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Series Preface

Mathematics is playing an ever more important role in the physical and biological

sciences, provoking a blurring of boundaries between scientific disciplines and a

resurgence of interest in the modern as well as the classical techniques of applied

mathematics. This renewal of interest, both in research and teaching, has led to the

establishment of the series Texts in Applied Mathematics (TAM).

The development of new courses is a natural consequence of a high level of

excitement on the research frontier as newer techniques, such as numerical and sym-

bolic computer systems, dynamical systems, and chaos, mix with and reinforce the

traditional methods of applied mathematics. Thus, the purpose of this textbook se-

ries is to meet the current and future needs of these advances and to encourage the

teaching of new couses.

TAM will publish textbooks suitable for use in advanced undergraduate and be-

ginning graduate courses, and will complement the Applied Mathematical Sciences

(AMS) series, which will focus on advanced textbooks and research-level mono-

graphs.

Pasadena, California J.E. Marsden

New York, New York L. Sirovich

College Park, Maryland S.S. Antman
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Preface

The aim of these notes is to describe, in a unified fashion, a set of methods for the

simplification of a wide variety of problems that all share the common feature of

possessing multiple scales.1 The mathematical methods we study are often referred

to as the methods of averaging and of homogenization. The methods apply to par-

tial differential equations (PDEs), stochastic differential equations (SDEs), ordinary

differential equations (ODEs), and Markov chains. The unifying principle underly-

ing the collection of techniques described here is the approximation of singularly

perturbed linear equations. The unity of the subject is most clearly visible in the

application of perturbation expansions to the approximation of these singular pertur-

bation problems. A significant portion of the notes is devoted to such perturbation

expansions. In this context we use the term Result to describe the conclusions of a

formal perturbation argument. This enables us to derive important approximation re-

sults without the burden of rigorous proof, which can sometimes obfuscate the main

ideas. However, we will also study a variety of tools from analysis and probability,

used to place the approximations derived on a rigorous footing. The resulting the-

orems are proved using a range of methods, tailored to different settings. There is

less unity to this part of the subject. As a consequence, considerable background is

required to absorb the entire rigorous side of the subject, and we devote a significant

part of the book to this background material.

The first part of the notes is devoted to the Background; the second to the

Perturbation Expansions, which provide the unity of the subject matter; and the

third to the Theory justifying these perturbative techniques. We do not necessarily

recommend that the reader covers the material in this order. A natural way to get

an overview of the subject is to read through Part II of the book on perturbation

1 In this book we will apply the general methodology to problems with two widely sepa-

rated characteristic scales. The extension to systems with many separated scales is fairly

straightforward and will be discussed in a number of the Discussion and Bibliography sec-

tions, which conclude each chapter. In all cases, the important assumption will be that of

scale separation.
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expansions, referring to the background material as needed. The theory can then be

studied, after the form of the approximations is understood, on a case-by-case basis.

Part I (Background) contains the elements of the theory of analysis, probability,

and stochastic processes, as required for the material in these notes, together with

basic introductory material on ODEs, Markov chains, SDEs, and PDEs. Part II (Per-

turbation Expansions) illustrates the use of ideas from averaging and homogenization

to study ODEs, Markov chains, SDEs, and PDEs of elliptic, parabolic, and transport

type; invariant manifolds are also discussed and are viewed as a special case of av-

eraging. Part III (Theory) contains illustrations of the rigorous methods that may be

employed to establish the validity of the perturbation expansions derived in Part II.

The chapters in Part III relate to those in Part II in a one-to-one fashion. It is possible

to pick particular themes from this book and cover subsets of chapters devoted only

to those themes. The reader interested primarily in SDEs should cover Chapters 6,

10, 11, 17, and 18. Markov chains are covered in Chapters 5, 9, and 16. The subject

of homogenization for elliptic PDEs is covered in Chapters 12 and 19. Homogeniza-

tion and averaging for parabolic and transport equations are covered in Chapters 13,

14, 20, and 21.

The subject matter in this set of notes has, for the most part, been known for

several decades. However, the particular presentation of the material here is, we be-

lieve, particularly suited to the pedagogical goal of communicating the subject to the

wide range of mathematicians, scientists, and engineers who are currently engaged

in the use of these tools to tackle the enormous range of applications that require

them. In particular we have chosen a setting that demonstrates quite clearly the wide

applicability of the techniques to PDEs, SDEs, ODEs, and Markov chains, as well

as highlighting the unity of the approach. Such a wide-ranging setting is not under-

taken, we believe, in existing books, or is done so less explicitly than in this text.

We have chosen to use the phrasing Multiscale Methods in the title of the book be-

cause the material presented here forms the backbone of a significant portion of the

amorphous field that now goes by that name. However, we recognize that there are

vast parts of the field we do not cover. In particular, scale separation is a fundamen-

tal requirement in all of the perturbation techniques presented in this book. Many

applications, however, possess a continuum of scales, with no clear separation. Fur-

thermore, many of the problems arising in multiscale analysis are concerned with the

interfacing of different mathematical models appropriate at different scales (such as

quantum, molecular, and continuum); the tools presented in these notes do not di-

rectly address problems arising in such applications, as our starting point is a single

mathematical model in which scale separation is present.

These notes are meant to be an introduction, aimed primarily toward graduate

students. Part I of the book (where we lay the theoretical foundations) and Part III

(where we state and prove theorems concerning simplified versions of the models

studied in Part II) are necessarily terse; otherwise it would be impossible to present

the wide range of applications of the ideas and illustrate their unity. Extensions and

generalizations of the results presented in these notes, as well as references to the lit-

erature, are given in the Discussion and Bibliography section at the end of each chap-

ter. With the exception of Chapter 1, all chapters are supplemented with exercises.
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We hope that the format of the book will make it appropriate for use both as a text-

book and for self-study.
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11.7.7 The Lévy Area Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

11.8 Discussion and Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

11.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

12 Homogenization for Elliptic PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

12.2 Full Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

12.3 Simplified Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

12.4 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

12.5 Properties of the Simplified Equations . . . . . . . . . . . . . . . . . . . . . . . . . 188

12.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

12.6.1 The One-Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

12.6.2 Layered Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

12.7 Discussion and Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

12.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

13 Homogenization for Parabolic PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

13.2 Full Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

13.3 Simplified Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

13.4 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

13.5 Properties of the Simplified Equations . . . . . . . . . . . . . . . . . . . . . . . . . 207

13.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

13.6.1 Gradient Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

13.6.2 Divergence-Free Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214



Contents XVII

13.7 The Connection to SDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

13.8 Discussion and Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

13.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

14 Averaging for Linear Transport and Parabolic PDEs . . . . . . . . . . . . . . . 227

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

14.2 Full Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

14.3 Simplified Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

14.4 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

14.5 Transport Equations: D = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

14.5.1 The One-Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

14.5.2 Divergence-Free Velocity Fields . . . . . . . . . . . . . . . . . . . . . . . . 232

14.6 The Connection to ODEs and SDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

14.7 Discussion and Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

14.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Part III Theory

15 Invariant Manifolds for ODEs: The Convergence Theorem . . . . . . . . . 239

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

15.2 The Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

15.3 The Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

15.4 Discussion and Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

15.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

16 Averaging for Markov Chains: The Convergence Theorem . . . . . . . . . . 245

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

16.2 The Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

16.3 The Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

16.4 Discussion and Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

16.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

17 Averaging for SDEs: The Convergence Theorem . . . . . . . . . . . . . . . . . . . 249

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

17.2 The Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

17.3 The Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

17.4 Discussion and Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

17.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

18 Homogenization for SDEs: The Convergence Theorem . . . . . . . . . . . . . 255

18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

18.2 The Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

18.3 The Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

18.4 Discussion and Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

18.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261



XVIII Contents

19 Homogenization for Elliptic PDEs: The Convergence Theorem . . . . . . 263

19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

19.2 The Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

19.3 The Proof: Strong Convergence in L2 . . . . . . . . . . . . . . . . . . . . . . . . . . 264

19.4 The Proof: Strong Convergence in H1 . . . . . . . . . . . . . . . . . . . . . . . . . 268

19.5 Discussion and Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

19.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

20 Homogenization for Parabolic PDEs: The Convergence Theorem . . . . 273

20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

20.2 The Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

20.3 The Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

20.4 Discussion and Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

20.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

21 Averaging for Linear Transport and Parabolic PDEs: The

Convergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

21.2 The Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

21.3 The Proof: D > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

21.4 The Proof: D = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

21.5 Discussion and Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

21.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303





1

Introduction

1.1 Overview

This chapter introduces the type of problems that are studied in the book, as well

as the methods we will use to study them. Section 1.2 contains four motivating ex-

amples, illustrating a range of interrelated problems in partial differential equations

(PDEs), deterministic dynamics, and stochastic dynamics. In Section 1.3 we discuss

the methods of averaging and homogenization, as applied to singularly perturbed

linear differential equations. This highlights the unity of the material in the book, as

presented in Part II, through perturbation expansions. The chapter closes, in Section

1.4, with bibliographical remarks.

The notation we employ, including in this chapter, is explained in Section 2.2.

We also make reference in this chapter to concepts from the theory of ODEs, PDEs,

and SDEs that will be fully elaborated later in the text. However, we believe it is

useful to introduce the subject matter of the book here, without the burden of setting

up all the mathematical machinery in detail.

1.2 Motivating Examples

In this section we describe four examples that illustrate the range of problems we

study in the notes. The first illustrates homogenization in the context of a linear

second-order uniformly elliptic PDE. The second illustrates related ideas in the con-

text of a time-dependent PDE of parabolic type, the advection–diffusion equation.

Through the connection between hyperbolic (transport) PDEs and ordinary differen-

tial equations (ODEs), via the method of characteristics, and the connection between

parabolic PDEs and stochastic differential equations (SDEs), via the Itô formula, we

show that the methods of averaging and homogenization developed for the study of

linear PDEs can also be applied to study dimension reduction for ODEs and SDEs;

this is illustrated in the third example. We finish with a fourth example concerning

variable elimination for dynamical systems.
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2 1 Introduction

1.2.1 Example I: Steady Heat Conduction in a Composite Material

To introduce ideas related to homogenization we consider the problem of steady heat

conduction in a composite material whose properties vary rapidly compared to the

macroscopic scale. If Ω ⊂ R
d denotes the domain occupied by the material, then the

size of the domain defines a macroscopic length scale L (for example, we can define

L through vol(Ω) = Ld). On the other hand, the characteristic length scale of the

heterogeneities defines a microscopic length scale ε of the problem. We assume that

L = O(1) with respect to ε≪ 1. The phenomenon of steady heat conduction can be

described by the following elliptic boundary value problem for the temperature field

uε(x):
−∇ · (Aε∇uε) = f for x ∈ Ω, (1.2.1a)

uε = 0 for x ∈ ∂Ω. (1.2.1b)

Here Aε is assumed uniformly positive-definite in ε > 0.

To make a concrete problem, amenable to analysis, we assume that Aε =
A (x/ε) and that the matrix A(y), the thermal conductivity tensor, is periodic with

period 1 in all d directions and positive-definite. The purpose of homogenization the-

ory is to study the limit of uε as ε → 0. In particular it is desirable to identify the

equation satisfied by uε in this limit. From a physical point of view, the limit ε→ 0
corresponds to the case where the heterogeneities become vanishingly small. Thus

our aim is to replace the original, highly heterogeneous material, characterized by

the rapidly oscillating coefficients A (x/ε) , by an effective, homogeneous material

characterized by constant coefficients A. Hence the name homogenization.

In Chapters 12 and 19 we will show that, under appropriate assumptions on

A(y), f(x), and Ω, the homogenized equation is

−∇ ·
(
A∇u

)
= f for x ∈ Ω, (1.2.2a)

u = 0 for x ∈ ∂Ω. (1.2.2b)

The constant homogenized conductivity tensor A is given by the formula:

A =

∫

Td

A(y)
(
I + (∇χ(y))T

)
dy. (1.2.3)

The (first-order) corrector χ(y) is a vector field solving the periodic cell problem

−∇y ·
(
∇yχA

T
)

= ∇y ·AT , y ∈ T
d. (1.2.4)

Here T
d denotes the d-dimensional torus and the PDE (1.2.4) is equipped with peri-

odic boundary conditions.

The calculation of the effective coefficients A involves the solution of a partial

differential equation posed on the unit torus, together with computation of the in-

tegral (1.2.3). Hence, finding the homogenized solution u requires the solution of

two elliptic PDEs: the periodic cell problem (1.2.4), which allows construction of A
given by (1.2.3), and the Dirichlet problem (1.2.2). The important point is that these
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elliptic equations do not depend on the small scale ε. In some cases the two elliptic

PDEs can be solved explicitly. Even when this is not the case, they are amenable to

rigorous analysis or direct numerical solution; because they do not involve rapidly

varying coefficients, this is far less computationally expensive than the direct numer-

ical solution of (1.2.1).

In addition to deriving the homogenized equations by use of perturbation ex-

pansions, we will prove that the solution uε(x) of (1.2.1) converges to the solution

u(x) of the homogenized Equation (1.2.2) as ε → 0, in an appropriate sense. The

homogenized equation will be derived using perturbation expansions in Chapter 12.

The rigorous homogenization theorem for second-order elliptic PDEs with rapidly

oscillating coefficients will be proved in Chapter 19.

1.2.2 Example II: Homogenization for Advection–Diffusion Equations

We now show how the ideas of homogenization can be used to study evolution PDEs

of parabolic type. Consider a chemical immersed in an incompressible fluid, for ex-

ample, a pollutant in the atmosphere, or a dye1 (such as ink) in water. Under the

assumption that the pollutant/dye does not affect the fluid velocity field v(x, t) and

that it is both transported by the fluid and subject to molecular bombardment, its

concentration field T (x, t) satisfies the advection–diffusion equation

∂T

∂t
+ v · ∇T = DΔT for (x, t) ∈ R

d × (0, T ), (1.2.5a)

T = T0 for (x, t) ∈ R
d × {0}. (1.2.5b)

Here D > 0 is the molecular diffusion coefficient and the Laplacian term captures the

spreading of the pollutant/dye in the case where the fluid is not moving – diffusion.

The first derivative term captures the advection of the pollutant/dye caused by the

fluid motion. It is the interaction of advection and diffusion that we wish to study.

We assume that the fluid velocity is smooth, steady, and periodic with period 1 in

all directions and that it is incompressible (or divergence-free). Thus v(x, t) = −b(x)
with∇ · b(x) = 0.2

Note that T constant is a solution of the equation, if T0 is constant. Imagine now

that T0(x) = g(εx) so that initially the concentration is slowly varying in space.

It is then reasonable to expect that the concentration will only vary significantly on

large length and time scales. Furthermore, if b averages to zero over the unit cube,

then homogenization techniques enable us to show that the rescaled concentration

field T (x/ε, t/ε2) – scaled so as to bring out order-one variations in concentration

on large length and time scales – converges, as ε tends to 0, to the solution T of the

heat equation

∂T

∂t
= K : ∇∇T for (x, t) ∈ R

d × (0, T ),

T = g for (x, t) ∈ R
d × {0}.

1 Indeed many experiments designed to visualize fluid motion use this methodology.
2 This notation is chosen to be consistent with that used in Chapters 13 and 20.
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The effective behavior is hence purely diffusive. Here K denotes the effective diffu-

sion tensor

K = DI +

∫

Td

b(y)⊗ χ(y) dy.

The (vector) corrector field χ(y) solves the cell problem

−DΔyχ(y)− b(y) · ∇yχ(y) = b(y), y ∈ T
d.

Again the field χ(y) is periodic.

The comments made in Example I apply equally well here: finding the homog-

enized field requires solving two PDEs (one elliptic with periodic boundary condi-

tions, the other parabolic) that are independent of ε, and hence amenable to analysis,

exact solution, or numerical solution. Furthermore, the ideas leading to the approx-

imate problem can be made rigorous, and error estimates found. The homogenized

equation will be derived in Chapter 13, using perturbation expansions. The rigorous

theory of homogenization for parabolic PDEs with rapidly oscillating coefficients is

the subject of Chapter 20.

1.2.3 Example III: Averaging, Homogenization, and Dynamics

Consider Equation (1.2.5) in the case where the velocity field v(x, t) = −b(x) is

steady and periodic but not necessarily mean zero. Under the rescaling x→ x/ε and

t→ t/εa, the equation becomes

1

ε2−a

∂T

∂t
− 1

ε
bε · ∇T = DΔT for (x, t) ∈ R

d × (0, T ), (1.2.6a)

T = f for (x, t) ∈ R
d × {0}. (1.2.6b)

Here bε = b (x/ε) . In the case D = 0 it is natural to choose a = 1, then this equation

can be solved by the method of characteristics; the characteristics are obtained by

solving the ODE
dxε

dt
= b

(xε

ε

)
.

Since b(x) is periodic and x/ε varies rapidly on the scale of the period, it is natural

to try and average the equation to eliminate these rapid oscillations. Thus we see

that eliminating fast scales in a time-dependent transport PDE is intimately related

to averaging for ODEs. See Chapters 14 and 21 for further development of these

connections. It is intuitively reasonable that the cases when b averages to zero and

does not average to zero (in an appropriate sense) will require the study of (1.2.6)

at different time scales (choice of a) to observe interesting dynamical behavior; this

issue is discussed in Chapter 14.

In the case where D > 0 and the vector field b has mean zero, it is natural to

choose a = 2. Equation (1.2.6) is the backward Kolmogorov equation for x solving
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the SDE3

dxε

dt
=

1

ε
b
(xε

ε

)
+
√

2D
dW

dt
, (1.2.7)

where W (t) is a standard Brownian motion on R
d. This means that, for xε(0) = x,

the solution T ε(x, t) of (1.2.6) can be written as

T (x, t) = E(f(xε(t))|xε(0) = x),

where E denotes averaging with respect to the measure on Brownian motion (Wiener

measure). Again we can try to eliminate the rapidly varying quantity x/ε. If b is

periodic, divergence-free, and mean zero, then the result described in the previous

example shows that xε(t), the solution of (1.2.7), converges, in the limit as ε → 0,

to X(t), where X(t) is a Brownian motion with diffusion coefficient
√

2K:

dX

dt
=
√

2KdW

dt
.

Furthermore we have that K � DI (in the sense of matrices) so that the diffusion

is enhanced, over molecular diffusion, by the presence of a divergence-free advec-

tion field. The connection between homogenization in parabolic PDEs and SDEs is

discussed in Chapters 11 and 13. Rigorous homogenization theorems for SDEs are

proved in Chapter 18, for parabolic PDEs in Chapter 20.

1.2.4 Example IV: Dimension Reduction in Dynamical Systems

The methods applied to derive homogenized elliptic and parabolic PDEs can also be

used to average out, or homogenize, the fast scales in systems of ODEs and SDEs.

Doing so leads to effective equations that do not contain the small parameter ε and are

hence more amenable to numerical solution or analysis. The prototypical example is

a dynamical system of the form

dx

dt
= f(x, y),

dy

dt
=

1

ε
g(x, y).

In situations of this type, where ε ≪ 1 so that there is a scale separation, it is often

the case that y can be eliminated and an approximate equation for the evolution of x
can be found. We write the approximate equation in the form

dX

dt
= F (X).

3 In fact, the advection–diffusion Equation (1.2.5) is here viewed as an equation for the den-

sity field of an advecting and diffusing quantity and, as such, is the forward Kolmogorov

(Fokker–Planck) equation. However, since v(x, t) is divergence-free, the forward and back-

ward Kolmogorov equations differ only by the sign of the advection term, and (1.2.6a) is

indeed the backward Kolmogorov equation corresponding to the SDE (1.2.7).
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In the simplest situation y is eliminated through an invariant manifold; in more

complex systems it is eliminated through averaging.

In some situations F ≡ 0, and it is then necessary to scale the equations to a

longer time t→ t/ε to see nontrivial effects. The starting point is then

dx

dt
=

1

ε
f(x, y),

dy

dt
=

1

ε2
g(x, y).

In this situation f essentially averages to zero when y is eliminated and the x equa-

tion is scaled to see the fluctuations in f . If the behavior of y is mixing in a suffi-

ciently strong sense, then the approximate equation takes the form

dX

dt
= F (X) + A(X)

dW

dt
,

where W is a standard unit Brownian motion. We refer to derivation of this equation

as homogenization.

The perturbation expansions underlying these ideas are fleshed out in Chapters 8,

10, and 11. As for linear PDEs, techniques from analysis enable us to estimate errors

between the original and simplified equations. Rigorous results are given in Chapters

15, 17, and 18. Averaging results for Markov chains, analogous to those for ODEs

and SDEs, are described in Chapters 9 and 16.

1.3 Averaging Versus Homogenization

The unifying principle underlying the derivation of most of the effective equations in

this book concerns formal perturbation expansions for linear operator equations of

the form

Lεuε = f (1.3.1)

or
∂uε

∂t
= Lεuε. (1.3.2)

In particular, we will be interested in cases where the operator Lε has the form

Lε =
1

ε
L0 + L1 (1.3.3)

or

Lε =
1

ε2
L0 +

1

ε
L1 + L2. (1.3.4)

In both cases we assume that L0 has a nontrivial null space and interest focuses

on capturing the behavior of the solution within this subspace. We will refer to the

first case (1.3.3) as averaging, or first-order perturbation theory. It can often be

thought of as a form (or consequence) of the law of large numbers. The second,
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(1.3.4), will be referred to as homogenization or second-order perturbation the-

ory. It can often be thought of as a form (or consequence) of the central limit theo-

rem.

Our main interest will be in the evolution Equation (1.3.2). This will apply to

the study of averaging and homogenization for parabolic PDEs and transport PDEs,

and also to averaging and homogenization for ODEs, Markov chains, and SDEs,

via the Kolmogorov equations for SDEs and variants (the forward equation, for

Markov chains, and the method of characteristics, for ODEs). We will also study

Equation (1.3.1), which arises in the problem of homogenization for elliptic PDEs.

The case where a second-order time derivative appears (wave equations) will not

be covered explicitly herein, but the techniques developed do apply; references to

the literature will be given. Here we highlight differences between averaging and

homogenization and demonstrate the importance of the Fredholm alternative when

carrying out these expansions. We apply the methods that will be analyzed in this

book to a singularly perturbed system of linear ODEs. We thus introduce key ideas

in this simplified context. The following two subsections illustrate the perturbation

expansions that we use repeatedly in Part II.

1.3.1 Averaging for Systems of Linear Equations

Consider a system of linear ODEs

duε

dt
= Lεuε, (1.3.5a)

Lε =
1

ε
L0 + L1. (1.3.5b)

Here, for simplicity, we consider the finite-dimensional case where Li ∈ R
d×d for

i = 0, 1. Assume that the null space of L0, N (L0), is one-dimensional and spanned

by φ and that N (LT
0 ) is spanned by ψ. Assume further that 〈φ, ψ〉 �= 0.

If we seek a solution in the form

uε = u0 + εu1 +O(ε2),

then
1

ε
L0u0 +

(
L0u1 + L1u0 −

du0

dt

)
+O(ε) = 0.

Equating coefficients of respective powers of ε to zero gives

O(1/ε) L0u0 = 0,

O(1) L0u1 =
du0

dt
− L1u0.

The first equation implies that u0 = αφ for some α = α(t) ∈ R. Applying the

Fredholm alternative to the second equation implies that a solution u1 exists if and

only if
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〈ψ,
du0

dt
− L1u0〉 = 0,

where 〈·, ·〉 denotes the inner product on R
d. Substituting u0 = αφ we deduce that

the amplitude α satisfies the equation

dα

dt
=
〈ψ,L1φ〉
〈ψ, φ〉 α. (1.3.6)

This equation has a nontrivial solution provided that

〈ψ,L1φ〉 �= 0. (1.3.7)

Thus we have found the approximate solution

uε(t) ≈ u0(t) = α(t)φ,

where α(t) solves Equation (1.3.6). This derivation exemplifies the method of aver-

aging as employed in Chapters 9, 10, and 14. Notice that the amplitude α(t) can be

either exponentially growing or exponentially decaying. The behavior of uε(t), the

solution of (1.3.5a) for ε ≪ 1, is determined by the behavior of α(t). This is a first

example of the usefulness of the methods presented in this book; we can determine

the qualititative properties of solutions to the original complicated Equation (1.3.5a)

by studying the much simpler Equation (1.3.6).

1.3.2 Homogenization for Systems of Linear Equations

If (1.3.7) fails, the averaged equation becomes

u0 = const.

In order to observe interesting, nontrivial dynamics it is necessary to scale t → t/ε
and seek a solution to (1.3.5a). This leads to the system of linear equations

duε

dt
= Lεuε,

with

Lε =
1

ε2
L0 +

1

ε
L1.

Here Li ∈ R
d×d for i = 0, 1. Because there is no loss of generality in doing so, we

study the slightly more general system

duε

dt
= Lεuε, (1.3.8a)

Lε =
1

ε2
L0 +

1

ε
L1 + L2. (1.3.8b)

Here Li ∈ R
d×d for i = 0, 1, 2. We make the same assumptions concerning the

null spaces of L0 and LT
0 as in the previous subsection. We also assume that the

centering condition
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〈ψ,L1φ〉 = 0 (1.3.9)

holds. If we now seek a solution of (1.3.8a) in the form

uε = u0 + εu1 + ε2u2 +O(ε3),

then

1

ε2
L0u0 +

1

ε

(
L0u1 + L1u0

)
+
(
L0u2 + L1u1 + L2u0 −

du0

dt

)
+O(ε) = 0.

Equating coefficients of respective powers of ε to zero gives

O(1/ε2) L0u0 = 0,

O(1/ε) L0u1 = −L1u0,

O(1) L0u2 =
du0

dt
− L1u1 − L2u0.

The first equation implies that u0 = αφ for some α = α(t) ∈ R. By (1.3.9) and

the Fredholm alternative, we deduce that the second equation is solvable, so we write

u1 = −αη, L0η = L1φ.

The equation for η is called the cell problem. We choose to make the solution unique

by asking that η is orthogonal to φ; however other normalizations may be used with-

out affecting the formula for the approximate solution u0.

Moving to the third equation, we find that, again by application of the Fredholm

alternative,
dα

dt
=
〈ψ,L2φ− L1η〉

〈ψ, φ〉 α. (1.3.10)

Thus we have found the approximate solution

uε(t) ≈ u0(t) = α(t)φ.

Note that, because of (1.3.9), the choice of normalization for η does not affect the

final formula for u0 – adding multiples of φ to η does not effect the formula for u0.
This derivation exemplifies the method of homogenization as employed in Chapters

11, 12, and 13.

1.4 Discussion and Bibliography

The use of formal multiscale expansions in the study of homogenization was de-

veloped systematically and applied to many different problems, especially from the

theory of PDEs, in [33]. A thorough development of these ideas for SDEs may be

found in the papers [241, 240, 246]. Standard books on averaging/homogenization

include [66, 153, 27, 279]. Averaging and homogenization in the context of stochas-

tic processes and SDEs in particular is developed in [111]. Homogenization for SDEs

is presented in the lecture notes [238, 186].



10 1 Introduction

A prevalent idea throughout this book is the connection between parabolic and

elliptic PDEs and SDEs through the Kolmogorov and Fokker–Planck equations,

[117, 236]. The relation between homogenization and averaging for PDEs and limit

theorems for (Markov) stochastic processes has been recognized and studied ex-

tensively since the early 1960s [110, 165]. A rather general theory of homoge-

nization and averaging for stochastic processes was developed in the 1970s [181,

240, 241, 246]. The mathematical theory is presented in the monograph [94]. See

also [261, 168].

Variable elimination for either stochastic or deterministic systems has become a

very important area in applied mathematics. Applications include atmosphere/ocean

science [202, 205], molecular dynamics [284, 285], and mathematical finance [106].

Various aspects of stochastic and deterministic mode reduction, including numer-

ical algorithms for these problems, are discussed in the review articles [125, 148,

150]. Earlier work on the problem of mode reduction is discussed in the review pa-

per [321].

The subject of multiscale methods comprises a broad and disparate field, sub-

suming, but by no means limited to, the topics of averaging and homogenization that

comprise this book. There are many important topics related to homogenization and

averaging for ODEs, SDEs, and PDEs that will not be discussed here. We outline

some of these topics and provide references to the literature.

A very important aspect of multiscale methods is the development of effi-

cient numerical algorithms for the study of problems with many characteristic

lengths and time scales. An excellent overview of certain aspects of current re-

search activity in the area of multiscale numerical methods can be found in [83];

see also [82] and [119].

Deterministic, nonperiodic homogenization will not be covered here. The inter-

ested reader may consult [66, ch. 13; 75; 311] and the references therein. We will

not discuss homogenization problems for random PDEs (i.e., PDEs whose coeffi-

cients are rapidly oscillating random fields); see [247, 177]. A pathwise approach to

multiscale stochastic systems is presented in [34].

One of the main applications of the theory of homogenization is to materials sci-

ence. Monographs where the applications of homogenization to elasticity and materi-

als science are discussed include [27, 7, 67, 237]. Various multiscale/homogenization

approaches to the study of composite materials are presented in [229]. In that book

a thorough discussion of bounds on the homogenized coefficients for composite ma-

terials and related models can also be found. Applications of the techniques de-

veloped in this book to various problems in chemical engineering are overviewed

in [265, 325].

We will only touch on the theory of homogenization for nonlinear PDEs; the

interested reader can consult [95] and the references therein. Variational methods

are very well suited for the study of homogenization problems for nonlinear elliptic

PDEs. Information about this problem and the related theory of Γ -convergence can

be found in [214, 72, 48, 49]. Related concepts, such as H and G convergence, will

not be developed here; see [296, 297, 311, 310] for material on this topic.

More detailed pointers to the literature will be provided in the Discussion and

Bibliography sections concluding each chapter.



Part I

Background





2

Analysis

2.1 Setup

In this chapter we collect a variety of definitions and theorems (mainly without

proofs) from analysis. The topics are selected because they will be needed in the

sequel. Proofs and additional material can be found in the books cited in Section 2.7.

The presentation is necessarily terse, and it is not recommended that this chapter is

read in its entirety on a first read through the book; rather it should be referred to

as needed when reading later chapters. The rigorous setting developed in this chap-

ter is required primarily in Chapters 15–21 (Part III) where we prove a number of

results concerning dimension reduction for dynamical problems, together with av-

eraging and homogenization results for PDEs. The averaging and homogenization

results themselves are derived in Chapters 8–14 (Part II) by means of perturbation

expansions, and in that context much of the material in this chapter is not required.

However, the notation introduced here, together with the Fredholm alternative, will

be used througout the book, in Part II in particular.

The natural setting for the rigorous study of asymptotic problems for PDEs is

the theory of weak convergence in Hilbert and Banach spaces; in this context we

will also develop an appropriate kind of weak convergence, that of two-scale con-

vergence, which is very useful for problems related to periodic homogenization. A

complementary chapter on probability, Chapter 3, provides the appropriate analytical

tools for the study of SDEs and Markov chains; in particular we develop background

material on weak convergence of probability measures.

In Section 2.2 we describe the notation employed throughout much of the book;

in particular the index-free notation for differential operators, such as the diver-

gence, the gradient, and Laplacian, is described. Banach and Hilbert space theory

is overviewed in Section 2.3, and Section 2.4 describes specific instances of function

spaces that will be useful. Section 2.5 introduces the concept of two-scale conver-

gence, highlighting its importance for the study of periodic highly oscillatory prob-

lems. The chapter ends with a discussion of two fundamental tools for the study

of linear equations in Hilbert spaces: the Lax–Milgram theorem and the Fredholm

alternative.
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2.2 Notation

In this book we will encounter scalar, vector, and matrix fields. In the following all

summations are over indices from the set {1, 2, . . . , d}, d being the dimension of the

space. We use R
d to denote the d-dimensional Euclidean space. We denote by T

d the

d-dimensional unit torus found by taking a unit cube in R
d and identifying opposite

faces.

We will denote by {ei}d
i=1 the standard basis in R

d. Thus every ξ ∈ R
d can

be written as ξ =
∑

i ξiei, where ξi = 〈ξ, ei〉 and 〈·, ·〉 denotes the standard inner

product on R
d. We also use · to denote the inner product between two vectors, so

that

a · b =
∑

i

aibi.

The norm induced by this inner product is the Euclidean norm

|a| =
√
a · a,

and it follows that

|a|2 =
∑

i

a2
i , a ∈ R

d.

We will also use the usual ℓp norms on R
d, 1 � p � ∞, and denote them by | · |p.

Note that | · | = | · |2. In addition, for A : R
d → R

m, we use | · |p to denote the

associated operator norm defined by

|A|p = sup
x�=0

|Ax|p
|x|p

.

In particular we use the notation |A|=|A|2 for operator norms induced by the Eu-

clidean vector norm.

The inner product between matrices is denoted by

A : B = tr(ATB) =
∑

ij

aijbij .

The norm induced by this inner product is the Frobenius norm

|A|F =
√

tr(ATA). (2.2.1)

On occasion it will be important to note that, for any symmetric matrix T and any

matrix S,

S : T = ST : T =
1

2

(
S + ST ) : T. (2.2.2)

The outer product between two vectors a and b is the matrix a⊗ b defined by

(
a⊗ b

)
c = (b · c)a ∀c ∈ R

d.
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More generally, for A,B ∈ R
m×d, A⊗B ∈ R

m×m satisfies
(
A⊗B

)
c = ABT c ∀c ∈ R

m.

Let ∇ and ∇· denote gradient and divergence in R
d. The gradient lifts a scalar

(resp. vector) to a vector (resp. matrix) while the divergence contracts a vector (resp.

matrix) to a scalar (resp. vector). The gradient acts on scalar-valued functions φ(z),
or vector-valued functions v(z), via

(∇φ)i =
∂φ

∂zi
, (∇v)ij =

∂vi

∂zj
.

The divergence acts on vector-valued functions v(z), or matrix-valued functions

A(z), via

∇ · v =
∑

i

∂vi

∂zi
, (∇ ·A)i =

∑

j

∂Aij

∂zj
.

Given vector fields a, v we use the notation

a · ∇v := (∇v)a.

Thus we define the quantity by calculating a · ∇vk for each component of the vector

v. Likewise we can extend to the notation

a · ∇Θ,

where Θ is a tensor1 field, by defining componentwise.

Since the gradient is defined for scalars and vectors, we readily make sense of

the expression

∇∇φ

for any scalar φ; it is the Hessian matrix with entries ∂2φ/∂xi∂xj . Similarly, we can

also make sense of the expression

∇∇v

by applying ∇∇ to each scalar component of the vector v, or indeed

∇∇Θ,

again componentwise. We define the Laplacian of a scalar or vector field by

Δφ = ∇ · ∇φ; Δv = ∇ · ∇v.

It follows that Δφ = I : ∇∇φ (see Exercise 1). Applying this definition componen-

twise allows for the definition of ΔΘ.
In many instances in what follows it will be necessary to distinguish between the

gradient or divergence with respect to a variety of different independent variables.

We use ∇z to denote the gradient or divergence with respect to z coordinates alone,

and similarly for other independent variables. We will retain the notation∇, without

suffixes, when the choice of independent variable is clear. A similar notation will be

used for other differential operators, such as the Laplacian.

1 In this text we use the word tensor to denote second-order tensors, or square matrices.
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2.3 Banach and Hilbert Spaces

We assume that the reader is already familiar with the definitions of a norm, an inner

product, and of vector, metric, normed, and inner product spaces. In the sequel X
will denote a normed vector space, and ‖ · ‖ will denote its norm. We say that a

sequence {xj}∞j=1 ⊂ X converges strongly to x ∈ X , written as

xj → x,

provided that

lim
j→∞

‖xj − x‖ = 0.

Furthermore, we say that {xj}∞j=1 ⊂ X is a Cauchy sequence provided that for each

ε > 0 there exists an N ∈ N such that, for all j, k � N ,

‖xj − xk‖ < ε.

Every convergent sequence in a normed space X is a Cauchy sequence. The converse

in not always true. If, however, every Cauchy sequence in X is convergent, then the

space X is called complete.

2.3.1 Banach Spaces

Definition 2.1. A Banach space X is a complete normed vector space.

Definition 2.2. Let X be a Banach space with norm ‖·‖. We say that a map ℓ : X →
R is a bounded linear functional on X provided that

i) ℓ(αx + βy) = αℓ(x) + βℓ(y) ∀x, y ∈ X, α, β ∈ R.

ii) ∃C > 0 : |ℓ(x)| � C‖x‖ ∀x ∈ X .

Definition 2.3. The collection of all bounded linear functionals on a Banach space

X is called the dual space and is denoted by X∗.

Theorem 2.4. The dual space X∗ of a Banach space X is, when equipped with the

norm

‖ℓ‖ = sup
x�=0

|ℓ(x)|
‖x‖ ,

a Banach space.

Definition 2.5. Let X be a Banach space. A Banach space X is called reflexive if

the dual of its dual is isomorphic to X:

(X∗)∗ = X.

The concept of the dual space enables us to introduce another topology on X , the

so-called weak topology.
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Definition 2.6. A sequence {xn}∞n=1 is said to converge weakly to x ∈ X , written

xn ⇀ x,

if

ℓ(xn) → ℓ(x) ∀ℓ ∈ X∗.

Every strongly convergent sequence is also weakly convergent. However, the con-

verse is not true. The importance of weak convergence stems from the following

theorem, in particular part (ii).

Theorem 2.7. Let X be a Banach space.

(i) Every weakly convergent sequence in X is bounded.

(ii) (Eberlein–Smuljan) Assume that X is reflexive. Then from every bounded se-

quence in X we can extract a weakly convergent subsequence.

In addition to the weak topology on X , the duality between X and X∗ enables us to

define a topology on X∗.

Definition 2.8. Let X be a Banach space. A sequence {ℓn}∞n=1 ⊂ X∗ is said to

converge weak–∗ to ℓ ∈ X∗, written

ℓn
∗
⇀ ℓ,

if

lim
n→∞

ℓn(x) = ℓ(x) ∀x ∈ X.

We remark that if X is reflexive then weak–∗ convergence coincides with weak con-

vergence on X .

A compactness result similar to Theorem 2.7(ii), but without reflexivity, holds

for bounded sequences in X∗, provided that X is separable. To define this concept

we recall that a subset X0 of X is called dense if for every x ∈ X there exists a

sequence {xj}∞j=1 ⊂ X0 that converges to x. In other words, X0 is dense in X if its

closure is X: X0 = X .

Definition 2.9. A Banach space X is called separable if it contains a countable dense

subset.

The compactness theorem for sequences in X∗ can be stated as follows.

Theorem 2.10. Let X be a separable Banach space. Then from any bounded se-

quence in X∗ we can extract a weak–∗ convergent subsequence.

Every weakly convergent sequence in X∗ is weak–∗ convergent, but the converse

is not true unless X is reflexive.
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2.3.2 Hilbert Spaces

Definition 2.11. A Hilbert space is a complete inner product space.

We denote the inner product by (·, ·). Clearly, every Hilbert space is a Banach

space with a norm on H given by:

‖x‖ = (x, x)
1
2 .

Furthermore, all elements of H satisfy the Cauchy–Schwarz inequality:

|(u, v)| � ‖u‖‖v‖.

A very important property of a Hilbert space H is that we can identify the dual of H
with itself through the Riesz representation theorem.

Theorem 2.12. (Riesz representation.) For every ℓ ∈ H∗ there exists a unique y ∈
H such that

ℓ(x) = (x, y) ∀x ∈ H.

We will usually denote the action of ℓ on x ∈ H by2 〈·, ·〉H∗,H , referred to as the

dual pairing

〈ℓ, x〉H∗,H := ℓ(x).

The Riesz representation theorem implies that every Hilbert space is reflexive, and

consequently Theorem 2.7 applies. Furthermore, the definition of weak convergence

simplifies to

xn ⇀ x⇔ (xn − x, y) → 0 ∀ y ∈ H.

2.4 Function Spaces

2.4.1 Spaces of Continuous Functions

Let Ω be an open subset of R
d. We will denote by C(Ω) the space of continuous

functions f : Ω → R. This space, when equipped with the supremum norm

‖f‖C(Ω) = sup
x∈Ω

|f(x)|,

is a Banach space. Similarly, we can define the space Ck(Ω) of k-times continuously

differentiable functions. We will denote by C∞(Ω) the space of smooth functions.

The notation Ck
0 (Ω) will be used to denote the space of k-times continuously

differentiable functions over Ω with compact support. The notation C∞
0 (Ω) extends

this to smooth functions over Ω with compact support. We will use the notation

2 In R
d we use 〈·, ·〉 to denote the inner product, and it is useful to retain this convention; in

the infinite-dimensional setting we will always use (·, ·) for the inner product and 〈·, ·〉H∗,H

for the dual pairing between H and H∗.
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Ck
b (Rd) to denote the set of k-times continuously differentiable functions from R

d to

R for which all derivatives up to order k are bounded. The notation C∞
b (Rd) denotes

the space of bounded continuous functions having bounded continuous derivatives of

all orders. More generally, let (E, ρ) be a metric space. Then Cb(E) will denote the

space of bounded continuous functions on (E, ρ). We may extend all of the preceding

to functions f : Ω → X where X = R
d or R

d×d. In all these cases we will simply

write C(Ω) when the meaning is clear, or C(Ω;X) and so forth, when needed. See

Definition 2.22 for the general case of Banach space–valued functions f .

2.4.2 Lp Spaces

Let 1 � p � ∞, let f : Ω → R be a Lebesgue measurable function (see Chapter 3

for a definition of measurable), and define the Lp-norm

‖f‖Lp(Ω) :=

⎧
⎨

⎩

(∫
Ω
|f |p dx

) 1
p for 1 � p <∞

ess supΩ |f | for p = ∞.

In the preceding definition we used the notation

ess sup
Ω

= inf {C, |f | � C a.e. on Ω} .

Here a.e. is with respect to Lebesgue measure. Sometimes we drop explicit reference

to the set Ω in the norm and simply write ‖ · ‖Lp . For measurable functions f : Ω →
R

d the norm is readily extended, replacing |f | under the integral by the vector ℓp

norm on R
d. Likewise we may consider measurable f : Ω → R

d×d, using the

operator ℓp-norm. In all these cases we write Lp(Ω) as shorthand for Lp(Ω;X)
where X = R, R

d, R
d×d. See Definition 2.22 for the general case of Banach space–

valued functions f . The remaining discussion in this subsection can also be extended

with this definition.

Definition 2.13. Lp(Ω) is the vector space of all measurable functions3 f : Ω → R

for which ‖f‖Lp(Ω) <∞.

Theorem 2.14. (Basic properties of Lp spaces.)

i) The vector space Lp(Ω), equipped with the Lp-norm defined earlier, is a Banach

space for every p ∈ [1,∞].
ii) L2(Ω) is a Hilbert space equipped with the inner product

(u, v)L2(Ω) =

∫

Ω

u(x)v(x) dx ∀u, v ∈ L2(Ω).

iii) Lp(Ω) is separable for p ∈ [1,∞) and reflexive for p ∈ (1,+∞). In particular,

L1(Ω) is not reflexive, and L∞(Ω) is neither separable nor reflexive.

3 Strictly speaking Lp(Ω) is the set of equivalence classes of functions, with the equivalence

classes defined by equality a.e. in Ω with respect to Lebsegue measure.



20 2 Analysis

Let p ∈ [1,∞] and define q ∈ [1,∞] through

1

p
+

1

q
= 1. (2.4.1)

Then the Hölder inequality states that

∣∣∣∣
∫

Ω

u(x)v(x) dx

∣∣∣∣ � ‖u‖Lp(Ω)‖v‖Lq(Ω) ∀u ∈ Lp(Ω), v ∈ Lq(Ω).

Let p ∈ [1,∞) and let q be defined through (2.4.1). Then

(Lp(Ω))∗ = Lq(Ω).

The L2 inner product is readily extended to R
d and R

d×d valued functions, re-

placing pointwise multiplication under the integral by the appropriate inner product

on R
d or R

d×d. We will use the notation L2(Ω) in this situation.

The last part of the theorem, together with the fact that Lp(Ω) is a Banach space

and Definition 2.6, implies the following equivalent definition of weak convergence

in Lp(Ω), p ∈ [1,+∞).

Definition 2.15. A sequence {un}∞n=1 ⊂ Lp(Ω), p ∈ [1,∞) is said to converge

weakly to u ∈ Lp(Ω), written

un ⇀ u weakly–Lp(Ω),

provided that

∫

Ω

un(x)v(x) dx→
∫

Ω

u(x)v(x) dx ∀v ∈ Lq(Ω),

where q is defined in (2.4.1).

Notice that, in the case p ∈ (1,∞), Lp(Ω) is reflexive and hence every bounded

sequence in this space has a weakly convergent subsequence, in the sense of the

preceding definition.

We will often simply use (·, ·) to denote the inner product on L2(Ω). We will

frequently use a density argument to simplify the verification of weak convergence.

For example, to prove weak convergence of un to u in L2(Ω) it suffices to prove that

(un − u, v) → 0 ∀v ∈ C(Ω).

This is because C(Ω) is dense in L2(Ω).
Whereas weak convergence in L∞ is very rarely used (because its dual is not an

Lp-space), the notion of weak–* convergence in that space is very useful (because it

is the dual of L1, a separable space).

Definition 2.16. A sequence {un}∞n=1 ⊂ L∞(Ω) converges weak–∗ in L∞, written

un
∗
⇀ u weak–* in L∞(Ω),
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provided that

∫

Ω

un(x)φ(x) dx→
∫

Ω

u(x)φ(x) dx ∀φ ∈ L1(Ω).

Because L1(Ω) is separable we deduce that every bounded sequence in L∞(Ω) has

a weak–* convergent subsequence, in the sense of the previous definition.

2.4.3 Sobolev Spaces

We start with the definition of the weak derivative.

Definition 2.17. Let u, v ∈ L2(Ω). We say that v is the weak derivative of u with

respect to xi if ∫

Ω

u
∂φ

∂xi
dx = −

∫

Ω

vφ dx ∀φ ∈ C∞
0 (Ω).

Higher-order weak derivatives can be defined similarly. In the context of a function

u ∈ L2(Ω) we will use the notation ∂u/∂xi to denote the weak derivative with

respect to xi and the notation ∇u =
∑

i ∂u/∂xiei for the gradient.

Definition 2.18. The Sobolev space H1(Ω) consists of all square integrable func-

tions u : Ω → R whose first-order weak derivatives exist and are square integrable:

H1(Ω) =
{
u
∣∣∣u,∇u ∈ L2(Ω)

}
.

The space H1(Ω) is a separable Hilbert space with inner product

(u, v)H1(Ω) = (u, v)L2(Ω) + (∇u,∇v)L2(Ω)

and norm

‖u‖H1(Ω) =
(
‖u‖2L2(Ω) + ‖∇u‖2L2(Ω)

) 1
2

. (2.4.2)

Since H1(Ω) is a Hilbert space, it is reflexive. Hence every bounded sequence

in H1(Ω) contains a weakly convergent subsequence. In fact, more is true: a very

useful property of H1(Ω) is that its embedding into L2(Ω) is compact. This implies

the following.

Theorem 2.19. (Rellich compactness theorem). From every bounded sequence in

H1(Ω) we can extract a subsequence that is strongly convergent in L2(Ω).

In many applications one is interested in elements of H1(Ω) that vanish on the

boundary ∂Ω of the domain. Functions with this property belong to the following

subset of H1(Ω).

Definition 2.20. The Sobolev space H1
0 (Ω) is defined as the completion of C∞

0 (Ω)
with respect to the H1(Ω) norm.
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A very important property of H1
0 (Ω) is the fact that we can control the L2-norm of

its elements in terms of the L2-norm of their gradient. We now present this result.

In later sections and chapters we will generalize it to consider the analogue of this

result for periodic elements of H1(Td).

Theorem 2.21. (Poincaré inequality) Let Ω be a bounded open set in R
d. Then

there is a constant CΩ , which depends only on the size of Ω, such that, for every

u ∈ H1
0 (Ω),

‖u‖L2(Ω) � CΩ‖∇u‖L2(Ω). (2.4.3)

An immediate corollary of the first part of the theorem (see Exercise 9) is that

‖∇ · ‖L2(Ω) can be used as the norm in H1
0 (Ω):

‖u‖H1
0
(Ω) = ‖∇u‖L2(Ω). (2.4.4)

We will denote by H−1(Ω) the dual space of H1
0 (Ω). Further, we will denote by

〈·, ·〉H−1,H1
0

the pairing between H−1(Ω) and H1
0 (Ω). In other words, the action of

f ∈ H−1(Ω) on v ∈ H1
0 (Ω) will be denoted by 〈f, v〉H−1,H1

0
. Then H−1(Ω) is a

Banach space equipped with the norm

‖f‖H−1 = sup
v∈H1

0
�=0

|〈f, v〉H−1,H1
0
|

‖v‖H1
0

= sup
v∈H1

0
, ‖v‖

H1
0

�1

∣∣∣〈f, v〉H−1,H1
0

∣∣∣.

(The representations follow from Theorem 2.4 and some elementary properties of

the supremum therein.) Thus the following Cauchy–Schwarz–like inequality holds

|〈f, v〉H−1,H1
0
| � ‖f‖H−1‖v‖H1

0
∀ f ∈ H−1(Ω), ∀ v ∈ H1

0 (Ω). (2.4.5)

2.4.4 Banach Space–Valued Spaces

It is possible to define Lp-spaces of functions varying over spaces Ω more general

than R
d, replacing the Lebesgue integral by an integral with respect to another mea-

sure on Ω. It is also possible to work with Lp-spaces of functions taking values in an

arbitrary Banach space. We illustrate these ideas.

The spaces defined here appear often in applications. They are particularly rele-

vant for the rigorous analysis of periodic homogenization since we have to deal with

functions of two arguments (one slowly varying and one rapidly varying).

Definition 2.22. Let X be a Banach space with norm ‖ · ‖X and let Ω denote a

subset of R
d, not necessarily bounded. The space Y := Lp(Ω;X) with p ∈ [1,+∞]

consists of all measurable functions u : x ∈ Ω → u(x) ∈ X such that ‖u(x)‖X ∈
Lp(Ω).

The space Y defined earlier has various nice properties, which we list here.

Theorem 2.23. Let Y = Lp(Ω;X) with X and Ω as in Definition 2.22. Then
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(i) Y equipped with the norm

‖u‖Y :=

⎧
⎨

⎩

(∫
Ω
‖u(x)‖p

X dx
) 1

p for 1 � p <∞
ess supx∈Ω ‖u(x)‖X for p = ∞

is a Banach space.

(ii) If X is reflexive and p ∈ (1,+∞) then Y is also reflexive.

(iii) If X is separable and p ∈ [1,+∞) then Y is also separable.

The following two examples show how these ideas may be generalized.

Example 2.24. Banach spaces of the form Y = H1(Ω;X), where X is a Banach

space, can be defined in a similar fashion to that employed in Theorem 2.23 to define

Lp(Ω;X). The norm on such a space is

‖u‖Y =

(∫

Ω

(
‖∇xu(x)‖2X + ‖u(x)‖2X

)
dx

) 1
2

. ⊓⊔

Example 2.25. If (Ω,F , μ) is a probability space (see Chapter 3) then Lp(Ω;X) will

denote a Banach space, defined similarly to Theorem 2.23(i), but found by defining

the Lp integration with respect to the probability measure μ on Ω, rather than with

respect to Lebesgue measure as earlier (see Chapter 3). In the case where we wish to

emphasize the measure with respect to which Lp integration is to be understood, and

when the space X is clear, we will also sometimes write Lp(Ω;μ). If μ is Lebesgue

measure then we will sometimes write Lp(Ω; Leb). ⊓⊔

We will also use the following Banach spaces built from the notion of continuous

function.

Definition 2.26. Let I denote an open or closed interval in R and Ω ⊂ R
d an open

or closed set. Then:

• C(I;X) will denote the Banach space of continuous functions from I into a

Banach space X;

• Cp,k(Ω × I,R) will denote the space of real-valued functions that are k and p
times continuously differentiable in t ∈ I and x ∈ Ω, respectively.

Example 2.27. Let T > 0; then function spaces of the form Lp((0, T );X),
Cp,k(Ω × [0, T ]; R), and C([0, T ];X) appear in the analysis of evolution PDEs of

parabolic and hyperbolic type, see Chapter 7. ⊓⊔

2.4.5 Sobolev Spaces of Periodic Functions

We will use the notation T
d to denote the d-dimensional unit torus, sometimes calling

it the unit cell. Functions f : R
d → R that satisfy

f(y + ei) = f(y) ∀y ∈ R
d, i ∈ {1, . . . , d}
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are called 1-periodic functions. Thus we may also view f as a function from T
d into

R. In this section we study some properties of 1-periodic functions f : T
d → R.

We will denote by C∞
per(T

d) the restriction to T
d of smooth functions C∞(Rd)

that are 1-periodic. Then the space Lp
per(T

d) is defined to be the completion of

C∞
per(T

d) with respect to the Lp-norm. A similar definition holds for H1
per(T

d).
The Poincaré inequality does not hold in the space H1

per. It does hold, however,

if we remove the constants from this space. With this in mind we define

H =

{
u ∈ H1

per(T
d)
∣∣∣
∫

Td

u dy = 0

}
. (2.4.6)

There exists a constant Cp > 0 such that

‖u‖L2(Td) � Cp‖∇u‖L2(Td) ∀u ∈ H. (2.4.7)

Hence, we can use

‖u‖H = ‖∇u‖L2(Td) u ∈ H, (2.4.8)

as the norm in H . The dual of H may be shown to comprise all elements of

(H1
per(T

d))∗ that are orthogonal to constants:

H∗ =
{
u ∈ (H1

per(T
d))∗|〈u, 1〉(H1

per)∗,H1
per

= 0
}
. (2.4.9)

The space

L2(Ω;L2(Td)) := L2(Ω × T
d)

will be used in our study of periodic homogenization. This is a Hilbert space with

inner product

(u, v)L2(Ω×Td) =

∫

Ω

∫

Td

u(x, y)v(x, y) dydx,

together with the corresponding norm

‖u‖2L2(Ω×Td) =

∫

Ω

∫

Td

|u(x, y)|2dydx.

On occasion we will need the set of all functions u ∈ L2(Ω;Cper(T
d)). By Theorem

2.23 the norm on this space is

‖u‖2L2(Ω;Cper(Td)) =

∫

Ω

(
sup
y∈Td

|u(x, y)|
)2

dx.

This is a separable Banach space that is dense in L2(Ω × T
d). In the case where

u ∈ L2(Ω × T
d) is rapidly varying in the second component, a number of useful

results hold. We now detail these.

Theorem 2.28. Let u ∈ L2(Ω;Cper(T
d)), ε > 0, and define uε(x) = u (x, x/ε).

Then
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(i) uε ∈ L2(Ω) and ‖uε‖L2(Ω) � ‖u‖L2(Ω;Cper(Td)).

(ii) uε(x) converges to
∫

Td u(x, y) dy weakly in L2(Ω) as ε→ 0.
(iii) We have

‖uε‖L2(Ω) → ‖u‖L2(Ω×Td)

as ε→ 0.

The results in Theorem 2.28 capture the notion that fast oscillations decouple

from slow variation, asymptotically, provided the oscillations are sufficiently regular.

This idea is central to the theory of homogenization for PDEs.

The following property of periodic functions will be used in the sequel.

Theorem 2.29. Let p ∈ [1,∞] and f ∈ Lp
per(T

d). Set

fε(x) = f
(x

ε

)
a.e. on R

d.

Then, if p <∞, as ε→ 0

fε ⇀

∫

Td

f(y) dy weakly in Lp(Ω),

for any bounded open subset Ω of R
d.

We also have

fε ⇀

∫

Td

f(y) dy weak–* in L∞(Rd).

2.5 Two-Scale Convergence

A form of weak convergence that is particularly well suited for problems in periodic

homogenization is two-scale convergence. In this section we define this concept

and study some of its basic properties. Once again we consider periodic functions

on T
d. As before, Ω denotes a subset of R

d, not necessarily bounded.4 We start by

discussing two-scale convergence for steady (time-independent) problems. We then

discuss related issues for time-dependent problems.

2.5.1 Two-Scale Convergence for Steady Problems

Definition 2.30. Let uε be a sequence in L2(Ω). We say that uε two-scale converges

to u0(x, y) ∈ L2(Ω × T
d), and write uε 2

⇀ u0, if for every test function φ ∈
L2(Ω;Cper(T

d)) we have

lim
ε→0

∫

Ω

uε(x)φ
(
x,

x

ε

)
dx =

∫

Ω

∫

Td

u0(x, y)φ (x, y) dydx. (2.5.1)

4 Lemma 2.34 as proved applies only for bounded Ω but can be extended to the case where

Ω is not bounded.
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In many instances it is necessary to test the sequence uε against a wider class of test

functions. For our purposes it will be sufficient to consider functions of the type that

are described in the following lemma.

Lemma 2.31. Let uε ∈ L2(Ω) be a two-scale convergent sequence. Then the con-

vergence in (2.5.1) holds true for all test functions φ(x, y) of the form ψ1(y)ψ2(x, y)
with ψ1 ∈ L∞

per(T
d) and ψ2 ∈ L2(Ω;Cper(T

d)).

Two-scale convergence implies weak convergence in L2(Ω). In particular, we have

the following lemma.

Lemma 2.32. Let uε be a sequence in L2(Ω) that two-scale converges to u0 ∈
L2(Ω × T

d). Then

uε ⇀ u0 weakly in L2(Ω) (2.5.2)

where

u0(x) =

∫

Td

u0(x, y) dy.

Proof. Choose a test function φ(x) ∈ L2(Ω), independent of y. We use it in (2.5.1)

to deduce that

lim
ε→0

∫

Ω

uε(x)φ (x) dx =

∫

Ω

∫

Td

u0(x, y)φ (x) dydx

=

∫

Ω

(∫

Td

u0(x, y) dy

)
φ (x) dx

= (u0, φ)L2(Ω) .

This holds for every φ ∈ L2(Ω) and hence uε converges to u0 weakly in L2(Ω). ⊓⊔
An immediate consequence of this lemma is the following.

Corollary 2.33. Let uε be a sequence in L2(Ω) that two-scale converges to u0 ∈
L2(Ω), i.e., the two-scale limit is independent of y. Then the weak L2-limit and the

two-scale limit coincide.

Two-scale convergence is a useful tool for studying multiscale expansions of the type

developed in Chapters 12, 13, and 14, where there is a periodic dependence on the

“fast variable”. Such rigorous analysis of these expansions is undertaken in Chapters

19, 20 and 21. The next result illustrates the role of two–scale convergence in this

context.

Lemma 2.34. Consider a function uε ∈ C(Ω) of the form

uε(x) = u0

(
x,

x

ε

)
+ εu1

(
x,

x

ε

)
,

where uj ∈ C(Ω;Cper(T
d)), j = 0, 1, Ω, being a bounded open set in R

d. Then

uε 2
⇀ u0.
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Proof. Let φ ∈ L2(Ω;Cper(T
d)) and define fj(x, y) = uj(x, y)φ(x, y), j = 0, 1.

We will use the notation fε(x) = f (x, x/ε). We clearly have

∫

Ω

uε(x)φ
(
x,

x

ε

)
dx =

∫

Ω

fε
0 (x) dx + ε

∫

Ω

fε
1 (x) dx. (2.5.3)

Now, fε
j ∈ L2(Ω;Cper(T

d)) for j = 0, 1. This implies, by Theorem 2.28, that fε
0

converges to its average over T
d, f0(x) :=

∫
Td f0(x, y) dy, weakly in L2(Ω). From

this weak convergence it follows that

(ψ, fε
0 ) → (ψ, f0)

for all ψ ∈ L2(Ω). Choosing ψ = 1 gives

∫

Ω

fε
0 (x) dx →

∫

Ω

∫

Td

f0(x, y) dydx

=

∫

Ω

∫

Td

u0(x, y)φ(x, y) dydx.

Now consider the second integral on the right-hand side of (2.5.3). By Theorem 2.28

the sequence fε
1 is weakly convergent in L2(Ω). Hence it is bounded in L2(Ω) by

Theorem 2.7. Thus, again using the boundedness of Ω, together with the Cauchy–

Schwarz inequality, we obtain:

ε
∣∣
∫

Ω

fε
1 (x) dx

∣∣ � εC‖fε
1‖L2(Ω) → 0.

We use the preceding two calculations in (2.5.3) to obtain:

∫

Ω

uε(x)φ
(
x,

x

ε

)
dx =

∫

Ω

(
fε
0 (x) + εfε

1 (x)
)
dx

→
∫

Ω

∫

Td

u0(x, y)φ(x, y) dydx

for all φ ∈ L2(Ω;Cper(T
d)). Hence, uε two-scale converges to u0. ⊓⊔

We would like to find criteria that enable us to conclude that a given sequence in

L2(Ω) is two-scale convergent. The following compactness result provides us with

such a criterion.

Theorem 2.35. Let uε be a bounded sequence in L2(Ω). Then there exists a subse-

quence, still denoted by uε, and function u0 ∈ L2(Ω × T
d), such that uε two-scale

converges to u0.

This result concerns bounded sequences in L2(Ω) whose two-scale limit is an

element of L2(Ω×T
d) and depends explicitly on y. It is now natural to ask whether

more information on the two-scale limit can be obtained when our sequence is

bounded in a stronger norm. Recall the subspace H of mean zero H1(Ω) functions

defined in (2.4.6).
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Theorem 2.36. (i) Let uε be a bounded sequence in H1(Ω) and consider a sub-

sequence with weak H1(Ω) limit u. Then, along this subsequence, uε two-

scale converges to its weak-H1(Ω) limit u. In addition, there exists a function

u1 ∈ L2(Ω;H) such that, possibly along a further subsequence,∇uε two-scale

converges to∇xu +∇yu1.

(ii) Let uε and ε∇uε be bounded sequences in L2(Ω). Then, along a subsequence,

there exists a function u0 ∈ L2(Ω;H) such that uε and ε∇uε two-scale con-

verge to u0(x, y) and to∇yu0, respectively.

(iii) Let uε and εγ ∇uε, γ ∈ (0, 1), be bounded sequences in L2(Ω). Then the two-

scale limit of uε is independent of y : there is a function u0 ∈ L2(Ω) such that

uε 2
⇀ u0(x).

The reason this theorem is so useful is as follows: if we have a function of the

form

uε(x) = u(x) + εu1(x, x/ε) +O(ε2),

then, under reasonable assumptions on the O(ε2) term, we expect that, for small ε,

uε will be approximated by u(x); the derivative of uε, however, will be approximated

by∇u(x)+∇yu1(x, y)
∣∣∣
y=x/ε

. Examination of item (i) shows that it is set up to deal

with precisely such situations.

In item (i) note that the two-scale convergence implies that the subsequence uε

converges weakly to u in L2(Ω), since the limit u(x) depends only on x and not on y
(Corollary 2.33). In fact the convergence is strong in L2, along a further subsequence,

by the Rellich compactness theorem. If this limit can be shown to be unique then

convergence of the whole sequence uε to u occurs weakly in H1(Ω) and strongly in

L2(Ω). In item (iii) we see that having sufficient control on the gradient of uε enables

us to deduce that the two-scale limit of u is independent of y; this information is not

enough to deduce information about the two-scale limit of the gradient, however.

2.5.2 Two-Scale Convergence for Time-Dependent Problems

When studying homogenization problems for evolutionary PDEs it is necessary to

modify the concept of two-scale convergence to take into account the time depen-

dence of the sequences of functions we consider. We present the relevant definitions

and theorems. As in the previous subsection, we let Ω be a subset of R
d, not nec-

essarily bounded, and T
d denotes the unit torus. We let ΩT = Ω × (0, T ) and use

(x, y, t) to denote a point in Ω ×T
d × (0, T ) = ΩT ×T

d. Recall that H is given by

(2.4.6).

Definition 2.37. A sequence uε ∈ L2(ΩT ) two-scale converges to u0(x, y, t) ∈
L2(ΩT × T

d) and we write uε 2
⇀ u0, if for every test function φ(x, y, t) ∈

L2(ΩT ;Cper(T
d)) we have

lim
ε→0

∫ T

0

∫

Ω

uε(x, t)φ
(
x,

x

ε
, t
)

dxdt =

∫ T

0

∫

Ω

∫

Td

u0(x, y, t)φ (x, y, t) dydxdt.

(2.5.4)
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Notice that t enters merely as a parameter in the preceding definition. As in the case

of time-independent problems, a wider class of test functions than L2(ΩT ;Cper(T
d))

can be used in (2.5.4). For example, we can use test functions of the form

ψ1(y)ψ2(x, y, t) ψ ∈ L∞
per(T

d) and φ ∈ L2(ΩT ;Cper(T
d)) in (2.5.4).

The basic compactness theorem of two-scale convergence, Theorem 2.35, is still

valid.

Theorem 2.38. Let uε be a bounded sequence in L2(ΩT ). Then there exists a subse-

quence, still denoted by uε, and function u0 ∈ L2(ΩT × T
d) such that uε two-scale

converges to u0. Moreover, uε converges weakly in L2(ΩT ) to the average of the

two-scale limit over the unit cell:

uε ⇀

∫

Td

u0(·, y, ·)dy, weakly in L2(ΩT ).

In the steady case we already know that bounds on better spaces provide us with more

information on the two-scale limit. The next theorem is the analogue of Theorem

2.36.

Theorem 2.39. (i) Let uε be a bounded sequence in L2((0, T ),H1(Ω)) and con-

sider a subsequence with weak L2((0, T ),H1(Ω)) limit u. Then, along this sub-

sequence, uε two-scale converges to its weak-L2((0, T ),H1(Ω)) limit u(x, t).
In addition, there exists a function u1 ∈ L2(ΩT ;H) such that, possibly along a

further subsequence, ∇uε two-scale converges to ∇xu +∇yu1.

(ii) Let uε and ε∇uε be bounded sequences in L2(ΩT ). Then, along a subsequence,

there exists a function u0 ∈ L2(ΩT ;H) such that uε and ε∇uε two-scale con-

verge to u0 and to∇yu0, respectively.

(iii) Let uε and εγ ∇uε, γ ∈ (0, 1), be bounded sequences in L2(ΩT ). Then the

two-scale limit of uε is independent of y: there is a function u0 ∈ L2(ΩT ) such

that uε 2
⇀ u0.

The proofs of these two theorems are almost identical to the proofs of the corre-

sponding results from the preceding subsection.

2.6 Equations in Hilbert Spaces

Many PDEs can be expressed conveniently as equations in an appropriate Hilbert

space. This is a particularly useful viewpoint for the linear elliptic and parabolic

PDEs that we will study in this book. It is consequently useful to develop an abstract

formulation for such problems. We summarize this theory here. There are two main

components: the Lax-Milgram theorem, which provides existence and uniqueness of

solutions for linear equations in Hilbert spaces, and the Fredholm alternative.
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2.6.1 Lax-Milgram Theory

Let H be a Hilbert space5 with inner product (·, ·) and let A : H → H∗ be a linear

operator. Let f ∈ H∗ and let 〈·, ·〉H∗,H denote the pairing between H and H∗. We

are interested in studying the equation

Au = f. (2.6.1)

The weak formulation of this equation is

(Au, v) = 〈f, v〉H∗,H ∀ v ∈ H. (2.6.2)

The linearity of A implies that the left-hand side of this equation defines a bilinear

form a : H ×H → R given by

a[u, v] = (Au, v).

Existence and uniqueness of solutions for equations of the form (2.6.2) can be proved

by means of the following theorem.

Theorem 2.40. (Lax-Milgram). Let H be a Hilbert space with norm ‖ · ‖ and inner

product (·, ·). Let 〈·, ·〉H∗,H denote the pairing between H∗ and H . Let a : H×H →
R be a bilinear mapping which satisfies the following properties:

(i) (Coercivity) There exists a constant α > 0 such that

a[u, u] � α‖u‖2 ∀u ∈ H.

(ii) (Continuity) There exists a constant β > 0 such that

a[u, v] � β‖u‖‖v‖ ∀u, v ∈ H.

Now let f : H → R be a bounded linear functional on H . Then there exists a unique

element u ∈ H such that

a[u, v] = 〈f, v〉H∗,H

for all v ∈ H .

This theory is enormously powerful. In particular it is central in the theory of weak

solutions for elliptic PDEs. That connection will be developed in Chapter 7, and

then the setting will be used to prove homogenization theorems for elliptic PDEs in

Chapter 19.

5 Note that here we are talking about a general Hilbert space, not the specific H given by

(2.4.6).
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2.6.2 The Fredholm Alternative

Assume now that A : H → H is a linear operator and consider Equation (2.6.1) with

f ∈ H . Let A∗ : H → H denote the adjoint of A defined via the identity

(Au, v) = (u,A∗v) ∀u, v ∈ H.

Now let v ∈ H denote any element of the null space N (A∗) of A∗ where

N (A∗) = {v ∈ H : A∗v = 0} .

Equation (2.6.1) implies that

(f, v) = 0 ∀ v ∈ N (A∗).

Consequently, a necessary condition for the existence of a solution for (2.6.1) is that

the right-hand side of this equation is orthogonal to the null space of the adjoint

operator of A. (Note that coercivity fails if N (A∗) is nontrivial and so the Lax-

Milgram theorem does not apply).

The formal argument applies in finite dimensions and can be made rigorous in

the infinite-dimensional case when A is a compact perturbation of the identity: A =
I −K, with K compact. Thus the following definition is important.

Definition 2.41. A bounded operator K : H → H is compact if it maps bounded

sets into sets with compact closure:

K(M) is compact in H for all bounded M ⊂ H.

Equivalently, K is compact if and only if for every bounded sequence {un}∞n=1 ∈ H ,

the sequence {Kun}∞n=1 has a strongly convergent subsequence in H .

We now study Equation (2.6.1) in the case where A = I −K.

Theorem 2.42. (Fredholm alternative) Let H be a Hilbert space and let K : H →
H be a compact operator. Then the following alternative holds.

(i) Either the equations

(I −K)u = f, (2.6.3a)

(I −K∗)U = F, (2.6.3b)

have unique solutions for every f, F ∈ H; or

(ii) the homogeneous equations

(I −K)V0 = 0, (I −K∗)v0 = 0

have the same finite number of nontrivial solutions:

1 � dim (N (I −K)) = dim (N (I −K∗)) <∞.
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In this case equations (2.6.3a) and (2.6.3b) have a solution if and only if

(f, v0) = 0 ∀ v0 ∈ N (I −K∗)

and

(F, V0) = 0 ∀V0 ∈ N (I −K),

respectively.

This theory is particularly useful in the study of elliptic boundary value problems. It

will be developed in that context in Chapter 7. It will then be used throughout Part II

of the book.

2.7 Discussion and Bibliography

The index-free notation that we employ in this book is described in numerous texts on

continuum mechanics; for example, see [128], chapters 1 and 2, and the references

therein. The index-free notation leads to clean statements of results and derivation

of formulae. However, the reader should not be afraid to dive into indices in order

to verify many of the line-by-line calculations; as with any index-free presentation,

one line of index-free mathematics can hide several lines of calculations in index

notation.

Most of the remaining material presented in this chapter is also very standard

and can be found in a variety of books on functional analysis and PDEs. For more

information on Banach, Hilbert, and Lp-spaces see, for example, [53, 179, 189, 274,

337].

Since L1(Ω) is not reflexive, a bounded sequence in L1(Ω) does not necessarily

have any weakly convergent subsequences. It is natural to ask for conditions under

which we can extract a weakly convergent subsequence from a sequence in L1(Ω).
The answer to this question is given through the Dunford–Pettis theorem: in ad-

dition to boundedness we also need equi-integrability. We refer to [87] for details.

The nonreflexivity of L1(Ω) implies that this space cannot be characterized as the

dual of a Banach space, and hence weak–* convergence is not a useful concept for

this space. Weak–* convergence becomes, however, an extremely important concept

for (Cb(Ω))∗ =: M(Ω), the space of Radon measures on Ω.6 In fact, a bounded se-

quence in L1(Ω) is weak–* compact in M(Ω): we can extract a weakly convergent

subsequence that converges to an element of M(Ω). Probabilists refer to weak–*

convergence in M(Ω) = (Cb(Ω))∗ as weak convergence of probability measures.

This is the most useful (and natural) concept for limit theorems in probability theory

and is the topic of Section 3.5 in the next chapter. The interested reader may also

consult [37, 156].

Sobolev spaces of periodic functions can be defined using Fourier series. For

example, the space H1
per(T

d) can be defined as

6 This space is larger than L1(Ω), which is a proper subset of M(Ω).
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H1
per(T

d) =

⎧
⎨

⎩u : u =
∑

k∈Zd

uke
2πik·x, uk = u−k,

∑

k∈Zd

|k|2|uk|2 <∞

⎫
⎬

⎭ .

Similarly we have

H =
{
u ∈ H1

per(T
d) : u0 = 0

}
.

Sobolev spaces of periodic functions are discussed in [274, 315]. An exhaustive treat-

ment of Sobolev spaces can be found in [4]. For many applications to the theory of

PDEs, the material presented in [98, ch. 5] is sufficient.

The concept of two-scale convergence was introduced by Nguetseng [233, 234]

and later popularized and developed further by Allaire [5, 6]. Most of the results

presented in Section 2.5 are taken from [6]. Recent review articles on two-scale con-

vergence are [197, 341].

A natural question that arises is what is the largest set of test functions that we

can take in (2.5.1). This question is related to the concept of the set of admissible test

functions , defined to be the set of φ ∈ L2(Ω × T
d) for which

lim
ε→0

∫

Ω

∣∣∣φ
(
x,

x

ε

)∣∣∣
2

dx =

∫

Ω

∫

Td

|φ (x, y)|2 dydx. (2.7.1)

Notice that, by Theorem 2.28, any φ ∈ L2(Ω;Cper(T
d)) is admissible. The func-

tions considered in Lemma 2.31 are also admissible. It is important to note, however,

that the set of admissible test functions is a proper subset of L2(Ω × T
d); there are

elements of L2(Ω×T
d) which do not satisfy (2.7.1)—see [6] for an example. A cer-

tain amount of regularity, in either the x or y variable, is required. A characterization

of the set of test functions that we can use in (2.5.1) is given in [142, Theorem 2.3].

If a two-scale convergent sequence u (x, x/ε) is also an admissible test function

according to (2.7.1) and, furthermore, the two-scale limit u0 ∈ L2(Ω;Cper(Ω)),
then uε is strongly two-scale convergent in the sense that

lim
ε→0

∥∥∥uε(·)− u0

(
·, ·
ε

)∥∥∥ = 0.

Notice however that the two-scale limit will not in general possess any further reg-

ularity. In fact, every function u0 in L2(Ω × T
d) is attained as a two-scale limit

of some sequence in L2(Ω) [6, lem. 1.13]. A discussion concerning interrelations

among strong and weak two-scale convergence can be found in [341].

In Section 2.5.2 we considered sequences of functions that do not oscillate in

time. The concept of two-scale convergence has been extended to cover the case of

sequences of the form

uε(x, t) = u

(
x,

x

ε
, t,

t

εp

)
,

where p > 0 and u(x, y, t, τ) is periodic in both y and τ ; see [142]. This extension

is useful when studying homogenization problems for parabolic PDEs with rapidly

oscillating coefficients in both space and time. The concept of two-scale convergence
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has also been extended to cover the case of functions that depend on more than two

scales, i.e.,

uε = u
(
x,

x

ε
,
x

ε2
, . . .

)
.

See [8]. A concept similar to that of two-scale convergence has also been developed

for nonperiodic oscillations; see [213].

The use of appropriately chosen test functions to study asymptotic problems for

PDEs is a standard technique. See, for example, [95]. A very similar technique to that

of two-scale convergence was introduced by Kurtz [181] in the probabilistic context.

The approach is taken further in the perturbed test function method of Evans [96, 97].

Lax-Milgram theory is covered in [98]. The Fredholm alternative is absolutely

central to the developments in Part II of this book. In this context it is of interest

to note that it holds in normed spaces. That is, neither completeness nor the inner

product structure are necessary; see, for instance, [179, sec. 8.7].

2.8 Exercises

1. Show that, for any scalar field φ,

Δφ = I : ∇∇φ.

2. Let {X, ‖ · ‖} be a Banach space. Show that every strongly convergent se-

quence is weakly convergent.

3. Let {X, ‖ · ‖} be a finite-dimensional Banach space. Show that every weakly

convergent sequence is strongly convergent.

4. Let Ω = (0, 1) ⊂ R. Define

u(x) =

{
x : for 0 � x �

1
2 ,

1− x : for 1
2 < x � 1.

Show that the weak derivative of u(x) is

du

dx
(x) =

{
1 : for 0 � x �

1
2 ,

−1 : for 1
2 < x � 1.

Is this function differentiable in the classical sense?

5. Consider the function u from the previous exercise. Show that u ∈ H1
0 (Ω).

6. Recall H defined in (2.4.6). Use Fourier series to prove that the Poincaré in-

equality holds in H:

‖u‖L2 �
1

2π
‖∇u‖L2 ∀u ∈ H.

7. Let Ω = (0, 1) ⊂ R and define uα(x) = |x|α. For what values of α does

uα ∈ H1(Ω)?
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8. Let L > 0. Prove the Poincaré inequality of Theorem 2.21 for a function f ∈
C∞(0, L)

⋂
H1

0 (0, L). Estimate the optimal value of the Poincaré constant CL.

Show that

lim
L→∞

CL = ∞.

Interpret this result.

9. Prove that the norm (2.4.4) is equivalent to the norm (2.4.2).

10. Consider a function uε ∈ L2(Ω) that admits the following two-scale expansion

uε(x) =

N∑

j=0

εjuj

(
x,

x

ε

)
,

where uj ∈ C(Ω;Cper(Y )), j = 0, 1, . . . , N , and Ω is a bounded domain in

R
d. Show that uε 2

⇀ u0 (this is a generalization of Lemma 2.34).

11. Consider the systems of linear equations (1.3.5) and (1.3.8). Assume that

‖
(
Lε

)−1‖ is bounded independently of ε. Show that, in both cases considered,

‖uε − u0‖ � Cε.





3

Probability Theory and Stochastic Processes

3.1 Setup

In this chapter we present some basic definitions and results from probability theory

and from the theory of stochastic processes. We define the Wiener process (Brow-

nian motion) and develop the Itô theory of stochastic integration. We summarize

the basic properties of martingales and apply these to Itô integrals. When studying

dimension reduction for Markovian problems we will often work in the context of

weak convergence of probability measures. We will see in later chapters that averag-

ing and homogenization for Markov chains and SDEs are essentially limit theorems

for stochastic processes and that they are intimately related to the theory of weak

convergence of probability measures in metric spaces. Thus we will discuss various

forms of probabilistic convergence, and of weak convergence in particular. As in

Chapter 2, it is not recommended that this chapter be read in its entirety on a first

read through the book; rather, it should be referred to as needed when reading later

chapters.

Section 3.2 introduces ideas from probability theory, and Section 3.3 does the

same for stochastic processes. Section 3.4 discusses martingales and stochastic inte-

grals in particular. Weak convergence is developed in Section 3.5. Extensions of the

theory and references to the literature are presented in Section 3.6.

3.2 Probability, Expectation, and Conditional Expectation

A collection of subsets of a set Ω is called a σ–algebra if it contains Ω and is closed

under the operations of taking complements and countable unions of its elements. A

sub-σ–algebra is a collection of subsets from a σ–algebra, which itself satisfies the

axioms of a σ–algebra.

A measurable space is a pair (Ω,F) where Ω is a set and F is a σ–algebra of

subsets of Ω. Let (Ω,F) and (E,G) be two measurable spaces. A function X : Ω �→
E such that the event
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{ω ∈ Ω : X(ω) ∈ A} =: {X ∈ A}

belongs toF for arbitrary A ∈ G is called a measurable function or random variable.

Let (Ω,F) be a measurable space. A function μ : F �→ [0, 1] is called a prob-

ability measure if μ(∅) = 1, μ(Ω) = 1, and μ(∪∞
k=1Ak) =

∑∞
k=1 μ(Ak) for all

sequences of pairwise disjoint sets {Ak}∞k=1 ∈ F . The triplet (Ω,F , μ) is called a

probability space. Let X be a measurable function (random variable) from (Ω,F , μ)
to (E,G). If E is a Banach space then we may define expectation with respect to the

measure μ by1

EX =

∫

Ω

X(ω) dμ(ω).

More generally, let f : E �→ R be G–measurable. Then

Ef(X) =

∫

Ω

f(X(ω)) dμ(ω).

Let U be a topological space. We will use the notation B(U) to denote the Borel

σ–algebra of U : the smallest σ–algebra containing all open sets of U . Every random

variable from a probability space (Ω,F , μ) to a measurable space (E,B(E)) induces

a probability measure on E:

μX(B) = PX−1(B) = μ(ω ∈ Ω;X(ω) ∈ B), B ∈ B(E).

The measure μX is called the distribution (or sometimes the law) of X .

Example 3.1. Let I denote a subset of the positive integers. A vector ρ0 = {ρ0,i, i ∈
I} determines a measure on I (the distribution of an I-valued random variable) if it

has nonnegative entries and its total mass equals 1:
∑

i∈I ρ0,i = 1. ⊓⊔

We can use the distribution of a random variable to compute expectations and

probabilities:

Ef(X) =

∫

E

f(x) dμX(x)

and

P(X ∈ G) =

∫

G

dμX(x), G ∈ B(E).

A collection of independent and identically distributed random variables are

termed i.i.d.

When E = R
d and the measure μX has Radon-Nikodym derivative with respect

to Lebesgue measure, then we can write

dμX(x) = ρ(x) dx.

1 Integration with respect to measure μ is defined by means of a limiting procedure, starting

from a definition appropriate for step functions.
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We refer to ρ(x) as the probability density function (pdf), or density with respect to

Lebesgue measure for X . Furthermore, when E = R
d, then by Lp(Ω; Rd), or some-

times Lp(Ω;μ), or even simply Lp(μ), we mean the Banach space of measurable

functions on Ω with norm

‖X‖Lp =
(
E|X|p

)1/p

.

Example 3.2. i) Consider the random variable X : Ω �→ R with pdf

γσ,m(x) := (2πσ2)−
1
2 exp

(
− (x−m)2

2σ2

)
.

Such an X is termed a Gaussian or normal random variable. The mean is

EX =

∫

R

xγσ,m(x) dx =: m

and the variance is

E(X −m)2 =

∫

R

(x−m)2γσ,m(x) dx =: σ2.

Since the mean and variance completely specify a Gaussian random variable

on R, the Gaussian is commonly denoted by N (m,σ2). The standard normal

random variable is N (0, 1).
ii) Let m ∈ R

d and Σ ∈ R
d×d be symmetric and positive definite. The random

variable X : Ω �→ R
d with pdf

γΣ,m(x) :=
(
(2π)ddetΣ

)− 1
2 exp

(
−1

2
〈Σ−1(x−m), (x−m)〉

)

is termed a multivariate Gaussian or normal random variable. The mean is

EX = m (3.2.1)

and the covariance matrix is

E

(
(X −m)⊗ (X −m)

)
= Σ. (3.2.2)

Since the mean and covariance matrix completely specify a Gaussian random

variable on R
d, the Gaussian is commonly denoted by N (m,Σ).

iii) The case of a degenerate Gaussian, where Σ is only positive-semi-definite, is

also sometimes required. The eigenspace of Σ corresponding to zero eigenvalues

determines coordinate directions in which the probability measure is nonrandom

– a Dirac mass. ⊓⊔

Example 3.3. An exponential random variable T : Ω → R
+ with rate λ > 0 satisfies

P(T > t) = e−λt, ∀t � 0.
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We write T ∼ exp(λ). The related pdf is

fT (t) =
{
λe−λt, t � 0,

0, t < 0.
(3.2.3)

Notice that

ET =

∫ ∞

−∞

tfT (t)dt =
1

λ

∫ ∞

0

(λt)e−λtd(λt) =
1

λ
.

If the times τn = tn+1 − tn are i.i.d. random variables with τ0 ∼ exp(λ) then, for

t0 = 0,

tn =

n−1∑

k=0

τk,

and it is possible to show (see Exercise 3.3) that

P(0 � tk � t < tk+1) =
e−λt(λt)k

k!
. (3.2.4)

An exponential random variable with mean 1/λ, or rate λ, is denoted exp(λ). ⊓⊔

We use the notation∼ to mean distributed as. Thus X ∼ exp(λ) means that X is

an exponential random variable with mean 1/λ. Similarly X ∼ N (0, Σ) is a mean

zero Gaussian with covariance matrix Σ.
Assume that E|X| < ∞ and let G be a sub–σ–algebra of F . The conditional

expectation of X with respect to G is defined to be the function E[X|G] : Ω �→ E,

which is G–measurable and satisfies
∫

G

E[X|G] dμ =

∫

G

X dμ ∀G ∈ G.

We can define E[f(X)|G] and the conditional probability P[X ∈ F |G] = E[IF (X)|G],
where IF is the indicator function of F ,2 in a similar manner.

3.3 Stochastic Processes

Let T be an ordered set. A stochastic process is a collection of random variables

X = {Xt; t ∈ T} where, for each fixed t ∈ T , Xt is a random variable from

(Ω,F) to (E,G). The measurable space {Ω,F} is called the sample space. The

space (E,G) is called the state space. In this book we will take the set T to be either

R
+ or Z

+3 Thus we will assume that all elements of T are nonnegative. The state

space E will often be R
d equipped with the σ–algebra of Borel sets or, on some

occasions, T
d or a subset I of the positive integers. When the ordered set T is clear

2 This function is one on the set F and zero elsewhere.
3 We use the convention R

+ = [0,∞) and Z
+ = {0, 1, 2, · · · }.
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from the context we will sometimes write {Xt} rather than {Xt; t ∈ T}. Notice that

X may be viewed as a function of both t ∈ T and ω ∈ Ω. It is therefore sometimes

convenient to write X(t), X(t, ω) or Xt(ω) instead of Xt.
The finite dimensional distributions of a stochastic process are the Ek-valued

random variables (X(t1), X(t2), . . . , X(tk)) for arbitrary positive integer k and ar-

bitrary times ti ∈ T, i ∈ {1, . . . , k}. A process is called stationary if all such

collections of random variables are equal in distribution when translated in time: for

any integer k and times ti ∈ T , the distribution of (X(t1), X(t2), . . . , X(tk)) is

equal to that of (X(s+ t1), X(s+ t2), . . . , X(s+ tk)) for any s such that s+ ti ∈ T
for all i ∈ {1, . . . , k}.

Definition 3.4. A Gaussian process is one for which E = R
d and all the finite di-

mensional distributions are (possibly degenerate) Gaussian.

A Gaussian process x(t) is charaterized by its mean

m(t) := Ex(t)

and the covariance function

C(t, s) = E

((
x(t)−m(t)

)
⊗
(
x(s)−m(s)

))
.

Note that, for fixed t, s ∈ T , m(t) ∈ R
d and C(t, s) ∈ R

d×d.
The most important continuous-time stochastic process is Brownian motion. We

define it now, first in one dimension and then in arbitrary finite dimensions d.

Definition 3.5. i) A one-dimensional standard Brownian motion W (t) : R
+ → R

is a real-valued stochastic process with the following properties:

a) W (0) = 0;
b) W (t) is continuous;

c) W (t) has increments W (t)−W (s) that are independent on nonoverlapping

intervals. Furthermore, for every t > s � 0 W (t) −W (s) has a Gaussian

distribution with mean 0 and variance t− s. That is, the density of the ran-

dom variable W (t)−W (s) is

g(x; t, s) =
(
2π(t− s)

)− 1
2

exp

(
− x2

2(t− s)

)
; (3.3.1)

ii) A d-dimensional standard Brownian motion W (t) : R
+ → R

d is a collection of

d independent one-dimensional Brownian motions:

W (t) = (W1(t), . . . ,Wd(t)),

where Wi(t), i = 1, . . . , d are independent one-dimensional Brownian motions.

The density of the Gaussian random vector W (t)−W (s) is thus

g(x; t, s) =
(
2π(t− s)

)−d/2

exp

(
− ‖x‖2

2(t− s)

)
.
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Brownian motion is sometimes referred to as the Wiener process. It is a Gaussian

process. Notice that, for the d-dimensional Brownian motion, and for I the d × d
dimensional identity, we have (see (3.2.1) and (3.2.2))

EW (t) = 0 ∀t � 0

and

E

(
(W (t)−W (s))⊗ (W (t)−W (s))

)
= (t− s)I. (3.3.2)

Moreover,

E

(
W (t)⊗W (s)

)
= min(t, s)I. (3.3.3)

Another fundamental continuous-time process is the Poisson process, which we

now define. Notice the connection to exponential random variables via (3.2.4).

Definition 3.6. The Poisson process with intensity λ, denoted by N(t), is an integer-

valued, continuous-time, stochastic process with independent increments satisfying

P[(N(t)−N(s)) = k] =
e−λ(t−s)

(
λ(t− s)

)k

k!
, t > s � 0, k ∈ N.

Both Brownian motion and the Poisson process are homogeneous (or time-homoge-

neous): the law of the increments between successive times s and t depend only on

t− s.
Let (Ω,F , μ) be a probability space, (E, ρ) a metric space, and let T = [0,∞).

Let {Xt} be a stochastic process from (Ω,F , μ) to (E, ρ) with continuous sample

paths. In other words, for all ω ∈ Ω we have that Xt ∈ CE := C([0,∞);E). The

space of continuous functions CE is called the path space of the stochastic process.

We can put a metric on CE as follows:

ρE(X1, X2) :=
∞∑

n=1

1

2n
max

0�t�n
min

(
ρ(X1

t , X
2
t ), 1

)
.

We can then define the Borel sets on CE , using the topology induced by this metric,

and {Xt} can be thought of as a random variable on (Ω,F , μ) with state space

(CE ,B(CE)). The probability measure μX−1
· on (CE ,B(CE)) is called the law of

{Xt}. Notice that the law of a stochastic process is a probability measure on its path

space. In many instances the study of limit theorems for stochastic processes reduces

to the analysis of sequences of probability measures on path space.

Example 3.7. The space of continuous functions CE is the path space of Brownian

motion (the Wiener process). The law of Brownian motion, that is, the measure that

it induces on C([0,∞),Rd), is known as the Wiener measure. ⊓⊔
Although Brownian motion is continuous, many stochastic processes do not have

continuous sample paths and their path space is larger than the space of contin-

uous functions CE . We denote by DE the space of right continuous processes

Xt : [0,∞) �→ E with left limits.4 The space DE is usually called the space of

4 That is, for all t ∈ [0,∞), lims→t+ Xs = Xt and lims→t− Xs := Xt− exist.
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càdlàg functions5 and the stochastic processes whose sample paths are in DE are

called càdlàg processes. The space DE plays a useful role in many limit theorems

for stochastic processes.

Let (Ω,F) be a measurable space and T an ordered set. Let X = Xt(ω) be

a stochastic process from the sample space (Ω,F) to the state space (E,G). It is

a function of two variables, t ∈ T and ω ∈ Ω. For a fixed ω ∈ Ω the function

t �→ Xt(ω), t ∈ T is the sample path of the process X associated with ω. Let K be

a collection of subsets of Ω. The smallest σ–algebra on Ω that contains K is denoted

by σ(K) and is called the σ–algebra generated by K. Let Xt : Ω �→ E, t ∈ T . The

smallest σ–algebra σ(Xt, t ∈ T ), such that the family of mappings {Xt, t ∈ T} is

a stochastic process with sample space (Ω, σ(Xt, t ∈ T )) and state space (E,G), is

called the σ–algebra generated by {Xt, t ∈ T}.
A filtration on (Ω,F) is a nondecreasing family {Ft, t ∈ T} of sub–σ–algebras

of F : Fs ⊆ Ft ⊆ F for s � t. We set F∞ = σ(∪t∈TFt). The filtration generated

by Xt, where Xt is a stochastic process, is

FX
t := σ (Xs; s � t) .

We say that a stochastic process {Xt; t ∈ T} is adapted to the filtration {Ft} :=
{Ft, t ∈ T} if for all t ∈ T , Xt is an Ft-measurable random variable.

Definition 3.8. Let {Xt} be a stochastic process defined on a probability space

(Ω,F , μ) with values in E and let {FX
t } be the filtration generated by {Xt}. Then

{Xt} is a Markov process if

P(Xt ∈ Γ |FX
s ) = P(Xt ∈ Γ |Xs) (3.3.4)

for all t, s ∈ T with t � s, and Γ ∈ B(E).

Roughly speaking, the statistics of Xt for t � s are completely determined once Xs

is known; information about Xt for t < s is superfluous; in other words a Markov

process has no memory.

We postulate the existence of a function P : T ×T ×E×B(E) → R
+ satisfying

the Chapman–Kolmogorov equation

∫

E

P (s, t, x, dy)P (t, v, y, Γ ) = P (s, v, x, Γ ), (3.3.5)

for all x ∈ E, Γ ∈ B(E), and s, t, v ∈ T with s � t � v. A stochastic process

{Xt} is Markov with transition function P if P satisfies the Chapman–Kolmogorov

equation and

P
(
Xt ∈ Γ |FX

s

)
= P (s, t,Xs, Γ ) a.s.,

for all t, s ∈ T with t � s and all Γ ∈ B(E).
A Markov process is homogeneous6 if

5 From the French: continue à droite, limites à gauche.
6 See the discussion following Definition 3.6.
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P (s, t, x, Γ ) = P (0, t− s, x, Γ ).

In this case we simplify the notation by setting P (0, t, ·, ·) = P (t, ·, ·) and the

Chapman–Kolmogorov equation becomes

∫

E

P (s, x, dy)P (t, y, Γ ) = P (t + s, x, Γ ). (3.3.6)

Example 3.9. The one-dimensional Brownian motion is a homogeneous Markov pro-

cess. The transition function is the Gaussian defined in Example 3.2:

P (t, x, dy) = γt,x(y)dy. ⊓⊔

Example 3.10. The Poisson process is a homogeneous Markov process. ⊓⊔

Let (E, ρ) be a metric space and let {Xt} be an E-valued homogeneous Markov

process. Assume that T = R
+. Define the one-parameter family of operators T (t)

through

T (t)f(x) =

∫
f(y)P (t, x, dy) = E (f(Xt)|X0 = x)

for all f ∈ Cb(E). We assume for simplicity that T (t) : Cb(E) → Cb(E). Then

T (t) forms a semigroup of operators on Cb(E). We define by D(L) the set of all

f ∈ Cb(E) such that the strong limit in Cb(E)

Lf = lim
t→0

T (t)f − f

t
,

exists. The operator L : D(L) → Cb(E) is called the infinitesimal generator of the

operator semigroup T (t). Relatedly we have the following definition.

Definition 3.11. The operator L : Cb(E) → Cb(E) defined earlier is called the

generator of the Markov process {Xt}.
The space Cb(E) is natural in a probabilistic context, but other Banach spaces of-

ten arise in applications; in particular when there is a measure μ on E, the spaces

Lp(E;μ) sometimes arise. (See Chapters 4 and 5.) However, in this chapter we work

in Cb(E) for ease of presentation.

The generator is frequently taken as the starting point for the definition of a ho-

mogeneous Markov process. Conversely, let T (t) be a contraction semigroup7 with

D(T (t)) ⊂ Cb(E), closed. Then, under mild technical hypotheses, there is an E-

valued homogeneous Markov process {Xt} associated with T (t) satisfying

E
(
f(X(t))|FX

s

)
= T (t− s)f(X(s))

for all t, s ∈ T with t � s and f ∈ D(T (t)).

7 Let X be a Banach space and let T : X → X be a bounded operator. Then T is called a

contraction provided that ‖Tf‖X � ‖f‖X ∀ f ∈ X .
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Example 3.12. Consider again the one-dimensional Brownian motion of Example

(3.9). The semigroup associated to the standard Brownian motion is the heat semi-

group T (t) = exp( t
2

d2

dx2 ). The generator of this Markov process is 1
2

d2

dx2 . ⊓⊔

A very important concept in the study of limit theorems for stochastic processes

is that of ergodicity. This concept, in the context of Markov processes, provides us

with information on the long-time behavior of a Markov semigroup.

Definition 3.13. A Markov process is called ergodic if the equation

T (t)g = g, g ∈ Cb(E) ∀t � 0

has only constant solutions.

Roughly speaking ergodictiy corresponds to the case where the semigroup T (t)
is such that T (t)− I has only constants in its null space or, equivalently, to the case

where the generator L has only constants in its null space. However, the choice of

function space is a subtle issue when formulating ergodicity in this way, especially

for deterministic dynamics (see Chapter 4).

Under some additional compactness assumptions, an ergodic Markov process has

an invariant measure μ on E with the property that, in the case T = R
+,

lim
t→+∞

1

t

∫ t

0

g(Xs) ds→ Eg(x),

where E denotes the expectation with respect to μ. Various forms of convergence are

possible, with respect to a measure on initial point X0 and the probability measure

underlying the Markov process. Furthermore if X0 is distributed according to μ, then

so is Xt for all t > 0. The resulting stochastic process, with X0 distributed in this

way, is stationary.

As mentioned earlier, it is sometimes useful to view a stochastic process Xt as

a function of two variables t ∈ T and ω ∈ Ω : X(t, ω). In this context it is then

of interest to look at Banach space–valued spaces, as in the previous chapter (see

Definition 2.22 and the discussion following it).

Example 3.14. Consider a stochastic process X taking values in the space of real val-

ued continuous functions E = C([0, T ],R) and let p ∈ [1,∞). We define Lp(Ω,E)
to be the Banach space equipped with norm ‖ · ‖Lp(Ω,E) given by

‖X‖p
Lp(Ω,E) = E

((
sup

t∈[0,T ]

|X(t)|
)p
)
.

Notice that this definition is equivalent to

‖X‖p
Lp(Ω,E) = E

(
sup

t∈[0,T ]

|X(t)|p
)
,

and the norm is often written this way. ⊓⊔
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3.4 Martingales and Stochastic Integrals

3.4.1 Martingales

Definition 3.15. Let {Ft} be a filtration on the probability space (Ω,F , μ) and let

{Mt} be an R
d-valued stochastic process adapted to {Ft} and satisfying E|Mt| <

∞ for all t ∈ T . We say that {Mt} is an Ft–martingale if

E[Mt|Fs] = Ms for all t, s ∈ T, t > s.

Thus

E[Mt −Ms|Fs] = 0 for all t, s ∈ T, t > s

for a martingale; that is, the increments have mean zero, conditional on Fs.
A martingale Mt is square–integrable if E|Mt|2 <∞ for all t ∈ T .

Example 3.16. By Definition 3.5 the standard d-dimensional Brownian motion is a

martingale with respect to the filtration generated by itself. ⊓⊔
The quadratic variation of a martingale is central in both the theory and applications

of stochastic processes. In order to define it we need the following definition.

Definition 3.17. An R
d×d-valued process Q(t) with Q(0) = 0 and defined for t ∈

[0, T ] is increasing if Q(t) is nonnegative for each t ∈ [0,∞) and if Q(t)−Q(s) is

nonnegative for 0 � s � t � T.

Definition 3.18. An R
d×d-valued, adapted, increasing process Q(t) is the quadratic

variation of an R
d-valued Ft–martingale M(t) if

M(t)⊗M(t)−Q(t)

is an Ft–martingale. We write Q(t) = 〈M〉t.
Theorem 3.19. Let M(t) be a continuous, R

d-valued, square integrable

Ft−martingale. Then it has exactly one quadratic variation process.

Example 3.20. i) The quadratic variation of the one-dimensional standard Brow-

nian motion is t. To see this note that M(t) := W (t)2 − t is a martin-

gale. More generally, let W (t) be the standard Brownian motion in R
d. Then(

W (t)⊗W (t)− It
)

is a martingale and hence 〈W 〉t = It.
ii) Let Xt be an R-valued Markov process with generator L and let φ ∈ D(L), the

domain of definition of L. Then

Mt = φ(Xt)− φ(X0)−
∫ t

0

(Lφ)(Xs) ds (3.4.1)

is a martingale. Assume that φ2 ∈ D(L). Then the quadratic variation of Mt is

given by the formula

〈M〉t =

∫ t

0

(
(Lφ2)(Xs)− 2φ(Xs)(Lφ)(Xs)

)
ds. (3.4.2)
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iii) Let φ(x) = x, Xt = W (t) and d = 1 in the notation of the two previous

examples. Then Lφ(x) = 0, Lφ2(x) = 1, Mt = W (t), and 〈W 〉t = t as

expected. ⊓⊔

Every continuous martingale satisfies the Doob martingale inequality

P

[
sup

0�s�t
|Ms| � λ

]
�

1

λp
E|Mt|p, (3.4.3)

for all λ > 0, p � 1, t � 0. Furthermore

E

(
sup

0�s�t
|Ms|p

)
�

(
p

p− 1

)p

E|Mt|p, (3.4.4)

for all p > 1, t � 0.

3.4.2 The Itô Stochastic Integral

For the rigorous analysis of stochastic differential equations it is necessary to define

stochastic integrals of the form

I(t) =

∫ t

0

f(s) dW (s), (3.4.5)

where W (t) is a d-dimensional Brownian motion and f(s) ∈ R
m×d. This is not

straightforward because W (t) does not have paths of bounded variation. We start

with the case m = d = 1. In order to define the stochastic integral we assume that

f(t) is a random process, adapted to the filtration Ft generated by the process W (t),
and such that

E

(∫ T

0

f(s)2 ds

)
<∞.

We now give the Itô interpretation of the stochastic integral. The Itô stochastic inte-

gral I(t) is defined as the L2–limit of the following Riemann sum approximation of

(3.4.5):

I(t) := lim
K→∞

K−1∑

k=1

f(tk−1) (W (tk)−W (tk−1)) , (3.4.6)

where tk = kΔt and KΔt = t. Notice that the function f is evaluated at the left end

of each interval [tn−1, tn] in (3.4.6). The resulting Itô stochastic integral I(t) has a

continuous version in t. These ideas are readily generalized to the case where W (s)
is a standard d-dimensional Brownian motion and suitably integrable f(s) ∈ R

m×d

for each s, yielding a process I(t) ∈ R
m.

The resulting integral satisfies the Itô isometry
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E|I(t)|2 =

∫ t

0

E|f(s)|2F ds, (3.4.7)

where | · |F denotes the Frobenius norm defined in Equation (2.2.1). Furthermore,

the integral is a martingale:

EI(t) = 0

and

E[I(t)|Fs] = I(s) ∀ t � s,

where Fs denotes the filtration generated by W (s).

Example 3.21. Consider the Itô stochastic integral

I(t) =

∫ t

0

f(s) dW (s),

where f,W are scalar–valued. This is a martingale with quadratic variation

〈I〉t =

∫ t

0

(f(s))2 ds.

More generally, for f, W in arbitrary finite dimensions, the integral I(t) is a martin-

gale with quadratic variation

〈I〉t =

∫ t

0

(f(s)⊗ f(s)) ds. ⊓⊔

Notice that

E|〈I〉t| �
∫ t

0

E|f(s)|2 ds

� C

∫ t

0

E|f(s)|2F ds

= CE|I(t)|2.
Similar bounds hold for moments of the quadratic variation process, under appropri-

ate moment bounds on |f |F :

E

(
|〈I〉t|p/2

)
� C (3.4.8)

for p � 1.
One of the most useful features of martingales is that they satisfy various path

inequalities. These inequalities are particularly important when proving limit theo-

rems. One of the most important martingale inequalities is the following.

Theorem 3.22. Burkholder-Davis-Gundy Inequality Consider the Itô stochastic

integral (3.4.5), a martingale with quadratic variation process 〈I〉t. For every p > 0
there are positive constants C±

p such that

C−
p E

(
|〈I〉t|p/2

)
� E

(
sup

0�s�t
|I(s)|p

)
� C+

p E

(
|〈I〉t|p/2

)
.
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The proof of this theorem is based on the Itô formula (see Chapter 6) and the Doob

Martingale inequality (3.4.4).

3.4.3 The Stratonovich Stochastic Integral

In addition to the Itô stochastic integral, the following Stratonovich integral is also

sometimes useful. It is defined as the L2–limit of a different Riemann sum approxi-

mation of (3.4.5), namely

Istrat(t) := lim
K→∞

K−1∑

k=1

1

2

(
f(tk−1) + f(tk)

)
(W (tk)−W (tk−1)) , (3.4.9)

where tk = kΔt and KΔt = t. Notice that the function f(t) is evaluated at both

endpoints of each interval [tn−1, tn] in (3.4.9). The multidimensional Stratonovich

integral is defined in a similar way. The resulting integral is written as

Istrat(t) =

∫ t

0

f(s) ◦ dW (s).

The limit in (3.4.9) gives rise to an integral that differs from the Itô integral. Thus

the situation is more complex than that arising in the standard theory of Riemann

integration for functions of bounded variation; in that case the points in [tk−1, tk]
where the integrand is evaluated do not effect the definition of the integral, via a

limiting process. In the case of integration against Brownian motion, which does

not have bounded variation, the limits differ. However, when f and W are correlated

through an SDE, a formula exists to convert between them; see Chapter 6. In general,

it is harder to characterize the class of integrands for which the Stratonovich integral

can be defined than it is for the Itô integral.

3.5 Weak Convergence of Probability Measures

A type of convergence that is very often used in probability theory is that of weak

convergence of probability measures.

Definition 3.23. Let (E, ρ) be a metric space with Borel σ–algebra B(E). Let

{μn}∞n=1 be a sequence of probability measures on (E,B(E)) and let μ be an-

other measure on this space. We say that {μn}∞n=1 converges weakly to μ, and write

μn ⇒ μ, if

lim
n→∞

∫

E

f(s) dμn(s) =

∫

E

f(s) dμ(s),

for every f ∈ Cb(E).
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Definition 3.24. Let {Ωn,Fn, μn}∞n=1 be a sequence of probability spaces and let

(E, ρ) be a metric space. Let Xn : Ωn �→ E, n = 1, 2, . . . , be a sequence of random

variables. Assume that (Ω,F , μ) is another probability space and let X : Ω �→ E
be another random variable. We will say that {Xn}∞n=1 converges to X in distribu-

tion, or weakly, and write Xn ⇒ X, if the sequence of measures {μX−1
n }∞n=1 on

(E,B(E)) converges weakly to the measure μX−1 on (E,B(E)).

In other words, Xn ⇒ X if and only if

lim
n→∞

Enf(Xn) = Ef(X)

for all f ∈ Cb(E), where En denotes expectation under μX−1
n and E under μX−1.

The following example illustrates the importance of weak convergence in the theory

of probability.

Example 3.25. (Central Limit Theorem) Let {ξn}∞n=1 be a sequence of i.i.d. ran-

dom variables with mean zero and variance 1. Define

Sn :=

n∑

k=1

ξk. (3.5.1)

Then the sequence

Xn :=
1√
n
Sn

converges in distribution to a standard normal random variable. ⊓⊔
There are various other types of convergence that are also useful in the study of

limit theorems for random variables and stochastic processes. In the following, let

{Xn}∞n=1 be a sequence of random variables taking values in (E,B(E)) and let X
be another random variable, all on the same probability space (Ω,F ,P). Assume

that E is a Banach space and let ‖ · ‖ denote its norm. We will say that the sequence

converges in probability to a random variable X if, for every ε > 0,

lim
n→∞

P(‖Xn −X‖ > ε) → 0.

We will say that {Xn}∞n=1 converges almost surely (or with probability 1) if

P
(

lim
n→∞

Xn = X
)

= 1.

Finally, we say that {Xn}∞n=1 converges in pth mean (or in Lp) provided that

lim
n→∞

E‖Xn −X‖p = 0.

Note that this is simply strong convergence in the Banach space Lp(Ω;E), integrat-

ing with respect to μ on Ω.
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Example 3.26. (Strong Law of Large Numbers) Let {ξn}∞n=1 be a sequence of i.i.d.

random variables with mean m. Define

Xn =
1

n

n∑

k=1

ξk.

Then the sequence Xn converges to m almost surely. Assume furthermore that ξn ∈
L2. Then Xn converges to 1 also in L2. ⊓⊔

Remark 3.27. There are useful relations between the different notions of convergence

for random variables: for example, almost sure convergence implies weak conver-

gence; convergence in probability implies weak convergence. ⊓⊔

We now return to the discussion of weak convergence. In particular, we remark that

it is a property preserved under continuous mappings.

Theorem 3.28. Let (Ωn,Fn, μn)∞n=1 be a sequence of probability spaces and let

(Ei, ρi) be metric spaces for i = 1, 2. Let Xn : Ωn �→ E1, n = 1, . . . ,∞ be a

sequence of random variables. Assume that (Ω,F , μ) is another probability space

and let X : Ω �→ E1, be another random variable. If f : E1 → E2 is continuous

then {f(Xn)}∞n=1 converges to f(X) in distribution if {Xn}∞n=1 converges to X in

distribution.

Example 3.29. Let E1 = C([0, 1],R) and E2 = R. The function f : E1 → E2

defined by

f(x) := sup
t∈[0,1]

x(t)

is continuous. Hence, Theorem 3.28 applies, and we have that Xn ⇒ X in

C([0, 1],R) implies that supt∈[0,1] Xn(t) ⇒ supt∈[0,1] X(t) in R. ⊓⊔

In general, if Xn ⇒ X and Yn ⇒ Y it does not follow that the pair (Xn, Yn)
is weakly convergent to (X,Y ); correlations between (Xn, Yn) may prevent this.

However, if the limit Y is not random (the probability measure associated with the

random variable Y is a point mass), then the pair does converge.

Theorem 3.30. If Xn ⇒ X and Yn ⇒ Y , where Y is nonrandom, then (Xn, Yn) ⇒
(X,Y ).

Let (Ω,F , μ) be a probability space, T = R
+ and (E, ρ) a metric space. Let

{Xn
t }∞n=1 be a family of stochastic processes and Xt another stochastic process, all

with sample paths in CE = C([0,∞), E). Recall that the sequence {Xn}∞n=1 con-

verges weakly to X , and we write Xn ⇒ X , if the sequence of probability measures

P(Xn)−1 converges weakly to the probability measure PX−1 on (CE ,B(CE)).
Sometimes we will say that {Xn

t }∞n=1 converges weakly in CE , or that {Xn
t }∞n=1

converges weakly on path space.
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Example 3.31. Functional Central Limit Theorem—Invariance Principle Con-

sider the situation of Example 3.25 and let Sn be given by (3.5.1). Let [t] denote the

integer part of a real number t and define the continuous-time process

Xn
t :=

1√
n
S[nt] +

1√
n

(nt− [nt])ξ[nt]+1. (3.5.2)

This process has continuous paths. Furthermore, {Xn
t }∞n=1 converges weakly in CR

to a standard one-dimensional Brownian motion. ⊓⊔
In Examples 3.25 and 3.31 we cover the classical central limit theorem and the func-

tional central limit theorem (invariance principle), respectively, based on sums of

independent random variables. Similar results hold even for dependent random vari-

ables, provided that the dependence between the random variables is not too strong.

In many instances the martingale property, which can be viewed as a useful gener-

alization of independence, is sufficient for a limit theorem to hold. The following

theorem demonstrates this and includes the previous example as a special case.

Theorem 3.32. Let (Ω,F , μ) be a probability space and let {Fj , j � 1} be a filtra-

tion. Let {ξj , j � 1} be an ergodic adapted process such that

E[ξ1]
2 = σ2

and

E[ξk+1|Fk] = 0. (3.5.3)

Define

Sn :=

n∑

k=1

ξk. (3.5.4)

Then

Xn :=
1√
n
Sn

converges in distribution to a Gaussian variable with mean 0 and variance σ2. Fur-

thermore, the process

Xn
t :=

1√
n
S[nt] +

1√
n

(nt− [nt])ξ[nt]+1

converges weakly in CR to σW (t) where W (t) is a standard Brownian motion. Fi-

nally, the process

Xn
t :=

1√
n
S[nt]

converges weakly in DR to the same process σW (t).
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Notice that the condition (3.5.3) implies that Sn defined in (3.5.4) is an Fj–

martingale. The preceding theorem is also valid in arbitrary dimensions d � 1, that

is, in the case where {ξj , j � 1} is a vector-valued sequence of stationary, ergodic

random variables. In this case, the limiting process is a standard d-dimensional Brow-

nian motion premultiplied by the square root of the covariance matrix of ξ1.

Furthermore, a result similar to that of Theorem 3.32 can be proved for continuous-

time martingales, and we now state this.

Theorem 3.33. (Martingale Central Limit Theorem) Let {M(t) : R
+ �→ R

d}
be a continuous square integrable martingale on a probability space (Ω,F , μ) with

respect to a filtration {Ft : t � 0}; let 〈M〉t denote its quadratic variation process.

Assume that:

i) M(0) = 0;

ii) the process M(t) has continuous sample paths and stationary increments;

iii) the scaled quadratic variation of M(t) converges in L1(μ) to some symmetric

positive-definite matrix Σ:

lim
t→∞

E

(∣∣∣∣
〈M〉t

t
−Σ

∣∣∣∣

)
= 0. (3.5.5)

Then the process 1/
√
tMt converges in distribution to anN (0, Σ) random variable.

Furthermore, the rescaled martingale

Mε(t) := εM

(
t

ε2

)

converges weakly in CRd to
√
ΣW (t), where W (t) is a standard d-dimensional

Brownian motion and
√
Σ denotes the square root of the matrix Σ.

Roughly speaking, the Martingale central limit theorem relates the strong law of large

numbers for the quadratic variation to a statement about fluctuations in the process

itself. Upon combining the fact that stochastic integrals are martingales, together

with an ergodicity assumption, we obtain the following corollary.

Corollary 3.34. Let W (t) denote a d-dimensional Brownian motion and let z(t) :
R

+ �→ R
d be a continuous, stationary, ergodic Markov process with invariant mea-

sure μ(dz), adapted to the filtration generated by W (t). If F : R
d �→ R

m×d is a

smooth bounded function, define

I(t) =

∫ t

0

F (z(s)) dW (s)

and note that, by ergodicity,

lim
t→∞

1

t

∫ t

0

(
F (z(s))⊗ F (z(s))

)
ds =

∫

Z

(
F (z)⊗ F (z)

)
μ(dz) in L1(μ).

(3.5.6)
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Then, for every finite T > 0, the rescaled stochastic integral

Iε(t) := εI

(
t

ε2

)

converges in distribution to
√
ΣW (t) where W (t) is an m-dimensional standard

Brownian motion and

Σ =

∫

Rd

(
F (z)⊗ F (z)

)
μ(dz). (3.5.7)

Proof. We have to check that the martingale I(t) satisfies the assumptions of Theo-

rem 3.33. We clearly have that I(0) = 0. Furthermore, the stationarity of the process

z(t) implies that I(t) has independent increments. By (3.5.6) and (3.5.7)

lim
t→∞

1

t
〈I〉t = lim

t→∞

1

t

∫ t

0

(
F (z(s))⊗ F (z(s))

)
ds

=

∫

Z

(
F (z)⊗ F (z)

)
μ(dz)

= Σ.

Hence, Theorem 3.33 applies. ⊓⊔

3.6 Discussion and Bibliography

Most of the material contained in this chapter is very standard and can be found in

many textbooks. Standard references on probability theory are the books [102, 103,

50, 194, 195, 36, 302]. Standard textbooks on the theory of stochastic process are the

books [270, 156, 304].

A general reference on probability measures and their properties is [252]. An

excellent reference on weak convergence of probability measures is [37]. Various

convergence results for sequences of Markov processes can be found in [94]. The

text [120] has good background on stochastic processes and weak convergence for

probability measures on path space. For discussion concerning the relationships be-

tween different modes of convergence see [130]. A lot of information on limit theo-

rems for stochastic processes can be found in the book [152]. A good introduction to

the use of the theory of probability and stochastic processes in applied mathematics

is the book [64].

Necessary and sufficient conditions for an operator to be the generator of a

continuous semigroup are provided by the Hille–Yosida theorem; see, for exam-

ple, [98, 337]. A systematic study of the theory of Markov processes based on the

theory of semigroups was initiated by Feller in the 1950s. See [79, 196, 337]. Vari-

ous limit theorems for Markov processes can be proved by using limit theorems for

semigroups of operators (for example, the Trotter–Kato theorem [157]). Results

of this type were proved, for example, in [181]. See [94].
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Ergodic Markov processes with a generator that is symmetric with respect to

the L2-space weighted by the invariant measure of the process are termed reversible.

See [303, ch. 5] for a good discussion of this topic. The symmetry of the generator

of a reversible Markov process is very useful in the proof of limit theorems. See, for

example, [173, 74, 127].

The Burkholder-Davis-Gundy inequality of Theorem 3.22 has a formulation for

arbitary martingales not just for Itô stochastic integrals; see, for example, [156, ch. 3,

Theorem 3.28]. Bounds on moments of the quadratic variation (such as (3.4.8)) and

on moments of stochastic integrals may be found in [156, 210].

The proofs of the results presented in Example 3.20 can be found in [270]. The

operator that appears on the right-hand side of Equation (3.4.2) is sometimes called

the Operateur carré du champ. The proof of the martingale central limit theorem

can be found in [94, ch. 7]. See also [186, 185]. A wealth of information on limit

theorems for martingales can be found in [137].

In one dimension, continuous local martingales can be expressed as time-changed

Brownian motions. This is sometimes referred to as the Dambis–Dubins–Schwarz

theorem [156, ch. 3, Theorem 4.6]. Let M = {Mt,Ft; 0 � t <∞} be an R-valued

martingale satisfying

lim
t→∞

〈M〉t = ∞, P a.s.

Define, for each 0 � s <∞, the stopping time

T (s) = inf{t � 0; 〈M〉t > s}.

Then the time-changed process Bs and filtration Gs given by

Bs = MT (s), Gs = FT (s), 0 � s <∞,

is a standard one-dimensional Brownian motion. In particular, P a.s:

Mt = B〈M〉t
.

This property can be used to characterize the limit of a sequence of martingales. See,

for example, [134, 40]. Notice that the quantities Bt and Mt are in general highly

correlated and that they are not adapted to the same filtration, because of the time

change.

The martingale central limit theorem leads to a general central limit theorem for

additive functionals of Markov processes: let y(t) be an ergodic Markov process on

Y with generator L and invariant measure μ(dy). Consider the following integral

(which is an additive functional of y(t)):

x(t) = x0 +

∫ t

0

f(y(s)) ds.

Assume that ∫

Y

f(y)μ(dy) = 0.
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Then the rescaled process

xε(t) = εx(t/ε2)

converges weakly to
√
ΣW (t), with W (t) a standard Brownian motion, provided

that the Poisson equation

−Lφ = f (3.6.1)

is well posed, in some appropriate (weak) sense. The variance of the limiting Brow-

nian motion is given by the Dirichlet form (see Chapter 6) of the generator L, evalu-

ated at the solution of (3.6.1):

Σ =

∫

Y

(
−Lφ

)
⊗ φμ(dy).

To see this in one dimension, notice that (3.4.1) implies that the rescaled process

xε(t) satisfies

xε(t) = ε
(
x0 − φ(x(t/ε2)) + φ(x(0))

)
+ εM(t/ε2),

where M(t) is a martingale. The first term on the right-hand side of this equation

tends to 0, provided that φ satisfies appropriate estimates. The second term converges

to a Brownian motion with variance Σ, by the martingale central limit theorem. (An

integration by parts is required with respect to the invariant measure to see this.) This

theorem was proved for reversible Markov processes in [173]; see also [74]. A gen-

eral approach for proving limit theorems for Markov processes based on martingale

limit theorems was developed in [243]. Various extensions of this result have been

proved, in particular to situations where the Markov process is not reversible, under

appropriate assumptions on the generator. See [186] and the references therein.

3.7 Exercises

1. Prove the assertions in Example 3.2 concerning the means and covariances asso-

ciated with Gaussian random variables.

2. Prove the assertions (3.3.2) and (3.3.3) concerning the Wiener process.

3. Prove the assertion (3.2.4) concerning the sums of exponential random variables.

4. Let W (t) : R
+ �→ R be a standard Brownian motion. Calculate all moments of

W (t)−W (s), t > s � 0.
5. Carry out the same program as in the previous exercise for the d-dimensional

Brownian motion.

6. Let W (t) be a standard Brownian motion in one dimension. Show that

E

(∣∣∣∣
ΔW (t)

Δt

∣∣∣∣

)
=

√
2

πΔt
,

for ΔW (t) = W (t+Δt)−W (t). Deduce that, with probability 1, the Brownian

motion is nowhere differentiable.
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7. Let W (t) be a standard Brownian motion in R
d and let Ft denote the filtra-

tion generated by W (t). Prove that W (t) and W (t) ⊗W (t) − It are both Ft–

martingales.

8. State the analogue of Theorem 3.32 in arbitrary dimensions.

9. Consider the Brownian bridge BB(t) : [0, T ] �→ R defined by

BB(t) = W (t)− t

T
W (T ),

where W (t) is a standard one-dimensional Brownian motion. Calculate the mean

and covariance of the Brownian bridge.
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Ordinary Differential Equations

4.1 Setup

In this chapter we study ordinary differential equations (ODEs) of the form

dz

dt
= h(z), z(0) = z0, (4.1.1)

where h : Z → R
d. Typically Z = T

d, R
d, or R

l ⊕ T
d−l. In later chapters we will

often consider the case where z = (xT , yT )T , with x ∈ X , y ∈ Y . If Z = T
d (resp.

R
d) then X = T

l (resp. R
l) and Y = T

d−l (resp. R
d−l). If Z = R

l ⊕ T
d−l then

X = R
l and Y = T

d−l.

When we consider Equation (4.1.1) on the torus this is simply a convenient short-

hand for the case that h is periodic in z (resp. y) and that we consider z (resp. y) as

an element of the torus, by working modulo 1 in all directions. On occasion we will

consider differential operators on the torus and, in this setting, the operator automat-

ically has periodic boundary conditions.

In Section 4.2 we outline a theory of existence and uniqueness for ODEs. The

idea of the generator, the Liouville equation, and the method of characteristics are

introduced in Section 4.3. In Section 4.4 we discuss ergodicity for ODEs. Various

extensions of the results presented in this chapter, together with bibliographical re-

marks, are discussed in Section 4.5.

4.2 Existence and Uniqueness

When there is a unique solution z(t) to the initial value problem (4.1.1) for all initial

data z0 in Z and t ∈ R we write

z(t) = ϕt(z0).

Thus ϕt : Z → Z is the solution operator and forms a one-parameter group of

operators, that is,
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ϕt+s = ϕt ◦ ϕs ∀ t, s ∈ R and ϕ0 = I,

where I : Z → Z denotes the identity operator. The inverse of ϕt is ϕ−t. We may

apply ϕt to sets via the definition

ϕt(A) =
⋃

z∈A

ϕt(z).

Once ϕt is defined it will frequently be notationally clean to write ϕt(z) for the

solution of (4.1.1) starting from initial condition z.1

In practice, existence and uniqueness of solutions of (4.1.1) can be verified in a

wide range of different scenarios. For ease of exposition we work within the simplest

setting, namely when h is Lipschitz continuous on Z . This condition can be weak-

ened when a priori bounds on the solution prevent finite time blow-up. Such bounds

may be proved using Lyapunov functions; see Section 4.3.

Definition 4.1. A function f : Z → R
d is Lipschitz on Z with Lipschitz constant L

if

|f(x)− f(y)| � L|x− y| ∀x, y ∈ Z.

We observe that a Lipschitz function is also linearly bounded:

|f(x)| � |f(0)|+ L|x|.

Theorem 4.2. If h is Lipschitz on Z then the ODE (4.1.1) has a unique solution

z(t) ∈ C1(R,Z) for any z0 ∈ Z . Moreover

|ϕt(x)− ϕt(y)| � eLt|x− y| ∀x, y ∈ Z, t � 0. (4.2.1)

Proof. The existence and uniqueness follow from a standard fixed-point argument

(Picard iteration). To establish the bound (4.2.1) note that

1

2

d

dt
|x− y|2 = 〈h(x)− h(y), x− y〉.

Using the Lipschitz property of h we find that

〈h(x)− h(y), x− y〉 � L|x− y|2.

Hence, for e = |x− y|2, we have

1

2

d

dt
|e| � L|e|.

Integrating this differential inequality (or using the Gronwall Lemma 4.4) gives the

desired result.

1 In this situation z should not be confused with z(t).
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With the assumption the f is Lipschitz only on compact subsets of Z it is always

possible, for any z ∈ Z, to define ϕt(z) on some interval t ∈ [−a, b] containing

0. This interval depends, in general, on z. With this in mind we make the following

defintion.

Definition 4.3. A set A is invariant (resp. forward invariant, backward invariant)) if

ϕt(z) is defined for t ∈ R (resp. t ∈ [0,∞), t ∈ (−∞, 0]) for all z ∈ A and

ϕt(A) ≡ A (resp. ⊆ A) for all t ∈ R (resp. t ∈ [0,∞), t ∈ (−∞, 0]).

An invaluable tool for studying evolution equations is the Gronwall lemma. This

is an inequality version of the exponential solutions that may be obtained, as the

previous theorem illustrates, from linear constant coefficient differential equations.

Lemma 4.4. (Gronwall)

i) (Differential form). Let η(t) ∈ C1([0, T ]; R+) satisfy the differential inequality

dη(t)

dt
� aη(t) + ψ(t), η(0) = η, (4.2.2)

where a ∈ R and ψ(t) ∈ L1([0, T ]; R+). Then

η(t) � exp(at)
(
η +

∫ t

0

exp(−as)ψ(s) ds
)

(4.2.3)

for all t ∈ [0, T ].
ii) (Integral form). Assume that ξ(t) ∈ C([0, T ]; R+) satisfies the integral inequal-

ity2

ξ(t) � a

∫ t

0

ξ(s) ds + b,

for some positive constants a, b. Then

ξ(t) � b exp(at) for t ∈ [0, T ].

Proof. i). We multiply Equation (4.2.2) by exp(−at) to obtain

( d

dt
η(t)

)
exp(−at) �

(
ψ(t) + aη(t)

)
exp(−at).

Consequently
d

dt

(
η(t) exp(−at)

)
� exp(−at)ψ(t).

Integrating this inequality from 0 to t and multiplying through by exp(at) gives

(4.2.3).

ii). Define η(t) =
∫ t

0
ξ(s) ds. Then η(t) satisfies the inequality

2 This assumption may be weakened.
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dη

dt
� aη + b.

We apply the first part of the lemma with η(0) = 0 to deduce that

η(t) �
b

a

(
exp(at)− 1

)
.

Consequently

ξ(t) � aη(t) + b

� b exp(at). ⊓⊔

4.3 The Generator

It is often of importance to understand how functions of t �→ z(t) change with time.

We may achieve this by using the generator L:

Lv = h(z) · ∇v(z). (4.3.1)

If z(t) solves (4.1.1) and V ∈ C1(Z,R) then

d

dt

(
V (z(t))

)
= ∇V (z(t)) · dz

dt
(t)

= ∇V (z(t)) · h(z(t))

= LV (z(t)). (4.3.2)

The generator is readily exteneded to functions taking values in R
n. In some situa-

tions LV (z) can be bounded above in terms of V (z), for all z ∈ Z. If V is also pos-

itive then it is possible to use differential inequalities, such as the Gronwall Lemma

4.4, to obtain bounds on V (z(t)), and hence on z(t). Then V (z(t)) is a Lyapunov

function.

Example 4.5. Consider the equation

dz

dt
= z − z3. (4.3.3)

If V (z) = 1
2z

2 then

LV (z) = z2 − z4
� 1− 2V (z).

Thus
d

dt

(
V (z(t)

)
� 1− 2V (z(t)).

Application of the Gronwall lemma gives

V (z(t)) � e−2tV (z(0)) +
1

2

(
1− e−2t

)
.
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Hence, the existence of the Lyapunov function V (z) = 1
2 |z|2 leads to the a priori

bound on the solution of (4.3.3)

|z(t)|2 � 1 + e−2t|z(0)|2. ⊓⊔

Also important is the formal L2-adjoint operator L∗, given by

L∗v = −∇ ·
(
hv

)
. (4.3.4)

As defined L and L∗ only apply to C1(Z) functions. It will be useful in the sequel

to extend the domain of definition to L∞(Z) and L1(Z) functions, respectively, and

we do this later.

We now show the crucial role played by L and L∗ in understanding how fami-

lies of solutions of (4.1.1), parameterized by the initial data, and possibly carrying

a probability measure, behave. Let v be the solution of the Cauchy problem (see

Chapter 7)
∂v

∂t
= Lv for (z, t) ∈ Z × (0,∞), (4.3.5a)

v(z, 0) = φ(z) for z ∈ Z. (4.3.5b)

This equation is sometimes called the backward equation. We will denote the so-

lution of (4.3.5) by v(z, t) = (eLtφ)(z). This is often referred to as the semigroup

notation for the solution of a time-dependent linear operator equation; see Section

7.5. By a classical solution of this linear PDE we mean a function v(z, t) smooth

enough so that the PDE is satisfied pointwise for (z, t) ∈ Z × (0,∞) and is contin-

uous in Z × R
+; see Chapter 7.

Theorem 4.6. Assume that the solution of (4.1.1) generates a one-parameter group

on Z so that ϕt(Z) = Z for all t ∈ R. Assume also that φ is sufficiently smooth so

that (4.3.5) has a classical solution. Then the classical solution is given by 3

v(z, t) = φ(ϕt(z)) ∀t ∈ R
+, z ∈ Z. (4.3.6)

Proof. Note that (4.3.6) satisfies the initial condition v(z, 0) = φ(ϕ0(z)) = φ(z).
Using the group property of ϕt we deduce that v(z, t) given by (4.3.6) satisfies

v(ϕ−t(z), t) = φ(z),∀ t ∈ R
+, z ∈ Z . By differentiating with respect to t we

obtain from (4.3.6) that
d

dt

(
v(ϕ−t(z), t)

)
= 0

and so

3 Note that here z is the independent spatial variable in the PDE and occurs in the formula

for the solution of the PDE as the initial condition for the group ϕt. This use of z should

not be confused with the function z(t) solving (4.1.1) with initial condition z0.
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∂v(ϕ−t(z), t))

∂t
+
〈
∇v(ϕ−t(z), t),

d

dt

(
ϕ−t(z)

)〉
= 0.

But ϕ−t(z) is the backward time solution for (4.1.1) and hence satisfies

d

dt

(
ϕ−t(z)

)
= −h(ϕ−t(z)).

Thus

∂v(ϕ−t(z), t))

∂t
+ 〈∇v(ϕ−t(z), t),−h(ϕ−t(z))〉 = 0, ∀ t ∈ R

+, z ∈ Z.

This is equivalent to

∂v(z, t)

∂t
+ 〈∇v(z, t),−h(z)〉 = 0, ∀ t ∈ R

+, z ∈ Z,

showing that (4.3.6) solves the linear PDE (4.3.5).

Remark 4.7. Formula (4.3.6) represents the solution of the PDE (4.3.5) by the

method of characteristics. Remarkably, it shows that the family of solutions of the

nonlinear ODE (4.1.1), found by considering all z0 ∈ Z , can be represented via the

solution of a linear PDE. Conversely, it enables us to solve the initial value problem

for a linear evolution PDE of first order in both space and time (transport equation)

by solving a nonlinear system of ODEs. ⊓⊔

We can extend the definition of the operator eLt to act on arbitrary functions φ ∈
L∞(Z) by setting

(
eLtφ

)
(z) = φ(ϕt(z)), ∀t ∈ R

+, z ∈ Z. (4.3.7)

The operator eLt maps L∞(Z) into itself.

The generator L is then defined in the following way. Let D(L) denote the set of

functions φ for which the following limit

Lφ = lim
t→0

eLtφ− φ

t
(4.3.8)

exists, strongly in L∞(Z). This limit then defines L on D(L) and coincides with

(4.3.1) on C1(Z); the space C1(Z) is not a dense set in L∞(Z), however.

We now study what happens when we place a probability measure on z0, so that

z(t) solving (4.1.1) is a random variable. To this end consider the adjoint of (4.3.5),

namely the Liouville equation

∂ρ

∂t
= L∗ρ for (z, t) ∈ Z × (0,∞), (4.3.9a)

ρ(z, 0) = ρ0(z) for z ∈ Z. (4.3.9b)
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This is also sometimes refered to as the forward equation. Using the semigroup

notation the solution can be denoted by ρ(z, t) = (eL
∗tρ0)(z). Because L∗ is the

adjoint of L it follows that eL
∗t is the adjoint of eLt (see Section 7.5). Now let

E denote expectation with respect to initial data distributed according to a random

variable on Z with density ρ0(z)
4, i.e.

Ef :=

∫

Z

f(z)ρ0(z) dz.

Theorem 4.8. Assume that the solution of (4.1.1) generates a one-parameter group

on Z so that ϕt(Z) = Z for all t ∈ R. Assume also that φ is sufficiently smooth so

that (4.3.5) has a classical solution. Finally, assume that the initial data for (4.1.1) is

distributed according to a random variable on Z with density ρ0(z), smooth enough

so that (4.3.9) has a classical solution. Then, z(t) is a random variable on Z with

density ρ(z, t) satisfying (4.3.9).

Proof. Note that, by Theorem 4.6,

E(φ(z(t))) =

∫

Z

φ(ϕt(z))ρ0(z)dz

=

∫

Z

v(z, t)ρ0(z)dz

=

∫

Z

(eLtφ)(z)ρ0(z)dz

=

∫

Z

(eL
∗tρ0)(z)φ(z)dz.

Also, if ρ(z, t) is the density of z(t), then

E(φ(z(t))) =

∫

Z

ρ(z, t)φ(z)dz.

Equating these two expressions for the expectation at time t and using the arbitrari-

ness of φ, together with a density argument to extend the equality to all φ in L2(Z),
shows that

ρ(z, t) = (eL
∗tρ0)(z)

in L2(Z). Hence, by the assumed smoothness, the density ρ(z, t) satisfies the adjoint

Equation (4.3.9).

Remark 4.9. We can extend the domain of definition of eL
∗t so that it maps L1(Z)

into itself by defining it to be the L2–adjoint of the operator eLt : L∞(Z) → L∞(Z)
defined by (4.3.7). The resulting operator eL

∗t is continuous on L1(Z).
The L2–adjoint of the generator L∗ is then defined in the following way. Let

D(L∗) denote the set of functions ρ for which the following limit

4 Once again, here z is an independent spatial variable and should not be confused with the

function z(t) solving (4.1.1) with initial condition z0.
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L∗ρ = lim
t→0

eL
∗tρ− ρ

t
(4.3.10)

exists, strongly in L1(Z). This limit then defines L∗ on D(L∗). The definition coin-

cides with (4.3.4) on C1(Z), which is a dense set in L1(Z). ⊓⊔

4.4 Ergodicity

Roughly speaking, ergodicity is concerned with the existence and uniqueness of a

measure invariant under the dynamics—an invariant measure. This heuristic way of

thinking about ergodicity is useful in unifying the slightly different presentations of

ergodicity in this and the following two chapters. The subject rapidly becomes quite

technical, especially in the context of the nonrandom problems considered in this

chapter, and having a heuristic understanding of the subject will facilitate an under-

standing of Part II of this book, where ergodicity plays a central role in many of the

perturbation expansions. We will relate this heuristic way of understanding ergodic-

ity to many other related concepts, in particular: to the convergence of time averages

to averages with respect to the invariant measure; and to the one-dimensional null

spaces of the generator and its adjoint, in appropriate spaces.

In this chapter we consider the measure space (Z,A, μ), where μ is a measure

on Z and A denotes a σ–algebra of μ-measurable subsets of Z. Let ϕt denote the

solution operator for (4.1.1).

Definition 4.10. The measure μ is invariant if

μ(ϕt(A)) = μ(A) ∀A ∈ A, t > 0.

Recall that a set A ∈ A is invariant under ϕt provided that, for all t ∈ R,

ϕt(A) = A.

Definition 4.11. Given an invariant measure μ, the ODE (4.1.1) is called ergodic if

every invariant set A of ϕt is such that either μ(A) = 0 or μ(A) = 1.

Note that the definition of ergodicity is relative to the measure space in question. Two

natural questions now present themselves: (i) how do we identify invariant measures

μ?; (ii) given an invariant measure μ how do we check for ergodicity? For ODEs

these are, in general, very hard questions.

In the remainder of this section we will assume for simplicity that Z = T
d and

that the operators L and L∗ given by (4.3.1) and (4.3.4) are equipped with periodic

boundary conditions. The following two theorems address the two preceding ques-

tions in turn, specialized to this periodic setting. In the following, it is important

to distinguish Lp-spaces with respect to Lebesgue measure and with respect to the

invariant measure μ which, in general, will be different.

Theorem 4.12. Let μ be an invariant probability measure.
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(i) If φ ∈ L1(Td;μ) then

φ∗(z) = lim
T→∞

1

T

∫ T

0

φ(ϕt(z)) dt

exists for μ−a.e. z ∈ T
d;

(ii) A measure μ with density ρ∞ ∈ L1(Td; Leb) with respect to Lebesgue measure

is invariant if and only if

eL
∗tρ∞ = ρ∞, ρ∞ ∈ L1(Td; Leb), ∀t � 0;

(iii) A measure μ with density ρ∞ ∈ C1(Td) with respect to Lebesgue measure is

invariant if and only if

L∗ρ∞ = 0, ρ∞ ∈ C1(Td).

Note that condition (iii) has the desirable feature that it need only be checked for

continuously differentiable ρ∞ so that the definition (4.3.4) of L∗ as a differential

operator may be used. That we may do this essentially follows from the continuity of

the operator eL
∗t on or, relatedly, the density of C1(Td) in, L1(Td; Leb). However,

when checking for ergodicity it is not possible to work with the characterization of

L as a differential operator: condition (iii) in the next theorem must be checked for

all functions in the domain of definition of L, not just those for which (4.3.1) holds.

Theorem 4.13. Let ϕt have an invariant probability measure μ.

(i) If ϕt is ergodic and if φ ∈ L1(Td;μ) then

lim
T→∞

1

T

∫ T

0

φ(ϕt(z))dt =

∫

Td

φ(z)μ(dz) (4.4.1)

for μ−a.e. z ∈ T
d;

(ii) ϕt is ergodic if and only if the equation

eLtg = g, g ∈ L∞(Td), ∀t � 0

has only constant solutions μ−a.e.;

(iii) ϕt is ergodic if and only if the equation

Lg = 0, g ∈ D(L)

has only constant solutions μ−a.e..

Notice that an important aspect of ergodicity, encapsulated in the first item of the

preceding theorem, is that time averages may be replaced by averages with respect

to the invariant measure. It is this viewpoint on ergodicity that will be crucial in

much of our exploitation of ergodicity for ODEs in Part II; we will also use time-

average representations when studying similar issues for SDEs. Notice also that, by
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comparing items (i) in the two preceding theorems, time averages always converge

when there is an invariant measure, but that a central feature of ergodicity is that time

averages converge to a value that is independent of the initial condition.

For ergodic systems, dynamical trajectories visit the whole of the phase space,

independently of initial conditions, and spend the same proportion of time in any

given set. By choosing φ to be IA, the indicator function of Borel set A ⊆ T
d, we

deduce from (4.13) that the measure μ is given by the formula

μ(A) = lim
T→∞

1

T

∫ T

0

IA(z(t)) dt. (4.4.2)

Thus the invariant measure μ measures the proportion of time that typical trajectories

spend in a given subset of T
d.

Example 4.14. Consider the equation

dz

dt
= b(z)

where b ∈ C∞(T,R) and

inf
z∈T

b(z) > 0.

For each fixed t ∈ R we view z(t) as an element of the torus (circle) T. Here

Lφ = b
∂φ

∂z

is equipped with periodic boundary conditions. Theorem 4.12(iii) shows that the

equation has invariant measure μ with density

ρ∞(z) =
C

b(z)
,

where C is chosen so that ρ∞ integrates to 1 over T. It is natural to ask whether the

equation is ergodic with respect to this invariant measure.

We first consider the case b(z) = ω > 0, a constant. Thus μ is simply the

Lebesgue measure. Note that T = S, the circle, and that

ϕτ (z) = z + ωτ (mod 1).

The rotation ϕτ : S → S is well known to be an ergodic map for any fixed τ such

that ωτ is irrational; this means that any set A satisfying ϕτ (A) = A has Lebesgue

(and hence μ−) measure 0 or 1. Consider such a τ . Any invariant set of the ODE

must satisfy ϕt(A) = A for t = τ in particular, and hence has Lebesgue (and hence

μ−) measure 0 or 1. Thus the ODE is ergodic on T.

The case b(z) not constant may be handled by rescaling time to make the vector

field constant. This is possible since b is smooth and strictly positive on S. Since

μ is absolutely continuous with respect to Lebesgue measure the ergodicity of the

rescaled equation implies the same for the original equation. ⊓⊔
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Example 4.15. Consider Equation (4.1.1), viewed as a dynamical system on T
d, in

the case where the vector field h(z) is divergence-free, i.e.,∇·h(z) = 0. Then L,L∗

given by (4.3.1), (4.3.4) satisfy

L∗v = −∇ · (hv) = −(∇ · h)v − h · ∇v = −h · ∇v = −Lv.

Both operators are equipped with periodic boundary conditions. Thus the equation

L∗ρ∞ = 0 on T
d has the solution ρ∞ = 1. Consequently the Lebesgue measure

is invariant for the ODE. However, to prove ergodicity it is necessary to show that

the equation Lg = 0 has only one solution in D(L) ⊂ L∞. Determining when this

happens is a subtle question. We return to it in Chapter 14 when we study averaging

for transport equations. ⊓⊔
The ergodic theory described so far is somewhat limited for applications because it

focuses on ergodic measures that have a density ρ∞ (with respect to the Lebesgue

measure) on Z. There are many examples that exhibit ergodic behavior, but the un-

derlying measure μ is not absolutely continuous with respect to Lebesgue measure.

Nonetheless, these problems exhibit the crucial property that time averages converge

to values independent of the initial condition. A simple example is an ODE (4.1.1)

that has a unique globally attracting equilibrium solution. If μ is chosen to be a Dirac

mass on this equilibrium point, then (4.4.1) will hold. We give two further illustra-

tions of this kind of behavior.

Example 4.16. Consider the Lorenz equations

dy1

dt
= 10(y2 − y1),

dy2

dt
= 28y1 − y2 − y1y3, (4.4.3)

dy3

dt
= y1y2 −

8

3
y3.

These equations are ergodic with invariant measure supported on a set of zero vol-

ume and fractal dimension between 2 and 3. For such problems the concept of SRB

measures5 plays the role that the concept of the invariant measure played in the pre-

ceding examples. Time averages of the solution converge to averages with respect to

the SRB measure. Thus (4.4.1) holds in this generalized sense.

We illustrate these ideas in Figures 4.1 and 4.2. The first shows the attractor for

the Lorenz equations, which is the set on which the invariant measure is supported.

The fractal nature is manifest in the banded structure of the set, here shown projected

onto the first two components of y. In the second figure we show the empirical mea-

sure (histogram) generated by the second component of the Lorenz equations, started

from initial data on the attractor. ⊓⊔
Example 4.17. Consider the Harmonic oscillator

d2η

dt2
+ ωη = 0.

5 From Sinai, Ruelle, and Bowen.
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Fig. 4.1. Projection onto (y1, y2) of the attractor for the Lorenz equations (4.4.3).
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Fig. 4.2. Empirical measure for component y2 of (4.4.3).
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This can be written as the first-order system

dη

dt
= v,

dv

dt
= −ωη.

The equation has a divergence-free vector field and thus the Lebesgue measure is

invariant (although it is not normalizable and hence not a probability measure); fur-

thermore, the formal differential operators L, L∗ satisfy L = −L∗. The system

conserves the energy

E =
1

2
v2 +

1

2
ωη2 =

1

2

(dη

dt

)2

+
1

2
ωη2.

A straightforward calculation (see Exercise 2(c)) shows that any smooth function of

the Hamiltonian H(v, η) is in the null space of L and hence the equation cannot be

ergodic by Theorem 4.13.

However, the equation satisfies a form of ergodicity on the energy shell E given

by H(v, η) := E = constant. This can be understood intuitively by noticing that the

solution is given by

η(t) = A sin(ω
1
2 t) + B cos(ω

1
2 t)

with
ω

2

(
A2 + B2

)
= E.

The solution rotates on E , generating an empirical measure μ as it does so. This

measure quantifies how much time the trajectory spends in subsets of E . It turns out

that this measure depends on A and B only through E. A straightforward calculation

shows that

η(t)2 =
1

2

(
A2 + B2

)
+ AB sin(2ω

1
2 t) +

1

2

(
B2 −A2

)
cos(2ω

1
2 t).

Thus

lim
T→∞

1

T

∫ T

0

1

2
ωη2(t) dt =

1

4
ω
(
A2 + B2

)
=

1

2
E.

This is an analogue of (4.4.1) in this Hamiltonian problem. Note, however, that mem-

ory of the initial condition remains, through E. Assuming that the system does indeed

generate an empirical measure μ on E we deduce that

∫

E

ω

2
η2μ(dη, dv) =

1

2
E.

The fact that the average kinetic energy of the oscillator has half the total energy

is a consequence of the Virial theorem, which states that, on average, kinetic and

potential energy share the total energy equally. ⊓⊔
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4.5 Discussion and Bibliography

The complete proof of Theorem 4.2 can be found in [15, sec. 31] or [68]. The gen-

erator of a system of ODEs and its properties is discussed in [188, sec. 7.6]. The

use of the generator to study Lyapunov functions and obtain a priori estimates on

solutions of ODEs may be found in [305]. Sometimes the generator L, defined in

Equation (4.3.1), and its adjointL∗ are called the generators of the Koopman and the

Frobenius–Perron operators, respectively; the Koopman operator is also called the

transfer operator. It was introduced by Koopman in 1931 [176], as a tool for study-

ing the ergodic properties of classical dynamical systems. A nice discussion of Koop-

man’s original work and its extensions can be found in [266, sec. II.5, sec. VII.4].

The Liouville equation is the fundamental equation of nonequilibrium statistical

mechanics; see, for example, [28]. The Fokker–Planck equation, the fundamental

equation for stochastic dynamics which we study in Chapter 6, can be derived from

the Liouville equation through an appropriate mode elimination procedure. See [269,

ch. 9].

The method of characteristics is discussed in numerous PDE books, including

[98].

The discussion of ergodicity is fleshed out in more detail in [188]. In particular,

Theorem 4.12 follows from theorems 7.3.1, 7.7.1, and 7.8.2 in that book; Theorem

4.13 follows from theorems 4.2.4, 7.7.2, and 7.8.3 in that book. A more thorough

discussion of ergodic theory for discrete and continuous-time systems can be found

in [260, 327]. See also [14, 70, 290]. For a discusion of SRB measures and further

references on the topic, see [338].

The ergodic properties of the Lorenz equation follow from the work of Tucker

[318, 319]; see also [298]. For a literature review concerning statistical properties of

dynamical systems, and ODEs in particular, see the references in [224]. The proof of

the Virial theorem can be found in many textbooks on classical mechanics.

4.6 Exercises

1. Let Z = T
d. Show that for all f ∈ C1(Z,R) the formal L2–adjoint of L defined

in Equation (4.3.1) is L∗ defined in Equation (4.3.4).

2. Let H(p, q) : R
2d → R be a smooth function and consider the (Hamiltonian)

ODE

q̇ = ∇pH(p, q), ṗ = −∇qH(p, q) (4.6.1)

a. Write down the generators and its adjoint for (4.6.1).

b. Write down the Liouville Equation (4.6.1)

c. Show that every smooth function of the Hamiltonian H(p(t), q(t)) solves the

Liouville equation.

d. Is the Hamiltonian system (4.6.1) ergodic?

3. Carry out the same program as in parts a, b, and d of the previous exercise for the

(gradient) ODE

q̇ = −∇qV (q), (4.6.2)

where V (q) : R
d → R is a smooth function.
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Markov Chains

5.1 Setup

In this section we introduce Markov chains on a countable state space. Without loss

of generality we take this state space to be I, a subset of the positive integers N.1

In Section 5.2 we introduce ideas by studying discrete-time Markov chains.

In Section 5.3 we construct an example of a continuous-time Markov chain from

the discrete-time object. In Section 5.4 we study the generator of continuous-time

Markov chains on I, using the preceding example as motivation for a general defini-

tion. Using this concept we discuss existence and uniqueness of solutions for Markov

chains in Section 5.5. Ergodicity for finite state Markov chains is overviewed in Sec-

tion 5.6. Various extensions of the results presented in this chapter, together with

bibliographical remarks, are discussed in Section 5.7.

5.2 Discrete-Time Markov Chains

A matrix P with entries pij is a stochastic matrix if

∑

j

pij = 1 ∀i ∈ I

and pij ∈ [0, 1] for all (i, j) ∈ I × I.
Definition 5.1. The random sequence {zn}n�0 is a discrete-time Markov chain with

initial distribution ρ0, a vector with number of components given by the cardinality

of I, and transition matrix P if it is a Markov stochastic process with state space I
and

• z0 has distribution ρ0;

1 In this chapter all sums are over I, unless stated to the contrary. In later chapters, however,

we will sometimes find it convenient to work with a doubly indexed state space found as

the product of two subsets of the integers.
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• for every n � 0 we have, when P(zn = i) > 0,

P(zn+1 = j|zn = i) = pij .

The entries of the transition matrix {pij}i,j∈I are called the transition probabil-

ities. By construction, P is a stochastic matrix. Note that, by using the Chapman-

Kolmogorov Equation (3.3.5) and an induction, (P k)ij = P(zk = j|z0 = i). Thus

P k is also a stochastic matrix. Notice also that P(zn = j) = (ρT
0 Pn)j .

The discrete-time Markov chain has transition probabilities from zn to zn+1,

which do not depend on n. The resulting Markov process, on the discrete set I, is

thus homogeneous in the sense of Chapter 3; it is sometimes referred to as a discrete-

time homogeneous Markov chain. We will only consider homogeneous Markov

chains in what follows and hence refrain from explicitly using the term homogeneous

in the sequel.

Example 5.2. Let α, β ∈ [0, 1] and consider the matrix

P =

(
1− α α
β 1− β

)
.

Clearly, this is a stochastic matrix, and it is the transition matrix of a two-state

Markov chain. ⊓⊔
Example 5.3. (Symmetric random walk on Z) The symmetric random walk on Z

is a Markov chain with initial distribution

ρi
0 =

{
1 if i = 0
0 otherwise

and transition probabilities

P =

{
1
2 if |i− j| = 1
0 otherwise.

Equivalently, we could write that

P(z0 = 0) = 1

and

P(zn+1 = j|zn = i) =

⎧
⎨

⎩

1
2 if j = i + 1
1
2 if j = i− 1
0 otherwise.

⊓⊔

Notice that a stochastic matrix satisfies

P1 = 1, (5.2.1)

where 1 is the vector with unit entries, 1 = (1, . . . , 1). Combining this with the fact

that P has positive entries implies the following fundamental identity:

|P |∞ = 1. (5.2.2)
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5.3 Continuous-Time Markov Chains

We now study continuous-time Markov chains on I.

Definition 5.4. A continuous-time Markov chain is a Markov stochastic process

{z(t)}t∈R+ with state space E = I.

To introduce continuous-time Markov chains we start by constructing them us-

ing discrete-time Markov chains. Let the i.i.d. sequence {τn}n�0 be distributed as

exp(λ) for some λ > 0 and define {tn}n�0 by tn+1 = tn +τn, t0 = 0. Let {zn}n�0

be a discrete-time Markov chain on I, independent of the {τn}n�0, and set

z(t) = zn, t ∈ [tn, tn+1). (5.3.1)

We call this a jump chain.2 Notice that z(t) takes values in I and is a càdlàg pro-

cess. The fact that z(t) is Markov follows from the Markovian structure of {zn}n�0,

together with the properties of the exponential random variable.

Informally we may write z(t) as the solution of the differential equation

dz

dt
= δ(t− tj)

(
k(z(t−))− z(t−)

)
(5.3.2)

where k(z) is distributed as p(z, ·) and the {k(z(t−j ))}j�0 are drawn independently

of one another, and independently of the {τj}. This representation follows because,

integrating over the jump times tj , we obtain

z(t+j )− z(t−j ) = lim
ε→0

∫ tj+ε

tj−ε

δ(t− tj)
(
k(z(t−))− z(t−)

)
dt

= k(z(t−j ))− z(t−j ),

and so z(t+j ) = k(z(t−j )) as desired. Making sense of this random differential equa-

tion, and in particular showing that it has a solution for all time t > 0, is intimately

related to the question of showing that the jump times tj do not accumulate at a finite

time. In Section 5.4 we assume that this failure to accumulate does indeed hold. In

Section 5.5 we return to the discussion of existence of solutions to this differential

equation.

We now find a representation of the matrix P (t) with entries

pij(t) = P(z(t) = j|z(0) = i), (5.3.3)

for the jump chain. We express P (t) in terms of P and λ, the parameters input into

the jump chain. Note that, by properties of exponential random variables encapsu-

lated in (3.2.4),

P(k jumps in [0, t]) =
e−λt(λt)k

k!
.

2 It is also possible to construct jump chains where λ, the rate of jumps, is dependent on the

current state.
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Thus

pij(t) =

∞∑

k=0

e−λt(λt)k

k!

(
P k

)
ij
,

since
(
P k

)
ij

= P(zk = j|z0 = i). Hence

P (t) = e−λt
∞∑

k=0

(λt)k

k!
P k

= eλt(P−I)

= eLt

with L = λ(P − I). The matrix L is called the generator of the continuous-time

Markov chain. Making sense of the matrix eLt when the state space is infinite re-

quires the theory of semigroups; see Section 7.5. Note that, by (5.2.2),

L = lim
t→0

P (t)− I

t
,

where the limit is in the operator norm induced by the ℓ∞-norm on I.3 Thus the

characterization of the generator coincides with the abstract Definition 3.11. In the

next section we show that the generator may be used as the starting point from which

to define continuous-time Markov chains.

5.4 The Generator

We now abstract the properties of the generator and then take these properties as the

general definition of a continuous-time Markov chain.

Definition 5.5. A matrix L : I → I with entries lij is the generator of a continuous-

time Markov chain if

• ∑
j lij = 0 ∀i ∈ I;

• lij ∈ [0,∞) ∀(i, j) ∈ I × I with i �= j.

Notice that, since P is a stochastic matrix, the matrix L constructed in the example

in the previous section satisfies all of the criteria in the preceding definition.

The notion of generator can be related to the abstract definition of the generator

for Markov processes as given in Chapter 3. From the discussion in Chapter 3 we

note that a Markov chain is characterized by its generator. The definition implies that

l(i) := −lii ∈ [0,∞) ∀i ∈ I. (5.4.1)

Given a generator L, it is possible to find a discrete-time Markov chain and a se-

quence of independent exponential random variables so that an associated jump

3 If I is finite dimensional then any ℓp-norm may be used.
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chain generates paths of the continuous-time Markov chain with generator L. In the

case

l∗ := sup
i

l(i) <∞ (5.4.2)

it is possible to do this by choosing i.i.d. exponential random variables and then

reversing the construction in the example presented in the previous section.4 We now

illustrate this construction. If (5.4.2) holds, then, for any λ > l∗,

P = I + λ−1L (5.4.3)

is a stochastic matrix. Generate τj as an i.i.d. sequence with τ0 distributed as an

exponential random variable: τ ∼ exp(λ) Now generate zn from the Markov chain

with transition matrix P and define z(t) by (5.3.1). It is possible to check that

P (t)− I

t
→ L

as before, and thus we have constructed a continuous-time stochastic process on I
from the generator of Definition 5.5. Note that z(t) takes values in I, is càdlàg, and

may be described by the differential Equation (5.3.2).

We now give another way to see the relationship between the continuous-

time Markov chain with transition matrix P (t) and the generator L. Consider a

continuous-time Markov chain z(t), t � 0, taking values in the state space I ⊆
{1, 2, . . . }. Let pij(t) be the transition probability from state i to j given by (5.3.3).

The Markov property implies that for all t,Δt � 0,

pij(t + Δt) =
∑

k

pik(t)pkj(Δt).

This is the Chapman-Kolmogorov Equation (3.3.6) in the discrete state space setting,

so that integrals become sums. From this equation it follows that

pij(t + Δt)− pij(t)

Δt
=

∑

k

pik(t)ℓkj(Δt),

where

ℓkj(Δt) =
1

Δt
×
{

pkj(Δt) for k �= j
pjj(Δt)− 1 for k = j.

(5.4.4)

Suppose that the limit ℓkj = limΔt→0 ℓkj(Δt) exists. We then obtain, formally,

dpij

dt
=

∑

k

pikℓkj . (5.4.5)

4 When the condition in (5.4.2) fails, the exponential rates must be chosen to depend on the

current state.
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Because
∑

j pij(Δt) = 1, it follows that
∑

j ℓij(Δt) = 0, and assuming that the

limit exists, ∑

j

ℓij = 0. (5.4.6)

This implies that ∑

j

pij = 1

for the limiting Equation (5.4.5).

Introducing the matrices P (t), L with entries pij(t), ℓij , respectively, i, j ∈ I,

Equation (5.4.5) reads, in matrix notation,

dP

dt
= PL, P (0) = I. (5.4.7)

It was shown in (5.4.4) that L is calculated from P via the formula

L = lim
Δt→0

1

Δt

(
P (Δt)− I

)
=

dP

dt

∣∣∣
t=0

.

(This relationship between L and P was also derived in the reverse construction in

the last section.) The generator has constants in its null space by (5.4.6):

L1 = 0. (5.4.8)

As P is a stochastic matrix we deduce that

|eLt|∞ = 1. (5.4.9)

Furthermore, the nonnegativity of the pij implies that L has nonnegative off-diagonal

entries. The condition (5.4.6) thus implies that diagonal entries of −L are also non-

negative.

Notice that

P (t) = exp(Lt) (5.4.10)

solves (5.4.7). Thus we see that P (t) and L commute. Consequently, P (t) also solves

dP

dt
= LP, P (0) = I. (5.4.11)

We refer to both (5.4.7) and (5.4.11) as the master equation of the Markov chain.

Example 5.6. Let α ∈ (0,+∞) and consider the continuous-time Markov chain with

generator

L =

(
−α α
α −α

)
.

By calculating the eigenvalues and eigenfunctions of L, we can decompose it as
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L = U

(
−2α 0

0 0

)
UT

where

U =
1√
2

(
1 1
−1 1

)
.

The definition of the exponential of a matrix L = UΛUT with Λ diagonal and U
orthogonal is

etL = UetΛUT .

Using this definition we may calculate the semigroup generated by L:

etL =
1

2

(
1 + e−2αt 1− e−2αt

1− e−2αt 1 + e−2αt

)
. ⊓⊔

Let ρ(t) = (ρ0(t), ρ1(t), . . . )
T be the transpose of the ith row of P (t), i.e., a column

vector whose entries ρj(t) = pij(t) are the probabilities that a system starting in

state i will end up, at time t, in each of the states j ∈ I. Let ei denote the ith unit

vector, zero in all entries except the ith, in which it is one. Directly from (5.4.7) we

obtain the following theorem.

Theorem 5.7. The probability vector ρ satisfies

dρ

dt
= LT ρ, ρ(0) = ei. (5.4.12)

If the initial state of the Markov chain is random, with probability vector ρ(0) = ρ0

chosen independently of the transition probabilities in the Markov chain, then

dρ

dt
= LT ρ, ρ(0) = ρ0. (5.4.13)

Proof. The first result follows from (5.4.7). Let ρ(i) denote the solution of (5.4.12).

If the initial condition is random with ρ(0) = ρ0, a vector with ith component ρ0,i,

then

ρ(t) =
∑

i

ρ0,iρ
(i)(t).

Differentiating and using (5.4.12) gives (5.4.13). ⊓⊔
Equation (5.4.13) is the Markov chain analogue of the Liouville and Fokker-

Planck equations described in Chapters 4 and 6, respectively. We refer to it as the

forward equation.

Let φ : I �→ R be a real-valued function defined on the state space; it can be

represented as a vector with entries φj , j ∈ I. Then let v(t) = (v0(t), v1(t), . . . )
T

denote the vector with ith entry

vi(t) = E

(
φz(t)|z(0) = i

)
,

where E denotes expectation with respect to the Markov transition probabilities.
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Theorem 5.8. The vector of expectations v satisfies the equation

dv

dt
= Lv, v(0) = φ. (5.4.14)

Proof. The function vi(t) can be written explicitly in terms of the transition proba-

bilities:

vi(t) =
∑

j

pij(t)φj . (5.4.15)

If we set φ = (φ0, φ1, . . . )
T then this can be written in vector form as v(t) = P (t)φ.

Differentiating with respect to time and using the master Equation (5.4.11) gives the

desired result.

Equation (5.4.14) is the Markov chain analogue of the method of characteristics and

of the backward Kolmogorov equation described in Chapters 4 and 6, respectively.

We refer to it as the backward equation.

5.5 Existence and Uniqueness

A continuous-time Markov chain will have sample paths that exhibit jumps from one

state in I to another. This was made explicit through the construction of the jump

chain, under condition (5.4.2). (When this condition fails, a construction where the

jump rates depend on the current state is possible.) With this in mind, the following

definition is natural.

Definition 5.9. A continuous-time Markov chain is nonexplosive if, with probability

one, the jump times do not accumulate at a finite time.

It is important to understand conditions that ensure nonexplosion. We show that

(5.4.2) is sufficient. We generate a sequence {zn}n�0 from the discrete-time Markov

chain with a transition matrix given by (5.4.3), with λ > l∗. The jump chain as-

sociated with this choice of transition matrix P is then given by (5.3.1), where

tn+1 = tn + τn and the τn are i.i.d. random variables distributed as exp(λ).

Theorem 5.10. The Markov chain is nonexplosive if (5.4.2) holds.

Proof. We identify the Markov chain corresponding to generator L with the jump

chain. Let

ζ =
∞∑

n=0

τn.

Set Tn = λτn and notice that the {Tn} form an i.i.d. sequence with T1 ∼ exp(1).
By the strong law of large numbers (Example 3.26),

1

N + 1

N∑

n=0

Tn → 1 a.s.
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Hence

ζ := lim
N→∞

1

λ

N∑

n=0

Tn =∞ a.s.

and the result follows.

It is noteworthy that condition (5.4.2) is satisfied whenever I is finite.

5.6 Ergodicity

As for ODEs, ergodicity for Markov chains is concerned with the existence and

uniqueness of an invariant measure. We will relate this definition of ergodicity to the

convergence of time averages to a value independent of initial conditions, determined

by a unique invariant measure, and to the properties of the null spaces of the generator

and its adjoint. In the context of countable state space Markov chains, the invariant

measure will be characterized by a vector, the invariant distribution defined later.

For simplicity, we assume that I is a finite set. We start by discussing discrete-

time Markov chains. By (5.2.1), the matrix (P − I) has a nonempty null space,

including constant vectors, and hence its transpose also has a nonempty null space.

As a consequence, there exists a vector ρ∞ such that

PT ρ∞ = ρ∞. (5.6.1)

In fact we have the following theorem.

Theorem 5.11. All eigenvalues of P lie in the closed unit circle. The vector ρ∞ may

be chosen so that all of its entries are nonnegative and 〈ρ∞, 1〉 = 1.

The vector ρ∞ is known as the invariant distribution. Note that it defines a prob-

ability measure on I. As in the case of ODEs, ergodicity is associated with making

this invariant distribution unique. A straightforward way to ensure this is via the

following condition.

Definition 5.12. The discrete-time Markov chain is said to be ergodic if the spectrum

of P lies strictly inside the unit circle, with the exception of a simple eigenvalue at 1,

corresponding to a strictly positive invariant distribution.

Now consider continuous-time Markov chains on I. Using the properties of the gen-

erator L we deduce that

L1 =0,

LT ρ∞ =0. (5.6.2)

In fact, using (5.4.3), we have the following theorem.

Theorem 5.13. All eigenvalues of L lie in the left half-plane. The vector ρ∞ may be

chosen so that all of its entries are nonnegative and 〈ρ∞, 1〉 = 1.
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The vector ρ∞ is again known as the invariant distribution. As in the case of

discrete-time Markov chains, it defines a probability measure on I. And again er-

godicity is associated with making this invariant distribution unique.

Definition 5.14. The continuous-time Markov chain is said to be ergodic if the spec-

trum of L lies strictly in the left half-plane, with the exception of a simple eigenvalue

at zero, corresponding to a strictly positive invariant distribution.

The following theorem describes the properties of ergodic continuous-time Markov

chains. We will use it in the remainder of the book.

Theorem 5.15. An ergodic continuous-time Markov chain on finite state space I
satisfies the following five properties:

i) N (L) = span{1};
ii) N (LT ) = span{ρ∞}, ρ∞(i) > 0∀i ∈ I;

iii) ∃C, λ > 0 such that solution of the forward Equation (5.4.13) satisfies

|ρ(t)− ρ∞|1 � Ce−λt ∀t > 0;

iv) ∃C, λ > 0 such that solution of the backward Equation (5.4.14) satisfies

|v(t)− 〈ρ∞, φ〉1|∞ � Ce−λt ∀t > 0; and

v)

lim
T→∞

1

T

∫ T

0

φz(t)dt = 〈ρ∞, φ〉 a.s.

Since the state space is finite-dimensional the convergence results hold in any

norm; however, the choices as stated are natural from a probabilistic viewpoint.

Notice that, by choosing φ = ei, we deduce from the final result that the ith
component of ρ∞ can be found as the proportion of time that an arbitrary trajec-

tory of the Markov chain on t ∈ [0,∞) spends in state i. This is analogous to the

ODE case in the previous chapter and to formula (4.4.2) in particular. Note also

that, as in the ODE case, ergodicity is associated with time averages converging to

the average against the invariant distribution and hence independent of the initial

condition.

Example 5.16. We continue Example 5.6. Notice that L has one-dimensional null

space spanned by the vector (1, 1)T . Relatedly LT has the same property. Thus ρ∞ =
(1/2, 1/2)T . Clearly

lim
t→∞

etL =
1

2

(
1 1
1 1

)
.

Furthermore the limit is achieved exponentially fast. Since ρ(0) is a distribution (see

Example 3.1), it follows that ρ(t) = etLT

ρ(0) converges to ρ∞ exponentially fast.

Since L is symmetric, the same exponential convergence holds for v(t). ⊓⊔
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5.7 Discussion and Bibliography

An excellent introductory textbook on Markov chains is [235]. A more advanced

treatment may be found in [303]. The text [94] has a wealth of material on the general

setting for Markov processes, including Markov chains. The paper [122] describes

a simple algorithm for simulating continuous-time Markov chains, through sample

paths of the jump chain. The book [299] describes Markov chains from a compu-

tational linear algebra perspective. The book [227] has a very general treatment of

ergodicity for Markov chains.

The existence of a nonnegative invariant vector in the discrete-time case follows

from the general theory of nonnegative matrices (matrices with no negative entries).

Making the eigenpair (ρ∞, 1) simple for matrix PT , and ensuring that ρ∞(i) > 0 for

all i, is equivalent to asking that the matrix is irreducible: for any pair i, j ∈ I there

exists an n ∈ Z
+ such that

(
Pn

)
ij

> 0. Asking that the chain be ergodic requires

aperiodicity as well as irreducibility. Together, aperiodicity and irreducibility imply

that there exists an n ∈ Z
+ such that Pn has all entries strictly positive. This means

that there exists an n ∈ Z
+ for which

P(zn = j|z0 = i) > 0 ∀(i, j) ∈ I × I.

Thus there exists a positive integer n such that any member of I can be reached in

n steps with positive probability from any starting point in I. This is another useful

heuristic way to think about ergodicity: dynamical trajectories should be able to visit

the whole of the state space.5 These results concerning nonnegative matrices and

their spectra may be found in [115]. Note that some texts refer to the irreducible case

as ergodic and the irreducible and aperiodic case as mixing; see [327].

Extending these ergodicity results to the continuous-time case is fairly straight-

forward in the case of finite state space, using the jump chain. Recall that, to every

continuous-time Markov chain with generator L on finite state space I, we may as-

sociate a jump chain with transition matrix given by (5.4.3), for any λ > l∗ with l∗

given by (5.4.2). The existence of a nonnegative invariant vector for the continuous-

time process follows from that for the discrete process with transition matrix P . This

is because P and L share the same eigenvectors and their eigenvalues η(P ) and η(L)
are related by

η(P ) = 1 + λ−1η(L). (5.7.1)

In particular if η(P ) = 1, as for the invariant vector, then η(L) = 0. The criterion

for ergodicity of the continuous-time process simply becomes the condition that the

matrix P given by (5.4.3), with λ > l∗ and l∗ given by (5.4.2), is irreducible. Then

the spectrum of P lies inside the closed unit circle, with a simple eigenvalue at 1.

By (5.7.1) L has a spectrum contained strictly in the left half-plane, together with

a simple eigenvalue at 0. Thus the concept of aperiodicity is not required in the

continuous-time case.

5 This is, in fact, the root of the word ergodic = εργo + oδoς (work + path). The term was

introduced by Boltzmann in the 1870s in the course of his work on the kinetic theory of

gases.
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5.8 Exercises

1. Show that the jump chain (5.3.1) satisfies the Markov property.

2. Give a definition of a symmetric random walk on Z
d, where d is arbitrary.

3. Give an example of an asymmetric random walk on Z.

4. Consider the discrete-time Markov chain with transition matrix

P =

(
1− α α
β 1− β

)

with α, β ∈ [0, 1]. Find the invariant density ρ∞. Under what conditions is the

Markov chain ergodic?

5. A stochastic matrix P and a distribution π are said to be in detailed balance

provided that

pijπi = pjiπj ∀i, j ∈ I.
Show that π is an invariant distribution for P. (Enforcing this condition is related

to making the Markov process reversible.)

6. Consider the continuous-time Markov chain with generator

L =

(
−a a
b −b

)
.

Find the invariant density ρ∞. Under what conditions is the Markov chain er-

godic?

7. Implement a numerical algorithm to simulate paths of the continuous-time Markov

chain from the previous example by using the canonical jump chain.
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Stochastic Differential Equations

6.1 Setup

Gaussian white noise may be thought of informally as a mean-zero Gaussian process

with correlation δ(t− s)I . In practice such processes are an idealization of stochas-

tic processes with very short correlation time. In this chapter we describe the back-

ground material concerning stochastic differential equations (SDEs)—ODEs driven

by white noise—required for the remainder of the book. Let W (t) denote a standard

m-dimensional Brownian motion, h : Z → R
d a smooth vector-valued function and

γ : Z → R
d×m a smooth matrix-valued function. In the following, we typically take

Z = T
d, R

d or R
l ⊕ T

d−l. Consider the Itô SDE

dz

dt
= h(z) + γ(z)

dW

dt
, z(0) = z0. (6.1.1)

We think of the term dW/dt as representing Gaussian white noise. Such a process

exists only as a distribution, and so the precise interpretation of (6.1.1) is as an inte-

gral equation for z(t) ∈ C(R+,Z):

z(t) = z0 +

∫ t

0

h(z(s))ds +

∫ t

0

γ(z(s))dW (s). (6.1.2)

In order to make sense of this equation we need to define the stochastic integral

against dW (s). We use the Itô interpretation of the stochastic integral as defined

in Chapter 3. Because it is notationally convenient to do so, we will frequently

write SDEs in the unintegrated form (6.1.1). Whenever we do this, what is written

should be interpreted as shorthand for (6.1.2). The function h in (6.1.1) is sometimes

referred to as the drift and γ as the diffusion coefficient.

In later chapters we will often consider z = (xT , yT )T , with x ∈ X , y ∈ Y .

If Z = T
d (resp. R

d) then X = T
l (resp. R

l) and Y = T
d−l (resp. R

d−l). If

Z = R
l⊕T

d−l then X = R
l and Y = T

d−l. When we consider Equation (4.1.1) on

the torus, this is, as in Chapter 4, simply a convenient shorthand for the case that h, γ
are periodic in z (resp. y) and that we consider z (resp. y) as an element of the torus,
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by working modulo 1 in all directions. On occasion we will consider differential

operators on the torus and, in this setting, the operator automatically has periodic

boundary conditions.

Sections 6.2–6.4 consider the existence and uniqueness of solutions, the gener-

ator, and the Kolmogorov and Fokker–Planck equations, and ergodicity for SDEs,

respectively. In Section 6.5 we present extensions of the basic theory, together with

references to the literature.

6.2 Existence and Uniqueness

By a solution of (6.1.1) we mean a Z-valued stochastic process {z(t)} on t ∈ [0, T ]
with the properties:

i) z is continuous andFt-adapted, where the filtration is generated by the Brownian

motion W (t);
ii) h(z(·)) ∈ L1((0, T )), γ(z(·)) ∈ L2((0, T ));

iii) Equation (6.1.1) holds for every t ∈ [0, T ] with probability 1.

The solution is called unique if any two solutions xi(t), i = 1, 2 satisfy

P(x1(t) = x2(t), ∀t ∈ [0, T ]) = 1.

In Theorem 4.2 we proved existence and uniqueness of solutions for ODEs (i.e.,

when γ ≡ 0 in (6.1.1)) for globally Lipschitz vector fields h. A very similar theorem

holds when γ �= 0. As for ODEs the conditions can be weakened, when a priori

bounds on the solution can be found, but we limit ourselves to the simple setup of

the following theorem, for expository purposes.

Theorem 6.1. Assume that both h(·) and γ(·) are globally Lipschitz on Z and that

z0 is a random variable, independent of the Brownian motion W (t), and satisfying

E|z0|2 <∞.

Then the SDE (6.1.1) has a unique solution z ∈ C(R+;Z) with

E

[∫ T

0

|z(t)|2 dt

]
<∞ ∀T <∞.

Furthermore, the solution of the SDE is a Markov process.

We conclude the section with two remarks, both of which will play an important role

in future chapters.

Remark 6.2. The Stratonovich analogue of (6.1.1) is

dz

dt
= h(z) + γ(z) ◦ dW

dt
, z(0) = z0. (6.2.1)
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By this we mean that z ∈ C(R+,Z) satisfies the integral equation

z(t) = z(0) +

∫ t

0

h(z(s))ds +

∫ t

0

γ(z(s)) ◦ dW (s). (6.2.2)

By using Definitions (3.4.6) and (3.4.9) it can be shown that z satisfying the

Stratonovich SDE (6.2.1) also satisfies the Itô SDE

dz

dt
= h(z) +

1

2
∇ ·

(
γ(z)γ(z)T

)
− 1

2
γ(z)∇ ·

(
γ(z)T

)
+ γ(z)

dW

dt
, z(0) = z0,

(6.2.3)

provided that γ(z) is differentiable; see Exercise 1.

White noise is, in most applications, an idealization of a stationary random pro-

cess with short correlation time. In this context the Stratonovich interpretation of an

SDE is particularly important because it sometimes arises as the limit obtained by

using smooth approximations to white noise.1 On the other hand, the martingale ma-

chinery that comes with the Itô integral makes it more important as a mathematical

object. Hence conversion between the two viewpoints is very useful. ⊓⊔

Remark 6.3. The Definition 3.5 of Brownian motion implies the interesting scaling

property

{W (ct) : t � 0} = {√cW (t) : t � 0},
where the preceding should be interpreted as holding in law on C([0,∞),Rd). From

this it follows that, if s = ct, then

dW

ds
=

1√
c

dW

dt
,

again in law.

Hence, if we scale time to s = ct in (6.1.1), then we get the equation

dz

ds
=

1

c
h(z) +

1√
c
γ(z)

dW

ds
, z(0) = z0.

(The precise interpretation is as an integral equation, as always.) Notice that, while

the SDE transforms unusually under s = ct, the Fokker–Planck equation, defined in

the next section, transforms in the standard way, because it sees the quadratic term

(6.3.1) formed from the diffusion coefficient. ⊓⊔
1 Under some mild regularity conditions this is always true in one dimension, but not always

true in higher dimensions: an additional drift related to the commutator between the row

vectors of the diffusion matrix γ(z) can appear in the limit as we remove the regularization,

in addition to the Stratonovich stochastic integral. See the example in Section 11.7.7 and

the discussion in Section 11.8.
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6.3 The Generator

Given the function γ(z) in the SDE (6.1.1) we define

Γ (z) = γ(z)γ(z)T . (6.3.1)

The generator L is then defined as

Lv = h · ∇v +
1

2
Γ : ∇∇v. (6.3.2)

This operator, equipped with a suitable domain of definition, is the generator of the

Markov process given by (6.1.1), in the sense defined in Chapter 3. We will also be

interested in the formal L2−adjoint operator L∗

L∗v = −∇ · (hv) +
1

2
∇ · ∇ · (Γv).

Example 6.4. (i) Consider the SDE

dx

dt
= σ

dW

dt

on R
d. Its solution is a Brownian motion on R

d with covariance matrix σ2I .

The generator of the Markov process x(t) is

Lφ =
σ2

2
Δφ.

It is formally self-adjoint on L2(Rd):

L∗φ =
σ2

2
Δφ.

(ii) Consider the Ornstein–Uhlenbeck (OU) SDE

dx

dt
= −αx +

√
2λ

dW

dt

on R
d where α, λ are positive constants. The generator of the OU process is

Lφ = −αx · ∇φ + λΔφ.

Its L2(Rd)-adjoint is

L∗φ = ∇ · (αxφ) + λΔφ.

In fact, L is self-adjoint in a weighted L2-space, where integration is performed

with respect to the density of the invariant measure for the OU process; see

Exercise 4.
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(iii) The geometric Brownian motion on R is defined as the solution of the one-

dimensional SDE
dx

dt
= μx + σx

dW

dt

where μ ∈ R and σ > 0. The generator of the geometric Brownian motion is

Lφ = μx
dφ

dx
+

σ2x2

2

d2φ

dx2
.

Its L2-adjoint is

L∗φ = − d

dx
(μxφ) +

d2

dx2

(
σ2x2

2
φ

)
. ⊓⊔

The Itô formula that follows is the basic result concerning the rate of change

in time of functions V : Z → R evaluated at the solution of a Z-valued SDE.

Heuristically it delivers the following result:

d

dt

(
V (z(t))

)
= LV (z(t)) +

〈
∇V (z(t)), γ(z(t))

dW

dt

〉
.

This is the analogue of (4.3.2) for ODEs. Note that if W were a smooth time-

dependent function, this formula would not be correct: there is an additional term

in LV , proportional to Γ , which arises from the lack of smoothness of Brownian

motion.

As for the SDE (6.1.1) itself, the precise interpretation of the expression for the

rate of change of V is in integrated form.

Lemma 6.5. (Itô Formula) Assume that the conditions of Theorem 6.1 hold. Let

x(t) solve (6.1.1) and let V ∈ C2(Z,R). Then the process V (z(t)) satisfies

V (z(t)) = V (z(0)) +

∫ t

0

LV (z(s))ds +

∫ t

0

〈∇V (z(s)), γ(z(s)) dW (s)〉 .

As in the setting for ODEs, the formula is readily extended to vector-valued func-

tions V : Z → R
n.

Let φ : Z �→ R and consider the function

v(z, t) = E
(
φ(z(t))|z(0) = z

)
, (6.3.3)

where the expectation is with respect to all Brownian driving paths. By taking ex-

pectation in the Itô formula, which removes the stochastic integral, it is possible to

deduce the following important consequence of Lemma 6.5.
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Theorem 6.6. Assume that φ is chosen sufficiently smooth so that the backward

Kolmogorov equation

∂v

∂t
= Lv for (z, t) ∈ Z × (0,∞),

v = φ for (z, t) ∈ Z × {0} , (6.3.4)

with L as given in (6.3.2), has a unique bounded classical solution2 v(x, t) ∈
C2,1(Z × (0,∞),R) ∩C(Z ×R

+,R). Then v is given by (6.3.3) where z(t) solves

(6.1.2).

This is the analogue of the backward Equation (5.4.14) for Markov chains. If γ ≡ 0
in (6.1.1), so that the dynamics are deterministic, and ϕt is the flow on Z so that

z(t) = ϕt(z(0)), then the Kolmogorov Equation (6.3.4) reduces to the hyperbolic

Equation (4.3.5) whose characteristics are the integral curves of the ODE (4.1.1).

Example 6.7. Consider the three SDEs from Example 6.4. The corresponding back-

ward Kolmogorov equations are

∂v

∂t
=

σ2

2
Δv

for the Brownian motion,

∂v

∂t
= −αx · ∇v + λΔv

for the OU process and
∂v

∂t
= μx

∂v

∂x
+

σ2x2

2

∂2v

∂x2

for the geometric Brownian motion. ⊓⊔
A direct consequence of Theorem 6.6 is an equation for propagation of densities. In

deriving this equation in the next theorem we make use of the semigroup notation

for the solution to time-dependent PDEs; see Section 7.5.

Theorem 6.8. Consider Equation (6.1.2) with z0 a random variable with density

ρ0(z), independent of w. Assume that the law of z(t) has a density ρ(z, t) ∈
C2,1(Z×(0,∞),R)∩C(Z×R

+,R). Then ρ satisfies the Fokker–Planck equation3

∂ρ

∂t
= L∗ρ for (z, t) ∈ Z × (0,∞), (6.3.5a)

ρ = ρ0 for z ∈ Z × {0}. (6.3.5b)

2 See Chapter 7.
3 Sometimes called the forward Kolmogorov equation.
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Proof. Let E
μ denote averaging with respect to the product measure induced by the

measure μ with density ρ0 on z(0) and the independent driving Wiener measure on

the SDE itself. By the previous result, averaging over random z0 distributed with

density ρ0(z0), we find

E
μ(φ(z(t))) =

∫

Z

v(z0, t)ρ0(z0) dz0

=

∫

Z

v(z, t)ρ0(z) dz

=

∫

Z

(eLtφ)(z)ρ0(z) dz

=

∫

Z

(eL
∗tρ0)(z)φ(z) dz,

for all φ smooth enough that Theorem 6.6 holds. But if ρ(z, t) is the density of z(t)
we also have

E
μ(φ(z(t))) =

∫

Z

ρ(z, t)φ(z)dz.

Equating these two expressions for the expectation at time t we obtain

∫

Z

(eL
∗tρ0)(z)φ(z) dz =

∫

Z

ρ(z, t)φ(z) dz.

We use a density argument so that the identity can be extended to all φ ∈ L2(Z).
Hence, from the preceding equation we deduce that

ρ(z, t) =
(
eL

∗tρ0

)
(z).

Differentiation of the equation gives (6.3.5a). Setting t = 0 gives the initial condition

(6.3.5b). Hence ρ is the solution of the initial value problem (6.3.5). ⊓⊔
The Fokker–Planck equation is the continuous analogue of the forward Equation

(5.4.12) for Markov chains and of the Liouville Equation (4.3.9) for ODEs.

Remark 6.9. The fact that the solution of the Fokker–Planck equation is the density

of a probability measure means that

∫

Z

ρ(z, t) dz = 1, ρ(z, t) � 0 ∀t ∈ R
+.

The conservation law for the integral follows from (6.3.5) because L∗ is an operator

in divergence form. Furthermore, the probabilistic interpretation implies that, if ρ is

nonnegative at t = 0, then it remains nonnegative for all positive times. ⊓⊔

Remark 6.10. In the case where the initial condition for the SDE (6.1.1) is determin-

istic, z = z0, the initial condition for the Fokker–Planck equation becomes a delta

function (Dirac mass):
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ρ(z, t = 0) = δ(z − z0).

The solution of the Fokker–Planck equation can be extended to allow for such irreg-

ular data. ⊓⊔
Example 6.11. Consider the three SDEs from Example 6.4. The corresponding Fokker–

Planck equations are
∂ρ

∂t
=

σ2

2
Δρ

for the Brownian motion,

∂ρ

∂t
= ∇ · (αxρ) + λΔρ (6.3.6)

for the OU process and

∂ρ

∂t
= − ∂

∂x
(μxρ) +

∂2

∂x2

(
σ2x2

2
ρ

)

for the geometric Brownian motion. ⊓⊔
Note that constants are in the null space of the generator L given by (6.3.2), which

implies that dim (Null(L)) � 1. Assuming that the operator L satisfies the Fredholm

alternative (see Section 7.2.3), this implies that dim (Null(L∗)) � 1, too. Thus we

expect that L∗ will have a nontrivial null space.

Now suppose ρ is a function in the null space of L∗, which is positive and in-

tegrates to 1 on Z. Then ρ is necessarily a steady solution of the Fokker–Planck

equation:

L∗ρ = 0, (6.3.7)

equipped with the appropriate boundary conditions. Thus, a stationary distribution

ρ is the solution of the elliptic PDE (6.3.7). We have the following important result

giving the Dirichlet form associated with the operator L. For simplicity we state and

prove this result in the periodic setting.

Theorem 6.12. Let ρ ∈ C2
per(T

d) be any steady solution of the Fokker–Planck equa-

tion on T
d with periodic boundary conditions. Let f ∈ C2

per(T
d). Then

∫

Td

(
−Lf(z)

)
f(z)ρ(z) dz =

1

2

∫

Td

(
∇f(z) · Γ (z)∇f(z)

)
ρ(z) dz (6.3.8)

=
1

2

∫

Td

|γ(z)T∇f(z)|2ρ(z)dz. (6.3.9)

Proof. We have

L∗(fρ) = −∇ · (hρf) +
1

2
∇ · ∇ ·

(
Γρf

)

=
(
L∗ρ

)
f +

(
− Lf

)
ρ +∇ρ · Γ∇f

+ρΓ : ∇∇f +∇f · (∇ · Γ )ρ

=
(
− Lf

)
ρ +∇ρ · Γ∇f

+ρΓ : ∇∇f +∇f · (∇ · Γ )ρ.
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Now let g ∈ C2
per(T

d). Using the fact that L and L∗ are adjoint operators in L2(Td),
and by using the divergence theorem, we use the previous identity to perform the

following calculations:

∫

Td

(Lg)fρ dz =

∫

Td

gL∗(fρ) dz

=

∫

Td

(
g(−Lf)ρ + g∇ρ · Γ∇f

)
dz

+

∫

Td

g
(
∇f · (∇ · Γ )ρ + ρΓ : ∇∇f

)
dz

=

∫

Td

g(−Lf)ρ dz −
∫

Td

(
∇g · Γ∇f

)
ρ dz. (6.3.10)

Equation (6.3.10) implies

∫

Td

(−Lg) fρ dz +

∫

Td

g(−Lf)ρ dz =

∫

Td

(
∇g · Γ∇f

)
ρ dz. (6.3.11)

Equation (6.3.8) follows from the preceding equation upon setting g = f . ⊓⊔
Roughly speaking the previous result concerning the Dirichlet form shows that

−L is a positive operator, in an appropriate weighted L2-space. Indeed, let ρ be

strictly positive on Z and define a measure μ(dx) = ρ(x)dx. We can then introduce

the weighted Hilbert space L2(μ) with inner product and norm as follows:

(a, b)ρ =

∫

Td

a(z) · b(z)ρ(z) dz, ‖a‖2ρ = (a, a)2ρ. (6.3.12)

Then the preceding theorem shows that

(−Lf, f)ρ =
1

2
‖γT∇f‖2ρ. (6.3.13)

Remark 6.13. In suitable functional settings, the previous result concerning the Dirich-

let form also applies to other choices of domain Z , not just on the torus. Specifically,

the function space should ensure that L∗ is the adjoint of L and allow the divergence

theorem calculation used to reach (6.3.10). Typically, these conditions are realized

on noncompact spaces by means of decay assumptions at infinity. ⊓⊔

Example 6.14. For Example 6.4(i), Brownian motion on T, we have ρ(x) ≡ 1, so that

Lebesgue measure is invariant. In this case, (6.3.13) simply reduces to the integration

by parts formula

−σ2

2

∫ 1

0

d2f

dx2
f dx =

σ2

2

∫ 1

0

∣∣∣
df

dx

∣∣∣
2

dx. ⊓⊔
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6.4 Ergodicity

As for ODEs and Markov chains, ergodicity is related to the existence of a unique

invariant measure. As for continuous-time Markov chains, in the SDE case this is best

characterized by asking for a unique (up to normalization) function in the null space

of the adjoint of the generator. We refer to this function as the invariant distribution

or stationary distribution.

It is necessarily the case that constants are in the null space of L:

L1 = 0.

The notation 1 is used to denote functions that are constant and equal to one, a.e. in

an Lp sense. Roughly speaking, we will say that an SDE is ergodic if the null space

of its generator consists only of constants. Assuming that L satisfies the Fredholm

alternative, this is equivalent to saying that there exists a unique, everywhere positive

normalized solution to the stationary Fokker–Planck equation:

L∗ρ∞ = 0, inf
z∈Z

ρ∞ > 0,

∫

Z

ρ∞(z) dz = 1.

In this case we have that the long-time average of a function of the solution to the

SDE is equal to the average of this function with respect to the invariant distri-

bution ρ∞(z) so that the SDE forgets its initial condition. Equation (6.4.2), which

makes this idea precise, is often taken as the definition of ergodicity in the physics

literature. As well as relating to single sample paths of the SDE, ergodicity can also

be related to ensembles of sample paths, over different noise realizations: the so-

lution to the Fokker–Planck Equation (6.3.5) for an ergodic SDE converges, in the

limit as t→∞, to its invariant distribution; see (6.4.1).

Given an SDE, we would like to know whether it is ergodic. We present a rig-

orous result in the case where Z = T
d. Consider the SDE (6.1.1) on T

d. We equip

both the generator L and its adjoint L∗ with periodic boundary conditions. Thus

D(L) = D(L∗) = C2
per(T

d).

The following is a mathematically precise statement of ergodicity for SDEs; it

ensures that the heuristics just described do indeed hold in the periodic case. The def-

inition generalizes our definition of ergodicity for continuous-time Markov chains.

Definition 6.15. The SDE (6.1.1) with Z = T
d is said to be ergodic if the spectrum

of the generator lies strictly in the left half-plane, with the exception of a simple

eigenvalue at the origin, corresponding to a strictly positive eigenfunction ρ∞(z).

In the following we use the shorthand notation ρ(t) and v(t) to denote the

function-valued time-dependent solutions of the Fokker–Planck and backward Kol-

mogorov equations, respectively. Thus we may view ρ(t), v(t) as being in a Banach

space, for each fixed t, and measure their size through the Lp-norms.
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Theorem 6.16. Equip L, L∗ on T
d with periodic boundary conditions and assume

that Γ (z) is strictly positive-definite, uniformly in z ∈ T
d :

∃γ̄ > 0 : 〈ξ, Γ (z)ξ〉 � γ̄|ξ|2, ∀ξ ∈ R
d, z ∈ T

d.

Then the SDE (6.1.1) is ergodic and satisfies the following five properties:

• N (L) = span{1};
• N (L∗) = span{ρ∞}, infz∈Td ρ∞(z) > 0;

• ∃C, λ > 0 such that the solution of the Fokker–Planck equation with initial data

a Dirac mass at arbitrary z(0) ∈ T
d satisfies

‖ρ(t)− ρ∞‖1 � Ce−λt ∀t > 0; (6.4.1)

• ∃C, λ > 0 such that the solution of the backward Kolmogorov equation with

initial data a continuous function φ satisfies

∥∥∥∥v(t)−
(∫

Td

φ(z)ρ∞(z) dz

)
1

∥∥∥∥
∞

� Ce−λt ∀t > 0;

• for all φ ∈ C(Td)

lim
T→∞

1

T

∫ T

0

φ(z(t))dt = φ :=

∫

Td

φ(z)ρ∞(z) dz, a.s. (6.4.2)

Let IA denote the indicator function of Borel set A ⊆ Z . This function is not contin-

uous but may be approximated by a sequence of continuous functions. By choosing

φ to be IA we deduce from the last result that the measure μ defined by

μ(A) = lim
T→∞

1

T

∫ T

0

IA(z(t)) dt (6.4.3)

has density ρ∞. Thus μ(dz) = ρ∞(z)dz. Furthermore, the invariant distribution μ
clearly measures the proportion of time that a sample path of the SDE spends in a

given set, as for ODEs and Markov chains.

Remark 6.17. Although we do not prove the results stated in the preceding theorem,

a few remarks are in order:

(i) The fact that the null space of L comprises constants, when the diffusion matrix

Γ is uniformly positive definite and when periodic boundary conditions are

used, may be seen by means of the strong maximum principle – Example 7.15.

(ii) The same fact also follows directly from (6.3.13) if it is assumed that ρ∞ is

strictly positive.

(iii) Convergence of the time average (6.4.2) may be quantified as follows. Let L be

the generator of an ergodic SDE (6.1.1) on T
d equipped with periodic bound-

ary conditions and satisfying the assumptions of Theorem 6.16. Let Φ be the

solution of the Poisson equation
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LΦ = φ− φ,

where φ denotes the average of a scalar-valued function φ with respect to the

invariant measure of the SDE. By the Fredholm alternative, Theorem 2.42, this

Poisson equation has a solution that is unique up to constants. Applying the Itô

formula to Φ(x(t)) gives

Φ(z(t)) = Φ(z(0)) +

∫ t

0

LΦ(z(s))ds +

∫ t

0

〈∇Φ(z(s)), γ(z(s)) dW (s)〉

so that

1

T

(
Φ(z(T ))− Φ(z(0))

)
=

1

T

∫ T

0

φ(z(s)) ds− φ + MT ,

MT :=
1

T

∫ T

0

〈∇Φ(z(s)), γ(z(s)) dW (s)〉.

By the Itô isometry and our assumptions on Φ we have that E|MT |2 = O(1/T ).
Thus we obtain

1

T

∫ T

0

φ(z(s))ds = φ +O
( 1√

T

)

in L2. This is essentially the ergodic theorem, describing convergence of the

time average of an ergodic SDE.4 Notice also that we may characterize the

corrections to this law via the martingale central limit theorem (Theorem 3.33),

which may be used to show that
√
TMT converges to a Brownian motion with a

covariance that can be expressed in terms of the Dirichlet form associated with

the generator L, evaluated at the solution of the Poisson equation Φ. ⊓⊔
Example 6.18. Consider a one-dimensional Brownian motion on T:

dz

dt
= σ

dW

dt
, z(0) = z0.

The generator L is the differential operator

L =
σ2

2

d2

dz2
,

equipped with periodic boundary conditions on [0, 1]. This operator is self-adjoint.

The null space of both L and L∗ comprises constant functions on [0, 1]. Both the

backward Kolmogorov and the Fokker–Planck equation reduce to the heat equation

∂ρ

∂t
=

σ2

2

∂2ρ

∂x2

with periodic boundary conditions in [0, 1]. A straightforward application of Fourier

analysis shows that the solution converges to a constant at an exponential rate; see

Exercise 7. ⊓⊔
4 It is also a form of the law of large numbers.
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Note that, while Brownian motion is ergodic on the torus it is not ergodic on

R as the Lebesgue measure is not normalizable as a probability measure. However,

although Theorem 6.16 as stated refers to the case where the state space is T
d, it

readily extends to a variety of settings with the appropriate function space choice for

L and L∗. To illustrate this, we include two examples on R
d.

Example 6.19. Consider the OU process from Example 6.4

dz

dt
= −αz +

√
2λ

dW

dt
, z(0) = z0, (6.4.4)

with z(t) ∈ R. Here we assume that z0 is fixed and nonrandom. An application of

Itô’s formula gives the solution

z(t) = e−αtz0 +
√

2λ

∫ t

0

e−α(t−s)dW (s).

Hence,

Ez(t) = z0e
−αt

and, by the Itô isometry,

E
(
z(t)− Ez(t)

)2
= 2λE

(∫ t

0

e−α(t−s)dW (s)

)2

= 2λ

∫ t

0

e−2α(t−s) ds

=
λ

α

(
1− e−2αt

)
.

The OU process z(t) is Gaussian. Hence, the preceding calculations show that

z(t) ∼ N
(
m(t), σ2(t)

)
, (6.4.5)

where

m(t) = e−αtz0, σ2(t) =
λ

α

(
1− e−2αt

)
,

indicating convergence to the Gaussian invariant measure N (0, λ/α) as t → ∞.
This is a manifestation of ergodicity.

The Fokker–Planck equation of the OU process is given by (6.3.6):

∂ρ

∂t
=

∂

∂x
(αxρ) + λ

∂2ρ

∂x2

with initial condition being a Dirac mass centered at z0. It is readily verified that the

density associated with the Gaussian measure for z(t), namely

ρ(x, t) =

√
1

2πσ2(t)
exp

(
− (x−m(t))2

σ2(t)

)
,
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is a solution of this linear PDE. Thus the density ρ converges to a density ρ∞, aris-

ing from the Gaussian random variable N (0, λ/α), as t → ∞. That is, the unique

invariant distribution of the OU process is

ρ∞(x) =

√
α

2λπ
exp

(
−αx2

2λ

)
. ⊓⊔ (6.4.6)

Example 6.20. Consider the equations

dx

dt
=− ax + y, x(0) = x0,

dy

dt
=− y +

√
2σ

dW

dt
, y(0) = y0,

for (x(t), y(t)) ∈ R
2. We assume a > 0. The Fokker–Planck equation takes the

form
∂ρ

∂t
+

∂

∂x

(
(−ax + y)ρ

)
+

∂

∂y
(−yρ) = σ

∂2ρ

∂y2
.

The previous example shows that y has Gaussian distribution and converges to a

Gaussian invariant measure. Since

x(t) = e−atx(0) +

∫ t

0

e−a(t−s)y(s)ds

and y is Gaussian we deduce that x too is Gaussian: its mean is e−at and the variance

is given by

E

(∫ t

0

e−a(t−s)y(s)ds
)2

.

These considerations suggest that we seek a steady solution of the Fokker–Planck

equation in the form

ρ∞(x, y) ∝ exp
(
−αx2 + βxy − γy2

)
.

(The constant of proportionality should be chosen so that ρ∞ integrates to 1 on R
2.)

Substitution shows that

α =
a(a + 1)2

2σ
, β =

2a(a + 1)

2σ
, γ =

(a + 1)

2σ
.

Note that we have thus found the density of a Gaussian invariant measure for (x, y):

ρ(x, y) =
1

Z
exp

(
−a(a + 1)2

2σ
x2 +

2a(a + 1)

2σ
xy − (a + 1)

2σ
y2
)
,

where Z is the normalization constant. ⊓⊔
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Example 6.21. Consider the SDE

dz

dt
= v(z) +

√
2σ

dW

dt

where z is viewed as being an element of T
d and σ > 0. If v is divergence-free

and smooth then the unique invariant measure is the Lebesgue measure. To see that

the Lebesgue measure is invariant note that L∗ is the generator for the SDE with

v(z) replaced by −v(z). Theorem 6.16 ensures uniqueness of the invariant measure.

While the Lebesgue measure remains invariant if σ = 0, uniqueness is not automatic

in this case (see Chapter 14). ⊓⊔

Example 6.22. Consider the stochastic integral

I(t) =

∫ t

0

η(s) dW1(s),

where η(t) is the Ornstein–Uhlenbeck process defined in Example 6.19, namely

dη

dt
= −η +

√
2σ

dW2

dt
, η(0) = η0.

Here W1(t) and W2(t) are independent Brownian motions. The invariant measure

for η is an N (0, σ) Gaussian random variable. We assume that the initial condition

is distributed according to this invariant measure. Hence, η(t) is a stationary ergodic

Markov process and the martingale central limit theorem (Corollary 3.34) applies.

Hence

lim
ε→0

εI(t/ε2) =
√
σW (t),

where W (t) is a standard Brownian motion in one dimension. ⊓⊔

6.5 Discussion and Bibliography

Standard textbooks on SDEs are [236, 12, 283, 114]. For a discussion of SDEs from

the viewpoint of the Fokker–Planck equation, see [271, 117, 144, 218, 320]. For a

discussion of the generator L and the backward Kolmogorov equation, see [236].

For a discussion concerning ellipticity, hypoellipticity, and smoothness of solutions

to these equations, see [275, 276]. The book [139] has a good discussion of ergodic-

ity. The book [210] has a good overview of stability theory and large time properties

of SDEs. The Fokker–Planck equation is sometimes referred to as the forward Kol-

mogorov equation in the mathematics literature. The use of stochastic methods in

applied mathematics is overviewed in [64].

We have only discussed strong solutions to SDEs. The definition of a weak so-

lution, together with existence and uniqueness theorems for weak solutions can be

found in [276, ch. 5]. The weak formulation of an SDE is equivalent to the martin-

gale formulation; see [304].
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A topic of some interest in applications involves the coupling of SDEs (or

ODEs) and Markov chains. Consider the SDE (6.1.1) parameterized by u ∈ I =
{1, · · · , n}:

dz

dt
= h(z, u) + γ(z, u)

dW

dt
, z(0) = z0. (6.5.1)

Let Lu denote the generator of this SDE for each fixed u. If we assume that u is gov-

erned by a continuous-time Markov chain, with generator L(z), so that the transition

rates depend on the state z, then the pair (z, u) form a Markov switching process.

Such processes are indeed Markov processes and are overviewed in [211]. Noting

that, for each fixed z, L(z) ∈ R
n×n, the generator for the combined process (z, x)

has the form

L =

⎛

⎜⎜⎜⎝

L1

L2

. . .

Ln

⎞

⎟⎟⎟⎠
+ L(z). (6.5.2)

This generator acts on functions of the form v(z, u) = (v(z, 1), · · · , v(z, n))T . Then

v(z, u, t) = E(φ(z(t), u(t))|z(t) = z, u(t) = u) solves the backward Kolmogorov

equation
∂v

∂t
= Lv

with v(z, u, 0) = φ(z, u). Similarly the vector of probability densities ρ(z, u, t) is

propagated by the adjoint equation

∂ρ

∂t
= L∗v

with ρ(z, u, 0) describing the initial probabilities in the system. See [326] for a recent

application of SDEs driven by Markov chains.

Ergodic properties of SDEs can be studied by a variety of techniques, both func-

tional analytic PDE techniques (see, e.g., [337, 58, 196]) and probabilistic techniques

(see, for example, [192, 227, 139]). Lyapunov functions can be a very useful tool for

proving ergodicity for SDEs; see [188, sec. 11.9].

In this book we study SDEs in finite dimensions. There is also a well-developed

theory of SDEs in infinite dimensions—stochastic PDEs, for example. See [263] for

a semigroup-based framework and a brief discussion of ergodicity in this context.

6.6 Exercises

1. Derive the Itô SDE (6.2.3) from the Stratonovich SDE (6.2.1). Using the Itô form

of the Stratonovich SDE, find the Fokker–Planck equation for the Stratonovich

SDE.

2. Prove Theorem 6.6. (Hint: Use the Itô formula and the martingale property of the

stochastic integral.)
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3. Consider the OU process defined in Equation (6.4.4).

a) Calculate all moments of the process z(t).
b) Verify the formula given for the solution of the Fokker–Planck equation in

this case, showing that ρ(0, x) = δ(z − x).
c) Deduce the long-time behavior of the OU process from the preceding for-

mula.

4. Consider the OU process defined in Equation (6.4.4). Show that the generator is

self-adjoint in the weighted L2-space defined by the inner product (6.3.12).

5. Consider the SDE

mẍ = −∇V (x)− γẋ +
√

γD
dW

dt
, (6.6.1)

where m, D, γ are positive constants and V (x) : R
d �→ R is a smooth function.

a) Write Equation (6.6.1) as a first-order system of SDEs in the form

dz

dt
= − 1

D
K∇H(z) +

1√
m

J∇H(z) +
√
K

dB

dt
,

where z = (xT , yT )T , J (resp. K) is a skew (resp. symmetric) matrix that

you should define, y =
√
mẋ and H(z) = 1/2|y|2 + V (x).

b) Write the corresponding generator and the Fokker–Planck equation.

c) Solve the stationary Fokker–Planck equation. (Hint: Use separation of vari-

ables.)

d) Solve Equation (6.6.1) in one dimension for the cases V (x) ≡ 0 and V (x) =
1/2x2.

6. Consider a Markov chain u with generator

L =

(
−a a

b −b

)
.

Now let x solve an SDE with coefficients depending on u:

dx

dt
= f(x, u) + α(x, u)

dW

dt
.

Write down the generator for the Markov process (x, u).
7. Consider the case of a Brownian motion on the unit circle considered in Example

6.18. Use Fourier analysis to show that the process is ergodic and that it becomes

stationary exponentially fast.





7

Partial Differential Equations

7.1 Setup

In this chapter we outline the basic theory of elliptic, parabolic, and hyperbolic PDEs,

as required for this book. In Section 7.2 we study elliptic problems. We start with the

Dirichlet and the periodic boundary value problem for elliptic PDEs in divergence

form, introducing the notion of weak solutions, and using the Lax-Milgram theorem

to prove existence and uniqueness of such solutions. Then we derive the Fredholm

alternative for elliptic PDEs. We finish the section on elliptic PDEs with the maxi-

mum principle for nondivergence form operators. In Section 7.3 we study parabolic

PDEs. We start by showing how the notion of weak solution may be extended to

parabolic problems, particularly for problems on bounded spatial domains. Then we

introduce the maximum principle for parabolic operators. We conclude the section

by studying the Cauchy problem for parabolic PDEs on unbounded domains. Sec-

tion 7.4 describes the Cauchy problem for hyperbolic PDEs on unbounded domains.

Section 7.5 contains a brief discussion of semigroups and how they may be used to

unify the understanding of certain aspects of time-dependent PDEs. In Section 7.6

we present various extensions of the basic theory, and we make some bibliographical

remarks.

The function space settings that we use were described in Chapter 2. Throughout

we will use the terminology classical solution to refer to a function that satisfies a

PDE pointwise at every point in the domain where the equation itself holds, in the

sense that all the required derivatives exist and are continuous in this domain and

balance one another as dictated by the equation, and that the boundary conditions

are satisfied; the latter requires extension of the function (and possibly derivatives)

into the closure of the domain. This is sometimes also termed a strong solution. We

will also introduce various notions of weak and mild solutions, which have fewer

smoothness requirements on the solution.
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7.2 Elliptic PDEs

The (homogeneous)1 Dirichlet problem is to find u, a function defined on an open

set Ω ⊂ R
d, solving

−∇ · (A∇u) = f for x ∈ Ω, (7.2.1a)

u = 0 for x ∈ ∂Ω, (7.2.1b)

where A = A(x) is a positive definite matrix and f = f(x) ∈ H−1(Ω).
Recall the space H defined to be the set of mean zero H1

per(T
d) functions – see

Equation (2.4.6). The periodic problem is to find u solving

−∇ · (A∇u) = f, u is 1-periodic, (7.2.2)

where A = A(x) is a 1-periodic positive definite matrix and f = f(x) ∈ H∗, the

dual of H . We view this problem as a PDE on the torus T
d. Recall from Chapter 2

that unless f integrates to zero on the torus, no solution exists. The space H∗ given

in (2.4.9) ensures that this condition is satisfied.

The class of coefficients A(x) that we will consider is provided in the following

definition.

Definition 7.1. Let α, β ∈ R be such that 0 < α � β < ∞. We define M(α, β,Ω)
to be the set of d× d matrices A ∈ L∞(Ω; Rd×d) such that, for every vector ξ ∈ R

d

and every x ∈ Ω,

(i) 〈ξ,A(x)ξ〉 � α|ξ|2, and

(ii) |A(x)ξ| � β|ξ|.
Furthermore, we define Mper(α, β,T

d) to be the set of matrices in M(α, β,Td) with

periodic coefficients on T
d.

In the first three subsections we study elliptic operators in the form

A = −∇ · (A∇) + b · ∇+ c. (7.2.3)

In turn, we study the Dirichlet problem, the periodic problem, and the Fredholm

alternative. When studying the maximum principle the elliptic operators will have

the form

A = −A : ∇∇+ b · ∇+ c. (7.2.4)

If A ∈ M(α, β,Ω) then the operator A in (7.2.3) or (7.2.4) is said to be uniformly

elliptic. Operators of the form (7.2.3), and the corresponding PDE, are said to be

in divergence form. Operators of the form (7.2.4) are said to be in nondivergence

form. Note that it is possible to convert between the two forms (7.2.3) and (7.2.4),

assuming that the matrix A ∈ C1(Ω; Rd×d); see Exercise 1.

1 Here refering to the homogeneity of the boundary conditions.
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7.2.1 The Dirichlet Problem

First we give the precise definition of a solution. For this we will need to introduce

the bilinear form

a[φ, ψ] =

∫

Ω

〈A(x)∇φ(x),∇ψ(x)〉 dx, (7.2.5)

for φ, ψ ∈ H1
0 (Ω). Notice that

a[φ, ψ] = (A∇φ,∇ψ)

with (·, ·) the standard L2(Ω) inner product. We will use the notation 〈·, ·〉H−1,H1
0

for the pairing between H1
0 (Ω) and its dual H−1(Ω) (see Chapter 2).

Definition 7.2. We will say that u ∈ H1
0 (Ω) is a weak solution of the boundary value

problem (7.2.1) if

a[u, v] = 〈f, v〉H−1,H1
0
∀ v ∈ H1

0 (Ω). (7.2.6)

This solution concept arises from multiplying the PDE (7.2.1) by a test function

v ∈ H1
0 (Ω) and integrating by parts. Asking that the resulting equality holds for all

v ∈ H1
0 (Ω) gives the desired concept of weak solution. If f ∈ L2(Ω) then, in place

of (7.2.6), we sometimes write

a[u, v] = (f, v) ∀ v ∈ H1
0 (Ω). (7.2.7)

The Lax–Milgram Theorem 2.40 enables us to prove existence and uniqueness

of weak solutions for the class of matrices A(x) given by Definition 7.1.

Theorem 7.3. The Dirichlet problem (7.2.1) with A ∈M(α, β,Ω) and f ∈ H−1(Ω)
has a unique weak solution u ∈ H1

0 (Ω). Moreover, the following estimate holds:

‖u‖H1
0
(Ω) �

1

α
‖f‖H−1(Ω). (7.2.8)

Proof. We have to verify the conditions of the Lax–Milgram theorem. We start with

coercivity. We use the positive definiteness of the matrix A to obtain:

a[u, u] =

∫

Ω

〈A∇u,∇u〉 dx

� α

∫

Ω

|∇u|2 dx = α‖u‖2H1
0
(Ω).

Now we proceed with continuity. We use the L∞ bound on A, together with the

Cauchy–Schwarz inequality, to estimate:
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a[u, v] =

∫

Ω

〈A∇u,∇v〉 dx

� β

∫

Ω

|∇u||∇v| dx

� β‖∇u‖L2(Ω)‖∇v‖L2(Ω)

= β‖u‖H1
0
(Ω)‖v‖H1

0
(Ω).

The bilinear form a[u, v] satisfies the conditions of the Lax–Milgram theorem and

hence there exists a unique solution u ∈ H1
0 (Ω) of (7.2.6).

Finally we prove estimate (7.2.8). We have, using the generalized Cauchy–

Schwarz inequality (2.4.5),

α‖u‖2H1
0
(Ω) � a[u, u] = 〈f, u〉

� ‖f‖H−1(Ω)‖u‖H1
0
(Ω),

from which the estimate follows. ⊓⊔
If f ∈ L2(Ω) then the following bound is also useful.

Remark 7.4. Consider the problem (7.2.1) with A ∈ M(α, β,Ω) and f ∈ L2(Ω).
Then

‖u‖H1
0
(Ω) �

CΩ

α
‖f‖L2(Ω),

where CΩ is the Poincaré constant for the domain Ω defined in Theorem 2.21. ⊓⊔
The bound (7.2.8) enables us to obtain information on the solution of one-

parameter families of Dirichlet problems, induced by parametric dependence in A.

Theorem 7.5. Assume that there exist positive constants α, β with α � β such

that, for all ε > 0, the one-parameter family of matrices Aε = Aε(x) belongs to

M(α, β,Ω). Consider the Dirichlet problem

−∇ · (Aε∇uε) = f, for x ∈ Ω (7.2.9a)

uε = 0, for x ∈ ∂Ω, (7.2.9b)

with f = f(x) ∈ H−1(Ω). Then there exists a constant C independent of ε such

that

‖uε‖H1
0
(Ω) � C; (7.2.10)

furthermore, there exists a subsequence {εn}n�0 and a function u ∈ H1
0 (Ω) such

that

uεn(x) → u(x) strongly in L2(Ω).

Proof. Estimate (7.2.8) implies (7.2.10). The Rellich compactness Theorem 2.19

implies that there exists a function u ∈ H1
0 (Ω) and a subsequence {εn} ∈ ε such

that u is the strong L2-limit of uεn . ⊓⊔
Remark 7.6. When studying homogenization for elliptic PDEs, in Chapters 12 and

19, we will study Equation (7.2.9), and we will be interested in finding the equation

satisfied by the limit u. ⊓⊔
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7.2.2 The Periodic Problem

It is intuitively clear that the solution of the periodic problem can be determined only

up to a constant. To ensure uniqueness we need to fix this constant; this is why we

work in H, the set of mean zero H1
per(T

d) functions defined in (2.4.6). Recall that

we use the notation a1[·, ·] to denote the bilinear form

a1[u, v] =

∫

Td

〈A(x)∇u(x),∇v(x)〉 dx ∀u, v ∈ H. (7.2.11)

Recall that we denote the pairing between H and its dual H∗ by 〈·, ·〉H∗,H (see

Chapter 2).

Definition 7.7. We will say that u ∈ H is a weak solution of the boundary value

problem (7.2.2) if

a1[u, v] = 〈f, v〉H∗,H ∀ v ∈ H. (7.2.12)

The structure of H∗ means that (7.2.2) has a unique solution when f ∈ H∗

because it ensures that f then has mean zero. Hence existence and uniqueness of

weak solutions to (7.2.2) holds within the space H . We have the following theorem.

Theorem 7.8. The problem (7.2.2) with A ∈ Mper(α, β,T
d) and f ∈ H∗ has a

unique weak solution u ∈ H . Moreover, the following estimate holds:

‖u‖H �
1

α
‖f‖H∗ . (7.2.13)

The proof is almost identical to that of Theorem 7.3, so we omit it. The fact that

(7.2.2) has a unique solution only when f has mean zero, a condition ensured by

asking that f ∈ H∗, can also be shown by means of the Fredholm alternative – a

topic that we now turn to.

7.2.3 The Fredholm Alternative

In this section we prove that elliptic differential operators in the divergence form

A = −∇ · (A∇) + b · ∇+ c, (7.2.14)

with periodic coefficients A, b, c and equipped with periodic boundary conditions,

satisfy the Fredholm alternative. Notice that Theorem 2.42 does not apply directly to

the operator A because it is an unbounded operator. The main idea will be to study

the resolvent operator

RA(λ) = (A+ λI)−1, (7.2.15)

where I stands for the identity operator on L2
per(T

d) and λ > 0. We will prove that

this operator is compact, for λ sufficiently large; consequently, Fredholm theory can

be used.

Our assumptions on the coefficients of A are
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A ∈Mper(α, β,T
d), (7.2.16a)

A(x) = A(x)T ∀x ∈ Ω, (7.2.16b)

b ∈ C1
per(T

d), (7.2.16c)

c ∈ L∞
per(T

d). (7.2.16d)

The L2-adjoint of A is A∗ given by

A∗U = −∇ · (A∇U)−∇ · (bU) + cU (7.2.17)

also equipped with periodic boundary conditions. We want to study the PDE

Au = f, u is 1-periodic (7.2.18)

and its adjoint

A∗U = F, U is 1-periodic, (7.2.19)

for f, F ∈ L2
per(T

d).

Let a[·, ·], a∗[·, ·] : H1
per(T

d)×H1
per(T

d) → R denote the bilinear forms associ-

ated with the operators A and A∗, i.e.,

a[u, v] =

∫

Td

(
〈A∇u,∇v〉+ (b · ∇u) v + cuv

)
dx ∀u, v ∈ H1

per(T
d) (7.2.20)

and

a∗[u, v] =

∫

Td

(
〈A∇u,∇v〉 − ∇ · (bu)v + cuv

)
dx ∀u, v ∈ H1

per(T
d),

respectively. As in the previous subsection, we will say that u and U are weak solu-

tions of the PDE (7.2.18) and (7.2.19) provided that

a[u, v] = (f, v) ∀ v ∈ H1
per(T

d) (7.2.21)

and

a∗[U, V ] = (F, V ) ∀V ∈ H1
per(T

d), (7.2.22)

respectively.

We will use N to denote the null space of an operator. The main result of this

section is contained in the next theorem.

Theorem 7.9. (Fredholm Alternative for Periodic Elliptic PDEs) Assume condi-

tions (7.2.16). Then the following alternative holds.

i) Either there exists a unique solution of (7.2.18) for every f ∈ L2
per(T

d); or
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ii) the homogeneous equation

Au = 0, u is 1-periodic, (7.2.23)

has at least one nontrivial solution, and

1 � dim
(
N (A)

)
= dim

(
N (A∗)

)
<∞.

In this case the boundary value problem (7.2.18) has a weak solution if and only

if

(f, v) = 0 ∀ v ∈ N (A∗).

For the proof of this theorem we will use the next two lemmas.

Lemma 7.10. Assume conditions (7.2.16). Then there exist constants ν, μ > 0 such

that

|a[u, v]| � ν‖u‖H1‖v‖H1

and
α

2
‖u‖2H1 � a[u, u] + μ‖u‖2L2

for all u, v ∈ H1
per(T

d).

Proof. 1. We use the L∞ bounds on the coefficients A, b, together with the Cauchy–

Schwarz inequality to deduce:

|a(u, v)| �
∣∣∣∣
∫

Td

〈A∇u∇v〉 dx +

∫

Td

(b · ∇u)v dx +

∫

Td

cuv dx

∣∣∣∣

� ‖A‖L∞

∫

Td

|∇u||∇v| dx + ‖b‖L∞

∫

Td

|∇u||v| dx + ‖c‖L∞

∫

Td

|u||v| dx

� C (‖∇u‖L2‖∇v‖L2 + ‖∇u‖L2‖v‖L2 + ‖u‖L2‖v‖L2)

� C‖u‖H1‖v‖H1 .

2. We now use the uniform ellipticity of A to compute:

α‖∇u‖2L2 �

∫

Td

〈∇u,A∇u〉 dx

= a[u, u]−
∫

Td

(b · ∇u)u dx−
∫

Td

c|u|2 dx

� a[u, u] +

∫

Td

(
‖b‖L∞ |∇u||u|+ ‖c‖L∞ |u|2

)
dx. (7.2.24)

Now we make use of the algebraic inequality

ab � δa2 +
1

4δ
b2, ∀δ > 0.

Using this in the second term on the right-hand side of (7.2.24) we obtain
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∫

Td

|∇u||u| dx � δ‖∇u‖2L2 +
1

4δ
‖u‖2L2 . (7.2.25)

We choose δ so that

α− ‖b‖L∞δ =
α

2
.

We use inequality (7.2.25) with δ chosen as in (7.2.24) to obtain

α

2
‖∇u‖2L2 � a[u, u] +

1

4δ
‖b‖L∞‖u‖2L2 + ‖c‖L∞‖u‖2L2 .

We now add α
2 ‖u‖2L2 on both sides of the preceding inequality to obtain

α

2
‖u‖2H1 � a[u, u] + μ‖u‖2L2 ,

with

μ =
1

4δ
‖b‖L∞ + ‖c‖L∞ +

α

2
. ⊓⊔

Lemma 7.11. Assume conditions (7.2.16). Take μ from Lemma 7.10. Then for every

λ � μ and each function f ∈ L2
per(T

d) there exists a unique weak solution u ∈
H1

per(T
d) of the problem

(A+ λI)u = f, u(x) is 1-periodic. (7.2.26)

Proof. Let λ � μ. Define the operator

Aλ := A+ λI. (7.2.27)

The bilinear form associated to Aλ is

aλ[u, v] = a[u, v] + λ(u, v) ∀u, v ∈ H1
per(T

d). (7.2.28)

Now, Lemma 7.10, together with our assumption that λ � μ, implies that the

bilinear form aλ[u, v] is continuous and coercive on H1
per(T

d). Hence the Lax–

Milgram theorem applies2 and we deduce the existence and uniqueness of a solution

u ∈ H1
per(T

d) of the equation

aλ[u, v] = (f, v) ∀v ∈ H1
per(T

d). (7.2.29)

This is precisely the weak formulation of the boundary value problem (7.2.26). ⊓⊔
Proof of Theorem 7.9. 1. By Lemma 7.11 there exists, for every g ∈ L2

per(T
d), a

unique solution u ∈ H1
per(T

d) of

aμ[u, v] = (g, v) ∀v ∈ H1
per(T

d). (7.2.30)

2 Let H = H1
per(T

d). Since f ∈ L2
per(T

d), we have that 〈f, v〉H∗,H = (f, v), and this

defines a bounded linear functional on H1
per(T

d).
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We use the resolvent operator defined in (7.2.15) to write the solution of (7.2.30) in

the following form:

u = RA(μ)g. (7.2.31)

Consider now Equation (7.2.18). We add the term μu on both sides of this equation

to obtain

Aμu = μu + f,

where Aμ is defined in (7.2.27). The weak formulation of this equation is

aμ[u, v] = (μu + f, v) ∀v ∈ H1
per(T

d).

We can rewrite this as an integral equation (see (7.2.31))

u = RA(μ)(μu + f),

or, equivalently,

(I −K)u = h,

where

K := μRA(μ), h = RA(μ)f.

2. Now we claim that the operator K : L2
per(T

d) → L2
per(T

d) is compact. Indeed, let

u be the solution of (7.2.30), which is given by (7.2.31). We use the second estimate

in Lemma 7.10, the definition of the bilinear form (7.2.28), and the Cauchy–Schwarz

inequality in (7.2.30) to obtain

α

2
‖u‖2H1 � aμ[u, u] = (g, u)

� ‖g‖L2‖u‖L2 � ‖g‖L2‖u‖H1 .

Consequently,

‖u‖H1 �
2

α
‖g‖L2 .

We use now (7.2.31), the definition of K, and the preceding estimate to deduce that

‖Kg‖H1 � μ‖u‖H1 �
2

α
μ‖g‖L2 . (7.2.32)

By the Rellich compactness theorem, H1
per(T

d) is compactly embedded in L2
per(T

d)

and consequently estimate (7.2.32) implies that K maps bounded sets in L2
per(T

d)

into compact ones in L2
per(T

d). Hence, it is a compact operator.

3. We apply now the Fredholm alternative (Theorem 2.42) to the operator K: either

a. there exists a unique u ∈ L2
per(T

d) such that

(I −K)u = h (7.2.33)

or
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b. there exists a nontrivial solution u ∈ L2
per(T

d) of the homogeneous equation

(I −K)u = 0. (7.2.34)

Let us assume that a. holds, giving a unique solution of (7.2.33). From the preced-

ing analysis we deduce that there exists a unique weak solution u ∈ H1
per(T

d) of

(7.2.18). Assume now that b. holds, so that there is a nontrivial solution of (7.2.34).

Let N and N∗ denote the dimensions of null spaces of I −K and I −K∗, respec-

tively. From Theorem 2.42 we know that N = N∗. Moreover, it is straightforward

to prove that

u ∈ N (I −K) = 0⇔ a[u, φ] = 0 ∀u ∈ H1
per(T

d)

and

v ∈ N (I −K∗) = 0⇔ a∗[v, φ] = 0 ∀φ ∈ H1
per(T

d).

Thus, the Fredholm alternative for K implies the Fredholm alternative for A (within

the context of weak solutions).

4. Now we prove the final part of the theorem. Let v ∈ N (I − K∗). By Theorem

2.42 we know that (7.2.34) has a solution if and only if

(h, v) = 0 ∀ v ∈ N (I −K∗).

We compute

(h, v) = (RA(μ)f, v) =
1

μ
(Kf, v)

=
1

μ
(f,K∗v) =

1

μ
(f, v).

Hence, problem (7.2.18) has a weak solution if and only if

(f, v) = 0 ∀ v ∈ N (A∗).

This completes the proof of the theorem. ⊓⊔

Example 7.12. Let f ∈ L2
per(T

d) and assume that A(x) satisfies assumptions

(7.2.16a) and (7.2.16b). Then the problem

a1[u, φ] = (f, φ) ∀φ ∈ H1
per(T

d),

where a1[·, ·] is defined in (7.2.11), has a unique solution u ∈ H if and only if

(f, 1) = 0. (7.2.35)

Indeed, consider the homogeneous adjoint equation

A∗v = 0.
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Clearly, the constant function (say, v = 1) is a solution of this equation. The uniform

ellipticity of the matrix A(x) implies that

∫

Td

|∇v|2 dx = 0,

so that v is a constant a.e. with respect to Lebesgue measure. Hence the constant

solution is unique. Since assumptions (7.2.16a) and (7.2.16b) are satisfied, Theorem

7.9 applies and the result follows. ⊓⊔

Remark 7.13. In the context of the Fredholm alternative, and in other settings, it will

often be useful to employ the identity

∫

Td

∇ · q(y)dy = 0,

which holds for any 1-periodic C1 function q. This follows from the divergence

theorem, using periodicity to show that the total flux of q through the boundary of

the unit cube (torus) T
d is zero. ⊓⊔

7.2.4 The Maximum Principle

In this section we consider maximum principles for elliptic differential operators in

nondivergence form. Specifically we consider the operator L from (7.2.4) given by

L = A(x) : ∇∇− b(x) · ∇ − c(x). (7.2.36)

Throughout we assume that A, b, c ∈ C(Ω) and that A ∈ M(α, β,Ω). Thus the

operator L is uniformly elliptic in Ω. We use the notation

u+ = max{u, 0}, u− = −min{u, 0}. (7.2.37)

As usual we use ∂Ω to denote the boundary of the domain Ω, ∂Ω = Ω\Ω, which

we assume to be smooth. First we state the strong maximum principle for uniformly

elliptic operators in nondivergence form.

Theorem 7.14. Assume that u ∈ C2(Ω)∩C(Ω) and that c : Ω → R
+. Let L be the

elliptic operator (7.2.36) in nondivergence form.

• (i) If Lu � 0 in Ω then

max
Ω

u � max
∂Ω

u+;

• (ii) if Lu � 0 in Ω then

min
Ω

u � −max
∂Ω

u−.

Thus if Lu = 0 in Ω then

max
Ω
|u| = max

∂Ω
|u|.
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Example 7.15. Consider the SDE (6.1.2) in the case Z = T
d. The generator L is

given by (6.3.2) equipped with periodic boundary conditions. Assume that Γ ∈
Mper(α, β,T

d). Eigenfunctions of this generator that correspond to eigenvalue zero

satisfy Lψ = 0 in Ω0 = [0, 1]d. Consequently, for any such function ψ, the maxi-

mum of |ψ| is attained on the boundary of [0, 1]d. However, since ψ is defined on T
d,

we deduce that Lψ = 0 in Ωa = a+[0, 1]d for any a ∈ R
d. Since |ψ| has maximum

attained on the boundary of Ωa, for any a ∈ R
d, |ψ| must be a constant function.

Combining with the continuity of ψ we deduce that L on T
d has one-dimensional

null space spanned by constants. By the Fredholm alternative it follows that L∗ also

has a one-dimensional null space, spanned by ρ∞. The fact that the null space is

one-dimensional is a reflection of the ergodicity of the process. ⊓⊔

The maximum principle can be used to obtain a priori bounds for solutions of elliptic

PDEs. A result of this form is the following.

Corollary 7.16. Let Ω be a bounded domain of R
d with smooth boundary and let

u ∈ C(Ω) ∩C2(Ω) be a classical solution of the inhomogeneous Dirichlet problem

Lu = f for x ∈ Ω,

u = g for x ∈ ∂Ω,

where L is given by (7.2.36) and where the coefficients are smooth, A is such that

−L is uniformly elliptic, b is bounded, and c � 0. Then the solution u satisfies the

estimate

‖u‖L∞(Ω) � ‖g‖L∞(∂Ω) + C‖f‖L∞(Ω). (7.2.38)

The constant C depends on the size of the domain, on ‖b‖L∞(Ω), and on the uniform

ellipticity constant α.

7.3 Parabolic PDEs

7.3.1 Bounded Domains

Suppose thatL is an elliptic differential operator in divergence form, given by (7.2.3).

Let Ω ⊂ R
d be bounded and open, T > 0, and define ΩT = Ω × (0, T ). Consider

the parabolic PDE given by

∂u

∂t
= Lu + f, for (x, t) ∈ ΩT , (7.3.1a)

u = 0, for (x, t) ∈ ∂Ω × (0, T ], (7.3.1b)

u = g, for (x, t) ∈ Ω × {0}. (7.3.1c)
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We assume that A, b, c ∈ L∞(Ω), that f ∈ L2(ΩT ), and that g ∈ L2(Ω). We

also assume that A ∈M(α, β,Ω) so that −L is uniformly elliptic.

We define the bilinear form a[u, v] as in (7.2.20). We view the solution u as

being a function u : [0, T ] → H1
0 (Ω) and work with the following definition of

weak solution.

Definition 7.17. A weak solution of (7.3.1) is a u ∈ L2((0, T );H1
0 (Ω)) satisfying:

• du/dt ∈ L2((0, T );H−1(Ω));
• 〈du/dt, v〉H−1,H1

0
+ a[u, v] = (f, v) ∀v ∈ H1

0 (Ω), a.e. t ∈ (0, T );
• u(0) = g.

Remark 7.18. Standard properties of Sobolev spaces imply that u ∈ C([0, T ];L2(Rd))
and, consequently, the equation u(0) = g makes sense. ⊓⊔
Theorem 7.19. Under the stated assumptions there is a unique weak solution of

Equation (7.3.1). Furthermore the solution satisfies, for u′ = du/dt,

‖u‖L∞(0,T );L2(Ω)) + ‖u‖L2((0,T );H1
0
(Ω)) + ‖u′‖L2((0,T );H−1(Ω))

� C
(
‖f‖L2((0,T );L2(Ω)) + ‖g‖L2(Ω)

)
. (7.3.2)

The methodology used to prove this result is known as the energy method. Es-

timates of the form (7.3.2) are usually called energy estimates The use of weak so-

lutions may be extended to unbounded domains. We illustrate this in the context of

transport equations in Section 7.4.

7.3.2 The Maximum Principle

Maximum principles are very useful for studying parabolic PDEs, and they can be

used to obtain (pointwise) a priori estimates. We use the notation

ΩT = Ω × (0, T ];

∂ΩT = ∂Ω × {0}.

Hence ∂Ω = Ω\Ω and ∂ΩT = ΩT \ΩT . As in the elliptic case, we assume that

A, b, c ∈ C(Ω) and that A ∈M(α, β,Ω), so that the operator L is uniformly elliptic

in Ω, and we use the notation

u+ = max{u, 0}, u− = −min{u, 0}

as in (7.2.37).

Theorem 7.20. Assume that u ∈ C2,1(ΩT ) ∩ C(ΩT ) and that c : Ω → R
+. Con-

sider L the elliptic operator (7.2.36) in nondivergence form.

• (i) If ∂u/∂t− Lu � 0 in ΩT , then

max
ΩT

u � max
∂ΩT

u+;



116 7 Partial Differential Equations

• (ii) if ∂u/∂t− Lu � 0 in ΩT , then

min
ΩT

u � −max
∂ΩT

u−.

Thus if ∂u/∂t− Lu = 0 in ΩT , then

max
ΩT

|u| = max
∂ΩT

|u|.

An important corollary of the strong maximum principle for parabolic PDEs is the

following a priori estimate.

Corollary 7.21. Let Ω be a bounded domain of R
d with smooth boundary and let

u ∈ C2,1(ΩT ,R) ∩ C(ΩT ,R) be a classical solution of the equation

∂u

∂t
− Lu = f, (x, t) ∈ Ω × R

+

with u(x, 0) = g(x) and c(x) ≡ 0, where L is given by (7.2.36) and the coefficients

are smooth, A is such that−L is uniformly elliptic, b is bounded, and c � 0. Assume

that u = 0 on ∂Ω. Then u satisfies the estimate

max
ΩT

|u| � ‖g‖L∞(Ω) +

∫ T

0

‖f(·, s)‖L∞(Ω)ds. (7.3.3)

Proof. Let

v(t) = ‖g‖L∞(Ω) +

∫ t

0

‖f(·, s)‖L∞(Ω)ds.

Notice that
∂v

∂t
− Lv = ‖f(·, t)‖L∞(Ω)

and v(0) = ‖g‖L∞(Ω). Thus, for e = u− v,

∂e

∂t
− Le � 0

and, since e � 0 on ∂ΩT , we deduce from the maximum principle (Theorem 7.20)

that

max
ΩT

e � 0

and hence that u � v in ΩT . Thus

max
ΩT

u � ‖g‖L∞(Ω) +

∫ T

0

‖f(·, s)‖L∞(Ω)ds.

Similarly, for d = u + v,
∂d

∂t
− Ld � 0
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and, since d � 0 on ∂ΩT , we deduce from the maximum principle (Theorem 7.20)

that

min
ΩT

d � 0

and hence that −u � v in ΩT . Thus

min
ΩT

(
−u

)
� ‖g‖L∞(Ω) +

∫ T

0

‖f(·, s)‖L∞(Ω)ds.

Combining the upper and lower bounds gives us (7.3.3). ⊓⊔

7.3.3 Unbounded Domains: The Cauchy Problem

In this section we describe the basic theory of parabolic PDEs in nondivergence form

and on unbounded domains. Specifically we study the initial value (Cauchy) problem

∂u

∂t
= Lu + f, for (x, t) ∈ R

d × (0, T ], (7.3.4a)

u = g for (x, t) ∈ R
d × {0}, (7.3.4b)

where

L := b(x) · ∇+
1

2
A(x) : ∇∇. (7.3.5)

We assume that A, b ∈ C∞
b (Rd), that f ∈ C∞

0 (Rd × [0, T ]), and that A ∈
M(α, β,Rd), 0 < α � β < ∞, so that the operator L is uniformly elliptic. We

assume also that the initial function g ∈ C∞
b (Rd).

Theorem 7.22. Under the stated assumptions, for any T > 0, there exists a unique

solution u(x, t) ∈ C2,1
(
R

d × (0, T )
)
∩ C∞

(
R

d × (0, T )
)

to the Cauchy problem

(7.3.4), for any t > 0. Furthermore the following estimate holds.

‖u‖L∞(Rd×[0,t]) � ‖g‖L∞(Rd) +

∫ t

0

‖f(·, s)‖L∞(Rd) ds. (7.3.6)

Remark 7.23. The solution u(x, t) in the Theorem 7.22 is a classical solution. Es-

timate (7.3.6) is a consequence of the maximum principle for parabolic PDE (see

Corollary 7.21). The weak formulation of the Cauchy problem (7.3.4) is obtained by

multiplying the equation by a smooth, compactly supported function in R
d and inte-

grating by parts; see Exercise 8. It is also possible to obtain energy estimates, within

the context of weak solutions, for solutions to the Cauchy problem (7.3.4), when L
is in divergence form (see Exercise 11):

‖u‖L∞(0,T );L2(Rd)) + C1‖∇u‖L2((0,T );L2(Rd))

� C2(T )
(
‖f‖L2((0,T );L2(Rd)) + ‖g‖L2(Rd)

)
. (7.3.7)

We discuss weak solutions for transport equations on R
d in the next section. ⊓⊔
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7.4 Transport PDEs

In this section we investigate some basic properties of solutions to the Cauchy prob-

lem for linear transport PDEs. These are hyperbolic PDEs, or advection equations.

We study problems in nondivergence form – specifically we study the equation

∂u

∂t
+ a(x) · ∇u = f(x) for (x, t) ∈ R

d × (0, T ), (7.4.1a)

u = g(x) for (x, t) ∈ R
d × {0}, (7.4.1b)

where a ∈ C2
b (Rd; Rd) and f, g ∈ H1(Rd). Notice that, when f ≡ 0, Equation

(7.4.1) is the backward equation for the differential equation

dx

dt
= −a(x).

We will define an appropriate concept of solution for (7.4.1) and state and prove a

basic existence and uniqueness theorem.

As always for definitions of weak solutions, this formulation of (7.4.1) involves

multiplication by a test function and integration over R
d. We have the following

definition.

Definition 7.24. A function u ∈ L2((0, T );H1(Rd)) is a weak solution of (7.4.1)

provided that

• ∂u
∂t ∈ L2((0, T );L2(Rd)).

• (∂u
∂t , φ)+(a(x) ·∇u, φ) = (u, f) for every φ(x) ∈ H1(Rd), where (·, ·) denotes

the L2(Rd) inner product.

• u(x, 0) = g.

Remark 7.25. This definition is consistent with the definition of weak solutions for

parabolic PDEs on bounded domains, Definition 7.17. That definition can be ex-

tended to unbounded domains in the parabolic case, as we have done here for trans-

port equations. ⊓⊔
Remark 7.26. Standard properties of Sobolev spaces imply that u ∈ C([0, T ];L2(Rd))
and, consequently, the equation u(x, 0) = g makes sense. ⊓⊔

Existence and uniqueness of weak solutions holds for the linear transport Equa-

tion (7.4.1).

Theorem 7.27. Assume that a(x) ∈ C2
b (Rd; Rd) and that f, g ∈ H1(Rd). Then

there exists a unique weak solution of (7.4.1). Furthermore, the following a priori

estimate holds:

‖u‖L∞((0,T );L2(Rd)) � C(T, f, g). (7.4.2)

In the case where the vector field a(x) is divergence free, so that ∇ · a(x) = 0, and

where f ≡ 0, the estimate becomes

‖u‖L∞((0,T );L2(Rd)) � ‖g‖L2(Rd). (7.4.3)
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Proof. The proof, which we will only sketch, is based on the method of vanish-

ing viscosity: the idea is to “regularize” the initial value problem (7.4.1) by adding

second-order spatial derivatives:

∂uε

∂t
+ a(x) · ∇uε − εΔuε = f(x) for (x, t) ∈ R

d × (0, T ), (7.4.4a)

uε = gε(x) for (x, t) ∈ R
d × {0}, (7.4.4b)

where ε > 0 and gε is a smooth, compactly supported approximation to g(x).3

Existence and uniqueness of solutions to this initial value problem follow from an

application of Banach’s fixed point theorem in the space L∞((0, T );H1(Rd)). Our

assumptions on a, f , and g imply, by parabolic regularity theory, that

uε ∈ L2(0, T ;H3(Rd)),
∂uε

∂t
∈ L2((0, T );H1(Rd)).

Multiplication of (7.4.4) by appropriate functionals of the solution of uε, integration

by parts, and standard inequalities lead to the following a priori estimate:

‖uε‖L∞((0,T );H1(Rd)) +

∥∥∥∥
∂uε

∂t

∥∥∥∥
L∞((0,T );L2(Rd))

� C(g, f). (7.4.5)

Crucially, C(g, f) is independent of ε. This estimate implies that we can extract a

weakly convergent subsequence, still denoted by uε, such that

uε ⇀ u weakly in L2((0, T );H1(Rd))

∂uε

∂t
⇀ u weakly in L2((0, T );L2(Rd))

We pass to the limit as ε → 0 in the weak formulation of Equation (7.4.4) to obtain

the weak formulation of Equation (7.4.1). We can show that u(x, 0) = g(x) by using

a test function v ∈ C([0, T ];H1(Rd)), v(x, T ) = 0, integrate the weak formulation

of (7.4.1) over (0, T ), and integrate by parts with respect to t. To show uniqueness,

we assume that there are two solutions u1, u2 and form their difference u = u1−u2,

which solves the homogeneous initial value problem

∂u

∂t
+ a(x) · ∇u = 0 for (x, t) ∈ R

d × (0, T ), (7.4.6)

u = 0 for (x, t) ∈ R
d × {0}, (7.4.7)

which leads to

3 This approximation is obtained by taking the convolution of g with a smooth compactly

supported function. The function gε(x) is called the mollified approximation to g(x).
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1

2

d

dt
‖u‖2L2(Rd) +

∫

Rd

(a · ∇u)u dx = 0.

Now let v ∈ C∞
0 (Rd). We compute

∫

Rd

(a(x) · ∇v)v dx =
1

2

∫

Rd

a(x) · ∇v2 dx− 1

2

∫

Rd

(∇ · a)v2 dx

�
1

2
‖∇ · a‖L∞(Rd)‖v‖2L2(Rd) � C‖v‖2L2(Rd). (7.4.8)

An approximation argument yields that the difference u(x, t) satisfies the estimate
∫

Rd

(a(x) · ∇u)u dx � C‖u‖2L2(Rd).

Consequently,
d

dt
‖u‖2L2(Rd) � C‖u‖2L2(Rd).

Gronwall’s inequality now gives u ≡ 0 and uniqueness follows.

Let us proceed now with the proof of estimates (7.4.2) and (7.4.3). We multiply

Equation (7.4.1a) by u, integrate over R
d, and use estimate (7.4.8) and the Cauchy-

Schwarz inequality to obtain

1

2

d

dt
‖u‖2L2(Rd) � ‖f‖L2(Rd)‖u‖L2(Rd) + C‖u‖2L2(Rd)

� ‖f‖2L2(Rd) + C‖u‖2L2(Rd).

Gronwall’s lemma now yields

‖u‖2L2(Rd) � eCt
(
‖g‖2L2(Rd) + ‖f‖2L2(Rd)

)
,

from which estimate (7.4.2) follows upon taking the supremum over [0, T ].
To prove estimate (7.4.3), we notice that the fact that a(x) is divergence-free,

together with the integration by parts leading to (7.4.8), implies that
∫

Rd

(a · ∇u)u dx = 0.

Consequently, and since we have also assumed that f ≡ 0, we obtain

1

2

d

dt
‖u‖2L2(Rd) � 0,

from which the estimate follows. ⊓⊔
Remark 7.28. Let u be the unique weak solution of (7.4.1). We multiply the equation

by a test function φ ∈ C∞
0 (R×R

d), integrate over R
+ ×R

d, and integrate by parts

in both x and t to obtain
∫

R+

∫

Rd

(
∂φ

∂t
+∇ · (aφ)

)
u dx dt +

∫

Rd

g(x)φ(x, 0) dx = 0. (7.4.9)

This formulation will be very useful in the proof of the averaging theorem for trans-

port equations in Chapter 21. Indeed we will sometimes refer to u satisfying (7.4.9)

as a weak solution. ⊓⊔
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7.5 Semigroups

Formally the parabolic and hyperbolic PDEs encountered in the preceding sections

may be viewed as ODEs in a function space. (This viewpoint underlies the two Def-

initions 7.17 and 7.24.) They take the form

du

dt
= Lu + f (7.5.1)

where here L is viewed as an operator on a function space X . To be precise we

assume that L : D(L) ⊂ X → X. Previously in this chapter we viewed L as an

operator that acts on functions u(x, t) at each point (x, t). Adopting the viewpoint

that L acts on a function space casts the PDE as an ODE in function space. This is

the semigroup approach to evolutionary PDEs.

Arguing formally, from our knowledge of the situation in which X is finite di-

mensional, we deduce that (7.5.1) has solution

u(t) = eLtu(0) +

∫ t

0

eL(t−s)f(s)ds. (7.5.2)

This representation is known as the variation-of-constants formula. The integral

equation can be viewed as the starting point for the definition of what are known

as mild solutions to (7.5.1). To carry out this program requires definition of the op-

erator eLt. There are different approaches to this problem, depending on the setting,

many using the Fourier transform, Fourier series, or generalizations.

To illustrate this idea we consider the siutation where X is a Hilbert space and L
has a set of eigenfunctions that form an orthonormal basis for X :

−Lφj = λjφj , 〈φi, φj〉 = δij .

Here δij denotes the Kronecker delta tensor and 〈·〉 the inner product on H . We can

then define eLt via

u =

∞∑

j=1

ujφj ,

eLtu =
∞∑

j=1

eλjtujφj .

Convergence of this series will depend on the properties of the spectrum of L and of

the regularity of u manifest in the decay of the uj with j. Once eLt is defined and if

H is a Hilbert space, then it is possible to make sense of its adjoint via

(
eLt

)∗
= eL

∗t.
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7.6 Discussion and Bibliography

The material in this chapter is standard and can be found in many books on partial

differential equations and functional analysis, such as [53, 121, 98, 274]. Our treat-

ment of the elliptic Dirichlet problem follows closely [98, ch. 6]. Our discussion of

elliptic PDEs in the case of periodic boundary conditions is based on [66, ch. 4]. The

Fredholm theory for the Dirichlet problem is developed in [98, sec. 6.2.3].

In the case where the data are regular enough so that the Dirichlet problem (7.2.1)

admits a classical solution (i.e., a function u ∈ C2(Ω) ∩ C(Ω) satisfying (7.2.1)),

then the weak and classical solutions coincide. See, for example, [121].

We saw in this chapter that the analysis of operators in divergence form is based

on energy methods within appropriate function spaces. On the other hand, for PDEs

in nondivergence form techniques based on the maximum principle are more suit-

able. The maximum principle for elliptic PDEs is studied in [121] and for parabolic

PDEs in [264]; see also [98]. Of course, provided that the coefficients are C1, we can

rewrite a divergence form PDE in nondivergence form and vice versa, by introduc-

ing terms that involve first-order derivatives. Operators in nondivergence form appear

naturally in the probabilistic theory of diffusion, as generators of Markov processes.

As mentioned in Section 6.5, dimensionality of the null space of the L2-adjoint of a

nondivergence form second-order uniformly elliptic operator is related to the ergodic

theory of Markov processes; see [241, 246].

Turning now to parabolic PDEs, the proof of Theorem 7.22 can be found in [113];

see also [112] and [304]. Similar theorems hold for parabolic PDEs with time-

dependent coefficients. One can also introduce the concept of the weak solution for

the Cauchy problem. It is possible then to prove existence and uniqueness of solu-

tions by using Banach’s fixed-point theorem; see [98, sec 7.3.2b]. Parabolic PDEs

can also be studied using probabilistic methods. Indeed, under appropriate assump-

tions on the coefficients, the solution of (7.3.4) admits a probabilistic interpretation,

after noting that it is the backward Kolmogorov equation for an SDE, when f ≡ 0.
More generally, when the parabolic PDE contains a source term proportional to the

solution, the Feynman-Kac formula provides a probabilistic interpretation. Proba-

bilistic proofs of existence and uniqueness of solutions to parabolic PDEs can be

found in, for example, [156]. Parabolic PDEs with unbounded coefficients are stud-

ied in [58, 196].

Most of Section 7.4 is taken from [98, sec 7.3.2], where the details of the proof of

Theorem 7.27 are given. As well as use of the vanishing viscosity method, existence

and uniqueness theorems for transport PDEs can be proved by the method of charac-

teristics that was introduced in Chapter 4. The solutions constructed by the method

of characteristics are classical. The weak solutions that we studied in Section 7.4 are

more appropriate for the averaging problem that we study rigorously in Chapter 21.

The semigroup approach to the study of time-dependent PDEs is overviewed in

the text [259]. It is central to the proof of existence and uniqueness theorems for

dissipative parabolic PDEs through the Hille-Yosida theorem and for proving limit

theorems through the Trotter-Kato approximation theorem. The use of semigroups
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is central to the rigorous theory of limit theorems for stochastic processes; see [181,

182, 183, 94].

7.7 Exercises

1. Let A be the divergence form elliptic operator (7.2.3) and assume that A(x) ∈
C1(Ω; Rd). Convert A into the nondivergence form (7.2.4).

2. Prove the result stated in Remark 7.4, by starting with the weak formulation

(7.2.7).

3. Use the Lax–Milgram theorem to prove Theorem 7.8.

4. Use Theorem 7.9 to derive the existence and uniqueness component of Theorem

7.8.

5. State and prove a result analogous to that discussed in Remark 7.4 for the peri-

odic problem (7.2.2).

6. Prove the Fredholm alternative for operatorA defined in (7.2.14) under assump-

tions analogous to (7.2.16), but adapted to the case of Dirichlet boundary condi-

tions.

7. Prove Corollary 7.16, using similar techniques to those used to prove Corollary

7.21.

8. Consider the parabolic PDE

∂u

∂t
= Lu + f(x) for (x, t) ∈ Ω × [0, T ], (7.7.1a)

u = 0 for (x, t) ∈ ∂Ω × (0, T ], (7.7.1b)

u = g for (x, t) ∈ Ω × {0} (7.7.1c)

where

L := Δ (7.7.2)

and Ω ⊂ R
d is bounded. Formulate a notion of weak solution and prove that

the equation has a unique steady solution u(x). Prove that u(x, t) → u(x) as

t→∞ by means of energy estimates.

9. Use the method of characteristics to solve the equation

∂u

∂t
+ a

∂u

∂x
= b for (x, t) ∈ R× R

+,

u = 0 for (x, t) ∈ R× {0}

in the case where a = a(x) and b = b(x) only.

10. Use the method of characteristics to solve Burger’s equation

∂u

∂t
+ u

∂u

∂x
= 0 for (x, t) ∈ R× (0, T ),

u = g for (x, t) ∈ R× {0}.

What can you say about how large T can be, as a function of initial data g?
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11. Consider the Cauchy problem (7.3.4) where the operatorL is in divergence form.

Assume that there exists a unique solution that decays sufficiently fast at infinity.

Prove the a priori estimate (7.3.7). How does the constant C2(T ) depend on T ?

12. Consider the Cauchy problem

∂u

∂t
= ∇ · (A∇u) , for (x, t) ∈ R

d × (0, T ],

u = g for (x, t) ∈ R
d × {0},

where A = A(x) satisfies the standard assumptions. Show that the solution

satisfies the uniform in time estimate:

‖u‖L∞(0,T );L2(Rd)) + C1‖∇u‖L2((0,T );L2(Rd))

� C2‖g‖L2(Rd).

13. Consider the parabolic PDE (7.7.1) with L = Δ, the domain Ω = [0, 1] and

F ≡ 0. Reformulate the equation as an ODE on the Hilbert space L2(Ω) and

find a representation for the resulting semigroup, by using Fourier sine series.
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8

Invariant Manifolds for ODEs

8.1 Introduction

Perhaps the simplest situation where variable reduction occurs in dynamical systems

is that of attractive invariant manifolds. These manifolds slave one subset of the vari-

ables to another. In this chapter we describe a situation where attractive invariant

manifolds can be constructed in scale-separated systems, by means of perturbation

expansions. In Section 8.2 we introduce the system of ODEs that we want to sim-

plify by means of the theory of invariant manifolds, and in Section 8.3 we present the

simplified equations. The simplified equations are derived in Section 8.4, and several

examples are presented in Section 8.5. In Section 8.6 we describe various exten-

sions of the results presented in this chapter, together with bibliographical remarks.

We also discuss the material in this section in relation to averaging, the subject of

Chapters 9 and 10.

8.2 Full Equations

We consider a system of ODEs of the form (4.1.1) and write z as z = (xT , yT )T ,

where
dx

dt
= f(x, y), (8.2.1a)

dy

dt
=

1

ε
g(x, y), (8.2.1b)

and ε≪ 1. Here x ∈ X and y ∈ Y , in the notation of Chapter 4.

Let ϕt
x(y) be the solution operator of the fast dynamics with x viewed as a fixed

parameter and ε = 1. To be precise, for any ξ ∈ X , let

d

dt
ϕt

ξ(y) = g(ξ, ϕt
ξ(y)), ϕ0

ξ(y) = y. (8.2.2)

We assume that
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lim
t→∞

ϕt
ξ(y) = η(ξ) (8.2.3)

exists, is independent of y, and the convergence is uniform in ξ. Roughly speaking

y(t) solving (8.2.1) is given by y(t) ≈ ϕ
t/ε
x(0)(y(0)) for times t that are small com-

pared with 1 (i.e., t = o(1)) so that x(t) has not evolved very much. If we then look

at short time scales that are nonetheless large compared with ε, so that y is close to

its equilibrium point (for example, if t = O(ε1/2)), we deduce that y(t) ≈ η(x(0)).
This is the mechanism by which y becomes slaved to x and we now seek to make

the heuristics more precise.

Notice that the generator L for (8.2.1) has the form

L =
1

ε
L0 + L1 (8.2.4)

where

L0 = g(x, y) · ∇y, L1 = f(x, y) · ∇x.

In particular, L0 is the generator of a process on Y for each fixed x.

Now consider the following PDE for v(y, t) in which x is viewed as a fixed

parameter:
∂v

∂t
= L0v, v(y, 0) = φ(y). (8.2.5)

Result 4.6 shows that

v(y, t) = φ(ϕt
x(y)).

Thus, by (8.2.3),

v(y, t) → φ(η(x)), as t→∞. (8.2.6)

This is related to ergodicity, as Equation (8.2.6) shows that the function v(y, t) ex-

hibits no dependence on initial data, asymptotically as t → ∞, and approaches a

constant in y. Compare with the discussion of ergodicity in Chapter 4, Theorems

4.12 and 4.13 in particular.

Recall the Definition 4.3 of an invariant set. If this set is a manifold, then we

refer to it as an invariant manifold. In this chapter we use the scale-separated form

of Equations (8.2.1) to construct an approximate invariant manifold. In fact the man-

ifold will have the structure of a graph: it will be represented as a function relating

the y-coordinates to the x-coordinates. Invariant manifolds representable as graphs

are particulary important in describing the dynamics of ODEs close to equilibria,

leading to the concepts of stable, unstable, and center manifolds.

8.3 Simplified Equations

We now state an approximation result that will be derived by formal perturbation

arguments in the next section. Define the vector field F0(x) by

F0(x) = f(x, η(x)). (8.3.1)
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Result 8.1. For ε ≪ 1 and time t up to O(1), x(t) solving (8.2.1) is approximated

by X(t) solving
dX

dt
= F0(X), (8.3.2)

where F0(x) is given by (8.3.1).

Underlying the derivation of this result is an assumption that y(0) is initalized

close to η(x(0)). When this fails, further arguments are required to deal with what is

termed an initial or boundary layer; see Section 8.6 for a discussion of this point.

Result 8.1 gives us the leading-order approximation in ε. Keeping the next order

yields the refined approximation

dX

dt
= F0(X) + εF1(X), (8.3.3)

where

F1(x) = ∇yf(x, η(x))
(
∇yg(x, η(x))

)−1

∇xη(x)f(x, η(x)).

This approximation requires that ∇yg(x, η(x)) is invertible.

8.4 Derivation

The method used to find these simplified equations is to seek an approximate in-

variant manifold for the system. Furthermore, we assume that the manifold can be

represented as a graph over x, namely y = Ψ(x). The set determined by such a graph

is invariant (see Definition 4.3) under the dynamics if

dy

dt
= ∇Ψ(x(t))

dx

dt
,

whenever y = Ψ(x). This implies that Ψ must solve the nonlinear PDE

1

ε
g(x, Ψ(x)) = ∇Ψ(x)f(x, Ψ(x)).

We seek solutions to this equation as a power series

Ψ(x) = Ψ0(x) + εΨ1(x) +O(ε2).

This is our first example of a perturbation expansion.

Substituting and equating coefficients of successive powers of ε to zero yields

the hierarchy

O( 1
ε ) g(x, Ψ0(x)) = 0,

O(1) ∇yg(x, Ψ0(x))Ψ1(x) = ∇Ψ0(x)f(x, Ψ0(x)).
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Notice that Equations (8.2.2) and (8.2.3) together imply that g(ξ, η(ξ)) = 0 for all

ξ. Hence the O(1/ε) equation may be satisfied by choosing Ψ0(x) = η(x), giving

the approximation (8.3.2). Since the rate of convergence in (8.2.3) is assumed to be

uniform it is natural to assume that y = η(ξ) is a hyperbolic equilibrium point1

of (8.2.2), so that ∇yg(x, η(x)) is invertible. Setting Ψ0(x) = η(x) in the O(1)
equation and inverting yields

Ψ1(x) = ∇yg(x, η(x))−1∇η(x)f(x, η(x)).

Thus

f(x, Ψ(x)) = f
(
x, Ψ0(x) + εΨ1(x) +O(ε2)

)

= f(x, Ψ0(x)) + ε∇yf(x, Ψ0(x))Ψ1(x) +O(ε2)

= f(x, η(x)) + ε∇yf(x, η(x))Ψ1(x) +O(ε2),

and the refined approximation (8.3.3) follows.

8.5 Applications

8.5.1 Linear Fast Dynamics

A structure arising in many applications is where the frozen x dynamics, given by

ϕt
ξ(·), is linear. As a simple example consider the equations

dx

dt
= f(x, y),

dy

dt
= −y

ε
+

g̃(x)

ε
. (8.5.1)

Here d = 2 and X = Y = R, Z = R
2. It is straightforward to show that

ϕt
ξ(y) = e−ty +

∫ t

0

es−tg̃(ξ)ds

= e−ty + (1− e−t)g̃(ξ).

Hence (8.2.3) is satisfied for η(·) = g̃(·)
The simplified equation given by Result 8.1 is hence

dX

dt
= f(X, g̃(X)).

Using the fact that ∇yg(x, y) = −1 we see that the more refined approximation

(8.3.3) is
dX

dt
= f(X, g̃(X))

(
1− ε

df

dy
(X, g̃(X))

dg̃

dx
(X)

)
.

1 A hyperbolic equilibrium point is one where the linearization of the vector field at the

equlibrium point contains no spectrum on the imaginary axis.
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8.5.2 Large Time Dynamics

The statement of the result concerning simplified dynamics concerns the approxi-

mation of x(t) on O(1) time intervals with respect to ε. However, in many cases the

results extend naturally to the infinite time domain. The following example illustrates

this idea.

Consider the equations

dx1

dt
= −x2 − x3, (8.5.2a)

dx2

dt
= x1 +

1

5
x2, (8.5.2b)

dx3

dt
=

1

5
+ y − 5x3, (8.5.2c)

dy

dt
= −y

ε
+

x1x3

ε
, (8.5.2d)

so that X = R
3 and Y = R. Result 8.1 indicates that x should be well approximated

by X solving the Rössler system

dX1

dt
= −X2 −X3, (8.5.3a)

dX2

dt
= X1 +

1

5
X2, (8.5.3b)

dX3

dt
=

1

5
+ X3(X1 − 5). (8.5.3c)

The Rössler equations are chaotic, and consequently comparison of trajectories over

long time intervals is not natural. A more useful object is the attractor. A com-

parison of the numerically generated attractors for the two systems is shown in

Figure 8.1. The left side shows the attractor for Equations (8.5.2), projected into

the x-coordinates, for ε = 10−2. The right side shows the attractor for the Rössler

equations themselves. The agreement is very strong indicating that the simplified

dynamics do indeed capture behavior over long time intervals.

8.5.3 Center Manifold

The center manifold is an invariant manifold containing an equilibrium point whose

linearization has neutral directions (subspaces corresponding to eigenvalues with

zero real part). Consider the equations

dx

dt
= λx +

2∑

i=0

aix
iy2−i,

dy

dt
= x− y +

2∑

i=0

bix
iy2−i.
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Fig. 8.1. Comparison between the attracting sets for (8.5.2) with ε = 0.01 (left) and (8.5.3)

(right), projected on the (x1, x2) and (X1, X2) planes, respectively.

Here λ ∈ R and the ai and bi are also real numbers. Furthermore, for each t, x(t) ∈ R

and y(t) ∈ R. When linearized at the origin, this equation becomes

dx

dt
= λx,

dy

dt
= x− y.

If z = (x, y)T then
dz

dt
= Lz

with

L =

(
λ 0
1 −1

)
.

The eigenvalues of L are λ and −1. As λ passes through 0 the linear stability prop-

erty of the origin thus changes from stable to unstable. For this reason, studying the

equation in the vicinity of λ = 0 is of interest. In particular we expect to find a center

manifold at λ = 0: an invariant manifold tangent to the eigenspace corresponding to

eigenvalue 0 of L.
To construct this manifold rescale the equations as follows. We set

x→ εx, y → εy, λ→ ελ, t→ ε−1t.

This corresponds to looking for small-amplitude solutions, close to the fixed point at

the origin, at parameter values close to the bifurcation values. Such solutions evolve

slowly, and hence time is rescaled to capture nontrivial dynamics. The equations

become
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dx

dt
= λx +

2∑

i=0

aix
iy2−i,

dy

dt
=

1

ε
(x− y) +

2∑

i=0

bix
iy2−i.

A perturbation expansion gives the invariant manifold y = x and we obtain the

following equations for the dynamics on the invariant manifold:

dX

dt
= λX + AX2,

with A =
∑2

i=0 ai. The case λ = 0 gives the center manifold itself, and λ < 0 the

stable manifold.

8.6 Discussion and Bibliography

The topic of invariant manifolds has a long history and is itself the subject of entire

books. To do it justice here is impossible, and we provide only brief pointers to the

literature. From the perspective of this book, our primary motivation for covering

the topic is that it provides a special case of the method of averaging introduced in

the next two chapters; furthermore this case can be introduced without appeal to any

arguments from ergodic theory or from the theory of stochastic processes. It hence

provides a suitable inroad into the topics of this book for readers with a background

in dynamical systems; conversely it provides a concrete link between averaging and

dynamical systems. We discuss this perspective further in Chapter 10. Note also

that the perturbation expansion we use in this chapter is, at a high level, similar to

those used in the remainder of Part II. It differs in one significant respect, however:

all the remaining chapters involve perturbation expansions for the approximation of

linear problems (by working with the backward equation), and rely on repeated use

of the Fredholm alternative. In this chapter the strategy underlying the perturbation

expansion is somewhat different, as the problem for the graph Ψ is nonlinear and the

Fredholm alternative is not used.

Invariant manifolds in general are described in [131] and [331]. These books

have considerable emphasis on the construction of unstable, stable, and center man-

ifolds for invariant sets of Equation (4.1.1). In particular, for the case of the simplest

invariant set, an equilibrium point, we may change coordinates to a frame in which

the origin 0 is an equilibrium point and (4.1.1) takes the form

dz

dt
= Lz + h1(z), z(0) = z0.

Here h1(z) is small compared to z → 0. In the case of a hyperbolic equilibrium

point the invariant subspaces of L split into stable and unstable spaces. If we let P
denote the orthogonal projection onto the stable space and Q = I − P denote the
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orthogonal projection onto the unstable space, then introducing x = Pz, y = Qz we

obtain the equations

dx

dt
= L1x + f1(x, y),

dy

dt
= L2y + g1(x, y).

The stable manifold is (locally near the origin) representable as a graph y = Θ(x);
likewise the unstable manifold is representable as a graph x = Φ(y). The center

manifold is similar to the stable manifold but occurs when, for example, PZ com-

prises neutral directions in L. Center manifolds in particular are discussed in [57].

The special case where the neutral spectrum of L contains a pair of complex conju-

gate eigenvalues leads to the Hopf bifurcation theorem; see [212].

These special invariant manifold theorems, concerning behavior near fixed points,

show the central role of graphs relating one set of variables to another in the construc-

tion of invariant manifolds. Such a graph is at the heart of our construction of what is

sometimes termed a slow manifold for (8.2.1). Early studies of the approximation of

ODE with attracting slow manifold by differential-algebraic equations includes the

independent work of Levinson and of Tikhonov (see O’Malley [239] and Tikhonov

et al. [317]). As mentioned in Section 8.3 the simplest version of the approximation

result requires the fast variable y to be initialized close to the invariant manifold.

However, even if it is not, an initial layer (sometimes termed boundary layer) can

be introduced to extend the approximation result and studied through the method of

matched asymptotic expansions; see [324] and [71, 272].

Our construction of an invariant manifold uses the explicit slaving of y to x
through the asymptotically stable fixed points of (8.2.2). More generally, the use

of a spectral gap sufficiently large relative to the size of the nonlinear terms is used

in the construction of local stable, unstable, and center manifolds (e.g., Carr [57],

Wiggins [331]), slow manifolds (Kreiss [178]) and inertial manifolds (Constantin

et al. [69]). In particular, the inertial manifold construction shows how ideas from

invariant manifold theory extend naturally to infinite dimensions in the context of

dissipative PDEs.

References to numerical methods for dynamical systems and for the computation

of invariant manifolds in particular may be found in [305]. It is also possible to

construct invariant manifolds for stochastic (partial) differential equations. See, for

example, [39, 38, 41, 77, 329, 328] and the references therein.

8.7 Exercises

1. Consider the equations

dx

dt
= λx + a0x

3 + a1xy,

dy

dt
= −y +

2∑

i=0

bix
iy2−i.
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Here λ ∈ R and the ai and bi are also real numbers. For each fixed t we have

x(t) ∈ R and y(t) ∈ R. Show that the scaling

x→ εx, y → ε2y, λ→ ε2λ, t→ ε−2t

puts this system in a form to which the perturbation techniques of this section

apply. Deduce that the center manifold has the form

dX

dt
= λX + AX3

where A = a0 + a1b2.
2. Assume ε > 0, A ∈ R

l×l, and B ∈ R
(d−l)×(d−l). Consider the equations

dx

dt
= Ax + εf0(x, y),

dy

dt
= −1

ε
By + g0(x, y),

for ε ≪ 1 and x ∈ R
l, y ∈ R

d−l. Assume that B is symmetric positive definite.

Find the first three terms in an expansion for an invariant manifold representing y
as a graph over x.

3. Assume ε > 0 and B ∈ R
(d−l)×(d−l). Consider the equations

dx

dt
= f(x, y),

dy

dt
= −1

ε

(
By − g̃(x)

)
,

for ε≪ 1 and x ∈ R
l, y ∈ R

d−l.

a) Assume that B is symmetric positive definite. Find the first term in an expan-

sion for an invariant manifold representing y as a graph over x.

b) Consider the case d− l = 2, g̃ ≡ 0, and

B =

(
0 1

−1 0

)
.

What happens to the solution as ε→ 0?
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Averaging for Markov Chains

9.1 Introduction

Perhaps the simplest setting in which to expose variable elimination for stochastic

dynamical problems is to work in the setting of Markov chains. In this context it is

natural to study situations where a subset of the variables evolves rapidly compared

with the remainder and can be replaced by their averaged effect. In Section 9.2 we

describe the unaveraged Markov chain, and in Section 9.3 we present the averaged

equations; the averaged equations are derived in Section 9.4, and an example is given

in Section 9.5. In Section 9.6 we discuss various extensions of the results from this

chapter and make some bibliographical remarks.

9.2 Full Equations

We work in the setup of Chapter 5 and consider the backward equation

dv

dt
= Qv. (9.2.1)

Recall that this equation, with v(0) = φ, has the property that

vi(t) = E

(
φz(t)|z(0) = i

)
,

where E denotes expectation with respect to the Markov transition probabilities. We

assume that the generator Q1 takes the form

Q =
1

ε
Q0 + Q1, (9.2.2)

with 0 < ε ≪ 1. We study situations where the state space is indexed by two

variables, x and y, and the leading order contribution in Q, namely Q0, corresponds

1 In this chapter we denote the generator by Q rather than L because we use index l for the

state space; thus we wish to avoid confusion with the components of the generator.
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to fast ergodic dynamics in y, with x frozen. Averaging over y then gives the effective

reduced dynamics for x.

The precise situation is as follows. Our state space is I := Ix×Iy with Ix, Iy ⊆
{1, 2, · · · }. We let q((i, k), (j, l)) denote the element of the generator associated with

transition from (i, k) ∈ Ix × Iy to (j, l) ∈ Ix × Iy .2 Consider now a family of

Markov chains on Iy , indexed by i ∈ Ix. We write the generator as A0(i) with

entries as a0(k, l; i); the indices denote transition from k ∈ Iy to l ∈ Iy for given

fixed i ∈ Ix. We assume that, for each i ∈ Ix, A0(i) generates an ergodic Markov

chain on Iy . Hence A0(i) has a one-dimensional null space for each fixed i, and 3

∑
l a0(k, l; i) = 0, (i, k) ∈ Ix × Iy,∑

k ρ∞(k; i)a0(k, l; i) = 0, (i, l) ∈ Ix × Iy.
(9.2.3)

This is the index form of Equations (5.6.2) with L replaced by A0(i). Without loss

of generality we choose the normalization

∑

k

ρ∞(k; i) = 1 ∀i ∈ Ix.

Thus ρ∞(i) = {ρ∞(k; i)}k∈Iy
is the invariant distribution of a Markov chain on Iy ,

indexed by i ∈ Ix.

Similarly to the preceding we introduce the generators of a Markov chain on Ix,

parameterized by k ∈ Iy . We denote the generator by A1(k) with indices a1(i, j; k);
the indices denote transition from i ∈ Ix to j ∈ Ix, for each fixed k ∈ Iy . With this

notation for the A0, A1 we introduce generators Q0, Q1 of Markov chains on Ix×Iy

by

q0((i, k), (j, l)) = a0(k, l; i)δij ,
q1((i, k), (j, l)) = a1(i, j; k)δkl.

(9.2.4)

Here δij is the usual Kronecker delta. In the construction of Q0 (resp. Q1) the Kro-

necker delta represents the fact that no transitions are taking place in Ix (resp. Iy).

To confirm that Q0, Q1 as defined are indeed generators, notice that nondiagonal

entries (i, k) �= (j, l) are nonnegative because A0 and A1 are generators. Also

∑

j,l

q0((i, k), (j, l)) =
∑

j,l

a0(k, l; i)δij

=
∑

l

a0(k, l; i)

= 0

2 In this chapter and in Chapter 16, we will not use suffices to denote the dependence

on the state space as the double-indexing makes this a cluttered notation. Hence we use

q((i, k), (j, l)) rather than q(i,k),(j,l).
3 Summation is always over indices in Ix or Iy in this chapter. It should be clear from the

context which of the two sets is being summed over.
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by (9.2.3). A similar calculation shows that

∑

j,l

q1((i, k), (j, l)) = 0,

using the fact that

∑

j

a1(i, j; k) = 0 ∀ (i, k) ∈ Ix × Iy,

since A1(k) is a generator for each fixed k. Thus Q0, Q1 are also the generators of

Markov chains. Finally note that any linear combination of generators, via positive

scalar constants, will also be a generator. Hence (9.2.2) defines a generator for any

ε > 0.

9.3 Simplified Equations

We define the generator Q̄1 of a Markov chain on Ix by:

q̄1(i, j) =
∑

k

ρ∞(k; i)a1(i, j; k). (9.3.1)

Notice that q̄1(i, j) � 0 for i �= j because ρ∞(k; i) � 0 and a1(i, j; k) � 0 for

i �= j. Furthermore

∑

j

q̄1(i, j) =
∑

k

ρ∞(k; i)

⎛

⎝
∑

j

a1(i, j; k)

⎞

⎠

= 0.

Hence Q̄1 is the generator of a Markov chain.

Result 9.1. Consider Equation (9.2.1) under assumption (9.2.2). Then for ε≪ 1 and

times t up to O(1) the finite-dimensional distributions of x ∈ Ix are approximated

by a Markov chain X with generator Q̄1.

We emphasize that x is not itself Markovian: only the pair (x, y) is. As discussed

earlier, Q̄1 is the generator of a Markov chain on Ix alone, and the dynamics in Iy has

been eliminated through averaging. Thus the approximate variable X is Markovian

and is governed by the backward equation

dv0

dt
= Q̄1v0. (9.3.2)

We now provide justification for this elimination of variables, by means of per-

turbation expansion.
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9.4 Derivation

The method used is to show that the backward equation for the full Markov chain in

(x, y) ∈ Ix × Iy can be approximated by the backward Equation (9.3.2) for x ∈ Ix

alone. We consider Equation (9.2.1) under (9.2.2). We have the backward equation

dv

dt
=

(1

ε
Q0 + Q1

)
v.

Unlike in the previous chapter, where we approximated a nonlinear PDE containing

a small parameter ε, here the problem is linear. In the following five chapters, all our

perturbation expansions are for similar linear equations. The derivation here is hence

prototypical of what follows.

We seek solutions v = v(i, k, t) in the form of the multiscale expansion

v = v0 + εv1 +O(ε2). (9.4.1)

Substituting and equating coefficients of powers of ε to zero we find

O( 1
ε ) Q0v0 = 0, (9.4.2a)

O(1) Q0v1 = −Q1v0 +
dv0

dt
. (9.4.2b)

By (9.2.3) we deduce from (9.4.2a) that v0 is independent of k ∈ Iy . Abusing nota-

tion, we write

v0(i, k, t) = v0(i, t)1(k) (9.4.3)

where 1(k) = 1 for all k ∈ Iy . The operator Q0 is singular and hence, for (9.4.2b)

to have a solution, the Fredholm alternative implies the solvability condition

−Q1v0 +
dv0

dt
⊥Null {QT

0 }. (9.4.4)

From (9.2.3) we deduce that the null space of QT
0 is characterized by

∑

k,i

ρ∞(k; i)c(i)q0((i, k), (j, l)) = 0, (9.4.5)

for any vector c = {c(i)} on Ix. Using (9.4.3) we find that

dv0

dt
−Q1v0 =

dv0

dt
(i, t)1(k)−

∑

j,l

a1(i, j; k)δklv0(j, t)1(l)

=
(dv0

dt
(i, t)−

∑

j

a1(i, j; k)v0(j, t)
)
1(k).

Imposing the solvability condition (9.4.4) by means of (9.4.5) we obtain

∑

k,i

ρ∞(k; i)c(i)
(dv0

dt
(i, t)−

∑

j

a1(i, j; k)v0(j, t)
)

= 0,
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which implies that

∑

i

c(i)
(dv0

dt
(i, t)−

∑

j

Q̄1(i, j)v0(j, t)
)

= 0.

Since c is an arbitrary vector on Ix we deduce that each component of the sum over

i is zero. This yields (9.3.2).

9.5 Application

Consider a simple example where Ix = Iy = {1, 2}. Thus we have a four-state

Markov chain on I = Ix × Iy. We assume that the generators of the Markov chains

on Iy and Ix are given by

A0(i) =

(
−θi θi

φi −φi

)

and

A1(k) =

(
−αk αk

βk −βk

)
,

respectively. In the first (resp. second) of these Markov chains i ∈ Ix (resp. k ∈ Iy)

is a fixed parameter. The parameters θi, φi, αk, and βk are all nonnegative.

If we order the four states of the Markov chain as (1, 1), (1, 2), (2, 1), and (2, 2),
then the generators Q0 and Q1 are given by

Q0 =

⎛

⎜⎜⎝

−θ1 θ1 0 0
φ1 −φ1 0 0
0 0 −θ2 θ2

0 0 φ2 −φ2

⎞

⎟⎟⎠ (9.5.1)

and

Q1 =

⎛

⎜⎜⎝

−α1 0 α1 0
0 −α2 0 α2

β1 0 −β1 0
0 β2 0 −β2

⎞

⎟⎟⎠ . (9.5.2)

Note that any linear combination of Q0 and Q1 will have zeros along the anti-

diagonal, and hence the same is true of Q; this reflects the fact that, by construction,

transitions in both Ix and Iy do not happen simultaneously.

The invariant density of the Markov chain with generator A0(i) is ρ∞(i) =
(λi, 1 − λi)

T with λi = φi/(θi + φi). Recall that the averaged Markov chain on

Ix has generator Q̄1 with entries
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q1(i, j) =
∑

k

ρ∞(k; i)a1(i, j; k)

= λia1(i, j; 1) + (1− λi)a1(i, j; 2).

Thus

Q̄1 =

(
−λ1α1 − (1− λ1)α2 λ1α1 + (1− λ1)α2

λ2β1 + (1− λ2)β2 −λ2β1 − (1− λ2)β2

)
. (9.5.3)

9.6 Discussion and Bibliography

Two recent monographs where multiscale problems for Markov chains are studied

are [335, 336]. See also [291] for a broad discussion of averaging and dimension re-

duction in stochastic dynamics. Markov chain approximations for SDEs, especially

in the large deviation limit, are studied in [111]. Computational methods for multi-

scale Markov chains are discussed in [85, 86]. Diffusion limits of ODEs driven by

Markov chains are studied in [245]. See also [96] for the proof of a related diffu-

sion limit theorem. For a connection between Markov chains and center manifolds,

see [262].

In this chapter we have presented averaging for Markov chains. Homogenization

(i.e., the central limit theorem) results for Markov chains can be found in [184].

In deriving the approximate equation we implicitly assume that the original

Markov chain is prepared in a state that does not depend on the parts of the state

space in Iy. If this is not the case then a similar analysis can still be carried out,

but an initial layer must be included, over time of order O(ε), on which v(t) adjusts

from being a function on Ix × Iy to being a function only on Ix, to leading order.

9.7 Exercises

1. Find a multiscale expansion for the invariant measure of the Markov chain with

generator Q = 1
εQ0 + Q1 when Q0, Q1 are given by (9.5.1) and (9.5.2).

2. Find the invariant measure of Q̄1 given by (9.5.3) and interpret your findings in

light of your answer to the previous question.

3. Consider the SDE (6.5.1). Assume that u is governed by a two-state Markov

chain, with states {−1,+1}. Write down the generator for the resulting Markov

process in (z, u), on the assumption that the generator for the Markov chain has

the form

L(z) =

(
−θ(z) θ(z)
φ(z) −φ(z)

)
.

4. Consider the same setup as in the previous question but where the two-state

Markov chain now has generator 1
εL(z) with L(z) as given in the previous ques-

tion. Use the method of averaging to find the averaged SDE in z in the limit

ε→ 0, where u may be eliminated.
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5. Let u be a two-state continuous-time Markov chain with generator as in the pre-

vious question. Consider the ODE

dz

dt
= λ(u)z, t ∈ [0,∞).

Assume that λ(−1) < 0 and λ(+1) > 0. Use multiscale analysis to determine

conditions under which the trajectories of z do not grow.

6. Let u be a Markov chain on a finite-state space with generator Q taking the form

Q =
1

ε
Q0 + Q1.

Assume that the Qi are generators of Markov chains for i = 0, 1 and that Q has

a two-dimensional null space:

N (Q0) = span{φ0, φ1}.

Derive a two-state Markov chain that approximates the dynamics in this null

space.





10

Averaging for ODEs and SDEs

10.1 Introduction

Here we take the averaging principle developed in the previous chapter for Markov

chains and apply it to ODEs and SDEs. The unifying theme is the approximate so-

lution of the backward equation by means of an appropariate perturbation expansion

and consequent elimination of variables.

In Section 10.2 we present the equations we will study, and in Section 10.3 we

present the averaged equations. Section 10.4 contains the derivation of the averaged

equations; the derivation is carried out in the case where the fast process is stochas-

tic. In Section 10.5 we study how the deterministic situation may be handled. Sec-

tion 10.6 contains two illustrative examples. Extensions of the results presented in

this chapter, together with bibliographical remarks, are given in Section 10.7.

10.2 Full Equations

We write z solving (6.1.1) as z = (xT , yT )T and consider the case where

dx

dt
= f(x, y), x(0) = x0, (10.2.1a)

dy

dt
=

1

ε
g(x, y) +

1√
ε
β(x, y)

dV

dt
, y(0) = y0, (10.2.1b)

with ε ≪ 1 and V a standard Brownian motion. Here x ∈ X , y ∈ Y , z ∈ Z , and

the notation is as in Sections 4.1 and 6.1.

In Chapter 8 we considered systems in which the fast dynamics converge to an x-

dependent fixed point. This gives rise to a situation where the y variables are slaved

to the x variables. Averaging generalizes this idea to situations where the dynamics in

the y variable, with x fixed, is more complex. As in the previous chapter on Markov

chains, we average out the fast variable y over an appropriate invariant measure. We

now make these heuristics precise. We define the generators
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L0 = g(x, y) · ∇y +
1

2
B(x, y) : ∇y∇y, (10.2.2a)

L1 = f(x, y) · ∇x, (10.2.2b)

where B(x, y) = β(x, y)β(x, y)T . To carry out the averaging procedure in this sec-

tion the most useful way to make an ergodicity assumption is to assume that, for each

fixed x, L0 has one-dimensional null space characterized by

L01(y) = 0, (10.2.3a)

L∗
0ρ

∞(y;x) = 0. (10.2.3b)

Here 1(y) denotes constants in y. In the case where Y = T
d the operators L0 and L∗

0

are equipped with periodic boundary conditions. In this case these assumptions about

the null spaces of L0 and L∗
0 are known to hold if B(x, y) is strictly positive-definite,

uniformly in (x, y) ∈ X ×Y, as shown in Theorem 6.16. In more general situations,

such as when Y = R
d or when the matrix-valued function B(x, y) is degenerate,

similar rigorous justifications are possible, but the functional setting is more com-

plicated, typically employing weighted Lp-spaces that characterize the decay of the

invariant density at infinity. See the remarks in Section 18.4.

10.3 Simplified Equations

We assume that the generator of the fast process y(t), namely L0, satisfies (10.2.3)

for every x ∈ X . Define the vector field F by

F (x) =

∫

Y

f(x, y)μx(dy) (10.3.1)

with μx(dy) = ρ∞(y;x)dy.

Result 10.1. For ε≪ 1 and times t up toO(1), x(t) solving (10.2.1) is approximated

by X solving
dX

dt
= F (X), X(0) = x0. (10.3.2)

Remark 10.2. A similar result holds even in the case where the equation for the slow

variable x is stochastic and has the form

dx

dt
= f(x, y) + α(x, y)

dU

dt
, x(0) = x,

with U a standard Brownian motion indepenent of V . Under the assumptions of

Result 10.1 the averaged equation becomes

dX

dt
= F (X) + A(X)

dU

dt
, X(0) = x,

where F (X) is the same and

A(X)A(X)T =

∫

Y

α(x, y)α(x, y)T μx(dy).

See Exercise 1. ⊓⊔
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10.4 Derivation

As for Markov chains, we derive the averaged equations by working with the back-

ward Kolmogorov equation. Let

v(x, y, t) = E

(
φ(x(t), y(t))|x(0) = x, y(0) = y

)
.

The backward Equation (6.3.4) for the SDE (10.2.1) is

∂v

∂t
=

1

ε
L0v + L1v. (10.4.1)

Here L0,L1 are given by (10.2.2) and z in (6.3.4) is (x, y) here. Note that L0 is a

differential operator in y, in which x appears as a parameter. Thus we must equip it

with boundary conditions. We simply assume that, with suitable boundary conditions

imposed, (10.2.3) holds. In the case where Y = T
d and periodic boundary conditions

are used, the rigorous results of Chapter 7 apply and the ergodicity assumption on

the fast process is satisfied. Note, however, that other functional settings are also pos-

sible; the key in what follows is application of the Fredholm alternative to operator

equations defined through L0.
We seek a solution to (10.4.1) in the form of the multiscale expansion

v = v0 + εv1 +O(ε2)

and obtain

O(1/ε) L0v0 = 0, (10.4.2a)

O(1) L0v1 = −L1v0 +
∂v0

∂t
. (10.4.2b)

Equation (10.4.2a) implies that v0 is in the null space of L0 and hence, by (10.2.3)

and ergodicity, is a function only of (x, t). Fix x. Then the Fredholm alternative for

(10.4.2b), viewed as a differential equation in y, shows that

−L1v0 +
∂v0

∂t
⊥Null {L∗

0}.

By (10.2.3) this implies that
∫

Y

ρ∞(y;x)
(∂v0

∂t
(x, t)− f(x, y) · ∇xv0(x, t)

)
dy = 0.

Since ρ∞ is a probability density, we have
∫
Y
ρ∞(y;x)dy = 1. Hence

∂v0

∂t
−
(∫

Y

f(x, y)μx(y)dy

)
· ∇xv0(x, t) = 0

so that by (10.3.1),
∂v0

∂t
− F (x) · ∇xv0 = 0.

This is the backward equation for (10.3.2); indeed the method of characteristics as

given in Result 4.6 shows that we have the required result.
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10.5 Deterministic Problems

In this section we provide a viewpoint on the averaged equation that is useful for two

reasons: it applies when Equations (10.2.1) are deterministic, and it forms the basis

of numerical methods to compute effective equations in either the deterministic or

stochastic context. Our starting point is to analyze the behavior of the fast dynamics

in y with x being a fixed parameter.

Let ϕt
x(y) be the solution operator of the fast dynamics with x a fixed parameter

and ε = 1. To be precise, for fixed ξ,

d

dt
ϕt

ξ(y) = g(ξ, ϕt
ξ(y)) + β(ξ, ϕt

ξ(y))
dV

dt
, ϕ0

ξ(y) = y. (10.5.1)

As in Chapter 8, y(t) solving (10.2.1b) is given by y(t) ≈ ϕ
t/ε
x(0)(y) for times t

that are o(1), so that x has not evolved very much. Assume that (10.5.1) is ergodic

with invariant measure μξ. On time scales small compared to 1 and large compared

to ε, we expect that x(t) is approximately frozen and that y(t) will traverse its (x-

dependent) invariant measure on this time scale because it is evolving quickly. Thus

it is natural to average y(t) in the x(t) equation, against the invariant measure for

(10.5.1) with ξ = x(t).
In the case where β ≡ 0, ϕt

ξ(y) coincides with the solution of (8.2.2). When

β �= 0, note that ϕt
ξ(y) depends on the Brownian motion {V (s)}s∈[0,t] and hence is

a stochastic process. Rather than assuming convergence to a fixed point, as we did in

(8.2.3), we assume here that ϕt
ξ(y) is ergodic (see Section 6.4). This implies that the

measure defined by

μx(A) = lim
T→∞

1

T

∫ T

0

IA(ϕt
x(y)) dt, A ⊆ T

d, (10.5.2)

exists, for IA the indicator function of arbitrary Borel sets A ⊆ Y . The averaged

vector field F in (10.3.1) can be defined using this measure.

When working with an SDE (β �= 0), it is natural to assume that μx(·) has a

density with respect to the Lebesgue measure so that μx(dy) = ρ∞(y;x)dy. In fact,

under appropriate assumptions on the coefficients g(x, y) and β(x, y) it is possible to

prove that such a density exists. However, we will illustrate by means of an example

arising in Hamiltonian mechanics that this assumption is not necessary. Note also

that the situation in Chapter 8 corresponds to the measure μx(dy) being a Dirac

mass characterizing the invariant manifold: μx(dy) = δ(y − η(x))dy. In this case

we obtain

F (x) = f(x, η(x)).

This is precisely the vector field in (8.3.2), and so the simplified equations in Chapter

8 are a special case of those derived here. However, we derived Result 10.1 in the

case where β is nonzero and we assumed that the measure μ has a smooth density

ρ∞(y;x) with respect to Lebesgue measure; that is, we assumed that (10.2.3) holds

and we have that μx(dy) = ρ∞(y;x)dy. It is useful to have an expression for the
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averaged equation that is also valid for deterministic problems and for the numer-

ical construction of F in either deterministic or random problems. We do this by

representing ergodic averages via time averages.

Result 10.3. An alternative representation of F (x) is via a time average:

F (x) = lim
T→∞

1

T

∫ T

0

f (x, ϕs
x(y)) ds. (10.5.3)

This representation is found by using (10.5.2) to evaluate (10.3.1). Note that, by

ergodicity, the resulting average does not depend on y.

10.6 Applications

We consider two applications of the averaging principle, the first in the context of

SDEs and the second in the context of Hamiltonian ODEs.

10.6.1 A Skew-Product SDE

Consider the equations

dx

dt
= (1− y2)x,

dy

dt
= −α

ε
y +

√
2λ

ε

dV

dt
.

Here X = Y = R. It is of interest to know whether x will grow in time or remain

bounded. We can get insight into this question in the limit ε → 0 by deriving the

averaged equations. Note that y is a time-rescaling of the OU process from Exam-

ple 6.19. The invariant measure for the ergodic process y is a mean zero Gaussian:

N (0, λ
α ) (see Example 6.19). Note that this measure does not depend on x and hence

has density ρ∞(y) only. The averaged vector field F is here defined by

F (x) =
(
1−

∫

R

ρ∞(y)y2dy
)
x

where ρ∞ is the density associated with Gaussian N (0, λ/α). Thus

∫

Rd

ρ∞(y)y2dy =
λ

α

and

F (x) =
(
1− λ

α

)
x.

Hence the averaged equation is
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dX

dt
=

(
1− λ

α

)
X.

From this we deduce that trajectories of x will explode if λ < α and will contract if

λ > α. If λ = α then the averaged vector field is zero. In this situation we need to

rescale time t �→ t/ε to obtain the problem

dx

dt
=

1

ε
(1− y2)x,

dx

dt
= − α

ε2
y +

√
2α

ε2

dv

dt
.

On this longer time scale, nontrivial dynamics occur. SDEs of this form are the topic

of Chapter 11, and this specific example is considered in Section 11.7.

10.6.2 Hamiltonian Mechanics1

In many applications Hamiltonian systems with strong potential forces, responsible

for fast, small-amplitude oscillations around a constraining submanifold, are encoun-

tered. It is then of interest to describe the evolution of the slowly evolving degrees

of freedom by averaging over the rapidly oscillating variables. We give an example

of this. The example is interesting because it shows that the formalism of this chap-

ter can be extended to pure ordinary differential equations with no noise present; it

also illustrates that it is possible to deal with situations where the limiting measure

μ retains some memory of initial conditions – in this case the total energy of the

system.

Consider a two-particle system with Hamiltonian

H(x, p, y, v) =
1

2
(p2 + v2) + Φ(x) +

ω(x)

2 ε2
y2, (10.6.1)

where (x, y) are the coordinates and (p, v) are the conjugate momenta of the two

particles, Φ(x) is a nonnegative potential, and ω(x) is assumed to satisfy ω(x) �

ω̄ > 0 for all x. The corresponding equations of motion are

dx

dt
= p,

dp

dt
= −Φ′(x)− ω′(x)

2ε2
y2,

dy

dt
= v,

dv

dt
= −ω(x)

ε2
y.

We let E denote the value of the Hamiltonian H at time t = 0:

1 This example was developed in collaboration with R. Kupferman.
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E = H(x(0), p(0), y(0), v(0)).

Note that E is the total energy of the two-particle system. We assume that E is

bounded independently of ε. Since the Hamiltonian H is conserved in time, Φ is

nonnegative, and ω � ω̄, Equation (10.6.1) implies that

y2
� 2ε2E/ω̄.

Hence the solution approaches the submanifold y = 0 as ε→ 0. Note, however, that

y appears in the combination y/ε in the x equations and in the expression for the

energy H . Thus it is natural to make the change of variables η = y/ε. The equations

then read

dx

dt
= p,

dp

dt
= −Φ′(x)− ω′(x)

2
η2,

dη

dt
=

1

ε
v,

dv

dt
= −ω(x)

ε
η. (10.6.2)

In these variables we recover a system of the form (10.2.1) with “slow” variables,

x← (x, p), and “fast” variables, y ← (η, v). It is instructive to write the equation in

second-order form as

d2x

dt2
+ Φ′(x) +

1

2
ω′(x)η2 = 0,

d2η

dt2
+

1

ε2
ω(x)η = 0.

The fast equations represent a harmonic oscillator whose frequency ω1/2(x) is mod-

ulated by the x variables.

Consider the fast dynamics with (x, p) frozen. The Hamiltonian for this fast dy-

namics is, for ε = 1 and x frozen,

Hfast =
1

2
v2 +

ω(x)

2
η2.

The energy of the fast system, at given (x, p), which is conserved while (x, p) is

frozen, is found by subtracting the energy associated with the frozen variables from

the total energy of the original system. We denote the result of this calculation by

Efast = E − 1

2
p2 − Φ(x).

For fixed x, p the dynamics in η, v is confined to the energy shell Hfast(v, η) = Efast.

We denote this energy shell by Y(x, p), noting that it is parameterized by the frozen

variables (x, p).
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The harmonic oscillator is studied in Example 4.17. Using the calculations

therein, it follows that the average of the kinetic energy of the fast oscillator against

the ergodic measure μx,p on Y(x, p) is

∫

Y(x,p)

ω(x)

2
η2μx,p(dη, dv) =

1

2

[
E − 1

2
p2 − Φ(x)

]
.

Thus ∫

Y(x,p)

1

2
η2μx,p(dη, dv) =

1

2ω(x)

[
E − 1

2
p2 − Φ(x)

]
.

Here (x, p) are viewed as fixed parameters and the total energy E is specified by

the initial data of the whole system. The averaging principle states that the rapidly

varying η2 in Equation (10.6.2) for p can be approximated by its ergodic average,

giving rise to a closed system of equations for (X,P ) ≈ (x, p). These are

dX

dt
= P,

dP

dt
= −Φ′(X)− ω′(X)

2ω(X)

[
E − 1

2
P 2 − Φ(X)

]
, (10.6.3)

with initial data E, X(0) = X0 = x(0), and P (0) = P0 = p(0). We will verify

below that (X,P ) satisfying (10.6.3) conserve the following adiabatic invariant

J =
1

ω1/2(X)

[
E − 1

2
P 2 − Φ(X)

]
.

Thus, (10.6.3) reduces to the Hamiltonian form

dX

dt
= P, (10.6.4a)

dP

dt
= −Φ′(X)− J0 [ω1/2(X)]′, (10.6.4b)

where J0 is given by

J0 =
1

ω1/2(X0)

[
E − 1

2
P 2

0 − Φ(X0)

]
.

This means that the influence of the stiff potential on the slow variables is to induce

a Hamiltonian structure, but to replace the potential Φ(x) by an effective potential,

Φeff(x) = Φ(x) + J0 ω1/2(x).

Note that the limiting equation contains memory of the initial conditions for the

fast variables, through the constant J0. Thus the situation differs slightly from that

covered by the conjunction of Results 10.1 and 10.3.

To verify that J is indeed conserved in time, note that, from the definition of J
and from Equation (10.6.3),
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d

dt

(
ω

1
2 (X)J

)
=

d

dt

(
E − 1

2
P 2 − Φ(X)

)

= −P
dP

dt
− Φ′(X)

dX

dt

=
Pω′(X)

2ω(X)

(
E − 1

2
P 2 − Φ(X)

)

=
Pω′(X)

2ω
1
2 (X)

J.

But, since dX/dt = P , we find the alternate expression,

d

dt

(
ω

1
2 (X)J

)
=

1

2

ω′(X)

ω
1
2 (X)

dX

dt
J + ω

1
2 (X)

dJ

dt

=
Pω′(X)

2ω
1
2 (X)

J + ω
1
2 (X)

dJ

dt
.

Equating the two expressions gives

dJ

dt
= 0,

since ω(X) is strictly positive.

10.7 Discussion and Bibliography

Averaging is based on some form or ergodicity of the fast process; whether this

process is deterministic or stochastic is not of primary importance. However, it is

easier, in general, to establish ergodicity for stochastic problems, and this is why

our general developments are confined to this case. The averaging method applied to

Equations (10.2.1) is analyzed in an instructive manner in [240], where the Liouville

equation is used to construct a rigorous proof of the averaged limit. It is sometimes

possible to obtain averaging results in the nonergodic case, when the null space of

the fast process is finite-dimensional, rather than one-dimensional; see [246, 326].

A detailed account of the averaging method for ODEs, as well as numerous ex-

amples, can be found in [281]; see also [13]. An English-language review of the

Russian literature can be found in [193]. An overview of the topic of slow mani-

folds, especially in the context of Hamiltonian problems, may be found in [199]. The

paper [321] provides an overview of variable elimination in a wealth of problems

with scale separation.

Anosov’s theorem is the name often given to the averaging principle in the

context of ODEs – (10.2.1) with β ≡ 0. This theorem requires the fast dynamics

to be ergodic. Often ergodicity fails due to the presence of “resonant zones”–regions

in X for which the fast dynamics is not ergodic. Arnold and Neistadt [193] extended

Anosov’s result to situations in which the ergodicity assumption fails on a sufficiently
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small set of x ∈ X . Those results were further generalized and extended to the

stochastic framework by Kifer, who also studied the diffusive and large deviation

character of the discrepancy between the effective and exact solutions [169, 170,

171, 172]; see also [111, ch. 7].

The situations in which the fast dynamics tend to fixed points, periodic solutions,

or chaotic solutions can be treated in a unified manner through the introduction of

Young measures (see [29, 309]). Artstein and co-workers considered a class of singu-

larly perturbed system of type (10.2.1), with attention given to the limiting behavior

of both slow and fast variables. In all of these cases the pair (x, y) can be shown to

converge to (X,μX), where X is the solution of

dX

dt
=

∫

Td

f(X, y)μX(dy)

and μX is the ergodic measure on T
d; the convergence of y to μX is in the sense

of Young measures. (In the case of a fixed point the Young measure is a Dirac mass

concentrated at a point.) A general theorem along these lines is proved in [17].

There are many generalizations of this idea. The case of nonautonomous fast dy-

namics, as well as a case with infinite dimensions are covered in [18]. Moreover,

these results still make sense even if there is no unique invariant measure μx, in

which case the slow variables can be proved to satisfy a (nondeterministic) differen-

tial inclusion [19].

In the context of SDE, an interesting generalization of (10.2.1) is to consider

systems of the form
dx

dt
= f(x, y) + α(x, y)

dU

dt
, (10.7.1a)

dy

dt
=

1

ε
g(x, y) +

1√
ε
β(x, y)

dV

dt
. (10.7.1b)

The simplified equation is then an SDE, not an ODE (see Remark 10.2).This situa-

tion is a subcase of the setup we consider in the next chapter. It can be obtained by

setting f0 = 0 in that chapter, letting f1 = f there, and by identifying ε here with ε2

in that chapter.

In the application section we studied the averaging principle for a two-scale

Hamiltonian system. The systematic study of Hamiltonian problems with two time

scales was initiated by Rubin and Ungar [277]. More recently the ideas of Neis-

tadt, based on normal form theory, have been applied to such problems [32]; this

approach is very powerful, yielding very tight, exponential, error estimates between

the original and limiting variables. A different approach to the problem, using the

techniques of time-homogenization [43], is the paper [44]. The example presented

in Section 10.6.2 is taken from that paper. The heuristic derivation we have given

here is made rigorous in [44], using time-homogenization techniques, and it is also

generalized to higher dimension. Resonances become increasingly important as the

co-dimension, m, increases, limiting the applicability of the averaging approach to

such two-scale Hamiltonian systems (Takens [306]).

Numerical work on multiscale ODEs and SDEs is overviewed in the next chapter.
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10.8 Exercises

1. Derive the averaged equation resulting from the SDE (10.7.1) under the assump-

tion that U and V are independent, standard Brownian motions (see Remark

10.2).

2. Let Φ : X × Y : R
+ and consider the equations

dx

dt
= −∇xΦ(x, y) +

√
2σ

dU

dt

dy

dt
= −1

ε
∇yΦ(x, y) +

√
2σ

ε

dV

dt
,

where U and V are standard Brownian motions of appropriate dimensions. Under

a Fredholm alternative assumption, which you should clearly state, show that the

averaged equation for X has the form

dX

dt
= −∇Ψ(X) +

√
2σ

dW

dt

where the Fixman potential Ψ is given by

exp
(
− 1

σ
Ψ(x)

)
=

∫

Y

exp
(
− 1

σ
Φ(x, y)

)
dy.

Here W is the Brownian motion of appropriate dimension. (In fact, strong conver-

gence techniques, such as those highlighted in Chapter 17, may be used to show

that X ≈ x strongly for W = U.).
3. Let Φ be as in the previous question. Write the following second-order system as

a system of coupled first-order SDEs:

d2x

dt2
+

dx

dt
= −∇xΦ(x, y) +

√
2σ

dU

dt
,

ε
d2y

dt2
+

dy

dt
= −1

ε
∇yΦ(x, y) +

√
2σ

ε

dV

dt
.

Find the stationary distribution of the fast process y explicitly. Find the averaged

equation for X , using the previous question to guide you.

4. Derive the averaged equation from the example in Subsection 10.6.1 by use of

formula (10.5.3) from Result 10.3.

5. Let u be a continuous-time Markov chain with generator

L =

(
−a a

b −b

)
.

Without loss of generality label the state-space I = {−1,+1}. Define two

functions ω : I → (0,∞) and m : I → (−∞,∞) by ω(±1) = ω± and

m(±1) = m±. Now consider the stochastic differential equations, with coeffi-

cients depending on u, given by
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dx

dt
= f(x, y) +

√
2σ

dU

dt
,

dy

dt
= −1

ε
ω(u)(y −m(u)) +

√
2σ

ε

dV

dt
,

with U and V standard Brownian motions of appropriate dimensions. Write the

generator for the process (x, y, u) and use multiscale analysis to derive the aver-

aged coupled Markov chain and SDE of the form

dX

dt
= F (X,u) +

√
2σ

dW

dt

where W is a standard Brownian motion with the same dimension as U .

6. Generalize the previous exercise to the case where the transition rates of the

Markov chain, determined by a and b, depend on x and y.

7. Find a representation for the effective coefficient matrix A(x) in Remark 10.2,

using time-averaging.
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Homogenization for ODEs and SDEs

11.1 Introduction

In this chapter we continue our study of systems of SDEs with two widely separated

characteristic time scales. The setting is similar to the one considered in the previous

chapter. The difference is that in this chapter we seek to derive an effective equation

describing dynamics on the longer, diffusive time scale. This is the time scale of

interest when the effective drift F (x) defined in Equation (10.3.1) vanishes due, for

example, to the symmetries of the problem. The vanishing of the effective drift is

captured in the centering condition; see Equation (11.2.5). In contrast to the case

considered in the previous chapter, in the diffusive time scale the effective equation

is stochastic, even when noise does not act directly on the slow variables, that is,

even when α(x, y) ≡ 0 in Equation (11.2.1).

In Section 11.2 we present the SDEs that we will analyze in this chapter. Section

11.3 contains the simplified equations, which we derive in Section 11.4. In Section

11.5 we describe various properties of the simplified equations. The derivation as-

sumes that the fast process to be eliminated is stochastic. In Section 11.6 we show

how the deterministic case can be handled. In Section 11.7 we present various ap-

plications of the theory developed in this chapter: the case where the fast process

is of Ornstein–Uhlenbeck type is in Section 11.7.1 and the case where the fast pro-

cess is a chaotic deterministic process is in Section 11.7.2. Deriving the Stratonovich

stochastic integral as the limit of smooth approximations to white noise is consid-

ered in Section 11.7.3; Stokes’ law is studied in Section 11.7.4. The Green–Kubo

formula from statistical mechanics is derived in Section 11.7.5. The case where the

stochastic integral in the limiting equation can be interpreted in neither the Itô nor the

Stratonovich sense in considered in Section 11.7.6. Lévy area corrections are studied

in Section 11.7.7. Various extensions of the results presented in this chapter, together

with bibliographical remarks, are presented in Section 11.8.
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11.2 Full Equations

Consider the SDEs

dx

dt
=

1

ε
f0(x, y) + f1(x, y) + α(x, y)

dU

dt
, x(0) = x0, (11.2.1a)

dy

dt
=

1

ε2
g(x, y) +

1

ε
β(x, y)

dV

dt
, y(0) = y0. (11.2.1b)

Here U and V are indepenent standard Brownian motions. Both the x and y equa-

tions contain fast dynamics, but the dynamics in y is an order of magnitude faster

than in x. As discussed in Sections 4.1 and 6.1 x ∈ X , y ∈ Y , and X ⊕ Y = Z.
For Equation (11.2.1), the backward Kolmogorov Equation (6.3.4) with φ =

φ(x) is1

∂v

∂t
=

1

ε2
L0v +

1

ε
L1v + L2v, for (x, y, t) ∈ X × Y × R

+, (11.2.2a)

v = φ(x), for (x, y, t) ∈ X × Y × {0}, (11.2.2b)

where

L0 = g · ∇y +
1

2
B : ∇y∇y, (11.2.3a)

L1 = f0 · ∇x, (11.2.3b)

L2 = f1 · ∇x +
1

2
A : ∇x∇x, (11.2.3c)

with

A(x, y) := α(x, y)α(x, y)T ,

B(x, y) := β(x, y)β(x, y)T .

By using the method of multiple scales we eliminate the y dependence in this Kol-

mogorov equation, to identify a simplified equation for the dynamics of x alone.

In terms of the generator L0, which is viewed as a differential operator in y,

in which x appears as a parameter, the natural ergodicity assumption to make for

variable elimination is the statement that L0 has one-dimensional null space charac-

terized by

L01(y) = 0, (11.2.4a)

L∗
0ρ

∞(y;x) = 0. (11.2.4b)

Here 1(y) denotes constants in y and ρ∞(y;x) is the density of an ergodic measure

μx(dy) = ρ∞(y;x)dy. We also assume that f0(x, y) averages to zero under this

measure, so that the centering condition

1 For simplicity we will take the initial condition of the backward Kolmogorov equation to

be independent of y. This is not necessary. See the discussion in Section 11.8
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∫

Y

f0(x, y)μx(dy) = 0 ∀x ∈ X (11.2.5)

holds. It can then be shown that the term involving f0 in the x equation will, in the

limit ε → 0, give rise to O(1) effective drift and noise contributions in an approxi-

mate equation for x.

As in the previous chapter, in the case whereY = T
d, the operatorsL0 andL∗

0 are

equipped with periodic boundary conditions. Then, assuming that B(x, y) is strictly

positive definite, uniformly in (x, y) ∈ X ×T
d, Theorem 6.16 justifies the statement

that the null space ofL∗
0 is one-dimensional. In more general situations, such as when

Y = R
d, or B(x, y) is degenerate, similar rigorous justifications are possible, but the

functional setting is more complicated, typically employing weighted Lp-spaces that

characterize the decay of the invariant density at infinity.

When Y = T
d and B(x, y) is strictly positive definite, Theorem 7.9 also applies,

and we have a solvability theory for Poisson equations of the form

−L0φ = h. (11.2.6)

In particular, the equation has a solution if and only if the right-hand side of the pre-

ceding equation is centered with respect to the invariant measure of the fast process

μx(dy): ∫

Td

h(x, y)μx(dy) = 0 ∀x ∈ X . (11.2.7)

When (11.2.7) is satisfied, the solution of (11.2.6) is unique up to a constant in the

null space of L0. We can fix this constant by requiring that
∫

Td

φ(x, y)μx(dy) = 0 ∀x ∈ X .

In more general situations, such as when Y = R
d or B(x, y) is degenerate, the

question of existence and uniqueness of solutions to the Poisson Equation (11.2.6)

becomes more complicated; however, analogous results are posible in function space

settings that enforce appropriate decay properties at infinity. See the remarks and

references to the literature in Section 11.8.

11.3 Simplified Equations

We assume that the operator L0 satisfies the Fredholm alternative, Theorem 2.42,

and has one-dimensional null space characterized by (11.2.4). We define the cell

problem 2 as follows:

−L0Φ(x, y) = f0(x, y),

∫

Y

Φ(x, y)ρ∞(y;x)dy = 0. (11.3.1)

2 The word ”cell” here refers to the periodic unit cell, which sets the scale for the fast variable

in the case Y = T
d. The terminology comes from the theory of periodic homogenization

for PDEs.
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This is viewed as a PDE in y, with x a parameter. By the Fredholm alternative,

(11.3.1) has a unique solution, since f0 satisfies (11.2.5). We may then define a vector

field F by

F (x) =

∫

Y

(
f1(x, y) + (∇xΦ(x, y))f0(x, y)

)
ρ∞(y;x)dy

= F1(x) + F0(x) (11.3.2)

and a diffusion matrix A(x) by

A(x)A(x)T = A1(x) +
1

2

(
A0(x) + A0(x)T

)
, (11.3.3)

where

A0(x) :=2

∫

Y

f0(x, y)⊗ Φ(x, y)ρ∞(y;x)dy, (11.3.4)

A1(x) :=

∫

Y

A(x, y)ρ∞(y;x)dy. (11.3.5)

To make sure that A(x) is well defined, it is necessary to prove that the sum of A1(x)
and the symmetric part of A0(x) are positive semidefinite. This is done in Section

11.5.

Result 11.1. For ε ≪ 1 and times t up to O(1), the process x(t), the solution of

(11.2.1), is approximated by the process X(t), the solution of

dX

dt
= F (X) + A(X)

dW

dt
, X(0) = x0. (11.3.6)

Remark 11.2. Notice that knowledge of AAT is not sufficient to determine A uniquely.

As a result, Equation (11.3.3) does not determine the limiting SDE (11.3.6) uniquely.

This is a consequence of the fact that there may be many SDEs that have the same

generator. This in turn relates to the fact that the approximation of the solution to

(11.2.1) by the solution to (11.3.6) is only valid in the sense of weak convergence of

probability measures; see Chapter 18. ⊓⊔

11.4 Derivation

We seek a multiscale expansion for the solution of (11.2.2) with the form

v = v0 + εv1 + ε2v2 + · · · . (11.4.1)

Here vj = vj(x, y, t). Substituting this expansion into (11.2.2) and equating powers

of ε gives a hierarchy of equations, the first three of which are
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O(1/ε2) − L0v0 = 0, (11.4.2a)

O(1/ε) − L0v1 = L1v0, (11.4.2b)

O(1) − L0v2 = −∂v0

∂t
+ L1v1 + L2v0. (11.4.2c)

By (11.2.4) Equation (11.4.2a) implies that the first term in the expansion is indepen-

dent of y, v0 = v0(x, t). We proceed now with Equation (11.4.2b). The solvability

condition is satisfied for this equation since, by assumption (11.2.5), f0(x, y) is cen-

tered with respect to the invariant measure for ϕt
x(·) and, from (11.2.3b),

L1v0 = f0(x, y) · ∇xv0(x, t).

Equation (11.4.2b) becomes

−L0v1 = f0(x, y) · ∇xv0(x, t). (11.4.3)

Since L0 is a differential operator in y alone with x appearing as a parameter, the

general solution of (11.4.3) has the form

v1(x, y, t) = Φ(x, y) · ∇xv0(x, t) + Φ1(x, t). (11.4.4)

The function Φ1 plays no role in what follows so we set it to zero. Thus we represent

the solution v1 as a linear operator acting on v0. As our aim is to find a closed

equation for v0, this form for v1 is a useful representation of the solution. Substituting

for v1 in (11.4.3) shows that Φ solves the cell problem (11.3.1). Condition (11.2.5)

ensures that there is a solution to the cell problem and the normalization condition

makes it unique. Turning now to Equation (11.4.2c) we see that the right-hand side

takes the form

−
(∂v0

∂t
− L2v0 − L1

(
Φ · ∇xv0

))
.

Hence solvability of (11.4.2c) for each fixed x requires

∂v0

∂t
=

∫

Y

ρ∞(y;x)L2v0(x, t)dy +

∫

Y

ρ∞(y;x)L1

(
Φ(x, y) · ∇xv0(x, t)

)
dy

= I1 + I2. (11.4.5)

We consider the two terms on the right-hand side separately. The first is

I1 =

∫

Y

ρ∞(y;x)
(
f1(x, y) · ∇x +

1

2
A(x, y) : ∇x∇x

)
v0(x, t)dy

= F1(x) · ∇xv0(x, t) +
1

2
A1(x) : ∇x∇xv0(x, t).

Now for the second term I2, note that

L1(Φ · ∇xv0) = f0 ⊗ Φ : ∇x∇xv0 + (∇xΦf0) · ∇xv0.
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Hence I2 = I3 + I4 where

I3 =

∫

Y

ρ∞(y;x)
(
∇xΦ(x, y)f0(x, y)

)
· ∇xv0(x, t) dy

and

I4 =

∫

Y

ρ∞(y;x)
(
f0(x, y)⊗ Φ(x, y) : ∇x∇xv0(x, t)

)
dy.

Thus

I2 = F0(x) · ∇xv0(x, t) +
1

2
A0(x) : ∇x∇xv0(x, t).

Combining our simplifications of the right-hand side of (11.4.5) we obtain, since by

(2.2.2) only the symmetric part of A0 is required to calculate the Frobenius inner

product with another symmetric matrix, the following expression:

∂v0

∂t
= F (x) · ∇xv0 +

1

2
A(x)A(x)T : ∇x∇xv0.

This is the backward equation corresponding to the reduced dynamics given in

(11.3.6).

11.5 Properties of the Simplified Equations

The effective SDE (11.3.6) is only well defined if A(x)A(x)T given by (11.3.3),

(11.3.5) is nonnegative definite. We now prove that this is indeed the case.

Theorem 11.3. Consider the case where Y = T
d and L0 is equipped with periodic

boundary conditions. Then

〈ξ,A1(x)ξ + A0(x)ξ〉 � 0 ∀x ∈ X , ξ ∈ R
l.

Hence the real-valued matrix function A(x) is well defined by (11.3.3) since A(x)A(x)T

is nonnegative definite.

Proof. Let φ(x, y) = ξ · Φ(x, y). Then φ solves

−L0φ = ξ · f0.

By Theorem 6.12 we have

〈ξ,A1(x)ξ + A0(x)ξ〉

=

∫

Y

(
|α(x, y)T ξ|2 − 2(L0φ(x, y))φ(x, y)

)
ρ∞(y;x)dy

=

∫

Y

(
|α(x, y)T ξ|2 + |β(x, y)T∇yφ(x, y)|2

)
ρ∞(y;x)dy

� 0.
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Thus

〈ξ,AAT ξ〉 = 〈ξ,A1ξ〉+
1

2
〈ξ, (A0 + AT

0 )ξ〉
= 〈ξ, (A1 + A0)ξ〉 � 0.⊓⊔

Two important remarks are in order.

Remark 11.4. Techniques similar to those used in the proof of the previous theorem,

using (6.3.11) instead of the Dirichlet form itself, show that

1

2

(
A0(x)+A0(x)T

)
=

∫

Y

(
∇yΦ(x, y)β(x, y)⊗∇yΦ(x, y)β(x, y)

)
ρ∞(y;x)dy. ⊓⊔

(11.5.1)

Remark 11.5. By virtue of Remark 6.13 we see that the proceeding theorem can be

extended to settings other than Y = T
d. ⊓⊔

11.6 Deterministic Problems

As in the previous chapter, it is useful to have representations of the effective equa-

tion in terms of time averages, both for numerical purposes and for deterministic

problems. To this end, a second representation of A0(x) and F0(x) is as follows. Let

ϕt
ξ(y) solve (10.5.1) and let E

μx be the product measure formed from use of μx(·) on

initial data and standard independent Wiener measure on driving Brownian motions.

Using this notation we may now employ a time integral to represent the solution

of the cell problem, leading to the following representation formulae. Derivation is

given at the end of the section.

Result 11.6. Alternative representations of the vector field F0(x) and diffusion ma-

trix A0(x) can be found through the following integrals over time and E
μx :

A0(x) = 2

∫ ∞

0

E
μx

(
f0(x, y)⊗ f0(x, ϕ

t
x(y))

)
dt (11.6.1)

and, if the generator L0 is independent of x, then

F0(x) =

∫ ∞

0

E
μx

(
∇xf0(x, ϕ

t
x(y))f0(x, y)

)
dt. (11.6.2)

All these representations hold for any y, by ergodicity.

The integral over t in this result enables us to express the effective equations with-

out explicit reference to the solution of the cell problem Φ and requires sufficiently

fast decay of correlations in order to be well-defined.

Another pair of alternative representations of F (x) and A(x)A(x)T may be

found by using time averaging (over s) to replace the expectations in the previous re-

sult. The expressions for A0 and F0 then involve two time integrals: the integral over
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s is an ergodic average, replacing averaging with respect to the stationary measure on

path space; the integral over t expresses the effective equations without reference to

the solution of the cell problem Φ and, again, requires sufficiently fast decay of cor-

relations in order to be well-defined. In fact the well posedness of the cell problem

(11.3.1) implies the decay of correlations property.

Result 11.7. Alternative representations of the vector field F and diffusion matrix A
can be found through the following integrals over time:

F1(x) = lim
T→∞

1

T

∫ T

0

f1(x, ϕ
s
x(y)) ds,

A1(x) = lim
T→∞

1

T

∫ T

0

A(x, ϕs
x(y)) ds;

and

A0(x) = 2

∫ ∞

0

(
lim

T→∞

1

T

∫ T

0

f0(x, ϕ
s
x(y))⊗ f0(x, ϕ

t+s
x (y))ds

)
dt, (11.6.3)

where ϕt
x(y) solves (10.5.1). Furthermore, if the generator L0 is independent of x,

then

F0(x) =

∫ ∞

0

(
lim

T→∞

1

T

∫ T

0

∇xf0(x, ϕ
t+s
x (y))f0(x, ϕ

s
x(y))ds

)
dt.

All these representations hold for any y, by ergodicity.

The following result will be useful to us in deriving the alternate representations

of A0(x) and F0(x) in the two preceding results. It uses ergodicity to represent the

solution of the cell problem, and related Poisson equations, as time integrals.

Result 11.8. Let L be the generator of the ergodic Markov process y(t) on Y which

satisfies the SDE
dy

dt
= g(y) + β(y)

dV

dt
, y(t) = y (11.6.4)

and let μ(dy) denote the unique invariant measure. Assume that h is centered with

respect to μ: ∫

Y

h(y)μ(dy) = 0.

Then the solution f(y) of the Poisson equation

−Lf = h,

∫

Y

f(y)μ(dy) = 0

admits the representation formula

f(y) =

∫ ∞

0

(
eLth

)
(y) dt. (11.6.5)
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Proof. We apply the Itô formula to f(y(t)) to obtain

f(y(t))− f(y) =

∫ t

0

Lf(y(s)) ds +

∫ t

0

〈∇yf(y(s)), β(y(s)) dW (s)〉

=

∫ t

0

−h(y(s)) ds +

∫ t

0

〈∇yf(y(s)), β(y(s)) dW (s)〉.

We take expectation with respect to the Wiener measure and use the martingale prop-

erty of stochastic integrals and the fact that Eh(y(s)|y(0) = y) solves the backward

Kolmogorov equation to conclude that

f(y) = Ef(y(t)) +

∫ t

0

(
eLsh

)
(y) ds.

We take the limit t→∞ and use the ergodicity of the process y(t), together with the

fact that f(y) is centered with respect to the invariant measure with density ρ∞(y;x),
to deduce that

f(y) = lim
t→∞

Ef(y(t)) +

∫ ∞

0

(
eLth

)
(y) dt

=

∫

Y

f(y)μ(dy) +

∫ ∞

0

(
eLth

)
(y) dt

=

∫ ∞

0

(
eLth

)
(y) dt

and the proof is complete. ⊓⊔
Remark 11.9. Notice that the preceding result implies that we can write, at least for-

mally,

L−1 = −
∫ ∞

0

eLt dt

when applied to functions centered with respect to μ. Furthermore, the result is also

valid for the case where the coefficients in (11.6.4) depend on a parameter x. ⊓⊔
We complete the section by deriving the alternative expressions for A(x) and

F (x) through time integration, given in Results 11.7 and 11.6. The expressions for

F1(x) and A1(x) in Result 11.7 are immediate from ergodicity, simply using the

fact that the time average equals the average against ρ∞. By use of Result 11.8, the

solution to the cell problem can be written as

Φ(x, y) =

∫ ∞

0

(
eL0tf0

)
(x, y) dt =

∫ ∞

0

Ef0(x, ϕ
t
x(y)) dt (11.6.6)

where E denotes expectation with respect to the Wiener measure. Now

F0(x) =

∫

Y

ρ∞(y;x)∇xΦ(x, y)f0(x, y) dy.
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In the case where L0 is x-independent so that ϕt
x(·) = ϕt(·) is also x-independent,

as are μx = μ and ρ∞( · ;x) = ρ∞(·), we may use (11.6.6) to see that

F0(x) =

∫

Y

ρ∞(y;x)

∫ ∞

0

E∇xf0(x, ϕ
t(y))f0(x, y) dt dy,

where E is expectation with respect to Wiener measure. Recal that E
μx denotes the

product measure formed from distributing y in its invariant measure, together with

the Brownian motion driving the equation for ϕt(y). Changing the order of integra-

tion we find that

F0(x) =

∫ ∞

0

E
μx

(
∇xf0(x, ϕ

t
x(y))f0(x, y)

)
dt (11.6.7)

as required for the expression in Result 11.6. Now we replace averages over E
μx by

time averaging to obtain, for all y,

F0(x) =

∫ ∞

0

(
lim

T→∞

1

T

∫ T

0

∇xf0(x, ϕ
t+s
x (y))f0(x, ϕ

s
x(y)) ds

)
dt,

and so we obtain the desired formula for Result 11.7.

A similar calculation to that yielding (11.6.7) gives (11.6.1) for A0(x) in Result

11.6. Replacing the average against E
μx by time average we arrive at the desired

formula for A0(x) in Result 11.7.

11.7 Applications

We give a number of examples illustrating the wide applicability of the ideas in this

chapter.

11.7.1 Fast Ornstein-Uhlenbeck Noise

Consider the equations

dx

dt
=

1

ε
(1− y2)x, (11.7.1)

dy

dt
= − α

ε2
y +

√
2α

ε2

dV

dt
, (11.7.2)

where V (t) is a standard one-dimensional Brownian motion. Here

f0(x, y) = (1− y2)x and f1(x, y) = 0.

Recall that the equation for y is a time-rescaling of the OU process from Example

6.19, with λ = α. Furthermore, these equations arise from the first application in

Section 10.6, in the case where λ = α and after time rescaling to produce nonzero

effects.
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We have that ∫ ∞

−∞

(1− y2)xρ∞(y) dy = 0,

where ρ∞(y) is the invariant density of the Ornstein–Uhlenbeck process, namely a

standard unit normal distribution. Thus the theory put forward in this chapter applies.

The generator of the process ϕt
ξ(·) = ϕt(·) is

L0 = −αy
∂

∂y
+ α

∂2

∂y2
(11.7.3)

and the cell problem (Poisson equation) (11.3.1) becomes

αy
∂Φ

∂y
− α

∂2Φ

∂y2
= (1− y2)x.

The unique centered solution to this equation is

Φ(y, x) =
1

2α
(1− y2)x.

Under the standard normal distribution, the fourth and second moments take values

3 and 1, respectively. Hence, the coefficients in the limiting Equation (11.3.6) are

F (x) =

∫ ∞

−∞

(
− 1

2α
y2(1− y2)x

)
ρ∞(y) dy =

1

α
x

and

A2(x) = 2

∫ ∞

−∞

(
− 1

2α
y2x(1− y2)x

)
ρ∞(y) dy =

2

α
x2.

The homogenized SDE is thus

dX

dt
=

X

α
+

√
2

α
X

dW

dt
. (11.7.4)

This is the geometric Brownian motion studied in Example 6.4. The solution is

X(t) = X(0) exp
(√ 2

α
W (t)

)
.

It converges neither to 0 nor to ∞, but subsequences in time attain both limits. This

should be compared with the behavior found in the first example in Section 10.6,

which gives rise to decay (resp. growth) if λ > α (resp. λ < α). Our example

corresponds to the case λ = α with time rescaled to see nontrivial dynamics. It thus

lies between decay and growth. Notice that we could have also taken the function in

front of the white noise with a minus sign; see Remark 11.2.

Let us now obtain the coefficients of the homogenized equation by using the

alternative representations (11.6.1) and (11.6.2). To this end we need to study the
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variable ϕt(y) solving (10.5.1). From the calculations presented in Example 6.19 we

have that

ϕt(y) = e−αty +
√

2α

∫ t

0

e−α(t−s)dV (s),

ϕt(y)2 = e−2αty2 +
√

2αye−αt

∫ t

0

e−α(t−s)dV (s) + 2α
(∫ t

0

e−α(t−s)dV (s)
)2

.

(11.7.5)

In addition, by the Itô isometry,

E

(∫ t

0

e−α(t−s)dV (s)
)2

=

∫ t

0

e−2α(t−s)ds,

=
1

2α

(
1− e−2αt

)
.

To construct the measure E
μx

we take the initial condition y to be a standard unit

Gaussian distribution and an independent driving Brownian motion V . (The measure

is, in fact, independent of x in this particular example.) Thus, by stationarity under

this initial Gaussian distribution,
∫

ρ∞(y)y2 dy = 1, E
μx

ϕt(y)2 = 1.

Furthermore

E
μx

(∫
ρ∞(y)y2ϕt(y)2 dy

)
= e−2αt

∫
ρ∞(y)y4 dy

+2αE
μx

(∫ t

0

e−α(t−s) dV (s)

)2

= 3e−2αt + 1− e−2αt

= 1 + 2e−2αt.

Since f0(x, y) = (1− y2)x, combining these calculations in (11.6.2) gives

F0(x) = x

∫ ∞

0

E
μx

(
(1− ϕt(y)2)(1− y2)

)
dt

= x

∫ ∞

0

2e−2αtdt

=
x

α
. (11.7.6)

Similarly from (11.6.1) we obtain

A0(x) =
2x2

α
.

This confirms that the effective equation is (11.7.4).



11.7 Applications 169

11.7.2 Fast Chaotic Noise

We now consider an example that is entirely deterministic but behaves stochastically

when we eliminate a fast chaotic variable. In this context it is essential to use the

representation of the effective diffusion coefficient given in Result 11.7. This repre-

sentation uses time integrals, and makes no reference to averaging over the invariant

measure (which does not have a density with respect to Lebesgue measure in this

example; see Example 4.16). Consider the equations

dx

dt
= x− x3 +

λ

ε
y2, (11.7.7)

dy1

dt
=

10

ε2
(y2 − y1),

dy2

dt
=

1

ε2
(28y1 − y2 − y1y3),

dy3

dt
=

1

ε2
(y1y2 −

8

3
y3).

(11.7.8)

The vector y = (y1, y2, y3)
T solves the Lorenz equations, at parameter values where

the solution is ergodic (see Example 4.16). In the invariant measure the component

y2 has mean zero. Thus the centering condition holds. The equation for x is a scalar

ODE driven by a chaotic signal with characteristic time ε2. Because f0(x, y) ∝ y2,

with invariant measure shown in Figure 4.2, and because f1 = (x, y) = f1(x) only,

the candidate equation for the approximate dynamics is

dX

dt
= X −X3 + σ

dW

dt
, (11.7.9)

where σ is a constant. Now let ψt(y) = e2 ·ϕt(y). Then the constant σ can be found

by use of (11.6.3) giving

σ2 = 2λ2

∫ ∞

0

1

T

(
lim

T→∞

∫ T

0

ψs(y)ψt+s(y)ds
)
dt.

This is the integrated autocorrelation function of y2. By ergodicity we expect the

value of σ2 to be independent of y and to be determined by the SRB measure for

the Lorenz equations alone. Notice that the formula is expected to make sense, even

though the cell problem is not well-posed in this case because the generator of the

fast process is not elliptic.

Another way to derive this result is as follows. Gaussian white noise σẆ , the

time derivative of Brownian motion, may be thought of as a delta-correlated station-

ary process. The integral of its autocorrelation function on [0,∞) gives σ2/2. On the

assumption that y2 has a correlation function that decays in time, and noting that this

has time scale ε2, the autocorrelation of λ
ε ψ

s/ε2

(y) at timelag t may be calculated

and integrated from 0 to∞; matching this with the known result for Gaussian white

noise gives the desired result for σ2.
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11.7.3 Stratonovich Corrections

When white noise is approximated by a smooth process this often leads to Stratonovich

interpretations of stochastic integrals, at least in one dimension. We use multiscale

analysis to illustrate this phenomenon by means of a simple example. Consider the

equations

dx

dt
=

1

ε
f(x)y,

dy

dt
= −αy

ε2
+

√
2α

ε2

dV

dt
, (11.7.10)

with V being a standard one-dimensional Brownian motion.

Assume for simplicity that y(0) = 0. Then

E(y(t)y(s)) = e−
α

ε2 |t−s|

and, consequently,

lim
ε→0

E

(
y(t)

ε

y(s)

ε

)
=

2

α
δ(t− s),

which implies the heuristic

lim
ε→0

y(t)

ε
=

√
2

α

dV

dt
. (11.7.11)

Another way of seeing this is by solving (11.7.10) for y/ε:

y

ε
=

√
2

α

dV

dt
− ε

α

dy

dt
. (11.7.12)

If we neglect the O(ε) term on the right-hand side, then we arrive, again, at the

heuristic (11.7.11).

Both of these arguments lead us to conjecture a limiting equation of the form

dX

dt
=

√
2

α
f(X)

dV

dt
. (11.7.13)

We will show that, as applied, the heuristic gives the incorrect limit: this is because,

in one dimension, whenever white noise is approximated by a smooth process, the

limiting equation should be interpreted in the Stratonovich sense, giving

dX

dt
=

√
2

α
f(X) ◦ dV

dt
(11.7.14)

in this case. We now derive this limit equation by the techniques introduced in this

chapter.

The cell problem is

−L0Φ(x, y) = f(x)y
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with L0 given by (11.7.3). The solution is readily seen to be

Φ(x, y) =
1

α
f(x)y, ∇xΦ(x, y) =

1

α
f ′(x)y.

The invariant density is

ρ∞(y) =
1√
2π

exp
(
−y2

2

)
,

which is in the null space of L∗
0 and corresponds to a standard unit GaussianN (0, 1)

random variable.

From Equation (11.3.2) we have

F (x) =

∫

R

1

α
f ′(x)f(x)y2ρ∞(y)dy

=
1

α
f ′(x)f(x).

Also (11.3.3) gives

A(x)2 =

∫

R

2

α
f(x)2y2ρ∞(y)dy

=
2

α
f(x)2.

The limiting equation is therefore the Itô SDE

dX

dt
=

1

α
f ′(X)f(X) +

√
2

α
f(X)

dV

dt
.

This is the Itô form of (11.7.14), by Remark 6.2. Hence, the desired result is estab-

lished.

11.7.4 Stokes’ Law

The previous example may be viewed as describing the motion of a massless particle

with position x in a velocity field proportional to f(x)y, with y an OU process. If

the particle has mass m then it is natural to study the generalized equation

m
d2x

dt2
=

1

ε
f(x)y − dx

dt
, (11.7.15a)

dy

dt
= −αy

ε2
+

√
2α

ε2

dV

dt
. (11.7.15b)

(Note that setting m = 0 gives the previous example.) Equation (11.7.15a) is Stokes’

law, stating that the force on the particle is proportional to a drag force,

1

ε
f(x)y − dx

dt
,
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which is equal to the difference between the fluid velocity and the particle velocity.

As in the previous example, y is a fluctuating OU process. For simplicity we consider

the case of unit mass, m = 1.
Using the heuristic argument from the previous section it is natural to conjecture

the limiting equation

d2X

dt2
=

√
2

α
f(X)

dV

dt
− dX

dt
. (11.7.16)

In contrast to the previous application, the conjecture that this is the limiting equa-

tion turns out to be correct. The reason is that, here, x is smoother and the Itô and

Stratonovich integrals coincide; there is no Itô correction to the Stratonovich inte-

gral. (To see this it is necessary to first write (11.7.16) as a first-order system; see

Exercise 2a). We verify the result by using the multiscale techniques introduced in

this chapter.

We first write (11.7.15) as the first-order system

dx

dt
= r,

dr

dt
= −r +

1

ε
f(x)y,

dy

dt
= − 1

ε2
αy +

1

ε

√
2α

dV

dt
.

Here (x, r) are slow variables (x in (11.2.1)) and y the fast variables (y in (11.2.1)).

The cell problem is now given by

L0Φ(x, r, y) = −f0(x, r, y) =
( 0
−f(x)y

)
,

with L0 given by (11.7.3). The solution is

Φ(x, r, y) =
( 0

1
αf(x)y

)
, ∇(x,r)Φ(x, y) =

( 0 0
1
αf ′(x)y 0

)
.

Notice that f0 is in the null space of ∇(x,r)Φ, and hence (11.3.2) gives

F (X,R) = F1(X,R) =
(

R
−R

)
. (11.7.17)

From (11.3.3) we have

A(X,R)A(X,R)T =

∫

R

2
( 0 0

0 1
αf(X)2y2

)
ρ∞(y)dy.

Recall that ρ∞(y) is the density of anN (0, 1) Gaussian random variable. Evaluating

the integral gives

A(X,R)A(X,R)T =
( 0 0

0 2
αf(X)2

)
.
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Hence a natural choice for A(x) is

A(X,R) =

(
0√

2
αf(X)

)
.

Thus from (11.7.17) and (11.7.18) we obtain the limiting equation

dX

dt
= R,

dR

dt
= −R +

√
2

α
f(X)

dW

dt
,

which, upon elimination of R, is seen to coincide with the conjectured limit (11.7.16).

11.7.5 Green–Kubo Formula

In the previous application we encountered the equation of motion for a particle with

significant mass, subject to Stokes drag. Here we study the same equation of motion,

but where the velocity field is steady. We also assume that the particle is subject to

molecular diffusion. The equation of motion is thus

d2x

dt2
= f(x)− dx

dt
+ σ

dU

dt
. (11.7.18)

Here U is a standard unit Brownian motion. We will study the effective diffusive

behavior of the particle x on large length and time scales, under the assumption that

f(x) is a mean zero periodic function. We show that, on appropriate large length and

time scales, the particle performs an effective Brownian motion, and we calculate its

diffusion coefficient.

To this end we rescale the equation of motion by setting x→ x/ε and t→ t/ε2

to obtain

ε2 d
2x

dt2
=

1

ε
f
(x

ε

)
−dx

dt
+ σ

dU

dt
.

Introducing the variables y = εdx/dt and z = x/ε we obtain the system

dx

dt
=

1

ε
y,

dy

dt
= − 1

ε2
y +

1

ε2
f(z) +

σ

ε

dW

dt
,

dz

dt
=

1

ε2
y.

The process (y, z) is ergodic, with characteristic time scale ε2, and plays the role of

y in (11.2.1); x plays the role of x in (11.2.1). The operator L0 is the generator of

the process (y, z). Furthermore

f1(x, y, z) = 0, f0(x, y, z) = y.
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Thus, since the evolution of (y, z) is independent of x, Φ(x, y, z), the solution of the

cell problem, is also x−independent. Hence (11.3.2) gives F (x) = 0. Turning now

to the effective diffusivity we find that, since α(x, y) = A(x, y) = 0, (11.3.3) gives

A(x)2 = A0(x). Now define ψt(y, z) to be the component of ϕt(y, z) projected onto

the y coordinate. By Result 11.7 we have that

A0(x) = 2

∫ ∞

0

(
lim

T→∞

1

T

∫ T

0

ψs(y)ψs+t(y)ds
)
dt.

The expression

C(t) = lim
T→∞

1

T

∫ T

0

ψs(y)ψs+t(y)ds

is the velocity autocorrelation function. Thus the effective equation is

dX

dt
=
√

2D
dW

dt
,

a Brownian motion with diffusion coefficient

D =

∫ ∞

0

C(t)dt.

Thus, the effective diffusion coefficient is given by the integrated velocity autocor-

relation. This is an example of the Green–Kubo formula.

11.7.6 Neither Itô nor Stratonovich

We again use Stokes’ law (11.7.15a), now for a particle of small mass m = τ0ε
2

where τ0 = O(1), and neglecting molecular diffusion. If we also assume that the

velocity field of the underlying fluid is of the form 1
εf(x)η where η solves an SDE,

then we obtain

τ0ε
2 d

2x

dt2
= −dx

dt
+

1

ε
f(x)η, (11.7.19a)

dη

dt
=

1

ε2
g(η) +

1

ε

√
2σ(η)

dW

dt
. (11.7.19b)

We interpret equations (11.7.19b) in the Itô sense. We assume that g(η), σ(η) are

such that there exists a unique stationary solution of the Fokker-Planck equation for

(11.7.19b), so that η is ergodic.

We write (11.7.19) as a first-order system,

dx

dt
=

1

ε
√
τ0

v,

dv

dt
=

f(x)η

ε2
√
τ0
− v

τ0ε2
,

dη

dt
=

g(η)

ε2
+

√
2σ(η)

ε

dW

dt
.

(11.7.20)
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Equations (11.7.20) are of the form (11.2.1) and, under the assumption that the fast

process (v, η) is ergodic, the theory developed in this chapter applies. In order to

calculate the effective coefficients we need to solve the stationary Fokker–Planck

equation

L∗
0ρ(x, v, η) = 0

and the cell problem

−L0h =
v√
τ0

, (11.7.21)

where

L0 = g(η)
∂

∂η
+ σ(η)

∂2

∂η2
+

(
f(x)η√

τ0
− v

τ0

)
∂

∂v
.

Equation (11.7.21) can be simplified considerably: we look for a solution of the form

h(x, v, η) =
(√

τ0 v + f(x)ĥ(η)
)
. (11.7.22)

Substituting this expression in the cell problem we obtain, after some algebra, the

equation

−Lηĥ = η.

Here Lη denotes the generator of η. We assume that the unique invariant measure

for η(t) has density ρη(η) with respect to Lebesgue measure; the centering condition

that ensures the well-posedness of the Poisson equation for ĥ is
∫

R

ηρη(η) dη = 0.

We assume that this holds. The homogenized SDE is

dX

dt
= F (X) +

√
D(X)

dW

dt
, (11.7.23)

where

F (x) :=

∫

R2

(
v√
τ0

ĥ(η)f ′(x)

)
ρ(x, v, η) dvdη

and

D(x) := 2

∫

R2

(
v2 +

v√
τ0

ĥ(η)f(x)

)
ρ(x, v, η) dvdη.

In the case where η(t) is the Ornstein–Uhlenbeck process,

dη

dt
= − α

ε2
η +

√
2λ

ε2

dW

dt
, (11.7.24)

we can compute the homogenized coefficients D(X) and B(X) explicitly. The ef-

fective SDE is

dX

dt
=

λ

α2(1 + τ0α)
f(X)f ′(X) +

√
2λ

α2
f(X)

dW

dt
. (11.7.25)
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Note that in the limit τ0 → ∞ we recover the Itô stochastic integral, as in Sub-

section 11.7.4, whereas in the limit τ0 → 0 we recover the Itô interpretation of the

Stratonovich stochastic integral as in Subsection 11.7.3. For τ0 ∈ (0,∞) the limiting

equation is of neither the Itô nor the Stratonovich form. In fact, Equation (11.7.25)

can be written in the form

X(t) = x0 +

∫ t

0

2λ

α2
f(X)◦̂dW (t),

where the definition of the stochastic integral through Riemann sums depends on the

value of τ0. The fact that we recover this interesting limit is very much tied to the

scaling of the mass as O(ε2). This scaling ensures that the time scale of the ergodic

process η and the relaxation time of the particle are the same. Resonance between

these time scales gives the desired effect.

11.7.7 The Lévy Area Correction3

In Section 11.7.3 we saw that smooth approximation to white noise in one dimension

leads to the Stratonovich stochastic integral. This is not true in general, however, in

the multidimensional case: an additional drift can appear in the limit. This extra drift

contribution is related to the properties of the Lévy area of the limit process (see the

discussion in Section 11.8).

Consider the fast–slow system

ẋ1 =
1

ε
y1, (11.7.26a)

ẋ2 =
1

ε
y2, (11.7.26b)

ẋ3 =
1

ε
(x1y2 − x2y1) , (11.7.26c)

ẏ1 = − 1

ε2
y1 − α

1

ε2
y2 +

1

ε
Ẇ1, (11.7.26d)

ẏ2 = − 1

ε2
y2 + α

1

ε2
y1 +

1

ε
Ẇ2, (11.7.26e)

where α > 0. Here W1,W2 are standard independent Brownian motions.

Notice that Equations (11.7.26d) and (11.7.26e) may be written in the form

ẏ = − 1

ε2
y +

1

ε2
αJy +

1

ε
Ẇ ,

where y = (y1, y2), W = (W1, W2), and J is the antisymmetric (symplectic)

matrix

J =
( 0 −1

1 0.

)
.

3 This section was written in collaboration with M. Hairer.
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Applying the heuristic that

y ≈ ε(I − αJ)−1 dW

dt

leads to the conjectured limiting equations

ẋ1 =
1

1 + α2

(
Ẇ1 − αẆ2

)
, (11.7.27a)

ẋ2 =
1

1 + α2

(
Ẇ2 + αẆ1

)
, (11.7.27b)

ẋ3 =
1

1 + α2

(
(αx1 − x2)Ẇ1 + (αx2 + x1)Ẇ2

)
. (11.7.27c)

We know from Subsections 11.7.3 and 11.7.6 that we must take care in conjectur-

ing such a limit as typically smooth approximations of white noise give rise to the

Stratonovich stochastic integral. However, in this case Itô and Stratonovich coincide

so this issue does not arise. Nonetheless, the conjectured limit equation is wrong.

Multiscale techniques, as described in this chapter, lead to the correct homoge-

nized system:

ẋ1 =
1

1 + α2

(
Ẇ1 − αẆ2

)
, (11.7.28a)

ẋ2 =
1

1 + α2

(
Ẇ2 + αẆ1

)
, (11.7.28b)

ẋ3 =
1

1 + α2

(
(αx1 − x2)Ẇ1 + (αx2 + x1)Ẇ2

)
+

α

1 + α2
. (11.7.28c)

Notice the additional constant drift that appears in Equation (11.7.28c). It is the

antisymmetric part in the equation for the fast process y that is responsible for the

presence of the additional drift in the homogenized equation. In particular, when

α = 0 the homogenized equation becomes

ẋ1 = Ẇ1,

ẋ2 = Ẇ2,

ẋ3 = −x2Ẇ1 + x1Ẇ2,

which agrees with the original (in general incorrect) conjectured limit (11.7.27).

11.8 Discussion and Bibliography

The perturbation approach adopted in this chapter, and more general related ones, is

covered in a series of papers by Papanicolaou and co-workers – see [244, 241, 242,

240], building on original work of Khasminkii [165, 166]. See [155, 154, 31, 205,

244, 242, 240, 155, 154] for further material. We adapted the general analysis to the
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simple case where Y = T
d. This may be extended to, for example R

d, by working

in the appropriate functional setting; see [249, 250, 251].

The basic perturbation expansion outlined in this chapter can be rigorously jus-

tified and weak convergence of x to X proved as ε→ 0; see Kurtz [181] and Chap-

ter 18. The perturbation expansion that underlies the approach is clearly exposed

in [241]; see also [117; ch. 6; 321; 291]. Similar problems are analyzed in [27, ch.

8], by using eigenfunction expansions for the Fokker–Planck operator of the fast

process. Projection operator techniques are also often employed in the physics liter-

ature as a method for eliminating fast variables. See [117, ch. 6] and the references

therein.

Studying the derivation of effective stochastic models when the original system

is an ODE is a subject investigated in some generality in [242]. The specific ex-

ample in Section 11.7.2 relies on the ergodicity of the Lorenz equations, something

established in [318, 319]. Use of the integrated autocorrelation function to calcu-

late the effective diffusion coefficient numerically is highlighted in [322]; a different

approach to finding the effective diffusion coefficient is described in [125]. The pro-

gram described is carried out in discrete time by Beck [31], who uses a skew-product

structure to facilitate an analysis; the ideas can then be rigorously justified in some

cases. A skew-product setup is also employed in [322] and [125]. A rigorous limit

theorem for ODEs driven by a fast mixing system is proved in [225], using the large

deviation principle for dynamical systems developed in [224]. In the paper [208], the

idea that fast chaotic motion can introduce noise in slow variables is pursued for an

interesting physically motivated problem where the fast chaotic behavior arises from

the Burgers bath of [204]. Further numerical experiments on the Burgers bath are

reported in [209].

Related work can be found in [124], and similar ideas in continuous time are

addressed in [155, 154] for differential equations; however, rather than developing

a systematic expansion in powers of ε, they find the exact solution of the Fokker–

Planck equation, projected into the space X , by use of the Mori-Zwanzig formalism

[65], and then make power series expansions in ε of the resulting problem.

In Section 11.7.5 we derived a formula for the effective diffusion coefficient in

terms of the integral of the velocity autocorrelation function, giving the Green–Kubo

formula. This calculates a transport coefficient via the time integral of an autocorrela-

tion function. The Green–Kubo formula, and other transport coefficients, are studied

in many books on statistical mechanics; see, for example, [28, ch. 11, 269].

Applications of multiscale analysis to climate models, where the atmosphere

evolves quickly relative to the slow oceanic variations, are surveyed in Majda et

al. [205, 202]. Further applications to the atmospheric sciences may be found in

[206, 207]; see also [78]. Stokes’ law, Equation (11.7.15a) is a phenomenological

model for the motion of inertial particles in fluids; see [217]. Models of the form

(11.7.15), where the velocity field of the fluid in which the particles are immersed is

taken to be a Gaussian Markovian random field, were developed in [288, 289] and

analyzed further in [254]. Similar Gaussian models for passive tracers were studied

in [55, 56].
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The fact that smooth approximations to white noise in one dimension lead, in the

limit as we remove the regularization, to Stratonovich stochastic integrals (see Sec-

tion 11.7.3) is often called the Wong–Zakai theorem after [332]. Whether one should

interpret the stochastic integral in the sense of Itô or Stratonovich is usually called

the Itô-versus-Stratonovich problem. In cases where more than one fast time scale

is present, as in the example considered in Section 11.7.6, the correct interpretation

of the stochastic integral in the limiting SDE depends on the order with which we

take the limits; see [109, 280]. As was shown in Section 11.7.6, there are instances

where the stochastic integral in the limiting SDE can be interpreted in neither the Itô

nor the Stratonovich sense; see [129, 180, 255]. A similar phenomenon for the case

where the fast process is a discrete deterministic chaotic map was observed in [124].

An interesting setup to consider in this context is Stokes’ law (11.7.15) in the case

where the mass is small:

εa d
2x

dt2
=

1

ε
f(x)y − dx

dt
+ σ

dU

dt
,

dy

dt
= −αy

ε2
+

√
2α

ε2

dV

dt
.

Setting ε = 0 in the first equation, and invoking a white noise approximation for y/ε
leads to the conjecture that the limit X of x satisfies a first-order SDE. The question

then becomes the interpretation of the stochastic integral. In [180] multiscale expan-

sions are used to derive the limiting equation satisfied by x in the cases a = 1, 2,

and 3. The case a = 1 leads to the Itô equation in the limit, the case a = 3 to the

Stratonovich equation, and a = 2 to an intermediate limit between the two.

In higher dimensions smooth approximations to white noise result (in general,

and depending of the type of regularization) in an additional drift – apart from the

Stratonovich stochastic integral - which is related to the commutator between the row

vectors of the diffusion matrix; see [151]. A rigorous framework for understanding

examples such as that presented in Section 11.7.7, based on the theory of rough paths,

can be found in [198].

In this chapter we have considered equations of the form (11.2.1), where U and

V are independent Brownian motions. Frequently applications arise where the noise

in the two processes are correlated. We will cover such situations in Chapter 13,

where we study homogenization for parabolic PDEs. The structure of the linear

equations considered will be general enough to subsume the form of the backward

Kolmogorov equation, which arises from (11.2.1) when U and V are correlated –

in fact they are identical. The main change over the derivation in this chapter is that

the operator L1 has additional terms arising from the correlation in the noises; see

Exercises 5 and 1.

When writing the backward Kolmogorov equation for the full system, Equation

(11.2.2), we assumed that the initial conditions depended only on the slow variable x.

This assumption simplifies the analysis but is not necessary. If the initial condition

is a function of both x and y, then an initial (or boundary) layer appears that has

to be resolved. This can be achieved by adding appropriate terms in the two–scale
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expansion that decay exponentially fast in time. This is done in [336] for continuous-

time Markov chains and in [167] for SDEs. In this case the initial conditions for the

homogenized SDE are obtained by averaging the initial conditions of the original

SDE with respect to the invariant measure of the fast process.

In this chapter we have studied homogenization for finite-dimensional stochastic

systems. Similar results can be proved for infinite-dimensional stochastic systems,

SPDEs. See [40] for an application of the techniques developed in this chapter to the

stochastic Burgers equation.

The use of the representations in Result 11.1 is discussed in [241]. The represen-

tations in Results 11.7 and 11.6 for the effective drift and diffusion can be used in the

design of coarse time-stepping algorithms; see [322]. In general, the presence of two

widely separated characteristic time scales in the SDEs (11.2.1) renders their numer-

ical solution a formidable task. New numerical methods have been developed that

aim at the efficient numerical solution of such problems. In the context of averaging

for Hamiltonian systems the subject is described in [116]; the subject is revisited,

in a more general setting, in [93]. Many of these methods exploit the fact that for

ε sufficiently small the solution of (11.2.1a) can be approximated by the solution

of the homogenized Equation (11.3.6). The homogenized coefficients are computed

through formulae of the form (11.6.3) or (11.6.1), integrating Equation (11.2.1b)

over short time intervals; see [322, 81, 84, 123]. An ambitious program to numeri-

cally compute a subset of variables from a (possibly stochastic) dynamical system

is outlined in [162]; this approach does not use scale separation explicitly and finds

application in a range of different problems; see [163, 164, 149, 30, 190, 278, 334].

Numerical methods for multiscale problems are overviewed in [83]. For work on pa-

rameter estimation for multiscale SDEs see [258]. For other (partly computational)

work on dimension reduction in stochastic systems see [59, 148, 273].

11.9 Exercises

1. Find the homogenized equation for the SDEs

dx

dt
=

1

ε
f0(x, y) + f1(x, y) + α0(x, y)

dU

dt
+ α1(x, y)

dV

dt
, x(0) = x0,

dy

dt
=

1

ε2
g(x, y) +

1

ε
g1(x, y) +

1

ε
β(x, y)

dV

dt
, y(0) = y0,

assuming that f0 satisfies the centering condition and that U and V are indepen-

dent Brownian motions.

2. a. Let Y denote either T
d or R

d. What is the generator L for the process y ∈ Y
given by

dy

dt
= g(y) +

dV

dt
?

In the case where g(y) = −∇Ψ(y) find a function in the null space of L∗.
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b. Find the homogenized SDE arising from the system

dx

dt
=

1

ε
f(x, y),

dy

dt
=

1

ε2
g(y) +

1

ε

dV

dt
,

in the case where g = −∇Ψ(y).
c. Define the cell problem, giving appropriate conditions to make the solution

unique in the case Y = T
d. State clearly any assumptions on f that are re-

quired in the preceding derivation.

3. Use the Itô formula to derive the solution to the SDE (11.7.4). Convert this SDE

into Stratonovich form. What do you observe?

4. a. Let Y be either T
d or R

d. Write down the generator L0 for the process y ∈ Y
given by:

dy

dt
= g(y) +

dV

dt
.

In the case where g is divergence-free, find a function in the null space of L∗
0.

b. Find the averaged SDE arising from the system

dx

dt
= f(x, y),

dy

dt
=

1

ε
g(y) +

1√
ε

dV

dt
,

in the case where g is divergence-free.

c. Find the homogenized SDE arising from the system

dx

dt
=

1

ε
f(x, y),

dy

dt
=

1

ε2
g(y) +

1

ε

dV

dt
,

in the case where g is divergence-free.

d. Define the cell problem, giving appropriate conditions to make the solution

unique in the case Y = T
d. Clearly state any assumptions on f that are re-

quired in the preceding derivation.

5. Consider the equation of motion

dx

dt
= f(x) + σ

dW

dt
,

where f(x) is divergence-free and periodic with mean zero. It is of interest to

understand how x behaves on large length and time scales. To this end, rescale

the equation of motion by setting x→ x/ε and t→ t/ε2 and introduce y = x/ε.

Write down a pair of coupled SDEs for x and y. Use the methods developed in

Exercise 1 to enable elimination of y to obtain an effective equation for x.
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6. Carry out the analysis presented in Section 11.7.6 in arbitrary dimensions. Does

the limiting equation have the same structure as in the one-dimensional case?

7. Derive Equation (11.7.25) from (11.7.23) when η(t) is given by (11.7.24).

8. (The Kramers to Smoluchowski limit) Consider the Langevin equation

ε2 d
2x

dt2
= b(x)− dx

dt
+
√

2σ
dW

dt
, (11.9.1)

where the particle mass is assumed to be small, m = ε2.

a. Write (11.9.1) as a first-order system by introducing the variable y = εẋ.

b. Use multiscale analysis to show that, when ε ≪ 1 the solution of (11.9.1) is

well approximated by the solution of the Smoluchowski equation

dX

dt
= b(X) +

√
2σ

dW

dt
.

c. Calculate the first correction to the Smoluchowski equation.

9. Write Equations (11.7.16) as a first-order system and show that the Itô and

Stratonovich forms of the equation coincide.
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Homogenization for Elliptic PDEs

12.1 Introduction

In this chapter we use multiscale expansions to study the problem of homogenization

for second-order uniformly elliptic PDEs in divergence form. At a purely formal

level the calculations used to derive the homogenized equations are very similar to

those used in the previous chapter to study homogenization for SDEs. The primary

difference is that there is no time dependence in the linear equations that we study.

In Section 12.2 we present the boundary value problem studied in this chapter.

Section 12.3 contains the simplified (homogenized) equations, and their derivation

is given in Section 12.4. Section 12.5 studies the structure of the simplified equation,

showing that it inherits ellipticity from the original equation. In Section 12.6 we

describe two applications of the theory, both explicitly solvable, a one-dimensional

example and a two-dimensional layered material.

12.2 Full Equations

We study uniformly elliptic PDEs in divergence form, with Dirichlet boundary con-

ditions:

−∇ ·
(
Aε∇uε

)
= f for x ∈ Ω, (12.2.1a)

uε = 0 for x ∈ ∂Ω. (12.2.1b)

Here uε = uε(x) is an unknown scalar field, to be determined, Aε = A(x/ε) a

given matrix field and f = f(x) a given scalar field. Unlike the problems in the

previous four chapters, there are not two different explicit variables x and y. We will

introduce y = x/ε to create a setting similar to that in the previous chapters. Our

goal is then to derive a homogenized equation in which y is eliminated, in the limit

ε→ 0. Furthermore, we study various properties of the homogenized coefficients.

We take Ω ⊂ R
d, open, bounded with smooth boundary. We will assume that the

matrix-valued function A(y) is smooth, 1–periodic, and uniformly positive definite.
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This assumption implies that the differential operator that appears on the left-hand

side of (12.2.1a) is uniformly elliptic (see Chapter 7). Furthermore, we take the func-

tion f(x) to be smooth and independent of ε. To summarize, we make the following

assumptions:

f ∈ C∞(Rd,R); (12.2.2a)

A ∈ C∞
per(T

d,Rd×d); (12.2.2b)

∃α > 0 : 〈ξ,A(y)ξ〉 � α|ξ|2, ∀ y ∈ T
d ∀ ξ ∈ R

d. (12.2.2c)

Notice that our assumptions on A imply that Aε ∈M(α, β,Ω) for some appropriate

β and α independent of ε. The regularity assumptions are more stringent than is

necessary; we make them at this point in order to carry out the formal calculations

that follow. Allowing minimal regularity assumptions is an important issue, however:

in many applications one expects that the coefficient A(y) will have jumps when

passing from one material phase to the other. Our proofs of homogenization theorems

in Chapter 19 will weaken the regularity assumptions we make here.

Let A0 = −∇y · (A∇y) equipped with periodic boundary conditions on the unit

torus and with A = A(y). This operator will play a central role in the following.

It was studied in Example 7.12; there it was shown that it has a one-dimensional

null space, comprising constants in y. Furthermore, use of the Fredholm alternative

shows that the Poisson equation

A0v = h, v is 1-periodic, (12.2.3)

has a solution if and only if ∫

Td

h(y)dy = 0. (12.2.4)

The solution is unique up to an additive constant. Among all solutions of (12.2.3)

which satisfy the solvability condition we will choose the unique solution whose

integral over T
d vanishes:

A0v = h, v is 1-periodic,

∫

Td

v(y) dy = 0.

Equations of the form (12.2.3) will play a central role in what follows.

12.3 Simplified Equations

Define the effective diffusion tensor by the formula

A =

∫

Td

(
A(y) + A(y)∇χ(y)T

)
dy (12.3.1)

where the vector field χ : T
d → R

d satisfies the cell problem

−∇y ·
(
∇yχA

T
)

= ∇y ·AT , χ is 1-periodic. (12.3.2)
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Result 12.1. For 0 < ε ≪ 1 the solution uε of Equation (12.2.1) is approximately

given by the solution u of the homogenized equation

−∇ ·
(
A∇u

)
= f for x ∈ Ω, (12.3.3a)

u = 0 for x ∈ ∂Ω. (12.3.3b)

Notice that the field χ is determined up to a constant vector. However, since only

∇yχ enters into the formula for the homogenized matrix A appearing in the homog-

enized equation, the value of this constant is irrelevant. For definiteness, however,

we work with the unique solution χ found by imposing the normalization

∫

Td

χ(y)dy = 0. (12.3.4)

The cell problem can be written in an alternative, sometimes useful, form by

writing an equation for each component of χ:

A0χℓ = ∇y · aℓ, ℓ = 1, . . . , d , (12.3.5)

where aℓ = Aeℓ, ℓ = 1, . . . , d, and {eℓ}d
ℓ=1 is the standard basis on R

d. Thus aℓ is

the ℓth column of A.

Remark 12.2. Since the Hessian ∇x∇xu is symmetric, it follows from property

(2.2.2) applied to (12.3.1) that the following expression for A is equally valid:

A =

∫

Td

(
A(y)T +∇yχ(y)A(y)T

)
dy.

Indeed this expression and (12.3.1) may be combined (for example, averaged) to

obtain other equally valid expressions for A (for example, symmetric). ⊓⊔

12.4 Derivation

Since a small parameter ε appears in Equation (12.2.1), it is natural to look for a

solution in the form of a power series expansion in ε:

uε = u0 + εu1 + ε2u2 + . . . .

The basic idea behind the method of multiple scales is to assume that all terms in

the expansion depend explicitly on both x and y = x/ε. Furthermore, since the co-

efficients of our PDE are periodic functions of x/ε it is reasonable to require that all

terms in the expansion are periodic functions of x/ε. Hence, we assume the follow-

ing ansatz for the solution uε:

uε(x) = u0

(
x,

x

ε

)
+ ε u1

(
x,

x

ε

)
+ ε2 u2

(
x,

x

ε

)
+ . . . , (12.4.1)
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where uj(x, y), j = 0, 1, . . . , are periodic in y.

The variables x and y = x/ε represent the ”slow” (macroscopic) and ”fast”

(microscopic) scales of the problem, respectively. For ε ≪ 1 the variable y changes

much more rapidly than x, and we can think of x as being a constant when looking at

the problem at the microscopic scale. This is where scale separation is exploited: we

will treat x and y as independent variables. Justifying the validity of this assumption

as ε → 0 is one of the main issues in the rigorous theory of homogenization; see

Chapter 19.

The fact that y = x/ε implies that the partial derivatives with respect to x become

∇ → ∇x +
1

ε
∇y.

In other words, the total derivative of a function gε(x) := g
(
x, x

ε

)
can be expressed

as

∇gε(x) = ∇xg(x, y)
∣∣∣
y= x

ε

+
1

ε
∇yg(x, y)

∣∣∣
y= x

ε

,

where the notation h(x, y)|y=z means that the function h(x, y) is evaluated at y = z.

We use the preceding to rewrite the differential operator

Aε := −∇ · (A(y)∇)

in the form

Aε =
1

ε2
A0 +

1

ε
A1 +A2, (12.4.2)

where

A0 := −∇y · (A(y)∇y) , (12.4.3a)

A1 := −∇y · (A(y)∇x)−∇x · (A(y)∇y) , (12.4.3b)

A2 := −∇x · (A(y)∇x) . (12.4.3c)

Notice that the coefficients in all the operators defined here are periodic functions of

y. We equip A0 with periodic boundary conditions on T
d.

Equation (12.2.1) becomes, on account of (12.4.2),

(
1

ε2
A0 +

1

ε
A1 +A2

)
uε = f for (x, y) ∈ Ω × T

d, (12.4.4a)

uε = 0 for (x, y) ∈ ∂Ω × T
d. (12.4.4b)

We substitute (12.4.1) into (12.4.4) to deduce:

1

ε2
A0u0 +

1

ε
(A0u1 +A1u0) + (A0u2 +A1u1 +A2u0) +O(ε) = f. (12.4.5)

We equate coefficients of equal powers of ε to zero in the preceding equation and

disregard all terms of order higher than 1 to obtain the following sequence of prob-

lems:
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O(1/ε2) A0u0 = 0, (12.4.6a)

O(1/ε) A0u1 = −A1u0, (12.4.6b)

O(1) A0u2 = −A1u1 −A2u0 + f. (12.4.6c)

Here uj(x, y) are 1-periodic in their second argument.

Notice that A0 is a differential operator in y and that x appears in Equations

(12.4.6b) and (12.4.6c) merely as a parameter. From (12.4.6a) we deduce that

u0(x, y) = u(x); thus the first term in the multiscale expansion is independent of

y. The remaining two equations are of the form (12.2.3) with v = v(x, y) and simi-

larly h = h(x, y); thus x enters as a parameter.

Let us proceed now with (12.4.6b), which becomes

A0u1 =
(
∇y ·AT

)
· ∇xu, u1(x, ·) is 1-periodic,

∫

Td

u1 dy = 0. (12.4.7)

The solvability condition (12.2.4) is satisfied because
∫

Td

(
∇y ·AT

)
· ∇xu dy = ∇xu ·

∫

Td

∇y ·AT dy

= 0,

by the divergence theorem and periodicity of A(·); see Remark 7.13. We seek a

solution of (12.4.7) using separation of variables:

u1(x, y) = χ(y) · ∇xu(x). (12.4.8)

Upon substituting (12.4.8) into (12.4.7) we obtain the cell problem (12.3.2) for the

vector field χ(y). The field χ(y) is called the first-order corrector. Notice that the

periodicity of the coefficients implies that the right-hand side of Equation (12.3.2)

averages to zero over the unit cell, and consequently the cell problem is well posed.

We ensure the uniqueness of solutions to (12.3.2) by requiring the corrector field to

have zero average – condition (12.3.4).

Now we consider Equation (12.4.6c). By (12.2.4) we see that, in order for this

equation to be well posed, it is necessary and sufficient for the right-hand side to av-

erage to zero over T
d. Since we have assumed that the function f(x) is independent

of y, the solvability condition implies:
∫

Td

(A2u0 +A1u1) dy = f. (12.4.9)

The first term on the left-hand side of Equation 12.4.9 is
∫

Td

A2u0 dy =

∫

Td

−∇x · (A(y)∇xu) dy

= −∇x ·
[(∫

Td

A(y) dy

)
∇xu(x)

]

= −
(∫

Td

A(y) dy

)
: ∇x∇xu(x). (12.4.10)
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Moreover
∫

Td

A1u1 dy =

∫

Td

(
−∇y · (A(y)∇xu1)−∇x · (A(y)∇yu1)

)
dy

=: I1 + I2.

The first term I1 = 0 by periodicity and Remark 7.13. Now we consider I2:

I2 =

∫

Td

−∇x · (A(y)∇yu1) dy

= −
∫

Td

A(y) : ∇x∇y (χ · ∇xu) dy

= −
(∫

Td

(A(y)∇yχ(y)T ) dy

)
: ∇x∇xu. (12.4.11)

We substitute (12.4.11) and (12.4.10) in (12.4.9) to obtain the homogenized equation

of Result 12.1, where the homogenized coefficient A is given by the formula (12.3.1).

This completes the derivation.

12.5 Properties of the Simplified Equations

In this section we study some basic properties of the effective coefficients. In particu-

lar, we show that the matrix of homogenized coefficients A is positive definite, which

implies that the homogenized differential operator is uniformly elliptic and that, con-

sequently, the homogenized equation is well posed. Furthermore, we show that sym-

metry is preserved under homogenization: the homogenized matrix is symmetric if

A(y) is. We also show that the homogenization process can create anisotropies: even

if the matrix A(y) is diagonal, the matrix of homogenized coefficients A need not

be.

In order to study the matrix of homogenized coefficients, it is useful to find an

alternative representation for A. To this end, we introduce the bilinear form

a1(ψ, φ) =

∫

Td

〈∇yφ,A(y)∇yψ〉 dy, (12.5.1)

defined for all functions φ, ψ ∈ C1(Td). Notice that this is the bilinear form associ-

ated with the operator A0, in the sense that

∫

Td

φA0ψ dy = a1(φ, ψ) ∀φ, ψ ∈ C1
per(T

d). (12.5.2)

Note that, whenever A is symmetric, so is the bilinear form a1(·, ·). We start by ob-

taining an alternative, equivalent formulation for the cell problem. The formulation

is closely related to the weak formulation of elliptic PDEs in divergence form, in-

troduced in Chapter 7. In the rest of this section we will assume that the solution of
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the cell problem is smooth enough to justify the calculations that follow. It will be

enough to assume that each component of the corrector field χ(y) is continuously

differentiable and periodic: χℓ(y) ∈ C1
per(T

d), ℓ = 1, . . . , d.

Recall that eℓ denotes the unit vector with ith entry δil. Also let yℓ denote the ℓth
component of the vector y. Note that eℓ = ∇yyℓ and recall that aℓ = Aeℓ, the ℓth
column of A. Using these two elementary facts we can obtain the following useful

lemma.

Lemma 12.3. The cell problem (12.3.2) can be written in the form

a1(φ, χℓ + yℓ) = 0 ∀φ ∈ C1
per(T

d), ℓ = 1, . . . d. (12.5.3)

Proof. From (12.3.5) we deduce that

A0χℓ = ∇y · (Aeℓ) = ∇y · (A∇yyℓ) = −A0yℓ.

Consequently, the cell problem can be written in the form

A0(χl + yl) = 0, l = 1, . . . , d,

with periodic boundary conditions. We multiply the cell problem as formulated ear-

lier by an arbitrary function φ ∈ C1
per(T

d). Integrating over the unit cell, using

Remark 7.13, and Equations (12.5.1) and (12.5.2), we obtain (12.5.3). ⊓⊔
Using this lemma we give an alternative representation formula for the homoge-

nized coefficients. The lemma shows that A is symmetric, whenever A(y) is.

Lemma 12.4. The effective matrix A has components given by

aij = a1(χj + yj , χi + yi), i, j = 1, . . . , d. (12.5.4)

In particular, symmetry of A(y) implies symmetry of A.

Proof. Notice first that the previous lemma implies that, since χi(y) ∈ C1
per(T

d),

a1(χi, χj + yj) = 0, ∀ i, j,= 1, . . . , d. (12.5.5)

We now use formula (12.3.1), together with (12.5.5), to obtain

aij = ei ·Aej

=

∫

Y

(
ei ·Aej + ei ·A∇yχ

T ej

)
dy

=

∫

Y

(
∇yyi ·A∇yyj +∇yyi ·A∇yχj

)
dy

=

∫

Y

〈
∇yyi, A

(
∇y(yj + χj

)〉
dy

= a1(yi, χj + yj)

= a1(yi + χi, χj + yj).
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This proves (12.5.4). Assume now that A(y) = A(y)T . This implies that the bilinear

form a1(·, ·) is symmetric. Thus

aij = a1(yi + χi, χj + yj)

= a1(yj + χj , χi + yi)

= aji,

which shows that the homogenized matrix is symmetric. ⊓⊔
We now show that the homogenized matrix A is positive definite. This implies

that the homogenized equation is a well-posed elliptic PDE.

Theorem 12.5. The matrix of homogenized coefficients A is positive definite.

Proof. Let ξ ∈ R
d be an arbitrary vector. We need to show that there exists a constant

α > 0 such that

〈ξ,Aξ〉 � α|ξ|2, ∀ξ ∈ R
d.

We use the representation formula (12.5.4) to deduce that:

〈ξ,Aξ〉 = a1(w,w),

with w = ξ · (χ+y). We now use the uniform positive definiteness of A(y) to obtain

a1(w,w) � α

∫

Td

|∇yw|2 dy � 0.

Thus A is nonnegative.

To show that it is actually positive definite we argue as follows. Let us assume

that

〈ξ,Aξ〉 = 0

for some ξ. Then, since α > 0,∇yw = 0 and w = c, a constant vector; consequently

ξ · y = c− ξ · χ.

The right-hand side of this equation is 1-periodic and continuous in y and conse-

quently the left-hand side should also be. The only way this can happen is if ξ = 0.

This completes the proof of the lemma. ⊓⊔
The preceding theorem shows that uniform ellipticity is a property that is pre-

served under the homogenization procedure. In particular, this implies that the ho-

mogenized equation is well posed, since it is a uniformly elliptic PDE with constant

coefficients.

Remark 12.6. Note that homogenization does not preserve isotropy. In particular,

even if the diffusion matrix A has only diagonal nonzero elements, the homogenized

diffusion matrix A will in general have nonzero off-diagonal elements. To see this, let

us assume that aij = 0, i �= j. Then the off-diagonal elements of the homogenized

diffusion matrix are given by the formula (no summation convention here)
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aij =

∫

Td

aii
∂χj

∂yi
dy, i �= j.

This expression is not necessarily equal to zero and leads to the surprising result

that an isotropic composite material can behave, in the limit as the microstructure

becomes finer and finer, like an anisotropic homogeneous material. ⊓⊔

12.6 Applications

We present two useful illustrative examples, for which explicit solutions may be

found. Essentially, the one-dimensional case is the only general setting in which

the cell problem can be solved analytically and an explicit formula for the effective

diffusivity can be obtained. In higher dimensions, explicit formulae for the effective

diffusivities can be obtained only when the specific structure of the problem under

investigation enables us to reduce the calculation of the homogenized coefficients to

consideration of one-dimensional problems. Such a reduction is possible in the case

of layered materials, the second example that we consider.

12.6.1 The One-Dimensional Case

Let d = 1 and take Ω = [0, L]. Then the Dirichlet problem (12.2.1a) reduces to a

two-point boundary value problem:

− d

dx

(
a
(x

ε

) duε

dx

)
= f forx ∈ (0, L), (12.6.1a)

uε(0) = uε(L) = 0. (12.6.1b)

We assume that a(y) is smooth, periodic with period 1. We also assume that there

exist constants 0 < α � β <∞ such that

α � a(y) � β, ∀y ∈ [0, 1]. (12.6.2)

We also assume that f is smooth.

The cell problem becomes a boundary value problem for an ordinary differential

equation with periodic boundary conditions:

− d

dy

(
a(y)

dχ

dy

)
=

da(y)

dy
, for y ∈ (0, 1), (12.6.3a)

χ is 1-periodic,

∫ 1

0

χ(y) dy = 0. (12.6.3b)

Since d = 1 we only have one effective coefficient given by the one-dimensional

version of (12.3.1), namely
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a =

∫ 1

0

(
a(y) + a(y)

dχ(y)

dy

)
dy

=

〈
a(y)

(
1 +

dχ(y)

dy

)〉
. (12.6.4)

Here, and in the remainder of this chapter, we employ the notation

〈f(y)〉 :=

∫

Td

f(y) dy,

for the average over T
d.

Equation (12.6.3a) can be solved exactly. Integration from 0 to y gives

a(y)
dχ

dy
= −a(y) + c1. (12.6.5)

The constant c1 is undetermined at this point. The inequality (12.6.2) allows us to

divide (12.6.5) by a(y) since it implies that a is strictly positive. We then integrate

once again from 0 to y to deduce:

χ(y) = −y + c1

∫ y

0

1

a(y)
dy + c2.

In order to determine the constant c1 we use the fact that χ(y) is a periodic function.

Thus χ(0) = χ(1), and we deduce that

c1 =
1

∫ 1

0
1

a(y) dy
= 〈a(y)−1〉−1.

Thus, from (12.6.5),

1 +
dχ

dy
=

1

〈a(y)−1〉a(y)
.

(Notice that c2 is not required for the calculation of a.) We substitute this expression

into Equation (12.6.4) to obtain

a = 〈a(y)−1〉−1. (12.6.6)

This is the formula that gives the homogenized coefficient in one dimension. It shows

clearly that, even in this simple one-dimensional setting, the homogenized coefficient

is not found by simply averaging the unhomogenized coefficients over a period of the

microstructure. Rather, the homogenized coefficient is the inverse of the average of

the inverse of the unhomogenized coefficient – the harmonic average. It is quite easy

to show that the homogenized coefficient, which is given by the harmonic average

(12.6.6), is bounded from above by the average of a(y); see Exercise 12.
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12.6.2 Layered Materials

We consider problem (12.2.1), with assumptions (12.2.2) satisfied, in two dimen-

sions. We assume that the domain Ω ⊂ R
2 represents a layered material: the prop-

erties of the material change only in one direction. Hence, the coefficients A(y) are

functions of one variable: for y = (y1, y2)
T we have

aij = aij(y1), i, j = 1, 2. (12.6.7)

The fact that the coefficients are functions of y1 implies the right-hand side of the

cell problem (12.3.2) is a function of y1 alone. As a consequence, the solution of the

cell problem is also a function of y1 alone and takes the form

χℓ = χℓ(y1), ℓ = 1, 2. (12.6.8)

Upon substituting this into (12.3.2) we conclude that the cell problem becomes

− d

dy1

(
a11(y1)

dχℓ(y1)

dy1

)
=

da1ℓ(y1)

dy1
, ℓ = 1, 2 (12.6.9)

with periodic boundary conditions. Similarly, the formula for the homogenized co-

efficients (12.3.1) becomes:

aij =

∫ 1

0

(
aij(y1) + ai1(y1)

dχj(y1)

dy1

)
dy1, i, j = 1, 2. (12.6.10)

Let us now solve Equations (12.6.9). These are ordinary differential equations, and

we can solve them in exactly the same way that we solved the one-dimensional prob-

lems in the preceding subsection. To this end, we integrate from 0 to y and divide

through by a11(y1) to obtain

dχℓ

dy1
= −a1ℓ

a11
+ c1

1

a11
, ℓ = 1, 2 (12.6.11)

where the constant c1 is to be determined. We have to consider the cases ℓ = 1 and

ℓ = 2 separately. We start with ℓ = 1. In this case, the equation simplifies to

dχ1

dy1
= −1 + c1

1

a11
,

which is precisely the equation that we considered in Section 12.6.1. Thus, we have:

dχ1

dy1
= −1 +

1

〈a11(y)−1〉a11(y)
. (12.6.12)

Now we consider Equation (12.6.11) for the case ℓ = 2:

dχ2

dy1
= −a12

a11
+ c1

1

a11
.
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We integrate the equation once again and then determine the coefficient c1 by requir-

ing χ2(y1) to be periodic. The final result is

dχ2(y1)

dy1
= −a12(y1)

a11(y1)
+
〈a12(y1)/a11(y1)〉

〈a−1
11 (y1)〉

1

a11(y1)
. (12.6.13)

Now we can compute the homogenized coefficients. We start with a11. The calcula-

tion is the same as in the one-dimensional case:

a11 = 〈a11(y1)
−1〉−1. (12.6.14)

We proceed with the calculation of a12. We substitute (12.6.13) into (12.6.10) with

i = 1, j = 2 to deduce:

a12 =

∫ 1

0

(
a12(y1) + a11(y1)

dχ2(y1)

dy1

)
dy

=

∫ 1

0

(
a12(y1) + a11(y1)

(
−a12(y1)

a11(y1)
+
〈a12(y1)/a11(y1)〉

〈a−1
11 (y1)〉

1

a11(y1)

))
dy

=

∫ 1

0

(
a12(y1)− a12(y1) +

〈a12(y1)/a11(y1)〉
〈a−1

11 (y1)〉

)
dy

=
〈a12(y1)/a11(y1)〉

〈a−1
11 (y1)〉

.

Hence

a12 =

〈
a12(y1)

a11(y1)

〉
〈a−1

11 (y1)〉−1. (12.6.15)

Similarly,

a21 =

〈
a21(y1)

a11(y1)

〉
〈a−1

11 (y1)〉−1. (12.6.16)

Finally we consider a22:

a22 =

∫ 1

0

(
a22(y1) + a21(y1)

dχ2(y1)

dy1

)
dy

=

∫ 1

0

(
a22(y1) + a21(y1)

(
−a12(y1)

a11(y1)
+
〈a12(y1)/a11(y1)〉

〈a−1
11 (y1)〉

1

a11(y1)

))
dy

=

∫ 1

0

(
a12(y1)−

a12(y1)a21(y1)

a11(y1)
+

a21(y1)

a11(y1)

〈a12(y1)/a11(y1)〉
〈a−1

11 (y1)〉

)
dy

=

〈
a21(y1)

a11(y1)

〉〈
a12(y1)

a11(y1)

〉
〈a−1

11 (y1)〉−1 +

〈
a22(y1)−

a12(y1)a21(y1)

a11(y1)

〉
.

Consequently:

a22 =

〈
a21(y1)

a11(y1)

〉〈
a12(y1)

a11(y1)

〉
〈a−1

11 (y1)〉−1 +

〈
a22(y1)−

a12(y1)a21(y1)

a11(y1)

〉
.

(12.6.17)
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It is evident from formulae (12.6.14), (12.6.15), (12.6.16), and (12.6.17) that the

homogenized coefficients depend on the original ones in a very complicated, highly

nonlinear way.

12.7 Discussion and Bibliography

The method of multiple scales was developed by various researchers in the 1970s

with significant contributions from Keller, Babuska, Sanchez-Palenzia, Bensoussan,

Lions, Papanicolaou, and others; see [158, 159, 26, 25, 24, 23, 91] and the references

therein. A first systematic exposition of the method of multiple scales is contained in

[33], where references to the earlier literature can be found. See also the book [279].

Rigorous convergence results for elliptic PDEs with rapidly oscillating coefficients

were proved before the development of the method of multiple scales; see [73, 296]

and the text [153]. However, the power of the method of multiple scales is its wide

applicability to a variety of differing settings. In contrast, rigorous results tend to

apply on a case-by-case basis, and their proofs differ substantially between different

PDEs and between Markov chains, ODEs, and SDEs. (See Part III of this book.)

In most cases, however, an appropriate Poisson equation (the cell problem) plays a

prominent role in the analysis.

The one-dimensional problem (see Section 12.6.1) was studied in [296], without

using the method of multiple scales. In the one-dimensional case, it is possible to de-

rive the homogenized equation using the method of multiple scales even in the non-

periodic setting; see [143, 66, ch. 5]. The homogenized equation is a second-order

uniformly elliptic PDE in the case of nonperiodic fast oscillatory coefficients. How-

ever, this result is most naturally obtained via the theory of H-and Γ -convergence,

rather than multiple-scale expansions; see [296, 308]. In the general setting of non-

periodic, deterministic, homogenization the homogenized coefficients cannot be ex-

pressed in terms of solutions to appropriate Poisson equations and there are no ex-

plicit formulae for them. In this case, the best one can hope for is to obtain bounds

on the homogenized coefficients.

The homogenized equation for layered materials (see Section 12.6.2) was derived

rigorously by Murat and Tartar without any appeal to the method of multiple scales;

see [232] and the references to the original papers therein. The two-dimensional case

that we treated in Subsection 12.6.2 can be easily extended to the d-dimensional one,

d � 2, i.e., to the case where aij(y) = aij(y1), i, j = 1, . . . , d; see [232].

The elliptic boundary value problem (12.2.1) is a Dirichlet problem. However,

an inspection of the analysis presented in Section 12.4 reveals that the boundary

conditions did not play any role in the derivation of the homogenized equation. In

particular, the two-scale expansion (12.4.1) that we used to derive the homogenized

equation did not contain any information concerning the boundary conditions of the

problem under investigation. Indeed, the boundary conditions become somewhat ir-

relevant in the homogenization procedure. Exactly the same calculations enable us to

obtain the homogenized equation for Neumann or mixed boundary conditions. This

is not surprising since the derivation of the homogenized equation is based on the
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analysis of local problems of the form (12.2.3). This local problem cannot really see

the boundary – this is the key property of scale separation.

However, the boundary conditions become very important when trying to prove

the homogenization theorem. The fact that the two-scale expansion (12.4.1) does

not satisfy the boundary conditions of our PDE exactly but, rather, only up to O(ε),
introduces boundary layers [143, ch. 3]. 1 Boundary layers affect the convergence

rate at which uε(x) converges to u(x) as ε → 0. We can solve this problem by

modifying the two-scale expansion (12.4.1), adding additional terms that take care of

the boundary layer and vanish exponentially fast as we move away from the boundary

so that they do not affect the solution in the interior. We refer to [27] for details.

The discussion in Remark 12.2 is further elaborated in [33] and in [66]. Different

expressions for the effective diffusion tensor can be useful for the proof of various

properties of the effective diffusion tensor.

From the point of view of continuum mechanics, the method of homogenization

enables us to obtain macroscopic constitutive laws for composite materials. Macro-

scopic constitutive laws have been derived using homogenization theory for various

types of composite materials. See, e.g., [46, 108]. An alternative approach is pre-

sented in [230, 133]. The theory of composite materials is presented in the excellent

monograph [229].

In the Dirichlet problem that we analyzed in Section 12.4 we assumed that the

matrix Aε(x) depends only on the microscale, i.e.,

Aε(x) = A
(x

ε

)
,

with A(y) being a 1-periodic matrix-valued function. However, the method of mul-

tiple scales is also applicable to the case where the coefficients depend explicitly on

the macroscale as well as the microscale:

Aε(x) = A
(
x,

x

ε

)
,

with A(x, y) being 1-periodic in y and smooth in x. When the coefficients have this

form they are called locally periodic or nonuniformly periodic. Analysis similar to

the one presented in Section 12.4 enables us to obtain the homogenized equation for

the Dirichlet problem

−∇ · (Aε∇uε) = f for x ∈ Ω, (12.7.1a)

uε = 0 for x ∈ ∂Ω, (12.7.1b)

where Aε(x) = A(x, x/ε). Now the homogenized coefficients A are functions of

x:

−∇ ·
(
A∇u

)
= f for x ∈ Ω (12.7.2a)

1 The presence of boundary and initial layers is a common feature in all problems of singular

perturbations. See the bibliographical discussions in other chapters from Part II and [143]

and [161], for further details.
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u = 0 for x ∈ ∂Ω, (12.7.2b)

and the cell problem is parameterized by x since A = A(x, y):

−∇y ·
(
∇yχA

T
)

= ∇y ·AT , y ∈ T
d. (12.7.3)

The homogenized coefficients are given by the formula:

A(x) =

∫

Td

(
A(x, y) + A(x, y)∇xχ(x, y)T

)
dy. (12.7.4)

We emphasize the fact that the ”macroscopic variable” x enters in the preceding

two equations as a parameter. Consequently, to compute the effective coefficients we

need to solve the cell problem (12.7.3) and evaluate the integrals in (12.7.4) at all

points x ∈ Ω.

The method of multiple scales can also be applied to semilinear elliptic PDEs

with rapidly oscillating coefficients – equations of the form

−∇ ·
(
Aε∇uε

)
= f(uε) for x ∈ Ω, (12.7.5a)

uε = 0 for x ∈ ∂Ω. (12.7.5b)

The homogenized equation takes the form

−∇ ·
(
A∇u

)
= f(u) for x ∈ Ω, (12.7.6a)

u = 0 for x ∈ ∂Ω, (12.7.6b)

with A as in (12.3.1).

In Section (12.2) we obtained the first two terms in the two-scale expansion for

the Dirichlet problem (12.2.1). The second term is proportional – up to an unknown

function of x - to the gradient of the first term in the expansion, which solves the

homogenized equation, i.e.,

u1

(
x,

x

ε

)
= χ

(x

ε

)
· ∇xu(x) + û1(x), (12.7.7)

where χ(y) solves the cell problem. We can also solve higher-order equations and

obtain higher-order terms in the two-scale expansion. For example, we can solve

Equation (12.4.6) and compute the third term in the expansion u2(x, y):

u2(x, y) = Θ(y) : ∇x∇xu(x) + û2(x) (12.7.8)

where the second-order corrector field Θ(y) is a matrix-valued function that satisfies

the boundary value problem

A0Θ = B. (12.7.9)
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Here B(y) is given by

B(y) := −A + A(y) + A(y)∇yχ(y)T +∇yχ(y)A(y) + χ(y)⊗
(
∇y ·A(y)T

)
.

All higher-order equations are of the form

A0uk+2 = −A1uk+1 −A0uk, k = 1, 2, . . . .

It turns out that uk(x) is proportional to the kth order derivatives of u(x); see [27].

The method of multiple scales can be extended to situations where there are k
length scales in the problem, i.e., when the matrix Aε(x) has the form

Aε(x) = A
(x

ε
,
x

ε2
, . . . ,

x

εk

)
,

and A is 1-periodic in all of its arguments. This is known as reiterated homoge-

nization [33, sec. 1.8]. A rigorous analysis of reiterated homogenization in a quite

general setting is presented in [8]. Reiterated homogenization has recently found ap-

plications in the problem of advection and diffusion of passive tracers in fluids. See,

for example, [253, 219, 220] for details. When there are infinitely many scales in the

problem, without a clear separation, the homogenization result breaks down, in the

sense that the homogenized coefficient can be 0; see [16].

In general it is not possible to compute the homogenized coefficients analytically;

indeed, their calculation requires the solution of the cell problem and the calculation

of the integrals in (12.3.1). In most cases this can be done only numerically. It is

possible, however, to obtain bounds on the magnitude of the effective coefficients.

Various tools for obtaining bounds have been developed; for example, it is possible

to obtain a variational characterization of the homogenized coefficients. We refer

to [229, 311, 107] for various results in this direction. Many of these techniques

apply to the nonperiodic setting.

The method developed in this chapter readily extends to intial/boundary value

problems such as the following parabolic PDE:

∂uε

∂t
−∇ · (Aε∇uε) = fε in Ω × (0, T ), (12.7.10a)

uε = 0 on ∂Ω × (0, T ) (12.7.10b)

uε = uin(x) in Ω × {0} (12.7.10c)

under various assumptions concerning the ε dependence in Aε and fε. A time-

dependent situation of interest arises when the coefficients of the evolution PDE

oscillate in time as well as space, i.e., Aε = A
(
x/ε, t/εk

)
, k > 0 with the matrix-

valued function A(y, τ) being 1-periodic in both y and τ . This means that we have

to introduce two fast variables: y = x/ε and τ = t/εk. More information on ho-

mogenization for evolution equations with space-time-dependent coefficients can be

found in [33, ch. 3]. We study homogenization for parabolic PDEs using the method

of multiple scales in Chapters 11, 13, and 14.
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One can also study the problem of homogenization for hyperbolic (wave) equa-

tions:
∂2uε

∂t2
−∇ · (Aε∇uε) = f in Ω × (0, T ), (12.7.11a)

uε = 0 on ∂Ω × (0, T ), (12.7.11b)

uε = uin in Ω × {0}, (12.7.11c)

∂uε

∂t
= vin(x) in Ω × {0}. (12.7.11d)

The method of multiple scales can be used to obtain a homogenized equation, which

is a wave equation with constant coefficients and the same initial and boundary con-

ditions. However, there is a fundamental difference between this and the parabolic

case: for parabolic problems the dissipation drives the solution to lie near the null

space of the leading-order operator L0, no matter how the initial data are chosen.

For the wave equation, this does not happen and it is necessary to chose initial data

close to the desired subspace. We will not study homogenization for wave equations

in this book. We refer the interested reader to [66, ch. 12; 33, ch. 2; 160, 47]. Related

problems arise for the Schrödinger equation with multiple scales; see [316]. Homog-

enization result for the Schrödinger equation and their connection to effective mass

theorems are presented in [10].

The numerical evaluation of homogenized coefficients, in the periodic setting,

can be performed efficiently using a spectral method. On the other hand, the numer-

ical solution of the original boundary value problem (12.2.1) when ε is small is a

very hard problem. Special methods, which in one way or another are based on ho-

mogenization, have been developed over the last few years. We refer to [145, 76, 2,

82, 9, 52, 61, 89, 90, 92, 231] and the references therein on this topic. The devel-

opment and analysis of finite element methods for elliptic PDEs with a multiscale

structure, and related problems arising in geophysical applications, are discussed

in [60, 88, 145, 146]. Numerical methods for elliptic PDEs subject to stochastic

forcing, or with stochastic coefficients, are described in [3, 141, 216, 215, 286, 287].

12.8 Exercises

1. Consider the problem of homogenization for (12.2.1) when the coefficients ma-

trix A(y) has a different period in each direction

A(y + λkek) = A(y), k = 1, . . . ,

with λk > 0, k = 1, . . . d. Write down the formulae for the homogenized coef-

ficients.

2. Consider the two-scale expansion (12.4.1) for problem (12.2.1). In this chapter

we calculated the first three terms in the two-scale expansion: u0 solves the

homogenized equation, u1 is given by (12.7.7), and u2 by (12.7.8). Verify the

expression for u2 and the form of the higher-order cell problem (12.7.9).
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3. Consider the Dirichlet problem (12.2.1) for a d-dimensional layered material,

i.e.,

aij(y) = aij(y1), 1-periodic in y1, i, j = 1, . . . , d.

We solved this problem in Subsection 12.6.2 in the case d = 2. Now solve the

corresponding cell problem and obtain formulae for the homogenized coeffi-

cients for d � 3, arbitrary.

4. Consider the problem of homogenization for second-order uniformly elliptic

PDEs in one dimension, i.e., the problem studied in Section 12.6.1.

a. Calculate a for the case

a(y) =

{
a1 : y ∈ [0, 1

2 ],
a2 : y ∈ ( 1

2 , 1],

where a1, a2 are positive constants.

b. Now calculate a for the case

a(y) =
1

2 + sin(2πy)
.

5. Consider the Dirichlet problem (12.2.1) for a d-dimensional isotropic material,

i.e.,

aij(y) = a(y)δij , 1-periodic, i, j = 1, . . . , d,

where δij stands for Kronecker’s delta.

a. Use the specific structure of A(y) to simplify the cell problem as much as you

can.

b. Let d = 2 and assume that a(y) is of the form

a(y) = Y1(y1)Y2(y2).

Solve the two components of the cell problem and obtain formulae for the

homogenized coefficients. (Hint: use separation of variables.)

6. Consider the boundary value problem (12.7.1). Assume that Aε = A(x, x/ε)
where A(x, y) is smooth, 1-periodic in y, and uniformly elliptic and that, fur-

thermore, f is smooth. Use the method of multiple scales to obtain general-

izations of the homogenized Equation (12.7.2), the cell problem (12.7.3), and

the formula for the homogenized coefficients (12.7.4). Verify that the results of

Section 12.5 still hold.

7. Consider the Dirichlet problem

−∇ ·
(
A
(x

ε
,
x

ε2

)
∇uε

)
= f for x ∈ Ω (12.8.1a)

uε(x) = 0, for x ∈ ∂Ω (12.8.1b)

where the coefficients A(y, z) are periodic in both y and z with period 1. Use

the 3-scale expansion

uε(x) = u0

(
x,

x

ε
,
x

ε2

)
+ εu1

(
x,

x

ε
,
x

ε2

)
+ ε2u2

(
x,

x

ε
,
x

ε2

)
+ . . .
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to derive an effective homogenized equation, together with the formula for the

homogenized coefficients and two-cell problems.

8. Repeat the previous exercise by homogenizing first with respect to z = y/ε and

then with respect to y:

a. Homogenize the equation

−∇ ·
(
A
(
y,

y

ε

)
∇uε

)
= f, for x ∈ Ω (12.8.2a)

uε(x) = 0, for x ∈ ∂Ω (12.8.2b)

by treating y as a parameter.

b. Homogenize the equation

−∇ ·
(
A
(x

ε

)
∇uε

)
= f, for x ∈ Ω (12.8.3a)

uε(x) = 0, for x ∈ ∂Ω, (12.8.3b)

where A(y) is given by the expression derived in the preceding section of the

question.

9. Derive the homogenized equation, together with the cell problem and the for-

mula for the homogenized coefficients, by applying the method of multiple

scales to the heat Equation (12.7.10), with Aε = A(x/ε).
10. Consider the initial boundary value problem (12.7.10) with Aε = A(x/ε, t/εk).

Explain why it is natural for the period of oscillations in time to be characterized

by k = 2. Carry out homogenization for the cases k = 1, 2, 3.2

11. Use the method of multiple scales to derive the homogenized equation from

(12.7.11).

12. Prove that the homogenized coefficient a for Equation (12.6.1) under (12.6.2)

has the same upper and lower bounds as a(y):

α � a � β.

Moreover, show that it is bounded from above by the average of a(y):

a � 〈a(y)〉.

13. Show that Equation (12.7.5) can be homogenized to obtain the effective Equa-

tion (12.7.6).

14. Let A : T
d → R

d×d be smooth and periodic and consider the eigenvalue prob-

lem

−∇ ·
(
Aε∇uε

)
= λεuε forx ∈ Ω

uε = 0, x ∈ ∂Ω,

2 See [33, ch. 3] and [253] for further details on the derivation of the homogenized equations

using the method of multiple scales.
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where Aε(x) = A(x/ε). Use a multiscale expansion to find an approximation

to the eigenvalue problem in which ε→ 0 is eliminated.

15. a. Consider the eigenvalue problem

−Δuε +
1

ε
V εuε = λεuε, x ∈ Ω

uε = 0, x ∈ ∂Ω.

Assume that V : T
d → R is smooth and periodic, that

∫

Td

V (y)dy = 0

and that V ε(x) = V (x/ε). Use a multiscale expansion to find an approxi-

mation to the eigenvalue problem in which ε→ 0 is eliminated.

b. Are the resulting eigenvalues smaller or larger than the eigenvalues that arise

when V ≡ 0?
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Homogenization for Parabolic PDEs

13.1 Introduction

In this chapter we use multiscale techniques to investigate the long-time behavior of

solutions to parabolic PDEs. The techniques employed are almost identical to those

used in the study of homogenization for SDEs in Chapter 11. This connection will

be made more explicit at the end of the chapter.

In Section 13.2 we present the full equations that we will analyze. Section 13.3

contains the simplified equations that are derived by use of the method of multiple

scales in Section 13.4. Section 13.5 is devoted to various properties of the simplified

equations. In Section 13.6 we study two applications of the general theory, to gradient

flows (Section 13.6.1) and to divergence-free flows (Section 13.6.2). The connection

between homogenization for parabolic PDEs and asymptotic problems for SDEs is

made in Section 13.7. Extensions and bibliographical remarks appear in Section 13.8.

13.2 Full Equations

We study the following initial-value (Cauchy) problem

∂u

∂t
= b · ∇u + DΔu for (x, t) ∈ R

d × R
+, (13.2.1a)

u = uin for (x, t) ∈ R
d × {0}, (13.2.1b)

with D > 0. In our analysis we will assume that the vector b(x) is smooth and

periodic in space with period 1 in all spatial directions. Furthermore, we assume that

the initial conditions are slowly varying, so that

uin(x) = gε(x) := g(εx), (13.2.2)

with 0 < ε ≪ 1. Since the initial data are slowly varying and so is the solution, it

is natural to look at large length and time scales to see the effective behavior of the
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PDE (13.2.1). If the vector field b averages to zero in an appropriate sense then, as

we will show in this chapter, the effective behavior of u is that of a pure diffusion.

To see this effect we redefine the variables x, t through the rescaling

x = ε−1x, t→ ε−2t (13.2.3)

and relabel u to uε to emphasize this rescaling. This particular scaling of space and

time, known as diffusive scaling, is appropriate whenever the advective effects, cre-

ated by b, are expected to average out; it is then appropriate to scale time on an even

longer scale than space and to seek purely diffusive effects. We will be precise about

the condition that b averages out at the end of this section.

The rescaled field uε(x, t) satisfies the equation

∂uε

∂t
=

1

ε
bε · ∇uε + DΔuε for (x, t) ∈ R

d × R
+, (13.2.4a)

uε = g for (x, t) ∈ R
d × {0}. (13.2.4b)

Here bε(x) = b(x/ε). This equation will be the object of our study in this chapter.

Let us define the operator

L0 = b(y) · ∇y + DΔy (13.2.5)

with periodic boundary conditions on [0, 1]d and its L2-adjointL∗
0, also with periodic

boundary conditions. We refer to D as the molecular diffusivity. Note that L0 is the

generator of the Markov process y(t), which is the solution of the SDE

dy

dt
= b(y) +

√
2D

dW

dt

on the unit torus T
d. Hence it is natural to define the invariant distribution ρ(y) to

be the stationary solution of the adjoint equation:

L∗
0ρ = 0. (13.2.6)

By Theorem 6.16 there is a unique solution to this equation, up to normalization,

and the normalization may be chosen so that the solution is positive. In the sequel

we will normalize the solution to (13.2.6) according to

∫

Td

ρ(y) dy = 1.

Notice that this choice turns the measure μ(dy) = ρ(y) dy into a probability measure

on T
d.

In order to derive the homogenized equation for (13.2.4) we need to study equa-

tions of the form

−L0v = h (13.2.7)

with periodic boundary conditions and with h being a smooth periodic function of y.

It is straightforward to check that the assumptions of Theorem 7.9 are satisfied and
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hence the operator L0 satisfies the Fredholm alternative. This implies, in particular,

that L0 has a one-dimensional null space, comprising constants in y. It also implies

that L∗
0 has a one-dimensional null space, as stated earlier, and spanned by ρ. Fur-

thermore, Equation (13.2.7) has a solution if and only if the right-hand side of the

equation is centered with respect to the invariant distribution:
∫

Td

h(y)ρ(y) dy = 0.

In this case the solution of (13.2.7) is unique up to constants. In the case where h = b,
the vector field arising in the PDE (13.2.1), the condition is

∫

Td

b(y)ρ(y) dy = 0. (13.2.8)

We call this the centering condition. We fix the free constant in the solution (13.2.7)

by requiring that the solution of (13.2.7) satisfies
∫

Td

v(y)ρ(y) dy = 0. (13.2.9)

When the centering condition is not satisfied it is necessary to rescale the origi-

nal problem in a different fashion, to see effective advective behavior. In particular

(13.2.3) is replaced by the advective scaling

x→ ε−1x, t→ ε−1t. (13.2.10)

Then averaging is used to find the effective equation, which is now of transport type;

see Chapter 14.

13.3 Simplified Equations

Assume that the vector field b(y) satisfies the centering condition (13.2.8). Define

the vector field χ(y) to be the solution of the cell problem

−L0χ = b, χ is 1 -periodic,

∫

Td

χ(y)ρ(y)dy = 0. (13.3.1)

The effective diffusion tensor (or effective diffusivity) is defined as

K = DI + 2D

∫

Td

∇yχ(y)T ρ(y) dy +

∫

Td

(
b(y)⊗ χ(y)

)
ρ(y) dy. (13.3.2)

Result 13.1. Assume that (13.2.8) holds. For 0 < ε≪ 1 and times t of O(1) the so-

lution uε of (13.2.4) is approximated by u, the solution of the homogenized equation

∂u

∂t
= K : ∇x∇xu for (x, t) ∈ R

d × R
+, (13.3.3a)

u = g for (x, t) ∈ R
d × {0}. (13.3.3b)
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Remark 13.2. Since the Hessian ∇x∇xu is symmetric, it follows from property

(2.2.2) applied to (13.3.2) that the following expression for K is equally valid:

K = DI + D

∫

Td

(
∇yχ(y) +∇yχ(y)T

)
ρ(y) dy

+
1

2

∫

Td

(
b(y)⊗ χ(y) + χ(y)⊗ b(y)

)
ρ(y) dy. (13.3.4)

Many variants on this idea are possible. ⊓⊔

13.4 Derivation

Our goal now is to use the method of multiple scales to analyze the behavior of

uε(x, t), the solution of (13.2.4), in the limit as ε → 0. In particular, we want to

derive Result 13.1.

We introduce the auxiliary variable y = x/ε. 1 Let φ = φ(x, x/ε) be scalar-

valued. The chain rule gives

∇φ = ∇xφ +
1

ε
∇yφ and Δφ = Δxφ +

2

ε
∇x · ∇yφ +

1

ε2
Δyφ.

The partial differential operator that appears on the right-hand side of Equation

(13.2.4) becomes

L =
1

ε2
L0 +

1

ε
L1 + L2,

where

L0 = b(y) · ∇y + DΔy,

L1 = b(y) · ∇x + 2D∇x · ∇y,

L2 = DΔx.

In terms of x and y, Equation (13.2.4a) becomes

∂uε

∂t
=

(
1

ε2
L0 +

1

ε
L1 + L2

)
uε.

We seek a solution in the form of a multiple-scales expansion

uε(x, t) = u0 (x, y, t) + εu1 (x, y, t) + ε2u2 (x, y, t) + . . . (13.4.1)

where uj(x, y, t), j = 1, 2 . . . , are periodic in y with period 1. We substitute (13.4.1)

and equate terms of equal powers in ε. We obtain the following sequence of equa-

tions:

1 As in the elliptic case, this is where the assumption of scale separation is exploited; we

treat x and y as independent variables. Justifying this assumption as ε → 0 is one of the

main issues in the rigorous theory of homogenization; see Chapter 20.
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O(1/ε2) − L0u0 = 0, (13.4.2a)

O(1/ε) − L0u1 = L1u0, (13.4.2b)

O(1) − L0u2 = L1u1 + L2u0 −
∂u0

∂t
. (13.4.2c)

Note that L0, which is a differential operator in y only, is equipped with periodic

boundary conditions.

Since L0 has a one-dimensional null space, Equation (13.4.2a) implies that the

first term in the expansion is independent of y, so that u0 = u(x, t) only. Notice that

L1u0 = b(y) · ∇xu(x, t).

The centering condition (13.2.8) ensures that (13.4.2b) has a solution, by the Fred-

holm alternative. Since L0 is a differential operator in y only, we may use separation

of variables to write the solution as

u1(x, y, t) = χ(y) · ∇xu(x, t).

Then χ(y) solves the cell problem (13.3.1) . Our assumptions imply that there exists

a unique, smooth solution to the cell problem.

Now we proceed with the analysis of the O(1) Equation (13.4.2c). The solvabil-

ity condition (13.2.8) reads
∫

Td

(
∂u0

∂t
− L2u0 − L1u1

)
ρ dy = 0.

The fact that u0 = u(x, t) is independent of y enables us to rewrite the preceding

equation in the form
∂u

∂t
= DΔu +

∫

Td

(
L1u1

)
ρ dy. (13.4.3)

Now we have

L1u1 =
(
b · ∇x(χ · ∇xu) + 2D∇x · ∇y(χ · ∇xu)

)

=
(
b⊗ χ + 2D∇yχ

T
)

: ∇x∇xu.

In view of the preceding calculation, Equation (13.4.3) becomes

∂u

∂t
= K : ∇x∇xu,

which is the homogenized Equation (13.3.3a). The effective diffusivityK is given by

formula (13.3.2).

13.5 Properties of the Simplified Equations

In this section we show that the effective diffusivity is positive definite. This implies

that the homogenized equation is well posed. To prove this, we need to calculate

the Dirichlet form associated with the operator L0. The following is a direct conse-

quence of Theorem 6.12 in the case of additive noise. Recall that ρ is the invariant

distribution, a nonnegative L1(Td) function in the null space of L∗
0.
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Lemma 13.3. Let f(y) ∈ C2
per(T

d). Then
∫

Td

(−L0f(y))f(y)ρ(y) dy = D

∫

Td

|∇yf(y)|2ρ(y) dy. (13.5.1)

Remark 13.4. Let L2
ρ(T

d) be the L2-space weighted by the invariant distribution ρ(y)
and denote the inner product and corresponding norm by (·, ·)L2

ρ
and ‖ · ‖L2

ρ
, respec-

tively. Then, by Equation (6.3.13), the result of Lemma 13.3 can be expressed in the

form

(−L0f, f)L2
ρ

= D‖∇yf‖2L2
ρ
. ⊓⊔

The main result of this section is that the effective diffusivity is a positive-definite

matrix. In particular, we have the following.

Theorem 13.5. Let ξ ∈ R
d be an arbitrary vector and let χξ(y) := χ(y) · ξ. Then

〈ξ,Kξ〉 = D

∫

Td

|ξ +∇yχξ(y)|2ρ(y) dy.

Furthermore,

α|ξ|2 � 〈ξ,Kξ〉 ∀ ξ ∈ R
d (13.5.2)

with

α = D

(∫

Td

ρ−1(y) dy

)−1

. (13.5.3)

Proof. Note that −L0χξ = ξ · b. We use the definition of K and Lemma 13.3 to

calculate

〈ξ,Kξ〉 = D|ξ|2 + 2D

∫

Td

ξ · ∇yχξ(y)ρ(y) dy +

∫

Td

(ξ · b)χξ(y)ρ(y) dy

= D|ξ|2 + 2D

∫

Td

ξ · ∇yχξ(y)ρ(y) dy + D

∫

Td

|∇yχξ(y)|2ρ(y) dy

= D

∫

Td

|ξ +∇yχξ(y)|2ρ(y) dy.

The fact that the effective diffusivity is nonnegative definite follows immediately

from the preceding equation. To show that K is positive definite we use the fact

that the integral of derivatives of periodic functions over T
d is 0, together with the

Cauchy-Schwarz inequality and the fact that ρ(y) is everywhere positive, to calcu-

late:

D|ξ|2 = D

∣∣∣∣
∫

Td

(ξ +∇yχξ) dy

∣∣∣∣
2

= D

∣∣∣∣
∫

Td

(ξ +∇yχξ) ρ
1
2 (y)ρ−

1
2 (y) dy

∣∣∣∣
2

� D

(∫

Td

|ξ +∇yχξ|2 ρ(y) dy

)(∫

Td

ρ−1(y) dy

)

= 〈ξ,Kξ〉
(∫

Td

ρ−1(y) dy

)
,
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from which the lower bound immediately follows. ⊓⊔
It is of interest to know how the effective diffusion tensor K compares with the

original diffusion tensor DI . It turns out that K can be either greater or smaller than

D (in the sense of matrices). This issue is discussed in detail in the next section,

where we show that the effective diffusivity is smaller than D for gradient vector

fields b and greater than D for divergence-free vector fields b.

13.6 Applications

In this section we consider two particular choices for the drift term b in (13.2.4a),

gradient and divergence-free fields. In both cases it is possible to perform explicit

calculations that yield considerable insight. In particular, we will be able to obtain

a formula for the (unique) invariant distribution and, consequently, to simplify the

centering condition (13.2.8). Furthermore we will be able to compare the effective

diffusivity with the original diffusivity D. We will see that the effective diffusiv-

ity is smaller than D for gradient vector fields b, and that it is greater than D for

divergence-free vector fields b. We also study two particular cases of gradient and

divergence-free flows for which we can derive closed formulae for the effective dif-

fusivity.

There are at least two reasons why it is interesting to consider gradient and

divergence-free flows. On the one hand, parabolic PDEs of the form (13.2.1) with

b being either the gradient of a scalar field or divergence-free appear frequently in

applications: when b = −∇V then Equation (13.2.1) describes Brownian motion in

a periodic potential. On the other hand, when b is divergence-free, Equation (13.2.1)

becomes the advection diffusion equation, which describes mixing processes in in-

compressible fluids. According to the Hodge decomposition theorem, every smooth

vector field on T
d can be decomposed into the sum of a gradient and a divergence-

free field:

b(y) = −∇V (y) + v(y), ∇ · v(y) = 0,

with

(−∇V (y), v(y))L2(Td) = 0.

Hence, by studying gradient and divergence-free flows we study the two extreme

cases of this decomposition.

13.6.1 Gradient Vector Fields

We consider the case where the vector field b(y) in Equation (13.2.4a) is the gradient

of a smooth, scalar periodic function,

b(y) = −∇yV (y). (13.6.1)

The function V is called the potential. In this case it is straightforward to derive a

formula for the solution ρ of the stationary adjoint Equation (13.2.6) with periodic

boundary conditions.
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Lemma 13.6. Assume that the vector field b is a gradient given by (13.6.1). Let L∗
0

denote the adjoint of L0 defined in (13.2.5). Then the equation

L∗
0ρ = 0,

∫

Td

ρ(y)dy = 1, (13.6.2)

subject to periodic boundary conditions on T
d, has a unique solution given by

ρ(y) =
1

Z
e−V (y)/D, Z =

∫

Td

e−V (y)/D dy. (13.6.3)

Proof. Equation (13.6.2), in view of Equation (13.6.1), becomes

∇y ·
(
∇yV (y)ρ(y) + D∇yρ(y)

)
= 0. (13.6.4)

We immediately check that ρ(y) given by (13.6.3) satisfies

∇yV (y)ρ(y) + D∇yρ(y) = 0,

and hence it satisfies (13.6.4). Furthermore, by construction we have that

∫

Td

1

Z
e−V (y)/D dy = 1,

and hence ρ(y) is correctly normalized. Thus we have constructed a solution of Equa-

tion (13.6.2). Uniqueness follows by the ergodicity of the stochastic process with

generator L0 (see Theorem 6.16). ⊓⊔
Remark 13.7. The positive function ρ defined in (13.6.3) is called the Gibbs distri-

bution and the probability measure ρ(y)dy the Gibbs measure. The normalization

constant Z is called the partition function. ⊓⊔
In the case of gradient flows the centering condition (13.2.8) is satisfied identically

for any potential.

Lemma 13.8. Consider the operator L0 given by (13.2.5) with periodic boundary

conditions and assume that b(y) = −∇yV (y) with V ∈ C1
per(T

d). Then the center-

ing condition (13.2.8) is always satisfied.

Proof. We use the divergence theorem to calculate

∫

Td

b(y)ρ(y) dy =
1

Z

∫

Td

−∇yV (y)e−V (y)/D dy

=
D

Z

∫

Td

∇ye
−V (y)/D dy

= 0. ⊓⊔

In the case of gradient flows, the operator L0 defined in (13.2.5) equipped with

periodic boundary conditions becomes symmetric in the appropriate function space.

We have the following.
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Lemma 13.9. Assume that condition (13.6.1) is satisfied and let ρ denote the Gibbs

distribution (13.6.3). Then the operator L0 given in (13.2.5) satisfies

∫

Td

f(y)
(
L0h(y)

)
ρ(y) dy =

∫

Td

h(y)
(
L0f(y)

)
ρ(y) dy (13.6.5)

for all f, h ∈ C2
per(T

d).

Proof. Using the divergence theorem we have

∫

Td

fL0hρ dy =
1

Z

∫

Td

f
(
−∇yV · ∇yh

)
e−V/D dy +

D

Z

∫

Td

fΔyhe
−V/D dy

=
D

Z

∫

Td

f∇yh · ∇y

(
e−V/D

)
dy − D

Z

∫

Td

(∇yf · ∇yh) e−V/D dy

−D

Z

∫

Td

f∇yh · ∇y

(
e−V/D

)
dy

= −D

∫

Td

(
∇yf · ∇yh

)
ρ dy.

The expression in the last line is symmetric in f, h, and hence (13.6.5) follows. ⊓⊔

Remark 13.10. The symmetry of L0 arises quite naturally from the identity (6.3.11)

used in proving Theorem 6.12. Furthermore, the calculation used in the proof of

Lemma 13.9 gives us the following useful formula

∫

Td

f(−L0h)ρ dy = D

∫

Td

(
∇yf · ∇yh

)
ρ dy (13.6.6)

for all f, h ∈ C2
per(T

d). The Dirichlet form Lemma 13.3 follows from this on setting

f = h. Now let φ, ψ ∈ C2
per(T

d; Rd). In view of (13.6.6) we also have

∫

Td

(
φ⊗ (−L0ψ)

)
ρ dy = D

∫

Td

(
∇yφ⊗∇yψ

)
ρ dy. ⊓⊔ (13.6.7)

Remark 13.11. Using the notation introduced in Remark 13.4 we can express the

result of Lemma 13.9 by saying that L0 is symmetric as an operator from L2
ρ to L2

ρ.

Furthermore, identity (13.6.6) can be written in the form

(f,−L0h)L2
ρ

= D (∇yf,∇yh)L2
ρ
.

Ergodic Markov processes whose generator is a symmetric operator in L2
ρ are called

reversible. Thus we have shown that SDEs with additive noise and with a drift that

is a gradient field are reversible. ⊓⊔
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Now we are ready to prove various properties of the effective diffusivity. For this

we will need the following integration-by-parts formula, which follows from the

divergence theorem and the periodicity of χ and ρ :

∫

Td

(
∇yχ

)
ρ dy =

∫

Td

(
∇y(χρ)− χ⊗∇yρ

)
dy = −

∫

Td

(χ⊗∇yρ) dy. (13.6.8)

Theorem 13.12. Assume that b(y) is a gradient so that (13.6.1) holds and let ρ(y)
denote the Gibbs distribution (13.6.3). Then the effective diffusivity (13.3.2) satisfies

the upper and lower bounds

D

ZẐ
� 〈ξ,Kξ〉 � D|ξ|2 ∀ξ ∈ R

d, (13.6.9)

where

Ẑ =

∫

Td

eV (y)/D dy.

In particular, diffusion is always depleted when compared to molecular diffusivity.

Furthermore, the effective diffusivity is symmetric. 2

Proof. The lower bound follows from the general lower bound (13.5.2), Equation

(13.5.3), and the formula for the Gibbs measure. To establish the upper bound, we

use (13.6.8) and (13.6.7) to obtain

K = DI + 2D

∫

Td

(∇χ)T ρ dy +

∫

Td

−∇yV ⊗ χρ dy

= DI − 2D

∫

Td

∇yρ⊗ χdy +

∫

Td

−∇yV ⊗ χρ dy

= DI − 2

∫

Td

−∇yV ⊗ χρ dy +

∫

Td

−∇yV ⊗ χρ dy

= DI −
∫

Td

−∇yV ⊗ χρ dy

= DI −
∫

Td

(
− L0χ

)
⊗ χρ dy

= DI −D

∫

Td

(
∇yχ⊗∇yχ

)
ρ dy. (13.6.10)

Hence, for χξ = χ · ξ,

〈ξ,Kξ〉 = D|ξ|2 −D

∫

Td

|∇yχξ|2ρ dy

� D|ξ|2.

This proves depletion. The symmetry of K follows from (13.6.10). ⊓⊔
2 Notice that the Cauchy-Schwarz inequality shows that ZẐ � 1.
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The One-Dimensional Case

The one-dimensional case is always in gradient form: b(y) = −∂yV (y). Furthermore

in one dimension we can solve the cell problem (13.3.1) in closed form and calculate

the effective diffusion coefficient explicitly – up to quadratures. We start with the

following calculation concerning the structure of the diffusion coefficient.

K = D + 2D

∫ 1

0

∂yχρ dy +

∫ 1

0

−∂yV χρ dy

= D + 2D

∫ 1

0

∂yχρ dy + D

∫ 1

0

χ∂yρ dy

= D + 2D

∫ 1

0

∂yχρ dy −D

∫ 1

0

∂yχρ dy

= D

∫ 1

0

(
1 + ∂yχ

)
ρ dy. (13.6.11)

The cell problem (13.3.1) in one dimension is

D∂yyχ− ∂yV ∂yχ = ∂yV. (13.6.12)

We multiply Equation (13.6.12) by e−V (y)/D to obtain

∂y

(
∂yχe

−V (y)/D
)

= −∂y

(
e−V (y)/D

)
.

We integrate this equation from 0 to y and multiply by eV (y)/D to obtain

∂yχ(y) = −1 + c1e
V (y)/D.

Another integration yields

χ(y) = −y + c1

∫ y

0

eV (y)/D dy + c2.

The periodic boundary conditions imply that χ(0) = χ(1), from which we conclude

that

−1 + c1

∫ 1

0

eV (y)/D dy = 0.

Hence

c1 =
1

Ẑ
, Ẑ =

∫ 1

0

eV (y)/D dy.

We deduce that

∂yχ = −1 +
1

Ẑ
eV (y)/D.

We substitute this expression into (13.6.11) to obtain
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K =
D

Z

∫ 1

0

(1 + ∂yχ(y)) e−V (y)/D dy

=
D

ZẐ

∫ 1

0

eV (y)/De−V (y)/D dy

=
D

ZẐ
, (13.6.13)

with

Z =

∫ 1

0

e−V (y)/D dy, Ẑ =

∫ 1

0

eV (y)/D dy. (13.6.14)

Notice that in the one-dimensional case the formula for the effective diffusivity

is precisely the lower bound in (13.6.9). This shows that the lower bound is sharp.

Example 13.13. Consider the potential

V (y) =

{
a1 : y ∈ [0, 1

2 ],
a2 : y ∈ ( 1

2 , 1],
(13.6.15)

where a1, a2 are positive constants.3

It is straightforward to calculate the integrals in (13.6.14) to obtain the formula

K =
D

cosh2
(

a1−a2

D

) . (13.6.16)

In Figure 13.1 we plot the effective diffusivity given by (13.6.16) as a function of

the molecular diffusivity D, on a log scale. We observe that K decays exponentially

fast in the limit as D → 0. ⊓⊔

13.6.2 Divergence-Free Fields

In this section we consider the problem of homogenization for (13.2.4a) in the case

where the vector field b(y) is divergence-free (or incompressible):

∇ · b(y) = 0. (13.6.17)

The incompressibility of b(y) simplifies the analysis considerably because the ad-

vection operator

L̂0 = b(y) · ∇y,

with periodic boundary conditions, is antisymmetric in L2(Td).

3 Of course, this potential is not even continuous, let alone smooth, and the theory as de-

veloped in this chapter does not apply. It is possible, however, to consider a regularized

version of this discontinuous potential, and then homogenization theory applies.
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Fig. 13.1. Log-log plot of the effective diffusivity versus molecular diffusivity for the potential

(13.6.15).

Lemma 13.14. Let b(y) ∈ C1
per(T

d; Rd) satisfy (13.6.17). Then for all f(y), h(y) ∈
C1

per(T
d) we have

∫

Td

f(y) (b(y) · ∇yh(y)) dy = −
∫

Td

h(y) (b(y) · ∇yf(y)) dy.

In particular, ∫

Td

f(y) (b(y) · ∇yf(y)) dy = 0. (13.6.18)

Proof. We use the incompressibility of b(y), together with the periodicity of f(y),
h(y), and b(y) to calculate

∫

Td

f(y) (b(y) · ∇yh(y)) dy =

∫

Td

f(y)∇y ·
(
b(y)h(y)

)
dy

= −
∫

Td

∇yf(y) · (b(y)h(y)) dy

= −
∫

Td

h(y)
(
b(y) · ∇yf(y)

)
dy.

Equation (13.6.18) follows from this calculation on setting f = h. ⊓⊔
Using the previous lemma it is easy to prove that the unique invariant measure of

the fast process is the Lebesgue measure.
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Lemma 13.15. Let L0 denote the operator defined in (13.2.5) with periodic bound-

ary conditions and with b(y) satisfying (13.6.17). Let L∗
0 denote the L2-adjoint of

L0. Then the adjoint equation

L∗
0ρ = 0,

∫

Td

ρ(y)dy = 1, (13.6.19)

with periodic boundary conditions on T
d has a unique classical solution given by

ρ(y) = 1. (13.6.20)

Proof. Lemma 13.14 implies that the L2-adjoint of L0 is

L∗
0 = −b(y) · ∇y + DΔy, (13.6.21)

with periodic boundary conditions. Let ρ(y) be a solution of Equation (13.6.19). We

multiply the equation by ρ(y), integrate over T
d, and use Lemma 13.14 to obtain

∫

Td

|∇yρ(y)|2 dy = 0, (13.6.22)

from which we deduce that ρ(y) is a constant. Hence, the unique normalized solution

of (13.6.19) is given by (13.6.20). ⊓⊔

Remark 13.16. The solution ρ(y) = 1 can be seen to be in the null space of (13.6.21)

by inspection. Uniqueness can then be proved by appealing to ergodicity of the pro-

cess with generator L0 (see Theorem 6.16), or by use of the maximum principle.

⊓⊔

Remark 13.17. An immediate corollary of Proposition 13.15 is that for divergence-

free fields the solvability condition (13.2.8) becomes

∫

Td

b(y) dy = 0.

Thus, it is straightforward to check whether a given periodic divergence-free field

satisfies the solvability condition – the field must average to zero over the unit torus.

⊓⊔

Now let χ(y) be the solution of the cell problem (13.3.1) with b(y) satisfying

(13.6.17). The periodicity of χ(y), together with (13.6.20), implies that the second

term on the right-hand side of Equation (13.3.2) vanishes and the formula for the

effective diffusivity reduces to

K = DI +

∫

Td

b(y)⊗ χ(y) dy. (13.6.23)

The effective diffusivity as given in (13.3.2) is symmetric for gradient flows. This is

not true for divergence-free flows. However, only the symmetric part ofK enters into
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the homogenized equation by Remark 13.2. For this reason we redefine the effective

diffusivity to be the symmetric part of K:

K := DI +
1

2

∫

Td

(
b(y)⊗ χ(y) + χ(y)⊗ b(y)

)
dy. (13.6.24)

Our goal now is to show that the homogenization procedure enhances diffusion, i.e.,

that the effective diffusivity is always greater than the molecular diffusivity D. For

this we need an alternative representation formula for K.

Theorem 13.18. The effective diffusivity K given by the expression (13.6.24) can be

written in the form

K = DI + D

∫

Td

∇yχ(y)⊗∇yχ(y) dy. (13.6.25)

Proof. We take the outer product of the cell problem (13.3.1) with χ(y) to the left

and integrate over the unit cell to obtain

−D

∫

Td

χ(y)⊗Δyχ(y) dy −
∫

Td

χ(y)⊗
(
∇yχ(y)b(y)

)
dy =

∫

Td

χ(y)⊗ b(y) dy.

We apply the divergence theorem to the two integrals on the left-hand side of the

equation, using periodicity and the fact that b is divergence-free, to obtain

D

∫

Td

∇yχ(y)⊗∇yχ(y) dy +

∫

Td

(
∇χ(y)b(y)

)
⊗ χ(y) dy =

∫

Td

χ(y)⊗ b(y) dy.

(13.6.26)

Alternatively we may take the outer product with χ in (13.3.1) to the right and use

the divergence theorem only on the first integral, to obtain

D

∫

Td

∇yχ(y)⊗∇yχ(y) dy −
∫

Td

(
∇χ(y)b(y)

)
⊗ χ(y) dy =

∫

Td

b(y)⊗ χ(y) dy.

(13.6.27)

We add Equations (13.6.26) and (13.6.27) to obtain:

1

2

∫

Td

(
b(y)⊗ χ(y) + χ(y)⊗ b(y)

)
dy = D

∫

Td

∇yχ(y)⊗∇yχ(y) dy.

Equation (13.6.25) follows, on substituting this expression into Equation

(13.6.24). ⊓⊔
We can now obtain upper and lower bounds for the effective diffusivity.

Theorem 13.19. Assume that b(y) is divergence-free. Then the effective diffusivity

satisfies the upper and lower bounds

D|ξ|2 � 〈ξ,Kξ〉 �

(
D +

C

D

)
|ξ|2, (13.6.28)

where C = C(b,Ω) > 0 is explicitly computable. 4 The lower bound becomes an

equality for all ξ only when b(y) ≡ 0.

4 Indeed C = (Cp‖b‖L2
)2, where Cp is the Poincaré constant from inequality (2.4.7).
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Proof. The lower bound follows from the general bound (13.5.2), Equation (13.5.3),

and the fact that for divergence-free flows ρ(y) = 1. Furthermore, Equation (13.6.25)

implies that

〈ξ,Kξ〉 := D|ξ|2 + D

∫

Td

|∇yχξ(y)|2 dy, (13.6.29)

where χξ = χ · ξ. Clearly the equality 〈ξ,Kξ〉 = D|ξ|2 for all ξ implies that χξ = 0
for all ξ implying that χ(y) ≡ 0. By (13.3.1) this implies that b ≡ 0.

For the upper bound we take the inner product of the cell problem with an arbi-

trary vector ξ ∈ R
d to obtain

−L0χξ = b · ξ.
We multiply this equation with χξ, integrate over T

d, and use Lemma 13.14 and the

Poincaré inequality to calculate

D‖∇yχ
ξ‖2L2 = (−L0χξ, χξ) = (b · ξ, χξ)

� ‖b · ξ‖L2‖χξ‖L2

� Cp‖b‖L2‖∇yχξ‖L2 |ξ|,

where Cp is the Poincaré constant on T
d. From this estimate we deduce that

‖∇yχξ‖L2 �

√
C

D
|ξ|

with C =
(
Cp‖b‖L2

)2
. The result follows from (13.6.29). ⊓⊔

Shear Flow in 2D

In this section we study an example of a divergence-free flow for which the cell

problem can be solved in closed form, that of a shear flow. The structure of a shear

velocity field is such that the cell problem becomes an ordinary differential equation.

Let y = (y1, y2)
T . We consider the problem of homogenization for (13.2.4a) in

two dimensions for the following velocity field:

b(y) = (0, b2(y1))
T , (13.6.30)

where b2(y1) is a smooth, 1-periodic function with mean zero. Notice that the veloc-

ity field (13.6.30) is incompressible:

∇ · b(y) =
∂b1
∂y1

+
∂b2
∂y2

=
∂b2(y1)

∂y2
= 0.

The two components of the cell problem satisfy

−DΔyχ1(y)− b2(y1)
∂χ1(y)

∂y2
= 0, (13.6.31a)



13.6 Applications 219

−DΔyχ2(y)− b2(y1)
∂χ2(y)

∂y2
= b2(y1), (13.6.31b)

as well as periodicity and the normalization condition that χ integrates to zero over

the unit cell Y.
If we multiply the first Equation (13.6.31a) by χ1(y) and integrate by parts over

T
d, then we deduce that ∫

Td

|∇yχ1(y)|2 dy = 0.

Hence χ1(y) = 0, since we impose the normalization 〈χ(y)〉 = 0 with 〈·〉 :=∫
Td ·dy. On the other hand, since the right-hand side of (13.6.31b) depends only on

y1, it is reasonable to assume that the solution χ2(y) is independent of y2; we seek

a solution of this form and then, provided that we can find such a solution, unique-

ness of solutions to the cell problem implies that it is the only solution. Equation

(13.6.31b) becomes:

−D
d2χ2(y1)

dy2
1

= b2(y1). (13.6.32)

If ψ is a periodic solution to

−d2ψ(y1)

dy2
1

= b2(y1), (13.6.33)

then ψ is independent of D and χ2 = ψ/D.
By (13.6.24) the effective diffusivity K is the following 2× 2 matrix:

K =

(
D +

∫
T2 (b1χ1) dy 1

2

∫
T2 (b2χ1 + b1χ2) dy

1
2

∫
T2 (b2χ1 + b1χ2) dy D +

∫
T2 (b2χ2) dy

)

=

(
D 0
0 K22

)
,

where we have used the fact that b1 = χ1 = 0. Using the fact that b2, χ2 depend

only on y1 we obtain

K22 := D +

∫ 1

0

b2χ2dy1

= D +

∫ 1

0

−D
d2χ2

dy2
1

χ2dy1

= D + D

∫ 1

0

∣∣∣
dχ2

dy1

∣∣∣
2

dy1

= D +
1

D

∫ 1

0

∣∣∣
dψ

dy1

∣∣∣
2

dy1.

Notice the remarkable fact that, since ψ is independent of D, the formula shows

that the effective diffusion coefficient scales as D−1 as the original molecular dif-

fusion coefficient D tends to zero. This demonstrates that the upper bound in
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Theorem 13.19 is sharp. The intuition behind this scaling is that, for small D, the

equation is approximately a transport equation in the direction x2. The direction of

transport is slowly modulated, leading to overall diffusive behavior, but on long time

scales the predominant effect is transport. This enhances the diffusivity.

It is possible to express ψ as an integral operator acting on b2 and to show that

K22 = D +
1

D
‖b2‖2H−1

per(0,1)
. (13.6.34)

See Exercise 10.

Example 13.20. Consider the case

b2(y1) = sin(2πy1). (13.6.35)

We use formula (13.6.34) and Exercise 10 to obtain

K22 = D +
1

8π2D
. (13.6.36)

In Figure 13.2 we plot the effective diffusivity given by (13.6.36) as a function of the

molecular diffusivity D, on a log scale. We observe that K diverges like 1/D in the

limit as D → 0. ⊓⊔
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Fig. 13.2. Log-log plot of the effective diffusivity versus molecular diffusivity for the sine

shear flow (13.6.35).
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13.7 The Connection to SDEs

Equation (13.2.1) is the backward Kolmogorov equation associated with the SDE

dx

dt
= b(x) +

√
2D

dW

dt
, (13.7.1)

where W denotes standard Brownian motion on R
d. Unsurprisingly, then, the ho-

mogenization results derived in this chapter have implications for the behavior of

solutions to this SDE. To see this we first apply the rescaling used to derive (13.2.4)

from (13.2.1) to the SDE (13.7.1). That is, we relabel according to

x→ x/ε, t→ t/ε2,

giving the SDE
dx

dt
=

1

ε
b
(x

ε

)
+
√

2D
dW

dt
. (13.7.2)

(Recall Remark 6.3 regarding the behavior of white noise under time rescaling.)

If we introduce the variable y = x/ε, then we can write this SDE in the form

dx

dt
=

1

ε
b(y) +

√
2D

dW

dt
,

dy

dt
=

1

ε2
b(y) +

1

ε

√
2D

dW

dt
.

Here we view x as being an element of R
d while y is on the torus T

d. This is very

similar to the form (11.2.1), which we analyzed in Chapter 11. The only difference

is that the noises appearing in the x and y equations are correlated (in fact U = V =
W ). This has the effect of changing the operator L1 in that chapter, so that the results

derived there do not apply directly. They can, however, be readily extended to the

study of correlated noise; see Chapter 11, Exercises 5 and 1. Notice that the centering

condition (13.2.8) is precisely the condition (11.2.5) since ρ is the stationary solution

of the same Fokker–Planck equation.

The calculations in this chapter show how the backward Kolmogorov equation

for the coupled SDE in (x, y) can be approximated by a diffusion equation in the x
variable alone. Indeed, the diffusion equation is the backward Kolmogorov equation

for pure Brownian motion. Interpreted in terms of the SDE we obtain the following

result.

Result 13.21. Assume that the centering condition (13.2.8) holds. For ε ≪ 1 and

t = O(1), x solving the SDE (13.7.2) can be approximated by X solving

dX

dt
=

√
(K +KT )

dW

dt

where the matrix K is given by (13.3.2).

If the centering condition is not satisfied then the appropriate rescaling of (13.7.1)

is an advective one, leading to Equations (14.6.1) considered in the next chapter.
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13.8 Discussion and Bibliography

The problem of homogenization for second-order parabolic PDEs and its connec-

tion to the study of the long-time asymptotics of solutions of SDEs is studied in [33,

ch. 3]. References to the earlier literature can be found there. See also [238]. SDEs of

the form (13.7.1), whose drift is the gradient of a periodic scalar function, describe

Brownian motion in periodic potentials. This a very important problem in many ap-

plications, for example, in solid-state physics and biology; see [271, ch. 11; 267] and

the references therein. Multiscale techniques were applied to this problem in [257].

Periodic homogenization for gradient flows is also discussed in [238, 256, 323, 118].

Formula (13.6.13) for the effective diffusivity of a Brownian particle moving in a

one-dimensional periodic potential was derived in [191] without any appeal to ho-

mogenization theory; see also [138, sec. VII]. Brownian motion in a two-scale peri-

odic potential in one dimension is studied in [342]. The multidimensional problem

is analyzed in [258].

On the other hand, the SDE (13.7.1) with divergence-free drift occurs natu-

rally in the modeling of diffusion processes in fluids. Homogenization for periodic,

incompressible flows is a part of the theory of turbulent diffusion [200, 99]; see

also [221, 100, 101]. In this context an interesting question concerns the dependence

of the effective diffusivity on the molecular diffusion D. It turns out that the small

D-asymptotics of the effective diffusivity depend sensitively on the streamline topol-

ogy of the fluid velocity field b(y); see [63, 294, 295, 62, 140, 20, 22, 21]. Interest-

ing experimental results concerning the dependence of the effective diffusivity on

D or, rather, on the Peclet number Pe are reported in [293, 292]; rescaling enables

these results to be interpreted in terms of molecular diffusivity. Homogenization for

compressible flows with applications to atmospheric transport phenomena is studied

in [223].

It is possible to derive a homogenized equation even when the centering condition

(13.2.8) is not satisfied. In this case it is necessary to use a frame co-moving with the

mean flow

b =

∫

Td

b(y)ρ(y) dy. (13.8.1)

Then it is possible to derive a homogenized equation of the form (13.3.3) for the

rescaled field

uε(x, t) = u

(
x

ε
− bt

ε2
,
t

ε2

)
.

The effective diffusivity is given by the formula

K = DI + 2D

∫

Td

∇yχ(y)T ρ(y) dy +

∫

Td

(
b(y)− b

)
⊗ χ(y)ρ(y) dy. (13.8.2)

The cell problem (13.3.1) is also modified:

−L0χ = b− b. (13.8.3)

See Exercise 5 in Chapter 14.
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The mean flow b can have a dramatic effect in the small D-asymptotics of the

effective diffusivity for periodic divergence-free flows; in particular, the scaling of

K with D for D ≪ 1 depends on whether the mean flow is a rational or irrational

vector. See [201, 222, 35, 295, 175]. A similar discontinuous dependence of the

effective diffusivity on the wavelengths of the inhomogeneities was observed for

gradient flows in [126].

It is proved in Section 13.6.1 that for gradient flows the diffusion is always de-

pleted. In fact, much sharper results can be obtained: the effective diffusivity is “ex-

ponentially” smaller than D, for D sufficiently small. That is, there exist positive

constants c1 and c2 such that

〈ξ,Kξ〉 = c1e
−c2/D, D ≪ 1.

See [54] and the references therein. On the other hand, the effective diffusion coeffi-

cient can become arbitrarily large, when compared to the molecular diffusivity, when

a constant external force is added to the gradient drift, see [268, 282].

The fact that the effective diffusivity along the direction of the shear is inversely

proportional to the molecular diffusivity, formula (13.6.34), was discovered in [313],

without any appeal to homogenization theory. This phenomenon is often referred to

as Taylor dispersion; see also [11]. A similar result for time-dependent periodic shear

flows was obtained in [340] through a direct calculation with the advection–diffusion

equation.

To derive the expression (13.6.34) for the effective diffusion coefficient (from

Exercise 10) it is necessary to use formal calculations with Fourier series. Of course,

we have to prove that we can differentiate the Fourier series and that the Fourier se-

ries that we get for the second derivative of χ(y) makes sense. For various properties

of Fourier series we refer the reader to [132, ch. 3].

We showed that the effective diffusion tensor is symmetric for gradient flows. The

effective diffusivity, however, is not necessarily symmetric for general vector fields.

Despite the fact that the antisymmetric part of the effective diffusivity does not affect

the homogenized equation, it is of physical significance: it gives rise to a component

of the flux that is perpendicular to the concentration gradient, [174]. Whether the

effective diffusivity is symmetric or not depends on the symmetry properties of the

underlying vector field b(y).5 This issue is studied for divergence-free flows in [174,

253]; in those references the dependence of the antisymmetric part of the effective

diffusivity on the Peclet number is also studied.

In addition to the Eulerian definition of the effective diffusivity giving rise to

the effective diffusion tensor K we can also define a Lagrangian effective diffusivity

through the long-time average of the variance of the underlying stochastic process

x(t):

DL
eff := lim

t→∞

〈((x(t)− 〈x(t)〉)⊗ (x(t)− 〈x(t)〉)〉
2t

. (13.8.4)

5 For example, in the case of gradient flows the effective diffusivity is symmetric because of

the reversibility (which, of course, is a symmetry property) of gradient flows.
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Notice that DL
eff is a symmetric tensor. It is straightforward to show that the the La-

grangian effective diffusivity (13.8.4) agrees with the symmetric part of the Eulerian

effective diffusivity.

The method of multiple scales can also be used to study the problem of homog-

enization for parabolic PDEs with time-dependent coefficients that are periodic in

both x and t; see, e.g., [118, 228, 323, 257, 42].

Monte Carlo methods for advection-diffusion and for transport PDEs are pre-

sented in [187]. Numerical methods for advection-diffusion equations with a multi-

scale structure are developed in [1].

13.9 Exercises

1. Derive a formula for u2(x, x/ε, t), the third term in the expansion (13.4.1).

2. Consider the problem of homogenization for

∂uε

∂t
= −1

ε
∇V

(x

ε

)
· ∇uε + DΔuε

in one dimension with the (1-periodic) potential

V (y) =

{
y : y ∈ [0, 1

2 ],
1− y : y ∈ ( 1

2 , 1].

Calculate the effective diffusivity K. Use Laplace’s method to study the small

D-asymptotics of K.

3. Carry out the program from the previous exercise for the potential V (y) =
sin(2πy). (Hint: Use Bessel functions.)

4. Calculate the effective diffusivity (13.3.2) for the 2-dimensional vector field

b(y) = (b1(y1), b2(y1)).
5. Consider the problem of homogenization for the reaction–advection–diffusion

equation
∂uε

∂t
=

1

ε
b
(x

ε

)
· ∇uε + Δuε +

1

ε
c
(x

ε

)
uε, (13.9.1)

where the vector field b(y) and the scalar function c(y) are smooth and peri-

odic. Use the method of multiple scales to homogenize the preceding PDE. In

particular:

a) Derive the solvability condition.

b) Obtain the conditions that b(y) and c(y) should satisfy so that you can derive

the homogenized equation.

c) Derive the homogenized equation, the cell problem(s), and the formula for

the homogenized coefficients.

d) Suppose that the reaction term is nonlinear: the zeroth-order term in Equation

(13.9.1) is replaced by

c
(x

ε
, uε

)
,

where the function c(y, u) is 1-periodic in y for every u. Can you homoge-

nize Equation (13.9.1) in this case?
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6. Consider the problem of homogenization for the PDE

∂uε

∂t
=

(
b1(x) +

1

ε
b2

(x

ε

))
· ∇uε + Δuε, (13.9.2)

where the vector field b2(y) is smooth and periodic and b1(x) is periodic. Use

the method of multiple scales to homogenize the preceding PDE. In particular:

a) Derive the solvability condition.

b) Obtain the conditions that b2(y) should satisfy so that you can derive the

homogenized equation.

c) Show that the homogenized equation is

∂u

∂t
= b · ∇u +K : ∇∇u (13.9.3)

and derive the cell problem(s) and the formulae for the homogenized coeffi-

cients b and K.

7. Consider the problem of homogenization for the PDE (13.9.2) in the case where

b1(x) = −∇V (x) and b2(y) = −∇p(y),

where p(y) is periodic.

a) Show that in this case there exists a symmetric matrix K̂ such that

K = DK̂, B = −K̂∇V.

b) Let

L := b · ∇+K : ∇∇u.

1. Derive a formula for L∗, the L2-adjoint of L.

2. Show that the function

ρ(y) :=
1

Z
e−V (y)/D, Z =

∫

Td

e−V (y)/D dy

solves the homogeneous adjoint equation

L∗ρ = 0.

8. Consider the problem of homogenization for the following PDE

∂uε

∂t
= bε · ∇uε + Aε : ∇x∇xu

ε

where Aε = A(x/ε), bε = b(x/ε), the vector field b(y) and the matrix A(y) are

smooth and periodic, and A(y) is positive definite. Use the method of multiple

scales to derive the homogenized equation. In particular:

a) Derive the solvability condition.

b) Obtain conditions on b(y) that ensure the existence of a homogenized equa-

tion.
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c) Derive the homogenized equation, the cell problem, and the formula for the

homogenized coefficients.

d) Prove that the homogenized matrix is positive definite.

9. Consider the problem of homogenization for the following PDE

∂uε

∂t
=

1

ε
b

(
x

ε
,
t

ε2

)
· ∇uε + DΔuε,

where the vector field b(y, τ) is smooth, divergence-free, and 1-periodic in both

y and τ . Use the method of multiple scales to derive the homogenized equation.

In particular:

a) Derive the solvability condition.

b) Obtain conditions on b(y, τ) that ensure the existence of a homogenized

equation.

c) Derive the homogenized equation, the cell problem, and the formula for the

homogenized coefficients.

d) Prove that the homogenized matrix is positive definite.

10. The H−1
per norm of a real-valued, periodic function with period 1 can be ex-

pressed in terms of Fourier series (see the discussion in Section 2.7) as follows:

‖f‖2
H−1

per(0,1)
=

1

2π2

∞∑

k=1

|fk|2
|k|2 .

Use this definition and the Fourier series representation of the solution ψ of the

problem (13.6.31b), to establish formula (13.6.34) from the expression for K22

in terms of ψ.
11. Consider Exercise 9 in dimension d = 2 and with the velocity field

b(y1, y2, τ) = (0, b2(y1, τ)).

Derive a formula for the effective diffusivity K. How does K depend on D?

12. Repeat the calculations of Section 13.6.2 and Exercise 11 for the 2D velocity

fields

b(y1, y2) = (V, b(y1))

and

b(y1, y2, τ) = (V, b(y1, τ)),

respectively, where V ∈ R. (Hint: You need to use Equations (13.8.2) and

(13.8.3) and their generalizations for time-dependent velocity fields.)

13. Let b(y) be a smooth, real-valued 1-periodic, mean-zero function and let {bk}+∞
k=−∞

be its Fourier coefficients. Prove that b0 = 0 and that b−k = bk.
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Averaging for Linear Transport and Parabolic PDEs

14.1 Introduction

In this chapter we investigate the long-time behavior of solutions to the linear trans-

port (or advection) equation and to the parabolic (advection–diffusion) equation from

the previous chapter, when the centering condition is not satisfied. The techniques

we employ are sometimes referred to as homogenization techniques in the litera-

ture. However, in terms of the classification in Section 1.3 the methods are actually

averaging methods. We use this terminology.

In Sections 14.2 and 14.3 we set up the problem of interest and then state the

approximation result. Section 14.4 contains the derivation of the averaged equation,

when the starting point is a parabolic equation. Section 14.5 is devoted to the case

where the averaging is for a pure transport equation; the issues here are more subtle

(no Fredholm alternative for the leading-order linear operator), and this is why we

devote a separate section to it. In Section 14.6 we make the connection to averaging

for ODEs and SDEs. Section 14.7 contains bibliographical remarks.

14.2 Full Equations

We study the long-time behavior of solutions to the linear parabolic equation corre-

sponding to advection–diffusion in a steady periodic velocity field b:

∂u

∂t
= b · ∇u + DΔu for (x, t) ∈ R

d × R
+, (14.2.1a)

u = uin for (x, t) ∈ R
d × {0}. (14.2.1b)

This is the parabolic Equation (13.2.1) and, in the case D = 0, it reduces to a linear

transport equation. As in Chapter 13 we study the case where

uin(x) = g(εx),
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and rescale the equation in both space and time in order to understand the behavior of

solutions to Equation (14.2.1) at length and time scales that are long when compared

to those of the velocity field b(x). In this setting, the small parameter in the problem

is the ratio between the characteristic length (time) scale of the velocity field – its

period – and the largest length (time) scale of the problem – the one at which we

are looking for an averaged description. In contrast to the analysis of the advection–

diffusion equation in the previous chapter, we rescale time and space in the same

fashion, namely

x→ ε−1x, t→ ε−1t. (14.2.2)

In the parabolic case D > 0 this is because we do not assume that the centering

condition (13.2.8) holds; thus the advective effects do not average out. The transfor-

mation (14.2.2) is also natural in the case D = 0 since the transport PDE (14.2.1a)

is then of first order in both space and time.

The initial value problem that we wish to investigate becomes:

∂uε

∂t
= bε · ∇uε + εDΔuε for (x, t) ∈ R

d × R
+, (14.2.3a)

uε = f for x ∈ R
d × {0}. (14.2.3b)

Here bε(x) = b(x/ε), as in the previous chapter.

As in the previous chapter we define the operator

L0 = b(y) · ∇y + DΔy (14.2.4)

with periodic boundary conditions. Note that constants in y are in the null space of

this operator; furthermore, for D > 0 the null space is one-dimensional and com-

prises only constants. The L2-adjoint of L0 is L∗
0, also with periodic boundary con-

ditions. Recall from Chapter 13 that, for D > 0, the invariant distribution ρ(y) is

the unique stationary solution of the adjoint equation

L∗
0ρ = 0,

∫

Td

ρ(y) dy = 1, (14.2.5)

equipped with periodic boundary conditions. For D > 0 both operators L0 and L∗

satisfy a Fredholm alternative.

14.3 Simplified Equations

In this and the following section we simply assume that the operator L0 has a one-

dimensional null space comprising constants and that the same holds for its adjoint

L∗
0, with null space spanned by ρ. This follows from the Fredholm alternative for

D > 0. For D = 0 it requires some form of ergodicity of the underlying ODE for

which L0 is the generator. We discuss this ergodicity issue in Sections 14.5 and 14.6.

Under the stated assumptions on L0 we have the following result.
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Result 14.1. Let b be a smooth periodic vector field. Assume that the operator L0

defined in (14.2.4) satisfies

N (L0) = span(1), N (L∗
0) = span(ρ).

Then, for ε≪ 1 and times t ofO(1), the solution uε(x, t) of (13.2.4) is approximated

by u(x, t), the solution of the averaged equation:

∂u

∂t
− b · ∇xu = 0, b :=

∫

Td

ρ(y)b(y) dy,

together with the same initial condition as for uε.

The calculations leading to this approximation result take the rescaled parabolic

Equation (14.2.3a) as a starting point and recover a transport equation by means

of averaging. Naively it might appear that the diffusion term in (14.2.3a) simply

disappears from the averaging calculation, since it is multiplied by ε. This viewpoint

is wrong: the diffusion coefficient plays an essential role. In general the form of the

stationary distribution, against which b is averaged, depends crucially on D > 0,

through ρ.1

Note that the centering condition (13.2.8) simply states that b = 0. This is why

a different scaling of space and time is used in Chapter 13 from that used here:

specifically a longer time scale is used there, in order to see nonnegligible effects.

14.4 Derivation

We use the method of multiple scales as introduced in the two preceding chapters.

We introduce the auxiliary variable y = x/ε. Let φ = φ(x, x/ε) be scalar-valued.

The chain rule gives

∇φ = ∇xφ +
1

ε
∇yφ and Δφ = Δxφ +

2

ε
∇x · ∇yφ +

1

ε2
Δyφ.

The partial differential operator that appears on the right-hand side of Equation

(14.2.3) has the form

L =
1

ε
L0 + L1 + εL2,

where

L0 = b(y) · ∇y + DΔy,

L1 = b(y) · ∇x + 2D∇x · ∇y,

L2 = DΔx.

In terms of x and y Equation (14.2.3) becomes

1 An exception is the case of divergence-free flows: the invariant measure ρ is the Lebesgue

measure on the unit torus for all D > 0; see Lemma 13.15.
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∂uε

∂t
=

(
1

ε
L0 + L1 + εL2

)
uε.

We look for a solution in the form of a two-scale expansion:

uε(x, t) = u0

(
x,

x

ε
, t
)

+ εu1

(
x,

x

ε
, t
)

+ . . . . (14.4.1)

We assume that all terms in the expansion uj(x, y, t), j = 0, 1, . . . are 1-periodic

in y and treat x and y := x/ε as independent variables. 2 We substitute (14.4.1)

into Equation (14.2.3a), use the assumed independence of x and y, and collect equal

powers of ε to obtain the following set of equations:

O(1/ε) −L0u0 = 0, (14.4.2a)

O(1) −L0u1 = L1u0 −
∂u0

∂t
, (14.4.2b)

where uj(x, y) is 1-periodic in y.
We can now complete the averaging procedure. From the first equation in (14.4.2)

and our assumptions on L0, we deduce that the first term in the expansion is inde-

pendent of the oscillations that are expressed through the auxiliary variable y:

u0 = u(x, t).

We use this to compute:

L1u0 =
∂u(x, t)

∂t
− b(y) · ∇xu(x, t).

Since ρ is in the null space of L∗
0, the second equation in (14.4.2) implies that

0 =
∂u(x, t)

∂t
−
(∫

Td

ρ(y)b(y) dy

)
· ∇xu(x, t). (14.4.3)

We have thus obtained the desired averaged equation:

∂u(x, t)

∂t
− b · ∇xu(x, t) = 0, b :=

∫

Td

ρ(y)b(y) dy,

together with the same initial conditions as for uε.

14.5 Transport Equations: D = 0

We have indicated that, in general, the averaged transport equation depends subtly

on the diffusion coefficient D through the invariant distribution ρ against which b

2 As in the elliptic and parabolic homogenization procedures in the previous two chapters,

this is where we exploit scale separation: we treat x and y as independent variables.

Justifying this assumption as ε → 0 is one of the main issues in the rigorous theory of

averaging; see Chapter 21.
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is averaged. Existence and uniqueness of the stationary distribution ρ are automatic

when D > 0 but require some form of ergodicity, which will depend on the prop-

erties of b, when D = 0. It is therefore a nontrivial question to ask when, and to

what extent, the preceding averaging calculations extend to the case D = 0. The

calculations rely on the null spaces of L0 and L∗
0 being one-dimensional, something

ensured by the Fredholm alternative in the case D > 0. We discuss the analogs of

these results in the case D = 0.

Let

L0 = b(y) · ∇y (14.5.1)

with domain C1
per(T

d). We can extend this operator to D(L0) ⊂ L∞
per(T

d) as in

(4.3.8). We assume for the moment that there are no nontrivial functions in the null

space N of L0:

N (L0) =
{

constants in y
}

(14.5.2)

viewing the operator as acting on D(L0). From Chapter 4 we know that this is es-

sentially an ergodicity assumption on the ODE with vector field b; see Theorem

4.13(iii). In relation to this, the idea that L∗
0 is nonempty with domain viewed as

being C1
per(T

d) implies the existence of an invariant measure that is absolutely con-

tinuous with respect to the Lebesgue measure; see Theorem 4.12(iii). Thus ergodicity

with respect to absolutely continuous invariant measure μ provides us with the nec-

essary tools to carry out the formal perturbation expansions of this chapter in the

case D = 0. In particular, in the ergodic case, (14.4.2a) implies that u0 is indepen-

dent of y and also that a necessary condition for a solution u1 of (14.4.2b) to exist is

Equation (14.4.3).

Note that if b is divergence-free (the velocity field is incompressible), then L is

skew-symmetric (Lemma 13.14) and so we deduce from (14.5.2) that

N (L∗
0) =

{
constants in y

}
. (14.5.3)

However, in the general ergodic case, ρ will not be a constant function.

14.5.1 The One-Dimensional Case

Consider the rescaled transport Equation (14.2.3a) in one dimension:

∂uε

∂t
− bε ∂u

ε

∂x
= 0 for (x, t) ∈ R× R

+, (14.5.4a)

u = g for (x, t) ∈ R× {0}, (14.5.4b)

where g = g(x) is independent of the oscillations.3 We assume that b(y) is a strictly

positive, smooth, 1-periodic function. The stationary Liouville equation

L∗
0ρ = 0, ρ > 0, 1-periodic, (14.5.5)

together with the normalization condition

3 This is not necessary; see Exercise 3 from Chapter 21.
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∫ 1

0

ρ(y) dy = 1,

has unique normalized solution the probability density

ρ(y) =
C

b(y)
, C = 〈b(y)−1〉−1; (14.5.6)

here we have used the notation 〈·〉 to denote averaging over [0, 1], as in Chapter 12.

Positivity of b is key to this existence and uniqueness result, and also to the ergodicity

of the underlying flow. These issues are discussed in Example 4.14.

We obtain the averaged equation

∂u

∂t
− b

∂u

∂x
= 0, (14.5.7)

with the same initial conditions as in (14.5.4b) and with

b = 〈b(y)−1〉−1.

Notice that, in contrast to the ergodic divergence-free case presented in the next

subsection, it is the harmonic average of the velocity field that appears in the averaged

Equation (14.5.7) rather than the standard average. (Note that the harmonic average

also arises in the one-dimensional elliptic case; see Subsection 12.6.1.)

14.5.2 Divergence-Free Velocity Fields

If b is divergence-free (the velocity field is incompressible), then L given by (14.5.1)

is skew-symmetric (Lemma 13.14) and so we deduce that, if (14.5.2) holds, then

N (L∗
0) =

{
constants in y

}
. (14.5.8)

(See Example 4.15.) Unfortunately, even for divergence-free fields, the ergodic hy-

pothesis leading to (14.5.2) is often not satisfied. Consider an equation in the form

(14.4.2a):

L0u := b(y) · ∇yu = 0 (14.5.9)

with periodic boundary conditions. Although u ≡ 1 solves this equation, it is rare

that this solution is unique: the null space of the operatorL0 contains, in general, non-

trivial functions of y. As an example, consider the smooth, 1-periodic, divergence-

free field

b(y) = (sin(2πy2), sin(2πy1)).

It is easy to check that the function

u(y) = cos(2πy1)− cos(2πy2)

solves Equation (14.5.9). Consequently, the null space of L0 depends on the velocity

field b(y), and it does not consist, in general, merely of constants in y. This implies

that we cannot carry out the averaging procedure using the method of multiple scales.

It is natural to ask whether there is a way of deciding whether a given divergence-

free velocity field on T
d is ergodic or not. This is indeed possible in two dimensions.

A result along these lines is the following.
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Theorem 14.2. Let b(y) : T
2 → R

2 be a smooth divergence-free velocity field satis-

fying

b1(y) �= 0 ∀y ∈ T
2

so that it has no stagnation points. Let bi, i = 1, 2, denote the average of the ith
component of the velocity field over T

2 and define the rotation number as

γ =
b1

b2
.

Then there exists a smooth change of variables y �→ z under which the ODEs

dy1

dt
= b1(y),

dy2

dt
= b2(y) (14.5.10)

transform into
dz1

dt
= g(z),

dz2

dt
= γg(z) (14.5.11)

where g(z) is a nonvanishing smooth scalar function. Assume furthermore that γ is

irrational. Then the null space of the generator L0 is one-dimensional in D(L0).

Proof. The first part of the theorem can be proved by constructing explicitly the

transformation that maps (14.5.10) into (14.5.11):4

z1 =
1

b2

∫ y1

0

b2(ξ, 0) dξ, z2 =
1

b1

∫ y2

0

b1(y1, ξ) dξ.

The second part of the theorem can be proved using Fourier analysis; see Exercise 7.

⊓⊔
Thus, under the conditions of this theorem, Theorem 4.13 holds and the formal

perturbation expansions of this chapter may be applied.

14.6 The Connection to ODEs and SDEs

We consider first the case where D = 0. Recall from Chapter 4 that the solution of

(14.2.3) is given by

u(x, t) = g(ϕt(x)),

where ϕt(x) solves the ODE

d

dt
ϕt(x) = b

(ϕt(x)

ε

)
,

ϕt(x) = x.

Result 14.1 shows that, when the ergodicity assumption holds so that L0 has one-

dimensional null space, this equation is well approximated by

4 Under the additional assumption that b2 	= 0, which can be removed later.
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ϕt(x) = bt + x,

the solution of

d

dt
ϕt(x) = b,

ϕt(x) = x.

Here

b =

∫

Td

ρ(y)b(y)dy.

In dimension d = 1 we have

b = 〈b(y)−1〉
by (14.5.6).

Another way to see this result is as follows. Let x = ϕt(x0) and y = x/ε. Then

dx

dt
= b(y),

dy

dt
=

1

ε
b(y).

Under the ergodic hypothesis the fast process y has invariant measure ρ on the torus

T
d. Thus the averaging Result 10.1 gives that x is well approximated by the solution

of the equation
dX

dt
= b.

This is precisely the approximation just derived.

Example 14.3. In the one-dimensional case it is possible to derive the averaged Equa-

tion (14.5.7) using the method of characteristics. To see this, consider the equation

dx

dt
= b

(x

ε

)

in one dimension and under the same assumptions as before. If we set y = x/ε then

it is straightforward to show that

dy

dt
=

1

ε
b(y),

so that, if we define T by

T =

∫ 1

0

1

b(z)
dz =

1

b
,

then

y(nεT ) =
x(0)

ε
+ n.

Hence

x(nεT ) = x(0) + nε.
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It follows from continuity that x(t) converges to X(t) where

X(t) = x(0) +
t

T
.

This limiting function X(t) satisfies the homogenized equation

dX

dt
=

1

T
= b. ⊓⊔

If D > 0, then Equation (14.2.3) is the backward Kolmogorov equation for the

SDE
dx

dt
= b

(x

ε

)
+
√

2εD
dW

dt
.

Another way to interpret the averaging result is thus as follows. Let y = x/ε to

obtain

dx

dt
= b(y) +

√
2εD

dW

dt
,

dy

dt
=

1

ε
b(y) +

√
2D

ε

dW

dt
. (14.6.1)

Under the ergodic hypothesis the fast process y has invariant measure ρ on the torus

T
d. Thus a generalization of the averaging Result 10.1 gives that x is well approxi-

mated by the ODE
dx

dt
= b.

14.7 Discussion and Bibliography

The perturbation expansion used here is analogous to that used in the method of

averaging, for Markov chains, ODE, and SDE, in Chapters 9 and 10. The problem of

averaging for linear transport equations has been studied by many authors. See for

example [80, 147, 312, 51]. Averaging for SDEs is studied in detail in [111].

When D = 0 the method of multiple scales enables us to obtain the averaged lin-

ear transport Equation (14.2.3a) only in the case where the velocity field is ergodic.

The method of multiple scales breaks down when the velocity field is not ergodic,

since in this case we do not have a solvability condition that would enable us to av-

erage. In fact, when the velocity field is not ergodic, the ε → 0 limit becomes much

more complicated and the limiting process cannot be expressed through a simple

PDE. In order to study the problem for general velocity fields, not necessarily ergod-

icones, it is possible to use the method of two-scale convergence. This will be done

in Chapter 21.

Theorem 14.2 is proved in [312], where the result is proved for two-dimensional

flows that have a smooth invariant density, not only divergence-free flows (for which

the invariant density is simply 1). It is not the sharpest result that one can prove,

but the assumption b1 �= 0 leads to a particularly simple proof. The proof of the



236 14 Averaging for Linear Transport and Parabolic PDEs

analogous theorem under the assumptions that there are no stagnation points can be

found in [290]. A similar theorem holds for velocity fields with an invariant measure

other than the Lebesgue measure on T
2; see [312].

The example studied in Section 14.5.1 can be found in [81, 312]. Monte Carlo

methods for advection–diffusion and for transport PDEs are presented in [187].

14.8 Exercises

1. How does the dynamics of the ODE studied in Section 14.5.1 change if b is

allowed to change sign?

2. Consider the equation
dx

dt
= a

(x

ε

)
b
( t

εα

)

in one dimension and under the assumption that a (resp. b) is smooth, 1-periodic,

and infx a > 0 (resp. infy b > 0). Find the averaged equations.

3. Study the problem of averaging for (14.2.3) with a smooth periodic (shear) ve-

locity field b : T
2 �→ R

2 of the form

b(y) = (0, b2(y1))
T .

4. Study the problem of averaging for (14.2.3) with a velocity field b : T
2 �→ R

2 of

the form

b(y) = b̂(y)(0, γ)T ,

where b̂(y) is a smooth, 1-periodic scalar function, and γ ∈ R.

5. Consider Equation (13.2.4) in the case where the centering condition (13.2.8)

does not hold. Show that it is possible to derive a homogenized equation of the

form (13.3.3) for the rescaled field

uε(x, t) = u

(
x

ε
− bt

ε2
,
t

ε2

)

where u solves (14.2.1) and b is given in Result 14.1. Show that the cell problem

becomes

−L0χ = b− b. (14.8.1)

and that the effective diffusivity is given by the formula

K = DI + 2D

∫

Td

∇yχ(y)T ρ(y) dy +

∫

Td

((
b(y)− b

)
⊗ χ(y)ρ(y)

)
dy.

(14.8.2)

6. Study the problem of homogenization for the ODE

dx

dt
= −∇V

(x

ε

)
+ F

where V (y) is a smooth periodic function and F is a constant vector.

7. Complete the details in the proof of Theorem 14.2.
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Theory
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Invariant Manifolds for ODEs: The Convergence

Theorem

15.1 Introduction

In this chapter we describe a rigorous theory substantiating the perturbation expan-

sions for invariant manifolds in Chapter 8. The approximation theorem is stated in

Section 15.2. We prove this straightforward estimate, which is valid on any finite

time interval, in Section 15.3, using basic techniques from the theory of ODEs. In

the Discussion and Bibliography section, Section 15.4, we point to more sophisti-

cated techniques that establish results on arbitrary time intervals.

15.2 The Theorem

We study the equations

dx

dt
= f(x, y), (15.2.1a)

dy

dt
= 1

εg(x, y), (15.2.1b)

for ε ≪ 1 and x ∈ R
l, y ∈ R

d−l. We assume that the dynamics for y with x frozen

has a unique exponentially attracting fixed point, uniformly in x. Specifically we

assume that there exists η : R
l → R

d−l and α > 0 such that, for all x ∈ R
l and all

y1, y2 ∈ R
d−l,

g(x, η(x)) = 0, (15.2.2a)

〈g(x, y1)− g(x, y2), y1 − y2〉 � −α|y1 − y2|2. (15.2.2b)

We will refer to (15.2.2b) as the contractivity condition.

The dynamics with x frozen at ξ satisfies

d

dt
ϕt

ξ(y) = g(ξ, ϕt
ξ(y)), ϕ0

ξ(y) = y. (15.2.3)
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We assume that the vector field (fT , gT )T is Lipschitz on R
d so that both (15.2.1)

and (15.2.3) have globally defined solutions.

Our assumptions on η and g imply the following exponential convergence of

ϕt
ξ(y) to its globally attracting fixed point η(ξ).

Lemma 15.1. Under assumption (15.2.2) we have that, for all y ∈ R
d−l,

|ϕt
ξ(y)− η(ξ)| � e−αt|y − η(ξ)|.

Proof. Since η(ξ) is time-independent we have

d

dt
ϕt

ξ(y) = g(ξ, ϕt
ξ(y)),

d

dt
η(ξ) = g(ξ, η(ξ)) = 0.

Hence

1

2

d

dt
|ϕt

ξ(y)− η(ξ)|2 = 〈g(ξ, ϕt
ξ(y))− g(ξ, η(ξ)), ϕt

ξ(y)− η(ξ)〉

� −α|ϕt
ξ(y)− η(ξ)|2.

The result follows from the differential form of the Gronwall Lemma 4.4. ⊓⊔
In essence we wish to prove a result like this for y(t) instead of ϕt

ξ(y) when

x is no longer frozen at ξ but rather evolves on its own time scale, which is slow

compared to that of y. We make the following standing assumptions. These simplify

the analysis and make the ideas of the proof of the basic result clearer; however, they

can all be weakened in various different ways. The assumptions are the existence of

a constant C > 0 such that:1

|f(x, y)| � C ∀(x, y) ∈ R
d, (15.2.4a)

|∇xf(x, y)| � C ∀(x, y) ∈ R
d, (15.2.4b)

|∇yf(x, y)| � C ∀(x, y) ∈ R
d, (15.2.4c)

|η(x)| � C ∀x ∈ R
l, (15.2.4d)

|∇η(x)| � C ∀x ∈ R
l. (15.2.4e)

With these assumptions we prove that x is close to X solving

dX

dt
= f(X, η(X)), X(0) = x(0). (15.2.5)

Theorem 15.2. Assume that assumptions (15.2.2) and (15.2.4) hold. Then there are

constants K, c > 0 such that x(t) solving (15.2.1) and X(t) solving (15.2.5) satisfy

|x(t)−X(t)|2 � ceKt
(
ε|y(0)− η(x(0))|2 + ε2

)
.

1 In the first and fourth items in this list the norms are standard vector norms; in the second,

third, and fifth they are matrix (operator) norms. All are Euclidean. In fact the properties

assumed of η follow from suitable assumptions on g, because of the uniformity of the

contraction assumption (15.2.2b) in x.
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Note that the error is of size
√
ε for times of O(1). However, this can be reduced to

size ε if the initial deviation y(0)−η(x(0)) is of size
√
ε. Note, furthermore, that the

distance between x(t) and X(t) grows exponentially fast in time. Hence, for given ε,

Theorem 15.2 is useful only on intervals of order ln ε−1. Stronger results are possible

and are discussed in Section 15.4.

15.3 The Proof

Define z(t) by y(t) = η(x(t)) + z(t). Then

dz

dt
=

dy

dt
−∇η(x)

dx

dt

=
1

ε
g(x, η(x) + z)−∇η(x)f(x, η(x) + z)

=
1

ε

(
g(x, η(x) + z)− g(x, η(x))

)
−∇η(x)f(x, η(x) + z),

using assumption (15.2.2a). Now assumption (15.2.2b) implies that

〈g(x, η(x) + z)− g(x, η(x)), z〉 � −α|z|2.

Furthermore, assumptions (15.2.4) imply that

〈z,∇η(x)f(x, η(x) + z)〉 � C2|z|.

Hence, by using the Cauchy-Schwarz inequality with δ2 = ε/α,

1

2

d

dt
|z|2 = 〈z, dz

dt
〉

=
1

ε
〈z, g(x, η(x) + z)− g(x, η(x))〉 − 〈z,∇η(x)f(x, η(x) + z)〉

� −α

ε
|z|2 + C2|z|

� −α

ε
|z|2 +

δ2

2
C4 +

1

2

|z|2
δ2

� − α

2ε
|z|2 +

ε

2α
C4.

By Gronwall’s lemma,

|z(t)|2 � e−
α
ε

t|z(0)|2 +
(
1− e−

α
ε

t
)ε2C4

α2
. (15.3.1)

Now,
dX

dt
= f(X, η(X))

and
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dx

dt
= f(x, η(x) + z).

Subtracting gives

d

dt
(x−X) = f(x, η(x) + z)− f(X, η(X))

= f(x, η(x) + z)− f(x, η(X)) + f(x, η(X))− f(X, η(X)).

We use now the Cauchy-Schwarz inequality, together with the Lipschitz continuity

of f(·, ·) and η(·) to estimate:

1

2

d

dt
|x−X|2 = 〈x−X,

d

dt
(x−X)〉

= 〈x−X, f(x, η(x) + z)− f(x, η(X))〉
+〈x−X, f(x, η(X))− f(X, η(X))〉

� C|η(x)− η(X) + z||x−X|+ C|x−X|2
� (C2 + C)|x−X|2 + C|z||x−X|.

It follows that
d

dt
|x−X|2 � (3C2 + 2C)|x−X|2 + |z|2.

Letting K = 3C2 + 2C and using the bound (15.3.1) for |z(t)|2, Gronwall’s lemma,

and the fact that x(0) = X(0) gives the desired result. ⊓⊔

15.4 Discussion and Bibliography

Theorem 15.2 shows that x(t) from the full Equations (15.2.1) remains close to X(t)
solving the reduced Equations (15.2.5) over time scales that are of the order ln(ε−1).
On longer time scales the individual solutions can diverge, because of the exponential

separation of trajectories which may be present in any dynamical system. Notice,

however, that estimate (15.3.1) shows that

lim sup
t→∞

|y(t)− η(x(t))| � C4

α2
ε2,

suggesting that y(t) is approximately slaved to x(t), via y = η(x), for arbitrary time

intervals. There are results concerning the approximation of x(t) over arbitrarily long

times, using this slaving idea. Specifically, these long-time approximation results are

built on making rigorous the construction of an invariant manifold as described in

Chapter 8. The idea is as follows. Consider the equations

dx

dt
= f(x, η(x) + z),

dz

dt
=

1

ε
g(x, η(x) + z)−∇η(x)f(x, η(x) + z).



15.5 Exercises 243

Notice that y = η(x) + z. Using the fact that ∇yg(x, η(x)) is negative definite it is

possible to prove the existence of an invariant manifold for z with the form

z = εη1(x; ε)

with η1 bounded uniformly in ε→ 0. To be precise, the equations for x and z started

with initial conditions z(0) = εη1(x(0); ε) will satisfy z(t) = εη1(x(t); ε) for all

positive times. Furthermore the manifold is attracting so that

|z(t)− εη1(x(t); ε)| → 0

as t→∞. Thus we have an attractive invariant manifold for y with the form

y = η(x) + εη1(x; ε).

The existence and uniqueness of invariant manifolds can be proved by a variety

of techniques, predominantly the Lyapunov-Perron approach ( [136, 314]) and the

Hadamard graph transform ( [330]). Important work in this area is due to Fenichel

[104, 105], who set up a rather general construction of normally hyperbolic invariant

manifolds. The book [57] has a clear introduction to the Lyapunov-Perron approach

to proving existence of invariant manifolds. The graph transform approach, for both

maps and flows, is overviewed in [305].

15.5 Exercises

1. Show that, under the assumptions on g stated at the beginning of the chapter,

ϕt
ξ : R

d−l → R
d−l (15.2.3) is a contraction mapping for any t > 0. What is its

fixed point?

2. Prove a result similar to Theorem 15.2 but removing the assumption that η and f
are globally bounded; use instead linear growth assumptions on η and f .

3. Consider the equations

dx

dt
= Ax + εf0(x, y),

dy

dt
= − 1

εBy + g0(x, y), (15.5.1)

for 0 < ε ≪ 1 and x ∈ R
l, y ∈ R

d−l. Assume that B is symmetric positive

definite. Let z(t, x0; η) solve the equation

dz

dt
= Az + εf0(z, η(z)), z(0, x0; η) = x0.

Given η : R
l → R

d−l, define Tη : R
l → R

d−l by

(Tη)(x0) =

∫ 0

−∞

e−Bs/εg0(z(s, x0; η), η(z(s, x0; η)))ds.
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Show that if η is a fixed point of T then y = η(x) is an invariant manifold for

the Equations (15.5.1). (This is known as the Lyapunov-Perron approach to the

construction of invariant manifolds.)

4. Assume that f0, g0 and all derivatives are uniformly bounded. Prove that T from

the previous question has a fixed point. (Hint: Apply a contraction mapping argu-

ment in a space of Lipschitz graphs η that are sufficiently small and have suffi-

ciently small Lipschitz constant.)
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Averaging for Markov Chains: The Convergence

Theorem

16.1 Introduction

In this chapter we prove a result concerning averaging for Markov chains. The tech-

niques presented lead to a weak-convergence-type result showing that expectations

under the original chain and under the averaged chain are close. The technique is

to work with the backward equation for the two Markov chains. The fundamental

estimate (5.2.2) plays a central role. This estimate is analogous to the maximum

principle for parabolic PDEs. In Chapter 20 we use techniques similar to those in

this chapter, based on the maximum principle, to prove a homogenization result for

parabolic PDEs. The main theorem is stated in Section 16.2 and is proved in Section

16.3. The chapter concludes with bibliographical notes in Section 16.4.

16.2 The Theorem

The setup is as in Chapter 9. To make the proofs transparent we concentrate on the

finite state space case. Let Ix, Iy ⊆ {1, 2, · · · } be finite sets. Consider a continuous-

time Markov chain

z(t) =

(
x(t)
y(t)

)

on Ix × Iy. We assume that this Markov chain is parameterized by ε and that the

backward equation has the form

dv

dt
=

1

ε
Q0v + Q1v (16.2.1)

where Q0, Q1 are given by (9.2.4). Let X(t) be a Markov chain on Ix with backward

equation
dv0

dt
= Q1v0, (16.2.2)
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and with Q̄1 given by (9.3.1). We are interested in approximating x(t) by X(t). Note

that the formula for the approximate process implied by the Kolmogorov equation is

exactly that derived in Chapter 9 by means of formal asymptotics.

Note that x(t) is not itself Markovian; only the pair (x(t), y(t)) is. Thus we

are approximating a non-Markovian stochastic process by a Markovian one. To be

precise, we prove that, at any fixed time, the statistics of x(t) are close to those of

X(t). That is, we prove weak convergence of x(t) to X(t) at any fixed time t.

Theorem 16.1. For any t > 0, x(t) ⇒ X(t), as ε→ 0.

16.3 The Proof

Let v0 be defined as in (16.2.2). We then have

v0 ∈ N (Q0),
dv0

dt
−Q1v0⊥N (QT

0 ),

by construction. Hence there exists v1 so that

Q0v0 = 0,

Q0v1 =
dv0

dt
−Q1v0.

We can make v1 unique by insisting that it is orthogonal to the null space of Q∗
0,

although this particular choice is not necessary. We simply ask that a solution is

chosen that is bounded, with bounded derivative in time.

For any such v1 and for v0 given by (16.2.2), define

r = v − v0 − εv1.

Substituting v = v0 + εv1 + r into (16.2.1) and using the properties of v0, v, we

obtain

dv0

dt
+ ε

dv1

dt
+

dr

dt
=

1

ε
Q0v0 + Q0v1 +

1

ε
Q0r + Q1v0 + εQ1v1 + Q1r.

Hence

dr

dt
=

(1

ε
Q0 + Q1

)
r + εq,

q = Q1v1 −
dv1

dt
.

Now Q := 1
εQ0 + Q1 is the generator of a Markov chain. Hence using | · |∞ to

denote the supremum norm on vectors over the finite set Ix × Iy , as well as the

induced operator norm, we have

|eQt|∞ = 1. (16.3.1)
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This follows from (5.2.2) because eQt is a stochastic matrix. It is a noteworthy es-

timate because, although Q depends on ε in a singular fashion, this estimate does

not.

By the variation-of-constants formula we have

r(t) = eQtr(0) + ε

∫ t

0

eQ(t−s)q(s)ds, (16.3.2)

viewing r(t), q(t) as vectors on Ix × Iy , for each t. We assume that v(i, k, 0) =
φ(i), v0(i, 0) = φ(i) and then

v(i, k, t) = E

(
φ(x(t))|x(0) = i, y(0) = k

)
, (16.3.3a)

v0(i, t) = E

(
φ(X(t))|X(0) = i

)
. (16.3.3b)

Weak convergence of x(t) to X(t), for fixed t, is proved if

v(i, k, t) → v0(i, t), as ε→ 0,

for any φ : Ix → R. Equations (16.3.3) imply that r(0) = −εv1(0). Using (16.3.1)

we have, from (16.3.2),

|r(t)|∞ � ε|eQt|∞|v1(0)|∞ + ε

∫ t

0

|eQ(t−s)|∞|q(s)|∞ds

� ε|v1(0)|∞ + ε

∫ t

0

|q(s)|∞ds

� ε

(
|v1(0)|∞ + t sup

0�s�t
|q(s)|∞

)
.

Hence, for any fixed t > 0, r(t) → 0 as ε→ 0, and it follows that v → v0 as ε→ 0.

⊓⊔
Remark 16.2. The proof actually gives a convergence rate because it shows that, for

0 � t � T ,

|v(t)− v0(t)|∞ � C(T )ε.

16.4 Discussion and Bibliography

The result we prove only shows that the random variable x(t) converges to X(t)
for each fixed t. It is also possible to prove the more interesting result that the weak

convergence result actually occurs on path space, in the Skorokhod topology (defined

in [120]); see [291]. It is also possible to derive diffusion limits of Markov chains;

see [182, 183, 184].
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16.5 Exercises

1. Consider the two-state continuous-time Markov chain y with generator

L =
1

ε

(
−a a

b −b

)

and state space I = {−1,+1}. Consider the ODE on T
d given by

dx

dt
= f(x, y)

where f : T
d × I → R

d.

a. Write down the generator for this process.

b. Using multiscale analysis, show that the averaged SDE is

dX

dt
= F (X)

where

F (x) = λf(x,+1) + (1− λ)f(x,−1)

and λ ∈ (0, 1) should be specified.

2. Prove the assertions made in the preceding exercise: show that x(t) ⇒ X(t) for

each fixed t � 0.
3. Conjecture what the behavior of x is in the case where F (x) = 0 and large times

are considered.

4. Justify the two-state Markov chain approximation derived in Chapter 9,

Exercise 6.
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Averaging for SDEs: The Convergence Theorem

17.1 Introduction

The goal of this chapter is to develop a rigorous theory based on the averaging

principle for SDEs that we developed in Chapter 10. We introduce the use of the

Itô formula, applied to the solution of a carefully chosen elliptic PDE (the Poisson

equation), in order to estimate integrals containing rapidly varying components (see

Remark 6.17). The existence of this estimation technique makes the treatment of the

SDE case considerably easier than the pure ODE case. Pointers to the literature on the

pure ODE case are given in the Discussion and Bibliography section. We also con-

sider only the case where the averaged equation is an ODE. This allows the proof of

straightforward strong convergence results. If the averaged equation is itself an SDE

then weak convergence results are more natural. These weak convergence methods

are illustrated, in the context of homogenization for SDEs, in the next chapter.

Section 17.2 contains the theorem statement, and Section 17.3 the proof. Gener-

alizations of the results presented in this chapter and bibliographical comments are

given in Section 17.4.

17.2 The Theorem

To allow for a simplified, but prototypical, theorem and statement, we study the fol-

lowing problem on the torus T
d:

dx

dt
= f(x, y), x(0) = x0, (17.2.1a)

dy

dt
=

1

ε
g(x, y) +

1√
ε
β(x, y)

dV

dt
, y(0) = y0. (17.2.1b)

Here V is a standard Brownian motion on R
d−l, f : T

l × T
d−l �→ R

l, g : T
l ×

T
d−l �→ R

d−l, β : T
l × T

d−l �→ R
(d−l)×(d−l) are smooth periodic functions. Let

B(x, y) = β(x, y)β(x, y)T . Assume that, writing z = (xT , yT )T ,
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∃β̄ > 0 : 〈ξ,B(x, y)ξ〉 � β̄|ξ|2 ∀ξ ∈ R
d−l, z ∈ T

d. (17.2.2)

We will also assume that the initial conditions are deterministic. This is not necessary

for the averaging result but simplifies the presentation.

Recall that, under assumption (17.2.2), the process found by freezing x = ξ in

(17.2.1b), is ergodic (Theorem 6.16). Thus we expect that an effective equation for

the evolution of x can be found by averaging f over the invariant measure of this

ergodic process. We now make this idea precise.

The process ϕt
ξ given by (10.5.1) is ergodic and has a smooth invariant density

ρ∞(y; ξ). This invariant density spans the null space of L∗
0, found as the adjoint of

L0 given by

L0 = g(x, y) · ∇y +
1

2
B(x, y) : ∇y∇y, (17.2.3)

evaluated at x = ξ; bothL0 andL∗
0 have periodic boundary conditions. The averaged

equations are then

dX

dt
= F (X), (17.2.4a)

F (ξ) =

∫

Td−l

f(ξ, y)ρ∞(y; ξ) dy. (17.2.4b)

Note that F : T
l �→ R

l is periodic by construction. The resulting formulae are

exactly those given in Chapter 10, specialized to the particular drift and diffusion

coefficients in (17.2.1).

Theorem 17.1. Let p > 1 and let X(0) = x0. Then the function x(t) solving (17.2.1)

converges to X(t) solving (17.2.4) in Lp
(
Ω,C

(
[0, T ],Tl

))
: for any T > 0, there is

C = C(T ) such that

E

(
sup

0�t�T
|x(t)−X(t)|p

)
� Cεp/2.

17.3 The Proof

Recall that L0 is the generator for ϕt
x(y), with x viewed as a fixed parameter, given

by (17.2.3). Thus L0 is a differential operator in y only; x appears as a parameter.

Now let φ(x, y) solve the elliptic boundary value problem

L0φ(x, y) = f(x, y)− F (x),∫

Td−l

φ(x, y)ρ∞(y;x)dy = 0,

φ(x, ·) is periodic on T
d−l.

This is known as a Poisson equation. By construction
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∫

Td−l

(
f(x, y)− F (x)

)
ρ∞(y;x) dy = 0

and ρ∞ spansN (L∗
0). Hence, by the Fredholm alternative, or by Theorem 7.8, φ has

a unique solution.

Lemma 17.2. The functions f, φ,∇xφ,∇yφ, and β are smooth and bounded.

Proof. The properties of f, β follow from the fact that they are defined on the torus

and have derivatives of all orders by assumption. Since the invariant density ρ∞ is the

solution of an elliptic eigenvalue problem on the torus, it is also smooth and periodic.

Hence F is smooth and periodic. Consequently f−F is smooth and periodic. Hence

φ and all its derivatives are smooth and periodic. ⊓⊔
Proof of Theorem 17.1 Notice that the generator for (17.2.1) is

L =
1

ε
L0 + L1.

Here L0 is given by (17.2.3) and

L1 = f(x, y) · ∇x.

Now we apply the Itô formula (Lemma 6.5) to φ(x(t), y(t)) to obtain the following

informal expression, with precise interpretation found by integrating in time:

dφ

dt
(x, y) =

1

ε
(L0φ)(x, y) + f(x, y) · ∇xφ(x, y) +

1√
ε
∇yφ(x, y)β(x, y)

dV

dt
.

Since L0φ = f − F , we obtain

dx

dt
= F (x) + (L0φ)(x, y)

= F (x) + ε
dφ

dt
− εf(x, y) · ∇xφ(x, y)

−√ε∇yφ(x, y)β(x, y)
dV

dt
(17.3.1)

(again a formal expression made rigorous by time integration). The functions f, φ,

and ∇xφ are all smooth and bounded by Lemma 17.2. Hence there is a constant

C > 0 so that

θ(t) :=
(
φ(x(t), y(t))− φ(x(0), y(0))

)
−
∫ t

0

f(x(s), y(s)) · ∇xφ(x(s), y(s)) ds

satisfies, with probability one,

sup
0�t�T

|θ(t)| � C.

Now consider the martingale term
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M(t) := −
∫ t

0

∇yφ(x(s), y(s))β(x(s), y(s)) dV (s).

Since ∇yφ, β are smooth and bounded, by Lemma 17.2, the Itô isometry gives

E|〈M〉t|2 � C

∫ t

0

E|∇yφ(x(s), y(s))β(x(s), y(s))|2Fds

� Ct.

Similarly (see (3.4.8)), for p � 1,

E|〈M〉t|p/2
� C. (17.3.2)

Now the rigorous interpretation of (17.3.1) is

x(t) = x(0) +

∫ t

0

F (x(s))ds + εθ(s) +
√
εM(t).

Also, from (17.2.4),

X(t) = X(0) +

∫ t

0

F (X(s))ds.

Let e(t) = x(t)−X(t) so that, using e(0) = 0,

e(t) =

∫ t

0

(
F (x(s))− F (X(s))

)
ds + εθ(t) +

√
εM(t).

Since F is Lipschitz on T
l we obtain, for t ∈ [0, T ],

|e(t)| �
∫ t

0

L|e(s)|ds + εC +
√
ε|M(t)|.

Hence, by (17.3.2) and the Burkholder-Davis-Gundy inequality, Theorem 3.22, we

obtain1

E

(
sup

0�t�T
|e(t)|p

)
� C

(
εp + εp/2

E

(
sup

0�t�T
|M(t)|p

)
+ LpT p−1

∫ T

0

E|e(s)|pds
)

� C
(
εp + εp/2

E
(
|〈M〉T |

)p/2
+ LpT p−1

∫ T

0

E|e(s)|pds
)

� C
(
εp/2 +

∫ T

0

E sup
0�τ�s

|e(τ)|pds
)
.

By the integrated version of the Gronwall inequality in Lemma 4.4 we deduce that

E

(
sup

0�t�T
|e(t)|p

)
� Cεp/2

and the theorem is proved. ⊓⊔
1 For C a constant, independent of ε, changing from occurrence to occurrence.
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17.4 Discussion and Bibliography

Our convergence result proves strong convergence: we compare each path of the

SDE for (x, y) with the approximating ODE for X . This strong convergence result

is possible primarily because the limiting approximation is in this case deterministic.

When the approximation is itself stochastic, as arises for (10.7.1), then it is more

natural to study weak-convergence-type results (but see Exercise 1). For results of

the latter type, see [94].

A key role is played in the proof presented here by the Poisson equation for φ
and by application of the Itô formula to φ. Averaging theorems for SDEs are proved

in [111, ch. 7]. Notice, however, that no systematic use of an appropriate Poisson

equation is made in that book.

Averaging results for ODEs are proved by somewhat different techniques, be-

cause an Itô-formula-based methodology does not apply, essentially because the

Poisson equation is no longer elliptic. Much of the original motivation for the study

of averaging in the context of ODEs comes from averaging of perturbed integrable

Hamiltonian systems, expressed in action-angle variables; see [135] for references.

17.5 Exercises

1. Consider Equation (10.7.1) in the case where α(x, y) ≡ 1. Write down the aver-

aged dynamics for X and modify the techniques of this chapter to prove strong

convergence of x to X .

2. Consider Equation (10.7.1) in the case where d = 2, l = 1, and α(x, y) ≡ y2. If y
is a scalar OU process (6.4.4), independent of x, write down the averaged dynam-

ics for X and use the properties of the OU process to prove weak convergence.

3. Consider the fast/slow system

ẋ = f(x)η2, η̇ = −1

ε
η +

1√
ε
Ẇ ,

where W (t) is a standard 1-dimensional Brownian motion. Prove a strong con-

vergence theorem by applying the Itô formula to the function f(x)η2. Make a

connection with the approach based on the Poisson equation that we use in this

chapter.
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Homogenization for SDEs: The Convergence Theorem

18.1 Introduction

In this chapter we develop a rigorous theory based on the homogenization princi-

ple derived in Chapter 11. We consider a simple setting where the entire problem is

posed on the torus, in order to elucidate the principle ideas. Furthermore, we work

in the skew-product setting where the fast process is independent of the slow pro-

cess. Finally we assume that the fluctuating term in the slow process depends only

on the fast process. These assumptions allow for a simplified proof, which nonethe-

less contains the essence of the main ideas. As in the previous chapter, the use of

an appropriate Poisson equation and of the Itô formula plays a central role (see Re-

mark 6.17). Section 18.2 contains the theorem statement and Section 18.3 its proof.

Generalizations of the convergence theorem proved in this chapter, together with

bibliographical remarks, are presented in Section 18.4.

18.2 The Theorem

Consider the following system of SDEs on T
d

dx

dt
=

1

ε
f0(y) + f1(x, y) + α

dU

dt
, (18.2.1a)

dy

dt
=

1

ε2
g(y) +

1

ε
β(y)

dV

dt
, (18.2.1b)

where U (resp. V ) is a standard Brownian motion on R
l (resp. R

d−l) and α ∈ R
l×l,

a constant matrix. The two Brownian motions are assumed to be independent. The

functions f0 : T
d−l �→ R

l, f1 : T
l × T

d−l �→ R
l, g : T

d−l �→ R
d−l, β : T

d−l �→
R

(d−l)×(d−l) are smooth and periodic. Let B(y) = β(y)β(y)T . We also assume that

∃β̄ > 0 : 〈ξ,B(y)ξ〉 � β̄|ξ|2 ∀ξ ∈ R
d−l, y ∈ T

d−l.

Recall that, under this assumption, the process y in (18.2.1b) is ergodic (see Result

6.16.) Thus an effective equation for the evolution of x can be found by averaging f1
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over the invariant measure of this ergodic process and by examining the fluctuations

induced by f0. The aim of this chapter is to make these ideas rigorous.

The generator of the process y is given by

L0 = g(y) · ∇y +
1

2
B(y) : ∇y∇y,

equipped with periodic boundary conditions. This is simply the formula (17.2.3)

for L0 in the case where the fast process is x-independent. Then ϕt(y) is given

by (10.5.1) with the ξ-dependence removed. The process ϕt(y) is ergodic and has

a smooth invariant density ρ∞(y); this function spans the null space of L∗
0. Note

that ϕt(·) and ρ∞(·) are independent of ξ here, because g, β depend only on y. We

assume that ∫

Td−l

f0(y)ρ∞(y)dy = 0.

Under this assumption the calculations in Chapter 11 apply and we may homogenize

the SDE (18.2.1) to obtain

dX

dt
= F (X) + A

dW

dt
, (18.2.2)

where

F (ξ) =

∫

Td−l

f1(ξ, y)ρ∞(y)dy

and

AAT = ααT +

∫

Td−l

(
f0(y)⊗ Φ(y) + Φ(y)⊗ f0(y)

)
ρ∞(y)dy.

Recall that Φ(y) solves the cell problem

L0Φ(y) = −f0(y), (18.2.3)∫

Td−l

Φ(y)ρ∞(y) = 0,

Φ(y) periodic on T
d−l.

This has a unique solution, by the Fredholm alternative, as applied to elliptic PDEs

with periodic boundary conditions; see Section 7.2.3. The resulting formulae for A
and F are exactly those given in Chapter 11, specialized to the particular drift and

diffusion coefficients studied in this chapter.

Notice that, for ξ ∈ R
l, φ = Φ · ξ, the proof of Theorem 11.3 shows that AAT is

positive definite and that

〈
ξ,AAT ξT

〉
= |αT ξ|2 +

∫

Td−l

|βT (y)∇φ(y)|2ρ∞(y)dy.

Hence the SDE for X is well-defined. Remark 11.4 shows that
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AAT = ααT + α2α
T
2

α2α
T
2 =

∫

Td−l

ρ∞(y)
(
∇Φ(y)β(y)⊗∇Φ(y)β(y)

)
dy. (18.2.4)

This form for the effective diffusion matrix arises naturally in the Poisson-equation-

based proof that we use in this chapter.

Theorem 18.1. Let x(t) solve (18.2.1), let X(t) solve (18.2.2) with X(0) = x(0).
Then, for any T > 0, x⇒ X in C

(
[0, T ],Tl

)
.

18.3 The Proof

The structure of the proof is as follows. We show that the process x(t) satisfies

x(t) = x(0) +

∫ t

0

F (x(s)) ds + αU(t) + M2(t) + η(t). (18.3.1)

The desired limit process satisfies

X(t) = x(0) +

∫ t

0

F (X(s)) ds + αU(t) + α2W (t)

where the diffusion coefficient α2 is defined in (18.2.4). In the equation for x, the

term representing deviation from the desired limit process satisfies

(αU, η,M2) ⇒ (αU, 0, α2W ), in C([0, T ],R3l). (18.3.2)

We then use the following lemma to deduce the desired convergence, using the fact

that weak convergence of probability measures is preserved under continuous map-

pings.

Lemma 18.2. Let w ∈ C([0, T ],Rr),1 let F ∈ C1(Tl; Tl), and let D ∈ R
l×r. There

is a unique u ∈ C([0, T ],Tl) satisfying the integral equation

u(t) = u(0) +

∫ t

0

F (u(s))ds + Dw(t)

and the mapping w �→ u is a continuous mapping from C([0, T ],Rr) into C([0, T ],Tl).

Proof. Existence and uniqueness follow by a standard contraction mapping argu-

ment, based on the iteration

u(n+1)(t) = u(0) +

∫ t

0

F (un(s))ds + Dw(t),

1 Here w(t) is an arbitrary continuous path, not necessarily a Brownian path.
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and using the fact that F is a globally Lipschitz function with constant L. For conti-

nuity consider the equations

u(i)(t) = u(0) +

∫ t

0

F (u(i)(s))ds + Dw(i)(t)

for i = 1, 2. Subtracting and letting e = u1 − u2, δ = w1 − w2, we get

e(t) =

∫ t

0

(
F (u1(s))− F (u2(s))

)
ds + Dδ(s).

Hence

|e(t)| �
∫ t

0

L|e(s)|ds + |D||δ(t)|.

From the integrated form of the Gronwall inequality in Lemma 4.4 it follows that

sup
0�t�T

|e(s)| � C sup
0�t�T

|δ(t)|.

This establishes continuity. ⊓⊔
In establishing the theorem, we will apply the Itô formula twice: once to Φ(y(s))

where Φ is the solution of the cell problem (18.2.3), and once to χ(x(s), y(s)), where

χ solves the following Poisson equation:

L0χ(x, y) = f1(x, y)− F (x), (18.3.3)∫

Td−l

χ(x, y)ρ∞(y)dy = 0,

χ(x, y) periodic on T
d−l.

This has a unique solution, by the Fredholm alternative, or by Theorem 7.8, since

f1−F averages to zero over T
d−l. The proof of the following lemma is very similar

to the proof of Lemma 17.2; hence we omit it.

Lemma 18.3. The functions f0, f1, Φ, χ and all their derivatives are smooth and

bounded.

Proof of Theorem 18.1 Let χ = χ(x(t), y(t)), where (x(t), y(t)) is the solution

of (18.2.1). Notice that, by the Itô formula, Lemma 6.5, we have that

dχ

dt
=

1

ε2
L0χ +

1

ε
L1χ + L2χ +∇xχα

dU

dt
+

1

ε
∇yχβ

dV

dt
; (18.3.4)

the rigorous interpretation is, as usual, the integrated form. Here the operator L0 is

as defined earlier and L1,L2 are given by

L1 = f0(y) · ∇x,

L2 = f1(x, y) · ∇x +
1

2
ααT : ∇x∇x.
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Now define

θ(t) =ε2
(
χ(x(t), y(t))− χ(x(0), y(0))

)

− ε

∫ t

0

(
L1χ

)
(x(s), y(s)) ds− ε2

∫ t

0

(
L2χ

)
(x(s), y(s)) ds (18.3.5)

and

M1(t) = ε2

∫ t

0

∇xχ(x(s), y(s))αdU(s) (18.3.6)

+ ε

∫ t

0

∇yχ(x(s), y(s))β(y(s)) dV (s).

Since χ, f0, and f1 and all their derivatives are bounded, we have

E sup
0�t�T

|θ(t)|p � Cεp. (18.3.7)

Furthermore

E|〈M1〉|2 = ε4

∫ t

0

|∇xχ(x(s), y(s))α|2F ds

+ε2

∫ t

0

|∇yχ(x(s), y(s))β(y(s))|2F ds.

More generally,

E|〈M1〉|p/2
� C1ε

2p

∫ t

0

|∇xχ(x(s), y(s))α|pF ds

+C2ε
p

∫ t

0

|∇yχ(x(s), y(s))β(y(s))|pF ds

for every p � 1. By the Burkholder–Davis–Gundy inequality of Theorem 3.22, and

by (3.4.8), we deduce that

E sup
0�t�T

|M1(t)|p � Cεp. (18.3.8)

Hence, by (18.3.4) and (18.3.3), we deduce that

∫ t

0

(
f1(x(s), y(s))− F (x(s))

)
ds = r(t) := θ(t)−M1(t), (18.3.9)

where we have shown that

r = O(ε) in Lp
(
Ω,C([0, T ],Rl)

)
. (18.3.10)

Now apply the Itô formula to Φ solving (18.2.3) to obtain, since Φ is independent

of x,
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dΦ

dt
=

1

ε2
L0Φ +

1

ε
∇yΦβ

dV

dt
.

(As usual the rigorous interpretation is in integrated form.) Hence

1

ε

∫ t

0

f0(y(s))ds = ε
(
Φ(y(0))− Φ(y(s))

)
+

∫ t

0

∇yΦ(y(s))β(y(s))dV (s).

(18.3.11)

Since Φ is bounded on T
d−l, we deduce that, as ε→ 0,

ε
(
Φ(y(·))− Φ(y(0))

)
= O(ε) in Lp

(
Ω,C([0, T ],Rl)

)
. (18.3.12)

We set

M2(t) =

∫ t

0

(∇yΦ)(y(s))β(y(s)) dV (s).

Note that y(s) = ϕs/ε2

(y), where y(0) = y. Rescaling time, and using the scaling

properties of Brownian motion encapsulated in Remark 6.3, we obtain the identity,

in law,

M2(t) = ε

∫ t/ε2

0

(∇yΦ)(ϕτ (y))β(ϕτ (y)) dV (τ).

The Martingale central limit Theorem 3.33 implies that, as ε→ 0,

M2 ⇒ α2W, (18.3.13)

in C([0, T ],Rl), where W (t) is standard Brownian motion and

α2α
T
2 = lim

t→∞

1

t

∫ t

0

∇yΦϕs(y))β(ϕs(y))⊗∇yΦ(ϕs(y))β(ϕs(y))ds

=

∫

Td−l

ρ∞(y)
(
∇yΦ(y)β(y)⊗∇yΦ(y)β(y)

)
dy.

Combining (18.3.9), (18.3.11) in (18.2.1a) we obtain (18.3.1) where

η(t) = r(t) + ε
(
Φ(y(0))− Φ(y(t))

)
.

We have that

(αU,M2) ⇒ (αU,α2W ), in C([0, T ],R2l)

because U and M2 are independent. By (18.3.10), (18.3.12) we have that

η → 0, in Lp
(
Ω,C([0, T ],Rl)

)
.

Hence, by Theorem 3.30, (18.3.2) holds:

(αU, η,M2) ⇒ (αU, 0, α2W ), in C([0, T ],R3l).

The mapping (U, η,M2) → x in (18.3.1) is continuous from C([0, T ],R3l)
into C([0, T ],Tl), by Lemma 18.2. Hence, because weak convergence is preserved

under continuous mappings (see Theorem 3.28), we deduce that x(t) ⇒ X(t) in

C([0, T ],Tl), where X solves

X(t) = x(0) +

∫ t

0

F (X(s))ds + αU(t) + α2W (t).
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18.4 Discussion and Bibliography

Limit theorems for singularly perturbed systems of SDEs, of the type considered in

this chapter, have been studied since the early 1960s; see, for example, [300, 301,

166]. The theory was developed further in the 1970s; see [291; 33; 243; 94, ch. 12]

and the references therein.

The proofs presented here have been simplified by the assumption that the limit-

ing SDE for X has additive noise. Thus we were able to use the martingale central

limit theorem in a very straightforward way. In the general case where the lim-

iting process has general state-dependent noise, proofs of convergence are more

complicated and the martingale formulation of the solution of an SDE is used;

see [94, ch. 12].

The fundamental role that Poisson equations play in the proof of limit theorems

for SDEs has been known for a long time [181, 240, 241, 246]. A systematic use of

an appropriate Poisson equation in the proof of limit theorems (diffusion approxi-

mations) for singularly perturbed SDEs in a noncompact state space has undertaken

recently by Pardoux and Veretennikov in a series of papers [249, 250, 251].

It is also possible to obtain corvergence rates, by introducing additional Poisson

equations and applying the Itô formula to their solutions; this is then combined with

the Dambis–Dubins–Schwarz theorem; see Section 3.6 and [134]. These error esti-

mates play an important role in the study of the parameter estimation for SDEs with

a multiscale structure; see [258]. A quite general strong approximation theorem for

martingales is proved in [40].

18.5 Exercises

1. Consider the coupled pair of scalar SDEs

dx

dt
= f(x, y)− 1

ε
y +

(
y2 + a(x)

)dU
dt

, (18.5.1a)

dy

dt
= − 1

ε2
y +

1

ε

√
2
dV

dt
. (18.5.1b)

a. Write down the homogenized equations.

b. Assume that f, a, and all derivatives are bounded. Using the exact solution of

the OU process prove a convergence theorem related to the conjectured ho-

mogenized equation.

2. a. Consider the fast/slow system

ẋ =
f(x)y

ε
, ẏ = − α

ε2
y +

√
2λ

ε2
β̇.

b. Prove that the homogenized equation is

Ẋ =
λ

α2
f(X)f ′(X) +

√
2λ

α2
f(X)β̇
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by applying the Itô formula to appropriate functions of x(t) and y(t). Use this

method to obtain error estimates.

c. Assume that the fast process is stationary. Use the Itô formula to prove a strong

(pathwise) limit theorem. (Hint: You need to use pathwise estimates on the

Ornstein-Uhlenbeck process.)

3. Consider the problem studied in this chapter in one dimension. Combine the anal-

ysis presented here with the Dambis–Dubins–Schwarz theorem to prove a strong

(pathwise) approximation theorem.

4. Consider the SDEs (18.2.1) for x ∈ R
l, y ∈ R

d−l. State carefully the properties

that solutions of the Poisson equation should have in this case in order to be able

to prove the homogenization theorem.
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Homogenization for Elliptic PDEs: The Convergence

Theorem

19.1 Introduction

In this chapter we prove two homogenization theorems for second-order uniformly

elliptic PDEs with periodic coefficients and Dirichlet boundary conditions. Our

method of proof is to use two-scale convergence. This technique provides an elegant

way of deriving the homogenized equation, and the cell problem, which is required

for its definition, via a coupled system of equations called the two-scale system. The

method of two-scale convergence is also applicable to transport equations and we

use it in that context in Chapter 21. Two theorems are stated in Section 19.2; they are

proved in each of the following two sections. We finish the chapter with comments

and bibliographical remarks.

19.2 The Theorems

Theorem 19.1. Let uε be the weak solution of

−∇ · (Aε∇uε) = f for x ∈ Ω, (19.2.1a)

uε = 0 for x ∈ ∂Ω (19.2.1b)

with f = f(x) ∈ L2(Ω), Ω ⊂ R
d bounded and Aε = A

(
x
ε

)
, A ∈Mper(α, β,T

d),
0 < α � β < ∞. Furthermore, let u be the weak solution of the homogenized

problem

−∇ ·
(
A∇u

)
= f for x ∈ Ω (19.2.2a)

u = 0 for x ∈ ∂Ω, (19.2.2b)

with A given by

A =

∫

Td

(
A(y) + A(y)∇yχ(y)T

)
dy, (19.2.3)

and where the vector field χ(y) is a weak solution of the cell problem
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−∇y ·
(
∇yχA

T
)

= ∇y ·AT , χ(y) is 1-periodic. (19.2.4)

Then

uε ⇀ u weakly in H1
0 (Ω)

and

uε → u strongly in L2(Ω).

In addition to the basic homogenization theorem, we will prove a result that shows

that retaining extra terms in the multiscale expansion does indeed give improved

approximations. The following result says that we can get strong convergence in

H1(Ω) provided that we take the first-order corrector field into account.

Theorem 19.2. Consider uε(x) and u(x) as in Theorem 19.1. Assume that f ∈
L2(Ω), that ∂Ω is sufficiently smooth so that u ∈ H2(Ω)∩H1

0 (Ω), and that the co-

efficient matrix A is such that the cell problem (19.2.4) has solution χ ∈ C1
per(T

d).
Then

lim
ε→0

∥∥∥uε(x)−
(
u(x) + εχ

(x

ε

)
· ∇u(x)

)∥∥∥
H1(Ω)

= 0. (19.2.5)

Remark 19.3. The assumption concerning the smoothness of ∂Ω is met if it is a C2

hypersurface or a convex polytope, for example. In order for χ ∈ C1
per(T

d), A(y)

has to be sufficiently regular; A(y) ∈ C1
per(T

d; Rd×d) is more than sufficient. ⊓⊔

19.3 The Proof: Strong Convergence in L
2

In this section we prove the homogenization theorem, Theorem 19.1, using the

method of two-scale convergence. Before starting the proof, we make some re-

marks on our approach. The first step in our analysis is to use the energy estimates

from Chapter 7 to deduce that uε and ∇uε have two-scale convergent subsequences

(Lemma 19.4) defined via a pair of functions {u(x), u1(x, y)}. The second step is to

use a test function of the form

φε(x) = φ0(x) + εφ1

(
x,

x

ε

)
, (19.3.1)

in the definition of weak solution of (19.2.2), in order to characterize the two-scale

limits. In this way we obtain a coupled system of equations for functions appearing

in the first step of the analysis, {u, u1}; we call these equations the two-scale system;

see Lemma 19.5. The third step, in Lemma 19.6, is to prove existence and unique-

ness of this system using the Lax-Milgram theorem. The final step, Lemma 19.7, is

to decouple this system of equations using separation of variables, showing that it

gives rise to the homogenized equations (19.2.2)–(19.2.4) identified by perturbation

expansions in Chapter 12.

In the following we will use the space H defined by (2.4.6) and from it define

the space

X = H1
0 (Ω)× L2(Ω;H).
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This is a Hilbert space with inner product

(U, V )X = (∇u,∇v)L2(Ω) + (∇yu1,∇yv1)L2(Ω×Td)

for all U = {u, u1}, V = {v, v1}, and induced norm

‖U‖2X = ‖∇u‖2L2(Ω) + ‖∇yu1‖2L2(Ω×Td).

This turns out to be the right space in which to describe the two-scale limits, which

we now introduce.

Lemma 19.4. Let uε(x) be the solution of (19.2.1) with the assumptions of Theorem

19.1. Then there exist functions {u(x), u1(x, y)} ∈ X such that, along a subse-

quence, uε and ∇uε two-scale converge to u(x) and to∇xu +∇yu1, respectively.

Proof. We have that ‖uε‖H1
0
(Ω) � C by Theorem 7.5, which implies the existence of

a subsequence converging weakly to a limit u in H1
0 (Ω). By Theorem 2.36 there exist

functions u ∈ H1
0 (Ω), u1 ∈ L2(Ω;H) such that, possibly on a further subsequence,

uε 2
⇀ u, (19.3.2a)

∇uε 2
⇀ ∇xu +∇yu1. ⊓⊔ (19.3.2b)

We now show that {u, u1} satisfy the two-scale system

−∇y ·
(
A(y) (∇xu +∇yu1)

)
= 0 in Ω × T

d, (19.3.3a)

−∇x ·
(∫

Td

A(y) (∇xu +∇yu1) dy
)

= f in Ω, (19.3.3b)

u(x) = 0 for x ∈ ∂Ω, u1(x, y) is periodic in y. (19.3.3c)

To define the weak formulation of the two-scale system we introduce the bilinear

form

a[U,Φ] =

∫

Ω

∫

Td

〈A (∇xu +∇yu1) ,∇xφ0 +∇yφ1〉 dydx,

with Φ := {φ0, φ1} ∈ X . The weak formulation of the two-scale system (19.3.3) is

to seek U ∈ X such that

a[U,Φ] = (f, φ0) ∀Φ ∈ X. (19.3.4)

To see this, we set φ0 = 0 to obtain:
∫

Ω

∫

Td

〈A (∇xu +∇yu1) ,∇yφ1〉 dydx = 0.

This is precisely the weak formulation of (19.3.3a). Now setting φ1 = 0 in (19.3.4)

we get ∫

Ω

∫

Td

〈A (∇xu +∇yu1) ,∇xφ0〉 dydx = (f, φ0).

This is the weak formulation of (19.3.3b). The boundary conditions (19.3.3c) follow

from the fact that u ∈ H1
0 (Ω) and u1 ∈ L2(Ω;H).
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Lemma 19.5. Let uε(x) be the weak solution of (19.2.1) with the assumptions of

Theorem 19.1. Then any limit point {u, u1} from Lemma 19.4 is a weak solution of

the two-scale system (19.3.3).

Proof. The weak formulation of (19.2.1) is to find uε ∈ H1
0 (Ω) such that

∫

Ω

〈Aε∇uε,∇φε〉 dx = (f, φε) ∀φε ∈ H1
0 (Ω). (19.3.5)

We use a test function of the form (19.3.1) for φ0 ∈ C∞
0 (Ω), φ1 ∈ C∞

0 (Ω;C∞
per(T

d)).
We clearly have that φε ∈ H1

0 (Ω). Upon using this test function in (19.3.5) and re-

arranging terms we obtain:

I1 + εI2 = (f, φ0 + εφ1)

where

I1 =

∫

Ω

〈
∇uε, (Aε)T

(
∇xφ0(x) +∇yφ1

(
x,

x

ε

))〉
dx

I2 =

∫

Ω

〈
∇uε, (Aε)T∇xφ1

(
x,

x

ε

)〉
dx.

Now the function Aε(x)T
(
∇xφ0(x) +∇yφ1

(
x, x

ε

))
is of the form ψ(x, y) :=

ψ1(y)ψ2(x, y), y = x/ε, with ψ1 ∈ L∞(Td) and ψ2 ∈ L2(Ω;Cper(T
d)). Hence,

by Lemma 2.31, we can use ψ(x, y) as a test function and pass to the two-scale limit

to obtain:

I1 →
∫

Ω

∫

Td

〈A(y) (∇xu +∇yu1) , (∇xφ0 +∇yφ1)〉 dydx as ε→ 0.

The function Aε(x)T∇xφ1 (x, y) is also an admissible test function. Passing to the

two-scale limit similarly in I2 we obtain εI2 → 0. Moreover, by Theorem 2.29,

φ0 + εφ1 ⇀ φ0 weakly in L2(Ω). This implies that

(f, φ0 + εφ1) → (f, φ0).

Putting these considerations together we obtain the limiting equation

∫

Ω

∫

Td

〈A(y) (∇xu +∇yu1) ,∇xφ0 +∇yφ1〉 dydx = (f, φ0).

Thus we have derived (19.3.4). In deriving this identity we assumed that the test

functions φ0, φ1 are smooth; a density argument enables us to conclude that it holds

for every φ0 ∈ H1
0 (Ω), φ1 ∈ L2(Ω;H). ⊓⊔

Next we prove that the two-scale system has a unique solution.

Lemma 19.6. Under the assumptions of Theorem 19.1 the two-scale system (19.3.3)

has a unique weak solution
{
u, u1

}
∈ X.
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Proof. We will use the Lax-Milgram theorem. The weak formulation of the two-scale

system is given by (19.3.4). We have to check that the bilinear form a is continuous

and coercive. To establish both of these properties it will be helpful to note the fol-

lowing. Let a = a(x) and b = b(x, y) be smooth functions, with b periodic in y.
Then ∫

Ω

∫

Td

|∇xa +∇yb|2dydx = ‖{a, b}‖2X .

This follows from the fact that
∫

Ω

∫

Td

〈∇xa,∇yb〉dydx =

∫

Ω

(∫

Td

∇y ·
(
b∇xa

)
dy
)
dx = 0,

using the divergence theorem, and periodicity of b∇xa in y (see Remark 7.13).

We start with continuity. We use the L∞ bound on A(y), together with the

Cauchy-Schwarz inequality, to obtain:

a[U,Φ] =

∫

Ω

∫

Td

〈A (∇xu +∇yu1) ,∇xφ0 +∇yφ1〉 dydx

� β

∫

Ω

∫

Td

|∇xu +∇yu1| |∇xφ0 +∇yφ1| dydx

� β‖U‖X‖Φ‖X .

We proceed with coercivity. We use the divergence theorem and periodicity as earlier

to obtain:

a[U,U ] =

∫

Ω

∫

Td

〈A (∇xu +∇yu1) ,∇xu +∇yu1〉 dydx

� α

∫

Ω

∫

Td

|∇xu +∇yu1|2 dydx

= α‖U‖2X

and consequently

a[U,U ] � α‖U‖2X .

Hence, the bilinear form a[U,Φ] is continuous and coercive and the Lax-Milgram

lemma applies. This proves existence and uniqueness of solutions of the two-scale

system in X . ⊓⊔
Now we relate the two-scale system to the form of the homogenized equation

that we derived in Chapter 12, stated at the start of this chapter.

Lemma 19.7. Consider the unique solution {u, u1} ∈ X of the two-scale system

(19.3.3). Then u is the unique solution of the homogenized Equation (19.2.2) and

u1(x, y) is given by

u1(x, y) = χ(y) · ∇u(x), (19.3.6)

where χ(y) is the solution of the cell problem (19.2.4).
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Proof. We substitute (19.3.6) into (19.3.3a) to obtain

−∇y ·
(
∇yχA

T
)
· ∇xu =

(
∇y ·AT

)
· ∇xu.

This equation is satisfied if χ ∈ H is the unique solution of the cell problem (19.2.4).

Equation (19.3.3b) becomes

−∇x ·
(∫

Td

A
(
∇xu + (∇yχ)T∇xu

)
dy

)
= f

so that

−∇x ·
(∫

Td

A
(
I +∇yχ

T
)
dy

)
∇xu = f

and hence

−∇x ·
(
A∇xu

)
= f.

This is precisely the homogenized equation with the homogenized coefficients given

by (19.2.3).

The fact that the choice (19.3.6) for u1 enables us to solve the two-scale system,

provided that u0 satisfies the homogenized equation, implies that this is the only

possible set of functions {u, u1} that solves the two-scale system, since we have

already proved uniqueness of solutions. ⊓⊔

We may now conclude the proof of Theorem 19.1. The first lemma shows that

uε two-scale converges to {u, u1}, along a subsequence, with u independent of y.

Furthermore uε converges weakly in H1
0 (Ω) and strongly in L2(Ω). But the limit is

unique, as we proved by applying the Lax-Milgram theorem to the two-scale system.

Hence the whole sequence must converge, by the subsequence principle, and the

proof is complete. ⊓⊔

19.4 The Proof: Strong Convergence in H
1

Theorem 19.1 implies that uε converges to u(x) strongly in L2(Ω). Thus, in order

to prove Theorem 19.2, it is enough to prove that

lim
ε→0

∥∥∥∇uε(x)−∇
(
u(x) + εu1

(
x,

x

ε

))∥∥∥
L2(Ω;Rd)

= 0,

or, equivalently,

lim
ε→0

∥∥∥∇uε(x)−
(
∇u(x) + ε∇xu1

(
x,

x

ε

)
+∇yu1

(
x,

x

ε

))∥∥∥
L2(Ω;Rd)

= 0.

Since f ∈ L2(Ω) we have that u(x) ∈ H2(Ω) ∩ H1
0 (Ω). Hence, and since by as-

sumption χ ∈ C1
per(T

d), we have that u1(x, y) = χ(y)·∇u(x) ∈ H1(Ω;C1
per(T

d)).
This implies, by Theorem 2.28, that
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∥∥∥∇xu1

(
x,

x

ε

)∥∥∥
L2(Ω;Rd)

� C.

Consequently, ∥∥∥ε∇xu1

(
x,

x

ε

)∥∥∥
L2(Ω;Rd)

→ 0.

Hence, it is enough to prove that

lim
ε→0

∥∥∥∇uε(x)−
(
∇u(x) +∇yu1

(
x,

x

ε

))∥∥∥
L2(Ω);Rd

= 0.

The uniform ellipticity of A now implies:

α ‖∇uε(x) −
(
∇u(x) +∇yu1

(
x,

x

ε

))∥∥∥
2

L2(Ω;Rd)

= α

∫

Ω

∣∣∣∇uε(x)−
(
∇u(x) +∇yu1

(
x,

x

ε

))∣∣∣
2

dx

�

∫

Ω

〈
A
(x

ε

)(
∇xu

ε(x)−∇xu(x)−∇yu1

(
x,

x

ε

))
,

∇xu
ε(x)−∇xu(x)−∇yu1

(
x,

x

ε

)〉
dx

�

∫

Ω

〈
A
(x

ε

)
∇xu

ε(x),∇xu
ε(x)

〉
dx

+

∫

Ω

〈
A
(x

ε

)(
∇xu(x)+∇yu1

(
x,

x

ε

))
,∇xu(x)+∇yu1

(
x,

x

ε

)〉
dx

−
∫

Ω

〈
∇xu

ε,
(
Aε + (Aε)T

)
(∇xu +∇yu1)

〉
dx

=: (f, uε) + Iε
1 + Iε

2 .

By Theorem 19.1, uε conveges to u strongly in L2(Ω). Since strong convergence

implies weak convergence, we have that

(f, uε) → (f, u) = a[U,U ],

where the last equality follows from (19.3.4). Furthermore, since

A ∈ L∞
per(T

d; Rd×d), u ∈ H2(Ω) ∩H1
0 (Ω)

and χ ∈ C1
per(T

d), Lemma 2.31 implies that

A
(x

ε

)(
∇xu(x) +∇yu1

(
x,

x

ε

))

and (
Aε + (Aε)T

)
(∇xu +∇yu1)

can be used as test functions in Iε
1 and Iε

2 , respectively. We pass to the two-scale limit

in these two expressions to obtain that, as ε→ 0,

Iε
1 →

∫

Ω

∫

Td

〈A(y) (∇xu(x) +∇yu1(x, y)) ,∇xu(x) +∇yu1(x, y)〉 dydx
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and

Iε
2 → −

∫

Ω

∫

Td

〈(
A(y) + (A(y))T

)
(∇xu(x) + ∇yu1(x, y)) ,∇xu(x) + ∇yu1(x, y)

〉
dydx.

Thus we have proved that

lim
ε→0

α ‖∇uε(x) −
(
∇u(x) + ∇yu1

(
x,

x

ε

))∥∥∥
2

L2(Ω;Rd)
� a[U, U ] + a[U, U ] − 2a[U, U ] = 0.

Consequently,

lim
ε→0

∥∥∥∇uε(x)−
(
∇u(x) +∇yu1

(
x,

x

ε

))∥∥∥
L2(Ω;Rd)

= 0,

and the theorem is proved ⊓⊔

19.5 Discussion and Bibliography

The proofs of Theorems 19.1 and 19.2 are taken from [6]. The regularity assump-

tions in the corrector result, Theorem 19.2, are by no means optimal. See, e.g.,

[6, Theorem 2.6] or [66, prop. 9.12] for sharper results. A certain amount of reg-

ularity is, however, needed to be able to prove corrector results.

The proof of the homogenization theorem essentially consists of two steps: first

one proves the existence of a limit, and then one tries to characterize the limit. The

existence of a limit follows from a priori estimates, which are quite often not hard to

obtain. On the other hand, the characterization of the limit-i.e., the rigorous justifi-

cation that the limit of the sequence uε satisfies the homogenized PDE – is usually

a much more delicate issue. The idea of using appropriate test functions for charac-

terizing the limit of a sequence of functions is very common in the theory of PDEs.

See [95] and the references therein. In the context of homogenization, test functions

of the form (19.3.1) have been used by Kurtz in [181]. See also the perturbed test

function approach of Evans in, [97, 96].

Tartar’s method of oscillating test functions is based on constructing appropriate

test functions using the cell problem; see [307; 311; 66, ch. 8] and the references

therein. Homogenization results for elliptic PDEs can also be proved by using meth-

ods from the calculus of variations and the concept of Γ -convergence; see [214].

These techniques apply to various homogenization problems for nonlinear PDEs. It

is relatively straightforward to prove a homogenization theorem for monotone oper-

ators using the method of two-scale convergence; see Exercise 7.

The bootstrapping technique employed in Chapter 16 for the proof of the averag-

ing theorem for Markov chains and in Chapter 20 for the proof of the homogenization

theorem for parabolic PDEs can also be used for the proof of the homogenization the-

orem for elliptic PDEs; see Exercise 6 in this chapter and Exercise 4 in the next. This

method enables error estimates to be found; see [66, ch. 7].

It is not always possible to decouple the two-scale system and obtain a closed

equation for the first term in the two-scale expansion, the homogenized equation. In
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order to do this we need an H1-estimate on the solution uε(x) of the unhomogenized

PDE. This enables us to conclude that the two-scale limit is independent of the mi-

croscale and consequently a homogenized equation actually exists. Such a scenario

does not always occur for multiscale problems. See, for example, the case of linear

transport PDE studied in Chapter 21. Other examples can be found in [6, 5]. From

this point of view the two-scale system is more fundamental than the homogenized

equation, since the former is a well-posed system of equations even when the latter

does not exist.

19.6 Exercises

1. Let a : T
d �→ R

d be a smooth, 1-periodic, mean-zero divergence-free field and

consider the problem of homogenization for the steady-state advection–diffusion

equation

−Δuε +
1

ε
a
(x

ε

)
· ∇uε = f, for x ∈ Ω, (19.6.1a)

uε(x) = 0, for x ∈ ∂Ω. (19.6.1b)

Use the method of two-scale convergence to prove the homogenization theorem

for this PDE.

2. Carry out the same program as in the previous exercise for the PDE

−Δuε +
1

ε
a
(x

ε

)
· ∇uε + V

(x

ε

)
uε = f, for x ∈ Ω,

uε(x) = 0, for x ∈ ∂Ω,

where V (y) is smooth and 1-periodic with
∫

y∈Td V (y) > 0.

3. Carry out the same program as in the previous exercise for the PDE

−Δuε +
1

ε
a
(x

ε

)
· ∇uε +

1

ε
V
(x

ε

)
uε = f, for x ∈ Ω,

uε(x) = 0, for x ∈ ∂Ω,

where V (y) is smooth, 1-periodic, and mean zero.

4. Carry out the same program as in Exercise 1 for the PDE (19.6.1) with

a(y) = −∇yU(y),

where U is smooth and 1-periodic.

5. State and prove a homogenization theorem for the Neumann problem found by

changing Dirichlet boundary conditions to homogeneous Neumann boundary con-

ditions in (19.2.1). Use two-scale convergence to prove the result.

6. Use appropriate energy estimates to prove the homogenization theorem for elliptic

PDEs. (See Chapter 20, where this approach is carried out for parabolic PDEs.)
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7. (Homogenization for monotone operators) Consider the following boundary

value problem:

−∇ ·
(
a
(x

ε
,∇uε

))
= f, for x ∈ Ω, (19.6.2a)

uε = 0, for x ∈ ∂Ω. (19.6.2b)

We assume that f ∈ L2(Ω). For the function a(y, λ) : T
d × R

d �→ R we make

the following assumptions:

i. The map λ→ a(y, λ) is measurable and 1-periodic in y for every λ.

ii. The map y → a(y, λ) is continuous a.e. in y ∈ Y .

iii. There exists a c > 0 such that

c|λ|2 � a(y, λ) · λ, ∀ y ∈ Y, ∀λ ∈ R
d. (19.6.3)

iv. There exists a c > 0 such that

|a(y, λ)| � c (1 + |λ|) , ∀ y ∈ Y, ∀λ ∈ R
d. (19.6.4)

v. a(y, λ) is strongly monotone:

[a(y, λ)− a(y, μ)] � c|λ− μ|2, ∀ y ∈ Y, ∀λ, μ ∈ R
d. (19.6.5)

a. State and prove an existence and uniqueness theorem for the boundary value

problem (19.6.2). (Consult [339, sec. 2.14] if necessary.)

b. State and prove, using two-scale convergence, a homogenization theorem

for (19.6.2).

c. State and prove a corrector-type result.
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Homogenization for Parabolic PDEs: The

Convergence Theorem

20.1 Introduction

In this chapter we prove the homogenization theorem for second-order parabolic

PDEs of the form studied in Chapter 13. The method of proof is structurally very

similar to that used in Chapter 16, where we prove an averaging theorem for Markov

chains. To be precise, we obtain an equation for the error in the multiscale expan-

sion and directly estimate the error from this equation. The crucial estimate used

in Chapter 16 follows from the fact that Q in that chapter is a stochastic matrix; the

analogous estimate in this chapter follows from the maximum principle for parabolic

PDEs. Section 20.2 states the basic result and Section 20.3 contains the proof. Ex-

tensions of the homogenization theorem presented in this chapter and bibliographical

remarks are contained in Section 20.4.

20.2 The Theorem

As in Chapter 13, we set bε = b (x/ε). Consider Equation (13.2.4), namely

∂uε

∂t
=

1

ε
bε · ∇uε + DΔuε for (x, t) ∈ R

d × (0, T ),

uε = f for (x, t) ∈ R
d × {0}.

Recall the generator

L0 = b(y) · ∇y + DΔy

with periodic boundary conditions and its L2-adjointL∗
0, also with periodic boundary

conditions. The invariant distribution is in the null space of L∗
0 and the effective

diffusivity is given by (13.3.2):

K = DI + 2D

∫

Td

∇yχ(y)T ρ(y) dy +

∫

Td

(
b(y)⊗ χ(y)

)
ρ(y) dy.
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Here ρ is the invariant distribution in the null space of L∗
0, given by (13.2.6). Recall

that χ solves the cell problem

−L0χ(y) = b(y), χ is 1 –periodic,

∫

Y

χ(y)ρ(y)dy = 0. (20.2.1)

Theorem 20.1. Let uε(x, t) be the solution of (13.2.4) with b ∈ C∞
per(T

d) and f ∈
C∞

b (Rd). Let u(x, t) be the solution of the homogenized equation

∂u

∂t
= K : ∇∇u for (x, t) ∈ R

d × (0, T ), (20.2.2a)

u = f(x) for (x, t) ∈ R
d × {0}. (20.2.2b)

Then

‖uε − u‖L∞(Rd×(0,T )) � Cε. (20.2.3)

Thus uε → u in L∞(Rd × (0, T )).

20.3 The Proof

In Chapter 13 we derived the two-scale expansion

uε(x, t) ≈ u(x, t) + εuε
1(x, t) + ε2uε

2(x, t),

where uε
i (x, t) := ui(x, x/ε, t), i = 1, 2, and

u1 (x, y, t) = χ(y) · ∇xu(x, t). (20.3.1)

An analysis similar to the one presented in Chapter 12 enables us to obtain the ex-

pressions for u2 (see Exercise 1, Chapter 13) and

u2 (x, y, t) = Θ(y) : ∇x∇xu(x, t). (20.3.2)

The vector field χ(y) solves the vector-valued Poisson Equation (20.2.1) and the

matrix field Θ(y) solves the matrix-valued Poisson equation

−L0Θ = b(y)⊗ χ(y) + 2D∇yχ(y)T

−
∫

Td

(
b(y)⊗ χ(y) + 2D∇yχ(y)T

)
ρ(y) dy, (20.3.3)

with periodic boundary conditions. The corrector fields χ(y), Θ(y) solve uniformly

elliptic PDEs with smooth coefficients and periodic boundary conditions. Conse-

quently, by elliptic regularlity theory, both χ and Θ, together with all their deriva-

tives, are bounded:

‖χ‖Ck(Rd;Rd) � C, ‖Θ‖Ck(Rd;Rd×d) � C, (20.3.4)
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for every integer k � 0. Furthermore, our assumptions on the initial conditions f
imply that u, which solves a PDE with constant coefficients, belongs to

L∞(Rd × (0, T )), together with all of its derivatives with respect to space and time.

This fact, together with estimates (20.3.4), provides us with the bounds

‖uε
1‖L∞((0,T )×Rd) � C, ‖uε

2‖L∞((0,T )×Rd) � C, (20.3.5)

with the constant C being independent of ε. In writing the preceding, we use the

notation uε
i (x, t) := ui(x, x/ε, t), i = 1, 2.

Let Rε(x, t) denote the remainder defined through the equation

uε(x, t) = u(x, t) + εuε
1(x, t) + ε2uε

2(x, t) + Rε(x, t). (20.3.6)

Define

Lε =
1

ε
bε · ∇x + DΔx.

We want to apply Lε to functions of the form f(x, x/ε, t). We have

Lε =
1

ε2
(b(y) · ∇y + DΔy) +

1

ε
(b(y) · ∇x + 2D∇x∇y) + DΔx

=
1

ε2
L0 +

1

ε
L1 + L2,

with y = x/ε and

L0 = b(y) · ∇y + DΔy,

L1 = b(y) · ∇x + 2D∇x · ∇y,

L2 = DΔx.

Recall that u0, u1, and u2 are constructed so that

O(1/ε2) L0u0 = 0,

O (1/ε) L0u1 = −L1u0,

O(1) L0u2 = −L1u1 − L2u0 +
∂u0

∂t
.

We apply Lε to the expansion (20.3.6) to obtain, since u0 = u(x, t),

Lεuε = Lε
(
u + εu1 + ε2u2

)
+ LεRε

=
1

ε2
L0u +

1

ε
(L0u1 + L1u) + (L0u2 + L1u1 + L2u)

+ε (L1u2 + L2u1) + ε2L2u2 + LεRε

=
∂u

∂t
+ ε (L1u2 + L2u1) + ε2L2u2 + LεRε.

On the other hand,
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∂uε

∂t
=

∂u

∂t
+ ε

∂u1

∂t
+ ε2 ∂u2

∂t
+

∂Rε

∂t
.

We combine these two equations together with the unhomogenized equation to ob-

tain
∂Rε

∂t
= LεRε + εF ε(x, t).

Here

F ε(x, t) = F (x, x/ε, t), (20.3.7)

F (x, y, t) = L1u2 + L2u1 −
∂u1

∂t
+ ε

(
L2u2 −

∂u2

∂t

)
. (20.3.8)

Furthermore,

f(x) = uε(x, 0)

= u(x, 0) + εu1

(
x,

x

ε
, 0
)

+ ε2u2

(
x,

x

ε
, 0
)

+ Rε(x, 0),

and consequently, on account of (20.2.2b), we have

Rε(x, 0) = εhε(x)

with

hε(x, 0) = −u1

(
x,

x

ε
, 0
)
− εu2

(
x,

x

ε
, 0
)
. (20.3.9)

Putting these calculations together we obtain the following Cauchy problem for the

remainder Rε(x, t)

∂Rε

∂t
= LεRε + εF ε(x, t) for (x, t) ∈ R

d × (0, T ), (20.3.10a)

Rε = εhε(x) for (x, t) ∈ R
d × {0}, (20.3.10b)

with F ε(x, t) and hε(x) given by (20.3.7) and (20.3.9), respectively.

To prove Theorem 20.1 we will need estimates on F ε and hε.

Lemma 20.2. Under the assumptions of Theorem 20.1, F ε(x, t) and hε(x, t) satisfy

‖F ε‖L∞(Rd×(0,T )) � C (20.3.11)

and

‖hε‖L∞(Rd) � C, (20.3.12)

respectively, where the constant C is independent of ε.

Proof. We have that

F (x, y, t) = L1 (Θ(y) : ∇x∇xu(x, t)) + L2 (χ(y) · ∇xu(x, t))

− ∂

∂t
(χ(y) · ∇xu(x, t)) + ε

(
DΔxΘ(y) : ∇x∇xu(x, t)

− ∂

∂t
(Θ(y) : ∇x∇xu(x, t))

)
. (20.3.13)
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Estimate (20.3.4), together with L∞ bounds on u and its derivatives, imply (20.3.11).

Furthermore,

hε(x) = χ
(x

ε

)
· ∇xu(x, 0) + εΘ

(x

ε

)
: ∇x∇xu(x, 0).

The uniform estimates on χ(y) and Θ(y), together with our assumptions on the initial

conditions of (13.2.4), lead to estimate (20.3.12). ⊓⊔

Proof of Theorem 20.1 The remainder term Rε(x, t) satisfies Equation (20.3.10a).

We use the maximum principle estimate (7.3.6) from Chapter 7 to obtain

‖Rε‖L∞(Rd×(0,T )) � ε‖hε‖L∞(Rd) + ε

∫ T

0

‖F ε(·, s)‖L∞(Rd) ds

� εC + εCT

� Cε. (20.3.14)

We combine (20.3.6) with (20.3.14) and (20.3.5) and use the triangle inequality to

obtain

‖uε − u‖L∞(Rd×(0,T )) = ‖εu1 + ε2u2 + Rε‖L∞(Rd×(0,T ))

� ε‖u1‖L∞(Rd×(0,T )) + ε2‖u2‖L∞(Rd×(0,T ))

+ ‖Rε‖L∞(Rd×(0,T )) � Cε,

from which (20.2.3) follows. ⊓⊔

20.4 Discussion and Bibliography

Our proof of the homogenization theorem has relied on the maximum principle. This

is, perhaps, the simplest approach, provided that one is willing to assume sufficient

regularity on the coefficients of the PDE, and it is very well suited for PDEs in un-

bounded domains. However, other techniques may be used to study homogenization

for parabolic equations. These include probabilistic methods [248], energy meth-

ods [33, ch. 2], and the method of two-scale convergence [5]. Estimates based on

the maximum principle can be used to prove homogenization theorems for nonlin-

ear (even fully nonlinear) elliptic and parabolic PDEs, using the theory of viscosity

solutions; see, for example, [203, 95, 96, 97].

The method employed in this chapter, namely the derivation of a PDE for the

error term and the use a priori estimates to control the data driving the error equa-

tion, can be applied to various problems in the theory of singular perturbations. Some

other examples can be found in [240, 246]. The method is often termed bootstrap-

ping. For nonlinear parabolic PDEs with random coefficients, a subject of some in-

terest is the existence of traveling fronts and the effect of noise on them. See [333]

for references to the literature in this area.
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20.5 Exercises

1. Consider the case where ∇ · b(x) = 0. Assume that the solution of the Cauchy

problem (13.2.4) is smooth and bounded and decays sufficiently fast at infinity.

a. Consider the inhomogeneous Cauchy problem

∂R

∂t
=

1

ε
bε · ∇R + DΔR + F (x, t) for (x, t) ∈ R

d × (0, T ),

R(x, 0) = f(x) forx ∈ R
d,

where f ∈ L2(Rd) and F ∈ L2((0, T )× R
d). Prove the estimate

‖R‖2L2((0,T )×Rd)+C1‖∇R‖2L2((0,T )×Rd) � C2‖f‖2L2(Rd)+C3‖F‖2L2((0,T )×Rd).

b. Use this to prove convergence in L2((0, T )× R
d).

c. What is the maximum time interval (0, T ) over which the homogenization the-

orem holds?

2. Carry out the same program as in the previous question for the Cauchy problem

∂uε

∂t
= ∇ ·

(
A
(x

ε

)
∇uε

)
for (x, t) ∈ R

d × (0, T ),

uε(x, 0) = uin(x), forx ∈ R
d,

where the matrix A(y) satisfies the standard periodicity, smoothness, and uniform

ellipticity assumptions.

3. Consider the initial boundary value problem

∂uε

∂t
= ∇ ·

(
A
(x

ε

)
∇uε

)
for (x, t) ∈ Ω × (0, T ),

uε(x, 0) = uin(x), forx ∈ Ω

uε(x, t) = 0, for (x, t) ∈ ∂Ω × [0, T ],

where Ω is a bounded domain in R
d with smooth boundary and A(y) satisfies the

standard assumptions.

a. Prove the estimate

‖uε‖2L∞((0,T )×Ω) + C‖uε‖2L2((0,T );H1
0
(Ω)) � ‖uin‖2L2(Ω).

b. Use the preceding estimate to prove the homogenization theorem using the

method of two-scale convergence.

c. Can you apply the bootstrapping method to this problem?

4. Use the maximum principle for elliptic PDEs from Section 7.2.4 and the tech-

niques used in this chapter to prove a homogenization theorem for a second-order

uniformly elliptic PDE in nondivergence form, with rapidly oscillating coeffi-

cients.
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Averaging for Linear Transport and Parabolic PDEs:

The Convergence Theorem

21.1 Introduction

In this chapter we prove an averaging theorem for linear transport and linear parabolic

PDEs with periodic, divergence-free velocity fields. We treat the parabolic case

(D > 0) and the transport case (D = 0) separately. This is because the averaged

equations in these two cases are, in general, different.1

In Section 21.2 we present our two convergence theorems. We prove the averag-

ing theorem for the case D > 0 in Section 21.3. In Section 21.4 we show that, in the

case D = 0 and when the velocity field does not generate an ergodic flow on the unit

torus, the homogenized limit leads to a coupled system of equations, the two-scale

system. The proof of both theorems is based on the method of two-scale convergence.

We finish the chapter in Section 21.5 with comments and bibliographical remarks.

21.2 The Theorems

As in Chapter 14 we define

bε(x) = b(x/ε).

As we confine our analysis to divergence-free fields, it is natural to define

b =

∫

Td

b(y)dy.

This is the form of b given in Result 14.1 when the invariant density ρ is a constant

function; this is exactly the case that arises for divergence-free fields.

1 In the PDE literature, the limiting equations established in this chapter are sometimes re-

ferred to as the homogenized equations, rather than the averaged equations. However, as

discussed in Chapter 14, we choose to use the consistent terminology introduced in Sec-

tion 1.3.
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Recall the concept of weak solutions for transport equations encapsulated in Def-

inition 7.24 and Remark 7.28. These concepts may also be extended to parabolic

equations. Our first theorem concerns the parabolic case.

Theorem 21.1. Let uε(x, t) be the weak solution of

∂uε

∂t
− bε · ∇uε = εDΔuε for (x, t) ∈ R

d × R
+, (21.2.1a)

uε = g for x ∈ R
d (21.2.1b)

and assume that D > 0, g ∈ C∞
b (Rd), and b is smooth, divergence-free, and 1-

periodic. Then uε two-scale converges to u0 ∈ L2(R+ × R
d), which is a weak

solution of

∂u0

∂t
− b · ∇u0 = 0 for (x, t) ∈ R

d × R
+, (21.2.2a)

u0 = g for (x, t) ∈ R
d × {0}. (21.2.2b)

Now we consider the case D = 0.

Theorem 21.2. Let uε(x, t) be the weak solution of

∂uε

∂t
− bε · ∇uε = 0 for (x, t) ∈ R

d × R
+, (21.2.3a)

uε = g for x ∈ R
d (21.2.3b)

and assume that g ∈ C∞
b (Rd) and that b is smooth, divergence-free, and 1-periodic.

Then uε two-scale converges to u0 ∈ L2(R+ × R
d;L2

per(T
d)), which satisfies the

two-scale system

∫

R+

∫

Rd

∫

Td

b(y) · ∇yφ(x, y, t)u0(x, y, t) dydxdt = 0, (21.2.4a)

φ ∈ C∞
0 (R× R

d;C∞
per(T

d)), (21.2.4b)

∫

R+

∫

Rd

∫

Td

(
∂φ(x, y, t)

∂t
− b(y) · ∇xφ(x, y, t)

)
u0(x, y, t) dydxdt

+

∫

Rd

g(x)

(∫

Td

φ(x, y, 0) dy

)
dx = 0. (21.2.4c)

Furthermore, these equations have a unqiue solution.

Notice that the two-scale system involves an auxiliary function φ(x, y, t) ∈ C∞
0

(R × R
d;C∞

per(T
d)). As in the elliptic case, to obtain a closed equation for the first

term in the multiscale expansion we need to be able to decouple the two-scale system.

We can decouple the two-scale system and obtain an averaged transport equation in

the case where the function b generates an ergodic flow on the unit torus.
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Corollary 21.3. Assume that b is a smooth, divergence-free vector field, generating

an ergodic flow on T
d. Then the two-scale limit is independent of y and is a weak

solution of the Cauchy problem

∂u0

∂t
− b · ∇u0 = 0 for (x, t) ∈ R

d × R
+, (21.2.5a)

u0 = g for (x, t) ∈ R
d × {0}. (21.2.5b)

21.3 The Proof: D > 0

Notice that, from Theorem 7.22 and since both bε and f are smooth and bounded,

there exists a unique classical solution to the Cauchy problem (21.2.1). Furthermore,

the solution of the problem decays to 0 as |x| → ∞. This fact justifies the integrations

by parts that follow.

We first obtain an energy estimate. We multiply Equation (21.2.1a) by uε, inte-

grate over R
d, use the fact that bε is divergence-free, and integrate by parts to obtain

1

2

d

dt

∫

Rd

|uε(·, x)|2 dx + Dε

∫

Rd

|∇uε(·, x)|2 dx = 0.

We now integrate over (0, T ) to deduce that

∫

Rd

|uε(·, t)|2 dx + 2Dε

∫ T

0

∫

Rd

|∇uε|2 dxdt =

∫

Rd

|g|2 dx.

Hence,

‖uε‖2L∞((0,T );L2(Rd)) + Cε‖∇uε‖2L2((0,T )×Rd) � C. (21.3.1)

Notice that T in this estimate is arbitrary.

In view of Theorem 2.39, Part (iii), estimate (21.3.1) implies that there exists

a function u(x, t) ∈ L2((0, T ) × R
d) such that uε two-scale converges to u(x, t).

Furthermore, the estimate

‖∇uε‖L2((0,T )×Rd) � Cε−1/2

implies that ε∇uε converges weakly to 0 in L2((0, T )× R
d).

Now let φε(x, t) ∈ C∞
0 (R× R

d). The weak formulation of (21.2.1) reads

∫

R+

∫

Rd

(
∂φε

∂t
− bε · ∇φε

)
uε dxdt +

∫

Rd

g(x)φε(x, 0) dx

= εD

∫

R+×Rd

∇uε · ∇φε dxdt. (21.3.2)

We choose a smooth test function that is independent of the oscillations: φε =
φ(x, t). We use this in (21.3.2) and pass to the limit as ε → 0. We use the fact

that the two-scale limit of uε is independent of y to obtain
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∫

R+

∫

Rd

(
∂φε

∂t
− bε · ∇φε

)
uε dxdt +

∫

Rd

g(x)φε(x, 0) dx

→
∫

R+

∫

Rd

(
∂φ

∂t
− b · ∇φ

)
u dxdt +

∫

Rd

g(x)φ(x, 0) dx,

where

b :=

∫

Td

b(y) dy.

Furthermore, since ε∇uε converges to 0 weakly in L2((0, T )× R
d), we have that

εD

∫

R+×Rd

∇uε · ∇φε dxdt→ 0.

We combine the preceding two limits to obtain

∫

R+

∫

Rd

(
∂φ

∂t
− b · ∇φ

)
u dxdt +

∫

Rd

g(x)φ(x, 0) dx = 0,

which leads to the weak formulation of (21.2.2) (see Remark 7.28). ⊓⊔

21.4 The Proof: D = 0

Proof of Theorem 21.2. By Theorem 7.27 there exists a unique weak solution uε

to (21.2.3) satisfying uε ∈ L2((0, T );H1(Rd)). Furthermore, estimate (7.4.3) gives

‖uε‖2L∞(R+;L2(Rd)) � ‖g‖2L2(Rd) � C. (21.4.1)

This estimate implies, by Theorem 2.38, that there exists a subsequence, still denoted

by uε, that two-scale converges to a function u0 ∈ L2(R+ × R
d;L2

per(T
d)).

Since b is divergence-free, the weak formulation of (21.2.3), Equation (7.4.9),

gives

∫

R+

∫

Rd

(
∂φε

∂t
− bε · ∇φε

)
uε dxdt +

∫

Rd

g(x)φε(x, 0) dx = 0, (21.4.2)

for every φε(x, t) ∈ C∞
0 (R× R

d). We choose a test function of the form

φε = εφ
(
x,

x

ε
, t
)
, φ ∈ C∞

0 (R× R
d;C∞

per(T
d)).

Inserting φε in (21.4.2), using the chain rule (φε is a function of both x and x/ε),

and passing to the limit as ε tends to 0 we obtain:

∫

R+

∫

Rd

∫

Td

b(y) · ∇yφ(x, y, t)u0(x, y, t) dydxdt = 0.

This is Equation (21.2.4a). We now choose a test function
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φε = φ
(
x,

x

ε
, t
)
, φ ∈ C∞

0 (R× R
d;C∞

per(T
d))

such that (21.2.4b) is satisfied. We insert this test function in (21.4.2) and pass to the

limit as ε tends to 0 to obtain
∫

R+

∫

Rd

∫

Td

(
∂φ(x, y, t)

∂t
− b(y) · ∇xφ(x, y, t)

)
u0(x, y, t) dydxdt

+

∫

Rd

g(x)

(∫

Y

φ(x, y, 0) dy

)
dx = 0,

which is precisely (21.2.4c). ⊓⊔
Of course, in order for the homogenized system of equations to be of any interest,

we need to prove that it has a unique solution. This is the content of the following

theorem.

Theorem 21.4. There exists a unique solution u0(t, x, y) ∈ L2(R+ × R
d × T

d) of

Equations (21.2.4).

Proof. The existence of a solution follows from the existence of a two-scale limit for

uε. Let us proceed with uniqueness. We use precisely the same argument as in the

proof of uniqueness of solutions in Theorem 7.27. Let u1(x, y, t), u2(x, y, t) be two

solutions of the homogenized system with the same initial conditions. We form the

difference

e(x, y, t) = u1(x, y, t)− u2(x, y, t).

This function satisfies, by linearity, the same system of Equations (21.2.4), with zero

initial conditions. We have:
∫ T

0

∫

Rd

∫

Td

(
∂φ(x, y, t)

∂t
− b(y) · ∇xφ(x, y, t)

)
e(x, y, t) dydxdt = 0,

where T > 0 is arbitrary but fixed. A variant of Theorem 7.27 gives that the differ-

ence e satisfies e ∈ L2((0, T );H1(Rd);L2(Td)) with ∂e
∂t ∈ L2((0, T )×R

d×T
d)).

Hence, we can use it as a test function in the preceding equation to deduce that

∫ T

0

∫

Rd

∫

Td

(
∂e(x, y, t)

∂t
− b(y) · ∇xe(x, y, t)

)
e(x, y, t) dydxdt = 0.

Assume momentarily that e has compact support. Integration by parts in the second

term in the equation gives, using the fact that b is divergence-free,
∫

Rd

∫

Td

b(y) · ∇xe(x, y, t)e(x, y, t) dy dx

= −
∫

Rd

∫

Td

(b(y)e(x, y, t)) · ∇xe(x, y, t) dy dx,

from which we deduce that this term vanishes. An approximation argument implies

that the same conclusion is valid for e ∈ L2((0, T );H1(Rd) × L2(Td)). Thus we

deduce that
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1

2

∫ T

0

d

dt

∫

Rd

∫

Td

|e(x, y, t)|2 dydxdt = 0,

for arbitrary T > 0. From this equation, it follows that, since e is zero initially,

∫

Rd

∫

Td

|e(x, y, t)|2 dy dx = 0

for every t > 0. Consequently, e(x, y, t) ≡ 0 and, thus, the solution u0(x, y, t) is

unique. ⊓⊔

Proof of Corollary 21.3. In the case where b(y) is an ergodic, divergence-free vector

field, Equation (21.2.4a) is satisfied if and only if u0 is independent of y. This is

because an integration by parts shows that this equation is the weak formulation of

the first-order PDE

L0u0 = 0

where L0 = −b(y) · ∇y is equipped with periodic boundary conditions on T
d.

Then, we can obtain the (weak formulation of) the averaged Equation (21.2.5) from

(21.2.4c) by choosing a test function independent of y. ⊓⊔

21.5 Discussion and Bibliography

Results similar to Theorem 21.1 can be found in, e.g., [5, 203, 253]. See [203, prop.

3.2] for a proof based on the perturbed test function method [96] in the context of

viscosity solutions for PDEs. The result holds in the case where the velocity field b
depends explicitly on both x and x/ε, i.e.,

bε = b
(
x,

x

ε

)
,

where b(x, y) is 1-periodic in y (see Exercise 5). Now the averaged velocity is a

function of x, b = b(x). It is also possible to obtain the next order correction of

(21.2.2) [45, 253]. Indeed, the function uε = u+ε〈u1〉, where 〈·〉 denotes the average

over T
d, satisfies, up to terms of O(ε2), the advection–diffusion equation:

∂uε

∂t
+ b(x) · ∇uε = ε∇ · (K(x)∇uε) .

The effective diffusivity K(x) is obtained through the solution of an appropriate cell

problem; notice that it is a function of x.

In the proof of Theorem 21.2 we have followed [80]. A complete (in the L2

sense) set of test functions was used in [147] to characterize the averaged (some-

times termed homogenized) limit in the general two-dimensional case. It was shown

there that the limit was an infinite symmetric set of linear hyperbolic equations. The

method of characteristics was used to prove the limit theorem for two-dimensional
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flows in [312]. The problem of averaging for ODEs (and of the corresponding Liou-

ville equation) of the form

dx

dt
= −∇

(
F (x) + εV

(x

ε

))

is considered in [226].

21.6 Exercises

1. Consider the following Cauchy problem

∂uε(x, t)

∂t
− b

(
x,

x

ε

)
· ∇uε(x, t) = 0 for (x, t) ∈ R

d × R
+,

uε(x, 0) = g(x) for x ∈ R
d,

where b ∈ C∞
b (Rd, C∞per(T

d); Rd) with ∇ · b(x, x/ε) = 0. Use the method of

two-scale convergence to prove the averaging theorem.

2. Carry out a similar program as in the previous exercise for the forced transport

PDE

∂uε(x, t)

∂t
− b (x) · ∇uε(x, t) = g

(
x,

x

ε

)
for (x, t) ∈ R

d × R
+,

uε(x, 0) = g(x) for x ∈ R
d,

with g(x, y) being smooth, periodic in its second argument and g(x, x/ε) is

bounded in L2(Rd).
3. Carry out a similar program as in the previous exercise for the transport Equation

(21.2.3a) with oscillating initial data

uε(x, 0) = f
(
x,

x

ε

)
,

where g(x, y) being smooth, periodic in its second argument, and g(x, x/ε) is

bounded in L2(Rd).
4. Combine the preceding exercises to prove the averaging theorem for the transport

PDE

∂uε(x, t)

∂t
− b

(
x,

x

ε

)
· ∇uε(x, t) = g

(
x,

x

ε

)
for (x, t) ∈ R

d × R
+,

uε(x, 0) = f
(
x,

x

ε

)
for x ∈ R

d,

5. Prove the averaging theorem for the advection–diffusion equation

∂uε(x, t)

∂t
− b

(
x,

x

ε

)
·∇uε(x, t) = εDΔuε +g

(
x,

x

ε

)
for (x, t) ∈ R

d×R
+,

uε(x, 0) = f
(
x,

x

ε

)
for x ∈ R

d,

under the assumptions of the previous exercise.
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24. I. Babuška. Homogenization approach in engineering. In Computing methods in applied

sciences and engineering (Second Internat. Sympos., Versailles, 1975), Part 1, pages

137–53. Lecture Notes in Econom. and Math. Systems, Vol. 134. Springer, Berlin, 1976.
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186. C. Landim and S. Olla. Central limit theorems for Markov processes. Lecture Notes,

2005.

187. B. Lapeyre, E. Pardoux, and R. Sentis. Introduction to Monte-Carlo methods for trans-

port and diffusion equations, volume 6 of Oxford Texts in Applied and Engineering Math-

ematics. Oxford University Press, Oxford, 2003. Translated from the 1998 French orig-

inal by Alan Craig and Fionn Craig.

188. A. Lasota and M. C. Mackey. Chaos, fractals, noise. Springer-Verlag, New York, 1994.

189. P. D. Lax. Functional analysis. Wiley, NY, 2002.

190. J. Li, P. G. Kevrekidis, C. W. Gear, and I. G. Kevrekidis. Deciding the nature of the

coarse equation through microscopic simulations: the baby-bathwater scheme. Multi-

scale Model. Simul., 1(3):391–407 (electronic), 2003.



296 References

191. S. Lifson and J. L. Jackson. On the self–diffusion of ions in polyelectrolytic solution. J.

Chem. Phys, 36:2410, 1962.

192. T. Lindvall. Lectures on the coupling method. Dover Publications Inc., Mineola, NY,

2002. Corrected reprint of the 1992 original.

193. P. Lochak and C. Meunier. Multiphase averaging for classical systems, volume 72 of

Applied Mathematical Sciences. Springer-Verlag, New York, 1988.
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action-angle variables, 253

adapted, 43

adiabatic invariant, 152

adjoint, 63

advection equation, 118

advection–diffusion, 3

advective scaling, 205

Anosov’s theorem, 153

averaging, IX, 1, 4, 6, 8, 37, 245, 249, 255

backward equation, 63, 80, 118, 133, 137,

145, 245

Banach space, 13, 16, 39, 45

reflexive, 16

bootstrapping, 277

boundary condition

Dirichlet, 103

Neumann, 271

periodic, 103

boundary layer, 129, 134, 179

Brownian bridge, 57

Brownian motion, 5, 41, 44, 45, 85, 96

time-rescaled, 87

Burkholder–Davis–Gundy inequality, 48,

252, 259

càdlàg, 43, 77

Cauchy sequence, 16

Cauchy–Schwarz inequality, 18, 22

cell problem, 2, 4, 195, 256, 258, 263

singularly perturbed SDEs, 159

parabolic PDEs, 205, 207

second-order uniformly elliptic PDEs, 184

center manifold, 128, 131

centering condition, 8, 227

parabolic PDEs, 205

SDEs, 158

central limit theorem, 6, 7, 50

functional, 52

martingale, 53, 99

Chapman–Kolmogorov equation, 43

Chapman-Kolmogorov equation, 74, 77

characteristics, 4, 64, 80

classical solution, 63, 65, 90, 103, 117

complete, 16

composite material, 2

conditional expectation, 40

contraction semigroup, 44

contractivity condition, 239

convergence

almost sure, 50

in pth mean, 50

in distribution, 50

in probability, 50

strong, 16

two-scale, 13, 25, 264, 265

steady, 25

time-dependent, 28

weak, 17, 20

probability measures, 13, 32, 37

weak-∗, 17, 20, 32

corrector, 2, 264

corrector field

first order, 187

second-order, 197

covariance matrix, 39
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Dambis–Dubins–Schwarz theorem, 55, 261,

262

decay of correlations, 163, 164

dense, 17

detailed balance, 84

differential equations

ordinary, 1, 59

partial, 1, 103

stochastic, 1, 85

diffusion coefficient, 85

diffusive scaling, 157, 204

Dirac mass, 39, 97

Dirichlet form, 56, 92, 93, 207, 211

Dirichlet problem, 104

distributed as, 40

distribution, 38

finite-dimensional, 41

divergence, 15

divergence-free, 3

Doob martingale inequality, 47

drift coefficient, 85

dual, 16, 22, 24, 104

Banach space, 16

pair, 18, 22

Dunford-Pettis theorem, 32

Eberlein–Smuljan theorem, 17

effective diffusivity, 4, 184, 205

elliptic operator

divergence form, 103, 104, 107

nondivergence form, 104, 113

uniformly, 104, 113, 115, 117

elliptic PDEs

a priori bounds, 114

maximum principle, 113

empirical measure, 71

energy method, 115

equi–integrable, 32

equilibrium point

hyperbolic, 130

ergodic, 45, 231, 255

Markov process, 45

ergodicity, 66, 81, 114

for SDEs, 94

event, 37

expectation, 38

conditional, 40

filtration, 43

generated by, 43

Fixman potential, 155

Fokker–Planck equation, 5, 10, 79, 90,

96–98

forward equation, 65, 79, 90

Fourier series, 32, 223, 226

Fredholm alternative, 7, 9, 31, 251, 256, 258

elliptic PDEs, 107, 108, 113

Frobenius-Perron operator, 72

function

1-periodic, 24

càdlàg, 43

continuous, 18

Lipschitz continuous, 60

measurable, 38

function space, 18, 103

functional

bounded linear, 16

Gaussian, 39

Gaussian process, 41, 85

generator, 44, 62, 76, 88

geometric Brownian motion, 89

Gibbs

distribution, 210

measure, 210

gradient, 15

Green–Kubo formula, 174, 178

Gronwall lemma, 61, 258

Hölder inequality, 20

Hadamard graph transform, 243

Hamiltonian, 253

harmonic average, 192, 232

heat conduction, 2

heat equation, 3, 96

Hessian, 15

Hilbert space, 13, 18

equations, 29

Hille-Yosida theorem, 122

homogenization, IX, 1, 2, 6, 7, 9, 13, 37,

255, 263

homogenized equation

for parabolic PDEs, 205

for second-order uniformly elliptic PDEs,

185

i.i.d., 38

incompressible, 3

increasing process, 46
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indicator function, 40, 68

infinitesimal generator, 44

initial layer, 129, 134, 179

inner product, 14, 18, 19

matrix, 14

invariance principle, 52

invariant, 61, 66

backward, 61

forward, 61

invariant distribution, 81, 82, 94, 138

for parabolic PDEs, 204, 228

OU process, 98

invariant manifold, 6, 128, 239

attractive, 243

normally hyperbolic, 243

invariant measure, 66, 81, 94, 231

for Markov process, 45

Gaussian, 97, 98

invariant set, 128

Itô formula, 1, 89, 251, 258

Itô isometry, 252

Itô stochastic integral, 47

Itô versus Stratonovich problem, 179

jump chain, 75

Kolmogorov equation, 4, 10, 80, 90, 96

forward, 5

Koopman operator, 72

law, 38

stochastic process, 42

law of large numbers, 6, 96

strong, 51, 80

Lax-Milgram theorem, 30, 103, 105, 264,

267

Liouville equation, 64, 79

Lipschitz, 86

Lipschitz function, 60

locally periodic coefficients, 196

Lyapunov function, 62, 72, 100

Lyapunov-Perron, 243

macroscopic, 2

Markov chain, 7, 73, 245

continuous time, 73, 75

discrete time, 73

homogeneous, 74

nonexplosive, 80

transition probabilities, 74

Markov process, 10, 43

ergodic, 45

generator, 44

homogeneous, 43

reversible, 55, 84, 211

switching, 100

transition function, 43

martingale, 46, 52, 53

martingale formulation for SDEs, 99, 261

master equation, 78

matrix

stochastic, 73

transition, 73

maximum principle, 113, 115, 117

mean, 39

mean flow, 222

measurable function, 38

measurable space, 37

measure, 22

invariant, 66, 81, 94, 231

SRB, 69, 169

measure space, 66

method of characteristics, 1

mild solution, 121

PDE, 103

mollified approximation, 119

multiple scales, IX, 26

multiscale expansion, 129

multiscale methods, X

nonexplosive, 80

nonuniformly periodic coefficients, 196

norm, 23

Lp, 19

ℓp, 14

Euclidean, 14

Frobenius, 14

operator, 14

normed vector space, 16

complete, 16

ODE, 4, 5, 59, 239

one-parameter operator group, 59

operator

bounded, 31

compact, 31

contraction, 44

monotone, 270, 272
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ordinary differential equations, 1

Ornstein–Uhlenbeck process, 88

outer product, 14

parabolic PDEs

energy estimates, 115

maximum principle, 115

partition function, 210

path space, 42, 247

PDE, 1, 103

classical solution, 63, 65, 90, 103

elliptic, 2, 4, 5, 7, 10, 103, 104, 263

weak solution, 105

hyperbolic, 1, 103, 118

parabolic, 1, 3–5, 10, 103, 114, 117

strong solution, 103

transport, 1, 118

weak solution, 103

Peclet number, 222

periodic function, 23

periodic problem, 104

perturbation expansion, IX, 1, 3, 7

perturbation theory

first order, 6

second-order, 7

perturbed test function method, 284

Poincaré inequality, 22, 24

Poisson equation, 56, 95, 159, 167, 175, 184,

249, 250, 253, 258

Poisson process, 42, 44

probability, 37

density function, 39

measure, 38

space, 23, 38

probability measure

weak convergence, 49

quadratic variation, 46

Rössler system, 131

Radon measure, 32

random variable, 38

convergence

almost sure, 50

in distribution, 50

in probability, 50

exponential, 39, 77

rate, 39

independent, 38

multivariate Gaussian, 39

normal, 39

standard normal, 39

random walk, 74

reflexive, 16, 17, 19, 23, 32

reiterated homogenization, 198

Rellich compactness theorem, 21

resolvent operator, 107

Riesz representation theorem, 18

rotation, 68

rotation number, 233

sample space, 40

scaling

advective, 205

diffusive, 204

SDE, 1, 5, 7, 10, 85, 249, 255

Itô, 85

Stratonovich, 87

semigroup, 44, 63, 65

contraction, 44

separable, 17, 19, 23

shear flow, 218

sigma algebra, 37

Borel, 38

generated by, 43

singular perturbation, IX, 1

skew-product, 255

Skorokhod topology, 247

slow manifold, 134

Sobolev space, 21, 23

SRB measure, 69, 169

stable manifold, 128

state space, 40

countable, 73

finite, 245

stationary distribution, 92, 94

stochastic integral, 46

Itô, 47

Stratonovich, 49, 86

stochastic matrix, 73, 247

stochastic process, 37, 40

sample paths, 43

càdlàg, 43, 75

homogeneous, 42

Markov, 43

stationary, 41, 45
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Stratonovich stochastic intregral, 49

strong solution, 103

Taylor dispersion, 223

test function, 34, 264, 270

admissible, 33

thermal conductivity tensor, 2

time scale

diffusive, 157

time-rescaling

SDE, 87, 149

torus, 14

transition matrix, 73, 77

transport coefficient, 178

Trotter–Kato theorem, 54

two-scale system, 263, 264, 266, 270

unit cell, 23

unstable manifold, 128

vanishing viscosity method, 119

variance, 39

variation of constants formula, 121

velocity autocorrelation function, 174

Virial theorem, 71, 72

viscosity solutions for PDEs, 284

weak convergence, 246

probability measures, 49

weak derivative, 21

weak solution, 105

PDE, 103

weak topology, 16

white noise, 85

Wiener measure, 5, 42, 91

Wiener process, 42

Young measures, 154
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