................ .....
....... ........................................................................................ .....

.......i′
........................................................................................ .....

....... ........................................................................................ .....
.......

0 M I ′0 ⊕ I ′′0 I ′1 ⊕ I ′′1........................................................................................ ......
......

0 M ′′ I ′′0 I ′′1 . . .

0 0 0

..................................................................................
......
......
......

..................................................................................
......
......
......

..................................................................................

......

......
......

..................................................................................
......
......
......

..................................................................................
......
......
......

..................................................................................

......

......
......

..................................................................................
......
......
......

..................................................................................
......
......
......

..................................................................................

......

......
......

........................................................................................ .....
....... ........................................................................................ .....

.......i′′
........................................................................................ .....

....... ........................................................................................ .....
.......

(2.14)

The horizontal arrows in the middle are still missing. Now the injectivity of I ′0 allows
an arrow Ψ from M to I ′0 which yields a commutative diagram

0

0 M ′ I ′0

M

..................................................................................

......

......
......

........................................................................................ ......
...... ........................................................................................ ......

......

..................................................................................

......

......
......

.........
........
.........
........
.........
........
.........
........
.........
.........
........
.........
........
...............
............

Ψ

Let p′′ be the projection from M to M ′′. Then Ψ ⊕ (i′′ ◦ p′′) gives us an injection

0 −→ M −→ I ′0 ⊕ I ′′0,

which we can fill into the diagram above. This yields a diagram
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0 0 0

0 M ′ I ′0 U 0

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

........................................................................................ .....
....... ........................................................................................ .....

....... ........................................................................................ .....
....... ........................................................................................ .....

.......

0 M I ′0 ⊕ I ′′0 V 0........................................................................................ ......
...... .......................................................... ......

...... .......................................................... ......
...... ........................................................................................ ......

......

0 M ′′ I ′′0 W 0

0 0 0

..................................................................................
......
......
......

..................................................................................
......
......
......

..................................................................................
......
......
......

..................................................................................
......
......
......

..................................................................................
......
......
......

..................................................................................
......
......
......

..................................................................................
......
......
......

..................................................................................
......
......
......

..................................................................................
......
......
......

........................................................................................ .....
....... ........................................................................................ .....

....... ........................................................................................ .....
....... ........................................................................................ .....

.......

(2.15)

We have U ↪→ I ′1 and W ↪→ I ′′1 and again we construct as before an arrow

V ↪→ I ′1 ⊕ I ′′1.

This goes on forever and is that we call an injective resolution of the exact sequence
2.13.

A Fundamental Remark

We have to be aware that in general the homomorphisms in the middle row

I ′ν ⊕ I ′′ν −→ I ′ν+1 ⊕ I ′′ν+1

are not the direct sum of the two homomorphisms which are already given by the reso-
lution of the extreme modules. We have to add a homomorphism

Ψν : I ′′ν −→ I ′ν+1 (2.16)

to this direct sum (ν is of course an upper index and not an exponent). These Ψν will
satisfy a recursion relation: We will have

0 =

{
d′Ψ(m) + Ψ0(i′′ ◦ p′′(m)) for ν = 0

d′Ψν(x′′ν ) + Ψν+1(d′′x′′ν) for ν > 0
. (2.17)

We will not be able to get d′Ψ(m) = 0 unless the sequence splits. Therefore we see that
we will not be able to show that such a Ψν+1 can be chosen to be trivial if we do not
have d′(Ψν) = 0. We come back to this point when we discuss the spectral sequence (see
sections 4.6.4 and 4.6.6).
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The Cohomology and the Long Exact Sequence

If we apply the functor H0(Γ, ) to the double complex 2.15 we get the diagram

0 0

0 (I ′0)Γ (I ′1)Γ . . .

0 (I ′0 ⊕ I ′′0)Γ (I ′1 ⊕ I ′′1)Γ . . .

0 (I ′′0)Γ (I ′′1)Γ . . .

0 0

.......................................................................................................................

......

......
......

.......................................................................................................................

......

......
......

.......................................................................................................................

......

......
......

.......................................................................................................................

......

......
......

.......................................................................................................................
......
......
......

.......................................................................................................................
......
......
......

.......................................................................................................................
......
......
......

.......................................................................................................................
......
......
......

................................................................................................................. .....
.......

................................................................................ .....
.......

.............................................................................................................. .....
.......

.................................................................................................... .....
.......

................................... .....
.......

............................................................................................... .....
.......

................................................................................................................. .....
.......

................................................................................ .....
.......

.............................................................................................................. .....
.......

where the horizontal complexes compute the cohomology of M ′,M and M ′′ respectively
and where the vertical sequences are exact. From this we get a long exact sequence of
the cohomology groups

0 H0(Γ,M ′) H0(Γ,M) H0(Γ,M ′′)

H1(Γ,M ′) H1(Γ,M) H1(Γ,M ′′) . . .

........................................................................... ......
...... ........................................... ......

...... ........................................ ......
......

......................................................................... ......
................................................. ......

...... ........................................ ......
......


......

δ

I just give a few indication how we get the connecting homomorphisms δ. A class in
ξ′′ ∈ Hp(Γ,M ′′) is represented by a cocycle x′′ ∈ (I ′′p)Γ. This element can be lifted to an
element x ∈ (I ′p⊕I ′′p)Γ. This element is not necessarily a cocycle, under the coboundary
operator it maps to an element y ∈ (I ′p+1⊕I ′′,p+1)Γ. This element can obviously be lifted
to an element in z ∈ I ′p+1 which must be a cocycle. The class of this element is the image
of ξ′′ under the connecting homomorphism.
Now we have constructed a derived functor using these injective resolutions. It is universal
as one sees easily from the requirement that it vanishes on injective modules.

The Homology of Groups

Essentially the same strategy works for the construction of the left derived functor M −→
Hi(Γ,M) for i = 0,1,2, . . ., of the right exact functor M −→ H0(Γ,M) = MΓ. The defining
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property of injective modules implies that an injective module is always a direct summand
if it sits in a bigger module. The dual notion is the notion of projective modules.

Definition 2.3.7 (Projective Module). A Γ-module P is called projective if for any
diagram

M N 0

P

............................................................... ......
......

p
............................................................... ......

......

......

......

......

......

......

......

......

......

...............

............

i

where the top sequence is exact we can find a map j : P −→ M

M N 0

P

............................................................... .....
.......

p
............................................................... .....

.......

......

......

......

......

......

......

......

......

...............

............

i
........
.....

........
.....

........
.....

...............................

j

so that p ◦ j = i.

It is easily seen that free Γ-modules
⊕

i∈I �[Γ] are projective. Hence we find

(i) Every Γ-modules M has a projective resolution

. . . −→ P2 −→ P1 −→ P0 −→ M −→ 0.

(ii) Every projective Γ-module P which is a quotient of a Γ-module X is a direct sum-
mand, i.e. the sequence 0 −→ Y −→ X −→ P −→ 0 splits.

The assertion (ii) implies that the sequence

0 −→ YΓ −→ XΓ −→ PΓ −→ 0

is still exact. Hence we should require Hi(Γ,P ) = 0 for i = 1,2, . . .. Now we may apply
the same strategy as in the construction of the cohomology functor. For a module we
choose a projective resolution P• −→ M −→ 0 and put

H•(Γ,M) = H•((P•)Γ). (2.18)

The same arguments as before show that this gives a universal left derived functor for
the functor

M −→ MΓ = H0(Γ,M).

We get a long exact sequence where the arrows point in the opposite direction.

2.4 The Functors Ext and Tor

2.4.1 The Functor Ext

We may look at our previous constructions from a slightly more general point of view.
The category of Γ-modules is the same as the category of R-modules where R = R[Γ] is
the group ring. We now consider the category ModR of modules over an arbitrary ring
R.
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To any pair of modules M,N ∈ Ob(ModR) we can introduce the abelian group

HomR(N,M) =

{
ϕ : N −→ M | ϕ homomorphism of abelian groups

ϕ(rm) = rϕ(m) for all r,m,

}
and if we fix N then this becomes a functor from the category ModR to the category
of abelian groups. But we may also fix M and vary N , then our functor becomes a
contravariant functor:
A R-module homomorphism Ψ : N1 −→ N2 induces a map

HomR(N2,M) −→ HomR(N1,M)

by composition. (So far all our functors were covariant.) It is quite clear that the covariant
functor M −→ HomR(N,M) is left exact and that the contravariant functor N −→
HomR(N,M) is right exact.
For a given N we may try to construct the right derived functor to M −→ HomR(N,M)
and for given M we may try to construct a left derived functor to the functor N −→
HomR(N,M). The same principles as before tell us that the right derived functor should
be zero on injective modules (same definition), and the left derived functor should be
trivial on projective modules. Hence we choose an injective resolution of 0 −→ M −→ I•

and define the right derived functor by

RExt•R(N,M) = H•(HomR(N,I•)). (2.19)

I say again what this means: For a fixed R-module N and any exact sequence of R
modules

0 −→ M ′ −→ M −→ M ′′ −→ 0,

we get a long exact sequence

0 HomR(N,M ′) HomR(N,M) HomR(N,M ′′)

RExt1R(N,M ′) RExt1R(N,M) RExt1R(N,M ′′) . . .

............................................................................................. .....
....... ........................................ .....

....... ...................................... .....
.......

..................................................................................... .....
..................................... .....

....... ............................ .....
.......


.......

(2.20)

But by construction these groups RExtiR(N,M) are also functorial in N if we fix M , the
functors N −→ RExti(N,M) are contravariant.
Analogously we choose a projective resolution P• −→ N −→ 0 and define

LExt•R(N,M) = H•(HomR(P•,M)). (2.21)

Our previous arguments show that we get a left derived functor which has all functorial
properties. It is clear that the functors M −→ HomR(P,M) resp. N −→ HomR(N,I) are
exact if P is projective (resp. I is injective). Hence we have in this case

RExtiR(P,M) = 0 , LExtiR(N,I) = 0.

We will indicate briefly how this implies that we have a functorial isomorphism

LExtiR(N,M) � RExtiR(N,M). (2.22)
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To see this we choose two resolutions: 0 −→ M −→ I•, P• −→ N −→ 0, and we form
the double complex HomR(P• −→ N −→ 0,0 −→ M −→ I•) which in full looks like

...
...

...

0 HomR(P1,M) HomR(P1,I
0) HomR(P1,I

1) . . .

0 HomR(P0,M) HomR(P0,I
0) HomR(P0,I

1) . . .

0 HomR(N,M) HomR(N,I0) HomR(N,I1) . . .

0 0 0

......

......

......

......

......

......

......

......

...............

............

......

......

......

......

......

......

......

......

......

......

...............

............

......

......

......

......

......

......

......

......

......

......

...............

............

......

......

......

......

......

......

......

......

......

......

...............

............

......

......

......

......

......

......

......

......

...............

............

......

......

......

......

......

......

......

......

......

......

...............

............

......

......

......

......

......

......

......

......

......

......

...............

............

......

......

......

......

......

......

......

......

......

......

...............

............

......

......

......

......

......

......

......

......

...............

............

......

......

......

......

......

......

......

......

......

......

...............

............

......

......

......

......

......

......

......

......

......

......

...............

............

......

......

......

......

......

......

......

......

......

......

...............

............

............................................................................................... .....
.......

............................................................................................... .....
.......

.................................................................................................. .....
.......

........................................ .....
.......

........................................ .....
.......

............................................. .....
.......

........................................ .....
.......

........................................ .....
.......

............................................. .....
....... .................................................................................................. .....

.......

............................................................................................... .....
.......

............................................................................................... .....
.......

Now the first vertical Complex computes the LExt•R(P,M) and the horizontal complex
at the bottom computes RExt•R(P,M). All other vertical or horizontal complexes are
exact. Then a simple diagram chase shows that the cohomology of the bottom horizontal
complex and the first vertical complex are isomorphic.
We summarize

Lemma 2.4.1. The functor in two variables Ext•R(N,M) can be be computed from an
an injective resolution of M or a projective resolution of N . The higher ExtiR(N,M) for
i > 0 vanish if M is injective or if N is projective.

2.4.2 The Derived Functor for the Tensor Product

Another functor in two variables is given by the tensor product. Here we have to be a
little bit careful in case that our ring R is not commutative. We consider the categories
ModLR ,ModRR of left and right R-modules.

Definition 2.4.2 (Tensor Product). The tensor product of a right R-module N and
a left R-module M is an abelian group N ⊗R M together with a map

Ψ : N × M −→ N ⊗R M

Ψ : (n,m) �−→ n ⊗ m

which has the following properties

(i) It is a biadditive, i.e.

Ψ(n1 + n2,m) = (n1 + n2) ⊗ m = n1 ⊗ m + n2 ⊗ m

Ψ(n + m1 + m2) = m ⊗ (m1 + m2) = n⊗ m2 + n⊗ m2.

(ii) For all r ∈ R,n ∈ N,m ∈ M we have nr ⊗m = n⊗ rm. (This is the moment where
we need that N is a right R-module and M is a left R-module).
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(iii) This map is universal: If we have another Ψ′ : N ×M −→ X with an abelian group
X which satisfies (i) and (ii) then we can find a ϕ : N ⊗R M −→ X such that
Ψ′ = ϕ ◦ Ψ.

It is easy to construct N ⊗R M , we form the free abelian group which is generated by
pairs (n,m) ∈ N × M and divide by the subgroup generated by elements of the form

(n1 + n2,m) − (n1,m) − (n2,m)

(n,m1 + m2) − (n,m1) − (n,m2)

(nr,m) − (n,rm).

If our ring R is commutative then we can give N ⊗R M the structure of an R-module:
We simply define

r(n ⊗ m) = nr ⊗ m = n⊗ rm. (2.23)

In this case of a commutative ring R we can assume that both variables N,M are left
R-modules.
If we fix N then the functor M −→ N ⊗R M is a right exact functor but in general it is
not exact. This means that for a short exact sequence 0 −→ M ′ −→ M −→ M ′′ −→ 0
the sequence

N ⊗R M ′ −→ N ⊗R M −→ N ⊗R M ′′ −→ 0

will be exact but the first arrow on the left will not be injective in general. We leave it as
an exercise to the reader to verify the right exactness. In the section on flat morphisms
of schemes we will discuss some examples which explain these phenomena (Volume 2).
But if the module M ′′ is projective then the sequence stays exact if we tensorize by any
N because the sequence can be split.
This allows us to construct the derived functor. We work with a projective resolution
P• −→ M −→ 0, to define

RTorR• (N,M) = H•(N ⊗R P•). (2.24)

This is a universal left derived functor of our functor above, it is clear that this is a
functor in the two variables N,M .
We can also choose a projective resolution Q• −→ N −→ 0 define the functor

LTorR• (N,M) = H•(Q• ⊗R M). (2.25)

Again it is not so difficult to prove that these two functors are indeed equivalent. To see
this we consider the double complex defined by the two resolutions and the vertical and
horizontal subcomplexes are acyclic in the ”interior”.

Again we summarize:

Lemma 2.4.3. The functor in two variables TorR• (N,M) defined in that way can be
computed by a projective resolution of N or a projective resolution of M . The higher
TorRi (N,M) vanish for i > 0 if one of the entries is a projective module.

Definition 2.4.4. A left R-module M is called flat if the functor N −→ N ⊗R M is
exact.

The following is obvious



32 2 Basic Concepts of Homological Algebra

Lemma 2.4.5. The left R-module M is flat if and only if TorRi (N,M) = 0 for all i > 0
and all right R-modules N .

Lemma 2.4.6. The functors cohomology and homology of a group Γ are special cases of
Ext• and Tor•.

We take for our ring the group ring R = �[Γ], and we observe: If � is the abelian group
� with trivial Γ-action then

Hom�[Γ](�,M) = MΓ,

and hence we see
Exti�[Γ](�,M) = H i(Γ,M); (2.26)

and
M ⊗�[Γ] � = MΓ,

hence
TorR• (M,�) = H•(Γ,M). (2.27)

We conclude this chapter with some extra remarks and some exercises. We observe that
we can compute the cohomology of a group also from a projective resolution

. . . −→ P2 −→ P1 −→ P0 −→ � −→ 0

Then Lemma 2.4.1 and our formula above implies H i(Γ,M) = Hi(HomΓ(P•,M)). We
can construct some kind of natural projective resolution of �. For our module P0 we
take the group ring P0 = �[Γ] and the first arrow P0 −→ � is the augmentation map.
The group ring considered as an abelian group is the group of finitely supported maps
Mapfin(Γ,�). We define

Pn := Mapfin(Γ
n+1,�), (2.28)

this becomes a projective Γ module if we define (σf)(σ0, . . . ,σn) = f(σ−1σ0, . . . ,σ−1σn).
We define a boundary operator dn : Pn −→ Pn−1 by

(dnf)(σ0, . . . ,σn−1) :=
∑
i,τ

(−1)if(σ0, . . . ,τ, . . . ,σn−1), (2.29)

where τ runs over Γ and is inserted at the i−th place. It is easy to check, that this gives
a projective resolution.

2.4.3 Exercise

Exercise 10. Apply the previous paragraph to the case of a cyclic group Γ = �/n�.
Let σ be a generator of the group. We have the exact sequence

0 −→ IΓ −→ �[Γ] −→ � −→ 0

and IΓ = �[Γ](1 − σ).

(a) In the case n = 0 (the infinite group) we have that IΓ is a free module. This gives
simple formulae for the cohomology and shows Hν(Γ,M) = 0 for ν ≥ 2.
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(b) In the case of a finite group the map

�[Γ] −→ IΓ

r −→ r(1 − σ)

has the kernel �[Γ](1 + . . . + σn−1). Construct a “periodic” resolution from this
and compute the cohomology.

Exercise 11. Compare our provisional cohomology groups Ȟ1(Γ,M) and the new ones.
This is not so difficult. Use the following

(a) We observe that our new cohomology groups obviously satisfy: For a subgroup Γ′ ⊂ Γ
and a Γ′-module

H i(Γ, IndΓΓ′ Y ) = Hi(Γ′,Y ).

(Choose an injective resolution of the Γ′-modules Y and ... .)

(b) We take Γ′ = {1}. Then H1(Γ, IndΓ{1}M) = 0. We constructed the sequence

0 −→ M −→ IndΓ{1}M −→ (IndΓ{1}M)/M −→ 0,

and we find (
(IndΓ{1}M)/M

)Γ
/(IndΓ1 M)Γ � H1(Γ,M).

But in Exercise 7 we proved that we also have Ȟ1(Γ, IndΓ{1}M) = 0, the claim

follows if we apply the exact sequence for Ȟ to our exact seqence above.

Exercise 12. Let us consider the ring R = k[X ]/(X2) where k is any field. Then the
category of R-modules is the same as the category of k-vector spaces V together with an
k-linear endomorphism α : V −→ V which satisfies α2 = 0. If dimk V = 1, then α must
be zero. Compute Ext1R(k,k).

Does this ring a bell?
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3 Sheaves

3.1 Presheaves and Sheaves

3.1.1 What is a Presheaf?

We start from a topological Space X and we define the category Off(X) of open sets:
The objects are the open sets U,V ⊂ X and the morphisms

HomOff(X)(V,U) =

{
∅ if V �⊂ U

{i} i is the inclusion if V ⊂ U.
(3.1)

Definition 3.1.1. A presheaf on X with values in a category C is a contravariant
functor from the category Off(X) with values in the category C.
We say again what this means: To any open set U ⊂ X our presheaf F associates an

object F(U) ∈ Ob(C). Whenever we have an inclusion V
i−→ U we get a so-called

restriction morphism
rU|V : F(U) −→ F(V ). (3.2)

Of course we have rU|U = Id and for V1 ⊂ V2 ⊂ U we get a commutative diagram

F(U) F(V2)

F(V1)

.............................................................................................................................................................................................................................................. ......
......

rU|V2
............................................................................................................................................................. .......

.....

rU|V1

........................................................................................................................................................
.....
............

rV2|V1

which can be written awkwardly

rU|V1 = rV2|V1 ◦ rU|V2 . (Sh0)

If this functor F takes values in the category Ab of abelian groups (rings, modules over
a ring, vector spaces, sets,...) we call it a presheaf of abelian groups (rings, modules over
a ring, vector spaces, sets,...). For us the target category will always be of one these
simpler categories. This means that the objects F(U) will be sets equipped with some
kind of additional structure and the morphisms will be maps which respect this additional
structure.
Under this assumption we know what the elements in F(U) are, they will be called the
sections of F over U .
Sometimes it is a nagging question what F(∅) should be. Usually we can take for F(∅) a
so called final object in the category, this is an object Ω such that for any other object
X ∈ Ob(C) we have exactly one morphism from X to Ω. For the category of sets we can
take any set consisting of just one element and for the category ModR we can take the
zero module.

G. Harder, Lectures on Algebraic Geometry I, DOI 10.1007/978-3-8348-8330-8_3, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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It is clear that presheaves with values in a given category C on X form a category PSX
by themselves. A morphism Ψ ∈ HomPSX (F ,G) between two presheaves is a collection
of morphisms

ΨU : F(U) −→ G(U), (3.3)

which satisfies the obvious rule of consistency: whenever we have V ⊂ U we get a com-
mutative diagram

F(U) G(U)

F(V ) G(V )

............................................................................................. .....
.......

ΨU

...........................................................................................................

......

......
......

rU|V

...........................................................................................................

......

......
......

rU|V

.......................................................................................... .....
.......

ΨV

(3.4)

(If we were pedantic, we should also denote the rU|V differently (rFU|V or so).)

The category of presheaves (in a suitable target category C) contains a (so called “full”)
subcategory, this is the category of sheaves. Before I can define sheaves I need:

3.1.2 A Remark about Products and Presheaf

Let us assume we have two indexing sets I,J and two families of objects {Xi}i∈I , {Yj}j∈J
in a category with products. Assume that we have a map τ : J −→ I and in addition
that for every j ∈ J we have a morphism f(j) : Xτ(j) −→ Yj . Then we get for j ∈ J a
composition morphism

f(j) ◦ p(τ(j)) :
∏
i∈I

Xi −→ Yj

It is the definition of the product that this gives us a unique morphism

fτ :
∏
i∈I

Xi −→
∏
j∈J

Yj

which for any j ∈ J produces a commutative diagram∏
i∈I

Xi

∏
j∈J

Yj

Xτ(j) Yj

........................................................................................ ......
......

fτ

...............................................................................................
.....
.......
.....

.............................................................................................
.....
.......
.....

....................................................................................................... .....
.......

f(j)

(3.5)

Hence morphisms from one product into another product can be obtained from maps
between the indexing sets in the opposite direction and morphisms between the objects
indexed by indices related by this map. We say that this arrow is induced by the maps
between the indexing sets and the maps between the objects.

3.1.3 What is a Sheaf?

Now we explain the extra condition a presheaf has to satisfy if it wants to be a sheaf.
We need that the target category C has products. For our purpose it is good enough if it
is a category of rings or a category of modules.
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Let F be a C-valued presheaf on our space X . Let U ⊂ X be open, let U = ∪α∈AUα be
an open covering. Then we get a diagram of maps

F(U)
p0−→

∏
α∈A

F(Uα)
p1−→−→
p2

∏
(α,β)∈A×A

F(Uα ∩ Uβ), (3.6)

where the arrows are given as follows: The arrow p0 is induced by the maps

F(U)
rU|Uα−→ F(Uα)

and p1,p2 are induced by the two projections

A × A −→−→ A

(α,β) �−→ α

(α,β) �−→ β

and the restriction maps F(Uα) −→ F(Uα ∩ Uβ). If we assume that our target category
is the category of sets, (abelian) groups, rings ... where the product is the simple-minded
product then we can see what happens to s ∈ F(U): It is mapped to

(
. . . ,rU|Uα

(s), . . .
)
α∈A.

For a section (. . . ,sα, . . .)α∈A ∈∏α∈A F(Uα) we have

∏
α∈A F(Uα) � (. . . ,sα, . . .)α∈A

(
. . . ,rUα|Uα∩Uβ

(sα), . . .
)
(α,β)∈A×A(

. . . ,rUβ |Uα∩Uβ
(sβ), . . .

)
(α,β)∈A×A

............................................................................................................................................... .....
.......

p1

............................................................................................................................................... .....
.......

p2

In any case it is clear from condition Sh0 (see page 35) that the first arrow “equalizes”
the two arrows p1,p2. This means that p1 ◦ p0 = p2 ◦ p0. Now we are ready to state the
condition a sheaf has to satisfy. For simplicity we assume that our target category is one
of the simple ones above.

Definition 3.1.2 (Sheaf). A presheaf F is a sheaf if and only if

(Sh1) The arrow p0 is injective.

(Sh2) The image of p0 is exactly the set of those elements where p1,p2 take the same
values.

We summarize the two conditions into

F(U)
∼−→
⎛⎝∏

α∈A
F(Uα)

p1−→−→
p2

∏
(α,β)∈A×A

F(Uα ∩ Uβ)

⎞⎠ [p1 = p2] . (3.7)

We will say that the above sequence is an exact sequence of sets.
Comment: In the case of an abstract target category C we would have to explain what
injectivity of p0 means and how we define the object [p1 = p2] for a pair of morphisms

A
p1−→−→
p2

B. This is actually not so difficult.

Now we fix a target category C. The sheaves with values in C form a “full” subcategory
SX of the category of presheaves with values in C. This means that each sheaf is also
a presheaf and for any two sheaves F ,G on X the sets of morphisms in the category of
sheaves and in the category of presheaves are the same, i.e.

HomPSX (F ,G) = HomSX (F ,G).
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3.1.4 Examples

Example 13. On any topological Space X we have the sheaf C0 of continuous �- or
�-valued functions.

For any open set U ⊂ X we put C0(U) = ring of real (or complex) valued continu-
ous functions on U . The restriction maps are given by the restriction of functions. The
properties (Sh1),(Sh2) are obvious because the continuity of a function can be checked
locally.

Example 14. We can define the sheaf U −→ �X(U) as the sheaf of locally constant �
- valued functions on U .

Note that
U −→ constant � - valued functions on U

would only define a presheaf because condition Sh2 will not be satisfied in general. This
makes it clear what the general rule is: whenever we have a class of functions defined by
certain properties then they provide a sheaf if these properties can be checked locally.
Of course we can replace � by any abelian group A and define the sheaf

U −→ AX(U) = locally constant A-valued functions on U.

We may look at these sheaves from a different point of view. We can put the discrete
topology on A, and then we see that AX(U) is simply the abelian group of continuous
functions on U with values in A. Sometimes we will write A instead of AX .
If we have a point p ∈ X then we can define the ring of germs of continuous functions in
this point p.

Definition 3.1.3 (Germ). A germ of a continuous function at p is a continuous function
f : Up −→ � defined in an open neighborhood Up of p modulo the following equivalence
relation:

(f : Up −→ �) ∼ (g : Vp −→ �)

if and only if there is a neighborhood Wp ⊂ Up ∩ Vp of p such that and f |Wp = g|Wp.

It is clear that the germs form a ring which is called C0,X,p. It is clear that this ring is
the direct limit

lim
−→
U�p

C0(U) = C0,X,p

(See section 1.3.5).
This ring is a local ring, which means that it has a unique maximal ideal. This maximal
ideal mp is the kernel of the evaluation at p. To see this one has to observe that a germ f
which does not vanish at p also does not vanish in a small neighborhood of p and on this
neighborhood we can define the continuous function 1/f . This means that f is invertible
in C0

X,p and it follows that any ideal in C0X,p which is not contained in mp is the entire
ring. Of course such a ring of germs is pretty big.
If we do the same thing with our sheaf �X then it is clear that a germ at p is determined
by its value at p. Hence in this case the ring of germs is simply �X,p = �. This is not a
local ring.
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3.2 Manifolds as Locally Ringed Spaces

3.2.1 What Are Manifolds?

At this point I want to explain that the concept of sheaves gives us a better way to think
of topological (C0−), differentiable (C∞−) or complex manifolds. I hope the explanation
will also be helpful for the understanding of the concept of sheaves.

Definition 3.2.1. A topological manifold X is a Hausdorff space such that for each
point p ∈ X we can find an open neighborhood Up of p which is homeomorphic to an open

set in �n: Up
∼−→ U ⊂ �n.

This is also called a C0-manifold, on this space we can define the sheaf C0
X of germs of

continuous functions with values in � or �.
A non-trivial theorem in algebraic topology asserts that two non-empty open sets U ⊂ �n

and V ⊂ �m can only be homeomorphic if n = m (see section 4.4.5). This allows us to
speak of the dimension of the topological manifold provided it is connected.
I now recall the conventional definition of differentiable or complex manifolds.

Definition 3.2.2. A C∞-manifold of dimension n is a topological manifold X together
with a C∞-atlas: This is a family {Vα,uα}α∈A of open subsets such that

(i) X =
⋃

α∈A Vα

(ii) The uα are homeomorphisms uα : Vα
∼−→ V ′α where the V ′α are open subsets in �n.

(iii) If Vα ∩ Vβ �= ∅ then we get a diagram

Vα ∩ Vβ

uα(Vα ∩ Vβ) ⊂ V ′α

uβ(Vα ∩ Vβ) ⊂ V ′β

...............
...............
...............
...............
...............
................
............uα

........................................................................................... ........
....

uβ

.........................................................................................................................................

......

......
......

uαβ

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.................

............

uβα (3.8)

and we demand that uαβ ,uβα are C∞-maps.
The maps uα : Vα

∼−→ V ′α are called the local charts of the atlas. In this case it is easier
to see that the dimension is well defined.

We may define a complex manifold of dimension n in the same way. We demand that
the V ′α are open in �n and the uαβ ,uβα are holomorphic maps. Of course it is clear that a
complex manifold of dimension n also carries a structure of a C∞-manifold of dimension
2n.
Once we have the notion of C∞-manifold (resp. complex manifold) we may define the
sheaves of germs of C∞− (resp. holomorphic) functions:

Definition 3.2.3. For U ⊂ X and f : U −→ �, we say that f is C∞ (resp. holomorphic)
if for any p ∈ U and any Vα with p ∈ Vα the map

f̃α = f ◦ u−1α : uα(Vα ∩ U) −→ �

is C∞ (resp. holomorphic).
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Let us denote these sheaves by C∞X and OX respectively.
After defining a C∞- (resp. complex) manifold this way there is still a lot of talking
about how to compare different atlases, what are equivalence classes of atlases, what are
maximal atlases and so on.
With our definition we know what it means that a map h : X −→ Y between two
C∞ (resp. complex) manifolds is a C∞ (resp. holomorphic) map. Such a map should be
continuous and then we use the atlases to formulate what else should be true, namely
that the maps induced by the local charts should be C∞ (resp. holomorphic). But we see
that there is a different way of formulating that h is C∞ (resp. holomorphic): Whenever
we have open sets U ⊂ X,V ⊂ Y such that h(U) ⊂ V , i.e. h : U −→ V and a section
f ∈ C∞X (V ) (resp. f ∈ OX(V )) then the composite f ◦ h is certainly continuous. It is not
hard to check, that our map is C∞ (resp. holomorphic) if and only if for any such pair
U,V and any f the composite map f ◦ h is again C∞ (resp. holomorphic), i.e. we get a
map

◦h : C∞Y (V ) −→ C∞X (U) (resp. ◦ h : OY (V ) −→ OX(U)).

A better formulation is obtained if we introduce the sheaf (see the following sections
on f∗,f∗ and the adjointness formula) h∗(C∞Y ) on X : For any open subset U ⊂ X the
space of section h∗(C∞Y )(U) consists of functions f : U −→ � which have the following
property:
For any point p ∈ U we can find a neighborhood Up of p and an open set Vh(p) ⊂ Y such

that h(Up) ⊂ Vh(p) and we can find a section f̃ ∈ C∞X (Vh(p)) so that

f = f̃ ◦ h.

Then we can say that a map h : X −→ Y is C∞ (resp. holomorphic) if it is continuous
and induces a map

◦h : h∗(C∞Y ) −→ C∞X
(resp. ◦ h : h∗(OY ) −→ OX).

Of course the composition with h always induces a map

h∗(C0Y ) −→ C0X
between the sheaves of continuous functions. A C∞ resp. holomorphic map h has to
respect the distinguished subsheaves which have been defined using the atlases.
I want to explain that these concepts of manifolds become much clearer if we follow
Grothendieck and introduce the concept of locally ringed spaces. We turn the
whole thing around and formulate a new definition of a C∞− (resp. complex) manifold:

Definition 3.2.4. A C∞− (resp. complex) manifold is a topological space X together
with a subsheaf C∞X (resp. OX) in the sheaf of continuous functions such that for any
point p ∈ X we have a neighborhood Up of p and a homeomorphism h between Up and
an open subset U ′ of �n (resp. �n) such that

(Up,C∞X ) � (U ′p,C∞U ′p)
(resp. (Up,OX ) � (U ′p,OU ′p))

where Up is open in �n (resp. �n) and the sheaves are the sheaves of C∞ (resp. holo-
morphic) functions on U ′p and where � means that the composition ◦h induces an iso-
morphism between the subsheaves.
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In very simple words: A so and so manifold is a topological manifold on which we have
a subsheaf of the sheaf of continuous functions which locally looks like the sheaf of so
and so functions on some simple model space. In our examples the stalks are local rings,
hence we get examples of so called locally ringed spaces.
It is not only so that we get a much clearer concept of C∞− or complex manifolds. It
turns out that this concept allows generalizations to cases where we cannot work with
atlases anymore. (see example 18)) and Chapter 6 in the second volume)
Let X be a C∞-manifold of dimension d and p ∈ M a point. We still have charts.
By definition we can find a neighborhood Up and sections x1,x2, . . . ,xd ∈ C∞X (U) such
that the map x : Up −→ �

d which is given by x(q) = (x1(q),x2(q), . . . ,xd(q)) is a
homeomorphism from Up to an open subset U ′ ⊂ �d and such that a function f : Up −→
� is in C∞X (Up) if and only if f ◦ x−1 : U ′ −→ � is a C∞− function. Such a collection
x1,x2, . . . ,xd will be called a system of local coordinates at p. We will then say that
f = f(x1,x2, . . . ,xd) is a C∞ function in the variables x1,x2, . . . ,xd.
It is possible to define the category of locally ringed spaces.

Definition 3.2.5 (Locally Ringed Space). A locally ringed space is a topological space
X together with a sheaf of rings whose stalks (see section 3.3.1) are local rings.

To define the morphisms we start from continous maps f : X −→ Y between the spaces.
Then we use the functors f∗,f∗ (see section 3.4) to formulate what happens between the
sheaves. We will encounter these objects in the second volume Chapter 6.

3.2.2 Examples and Exercise

I want to discuss a couple of examples and exercises.

Example 15.

(a) We define the structure of a complex space on the one dimensional projective space
�1(�). As a topological space this is the space of lines in �2 passing through the
origin. This is also the space of all pairs (z0,z1) �= (0,0) of complex numbers divided
by the equivalence relation

(z0,z1) ∼ (λz0,λz1), λ ∈ �∗.

We have the two open subsets U0 (respectively U1) where the coordinate z0 �= 0 (re-
spectively z1 �= 0.) On these open subsets we can normalize the non-zero coordinate
to one and get bijections

U0
∼−→ �, U1

∼−→ �,
(1,z) �→ z, (u,1) �→ u

Now we define the sheaf O�1 : For any open subset U ⊂ �
1(�) the sections of

O�1(U) consist of those �-valued functions whose restrictions to U0 ∩ U resp.
U1 ∩ U are holomorphic.

(b) Of course we can define the n-dimensional projective space �n(�). Again it is the
space of lines in �n+1 passing through the origin. We can identify this to the space

{(z0, · · · ,zn) ∈ �n+1 | not all zi = 0}/�∗
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where �∗ acts diagonally. We define the subset

Ui = {(z0, · · · ,zn) ∈ �n+1 | zi �= 0}/�∗

and identify Ui−̃→�n by the map (z0, · · · ,zi, · · · ,zn) �−→
(
z0
zi
, · · · , znzi

)
. The sheaf

of holomorphic functions on �n(�) is the sheaf of those functions whose restriction
to the Ui is holomorphic.

Example 16. We choose a lattice

Ω = {n1ω1 + n2ω2 | n1,n2 ∈ �}
in �, where ω1,ω2 are linearly independent over �. This lattice operates by translations
in �, we form the quotient �/Ω as a topological space, the projection

π : � −→ �/Ω.

is locally a homeomorphism. We define

O�/Ω(U) = {f : U −→ � | π−1(U)
f◦π−→ � is holomorphic}.

Then it is clear that this gives �/Ω the structure of a complex manifold.

Example 17. Let us assume that we have a holomorphic function f : U −→ � where
U ⊂ � is open and contains the origin. We assume f(0) = 0. We consider f as a
germ and we assume that its n-th iteration is the identity, i.e. f(f(. . . f(z)) . . .) = z.
We assume the f is of exact order n, i. e. no earlier iteration gives the identity. Of
course f(z) = ζz + a1z

2 . . . where ζ = e
2πik
m and (k,m) = 1. We can find a smaller open

set D ⊂ U such that f(D) = D. This defines a holomorphic action of the cyclic group
G =< f ν > of order n on D and we can form the quotient under this action. This is
the space D/G = B. Let π : D −→ B the projection map. We define a sheaf OB on B :
For any open set V ⊂ B we define OB(V ) as the ring of holomorphic functions on the
inverse image π−1(V ) ⊂ D which are invariant under the action of the cyclic group G.

Exercise 13. Prove that this sheaf defines a structure of a one dimensional complex
manifold on B.
Hint: Consider the special case where U = � and f(z) = ζz first. Of course the problem
arises only in a neighborhood of the origin 0. There the stalk of the sheaf OB is ring of
power series in w = zn which have a strictly positive radius of convergence. Then return to
the general case and prove that you can find a germ of a function g(z) = z+b2z

2+b3z
3 . . .

such that f(g(z)) = g(ζz) and show that this reduces the problem to the first case.

Example 18. Let us consider �2 and consider the following action of our cyclic group:

f : (z1,z2) �→ (ζz1,ζ
−1z2)

If we form the quotient π : �2 −→ �2/G = B we can try to play the same game.
Again we get the structure of a two dimensional complex variety except at the point
π(0) = 0. Here we see that the germ of our sheaf OB becomes a power series ring in
u = zn1 ,v = zn2 ,w = z1z2 and we have uv = wn. This means u,v,w are not independent
variables anymore. At the point 0 our space is singular and not locally isomorphic to
(�2,O�2). But our concepts of locally ringed spaces are strong enough to deal with this
situation. Our example has the structure of a complex space which may have singular
points.
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Example 19.

(a) I want to give an idea of what a complex space might be. This is more subtle, and I
need some difficult theorems from local complex analysis. We assume that U ⊂ �n

is an open subset and f1(z1, · · · ,zn), · · · ,fr(z1, · · · ,zn) are holomorphic functions
on U . Then we can consider the ideal I ⊂ O�n(U) which is generated by these
functions. We can look at the subset Y of common zeroes of the fi, i.e.

Y = {z = (z1, · · · ,zn) | fi(z) = 0 for all i = 1 · · · r}

and this is of course also the set of common zeroes of all the f ∈ I.

Of course Y is a topological space, for any open subset V ⊂ Y we can look at the
open sets U ′ ⊂ U with U ′ ∩ Y = V . For any such U ′ we form the quotient

O�n(U ′)/(f1, · · · ,fr)

where (f1, · · · ,fr) is the O�n(U ′)-ideal generated by the fi. We put

OY (V ) = lim−→
U ′:U ′∩Y=V

O�n(U ′)/(f1, · · · ,fr).

Now it follows from deep theorems in local complex analysis that V −→ OY (V ) is
in fact a sheaf (see [Gr-Re1], we can avoid this reference if we use the construction
of quotient sheaves below). One checks that the stalk OY,y = lim−→V :y∈V OY (V ) is a

local ring and the pair (Y,OY ) is in fact a locally ringed space. It can serve as a local
model for a general complex space. I want to point out that we cannot interpret the
rings OY (V ) as rings of holomorphic functions on Y . We may for instance consider
the case that U = �, and we take the single function f(z) = z2. Then Y = {0} and
the local ring is �[z]/(z2). It contains nilpotent elements and cannot be interpreted
as ring of holomorphic functions.

But still our space (Y,OY ) is called a complex space (see [Gr-Re1], [Gr-Re2],
Chap. I)).

(b) We say that our system of equations satisfies the Jacobi criterion in a point y ∈ Y
if the Jacobian matrix(

∂fi
∂zj

)
i,j

(y) i = 1, · · · ,r,j = 1,2 · · · ,n

has maximal rank r. Then this is still true in a small open neighborhood of y. The
theorem on implicit functions says that in a small neighborhood U1 ⊂ �n of y we
can perform a change of coordinates ui = gi(z1 · · · zn) for i = 1,2, · · · ,n such that
in the new coordinates our functions become f1(u1 · · ·un) = u1, · · · ,fr(u1 · · ·un)
= ur. Hence we see that in this neighborhood

Y ∩ U1 = {(0, · · · ,0,ur+1, · · · ,un) | ui suff. small},

and then (Y,OY ) is clearly an (n − r)-dimensional complex manifold in the neigh-
borhood of y ∈ Y . In this case we do not have to invoke the above mentioned
theorem.
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We can turn this around and say that a subset Y ⊂ U is a d-dimensional sub-
manifold of U if we can describe it locally as the common set of zeroes of n − d
holomorphic functions which satisfy the Jacobi criterion.

We come back to the situation in example 19 (a). We say that the ideal I defines a
(smooth) submanifold of dimension d if the set of common zeroes Y is a submanifold
of dimension d and if in addition at any point y ∈ Y we can find g1, . . . ,gn−d ∈ I
which satisfy the Jacobi criterion at the point y. In this situation the argument in
example 19 (b) shows that these g1, . . . ,gn−d generate the ideal I if we restrict it to
a small neighborhood of y.

(c) A closed subset Y ⊂ �
n(�) is a d dimensional complex projective manifold if for

any index i the intersection Y ∩ Ui is a d-dimensional complex submanifold of Ui.

(d) A homogeneous polynomial of degree k is a polynomial

f(z0, · · · ,zn) =
∑

aν0···νnz
ν0
0 · · · zνnn

where aν0···νn = 0 unless
∑

νi = k. We cannot consider such a polynomial as a
function on �n(�). But of course it makes sense to speak of the zeroes of this
polynomial on �n(�). Therefore we may consider an ideal I = {f1, · · · ,fs} which
is generated by s homogeneous polynomials. We can look at the common set of
zeroes

Y = {z = (z0 · · · zn) | z �= 0,fi(z) = 0 for all }/�×.
Such a set Y is called an algebraic subset of �n(�).

If we restrict a homogeneous polynomial f to one of the open sets Ui above, then we
can interpret it as a function on Ui because we can normalize the i-th coordinate of
a point to one. Hence our ideal I defines an ideal Ii of holomorphic functions on
each of the Ui.

Such a subset Y ⊂ �n(�) is called a smooth, projective (algebraic) variety of
dimension d if each of the ideals Ii defines a smooth submanifold of dimension d
in the sense of example 19(b). This definition is not yet very satisfactory because it
needs input from analysis (the implicit function theorem), for a definition in purely
algebraic terms I refer to volume 2.

It can happen that we need more than n − d homogeneous equations to describe a
smooth projective variety of dimension d. Locally at a point y we can choose n− d
equations from our set of equations to describe Y but this subset may vary if the
point moves around.

If we have such a complex d-dimensional submanifold Y ⊂ �n then the coordinate
functions z1, . . . ,zn are of course holomorphic functions on �n. Therefore they are
also holomorphic after restriction to Y . If we have a point y ∈ Y we may consider
the functions

z̃i = zi − zi(y) for i = 1, . . . ,n

as holomorphic functions on Y . Then it follows from example 19(b) that we can
pick d functions from this set - let us assume that these are z̃1, . . . ,z̃d - such that
the remaining functions can be written locally as convergent power series in these,
i.e.
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z̃d+j = hj(z̃1, . . . ,z̃d) j = 1 . . . n− d

Then the
z̃i = zi − zi(y) for i = 1, . . . ,n

are called a system of local parameters at y. We could also call them (analytic)
local coordinates.

3.3 Stalks and Sheafification

3.3.1 Stalks

In our examples above we had the notion of a germ of a function at a point p. This
notion can be extended to the more general classes of sheaves. Let us assume that we
consider the category of (pre-)sheaves on X with values in some nice category (abelian
groups, rings or sets). If we have a point p ∈ X then we consider the set Up of open sets
containing our point p. We define an ordering on this set

V ≥ U if and only if V ⊂ U. (sic!)

Then this is an inductive system which is also directed: to any U1,U2 we find a V with
U1 ≤ V , U2 ≤ V .

Definition 3.3.1 (Stalk). If we have a (pre-)sheaf F on X we define the stalk in p by

Fp = lim−→
U∈Up

F(U),

and this limit is simply the (abelian group, ring, set) of germs of sections.

It inherits the structure of an (abelian group, ring, set); this follows from this directedness
and is discussed in the Exercise 4 in section 1.4.
An element sp ∈ Fp is called a germ of a section. By definition it can always be
represented by a section sU ∈ F(U) where U ∈ Up. If this is so we write sU |p = sp and
we say that sp is the restriction of sU to the stalk at p.
Let s be a section over the open set U . If we have sp = 0 at p ∈ U then we find an open
neighborhood V of p such that s restricted to this neighborhood is zero. Hence we can
define the support of s:

Definition 3.3.2 (Support). The support of a section s ∈ F(U) is the closed subset of
U where sp �= 0.

These stalks help to clarify the difference of the notion of sheaves and presheaves. For
any presheaf we can consider the map

F(U) −→
∏
p∈U

Fp, (3.9)

which is given by restricting the sections to the stalks. Then we know:
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Lemma 3.3.3.

(i) This map is injective, if and only if our presheaf satisfies (Sh1).

(ii) If a presheaf F satisfies (Sh1) then it is a sheaf if and only if the following holds: A
collection of germs (. . . sp . . .)p∈U is the restriction of a section over U if for any p
we find a Up ∈ Up and a section s̃p ∈ F(Up) such that s̃p|q = sq for all q ∈ Up.

We leave the verification of this fact to the reader.

3.3.2 The Process of Sheafification of a Presheaf

We will show that to any presheaf G on a space X we can construct a sheaf G# together
with a map j : G −→ G# (in the category of presheaves) such that for any sheaf F we
have

HomPSX (G,F) = HomSX (G#,F). (3.10)

This can also be seen as another example of a representable functor. Our presheaf G
defines a functor from the category S of sheaves (with values in the category of rings,
abelian groups, sets) into the category of sets, namely the functor F −→ HomPSX (G,F).
Our sheaf G# is representing this functor. Hence by the Yoneda Lemma it is unique up
to isomorphism.
To see that G# exists we use the stalks. It is possible to define G# quite directly, we
define

G#(U) =

⎧⎨⎩(. . . sp . . .) ∈
∏
p∈U

Gp |
For any point p ∈ U ∃ open Up

p∈Up⊂U and s̃p∈G(Up), s. t.
s̃p|q=sq for all q∈U

⎫⎬⎭ . (3.11)

The reader should verify, that this defines indeed a sheaf, this sheaf has the same stalks
as our original presheaf, we have a map G −→ G# and it has the required property.
There exist some more abstract notions of sheaves on so called Grothendieck topologies,
these are in some sense “spaces” which sometimes do not have points anymore. In such a
case it is not possible to use the stalks, but still it is possible to construct G#. Therefore
I will give here another construction of G# which does not use stalks.
We consider coverings U = {Ui}i∈I , U =

⋃
i∈I Ui of an open set U . We introduce the

category of coverings. An arrow from a covering V = {Vα}α∈A to the covering U =
{Ui}i∈I is a map

τ : A −→ I

such that
⋃

α∈τ−1(i) Vα = Ui. We write

τ : V −→ U

for such a morphism. In general the arrow τ is not determined by the two coverings, but
many constructions using this arrow will give results not depending on it.
We will say that such an arrow defines a refinement of U by V. Sometimes we will say
that V is a refinement of U if there is an arrow from V to U.
The arrow τ defines a map between diagrams (see the general remark about maps between
products at the beginning of this section)



3.4 The Functors f∗ and f∗ 47

G(U)
∏

i∈I G(Ui)
∏

(i,j)∈I×I G(Ui ∩ Uj)

G(U)
∏

α∈A G(Vα)
∏

(α,β)∈A×A G(Vα ∩ Vβ)

.................................................................................................. .....
.......

p0

.......................................................................................... .....
.......

...............................................
......
......
......
∼

...............................................

......

......
......

...............................................

......

......
......

......................................................................................................... ......
......

p1
......................................................................................................... .....

.......

p2

......................................................................................................... .....
.......

......................................................................................................... .....
.......

(3.12)

For any covering U = {Ui}i∈I of U we define

GU(U)[p1 = p2] :=

{
s ∈

∏
i∈I

G(Ui) | p1(s) = p2(s)

}
. (3.13)

If V is a refinement of U then our map τ defines a map

G(U)

GU(U)[p1 = p2]

GV(U)[p1 = p2]

.............................................................................

......

......
......

.....................
......................

.....................
..................................

............

................................................................................................ .......
.....

It is not difficult to see that the vertical arrow does not depend on the choice of τ . Now
we need the courage to believe that we can extend the notion of direct limit to this
situation where we do not have an indexing set but a category which is directed because
two coverings have always a common refinement. We put

G+(U) = lim−→
U

GU(U)[p1 = p2]. (3.14)

We check that G+ is again a presheaf, and it satisfies condition (Sh1). Moreover if the
original presheaf G satisfies already (Sh1) then G+ satisfies even (Sh2). Hence we see that
G++ = G# is always a sheaf. We have

i : G −→ G#,

and G# has the required universal property.

3.4 The Functors f∗ and f
∗

Given two topological spaces X,Y and a continuous map f : X −→ Y , we construct
two functors f∗,f∗ which transport sheaves on X to sheaves on Y and sheaves on Y to
sheaves on X respectively. Let us denote by SX (resp. PSX) the category of sheaves
(resp. presheaves) on X with values in the category of abelian groups, rings or sets.

Definition 3.4.1. If we have a sheaf F on X we define the sheaf f∗(F) on Y by

f∗(F)(V ) = F(f−1(V ))

for all open subsets V ⊂ Y . It is clear that f∗(F) is a sheaf on Y , it is called the direct
image of F .
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We also have the functor f∗, this is called the inverse image or sometimes the pullback
of a sheaf. The functor f ∗ transforms sheaves on Y into sheaves on X . The idea is that
the stalk of f∗(G) in a point x ∈ X is equal to the stalk of the original sheaf G in the
point y = f(x), i.e. f∗(G)x = Gf(x). The actual construction is a little bit complicated.
At first we define a presheaf f ′(G):
For U ⊂ X we put

f ′(G)(U) = lim−→
V⊃f(U)

G(V ). (3.15)

It is not difficult to verify that this is a presheaf and that for any covering U = ∪i∈IUi

we get an injective map

f ′(G)(U) −→
∏
i∈I

f ′(G)(Ui).

It satisfies (Sh1) but not necessarily (Sh2).

Definition 3.4.2. We define by f∗(G) = f ′(G)#. the inverse image or pullback of a
sheaf G
We recall that the stalks of the sheafification of a presheaf are equal to the stalks of the
presheaf, hence we get

f ∗(G)x = lim−→
x∈U

lim−→
V⊃f(U)

G(V ) = lim−→
V :f(x)∈V

G(V ) = Gf(x). (3.16)

3.4.1 The Adjunction Formula

The functors f∗,f∗ are adjoint functors. To be more precise: The functor f∗ is left
adjoint to f∗. This means that we have a functorial isomorphism

HomSX (f∗(G),F) = HomSY (G,f∗(F)). (3.17)

Here ”functorial” means that from morphisms u : G ′ −→ G and v : F −→ F ′, we get the
obvious commutative diagrams.
It is not very difficult to verify the adjointness formula. From the construction of the
sheafification we have HomPSX (f ′G,F) = HomSX (f∗G,F). Hence a morphism ψ in
HomPSX (f ′G,F) is a collection of ψU : f ′G(U) −→ F(U). It follows from the defini-
tion of f ′G(U) and the properties of the direct limit that this is nothing else than a
collection of maps

ψU,V : G(V ) −→ F(U) (3.18)

where U,V run over all open sets in X,Y which satisfy f(U) ⊂ V, and where the maps
in this collection satisfy the obvious compatibilities. We will call ψU,V the evaluation
of ψ on U,V . Now we are allowed to evaluate on U = f−1(V ) and we get a collection
ψf−1(V ),V = φV : G(V ) −→ f∗(F)(V ), i.e. an element in HomSY (G,f∗(F)). The other
direction is also clear.
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Remark 2. I find it always confusing and hard to memorize which functor is a left
(right) adjoint of which. The question is whether f∗ has to be placed into the source or
the target of the Hom( , ). Here is a simple rule that helps. We have to remember that f∗
gives directly a sheaf while the construction of f∗G involves the process of sheafification
and this uses direct limits. But as I explained in the chapter on categories direct limits
are made so that we know what the maps from them are. Hence the free place on the
left in Hom( , ) is the place where f ∗G belongs.

3.4.2 Extensions and Restrictions

We can consider the special case of an open subset U ⊂ X and let A = X \ U be its
complement. Then we have the two inclusions i : A ↪→ X , j : U ↪→ X . For a sheaf F
on X the sheaf j∗(F) is very easy to understand since for an open set V ⊂ U we have
j∗(F)(V ) = F(V ). This is called the restriction of F to U . The operation i∗(F) is much
more delicate and will cause us some trouble (see section 4.4.1).
If we have a sheaf G on U then j∗(G) is a delicate functor since it depends on the local
topology in the neighborhood of boundary points (see section 4.1.2). It is not necessarily
exact.
But for a sheaf G on A the i∗(G) is easy to understand. Its stalks are zero outside of A
and equal to the stalks of G on A. It is called the extension by zero.

3.5 Constructions of Sheaves

If we have a family of sheaves {Fα}α∈A the we can define the product: For any open set
U ⊂ X we put (∏

α∈A
Fα

)
(U) :=

∏
α∈A

Fα(U) (3.19)

and it is easy to verify that this is again a sheaf. If our sheaves have values in the category
of rings, modules, abelian groups etc. the product is again a sheaf with values in that
category.
We have to be a little bit careful at this point. We can not say in general that the stalks
of the product are isomorphic to the product of the stalks. But if the indexing set A is
finite we check easily that for any x ∈ X(∏

α∈A
Fα

)
x

:=
∏
α∈A

Fα,x (3.20)

(See also [McL ] for a detailed discussion ). But if the Fα are sheaves with values in
the category of abelian groups and if we know in addition the for any x ∈ X the stalks
Fα,x = 0 for almost all α ∈ A, then 3.20 is still true.
If the Fα are abelian groups or modules we might be tempted to take the direct sum
of sheaves. But this does not work in general. The naive definition gives only a presheaf
because (Sh2) may be violated if the indexing set A is infinite.
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Perhaps here is the right place to explain, that the sheaves on X with values in the
category of abelian groups form an abelian category . First of all this says that for two
such sheaves the set Ψ ∈ HomSX (F ,G) is an abelian group: If we have two morphisms
Ψ = {ΨU ,ΦU}U ,Φ = {ΦU ,ΦU}U then Ψ + Φ = {ΨU + ΦU}U . This group structure is
bilinear with respect to composition.
If we have a morphism Ψ : F −→ G then we can define the kernel ker(Ψ) as the subsheaf
U −→ ker(ΨU ). This kernel has a categorical interpretation: For any other sheaf A

HomSX (A, ker(Ψ)) = {φ ∈ HomSX (F ,G)|Ψ ◦ φ = 0}.
Now we may consider the presheaf

K(U) = F(U)/ ker(Ψ)(U). (3.21)

It is fundamental that this presheaf is not necessarily a sheaf and this will be explained
in detail in the next Chapter. It is not hard to verify the first sheaf condition (Sh1) but
in general it does not satisfy the second condition (Sh2). Of course we can sheafify the
presheaf K and we get the quotient sheaf

F/ ker(Ψ) := K# (3.22)

This quotient has again a categorical interpretation and it is called the coimage of Ψ. We
can also define the image of Ψ as a subsheaf of G. It is simply im(Ψ)(U) = ΨU (K#(U))
and by construction it is isomorphic to the coimage. These two objects namely the
coimage and image can be defined in a categorical context and it is one of the axioms
for an abelian category that they should be canonically isomorphic (see [McL ]).
In an abelian category we can define the notion of exact sequences but this will be
discussed in the following chapter.
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We consider sheaves with values in abelian groups. We can define the notion of an exact
sequence of sheaves.

Definition 4.0.1 (Exact Sequence of Sheaves). A sequence of sheaves on a space X

0 −→ F ′ −→ F −→ F ′′ −→ 0

is exact if for all points x ∈ X the sequence of stalks is exact. It is easy to see that this
is equivalent to

(i) For all open sets U ⊂ X the sequence

0 −→ F ′(U) −→ F(U) −→ F ′′(U)

is exact.

(ii) For any s′′ ∈ F ′′(U) we can find a covering U =
⋃

j Uj by open sets and sj ∈ F(Uj)
such that sj �→ s′′|Uj.

It is the decisive point that the exactness of the sequence of sheaves does not imply that
F(U) −→ F ′′(U) is surjective. We can only find local liftings for an s′′ ∈ F ′′(U).
Applied to U = X this tells us that the functor of global sections F −→ F(X) will not be
exact in general. Hence we have to construct a right derived functor to it. As in Chapter 2
we introduce the notation H0(X,F) for F(X) and we want construct cohomology groups
H1(X,F),H2(X,F), . . . which have functorial properties and such that any short exact
sequence yields a long exact sequence

0 −→ F ′(X) −→ F(X) −→ F ′′(X) −→ H1(X,F ′) −→ . . . (4.1)

as in Chapter 2.
The following two examples are absolutely fundamental. In a nutshell we see everything
that makes sheaf cohomology work. I also want to stress the almost perfect analogy
between these two examples which will be explained in remark 3.

4.1 Examples

4.1.1 Sheaves on Riemann surfaces

In the previous section we introduced the notion of a complex manifold (see section
3.2.1). Here I want to consider a compact Riemann surface (X,OX). This means that
X is a compact connected complex manifold of dimension 1. For any P ∈ X we find an
open neighborhood UP of P such that (see section 3.2)

(UP ,OX |UP ) � (B,OB), (4.2)

G. Harder, Lectures on Algebraic Geometry I, DOI 10.1007/978-3-8348-8330-8_4, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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where B = {z ∈ � | |z| < 1} is the open unit disc and where OB is the sheaf of
holomorphic functions on B. We assume that the homeomorphism between the spaces
maps P to the origin 0 in the disc.
The element z ∈ OB(B) yields via the isomorphism an element zP ∈ OX (UP ). This
element zP vanishes at P. Obviously the stalk OX,P of the sheaf OX at P is the local
ring of power series in zP which have a strictly positive radius of convergence. The
element zP generates the maximal ideal mP of the stalk OX,P . Such an element is called
a uniformizer or uniformizing element at P . Any power series

uP = f(zP ) = azP + bz2P + . . .

which has a positive radius of convergence and with a �= 0 can serve as an uniformizer
as well.

Definition 4.1.1 (Meromorphic Function). A complex function

g : UP \{P} −→ �

is called meromorphic on UP if it is holomorphic and if we can find an integer n such
that znP · g = h extends to a holomorphic function on UP . We say that g has a pole of
order n at P if n is the smallest value for such an integer. We write ordP (g) = −n and
by definition g ∈ z−nP OX,P , but g �∈ z−n+1

P OX,P .

If T is a finite subset of X and if f : X \ T −→ � is a holomorphic function then we say
that f is meromorphic if its singularities at the points of T are at most poles (and not
essential singularities). For any point P ∈ T we have defined ordP (f).

Definition 4.1.2. We define the polar divisor of f by

Div∞(f) =
∑

P∈T, ordP (f)<0

ordP (f)P

which we consider as an an element in the divisor group Div(X), this is the free abelian
group generated by the points of X. Since X is compact it follows that f can only have
a finite number of zeroes on U = X \ T and this implies that 1/f is also holomorphic
on some open set U ′ = X \ T ′ where T ′ is finite and then 1/f is also meromorphic. We
may also define the zero divisor of f as

Div0(f) = −Div∞(1/f)

and the divisor of f as
Div(f) = Div0(f) + Div∞(f).

Definition 4.1.3. We have a homomorphism called the degree of a divisor ,

deg : Div(X) −→ �

which is given by deg : D =
∑

nPP �→∑
nP .

Definition 4.1.4. A divisor D =
∑

P nPP which is the divisor of a non-zero meromor-
phic function will be called a principal divisor.
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We will see (see 5.1.4) that for a principal divisor D = Div(f) the degree deg(D) =∑
nP = 0. To any divisor D =

∑
P nPP we attach the sheaf OX(D) which is defined by

OX(D)(U) = {f meromorphic on U | ordP (f) ≥ −nP for all P ∈ U}. (4.3)

We could also say that f ∈ z−nP

P OX,P for all P .

Definition 4.1.5. A divisor D =
∑

nPP is called effective if all nP ≥ 0, we could also
call this a positive divisor and write D ≥ 0.

The definition of OX(D)(U) can be reformulated: It consists of those meromorphic func-
tions f on U for which the restriction Div(f)+D|U ≥ 0. If D is an effective divisor we have
an inclusion of sheaves OX ⊂ OX(D). We form the quotient sheaf �D = OX(D)/OX . It
is clear that the stalk at P is z−nP

P OX,P /OX,P .
For any point P

z−nP OX,P /OX,P = �
(n)
P

is the finite dimensional vector space of Laurent expansions at P of order ≤ n, an element

� ∈ �(n)
P can be written as

� =
an
znP

+
an−1
zn−1P

+ . . . +
a1
zP

mod OX,P . (4.4)

If an �= 0, we say that � has a pole of order n. So the stalk of this sheaf at a point P ∈ X
is the vector space of all Laurent expansions of pole order ≤ nP . Especially the stalk
is zero at points where nP = 0 and therefore the sheaf �D has only a finite number of
non-zero stalks. It is called a skyscraper sheaf. We have the exact sequence of sheaves

0 −→ OX −→ OX(D) −→ �D −→ 0. (4.5)

It is clear that the space of sections H0(X,�D) is simply the direct sum of the stalks in
the points P with nP > 0. There is no interaction between the different points.
The question whether the sequence of global sections

0 −→ H0(X,OX) −→ H0(X,OX(D)) −→ H0(X,�D) −→ 0

is exact amounts to whether a given collection of Laurent expansions at the finitely many
points P with nP > 0 can be realized by a meromorphic function on X . In general the
answer is no and the discrepancy is controlled by the first cohomology group H1(X,OX )
which we will define later. To be more precise we will construct a map

δ : H0(X,�D) −→ H1(X,OX)

such that the extended sequence

0 −→ H0(X,OX) −→ H0(X,OX(D)) −→ H0(X,�D) −→ H1(X,OX) (4.6)

becomes exact. The computation of H1(X,OX) is more or less equivalent to the Riemann-
Roch Theorem which we will discuss in the chapter 5 on compact Riemann surfaces.

Exercise 14. Prove that in the case X = �1(�) the above sequence of global sections
is always exact.

Exercise 15. Prove that in the case X = �/Ω the above sequence of global sections is
not always exact.
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4.1.2 Cohomology of the Circle

We consider the circle S1 and the sheaf � which is defined by

�(V ) = {f : V −→ � | f is locally constant }. (4.7)

We pick a point P ∈ S1 and let U = S1\{P}. We define a sheaf �(P ) on S1 by

�
(P )(V ) = �(U ∩ V ).

If i : U −→ S1 is the inclusion then this is the sheaf i∗(�) (see 3.4.2). Clearly we have

an inclusion � ⊂ �
(P ) and for all Q �= P we have the equality of stalks

�Q = �
P
Q = �.

But in the point P we have

� = �P ↪→ (�(P ))P = �⊕ �

because on a little interval Iε containing P we have �(Iε) = � but �(P )(Iε) = �(Iε∩U) =
�⊕ �. Hence we get an exact sequence of sheaves

0 −→ � −→ �
(P ) −→ SP −→ 0

where SP is the skyscraper sheaf whose stalk at P is � and zero elsewhere. We get the
sequence of global sections

0 H0(S1,�) H0(S1,�(P )) H0(S1,SP )

0 � � �

....................................................................................................... ......
...... .............................................................................................................................................................. ......

......∼
................................................................................................................... ......

......

.......................................................................................................................................... .....
....... ................................................................................................................................................................................................................................................... .....

.......∼
................................................................................................................................................................................................................ .....

.......

|| || ||

and we see that the last arrow is not surjective. Again we need a non-zero H1(S1,�) to
control the discrepancy.
We even can have an idea what this group H1(S1,�) should be. Intuitively we should
think that the sheaf �(P ) doubles the point P , so our circle becomes an interval I and it
is at least plausible that

H1(I,�) = H1(S1,�(P )).

But the interval is contractible (see 4.4.1,4.4.24), and we will see that this implies
H1(I,�) = 0 (see 4.4.10). Hence we should expect (and we will prove this later) that

H0(S1,SP )
∼−→ H1(S1,�) � �. (4.8)

I want to stress another important point. We can ask whether H1(S1,�) � � is a canoni-
cal isomorphism. The answer is no!
This becomes clear if we recall that

H0(S1,SP ) = (�⊕ �)/� (4.9)

where � is embedded diagonally. There is no way to distinguish between the two possi-
bilities to identify H0(S1,SP ) to �.
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But we can choose an orientation on S1 (see page 62), this means that at each point
we choose a direction (i.e. non zero tangent vector to S1 up to a positive scalar) which
varies continuously with the point. Then we have a distinction between the two intervals
in the intersection Iε ∩ U = U+

ε ∪ U−ε : We say that U+
ε is the interval which the chosen

tangent vector at P points to. Then

�(Iε ∩ U) = �(U+
ε ) ⊕ �(U−ε ) = �⊕ �, (4.10)

and we now have a canonical identification H1(S,�) = � where we send (a,b)mod � �→ a.

Remark 3. I want to stress the analogy between the two examples: The sheaves OX

and � have a property in common: They are very rigid. This means that any section over
a connected open subset U is determined by its restriction to an arbitrarily small non
empty open subset V ⊂ U .
The analogy goes even further. If we consider the sheaf � on a manifold M , then we
can characterize � as a subsheaf in the sheaf C∞M : It is the subsheaf of functions with
zero derivatives. An analogous statement is true for OX . We can characterize OX as the
subsheaf in the sheaf of C∞-functions annihilated by the Cauchy-Riemann operator.

4.2 The Derived Functor

4.2.1 Injective Sheaves and Derived Functors

We want to define a universal derived functor to the functor F −→ F(X) = H0(X,F).
To do this we use the same ideas as in Chapter 2. We define the notion of an injective
sheaf:

Definition 4.2.1. A sheaf I is injective if in any diagram

A B

I

............................................................... .....
.......

ϕ

.........................................................
......
......
......

ψ

.............
.............

.............
....................
.....
............

η

with ker(ϕ) ⊂ ker(ψ) we can find a map η : B −→ I which makes this diagram commu-
tative.

It is rather easy to see that every sheaf F can be embedded into an injective sheaf. The
following construction has been invented by Godement (see [Go]4.3). For any point
x ∈ X we embed the stalk Fx by an injection ix into an injective abelian group Ix. We
define the sheaf I by

I(U) =
∏
x∈U

Ix (4.11)

and the restriction maps
∏

x∈U Ix −→∏
x∈V Ix are induced by the inclusion V ⊂ U.

To prove the injectivity of I we consider our diagram above stalk by stalk and choose
for each x ∈ X an ηx such that the diagram
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Ax Bx

Ix

............................................................... ......
......

ϕx

..........................................................
.....
.......
.....

ψx

.............
.............

.............
..............
.....
............

ηx

commutes. The collection of the ηx is a homomorphism from B to I.
By construction this collection of ix provides an embedding i : F → I, for any open set
U ⊂ X the homomorphism ηU : F(U) → I(U) is induced by the maps F(U) → Fx → Ix.
Now it is obvious that we can find an injective resolution for any sheaf F :

0 −→ F −→ I0 −→ I1 −→ . . . .

Consequently we define
H•(X,F) = H•(I•(X)). (4.12)

The same arguments as in the previous section show that this defines a universal right
derived functor.
The reader might (or should) be scared: How can we ever compute the cohomology of a
sheaf if we use such huge and bizarre sheaves to define it?
Our strategy will be to exhibit classes of smaller sheaves which have the property that
they are acyclic. One possibility to construct such sheaves is discussed in the following
exercise.

Exercise 16. Let us assume that we have a sheaf of commutative rings R on X , the
rings should have an identity, especially we have 1 ∈ R(X). Let us assume that we have
a so called partition of 1: For any covering X =

⋃
i∈I Ui we can find elements hi ∈ R(X)

such that Supp(hi) ⊂ Ui, for any point x ∈ X we have only finitely many indices such
that hix �= 0 and finally 1 =

∑
i hi.

Show that sheaves F of R-modules are acyclic.
Hint: Assume we have a short exact sequence

0 −→ F ′ −→ F −→ F ′′ −→ 0

of R-modules. Use the partition of unity to show that F(X) −→ F ′′(X) is surjective.
Then use the arguments above to show, that any sheaf of R-modules has an injective
resolution by sheaves of R-modules.

We will see that on a C∞-manifold M the sheaves of rings of C∞-functions have a partition
of unity. This will imply that for any C∞-vector bundle (see 4.3.2 ) E and the sheaf C∞(E)
of C∞-sections in it

Hi(M,C∞(E)) = 0 for all i > 0. (4.13)

4.2.2 A Direct Definition of H1

We want to indicate briefly how we could approach the problem to define a right derived
functor for H0(X,F) more directly. The reader should notice the analogy between this
approach and the one used to define the first cohomology group in group cohomology
(see section 2.2.2).
Let us assume we have an exact sequence of sheaves
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0 −→ F ′ −→ F −→ F ′′ −→ 0.

We look at F(X) −→ F ′′(X) and pick a section s′′ ∈ F ′′(X). We want to find an
s ∈ F(X) which maps to s′′. Locally we can solve this problem. This means we can find
a covering X =

⋃
α∈A Uα and sections sα ∈ F(Uα) which map to s′′ | Uα. But the sα do

not necessarily match: The difference

s′α,β = sα − sβ | Uα ∩ Uβ (4.14)

is a section in F ′(Uα∩Uβ) because it goes to zero in F ′′. The collection {s′α,β}(α,β)∈A×A
satisfies the cocycle relation, i.e. we have

s′α,β − s′β,γ + s′γ,α | Uα ∩ Uβ ∩ Uγ = 0. (4.15)

This suggests the definition of the group of 1-cocycles with respect to a covering U =
{Uα}α∈A:

Definition 4.2.2. The 1-cocycles with respect to a covering U = {Uα}α∈A are collec-
tions (. . . ,tα,β , . . .) ∈∏(α,β)∈A×AF ′(Uα∩Uβ) which satisfy the cocycle relation (equation

4.15) above. They form a group which will be denoted by Z1(U,F ′).
We may also define the group of coboundaries:

Definition 4.2.3. An element (. . . tα,β . . .) is a coboundary if we can find s′α ∈ F ′(Uα)
such that t′α,β = s′α − s′β. They form a group which will be denoted by B1(U,F ′).
Definition 4.2.4 (Cohomology). We define H1(X,U,F ′) to be the quotient

H1(X,U,F ′) = Z1(U,F ′)/B1(U,F ′).
Now it is clear that s′′ defines an element δ(s′′) ∈ H1(S,U,F ′), and it is clear that s′′ is
in the image of F(X) −→ F ′′(X) if and only if δ(s′′) = 0.
If we start from a different covering U′, then U and U′ have a common refinement (see
section 3.3.2) τ : W −→ U, τ ′ : W −→ U′. We get maps

H1(X,U,F ′) H1(X,U′,F ′).

H1(X,W,F ′)

..............................................................................................................
.....
............

................................................................................................................... .......
.....

It is not difficult to see that these maps do not depend on the choice of of the arrows.
It is clear that these maps are compatible with δ and hence we get a boundary operator

δ : F ′′(X) −→ lim−→
U

H1(X,U,F ′) := Ȟ1(X,F ′). (4.16)

It is rather clear that we have a structure of an abelian group on the limit, the boundary
operator is a homomorphism and the sequence

0 −→ H0(X,F ′) −→ H0(X,F) −→ H0(X,F ′′) δ−→ Ȟ1(X,F ′) −→ Ȟ1(X,F) −→ Ȟ1(X,F ′′)
is exact.
Of course we need to compare this construction of cohomology groups with the other one
using injective resolutions, this will be done in the exercise 17 below.
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Definition 4.2.5. A sheaf F on a space X is called flabby if for any open set U ⊂ X
the restriction map F(X) −→ F(U) is surjective.

This is a very strange property of a sheaf. For instance the continuous functions on a
space almost never have this property.

Lemma 4.2.6. Injective sheaves are flabby.

Proof: To show this we consider an open subset U ⊂ X, we denote its inclusion by
j : U −→ X . Let A = X \U, let us denote the inclusion of the closed set by i : A −→ X .
For any sheaf F we can take its restriction to A and extend this restriction again to X
by using i∗. (Extension by zero: See section 3.4.2) We have a surjective homomorphism
of sheaves F −→ i∗i∗(F) and this gives us an exact sequence of sheaves

0 −→ j!(F) −→ F −→ i∗i∗(F) −→ 0 (4.17)

where of course j!(F) is just the kernel.
A short digression: We may give a direct definition of this kernel and call it again the
extension of F|U to X by zero. To give this direct definition we recall the notion of the
support of a section (see section 3.3.1) and notice that for any open set V ⊂ X we have
more or less by definition

j!(F)(V ) = {s ∈ F(V ) | the support of s does not meet V ∩A}. (4.18)

This means that this sheaf is a little bit delicate. By construction we have an inclusion
j!(F)(V ) ↪→ F . In a sense the sheaf j!(F) ”knows” the boundary points of U .
Now we come back to our original problem, we wanted to show that injective sheaves are
flabby. We have an inclusion

j!I j∗I

I

............................................................... .....
.......

.........................................................
......
......
......

.............
.............

.............
.................
.....
............

φ

(4.19)

and since I is injective we find a homomorphism φ : j∗I −→ I which makes this diagram
commute. If we have a section s ∈ I(U) then this is by definition the same as a section
s ∈ i∗(I)(X) and then φ(s) ∈ I(X). It is clear from the diagram that φ(s) restricted to
U is s. Moreover we see that our section φ(s) has support contained in the closure U ,
the best we can expect.

Exercise 17.

(a) Show that for a flabby sheaf F we have Ȟ1(X,F) = 0.

(b) Show that Ȟ1(X,I) = 0 for an injective sheaf. Show that this implies that for any
sheaf F

Ȟ1(X,F) = H1(X,F).

(c) Show that flabby sheaves are acyclic.
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I discussed this construction of the first cohomology groups in detail, because here we can
see how natural these constructions are. We meet a fundamental principle of homological
algebra which is applied again and again:

Fundamental principle of homological algebra: We want to lift a section s′′ ∈
H0(X,F ′′) to a section s ∈ H0(X,F). We localize the problem by choosing a covering
for which we have local liftings. These are not unique and hence it can happen that they
do not match on the intersections. These differences on the intersections yield a cocycle,
and the class of this cocycle yields the obstruction to the global solution of the problem.
We have seen how the same principle works in group cohomology (section 2.2.1). There
we want to lift a Γ-invariant element m′′ ∈ (M ′′)Γ to a Γ-invariant section m ∈ MΓ. In
this context localizing means that we drop the requirement that m should be Γ−invariant.
Then we find a non unique lifting. The comparison of the local sections on the inter-
sections of the open sets in the geometric situation corresponds here to the comparison
of m with γm where γ runs through the group. This gives the cocycles γ �→ m−γm ∈ M ′.

This construction generalizes to higher cohomology groups. We can define the so called
Čech cohomology by means of coverings. The cohomology defined by means of injective
resolutions and the Čech cohomology coincide on reasonable spaces. We postpone this
discussion.
At this point we make a short detour. Since we discussed H1 in some detail it may be
appropriate to discuss the non-abelian H1, this means we discuss sheaves with values in
non commutative groups and their first cohomology sets. This non-abelian cohomology
plays an important role in the theory of bundles and I want to say some words about
this subject.

4.3 Fiber Bundles and Non Abelian H1

4.3.1 Fibrations

Fibre Bundle

I want to introduce the notion of fibre bundles.

Definition 4.3.1. We consider maps between topological spaces π : X −→ B. If we have
another such map π′ : X ′ −→ B then a map over B is a continuous map f : X ′ −→ X
for which π ◦ f = π′.

If X ′ = B and π′ = Id then a a map f : B −→ X over B is also called a section to π.

We could also say that we have the category of spaces over B, this are spaces X together
with a map π : X −→ B and the morphisms are maps over B.

Definition 4.3.2 (Fibration). Let F (the fibre) be a space and B (the base) another
space. A continuous map π : X −→ B is called a (locally trivial) fibration with fibre F ,
if we can find a covering B =

⋃
i∈I Ui such that for any i we can find a homeomorphism

Ψi over the base Ui
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π−1(Ui) Ui × F

Ui

................................................................................................................................ ......
......

Ψi
................................................................................................................................ ......

......∼
............................................................................ .......

.....

.................................................................................
.....
............

pr1

Locally in the base our space is a product of an open set in the base and the given fibre.
We also say that X

π−→ B is a fibre bundle with fibre F . The covering together with
the maps Ψi is called a local trivialization.

Definition 4.3.3. If V ⊂ B is open then a section to π over V is a continuous map
s : V −→ X for which π ◦ s = IdV . We denote this set by C(V ) and then the assignment
V −→ C(V ) defines the sheaf X of sections of the bundle X −→ B.

It is important to consider fibers F which are not only topological spaces but also carry
some extra structure.

Vector Bundles

For instance we can consider the case that F is a finite dimensional �- or �-vector space
and where F , �, � are equipped with the standard topology. For convenience we denote
by � a field which is either � or �. In this case we can make an additional assumption
on our local trivialization. We assume that we have a covering B =

⋃
i∈I Ui and

Ψi : π−1(Ui)
∼−→ Ui × F (4.20)

as before. But in addition we assume that for any pair i,j of indices the map

Gij = (Ψj | Ui ∩ Uj) ◦ (Ψ−1i | Ui ∩ Uj) : (Ui ∩ Uj) × F −→ (Ui ∩ Uj) × F (4.21)

has the form Gij(u,x) = (u,gij(u)x) where gij(u) is a linear automorphism of our vector
space F .
It is clear that u �→ gij(u) must be a continuous map from Ui∩Uj into the general linear
group G = Gln(�). Moreover, it is obvious that we have a cocycle relation: For any
triplet i,j,k of indices we have

gij(u) · gjk(u) = gik(u) for all u ∈ Ui ∩ Uj ∩ Uk. (4.22)

Definition 4.3.4. If this assumption (eq. (4.22)) is fulfilled, we say that π : X −→ B is
an n-dimensional vector bundle.

I find this definition a little bit unsatisfactory because it needs the covering and the Ψi.
We will give a second definition which I think is better. Of course our data allow us to
introduce the structure of a vector space on each fibre π−1(b) such that the vector space
structure “varies continuously with b”. What do we mean by that? Our definition also
implies for any i that we can find sections

e1, · · · ,en : Ui −→ π−1(Ui) = Ui × F,

such that in each point u ∈ Ui the elements e1(u), · · · ,en(u) ∈ π−1(u) form a basis of
this vector space. Now we can identify

π−1(u)
∼−→ �

n
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by sending
∑

aνeν(u) �−→ (a1, · · · an), and we get a map

π−1(Ui) −→ Ui ×�n , (4.23)

and the phrase “the vector space structure varies continuously with b” means that this
is a homeomorphism.
This allows us to give a different formulation of the concept of a vector bundle. We can
say that

Lemma 4.3.5 (Vector Bundle). π : X −→ B is an n-dimensional vector bundle if:

(a) For any b ∈ B we have the structure of an n dimensional �-vector space on the fibre
π−1(b).

(b) For any b ∈ B we can find a neighborhood V of b and sections.

e1, · · · ,en : V −→ π−1(V )

such that these sections evaluated at any point v ∈ V form a basis of π−1(v).

(c) The map π−1(V ) −→ V × �n, sending a point x =
∑

ai ei(v) over v ∈ B to
(v,a1, · · · ,an) ∈ V ×�n, is a homeomorphism.

Definition 4.3.6 (Local Trivialization). If we have such a vector bundle π : X −→ B,
and if we have an open set V ⊂ B together with the sections

ei : V −→ π−1(V ), i = 1, · · · ,n
which form a basis at any point v ∈ V , then we call this a local trivialization of a
bundle.

The sheaf X of sections into X has the natural structure a module over the sheaf
of continuous functions C0B : We can form the sum of two sections s1,s2 ∈ X (V ) and
multiply a section s ∈ X (V ) by a section f ∈ C0B(V ). This module is in fact locally free.
If we have a trivialization e1, . . . ,en ∈ X (V ), then any section is of the form s =

∑
i fiei,

with fi ∈ C0B(V ). It is clear that we can define the concept of a locally free module
over any locally ringed space.
On the other hand it is rather clear that a locally free module E over C0

B also gives us a
vector bundle. This observation is certainly not very deep but important.
If the base space B is a C∞ manifold, then we can define what a C∞ bundle is. In this
case X is also a C∞ manifold, we have the same assumptions on the fibres, the local
sections are C∞ and the map in c) is also C∞.

4.3.2 Non-Abelian H1

We know of course what it means that two vector bundles X −→ B are isomorphic.
Actually it is obvious that the vector bundles over a given base space form a category:
A continuous map

X X ′

B

............................................................................................................................................................................. .....
.......

ϕ
....................................................................................... .......

.....
.........
..........
.........
..........
.........
..........
.........
..........
.........
.............
............
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is a morphism of vector bundles, if ϕ restricted to the fibres is linear.
I want to explain the description of the set of isomorphism classes of vector bundles on
B in terms of non-abelian sheaf cohomology. Given our vector bundle we select a
covering V = {Vi}i∈I of B and local trivializations

ei,ν : Vi −→ π−1(Vi), ν = 1, · · · ,n.
If we have an ordered pair (i,j) of indices, then we get a continuous map

gij : Vi ∩ Vj −→ GL(n,�)

such that
gij(v) · (ei,ν(v)) = ej,ν(v). (4.24)

To avoid misunderstandings: The topology on GL(n,�) is the standard topology (see
Lemma 4.3.10)
This is clearly a one-cocycle, this means

gij · gjk = gik on Vi ∩ Vj ∩ Vk and (4.25)

gii = Id .

This suggests that we introduce the set of 1-cocycles with respect to our covering. We
introduce the sheaf of germs of continuous maps form our space B to the group G =
GL(n,�), we denote this sheaf by C0(G). Then we define as before

Z1(V,C0(G)) = {c = (· · · ,gij , · · · ) ∈
∏
i,j

C(G)(Vi ∩ Vj) | c is a 1-cocycle}. (4.26)

If we modify our local trivialization, then we modify the cocycle into g′ij = higijh
−1
j on

Vi ∩ Vj , where h ∈ ∏ C0(G)(Vi). This gives us an equivalence relation on C1(V,C0(G))
and dividing by this relation we get a set H1(B,V,C0(G)). Again we may change the
covering, we can pass to common refinements and we end up with

H1(B,C0(G)) = lim
−→
V

H1(B,V,C0(G)). (4.27)

Since for n > 1 our sheaf C0(G) takes values in the category of non-abelian groups, we
cannot multiply cocycles and therefore we only get a set.
Now it follows from our considerations that:

Lemma 4.3.7. The elements in H1(B,C0(G)) are in one-to-one correspondence with the
set of isomorphism classes of n-dimensional vector bundles on B.

A completely analogous statement holds for C∞ vector bundles.

4.3.3 The Reduction of the Structure Group

Orientation

We may introduce different kinds of additional structures on the fibres of a vector bundle
π : X −→ B. For instance we may choose a Euclidian metric < , >b on the fibres which
varies continuously with the point. Then we can choose local trivializations e1, . . . ,en
which are given by orthonormal basis vectors. If we compare two such local trivializations
then our functions gij will be functions with values in the orthogonal group O(n) and
therefore it will correspond to an element in H1(B,C0(O(n))).
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In such a situation we say that the additional structure induces a reduction of the
structure group. In our special case above we have a reduction from GLn(�) to the
orthogonal group O(n). (Compare [B-T] §6). If we have such a vector bundle with such
a euclidian metric on it, we call it a euclidian vector bundle.
If we have a bundle of �-vector spaces and we have a Hermitian metric on the fibres,
which varies continuously, then we get by the same procedure a reduction of the structure
group to U(n). Such a bundle is called a hermitian vector bundle. A euclidian (resp.
hermitian) form h is a family of euclidian (resp.hermitian) forms on the fibres, which
gives the bundle the structure of a euclidian (resp. hermitan) bundle. If the bundle is C∞
then we know what it means that h is C∞.
Another such additional structure is an orientation. If we consider the highest exterior
power Λn(X/B), i.e we take the highest exterior power fibre by fibre, then we get a bundle
of one dimensional vector spaces. On this bundle we have an action of the multiplicative
group of positive real numbers �∗>0. If we divide the bundle by this action then the

quotient is a bundle B̃ −→ B with fibres consisting of two points. If we can find a global
section s : B −→ B̃, then we say that X −→ B is orientable. If we choose such a section
then we say that X −→ B is oriented.
If we have an orientation onB then we may choose local trivializations e1, . . . ,en for which
the ordered basis is positive with respect to the orientation. If we have done this then
our gij will take values in the subgroup Gln(�)+ of matrices with positive determinant
and thus we have another case of the reduction of the structure group.
On a C∞ manifold M we have the notion of the tangent bundle TM . Locally on M we have
coordinate functions x1, . . . ,xn so that any differentiable function is a differentiable func-
tion in the variables x1, . . . ,xn (see section 3.2). Then the vector fields ∂/∂x1, . . . ,∂/∂xn.
provide a local trivialization of this tangent bundle. (See [Hir],[B-T] §6.)
(Actually I think there is no reason to look up a reference. A tangent vector Y at a point
p is by definition a map Y : C∞M,p −→ � which is �-linear and satisfies the Leibniz rule:
We have Y (fg) = f(p)Y (g) + g(p)Y (f) for all f,g ∈ C∞M,p. Such a Y is determined by

its values on local coordinates x1,x2, . . . xn. We define the tangent vectors ∂
∂xi

(xj) = δij .

Then these ∂
∂xi

are also tangent vectors in the domain of validity of the local coordinates.)

Definition 4.3.8 (Riemannian Manifold, Oriented Manifold). If we have in addition a
Euclidian metric on the tangent bundle then M is called a Riemannian manifold. If
we have chosen an orientation (if possible) then we call M oriented.

A caveat Of course we know what it means that M is a Cr manifold, here the local
rings consist of functions which are only r-times differentiable. Then we loose a degree
of differentiability if we define the tangent bundle, it is only a Cr−1 manifold.

Local Systems

If B is a topological space and A an abelian group, then we attached to A the sheaf
A = AB of locally constant functions with values in A (see examples in 3.1.4).
We want to introduce the notion of local A-systems or local systems of A’s.

Definition 4.3.9. If A is a sheaf of abelian groups on B, then we call A a local A-
system, if for any point b ∈ B we can find an open neighborhood Vb such that the
restriction of A to Vb is isomorphic to AVb

.
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This implies that for any point b ∈ B the stalk Ab is isomorphic to A. At this point it is
reasonable to assume that our space B is locally connected, i.e. for any point b ∈ B and
any open neighborhood Vb of b we can find a connected open neighborhood Ub ⊂ Vb of b.
If we have that A | Vb is isomorphic to AVb

as above, and if we replace Vb by the connected
open neighborhood Ub, then A(Ub) � A, and for any point u ∈ Ub we get an isomorphism
A(Ub) −→ Au. If we now fix a covering B =

⋃
Vi, where the Vi are connected and we

have isomorphisms
Ψi : A | Vi ∼−→ AVi

,

then we may compare the Ψi on the intersections and we get

gij : Vi ∩ Vj −→ Aut(A)

which are locally constant (or continuous if Aut(A) is endowed with the discrete topol-
ogy). Hence we see that the localA-systems are classified by the elements in H1(B,Aut(A))
where Aut(A) is the sheaf of locally constant functions in Aut(A).

Isomorphism Classes of Local Systems

We introduce the notion local systems of vector spaces. These are simply local
systems where the group A has the additional structure of an �− or �−vector space.
Hence such a local system is a vector bundle

π : X −→ B

where each point p ∈ B has an open connected neighborhood V, over which we have local
sections e1, . . . ,en, which are called constant. If we pass to a different connected open
set V ′ over which we have constant sections e′1, . . . ,e

′
n, then on the intersection

e′i =
∑

aijej (4.28)

where now the aij are locally constant functions on V ∩ V ′. Of course we can describe
the set of isomorphism classes of local systems of vector spaces in terms of non-abelian
cohomology. We consider the group Gd = GLn(�)d which is the general linear group but
endowed with the discrete topology. It is clear that

Lemma 4.3.10. The isomorphism classes of local systems of n-dimensional �-vector
spaces are given by H1(B,GLn(�)d).

These local systems of vector spaces are the same kind of objects as bundles with a flat
connection (see also sections 4.10.1 and 4.10.2).

Principal G-bundels

Of course we can start from any topological group G, we can consider the sheaf of G-
valued functions on B and we can look at the cohomology set H1(B,C0(G)). This set
classifies so called principal G-bundles.
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Definition 4.3.11. A bundle P −→ B with a left action of G such that G acts simply
transitively on the fibres is called a principal G-bundle. Then G is called the structure
group of P −→ B. Two such principal bundles P1 −→ B and P2 −→ B are isomorphic
if we have a a bundle isomorphism φ : P1

∼−→ P2 which commutes with the a ction of G.
The trivial bundle is G× B −→ B, with the left action of G on itself.

Giving a local trivialization over an open set U ⊂ B is the same as giving a section of
the bundle over U .

4.4 Fundamental Properties of the Cohomology of Sheaves

4.4.1 Introduction

I will now state some results concerning the cohomology of sheaves. They are not so easy
to prove. The proofs are sometimes a little bit sketchy, some steps are treated in the
exercises.
If we have any space X and an abelian group A then we have defined the sheaf AX of
germs of locally constant A-valued functions: This is the constant sheaf attached to
A. Sometimes – if it is clear what the underlying space is – we simply write A. Then
the underlining is made to distinguish the abelian group from the sheaf. (I am not sure
whether this is actually necessary.)

Definition 4.4.1 (Cohomology of Sheaves). We define the cohomology of X with coef-
ficients in A as

H•(X,A) := H•(X,AX).

If A = � then the cohomology groups H•(X,�) are equal to the ones defined by singular
cochains, if the space X is reasonable. (This is a theorem, we come back to it later).
The first important result, which we will show, is that the cohomology of constant sheaves
vanishes on certain contractible spaces. We begin by stating a special case which is also
the starting point for the more general results:

If D = {(x1, . . . ,xn) ∈ �n | Σx2i ≤ 1} and
◦
D the interior of D, then

Hi(D,A) = H i(
◦
D ,A) = 0 for i ≥ 1.

We will prove this later (see section 4.4.5). The following exercise treats the case n = 1.
Let us consider the following property (E) of a sheaf A on the interval X = [−1,1]: For
any open interval I ⊂ [−1,1] the restriction map A([−1,1]) −→ A(I) is surjective. (We
only require that I is open in [−1,1], i.e. it may contain the boundary points. Condition
(E) does not mean that A is flabby!)

Exercise 18. Show that the sheaves A[−1,1] and injective sheaves have property (E).

Exercise 19. If A has property (E) and if we have an exact sequence

0 −→ A −→ F −→ G −→ 0

then F(I) −→ G(I) is surjective for any open interval in [−1,1].
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Exercise 20. If we have a sequence

0 −→ A −→ B −→ C −→ 0

where A and B have property (E) then C also has property (E).

Exercise 21. For any sheaf A which satisfies (E) we have Hq([−1,1]),A) = 0 for all
q ≥ 1. Especially we have Hq([−1,1],A) = 0 for any abelian group A.

This is some progress, I think we justified the computation in 4.1.2. But we will prove a
stronger result which concerns a relative situation, i.e. the projection map X × I −→ X .
This stronger result will be provided by corollary 4.4.20 and the theorem 4.4.22, which
say that the cohomology groups are invariant under homotopies. To get to this point we
need to investigate a relative situation f : X −→ Y .

4.4.2 The Derived Functor to f∗

Given two spaces X,Y and a continuous map f : X −→ Y , we constructed the two
functors f∗,f∗ which transport sheaves on X to sheaves on Y and sheaves on Y to sheaves
on X respectively (see section 3.4). Now we denote by SX the category of sheaves on X
with values in the category of abelian groups.

Definition 4.4.2 (Direct Image). If we have a sheaf F on X (with values in the category
of abelian groups), then we defined the sheaf f∗(F) on Y by

f∗(F)(V ) = F(f−1(V ))

for all open subsets V ⊂ Y .

It is clear that f∗(F) is a sheaf on Y . The functor f∗ is left exact but not exact in general.
We get our previous case if we take Y to be just one point, i.e. Y = {pt}. Then the stalk
of f∗(F)pt in this point is simply F(X) = H0(X,F).
Again we define a derived functor for f∗ by the same method as before. We choose an
injective resolution

0 −→ F −→ I0 −→ I1 −→ . . .

of F , and we get a complex of sheaves on Y by taking the direct image

0 −→ f∗(I0) −→ f∗(I1) −→ . . . .

This is now a complex of sheaves on the space Y . We define the sheaves (see section 3.5)

Rqf∗(F) =
ker(f∗(Iq) −→ f∗(Iq+1))

Im (f∗(Iq−1) −→ f∗(Iq))
. (4.29)

It is clear that the stalk of Rqf∗(F) in a point y is simply the degree q-cohomology of
the complex of stalks.
As before, we show that these sheaves do not depend on the choice of the resolution and
that for any morphism

u : F −→ G
we get the derived maps
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Rqu : Rqf∗(F) −→ Rqf∗(G).

Finally it is clear that f∗(F) = R0f∗(F), and that any short exact sequence of sheaves

0 −→ F ′ −→ F −→ F ′′ −→ 0

leads to a long exact sequence

0 f∗(F ′) f∗(F) f∗(F ′′)

R1f∗(F ′) R1f∗(F) R1f∗(F ′′) R2f∗(F ′) . . .

............................................................................................... .....
....... ................................................................................... .....

....... ................................................................................ .....
.......

................................................................................ .....
.................................................... .....

............................................................ .....
....... .................................................. .....

.......


.......

(4.30)

The intuitive idea – which in some cases is right in some cases wrong – (see Theorem
4.4.17) is that the stalk of Rqf∗(F)y in a point y should be the cohomology of the fibre
f−1(y) ⊂ X with coefficients in the restriction i∗y(F) of F to this fibre.
The following special case is very important (see section 3.4.2). It is clear that the fol-
lowing lemma is true.

Lemma 4.4.3. Let A ⊂ X be a closed subspace and let i : A −→ X be the embedding of
A into X. Then i∗(F) is a sheaf on X. The stalk of i∗(F) is given by

i∗(F)x =

{
Fx if x ∈ A

0 if x /∈ A
.

Hence it is clear that F −→ i∗(F) is an exact functor.

We also defined the functor f∗. This functor transforms sheaves on Y into sheaves on X .

Lemma 4.4.4. The stalk of f∗(G) in a point x ∈ X is equal to the stalk of the original
sheaf G in the point y = f(x), i.e. f∗(G)x = Gf(x) and so f∗ is an exact functor.

Since the exactness of sequences of sheaves can be checked stalkwise, it is clear that f∗ is
an exact functor. We know that these two functors are adjoint and I recall the adjointness
formula

HomSX (f∗(G),F) = HomSY (G,f∗(F)).

We want to discuss the consequences of existence of f∗,f∗ and the adjointness formula
for the cohomology and its functorial properties.

Lemma 4.4.5. If f : X −→ Y is continuous, and if I is an injective sheaf on X, then
f∗(I) is injective on Y .

Proof: This follows directly from the adjointness formula and the exactness of f∗.
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4.4.3 Functorial Properties of the Cohomology

If we start from a sheaf G on the target space Y , and if we take an injective resolution

0 −→ G −→ J 0 −→ J 1 −→ J 2 −→ . . . ,

then we get a resolution

0 −→ f∗(G) −→ f∗(J 0) −→ f∗(J 1) −→ f∗(J 2) −→ . . . .

As we have seen earlier in section 2.3.3, this gives us a map

Hq
(
0 −→ f∗(J 0)(X) −→ f∗(J 1)(X) −→ . . .

) −→ Hq(X,f∗(G)). (4.31)

On the other hand we have a map between the complexes

0 J 0(Y ) J 1(Y ) J 2(Y ) J 3(Y ) . . .

0 f∗J 0(Y ) f∗J 1(Y ) f∗J 2(Y ) f∗J 3(Y ) . . .

............................................................................................... ......
...... .............................................................................. ......

...... .............................................................................. ......
...... .............................................................................. ......

...... ............................................................................................... ......
......

................................................................................... .....
....... ..................................................... .....

....... ..................................................... .....
....... ..................................................... .....

....... ................................................................................... .....
.......

...........................................................................................................
......
......
......

...........................................................................................................
......
......
......

...........................................................................................................
......
......
......

...........................................................................................................

......

......
......

(4.32)

this follows from the definition of f∗. Hence we get a functorial map

Hq(Y,G) −→ Hq(X,f∗G). (4.33)

There is an especially important case of this: If f : X → Y , and we consider the sheaf �Y

on Y , then we see easily that f∗(�Y ) = �X . To see this we construct a homomorphism
from f ′(�Y ) to �X : For U ⊂ X , U open, we have

f ′(�)(U) = lim−→
V⊃f(U)

�(V ).

For V ⊃ f(U) we have f−1(V ) ⊃ U , and of course, we have maps

�Y (V ) −→ �X(f−1(V )) −→ �X(U),

and this provides a map
f ′(�Y )(U) −→ �X(U).

This is a map from the presheaf f ′(�Y ) to the sheaf �X , and this provides a unique map

f∗(�Y ) −→ �X .

Looking at the stalks we see that this map is an isomorphism.
This yields the functoriality of the cohomology groups Hq(X,�). For any map f : X → Y
we get

f q : Hq(Y,�) −→ Hq(X,�).

There is another case: We always get a map Hq(Y,f∗F) → Hq(X,f∗f∗F) and the ad-
jointness provides the map f∗f∗F −→ F which corresponds to the identity f∗F → f∗F .
The composition of these two maps yields a map fq : Hq(Y,f∗F) → Hq(X,F). For this
map we have an easy theorem:
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Theorem 4.4.6. Let us assume that f : X → Y is continuous and F a sheaf on X. If
the higher derived sheaves Rqf∗(F) = 0 for q ≥ 1, then we get an isomorphism

f q : Hq(Y,f∗(F))
∼−→ Hq(X,F)

for all q ≥ 1.

Proof: This is clear: We start from an injective resolution

0 −→ F −→ I0 −→ I1 −→ . . . .

Then our assumption says that

0 −→ f∗(F) −→ f∗(I0) −→ f∗(I1) −→

is a resolution, and Lemma 4.4.5 implies that this resolution is injective. Hence

Hq(Y,f∗(F)) = Hq(0 −→ f∗(I0)(Y ) −→ f∗(I1)(Y ) −→ . . .) =

0 −→ I0(X) −→ I1(X) −→ . . . ,

and this last complex computes the cohomology Hq(X,F).

One important consequence of this theorem is the case of an embedding

i : A ↪→ X

where A is a closed subspace of X . In this case we have seen that i∗ is an exact functor
from sheaves on A to sheaves on X , hence Rqi∗(F) = 0 for q ≥ 1 and

Hq(A,F) = Hq(X,i∗(F)).

If we want to apply the above theorem we have to understand how to compute the
sheavesRqf∗(F). We want to show that under certain assumptions the stalks Rqf∗(F)y =
Hq(f−1(y),i∗y(F)). A result of this kind is rather difficult to obtain, our goal is Theo-
rem 4.4.17 (Proper base change). This theorem is very important and it also plays a
fundamental role in algebraic geometry.
To get more precise informations which will allow us to compute cohomology groups in
certain cases we have to make assumptions on our spaces.

4.4.4 Paracompact Spaces

In general the sheaves Rqf∗(F) may be very difficult to compute. One possibility is to
relate the stalks Rqf∗(F)y to the cohomology groups of the fibre f−1(y). This is possible
if our spaces satisfy certain finiteness and separatedness properties.

Definition 4.4.7 (Locally Finite Covering). A covering X =
⋃

α∈A Uα is called locally
finite if for any point x ∈ X we can find a neighborhood Vx of x such that Vx meets only
finitely many of the Uα, i.e. the set of indices α for which Vx ∩ Uα �= ∅ is finite.
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Definition 4.4.8. A space X is called paracompact if it is Hausdorff and if for any
open U ⊂ X and any covering U =

⋃
i∈I

Ui we can find a locally finite refinement of

the covering. Recall that a refinement of the covering is another covering U =
⋃
j∈J

Wj

together with a map τ : J → I such that for all j ∈ J we have the inclusion Wj ⊂ Uτ(j).

We call such a refinement a strong refinement if even the closures W j are contained
in Uτ(j).

I claim:

Lemma 4.4.9. If our space X is paracompact and locally compact then any covering
U =

⋃
i∈I

Ui of an open set U has a strong refinement which is locally finite.

Proof: Since our space is Hausdorff and locally compact we know: For any point x ∈ X
and any open neighborhood Vx of x we can find an open neighborhood Wx such that its
closure W x is contained in Vx. Now it is clear how to get a strong locally finite refinement
of a covering U =

⋃
i∈I

Ui: We can construct a strong refinement of the covering and after

that we construct a locally finite refinement of this strong refinement.

We have a simple criterion for paracompactness.

Definition 4.4.10. We say that an open subset U ⊂ X is exhaustible by compact
subsets if we we can find an increasing sequence of compact subsets

∅ = K0 ⊂ . . . ⊂ Kn ⊂ Kn+1 ⊂ . . .

s. t. U =
⋃

Kn and for any n the compact set Kn is contained in the interior
◦
Kn+1 of

the next one. We say that our space X is exhaustible by compact sets, if the open
subset U = X has this property.

Lemma 4.4.11. A Hausdorff space X for which any open subset is exhaustible by
compact subsets is paracompact.

Proof: To see this we consider U ⊂ X and a covering U =
⋃
i∈I

Ui by open subsets. We

choose an exhaustion by compact sets Kn as above. We choose inductively finite coverings
of Kn. Assume we covered already Kn−1. For any x ∈ Kn \Kn−1 we choose a Vx which

• has an empty intersection with Kn−1

• is contained in one of the covering sets Ui

• is contained in
◦
Kn+1.

We take a finite subcovering of the covering of Kn and we proceed. By construction the
resulting covering is locally finite.

It is not difficult to show that the following is true.

Lemma 4.4.12. A Hausdorff space is paracompact if it is exhaustible by compact sets
and if any open set U can be exhausted by a sequence of sets

Wn ⊂
◦
Wn+1 ⊂ Wn+1

where the Wn are only closed subsets of X.
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Proof: To see that this is true we observe that a closed subspace A ⊂ X is exhaustible
by compact sets. This implies that any covering of A by open sets has a locally finite
refinement. (Same proof as for Lemma 4.4.11) Assume that we have a covering of U by
open sets. We proceed as in the proof of Lemma 4.4.11 but now we construct locally
finite coverings of the Wn (instead of finite ones) where we obey the same precautions as
before.

We come to a very technical lemma which says something about extension of sections.
Assume that we have a closed embedding i : A ↪→ X . For any sheaf F on X , we consider
the sheaf i∗(F) on A. Recall that this is the sheafification of the presheaf V −→ i′(F)(V )
(see Lemma 4.4.4) where V is open in A and

i′(F)(V ) = lim
−→
U⊃V

(F(U)). (4.34)

If s̃ ∈ F(U) and if s is its image in i∗(F )(U ∩ A) then we say that s is the restriction of
s̃ to A ∩ U = V .
Now we say that

Definition 4.4.13. An embedding i : A ↪→ X is a nice embedding if for any open
subset V ⊂ A any section s ∈ i∗(F)(V ) can be extended into some neighborhood U of V
in X.

In other words this means it is in the image of F(U) → i′(F)(V ) for some U which
satisfies U ∩ A ⊃ V .
This condition can be reformulated by saying that i′(F) is already a sheaf.

Lemma 4.4.14 (Extension of Sections). If X is paracompact and locally compact then
any closed embedding i : A ↪→ X is nice.

Proof: We start with V ⊂ A and our section s ∈ F(V ). We know from the definition
of i∗(F) that for any point p ∈ V the image of s in the stalk sp ∈ i∗(F)p is the re-
striction of a section s̃p ∈ F(Up) where Up is an open neighborhood of p in X . Hence
we can find a covering

⋃
α Uα ⊃ V and sections s̃α ∈ F(Uα) such that s̃α maps to the

restriction s|Uα ∩ V . We may assume that this covering is locally finite since our space
is paracompact. Let {Wj}j∈J be a strong locally finite refinement of this covering. As
usual we denote the map between the indexing sets by τ : J → I.
Let q ∈ V, we can find an open neighborhood Vq of q in X such that Vq meets only
finitely many of the Wj and the Uα. We choose an open neighborhood Dq ⊂ Vq which
is contained in Wj for all those (finitely many) j for which q ∈ Wj and also in all those
finitely many Uα with q ∈ Uα. We may also choose Dq so small that Dq ∩ Wj = ∅ if
q �∈ W j because Dq meets only finitely many of them anyway. It follows from the defi-
nition of i∗ that we can take these Dq so small that we have s̃α|Dq = s̃β|Dq whenever

q ∈ Uα ∩ Uβ . Let ˜̃sp ∈ F(Dp) be the restriction of any of these s̃α. I claim that these

sections ˜̃sp ,̃s̃q restrict to the same section over Dp ∩ Dq for any pair p,q. This is clear if
Dp ∩ Dq = ∅ so we may assume that Dp ∩ Dq �= ∅. If Dp ⊂ Wj then q ∈ W j because
otherwise we have Dq ∩ Wj = ∅ by construction and this implies Dp ∩ Dq = ∅, a con-
tradiction. We have Dp ⊂ Wj ⊂ Uτ(j). Since the Wj form a strong refinement of the Uα

we even know that W j ⊂ Uτ(j). Hence q ∈ Uτ(j) and then we conclude that Dq ⊂ Uτ(j)

again by construction. Consequently we have that Dp and Dq are contained in Uτ(j) and
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this implies that the sections ˜̃sp ,̃s̃q are restrictions of s̃τ(j). Hence the ˜̃sp define a section
s̃ over U =

⋃
Dq and this is the element we were looking for.

I want to discuss a variant of this Lemma 4.4.14.

Lemma 4.4.15. If we have a closed subset A which is locally compact and paracompact,
we assume that we can find an subset W ⊂ X with W ⊃ A and such that W

∼−→ W0 ×A
where W0 is a topological space and we assume furthermore that the isomorphism sends
A
∼−→ {w0} × A for some point w0 in W0. Then the embedding i : A ↪→ X is nice.

Proof: This can be shown by a slight modification of the proof of Lemma 4.4.14. We
proceed as in the proof but we choose the open sets Uα to be of the form Uα = Vα ×Wα

where Vα is open in V and Wα is a neighborhood of w0 in W0. Then we choose a strong
locally finite refinement of the covering V =

⋃
α∈I

Vα. Let us denote this refinement by

V =
⋃
β∈J

Yβ and let τ : J → I be the map for which Yβ ⊂ Vτ(β). This gives us a covering

of V by open sets in X : We have V ⊂ ⋃
β∈J

Yβ × Wτ(β). This covering now plays the role

of the covering by the Wj in the proof of the Lemma 4.4.14. We proceed essentially in
the same way as before. We choose neighborhoods Dq which satisfy Dq ⊂ Yβ × Wτ(β) if
q = (q,w0) ∈ Yβ ×Wτ(β) and Dq ∩Yβ ×Wτ(β) = ∅ if – here we have a slight modification

– q �∈ Y β × Wτ(β). From here on the argument is the same.

Lemma 4.4.16. Let i : A ↪→ X be a nice embedding. If I is an injective sheaf on X
then i∗(I) is flabby and hence acyclic.

Proof: Let V ⊂ A be an open set and s ∈ i∗(I). We find an open subset U ⊂ X and
a section s̃ ∈ I(U) which restricts to s. By Lemma 4.2.6 I is flabby, we can extend the
section s̃ to a section on X and the restriction of this extension to A extends s.

These technical considerations will be applied to prove the following difficult theorem:

Theorem 4.4.17 (Proper Base Change). Let us assume that X is paracompact, that Y
is locally compact and Hausdorff and that

f : X −→ Y

is a proper map. Then for any sheaf F on X and any y ∈ Y we have

Rqf∗(F)y = Hq(f−1(y),i∗y(F)).

Recall that

Definition 4.4.18. A map f : X → Y is called proper if the inverse image of a compact
set in Y is again compact.

Proof: We shall need a modification of the theorem, therefore we will also discuss to
what extent we really need our assumptions.
Let iy : f−1(y) ↪→ X be the inclusion of the (closed and compact) fibre. Then we know
from our assumptions that the embedding iy is nice (Lemma 4.4.14). We formulate the
following condition on our map f
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(Cyl) For any open neighborhood of a fibre U ⊃ f−1(y) we find an open relatively
compact neighborhood V0 of y such that f−1(V0) ⊂ U .

We show that (Cyl) is valid under the assumption of the theorem. We consider the
intersections

(X \ U) ∩ f−1
(
V
)

for all closures V of relatively compact open neighborhoods of y. Since f−1(V ) is compact,
the intersection is also compact. Since U is a neighborhood of f−1(y) we know that for
x ∈ X \ U we have f(x) �= y. We may choose open neighborhoods Wf(x),Vy s.t. their

closure is compact and f(Wf(x))∩Vy = ∅, hence f(x) �∈ V y. Hence x �∈ (X \U)∩f−1(V y)
and therefore ⋂

V 
y
(X \ U) ∩ f−1(V ) = ∅. (4.35)

Now it follows from a standard argument on compact spaces that there must be a neigh-
borhood V0 of y with f−1(V0) ⊂ U .
The following considerations prove the assertion of the theorem under the following two
assumptions

a) for all y the fibre f−1(y) is closed and the embedding is nice

b) The condition (Cyl) holds.

By definition we have
f∗(F)y = lim−→

V :y∈V
F(f−1(V ))

and (Cyl) implies that

lim−→
V :y∈V

F(f−1(V )) = lim−→
U :f−1(y)⊂U

F(U).

Then the fact that the embedding of the fibre is nice yields

lim−→
U :f−1(y)⊂U

F(U) = i∗y(F)

and we conclude f∗(F)y = i∗y(F).
This proves the theorem for q = 0. To prove it in general, we start from an injective
resolution

0 −→ F −→ I0 −→ I1 −→ I2 −→ I3 −→ . . .

on X . Then (we sometimes drop the brackets in f∗)

0 −→ f∗F −→ f∗I0 −→ f∗I1 −→ f∗I2 −→ . . .

is a complex of injective sheaves. If we pass to the sequence of stalks at a point y ∈ Y ,
we get a complex of abelian groups

0 −→ f∗Fy −→ f∗I0
y −→ f∗I1

y −→ f∗I2
y −→ . . . ,

and the cohomology of this complex is the stalk Rqf∗(F)y . But this complex is equal to
the complex
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0 −→ i∗y(F)(f−1(y)) −→ i∗yI0(f−1(y)) −→ i∗yI1(f−1(y)) −→ i∗yI2(f−1(y)) −→ . . . ,

and this is the complex of global sections of the complex of sheaves on f−1(y):

0 −→ i∗yF −→ i∗yI0 −→ i∗yI1 −→ i∗yI2 −→ . . .

which is a flabby and hence acyclic resolution of i∗yF . Hence the cohomology of the above
complex of global sections is Hq(f−1(y),i∗y(F)).

Corollary 4.4.19. If X,Y and f : X −→ Y are as in the theorem and if

Hq(f−1(y),i∗y(F)) = 0 for q ≥ 1 and all y ∈ Y,

then
f q : Hq(Y,f∗F)

∼−→ Hq(X,F)

is an isomorphism.

This is the combination of the Base Change Theorem (Theorem 4.4.17) and the Theorem
4.4.6.
The following corollary is not a direct consequence of the Proper Base Change Theorem.

Corollary 4.4.20. If X is a Hausdorff space and if p : X × [0,1] → X is the projection
to the first factor then this projection induces isomorphisms in cohomology

p• : H•(X,�)
∼−→ H•(X × [0,1],�).

For any t ∈ [0,1] the inclusion x �→ x × {t} induces an isomorphism in cohomology.

Proof: This is not a direct consequence of the Proper Base Change Theorem as it is
stated since we do not make any assumption on X except that it is Hausdorff. But first
of all our modified Lemma 4.4.15 implies that for any point x0 in X the embedding
{x0} × I ↪→ X × I is nice. (We need that the fibre is closed so we can get away with the
weaker assumption that points in X are closed.) Secondly it is clear that the condition
(Cyl) in the proof of the Base change theorem is also fulfilled. This means that the proof
is valid for the projection p.
The rest is clear since p∗� = �, and since for q ≥ 0

Hq({x} × [0,1],�) = 0

by exercise 21.
The second assertion follows if we compose the inclusion with the projection.

Definition 4.4.21. Two maps f,g : X → Y are called homotopic if there is a map

F : X × [0,1] −→ Y

so that F (x,0) = g(x), F (x,1) = f(x).

Theorem 4.4.22 (The Homotopy Axiom). Let X be a Hausdorff space. If we have two
homotopic maps f,g : X → Y then

f• = g• : H•(Y,�) −→ H•(X,�).
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Proof: Look at

X
top−→−→
bot

X × [0,1]
F−→ Y

where the arrows are x �→ (x,0), x �→ (x,1). If we compose these arrows with F we get
f,g.

Definition 4.4.23. A space X is called contractible to a point p ∈ X if the two maps
f = Id and the map g which maps all the points in X to the point p are homotopic.

If we apply the homotopy axiom to this two maps we get

Lemma 4.4.24. For a contractible Hausdorff space X we have

H i(X,�) = 0 for all i > 0.

It is clear that the space �n is contractible. The same thing holds for any open ball
Bn = {(x1, . . . ,xn)|

∑
x2i < 1} and also for its closure.

4.4.5 Applications

We have the tools to compute cohomology groups of spheres and other simple spaces.

Cohomology of Spheres

We consider the sphere

Sn = {(x0,x1, . . . ,xn) ∈ �n+1|x20 + x21 + . . . + x2n = 1}.

We cover it by the two balls D± which are defined by xn ≥ 0 or xn ≤ 0 respectively.
We have the two inclusions i± : D± ↪→ Sn. These balls are contractible, we have the
sheaves �D± which we extend to the two sheaves �± = i±∗(�D±). We also have maps
�Sn → �± which on open sets V ⊂ Sn are defined by the restriction �Sn(V ) → �±(V ) =
�D±(V ∩ D±). This gives an inclusion �Sn ↪→ �+ ⊕ �− which is an isomorphism in all
the stalks which are not in the intersection of the two balls, i.e. which are not in the
sphere Sn−1. In the points x in the intersection the inclusion is given by the diagonal
�x = � ⊂ (�+ ⊕ �−)x = �⊕ �. From this we get an exact sequence of sheaves on Sn

0 −→ �Sn −→ �+ ⊕ �− −→ �Sn−1 −→ 0,

where the map s : (�+ ⊕�−)x = �⊕� −→ �Sn−1,x = � is the difference between the +
and − component.
The cohomology of the two balls is trivial except in degree zero, hence we get

Hν−1(Sn−1, �)
∼−→ Hν(Sn, �) (4.36)

if ν − 1 > 0. In degree zero we find the exact sequence

0 −→ H0(Sn, �) −→ H0(D+, �) ⊕ H0(D−, �) −→ H0(Sn−1, �) −→ H1(Sn, �) −→ 0.
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We can prove rather easily that

H0(S0, �) = �⊕ �, H1(S1, �)
∼−→ � (4.37)

and putting all this information together we get for n > 0

Hν(Sn, �)
∼−→
{

0 for ν �= 0,n

� for ν = 0 or ν = n
(4.38)

This is of course essentially the same calculation as the one in books on algebraic topology.
In these books the two essential ingredients are homotopy and the so called Mayer-
Vietoris sequence. Here the Mayer-Vietoris sequence is replaced by the construction of
suitable exact sequences of sheaves.
This settles a question raised in the first Chapter (See 1.2 ,example 7): Is the dimension
n of the space �n a topological invariant? The answer is yes because we can read it off
from the cohomology groups Hν(�n \ {p},�), where p ∈ �n is any point.

Orientations

Of course we have to be aware that the isomorphism Hn(Sn,�)
∼−→ � is not canonical

(See also the example in section 4.1.2 at the beginning of this chapter). It depends on the
choice of the homomorphism s above and it also depends on the choice of the isomorphism
Hn−1(Sn−1,�)

∼−→ �.

Definition 4.4.25. We can say that we have a topological orientation on Sn, if we
have chosen an isomorphism

On : Hn(Sn,�)
∼−→ �

(See also sections 4.7.2,4.7.3) .
It is elementary that for n > 0 an orientation of the tangent bundle of the sphere (see
4.3.3) gives us a rule to choose a topological orientation. We pick a point P ∈ Sn. It
is elementary that the choice of an orientation in the tangent space TP at P defines a
unique orientation of the sphere Sn. We choose a positively oriented orthonormal basis
{e1, . . . ,en−1,en} of tangent vectors in TP .
It is clear that the intersection of Sn with the hyperplane spanned by {e1, . . . ,en−1,en}
is a sphere Sn−1 ⊂ Sn which contains P and whose tangent space at P is spanned by
{e1, . . . ,en−1}. This sphere separates Sn into the two half spheres D+,D−, where D+ is
the half space where en points to. As before the two half spheres define sheaves �+,�−.
The sheaf �+ ⊕�−/� on Sn−1 is identified to � via the homomorphism s which in turn
is fixed by the choice of en.
If now n = 1 then S0 = {P,Q}. We have our exact sequence

H0(S0,(�+ ⊕ �−)/�) = H0({P},(�+ ⊕ �−)/�) ⊕ H0({Q},(�+ ⊕ �−)/�)

= �⊕ �
δ−→ H1(S1,�).

The kernel of δ is the diagonal Δ = {(x,x)|x ∈ �}. We have H1(S1,�) = � ⊕ �/Δ and
our rule will be:

Lemma 4.4.26. The boundary operator δ maps the first summandH0({P},�+⊕�−/�) =
� isomorphically to H1(S1,�). The inverse of this isomorphism is our topological orien-
tation induced by the given orientation.
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It is easy to verify that this identification does not depend on the choice of P , it only
depends on the orientation.
For n > 1 we use the first part {e1, . . . ,en−1} of the basis to put an orientation on
Sn−1, this fixes a topological orientation on Sn−1. The homomorphism s is fixed by en.
Therefore

Lemma 4.4.27. For n > 1 the topological orientation on Sn is again given by the inverse
of the boundary operator

Hn−1(Sn−1,�) = �
δ−→ Hn(Sn,�)

on � .

Compact Oriented Surfaces

Definition 4.4.28 (oriented surface). A two dimensional, compact, oriented manifold
is called an oriented surface.

The simplest example is the 2-sphere S2. If we have such a surface S we can construct
a new one by the following construction: We pick two different points p,q ∈ S and we
choose two small neighborhoods Dp,Dq which are homeomorphic to a two dimensional
disc. The boundaries ∂Dp,∂Dq can be identified to the oriented circle S1. We form a
cylinder S1 × [0,1]. We remove the interior of the two disks from the surface S and map
∂(S1 × [0,1]) = S1 × {0} ∪ S1 × {1} by taking the identity on each component to the
boundaries of our two discs in S \ Dp ∪Dq.
Using this map we glue the cylinder to our surface, we add a so called handle. There
is an obvious way to put an orientation onto the new surface if we have one on the old
surface. It is a theorem in two dimensional topology that any oriented surface S can be
obtained from the sphere by adding a certain number of handles.

Exercise 22. Let S be a compact oriented surface which has been obtained from the
sphere by adding g handles. Show that H0(S,�) = H2(S,�) = � and H1(S,�)

∼−→ �
2g .

Hint: Construct a sequence of sheaves on S which is suggested by the process of adding
a handle and proceed by induction.

We can also understand the cohomology of our oriented surface without such an explicit
construction. This will be discussed in the section on Poincaré duality (see section 4.8.4).

4.5 Čech Cohomology of Sheaves

4.5.1 The Čech-Complex

For any space X , any sheaf F on X with values in the category of abelian groups and
any open covering

U = {Ui}i∈I , X =
⋃
i∈I

Ui

of X , we will define the Čech-cohomology groups Ȟq(X,U,F), for q = 0,1,2 . . .
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To define these cohomology groups we introduce the so-called Čech complex. For any set
of indices (i0, . . . ,iq) ∈ Iq+1 we define

Ui0...iq = Ui0 ∩ Ui1 ∩ . . . ∩ Uiq .

Then we put

Cq(X,U,F) =
∏

(i0,...,iq)∈Iq+1

F(Ui0...iq ) (4.39)

for q = 0,1, . . .. We define a boundary map

d : Cq(X,U,F) −→ Cq+1(X,U,F)

by the following formula

(d c)i0...iq+1
=

q+1∑
ν=0

(−1)ν res(ci0,...,̂iν ,...,iq+1
). (4.40)

Definition 4.5.1 (Čech Complex). The complex (C•(X,U,F ,d) is called the Čech com-
plex.

We have to explain why formula (4.39) makes sense:
An element c ∈ Cq(X,U,F) is an element in a product and has components

cj0,...,jq ∈ F(Uj0...jq ).

Hence dc will also have components which are indexed by elements in Iq+2. An element
(i0, . . . ,iq+1) ∈ Iq+2 provides q + 2 elements in Iq+1 which are obtained by suppressing

one of the components. By (i0, . . . ,̂iν , . . . ,iq+1) we denote the element in Iq+1 where we
removed iν .
For all these q+2 possibilities we have the restriction associated to Ui0...iq+1

⊂ Ui0,...,̂iμ,...,iq+1

which we simply denote by

res : F(Ui0,...,̂iμ,...,iq+1
) −→ F(Ui0,...,iq+1

).

Now it is clear that the formula gives the rule to compute the (i0 . . . iq+1)-component of
dc. We leave it as an exercise to prove that d ◦ d = 0. Hence (C•(X,U,F),d) is a complex
of abelian groups.
Let us look at the beginning of our complex

0 −→
∏
i∈I

F(Ui)
d−→

∏
(i,j)∈I×I

F(Ui ∩ Uj) −→ . . . . (4.41)

An element c = (. . . ,ci, . . .) in the first term goes to zero if and only if

ci|Ui ∩ Uj = cj |Ui ∩ Uj for all i,j (4.42)

But since F is a sheaf this implies that this is the case if and only if c comes from a
uniquely defined global section s ∈ F(X), i.e. si = s|Ui for all i.
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Definition 4.5.2 (Čech Cohomology). We define cycles Zq(X,U,F) to be the kernel
of d and boundaries are the elements b ∈ Cq(X,U,F) of the form b = dc with c ∈
Cq−1(X,U,F). The boundaries form a subgroup Bq(X,U,F) of Zq(X,U,F) and now we
define by

Ȟq(X,U,F) = Zq(X,U,F)/Bq(X,U,F).

the Čech cohomology.

We just saw
Ȟ0(X,U,F) = F(X). (4.43)

Remark 4. In general these Čech cohomology groups do depend on U. Later on we shall
see that under certain assumptions on the sheaves and on the space and the nature of
the covering they will be independent of the covering.

We have the notion of a refinement of a covering (see 3.3.1). If τ : V −→ U is such a re-
finement, the map τ between the indexing sets yields a map between the Čech complexes
τ•(C•(X,U,F),d) −→ (C•(X,V,F),d) and we get a map Ȟ•(X,U,F) −→ Ȟ•(X,V,F).

It is possible to show that on the level of cohomology this map does not depend on τ ,
but we do not need this fact here. Since the coverings form a category we can define the
Čech cohomology groups of a space as direct limit

lim−→
U

Ȟ•(X,U,F) =: Ȟ•(X,F). (4.44)

We can also look at the so called alternating complex C•alt(X,U,F). It is defined as
the subcomplex where the cochains satisfy

ci0,...,x,...,x,...,iq = 0 (i)

and

ci0,...,x,...,y,...,iq = −ci0,...,y,...,x,...,iq . (ii)

It is not too difficult to prove that C•alt(X,U,F) is a subcomplex, i.e. the coboundary
operator maps it into itself. It is a little bit more difficult to prove that

C•alt(X,U,F) −→ C•(X,U,F)

induces an isomorphism in cohomology. Sometimes it is easier to do computations using
this smaller complex.

Exercise 23.

(a) Prove that

C•alt(X,U,F) −→ C•(X,U,F)

induces an isomorphism in cohomology.

(b) Consider the simplex

Δn+1 = {(x1, . . . ,xn+2) ∈ �n+2|xi ≥ 0,
∑

xi = 1}.
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Then we get a covering U of Δn+1 by the open sets

Ui = {(x1, . . . ,xn+2) ∈ Δn+1|xi > 0}.

Show that the cohomology groups

Ȟm(Δn+1,U,�) =

{
0 if m > 0

� if m = 0.

(c) Now we remove the interior of Δn+1 and we get the n-dimensional sphere

∂Δ = {(x1, . . . ,xn+2)| at least one of the xi is zero} � Sn.

Our covering of Δn+1 induces a covering U′ on Sn.

Ui = {(x1, . . . ,xn+2) ∈ Sn|xi > 0}.

Show that the Čech-cohomology groups Ȟ•(Sn,U′,�) coincide with the cohomology
groups computed by injective resolutions.

A rather elegant solution of this exercise can be obtained if we use the following Lemma
whose proof I give for later references.

Lemma 4.5.3. Let U be a covering of an arbitrary space X and let us assume that
in our covering U = {Ui}i∈I is a member y ∈ I for which Uy = X. Then we have
Hq(X,U,F) = 0 for all q ≥ 1.

Proof: Let us assume we have a cocycle

c = (. . . ,ci0,...,iq , . . .)(i0,...,iq)∈Iq+1 ∈ Zq(X,U,F).

We construct a cochain b ∈ Cq−1(X,U,F) by

bi0,...,iq−1 = cy,i0,...,1q−1 .

We have to observe that
Ui0,...,iq−1 = Uy,i0,...,iq−1 .

Then

(db)i0,...,iq = Σ(−1)νbi0,...,̂iν ,...,iq

= Σ(−1)νcy,i0,...,̂iν ,...,iq
= −(dc)y,i0,...,iq + ci0,...,iq = ci0,...,iq .

To apply this to the exercise above we can consider the inclusion U0 ↪→ Δn+1. The
covering of Δn+1 induces a covering of U0 and these two coverings yield the same Čech
complexes.
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4.5.2 The Čech Resolution of a Sheaf

Remark 5 (Heuristic Remark). Let F be a sheaf on X with coefficients in the category
of abelian groups. Let us assume that we have a resolution of F

0 −→ F −→ G0 −→ G1 −→ . . . −→ Gn −→ . . .

A resolution of a sheaf may be very useful for the computation of the cohomology of F .
In Chapter 2 we showed: If the resolution above is acyclic then we can use it to compute
the cohomology groups of F , we have:

H•(X,F) = H•(G•(X)).

But even if a resolution is not acyclic it still may be helpful. For instance we still have a
homomorphism

H•(G•(X)) −→ H•(X,F)

which in general is neither injective nor surjective. But we have some kind of estimate for
the deviation from being an isomorphism and in these estimates the cohomology groups
Hq(X,Gp) will enter.

I want to put the Čech complex into this context. Let U = {Uα}α∈A be a covering of our
space X by open sets. We assume that this covering is locally finite, i.e. for any x ∈ X
we can find an open neighborhood Vx such that Vx ∩ Uα = ∅ for almost all α ∈ A. Let
F be a sheaf with values in the category of abelian groups. We give the indexing set A a
total order and we denote by Aq+1

< the set of those sequences α = (α0,α1, . . . ,αq) where
α0 < α1 . . . < αq . Again we put Uα = Uα0 ∩ Uα1 ∩ . . . ∩ Uαq

and let iα : Uα ↪→ X be
the inclusion map. We restrict F to Uα and take the direct image of this restriction, we
obtain the sheaves F∗α = iα∗i∗α(F). I recall that these sheaves are defined by the rule
iα∗i∗α(F)(V ) = F(V ∩ Uα). The stalk of this sheaf is equal to Fx if x ∈ Uα; it is zero if

x �∈ Uα. It depends on the local structure of Uα in the boundary points x ∈ ∂Uα. We
have always a homomorphism Fx −→ F∗αx. I allow myself to write F∗α for F∗{α}.
Recall that we can define infnite products in the category of sheaves (see 3.5 and especially
3.20). Now we construct a resolution of our sheaf F

0 −→ F −→
∏
α∈A

F∗α −→
∏

(α,β)∈A2
<

F∗(α,β) −→ . . . −→
∏

α∈Aq+1
<

F∗α −→ . . . . (4.45)

The first map is simply

Fx −→
∏
α∈A

F∗αx.

The boundary map

d :
∏

α∈Aq+1
<

F∗α −→
∏

β∈Aq+2
<

F∗β

is given by the following rule: Let s = (. . . sα . . .) ∈ (
∏F∗α)x, then

(ds)β =

q+1∑
i=0

(−1)isβ0...β̂i...βq+1
(4.46)

where we interpret sβ0,...,β̂i,...,βq+1
as an element in F∗β,x. It is clear that this is a complex

of sheaves.
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Exercise 24.

(a) Prove that this complex of sheaves is exact.

Hint: We have to check exactness in the stalks. If x ∈ X we know that we can find
an element γ ∈ A with x ∈ Uγ . Now we are in the same situation as in Lemma 4.5.3
abvove, except that we have modified the Čech complex since we have ordered the
index set. But it is not difficult to adapt the Lemma to this situation here.

(b) Let E be a finite totally ordered set, i.e. E = {0,1, . . . ,n}. Let A be an abelian group,
for any r ∈ � we define

Cr(A) =
⊕

I⊂E, |I|=r+1

A,

by definition we have Cr(A) = 0 if r �∈ {0, . . . ,n} = E. For a subset I ⊂ E and
α ∈ I we define p(α,I) as the position of α in I, i.e. p(α,I) = 0 if α is the smallest
element, p(α,I) = |I| − 1 if α is the biggest one.

We define (co-)boundary operators

d : Cr(A) −→ Cr+1(A)

δ : Cr(A) −→ Cr−1(A)

by (da)J =
∑
β∈J

(−1)p(β,J)aJ\{β}

(δa)J =
∑
β �∈J

(−1)p(β,J∪{β})aJ∪{β}

where aJ is the J-th component of a = (. . . ,aJ , . . .) ∈ C•(A). We get two complexes

0 −→ C0(A)
d−→ . . .

d−→ Cr(A)
d−→ Cr+1(A)

d−→
0 −→ Cr(A)

d−→ Cr−1(A)
d−→ . . .

d−→ C0(A) −→ 0.

Show that these two complexes are exact using the ideas of the part (a) and the
previous exercises

Let me come back to the heuristic remark above. I said that the complexes of sections
G•(X) of a resolution contain some information concerning the cohomology of F . Now
we see that for the special case of the Čech resolution the resulting complex of global
sections is the ordered Čech complex. We know that the ordered Čech complex gives us
the same cohomology groups as the unordered Čech complex.
We see that coverings allow us to construct resolutions of sheaves. We already saw some
other constructions providing resolutions of sheaves. If for instance we look back to our
computation of the cohomology of the spheres (see section 4.4.5) then we see that our
first short exact sequence is a resolution. We could extend this resolution by resolving
�Sn−1 and so on. Also the computation of the cohomology of a surface is obtained from
a resolution of the sheaf � on the surface.
This gives us the general idea that these resolutions in some sense provide a kind of
cutting a space into simpler pieces. (See Exercise 4.4.14.)
In the following sections we discuss the technique of spectral sequences, we return to the
Čech complex in 4.6.6..
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4.6 Spectral Sequences

4.6.1 Introduction

The method of spectral sequences is designed to extract information on the cohomology
of a sheaf from the cohomology of the sheaves in a resolution.
We consider a resolution of a sheaf F :

0 −→ F −→ G0 −→ G1 −→ . . . −→ Gn −→ . . .

We break the sequence
0 −→ F −→ G0 −→ K −→ 0

and we have seen in section 2.3.4 that we can find an injective resolution of this short
exact sequence

0 F G0 K 0

0 I0 I0 ⊕ J0 J0 0

0 I1 I1 ⊕ J1 J1 0

0 I2 I2 ⊕ J2 J2 0

...
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We have the second half of the exact sequence

0 −→ K −→ G1 −→ . . . −→ Gn −→

and we can apply the same to this sequence. Proceeding in the same way forever, we get
a diagram
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0 0 0 0

0 F G0 G1 . . . Gn . . .

0 I0 I0,0 I1,0 . . . Ip,0 . . .

0 I1 I0,1 I1,1 . . . Ip,1 . . .

0 I2 I0,2 I1,2 . . . Ip,2 . . .

...
...

...
...

........................................................................... .....
....... ........................................................................... .....

....... ........................................................................... .....
....... ........................................................................... .....

....... ........................................................................... .....
....... ........................................................................... .....

.......
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...... ......................................................................... ......

...... ...................................................................... ......
...... ......................................................................... ......

...... ......................................................................... ......
...... ......................................................................... ......

......
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....... ......................................................................... .....

....... ...................................................................... .....
....... ......................................................................... .....

....... ......................................................................... .....
....... ......................................................................... .....

.......
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....... ......................................................................... .....
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....... ......................................................................... .....
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......
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.....................................................................
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......
......

where all the Iν and Ip,q are injective, all squares commute.

Lemma 4.6.1. This double complex of sheaves has two properties

(a) all horizontal sequences are exact.

(b) The vertical complexes Iν,• are injective resolutions of Gν and I• is an injective
resolution of F .

We apply the functor global sections to this diagram and get the augmented double
complex Ĩ••(X)
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0 0 0 0

0 F(X) G0(X) G1(X) . . . Gn(X) . . .

0 I0(X) I0,0(X) I1,0(X) . . . Ip,0(X) . . .

0 I1(X) I0,1(X) I1,1(X) . . . Ip,1(X) . . .

0 I2(X) I0,2(X) I1,2(X) . . . Ip,2(X) . . .

...
...

...
...

............................................................... .....
....... ................................................ .....

....... ............................................. .....
....... ............................................................ .....

....... .......................................................... .....
....... .......................................................... .....
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....... .............................. .....
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....... ..................................................... .....

.......
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....... ..................................................... .....
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.....................................................................

......

......
......

.....................................................................
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......
......
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......
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......

We replace the vertical complex on the left and the horizontal line on the top by zero
and then we get the (non augmented) double complex I•,•

0 0 0 0

0 I0(X) I0,0(X) I1,0(X) . . . Ip,0(X) . . .

0 I1(X) I0,1(X) I1,1(X) . . . Ip,1(X) . . .

0 I2(X) I0,2(X) I1,2(X) . . . Ip,2(X) . . .

...
...

...
...

............................................................ .....
....... ...................................... .....

....... .............................. .....
....... ..................................................... .....

....... ..................................................... .....
....... ..................................................... .....

.......
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All squares commute and all vertical and horizontal sequences are complexes. We give a
name to the differentials

′dp,q : Ip,q(X) −→ Ip+1,q(X) horizontal

′′dp,q : Ip,q(X) −→ Ip,q+1(X) vertical.
(4.47)

We get a simple complex I•simp from I•,•: We put
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Insimp(X) =
⊕

p+q=n

Ip,q(X) (4.48)

and we define

dn : Insimp(X) −→ In+1
simp(X) (4.49)

by dn =
∑

p+q=n

′dp,q + (−1)p ′′dp,q .

It is clear that the commuting of the squares implies that

dn+1 ◦ dn = 0. (4.50)

The following facts are more or less obvious from the construction in the previous part.

Lemma 4.6.2.

(a) The vertical complexes (Ip,•(X),′′d) compute the cohomology of the sheaves Gp, i.e.

Hq(X,Gp) = Hq(Ip,•(X),′′d)

(b) The horizontal complexes (I•q,′d) compute the cohomology of Iq and hence they are
exact except in degree zero:

H0(X,Iq) = Iq(X) = H0(I•,q(X),′d) and

Hp(I•,q(X),′d) = 0 for p > 0.

(c) The inclusion I•(X) ↪→ I•simp(X) given by xq �→ (xq ,0, · · · ,0) induces an isomorphism

H•(I•(X)) � H•(I•simp(X))

and hence we have
H•(X,F) = H•(I•simp(X)).

The last assertion is not quite so obvious, it requires a little argument using (b). Let us
look at a class which is represented by the cocycle x = (x0,n, . . . ,xn,0). The entries of the
array are placed in our complex I•simp(X) like that:

0 . . . 0 xn,0
... . .

.
xn−1,1 0

0 . .
.

. .
. ...

x0,n 0 . . . 0

(4.51)

The cocycle condition implies ′dn,0(xn,0) = 0. Hence we find a b = (0, . . . ,yn−1,0) ∈
In−1simp(X) such that ′dn−1,0(yn−1,0) = xn,0 and x− dn−1simp(b) represents the same class but
has its last component in the upper right corner equal to zero. Repeating this we can
represent our element by a cocycle whose components are zero except the one in the
lower left corner. This implies (c).
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Summary: Starting from a resolution 0 −→ F −→ G• of F we constructed a dou-
ble complex I•• consisting of injective sheaves, such that the resulting simple complex
I•simp(X) computes the cohomology groups of H•(X,F). Of course we can compute these
cohomology groups directly from an injective resolution of F . Here we put a step in
between, by resolving F by a complex G•, which does not necessarily consist of acyclic
sheaves and then we resolve this complex. This procedure may have an advantage: Let
us assume that we find such a resolution G•, where we have some information concerning
Hp(X,Gq) (for instance some finiteness, vanishing in certain degress..). Then we will see
in section 4.6.2 that this has consequences for the groups Hp+q(X,F). We give some first
indications how how this works.
We have the inclusion of the complex

G0(X) G1(X) . . . Gn(X) . . .

I0simp(X) I1simp(X) . . . Insimp(X) . . .

.......................................................... ......
...... ......................................................................... ......

...... ...................................................................... ......
...... ...................................................................... ......

......

............................ .....
....... .......................................................... .....

....... .......................................................... .....
....... .......................................................... .....

.......

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

and hence we get from this construction a homomorphism

Hn(G•(X)) −→ Hn(I•simp(X)) = Hn(X,F) (4.52)

This is the so called edge homomorphism.
If the sheaves Gp are acyclic then section 2.3.1 tells us that this edge homomorphism is
an isomorphism. This can also be seen by looking at the the double complex, the same
argument which gave us (c) in the assertion above implies that the edge homomorphism
is an isomorphism.
If the Gp are not acyclic then the edge homomorphism is neither injective nor surjective in
general. But still we may get some information concerning the cohomologyHn(X,F) from
it. I recommend to the reader to solve the following exercise. It shows how these mecha-
nisms work and it deals with the computation of H1(I•simp(X)). What I said above means
that can get information on Hn(X,F) in terms of the cohomology groups Hq(X,Gp) for
p + q = n.
The cocycles are the elements (x0,1,x1,0) which satisfy ′dx1,0 = 0, ′′dx0,1 = 0 and ′′dx1,0+
d′x0,1 = 0. Now a simple calculation solves the following exercise

Exercise 25.

(a) Show that the edge homomorphism in degree 1

H1(G•(X)) −→ H1(X,F)

is injective. It provides an isomorphism to those classes which can be represented
by cocycles with x0,1 = 0.

(b) In other words: sending a class to x0,1 induces a a homomorphism

H1(X,F) = H1(I•simp(X)) −→ H1(X,G0)

and the kernel of this map is the image of the map in (a).
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(c) The image of the map H1(X,F) −→ H1(X,G0) lands in the kernel of H1(X,G0) −→
H1(X,G1) and we have a homomorphism

ker
(
H1(X,G0) −→ H1(X,G1)

) −→ H2(G•(X).

(d) Show that we get even an exact sequence

0 −→ H1(G•(X)) −→ H1(X,F) −→ ker
(
H1(X,G0) −→ H1(X,G1)

) −→ H2(G•(X))

This extends to higher degrees, but the information we get is more complex. The basic
point is that the double complex has two filtrations, these filtrations induce filtrations
on the cohomology of the double complex. These filtrations are the horizontal filtration
and the vertical filtration. These two filtrations induce filtrations on the cohomology of
I•simp(X) and we have some information on the graded pieces of these filtrations. Actually
we used already the horizontal filtration, essentially it provides the argument that proved
Lemma 4.6.2 (c).

4.6.2 The Vertical Filtration

In the following discussion I start from a slightly more general situation. We forget the
sheaf F and start from a complex of sheaves

0 −→ G0 −→ G1 −→ . . . −→ Gn −→ . . .

we do not assume that it is exact. We want to construct an injective resolution of it. We
adapt the approach we used when we constructed the double complex for the resolution
G• of F in context of Lemma 4.6.1. The only difference is that we have to take the
cohomology sheaves of this complex into account. Hence we do not make the assumption
a) in Lemma 4.6.1.
We start at the left end of our complex and we break it

0 −→ Z(G0) −→ G0 −→ B(G1) −→ 0

and resolve this by the standard construction (Chapter 2.3.4). Observe that by definition
Z(G0) = H0(G•). Our injective resolution looks as follows

0 H0(G•) G0 B(G1) 0

0 I0,0H I0,0H ⊕ I1,0B I1,0B 0

0 I0,1H I0,1H ⊕ I1,1B I1,1B 0

...
...

...

................................................................. ......
...... ................................................................. ......

...... ......................................................................... ......
...... ......................................................................... ......

......

..................................................................................... .....
....... ................................................ .....

....... ................................................ .....
....... ..................................................................................... .....

.......

..................................................................................... .....
....... ................................................ .....

....... ................................................ .....
....... ..................................................................................... .....

.......

..................................................................................
......
......
......

...................................................................................
.....
.......
.....

..................................................................................
......
......
......

..................................................................................
......
......
......

...................................................................................
.....
.......
.....

..................................................................................
......
......
......

..................................................................................
......
......
......

...................................................................................
.....
.......
.....

..................................................................................
......
......
......
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For the following indices we always have the two short exact sequences

0 −→ B(Gq) −→ Z(Gq) −→ Hq(G•) −→ 0

and
0 −→ Z(Gq) −→ Gq −→ B(Gq+1) −→ 0.

We always resolve the first sequence by this method and then we use the resolution of
the term in the middle for the left term in the second sequence, resolve the term on the
right and then proceed by the standard construction to resolve the term in the middle.
This goes on forever and we get an injective resolution of the complex G• .

0 0 0

0 G0 . . . Gn Gn+1 . . .

0 I0,0 . . . In,0 In+1,0 . . .

0 I0,1 . . . In,1 In+1,1 . . .

...
...

...

........................................................................................ .....
....... ........................................................................................ .....

....... ........................................................................................ .....
....... .............................................................................. .....

....... .............................................................................. .....
.......

..................................................................................... .....
....... ..................................................................................... .....

....... ..................................................................................... .....
....... ...................................................................... .....

....... ......................................................................... .....
.......

..................................................................................... ......
...... ..................................................................................... ......

...... ..................................................................................... ......
...... ...................................................................... ......

...... ......................................................................... ......
......

..................................................................................

......

......
......

...................................................................................
.....
.......
.....

..................................................................................

......

......
......

..................................................................................

......

......
......

..................................................................................
......
......
......

...................................................................................
.....
.......
.....

..................................................................................
......
......
......

..................................................................................
......
......
......

..................................................................................
......
......
......

...................................................................................
.....
.......
.....

..................................................................................
......
......
......

..................................................................................
......
......
......

We call such a resolution an adjusted injective resolution.
We apply the functor global sections and we get a double complex I•,•(X). From this
double complex we get the simple complex I•simp(X) and we are interested in the co-
homology groups of this simple complex. On the double complex we define a filtration:
We define F p(I•,•(X)) to be the subcomplex where the entries in the first p− 1 vertical
columns are zero. By we denote F p(I•simp(X)) we denote the resulting simple complex.
The inclusion of complexes

F p(I•simp(X)) ↪→ I•simp(X)

induces a homomorphism in cohomology

Hn(F p(I•simp(X))) −→ Hn(I•simp(X)).

and we define F p(Hn(I•simp(X))) as the image of this homomorphism. This yields a
filtration of the cohomology, we have

F 0(Hn(I•simp(X))) = Hn(I•simp(X))

and F p(Hn(I•simp(X))) = 0 for p > n.
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Our final goal is to get some understanding of the quotients of the filtration

F p(Hn(I•simp(X)))/F p+1(Hn(I•simp(X))).

We have an exact sequence of complexes

0 −→ F p+1(I•simp(X)) −→ F p(I•simp(X)) −→ F p(I•simp(X))/F p+1(I•simp(X)) −→ 0.

The complex on the right is simply the vertical complex given by the p-th column. Hence
we know

Hn(F p(I•simp(X))/F p+1(I•simp(X)))
∼−→ Hn−p(X,Gp). (4.53)

We rewrite the exact sequence in cohomology

. . . Hn(F p+1(I•simp(X))) Hn(F p(I•simp(X)))

Hn−p(X,Gp) Hn+1(F p−1(I•simp(X)))

........................................................................................................................................................................ ......
...... ..................................................................................... ......

......

......................................................................................................... .....
.......

...................................................................................................................................................................................................................................................................................................................................................
.....................................................


.......

which yields an inclusion

Hn(F p(I•simp(X)))/Im (Hn(F p+1(I•simp(X)))) ⊂ Hn−p(X,Gp)

By definition we have a homomorphism

Hn(F p(I•simp(X)))/Im (Hn(F p+1(I•simp(X)))) −→ F p(Hn(I•simp(X)))/F p+1(Hn(I•simp(X)))

which gives us (the first little piece of information)

E1 The filtration steps F p(Hn(I•simp(X)))/F p+1(Hn(I•simp(X))) are isomorphic to sub-

quotients of Hn−p(X,Gp).

We put n− p = q and write Ep,q
1 = Hq(X,Gp).

This assertion E1 sometimes allows us to draw conclusions in the sense of the Summary
above. If for instance we know that Hq(X,Gp) are finitely generated abelian groups, then
we know that the cohomology groups of the total complex are also finitely generated
abelian groups.
The next question is: How can we compute the subquotient of Ep,q

1 which is isomorphic
to the subquotient F p(Hn(I•simp(X)))/F p+1(Hn(I•simp(X))) of the cohomology?
A subquotient of Epq

1 is by definition of the form Zp,q
∞ /Bp,q

∞ where Bp,q
∞ ⊂ Zp,q

∞ ⊂ Epq
1 ,

we have to compute these two submodules.
Our strategy will be to approximate these submodules Zp,q

∞ (resp. Bp,q
∞ ) by a sequence of

decreasing (resp. increasing ) submodules, i.e. we will construct sequences of submodules

Zp,q
1 ⊃ Zp,q

2 ⊃ . . . ⊃ Zp,q
∞

and Bp,q
1 ⊂ Bp,q

2 ⊂ . . . ⊂ Bp,q
∞

such that for large indices r we have Zpq
r = Zp,q

∞ ,Bp,q
r = Bp,q

∞ .
The structure of a complex on G• induces a structure of a complex
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Hq(X,G•) = . . . −→ Hq(X,Gp−1) −→ Hq(X,Gp) −→ Hq(X,Gp+1) −→ . . . . (4.54)

We denote the boundary operators by dp,q1 : Ep,q
1 −→ Ep+1,q

1 and call the complex
(Ep,q

1 ,dp,q1 )p,q the E1-term of our double complex. Since this is a complex we have the
cocyles and coboundaries in it:

Bp,q
1 ⊂ Zp,q

1 ⊂ Ep,q
1 .

We want to show that
Bp,q
1 ⊂ Bp,q

∞ ⊂ Zp,q
∞ ⊂ Zp,q

1 .

First of all it is clear from the definition that Zp,q
∞ consists of those classes ξp,q ∈ Hq(X,Gp)

which have a representative xp,q ∈ Ip,q(X), satisfying ′′dp,q(xp,q) = 0 which is the lower
left entry of a cocycle

x =

0 0 · · · 0 xp+q,0

...
... . .

.
. .
.

0

0 0 xp+1,q−1 . .
. ...

0 xp,q 0 · · · 0
0 0 0 · · · 0

i.e. given xp,q we want to place entries xp+1,q−1, . . . ,xp+q,0 such that dx = 0. (We call
this Problem (C) for a given xp,q)
It is also clear that ξp,q ∈ Bp,q

∞ if and only if we can find an element y ∈ In−1simp(X) i.e. an
element

y =

0 · · · 0 yn−1,0
... . .

.
. .
.

0

0 . .
.

. .
. ...

y0,n−1 0 · · · 0

such that x − dn−1y ∈ F p+1(Insimp(X)). (Problem (B))
To solve (C) we we have at least to be able to fill the next spot, this is Problem (C1).
We analyze what the obstruction for solving (C1) is and then we try to solve (C2) under
the assumption that we have solved (C1). We proceed by induction.
To solve (C1) we have to find an xp+1,q−1 ∈ Ip+1,q−1(X) for which

′dxp,q = −′′dxp+1,q−1.

The element ′dxp,q must be a cocycle for the vertical complex and therefore it represents
a class in Hq(X,Gp+1). We can find such an xp+1,q−1 if and only if ′dxp,q represents the
trivial class. This means that the class ξp,q goes to zero under

dp,q1 : Hq(X,Gp) −→ Hq(X,Gp+1)

i.e. it lies in the kernel Zp,q
1 = ker(dp,q1 ) and this implies Zp,q

1 ⊃ Zpq
∞ . Now we look at a

class ξ ∈ F p(Hn(I•simp(X))) and represent it by a cocycle x as above.
Assume that the class ξp,q represented by xp,q is in the image

ξp,q ∈ Bp,q
1 = Im (dp−1,q1 : Hq(X,Gp−1) −→ Hq(X,Gp)).
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Then this means that we can find an element yp−1,q which represents a class in Hq(X,Gp−1)
and therefore satisfies ′′dp−1,q(yp−1,q) = 0, and which maps to xp,q under ′dp−1,q. Then
we can choose any element

y =

0 · · · 0 yp+q−1,0
... . .

.
. .
.

0

0 yp−1,q . .
. ...

0 0 · · · 0

(4.55)

then dp+q−1y is zero in the cohomology and x − dp+q−1y ∈ F p+1(I•simp(X)).
We conclude that Bp,q

1 ⊂ Bp,q
∞ ⊂ Zpq

∞ ⊂ Zpq
1 , and we define

Ep,q
2 = Zp,q

1 /Bp,q
1 = Hp(Hq(X,G•)).

In other words we define Epq
2 as the cohomology groups of the complex (Ep,q

1 ,dp,q1 ). We
get

E2 The filtration steps F p(Hn(I•simp(X)))/F p+1(Hn(I•simp(X))) are isomorphic to sub-
quotients of Ep,q

2 .

(In view of applications we made some progress. I mentioned the applications to finiteness
results at (E1), now we get finiteness results if we only know that the Ep,q

2 are finitely
generated.)
The decisive point is that we can proceed and define

dp,q2 : Ep,q
2 −→ Ep+2,q−1

2 .

such that we get a complex

Ep−2,q+1
2

dp−2,q+1
2−−−−−−−−−→ Ep,q

2

dp,q2−−−−−−→ Ep+2,q−1
2 (4.56)

such that the cocyles and coboundaries of this complex satisfy Bp,q
2 ⊂ Bp,q

∞ ⊂ Zp,q
∞ ⊂ Zp,q

2 .
To construct this map we represent an element ξp,q ∈ Zp,q

1 by a matrix

xp+1,q−1
↓

xp,q −→ zp+1,q

↓
0

where zp+1,q = ′dp,qxp,q = −′′dp+1,q−1(xp+1,q−1).

This means that we encode the condition ξpq ∈ Zpq
1 by giving the solution of (C1). But

now we have to fill the next place (C2). We apply the horizontal boundary operator and
we get

′dp+1,q−1(xp+1,q−1) = zp+2,q−1 ∈ Ip+2,q−1(X).

This element zp+2,q−1 represents a class in Hq−1(X,Gp+2) which is in the kernel Zp+2,q−1
1

of dp+2,q−1
1 because it is a boundary under the horizontal boundary operator. We can

fill the next spot if the class of zp+2,q−1 is zero. But since we made some choices, this
is only a sufficient condition. We can modify the representatives for ξp,q by boundaries
which are the elements of the form
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zp+1,q−1
↓

′d(yp−1,q) −→ 0
where ′′d(zp+1,q−1) = 0

It is obvious that another choice modifies zp+2,q−1 into zp+2,q−1 +′ d(zp+1,q−1) i.e. by an

element in Bp+2,q−1
1 . Hence we get a homomorphism

dp,q2 : Ep,q
2 −→ Ep+2,q−1

2 ,

and we can solve (C2) for the class ξp,q if and only if it goes to zero under dp,q2 . This also
tells us that Zp,q

1 ⊃ Zp,q
2 = ker(dp,q2 ) ⊃ Zp,q

∞ . It is clear that we even get a complex

. . . −→ Ep−2,q+1
2

dp−2,q+1
2−−−−−−−−−→ Ep,q

2

dp,q2−−−−−−→ Ep+2,q−1
2 −→ . . . . (4.57)

We want to show that Bp,q
2 = Im (dp−2,q+1

2 ) ⊂ Bp,q
∞ . An element x ∈ Bp,q

2 is the boundary
of an element in Zp−2,q+1

1 . This means that we can find an element y ∈ Ip+q−1(X) which
in its lower left corner is of the form

yp−1,q
↓

yp−2,q+1 −→ zp−1,q+1

↓
0

where ′′d(yp−2,q+1) = 0, ′d(yp−2,q+1) = −′′d(yp−1,q)

(4.58)
and where ′d(yp−1,q) = xp,q. Hence x − dy represents a class in F p+1(Hn(I•simp(X))).
Now we define Ep,q

3 as the cohomology of the complex, i.e.

Ep,q
3 = Zp,q

2 /Bp,q
2

Now it is clear - and I will not give the formal proof - that this construction can be
extended by induction to all r and we get

Lemma 4.6.3. Starting from Ep,q
1 = Hq(X,Gp) and dp,q1 : Hq(X,Gp) −→ Hq(X,Gp+1)

we can define a sequence of terms

(Ep,q
r ,dr) dp,qr : Ep,q

r −→ Ep+r,q−r+1
r where dp+r,q−r+1

r ◦ dp,qr = 0

such that at any level

Ep,q
r+1 =

ker(dp,qr : Ep,q
r −→ Ep+r,q−r+1

r )

Im (dp−r,q+r−1
r : Ep−r,q+r−1

r −→ Ep,q
r )

and such that for all r the subquotients F p(Hn(I•simp(X)))/F p+1(Hn(I•simp(X))) are iso-
morphic to subquotients of Ep,q

r . Since we are in the positive quadrant, i.e. p,q ≥ 0 the
sequence of modules Epq

r becomes stationary after a while. This means that for r � 0 we
have

Ep,q
r = F p(Hn(I•simp(X)))/F p+1(Hn(I•simp(X)))

Now we return to the situation in Lemma 4.6.1. In Lemma 4.6.2 we noticed that

H•(X,F)
∼−→ Hn(I•simp(X)).



94 4 Cohomology of Sheaves

Therefore, we may replace in the statement above the cohomology of the double complex
by the cohomology groups H•(X,F) and the induced filtration. Usually one summarizes
the assertion in Lemma 4.6.3 by saying:

Lemma 4.6.4 (Spectral Sequence). We have a spectral sequence with E1 term Epq
1 =

Hq(X,Gp) which converges to Hn(X,F) and this is abbreviated by

(Hq(X,Gq),d1) ⇒ Hn(X,F).

If we happen to know the E2 term we also write this for the E2 term

(Ep,q
2 ,d2) ⇒ Hn(X,F)

4.6.3 The Horizontal Filtration

Assume that we have a complex G• which starts in degree zero and that we have an
adjusted injective resolution G• −→ I•,• (see Lemma 4.6.1). We change the notation and
give the index q to the vertical complexes. (We want a certain consistency therefore we
arrange things so that p is the index for the horizontal filtration.)
We can apply to it the same method which we applied for the vertical filtration. Let
′F p(I•,•) be the subcomplex where the entries in the first p − 1 lines are zero. Now
we use the specific form of the adjusted injective resolution. The horizontal complex
′F p(I•,•(X))/′F p+1(I•,•(X)) is of the form

Iq−1,pB (X) ⊕ Iq−1,pH (X) ⊕ Iq,pB (X) −→ Iq,pB (X) ⊕ Iq,pH (X) ⊕ Iq+1,p
B (X) −→

Iq+1,p
B (X) ⊕ Iq+1,p

H (X) ⊕ Iq+2,p
B (X) −→

where the differential is always zero on the first two summands and is the identity iso-
morphism between the third term in degree q and the first term in degree q + 1. This
makes it easy to compute the cohomology. We get

Hq(′F p(I•,•)(X)/(′F p+1(I•,•)(X)) = Iq,pH (X) (4.59)

and this is the ′E1 term of the spectral sequence. The differential

′dp,q1 : Iq,pH (X) −→ Iq,p+1
H (X)

is the differential which obtained from the differential in the resolution Hq(G•) −→ Iq,•H
and then taking the induced complex on the global sections. Hence we see that the E2

term of the spectral sequence is

′Ep,q
2

∼−→ Hp(X,Hq(G•)).

From now on the reasoning is exactly the same as in the case of the vertical filtration we
get a spectral sequence which converges to H•(I•simp(X)). The differential d2 now goes

d2 : ′Ep,q
2 −→′ Ep+2,q−1

2
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Two Special Cases

a) We may look at the computation in context of Lemma 4.6.2 from a slightly different
point of view. We start from the resolution

0 −→ F −→ G0 −→ G1 −→ . . . −→ Gn −→ . . . (4.60)

from which we constructed the double complex. Then conditions a) and b) in
Lemma 4.6.1. are valid and our complex is acyclic (if we include F).

We now consider consider the horizontal filtration by subcomplexes ′F q(I•simp(X)) ⊂
I•simp(X) where the entries in the first q−1 horizontal lines are zero. If we apply the
same arguments to this horizontal filtration we get something that we have done
already. Since the I• are acyclic our arguments yield that

H•(′F q(I•simp(X))/′F q+1(I•simp(X))

vanishes except we are in degree zero and

H0(′F q(I•simp(X))/′F q+1(I•simp(X)) = Hq(X,F).

Hence we see that for this filtration

′Ep,q
1 =

{
0 p �= 0

Hn(X,F) p = 0
. (4.61)

We do not have any non trivial differentials. Hence we see again that the double
complex computes the cohomology H•(X,F) and we see that in this special case
the horizontal filtration is not of interest, we recovered the results in Lemma 4.6.2.
This is only true since we assumed a) in Lemma 4.6.1.

b) We have also a special situation where the vertical filtration is uninteresting. Let us
assume that the sheaves Gq are acyclic for the functor global sections. Its Eq,p

1 term
is as always Hp(X,Gq) but this is zero for p > 0 (remember p and q have been
interchanged). Hence we have only the H0(X,Gp). The differentials are given by
d : H0(X,Gq) −→ H0(X,Gq+1) and his gives us the Eq,p

1 term as

E′pq1 =

{
Hq(G•(X)) for p = 0

0 for p > 0
(4.62)

The higher differentials are zero.

So we find that under our assumption above the vertical filtration tells us that
the complex I•simp(X))) computes the cohomology of the complex G•(X) and the
horizontal filtration shows that we have a spectral sequence

Hp(X,Hq(G•)),d2) ⇒ Hn(G•(X)). (4.63)
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Applications of Spectral Sequences

The method of the spectral sequence has many applications. We will apply spectral
sequences at many places lateron in this book.
Here we give some indications how such applications can look like.

a) We start from a sheaf F and a resolution

0 −→ F −→ G0 −→ G1 −→ . . . −→ Gn −→ . . .

One typical applications provides finiteness results. I indicated this already dur-
ing the discussion of the spectral sequence. For instance if we can show that
Hq(X,Gp) = Ep,q

1 or Ep,q
2 are finitely generated abelian groups or finite dimen-

sional vector spaces, then we can conclude that the same is true for the target
groups (vector spaces) Hn(X,F).

b) Another typical application concerns Euler characteristics. If we know that the coho-
mology groups Hn(X,F) are finite dimensional vector spaces over a field k which
vanish for n � 0 then we define the Euler characteristic

χ(X,F) =
∑
ν

(−1)νdimk(H
ν(X,F)).

It is of course clear that

χ(X,F) =
∑
n

∑
p+q=n

(−1)p+qdimk(E
p,q
∞ ).

But if we have for a certain level r that the total dimension of the Ep,q
r is finite

then it follows from simple principles in linear algebra that∑
p,q

(−1)p+qdimk(E
p,q
r ) =

∑
p,q

(−1)p+qdimk(E
p,q
r+1).

Then we can conclude

χ(X,F) =
∑
p,q

(−1)p+qdimk(E
p,q
r ).

If already the Hq(X,Gq) have finite total dimension then

χ(X,F) =
∑
p,q

(−1)p+qdimk(H
q(X,Gp)).

c) There are interesting cases where one knows the structure of the groups Ep,q
r for

some r and one also knows that the dp,qr are zero. Then we have Ep,q
r = Ep,q

r+1.
It can happen that the differentials on this level vanish again and that this goes
on forever. Then we say that the spectral sequence degenerates at level Er.
In such a case the Ep,q

r = Ep,q
∞ are equal to the subquotient in the filtration on

the target. If for instance the cohomology groups are finite dimensional vector
spaces then we can compute the dimensions of the cohomology dimk(H

n(X,F)) =∑
p,q:p+q=n dimk(E

p,q
r ).

There are important cases where we have degeneration at level E1 and E2. But it
also happens in some cases that the computation of the higher differentials becomes
an extremely difficult task.
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d) A very important application is the following. We start from a space X and a sheaf
F of abelian groups on it. Furthermore we assume that we have a continuous map
f : X −→ Y . We know of course that H0(X,F) = H0(Y,f∗(F)).

We can compute the cohomology groups Hn(X,F) and the derived sheaves Rpf∗(F)
from an injective resolution

0 −→ F −→ I0 −→ I1 −→ I2 −→ . . . . (4.64)

If we apply f∗ to this resolution, then we get a complex of sheaves on Y :

0 −→ f∗(F) −→ f∗(I0) −→ f∗(I1) −→ f∗(I2) −→ . . . .

Now we choose an adjusted resolution of the complex f∗(I•) and apply the global
sections functor

0 0 0

0 f∗(I0)(Y ) . . . f∗(In)(Y ) f∗(In+1)(Y ) . . .

0 I0,0(Y ) . . . In,0(Y ) In+1,0(Y ) . . .

0 I0,1(Y ) . . . In,1(Y ) In+1,1(Y ) . . .

...
...

...

...............................................................
.....
.......
.....

...............................................................
.....
.......
.....

...............................................................
.....
.......
.....

....................................................................................................................................
......
......
......

....................................................................................................................................
......
......
......

....................................................................................................................................

......

......
......

....................................................................................................................................
......
......
......

....................................................................................................................................
......
......
......

....................................................................................................................................

......

......
......

...............................................................
.....
.......
.....

...............................................................
.....
.......
.....

...............................................................
.....
.......
.....

....................................................................................................... .....
....... ....................................................................................................... .....

....... .................................................................................................... .....
....... .................................................. .....

....... ........................................................................................ .....
.......

................................................................................................................... ......
...... ................................................................................................................... ......

...... ................................................................................................................... ......
...... ................................................................................ ......

...... ....................................................................................................... ......
......

................................................................................................................... .....
....... ................................................................................................................... .....

....... ................................................................................................................... .....
....... ................................................................................ .....

....... ....................................................................................................... .....
.......

We know that the sheaves f∗(I) are in fact acyclic for the functor global sections
(Lemma 4.4.5) and hence we are in the special case 4.6.3 b). The vertical filtration
tells us that the complex I•simp(Y ) computes the cohomology of f∗(I•)(Y ) = I•(X)
and this is H•(X,F). The horizontal filtration gives us a spectral sequence which
converges to Hn(X,F) where the E2 term is Hp(Y,Rqf∗(F)), i.e.

(Hp (Y,Rqf∗(F)) ,d2) ⇒ Hn(X,F)
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4.6.4 The Derived Category

We consider complexes of sheaves on X

G• = . . . −→ Gν −→ Gv+1 −→ · · ·
where we may have positive and negative degrees ν. Sometimes we assume that our
complexes satisfy some boundedness conditions, this means that the entries are zero for
large negative degrees or large positive degrees or even both.
We introduce the sheaves of cocycles Z(Gν) = ker(Gν −→ Gν+1) and the sheaves of
coboundaries B(Gν) = im(Gν−1 −→ Gν) and the cohomology sheaves

Hν(G•) =
ker(Gν −→ Gν+1)

im(Gν−1 −→ Gν)
.

If we have two such complexes we have an obvious notion of a morphism

G•1 ψ−→ G•2 .
It is clear that ψ induces a morphism of sheaves between the cohomology sheaves

Hν(G•1 ) −→ Hν(G•2 ).
Now it is possible to construct a new category from this, namely the derived category
D(SX). It is defined as a “quotient” category of the category of complexes: A morphism

ψ : G•1 −→ G•2
is declared to be an isomorphism if it induces an isomorphism on the cohomology sheaves.
Such morphisms are called quasi-isomorphisms. A quasi-isomorphism ψ induces an in-
vertible morphism in the derived category and this inverse is not necessarily induced by
a morphism in the category of complexes.
This means that the objects are the complexes of sheaves but the sets of morphisms
HomD(SX)(G•1 ,G•2 ) become complicated.

If we have quasi-isomorphisms A• φ−→ G•1 and G•2 ψ−→ B• and if we have a morphism
Φ : A• −→ B• then we get an element

ψ ◦ Φ ◦ φ−1 ∈ HomD+(SX)(G•1 ,G•2 )
This construction of the derived category will not be discussed in further detail here.
(See for instance [Ge-Ma], Chap. III and IV.)
In the following discussion I want to consider the subcategory D+(SX) of complexes
which have non zero entries only in positive degrees.
We have a new way to speak of resolutions. If we have a sheaf F we can view it as a
complex

F [0] : 0 −→ F −→ 0 −→ 0 −→ · · ·
where the sheaf sits in degree zero. If we have a resolution

0 −→ F −→ G0 −→ G1 −→ · · · −→ Gn −→
we write this as morphism ψ : F [0] −→ G•:
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0 F 0 0 . . .

0 G0 G1 . . . Gn . . .

............................................
......
......
......

............................................

......

......
......

............................................
......
......
......

.................................................. ......
...... .................................................. ......

...... .......................................................................................................................................... ......
...... .................................................. ......

......

.................................................. .....
....... .................................................. .....

....... .................................................. .....
....... .................................................. .....

....... .................................................. .....
.......

and the fact that G• is a resolution translates into the fact that ψ is an isomorphism in
the derived category.
We can introduce the notion of a resolution of a complex. This is a double complex

0 0 0

0 G0 . . . Gn Gn+1 . . .

0 A0,0 . . . An,0 An+1,0 . . .

0 A0,1 . . . An,1 An+1,1 . . .

...
...

...

................................

......

......
......

................................
......
......
......

................................
......
......
......

..................................................................................

......

......
......

..................................................................................
......
......
......

..................................................................................
......
......
......

..................................................................................

......

......
......

..................................................................................
......
......
......

..................................................................................
......
......
......

................................

......

......
......

................................
......
......
......

................................
......
......
......

........................................................................................ ......
...... ........................................................................................ ......

...... ........................................................................................ ......
...... .............................................................................. ......

...... .............................................................................. ......
......

................................................................................... ......
...... ................................................................................... ......

...... ................................................................................... ......
...... ................................................................. ......

...... ...................................................................... ......
......

................................................................................... .....
....... ................................................................................... .....

....... ................................................................................... .....
....... ................................................................. .....

....... ...................................................................... .....
.......

where the vertical complexes are exact.
We can drop the line on the top and consider the double complex of sheaves A•• and we
can pass to the simple complex A•simp. Of course we have a morphism

r : G• −→ A•simp

and I leave it as an exercise to the reader to prove that this is an isomorphism in the
derived category. (See Lemma 4.6.2)
If we now take an injective resolution G• −→ I•,• then r : G• −→ I•simp gives us an
isomorphism of our given complex with a complex whose components Iν are injective.
It is also rather clear that this construction is functorial in G•, if we have a morphism
between two complexes ψ : G•1 −→ G•2 then this extends to a morphism of the injective
resolutions

Ψ̃ : I•,•1 −→ I•,•2

and if we pass to the simple complexes we get a diagram

G•

G•2

I•1,simp

I•2,simp

..................................................................................
......
......
......

Ψ̃•

..................................................................................

......

......
......

Ψ

...................................................................... ......
......

r1

...................................................................... .....
.......

r2

this extension is unique by the definition of the derived category.
Once we have the notion of the derived category we find a new concept of what a derived
functor should be. I explain this in the context of sheaves on spaces and the global section
functor, but it works in a much more general context.
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If we have a complex of sheaves G• on our space X , then we choose an injective resolution
G• −→ I•• and use the isomorphism r : G• −→ I•simp. Now I•simp(X) is a complex of
abelian groups and can be viewed as an object in the derived category of abelian groups.
The functor G• −→ I•simp(X) is now the derived functor

R•H0
X : D+(SX) −→ D+(Ab)

from the derived category of sheaves on X to the derived category of abelian groups. We
apply it to our sheaf F . We view it as a complex F [0] and consider R•H0

X(F [0]). This
is a complex of abelian groups and we recover the cohomology groups H•(X,F) as the
cohomology groups of the complex R•H0

X(F [0]).
We may of course apply this also to the case of a continous map f : X −→ Y and a
sheaf F on X . We take an injective resolution F −→ I•, we view this as an isomorphism
F [0]

∼−→ I• in the derived category and define

R•f∗(F) = f∗(I•),

this is now a sheaf in the derived category of sheaves on Y . Our ”old” derived functor is
now simply the cohomology of this complex.

Philosophical remark: Our ”old” derived functors transform a sheaf F on X into a
collection of sheaves {Rf ν∗ (F)}ν=0,1... = R•f∗(F). We can view this as a complex where
all the differentials are zero. Certainly this is an object of different nature. The ”new”
derived functor R•f∗( ) sends objects in the derived category of sheaves on X into the
derived category of sheaves on Y , so the nature of the object does not change: Complexes
go to complexes. Hence R•f∗(F [0]) is a “higher level object”, it contains more information
then just the cohomology groups R•f∗(F).

In section 2.3.1 I explained that we may - after defining the derived functor by using
injective resolutions - compute it from acyclic resolutions. The same is of course true in
the context of derived categories.

Lemma 4.6.5. If we have a resolution of our complex G• −→ A•,• as above and if the
Apq are acyclic for the functor H0(X, ) then we have

R•H0
X(G•) ∼−→ H0(X,A•,•) = A•,•(X).

Proof: To see this we choose an injective resolution G• −→ I•,• The definition of
injective sheaves allows us to construct a commutative diagram of complexes

G•

G•

A•,•

I•,•

.........................................................
......
......
......

.........................................................

......

......
......

.......................................................... ......
......

............................................................ .....
.......

which then induces a homomorphism of complexes

A•(X)simp −→ I•(X)simp

which must be an isomorphism in the derived category. To see this we look at the vertical
filtration (see section 4.6.2) and find that we get the same Ep,q

1 term, namely Hq(X,Gp),
on both sides. Here we used the acyclicity of the A•,• resolution. Now the rest follows
from a simple argument of functoriality: We get an isomorphism for the Ep,q

∞ and hence
the homomorphism must be an isomorphism.
Especially we see
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Corollary 4.6.6. If A• is a complex of acyclic sheaves then

R•H0
X(A•) ∼−→ A•(X)

The Composition Rule

The concept of derived categories allows a very elegant formulation of the content of the
theory of spectral sequences. I want to explain this in a special case but it will be clear
what happens in more general situations.
I recall the situation in b) on page 96. We start from a continuous map f : X −→ Y
between two topological spaces. We consider the abelian category of sheaves F on X with
values in the category of abelian groups. We have the functors F −→ H0(X,F) = H0

X(F)
and f∗. It is clear that H0

X( ) is the composition of f∗ and H0
Y ( ). We want to understand

the resulting relation between the derived functor of H0
X( ) and the derived functors of

f∗ and H0
Y ( ).

We introduced the higher direct images R•f∗(F) as the derived functor of the direct
image functor f∗ and this ist just a collection of sheaves on Y which are indexed by
degrees.
But we also defined the derived functor

R•f∗ : D(SX) −→ D(SY )

which sends a complex of sheaves on X to an object in the derived category of sheaves
on Y . It sends a sheaf F to R•f∗(F) = f∗(I•) (see above) and the cohomology of this
object gives us the derived sheaves R•f∗(F).
We apply the derived functor R•H0

Y to f∗(I•). Lemma 4.4.5 tells us that the complex
of sheaves f∗(I•) consists of injective sheaves. Therefore we can conclude that

R•H0
Y (f∗(I•)) = f∗(I•)(Y ).

(See Remark 6 below.) Since f∗(I•) = R•f∗(F) and f∗(I•)(Y ) = I•(X) = R•H0
X(F)

and we get the composition rule

R•H0
Y ◦ R•f∗(F) � R•H0

X(F). (4.65)

Here it is of course clear and important to notice, that this rule does not only apply to
sheaves F on X but actually we should apply it to complexes of sheaves, i.e. to objects
in the derived category D+(SX ). So the more conceptual way to write the composition
rule is

R•H0
Y ◦ R•f∗(G•) � R•H0

X(G•).
Remark 6. We should observe that we used Lemma 4.4.5, hence we knew that the
sheaves in the complex were injective. But we should be aware that in the next step we
only used that the sheaves f∗(I•) are acyclic. (See Lemma 4.6.5.)

This gives us a general principle, which also applies in other situations:
If we pass to the derived category then the derived functor of a composition is the compo-
sition of the derived functors provided the first functor sends injective object into acyclic
objects.
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This may for instance be applied to the following situation: Let Γ be a group and Γ′

a normal subgroup in it. For any Γ-module M the module MΓ′ is a Γ/Γ′-module and
clearly we have that MΓ = (MΓ′)Γ/Γ

′

. In other words we have H0(Γ, ) is the composite
of H0(Γ′, ), which sends Γ-modules to Γ/Γ′ -modules, and H0(Γ/Γ′, ), which sends
Γ/Γ′-modules to abelian groups. It is not hard to see that in this case we also get the
composition rule for the derived functors.
Of course this formulation of the content of the concept of spectral sequences is very
elegant. Actually it says more than point c) on page 96 but sometimes it may be necessary
to go back to the formulation involving the Ep,q

r . The point is somehow that the objects
in the derived category contain much more information, but certainly also some extra
information, which is of no interest for us.
By the way, if we consider the case of group cohomology then we get a spectral sequence
with E2 term

Hp(Γ/Γ′,Hq(Γ′,M)) ⇒ Hp+q(Γ,M).

Exact Triangles

In the derived category of an abelian category (for instance D(SX), D(Ab)) we do not
have the notion of a short exact sequence. The reason is basically that a short exact
sequence leads to a long exact sequence in cohomology. I recall the discussion in the
fundamental remark on page 26. We saw that in our injective resolution the differentials
in the middle are not necessarily the direct sums of the differentials of the two outer
resolutions, we need to add homomorphisms Ψν : I ′′ν −→ I ′ν+1.
Now we may look at these Ψν from a different point of view. We introduce the translation
operator T which transforms the complex I ′• into I ′•[1], this is our original complex
shifted by 1. In other words the p-th component of I ′•[1] is equal to the (p − 1)-th
component of I ′•. Then we see that the recursion relations for the Ψν simply say: The
negative sum of the Ψν defines a morphism of complexes

−Ψ• : I ′′• −→ I ′•[1].

This tells us that the resolution of an exact sequence has the structure of an exact
triangle. In this situation this says that we get a complex of complexes

. . . −→ I ′• −→ I• −→ I ′′• −→ I ′•[1] −→ I•[1] −→ . . .

and this is abbreviated by

I ′• I•

I ′′•

........................................................................................ .....
.......

...........................................
.....
....................

........
..............................

where the map I ′′• −→ I ′• has degree one.
We can now easily define what a triangle in a derived category of an abelian category
should be. It consists of three complexes X•,Y •,Z• and a sequence of morphisms

. . . −→ Z•[−1] −→ X• −→ Y • −→ Z• −→ X•[1] −→ . . .

such that the compositum of two consecutive arrows is zero (in the derived category,
i.e. induces zero in cohomology). We call such a triangle exact if we get a long exact
sequence in cohomology after taking the cohomology of the complexes.
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4.6.5 The Spectral Sequence of a Fibration

This spectral sequence is especially useful if we can apply it in combination with base
change.

Definition 4.6.7. We say that the map

f : X −→ Y

is a cohomological fibration for the sheaf F if the sheaves Rqf∗(F) form local
systems on Y (see Definition 4.3.9) whose stalk in y is given by Hq(f−1(y),i∗y(F)).

If our space Y is locally connected this means we have base change, i.e.

Rqf∗(F)y � Hq(f−1(y),i∗y(F)), (4.66)

and for any point y we can find a connected neighborhood Vy such that Rqf∗(F) restricted
to Vy is isomorphic to the sheaf of locally constant sections into Rqf∗(F)y.
The intuitive meaning of this notion is that Rqf∗(F) is the system of cohomology
groups of the fibres.
To produce examples of such cohomological fibrations we consider maps f : X −→ Y
which are locally trivial fibrations with some fibre F . (See section 4.3.1.) Furthermore
we assume that for any local trivialization

Ψi : f−1(Ui) Ui × F

Ui

............................................................................................. .....
.......∼

.......................................................................
.....
............

pr1

......................................................................... .......
.....

,

the restriction of F to f−1(Ui) is isomorphic to a pullback with respect to the projection
prF : Ui × F −→ F of a sheaf on the fibre F. For the following discussion we assume
that X,Y are Hausdorff and that Y is locally contractible, i.e. each point y ∈ Y has
arbitrarily small contractible (see Lemma 4.4.24) neighborhoods. Then it is clear:

Lemma 4.6.8. Under these assumptions f : X −→ Y is a cohomological fibration for
F .

The assumption on the local structure of the sheaves is certainly satisfied if the sheaf F
is isomorphic to the sheaf AX = A for an abelian group A.
If we assume in addition that our space Y is pathwise connected and if we pick a base
point y0 ∈ Y , then we will also show (see in 4.8.1) that our local system is basically the
same object as a representation of the fundamental group (see [Hat], Chap. I) π1(Y,y0)
on Hq(f−1(y0),A). Especially for a simply connected base space Y (see [Hat], loc. cit.)
we even have

Rqf∗(A) = Hq(f−1(y),A). (4.67)

I want to discuss some special cases where this spectral sequence for a fibration becomes
very useful.
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Sphere Bundles an Euler Characteristic

Let us consider a fibre space
π : X −→ Y

(see section 4.3) where the fibre F is homeomorphic to a sphere Sn−1. Then we have the
E2-term in the spectral sequence

Ep,q
2 = Hp(Y,Rqπ∗(�)), (4.68)

and it is clear that R0π∗(�) = �. We have Rqπ∗(�) = 0 for q �= 0,n−1 and Rn−1π∗(�) is
a local system where the stalks are isomorphic to �. We say that this fibration by spheres
is orientable if the local system is trivial, and we say that the fibration is oriented if we
fix an isomorphism

Rn−1π∗(�)
∼−→ �.

Now we consider the E2-term of the spectral sequence. It looks like

0 0 · · · 0
H0(Y,�) H1(Y,�) · · · Hp(Y,�)

0 0 · · · 0
...

...
...

0 0 · · · 0
H0(Y,Rn−1π∗(�)) H1(Y,Rn−1π∗(�)) · · · Hp(Y,Rn−1π∗(�))

0 0 · · · 0

(4.69)

and the differential operator d2 is given by an arrow that points 2 steps to the right and
one step up. Thus it is zero (unless we have n − 1 = 1) and stays zero for a while. So
the terms Ep,q

2 = Ep,q
3 · · · stay constant for a while until we come to the differential dn

which sends
dp,n−1n : Hp(Y,Rn−1π∗(�)) −→ Hp+n(Y,R0π∗(�)), (4.70)

and now the Ep,q
n+1 may be different from Ep,q

n . After that the spectral sequence degener-
ates. Therefore we get an exact sequence

Hp−1(Y,Rn−1π∗(�)) Hp+n−1(Y,R0π∗(�)) Hp+n−1(X,�)

Hp(Y,Rn−1π∗(�)) Hp+n(Y,R0π∗(�)) . . .

.............................................................................. ......
......

dp−1,n−1n
................................................................................................................. ......

......

....................................................................................................... .....
.......

dp,n−1n
................................. .....
.......


.......

(4.71)
which is the so called Gysin sequence. It contains relevant information concerning the
fibration. If for instance, one of the differentials dp−1,n−1n is not zero and not surjective,
then the map

Hp+n−1(Y,R0π∗(�)) = Hp+n−1(Y,�) −→ H•(X,�)

is not injective. From this we can conclude that under this assumption the fibration
cannot have a section

s : Y −→ X

to π because the composition π ◦ s would induce the identity on H•(Y,�).
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If the bundle is oriented, then Rn−1π∗(�) = �, and we have a canonical generator
e ∈ Rn−1π∗(�). This gives a class in H0(Y,Rn−1π∗(�)) which is mapped to a class

e = d0,n−1n (e0) ∈ Hn(Y,�), (4.72)

and this class is the so called Euler class of the fibration. If it is non zero, then the bundle
has no section.
Let M be a compact, oriented C∞-manifold of dimension n, we assume that we have a
Riemannian metric on the tangent bundle. (See 4.8.2.) We consider the bundle of tangent
vectors of length 1, this is denoted by S(TM ) −→ M and it gives us an example of a
sphere bundle, with spheres of dimension n − 1. Then the above class e = d0,n−1n (e0) ∈
Hn(M,�) = � (see 4.8.5) In 4.9.1 is called the Euler class, it is a also a number. We
will give some indications is equal to the Euler characteristic

χ(M) =
ν=n∑
ν=0

(−1)ν dimHν(M,�).

We conclude:

Lemma 4.6.9. If a compact, oriented manifold M has non zero Euler characteristic
χ(M), then the bundle S(TM) −→ M has no section. Hence a continous vector field (i.e.
a section in TM) must have zeroes.

4.6.6 Čech Complexes and the Spectral Sequence

I return to the Čech resolutions constructed from coverings U = {Uα}α∈A (see page 81):

F•U = 0 −→ F −→ Πα∈AF∗α −→ Π(α,β)∈A2
<
F∗αβ

−→ · · · (4.73)

In view of our previous discussion this means that we have an isomorphism in the derived
category

0 F 0 0 . . .

0
∏

α∈A F∗α
∏

(α,β)∈A2
<

F∗α,β
∏

(α,β,γ)∈A3
<

F∗α,β,γ . . .

.................................................................................................. .....
....... ............................................................................................................................................................................................ .....

....... ............................................................................................................................................................................................ .....
....... ............................................................................................................................................................................................ .....

.......

................................................................. .....
....... .......................................................................................... .....

....... ........................................ .....
....... ......................................................................................................... .....

.......

............................................................................................

......

......
......

............................................................................................
......
......
......

............................................................................................
......
......
......

and hence these two complexes have isomorphic derived functors.
The sheaves F∗α are concentrated on the closed subsets Uα = Uα0 ∩ . . . ∩ Uαp

and our

resolution is acyclic if and only if the sheaves F∗α on Uα are acyclic. In this case we say
that the covering U provides an F-acyclic resolution.
We consider the vertical filtration (see 4.6.2 and 4.6.3). We get for our E1-term

Ep,q
1 = Hq(X,

∏
α∈Ap+1

<

F∗α) =
∏

α∈Ap+1
<

Hq(Uα,F∗α) = Hq(X,F•U). (4.74)

The Ep,0
2 term is the Čech cohomology and the edge homomorphism yields a homomor-

phism
Ȟp(X,U,F) −→ Hp(X,F).
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Clearly we have

Lemma 4.6.10. If the covering provides an F-acyclic resolution then the edge homo-
morphism is an isomorphism or – in other words – the Čech complex computes the
cohomology of F .

In general this edge homomorphism needs not to be injective because we may have a
non-trivial differential

d2 : Ep−2,1
2 −→ Ep,0

2 = Ȟp(X,U,F).

But for p = 1 this differential is zero and it follows that the edge homomorphism

Ȟ1(X,U,F) −→ H1(X,F)

is injective (see Exercise 25). But of course it may be non surjective, its image is the
kernel of

H1(X,F) −→
∏
α∈A

H1(X,Fα) =
∏
α∈A

H1(Uα,Fα).

I want to consider a special case. We cover our space X by two open sets X = U ∪ V,
then our resolution becomes very short:

0 −→ F −→ FU ⊕ FV −→ FU∩V −→ 0

where FU = iU∗i∗U (F) and so on. Then our spectral sequence has only two columns: We
have as E1-term

Hq(U,F) ⊕ Hq(V,F) Hq(U ∩ V,F) 0

...
...

...

H0(U,F) ⊕ H0(V,F)︸ ︷︷ ︸ H0(U ∩ V,F)︸ ︷︷ ︸
p = 0 p = 1

0

............................................................................................. ......
...... ........................................................................... ......

......

.......................................................................................... .....
....... ........................................................................... .....

.......

and the horizontal boundary operator is taking the difference of the restriction maps.
Then we see that the spectral sequence degenerates on E2 level and we get a long exact
sequence

Hq−1(U ∩ V,F) −→ Hq(X,F) −→ Hq(U,F) ⊕ Hq(V,F) −→ Hq(U ∩ V,F) −→ . . .

which is called the Mayer-Vietoris sequence. It is of course nothing else than the long
exact sequence obtained from the short exact sequence which is given by the resolution.
With a slight modification we used this Mayer-Vietoris sequence already when we com-
puted the cohomology of spheres (see section 4.4.4).

Definition 4.6.11. A CW-complex is a space which is obtained by successive attach-
ment of cells.
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By this we mean the following:
We start with a point, this is the simplest CW-complex. If Y is already a CW-complex,
and if

f : Sn−1 −→ Y

is a continuous map, then we construct a new space X = Dn ∪f Y which is again a
CW-complex. To construct this new space X we consider Sn−1 as the boundary of Dn

and X = Dn ∪f Y is obtained from the disjoint union Dn � Y by identifying x ∈ Sn−1

to f(x) ∈ Y . This process is called attaching an n-cell to Y .
We can relate the cohomology of the spaces X and Y . If we consider a tubular neighbor-
hood T of the boundary sphere (i.e. {(x1, · · · ,xn) | 1− ε <

∑
x2i ≤ 1}) then V = T ∪f Y

is open in X and clearly the inclusion Y ↪→ V is a homotopy equivalence. The open ball
◦
Dn= U is also open in X and we have a covering

X = U ∪ V.

The open set U is acyclic and U ∩ V is homotopy equivalent to Sn−1. Thus our spectral
sequence yields for q ≥ 1

. . . −→ Hq−1(Sn−1,�) −→ Hq(X,�) −→ Hq(Y,�) −→ Hq(Sn−1,�) −→ . . . (4.75)

This tells us that we have some control how the cohomology of Y changes if we attach
an n-cell. More precisely we can say that we can compute the cohomology of X if we
already know the cohomology of Y and if we understand the boundary operator on the
E1 term:

Hn−1(Y,�) −→ Hn−1(Sn−1,�).

There is a very prominent example where this method of computing the cohomology
is especially successful. We consider the n-dimensional complex projective space �n(�)
(see Example 15 in section 3.2.2).

Exercise 26.

(a) Show that the topological space �n(�) is obtained from �n−1(�) by attaching a
2n-cell.

(b) Show that

H•(�n(�),�) =
n⊕
i=0

� ei

where ei ∈ H2i(�n(�),�) is a free generator.

A Criterion for Degeneration

Let us assume that our complex of sheaves has the following property: For any index q
we can find a splitting of the short exact sequance

0 −→ Z(Gq) −→ Gq −→ B(Gq+1) −→ 0. (4.76)

If we now construct our adjusted resolution, then we can achieve that the vertical differ-
entials
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Iq,pZ ⊕ Iq+1,p
B

↓
Iq,p+1
Z ⊕ Iq+1,p+1

B

(4.77)

are the direct sum of the differentials of the resolutions of Z(Gq) and B(Gq+1) (see 2.3.4).
This means that we get for the adjusted resolution of the complex

Iq,p = Iq,pB ⊕ Iq,pH ⊕ Iq+1,p
B

= Iq,pZ ⊕ Iq+1,p
B

Iq,p+1 = Iq,p+1
B ⊕ Iq,p+1

H ⊕ Iq+1,p+1
B

= Iq,p+1
Z ⊕ Iq+1,p+1

B

................................
......
......
......

................................
......
......
......

................................

......

......
......

and the rightmost vertical arrow can be taken as the direct sum of the arrows in the
resolution of Z(Gp) and B(Gp+1).
I claim that this implies that the two spectral sequences for I•simp(X) degenerate on
E2-level.
We consider the horizontal filtration. The E2-term is given by Hp(X,Hq(G•)). An element
in this group is represented by the element ξq,p ∈ Iq,pH (X) which is mapped to zero under
the vertical boundary map

Iq,pH (X)

Iq,p+1
H (X).

.........................................................
......
......
......

But if we view it as an element xq,p = (0,xq,p,0) in Iq,p(X), then it is mapped to an
element

ηq,p+1 = (ηq,p+1,0,0) ∈ Iq,p+1
B (X) ⊂ Iq,p+1

B (X) ⊕ Iq,p+1
H (X) ⊕ Iq+1,p+1

B (X).

We look at the boundary map

Iq−1,p+1(X) Iq,p+1(X)

|| ||
Iq−1,p+1
B (X) ⊕ Iq−1,p+1

H (X) ⊕ Iq,p+1
B (X) Iq,p+1

B (X) ⊕ Iq,p+1
H (X) ⊕ Iq+1,p+1

B (X)

..................................................................................................................................................................................................................................................................................................................................................................................................................... ......
......

....................................................................................................... ......
......

and we see that our element ηq,p+1 is the image of the element

η̃q−1,p+1 = (0,0,ηq,p+1) ∈ Iq−1,p+1(X)

under this boundary map. Now our assumption on the existence of the splitting im-
plies that this element goes to zero under the vertical differential, because this vertical
differential respects the decomposition

Iq−1,p+1(X) = Iq−1,p+1
Z (X) ⊕ Iq,p+1

B (X).

But then the element
ξ̃q,p = ξq,p + (−1)p−1η̃q−1,p+1

is a cocycle. This implies that
Ep,q
∞ = Ep,q

2 ,

and this is the degeneration of the spectral sequence.



4.6 Spectral Sequences 109

The argument for the vertical filtration is essentially the same.

We even get more. We know that the E2 term is a step in the filtration and hence

Hp(X,Hq(G•)) ∼−→ ′F p
Hn(X,G•)/′F p+1

Hn(X,G•).

But we just constructed a homomorphism

ip,q : Hp(X,Hq(G•)) −→ Hn(X,G•)

because to any class ξq,p we constructed a cocycle ξ̃q,p in Inspl(X). Hence we even get

Lemma 4.6.12. We have a splitting

Hn(X,G•) �
⊕

p+q=n

Hp(X,Hq(G•)). (4.78)

This splitting is not canonical because it may depend on the choice of the splitting
Gp = Z(Gp)⊕B(Gp+1) since this choice influences the correction term η. But the images
of the Hp(X,Hq(G•)) are well defined modulo the horizontal filtration.

An Application to Product Spaces

We consider a product space Z = X × Y , let p1,p2 be the projections to the first and
second factor. We assume that Y has a finite covering Y =

⋃
α∈I Uα by open sets which

is �-acyclic (see 4.6.6). We get a covering of Z by the open set p−12 (Uα), with respect to
this covering we consider the Čech resolution of the sheaf � on Z:

0 −→ � −→
∏
α

�α −→
∏
(α,β)

�{α,β} −→

as on page 81. We abbreviate the notation and denote the Čech complex simply by A•.
Then

0

�

0 A0 A1 . . .

.........................................................
......
......
......

.........................................................
......
......
......

............................................................... ......
...... ............................................................... ......

...... ............................................................... ......
......

is an isomorphism in the derived category and we get H•(Z,�) � H•(Z,A•).

Now it follows from our assumptions on the covering that the sheaves Ap are acyclic for
the projection map p1 to the factor X . We have that

p1,∗(Ap) =
∏
α

�α(X) =
∏
α

�(Uα0 ∩ . . . ∩ Uαr
)
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i.e. p1,∗(A•) is the complex of locally constant sheaves on X associated to the abelian
groups

∏
α�(Uα0 ∩ · · ·Uαr

). This is a complex of finitely generated free � modules, we
denote it by B•. Then we know H•(Z,�) = H•(X,B•).
We apply the previous observation. Since the complex B• is a complex of finitely gen-
erated free � modules, we can conclude that the quotient Ap/Z(Ap) is also free and
therefore we can split off the boundaries. Hence we know that the spectral sequence
degenerates, and we get an isomorphism

K :
⊕

p+q=n

Hp(X,Hq(Y,�))
∼−→ Hn(Z,�).

This isomorphism may depend on the splitting because this splitting influences the choice
of the correction term η above.
Under our assumptions the modules Hq(Y,�) are finitely generated abelian groups. This
allows us to write these groups as quotient of two finitely generated free abelian groups,
i.e. we have an exact sequence

0 −→ M1 −→ M2 −→ Hq(Y,�) −→ 0

where M1,M2 are finitely generated and free. Now we have obviously

Hp(X,Mi) = Hp(X,�) ⊗ Mi,

and hence we get an exact sequence

Hp(X,�) ⊗ M1 Hp(X,�) ⊗ M2 Hp(X,Hq(X,�))

Hp+1(X,�) ⊗ M1 Hp+1(X,�) ⊗ M2.

..................................................................................................................................... ......
...... ............................................................................................................................. ......

......

......................................................................................................... .....
.......


.......

This yields a short exact sequence. We observe that the first arrow on the left yields a
cokernel

Hq(X,�) ⊗ M2/M1 = Hq(X,�) ⊗ Hp(Y,�), (4.79)

and the last arrow on the right has the kernel Tor1
�
(Hq+1(X,�),Hp(Y,�)) (see section

2.4.3), and hence our short exact sequence will be

0 −→ Hq(X,�) ⊗ Hp(Y,�) −→ Hq(X,Hp(Y,�)) −→ Tor1
�
(Hq+1(X,�),Hp(Y,�)) −→ 0.

If we make the further assumption that H•(X,�) is finitely generated the module on the
right is finite. Then the restriction of K to the tensor products gives us a homomorphism⊕

p+q=n

Hp(X,�) ⊗ Hq(Y,�) −→ Hn(X × Y,�), (4.80)

which is injective and has a finite cokernel.

This is the so called Künneth homomorphism. This homomorphism does not depend
on the choice of the splitting. To see that this is the case we assume that our space X
has a finite �-acyclic covering {Vβ}β∈B by open sets. In this case we can consider our
locally constant sheaves Ap on X and take their Čech resolution provided by {Vβ}β∈B.
Taking sections we get a double complex in which the (p,q) component is
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β∈Bp+1

<

∏
α∈Aq+1

<

�((Vβ × Y ) ∩ (X × Uα)),

and where the vertical and horizontal boundary operators are induced from the boundary
operators in the Čech complexes. But then it is clear: If we have cocycles

ξp ∈
∏

β∈Bp+1
<

�(Vβ), ηq ∈
∏

α∈A<q+1

�(Uα),

then we can define
ξpηq = (· · · ξpβηqα · · · ), (4.81)

and this is a cocycle for the resulting simple complex which computes H•(Z,�). Hence
we see that we do not need the correction in 4.6.12 which shows that the class does not
depend on the splitting.
In the next section I discuss products in a more general context and then we will see that
K does not depend on the choice of the covering.
We apply the same reasoning to the vertical filtration. A slightly different argument gives
us another construction of the canonical homomorphism

K :
⊕

p+q=n

Hp(X,�) ⊗ Hq(Y,�) −→ Hn(X × Y,�).

We may interchange the role of X,Y this means we study the spectral sequence attached
to the map p2 : X × Y −→ Y . Now we assume that X also has a �-acyclic covering by
open sets. Then the E2 term is Hq(Y,Hp(X,�)). We get homomorphisms

K :
⊕

p+q=n

Hp(Y,�) ⊗ Hq(X,�) −→ Hn(X × Y,�).

If we compute the cohomology of the two spaces starting from Čech coverings, and if
we interchange the two spaces, then the two simple complexes resulting from the double
complexes are actually isomorphic. We simply have to reflect along the diagonal. But we
have to observe the sign convention in the definition of the differentials. This forces us
to put signs. This eventually results in the formula: If we look at the two product maps

Hp(X,�) ⊗ Hq(Y,�)

Hn(X × Y,�),

Hq(Y,�) ⊗ Hp(X,�)

.................................................................................................................. .......
.....

i1

............................................
..............................................

.......................
............

i2

then we have
i1(α ⊗ β) = (−1)pqi2(β ⊗ α). (4.82)

4.6.7 The Cup Product

We want to discuss products in a more general context. We start with a commutative
ring R with identity and we consider sheaves of R-modules on topological spaces. If we
have two such sheaves F ,G on a space X , then we can consider the tensor product sheaf
F ⊗R G on X . It is plausible that this should be defined as the sheaf attached to the
presheaf
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U −→ F(U) ⊗R G(U)

(see 3.3.1), and it is really not too hard to show that the stalk of this sheaf is given by

(F ⊗R G)x = Fx ⊗R Gx
for all points x ∈ X .
Now we consider two spaces X,Y and the two projections p1,p2 from X × Y to X and
Y respectively. If now F and G are sheaves of R-modules on X and Y respectively, then
we can define the exterior tensor product

F⊗̂RG = p∗1(F) ⊗R p∗2(G) (4.83)

as a sheaf on X × Y .
We want to construct a R-module homomorphism

m :
⊕

i+j=n

Hi(X,F) ⊗ Hj(Y,G) −→ Hn(X × Y,F⊗̂RG).

It is not so entirely obvious how this can be done. We start in the obvious manner and
take injective resolutions

0 F 0 0 . . .

0 I0 I1 I2 . . .

............................................................... ......
...... ............................................................... ......

...... ............................................................... ......
...... ............................................................... ......

......

............................................................... .....
....... ............................................................... .....

....... ............................................................... .....
....... ............................................................... .....

.......

.........................................................
......
......
......

.........................................................
......
......
......

.........................................................

......

......
......

and

0 G 0 0 . . .

0 J0 J1 J2 . . .

............................................................... .....
....... ............................................................... .....

....... ............................................................... .....
....... ............................................................... .....

.......

............................................................... .....
....... ............................................................... .....

....... ............................................................... .....
....... ............................................................... .....

.......

.........................................................
......
......
......

.........................................................
......
......
......

.........................................................
......
......
......

.

Then the resulting morphism of complexes

F⊗̂RG −→ (I•⊗̂RJ
•)simp

needs not to be an isomorphism in the derived category. In other words, the simple
complex of sheaves on the right hand side is not necessarily exact because the tensor
product is not exact.
Therefore it seems to be reasonable to assume that one of the sheaves is flat and admits
a flat acyclic resolution, say

0

G

A0 A1 . . .0

.....................................
......
......
......

......................................
.....
.......
.....

............................................................... .....
....... ............................................................... .....

....... ............................................................... .....
.......

where flat means of course that the stalks Ai
x are flat R-modules. Then we find that the

double complex
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F⊗̂RG F⊗̂RA0 F⊗̂RA1 F⊗̂RA2 . . .

I0⊗̂RG I0⊗̂RA0 I0⊗̂RA1 I0⊗̂RA2 . . .

I1⊗̂RG I1⊗̂RA0 I1⊗̂RA1 I1⊗̂RA2 . . .

...
...

...
...

............................................. ......
...... ...................................... ......

...... ...................................... ......
...... ............................................................... ......

......

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

...................................................................................
.....
.......
.....

........................................ .....
....... ................................. .....

....... ................................. .....
....... ............................................................ .....

.......

..................................................................................
......
......
......

..................................................................................
......
......
......

..................................................................................
......
......
......

..................................................................................

......

......
......

........................................ ......
...... ................................. ......

...... ................................. ......
...... ............................................................ ......

......

..................................................................................
......
......
......

..................................................................................
......
......
......

..................................................................................
......
......
......

..................................................................................

......

......
......

has exact rows and exact columns and hence we get a resolution of F⊗̂RG by the simple
complex (I•⊗̂RA•

simp) which we write down

0 −→ F⊗̂RG −→ I0⊗̂RA0 −→ I1⊗̂RA0 ⊕ I0⊗̂RA1 −→ . . . .

Hence we get a map (edge homomorphism)

m0 : Hn((I•⊗̂RA•)simp(X × Y )) −→ Hn(X × Y,F⊗̂RG).

We have a morphism between double complexes

I•(X) ⊗R A•(Y ) −→ (I• ⊗R A•)(X × Y ) (4.84)

and this induces a homomorphism in cohomology

m′ :
⊕

i+j=n

Hi(I•(X)) ⊗ Hj(A•(Y )) −→ Hn((I•⊗̂RA•)(X × Y )), (4.85)

the composition m′ ◦ m0 = m is the map which we want to construct. We notice that
neither m0 nor m′ needs to be an isomorphism (See 4.80)
We want to show that this product does not depend on the resolution. To see that this
is so we first consider exact sequences

0 −→ F1 −→ F2 −→ F3 −→ 0

of sheaves on X . Since we assumed that G is flat we get an exact sequence

0 −→ F1⊗̂RG −→ F2⊗̂RG −→ F3⊗̂RG −→ 0,

and we get two exact sequences

. . . −→ H i−1(X,F2) −→ H i−1(F3)
δ−→ H i(X,F1) −→ . . . ,

and

. . . H i−1+j(X × Y,F2⊗̂RG)
δ−→ Hi−1+j(X × Y,F3⊗̂RG) −→ Hi+j(X × Y,F1⊗̂RG) . . . .
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Now the formula
m(δ(ξ) ⊗ η) = δ(m(ξ ⊗ η)) (4.86)

for ξ ∈ H i−1(X,F3) and η ∈ Hj(Y,G) is obvious by construction. If we now take the
resolution of F and break it

0 −→ F −→ I0 −→ R1 −→ 0,0 −→ R1 −→ I1 −→ R2 −→ 0, . . .

and this reduces the proof of the uniqueness the map m to the assertion that

m : H0(X,F) ⊗ Hj(Y,G) −→ Hj(X × Y,F⊗̂RG)

is independent of the resolution. But this is obvious because in this case m is the following
map: Any element s ∈ H0(X,F) induces a morphism

m(s) : p∗2(G) −→ p∗1(F) ⊗R p∗2(G)

which is given by multiplication and clearly

m(s ⊗ ξ) = m(s)j(ξ) (4.87)

for all ξ ∈ Hj(X,G).
Now it is clear that the general considerations fit into the context of our earlier discussion
of the Künneth-formula and the cup product in the previous section:
If we consider spaces X,Y which have a nice acyclic covering, then the acyclic resolutions

0 −→ � −→
∏
α

�{α} −→
∏
(α,β)

�{α,β} −→ . . .

are resolutions by free �-modules and therefore they are also flat. Since we have

�X⊗̂��Y = �X×Y ,

we see that the above considerations generalize the previous ones.
We may take X = Y , and we consider the product

Hp(X,�) ⊗ Hq(X,�) −→ Hp+q(X × X,�).

Now we consider the diagonal X
Δ−→ X × X , and we can consider the restriction.

Definition 4.6.13. We can define the cup product of the two classes by

Δ∗i(α⊗ β) =: α ∪ β,

Now we have seen – at least for reasonable spaces – that the cohomology groups

H•(X,�) =
⊕
p

Hp(X,�)

carry the additional structure of a graded anticommutative algebra. We want to deter-
mine the structure of this algebra in some special cases.



4.6 Spectral Sequences 115

4.6.8 Example: Cup Product for the Comology of Tori

Let us consider an n-dimensional vector space V over � and let Γ ⊂ V be a lattice, i.e.
a free submodule of rank n such that V/Γ becomes a compact space. We can choose a
basis e1, · · · ,en of Γ, this is also a basis for V and we get an isomorphism

V/Γ � (�/�)n = (S1)n. (4.88)

The Künneth formula yields a homomorphism

H•(S1,�) ⊗ · · · ⊗ H•(S1,�) −→ H•((S1)n,�).

Since the cohomology groups Hν(S1,�) are free, it follows that this is indeed an iso-
morphism, hence H•((S1)n,�) is a free module of rank 2n over �. Especially we get
Hn((S1)n,�) = �. It remains to determine the structure as a graded algebra.
We give an orientation to the circles: The basis vector ei can be viewed as a tangent vector
at 0 of the i-th component circle {0}× . . . S1×{0} ⊂ (S1)n and this tangent vector gives
the positive orientation of this component. Now we notice that H1(�/�,�) = � (see
section 4.1.2). We consider the cohomology in degree p. If we have a class ξ ∈ Hp(V/Γ,�),
then we can attach to it an alternating p-linear map ϕξ ∈ Homp

alt(Γ,�). To define this
element we have to give the value ϕξ(γ1, · · · ,γp) for any p-tuple γ = (γ1, · · · ,γp) of
elements in Γ. We take these elements and construct a homomorphism

αγ : �p/�p −→ V/Γ

which is given by
αγ(x1, · · · ,xp) = x1γ1 + · · · + xpγp. (4.89)

The class α∗γ(ξ) ∈ Hp(�p/�p,�) = �, and this is our definition

ϕξ(γ1, · · · ,γp) = α∗γ(ξ). (4.90)

We see rightaway that this value is zero if γ1 · · · γp are linearly dependent because then

the image of αγ is an (S1)p
′

with p′ < p.
We have to show that the map ϕξ is p-linear. This is easily reduced to the following special
case: We consider �p+1/�p+1, and we consider the three inclusions i1,i2,Δ : �p/�p −→
�

p+1/�p+1 given by

i1 : (x1, . . . ,xp) �−→ (x1, 0, x2, . . . , xp)
i2 : (x1, . . . xp) �−→ (0, x1, x2, . . . , xp)
Δ : (x1, . . . , xp) −→ (x1, x1, x2, . . . ,xp)

and for a class ξ ∈ Hp+1(�p+1/�p+1,�) we have to show that

i∗1(ξ) + i∗2(ξ) = Δ∗(ξ). (4.91)

Both sides are linear in ξ and hence we have to check this equality for classes

ξ1 ∈ H1(�/�,�) ⊗ H0(�/�,�) ⊗ Hp−1(�p−1/�p−1,�)

and
ξ2 ∈ H0(�/�,�) ⊗ H1(�/�,�) ⊗ Hp−1(�p−1/�p−1,�),
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and then it is obviously true. This gives us a homomorphism of graded modules

α : H•(V/Γ,�) −→ Hom•

alt(Γ,�).

It is a well known elementary fact that the right hand side has the structure of an
anticommutative graded algebra where the product is given by

(ϕ ∧ ψ)(γ1 · · · γm) =
∑
t

(−1)ε(t)ϕ(γi1 · · · γip) · ψ(γj1 · · · γjq ) (4.92)

where ϕ is a p-form, ψ is a q-form m = p + q, the summation is over all partions of the
set {1, . . . ,m} into a set of p elements and a set of q elements and (−1)ε(t) is the obvious
sign.
Perhaps it is not so much of a surprise that:

Lemma 4.6.14. The homomorphism

α : H•(V/Γ,�) −→ Hom•

alt(Γ,�)

is an isomorphism of graded algebras.

To verify this we write V/Γ = (�/�)n, and we have the following basis for the cohomo-
logy: We look at ordered subsets i = i1 < i2 · · · < ip of {1, · · ·n} and form

1 ⊗ · · · ⊗ 1 ⊗ ei1 ⊗ · · · ei2 · · · eip ⊗ 1 · · · ⊗ 1 = ξi

where eiν ∈ H1(�/�,�) is the generator determined by the orientation. The ei can be
viewed as basis elements for Γ at the same time, then

ϕξi(ej1 , · · · ,ejp) =

{
1 if i1 = j1 · · · ip = jp

0 else
,

and clearly

ξi ∪ ξi′ =

{
0 if i and i′ are not disjoint

(−1)ε(i,i
′)ξi∪i′ else

. (4.93)

This proves the assertion.

A Connection to the Cohomology of Groups

At this point it seems to be reasonable to explain the relationship between the group coho-
mology H•(Γ,�), which is discussed in Chapter 2 and the cohomology groups H•(V/Γ,�).

To any Γ-module M we can attach a sheaf M̃ on V/Γ. This is simple: For an open subset

U ⊂ V/Γ we consider the inverse image Ũ ⊂ V under the projection and put

M̃(U) = {f : Ũ −→ M |f locally constant and f(u + γ) = γf(u) for all u ∈ Ũ ,γ ∈ Γ}.
It is clear that for any point x ∈ V/Γ we can find a contractible neighborhood Ux such

that for any connected component of Ũx the projection to Ux is a homeomorphism.
Hence M̃(Ux) � M , where the identification depends on the choice of such a component.

Furthermore it is quite clear that H0(V/Γ,M̃) = MΓ, so it should not be such a surprise

that in fact H•(Γ,M) = H•
(
V/Γ,M̃

)
.
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Actually this can be derived from the spectral sequence of the fibration V −→ V/Γ, we
have to exploit the fact that V is contractible.
This is a special instance of the cohomology theory of arithmetic groups, which will be
discussed (this is at least my plan) in the third volume of this book.

4.6.9 An Excursion into Homotopy Theory

We want to discuss briefly an application of the spectral sequence which is not directly
related to the goals of this book, but which is certainly important and beautiful.
For a pathwise connected space X together with a base point x0 one defines the homotopy
groups πn(X,x0), on the other hand we have the singular homology groups Hi(X,�)
which are also not discussed here (except in the chapter on cohomology of manifolds (see
4.8.6). As a general reference I refer to [Hat]. We always have the so called Hurewicz
homomorphism

πn(X,x0) −→ Hn(X,�). (4.94)

A famous theorem of W. Hurewicz asserts:

Theorem 4.6.15 (W. Hurewicz). Let X be pathwise connected with base point x0. Let
n > 0 be an integer. For n > 1 let us assume that π1(X,x0) = 1 and

Hi(X,�) = 0 for 1 < i < n.

Then the Hurewicz homomorphism πn(X,x0) −→ Hn(X,�) is an isomorphism. For
n = 1 we get an isomorphism

π1(X,x0)ab = π1(X,x0)/[π1(X,x0),π1(X,x0)]
∼−→ H1(X,�).

Here π1(X,x0)ab is the abelianized fundamental group, i.e. the maximal abelian quotient.

We cannot prove this theorem here, since we neither defined the homotopy groups nor the
homology groups. But for any abelian group A we can also define the singular cohomology
group Hn

sing(X,A) and for reasonable spaces we have

Hn
sing(X,A) � Hn(X,A),

i.e. the singular cohomology with coefficients in A is isomorphic to sheaf cohomology.
Now the universal coeffient theorem implies (see [Hat], Chap. 3) that

Hom(Hi(X,�),�/�) � Hi(X,�/�),

where we have to exploit the fact that �/� is injective in the category of abelian groups.
Hence we can reformulate the Hurewicz theorem:
An element [ϕ] ∈ πn(X,x0) is represented by a map of pointed spaces (the basepoints
are pt and x0) ϕ : (Sn,pt) −→ (X,x0). Such a map induces a map

ϕ∗ : Hn(X,�/�) −→ Hn(Sn,�/�) = �/�.

The map ξ �→ ϕ∗(ξ) defines a homomorphism

Hn(X,�/�) −→ Hom(πn(X,x0),�/�).

(the dual of the Hurewicz map).
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Theorem 4.6.16 (Dual of Hurewicz Theorem). If H i(X,�/�) = 0 for 0 < i < n, and
π1(X,x0) = 1 if n > 1, then this map is an isomorphism.

Indication of proof: We introduce the space (ΣX,x0) of continuous path starting at
x0, i.e. the space of all σ

σ : [0,1] −→ X
σ(0) = x0.

The open neighborhoods of a path σ are given by those paths which stay in an open
neighborhood of the image σ([0,1]). Then this space is contractible and we have a map

e : (ΣX,x0) −→ X
e : σ �−→ σ(1).

This map is a cohomological fibration, the fibre over x0 is the loop space Ω(X,x0). In
sense of the definition 4.3.9 we get a local system H•(Ω(X,x0,�/�)) whose fibres over
x0 are given by H•(Ω(X,x0,�/�)). Hence have a spectral sequence

H•
(
X,H•(Ω(X,x0),�/�)

)
⇒ H•(ΣX,�/�).

We prove the Hurewicz theorem by induction on n. The key is the observation that
Hi(ΣX,�/�) = 0 for i > 0 since ΣX is contractible.
If n = 1, then we consider the E2-term in our spectral sequence in degree one

H0(X,H0(Ω(X,x0),�/�) H1(X,H0(Ω(X,x0),�/�))) H2(X,H0(Ω(X,x0),�/�)))

H0(X,H1(Ω(X,x0),�/�) H1(X,H1(Ω(X,x0),�/�))) ∗
...

...
... .

Since H1(ΣX,�/�) = 0 we see that the two E01
∞ ,E10

∞ must become zero. It follows that

the term H1(X,H0(Ω(X,x0)) = 0 because the differentials going into it and out of it are
zero. We also see that

H0(X,H1(Ω(X,x0),�/�)) −→ H2(X,H0(Ω(X,x0),�/�))

is an isomorphism, but this we will not need.
The local system H0(Ω(X,x0),�/�) is easy to compute, it is a module under the fun-
damental group Γ = π1(X,x0). I recall the definition of the universal covering space

X̃ −→ X , by definition this is the space of path-connected components of Ω(X,x0). The

fundamental group π(X,x0) = Γ is the group of automorphisms of X̃ −→ X . Then it
is easy to see that H0(Ω(X,x0)) is the local system given by the Γ-module C(Γ,�/�) of
all �/�-valued functions on Γ where Γ acts by translations. This module contains the
constant functions and hence we get an exact sequence of sheaves on X

0 −→ �/� −→ H0(Ω(X,x0)) −→ M −→ 0,

where M is the quotient sheaf. We get a long exact sequence in cohomology
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0 → H0(X,�/�) → H0
(
X,H0(Ω(X,x0),�/�)

)
→ H0(X,M) → H1(X,�/�) → 0.

For the local systems over X the sections H0(X, )) are simply the invariants under Γ.
We get an exact sequence

(�/�)Γ
∼−→ (C(Γ,�/�))

Γ −→ MΓ ∼−→ H1(X,�/�) −→ 0,

the last zero is just our first observation above.
Now it follows from our results on the cohomology of groups that (See Exercise 2.2.4)

MΓ � H1(Γ,�/�) = Hom(Γ,�/�),

and hence we proved the result for n = 1.
For n > 1 we apply the same method. Now we know that Ω(X,x0) is pathwise connected,
because we also assumed the vanishing of the fundamental group. Hence we see that

H0(Ω(X,x0),�/�) � �/�.

Then we find many zeroes in the bottom row of the spectral sequence and the local
system of cohomology groups Hi(Ω(X,x0),�/�) will be constant. This shows that the
E2-term in the spectral sequence looks as follows

H0
(
X,H0(Ω(X,x0),�/�)

)
0 · · · 0 Hn

(
X,H0(Ω(X,x0),�/�)

)
H0

(
X,H1(Ω(X,x0),�/�)

)
∗ · · · ∗ ∗

...
...

. . .
...

...
H0(X,Hn−1(Ω(X,x0),�/�)) ∗ · · · ∗ ∗

(4.95)

the zeroes in the first line a forced by our assumption. Again we exploit the fact that
ΣX is contractible. I claim that Hi(Ω(X,x0),�/�) = 0 for i < n − 1. This follows by
induction on i, for i = 1 the differential ends up on the first row and hence is zero. Then
H1(Ω(X,x0),�/�) = 0, and this put zeroes into the second line. Then we continue and
this argument breaks down at i = n − 1. Hence we conclude that our spectral sequence
looks as follows

H0
(
X,H0(Ω(X,x0),�/�)

)
0 · · · 0 Hn

(
X,H0(Ω(X,x0),�/�)

)
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
H0(X,Hn−1(Ω(X,x0),�/�)) ∗ · · · ∗ ∗

(4.96)

the lines from i = 1 to i = n− 2 are filled with zeroes. The differential

d0,n−1n : H0
(
X,Hn−1(Ω(X,x0),�/�)

)
−→ Hn

(
X,H0(Ω(X,x0),�/�)

)
must be an isomorphism. (It is a little bit similar to filling a Sudoku puzzle).
This implies that

Hn−1(Ω(X,x0),�/�)x0 � Hn(X,�/�)
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i.e.
Hn−1(Ω(X,x0),�/�)

∼−→ Hn(X,�/�).

Now we have the exact sequence for homotopy groups which say that

πi−1(Ω(X,x0),�/�) � πi(X,x0),

and the Hurewicz theorem follows.

It is quite amusing to consider the special case of X = Sn. In this case we find

Hi(ΩSn,�/�) =

{
�/� for i = k (n− 1)

0 else
(4.97)

4.7 Cohomology with Compact Supports

4.7.1 The Definition

Let X be a locally compact space and F a sheaf of abelian groups on X . If we have a
section s ∈ H0(X,F) then its support Supp(s) = |s| is the set of x ∈ X with sx �= 0.
It is always closed. If we have an open subset U ⊂ X and a section s ∈ F(U) then its
support |s| is closed in U but not necessarily in X .
We can define the submodule H0

c (X,F) of sections with compact support. This yields
a left exact functor and we define the cohomology with compact supports as the right
derived functor of H0

c (X,F). In accordance with our general principles we choose an
injective resolution

0 −→ F −→ I0 −→ I1 −→ . . .

of F and define
Hi

c(X,F) = Hi(H0
c (X,I•)).

The cohomology with compact supports has properties which are quite different from
those of the ordinary cohomology. For instance it does not satisfy the homotopy axiom.
We will see in the section on the cohomology of manifolds that it is dual to the ordinary
cohomology. Of course on a compact space X we have H•c (X,F) = H•(X,F). If we have
open sets U ⊂ V ⊂ X then we have natural maps

H i
c(U,F) −→ H i

c(V,F) −→ H i
c(X,F),

here we see that the restriction maps which we had in the theory of sheaves are turned
backwards. On the other hand if we have a map f : X −→ Y then we will not be able to
define a map from H i

c(Y,�) to Hi
c(X,�) unless the map is proper.

Let us assume that U
i
↪→ X is an open subset of our space, and let us assume that its

closure is compact, then its boundary ∂U = U \ U is also compact. Let F be a sheaf on
U . We define two new sheaves on X : The direct image i∗(F) where

i∗(F)(V ) = F(U ∩ V )

and the extension by zero
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i!(F)(V ) = {s ∈ F(V ∩ U) | |s| does not meet V ∩ ∂U}
One checks easily that i!(F) has the stalks

i!(F)x = Fx if x ∈ U

i!(F)y = 0 if y �∈ U.

We have a morphism of sheaves i!(F) −→ i∗(F) which is an isomorphism in all stalks
except the ones on the boundary ∂U .

Proposition 4.7.1. If X is a locally compact space and i : U ↪→ X an open subset with
compact closure and if F is a sheaf of abelian groups on U then

H•c (U,F) = H•(X,i!(F)).

Proof: This is almost clear from the definition. We choose an injective resolution of the
sheaf F on U

0 −→ F −→ I0 −→ I1 −→ I2 −→ . . .

and we notice that
i!(I
•)(X) = H0

c (U,I
•).

4.7.2 An Example for Cohomology with Compact Supports

The Cohomology with Compact Supports for Open Balls

Now we consider the sheaf � on the open ball Dn ⊂ �n. We want to compute H•c (D
n,�).

To do this we embed Dn i
↪→ D

n
. On D

n
we have an exact sequence

0 −→ i!(�) −→ i∗(�) −→ i∗(�)/i!(�) −→ 0.

The sheaf i∗(�) is �D
n and the sheaf i∗(�)/i!(�) is concentrated on D

n\Dn = Sn−1

and on this space it is simply �Sn−1 . We write the long exact sequence in cohomology,
exploit our Proposition 4.7.1 and get

. . . −→ Hν
c (Dn,�) −→ Hν(D

n
,�) −→ Hν(Sn−1,�) −→ Hν+1

c (Dn,�).

We have Hν(D
n
,�) = 0 for ν > 0 and hence we get for ν = 0

0 −→ H0(D
n
,�) −→ H0(Sn−1,�) −→ H1

c (D
n,�) −→ 0

‖
�

and for ν ≥ 0
Hν(Sn−1,�)

∼−→ Hν+1
c (Dn,�).

Our computation of the cohomology groups of spheres yields

Hν
c (Dn,�)

∼−→
{
� for ν = n

0 for ν �= n .
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Again we have to discuss these nagging questions of orientation. We can say that a
topological orientation is an isomorphism

On : Hd
c (Dn,�) −→ �.

If we have a homeomorphism f : Dn ∼−→ Dn then it induces necessarily an isomorphism
f∗ : Hd

c (D
n,�)

∼−→ Hd
c (D

n,�) which can only be multiplication by ±1. We say that f
preserves the orientation, if it induces the identity on Hd

c (D
n,�). If we take for instance

the homeomorphism that sends (x1,x2, . . . ,xn) �→ (x1,x2, . . . , − xn), i.e. we change the
sign of the last coordinate then we get multiplication by −1 on Hd

c (Dn,�).
But again we have a rule to determine a topological orientation from an orientation on
the tangent space �n of Dn at the origin. The tangent bundle of �n is trivial, hence
we get an orientation at any point. This orientation provides an orientation on Sn−1 by
the following rule: A basis of tangent vectors {e1, . . . ,en−1} at some point P on Sn−1 is
positively oriented if {nP = outward normal vector, e1, . . . ,en−1} is positively oriented.
If n > 1 this orientation gives a topological orientation on Sn−1. If n > 1 then the
isomorphism

Hn−1(Sn−1,�)
∼−→ Hn

c (Dn,�)

provides the desired topological orientation.
If n = 1 we choose the orientation given by ∂

∂x . We have the exact sequence

0 −→ i!(�) −→ i∗(�) −→ �{+1} ⊕ �{−1} −→ 0

which provides the long exact sequence

0 −→ � −→ �⊕ � −→ H1(I,i!(�)) −→ 0

and our convention is that we identify H1(I,i!(�)) = � via the first summand (corre-
sponding to the point +1 ∈ S0).
We can look at this rule to fix orientations from a slightly different point of view. Let
n > 1. If we pick a point P ∈ Sn−1 we can find a small open ball UP around P , which
is diffeomorphic to Dn−1. We take the same orientation on UP as above. Then we have
iP : UP ↪→ Sn−1 and the inclusion iP,!(�) ↪→ �. Hence we have

Lemma 4.7.2. The quotient sheaf �/iP,!(�) has no cohomology in degree �= 0. Hence
we get an isomorphism

Hn−1(Sn−1,iP,!(�))
∼−→ Hn−1(Sn−1,�).

Then we can define the topological orientation on Sn−1 by the topological orientation
which we have on Hn−1

c (UP ,�).
We want to consider a relative situation. Let us assume that we have a diagram

X X

Y

......................................................................................................... ......
................

......

........ i
.......................................................................................................................................................................

.....
............

π

...........................................................................................................
......
......
......

π

and we want to assume this is some kind of fibration by n-dimensional balls. By this we
mean that locally in Y we can trivialize our diagram
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V × Dn V ×D
n

V

....................................................... ......
................

......

........ i
.......................................................................................................................................................................

.....
............

............................................................................................................
.....
.......
.....

If we choose a covering Y = ∪Vα such that we have trivializations over the Vα, then we
get identifications (see 4.3.1): For v ∈ Vα ∩ Vβ we have homeomorphisms

gα,β(v) : (Dn,D
n
) −→ (Dn,D

n
) (4.98)

which means gα,β(v) is a homeomorphism of D
n

which maps the interior to the interior
and the boundary to the boundary.
We call this fibration oriented if the gα,β(v) preserve the orientation, and if we selected
a consistent orientation on the fibres. We consider the sheaf � on X and its extension
i!(�) to X. We want to compute the cohomology H•(X,i!(�)). We apply the spectral
sequence for a fibration (see section 4.6.6), and we have the E2-term Hp(Y,Rqπ∗(i!(�))).
Our computation in the previous section yields

Rqπ∗(i!(�)) =

{
0 q �= n

� q = n

(remember that we have the orientation) and consequently the spectral sequence degen-
erates and

Hp+n(X,i!(�)) = Hp(Y,Rnπ∗(i!�)) = Hp(Y,�). (4.99)

Formulae for Cup Products

We want to explain some formulae for cup products of certain classes. These formulae
will be important later, they help us to understand the intersection product of cycles.
It is technically convenient to replace the open (resp. closed) ball Dn (resp. D

n
) by the

open (resp. closed) box

Bn = {(x1, · · · ,xn) | |xi| < 1} ⊂ B
n

= {(x1, · · · ,xn) | |xi| ≤ 1}

the pairs (Dn,D
n
) and (Bn,B

n
) are homeomorphic. Of course B0 = B

0
= {(0)} is a

point.
Let us assume that we have two numbers d1,d2 with d1 + d2 ≥ n. We consider products

B
d1 × Bn−d1 and Bn−d2 ×B

d2
,

and we consider embeddings

i1 : B
d1 × Bn−d1 −→ B

n

((x1, · · · ,xd1),(y1, · · · ,yn−d1)) �−→ (x1, · · · ,xd1 ,y1, · · · ,yn−d1)
and

i2 : Bn−d2 ×B
d2 −→ B

n

((y1, · · · ,yn−d2),(x1, · · · ,xd2)) �−→ (y1, · · · ,yn−d2 ,x1, · · · ,xd2).
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We also have the projections

π1 : B
d1 × Bn−d1 −→ B

d1
,

π2 : Bn−d2 ×B
d2 −→ B

d2
.

We can apply the results from the previous page. We have the sheaves i1,!(�) and i2,!(�)

on B
n
, and clearly equation 4.99 give us

Hn−d1(B
n
,i1,!(�))

∼−→ �

Hn−d2(B
n
,i2,!(�))

∼−→ �

We select orientations as given by the ordering of the y-coordinates and on a y coordinate
we orient from −1 to +1. (See 4.7.2.) We want to consider the cup product

Hn−d1(B
n
,i1,!(�)) × Hn−d2(B

n
,i2,!(�))

∪−→ H2n−d1−d2(B
n
,i1,!(�) ⊗ i2,!(�)).

The tensor product of the two sheaves is easy to compute. We have an embedding

B
d1+d2−n × B2n−d1−d2 i1,2−−→ B

n

((x1, . . . ,xd1+d2−n) , (y1, · · · ,y2n−d1−d2)) �−→
(y1, . . . ,yn−d2 ,x1, . . . ,xd1+d2−n,yn−d2+1, . . . ,y2n−d1−d2)

and an isomorphism provided by the multiplication on the stalks

i1,!(�) ⊗ i2,!(�)
∼−→ i1,2,!(�).

We choose the orientation on B2n−d1−d2 which is given by the ordering of the coordinates.
Then all the cohomology groups in

Hn−d1(B
n
,i1,!(�)) × Hn−d2(B

n
,i2,!(�)) −→ H2n−d1−d2(B

n
,i1,2,!(�)).

are identified to �. Now I claim:

Proposition 4.7.3. Under these identifications the cup product is given by the multipli-
cation �× � −→ �.

Proof: The following argument may be considered as somewhat sketchy, I ask the reader
to fill the gaps. First of all we can restrict to the case d1 + d2 = n, and now we have
enough flexibility to reduce to the case d1 = n− 1, d2 = 1. In this case the embedding is
i1,2 = jn where jn : Bn ↪→ B

n
is the standard embedding. Then we recall that

H1
c (B

1,�) = H1(B
1
,i!(�))

can be computed from the exact sequence of sheaves on B
1

= [−1,1]

0 −→ i!(�) −→ � −→ �/i!(�) −→ 0

where �/i!(�) is the skyscraper with stalk � on {−1,1}. Our rule of identification was

� = H0({1},�) = H1(B
1
,i!(�)).
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Now we apply the principles developed in 4.6.7. We have B
n

= B
n−1 × [−1,1] and

i1,!(�) = �
B

n−1⊗̂i!(�). Then our little exact sequence provides a new exact sequence

0 −→ i1,!(�) −→ �B
n −→ �

B
n−1⊗̂ �/i!(�) −→ 0.

The canonical generator ε1 (i.e. the element 1) in the first factor H1(B
n
,i1,!(�)) is the

image of 1⊗̂1 ∈ H0(B
n−1

,�)⊗̂H0({1},�) under the boundary map

H0(B
n−1

,�)⊗̂H0({−1,1},�) −→ H1(B
n
,i1,!(�)).

Now we have to multiply this generator with the canonical generator ε2 in the second

factor Hn−1(B
n
,i2,!(�)). Recall that i2 : Bn−1 × B

1
= Bn−1 × [−1,1] ↪→ B

n
. Then

this canonical generator is ε2 = ε′⊗̂1 ∈ Hn−1(B
n−1

,jn−1,!(�))⊗̂H0(B1,�), where ε′ ∈
Hn−1(B

n−1
,jn−1,!(�)) is the generator provided by the standard orientation. We get an

exact sequence

0 −→ i1 2,!(�) −→ jn−1,!(�)⊗̂� −→ jn−1,!(�)⊗̂(�/i!(�)) −→ 0.

The product m(ε1 ⊗ ε2) ∈ Hn(B
n
,i1 2,!(�)) = Hn

c (Bn,�) (see 4.6.7) is the image under
the boundary operator

Hn−1(B
n
,jn−1,!(�)⊗̂�/i!(�))

δ−→ Hn(B
n
,i1 2,!(�))

of the element m(ε′ ⊗ 1{1}) where 1{1} is the canonical generator in H0({1},�). We
have shown that this is the canonical generator with respect to the standard orientation
in Hn(B

n
,i1 2,!(�)) = Hn(B

n
,jn,!(�)). This proves the assertion of Proposition 4.7.3.

We have a diagram

Hn−1(∂B
n
,�) Hn(B

n
,jn,!(�))

Hn−1(Sn−1,�) Hn(D
n
,jn,!(�))

............................................................................................................................................ ......
......

δ

...............................................
......
......
......

...............................................
......
......
......

..................................................................................................................................... .....
.......

δ

where the vertical arrows are isomorphisms which are induced by your favorite orientation

preserving homeomorphism (B
n
,∂B

n
)
∼−→ (D

n
,Sn−1). The embedding B

n−1×{1} ⊂ ∂B
n

provides an isomorphism

Hn−1(B
n−1

,jn−1,!(�))
∼−→ Hn−1(∂B

n
,�)

∼−→ Hn−1(Sn−1,�).

These isomorphisms map the canonical generator in Hn−1(B
n−1

,jn−1,!(�)) to the canon-
ical generator in Hn−1(Sn−1,�) which in turn is mapped by δ to the canonical generator
in Hn(D

n
,jn,!(�)).

4.7.3 The Fundamental Class

Let M be a connected C0-manifold of dimension n. If we have a point p ∈ M then we
can find a neighborhood Vp of p which is homeomorphic to an open ball D ⊂ �n. Then
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we have Hd
c (Vp,�)

∼−→ � but this isomorphism is not canonical. If we have two points
p,q and two small open neighborhoods Vp,Vq of these points, then we have no consistent
way to identify Hd

c (Vp,�) and Hd
c (Vq,�). But if we choose a path γ : [0,1] −→ M which

starts at p and ends at q, then we get an identification along the path (see the discussion
of this argument in the following section on local systems). We say that M is orientable
if for any two points this identification does not depend on the path. If M is orientable
then we can choose a generator in Hd

c (Vp,�) for all p which is consistent with the above
identification along paths. Once we have chosen such generators we call the manifold
oriented.
If our manifold has a differentiable structure, then we have another notion of orientation
on M (see sections 4.1.2, 4.3.3,4.4.5). In this case it is easy to see that the two concepts
of being oriented coincide.
In the next chapter we will prove that for a connected and oriented C∞-manifold M
of dimension n, any point p ∈ M and any open ball Dp ⊂ M containing p the map
Hd

c (Dp,�) −→ Hd
c (M,�) is an isomorphism. This is the starting point to get Poincaré

duality.

Definition 4.7.4. The image of the generator in Hd
c (Dp,�) is called fundamental

class of M .

This class does not depend on the point p.

4.8 Cohomology of Manifolds

4.8.1 Local Systems

I want to study the cohomology of local coefficient systems on C∞-manifolds. (See 4.3.3.)
In the following let M be a C∞-manifold of dimension d. At this point we do not assume
that M is compact, but we make some kind of finiteness assumption: We want to assume
that M is countable at infinity.

Definition 4.8.1. A manifold M is called countable at infinity if we can find an
increasing sequence of relatively compact open sets Wn ⊂ Wn+1 where Wn ⊂ Wn+1 for
all n and which exhausts the manifold M , i.e.

⋃
Wn = M .

This condition is close to the paracompactness of M .
Let M be connected, let V be a local system on it (see 4.3.3). We know that the stalks
at two different points x,y are always isomorphic to each other but in general we do
not have the possibility to identify them in a consistent way. This is explained by the
following argument which everybody has seen during the discussion of the principle of
analytic continuation in theory of complex functions:

Since M is connected, we can choose a path γ : [0,1] −→ M with γ(0) = x and γ(1) = y.
We cover the path by finitely many sufficiently small open sets Ui, on which V is trivial.
This gives us a subdivision 0 = t0 < t1 < . . . < tn = 1 such that the γ[ti,ti+1] are entirely
in one of the covering sets Uν and hence we can identify Vγ(ti) = Vγ(ti+1) = V(Uν). This
sequence of identifications yields an identification

Ψγ : Vx
∼−→ Vy.
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This identification depends on the path, but it is not difficult to see that it only depends
on the homotopy class [γ] of the path.
If we choose a base point x0 ∈ M and consider closed paths which start and end at x0.
We can compose such paths. Then it is a fundamental fact that the homotopy classes
of these closed paths form a group under composition. This is the fundamental group
π1(M,x0) (see for instance [Hat]). We get a representation of the fundamental group

ρ : π1(M,x0) −→ Aut(Vx0)

ρ : [γ] �−→ (Ψ[γ] : Vx0 −→ Vx0).

It is not hard to see that the local system can be reconstructed from this representation:
We consider the set of pairs ([γ],v) where [γ] is a homotopy class of paths from x0 to x
and v ∈ Vx0 . The stalk of V at a point x ∈ M will be this set divided by the equivalence
relation

([γ],v) ∼ ([γ1],v1)

if and only if
ρ([γ1]

−1 ◦ [γ])(v1) = v. (4.100)

We can express this by saying that we have an equivalence of categories:

Abelian groups V together with an action of π1(M,x0)

and

local systems V whose stalk at x0 is isomorphic to V .

If we have a local system V on our manifold M then under certain assumptions we can
construct a dual local system V∨. We want to study

H i(M,V) and Hi
c(M,V∨)

and we will – again under certain assumptions – construct a duality between H i(M,V)
and Hd−i

c (M,V∨), where d is the dimension of M . This will be Poincaré duality.

4.8.2 Čech Resolutions of Local Systems

We want to assume our d-dimensional C∞-manifold M from now on to be paracompact.

Lemma 4.8.2. On such a manifold M we can find a countable covering M =
⋃

α∈A Uα

by open sets which has the following two properties:

(1) The covering is locally finite, i.e. to any point p ∈ M we can find an open neigh-
borhood Vp containing p such that we have only finitely many α ∈ A such that
Uα ∩ Vp �= ∅.

(2) For any finite set α0, . . . ,αq ∈ A the pair of spaces (Uα,Uα) is homeomorphic to the

pair (D
d
,Dd)= (closed d-dimensional ball, open d-dimensional ball).

Before I can outline the proof I need a definition.
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Definition 4.8.3. A partition of unity is a family {hi}i∈I of positive C∞−functions
which has the following properties:

(i) The support of any hi is small so that we can find an open set Ui ⊂ M which is
C∞-isomorphic to an open ball D ⊂ �d and Supp(hi) ⊂ Ui.

(ii) For any point x ∈ M there are only finitely many indices j ∈ I with hj(x) �= 0.

(iii) We have ∑
i∈I

hi = 1.

The construction of such a partition of unity is standard and quite easy.

Proof: I want to explain briefly why we can find such a covering.
We can use the paracompactness to introduce a Riemannian metric on M . To do this
we construct a partition of unity on M . We can construct a Riemannian metric gi on
each of the Ui simply by transporting the standard metric on the ball by means of the
diffeomorphism. We multiply this metric by hi, then it extends to a quadratic form on
the tangent bundle of M which is positive definite on the support of hi and zero outside.
Adding up these metrics gives the desired Riemannian metric.
Now we invest some differential geometry. Any point x ∈ M has an open neighborhood
Vx which is diffeomorphic to a ball (see [B-K], Prop. 6.4.6.) and which has the property
that it is geodesically convex: Any two points y,z ∈ Vx can be joined by a unique
geodesic which lies in Vx (see [B-K], 6.4.6). To find this we may simply take a small ball
B(x,ε) = Vx, these are all those points which have distance < ε from x. The closure of
such a ball is diffeomorphic to a closed ball in �d, the boundary ∂B(x,ε) is a sphere. It
is a smooth hypersurface in M .
Now we come back to the construction of a covering with the required properties. We
assume that M is countable at infinity. We can exhaust it by a sequence of relatively
compact open sets Wn which in addition have the property that Wn ⊂ Wn+1.
We start at an index n and cover Wn by a finite family of such small balls as above.
We require that these balls are contained in Wn+1. Now we proceed with Wn+1 but we
require in addition that these balls have empty intersection with Wn−1. Then it is clear
that the union of all these families provides a covering {Uα}α∈A of M . The intersections
Uα = Uα0 ∩ . . . ∩ Uαq

are diffeomorphic to open balls in �d. We will not verify that

(Uα,Uα) satisfies (2).
For us it is enough to know the following condition is true:

(locbound) For any point x in the boundary x ∈ ∂Uα = Uα \ Uα the intersection

B(x,ε) ∩ Uα is contractible.

Each point in the intersection is joined to x by a unique geodesic lying in this intersec-
tion.

I propose to call such a covering also a convex covering. (See also [B-T], they call these
coverings good covers.)
We give the indexing set A a total order, in other words we identify it to {0, . . . ,n} or �.
We consider (q + 1)-tuples α = (α0, . . . ,αq) ∈ Aq+1 where the indices are increasing.

Let us denote this subset of indices by Aq+1
< . For such an α = (α0, . . . ,αq) we have the

inclusion
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iα : Uα ↪→ M

and starting from our local system V we form the sheaf (see page 81)

V∗α = iα∗i∗α(V).

The sheaf V∗α has non-zero stalks only in the points x ∈ Uα and in such a point the stalk

is equal to Vx. Here we need that for any point x ∈ Uα and a small ball B(x,ε) that

V(B(x,ε)) = V∗α(B(x,ε) ∩ Uα).

Outside of Uα the sheaf has been mowed.

Now we consider the Čech resolution of our sheaf V (see section 4.5.2 and 4.6.6):

0 −→ V −→
∏
α∈A

V∗α −→
∏

(α,β)∈A×A<

V∗(α,β) −→ . . . −→
∏

α∈Aq+1
<

V∗α −→ . . . .

This is now an acyclic resolution (section see 4.5.2) since all the sheaves V∗α are acyclic
by the homotopy axiom.
Hence we see that the cohomology groups Hν(M,V) can be computed from the complex
of global sections (see 4.6.10)∏

α∈A V∗α(M) −→ ∏
(αβ)∈A×A<

V∗(α,β)(M) −→ . . . −→ ∏
α∈Aq+1

<
V∗α(M) −→

‖ ‖ ‖ . . .∏
α∈A V(Uα) −→ ∏

(α,β)∈A×A<
V(Uα ∩ Uβ) −→ . . . −→ ∏

α∈Aq+1
<

V(Uα)) −→ . . .

which is the Čech complex attached to the resolution.

4.8.3 Čech Coresolution of Local Systems

We introduce the Čech coresolution. To do this we consider the sheaves

iα!i
∗
α(V) = V !

α.

These sheaves are zero outside of the open sets Uα and on these sets they coincide with
V .
For any α we define a morphism ια : V !

α −→ V . To do this we choose an open set U ⊂ M

and a section s ∈ V !
α(U). This is by definition a section s ∈ V(U ∩ Uα) whose support

|s| = W is closed in Uα and therefore also in U . Hence U \ W is open. But W is also
open since V is a local system. Hence we have a disjoint decomposition into open subsets
U = W ∪ (U \ W ) and V(U) = V(W ) ⊕ V(U \ W ). Our morphism ια is now defined by
ια(s) �→ (s,0).
Hence we can define a complex of sheaves

. . . −→
∏

α∈Aq+1
<

V !
α −→ . . . −→

∏
(α,β)∈A×A<

V !
α,β −→

∏
α∈A

V !
α −→ V −→ 0

where the boundary operator is given by
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(dsx)α0,...,αq
=
∑
β

(−1)ε(β,α)sx,α0,...,β,...,αq

where β runs over those indices which do not occur in α and where ε(β,α) gives us the
position of β with respect to the ordering, where sx,α0,...,β,...,αq

is an element in the stalk
V !
α0,...,β,...,αq,x

. The last homomorphism on the right is simply summation
∑

sx,α. Again

it is clear that this is an exact complex of sheaves (see Exercise 24).
On these open sets our sheaves V !

α are isomorphic to a constant sheaf. We now assume
that M is oriented, then we get for the cohomology with compact supports (see 4.7.2)

Hν(M,V !
α) =

{
0 for ν �= d

V(Uα) for ν = d
,

and V(Uα) � V .
With a grain of salt we may consider this as an acyclic coresolution for the right exact
functor

V −→ Hd
c (M,V),

it is called coresolution because all the arrows point in opposite directions. Of course we
have to show that the functor is right exact, this is the source for Poincaré duality.
I claim that we have Hν

c (M,
∏

α∈Aq+1
<

V !
α) = 0 if ν �= d and

Hd
c (M,

∏
α∈Aq+1

<

V !
α) =

⊕
α∈Aq+1

<

Hd(M,V !
α). (4.101)

To see this we take the injective resolution constructed by Godement for the V !
α (see

4.2.1). Then the product of the sheaves in the resolution gives a resolution of the product:

0 −→
∏

α∈Aq+1
<

V !
α −→

∏
α∈Aq+1

<

I0α −→
∏

α∈Aq+1
<

I1α −→ . . .

and to compute the cohomology with compact support we look at the resulting complex
of global sections with compact support. But since any compact set meets only finitely
many of the open sets Uα we see that

H0
c (M,

∏
α∈Aq+1

<

Iqα) =
⊕

α∈Aq+1
<

H0
c (M,Iqα).

To see this we have to take into account that the stalks of the sheaves Iqα are zero outside
Uα which is clear from the construction. Then the claim follows.
We apply the functor Hd

c to our coresolution and get a complex

. . . −→
⊕

α∈Aq+1
<

Hd(M,V !
α) −→ . . . −→

⊕
α∈A

Hd(M,V !
α) −→ 0. (4.102)

We introduce degrees on this complex by giving the degree i to
⊕

α∈Ai+1
<

Hd
c (M,V !

α).

Hence the complex becomes a homological complex: the degree of the boundary operator
is −1. Furthermore I want to make the additional assumption:
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(Bound) The number of indices α for which Uα contains a given x is not only finite but
even bounded independently of x.

This has the consequence that our complex of sheaves is bounded, i.e. it is trivial for
large i (and for i < 0 anyway).

Theorem 4.8.4. Under the assumption (Bound) the cohomology of this complex is the
cohomology with compact supports

Hd−i
c (M,V) = H i

⎛⎝. . . −→
⊕

α∈Aq+1
<

Hd(M,V !
α) −→ . . . −→

⊕
α∈A

Hd(M,V !
α) −→ 0

⎞⎠ .

Proof: We use the same arguments which we used when we proved that we can compute
cohomology groups by acyclic resolutions. We break the complex of sheaves into pieces

. . . −→
∏

α∈Aq+1
<

V !
α −→ . . . −→

∏
α,β∈A2

<

V !
(α,β) −→ G −→ 0

and
0 −→ G −→

∏
α∈A

V !
α −→ V −→ 0.

The second short complex gives us a long exact sequence if we apply the cohomology
with compact supports. Since the sheaf in the middle has only cohomology with compact
supports in degree d we get

H i−1
c (M,V) � H i

c(M,G) for i �= d − 1,d

and

0 → Hd−1
c (M,V) −→ Hd

c (M,G) −→
⊕
α∈A

Hd(M,V !
α) −→ Hd

c (M,V) −→ Hd+1
c (M,G) → 0.

At first we want to conclude that Hm
c (M,V) = Hm

c (M,G) = 0 for m > d. If not we would
have Hm

c (M,G) �= 0 for some m > d. But G sits in a short exact sequence

0 −→ G1 −→
∏

α,β∈A2
<

V !
α,β −→ G −→ 0

and G1 is the end of the complex

. . . −→
∏

(α,β,γ,δ)∈A4
<

V !
(α,β,γ,δ) −→

∏
(α,β,γ)∈A3

<

V !
(α,β,γ) −→ G1 −→ 0.

We would get Hm+1
c (M,G1) �= 0 and applying the same procedure again and again we

get a contradiction, because the complex is finite to the left. Hence we get in degree d

0 −→ Hd−1
c (M,V) −→ Hd

c (M,G) −→
⊕
α∈A

Hd(M,V !
α) −→ Hd

c (M,V) −→ 0.
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Induction on the length of the complex gives us that the complex

0 −→ . . . −→
⊕

α∈Aq+1
<

Hd(M,V !
α) −→ . . . −→ Hd(M,V !

(α,β)) −→ 0

computes the cohomology Hd−•
c (M,G) and the theorem follows.

During the proof we saw:

Corollary 4.8.5. Under the assumption of the theorem we have

Hm
c (M,V) = 0 for m > d,

this implies the right exactnes of Hd
c (M,V).

4.8.4 Poincaré Duality

In this section we assume that our manifold M is oriented. Let R be a commutative ring
with identity. We assume that we have a local system V on M which has values in the
category of finitely generated projective R-modules. We can also consider the dual local
system V∨ = HomR(V ,R). Our assumptions imply that V∨∨ ∼−→ V . We assume that we
have a convex covering which satisfies (Bound). We compute the cohomology H•(M,V)
and the cohomology with compact support H•c (M,V∨) by means of the two complexes
which we obtain from a convex covering. We write the complexes

0
∏

α∈A V(Uα)
∏

(α,β)∈A2
<

V(Uα ∩ Uβ) . . .
∏

α∈Aq+1
<

V(Uα) . . ................................................................ ......
......

d
.......................................................... ......

......
d

.......................................................... ......
......

d
................................................ ......

......
d

......................................................................... ......
......

d

‖ ‖ ‖
0 X0 X1 . . . Xq . . .................................................................................................................. ......

......
d

..................................................................................................................................................................................................................... ......
......

d
................................................................................................................................................................... ......

......
d

................................................................................................................. ......
......

d
.......................................................................................................................................... ......

......
d

and

. . .
⊕

α∈Aq+1
<

V∨(Uα) . . .
⊕

(α.β)∈A2
<

V∨(Uα ∩ Uβ)
⊕

α∈A V∨(Uα) 0...................................... .....
.......
δ

...................................... .....
.......
δ

.................................................. .....
.......

δ
........................................ .....

.......
δ

.............................................................................. .....
.......

δ

‖ ‖ ‖
. . . Y q . . . Y 2 Y 1 0................................................................................................................. .....

.......
δ

................................................................................................................. .....
.......

δ
................................................................................................................................................................... .....

.......
δ

..................................................................................................................................................................................................................... .....
.......

δ
.......................................................................................................................................... .....

.......
δ

where we made the identification V∨(Uα) = Hd
c (M,V∨,!α ). We define a pairing

< , >: Y q × Xq −→ R

which is given by the formula for s = (. . . ,sα, . . .) ∈ ∏V(Uα) and t = (. . . ,tα, . . .) ∈⊕V∨(Uα) we define

< s,t >=
∑
α

sα · tα (4.103)

where sα · tα is the pairing induced by the pairing on the coefficient systems. The expres-
sion makes sense because t has only finitely many non-zero entries. We have
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< ds,t >=< s,δt > (4.104)

for s ∈ Xq,t ∈ Y q+1. Since these complexes compute the cohomology and the cohomology
with compact supports respectively we get a pairing

Hq(M,V) × Hd−q
c (M,V∨) −→ R. (4.105)

We want to discuss the properties of this pairing. We need a finiteness condition:

Definition 4.8.6. We say that M is of finite cohomological type, if for any coeffi-
cient system V we can find a finite subset F ⊂ A such that the projection map

0
∏

α∈A V(Uα)
∏

(α,β)∈A2
<

V(Uα ∩ Uβ) . . .
∏

α∈Aq+1
<

V(Uα) . . ................................................................ .....
.......

d
.......................................................... .....

.......
d

.......................................................... .....
.......

d
................................................ .....

.......
d

......................................................................... .....
.......

d

0
∏

α∈F V(Uα)
∏

(α,β)∈F2< V(Uα ∩ Uβ) . . .
∏

α∈Fq+1
<

V(Uα) . . ................................................................ .....
.......

d
............................................................ .....

.......
d

............................................................ .....
.......

d
................................................ .....

.......
d

......................................................................... .....
.......

d

.........................................................

......

......
......

.........................................................
......
......
......

.........................................................
......
......
......

induces an injection in the cohomology of the two complexes.

Under this assumption it follows that the cohomology groups Hq(M,V) are of of finite
type over R, i.e. they are of the form: submodule of a finitely generated free R module
divided by the image of a finitely generated free R-module.

Lemma 4.8.7. A manifold M is certainly of finite cohomological type if the following is
true

(a) The manifold M contains an open submanifold N whose closure N is compact and
whose boundary ∂N is a submanifold of codimension 1.

(b) The inclusion N ↪→ M is a homotopy equivalence.

This situation occurs if we consider the cohomology of arithmetic groups.
Of course a compact manifold is always of finite cohomological type.

Definition 4.8.8. For any R-module A we define the torsion subgroup Ators to be the
submodule of those elements x which are anihilated by a non zero divisor in R.

In the following theorem we write A/Tors for A/Ators.

Theorem 4.8.9 (Poincaré Duality). Let M be a manifold of finite cohomological type.
We also assume that we have a convex covering which satisfies (Bound). We assume
that V is a local system of finite dimensional vector spaces over a field k. Then the pairing

Hq(M,V) × Hd−q
c (M,V∨) −→ k

is non-degenerate for all q.
The vector spaces Hd−q

c (M,V∨) and Hq(M,V) are finite dimensional, the cohomology
Hq(M,V) vanishes for q > d.
If R is a discrete valuation ring (or more generally a Dedekind ring) and if V is a local
system of free R-modules of finite rank then the pairing

Hq(M,V)/Tors × Hd−q
c (M,V∨)/Tors −→ R

is non-degenerate.
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Here I mean non degenerate in the strong sense: For any element ξ on one side, which
is not a proper multiple of another element, we can find an element η on the other side
such that < ξ,η >= 1.
Proof: Our basic ring R is a field k or a discrete valuation ring. We compute the coho-
mology by means of the two complexes X• and Y • respectively. We have the pairing

< , >: Y q × Xq −→ k.

These spaces may be of infinite dimension. We say that a linear form

λ : Xq =
∏

α∈Aq
<

H0(M,V∗α) −→ R

is continuous if it factors over a quotient
∏

α∈Eλ
H0(M,V∗α) where Eλ is a finite subset

of Aq
<. Then it is clear that Y q is the space of continuous linear forms on Xq. It is also

clear that Xq is the space of all linear forms on Y q .
In Xq (resp. Y q) we have the subspaces of cocycles and of coboundaries

Bq(X•) ⊂ Zq(X•) ⊂ Xq

Bq(Y •) ⊂ Zq(Y •) ⊂ Y q.

Since Bq(X•) = d(Xq−1) by definition we find that

Zq(Y •) = {y ∈ Y q |δy = 0}
= Bq(X•)⊥

= {y ∈ Y q | < Bq(X•),y >= 0}

and by the same argument we find that

Zq(X•) = Bq(Y •)⊥.

We now assume that our ground ring is a field k. The spaces Xq,Y q are in perfect duality.
If they were finite dimensional we could conclude that for any subspace W of one of them
we have (W⊥)⊥ = W . This is always true for subspaces W ⊂ Y q . We also know that
always W ⊂ (W⊥)⊥. If y �∈ W then we have a finite set F ⊂ A of indices such that y
is already in

⊕
α∈Fq+1

<
V !(Uα). This is a finite dimensional subspace of Y q. Thus we can

find an x ∈∏α∈Fq+1
<

V(Uα) with < W,x >= 0 and < y,x >�= 0. Hence y �∈ W⊥⊥.

But for subspaces W ⊂ Xq the same argument is only true for closed subspaces, which
means

W = {x ∈ Xq | λ(x) = 0 for continuous linear forms λ which vanish on W}.

We want to consider the case W = Bq(X•). Here we use our assumption. Let x ∈ Zq(X•)
but x �∈ Bq(X•), then we can find a finite subset F ⊂ A such that the projection xF of
x to

∏
α∈F q+1

<
V(Uα) is not in the image of the boundary map dq−1

F
:
∏

α∈F q
<

V(Uα) −→∏
α∈F q+1

<
V(Uα). We find a y ∈ ⊕

α∈Fq+1
<

V∨(Uα) which vanishes on the image of dq−1
F

but not on xF, i.e. < y,Im (dq−1
F

) >= 0 and < y,x >�= 0. This element y is of course also
in Y q and it vanishes on Bq(X•) but not on x.
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This proves that under our finiteness assumption we have

Bq(X•)⊥⊥ = Bq(X•)

Bq(Y •)⊥⊥ = Bq(Y •).

But then it is obvious that the pairing

Hq(M,V) × Hd−q
c (M,V∨) −→ k

is non-degenerate.
The next two statements follow easily: The vector spaces Hq(M,V) are finite dimensional
because M is of finite cohomological type. By duality it follows that Hd−q

c (M,V !) are
finite dimensional. On the other hand Hν

c (M,V !) = 0 for ν < 0 (definition) and ν > d
(Corollary 4.8.5).
Now we come to the second half of the theorem, we assume that V is a local system of
free R-modules of finite rank where R is a discrete valuation ring. Let K be the quotient
field of R, let (π) be the maximal ideal of R, let k = R/(π) be the residue field. We will
apply the first half of the theorem twice, we can consider the local systems V ⊗K = VK
and V ⊗ k = V/πV .
We get an exact sequence of local systems

0 −→ V ×π−→ V −→ V/πV −→ 0.

From this short exact sequence we get two exact sequences in cohomology and in coho-
mology with compact supports which suitably interpreted give short exact sequences

0 −→ Hq(M,V) ⊗ k −→ Hq(M,V ⊗ k) −→ Hq+1(M,V)[π] −→ 0 (mod)

and

0 −→ Hd−q
c (M,V∨) ⊗ k −→ Hd−q

c (M,V∨ ⊗ k) −→ Hd+1−q
c (M,V∨)[π] −→ 0 (modc)

where [π] means kernel under multiplication by π.
Since M is of finite cohomological type we know that Hq(M,V) is a finitely generated
R-module. I claim that this also implies that Hd−q

c (M,V∨) is finitely generated. It fol-
lows from our exact sequence and the corollary above that Hd−q

c (M,V∨) ⊗ k is finitely
generated. We lift generators to Hd−q

c (M,V∨) and then these lifts generate a submodule
U of Hd−q

c (M,V∨). If we already knew that Hd−q
c (M,V∨) is finitely generated, then the

lemma of Nakayama [Ei] would imply that these lifted generators generate Hd−q
c (M,V∨).

Hence we have to show that in the exact sequence

0 −→ U −→ Hd−q
c (M,V∨) −→ W −→ 0

we have W = 0.
If we tensorize by k we get W = πW, this means that W is infinitely divisible. Now we
observe that Hd−q

c (M,V∨)⊗K = Hd−q
c (M,V∨⊗K) and Hq(M,V)⊗K = Hq(M,V ⊗K),

these vector spaces are finite dimensional and dual to each other. We can find elements
v1, . . . ,vs ∈ Hq(M,V) (resp. w1, . . . ,ws ∈ Hd−q

c (M,V∨)) whose images in Hq(M,V) ⊗ K
(resp. Hd−q

c (M,V∨)) form a K-basis. If we evaluate these basis elements by the pairing

we get an (s × s) matrix whose determinant is in R and non zero. Let Ũ be the lattice
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generated by the images of w1, . . . ,ws in Hd−q
c (M,V∨)/Tors . If Ũ1 ⊃ Ũ is a larger R-

module then we can find a smallest integer a = a(Ũ1,Ũ) such that πaŨ1 ⊂ Ũ . If now

W �= 0 then this implies that we can find larger lattices Ũ ⊂ Ũ1 such that a(Ũ1,Ũ)
becomes arbitrarily large. If we now replace the elements w1, . . . ,ws ∈ Hd−q

c (M,V∨) by

a basis of Ũ1 then we can again form the evaluation matrix as above but its determinant
gets multiplied by π−b where b goes to infinity if ≥ a(Ũ1,Ũ) goes to infinity. But this
determinant must still be in R, this contradicts W �= 0.
We get two more exact sequences

0 −→ Hq(M,V)tors −→ Hq(M,V) −→ Hq(M,V)/Tors −→ 0

and 0 −→ Hd−q
c (M,V∨)tors −→ Hd−q

c (M,V∨) −→ Hd−q
c (M,V∨)/Tors −→ 0.

The two modules on the right are free of finite rank, the two ranks are equal. We have
the R-valued pairing between the modules in the middle, this pairing vanishes on the
two torsion submodules. This gives us the pairing

Hq(M,V)/Tors × Hd−q
c (M,V∨)/Tors −→ R (Poin)

and this is the pairing which we want to show to be non degenerate. To say it again this
means that for two bases v1, . . . ,vs ∈ Hq(M,V)/tors and w1, . . . ,ws ∈ Hd−q

c (M,V∨) the
evaluation matrix has as determinant an element in R×.
Since any finitely generated module over R is the direct sum of its torsion submodule and
a free module we can tensorize our two sequences above by k and get exact sequences

0 −→ Hq(M,V)tors ⊗ k −→ Hq(M,V) ⊗ k −→ Hq(M,V)/Tors ⊗ k −→ 0

and

0 −→ Hd−q
c (M,V∨)tors ⊗ k −→ Hd−q

c (M,V∨) ⊗ k −→ Hd−q
c (M,V∨)/Tors ⊗ k −→ 0.

Combining this with our two sequences (mod), (modc) we see that for the cohomology
groups with coefficients we get filtrations

Hq(M,V)tors ⊗ k ⊂ Hq(M,V) ⊗ k ⊂ Hq(M,V ⊗ k)

and

Hd−q
c (M,V∨)tors ⊗ k ⊂ Hd−q

c (M,V∨) ⊗ k ⊂ Hd−q
c (M,V∨ ⊗ k).

In both filtrations the quotient of the rightmost module by the previous one is

Hq+1(M,V)[π] resp. Hd+1−q
c (M,V∨)[π].

We know already that the pairing

Hq(M,V ⊗ k) × Hd−q
c (M,V∨ ⊗ k) −→ k

is non degenerate. We also know that for the orthogonal complements of the leftmost
modules we have
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Hq(M,V) ⊗ k ⊂ (Hd−q
c (M,V∨)tors ⊗ k)⊥

Hd−q
c (M,V∨) ⊗ k ⊂ (Hq(M,V)tors ⊗ k)⊥.

This implies that for each of the two modules

Hq+1(M,V)[π] resp. Hd+1−q
c (M,V∨)[π]

a certain quotient of this module is in perfect duality with

Hd−q
c (M,V∨)tors ⊗ k resp. Hq(M,V)tors ⊗ k.

This gives us two sets of inequalities

dimk(H
q+1(M,V)[π]) ≥ dimk(H

d−q
c (M,V∨)tors ⊗ k)

and
dimk(H

d+1−q
c (M,V∨)[π]) ≥ dimk(H

q(M,V)tors ⊗ k).

For a finitely generated torsion R-module A we have dimk(A ⊗ k) = dimk(A[π]). This
implies that

∑
q

(
dimk(H

q+1(M,V)[π]) + dimk(H
d+1−q
c (M,V∨)[π])

)
=
∑
q

(
dimk(H

d−q
c (M,V∨)tors ⊗ k) + dimk(H

q(M,V)tors ⊗ k)
)
.

Hence we see that in our inequalities we have in fact equalities. But this in turn implies
that our inclusions above are even equalities

Hq(M,V) ⊗ k = (Hd−q
c (M,V∨)tors ⊗ k)⊥

Hd−q
c (M,V∨) ⊗ k = (Hq(M,V)tors ⊗ k)⊥.

Then it follows that the pairing

Hq(M,V)/Tors ⊗ k × Hd−q
c (M,V∨)/Tors ⊗ k −→ k

is non degenerate. But this is the original pairing (Poin) mod π. If this reduction
mod π is non degenerate then also (Poin) must be non degenerate.

I want to keep the following byproduct of the above proof:

Corollary 4.8.10. The non degenerate pairing

Hq(M,V ⊗ k) × Hd−q
c (M,V∨ ⊗ k) −→ k

induces non degenerate pairings

Hq+1(M,V)[π] × Hd−q
c (M,V∨)tors ⊗ k −→ k

Hd+1−q
c (M,V∨)[π] × Hq(M,V)tors ⊗ k −→ k.
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The extension of the theorem from discrete valuation rings to Dedekind rings is rather
clear, if one knows enough about Dedekind rings. They will be discussed in the second
volume.
At this point it is tempting to ask, whether these pairings are given by a cup product. We
should be aware, that this does not make sense because the cohomology with compact
support is not the cohomology of a sheaf (see 4.7.1). Only after a suitable compactification
of M we we have such an interpretation. We come back to this point in 4.8.7.

4.8.5 The Cohomology in Top Degree and the Homology

We assume that M is of finite cohomological type and oriented. We start from a local
system V and we assume that we obtained it form an action of the fundamental group
π = π1(M,x0) on an abelian group (or R-module) V . We do not make any further
assumption. We have Vx0 = V . We want to compute the cohomology with compact
support in top degree. We will see that this can be expressed completely in terms of
the action of π on V . Let Iπ be the augmentation ideal, we introduced the module of
coinvariants V/Iπ = Vπ. Our aim is to show that Hd

c (M,V)
∼−→ Vπ . But recall that this

quotient is H0(π,V ). (See page 28.) This makes it plausible that at least on manifolds
the cohomology with compact supports behaves like homology.
We start from our complex

. . . −→
⊕

(α,β)∈A2
<

Hd(M,V !
(α,β)) −→

⊕
α∈A

Hd(M,Vα) −→ Hd
c (M,V) −→ 0.

Let α0 be an index such that x0 ∈ Uα0 . I claim that the map

Hd(M,V !
α0) � V −→ Hd

c (M,V)

is surjective and induces an isomorphism

V/IπV
∼−→ Hd

c (M,V).

Let α be any other index. We can choose a sequence α0,α1, . . . ,αr = α of indices such
that Uαi∩Uαi+1

�= ∅ for all i. For any pair of consecutive indices αi,αi+1 we restrict the
boundary operator

δ :
⊕

(α,β)∈A2
<

Hd(M,V !
(α,β)) −→

⊕
γ∈A

Hd(M,V !
γ)

to the direct summand
Hd(M,V !

(αi,αi+1)
)

(we assume αi < αi+1 otherwise we interchange the indices). It is clear that the image
of this restriction in the target module lies in the submodule

Hd(M,V !
αi

)
⊕

Hd(M,V !
αi+1

).

We have a natural isomorphism

Ψαi,αi+1
: Hd(M,V !

αi
)
∼−→ Hd(M,V !

αi+1
).
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which is the composition of the isomorphisms

Hd(M,V !
αiαi+1

)
∼−→ Hd(M,V !

αi
)

Hd(M,V !
αiαi+1

)
∼−→ Hd(M,V !

αi+1
)

which are induced by the inclusions Uαi
∩ Uαi+1

↪→ Uαi
and Uαi

∩ Uαi+1
↪→ Uαi+1

. It is
clear from the definition that the image of δ restricted to Hd(M,V !

αiαi+1
) is the submodule

(Hd(M,V !
αi

), − Ψαiαi+1
(Hd(M,V !

αi
))),

and hence we see that this submodule is in the kernel of

Hd(M,V !
αi

)
⊕

Hd(M,V !
αi+1

) −→ Hd
c (M,V).

Now our chain of indices gives us by composition an isomorphism

Ψα0,α1 . . . ,αr : Hd(M,V !
α0) −→ Hd(M,V !

α)

and it is clear that the elements

(Hd(M,V !
α0

), − Ψα0,α1...,αr
(Hd(M,V !

α0
)))

lie in the kernel of
Hd(M,V !

α0) ⊕ Hd(M,V !
α) −→ Hd

c (M,V).

From this it follows that the summand Hd(M,V !
α0) � V is mapped surjectively to

Hd
c (M,V).

Now we assume that our chain of indices comes back, i.e. α = αr = α0. Then we can
construct a path

γ : [0,1] −→ M

with γ(0) = γ(1) = x0 which is obtained by joining x0 inside of Uα0 to a point in
Uα0 ∩ Uα1 , this point to a point in Uα1 ∩ Uα2 and so on and finally joining the point in
Uαr−1 ∩Uααr

to x0. The homotopy class of this path is uniquely determined by the chain
of indices.
Then it is clear from the construction of the local system from the action ρ : π −→ Aut(V )
that Ψα0,α1 . . . ,αr = ρ([γ]). Hence we see that all elements of the form (Id−ρ([γ]))V lie
in the kernel of

Hd(M,V !
α0

) −→ Hd
c (M,V)

and the surjective map factors

V Hd
c (M,V)

V/IπV

...................................................................................................................................................................................................................................... .....
.......

..................................................................................................................................................................... .......
.....

........
.........
........
........
........
.........
........
........
........
.........
........
........
........
.........
........
........
........
.................
............

.

But now it follows that
V/IπV

∼−→ Hd
c (M,V)

must be an isomorphism, because the group
⊕

(α,β)∈A2
<
Hd

c (M,V !
(α,β)) is generated by its

direct summands.
Especially we see again that under our assumptions above

Hd
c (M,�) = �.
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4.8.6 Some Remarks on Singular Homology

We can also define the singular homology groups Hi(M,V). To do this we consider
continous maps

σ : Δq −→ M

where Δq = {(t0, . . . ,tq) ∈ �q+1
+ |∑ ti = 1} is the q-dimensional standard simplex. We

can consider the pull back σ∗(V) of our local system and since Δq is contractible, we
have

σ∗(V)(Δq) = σ∗(V)p

where p is any point in our simplex. We form linear combinations∑
mσ · σ

where mσ ∈ σ∗(V)(Δq). These linear combinations form an abelian group Cq(M,V). We
define a boundary operator

∂q : Cq(M,V) −→ Cq−1(M,V).

To do this we observe that we have face maps

τi : Δq−1 −→ Δq

τi : (t0, . . . ,tq) −→ (t0, . . . ,ti−1,0,ti, . . . ,tq)

and we put

∂1(mσσ) =
∑

(−1)imσ · σ ◦ τi

where we use the fact that

(σ ◦ τi)∗(V)(Δq−1) = σ∗(V)(Δq).

An easy computation yields ∂q−1◦∂q = 0 hence we get the chain complex with coefficients
in V

. . . −→ Cq(M,V) −→ Cq−1(M,V) −→ · · · −→ C0(M,V) −→ 0

and by definition the homology groups of this complex are the homology groups of M
with coefficients in V :

Hq(M,V) = Hq(C•(M,V)).

It is clear what H0(M,V) is: we see that C0(M,V) is the group of linear combinations∑
x∈M

mx · x

where mx ∈ Vx. Of course we see that mxx − myy is a boundary if we can find a path
γ : [0,1] −→ M with γ(0) = x, γ(1) = y and [γ]mx = my. Hence it is clear that

H0(M,V) = V/IπV � Hd
c (M,V).

This suggests that for a manifold M and a local system V on it we have the equality

Hi(M,V) � Hd−i
c (M,V). (4.106)

We will come back to this point in the third volume, see also [Hat], Chap. 3 3.3.
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4.8.7 Cohomology with Compact Support and Embeddings

If we want to understand the cohomology H•c (M,V) it is sometimes very useful to embed
M into a compact space. Let us consider an open embedding

i : M ↪→ M,

where M is compact. Then we can consider the sheaf i!(V), and we know

H•c (M,V) = H•(M,i!(V)).

We may also consider the direct image i∗(V). Here we have to be careful because the
functor i∗ is not exact in general. But if we assume that our local system is acyclic with
respect to i∗, then we know that

H•(M,V) = H•(M,i∗(V)).

Especially we may have the situation that M is an oriented manifold with boundary and
M is the interior of M . Then it is clear that M ↪→ M is a homotopy equivalence and
a local system V on M extends to a local system on M , which we denote by V. Under
these circumstances we have

H•(M,V) = H•(M,i∗(V)) = H•(M,V).

If now V is a local system of free R-modules of finite rank and V∨ = Hom(V ,R) the dual
system, then we have the Poincaré pairing

Hq
c (M,V) × Hd−q(M,V∨) −→ Hd

c (M,R) � R

which we may also write as

Hq(M,i!(V)) × Hm−q(M,i∗(V∨)) −→ R.

It should not be too much of a surprise that this pairing can also be expressed in terms
of the cup product.
We start with the observation that both sheaves i!(V) and i∗(V∨) have flat acyclic reso-
lutions. In this situation we defined the product (see 4.6.10)

Hq(M,i!(V)) × Hd−q(M,i∗(V∨)) −→ Hd(M,i!(V)⊗̂i∗(V∨)),
and we have the evaluation pairing

i!(V)⊗̂i∗(V∨) −→ i!(R).

Now the cup product composed with the evaluation provides a pairing

Hq(M,i!(V)) × Hd−q(M,i∗(V∨)) −→ Hd(M,i!(R)) = Hd
c (M,R) = R.

We complement 4.8.9 by stating

This pairing is equal to the Poincaré duality pairing (4.107)

To see this we apply the same idea as in section 4.6.7 and reduce the comparison of the
two pairings to the case where one of the factors is in degree zero.
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We compute the cohomology groups from Čechresolutions. Our situation is a little bit
different from the previous one since now our manifold has a boundary. But we may put
a Riemannian metric on M as before and at first we cover a neighborhood of ∂M by
small open “half-balls” with center on the boundary. Then the complement of the union
of these balls is compact, and we cover it by small balls whose closure does not hit the
boundary. Let us denote this covering by {Uα}α∈A.
For any α0 · · ·αq we consider Uα0 ∩ · · · ∩Uαq

= Uα, and we remove the boundary points

from it (if there are any) and call the result
◦
Uα. Then

iα :
◦
Uα−→ M

is the inclusion, and we define

iα,!i
∗
α(V) = V !

α. (4.108)

Now we compute our cohomology groups from the Čech resolution and the coresolution
as before. We have

. . . −→
∏
α,β

V∨,!(α,β) −→
∏

V∨,!α −→ i!(V∨) −→ 0,

and

0 −→ V −→
∏
α

V∗α −→
∏
(α,β)

V∗(α,β) −→ · · · .

Of course it is clear that the Poincaré pairing

H0(M,i∗(V)) × Hd(M,i!(V∨)) −→ R

is given by the cup product. Then we proceed by induction on the degree. We break the
two resolutions

0 G ⊕V∨,!α i!(V∨) 0........................................................................................ ......
...... .................................................................... ......

...... ..................................................... ......
...... ......................................................................... ......

......

0 V ∏
α V∗α H 0........................................................................................ .....

....... ...................................................................... .....
....... ...................................................................... .....

....... ........................................................................................ .....
.......

and we get the following pieces of long exact sequences

0 −→ Hd−1(M,i!(V∨)) δ∨−→ Hd(M,G) −→ · · ·

and

H0(M,H)
δ−→ H1(M,i∗(V)) −→ 0.

The pairing i!(V∨) × i∗(V) −→ i!(R) induces a pairing(⊕
V∨,!α

)
×
∏
α

V∗α −→ i!(R)
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(see section 4.8.4), and this induces a pairing

G × H −→ i!(R).

If we look at the definition of the Poincaré pairing of two classes ξ ∈ Hd−1(M,i!(V∨))
and η = δ(ψ) ∈ H1(M,i∗(V)), then we have

〈ξ,η〉 = 〈δ∨ξ,ψ〉. (4.109)

But the right hand side is also the cup product of the classes δ∨ξ ∈ Hd(M,G) and
ψ ∈ H0(M,H) this means we have 〈δ∨ξ,ψ〉 = δ∨ξ ∪ψ. The cup product satisfies the rule

δ∨ξ ∪ ψ = ξ ∪ δψ = ξ ∪ η. (4.110)

Puting the equalities together we find 〈ξ,η〉 = ξ ∪ η for ξ ∈ Hd−1(M,i!(V∨)) and η =
δ(ψ) ∈ H1(M,i∗(V)). The general case follows by the same argument inductively.

4.8.8 The Fundamental Class of a Submanifold

The homology groups can be defined for any space X and they provide a covariant functor
from spaces to abelian groups: If we have a continuous map f : X −→ Y , then we get a
homomorphism

f∗,i : Hi(X,�) −→ Hi(Y,�)

for all degrees i.
This suggests that we should also have this kind of functoriality for the cohomology with
compact supports on an oriented manifold M .
I want to discuss a special case where we see this functoriality. We consider a connected
oriented manifold M and an oriented submanifold N ⊂ M , let m,n be the dimensions of
M and N respectively. Let us denote the inclusion map by i. We allow that N has several
connected components, but the dimensions of the components should be all the same.
We choose an auxiliary Riemannian metric. This Riemannian metric splits the tangent
bundle of M along N into TM = TN ⊕ TM/N , where TM/N is the normal bundle. We
choose the orientation of the normal bundle TM/N such that the chosen orientation on
TM is the one obtained from the above direct sum decomposition and the orientations
on the summands.
Let V be a local system on M , let V ′ be its restriction to N . If we consider the homology
groups then we get get - directly from the definition - a homomorphism

Hi(N,V ′) −→ Hi(M,V).

Now let us accept 4.106, which says that on our manifolds the homology groups are
isomorphic to cohomology groups with compact support, then we get

Corollary 4.8.11. We have a natural homomorphism

Hj
c (N,V ′) −→ Hm−n+j

c (M,V).

Proof: I want to construct this homomorphism directly.
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Using the exponential map we can construct a tubular neighborhood iN : TM/N(ε) ⊂ M
(see [Sp], p.465). We have the projection π : TM/N (ε) −→ N where the fibres π−1(b) can

be identified to small open balls in TM/N,b. By TM/N (ε) we denote the closure of TM/N (ε)
in M . This gives us a fibration by open and closed balls as in 4.7.2.
Let VN be the restriction of our local system V to the open subset TM/N (ε), then we put

V !
N = iN,!(VN ), we have an inclusion V !

N ↪→ V ! and therefore a homomorphism

H•c (TM/N (ε),VN ) = H•c (TM/N (ε),V !
N ) = H•(M,V !

N ) −→ H•c (M,V).

We are in the situation of 4.7.2 and get

Hj+m−n
c (TM/N (ε),V !

N )
∼−→ Hj

c (N,Rm−nπ∗(V !
N )),

and since obviously V ′ = Rm−nπ∗(V !
N ) we constructed our homomorphism.

Now we assume that N is compact and that V = �. Then we get

Hj
c (N,�) −→ Hm−n+j

c (M,�),

and if π0(N) is the set of connected components of N we have the map⊕
π0(N)

� = H0(N,�) −→ Hm−n
c (M,�).

If N is connected and compact then the image of 1 under this map is a class [N ] ∈
Hm−n

c (M,�). It is called the fundamental class of N in M .
Let ω be a cohomology class on M which sits in the complementary degree n = dimN ,
then we can restrict it by the inclusion map i to N . If N is connected and compact then
i∗(ω) ∈ Hn(N,�) = �. Then we get

i∗(ω) = [N ] ∪ ω ∈ Hm(M,�) = �. (4.111)

This is essentially Proposition 4.7.3.

4.8.9 Cup Product and Intersections

Let us assume we have two oriented compact submanifolds N1,N2 of codimensions d1,d2
in our oriented manifold M . We get two classes [N1],[N2] in the cohomology with compact
support, they sit in degrees d1,d2. We want to understand the cup product of these two
classes. Now we put m = dimM .
We assume that our two submanifolds intersect transversally. This means that in any
point p of N1∩N2 the intersection of the two tangent spaces TN1,p∩TN2,p has dimension
c := m−d1−d2. This implies that the intersection N1∩N2 is again a compact submanifold
of codimension d1 + d2. It may have several connected components. We write

N1 ∩ N2 =
⋃

Cj

where the Cj are the connected components. For any point p ∈ Cj we get an exact
sequence of tangent spaces

0 −→ TCj ,p −→ TN1,p ⊕ TN2,p −→ TM,p −→ 0
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where the arrow from the direct sum to the tangent space of M is given by: First com-
ponent minus second component. This gives us an isomorphism∧c

(TCj ,p) ⊗
∧m

(TM,p)
∼−→
∧m−d1

(TN1,p) ⊗
∧m−d2

(TN2,p)

and this puts an orientation Oj on Cj for all j. Let [Cj ] be the fundamental class of the
manifold Cj equipped with the orientation Oj . I claim∑

[Cj ] = [N1] ∪ [N2] (4.112)

We can look at the special case where d1 + d2 = n. In this case the cup product lands
in Hm

c (M,�) and hence it is a number. If we keep the assumption of transversality then
the intersection is a finite number of points. Now the tangent space of a point has always
a canonical orientation. If now c ∈ N1 ∩N2 then we define

m(c) =

{
1 if the orientation Oc is canonical

−1 if not
(4.113)

Our formula becomes

[N1] ∪ [N2] =
∑

c∈N1∩N2

m(c) (4.114)

It is purely local problem to verify these formulae. According to Equation 4.111 we have
to restrict the class [N2] to N1. We recall the construction of [N2], this class was the
image of a class in Hm−d2

c (TN2,�) = Hm−d2(M,�!
N2

). If we restrict this class we get a

class in Hm−d2(N1,�⊗�!
N2

), the rest is clear. We could also refer directly to Proposition
4.7.3.

Lemma 4.8.12 (The Degree of Maps). Let us assume that M1,M2 are two compact and
oriented manifolds of the same dimension d. Let f : M1 −→ M2 be a C∞ map which has
the following property: There is a point x ∈ M2 such that the inverse image f−1(x) is
finite and that for all y ∈ f−1(x) the derivative Df,y : TM1,y −→ TM2,x is an orientation
preserving isomorphism. Under these conditions we have that the restriction map

f (d) : Hd(M2,�) = � −→ Hd(M1,�) = �

is the multiplication by the cardinality |f−1(x)| of the fibre.
Proof: To see this we choose a small open ball x ∈ D such that f−1(D) is a union of
disjoint balls Dy around y, such that f : Dy −→ Dx is a diffeomorphism. We get a
commutative diagram

Hd(M2,�) Hd(M1,�)

Hd
c (Dx,�)

∑
y∈f−1(x)H

d
c (Dy,�).

............................................................................................................................................................................................ ......
......

............................................................................................................................. .....
.......
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.................

............
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......

......
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.................
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The rest is clear, the generator 1 ∈ Hd
c (Dx,�) is mapped to the generator in Hd(M2,�)

under the upwards arrow and to (1,1, . . . ,1) under the horizontal arrow. The element
1 ∈ Hd

c (Dx,�) is mapped to |f−1(x)| under the upwards arrow.
The number |f−1(x)| is called the degree of the map f , we denote it by deg(f).
Of course this degree can be defined for f : M1 −→ M2, we simply define it by f (d)(ξ) =
deg(f)ξ, where 0 �= ξ ∈ Hd(M2,�) and both cohomology groups are identified to � via the
orientations. We may ask to what extend this degree is always-without our assumption
above- the number of points in a fibre f−1(x). We discuss a case, where this is true, but
we have to count the points in the fibres with multiplicities.
Let us assume that we have a point x ∈ M2 such that f−1(x) is a finite set. Then we can
find a neighborhood x ∈ Vx, which is an open ball and neighborhoods Wy of the points
y ∈ f−1(x), which are also open balls, such that f : Wy −→ Vx and all these maps are
proper. Then we get for any y a homomorphism

Hd
c (Vx,�) = � −→ Hd

c (Wy ,�) = �,

which given by multiplication by an integer e(y). This integer may be zero or negative.
Then the same argument as the one in the proof of the above lemma yields∑

y∈f−1(x)
e(y) = deg(f). (4.115)

4.8.10 Compact oriented Surfaces

Let S be a compact oriented 2-dimensional manifold, these objects are also called (com-
pact oriented) surfaces. We have seen that for any ring R

H0(S,R) = R and H2(S,R) = R (4.116)

and the only unknown cohomology sits in degree one. For any prime p we have the exact
sequence of sheaves

0 −→ � −→ � −→ �p −→ 0

and in the resulting long exact sequence we find the piece

0 −→ H1(S,�) −→ H1(S,�) −→ H1(S,�p) −→ 0.

We have zeroes at both ends because H0(S,�) −→ H0(S,�p) (resp. H2(S,�) −→
H2(S,�)) is surjective (resp. injective). This implies that H1(S,�) is torsion free. Since we
also know that these cohomology groups are finitely generated we conclude that H1(S,�)
is free of some rank.
Now we have the Poincaré or cup product duality pairing

H1(S,�) × H1(S,�) −→ �,

which is non degenerate and alternating. A well known result from elementary algebra
tells us that we can find a basis e1, . . . ,eg,f1, . . . ,fg of H1(S,�) such that the duality
pairing is given by

ei ∪ fj = δij , ei ∪ ej = 0, fi ∪ fj = 0. (4.117)
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Figure 4.1 An example of a compact surface of genus 3

The number g is called the genus of the surface, the rank of H1(S,�) is 2g. For a surface
of genus 3 we can draw the following picture.
We see three pairs of 1-cycles. They form a basis in homology. But we also may view
these cycles as submanifolds isomorphic to S1 which are oriented by the arrows. These
submanifolds have fundamental classes e1,f1,e2,f2,e3,f3 in H1(S,�) and if we numerate
them in the right way we have the above values of the intersection pairing.

4.8.11 The Cohomology Ring of �n(�)

We are now able to determine the structure of the cohomology ring H•(�n(�),�) (see
Exercise 26). The fundamental class of any hyperplane L � �n−1(�) ⊂ �n(�) gives
us a multiple of the generator ae1 ∈ H2(�n(�),�). (Since we are dealing with complex
manifolds, all manifolds have a canonical orientation.) Now we can put n such hyperplanes
in general position such that they intersect transversally and L1 ∩ · · · ∩ Ln is a point.
The fundamental class of a point is the generator in H2n(�n(�),�). We conclude that
ane1 ∪ e1 . . . e1 is this generator, it follows that a = 1, e1 is the fundamental class of the
hyperplane and

H•(�n(�),�) = �[e1]/(e
n+1
1 ). (4.118)

4.9 The Lefschetz Fixed Point Formula

Let M be a connected, compact and oriented manifold of dimension d. Let f : M −→ M
be a continuous map. It induces endomorphisms fν : Hν(M,�) −→ Hν(M,�). The
Lefschetz fixed point formula gives us an expression for the alternating sum of traces
(the Lefschetz number of f)

tr
(
f•|H•(M,�)

)
=

d∑
ν=0

(−1)ν tr(fν |Hν(M,�)) (4.119)
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in terms of local data at the fixed points of f on M . I formulate a precise version in
the case of isolated fixed points and give some indications how this is proved. Actually
it is a rather formal consequence of our previous considerations on the cup product, the
Poincaré duality and the Künneth formula.
We consider the graph Γf = {(x,f(x)) ⊂ M × M |x ∈ M} of f . It is a submanifold of
M × M and it is isomorphic to M via the projection to the first coordinate. We give it
the orientation of M . Hence it defines a cohomology class [Γf ] ∈ Hd(M × M,�). The
fixed point formula will come out if we compute the cup product of the class [Γf ] and
the class of the diagonal Δ = ΓId in two different ways.
We apply the Künneth homomorphism (see page 109), since we have rational coefficients
we get an isomorphism

Hd(M × M,�)
∼−→

d⊕
ν=0

(
Hν(M,�) × Hd−ν(M,�)

)
.

The cup product yields a non degenerate pairing Hν(M,�)×Hd−ν(M,�) −→ �, hence
we get isomorphisms

Hν(M,�) × Hd−ν(M,�)
∼−→ End(Hν(M,�)),

which are given by

u(ν) ⊗ u(d−ν) �→
{
v(ν) �→ (u(d−ν) ∪ v(ν))u(ν)

}
.

It is a formal consequence of our definitions that in fact

[Γf ] =
d∑

ν=0

fν ∈
⊕
ν

End(Hν(M,�)).

The diagonal Δ ⊂ M ×M is the graph of the identity. A little bit of linear algebra shows
that the cup product of the classes fp ∈ Hp(M,�) ⊗ Hd−p(M,�) and Idd−p ⊗ Idp is
given by

fp ∪ Idn−p = (−1)p tr(fp). (4.120)

We conclude that

[Γf ] ∪ [Δ] = tr(f•|H•(M,�)). (4.121)

Now we compute the cup product by interpreting it as an intersection number (see section
4.8.9). The points in the intersection of the two graphs are exactly the fixed points of
our map, i.e. Fix(f) = {x ∈ M |f(x) = x}. Here we assume that the fixed points of f
are isolated, i.e. that f has finitely many fixed points and the graphs Γf and Δ intersect
transversally. We have the two derivatives which send the tangent space TM,x at x to
the tangent space at (x,x): The first one DId ,f,x sends a tangent vector t ∈ TM,x to
(t,Df,x(t)) and the second one DId , Id ,x does t �→ (t,t).
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Transversality means that we get a direct sum decomposition

TM×M,(x,x) = DId ,f,x(TM,x) ⊕ DId , Id ,x(TM,x).

We have to compare the given orientation on TM×M,(x,x) to the orientation obtained from
the orientation on the direct sum Df,x(TM,x) ⊕ DId ,x(TM,x), as I explained in section
4.8.9 this induces a sign m(x). The derivative Df of f at the fixed point x induces an
endomorphism of the tangent space TM,x and the assumption that x is isolated implies
det(Id−Df,x|TM,x) �= 0. Now it is easy to see that this sign is equal to

sf (x) = sign(det(Id−Df,x|TM,x)). (4.122)

Hence we proved the fixed point formula for an f with isolated fixed points

tr(f•|H•(M,�)) =
∑

x∈Fix(f)
sf (x). (4.123)

Actually it is not difficult to derive a more general fixed point formula for cohomology
with coefficients in a local system. Let M be as above and V a local system of finite
dimensional vector spaces over some field k on M . A differentiable map f : M −→ M
gives us a homomorphism fq : Hq(M,V) −→ Hq(M,f∗(V)). (See 4.4.3.) If we now have as
an extra datum a homomorphism of sheaves g : f∗(V) −→ V , then we get a composition

(f q,g) : Hq(M,V) −→ Hq(M,V).

Again we can define the Lefschetz number

tr((f•,g)|H•(M,V)) =
d∑

ν=0

(−1)ν tr
(
(fν ,g)|Hν(M,V)

)
. (4.124)

Now at a fixed point x ∈ M our g gives us an endomorphism g(x) : Vx = f∗(V)x −→ Vx.
Then we get under the same assumption of transversality the formula

tr((f•,g)|H•(M,V)) =
∑

x∈Fix(f)
sf (x) tr(g(x)). (4.125)

The proof is essentially the same as in the case of trivial coefficients.

4.9.1 The Euler Characteristic of Manifolds

I recall the situation on page 104, I want to give some brief indications what is going on.
Let us assume that we have a C∞-vector field X on M , this is simply a C∞-section in
the tangent bundle. It follows from the theory of differential equations, that we can find
a one parameter group gt = exp(tX) of diffeomorphisms gt : M −→ M such that(

d

dt
gt

)
t=0

(x) = X(x) for all x ∈ M. (4.126)

We assume that this vector field has only isolated zeroes and that these zeroes are non
degenerate.
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Definition 4.9.1. If m0 is a zero of the vector field, then we can choose local coordinates
at x0 such that X =

∑
fi

∂
∂xi

, where all the fi vanish at m0. A zero is called non
degenerate if the matrix ( ∂2f

∂xi∂xj
(m0)

)
ij

has non zero determinant. In this case we define the index ind(X)(m0) of the vector field
at m0 to be (−1)n times the sign of the determinant of this matrix.

If we now apply the Lefschetz fixed point formula to gt for sufficiently small values of
t, then the fixed points are exactly the zeroes of X and a simple calculation in local
coordinates shows that for a fixed point m0 we have the equality ind(X)(m0) = sgt(m0).
On the other hand it is clear that the diffeomorphism gt is homotopic to the identity.
Therefore the sum of the alternating traces of gt on the cohomology is equal to the Euler
characteristic of M . Hence we get

Theorem 4.9.2 (Lefschetz fixed point formula for the identity). If M is a compact
oriented C∞-manifold and if X is a C∞-vector field with only isolated non degenerate
zeroes, then

χ(M) =
∑

m0∈zeroes of X
ind(X)(m0).

This formula should be interpreted as the Lefschetz fixed point formula for the map
f = Id . If we try to carry over the computation of section 4.9 to this situation, then the
graph of Id is the diagonal Δ and clearly we have [Δ] ∪ [Δ] = χ(M). But now we have
the problem that we can not interpret the value of the cup product as an intersection
number, at least we can not interpret it as a finite sum of contributions over fixed points.
If we find a vector field with isolated non degenerate zeroes, then we use it to deform the
first factor in the product [Δ] ∪ [Δ] and replace it by the graph of gt. The fundamental
class of the graph Γgt is equal to [Δ], but now we may apply section 4.9.

4.10 The de Rham and the Dolbeault Isomorphism

4.10.1 The Cohomology of Flat Bundles on Real Manifolds

Let M be a C∞-manifold and let V be a local system consisting of finite dimensional
�- or �-vector spaces. (See 4.3.3.) Let us denote the dimension of M by m, let n be
the dimension of the vector spaces in the local system. Locally on small connected open
subsets U ⊂ M we have a trivialization of V by constant sections e1, · · · ,en and

V(U) =

{
n∑
i=1

aiei | ai ∈ �
}
. (4.127)

We define

V∞(U) =

{
n∑
i=1

fiei | fi ∈ C∞(U)

}
, (4.128)

and this gives us the sheaf of C∞-sections in V .
Let Ωp

M be the sheaf of C∞-p-forms on M. We can define a differential
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d : V∞(U) −→ V∞(U) ⊗ Ω1
M (U)

by

d :

n∑
i=1

fiei �−→
n∑
i=1

ei ⊗ dfi.

If we pass to another open set U ′ and if we choose a trivialization e′1, · · · ,e′n over U ′ then
we get expressions

ei =
∑

aije
′
j

over U ∩U ′ where the aij are locally constant. Therefore it is clear that the definition of
the differential does not depend on the choice of the constant sections. Thus we see that
we can define a global differential

d : V∞ −→ V∞ ⊗ Ω1
M .

It is clear from the definition that for any open set U1 ⊂ M

V(U1) = {s ∈ V∞(U1) | ds = 0}.
We can extend our differential to forms of higher degree

s : V∞ ⊗ Ωp
M −→ V∞ ⊗ Ωp+1

M

by

d(
∑

si ⊗ ωi) =
∑

si ⊗ dωi +
∑

dsi ∧ ωi,

where dsi is of the form dsi =
∑

gij ⊗ω′j and hence dsi∧dωi =
∑

i gij ⊗ω′j∧ωi. It is well
known that dd = 0. We recall some rules for the exterior derivatives of differential forms:
In local coordinates we have d(f(x1,x2, . . . ,xd)dx1 ∧ . . .∧ dxp) = df ∧ dx1 ∧ . . .∧ dxp and
from this we get easily d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)pω1 ∧ dω2 where p = deg(ω1).
We get the so called de Rham complex of sheaves

0 −→ V −→ V∞ −→ V∞ ⊗ Ω1
M −→ . . . −→ C∞(V) ⊗ Ωm

M −→ 0.

We introduce the notation V∞⊗Ωp
M = Ωp

∞(V). A form ω ∈ Ωp
∞(V)(U) is called closed if

dω = 0.

Definition 4.10.1. If we have a C∞-vector bundle E over M (see 4.3.1, here the gij
have to be C∞-functions), then we may consider differentials

d : C∞(E) −→ C∞(E) ⊗ Ω1
M

which satisfy

d(s1 + s2) = ds1 + ds2

d(fs1) = fds1 + s1 ⊗ df

for local sections s1,s2 and local C∞-functions f . Such differentials are called connec-
tions on E. A connection is called a flat connection if

d(ds1) = d
(∑

si ⊗ ωj

)
=
∑

sj ⊗ dωj + dsi ∧ ωj = 0.
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We saw that starting from a local coefficient system V we have a canonical flat connection
on V∞. But in turn, if we have a flat connection, then we can attach a local system E0
to E by defining

E0(U) = {s ∈ C∞(E)(U) | ds = 0}.
It is of course clear that the flatness of the connection is necessary for the construction
of the de Rham complex.
It is not very hard to see that

Lemma 4.10.2. The de Rham complex is exact.

This follows from the well-known Lemma of Poincaré which says the following:

Lemma 4.10.3 (Poincaré). A closed p-form ω of degree p > 0 on a convex open set
U ⊂ �m can be written as dψ = ω with ψ ∈ Ωp−1

∞ (U). (See [B-T], Chap. I, §6.)
We can apply this here because our local system V is locally trivial. Therefore the de
Rham complex gives us a resolution of the sheaf V .
I claim that this resolution is also acyclic, we have

Hi(M,Ωp
∞(V)) = 0 for i ≥ 1 and all p ≥ 0. (4.129)

To see that this is the case we apply Exercise 16. We have (see 4.8.2) a partition of unity
for the sheaf C∞M . If we have any C∞-vector bundle E on M then the sheaf C∞(E) is a
sheaf of C∞M modules. Then our Exercise 16 yields that the higher cohomology groups
C∞(E) vanish.
We apply the functor global sections and then the resulting complex of global differential
forms computes the cohomology (see section 2.3.1). Hence we get the famous

Theorem 4.10.4 (de Rham). We have an isomorphism

Hi(M,V) ∼= H i(Ω•∞(V)(M)) =
{ω ∈ Ωp

∞(V)(M)|dω = 0}
{dψ|ψ ∈ Ωp−1∞ (V)(M)} .

This is called de Rham Isomorphism.

If we consider the same complex but with sections which have compact support, then we
get (see second example below)

0 −→ (V∞)c(M) −→ Ω1
∞(V)c(M) −→ . . . −→ Ωm

∞(V)c(M)
∫

−→ V(M) −→ 0.

The argument in Exercise 16 applies as well to the cohomology with compact supports
and we get by the same token

Hi
c(M,V) = H i(Ω•∞,c(V)(M)), (4.130)

provided we have the appropriate form of the Lemma of Poincaré (see the example below).

Example 20.

(a) If for instance we take the trivial system � on M = �
m then a closed form ω of

degree p > 0 on �m can be written as dψ with ψ ∈ Ωp−1
∞ (�m). If p = 0 then a

closed form is a constant function f = c �= 0, then we can not write it as f = dψ,
because the space of forms of degree −1 is zero. Thus we get H0(�m,�) = � and
H i(�m,�) = 0 for i > 0. (See 4.4.24.)
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(b) If we consider the cohomology with compact supports then a closed form in degree
zero which has compact support must vanish. Hence we get H0

c (�
m,�) = 0. But if

we have a form ω with compact support on �m which is of degree m then we may
not be able to find a ψ with compact support such that ω = dψ. If we could do so
we would have ∫

�m

ω =

∫
D

ω =

∫
∂D

ψ = 0 (4.131)

where D is a big closed ball which contains the supports of ω and ψ. Hence we get
a surjective linear form

int : Hd
c (�

m,�) −→ � (4.132)

[ω] �−→
∫
�m

ω.

It is easy to see that a form ω with compact support for which in addition
∫
�m ω = 0

can be written as ω = dψ with ψ ∈ Ωd−1
c (�m). We get that the above map int is an

isomorphism. If we take the entire de Rham complex with compact supports

0 −→ (�∞)c(�
m) −→ Ω1

∞(�)c(�
m) −→ . . . −→ Ωd

∞(�)c(�
m)

∫
−→ � −→ 0,

then it is easy to see that it is exact in degrees < d, i.e. we have a Lemma of
Poincaré for forms with compact support except in the top degree. Comparing this
to (a) above gives us the simplest version of Poincaré duality.

The Product Structure on the de Rham Cohomology

We want to discuss the product structure of the cohomology in the context of the de
Rham isomorphism. If we have two manifolds M and N , then the resolutions of the sheaf
� by the two de Rham complexes are flat (comp. the discussion in 4.6.7.). If we consider
the product M × N and the two projections p1,p2, then we have a homomorphism of
complexes

p∗1(Ω
•

M ) ⊗� p∗2(Ω
•

N ) = Ω•M ⊗̂�Ω•N −→ Ω•M×N

which is given by the exterior multiplication of the differential forms. Hence it is clear
that the product

Hp(M,�) × Hq(N,�) −→ Hp+q(M × N,�)

(α,β) −→ α⊗̂�β

is induced by the exterior multiplication of the differential forms which represent the
classes α,β.
Especially it becomes clear that the cup product on H•(M,�) is induced by the structure
of an exterior algebra on the differential forms.
If we have a local system V of finite dimensional �-vector spaces and its dual V∨, then
we have the evaluation e : V ⊗ V∨ −→ � and we get a pairing

H i
c(M,V) × Hm−i(M,V∨) −→ Hm

c (M,V ⊗ V∨) −→ Hc(M,�).
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Theorem 4.10.5. If M is a connected and oriented manifold, then we get the Poincaré
duality pairing which on two classes [ω] ∈ Hi

c(M,V) and [η] ∈ Hm−i(M,V∨), which are
represented by ω and η, is given by

[ω] × [η] −→
∫
M

e(ω ∧ η).

If we take this as definition for the Poincaré duality pairing it is not so clear why it is
non degenerate. We come back to this point in section 4.11.

The de Rham Isomorphism and the fundamental class

The de Rham isomorphism also provides a different way of looking at the notion of the
fundamental class and the formulae for the cup product (see 4.8.8, 4.8.9). Let us consider
an open ball Dm ⊂ M in our connected, oriented manifold of dimension m. We assume
it to be oriented. If we remove the origin p from D, then we have a diffeomorphism

Dm \ {0} � (0,1) × Sm−1

which is given by

(x1, · · · ,xm) −→
(√

x21 + · · · + x2m,

(
x1√

x21 + · · · + x2m
, · · · , xm√

x21 + · · · + x2m

))
= (r,ϕ).

On the oriented sphere Sm−1 we have a unique differential form ω in degree m− 1 which
is invariant under the orthogonal group SO(m), and which satisfies∫

Sm−1

ω = 1.

Now we choose a C∞-function h(r) which is identically equal to one if r is close to zero
and identically equal to zero if r is close to one. This provides the differential form

h(r)ω = ψ

on Dm \ {0}. If we take its exterior derivative

dψ =
∂h(r)

∂r
· dr ∧ ω = ω̃, (4.133)

then ω̃ is a form on Dm \ {0} which vanishes identically in a small open ball around zero
and near the boundary of Dm. Therefore we can extend it to a differential form on M
and clearly we have ∫

M

ω̃ = 1.

Thus we constructed a form which represents the canonical generator in Hm
c (M,�), it is

also the fundamental class of the submanifold {p}.
Proposition 4.10.6. We see that we can represent the fundamental class of our con-
nected oriented manifold M by a differential form which has its support in a shell around
an arbitrary point, here I mean by a shell the difference set between a larger small ball
and a smaller small ball around p.
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Let us assume that M is an oriented manifold and N ⊂ M is an oriented submanifold, let
n,m be their respective dimensions. We have a similar interpretation of the fundamental
class (see 4.8.8) of N by differential forms which have their support in a bundle of shells.
We construct a tubular neighborhood TM/N (ε) of N such that we have the projection

π : TM/N (ε) −→ N

and such that locally in N we have

π−1(V )
∼−→ V × Dm−n

↓
V.

On V ×Dm−n we construct a m−n-form ω̃V which is the pullback of a form ω̃ on Dm−n

which is constructed as above.
Now we choose a covering N =

⋃
i∈I Vi which is locally finite and which trivializes

π : TN(ε) −→ N , and we choose a partition of unity 1 =
∑

hi with Supp(hi) ⊂ Vi. On
each π−1(Vi) we construct ω̃i and we put

ω̃N =
∑

hiω̃i.

For any point in x ∈ TN(ε) we have

(dω̃N )x =
∑

(dhi)x ∧ ω̃i − d(Σhi)x ∧ ω̃i = 0,

and we see that ω̃N ∈ Ωm−n(M) is a closed form. It is clear that this form represents
the fundamental class

[N ] ∈ Hm−n(M,�).

If now N1,N2 are two oriented submanifolds in M , and if we assume that one of them is
compact, then we have the two classes

[N1] = [ω̃N1
],[N2] = [ω̃N2

]

where one of the forms has compact support. We just saw that

[N1] ∪ [N2] = ω̃N1
∧ ω̃N2

.

If now these two submanifolds are of complementary dimension, and if they intersect
transversally, then it is easy to see that∫

M

ω̃N1
∧ ω̃N2

=
∑

c∈N1∩N2

∫
D(c)

ω̃N1
∧ ω̃N2

where D(c) is a small ball containing the local support of ω̃N1
∧ ω̃N2

. It is easy to verify
that these contributions from the points are equal to m(c) (see (4.113) for the definition
of m(c)).
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4.10.2 Cohomology of Holomorphic Bundles on Complex Manifolds

Let M be a complex manifold (see 3.2) of complex dimension m. From our discussion in
section 4.3.2 it is rather clear what a holomorphic vector bundle E of rank n on M is. This
is of course a bundle π : E −→ M of �-vector spaces for which the transition functions
gij : Vi ∩Vj −→ GL(n,�) are holomorphic. It follows from our general principles in 4.3.3
that the holomorphic vector bundles are classified by H1(M,GLn(OM )) where GLn(OM )
is the sheaf of holomorphic functions from M to GLn(�).
To such a holomorphic vector bundle E we have the sheaf of germs of holomorphic
sections, which will be denoted by the same letter. This sheaf will be a locally free OM -
module and in turn a locally free OM -module gives a holomorphic vector bundle. Of
course we can forget the complex structure, we also have the sheaf OM∞ of C∞ sections
on M . If we speak about the C∞-manifold (M,OM∞) we also denote it by M∞.
Now we can define the sheaf E∞ of C∞-sections in the bundle, we have the inclusion of
sheaves E ↪→ E∞.
The following discussion will show that considering the pair (E ,E∞) is completely analo-
gous to the concept of local systems (V ,V∞) (see Remark 3).

The Tangent Bundle

We pick a point p ∈ M and an open neighborhood Up of p such that

(Up,OM|Up
) � (Dp,ODp

),

where Dp is an open ball in �m whose center is p = (0, . . . ,0). The tangent bundle TM
is of course a holomorphic bundle which over Up can be trivialized by the derivations
∂
∂z1

, . . . , ∂
∂zm

. We write the complex coordinates by their real and imaginary parts

(z1, . . . ,zm) = (x1 + iy1, . . . ,xm + iym).

Then the tangent bundle TM∞ of the C∞-manifold M∞ has a basis – locally at p – which
is given by

∂

∂x1
,
∂

∂y1
, . . . ,

∂

∂xm
,

∂

∂ym
.

These sections are only sections in TM∞ . This bundle of 2m-dimensional real vector spaces
has the structure of a bundle of m-dimensional complex vector spaces where locally the
multiplication by i is given by

I :

⎧⎪⎨⎪⎩
∂

∂x1
�−→ ∂

∂y1
; ∂

∂y1
�−→ − ∂

∂x1
...

...
∂

∂xm
�−→ ∂

∂ym
; ∂

∂ym
�−→ − ∂

∂xm
.

We have a privileged orientation on the underlying C∞-manifold which is determined by
requiring that dx1 ∧ dy1 ∧ . . . dxm ∧ dym is positive.
We can take the tensor product

TM∞ ⊗� � = TM,� (4.134)
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and get a bundle of 2m-dimensional complex vector spaces. On this bundle of complex
2m-dimensional vector spaces we still have the linear transformation I above and TM,�

decomposes into two eigenspaces which are the eigenspaces with eigenvalues i and −i for
I:

TM∞,� = T 1,0
M,� ⊕ T 0,1

M,�, (4.135)

where T 1,0
M,� is the eigenspace for the eigenvalue i for I and T 0,1

M,� is the eigenspace for

the eigenvalue −i for I. It is easy to see that locally on M the bundle T 1,0
M,� has the basis

(fibre by fibre)

∂

∂z1
= 1 ⊗ ∂

∂x1
− i⊗ ∂

∂y1
...

∂

∂zm
= 1 ⊗ ∂

∂xm
− i⊗ ∂

∂ym
.

This provides a structure of a holomorphic vector bundle on T 1,0
M,�, the local trivialization

is given by the above basis. We say that I induces a complex structure. The composi-
tion map TM −→ TM ⊗� −→ T 1,0

M,� induces an isomorphism of complex vector bundles.

The composition TM −→ TM ⊗� −→ T 0,1
M,� is an antilinear isomorphism.

Here we apply some very simple principles of linear algebra which can be confusing and
their application requires some care.
If we have a �-vector space V , we may define the complex conjugate space V . Its under-
lying abelian group is V but the scalar multiplication

� × V −→ V

is given by

(z,v) �−→ z · v,

where the dot on the right hand side denotes the scalar multiplication of v ∈ V by z ∈ �.
Hence we see that the identity map Id : V −→ V is antilinear.
If we consider our complex vector space V over � as a real vector space together with a
linear transformation I with I2 = −Id, then we can extend I to a linear transformation
on V ⊗� � and decomposes into the eigenspace V 1,0

�
and V 0,1

�
of I with eigenvalues ±i.

The vector spaces V,V considered as real vector spaces are isomorphic by the identity
map. In the following diagram the compositions of the horizontal maps

V V ⊗� � V 1,0
�

V V ⊗� � V 0,1
�

...............................................

......

......
......
Id

........................................................................................ ......
...... ................................................................................... ......

......
pr1,0

........................................................................................ .....
....... ................................................................................... .....

.......
pr0,1

are isomorphisms of �-vector spaces.
The thing that may cause confusion is the following fact: On V ⊗�� we have the complex
conjugation on the coefficients which may also be denoted by v −→ v. vfill
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Then we get obviously

V 1,0
�

= V 0,1
�

, (4.136)

but now putting a bar on V 1,0
�

has a different meaning, we get a different underlying set
in contrast to our convention above.
On the other hand we can say that we constructed canonical isomorphisms

V
∼−→ V 1,0

�

V
∼−→ V 0,1

�

which allow us to identify V to V 1,0
�

and V to V 0,1
�

. If we insert the map given by complex
conjugation on the right end of our diagram above, then we get a commutative diagram
and the inconsistency in notation dissolves.
Here I want to introduce a simplification in the notation. Instead of V 0,1

�
,V 1,0
�

I will
write V 0,1,V 1,0. The double superscript indicates already that these spaces lie in the
complexification of a tensor product of a complex vector space over � with �, so the
subscript � is redundant.

The Bundle Ωp,q
M

We can form the dual bundle Ω1
M of TM . Attached to this bundle we have the sheaf of

C∞-sections in this bundle which is denoted by Ω1
M∞

. We have a decomposition

Ω1
M∞,� = Ω1

M∞ ⊗� � ∼−→ Ω1,0
M ⊕ Ω0,1

M . (4.137)

The sheaf Ω1
M is locally generated by dz1, . . . ,dzm, we have

< dzν ,
∂

∂xμ
− i⊗ ∂

∂yμ
> = 2δνμ (4.138)

< dzν ,
∂

∂xμ
+ i⊗ ∂

∂yμ
> = 0.

We can define the fibres of Ω1
M∞,� at a point p simply as

Ω1
M∞,�,p = Hom�(TM,p,�) (4.139)

and then Ω1,0
M,p = {ω|ω(Itp) = iω(tp)} for all tangent vectors tp ∈ TM,p, in other words

Ω1,0
M,p = Hom�(TM,p,�). (4.140)

Analogously we have that Ω0,1
M,p are the antilinear 1-forms. If we have a local section

ω ∈ Ω1,0
M (U), then the complex conjugate ω is given by

ω(tp) = ω(tp), (4.141)

where tp ∈ TM,p is a tangent vector at the point p ∈ U.
Again we can form the complex of differential forms
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. . . −→ Ωk−1
M∞,� −→ Ωk

M∞,� −→ Ωk+1
M∞,� −→ . . . .

The sheaf (vector bundle) of k-forms decomposes:

Ωk
M∞,� =

⊕
p+q=k

Ωp,q
M , (4.142)

where Ωp,q
M =

∧p
Ω1,0
M∞,� ⊗

∧q
Ω0,1
M∞,�. (4.143)

Locally a (p,q) form can be written as

ω =
∑
α,β

fα,βdzα1 ∧ . . . ∧ dzαp
∧ dzβ1 ∧ . . . ∧ dzβq

, (4.144)

where the fα,β are complex valued C∞-functions on U (the open set where we have these
local coordinates). We get a decomposition of the exterior differential operator

d : Ωk
M,� −→ Ωk+1

M,�

as d = 1
2 (d
′ + d′′), where

d′ω =
∑
γ

∂fα,β
∂zγ

dzγ ∧ dzα1 . . . ∧ dzαp
∧ dzβ1 ∧ . . . ∧ dzβ0 (4.145)

and d′′ω = (−1)p
∑
δ

∂fα,β
∂zδ

dzα1 ∧ . . . ∧ dzαp
∧ dzδ ∧ dzβ1 ∧ . . . ∧ dzβq

The factor 1
2 is explained by the fact that ∂

∂zν
, ∂
∂,zμ

and dzν ,dzμ are not exactly dual

bases of each other. We have

d′ :Ωp,q
M −→ Ωp+1,q

M

d′′ : Ωp,q
M −→ Ωp,q+1

M .

Now we come back to our holomorphic vector bundle E . We can embed the sheaf E of
holomorphic sections into the sheaf of C∞-sections, we write

0 −→ E −→ E∞ = Ω0,0
M (E).

As in the case of local systems we can characterize the subsheaf of holomorphic sections
by a differential equation. We define the operator

d′′ : E∞ −→ Ω0,1
M (E∞) = E∞ ⊗ Ω0,1

M .

To do this we write a local section on U in E∞ in the form

s =
∑
i

fisi,

where the fi are C∞-functions and the si form a basis of the holomorphic sections. Then
we put
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d′′s =
∑
i,ν

∂fi
∂zν

si ⊗ dzν . (4.146)

This is well-defined because (just as in the case of local systems where the corresponding
si were constant) we put d′′si = 0. This is consistent with the change of trivializations
because holomorphic functions f are characterized by ∂f

∂zv
= 0. As in the case of local

systems we get a complex of sheaves

0 −→ E −→ E∞ ⊗ Ω0,0
M −→ E∞ ⊗ Ω0,1

M −→ . . . −→ E∞ ⊗ Ω0,m
M −→ 0. (4.147)

We need an analogon of the Lemma of Poincaré, this is the

Lemma 4.10.7 (Dolbeault). The complex (4.147) of sheaves is exact.

For a proof I refer to [Gr-Ha], Chap. 0, section 2.
Combined with our previous observation, namely that the sheaves Ωp,q

M (E) are acyclic,
this gives us an acyclic resolution of the sheaf E . From our general principles we get

Theorem 4.10.8 (Dolbeault Isomorphism). We have an isomorphism

H i(M,E) � H i(Ω0•
M (E)(M)), (4.148)

which is called Dolbeault isomorphism.

Again we get the consequence

Theorem 4.10.9 (Dolbeault). The cohomology groups Hk(M,E) of a holomorphic vector
bundle on a compact connected complex manifold M vanish for k > dim(M).

Since M is a complex manifold we mean of course by dim(M) its complex dimension,
this is half the dimension of the underlying C∞-manifold.

4.10.3 Chern Classes

Definition 4.10.10. A holomorphic line bundle L on a compact complex manifold M
is a holomorphic vector bundle of rank 1. The isomorphism classes of these line bundles
form a group under the tensor product and this group is the first cohomology H1(M,O∗M )
(see section 4.3.3).

We have a homomorphism from the sheaf of holomorphic functions OM to O∗M which is
given by the exponential function

OM (U) −→ O∗M (U)

f �−→ e2πif ,

and this is a surjective homomorphism of sheaves. The kernel is the sheaf of locally
constant �-valued functions , thus we get an exact sequence of sheaves

0 −→ � −→ OM −→ O∗M −→ 1.

This leads to the exact sequence in cohomology

. . . −→ H1(M,OM ) −→ H1(M,O∗M )
δ−→ H2(M,�) −→ . . . . (4.149)
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Definition 4.10.11. The group H1(M,O∗M ) is called the Picard group of M , the
kernel of the connecting homomorphism is denoted by Pic0(M).

Definition 4.10.12. If we have a line bundle L, and its isomorphism class corresponds
to [L] ∈ H1(M,O∗M ), then the image under δ is called the (first) Chern class c1(L) of
L, i.e.

δ([L]) = c1(L) ∈ H2(M,�).

We want to give a geometric interpretation of this class. We assume that our holomorphic
bundle has a non zero section s ∈ H1(M,L) which has an additional property, namely it
defines a smooth divisor. By this I mean the following: for any open set U ⊂ M over
which our bundle becomes trivial we select a nowhere vanishing section 1U ∈ H0(U,L).
Our section s can be written as

s = fU · 1U
where fU is a holomorphic function. Now we require that the differential dfU is non zero
in all the points where fU – and therefore s – is zero. The implicit function theorem
implies that the set of zeroes of s is a complex submanifold Y ⊂ M which is of complex
codimension one. This is our smooth divisor.
Since we are in the complex case, we know that M and Y have natural orientations,
and this also defines a relative orientation (see 4.8.8). In this situation we attached a
fundamental class [Y ] ∈ H2(M,�) to Y .

Proposition 4.10.13. Under these conditions we have the equality

[Y ] = c1(L).

Proof: Let p ∈ Y be any point and a neighborhood Up of the point p ∈ M such that we
have an isomorphism

(Up,OUp
) � (B,OB),

where B ⊂ �m is an open polydisc, say

B = {(z1, · · · ,zm) | |zi| < 1}.
Then it follows easily from the theorem on implicit functions that we can assume that
Y ∩Up = {(0,z2, . . . ,zm)} and that the bundle L|Up is generated by z1. We find a covering
of a tubular neighnorhood

Y ⊂
⋃
α∈A

Uα = TY

where the Uα are of the above form Uα = Vα × Dα,Vα ⊂ Y , the coordinate zα on the
disk generates the bundle on Uα.
We shrink this neighborhood TY slightly to a neighborhood TεY by making the discs a
little bit smaller. We can achieve that the closure of the smaller neighborhood is contained
in the larger neighborhood. We get a covering of M if we include U0 = M \ TεY into our
covering family. By assumption we can trivialize the bundle on each of these open sets
Uα. On U0 we trivialize the bundle by using the section s. From this we get our 1-cocycle
gαβ ∈ O∗M (Uα ∩ Uβ). We introduce an auxiliary Riemannian metric and we construct a
refined covering by convex sets (see section 4.8.2): For any p ∈ Y we choose a convex
neighborhood whose closure is contained in a Uα. For any point m �∈ Y we choose a
convex neighborhood whose closure does not meet Y . Let the indexing set of this second
covering be Γ. With a slight change of notation we write
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M =
⋃
α∈A

Uα ∪
⋃
γ∈Γ

Uγ.

The bundle is trivialized on the covering sets, the trivialization is simply the restriction.
We get a 1-cocycle by restriction.
Since the covering sets are convex we can find hαβ = 1

2πi log gαβ on Uα ∩ Uβ, and we
choose hγγ′ = 0 if γ,γ′ ∈ Γ. Then we get the �-valued 2-cocycle

cαβδ = hαβ − hβδ + hαδ on Uα ∩ Uβ, ∩ Uδ (4.150)

and this 2-cocycle represents our class c1(L). But we notice that cαβδ = 0 if all three
open sets lie in the complement of Y . This means that cαβδ �= 0 implies that at least one
of the indices lies in A. Consequently

Uα ∩ Uβ ∩ Uδ ⊂ TY if cαβδ �= 0.

Now we consider the sheaf i!(�) on M where i : TY −→ M is the inclusion. We just
saw that our 2-cocycle takes its values in i!(�), and we conclude that c1(L) is the image
of the class cY1 (L) ∈ H2(M,i!�), which is the class represented by our cocycle. But we
know that

H2(M,i!�) = H0(Y,R2π∗(i!�))

(see 4.8.8). Since we have a relative orientation we have R2π∗(i!(�)) = � on Y and by
definition

[Y ] = 1Y = constant �-valued function 1.

We want to show that cY1 (L) = [Y ]. This can be checked locally in the points p on Y .
This means that for any point p ∈ Y we consider the neighborhood Uα = Vα×Dα which
contains this point. We have to show that the restriction to the disk at p,

cY1 (L) ∈ H0({p},R2i!(�)),

is the canonical generator.
We cover the disc Dα = {z | |z| < 1} by open sets. The first one is V0 = {z | |z| < r}
where r < 1 but close to one. We set

V1 = {z1 | Re (z1) > ε,z1 ∈ D}

where ε > 0 is small and

V2 = e
2πi
3 V1 , V3 = e

4πi
3 V1.

This yields a covering of Dα. We compute the 1-cocycle by the recipe given in our
discussion above. On the Vi with i = 1,2,3 the constant function 1 trivializes the bundle.
On V0 it is the function z. We get

gij = 1q if 1 ≤ i,j ≤ 3

and g0i = z for i = 1,2,3.

We have to write these gαβ as e2πihαβ with some function hαβ on Vαβ . Of course we take
hij = 0 for 1 ≤ i,j ≤ 3. To define the h0j we take a path γ from 1 to a point z ∈ V0 ∩ Vj
which goes counterclockwise around zero, and
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h0j =
1

2πi

∫
γ

dζ

ζ
.

We have to compute the differences

c0ij = h0i − h0j + hij

and get c012 = c123 = 0

but c013 = 1.

Now it is clear that this 2-cocycle with values in i!(�) yields the positive generator in

H2 (Dα,i!(�)) = H0
({p},R2π∗i!(�)

)
,

and this proves the proposition.

Let us assume that dimM = d and let us assume that L1, . . . ,Ld are line bundles. We
assume that each of these line bundle has a section si ∈ H0(M,L) which defines a smooth
divisor Yi = [si = 0] and let us assume that these smooth divisors intersect transversally
(see section 4.8.9). This has the consequence that the intersections Y1 ∩ Y2 . . .∩ Yk = Zk

are smooth complex submanifolds. Let us consider a point p in the intersection of all the
Yi and local trivializations ti ∈ H0(Up,Li) of the line bundles at p. Then locally at p
we have si = fiti, where fi is holomorphic at p and fi(p) = 0. Then our transversality
assumption implies that f1,f2, . . . ,fd is a system of local coordinates at p. The point
is isolated in the intersection. We can invoke our formula (4.113). This leads us to the
following proposition.

Proposition 4.10.14. Under the assumptions from above the Chern class is a class in
H2m(M,�) and hence a number. This number is the cardinality of the intersection

c1(L1) ∪ c1(L2) ∪ . . . ∪ c1(Ld) = |Y1 ∩ Y2 ∩ . . . ∩ Yd|.
Of course we may always form the above cup product of d Chern classes of line bundles
and we call the result the intersection number of the line bundles. We may even take one
line bundle L and call c1(L)d the d-fold or total selfintersection number of the line
bundle. We will indicate later (see section 5.3.1) that on projective smooth varieties this
cup product can always be interpreted as an intersection number of smooth divisors.

The Line Bundles O�n(�)(k)

I want to outline the construction of a familiy of line bundles O�n(�)(k) on �n(�).
I begin with the construction of O�n(�)(1). We consider the coordinate functions zi :
�n+1 −→ � as linear forms on �n+1. Starting from these linear forms we construct the
bundle O�n(�)(1). This bundle becomes trivial when we restrict it to one of the open
subsets Ui and over this subset zi is a trivializing section, i.e. it is nowhere zero. For
any pair i,j of indices we have the two trivializing sections zi,zj on Ui ∩ Uj. They are
related by the equation zi = (zi/zj)zj and zi/zj = gij is a holomorphic nowhere vanishing
function on Ui ∩ Uj . These quotients define the transition functions (see section 4.3.1)
defining the bundle O�n(�)(1). It is clear that zi defines in fact a global section in
H0(�n(�),O�n(�)(1)) and this section defines a smooth divisor [zi = 0] and this is the
hyperplane at infinity for those people who live in Ui. Hence we see that the Chern class
of the bundle O�n(�)(1) is the fundamental class of an arbitrary hyperplane in �n(�).
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In view of our considerations in section 4.8.11 this means that the Chern class c1(O�n(�)(1))
is a generator in H2(�n(�),�).
Hence we have

Lemma 4.10.15. The other bundles are simply the tensor products

O�n(�)(1)(n) = O�n(�)(1)
⊗n

and their Chern classes are given by n times the generator.

4.11 Hodge Theory

4.11.1 Hodge Theory on Real Manifolds

In this section I describe some very powerful analytical tools which provide insight into
the structure of cohomology groups. They are based on the construction of certain linear
elliptic differential operators (Laplace operators) which arise if we try to write down
an inverse for the operators d,d′,d′′ in the de Rham or Dolbeault complexes. We need
some results on elliptic linear differential operators which we do not prove here. (See for
instance [Wel], Chap. IV.)
We go back to the situation where we have an oriented C∞-manifold M , and a local
system of finite dimensional �- or �-vector spaces V on M . Let m be the dimension of
M .
We have the de Rham complex

0 −→ V −→ V∞ −→ V∞ ⊗ Ω1
M −→ . . . −→ V∞ ⊗ Ωm

M −→ 0.

If we take global sections and if we drop the first term the resulting complex computes
the cohomology groups Hν(M,V).
We have seen that we can construct a Riemannian metric < , > on M and using the
same method we construct a Euclidean (or Hermitian) metric < , >h on V∞. The metric
on the tangent bundle provides a metric on the bundle of differential forms Ωp

M . This
allows us to define a scalar product on the sections f ∈ V∞⊗Ωp

M(M): It is clear that the
metric on V∞ and the Riemannian metric together give us a metric on the tensor product
of fibres Vx ⊗Ωp

Mx at any point x. Hence we get a function x �→< v1x ⊗ ω1x,v1x ⊗ ω2x >
on M for any two v1 ⊗ ω1,v2 ⊗ ω2 ∈ V∞ ⊗ Ωp

M (M). Since our manifold M is oriented
and Riemannian we have a unique section ωtop ∈ Ωm

M (M) which has length one at each
point and is positive with respect to the orientation. Hence we can integrate

< v ⊗ ω1,v2 ⊗ ω2 >=

∫
M

< v1x,v2x >h< ω1x,ω2x > ωtop. (4.151)

Here we have to assume that the integral converges. This is certainly so if M is compact.
Otherwise we have to introduce the notion of integrable sections.
There is another way to describe this scalar product.

Definition 4.11.1. We have the Hodge-∗-operator on the bundle of forms

∗ : Ωp
M −→ Ωm−p

M

which is defined pointwise by the requirement

ω1 ∧ ∗ω2 =< ω1,ω2 > ·ωtop.
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It is straightforward that
∗∗ = (−1)p(m−p).

The Euclidian metric h gives us an isomorphism ih : V∞ ∼−→ V∨∞ defined by the rule
ih(w)(v) = < v,w >h . This is not an isomorphism between the local systems V and V∨.
Using this isomorphism we define an operator

∗h : V∞ ⊗ Ωp(M) −→ V∨∞ ⊗ Ωm−p(M)

by the formula

∗h(v ⊗ ω) = ih(v) ⊗ ∗ω. (4.152)

We define an operator going in the opposite direction by

∗∨h(v∨ ⊗ ω) = i−1h (v∨) ⊗ ∗ω. (4.153)

Then we have as before

∗h∗∨h = (−1)p(m−p). (4.154)

Let us denote by eh : V∞ ⊗ V∞ −→ C∞M (resp. e0 : V ⊗ V∨ −→ �) the evaluation maps
defined by h (resp. the canonical pairing). They define eh : V∞⊗Ωp∧V∞⊗Ωm−p −→ Ωm

(resp. e0 : V∞ ⊗ Ωp ∧ V∨∞ ⊗ Ωm−p −→ Ωm).
Hence we get for our scalar product for two sections v1 ⊗ω1,v2 ⊗ω2 ∈ V∞⊗Ωp

M (M) the
formula

< v1 ⊗ ω1,v2 ⊗ ω2 > =

∫
M

eh(v1 ⊗ v2)ω1 ∧ ∗ω2

=

∫
M

e0((v1 ⊗ ω1) ∧ ∗h(v2 ⊗ ω2)).

Now it becomes clear that we can define an adjoint operator to the exterior derivative

δ : V∞ ⊗ Ωp
M (M) −→ V∞ ⊗ Ωp−1

M (M)

we simply put

δ = (−1)m(p+1)+1 ∗∨h d ∗h . (4.155)

We have to verify that for v1 ⊗ ω1 ∈ V∞ ⊗ Ωp−1
M (M),v2 ⊗ ω2 ∈ V∞ ⊗ Ωp

M (M) we have

< d(v1 ⊗ ω1),v2 ⊗ ω2 > =< v1 ⊗ ω1,δ(v2 ⊗ ω2) > .

To see this we perform a simple calculation

< d(v1 ⊗ ω1),v2 ⊗ ω2 >

=

∫
M

eh(d(v1 ⊗ ω1) ∧ v2 ⊗ ∗ω2)

=

∫
M

e0(d(v1 ⊗ ω1) ∧ ∗hv2 ⊗ ω2)

=

∫
M

e0(d(v1 ⊗ ω1 ∧ ∗hv2 ⊗ ω2)) − (−1)p−1v1 ⊗ ω1 ∧ d(∗hv2 ⊗ ω2)).
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From this moment on we assume that M is compact. Since the pairing e0 is constant we
get ∫

M

e0(d(ω1 ⊗ v1 ∧ ∗h(v2 ⊗ ω2))) =

∫
M

de0((ω1 ⊗ v1 ∧ ∗h(v2 ⊗ ω2))) = 0

and hence

< dv1 ⊗ ω1,v2 ⊗ ω2 > = (−1)p
∫
M

ω1 ⊗ v1 ∧ d ∗h v2 ⊗ ω2

= (−1)p+(m−p+1)(p−1)
∫
M

< v1 ⊗ ω1 ∧ ∗h ∗∨h d(∗hv2 ⊗ ω2)

=< ω1 ⊗ v1,δv2 ⊗ ω2 > .

Definition 4.11.2. We define the Laplace operator

Δ = dδ + δd

which sends p-forms to p-forms.

It is clear that this is a linear operator of second order and it is elliptic (see [Wel], Chap.
IV). I do not give the definition of elliptic operators here because for the conclusions we
draw from ellipticity we refer to books which also give the definition.
From the theory of elliptic operators we get a result, which we formulate a little bit
informally (see also 4.11.3).

Theorem 4.11.3. We have a ”decomposition” into eigenspaces

V∞ ⊗ Ωp
M (M) =

∑
λ

V∞ ⊗ Ωp
M (M)(λ),

where
V∞ ⊗ Ωp

M (M)(λ) = {ω ∈ V∞ ⊗ Ωp
M (M) | Δω = λω}.

All the eigenspaces have a finite dimension and the eigenvalues tend to infinity, i.e. for
any finite interval [0,T ] we have only finitely many eigenvalues λ. The sign

∑
λ means

that any ω can be written as

ω =
∑
λ

ωλ

where the convergence is uniform on M and stays uniform if we apply a finite number
of derivatives.

Definition 4.11.4. The set of eigenvalues is called the spectrum of the operator, the
eigenvalues are positive as one sees from the equality

< ω,Δω >=< dω,dω > + < δω,δω > .

The forms which are annihilated by Δ, i.e. which satisfy Δω = 0, are called harmonic
forms.

Once we believe this we can compute the cohomology very easily.

Proposition 4.11.5. The operators d and δ respect the decomposition into eigenspaces,
they send eigenspaces into eigenspaces with the same eigenvalue.
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Let ω ∈ V∞ ⊗ Ωp
M (M) be a closed form. Write ω in the form ω = ω0 + ω′, where ω0 is

the harmonic component, i.e. the component of ω in the eigenspace to λ = 0. Then

dω = dω0 + dω′ = 0

and hence dω0 = 0 and dω′ = 0. But

ω′ =
∑
λ�=0

ω′λ,

where dω′λ = 0 for all λ. Hence we get for λ �= 0

ω′λ =
1

λ
Δω′λ =

1

λ
(dδ + δd)ω′λ = d

1

λ
δω′λ

and therefore

ω′ = d(
∑
λ�=0

1

λ
δω′λ).

This means that ω0 represents the same cohomology class as ω. Hence we have that

Theorem 4.11.6. The harmonic forms satisfy dω = δω = 0. Sending a harmonic form
to its cohomology class provides an isomorphism

�
p(V∞ ⊗ Ωp

M)(M) = {ω ∈ V∞ ⊗ Ωp
M (M)|Δω = 0} ∼−→ Hp(M,V).

It is clear how this follows from Theorem 4.11.3. We observe that Δ is a positive operator.
We have

< Δω,ω > =< dω,dω > + < δω,δω > ≥ 0.

If Δω = 0 then we conclude

0 =< δω,δω >=< dω,dω >

this implies the first assertion. Since harmonic forms are closed they define cohomology
classes. If ω is harmonic and ω = dΨ then < ω,ω >=< ω,dΨ >=< δω,Ψ >= 0 and hence
ω = 0. The map from harmonic forms to cohomology is injective. The surjectivity has
been shown above. For a complete proof see [Wel] Chap IV, Thm. 5.2.
We can give some indications how Theorem 4.11.6. can be proved without using Theo-
rem 4.11.3. Since we introduced the scalar product on V∞ ⊗ Ωp

M (M) we may take the
completion with respect to this scalar product, and we get the Hilbert space

L2(V∞ ⊗ Ωp
M (M)) = V∞ ⊗ Ω(2)(M)

of quadratically integrable differential forms with values on V∞.

If we have a closed form ω ∈ V∞ ⊗ Ωp
M (M), then we can modify it by a form dψ and we

can try to minimize the square of the L2-norm
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‖ω + dψ‖22 =

∫
M

〈ω + dψ,ω + dψ〉.

We look at the limes inferior of all the real numbers ‖ω+dψ‖22 where ψ varies. We can find
a sequence ω + dψn = ωn such that ‖ωn‖22 converges to this infimum. Since the unit ball
in our Hilbert space is weakly compact, we can find a weakly convergent subsequence, i.e.
we may assume that ωn converges weakly to a form ω0 ∈ L2(V∞ ⊗ Ωp

M(M)).We would
like to prove that ω0 is a C∞-form, that it is harmonic and that this form represents the
given class, i.e. ω0 = ω + dψ0.
Assume that we know that ω0 is a harmonic form. This means that it is C∞ and satisfies
dω0 = δω0 = 0. Then this implies

〈dω0,η〉 = 〈ω0,δη〉 = 0

〈δω0,ψ〉 = 〈ω0,dψ〉 = 0

for all ψ ∈ V∞ ⊗ Ωp−1
M (M),η ∈ C∞(V) ⊗ Ωp+1

M (M). The point is that the equalities

< ω0,δη > = 0 and < ω0,dψ >= 0

make sense for all ω0 ∈ L2(V∞ ⊗ Ωp
M (M)). And in our case they are true because

〈ω0,δη〉 = lim
n−→∞〈ω + dψn,δη〉 = 〈dω + ddψn,η〉 = 0

(this is the definition of weak convergence) and the second one follows from the minimality
of the norm ‖ω0‖22.
This means that ω0 is a so called weak solution of the differential equations dω = δω =
0. The really deep input from analysis is that the validity of the two equations

〈ω0,δη〉 = 〈ω0,dψ〉 = 0

for all η,ψ implies that ω0 must be indeed C∞ and then it follows that ω0 must be
harmonic ([Wel]).
The rest is easy. We need to know that ω0 still represents the given cohomology class.
This follows from Poincaré duality. We consider the dual local system V∨. We have the
non degenerate pairing

Hp(M,V) × Hm−p(M,V∨) −→ �

which in terms of differential forms is given by integration over M . Hence we see that for
any cohomology class [ω′] ∈ Hm−p(M,V∨) which is represented by a C∞ − (m− p)-form
ω′ that

[ω] ∪ [ω′] =

∫
M

tr(ω ∧ ω′) =

∫
tr((ω + dψn) ∧ ω′),

and weak convergence gives that this integral is equal to∫
tr(ω0 ∧ ω′) = [ω0] ∪ [ω′]. (4.156)

Theorem 4.11.6 has some consequences, for instance the finite dimensionality of the space
of harmonic forms implies
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Corollary 4.11.7. For a compact oriented C∞-manifold the cohomology Hp(M,V) has
finite dimension for any local system of finite dimensional �- or �-vector spaces.

Of course it follows already from the de Rham isomorphism that

Corollary 4.11.8. For a compact manifold M and a local system V of real (or complex)
vector spaces Hp(M,V) = 0 for p > dim(M).

Then it is clear from the construction that

Corollary 4.11.9. The operator ∗h induces an isomorphism

jph : �p(M,V)
∼−→ �

m−p(M,V∨)

which depends of course on the choice of the metrics. We have the duality pairing

Hp(M,V) × Hm−p(M,V∨) ∪−→ �.

If we identify the cohomology groups to the spaces of harmonic forms, then we find that
for a non zero ω ∈ Hp(M,V) we get ω ∪ jph(ω) > 0 and this implies of course again, that
the Poincaré pairing is non-degenerate.

All these consequences were known to us, they even hold for more general local systems.
But in the next section where we discuss the analogous situation of holomorphic bundles
on complex manifolds the proofs really require some analysis. For instance the proofs for
the finite dimensionality of certain cohomology groups need analytic methods. It can be
obtained from the theory of elliptic operators or one uses methods from the theory of
topological vector spaces.
Finally I want to mention that the results of Hodge Theory allow an interpretation in
language of derived categories.

Corollary 4.11.10. The de Rham complex computes the cohomology, it is a complex of
infinite dimensional vector spaces. The harmonic forms provide a subcomplex where all
the differentials are zero and this subcomplex also computes the cohomology. Hence we
see that the de Rham complex is isomorphic to its cohomology in the derived category of
�-vector spaces.

4.11.2 Hodge Theory on Complex Manifolds

Now we consider a compact complex manifold M . We introduce a Hermitian metric h
on the tangent bundle TM .

Some Linear Algebra

I have to recall some simple facts from linear algebra which concern these metrics. There-
fore I start from a complex vector space V of finite dimension m. In the following I view
V as a real vector space of dimension 2m which is endowed with a linear transformation
I : V −→ V which satisfies I2 = − Id. The structure as a �-vector space is regained if
we define scalar multiplication of v ∈ V by i by v �→ I(v).
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If we have a Hermitian form h on V then we can write

h(v1,v2) = Reh(v1,v2) + i · Imh(v1,v2)

and it is clear that

Reh : V × V −→ � is symmetric

Imh : V × V −→ � is alternating.

Since

h(Iv1,Iv2) = h(iv1,iv2) = h(v1,v2)

we see that both components satisfy

Reh(Iv1,Iv2) = Reh(v1,v2)

Imh(Iv1,Iv2) = Imh(v1,v2),

in other words: I is an isometry for the real part and for the imaginary part. But we may
also recover h from either part. We simply write

h(v1,Iv2) = Reh(v1,Iv2) + iImh(v1,Iv2)

and since

h(v1,Iv2) = −ih(v1,v2)

this yields

h(v1,v2) = −Imh(v1,Iv2) + iReh(v1,Iv2)

and from this we get

Reh(v1,v2) = −Imh(v1,Iv2)

Imh(v1,v2) = Reh(v1,Iv2).

Hence we see that a sesquilinear form h on V (this is a Hermitian form without the
requirement that it should be positive definite) is the same thing as a symmetric form or
an alternating form

Reh : V × V −→ � Imh : V × V −→ �

for which I is an isometry.

Proposition 4.11.11. The form h is Hermitian (positive definite) if and only if Reh is
Euclidean.
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We complexify V and extend Reh to a bilinear form

Reh� : V� × V� −→ �.

We have the decomposition

V� = V 1,0 ⊕ V 0,1

into ±i-eigenspaces for I and it is clear that V 1,0,V 0,1 are isotropic with respect to Reh�,
i.e.

Reh�(V 1,0,V 1,0) = Reh�(V 0,1,V 0,1) = {0}.

This follows from the definition of the V 1,0,V 0,1 as eigenspaces for I with eigenvalue ±i.
But the pairing

Reh� : V 1,0 × V 0,1 −→ �

will be not trivial in general. If for instance the form h is positive definite then this
pairing is a perfect duality.
We have an isomorphism of complex vector spaces

j : V −→ V 1,0

which is obtained by the embedding of V into V� followed by the projection. Under this
isomorphism we send

j : v �−→ 1

2
(v − Iv ⊗ i)

and we can recover the Hermitian form h from Reh� by the formula

h(v1,v2) =
1

2
Reh�(j(v1),j(v2))

where is of course the antilinear isomorphism from V 10 to V 01 introduced by complex
conjugation on the factor � in the tensor product V�.
We introduce a so-called Hodge structure on the pair (V,I). This is a homomorphism

hD : �× −→ GL�(V )

and it is defined as

hD(z) = hD(a + bi) = a · Id+b · I.

It is clear that this map is a homomorphism. With respect to the Euclidean metric on V
it has the property that

< hD(z)v1,hD(z)v2 > = zz· < v1,v2 > ,

it is not an isometry but a similitude.
If we complexify the space to V� then it is obvious that
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V 1,0 = {v|hD(z)v = zv}
V 0,1 = {v|hD(z)v = zv}.

The action of �× commutes with complex conjugation: We have hD(z)v = hD(z)v on
V�. We can extend this action of �× to the exterior powers

∧n
V and (

∧n
V )� simply

by

hD(z)(v1 ∧ . . . ∧ vn) = hD(z)v1 ∧ . . . ∧ hD(z)vn

and it is clear that we can characterize the subspace

V p,q =
∧p

V 1,0 ⊗
∧q

V 0,1 ⊂
∧p+q

V�

as ∧p
V 1,0 ⊗

∧q
V 0,1 =

{
ω ∈

∧p+q
V�|hD(z)ω = zpzqω

}
.

Of course if we extend Re h� to a bilinear form on
∧n

V� by

Reh�(ϕ,ψ) = Reh� (v1 ∧ . . . ∧ vn,w1 ∧ . . . ∧ wn)

= det (Reh�(vi,wj))

then we have

Reh�(hD(z)ϕ,hD(z)ψ) = (zz)nReh�(ϕ,ψ).

This implies for the ∗-operator that

∗ :
∧p

V 1,0 ⊗
∧q

V 0,1 ∼−→
∧m−p

V 1,0 ⊗
∧m−q

V 0,1.

This must be so because the product vp,q ∧ ∗wp,q is in top degree and

hD(z)vp,q ∧ ∗wp,q = (zz)mvp,q ∧ ∗wp,q

We can extend our Hermitian form h to a Hermitian form on
∧p

V 1,0 ⊗∧q
V 0,1 by

h(ϕ,ψ) = Reh�(ϕ,ψ).

Kähler Manifolds and their Cohomology

Now we come back to our compact complex manifold M of dimension m, we assume
that we have introduced a Hermitian metric < , >h on TM . This introduces a Hermitian
metric on Ω1

M . We have the decomposition

Ω1
M,� = Ω1

M∞ ⊗� = Ω1,0
M

⊕
Ω0,1
M

and ∧n
ΩM,� =

⊕
p+q=n

∧p
Ω1,0
M ⊗

∧q
Ω0,1
M

=
⊕

p+q=n

Ωp,q
M .
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We have the Euclidean metric Reh on Ω1
M,∞ and it induces a star operator

∗ :
∧n

Ω1
M∞ −→

∧2m−n
Ω1
M∞ .

We have seen in the above section on linear algebra that we should extend this antilin-
earily to

∗ :
∧n

Ω1
M,� −→

∧2m−n
Ω1
M,�

and that this operator sends

∗ : Ωp,q
M −→ Ωm−p,m−q

M .

We define the scalar product on the sections Ωp,q
M (M) by

< ω1,ω2 >=

∫
M

ω1 ∧ ∗ω2.

Now we are able to define the adjoint operators to d′ and d′′, we put

δ′ = − ∗ d′∗
δ′′ = − ∗ d′′ ∗ .

The sign factor simplifies because our manifold has an even dimension when we consider
it as a real manifold. Of course we have to verify the adjointness formulas

< d′ω1,ω2 > =< ω1,δ
′ω2 >

< d′′ω1,ω2 > =< ω1,δ
′′ω2 > .

To see this we observe that it is enough to check the case where ω1 ∈ Ωp−1,q(M),ω2 ∈
Ωr,s(M).1 Let us consider the first case. We see that both sides are zero unless p =
m−r,q = m−s. So we assume that this is the case. Now we perform the same calculation
as in the real case where at certain places we have to replace d′ by d and then again d
by d′. We observe that

< d′ω1,ω2 > =< dω1,ω2 >

=< ω1,δω2 >

=< ω1,δ
′ω2 > .

This allows us to define the Laplace operators

Δ′ = d′δ′ + δ′d′ and Δ′′ = d′′δ′′ + δ′′d′′.

We want to compare these operators to the real Laplacian. Here we find

Δ = (d′ + d′′)(δ′ + δ′′) + (δ′ + δ′′)(d′ + d′′)

= Δ′ + Δ′′ + δ′′d′ + d′δ′′ + δ′d′′ + d′′δ′.
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This is not so good unless we know that the mixed contributions disappear. This is indeed
the case if our metric h satisfies a certain condition, which I now want to explain.
Our metric h on the tangent bundle has its imaginary part

Imh : TM∞ × TM∞ −→ �.

Hence the imaginary part defines a 2-form ωh on the manifold. If we complexify the
tangent bundle and if we observe that I is an isometry for ωh, then we see that ωh is a
form of type (1,1) because it must be zero on T 1,0 ⊗ T 1,0 and T 0,1 ⊗ T 0,1. This is the
so-called Kähler form of the metric. Kähler discovered the following

Theorem 4.11.12. If the form ωh is closed, i.e. dωh = 0, then the sum of the mixed
terms is zero and we have

Δ =
1

2
Δ′ =

1

2
Δ′′.

I will not prove this theorem here. (See [We2], Chap. II, Thm. II) But in our later
discussion of the special case of Riemann surfaces – in this case we have automatically
dωh = 0 – I will carry out the necessary calculations in this special case.

Definition 4.11.13. A complex manifold is called Kähler manifold if it is equipped
with a Hermitian metric for which dωh = 0.

The Theorem 4.11.12 has the following important consequences:

Theorem 4.11.14. Let M be a compact Kähler manifold

(a) The operators Δ′,Δ′′ respect the decomposition, in any degre k we have

Ωk
M∞,�(M) =

⊕
p+q=k

Ωp,q
M (M),

and then Δ =
∑

p,q Δp,q where Δp,q : Ωp,q
M (M) −→ Ωp,q

M (M).

(b) The harmonic forms ω ∈ Ωk
M∞,�(M) are sums of harmonic forms

ω =
∑

p+q=k

ωp,q,

and

Δω = 0 ⇐⇒ Δ′ω = Δ′′ω = 0.

(c) A form ω is harmonic if and only if it satisfies all the equations

d′ω = d′′ω = 0

δ′ω = δ′′ω = 0

This follows by the same positivity argument which we used in the real case.
This provides us the famous Hodge decomposition.

Theorem 4.11.15 (Hodge decomposition). Let M a compact complex Kähler manifold,
then we have the decomposition

Hn(M,�) =
⊕

p+q=n

Hp,q(M,�).

of the cohomology.
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The Cohomology of Holomorphic Vector Bundles

We have methods to compute the cohomology of a holomorphic bundle E on compact
Kähler manifolds M which are analogous to the methods in section 4.11.1, where we
computed the cohomology of local systems. We choose a positive definite Hermitian
metrics on the tangent bundle and on the bundle E itself. If E∨ = Hom(E ,OM ) is the dual
bundle, then the Hermitian metric h on the bundle E provides an antilinear isomorphism
ih : E −→ E∨ which is defined by v �→ {w �→< w,v >h}. We consider the Dolbeault
complex

0 −→ E∞(M)
d′′−→ E∞ ⊗ Ω0,1

M (M)
d′′−→ E∞ ⊗ Ω0,2

M (M) −→ . . . .

As in section 4.11.1 we define the operators

∗h : E∞ ⊗ Ωp,q −→ E∨∞ ⊗ Ωm−p,m−q and

∗∨h : E∞ ⊗ Ωp,q −→ E∨∞ ⊗ Ωm−q,m−p

by

∗h(v ⊗ ω) = ih(v) ⊗ ∗ω and ∗∨h (v∨ ⊗ ω) = (ih)
−1(v∨) ⊗ ∗ω.

Again we introduce a scalar product on the sections E∞ ⊗ Ωp,q(M) by

< s1 ⊗ ω1,s2 ⊗ ω2 > =

∫
M

eh(s1,s2)ω1 ∧ ∗ω2

=

∫
M

e0(s1 ⊗ ω1 ∧ ∗h(s2 ⊗ ω2))

We can construct the adjoint operator

δ′′ : E∞ ⊗ Ω0,q
M (M) −→ E∞ ⊗ Ω0,q−1

M (M)

for d′′, it is given by

δ′′ = − ∗∨h d′′∗h

and we have the Laplacian

Δ′′ = δ′′d′′ + d′′δ′′.

We get in analogy with section 4.11.6.

Theorem 4.11.16. The cohomology groups are given by

Hp(M,E) = �p(E∞ ⊗ Ω0,p
M (M)) =

{
ω ∈ E∞ ⊗ Ω0,p

M (M) | Δ′′ω = 0
}
.

Especially we can conclude that these groups are finite dimensional.

The finite dimensionality is fundamental and there is no easy way to get it . We will give
proofs in the special case of tori in 4.11.3,( this is not so difficult) and we will prove it
for Riemann surfaces in the next chapter.
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Serre Duality

We apply this to the holomorphic line bundle Ωm of differentials of highest degree. Its
cohomology is computed from the complex

0 −→ Ωm(M) −→ Ωm,0(M) −→ Ωm,1(M) −→ . . . −→ Ωm,m−1(M) −→ Ωm,m(M) −→ 0.

We want to compute Hm(M,Ωm), this is the space of harmonic forms for Δ′′ in Ωm,m(M).
The star operator sends Ωm,m(M) to Ω0,0(M) and the Δ′′-harmonic forms to the Δ′-
harmonic forms. But the Δ′-harmonic sections in this sheaf are the antiholomorphic
functions on M . Since M is compact we can conclude that these are the constants. It
follows that

Theorem 4.11.17 (Serre). On a compact, connected complex manifold M of dimension
m we have dimHm(M,Ωm) = 1 and we have a canonical isomorphism

Hm(M,Ωm)
∼−→ �,

which is induced by

ω �−→
∫
M

ω.

This isomorphism does not depend on the choice of the metric. The cup product induces
a pairing

Hp(M,E)×Hm−p(M,E∨⊗Ωm) −→ Hm(M,E⊗E∨⊗Ωm) −→ Hm(M,Ωm)
∼−→ �. (4.157)

and this pairing is non degenerate.

This is §3 Thm.4. in [Se2] and is called Serre duality. We can also deduce this theorem
from 4.11.16 by the same argument which we used to show that Hodge Theory for local
systems implies Poincaré duality: We get the antilinear isomorphism jph : �p(M,E)

∼−→
�

m−p(M,E∨ ⊗ Ωm) induced by ∗h and then we exploit the positive definteness of the
scalar product.
In his paper [Se2] also J.P. Serre gives a proof of the finite dimensionality of the co-
homology groups Hp(M,E) which is not based on Hodge Theory but uses results on
topological vector spaces instead. This proof of Serre is more in the spirit of our dis-
cussion of the cohomology of manifolds in section 4.8. There we started from convex
coverings and used the fact that the Čech complex computes the cohomology. In this
approach it is central that constant sheaves on contractible spaces are acyclic. We have
to find a substitute for this in complex analysis, we indicate briefly how this works.
In the local theory of several complex variables one introduces certain simple types of
domains, for instance polycylinders P = {(z1, . . . ,zn) ∈ �n | |zi| < ri} or balls D =
{(z1, . . . ,zn) ∈ �n | ∑ |zi|2 < r}. These are so called domains of holomorphy or
Stein manifolds (see [Gr-Re1]). These domains play a similar role as our convex balls
in the convex covering of a manifold (see 4.8.2). They satisfy certain finiteness conditions
and they are acyclic for so-called coherent sheaves, i.e. for a coherent sheaf we have
Hp(D,F) = 0 for p > 0. These are the famous theorems A and B which go back to Oka

and Cartan. (See [Gr-Re1],Chap. A. §2, Chap. III. §3.)
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Now we can try to compute the cohomology Hp(M,E) by starting from suitable Čech
complexes obtained by coverings by open sets which are domains of holomorphy. Then
we encounter the problem that in contrast to the case of local systems the spaces of
sections H0(Uα,E) are of infinte dimension. They have to be endowed with topologies,
they become Frechet spaces. We pass to a refinement of the covering and then certain
linear operators will be compact, which then eventually leads to finite dimensionality.
For details I refer to the paper [Se2] by J.P. Serre.

4.11.3 Hodge Theory on Tori

We have a special case where the two main theorems of Hodge Theory (Theorem 4.11.6
and Theorem 4.11.14) are easy to prove. We consider a lattice Γ ⊂ �n (see 4.6.8), and
we consider the compact C∞-manifold

M = �n/Γ.

For any point u ∈ M we have a canonical identification TxM = �
n. In the following

we take u = 0. If we take the standard Euclidean metric < , > on �n then we get a
Riemannian metric on M . If x1, . . . ,xn are the coordinates on �n, then the differential
forms can be written as

ω =
∑

fi1···ip dxi1 ∧ · · · ∧ dxip .

I want to consider complex valued differential forms, i.e. the fi1···ip are complex valued
C∞-functions.
A basically simple and straightforward computation yields a formula for the Laplace
operator:

Δω =
∑(

−
∑ ∂2fi1···ip

∂x2i

)
dxi1 ∧ · · · ∧ dxip . (4.158)

Now we consider the dual lattice

Γ∨ = {ϕ ∈ �n | 〈ϕ,Γ〉 ⊂ �},

then for ϕ ∈ Γ∨ the function

eϕ(x) = e2πi〈ϕ,x〉 (4.159)

on M is an eigenfunction for the Laplacian

Δeϕ(x) = 4π2〈ϕ,ϕ〉eϕ(x).

Now any C∞-function on M has a Fourier expansion

f =
∑
ϕ∈Γ∨

aϕeϕ(x), (4.160)

where the absolute values |aϕ| tend to zero very rapidly. Consequently any differential
form can be written as convergent infinite sum
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ω =
∑
ϕ

ωϕ, (4.161)

where Δωϕ = +4π2〈ϕ,ϕ〉ωϕ. This is the decomposition in 4.11.3. It has the required
property: There are only finitely many ϕ which satisfy 4π2〈ϕ,ϕ〉 ≤ T . We apply our
arguments in the proof of Theorem 4.11.6. The harmonic forms are the constant forms

ω0 =
∑

ai1···ipdxi1 ∧ · · · ∧ dxip ,

where ai1···ip ∈ �. We conclude that the cohomology ring H•(M,�) is the exterior
algebra of the complexified dual tangent space Hom(T0M,�). This agrees with 4.6.8, but
the result over there is slightly sharper because it gives the structure over �.
If we consider a complex torus

M = �n/Γ

where Γ is a lattice of rank 2n, then M is a complex manifold and the tangent space is
the complex vector space �n in any point of M . On this tangent space we introduce the
standard Hermitian metric

n∑
ν=1

zνzν = h(z,z).

Again we perform a simple computation and find

Δ′ = Δ′′ :
∑
α,β

fαβdzα ∧ dzβ = ω �−→
∑
α,β

(
−
∑
ν

∂2fαβ

∂zν∂zν

)
dzα ∧ dzβ . (4.162)

We have the dual lattice

Γ∨ = {ϕ ∈ �n | Reh(ϕ,γ) ∈ � for all γ ∈ Γ},

and we can expand C∞-functions

f(z) =
∑

aϕ∈Γ∨e2πiReh〈ϕ,z〉. (4.163)

Now we argue as before. We have the Dolbeault complex

0 −→ OM −→ C∞(M)
d′′−→ Ω01

M (M) −→ · · · ,

and we have the adjoint δ′′. The operator Δ′′ = δ′′d′′ + d′′δ′′ has the form above, we can
decompose into eigenspaces. If we take global sections, we find that

H•(M,OM ) = �•(M,Ω0,•
M (M))

= {ω ∈ H0(M,Ω0,•
M (M)) | Δ′′ω = 0},

and again the harmonic forms are the constants.
We conclude that

H•(M,OM ) = Hom•,alt
�

(T0(M),�). (4.164)

This result will be used in the next chapter.
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5 Compact Riemann surfaces and Abelian

Varieties

5.1 Compact Riemann Surfaces

5.1.1 Introduction

Definition 5.1.1. A compact Riemann surface is a compact complex manifold of
dimension 1.

Let S be such a surface. It has a canonical orientation (see section 4.10.2). On pages 77
and 146 we have seen that the cohomology groups of such a surface are given by

H0(S,�) = �

H1(S,�) = �
2g

H2(S,�) = �

and in addition the Poincaré duality gives us an alternating perfect pairing

< , >cup: H
1(S,�) × H1(S,�) −→ �.

The number g is called genus of the surface. The genus g is also a measure for the
complexity of the Riemann surface. We will show that a Riemann surface S of genus
g = 0 is isomorphic to the so called Riemann sphere �1(�) (see section 3.2.2 Example
15 a) and section 5.1.6). In section 4.4.5 we showed that H1(�1(�),�) = 0 and therefore
�
1(�) has genus zero.

Of course it is clear that a holomorphic function on a compact Riemann surface S must
be constant. We will work very hard to show that on any compact Riemann surface we
can find a nonconstant meromorphic function (see section 4.1.1 and Corollary 5.1.13). We
will achieve this goal in Corollary 5.1.13, when we prove the theorem of Riemann-Roch.
Once we have a nonconstant meromorphic function f we can cover S by the two open
sets U0 (resp. U1) where f (resp. f−1 = 1/f) is holomorphic. We get holomorphic maps

f : U0 −→ �

w �−→ f(w)

and

f−1 : U1 −→ �

u −→ f−1(u)

and it is clear that these two maps provide a surjective map S → �1(�) which is also
denoted by f (see section 3.2). It will turn out that this map has finite fibres and the
number of points in the fibres (counted with the right multiplicities) is equal to the degree
of the polar divisor (see section 4.1.1,5.1.7). This kind of maps will become a decisive
tool for the understanding of Riemann surfaces (see section 5.1.7).

G. Harder, Lectures on Algebraic Geometry I, DOI 10.1007/978-3-8348-8330-8_5, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011
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5.1.2 The Hodge Structure on H1(S,�)

We study the cohomology with coefficients in �. I want to change the notation slightly.
On our Riemann surface Ω1

S will be the sheaf of holomorphic 1−forms. The sheaves of
C∞ differential forms will be denoted by Ω•S∞ . We consider the de Rham complex

0 −→ � −→ Ω0
S∞

−→ Ω1
S∞ −→ Ω2

S∞ −→ 0.

Then

Hi(S,�) = H i(Ω•S∞(S)).

We recall our results from section 4.10.2. We have a complex structure on the tangent
bundle TS this is a linear transformation I : TS −→ TS which satisfies I2 = −Id. We get
a decomposition

TS,� = T 1,0
S ⊕ T 0,1

S .

This provides a decomposition of the complex of differential forms, which only effects
1-forms:

0 −→ � −→ Ω0,0
S

d′+d′′−−−−→ Ω1,0
S ⊕ Ω0,1

S
d′+d′′−−−−→ Ω1,1

S −→ 0. (5.1)

The sheaf Ω1,0
S contains the sheaf Ω1

S of holomorphic 1-forms. (See the section on the
cohomology of holomorphic vector bundles in section 4.11.2 applied to E = Ωp

S .)
In local coordinates at a point p we have

df = d′f + d′′f =
∂f

∂z
dz +

∂f

∂z
dz, (5.2)

and for a 1-form

ω = fdz + gdz = ω′ + ω′′

we get

dω = d′′ω′ + d′ω′′ =
(∂f
∂z

− ∂g

∂z

)
dz ∧ dz. (5.3)

Especially we see that a (1,0)-form ω = fdz is holomorphic if and only if dω = 0 or
d′′ω = 0. We introduce a Hermitian form h on the tangent bundle TS (see section 4.11.2).
As I explained in general discussion such a Hermitian metric is the same as a Euclidian
metric Reh = h0 on the tangent bundle TS∞ which satisfies h0(x,y) = h0(Ix,Iy) for any
two tangent vectors x,y ∈ TS∞,p at a point p. This induces a metric on the dual bundle
T ∗S which we will denote by < , >.
If we pick a point p ∈ S and a local coordinate z at p then it identifies a neighborhood
Up to a disc around zero in �. The differential dz is a generator of the OS(Up) module
of holomorphic differentials Ω1(Up). In the neighborhood Up of p our Hermitian metric
is given by a strictly positive function (see in section 4.11.2)

u −→ Reh� < dz(u),dz(u) > (5.4)
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which we simply denote by < dz,dz >. Since we can view Up as an open disc in � we
have dz = dx + idy and

< dz,dz > =< dx,dx > + < dy,dy >= 2 < dx,dx > (5.5)

because the complex structure I which sends dx to dy is an isometry. The metric and the
orientation give us a distinguished form ωtop in degree 2 which is positive with respect
to he orientation and has length 1 with respect to the metric. It is given by

ωtop = i
dz ∧ dz

< dz,dz >
= i

(dx + idy) ∧ (dx − idy)

< dx,dx > + < dy,dy >
(5.6)

= i(−i)
dx ∧ dy

< dx,dx >
=

dx ∧ dy

< dx,dx >
.

Of course dωtop = 0 and hence we see that our Riemann surface is a Kähler manifold (see
Theorems 4.11.12 and 4.11.14). Now it is rather easy to check that the Hodge-∗-operator
does the following

∗ : f −→ if
dz ∧ dz

< dz,dz >
(5.7)

∗ : fdz −→ ifdz

∗ : gdz −→ −igdz

∗ : dz ∧ dz −→ −i < dz,dz > .

We can introduce the adjoint operators δ′,δ′′ (see 4.11.12) and define the Laplacian

Δ = (d′ + d′′)(δ′ + δ′′) (5.8)

= d′δ′ + δ′d′ + d′′δ′′ + δ′′d′′ + d′δ′′ + δ′′d′ + d′′δ′ + δ′d′′

= Δ′ + Δ′′ + extra terms.

The extra terms add up to zero because the metric is a Kähler metric. (See 4.11.12.)
I stated this result without proof in the general case, therefore I will carry out the
calculation for our special situation. On the forms of degree 0 or 2 this is rather clear. If
we consider for instance an f ∈ Ω0,0

S (S) then

δ′′d′f = δ′′
∂f

∂z
dz = ∗d′′ ∗ ∂f

∂z
dz (5.9)

= −i ∗ d′′
∂f

∂z
dz = 0

and the same principle works for the other combinations. But for forms of degree one we
have to work a little bit. Let us consider the case ω = fdz. Then we see easily that two
of the four terms vanish, this we see by looking at the degree:

δ′′d′ω = d′δ′′ω = 0. (5.10)

For the other two terms we have to compute.
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δ′d′′fdz = δ′
∂f

∂z
dz ∧ dz (5.11)

= − ∗ d′ ∗ ∂f

∂z
dz ∧ dz

∗id′∂f
∂z

< dz,dz > = ∗i
(
∂2f

∂z2
< dz,dz > +

∂f

∂z

∂

∂z
< dz,dz >

)
∧ dz (5.12)

=

(
∂2f

∂z2
< dz,dz > +

∂f

∂z

∂

∂z
< dz,dz >

)
dz.

Since < dz,dz > is positive and therefore real, we have

∂

∂z
< dz,dz > =

∂

∂z
< dz,dz > . (5.13)

Now we treat the second term:

d′′δ′fdz = −d′′ ∗ d′ ∗ fdz = −d′′ ∗ (−i)d′fdz (5.14)

= −id′′ ∗ ∂f

∂z
dz ∧ dz = −d′′

∂f

∂z
< dz,dz >

= −
(
∂2f

∂z2
< dz,dz > +

∂f

∂z

∂

∂z
< dz,dz >

)
dz.

Hence we see that the two terms add up to zero and

(δ′d′′ + d′′δ′)fdz = 0. (5.15)

We apply our general theorem (Theorem 4.11.14) in the section on Hodge Theory to
this case. We are mainly interested the first cohomology group. We get that it is given
by the harmonic forms in degree one and these harmonic forms are sums of harmonic
forms in the degrees (1,0) and (0,1). I will give the proof of the following Theorem for our
special case. A reader, who is willing to take the general results on the theory of elliptic
operators for granted or knows how to prove them, should skip these proofs.

Theorem 5.1.2 (Hodge Decomposition for Compact Riemann Surfaces).
A form ω = fdz ∈ Ω1

S∞
(S) is harmonic if and only if d′ω = d′′ω = δ′ω = δ′′ω = 0.

Two of these equations are automatically fulfilled, the other two are equivalent to ω being
holomorphic. We get the Hodge decomposition

H1(S,�) = H0(S,Ω1
S) ⊕ H0(S,Ω1

S).

The � vector-space H1(S,�) = H1(S,�) ⊗� � has the complex conjugation on it as an

antilinear map and H0(S,Ω1
S) is the complex conjugate of H0(S,Ω1

S) under this complex
conjugation.(See section 4.11.2, especially the discussion concerning the formation of the
complex conjugate space of a �-vector space.) Then this implies

dimH0(S,Ω1
S) = g. (5.16)
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Proof: (Theorem 5.1.2) I want to give an indication how this consequence of the general
Hodge Theory can be proved in this special situation. Only the last assertion has to be
proved, we have to show that any cohomology class can be represented as the sum of a
holomorphic and an antiholomorphic form. Of course there is no problem in degree zero
and degree 2. So we look at the case p = 1 and start from a 1-form

ω = ω1,0 + ω0,1

which is closed and represents a cohomology class [ω] ∈ H1(S,�). We have seen that we
can construct a weakly convergent sequence ωn = ω + dψn (see page 167) such that the
weak limit ω0 ∈ Ω1

(2)(S) satisfies

∫
S

ω0 ∧ dψ = 0

for all ψ ∈ C∞(S). We also have∫
S

ω0 ∧ δη = 0

for all η ∈ Ω1,1
S∞

(S) because this is true for all ω + dψn. Now we decompose

ω0 = ω1,0
0 + ω0,1

0 .

I claim that even ∫
S

ω1,0
0 ∧ d′′ψ =

∫
S

ω1,0
0 ∧ δ′η = 0

for all ψ ∈ C∞(S),η ∈ Ω1,1
S∞

(S). We have∫
S

ω1,0
0 ∧ d′′ψ +

∫
S

ω0,1
0 ∧ d′ψ = 0 (+,d)

and ∫
S

ω1,0
0 ∧ δ′η +

∫
S

ω0,1
0 ∧ δ′′η = 0 (+,δ)

for all ψ,η. We take η = ∗ψ and then we get from our local formulae (see equation 5.7)

δ′′η = −id′ψ

δ′η = id′′ψ

and the second line becomes

i

∫
S

ω1,0
0 ∧ d′′ψ − i

∫
S

ω0,1
0 ∧ d′ψ = 0. (−,d)
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Subtracting i(+,d) from (−,d) we find∫
S

ω1,0
0 ∧ d′′ψ =

∫
S

ω0,1
0 ∧ d′ψ = 0

for all ψ ∈ Ω0,0
S∞

(S). These two orthogonality relations do not involve the Hermitian
metric anymore.
We want to conclude that these orthogonality relations imply that ω1,0

0 is itself a holo-
morphic 1-form. The holomorphicity is a local property of ω1,0

0 . We choose a point p and
a neighborhood Up such that we can identify (Up,OUp

) with the disc (D,OD). Let z be

the coordinate function on D. Our differential form can be written ω1,0
0 = f(z)dz and

since the restriction of f to D must be square integrable, we have∫
D

|f(z)|2i dz ∧ dz

〈dz,dz〉
Since the function < dz,dz > is bounded and bounded away from zero the square inte-
grability condition is equivalent to∫

D

|f(z)|2i dz ∧ dz < ∞.

Now we exploit the orthogonality relation 〈ω1,0
0 ,d′′ψ〉 = 0 for C∞-functions ψ with com-

pact support in D, we have ∫
D

ω1,0
0 ∧ d′′ψ = 0

for all compactly supported ψ ∈ Ω0
∞(D)

We introduce polar coordinates and write

f(z) = f(r,ϕ) =
∑
m∈�

am(r)eimϕ

and am(r) is square integrable on [0,1] with respect to rdr. Square integrability means
that ∑

m

∫ 1

0

|am(r)|2rdr < ∞

We can choose our function ψ, and we take

ψ(z) = b(r)e−inϕ

where b(r) is C∞ on [0,1) and has compact support in [0,1). Then an easy computation
shows

∂

∂z
ψ(z) =

1

2
eiϕ

(
∂

∂r
b(r) +

n

r
b(r)

)
e−inϕ =

1

2

(
∂

∂r
b(r) +

n

r
b(r)

)
e−i(n−1)ϕ.

Consequently our assumption implies∫ 1

0

an−1(r)
(

∂

∂r
b(r) +

n

r
b(r)

)
rdr = 0
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for all such choices of b(r) and n. But now we know enough elementary analysis to show
that this implies that for all b(r)∫ 1

0

(
−r

∂

∂r
an−1(r) + nan−1(r)

)
b(r)dr = 0

and therefore we can conclude that

an−1(r) = cn−1rn−1

with some constant cn−1. It follows that an(r) = 0 for n < 0 since
∫ 1
0
r2nr d = ∞. Hence

we get

f(z) =
∞∑
n=0

cnr
neinϕ

and ∑
|cn|2 · 1

(2n + 2)2
< ∞.

This is good enough to show that f is holomorphic on the disc. This finishes the proof
of Theorem 5.1.2.

The cup product < , >cup: H
1(S,�) × H1(S,�) −→ H2(S,�) = � extends to a bilinear

pairing < , >cup: H1(S,�) × H1(S,�) −→ H2(S,�) = � and we know (see section
4.10.1) that this pairing is given by

< [ω1],[ω2] >cup=

∫
S

ω1 ∧ ω2

where ω1,ω2 are closed forms which represent the classes [ω1],[ω2] in the cohomology.

Lemma 5.1.3. With respect to the pairing < , >cup the two subspaces H
0(S,Ω1

S),H0(S,Ω1
S)

are maximal isotropic spaces and hence the cup product induces a perfect bilinear pairing

< , >cup: H
0(S,Ω1

S) × H0(S,Ω1
S) −→ �.

5.1.3 Cohomology of Holomorphic Bundles

For any holomorphic vector bundle on E on S we consider the Dolbeault complex

0 −→ E d′′−→ Ω0,0
S (E)

d′′−→ Ω0,1
S (E) −→ 0. (5.17)

We changed our notation slightly and write Ωp,q
S (E) instead of E∞⊗Ωp,q. The cohomology

groups of E are computed from the complex

0 −→ Ω0,0
S (E)(S)

d′′−→ Ω0,1
S (E)(S) −→ 0. (5.18)

Now choose in addition a Hermitian metric < , >h on the bundle E and on TS .
The metrics on E and on TS provide an adjoint operator δ′′ : Ω0,1

∞ (E)(S) −→ Ω0,0(E)(S)
and now Hodge Theory implies (see section 4.11.2 and consequence (c) of Theorem
4.11.14.):
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Theorem 5.1.4. We have that:

H0(S,E) = {s ∈ Ω0,0
S (E)|d′′s = 0}

H1(S,E) = {s ∈ Ω0,1
S (E)|δ′′s = 0}.

and the cohomology groups are finite dimensional.

Again I stress that the proof of this finite dimensionality even in this one dimensional
case needs some input from analysis. Either we use the theory of elliptic operators or
some results from the theory of topological vector spaces. (See [Fo] or [Se2] for the second
method.)
Actually for the cohomology in degree zero H0(S,E) the finite dimensionality is not
difficult but the finite dimensionality of H1(S,E) is by no means easy. To make this
book more selfcontained I will outline a proof of these finite dimensionality results for
our special case of compact Riemann surfaces. The reader who is willing to believe the
general results on elliptic operators may skip up to page 191.
The equality H0(S,E) = {s ∈ Ω0,0

S (E)|d′′s = 0} is tautological. We prove the finite
dimensionality. We proceed by induction on the rank of the bundle. Let us assume that
we have a non zero section s ∈ H0(S,E). Then we show

Lemma 5.1.5. To this non zero section s we can attach a line subbundle L ⊂ E such
that E/L is again a vector bundle and s ∈ H0(S,L).

Proof: The section s provides a map

OS −→ E
f �−→ fs

for any holomorphic function f on some open subset U ⊂ S. This yields indeed a line
subbundle L′ but it is not yet the one we want. If we are at a point x ∈ S where s(x) = 0,
then we can choose a neighborhood Ux and a local trivialization of E by local sections
e1, . . . ,en which are nowhere zero on Ux. Our section s can be written as

s =
n∑
i=1

fiei

with fi holomorphic at x and fi(x) = 0 for all i = 1, . . . ,n. This implies that the set
of zeroes of s is a finite subset of S. But since dimS = 1 we have a local uniformizer
πx ∈ mx ⊂ OS,x and fi = πni

x hi where hi ∈ O∗S,x. Let m be the minimum of the ni. Then

π−mx s =
∑

π−mx fiei

extends to a section in E which is defined over Ux. This section defines a subbundle
L(x) ⊂ E|Ux

. But this line subbundle coincides with the above bundle L′ if we restrict to
the complement of the point x. Hence we see that we can glue the L′ and the L(x) to a
line bundle L on S. We have L ⊂ E , the quotient E/L is a vector bundle of smaller rank
and s ∈ H0(S,L). This reduces the proof of the finite dimensionality to the case of line
bundles. But if we have a line bundle L and a section s �= 0, then we look again at the
inclusion OS −→ L induced by the section, and we get an exact sequence
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0 −→ OS −→ L −→ L/OS −→ 0

and now L/OS is a skyscraper sheaf (see section 4.1.1). Since H0(S,OS) = � and obvi-
ously dimH0(S,L/OS) < ∞, we are through.
The proof of the second assertion in Theorem 5.1.4 is much more difficult. We begin by
the observation that the duality pairing gives us a linear map

Ψ : H1(S,E) −→ H0(S,E∨ ⊗ Ω1)∨.

Since we are already in the highest degree we have

Ω0,1(E)(S)/d′′(Ω0,0(E)(S)) = H1(S,E)

and the linear map is induced by the map also called Ψ

Ψ : Ω0,1(E)(S) −→ H0(S,E∨ ⊗ Ω1)∨

ω1 �−→
{
ω �→

∫
S

e0(ω1 ∧ ω)

}
where ω1 ∧ ω ∈ Ω1,1(E∨ ⊗ E)(S) and e0 is the evaluation of the duality pairing. If ω �= 0
then we can find an ω1 such that Ψ(ω1)(ω) �= 0, this implies that the homomorphism Ψ
is surjective. Once we have shown that it is injective, then the proof is finished.
We have the operator

d′′ : Ω0,0
S (E)(S) −→ Ω0,1

S (E)(S)

and the image of d′′ lands in the kernel of Ψ. The pairing

Ω0,1
(2)(E)(S) × Ω1,0

(2)(E∨)(S) −→ �,

which is given by

(ω1,ω) �−→
∫
S

e0(ω1 ∧ ω)

is a duality between the two Hilbert spaces. We see that Ψ extends to a continuous
linear map

Ψ : Ω0,1
(2)(E)(S) −→ H0(S,E∨ ⊗ Ω1)∨

By definition the closure of the space spanned by the d′′f is the orthogonal complement
of its orthogonal complement. This last subspace spanned by those ω ∈ Ω1,0(E∨)(2)(S)
which satisfy ∫

S

e0(d
′′f ∧ ω)

for all f ∈ Ω0,0(E)(S). This means that ω is a weak solution for the equation d′′ω = 0.
Then the same reasoning as in the proof of Lemma 5.1.2 shows that ω must indeed be
holomorphic. Hence we see that the closure of the space spanned by the d′′f is in fact
the kernel of Ψ, the d′′f span a dense subspace.
Now we have to solve the differential equation d′′f = ω for a given element ω ∈ ker(Ψ) ⊂
Ω0,1(E)(S). We try to solve the equation locally, we choose a small disc D such that the
bundle becomes trivial over D.
Let us assume we have a form ω ∈ Ω0,1(E)(D) and let us assume that this form is square
integrable.
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Then I claim that we can find an η ∈ Ω0,0(E)(D) such that d′′η = ω and that we can
bound the L2-norm of η:

‖η(z)‖2,D ≤ C‖ω‖2,D.
It is clear that the validity of the L2-estimates does not depend on the Hermitian metric.
These two facts together allow us to restrict to the case where D is the unit disc, where
E|D ∼−→ OD and the metric is the trivial metric. Then we have to show: If f : D −→ �

is a C∞ -function on D which is square integrable, i.e.

‖f‖22 =

∫
D

|f(z)|2idz ∧ dz < ∞,

then we can find a C∞-function u on D which satisfies

∂u

∂z
= f

and
‖u‖2 ≤ C‖f‖2.

The point is that we can write down an explicit solution for this differential equation:

u(z) =
1

2πi

∫
D

f(ζ)

ζ − z
dζ ∧ dζ.

(I thank Ingo Lieb for showing me the following argument.) I claim that this is a solution
which fulfills the required estimates. It is easy to see that this function is C∞. If z0 ∈ D,
then we can find a C∞-function χ on D which is one on a small neighborhood of z0 and
zero on a small neighborhood of the boundary of D. Then

u(z) =
1

2πi

∫
D

χ(ζ)f(ζ)

ζ − z
dζ ∧ dζ +

1

2πi

∫
D

(1 − χ(ζ))f(ζ)

ζ − z
dζ ∧ dζ.

The second summand is holomorphic at z0 and hence annihilated by ∂/∂z. The first
summand can be written as an integral over � and a substitution yields that we have

1

2πi

∫
D

χ(ζ)f(ζ)

ζ − z
dζ ∧ dζ =

1

2πi

∫
�

χ(ζ + z)f(ζ + z)

ζ
dζ ∧ dζ.

We can differentiate under the integral sign because χ · f has compact support and
the singularity disappears if we change to polar coordinates. This proved that u(z) is

differentiable and that ∂u(z)
∂z does not depend on χ.

Now it is an amusing exercise to show that for f = 1 we have u(z) = z and from this it
follows easily that u satisfies the differential equation for all f .
We have to prove the estimate. I think it is also very easy to see that the integral

1

2πi

∫
D

1

|ζ − z|dζ ∧ dζ

is bounded by a constant not depending on z. We may work with polar coordinates
around the point z.
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To get the L2-estimate we start from

|u(z)|2 =
1

4π2

∣∣∣∣∣
∫
D

f(ζ)

ζ − z
dζ ∧ dζ

∣∣∣∣∣
2

≤ 1

4π2

∣∣∣∣∣
∫
D

|f(ζ)|
|ζ − z|1/2 · 1

|ζ − z|1/2 dζ ∧ dζ

∣∣∣∣∣
2

.

This is the square of the scalar product of two L2-functions, and we get by Cauchys
integral formula that the right hand side is

≤ 1

4π2

(∫
D

|f(ζ)|2
|ζ − z| dζ ∧ dζ

)(∫
D

1

|ζ − z|dζ ∧ dζ

)
.

We mentioned already that the second factor is bounded by a constant not depending
on z and consequently we get

1

2πi

∫
D

|u(z)|2dz ∧ dz ≤ C

∫
D

∫
D

|f(ζ)|2
|z − ζ| dζ ∧ dζ · dz ∧ dz,

and if we change integration and use our above estimate a second time, then we get

‖u‖22 ≤ C ′ · ‖f‖22.
Inside of our Hilbert space Ω0,0

(2)(E)(D) we can consider the holomorphic square integrable

functions. I claim that this subspace is closed and even better:

Lemma 5.1.6. Any weakly convergent sequence of holomorphic functions ηn with bounded
Ω0,0
(2)(E)(D)-norm converges locally uniformly to a holomorphic function on D.

Proof: This is an immediate consequence of Cauchys integral formula. We pick a point
Q ∈ D and we put three concentric discs around Q:

Q ∈ D1 ⊂ D2 ⊂ D3 ⊂ D

each of them is slightly bigger than the previous one. If we have a circle Γ ⊂ D3 \ D2

then we get from Cauchys formula for z ∈ D2

ηn(z) =
1

2πi

∫
Γ

ηn(ζ)
1

ζ − z
dζ.

Now we integrate over all Γr between D2 and D3 and consider z ∈ D1. We get

ηn(z) =
c

2πi

∫
D3\D2

ηn(ζ)
1

ζ − z
dζ ∧ dζ,

where c is a constant depending on the width of the annulus. We can read this as a
scalar product, since the sequence ηn is weakly convergent to η we see that ηn converges
pointwise to the function

η̃ : z �−→ c

2πi

∫
D3\D2

η(ζ)
1

ζ − z
dζ ∧ dζ,

which is holomorphic on D1. But now the Cauchy formula also gives us that the ηn are
equicontinous and then it follows that the convergence ηn −→ η̃ is locally uniform and
that η = η̃.
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Lemma 5.1.7. For any open set U ⊂ S (this will be a disc D or the entire S) we have
a decomposition

Ω0,0
(2)(E)(U) = ˜Ω0,0

(2)(E)(U) ⊕ E(2)(U)

where the second summand is the closed space of the holomorphic square integrable sec-
tions and the first summand is its orthogonal complement. For U = S the second sum-
mand is of course the finite dimensional subspace H0(S,E∨ ⊗ Ω1).

We choose an ω ∈ ker(Ψ), and we have seen that we can find a sequence of functions

ψn ∈ ˜Ω0,0(E)(S) such that

‖d′′ψn − ω‖2 −→ 0.

I claim that the sequence of L2-norms {‖ψn‖}n∈� is bounded. To see this we cover S by
a finite family of discs

S =
⋃
α∈A

Dα.

We restrict the members of the family {ψn}n∈� to the discs Dα and call the restrictions

ψ
(α)
n . Now we have an orthogonal decomposition of the restriction

Ω0,0
(2)(E)(Dα) = ˜Ω0,0

(2)(E)(Dα) ⊕ E(2)(Dα) (5.19)

and accordingly we have ψ
(α)
n = ψ

(α,′)
n +ψ

(α,hol)
n . We get d′′ψ(α)

n = d′′ψ(α,′)
n . From previous

results (see page 187 f.) we know that we have an η
(α)
n ∈ Ω0,0

S (E)(Dα) for which d′′ηαn =
d′′ψα

n and

‖ηαn‖2,Dα
≤ C‖d′′ψα

n‖2,Dα
.

We have ηαn = ψ
(α,′)
n +hn with hn ∈ E(2)(E)(Dα). The orthogonality of the above decom-

position implies that ‖ψ(α,′)
n ‖ stays bounded. We get

‖ψ(α,′)
n ‖2,Dα

≤ ‖ηαn‖2,Dα
. (5.20)

Hence we see: If the sequence {‖ψn‖2}n is unbounded, then there must be an α such that

sequence ‖ψ(α,hol)
n ‖2,Dα

is unbounded.
Now we consider the sequence of functions ψn/‖ψn‖2. We can extract a subsequence

which is weakly convergent. On any Dα this sequence has the same limit as ψ
(α,hol)
n /‖ψn‖2,

hence it converges to a holomorphic function. This function must be zero because our
ψn where chosen from the orthogonal complement of the holomorphic sections. It follows
from Lemma 5.1.6 that the sequence ψn/‖ψn‖ converges uniformly to zero. This can-
not be the case because the L2-norm of the members of the sequence is one. We get a
contradiction.
So we see that the sequence of norms ‖ψn‖ is bounded. Now we do what we always
do at this point. We extract a weakly convergent subsequence. If ψ is the limit of this
subsequence we found the element which satisfies
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S

(ψ ∧ d′′η) = ω ∧ η = 0 (5.21)

for all sections η ∈ Ω1,0
S (S) which have compact support. Now an argument similar to

the one in the proof of Lemma 5.1.2 yields that ψ is C∞ and that we have ω = d′′ψ. This
finishes the proof of Theorem 5.1.4.

We have seen that Ψ is an isomorphism, so as a byproduct we get:

Lemma 5.1.8. The duality pairing in section 4.11.2

H1(S,E) × H0(S,E∨ ⊗ Ω1
S) −→ �

is non degenerate.

If our vector bundle is the structure sheaf OS then this gives us a canonical identification

H1(S,O1
S)
∼−→ H0(S,Ω1

S)∨.

5.1.4 The Theorem of Riemann-Roch

On the Picard Group

Recall that the Picard group Pic(S) of a compact Riemann surface is the group of
isomorphism classes of holomorphic line bundles on the Riemann surface (See 4.10.3.
This group is isomorphic to H1(S,O∗S).
The exact sequence of sheaves (see 4.10.3 and section 4.3.3)

0 −→ � −→ OS −→ O∗S −→ 1

on our Riemann surface provides a long exact cohomology sequence

0 � � �
×

H1(S,�) H1(S,OS) H1(S,O∗S) H2(S,�) 0

................................................................................................................. ......
...... ................................................................................................................. ......

...... ................................................................................................................. ......
......

................................................ .....
....................................................... .....

....... ...................................... .....
....... ..................................................................................... .....

.......


.......

(We have seen that H2(S,OS) = 0 because the Dolbeault complex stops in degree 1.) In
4.1.1 we definied a sheaf OS(D) to any divisor D. It is clear that we have:

Lemma 5.1.9. For any divisor D then OS(D) is a line bundle and we have that OS(D)⊗
OS(D1)

∼−→ OS(D +D1) and that OS(D)
∼−→ OS if and only if D is principal. Hence we

get
Div(S)/ principal divisors

∼−→ Pic(S).

If we have a line bundle L and a divisor D we define L(D) = L ⊗ OS(D). For a line
bundle L, which we can view as an element [L] in H1(S,O∗S) we define the degree deg(L) =
δ([L]) ∈ H2(S,�) = �. (We have a canonical orientation on S.) This degree has various
properties.

Lemma 5.1.10. If we have a line bundle L on S and a point P then

deg(L(P )) = deg(L) + 1

Proof: This is a special case of Proposition 4.10.13.
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Exercises

Exercise 27. If we choose a Hermitian metric h on our line bundle L, if we pick a point
P and a neighborhood UP and a local section s ∈ L(Up) which is a generator for all
points in UP then we can form the expression

d′′d′ log h(s,s) = ωh.

This is a (1,1)-form on S which is closed and it does not depend on the choice of the
generator s. Show that the class of this form in H2(S,�) is the Chern class

c1(L) = deg(L).

Exercise 28. I refer to the proof of Lemma 5.1.10: We consider the holomorphic 1-form
z−1P dzP on the annulus U1 ∩ U2. It is clear that we can extend this form to a C∞-form
η on the disc U2 = DP (we simply multiply it by a C∞-function which is one on the
annulus and zero in a neighborhood of P ). If we consider d′′η we get a (1,1) form on the
disc DP which has compact support because it vanishes on the annulus. Hence it defines
a class in H2

c (DP ,�), this maps to H2(S,�).
Show that this class is the class δ([OS(P )]). This way we can construct a form of type
(1,1) which represents the degree. This form can be written as a boundary on any open
set in S which misses a small disc around P .

Exercise 29. Let us assume that we have an arbitrary compact complex manifold X
and a divisor D ⊂ X which is locally given on the open sets of a covering U = {Uα} by
one equation fα = 0. We choose a Hermitian metric on X . We choose our covering in such
a way that we place small balls around the points on D and choose a finite subcovering
U = {Uα} of D. Then we supplement it by an open set U0 which is the set of points
having distance > ε from D.
Construct a (1,1)-form ωD which has support in the complement of U0 and which repre-
sents the class c1(OX(D)). Show that this form is a boundary outside of the support of
D.

Exercise 30. If we have divisors D1,D2, . . . ,Dd (d = dimX) which intersect nicely then
we can consider the intersection number D1 ·D2 · . . . · Dd.
Show that this intersection number can also be computed by the integral∫

X

ωD1
∧ ωD2

∧ . . . ∧ ωDd
.

Exercise 31. Of course we can attach to any line bundle L its Chern class c1(L) ∈
H2(X,�). If we have d such bundles L1, . . . ,Ld we can compute their intersection num-
ber and we can take the cup product of their Chern classes which gives an element in
H2d(X,�) = �. Exercise 30 gives us the equality of these numbers

L1 · . . . · Ld = c1(L1) ∪ . . . ∪ c1(Ld)

Show the equality of these numbers without using the de Rham isomorphism.
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The Theorem of Riemann-Roch

Lemma 5.1.10 from above implies:
If we have a line bundle L and a non-zero section s ∈ H0(S,L) then on a suitably small
open set U we can write s = f t where t is a local generator and f is holomorphic. This
function f defines a divisor on U , it is the divisor of its zeroes (see section 4.1.1). Since
we can do this everywhere we get a divisor D = Div(s) and it is clear that L ∼ OS(D).
Then it follows from Lemma 5.1.10 that

deg(L) = deg(D). (5.22)

Hence we can conclude that the degree of a line bundle which has non zero sections must
be ≥ 0.
If D is the divisor of a meromorphic function f then this function defines a section in
O(D) and f−1 defines a section in O(−D) and consequently we must have

deg(Div(f)) = 0. (5.23)

We also can conclude that

Corollary 5.1.11. A line bundle of degree zero has a non zero section if and only if it
is trivial.

We can formulate the

Theorem 5.1.12 (Theorem of Riemann-Roch). If L is a line bundle on a compact
Riemann surface S then

dim�H0(S,L) − dim�H
1(S,L) = deg(L) + 1 − g.

We have
dim�H1(S,L) = dim�H

0(S,L−1 ⊗ Ω1
S).

Furthermore we have deg(Ω1
S) = 2g− 2 and consequently dim�H

1(S,L) = 0 if deg(L) ≥
2g − 1.

Proof: This is now more or less obvious. We proved the finite dimensionality of the
cohomology groups H0 and H1 in the previous section. We write χ(L) for the left hand
side.
We have the isomorphism H0(S,Ω1

S)
∼−→ H1(S,OS). This implies that

dim�H1(S,OS) = g (5.24)

and hence the assertion is true for L = OS. If we want to prove it for our given sheaf L
we pick a point P and consider the exact sequence

0 −→ L −→ L(rP ) −→ L(rP )/L −→ 0 (5.25)

for a large value of r. Then the dimension of the space of sections of the skyscraper sheaf
becomes large and this space of sections is mapped to the finite dimensional H1(S,L).
This implies that eventually H0(S,L(rP )) will be non zero. But then a non zero section
gives us an inclusion OS ↪→ L(rP ) with a skyscraper quotient S (see proof of Lemma
5.1.5). We have the exact sequence
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0 −→ OS −→ L(rP ) −→ S −→ 0 (5.26)

and a glance at the resulting exact sequence yields that

χ(L(rP )) − χ(OS) = dimH0(S,S). (5.27)

This is also the degree of L(rP ) (Lemma 5.1.10 iterated). Hence we have proved the first
formula for L(rP ). Then the same argument applied backwards proves it for L.
It remains to prove the formula for the degree of Ω1

S . To get this we apply the first
formula in the theorem to the sheaf Ω1

S. We get

dim�H
0(S,Ω1

S) − dim�H
1(S,Ω1

S) = deg(Ω1
S) + 1 − g. (5.28)

The left hand side is equal g − 1 and the theorem is proved.

I would like to stress again that the real difficulty in the proof of the Riemann-Roch
Theorem is to show that H1(S,OS) is finite dimensional. In the course of this proof we
saw:

Corollary 5.1.13. For any line bundle L on a compact Riemann surface S and for
any point P ∈ S, we can find an integer r > 0 such that dimH0(S,L(rP )) > 0. Even
more precisely, for r >> 0 we have dimH0(S,L((r+1)P )) = dimH0(S,L(rP ))+1. This
implies that we can find a meromorphic function which has a first order zero or a first
order pole at a given point.

5.1.5 The Algebraic Duality Pairing

At this point we have proved a very strong finiteness result: Any line bundle L on a
compact Riemann surface S has a very simple acyclic resolution, we take an effective
divisor D = ΣnpP with sufficiently large degree and then

0 −→ L −→ L(D) −→ �D −→ 0 (5.29)

is an acyclic resolution of L (see section 4.1.1). We get the exact sequence

0 −→ H0(S,L) −→ H0(S,L(D)) −→ H0(S,�D) −→ H1(S,L) −→ 0. (5.30)

We have seen that dimH1(S,L) = dimH0(S,L−1 ⊗ Ω1
S) but we can prove a stronger

result. We construct a new non degenerate bilinear pairing

H1(S,L) × H0(S,L−1 ⊗ Ω1
S) −→ �. (5.31)

To get this pairing we represent an element ξ ∈ H1(S,L) as the image under the boundary
map. We lift it to an element

ξ̃ = (. . . ξ̃P . . .)P∈|D| ∈ H0(S,�D)

where |D| is the support of D. We choose small discs DP around these P such that we
can trivialize the bundle L over these discs by non vanishing sections tP ∈ H0(DP ,L).

Then the components ξ̃P can be written as
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ξ̃P =

(
b−n
znP

+ · · · + b−1
zP

)
tP

where zP is a local parameter at P . If now η ∈ H0(S,L−1 ⊗ Ω1
S), we can write the

restriction of η to Dp in the form

η |DP
= t−1P · f(zP )dzP ,

and we can consider the product

ξ̃P η =

(
b−n
znP

+ · · · + b−1
zP

)
· f(zP )dzP =

(
a−n
znP

+ · · · a−1
zP

+ · · ·
)
dzP = ωP ,

this is a holomorphic 1-form on Dp \{P} which may have a pole (i.e. it is a meromorphic
1-form). To such a meromorphic 1-form we attach its residue at P , it is given by

ResP

(
a−n
znP

+ · · · a−1
zP

· · ·
)
dzP = a−1. (5.32)

It is not clear a priori that this residue is well defined but everybody who still wants to
continue reading this book should know the formula

a−1 =
1

2πi

∫
Γ

ωP (5.33)

where Γ is a path in DP\{P} which winds counterclockwise around P just once. The
integral on the right hand side is defined independently of the choice of a generator. Then
we define

〈ξ,η〉 =
∑
P

ResP (ξ̃P η) =
∑
P

ResP (ωP ). (5.34)

We have to show that the value of this pairing does not depend on the choice of the
lifting. If we replace ξ̃ by ξ̃ + f where f ∈ H0(S,L(D)), then fη = ω is a meromorphic
1-form on S, it is an element in H0(S,Ω1

S(D)). For such a form it is clear that the sum
of the residues vanishes. We simply observe that we can take the DP so small that they
do not intersect and for the path ΓP we take their boundaries with counterclockwise
orientation. Then ∑

P

ResP (ω) =
1

2πi

∑∫
ΓP

ω (5.35)

=
1

2πi

∫
S\∪DP

dω = 0.

This proves that we get a well defined pairing

H1(S,L) × H0(S,L−1 ⊗ Ω1
S) −→ �.

But it is also clear that any non zero element η ∈ H0(S,L−1⊗Ω1
S) induces a non zero linear

form on H1(S,L). To see that this is so we simply compute this linear form on �D, and
then it is obviously non zero. This implies that the map H0(S,L−1⊗Ω1

S) −→ H1(S,OS)∨

is injective and hence an isomorphism because the spaces have the same dimension.
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This non degenerate pairing is called the algebraic duality pairing, in this special case
it was certainly known to Riemann. It expresses the fact that the existence of holomorphic
differentials on a Riemann surface of higher genus provides an obstruction for a collection
of Laurent expansions ξ̃ ∈ H0(S,OS(D)/OS) to come from a meromorphic function (see
Exercise 15). I tried to find the following proposition in [Rie],Theorie der Abelschen
Funktionen:

Proposition 5.1.14 (Riemann). Such a ξ̃ comes from a meromorphic function if and
only if for all holomorphic differentials ω we have∑

P

ResP (ξ̃ω) = 0.

But I could not dig it out!
Later in section 5.1.9 we will compare this algebraic duality pairing with the (analytic)
Serre duality pairing.

5.1.6 Riemann Surfaces of Low Genus

If the genus of the Riemann surface S is equal to zero and if P is any point, then it
follows from the Theorem of Riemann-Roch and Serre duality that

dimH0(S,OS(P )) = 2,

and we conclude that we can find a meromorphic function f which is holomorphic ev-
erywhere except at the point P and at P it has a simple pole.
We saw already that this function gives us a map

f : S −→ �
1(�),

I claim that this map is an isomorphism between Riemann surfaces. To see this we
observe that there is exactly one point – namely the point P – which goes to infinity. If
U = S \ {P}, then we get for the restriction

f : U −→ � = {(z,1) | z ∈ �} ⊂ �1(�)

f : u �−→ (f(u),1)

(see Example 15 a)). For any c ∈ � we know that the polar divisor of f − c is −P . Hence
the zero divisor is of degree one and is equal to Q where f(Q) = c. Since S is compact
it follows that this map is a homeomorphism.
We still have to show that it is biholomorphic. For any point Q we can find a neighborhood
DQ ⊂ S such that

(DQ,ODQ
) � (D,OD)

where D is the unit disc in �. Let z be the resulting uniformizing element. Under the
map f this neighborhood is mapped to an open set f(DQ) which contains f(Q) ∈ �1(�).
We choose a uniformizing element zQ, this is a holomorphic function defined in a neigh-
borhood of f(Q) which has a first order zero at f(Q). Then zQ ◦ f is a holomorphic
function on a smaller disc D′Q ⊂ DQ and hence a power series in z. Since the function
zQ ◦ f is injective we can conclude that
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zQ ◦ f = az + terms of higher order

with a �= 0. Now O�1,f(Q) is the ring of convergent power series in zQ and OS,Q is the
ring of convergent power series in z. We see that the map

O�1,f(Q) −→ OS,Q

(see Example 15 a)) is an isomorphism and this proves our assertion.

We can also give examples of Riemann surfaces of genus one. If Ω ⊂ � is a lattice, then
the quotient S = �/Ω is a compact Riemann surface. It is homeomorphic to �2/�2, and
hence we have H1(S,�) = �

2 (see section 4.6.8) and hence we see that S has genus 1.
We know that the space of holomorphic differentials is of dimension one and clearly the
form ω = dz is a generator.
If in turn S is a compact Riemann surface of genus one, then we may do the following:
We pick a point s0 ∈ S and we consider the following space

S̃ = {(s,γ) | s ∈ S, γ homotopy class of a path starting in s0 and ending in s}.
We have the projection

π : S̃ −→ S

and locally this projection is a homeomorphism. (This construction can be done for any

connected Riemann surface, then S̃ is the so called universal cover of S.) It is also clear

that we have a structure of a Riemann surface on S̃. We choose a non zero holomorphic
1-form ω. Now we can construct a holomorphic map h from S̃ to �. We simply send

h : s̃ = (s,γ) �−→
∫
γ

ω (5.36)

where we choose a differentiable path in the homotopy class. I leave it as an exercise
to the reader to show that this map is an isomorphism between S̃ and �. It is also not
difficult to show that h−1(s0) = Ω is a lattice in � (we will fill this gap in at the end of
5.1.11) and that the map factorizes over an isomorphism

S̃ �

S �/Ω.

............................................................... ......
......

h

..................................................... .....
.......h̃

.........................................................
......
......
......

π
.........................................................
......
......
......
π

This makes it clear that all compact Riemann surfaces of genus 1 are of the form �/Ω.

5.1.7 The Algebraicity of Riemann Surfaces

From a Riemann Surface to Function Fields

We are now able to show that compact Riemann surfaces may be considered as purely
algebraic objects. More precisely we can say that compact Riemann surfaces are the same
objects as smooth, connected, projective curves over �. It will be discussed in the second
volume of this book what this exactly means.
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It is clear that the meromorphic functions on S form a field K = �(S). We will show
that this field is finitely generated over � and it is of trancendence degree 1 (See [Ei],
Chap. II and Appendix 1). We will see that we can reconstruct the Riemann surface S
from its function field. We will also show, that for any function field K of transcendence
degree one over � we can construct a unique Riemann surface S such that K = �(S).
Finally we will see that we have a so called antiequivalence of categories. If we have two
compact Riemann surfaces S1,S2 then the non constant holomorphic maps f : S1 −→ S2
are in one-to-one correspondence with the homomorphisms tf : �(S2) −→ �(S1), which
are the identity on �.

Example 21. If we consider the Riemann sphere S = S2 = �
1(�) (see Example 15

a) or sections 5.1.1 and 5.1.6), then �(S2) = �(z) is the rational function field in
one variable. It is the quotient field of the polynomial ring �[z] which is the ring of
meromorphic functions which are holomorphic on U0 = �1(�) \ {∞}.
We have seen 5.1.13 that for point P ∈ S and for n � 0 we can find a non-constant
function f ∈ H0(S,OS(nP )).
As I explained in the introduction to this chapter, a non-constant meromorphic function
f on S provides a surjective map f : S −→ �1(�). We put U0 = S \ {P}, then f is a
holomorphic function on U0. Let U1 be the complement of the set of zeroes of f .

If we have a point s ∈ S where f is holomorphic, then the differential df is holomorphic
at this point. If it is non-zero at s then we know from the theorem of implicit functions
that f yields a biholomorphic map from a neighborhood of s to a neighborhood of f(s).

Definition 5.1.15. We say that a surjective map f : S −→ �1(�) given by a noncon-
stant meromorphic function f on S is unramified or not ramified in a point s ∈ S ,
where it is holomorphic, if df is not zero at this point s.
If f has a pole at s then we replace f by g = 1

f and we say that f unramified at s if
dg �= 0, i.e. the function g is unramified at s. In terms of f this can be reformulated: The
differential df has a pole of second order.

Definition 5.1.16. A map f as above is called unramified at a point x ∈ �1(�) if
it is unramified in all points of the fibre f−1(x).

It is clear that the set of points where f is ramified is finite. If f is unramified at x ∈ �1(�)
then we can apply Lemma 4.8.9 and get that the degree of f is equal to the cardinality
of the fibre f−1(x). This cardinality is also the degree of the zero divisor of f − x, if x is
a finite point, (i.e. x �= ∞) or the degree of the polar divisor if x is the point at infinity.
This makes it clear that the degree of f is equal to the zero divisor of f − c for any finite
point c ∈ �1(�). By definition this zero divisor is

Div0(f − c) =
∑

y:f(y)=c

e(y)y.

A straightforward computation shows, that these numbers e(y) are the same numbers as
the numbers defined subsequently to Lemma 4.8.9. We conclude∑

y:f(y)=c

e(y) = deg(f) (5.37)
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for all

c ∈ �1(�) (5.38)

We may change the coordinates on �1(�) by sending z to az+b
cz+d where the matrix A =(

a b
c d

)
is invertible with coefficients in �. For any two different points p1,p2 ∈ �1(�)

we can find such a fractional linear transformation A, which sends these two points to 0
and ∞. This allows us to assume that our map is unramified at 0 and ∞. We give it a
new name and write

π : S −→ �
1(�).

Let V0 (resp. V1) be the complement of 0 (resp. ∞), let U0 = π−1(V0), U1 = π−1(V1).
For any set V ⊂ S (or in �1(�)) which is the complement of a finite number of points
we define Omer

S (V ) to be the ring of those holomorphic functions on V which have at
most poles in the points S \ V . For V0,V1 ⊂ �

1(�) these rings are polynomial rings in
one variable, we write

Omer
�1(�)(V0) = �[z]

Omer
�1(�)(V1) = �[z−1].

We may also consider the rings Omer
S (U0), Omer

S (U1) and these two rings are modules for
Omer
�1(�)(V0) and Omer

�1(�)(V0) respectively. Our function f is now z ◦ π.

Proposition 5.1.17.

1. The modules Omer
S (U0) (resp.Omer

S (U1)) over Omer
�1(�)(V0) (resp. over Omer

�1(�)(V1))
are finitely generated.

2. If {α1, . . . ,αt} ⊂ V0 is a finite subset and V ′0 = V0 \ {α1, . . . ,αt} and U ′0 = π−1(V ′0 )
then

Omer
S (U ′0) = Omer

S (U0) · Omer
�1(�)(V

′
0).

3. The functions in Omer
S (U0) (resp.Omer

S (U1) ) separate the points in U0 (resp. U1),
i.e. for x �= y ∈ U0 we find an f ∈ Omer

S (U0) for which f(x)(�= f(y).

Proof: We show that Omer
S (U0) is a finitely generated Omer

�1(�)(V0) module. We consider

the divisor D∞ =
∑

P∈π−1(∞) P , it is the divisor of poles of the function f pulled back to

S. (Here we use that π is unramified at ∞, actually this is only technical). For n > 0 we
consider the vector spaces H0(S,OS(nD∞)). They form an increasing sequence of vector
spaces exhausting Omer

S (U0) if n −→ ∞. The dimension of these spaces is given by the
Theorem of Riemann-Roch: If n � 0 then

dim�H
0(S,OS(nD∞)) = n deg(D∞) + 1 − g.

We observe that the multiplication by z yields a linear map

×z : H0(S,OS(nD∞)) −→ H0(S,OS((n + 1)D∞))



200 5 Compact Riemann surfaces and Abelian Varieties

and I claim that this map becomes surjective if we divide the space on the right hand
side by the subspace H0(S,OS(nD∞)). We pick a function h ∈ H0(S,OS((n + 1)D∞))
its polar divisor is of the form D =

∑
P∈π−1(∞)mPP with mP ≤ n + 1. If even mP ≤ n

for all n then this function is in the subspace, which we divide out. Now we observe that
it follows from our assumption n � 0 that

H0(S,OS(nD∞)) −→ H0(S,OS(nD∞)/OS((n − 1)D∞))

is surjective. Therefore we can find a function f ∈ H0(S,OS(nD∞)) which has an n-th
order pole at a given point P where mP = n + 1 and has at most an (n − 1)-th order
pole at all the other points in π−1(∞). For a suitable combination h − azf the number
of mP which are equal to n+1 drops by one and our assertion follows by induction. Our
claim implies that the Omer

�1(�)(V0)-module Omer
S (U0) is generated by H0(S,OS(n0D∞))

for some sufficiently large n0 and a) follows.
Now the second part is is not difficult anymore. Let f1 be a meromorphic function in
Omer
S (U ′0). We can find a function h ∈ O�1(�)(V

′
0 ) which has a zero in the points α1, . . . ,αt

and nowhere else (take the inverse of a function which has poles in exactly these points).
If we pull it back to U0 it has zeroes in all points in the fibres π−1(αi), i.e. in all points in
U0 \U ′0, and nowhere else. Hence f1 · hN will be holomorphic in all points of U0 \U ′0 and
this means f1h

N ∈ Omer
S (U ′0). The last assertion 3 is just another simple Riemann-Roch

exercise.

Now we consider the function field K = �(S) of meromorphic functions. It is clear that
the function field of the Riemann sphere �(�1(�)) = �(z) is the rational function field
in one variable. The assertion in the second part in Proposition 5.1.17 implies that any
meromorphic function h on S can be written as a quotient h = g/F where g ∈ Omer

S (U0)
and F is a meromorphic function in �(�1(�)). Therefore we can conclude: If y1, . . . yd
is a set of generators of the Omer

�1(�)(V0)-module Omer
S (U0) then �(S) is generated by

these elements as a �(�1(�))-vector space. It follows that �(S) is a finite extension of
�(z) = �(�1(�)).
I summarize into a theorem whose first part is proved by the above considerations:

Theorem 5.1.18. The field of meromorphic functions on a compact Riemann S sur-
face is a finite extension of a rational function field �(f), where f is any nonconstant
meromorphic function on S. The choice of such a function f yields a holomorphic map
f : S −→ �(�1(�)), which induces the inclusion �(f) ↪→ �(S). We have the equality
of degrees

[�(S) : �(f)] = deg(f)

Proof: It remains to prove the equality of the degrees. We invoke the theorem of the
primitive element: We can find an θ ∈ �(S) such that �(S) = �(h)[θ] and θ is a zero of
the irreducible polynomial

P [X ] := an(z)X
n + an−1(z)Xn−1 + · · · + a0(z) ∈ �(�1(�))[X ]

where the ai(z) are polynomials in z, we have an(z) �= 0,a0(z) �= 0, and n = [�(S) : �(z)].
Then the �(z) vector space K has the basis 1,θ, . . . ,θn−1. We can express the above
generators y1, . . . ,yd as linear combinations
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yi =
n−1∑
ν=0

ai,ν(z)θ
ν ,

where the coefficients ai,ν(z) are in�(z). If we remove a finite number of points {α1, . . . ,αt} ⊂
V0 as above, then we may assume that

a) the coefficients ai,ν(z) ∈ Omer
�1(�)(V

′
0)

b) the coefficient an(z) does not vanish on V ′0
c) at all points α in V ′0 the polynomial an(α)Xn + an−1(α)Xn−1 + · · · + a0(α) ∈ �[X ]
has n different roots.

Then our proposition above yields

Omer
S (U ′0) = Omer

S (V ′0)[θ].

Now we consider the fibre π−1(α), it is clear that θ is holomorphic in the points β ∈
π−1(α)and the values θ(β) are roots of the polynomial an(α)Xn + an−1(α)Xn−1 + · · ·+
a0(α). Our theorem is proved if we can show that

β �→ θ(β)

is a bijection between the points in the fibre and the roots.
Since θ separates the points in the fibre, the map is injective. Hence we have to prove
that it is surjective. We introduce another Riemann surface namely

U ′′0 = {(α,w)|(α,w) ∈ V ′0 ×�,an(α)wn + an−1(α)wn−1 + · · · + a0(α) = 0}.
This is a Riemann surface because for any point (α,β) ∈ U ′′0 we can find a small disk
Dα around α and a holomorphic function wβ : Dα −→ � such that u �→ (u,wβ(u)) is a
homeomorphism from Dα to a neighborhood Dα,β of (α,β) in U ′′0 . (This is of course the
implicit function theorem, we have P ′[β] �= 0 if we evaluate at z = α.)
A heuristic formulation: For u ∈ Dα the root of an(u)Xn+an−1(u)Xn−1+· · ·+a0(u) = 0
which is ”close” to β is given by a holomorphic function wβ(u) in u.
Our aim is to show that U ′′0 is connected. We have the inclusion U ′0 ⊂ U ′′0 as an open subset
and also the complement is open. Then the connectedness implies U ′0 =⊂ U ′′0 . Assume it
is not. Now let U ′0 any connected component and π be the projection from U ′0 to V ′0 . For
any α ∈ V ′0 we divide the set of roots of an(α)Xn + an−1(α)Xn−1 + · · · + a0(α) = 0 into
the subset π−1(α) and its complement π−1not(α). We choose an starting point α. We choose
a small disk Dα around α as above and we have the holomorphic functions u �→ wβ(u).
We consider the polynomials

Q[X ] =
∏

β∈π−1(α)
(X − wβ(u)) = Xd + b1(u)Xd−1 + · · · + b0(u)

Qnot[X ] =
∏

β �∈π−1(α)
(X − wβ(u)) = Xd1 + c1(u)Xd1−1 + · · · + c0(u).

Clearly we have P [X ] = Q[X ]Qnot[X ], this holds over Dα. Our considerations above
imply that the numbers d,d1 are locally constant and hence constant. Now we will show
that the holomorphic functions u �→ bi(u),u �→ ci(u), which are defined on the disk Dα

extend to holomorphic and even meromorphic functions on V ′0 . It is clear that this yields
U ′0 = U ′′0 because we assumed that P [X ] is irreducible.
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But it is clear that these functions extend. We can cover V ′0 by disks Dαν
such that we

have the local roots w
(ν)
β . Then we have the coefficients c

(ν)
i (u),b

(ν)
i (u) on Dαν

. But if
we have two such disks Dαν

,Dαμ
we clearly have that the restrictions of the coefficients

c
(ν)
i ,b

(ν)
i and c

(μ)
i ,b

(μ)
i to Dαν

∩Dαμ
are equal. Therefore any of these coefficients defines

a holomorphic function on V ′0 . It remains to show that they are meromorphic. Let us
first consider one of the point αi ∈ V0, which has been removed. The roots are the the
zeroes of an(z)X

n + an−1(z)Xn−1 + · · · + a0(z). The coefficient an(z) may have a zero
at αi, we write an(z) = (z − αi)

ni ãn(z), where ãn(αi) �= 0. We multiply the polynomial
by (z − αi)

n(ni−1), then our highest coefficient becomes (z − αi)
ninãn(z). We make a

substitution and put Y = (z − αi)
niX then we get the polynomial in Y

ãn(z)Y
n + ãn−1(z)Y n−1 + · · · + ã0(z)

where the ãi(z) are holomorphic in αi. We can find a small disk Dαi
around αi and

a number c > 0 such that this polynomial in Y has n different roots and such that
|ãn(z)| > c > 0. Then it is elementary to show, that the n roots of this polynomial in Y
stay bounded in the punctured disk. This implies that for all roots of the old polynomial
in X we have that (z − αi)

niwβ(z) stays bounded in the pinctured disk. This implies
that (z − αi)

mbi(z),(z − αi)
mci(z) stay bounded in the punctured disk, provided m is

sufficiently large. But then we know that these coefficients have at most a pole in αi. It
remains the point at infinity, but here we carry out the same argument on V1.

The reconstruction of S from K

We explain how we can reconstruct S from K. To do this we will use in an ad hoc manner
some arguments from commutative algebra which will be explained in a more systematic
way in chapter 7 in the second volume of this book. As a general reference I recommend
the books [Ei], [Neu] and [A-McD], the book of M. Atiyah and I. G. MacDonald con-
tains in its Chap. 9 the briefest exposition of the results which we will need in this section.

The finiteness of Omer
S (U0) as an Omer

�1 (V0)-module implies by a standard argument of
commutative algebra that any element h ∈ Omer(U0)S is integral over Omer

�1 (V0). This
means by definition that any element h ∈ Omer(U0) satisfies an equation of the form

hn + a1h
n−1 + . . . + an = 0,

where the ai ∈ Omer
�1(�)(V0) and n > 0. (See [Ei],Chap. I.4 , [Neu], Chap. I. 2.)

But if in turn h ∈ �(S) is integral over Omer
�1(�)(V0) then it must be holomorphic on U0,

to see this we simply look at the possible order of a pole. We conclude

Proposition 5.1.19. The ring Omer
S (U0) is the integral closure of Omer

�1 (V0) in K and
this means that it consists of all the elements in K which are integral over Omer

�1 (V0).
(See [Neu], I.2.)

The principal observation is that a point P ∈ S defines a subring Omer
P ⊂ K, it is the

ring of meromorphic functions which are regular at P . This ring is a valuation ring
(see [Ei], II.11.7, [Neu], II. §3) with quotient field K and this means:

a) For any f ∈ K we have f or f−1 is in Omer
P .
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In addition to this we know that the ring satisfies a second condition

b)The ring Omer
P is not equal to K and it contains the constant functions �.

Such a ring Omer
P has a unique maximal ideal which consists of the elements

mP = {f ∈ Omer
P |f−1 �∈ Omer

P } (5.39)

= {f ∈ K|f vanishes at P}.

This maximal ideal is non zero and it is generated by any function which has a first order
zero at P . This means that the ring is even a discrete valuation ring (see, [Neu], §3).
The elements which are not in the maximal ideal are invertible. The property (a) implies
that the quotient field of such a ring is K.

We consider the set Val(K) of subrings of K, which satisfy the conditions a) and b). Our
next aim is to show

Theorem 5.1.20. The map P �→ Omer
P gives a bijection S

∼−→ Val(K).

The proof of this theorem will take a while. To start we forget the Riemann surface and
consider any field K over � which is a finite extension of a rational function field �(x).
We can write K = �(x)[y] where y satisfies an irreducible polynomial equation

yn + a1(x)y
n−1 · · · an(x) = 0

with ai(x) ∈ �(x). We study the set Val(K).

Proposition 5.1.21. a)All A ∈ Val(K) are discrete valuation rings, i.e. the maximal
ideal mA is always a principal ideal.
b)The composition � −→ A −→ A/mA is an isomorphism and this means that the residue
field is canonically isomorphic to �. This also means that we can evaluate an f ∈ A at
A and the result is f(A) = f mod mA.
c) Furthermore for any f ∈ K the set of A such that f �∈ A is finite.

Before entering the proof of this proposition I want to discuss the fundamental conse-
quences of this fact. If we have any non zero element f ∈ K and an element A ∈ Val(K),
then we know that either f ∈ A or f−1 ∈ A. In the first case we say that f is regular
at A. If f �∈ we say that has a pole at A. If f is regular, and it πA is a generator of the
maximal ideal, then we can write f = πnAu with u ∈ A× and we say that f has a zero of
order n at A. If f �∈ A the we say that f has a pole of order n at A, if f−1 has a zero of
order n. We also denote this number by ordp(f).
Of course any A is determined by its maximal ideal mA = {f ∈ K|f ∈ A,f−1 �∈ A}
and these maximal ideals are traditionally also denoted by p,q, . . . . We will freely switch
between these notations.
Finally I want to say that now we have a completely algebraic notion of the divisor of an
element f ∈ K×, it is simply Div(f) =

∑
p ordp(f)p. The sum is finite because we may

apply c) to f and f−1.
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To prove the proposition we have to invest a little bit of commutative algebra. If K0 =
�(x) then an A ∈ Val(K0) contains �[x] or �[x−1]. Let us assume that A ⊃ �[x]. The
maximal ideal mA intersected with �[x] gives us a non zero prime ideal in �[x]. It is
an elementary fact that the non zero prime ideals in �[x] are of the form (x − α). This
implies that the elements of Val(K0) are in one-to-one correspondence with the points in
�
1(�) = � ∪ {∞} : For any α ∈ � we have the ring

Aα =
{
f = P (x)

Q(x)

∣∣∣Q(α) �= 0
}
, (5.40)

and for ∞ we have

A∞ =
{
f = P (x)

Q(x)

∣∣∣deg(P ) ≤ deg(Q)
}

(5.41)

where P,Q are polynomials and f(Aa) = f(a). Clearly these valuation rings are discrete
valuation rings. We also saw that we have a map Val(K) −→ Val(�(x)) which is defined
by the intersection A �→ A ∩�(x).

Proposition 5.1.22. The rings �[x] and �[x−1] are Dedekind rings (see [Neu], Chap.
I.§3, [Ei], II, §11).
We consider the integral closures B0 (resp. B∞) of �[x] (resp. �[x−1]) in the field K.
Then the theory of Dedekind rings (see [Neu], Chap. I.§8) implies that these integral
closures are finitely generated modules over �[x] (resp. �[x−1]).
Since the polynomial rings have unique factorization, it follows that these modules are
even free of rank [K : �(x)]. This fact has the following consequence:

Lemma 5.1.23. If p is a non zero prime ideal in B0 then p is maximal and B0/p = �.
The ring

B0,p =
{

f
g

∣∣∣ f,g ∈ B0,g �∈ p
}

is a discrete valuation ring.

To see that this is so we consider p0 = mA∩�[x]. It is clear that p0 is non zero. Then B0/p
is an integral domain and a finite dimensional vector space over� = �[x]/p0. This implies
that B0/p = �[x]/p0 = �. The fact that B0,p is a discrete valuation ring is perhaps the
fundamental result for Dedekind rings, we refer to [Ei] Chap.II. 11, [Neu],Chap. I. §11,
Prop. 11.5 or Chap. 7 in the second volume of this book.

Now we pick an A ∈ Val(K) and assume A ⊃ �[x]. (Otherwise it contains the other
ring.) I claim that this implies A ⊃ B0. To see this we take an f ∈ B0 and write down
the polynomial equation

fn + a1(x)f
n−1 + · · · + an(x) = 0

with ai(x) ∈ �[x]. If now f �∈ A then f−1 lies in the maximal ideal mA of A and our
polynomial equation yields

−a1(x)f
−1 · · · − an(x)f

−n = 1
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which gives a contradiction. Now A ⊃ B0, we consider the prime ideal p = mA ∩B0 and
and p must be maximal. Then

A =
{

f
g

∣∣∣ f,g ∈ B0,g �∈ p
}
. (5.42)

We define Val0(K) to be the set of A ∈ Val(K) which contain �[x] and hence B0. Our
considerations above make it clear that we can identify

Val0(K)
∼−→ { non zero prime ideals in B0} ∼−→ {�−linear homomorphisms from B0 to �}

This proves the second assertion in Proposition 5.1.21 above. Now we consider the prime
ideals p ∈ B0 which lie over a given prime ideal (x − α) = (x − α)�[x], i.e. for which
p∩�[x] = (x−α). The ring B0,p is a discrete valuation ring, its maximal ideal is generated
by an element πp. Then we get integers ep so that

(x − α)B0,p = (π
ep
p )

this are the ramification indices. Again we have a result from commutative algebra:

The number of prime ideals lying over (x − α) is finite and the projections define an
isomorphism

B0/(x − α)B0
∼−→

∏
p⊃(x−α)

B0,p/(π
ep
p )

is an isomorphism. See [Neu], Chap I,§8.
Actually this almost clear at this point.
It is also clear that the complements of Val0(K) and Val∞(K) in Val(K) are finite because
it is rather obvious that there are only finitely many prime ideals in B0 (resp. B∞) which
lie above (x) (resp.(x−1)). This implies the finiteness assertion in Proposition 5.1.21 if
we apply our consideration to x = f and therefore the proposition is proved.

Definition 5.1.24. We define a topology on Val(K). The open sets U ⊂ Val(K) are
defined as the complements of finite sets, and of course we have to add the empty set.
This topology is called the Zariski topology.
We can define the sheaf of meromorphic functions. For any open set U ⊂ Val(K) we put

O(U) =
⋂
A∈U

A,

this is the ring of functions which are regular on U and meromorphic on S. This gives
(Val(K),Zar ,O) the structure of a locally ringed space.

If we take any f ∈ K which is not constant, i.e. f �∈ �, then Df is the set of points where
f is regular. Then

O(Df ) = the integral closure of �[f ] in K. (5.43)

This equality follows from the fact that a Dedekind ring is the intersection of the discrete
valuation rings in the quotient field which contain it. (See [Neu], Chap. I, Theorem 3.3.
or look at the divisor h ∈ K×.)
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A brief comment: This object (Val(K),Zar ,O) is almost what is called a smooth, projec-
tive, connected curve over � in modern algebraic geometry. The only thing missing is the
so called generic point. This generic point is simply the field K. We can just drop the

assumption A �= K for our valuation rings and put Ṽal(K) = Val(K) ∪ {K}. We define

the Zariski topology on Ṽal(K), the open sets are the complements of finite subsets in

Val(K) and the empty set. We define the sheaf as before and now (Ṽal(K),Zar ,O) is a
locally ringed space and this is now really a smooth, connected, projective curve. The
stalks of the structure sheaf are discrete valuation rings in the closed points and the stalk
in {K} is K.

Back to the Riemann surface: Now we assume again that K is the field of mero-
morphic functions on our compact Riemann surface S. We observed earlier that we have
a map

S −→ Val(K)

and we want to show that this is a bijection. Here it is clear that we have to use the
compactness of the Riemann surface.
We pick a valuation ring A ⊂ K, let

mA = {f ∈ A | f−1 �∈ A} (5.44)

be its maximal ideal. Our goal is to show that there is a unique point P ∈ S such that
A = Omer

P . We will show that this point P is the common zero of the f ∈ mA and it also
can be characterized as the unique point where all the elements of A are regular.
We pick a generator f ∈ mA and consider the intersection A∩�[f ] then mA∩�[f ] = (f),
because the principal ideal (f) is maximal and

B = A ∩�(f) =
{
g
h | g,h ∈ �[f ], h �∈ (f)

}
.

We consider the diagram

S �1(�)

Val(K) Val(�(f))

............................................................................................... .....
.......

π

....................................................... .....
.......π̃

...........................................................................................................

......

......
......

...........................................................................................................

......

......
......

induced by f . As before V0 = �1(�) \ {∞} and U0 = π−1(V0). Then our ring B consists
of those meromorphic functions on �1(�) which are regular in 0. Our ring A ∈ π̃−1(0).
It suffices to show that the map π−1(0) −→ π̃−1(0) is surjective. The integral closure A1

of B in K is a free module of rank [K : �(f)]. The points in the fibre are exactly the
A′ ∈ Val(K), which contain A1 and as before we have

A1/A1f =
⊕
p

A1/p
ep , (5.45)

where the p are the maximal ideals in A1, they are in one-to-one correspondence to the
elements in π̃(0). Since dim�(A1/p

ep) = ep we get [K : �(x)] =
∑
p ep. For the zero

divisor of the function f on the Riemann surface S we have
∑

z∈pi−1(0) ezz and it is clear

that e(z) = e(p) if z maps to p. From 5.1.7 follows that the degree of the divisor on the
Riemann surface is also [K : �(x)], this implies the equality of the fibres.
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The Recovery of the Analytic Topology: The set S has some further structure,
it has a topology and a sheaf of complex valued functions on it. We want to reconstruct
this structure starting from K. In principle we have done this during the proof of 5.1.18.
The detailed exposition may be a little bit boring, so the reader could skip this section
Our Riemann surface is also a locally ringed space, and it is clear that the map

(S,OS) −→ (Val(K),Zar ,Omer
S )

is a morphism between locally ringed spaces. This is of course not an isomorphism because
on the left hand side we have many more functions, the ring OS,P is much larger than
Omer
S,P = A if P maps to A.

We still go one step further. Again we forget the compact Riemann surface S, and we
start from a function field

K = �(x)[y]

where

0 = yn + a1(x)y
n−1 + . . . + an(x).

We put S = Val(K), on this set we have the Zariski topology and our sheaf OS with
respect to the Zariski topology. We want to construct a finer topology on S. then S
together with this finer topology will be called San. Of course the identity San −→ S will
now be continuous. Furthermore we want to construct a sheaf Oan

S of �-valued functions
on San such that we get a locally ringed space and such that (San,Oan

S ) will be a compact
Riemann surface.
Finally we can restrict meromorphic functions f ∈ OS(U) to the open sets in San, and
this will induce a morphism of locally ringed spaces

(San,Oan
S ) −→ (S,Zar ,OS).

We come to the construction of the analytic topology. For any open subset U ⊂ S we
have the ring OS(U), and we can interpret OS(U) as ring of �-valued functions on U .
We introduce the coarsest topology on U for which all these functions are continuous.
If we have two different points A,B ∈ S, then it is clear that we cannot have A ⊃ B or
B ⊂ A. Hence we can find an f ∈ A for which f �∈ B. Since we can add a constant, we
can assume f �∈ mA. Then g = 1/f ∈ A but g �∈ mA and g ∈ mB. In other words, the
element g is regular at A and at B and g(A) �= 0 and g(B) = 0. Hence we have A,B ∈ Df

and from the definition of the analytic topology follows that we can find neighborhoods
of A and B whose intersection is empty and we have proved that our analytic topology
is Hausdorff.

We want to describe a neighborhood of a point A ∈ S, and we want to show that A has
neighborhoods isomorphic to a disc in �.

This is of course clear if K = �(x), in this case we could identify

Val(K) = �1(�) (5.46)

and the analytic topology is of course the usual topology on �1(�).
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We reduce the general case to this one. We have our point A ∈ S. We choose an element
f ∈ mA which generates the ideal. Again we consider the integral closure O(Df ) of �[f ]
in K. We have

�[f ] · f ⊂ �[f ]
∩ ∩
(f) ⊂ O(Df ).

Since �[f ] is principal it follows that the �[f ]-module O(Df ) is free of rank n = [K :
�(f)]

O(Df ) =
⊕
i

�[f ]yi = �[f,y1,y2 . . . yn] (5.47)

where the elements f,y1, . . . ,yn satisfy some polynomial identities

P (f,y1, . . . ,yn) = 0,

with some polynomials P (F,Y1, . . . ,Yn) from the polynomial ring �[F,Y1, . . . Yn]. If I is
the ideal generated by all these polynomials then we get an isomorphism

�[F,Y1, . . . Yn]/I
∼−→ O(Df ). (5.48)

We introduce the evaluation map

E : Df −→ �
n+1 (5.49)

E : u �−→ (f(u),y1(u), . . . ,yn(u)).

Then the elements of O(Df ) separate the points in Df because the points correspond
to the maximal ideals of O(Df ). Therefore the evaluation map is injective. The image
consists of those points (z0,z1, . . . ,zn) ∈ �n+1 which satisfy P (z0,z1, . . . ,zn) = 0 for all
elements P ∈ I.

Our point A is mapped to an element (0,a1, . . . ,an) = (f(A),y1(A), . . . ,yn(A)). We have a
finite set of distinct points A = A0,A1, . . . ,Am in S for which f(A1) = . . . = f(Am) = 0.
We can find an r > 0 such that for all i,α,β we have |yi(Aβ) − yi(Aα)| > 2r whenever
these two numbers are not equal. We consider the open set U ⊂ S which is defined by
the requirement

U = {B | |yi(B) − yi(A)| < r for all 1 = 1,2, . . . n}.
We consider the projection to the first coordinate

p : U −→ �

B �−→ f(B)

and this projection is by construction a homeomorphism to the image. Now we observe
that we can write any of our yi in the form

yi = yi(A) + γif + Ri,
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where γi ∈ � and Ri = f2gi/hi where gi,hi ∈ O(Df ) and hi(A) �= 0. We represent
these elements by polynomials Gi,Hi ∈ �[F,Y1, . . . Yn] and then we know that the ideal
I above contains elements of the form

Li = Hi(F,Y1, . . . ,Yn)(Yi − yi(A)) − Hi(F,Y1, . . . ,Yn)γiF − F 2G(F,Y1, . . . ,Yn)

for i = 1, . . . ,n. The independent variables are F and the Yi for i = 1 . . . ,n, and the

partial Jacobi matrix
(
∂Li

∂Yi

)
(A)i,j is a diagonal matrix with non zero entries on the

diagonal and therefore it has maximal rank. Hence we can conclude from the theorem
of implicit functions that for a suitably small ε > 0 we can construct an inverse to the
projection p above

q : D(ε) −→ U

z �−→ (z,y1(z), . . . ,yn(z)),

where now y1(z), . . . ,yn(z) are convergent power series and q identifies D(ε) to an open
neighborhood U(ε) of A in S. On this open neighborhood we can define the sheaf
Oan
S (U(ε)) of holomorphic functions, this is simply the sheaf of holomorphic functions

on our small disc. Hence we constructed the structure of a compact Riemann surface
(San,Oan

S ) and clearly the identity map

(San,Oan
S ) −→ (S,Zar ,OS)

is a morphism of locally ringed spaces.

One word concerning the notation. Here we think that the algebraic object (S,Zar ,OS)
is given first and to denote the analytic object we put the sub- and superscripts and
write San,Oan

S . In the beginning of this section we did the opposite. There the Riemann
surface was given and we had to introduce the sub- and superscripts Zar, mer.

Connection to Algebraic Geometry

Finally I want to say a few words about the connection to algebraic geometry. I come
back to the description of

O(Df ) = �[f,y1, . . . ,yn] = �[F,Y1, . . . ,Yn]/I.

We described the image of Df under the evaluation map as a set of solutions of polynomial
equations

Y = E(Df ) = {(a0,a1, . . . ,an) | P (a0,a1, . . . ,an) = 0 for all P ∈ I},

and this means (by definition) that this image is an affine algebraic variety over �. I claim
that for any point B = (a0, . . . ,an) ∈ Y we can pick an index i such that yi − ai = ỹi is
a local parameter: In a small neighborhood the other coordinates of a point b ∈ Y can
be expressed as holomorphic functions in ỹi. We simply apply our arguments above to
B. Therefore our variety is in fact one dimensional and smooth (see Example 19).
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Actually we can say even more. Since O(Df ) is the integral closure of �[f ] in the function
field we know that the elements ỹi satisfy an equation

ỹni

i + a1ỹ
ni−1
i + . . . + ani

= 0

where the coefficients ai ∈ �[f |. We may assume that this polynomial is irreducible.
We must have ani

(A) = 0. It is not entirely obvious but true that the previous coeffi-
cient ani−1 does not vanish at A. We can conclude that for the points B in our small
neighborhood of A the polynomial Y ni + a1(B)Y ni−1 . . . + ani

(B) has exactly one root
which is close to one. This means in classical terms that ỹni

i is an algebraic function in
the variable z = f(B), it is a root of the polynomial which is distinguished and depends
analytically on z.

Of course a few points are missing, namely, the points in S \ Df . But we can find an
element g ∈ K which is regular at these missing points. We have a second evaluation
map which identifies

Dg
∼−→ Y1 ⊂ �m+1

and O(Dg) = �[g,u1, · · · ,um]. In Y we have the open subset Yg where g is regular and
in Y1 the open subset Y1,f where f is regular and these two open sets are identified to
Df ∩ Dg under the evaluation maps.

We have to say in terms of the two data what the regular functions on Df ∩ Dg are. I
claim that

OS(Dg ∩ Df) = �[g,u1, . . . ,um,f,y1, . . . ,yn], (5.50)

and this means that the regular functions on Dg∩Df can be written as sums of products
of elements in O(Df ) and O(Dg). If h ∈ OS(Dg ∩Df ), then this function may have poles
in Tf ∪ Tg where Tf = S \ Df , Tg = S \ Dg. We want to modify h by sums of products
u1u2 where u1 has poles only in Tf and u2 has poles only in Tg. Let us pick a point
t ∈ Tf with t �∈ Tg and s ∈ Tg, s �∈ Tf such that h has a pole at t. If such a pair (s,t)
does not exist there is nothing to prove. We produce a function u1 which has a pole at
t and nowhere else. This is possible by the Theorem of Riemann-Roch (Theorem 5.1.4).
We produce a function u2 which has a pole at s and nowhere else but which in addition
has a simple zero at t. Then u1u

m
2 has a simple pole at t for a suitable choice of m. Now

we can modify h by subtracting a suitable power of u1u
m,

h− γ · (u1um)k,

such that the pole order of h at t drops. This means that the total pole order at points
in Tf \ (Tf ∩ Tg) drops. We repeat this process until h does not have any pole in the set
Tf \ (Tf ∩ Tg), and then the modified function has only poles in Tg. Then we achieved
our goal.

I summarize: Our space S together with the sheaf OS is covered by two affine varieties
Df ,Dg (or affine schemes) and the ring of regular functions on the intersection Df ∩Dg

is generated by the regular functions on Df and Dg. With a corn of salt this means that
we constructed a separated scheme.

For this see [Ha], II. 4. or in the second volume of this book. Actually it is even projective
this will be discussed in the second volume, too.
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Elliptic Curves

We have a brief look at the case of Riemann surfaces of genus one. We have seen (5.1.6)
that they are of the form S = �/Ω where Ω is a lattice in �. Notice that in this
description the surface has a distinguished point O ∈ S, which is the image of 0 ∈ � and
the addition on � induces on S the structure of a complex analytic abelian group.

Definition 5.1.25. A compact Riemann surface of genus one with a distinguished point
O is called an elliptic curve.

Definition 5.1.26. The meromorphic functions on S = �/Ω are called elliptic func-
tions.

It is not so difficult to produce meromorphic functions on S, in a first semester course
on function theory it is taught that we have the two special meromorphic functions (see
for instance [La], Chap. I,§2 and Chap. III for the following)

℘(z) =
1

z2
+
∑
ω∈Ω
ω �=0

(
1

(z − ω)2
− 1

ω2

)
(5.51)

℘′(z) = −2
∑
ω∈Ω

1

(z − ω)3
(5.52)

on S. The functions ℘,℘′are called Weierstraß ℘,℘′-function. It is clear that ℘ ∈
H0(�/Ω,O(2O)),℘′ ∈ H0(�/Ω,O(3O)), hence we have that the seven functions

1,℘,℘′,℘2,℘℘′,℘3,℘2 ∈ H0(�/Ω,O(6O))

and the theorem of Riemann-Roch implies, that this space has dimension 6. Hence the 7
functions are linearily dependent. A simple computation gives, that they are related by
an equation

℘′(z)2 = 4℘(z)3 − g2(Ω)℘(z) − g3(Ω) (5.53)

where the coefficients g2(Ω), g3(Ω) can be expressed in terms of the lattice, they are given
by the convergent series

g2(Ω) = 60
∑
ω �=0
ω∈Ω

1

ω4
(5.54)

g3(Ω) = 140
∑
ω �=0
ω∈Ω

1

ω6
.

The functions g2(Ω) and g3(Ω) can be viewed as functions on the space of lattices they
are called modular forms.
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Furthermore we know:

Lemma 5.1.27. These two functions ℘ and their derivation ℘′ generate the field of
meromorphic functions on S. We get an embedding into the projective space, we map

z �→ (℘′(z),℘(z),1) =

(
1,

℘(z)

℘′(z)
,

1

℘′(z)

)
∈ �2(�).

This map provides an analytic isomorphism

S
∼−→ {(x,y,u) ∈ (�3 \ 0)/�×|y2u − 4x3 − g2(Ω)xu2 − g3(Ω)u3 = 0} ⊂ �2(�).

This description of an elliptic curve as a projective curve is called the Weierstraß
normal form of the elliptic curve. We can think of S as being an object in analytic
complex geometry, the right hand side is an algebraic object. The point ∞ = (x,y,u) =
(0,1,0) corresponds to O ∈ �/Ω.
Our covering of the projective variety by the two affine varieties looks as follows: We have
the subset, where we have u �= 0 (here only the point O is missing) and y �= 0 (Which are
the missing points in this case?). The rings of meromorphic functions on the two pieces
are �[x,y,1] and �[xy ,1,

1
y ].

On the left hand side we have the structure of an analytic group (multiplication and ta-
king the inverse are holomorphic maps). This gives us a group structure on the right hand
side. This group structure is given by the classical addition theorems for the Weierstraß
℘-function. Therefore we can say that S gets the structure of an algebraic group (see
5.3.1). The neutral element for this group structure is the point O. We come back to this
point in 5.2.8.
Here we see that the genus is only a very weak invariant for a Riemann surface. If we
have two elliptic curves S1 = �/Ω1,S2 = �/Ω2 then we may ask whether we can find a
holomorphic map f : S1 −→ S2, which is not constant. It is not hard to see that we can
find such a map if and only if we can find a complex number α �= 0 such that αΩ1 ⊂ Ω2.
We can find a holomorphic isomorphism, if and only if αΩ1 = Ω2. Hence we see that the
elliptic curves are parameterized by the space of lattices Ω ∈ � modulo the equivalence
relation Ω1 ∼ Ω2 if and only if Ω1 = αΩ2. This is the moduli space of elliptic curves
(see also 5.2.5). It has the structure of a one dimensional complex variety.

5.1.8 Géométrie Analytique et Géométrie Algébrique - GAGA

Definition 5.1.28. An analytic sheaf Ean on San is called a coherent sheaf if it is a
sheaf of Oan

S –modules, and if for any point P ∈ S we can find an open neighborhood DP

and finitely many sections t1, . . . ,ts such that for any Q ∈ DP these sections generate
the Oan

S,Q–module Ean
Q .

We have the same notion for Zariski sheaves on S and clearly any coherent Zariski sheaf
E provides a coherent analytic sheaf Ean = E⊗Omer

S
Oan
S . The following simple observation

is important and holds in both cases

Lemma 5.1.29. Assume we have sections u1, . . . ,ur ⊂ E(VP ) for an open neighborhood
VP of P (in either topology). Assume that the images of these sections in the stalk EP
generate the stalk as OS,P -module. Then these sections also generate the stalks in all
points of an open neighborhood V ′P ⊂ VP .
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I think this is rather obvious.
Remark: If we apply the Lemma of Nakayama ([Ei], [A-McD]), then we see that we only
need that the images of the ũi in EP ⊗ OS,P/mP generate the OS,P/mP -vector space.
Now we encounter the simplest case of the so called GAGA–principle. In our situation
this principle says that this construction provides an equivalence of categories.

Definition 5.1.30. A coherent sheaf E is called a torsion sheaf if for all points P the
stalk Ean

P (or EP = Emer
P ) consists of torsion elements, i.e. each element is annihilated by

a non zero element in the local ring.

We will see further down that any coherent E sheaf has a maximal torsion subsheaf and
the quotient by this torsion subsheaf is locally free.

Proposition 5.1.31. For any coherent sheaf Ean on S we can find a unique coherent
Zariski sheaf E such that

Ean = E ⊗Omer
S

Oan
S .

For any pair F ,G of coherent Zariski sheaves the map

HomS(F ,G) −→ HomSan(Fan,Gan)

is a bijection.

Proof: Starting from a coherent sheaf Ean we have to construct E = Emer, such that
this sheaf gives back Ean under the process above.

The strategy is simple: For a Zariski open subset U = S \ T , we have to say what E(U)
should be. We have to say what it means for a section s ∈ E(U) to have at most poles
in T. Then we simply say that E(U) consists of those sections of Ean(U), which have at
most poles at the finitely many missing points in T . Finally we have to prove that we
have enough sections to generate the vector space Ean

P ⊗ OS,P/mP .

At first we prove our result for torsion sheaves. We pick a point P ∈ S, an open neigh-
borhood DP and sections t1,t2, . . . ,ts ∈ Ean(DP ) which generate the stalks in the neig-
borhood. Their image in the stalk is annihilated by a non zero element f ∈ OP (the local
ring is integral). But then this element f can be extended into a small neighborhood DP

such that it is non zero at any point Q ∈ DP where Q �= P . Hence we see that the stalks
Ean
Q = 0 for all Q �= P in a small neighborhood of P . Since S is compact we can conclude

that torsion sheaves are the skyscraper sheaves. Now we observe that for any point P
and any positive integer r > 0 we have the equality

Oan
S,P /(m

an
P )r = Omer

S,P /(mP )r,

and therefore analytic and Zariski torsion sheaves are the same objects.

We come to the general case. Since Oan
S,P is a discrete valuation ring, we can find gener-

ators u1, . . . ,um such that the stalk Ean
S,P is the direct sum

Ean
S,P =

⊕
i

Oan
S,Pui.
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We apply Lemma 5.1.29 and write the ui as restrictions of some ũi which are defined in
a neighborhood DP . Now some of the ui are torsion elements and these elements define a
torsion subsheaf if we restrict to this neighborhood. If we still shrink this neighborhood
further then this torsion subsheaf has support in P and the quotient is free. This happens
in a small neighborhood of an arbitrary point P and shows us that we can define a finite
skyscraper sheaf Ean

torS ⊂ Ean such that the quotient Ean/Etors = E ′an is locally free. But
if we have a locally free sheaf E ′an and a section s which is defined in a punctured disc
ḊP = DP \{P}, then we know what it means that s has at most a pole at P . We express
s =

∑
giũi, where gi is holomorphic on ḊP . Then s has at most a pole if the gi have

at most a pole in P . We say that s ∈ EP (ḊP ) has at most a pole at P if its image in
E ′P (ḊP ) has at most a pole.

Hence for any Zariski open subset U ⊂ S we can define the OS(U)–module of meromor-
phic sections E(U) = Emer(U), these are the analytic sections which have at most poles in
the finitely many missing points. Now we need to prove that the sections in E(U) generate
the stalk at any point Q ∈ U . We saw before that it suffices to show that these sections
generate Ean ⊗ OS,Q/mQ. Once we have shown this, it is clear that E ⊗OS

Oan
S = Ean.

To prove this surjectivity we consider the case of a locally free sheaf E first. We pick a
point P ∈ S, we can form the sheaf Ean ⊗ OS(rP ) = Ean(rP ), this is the larger sheaf,
where the sections are allowed to have a pole of order ≤ r at P (compare the proof of
the Theorem of Riemann-Roch (Theorem 5.1.12)). Then we get the exact sequence

0 −→ H0(S,Ean) −→ H0(S,Ean(rP )) −→ H0(S,Ean(rP )/Ean) −→ H1(S,Ean).

Since we have dimH1(S,Ean) < ∞ (Theorem 5.1.4) we conclude that for r � 0 the space
H0(S,Ean(rP )/Ean) has a non zero section. We apply Lemma 5.1.5 and conclude that we
can find a line subbundle L ⊂ E ⊗OS(rP ) such that E ⊗OS(rP )/L is again locally free.
Hence we get an exact sequence of locally free sheaves

0 −→ L ⊗ OS(−rP ) −→ Ean −→ Ean/(L ⊗ OS(−rP )) −→ 0.

The rank of the quotient bundle is the rank of Ean minus 1. We conclude that Ean has a
filtration by locallay free subsheaves 0 ⊂ Ean

1 ⊂ Ean
2 ⊂ . . . ⊂ Ean such that the successive

quotients are line bundles. From this we can conclude easily, that H1(S,Ean(rP )) = 0
provided r � 0. We simply write the exact sequences resulting from the filtration. Then
we pick any point Q ∈ U and a second point P ∈ T . We have the locally free submodule
Ean ⊗ OS(−Q) ⊂ Ean consisting of those sections which vanish at Q. We get an exact
sequence

0 −→ Ean(rP ) ⊗ OS(−Q) −→ Ean(rP ) −→ Ean/Ean ⊗ OS(−Q) −→ 0.

For r � 0 we know that

H1 (S,Ean(rP ) ⊗ OS(−Q)) = 0,

we conclude that the map

H0 (S,Ean(rP )) −→ H0
(
S,Ean/(Ean ⊗ OS(−Q))

)
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is surjective. By definition we have H0(S,Ean(rP )) ⊂ E(U) and hence we see that we find
enough sections to generate H0(S,Ean/Ean ⊗ OS(−Q)), we get from Lemma 5.1.29 and
the remark following that

Ean = E ⊗Omer
S

Oan
S .

The same argument also works if Ean has torsion because the H1 of a torsion sheaf
vanishes.
We observe that for the global sections we have H0(S,Ean) = H0(S,E). Now we also
know that for two coherent sheaves we can define the coherent sheaf Hom(Fan,Gan)
(resp.Hom(F ,G) and then

HomSan(Fan,Gan) = H0(San,Hom(Fan,Gan))

= H0(S,Hom(F ,G)) = HomS(F ,G),

this gives us the last statement in Proposition 5.1.31.

What we have seen here is a special case of a general principle which is called the
GAGA-principle (see the headline of this section). In a very rough form it says that
compact complex manifolds are in fact algebraic, provided they have enough meromorphic
functions. Especially a complex subvariety Y ⊂ �n(�) is always algebraic (Theorem of
Chow [Ch]). In such a case the coherent algebraic and the coherent analytic sheaves form
equivalent categories (see [Se1]). We will come back to this principle in the second half
of this chapter.

5.1.9 Comparison of Two Pairings

We apply Theorem 5.1.4 to the case E = OS and get

H1(S,OS) � H0(S,Ω1
S). (5.55)

We have the Hodge decomposition of H1(S,�)
∼−→ H0(S,Ω1

S) ⊕ H0(S,Ω1
S) (5.1.2). If we

compute the cohomology H1(S,�) using the de Rham complex then the cup product

H1(S,�) × H1(S,�) −→ �

on the cohomology is given by integrating cup products of representing forms. (See
4.10.1.) If we consider the above decomposition, the two summands are isotropic and
we get the �-linear pairing

H0(S,Ω1
S) × H0(S,Ω1

S) −→ �

which is given by

(ω1,ω2) �−→< ω1,ω2 > =

∫
ω1 ∧ ω2.

The combination of the isomorphism above and the pairing yields a �-bilinear pairing
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H0(S,Ω1
S) × H1(S,OS) −→ �.

We will call this pairing the analytic pairing. In section 5.1.5 we constructed the Serre
duality pairing between these two vector spaces, this pairing is defined in purely algebraic
terms.

Theorem 5.1.32. The analytic pairing is −2πi times the Serre duality pairing.

Proof: To see this we need some simple considerations which in principle concern the
comparison between Čech cohomology of sheaves and the cohomology groups obtained
by injective (or acyclic) resolutions, for instance the de Rham resolution.

We pick a point P ∈ S and an n � 0 such that the map

H0(S,OS(nP )/OS) −→ H1(S,OS)

becomes surjective. We choose an element η ∈ H1(S,OS) and we lift it to an element
ξ ∈ H0(S,OS(nP )/OS). We choose a disc DP around P and a local coordinate zP which
is zero at P. Now we represent an element ξ by a Laurent series

f(z) =
an
zn

+ . . . + a0 + a1z + . . . .

We cover S by two open sets U1,U2, where U1 = Dp and U2 is the complement of a smaller

closed disc Dp(ε) around P , hence U1 ∩U2 is an annulus. We have that f ∈ OS(U1 ∩U2)
and it defines a 1-cocycle for the covering S = U1 ∪ U2. This cocycle maps to η under
the edge homomorphism (see Lemma 4.6.10). Now we proceed and use the de-Rham
resolution, we get a diagram

OS(U1) ⊕ OS(U2) OS(U1 ∩ U2)

Ω0,0
S (U1) ⊕ Ω0,0

S (U2) Ω0,0
S (U1 ∩ U2)

Ω0,1
S (U1) ⊕ Ω0,1

S (U2) Ω0,1
S (U1 ∩ U2)

...
...

....................................................................................................................................... .....
.......

...................................................................................................................... .....
.......

.........................................................
......
......
......

.........................................................
......
......
......

.........................................................
......
......
......
d′′

.........................................................
......
......
......
d′′

...................................................................................................................... .....
.......

.........................................................
......
......
......
d′′

.........................................................
......
......
......
d′′

We send f to Ω0,0
S (U1 ∩ U2) and I claim that we may write f |U1 ∩ U2 as the restriction

of a C∞-function h1 on U1 = Dp. To see this we simply multiply the function f , which is
actually defined on the punctured disk, by a C∞-function which is identically equal to 1
on the annulus and which is identically zero in a neighborhood of zero. This C∞-function
on the disc is holomorphic on the annulus, but if we go into the interior it certainly loses
this property. This means that d′′h1 = ψ is an element in Ω0,1

∞ (U1) which has compact
support and therefore it can be extended by zero to S. Then ψ ∈ Ω0,1

∞ (S), it is closed
and it represents our given class in H1(S,OS) via the Dolbeault isomorphism.
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The integral
∫
S ω ∧ ψ for a holomorphic 1-form ω on S gives the value of the analytic

pairing between ξ and ω. We compute this integral. We observe that∫
S

ω ∧ ψ =

∫
Dp

ω ∧ ψ

and the integrand has compact support in Dp. We choose a circle ∂Dp(r) which lies in
the annulus, we still have∫

Dp

ω ∧ ψ =

∫
Dp(r)

ω ∧ ψ.

But now we write again ψ = d′′h1 and we have ω ∧ dh1 = ω ∧ (d′h1 + d′′h1) = ω ∧ d′′h1.
Therefore ∫

Dp(r)

ω ∧ d′′h1 =

∫
Dp(r)

ω ∧ dh1 = −
∫
Dp(r)

d(h1 ω)

= −
∫
∂Dp(r)

h1ω = −
∫
∂Dp(r)

fω

= −2πiResP (fω).

and now the right hand side is by definition the value of the Serre duality pairing multi-
plied by 2πi.

Since our pairings are non degenerate we conclude that we have two different ways of
producing an identification H1(S,OS)

∼−→ H0(S,Ω1
S)∨ which differ by a factor −2πi. We

could call the one produced by the cup product the analytic identification and the
other one the algebraic identification. We will mostly use the analytic identification.

5.1.10 The Jacobian of a Compact Riemann Surface

Let S be a compact Riemann surface of genus g. We defined the Picard group of S
Pic(S) = H1(S,O∗S) to be the group of isomorphism classes of holomorphic line bundles
on S. Our exact sequence in section 5.1.4 provides the homomorphism

H1(S,O∗S) = Pic(S) −→ H2(S,�) = �

Definition 5.1.33. The kernel of Pic(S) −→ � is denoted by Pic0(S) and it is called
the Jacobian of the curve and sometimes we write J = Pic0(S).

The exact sequence yields

Pic0(S) = H1(S,OS)/H1(S,�). (5.56)

Here we divide a g-dimensional �-vector space by a free �-module of rank 2g, I claim
that we are in fact dividing by a lattice, i.e. the submodule is in fact discretely embedded.
To see this we recall the Hodge decomposition (Lemma 5.1.2) and get inclusions

H1(S,�) ↪→ H1(S,�) ↪→ H1(S,�) = H0(S,Ω1
S) ⊕H0(S,Ω1

S).
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Since H1(S,�) = H1(S,�) ⊗ �, we see that H1(S,�) is a lattice in H1(S,�). On the
other hand it is clear that the projection of H1(S,�) to any of the two summands in the
decomposition of H1(S,�) is an isomorphism since the summands are complex conjugate.
This implies that the inclusions followed by the projection

H1(S,�) ↪→ H0(S,Ω1
S) = H1(S,OS) (5.57)

maps H1(S,�) isomorphically to a lattice Γ in H1(S,OS). We want to denote this iso-
morphism by

j : H1(S,�)
∼−→ Γ.

Of course it is clear that the multiplication of line bundles in Pic0(S) induces the addition
on H1(S,OS)/Γ and hence we see that the quotient

J = Pic0(S) = H1(S,OS)/Γ

has a natural structure of a connected, compact complex-analytic group of dimension g.
Such a group is called a complex torus. Hence we summarize

Theorem 5.1.34. The Jacobian of a compact Riemann surface of genus g has the struc-
ture of a complex torus of dimension g.

5.1.11 The Classical Version of Abel’s Theorem

In the previous section we described the group of line bundles Pic0 in terms of the
cohomology group H1(S,O∗S). Our main tool was the exact sequence

0 −→ H1(S,�) −→ H1(S,OS) −→ H1(S,O∗S) −→ H2(S,�)

which allowed us to define the degree of the line bundle and gave us the description

Pic0(S) = H1(S,OS)/H1(S,�).

Now we recall (see section 5.1.4) that the group of line bundles Pic(S) may also be
described as the group of divisor classes

Div(S)/ principal divisors
∼−→ Pic(S).

For a divisor D =
∑

P nPP the degree of the line bundle is

δ(OS(D)) = deg(OS(D)) = deg(D) =
∑

nP

and by composition we get the isomorphism

Div0(S)/principal divisors
∼−→ H1(S,OS)/H1(S,�).

We want to compute this isomorphism. If OS(D) ∈ Pic0(S), how can we compute the
corresponding element in H1(S,OS)/H1(S,�)?
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We reformulate our problem slightly. The analytic pairing gives us an identification
H1(S,OS)

∼−→H0(S,Ω1
S)∨, the Poincaré duality gives an identificationH1(S,�)

∼−→H1(S,�)
(see section 4.8.6). The resulting embedding i1 : H1(S,�) ↪→H0(S,Ω1

S)∨ is obtained by
the following rule: We represent a homology class [c] by a cycle c and to this class we
attach the linear form

ϕc : ω �−→
∫
c

ω. (5.58)

Then the homomorphism [c] �→ ϕc is our embedding i1. Hence our problem is to compute
the isomorphism

Div0(S)/ principal divisors
∼−→ H0(S,Ω1

S)∨/H1(S,�).

Let D be a divisor of degree zero. We write it as
∑n

i=1 Pi −
∑n

i=1 Qi. We find C∞-maps
σi : [0,1] −→ S with σi(0) = Pi,σi(1) = Qi. We identify [0,1] to the standard 1-simplex
Δ1 (see section 4.8.6) by t �→ (t,1 − t). Then zD =

∑n
i=1 σi is a 1-chain whose boundary

is ∂zD = D. This means this 1-chain provides a map

ϕD,zD : H0(S,Ω1
S) −→ � (5.59)

ϕD,zD : ω �→
∫
zD

ω.

If we have a second 1-cycle z′D which also satisfies ∂z′D = D then z′D = zD + cD where cD
is a closed 1-cycle, i.e. ∂cD = 0. Hence we see that

ϕD,zD − ϕD,z′
D

∈ H1(S,�) ⊂ H0(S,Ω1
S)∨.

Hence we see that D defines a well-defined element ϕ̃D ∈ H0(S,Ω1
S)∨/H1(S,�).

Theorem 5.1.35 (Theorem of Abel). The isomorphism

Div0(S)/ principal divisors
∼−→ H0(S,Ω1

S)∨/H1(S,�).

is given by [D] �→ ϕ̃D.

Proof: To prove this it suffices to consider the case of two points P,Q on our Riemann
surface S which lie in a small disc DP . This is clear because our map D −→ ϕD is a
homomorphism from the group of divisors of degree zero to H0(S,Ω1

S)∨/H1(S,�) and
these divisors generate the group of divisors of degree zero.
We assume that our local coordinate z is zero at P and 1 at Q. We want to compute the
class of the line bundle OS(Q − P ) in H1(S,OS)/H1(S,�). To be more precise we want
to find a representative of this class in Ω0,1

S (S) and identify it as a linear form on the
space of holomorphic differentials.
We draw the straight path γ from P to Q in our disc and we cover S by U2 = S\γ and
U1 = DP . The meromorphic function z

z−1 trivializes our bundle on U1 and the constant
function 1 trivializes it on U2. Hence the holomorphic function z

z−1 on U1 ∩ U2 = D\γ
defines a Čech cocycle with values in O∗S and its image in H1(S,O∗S) is the class of
OS(Q−P ). I claim that we can define the function log z

z−1 on D\γ. This is so because we
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can write down integrals
∫ z
a

dz
z and

∫ z
a

dz
z−1 along a path from a point a to z which avoids

γ. The values of these integrals depend not only on z but also on the homotopy class
of the path. But the multivaluedness drops out if we take the difference of the integrals,
which then gives us the function log z

z−1 . The element 1
2πi log z

z−1 ∈ OS(D\{γ}) is a

1-cocycle with values in OS. It defines a class in ξP,Q ∈ H1(S,OS) which maps to the
class of OS(Q− P ) in H1(S,O∗S). This class ξP,Q can be represented by a closed form of
type (0,1). To find such a form we shrink the set U2 a little bit to a set U ′2 so that it is
the complement of a little neighborhood N of γ.

......

......

......

......

......

......
......
......
......
.......
.......
.......
.......
.......
........
........
........
........
.........
.........
.........
..........
..........
...........

............
.............

..............
................

.................
....................

..........................
..........................................


.............................

......................
..................
................
...............
.............
............
...........
...........
..........
.........
.........
.........
........
........
........
.......
........
.......
.......
.......
.......
.......
......
......
......
......
......
......
......
......
..

..........................................................................................

..........................................................................................

....................................................................................................................................................................................................................................

....................................................................................................................................................................................................................................

............. ............. ............. ............. ............. ............. ............. ............. ............. ...� �
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Figure 5.1 In the picture above this neighborhood is the ”cigar” containing the path from P
to Q and U ′

2 is the complement of the ”cigar”. This ”cigar” is obtained by drawing half circles
of radius ε > 0 around P,Q and then joining the endpoints by straight lines parallel to γ. The
boundary is a C1-manifold.

By the same argument as in section 5.1.9 we extend the restriction of 1
2πi log z

z−1 to
U ′2∩DP to a C∞-function h on DP and put μ = d′′h. This form μ has compact support in
U , hence it can be extended to a (0,1)–form on S which then represents ξP,Q ∈ H1(S,OS)
(a special case of the argument in Theorem 5.1.32). Again we have that the pairing of
this class with a holomorphic 1-form ω is given by

∫
S
ω ∧ μ. To compute this integral we

observe that ω ∧μ has support in the neighborhood N of γ, hence it suffices to integrate
over this neighborhood. But now we can write ω ∧ μ = ω ∧ dh and our integral becomes
− ∫

∂N ω ∧ h where h = 1
2πi log z

z−1 on the boundary of N .
Letting this neighborhood shrink to γ the values of log z

z−1 differ by 2πi on the two sides
of our path γ. Hence we get that

< ξP,Q,ω >=

∫
γ

ω (5.60)

and this is Abel’s theorem in the case that our divisor is Q − P , and P,Q close to each
other.

Of course the theorem of Abel tells us that on a Riemann surface of genus zero any divisor
of degree zero is principal because there are no holomorphic differentials. This we know
already. We can exploit this fact to construct isomorphisms f : S

∼−→ �1(�) for any Rie-
mann surface S of genus zero. We simply take two points P �= Q and find a meromorphic
function f with divisor Div(f) = P − Q. This function is such an isomorphism.
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This last argument also shows:

Lemma 5.1.36. On a Riemann surface of genus g > 0 a divisor of the form P −Q with
P �= Q is never principal.

The theorem of Abel is the source for the so called self-duality of the Jacobian, which
will be discussed in detail later in section 5.2.3. We pick a point P0 and consider the
morphism

iP0 : S −→ J (5.61)

P �−→ (P ) − (P0).

This is clearly a holomorphic map. We just saw that for Riemann surfaces S of genus
g > 0 this map is injective. We want to explain how Abels theorem gives us its differential.
The tangent space of J at any point is H1(S,OS) and hence we see that the space of
holomorphic 1-forms on J is H0(S,ΩS). Therefore iP0 yields a �-linear map between the
spaces of holomorphic 1-forms

i∗P0 : H0(J,Ω1
J) = H0(S,Ω1

S) −→ H0(S,Ω1
S) (5.62)

and I claim that this map must be the identity. If ω ∈ H0(J,Ω1
J ) is a holomorphic 1-form

and if X ∈ TP is a tangent vector at P0 we compute i∗P0(ω)P (X). We choose a local

coordinate z at P , then we may assume that X = ∂
∂z . Then i∗P0(P + h · ∂

∂z ) is the linear
form

ω �−→
∫ P+h ∂

∂z

P0

ω =

∫ P

P0

ω +

∫ P+h ∂
∂z

P

ω,

and this yields

i∗P0(ω)P (X) = i∗P0(ω)P (
∂

∂z
) = ωP (

∂

∂z
)

and hence i∗P0(ω) = ω.

We see that iP0 gives us a holomorphic embedding of the curve into its Jacobian. This
map also induces a homomorphism between the Picard groups

i∗P0 : Pic(J) −→ Pic(S).

We will define a subgroup Pic0(J) (see Proposition 5.2.3) and we will prove that the
restriction

tiP0 : Pic0(J) −→ Pic0(S)

is an isomorphism. This is the so called self duality of J .
In section 5.1.6. I stated the theorem that Riemann surfaces S of genus 1 are of the form
S = �/Ω. To get this description I stated that the universal cover S̃ is the complex plane
and I gave it as an exercise to verify this. Our considerations above solve this exercise.
For surfaces of genus g = 1 that map iP0 is an isomorphism.



222 5 Compact Riemann surfaces and Abelian Varieties

This has an important consequence: If we pick a point P0 ∈ S, then we get a group
structure on the Riemann surface by transporting the group structure from J to S. The
point P0 will then be the neutral element for this group structure.
The sublattice Γ∨ = H1(S,�) ⊂ H0(S,Ω1

S)∨ is called the period lattice. Recall that
it consists of linear forms on H0(S,Ω1

S) and these linear forms are given by the period
integrals

γ �→ ω �→
∫
γ

ω

where γ is a closed 1-cycle representing a homology class.
These period integrals are historically the origin of the whole theory of Riemann surfaces.
Let us consider the special case of an elliptic curve, which we write in a slightly modified
Weierstraß form

y2 = x(x − 1)(x − λ) = x3 − (1 + λ)x2 + λx,

we assume that λ �∈ [−∞,1]. In the complex plane we choose a straight path γ̄1 from 0
to 1, this is our intervall [0,1] and a straight path γ̄2 from 1 to λ. Now we produce closed
cycles in our elliptic curve. We start at zero and go to one. For any x we choose a square
root y(x) =

√
x(x − 1)(x − λ) which varies continuously with x. At 1 we turn back, but

now we take the other root. The path x �→ y(x) for 0 ≤ x ≤ 1/2 and x �→ −y(x) for
1/2 ≤ x ≤ 1 gives us a closed path γ1. If we project it to the x-plane then we get γ̄1 going
from zero to 1 and back. We can do the same thing with γ̄2. The differential ω = dx

y
is

holomorphic and we get two period integrals

ω1(λ) =

∫
γ1

ω = 2

∫ 1

0

dx√
x(x − 1)(x − λ)

ω2(λ) =

∫
γ2

ω = 2

∫ λ

1

dx√
x(x − 1)(x − λ)

,

where the notation is traditional but a little bit sloppy. For further information on this
subject we recommend [Hu] Chapter 9.

5.1.12 Riemann Period Relations

The cup product < , >∪ defines a non degenerate alternating pairing on our lattice Γ.
On the other hand we have Γ⊗� = Γ�

∼−→ H1(S,OS) and this identification provides a
complex structure I on Γ�, namely the one which is induced by the multiplication by i
on H1(S,OS).
We will show that the complex structure I is an isometry for the extension of < , >∪ to
Γ�. To get this information we show that the pairing is the imaginary part of a Hermitian
form h on (Γ�,I) (see 4.11.2). We define this form h and show that −Imh =< , >∪. In
addition it will turn out that h is positive definite.

We define a Hermitian scalar product on H0(S,Ω1
S). If we have two antiholomorphic

forms ω1,ω2 ∈ H0(S,Ω1
S) we put
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h < ω1,ω2 > = −2i

∫
S

ω1 ∧ ω2. (5.63)

If we write locally ω1 = f1dz and ω2 = f2dz then the integrand becomes

f1(dx − idy) ∧ f2(dx + idy) = 2if1f2dx ∧ dy,

hence we see that h is a positive definite Hermitian form.

Now we take two cohomology classes ξ,η ∈ H1(S,�). Using the de Rham isomorphism,
we can represent them by differential forms which we can decompose

ωξ = ω0,1
ξ + ω0,1

ξ (5.64)

ωη = ω0,1
η + ω0,1

η .

The cup product pairing is given by integrating the representing differential forms

< ξ,η >∪ =

∫
S

ωξ ∧ ωη (5.65)

= −
∫
S

ω0,1
η ∧ ω0,1

ξ +

∫
S

ω0,1
ξ ∧ ω0,1

η

= −Imh(ω0,1
ξ ,ω0,1

η ).

We have the isomorphism

j : H1(S,�)
∼−→ Γ ⊂ H1(S,OS)

∼−→ H0(S,Ω1
S)

and it is clear the the classes j(ξ) (resp. j(η)) are represented by ω0,1
ξ (resp. ω0,1

η ). We
can transport the cup product pairing via j to Γ, then we get the famous

Theorem 5.1.37 (Riemann period relations). The restriction of the imaginary part of
the Hermitian form h to Γ is the cup product times -1. Especially we can conclude that
the values of Imh on Γ × Γ are integers and this form is a perfect pairing.

5.2 Line Bundles on Complex Tori

5.2.1 Construction of Line Bundles

The presentation of the material in this section is greatly inspired by the work of David
Mumford ([Mu1], [Mu2]).
The period relations are of great importance, because they allow the construction of line
bundles on J . The positivity of the form h will ensure that these bundles will be ample
and this means roughly that high positive powers of this bundle have many sections (see
below section 5.2.4). To explain this construction of line bundles we consider a more
general situation.
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Let V be a complex vector space of dimension g and let Γ ⊂ V be a lattice in V , this
means that Γ is a free �-module of rank 2g which sits in V as a discrete submodule.
The quotient A = V/Γ is a compact complex analytic variety which also carries the
structure of a complex analytic abelian group, it is a complex torus (section 5.1.10). We
have Γ�

∼−→ V as real vector space and as usual we denote by I the complex structure
on Γ� induced by this isomorphism.

We change our point of view slightly. Our starting point is a free abelian group Γ of rank
2g on which we have an alternating 2-form

〈 , 〉 : Γ × Γ −→ �.

A second datum is a complex structure I : Γ� −→ Γ� which is an isometry for the
pairing, i.e. 〈Ix,Iy〉 = 〈x,y〉 for all x,y ∈ Γ�. In the sequel I will say that 〈 , 〉 and I are
compatible.
We put V = (Γ�,I) and consider it as a complex vector space. Then A = V/Γ is our
complex torus. Let H on V = (Γ�,I) be the Hermitian form obtained from (〈 , 〉,I) (see
pages 169 f.).
The pairing 〈 , 〉 allows us to construct certain line bundles

LH(〈 , 〉,η,ϕ) = L((〈 , 〉,I),η,ϕ)

which depend on additional data ϕ and η where ϕ ∈ Hom(Γ,�) and where η is a map

η : Γ/2Γ −→ 1
2�/�

which satisfies the compatibility relation

1
2 〈γ1,γ2〉 + η(γ1 + γ2) − η(γ1) − η(γ2) = 0 mod � (5.66)

for all γ1,γ2 ∈ Γ. We say that η is adapted to the alternating form 〈 , 〉.

These data allow us to construct a line bundle. We consider an open connected neigh-
borhood U of a point x ∈ A which is so small that the connected components Uα in the
inverse image of U map isomorphically to U under the projection

p : V −→ A.

For any two such components Uα,Uβ ⊂ p−1(U) there is exactly one element γ ∈ Γ such
that γ + Uα = Uβ. We define a sheaf LH(〈 , 〉,η,ϕ) = L(〈 , 〉,η,ϕ) whose sections over U
are the holomorphic functions

f : p−1(U) −→ �

which satisfy the transformation rule

f(z + γ) = f(z)eπ(H(z,γ)+ 1
2
H(γ,γ))+2πi(ϕ(γ)+η(γ)). (5.67)

The reader should notice that e2πiη(γ) is well defined and is equal to ±1.
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I claim that giving such a function is the same as giving a holomorphic function on any of
the connected components Uα in p−1(U) and then extending it to the other components
by the transformation rule. To see this we have to check consistency which means we
have to verify that

f(z + γ1 + γ2) = f((z + γ1) + γ2).

We compute both sides:

f(z + γ1 + γ2) = f(z)eπ(H(z,γ1+γ2)+
1
2
H(γ1+γ2,γ1+γ2))+2πi(ϕ(γ1+γ2)+η(γ1+γ2)) (5.68)

= f(z)eπ(H(z,γ1)+H(z,γ2)+
1
2
(H(γ1,γ1)+H(γ2,γ2)+H(γ1,γ2)+H(γ2,γ1)))+2πi(ϕ(γ1)+ϕ(γ2)+η(γ1+γ2)).

For the other side we get

f((z + γ1) + γ2) = f(z + γ1)e
π(H(z+γ1,γ2)+

1
2
H(γ2,γ2))+2πi(ϕ(γ2)+η(γ2)) (5.69)

= f(z) · eπ(H(z,γ1)+
1
2
H(γ1,γ1)+H(z,γ2)+H(γ1,γ2)+

1
2
H(γ2,γ2))+2πi(ϕ(γ1)+ϕ(γ2)+η(γ1)+η(γ2)).

The exponential factors are equal because their quotient is

eπ(
1
2
(H(γ2,γ1)−H(γ1,γ2)))+2πi(η(γ1+γ2)−η(γ1)−η(γ2)) (5.70)

= e2πi(
1
2
ImH(γ2,γ1)+η(γ1+γ2)−η(γ1)−η(γ2)).

and this is equal to 1 since we required equation (5.66) for η. The result of this compu-
tation can be formulated differently: The map

CH(ϕ,η) : Γ −→ OV (V ) (5.71)

γ �−→ π
(
H(z,γ) + 1

2H(γ,γ)
)
+ 2πi (ϕ(γ) + η(γ))

is a 1-cocycle on Γ with values in the holomorphic functions on V modulo the constant
functions which have values in 2πi�. This shows that

LH(〈 , 〉,η,ϕ)(U) � O(Uα)

for any component in Uα ⊂ p−1(U). This means that LH(〈 , 〉,η,ϕ) is a (holomorphic)
line bundle. Now we see why the integrality of ImH on Γ × Γ is so important.

The data H and I determine each other, therefore we may either suppress the subscript
H or the I in the notation. On the other hand it follows from the considerations on pages
169 ff. that the pair of �-bilinear forms < , > ,H determines the complex structure I
which is not directly visible in the definition of the line bundle. Hence it may be some-
times useful to keep the H .

In section 4.6.8 we have shown that the second cohomology group is

H2(A,�) = H2(V/Γ,�) = Hom(Λ2Γ,�). (5.72)

We have the exact sequence
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0 −→ H1(A,�) −→H1(A,OA) −→ H1(A,O∗A) −→ H2(A,�) (5.73)

and we leave it as an exercise to the reader to verify that

c1(LH(〈 , 〉,η,ϕ)) = ImH |Γ × Γ. (5.74)

It is not too difficult to show that for a given 〈 , 〉 we can find an η. It is not unique, but
it is easy to see that for two choices ηH ,η′H we can find a homomorphism δ : Γ → � so
that δ(Γ) ⊂ 1

2� and δ(γ) = ηH(γ) − η′H(γ) ∈ �. Then it is clear that

LH(〈 , 〉,η,ϕ)
∼−→ LH(〈 , 〉,η′,ϕ + δ).

Our next aim is to show that this construction gives us all line bundles on A. More
precisely we want to give a description of the Picard group (see section 5.1.10) Pic(A) in
terms of these data < , >, I, η, ϕ. The bilinear form gives us the Chern class and once
the bilinear form is fixed the ϕ will give the line bundles with a given Chern class. In any
case it is clear that we have:

Proposition 5.2.1. The group of Chern classes of line bundles is the kernel of the
homomorphism

H2(A,�) −→ H2(A,OA).

We have seen that H2(A,�) = Hom(Λ2Γ,�) and it is an easy exercise in linear algebra
to show that an element

c ∈ H2(A,�) = Hom(Λ2Γ,�)

goes to zero in H2(A,OA) if and only if the extension

c� : (Γ ⊗�) ∧ (Γ ⊗�) −→ �

satisfies c�(Ix,Iy) = c�(x,y), i.e. the complex structure is an isometry. It is of course
clear that these alternating forms c which satisfy c�(Ix,Iy) = c�(x,y) form a finitely
generated subgroup NS(A) of Hom(Λ2Γ,�).

Definition 5.2.2. This group NS(A) is called the Neron-Severi group.

We should be aware that this group NS(A) can be trivial, actually this is the case for a
generic choice of the complex structure on Γ�.

But for the classes c in the Neron-Severi group we gave an explicit construction of line
bundles with Chern class c. We can take any L(c,η,ϕ).

Proposition 5.2.3. The homomorphism from the subgroup generated by the L(c,η,ϕ) to
the Neron-Severi group NS(A) is surjective.

To get the group of all line bundles we return to its description as H1(A,O∗A) and put:

Pic0(A) = ker
(
δ : Pic(A) −→ H2(A,�)

)
From our familiar exact sequence we get
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Pic0(A) = H1(A,OA)/H1(A,�).

Again we get from section 4.6.8 that H1(A,�) = H1(�g/Γ,�) = Hom(Γ,�). To compute
H1(A,OA) we consider the Dolbeault complex

0 −→ Ω0
M (OA)(A) −→ Ω0,1

M (OA)(A) −→ Ω0,2
M (OA)(A) −→ . . . (5.75)

The tangent bundle of A is trivial. Using the translations we can identify the tangent
space at any point to TA,0 � V , the tangent space at zero.

Hence the bundle of differentials is also trivial and at any point

Ω1
A,x = Hom�(V,�). (5.76)

Of course the bundle Ω0,1
A is also trivial and if we give a basis to V and write z =

(. . . ,zα, . . .) ∈ �g = V then the global sections Ω0,1
∞ (A) are given by

ω =
∑

fαdzα (5.77)

where fα is a C∞-function on A. We apply the principles of Hodge theory: we choose a
positive definite Hermitian form on the tangent bundle, which we get from a Hermitian
form on V = TA,0. We choose it in such a way that the basis vectors above form an
orthonormal basis. Then it is an easy computation to show that

Δ′′ω = (d′′δ′′ + δ′′d′′)ω =

⎛⎝∑
β

∂2fα
∂zβ∂zβ

⎞⎠ dzα. (5.78)

In section 4.11.3 we proved that

�
0,1
(
Ω0,1
∞ (A)

)
=

{∑
α

cαdzα
∣∣ cα ∈ �

}
(5.79)

and that we get an isomorphism{∑
cαdzα

∣∣ cα ∈ �
} ∼−→ H1(A,OA). (5.80)

It does not depend on the metric, it is induced from the embedding of the translation
invariant differential form into the space of all differential forms.

We consider the �-vector space V ∨ = Hom�(V,�). On this vector space we define a
complex structure by Iφ(Iv) = φ(v), i.e Iφ(v) = −φ(Iv). Then we have

V ∨ −→ Hom(V ⊗� �,�) = Hom(V 1,0,�) ⊕ Hom(V 0,1,�) (5.81)

and the composition with the two projections is bijective. The projection to the second
summand is �-linear, i.e. Iφ(v) = iφ(v). This means that we have �-linear isomorphisms

V ∨ ∼−→ Hom(V 0,1,�)
∼−→ H1(A,OA). (5.82)
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To get the group Pic0(A) we have to divide the group H1(A,OA) by the subgroup
H1(A,�) and this means that we have to divide V ∨ by Γ∨ = Hom(Γ,�) ⊂ V ∨. Hence
we get an isomorphism

c : Pic0(A)
∼−→ V ∨/Γ∨ ∼−→ Hom(Γ,�)/(Hom�(V 1,0,�) + Hom(Γ,�)). (5.83)

Here I recall that Hom�(V 1,0,�) = Hom�(V,�) = {φ | φ(Iv) = iφ(v)}.

We want to invert this isomorphism. We constructed the line bundles LH(〈 , 〉,η,ϕ) where
ϕ ∈ Hom(Γ,�). We denote the restrictions of ϕ to V 1,0 and V 0,1 respectively by ϕ1,0,ϕ0,1

and hence ϕ = (ϕ1,0,ϕ0,1).
It is clear from the construction that we have

Lemma 5.2.4.

(a) The two line bundles LH(〈 , 〉,η,ϕ) and LH(〈 , 〉,η,ϕ′) are isomorphic if

ϕ− ϕ′ = (ψ,0).

(b) The bundles LH(〈 , 〉,η,ϕ) and LH(〈 , 〉,η,ϕ′) are actually the same line bundles if

ϕ − ϕ′ ∈ Hom(Γ,�).

Proof: To see (a) we observe that e2πiψ(z) is holomorphic on V and multiplication by
this function provides an isomorphism between LH(〈 , 〉,η,ϕ) and LH(〈 , 〉,η,ϕ′).

The assertion b) is obvious because e2πiϕ(γ) = e2πiϕ
′(γ) for all γ ∈ Γ.

If now the alternating form 〈 , 〉 = O is the trivial nullform then we choose ηO = 0. We
find

L(O,0,ϕ) ⊗ L(O,0,ϕ′) = L(O,0,ϕ + ϕ′),

i.e. our construction of line bundles yields a homomorphism

Hom(Γ,�) −→ Pic0(A)

which by the previous Lemma factors through Hom�(V,�) +Hom(Γ,�). Hence our con-
struction yields a homomorphism

d : Hom(Γ,�)/(Hom�(V,�) + Hom(Γ,�)) −→ Pic0(A).

The remaining part of the proof follows from Proposition 5.2.5.
I leave it as an exercise to the reader to show:

Proposition 5.2.5. The two homomorphisms c,d defined in the proof of Lemma 5.2.4
are inverse to each other.

Corollary 5.2.6. If A = V/Γ is a complex torus then the group Pic0(A) has again the

structure of a complex torus and is canonically isomorphic to V
∨
/Γ∨.
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Definition 5.2.7. This torus is called the dual torus and is denoted by A∨.

Our considerations also imply that the bundles with a given Chern class form a principal
homogeneous space under

Hom�(Γ,�)/(Hom�(V,�) ⊕ Hom(Γ,�)). (5.84)

But this description requires a choice of an η adapted to 〈 , 〉. We have seen that changing
η can be corrected by the modification of the linear form ϕ.
Now it is clear that all line bundles L on A are of the form LH(〈 , 〉,η,ϕ) = L(〈 , 〉,I,η,ϕ).

The Poincaré Bundle

We see that the line bundles on A with Chern class zero are parameterized by the points
of the dual torus A∨. We want to make this statement more precise. We construct a
line bundle N on A × A∨ which has the following property: For any point y ∈ A∨ the
isomorphism class of the line bundle N restricted to A × {y} ∼−→ A is the isomorphism
class corresponding to the point y ∈ A∨ = Pic0(A).

We know what we have to do: we have to construct the right line bundle on

A × A∨ = V/Γ × V ∨/Γ∨ = (V ⊕ V ∨)/(Γ ⊕ Γ∨).

To do this we have to find the right alternating form. Starting from the non degenerate
pairing (evaluation)

Γ × Γ∨ −→ � (5.85)

(γ,ψ) �−→ ψ(γ)

we get the tautological alternate pairing

e : (Γ ⊕ Γ∨) × (Γ ⊕ Γ∨) −→ �, (5.86)

which is defined by

e 〈(γ1,ψ1),(γ2,ψ2)〉 = ψ2(γ1) − ψ1(γ2).

Of course it is clear that I is an isometry for this alternating form on (Γ⊕Γ∨)⊗�. Now
we have to find an η which is adapted to e. An easy calculation shows that we can take
η((γ,ψ)) = 1

2ψ(γ). We consider the line bundle L(e,η,0) on A× A∨.

We write down the Hermitian form on V ⊕ V ∨:

H((z,w),(z1,w1)) = −Iw1(z) + w(Iz1) + i(w1(z) − w(z1)) (5.87)

and hence we get for the local sections of our bundle L(e,η,0) on A × A∨.

f(z + γ,w + ψ) = f(z,w)eπ(−Iψ(z)+w(Iγ)+i(ψ(z)−w(γ))+πiψ(γ). (5.88)
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If we now fix the second variable w and restrict the bundle to A× {w} then we get

f((z + γ,w)) = f(z,w)eπ(w(Iγ)+i(−w(γ)) (5.89)

= f(z,w)eπi((−i⊗Iw−w)(γ)).

This is now the bundle L(O,0, − i ⊗ Iw − w). To get its isomorphism class we have to
project −i⊗ Iw −w to Hom�(V 0,1,�). This projection is clearly the projection of −2w
and hence we see that the restriction is isomorphic to the line bundle which corresponds
to −w under the homomorphism V ∨ −→ Pic0(A).

If we exchange the roles of A and A∨and fix the variable z and restrict to {z}×A∨ then
we get the line bundle

f((z,w + ψ)) = f(z,w)eπ(−Iψ(z)+iψ(z)) (5.90)

on A∨. This is clearly the line bundle on A∨ which corresponds to z under the homo-
morphism V ∨∨ = V → Pic0(A∨) → A.

Definition 5.2.8. The bundle L(e,η,0) is called the Poincaré bundle and gets the new
name N .

Proposition 5.2.9. The Poincaré bundle realizes isomorphisms

A∨ ∼−→ Pic0(A)

w �−→ N | A × {w}

and

A
∼−→ Pic0(A∨)

z �−→ N | {z} × A∨.

Universality of N

We briefly discuss another property of the bundle N , which is called universality, we
will skip some details. Let us assume that we have a line bundle L on A × T where T
is a complex analytic variety. We assume that T is connected, and we also assume that
L | A × t0 is in Pic0(A) for some point t0. Now we can define a map

ψ : T −→ A∨ = Pic0(A)

which is defined by

L | A × {t} � Nψ(t).

I claim that ψ is indeed an analytic map, and that in addition for any point t0 ∈ T we
can find a neighborhood V of t0 such that

L | A × V � (Id×ψ∗)(N ) | A × V.
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We introduce the following notation: If we have two line bundles L1,L2 on X × T then
we write

L1 ∼T L2

if these bundles are isomorphic locally in T. This means that for any point t ∈ T we can
find a neighborhood V such that

L1 | X × V � L2 | X × V.

Hence we can find a line bundle M on T such that

L1 � L2 ⊗ p∗2(M),

where p2 is the projection to T . We can reformulate the claim

Proposition 5.2.10. Let T be a connected complex manifold (or even only a connected
complex space). For any line bundle L on A×T , which satisfies L | A×{t0} for some point
t0 ∈ T0, we have a unique holomorphic map ψ : T −→ A∨ such that L ∼T (Id×ψ)∗(N ).

This looks very plausible but in fact it not so easy. I will gives a somewhat sketchy
argument why this is true. The assertion is local in T , hence we can restrict our attention
to an open neighborhood U of a given point t0 ∈ T . We assume that we have local
coordinates u1, . . . ,un. We introduce a relative Dolbeault-complex, this will be the family
of Dolbeault complexes along the fibres of the projection A × U −→ U . To define this
complex we observe that in any point (x,u) ∈ A × U we have the space TA

x,u of vertical
tangent vectors along A×{u}. We also choose a neighborhood Vx of x and assume that we
have local coordinates z1, . . . ,zd, we actually take the linear coordinates in a connected
component of the inverse image of U in V = �g. We define Ω0p

A×U/U to be the sheaf of

forms, which on this neighborhood are given by

ω =
∑

fi1,...,ip(z,u)dz̄i1 ∧ · · · ∧ dz̄ip .

where the coefficients fi1,...,ip(z,u) are C∞ and holomorphic in the variables ui, evaluated
at (x,u) these are multilinear alternating forms of type (0,p) on TA

x,u.
Now it is clear that we get a complex

0 −→ OA×U −→ Ω00
A×U/U

d′′−→ Ω01
A×U/U −→ . . . .

Now we have to use a relative lemma of Dolbeault, which gives us that this complex is
a resolution and we have to use a relative version of Exercise 16 to prove that this is
indeed an acyclic resolution for the functor p2∗ of OA×U .
Now it is rather clear that our line bundle L is given by a cohomology class in H1(A ×
U,OA×U ). This class can now be represented (locally) by an element

ω =
∑
i

fi(x,u)dz̄i,

where fi(z,u) is C∞ and holomorphic in the u1, . . . ,un. Now we use the same arguments
as in 4.11.3, 5.1.1 and conclude that this form defines the same class as
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ω0 =
∑
i

f0i (x,u)dz̄i,

where f0i (x,u) = f0i (u) is the constant Fourier-coefficient of fi(z,u), i.e. it does not depend
on x (we assumed that the coordinates z1, . . . ,zd are linear) and since it is given by an
integral in the x-direction is holomorphic in u. But now we know that the coefficients
f0i (u) are local coordinates for L | A× {u} considered as a point in A∨ and this finishes
the proof.
I should say that this is not the ”right” proof of the lemma above. It is much more
natural to prove it starting from the finiteness results for coherent sheaves in complex
analytic geometry. These finiteness results imply so called semi-continuity theorems for
the cohomology of coherent sheaves and these give a much more transparent proof of the
lemma. These finiteness results are very deep (See [Gr-Re2], Chap. 10)
We will encounter a similar situation in 5.3.1, where we discuss the Picard group on
certain products X×Y . In the second volume we will analogous statements in the context
of algebraic geometry. In that case the truth of the assertion will be a consequence of
the construction, and we will need the full strength of the finiteness results in algebraic
geometry. In the context of algebraic geometry the finiteness results are easier to prove.

5.2.2 Homomorphisms Between Complex Tori

If we have two such tori

V1/Γ1 = A1 V2/Γ2 = A2

then an analytic homomorphism φ : A1 → A2 is of course the same thing as a �-linear
map φ : V1 → V2 which maps the lattice Γ1 into Γ2. We may also view φ as an element
φ : Γ1 → Γ2 which after extension to a linear map Γ1⊗�→ Γ2⊗� respects the complex
structures on Γ1 ⊗� = V1, Γ2 ⊗� = V2.

We summarize:

Proposition 5.2.11. The module Hom(A1,A2) is a submodule of Hom(Γ1,Γ2). It con-
sists of those elements which after extension to � commute with the complex structures.

(This looks rather innocent, but it is not. The reader should look at the discussion on
the last page of the book in section 5.3.4.) A homomorphism ϕ : A1 → A2 also induces
a homomorphism between the Picard groups

ϕ∗ : Pic(A2) −→ Pic(A1)

which is induced by the pull back of line bundles.

We can restrict this homomorphism to the groups Pic0(A2) = A∨2 and Pic0(A1) = A∨1
and denote this restriction by

ϕ∨ : A∨2 −→ A∨1 .

A priori this is a homomorphism between abstract groups, but from the explicit descrip-
tion of the isomorphism Pic0(Ai)

∼−→ A∨i it becomes clear:
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Proposition 5.2.12. The element ϕ∨ is a homomorphism of complex tori. This homo-
morphism – viewed as an element in Hom(Γ∨2 ,Γ

∨
1 ) – is simply the adjoint of the element

ϕ ∈ Hom(Γ1,Γ2). Especially we see that the function ϕ �→ ϕ∨ is additive.

Proof: To see that this is true, we consider an element x ∈ Pic0(A2). We gave an explicit
construction of a line bundle Lx corresponding to x. We choose a linear map

λx : Γ2 −→ �,

which after extension to Γ2 ⊗� and restriction to V 2 maps to x.

For an open set V ⊂ A2 the space of sections is

Lx(V ) =
{
f : π−1(V ) −→ �

∣∣∣ f is holomorphic and f(z + γ) = f(z)e2πiλx(γ)
}

and the fibre of Lx in a point y ∈ H1(S,OS)/Γ is given by

(Lx)y =
{
f : π−1(y) −→ �

∣∣∣f(y + γ) = f(y)e2πiλx(γ)
}
.

If now ϕ : A1 −→ A2 and if y1 ∈ A1, then

ϕ∗(Lx)y1 = (Lx)ϕ(y1).

If we consider the diagram

Γ1
ϕ−→ Γ2

λx−→ �

↓ ↓
V1

ϕ−→ V2

then we see that ϕ∗(L) is the line bundle defined by the composition

λx ◦ ϕ : Γ1 −→ �

and this proves the desired formula.

We may also consider the induced map

ϕ∗ : NS(A2) −→ NS(A1).

This homomorphism is easy to describe: An element e ∈ NS(A2) is an alternating form
e : Γ2 × Γ2 −→ � and ϕ∗(e) is simply the form on Γ1 × Γ1 induced by ϕ, i.e.

ϕ∗(e)〈γ1,γ′1〉 = e〈ϕ(γ1),ϕ(γ2)〉.
Therefore we get

Lemma 5.2.13. The function φ �→ φ
∗
is quadratic, i.e. we have

φ + ψ
∗

= φ
∗
+ ψ

∗
+ < φ,ψ >

where (φ,ψ) −→< φ,ψ > is a bilinear map

Hom(A1,A2) × Hom(A1,A2) −→ Hom(NS(A2),NS(A1)).
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The Neron Severi group and Hom(A,A∨).

We come to another interpretation of the Neron-Severi group. An element e ∈ NS(A)
defines a homomorphism

Φ(e) : Γ −→ Γ∨

γ �−→ {γ′ �→ e〈γ,γ′〉} .

The condition that I is an isometry for the extension e� to Γ� implies that Φ(e) extends
to a �-linear homomorphism

Φ̃(e) : V −→ V ∨

We have the inclusions Γ ⊂ V and Γ∨ ⊂ V ∨ and it is clear that Φ̃(e) maps Γ into Γ∨

and induces Φ(e) on the lattices.

Therefore we see that we have a canonical homomorphism

Φ : NS(A) −→ Hom(A,A∨).

Any element φ : Γ → Γ∨ has a transpose

φ∨ : Γ∨∨ = Γ −→ Γ∨.

We can define the alternating elements Homalt(A,A
∨) to be the elements which satisfy

φ∨ = −φ and it is an easy exercise in linear algebra to show that our above map Φ
provides an isomorphism

Φ : NS(A) −→ Homalt(A,A
∨). (5.91)

If we have a homomorphism φ : A1 → A2 between two complex tori and consider
the induced homomorphism φ∗ : NS(A2) → NS(A1), then we get a homomorphism
Φ1 ◦ φ∗ ◦ Φ−12 : Homalt(A2,A

∨
2 ) → Homalt(A1,A

∨
1 ) and it is straightforward from the

definition that this homomorphism sends

ψ �−→ tφ ◦ ψ ◦ φ. (5.92)

The inverse of this homomorphism Φ is given by the map that sends an alternating
element φ to the form

eφ〈γ,γ′〉 = φ(γ′)(γ). (5.93)

We have another homomorphism Ψ : Hom(A,A∨) → NS(A). To get this homomorphism
we start from the line bundle N on A × A∨. For any φ : A → A∨ we get an embedding
iφ : A → A × A∨ by z �→ (z,φ(z)). We get a bundle i∗φ(N ) on A and its Chern class is
Ψ(φ). The resulting form

< γ1,γ2 >φ= φ(γ1)(γ2) − φ(γ2)(γ1) = eφ < γ1,γ2 > −eφ∨ < γ1,γ2 > (5.94)

on Γ is alternating. It depends only on the alternating component of φ and for alternating
φ the map φ �→< , >φ is twice the inverse of Φ.
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The construction of Ψ starting from a line bundle

We want to give a different construction of the homomorphism Φ which works with the
line bundles themselves rather than with their Chern classes.

To our element e ∈ NS(A) we choose a line bundle L with c1(L) = e, in other words we
choose an adapted η and a ϕ : Γ → � and consider the line bundle

L = L(e,η,ϕ).

Any element x ∈ A induces a translation Tx : y �→ x + y on A and we can consider the
line bundle T ∗x (L) ⊗ L−1. To compute this line bundle we choose an element x̃ in the
fibre p−1(x). Let He the attached Hermitian form then the fibre of T ∗x (L) at a point z is
equal to the fibre of L at x + z and therefore it is given by the functions which satisfy

f(z̃ + x̃ + γ) = f(z̃ + x̃)e
π
(
He(z̃+x̃,γ)+

1
2He(γ,γ)

)
+2πi(ϕ(γ)+ηHe(γ)) (5.95)

for all z̃ ∈ p−1(z).

Comparing this to the fibre of L at z yields that the fibre of T ∗x (L)⊗L−1 is given by the
functions

f(z̃ + γ) = f(z̃)eπHe(x̃,γ). (5.96)

This line bundle is obtained from the linear form ϕx̃ : γ �→ He(x̃,γ), in other words it
is isomorphic to LO(ϕx̃). An easy calculation shows that this linear form is of the type
(0,ϕ1,0), in other words it is trivial on the first component in the decomposition

Hom�(Γ ⊗�,�) = Hom�(V ⊕ V ,�). (5.97)

The same calculation shows that the linear form ψx̃ : γ �→ H(γ,x̃) is of type (ψ0,1,0).
Therefore we do not change the isomorphism class of the line bundle if we replace ϕx̃ by

φx̃(γ) = H(x̃,γ) − H(γ,x̃) = 2iImHe(x̃,γ) = 2ie < x̃,γ > . (5.98)

Hence we see that T ∗x (L) ⊗ L−1 ∼−→ L(O,0,e < x̃, >) where e < x̃, > is a linear map
from Γ to �.

Therefore it is clear that we have

Lemma 5.2.14. The map
x �→ T ∗x (L) ⊗ L−1

from A to A∨ is a homomorphism and this homomorphism is equal to Φ(e).

This new description of Φ has the advantage that it is constructed in terms of the
bundles rather than in terms of the Chern classes. It is of course important that this
homomorphism depends only on the Chern class of the line bundle L.

Definition 5.2.15. An element c = c1(L) of the Neron-Severi group is called rationally
non degenerate if the alternating pairing c� : Γ� × Γ� −→ � is non degenerate.
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Proposition 5.2.16. Let c = c1(L) be a rationally non degenerate element in the Neron-
Severi group. Then the induced homomorphism φc : Γ → Γ∨ is injective and the image
φc(Γ) ⊂ Γ∨ has finite index. From our description of the complex tori it is immediately
clear that the kernel of

x �−→ T ∗x (L) ⊗ L−1

is canonically isomorphic to Γ∨/φc(Γ). Hence we have an isomorphism

ker(φc)
∼−→ Γ∨/φc(Γ).

I want to mention, that the order of this index is a perfect square. This follows easily, if we
believe that we can find a basis e1, . . . ,eg,f1, . . . ,fg such that e(eν ,fν) = −e(fν,gν) = ni
and all other values give zero. Then we get as a basis for the dual module Γ∨ the elements
e1/n1, . . . ,eg/ng,f1/n1, . . . ,fg/ng and [Γ∨ : Γ] =

∏
n2ν . The number |∏ν nν | is called the

Pfaffian Pf(e) of e.

5.2.3 The Self Duality of the Jacobian

We specialize these considerations to the Jacobian J of our Riemann surface S. We
resume our considerations in section 5.1.10. We saw that

J = H1(S,OS)/Γ = H0(S,Ω1
S)/Γ

where we identify H1(S,OS) = H0(S,Ω1
S) by means of the Dolbeault isomorphism. The

submodule Γ is the image of H1(S,�) under the homomorphism j : H1(S,�) → Γ. The
complex structure I on Γ�

∼−→ H1(S,OS) is the one induced from H1(S,OS).
On this module Γ we have the privileged alternating form given by the cup product
e0 : Γ × Γ → �. It provides an isomorphism

ϕe0 : Γ −→ Γ∨.

The Riemann period relations (see section 5.1.12) say that the complex structure on Γ�
is an isometry for e0. Hence we get an isomorphism

je0 : J −→ J∨

‖ ‖
H1(S,OS)/Γ −→ H0(S,Ω1

S)∨/Γ∨

The isomorphism or – what is the same – the class e0 ∈ NS(J) is called the canonical
polarization of J (see Definition 5.2.21). It is an additional datum attached to the
complex torus.
At the end of the discussion of Abel’s theorem we discussed the embedding

iP0 : S −→ J

which provided a homomorphism

tiP0 : Pic0(J) −→ Pic0(S)
‖ ‖
J∨ −→ J
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and now it is clear from these computations that tiP0 is the inverse of the canonical
polarization.
The polarization je0 induces an isomorphism Hom(J,J)

∼−→ Hom(J,J∨) and combining
this with the isomorphism (5.91) gives us an isomorphism

NS(J)
∼−→ Endsym(J,J) (5.99)

where the subscript sym refers to the pairing e0. Using this isomorphism we can interpret
the induced morphism ϕ∗ as endomorphism ϕ∗ of Endsym(J,J) and it is clear from the
definition that

ϕ∗(ψ) = tϕψϕ (5.100)

5.2.4 Ample Line Bundles and the Algebraicity of the Jacobian

The Kodaira Embedding Theorem

Let us assume that we have an alternating form e =< , >: Γ×Γ −→ � and a compatible
complex structure I. So far it did not play any role that the Hermitian form H attached
to this form e was positive definite. We want to discuss the implication of the positivity
and we will see that it implies that sufficiently high powers of this bundle will have many
sections.
Before I discuss this implication of the positivity I want to place this positivity into a
general context. I refer to the section 4.11.2 on Kähler manifolds. There we attached a
2-form ωh to any (positive definite) Hermitian form h on the tangent bundle. In our case
here the tangent bundle of A = V/Γ is trivial and isomorphic to Γ ⊗ � at the origin.
Then our 2-form ωh on A is invariant by translation and at the origin it is our form e. It
is clear that ωh is closed, it defines a class [ωh] ∈ H2(A,�) and of course

[ωh] = e.

If now in addition the Hermitian form H obtained from the alternating form and the
complex structure is positive definite, then < , > gives us a Kähler metric on A = V/Γ
whose class is integral.
I want to formulate the famous embedding theorem of Kodaira. Before I can do this I
have to make a short comment on the coordinate free definition of the projective space.

Definition 5.2.17. If V is any �-vector space of finite dimension, then we define �(V )
to be the space of linear hyperplanes H ⊂ V .

We have to say what the holomorphic functions in a neighborhood of a point H ∈ �(V )
are. This point is defined as the set of zeroes of a linear form λH . If v0 ∈ V \ H and
v ∈ V then then λ �→ λ(v)/λ(v0) defines a function on the set of those λ ∈ V ∨ for
which λ(v0) �= 0, hence for those λ in a small neighborhood of λH . We choose a basis
v1,v2, . . . ,vn−1 of H , then we define xi(λ) = λ(vi)/λ(v0). These functions vanish at
λH = H .

Definition 5.2.18. The local ring of germs of holomorphic functions at H is now defined
as the ring of power series in the xi which have a strictly positive radius of convergence.
In other words these xi(λ) form a system of local coordinates at H.
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Now we see that
�(V ) = (V ∨ \ {0})/�× (5.101)

and if we choose a basis for V ∨ then we get back our previous definition. We have the
tautological line bundle whose fibre over H is simply the line λ with λ(H) = 0. It is
easy to see that this gives us the bundle O�(V )(−1). The dual bundle is O�(V )(1) and
we have a canonical isomorphism

H0(�(V ),O�(V )(1))
∼−→ V.

Now we state the famous embedding theorem of Kodaira.

Theorem 5.2.19 (Kodaira Embedding Theorem). Let X be a compact complex mani-
fold. Let us assume that we have a Hermitian metric h on TX whose corresponding class
ωh is closed and defines an integral class in H2(X,�). Then we can find a line bundle L
on X whose Chern class c1(L) = [ωh]. For n � 0 we have that Hq(X,L⊗n) = 0 for all
q > 0 and for any x ∈ X we can find a section s ∈ H0(X,L⊗n) which does not vanish at
x. Then we get a holomorphic map

Θn(L) : X −→ �(H0(X,L⊗n))
x �−→ Hx = {s ∈ H0(X,L⊗n)|s(x) = 0},

which for suitably large values of n is an embedding, i.e. it defines an isomorphism between
X and a smooth closed complex submanifold Y of �(H0(X,L⊗n)).
This theorem will not be proved here, for a proof see [Se1]
We have a tautological example for this theorem.

Example 22. If our manifold X is the projective space �n(�) itself and the bundle is
L = O�n(�)(1), then we can take n = 1 and already this bundle provides an embedding.
A closer look shows that this embedding is simply the identity.

In the general case it is clear from the construction that the restriction by Θn(L) of the
bundle O�(H0(X,L⊗n))(1) to X is our bundle L⊗n. We will give a few more comments on
this theorem when we discuss the Theorem of Lefschetz. We apply this theorem to our
complex tori.

Corollary 5.2.20. The class ωh is given by e =< , > and the Hermitian metric h is
given by H = H<,>, hence H has to be positive definite. Any bundle L = LH(〈 , 〉,η,ϕ)
is of the type as in the theorem and provides a projective embedding.

Definition 5.2.21. If we can find such a compatible alternating form e on (V,I) for which
the attached Hermitian form is positive definite, then we say that our complex torus is an
abelian variety. The class e is called a polarization of A = V/Γ. Two polarizations
e1,e2 are considered to be equivalent if we can find integers n,m > 0 such that ne1 = me2.
If the alternating form e is non degenerate, then we will call it a principal polarization.
The canonical polarization on a Jacobian J of a Riemann surface is principal.

We will almost prove the above theorem of Kodaira in the special case of abelian varieties
(see Theorem 5.2.35). This will be done by showing that the bundles have a lot of sections.
After that we will make it more precise what a projective embedding is.
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The Spaces of Sections

We want to compute the space of global sections in our line bundles L(〈 , 〉,η,ϕ). To do
this we give a different description of these bundles: we modify the cocycle CH(z,γ) by
a boundary.
To get this modification we choose a sublattice G ⊂ Γ of rank g such that Γ/G is free and
the alternating form < , > is trivial on G. This is possible because our form is alternating.
Then our Hermitian form H restricted to G takes real values and is symmetric. Since we
have G⊕ IG = V we can extend this restriction to a symmetric �-bilinear form h on V .
Since H is �-linear in the first variable we have

H(z,γ) = h(z,γ) for all γ ∈ G. (5.102)

For simplicity I want to assume that the restrictions of η and ϕ to G are trivial. Actually
we can assume this without loss of generality. To see this we apply Lemma 5.2.4. The
function η|G satisfies η(g1 + g2) = η(g1) + η(g2) for g1,g2 ∈ G. We can construct a linear
form ϕ′ : Γ −→ 1

2� such that η|G = ϕ′|G mod 2. Now we modify η by ϕ′ such that
η(γ) = 0 for all γ ∈ G. Once we have done this we also modified ϕ to ϕ1. We can restrict
the form ϕ1 : Γ −→ � to G and extend this ϕ to a linear �-form ψ on V . We have
seen that L(< , > ,η,ϕ) � L(< , > ,0,ϕ1 − ψ) and hence we may also assume that ϕ
restricted to G is trivial.

We look at our 1-cocycle mod 2πi�

γ �→ π(H(z,γ) + 1
2H(γ,γ)) + 2πi(ϕ(γ) + η(γ)) =: CH (z,γ). (5.103)

Proposition 5.2.22. This cocycle is uniquely determined by Γ, < , >, the complex
structure I, η and ϕ.

We change our notation slightly and denote the resulting bundle by L(CH ,η,ϕ). Now
we consider global sections in this bundle and this means that we consider holomorphic
functions which satisfy

f(z + γ) = f(z)eCH(z,γ)+2πi(ϕ(γ)+η(γ)). (5.104)

We modify these functions and consider

f̃(z) = f(z) · e−π
2
h(z,z). (5.105)

These functions can be considered as sections in a new bundle L(Chol,η,ϕ) which is
isomorphic to the given one but which is described by a different 1-cocycle. If we put

Chol(z,γ) = π(H(z,γ) − h(z,γ)) + π
2 (H(γ,γ) − h(γ,γ)) (5.106)

then the sections of the bundle L(Chol,η,ϕ) are functions which satisfy

f̃(z + γ) = f̃(z) · eChol(z,γ)+2πi(ϕ(γ)+η(γ)). (5.107)

This new 1-cocycle has the disadvantage that it depends on the choice of G but it has
several advantages:
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1. We have H(z,γ) = h(z,γ) for all z ∈ V , γ ∈ G and δ(γ) = 0, ϕ(γ) = 0 for all γ ∈ G.

Hence we see that f̃(z + γ) = f̃(z) for all γ ∈ G, the function f̃ is periodic with
respect to the sublattice G.

2. We will show that the cocycle depends “holomorphically” on I and this means
that we can view the abelian varieties together with the bundles as a holomorphic
family.

Further down we will give a rather explicit description of the space of sections of these
line bundles. Before I carry out this computation in detail I want to explain how we can
view the variable I as a variable in a complex variety and what it means, that the cocycle
depends holomorphically on I.

5.2.5 The Siegel Upper Half Space

We explain how we can view the complex structures as points in a complex variety, this
variety will be the Siegel upper half space. In accordance with our previous definitions
we say

Definition 5.2.23. A principally polarized abelian variety is a triplet A = (Γ,〈 , 〉,I)
where

1. Γ is a free �-module of rank 2g and 〈 , 〉 is a skew symmetric form

〈 , 〉 : Γ × Γ −→ �

which is non degenerate over �. This means that we can write our lattice

Γ =

g⊕
ν=1

�eν ⊕ �fν

where 〈eν ,fν〉 = −1 = −〈fν ,eν〉 and where all other 〈 , 〉 between basis elements are
zero.

2. The element I is a complex structure on Γ�, we have I2 = − Id and it respects the
alternating form 〈 , 〉� : Γ� × Γ� −→ �.

3. On the complex vector space V = (Γ�,I) we can define a Hermitian form HI on V
by

ImHI(x,y) = 〈x,y〉
for all x,y ∈ Γ�. It is part of our assumption that this form is positive definite.

Clearly these data provide a complex torus A = V/Γ. We want to explain that these data
can be viewed as points in a complex manifold. The datum that varies is the element
I, we want to show that we can interpret these I as points on a complex manifold. We
extend the scalars to �, we extend the form 〈 , 〉 bilinearily to Γ� = Γ ⊗�. If such an
element I is given, then Γ� decomposes

Γ� = Γ1,0
�

⊕ Γ0,1
�

,



5.2 Line Bundles on Complex Tori 241

where Γ1,0
�

is the eigenspace for I with eigenvalue i and Γ0,1
�

is the eigenspace with

eigenvalue −i. Hence we see that I defines a subspace Γ0,1
�

, which is maximal isotropic,

i.e. all scalar products of two elements in Γ0,1
�

are zero. We introduce the Grassmann
variety Grg of maximal isotropic subspaces (with respect to < , >) in Γ�. This is a set.
These subspaces have dimension g. We can define the structure of a complex manifold on
Grg : Let X ⊂ Γ� be such a maximal isotropic subspace. We can find a second maximal
isotropic subspace Y0 such that Γ� = X ⊕ Y0. We say that Y0 is in general position
(or in opposition) to X . We choose a basis {x1,x2, . . . ,xg} of X and {y1,y2, . . . ,yg} of
Y0 such that

< xν ,yμ > = δν,μ.

If now Y is any maximal isotropic subspace which is in opposition to X , then it has a
unique basis of the form

ỹν = yν +
∑

τν,μxμ.

An easy computation shows that a subspace generated by elements ỹ1,ỹ2, . . . ,ỹg of the
above form is isotropic if and only if the τν,μ are symmetric, i.e. τν,μ = τμ,ν . Hence we
see that the τν,μ with ν ≤ μ can serve as local coordinates for a complex structure on
Grg in a neigborhood of the point Y0. The point Y0 has coordinates τν,μ = δν,μ. These
local coordinates are valid on the set of those maximal isotropic subspaces which are
in opposition to X . If we have an element Y ∈ Grg, which is not in opposition to X ,
then we choose another X ′. It is elementary to check that the two complex structures
restricted to those Y , which are in opposition to X and X ′ are the same.
Of course our maximal isotropic sublattices G for which Γ/G is free yield points G⊗� in
the Grassmannian. These are the integral points in the Grassmannian. In the second
volume we will learn that the Grassmannian is actually a ”projective scheme over the
integers �”. Then the set of our G above will be the �-valued points of this scheme.

Definition 5.2.24. The symplectic group Spg(�) is the group of linear transforma-
tions in GL2g(�) which leave the alternating form < , > invariant.

For any commutative ring R with identity the group Spg(R) is the corresponding sub-
group of GL2g(R). This means that Spg is an algebraic group over �. It is elementary
that Spg(�) acts transitively on the set of all sublattices G as above. The group Spg(�)
acts transitively on Grg.
The stabilizer Pz of a point z ∈ Grg is a parabolic subgroup of Spg(�). It is a special
type of parabolic subgroup, it is maximal and a so called Siegel parabolic subgroup.
Since Spg(�) acts transitively on Grg, the Siegel parabolic subgroups are conjugate to
each other. We say that two Siegel parabolic subgroups Pz1 ,Pz2 are in opposition to each
other, if the two corresponding maximal isotropic subspaces Z1,Z2 satisfy Z1∩Z2 = {0},
or if they span Γ�.
To any element I we can attach a point in Grg. Actually we have two choices – namely

we can attach Γ1,0
�

or Γ0,1
�

to I – but in our situation we choose

I −→ Γ0,1
�

= {u ∈ Γ� | Iu = −i⊗ u}.
On Grg we have complex conjugation, it interchanges the two spaces in the decomposi-
tion and sends the element I to −I. This means that the two parabolic subgroups (the
stabilizers of Γ1,0

�
and Γ0,1

�
) are in opposition.
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If in turn we have a point z ∈ Grg, and the corresponding parabolic subgroup Pz, and
if Pz and Pz are in opposition, then we get a decomposition

Γ� = W ⊕W

where W = z. Then we can consider the automorphism J which acts by multiplication
by i on W and −i on W . Clearly this defines a complex structure on Γ�: The elements
of Γ� are the elements of the form γ = w+w and Iγ = w⊗ i+w⊗ (−i) = w⊗ i+w ⊗ i.
We conclude that:

Proposition 5.2.25. We have a bijection{
I | I2 = − Id ,〈Ix,Iy〉 = 〈x,y〉} ∼−→ Gr0g

where Gr0g is the set of points z for which z and z are in opposition. This induces a
complex structure on the set of all I.

On Gr0g we have an action of Spg(�) by conjugation, we want to determine the orbits.
Recall that we know:

Proposition 5.2.26. An element I defines a Hermitian form HI on the complex vector
space (Γ�,I) and the stabilizer of the element I is the unitary group UI ⊂ Spg(�) of the
Hermitian form.

This Hermitian form HI has a signature (p,q) with p + q = g and HI � U(p,q). Now it
is an easy – or perhaps better – a well known theorem that:

Theorem 5.2.27. The orbits under Spg(�) on Grg are given by the signatures (p,q) of
the Hermitian forms HI .

Especially we have the open orbit �g ⊂ Gr0g where the form HI is positive definite. This
is the orbit which is hit by the principally polarized abelian varieties. It is elementary to
show that Spg(�) acts transitively on �g.

We see that two such principally polarized abelian varieties (Γ,< , > ,I) and (Γ,< , > ,I ′)
are isomorphic if we can find an automorphism of (Γ, < , >) which sends I to I ′. The
group of these automorphisms is the symplectic group G(�) = Spg(�) and this gives us
a hint that we can formulate a theorem, which roughly says:

Theorem 5.2.28. Abelian varieties with a principal polarization are parameterized by
G(�)\�g.

I stated this result because I want to give a first idea what a so called moduli space
is. In general moduli spaces are complex spaces (later on they will be algebraic varieties
or even schemes), whose points classify objects of given type. In our case above the ob-
jects are principally polarized abelian varieties of dimension g and the moduli space is
the above quotient. It is in fact a complex space and to any of its points we construct
in a certain natural way an isomorphism class of a principally polarized abelian variety
and any isomorphism class corresponds to a unique point. Hence the set of isomorphism
classes of principally polarized abelian varieties has in a certain natural way the structure
of a complex space. It would be better if we could attach to any point z ∈ G(�)\�g in
a canonical way an abelian variety Az and not only an isomorphism class. This abelian
variety should vary ”holomorphically” with z. This touches a subtle point in the theory
of moduli spaces. We come back to this point in volume II.
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Actually it turns out that now we are asking to much, we discuss this in the following
section.

Elliptic curves with level structure

I want to invite the reader to a short excursion. We want to make the above consideration
more precise for the case g = 1, this means for elliptic curves. We return to the situation
discussed in5.2.8. There we explained that elliptic curves can be written as E = �/Ω
where the period lattice Ω = �ω1⊕�ω2 and where ω1,ω2 ∈ � are linearly independent
over �. If we have a second lattice Ω1 then E and E1 = �/Ω1 are isomorphic if and only
if we can find an α ∈ � such that αΩ = Ω1.
The real vector space � = �

2 has an orientation: the ordered basis {1,i} is positively
oriented. For a given lattice Ω = �ω1⊕�ω2 we can require that the ordered basis {ω1,ω2}
is positively oriented. This means that ω2

ω1
= τ = x + iy has positive imaginary part, i.e.

y > 0, in other words τ is an element in the upper half plane

� = {τ = x + iy | y > 0}.

It is clear from above that �/Ω
∼−→ �/�1 ⊕ �τ. We may choose another oriented basis

for our lattice. We get these basis if we take a matrix

γ =

(
a b
c d

)
∈ SL2(�)

and the new basis is given by {aτ + b,cτ + d}. Then put τ ′ = γτ = aτ+b
cτ+d and clearly we

get an isomorphism
iγ : �/�1 ⊕ �τ ∼−→ �/�1 ⊕ �τ ′

which given by multiplication by α = 1
cτ+d .

Let us put Γ = SL2(�). The group Γ acts on � by (γ,τ) �→ aτ+b
cτ+d and we established

a bijection between the set of isomorphism classes of elliptic curves and the points in
SL2(Z)\�, and this is our theorem 5.2.28 for g = 1.
The following facts can be found in [La] or any other book on elliptic functions. The
action of Γ on the upper half plane is properly discontinuous, and this means that

For any τ ∈ � we can find an open neighborhood Vτ of τ such that for all γ ∈ Γ we
have γVτ ∩ Vτ = ∅ unless γτ = τ. For any τ the group Γτ = {γ|γτ = τ} is a finite cyclic
group.

A point τ is called a fixed point if there is a γ ∈ Γ,γ �= ± Id such that γτ = τ. The fixed

points form two orbits under Γ : We have the two fixed points τ = i , ρ = 1+i
√
3

2 , we take
the positive root. The set of fixed points consists of the orbits of these two points.
We can define the structure of a complex space on Γ\�, it is clear what the holomorphic
functions in a neighborhood of a point z ∈ Γ\� are: Choose a τ which lies above z,
choose a neighborhood Vτ as above, which is invariant under Γτ . Let Wz be the image of
Vτ . Then the holomorphic functions on Wz are the holomorphic functions on Vτ which
are invariant under Γτ . If we use the arguments from 3.2.2 and example 17 and exercise
13 then it is even clear that the quotient is a (non compact) Riemann surface.
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We want to make the assertion of the above theorem 5.2.28 more precise. We try to
attach to any point z ∈ Γ\� an actual elliptic curve Ez , not only an isomorphism class.
This seems to be easy: We pick a point τ ∈ � which projects to z and choose the elliptic
curve �/�1⊕�τ and try Ez = �/�1⊕�τ. What happens if we choose another point τ ′

projecting to z? We find a γ with γτ = τ ′ and identify the two elliptic curves by the rule
given above. At this point we encounter a fundamental problem. The element γ is never
unique, we always can replace it by −γ and this gives another isomorphism −iγ between
our two elliptic curves. This tells us that there is no consistent choice of Ez .

We have a remedy. We choose an integer N ≥ 3 and consider the homomorphism Γ −→
SL2(�/N�) it turns out to be surjective and its kernel is denoted by Γ(N), the principal
congruence subgroup mod N. It is an easy lemma that Γ(N) does not contain elements
of finite order different from Id . Therefore, it is clear that Γ(N) acts fixed point free on
�.

Any elliptic curve E = �/Ω has the endomorphism N Id : E −→ E ,z �→ Nz, it has the
kernel E [N ] = 1

N Ω/Ω
∼−→ �/N� ⊕ �/N�. THis allows us to introduce a new kind of

object, namely elliptic curves with some extra structure, so called N− level structures.
This are pairs (E ,{e1,e2}) , where e1,e2 ∈ E [N ] and where these two points generate E[N ],
in other words they provide an isomorphism E [N ]

∼−→ �/N� ⊕ �/N�, whose inverse is
given by (a,b) �→ ae1 + be2. The elements in E [N ] are called N -division points.
To such an elliptic curve with N -level structure we can attach a topological invariant.
We observe that we have an alternating pairing < , >: Ω × Ω −→ � which is defined
by the rule < ω1,ω2 > �→ 1 (recall that we have the orientation on �), this can also be
interpreted as an intersection of the two homology classes (See also 4.6.8) ) provided by
ω1,ω2. If we now have our two N -division points e1,e2 we can lift them to points in 1

N Ω:

ẽ1 =
a

N
+

b

N
τ,ẽ2 =

c

N
+

d

N
τ,

and because they generate E [N ] the number ad − bc must be prime to N . Actually it is
clear that the quantity < e1,e2 >N := ad − bc mod N is well defined and an element in
(�/N�)×. This is our topological invariant attached to (E ,{e1,e2}).
We resume the discussion from above, we want to make the assertion of theorem 5.2.28
more precise, but now for elliptic curves with N -level structure. We consider the action of
Γ(N) on �, the action is fixed point free, the quotient Γ(N)\� is a Riemann surface and
the projection π : � −→ Γ(N)\� is an unramified covering. We pick an a ∈ (�/N�)×.
For any z ∈ Γ(N)\� we pick a point τ projecting to it and (�/�1 + �τ,{ a

N
, τ
N

}) is an
elliptic curve with N -level structure. If we pick another point τ ′ ∈ π−1(z) then we find
a unique γ ∈ Γ(N) such that γ(τ) = τ ′ and ıγ provides an isomorphism between the
two curves with level structure. We can say that we constructed a curve Ez with N -level
structure for any z ∈ Γ(N)\�. On the other hand it is clear that (�/�1 + �τ,{ a

N , τN })
and (�/�1 + �τ ′,{ a

N , τN }) are isomorphic if and only if we find a γ ∈ Γ(N) such that
γ(τ) = γ′.
We form the product Γ(N)\�×(�/N�)× let p1 be the projection to the first coordinate.
Consider

ẼN = {(u,(z,a))|(z,a) ∈ Γ(N)\�× (�/N�)×,u ∈ Ez}.
We have an obvious complex structure on this set, the holomorphic coordinates are local
lifts from z to τ� and from u to w ∈ �. Hence it is a surface, we have the projection
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πN : ẼN −→ Γ(N)\�× (�/N�)×.

We have two sections 4.3.1 e1,e2 to πN whose values at any z × a are given by

e1(z,a) =
a

N
,e2(z,a) =

τ

N
∈ �/�1 + �τ.

This object π̃N : ẼN −→ Γ(N)\�× (�/N�)×, together with the two sections e1,e2 can
be viewed as the ”universal elliptic curve” with N -level structure. By this we mean the
following:
Let us consider a morphism p : X −→ S between two complex spaces such that for any
x ∈ S the fiber π−1(x) = Xx is a smooth curve of genus one. Let us assume in addition
that we have a holomorphic section O : S −→ X to p. Then the fibers are elliptic curves
and p : X −→ S is called a family of elliptic curves. Especially we know that these fibers
come with a group structure. If we now have two sections f1 : S −→ X,f2 : S −→ X
to p, such that for any x ∈ S the two elements f1(x),f2(x) ∈ Xs[N ] and are a pair of
generators, then we say that (p : X −→ S,{f1,f2}) is a family of elliptic curves with
N -level structure.
Now we can state a result which a much more precise version of theorem 5.2.28

Theorem 5.2.29. Let (p : X −→ S,{f1,f2}) be a family of elliptic curves with N -level
structure. Then there exists a unique holomorphic maps Φ,Ψ which provide a commutative
diagram

Ψ : X ẼN

Φ : S Γ(N)\�× (�/N�)×

.......................................................................................................................................................................................................................................................... ......
......

...........................................................................................................
......
......
......

...........................................................................................................
......
......
......

.............................................................................................................................................................. .....
.......

(5.108)

such that for any point x ∈ S the restriction Ψx : Xx −→ (ẼN )Φ(s) is an isomorphism
and maps fi(x) to ei(Φ(x)).

This is of course highly plausible, essentially we have to show that the period lattice
depends holomorphically on the variable x ∈ S. We do not give a detailed proof this fact
here, we come back to this kind of problem in Volume II, 9.6.2. A similar problem is
discussed in this Volume I in 5.2.10.

In some cases we can give a rather explicit description of Γ(N)\� and the universal
elliptic curve with N -level structure over it. I include this discussion in the second edition
of this volume I, because I wanted to present this in volume II, but finally there was some
lack of space (and energy).
Let N ≥ 3, we consider the elliptic curve with N -level structure E = (�/�1+�τ,{ a

N , τN }).
We have a minor problem of notation: We have a group structure on E and we denote
the addition of two points P,Q ∈ E by P ⊕ Q and m • P = P ⊕ P ⊕ · · · ⊕ P. We do this
because we want to keep the usual notation D = n1P1 +n2P2+ · · ·+nmPm for a divisor.
The theorem of Abel (see 5.1.35) says that a divisor is principal, if its degree deg(D) =∑

ni = 0 and if n1 • P1 ⊕ n2 • P2 · · · ⊕ nr • Pr = 0. We put 1
N = r, τN = s. For any z ∈ E

we consider the divisor



246 5 Compact Riemann surfaces and Abelian Varieties

Dz = z + z ⊕ r + z ⊕ 2 • r + · · · + z ⊕ (N − 1) • r.

The divisor Dz − D0 is principal if and only if z is a N division point. The space of
sections H0(E ,OE (Dz)) has dimension N and of course it contains the constants. The
divisors Dz are invariant under translations by the cyclic group < r > generated by r,
therefore, we have an action of < r > on H0(E ,OE(Dz)) for any z, we denote this action
by ρ(r), i.e. ρ(r) = Tr.
We pick z = 0. For any a = 1,2, . . . ,(N − 1) the divisor Da·s −D0 is principal, we choose
a meromorphic function fa having this divisor. It is unique up to a scalar, we put f0 = 1.
It is clear that fa ∈ H0(E ,OE (D0)) is an eigenvector under the translation by r, and
more precisely

Tr(fa)(z) = fa(z + r) = e
2πia
N fa.

(This relation follows from the properties of the Weierstrass σ -function and the formulae
in [La] Chap. 18 §1)
We normalize the choice of these fa. We pick an eigenvector fN−1. Using this eigen-
vector we define an action of the cyclic group < s > on H0(E ,OE(D0)). We simply
put ρ(s)(f) = Ts(f)fN−1, keeping track of the polar part of the divisors we see that
ρ(s)(f) ∈ H0(E ,OE (D0)). Clearly ρ(s)NfN−1 = αf0 = α. If we modify the choice of
fN−1 by a factor β then α �→ αβN and hence may assume that α = 1. Then fN−1 is
unique up a N−th root of unity.
We get a group H [N ] of automorphisms of H0(E ,OE(D0)), it is the group generated
by ρ(r),ρ(s), both of order N. Under the action of ρ(r) we have a decomposition into
eigenspaces

H0(E ,OE (D0)) = ⊕0≤a≤N−1�fa

and ρ(s)fa = fa−1. We have commutation rule

[ρ(s),ρ(r)] = ρ(s)ρ(r)ρ(s)−1ρ(r)−1 = e
2pii
N Id .

The group H [N ] is called the Heisenberg group.
We get an holomorphic map (see 5.2.7)

z �→ (f0(z),f1(z), . . . ,fN−1(z),ΦN : E ↪→ �
N−1(�),

and this is in fact an embedding of E into the projective space. This embedding is
canonical, it is determined by the elliptic curve together with its level structure. What
remains is to find are the equations defining E as a curve in the projective space.
This means we introduce independent variables X0,X1, · · · ,XN−1, and define the action
of the Heisenberg group such that Xi �→ fi becomes an H [N ] isomorphism. For k > 0
we look at the linear map from the homogenous polynomials of degree k

�[X0,X1, · · · ,XN−1][k] −→ H0(E ,OE (kD0))

given by sending Xi to fi. It has a kernel Ik and the elements in these kernels yield the
equations defining E . It follows from general finiteness results (See also Volume II) that
finitely many of these equations suffice to describe E . The difficult problem is to find
these equations, but in the cases N = 3,N = 4, the action of the Heisenberg is very
helpful and we can write down these equations explicitly.
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The following is taken from the Bonn Diploma thesis of Christine Heinen ([Hei], in which
she carries out following computations in detail. We begin with the case N = 3. The
space of homogenous polynomials of degree 3 in X0,X1,X2 has dimension 10 and the
dimension of H0(E ,OE(3D0)) has dimension 9 by Riemann-Roch. Hence we must have
an non trivial polynomial F of degree 3 that goes to zero. We still have the action
of H [3]. The monomials are eigenvectors under the action of < r >, the 4 monomials
X3

0 ,X
3
1 ,X

3
2 and X0X1X2 have eigenvalue 1, then we have 3 monomials having eigenvalue

ζ = e
2pii
3 and three monomials having eigenvalue ζ2. If we look at F and the action of

< r > on it, then it is a sum of three terms which are eigenvectors with eigenvalues

1,e
2pii
3 ,e

4pii
3 and each of these terms vanishes on E . But a simple inspection of pole

orders shows that the terms with eigenvalue different from 1 must be identically zero,
hence our polynomial only involves monomials with eigenvalue one. We conclude that
our polynomial is of the form

F = aX3
0 + bX3

1 + cX3
2 − dX0X1X2.

Again looking at pole orders yields that abc �= 0 and this implies immediately that F is
unique up to a scalar. But we still have the action of < s > . This cyclic group permutes
the xi and then it is easy to see that we must have a = b = c and hence we can assume
a = b = c = 1 and our equation defining the curve becomes

F = X3
0 + X3

1 + X3
2 − dX0X1X2.

We compute the coordinates of the origin and the two points r,s. Recall that we still have
not yet pinned down f2, it is only determined up to a third root of unity. By construction
we have

1 = f0(z) = f2(z +
2τ

3
)f2(z +

τ

3
)f2(z), f1(z) = f2(z +

τ

3
)f2(z)

and z �→ ( 1
f2(z)

,f2(z + τ
3 ),1). Evaluation at z = 0 yields 0 �→ (0,f2(

τ
3 ),1) and we have the

equation f2(
τ
3 )

3+1 = 0. Since we still have option to multiply f2 by a third root of unity
we can normalize f2(

τ
3 ) = −1. With this choice of f2 the origin becomes

O = (0,− 1,1).

Now we really pinned down the embedding.
Remark: We could have chosen this normalization right from the beginning, then we have
the problem to show that the above number α = 1.
The computation of the coordinates of r,s is easy. We have to evaluate (f0(z), f1(z), f2(z))
at z = 1

3 ,
τ
3 . In the first case we have to observe that f1,f2 have a pole, hence we evaluate

( 1
f1(z)

,1, f2(z)f1(z)
) at z = 1

3 . We know that the f1,f2 are eigenvectors under the translation

by < r > with eigenvalue ρ,ρ2 and hence

f2(z)

f1(z) z=r

= ρ
f2(z)

f1(z)z=0

,

and this last ratio is −1 as follows from the coordinates of the origin. The second point is
easier we have (f0(s),f1(s),f2(s)) = (1,0,−1). Therefore we see that under the embedding
the two chosen 3-division points go to
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r �→ (0,1,− ρ), s �→ (1,0,− 1).

We have still the parameter d and it is at least plausible that d = d(τ) is a holomorphic
function in the variable τ. We want our curve to be smooth (see example 19 ) an easy
calculation shows that this means d3 �= 27. If on the other hand d with d3 �= 27 is
given then we may consider object the curve E defined by the equation X3

0 +X3
1 +X3

2 −
dX0X1X2 = 0, it is smooth. It contains the point O = (0, − 1,1), we choose this as the
origin and hence (E ,O) is now an elliptic curve. It also contains e1 = (0,1,−ρ),e2 = (1,0,−
1), they form a system of generators of the 3-division points, we have < e1,e2 >3= 1.
Hence we can say that the object

Ẽ = {E := X3
0 +X3

1 +X3
2 − dX0X1X2 = 0,O = (0,− 1,1),e1 = (0,1,− ρ),e2 = (1,0,− 1)}

is a family of elliptic curves with 3-level structure with < e1,e2 >3= 1 over the Riemann
surface X(3) := �\ {3,3ρ,3ρ2} = �1(�)\ {∞,3,3ρ,3ρ2}. If we apply theorem 5.2.29 then
the map

Φ : X(3) −→ Γ(3)\�× {1}
is obviously the inverse of the map τ �→ d(τ). We see that the restriction of Ẽ3 to

Γ(3)\�× {1} is canonically isomorphic to Ẽ −→ X(3).

We have a brief look at the case N = 4. Again we put r = 1
4 ,s = τ

4 . We choose f3(z)
such that f(2s) = −1. Then f0(z) = ρ4(s)(f3(z)) = f(z + 3s)f(z + 2s)f(z + s)f(z) = c
is a non zero complex number. Our embedding E ↪→ �3 is given by

z �→ (f0(z),f1(z),f2(z),f3(z) = (c,f(z + 2s)f(z + s)f(z),f(z + s)f(z),f(z))

We introduce the indeterminates X0,X1,X2,X3 as before we choose k = 2 and consider
the linear map

S2 = �[X0,X1,X2,X3][2] −→ H0(E ,OE (2D0))

We observe that the space of homogenous polynomials of degree 2 has dimension 18,
whereas H0(E ,OE (2D0)) has dimension 16. There must be a kernel I[2], whose dimension
is ≥ 2. This kernel must be invariant under the action of the Heisenberg group. If we
decompose the action of H [4] on S2 we easily see that it decomposes into 3 non isomorphic
modules of rank 2 and a 4 dimensional module which is given by

W = (�(X2
0 + cX2

2 ) ⊕�(X2
1 + cX2

3))
⊕

(�X0X2 ⊕�X1X3).

A simple inspection of the other eigenspaces shows that we must have I[2] ⊂ W. It can
not be the entire space W hence we see easily that it is spanned by two elements

X2
0 + cX2

2 − bX1X3, cX
2
1 + c2X2

3 − bX0X2

these are eigenvectors for ρ(r) with eigenvalues 1, − 1 respectively. We get the second
expression if we apply ρ(s) to the first one. Here b is just another non zero complex
number. Hence we have three unknown numbers namely c,b and the value f3(s) = a. We
have the three points O,r,s on the curve, they have the coordinates

O = (0,− a,a,1), r = (0,a,ζ3a,1) s = (c,0, − a,a)

and hence they satisfy the above equations. This yields the two relations b+ ac = 0, c =
−a2 and hence b = a3. Therefore, we see that our curve is given by the two equations
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X2
0 − a2X2

2 − a3X1X3 = 0, − X2
1 + a2X2

3 − aX0X2 = 0,

coordinates of the origin and the two 4-division points are given above. Again we have
to prove that the parameter a is a holomorphic function τ �→ a(τ) it is invariant under
the action Γ(4). A straightforward computation shows (example 19 b), (apply the Jacobi
criterion) that a has to avoid the five values 0,± 2,± 2i. We define X(4) := � \ {±2,±
2i,0} = �1(�) \ {±2,± 2i,0,∞} and we have the curve

Ẽ := {X
2
0 − a2X2

2 − a3X1X3 = 0, − X2
1 + a2X2

3 − aX0X2 = 0,
O = (0,− a,a,1), r = (0,a,ζ3a,1) s = (c,0,− a,a)

}

is a family of elliptic curves over X(4) with < r,s >4= 1 and this family is isomorphic to

the restriction of Ẽ4 restricted to Γ(4)\�×{1}. Especially we get again an isomorphism
Φ : X(4)

∼−→ Γ(4)\�.

The following considerations anticipate some of the concepts from volume II, actually
they are complementary to the discussion of moduli spaces in Volume II, 9.6.2. They
provide an example for the general principle that some objects, which belong to complex
analysis, can be considered as objects in the realm of abstract algebra and algebraic
geometry.
We start from a commutative ring A with identity, let S = Spec(A) be the set of prime
ideals endowed with the Zariski topology (See Volume II, Chap. 6). This space S will be
the replacement of our complex space S above. We have the notion of an elliptic curve
over S (see Volume II, 9.6.2). Again we choose an integer N ≥ 3, we assume that 1

N ∈ A.
If this ring is an algebraically closed field k and if E is an elliptic curve over k then we
still know that the group of N -division points E [N ](k)

∼−→ �/N�⊕�/N�. Therefore, we
know what an elliptic curves p : E −→ S with N - level structure is: This means that we
have two sections e1,e2 to p which lie in E [N ](S), and which at any point s ∈ S generate
the N -division points in E [N ]( ¯k(s)), where ¯k(s) is an algebraic closure of the residue field
k(s). Again we have a alternating pairing, which now takes values in the group μN of
N -th roots of unity (See Volume II, 7.5.7) and denoted by

E [N ](S) × E [N ](S) −→ μN ,(e,f) �→ w(e,f).

This pairing is related to our old pairing by the relation

w(e,f) = e<e,f>N
2πi
N

We can translate the above arguments, which essentially prove theorem 5.2.29, into the
context of algebraic geometry. The essential tool is provided by the semicontinuity the-
orems and reasoning is based on the same strategy that is used in Volume II, 9.6.2.
We can write down the ”universal” elliptic curve with 3-level structure. Consider the
ring �[ρ] = �[T ]/(T 2 + T + 1), i. e. we adjoin a third root of unity. Then we adjoin an
indeterminate, let us call it Y, and we invert Y 3 − 27, so we get a ring

A3 = �[ρ,Y,
1

Y 3 − 27
].

Over this ring we write down our curve with 3-level structure

Ẽ = {E = X3
0 +X3

1 +X3
2 −Y X0X1X2 = 0,O = (0,− 1,1),e1 = (0,1,− ρ),e2 = (1,0,− 1)},
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we have w(e1,e2) = ρ.
If we now have an elliptic curve (p : E −→ Spec(A),{t1,t2}) with 3-level structure over
any ring A (with identity and 1

3 ∈ A), we assume that A contains a primitive third root
of unity, call it ρ1 and assume that w(t1,t2) = ρ1. We use these sections to write down
the divisors Dat2 as above (See also Volume II,9.6.2 where we use the zero sections to
write down divisors). We apply the semicontinuity theorems and see that Dat2 −D0 are
principal, i.e. divisors of a function fa. (Here is a minor technical point, the semicontinuity
theorems only yield that they locally trivial in the base. This means that for any point
x ∈ S we find an open neighborhood Vx such that the restriction of Dat2 −D0 to p−1(Vx)
is the divisor of a function f

(x)
a . For a = 2 we normalized f

(x)
2 (t1) = −1, and hence these

f
(x)
2 fit together on the different open sets). We can proceed as in the complex analytic

case and find

Theorem 5.2.30. For any commutative ring with identity and 1
3 ∈ A and any elliptic

curve (p : E −→ Spec(A),{t1,t2}) with 3-level structure we find a ring homomorphism
Φ : A3 −→ A such that ρ �→ w(t1,t2) and with Φ(Y ) = d we have

(p : E −→ Spec(A),{t1,t2}) =

{E = X3
0 + X3

1 + X3
2 − dX0X1X2 = 0,O = (0,− 1,1),t1 = (0,1,− ρ1),t2 = (1,0,− 1)}

Basically the same reasoning provides an explicit universal curve with 4-level structure.
We define �[i] = �[T ]/(T 2 + 1), we adjoin the indeterminate Y and define the ring

A4 = �[i,
1

2
,Y,

1

Y − Y 5
].

Over this ring we write a curve with 4-level structure

Ẽ := {X
2
0 − Y 2X2

2 − Y 3X1X3 = 0, − X2
1 + Y 2X2

3 − Y X0X2 = 0,
O = (0,− Y,Y,1), r = (0,Y,− iY,1) s = (c,0, − Y,Y )

}.

Then we get again

Theorem 5.2.31. For any commutative ring with identity and 1
2 ∈ A and any elliptic

curve (p : E −→ Spec(A),{t1,t2}) with 4-level structure we find a ring homomorphism
Φ : A4 −→ A such that i �→ w(t1,t2) and with Φ(Y ) = a we have

E := {X
2
0 − a2X2

2 − a3X1X3 = 0, − X2
1 + a2X2

3 − aX0X2 = 0,
O = (0, − a,a,1), r = (0,a,− ia,1) s = (c,0, − a,a)

}.

We can consider the problem of finding a universal elliptic curve for any integer N ≥ 3.
We consider commutative rings R with identity and a homomorphism �[ 1N ] −→ R.
We consider elliptic curves E over R which come with a N -level structure. If two such
elliptic curves with N -level structure are isomorphic then the isomorphism is unique and
hence these objects form a set MN (R). We can ask the question whether this functor is
representable by a ring or better by an affine scheme (see 1.3.4) The above arguments
show that for N = 3,N = 4 the functor R �→ MN(R) is representable by an affine scheme
of finite type. From here it it is not too difficult to show that this functor is representable
for all values of N ≥ 3 by a scheme of finite type over �[ 1N ]. The representing affine
scheme is called the moduli scheme (or moduli space), in our case we also denote it by
MN .
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We come back to the beginning of this excursion and recall that we actually wanted to
understand the case N = 1, i.e. elliptic curves with no level structure and to construct
a moduli space M1. We have studied this problem also in Volume II 9.6.2. where we
consider elliptic curves endowed with a nowhere vanishing differential.
We have an obvious action of the group GL2(�/N�) on the level structures of an elliptic
curve with N -level structure, hence we get an action of this group onMN . So we get an ac-
tion of this group on MN , and we ask whether we can form the quotient MN/GL2(�/N�)
and this quotient can be our moduli space M1. It it explained in Volume II, 9.6.2 that
this can not work.
The way out of this dilemma is to define more complicated objects, these will be the

stacks. The stack M
(3)
1 / Spec(�[ 13 ] will simply be the object M3 together with action of

GL2(�/3�), we just do not form the quotient. Accordingly the stack M
(4)
1 / Spec(�[ 14 ] is

M4 together with action of GL2(�/4�). We can also construct M
(12)
1 / Spec(�[ 16 ]. We get

a diagram

M
(3)
1 M

(12)
1 M

(4)
1

Spec(�[ 13 ]) Spec(�[ 16 ]) Spec(�[ 14 ])

......................................................................................................... ............................................................................................. ......
......

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

............................................................................................................
.....
.......
.....

............................................. ................................. .....
.......

(5.109)

and the stack M1/ Spec(�) is - in a certain sense - this diagram of schemes together with
the group actions.

The end of the excursion

Here is the end of the excursion. We return to the discussion before theorem 5.2.28. We
had chosen a basis e1, . . . eg,fg, . . . ,f1 for Γ. If we have selected an element I, we write

fν =
∑

(xν,μ + yν,μI)eμ, (5.110)

we put τν,μ = xν,μ + yν,μ · i.

The element I gives the decomposition Γ� = Γ1,0
�

⊕Γ0,1
�

. We attached the space Γ0,1
�

∈Grg
to I, and we want to write ”coordinates” for this point. In view of our considerations
above we choose X = G�. We observe that

Γ� = G� ⊕ Γ0,1
�

. (5.111)

The map V −→ Γ�/Γ
0,1
�

is an isomorphism by construction and hence

fν −
∑

τν,μ ⊗ eμ ∈ Γ0,1
�

. (5.112)

We mentioned already that Γ0,1
�

is maximal isotropic if and only if the matrix Z = (τν,μ)
is symmetric and our Hermitian form is positive definite if and only if the real part of
this matrix is positive definite. Therefore the τν,μ are the holomorphic coordinates for
the possible choices of I.
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Hence we get a new description of �g it can be identified to the points in the Siegel
half space

�g = {Z|Z = X + iY }
where Z is symmetric and Y is positive definite.

5.2.6 Riemann-Theta Functions

We consider the cocycle γ −→ Chol(z,γ) and I want to explain that this cocycle depends
holomorphically on I. To be more precise we can fix an element γ ∈ Γ and consider this
cocycle as a function in the variables z and I. Then we want to show that this cocycle is
holomorphic in both variables.

We have the two forms

H : Γ� × Γ� −→ �

h : Γ� × Γ� −→ �,

where H is Hermitian with respect to the element I and where h is linear in both variables
with respect to I. Now we extend these forms to Γ� = Γ� ⊗� bilinearly, i.e. we have

H�(γ ⊗ z,δ ⊗ w) = zw H(γ,δ) (5.113)

h�(γ ⊗ z,δ ⊗ w) = zw h(γ,δ)

for γ,δ ∈ Γ and z,w ∈ �.
We observe that the inclusion Γ� −→ Γ� induces an isomorphism

Γ� −→ Γ�/Γ
0,1
�

,

and this map is �-linear if we give Γ� the complex structure where multiplication by i
is given by I.

We can decompose Γ� = G� ⊕ Γ0,1
�

, and hence we can write any element γ ∈ Γ� as a
sum

γ = γG + γ0,1 = pG(γ) + p0,1(γ). (5.114)

Now we consider the expression H�(z,γ) − h�(z,γ), and we observe that this depends
only on γ mod G� in the second variable in (5.102). On the other hand we see: If z ∈ Γ�
is in Γ0,1

�
, then

H�(z,γ) = h�(z,γ) = 0. (5.115)

This is clear because z = δ + Iδ ⊗ i with some δ ∈ Γ� and

H�(δ + Iδ ⊗ i,γ) = H(δ,γ) + i H(Iδ,γ) = H(δ,γ) − H(δ,γ) = 0, (5.116)

and the same holds for h�. Hence we conclude that H�(z,γ)−h�(z,γ) defines a bilinear
form

Γ�/Γ
0,1
�

× Γ�/G� −→ �.

We can express this form in terms of the original alternating form:
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Lemma 5.2.32. We write as above γ = γG + γ0,1, then I claim that

H�(z,γ) − h�(z,γ) = 2i〈z,γ0,1〉�
where 〈 , 〉� is of course the bilinear extension of 〈 , 〉 to Γ�.

Proof: To see that this is the case it suffices to show that

H�(z,γ0,1) − h�(z,γ0,1) = 2i〈z,γ0,1〉�.

In this case γ0,1 = δ + Iδ ⊗ i and because h� is bilinear with respect to I, we get

h�(z,δ + Iδ ⊗ i) = 0

as above. Hence we have to show that

H�(z,γ0,1) = 2i〈z,γ0,1〉�.

We may assume that z ∈ Γ� and again we write γ0,1 = δ + Iδ ⊗ i. Then

H�(z,δ + Iδ ⊗ i) = H(z,δ) + i ·H(z,Iδ) = i H(z,Iδ) + H(z,δ).

We invoke our formulae for H and get

i(〈z,δ〉 + i〈z,Iδ〉) − 〈z,Iδ〉 + i〈z,δ〉 = 2i〈z,δ〉 − 2〈z,Iδ〉
= 2 (〈z,δ ⊗ i〉� − 〈z,Iδ〉)
= 2i (〈z,δ〉 + 〈z,Iδ ⊗ i〉�) = 2i〈z,γ0,1〉�.

This function (z,I) �→ 2i〈z,γ0,1〉� is now clearly holomorphic in the variables z,I. We get
for our 1-cocycle

Chol(z,γ) + 2πi(η(γ) + ϕ(γ)) = 2πi〈z,γ0,1〉� + πi〈γ,γ0,1〉� + 2πi(η(γ) + ϕ(γ)). (5.117)

I want to give an indication how we can describe the space of sections in the d’th power
in the bundle defined by this cocycle.
Recall that we have a basis e1, . . . ,eg,fg, . . . ,f1 as in the beginning of section 5.2.5 and
that G is spanned by the e1, . . . ,eg. Let Chol(z,γ) be the cocycle obtained from these
data. Our basis e1, . . . ,eg of G is also a �-basis of V . We choose a positive integer d. We
look for solutions of

f̃(z + γ) = f̃(z)ed(Chol(z,γ)+2πi(ϕ(γ)+η(γ))), (5.118)

these are the sections of the bundle L(Chol,η,ϕ)⊗d. The periodicity of f̃ with respect to

G means that f̃(z1 +n1, . . . ,zg +ng) = f̃(z1, . . . ,zg) for all n1, . . . ,ng ∈ �g. We introduce
the new variables

uν = e2πizν , qν,μ = e2πiτν,μ .
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We have the symmetry relation qν,μ = qμ,ν . We define h(u1, . . . ,ug) = f̃(z1, . . . ,zg).

In these new variables we have a different description of our complex torus. The holo-
morphic map

Π : (z1, . . . ,zg) −→ (u1, . . . ,ug)

yields an isomorphism

Π : V/G
∼−→ (�×)g

and by definition h ◦ Π = f . Then we get a biholomorphic map

Π̃ : V/Γ
∼−→ (�×)g/Q, (5.119)

where Q is the free abelian subgroup generated by the arrays {(qν,1, . . . ,qν,g)}ν=1,...,g. We
rewrite the transformation rule in terms of these new variables. We can write an element
γ =

∑g
j=1 n

′
jej +

∑g
μ=1 nμfμ. If we pass to the variables uν then the first summand does

not contribute and can be ignored. Then

z + γ =

(
z1 + n′1 +

∑
ν

nντν1, . . . ,zg + n′g +
∑
ν

nντν,g

)
.

Such a translation by γ has the following effect on the new variables

Lγ : uμ −→ uμ ·
∏
ν

qnν
νμ .

We obtain

h

(
u1
∏
ν

qnν

ν1 , . . . ,ug
∏
ν

qnν
νg

)
= h(u1, . . . ,ug)e

d(πChol(z,γ)+2πiϕ(γ)). (5.120)

We compute the exponential factors on the right hand side. The relation (5.112) says
that

γ0,1 =
∑

nμ(fμ −
∑

τμ,ν ⊗ eν).

If z =
∑

zμeμ =
∑

(xμ + yμI)eμ, then it follows that

H(z,γ) − h(z,γ) = 2i
∑

zμnμ,

and

H(γ, γ) − h(γ, γ) = 2i 〈γ, p0,1(γ)〉 (5.121)

= 2i

〈∑
μ

nμfμ,
∑
μ

nμ

(
fμ −

∑
ν

τμν ⊗ eν

)〉
= −2i

∑
ν,μ

nνnμτνμ.
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We conclude that for z =
∑

zμeμ and γ =
∑

nμfμ

Chol(z,γ) = π(H(z,γ) − h(z,γ)) + π
2 (H(γ,γ) − h(γ,γ)) (5.122)

= 2iπ
∑

zμnμ − πi
∑
ν,μ

nνnμτν,μ.

Then our recursion formula for sections in L(dChol,dη,dϕ) becomes

h

(
u1
∏
ν

qnν

ν,1, . . . ,ug
∏
ν

qnν
ν,g

)
= h(u1, . . . ,ug)

g∏
ν=1

udnν
ν (

g∏
λ,κ=1

q−nλdnκ

λ,κ )e2πd(ϕ(γ)+η(γ)).

(5.123)

Now we expand the function h into a Laurent series

h(u1, . . . ,ug) =
∑

am1,...,mg
um1

1 . . . umg
g . (5.124)

Our transformation rule for an element γ =
∑

ν nνfν yields the following recursion:

am1,...,mg

∏
ν,μ

qnνmμ
ν,μ = am1−dn1,...,mg−dng

(
∏
λ,κ

q−nλdnκ

λ,κ )e2πid(ϕ(γ)+η(γ)).

(5.125)

From this we conclude that the coefficients aν1,...,νg for 0 ≤ νi ≤ d− 1 determine the rest
of the coefficients. On the other hand we can choose values for the coefficients aα1 , . . . ,aαg

arbitrarily for the indices 0 ≤ αi ≤ d − 1 and then we define the other coefficients by

aα1−dn1,...,αg−dng
= aα1,...,αg

(
∏
νκ

qnνακ+dnνnκ
ν,κ )e2πid(ϕ(γ)+η(γ)). (5.126)

Now we make the fundamental observation that the positive definiteness of our matrix
Y above implies an estimate

|aα1−dn1,...,αg−dng
| < e−c(n

2
1+...n2g) (5.127)

with some constant c > 0 depending on Y = (yν,κ), where yν,κ = Im (τν,κ). To see this we
rewrite qnνακ+dnνnκ

ν,κ e2πid(ϕ(γ)+η(γ)) in terms of the τν,μ. We compute the absolute value
of this factor. Observe that the factor∏

ν,κ

∣∣qdnνnκ
ν,κ

∣∣ = e−π(
∑

μκ yμ,κnνnκ). (5.128)

This gives an estimate of the form above for this term because Y is positive definite. The
other contributions are of the form eL(n1,...,ng), where L is linear.
This implies that the Laurent series will be convergent for all u1, . . . ,ug ∈ �∗ and we
conclude:

Proposition 5.2.33. We can write down explicitly all sections in a line bundle of the
form L(Chol,η,ϕ)⊗d on A = V/Γ as infinite Laurent series. These series converge for all
(u1,u2, . . . ,ug) ∈ (�×)g and are determined by its coefficients aν1,...,νg for 0 ≤ νi ≤ d−1.
These coefficients can be given arbitrarily, i.e. the dimension of the space of sections in
the line bundle L(Chol,η,ϕ)⊗d is dg.
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These sections are called Riemann-Theta functions.

We only considered line bundles, which are powers of a a line bundle attached to a
principal polarization. Not all abelian varieties (See 5.2.21) admit a principal polarization.
Nevertheless the same considerations apply to arbitrary abelian varieties. With a little
bit more effort in linear algebra it is not difficult to show:

Theorem 5.2.34. Let A = V/Γ be a complex torus. If e ∈ NS(A) is an alternating form
on Γ for which the corresponding Hermitian form He is positive definite, then

dimH0 (V/Γ,LHe
,(ηHe

,ϕ)) = Pf(< , >).

We want to return to our Jacobian J . There we have the cup product pairing on
H1(S,�) � Γ. If H0 is the corresponding Hermitian form then we can form the line
bundle P = LH0

(e0,η,ϕ) with an arbitrary ϕ and suitable ηHe
. Our theorem yields

dim�H0(J,P) = 1. (5.129)

If we take powers of this line bundle then det(r < , >) = r2g and it follows that

dim�H0(J,P⊗r) = r2g . (5.130)

5.2.7 Projective embeddings of abelian varieties

This can be used to construct an embedding into the projective space:

Theorem 5.2.35 (Lefschetz). If we take r = 3 then the morphism

Θ : J −→ �
(
H0(J,P⊗3))

x �−→ Hx =
{
s ∈ H0(J,P⊗3)|s(x) = 0

}
is everywhere defined and yields an embedding of J into the projective space.

I want to comment on this theorem without proving it, its proof will be discussed in the
second volume in the section on Jacobians. I give an outline of the steps which have to
be carried out.

1. At first we need to know that for any x ∈ J we can find a section s ∈ H0(J,P⊗3)
which does not vanish at this point.

2. Secondly we have to prove that for any pair of points x �= y we can find a section
which vanishes at x but not at y.

3. Finally we need to know the following: If we pick a point x and a section s0 which
does not vanish at x then the ratios s/s0 are function on J which are defined in
a suitable neighborhood of x. Then we have to show that we can find sections
s1, . . . ,sg which vanish at x such that the differentials d(s1/s0), . . . ,d(sg/s0) gen-
erate the dual tangent space. This implies that the local ring OJ,x is the ring of
convergent power series in s1/s0, . . . ,sg/s0.
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( It is in fact not too difficult to prove these assertions with our present knowledge. In
the definition of P we have the freedom of choosing the element ϕ, let us take ϕ = 0. We
consider the set of zeroes of a non trivial section s ∈ H0(J,P). Since two such sections
are proportional this is well defined, locally it is described by one equation, hence it is
a divisor ΘP . It is the so called Θ-divisor . We know that choosing another value of ϕ
amounts to translating P by an element x ∈ J . If we know choose x,−x ∈ J or x1,x2,x3
such that x1 + x2 + x3 = 0, then we have isomorphisms

Tx(P) ⊗ T−x(P)
∼−→ P⊗2,Tx1(P) ⊗ Tx2(P) ⊗ Tx3(P)

∼−→ P⊗3.
The factors on the left hand side have a one dimensional space of sections, which vanish
on a translate of ΘP . This allows us to construct sections in H0(J,P⊗3) for which we
know the set of zeroes. This is good enough to prove 1) and 2), the point 3) is a little bit
more delicate.)
If all this is shown then it is clear that

Lemma 5.2.36. The image of J under the map Θ is a complex analytic submanifold in
Y ⊂ � (H0(J,P⊗3)) and

Θ : J
∼−→ Y

is in fact an analytic isomorphism.

Now we use the classical Theorem of Chow which says that a smooth and closed sub-
manifold of �n(�) is in fact a smooth projective algebraic variety (see [Ch],[Se1] and
section 5.1.7.) Hence we can define the image Θ(J) = Y as the set of common zeroes of
a finite number of homogeneous polynomials {F1,F2, . . . ,Ft} in n+ 1 variables. Further-
more for any point x ∈ Y we take a linear form L which does not vanish at x and then
the functions Fi/L

degFi generate the ideal IY,x of germs of holomorphic functions which

vanish on Y in a neighborhood of x. Then the pair (J,P⊗3) ∼−→ (Y,O�n(1)|Y ) becomes
an object in algebraic geometry. To make this precise we have to say a few words about
the comparison between algebraic and analytic geometry.

As in the case of Riemann surfaces (see section 5.1.8) we define a new topology on Y ,
namely the Zariski topology. If we have a homogeneous polynomial f(z0, . . . ,zn) then we
can look at the set V (f) ⊂ �

n(�) where it vanishes and the set D(f) ⊂ �
n(�) where

it does not vanish. These sets D(f) form a basis for the Zariski topology on �n(�), i.e.
the Zariski open subsets in �n(�) are unions of sets of the form D(f). The Zariski open
subsets in Y are the intersections of Zariski open subsets in �n(�) with Y . As in the
case of Riemann surfaces we know that the identity map Yan −→ YZar is continuous.

If now U ⊂ �n(�) is a Zariski open subset we say that a holomorphic function f : U → �

is meromorphic if for any point y ∈ U we can find homogeneous polynomials g,h of the
same degree, such that h(y) �= 0 and such that f = g/h on the open set U ∩ D(h). We
put as before

Omer
�n(�)(U) = {f : U −→ �|f is meromorphic} . (5.131)

We can do the same thing with Y and define the sheaf Omer
Y . As in the case of Riemann

surfaces the identity map
(Yan,OY ) −→ (YZar,Omer

Y )

is a morphism between locally ringed spaces.
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A meromorphic function on Y is an element in some Omer
Y (U) where U �= ∅ is Zariski open

in Y . Now Y was special, namely it was the image of J under Θ. Hence it is connected as
a topological space and from this it follows easily that the intersection of two non empty
Zariski open sets is again non empty. This allows us to define the field �(Y ) = �(J) of
meromorphic functions on J . We state without proof:

Theorem 5.2.37. The field of meromorphic functions on J is a finitely generated ex-
tension of � of trancendence degree d.

As in the case of Riemann surfaces we can define coherent sheaves of OY -modules (resp.
Omer
Y -modules) on Yan (resp. YZar). In both cases this are sheaves of modules under the

structure sheaf which locally are finitely generated.

It is the content of Serre’s paper “Géométrie algébrique et géométrie analytique” (in
short GAGA) that these two categories are equivalent. In simple words: To any coher-
ent O�n,an-sheaf Fan on �n(�) we can find a unique subsheaf F of O�n-modules (i.e.
F(U) is an O�n -module for any U ⊂ �n, Zariski open) such that Fan = F ⊗O�n O�n,an.

A first consequence of the GAGA-principle is that the sheaf IY,an which defines the
analytic subspace Y is the extension of a sheaf of ideals IY ⊂ O�n , and this is of course
the statement of Chow’s theorem.
The sheaf IY,an is a coherent sheaf (see section 5.1.8) and the clue to the GAGA-principle
is the following theorem.

Theorem 5.2.38. For any coherent sheaf Fan on �n(�) we can find an integer r > 0
such that Hq(�n(�),Fan ⊗ O�n(�)(r)) = 0 for q > 0 and the sections H0(�n(�),
Fan ⊗ O�n(�)(r)) generate the stalks Fan

x at all points x.

Once we have this result, then the general results from GAGA can be proved by a strategy
which generalizes the arguments in section 5.1.8.
If we now consider line bundles on J we have the freedom to look at them as complex
analytic bundles or as line bundles on the projective varieties (J,OJ), i.e. as bundles with
respect to the Zariski topology. Hence we will not make any distinction between these
two kinds of line bundles, we identify

PicZar(J) = Pic(J) = Pic(Jan) (5.132)

H1
Zar(J,O∗J) = H1(J,O∗J,an)

where actually H1(J,O∗J,an) was exactly what we called H1(J,O∗J ) before.
Mutatis mutandis these considerations apply to arbitrary abelian varieties, i.e. for com-
plex tori A = V/Γ, for which we can find an e ∈ NS(A) with He positive definite.

I anticipate a few concepts that will be explained in more detail in the second volume.
We can define regular maps between projective varieties, this are of course holomorphic
maps, which preserve the subsheaves of meromorphic functions. Actually the GAGA-
principle tells us that this is automatically true for holomorphic maps. We can define
the product X × Y of two projective varieties. This allows us to define abelian varieties
as projective algebraic varieties X which are connected and which have a product map
m : X × X −→ X , which puts a group structure on X . Forming the inverse must also
be a regular map, this is probably automatically true, once we defined m. Hence we see
that the notion of an abelian variety is a completely algebraic concept.



5.2 Line Bundles on Complex Tori 259

5.2.8 Degeneration of Abelian Varieties

At this point we achieved also something else. We can consider the τν,μ as complex ana-
lytic variables and our considerations show that we can consider our abelian varieties as a
holomorphic family of abelian varieties. We have the new description V/Γ

∼−→ (�×)g/Q.
(See 5.119.)Of course we have the constraint that the imaginary part Im (τν,μ) must be
positive definite. This gives the constraint for the free abelian subgroup Q: The (sym-
metric) matrix

(− log |qν,μ|)ν,μ
has to be positive definite. This is an open subset Sg in the complex variety of symmetric
(g,g) matrices with coefficients in �×. For any Q ∈ Sg we constructed a projective
embedding of �×/Q by Theta functions. Of course we may consider the graded ring of
Theta functions

∞⊕
r=0

H0(�×/Q,P⊗r).

It can be shown that this ring is finitely generated, it is generated by the sections in
H0((�×/Q,P⊗r) with r = 0,1,2,3. Then we can consider a ”free” graded ring

�[X1,Y1, . . . Y2g ,Z1, . . . ,Z3g ]

where X1 sits in degree one, the Yi sit in degree 2 and the Zi sit in degree 3. We can
construct a surjective homomorphism from this graded ring

�[X1,Y1, . . . ,Y1, . . . Y2g ,Z1, . . . ,Z3g ] −→
∞⊕
r=0

H0(�×/Q,P⊗r)

by sending the X1,Yν ,Zμ to a basis of sections in H0(�×/Q,P⊗r) for r = 1,2,3 respec-
tively. The kernel of this homomorphism consists the relations satisfied by linear com-
binations of products of Theta functions. These relations can be explicitely given (See
[B-L]], Chap. 7 ). Moreover the coefficients of these linear combinations depend on Q and
we can write the relations in such a way that these coefficients depend holomorphically
on Q.
Now it is an interesting question to ask: What happens if some of the qν,μ tend to zero?
We say that the abelian variety degenerates and it is of great importance to understand
this degeneration process. The point is that this degeneration can be given an arithmetic
meaning. It is also important if we want to construct a compactification of the moduli
space (see [Fa-Ch]). We discuss this process in detail in the case of genus one in the
following section.

The Case of Genus 1

I want to discuss these constructions in the special case of curves of genus one. We can
assume that the Jacobian is of the form

J = �/{1,τ}
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where τ ∈ �, Im (τ) > 0 and where {1,τ} = Γ is the �-lattice generated by the elements
1,τ . Any alternating pairing is determined by its value on the basis elements. We have a
canonical generator defined by

〈1,τ〉 = −1.

All other alternating pairings are of the form d〈 , 〉 with some integer d. In this case it
is clear that 〈 , 〉 is the imaginary part of a hermitian form H on �. If y = Im (τ), then
this form is given by

H(z1,z2) =
1

y
z1z2. (5.133)

It is positive definite, this explains the minus sign. We consider maps η

η : Γ/2Γ −→ 1

2
�/�

which satisfies the compatibility relation

1

2
〈γ1,γ2〉 + η(γ1 + γ2) − η(γ1) − η(γ2) ≡ 0 mod � (5.134)

for all γ1,γ2 ∈ Γ. We say that η is adapted to the alternating form < , > . Now we
consider line bundles L(d〈 , 〉,dη,0) on �/Γ which are defined by the following rule: For
an open subset U ⊂ �/Γ and its inverse image π−1(U) = V ⊂ � we have

L(d〈 , 〉,dη,0)(U) =
{
f : V → � | f holomorphic, f(z + γ) = ed(

π
y
zγ+ π

2y
γγ+2πiη(γ))f(z)

}
.

If d is even the η term drops out.

Let us look at the case d = 1 first. In this case we must have a non trivial η. One
possibility is to take

η(1) = η(τ) = η(1 + τ) =
1

2
,

and there are three other choices, namely, taking the value 1
2 on exactly one of the ele-

ments {1,τ,1 + τ} and zero on the two others.

I want to stick to the first choice, it is in a sense the most canonical. We investigate the
line bundle L(< , > ,η,0). We have to look at functions which satisfy

f(z + γ) = e
π
y
zγ+ π

2y
γγ+2πiη(γ)f(z). (5.135)

The factor in front has to be interpreted as a 1-cocycle Γ �→ (O�(�))×. We modify this
cocycle. We choose the submodule G ⊂ Γ to be the module generated by 1. Now η is
not trivial on the vector 1. This forces us to make some minor modifications. For a local
section f of our line bundle we put

f̃(z) = e−
π
2y

z2f(z) (5.136)
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and then we find

f̃(z + 1) = −f̃(z). (5.137)

Here we have to take into account that η(1) = 1
2 . Now a simple computation shows

f̃(z + nτ) = e−
π
2y

(z+nτ)2f(z + nτ) (5.138)

= e−
π
2y

(z+nτ)2e
π
y
znτ+ π

2y
n2ττ+πinf(z)

= e−2πinze−πin
2τ+πinf̃(z).

We introduce variables u = eπiz and p = eπiτ . Then our first relation above says that
our function f̃ has a Laurent expansion

f̃(u) =
∑

m=1 mod 2

amum. (5.139)

The second relation gives a recursion for the coefficients am which says

f̃(upn) = (−1)nu−2n · p−n2 f̃(u). (5.140)

This means for the expansion

amunpmn = (−1)nu−2np−n
2

(. . . + am+2nu
m+2n . . .), (5.141)

and hence for any choice n,m

am+2n = (−1)npmn+n2am. (5.142)

Since the coefficients with an even index are vanishing, we see that the coefficient a1
determines all the others. We put it equal to one and then we get

f̃(u) =
∑
m∈�

(−1)m · pm+m2

u1+2m. (5.143)

Since we have Im (τ) > 0 we have |p| < 1 and hence our power series converges for all
u ∈ �×. This function is one of the Jacobi Theta functions. We change the notation
and write

ϑ0,0(u,p) =
∑
m∈�

(−1)mpm+m2

u1+2m. (5.144)

We have seen that in modern language this Theta function is a section in a line bundle
on the Riemann surface J = �/{1,τ}.
We can ask ourselves whether we have a different description of this line bundle. Clearly
it is of degree one. Hence it should be of the form OJ (P ) with some point P ∈ �/{1,τ}.
The bundle OJ(P ) has a non trivial section which vanishes at P . Hence we see that our
ϑ0,0(u,p) must vanish for some value of u. A simple computation yields
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ϑ0,0(1,p) = 0, (5.145)

and hence we conclude

L(〈 , 〉,0,η) � OJ(O) (5.146)

where O ∈ �/{1,τ} is the zero element.

Now it becomes clear what the other choices of η will give. In section 5.2.1 I explained
that different choices of η can be compensated by changing ϕ. In this case we can consider
ϕ : Γ → � such that ϕ(Γ) ⊂ 1

2�, of course what matters is the resulting homomorphism
(see Lemma 5.2.4)

ϕ : Γ/2Γ −→ 1
2�/�.

We have three non zero such homomorphisms and

L(〈 , 〉,0,η′) = L(〈 , 〉,ϕ,η)
if η′ = ϕ+η. We could carry out the same calculations and get three more Theta functions

ϑ0,1(u,p) =
∑
m∈�

(−1)mpm
2

u2m (5.147)

ϑ1,0(u,p) =
∑
m∈�

pm
2+mu2m+1

ϑ1,1(u,p) =
∑
m∈�

pm
2

u2m

and they correspond to the linear forms with ϕi,j(1) = i
2 mod �, ϕi,j(τ) = j

2 mod �.
These give the four Jacobi Theta functions. The kernel of ϕi,j defines a 2-torsion point
Pi,j ∈ J , and we must have that ϑi,j is a non zero section in H0 (J,L(〈 , 〉,ϕi,j ,η) and

L(〈 , 〉,ϕi,j ,η) = OJ (Pi,j). (5.148)

In the section 5.2.6 we learned how to write down sections in H0 (J,L(dChol,dη,0)). We
know from the Riemann-Roch Theorem that this space of sections has dimension d. We
get the same result from the recursion formulae, we always can choose d coefficients and
they define all the others. For sections in H0(J,L(d〈 , 〉,dη,0)) the recursion is

f̃(−u) = (−1)df̃(u) (5.149)

f̃(upm) = (−1)dmu−2mdp−dm
2

f̃(u).

If we expand f̃ into a Laurent series in u the coefficients with even (resp. odd) indices
vanish if d is odd (resp. even).

Remark 7. The reader should notice that the recursion defines a line bundle on�×/
〈
p2
〉

and not on�×/〈p〉 . The ratio of two sections f̃/g̃ satisfies f̃ /g̃(u) = f̃/g̃(−u) and is there-
fore a meromorphic function in u2 which is invariant under multiplication by p2. Hence
it is a meromorphic function on �×/

〈
p2
〉
. This has to be so because we have the isomor-

phism �/〈1,τ〉 ∼−→ �×/
〈
p2
〉

which is given by z → e2πiz = u2.
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If d = 2 then

θ1 = ϑ20,0 = . . . − (∑
m∈�

p2m
2+2m

)
u0 +

(∑
m∈�

p2m
2)
u2 + . . .

is a section and we find a second section where the coefficient a0 = 1 and a2 = 0, namely

θ2 =
∑
m∈�

p2m
2

u4m. (5.150)

(We will sometimes suppress the variables u,p in our notation).We consider d = 3, we
have already two sections, namely, θ31 and θ1θ2, and we can write a third section

θ3 =
∑
m∈�

(−1)mp3m
2+mu1+6m. (5.151)

We are now in exactly the same situation as in the discussion of the Weierstraß normal
form (5.1.7). We have the sections

θ1 ∈ H0(J,OJ(O)) ⊂H0(J,OJ (3O))

θ2 ∈ H0(J,OJ(2O)) ⊂H0(J,OJ (3O)

and θ3 ∈ H0(J,OJ(3O)).

We must have linear relations among the monomials θ23 , θ3θ2θ1, θ3θ
3
1, θ

3
2, θ

2
2θ

2
1 , θ2θ

4
1 , θ

6
1.

Now we take into account that our curve depends on a parameter τ and hence on eπiτ = p,
the coefficients of the relations must be holomorphic functions in the variable p. We look
at specific sections in our line bundle for d = 2. We have the two division points 1

2 ,
τ
2

and 1+τ
2 in �/{1,τ}, we call them P1,0, P0,1 and P1,1 respectively. Then P0,0 = O. For

z ∈ � we put u(z) = eπiz . The ratios

ξν,μ(z) = ξν,μ(z,p) =
ϑ2ν,μ(u(z),p)

ϑ20,0(u(z),p)
(5.152)

are meromorphic functions on �/{1,τ} and Div(ξν,μ) = 2Pν,μ − 2O.

We choose one of these points, say P1,0, we put x = ξ1,0 and we consider the function

r(z,p) = x(z,p) (x(z,p) − x(P0,1,p)) · (x(z,p) − x(P1,1,p)) . (5.153)

We have Div (x − x(P0,1)) = P0,1 + Q − 2O, but since this divisor is principal we have
Q = P0,1. The same argument holds for the third factor. Therefore this function has
divisor 2P0,1 + 2P1,0 + 2P1,1 − 6O. The function

y = y(z) =
ϑ1,0(u(z),p)ϑ0,1(u(z),p)ϑ1,1(u(z),p)

ϑ30,0(u(z),p)
(5.154)

has the divisor P0,1 + P1,0 + P1,1 − 3O and hence

Div(y2) = 2P0,1 + 2P1,0 + 2P1,1 − 6O. (5.155)
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We get Div(y2) = Div(r(z,p)) and conclude that

y2 = a · x (x − x(P0,1)) (x − x(P1,1)) . (5.156)

Our division points are P1,0 = 1
2 , P1,1 = τ+1

2 and P0,1 = τ
2 . A simple calculation shows

that ϑ1,0(P1,0) = 0. Since x =
ϑ21,0
ϑ2
0,0

and we have

ϑ1,0
(
u( τ

2 ),p
)

=
∑
m∈�

pm
2+me

πiτ
2

(2m+1) =
∑
m∈�

pm
2+meπiτme

πiτ
2 (5.157)

=

(∑
m∈�

pm
2+2m

)
e

πiτ
2 =

(∑
m∈�

pm
2

)
e−

πiτ
2

ϑ1,0(u( τ+1
2 ),p) =

∑
m∈�

pm
2+meπi

τ+1
2

(2m+1) =

(∑
m∈�

pm
2+meπiτm · eπim

)
e

πi
2 e

πi
2

=

(∑
m∈�

(−1)mpm
2+2m

)
· e πiτ

2 · e πi
2 =

(∑
m∈�

(−1)m+1pm
2

)
e−

πiτ
2 e

πi
2 .

The same calculation for ϑ0,0 yields

ϑ0,0(u(P1,0),p) =

(∑
m∈�

pm
2+m

)
e

πi
2 (5.158)

ϑ0,0(u(P0,1),p) =

(∑
m∈�

(−1)mpm
2+2m

)
e

πiτ
2

ϑ0,0(u(P1,1),p) =

(∑
m∈�

pm
2+2m

)
e

πiτ
2 e

πi
2 .

We get

y2 = a · x

⎛⎜⎝x−
(∑

m∈� pm
2
)2

(∑
m∈�(−1)m+1pm2

)2
⎞⎟⎠
⎛⎜⎝x −

(∑
m∈�(−1)m+1pm

2
)2

(∑
m∈� pm2

)2
⎞⎟⎠ . (5.159)

We can compute the factor a. We look at the leading term in the expansion for

x =

(
ϑ1,0
ϑ0,0

)2

and y =
ϑ1,0ϑ1,1ϑ0,1

ϑ30,0

at z = 0, i.e. u = 1. If

ϑ0,0(u(z),p) = βz +higher order terms (5.160)

then
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x =
ϑ1,0(1,p)

2

β2z2
+higher order terms (5.161)

y =
ϑ1,0(1,p)ϑ1,1(1,p)ϑ0,1(1,p)

β3z3
+higher order terms.

Hence we get

a =
ϑ1,1(1,p)

2 · ϑ0,1(1,p)2
ϑ1,0(1,p)4

= 1
16

(
1 − 12p2 + 66p2 − 232p4 + . . .

)
. (5.162)

This power series is a square, we check easily that

a =
(
1
4 (1 − 6p2 + 15p4 + . . .)

)2
and we substitute y by 4y

1−6p2+15p4+... and get

y2 = x

⎛⎜⎝x −
(∑

m∈� pm
2
)2

(∑
m∈�(−1)m+1pm2

)2
⎞⎟⎠
⎛⎜⎝x −

(∑
m∈�(−1)m+1pm

2
)2

(∑
m∈� pm2

)2
⎞⎟⎠ . (5.163)

Now it follows from a simple calculation that

(∑
m∈� pm

2
)2

(∑
m∈�(−1)m+1pm2

)2 +

(∑
m∈�(−1)m+1pm

2
)2

(∑
m∈� pm

2
)2 = 2 + 64p2 + 512p4 + 2816p6 + . . . = λ(q)

(5.164)

is a power series in p2, we get a family of curves which depend on a parameter p

y2 = x
(
x2 − (2 + 64p2 + 512p4 + 2816p6 + . . .

)
x + 1

)
. (5.165)

This is now an equation for an elliptic curve. The distinguished point is the point at
infinity. The projective curve is given by

Ẽp : y2v = x
(
x2 − (2 + 64p2 + 512p4 + . . .

)
xv + v2

)
. (5.166)

We make this a little bit more explicit. We write the expansions

ϑ0,0(u,p) =
(
u − u−1

) (
1 − (u−2 + u2 + 1

)
p2 +

(
u−4 + u4 + u−2 + u2 + 1

)
p6 − . . .

)
(5.167)

and

ϑ1,0(u,p) =
(
u + u−1)

(
1 + u−2 − 1 + u2

)
p2 +

(
u−4 + u4 − u−2 − u2 + 1

)
p6 + . . .

)
.

(5.168)

The other two series are of the form (ε = 0,1)
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1 +

∞∑
m=1

(−1)mε(u−m + um)pm
2

.

If we multiply them together we get only even powers of u and p.

We see that in the expressions for ϑ0,1(u,p), ϑ1,1(u,p) and in the second factors of
ϑ0,0(u,p), ϑ1,0(u,p) we only have even powers of p and the coefficients of the powers
of p and are always polynomials in u2, u−2 whose degree is the summation index and
whose coefficients are ±1. (This is good enough for convergence for any choice u ∈ �×
and p with |p| < 1.) We introduce new functions

y1(u,p) =
(u − u−1)3

4(u + u−1)
y(u,p). (5.169)

x1(u,p) =
(u − u−1)2

(u + u−1)2
x(u,p) (5.170)

and for them get the expressions

y1(u,p) =
(u − u−1)3

4(u + u−1)
ϑ1,0(u,p))ϑ0,1(u,p)ϑ1,1(u,p)

ϑ30,0(u,p)

ϑ21,0(1,p)

ϑ0,1(1,p)ϑ1,1(1,p)
(5.171)

=1 +
(−4(u−4 + u4) + u−2 + u2 + 6

)
p2

+
(−4(u−6 + u6) + 3

(
u−4 + u4) + 24(u−2 + u2) + 38

)
p4 + . . .

=1 +
∞∑

m=1

Ym(u2,u−2)p2m

and

x1(u,p) =
(u − u−1)2

(u + u−1)2
ϑ21,0(u,p)

ϑ20,0(u,p)
(5.172)

= 1 + 4
(
u2 + u−2

)
p2+(

3
(
u−6 + u6

)
+ 4

(
u−4 + u4

)
+ 9

(
u−2 + u2

)
+ 8

)
p4 + . . .

= 1 +

∞∑
m=1

Xm(u2,u−2)p2m.

where Ym(u2,u−2),Xm(u2,u−2) are polynomials in u2, u−2, invariant under u → u−1 with
integer coefficients. We have an estimate for the degree of the Ym, the absolute values of
the coefficients of the Ym: They can be estimated by C

√
m for some constant C.

We introduce new variables q=p2, w=u2, recall that this now means q = e2πiτ ,w = e2πiz.
We rewrite all the occuring expressions in the variables q and w, i.e.

λ̃(q) = λ(p), x̃1(w,q) = x1(u,p), ỹ1(w,q) = y1(u,p),

X̃m(w,w−1) = Xm(u2,u−2), Ỹm
(
w,w−1

)
= Ym(u2,u−2),

We rewrite our original functions x(u,p), y(u,p) in the new variables and get



5.2 Line Bundles on Complex Tori 267

x̃(w,q) =
w + w−1 + 2

w + w−1 − 2
x̃1(w,q) =

w + w−1 + 2

w + w−1 − 2
(1 +

∞∑
m=1

X̃m(w,w−1)qm)

ỹ(w,q) =
4(w + 1)

(w − 1)(w + w−1 − 2)
ỹ1(w,q) =

4(w + 1)

(w − 1)(w + w−1 − 2)
(1+

∞∑
m=1

Ỹm(w,w−1)qm)

Now we know that x̃(w,q),ỹ(w,q) satisfy the equation

ỹ(w,q)2 = x̃(w,q)
(
x̃(w,q)2 − (2 + 64p2 + 512p4 + 2816p6 + . . .

)
x̃(w,q) + 1

)
and we have proved

Proposition 5.2.39. For any point q in the punctured disc we get an elliptic curve Ẽq,
the map

�
× −→ Ẽq
w �−→ (x̃(w,q),ỹ(w,q),1) if w �= 1

w �−→
(
x̃(w,q)

ỹ(w,q)
,1,

1

ỹ(w,q)

)
if w is near 1

provides an isomorphism of complex analytic groups

�
×/ < q >

∼−→ Ẽq.

I write this map (and other similar ones ) in a more suggestive form

w �−→ (x̃(w,q),ỹ(w,q),1) =

(
x̃(w,q)

ỹ(w,q)
, 1,

1

ỹ(w,q)

)
.

But we may also consider the product of the punctured disc Ḋ with the projective plane
�
2(�). The homogeneous coordinates of the plane are (x,y,v). Then we have constructed

a family of elliptic curves – namely

Ẽ : ỹ2v = x̃3 − λ̃(q)x̃2v + x̃v2 Ḋ ×�2(�)

Ḋ.

......................................................................... .....
.................

......

........

.........................................................
......
......
......
p1

............................................................................................................................................................................................................................................................... ........
....

p0

(5.173)

Here Ẽ is a smooth complex variety and the fibre over the point q ∈ Ḋ is our elliptic
curve Ẽq. Now we discuss the degeneration of the curve. What happens if q → 0?
Of course we can extend our diagram to

Ẽ : ỹ2v = x̃3 − λ̃(q)x̃2v + x̃v2 D ×�2(�)

D.

......................................................................... ......
................

......

........

.........................................................
......
......
......
p1

............................................................................................................................................................................................................................................................... .......
.....

p0

(5.174)

We define Ẽ by the same equation. We can put q = 0, then we get the curve
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E0 : ỹ2v = x̃3 − 2x̃2v + x̃v2 = x̃(x̃ − v)2, (5.175)

this is not an elliptic curve, because it has a singularity. We see that we have a morphism
from the projective line �1(�) to E0:

f : t �−→ (
t2,t(t2 − 1),1

)
=

(
t

t2 − 1
, 1,

1

t(t2 − 1)

)
. (5.176)

Proposition 5.2.40. The morphism

f : �1(�) \ {±1} −→ E0 \ {(1,0,1)}

is biholomorphic. The points t = ±1 both map to (1,0,1).

The point (1,0,1) is a so called double point on E0.. In a small neighborhood of (1,0,1)
the curve looks like

y2 = (x − 1)2 and this is (y − (x − 1))(y + (x − 1))

and this are two crossing straight lines.
Therefore we can say that for q → 0 the elliptic curve degenerates into a rational curve
with an ordinary double point. The curve E0 is called the special fiber. It looks as if it
has genus zero, but a closer look shows that the singular point raises the genus back to
1. We consider smaller discs D(r) = {q | |q| < r}. A germ of a holomorphic section in

Ẽ is a holomorphic map s : Ḋ(r) → Ẽ defined on some Ḋ(r) such that s(q) ∈ Ẽq for all

q ∈ Ḋ, i.e. p0 ◦ s = Id . As usual two germs are considered as equal if they are equal
on their common domain of definition. We say that such a section is meromorphic if it
extends to a holomorphic section from D to �2(�). These meromorphic sections define

a group Ẽ(Ḋ0), where Ḋ0 is a notation for the “germ of the punctured disc”. It is clear
how we get such germs. We consider non zero Laurent series

f(q) =
∑

n>−N
anq

n

which are convergent on some Ḋ(r). They form a field O(Ḋ0)
×. We define a map

Θ : O(Ḋ0)
× −→ Ẽ(Ḋ) (5.177)

by f(q) �−→{q �→ (x̃(f(q),q), ỹ(f(q),q), 1)}

=

{
q �→ (

x̃(f(q),q)

ỹ(f(q),q)
, 1,

1

ỹ(f(q), q)
)

}
.

Now it is clear that the Laurent series {qn}n∈� go to the identity. I claim (without proof,
it is rather clear anyway):

Lemma 5.2.41. The map Θ induces an isomorphism

Θ : O(Ḋ0)
×/〈q〉 ∼−→ Ẽ(Ḋ)

Any f ∈ O(Ḋ0)
× is modulo 〈q〉 of the form
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f(q) = a0 + a1q + a2q
2 + a3q

3 + . . .

where a0 �= 0. We define a homomorphism which can be considered as evaluation at 0

Θ0 : Ẽ(Ḋ) −→ Ẽ0 (5.178)

which sends

f(q) �−→ (x̃(f(0), 0), ỹ(f(0),0),1) =

(
x̃(f(0),0)

ỹ(f(0),0))
, 1,

1

ỹ(f(0),0)

)
=

(
a0 + a−10 + 2

a0 + a−10 − 2
,

4(a0 + 1)

(a0 − 1)(a0 + a−10 − 2)
, 1

)
=

(
a0 + a−10 + 2

4(a0 + 1)
, 1,

(a0 − 1)(a0 + a−10 − 2)

4(a0 + 1)

)
This also defines a morphism �

1(�) →Ẽ0, where now the two points 0, ∞ are mapped
to the singular point. We see that the evaluation map Θ0 induces a biholomorphic iso-
morphism �× ∼−→Ẽ0\{(1,0,1)}, and this allows us to put a group structure on E0\{(1,0,1)},
such that Θ0 becomes a homomorphism.

The Algebraic Approach

The point of the previous consideration is, that the objects which we constructed are
essentially purely algebraic objects. To explain this I need to anticipate some of the con-
cepts of the second volume. The holomorphic functions on the “germ of discs” are simply
the power series with some positive radius of convergence, the meromorphic functions
are the Laurent series, also with some positive radius of convergence. But we can ignore
convergence, we may consider the ring of all (formal) power series and the field of all
Laurent series in the variable q. But if we do not care about convergence, then there is
no reason why the coeffients should be complex numbers. We can consider the rings of
formal power series and formal Laurent series with coefficients in �, these are the rings

�[[q]] and �[[q]]
[
1
q

]
. For reasons which will become clear in a moment, we will need that

2 is invertible in our rings, so we enlarge � to R = �[12 ], i.e. we consider the rings

A = R[[q]] and B = R[[q]]
[
1
q

]
.

The units in A are the power series whose constant term is ±2n and the units in B are
of the form qn(±2n +

∑
k>0 akq

k). Now we can attach some kind of geometric objects

Spec(A) = Spec (�[[q]]) and Spec(B) = Spec
(
�[[q]]

[
1
q

])
to these rings. The reader may think of them as an infinitesimally small (punctured) disc,
they are “affine schemes”.
We have the scheme �2/ Spec(�). I do not give the definition, but I formulate its essential
property. One may think of �n/ Spec(�) as a covariant functor from the category of
commutative rings S with unit element to the category of sets. For any such ring S the
set �n(S) is the set of (n + 1)-tuples
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(a0,a1, . . . an) |∃ r0,r1, . . . ,rn ∈ S such that

∑
i

riai = 1
}
/�,

where the equivalence relation identifies two such tuples (a0,a1, . . . an), (b0,b1, . . . bn) if
and only if there is a unit c ∈ S× such that ai = cbi for all i = 0,1, . . . ,n. If S = �, then
this is our earlier definition, if S is a local ring, i.e. it has a unique maximal ideal (�= S),
then the condition about the existence of the ri says that at least one of the entries is
not in the maximal ideal. Now I want to explain that our constructions above provide a
diagram

E

Spec(B) ×Spec(R) �
2

Spec(B)

E

Spec(A) ×Spec(R) �
2

Spec(A)

.................................................................................................................................................................................... .......
.....

.........
.......

......................................................................................................................................................................................................... .......
.....

.........................................................
......
......
......

.................................................................................................................................................................................... .......
.....

.........
.......

......................................................................................................................................................................................................... .......
.....

.........................................................

......

......
......

............................................................................................................................................................................................................................................................................................................................................... ......
................

......

........

........................................................................................................................................................................................................................................................................................................................... .....
.................

......

........

(5.179)

the meaning of this will be explained now. We consider the categories of rings over A
and over B. This means that we consider rings S with identity together with a homo-
morphism i : A → S (this is a ring over A) or together with a morphism j : B → S.

Question: What is the relation between these two kind of rings? Is any ring over A
automatically also ring over B?

Now we define E and E as subfunctors of the projective plane: We put

E(S) =
{
(x,y,v) ∈ �2(S) | y2v = x3 − i(λ̃(q))x2v + xv2

}
(5.180)

and E(S) =
{
(x,y,v) ∈ �2(S) | y2v = x3 − j(λ̃(q))x2v + xv2

}
.

Of course we can replace both rings by smaller rings. We consider the polynomial ring
R[t] we embed it into A by sending t to λ(q) − 2 = 64q + 512q2 . . . and then R

[
t, 1t
]

embeds into B. (Here we need that 2 is invertible.) Then we can write the same diagrams
over these smaller rings:

E

Spec(R[t,t−1]) ×Spec(R) �
2

Spec(R[t,t−1])

E

Spec(R[t]) ×Spec(R) �
2

Spec(R[t])

................................................................................................................................................................................................................ .......
.....

.........
.......

......................................................................................................................................................................................................... ........
....

.....................................................................
......
......
......

................................................................................................................................................................................................................ .......
.....

.........
.......

......................................................................................................................................................................................................................................... ........
....

.....................................................................

......

......
......

............................................................................................................................................................................................................................................................................................................................................................................................... ......
................

......

........

.............................................................................................................................................................................................................................................................................. .....
.................

......

........

(5.181)

and this now means that E , E now define functors from the category of rings over R[t]
(resp. R

[
t, 1
t

]
). It turns out, that E → R

[
t,1t
]
is in fact an elliptic curve, if we remove the

point t = −4. We will discuss this example in the second volume. Now the reader may
wonder, why we work with the large rings, whereas the situation with the small rings
seems to be much simpler.
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If we work over the rings A,B then we still can write down sections, or in other words
we can describe the groups of values E(A) and E(B). If we consider power series

f(q) =
∑
n≥N

anq
n

whose lowest order term akq
k has a coefficient ak ∈ R×, then we may substitute this

power series for w into x̃(w,q), ỹ(w,q) and we get a point

(x̃(f(q),q),ỹ(f(q),q), 1) =

(
x̃(f(q),q)

ỹ(f(q),q)
, 1,

1

ỹ(f(q),q)

)
(5.182)

in E(A). Actually we have to look a little bit closer to this process of substitution. We
can multiply by a power of q, this does not change the point in the projective space. So
we assume that k = 0 and we get

x̃(f(q),q) =
f(q) + f(q)−1 + 2

f(q) + f(q)−1 − 2
x̃1(f(q),q), (5.183)

ỹ(f(q),q) =
4(f(q) + 1)

(f(q) − 1)(f(q) + f(q)−1 − 2)
ỹ1(f(q),q).

Of course there is no problem substituting f(q) for w into x1(w,q), y1(w,q), but the factor
in front may cause trouble. We attach to the power series the point in projective space
with coordinates(
f(q)+f(q)−1+2)(f(q)−1)x̃1(f(q),q), 4(f(q)+1)ỹ1(f(q),q),(f(q) + f(q)−1+2)(f(q)−1)

)
.

To get a point in the projective space we must be able to find r0,r1,r2 which combine
the entries in the coordinate vector to one, and it is an amusing exercise to verify that
this is the case under our assumptions.

We will come back to this in the second volume.

5.3 Towards the Algebraic Theory

5.3.1 Introduction

During our discussion of the Jacobian J of a Riemann surface S and the description
of the Picard group of J we made use of transcendental methods. We worked in the
category of (compact) complex manifolds. Especially we described the complex manifold
J as quotient J = �g/Γ where then Γ = H1(J,�).
On the other hand we have seen that the Riemann surface S can be viewed as the set of
points of a non singular projective curve over the complex numbers. We also have stated
the result that the Jacobian J of S is a projective algebraic variety. We also know that
J has the structure of an algebraic group (see 5.2.7). We have a holomorphic line bundle
P , which has the property that Tx(P)⊗P−1 is not trivial unless x is the neutral element
and P⊗3 provides a projective embedding. In this section we will aim at an algebraic
formulation of our central results, starting from these algebraic data. We still use the
transcendental arguments in the proofs.
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To illustrate what I mean I consider an endomorphism φ : J −→ J. If we look at it in
the trancendental context, we know that it is an endomorphism φ : Γ → Γ. Hence we
can define the trace tr(φ), our lattice is free of rank 2g. But we will show that this trace
can also be expressed in terms of intersection numbers of certain line bundles obtained
from P and φ, this is then an algebraic definition of tr(φ).
It is the content of Chapter 10 in the second volume that the main results of the present
chapter here can be formulated and proved in purely algebraic terms. This implies that
we can replace the ground field � by an arbitrary field k.
Our starting objects in this section will be a compact Riemann surface S, its Jacobian
J and its dual J∨. On J we have the canonical polarization e0 given by the Riemann
period relations, it defines a line bundle P whose class in the Neron-Severi group is e0.
It also yields the isomorphism je0 : J

∼−→ J∨.
The key to an algebraic approach to understand J and the Riemann surface S itself is
the investigation of the Picard group of varieties of the form S × S, S × J , J × J and
J × J∨.
Let X be any smooth, projective, connected variety over � (see Example 15 a)). We use
the above mentioned principles from GAGA. Then we have

0 −→ H1(X,�) −→ H1(X,OX) −→ H1(X,O∗X) −→ H2(X,�) −→ . . . (5.184)

and from here

0 −→ Pic0(X) −→ Pic(X)
δ−→ H2(X,�). (5.185)

Of course this sequence makes only sense in the analytic context. The class δ(L) is the
Chern class of L and the subgroup generated by the Chern classes is called the Neron-
Severi group NS(X).

The Algebraic Definition of the Neron-Severi Group

If X is any smooth projective algebraic variety then the group H2(X,�) is of course
a transcendental object, it needs the concept of continuity in its definition. But if we
believe in GAGA then the group Pic(X) is defined in the context of algebraic geometry.
We also can give an algebraic definition of subgroups which are close to Pic0(X).
For instance we can define the subgroup Pic0,0(X) of those line bundles which are alge-
braically equivalent to zero:

Definition 5.3.1. We say that a line bundle L on X is algebraically equivalent to
zero if we can find a connected projective algebraic variety T over � and a line bundle
L̃ on X × T such that there are two points t1,t0 on T for which Lt1 = L̃|X × t1

∼−→ L
and Lt0 = L̃|X × t0

∼−→ OX .

Naively speaking this means that we can deform our bundle into the trivial bundle. It is of
course clear that during such a deformation process the Chern classes of the bundles stay
constant. This means that the group Pic0,0(X) of lines bundles algebraically equivalent
to zero is always contained in Pic0(X).
If we divide Pic(X) by this subgroup we get a modified Neron-Severi group

NSalg(X) = Pic(X)/Pic0,0(X) (5.186)
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which is defined in the context of algebraic geometry.
Our results (for instance in section 5.2.1) imply that for abelian varieties A over � we
have in fact Pic0(A) = Pic0,0(A) and thus we have an algebraic definition of NS(A) for
abelian varieties.
Hence we see that the Neron-Severi group NS(X) ⊂ H2(X,�), which is only defined in
the analytic context, is a quotient of NSalg(X) which can be defined in the context of
algebraic geometry. If in the following sections we formulate a result, then we say that
we have an algebraic result, if we can state in terms of elements of NSalg(X). For a
first example see our construction in 5.2.2. This does not mean that the proof is purely
algebraic.

The Algebraic Definition of the Intersection Numbers

At this point I want to outline how we can define in purely algebraic terms the intersection
numbers of line bundles on a smooth connected projective variety X ⊂ �

n(�). We put
d = dimX .
Let L1, . . . ,Ld be line bundles on X , let c1(L1), · · · ,c1(Ld) be their Chern classes. We can
form the cup product c1(L1)∪ · · · ∪ cd(Ld) ∈ H2d(X,�) = �, and the result is a number.
We have already seen that under certain favorable circumstances we can interpret this
number as the number of points in the intersection of d smooth divisors (see Proposition
4.10.14)

c1(L1) ∪ · · · ∪ c1(Ld) = Y1 ∩ · · · ∩ Yd. (5.187)

I want to explain that it is always possible to interpret this cup product of Chern classes as
intersection numbers. I have to appeal to some theorems in projective algebraic geometry
(Theorem of Bertini) which will be discussed in more detail in the second volume.
Our projective space �n(�) has the line bundle O�n(�)(1) = H on it (see page 163).
We will show that for any bundle L on X we can find an integer k > 0 and a non zero
section s ∈ H0(X,L ⊗ H⊗k) such that [s = 0] is a smooth divisor (see section 4.10.3).
We take our bundle L1 and choose sections s1 ∈ H0(X,L1 ⊗ H⊗k) and t1 ∈ H0(X,H⊗k)
which both provide a smooth divisor on X .
If we look at the cup product of the Chern classes, we find the equality

c1(L1)∪. . .∪c1(Ld) = c1(L1⊗H⊗k)∪c1(L2)∪· · ·∪c1(Ld)−c1(H⊗k)∪c1(L2)∪· · ·∪c1(Ld).

Now the two divisors [s1 = 0] and [t1 = 0] are again smooth projective varieties. They are
perhaps not connected but their connected components Z1, . . . ,Zν , . . . are also smooth
projective varieties by the Theorem of Chow. We can restrict the remaining line bundles
L2, . . . ,Ld to these components.
Now we assume by induction that we have an algebraic definition of the intersection
number of L′2, . . . ,L′d of d − 1 line bundles on smooth projective varieties of dimension
d − 1. Then the above argument gives us an algebraic definition for the intersection
number of d line bundles on X .
Here we have to observe that in view of our result in Proposition 4.10.14 we know
that this definition does not depend on the choices of n and of the sections si and t1
because the intersection numbers are also given by the cup product. But in the context
of algebraic geometry, when cohomology groups are not available, then we have to work
a little bit more to show this independence. In other words: We propose a definition of
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an intersection product NSalg(X)d −→ �, but to see, that it is well defined we need
topology.

Proposition 5.3.2. If we have d line bundles L1, . . . ,Ld on a smooth projective algebraic
variety X of dimension d. Assume that L1 is not the trivial bundle, that H0(X,L1) �= 0
and that L2, . . . ,Ld are ample. Then we know that their intersection product

c1(L1) ∪ · · · ∪ c1(Ld) > 0.

This is clear if d = 1, because a non zero section s ∈ H0(S,L1) must have a zero, because
L1 is not trivial. The rest follows by induction. We can choose an integer k > 0 such that
L⊗k2 has a section t such that t = 0 defines a smooth divisor Y on X . We can choose t
such that [s = 0] �⊆ [t = 0] = Y. (This is again the Theorem of Bertini.) Now we need
that the restriction of L1 to Y is again not trivial, then we can apply induction. We have
to show that [s = 0] ∩ [t = 0] �= ∅. Assume this is not the case. We know by definition
that [s = 0] is an algebraic subset. Any section t1 ∈ H0(X,L⊗k2 ) defines a holomorphic
function t1/t on [s = 0]. Since we can assume that L⊗k2 provides an embedding we can
achieve that t1(x) = 0, t1(y) �= 0 where x,y are two arbitrarily given points on [s = 0].
On the other hand we know that [s = 0] is compact, hence any such function restricted
to [s = 0] has a maximum for its absolute value on [s = 0]. Here we encounter a little
difficulty. Since we can not assume that [s = 0] is smooth, we can not apply the maximum
principle from the theory of functions. But in fact it can be shown that it also holds for
arbitrary algebraic subsets Z ⊂ X : A bounded holomorphic function on Z is constant on
the connected components of Z. If we accept this fact, then we have proved the above
proposition.

The Study of some Special Neron-Severi groups

If X is equal to one of our four varieties S × S, S × J , J × J and J × J∨ and if we write
it as a product X = Y ×Z. We want to study the Picard group Pic(Y ×Z), its subgroup
Pic0(Y × Z) and its Neron Severi quotient NS(Y × Z) = Pic(Y × Z)/Pic0(Y × Z).
We apply the considerations from 4.6.7 to X = Y × Z. Clearly we have a morphism
OY ⊗̂OZ −→ OY×Z . Moreover our sheaves are a of �-vector spaces so the injective
resolutions are also flat. Hence we get a homomorphism

H1(Y,OY ) ⊗ H0(Z,OZ) ⊕ H0(Y,OY ) ⊗ H1(Z,OZ) =

H1(Y,OY ) ⊕ H1(Z,OZ) −→ H1(Y × Z,OY×Z) (5.188)

and this homomorphism is in fact an isomorphism. This implies

Pic0(X) = Pic0(Y × Z)
∼−→ Pic0(Y ) ⊕ Pic0(Z). (5.189)

We say that Pic0 is linear.
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We will not use that 5.188 is an isomorphism and we will not prove it. But I want to make
a few comments. It is easy to see that is injective: We simply choose points y0 ∈ Y,z0 ∈ Z
and restrict the classes H1(Y × Z,OY×Z) to H1({y0} × Z,OZ) and H1(Y × {z0},OY ).
The composition of arrows H1(Y,OY )⊕H1(Z,OZ) −→ H1(Y ×Z,OY×Z) −→ H1({y0}×
Z,OZ)⊕H1(Y ×{z0},OY ) is an isomorphism. This shows the injectivity. The surjectivity
is more difficult. It becomes easy if we accept the following result, which seems to be
very plausible.
Let p2 be the projection from X = Y × Z −→ Z. Then Rqp2,∗(OY×Z) is a free coherent
sheaf on Z and for any point z ∈ Z we have

Rqp2,∗(OY×Z)⊗ (OZ,z/mz) = Rqp2,∗(OY×Z)⊗� ∼−→ Hq(p−12 (z),OY×{z})
∼−→ Hq(Y,OY ).

This result looks rather innocent and has the flavour of a base change theorem 4.4.17.
It again related to the deep finiteness results in complex analytic geometry (See the
discussion in 5.2.1). It is a consequence of the so called semi continuity theorem. These
results will be proved in volume II in the context of algebraic geometry, they are much
more difficult to prove in complex analytic geometry.
If we accept this fact then we apply the spectral sequence and get for the E2 term See
4.6.3, d))

(Hp (Z,Rqf∗(OY×Z)) ,d2) ⇒ Hn(Y × Z,OY×Z)

If n = 1 then we get two steps in the filtration, namely H1(Y,p2,∗(OY×Z) = H1(Y,OY )
and H0(Z,R1p2,∗(OY×Z). It follows that the dimension H1(Y ×Z,OY×Z) is less or equal
to sum of the dimensions of H1(Y,OY ) and H1(Z,OZ) and this combined with the injec-
tivity proves the assertion.
We may also derive the isomorphism 5.188 from the results in 5.2.1 if one of the factors is
an abelian variety. There we gave a hint how such a semicontinuity can be proved under
certain assumptions.
The isomorphism 5.189 is called the theorem of the square and will be proved in the
context of algebraic geometry in volume II.

We are more interested in the Neron Severi group. We recall the notation Γ � H1(S,�)
and then

H2(J,�) = Hom(Λ2Γ,�)

H2(S × S,�) = H2(S,�) ⊕ (H1(S,�) ⊗ H1(S,�)
)⊕ H2(S,�)

= �⊕ (Γ ⊗ Γ) ⊕ �.

H2(S × J,�) = H2(S,�) ⊕ (H1(S,�) ⊗ H1(J,�)
)⊕ H2(J,�)

= �⊕ (Γ ⊗ Γ∨) ⊕ Hom(Λ2Γ,�).

We have to find out what the Neron-Severi group will be in our four cases. I claim that
we have a submodule NS′(Y × Z) ⊂ H1(Y,�) ⊗ H1(Z,�) such that we get a direct sum
decomposition into three summands

NS(Y × Z) = NS(Y ) ⊕ NS′(Y × Z) ⊕ NS(Z).
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To see this we observe that we have pullbacks p∗1(L1), p
∗
2(L2) of line bundles on the two

factors, which have Chern classes (c1,0,0), (0,0,c2) with respect to the above decomposi-
tion. On the other hand we can choose points y0 ∈ Y and z0 ∈ Z and restrict a bundle
L on Y × Z to y0 × Z, Y × z0. The Chern classes of these restrictions do not depend on
the selected points (because Y , Z are connected) and if we modify L by the product of
the inverses of the pullbacks we get a bundle whose Chern class is (0,c2,0).

The first and the third summand are considered as less interesting at this point since
they are filled up by the Chern classes of line bundles which are pull backs from the two
factors. We are interested in the summand in the middle.
We have the morphisms

S × S
Id×iP0−−−−−→ S × J

iP0×Id−−−−→ J × J
Id×je0−−−−−→ J × J∨.

This induces a sequence of isomorphisms between the H1⊗H1 component of the second
cohomology groups

Γ ⊗ Γ ←− Γ ⊗ Γ∨ ←− Γ∨ ⊗ Γ∨ ←− Γ∨ ⊗ Γ∨

where the isomorphism is always the tensor product of the identity and the Poincaré du-
ality. It is clear that this sequence of isomorphisms also induces homomorphisms between
the corresponding subgroups NS′(Y × Z) and we have:

Proposition 5.3.3. With the obvious notation we get a sequence of isomorphisms

NS′(S × S) ←− NS′(S × J) ←− NS′(J × J) ←− NS′(J × J∨).

Proof: To see that this is indeed the case we recall that the Neron-Severi group is always
the kernel of

H2(X,�) −→ H2(X,OX).

In our situation we have to apply the Künneth formula and look at the kernel of

H1(Y,�) ⊕ H1(Z,�) −→ H1(Y,OY ) ⊕ H1(Z,OZ)

and then the claim follows because the maps

H1(J∨,OJ∨)
∼−→ H1(J,OJ ) −→ H1(S,OS)

are isomorphisms.

There is a slightly different way of looking at this proposition. We have seen that we
have to study the alternating 2-forms on Γ ⊕ Γ, Γ ⊕ Γ∨, Γ∨ ⊕ Γ∨. If our two summands
are Γ1,Γ2 then we denote the space of those alternating 2-forms which are trivial on
Γ1 × Γ1,Γ2 × Γ2 by Alt′2(Γ1 ⊕ Γ2,�). We get an isomorphism

Γ∨1 ⊗ Γ∨2
∼−→ Alt′2(Γ1 ⊕ Γ2,�)
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which sends an element ψ1 ⊗ ψ2 = Ψ to the alternating form

eΨ : ((γ1,γ2),(γ
′
1,γ
′
2)) �−→ ψ1(γ1)ψ2(γ

′
2) − ψ1(γ

′
1)ψ2(γ2).

To get the Neron-Severi group we have to look at those alternating forms which after
tensorization by � are compatible with the complex structure. Then we have to translate
it back into a condition for Ψ ∈ Γ∨1 ⊗ Γ∨2 .
If for instance Γ1 = Γ∨ and Γ2 = Γ then the we get Γ⊗Γ∨ = End(Γ). Then it is obvious
that the alternating form Ψ is compatible with the complex structure on (Γ⊕Γ∨)� if and
only if the corresponding element in End(Γ) is compatible with the complex structure
on Γ�. Hence we have shown

NS′(J × J∨) ∼−→ End(J). (5.190)

To get this identification we did not use the polarization.
Now we consider the case J × J . In this case we have to look at Γ ⊗ Γ and this is the
module of bilinear forms on Γ∨ and via Poincaré duality this is the same as the module of
bilinear forms on Γ. Following the identifications we see that an element γ1 ⊗ γ2 ∈ Γ⊗Γ
gives us the bilinear form (η1,η2) �→ e0 < γ1,η1 > e0 < γ2,η2 >.
Now it is an easy exercise that under the identification

Γ ⊗ Γ
∼−→ Γ ⊗ Γ∨ ∼−→ End(Γ)

the element Id ∈ End(Γ) corresponds to the polarization form e0 ∈ Γ ⊗ Γ
∼−→ Γ∨ ⊗ Γ∨.

This element e0 therefore defines an element E0 in Alt′2(Γ ⊕ Γ,�) which is given by

E0〈(γ1,γ2),(γ′1,γ′2)〉 = e0〈γ1,γ′2〉 − e0〈γ2,γ′1〉. (5.191)

This alternating form is the Chern class of the line bundle L(E0,0,0) = N on J × J .

More generally it is now obvious that under the identification

Γ ⊗ Γ
∼−→ Γ ⊗ Γ∨ ∼−→ End(Γ)

an element ϕ ∈ End(Γ) corresponds to the bilinear form Eϕ given by

Eϕ < γ1,γ2 > = E0 < γ1,ϕ(γ2) > . (5.192)

We can summarize this discussion and say

Theorem 5.3.4. We have a canonical identification

NS′(J × J)
∼−→ End(J)

which is given by the map which sends an element ψ ∈ End(J) to the class of the line
bundle (Id×ψ)∗(N ).

This should be seen in conjunction with our earlier result

NS(J)
∼−→ Endsym(J).
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The previous theorem is already close to an algebraic statement. But the bundle N has
been constructed in the transcendental context, we described it in terms of the 2-cocycle
obtained from the alternating form E0. I want to point out that we have a construction
of our line bundle N on J × J in algebraic terms using only the bundle P : We consider
the product and three maps

J × J J
....................................................................................................... .....

.......
p1

....................................................................................................... .....
.......

m

....................................................................................................... .....
.......

p2

and we put
N = m∗(P) ⊗ p∗1(P)−1 ⊗ p∗2(P)−1. (5.193)

It is quite clear that this bundle has a Chern class, the class E0. But it is also clear that
this bundle does not depend on the choice of P : If we modify P by a line bundle L which
has Chern class zero then this amounts to changing the linear form in the construction.
But this change cancels in the construction of N , this means that N is a canonical bundle
on J × J .
We have seen the construction of a similar bundle – which also was called N – in section
5.2.1. This was called the Poincaré bundle and it lives on J × J∨. This bundle can be
constructed for any complex torus A and is an analytic object. Now the polarization
bundle P provides the isomorphism

ϕP : J −→ J∨ = Pic0(J) (5.194)

which is given by

x �−→ Tx(P) ⊗ P−1.

We get an isomorphism

Id×ϕP : J × J
∼−→ J × J∨

and we can take the pullback of the Poincaré bundle by this map. Of course we then
get the above bundle N on J × J . Since we think of J as the Jacobian of a curve and
therefore the polarization is canonical, we allow ourselves to give the two bundles on
J × J and J × J∨ the same name.

5.3.2 The Structure of End(J)

The Rosati Involution

Since we have an inclusion End(J) ⊂ Hom(Γ,Γ), we know that End(J) is a finitely
generated algebra over �.
For any ϕ ∈ End(J) there is an endomorphism

ϕ∗ : Pic(J) −→ Pic(J)

of the Picard group which is given by the pull back of line bundles. We denote by tϕ
the restriction of ϕ∗ to the subgroup Pic0(J). We use the canonical polarization of the
Jacobian and get the transposed

tϕ : J −→ J.
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I want to point out that these assertions make sense in the context of algebraic geometry.
We have seen that the group NS′(J × J) has an algebraic definition and this is also the
case for End(J). We have seen that tϕ corresponds to the transpose of ϕ : Γ −→ Γ with
respect to e0.

Definition 5.3.5. The map ϕ −→ tϕ is called the Rosati involution (with respect to
the standard polarization).

Proposition 5.3.6. The Rosati involution has the properties

t(ϕ + ψ) = tϕ+ tψ
t(ϕψ) = tψtϕ.

It is of course clear that ϕ∗ also induces an endomorphism

ϕ∗ : NS(J) −→ NS(J).

We use the identification (equation (5.99)) combined with the selfduality and get

NS(J) � Endsym(J), (5.195)

it is clear that the selfduality turns alternating homomorphisms from J to J∨ into sym-
metric endomorphisms of J . We saw in equation (5.91) that

ϕ∗ : ψ −→ tϕψϕ.

We know that ϕ −→ ϕ∗ is quadratic, this means that we can consider ϕ1 + ϕ2 and then

(ϕ1 + ϕ2)
∗ = ϕ∗1 + ϕ∗2 + 〈ϕ1,ϕ2〉

where 〈ϕ1,ϕ2〉 : NS(J) −→ NS(J) depends bilinearily on the two variables.

To any ϕ ∈ End(J) we can define tr(ϕ) and deg(ϕ) simply as the trace and the determi-
nant of ϕ considered as endomorphism of Γ, i. e.

tr(ϕ) = tr(ϕ : Γ −→ Γ) (5.196)

deg(ϕ) = det(ϕ : Γ −→ Γ).

These functions have the obvious properties

tr(tϕ) = tr(ϕ) (5.197)

det(tϕ) = det(ϕ)

det(ϕ1ϕ2) = det(ϕ1) det(ϕ2).

We have the following fundamental result:

Theorem 5.3.7 (Positivity of the Rosati-Involution). For any ϕ ∈ End(J), ϕ �= 0 we
have

tr(ϕtϕ) > 0.
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Proof: At first we give a transcendental proof which uses the lattice Γ. We consider
Γ� as a �-vector space and choose an orthonormal basis (with respect to the Hermitian
form) {e1,e2, · · · ,eg}. Then we put fi = Iei and {e1,f1, . . . ,eg,fg} is an � basis for Γ�.
Our alternating form will have the values 〈ei,fi〉 = −1 = −〈fi,ei〉 and all other values
are zero. Then it is clear that for any endomorphism ψ we have

tr(ψ) = −
∑

〈ψ(ei),fi〉 +
∑

〈ψ(fi),ei〉.

If ψ = tϕϕ then we get

tr(tϕϕ) = −
g∑

i=1

〈ϕ(ei),ϕ(fi)〉 +

g∑
i=1

〈ϕ(fi),ϕ(ei)〉

= −2

g∑
i=1

〈ϕ(ei),ϕ(Iei)〉.

Since ϕ commutes with I, the last sum is equal to

−2
∑

〈ϕ(ei),Iϕ(ei)〉 = +
∑

2h〈 , 〉(ϕ(ei),ϕ(ei)).

The terms are ≥ 0 and since at least one of the ϕ(ei) �= 0 (ϕ(fi) = ϕ(Iei) = ϕ(ei)!) we
conclude that the sum must be strictly positive.

A Trace Formula

Our definitions of the degree and of the trace are given in terms of the lattice Γ. Hence
they are transcendental and the positivity of the Rosati involution does not make sense
in algebraic geometry at this point.
Therefore we have to give a definition of the degree and the trace in algebraic terms. For
the degree this is easy. We consider

J J

H1(S,OS)/Γ H1(S,OS)/Γ.

................................................................................................................................................................... ......
......

ϕ

.......................................................... ......
......

ϕ......
......
......
......
......
......
......
......
...............
............

......

......

......

......

......

......

......

......

...............

............

(5.198)

and then we see easily:

Proposition 5.3.8. The degree of ϕ is non zero if and only if the morphism ϕ is finite.
If the degree of ϕ is non zero, then we have

deg(ϕ) = number of points in ϕ−1(0).

Proof: This is rather clear: The determinant of ϕ is equal to the index of ϕ(Γ) in Γ. If
Γ′ ⊂ H1(OS ,�) is the inverse image of Γ, then Γ′/Γ � Γ/ϕ(Γ) and this proves that the
order of the kernel ϕ−1(0) is also equal to det(ϕ).
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It is also clear that the derivative of ϕ induces an isomorphism of the tangent spaces at
at the points in ϕ−1(0) and zero. We apply Lemma 4.8.12.
The morphism ϕ also induces an inclusion of the field of meromorphic functions on J
into itself �(J) ↪→ �(J). The subfield is the field of invariants under Γ′/Γ. Since we also
know that the meromorphic functions on J separate the points in ϕ−1(0) it follows from
Galois theory that

deg(ϕ) = degree of the extension �(J) ↪→ �(J). (5.199)

From the definition of the degree as a determinant it follows that

deg(ϕ + n Id) = a0(ϕ) + · · · a2n−1(ϕ)n2g−1 + n2g, (5.200)

and then by definition the trace is given by

tr(ϕ) = a2n−1(ϕ). (5.201)

The point of this formula is that deg(ϕ + n Id) is a polynomial in n of degree 2g and
highest coefficient = 1. We want to derive such an expression for the degree deg(ϕ+n Id)
from its algebraic definition, namely as the number of points in a fibre.

The decisive point in the following considerations will be, that for an element
ψ ∈ End(J) the element ψ

∗
(e0) ∈ NS(J) contains relevant information on the

endomorphism ψ.

In a first step we will show that we can express the degree of the endomorphism ψ in
terms of this class. The g-th power with respect to the cup product is an element in
H2g(J,�) = �. Hence it is a number. But from the point of view of algebraic geometry

we think of ψ
∗
(e0) as an element in NS(J), which can be represented by a line bundle.

The g-fold selfintersection of this line bundle in the context of algebraic geometry (see
pages 273 f.) is also a number. We explained in the sections 4.8.9 and 5.3.1 that these
two numbers are the same.
The element e0 is an alternating form on Γ∨. If dim J = g, then we can raise this element
into the gth power in the cohomology ring and we have seen in 4.6.8 that this means
that we have to take its gth exterior power

eg0 = e0 ∧ e0 . . . ∧ e0 ∈ Hom2g
alt(Γ

∨,�) � �. (5.202)

This is the selfintersection number of the class e0. Further down we will compute it, but
here we do not need it. Actually in the following consideration we can replace e0 by any
polarization. Its image under ψ

∗
is given by

ψ
∗
(e0)(γ1,γ2) = e0(ψ(γ1),ψ(γ2)), (5.203)

and it is an elementary exercise in linear algebra that we have

ψ
∗
(e0)

g = deg(ψ) · eg0, (5.204)
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where det(ψ) is of course the determinant of the endomorphism ψ on the free module Γ
which is of rank 2g. Since eg0 > 0 we found an algebraic formula for the degree of ψ. We
apply this to the endomorphism ψ + n Id .
We consider the map

(ψ + n Id)
∗

: NS(J) −→ NS(J).

If we invoke the identification NS(J) � Endsym(J) then for φ ∈ Endsym(J) we have
(ψ + n Id)∗(φ) = (tψ + n Id)φ(ψ + n Id) and hence this map is

(ψ + n Id)
∗

= ψ
∗
+ n〈ψ, Id〉 + n2 · Id . (5.205)

From this we get the formula for the degree

deg(ψ + n Id) · eg0 = ((ψ + n Id)(e0))
g (5.206)

= (ψ∗(e0) + n〈ψ, Id〉(e0) + n2 · e0)g
= . . . + gn2g−1eg−10 ∧ 〈ψ, Id〉(e0) + n2g · eg0

and hence we get the formula

tr(ψ) · eg0 = geg−10 ∧ 〈ψ, Id〉(e0), (5.207)

and this gives us the trace as a cup product of classes in the cohomology evaluated on
the fundamental cocycle. Hence we found a formula for the trace in algebraic terms, since
we can represent the Chern classes by bundles and then we interpret the cup product in
terms of intersection numbers.
Let us assume that the endomorphism ψ is a product of the form ψ = tϕϕ. Then

e0〈(ψ + Id)γ1,(ψ + Id)γ2〉 = (ψ + Id)∗e0〈γ1,γ2〉
= ψ∗e0〈γ1,γ2〉 + e0〈γ1,γ2〉 + e0〈γ1,ψγ2〉 + e0〈ψγ1,γ2〉

and the sum of the last two terms is 〈ψ, Id〉(e0)〈γ1,γ2〉. Hence we get

〈ψ, Id〉(e0)〈γ1,γ2〉 = 2e0〈ϕγ1,ϕγ2〉,

and this means that

〈ψ, Id〉(e0) = ϕ∗(e0).

This gives us the formula

tr(tϕϕ) · eg0 = 2geg−10 ∧ ϕ∗(e0). (5.208)

We return to the interpretation in terms of algebraic geometry. We know that e0 is the
class of an ample line bundle P and we have seen that the highest intersection numbers
of line bundles are equal to the highest cup product of their Chern classes. Hence we can
say that

tr(tϕϕ) · Pg = 2gPg−1 · ϕ∗(P). (5.209)
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This formula gives us an algebraic approach to the positivity of the Rosati involution.
I claim that the right hand side must be positive if ϕ �= 0. We apply Proposition 5.3.2.
We may replace P by a translate Tx(P) because this does not change the Chern class
and hence it does not change the value of the intersection product. We have a non zero
section s ∈ H0(J,P), the set [s = 0] is not empty. We may assume that ϕ(J) �⊂ [s = 0]
because we can modify P by a translation. Hence we see that H0(J,ϕ∗(P)) has a non
trivial section. This section must have zeroes: As in the proof of Proposition 5.3.2 we
show that ϕ(J) ∩ [s = 0] �= ∅. Since ϕ �= 0, we can find points x1,x2 ∈ J, for which
ϕ(x1) �= ϕ(x2). We can find sections t ∈ H0(J,P⊗k) for k � 0 and then t/s⊗k defines
nonconstant holomorphic functions on ϕ(J), and hence on J . This is not possible because
ϕ(J) has strictly positive dimension.

Finally we want to give a formula for the trace of an endomorphism in terms of intersec-
tion numbers of two divisors on the surface S × S. We return to our bundle

N = m∗(P) ⊗ p∗1(P)−1 ⊗ p∗1(P)−1

on J × J . It has Chern class zero when restricted to e× J and J × e and its Chern class
is E0. If we pick an element ψ ∈ End(J), then we can consider the bundle (Id×ψ)∗(N )
on J × J . We have the inclusion iP0 × iP0 : S × S −→ J × J and get the line bundle

(iP0 × iP0)
∗ ◦ (Id×ψ)∗(N ) = Lψ (5.210)

on S×S. The Chern class of this line bundle sits in NS′(S×S)⊂H1(S,�)⊗H1(S,�)=Γ⊗Γ.
Of course this homomorphism ψ �→ Lψ realizes the isomorphism

NS′(S × S)
∼−→ End(J)

which we gave in Proposition 5.3.3.

Now we can state the famous

Theorem 5.3.9 (Trace formula).

Δ · Lψ = − tr(ψ).

Proof: This is a rather formal consequence of the definitions. The following compu-
tations have been indicated in our discussion of the Lefschetz fixed point formula (see
section 4.9). We have seen that the intersection product of two divisors is equal to the
cup product of the Chern classes evaluated on the fundamental class. The cup product
of the classes ξ1 ⊗ η1, ξ2 ⊗ η2 ∈ Γ ⊗ Γ ⊂ H2(S1 × S1,�) is given by −ξ1ξ2 ∪ η1η2 where
now ξ1ξ2 ∈ H2(S,�) ⊗ H0(S,�) and η1η2 ∈ H0(S,�) ⊗ H2(S,�).
Since we have the alternating 2-form, we can choose as a standard basis on Γ a �-basis
u1, . . . ,ug,v1, . . . ,vg such that

e0〈ui,vi〉 = −e0〈vi,ui〉 = 1

and all other products are zero. Under this identification the element

E =
∑
i

ui ⊗ vi −
∑
i

vi ⊗ ui ∈ Γ ⊗ Γ
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becomes the identity element in Γ∨ ⊗ Γ = Hom(Γ,Γ): The element E applied to an
element γ ∈ Γ yields

E(γ) :=
∑
i

〈ui,γ〉vi −
∑
i

〈vi,γ〉ui.

Then it is clear that E(ui) = ui and E(vi) = vi. Then the Chern class of Lψ is given by

c1(Lψ) =
∑
i

ui ⊗ ψ(vi) −
∑
i

vi ⊗ ψ(ui)

and

E ∪ c1(Lψ) =

(∑
i

ui ⊗ vi −
∑
i

vi ⊗ ui

)
∪
(∑

i

ui ⊗ ψ(vi) −
∑
i

vi ⊗ ψ(ui)

)
=
∑
i

〈ui,vi〉 · 〈vi,ψ(ui)〉 +
∑
i

〈ui,vi〉 · 〈ui,ψ(vi)〉

=
∑
i

〈vi,ψ(ui)〉 −
∑
i

〈ui,ψ(vi)〉 = − tr(ψ).

This ends the proof of the trace formula.

The Fundamental Class [S] of S under the Abel Map

Let us consider the Abel map ip0 : S −→ J which induces a map on the first cohomology

H1(J,�) H1(S,�)
‖ ‖

Γ∨ Γ

........................................................................................ .....
.......

i∗P0

............................................................................................................................................... .....
.......

(5.211)

which we identified as the inverse of the polarization map. It induces a map

H2(J,�) H2(S,�)
‖ ‖

Λ2Γ∨ �

........................................................................................ .....
.......

..................................................................................................................................... .....
.......

(5.212)

and this map is by definition the evaluation by the dual form

ϕ ∧ ψ �−→ e∨(ϕ,ψ).

This linear form on H2(J,�) is the fundamental class [S] of the Riemann surface (See
page 144) in H2(J,�) or in H2g−2(J,�). We want to give a formula for this class in terms
of the intersection product of the polarization class.

If we choose a basis e1, · · · ,eg,f1 · · · fg on Γ such that 〈ei,fi〉 = 1 = −〈fi,ei〉 and all other
pairings give zero, then the −f1, · · · ,− fg,e1, · · · ,eg are the elements of the dual basis if
we identify Γ and Γ∨ by the polarization map. Then the form e0 is given by

∑
i ei ∧ fi

again and our form in H2g−2(J,�) which is the fundamental class of S is given by
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i

e1 ∧ fi · · · ̂ei ∧ fi ∧ · · · eg ∧ fg,

i.e. the factor ei ∧ fi is left out.

The polarization class e∨0 ∈ Λ2Γ∨ itself maps to g in H2(S,�), and it is clear that

(e∨0 )g−1 =

(∑
i

ei ∧ fi

)
∧ · · · ∧

(∑
i

ei ∧ fi

)
= (g − 1)![S] (5.213)

and (e∨0 )g = g!. (5.214)

Now recall the formula for the trace

tr(ψ) = g
Pg−1 ∪ 〈Id ,ψ〉(P)

Pg
.

We have seen that Pg−1 = (g − 1)![S] and Pg = g!, hence we get

tr(ψ) = [S] ∪ 〈Id ,ψ〉(P) (5.215)

5.3.3 The Ring of Correspondences

We have the isomorphism Pic(S × S)/ (p∗1(Pic(S)) + p∗2(Pic(S))) � End(J). We want to
explain how we can define a ring structure on the left hand side directly.

If we have an irreducible divisor D ⊂ S × S we can look at it as a so called correspon-
dence: To any point z ∈ S we can consider the points (z,zi) ∈ D and call the points zi
counted with multiplicity as the points corresponding to z. We can form the free group of
these divisors and mod out by the divisors of the form S×D′ or D′′×S where D′ (resp.
D′′) is a divisor in the first or second factor, let us call this R. After we have done this,
we can introduce a product on this group: We choose suitable representatives D1,D2 of
two elements and consider the divisors in D1 ×S, S×D2 on S×S×S. Now we take the
intersection – this makes sense if we made a careful choice – and project this intersection
to the two outer factors.

This induces a ring structure on R with identity which is given by the class of the
diagonal. It is clear that this ring has an involution which is obtained by interchanging
the two factors.
We can also define a trace: For any [D] ∈ R we choose a representative D for which
D | z0 × S and D | S × z0 are both in Pic0(S). Then we put

− tr([D]) = Δ · D. (5.216)

Now it is clear that

− tr(t[D] ∗ [D]) = (t[D] × [D]) · Δ = D · D. (5.217)

We will show in the second volume that this last number is strictly negative if D �= 0.
This is of course the positivity of the Rosati involution.
We know that R � End(J), our considerations show that we can define this ring of
correspondences without reference to the Jacobian.
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5.3.4 An Algebraic Substitute for the Cohomology

I think that I convinced the reader that the cohomology groupsH1(S,�)=Γ, H1(J,�)=Γ∨

play a fundamental role in understanding the structure of S and J . Therefore we should
have a substitute for these cohomology groups in the algebraic context. This will be
explained in volume 2. Here we give an indication how we can get an algebraic definition
of cohomology groups, if we enlarge the coefficient ring � to a larger ring.
We have

J = H1(S,OS)/H1(S,�) = H1(S,OS)/Γ.

The module Γ does not make sense in the context of algebraic geometry. Now we consider
the endomorphism

n Id : J −→ J,

and we consider the kernel

J [n] = ker(n Id : J −→ J). (5.218)

This kernel is obviously isomorphic to

1
n Γ/Γ � (�/n�)2g. (5.219)

But this kernel has an algebraic definition. We consider J as a projective variety over
� which has the structure of an abelian algebraic group and then the kernel of n Id is a
finite algebraic group over �.
Once we have done this, we observe that we have for n | n1 a map J [n] −→ J [n1], and
we can define

Tors(J) = lim−→
n

J [n], (5.220)

where the ordering on � is given by divisibility. Of course it is clear that

Tors(J) = Γ ⊗�/�, (5.221)

this is the group of torsion points and we conclude:

Proposition 5.3.10. Even if the module Γ cannot be defined in terms of algebraic ge-
ometry, the module

Γ ⊗�/�

is an algebraic geometric object.

We can pass to the dual module, we consider Hom(Tors(J),�/�). It is an elementary
fact that

Hom(�/�,�/�) � lim←−
n

�/n � = �̂,

and therefore we get

Hom(Tors(J),�/�) = Γ ⊗ �̂. (5.222)

Now we can define the so called Tate module.
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Definition 5.3.11. The Tate module is defined as

T (J) = lim←−
n

J [n],

where now for n | n1 the map J [n1] −→ J [n] is given by multiplication by n1/n.

(See example 9.) The Chinese remainder theorem yields

�/� =
⊕

�:�prime

��/�� (5.223)

where � runs over the primes, �� is the �-adic completion and �� is the ring of �-adic
integers. This yields a decomposition

Tors(J) =
⊕
�

Tors(J)�

where Tors(J)� = lim J [�α] and dually �̂ =
∏

� �� and

T (J) =
∏
�

T�(J).

Definition 5.3.12. For any prime � we define the �−adic cohomology groups of our
Riemann surface S by

H0(S,��) = ��

H1(S,��) = Hom(T�(J),��)

H2(S,��) = ��.

Now we are back at the opening line of this chapter, the only difference is that the
coefficients � are replaced by ��.
In section 5.1.7 we worked very hard to show that a compact Riemann surface S is the
same kind of object as a projective algebraic curve C ⊂ �n(�). Such a curve can be
defined as the set of common zeroes of a set of algebraic equations. We can interpret our
results above by saying that the �−adic cohomology groups are in fact attached to the
algebraic curve C. Why is this of any relevance?

Let us assume that the defining equations of our Riemann surface can be chosen in such a
way that the coefficients are in�. For example we may assume that our curve is embedded
into �2(�) and defined as the set of zeroes of the somewhat famous homogenous equation

xn + yn + zn = 0 where n is an integer ≥ 1

For any subfield K ⊂ � we may consider the set C(K) of K-valued points, this is simply
the set of solutions of the equations for which the coordinates are in K, i.e. the points
on the curve, which lie in �n(K). Then S = C(�). It clear that the automorphisms
of � map the curve C(�) = S ⊂ �n(�) into itself. Since these automorphisms are
not continuous (except the identity and the complex conjugation), they do not induce
automorphisms on the cohomology groups Hν(S,�). But the it can be shown that they
induce automorphisms on the cohomology groups Hν(S,��) = Hν(C,��). We see this
action in the case of H1(S,��) because these automorphisms induce automorphisms on
the group of torsion points and hence on the Tate module. Actually it is clear that the
torsion points have coordinates in �̄, hence this action factorizes over the action of the
Galois group Gal(�/�) (see Example 11).
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This means that the cohomology groups H•(S,��) have a much richer structure than the
plain cohomology groups H•(S,�). They are modules for the Galois group Gal(�/�).
Of course we already noticed that Hodge theory provides an additional structure on
the cohomology: The tensor product H1(S,�) ⊗ � contains the distinguished maximal
isotropic subspace of holomorphic differentials H0(S,Ω1).
To illustrate the importance of this fact I formulate a result of Faltings, we anticipate
some definitions from volume II.
An abelian variety A is defined over a number field K ⊂ �̄, if we can find a projective
embedding and a defining set of equations, which have coefficients in K. Then it is clear
that we can find a finite extension K ⊂ L ⊂ Q̄, such that all endomorphisms are defined
over L. We have an embedding

End(A) ⊗ �� ↪→ End(T�(A)).

Since the endomorphisms are defined over L we know that End(A) ⊗�� commutes with
the action of the Galois group Gal(�̄/L). The theorem of Faltings asserts (see [Fa])

Under the above hypothesises End(A) ⊗ �� is the commutant of the action of the Galois
group, i.e. consists of those elements, which commute with the action of the Galois group.

This theorem can be used to decide questions of the following kind. Assume that we have
two projective, smooth and irreducible curves C1(�) = S1,C2(�) = S2 and let us assume
that the defining equations have coefficients in �. Can we decide whether there exists a
non constant holomorphic map f : S1 −→ S2 or more generally whether we can find a
third curve S which has non constant holomorphic maps f1 : S −→ S1 and f2 : S −→ S2.
In principle we get an answer from Hodge theory. We apply the considerations on page
274 to the product of our two curves. Then we see that we have to find out whether we
can find �-linear maps φ : H0(S1,Ω

1
S1

)∨ −→ H0(S1,Ω
1
S2

)∨ which map the lattice Γ∨1 into
Γ∨2 (see 5.2.3). But this may be difficult to decide, because we have to compute the period
lattices and hence we have to compute the period integrals (See 5.1.11). Therefore we see
that finding such a φ means that we have to find certain linear relations with rational
coefficients among the period integrals of the two Riemann surfaces. This is difficult if
not impossible. For instance we have no way to decide whether two irrational numbers,
which may be obtained from certain integrals, are linearly dependend over�. One way to
establish such relations is to transform these period integrals into other ones by making
clever substitutions. But this throws us back to our original problem.
On the other hand we may also try to compare the two actions of the Galois group
Gal(�̄/�) on H1(S1,��) and H1(S2,��). We may try to decide whether there are non
trivial homomorphisms between these two Galois modules. Now number theory provides
at least theoretically some tools to decide this question. But then the theorem of Faltings
implies that we also can find a curve S which has non trivial holomorphic maps to S1
and S2.
I do not know, whether this the right place to formulate a final exercise, I will come back
to it in the second volume, there are also places in the literature, where it is solved:

Exercise 32. Is there a non constant holomorphic map between the two elliptic curves

y2 + y = x3 − x2 and y2 + y = x3 − x2 − 10x− 20
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The above result concerning the endomorphism rings is also the key to Faltings’ proof of
the Mordell conjecture. This Mordell conjecture says:

If C is a smooth, irreducible projective curve over some number field K ⊂ � (this means
that C(�) is a compact Riemann surface and the defining equation can taken with coef-
ficients in K) and if the genus is greater than one, then the number K rational points
#C(K) is finite.

Finally I want to mention that Wiles’ proof of Fermat’s last theorem [Wi] is based on
the understanding of the action of the Galois group on �-adic cohomology groups. In this
case Wiles studies the action on the first cohomology of elliptic curves defined over �.



290

Bibliography

[A-McD] Atiyah, M. F.; Macdonald, I. G. Introduction to commutative algebra
Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. 1969
ix+128 pp 1995

[B-L] Birkenhake, Christina; Lange, H. Complex abelian varieties.
Second edition. Grundlehren der Mathematischen Wissenschaften, 302.
Springer-Verlag, Berlin, 2004. xii+635 pp.

[B-T] Bott, R ; Tu, Loring W. Differential forms in algebraic topology.
Graduate Texts in Mathematics, 82. Springer-Verlag, New York-Berlin, 1982.
xiv+331 pp.

[B-K] Buser, P.; Karcher, H. Gromov’s almost flat manifolds.
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