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Preface

Over the last few years the discrete mathematics and theoretical computer
science communities have witnessed an explosive growth in the area of algo-
rithmic combinatorics on words. Words, or strings of symbols over a finite
alphabet, are natural objects in several research areas including automata
and formal language theory, coding theory, and theory of algorithms. Molec-
ular biology has stimulated considerable interest in the study of partial words
which are strings that may contain a number of “do not know” symbols or
“holes.” The motivation behind the notion of a partial word is the comparison
of genes. Alignment of two such strings can be viewed as a construction of two
partial words that are said to be compatible in a sense that will be discussed
in Chapter 1. While a word can be described by a total function, a partial
word can be described by a partial function. More precisely, a partial word
of length n over a finite alphabet A is a partial function from {0, . . . , n − 1}
into A. Elements of {0, . . . , n− 1} without an image are called holes (a word
is just a partial word without holes). Research in combinatorics on partial
words is underway [10, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 105, 111, 124, 130, 131] and
promises a rich theory as well as substantial impact especially in molecular
biology, nano-technology, data communication, and DNA computing [104].
Partial words are currently being considered, in particular, for finding good
encodings for DNA computations. Courses, covering different sets of topics,
are already being taught at some universities. The time seems right for a book
that develops, in a clear manner, some of the central ideas and results of this
area, as well as sets the tone of research for the next several years. This book
on algorithmic combinatorics on partial words addresses precisely this need.

An effort has been made to ensure that this book is able to serve as a text-
book for a diversity of courses. It is intended as an upper-level undergraduate
or introductory graduate text in algorithms and combinatorics. It contains a
mathematical treatment of combinatorics on partial words designed around
algorithms and can be used for teaching and research. The chapters not only
cover topics in which definitive techniques have emerged for solving problems
related to partial words but also cover topics in which progress is desired
and expected over the next several years. The principal audience we have in
mind for this book are undergraduate or beginning graduate students from
the mathematical and computing sciences. This book will be of interest to
students, researchers, and practitioners in discrete mathematics and theoret-
ical computer science who want to learn about this new and exciting class
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of partial words where many problems still lay unexplored. It will also be
of interest to students, researchers, and practitioners in bioinformatics, com-
putational molecular biology, DNA computing, and Mathematical Linguistics
seeking to understand this subject. We do assume that the reader has taken
some first course in discrete mathematics.

BOOK OVERVIEW

The book stresses major topics underlying the combinatorics of this emerg-
ing class of partial words. The contents of the book are summarized as follows:

• Part I concerns basics. In par-
ticular, we discuss compatibility of partial words. The compatibility
relation considers two strings over the same alphabet that are equal ex-
cept for a number of insertions and/or deletions of symbols. It is well
known that some of the most basic combinatorial properties of words,
like the conjugacy (xz = zy) and the commutativity (xy = yx), can be

these equations in the context of partial words. When we speak about
such equations, we replace the notion of equality (=) with compatibility
(↑). There, we solve xz ↑ zy and xy ↑ yx.

• Part II which consists of Chapters 3, 4 and 5 focuses on three impor-
tant concepts of periodicity on partial words: one is that of period, an
other is that of weak period, and the last one is that of local period
which characterizes a local periodic structure at each position of the
word. These chapters discuss fundamental results concerning periodic-
ity of words and extend them in the framework of partial words. These
include: First, the well known and basic result of Fine and Wilf [77]
which intuitively determines how far two periodic events have to match
in order to guarantee a common period; Second, the well known and
fundamental critical factorization theorem [49] which intuitively states
that the minimal period (or global period) of a word of length at least
two is always locally detectable in at least one position of the word re-
sulting in a corresponding critical factorization; Third, the well known
and unexpected result of Guibas and Odlyzko [82] which states that the
set of all periods of a word is independent of the alphabet size.

• Part III covers primitivity. Primitive words, or strings that cannot be
written as a power of another string, play an important role in numer-
ous research areas including formal language theory, coding theory, and
combinatorics on words. Testing whether or not a word is primitive can
be done in linear time in the length of the word. Indeed, a word is prim-
itive if and only if it is not an inside factor of its square. In Chapter 6,

In Chapter 1, we fix the terminology.

expressed as solutions of word equations. In Chapter 2, we investigate
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we describe in particular a linear time algorithm to test primitivity on
partial words. The algorithm is based on the combinatorial result that
under some condition, a partial word is primitive if and only if it is not
compatible with an inside factor of its square. The concept of speciality,
related to commutativity on partial words, is foundational in the design
of the algorithm. There, we also investigate the number of primitive
partial words of a fixed length over an alphabet of a fixed size. The
zero-hole case is well known and relates to the Möbius function. There
exists a particularly interesting class of primitive words, the unbordered
ones. An unbordered word is a string over a finite alphabet such that
none of its proper prefixes is one of its suffixes. In Chapter 7, we extend
results on unbordered words to unbordered partial words.

• Part IV relates to coding. Codes play an important role in the study
of the combinatorics on words. In Chapter 8, we introduce pcodes that
play a role in the study of combinatorics on partial words. Pcodes are
defined in terms of the compatibility relation. We revisit the theory
of codes of words starting from pcodes of partial words. We present
some important properties of pcodes, describe various ways of defining
and analyzing pcodes, and give several equivalent definitions of pcodes
and the monoids they generate. It turns out that many pcodes can be
obtained as antichains with respect to certain partial orderings. We
investigate in particular the Defect Theorem for partial words. We also
discuss two-element pcodes, complete pcodes, maximal pcodes, and the
class of circular pcodes. In Chapter 9, using two different techniques,
we show that the pcode property is decidable.

• Part V covers further topics.

Chapter 10 continues the study of equations on partial words, study that
was started in Chapter 2. As mentioned before, an important problem
is to decide whether or not a given equation on words has a solution.
For instance, the equation xmyn = zp has only periodic solutions in
a free monoid, that is, if xmyn = zp holds with integers m,n, p ≥ 2,
then there exists a word w such that x, y, z are powers of w. This
result, which received a lot of attention, was first proved by Lyndon and
Schützenberger [109] for free groups. In Chapter 10 we solve, among
other equations, xmyn ↑ zp for integers m ≥ 2, n ≥ 2, p ≥ 4.

Chapter 11 introduces the notions of binary and ternary correlations,
which are binary and ternary vectors indicating the periods and weak
periods of partial words. Extending the result of Guibas and Odlyzko
of Chapter 5, we characterize precisely which of these vectors represent
the period and weak period sets of partial words and prove that all
valid correlations may be taken over the binary alphabet. We show that
the sets of all such vectors of a given length form distributive lattices
under suitably defined relations. We also show that there is a well
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defined minimal set of generators for any binary correlation of length
n and demonstrate that these generating sets are the primitive subsets
of {1, 2, ..., n − 1}. Lastly, we investigate the number of partial word
correlations of length n.

The notion of an unavoidable set of words appears frequently in the
fields of mathematics and theoretical computer science, in particular
with its connection to the study of combinatorics on words. The theory
of unavoidable sets has seen extensive study over the past twenty years.
In Chapter 12, we extend the definition of unavoidable sets of words
to unavoidable sets of partial words. We demonstrate the utility of the
notion of unavoidability on partial words by making use of it to identify
several new classes of unavoidable sets of full words. Along the way we
begin work on classifying the unavoidable sets of partial words of small
cardinality. We pose a conjecture, and show that affirmative proof of this
conjecture gives a sufficient condition for classifying all the unavoidable
sets of partial words of size two. Finally, we give a result which makes
the conjecture easy to verify for a significant number of cases.

KEY FEATURES

Key features of the book include:

• The style of presentation emphasizes the understanding of ideas. Clar-
ity is achieved by a very careful exposition, based on our experience
in teaching undergraduate and graduate students. Worked examples
and diagrams abound to illustrate these ideas. In the case of concept
definitions, we have used the convention that terms used throughout
the book are in boldface when they are first introduced in definitions.
Other terms appear in italics in their definition.

• Many of the algorithms are presented first through English sentences and
then in pseudo code format. In some cases the pseudo code provides a
level of detail that should help readers interested in implementation.

• There are links to many World Wide Web server interfaces that have
been established for automated use of programs related to this book.
The power of these internet resources will be demonstrated by applying
them throughout the book to understand the material and to solve some
of the exercises.

• Bibliographic notes appear at the end of each chapter.
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• Exercises also appear at the end of each chapter. Practice through solv-
ing them is essential to learning the subject. In this book, the exercises
are organized into three main categories: exercises, challenging exer-
cises and programming exercises. The exercises review definitions and
concepts, while the challenging exercises require more ingenuity. This
wealth of exercises provides a good mix of algorithm tracing, algorithm
design, mathematical proof, and program implementation. Some of the
exercises are drills, while others make important points about the ma-
terial covered in the text or introduce concepts not covered there at all.
Several exercises are designed to prepare the reader for material covered
later in the book.

• At the end of the book, solutions or hints are provided to selected ex-
ercises to help readers achieve their goals. They are marked by the
symbols S and H respectively. Some solutions can be found in the
literature (the reference that solves the exercise is usually cited in the
bibliographic notes).

Sections of the book can be assigned for self study, some sections can be as-
signed in conjunction with projects, and other sections can be skipped without
danger of making later sections of the book incomprehensible to the reader.
The bibliographic notes also provide tips for further reading. The following
drawing depicts the interdependency of chapters.
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Chapter 1

Preliminaries on Partial Words

In this chapter, we give a short review of some basic notions on partial words
that will be used throughout the book.

1.1 Alphabets, letters, and words

Let A be a nonempty finite set of symbols, which we call an alphabet. An
element a ∈ A is called a letter. A word over the alphabet A is a finite sequence
of elements of A.

Example 1.1
The following sets are alphabets:

A = {a, b, c, n}

B = {0, 1}

The sequence of letters banana is a word over the alphabet A, as well as the
word cbancb. Over the alphabet B, the sequences 0, 1, and 01010111110 are
words.

For any word u, α(u) is defined as the set of distinct letters in u. We allow
for the possibility that a word consists of no letters. It is called the empty
word and is denoted by ε.

Example 1.2
Consider the words u = banana, v = aaccaaa, and the empty word ε. Then,

α(u) = {a, b, n}

α(v) = {a, c}

α(ε) = ∅

25
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The set of all words over A is denoted by A∗ and is equipped with the
associative operation defined by the concatenation of two sequences. We use
multiplicative notation for concatenation. For example, if u = aaa and v =
bbb are words over an alphabet A, they are members of A∗, and the word
uv = aaabbb is also a member of A∗. The empty word is the neutral element
for concatenation, as any word u concatenated with the empty word is simply
itself again (uε = εu = u).

The set of nonempty words over A is denoted by A+. Thus we have A+ =
A∗ \ {ε}.

Notice that for any two words u and v in either A∗ or A+, their product
uv is also in the same set. The only difference between these sets is that the
empty word ε is an element of A∗ and not A+. We note that the set A+ is
equipped with the structure of a semigroup. It is called the free semigroup
over A. The set A∗, with its inclusion of the empty word, is equipped with
the structure of a monoid. It is called the free monoid over A.1

For a word u, we can write the i-power of u, where

ui = uuu . . . u︸ ︷︷ ︸
i times

We can also define ui recursively with the following definition:

ui =
{
ε if i = 0
uui−1 if i ≥ 1

Example 1.3
Let a and b be letters in an alphabet A. Then,

a6 = aaaaaa

(aba)3 = (aba)(aba)(aba) = abaabaaba

At this point, we define a word u to be primitive if there exists no word v
such that u = vi with i ≥ 2.

Example 1.4
The word u = abaaba is not primitive, as shown here:

u = abaaba = (aba)2 = v2 where v = aba

1A semigroup is a nonempty set together with a binary associative operation. A monoid is
a semigroup with identity.
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The word aaaaa = a5 is also clearly not primitive, whereas the word aaaab is
primitive.

We also note here that the empty word ε is not primitive, for

ε = εi for all i

1.2 Partial functions and partial words

To students of mathematical sciences, the concept of a function is a familiar
one. We refine that concept with the following definition.

DEFINITION 1.1 Let f be a function on a set X. If f is not necessarily
defined for all x ∈ X, then f is a partial function. The domain of f , D(f),
is defined as

D(f) = {x ∈ X | f(x) is defined}
A partial function where D(f) = X is a total function.

The “usual” idea of a function is captured in the definition of total function
above, because we typically state a function only on a set of input values for
which the function is defined. With the notion of a partial function, we allow
for the possibility that for certain values the function may not be defined.

Example 1.5
In Figure 1.1, we have a graphical representation of a partial function f on

the set {0, 1, 2, 3, 4} to the set {a, b, c}. Note that D(f) = {0, 1, 3}.

In the context of our discussion about words, total functions allow us to refer
to specific letter positions within a given word in the following manner. A word
of length n over A can be defined by a total function u : {0, . . . , n− 1} → A
and is usually represented as

u = a0a1 . . . an−1 with ai ∈ A

Example 1.6
Let u : {0, 1, 2, 3} → {a, b, c} be the total function defined below:

u(0) = a
u(1) = c
u(2) = a
u(3) = b
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FIGURE 1.1: A picture of a partial function.

The word described by this function is therefore u = acab. Also, note that
the letter indices of a word begin at zero.

Partial functions allow us to extend the above definition to words that are
“incomplete,” that is, words that have missing letters. For example, suppose
that u is a word of length 5 over an alphabet A, but that the letters in the
second and fourth positions are unknown. Using a partial function, we can
define a function u : {0, 1, 2, 3, 4} → A and then acknowledge that u(2) and
u(4) are undefined. We make the following definition.

DEFINITION 1.2 A partial word (or, pword) of length n over A is
a partial function u : {0, . . . , n − 1} → A. For 0 ≤ i < n, if u(i) is defined,
we say that i belongs to the domain of u (denoted by i ∈ D(u)). Otherwise
we say that i belongs to the set of holes of u (denoted by i ∈ H(u)).

Just as every total function is a partial function, every total word is itself
a partial word with an empty set of holes. For clarity, we sometimes refer to
words as full words. For any partial word u over A, |u| denotes its length.
Clearly, |ε| = 0.

Example 1.7

Let the function u : {0, 1, 2, 3, 4} → A be a partial function where u(2) and
u(4) are undefined. Therefore,

D(u) = {0, 1, 3} and H(u) = {2, 4}
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It follows that u is a partial word with holes in the second and fourth positions
and |u| = 5. Example 1.5 and Figure 1.1 are examples of such a partial
function.

Example 1.8
Let the word u be given by Example 1.6. Then |u| = 4,

D(u) = {0, 1, 2, 3} and H(u) = ∅

and u is clearly a full word.

We denote by W0(A) the set A∗, and for i ≥ 1, by Wi(A) the set of partial
words over A with at most i holes. This leads to the nested sequence of sets,

W0(A) ⊂W1(A) ⊂W2(A) ⊂ · · · ⊂Wi(A) ⊂ · · ·

We put W (A) =
⋃

i≥0Wi(A), the set of all partial words over A with an
arbitrary number of holes.

Now that we have defined the notion of a partial word, we are in need of a
method to represent partial words. In particular, we need a way to represent
the positions of the holes of a partial word. In order to do this, we introduce
a new symbol, �, and make the following definition.

DEFINITION 1.3 If u is a partial word of length n over A, then the
companion of u, denoted by u�, is the total function u� : {0, . . . , n − 1} →
A ∪ {�} defined by

u�(i) =
{
u(i) if i ∈ D(u)
� otherwise

We extend our definition of α(u) for any partial word u over an alphabet
A in the following way:

α(u) = {a ∈ A | u(i) = a for some i ∈ D(u)}

It is important to remember that the symbol � is not a letter of the alphabet
A. Rather, it is viewed as a “do not know” symbol, and its inclusion allows
us to now define a partial word in terms of the total function u� given in the
definition.

Example 1.9
The word u� = abb�b�cb is the companion of the partial word u of length 8
where D(u) = {0, 1, 2, 4, 6, 7} and H(u) = {3, 5}. Note that

u�(1) = u(1) = b because 1 ∈ D(u) and
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u�(3) = � while u(3) is undefined

α(u) = {a, b, c}

The bijectivity of the map u 7→ u� allows us to define for partial words
concepts such as concatenation and powers in a trivial way. More specifically,
for partial words u, v, the concatenation of u and v is defined by (uv)� = u�v�,
and the i-power of u is defined by (ui)� = (u�)i.

Example 1.10
Let u and v be partial words, with their companions u� = a� and v� = b�c.
The partial word uv is formed in terms of the companions in the expected
way:

(uv)� = u�v� = a�b�c

Similarly, powers are formed in terms of the companions as well,

(u3)� = (u�)3 = (a�)3 = a�a�a�

With the operation now defined for partial words, the set W (A) becomes a
monoid under the concatenation of partial words (ε serves as identity). For
convenience, we often drop the word “companion” from our discussion, and we
consider a partial word over A as a word over the enlarged alphabet A∪ {�},
where the additional symbol � plays a special role. Thus, we say for instance
“the partial word �ab�b” instead of “the partial word with companion �ab�b.”

1.3 Periodicity

Periodicity is an important concept related to partial words, and we intro-
duce two formulations of periodicity in this section.

DEFINITION 1.4 A (strong) period of a partial word u over A is
a positive integer p such that u(i) = u(j) whenever i, j ∈ D(u) and i ≡
j mod p. 2 In such a case, we call u p-periodic.

2Throughout the book, i mod p denotes the remainder when dividing i by p using ordinary
integer division. We also write i ≡ j mod p to mean that i and j have the same remainder
when divided by p; in other words, that p divides i − j (for instance, 12 ≡ 7 mod 5 but
12 6= 7 mod 5 (2 = 7 mod 5)).
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Notice that nothing in the definition precludes a partial word from having
more than one period. The set of all periods of u will be denoted by P(u).
However, we will often want to refer to the minimal period of a partial word.
We represent this minimal period by p(u).

Example 1.11
Consider these examples of partial words and their periods:

u = ababab is 6-periodic, 4-periodic, and 2-periodic, and p(u) = 2
v = a��a�b is 6-periodic, 4-periodic, and 3-periodic, and p(v) = 3

w = bb�b is 4-, 3-, 2-, and 1-periodic, and p(w) = 1

As seen above, any partial word u is trivially |u|-periodic, showing P(u) is
never empty.

Frequently, it is much easier to determine if a partial word u is p-periodic
by writing, in order, the letters of u into p columns. If every letter in each
column is the same, ignoring holes, then u is p-periodic.

Example 1.12
We use the partial words of the previous example and disregard the trivial
period. We see that u is indeed 4-periodic and 2-periodic by writing

a b a b
a b

and
a b
a b
a b

Similarly, we verify that v is 4-periodic and 3-periodic:

a � � a
� b and

a � �
a � b

In partial words, the presence of holes gives us an opportunity to define
another type of periodic behavior.

DEFINITION 1.5 A weak period of u is a positive integer p such that
u(i) = u(i + p) whenever i, i + p ∈ D(u). In such a case, we call u weakly
p-periodic. We denote the set of all weak periods of u by P ′(u) and the
minimal weak period of u by p′(u).

As before, it is much easier to identify if a partial word u is weakly p-periodic
by writing u into p columns. However, now we only require that letters in a
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column be the same if there is no hole between them in that column. Letters
in columns with holes need to be the same if they are consecutive.

Example 1.13
Let u = abb�bbcbb. We write

a b b
� b b
c b b

The partial word u is weakly 3-periodic but is not 3-periodic (this is because
a occurs in position 0 while c occurs in position 6).

It is clear that if a partial word u is p-periodic, then u is weakly p-periodic,
and hence P(u) ⊂ P ′(u) for any partial word u. The converse of this statement
holds only for full words, however, and thus we see that for full words there
is no distinction between periods and weak periods.

Example 1.14
In Example 1.11, we determined that for v = a��a�b,

P(v) = {3, 4, 6}

This partial word v is also weakly 1-periodic, and therefore,

P ′(v) = {1, 3, 4, 6} and

p(v) = 3 and p′(v) = 1

Another difference between full words and partial words that is worth noting
is the fact that even if the length of a partial word u is a multiple of a weak
period of u, then u is not necessarily a power of a shorter partial word.

Example 1.15
For the full word, v = ababab, v is clearly 2-periodic and v = (ab)3. However,
recall the weakly 3-periodic word u from Example 1.13, u = abb�bbcbb. The
partial word u is not the power of a shorter partial word.

1.4 Factorizations of partial words

Given two subsets X,Y of W (A), we define
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XY = {uv | u ∈ X and v ∈ Y }

We sometimes write X < Y if X ⊂ Y but X 6= Y . For a subset X of W (A),
we use the notation ‖X‖ for the cardinality of X.

Example 1.16
Let X = {ε, a, ac} and Y = {b, bb}. Then XY is the following set,

{b, bb, ab, abb, acb, acbb}

Note that this “set product” is not commutative, as Y X equals

{b, bb, ba, bba, bac, bbac}

Given a subset X of W (A), we can apply the previous idea and form the
set product of a set with itself.

Example 1.17
Let X = {a, b}. We can then construct the following sequence of sets:

X = X1 = {a, b}
XX = X2 = {aa, ab, ba, bb}

XXX = X3 = {aaa, aab, aba, abb, baa, bab, bba, bbb}
...

For completion, we define X0 = {ε}.

In general, for a subset X of W (A) and integer i ≥ 0, we denote by Xi the
set

{u1u2 . . . ui | u1, . . . , ui ∈ X}

We denote by X∗ the submonoid of W (A) generated by X, or X∗ =
⋃

i≥0X
i

and by X+ the subsemigroup of W (A) generated by X, or X+ =
⋃

i>0X
i.

DEFINITION 1.6 A factorization of a partial word u is any sequence
u1, u2, . . . , ui of partial words such that u = u1u2 . . . ui. We write this fac-
torization as (u1, u2, . . . , ui). A partial word u is a factor of a partial word
v if there exist partial words x, y (possibly equal to ε) such that v = xuy.
The factor u is proper if u 6= ε and u 6= v. The partial word u is a prefix
(respectively, suffix) of v if x = ε (respectively, y = ε).3 We occasionally use

3Notation: If the partial word x is a prefix of y, we sometimes write x �p y or simply x � y.
We can write x ≺ y when x 6= y.
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the notation u[i..j) to represent the factor of the partial word u starting at
position i and ending at position j − 1. Likewise, u[0..i) is the prefix of the
partial word u of length i, and u[j..|u|) is the suffix of u of length |u| − j.

Factors of a partial word u are sometimes called substrings of u. It is
immediately seen that there may be numerous factorizations for a given partial
word.

Example 1.18

Let v = abc�ab. The following are two factorizations of v:

(ab, c�, a, b)
(a, bc�, ab)

In addition, we call the factorizations (ε, abc�ab) and (abc�ab, ε) trivial. The
prefixes of v are ε, a, ab, abc, abc�, abc�a, and abc�ab. Likewise, the suffixes
of v are ε, b, ab, �ab, c�ab, bc�ab, and abc�ab.

For partial words u and v, the unique maximal common prefix of u and v
is denoted by pre(u, v).

Example 1.19

Let u = a�bcb and v = a�bbab. The common prefixes of u and v are
ε, a, a�, a�b, the latter being pre(u, v).

By definition, each partial word u in X∗ admits at least one factorization
u1, u2, . . . , ui whose elements are all in X. Such a factorization is called an
X-factorization.

For a subsetX ofW (A), we denote by F (X) the set of all factors of elements
in X. More specifically,

F (X) = {u | u ∈W (A) and there exist x, y ∈W (A) such that xuy ∈ X}

We denote by P (X) the set of all prefixes of elements in X and by S(X) the
set of suffixes of elements in X:

P (X) = {u | u ∈W (A) and there exists x ∈W (A) such that ux ∈ X}
S(X) = {u | u ∈W (A) and there exists x ∈W (A) such that xu ∈ X}

If X is the singleton {u}, then P (X) (respectively, S(X)) will be abbreviated
by P (u) (respectively, S(u)).
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1.5 Recursion and induction on partial words

We begin this section with the concept of the reversal of a partial word,
and use this concept to illustrate recursion and induction with partial words.

DEFINITION 1.7 If u ∈ A∗, then the reversal of the word u =
a0a1 . . . an−1 is rev(u) = an−1 . . . a1a0 where ai ∈ A for all i. The rever-
sal of a partial word u is rev(u) where (rev(u))� = rev(u�). The reversal of
a set X ⊂W (A) is the set rev(X) = {rev(u) | u ∈ X}.

Example 1.20
If u = ab�d, then rev(u) = d�ba.

Recursively, the reversal of a partial word is described in the following way:

1. rev(ε) = ε, and

2. rev(xa) = arev(x)

where x ∈ A∗ and a ∈ A.
In a similar fashion, we provide a recursive description of A∗, the set of all

words over an alphabet A:

1. ε ∈ A∗

2. If x ∈ A∗ and a ∈ A, then xa ∈ A∗.

It is often very useful to use mathematical induction in order to prove results
related to partial words. Below we provide an example of using induction on
the length of a partial word to prove a result related to the reversal of the
product of two words.

Example 1.21
Let x, y be words over an alphabet A. Show that

rev(xy) = rev(y)rev(x)

As stated, we prove this by induction on |y|. First, suppose |y| = 0 or y = ε.
Clearly,

rev(xy) = rev(x)
= εrev(x)
= rev(ε)rev(x)
= rev(y)rev(x)
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Now assume that our result holds for all words y where |y| = n for some
nonnegative integer n. According to the process of induction, it remains for
us to show that the result holds for words of length n+ 1.
Let |y| = n and a ∈ A. Then ya is a word of length n+ 1. Now,

rev(x(ya)) = rev((xy)a)
= arev(xy) by definition
= arev(y)rev(x) by inductive hypothesis
= rev(ya)rev(x)

Thus, the result holds for all words ya of length n+ 1, and consequently the
result is proved for all words x, y in A∗.

REMARK 1.1 The previous result can be generalized easily to partial
words by applying the same argument to the companions of partial words x
and y.

1.6 Containment and compatibility

We define equality of partial words in the following way.

DEFINITION 1.8 The partial words u and v are equal if u and v are
of equal length (that is, |u| = |v|), and

D(u) = D(v) and u(i) = v(i) for all i ∈ D(u)(= D(v))

For full words, the equality of two words is straightforward, namely, letters
in corresponding positions must be equal. However, for partial words contain-
ing holes, the notion of equality is only part of the picture. This is because
the symbol � is not an element of our alphabet, but a placeholder symbol for
a letter we do not know. So although the partial words a�b� and a��b are
not equal by our definition, they may very well be equal, if we only had more
information. To sharpen our understanding of this possibility, we introduce
and discuss two alternative methods of relating partial words: containment
and compatibility.

DEFINITION 1.9 If u and v are two partial words of equal length, then
u is said to be contained in v, denoted by u ⊂ v, if all elements in D(u) are
in D(v) and u(i) = v(i) for all i ∈ D(u). We sometimes write u < v if u ⊂ v
but u 6= v.

Containment can be restated in the following equivalent way:
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For partial words u and v, u ⊂ v if everything that is known about the letters
of u is repeated in v. In this sense, the relation is “one-way,” from u to v.

In general, u ⊂ v does not imply that v ⊂ u.

Example 1.22
Let u = a�b�. We can easily compare u to other partial words by writing u
above and checking our conditions. For v1 = a��b, we write,

u = a � b �
↓ 6 ↓

v1 = a � � b

We can now easily see that D(u) 6⊂ D(v1), and therefore u 6⊂ v1. For v2 =
a�ab, we see

u = a � b �
↓ 6 ↓

v2 = a � a b
Because u(2) 6= v2(2), u 6⊂ v2. Lastly, for v3 = a�bb,

u = a � b �
↓ ↓

v3 = a � b b

and u ⊂ v3. Notice the fact that v3(3) is defined implies that v3 6⊂ u.

We can extend the notion of a word being primitive to a partial word being
primitive as follows:

A partial word u is primitive if there exists no word v such that u ⊂ vi with
i ≥ 2

Example 1.23
The partial word u = a�ab is not primitive, because for v = ab, u ⊂ v2.
However, the partial word a�bb is primitive.

REMARK 1.2 Note that if v is primitive and v ⊂ u, then u is primitive
as well. The proof of this fact is left as an exercise.

Whereas the containment relation may be thought of as a nonsymmetric,
“one-way” relation between two partial words, we now define a new, symmet-
ric relation on partial words called compatibility.

DEFINITION 1.10 The partial words u and v are called compatible,
denoted by u ↑ v, if there exists a partial word w such that u ⊂ w and v ⊂ w.
Equivalently, u ↑ v if
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u(i) = v(i) for every i ∈ D(u) ∩D(v)

It is obvious that u ↑ v implies v ↑ u.

Typically it is easier to test for the compatibility of two partial words by
writing them one above the other and applying the second formulation of the
definition, that is, if two letters “line up,” then they must be equal.

Example 1.24
Let x = a�b�a� and y = a��cbb. We write

x = a � b � a �
y = a � � c b b

and because x(4) 6= y(4), x 6 ↑ y. Now, let u = a�bbc� and v = �bb�c�. We see
that u ↑ v:

u = a � b b c �
v = � b b � c �

For compatible words, we can construct a partial word w that contains both
u and v such that the domain of w is exactly the union of the domains of u
and v. In other words, the letters of w are defined “only when they need to
be” in order to contain u and v. For this reason, we call w the least upper
bound of u and v and denote w as u ∨ v.

DEFINITION 1.11 Let u and v be partial words such that u ↑ v. The
least upper bound of u and v is the partial word u ∨ v, where

u ⊂ u ∨ v and v ⊂ u ∨ v, and
D(u ∨ v) = D(u) ∪D(v)

Example 1.25
Let u = aba��a and v = a��b�a. Writing them over one another, we see u ↑ v
and also how u ∨ v is constructed:

u = a b a � � a
v = a � � b � a

u ∨ v = a b a b � a

For a subset X of W (A), we denote by C(X) the set of all partial words
compatible with elements of X. More specifically,
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C(X) = {u | u ∈W (A) and there exists v ∈ X such that u ↑ v}

If X = {u}, then we denote C({u}) simply by C(u). We call a subset X
of W (A) pairwise noncompatible if no distinct partial words u, v ∈ X satisfy
u ↑ v. In other words, X is pairwise non compatible if for all u ∈ X, X ∩
C(u) = {u}.

The following rules are useful for computing with partial words.

LEMMA 1.1
Let u, v, w, x, y be partial words.

Multiplication: If u ↑ v and x ↑ y, then ux ↑ vy.

Simplification: If ux ↑ vy and |u| = |v|, then u ↑ v and x ↑ y.

Weakening: If u ↑ v and w ⊂ u, then w ↑ v.

We end this section with the following lemma.

LEMMA 1.2
Let u, v, x, y be partial words such that ux ↑ vy.

• If |u| ≥ |v|, then there exist pwords w, z such that u = wz, v ↑ w, and
y ↑ zx.

• If |u| ≤ |v|, then there exist pwords w, z such that v = wz, u ↑ w, and
x ↑ zy.

PROOF The proof is left as an exercise.

COROLLARY 1.1
Let u, v, x, y be full words. If ux = vy and |u| ≥ |v|, then u = vz and y = zx
for some word z.

Throughout the rest of the book, A denotes a fixed alphabet.

Exercises

1.1 The root of a full word u, denoted by
√
u, is defined as the unique

primitive word v such that u = vn for some positive integer n. What is√
u if u = ababab? What if u = ababba?
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1.2 S Let u = abba�bacba. Compute

1. The set of periods of u, P(u).

2. The set of weak periods of u, P ′(u).
3. A partial word v over the alphabet {0, 1} satisfying all the following

conditions:

(a) |v| = |u|
(b) H(v) ⊂ H(u)
(c) P(v) = P(u)
(d) P ′(v) = P ′(u)

1.3 Let u and v be partial words. Prove that if v is primitive and v ⊂ u,
then u is primitive as well.

1.4 S Let u be a partial word of length p, where p is a prime number.
Prove that u is not primitive if and only if ‖α(u)‖ ≤ 1.

1.5 Construct a partial word with one hole of length 12 over the alphabet
{a, b} that is weakly 5-periodic, weakly 8-periodic but not 1-periodic.

1.6 Let u be a word over an alphabet A, and let v = ua for any letter a in
A. Prove that p(u) ≤ p(v).

1.7 For partial words u and v, does u ↑ v imply u ⊂ v. Is the converse true?

1.8 Show that if for partial words u, v we have that u ⊂ v, then P(v) ⊂ P(u)
and P ′(v) ⊂ P ′(u).

1.9 Consider the factorization (u, v) = (abb�bab, bb) of w = abb�babbb. Is
abb�ba ∈ C(S(u))? Is b ∈ C(P (v))?

1.10 S Prove Lemma 1.2.

1.11 S A nonempty partial word u is unbordered if no nonempty words
x, v, w exist such that u ⊂ xv and u ⊂ wx. Otherwise, it is bordered.
If u is a nonempty unbordered partial word, then show that p(u) = |u|
and consequently, unbordered partial words are primitive.

1.12 Different occurrences of the same unbordered factor u in a partial word
w never overlap. True or false?

Challenging exercises

1.13 S Two partial words u and v are called conjugate if there exist partial
words x and y such that u ⊂ xy and v ⊂ yx. Prove that conjugacy
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on full words is an equivalence relation. Is it an equivalence relation on
partial words?

1.14 Let x be a partial word and set u = �x. Prove for 1 ≤ p ≤ |x|:

• p ∈ P(u) if and only if p ∈ P(x)

• p ∈ P ′(u) if and only if p ∈ P ′(x)

1.15 Referring to Exercise 1.14, what can be said when u = ax with x a
nonempty partial word and a ∈ A?

1.16 S Construct a partial word u over the alphabet {0, 1} for which no
a ∈ {0, 1} exists that satisfies ua is primitive.

1.17 H Let u ∈ W (A). For 0 < p ≤ |u|, prove that the following are
equivalent:

1. The partial word u is weakly p-periodic.

2. The containments u ⊂ xv and u ⊂ wx hold for some partial words
x, v, w satisfying |v| = |w| = p.

1.18 S Prove that if u is a nonempty partial word, then there exists a
primitive word v and a positive integer n such that u ⊂ vn. (Hint:
Use induction on the length of u). Show that uniqueness holds for full
words, that is, if u is a nonempty full word, then there exists a unique
primitive word v and a unique positive integer n such that u = vn. Does
uniqueness hold for partial words?

1.19 S Let x and y be partial words that are compatible. Show that (xy ∨
yx) ⊂ (x ∨ y)2. Is the reverse containment true?

1.20 A nonempty word u is unbordered if p(u) = |u|. True or false?

1.21 S Let u be a nonempty bordered partial word. Let x be a shortest
nonempty word satisfying u ⊂ xv and u ⊂ wx for some nonempty words
v, w. If |v| ≥ |x|, then show that p(u) < |u|. Is this true when |v| < |x|?

1.22 Can you find partial words x, y and z not contained in powers of a
common word and satisfying xmyn ↑ zp for some integers m,n, p ≥ 2.

Programming exercises

1.23 Write a program that discovers if two given partial words u, v of equal
length are compatible. If so, then the program outputs the least upper
bound of u and v, u ∨ v.
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1.24 Describe an algorithm that computes the minimal weak period of a given
partial word. What is the complexity of your algorithm?

1.25 Design an applet that provides an implementation of your algorithm of
Exercise 1.24, that is, given as input a partial word u, the applet outputs
the minimal weak period of u, p′(u).

1.26 Write a program that when given a finite subset X of W (A) \ {ε},
outputs F (C(X)). Run your program on X = {a�b, abbaab}.

1.27 Repeat Exercise 1.26 to output F (C(X∗)).
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Chapter 2

Combinatorial Properties of Partial
Words

In this chapter, we analyze two properties of partial words: conjugacy and
commutativity.

2.1 Conjugacy

We start by investigating the case for full words and then extend our results
to include partial words.

2.1.1 The equation xz = zy

Suppose x, y, and z are words such that xz = zy. We are interested to
know what the relationships between these words must be. Upon inspection,
we observe that z must coincide with x in its first part and also with y in its
second part. We illustrate with an example.

Example 2.1
Let x = abcda, y = daabc, and z = abc. Then, it is clear that

xz = zy, because

(abcda)(abc) = (abc)(daabc)

Note that if |z| is greater than |x| and |y|, then x will be a prefix of z and y
will be a suffix of z.

In the following lemma, we expand the idea motivated by the previous
example.

LEMMA 2.1
Let x, y, z (x 6= ε and y 6= ε) be words such that xz = zy. Then x = uv,
y = vu, and z = (uv)nu for some words u, v and integer n ≥ 0.

43
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PROOF If |z| ≤ |x|, then we make use of Corollary 1.1 from the last
chapter to show x = zw and y = wz for some word w. Putting u = z,
v = w, and n = 0, the result holds.

If |z| > |x|, then again by Corollary 1.1 z = xr for some word r. By
hypothesis, xz = zy, thus

x(xr) = (xr)y

implies xr = ry

Since x 6= ε, |r| < |z| and the desired conclusion follows by induction on |z|.
The initial case is when |z| = |x|+ 1, and r is a single letter. Then xr = ry,
and putting u = r = a0, v = a1 . . . a|x|−1, and n = 1 we have our result. Now,
assume that the result holds for all words z, |z| ≤ |x| + k. Let z′ be a word
such that |z′| = |x|+ k+ 1 and xz′ = z′y. Then we have z′ = xr and xr = ry
where |r| < |z′|. In other words, |r| ≤ |x| + k. By the inductive hypothesis,
there exist words u and v and an integer n ≥ 0 where x = uv, y = vu, and
r = (uv)nu. Therefore, z′ = xr = (uv)n+1u, and the result holds.

Example 2.2
Applying Lemma 2.1 to Example 2.1, we see that u = abc, v = da, and n = 0.

We note here that, as a consequence of the previous lemma, the word z is
|x|-periodic. This fact will become important in the forthcoming extension of
conjugacy to partial words.

2.1.2 The equation xz ↑ zy

In this section, we consider the conjugacy property of partial words in
accordance with the following definition.

DEFINITION 2.1 Two partial words x and y are conjugate if there
exist partial words u and v such that x ⊂ uv and y ⊂ vu.

Consequently, if the partial words x and y are conjugate, then there exists
a partial word z satisfying the conjugacy equation xz ↑ zy. Indeed, by setting
z = u, we get xz ⊂ uvu and zy ⊂ uvu.

In the previous section, we investigated the equation xz = zy on words.
For partial words, we obtain a similar result via the assumption of xz ∨ zy
being |x|-periodic.

THEOREM 2.1
Let x, y, z be partial words with x, y nonempty. If xz ↑ zy and xz ∨ zy is
|x|-periodic, then x ⊂ uv, y ⊂ vu, and z ⊂ (uv)nu for some words u, v and
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integer n ≥ 0.

Example 2.3
Let x = �ba, y = �b�, and z = b�ab����. Then we have

xz = � b a b � a b � � � �
zy = b � a b � � � � � b �

xz ∨ zy = b b a b � a b � � b �

It is clear that xz ↑ zy and xz ∨ zy is |x|-periodic. Putting u = bb and v = a,
we can verify that the conclusion does indeed hold.

If z is a full word, then the assumption xz ↑ zy implies the one of xz ∨ zy
being |x|-periodic and the following corollary holds.

COROLLARY 2.1
Let x, y be nonempty partial words, and let z be a full word. If xz ↑ zy, then
x ⊂ uv, y ⊂ vu, and z ⊂ (uv)nu for some words u, v and integer n ≥ 0.

Note that Corollary 2.1 does not necessarily hold if z is not full even if x, y
are full as is seen in the following example.

Example 2.4
Let x = a, y = b, and z = �bb. Then xz = a�bb and zy = �bbb, and it is clear
that xz ↑ zy. However, if there exist full words u and v such that x ⊂ uv,
then it must be that a = uv. This in turn makes it impossible for y ⊂ vu. We
see, therefore, that the requirement that xz ∨ zy be |x|-periodic is necessary
even if both x and y are full.

First, we investigate the equation xz ↑ zy on partial words under the miss-
ing assumption of xz ∨ zy being |x|-periodic. The following two results give
equivalences for conjugacy.

THEOREM 2.2
Let x, y and z be partial words such that |x| = |y| > 0. Then xz ↑ zy if and

only if xzy is weakly |x|-periodic.

PROOF By the Division Algorithm, there exist integers m,n such that

|z| = m|x|+ n, 0 ≤ n < |x|

Equivalently, we can define m as b |z||x|c and n as |z| mod |x|.1 Then let

1Recall that for a real number x, bxc is the greatest integer less than or equal to x.
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x = u0v0, y = vm+1um+2 and z = u1v1u2v2 . . . umvmum+1 where each ui

has length n and each vi has length |x|−n. We may now align xz and zy one
above the other in the following way:

u0 v0 u1 v1 . . . um−1 vm−1 um vm um+1

u1 v1 u2 v2 . . . um vm um+1 vm+1 um+2
(2.1)

Assume xz ↑ zy. Then the partial words in any column in (2.1) are compatible
by simplification. Therefore for all i such that 0 ≤ i ≤ m+1, ui ↑ ui+1 and for
all j such that 0 ≤ j ≤ m, vj ↑ vj+1. Thus xz ↑ zy implies that xzy is weakly
|x|-periodic. Conversely, assume xzy is weakly |x|-periodic. This implies that
uivi ↑ ui+1vi+1 for all i such that 0 ≤ i ≤ m. Note that um+1vm+1um+2 being
weakly |x|-periodic, as a result um+1 ↑ um+2. This shows that xz ↑ zy which
completes the proof.

In the previous theorem and the next, it is helpful to realize that we are
factoring the partial words xz and zy into words of length |x| and each of these
factors is represented by uivi. The trailing u-factor on each partial word can
be thought of as the “remainder term” and indeed that is the case. Aligning
these factors and demonstrating their compatibility results in our conclusion
of |x|-periodicity.

THEOREM 2.3

Let x, y and z be partial words such that |x| = |y| > 0. Then the following
hold:

1. If xz ↑ zy, then xz and zy are weakly |x|-periodic.

2. If xz and zy are weakly |x|-periodic and b |z||x|c > 0, then xz ↑ zy.

PROOF The proof is similar to that of Theorem 2.2.

Example 2.5

Let x = ab�d�f , y = ���bc�, and z = abcdefab�defabcdefabcdefabcdefab�d.
Figure 2.1 displays the compatibility relation xz ↑ zy and highlights the fac-
torizations of x, y and z as is done in the proof of Theorem 2.2.2

The concatenation xzy is seen to be weakly |x|-periodic.

2This graphic and the other that follows were generated using a C++ applet on one of the
author’s websites, mentioned in the Website Section at the end of this chapter.
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FIGURE 2.1: An example of the conjugacy equation.

a b � d � f
a b c d e f
a b � d e f
a b c d e f
a b c d e f
a b c d e f
a b � d � �
� b c �

In Theorem 2.3(2), the assumption b |z||x|c > 0 is necessary. To see this,
consider x = aa, y = ba and z = a. Here, xz and zy are weakly |x|-periodic,
but xz 6 ↑ zy as aaa 6= aba.

Second, we consider solving the system of equations z ↑ z′ and xz ↑ z′y.
Note that when z = z′, this system reduces to xz ↑ zy. As before, let m
be defined as b |z||x|c and n as |z| mod |x|. Then let x = u0v0, y = vm+1um+2,
z = u1v1u2v2 . . . umvmum+1, and z′ = u′1v

′
1u

′
2v

′
2 . . . u

′
mv

′
mu

′
m+1 where each

ui, u
′
i has length n and each vi, v

′
i has length |x| −n. The |x|-pshuffle and |x|-

sshuffle of xz and z′y, denoted by pshuffle|x|(xz, z′y) and sshuffle|x|(xz, z′y),
are defined as

u0v0u
′
1v

′
1u1v1u

′
2v

′
2 . . . um−1vm−1u

′
mv

′
mumvmu

′
m+1vm+1um+1

and

um+1um+2

respectively. The term shuffle is intentional, as the pshuffle interleaves the
uivi and u′iv

′
i factors from z and z′.

THEOREM 2.4
Let x, y, z and z′ be partial words such that |x| = |y| > 0 and |z| = |z′| > 0.

Then z ↑ z′ and xz ↑ z′y if and only if pshuffle|x|(xz, z′y) is weakly |x|-periodic
and sshuffle|x|(xz, z′y) is (|z| mod |x|)-periodic.

PROOF We may align z and z′ (respectively, xz and z′y) one above the
other in the following way:

u1 v1 u2 v2 . . . um−1 vm−1 um vm um+1

u′1 v
′
1 u

′
2 v

′
2 . . . u

′
m−1 v

′
m−1 u

′
m v′m u′m+1

(2.2)
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u0 v0 u1 v1 . . . um−1 vm−1 um vm um+1

u′1 v
′
1 u

′
2 v

′
2 . . . u′m v′m u′m+1 vm+1 um+2

(2.3)

Assume z ↑ z′ and xz ↑ z′y. Then the partial words in any column in (2.2)
(respectively, (2.3)) are compatible using the simplification rule. Therefore for
all 0 ≤ i < m, u′i+1v

′
i+1 ↑ ui+1vi+1 (by 2.2) and uivi ↑ u′i+1v

′
i+1 (by 2.3). Also,

we have vm ↑ vm+1 and the following sequence of compatibility relations: um ↑
u′m+1, u

′
m+1 ↑ um+1, and um+1 ↑ um+2. This shows that pshuffle|x|(xz, z′y) is

weakly |x|-periodic and that sshuffle|x|(xz, z′y) is (|z| mod |x|)-periodic. The
converse follows symmetrically.

2.2 Commutativity

As before, we start by investigating the case for full words and then extend-
ing our results to include partial words.

2.2.1 The equation xy = yx

It is well known that two nonempty words x and y commute if and only if
both x and y are powers of a common word, and the proof is straightforward.

LEMMA 2.2

Let x and y be nonempty words. Then xy = yx if and only if there exists a
word z such that x = zm and y = zn for some integers m,n.

PROOF Suppose xy = yx. We will use induction on the length of xy.
Since the words are nonempty, we begin with |xy| = 2. Because xy = yx, it is
immediate that x = y, and we are done. Now assume that the result is true
for all x, y such that |xy| ≤ k for some positive integer k. Assume |xy| = k+1.
With the equation xy = yx and our conjugacy result in Lemma 2.1, we have
that x = uv = vu and y = (uv)lu for some words u and v and integer l ≥ 0.
If u = ε or v = ε, then the result follows. Otherwise recall that y 6= ε, and so
|uv| = |x| < |xy| = k + 1. By the inductive hypothesis, we conclude that u
and v are powers of a common word, z. Consequently, x and y are powers of
z, and the result is obtained. The converse statement is obvious.

2.2.2 The equation xy ↑ yx

To extend this characterization of commutativity to partial words, we use
the notion of containment. Certainly, if there exist a word z and integers m,n
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such that x ⊂ zm and y ⊂ zn, then

xy ⊂ zm+n

yx ⊂ zn+m

and xy ↑ yx. In addition, the converse holds as well, provided the partial
word xy has at most one hole. We state the theorem here without proof, as
we will later prove a more general result in Theorem 2.6.

THEOREM 2.5
Let x and y be nonempty partial words such that xy has at most one hole.

If xy ↑ yx, then there exists a word z such that x ⊂ zm and y ⊂ zn for some
integers m, n.

However, if xy possesses more than one hole, the situation becomes more
subtle. Indeed, it is easy to produce a counterexample when xy contains just
one more hole.

Example 2.6
Let x = �bb and y = abb�. Then

xy = �bbabb� ↑ abb��bb = yx

Since gcd(|x|, |y|) = 1, if x and y were contained in powers of a common word
z, then |z| would be equal to 1, which is not possible for y.

Definition of (k, l)-special partial word

To extend this theorem to the case when xy has at least two holes, we
will need to inspect the structure of the partial word xy more carefully by
stepping through a sequence of positions. We select positions motivated by
the following lemma, the proof of which is left to the reader.

LEMMA 2.3
Let x, y be nonempty partial words. If there exists a full word z such that
x ⊂ zm and y ⊂ zn, then xy is gcd(|x|, |y|)-periodic.

We next develop a criterion based on the contrapositive of this statement to
determine whether a partial word with at least two holes can be decomposed
into x and y as contained in powers of a common word z. That is, if the pword
is not gcd(|x|, |y|)-periodic, then such a decomposition cannot be found. If
this occurs, we say xy is (k, l)-special, where k = |x| and l = |y|. We adopt
the convention that k ≤ l, as we can assume without loss of generality that
|x| ≤ |y|.
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For a partial word of length k + l, we can test for gcd(k, l)-periodicity by
checking sequences of letters that are p positions apart, where p = gcd(k, l).
Note that, because we are only interested in testing for periodicity, the order
of checking these positions is irrelevant.

For 0 ≤ i < k + l, we define the sequence of i relative to k, l as seqk,l(i) =
(i0, i1, i2, . . . , in, in+1) where i0 = i = in+1 and where

For 1 ≤ j ≤ n, ij 6= i,

For 1 ≤ j ≤ n+ 1, ij is defined as

ij =
{
ij−1 + k if ij−1 < l
ij−1 − l otherwise

Note that seqk,l(i) is stopped at the first occurrence of i, which defines n+1.3

FIGURE 2.2: The construction of seq6,8(0).

Example 2.7
If k = 6 and l = 8, then seq6,8(0) = (0, 6, 12, 4, 10, 2, 8, 0). The path traversed
by this sequence is represented in Figure 2.2. It can be seen that this path
selects positions gcd(6, 8) = 2 letters apart, beginning with position 0. To fully
verify periodicity, it will be necessary to generate another sequence beginning
at i = 1, which is seq6,8(1) = (1, 7, 13, 5, 11, 3, 9, 1). No other sequence is
necessary, for if we calculated seq6,8(2) we simply would obtain a permutation
of the first sequence since it already contains the position 2.

In general, to fully verify a given pword, gcd(k, l) sequences are needed
corresponding to the positions 0 ≤ i < gcd(k, l). Now, we use these sequences

3Some readers may find the following (equivalent) definition of seqk,l(i) more intuitive:
i0 = i and for 1 ≤ j ≤ n + 1, ij = (ij−1 + k) mod (k + l). (Recall that k + l is the length of
the partial word being analyzed.) As before, continue the sequence until the first occurrence
of i is reached.
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to make our definition of (k, l)-special partial word precise in the following
manner.

DEFINITION 2.2 Let k, l be positive integers satisfying k ≤ l and let
z be a partial word of length k + l. We say that z is (k, l)-special if there
exists 0 ≤ i < gcd(k, l) such that seqk,l(i) = (i0, i1, i2, . . . , in, in+1) contains
(at least) two positions that are holes of z while z(i0)z(i1) . . . z(in+1) is not
1-periodic.

Notice that in order to show a partial word z is (k, l)-special, it is possible
that gcd(k, l) sequences will need to be calculated. Once a sequence that
satisfies the definition is found, then z can be declared (k, l)-special. However,
it is necessary to calculate all sequences in order to classify z as not (k, l)-
special.

Example 2.8
Let z = cbca��cbc�caca, and let k = 6 and l = 8 so |z| = k + l. We wish to
determine if z is (6, 8)-special. Find seq6,8(0) = (0, 6, 12, 4, 10, 2, 8, 0) and

z(0) z(6) z(12) z(4) z(10) z(2) z(8) z(0)
c c c � c c c c

This sequence does not satisfy the definition, and so continue with calculating
seq6,8(1) = (1, 7, 13, 5, 11, 3, 9, 1). The corresponding letter sequence is

z(1) z(7) z(13) z(5) z(11) z(3) z(9) z(1)
b b a � a a � b

Here we have two positions in the sequence which are holes, and the sequence
is not 1-periodic. Hence, z is (6, 8)-special.

THEOREM 2.6
Let x, y be nonempty partial words such that |x| ≤ |y|. If xy ↑ yx and xy is

not (|x|, |y|)-special, then there exists a word z such that x ⊂ zm and y ⊂ zn

for some integers m,n.

PROOF Since xy ↑ yx, there exists a word u such that xy ⊂ u and
yx ⊂ u. Put |x| = k and |y| = l. Put l = mk + r where 0 ≤ r < k. Either
r = 0 or r > 0, and for each possibility the proof is split into three cases that
refer to a given position i of u. Case 1 refers to 0 ≤ i < k, Case 2 to k ≤ i < l,
and Case 3 to l ≤ i < l+k (Cases 1 and 3 are symmetric as is seen by putting
i = l+ j where 0 ≤ j < k). The following diagram pictures the containments
xy ⊂ u and yx ⊂ u:
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xy x(0) . . . x(k − 1) y(0) . . . y(l − k − 1) y(l − k) . . . y(l − 1)
yx y(0) . . . y(k − 1) y(k) . . . y(l − 1) x(0) . . . x(k − 1)
u u(0) . . . u(k − 1) u(k) . . . u(l − 1) u(l) . . . u(l + k − 1)

We prove the result for Case 1 under the assumption that r > 0. The other
cases follow similarly and are left as exercises for the reader. We consider the
cases where i < r and i ≥ r. If i < r, then

x(i) ⊂ u(i) and y(i) ⊂ u(i),

y(i) ⊂ u(i+ k) and y(i+ k) ⊂ u(i+ k),

y(i+ k) ⊂ u(i+ 2k) and y(i+ 2k) ⊂ u(i+ 2k),

y(i+ 2k) ⊂ u(i+ 3k) and y(i+ 3k) ⊂ u(i+ 3k),

...

y(i+ (m− 1)k) ⊂ u(i+mk) and y(i+mk) ⊂ u(i+mk),

y(i+mk) ⊂ u(i+ (m+ 1)k) and x(i+ k − r) ⊂ u(i+ (m+ 1)k),

x(i+ k − r) ⊂ u(i+ k − r) and y(i+ k − r) ⊂ u(i+ k − r),

y(i+ k − r) ⊂ u(i+ 2k − r) and y(i+ 2k − r) ⊂ u(i+ 2k − r),

...

If i ≥ r, then

x(i) ⊂ u(i) and y(i) ⊂ u(i),

y(i) ⊂ u(i+ k) and y(i+ k) ⊂ u(i+ k),

y(i+ k) ⊂ u(i+ 2k) and y(i+ 2k) ⊂ u(i+ 2k),

y(i+ 2k) ⊂ u(i+ 3k) and y(i+ 3k) ⊂ u(i+ 3k),

...

y(i+ (m− 2)k) ⊂ u(i+ (m− 1)k) and y(i+ (m− 1)k) ⊂ u(i+ (m− 1)k),

y(i+ (m− 1)k) ⊂ u(i+mk) and x(i− r) ⊂ u(i+mk),

x(i− r) ⊂ u(i− r) and y(i− r) ⊂ u(i− r),

y(i− r) ⊂ u(i+ k − r) and y(i+ k − r) ⊂ u(i+ k − r),

...



Combinatorial Properties of Partial Words 53

If i < r, then let x(i)y(i)y(i + k) . . . y(i + mk)x(i + k − r) . . . x(i) = vi, and
if i ≥ r, then let x(i)y(i)y(i + k) . . . y(i + (m − 1)k)x(i − r) . . . x(i) = vi. In
either case, we claim that vi is 1-periodic, say with letter ai in A ∪ {�}. The
claim follows from the above containments in case vi has less than two holes.
For the case where vi has at least two holes, the claim follows since xy is
not (k, l)-special. It turns out that aj = aj+r = · · · for 0 ≤ j < r. Let
z = a0a1 . . . ar−1. If r divides k, then x ⊂ zk/r and y ⊂ z(mk/r)+1. If r does
not divide k, then z is 1-periodic with letter a say. In this case, x ⊂ ak and
y ⊂ al.

Example 2.9

Given x = ab�a��a�b and y = a�babba��a�b, the alignment of xy and yx
may be observed with the depiction in Figure 2.3. We can check that xy ↑ yx
and also that xy is not (|x|, |y|)-special (the latter is left as an exercise). Here
x ⊂ (abb)3 and y ⊂ (abb)4.

FIGURE 2.3: An example of the commutativity equation.

Definition of {k, l}-special partial word

Next, we define the concept of {k, l}-special partial word as an extension of
(k, l)-special partial word and give two lemmas that provide another sufficient
condition for two words x and y to commute.

DEFINITION 2.3 Let k, l be positive integers satisfying k ≤ l and let z
be a partial word of length k+l. We say that z is {k, l}-special if there exists
0 ≤ i < gcd(k, l) such that seqk,l(i) satisfies the condition of Definition 2.2 or
the condition of containing two consecutive positions that are holes of z.

Restated, z is {k, l}-special if there exists i such that seqk,l(i) either

1. has two positions that are holes and is not 1-periodic, OR

2. has two consecutive positions that are holes.

By definition, a partial word z that is (k, l)-special is {k, l}-special. The
converse is not true, as is seen in this example.
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Example 2.10
Let k = 6, l = 8, and z = �babab��ababab. Calculating seqk,l(0), we have

z(0) z(6) z(12) z(4) z(10) z(2) z(8) z(0)
� � a a a a a �

Since seq6,8(0) contains the consecutive positions 0 and 6 that are holes of z,
z is {6, 8}-special. However, after calculating seq6,8(1), we observe that both
sequences are 1-periodic, and thus z cannot be (6, 8)-special.

LEMMA 2.4
Let x, y be nonempty words and let z be a partial word with at most one hole.
If z ⊂ xy and z ⊂ yx, then xy = yx.

LEMMA 2.5
Let x, y be nonempty words and let z be a non {|x|, |y|}-special partial word.
If z ⊂ xy and z ⊂ yx, then xy = yx.

PROOF Put |x| = k and |y| = l. Without loss of generality, we can
assume that k ≤ l. Put l = mk + r where 0 ≤ r < k. As before, either r = 0
or r > 0, and for each possibility the proof is split into three cases that refer
to a given position i of z. Case 1 treats the situation when 0 ≤ i < k, Case
2 the situation when k ≤ i < l, and Case 3 when l ≤ i < l + k (Cases 1 and
3 are symmetric). The following diagram pictures the inclusions z ⊂ xy and
z ⊂ yx:

z z(0) . . . z(k − 1) z(k) . . . z(l − 1) z(l) . . . z(l + k − 1)
xy x(0) . . . x(k − 1) y(0) . . . y(l − k − 1) y(l − k) . . . y(l − 1)
yx y(0) . . . y(k − 1) y(k) . . . y(l − 1) x(0) . . . x(k − 1)

We prove the result for Case 1 for both r = 0 and r > 0. The other cases
follow similarly and are left as exercises for the reader.

We first treat the case where r = 0. If i ∈ D(z), then z(i) ⊂ x(i) and
z(i) ⊂ y(i) and so x(i) = y(i). If i ∈ H(z), then we prove that x(i) = y(i) as
follows. We have

z(i) ⊂ x(i) and z(i) ⊂ y(i),

z(i+ k) ⊂ y(i) and z(i+ k) ⊂ y(i+ k),

z(i+ 2k) ⊂ y(i+ k) and z(i+ 2k) ⊂ y(i+ 2k),

...

z(i+ (m− 1)k) ⊂ y(i+ (m− 2)k) and z(i+ (m− 1)k) ⊂ y(i+ (m− 1)k),
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z(i+mk) ⊂ y(i+ (m− 1)k) and z(i+mk) ⊂ x(i).

Here seqk,l(i) = (i, i+k, . . . , i+mk, i) and z(i)z(i+k)z(i+2k) . . . z(i+mk)z(i)
does not contain consecutive holes and does not contain two holes while not
1-periodic since z is not {k, l}-special. So x(i) = y(i+(m−1)k) = y(i+(m−
2)k) = · · · = y(i + k) = y(i) (note that H(z) does not contain in particular
i+ k, i+mk).

We now treat the case where r > 0. If i ∈ D(z), then we proceed as in the
case where r = 0. If i ∈ H(z), we consider the cases where i < r and i ≥ r. If
i < r, then

z(i) ⊂ x(i) and z(i) ⊂ y(i),

z(i+ k) ⊂ y(i) and z(i+ k) ⊂ y(i+ k),

z(i+ 2k) ⊂ y(i+ k) and z(i+ 2k) ⊂ y(i+ 2k),

...

z(i+ (m− 1)k) ⊂ y(i+ (m− 2)k) and z(i+ (m− 1)k) ⊂ y(i+ (m− 1)k),

z(i+mk) ⊂ y(i+ (m− 1)k) and z(i+mk) ⊂ y(i+mk),

z(i+ (m+ 1)k) ⊂ y(i+mk) and z(i+ (m+ 1)k) ⊂ x(i+ k − r),

z(i+ k − r) ⊂ x(i+ k − r) and z(i+ k − r) ⊂ y(i+ k − r),

...

If i ≥ r, then

z(i) ⊂ x(i) and z(i) ⊂ y(i),

z(i+ k) ⊂ y(i) and z(i+ k) ⊂ y(i+ k),

z(i+ 2k) ⊂ y(i+ k) and z(i+ 2k) ⊂ y(i+ 2k),

...

z(i+ (m− 1)k) ⊂ y(i+ (m− 2)k) and z(i+ (m− 1)k) ⊂ y(i+ (m− 1)k),

z(i+mk) ⊂ y(i+ (m− 1)k) and z(i+mk) ⊂ x(i− r),

z(i− r) ⊂ x(i− r) and z(i− r) ⊂ y(i− r),

...
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Applying the above repeatedly, we can show that x(i) = y(i). More precisely,
in the case where i < r, seqk,l(i) = (i, i + k, . . . , i + mk, i + (m + 1)k, i +
k − r, . . . , i) leads to y(i) = y(i + k) = · · · = y(i + (m − 1)k) = y(i +mk) =
x(i + k − r) = · · · = x(i) since z is not {k, l}-special. Similarly, in the case
where i ≥ r, seqk,l(i) = (i, i+ k, . . . , i+ (m− 1)k, i+mk, i− r, . . . , i) leads to
y(i) = y(i+k) = · · · = y(i+(m−2)k) = y(i+(m−1)k) = x(i−r) = · · · = x(i).

Note that in Lemma 2.5, the assumption of z being non {|x|, |y|}-special
cannot be replaced by the weaker assumption of z not being (|x|, |y|)-special.
To see this, consider the partial words x = ababab, y = cbababab, and z =
�babab��ababab from Example 2.10. Here, z ⊂ xy and z ⊂ yx, but xy 6= yx.

We end this chapter with the concept of a pairwise nonspecial set of partial
words that is used in later chapters.

DEFINITION 2.4 Let X ⊂W (A). Then X is called pairwise nonspe-
cial if all u, v ∈ X of different positive lengths satisfy the following conditions:

• If |u| < |v|, then v is non {|u|, |v| − |u|}-special.

• If |u| > |v|, then u is non {|v|, |u| − |v|}-special.

Note that any subset of W1(A) is pairwise nonspecial.

Exercises

2.1 Consider the partial words x = ab�d�f , y = q�mno� and z =

abcdefab�defabcdefabcdefabcdef
ab�d���bo�qrm�opqrmnopqrm�op

• Show that xz ↑ zy.
• Show that xzy is weakly |x|-periodic.

2.2 Referring to Exercise 2.1, display the factorizations of x, y and z as is
done in the proof of Theorem 2.2.

2.3 Set x = a�cd��, y = �def�b, and

z = abc���a��def��cdefa�

Show that xz ↑ zy and xz ∨ zy is |x|-periodic. Find words u, v and an
integer n ≥ 0 that satisfy Theorem 2.1.
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2.4 If x and y are nonempty conjugate partial words, then there exists a
partial word z satisfying the conjugacy equation xz ↑ zy. Moreover, in
this case there exist partial words u, v such that x ⊂ uv, y ⊂ vu, and
z ⊂ (uv)nu for some integer n ≥ 0. True or false?

2.5 S If k = 4 and l = 10, then determine whether the following partial
words are (4, 10)-special or not?

• a�baab�aabaa��
• �babab�babab�b

2.6 Find k, l such that z = acbca��cbc�cac is (k, l)-special.

2.7 Let x = ab�a��a�b and y = a�babba��a�b. Show that xy ↑ yx and that
xy is not (|x|, |y|)-special. Find a word z and integers m,n such that
x ⊂ zm and y ⊂ zn.

2.8 Prove Lemma 2.3.

2.9 Check that in Example 2.9 xy is not (|x|, |y|)-special.

2.10 S Give an example of a partial word that is {3, 6}-special without
being (3, 6)-special.

2.11 S Give partial words u, v, w such that w ⊂ uv, w ⊂ vu and uv 6= vu. Is
w (|u|, |v|)-special? Is it {|u|, |v|}-special? Does your answer contradict
Lemma 2.5?

2.12 What can be said if u is a full word over the alphabet {0, 1} and satisfies
u0 = 0u? What can be said if u0 = 1u?

2.13 What can be said if u is a partial word with one hole over the alphabet
{0, 1} and satisfies u0 = 0u? What can be said if u0 = 1u?

2.14 Repeat Exercise 2.13 if u satisfies u0 ↑ 0u or u0 ↑ 1u.

Challenging exercises

2.15 Prove Theorem 2.1.

2.16 Prove Corollary 2.1.

2.17 S Let u, v ∈ A+ and let z ∈W1(A). If uz ↑ zv, then prove that one of
the following holds:

1. There exist partial words x, y, x1, x2 such that u = x1y, v = yx2,
x ⊂ x1, x ⊂ x2, and z = (x1y)mx(yx2)n for some integersm,n ≥ 0.
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2. There exist partial words x, y, y1, y2 such that u = xy1, v = y2x,
y ⊂ y1, y ⊂ y2, and z = (xy1)mxy(xy2)nx for integers m,n ≥ 0.

2.18 S Let u, v ∈ A+. Let z ∈ W1(A) \ A+ and let z′ ∈ A+. If z ↑ z′ and
uz ↑ z′v, then prove that one of the following holds:

1. There exist partial words x, y, x1, x2 such that u = x1y, v = yx2,
x < x1, x < x2, z = (x1y)mx(yx2)n, and z′ = (x1y)mx1(yx2)n for
some integers m,n ≥ 0.

2. There exist partial words x, y, y1, y2 such that u = xy1, v = y2x,
y < y1, y < y2, z = (xy1)mxy(xy2)nx, and z′ = (xy1)m+1(xy2)nx
for some integers m,n ≥ 0.

2.19 Referring to Exercise 2.18, what can be said when u, v ∈ A+, z ∈ A+

and z′ ∈W1(A) \A+ are such that z ↑ z′ and uz ↑ z′v?

2.20 Generalize Exercise 2.17 to z ∈W2(A).

2.21 S No primitive word u can be an inside factor of uu. True or false?

2.22 S Prove Case 3 of Theorem 2.6.

2.23 Referring to Theorem 2.6, prove the case where r = 0.

2.24 Prove Case 2 of Theorem 2.6 when r > 0.

2.25 Prove Case 2 of Lemma 2.5.

2.26 Let x, y be nonempty partial words and let u, v be full words such that
x ⊂ u and y ⊂ v. If xy is non {|x|, |y|}-special and yx ⊂ uv, then
xy ⊂ vu.

Programming exercises

2.27 Referring to Exercise 2.21, give pseudo code for an algorithm that tests
primitivity on full words. What is the complexity of your algorithm?

2.28 Write a program to find out whether or not two partial words x and y
are conjugate. Run your program on the pairs of partial words:

• x = a�babb�a and y = �b��aa��
• x = ba�bbbaa and y = a�babb�a
• x = ba�bbbaa and y = �b��aa��
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2.29 Write a program that when given a pword u and integers k, l such that
k ≤ l, discovers if u is or is not (k, l)-special. Modify your program to
let it also discover if u is {k, l}-special. What is the output for running
the program on u = a�baab�aabaa��, k = 4 and l = 10.

2.30 Starting with your program of Exercise 2.29, write a program that tests
whether or not a set X of partial words is pairwise nonspecial. Find a
set X that is pairwise nonspecial and one that is not.

2.31 Write a program that takes as inputs four nonempty partial words x, y, z
and z′ such that z ↑ z′ and xz ↑ z′y, and outputs a factorization
of pshuffle|x|(xz, z′y) and sshuffle|x|(xz, z′y) according to the proof of
Theorem 2.4 and shows that they are weakly |x|-periodic and weakly
(|z| mod |x|)-periodic respectively.

Website

A World Wide Web server interface at

http://www.uncg.edu/mat/research/equations

has been established for automated use of programs related to the equations
discussed in this chapter. In particular, one of the programs takes as input
three partial words x, y and z such that |x| = |y| and xz ↑ zy, and outputs
a factorization of x, y and z and shows that xzy is weakly |x|-periodic (this
program implements Theorem 2.2). Another program takes as input a set
{x, y} of two partial words such that |x| ≤ |y|, xy ↑ yx and xy is not (|x|, |y|)-
special, and outputs a partial word z and integers m,n such that x ⊂ zm and
y ⊂ zn (this program implements Theorem 2.6).
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The combinatorial properties of conjugacy and commutativity on full words
of Sections 2.1.1 and 2.2.1 are discussed in Shyr’s book [132]. The study of con-
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Blanchet-Sadri and Anavekar who defined the concept of (k, l)-special partial
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Blanchet-Sadri and Duncan [29], while Exercise 2.21 is discussed in [51]. Def-
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Chapter 3

Fine and Wilf ’s Theorem

In this chapter, we discuss the fundamental periodicity result on words due
to Fine and Wilf in the context of partial words. Fine and Wilf’s result states
that any word having periods p and q and length at least p + q − gcd(p, q)
has period gcd(p, q). Moreover, the bound p + q − gcd(p, q) is optimal since
counterexamples can be provided for words of smaller length. We extend this
result to partial words in two ways:

First, we discuss weak periodicity extensions, that is, we consider long
enough partial words having weak periods p, q and show that under some
conditions they also have period gcd(p, q). We start with partial words with
one, two, and three holes, and then generalize the result for partial words
with an arbitrary number of holes. The following table describes the number
of holes and section numbers where these results are discussed:

Holes Sections

0–1 3.1
2–3 3.2

arbitrary 3.3, 3.4 and 3.5

Second, we discuss strong periodicity extensions, that is, we consider in
Section 3.6 long enough partial words having strong periods p, q and show
that under some conditions they also have period gcd(p, q).

3.1 The case of zero or one hole

In this section, we restrict ourselves to partial words with zero or one hole.
We omit the proof of the following theorem, because we will prove the general
result later in this chapter.

THEOREM 3.1
Let p and q be positive integers.

1. (Fine and Wilf) Let u be a word. If u is p-periodic and q-periodic and
|u| ≥ p+ q − gcd(p, q), then u is gcd(p, q)-periodic.

63
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2. Let u be a partial word such that ‖H(u)‖ = 1. If u is weakly p-periodic
and weakly q-periodic and |u| ≥ p+ q, then u is gcd(p, q)-periodic.

The bounds for the minimal length of the partial word u in the above
theorem are optimal, that is, the result does not hold for partial words that
are weakly p-periodic and weakly q-periodic but of smaller length. In the next
examples we present a counterexample for each statement in Theorem 3.1.

Example 3.1
The bound p+ q−gcd(p, q) is optimal in Theorem 3.1(1). For example, using
p = 3, q = 4 and p + q − gcd(p, q) = 6, the following picture shows that the
word aabaa of length 5 is 3-periodic and 4-periodic but is not 1-periodic:

0 1 2 3 4
a a b | a a

0 1 2 3 4
a a b a | a

Example 3.2
The bound p+ q is optimal in Theorem 3.1(2), as can be seen with aabaa� of
length 6 which is weakly 3-periodic and weakly 4-periodic but not 1-periodic:

0 1 2 3 4 5
a a b | a a �

0 1 2 3 4 5
a a b a | a �

3.2 The case of two or three holes

Theorem 3.1 does not hold for partial words with two holes. For instance,
the partial word u = aabaa�� is weakly 3-periodic and weakly 4-periodic and
|u| ≥ 3 + 4 but u is not gcd(3, 4)-periodic.

To extend Theorem 3.1 to partial words with two or three holes (and be-
yond), we will emulate the process of the last chapter and define a subset of
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partial words u as (‖H(u)‖, p, q)-special based on specific criteria. We will
then be able to extend our periodicity result to those pwords that are not
(‖H(u)‖, p, q)-special.

In this section, we limit ourselves to pwords with only two or three holes. We
provide definitions for (2, p, q)-special and (3, p, q)-special for completion, but
remind the reader that these definitions will be generalized in future sections.

DEFINITION 3.1 Let p and q be positive integers satisfying p < q. A
partial word u is called

1. (2, p, q)-special if at least one of the following holds:

(a) q = 2p and there exists p ≤ i < |u|−4p such that i+p, i+q ∈ H(u).
(b) There exists 0 ≤ i < p such that i+ p, i+ q ∈ H(u).
(c) There exists |u| − p ≤ i < |u| such that i− p, i− q ∈ H(u).

2. (3, p, q)-special if it is (2, p, q)-special or if at least one of the following
holds:

(a) q = 3p and there exists p ≤ i < |u|−5p such that i+p, i+2p, i+3p ∈
H(u) or there exists p ≤ i < |u|−7p such that i+p, i+3p, i+5p ∈
H(u).

(b) There exists 0 ≤ i < p such that i+ q, i+ 2p, i+ p+ q ∈ H(u).
(c) There exists |u|−p ≤ i < |u| such that i−q, i−2p, i−p−q ∈ H(u).
(d) There exists p ≤ i < q such that i− p, i+ p, i+ q ∈ H(u).
(e) There exists |u|− q ≤ i < |u|−p such that i−p, i+p, i− q ∈ H(u).
(f) 2q = 3p and there exists p ≤ i < |u| − 5p such that i+ q, i+ 2p, i+

p+ q ∈ H(u).

If p and q are positive integers satisfying p < q and gcd(p, q) = 1, then for
each n > 0 we can construct a binary partial word un with two holes such
that un is weakly p- and q-periodic but not gcd(p, q)-periodic. Put

un = abp−1�bq−p−1�bn

Writing un into p columns, the first hole falls under the first letter a and we
see that un indeed is weakly p-periodic. Similarly, when un is written into q
columns, the second hole falls under the first letter a and thus un is weakly
q-periodic.

The partial word un is (2, p, q)-special by Definition 3.1(1)(b) as is seen by
setting i = 0. We can think of a, the letter in position 0, as being “isolated”
by the holes in the pword un, allowing un to not be 1-periodic.1

Similarly, the infinite sequence

1Indeed, we will use this notion of “isolation” to define (‖H(u)‖, p, q)-special pwords u for
an arbitrary number of holes.
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FIGURE 3.1: A (2, p, q)-special binary partial word.

(abp−1�bq−p−1�bn�)n>0

consists of binary (3, p, q)-special partial words with three holes that are
weakly p-periodic and weakly q-periodic but not 1-periodic.

We now state the theorem for partial words containing two or three holes.

THEOREM 3.2
Let p and q be positive integers satisfying p < q.

1. Let u be a partial word such that ‖H(u)‖ = 2 and assume that u is
not (2, p, q)-special. If u is weakly p-periodic and weakly q-periodic and
|u| ≥ 2(p+ q)− gcd(p, q), then u is gcd(p, q)-periodic.

2. Let u be a partial word such that ‖H(u)‖ = 3 and assume that u is
not (3, p, q)-special. If u is weakly p-periodic and weakly q-periodic and
|u| ≥ 2(p+ q), then u is gcd(p, q)-periodic.

The bound 2(p+ q)− gcd(p, q) turns out to be optimal in Theorem 3.2(1).
For instance, the partial word abaaba��abaaba of length 14 is weakly 3-
periodic and weakly 5-periodic but is not 1-periodic:

a b a
a b a
� � a
b a a
b a

a b a a b
a � � a b
a a b a

A similar result holds for the bound 2(p+q) in Theorem 3.2(2) by considering
abaaba��abaaba� where p = 3, q = 5 and 2(p+ q) = 16:

a b a
a b a
� � a
b a a
b a �
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a b a a b
a � � a b
a a b a �

3.3 Special partial words

In this section, we give an extension of the notions of (2, p, q)- and (3, p, q)-
special partial words. We first discuss the case where p = 1 and then the case
where p > 1.

3.3.1 p = 1

Throughout this section, we fix p = 1. Let q be an integer satisfying q > 1.
Let u be a partial word of length n that is weakly p-periodic and weakly
q-periodic. Then u can be represented in the following fashion:

u(0) u(q) u(2q) · · ·
u(1) u(1 + q) u(1 + 2q) · · ·

...
...

...
u(q − 1) u(2q − 1) u(3q − 1) · · ·

The advantage to this representation is that the columns display the weak p-
periodicity of u and the rows display the q-periodicity of u. We can continue
this visualization and wrap the array around and sew the last row to the first
row so that u(q−1) is sewn to u(q), u(2q−1) is sewn to u(2q), and so on. From
this, we get a cylinder for u, and sometimes refer to this as the 3-dimensional
representation of u.

Example 3.3
Let p = 1 and q = 5 for a word u. In Figure 3.2 we graphically show how
an array is sewn together to form the cylinder for u. Figure 3.3 shows the
cylinder in perspective.2

We say that i − p (respectively, i + p) is immediately above (respectively,
below) i whenever p ≤ i < n (respectively, 0 ≤ i < n − p). Similarly, we
say that i− q (respectively, i+ q) is immediately left (respectively, right) of i
whenever q ≤ i < n (respectively, 0 ≤ i < n− q). The fact that u is weakly p-
periodic implies that if i, i+p ∈ D(u), then u(i) = u(i+p). Similarly, the fact
that u is weakly q-periodic implies that if i, i+ q ∈ D(u), then u(i) = u(i+ q).

2These graphics, and the others that follow, were generated using a Java applet on one of
the author’s websites, mentioned in the Website Section at the end of this chapter.
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FIGURE 3.2: A word u with p = 1 and q = 5.

FIGURE 3.3: Perspective view of a word u with p = 1 and q = 5.

The following definitions describe three types of isolation that will be ac-
ceptable in our definition of special partial word. In each, we have a continuous
sequence of holes isolating a subset of defined positions. The type of isolation
indicates where the isolation occurs: Type 1 is at the beginning of the partial
word, Type 2 is in the interior of the partial word, and Type 3 is at the end
of the partial word.

DEFINITION 3.2 Let S be a nonempty proper subset of D(u). We say
that H(u) 1-isolates S (or that S is 1-isolated by H(u)) if the following hold:

1. Left If i ∈ S and i ≥ q, then i− q ∈ S or i− q ∈ H(u).

2. Right If i ∈ S, then i+ q ∈ S or i+ q ∈ H(u).

3. Above If i ∈ S and i ≥ p, then i− p ∈ S or i− p ∈ H(u).

4. Below If i ∈ S, then i+ p ∈ S or i+ p ∈ H(u).

DEFINITION 3.3 Let S be a nonempty proper subset of D(u). We say
that H(u) 2-isolates S (or that S is 2-isolated by H(u)) if the following hold:

1. Left If i ∈ S, then i− q ∈ S or i− q ∈ H(u).
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2. Right If i ∈ S, then i+ q ∈ S or i+ q ∈ H(u).

3. Above If i ∈ S, then i− p ∈ S or i− p ∈ H(u).

4. Below If i ∈ S, then i+ p ∈ S or i+ p ∈ H(u).

DEFINITION 3.4 Let S be a nonempty proper subset of D(u). We say
that H(u) 3-isolates S (or that S is 3-isolated by H(u)) if the following hold:

1. Left If i ∈ S, then i− q ∈ S or i− q ∈ H(u).

2. Right If i ∈ S and i < n− q, then i+ q ∈ S or i+ q ∈ H(u).

3. Above If i ∈ S, then i− p ∈ S or i− p ∈ H(u).

4. Below If i ∈ S and i < n− p, then i+ p ∈ S or i+ p ∈ H(u).

Example 3.4
As a first example, consider the partial word u1 represented as the 3-dimensional
structure below. Here, u1 is weakly 1-periodic and weakly 5-periodic:

0 5 10 15 20 25 30 35 40 45 50 55 60

0 c � a a a � d � e � f f �
1 c � � a � h � e � f f � i
2 � � b � � � e e e � f f �
3 a � b b � e e e � f f f f
4 a a � � g � e e e � f f

The set of positions with letter a is 1-isolated by H(u1); the set of positions
with letter b is 2-isolated by H(u1); the set of positions with letter c is 1-
isolated by H(u1); the set of positions with letter d is 2-isolated by H(u1);
the set of positions with letter e is 2-isolated by H(u1); the set of positions
with letter f is 3-isolated by H(u1); the set of positions with letter g is 2-
isolated by H(u1); the set of positions with letter h is 2-isolated by H(u1);
and the set of positions with letter i is 3-isolated by H(u1).

FIGURE 3.4: Entire cylinder for the partial word in Example 3.4.
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FIGURE 3.5: Latter part of the cylinder for the pword in Example 3.4.

Example 3.5

As a second example, consider the weakly 1-periodic and weakly 5-periodic
partial word u2 represented as the 3-dimensional structure below. We can see
that D(u2) does not contain a nonempty subset of isolated positions:

0 5 10 15 20 25 30 35 40 45 50 55 60

0 a a a a a � a a a � a a �
1 a � � a � a � a � a a � a
2 � � a a � a a a a a a a a
3 a � a a a a a a � a a a a
4 a a � � a � a a a � a a

FIGURE 3.6: Entire cylinder for the partial word in Example 3.5.

DEFINITION 3.5 Let q be an integer satisfying q > 1. For 1 ≤ i ≤ 3, the
partial word u is called (‖H(u)‖, 1, q)-special of Type i if H(u) i-isolates
a nonempty proper subset of D(u). The partial word u is called (‖H(u)‖, 1, q)-
special if u is (‖H(u)‖, 1, q)-special of Type i for some i ∈ {1, 2, 3}.

It is a simple matter to check that the above definition extends the notion of
(2, 1, q)-special and the notion of (3, 1, q)-special (as given in Definition 3.1).
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FIGURE 3.7: Perspective view of the cylinder for the partial word in
Example 3.5.

Below we present the verification for (2, 1, q)-special, and leave the verification
of (3, 1, q)-special to the reader.

Example 3.6
Definition 3.1(1)(a) corresponds to arrays like the following (with q = 2 as
per the definition):

u(0) u(2) · · · u(2m) � u(4 + 2m) · · ·
u(1) u(3) · · · u(1 + 2m) � u(5 + 2m) · · ·

or

u(0) u(2) · · · u(2m) u(2 + 2m) � u(6 + 2m) · · ·
u(1) u(3) · · · u(1 + 2m) � u(5 + 2m) u(7 + 2m) · · ·

For Definition 3.1(1)(b) we have the following array which shows a 1-isolation:

u(0) � u(2q) · · ·
� u(1 + q) u(1 + 2q) · · ·

u(2) u(2 + q) u(2 + 2q) · · ·
...

...
...

u(q − 1) u(2q − 1) u(3q − 1) · · ·

The symmetrical of the above array demonstrates Definition 3.1(1)(c) and
possesses a 3-isolation.

We can also check that the partial word u1 depicted in Example 3.4 is
(25, 1, 5)-special, but the partial word u2 depicted in Example 3.5 is not
(18, 1, 5)-special.

3.3.2 p > 1

Throughout this section, we fix p > 1. Let q be an integer satisfying
p < q. Let u be a partial word of length n that is weakly p-periodic and
weakly q-periodic. We illustrate with examples how the positions of u can be
represented as a 3-dimensional structure.

In a case where gcd(p, q) = 1 (like p = 2 and q = 5) we get 1 array:
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u(0) u(5) u(10) u(15) · · ·
u(2) u(7) u(12) u(17) · · ·
u(4) u(9) u(14) u(19) · · ·

u(1) u(6) u(11) u(16) u(21) · · ·
u(3) u(8) u(13) u(18) u(23) · · ·

If we wrap the array around and sew the last row to the first row so that u(3)
is sewn to u(5), u(8) is sewn to u(10), and so on, then we get a cylinder for
the positions of u.

In a case where gcd(p, q) > 1 (like p = 6 and q = 8) we get 2 arrays:

u(0) u(8) u(16) u(24) · · ·
u(6) u(14) u(22) u(30) · · ·

u(4) u(12) u(20) u(28) u(36) · · ·
u(2) u(10) u(18) u(26) u(34) u(42) · · ·

and

u(1) u(9) u(17) u(25) · · ·
u(7) u(15) u(23) u(31) · · ·

u(5) u(13) u(21) u(29) u(37) · · ·
u(3) u(11) u(19) u(27) u(35) u(43) · · ·

If we wrap the first array around and sew the last row to the first row so that
u(2) is sewn to u(8), u(10) is sewn to u(16), and so on, then we get a cylinder
for some of the positions of u. The other positions are in the second array
where we wrap around and sew the last row to the first row so that u(3) is
sewn to u(9), u(11) is sewn to u(17), and so on.

In general, if gcd(p, q) = d, we get d arrays. In this case, we say that i− p
(respectively, i+p) is immediately above (respectively, below) i (within one of
the d arrays) whenever p ≤ i < n (respectively, 0 ≤ i < n− p). Similarly, we
say that i− q (respectively, i+ q) is immediately left (respectively, right) of i
(within one of the d arrays) whenever q ≤ i < n (respectively, 0 ≤ i < n− q).
As before, the fact that u is weakly p-periodic implies that if i, i+ p ∈ D(u),
then u(i) = u(i + p). Similarly, the fact that u is weakly q-periodic implies
that if i, i+ q ∈ D(u), then u(i) = u(i+ q).

In what follows, we define Nj = {i | i ≥ 0 and i ≡ j mod gcd(p, q)} for
0 ≤ j < gcd(p, q). Alternatively, Nj is the set of indices in the jth array.

DEFINITION 3.6 Let p and q be positive integers satisfying p < q. For
1 ≤ i ≤ 3, the partial word u is called (‖H(u)‖, p, q)-special of Type i
if there exists 0 ≤ j < gcd(p, q) such that H(u) i-isolates a nonempty proper
subset of D(u)∩Nj. The partial word u is called (‖H(u)‖, p, q)-special if u is
(‖H(u)‖, p, q)-special of Type i for some i ∈ {1, 2, 3}.
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Example 3.7
As a first example, the partial word u3 = ababa���bab�bb�bbbbbbbbb along

with its array of indices is shown below. It is (5, 2, 5)-special (p = 2 and
q = 5). The set of positions {0, 2, 4, 9} is 1-isolated by H(u3):

0 5 10 15 20
2 7 12 17 22
4 9 14 19

1 6 11 16 21
3 8 13 18 23

a � b b b
a � b b b
a a � b

b � � b b
b b b b b

Example 3.8
As a second example, the partial word

u4 = abababababab�b��ababa�ababa��babababab

below is not (6, 6, 8)-special. Note that because gcd(6, 8) = 2, u4 is written as
two disjoint arrays:

a a a a a
a � a a

a � a � a
a a a a a

and

b b b b b
b � b b

b b � b b
b b b � b

3.4 Graphs associated with partial words

Let p and q be positive integers satisfying p < q. In this section, we asso-
ciate to a partial word u that is weakly p-periodic and weakly q-periodic an
undirected graph G(p,q)(u). Whether or not u is (‖H(u)‖, p, q)-special will be
seen from G(p,q)(u).

As explained in Section 3.3, u can be represented as a 3-dimensional struc-
ture with gcd(p, q) disjoint arrays. Each of the gcd(p, q) arrays of u is associ-
ated with a subgraph G = (V,E) of G(p,q)(u) as follows:

V is the subset of D(u) comprising the defined positions of u within the
array,

E = E1 ∪ E2 where

E1 = {{i, i− p} | i, i− p ∈ V },
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E2 = {{i, i− q} | i, i− q ∈ V }.

For 0 ≤ j < gcd(p, q), the subgraph of G(p,q)(u) corresponding to D(u) ∩
Nj will be denoted by Gj

(p,q)(u). Whenever gcd(p, q) = 1, G0
(p,q)(u) is just

G(p,q)(u).

Example 3.9
As a first example, the graph of the partial word u3 of Example 3.7, G(2,5)(u3),
is shown in Figure 3.8 and is seen to be disconnected. The cylinder for u3 is
also seen to be disconnected in Figure 3.9.

FIGURE 3.8: G(2,5)(u3)

Example 3.10
As a second example, consider the partial word u4 of Example 3.8. The

subgraphs of G(6,8)(u4) corresponding to the two arrays of u4, G0
(6,8)(u4) and

G1
(6,8)(u4), are shown in Figures 3.10 and 3.11 and are seen to be connected.

The corresponding cylinders for u4 are seen in Figures 3.12, 3.13, and 3.14.

We now define the critical lengths. We consider an even number of holes
2N and an odd number of holes 2N + 1.

DEFINITION 3.7 Let p and q be positive integers satisfying p < q. The
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FIGURE 3.9: Cylinder for u3 in Example 3.9.

FIGURE 3.10: G0
(6,8)(u4)
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FIGURE 3.11: G1
(6,8)(u4)

FIGURE 3.12: Both cylinders for u4 in Example 3.10.

FIGURE 3.13: Cylinder for G0
(6,8)(u4) in Example 3.10.
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FIGURE 3.14: Cylinder for G1
(6,8)(u4) in Example 3.10.

critical lengths for p and q are defined as follows:

1. l(2N,p,q) = (N + 1)(p+ q)− gcd(p, q) for N ≥ 0, and

2. l(2N+1,p,q) = (N + 1)(p+ q) for N ≥ 0.

In the following lemma, we establish the important connection between
(H, p, q)-special partial words and their graphs; namely, if all the graphs for
a given partial word are connected, then the word cannot be (H, p, q)-special.

LEMMA 3.1
Let p and q be positive integers satisfying p < q, and let H be a positive

integer. Let u be a partial word such that ‖H(u)‖ = H and assume that |u| ≥
l(H,p,q). Then u is not (H, p, q)-special if and only if Gj

(p,q)(u) is connected for
all 0 ≤ j < gcd(p, q).

PROOF We first show that if u is (H, p, q)-special, then there exists
0 ≤ j < gcd(p, q) such that Gj

(p,q)(u) is not connected. Three cases arise.

Case 1. u is (H, p, q)-special of Type 1.
There exists 0 ≤ j < gcd(p, q) such that H(u) 1-isolates a nonempty proper

subset S of D(u)∩Nj . The subgraph of Gj
(p,q)(u) with vertex set S constitutes

a union of components (one component or more). There are therefore at least
two components in Gj

(p,q)(u) since S is proper.

Case 2. u is (H, p, q)-special of Type 2.
This case is similar to Case 1.

Case 3. u is (H, p, q)-special of Type 3.
This case is similar to Case 1.
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We now show that if there exists 0 ≤ j < gcd(p, q) such that Gj
(p,q)(u)

is not connected, then u is (H, p, q)-special (or H(u) isolates a nonempty
proper subset of D(u) ∩ Nj). Consider such a j. Put p = p′ gcd(p, q) and
q = q′ gcd(p, q). As before, the partial word uj is defined by

uj = u(j)u(j + gcd(p, q))u(j + 2 gcd(p, q)) . . .

If H = 2N for some N , uj is of length at least (N + 1)(p′ + q′) − 1; and if
H = 2N + 1 for some N , uj is of length at least (N + 1)(p′ + q′). In order
to simplify the notation, let us denote G(p′,q′)(uj) by Gj . Our assumption
implies that Gj is not connected.

1. Let Gj
� be the graph constructed for the word uj , so there are no holes.

Then Gj is a subgraph of Gj
� obtained by removing the “hole” vertices.

2. Consider a set of consecutive indices in the domain of uj , say i, i +
gcd(p, q), . . . , i + n gcd(p, q). Call such a set a “domain interval,” of
length n+ 1.

3. Every domain interval of length p′ + q′ is the set of vertices of a cycle
in Gj

�; that is, there is a closed path in Gj
� which goes through exactly

this set of vertices. The point is that a cycle cannot be disconnected by
just one point.

4. Suppose C and C ′ are components of Gj with vertex sets S and S′,
and suppose neither S nor S′ is isolated. Then each domain interval of
length p′ + q′ must contain a point v from S and a point v′ from S′.

5. There must be two holes in each domain interval of length p′ + q′, since
otherwise the points v and v′ from Item 4 would be connected by a path
in the cycle formed by the domain interval.

6. If the number of holes is 2N + 1 and the length of uj is at least (N +
1)(p′+ q′) then Item 5 is impossible, since uj would have N +1 pairwise
disjoint domain intervals of length p′+q′ and Item 5 would then require
2(N +1) holes. Similarly, if the number of holes is 2N and the length of
uj is at least (N+1)(p′+q′)−1 then Item 5 is impossible since uj would
have N pairwise disjoint intervals of length p′ + q′ and one remaining of
length p′ + q′ − 1, and so Item 5 would require 2N + 1 holes.

Note that this proves the lemma in case the number of holes is positive, and
in fact Item 3 is essentially the proof in the case of exactly one hole. The case
of 0 holes follows from the fact that every domain interval of length p′+ q′−1
is the set of vertices of a path in Gj

�.
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3.5 The main result

In this section, we give the main result which extends Theorems 3.1 and
3.2 to an arbitrary number of holes.

LEMMA 3.2

Let p and q be positive integers satisfying p < q and gcd(p, q) = 1. Let u be
a partial word that is weakly p-periodic and weakly q-periodic. If G(p,q)(u) is
connected, then u is 1-periodic.

PROOF Let i be a fixed position in D(u). If i′ ∈ D(u) and i′ 6= i, then
there is a path in G(p,q)(u) between i′ and i. Let i′, i1, i2, . . . , in, i be such a
path. We get u(i′) = u(i1) = u(i2) = · · · = u(in) = u(i).

THEOREM 3.3

Let p and q be positive integers satisfying p < q. Let u be a partial word
that is weakly p-periodic and weakly q-periodic. If Gi

(p,q)(u) is connected for
all 0 ≤ i < gcd(p, q), then u is gcd(p, q)-periodic.

PROOF The case where gcd(p, q) = 1 follows by Lemma 3.2. So consider
the case where gcd(p, q) > 1. Define for each 0 ≤ i < gcd(p, q) the partial
word ui by

ui = u(i)u(i+ gcd(p, q))u(i+ 2 gcd(p, q)) . . .

Put p = p′ gcd(p, q) and q = q′ gcd(p, q). Each ui is weakly p′-periodic and
weakly q′-periodic. If Gi

(p,q)(u) is connected for all i, then G(p′,q′)(ui) is con-
nected for all i. Consequently, each ui is 1-periodic by Lemma 3.2, and u is
gcd(p, q)-periodic.

THEOREM 3.4

Let p and q be positive integers satisfying p < q, and let H be a positive
integer. Let u be a partial word such that ‖H(u)‖ = H and assume that u
is not (H, p, q)-special. If u is weakly p-periodic and weakly q-periodic and
|u| ≥ l(H,p,q), then u is gcd(p, q)-periodic.

PROOF If u is not (H, p, q)-special and |u| ≥ l(H,p,q), then Gi
(p,q)(u) is

connected for all 0 ≤ i < gcd(p, q) by Lemma 3.1. Then u is gcd(p, q)-periodic
by Theorem 3.3.
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The bound l(2N,p,q) turns out to be optimal for an even number of holes
2N , and the bound l(2N+1,p,q) optimal for an odd number of holes 2N + 1.
The following builds a sequence of partial words showing this optimality.

DEFINITION 3.8 Let p and q be positive integers satisfying 1 < p < q
and gcd(p, q) = 1. Let N be a positive integer.

1. The partial word u(2N,p,q)over {a, b} of length l(2N,p,q)−1 is defined by

(a) H(u(2N,p,q)) = {p+q−2, p+q−1, 2(p+q)−2, 2(p+q)−1, . . . , N(p+
q)− 2, N(p+ q)− 1}.

(b) The component of the graph G(p,q)(u(2N,p,q)) containing p − 2 is
colored with letter a.

(c) The component of the graph G(p,q)(u(2N,p,q)) containing p − 1 is
colored with letter b.

2. The partial word u(2N+1,p,q)over {a, b} of length l(2N+1,p,q) − 1 is de-
fined by u(2N+1,p,q) = u(2N,p,q)� so that H(u(2N+1,p,q)) = H(u(2N,p,q))∪
{(N + 1)(p+ q)− 2}.

The partial word u(2N,p,q) can be thought as two bands of holes Band1 =
{p+ q− 1, 2(p+ q)− 1, . . . , N(p+ q)− 1} and Band2 = {p+ q− 2, 2(p+ q)−
2, . . . , N(p+ q)− 2} where between the bands the letter is a and outside the
bands it is b or vice versa (a similar statement holds for u(2N+1,p,q)).

Example 3.11

For example, the partial word u(4,2,5) of length 19 is represented as the 3-
dimensional structure

a � b b
a a � b
a a a

b � a a
b b � a

It is weakly 2-periodic and weakly 5-periodic but is not 1-periodic (it is not
(4, 2, 5)-special).

Example 3.12

Similarly, the partial word u(5,2,5) of length 20 is represented as the 3-
dimensional structure
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FIGURE 3.15: Cylinder for u(4,2,5) in Example 3.11.

a � b b
a a � b
a a a �

b � a a
b b � a

It is weakly 2-periodic and weakly 5-periodic but is not 1-periodic (it is not
(5, 2, 5)-special).

FIGURE 3.16: Cylinder for u(5,2,5) in Example 3.12.

PROPOSITION 3.1

Let p and q be positive integers satisfying 1 < p < q and gcd(p, q) = 1.
Let H be a positive integer. The partial word u(H,p,q) of length l(H,p,q) − 1 is
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not (H, p, q)-special, but is weakly p-periodic and weakly q-periodic. However
u(H,p,q) is not 1-periodic.

PROOF We prove the result when H = 2N + 1 for some N (the even
case H = 2N is left as an exercise). As stated earlier, the partial word
u(2N+1,p,q) of length (N + 1)(p + q) − 1 can be thought as two bands of
holes Band1 = {p + q − 1, 2(p + q) − 1, . . . , N(p + q) − 1} and Band2 =
{p + q − 2, 2(p + q) − 2, . . . , N(p + q) − 2, (N + 1)(p + q) − 2}. The position
p−1 is between the bands and p−2 is outside the bands or vice versa. Let S1

be the component that contains p− 1 and S2 be the component that contains
p−2. The partial word u(2N+1,p,q) is not (2N+1, p, q)-special of Type 2 since
neither S1 nor S2 is 2-isolated by H(u(2N+1,p,q)). To see this, Definition 3.3(1)
fails with i = p−1 or i = p−2. To show that u(2N+1,p,q) is not (2N +1, p, q)-
special of Type 3, we can use Definition 3.4(1) with i = p − 1 or i = p − 2.
To show that u(2N+1,p,q) is not (2N + 1, p, q)-special of Type 1, we can use
Definition 3.2(2) with i = N(p+ q)− 1 + q or i = N(p+ q)− 2 + q.

We end this section with Table 3.1 which summarizes the optimal lengths
for Fine and Wilf’s weak periodicity extensions.

TABLE 3.1: Optimal lengths for
weak periodicity.

Holes Lengths

0 p+ q − gcd(p, q)
1 p+ q
2 2(p+ q)− gcd(p, q)
3 2(p+ q)
4 3(p+ q)− gcd(p, q)
5 3(p+ q)
...

...
2N (N + 1)(p+ q)− gcd(p, q)

2N + 1 (N + 1)(p+ q)

3.6 Related results

We now discuss another extension of Fine and Wilf’s periodicity result in
the context of partial words. The next remark justifies the results of this
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section.

REMARK 3.1 There exists an integer L (that depends on H, p and q)
such that if a partial word u with H holes has (strong) periods p and q and
|u| ≥ L, then u has period gcd(p, q).

If p < q are positive integers, then the following result gives a bound L(H,p,q)

for H holes when q is large enough.

THEOREM 3.5
Let H be a positive integer, and let p and q be positive integers satisfying
q > x(p,H) where

x(p,H) =

{(
H
2

)
p if H is even(

H+1
2

)
p if H is odd

If a partial word u with H holes is p-periodic and q-periodic and |u| ≥ L(H,p,q),
then u is gcd(p, q)-periodic where

L(H,p,q) =

{(
H+2

2

)
p+ q − gcd(p, q) if H is even(

H+1
2

)
p+ q if H is odd

PROOF Set L = L(H,p,q), and suppose that gcd(p, q) = 1. First, let
H = 2N + 1 for some N . Then we have that x(p,H) = (N + 1) p. So
q > x(p,H) implies that q = (N + 1) p + k for some k > 0. It is enough to
show that if |u| = L, then u has period 1 because if |u| > L, then all factors of
u of length L would have period 1, and so u itself would. To see this, suppose
|u| = L + 1. The prefix of u of length L has periods p and q, and so it has
period 1. The same holds for the suffix of u of length L. If u starts or ends
with �, then the result trivially holds. Otherwise, u = au′b for some u′ of
length L− 1 and some a, b ∈ A. There exists an occurrence of the letter b in
u′ because D(u′) 6= ∅ by the way L is defined. The equality b = a hence holds.
Thus, by induction, any word u of length ≥ L satisfying our assumptions is
1-periodic. Now, since |u| = (N + 1) p + q and q = (N + 1) p + k, we have
that |u| = (H + 1)p+ k = 2q − k.

Consider the graph of u. Since |u| = 2q − k, positions of u within {q −
k, q − k+ 1, . . . , q − 2, q − 1} have no E2-edges, and all other elements within
{0, . . . , q−k−1} have exactly one E2-edge. Therefore, the number of positions
of u which have exactly one E2-edge is |u| − k = (H + 1)p. Thus, each p-class
has exactly H + 1 elements with exactly one E2-edge and all other elements
of the p-class have no E2-edges. In each ith p-class, N + 1 elements have E2-
edges with elements in the ((i+ q) mod p)thp-class and N + 1 elements have
E2-edges with elements in the ((i−q) mod p)thp-class. Thus, there are at least
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N + 1 disjoint cycles in the graph that visit all p-classes and contain all the
vertices with E2-edges. In order to build N + 1 such disjoint cycles, pick the
smallest vertex v0 in the 0th = ith0 p-class that has not been visited and that
has a E2-edge with an element w1 of the ith1 p-class. Then visit the vertex w1

followed by the smallest nonvisited vertex v1 of that ith1 p-class. Go on like this
visiting vertices until you visit wp in the 0th p-class. Then return to v0. Such
cycle has the form v0, w1, v1, w2, v2, . . . , wp−1, vp−1, wp, v0. Also, for each such
cycle, every element of the graph either belongs to the cycle, or is p-connected
to a member of the cycle. There are two types of disconnections possible: one
that isolates a set of vertices with elements in different p-classes, and one that
isolates a set of vertices within a p-class. Thus in order to disconnect the
graph, either all N + 1 cycles must be disconnected or all H + 1 E2-edges
of a single p-class must be removed. The latter case clearly takes more than
H holes, and since two holes are required to disconnect a cycle, we see that
at least H + 1 holes are required to disconnect the graph in the former case.
Thus the graph of u is connected and u is 1-periodic.

Now, let H = 2N for some N . The idea of the proof in this case is similar
to that of an odd number of holes. We must disconnect N cycles that each
requires two holes to break and one path that requires one hole to break.
Hence we require H + 1 holes to disconnect the graph of length L(H,p,q).

Suppose gcd(p, q) = d 6= 1. Also suppose that H = 2N for some N (the
odd case H = 2N + 1 is similar). Thus |u| = (N + 1) p+ q − d. Consider the
set of partial words u0, . . . , ud−1 where ui = u(i)u(i + d)u(i + 2d) . . .. Each
of these words has periods p

d and q
d which are co-prime. So if each ui had

period 1, then the word u has period d. Each ui has length (N + 1) p
d + q

d − 1
and at most H holes. Thus, by the proof given of this theorem for the case
gcd(p, q) = 1, each ui has period 1, and therefore u is d-periodic.

In the case of no hole, we see that x(p, 0) = 0 and the formula presented in
Theorem 3.5 agrees with l(0,p,q)

of one hole yields x(p, 1) = p and once again, the formula gives L(1,p,q) = p+q
which corresponds to the expression given in Theorem 3.1(2).

If q > x(p,H), then the bound L(H,p,q) is optimal forH holes. The following
builds a sequence of partial words showing this optimality.

Let p and q be integers satisfying 1 < p < q and gcd(p, q) = 1. Let W0,p,q

denote the set of all words of length p+q−2 having periods p and q. We denote
by PER0 the set of all words of maximal length for which Theorem 3.1(1) does
not apply, that is,

PER0 =
⋃

gcd(p,q)=1W0,p,q

The reader is asked to show that W0,p,q contains a unique word w (up to a
renaming of letters) such that ‖α(w)‖ = 2, in which case w is a palindrome
(or w reads the same forward and backward). It is easy to verify that w =
aabaabaabaa when p = 3 and q = 10.

= p+q−gcd(p, q) of Theorem 3.1(1). The case
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DEFINITION 3.9 Let p and q be positive integers satisfying 1 < p ≤
x(p,H) < q and gcd(p, q) = 1. Let N be a positive integer.

1. The partial word v(2N,p,q)over {a, b} of length L(2N,p,q) − 1 is defined
by v(2N,p,q) = (w[0..p− 2)��)Nw where w is the unique palindome over
{a, b} in W0,p,q of length p+ q − 2.

2. The partial word v(2N+1,p,q)over {a, b} of length L(2N+1,p,q) − 1 is de-
fined by v(2N+1,p,q) = v(2N,p,q)�.

Example 3.13
For example, the partial word v(4,3,10) = a��a��aabaabaabaa has four holes,
is 3-periodic and 10-periodic, has length 17 = 3(3) + 10− gcd(3, 10)− 1, but
is not 1-periodic.

PROPOSITION 3.2
Let p and q be positive integers satisfying 1 < p ≤ x(p,H) < q and gcd(p, q) =
1. Let H be a positive integer. The partial word v(H,p,q) of length L(H,p,q)− 1
is p-periodic and q-periodic. However v(H,p,q) is not 1-periodic.

PROOF We prove the result when H = 2N for some N (the odd case
H = 2N + 1 is left as an exercise). Set u = v(H,p,q). First, note that since w
is not 1-periodic, we also have that u is not 1-periodic. Now, note that w is
p-periodic. Also, w[0..p− 2)�� has length p and since w[0..p− 2)�� ⊂ w[0..p),
we see that u is p-periodic. Since q > x(p,H) = Np, w is of length q+p−2 >
Np+ p− 2. In order to show that u is q-periodic, it is enough to show that

u[0..Np+ p− 2) ↑ u[|u| − (Np+ p− 2)..|u|)

Now, u[0..Np+ p− 2) = (w[0..p− 2)��)Nw[0..p− 2), and

u[|u| − (Np+ p− 2)..|u|) = w[|w| − (Np+ p− 2)..|w|) = w[0..Np+ p− 2)

since w is a palindrome. Since w is p-periodic, we have w[0..Np + p − 2) =
(w[0..p))Nw[0..p− 2) and the desired compatibility relationship follows.

Table 3.2 summarizes the optimal lengths for Fine and Wilf’s extensions
for strong periodicity when q is large enough.

We end this chapter with the following result which is left as an exercise
for the reader.

THEOREM 3.6
Let p < q be positive integers. If a partial word u with H > 0 holes is p-

periodic and q-periodic and |u| ≥ (H +1)p+ q− gcd(p, q), then u is gcd(p, q)-
periodic.
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TABLE 3.2: Optimal lengths for strong
periodicity.

Holes Lengths Conditions

0 p+ q − gcd(p, q)
1 p+ q
2 2p+ q − gcd(p, q) q > p
3 2p+ q q > 2p
4 3p+ q − gcd(p, q) q > 2p
5 3p+ q q > 3p
...

...
...

2N (N + 1)p+ q − gcd(p, q) q > Np
2N + 1 (N + 1)p+ q q > (N + 1)p

Exercises

3.1 Consider p = 3 and q = 5. For 2 ≤ i ≤ p, construct a word ui such that
the following three conditions hold:

1. |ui| = p+ q − i,
2. ‖α(ui)‖ = i where α(ui) denotes the set of distinct letters in ui,

3. ui has periods p and q.

3.2 Using p = 3 and q = 5, show that the bound p+ q− gcd(p, q) is optimal
in Theorem 3.1(1) by providing a counterexample for a word of smaller
length. Repeat for the bound p+ q in Theorem 3.1(2).

3.3 S Using Theorem 3.1(2), prove that if u is a partial word with one hole
and q is a weak period of u satisfying |u| ≥ p′(u)+q, then q is a multiple
of p′(u). What can be said when u has no hole?

3.4 S Referring to Theorem 3.1(2), consider the following corollary: “Let p
and q be positive integers and u be a partial word such that ‖H(u)‖ = 1.
If u is p-periodic and q-periodic and |u| ≥ p + q, then u is gcd(p, q)-
periodic.” Is the bound p+ q optimal here?

3.5 Check that Definition 3.5 extends the notion of (3, 1, q)-special pword
as given in Definition 3.1.

3.6 Let p and q be positive integers satisfying p < q and gcd(p, q) = 1.
For each n > 0, let vn = abp−1�bq−p−1�bn�. Show that vn is a bi-
nary (3, p, q)-special partial word with three holes according to Defini-
tion 3.1 that is weakly p-periodic and weakly q-periodic but that is not
1-periodic.
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3.7 S Using Definitions 3.2, 3.3 and 3.4, prove the following statements:

1. The (5, 2, 5)-special partial word u pictured in

a � b b b
a � b b b
a a � b

b � � b b
b b b b b

shows an isolation of Type 1.

2. The (6, 2, 5)-special partial word v

b b � b b
b � a � b
b � a �

b b b � b
b b b b b

shows a Type 2 isolation.

3. The (4, 2, 5)-special partial word w

b b b b �
b b b � a
b b � a

b b b b �
b b b b b

shows a Type 3 isolation.

3.8 Is the partial word

u = ababa��ababa��ababa

of length 19 (4, 2, 5)-special?

3.9 S Let u = abbaab�a�baab. Build the undirected graph G(4,7)(u). Is u
(2, 4, 7)-special? Why or why not?

3.10 Using p = 3 and q = 5, show that the bound (N+1)(p+q)−gcd(p, q) is
optimal for 2N holes in Theorem 3.4 by providing a counterexample for
a partial word of smaller length. Repeat for the bound (N + 1)(p + q)
for 2N + 1 holes in Theorem 3.4.
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Challenging exercises

3.11 Prove Proposition 3.1 for the even case H = 2N .

3.12 Prove that W0,p,q contains a unique word u (up to a renaming of letters)
such that ‖α(u)‖ = 2. Also prove that u is a palindrome. Give the
unique word of length 11 in PER0 having periods 5 and 8.

3.13 S Repeat Exercise 3.6 for vn = �abp−1�bq−p−1�bn.

3.14 Does 2-isolation imply 1-isolation or 3-isolation? Does 1-isolation or
3-isolation imply 2-isolation? Why or why not?

3.15 Let u, v be nonempty words, let y, z be partial words, and let w be a
word satisfying |w| ≥ |u|+ |v| − gcd(|u|, |v|). Show that if wy ⊂ um and
wz ⊂ vn (respectively, yw ⊂ um and zw ⊂ vn) for some integers m,n,
then there exists a word x of length not greater than gcd(|u|, |v|) such
that u = xk and v = xl for some integers k, l.

3.16 H Fixing an arbitrary number of holes, H ≥ 2, and positive inte-
gers p and q satisfying p < q and gcd(p, q) = 1, construct an infinite
sequence (un)n>0 where un is a binary (H, p, q)-special partial word
with H holes that is weakly p-periodic and weakly q-periodic but not
gcd(p, q)-periodic.

3.17 Using the floor function “b c,” rewrite l(H,p,q) of Definition 3.7 in one
single expression for any H ≥ 0.

3.18 Let p, q and r be integers satisfying 1 < p < q, gcd(p, q) = 1, and
0 ≤ r < p + q − 1. For i 6= q − 1 and 0 ≤ i < p + q − 1, we define the
sequence of i relative to p, q and r as seqp,q,r(i) = (i0, i1, i2, . . . , in−1, in)
where i0 = i and

• If i = r, then in = q − 1,

• If i 6= r, then in = r or in = q − 1,

• For 1 ≤ j < n, ij 6∈ {i, r, q − 1},
• For 1 ≤ j ≤ n, ij is defined as

ij =
{
ij−1 + p if ij−1 < q − 1
ij−1 − q if ij−1 > q − 1

We define seqp,q,r(q − 1) = (q − 1).

The sequence seqp,q,r(i) gives a way of visiting elements of {0, . . . , p +
q − 2} starting at i. You increase by p as long as possible, then you
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decrease by q and you start the process again. If you start at q − 1 or
hit q − 1, you cannot increase by p and you cannot decrease by q and
so you stop. If you hit r, you stop. Compute seq4,11,5(i) for all i. Show
that seq4,11,5(3) is the longest sequence ending with 5 and seq4,11,5(5)
is the longest ending with 10 and all the other sequences are suffixes of
these two.

3.19 Show that the sequence seqp,q,r(i) defined in Exercise 3.18 is always
finite.

3.20 H Let p and q be integers satisfying 1 < p < q and gcd(p, q) = 1. Let
W1,p,q denote the set of all partial words with one hole of length p+q−1
having weak periods p and q. We denote by PER1 the set of all partial
words with one hole of maximal length for which Theorem 3.1(2) does
not apply, that is,

PER1 =
⋃

gcd(p,q)=1W1,p,q

Given a singleton set H satisfying H ⊂ {0, . . . , p+ q−2}\{p−1, q−1},
show that W1,p,q contains a unique partial word u (up to a renaming
of letters) such that ‖α(u)‖ = 2 and H(u) = H. Also, show that if
H = {p−1} or H = {q−1}, then W1,p,q contains a unique partial word
u such that ‖α(u)‖ = 1 and H(u) = H.

3.21 Prove the odd case H = 2N + 1 of Proposition 3.2.

3.22 Prove Theorem 3.6.

Programming exercises

3.23 Write a program that receives as input two positive integers p, q satis-
fying p < q and that for 2 ≤ i ≤ p, constructs a word ui such that the
three conditions of Exercise 3.1 hold.

3.24 Write a program that finds isolation of Type 1, 2 or 3 if present in a
given pword u. Run your program on the partial words of Exercise 3.7.

3.25 Design an applet that builds a two-dimensional representation out of a
pword based on two of its weak periods.

3.26 Write a program that computes the critical length for weak periods 4,
7, 8, 12 and number of holes 4 and that provides a counterexample of
length one less than the critical length.
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3.27 Write a program to compute the critical length for strong periods 2,
3 and number of holes 4. Your program should also output all the
counterexample pwords (up to a renaming of letters) of length one less
than the critical length (not including symmetric cases).

Websites

World Wide Web server interfaces at

http://www.uncg.edu/mat/research/finewilf
http://www.uncg.edu/mat/research/finewilf2
http://www.uncg.edu/mat/research/finewilf3
http://www.uncg.edu/cmp/research/finewilf4

have been established for automated use of programs related to generalizations
of Fine and Wilf’s periodicity result in the framework of partial words.

• The finewilf website provides an applet that builds two- and three-
dimensional representations out of a partial word based on two of its
weak periods. Isolation is visible if it occurs within the pword. In the
2D version, the array is repeated to show where the top of the array
connects with the bottom.

• The finewilf2 website asks the user to list at least two weak periods
in ascending order and to enter a nonnegative integer for the number of
holes. The applet outputs the critical length for the given weak period
set and number of holes as well as a counterexample pword for one less
than the critical length if applicable.

• The finewilf3 and finewilf4 websites provide applets that compute
the critical length for given number of holes and strong periods p, q with
p smaller than q and p not dividing q. The applets also build two-
dimensional arrays of all counterexample pwords for one less than the
critical length (up to renaming of letters and symmetry).

Bibliographic notes

The problem of computing periods in words has important applications in
data compression, string searching and pattern matching algorithms. The
periodicity result of Fine and Wilf [77] has been generalized in many ways:
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Extension to more than two periods are given in [47, 54, 97, 139]; Period-
icity is taken to the wide context of Cayley graphs of groups which produce
generalizations that involve the concept of a periodicity vector [81]; Other gen-
eralizations are produced in the context of labelled trees [80, 123]; Yet, other
related results are shown in [3, 4, 5, 6, 7, 8, 48, 75, 78, 109, 116, 117, 122, 135].

Fine and Wilf’s result has been generalized to partial words in two ways:
First, any partial word u with H holes and having weak periods p, q and

length at least l(H,p,q) has also period gcd(p, q) provided u is not (H, p, q)-
special. This extension was done for one hole by Berstel and Boasson in their
seminal paper [10] where the class of (1, p, q)-special partial words is empty
(the zero-hole case of Theorem 3.1 in Section 3.1 is from Fine and Wilf [77]
and the one-hole case from Berstel and Boasson [10]); for two-three holes by
Blanchet-Sadri and Hegstrom [32] (Section 3.2); and for an arbitrary number
of holes by Blanchet-Sadri [15] (Sections 3.3, 3.4 and 3.5).

Second, any partial word u with H holes and having periods p, q and length
at least the so-denoted L(H,p,q) has also period gcd(p, q). This extension
was initiated by Shur and Gamzova in their papers [130, 131] where they
proved Theorem 3.6 (Section 3.6). Theorem 3.5 and Proposition 3.2 are
from Blanchet-Sadri, Bal and Sisodia [19] (the two-hole case having first been
proved by Shur and Gamzova).

Exercise 3.12 is from Choffrut and Karhümaki [51]. It turns out that PER0

has several characterizations based on quite different concepts [11, 62, 63, 64].
Blanchet-Sadri extended to PER1 the well known property that states that
PER0 contains a unique word (up to a renaming of letters) that is binary [14]
(Exercise 3.20). Exercise 3.3 is from Blanchet-Sadri and Chriscoe [23], Exer-
cise 3.15 from Blanchet-Sadri [17], and Exercises 3.18 and 3.19 from Blanchet-
Sadri [14].





Chapter 4

Critical Factorization Theorem

In this chapter, we discuss the fundamental critical factorization theorem in
the framework of partial words.

The critical factorization theorem on full words states that given a word w
and nonempty words u, v satisfying w = uv, the minimal local period associ-
ated to the factorization (u, v) of w is the length of the shortest repetition (a
square) centered at position |u| − 1. It is easy to see that no minimal local
period is longer than the minimal (or global) period of the word. The crit-
ical factorization theorem shows that critical factorizations are unavoidable.
Indeed, for any string, there is always a factorization whose minimal local
period is equal to the global period of the string.

In other words, we consider a string a0a1 . . . an−1 and, for any integer i such
that 0 ≤ i < n−1, we look at the shortest repetition centered in this position,
that is, we look at the shortest (virtual) suffix of a0a1 . . . ai which is also a
(virtual) prefix of ai+1ai+2 . . . an−1. The minimal local period at position i is
defined as the length of this shortest square. The critical factorization theorem
states, roughly speaking, that the global period of a0a1 . . . an−1 is simply the
maximum among all minimal local periods. As an example, consider the word
w = babbaab with global period 6. The minimal local periods of w are 2, 3,
1, 6, 1 and 3 which means that the factorization (babb, aab) is critical.

In summary, the following table describes the number of holes and section
numbers where the critical factorization theorem is discussed:

Holes Sections

0 4.2
arbitrary 4.3, 4.4 and 4.5

4.1 Orderings

A binary relation � defined on an arbitrary set S is a subset of S × S.
The relation � is called reflexive if u � u for all u ∈ S; antisymmetric if
u � v and v � u imply u = v for all u, v ∈ S; transitive if u � v and v � w

93
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imply u � w for all u, v, w ∈ S. A reflexive, antisymmetric, and transitive
relation � defined on S is called a partial ordering. A total ordering is a
partial ordering for which u � v or v � u holds for all u, v ∈ S. An element
u of S (respectively, of a subset X ⊂ S) ordered by � is maximal if for all
v ∈ S (respectively, v ∈ X) the condition u � v implies u = v. Of course each
subset of a totally ordered set has at most one maximal element.

In this section, we define two total orderings of W (A), �l and �r, and state
some lemmas related to them that will be used to prove the main results.

First, let the alphabet A be totally ordered by ≺ and let � ≺ a for all a ∈ A.

• The first total ordering, denoted by ≺l, is simply the lexicographic or-
dering related to the fixed total ordering on A and is defined as follows:
u ≺l v, if either u is a proper prefix of v, or

u = pre(u, v) a x
v = pre(u, v) b y

with a, b ∈ A ∪ {�} satisfying a ≺l b.1

• The second total ordering, denoted by ≺r, is obtained from ≺l by re-
versing the order of letters in the alphabet, that is, for a, b ∈ A, a ≺l b
if and only if b ≺r a.

LEMMA 4.1
For all partial words u, v, x, y, the following hold:

• u ≺l v if and only if xu ≺l xv,

• u ≺r v if and only if xu ≺r xv,

• u ≺l v and u 6∈ P (v) imply ux ≺l vy,

• u ≺r v and u 6∈ P (v) imply ux ≺r vy.

Now, if u is a partial word on A and 0 ≤ i < j ≤ |u|, then u[i..j) denotes
the factor of u satisfying (u[i..j))� = u�(i) . . . u�(j − 1). The maximal suffix
of u with respect to �l (respectively, �r) is defined as u[i..|u|) where 0 ≤ i <
|u| and where u[j..|u|) �l u[i..|u|) (respectively, u[j..|u|) �r u[i..|u|)) for all
0 ≤ j < |u|.

Example 4.1
If a ≺l b, then the maximal suffix of ba�bbaab with respect to �l is bbaab
and with respect to �r is aab. Indeed, the nonempty suffixes are ordered as
follows with respect to �l:

1Recall that pre(u, v) denotes the maximal common prefix of u and v as defined in Chap-
ter 1.
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�bbaab ≺l a�bbaab ≺l aab ≺l ab ≺l b ≺l ba�bbaab ≺l baab ≺l bbaab

and as follows with respect to �r:

�bbaab ≺r b ≺r bbaab ≺r ba�bbaab ≺r baab ≺r a�bbaab ≺r ab ≺r aab

LEMMA 4.2

Let u, v, w be partial words.

1. If v is the maximal suffix of w = uv with respect to �l, then no nonempty
partial words x, y are such that y ⊂ x, u = rx and v = ys for some
pwords r, s.

2. If v is the maximal suffix of w = uv with respect to �r, then no nonempty
partial words x, y are such that y ⊂ x, u = rx and v = ys for some
pwords r, s.

PROOF We prove Statement 1 (Statement 2 is similar). Let x, y be
nonempty partial words satisfying y ⊂ x, u = rx and v = ys for some pwords
r, s. Since w = uv = rxv = rxys, by the maximality of v, we have xv �l v
and s �l v. Since v = ys, these inequalities can be rewritten as xys �l ys
and s �l ys. Now, from the former inequality we obtain that yys �l ys since
y ⊂ x. We then obtain that ys �l s, which together with s �l ys imply that
s = ys. Therefore, y = ε and x = ε leading to a contradiction.

LEMMA 4.3

Let u, v, w be partial words.

1. If v is the maximal suffix of w = uv with respect to �l, then no nonempty
partial words x, y, s are such that y ⊂ x, u = rx and y = vs for some
pword r.

2. If v is the maximal suffix of w = uv with respect to �r, then no nonempty
partial words x, y, s are such that y ⊂ x, u = rx and y = vs for some
pwords r.

PROOF We prove Statement 1 (Statement 2 is similar). Let x, y, s be
nonempty partial words satisfying y ⊂ x, u = rx and y = vs for some pword
r. Here w = uv = rxv, and since v is the maximal suffix with respect to �l,
we get xv �l v. Since y ⊂ x, we get yv �l v. Replacing y by vs in the latter
inequality yields vsv �l v, leading to a contradiction.
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4.2 The zero-hole case

In this section, we discuss the critical factorization theorem on full words.
Intuitively, the theorem states that the minimal period p(w) of a word w of
length at least two can be locally determined in at least one position of w.
This means that there exists a critical factorization (u, v) of w with u, v 6= ε
such that p(w) is the minimal local period of w at position |u| − 1.

A factorization of a word w being any tuple (u, v) of words such that w = uv,
a local period of w at position |u| − 1 is defined as follows.

DEFINITION 4.1 Let w be a nonempty word. A positive integer p is
called a local period of w at position i if there exist u, v ∈ A+ and x ∈ A∗

such that w = uv, |u| = i + 1, |x| = p, and such that one of the following
conditions holds for some words r, s:

1. u = rx and v = xs (internal square),

2. x = ru and v = xs (left-external square if r 6= ε),

3. u = rx and x = vs (right-external square if s 6= ε),

4. x = ru and x = vs (left- and right-external square if r, s 6= ε).

The minimal local period of w at position i, denoted by p(w, i), is
defined as the smallest local period of w at position i.

FIGURE 4.1: Internal square.

FIGURE 4.2: Left-external square.
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FIGURE 4.3: Right-external square.

FIGURE 4.4: Left- and right-external square.

Intuitively, around position i, there exists a factor of w having as its minimal
period this minimal local period. A factorization (u, v) of w is called critical
when u, v 6= ε and p(w) = p(w, |u| − 1). In such case, the position |u| − 1 is
called a critical point. Clearly,

1 ≤ p(w, i) ≤ p(w) ≤ |w|

Example 4.2
Consider the word w = babbaab with minimal period 6. The minimal local

periods of w are: p(w, 0) = 2, p(w, 1) = 3, p(w, 2) = 1, p(w, 3) = 6, p(w, 4) =
1, and p(w, 5) = 3. Here, p(w) = p(w, 3) which means that the factorization
(babb, aab) is critical.

i r u v s p(w, i) Type of square

0 a b abbaab 2 left-external
1 b ba bbaab 3 left-external
2 bab baab 1 internal
3 aa babb aab abb 6 left- and right-external
4 babba ab 1 internal
5 babbaa b aa 3 right-external

Note that the minimal period of w is simply the maximum among all its
minimal local periods.

The following theorem states that each word of length at least two has at
least one critical factorization.

THEOREM 4.1
Let w be a word such that |w| ≥ 2. Then w has at least one critical factor-

ization (u, v) with u, v 6= ε and p(w) = p(w, |u| − 1).
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While Theorem 4.1 shows the existence of a critical factorization, the fol-
lowing algorithm shows that such a factorization can be found by computing
two maximal suffixes of w with respect to the orderings �l and �r.

ALGORITHM 4.1
The algorithm outputs a critical factorization for a given word w of length at
least two.

Step 1: Compute the maximal suffix of w with respect to �l (say v) and the
maximal suffix of w with respect to �r (say v′).

Step 2: Find words u, u′ such that w = uv = u′v′.

Step 3: If |v| ≤ |v′|, then output (u, v). Otherwise, output (u′, v′).

Example 4.3
Returing to Example 4.2, the nonempty suffixes of w = babbaab are ordered
as follows (where a ≺l b and b ≺r a):

�l �r

aab b
ab bbaab
abbaab babbaab
b baab
baab ab
babbaab abbaab
bbaab aab

The maximal suffix of w with respect to �l is v = bbaab and the maximal
suffix of w with respect to �r is v′ = aab. Here 5 = |v| > |v′| = 3 which
means that the factorization (u′, v′) = (babb, aab) is critical.

We have omitted the proof of Theorem 4.1 as well as the proof of Algo-
rithm 4.1 because we will prove the general results later in this chapter.

4.3 The main result: First version

In this section, we discuss a first version of the critical factorization theorem
for partial words with an arbitrary number of holes. Intuitively, the theorem
states that the minimal weak period of a nonspecial partial word w of length
at least two can be locally determined in at least one position of w. More
specifically, if w is nonspecial according to Definition 4.3, then there exists
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a critical factorization (u, v) of w with u, v 6= ε such that the minimal local
period of w at position |u| − 1 (as defined below) equals the minimal weak
period of w.

DEFINITION 4.2 Let w be a nonempty partial word. A positive integer
p is called a local period of w at position i if there exist nonempty partial
words u, v, x, y such that w = uv, |u| = i + 1, |x| = p, x ↑ y, and such that
one of the following conditions holds for some partial words r, s:

1. u = rx and v = ys (internal square),

2. x = ru and v = ys (left-external square if r 6= ε),

3. u = rx and y = vs (right-external square if s 6= ε),

4. x = ru and y = vs (left- and right-external square if r, s 6= ε).

The minimal local period of w at position i, denoted by p(w, i), is
defined as the smallest local period of w at position i. Clearly,

1 ≤ p(w, i) ≤ p′(w) ≤ |w|

and no minimal local period is longer than the minimal weak period.

FIGURE 4.5: Internal square.

FIGURE 4.6: Left-external square.

A partial word being special is defined as follows.
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FIGURE 4.7: Right-external square.

FIGURE 4.8: Left- and right-external square.

DEFINITION 4.3 Let w be a partial word such that p′(w) > 1. Let v
(respectively, v′) be the maximal suffix of w with respect to �l (respectively,
�r). Let u, u′ be partial words such that w = uv = u′v′.

• If |v| ≤ |v′|, then w is called special if one of the following holds:

1. p(w, |u| − 1) < |u| and r 6∈ C(S(u)) (as computed according to
Definition 4.2).

2. p(w, |u| − 1) < |v| and s 6∈ C(P (v)) (as computed according to
Definition 4.2).

• If |v| ≥ |v′|, then w is called special if one of the above holds when
referring to Definition 4.2 where u is replaced by u′ and v by v′.

The partial word w is called nonspecial otherwise.

Example 4.4
To illustrate Definition 4.3, first consider w = aa��ba��bb. The maximal
suffixes of w with respect to �l and �r are v = bb and v′ = aa��ba��bb
respectively. Here |v| ≤ |v′| and u = aa��ba��. We get that w is special
since 1 = p(w, |u| − 1) < |u| = 8 and r = aa��ba� 6∈ C(S(u)). Now, consider
w = ab��a with maximal suffixes v = b��a and v′ = ab��a. Again |v| ≤ |v′|.
We have |u| = 1 ≤ 2 = p(w, |u| − 1) < |v| = 4 but s = �a ∈ C(P (v)), and so
w is nonspecial.

The proof of the following theorem not only shows the existence of a critical
factorization for a given nonspecial partial word of length at least two, but
also gives an algorithm to compute such a factorization explicitly.

THEOREM 4.2
If the partial word w is nonspecial and satisfies |w| ≥ 2, then w has at least
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one critical factorization. More specifically, if p′(w) > 1, then let v denote
the maximal suffix of w with respect to �l and v′ the maximal suffix of w with
respect to �r. Let u, u′ be partial words such that w = uv = u′v′. Then the
factorization (u, v) is critical when |v| ≤ |v′|, and the factorization (u′, v′) is
critical when |v| > |v′|.

PROOF If p′(w) = 1, then

w = am0
0 �a

m1
1 � . . . a

mn−1
n−1 �amn

n

for some a0, a1, . . . , an ∈ A and integers m0,m1, . . . ,mn ≥ 0. The result
trivially holds in this case. So assume that p′(w) > 1 and that |v| ≤ |v′| (the
case where p′(w) > 1 and |v| > |v′| is proved similarly but requires that the
orderings �l and �r be interchanged). First, assume that u = ε, and thus
w = v. Since |v| ≤ |v′|, we also have w = v′. Setting w = az for some a ∈ A
and z ∈ W (A), we argue as follows. If b ∈ A is a letter in z, then b �l a and
b �r a. Thus, b = a and w is unary. We get p′(w) = 1, contradicting our
assumption and therefore u 6= ε.

Now, let us denote p(w, |u| − 1) by p. We will use β ↑◦ γ as an abbreviation
for β ↑ γ and β 6⊂ γ and γ 6⊂ β holding simultaneously. The proof is split into
four cases that refer to p in relation to |u| and |v|. Case 1 refers to p ≥ |u|
and p ≥ |v|, Case 2 to p < |u| and p > |v|, Case 3 to p < |u| and p ≤ |v| and
Case 4 to p ≥ |u| and p < |v|. We prove the result for Cases 1 and 2. The
other cases follow similarly and are left as exercises for the reader.

Case 1. p ≥ |u| and p ≥ |v|
If p ≥ |u| and p ≥ |v|, then Definition 4.2(4) is satisfied. There exist pwords

x, y, r, s such that |x| = p, x ↑ y, x = ru, and y = vs. First, if |r| > |v|, then
p = |x| = |ru| > |uv| = |w|, which leads to a contradiction. Similarly, we see
that |s| ≤ |u| Now, if |r| ≤ |v|, then we may choose partial words r, s, z, z′

such that v = rz, u = z′s, and z ↑ z′. By definition of compatibility, there
exists z′′ such that z ⊂ z′′ and z′ ⊂ z′′. Thus, uv = z′srz ⊂ z′′srz′′ showing
that p = |x| = |ru| = |rz′s| = |z′′sr| is a weak period of uv, and so p′(w) ≤ p.
On the other hand, p′(w) ≥ p. Therefore, p′(w) = p which shows that the
factorization (u, v) is critical.

Case 2. p < |u| and p > |v|
If p < |u| and p > |v|, then Definition 4.2(3) is satisfied. There exist partial

words x, y, r, s, γ such that |x| = p, x ↑ y, u = rx = rγs, and y = vs. If v ⊂ γ,
then y ⊂ x, and v being the maximal suffix of w with respect to �l, we get
a contradiction with Lemma 4.3. If γ < v or γ ↑◦ v, then we consider whether
or not r ∈ C(S(u)). If r 6∈ C(S(u)), then w is special by Definition 4.3(1). If
r ∈ C(S(u)), then x′r ↑ rx for some x′. By Theorem 2.2, u = rx is weakly
|x|-periodic, and so rxy = rxvs is weakly |x|-periodic since x ↑ y. Therefore,
p = |x| is a weak period of uv = rxv and the result follows as in Case 1.

REMARK 4.1 In the course of the proof of Theorem 4.2, we showed
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in addition that if |v| ≤ |v′| and the factorization (u, v) is critical, then w is
nonspecial, and if |v| > |v′| and the factorization (u′, v′) is critical, then w is
nonspecial.

Referring to Definition 4.3, assume that a ≺l b and b ≺r a. We now provide
special partial words w with no position i satisfying p′(w) = p(w, i). These
examples show why Theorem 4.2 excludes the special partial words.

Example 4.5

For each given pword w, we give answers to the two questions: Is r ∈ C(S(u))
and is s ∈ C(P (v))? We also exhibit u, v, x, y, r and s for the different
scenarios.

• Definition 4.3(2) answers “yes” and “no” when w = aa��b����bba. Here
u = rx, v = ys, x = �, y = b, r = aa��b��� and s = ba.

• Definition 4.3(1) gives “no” and “yes” for w = baa�bb�, and computa-
tions give u = rx, v = ys, x = �, y = b, r = baa and s = b�.

• Definition 4.3(2) answers s 6∈ C(P (v)) if w = ab�a�a. We can check
that u = a, v = ys, x = ru, y = b�, r = b and s = a�a.

• Definition 4.3(1) gives r 6∈ C(S(u)) for w = �b�bbabbb, and u = rx,
v = bbb, x = �bba, y = vs, r = �b and s = a.

From the proof of Theorem 4.2, we can obtain an algorithm that outputs
a critical factorization for a given partial word w with p′(w) > 1 and with an
arbitrary number of holes of length at least two when w is nonspecial, and
that outputs “special” otherwise. The algorithm computes the maximal suffix
v of w with respect to �l and the maximal suffix v′ of w with respect to �r.
The algorithm finds partial words u, u′ such that w = uv = u′v′. If |v| ≤ |v′|,
then it computes p = p(w, |u| − 1) and does the following:

1. If p < |u|, then it finds partial words x, y, r, s satisfying Definition 4.2.
If r 6∈ C(S(u)), then it outputs “special.”

2. If p < |v|, then it finds partial words x, y, r, s satisfying Definition 4.2.
If s 6∈ C(P (v)), then it outputs “special.”

3. Otherwise, it outputs (u, v).

If |v| > |v′|, then the algorithm computes p = p(w, |u′|−1) and does the above
where u is replaced by u′ and v by v′.
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Example 4.6
As an example, consider w = aaab�babb. Its maximal suffix with respect to �l

(where a ≺ b) is v = bb and with respect to�r (where b ≺ a) is v′ = aaab�babb.
Here |v| < |v′| and the factorization (aaab�ba, bb) is not critical since w is
special. Now, if we consider rev(w) = bbab�baaa, its maximal suffix with
respect to �l is v = bbab�baaa and with respect to �r is v′ = aaa. Here
|v| > |v′| and rev(w) is nonspecial and so the factorization (bbab�b, aaa) of
rev(w) (which corresponds to the factorization (aaa, b�babb) of w) is critical.

The observation in the preceding example on the reversal leads us to im-
prove the algorithm by considering both w and rev(w).

ALGORITHM 4.2
The algorithm outputs a critical factorization for a given partial word w with
p′(w) > 1 and |w| ≥ 2 when w is nonspecial or rev(w) is nonspecial, and that
outputs “special” otherwise.

Step 1: Compute the maximal suffix v0 of w with respect to �l and the
maximal suffix v′0 of w with respect to �r. Also compute the maximal
suffix v1 of rev(w) with respect to �l and the maximal suffix v′1 of rev(w)
with respect to �r.

Step 2: Find partial words u0, u
′
0 such that w = u0v0 = u′0v

′
0. Also find

partial words u1, u
′
1 such that rev(w) = u1v1 = u′1v

′
1.

Step 3: If |v0| ≤ |v′0| and |v1| ≤ |v′1|, then compute p0 = p(w, |u0| − 1) and
p1 = p(rev(w), |u1| − 1).

Step 4: If p0 ≥ p1, then do the following:

1. If p0 < |u0|, then find partial words x, y, r, s satisfying Defini-
tion 4.2. If r 6∈ C(S(u0)), then output “special.”

2. If p0 < |v0|, then find partial words x, y, r, s satisfying Defini-
tion 4.2. If s 6∈ C(P (v0)), then output “special.”

3. Otherwise, output (u0, v0).

Step 5: If p0 < p1, then do the work of Step 4 with p1, u1 and v1 instead of
p0, u0 and v0.

Step 6: If |v0| > |v′0| (or |v1| > |v′1|), then do the work of Step 3 with u′0
and v′0 instead of u0 and v0 (or do the work of Step 3 with u′1 and v′1
instead of u1 and v1). The algorithm may produce (u′0, v

′
0) unless w is

special (or may produce (u′1, v
′
1) unless rev(w) is special) (in those cases,

output “special”).
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4.4 The main result: Second version

In this section, the nonempty suffixes of a given partial word w are ordered
as follows according to �l:

v0,|w|−1 ≺l v0,|w|−2 ≺l · · · ≺l v0,0

The factorizations of w called (u0,0, v0,0), (u0,1, v0,1), . . . result. Similarly, the
nonempty suffixes of w are ordered as follows according to �r:

v′0,|w|−1 ≺r v
′
0,|w|−2 ≺r · · · ≺r v

′
0,0

The factorizations of w called (u′0,0, v
′
0,0), (u

′
0,1, v

′
0,1), . . . result. The nonempty

suffixes of rev(w) are ordered as follows:

v1,|w|−1 ≺l v1,|w|−2 ≺l · · · ≺l v1,0

v′1,|w|−1 ≺r v
′
1,|w|−2 ≺r · · · ≺r v

′
1,0

The factorizations of rev(w) called

(u1,0, v1,0), (u1,1, v1,1), . . ., (u′1,0, v
′
1,0), (u

′
1,1, v

′
1,1), . . .

result.
Referring to Definition 4.3, the following table provides examples of special

partial words w whose reversals are also special and for which there exists
a position i such that p′(w) = p(w, i) or p′(w) = p(rev(w), i) resulting in a
critical factorization (it is assumed that a ≺l b and b ≺r a):

w Fact Crit Fact Crit Fact Crit
aaa��ba (u0,0, v0,0) no (u′1,0, v

′
1,0) no (u1,0, v1,0) yes

abba�abb (u0,0, v0,0) no (u′1,0, v
′
1,0) no (u0,1, v0,1) yes

a�abb�bbbaa (u′0,0, v
′
0,0) no (u1,0, v1,0) no (u0,2, v0,2) yes

a�cbac (u′0,0, v
′
0,0) no (u′1,0, v

′
1,0) no (u0,2, v0,2) yes

The above examples lead us to refine Theorem 4.2. First, we define the
concept of an ((k,l))-special partial word (note that the concept of special in
Definition 4.3 is equivalent to the concept of ((0, 0))-special in Definition 4.4).

DEFINITION 4.4 Let w be a partial word such that p′(w) > 1, and let
k, l be a pair of integers satisfying 0 ≤ k, l < |w|.

• If |v0,k| ≤ |v′0,l|, then w is called ((k, l))-special if one of the following
holds:

1. p(w, |u0,k|−1) < |u0,k| and r 6∈ C(S(u0,k)) (as computed according
to Definition 4.2).
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2. p(w, |u0,k| − 1) < |v0,k| and s 6∈ C(P (v0,k)) (as computed according
to Definition 4.2).

• If |v0,k| ≥ |v′0,l|, then w is called ((k, l))-special if one of the above
holds when referring to Definition 4.2 where u0,k is replaced by u′0,l and
v0,k by v′0,l.

The partial word w is called ((k, l))-nonspecial otherwise.

We now describe the algorithm (based on Theorem 4.3) that outputs a
critical factorization for a given partial word w with p′(w) > 1 and with an
arbitrary number of holes of length at least two when such a factorization
exists, and that outputs “no critical factorization exists” otherwise.

ALGORITHM 4.3

Step 1: Compute the nonempty suffixes of w with respect to �l

v0,|w|−1 ≺l · · · ≺l v0,0

and the nonempty suffixes of w with respect to �r

v′0,|w|−1 ≺r · · · ≺r v
′
0,0

Also compute the nonempty suffixes of rev(w) with respect to �l

v1,|w|−1 ≺l · · · ≺l v1,0

and the nonempty suffixes of rev(w) with respect to �r

v′1,|w|−1 ≺r · · · ≺r v
′
1,0

Step 2: Set k0 = 0, l0 = 0, k1 = 0, l1 = 0, and mwp = 0.

Step 3: If k0 ≥ |w| − ‖H(w)‖ or l0 ≥ |w| − ‖H(w)‖ or k1 ≥ |w| − ‖H(w)‖
or l1 ≥ |w| − ‖H(w)‖, then output “no critical factorization exists”.

Step 4: If v0,k0 ≺l v
′
0,l0

, then update l0 with l0 + 1 and go to Step 3. If
v′0,l0

≺r v0,k0 , then update k0 with k0 + 1 and go to Step 3. If v1,k1 ≺l

v′1,l1
, then update l1 with l1 + 1 and go to Step 3. If v′1,l1

≺r v1,k1 , then
update k1 with k1 + 1 and go to Step 3.

Step 5: If k0 > 0 and v′0,l0
= w, then update l0 with l0 + 1 and go to Step

3. If l0 > 0 and v0,k0 = w, then update k0 with k0 + 1 and go to Step 3.
If k1 > 0 and v′1,l1

= rev(w), then update l1 with l1 + 1 and go to Step
3. If l1 > 0 and v1,k1 = rev(w), then update k1 with k1 + 1 and go to
Step 3.
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Step 6: Find partial words u0,k0 , u
′
0,l0

such that w = u0,k0v0,k0 = u′0,l0
v′0,l0

.
Find partial words u1,k1 , u

′
1,l1

such that rev(w) = u1,k1v1,k1 = u′1,l1
v′1,l1

.

Step 7: If |v0,k0 | ≤ |v′0,l0
| and |v1,k1 | ≤ |v′1,l1

|, then compute p0,k0 =
p(w, |u0,k0 | − 1) and p1,k1 = p(rev(w), |u1,k1 | − 1).

Step 8: If p0,k0 ≤ mwp, then move up which means to update k0 with k0 +1
and to go to Step 3. If p1,k1 ≤ mwp, then move up which means to
update k1 with k1 + 1 and to go to Step 3.

Step 9: If p0,k0 ≥ p1,k1 , then update mwp with p0,k0 . Do the following:

1. If p0,k0 < |u0,k0 |, then find partial words x, y, r, s satisfying Defini-
tion 4.2. If r 6∈ C(S(u0,k0)), then move up which means update k0

with k0 + 1 and go to Step 3.

2. If p0,k0 < |v0,k0 |, then find partial words x, y, r, s satisfying Defini-
tion 4.2. If s 6∈ C(P (v0,k0)), then move up which means update k0

with k0 + 1 and go to Step 3.

3. Otherwise, output (u0,k0 , v0,k0).

Step 10: If p0,k0 < p1,k1 , then update mwp with p1,k1 and do the work of
Step 9 with p1,k1 , u1,k1 and v1,k1 instead of p0,k0 , u0,k0 and v0,k0 .

Step 11: If |v0,k0 | > |v′0,l0
| (or |v1,k1 | > |v′1,l1

|), then compute p0,l0 =
p(w, |u′0,l0

| − 1) and do the work of Step 8 with p0,l0 , u
′
0,l0

and v′0,l0
instead of p0,k0 , u0,k0 and v0,k0 (move up here means update l0 with
l0 +1 and go to Step 3) (or compute p1,l1 = p(rev(w), |u′1,l1

|− 1) and do
the work of Step 8 with p1,l1 , u

′
1,l1

and v′1,l1
instead of p1,k1 , u1,k1 and

v1,k1 (move up here means update l1 with l1 +1 and go to Step 3)). The
algorithm may produce (u′0,l0

, v′0,l0
) unless w is ((k0, l0))-special (or may

produce (u′1,l1
, v′1,l1

) unless rev(w) is ((k1, l1))-special) (in those cases,
move up).

We illustrate Algorithm 4.3 with the following example.

Example 4.7
Below are tables for the nonempty suffixes of the partial word w = a�cbac and
its reversal rev(w) = cabc�a. These suffixes are ordered in two different ways:
The first ordering is on the left and is an ≺l-ordering according to the order
� ≺ a ≺ b ≺ c, and the second is on the right and is an ≺r-ordering where
� ≺ c ≺ b ≺ a. The tables also contain the indices used by the algorithm,
k0, l0, k1, l1, and the local periods that needed to be calculated in order to
compute the critical factorization (a�c, bac). The minimal weak period of w
turns out to be equal to 4.
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k0 p0,k0 v0,k0 v′
0,l0

p0,l0 l0
5 �cbac �cbac 5
4 a�cbac c 4
3 ac cbac 3
2 4 bac bac 2
1 3 c a�cbac 1
0 1 cbac ac 3 0

k1 p1,k1 v1,k1 v′
1,l1

p1,l1 l1
5 �a �a 5
4 a c�a 4
3 abc�a cabc�a 3
2 bc�a bc�a 2
1 4 c�a a 1 1
0 cabc�a abc�a 3 0

Algorithm 4.3 starts with the pairs

(v0,0, v
′
0,0) = (cbac, ac) and (v1,0, v

′
1,0) = (cabc�a, abc�a)

and selects the shortest component of each pair, that is, v′0,0 and v′1,0. In
Step 11, p0,0 is computed as 3 and p1,0 as 3. Since p0,0 ≥ p1,0 > mwp = 0,
the factorization (u′0,0, v

′
0,0) = (a�cb, ac) is chosen and the algorithm discovers

that w is ((0, 0))-special according to Definition 4.4. The variable l0 is then
updated to 1 and the pairs

(v0,0, v
′
0,1) = (cbac, a�cbac) and (v1,0, v

′
1,0) = (cabc�a, abc�a)

are treated with shortest components v0,0, v
′
1,0 respectively. Now, p0,0 is com-

puted as 1 and p1,0 as 3. Since p0,0 < p1,0 ≤ mwp = 3, k0 gets updated to 1
and l1 to 1. Now, the pairs

(v0,1, v
′
0,1) = (c, a�cbac) and (v1,0, v

′
1,1) = (cabc�a, a)

are considered and in Step 5, l0 is updated to 2 since k0 = 1 > 0 and v′0,l0
=

v′0,1 = w. The pairs

(v0,1, v
′
0,2) = (c, bac) and (v1,0, v

′
1,1) = (cabc�a, a)

are treated and in Step 5, k1 is updated to 1 since l1 = 1 > 0 and v1,k1 =
v1,0 = rev(w). Comes the turn of

(v0,1, v
′
0,2) = (c, bac) and (v1,1, v

′
1,1) = (c�a, a)

with shortest components v0,1 and v′1,1. The algorithm computes p0,1 = 3 and
p1,1 = 1. Since p1,1 < p0,1 ≤ mwp = 3, the indices k0 and l1 get updated to
2 and the pairs

(v0,2, v
′
0,2) = (bac, bac) and (v1,1, v

′
1,2) = (c�a, bc�a)
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are considered with shortest components v0,2, v1,1 and with p0,2 = 4, p1,1 = 4
calculated in Step 7. Since p0,2 ≥ p1,1 > mwp = 3 leads to an improvement
of the number mwp, the algorithm outputs (u0,2, v0,2) in Step 9 with mwp =
p0,2 = 4 (here w is ((2, 2))-nonspecial).

We now prove Theorem 4.3.

THEOREM 4.3

1. Let (k0, l0) be a pair of nonnegative integers being considered at Step 9
(when p0,k0 > mwp or when p0,l0 > mwp). If w is a ((k0, l0))-nonspecial
partial word satisfying |w| ≥ 2 and p′(w) > 1, then w has at least one
critical factorization. More specifically, the factorization (u0,k0 , v0,k0) is
critical when |v0,k0 | ≤ |v′0,l0

|, and the factorization (u′0,l0
, v′0,l0

) is critical
when |v0,k0 | > |v′0,l0

|.

2. Let (k1, l1) be a pair of nonnegative integers being considered at Step 10
(when p1,k1 > mwp or when p1,l1 > mwp). If rev(w) is a ((k1, l1))-
nonspecial partial word satisfying |w| ≥ 2 and p′(w) > 1, then rev(w)
has at least one critical factorization. More specifically, the factoriza-
tion (u1,k1 , v1,k1) is critical when |v1,k1 | ≤ |v′1,l1

|, and the factorization
(u′1,l1

, v′1,l1
) is critical when |v1,k1 | > |v′1,l1

|.

PROOF We prove Statement 1 (Statement 2 is proved similarly). The
pair (k0, l0) = (0, 0) was treated in Theorem 4.2. So, we may assume that
(k0, l0) 6= (0, 0). We consider the case where |v0,k0 | ≤ |v′0,l0

| (the case where
|v0,k0 | > |v′0,l0

| is handled similarly but requires that the orderings �l and �r

be interchanged). Here, u0,k0 6= ε unless v0,k0 = v′0,l0
= w. In such case, if w

begins with �, then the algorithm will discover in Step 3 that w has no critical
factorization. And if w begins with a for some a ∈ A, then k0 < |w|−‖H(w)‖
and l0 < |w| − ‖H(w)‖. In such case, we have (k0 > 0 and v′0,l0

= w) or
(l0 > 0 and v0,k0 = w). In the former case, Step 5 will update l0 with l0 + 1
resulting in the pair (k0, l0 + 1) being considered in Step 3; in the latter case,
Step 5 will update k0 with k0 +1 and (k0 +1, l0) will be considered in Step 3.

We now consider the following cases where p0,k0 denotes p(w, |u0,k0 | − 1).
Again, we use β ↑◦ γ as an abbreviation for β ↑ γ, β 6⊂ γ and γ 6⊂ β holding
simultaneously. The proof is split into four cases that refer to p0,k0 in relation
to |u0,k0 | and |v0,k0 |. Case 1 refers to p0,k0 ≥ |u0,k0 | and p0,k0 ≥ |v0,k0 |,
Case 2 to p0,k0 < |u0,k0 | and p0,k0 > |v0,k0 |, Case 3 to p0,k0 < |u0,k0 | and
p0,k0 ≤ |v0,k0 |, and Case 4 to p0,k0 ≥ |u0,k0 | and p0,k0 < |v0,k0 |.

We prove the result for Case 1 (the other cases are left as exercises for the
reader). Here Definition 4.2(4) is satisfied and there exist pwords x, y, r, s
such that |x| = p0,k0 , x ↑ y, x = ru0,k0 and y = v0,k0s. First, if |r| > |v0,k0 |,
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then p0,k0 = |x| = |ru0,k0 | > |u0,k0v0,k0 | = |w| ≥ p′(w), which leads to a
contradiction. Now, if |r| ≤ |v0,k0 |, then by Lemma 1.2, there exist r′, z such
that v0,k0 = r′z, r ↑ r′, and u0,k0 ↑ zs. There exists r′′ such that r ⊂ r′′

and r′ ⊂ r′′, and there exist z′, s′ such that u0,k0 ⊂ z′s′, z ⊂ z′ and s ⊂ s′.
Thus, u0,k0v0,k0 ⊂ z′s′r′z′ showing that p0,k0 = |z′s′r′| is a weak period of
u0,k0v0,k0 , and p′(w) ≤ p0,k0 . On the other hand, p′(w) ≥ p0,k0 . Therefore,
p′(w) = p0,k0 which shows that the factorization (u0,k0 , v0,k0) is critical.

REMARK 4.2 Referring to the above theorem, the following strengthen
Statements 1 and 2:

1. If |v0,k0 | ≤ |v′0,l0
| and the factorization (u0,k0 , v0,k0) is critical, then

w is ((k0, l0))-nonspecial, and if |v0,k0 | > |v′0,l0
| and the factorization

(u′0,l0
, v′0,l0

) is critical, then w is ((k0, l0))-nonspecial.

2. If |v1,k1 | ≤ |v′1,l1
| and the factorization (u1,k1 , v1,k1) is critical, then

rev(w) is ((k1, l1))-nonspecial, and if |v1,k1 | > |v′1,l1
| and the factoriza-

tion (u′1,l1
, v′1,l1

) is critical, then rev(w) is ((k1, l1))-nonspecial.

We conclude this section by characterizing the special partial words that
admit critical factorizations. If w is such a special partial word satisfying
|v0,0| ≤ |v′0,0|, then p0,0 = p(w, |u0,0| − 1) < p′(w). The following theorems
give a bound of how far p0,0 is from p′(w) and explain why Algorithm 4.3 is
faster in average than a trivial algorithm where every position would be tested
for critical factorization.

THEOREM 4.4
Let w be a special partial word that admits a critical factorization, and let v0,0

(respectively, v′0,0) be the maximal suffix of w with respect to �l (respectively,
�r). Let u0,0, u

′
0,0 be partial words such that w = u0,0v0,0 = u′0,0v

′
0,0. If w is

special according to Definition 4.3(1), then

• If |v0,0| ≤ |v′0,0|, then the following hold:

1. If p0,0 ≤ |v0,0|, then there exist nonnegative integers m,n, par-
tial words x0, . . . , xm+2, x

′
1, . . . , x

′
m+1 of length n, and partial words

y0, . . . , ym+1, y
′
1, . . . , y

′
m of length p′(w)− p0,0 − n such that

– x0y0x
′
1y

′
1x1y1 . . . xm−1ym−1x

′
my

′
mxmymx

′
m+1ym+1xm+1 has a

weak period of p′(w)− p0,0,
– xm+1 ↑ xm+2,
– p0,0 = |x1y1x2y2 . . . xmymxm+1| < p0,0 + |x0y0| = p′(w),
– u0,0 is a suffix of a weakly p′(w)-periodic partial word ending

with x0y0x1y1x2y2 . . . xmymxm+1,
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– v0,0 is a prefix of a weakly p′(w)-periodic partial word starting
with x′1y

′
1x

′
2y

′
2 . . . x

′
my

′
mx

′
m+1ym+1xm+2.

2. If p0,0 > |v0,0|, then let s denote the nonempty suffix of length
p0,0−|v0,0| of u0,0. Then there exist nonnegative integers m,n and
partial words as above except that

– p0,0 = |x1y1x2y2 . . . xmymxm+1s|,
– u0,0 is a suffix of a weakly p′(w)-periodic partial word ending

with x0y0x1y1x2y2 . . . xmymxm+1s,
– v0,0 = x′1y

′
1x

′
2y

′
2 . . . x

′
my

′
mx

′
m+1.

• If |v0,0| ≥ |v′0,0|, then the above hold when replacing u0,0, v0,0 by u′0,0, v
′
0,0

respectively.

PROOF Let x, y, r ∈W (A)\{ε} and s ∈W (A) be such that |x| = p0,0, x ↑
y, u0,0 = rx, and either v0,0 = ys or y = v0,0s. We first assume that v0,0 = ys
(this case is related to Statement 1). Since w admits a critical factorization,
there exists (k0, l0) 6= (0, 0) such that w is ((k0, l0))-nonspecial and either
(u0,k0 , v0,k0) (if |v0,k0 | ≤ |v′0,l0

|) or (u′0,l0
, v′0,l0

) (if |v0,k0 | > |v′0,l0
|) is critical

with minimal local period q (here p0,0 < q = p′(w)). Let α, β ∈ W (A) \ {ε}
be such that αx ↑ yβ, |αx| = |yβ| = q, either u0,0 is a suffix of αx or αx is a
suffix of u0,0, and either yβ is a prefix of v0,0 or v0,0 is a prefix of yβ. Let m
be defined as b |x||α|c and n as |x|(mod |α|). Then let α = x0y0, β = ym+1xm+2,
x = x1y1x2y2 . . . xmymxm+1, and y = x′1y

′
1x

′
2y

′
2 . . . x

′
my

′
mx

′
m+1 where each

xi, x
′
i has length n and each yi, y

′
i has length |α| − n. By Theorem 2.2,

pshuffle|α|(αx, yβ) =
x0y0x

′
1y

′
1x1y1x

′
2y

′
2 . . . xm−1ym−1x

′
my

′
mxmymx

′
m+1ym+1xm+1

is weakly |α|-periodic and sshuffle|α|(αx, yβ) = xm+1xm+2 is |x|(mod|α|)-
periodic (which means that xm+1 ↑ xm+2) and the result follows. We now
assume that y = v0,0s with s 6= ε (this case is related to Statement 2). Set
x = γs. Here αx ↑ v0,0βs for some α, β ∈ W (A) \ {ε}. By simplification,
αγ ↑ v0,0β, and we also have γ ↑ v0,0. The result follows similarly as above.

THEOREM 4.5
Let w be a special partial word that admits a critical factorization, and let v0,0

(respectively, v′0,0) be the maximal suffix of w with respect to �l (respectively,
�r). Let u0,0, u

′
0,0 be partial words such that w = u0,0v0,0 = u′0,0v

′
0,0. If w is

special according to Definition 4.3(2), then the following hold:

• If |v0,0| ≤ |v′0,0|, then the following hold:

1. If p0,0 ≤ |u0,0|, then there exist nonnegative integers m,n, par-
tial words x0, . . . , xm+2, x

′
1, . . . , x

′
m+1 of length n, and partial words

y0, . . . , ym+1, y
′
1, . . . , y

′
m of length p′(w)− p0,0 − n such that
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– x0y0x
′
1y

′
1x1y1 . . . xm−1ym−1x

′
my

′
mxmymx

′
m+1ym+1xm+1 has a

weak period of p′(w)− p0,0,
– xm+1 ↑ xm+2,
– p0,0 = |x′1y′1x′2y′2 . . . x′my′mx′m+1| < p0,0 + |ym+1xm+2| = p′(w),
– u0,0 is a suffix of a weakly p′(w)-periodic partial word ending

with x0y0x1y1x2y2 . . . xmymxm+1,
– v0,0 is a prefix of a weakly p′(w)-periodic partial word starting

with x′1y
′
1x

′
2y

′
2 . . . x

′
my

′
mx

′
m+1ym+1xm+2.

2. If p0,0 > |u0,0|, then let r denote the nonempty prefix of length
p0,0−|u0,0| of v0,0. Then there exist nonnegative integers m,n and
partial words as above except that

– p0,0 = |rx′1y′1x′2y′2 . . . x′my′mx′m+1|,
– u0,0 = x1y1x2y2 . . . xmymxm+1,
– v0,0 is a prefix of a wealky p′(w)-periodic partial word starting

with rx′1y
′
1x

′
2y

′
2 . . . x

′
my

′
mx

′
m+1ym+1xm+2.

• If |v0,0| ≥ |v′0,0|, then the above hold when replacing u0,0, v0,0 by u′0,0, v
′
0,0

respectively.

PROOF Let x, y, s ∈ W (A) \ {ε} and r ∈ W (A) be such that |x| = p0,0,
x ↑ y, either u0,0 = rx or x = ru0,0, v0,0 = ys, and let (k0, l0) and q be as
above. Statement 1 is similar to Statement 1 of Theorem 4.4. For Statement
2, let α, β, γ ∈W (A) \ {ε} be such that y = rγ, rαu0,0 ↑ yβ, |αx| = |yβ| = q,
and either yβ is a prefix of v0,0 or v0,0 is a prefix of yβ. By simplification,
αu0,0 ↑ γβ, and we also have u0,0 ↑ γ. The result follows from Theorem 2.2.

4.5 Tests

In this chapter, we considered one of the most fundamental results on pe-
riodicity of words, namely the critical factorization theorem, and discussed it
in the framework of partial words. While the critical factorization theorem
on full words, Theorem 4.1, shows that critical factorizations are unavoid-
able, Theorem 4.2 shows that such factorizations can be possibly avoidable
for the so-called special partial words. Then, Theorem 4.3 refines the class
of the special partial words to the class of the so-called ((k,l))-special partial
words. Theorem 4.3’s proof leads to an efficient algorithm which, given a
partial word with an arbitrary number of holes, outputs “no critical factor-
ization exists” or outputs a critical factorization that gets computed from the
lexicographic/reverse lexicographic orderings of the nonempty suffixes of the
partial word and its reversal.
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Finally, Theorem 4.4 and 4.5 characterize the ((0, 0))-special partial words
that admit critical factorizations.

In the testing of the algorithm, it is important to make the distinction
between partial words that have a critical factorization and partial words for
which no critical factorization exists. In Table 4.1, we provide data concerning
partial words without critical factorizations. Tests were run on all partial
words with an arbitrary number of holes over a 3-letter alphabet from lengths
two to twelve.

TABLE 4.1: Percentage of partial words without critical
factorizations.

Length Number without CFs Number Percentage

2 0 16 0.0
3 0 64 0.0
4 24 256 9.375
5 144 1024 14.063
6 816 4096 19.922
7 3852 16384 23.511
8 17376 65536 26.514
9 73962 262144 28.214
10 311460 1048576 29.703
11 1269606 4194304 30.270
12 5115750 16777216 30.492

In the case where a partial word has no critical factorization, Algorithm 4.3
exhaustively searches |w| − ‖H(w)‖ positions for a factorization. Table 4.2
shows the average values for the indices k0, l0, k1, l1 after the algorithm com-
pletes over the same data set. Also, it shows the average values for these
indices when partial words without critical factorizations are ignored.

This data shows that if a partial word has a critical factorization, then
Algorithm 4.3 discovers it extremely quickly.

Exercises

4.1 Let A be totally ordered by a ≺ b ≺ c. Order the nonempty suffixes of
u = abc��cac� with respect to �l and with respect to �r. What are the
maximal suffixes of u with respect to �l and with respect to �r?

4.2 Prove Statement 2 of Lemma 4.2.

4.3 S Prove Statement 2 of Lemma 4.3.
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TABLE 4.2: Average values for the indices k0, l0, k1, l1.
Length All partial words Partial words with CFs

k0 l0 k1 l1 k0 l0 k1 l1
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.137 0.180 0.105 0.102 0.0 0.0 0.0 0.0
5 0.352 0.377 0.233 0.212 0.017 0.017 0.010 0.010
6 0.617 0.657 0.453 0.394 0.049 0.049 0.033 0.033
7 0.848 0.910 0.651 0.568 0.083 0.081 0.058 0.058
8 1.093 1.181 0.862 0.763 0.123 0.121 0.091 0.090
9 1.297 1.413 1.050 0.945 0.160 0.158 0.121 0.120
10 1.505 1.650 1.242 1.134 0.196 0.194 0.151 0.150
11 1.676 1.848 1.407 1.301 0.229 0.228 0.180 0.179
12 1.834 2.030 1.562 1.460 0.262 0.261 0.209 0.209

4.4 Use Algorithm 4.1 to find a critical factorization of w = abbcbac.

4.5 We call a partial word u a palindrome if u = rev(u). Prove that every
full palindrome has at least 2 critical factorizations.

4.6 Classify the square at position 4 of w = abb���cbb. Is it internal? Left-
external? Right-external? Left- and right-external?

4.7 Can you build a pword w that contains squares that are internal, left-
external, right-external, and left-and right-external?

4.8 Is the factorization (abb, c�a�cb) of w = abbc�a�cb critical? Why or why
not?

4.9 S Compute all minimal local periods of w = acb�cba. What is the
maximum among all minimal local periods? Does w have a critical
factorization?

4.10 S There exist unbordered partial words of length at least two that have
no critical factorizations. True or False? Justify your answer.

4.11 S Is w = ccb�ab�ba special? Why or why not?

Challenging exercises

4.12 S Prove, using the definitions, that under some restrictions on u and
v, the relations u �l v and u �r v together define “u is a prefix of v”.
In other words, if u ∈ A+ and v ∈ W1(A) \ {ε}, then prove that both
u �l v and u �r v if and only if u ∈ P (v).
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4.13 Let u, v be nonempty partial words. Show that both u �l v and u �r v
if and only if u ∈ P (v) or there exist pwords x, y and a ∈ A such that
u = pre(u, v)�x and v = pre(u, v)ay (the first position where u and v
differ is a hole in u).

4.14 Prove Theorem 4.1.

4.15 Prove Algorithm 4.1.

4.16 Prove Cases 3 and 4 of Theorem 4.2.

4.17 Are these partial words special? Do they have critical factorizations?

• baa�bb
• aaa�aabaaa
• abb�abba
• babbabbab�b
• babb�ab
• ab�aaba

4.18 Determine integers k, l for which the following partial words are ((k, l))-
special. Do they have critical factorizations?

• aab�babbabba
• aabba�abbababa
• b�baabbaab
• baababaa�b
• baabbba�baa
• aaab�babb

4.19 S Run Algorithm 4.3 on input w = a�cbba and discuss as in Exam-
ple 4.7.

4.20 Repeat Exercise 4.19 for w = ccb�ab�bbcc�.

4.21 S Prove Cases 2, 3 and 4 of Theorem 4.3.

Programming exercises

4.22 Write a program that takes as input a partial word w and a total order-
ing of α(w), and outputs the nonempty suffixes of w with respect to the
two orderings �l and �r. Run your program on w = abb��bba�bcabbc.
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4.23 Design an applet that provides an implementation of Algorithm 4.1, that
is, given as input a word w of length at least two, the applet outputs a
critical factorization for w.

4.24 Write a program that computes all the minimal local periods of a given
pword and that classifies them as internal? left-external? right-external?
left- and right-external? Run your program on

• ccb�ab�ba
• abb���cbb

4.25 Give pseudo code for Algorithm 4.2.

4.26 Write a program to determine whether or not a given partial word w
is special. Your program should also determine whether or not w has a
critical factorization. Run your program on the pwords of Exercise 4.17.

Websites

A World Wide Web server interface at

http://www.uncg.edu/mat/research/cft2

has been established for automated use of Algorithm 4.3. An earlier version
of the algorithm, that works only for one hole, was established at

http://www.uncg.edu/mat/cft

Bibliographic notes

Several versions of the critical factorization theorem on words exist [49, 51,
68, 69, 70, 106, 107]. Section 4.2 discusses the version which appears in [51].

Algorithm 4.1 is from Crochemore and Perrin who showed that a critical
factorization can be found very efficiently from the computation of the maxi-
mal suffixes of the word with respect to the two total orderings described in
Section 4.1: the lexicographic ordering related to a fixed total ordering on the
alphabet �l, and the lexicographic ordering obtained by reversing the order
of letters in the alphabet �r [57]. There exist linear time (in the length of the
word) algorithms for such computations [57, 58, 114] (the latter two use the
suffix tree construction).
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In [29], Blanchet-Sadri and Duncan extended the critical factorization the-
orem to partial words with one hole. In this case, they called a factorization
critical if its minimal local period is equal to the minimal weak period of the
partial word. It turned out that for partial words, critical factorizations may
be avoidable. They described the class of the special partial words with one
hole that possibly avoid critical factorizations. They gave a version of the
critical factorization theorem for the nonspecial partial words with one hole.
By refining the method based on the maximal suffixes with respect to the lex-
icographic/reverse lexicographic orderings, they gave a version of the critical
factorization theorem for the so-called ((k, l))-nonspecial partial words with
one hole. Their proof led to an efficient algorithm which, given a partial word
with one hole, outputs a critical factorization when one exists or outputs “no
such factorization exists”. Lemmas 4.2 and 4.3 as well as Definition 4.2 are
from Blanchet-Sadri and Duncan [29].

In [42], Blanchet-Sadri and Wetzler further investigated the relationship
between local and global periodicity of partial words. They extended the
critical factorization theorem to partial words with an arbitrary number of
holes. They characterized precisely the class of partial words that do not
admit critical factorizations. They then developed an efficient algorithm which
computes a critical factorization when one exists. Sections 4.3, 4.4 and 4.5
are from Blanchet-Sadri and Wetzler [42].

In [57], a new string matching algorithm was presented, which relies on the
critical factorization theorem and which can be viewed as an intermediate
between the classical algorithms of Knuth, Morris, and Pratt [98], on the
one hand, and Boyer and Moore [44], on the other hand. The algorithm is
linear in time and uses constant space as the algorithm of Galil and Seiferas
[79]. It presents the advantage of being remarkably simple which consequently
makes its analysis possible. The critical factorization theorem has found other
important applications which include the design of efficient approximation
algorithms for the shortest superstring problem [45, 88, 106].

A periodicity theorem on words, which has strong analogies with the critical
factorization theorem, and three applications were derived in [115]. There,
the authors improved some results motivated by string matching problems
[59, 79]. In particular, they improved the upper bound on the number of
comparisons in the text processing of the Galil and Seiferas’ time-space op-
timal string matching algorithm [79]. For other recent developments on the
critical factorization theorem and on the study of the local periodic structure
of words, we refer the reader to [70, 71, 72].



Chapter 5

Guibas and Odlyzko’s Theorem

In this chapter, we discuss a fundamental periodicity result on words due to
Guibas and Odlyzko which states that for every word u, there exists a “binary
equivalent for u,” that is, a binary word v of same length as u that has exactly
the same set of periods as u. In summary, the following table describes the
number of holes and section numbers where the above mentioned result is
discussed:

Holes Sections

0 5.1
1 5.2 and 5.3

5.1 The zero-hole case

In this section, we restrict ourselves to full words. We first state Guibas
and Odlyzko’s result.

THEOREM 5.1
For every word u over an alphabet A, there exists a word v of length |u| over
the alphabet {0, 1} such that P(v) = P(u).

Example 5.1
If u = abacbaba, then the set of periods of u is P(u) = {5, 7, 8}. It is

easy to see that v = 01011010 satisfies the desired properties in the theorem.
Note that the existence of a binary equivalent for u is not unique here since
01010010 does the job as well.

We omit the proof of Theorem 5.1 because we will prove a more general
result in the next section. We mention though that an elementary short
constructive proof exists that is based on a few properties of words. We start
with the following property that relates to primitivity.

117
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LEMMA 5.1
Let u be a word over the alphabet {0, 1}. Then u0 or u1 is primitive.

Example 5.2
Considering the word 01010, if we append 1 we get the word (01)3 that is
clearly nonprimitive, but if we append 0 we get the primitive word 010100.

The next three properties the theorem is based on, stated in Lemmas 5.2,
5.3 and 5.4, can be illustated with the word u equal to

abacbabacbabacbaba

of length |u| = 18 and set of periods P(u) = {5, 10, 15, 17, 18}. Factorizing u
into blocks of length p(u) = 5 gives

(abacb)(abacb)(abacb)aba

with a leftover block of length 3, and continuing further we get

(aba(cb))(aba(cb))(aba(cb))aba

Setting v = aba and w = cb, we can rewrite u as (vw)kv with k = 3. Note that
the periods q of u satisfying q ≤ |u|−p(u) are 5 and 10 which are multiples of
p(u), and the ones that satisfy |u|−p(u) < q < |u| are 15 and 17. If we consider
17 for example, it can be written as q = 17 = (3− 1)5 + 7 = (k − 1)p(u) + r
with |v| = 3 < 7 < 8 = |v|+ p(u). Note that r = 7 ∈ P(abacbaba) = P(vwv).
A similar statement can be said about the period 15.

LEMMA 5.2
Let u be a word over an alphabet A. If q is a period of u satisfying q ≤
|u| − p(u), then q is a multiple of p(u).

LEMMA 5.3
Let u be a word over an alphabet A with minimal period p(u). Then there

are words v, w (possibly v = ε) and a positive integer k such that u = (vw)kv,
w 6= ε and p(u) = |vw|.

LEMMA 5.4
Let u be as in Lemma 5.3 with k > 1, and let q be such that |u| − p(u) < q <
|u|. Put q = (k− 1)p(u) + r where |v| < r < |v|+ p(u). Then q ∈ P(u) if and
only if r ∈ P(vwv).

The above mentioned properties lead to an algorithm that computes a bi-
nary equivalent of any given input.
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ALGORITHM 5.1
Given as input a word u over an alphabet A, the algorithm computes a word
Bin(u) of length |u| over the alphabet {0, 1} such that P(Bin(u)) = P(u).

Find the minimal period p(u) of u.

Step 1: If p(u) = |u|, then output Bin(u) = 01|u|−1.

Step 2: If p(u) 6= |u|, then find words v, w and a positive integer k such that
u = (vw)kv, w 6= ε and p(u) = |vw|.

• If k = 1, then compute Bin(v), find c in the alphabet {0, 1} such
that Bin(v)1|w|−1c is primitive, and output

Bin(u) = Bin(v)1|w|−1cBin(v)

• If k > 1, then compute Bin(vwv) = v′w′v′ where |v′| = |v| and
|w′| = |w| and output

Bin(u) = (v′w′)kv′

REMARK 5.1 Note that Bin(ε) = ε, and if u 6= ε then Bin(u) begins
with 0.

We give an example.

Example 5.3
Returning to the word u = abacbabacbabacbaba, the following depicts the path
pursued by the algorithm on u:

abacbabacbabacbaba 010110101101011010
↓ ↑

abacbaba 01011010
↓ ↑
aba 010
↓ ↑
a → 0

Computations show that

Bin(abacbaba) = Bin(aba(cb)aba) = 010(11)010

Both abacbaba and 01011010 have the periods 5, 7 and 8 as noticed earlier.
Another possible output for abacbaba is 01010010 since both 01011 and 01010
are primitive. Now, both u = (aba(cb))3aba and Bin(u) = (010(11))3010
have the periods 5, 10, 15, 17 and 18. Another possible output for Bin(u) is
(010(10))3010.
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The time complexity of Algorithm 5.1 is stated in the following theorem.

THEOREM 5.2
Given a word u over an alphabet A, a word Bin(u) over the alphabet {0, 1}

with the same length and the same periods of u can be computed in linear
time.

5.2 The main result

In this section, we extend Theorem 5.1 to partial words with one hole.
We prove that for every partial word u with one hole over an alphabet A,
there exists a partial word v of length |u| over the alphabet {0, 1} such that
H(v) ⊂ H(u), P(v) = P(u) and P ′(v) = P ′(u) (Theorem 5.3).

We first define a construction of a word of length n from a given word u of
length n over the alphabet A ∪ {�}. Let S be a subset of {0, . . . , n − 1} and
a ∈ A ∪ {�}. We define the word u(S, a) as follows:

u(S, a)(i) =
{
u(i) if i 6∈ S
a otherwise

More specifically, u(S, a) is built by replacing all the positions in S by “a.”

Example 5.4
Consider the word u = abb�cbba over the alphabet {a, b, c, �}. We can see that
u({0, 3, 4}, a) = abbaabba.

If S is the singleton set {s}, then we will sometimes abbreviate u(S, a) by
u(s, a). Throughout this chapter, 0̄ will denote 1 and 1̄ will denote 0.

A first step towards our goal is to extend to partial words with one hole
the properties of words and periods of Section 5.1. They are Lemmas 5.5, 5.6,
5.7, 5.8 and 5.9 that follow.

LEMMA 5.5
Let u be a partial word with one hole over the alphabet {0, 1} which is not of
the form x�x for any x. Then u0 or u1 is primitive.

PROOF Assume that u0 ⊂ vk, u1 ⊂ wl for some primitive words v, w
and integers k, l ≥ 2. Both |v| and |w| are periods of u, and, since k, l ≥ 2,
|u| = k|v| − 1 = l|w| − 1 ≥ 2 max{|v|, |w|} − 1 ≥ |v|+ |w| − 1.
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Case 1. |u| = |v|+ |w| − 1
Here |v| = |w| and k = l = 2. Since v ends with 0 and w with 1, put v = y0

and w = z1 with |y| = |z|. We get u ⊂ y0y and u ⊂ z1z. We conclude that
u = x�x where x = y = z, a contradiction.

Case 2. |u| > |v|+ |w| − 1
By Theorem 3.1, u is also gcd(|v|, |w|)-periodic. However, gcd(|v|, |w|) di-

vides |v| and |w|, and so u ⊂ xm with some word x satisfying |x| = gcd(|v|, |w|)
and some integer m. Since v ends with 0 and w with 1, we get that x ends
with 0 and 1, a contradiction.

The following lemma gives the structure of the set of weak periods of a
partial word with one hole.

LEMMA 5.6
Let u be a partial word with one hole over an alphabet A. If q is a weak period
of u satisfying q ≤ |u| − p′(u), then q is a multiple of p′(u).

PROOF See Exercise 3.3.

The following lemma factorizes a partial word with one hole.

LEMMA 5.7
Let u be a partial word with one hole over an alphabet A with minimal weak

period p′(u). Then one of the following holds:

1. There is a positive integer k and there are partial words v, w1, w2, . . . , wk

(possibly v = ε) such that

u = vw1vw2 . . . vwkv

where p′(u) = |vw1| = |vw2| = · · · = |vwk| and where there exists
1 ≤ i ≤ k such that wi = x�y, wj = xay if j < i, and wj = xby if j > i
for some a, b ∈ A and x, y ∈ A∗.

FIGURE 5.1: Type 1 factorization.
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2. There is a positive integer k and there are partial words w, v1, v2, . . . , vk+1

such that

u = v1wv2w . . . vkwvk+1

where p′(u) = |v1w| = |v2w| = · · · = |vkw| = |vk+1w|, w 6= ε, and where
there exists 1 ≤ i ≤ k + 1 such that vi = x�y, vj = xay if j < i, and
vj = xby if j > i for some a, b ∈ A and x, y ∈ A∗.

FIGURE 5.2: Type 2 factorization.

PROOF Let u be a partial word with one hole over A with minimal
weak period p′(u). Then |u| = kp′(u) + r where 0 ≤ r < p′(u). Put u =
v1w1v2w2 . . . vkwkvk+1 where |v1w1| = |v2w2| = · · · = |vkwk| = p′(u) and
|v1| = |v2| = · · · = |vk| = |vk+1| = r. Since p′(u) is a weak period of u,
viwi ↑ vi+1wi+1 for all 1 ≤ i < k and vk ↑ vk+1. Two cases arise.

Case 1. There exists 1 ≤ i ≤ k such that the hole is in wi.
In this case, v1 = v2 = · · · = vk = vk+1 = v for some possibly empty v.

Here we get the situation described in Statement 1.

Case 2. There exists 1 ≤ i ≤ k + 1 such that the hole is in vi.
In this case, w1 = w2 = · · · = wk = w for some nonempty w (if w is empty,

then r = |vk+1| = |vk| = p′(u), a contradiction). Note that k ≥ 1 (otherwise,
u = vk+1 and u has weak period |vk+1| < p′(u) contradicting the fact that
p′(u) is the minimal weak period of u). Here we get the situation described
in Statement 2.

We illustrate Lemma 5.7 with the following examples.

Example 5.5

If u = abcdab�dabfd, then we get the factorization

(abcd) (ab�d) (abfd)
w1 w2 w3
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where v = ε, k = 3, i = 2, x = ab and y = d. The underlined “c” is the
“a” mentioned in Lemma 5.7, while the underlined “f” is the “b” mentioned
there. Now,

abcdabfdabfdabcdabcdab�dabfdabcdabcdabcdabfd

can be factorized as

(abcdabfdabfd) (abcd) (abcdab�dabfd) (abcd) (abcdabcdabfd)
v1 w v2 w v3

where k = 2, i = 2, x = abcdab and y = dabfd.

LEMMA 5.8

Let u be as in Lemma 5.7(1) with k > 1, and let q be such that |u| − p′(u) <
q < |u|. Put q = (k − 1)p′(u) + r where |v| < r < |v| + p′(u). Also put
H(vwiv) = {h}. Then q ∈ P(u) if and only if q ∈ P ′(u). Moreover, q ∈ P ′(u)
if and only if the following three conditions hold:

1. r ∈ P ′(vwiv).

2. If i 6= 1 and h+ r < |v|+ p′(u), then (vwiv)(h+ r) = a.

3. If i 6= k and r ≤ h, then (vwiv)(h− r) = b.

PROOF For any 0 ≤ j < |u|−q = p′(u)+|v|−r, we have u(j) = (vw1v)(j)
and u(j+q) = (vwkv)(j+r). Hence u(j) = u(j+q) if and only if (vw1v)(j) =
(vwkv)(j+ r). The latter implies that q ∈ P ′(u) if and only if Conditions 1–3
hold. To see this, first let us assume that q ∈ P ′(u) and let j, j+r ∈ D(vwiv).
We have j ∈ D(vw1v) and j + r ∈ D(vwkv) and so j, j + q ∈ D(u). We get
u(j) = u(j+q) and so (vwiv)(j) = (vw1v)(j) = (vwkv)(j+r) = (vwiv)(j+r)
showing that Condition 1 holds. To see that Condition 2 holds, note that
h ∈ D(u) and h + q ∈ D(u). We have (vwiv)(h + r) = (vwkv)(h + r) =
u(h + q) = u(h) = (vw1v)(h) = a. To see that Condition 3 holds, note that
h− r ∈ D(u) and h− r+ q ∈ D(u). We have (vwiv)(h− r) = (vw1v)(h− r) =
u(h− r) = u(h− r + q) = (vwkv)(h) = b.

Now, let us show that if Conditions 1–3 hold, then q ∈ P ′(u). Let j, j+ q ∈
D(u). We get j ∈ D(vw1v) and j + r ∈ D(vwkv). If j 6∈ {h, h − r}, then
j ∈ D(vwiv) and j + r ∈ D(vwiv). In this case, (vw1v)(j) = (vwiv)(j) =
(vwiv)(j+r) = (vwkv)(j+r) since Condition 1 holds, and so u(j) = u(j+ q).
If j = h, then i 6= 1 and j + r ∈ D(vwiv). In this case, u(j) = (vw1v)(j) =
a = (vwiv)(j + r) = (vwkv)(j + r) = u(j + q) since Condition 2 holds. If
j = h − r, then i 6= k and j ∈ D(vwiv). In this case, u(j) = (vw1v)(j) =
(vwiv)(j) = b = (vwkv)(j + r) = u(j + q) since Condition 3 holds.
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LEMMA 5.9
Let u be as in Lemma 5.7(2) with k > 1, and let q be such that |u| − p′(u) <
q < |u|. Put q = (k− 1)p′(u) + r where |vi| < r < |vi|+ p′(u). Then q ∈ P(u)
if and only if q ∈ P ′(u).

1. If i 6= k+1 and H(vi) = {h}, then q ∈ P ′(u) if and only if the following
two conditions hold:

(a) r ∈ P ′(viwvi+1).

(b) If i 6= 1 and h+ r < |vi|+ p′(u), then (viwvi+1)(h+ r) = a.

2. If i 6= 1 and H(vi−1wvi) = {h}, then q ∈ P ′(u) if and only if the
following two conditions hold:

(a) r ∈ P ′(vi−1wvi).

(b) If i 6= k + 1 and r ≤ h, then (vi−1wvi)(h− r) = b.

PROOF For any 0 ≤ j < |u| − q = p′(u) + |vi| − r, we have u(j) =
(v1wv2)(j) and u(j+q) = (vkwvk+1)(j+r). Hence u(j) = u(j+q) if and only
if (v1wv2)(j) = (vkwvk+1)(j + r). The proof is similar to that of Lemma 5.8.

Lemma 5.9 is pictured in Figures 5.3 and 5.4.

FIGURE 5.3: The case of Lemma 5.9(1).

Algorithm 5.2, that will be described fully in Section 5.3, works as follows:
Let A be an alphabet not containing the special symbol 2. Given as input
a partial word u with one hole over A where H(u) = {h}, Algorithm 5.2
computes a triple T (u) = [Bin′(u), αu, βu], where Bin′(u) is a partial word of
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FIGURE 5.4: The case of Lemma 5.9(2).

length |u| over the alphabet {0, 1} such that Bin′(u) does not begin with 1,
H(Bin′(u)) ⊂ {h}, where P(Bin′(u)) = P(u) and P ′(Bin′(u)) = P ′(u), and
where

αu =
{

2 if h− p′(u) < 0
u(h− p′(u)) otherwise

and

βu =
{

2 if h+ p′(u) ≥ |u|
u(h+ p′(u)) otherwise

In particular, T (�) = [0,2,2], and if a ∈ A and k > 1, then T (�ak−1) =
[0k,2, a]. Moreover, if P(u) 6= P ′(u), then H(Bin′(u)) = {h} and αu =
u(h − p′(u)) 6= u(h + p′(u)) = βu. Also, if αu 6= 2 and βu 6= 2, then
H(Bin′(u)) = {h}.

In summary, the algorithm works as follows:

find the minimal weak period p′(u) of u
if p′(u) = |u| then output T (u) = [01|u|−1,2,2]
if p′(u) 6= |u| then find pwords that satisfy Lemma 5.7

1. if the pwords found satisfy Lemma 5.7(1) then
(a) k = 1
(b) if k > 1 then compute T (vwiv) = [Bin′(vwiv), α, β]

(i) if i = 1 then
A. β = 2

B. α = 2 and β 6= 2

C. α 6= 2 and β 6= 2

(ii) if i = k then
A. α = 2
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B. α 6= 2 and β = 2

C. α 6= 2 and β 6= 2

(iii) 1 < i < k and a = b
(iv) if 1 < i < k and a 6= b then

A. α 6= 2 and β = 2

B. β 6= 2 and x = ε
C. (α = 2 and β = 2) or (β 6= 2 and x 6= ε)

2. if the pwords found satisfy Lemma 5.7(2) then
(a) if k = 1 then

(i) if v1 = x�y and v2 = xby then
compute T (v1) = [Bin′(v1), α, β]

A. β = 2

B. β 6= 2

(ii) if v1 = xay and v2 = x�y then
compute T (v2) = [Bin′(v2), α, β]

A. α = 2

B. α 6= 2

(b) if k > 1 then
(i) i = 1
(ii) i = k + 1
(iii) 1 < i < k + 1 and a = b
(iv) if 1 < i < k + 1 and a 6= b then

compute T (vi) = [Bin′(vi), α, β]
A.
B.
C.
D.
E.
F.

We will prove a series of lemmas that handle different cases of the algorithm,
and illustrate them with a few examples. We first concentrate on pwords that
satisfy Lemma 5.7(1). Lemma 5.10 deals with k = 1 and Lemmas 5.11, 5.12,
5.13 and 5.14 with k > 1.

LEMMA 5.10 (Item 1(a))

Let u be as in Lemma 5.7(1) with k = 1. Assume that Bin(v) begins with 0.
For c ∈ {0, 1} such that Bin(v)1|w1|−1c is primitive, P ′(u′) = P(u′) = P(u) =
P ′(u) for the binary word u′ = Bin(v)1|w1|−1cBin(v).

PROOF Put w1 = w. Here u′ is a full word and so P ′(u′) = P(u′). Also
P ′(u) = P(u) holds since every weak period of u is greater than or equal to
p′(u) = |vw|. Clearly, P(u) ⊂ P(u′), since P(Bin(v)) = P(v) and all periods
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q of u satisfy q ≥ p(u) ≥ p′(u) = |vw| = |Bin(v)1|w|−1c|. Assume then that
there exists q ∈ P(u′) \ P(u) and also that q is minimal with this property.
Either q < |Bin(v)| or |Bin(v)| + |w| − 1 ≤ q < |u|, since Bin(v) does not
begin with 1.

If q < |Bin(v)|, then, by the minimality of q, q is the minimal period of
u′, and Lemma 5.2 implies that p′(u) is a multiple of q, and so Bin(v)1|w|−1c
is not primitive, a contradiction. If q = |Bin(v)| + |w| − 1, then c = 0. In
this case, if |w| > 1, we get Bin(v)1 = 0Bin(v), which is impossible, and if
|w| = 1, we get that Bin(v) consists of 0’s only and Bin(v)1|w|−1c = Bin(v)0
is not primitive. Therefore q > |Bin(v)|+ |w| − 1, and q > p′(u) = |vw| since
p′(u) 6∈ P(u′) \ P(u). Put q = p′(u) + r where r > 0. Then r is a period of
Bin(v) and hence of v. But this implies q ∈ P(u), a contradiction.

To illustrate Lemma 5.10, we consider the following example.

Example 5.6
Let u = acac�cbaca with P(u) = P ′(u) = {7, 9, 10}. We can decompose u as
in Lemma 5.7(1) obtaining the factors v = aca and w1 = c�cb. Since Bin(v) =
Bin(aca) = 010, both c = 0 and c = 1 make Bin(v)1|w1|−1c primitive. Thus
0101110010 and 0101111010 have the same periods and weak periods as u.

The following remark will be useful for understanding the next four lemmas.

REMARK 5.2 If u and q ∈ P(u) satisfy the assumptions of Lemma 5.8
and T (vwiv) = [Bin′(vwiv), α, β], then r ∈ P ′(vwiv) and the following hold:

• First, if h+r < |vwiv|, then h+p′(vwiv) ≤ h+r < |vwiv| and so β 6= 2.
Moreover, y 6= ε or v 6= ε (otherwise,

|x|+ r = |vx|+ r = h+ r < |vwiv| = |vx�yv| = |x�| = |x|+ 1

which leads to a contradiction with the fact that r > 0).

• Second, if r ≤ h, then p′(vwiv) ≤ r ≤ h and so h − p′(vwiv) ≥ 0
and α 6= 2. Moreover, x 6= ε (otherwise, we get the contradiction
|v| < r ≤ h = |vx| = |v|).

• Third, if h + r < |vwiv| and r > h, then |x| < |y| (otherwise, h +
r > h + h = |vx| + |vx| ≥ |vxyv| and so h + r ≥ |vx�yv| = |vwiv| a
contradiction).

• Fourth, if h+ r ≥ |vwiv| and r ≤ h, then |x| > |y| (otherwise, |vwiv| ≤
h+ r ≤ h+ h = |vx|+ |vx| ≤ |vxyv| < |vwiv| a contradiction).

• Fifth, if h+r < |vwiv| and α 6= 2, then |vwiv| ≥ p′(vwiv)+r (otherwise,
|vwiv| < p′(vwiv) + r ≤ h+ r < |vwiv| a contradiction).
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• Sixth, if r ≤ h and β 6= 2, then |vwiv| ≥ p′(vwiv) + r (otherwise,
|vwiv| < p′(vwiv) + r ≤ p′(vwiv) + h implying β = 2 a contradiction).

• Seventh, if α = 2 and β 6= 2, then |x| < |y| (otherwise, h+ p′(vwiv) >
h + h = |vx| + |vx| ≥ |vxyv| which implies h + p′(vwiv) ≥ |vwiv| and
thus β = 2 a contradiction).

• Eight, if α 6= 2 and β = 2, then |x| > |y| (otherwise, h + p′(vwiv) ≤
h+ h = |vx|+ |vx| ≤ |vxyv| < |vwiv| and so β 6= 2 a contradiction).

The next four lemmas refer to the following binary values whenever they
exist:

d1 = Bin′(vwiv)(h− p′(vwiv)) (5.1)
d2 = Bin′(vwiv)(h− p′(vwiv)) (5.2)
d3 = Bin′(vwiv)(h+ p′(vwiv)) (5.3)

d4 = Bin′(vwiv)(h+ p′(vwiv)) (5.4)

They also refer to “T” which means “True” and “F” which means “False.”

LEMMA 5.11 (Item 1(b)(i))
Let u be as in Lemma 5.7(1) with k > 1. If T (vwiv) = [Bin′(vwiv), α, β]

with H(Bin′(vwiv)) ⊂ H(vwiv) = {h} and i = 1, then the following hold:

A. If β = 2, then put Bin(vwkv) = v′w′v′ where |v′| = |v| and |w′| = |wk|.
Then P ′(u′) = P(u′) = P(u) = P ′(u) for the binary word

u′ = (v′w′)kv′

B. If α = 2 and β 6= 2, then |x| < |y| and put Bin′(vwiv) = v′w′v′ where
|v′| = |v| and |w′| = |wi|. Then P ′(u′) = P(u′) = P(u) = P ′(u) for the
binary partial word

u′ = (v′w′)(h, �)((v′w′)(h, d4))k−1v′

C. Otherwise, put Bin′(vwiv) = v′w′v′ where |v′| = |v| and |w′| = |wi|. Then
P ′(u′) = P(u′) = P(u) = P ′(u) for the binary partial word

u′ = v′w′((v′w′)(h, d̄))k−1v′

where d is defined by the following table when α = β:
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b = α x = ε y = ε v = ε |x| < |y| |x| = |y| |x| > |y|

T T T T d1 d1 d1

T T T F d1 d1 d1

T T F T d1 d1 d1

T T F F d1 d1 d1

T F T T d1 d1 d1

T F T F d1 d1 d1

T F F T
T F F F d1 d1

F T T T d2 d2 d2

F T T F d2 d2 d2

F T F T d2 d2 d2

F T F F d2 d2 d2

F F T T d2 d2 d2

F F T F d2 d2 d2

F F F T d2 d2 d2

F F F F

and by the following table when α 6= β:

b = α x = ε y = ε v = ε |x| < |y| |x| = |y| |x| > |y|

T T T T d1 d1 d1

T T T F d1 d1 d1

T T F T d1 d1 d1

T T F F d1 d1 d1

T F T T d1 d1 d1

T F T F d1 d1 d1

T F F T d1 d1 d1

T F F F d1 d1

F T T T d2 d2 d2

F T T F d2 d2 d2

F T F T d2 d2 d2

F T F F d2 d2 d2

F F T T d2 d2 d2

F F T F d2 d2 d2

F F F T d2 d2 d2

F F F F d2 d2 d2

unless an entry is empty in which case

u′ = rev(Bin′(rev(u)))

PROOF First, let us show that P ′(u) = P(u). The inclusion P(u) ⊂ P ′(u)
clearly holds. So let q ∈ P ′(u). If q ≤ |u|−p′(u), then q is a multiple of p′(u) by
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Lemma 5.6. In this case, since p′(u) ∈ P(u), also q ∈ P(u). If q > |u| − p′(u),
then clearly q ∈ P(u).

Now, let us show that P(u′) = P(u). Obviously, |u| ∈ P(u) and |u| ∈ P(u′).
First, consider q with q ≤ |u|−p′(u). If q ∈ P(u), then Lemma 5.6 gives that

q is a multiple of p′(u), and therefore q ∈ {p′(u), 2p′(u), . . . , (k− 1)p′(u)}. We
get q ∈ P(u′) since p′(u) ∈ P(u′). On the other hand, assume that q ∈ P(u′).
Now, |u′| = |u| ≥ p′(u) + q, and thus, by Theorem 3.1, gcd(p′(u), q) ∈ P(u′).
For Statement A, gcd(p′(u), q) is a period of v′w′v′ and hence of vwkv. So
gcd(p′(u), q) ∈ P(u) and since q is a multiple of gcd(p′(u), q), we also get
q ∈ P(u). For Statement C, v′w′v′ has a hole since α 6= 2 and β 6= 2, and
for the nonempty entries gcd(p′(u), q) is a period of (v′w′)(h, d̄)v′. If b = α,
then b = (vwiv)(h− p′(vwiv)) and so d̄ = d̄1 = Bin′(vwiv)(h− p′(vwiv)). In
this case, gcd(p′(u), q) is a period of vwkv. So gcd(p′(u), q) ∈ P(u) and since
q is a multiple of gcd(p′(u), q), we also get q ∈ P(u). The case where b 6= α
follows similarly.

Second, consider q with |u| − p′(u) < q < |u|, and put q = (k − 1)p′(u) + r
where |v| < r < p′(u) + |v|. For Statement A, q ∈ P(u) if and only if r ∈
P(vwkv) if and only if r ∈ P(v′w′v′) if and only if q ∈ P(u′). For Statements
B and C, β 6= 2 and if q ∈ P(u), then the conditions of Lemma 5.8(1,3) hold.
Here r ∈ P ′(vwiv) and if r ≤ h, then (vwiv)(h− r) = b.

Case 1. r ≤ h
By Remark 5.2(2,6), α 6= 2 and x 6= ε and |vwiv| ≥ p′(vwiv) + r. By

Lemma 5.6, r is a multiple of p′(vwiv) and so b = (vwiv)(h− r) = (vwiv)(h−
p′(vwiv)) = α. For the nonempty entries, we get (v′w′v′)(h − r) = d̄ since
d = d1, and q ∈ P(u′) by Lemma 5.8.

Case 2. r > h
For Statement B, we have r ∈ P(v′w′v′) and thus r ∈ P ′((v′w′)(h, �)v′).

For Statement C, we have r ∈ P ′(v′w′v′), and in either case q ∈ P(u′) by
Lemma 5.8.

The cases r ≤ h and r > h are handled similarly as above in order to show
that if q ∈ P(u′) then q ∈ P(u).

Last, let us show that P ′(u′) = P ′(u). Obviously, |u| ∈ P ′(u) and |u| ∈
P ′(u′). Note that p′(u) = |vw1| = · · · = |vwk| = |v′w′| and so p′(u) ∈ P ′(u)
and p′(u) ∈ P ′(u′).

Consider q with q ≤ |u| − p′(u). If q ∈ P ′(u), then Lemma 5.6 gives that q
is a multiple of p′(u), and therefore q ∈ {p′(u), 2p′(u), . . . , (k − 1)p′(u)}. We
get q ∈ P ′(u′). On the other hand, if q ∈ P ′(u′), then |u′| = |u| ≥ p′(u) + q,
and thus, by Theorem 3.1, gcd(p′(u), q) ∈ P(u′). Since P(u′) = P(u) ⊂
P ′(u), we get that gcd(p′(u), q) ∈ P ′(u). By the minimality of p′(u), we have
gcd(p′(u), q) = p′(u), and therefore p′(u) divides q. We get q ∈ P ′(u).

Now, consider q with |u| − p′(u) < q < |u|, and put q = (k − 1)p′(u) + r
where |v| < r < p′(u) + |v|. We show that P ′(u) ⊂ P ′(u′) (the inclusion
P ′(u′) ⊂ P ′(u) is proved similarly). If q ∈ P ′(u), then q ∈ P(u). Since
P(u) = P(u′), we get that q ∈ P(u′) and hence q ∈ P ′(u′).
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Example 5.7
Consider u = a�cabc that is factorized as

(a�c) (abc)
w1 w2

according to Lemma 5.7(1) with v = ε, k = 2 > 1, i = 1, x = a and y = c.
Here

T (vwiv) = [Bin′(vwiv), α, β] = [0�1, a, c]

and we have α = a 6= 2 and β = c 6= 2, thus the computation of u′ falls into
Lemma 5.11(C). The “b” value is b which is not equal to α, x 6= ε, y 6= ε,
v = ε and |x| = |y|. Moreover, setting Bin′(vwiv) = v′w′w′ where |v′| = |v|
and |w′| = |wi| implies that v′ = ε and w′ = 0�1. In addition, α 6= β and
H(vwiv) = {h} = {1}. The value d is then

d2 = Bin′(vwiv)(h− p′(vwiv)) = (0�1)(1− 1) = 0

In this case,

u′ = v′w′((v′w′)(h, 0̄))2−1v′ = 0�1011

We can check that both u and u′ have periods 3, 6 and weak periods 3, 6.

LEMMA 5.12 (Item 1(b)(ii))
Let u be as in Lemma 5.7(1) with k > 1. If T (vwiv) = [Bin′(vwiv), α, β]

with H(Bin′(vwiv)) ⊂ H(vwiv) = {h} and i = k, then the following hold:

A. If α = 2, then put Bin(vw1v) = v′w′v′ where |v′| = |v| and |w′| = |w1|.
Then P ′(u′) = P(u′) = P(u) = P ′(u) for the binary word

u′ = (v′w′)kv′

B. If α 6= 2 and β = 2, then |x| > |y| and put Bin′(vwiv) = v′w′v′ where
|v′| = |v| and |w′| = |wi|. Then P ′(u′) = P(u′) = P(u) = P ′(u) for the
binary partial word u′ defined as follows. If v = ε and y 6= ε, then

u′ = rev(Bin′(rev(u)))

Otherwise

u′ = ((v′w′)(h, d1))k−1(v′w′)(h, �)v′

C. Otherwise, put Bin′(vwiv) = v′w′v′ where |v′| = |v| and |w′| = |wi|. Then
P ′(u′) = P(u′) = P(u) = P ′(u) for the binary partial word

u′ = ((v′w′)(h, d))k−1v′w′v′
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where

d =
{
d3 if a = β
d4 otherwise

PROOF The proof is similar to that of Lemma 5.11.

LEMMA 5.13 (Item 1(b)(iii))
Let u be as in Lemma 5.7(1) with k > 1. If T (vwiv) = [Bin′(vwiv), α, β]

with H(Bin′(vwiv)) ⊂ H(vwiv) = {h} and 1 < i < k and a = b, then put
Bin(vw1v) = v′w′v′ where |v′| = |v| and |w′| = |w1|. Then P ′(u′) = P(u′) =
P(u) = P ′(u) for the binary partial word

u′ = (v′w′)i−1(v′w′)(h, �)(v′w′)k−iv′

PROOF The equality P ′(u) = P(u) is proved as in Lemma 5.11. For the
equality P(u′) = P(u), the case where q ≤ |u| − p′(u) is handled similarly as
in Lemma 5.12(A). As for the case where |u| − p′(u) < q < |u|, q ∈ P(u) if
and only if r ∈ P(vw1v) if and only if r ∈ P(v′w′v′) if and only if q ∈ P(u′).
Finally, the equality P ′(u′) = P ′(u) is proved as in Lemma 5.11.

Figures 5.5 and 5.6 will be useful for understanding Lemma 5.14. In Fig-
ure 5.5, if r > h, then r is seen to be a period of vw1v, while in Figure 5.6, if
h+ r ≥ |vwiv|, then r is seen to be a period of vwkv.

FIGURE 5.5: The case when r > h.

LEMMA 5.14 (Item 1(b)(iv))
Let u be as in Lemma 5.7(1) with k > 1. If T (vwiv) = [Bin′(vwiv), α, β]

with H(Bin′(vwiv)) ⊂ H(vwiv) = {h} and 1 < i < k and a 6= b, then the
following hold:
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FIGURE 5.6: The case when h+ r ≥ |vwiv|.

A. If α 6= 2 and β = 2, then put Bin(vwkv) = v′w′v′ where |v′| = |v| and
|w′| = |wk|, and put d = (v′w′)(h). Then P(u′) = P(u) and P ′(u′) =
P ′(u) for the binary partial word

u′ = ((v′w′)(h, d))i−1(v′w′)(h, �)((v′w′)(h, d̄))k−iv′

B. If β 6= 2 and x = ε, then put Bin(vw1v) = v′w′v′ where |v′| = |v| and
|w′| = |w1|, and put d = (v′w′)(h). Then P(u′) = P(u) and P ′(u′) =
P ′(u) for the binary partial word

u′ = ((v′w′)(h, d))i−1(v′w′)(h, �)((v′w′)(h, d̄))k−iv′

C. Otherwise, put Bin′(vwiv) = v′w′v′ where |v′| = |v| and |w′| = |wi|. Then
P(u′) = P(u) and P ′(u′) = P ′(u) for the binary partial word

u′ = ((v′w′)(h, d))i−1(v′w′)(h, �)((v′w′)(h, d̄))k−iv′

where d = 0 unless β 6= 2 and x 6= ε.

In the case where β 6= 2 and x 6= ε, d is defined by the following table
if α = 2:

a = β |x| < |y|

T d3

F d4

and by the following table if α 6= 2:
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a = β b = α y = ε v = ε |x| < |y| |x| = |y| |x| > |y|

T T T T d1 d1 d1

T T T F d1 d1 d1

T T F T d1 d1 d1

T T F F d1 d1 d1

T F T T d2 d2 d2

T F T F d2 d2 d2

T F F T d2 d2 d2

T F F F d2 d2 d2

F T T T d2 d2 d2

F T T F d1 d1 d1

F T F T
F T F F d1 d1 d1

F F T T d2 d2 d2

F F T F d2 d2 d2

F F F T d2 d2

F F F F d2 d2 d2

unless an entry is empty in which case

u′ = rev(Bin′(rev(u)))

Example 5.8
The pword u = abcdab�dabfd illustrates Item 1(b)(iv)C of Lemma 5.14.

• The partial words found satisfy Lemma 5.7(1) with 1 < i < k and a 6= b.
Indeed,

u = (abcd)(ab�d)(abfd) = w1w2w3

and the partial words found satisfy Lemma 5.7(1) with v = ε, k = 3,
i = 2, the “a” value c is distinct from the “b” value f .

• And T (vwiv) = [Bin′(vwiv), α, β] is such that α = 2 and β = 2.
Indeed, T (w2) = [0111,2,2].

In this case,

1. Factorize Bin′(vwiv) as v′w′v′ where |v′| = |v| and |w′| = |wi|. Here
Bin′(w2) = (ε)(0111)(ε).

2. Compute h and d. Here h = 2 and d = 0.

3. Output

u′ = ((v′w′)(h, d))i−1(v′w′)(h, �)((v′w′)(h, d̄))k−iv′

= (0111)(h, 0)(0111)(h, �)(0111)(h, 0̄)
= (0101)(01�1)(0111)
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Both u and u′ have only the period 12 and the weak periods 4, 12.

Now, we will concentrate on pwords that satisfy Lemma 5.7(2).

LEMMA 5.15 (Item 2(a)(i)A)
Let u be as in Lemma 5.7(2) with k = 1. Assume that v1 = x�y and v2 = xby,
and that T (v1) = [Bin′(v1), α, β]. Also assume that β = 2. If c ∈ {0, 1} is
such that Bin(v2)1|w|−1c is primitive, then P ′(u′) = P(u′) = P(u) = P ′(u)
for the binary word

u′ = Bin(v2)1|w|−1cBin(v2)

PROOF The proof is very similar to that of Lemma 5.10 and is left as an
exercise for the reader.

LEMMA 5.16 (Item 2(a)(i)B)
Let u be as in Lemma 5.7(2) with k = 1. Assume that v1 = x�y and v2 = xby.
Assume that T (v1) = [Bin′(v1), α, β] with H(Bin′(v1)) ⊂ H(v1) = {h}. Also
assume that β 6= 2. Define d as follows:

d =


Bin′(v1)(h− p′(v1)) if α 6= 2 and b = α

Bin′(v1)(h− p′(v1)) if α 6= 2 and b 6= α
1 otherwise

1. If Bin′(v1) = 0|x|�1|y|, then let c = 1.

2. Otherwise, if Bin′(v1)1|w|−1 is not of the form z�z for any z, then let
c ∈ {0, 1} be such that Bin′(v1)1|w|−1c is primitive.

3. Otherwise, if Bin′(v1)1|w|−1 is of the form z�z for some z, then let
c = d̄.

Then P ′(u′) = P(u′) = P(u) = P ′(u) for the binary partial word

u′ = Bin′(v1)1|w|−1cBin′(v1)(H(Bin′(v1)), d)

Example 5.9
The pword u = abcdab�dabfdabcdabcdabcdabfd illustrates Item 2(a)(i)B of

Lemma 5.16.

• The partial words found satisfy Lemma 5.7(2) with k = 1. Indeed,

u = (abcdab�dabfd)(abcd)(abcdabcdabfd) = v1wv2
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and the “b” value is c.

• And T (v1) = [Bin′(v1), α, β] is such that α 6= 2 and β 6= 2. Indeed,
T (v1) = [(0101)(01�1)(0111), c, f ] by Example 5.8.

In this case,

1. Compute Bin′(v1)1|w|−1 which is equal to 010101�10111111 and is not
of the form z�z for any z.

2. Find “c” in {0, 1} such that Bin′(v1)1|w|−1c is primitive. Here c = 1
works.

3. Compute h and d. Here H(v1) = {h} = {6}, and

d = Bin′(v1)(h− p′(v1)) = (010101�10111)(6− 4) = 0

since α 6= 2 and the “b” value is α.

4. Output

u′ = Bin′(v1)1|w|−1cBin′(v1)(H(Bin′(v1)), d)
= (010101�10111)(1111)(010101�10111)(h, d)
= (010101�10111)(1111)(010101010111)

Both u and u′ have only the periods 16, 20, 28 and the weak periods
16, 20, 28.

LEMMA 5.17 (Item 2(a)(ii)A)
Let u be as in Lemma 5.7(2) with k = 1. Assume that v1 = xay and v2 = x�y,
and that T (v2) = [Bin′(v2), α, β]. Also assume that α = 2. If c ∈ {0, 1} is
such that Bin(v1)1|w|−1c is primitive, then P ′(u′) = P(u′) = P(u) = P ′(u)
for the binary word

u′ = Bin(v1)1|w|−1cBin(v1)

PROOF Again the proof is very similar to that of Lemma 5.10 and is left
as an exercise.

LEMMA 5.18 (Item 2(a)(ii)B)
Let u be as in Lemma 5.7(2) with k = 1. Assume that v1 = xay and v2 = x�y.
Assume that T (v2) = [Bin′(v2), α, β] with H(Bin′(v2)) ⊂ H(v2) = {h}, and
that α 6= 2. Define d as follows:
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d =


Bin′(v2)(h+ p′(v2)) if β 6= 2 and a = β

Bin′(v2)(h+ p′(v2)) if β 6= 2 and a 6= β
0 otherwise

Let c ∈ {0, 1} be such that Bin′(v2)(H(Bin′(v2)), d)1|w|−1c is primitive (let
c = 1 in the case where Bin′(v2) = 0|x|�1|y|). Then P ′(u′) = P(u′) = P(u) =
P ′(u) for the binary partial word

u′ = Bin′(v2)(H(Bin′(v2)), d)1|w|−1cBin′(v2)

PROOF We prove the lemma when Bin′(v2) has a hole (when Bin′(v2)
is full, the proof is left as an exercise). Note that Bin′(v2)(h, d) begins with
0 (otherwise, h = 0 and α = 2). Note also that in the case where Bin′(v2) =
0|x|�1|y|, we have that Bin′(v2)(h, d)1|w|−1c = 0|x|d1|y|+|w| is primitive.

As in the proof of Lemma 5.16, P ′(u) = P(u) and P ′(u′) = P(u′). To
see that P(u) ⊂ P(u′), first note that all periods q of u satisfy q ≥ p′(u) =
|v1w| = |Bin′(v2)(h, d)1|w|−1c|. Clearly p′(u) ∈ P(u) and p′(u) ∈ P(u′). So
put q = p′(u) + r with r > 0. We get that r is a weak period of v2 and hence
r is a weak period of Bin′(v2). If h+ r ≥ |v2|, then q ∈ P(u′). If h+ r < |v2|,
then β 6= 2 since h+ p′(v2) ≤ h+ r < |v2| and |v2| ≥ p′(v2) + r since α 6= 2.
By Lemma 5.6, r is a multiple of p′(v2). We have v2(h+r) = v1(h) and so β =
v2(h+ p′(v2)) = v2(h+ r) = v1(h) = a. In this case, d = Bin′(v2)(h+ p′(v2))
and so Bin′(v2)(h+ r) = Bin′(v2)(h, d)(h) implying q ∈ P(u′).

To see that P(u′) ⊂ P(u), assume that there exists q ∈ P(u′)\P(u) and also
that q is minimal with this property. Either q < |v1| or |v1|+ |w|−1 ≤ q < |u|,
since Bin′(v2)(h, d) does not begin with 1.

If q < |v1|, then, by the minimality of q, q is the minimal period of u′, and
Lemma 5.6 implies that p′(u) is a multiple of q, and so we get a contradiction
with the choice of c.

If q = |v1| + |w| − 1, then c = 0. In this case, if |w| > 1 and d = 1,
then we get Bin′(v2)(h, 1)1 = 0Bin′(v2), which is impossible. If |w| > 1 and
d = 0, then we get that Bin′(v2) looks like 0|x|�1|y| and therefore that c = 1,
a contradiction. If |w| = 1 and d = 1, then we get an impossible situation.
And if |w| = 1 and d = 0, then we get that Bin′(v2)(h, 0) consists of 0’s only
and therefore that Bin′(v2)(h, 0)1|w|−1c = Bin′(v2)(h, 0)0 is not primitive.

Therefore q > |v1|+ |w| − 1, and q > p′(u) since p′(u) 6∈ P(u′) \ P(u). Put
q = p′(u) + r where r > 0. We get that r is a weak period of Bin′(v2) and
hence of v2. If h + r ≥ |v2|, then q ∈ P(u). If h + r < |v2|, then β 6= 2 and
|v2| ≥ p′(v2)+r. By Lemma 5.6, r is a multiple of p′(v2). We get Bin′(v2)(h+
r) = Bin′(v2)(h, d)(h) = d and so d = Bin′(v2)(h+ r) = Bin′(v2)(h+ p′(v2)).
In this case, a = β and so v1(h) = a = β = v2(h+p′(v2)) = v2(h+r) implying
q ∈ P(u).

LEMMA 5.19 (Item 2(b)(i))
Let u be as in Lemma 5.7(2) with k > 1. Assume that i = 1. Put Bin′(viwvi+1) =
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v′′w′v′ where |v′| = |v′′| and |w′| = |w|. Then P ′(u′) = P(u′) = P(u) = P ′(u)
for the binary partial word

u′ = v′′(w′v′)k

PROOF First, the equality P ′(u) = P(u) is proved as in Lemma 5.11.
Second, the equality P ′(u′) = P ′(u) follows as in Lemma 5.11 once the

equality P(u′) = P(u) is proved.
Third, let us show the equality P(u′) = P(u). The case where q ∈ P(u)

with q ≤ |u| − p′(u) is proved as in Lemma 5.11. The case where q ∈ P(u′)
with q ≤ |u| − p′(u) is proved as follows. We have |u′| = |u| ≥ p′(u) + q, and
thus, by Theorem 3.1, gcd(p′(u), q) ∈ P(u′). We also have that gcd(p′(u), q)
is a period of v′′w′v′ and hence of viwvi+1. So gcd(p′(u), q) ∈ P(u) and since
q is a multiple of gcd(p′(u), q), we also get q ∈ P(u).

The case where |u| − p′(u) < q < |u| is proved as follows. Here q =
(k−1)p′(u)+r with |vi| < r < p′(u)+ |vi|. By Lemma 5.9(1), q ∈ P(u) if and
only if r ∈ P ′(viwvi+1) = P ′(v′′w′v′) which, by Lemma 5.4 or Lemma 5.9(1),
is equivalent with q ∈ P(u′).

LEMMA 5.20 (Item 2(b)(ii))
Let u be as in Lemma 5.7(2) with k > 1. Assume that i = k + 1. Put

Bin′(vi−1wvi) = v′w′v′′ where |v′| = |v′′| and |w′| = |w|. Then P ′(u′) =
P(u′) = P(u) = P ′(u) for the binary partial word

u′ = (v′w′)kv′′

PROOF The proof is similar to that of Lemma 5.19 but uses Lemma 5.9(2)
instead of Lemma 5.9(1).

LEMMA 5.21 (Item 2(b)(iii))
Let u be as in Lemma 5.7(2) with k > 1. Assume that 1 < i < k+1 and a = b.
Also assume that H(vi) = {h}. Put Bin(v1wv1) = v′w′v′ where |v′| = |v1|
and |w′| = |w|. Then P ′(u′) = P(u′) = P(u) = P ′(u) for the binary partial
word

u′ = (v′w′)i−1v′(h, �)(w′v′)k−i+1

PROOF The proof is similar to that of Lemma 5.19 except for the case
where q ∈ P(u) with |u| − p′(u) < q < |u| when we want to prove that
q ∈ P(u′). Here q = (k − 1)p′(u) + r with |vi| < r < p′(u) + |vi|. In this
case r ∈ P(v1wv1), and hence r ∈ P(v′w′v′) and r ∈ P(v′(h, �)w′v′). If
h + r ≥ |v1wv1|, then q ∈ P(u′) by Lemma 5.9(1). If h + r < |v1wv1|,
then (viwvi+1)(h + r) = (v1wv1)(h + r) = a by Lemma 5.9(1)(b). We get
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(v′(h, �)w′v′)(h + r) = (v′w′v′)(h + r) = (v′w′v′)(h) = v′(h), and q ∈ P(u′)
by Lemma 5.9(1).

The following remarks will be useful for understanding the next lemma.

REMARK 5.3 If u satisfies Lemma 5.9(1) and T (vi) = [Bin′(vi), α, β],
then the following hold:

• If α = 2 and β 6= 2, then |x| < |y| (otherwise, h + p′(vi) > h + h =
|x| + |x| ≥ |xy| which implies h + p′(vi) ≥ |x�y| = |vi| and thus β = 2

a contradiction).

• If α 6= 2 and β = 2, then |x| > |y| (otherwise, h + p′(vi) ≤ h + h =
|x|+ |x| ≤ |xy| < |x�y| = |vi| and so β 6= 2 a contradiction).

REMARK 5.4 If u and q ∈ P(u) satisfy the assumptions of Lemma 5.9(2)
and T (vi) = [Bin′(vi), α, β], then r ∈ P ′(vi−1wvi) and the following hold:

• If r ≤ h, then p′(vi) ≤ p′(vi−1wvi) ≤ r ≤ h and so h − p′(vi) ≥ 0 and
α 6= 2.

• If r ≤ h and β 6= 2, then |vi| ≥ p′(vi) + r (otherwise, |vi| < p′(vi) + r ≤
p′(vi) + h implying β = 2 a contradiction).

REMARK 5.5 If u and q ∈ P(u) satisfy the assumptions of Lemma 5.9(1)
and T (viwvi+1) = [Bin′(viwvi+1), α, β], then r ∈ P ′(viwvi+1) and the follow-
ing hold:

• If h + r < |viwvi+1|, then h + p′(viwvi+1) ≤ h + r < |viwvi+1| and so
β 6= 2.

• If h+r < |viwvi+1| and α 6= 2, then |viwvi+1| ≥ p′(viwvi+1)+r (other-
wise, |viwvi+1| < p′(viwvi+1) + r ≤ h+ r < |viwvi+1| a contradiction).

REMARK 5.6 If u and q ∈ P(u) satisfy the assumptions of Lemma 5.9(2)
and T (vi−1wvi) = [Bin′(vi−1wvi), α, β], then r ∈ P ′(vi−1wvi) and the follow-
ing hold:

• If r ≤ h, then p′(vi−1wvi) ≤ r ≤ h and so h − p′(vi−1wvi) ≥ 0 and
α 6= 2.
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• If r ≤ h and β 6= 2, then |vi−1wvi| ≥ p′(vi−1wvi) + r (otherwise,
|vi−1wvi| < p′(vi−1wvi) + r ≤ p′(vi−1wvi) + h implying β = 2 which is
a contradiction).

Being inspired by Lemma 5.21, we describe a comparison routine. Consider
the pword

cedafstced�fstcedbf

which can be factorized as

(cedaf) (st) (ced�f) (st) (cedbf)
v1 w v2 w v3

where k = 2, i = 2, x = ced and y = f . Imposing the period 16 results in the
following alignment:

c e d a f s t c e d � f s t c e
d b f

which implies the equalities c = d = f and e = b. So the pword is

(cbcac) (st) (cbc�c) (st) (cbcbc)
v1 w v2 w v3

which we call u. Using Algorithm 5.1, we get

Bin(v1wv3) = (01011)(11)(11010) = v′w′v′′

where |v′| = |v1|, |w′| = |w|, and |v′′| = |v3|. Now, create a word v as follows:
First, align v′ and v′′ where the underlined positions are determined by the
imposed period:

0 1 0 1 1
1 1 0 1 0

Then for each column i of the alignment, v(i) is the element of {0, 1} that is
underlined if any, otherwise it is 1:

0 1 0 1 0

Now, the value d is computed as follows: if the position h of � (which is 3) is
underlined in v′, then d = v′(h) and if it is underlined in v′′, then d = v′′(h).
We claim that the pword

v(h, d)w′v(h, �)w′v(h, d)

has the same periods and weak periods as u:

(01000)(11)(010�0)(11)(01010)
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where d̄ = v′′(3) = 1.

LEMMA 5.22 (Item 2(b)(iv))
Let u be as in Lemma 5.7(2) with k > 1. Assume that 1 < i < k + 1 and
a 6= b. Assume that T (vi) = [Bin′(vi), α, β] with H(Bin′(vi)) ⊂ H(vi) = {h}.
Then P(u′) = P(u) and P ′(u′) = P ′(u) for the binary partial word u′ that
gets computed according to one of the following as described in the two tables
below:

A. Put Bin′(vi−1wvi) = v′w′v′′ where |v′| = |v′′| and |w′| = |w|, and put
d = v′(h). Then

u′ = (v′(h, d)w′)i−1v′(h, �)(w′v′(h, d̄))k−i+1

B. Put Bin′(viwvi+1) = v′′w′v′ where |v′| = |v′′| and |w′| = |w|, and put
d = v′(h). Then

u′ = (v′(h, d)w′)i−1v′(h, �)(w′v′(h, d̄))k−i+1

C. Put

u′ = rev(Bin′(rev(u)))

D. Put Bin(v1wvk+1) = v′w′v′′ where |v′| = |v′′| and |w′| = |w|.

• If k = 2, then

u′ = v′w′�w′v′′

• If k > 2, then

1. Find first 0 in v′′.
(a) If it exists and is within x, then d = v′′(h). Otherwise

d = v′(h).
(b) If it does not exist, then d = v′(h).

2. Build v as follows: x� from v′ and y from v′′.

Put

u′ = (v(h, d)w′)i−1v(h, �)(w′v(h, d̄))k−i+1

E. Put Bin(v1wvk+1) = v′w′v′′ where |v′| = |v′′| and |w′| = |w|.

• If p′(v1wvk+1) < |v1w|, then do X if E-X is the item.

• If p′(v1wvk+1) = |v1wvk+1|, then v = 01|v|−1 and d = 0 and put

u′ = (v(h, d)w′)i−1v(h, �)(w′v(h, d̄))k−i+1

• If |v1w| < p′(v1wvk+1) < |v1wx�|, then d = v′(h), and if |v1wx�| ≤
p′(v1wvk+1) < |v1wvk+1|, then d = v′′(h). In either case,
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u′ = (v′(h, d)w′)i−1v′(h, �)(w′v′(h, d̄))k−i+1

F. Put Bin(v1wvk+1) = v′w′v′′ where |v′| = |v′′| and |w′| = |w|.

• If p′(v1wvk+1) ≤ |v1wvk+1|
2 or p′(v1wvk+1) < |v1|, then do X if F-X

is the item.

• If p′(v1wvk+1) >
|v1wvk+1|

2 , then

1. If v′ and v′′ differ only in the hole position, then

u′ = (v′w′)i−1v′(h, �)(w′v′′)k−i+1

2. If v′ and v′′ differ in more than the hole position, then

(a) If p′(v1wvk+1) = |v1wvk+1|, then v = 01|v|−1 and d = 0
and put

u′ = (v(h, d)w′)i−1v(h, �)(w′v(h, d̄))k−i+1

(b) If |v1| ≤ p′(v1wvk+1) < |v1w|, then do comparison routine
to build v and set d = v(h) (align v′ and v′′ and 0’s win).
Put

u′ = (v(h, d)w′)i−1v(h, �)(w′v(h, d̄))k−i+1

(c) If |v1w| ≤ p′(v1wvk+1) < |v1wx � |, then d = v′(h), and if
|v1wx � | ≤ p′(v1wvk+1) < |v1wvk+1|, then d = v′′(h). In
either case,

u′ = (v′(h, d)w′)i−1v′(h, �)(w′v′(h, d̄))k−i+1

β = 2 x = ε y = ε a = β Item 2(b)(iv) when α = 2

T T T D
T T F A
T F T B
T F F B
F T T T A
F T T F A
F T F T E-A
F T F F F-A
F F T T A
F F T F B
F F F T A
F F F F E-B
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β = 2 x = ε y = ε a = β b = α Item 2(b)(iv) when α 6= 2

T T T T A
T T T F A
T T F T A
T T F F A
T F T T E-C
T F T F C
T F F T B
T F F F B
F T T T T A
F T T T F A
F T T F T A
F T T F F A
F T F T T A
F T F T F A
F T F F T A
F T F F F A
F F T T T B
F F T T F B
F F T F T B
F F T F F B
F F F T T B
F F F T F E-A
F F F F T E-A
F F F F F B

Example 5.10
This example illustrates Item 2(b)(iv)B of Lemma 5.22. Consider

u = abcdabfdabfdabcdabcdab�dabfdabcdabcdabcdabfd

• The partial words found satisfy Lemma 5.7(2) with 1 < i < k + 1 and
a 6= b. Indeed,

(abcdabfdabfd) (abcd) (abcdab�dabfd) (abcd) (abcdabcdabfd)
v1 w v2 w v3

• T (vi) = [Bin′(vi), α, β] is such that α 6= 2, β 6= 2, x 6= ε, y 6= ε,
the “a” value is β, and the “b” value is α. Indeed, since T (v2) =
[010101�10111, c, f ], we have α = c 6= 2, β = f 6= 2, x = abcdab 6= ε,
y = dabfd 6= ε, the “a” value is f which is β, and the “b” value is c
which is α.

In this case, u falls into Lemma 5.22(B).

1. Compute H(vi) = {6} and so h = 6.
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2. Compute Bin′(viwvi+1) = v′′w′v′ where |v′| = |v′′| and |w′| = |w|. Here
Bin′(v2wv3) = v′′w′v′ = (010101�10111)(1111)(010101010111).

3. Compute d = v′(h) or d = v′(h) = (010101010111)(6) = 0 = 1.

4. Output

u′ = (v′(h, d)w′)i−1v′(h, �)(w′v′(h, d̄))k−i+1

= v′(h, 1)w′v′(h, �)w′v′(h, 1)
= (010101110111)(1111)(010101�10111)(1111)(010101010111)

Both u and Bin′(u) have only the periods 36, 44 and the weak periods
16, 36, 44.

We now state and prove the existence of a binary equivalent for any given
pword with one hole.

THEOREM 5.3
For every partial word u with one hole over an alphabet A, there exists a

partial word v of length |u| over the alphabet {0, 1} such that v does not begin
with 1, H(v) ⊂ H(u), P(v) = P(u), and P ′(v) = P ′(u).

PROOF The proof is by induction on |u|. For |u| ≤ 3, the result is
obvious. Assume that the result holds for all partial words with one hole of
length less than or equal to n ≥ 3.

First, assume that u is as in Lemma 5.7(1) with |u| = n + 1. For k = 1,
the word Bin(v) satisfies P(Bin(v)) = P(v). If Bin(v) = ε, then v = ε
and u′ = 01|u|−1 satisfies P(u′) = P(u) and P ′(u′) = P ′(u), since, in this
case, P(u) = P ′(u) = {|u|}. If Bin(v) 6= ε, then Bin(v) begins with 0. By
Lemma 5.1, there exists c ∈ {0, 1} such that Bin(v)1|w1|−1c is primitive. By
Lemma 5.10, the word u′ = Bin(v)1|w1|−1cBin(v) satisfies P(u′) = P(u) and
P ′(u′) = P ′(u). For k > 1, the result follows by Lemmas 5.11, 5.12, 5.13,
and 5.14. We have |vwiv| ≤ n and, by the inductive hypothesis, there exists a
partial word Bin′(vwiv) over the alphabet {0, 1} such that Bin′(vwiv) begins
with 0 or �, H(Bin′(vwiv)) ⊂ H(vwiv) = {h}, P(Bin′(vwiv)) = P(vwiv), and
P ′(Bin′(vwiv)) = P ′(vwiv). Consider for instance the case where 1 < i < k
and a 6= b and αvwiv = 2 and βvwiv 6= 2 and x 6= ε. By the induc-
tive hypothesis, there exist v′ and w′ over the alphabet {0, 1} such that
Bin′(vwiv) = v′w′v′, |v′| = |v| and |w′| = |wi|. The partial word

u′ = ((v′w′)(h, d))i−1(v′w′)(h, �)((v′w′)(h, d̄))k−iv′

where d is defined as in Lemma 5.14(C) satisfies the desired properties. In
particular, u′ begins with 0. To see this, since x 6= ε we have h ≥ 1, and since
v′w′v′ begins with 0 the result follows. The other cases are handled similarly.
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Now, assume that u is as in Lemma 5.7(2) with |u| = n + 1. For k = 1,
first say v1 = x�y and v2 = xby (here u = x�ywxby). We have |v1| ≤ n
and, by the inductive hypothesis, there exists a partial word Bin′(v1) over
the alphabet {0, 1} such that Bin′(v1) begins with 0 or �, H(Bin′(v1)) ⊂
H(v1), P(Bin′(v1)) = P(v1), and P ′(Bin′(v1)) = P ′(v1). If βv1 6= 2, then
Lemma 5.16 shows the existence of binary numbers c and d such that the
partial word u′ = Bin′(v1)1|w|−1cBin′(v1)(H(Bin′(v1)), d) satisfies the desired
properties. If βv1 = 2, then the result follows by Lemma 5.15.

Now say v1 = xay and v2 = x�y (here u = xaywx�y). We have |v2| ≤ n
and, by the inductive hypothesis, there exists a partial word Bin′(v2) over
the alphabet {0, 1} such that Bin′(v2) does not begin with 1, H(Bin′(v2)) ⊂
H(v2), P(Bin′(v2)) = P(v2), and P ′(Bin′(v2)) = P ′(v2). We first consider
the case where αv2 6= 2 (here x 6= ε). In this case, H(Bin′(v2)) 6= {0}. For
d defined as in Lemma 5.18, by Lemma 5.1 there exists c ∈ {0, 1} such that
Bin′(v2)(H(Bin′(v2)), d)1|w|−1c is primitive (put c = 1 if Bin′(v2) = 0|x|�1|y|).
By Lemma 5.18, the partial word

u′ = Bin′(v2)(H(Bin′(v2)), d)1|w|−1cBin′(v2)

satisfies the desired properties. The case of αv2 = 2 follows from Lemma 5.17.
For k > 1, the result follows by Lemmas 5.19, 5.20, 5.21 and 5.22.

For the case where 1 < i < k + 1 and a 6= b for instance, by Lemma 5.22,
we have |vi| ≤ n and, by the inductive hypothesis, there exists a partial
word Bin′(vi) over the alphabet {0, 1} such that Bin′(vi) begins with 0 or �,
H(Bin′(vi)) ⊂ H(vi) = {h}, P(Bin′(vi)) = P(vi), and P ′(Bin′(vi)) = P ′(vi).
Consider for instance the case where αvi

6= 2, βvi
6= 2, x 6= ε, y 6= ε,

a = βvi and b = αvi . Then by Lemma 5.22(B), since |viwvi+1| ≤ n, by the
inductive hypothesis, there exist v′, w′, and v′′ over the alphabet {0, 1} such
that Bin′(viwvi+1) = v′′w′v′, |v′| = |v′′| and |w′| = |w|, v′′w′v′ begins with 0,
H(v′′w′v′) ⊂ H(viwvi+1) = {h}, P(v′′w′v′) = P(viwvi+1), and P ′(v′′w′v′) =
P ′(viwvi+1). The partial word

u′ = (v′(h, d)w′)i−1v′(h, �)(w′v′(h, d̄))k−i+1

where d = v′(h) satisfies the desired properties. In particular, u′ begins with
0 since h 6= 0 and v′ begins with 0.

5.3 The algorithm

As a consequence of Theorem 5.3, we provide a linear time algorithm which,
given the partial word u, computes the desired binary partial word v. We first
describe the algorithm (note that the output may have to be complemented
so that it does not begin with 1).
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ALGORITHM 5.2
Let A be an alphabet not containing the special symbol 2. Given as input a

partial word u with one hole over A, put H(u) = {h} where 0 ≤ h < |u|. The
following algorithm computes a triple T (u) = [Bin′(u), αu, βu], where Bin′(u)
is a partial word of length |u| over the alphabet {0, 1} such that Bin′(u) does
not begin with 1, where H(Bin′(u)) ⊂ {h}, where P(Bin′(u)) = P(u) and
P ′(Bin′(u)) = P ′(u), and where

αu =
{

2 if h− p′(u) < 0
u(h− p′(u)) otherwise

and

βu =
{

2 if h+ p′(u) ≥ |u|
u(h+ p′(u)) otherwise

Moreover, if P(u) 6= P ′(u), then H(Bin′(u)) = {h} and αu = u(h− p′(u)) 6=
u(h+ p′(u)) = βu. Also, if αu 6= 2 and βu 6= 2, then H(Bin′(u)) = {h}.

Find the minimal weak period p′(u) of u. If p′(u) = |u|, then output T (u) =
[01|u|−1,2,2]. If p′(u) 6= |u|, then find partial words satisfying Lemma 5.7(1)
or Lemma 5.7(2).

1. If the partial words found satisfy Lemma 5.7(1), then do one of the
following:

(a) If k = 1, compute Bin(v), find c ∈ {0, 1} such that Bin(v)1|w1|−1c
is primitive, and output

T (u) = [Bin(v)1|w1|−1cBin(v),2,2]

(b) If k > 1, then compute T (vwiv) = [Bin′(vwiv), α, β] and compute
h′ = h− (i− 1)p′(u). Then do one of the following:

i. If i = 1, then do one of the following:
A. If β = 2, then compute Bin(vwkv) = v′w′v′ where |v′| =
|v| and |w′| = |wk|. Then output

T (u) = [(v′w′)kv′,2, b]
B. If α = 2 and β 6= 2, then compute Bin′(vwiv) = v′w′v′

where |v′| = |v| and |w′| = |wi|. Put d = Bin′(vwiv)(h′ +
p′(vwiv)) and output

T (u) = [(v′w′)(h′, �)((v′w′)(h′, d̄))k−1v′,2, b]
C. Otherwise, compute Bin′(vwiv) = v′w′v′ where |v′| = |v|

and |w′| = |wi|. Find d ∈ {0, 1} according to the tables of
Lemma 5.11(C) and output

T (u) = [v′w′((v′w′)(h′, d̄))k−1v′,2, b]
unless the corresponding entry in one of the tables is empty
in which case output
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T (u) = [rev(Bin′(rev(u))),2, b]
ii. If i = k, then do one of the following:

A. If α = 2, then compute Bin(vw1v) = v′w′v′ where |v′| =
|v| and |w′| = |w1|. Then output

T (u) = [(v′w′)kv′, a,2]
B. If α 6= 2 and β = 2, then compute Bin′(vwiv) = v′w′v′

where |v′| = |v| and |w′| = |wi|. If v = ε and y 6= ε, then
output

T (u) = [rev(Bin′(rev(u))), a,2]

Otherwise, put d = Bin′(vwiv)(h′ − p′(vwiv)) and output
T (u) = [((v′w′)(h′, d))k−1(v′w′)(h′, �)v′, a,2]

C. Otherwise, compute Bin′(vwiv) = v′w′v′ where |v′| = |v|
and |w′| = |wi|. Find d ∈ {0, 1} as follows:

d =
{

Bin′(vwiv)(h′ + p′(vwiv)) if a = β

Bin′(vwiv)(h′ + p′(vwiv)) if a 6= β

and output
T (u) = [((v′w′)(h′, d))k−1v′w′v′, a,2]

iii. If 1 < i < k and a = b, then compute Bin(vw1v) = v′w′v′

where |v′| = |v| and |w′| = |w1|. Then output
T (u) = [(v′w′)i−1(v′w′)(h′, �)(v′w′)k−iv′, a, b]

iv. If 1 < i < k and a 6= b, then do one of the following:
A. If α 6= 2 and β = 2, then compute Bin(vwkv) = v′w′v′

where |v′| = |v| and |w′| = |wk|, and put d = (v′w′)(h′).
Then output T (u) which is equal to

[((v′w′)(h′, d))i−1(v′w′)(h′, �)((v′w′)(h′, d̄))k−iv′, a, b]
B. If β 6= 2 and x = ε, then compute Bin(vw1v) = v′w′v′

where |v′| = |v| and |w′| = |w1|, and put d = (v′w′)(h′).
Then output T (u) which is equal to

[((v′w′)(h′, d))i−1(v′w′)(h′, �)((v′w′)(h′, d̄))k−iv′, a, b]
C. Otherwise, compute Bin′(vwiv) = v′w′v′ where |v′| = |v|

and |w′| = |wi|. If β = 2 or x = ε, then put d =
0. Otherwise find d ∈ {0, 1} according to the tables of
Lemma 5.14(C). Then output T (u) equal to

[((v′w′)(h′, d))i−1(v′w′)(h′, �)((v′w′)(h′, d̄))k−iv′, a, b]
unless the corresponding entry in one of the tables is empty
in which case output T (u) equal to

[rev(Bin′(rev(u))), a, b]

2. If the partial words found satisfy Lemma 5.7(2), then do one of the
following:

(a) If k = 1, then do one of the following:
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i. If v1 = x�y and v2 = xby, compute T (v1) = [Bin′(v1), α, β].
A. If β = 2, then compute Bin(v2), find c ∈ {0, 1} such that

Bin(v2)1|w|−1c is primitive, and output
T (u) = [Bin(v2)1|w|−1cBin(v2),2, b]

B. If β 6= 2, then find d ∈ {0, 1} as follows:

d =


Bin′(v1)(h− p′(v1)) if α 6= 2 and b = α

Bin′(v1)(h− p′(v1)) if α 6= 2 and b 6= α
1 otherwise

Find c ∈ {0, 1} as follows. If Bin′(v1) = 0|x|�1|y|, then
let c = 1. Otherwise, if Bin′(v1)1|w|−1 is not of the form
z�z, then let c be such that Bin′(v1)1|w|−1c is primitive.
Otherwise, let c = d̄. Then output
T (u) = [Bin′(v1)1|w|−1cBin′(v1)(H(Bin′(v1)), d),2, b]

ii. If v1 = xay and v2 = x�y, compute T (v2) = [Bin′(v2), α, β].
A. If α = 2, then compute Bin(v1), find c ∈ {0, 1} such that

Bin(v1)1|w|−1c is primitive, and output
T (u) = [Bin(v1)1|w|−1cBin(v1), a,2]

B. If α 6= 2, then compute h′ = h− p′(u) and find d ∈ {0, 1}
as follows:

d =


Bin′(v2)(h′ + p′(v2)) if β 6= 2 and a = β

Bin′(v2)(h′ + p′(v2)) if β 6= 2 and a 6= β
0 otherwise

Find c ∈ {0, 1}: If Bin′(v2) = 0|x|�1|y|, let c = 1. Other-
wise, let c be such that Bin′(v2)(H(Bin′(v2)), d)1|w|−1c is
primitive. Then output
T (u) = [Bin′(v2)(H(Bin′(v2)), d)1|w|−1cBin′(v2), a,2]

(b) If k > 1, then do one of the following:

i. If i = 1, compute Bin′(viwvi+1) = v′′w′v′ where |v′| = |v′′|
and |w′| = |w|, and output

T (u) = [v′′(w′v′)k,2, b]
ii. If i = k+1, compute Bin′(vi−1wvi) = v′w′v′′ where |v′| = |v′′|

and |w′| = |w|, and output
T (u) = [(v′w′)kv′′, a,2]

iii. If 1 < i < k + 1 and a = b, compute h′ = h − (i − 1)p′(u),
compute Bin(v1wv1) = v′w′v′ where |v′| = |v1| and |w′| = |w|,
and output

T (u) = [(v′w′)i−1v′(h′, �)(w′v′)k−i+1, a, b]
iv. If 1 < i < k + 1 and a 6= b, compute T (vi) = [Bin′(vi), α, β],

and compute h′ = h − (i − 1)p′(u). Then do one of A to F
according to the tables of Lemma 5.22:
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A. Compute Bin′(vi−1wvi) = v′w′v′′ where |v′| = |v′′| and
|w′| = |w|, and put d = v′(h′). Then output
T (u) = (v′(h′, d)w′)i−1v′(h′, �)(w′v′(h′, d̄))k−i+1, a, b]

B. Compute Bin′(viwvi+1) = v′′w′v′ where |v′| = |v′′| and
|w′| = |w|, and put d = v′(h′). Then output
T (u) = [(v′(h′, d)w′)i−1v′(h′, �)(w′v′(h′, d̄))k−i+1, a, b]

...

REMARK 5.7 In the above algorithm, note that when a value d gets
computed according to the tables of Lemma 5.11(C) say, the h occurring in
one of the equalities (5.1), (5.2), (5.3) or (5.4) becomes h′.

The correcteness of the algorithm follows from the proof of Theorem 5.3.
We now consider the complexity of the algorithm.

THEOREM 5.4
Given a partial word u with one hole over A, a partial word Bin′(u) with at

most one hole over {0, 1} with the same periods and weak periods of u can be
computed by Algorithm 5.2 optimally in linear time.

PROOF Let us first compute the complexity of the main functions of
Algorithm 5.2.

• Compute the minimal weak period: Let us consider finding the minimal
weak period of a partial word with one hole. A linear pattern matching
algorithm can be easily adapted to compute the minimal period of a
given word u. Given words v and w, the algorithm finds the leftmost
occurrence, if any, of v as a factor of w. The comparisons done are of the
type a ?= b, for letters a and b. Such an algorithm can be easily adapted
to compute p′(u) for a partial word u with one hole by overloading the
comparison operator in a

?= b to return all comparisons of the special
symbol � with any letter a or b as true. (For example, both � ?= b and
a

?= � returns true for all letters a and b in the alphabet A, while a ?= b
only returns true if both a and b are the same symbol.) Overloading
the operator does not change the time complexity of the algorithm any
more than by a constant factor. Thus, the computing of p′(u) can be
performed in linear time.

• Find partial words satisfying Lemma 5.7: Finding a positive integer
k and partial words v, w1, w2, . . . , wk satisfying Lemma 5.7(1) (respec-
tively, finding a positive integer k and partial words w, v1, v2, . . . , vk+1

satisfying Lemma 5.7(2)) is performed in linear time, since we know
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that p′(u) = |vw1| = |vw2| = · · · = |vwk| (respectively, p′(u) = |v1w| =
|v2w| = · · · = |vkw| = |vk+1w|) from computing the minimal weak pe-
riod as described above.

• Test for primitivity: Primitivity can be tested in linear time for full
words as was shown in Exercise 2.21. Indeed, a word u is primitive if
and only if u2 = xuy implies that either x = ε or y = ε. This part of
the algorithm needs to be altered slightly to handle binary partial words
with one hole. By far the easiest approach would be to substitute the
hole with a 0 and test the new binary full word for primitivity as above.
If the new word is primitive, then substitute the hole for 1 and test this
new word for primitivity. If both words are primitive, then the binary
partial word with one hole is primitive, otherwise it is not. This change
in the algorithm increases the time complexity by at most a constant
factor.

Algorithm 5.2 also uses Algorithm 5.1, which is linear, for constructing
binary images of given words via Bin.

Algorithm 5.2 is recursive, so let us compute the complexity of a single call
of the procedure T , say f(n), where n is the length of the current partial word
for this call, say u. Let us consider the call related to Item 2(a)(i)A (the other
items are handled similarly). There, u satisfies Lemma 5.7(2) with k = 1,
v1 = x�y and v2 = xby. Algorithm 5.2 computes the following functions:

1. Compute p′(u).

2. Find partial words satisfying Lemma 5.7.

3. Compute Bin(v2).

4. Test for primitivity.

Since every function used in Algorithm 5.2 requires at most linear time, we
have shown so far that a single call of T requires f(n) ∈ O(n) time.1 More
precisely, there is a constant k such that f(n) ≤ kn, for any n ≥ 0.

To calculate the time required for the whole algorithm on an input u of
length n, we first determine how fast the length of the current partial word
decreases from a call to the next call or the next two calls. Let us examine
the worst case of Lemma 5.7(2) following path 2(b)(iv)X with X being any
subcase. Consider u1 and u2 the current partial words for two consecutive
calls of T on u, respectively. For instance, for 2(b)(iv)A, we have that u =
v1wv2w . . . vkwvk+1, u1 = vi, and u2 = vi−1wvi, and consequently |u1| <
|u2| ≤ 2

3 |u|. Therefore, the time required by Algorithm 5.2 to compute Bin′(u)
is at most

1For f, g : Z+ → R, we say that f is “big oh of g,” and write f ∈ O(g), if there exist k ∈ R+

and a positive integer N such that |f(n)| ≤ k|g(n)| for all integers n ≥ N .
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2Σi≥0f(( 2
3 )in) ≤ 2Σi≥0k( 2

3 )in ≤ 6kn

hence it is linear, as claimed. Finally, it is clear that the algorithm is optimal,
as the problem requires at least linear time.

Exercises

5.1 S Give a constructive proof of Lemma 5.3 by providing an algorithm
that given as input a word u over an alphabet A, outputs the desired
factorization of u.

5.2 Run Algorithm 5.1 on input u = abcabcabca.

5.3 S If u = a�bc, then 4 is the only period and weak period of u. Show
that no partial word v with one hole over {0, 1} satisfies the desired
properties of Theorem 5.3, but the full word 0111 does.

5.4 For u = abca�ca, compute p′(u), αu and βu. What is T (u)?

5.5 Factor the following partial words according to Lemma 5.7:

• u1 = abcdabedabcdab�dabedabcdabedabedabcd
• u2 = adabcd�dabcdadabc

5.6 Show that a partial word u has the same set of periods and the same
set of weak periods as rev(u).

5.7 What does Algorithm 5.2 output for u = abb�cbb?

5.8 Using Algorithm 5.2, compute T (abbc�caabb). Which item does this
example illustrate?

5.9 What does Algorithm 5.2 output given the pwords with one hole of
length three or less? Which items of the algorithm handle these pwords?

5.10 S Which item of Algorithm 5.2 does u = adabcd�dabcdadabc illustrate?

5.11 Show that the partial word

u = ab�dabedabcd

illustrates Item 2(a)(i)B of Lemma 5.16. Show your computations as in
Example 5.9.

5.12 S Show that the partial word
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u = abcdabedabcdab�dabedabcdabedabedabcd

illustrates Item 1(b)(iv)C of Algorithm 5.2. What is the output of the
algorithm?

5.13 Let z be a partial word with one hole over {0, 1}. Say H(z) = {h}
and let z(h, a) be the partial word obtained from z after replacing h by
a ∈ {0, 1}. What can be said when

1. z(h, 1)1 = 0z?

2. z(h, 0)1 = 0z?

3. S z(h, 1) is a prefix of 0z?

4. z(h, 0) is a prefix of 0z?

5.14 What is the output of Algorithm 5.2 on input cadcastc�dcastcbdca?

Challenging exercises

5.15 Prove Lemma 5.1.

5.16 Let u ∈ A∗ be factorized as in Lemma 5.3 with k ≥ 1. Suppose that
v′w′v′ is a binary equivalent of vwv where |v′| = |v| and |w′| = |w|.
Then show that P(u) = P(u′) for the binary word u′ = (v′w′)kv′.

5.17 S Prove Lemma 5.4.

5.18 Prove Theorem 5.1.

5.19 S Prove Theorem 5.2.

5.20 S Let u be a nonempty partial word over an alphabet A with min-
imal weak period p′(u). Then there exist a positive integer k, (possi-
bly empty) partial words v1, v2, . . . , vk+1, and nonempty partial words
w1, w2, . . . , wk such that

u = v1w1v2w2 . . . vkwkvk+1

where p′(u) = |v1w1| = |v2w2| = · · · = |vkwk|, where |v1| = |v2| = · · · =
|vk| = |vk+1|, and where vi ↑ vi+1 for all 1 ≤ i ≤ k, and wi ↑ wi+1 for
all 1 ≤ i < k.

5.21 Prove Lemma 5.9.

5.22 Give examples for all items of Lemma 5.12.
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5.23 Show P ′(u′) = P ′(u) for Lemma 5.14.

5.24 S Prove Lemma 5.15.

5.25 H Prove Lemma 5.16.

5.26 Prove Lemma 5.17.

5.27 Prove Lemma 5.18 when Bin′(v2) is full. Why is β = 2 in this case?

Programming exercises

5.28 Design an applet that provides an implementation of Algorithm 5.1.

5.29 Write a program that finds pwords satisfying Lemma 5.7. What is the
output for running the program on

• abcdabedabcdab�dabedabcdabedabedabcd
• adabcd�dabcdadabc

5.30 Write a program that when given as input a partial u with one hole, out-
puts the item number of Algorithm 5.2 u falls into. That is, Item 1(a),
1(b)(i), 1(b)(ii), 1(b)(iii), 1(b)(iv), 2(a)(i), 2(a)(ii), 2(b)(i), 2(b)(ii),
2(b)(iii) or 2(b)(iv).

5.31 Refine your program of Exercise 5.30 to handle A, B, . . . items.

5.32 Write a program to look for a partial word u with two holes that has
no binary equivalent v satisfying all the following conditions:

• |v| = |u|
• P(v) = P(u)

• P ′(v) = P ′(u)
• H(v) ⊂ H(u)

Website

A World Wide Web server interface at

http://www.uncg.edu/mat/AlgBin
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has been established for automated use of Algorithm 5.2. Another one has
been established at

http://www.uncg.edu/mat/bintwo

that takes as input a partial word u with an arbitrary number of holes and
that outputs a binary equivalent v that satisfies the conditions |v| = |u|,
P(v) = P(u), P ′(v) = P ′(u) and H(v) ⊂ H(u) if such binary equivalent
exists.

Bibliographic notes

Theorem 5.1 is from Guibas and Odlyzko [82]. Their proof uses properties
of correlations and is somewhat complicated. The algorithmic approach of
Section 5.1 that includes Lemmas 5.1, 5.2, 5.3, 5.4, Algorithm 5.1, and The-
orem 5.2 is from Halava, Harju and Ilie [87]. Sections 5.2 and 5.3 contain a
new version of an algorithm from Blanchet-Sadri and Chriscoe [23].
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Chapter 6

Primitive Partial Words

In this chapter, we study primitive partial words. Recall that a full word over
a finite alphabet is primitive if it cannot be written as a power of another
word. In the case of a partial word, we have the following definition.

DEFINITION 6.1 A partial word u is primitive if there exists no word
v such that u ⊂ vi with i ≥ 2.

Recall that in Exercise 1.18 of Chapter 1, a property was stated that
nonempty full words can be written as powers of primitive words. More-
over, if u is a nonempty partial word, then there exists a primitive word v
and a positive integer i such that u ⊂ vi. Uniqueness however holds for full
words but not for partial words.

In Section 6.1, we describe a linear time algorithm to test primitivity on
partial words. The algorithm is based on the combinatorial result that under
some condition, a partial word is primitive if and only if it is not compatible
with an inside factor of its square. One of the concepts of speciality discussed
in Chapter 2, which relates to commutativity on partial words, is foundational
in the design of the algorithm.

The number of primitive words of a fixed length over an alphabet of a fixed
size is well known and relates to the Möbius function. In Section 6.2, we
discuss a formula for the number of primitive full words of length n over an
alphabet of size k, and start counting primitive partial words by considering
the case of prime length. Section 6.3 contains several definitions and some
important general properties of exact periods of partial words that are useful
for the counting. In Section 6.4, we present a first counting method which
consists in first considering all nonprimitive pwords with h holes obtained by
replacing h positions in nonprimitive full words with �’s, and then subtracting
the pwords that have been doubly counted. There, we express in particular
the number of primitive partial words with one or two holes of length n over a
k-size alphabet in terms of the number of such full words. Section 6.5 discusses
a second method. We count nonprimitive partial words of length n with h
holes over a k-size alphabet through a constructive method that refines the
counting done in the previous sections.

Finally, Section 6.6 extends several well known basic properties on the ex-
istence of primitive words to primitive partial words.

157
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6.1 Testing primitivity on partial words

The property of being primitive is testable on a word of n symbols in O(n)
time. A linear time algorithm can be based on the combinatorial property
that no primitive word u can be an inside factor of uu (see Exercise 2.21).
Indeed, u is primitive if and only if u is not a proper factor of uu, that is,
uu = xuy implies x = ε or y = ε. The following proposition shows that the
property also holds for partial words with one hole.

PROPOSITION 6.1
Let u be a partial word with one hole. Then u is primitive if and only if
uu ↑ xuy for some partial words x, y implies x = ε or y = ε.

PROOF Assume that u is primitive and that uu ↑ xuy for some nonempty
partial words x, y. Since |x| < |u|, by Lemma 1.2, there exist nonempty partial
words z, v such that u = zv, z ↑ x, and vu ↑ uy. Then zvzv ↑ xzvy yields
vz ↑ zv by simplification. By Lemma 2.5, v and z are contained in powers of
a common word, a contradiction with the fact that u is primitive.

Now, assume that uu ↑ xuy for some partial words x, y implies x = ε or
y = ε. Suppose to the contrary that u is not primitive. Then there exists a
nonempty word v and an integer i ≥ 2 such that u ⊂ vi. But then uu ↑ vi−1uv,
and using our assumption we get vi−1 = ε or v = ε, a contradiction.

In the case of partial words with at least two holes, the following holds.

PROPOSITION 6.2
Let u be a partial word with at least two holes.

1. If uu ↑ xuy for some partial words x, y implies x = ε or y = ε, then u
is primitive.

2. If uu ↑ xuy for some nonempty partial words x and y satisfying |x| ≤ |y|,
then the following hold:

(a) If |x| = |y|, then u is not primitive.

(b) If u is not (|x|, |y|)-special, then u is not primitive (it is contained
in a power of a word of length |x|).

(c) If u is (|x|, |y|)-special, then u is not contained in a power of a word
of length |x|.

PROOF Statement 1 follows as in Proposition 6.1. For Statement 2,
assume that uu ↑ xuy for some nonempty partial words x, y. Let u1 be the



Primitive Partial Words 159

prefix of length |x| of u and u2 be the suffix of length |y| of u (u = u1u2). The
compatibility relation u1u2u1u2 ↑ xu1u2y yields u1u2 ↑ u2u1. For Statement
2(a), since |x| = |y|, u1u2 ↑ u2u1 implies u1 ↑ u2. By definition, there exists
a partial word w such that u1 ⊂ w and u2 ⊂ w. We get u = u1u2 ⊂ w2, and
the statement follows. For Statement 2(b), since u = u1u2 is not (|u1|, |u2|)-
special, by Theorem 2.6, u1 and u2 are contained in powers of a common
word, showing that u is not primitive. Here, for 0 ≤ i < |x|, seq|x|,|y|(i)
is 1-periodic with letter ai for some ai ∈ A ∪ {�}. We conclude that u is
contained in a power of a0a1 . . . a|x|−1. For Statement 2(c), put |y| = m|x|+r
where 0 ≤ r < |x|. If r > 0, then u is obviously not contained in a power of
a word of length |x|. And if r = 0, then there exists 0 ≤ i < |x| such that
seq|x|,|y|(i) = (i, i+ |x|, i+2|x|, . . . , i+m|x|, i) contains two positions that are
holes of u while u(i)u(i+ |x|)u(i+2|x|) . . . u(i+m|x|)u(i) is not 1-periodic.

Example 6.1
This example illustrates Proposition 6.2(2(c)). The primitive partial word
u = ab�bbb�b is compatible with an inside factor of its square uu as illustrated
in the following diagram:

a b � b b b � b a b � b b b � b
a b � b b b � b

Here u is (2, 6)-special since seq2,6(0) = (0, 2, 4, 6, 0) contains the holes 2 and 6
while u(0)u(2)u(4)u(6)u(0) = a�b�a is not 1-periodic. Here, u is not contained
in a power of a word of length 2.

We now give an algorithm for testing whether a partial word is primitive.

Algorithm Primitivity Testing

input: partial word u
output: primitive (if u is) and nonprimitive (otherwise)
U ← uu
count ← ‖H(u)‖
if count < 2 then

check compatiblity of u with a substring of U [1..2|u| − 1)
if successful then

return nonprimitive
else

return primitive
else

k ← 1 and l← |u| − 1
while k ≤ l do

check compatibility of u with U [k..k + |u|)
if successful then
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if u is (k, l)-special and k < l then
k ← k + 1 and l← l − 1

if u is not (k, l)-special or k = l then
return nonprimitive

else
k ← k + 1 and l← l − 1

return primitive

REMARK 6.1 Note that if u is primitive, then its reversal rev(u) is also
primitive. This fact justifies the while loop being for k ≤ l.

The following example illustrates our algorithm.

Example 6.2
Consider the partial word u = a��aba� where D(u) = {0, 3, 4, 5} and H(u) =
{1, 2, 6}. The algorithm proceeds as follows:

k = 1, l = 6: Compatibility of u with U [1..8) is nonsuccessful.

k = 2, l = 5: Compatibility of u with U [2..9) is successful.

a � � a b a � a � � a b a �
a � � a b a �

Here, the partial word u is (2, 5)-special.

k = 3, l = 4: Compatibility of u with U [3..10) is nonsuccessful.

Thus the partial word u is primitive.
Now, consider the partial word u = ab��bc�bc where D(u) = {0, 1, 4, 5, 7, 8}

and H(u) = {2, 3, 6}. The algorithm proceeds as follows:

k = 1, l = 8: Compatibility of u with U [1..10) is nonsuccessful.

k = 2, l = 7: Compatibility of u with U [2..11) is nonsuccessful.

k = 3, l = 6: Compatibility of u with U [3..12) is successful.

a b � � b c � b c a b � � b c � b c
a b � � b c � b c

Here, the partial word u is not (3, 6)-special and is thus nonprimitive
(u ⊂ (abc)3).



Primitive Partial Words 161

In conclusion, the following theorem holds.

THEOREM 6.1
The property of being primitive is testable on a partial word of length n in
O(n) time.

PROOF The correctness of our algorithm follows from Propositions 6.1
and 6.2. To see that primitivity can be tested in linear time in the length of a
given partial word u, any linear time pattern matching algorithm can be easily
adapted to test whether the string u is compatible with an inside substring
of uu. The algorithm finds the leftmost occurrence, if any, of a factor of uu,
U [k..k+ |u|), compatible with u. For a full word u, the comparisons done are
of the type a ?= b, for letters a and b in the alphabet A. For a partial word u,
we can overload the comparison operator in a ?= b to return all comparisons of
the special symbol � with any letter a or b as true. (For example, both � ?= b

and a
?= � returns true for all letters a and b in A, while a ?= b only returns

true if both a and b are the same symbol.) Overloading the operator does
not change the time complexity of the algorithm any more than by a constant
factor. Thus, the discovery of the leftmost occurrence, if any, of a substring
U [k..k + |u|) compatible with u can be performed in linear time. This part
of the algorithm needs to be altered slightly to handle partial words with at
least two holes.

Fixing k > 0, the following diagram pictures the alignment of u with
U [k..k + |u|):

u(0) u(1) . . . u(|u| − k − 1) u(|u| − k) u(|u| − k + 1) . . . u(|u| − 1)
u(k) u(k + 1) . . . u(|u| − 1) u(0) u(1) . . . u(k − 1)

Now, let l = |u| − k. If k < l, then the checking of whether or not u is
compatible with U [k..k + |u|) can be done simultaneously with the checking
of whether or not u is (k, l)-special. Indeed, for any 0 ≤ i < k, consecutive
positions in seqk,l(i) turn out to be aligned positions in the above diagram.
The algorithm starts by considering i = 0 and repeats the following, increas-
ing i until i = k (whenever i = k, both u is compatible with U [k..k + |u|)
and u is not (k, l)-special). While considering i, the algorithm computes
seqk,l(i) = (i0, i1, i2, . . . , in+1) along with its letter seqletter initialized with
u(i). Whenever the position ij is added to the sequence, the algorithm com-
pares u(ij) with u(ij−1). If not compatible, then the compatibility of u with
U [k..k+ |u|) is nonsuccessful and the algorithm increases k by 1 and decreases
l by 1. If compatible, then the algorithm updates seqletter depending on the
value of u(ij). There are four cases that can arise while updating seqletter
(here a, b denote distinct letters in A): (1) seqletter = � and u(ij) = � (no up-
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date is needed); (2) seqletter = � and u(ij) = a (seqletter is updated with a);
(3) seqletter = a and u(ij) = a (no update is needed); and (4) seqletter = a
and u(ij) = b (here it is discovered that u(i0)u(i1)u(i2) . . . u(in+1) is not 1-
periodic). If any of Cases (1), (2) or (3) occurs and j < n + 1, then the
algorithm repeats the process by adding the position ij+1 to the sequence. If
any of Cases (1), (2) or (3) occurs and j = n+1, then the algorithm increases
i. If Case (4) occurs, then we claim that the algorithm will increase k by 1
and decrease l by 1. To see this, if the number of holes seen so far in the se-
quence, or seqholes, is not less than 2, then u is (k, l)-special and regardless of
whether or not u is compatible with U [k..k+ |u|), the algorithm will increase
k by 1 and decrease l by 1. If seqholes < 2, then u is (k, l)-special or u is not
compatible with U [k..k + |u|), and again regardless of which case happens,
the algorithm will increase k by 1 and decrease l by 1. These changes in the
original algorithm increase the time complexity by at most a constant factor.

6.2 Counting primitive partial words

We begin the counting of primitive partial words with some notation. De-
note by Ph,k(n) (respectively, Nh,k(n)) the number of primitive (respectively,
nonprimitive) partial words with h holes of positive length n over a k-size
alphabet A. Also, denote by Ph,k(n) (respectively, Nh,k(n)) the set of prim-
itive (respectively, nonprimitive) partial words with h holes of length n over
A. Let Th,k(n) denote the total number of partial words of length n with h
holes over A, and Th,k(n) the set of all such partial words. The equality

Ph,k(n) +Nh,k(n) = Th,k(n) (6.1)

holds and it is easy to see that

Th,k(n) =
(
n

h

)
kn−h =

n!
h!(n− h)!

kn−h (6.2)

The partial word ab�ca�cc belongs to N2,3(8) while the word ab�ca�ca be-
longs to P2,3(8).

REMARK 6.2 Note that P0,k(1) = k while N0,k(1) = 0. Note in addition
that when h > n, we have Ph,k(n) = Nh,k(n) = 0. When n = h + 1 > 1, we
have Ph,k(n) = 0 and Nh,k(n) = nk. And when h = n, we have Ph,k(n) = 1
if n = 1, and 0 otherwise, and also Nh,k(n) = 0 if n = 1, and 1 otherwise.

We first count primitive full words. We start with a definition.
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DEFINITION 6.2 The Möbius function, denoted by µ, is a number
theoretic function defined by

µ(n) =

1 if n = 1
(−1)i if n is a product of i distinct primes
0 if n is divisible by the square of a prime

(6.3)

The first few values of µ are µ(1) = 1, µ(2) = (−1)1 = −1 since 2 is a
prime, µ(3) = −1, µ(4) = 0 since 4 = 22, µ(5) = −1, µ(6) = (−1)2 = 1 since
6 = 2× 3, µ(7) = −1, µ(8) = 0 since 8 = 23, µ(9) = 0, and µ(10) = 1. Notice
that ∑

d|n

µ(d) =
{

1 if n = 1
0 if n ≥ 2 (6.4)

for n = 1, . . . , 10.
Equality 6.4 is actually always true. One can deduce from it that two

functions φ, ψ from P to Z are related by
∑

d|n ψ(d) = φ(n) if and only if∑
d|n µ(d)φ(n

d ) = ψ(n) (these are left as exercises for the reader). Since there
are exactly kn words of length n over a k-size alphabet and every nonempty
word w has a unique primitive root v for which w = vn/d for some divisor d
of n, the following relation holds:∑

d|n

P0,k(d) = kn (6.5)

Using Equality 6.5 and setting φ(n) = kn and ψ(d) = P0,k(d), we obtain the
following expression for P0,k(n):

P0,k(n) =
∑
d|n

µ(d)kn/d (6.6)

Example 6.3
Using Equality 6.6, the number of primitive words of length n = 10 over an
alphabet of size k = 2 is

P0,2(10) =
∑
d|10

µ(d)210/d

= µ(1)210/1 + µ(2)210/2 + µ(5)210/5 + µ(10)210/10

= (1)210 + (−1)25 + (−1)22 + (1)21

= 1024− 32− 4 + 2
= 990

We now count primitive partial words of prime length p. If w is a nonprimi-
tive pword with h holes of length p, then w must consist of a string containing
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h �’s and p− h a’s for some letter a ∈ A. In other words, w ⊂ ap. There are
k choices for the letter a and

(
p
h

)
choices for positioning the �’s. Thus

Nh,k(p) =
(
p

h

)
k (6.7)

Ph,k(p) = Th,k(p)−Nh,k(p) =
(
p

h

)
(kp−h − k) (6.8)

The tables below contain some numerical values for alphabets of sizes k = 2
and k = 3 where prime numbers n are underlined. These tables were obtained
by having a computer generate all possible partial words with zero, one, two or
three holes, and count the number of primitive and nonprimitive such words.

TABLE 6.1: Values for alphabet of size k = 2 and h ∈ {0, 1}.
n T0,2(n) P0,2(n) N0,2(n) T1,2(n) P1,2(n) N1,2(n)
1 2 2 0 1 1 0
2 4 2 2 4 0 4
3 8 6 2 12 6 6
4 16 12 4 32 16 16
5 32 30 2 80 70 10
6 64 54 10 192 132 60
7 128 126 2 448 434 14
8 256 240 16 1024 896 128
9 512 504 8 2304 2232 72
10 1024 990 34 5120 4780 340
11 2048 2046 2 11264 11242 22
12 4096 4020 76 24576 23664 912
13 8192 8190 2 53248 53222 26
14 16384 16254 130 114688 112868 1820
15 32768 32730 38 245760 245190 570
16 65536 65280 256 524288 520192 4096
17 131072 131070 2 1114112 1114078 34
18 262144 261576 568 2359296 2349072 10224
19 524288 524286 2 4980736 4980698 38
20 1048576 1047540 1036 10485760 10465040 20720

6.3 Exact periods

In this section, we discuss the concept of exact period which will play a role
in our counting of primitive partial words. It is defined as follows.
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TABLE 6.2: Values for alphabet of size k = 2 and h ∈ {2, 3}.
n T2,2(n) P2,2(n) N2,2(n) T3,2(n) P3,2(n) N3,2(n)
1 0 0 0 0 0 0
2 1 0 1 0 0 0
3 6 0 6 1 0 1
4 24 4 20 8 0 8
5 80 60 20 40 20 20
6 240 102 138 160 24 136
7 672 630 42 560 490 70
8 1792 1376 416 1792 1088 704
9 4608 4320 288 5376 4716 660
10 11520 10070 1450 15360 11920 3440
11 28160 28050 110 42240 41910 330
12 67584 62760 4824 112640 97920 14720
13 159744 159588 156 292864 292292 572
14 372736 361354 11382 745472 703528 41944
15 860160 856170 3990 1863680 1846470 17210
16 1966080 1936384 29696 4587520 4458496 129024
17 4456448 4456176 272 11141120 11139760 1360
18 10027008 9942408 84600 26738688 26312400 426288
19 22413312 22412970 342 63504384 63502446 1938
20 49807360 49615640 191720 149422080 148333200 1088880

TABLE 6.3: Values for alphabet of
size k = 3 and h = 0.

n T0,3(n) P0,3(n) N0,3(n)
1 3 3 0
2 9 6 3
3 27 24 3
4 81 72 9
5 243 240 3
6 729 696 33
7 2187 2184 3
8 6561 6480 81
9 19683 19656 27
10 59049 58800 249
11 177147 177144 3
12 531441 530640 801
13 1594323 1594320 3
14 4782969 4780776 2193
15 14348907 14348640 267
16 43046721 43040160 6561
17 129140163 129140160 3
18 387420489 387400104 20385
19 1162261467 1162261464 3
20 3486784401 3486725280 59121
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TABLE 6.4: Values for alphabet of size
k = 3 and h = 1.

n T1,3(n) P1,3(n) N1,3(n)
1 1 1 0
2 6 0 6
3 27 18 9
4 108 72 36
5 405 390 15
6 1458 1260 198
7 5103 5082 21
8 17496 16848 648
9 59049 58806 243
10 196830 194340 2490
11 649539 649506 33
12 2125764 2116152 9612
13 6908733 6908694 39
14 22320522 22289820 30702
15 71744535 71740530 4005
16 229582512 229477536 104976
17 731794257 731794206 51
18 2324522934 2324156004 366930
19 7360989291 7360989234 57
20 23245229340 23244046920 1182420

TABLE 6.5: Values for alphabet of size k = 3 and h ∈ {2, 3}.
n T2,3(n) P2,3(n) N2,3(n) T3,3(n) P3,3(n) N3,3(n)
1 0 0 0 0 0 0
2 1 0 1 0 0 0
3 9 0 9 1 0 1
4 54 12 42 12 0 12
5 270 240 30 90 60 30
6 1215 774 441 540 144 396
7 5103 5040 63 2835 2730 105
8 20412 18360 2052 13608 10368 3240
9 78732 77760 972 61236 59022 2214
10 295245 284850 10395 262440 239040 23400
11 1082565 1082400 165 1082565 1082070 495
12 3897234 3847284 49950 4330260 4183632 146628
13 13817466 13817232 234 16888014 16887156 858
14 48361131 48171774 189357 64481508 63805728 675780
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DEFINITION 6.3 We call a partial word w an n
d
-repeat if w is d-

periodic and d is a divisor of n distinct from n. In such case, d is called an
exact period of w.

Example 6.4
To illustrate the definition, consider the partial word w1 = ab���b. Aligning
w1 in rows of length 3 and 2, we can see that w1 is an 6

3 -repeat as well as an
6
2 -repeat. Both 3 and 2 are exact periods.

a b � a b
� � b � �

� b

DEFINITION 6.4 We call the � in position i of partial word w free with
respect to exact period d if whenever j ∈ D(w), we have j 6≡ i mod d.

Returning to Example 6.4, none of the �’s are free with respect to any of
the exact periods. Such is not the case with the following example.

Example 6.5
If we consider the partial word w2 = bb��b� and align it with respect to two
of its exact periods, namely 3 and 2,

b b b b �
� � � b �
b �

we see that the �’s in positions 2, 3, and 5 are not free with respect to exact
period 2, the � in position 3 is not free with respect to exact period 3, but
the �’s in positions 2 and 5 are free with respect to exact period 3.

Continuing with some more terminology, let w = a0 . . . an−1 where ai ∈
A ∪ {�}. We denote by D(n) the set of divisors of n distinct from n, by E(w)
the set of exact periods of w, that is,

E(w) = {d | d ∈ P(w) and d ∈ D(n)}

and by R(w) the reduced set of exact periods of w, that is,

R(w) = {d | d ∈ E(w) and there exists no d′ ∈ E(w) ∩ D(d)}

If d is an exact period of w, we set

Bd(i) = {aj | 0 ≤ j < n and j ≡ i mod d}



168 Algorithmic Combinatorics on Partial Words

Now, assume that w is nonprimitive, and let i1 < i2 < · · · < ih be the elements
in H(w). Suppose that w has exact period d and has no free �’s with respect
to d. Note that for all j, Bd(ij) = {�, bij

} for some bij
∈ A. We define the

function fd as fd(i1, i2, . . . , ih) = (bi1 , bi2 , . . . , bih
). We also define the function

f with domain E(w) where d 7→ fd(i1, i2, . . . , ih), and set ν(w) = ‖f(E(w))‖.
Returning to Example 6.4, Figure 6.1 depicts the mapping f for w = ab���b.

Here, ν(w) = 2.

FIGURE 6.1: Mapping f for w = ab���b.

LEMMA 6.1

Let w be a nonprimitive partial word that has no free �’s with respect to any
of its exact periods. Then ν(w) = ‖R(w)‖.

PROOF Let i1 < i2 < · · · < ih be the elements in H(w). It is easy to
see that ν(w) ≤ ‖R(w)‖ because (i1, i2, . . . , ih) will get mapped to the same
h-tuple under both fd and fmd for all integers m ≥ 1. We now show that f
is one-to-one on R(w). Suppose not, and let p, q ∈ R(w) satisfy both p < q
and fp(i1, i2, . . . , ih) = fq(i1, i2, . . . , ih). The bound given by Fine and Wilf’s
Theorem 3.1 satisfies p+q−gcd(p, q) ≤ n

3 + n
2 −gcd(p, q) = 5n

6 −gcd(p, q) < n
which implies that any full word of length n with exact periods p, q will also
have gcd(p, q) as an exact period. If we now replace in w the hole in position
ij by bij for all j, we obtain a full word w′ that has exact periods p, q and thus
period gcd(p, q), and so gcd(p, q) is also a period of w. Thus q ∈ E(w) and
gcd(p, q) ∈ E(w)∩D(q) implying that q /∈ R(w) which leads to a contradiction.
Since f is one-to-one on R(w), it follows that ν(w) ≥ ‖R(w)‖ and thus
ν(w) = ‖R(w)‖.

Considering again Figure 6.1 of the mapping f for w = ab���b, ‖R(w)‖ =
‖{2, 3}‖ = 2 which coincides with ν(w) = 2 already calculated.
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In the sequel, given a pword w ∈ Nh,k(n) with no free �’s with respect to any
of its exact periods, the parameter ν(w) will play an important role. We will
obtain words w′ ∈ N0,k(n) by replacing the �’s in w with the corresponding
assignments under all possible exact periods of w. Distinct w′’s in N0,k(n) can
generate the same w ∈ Nh,k(n) whenever ‖R(w)‖ > 1. Indeed, looking again
at Figure 6.1 where w = ab���b has no free �’s but satisfies ‖R(w)‖ > 1, we
see that w is a nonprimitive partial word with 3 holes obtained by replacing
3 positions with �’s in 2 (which equals ν(w)) nonprimitive full words: w′1 =
(ab)3 = ababab comes from 2 7→ (a, b, a) and w′2 = (abb)2 = abbabb comes from
3 7→ (b, a, b).

The following lemma relates to the computation of ν(w) for nonprimitive
pwords w with one hole.

LEMMA 6.2

If w ∈ N1,k(n), then ν(w) = 1.

PROOF Since w is a nonprimitive partial word with one hole, it has no
free �’s with respect to any of its exact periods. By Lemma 6.1, we have
ν(w) = ‖R(w)‖. Now, let p, q ∈ R(w) satisfy p < q. Since p, q are exact
periods, we have p + q ≤ n

3 + n
2 = 5n

6 < n and Theorem 3.1(2) implies that
w has gcd(p, q) as period. But since q ∈ E(w), we have that gcd(p, q) ∈ E(w).
Since gcd(p, q) 6= q and gcd(p, q) divides q, we get a contradiction with the
fact that q ∈ R(w).

For nonprimitive pwords w with two holes, we have the following.

LEMMA 6.3

If w ∈ N2,k(n), then ‖R(w)‖ = 1. As a consequence, if n is odd, then
ν(w) = 1.

PROOF Theorem 3.5 for two holes gives the optimal bound for the length
of w given p, q ∈ R(w), that is, L(2,p,q) = 2p+ q− gcd(p, q) with p < q. Since
p, q are exact periods, we have p, q ≤ n

2 .

• If p ≤ n
4 and q ≤ n

2 , then L(2,p,q) ≤ 2n
4 + n

2−gcd(p, q) = n−gcd(p, q) < n.

• If p = n
3 and q = n

2 , then L(2, n
3 , n

2 ) = 2n
3 + n

2 −gcd( 2n
6 ,

3n
6 ) = 7n

6 −
n
6 = n.

Thus L(2,p,q) ≤ n and Theorem 3.5 implies that w has gcd(p, q) as period.
Again we get a contradiction as in Lemma 6.2.

Now, if w is a nonprimitive partial word with two holes of odd length n,
then w has no free �’s with respect to any of its exact periods. By Lemma 6.1,
we have ν(w) = ‖R(w)‖.
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If w ∈ N2,k(n) and n is even and w has two free �’s with respect to d = n
2 ,

then w has no free �’s with respect to any of its exact periods distinct from n
2 .

The smallest exact period being a divisor of n
2 by Lemma 6.3, in such case,

we also define ν(w) = 1.

6.4 First counting method

In this section, we first consider all nonprimitive pwords with h holes ob-
tained by replacing h positions in nonprimitive full words with �’s, and then
subtract the pwords that have been doubly counted. In particular, we express
N1,k(n) and N2,k(n) in terms of N0,k(n).

Let w = a0a1 . . . an−1 be a full word of length n over an alphabet A of size
k. Let 0 ≤ i1 < i2 < · · · < ih < n and denote by wi1,...,ih

the partial word
built from w by replacing positions i1, . . . , ih with �’s. Setting

Sh(w) = {wi1,...,ih
| 0 ≤ i1 < i2 < · · · < ih < n}

we say that w generates each element in Sh(w). For any set X of partial
words, we denote by N (X) the set of nonprimitive pwords in X, that is,

N (X) = {w | w is nonprimitive and w ∈ X}

LEMMA 6.4
If w ∈ N0,k(n), then Sh(w) ⊂ Nh,k(n).

PROOF Since w ∈ N0,k(n), there exists a word v such that w = vi for
some i ≥ 2. If 0 ≤ i1 < · · · < ih < n, then wi1,...,ih

⊂ w = vi. It follows that
Sh(w) ⊂ Nh,k(n).

Denote by Wh,k(n) the set of all nonprimitive partial words with h holes of
length n over A obtained by replacing any h positions with �’s in nonprimitive
full words of length n over A. The following holds:

Wh,k(n) =
⋃

w∈N0,k(n)

N (Sh(w)) =
⋃

w∈N0,k(n)

Sh(w)

Obviously,

‖Wh,k(n)‖ ≤
(
n

h

)
N0,k(n)

The following lemma states that, given w a full primitive word, the non-
primitive partial word obtained by replacing h positions in w with �’s must
be in Sh(v) for some nonprimitive full word v.
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LEMMA 6.5

If w ∈ P0,k(n), then Sh(w) ⊂ Sh(v) ∪ Ph,k(n) for some v ∈ N0,k(n).

PROOF Let w ∈ P0,k(n). If wi1,...,ih
∈ Sh(w) is nonprimitive, then there

exists a full word u such that wi1,...,ih
⊂ ui for some i ≥ 2. The word v = ui

is such that wi1,...,ih
∈ Sh(v).

We will now concentrate on the one- and two-hole cases. We will prove the
case of two holes and leave the case of one hole to the reader.

THEOREM 6.2

The equality N1,k(n) = nN0,k(n) holds.

We can deduce the following corollary.

COROLLARY 6.1

The equality P1,k(n) = n(P0,k(n) + kn−1 − kn) holds.

The two-hole case is stated in the next two theorems.

THEOREM 6.3

For an odd positive integer n, the following equality holds:

N2,k(n) =
(
n

2

)
N0,k(n)

PROOF If u, v are distinct nonprimitive full words of length n, then
S2(u)∩S2(v) = ∅. Indeed, suppose there exists a pword w ∈ S2(u)∩S2(v) such
that ui1,i2 = w and vi1,i2 = w. Thus u(i) = v(i) for all 0 ≤ i < n, i 6= i1, i2.
Since w ∈ N2,k(n) and n is odd, w is not an 2-repeat. It is easy to see that
in this case, there are no free �’s in w, that is, there exist j1, j2 ∈ D(w)
such that j1 ≡ i1 mod d and j2 ≡ i2 mod d for each exact period d. This
means that in the words u and v, there exists only one pair of assignments
for u(i1), u(i2) and v(i1), v(i2) respectively, since we have already shown in
Lemma 6.3 that ν(w) = 1. It follows that u(i1) = v(i1) and u(i2) = v(i2)
implying that u = v which contradicts our assumption. Since the sets in the
union

⋃
w∈N0,k(n) Sh(w) are pairwise disjoint, we may conclude that

N2,k(n) = ‖W2,k(n)‖ =
(
n
2

)
N0,k(n)
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THEOREM 6.4
For an even positive integer n, the following equality holds:

N2,k(n) =
(
n

2

)
N0,k(n)− (k − 1)T1,k(

n

2
)

PROOF It suffices to show that a number of T1,k(n
2 ) words are counted

k times each. Let w be a nonprimitive word of even length that generates the
partial word wi,j . Assume n ≥ 4. If wi,j is not an n

2 -repeat, then there are
at least three occurrences of the base of length ≤ n

3 . It follows that there are
no free �’s, which means that the generator w is unique. Assume now that
wi,j has an exact period d = n

2 . If i and j do not belong to the same class
modulo d, then again wi,j is uniquely generated since there are no free �’s.
Now, suppose i ≡ j mod d and consider again the pword wi,j :

wi,j = a0 a1 . . . ai−1 � ai+1 . . . ad−1

ad ad+1 . . . aj−1 � aj+1 . . . an−1

Note that in this case we have a pair of free �’s, which means that in the initial
word w, the letter at positions i and j can be any letter in the alphabet, thus
a total of k possibilities. The number of partial words u of length n

2 with
one hole is T1,k(n

2 ). Note that all possible pwords of the form uu can each
be generated by k different words in N0,k(n). Removing k − 1 copies of such
words leaves us with a total of 1

2n(n − 1)N0,k(n) − (k − 1)T1,k(n
2 ), which is

what we wanted.

COROLLARY 6.2
The following holds:

P2,k(n) =
{(

n
2

)
(P0,k(n) + kn−2 − kn) if n is odd(

n
2

)
(P0,k(n) + kn−2 − kn) + (k − 1)T1,k(n

2 ) if n is even

PROOF If n is odd, then using Theorem 6.3 we have the following list of
equalities:

P2,k(n) = T2,k(n)−N2,k(n)

= T2,k(n)−
(
n

2

)
N0,k(n)

=
(
n

2

)
kn−2 −

(
n

2

)
(T0,k(n)− P0,k(n))

=
(
n

2

)
kn−2 −

(
n

2

)
(kn − P0,k(n))

=
(
n

2

)
(P0,k(n) + kn−2 − kn)
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The case when n is even follows from Theorem 6.4.

We end this section with three propositions: the first holding for any number
of holes and the other two for three holes.

PROPOSITION 6.3

If w ∈ Nh,k(n) and w has no free �’s with respect to any of its exact periods,
then there exist ν(w) words in N0,k(n) that generate w.

PROOF Let i1 < i2 < · · · < ih be the elements in H(w). For p ∈
R(w), let the h-tuple (bi1 , . . . , bih

) be the image of (i1, . . . , ih) under fp (here
bij
∈ A for all j). Obviously, replacing for all j the � in position ij with

the corresponding letter bij yields a full nonprimitive word that generates w.
Since we showed in Lemma 6.1 that f is bijective on R(w), it follows that
there are ν(w) = ‖R(w)‖ full words that generate w.

PROPOSITION 6.4

If w ∈ N3,k(n) and w has three free �’s, then there exist kT1,k(n
3 ) words in

N0,k(n) that generate w.

PROOF The pword w has three free �’s only if it is an 3-repeat, that is,
w ⊂ v3 for some pword v ∈ T1,k(n

3 ). There also must exist some 0 ≤ i < n
3

such that Bn
3
(i) = {�}. Let v′ denote the full word obtained by replacing the

� at position i in v with any letter in A. The resulting full word (v′)3 is a
generator for w. Since there are k choices to replace the � in v with a letter, it
means that k possible full words generate w. Since the total number of words
in N3,k(n) that are 3-repeats is given by T1,k(n

3 ), it follows that kT1,k(n
3 )

words in N0,k(n) generate w.

PROPOSITION 6.5

If w ∈ N3,k(n) and w has two free �’s, then there exist k(n− 2)T1,k(n
2 ) words

in N0,k(n) that generate w.

PROOF If w has two free �’s, then it must be an 2-repeat, that is, w ⊂ v2

for some pword v ∈ T1,k(n
2 ). There must exist some i, j, 0 ≤ i, j < n

2 such that
Bn

2
(i) = {�} and Bn

2
(j) = {�, a} for some a ∈ A. Let v′ denote a full word

obtained by replacing the �’s at positions i, i+ n
2 within w with any letter in

A and the � at position j with the letter a. There are k choices to replace the
�’s at positions i, i+ n

2 with a letter. Also, note that there are (n− 2)T1,k(n
2 )

words in N3,k(n) that have a pair of free �’s since there are n − 2 positions
where we can place the third �. Overall, there are k(n − 2)T1,k(n

2 ) words in
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N0,k(n) that generate w.

6.5 Second counting method

We now count nonprimitive partial words of length n with h holes over a
k-size alphabet A through a constructive method that refines the counting
done in the previous sections.

DEFINITION 6.5 If w is a nonprimitive pword of length n with h holes
and d is the smallest integer such that there exists a pword v satisfying w ⊂
vn/d, then the proot of w is the pword w[0..d).

Example 6.6

Consider the nonprimitive partial word w = a�ab�bab with two holes of length
8 over the binary alphabet {a, b}. The containments w ⊂ (ab)8/2 and w ⊂
(abab)8/4 hold, and d = 2 is the smallest integer satisfying w ⊂ v8/d for some
v. Thus the proot of w is w[0..d) = w[0..2) = a�.

Let RPh,k(n, d, h′) denote the set of nonprimitive pwords of length n with
h holes over an alphabet of size k with a primitive proot having length d
and containing h′ holes, and let RN h,k(n, d, h′)) denote a similar set except
that the proot is nonprimitive. Denote by Rh,k(n, d) the set of nonprimitive
pwords with h holes of length n over an alphabet of size k with a proot of
length d. Using the convention adopted earlier, RPh,k(n, d, h′) will denote the
cardinality ofRPh,k(n, d, h′). We define RNh,k(n, d, h′) similarly. In addition,
Rh,k(n, d) will denote the cardinality of Rh,k(n, d).

We obtain the equality

Rh,k(n, d) =
h∑

h′=0

(RPh,k(n, d, h′) +RNh,k(n, d, h′)) (6.9)

The set Nh,k(n) will be generated by considering all possible proots of
length d ∈ D(n). Different cases occur: The proot belongs to Ph′,k(d) for
some h′ = 0, . . . , h, or the proot belongs to Nh′,k(d) for some h′ = 1, . . . , h.

REMARK 6.3 Note that, in order to avoid double counting, we will
never generate nonprimitive pwords starting with a nonprimitive full proot.
Therefore, we may always assume that RNh,k(n, d, 0) = 0, hence the missing
h′ = 0 for Nh′,k(d).
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Given a proot w[0..d) with h′ holes, we build the corresponding temporary
pword t = (w[0..d))n/d. We transform t to generate nonprimitive pwords by
replacing letters with �’s, or vice versa, while the proot remains unchanged.
There result pwords containing h holes and having proot w[0..d).

TABLE 6.6: Partial words in N1,2(8): “1” refers to length of
proot is 1; “2p” to length of primitive proot is 2; “2n” to length of
nonprimitive proot is 2; “4p0” (respectively, “4p1”) to length of
primitive full (respectively, one-hole) proot is 4; and “4n” to length of
nonprimitive proot is 4.

1 aaaaaaa� 4n aba�abaa 4p1 baa�baaa 1 bbbbb�bb
1 aaaaaa�a 2p aba�abab 4p1 baa�baab 1 bbbb�bbb
1 aaaaa�aa 4p0 abbaabb� 2p bababab� 4n bbb�bbba
1 aaaa�aaa 4p0 abbaab�a 2p bababa�a 1 bbb�bbbb
4p0 aaabaaa� 4p0 abbaa�ba 2p babab�ba 4p1 bb�abbaa
4p0 aaabaa�b 4p0 abba�bba 2p baba�aba 4p1 bb�abbba
4p0 aaaba�ab 4p0 abbbabb� 4p0 babbbab� 4n bb�bbbab
4p0 aaab�aab 4p0 abbbab�b 4p0 babbba�b 1 bb�bbbbb
1 aaa�aaaa 4p0 abbba�bb 4p0 babbb�bb 4p1 b�aabaaa
4n aaa�aaab 4p0 abbb�bbb 4p0 babb�abb 4p1 b�aabbaa
4p0 aabaaab� 4p1 abb�abba 2p bab�baba 4p1 b�abbaab
4p0 aabaaa�a 4p1 abb�abbb 4n bab�babb 4p1 b�abbbab
4p0 aabaa�ba 4p1 ab�aabaa 4n ba�abaaa 2n b�bababa
4p0 aaba�aba 4p1 ab�aabba 2p ba�ababa 4n b�babbba
4p0 aabbaab� 2p ab�babab 4p1 ba�bbaab 4n b�bbbabb
4p0 aabbaa�b 4n ab�babbb 4p1 ba�bbabb 1 b�bbbbbb
4p0 aabba�bb 1 a�aaaaaa 4p0 bbaabba� 1 �aaaaaaa
4p0 aabb�abb 4n a�aaabaa 4p0 bbaabb�a 4n �aaabaaa
4p1 aab�aaba 4n a�abaaab 4p0 bbaab�aa 4p1 �aabaaab
4p1 aab�aabb 2n a�ababab 4p0 bbaa�baa 4p1 �aabbaab
1 aa�aaaaa 4p1 a�baaaba 4p0 bbabbba� 4n �abaaaba
4n aa�aaaba 4p1 a�baabba 4p0 bbabbb�b 2n �abababa
4p1 aa�baaab 4p1 a�bbaabb 4p0 bbabb�ab 4p1 �abbaabb
4p1 aa�baabb 4p1 a�bbabbb 4p0 bbab�bab 4p1 �abbbabb
4p0 abaaaba� 4p0 baaabaa� 4p1 bba�bbaa 4p1 �baaabaa
4p0 abaaab�a 4p0 baaaba�a 4p1 bba�bbab 4p1 �baabbaa
4p0 abaaa�aa 4p0 baaab�aa 4p0 bbbabbb� 2n �bababab
4p0 abaa�baa 4p0 baaa�aaa 4p0 bbbabb�a 4n �babbbab
2p abababa� 4p0 baabbaa� 4p0 bbbab�ba 4p1 �bbaabba
2p ababab�b 4p0 baabba�b 4p0 bbba�bba 4p1 �bbabbba
2p ababa�ab 4p0 baabb�ab 1 bbbbbbb� 4n �bbbabbb
2p abab�bab 4p0 baab�aab 1 bbbbbb�b 1 �bbbbbbb



176 Algorithmic Combinatorics on Partial Words

Example 6.7
We illustrate the abovementioned ideas by computing N1,2(8) where the set

of lengths of proots is {1, 2, 4}. We set A = {a, b} as our alphabet.
If the length of the proot is 1, then w ⊂ a8 or w ⊂ b8. There are 2 × 8 =

16 ways to build such a pword of length 8 with one hole over A. The 2
representing the two distinct letters a and b and the 8 representing the length
of the strings we are counting. Thus R1,2(8, 1) = 16. Examples of such strings
include aaaaaaa� and bb�bbbbb. They are the “1”’s in the table.

Now, if the length of the proot is 2, then w ⊂ v4 for some v. Note that
since P1,2(2) = 0, the proot cannot be a primitive partial word with one hole
and consequently RP1,2(8, 2, 1) = 0. Also recall that the proot cannot be a
nonprimitive full word. Therefore, we split the nonprimitive pwords with a
proot of length 2 into two sets: the ones with a proot that is a primitive full
word and the ones with a nonprimitive proot with one hole.

• If the proot is a primitive full word, then it belongs to the set {ab, ba}.
To obtain nonprimitive partial words with one hole from the temporary
words t1 = abababab and t2 = babababa, we replace the letter in any of
the last six positions of t1 or t2 with �. Note that replacing any letter
in any of the first two positions with �, thus in the proot, would bring
us back to the previous case when the proot has length 1 and we would
be doubly counting. Six new nonprimitive pwords can be derived from
t1 and the same is true for t2, thus RP1,2(8, 2, 0) = 12. They are the
“2p”’s in the table.

• If the proot is a nonprimitive partial word with one hole, then it belongs
to the 4-element set {a�, b�, �a, �b}. There is only one way to build
nonprimitive partial words with such proots. They are the “2n”’s in
the table. For example, if the proot is �b, then the only possibility is
�bababab. Note that �bbbbbbb is not a possibility since it has already
been taken into account. Thus RN1,2(8, 2, 1) = 4.

We obtain the equality

R1,2(8, 2) = RP1,2(8, 2, 0) +RP1,2(8, 2, 1) +RN1,2(8, 2, 1) = 16

Last, if the length of the proot is 4, then w ⊂ v2 and again, we split all
possible nonprimitive partial words with a proot of length 4 into three sets.

• If the proot is a primitive full word, then it belongs to a set of cardinality
P0,2(4) = 12. To obtain nonprimitive partial words with one hole, we
may replace any of the last four positions with � and RP1,2(8, 4, 0) = 48.
They are the “4p0”’s in the table.

• If the proot is a primitive partial word with one hole, then it belongs to
a set of cardinality P1,2(4) = 16, the “4p1”’s in the table. For example,
if the proot is �abb, then the temporary pword is t = �abb�abb. In place



Primitive Partial Words 177

of the second �, we can put either an a or a b thus obtaining �abbaabb
and �abbbabb, both nonprimitive partial words with one hole. Thus,
RP1,2(8, 4, 1) = 32.

• If the proot is a nonprimitive partial word with one hole, then it belongs
to the set

{aaa�, aa�a, a�aa, �aaa, aba�, ab�b, a�ab, �bab}

unioned with the set containing the pwords obtained by switching a with
b, for a total of N1,2(4) = 16 proots. There is only one way to build a
nonprimitive pword with one hole from such proots. If the proot is aaa�,
then the only possibility is aaa�aaab. Similarly, for the proot aba�, the
only nonprimitive pword with one hole that can be built with this proot
is aba�abaa. Note that the temporary pword in this case is t = aba�aba�,
but the second � can be replaced by any letter, except the one letter
which will make the pword an 4-repeat with a proot of length 2 (this
case has already been taken into account). Thus, RN1,2(8, 4, 1) = 16,
they are the “4n”’s in the table.

We obtain the equality

R1,2(8, 4) = RP1,2(8, 4, 0)+RP1,2(8, 4, 1)+RN1,2(8, 4, 1) = 48+32+16 = 96

The above computations lead to

N1,2(8) = R1,2(8, 1) +R1,2(8, 2) +R1,2(8, 4) = 16 + 16 + 96 = 128

agreeing with the corresponding value in the table.
Note that R1,2(8, d1) ∩R1,2(8, d2) is empty for any two distinct d1, d2.

The following lemma proves that we are not doubly counting any nonprim-
itive pwords.

LEMMA 6.6
Given a proot w[0..d) of length d ∈ D(n), the nonprimitive partial words (with
one or two holes) generated from w[0..d) have their smallest exact period equal
to d.

PROOF The analysis we are about to perform is similar for the case
when we count nonprimitive pwords with two holes. Suppose that during
the process of transforming a temporary pword t the resulting pword w ∈
N1,k(n) has an exact period d′ with d′ < d. There are four cases we need
to consider, depending on whether the proot is a primitive or nonprimitive
pword or whether d′ is a divisor of d or not. If d′ is not a divisor of d, then
let l = gcd(d, d′) with l < d′.
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Case 1. w[0..d) is nonprimitive and d′|d
This case cannot occur since, we subtract the value of ν(w[0..d)) = 1 from

the total number of options available to replace the extra �’s in t.

Case 2. w[0..d) is nonprimitive and d′ 6 |d
Since d, d′ ∈ E(w) it follows from Theorem 3.1 that l ∈ E(w). We are now

back in the previous case and no double counting occurs. The reason is that,
the pwords w which we are trying to avoid when transforming t have already
been avoided in the previous case.

Case 3. w[0..d) is primitive and d′|d
This case is easy to deal with simply because of the primitivity of w[0..d).

Since w is d′-periodic and d′|d, then w[0..d) must also be d′-periodic and thus
nonprimitive, which is a contradiction.

Case 4. w[0..d) is primitive and d′ 6 |d
Since d, d′ ∈ E(w) it follows from Theorem 3.1 that l ∈ E(w). Since w =

w[0..d)v for some pword v and w is d-periodic and l-periodic and l|d it follows
that w[0..d) has l as exact period and is thus nonprimitive. This again involves
a contradiction with w[0..d) being a primitive pword.

We have now proved that given a proot of length d, the nonprimitive pwords
derived from it will always have their smallest exact period equal to d.

6.5.1 The one-hole case

The following theorem gives the main result on counting nonprimitive par-
tial words with one hole of length n over A.

THEOREM 6.5

The following equality holds:

N1,k(n) = kn+
∑

d|n, d6=1,n

((n− d)P0,k(d) + kP1,k(d) + (k − 1)N1,k(d)) (6.10)

PROOF Let w be a nonprimitive pword of length n with one hole over
A. Let d be the smallest integer such that there exists a pword v satisfying
w ⊂ vn/d. Note that d ∈ D(n). The case when d = 1 can be easily dealt
with. There are kn ways we can build a nonprimitive pword of length n with
one hole over A, and thus R1,k(n, 1) = kn. Consider now the case when
d ∈ D(n) \ {1}. We split the proof into three cases based on the nature of the
proot w[0..d), and we set t = (w[0..d))n/d.

Case 1. First, if the proot is a primitive full word, then it belongs
to a set of P0,k(d) elements. Transforming t into a nonprimitive pword with
one hole requires that we place a � anywhere in t, except in the positions
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0, . . . , d− 1. Since there is a total of n− d such positions, we get

RP1,k(n, d, 0) = (n− d)P0,k(d)

Case 2. Now, if the proot is a primitive partial word with one hole,
then it belongs to a set of P1,k(d) elements. To obtain a nonprimitive pword
of length n with one hole, we need to replace in t all the holes, except the first
one, with letters in A. Note that once a hole has been replaced with a letter,
all remaining holes must be replaced by the same letter. There are k ways we
can replace a hole with a letter, thus

RP1,k(n, d, 1) = kP1,k(d)

Case 3. Finally, if the proot is a nonprimitive partial word with one
hole, then it belongs to a set of N1,k(d) elements. Transforming t into a
nonprimitive partial word with one hole requires that all holes, except the first
one (in the proot), be replaced by a letter in A. Note that once the second
hole is replaced by a letter, all remaining holes need to be replaced by the
same letter. When replacing the holes, we have all k letters available, except
that set of letters that would lead to a nonprimitive pword with one hole and
a proot shorter than d, a case that we have already taken into account. Since
ν(w[0..d)) = 1, there are k − ν(w[0..d)) = k − 1 nonprimitive partial words
with one hole that can be obtained from the temporary pword t above and
which have not been counted in previous cases. Since there are N1,k(d) such
temporary pwords, it follows that

RN1,k(n, d, 1) = (k − 1)N1,k(d)

Therefore, the total number of nonprimitive partial words with one hole of
length n over A with a proot of length d is

R1,k(n, d) = RP1,k(n, d, 0) +RP1,k(n, d, 1) +RN1,k(n, d, 1)
= (n− d)P0,k(d) + kP1,k(d) + (k − 1)N1,k(d)

Denoting by N the right hand side of Equality 6.10, we want to prove that
N1,k(n) = N . Note that for a given d, the three cases above cover all possible
proots of length d. We do not consider the case of nonprimitive full roots
because this falls into the case of full primitive proots with length d′ satisfying
d′ < d. Also, once a proot is fixed, we always consider all possible ways the
temporary pword t can be transformed into a nonprimitive partial word with
one hole, provided we keep the proot unchanged. Modifying the proot by
substituting a letter for a � or vice versa, would lead to a nonprimitive word
with a different proot (shorter or longer), something that has already been
accounted in a different case. We are thus covering all possible nonprimitive
partial words with one hole, which implies that N ≥ N1,k(n).
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We must now prove thatN ≤ N1,k(n). For a given proot of length d, it holds
that the setsRP1,k(n, d, 0),RP1,k(n, d, 1) andRN 1,k(n, d, 1) are pairwise dis-
joint. The reason is that the generating proot for each of the sets are different,
as they belong to three different pairwise disjoint sets: P0,k(d),P1,k(d) and
N1,k(d). In each of the three cases, the proot is different to start with, and
recall that proots remain unchanged throughout the process of transforming
a temporary pword into a nonprimitive partial word. Thus, for all three cases,
the resulting nonprimitive partial words will be different. Let r1, r2 be proots
of length d1, d2 ∈ D(n), with 1 < d1 < d2 < n, and u, v be any pwords
such that u ∈ R1,k(n, d1) and v ∈ R1,k(n, d2). Using Lemma 6.6, u and v
have their smallest exact period equal to d1, respectively d2. From d1 6= d2

it follows that u 6= v. Since u, v were any words in R1,k(n, d1), respectively
R1,k(n, d2), it follows that R1,k(n, d1) ∩R1,k(n, d2) = ∅. Since d1, d2 are any
proper divisors of n, it holds that⋂

di∈D(n)

R1,k(n, di) = ∅

This proves that no double counting occurs and thus N ≤ N1,k(n).

Example 6.8

Theorem 6.5 implies that N1,2(8) = 128 which matches the computations of
the previous section. Indeed,

N1,2(8) = 16 +
∑

d∈{2,4}

((8− d)P0,2(d) + 2P1,2(d) + (2− 1)N1,2(d))

= 16 + 12 + 0 + 4 + 48 + 32 + 16
= 128

The formula of Theorem 6.5 can be further reduced.

COROLLARY 6.3

The equality N1,k(n) = nN0,k(n) holds.

PROOF We prove the equality N1,k(n) = nN0,k(n) by induction on n
using Theorem 6.5. For n = 1, the result trivially holds since N1,k(1) =
N0,k(1) = 0. Assuming the equality holds for all positive integers smaller
than n, we get the following sequence of equalities for N1,k(n):
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kn+
∑

d|n, d6=1,n

((n− d)P0,k(d) + kP1,k(d) + (k − 1)N1,k(d))

= kn+ k
∑

d|n, d6=1,n

(P1,k(d) +N1,k(d)) +
∑

d|n,d 6=1,n

((n− d)P0,k(d)−N1,k(d))

= kn+ k
∑

d|n, d6=1,n

T1,k(d) +
∑

d|n,d6=1,n

((n− d)P0,k(d)− dN0,k(d))

= kn+ k
∑

d|n, d6=1,n

T1,k(d) + n
∑

d|n,d 6=1,n

P0,k(d)−
∑

d|n,d 6=1,n

(dP0,k(d) + dN0,k(d))

= kn+ k
∑

d|n, d6=1,n

dkd−1 + n
∑

d|n,d 6=1,n

P0,k(d)−
∑

d|n,d 6=1,n

dT0,k(d)

= kn+
∑

d|n, d6=1,n

dkd + n
∑

d|n,d 6=1,n

P0,k(d)−
∑

d|n,d6=1,n

dkd

= kn+ n
∑

d|n, d6=1,n

P0,k(d)

= n(
∑

d|n, d6=1,n

P0,k(d) + k)

= n(
∑

d|n, d6=1,n

P0,k(d) + P0,k(1) + P0,k(n)− P0,k(n))

= n(
∑
d|n

P0,k(d)− P0,k(n))

= n(kn − P0,k(n))
= n(T0,k(n)− P0,k(n))
= nN0,k(n)

6.5.2 The two-hole case

The following theorem holds.

THEOREM 6.6

The number of nonprimitive partial words with two holes of length n over a
k-size alphabet, N2,k(n), is equal to(

n
2

)
k +

∑
d|n,d 6=1,n(RP2,k(n, d, 0) +RP2,k(n, d, 1) +RP2,k(n, d, 2) +

RN2,k(n, d, 1) +RN2,k(n, d, 2))
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where

RP2,k(n, d, 0) =
(
n− d

2

)
P0,k(d) (6.11)

RP2,k(n, d, 1) =
{
k(n− d)P1,k(d) if d 6= n

2
(k(n− d)− (k − 1))P1,k(d) if d = n

2

(6.12)

RN2,k(n, d, 1) =
{

(k − 1)(n− d)N1,k(d) if d 6= n
2

(k − 1)(d− 1)N1,k(d) if d = n
2

(6.13)

RP2,k(n, d, 2) = k2P2,k(d) (6.14)

RN2,k(n, d, 2) =
{

(k2 − 1)N2,k(d)− (k − 1)T1,k(d
2 ) if d is even

(k2 − 1)N2,k(d) if d is odd
(6.15)

PROOF We give a constructive algorithm for nonprimitive pwords and
prove that, along the process of building them, no pwords are missed or double
counted.

Let w be a nonprimitive pword of length n with two holes over A, and
let d be the smallest integer such that there exists a pword v satisfying w ⊂
vn/d. The case when d = 1 can be easily dealt with since there are

(
n
2

)
k

ways of building such a nonprimitive pword. Consider now the case when
d ∈ D(n) \ {1}. We split the proof into five cases based on the nature of the
proot w[0..d) = a0a1 . . . ad−1, and we set t = (w[0..d))n/d. If w[0..d) has h′

holes, then let 0 ≤ i1 < i2 < · · · < ih′ < d be such that aij
= �. Define

Cd = {l | d ≤ l < n and l 6≡ i1 mod d, . . . , l 6≡ ih′ mod d}
Dd(ij) = {l | d ≤ l < n and l ≡ ij mod d} for all 1 ≤ j ≤ h′

Note that ‖Cd‖ = (n
d−1)(d−h′) and ‖Dd(ij)‖ = n

d−1. Recall that Lemma 6.6
guarantees that no double counting will occur.

Case 1. w[0..d) ∈ P0,k(d)
We need to replace two positions by �’s anywhere in t, except in the proot.

There is a total of n− d such positions and thus Equality (6.11) holds.

Case 2. w[0..d) ∈ P1,k(d)
At this point, all symbols at positions from set Dd(i1) are �’s and all those

in Cd are letters. After transforming t into a pword in N2,h(n), there must
remain only one � in the last n − d positions. This can be achieved in two
ways, by placing a � in position j with either j ∈ Cd or j ∈ Dd(i1).

Let us first consider the case where j ∈ Cd. There are ‖Cd‖ options where
to place the second � and k choices to pick a letter to replace the positions in
Dd(i1). Note that once a position from set Dd(i1) has been replaced, all others
must be replaced by the same letter. This case yields a total of k(n

d −1)(d−1)
choices.

Let us now consider the case where j ∈ Dd(i1). Note that this can be done
in ‖Dd(i1)‖ ways and that all positions in Cd remain unchanged. We are now
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FIGURE 6.2: Representation of Case 2 when j ∈ Cd.

left with ‖Dd(i1)‖ − 1 �’s to be replaced with the same letter. This can be
done in k ways provided that ‖Dd(i1)‖ − 1 > 0, thus a total of k‖Dd(i1)‖
options. If ‖Dd(i1)‖−1 = 0, which implies that d = n/2, then this case yields
only ‖Dd(i1)‖ = 1 option, that is w = w[0..d)w[0..d).

FIGURE 6.3: Representation of Case 2 when j ∈ Dd(i1).

Thus, for d 6= n
2 we have

RP2,k(n, d, 1) = (k(n
d − 1)(d− 1) + k(n

d − 1))P1,k(d) = k(n− d)P1,k(d)

and if d = n
2 then

RP2,k(n, d, 1) = (k(d− 1) + 1)P1,k(d) = (k(n− d)− (k − 1))P1,k(d)

Putting the two cases together we have that Equality (6.12) holds.
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Case 3. w[0..d) ∈ N1,k(d)
The approach for this case is similar to the one for Case 2. We replace

position j in t with �.
Let us first consider the case where j ∈ Cd. There are ‖Cd‖ options where

to place the second �, but this time only k − ν(w[0..d)) letters available to
replace the �’s at positions from Dd(i1). This last restraint guarantees that
the generated pword w will not have an exact period less than d, in other
words the proot of w remains unchanged.

Let us now consider the case where j ∈ Dd(i1). If d 6= n
2 , then there are

‖Dd(i1)‖ options to place the second � and k − ν(w[0..d)) letters available
to replace the remaining �’s from positions within set Dd(i1), thus a total
of (k − ν(w[0..d)))(n

d − 1) options. If d = n
2 , then there is no solution since

w = w[0..d)w[0..d) would have a shorter proot.
Thus for d 6= n

2 , RN2,k(n, d, 1) = ((k − ν(w[0..d)))(n
d − 1)(d − 1) + (k −

ν(w[0..d)))(n
d − 1))N1,k(d) = (k − ν(w[0..d)))(n − d)N1,k(d). If d = n

2 ,
then RN2,k(n, d, 1) = (k − ν(w[0..d)))(d − 1)N1,k(d). Keeping in mind that
ν(w[0..d)) = 1, we have that Equality (6.13) holds.

Case 4. w[0..d) ∈ P2,k(d)
We must replace all positions from the set Dd(i1) with the same letter, and

similarly for Dd(i2). There are k2 options to choose these two letters and thus
Equality (6.14) holds.

FIGURE 6.4: Representation of Case 4.

Case 5. w[0..d) ∈ N2,k(d)
First, let us consider the case where w[0..d) has a pair of free �’s. Of course,

this can happen only when w[0..d) is d
2 -periodic. It is easy to see that the

number of pwords w[0..d) of the form w[0..d) = uu, where u is a pword with
one hole, is equal to T1,k(d/2). We now have k options to replace the �’s from
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positions in set Dd(i1) and only k−1 for the �’s from positions within Dd(i2).
The reason why these two letters cannot be the same is because the resulting
pword would have a shorter proot, that is u.

Let us now consider the case where w[0..d) does not have a pair of free �’s.
In this case, we need again to take into account the parameter ν(w[0..d)). We
now need to replace all the �’s from positions inDd(i1) andDd(i2) with letters.
In order to prevent w from having a proot shorter than d, we must allow only
k2 − ν(w[0..d)) options for choosing the two letters. Since ν(w[0..d)) = 1, we
may now conclude that Equality (6.15) holds.

Note that if we disregard the particular case d = n
2 , the number of nonprim-

itive pwords with two holes generated by primitive proots can be summarized
as follows:

RP2,k(n, d) =
2∑

h′=0

kh′
(
n− d
2− h′

)
Ph′,k(d)

The formula of Theorem 6.6 can be further reduced.

COROLLARY 6.4
For an odd positive integer n, the following equality holds:

N2,k(n) =
(
n

2

)
N0,k(n)

PROOF Setting n = 2m+ 1, we prove the desired equality by induction
on m. For m = 1, the result trivially holds since N2,k(3) =

(
3
2

)
k =

(
3
2

)
N0,k(3).

Assume the equality holds for all positive integers smaller than m. Note that
since n is odd, each divisor d of n is odd and so d 6= n

2 . We have N2,k(n) =(
n
2

)
k +

∑
d|n, d6=1,n(

(
n−d

2

)
P0,k(d) + k(n− d)P1,k(d) + (k − 1)(n− d)N1,k(d) +
k2P2,k(d) + (k2 − 1)N2,k(d))

Note that

k(n− d)P1,k(d) + (k − 1)(n− d)N1,k(d)
= k(n− d)T1,k(d)− (n− d)N1,k(d)

= k(n− d)
(
d

1

)
kd−1 − (n− d)dN0,k(d)

= (n− d)dkd − (n− d)dN0,k(d)
= (n− d)dT0,k(d)− (n− d)dN0,k(d)
= (n− d)dP0,k(d)
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Similarly

k2P2,k(d) + (k2 − 1)N2,k(d) = k2T2,k(d)−N2,k(d)

= k2

(
d

2

)
kd−2 −

(
d

2

)
N0,k(d)

=
(
d

2

)
kd −

(
d

2

)
N0,k(d)

=
(
d

2

)
T0,k(d)−

(
d

2

)
N0,k(d)

=
(
d

2

)
P0,k(d)

We hence have the following sequence of equalities for N2,k(n):

(
n

2

)
k +

∑
d|n, d6=1,n

((
n− d

2

)
P0,k(d) + (n− d)dP0,k(d) +

(
d

2

)
P0,k(d)

)

=
(
n

2

)
k +

∑
d|n, d6=1,n

(
n

2

)
P0,k(d)

=
(
n

2

)
k +

(
n

2

) ∑
d|n, d6=1,n

P0,k(d)

=
(
n

2

)
(

∑
d|n, d6=1,n

P0,k(d) + k)

=
(
n

2

)
(

∑
d|n, d6=1,n

P0,k(d) + P0,k(1) + P0,k(n)− P0,k(n))

=
(
n

2

)
(
∑
d|n

P0,k(d)− P0,k(n))

=
(
n

2

)
(kn − P0,k(n))

=
(
n

2

)
(T0,k(n)− P0,k(n))

=
(
n

2

)
N0,k(n)
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6.6 Existence of primitive partial words

In this section, we discuss some fundamental properties of primitive partial
words.

First, Theorem 3.1(1) implies the following result.

PROPOSITION 6.6

Let u, v be nonempty words and let m,n be integers. If um and vn have a
common prefix (respectively, suffix) of length at least |u| + |v| − gcd(|u|, |v|),
then there exists a word x of length not greater than gcd(|u|, |v|) such that
u = xk and v = xl for some integers k, l.

PROOF The proof is left as an exercise.

The following two corollaries hold.

COROLLARY 6.5

Let u and v be words. If uk = vl for some positive integers k, l, then there
exists a word w such that u = wm and v = wn for some integers m,n.

Let Q be the set of all primitive words over A. Let Q1 = Q ∪ {ε}, and for
any i ≥ 2 let Qi = {ui | u ∈ Q}.

COROLLARY 6.6

Let m,n be positive integers. If m 6= n, then Qm ∩Qn = ∅.

REMARK 6.4 Corollary 6.5 will be extended to partial words in Chap-
ter 10.

We now give three propositions that are extensions of Proposition 6.6 to
partial words.

PROPOSITION 6.7

Let u, v be nonempty words, let y, z be partial words, and let w be a word
satisfying |w| ≥ |u|+ |v|−gcd(|u|, |v|). If wy ⊂ um and wz ⊂ vn (respectively,
yw ⊂ um and zw ⊂ vn) for some integers m,n, then there exists a word x
of length not greater than gcd(|u|, |v|) such that u = xk and v = xl for some
integers k, l.
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PROOF See Exercise 3.15.

PROPOSITION 6.8

Let u, v be nonempty words, let y, z be partial words, and let w be a partial
word with one hole satisfying |w| ≥ |u| + |v|. If wy ⊂ um and wz ⊂ vn

(respectively, yw ⊂ um and zw ⊂ vn) for some integers m,n, then there
exists a word x of length not greater than gcd(|u|, |v|) such that u = xk and
v = xl for some integers k, l.

PROOF The proof is left as an exercise.

PROPOSITION 6.9

Let u, v be words satisfying 0 < |u| < |v|, let y, z be partial words, and let
w be a non (‖H(w)‖, |u|, |v|)-special partial word satisfying ‖H(w)‖ ≥ 2 and
|w| ≥ l(‖H(w)‖,|u|,|v|). If wy ⊂ um and wz ⊂ vn (respectively, yw ⊂ um and
zw ⊂ vn) for some integers m,n, then there exists a word x of length not
greater than gcd(|u|, |v|) such that u = xk and v = xl for some integers k, l.

PROOF Let w′ be the prefix of length l(‖H(w)‖,|u|,|v|) of w. Both |u| and
|v| are periods of w′. By Theorem 3.1 or Theorem 3.4, gcd(|u|, |v|) is also
a period of w′, and hence there exists a word x of length gcd(|u|, |v|) such
that w′ is contained in a power of x. If H(w′) = ∅, then the result clearly
follows. Otherwise, let i ∈ H(w′). Let r, 0 ≤ r < |x|, be the remainder of
the division of i by |x|. There exists an integer i′ such that i+ i′|x| 6∈ H(w′)
and w′(i + i′|x|) = x(r). Hence for all 0 ≤ j < |x|, we have j 6∈ H(w′)
and x(j) = w′(j), or j ∈ H(w′) and there exists an integer j′ satisfying
j + j′|x| 6∈ H(w′) and x(j) = w′(j + j′|x|). Since |x| divides both |u| and |v|,
we conclude that u = xk and v = xl for some integers k, l.

Second, it turns out that for two words u and v, the primitiveness of uv
implies the primitiveness of vu as stated in the following result.

PROPOSITION 6.10

Let u and v be words. If there exists a primitive word x such that uv = xn

for some positive integer n, then there exists a primitive word y such that
vu = yn. In particular, if uv is primitive, then vu is primitive.

PROOF The proof is left as an exercise.

A similar result holds for partial words.
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PROPOSITION 6.11

Let u and v be partial words. If there exists a primitive word x such that
uv ⊂ xn for some positive integer n, then there exists a primitive word y such
that vu ⊂ yn. Moreover, if uv is primitive, then vu is primitive.

PROOF First, assume that n = 1. Let x be a primitive word such that
uv ⊂ x. Put x = u′v′ where |u′| = |u| and |v′| = |v|. By Proposition 6.10,
since u′v′ is primitive, v′u′ is also primitive. The result follows with y = v′u′.

Now, assume that n > 1. Since uv ⊂ xn, there exist words x1, x2 such
that x = x1x2, u ⊂ (x1x2)kx1 and v ⊂ x2(x1x2)l with k + l = n − 1. Since
x = x1x2 is primitive, x2x1 is also primitive by Proposition 6.10. The result
follows since vu ⊂ (x2x1)n.

Now, suppose that uv is a primitive partial word. If vu is not primitive,
then there exists a word y such that vu ⊂ ym for some m ≥ 2. So there
exist words y1, y2 such that y = y1y2, v ⊂ (y1y2)ky1 and u ⊂ y2(y1y2)l with
k + l = m− 1. Hence uv ⊂ (y2y1)m and uv is not primitive, a contradiction.
Therefore, if uv is primitive, then vu is primitive.

Example 6.9

The partial words u = a�c� and v = bc��c illustrate Proposition 6.11. Indeed,
we have uv ⊂ (abc)3 and vu ⊂ (bca)3.

Third, Proposition 6.6 implies the following result.

PROPOSITION 6.12

Let u be a word such that ‖α(u)‖ ≥ 2. If a is any letter, then u or ua is
primitive.

Proposition 6.10 and Proposition 6.12 imply the following result.

COROLLARY 6.7

Let u1, u2 be nonempty words such that ‖α(u1u2)‖ ≥ 2. Then for any letter
a, u1u2 or u1au2 is primitive.

The following results hold for partial words with one hole.

PROPOSITION 6.13

Let u be a partial word with one hole such that ‖α(u)‖ ≥ 2. If a is any letter,
then u or ua is primitive.
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PROOF Suppose ua ⊂ vm and u ⊂ wn with v, w full words and m ≥
2, n ≥ 2. Then |v| = (|u| + 1)/m and |w| = |u|/n. Hence |v| + |w| =
|u|(1/m+1/n)+1/m < |u|+1. Therefore |u| ≥ |v|+ |w|. By Proposition 6.8,
there exists a word x such that v = xk and w = xl for some integers k, l.
It follows that ua ⊂ xkm and u ⊂ xnl, which implies that α(u) ⊆ {a}, a
contradiction.

COROLLARY 6.8
Let u1, u2 be nonempty partial words such that u1u2 has one hole and ‖α(u1u2)‖ ≥
2. Then for any letter a, u1u2 or u1au2 is primitive.

PROOF By Proposition 6.13, u2u1 or u2u1a is primitive. By Propo-
sition 6.11, if u2u1 is primitive, then u1u2 is primitive, and if (u2)(u1a) is
primitive, then (u1a)(u2) is primitive. The result follows.

The following result holds for partial words with at least two holes.

PROPOSITION 6.14
Let u be a partial word with at least two holes such that ‖α(u)‖ ≥ 2. Let a

be any letter and assume that ua ⊂ vm and u ⊂ wn with v, w full words and
integers m ≥ 2, n ≥ 2. For all integers H satisfying 0 ≤ H ≤ ‖H(u)‖, let uH

be the longest prefix of u that contains exactly H holes. Then the following
hold:

1. |u0| < |v|+ |w| − gcd(|v|, |w|).

2. |u1| < |v|+ |w|.

3. If |v| < |w|, then for all integers H satisfying 2 ≤ H ≤ ‖H(u)‖, uH is
(H, |v|, |w|)-special or |uH | < l(H,|v|,|w|).

4. If |w| < |v|, then for all integers H satisfying 2 ≤ H ≤ ‖H(u)‖, uH is
(H, |w|, |v|)-special or |uH | < l(H,|w|,|v|).

PROOF Both |v| and |w| are periods of u. Since v ends with a, put
v = xa. We get u ⊂ (xa)m−1x and u ⊂ wn. We consider the following cases:

Case 1. m = n
Ifm = n, thenm|x|+m−1 = m|w|. The latter implies |w| = |x|+(m−1)/m,

which is impossible.
Case 2. m < n

Since n|w| + 1 = m|v| and m < n, we have |w| < |v|. If |u0| ≥ |v| +
|w| − gcd(|v|, |w|), then by Proposition 6.6 there exists a word y such that
v = yk and w = yl for some integers k, l. Therefore ua ⊂ ykm and u ⊂ ynl

which is contradictory since ‖α(u)‖ ≥ 2, and Statement 1 follows. If |u1| ≥
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|v|+|w|, then Statement 2 similarly follows using Proposition 6.8. If uH is non
(H, |w|, |v|)-special and |uH | ≥ l(H,|w|,|v|), then Statement 4 similarly follows
using Proposition 6.9.

Case 3. m > n
Since n|w| + 1 = m|v| and m > n, we have |w| ≥ |v|. If |w| > |v|, then

this case is similar to Case 2. If |w| = |v|, then m = n+ 1 and |v| = 1. This
implies that v = a and ‖α(u)‖ ≤ 1, a contradiction.

Example 6.10
If u = b�abba�b, then ua ⊂ v3 and u ⊂ w2 where v = bba and w = baab.
Here |u0| = |b| < |v| + |w| − gcd(|v|, |w|), |u1| = |b�abba| < |v| + |w|, and
|u2| = |b�abba�b| < l(2, 3, 4).

Fourth, the following result has several interesting consequences, proving in
some sense that there exist very many primitive words.

PROPOSITION 6.15
Let u be a word. If a and b are distinct letters, then ua or ub is primitive.

COROLLARY 6.9

1. Let u be a word. Then at most one of the words ua with a ∈ A is not
primitive.

2. Let u1 and u2 be words. Then at most one of the words u1au2 with
a ∈ A is not primitive.

COROLLARY 6.10
If the set X ⊂ A∗ is infinite, then there exists a ∈ A such that X{a} contains
infinitely many primitive words.

Recall from Lemma 5.5 of Chapter 5 that if u is a partial word with one
hole which is not of the form x�x for any word x and a, b are distinct letters,
then ua or ub is primitive. The exclusion of pwords of the form x�x is needed
since neither x�xa nor x�xb is primitive since x�xa ⊂ (xa)2 and x�xb ⊂ (xb)2.

We now describe a result that holds for any partial word u with at least two
holes. Let H denote ‖H(u)‖. Put u = u1�u2� . . . uH�uH+1 where the uj ’s do
not contain any holes. We define a set SH as follows:

Do this for all 2 ≤ m ≤ H + 1. If there exist a word x and integers
0 = i0 < i1 < i2 < · · · < im−1 ≤ H such that

ui0+1� . . . �ui1 ⊂ x
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ui1+1� . . . �ui2 ⊂ x

...

uim−2+1� . . . �uim−1 ⊂ x

uim−1+1� . . . �uH+1 ⊂ x

then put u in the set SH . Otherwise, do not put u in SH .

Example 6.11
Let us describe the set S2. Here u = u1�u2�u3 where the uj ’s do not contain
any holes.

m = 2: There exist a word x and integers 0 = i0 < i1 ≤ 2 such that

ui0+1� . . . �ui1 ⊂ x
ui1+1� . . . �u3 ⊂ x

Here there are two possibilities: (1) i0 = 0 and i1 = 1; and (2) i0 = 0 and
i1 = 2. Possibility (1) leads to u1 ⊂ x and u2�u3 ⊂ x, while Possibility
(2) to u1�u2 ⊂ x and u3 ⊂ x. Consequently, the set S2 contains partial
words of the form x1ax2�x1�x2 or x1�x2�x1ax2 for words x1, x2 and
letter a.

m = 3: There exist a word x and integers 0 = i0 < i1 < i2 ≤ 2 such that

ui0+1� . . . �ui1 ⊂ x
ui1+1� . . . �ui2 ⊂ x
ui2+1� . . . �u3 ⊂ x

There is only one possibility here, that is, i0 = 0, i1 = 1 and i2 = 2. We
get u1 ⊂ x, u2 ⊂ x and u3 ⊂ x resulting in partial words belonging to
S2 of the form x�x�x for some word x.

THEOREM 6.7
Let u be a partial word with at least two holes which is not in S‖H(u)‖. If a

and b are distinct letters, then ua or ub is primitive.

PROOF Set ‖H(u)‖ = H. Assume that ua ⊂ vk, ub ⊂ wl for some
primitive full words v, w and integers k, l ≥ 2. Both |v| and |w| are periods
of u, and, since k, l ≥ 2, |u| = k|v| − 1 = l|w| − 1 ≥ 2 max{|v|, |w|} − 1 ≥
|v|+ |w|−1. Without loss of generality, we can assume that k ≥ l or |v| ≤ |w|.
Set u = u1�u2� . . . uH�uH+1 where the uj ’s do not contain any holes. Since v
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ends with a and w with b, write v = xa and w = yb. We have u ⊂ (xa)k−1x
and u ⊂ (yb)l−1y.

Case 1. k = l
Here |v| = |w| and |x| = |y|. Note that 2 ≤ k = l ≤ H + 1. First, assume

that k = l = H + 1. In this case, it is clear that u1 = u2 = · · · = uH+1 = x,
a contradiction since u 6∈ SH . Now, assume that k = l ≤ H. There exist
integers 0 = i0 < i1 < i2 < · · · < ik−1 ≤ H such that

ui0+1� . . . �ui1� ⊂ xa and ui0+1� . . . �ui1� ⊂ yb,

ui1+1� . . . �ui2� ⊂ xa and ui1+1� . . . �ui2� ⊂ yb,

...

uik−2+1� . . . �uik−1� ⊂ xa and uik−2+1� . . . �uik−1� ⊂ yb,

uik−1+1� . . . �uH+1 ⊂ x and uik−1+1� . . . �uH+1 ⊂ y.

We get

ui0+1� . . . �ui1 ⊂ x,

ui1+1� . . . �ui2 ⊂ x,

...

uik−2+1� . . . �uik−1 ⊂ x,

uik−1+1� . . . �uH+1 ⊂ x,

a contradiction with the fact that u 6∈ SH .
Case 2. k > l

Here |v| < |w| and |u| ≥ |v| + |w| (otherwise, |u| = |v| + |w| − 1 and
k = l = 2).

First, assume that |u| ≥ L(H,|v|,|w|). Referring to Chapter 3, u is also
gcd(|v|, |w|)-periodic. However, gcd(|v|, |w|) divides |v| and |w|, and so u ⊂ zm

with |z| = gcd(|v|, |w|). Since v ends with a and w with b, we get that z ends
with a and b, a contradiction.

Now, assume that |u| < L(H,|v|,|w|). Set k = lp + r where 0 ≤ r < l. We
consider the case where r = 0 (the case where r > 0 is left to the reader).
We have that k = lp. The latter and the fact that k > l imply that p > 1.
Since ua ⊂ (xa)lp and ub ⊂ (yb)l, we can write y = x1b1x2b2 . . . xp−1bp−1xp

where |x1| = · · · = |xp| = |x| and b1, . . . , bp−1 ∈ A. The containments
u ⊂ (xa)lp−1x and u ⊂ (x1b1x2b2 . . . xp−1bp−1xpb)l−1x1b1x2b2 . . . xp−1bp−1xp

allow us to write u = v1�v2� . . . vl−1�vl where

vj ⊂ x a x a . . . x a x
vj ⊂ x1 b1 x2 b2 . . . xp−1 bp−1 xp
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for all 1 ≤ j ≤ l. If l − 1 = H, then vj = uj = (xa)p−1x for all j, and we
obtain a contradiction with the fact that u 6∈ SH . If l − 1 < H, then there
exist integers 0 = i0 < i1 < i2 < · · · < il−1 ≤ H such that

ui0+1� . . . �ui1� = v1,

ui1+1� . . . �ui2� = v2,

...

uil−2+1� . . . �uil−1� = vl−1,

uil−1+1� . . . �uH+1 = vl.

We get

ui0+1� . . . �ui1 ⊂ (xa)p−1x,

ui1+1� . . . �ui2 ⊂ (xa)p−1x,

...

uil−2+1� . . . �uil−1 ⊂ (xa)p−1x,

uil−1+1� . . . �uH+1 ⊂ (xa)p−1x,

a contradiction with the fact that u 6∈ SH .

We end this chapter with the following two corollaries.

COROLLARY 6.11

1. Let u be a partial word which is not in S‖H(u)‖. Then at most one of
the pwords ua with a ∈ A is not primitive.

2. Let u1, u2 be partial words such that u2u1 is not in S‖H(u)‖. Then at
most one of the pwords u1au2 with a ∈ A is not primitive.

PROOF Let us first prove Statement 1. For a given partial word u which
is not in S‖H(u)‖, apply Theorem 6.7 for two symbols a and b in A. If ua is
primitive, mark the symbol a, and if ub is primitive, mark the symbol b. At
least a symbol is marked in this way. Continue by considering any two un-
marked symbols. Eventually, at most one symbol remains unmarked, and this
completes the proof. For Statement 2, at most one of the partial words u2u1a
with a ∈ A is not primitive. The result then follows from Proposition 6.11
since (u2)(u1a) not primitive yields (u1a)(u2) not primitive.
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COROLLARY 6.12

Let X ⊂W (A) not containing any partial word u in S‖H(u)‖. If X is infinite,
then there exists a ∈ A such that X{a} contains infinitely many primitive
partial words.

PROOF Let a and b be in A. If both X{a} and X{b} contain only
a finite number of primitive partial words, then for some integer n all the
partial words of the form ua, ub with |u| ≥ n will be nonprimitive. However,
by Theorem 6.7, {u}A contains at most one nonprimitive partial word, a
contradiction.

Exercises

6.1 S Run Algorithm Primitivity Testing on the partial word u = abca���bc.
Is u primitive?

6.2 Repeat Exercise 6.1 on u = �ba�aaabb.

6.3 Describe the behaviour of Algorithm Primitivity Testing on input partial
word u = abca��a as is done in Example 6.5.

6.4 Compute P0,3(10) using Equality 6.6.

6.5 Using the formulas in this chapter, compute T2,3(n), P2,3(n) and N2,3(n)
for n = 15 and n = 16.

6.6 S Compute N2,3(17) and N2,3(19).

6.7 What are the periods, weak periods, and exact periods of the partial
word ab��bba�babb?

6.8 Show that ν(w) is not necessarily equal to ‖E(w)‖.

6.9 S Show that the equality P1,k(n) = n(P0,k(n) + kn−1 − kn) holds.

6.10 Prove Proposition 6.6.

6.11 Proposition 6.12 holds for partial words with at least two holes. True
or False?

6.12 S Give an example to show that Proposition 6.15 does not hold for
partial words with at least two holes.
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Challenging exercises

6.13 Prove that Equality 6.4 is always true.

6.14 Deduce from Equality 6.4 that two functions φ, ψ from P to Z are related
by

∑
d|n ψ(d) = φ(n) if and only if

∑
d|n µ(d)φ(n

d ) = ψ(n).

6.15 Prove Theorem 6.2.

6.16 Do a case analysis for N1,2(6) as is done for N1,2(8) in Example 6.7.

6.17 Prove Lemma 6.6 for nonprimitive pwords with two holes.

6.18 S Prove Proposition 6.8.

6.19 S Prove Proposition 6.10.

6.20 S Describe the set S3.

6.21 Let u be a partial word with at least two holes which is not in S‖H(u)‖.
Let a, b be distinct letters and assume that ua ⊂ vm and ub ⊂ wn with
v, w full words and integers m ≥ 2, n ≥ 2. For all integers H satisfying
0 ≤ H ≤ ‖H(u)‖, let vH be the longest prefix of u that contains exactly
H holes. Then show that the following hold:

1. |v0| < |v|+ |w| − gcd(|v|, |w|).

2. |v1| < |v|+ |w|.

3. If |v| < |w|, then for all integers H satisfying 2 ≤ H ≤ ‖H(u)‖, vH

is (H, |v|, |w|)-special or |vH | < l(H,|v|,|w|).

4. If |w| < |v|, then for all integers H satisfying 2 ≤ H ≤ ‖H(u)‖, vH

is (H, |w|, |v|)-special or |vH | < l(H,|w|,|v|).

6.22 Prove the case where r > 0 of Theorem 6.7.

Programming exercises

6.23 Give pseudo programming language code for the upgrade of Algorithm
Primitivity Testing when the checking of whether or not u is compatible
with U [k..k + |u|) is done simultaneously with the checking of whether
or not u is (k, l)-special as described in the proof of Theorem 6.1.
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6.24 Obtain numerical values for Ph,k(n) and Nh,k(n) by having a computer
generate and count all possible primitive and nonprimitive partial words
over an alphabet of size k = 4 with number of holes h ∈ {0, 1, 2, 3} and
length n ranging from 1 to 10.

6.25 Write a program that lists the partial words in the sets Th,k(n),Ph,k(n)
and Nh,k(n). Test your program on h = 1, k = 3 and n = 4.

6.26 Fill the entries in the table when h = 2 and k = 3 for the lengths n = 18
and n = 20.

6.27 Write a program that computes the Rh,k(n, d)’s of Equality 6.9. Run
your program on h = 2, k = 3 and n = 12.

Website

A World Wide Web server interface at

http://www.uncg.edu/mat/primitive

has been established for automated use of Algorithm Primitivity Testing.
Another at

http://www.uncg.edu/mat/research/primitive2

implements the formulas of Sections 6.2, 6.3, 6.4 and 6.5.
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Chapter 7

Unbordered Partial Words

In this chapter, we study unbordered partial words which turn out to be a
particularly interesting class of primitive partial words (see Exercise 1.11).
Recall that a full word u is unbordered if none of its proper prefixes is one of
its suffixes. In the case of a partial word u, we have the following definition.

DEFINITION 7.1 We call a partial word u unbordered if no nonempty
words x, v, w exist such that u ⊂ xv and u ⊂ wx. If such nonempty words
x, v, w exist, then we call u bordered and call x a border of u. A border x
of u is called minimal if |x| > |y| implies that y is not a border of u.

Note that there are two types of borders. Writing u as x1v = wx2 where
x1 ⊂ x and x2 ⊂ x, we say that x is an overlapping border if |x| > |v|,
and a nonoverlapping border otherwise. Figures 7.1 and 7.2 highlight these
definitions.

FIGURE 7.1: An overlapping border.

The following example illustrates the above concepts.

Example 7.1

The partial word u = ab�c�ba is bordered with borders a and aba, the first
one being minimal, while the partial word ab�c is unbordered. The pword a�b
is bordered with overlapping border ab

199
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FIGURE 7.2: A nonoverlapping border.

a � b
a � b
a b

Here x1 = a� and x2 = �b.

7.1 Concatenations of prefixes

We start with a definition.

DEFINITION 7.2 For partial words u, v, we write u � v if there exists
a sequence v0, . . . , vn−1 of prefixes of v such that u = v0 . . . vn−1.

Obviously, ε � u and u � u. The reader can check that if u � v and
v � w, then u� w.

THEOREM 7.1
Let u, v be full words such that u 6= ε and u � v. Then there exists a

unique sequence v0, . . . , vn−1 of nonempty unbordered prefixes of v such that
u = v0 . . . vn−1.

PROOF The proof is left as an exercise.

In this section, we extend Theorem 7.1 to partial words. In order to do
this, we introduce two types of bordered partial words: the well bordered and
the badly bordered partial words.

DEFINITION 7.3 Let u be a nonempty bordered partial word. Let x be
a minimal border of u, and set u = x1v = wx2 where x1 ⊂ x and x2 ⊂ x.
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We call u well bordered if x1 is unbordered. Otherwise, we call u badly
bordered.

Example 7.2

First, consider the partial word u = ab�. We can factorize u as x1v =
(a)(b�) = (ab)(�) = wx2 where x1 ⊂ a and x2 ⊂ a. Since x1 = a is unbor-
dered, u is well bordered. However, the partial word a�b is badly bordered.
Indeed, a�b = x1v = (a�)(b) = (a)(�b) = wx2 with x1 ⊂ ab and x2 ⊂ ab. In
this case, x1 is bordered.

For convenience, we will at times refer to a minimal border of a well bordered
partial word as a good border and of a badly bordered partial word as a bad
border.

As a result of x being a bad border, we have the following Lemma.

LEMMA 7.1

Let u be a nonempty badly bordered partial word. Let x be a minimal border
of u, and set u = x1v = wx2 where x1 ⊂ x and x2 ⊂ x. Then there exists i
such that i ∈ H(x1) and i ∈ D(x2).

PROOF Since x1 is bordered, x1 = r1s1 = s2r2 for nonempty partial
words r1, r2, s1, s2 where s1 ⊂ s and s2 ⊂ s for some s. If no i exists such that
i ∈ H(x1) and i ∈ D(x2), then x2 must also be bordered. So x2 = r′1s

′
1 = s′2r

′
2

where r′1 ⊂ r1, r′2 ⊂ r2, s′1 ⊂ s and s′2 ⊂ s, thus s2 ↑ s′1. This means that
there exists a border of u of length shorter that |x| which contradicts the fact
that x is a minimal border of u.

Our goal is to extend Theorem 7.1 to partial words or to construct, given any
partial words u and v satisfying u � v, a sequence of nonempty unbordered
prefixes of v, v0, . . . , vn−1, such that u ↑ v0 . . . vn−1. We will see that if during
the construction of the sequence a badly bordered prefix is encountered, then
the desired sequence may not exist. We first prove two propositions.

PROPOSITION 7.1

If v is a partial word, then there do not exist two distinct compatible sequences
of nonempty unbordered prefixes of v.

PROOF Suppose that v0 . . . vn−1 ↑ v′0 . . . v′m−1 where each vi and each
v′i is a nonempty unbordered prefix of v. If there exists i ≥ 0 such that
|v0| = |v′0|, . . . , |vi−1| = |v′i−1| and |vi| < |v′i|, then v0 = v′0, . . . , vi−1 = v′i−1

and vi is a prefix of v′i. By simplification, vi . . . vjx ↑ v′i where i ≤ j < n−1 and
x is a nonempty prefix of vj+1. The fact that x, v′i are prefixes of v satisfying
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|v′i| > |x| implies that x is a prefix of v′i. In addition, x is compatible with
the suffix of length |x| of v′i, and consequently v′i is bordered. Similarly, there
exists no i ≥ 0 such that |v0| = |v′0|, . . . , |vi−1| = |v′i−1| and |vi| > |v′i|. Clearly,
n = m and uniqueness follows.

PROPOSITION 7.2
Let u be a nonempty bordered partial word. Let x be a minimal border of u,

and set u = x1v = wx2 where x1 ⊂ x and x2 ⊂ x. Then the following hold:

1. The partial word x is unbordered.

2. If u is well bordered, then u = x1u
′x2 ⊂ xu′x for some u′.

PROOF For Statement 1, assume that r is a border of x, that is, x ⊂ rs
and x ⊂ s′r for some nonempty partial words r, s, s′. Since u ⊂ xv and x ⊂ rs,
we have u ⊂ rsv, and similarly, since u ⊂ wx and x ⊂ s′r, we have u ⊂ ws′r.
Then r is a border of u. Since x is a minimal border of u, we have |x| ≤ |r|
contradicting the fact that |r| < |x|. This proves (1).

For Statement 2, if |v| < |x|, then u = wtv for some t. Here x1 = wt = t′w′

for some t′, w′ satisfying |t| = |t′| and |w| = |w′|. Since x1 ↑ x2, we have
t′w′ ↑ tv and by simplification, t′ ↑ t. The latter implies the existence of
a partial word t′′ such that t′ ⊂ t′′ and t ⊂ t′′. So x1 = t′w′ ⊂ t′′w′ and
x1 = wt ⊂ wt′′. Then t′′ is a border of x1 and x1 is bordered. According to
the definition of u being well bordered, x1 is an unbordered partial word and
this leads to a contradiction. Hence, we have |v| ≥ |x| and, for some u′, we
have v = u′x2 and w = x1u

′, and u = wx2 = x1u
′x2 ⊂ xu′x. This proves (2).

Note that Proposition 7.2 implies that if u is a nonempty bordered full
word, then u is well bordered. In this case, u = xu′x where x is the minimal
border of u.

LEMMA 7.2
If u, v are nonempty partial words such that u = v0 . . . vn−1 where v0, . . . , vn−1

is a sequence of nonempty unbordered prefixes of v, then there exists a unique
sequence v′0, . . . , v

′
m−1 of nonempty unbordered prefixes of v such that u ↑

v′0 . . . v
′
m−1 (the desired sequence is just v0, . . . , vn−1).

PROOF If each prefix vi is unbordered, then the sequence v0, . . . , vn−1 of
nonempty unbordered prefixes of v is such that u = v0 . . . vn−1 ↑ v0 . . . vn−1

and so the existence follows. To show uniqueness, assume v′0, . . . , v
′
m−1 is

another such sequence. We get u = v0 . . . vn−1 ↑ v′0 . . . v′m−1 contradicting
Proposition 7.1.
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The badly bordered partial words are now split into the specially bordered
and the nonspecially bordered partial words according to the following defini-
tion.

DEFINITION 7.4 Let u be a nonempty partial word that is badly bor-
dered. Let x be a minimal border of u, and set u = x1v = wx2 where x1 ⊂ x
and x2 ⊂ x. If there exists a proper factor x′ of u such that x1 6↑ x′ and
x′ ↑ x2, then we call u specially bordered. Otherwise, we call u nonspe-
cially bordered.

LEMMA 7.3
Let u, v be nonempty partial words such that u = v0 . . . vn−1 where v0, . . . , vn−1

is a sequence of nonempty prefixes of v with some vi badly bordered. Let y be
a minimal border of vi, and set vi = xw′ = wx′ where x ⊂ y and x′ ⊂ y (and
thus x ↑ x′). If there exists a sequence v′0, . . . , v

′
m−1 of nonempty unbordered

prefixes of v such that vi ↑ v′0 . . . v′m−1, then |x| < |v′m−1| and vi is specially
bordered.

PROOF By Definition 7.3, x is bordered. If |x| = |v′m−1|, then both x
and v′m−1 are prefixes of v, and thus x = v′m−1. We get that x is unbordered,
a contradiction. If |x| > |v′m−1|, then set x′ = zv′ where |v′| = |v′m−1|. Since
both x and v′m−1 are prefixes of v, we get that v′m−1 is a prefix of x. So
x = v′m−1z

′ for some z′, and vi = v′m−1z
′w′ = wzv′ with v′m−1 ↑ v′. Thus vi

has a border of length |v′m−1| < |x| = |y| contradicting the fact that y is a
minimal border. And so |x| < |v′m−1|.

Since vi ↑ v′0 . . . v′m−1, we have |v′m−1| ≤ |vi|. Both vi and v′m−1 being
prefixes of v, it results that v′m−1 is a prefix of vi. Hence, since vi = xw′ and
|v′m−1| > |x| there exists z such that xz = v′m−1. Since vi = wx′ and v′m−1

is compatible with a suffix of vi, we have v′m−1 ↑ z′x′ for some z′. Thus, we
get that v′m−1 = xz ↑ z′x′. Since v′m−1 ↑ z′x′, set v′m−1 = z′′x′′ where z′′ ↑ z′
and x′′ ↑ x′. So v′m−1 = z′′x′′ = xz. If x′′ ↑ x, then v′m−1 is bordered, a
contradiction with the fact that v′m−1 is unbordered. Thus x′′ 6↑ x, and since
v′m−1 is a prefix of vi, we have that vi is specially bordered.

The following example illustrates Lemma 7.3.

Example 7.3
Consider the partial words

u = aaaa�aabbaaaaa�baa and v = aa�aabbaaaaa�b

The factorization u = (a)(a)(aa�aabbaaaaa�b)(a)(a) shows that u can be
written as a sequence of nonempty prefixes of v. Here, the third factor is
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specially bordered and is compatible with a sequence of unbordered prefixes
of v. Indeed, the compatibility

aa�aabbaaaaa�b ↑ (aa�aabb)(aa�aabb)

holds. The shortest border of that factor is aab which has length shorter than
aa�aabb.

LEMMA 7.4
Let u, v be nonempty partial words such that u = v0 . . . vn−1 where v0, . . . , vn−1

is a sequence of nonempty prefixes of v with some vi well bordered. Then there
exists a longest sequence v′0, v

′
1, . . . , v

′
m−1 of nonempty prefixes of v such that

vi ↑ v′0v′1 . . . v′m−1, v
′
j is unbordered for every 1 ≤ j < m, and v′0 is unbordered

or badly bordered. Moreover, the following hold:

1. If v′0 is unbordered, then a sequence of nonempty unbordered prefixes of
v exists that is compatible with vi.

2. If v′0 is badly bordered, then no sequence of nonempty unbordered prefixes
of v exists that is compatible with vi.

PROOF Let yi,0 be a minimal border of wi,0 = vi, and set wi,0 =
xi,0w

′
i,1 = wi,1x

′
i,0 where xi,0 ⊂ yi,0 and x′i,0 ⊂ yi,0 (and thus xi,0 ↑ x′i,0).

By Definition 7.3, xi,0 is unbordered, and

vi = wi,1x
′
i,0 ↑ wi,1xi,0 (7.1)

where both wi,1 and xi,0 are prefixes of wi,0 (and hence of v). If wi,1 is
unbordered, then vi is compatible with a sequence of nonempty unbordered
prefixes of v.

If wi,1 is badly bordered, then no sequence v′′0 , . . . , v
′′
m′−1 of nonempty un-

bordered prefixes of v exists that is compatible with wi,1 unless wi,1 is specially
bordered and |yi,1| < |v′′m′−1| by Lemma 7.3 (here yi,1 is a minimal border of
wi,1). If this is the case, then wi,1 may be compatible with such a sequence of
nonempty unbordered prefixes of v, and if so replace wi,1 on the right hand
side of the compatibility in (1) by v′′0 . . . v

′′
m′−1. If this is not the case, then no

sequence of nonempty unbordered prefixes of v exists that is compatible with
vi.

If wi,1 is well bordered, then repeat the process. Let wi,0, wi,1, . . . , wi,j−1

be the longest sequence of nonempty well bordered prefixes defined in this
manner. For all 0 ≤ k < j, let yi,k be a minimal border of wi,k, and set
wi,k = xi,kw

′
i,k+1 = wi,k+1x

′
i,k where xi,k ⊂ yi,k and x′i,k ⊂ yi,k (and thus

xi,k ↑ x′i,k). By Definition 7.3, xi,0, . . . , xi,j−1 are unbordered. We have
wi,j−1 = wi,jx

′
i,j−1 ↑ wi,jxi,j−1 and thus by induction,

vi = wi,jx
′
i,j−1 . . . x

′
i,0 ↑ wi,jxi,j−1 . . . xi,0 (7.2)
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where wi,j , xi,j−1, . . . , xi,0 are prefixes of wi,0 (and hence of v). Now, if wi,j is
unbordered, then vi is compatible with a sequence of nonempty unbordered
prefixes of v. If wi,j is badly bordered, then proceed as in the case above
when wi,1 is badly bordered.

We can thus equate vi with sequences of shorter and shorter factors that
are prefixes of v or compatible with prefixes of v and the existence of the
required sequence v′0, . . . , v

′
m−1 is established.

THEOREM 7.2
If u, v be nonempty partial words such that u� v, then let v0, . . . , vn−1 be a
sequence of nonempty prefixes of v such that u = v0 . . . vn−1. Then one of the
following holds:

1. There exists a sequence v′0, . . . , v
′
m−1 of nonempty unbordered prefixes of

v such that u ↑ v′0 . . . v′m−1.

2. There exists a longest sequence v′0, . . . , v
′
m−1 of nonempty unbordered or

badly bordered prefixes of v such that u ↑ v′0 . . . v′m−1 with some v′j badly
bordered, and no sequence of nonempty unbordered prefixes of v exists
that is compatible with u.

PROOF Given a sequence v0, . . . , vn−1 of nonempty prefixes of v such that
u = v0 . . . vn−1, we wish to construct a sequence v′0, . . . , v

′
m−1 of nonempty un-

bordered prefixes of v such that u ↑ v′0 . . . v′m−1. If each prefix vi is unbordered,
then proceed as in Lemma 7.2. If some vi is badly bordered (respectively, well
bordered), then proceed as in Lemma 7.3 (respectively, Lemma 7.4).

Example 7.4
Consider the partial words

u = aaaa�babbaaaaa�baa and v = aa�babbaaaaa�b

We have a factorization of u in terms of nonempty prefixes of v. Here, the
compatibility

u ↑ (a)(a)(aa�babbaaaaa�b)(a)(a)

consists of unbordered and badly bordered prefixes of v and is a longest such
sequence (aa�babbaaaaa�b is specially bordered and is not compatible with
any sequence of nonempty unbordered prefixes of v). We can check that no
sequence of nonempty unbordered prefixes of v exists that is compatible with
u.

We now describe an algorithm based on Theorem 7.2 that is given as input
a partial word v and a sequence of prefixes of v and that outputs (if it exists)
a sequence of unbordered prefixes of v compatible with the given sequence.
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ALGORITHM 7.1
The algorithm consists of five steps.

Step 1: Compute the length of the input partial word v denoted by n.

Step 2: Create the set S of all nonempty prefixes of v.

Step 3: Create the set S′ containing all nonempty unbordered prefixes of
v. For each prefix s in S, first compute its length which is denoted by
m. If the length of the object is one, then put this object in the set S′.
Otherwise, check the object to see if it is bordered. If none of the object’s
proper prefixes are suffixes, the enter the object into the set S′.

Step 4: Create the ordered multiset T ′ containing the input sequence in the
order inputted.

Step 5: For each object t in T ′, first denote the object’s length by l. If
the length of the object is l = 1, then the object is put into an ordered
multiset T . If l > 1, then check to see whether the object is bordered.
If there is no proper prefix of the object that is compatible with a suffix,
then enter the object into T . Otherwise, let t[0..i] be the shortest prefix
for which this happens. If t[0..i] is unbordered, then replace the object t
with two shorter objects, t[0..l− i− 2] and t[0..i] (the order in which the
new objects are entered in T is important). If t[0..i] is bordered, then the
algorithm checks to see if there exists a sequence of nonempty unbordered
prefixes of v that is compatible with t. If yes, then T is updated with the
sequence. If no, then the algorithm returns “No sequence exists” and
exits. When all objects in T ′ have been examined, update T ′ with T . If
T ′ is a subset of S′, then T is a set of unbordered prefixes of v and the
algorithm returns T ′. Otherwise, repeat Step 5.

When all computations are done, the algorithm either returns a sequence in
T ′ or returns “No sequence exists.”

We illustrate the algorithm with the following two examples.

Example 7.5
First consider v = ab�c�ba and the sequence

ab�c, a, ab�, ab�c�ba, a

of prefixes of v. The following table depicts the information submitted:

partial word v ab�c�ba
prefix sequence (ab�c, a, ab�, ab�c�ba, a)

The set S contains all nonempty prefixes of v, while the set S′ contains all
nonempty unbordered prefixes of v.
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S = {a, ab, ab�, ab�c, ab�c�, ab�c�b, ab�c�ba}
S′ = {a, ab, ab�c}

In the first iteration, the multiset T ′ contains the input sequence. During
subsequent iterations, it is determined whether each object in T ′ is well or-
dered, badly bordered, or unbordered. If the object is well bordered, it is split
into two smaller objects, and T ′ is updated. Otherwise T ′ is updated and the
algorithm continues until either a badly bordered object is found or T ′ ⊂ S′.

Iteration T ′

1 {ab�c, a, ab�, ab�c�ba, a}
2 {ab�c, a, ab, a, ab�c�b, a, a}
3 {ab�c, a, ab, a, ab�c, ab, a, a}

Since T ′ ⊂ S′, a sequence of unbordered prefixes of v does exist that is
compatible with the original sequence:

ab�c, a, ab, a, ab�c, ab, a, a

Example 7.6
Now consider w = a��bacb and the sequence a��, a�, a��ba of prefixes of w.

Here

S = {a, a�, a��, a��b, a��ba, a��bac, a��bacb}
S′ = {a}

and we get

Iteration T ′

1 {a��, a�, a��ba}
2 {a�, a, a, a, a��b, a}

The partial word a��b ∈ T ′ is badly bordered (nonspecially bordered), there-
fore no sequence exists.

7.2 More results on concatenations of prefixes

We start with a definition.

DEFINITION 7.5 If u is a nonempty partial word, then unb(u) denotes
the longest unbordered prefix of u.
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Example 7.7
The partial word u = ab�b has ε, a, ab, ab�, and ab�b has prefixes. The latter
two are bordered, while ab is unbordered. Therefore, the longest unbordered
prefix of u is unb(u) = ab.

It is left as an exercise to show that if u, v are full words such that u =
unb(u)v, then v � unb(u) (see Exercise 7.18). This does not extend to partial
words as u = (ab)(�b) = unb(u)v provides a counterexample. However, the
following lemma does hold.

LEMMA 7.5
Let u, v be partial words such that u 6= ε and u = unb(u)v. Then u� unb(u)
if and only if v � unb(u).

PROOF If v � unb(u), then obviously u � unb(u). For the other
direction, since u� unb(u), we can write u = u0u1 . . . un−1 where each ui is
a nonempty prefix of unb(u). We can suppose that v 6= ε. Then unb(u) =
u0 . . . uku

′ for some k < n − 1 and some prefix u′ of uk+1. Since unb(u) is
unbordered, we have that u′ = ε, that k = 0, and hence that unb(u) = u0. It
follows that v = u1 . . . un−1 and v � unb(u).

We get the following corollary.

COROLLARY 7.1
Let u, v be partial words with v nonempty. Then the following hold:

1. If u� unb(v), then u� v.

2. If w is a partial word such that v = unb(v)w and w � unb(v), then
u� v if and only if u� unb(v).

PROOF Statement 1 holds trivially. For Statement 2, by Lemma 7.5,
w � unb(v) if and only if v � unb(v). Now, if u� v, then since v � unb(v),
by transitivity we get u� unb(v).

REMARK 7.1 Statement 2 of Corollary 7.1 is not true in general. Indeed,
u = ababac�aab and v = abac�aba provide a counterexample. To see this, v =
(abac)(�aba) = unb(v)w and we have u� v since u = (ab)(abac�a)(ab) where
ab and abac�a are prefixes of v. However u 6� unb(v) (here w 6� unb(v)).
For full words u, v, u� v if and only if u� unb(v) (see Exercise 7.19).

DEFINITION 7.6 For partial words u and v, when both u � v and
v � u we write u ≈ v.
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Note that the relation ≈ is an equivalence relation. For full words u and v,
u ≈ v if and only if unb(u) = unb(v) (see Exercise 7.20). For partial words,
the following holds.

PROPOSITION 7.3
For partial words u and v, if u ≈ v, then unb(u) = unb(v).

PROOF Suppose that u ≈ v. Set v = unb(v)w for some partial word w.
Since u� v, we can write u = v0 . . . vn−1 where each vi is a nonempty prefix
of v. Since v � u, there exists a sequence of nonempty prefixes of u, say
u0, . . . , um−1, such that v = u0u1 . . . um−1. Since unb(v) is a prefix of v, we
have unb(v) = u0 . . . uku

′ where u′ is a prefix of uk+1 and k < m − 1. Since
unb(v) is unbordered, we have u′ = ε, k = 0, and unb(v) = u0. Therefore,
both u = unb(v)x and unb(u) = unb(v)y hold for some x, y. It follows that
unb(v) is a prefix of unb(u). Similarly, unb(u) is a prefix of unb(v).

REMARK 7.2 The converse of Proposition 7.3 does not necessarily hold
for partial words as is seen by considering u = aba� and v = ab�b. We have
unb(u) = ab = unb(v) but u 6≈ v.

It is left as an exercise to show that if v is an unbordered word and w is
a proper prefix of v for which u � w, then uv and wv are unbordered. For
partial words, we can prove the following.

LEMMA 7.6
Let u be an unbordered partial word. Then the following hold:

1. If v ∈ P (u) and v 6= u, then vu is unbordered.

2. If v ∈ S(u) and v 6= u, then uv is unbordered.

PROOF Let us prove Statement 1 (the proof of Statement 2 is similar).
Set u = vx for some x. If vu = vvx is bordered, then there exist nonempty
partial words r, s, s′ such that vvx ⊂ rs and vvx ⊂ s′r. If |r| ≤ |v|, then
u = vx is bordered by r. And if |r| > |v|, then r = v′y where |v′| = |v| and
this implies that u = vx is bordered by y. In either case, we get a contradiction
with the assumption that u is unbordered.

LEMMA 7.7
If v is an unbordered partial word and u� v and u 6= v, then uv is unbordered.

PROOF Since u � v, we can write u = v0v1 . . . vn−1 where each vi is
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a prefix of v. Therefore, any prefix of u is a concatenation of prefixes of v.
Assume that uv is bordered by y. If |y| > |u|, then set y = u′y′ with u ⊂ u′.
We get y′ a border of v contradicting the fact that v is unbordered. If |y| ≤ |u|,
then we have the following two cases:

Case 1. y contains a prefix of v0
Here y contains a prefix of v and also a suffix of v and therefore, y is a

border of the unbordered word v.

Case 2. v0 . . . vkv
′ ⊂ y where v′ is a prefix of vk+1

If v′ = ε, then v0 . . . vk ⊂ y where vk is a prefix of v. This results in a
suffix of y containing both a prefix and a suffix of v. Similarly, if v′ 6= ε,
then factor y as y = y1y2 where v′ ⊂ y2. Because v′ is a prefix of v, we can
write v = v′z ⊂ y2z. But because |y2| < |v| and we have assumed that uv is
bordered by y = y1y2, we must have that v = z′v′′ with v′′ ⊂ y2. Therefore
y2 is a border for v. In either case, we get a contradiction with the fact that
v is unbordered.

It is left as an exercise to show that if u = xv is a nonempty unbordered word
where x is the longest unbordered proper prefix of u, then v is unbordered.
The partial word u = ab�ac where x = ab and v = �ac and the partial word
u = abaca�c where x = abac and v = a�c provide counterexamples for partial
words. However, when v is full, the following theorem does hold.

THEOREM 7.3

Let u be a nonempty unbordered partial word. Then the following hold:

1. Let x be the longest proper unbordered prefix of u and let v be such that
u = xv. If v is a full word, then v is unbordered.

2. Let y be the longest proper unbordered suffix of u and let w be such that
u = wy. If w is a full word, then w is unbordered.

PROOF We prove Statement 1 (Statement 2 can be proved similarly).
Assume that v is bordered. Since v is full, there exist nonempty words z, v′

such that v = zv′z where z is the minimal border of v. Then u = xzv′z,
so that xz is a proper prefix of u such that |xz| > |x|. It follows that xz
is bordered, and there exist nonempty partial words r, r1, r2, s1, s2 such that
xz = r1s1 = s2r2, r1 ⊂ r and r2 ⊂ r (here r is a minimal border). Let us
consider the following two cases.

Case 1. |r| > |z|
In this case, r2 = x′z where x′ is a nonempty suffix of x. Since r1 ↑ r2,

there exist partial words x′′, z′ such that r1 = x′′z′ where x′′ ↑ x′ and z′ ↑ z.
But then, x′′z′s1 = r1s1 = xz = s2r2 = s2x

′z. It follows that x′′ is a prefix of
x and x′ is a suffix of x that are compatible. As a result, x is bordered.
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Case 2. |r| ≤ |z|
In this case, r2 is a suffix of z and set z = sr2 for some s. We get u =

xzv′z = r1s1v
′sr2 ⊂ rs1v

′sr, whence r is a border of the unbordered partial
word u.

A closer look at the proof of Theorem 7.3 allows us to show the following.

THEOREM 7.4

Let u be a nonempty partial word. Then the following hold:

1. Let x be the longest proper unbordered prefix of u and let v be such that
u = xv. If v is bordered, then set v = z1v1 = v2z2 where z1 ⊂ z, z2 ⊂ z
and where z is a minimal border of v. Then xz1 has a minimal border
r such that |r| ≤ |z|. Moreover, if v is well bordered, then |x| ≥ |r|.

2. Let y be the longest proper unbordered suffix of u and let w be such that
u = wy. If w is bordered, then set w = z1v1 = v2z2 where z1 ⊂ z, z2 ⊂ z
and z is a minimal border of w. Then z2y has a minimal border r such
that |r| ≤ |z|. Moreover, if w is well bordered, then |y| ≥ |r|.

PROOF We prove Statement 1 (Statement 2 can be proved similarly).
Then u = xz1v1, so that xz1 is a proper prefix of u longer than x. It follows
that xz1 is bordered, and there exist nonempty partial words r, r1, r2, s1, s2
such that xz1 = r1s1 = s2r2, r1 ⊂ r and r2 ⊂ r with r a minimal border. If
|r| > |z|, then r2 = x′z1 where x′ is a nonempty suffix of x. Since r1 ↑ r2,
there exist partial words x′′, z′ such that r1 = x′′z′ where x′′ ↑ x′ and z′ ↑ z1.
But then, x′′z′s1 = r1s1 = xz1 = s2r2 = s2x

′z1. It follows that x′′ is a prefix
of x and x′ is a suffix of x that are compatible. As a result, x is bordered,
which contradicts that x is the longest unbordered proper prefix of u. And so
|r| ≤ |z| and r2 is a suffix of z1. Set z1 = sr2 for some suffix s of s2 (s2 = xs).
If we further assume that v is well bordered, then we claim that |x| ≥ |r|. To
see this, if |x| < |r|, then set r1 = xt and z1 = ts1 for some t. Since r1 ↑ r2,
there exist x′, t′ such that r2 = x′t′ and x ↑ x′ and t ↑ t′. Since r2 is a suffix of
z1, we have that t′ is a suffix of z1. Consequently, t is a prefix of z1 and t′ is a
suffix of z1 that are compatible. So z1 is bordered and we get a contradiction
with v’s well borderedness, establishing our claim.

We now investigate the relationship between the minimal weak period of a
given partial word u and the maximum length of its unbordered factors.

DEFINITION 7.7 The maximum length of the unbordered factors of a
partial word u is denoted by µ(u).
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PROPOSITION 7.4

For all partial words u, µ(u) ≤ p′(u).

PROOF Let w be a subword of u such that |w| > p′(u). Factor w as
w = xw1 = w2y where |w1| = |w2| = p′(u). We have x(i) = w(i) and
y(i) = w(i+ p′(u)) whenever i, i+ p′(u) ∈ D(w). This means that whenever
x(i) 6= y(i), i ∈ H(x) or i ∈ H(y). So we can construct a word that contains
both x and y. Therefore x ↑ y and w is bordered. So we must have that
µ(u) ≤ p′(u).

REMARK 7.3 For any partial word u, Proposition 7.4 gives an upper
bound for the maximum length of the unbordered factors of u: µ(u) ≤ p′(u).
This relationship cannot be replaced by µ(u) < p′(u) as is seen by considering
u = aba� with µ(u) = p′(u) = 2.

For any partial words v, w, if there exists a partial word u such that u� w
and u ⊂ v, then we say that v contains a concatenation of prefixes of w.
Otherwise, we say that v contains no concatenation of prefixes of w. Similarly,
if u ∈ P (w) and u ⊂ v, then we say that v contains a prefix of w.

PROPOSITION 7.5

Let u, v be partial words such that u = hvh where h abbreviates unb(u). If
h is not compatible with any factor of v, then vh is unbordered if one of the
following holds:

1. v is full,

2. v contains a prefix of h or a concatenation of prefixes of h.

PROOF For Statement 1, suppose that v is full and there exist nonempty
x,w1, w2 such that vh ⊂ xw1 and vh ⊂ w2x. We must have that |x| ≤ |v| or
else h, which is unbordered, would be bordered by a factor of x. If |h| < |x|,
then there exists x′ ∈ S(x) such that h ⊂ x′ and because |x| ≤ |v|, there
exists v′ a factor of v with v′ ⊂ x′ and this says that v′ ↑ h, contradicting
our assumption. Now, if |h| ≥ |x|, then set v = rv′ and h = h′s where
|r| = |s| = |x|. In this case, r ⊂ x and s ⊂ x, and there exist nonempty
r ∈ P (v) and s ∈ S(h) such that r ↑ s. But r is full and so r ↑ s implies that
s ⊂ r. But then, by Lemma 7.6, we have that hs is unbordered, and so hr is
an unbordered prefix of u with length greater than |h|. This contradicts the
assumption that h = unb(u), hence vh must be unbordered.

For Statement 2, first assume that v contains a prefix of h. Let v′ ∈ P (h)
be such that v′ ⊂ v. By Lemma 7.6, since h is unbordered, we have that v′h
is unbordered. Now, assume that v contains a concatenation of prefixes of h.
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Let v′ be such that v′ � h and v′ ⊂ v. By Lemma 7.7, since h is unbordered
and v′ � h, we have that v′h is unbordered. In either case, since v′ ⊂ v, vh
is unbordered as well.

7.3 Critical factorizations

In this section, we investigate some of the properties of an unbordered par-
tial word of length at least two and how they relate to its critical factorizations
(if any).

DEFINITION 7.8 Let u, v be nonempty partial words. We say that u
and v overlap if there exist partial words r, s satisfying one of the following
conditions:

1. r ↑ s with u = ru′ and v = v′s,

2. r ↑ s with u = u′r and v = sv′,

3. u = ru′s with u′ ↑ v,

4. v = rv′s with v′ ↑ u.

Otherwise we say that u and v do not overlap.

Figures 7.3, 7.4, 7.5 and 7.6 depict the different overlaps of Definition 7.8.

FIGURE 7.3: Overlap of Type 1.
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FIGURE 7.4: Overlap of Type 2.

FIGURE 7.5: Overlap of Type 3.

FIGURE 7.6: Overlap of Type 4.
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Example 7.8
The partial words u = a�bc� and v = ba�c overlap since u = ru′ = (a�)(bc�)
and v = v′s = (ba)(�c) with r ↑ s.

The following proposition helps us produce examples of partial words that
do not overlap.

PROPOSITION 7.6
Let u, v be nonempty partial words. If w = uv is unbordered, then |u| − 1 is

a critical point of w if and only if u and v do not overlap.

PROOF Let us first suppose that u and v overlap. If we have Type 1
overlap, then w = ru′v′s and r ↑ s for some partial words r, s, u′, v′. This
contradicts the fact that w is unbordered. If we have Type 2 overlap, then
w = u′rsv′ and there is an internal square at position |u| − 1 of length k =
|r| = |s|, so p(w, |u| − 1) ≤ k. But because w is unbordered, p′(w) = |w|.
Of course we have that k < |w| (otherwise we have Type 1 overlap), so this
contradicts that |u| − 1 is a critical point of w. If we have Type 3 overlap,
then w = ru′sv and there is a right-external square of length |u′s| at position
|u| − 1. Because v 6= ε, |u′s| < |w| = p′(w) and we have that |u| − 1 cannot
be a critical point of w, a contradiction. The case for Type 4 overlap is very
similar to Type 3.

For the other direction we have that u and v do not overlap and let us
suppose that |u| − 1 is not a critical point of w. Since |u| − 1 is not a critical
point, there exist x and y defined as in Definition 4.2, with the length of x
strictly smaller than the minimal weak period of w. Let us look at all the
four cases of the definition. If we have an internal square, then according
to Definition 7.8 we have a Type 2 overlap of u and v, which contradicts
our assumption. For a left-external, respectively right-external, square we get
that either u is compatible with a factor of v, or v is compatible with a factor
of u. Both cases contradict with the fact that u and v do not overlap, giving
us a Type 4, respectively Type 3, overlap.

In the case we have a left- and right-external square we get that x = ru
and y = vs, where x ↑ y and r, s 6= ε. If |r| < |v|, then there exists v′ such
that |v′| > 0 and v = rv′. Hence, since ru ↑ rv′s we get a Type 2 overlap,
u ↑ v′s, which is a contradiction. If |r| ≥ |v|, then there exists r′ such that
r = vr′. This implies that

|w| = |uv| ≤ |vr′u| = |ru| = |x| < p′(w) ≤ |w|

a contradiction.

Example 7.9
The partial word w = ab�bcac is unbordered with minimal weak period
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p′(w) = 7. Here (u, v) = (ab�bc, ac) is a critical factorization of w. We can
check that u and v do not overlap.

We obtain the following two corollaries.

COROLLARY 7.2

Let u, v be nonempty partial words. If w = uv is unbordered and |u| − 1 is a
critical point of w, then w′ = vu is unbordered as well.

PROOF This is immediately implied by Proposition 7.6 and the fact that
if w′ = vu is bordered, then u and v must overlap.

Example 7.10

Returning to Example 7.9, we see that w′ = vu = acab�bc is unbordered.

COROLLARY 7.3

Let u, v be nonempty partial words. If w = uv is unbordered and |u| − 1 is a
critical point of w, then |v| − 1 is a critical point of w′ = vu.

PROOF By Corollary 7.2, we have that w′ is unbordered, and so p′(w′) =
|w′|. Suppose that p(w′, |v| − 1) = p < |w′| and let us show that u and
v overlap. We consider the case where x = rv and y = us with r, s, x, y
nonempty partial words satisfying x ↑ y and |x| = |y| = p. Here we have
that |x| = p < |w′| and rv ↑ us. We must have that |r| < |u| and so it is
possible to write u = r′u′ with |r′| = |r|. Simplifying rv ↑ us = r′u′s gives
that v ↑ u′s. We can then factor v as v = v′s′ with |v′| = |u′|. Simplifying
again gives us that u′ ↑ v′ and we have that u and v overlap. This contradicts
Proposition 7.6, so we must have that |v| − 1 is a critical point of w′.

Example 7.11

Returning one last time to Example 7.9, position |v|−1 = 1 is a critical point
of the factorization (v, u) = (ac, ab�bc) of w′ = vu.

7.4 Conjugates

Referring to Exercise 1.13, we call a word u a conjugate of v, and we write
u ∼ v, if u = xy while v = yx for some x and y. Equivalently, u and v are
conjugate if and only if there exists a word z such that uz = zv. Indeed, if
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u and v are conjugate, then z = x satisfies the equation uz = zv. For the
converse, we can use Lemma 2.1. In Exercise 1.13, the reader was asked to
show that ∼ is an equivalence relation. The reader now can check that for two
words u and v, (

√
u)m ∼ (

√
v)n if and only if both m = n and

√
u ∼
√
v (see

Exercise 1.1 for the definition of √). Thus, every conjugate of a nonprimitive
nonempty word is bordered. This however does not hold for primitive words
as the following shows.

THEOREM 7.5

If u is a word such that u =
√
u and a ∈ α(u), then there exists an unbordered

conjugate av of u. In other words, if u is such that u =
√
u and a ∈ α(u),

then there exist x, y such that u = xay and v = ayx is unbordered.

PROOF The proof is left as an exercise.

Example 7.12

If u = aba, then x = ab and y = ε work for the letter a ∈ α(u).

We now give a version of Theorem 7.5 for partial words. Referring again to
Exercise 1.13, u and v are conjugate if there exist partial words x and y such
that u ⊂ xy and v ⊂ yx. Again, we denote u is a conjugate of v by u ∼ v.
Here, the relation ∼ is not an equivalence relation: it is both reflexive and
symmetric, but not transitive. Note that the conjugates a�b, �ba and ba� of
u = a�b are bordered. However, the following result holds.

THEOREM 7.6

Let u be a primitive partial word. Let a be any letter in A appearing in the
spelling of u. Then there is an unbordered full conjugate v = ax of u.

PROOF Let u be a primitive partial word and let a ∈ A be a letter that
appears in the spelling of u. Let u′ be a full word such that u ⊂ u′. Since u is
primitive, u′ is primitive as well. The latter and the fact that a ∈ α(u′) imply
the existence of words y, z such that u′ = yaz and v = azy is unbordered.
But v is also a conjugate of u since u ⊂ (y)(az) and v ⊂ (az)(y).

Exercises

7.1 Prove that if u is unbordered and u ⊂ u′, then u′ is unbordered as well.



218 Algorithmic Combinatorics on Partial Words

7.2 Give all borders of u = a���acb.

7.3 Give an example of a partial word having at least two minimal borders.

7.4 Classify the following partial words as well bordered or badly bordered:

• a�
• a��ba
• a��b
• a�ab

7.5 S We call a bordered pword u simply bordered if a minimal border x
exists satisfying |u| ≥ 2|x|. Show that a bordered full word is always
simply bordered.

7.6 Prove that every bordered full word of length n has a unique minimal
border x. Moreover, x is unbordered and |x| ≤ bn

2 c.

7.7 Show that for partial words u, v and w, if u � v and v � w, then
u� w.

7.8 S Consider the words u = abaaabaabaaaca and v = abaaacc. Does
u� v hold?

7.9 S Run Algorithm 7.1 on input v = ab��ba��abba and sequence

ab��, ab, ab��ba�, a, ab��ba��a

of prefixes of v. Display your output as in Example 7.5 or Example 7.6.

7.10 Repeat Exercise 7.9 for input v = a�babca and sequence

a, a�ba, a�babc

7.11 Do u = ab��aba and v = bba����bab overlap? Why or why not?

7.12 S Consider the unbordered partial word w = aabc�bc. Produce a criti-
cal factorization (u, v) of w such that w′ = vu is unbordered. What can
be said about position |v| − 1 of w′?

7.13 Handle the case of Type 4 overlap in the proof of Proposition 7.6.

7.14 Let u, v be nonempty partial words such that w = uv is unbordered.
Show that |u|−1 is a critical point of w if and only if the minimal square
at position |u| − 1 is a left- and right-external square of length p′(w).
Check this with Example 7.9.
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Challenging exercises

7.15 S Show that the problem of enumerating all unbordered full words of
length n over a k-letter alphabet yields to a conceptually simple and
elegant recursive formula Uk(n): Uk(0) = 1, Uk(1) = k, and for n > 0,

Uk(2n) = kUk(2n− 1)− Uk(n)
Uk(2n+ 1) = kUk(2n)

7.16 S Using the formulas of Exercise 7.15 and Proposition 7.2, obtain a
formula for counting bordered full words.

7.17 Prove Theorem 7.1.

7.18 Prove that if u, v are full words such that u = unb(u)v, then v �
unb(u).

7.19 Prove that for full words u and v, u� v if and only if u� unb(v).

7.20 Prove that for full words u and v, u ≈ v if and only if unb(u) = unb(v).

7.21 Show that if v is an unbordered word and w is a proper prefix of v for
which u� w, then uv and wv are unbordered.

7.22 Show that if u = xv is a nonempty unbordered word where x is the
longest unbordered proper prefix of u, then v is unbordered.

7.23 S If the following assumptions hold:

1. w is well bordered,

2. a, b are letters, with a 6= b,

3. au′ = unb(au),

4. au is a prefix of w and bu′ is a suffix of w,

then show that au is contained in a proper prefix of any minimal border
of w.

7.24 S Let u = hvh be a partial word with |h| = µ(u). If h is unbordered
and v is full, then u has the form u = h(h′)k−2h for some k ≥ 2 and
h′ ⊃ h and p′(u) = µ(u). Show that the equality u = h(h′)k−2h cannot
be replaced by u = hk.

7.25 Prove that for two words u and v, (
√
u)m ∼ (

√
v)n if and only if

both m = n and
√
u ∼

√
v. Thus, every conjugate of a nonprimitive

nonempty word is bordered.

7.26 Prove Theorem 7.5.
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Programming exercises

7.27 Design an applet that takes as input a nonempty partial word u, and
that outputs unb(u), the longest unbordered prefix of u.

7.28 Give pseudo code for an algorithm that computes the maximum length
µ(u) of the unbordered factors of a given partial word u.

7.29 Write a program to find out if two partial words u and v satisfy the
following relationships:

• u ∼ v
• u� v

• u ≈ v

7.30 Write a program that when given two nonempty partial words u and v
determines whether or not u and v overlap. Run your program on the
following pair of partial words:

u = ab��aba and v = bba����bab

7.31 Referring to Exercises 7.5 and 7.15, let Sh,k(n) be the number of pwords
with h holes, of length n, over a k-letter alphabet that are not simply
bordered. If h = 0, then S0,k(n) = Uk(n) since a non simply bordered
full word is an unbordered full word. It is easy to see that S1,k(0) = 0,
S1,k(1) = 1, S1,k(2) = 0, and for h > 1 that Sh,k(1) = 0 and Sh,k(2) = 0.
Now, for h > 0, the following formula holds for odd integers n = 2m+1:

Sh,k(2m+ 1) = kSh,k(2m) + Sh−1,k(2m)

Run computer experiments to approximate Sh,k(2m) for even integers
n = 2m.

Website

A World Wide Web server interface at

http://www.uncg.edu/mat/border

has been established for automated use of Algorithm 7.1. Another website
related to unbordered partial words is

http://www.uncg.edu/cmp/research/bordercorrelation
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Chapter 8

Pcodes of Partial Words

Codes play an important role in the study of the combinatorics on words. In
this chapter, we discuss pcodes that play a role in the study of the combina-
torics on partial words. While a code of words X does not allow two distinct
decipherings of some word in X+, a pcode of partial words Y does not allow
two distinct compatible decipherings in Y +. In Sections 8.1 to 8.6, the defini-
tions and some important general properties of pcodes and the monoids they
generate are presented. There, we describe various ways of defining and ana-
lyzing pcodes. In particular, many pcodes can be obtained as antichains with
respect to certain partial orderings. We investigate in particular the Defect
Theorem for partial words. In Section 8.7, we introduce the circular pcodes
which take into account, in a natural way, the conjugacy operation that was
discussed in Chapter 2. The main feature of these pcodes is that they define
a unique factorization of partial words written on a circle. Throughout the
chapter proofs will be sometimes omitted. They are left as exercises for the
reader.

8.1 Binary relations

We assume that the cardinality of the finite alphabet A is at least two
(unless it is stated otherwise).

A binary relation ρ defined on an arbitrary set S ⊂ W (A) is a subset of
S × S. Instead of denoting (u, v) ∈ ρ, we often write uρv. The relation ρ
is called reflexive if uρu for all u ∈ S; symmetric if uρv implies vρu for all
u, v ∈ S; antisymmetric if uρv and vρu imply u = v for all u, v ∈ S; transitive
if uρv and vρw imply uρw for all u, v, w ∈ S, and positive if ερu for all u ∈ S.
It is called strict if it satisfies the following conditions for all u, v ∈ S:

uρu,

uρv implies |u| ≤ |v|,

uρv and |u| = |v| imply v ⊂ u.

A strict binary relation is reflexive and antisymmetric, but not necessarily
transitive. A reflexive, antisymmetric, and transitive relation ρ defined on S

225
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is called a partial ordering , and (S, ρ) is called a partially ordered set or poset.
A partial ordering ρ on S is called right (respectively, left) compatible if uρv
implies uwρvw (respectively, uρv implies wuρwv) for all u, v, w ∈ S. It is
called compatible if it is both right and left compatible. For any two binary
relations ρ1 and ρ2 on S, we denote by (ρ1) ⊂ (ρ2) if uρ1v implies uρ2v for
all u, v ∈ S (or the subset inclusion), and by (ρ1) < (ρ2) if (ρ1) ⊂ (ρ2) but
(ρ1) 6= (ρ2).

An important notion on binary relations is that of an antichain. A nonempty
subset X of S is called an antichain with respect to a particular binary re-
lation ρ on S (or an ρ-antichain) if for all distinct u, v ∈ X, (u, v) 6∈ ρ and
(v, u) 6∈ ρ. The class of all ρ-antichains of S is denoted by A(ρ). For every
partial word u of S, {u} is in A(ρ).

PROPOSITION 8.1

Let ρ1, ρ2 be two binary relations defined on W (A). Then

1. If ρ1 ⊂ ρ2, then A(ρ2) ⊂ A(ρ1).

2. If ρ1, ρ2 are strict and A(ρ2) ⊂ A(ρ1), then ρ1 ⊂ ρ2.

PROOF For Statement 1, let X ∈ A(ρ2). If X is a singleton set, then
X ∈ A(ρ1). Now suppose that X is not a singleton set and let u, v ∈ X be
such that u 6= v and uρ1v. Then uρ2v by assumption. Since X is an antichain
with respect to ρ2, we have u = v, a contradiction. Thus X ∈ A(ρ1) and
A(ρ2) ⊂ A(ρ1) holds.

For Statement 2, suppose that there exist partial words u, v such that u 6= v,
uρ1v, and (u, v) 6∈ ρ2. Suppose that vρ2u. Since uρ1v, we have |u| ≤ |v|, and
since vρ2u, we have |v| ≤ |u|. Hence |u| = |v|, both uρ1v and |u| = |v| imply
v ⊂ u, and both vρ2u and |v| = |u| imply u ⊂ v. We deduce that u = v, a
contradiction. So {u, v} ∈ A(ρ2). As A(ρ2) ⊂ A(ρ1), we have {u, v} ∈ A(ρ1)
which implies that (u, v) 6∈ ρ1, a contradiction.

We first define the δ-relations. Note that all positive powers of a nonempty
word have the same root. For u, v ∈ A+, uv = vu is equivalent to

√
u =
√
v.

For a nonempty partial word u, let P(u) denote the set of primitive words
v ∈ A+ such that u ⊂ vn for some positive integer n. For u ∈ A+, we have
P(ui) = P(u) = {

√
u}, and for each partial word u, we have P(u) ⊂ P(ui)

for all positive powers of u.
For every positive integers i, j and nonempty partial words u, v, define the

relation δi,j by uδi,jv if P(ui) ∩ P(vj) 6= ∅. In the sequel, δ1,1 is often abbre-
viated by δ. Note that if u ⊂ v, then P(v) ⊂ P(u) and so uδv.

The reader can check the following properties of the δ-relations.
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LEMMA 8.1
Let i, j be positive integers.

1. If ‖A‖ ≥ 2, then (δ) ⊂ (δi,j). Moreover, if (i, j) 6= (1, 1), then (δ) <

(δi,j).

2. If ‖A‖ = 1, then (δ) = (δi,j).

LEMMA 8.2
Let i, j be positive integers, and let u, v be nonempty partial words.

1. If uδi,jv, then uivj ↑ vjui.

2. If uivj ↑ vjui and uivj is non {|ui|, |vj |}-special, then uδi,jv.

We now define the ρ-relations which are useful binary relations on W (A).

DEFINITION 8.1 Let u, v be partial words.

• Embedding relation: uρdv if there exists an integer n ≥ 0, partial
words u1, . . . , un, and full words x0, . . . , xn such that

u = u1u2 . . . un and v ⊂ x0u1x1u2 . . . unxn

• Length relation: uρlv if |u| < |v| or v ⊂ u.

• Prefix relation: uρpv if there exists x ∈ A∗ such that v ⊂ ux.

• Suffix relation: uρsv if there exists x ∈ A∗ such that v ⊂ xu.

• Factor relation: uρfv if there exist x, y ∈ A∗ such that v ⊂ xuy.

• Border relation: uρov if there exist x, y ∈ A∗ such that v ⊂ ux and
v ⊂ yu.

• Commutative relation: uρcv if there exists x ∈ A∗ such that v ⊂
xu, v ⊂ ux.

• Exponent relation: uρev if there exists an integer n ≥ 1 such that
v ⊂ un.

LEMMA 8.3

• The relations ρd, ρl, ρp, ρs, ρf , and ρo are strict positive partial orderings
on W (A).

• The relation ρe is a strict partial ordering on W (A).
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• The relation ρc is a strict positive binary relation on W (A).

• The relation ρc is a partial ordering on any pairwise nonspecial subset
of W (A).

PROOF We show the result for the relation ρc. The relation ρc is trivially
strict and positive onW . Now, letX be a pairwise nonspecial subset ofW (A).
To show that ρc is transitive, let u, v, w ∈ X be such that u 6= v and v 6= w. If
uρcv and vρcw, then let us show that uρcw. If u = ε, then trivially ερcw, and
if v = ε, then u = ε. So we assume that u, v are nonempty. For some words
x and y, we have v ⊂ xu, v ⊂ ux and w ⊂ vy, w ⊂ yv. If x = ε, then v ⊂ u.
We get w ⊂ vy ⊂ uy and w ⊂ yv ⊂ yu, and so uρcw. If y = ε, then w ⊂ v.
We get w ⊂ xu and w ⊂ ux, and so uρcw. So we may assume that x, y are
nonempty. Let u′ be a full word satisfying u ⊂ u′. We get v ⊂ xu′, v ⊂ u′x
and thus by Lemma 2.5, xu′ = u′x. There exists a primitive word z (we can
choose z =

√
x) and positive integers k, l such that u′ = zk and x = zl. We

have v ⊂ u′x ⊂ zk+l. We get w ⊂ zk+ly, w ⊂ yzk+l. Thus by Lemma 2.5,
zk+ly = yzk+l. Using the fact that z is primitive, we get that y is a power of
z, say y = zm for some integer m. It follows that w ⊂ vy ⊂ uxy ⊂ uzl+m and
also w ⊂ yv ⊂ yxu ⊂ zl+mu, and so uρcw.

LEMMA 8.4

• If ‖A‖ ≥ 2, then (ρc) < (ρo).

• If ‖A‖ ≥ 1, then

(ρe) < (ρc) ⊂ (ρo) < (ρp) < (ρf ) < (ρd) < (ρl), and

(ρo) < (ρs) < (ρf ).

• If ‖A‖ = 1, then (ρc) = (ρo).

PROOF If A = {a}, then (u, v) 6∈ ρe and uρcv with u = aa and v = a�a,
(u, v) 6∈ ρo and uρpv with u = � and v = �aa, (u, v) 6∈ ρp and uρfv with u = �
and v = a�a, (u, v) 6∈ ρf and uρdv with u = �� and v = �a�, (u, v) 6∈ ρd and
uρlv with u = � and v = aa, (u, v) 6∈ ρo and uρsv with u = � and v = a�, and
(u, v) 6∈ ρs and uρfv with u = � and v = a�a.

Note that if we restrict ourselves to W1(A) and ‖A‖ = 1, then we have
(ρf ) = (ρd).

PROPOSITION 8.2
The embedding relation ρd is the smallest positive compatible partial ordering
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on W (A) satisfying aρd� for all a ∈ A. That is, if ρ is a positive compatible
partial ordering on W (A) satisfying aρ� for all a ∈ A, then (ρd) ⊂ (ρ).

PROOF The embedding partial ordering ρd is clearly compatible on
W (A). Now, let ρ be a positive compatible partial ordering on W (A) and
let u, v be partial words such that uρdv. By induction on |u| + |v|, we show
that uρv. If |u| + |v| = 0, then ερdε and ερε since ρd and ρ are positive. If
|u| + |v| > 0 and u = ε, then ερdv and ερv since ρd and ρ are positive. If
|u| + |v| > 0 and u 6= ε, then put u = au′ and v = bv′ where a, b ∈ A ∪ {�}.
If a = b, then u′ρdv

′, and using the inductive hypothesis, we get u′ρv′. Since
ρ is compatible, we have au′ρav′ and so uρv. If a 6= b and b 6= �, then uρdv

′,
and thus by the inductive hypothesis, uρv′. Since ρ is positive, we have ερb
and since ρ is compatible, we have v′ρbv′ and so v′ρv. Since ρ is transitive,
we get uρv as desired. On the other hand, if a 6= b and b = �, then u′ρdv

′,
and thus by the inductive hypothesis, u′ρv′. Since aρ� and ρ is compatible,
we have av′ρ�v′. Since u′ρv′ and ρ is compatible, we have au′ρav′. Since ρ is
transitive, we get au′ρ�v′ or uρv as desired.

8.2 Pcodes

In this section, we discuss pcodes of partial words. We start with the full
case.

DEFINITION 8.2 Let X be a nonempty subset of A+. Then X is called a
code over A if for all integers m ≥ 1, n ≥ 1 and words u1, . . . , um, v1, . . . , vn ∈
X, the equality

u1u2 . . . um = v1v2 . . . vn

is trivial, that is, both m = n and ui = vi for i = 1, . . . ,m.

The set X = {a, abbbbba, babab, bbbb} is not a code as is seen in Figure 8.1.
The word abbbbbabababbbbba can be factorized in two different ways using code
words.

FIGURE 8.1: Two distinct factorizations.
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In the case of partial words, we define a pcode as follows.

DEFINITION 8.3 Let X be a nonempty subset of W (A) \ {ε}. Then X
is called a pcode over A if for all integers m ≥ 1, n ≥ 1 and partial words
u1, . . . , um, v1, . . . , vn ∈ X, the compatibility relation

u1u2 . . . um ↑ v1v2 . . . vn

is trivial, that is, both m = n and ui = vi for i = 1, . . . ,m.

Example 8.1
Consider the set X = {a�bba, accba} and let x1 = a�bba and x2 = accba. It is
clear that x1 6↑ x2. This is not sufficient in determining whether or not X is a
pcode. However, we can easily check that no nontrivial compatibility relation
exists since |x1| = |x2|, and consequently X is a pcode over {a, b, c}.

Now, the set Y = {a�b, aab�bb, �b, ba} is not a pcode. Let y1 = a�b, y2 =
aab�bb, y3 = �b and y4 = ba. As seen in Figure 8.2, a nontrivial compatibility
relation does exist among the four elements

y1y3y3y4y3 ↑ y2y3y1

FIGURE 8.2: A nontrivial compatibility relation.

Definition 8.3 has immediate consequences that should be emphasized.

REMARK 8.1

• A nonempty subset of A+ is a code if and only if it is a pcode.

• A pcode with at least two elements never contains a partial word of the
form �n for any integer n.

• Any nonempty subset of a pcode is a pcode.

• A pcode is always a pairwise noncompatible set, but the converse is false.
Here a set X is called pairwise noncompatible if u 6↑ v for all distinct
u, v ∈ X.
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• If X is a pcode over A, then X� = {u� | u ∈ X} is a code over A ∪ {�}.
But the converse does not hold. Consider, for instance, the code X� =
{a�a, �a�} over {a, �}. The underlying set X is not a pcode over {a}
since its elements are compatible. This fact is important, since it justifies
the study of pcodes.

The following propositions are natural extensions of the pcode definition.

PROPOSITION 8.3

Let X be a nonempty subset of W (A) \ {ε}. Then X is a pcode if and only
if for every integer n ≥ 1 and partial words u1, . . . , un, v1, . . . , vn ∈ X, the
condition

u1u2 . . . un ↑ v1v2 . . . vn

implies ui = vi for i = 1, . . . , n.

PROOF If X is a pcode, then clearly the condition holds. Conversely,
assume that X satisfies the condition stated in the proposition. Suppose
u1u2 . . . um ↑ v1v2 . . . vn for some integers m ≥ 1, n ≥ 1 and partial words
u1, . . . , um, v1, . . . , vn ∈ X. Then

u1u2 . . . umv1v2 . . . vn ↑ v1v2 . . . vnu1u2 . . . um

by multiplication. If m < n, then u1 = v1, . . . , um = vm and ε ↑ vm+1 . . . vn,
which is a contradiction. Similarly, n < m cannot hold. Hence m = n and
therefore the condition implies that X is a pcode.

PROPOSITION 8.4

Let X be a nonempty subset of W (A) \ {ε}. For every u ∈ X, let xu be a
nonempty partial word such that u ⊂ xu, and let Y be the set {xu | u ∈ X}.
If X is a pcode, then Y is a pcode.

PROOF Let n be a positive integer and let x1, . . . , xn, y1, . . . , yn ∈ Y be
such that

x1x2 . . . xn ↑ y1y2 . . . yn

For every integer 1 ≤ i ≤ n, let ui ∈ X be such that xui
= xi, and let vi ∈ X

be such that xvi
= yi. Then we have

u1u2 . . . un ↑ v1v2 . . . vn
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since u1u2 . . . un ⊂ x1x2 . . . xn ⊂ w and v1v2 . . . vn ⊂ y1y2 . . . yn ⊂ w for some
w. But since X is a pcode, by Proposition 8.3, ui = vi for i = 1, . . . , n. This
implies xi = xui

= xvi
= yi for i = 1, . . . , n showing that Y is a pcode.

The converse of Proposition 8.4 is not true. For example, let X = {u, v}
where u = a and v = a�a. The set Y = {a, aba} is a pcode, but X is not a
pcode since u3 ↑ v.

We end this section by introducing some classes of pcodes and their basic
properties: the prefix pcodes, suffix pcodes, biprefix pcodes, uniform pcodes,
and maximal pcodes.

DEFINITION 8.4 Let X be a nonempty subset of W (A) \ {ε}. Then X
is called a prefix pcode if for all u, v ∈ X,

ux ↑ v for some partial word x implies u = v

Note that any singleton set is a prefix pcode. Note also that any subset of
a prefix pcode is a prefix pcode and hence any intersection of prefix pcodes is
also a prefix pcode.

Example 8.2

The set X = {a�b, a�} is not a prefix pcode. In this example setting u =
a�, v = a�b and x = b, we have ux ↑ v. Since X is a pcode, we deduce that a
pcode is not necessarily a prefix pcode.

Now, consider Y = {a�b, ba} and let y1 = a�b, and y2 = ba. This set is a
prefix pcode. No x exists such that y2x ↑ y1.

DEFINITION 8.5 A set of partial words X is a suffix pcode if rev(X)
is a prefix pcode. A biprefix pcode is a pcode that is both prefix and suffix.

DEFINITION 8.6 If n is a positive integer, then a largest pairwise
noncompatible set X satisfying X ⊂ (A ∪ {�})n is a biprefix pcode called a
uniform pcode of partial words of length n. By largest we mean that if u is
a partial word of length n over A, then there exists v ∈ X such that u ↑ v.

DEFINITION 8.7 A pcode is called a maximal pcode over A if it is
not a proper subset of any other pcode over A.

It is left as an exercise to show that uniform pcodes over A are maximal
over A (see Exercise 8.16). The following proposition holds.
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PROPOSITION 8.5
Any pcode X over A is contained in some maximal pcode over A.

8.2.1 The class F

We now consider the following class of binary relations on W (A) partially
ordered by inclusion:

F = {ρ | ρ is a strict binary relation on W (A) such that every pcode is an
antichain with respect to ρ}

The class F is easily seen to be closed under union and intersection. The
following proposition gives some closure properties for F .

PROPOSITION 8.6
Let γ be a strict binary relation on W (A) and let ρ ∈ F . Then the following
conditions hold:

1. If (γ) ⊂ (ρ), then γ ∈ F .

2. The membership γ ∩ ρ ∈ F holds.

PROOF Statement 1 follows immediately from Proposition 8.1. For State-
ment 2, since (γ ∩ ρ) ⊂ (ρ) and γ ∩ ρ is strict, then γ ∩ ρ ∈ F follows from
Statement 1.

The next proposition implies that (δi,j ∩ ρ) ∈ F for all positive integers i, j
and every strict binary relation ρ on W (A).

PROPOSITION 8.7
Let ρ be a strict binary relation on W (A), let X be a nonempty subset of
W (A) \ {ε}, and let i, j be positive integers. If X is a pcode, then X is an
(δi,j ∩ ρ)-antichain.

PROOF Let X be a pcode. The case where X contains only one partial
word is trivial. So let u, v ∈ X be such that u 6= v and u(δi,j ∩ρ)v. The latter
yields uδi,jv and by Lemma 8.2(1), uivj ↑ vjui contradicting the fact that X
is a pcode.

The next proposition implies that ρe, ρc ∈ F .

PROPOSITION 8.8
Let X be a nonempty subset of W (A) \ {ε}. If X is a pcode, then X is an
ρc-antichain (respectively, ρe-antichain).
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PROOF Let X be a pcode. The case where X contains only one partial
word is trivial. Using Proposition 8.1 and Lemma 8.4, it is enough to show the
result for ρc. Let u, v ∈ X be such that u 6= v and uρcv. Then v ⊂ ux, v ⊂ xu
for some x ∈ A∗. If x = ε, then v ⊂ u. This gives v ↑ u and hence uv ↑ vu.
If x 6= ε, then uv ⊂ uxu, vu ⊂ uxu and so uv ↑ vu. In either case we get a
contradiction with the fact that X is a pcode. Hence X is an antichain with
respect to ρc.

The above proposition does not hold for ρo since X = {ab2, ba, ab, b2a} is
an ρo-antichain but not a pcode because (ab2)(ba) = (ab)(b2a).

The next two propositions relate two-element pcodes with the relation⋃
ρ∈F ρ.

PROPOSITION 8.9

Let u, v be nonempty partial words such that |u| < |v|. Then u
⋃

ρ∈F ρv if
and only if {u, v} is not a pcode.

PROOF The condition is obviously necessary. To see that the condition
is sufficient, suppose that {u, v} is not a pcode and let (u, v) 6∈

⋃
ρ∈F ρ. Let

γ = {(u, v)} ∪
⋃

ρ∈F ρ. Then
⋃

ρ∈F ρ < γ and γ ∈ F , a contradiction.

PROPOSITION 8.10

Let X ⊂ W (A) \ {ε} be pairwise noncompatible. Then X is an
⋃

ρ∈F ρ-
antichain if and only if for all u, v ∈ X such that u 6= v, {u, v} is a pcode.

PROOF First, suppose that X is an
⋃

ρ∈F ρ-antichain. Let u, v ∈ X be
such that u 6= v. Without loss of generality, we can assume that |u| ≤ |v|.
Since X is an

⋃
ρ∈F ρ-antichain, we have (u, v) 6∈

⋃
ρ∈F ρ. If |u| < |v|, then

{u, v} is a pcode by Proposition 8.9. If |u| = |v|, then u 6↑ v since X is pairwise
noncompatible. Certainly, in this case, {u, v} is a pcode.

Conversely, suppose to the contrary that there exist u, v ∈ X such that
u 6= v and (u, v) ∈

⋃
ρ∈F ρ. The set {u, v} is a pcode by our assumption.

Since
⋃

ρ∈F ρ is strict, we have |u| ≤ |v|. If |u| < |v|, then {u, v} is not a
pcode by Proposition 8.9, a contradiction. If |u| = |v|, then v < u since⋃

ρ∈F ρ is strict. So u ↑ v contradicting the fact that {u, v} is a pcode. So X
is an

⋃
ρ∈F ρ-antichain.

8.2.2 The class G

We now consider the following class of binary relations on W (A) partially
ordered by inclusion:
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G = {ρ | ρ is a strict binary relation on W (A) such that every antichain with
respect to ρ is a pcode}

The following proposition gives a closure property for G and immediately
implies that G is closed under union.

PROPOSITION 8.11
Let γ be a strict binary relation on W (A) and let ρ ∈ G. If (ρ) ⊂ (γ), then
γ ∈ G.

PROPOSITION 8.12
Let u ∈ A+, v ∈ W (A) \ {ε} be such that |u| ≤ |v|. If {u, v} is an antichain

with respect to ρo (respectively, ρp, ρs, ρf , ρd, ρl), then {u, v} is a pcode.

PROOF By Proposition 8.1 and Lemma 8.4, it is enough to show the
result for ρo. Suppose to the contrary that {u, v} is not a pcode. Then there
exist an integer n ≥ 1 and partial words u1, . . . , un, v1, . . . , vn ∈ {u, v} such
that

u1u2 . . . un ↑ v1v2 . . . vn,

and with |u1u2 . . . un| as small as possible contradicting Proposition 8.3. We
hence have u1 6= v1 and un 6= vn. If n = 1, then u ↑ v. Since u is full, we get
v ⊂ u and so uρov, which is a contradiction. So we may assume that n ≥ 2.
There are four possibilities: u1 = un = u, v1 = vn = v; u1 = vn = u, v1 =
un = v; u1 = vn = v, v1 = un = u; and u1 = un = v, v1 = vn = u. In all cases,
put u2 . . . un−1 = x and v2 . . . vn−1 = y. These possibilities can be rewritten
as

(1) uxu ↑ vyv

(2) uxv ↑ vyu

(3) vxu ↑ uyv

(4) vxv ↑ uyu

If |u| = |v|, for any of the possibilities (1)–(4) we have u ↑ v which leads to
a contradiction. If |u| < |v|, for any of the possibilities (1)–(4) there exist
nonempty partial words w,w′, z, z′ such that v = wz = z′w′, w ↑ u, and
w′ ↑ u. The latter two relations give w ⊂ u and w′ ⊂ u since u is full. There
exist z1, z2 ∈ A∗ such that z ⊂ z1 and z′ ⊂ z2. We get v = wz ⊂ uz ⊂
uz1, v = z′w′ ⊂ z′u ⊂ z2u and so uρov, which is a contradiction.

The converse of the above proposition is not true. For example, the set
X = {a, aba} is a pcode, but aρoaba. The above proposition is not true if u
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has a hole. The set {u, v} where u = a� and v = �a is an ρl-antichain, but
{u, v} is not a pcode. This latter example shows that ρe, ρc, ρo, ρp, ρs, ρf , ρd,
and ρl are not in G.

8.3 Pcodes and monoids

In this section, definitions and some properties of pcodes’ generating monoids
are given.

For a monoid M , we call a morphism ϕ : M → W (A) pinjective if for all
m,m′ ∈ M , ϕ(m) ↑ ϕ(m′) implies m = m′. The definition of a pcode can be
rephrased according to the following proposition.

PROPOSITION 8.13

If a subset X of W (A) is a pcode over A, then a morphism ϕ : B∗ →W (A)
which induces a bijection of some alphabet B onto X is pinjective. Conversely,
if there exists a pinjective morphism ϕ : B∗ → W (A) such that X = ϕ(B),
then X is a pcode over A.

For an alphabet B, a morphism ϕ : B∗ → W (A) which is pinjective and
satisfies X = ϕ(B) is called a pcoding morphism for X. For any pcode
X ⊂W (A), the existence of a pcoding morphism for X is straightforward: it
suffices to take any bijection of a set B onto X and to extend it to a morphism
from B∗ into W (A).

We can prove that a set X is a pcode by knowing the submonoid X∗ of
W (A) it generates. In particular, X is a pcode (respectively, prefix pcode,
suffix pcode, biprefix pcode) if and only if X∗ is a pfree monoid (respectively,
right unitary monoid, left unitary monoid, biunitary monoid).

PROPOSITION 8.14

If M is a submonoid of W (A), then the set X = (M \ {ε}) \ (M \ {ε})2 is
the unique minimal set that generates M .

We call a submonoid M of W (A) pfree if there exists a morphism ϕ : B∗ →
M of a free monoid B∗ onto M that satisfies

ϕ(x) ↑ ϕ(y) implies x = y

For instance, for any nonempty partial word u, the submonoid generated by
u is pfree.
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PROPOSITION 8.15

If M is a pfree submonoid of W (A), then its minimal generating set is a
pcode. Conversely, if X ⊂W (A) is a pcode, then the submonoid X∗ of W (A)
is pfree and X is its minimal generating set.

We call the pcode X which generates a pfree submonoid M of W (A) the
base of M .

Let us give some examples of our definitions.

Example 8.3

The set X = {a, �b, a�b} is not a pcode over {a, b} since it is not the minimal
generating set of X∗.

The set Y = {x, y} where x = �bb and y = abb� is the minimal generating
set of Y ∗, yet Y is not a pcode over {a, b} because xy ↑ yx is a nontrivial
compatibility relation over Y . Here Y ∗ is not pfree.

Proposition 8.16 gives a characterization of a pfree submonoid of W (A)
that does not depend on its base. This proposition can be used to show that
a submonoid is pfree (and consequently that its base is a pcode) without
knowing its base. We call a submonoid M of W (A) stable (in W (A)) if for
all partial words u, u′, v, w with u ↑ u′, the conditions u, u′w, v ∈ M and
wv ∈ C(M) imply u = u′ and w ∈M .

FIGURE 8.3: Representation of stability.

PROPOSITION 8.16

A submonoid M of W (A) is stable if and only if it is pfree.

Note that although the monoid A∗ is stable, the monoid W (A) is not stable
(and hence not pfree).
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Example 8.4

Returning to Example 8.3, the set Y ∗ = {x, y}∗ where x = �bb and y = abb�
is not pfree, which can be seen by using Proposition 8.16. Indeed, Y ∗ is not
stable by setting u = �bb, u′ = abb, v = ε, and w = ��bb in the definition of
stability.

Let M be a submonoid of W (A). Then we call M right unitary (in W (A))
if for all partial words u, u′, v with u ↑ u′, the conditions u, u′v ∈ M imply
u = u′ and v ∈M . Symmetrically, we call M left unitary (in W (A)) if for all
partial words u, u′, v with u ↑ u′, the conditions u, vu′ ∈M imply u = u′ and
v ∈M . The submonoid M is biunitary if it is both left and right unitary.

PROPOSITION 8.17

Let M be a submonoid of W (A) and let X be its minimal generating set.
Then M is right unitary (respectively, left unitary, biunitary) if and only if X
is a prefix (respectively, suffix, biprefix) pcode. In particular, a right unitary
(left unitary, biunitary) submonoid of W (A) is pfree.

PROPOSITION 8.18

An intersection of pfree submonoids of W (A) is a pfree submonoid of W (A).

If X is a subset of W (A), the set M(X) of pfree submonoids of W (A) con-
taining X may be empty. If M(X) = ∅, then X is pairwise noncompatible.
If M(X) is not empty, then we call the intersection of all elements of M(X),
which is the smallest pfree submonoid of W (A) containing X by Proposi-
tion 8.18, the pfree hull of X. If X∗ is a pfree submonoid of W (A), then X∗

coincides with its pfree hull.

PROPOSITION 8.19

Let X ⊂ W (A) be such that M(X) 6= ∅. Let Y be the base of the pfree hull
of X. Then

Y ⊂ {u | uy ∈ X for some y ∈ Y ∗} ∩ {u | yu ∈ X for some y ∈ Y ∗}

PROOF We show that Y ⊂ {u | yu ∈ X for some y ∈ Y ∗}. Sup-
pose there exists v ∈ Y such that v 6∈ {u | yu ∈ X for some y ∈ Y ∗}.
Then X ⊂ {ε} ∪ Y ∗(Y \ {v}). Let Z be defined by v∗(Y \ {v}). We have
Z+ = Y ∗(Y \ {v}), and thus X ⊂ Z∗. Now Z is a pcode. Indeed, a compat-
ibility relation u1u2 . . . um ↑ v1v2 . . . vn where m,n are positive integers and
u1, . . . , um, v1, . . . , vn ∈ Z can be rewritten as

vk1y1v
k2y2 . . . v

kmym ↑ vl1z1v
l2z2 . . . v

lnzn
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with ui = vkiyi, vj = vljzj , yi ∈ Y \ {v}, zj ∈ Y \ {v}, ki ≥ 0, lj ≥ 0 for
i = 1, . . . ,m and j = 1, . . . , n. Since Y is a pcode, we get k1 = l1, y1 =
z1, k2 = l2, y2 = z2, . . ., and finally m = n and ui = vi for i = 1, . . . ,m.
Thus, the set Z∗ is a pfree submonoid of W (A) containing X. But we have
Z∗ < Y ∗, which contradicts the minimality of the pfree submonoid Y ∗. We
similarly show that Y ⊂ {u | uy ∈ X for some y ∈ Y ∗}.

The following result extends the well-known Defect Theorem on words to
partial words.

THEOREM 8.1
Let X be a finite subset of W (A) such that M(X) 6= ∅. Let Y be the base of

the pfree hull of X. If X is not a pcode, then ‖Y ‖ < ‖X‖.

8.4 Prefix and suffix orderings

In this section, we discuss the prefix and the suffix orderings which we
denote by �p and �s instead of ρp and ρs.

A subset X of A+ is an antichain with respect to �p if and only if X is
a prefix code, or if for any u ∈ X, ux 6∈ X for all x ∈ A+. We show that
with partial words, the antichains with respect to �p are the anti-prefix sets
defined as follows.

DEFINITION 8.8 Let X ⊂ W (A) \ {ε}. Then X is anti-prefix if for
any u ∈ X, the following conditions hold:

• If v < u, then v 6∈ X.

• If v ⊂ ux for some x ∈ A+, then v 6∈ X.

It is immediate that a singleton set is anti-prefix and any nonempty subset
of an anti-prefix set is anti-prefix. Hence any nonempty intersection of anti-
prefix sets is anti-prefix.

PROPOSITION 8.20
Let X ⊂W (A) \ {ε}. Then X is an antichain with respect to �p if and only
if X is anti-prefix.

PROOF Assume that X is an antichain with respect to �p. Let u ∈ X,
and suppose to the contrary that X is not anti-prefix. So either there exists
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v ∈ X with v < u, or there exist v ∈ X and x ∈ A+ such that v ⊂ ux. In either
case, we have u, v ∈ X, u 6= v, and u �p v contradicting our assumption. On
the other hand, if X is anti-prefix, then suppose to the contrary that there
exist u, v ∈ X with u 6= v and u �p v. Then v < u or there exists x ∈ A+

such that v ⊂ ux. In either case, v 6∈ X a contradiction.

COROLLARY 8.1

Let u ∈ A+, v ∈ W (A) \ {ε} be such that |u| ≤ |v|. If {u, v} is anti-prefix,
then {u, v} is a pcode.

PROOF The result follows from Propositions 8.12 and 8.20.

A subset X of A+ is an antichain with respect to �s if and only if X is a
suffix code, or if for any u ∈ X, xu 6∈ X for all x ∈ A+.

The family of anti-suffix sets coincides with the family of antichains with
respect to �s.

DEFINITION 8.9 Let X ⊂ W (A) \ {ε}. Then X is anti-suffix if for
any u ∈ X, the following conditions hold:

• If v < u, then v 6∈ X.

• If v ⊂ xu for some x ∈ A+, then v 6∈ X.

PROPOSITION 8.21

Let X ⊂W (A) \ {ε}. Then X is an antichain with respect to �s if and only
if X is anti-suffix.

PROOF The proof is similar to that of Proposition 8.20.

COROLLARY 8.2

Let u ∈ A+, v ∈ W (A) \ {ε} be such that |u| ≤ |v|. If {u, v} is anti-suffix,
then {u, v} is a pcode.

PROOF The result follows from Propositions 8.12 and 8.21.

We end this section by noticing that there exist anti-prefix (or anti-suffix)
sets that are not pcodes. For example, the set {u, v} where u = a�b and
v = abbaab is both anti-prefix and anti-suffix, but {u, v} is not a pcode since
u2 ↑ v.
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8.5 Border ordering

In this section, we discuss the border ordering which we denote by �o

instead of ρo. Let v be a nonempty partial word. By definition, ε ≺o v and
v 6⊂ ε, and let N(v) be the number of partial words u satisfying u ≺o v and
v 6⊂ u. For any integer i ≥ 0, define Oi as follows:

O0 = {ε}

and for i ≥ 1,

Oi = {v | v ∈W (A) \ {ε} and N(v) = i}

We are particularly interested in the partial words in O1. A nonempty partial
word v is called unbordered if u �o v for some nonempty partial word u implies
v ⊂ u. Clearly, v is unbordered if v ⊂ ux and v ⊂ yu imply x = y = ε or
u = ε. The fact that v is unbordered means that there exist no nonempty
partial words u, x, y satisfying v ⊂ ux and v ⊂ yu. Note thatO1 is the set of all
nonempty unbordered partial words, which is a subset of the primitive partial
words (see Chapter 1). From the point of view of the partial order �o, we call
the partial words in O1 o-primitive. It is easy to see that W (A) =

⋃
i≥0Oi

with Oi ∩ Oj = ∅ if i 6= j.

PROPOSITION 8.22
Let u be a nonempty partial word such that 0 6∈ H(u). If ‖A‖ ≥ 2, then there
exists v ∈ A∗ such that uv is unbordered.

PROOF Let a be the first letter of u, and let b ∈ A \ {a}. We claim that
the partial word w = uab|u| is unbordered. To see this, suppose there exist
nonempty partial words x, y, z satisfying w ⊂ xy,w ⊂ zx. Since w ⊂ xy, the
nonempty word x starts with the letter a. Since w ⊂ zx, we have |x| > |u|.
But then we have x = x′ab|u| for some pword x′, and also x = u′ab|x

′| for
some pword u′ satisfying |u′| = |u|. Thus |x′| = |u|, and hence w ⊂ x, a
contradiction.

Let X be a subset of W (A). A partial word u over A is completable in X
if there exist pwords x, y such that xuy ∈ C(X). It is equivalent to saying
that W (A)uW (A) ∩ C(X) 6= ∅, or, in other words, that u ∈ F (C(X)). The
set X is dense if all elements of W (A) are completable in X, or equivalently
F (C(X)) = W (A). Clearly, each superset of a dense set is dense. The set X
is complete if X∗ is dense. Every dense set is also complete.

The proof that a maximal pcode is complete is based on Proposition 8.23
which describes a method for embedding any pcode in a complete pcode.
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PROPOSITION 8.23
Let X ⊂W (A)\{ε} be a pcode, let u be an unbordered word over A such that
u 6∈ F (C(X∗)), let U be a largest pairwise noncompatible subset of W (A) \
C(W (A)uW (A)) containing X∗, and let Y = U \X∗. Then the set

Z = X ∪ {uy1u . . . ynu | y1, . . . , yn ∈ Y and n ≥ 0}
is a complete pcode.

PROOF First, let us show that the set V = Uu is a prefix pcode. To
see this, suppose that vux ↑ v′u for two partial words v, v′ ∈ U and some
pword x. If |vu| > |v′|, then vu ↑ v′y with u = yz for some y, z. We deduce
that yz ↑ z′y for some z′. If z = ε, then vu ↑ v′u and v ↑ v′. Since U
is pairwise noncompatible, we have v = v′. If z 6= ε, then since y is full,
by Lemma 2.1, there exist words x′, y′ such that z′ ⊂ x′y′, z ⊂ y′x′, and
y ⊂ (x′y′)nx′ for some integer n ≥ 0. But then u ⊂ (x′y′)n+1x′, and since u is
unbordered, x′ = ε. If n > 0, u is bordered, and if n = 0, we get y = ε and so
vu ↑ v′. This leads to v′ ∈ C(W (A)uW (A)), which is a contradiction. Hence
|vu| ≤ |v′|, and vuy ↑ v′ for some y. But then again v′ is in C(W (A)uW (A)),
a contradiction.

Next, we show that Z is a pcode. Assume the contrary and consider a
relation

u1u2 . . . um ↑ v1v2 . . . vn

with u1, . . . , um, v1, . . . , vn ∈ Z, and u1 6= v1. The set X being a pcode,
one of these partial words must be in Z \X. Assume that one of u1, . . . , um

is in Z \ X, and let i be the smallest index such that ui matches u(Y u)∗.
Since W (A)uW (A) ∩ C(X∗) = ∅, it follows that W (A)uiW (A) ∩ C(X∗) =
∅. Consequently one of v1, . . . , vn matches u(Y u)∗. Let j be the smallest
index such that vj matches u(Y u)∗. Then u1 . . . ui−1u, v1 . . . vj−1u ∈ V , and
u1 . . . ui−1 = v1 . . . vj−1 since V is a prefix pcode. The set X being a pcode,
thus from u1 6= v1 it follows that i = j = 1. Put

u1 = uy1u . . . uyku
v1 = uy′1u . . . uy

′
lu

with y1, . . . , yk, y
′
1, . . . , y

′
l ∈ Y . If |u1| = |v1|, then u1 ↑ v1. Since X is a

pcode, we get u1 = v1, a contradiction. So assume that |u1| < |v1|. Since V
is a prefix pcode, the set V ∗ is right unitary. Since Y ⊂ U , each yiu, y

′
iu is

in V . Consequently y1 = y′1, . . . , yk = y′k. Put w = y′k+1u . . . uy
′
lu. We have

u2 . . . um ↑ wv2 . . . vn with w ∈ V ∗. The word u is a factor of w, and thus
occurs also in u2 . . . um. This shows that one of u2, . . . , um, say ur, matches
u(Y u)∗. Suppose r is chosen minimal. Then u2 . . . ur−1u ∈ V and y′k+1u ∈ V ,
and with the set V being a prefix pcode, we have y′k+1 = u2 . . . ur−1. Thus
y′k+1 ∈ X∗, a contradiction with the fact that y′k+1 ∈ Y .

Last, let us show that Z is complete. Let w be a partial word such that
w ∈ C(W (A)uW (A)). Then
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w ↑ u1uu2u . . . uun−1uun

for some positive integer n and some partial words u1, . . . , un ∈ U . If w 6∈
C(W (A)uW (A)), then w ∈ U or w ∈ C(U), and the abovementioned com-
patibility relation holds. In any case, uwu ∈ C(Z∗) and so w ∈ F (C(Z∗)).
To see this, let ui1 , ui2 , . . . , uik

be those ui’s in X∗. Then uwu is compatible
with

(uu1u . . . uui1−1u)ui1 (uui1+1u . . . uui2−1u)ui2 . . . uik
(uuik+1u . . . uunu)

The parenthesized partial words are in Z and the result follows.

PROPOSITION 8.24
Let X ⊂ W (A) \ {ε} be a pcode. If u ∈ A∗ is an unbordered word such that
u 6∈ F (C(X∗)), then the set Y = X ∪ {u} is a pcode.

PROOF Let U = W \ C(WuW ). Then by assumption X∗ ⊂ U . Let
us first observe the following property of the set V = Uu: For all v, v′ ∈ U ,
v′u ↑ vux for some x implies v ↑ v′. To see this, suppose that v′u ↑ vux for
two partial words v and v′ in U and some x. If |vu| > |v′|, then vu ↑ v′y with
u = yz for some y, z. We deduce that yz ↑ z′y for some z′. If z = ε, then
vu ↑ v′u and v ↑ v′. If z 6= ε, then since y is full, there exist words x′, y′ such
that z′ ⊂ x′y′, z ⊂ y′x′, and y ⊂ (x′y′)nx′ for some integer n ≥ 0. But then
u ⊂ (x′y′)n+1x′, and since u is unbordered, x′ = ε. If n > 0, u is bordered,
and if n = 0, we get y = ε and so vu ↑ v′. This leads to v′ ∈ C(WuW ), which
is a contradiction. Hence |vu| ≤ |v′|, and vuy ↑ v′ for some y. But then again
v′ is in C(WuW ), a contradiction.

Now we show that Y is a pcode. Assume the contrary and consider a
relation

u1u2 . . . um ↑ v1v2 . . . vn

with u1, . . . , um, v1, . . . , vn ∈ Y , and u1 6= v1. The set X being a pcode, one
of these partial words must be u. Assume that one of u1, . . . , um is u, and let
i be the smallest index such that ui = u. Since WuW ∩C(X∗) = ∅, it follows
that WuiW ∩ C(X∗) = ∅. Consequently one of v1, . . . , vn is u. Let j be the
smallest index such that vj = u. Then u1 . . . ui−1u, v1 . . . vj−1u ∈ V whence
u1 . . . ui−1 ↑ v1 . . . vj−1 by the abovementioned property of V . The set X is a
pcode, thus from u1 6= v1 it follows that i = j = 1 leading to a contradiction.

THEOREM 8.2
Let X ⊂W (A) \ {ε}. If X is a maximal pcode, then X is complete.

PROOF Let X ⊂ W (A) \ {ε} be a maximal pcode that is not complete.
If ‖A‖ = 1, then X = ∅ and X is not maximal. If ‖A‖ ≥ 2, consider a partial
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word u such that u 6∈ F (C(X∗)). We may choose u in A∗. According to
Proposition 8.22, there exists a word v ∈ A∗ such that uv is unbordered. We
have uv 6∈ F (C(X∗)), and it then follows from Proposition 8.23 that X∪{uv}
is a pcode. Thus X is not maximal, a contradiction.

8.6 Commutative ordering

In this section, we discuss the commutative ordering that we denote by �c

instead of ρc.

LEMMA 8.5
Let u, v be nonempty partial words such that v is non {|u|, |v| − |u|}-special.

Then u �c v if and only if there exists a primitive word z and integers m,n
such that u ⊂ zm and v ⊂ uzn ⊂ zm+n, v ⊂ znu ⊂ zm+n.

PROOF Let u, v be nonempty partial words such that v is non {|u|, |v| −
|u|}-special. If u �c v, then for some full word x, we have v ⊂ xu, v ⊂ ux.
Let u′ be a full word such that u ⊂ u′. If x = ε, then v ⊂ u ⊂ u′ and there
exists a primitive word z and a positive integer m such that u′ = zm. Hence
u ⊂ zm, v ⊂ uz0 ⊂ zm+0, v ⊂ z0u ⊂ zm+0 and the result follows. So we may
assume that x is nonempty. We get v ⊂ xu′, v ⊂ u′x and thus by Lemma 2.5,
xu′ = u′x. There exists a primitive word z and positive integers m,n such
that u′ = zm and x = zn (z =

√
x). This in turn implies that u ⊂ u′ ⊂ zm

and v ⊂ ux = uzn ⊂ zm+n, v ⊂ xu = znu ⊂ zm+n.

REMARK 8.2 A subset X of A+ is an antichain with respect to �c if
and only if X is anti-commutative, or if for all u, v ∈ X satisfying u 6= v, we
have uv 6= vu (see Exercise 8.25).

The remark above leads to the following definition.

DEFINITION 8.10 We call a subset X of W (A)\{ε} anti-commutative
if for all u, v ∈ X satisfying u 6= v, we have uv 6↑ vu.

Certainly, every pcode is anti-commutative.

PROPOSITION 8.25
Let X ⊂ W (A) \ {ε} be pairwise nonspecial. If X is anti-commutative, then
X is an antichain with respect to �c.
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PROOF If X is anti-commutative, then let us show that X is an antichain
with respect to �c. Suppose to the contrary that there exist u, v ∈ X with
u 6= v and u �c v. The latter implies that |u| ≤ |v|. By assumption, v is
non {|u|, |v| − |u|}-special, and by Lemma 8.5, there exists a primitive word
z and integers m,n such that u ⊂ zm and v ⊂ zm+n. But then uv ↑ vu
contradicting the fact that X is anti-commutative.

PROPOSITION 8.26

Let X ⊂ W (A) \ {ε}. Let u, v ∈ X be such that u is full, u 6= v, and uv is
non {|u|, |v|}-special. If X is an antichain with respect to �c, then uv 6↑ vu.

PROOF Suppose to the contrary that uv ↑ vu. There exists a full word
z such that uv ⊂ z and vu ⊂ z. Put z = xy where u ⊂ x and v ⊂ y. We
have uv ⊂ xy, and by Exercise 8.26 we also have uv ⊂ yx. Lemma 2.5 implies
xy = yx, and so x, y are powers of a common word. Say x = wm and y = wn

for some word w and integers m,n. Since u is full, we have u = wm. If m = n,
then v ⊂ y = wn = wm = u, and so u �c v. For the case m < n, we have
v ⊂ y = wn = uwn−m = wn−mu and thus u �c v. Similarly, we can show
that if m > n, then v �c u. In all cases, we obtain a contradiction.

REMARK 8.3 In Proposition 8.26, both the assumptions that u is full
and uv is non {|u|, |v|}-special are needed. Indeed, if we put X = {u, v}
where u = a�b and v = aab�ab, we get that X is an antichain with respect
to �c and that uv ↑ vu. This example is such that u is nonfull and uv is non
{|u|, |v|}-special. Now, if we put X = {u, v} where u = abbaab and v = ����,
we get that X is an antichain with respect to �c and that uv ↑ vu. This
example is such that u is full and uv is {|u|, |v|}-special.

DEFINITION 8.11 Let u′, x, y ∈ A+, v′ ∈ W (A) \ {ε} be such that
|x| = |y| and |u′x| = |v′|. Then the set {u, v} where u = u′x and v = v′y
(respectively, u = xu′ and v = yv′) is said to be of Type 1 (respectively,
Type 2) if v is not {|u|, |x|}-special.

PROPOSITION 8.27

Let u, v be nonempty partial words such that {u, v} is of Type 1 or Type 2.
Then uv 6↑ vu if and only if {u, v} is a pcode.

PROOF We prove the result for Type 1 (Type 2 is similar). If {u, v}
is a pcode, then clearly uv 6↑ vu. Conversely, assume that {u, v} is not a
pcode and uv 6↑ vu. Then there exist an integer n ≥ 1 and partial words
u1, . . . , un, v1, . . . , vn ∈ {u, v} such that
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u1u2 . . . un ↑ v1v2 . . . vn

and with |u1u2 . . . un| as small as possible contradicting Proposition 8.3. We
hence have u1 6= v1 and un 6= vn, and we may assume that n > 2. There are
the four possibilities (1)–(4) as in Proposition 8.12. Since {u, v} is of Type
1, there exist nonempty full words u′, z1, z2 and a nonempty partial word v′

such that |z1| = |z2|, |u′z1| = |v′|, u = u′z1, v = v′z2, and v is not {|u|, |z1|}-
special. Any possibility gives v′ ↑ u. Substituting u by u′z1 and v by v′z2 in
(1), (2), (3) and (4) we get

(5) u′z1xu′z1 ↑ v′z2yv′z2

(6) u′z1xv′z2 ↑ v′z2yu′z1

(7) v′z2xu′z1 ↑ u′z1yv′z2

(8) v′z2xv′z2 ↑ u′z1yu′z1

Any possibility implies z1 ↑ z2, and hence z1 = z2 since both z1 and z2 are full.
So v = v′z1, and hence both u and v end with z1, and the same is true for both
x and y. We deduce that v ↑ z1u, and so v′z1 ↑ z1u and hence v′z1 ⊂ z1u.
The fact that v′ ↑ u implies v′z1 ⊂ uz1. By Lemma 2.5, we get uz1 = z1u
since v is not {|u|, |z1|}-special, and u and z1 are powers of a common word.
So v = v′z1 ⊂ uz1 is contained in a power of that same common word. But
then uv ↑ vu, a contradiction.

Example 8.5
Consider the set {abb, ab�a}. To determine if the set is of Type 1 or Type 2, at
least one word in the set, u, must be full. Let u = abb and v = ab�a. For the
factorization of v, since y ∈ A+, v′ = ab� and y = a. Since |x| = |y| = 1, the
factorization of u = abb is (u′, x) = (ab, b). The word v is not {3, 1}-special
since ‖H(v)‖ < 2, and thus {u, v} is of Type 1. Since the example set is of
Type 1 and uv 6↑ vu,

ab�aabb 6↑ abbab�a

this set is a pcode.

REMARK 8.4 It should be noted that the above proposition is not true
in general. Consider the set {u, v} where u = a�b and v = aababb. The set is
not of Type 1 or Type 2, but uv 6↑ vu,

a�baababb 6↑ aababba�b

However, this set is not a pcode since a nontrivial compatibility relation does
exist,

a�ba�baababb ↑ aababba�ba�b
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or u2v ↑ vu2, or simply u2 ↑ v.

We now extend the above proposition further. We assume that {u, v} is a
set of partial words over an alphabet of size at least two. Otherwise, sets of
at least two partial words are obviously nonpcodes.

PROPOSITION 8.28
Let k be an integer satisfying k > 1. Let u, v be nonempty partial words

such that |v| = k|u| and ‖H(v)‖ = 0. Then {u, v} is a pcode if and only if
ukv 6↑ vuk.

PROOF If {u, v} is a pcode, then clearly ukv 6↑ vuk. Conversely, assume
that {u, v} is not a pcode and ukv 6↑ vuk. Then there exist n ≥ 1 and
u1, . . . , un, v1, . . . , vn ∈ {u, v} such that

u1u2 . . . un ↑ v1v2 . . . vn (8.1)

and with |u1u2 . . . un| as small as possible contradicting Proposition 8.3. We
hence have u1 6= v1 and un 6= vn, and we may assume that n ≥ 2. There
are the four possibilities (1)–(4) of Proposition 8.27. Since |v| = k|u|, for any
of the possibilities (1)–(4), there exist nonempty pwords w1, w2, . . . , wk such
that v = w1w2 . . . wk, |w1| = |w2| = · · · = |wk| = |u|, w1 ↑ u, and wk ↑ u. The
latter two relations give u ⊂ w1 and u ⊂ wk since v is full.

Let us consider the case where u1 = u and v1 = v (the other cases are
handled similarly).

Case 1. u1 = u2 = · · · = uk−1 = u
In this case w1 ↑ u, w2 ↑ u, . . . , wk ↑ u, and by multiplication, ukv ↑ vuk,

contradicting our assumption.

Case 2. There exists 1 < j < k such that u1 = u2 = · · · = uj−1 = u and
uj = v

Note that each element in {w1, w2, . . . , wj−1} is compatible with u. Here,
k = m(j − 1) + r with 1 ≤ r < j. We get wk−j+2 = wk−2j+3 = · · · =
element in the set {w1, w2, . . . , wj−1}, wk−j+3 = wk−2j+4 = · · · = element
in the set {w1, w2, . . . , wj−1}, . . . , and wk = wk−j+1 = · · · = element in the
set {w1, w2, . . . , wj−1}. Thus, w1 ↑ u, w2 ↑ u, . . ., wk ↑ u. Hence ukv ↑ vuk,
contradicting our assumption.

Example 8.6
Let u = a�ba and v = aabaaabaaabaabba so that |v| = 4|u| and ‖H(v)‖ = 0.
A nontrivial compatibility relation does exist, u4v ↑ vu4,

a�baa�baa�baa�baaabaaabaaabaabba ↑ aabaaabaaabaabbaa�baa�baa�baa�ba

thus this set is not a pcode.
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Now, let u = ab�ab and v = baababbbabababb so that |v| = 3|u| and
‖H(v)‖ = 0. In this case, u3v 6↑ vu3,

ab�abab�abab�abbaababbbabababb 6↑ baababbbabababbab�abab�abab�ab

thus this set is a pcode.

We end this section with the following proposition.

PROPOSITION 8.29
Let k be an integer satisfying k > 1. Let u, v, w1, w2, . . . , wk be nonempty
partial words such that v = w1w2 . . . wk, |w1| = |w2| = · · · = |wk| = |u|,
‖H(u)‖ = 0, and ‖H(v)‖ = ‖H(wi)‖ for some 1 ≤ i ≤ k. Then {u, v} is a
pcode if and only if uv 6↑ vu.

PROOF We refer the reader to the proof of Proposition 8.28. Any of the
possibilities (1)–(4) imply w1 ↑ u and wk ↑ u. The latter two relations give
w1 ⊂ u and wk ⊂ u since u is full. Let us consider the case where u1 = u and
v1 = v (the other cases are handled similarly).

Case 1. u1 = u2 = · · · = un = u
In this case w1 ↑ u, w2 ↑ u, . . . , wk ↑ u, and thus uv ↑ vu contradicting our

assumption.

Case 2. There exists 1 < j ≤ n such that u1 = u2 = · · · = uj−1 = u and
uj = v

Here we consider the cases where j ≥ k and j < k. Note that each element
in the set {w1, w2, . . . , wj−1} is compatible with u. If j ≥ k, then w1 ↑ u,
w2 ↑ u, . . . , wk ↑ u, and thus uv ↑ vu contradicting our assumption. Now,
if j < k, then k = m(j − 1) + r and i = m′(j − 1) + r′ with 1 ≤ r < j and
1 ≤ r′ < j. We get

wi ⊂ wi−j+1 = wi−2j+2 = · · · = wr′ (8.2)

We also get

wi ⊂ wi+j−1 = wi+2j−2 = · · · = wk−j+1−r+r′ (8.3)

if r′ > r, and
wi ⊂ wi+j−1 = wi+2j−2 = · · · = wk−r+r′ (8.4)

if r′ ≤ r. Moreover, if 1 ≤ i′ ≤ k and i′ 6≡ r′ mod j − 1, then wi′ = u. We
consider the following three cases.

Case 2.1. j ≤ i ≤ k − j + 1
In this case, the compatibility relation 8.1 yields w1 = w2 = · · · = wj−1 =

u = wk−j+2 = · · · = wk−1 = wk. The relations 8.2, 8.3 and 8.4 imply that
v = ui−1wiu

k−i with wi ⊂ u. Hence uv ↑ vu, contradicting our assumption.
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Case 2.2. 1 ≤ i < j
Here i = r′ and wi ⊂ u. Consider the case where r′ > r (the case where

r′ ≤ r is handled similarly). Referring to relations 8.1, 8.2 and 8.3, we have
wk−j+1−r+r′ ↑ u or wk−j+1−r+r′ ↑ ws where s 6≡ r′ mod j − 1. In either case,
wk−j+1−r+r′ ↑ u and since u is full, we get wk−j+1−r+r′ ⊂ u. Again uv ↑ vu,
contradicting our assumption.

Case 2.3. k − j + 2 ≤ i ≤ k
This case is symmetric to Case 2.2.

8.7 Circular pcodes

In this section, we start by defining the circular codes and then extending
them to the circular pcodes.

DEFINITION 8.12 Let X be a nonempty subset of A+. Then X is called
a circular code if for all integers m ≥ 1, n ≥ 1, words u1, . . . , um, v1, . . . , vn ∈
X, and r ∈ A∗ and s ∈ A+, the conditions

su2 . . . umr = v1v2 . . . vn

u1 = rs

imply m = n, r = ε, and ui = vi for i = 1, . . . ,m.

DEFINITION 8.13 Let X be a subset of W (A) \ {ε}. Then X is called
a circular pcode over A if for all integers m ≥ 1, n ≥ 1, partial words
u1, . . . , um, v1, . . . , vn ∈ X, and r ∈W (A) and s ∈W (A)\{ε}, the conditions

su2u3 . . . umr ↑ v1v2 . . . vn

u1 ⊂ rs

imply m = n, r = ε, and ui = vi for i = 1, . . . ,m.

Figure 8.4 depicts the circular pcode concept.
It is clear from the definition that a subset X of A+ is a circular code if

and only if it is a circular pcode. A circular pcode is a pcode, and any subset
of a circular pcode is also a circular pcode.

Circular pcodes turn out to have numerous interesting properties. We start
by two propositions.

PROPOSITION 8.30
Let X ⊂ W (A) \ {ε}. If X is a circular pcode, then X does not contain two

distinct conjugate partial words.
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FIGURE 8.4: A circular pcode.

PROPOSITION 8.31
Let X ⊂W (A) \ {ε} be a circular pcode. If u ∈ X, then u is primitive.

We will characterize in various ways the submonoids generated by circular
pcodes.

DEFINITION 8.14

• A submonoid M of W (A) is called pure if for each partial word u and
integer n ≥ 1, the conditions u1 . . . un ∈ M and ui ⊂ u for all i =
1, . . . , n imply u1 = u2 = · · · = un and ui ∈M for all i = 1, . . . , n.

• A submonoid M of W (A) is called very pure if for all partial words
u, v, u′, v′ satisfying |v′| = |v| and |u′| = |u|, the conditions vu ↑ v′u′,
uv ∈M , and v′u′ ∈M imply u = u′ and u, v ∈M .

Note that a very pure monoid is pure.

PROPOSITION 8.32
A submonoid M of W (A) is very pure if and only if its minimal generating
set is a circular pcode.
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PROOF Let M be a very pure submonoid of W (A). Let u, u′, v, w
be partial words with u ↑ u′, u, u′w, v ∈ M , and wv ∈ C(M). We have
(vu′)w = v(u′w) ∈ M and w(vu′) = (wv)u′ ∈ C(M). This implies u = u′

and w ∈ M . Thus M is stable, hence M is pfree by Proposition 8.16. Let
X be its base. Assume that there exist positive integers m,n, partial words
u1, . . . , um, v1, . . . , vn ∈ X, and r ∈W (A) and s ∈W (A) \ {ε} such that

su2u3 . . . umr ↑ v1v2 . . . vn

u1 ⊂ rs

Put u1 = r′s′ where |r′| = |r| and |s′| = |s|. Put u = s′ and v = u2 . . . umr
′.

Then vu ∈ M and by weakening uv ∈ C(M). Since M is very pure, u, v ∈
M . Since u2 . . . um, u2 . . . umr

′, s′, r′s′ ∈ M , the stability of M implies that
r′ ∈ M . From r′s′ ∈ X, it follows that r′ = ε (and r = ε). By weakening,
u1u2 . . . um ↑ v1v2 . . . vn. Since X is a pcode by Proposition 8.15, this implies
m = n and ui = vi for i = 1, . . . ,m.

Conversely, let X be the minimal generating set for M and assume that X
is a circular pcode (here M = X∗). To show that M is very pure, consider
partial words u, v such that uv ∈M and vu ∈ C(M). The latter implies that
vu ↑ v′u′ with u′, v′ satisfying v′u′ ∈M , |v′| = |v|, and |u′| = |u|. If u = ε or
v = ε, then u = u′ and u, v ∈M . If u 6= ε and v 6= ε, then put

uv = u1u2 . . . um

vu ↑ v1v2 . . . vn

with u1, . . . , um, v1, . . . , vn ∈ X. There exists an integer i, 1 ≤ i ≤ m, such
that

u = u1u2 . . . ui−1r
v = sui+1 . . . um

where ui = rs, r ∈W (A), and s ∈W (A) \ {ε}. Then

sui+1 . . . umu1u2 . . . ui−1r ↑ v1v2 . . . vn

Since X is a circular pcode, this implies m = n, r = ε, and ui = v1, ui+1 =
v2, . . . , um = vn−i+1, u1 = vn−i+2, u2 = vn−i+3, . . . , ui−1 = vn. Thus u =
u1u2 . . . ui−1 = vn−i+2vn−i+3 . . . vn = u′ and u, v ∈ M , showing that M is
very pure.

We now give a characterization of circular pcodes in terms of the conjugacy
operation that was defined in Chapter 2. We start with a definition.

DEFINITION 8.15 Let X ⊂W (A) \ {ε} be a pcode. Two partial words
u, v ∈ X∗ are called X-conjugate if there exist x, y ∈ X∗ such that u =
xy, v = yx.

Two partial words in X∗ which are X–conjugate are obviously conjugate.
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PROPOSITION 8.33

Let X ⊂W (A) \ {ε} be a pcode. The following conditions are equivalent:

1. The set X is a circular pcode.

2. The monoid X∗ is pure, and any two partial words in X∗ which are
conjugate are also X-conjugate.

PROOF We first show that Condition 1 implies Condition 2. Since X∗

is very pure, it is pure. Next, let u, v ∈ X∗ be conjugate partial words. Then
u ⊂ xy, v ⊂ yx for some pwords x, y. Put u = x′y′ where |x′| = |x| and
|y′| = |y|. Also, put v = y′′x′′ where |y′′| = |y| and |x′′| = |x|. Since x′ ⊂ x
and y′ ⊂ y, we get y′x′ ⊂ yx. The latter and the fact that y′′x′′ ⊂ yx imply
that y′x′ ↑ y′′x′′. We get the two conditions x′y′ ∈ X∗ and y′x′ ∈ C(X∗).
Since X∗ is very pure, x′ = x′′ and x′, y′ ∈ X∗. With a similar reasoning, we
can deduce that y′ = y′′. So u = x′y′, v = y′x′ with x′, y′ ∈ X∗, showing that
u, v are X-conjugate.

Now, we show that Condition 2 implies Condition 1. Let u, v be partial
words such that uv ∈ X∗ and vu ∈ C(X∗). The latter implies that vu ↑ v′u′
with u′, v′ satisfying v′u′ ∈ X∗, |v′| = |v| and |u′| = |u|. If u = ε, then u = u′

and u, v ∈ X∗. If u 6= ε and v = ε, then u, u′, v ∈ X∗ and u ↑ u′. Since X is a
pcode, this yields u = u′. If u 6= ε and v 6= ε, then by definition, there exists
a primitive word x and a positive integer n such that vu ⊂ xn and v′u′ ⊂ xn.
We get words r, s and integers p, q such that x = rs, u ⊂ sxq, v ⊂ xpr, and
p + q + 1 = n. Put y = sr (x being primitive, y is primitive as well). Since
v′u′ ⊂ xn and uv ⊂ yn, write v′u′ = x1x2 . . . xn and uv = y1y2 . . . yn where
|x1| = |x2| = · · · = |xn|, |y1| = |y2| = · · · = |yn|. Since X∗ is pure, we have
x1 = x2 = · · · = xn, y1 = y2 = · · · = yn, and x1, . . . , xn, y1, . . . , yn ∈ X∗.
Thus v′u′ = (x′)n and uv = (y′)n with x′, y′ ∈ X∗. Since x′ ⊂ x ⊂ rs, y′ ⊂
y ⊂ sr, we get that x′, y′ are conjugate and thus X-conjugate. So there exist
r′, s′ ∈ X∗ such that x′ = r′s′ and y′ = s′r′. Thus u = s′(x′)q, u′ = s′(x′)q,
and v = (x′)pr′ showing that u = u′ and u, v ∈ X∗.

The reader is invited to prove the following result which is an analogue of
Theorem 9.2.

PROPOSITION 8.34

Let X ⊂W (A)\{ε} be a circular pcode. If X is maximal as a circular pcode,
then X is complete.
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Exercises

8.1 S Prove Lemma 8.1.

8.2 Prove Lemma 8.2.

8.3 Complete the proof of Lemma 8.3.

8.4 Show that the set Y = {a�b, �b, baba} is not a pcode.

8.5 Give a necessary and sufficient condition for a nonempty setX satisfying
X ⊂ {a, �}∗ to be a pcode over {a}.

8.6 Is X = {a�b, �cb} a pcode? Why or why not?

8.7 Let u, v be nonempty partial words such that |u| = |v|. Prove that
uv 6↑ vu if and only if {u, v} is a pcode (actually u 6↑ v if and only if
{u, v} is a pcode).

8.8 S Is the pcode X = {a�b, abbab} over {a, b} complete?

8.9 Prove that a prefix pcode is a pcode.

8.10 S Consider the two-element set {a�b, aababbaababb}. Show that it is
not a pcode by using Proposition 8.28.

8.11 Let k, l be integers satisfying 1 ≤ k ≤ l. Let u, v, w,w1, . . . , wk be
nonempty partial words such that u = w1w2 . . . wk, v = wl, and |w1| =
|w2| = · · · = |wk| = |w|. Prove that {u, v} is a pcode if and only if
uv 6↑ vu.

8.12 S Let u, v be nonempty partial words such that |u| = 2|v| and ‖H(v)‖ =
0. Prove that uv 6↑ vu if and only if {u, v} is a pcode. Are the following
sets pcodes?

• {aba, a��bab}

• {b�abb�, bba}

8.13 Let X and Y be pcodes over A. Prove that if X∗ = Y ∗, then X = Y .

8.14 S Prove Proposition 8.30.

8.15 Prove Proposition 8.31.
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Challenging exercises

8.16 S Show that a uniform pcode X over A is maximal over A.

8.17 S Prove Proposition 8.13 and deduce the following corollaries:

1. Let ϕ : W (A)→W (C) be a pinjective morphism. If X is a pcode
over A, then ϕ(X) is a pcode over C. Similarly, if ϕ : A∗ →W (C)
is a pinjective morphism and X is a code over A, then ϕ(X) is a
pcode over C.

2. If X ⊂W (A) is a pcode over A, then Xn is a pcode over A for all
positive integers n.

8.18 S Prove Proposition 8.14.

8.19 Prove Proposition 8.15.

8.20 S Prove Proposition 8.16.

8.21 Prove Proposition 8.17.

8.22 Prove Proposition 8.18.

8.23 Prove Theorem 8.1.

8.24 S Let u, v be nonempty partial words such that |v| = 2|u|. Prove
that u2v 6↑ vu2 if and only if {u, v} is a pcode. Illustrate this with the
following three sets {u, v} where:

1. u = bab� and v = baa��bab
2. u = a�b and v = aa�abb
3. u = ab� and v = �b�abb

8.25 Prove that a subset X of A+ is an antichain with respect to �c if and
only if X is anti-commutative, or if for all u, v ∈ X satisfying u 6= v, we
have uv 6= vu.

8.26 Prove Proposition 8.34.

Programming exercises

8.27 Write a program to find out whether or not a two-element set {u, v} is
of Type 1 or Type 2.

8.28 Design an applet that takes as input a two-element set {u, v} and com-
putes the compatibility relations ukv ↑ vuk for suitably bounded k.
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Website

A World Wide Web server interface at

http://www.uncg.edu/mat/pcode

has been established for automated use of a program that discovers if a
nonempty finite set of partial words is or is not a pcode (the algorithm will
be discussed in Chapter 9). The program also discovers a nontrivial compati-
bility relation in case the set is not a pcode. In addition, in such cases where
the given set X is a two-element nonpcode, the program outputs whether or
not X is of Type 1 or Type 2.
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Chapter 9

Deciding the Pcode Property

In Section 9.1, we give an analog of the Sardinas and Patterson algorithm
for testing whether or not a given finite set of partial words is a pcode. In
Section 9.2, we adapt a technique of Head and Weber related to dominoes to
show that the pcode property is decidable.

9.1 First algorithm

In this section, we describe a first algorithm for deciding the pcode property.
A subset X of W (A) \ {ε} containing two distinct compatible partial words is
obviously not a pcode. Recall that X is pairwise noncompatible if no distinct
partial words u, v ∈ X satisfy u ↑ v.

We build a sequence of sets as follows: Let U1 be the set

• {x | x 6= ε and there exist u ∈ X and u′x ∈ X such that u ↑ u′}

and for i ≥ 1, let Ui+1 be the union of the two sets

• {x | there exist u ∈ X and u′x ∈ Ui such that u ↑ u′}

• {x | there exist u ∈ Ui and u′x ∈ X such that u ↑ u′}

REMARK 9.1 To obtain the U1-set, compare each element in the set X
with every longer element in X to determine if x exists. For any given u, v
in X satisfying |u| < |v|, if v = u′x with u ↑ u′, then x ∈ U1. This can be
pictured as follows:

u ∈ X
↑
u′ x ∈ X

To obtain the Ui+1-sets where i ≥ 1: First, compare each element in the
set X with every nonshorter element in the set Ui to determine if x exists.
For any given u ∈ X and v ∈ Ui satisfying |u| ≤ |v|, if v = u′x with u ↑ u′,
then x ∈ Ui+1. This can be pictured as follows:

257
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u ∈ X
↑
u′ x ∈ Ui

Second, compare each element in the set Ui with every nonshorter element in
the set X to determine if x exists. For any given u ∈ Ui and v ∈ X satisfying
|u| ≤ |v|, if v = u′x with u ↑ u′, then x ∈ Ui+1. This can be pictured as
follows:

u ∈ Ui

↑
u′ x ∈ X

LEMMA 9.1
Let X ⊂ W (A) \ {ε}. For all n ≥ 1 and k ∈ {1, . . . , n}, we have ε ∈ Un if

and only if there exist a partial word x ∈ Uk and integers i, j ≥ 0 such that
xXi ∩ C(Xj) 6= ∅ and i+ j + k = n.

PROOF We prove the statement for all n by descending induction on k.
Assume first that k = n. If ε ∈ Un, then the condition is satisfied with x = ε
and i = j = 0. Conversely, if the condition is satisfied, then i = j = 0 and
x = ε and ε ∈ Un.

Now, let n > k ≥ 1, and suppose that the equivalence holds for n, n −
1, . . . , k+ 1. If ε ∈ Un, then by the inductive hypothesis, there exist a partial
word x ∈ Uk+1 and integers i, j ≥ 0 such that xXi ∩ C(Xj) 6= ∅ and i+ j +
(k + 1) = n. Thus there exist partial words u1, . . . , ui, v1, . . . , vj ∈ X such
that

xu1 . . . ui ↑ v1 . . . vj

Now x ∈ Uk+1, and there are two cases: Either there exists u ∈ C(X) such
that ux ∈ Uk, or there exists y ∈ Uk and a partial word y′ such that y ↑ y′
and y′x ∈ X. In the first case, we have u ↑ u′ for some u′ ∈ X and

uxu1 . . . ui ↑ u′v1 . . . vj

Consequently, there exist a partial word ux ∈ Uk and integers i, j + 1 ≥ 0
such that uxXi ∩ C(Xj+1) 6= ∅ and i+ (j + 1) + k = n, and the condition is
satisfied. In the second case, we have

y′xu1 . . . ui ↑ yv1 . . . vj

Consequently, there exist a partial word y ∈ Uk and integers j, i+ 1 ≥ 0 such
that yXj ∩C(Xi+1) 6= ∅ and j+(i+1)+k = n, and the condition is satisfied.

Conversely, assume that there exist a partial word x ∈ Uk and integers
i, j ≥ 0 such that xXi ∩ C(Xj) 6= ∅ and i+ j + k = n. Then
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xu1 . . . ui ↑ v1 . . . vj

for some u1, . . . , ui, v1, . . . , vj ∈ X. If j = 0, then i = 0 and k = n. If j > 0,
then we consider two cases:

Case 1. |x| ≥ |v1|
If x = v′1y for some pword y and some v′1 satisfying v′1 ↑ v1, then y ∈ Uk+1

and yu1 . . . ui ↑ v2 . . . vj . Thus yXi ∩ C(Xj−1) 6= ∅ and by the inductive
hypothesis ε ∈ Un.

Case 2. |x| < |v1|
If v1 = x′y for some nonempty pword y and some x′ satisfying x ↑ x′, then

y ∈ Uk+1 and u1 . . . ui ↑ yv2 . . . vj . Thus yXj−1 ∩ C(Xi) 6= ∅ and by the
inductive hypothesis ε ∈ Un.

Note that if X is a finite set, then {Un | n ≥ 1} is finite (this is because each
Un contains only suffixes of partial words in X). The next theorem provides
an algorithm for testing whether or not a finite set is a pcode.

THEOREM 9.1
Let X ⊂W (A) \ {ε} be pairwise noncompatible. The set X is a pcode if and
only if none of the sets Un contains the empty word.

PROOF If X is not a pcode, then there exists a compatibility relation

u1u2 . . . um ↑ v1v2 . . . vn

where m,n are positive integers, u1 6= v1, and u1, . . . , um, v1, . . . , vn ∈ X.
Assume first that |u1| = |v1|. Then u1 ↑ v1, a contradiction since X is pairwise
noncompatible. Now assume that |u1| > |v1|. Then u1 = v′1x for some pword
x and some v′1 satisfying v′1 ↑ v1. But then x ∈ U1 and xXm−1∩C(Xn−1) 6= ∅.
By Lemma 9.1, ε ∈ Um+n−1.

If X is a pcode and ε ∈ Un, then put k = 1 in Lemma 9.1. There exist
x ∈ U1 and integers i, j ≥ 0 such that i + j = n − 1 and xXi ∩ C(Xj) 6= ∅.
Since x ∈ U1, we have v = ux for some u ∈ C(X), v ∈ X. Furthermore, u 6= v
since x 6= ε. Since u ∈ C(X), there exists u′ ∈ X such that u ↑ u′. It follows
from uxXi ∩ uC(Xj) 6= ∅ that vXi ∩ C(u′Xj) 6= ∅, showing that X is not a
pcode.

Example 9.1
Consider the pairwise noncompatible set Y = {a�b, �a, abba, bba}. The com-

putations that follow will show that

U1 = {a, b},

U2 = {�b, a, ba, bba},

U3 = {ε, �b, a, b, ba, bba},
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U4 = {ε, �a, �b, a, a�b, abba, b, ba, bba},

...

Since ε ∈ U3, this set is not a pcode.

• For U1: First, consider u = a�b. In this case, a�b ↑ abba and therefore
x = a. Now, consider u = �a. Here, �a ↑ a�b and therefore x = b. No
other choices of u are successful and U1 = {a, b}.

• For U2: The first set is empty since every u ∈ Y is greater in length than
every word in U1. However, comparing U1 with Y produces a nonempty
set. First, comparing u = a generates the following:

a ↑ a�b �b
a ↑ �a a
a ↑ abba bba

Now, comparing u = b generates the following:

b ↑ �a a
b ↑ bba ba

• For U3: First, compare the set Y with U2:

bba ↑ bba ε

�a ↑ ba ε

Now, compare U2 with Y :

�b ↑ a�b b
�b ↑ abba ba
�b ↑ bba a
a ↑ a�b �b
a ↑ �a a
a ↑ abba bba

ba ↑ �a ε
bba ↑ bba ε

• For U4: First, compare the set Y with U3:

�a ↑ ba ε
bba ↑ bba ε

Now, compare U3 with Y :
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ε ↑ a�b a�b
ε ↑ �a �a
ε ↑ abba abba
ε ↑ bba bba
�b ↑ a�b b
�b ↑ abba ba
�b ↑ bba a
a ↑ a�b �b
a ↑ �a a
a ↑ abba bba

b ↑ �a a
b ↑ bba ba
ba ↑ �a ε
bba ↑ bba ε

Since ε ∈ U3, the algorithm may stop at this point since it is determined
that Y is not a pcode. The set U4 was computed as an exercise to further
the example.

We now discuss how to use the algorithm to discover some nontrivial com-
patibility relations for nonpcodes.

Example 9.2
Consider the set Z = {u1, u2, u3, u4} where u1 = �b, u2 = a�b, u3 = aa�bba,

and u4 = ba. The generated sets are as follows:

U1 = {b, bba},

U2 = {a, b},

U3 = {�b, a, a�bba, b},

U4 = {ε, �b, a, a�bba, b, ba, bba},

U5 = {ε, �b, a, a�bba, b, ba, bba, a�b, aa�bba} = U6 = · · · .

Since ε ∈ U4, the set Z is not a pcode.
The following list of compatibilities are derived from the sets generated by

the algorithm:

u2bba ↑ u3

u2u1a ↑ u3

u2u1u1 ↑ u3b
u2u1u1a ↑ u3u4

u2u1u1u2 ↑ u3u4�b
u2u1u1u2 ↑ u3u4u1
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Thus, a nontrivial compatibility relation for the set Z is u2u1u1u2 ↑ u3u4u1,
or a�b�b�ba�b ↑ aa�bbaba�b.

The discovery of the nontrivial compatibility relation in the above example
requires a more detailed explanation. In fact, deriving the Ui-sets with the
algorithm, several possible nontrivial compatibility relations emerge.

In obtaining U1, since �b ↑ a�b, b ∈ U1. This relation may be translated as
follows. Since u1 = �b and u2 = a�b, the original relation may be rewritten
as u1b ↑ u2. Note that the additional b ∈ U1 is concatenated to u1 to make a
word compatible with a�b. In the same manner, the relation a�b ↑ aa�bba is
rewritten as u2bba ↑ u3.

When comparing the elements of the set Z with the elements of the set
U1, the set U2 yields the relation �b ↑ bba, or u1 ↑ bba. Due to this relation,
a ∈ U2. The compatibility relation from the previous set U1 that generated
bba ∈ U1 is u2bba ↑ u3. In this case, u1 = �b replaces the bb of bba which
leaves only the extraneous a ∈ U2. Therefore, the new relation is u2u1a ↑ u3.

Comparing the elements of the set U1 with the elements of the set Z requires
alternate handling. The relation b ↑ �b generates b ∈ U2. The compatibility
relation from the previous set U1 that generated b is u1b ↑ u2. In this case,
u1 = �b replaces the b on the left side of the relation. However, the extraneous
b ∈ U2 is concatenated to the right side of the relation. Therefore, the new
relation is u1u1 ↑ u2b. In the same manner, the relation b ↑ ba where a ∈ U2

is translated as u1u4 ↑ u2a since u4 = ba.
The following lists illustrate the compatibility relations that unfold as the

set U3 is determined by the algorithm. For clarity, relations generating the
same partial word that becomes an element of U3 are grouped together. Note
that multiple possibilities may exist for a single relation as derived from the
algorithm. The original relation from the algorithm is on the left, and the
respective translation is on the right.

The following relations allow b ∈ U3:

a ↑ �b
a ↑ �b

u2u1u1 ↑ u3b
u1u4b ↑ u2u1

The following relations allow �b ∈ U3:

a ↑ a�b
a ↑ a�b

u2u1u2 ↑ u3�b
u1u4�b ↑ u2u2

The following relations allow a�bba ∈ U3:

a ↑ aa�bba
a ↑ aa�bba

u2u1u3 ↑ u3a�bba
u1u4a�bba ↑ u2u3

The following relation allows a ∈ U3:

b ↑ ba u1u1a ↑ u2u4
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The relations from U4 are presented in a similar manner. Observe that once
ε ∈ U4 two different nontrivial compatibility relations emerge, u2u1u2 ↑ u3u1

and u1u4u1 ↑ u2u2, thus proving the example set Z is not a pcode.
The following relations allow ε ∈ U4:

�b ↑ �bε
�b ↑ �bε

u2u1u2 ↑ u3u1

u1u4u1 ↑ u2u2

The following relations allow bba ∈ U4:

�b ↑ a�bba
�b ↑ a�bba

u2u1u3 ↑ u3u1bba
u1u4u1bba ↑ u2u3

The following relation allows a�bba ∈ U4:

a ↑ aa�bba u1u1u3 ↑ u2u4a�bba

The following relations allow ba ∈ U4:

a�b ↑ a�bba
a�b ↑ a�bba

u2u1u3 ↑ u3u2ba
u1u4u2ba ↑ u2u3

The following relations allow b ∈ U4:

a ↑ �b
b ↑ �b
b ↑ �b

u1u1u1 ↑ u2u4b
u2u1u1b ↑ u3u1

u1u4u1 ↑ u2u1b

The following relation allows �b ∈ U4:

a ↑ a�b u1u1u2 ↑ u2u4�b

The following relations allow a ∈ U4:

b ↑ ba
b ↑ ba

u2u1u1a ↑ u3u4

u1u4u4 ↑ u2u1a

Due to ε ∈ U4, the algorithm may stop at this point. However, to demon-
strate additional possible nontrivial compatibility relations satisfied by Z, the
sets U5 and U6 will be briefly examined. With each additional iteration of the
algorithm, new nontrivial compatibility relations emerge.

All relations generating the set U5 will not be delved into, instead only
the relations pertaining to the elements ε and �b will be apprised. Observe
that since ε ∈ U5 another nontrivial compatibility relation emerges, u1u1u2 ↑
u2u4u1, thus furthering the fact that the example set X is not a pcode.

The following relation allows ε ∈ U5:

�b ↑ �bε u1u1u2 ↑ u2u4u1

The following relations allow �b ∈ U5:
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a ↑ a�b
a ↑ a�b

u2u1u1u2 ↑ u3u4�b
u1u4u4�b ↑ u2u1u2

Subsequent sets generated by the algorithm are equivalent to the set U5.
However, additional nontrivial compatibility relations become apparent.

The following relations allow ε ∈ U6:

�b ↑ �bε
�b ↑ �bε

u2u1u1u2 ↑ u3u4u1

u1u4u4u1 ↑ u2u1u2

Therefore, since ε ∈ U6, two additional nontrivial compatibility relations
are derived, u2u1u1u2 ↑ u3u4u1 and u1u4u4u1 ↑ u2u1u2, thus furthering the
fact that the example set Z is not a pcode.

9.2 Second algorithm

In this section, we describe a second algorithm for deciding the pcode prop-
erty. It is based on a domino technique that we start investigating for full
words and then extending it to include partial words.

9.2.1 Domino technique on words

Let X be a nonempty finite subset of A+. For α, β ∈ X∗ satisfying α = β,
put α = α1α2 . . . αm, β = β1β2 . . . βn for some α1, . . . , αm, β1, . . . , βn ∈ X.
The relation α = β is trivial if m = n and α1 = β1, . . . , αm = βm, and
the relation α = β is factorizable if there exist α′, α′′, β′, β′′ ∈ X+ such that
α = α′α′′, β = β′β′′, α′ = β′, and α′′ = β′′.

Example 9.3
Consider the set

Y = {u1, u2, u3, u4}

over {a, b} where

u1 = a, u2 = abbbbba, u3 = babab, and u4 = bbbb

Setting

α = (a)(bbbb)(babab)(abbbbba) = u1 u4 u3 u2

β = (abbbbba)(babab)(bbbb)(a) = u2 u3 u4 u1

the relation α = β is seen to be nontrivial and nonfactorizable.

In order to study the relations satisfied by the setX, we define the simplified
domino graph and the domino function of X.
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DEFINITION 9.1 Let X be a nonempty finite subset of A+. Let G =
(V,E) be the directed graph with vertex set

V = {open, close,
(
u
ε

)
,
(

ε
u

)
| u ∈ P (X) \ {ε}},

and with edge set E = E1 ∪ E2 ∪ E3 ∪ E4 where

E1 = {(open,
(

ε
u

)
) | u ∈ X},

E2 = {(
(
u
ε

)
, close) | u ∈ X},

E3 = {(
(
u
ε

)
,
(
uv
ε

)
), (

(
ε
u

)
,
(

ε
uv

)
) | v ∈ X},

E4 = {(
(
u
ε

)
,
(

ε
v

)
), (

(
ε
u

)
,
(
v
ε

)
) | uv ∈ X}.

The simplified domino graph associated with X, denoted by G(X),
is the directed graph G′ = (V ′, E′) where V ′ consists of open, close and those
vertices v in V such that there exists a path from open to close that goes
through v, and E′ consists of those edges e in E such that there exists a path
from open to close going through e.

The domino function associated with X is the mapping d from E to
{
(
u
ε

)
,
(

ε
u

)
| u ∈ X} defined on

E1 by (open,
(

ε
u

)
) 7→

(
u
ε

)
,

E2 by (
(
u
ε

)
, close) 7→

(
u
ε

)
,

E3 by (
(
u
ε

)
,
(
uv
ε

)
) 7→

(
ε
v

)
and (

(
ε
u

)
,
(

ε
uv

)
) 7→

(
v
ε

)
,

E4 by (
(
u
ε

)
,
(

ε
v

)
) 7→

(
uv
ε

)
and (

(
ε
u

)
,
(
v
ε

)
) 7→

(
ε

uv

)
.

The domino associated with an edge e of E is defined as d(e) =
(
d1(e)
d2(e)

)
where d1(e) denotes the top component and d2(e) the bottom one.

Example 9.4
Returning to the set Y of Example 9.3, we see that there are fifteen elements
in P (Y ) \ {ε} which are:

a, ab, abb, abbb, abbbb, abbbbb, abbbbba, b, ba, bab, baba, babab, bb, bbb, bbbb

The set of vertices V includes open, close and thirty other elements such as(
a
ε

)
and

(
ε

bab

)
. The set of edges E consists of several edges split into the four

sets E1, E2, E3 and E4:

• The set E1 has four edges including e1 = (open,
(

ε
a

)
) since a = u1 ∈ Y .

The domino function d associated with Y maps e1 to d(e1) =
(
u1
ε

)
where

d1(e1) = u1 and d2(e1) = ε.

• The set E2 has four edges including e2 = (
(
babab

ε

)
, close) since babab =

u3 ∈ Y . This edge is mapped to
(
u3
ε

)
.
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• The set E3 has several edges including e3 = (
(
a
ε

)
,
(
abbbb

ε

)
). Here, both

a and abbbb belong to P (Y ) \ {ε}, and bbbb = u4 ∈ Y . The edge e3 is
mapped to

(
ε

u4

)
.

• The set E4 has several edges including e4 = (
(
bab
ε

)
,
(

ε
ab

)
). Here, both bab

and ab belong to P (Y ) \ {ε}, and (bab)(ab) = u3 ∈ Y . The edge e4 is
mapped to

(
u3
ε

)
.

The simplified domino graph and the domino function associated with Y are
as in Figure 9.1 where the domino d(e) associated with an edge e is represented
as the label of e. Note that, for instance, the vertex v =

(
bb
ε

)
is not in G(Y )

FIGURE 9.1: Simplified domino graph and function of
Y = {u1, u2, u3, u4} where u1 = a, u2 = abbbbba, u3 = babab, and u4 = bbbb.

since there is no path from open to close going through v, and the edge
e = (open,

(
ε

bbbb

)
) is not in G(Y ) since there is no path from open to close

going through e.

The function d induces mappings d1 and d2 from E to X ∪ {ε} also called
domino functions. If p = e1e2 . . . ei is a path in G, then d(e1)d(e2) . . . d(ei)
(respectively, d1(e1)d1(e2) . . . d1(ei), d2(e1)d2(e2) . . . d2(ei)) is denoted by d(p)
(respectively, d1(p), d2(p)).

There are many paths starting at open and ending at close in Figure 9.1.
They include the path

q = open,
(

ε
a

)
,
(

ε
abbbb

)
,
(
ba
ε

)
,
(

ε
bab

)
,
(
ab
ε

)
,
(
abbbbb

ε

)
,
(
abbbbba

ε

)
, close

with associated domino sequence

d(q) =
(
u1
ε

)(
u4
ε

)(
ε

u2

)(
u3
ε

)(
ε

u3

)(
ε

u4

)(
ε

u1

)(
u2
ε

)
=

(
u1u4u3u2
u2u3u4u1

)
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If we look at the two sequences built by d(q), d1(q) = u1u4u3u2 and d2(q) =
u2u3u4u1, then we see that d1(q) = d2(q) is the nontrivial nonfactorizable
relation over Y that was discussed in Example 9.3.

A path p in G from open to some vertex
(
u
ε

)
(respectively,

(
ε
u

)
) is trying to

find two decodings of the same message over X into codewords beginning with
distinct codewords. The decodings obtained so far are d1(p) and d2(p). The
word u in A∗ denotes the backlog of the first (respectively, second) decoding
as against the second (respectively, first) one. In the example of Figure 9.1,
the path

r = open,
(

ε
a

)
,
(

ε
abbbb

)
,
(
ba
ε

)
from open to

(
ba
ε

)
is such that

d1(r) = a b b b b
d2(r) = a b b b b b a

and we notice that ba is the backlog of d1(r) as against d2(r).
The next proposition illustrates how the paths from open to close in G(X)

correspond to nontrivial nonfactorizable relations satisfied by X. It is stated
without proof as we will prove a more general result in the next section.

PROPOSITION 9.1
Let X be a nonempty finite subset of A+. For α, β ∈ X∗, α = β is a nontrivial
nonfactorizable relation if and only if there exists a path p in G(X) from open
to close such that d(p) =

(
α
β

)
or d(p) =

(
β
α

)
.

Whether or not X is a code can be determined by looking at its simplified
domino graph G(X). More specifically, the following result holds.

THEOREM 9.2
Let X be a nonempty finite subset of A+. Then X is a code if and only if

there is no path in G(X) from open to close.

We have already noted that there exist paths from open to close in the
simplified domino graph G(Y ) of Figure 9.1, showing that Y is not a code.

9.2.2 Domino technique on partial words

Let X be a nonempty finite subset of W (A) \ {ε}. For α, β ∈ X∗ satisfying
α ↑ β, put

α = α1α2 . . . αm and β = β1β2 . . . βn

for some α1, . . . , αm, β1, . . . , βn ∈ X. The relation α ↑ β is trivial ifm = n and
α1 = β1, . . . , αm = βm, and that it is factorizable if there exist α′, α′′, β′, β′′ ∈
X+ such that α = α′α′′, β = β′β′′, α′ ↑ β′, and α′′ ↑ β′′.
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Example 9.5
Consider the set

Z = {u1, u2, u3, u4}

over {a, b} where

u1 = a�b, u2 = aab�bb, u3 = �b, and u4 = ba

Setting

α = (a�b)(�b)(�b)(ba)(�b) = u1 u3 u3 u4 u3

β = (aab�bb)(�b)(a�b) = u2 u3 u1

the relation α ↑ β is seen to be nontrivial and nonfactorizable.

In order to study the compatibility relations

α1α2 . . . αm ↑ β1β2 . . . βn

where α1, . . . , αm, β1, . . . , βn ∈ X, we extend the domino technique on words
of Section 9.2.1.

DEFINITION 9.2 Let X be a nonempty finite subset of W (A)\{ε}. Let
G = (V,E) be the directed graph with vertex set

V = {open, close,
(
u
ε

)
,
(

ε
u

)
| u ∈ C(P (X)) \ {ε}},

and with edge set E = E1 ∪ E2 ∪ E3 ∪ E4 where

E1 = {(open,
(

ε
u

)
) | u ∈ X},

E2 = {(
(
u
ε

)
, close), (

(
ε
u

)
, close) | u ∈ C(X)},

E3 = {(
(
u
ε

)
,
(
uv
ε

)
), (

(
ε
u

)
,
(

ε
uv

)
) | v ∈ X},

E4 = {(
(
u
ε

)
,
(

ε
v

)
), (

(
ε
u

)
,
(
v
ε

)
) | w = u′v, u ↑ u′, w ∈ X}.

The simplified domino graph associated with X, denoted by G(X),
is the directed graph G′ = (V ′, E′) where V ′ consists of open, close and those
vertices v in V such that there exists a path from open to close that goes
through v, and E′ consists of those edges e in E such that there exists a path
from open to close going through e.

The domino function associated with X is the mapping d from E to
the set of nonempty subsets of {

(
u
ε

)
,
(

ε
u

)
| u ∈ X} defined on

E1 by (open,
(

ε
u

)
) 7→ {

(
u
ε

)
},

E2 by (
(
u
ε

)
, close) 7→ {

(
v
ε

)
| u ↑ v and v ∈ X} and (

(
ε
u

)
, close) 7→ {

(
ε
v

)
| u ↑ v

and v ∈ X},
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E3 by (
(
u
ε

)
,
(
uv
ε

)
) 7→ {

(
ε
v

)
} and (

(
ε
u

)
,
(

ε
uv

)
) 7→ {

(
v
ε

)
},

E4 by (
(
u
ε

)
,
(

ε
v

)
) 7→ {

(
w
ε

)
| w = u′v, u ↑ u′, and w ∈ X} and (

(
ε
u

)
,
(
v
ε

)
) 7→

{
(

ε
w

)
| w = u′v, u ↑ u′, and w ∈ X}.

The domino set associated with an edge e of E is the set d(e).

Example 9.6
Returning to the set Z of Example 9.5, we see that there are twelve elements
in P (Z) \ {ε} which are:

a, a�, a�b, aa, aab, aab�, aab�b, aab�bb, �, �b, b, ba

and many more elements in C(P (Z)) \ {ε} that include ��, �a, . . .. The set
of vertices V includes open, close and several other elements such as

(
a
ε

)
and(

ε
a�b�

)
. The set of edges E consists of several edges split into the four sets

E1, E2, E3 and E4:

• The set E1 has four edges including e1 = (open,
(

ε
a�b

)
) since a�b = u1 ∈

Z. The domino function d associated with Z maps e1 to d(e1) = {
(
u1
ε

)
}.

• The set E2 has several edges including e2 = (
(��

ε

)
, close) since �� ↑ u3

and thus �� ∈ C(Z). This edge is mapped to {
(
u3
ε

)
,
(
u4
ε

)
}.

• The set E3 has several edges including e3 = (
(��b

ε

)
,
(��b�b

ε

)
). Here, both

��b and ��b�b belong to C(P (Z)) \ {ε}, and �b = u3 ∈ Z. The edge e3
is mapped to {

(
ε

u3

)
}.

• The set E4 has several edges including e4 = (
(��b

ε

)
,
(

ε
�bb

)
). Here, both

u = ��b and v = �bb belong to C(P (Z)) \ {ε}. Setting u′ = aab, we
get w = (aab)(�bb) = u′v with u ↑ u′ and w = u2 ∈ Z. The edge e4 is
mapped to {

(
u2
ε

)
}.

Parts of the simplified domino graph and the domino function associated
with Z are displayed in Figures 9.2, 9.3 and 9.4 where the domino set d(e)
associated with an edge e is represented as the label of e. Since the domino
sets in G(Z) are all singletons, the domino set {

(
u1
ε

)
} say has been abbreviated

by
(
u1
ε

)
. The reader is invited to complete the graph and discover that, for

instance, the vertex v =
(
aab
ε

)
is not in G(Z) since there is no path from open

to close going through v, and the edge e = (open,
(

ε
aabb

)
) is not in G(Z) since

there is no path from open to close going through e.

If p = e1e2 . . . ei is a path in G, the set

d(e1)d(e2) . . . d(ei) = {x1x2 . . . xi | x1 ∈ d(e1), x2 ∈ d(e2), . . . , xi ∈ d(ei)}
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FIGURE 9.2: Neighborhood of vertex open in G(Z) where
Z = {u1, u2, u3, u4} with u1 = a�b, u2 = aab�bb, u3 = �b, and u4 = ba.

FIGURE 9.3: Neighborhood of vertex
(

b
ε

)
in G(Z).
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FIGURE 9.4: Neighborhood of vertex close in G(Z).

is denoted by d(p). For x =
(
y1
z1

)(
y2
z2

)
. . .

(
yi

zi

)
in d(p), we abbreviate y1y2 . . . yi

by above(x) and z1z2 . . . zi by below(x). We will also write x =
(above(x)

below(x)

)
.

Note that above(x), below(x) are in X∗.
There are many paths of length at least three starting at open and ending

at close in G(Z). Such a path, which appears in Figure 9.5, shows how a
domino sequence x associated with its edges leads to a nontrivial nonfactor-
izable compatibility relation of the form above(x) ↑ below(x). The sequence
of labels (

u1
ε

)(
u3
ε

)(
ε

u2

)(
u3
ε

)(
ε

u3

)(
u4
ε

)(
u3
ε

)(
ε

u1

)
is in d(q) and note that u1u3u3u4u3 ↑ u2u3u1 is a nontrivial nonfactorizable
compatibility relation over Z which was already discussed in Example 9.5.

A path p in G(X) from open to some vertex
(
u
ε

)
is trying to find a non-

trivial compatibility relation over X. The factorizations obtained so far
for a particular x ∈ d(p) are above(x) and below(x). More precisely, if
above(x) = α1α2 . . . αm and below(x) = β1β2 . . . βn, then α1 6= β1 and
α1α2 . . . αmu ↑ β1β2 . . . βn and u is a suffix of β1β2 . . . βn. The partial word u
denotes the backlog of the first factorization as against the second one. Sim-
ilarly, if p is from open to some vertex

(
ε
u

)
, then α1 6= β1 and α1α2 . . . αm ↑
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FIGURE 9.5: A path q of length at least three from open to close in
G(Z).

β1β2 . . . βnu and u is a suffix of α1α2 . . . αm. In this case, u denotes the
backlog of the second factorization as against the first one.

In the sequel, in order to simplify the notation, we identify both open and
close with

(
ε
ε

)
.

LEMMA 9.2

Let X be a nonempty finite subset of W (A) \ {ε}.

1. If u ∈ C(P (X)) and there exists a path p in G(X) from open to
(
u
ε

)
(respectively,

(
ε
u

)
), then d(p) consists of elements of the form

(
α
βu

)
(re-

spectively,
(
αu
β

)
) for some α, β ∈W (A) satisfying α ↑ β.

2. If there exists a path p in G(X) from open to close such that
(
α
β

)
∈ d(p),

then α ↑ β is a nonfactorizable compatibility relation satisfied by X.
Moreover, if p is of length at least 3, then α ↑ β is nontrivial.

PROOF First, Statement 1 follows by induction. The only path of length
1 from open is an E1-edge of the form (open,

(
ε
u

)
) for some u ∈ X. Here,

d(p) = {
(
u
ε

)
} and the result follows with α = β = ε. Now, consider the path

q = pe where p is a path from open to
(
u
ε

)
and e is an edge from

(
u
ε

)
. By

the inductive hypothesis, d(p) consists of elements of the form
(

α
βu

)
for some

α, β ∈ W (A) satisfying α ↑ β. For e = (
(
u
ε

)
, close) ∈ E2, d(pe) = d(p)d(e)

consists of elements of the form
(

α
βu

)(
v
ε

)
=

(
αv
βu

)
=

(
α′

β′

)
where u ↑ v and

v ∈ X. For e = (
(
u
ε

)
,
(
uv
ε

)
) ∈ E3, d(pe) consists of elements of the form(

α
βu

)(
ε
v

)
=

(
α

βuv

)
=

(
α′

β′uv

)
where v ∈ X. Finally, for e = (

(
u
ε

)
,
(

ε
v

)
) ∈ E4,

d(pe) consists of elements of the form
(

α
βu

)(
w
ε

)
=

(
αw
βu

)
=

(
αu′v
βu

)
=

(
α′v
β′

)
where

w = u′v, u ↑ u′, and w ∈ X. In any case, the result follows with some



Deciding the Pcode Property 273

α′, β′ ∈W (A) satisfying α′ ↑ β′. The result follows similarly when p is a path
from open to

(
ε
u

)
and e is an edge from

(
ε
u

)
.

Second, let us show that Statement 2 holds. If there exists a path p from
open to close such that

(
α
β

)
∈ d(p), then by Statement 1, α ↑ β since close =(

ε
ε

)
. But by the definition of d(p), we have α, β ∈ X∗ and thus α ↑ β is a

compatibility relation satisfied by X.

The next lemma shows how to obtain the path corresponding to a nontrivial
nonfactorizable compatibility relation. First, we need some definitions.

For two partial words α, β ∈ W (A), we write α � β if α ∈ C(P (β)) where
P (β) is the set of all prefixes of β, and α ≺ β if α � β and α 6↑ β.

Let α, β ∈ X∗, and put α = α1α2 . . . αm and β = β1β2 . . . βn. We say
that

(
α
β

)
has a proper prefix compatibility relation if there exist α′, β′ ∈ X+

such that α′ is a prefix of α, β′ is a prefix of β,
(
α
β

)
6=

(
α′

β′

)
, and α′ ↑ β′ is

a compatibility relation. Note that a nonfactorizable compatibility relation
α ↑ β is such that

(
α
β

)
has no proper prefix compatibility relation. We say

that
(
α
β

)
has the nppcr property if the following three conditions hold:

(i) α � β and the suffix γ of β satisfying β ↑ αγ belongs to C(P (X)), or
β � α and the suffix γ of α satisfying α ↑ βγ belongs to C(P (X)).

(ii)
(
α
β

)
has no proper prefix compatiblity relation.

(iii) If n > 0, then m > 0 and |α1| < |β1|.

LEMMA 9.3
Let X be a nonempty finite subset of W (A) \ {ε}.

1. Let α, β ∈ X∗ be such that there exists a path p in G(X) from open to
v1 ∈ V with

(
α
β

)
∈ d(p).

(a) If v1 =
(
u
ε

)
and v ∈ X is such that uv ∈ C(P (X)), then there exist

v2 ∈ V and a path q from open to v2 such that
(

α
βv

)
∈ d(q).

(b) If v1 =
(
u
ε

)
and w = u′v ∈ X is such that u ↑ u′ and v ∈ C(P (X)),

then there exist v2 ∈ V and a path q from open to v2 such that(
αw
β

)
∈ d(q).

(c) If v1 =
(

ε
u

)
and v ∈ X is such that uv ∈ C(P (X)), then there exist

v2 ∈ V and a path q from open to v2 such that
(
αv
β

)
∈ d(q).

(d) If v1 =
(

ε
u

)
and w = u′v ∈ X is such that u ↑ u′ and v ∈ C(P (X)),

then there exist v2 ∈ V and a path q from open to v2 such that(
α

βw

)
∈ d(q).

2. Let α, β ∈ X∗ be such that
(
α
β

)
has the nppcr property. Then there exist

v ∈ V and a path p in G(X) from open to v such that
(
α
β

)
∈ d(p).
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3. Let α, β ∈ X∗ be such that α ↑ β is a nontrivial nonfactorizable compat-
ibility relation. Then there exists a path p in G(X) from open to close
such that

(
α
β

)
∈ d(p) or

(
β
α

)
∈ d(p).

PROOF Cases (a) and (c) of Statement 1 lead to edges in E3, and Cases
(b) and (d) lead to edges in E2 or E4 depending on whether v = ε or v 6= ε.
Let us consider Case (b) (the other cases are left as exercises for the reader).
If v 6= ε, then put v2 =

(
ε
v

)
and e = (

(
u
ε

)
,
(

ε
v

)
) ∈ E4. Here,

(
α
β

)(
w
ε

)
=

(
αw
β

)
∈

d(p)d(e) = d(q). On the other hand, if v = ε, then u′ = w and take v2 = close
and e = (

(
u
ε

)
, close) ∈ E2. Here,

(
α
β

)(
w
ε

)
=

(
αw
β

)
∈ d(p)d(e) = d(q).

For Statement 2, the proof is by induction on m+n where α = α1α2 . . . αm

and β = β1β2 . . . βn. If m+ n = 1, then by the nppcr property, we must have
m = 1 and n = 0. Thus, α = α1 and β = ε. Let v =

(
ε

α1

)
and p be the path

consisting of the edge e = (open, v) ∈ E1. Then
(
α
β

)
=

(
α1
ε

)
∈ d(e) = d(p).

If m+n > 1, then m > 0 by the nppcr property. So let α′ = α1α2 . . . αm−1,
and whenever n > 0, let β′ = β1β2 . . . βn−1. Note that when α ≺ β, we have
n > 0 and β′ is defined. Moreover, by the nppcr property, we have α 6↑ β′ and
α′ 6↑ β. So we consider the following cases:

• If α ≺ β and α ≺ β′, then use the inductive hypothesis on
(

α
β′

)
and

Statement 1(a).

• If α ≺ β and β′ ≺ α, then use the inductive hypothesis on
(

α
β′

)
and

Statement 1(d).

• If β � α and α′ ≺ β, then use the inductive hypothesis on
(
α′

β

)
and

Statement 1(b).

• If β � α and β ≺ α′, then use the inductive hypothesis on
(
α′

β

)
and

Statement 1(c).

Let us consider the third case (the other cases are similar). If β � α and
α′ ≺ β, then put w = αm. Since α′ ≺ β, let u be the suffix of β such
that β ↑ α′u. The latter and the fact that β � α imply that w = u′v ∈ X
with u ↑ u′. Since β � α, the suffix v of α satisfying α ↑ βv belongs to
C(P (X)). We have u ∈ C(P (X)), and so

(
α′

β

)
has the nppcr property. By the

inductive hypothesis, there exist v1 ∈ V and a path q from open to v1 such
that

(
α′

β

)
∈ d(q). By Lemma 9.2(1), v1 =

(
u
ε

)
. So by Statement (1)(b), there

exist v2 ∈ V and a path p from open to v2 such that
(
α
β

)
=

(
α′w
β

)
∈ d(p).

For Statement 3, we first note that if α, β are distinct compatible ele-
ments of X, then the path p = e1e2 in G(X) where e1 = (open,

(
ε
α

)
) and

e2 = (
(

ε
α

)
, close) is such that

(
α
β

)
∈ d(p). Otherwise, since α ↑ β is a com-

patibility relation satisfied by X, Condition (i) of nppcr is satisfied. Since
it is nonfactorizable, Condition (ii) is satisfied. Finally, since it is nontrivial
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and nonfactorizable, one of
(
α
β

)
and

(
β
α

)
, say the first, satisfies Condition (iii).

Hence
(
α
β

)
has the nppcr property. By Statement 2, there exist v ∈ V and a

path p from open to v such that
(
α
β

)
∈ d(p). By Lemma 9.2(1), we must have

v = close.

Whether or not a pairwise noncompatible set X is a pcode can be deter-
mined by looking at its simplified domino graph G(X) as stated in the next
theorem.

THEOREM 9.3
Let X be a nonempty finite subset of W (A)\{ε} that is pairwise noncompatible.
Then X is a pcode if and only if there is no path of length at least 3 in G(X)
from open to close.

PROOF The above two lemmas illustrate how the paths of length at
least 3 from open to close in G(X) correspond to nontrivial nonfactorizable
compatibility relations satisfied by X. Indeed, for α, β ∈ X∗, α ↑ β is a
nontrivial nonfactorizable compatibility relation if and only if there exists a
path p of length at least 3 in G(X) from open to close such that

(
α
β

)
∈ d(p)

or
(

β
α

)
∈ d(p).

We have already noted that there exist paths of length at least three from
open to close in G(Z) (see Figure 9.5), showing that Z is not a pcode.

Exercises

9.1 Is X = {a�b, bbb, �ab} pairwise noncompatible?

9.2 S Consider the set X = {a�b, �baaa, abba}. Carry the computations of
the Ui-sets on X as is done in Example 9.1. Is X a pcode?

9.3 Repeat Exercise 9.2 for X = {a�, aab, b�b}.

9.4 What can be said about X if Ui = ∅ for some i ≥ 1? What is Ui+1

then?

9.5 Show that if X is a finite set, then {Un | n ≥ 1} is finite.

9.6 S Show that the first algorithm ends immediately for prefix pcodes.

9.7 Build the simplified domino graph and its associated domino function
for the set X = {aaabba, abb, ba, bb}. Is X a code or not?
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9.8 Build the simplified domino graph of the set X = {a�b, a�}. Conclude
that X is a pcode over {a, b}.

9.9 Classify the edges in Figure 9.1 as E1-, E2-, E3- or E4-edges.

9.10 S Explain why E1-, E2-, and E3-edges cannot be bidirectional.

Challenging exercises

9.11 Use the first algorithm to discover some nontrivial compatibility relation
for the set Z = {a, abbbbba, babab, bbbb} as was done in Example 9.2.

9.12 S Classify the following sets as pcodes or nonpcodes:

• X1 = {bba, bc�}
• X2 = {aabb��, ba�, bb�c}
• X3 = {ac�, bb}
• X4 = {�b, a�b, aa�bba}
• X5 = {ab�, abb�, abbb�}

9.13 Give the neighborhood of the vertex open in G(X) when

X = {�b, a�b, aa�bba, ba}

9.14 Repeat Exercise 9.13 for the vertex close.

9.15 If e is an E4-edge, then what is a necessary condition in order for e to
be bidirectional?

9.16 Build the simplified domino graph of X = {a�b, �b, baba}. What can
you conclude?

9.17 Build the simplified domino graph and the domino function associated
with X = {a�b, �a, abba, bba}. Then

1. Give an example of a path p of length at least three from open to
close with its associated domino sequence.

2. From the path p of your answer to 1, extract a nontrivial nonfac-
torizable relation.

9.18 H Build the simplified domino graph of X = {a�b, aab�bb, �b, ba} that
was started in Figures 9.2, 9.3 and 9.4.

9.19 Prove Case (d) of Statement 1 of Lemma 9.3.

9.20 Prove the first case of Statement 2 of Lemma 9.3.
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Programming exercises

9.21 Implement the algorithm of Section 9.1 for full words. Run your program
on the set Y of Example 9.3.

9.22 Design an applet that receives as input a nonempty finite subsetX ⊂ A+

and an element u ∈ P (X) \ {ε}, and outputs all the E1-, E2-, E3- and
E4-edges leaving

(
u
ε

)
in the graph G = (V,E) of Definition 9.1.

9.23 Repeat Exercise 9.22 for an input defined as a nonempty finite subset
X ⊂ W (A) \ {ε} and an element u ∈ C(P (X)) \ {ε}, and an output
defined as all the E1-, E2-, E3- and E4-edges leaving

(
u
ε

)
in the graph

G = (V,E) of Definition 9.2.

9.24 Write a program that when given as input a nonempty finite subset
X ⊂ A+ computes the simplifed domino graph of X, G(X). Run your
program on the set of Example 9.3.

9.25 Repeat Exercise 9.24 for an input defined as a nonempty finite subset
X ⊂W (A) \ {ε}. Run your program on the set of Example 9.5.

Website

A World Wide Web server interface at

http://www.uncg.edu/mat/pcode

has been established for automated use of programs related to the first algo-
rithm discussed in Section 9.1.

Bibliographic notes

Sardinas and Patterson developed an algorithm to test whether or not a set
of full words is a code [127]. The partial word adaptation from Section 9.1 of
their algorithm is from Blanchet-Sadri and Moorefield [39].

The domino technique on full words from Section 9.2.1 is from Head and
Weber [92]. In order to study the relations satisfied by X, Guzmán suggested
to look at the simplified domino graph and the domino function of X [85].
Proposition 9.1 is from Guzmán [85]. That approach was further considered
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in [13] for instance. The simplified domino graph of X is a subgraph of the
Head and Weber’s domino graph of X defined in [92].

The domino technique on partial words from Section 9.2.2 is from Blanchet-
Sadri [16].
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Chapter 10

Equations on Partial Words

As we saw in Chapter 2, some of the most basic properties of words, like
the conjugacy and the commutativity, can be expressed as solutions of word
equations. Recall that two words x and y are conjugate if there exist words u
and v such that x = uv and y = vu. The latter is equivalent to the existence
of a word z satisfying xz = zy in which case there exist words u, v such that
x = uv, y = vu, and z = (uv)ku for some nonnegative integer k. And two
words x and y commute, namely xy = yx, if and only if x and y are powers
of the same word, that is, there exists a word z such that x = zk and y = zl

for some integers k and l.
Another equation of interest is xm = yn. It turns out that if x and y are

words, then xm = yn for some positive integers m,n if and only if there exists
a word z such that x = zk and y = zl for some integers k and l. Yet, another
interesting equation is xmyn = zp which has only periodic solutions in a free
monoid, that is, if xmyn = zp holds with integers m,n, p ≥ 2, then there
exists a word w such that x, y and z are powers of w.

In this chapter, we pursue our investigation of equations on partial words.
In Section 10.1, we give a result that gives the structure of partial words
satisfying the equation xm ↑ yn, which provides the conditions for when x
and y are contained in powers of a common word. In Section 10.2, we solve
the equation x2 ↑ ymz. This result is a first step for solving the equation
xmyn ↑ zp in Section 10.3.

10.1 The equation xm ↑ yn

In this section, we investigate the equation xm ↑ yn on partial words. When
dealing with partial words x and y, if there exists a pword z such that x ⊂ zk

and y ⊂ zl for some integers k, l, then xm ↑ yn for some positive integers
m,n. Indeed, by the multiplication rule, xl ⊂ zkl and yk ⊂ zkl, showing that
xl ↑ yk. For the converse, it is beneficial to define the following manipulation
of a partial word x. For a positive integer p and an integer 0 ≤ i < p, define

x

[
i
p

]
= x(i)x(i+ p)x(i+ 2p) . . . x(i+ jp)

281
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where j is the largest nonnegative integer such that i+ jp < |x|. We shall call
this the ith residual word of x modulo p.

The following two lemmas provide equivalent conditions for periodicity and
weak periodicity.

LEMMA 10.1

A partial word x is p-periodic if and only if x
[
i
p

]
is 1-periodic for all 0 ≤ i < p.

LEMMA 10.2

A partial word x is weakly p-periodic if and only if x
[
i
p

]
is weakly 1-periodic

for all 0 ≤ i < p.

Using the multiplication and the simplification rules, we can demonstrate
the following lemma. Consequently, if xm′ ↑ yn′ and gcd(m′, n′) 6= 1, then
xm ↑ yn where m = m′/ gcd(m′, n′) and n = n′/ gcd(m′, n′). And therefore
the assumption that gcd(m,n) = 1 may be made without losing generality.

LEMMA 10.3
Let x, y be partial words and let m,n and p be positive integers. Then xm ↑ yn

if and only if xmp ↑ ynp.

LEMMA 10.4
Let x, y be partial words and let m,n be positive integers such that xm ↑ yn

with gcd(m,n) = 1. Call |x|/n = |y|/m = p. If there exists an integer i such

that 0 ≤ i < p and x
[
i
p

]
is not 1-periodic, then D(y

[
i
p

]
) is empty.

PROOF Assume that there is an integer i such that 0 ≤ i < p and x

[
i
p

]
is not 1-periodic. Then for some j and k such that i + jp and i + kp are in
the domain of x,

x(i+ jp) 6= x(i+ kp)

Now assume that D(y
[
i
p

]
) is not empty, that is, there is a constant l such that

y(i+ (l + j)p) = x(i+ jp)

and hence
y(i+ (l + j)p) ↑ x((i+ jp+ l′|y|) mod |x|)
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for all l′. Now we make the claim that there exists an l′ such that

(i+ jp+ l′|y|) ≡ (i+ kp) mod |x| (10.1)

Since |y| = mp and |x| = np, (10.1) becomes

(j + l′m)p ≡ kp mod np

which may be reduced to

k − j ≡ l′m mod n

Since gcd(m,n) = 1, such an l′ exists that satisfies our claim. Therefore

x(i+ kp) = x((i+ jp+ l′|y|) mod |x|) ↑ y(i+ (l + j)p) = x(i+ jp) (10.2)

but we assumed earlier that x(i+ jp) 6= x(i+ kp) and that i+ jp and i+ kp
were both in the domain of x. Therefore the compatibility relation in (10.2)
is a contradiction.

LEMMA 10.5
Let x be a partial word, let m, p be positive integers, and let i be an integer

such that 0 ≤ i < p. Then the relation

xm

[
i
p

]
= x

[
i
p

]
x

[
(i− |x|) mod p

p

]
· · · x

[
(i− (m− 1)|x|) mod p

p

]
holds.

PROOF The proof is by induction on m. Consider the case of m = 2.
Note that

x2

[
i
p

]
= x

[
i
p

]
y

for some partial word y. Let k be the largest nonnegative integer such that
i+ kp < |x|. Then

y(0) = x(j)

where j = (i + (k + 1)p) mod |x|. Therefore i − j + (k + 1)p = |x| by the
definition of k and so

j = (i− |x|) mod p

Hence

y = x

[
j
p

]
= x

[
(i− |x|) mod p

p

]
and the basis follows. Assume the relation holds for m ≤ n. Then xn+1

[
i
p

]
is

equal to
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xn

[
i
p

]
x

[
(i− n|x|) mod p

p

]
which in turn equals

x

[
i
p

]
x

[
(i− |x|) mod p

p

]
· · · x

[
(i− (n− 1)|x|) mod p

p

]
x

[
(i− n|x|) mod p

p

]
The result follows.

The following concept of a “good pair” of partial words is basic in this
section.

DEFINITION 10.1 Let x, y be partial words and let m,n be positive
integers such that xm ↑ yn with gcd(m,n) = 1. If for all i ∈ H(x) the word

yn

[
i
|x|

]
= yn(i)yn(i+ |x|) . . . yn(i+ (m− 1)|x|)

is 1-periodic and for all i ∈ H(y) the word

xm

[
i
|y|

]
= xm(i)xm(i+ |y|) . . . xm(i+ (n− 1)|y|)

is 1-periodic, then the pair (x, y) is called a good pair.

Let us illustrate the concept of good pair with a few examples.

Example 10.1

Consider x = a�babba�babba�� of length |x| = 15 and y = ab�a�b of length
|y| = 6 that satisfy x2 ↑ y5. For all i ∈ H(x), the word

y5(i)y5(i+ |x|)

is 1-periodic since for i = 1, we get b�; for i = 7, we get b�; for i = 13, we get
b�; and for i = 14, we get �b. Similarly, for all i ∈ H(y), the word

x2(i)x2(i+ |y|)x2(i+ 2|y|)x2(i+ 3|y|)x2(i+ 4|y|)

is 1-periodic since for i = 2, we get bb�bb and for i = 4, we get bb���. Thus
(x, y) qualifies as a good pair.

Now, consider x = a�b of length |x| = 3 and y = acbadb of length |y| = 6
which satisfy x2 ↑ y1. Here (x, y) is not a good pair since y1(1)y1(1 + |x|) =
y(1)y(4) = cd is not 1-periodic.

We now state the “good pair” theorem.
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THEOREM 10.1
Let x, y be partial words and let m,n be positive integers such that xm ↑ yn

with gcd(m,n) = 1. If (x, y) is a good pair, then there exists a partial word z
such that x ⊂ zk and y ⊂ zl for some integers k, l.

PROOF Since gcd(m,n) = 1, there exists an integer p such that |x|
n =

|y|
m = p. Now assume there exists an integer i such that 0 ≤ i < p and x

[
i
p

]
is not 1-periodic. Then by Lemma 10.4, i + jp ∈ H(y) for 0 ≤ j < m which

by the assumption that (x, y) is a good pair implies that xm

[
i+ jp
|y|

]
must be

1-periodic for any choice of j. Note that |y| = mp and similarly |x| = np.

Therefore by Lemma 10.5, xm

[
i+ jp
mp

]
is equal to

x

[
i+ jp
mp

]
x

[
(i+ jp− |x|) mod mp

mp

]
· · · x

[
(i+ jp− (m− 1)|x|) mod mp

mp

]
When l is chosen so that 0 ≤ l < m, we have

i+ jp− l|x| = i+ (j − ln)p

For 0 ≤ j < m, we claim that

{(j − ln) mod m | 0 ≤ l < m} = {0, 1, . . . ,m− 1}

Indeed, assuming there exist 0 ≤ l1 < l2 < m such that

(j − l1n) ≡ (j − l2n) mod m

we get that m divides (l1 − l2)n, and since gcd(m,n) = 1, that m divides
(l1 − l2), whence l1 = l2. So there exist j0, j1, . . . , jm−1 such that j0 = j and
{j0, j1, . . . , jm−1} = {0, 1, . . . ,m− 1} and

xm

[
i+ jp
mp

]
= x

[
i+ j0p
mp

]
x

[
i+ j1p
mp

]
· · · x

[
i+ jm−1p

mp

]
Since xm

[
i+ jp
mp

]
is 1-periodic, there exists a letter a such that for all 0 ≤ k <

m,

x

[
i+ jkp
mp

]
⊂ amjk

for some integer mjk
. This contradicts our assumption that there is an i for

which x
[
i
p

]
is not 1-periodic (here x

[
i
p

]
= x(i)x(i+p) . . . x(i+(n−1)p) ⊂ an).

Therefore x
[
i
p

]
is 1-periodic for all 0 ≤ i < p. By the equivalent condition for
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periodicity, this implies that x is p-periodic. The same argument holds for y,
and since xm ↑ yn, the result that there exists a word z of length p such that
x ⊂ zn and y ⊂ zm is proven.

We illustrate Theorem 10.1 with the following example.

Example 10.2
Given x = a�babba�babba�� of length |x| = 15 and y = ab�a�b of length
|y| = 6, the alignment of x2 and y5 may be observed with the depiction in
Figure 10.1.1 We can check that x2 ↑ y5 and we saw in Example 10.1 that
(x, y) is a good pair. Here x ⊂ z5 and y ⊂ z2 with z = abb.

FIGURE 10.1: An example of the good pair equation.

REMARK 10.1 The compatibility relation x2 = (a�b)2 ↑ (acbadb)1 =
y1 shows that the assumption of (x, y) being a good pair is necessary in
Theorem 10.1. It was noticed in Example 10.1 that (x, y) is not a good pair,
and we can check that there exists no partial word z as desired.

COROLLARY 10.1
Let x and y be primitive partial words such that (x, y) is a good pair. If
xm ↑ yn for some positive integers m and n, then x ↑ y.

PROOF Suppose to the contrary that x 6↑ y. Since (x, y) is a good pair,
there exists a word z such that x ⊂ zk and y ⊂ zl for some integers k, l. Since
x 6↑ y, we get k 6= l. But then x or y is not primitive, a contradiction.

REMARK 10.2 Note that if both x and y are full words such that
xm = yn for some positive integers m and n, then (x, y) is a good pair.
Corollary 10.1 hence implies that if x, y are primitive full words satisfying
xm = yn for some positive integers m and n, then x = y.

We conclude this section by further investigating the equation x2 ↑ ym on
partial words where m is a positive integer. The proof is left as an exercise

1This graphic and the other that follows were generated using a C++ applet on one of the
author’s websites, mentioned in the Website Section at the end of this chapter.
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for the reader.

PROPOSITION 10.1

Let x, y be partial words. Then x2 ↑ ym for some positive integer m if and
only if there exist u, v, u0, v0, . . . , um−1, vm−1 such that y = uv,

x = (u0v0) . . . (un−1vn−1)un = vn(un+1vn+1) . . . (um−1vm−1)

where 0 ≤ n < m, u ↑ ui and v ↑ vi for all 0 ≤ i < m, and where one of the
following holds:

• m = 2n and u = ε.

• m = 2n+ 1 and |u| = |v|.

10.2 The equation x2 ↑ ymz

In this section, we investigate the equation x2 ↑ ymz on partial words where
it is assumed that m is a positive integer and z is a prefix of y. The equation
x2 ↑ ymz will play a crucial role in the solution of the equation xmyn ↑ zp

discussed in the next section.
Consider the compatibility relation

(a��a)2 ↑ (aab)2aa

where x = a��a, y = aab and z = aa. We say that the triple (x, y, z) is a
“nontrivial” solution of the equation x2 ↑ y2z. More formally, we have the
following definition.

DEFINITION 10.2 Let m be a positive integer. A triple (x, y, z) satis-
fying x2 ↑ ymz with z a prefix of y is called a trivial solution if x, y, z are
contained in powers of a common word (or there exists a word w such that
x ⊂ wk1 , y ⊂ wk2 , and z ⊂ wk3 for some integers k1, k2, k3).

Obviously, if x, y, z are contained in powers of a common word, then the
equation x2 ↑ ymz may have a solution for some m. In order to characterize
all other solutions, we need the concept of a “good triple” of partial words.

DEFINITION 10.3 Let x, y, z be partial words such that z is a proper
prefix of y. Then (x, y, z) is a good triple if for some positive integer m
there exist partial words u, v, u0, v0, . . . , um−1, vm−1, zx such that u 6= ε, v 6= ε,
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y = uv,

x = (u0v0) . . . (un−1vn−1)un (10.3)
= vn(un+1vn+1) . . . (um−1vm−1)zx (10.4)

where 0 ≤ n < m, u ↑ ui and v ↑ vi for all 0 ≤ i < m, z ↑ zx, and where one
of the following holds:

• m = 2n, |u| < |v|, and there exist partial words u′, u′n such that zx =
u′un, z = uu′n, u ↑ u′ and un ↑ u′n.

• m = 2n+1, |u| > |v|, and there exist partial words v′2n and z′x such that
un = v2nzx, u = v′2nz

′
x, v2n ↑ v′2n and zx ↑ z′x.

Let us give an example before we characterize all solutions of the equation
x2 ↑ ymz.

Example 10.3
Let x = abca�c�abca, y = abcaa�c and z = a. Here z is a proper prefix of
y. Set m = 3. We can decompose x into a factor of length |y| = 7 with a
remaining factor of length 4:

x = (abca�c�)abca

Then we split the factor of length 7 into a first factor of length 4 and a second
factor of length 3:

(abca)(�c�)(abca) = u0v0u1

Here n = 1, and so m = 2n + 1. Decomposing x starting with a block of
length 3 instead leads to

(abc)(a�c�)(abc)(a) = v1u2v2zx

Note that all the u’s have length 4 and all the v’s have length 3. The pword
y can then be split into a 4-length piece followed by a 3-length piece: y =
(abca)(a�c) = uv. We can check that u ↑ ui and v ↑ vi for all 0 ≤ i < 3
and that z ↑ zx. Moreover, setting v′2 = abc and z′x = a, we have u1 = v2zx,
u = v′2z

′
x, v2 ↑ v′2 and zx ↑ z′x. Thus the triple (x, y, z) qualifies as a good

triple.

We now state the “good triple” theorem.

THEOREM 10.2
Let x, y, z be partial words such that z is a proper prefix of y. Then x2 ↑ ymz
for some positive integer m if and only if (x, y, z) is a good triple.



Equations on Partial Words 289

PROOF Note that if the conditions hold, then trivially x2 ↑ ymz for
some positive integer m. If x2 ↑ ymz for some positive integer m, then there
exist partial words u, v and an integer n such that y = uv, x ↑ (uv)nu and
x ↑ v(uv)m−n−1z. Thus |x| = n(|u|+ |v|)+ |u| = (m−n−1)(|u|+ |v|)+ |v|+ |z|
which clearly shows

|z| = (2n−m+ 2)|u|+ (2n−m)|v| (10.5)

This determines a relationship between m and n. There are two cases to
consider which correspond to assumptions on |u| and |v|. Under the assump-
tion |u| = |v| we see that z must be either empty or equal to y which is a
contradiction. If we assume |u| < |v|, then (10.5) shows |z| = 2|u|, and if we
assume |u| > |v|, then |z| = |u| − |v|. Now note that x2 may be factored in
the following way:

x2 = (u0v0) . . . (un−1vn−1)(unvn)(un+1vn+1) . . . (um−1vm−1)zx

Here ui ↑ u and vi ↑ v and zx ↑ z. From this it is clear that (10.3) and (10.4)
are satisfied.

Note that u 6= ε (otherwise |u| < |v|, in which case |z| = 2|u| = 0), and
also v 6= ε (otherwise, |u| > |v|, in which case |z| = |u| − |v| = |y|). First
assume |u| < |v|, equivalently |z| = 2|u| and m = 2n. Note that the suffix of
length |u| of zx must be un and therefore is compatible with u. The prefix
of length |u| of z must be u itself since z is a prefix of y. Thus zx = u′un

and z = uu′n where u ↑ u′ and un ↑ u′n which is one of our assertions. Now
assume |u| > |v|, that is |z| = |u| − |v| and m = 2n+ 1. Note by cancellation
that un = v2nzx. Since un ↑ u, we can rewrite u as v′2nz

′
x where v2n ↑ v′2n and

zx ↑ z′x, which is our other assertion.

Example 10.4
Returning to Example 10.3 where x = abca�c�abca, y = abcaa�c and z = a,
we can check that x2 ↑ y3z. Figure 10.2 shows the decomposition of x, y, and
z according to Definition 10.3.

FIGURE 10.2: An example of the good triple equation.

We end this section with two corollaries.

COROLLARY 10.2
Let x, y be partial words such that |x| ≥ |y| > 0 and let z be a prefix of y.

Assume that x2 ↑ ymz for some positive integer m.
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Referring to the notation of Theorem 10.2 (when z 6= ε and z 6= y) or
referring to the notation of Proposition 10.1 (otherwise), both w ↑ uv and
w ↑ vu hold where w denotes the prefix of length |y| of x.

Moreover, u and v are contained in powers of a common word if (z = ε and
m = 2n) or (z = y and m+ 1 = 2n). This is also true if any of the following
six conditions hold with u 6= ε and v 6= ε:

1. y is full and w has at most one hole.

2. y is full and w is not {|u|, |v|}-special.

3. w is full and y has at most one hole.

4. w is full, and either (|u| ≤ |v| and uv is not (|u|, |v|)-special) or (|v| ≤ |u|
and vu is not (|v|, |u|)-special).

5. uv ↑ vu and y has at most one hole.

6. uv ↑ vu, and either (|u| ≤ |v| and uv is not (|u|, |v|)-special) or (|v| ≤ |u|
and vu is not (|v|, |u|)-special).

PROOF We show the result when z is a proper prefix of y (or when z 6= ε
and z 6= y). This part of the proof refers to the notation of Theorem 10.2. If
m > n + 1, then from the fact that y = uv and x ↑ ynu and x ↑ vym−n−1z,
we get w ↑ uv and w ↑ vu. If on the other hand m = n+ 1, then x ↑ yu and
x ↑ vz. It follows that |u| < |z| and we also get w ↑ uv and w ↑ vu.

For Statement 1, since u, v are full, we get w ⊂ uv and w ⊂ vu and by
Lemma 10.5, uv = vu and u, v are powers of a common word.

For Statement 2, the result follows similarly since uv = vu by Lemma 2.4.
For Statement 3, we get uv ↑ vu. By Theorem 2.5, u and v are contained

in powers of a common word.
Statement 4 follows similarly as Statement 3 using Theorem 2.6. Statement

5 follows similarly as Statement 3, and Statement 6 as Statement 4.

COROLLARY 10.3
Let x, y, z be words such that z is a prefix of y. If x, y are primitive and
x2 = ymz for some integer m ≥ 2, then x = y.

10.3 The equation xmyn ↑ zp

Certainly, if there exist a word w such that

x ⊂ wnp and y ⊂ wmp and z ⊂ w2mn
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then

xmym ⊂ w2mnp

zp ⊂ w2mnp

and the equation xmyn ↑ zp has a “trivial” solution.
However, there may be “nontrivial” solutions as is seen with the compati-

bility relation

(a�b)2(b�a)2 ↑ (abba)3

There is no common word w such that all a�b, b�a and abba are contained in
powers of w.

In this section, we give the structure of all the solutions of the equation
xmyn ↑ zp when m ≥ 2, n ≥ 2 and p ≥ 4. We will reduce the number of cases
in proving the main Theorem 10.3 by using the following lemma.

LEMMA 10.6
Let x, y, z be partial words and let m,n, p be positive integers. If xmyn ↑ zp,

then (rev(y))n(rev(x))m ↑ (rev(z))p.

We start by defining two types of solutions.

DEFINITION 10.4 There exists a partial word w such that x, y, z are
contained in powers of w. We call such solutions the trivial or Type 1
solutions.

DEFINITION 10.5 The partial words x, y, z satisfy x ↑ z and y ↑ z. We
call such solutions the Type 2 solutions.

It is an easy exercise to check that if z is full, then Type 2 solutions are
Type 1 solutions.

THEOREM 10.3
Let x, y, z be primitive partial words such that (x, z) and (y, z) are good pairs.
Let m,n, p be integers such that m ≥ 2, n ≥ 2 and p ≥ 4. Then the equation
xmyn ↑ zp has only solutions of Type 1 or Type 2 unless one of the following
holds:

• x2 ↑ zkz′ for some integer k ≥ 2 and nonempty prefix z′ of z.

• z2 ↑ xlx′ for some integer l ≥ 2 and nonempty prefix x′ of x.

PROOF By Lemma 10.6, we need only examine the case when |xm| ≥ |yn|.
Now assume xmyn ↑ zp has some solution that is not of Type 1 or Type 2.
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Our assumption on the lengths of xm and yn implies that |xm| ≥ |z2| and
therefore either |x2| ≥ |z2| or |x2| < |z2|. If |x2| ≥ |z2|, then x2 ↑ zkz′ for
some integer k ≥ 2 and prefix z′ of z. And if |x2| < |z2|, then z2 ↑ xlx′ for
some integer l ≥ 2 and prefix x′ of x.

Consider the case where z′ = ε (the case x′ = ε is similar). Corollary 10.1
implies that x ↑ z. From xmyn ↑ zp and x ↑ z, using the simplification rule,
we get yn ↑ zp−m. Using Corollary 10.1 again, we have y ↑ z. Hence this case
forms Type 2 solutions.

In the case of full words, there only exist the Type 1 solutions.

COROLLARY 10.4
Let x, y, z be words and let m,n, p be integers such that m ≥ 2, n ≥ 2 and
p ≥ 4. Then the equation xmyn = zp has no nontrivial solutions.

PROOF We prove the result when x, y, z are primitive (the nonprimitive
case is left to the reader). As in the proof of Theorem 10.3, we need only
examine the case when |xm| ≥ |yn|. This assumption leads to either x2 = zkz′

for some integer k ≥ 2 and prefix z′ of z, or z2 = xlx′ for some integer l ≥ 2
and prefix x′ of x. In the first case, we have x = z by Corollary 10.3, and
from the equation xmyn = zp, we get yn = zp−m. The latter implies that y
and z are powers of a common word, and the solution is trivial. The second
case is analogous.

Exercises

10.1 Show that for any partial word x and positive integers m, p such that
|x| is divisible by p,

xm

[
i
p

]
= (x

[
i
p

]
)m

where 0 ≤ i < p.

10.2 S Give the decompositions of x = �bbab� and y = a�b that satisfy
Proposition 10.1.

10.3 Is (a�ba���bb��abb, ab��a, ab�) a good triple?

10.4 Let x = �bb�b�, y = ab��b and z = ab. Display the alignment of x2 and
ymz for some m. What can you conclude about the triple (x, y, z)?
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10.5 Show that (a�ba���bb���bb, ab��a, ab�) is a good triple according to
Definition 10.3. Highlight the factorizations of x, y and z as is done in
Example 10.3.

10.6 Prove Lemma 10.6.

10.7 Show that if z is full, then Type 2 solutions of the equation xmyn ↑ zp

are also Type 1 solutions.

10.8 H Prove the nonprimitive case of Corollary 10.4.

10.9 Let x, y be full words. Prove that xm = yn for some positive integers
m,n if and only if there exists a word z such that x = zk and y = zl for
some integers k and l.

10.10 Check that the following are solutions of the equation xmyn ↑ zp for
some suitable values of m,n and p:

• x = abc, y = abd and z = ab� is a solution of x2y2 ↑ z4,

• x = ab�, y = a�c and z = �bcabc is a solution of x4y4 ↑ z4.

Which type of solutions are they?

10.11 S Find integers m,n and p for which

x = abca�c�abca, y = bc�aac and z = abcaa�c

is a solution of xmyn ↑ zp. Repeat for

x = abca��c, y = a and z = abc�bc��bca

Challenging exercises

10.12 S Prove Proposition 10.1.

10.13 What does it mean for a triple of full words (x, y, z) to be a good
triple?

10.14 Show that Corollary 10.3 does not hold when m = 1.

10.15 Prove Corollary 10.3.

10.16 Show Corollary 10.2 when z = ε or z = y.

10.17 S Let x, y, z be partial words such that z is a prefix of y. Assume
that x, y are primitive and that x2 ↑ ymz for some integer m ≥ 2. Show
that if x has at most one hole and y is full, then x ↑ y.



294 Algorithmic Combinatorics on Partial Words

10.18 Show that Exercise 10.17 does not hold when m = 1.

10.19 H Prove that Exercise 10.17 does not hold when x is full and y has
one hole.

10.20 S Find a nontrivial solution to the equation x2y2 ↑ z3.

10.21 Show the case of x′ = ε in the proof of Theorem 10.3.

Programming exercises

10.22 Write a program that takes as input two partial words x, y and outputs
two positive integers m,n such that xm ↑ yn whenever they exist, in
which case your program should create an alignment of xm and yn.

10.23 Write a program to check whether or not a pair (x, y) of partial words
is a good pair. Run you program on the pairs

• (acbadb, a�b)

• (ab�a�b, a�babba�babba��)

10.24 Design an applet that when given a good pair (x, y) as input, outputs
a pword z and integers k, l such that x ⊂ zk and y ⊂ zl.

10.25 Design an algorithm that discovers the decomposition of a pair of par-
tial words x, y according to Proposition 10.1 in case x2 ↑ ym for some
positive integer m.

10.26 Implement the decomposition of x, y and z as described in Defini-
tion 10.3 in case (x, y, z) is a good triple. Run your program on

• (a�ba���bb���bb, ab��a, ab�)

• (a�ba���bb��abb, ab��a, ab�)

Website

A World Wide Web server interface at

http://www.uncg.edu/mat/research/equations
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has been established for automated use of programs related to the equations
discussed in this chapter. In particular, one of the programs takes as input
a good pair (x, y) of partial words according to Definition 10.1, and outputs
a partial word z and integers k, l such that x ⊂ zk and y ⊂ zl (this program
implements the good pair Theorem 10.1.) Another program takes as input a
triple (x, y, z) of partial words such that z is a proper prefix of y, and outputs
an integer m such that x2 ↑ ymz, if such m exists, and shows the decomposi-
tion of x, y and z according to Definition 10.3 (this program implements the
good triple Theorem 10.2).

Bibliographic notes

An important topic in algorithmic combinatorics on words is the satisfia-
bility problem for equations on words, that is, the problem to decide whether
or not a given equation on the free monoid has a solution. The problem
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Makanin answered it positively [110]. However, Makanin’s algorithm is one
of the most complicated algorithms ever presented and has at least expo-
nential space complexity [107]. Rather recently, Plandowski showed, with a
completely new algorithm, that the problem is actually in polynomial space
[120] and [121]. However, the structure of the solutions cannot be found us-
ing Makanin’s algorithm. Even for rather short instances of equations, for
which the existence of solutions may be easily established, the structure of
the solutions may be very difficult to describe.

For integers m ≥ 2, n ≥ 2 and p ≥ 2, the equation xmyn = zp possesses a
solution in a free group only when x, y and z are each a power of a common
element. This result, which received a lot of attention, was first proved by
Lyndon and Schützenberger for free groups [109]. Their proof implied the case
for free monoids since every free monoid can be embedded in a free group.
Direct proofs for free monoids appear in [51, 52, 89]. Corollaries 10.3 and 10.4
are from Chu and Town [52].

The results on partial words of Sections 10.1, 10.2 and 10.3 are from Blanchet-
Sadri, Blair and Lewis [20].





Chapter 11

Correlations of Partial Words

In this chapter, we study the combinatorics of possible sets of periods and weak
periods of partial words. In Section 11.1, we introduce the notions of binary
and ternary correlations, which are binary and ternary vectors indicating the
periods and weak periods of partial words. In Section 11.2, we characterize
precisely which of these vectors represent the period and weak period sets
of partial words and prove that all valid correlations may be taken over the
binary alphabet. In Section 11.3, we show that the sets of all such vectors of a
given length form distributive lattices under suitably defined partial orderings.
In Section 11.4, we show that there is a well defined minimal set of generators,
which we call an irreducible set of periods, for any binary correlation of length
n and demonstrate in Section 11.5 that these generating sets are the so-called
primitive subsets of {1, 2, ..., n − 1}. Finally, we investigate the number of
partial word correlations of length n.

11.1 Binary and ternary correlations

The leading concept in this chapter is that of “correlation” which we first
define for full words.

DEFINITION 11.1 Let u be a (full) word and let v be the binary vector
of length |u| for which v0 = 1 and

vi =

{
1 if i ∈ P(u)
0 otherwise

(11.1)

We call v the correlation of u.

Example 11.1
The word abbababbab has periods 5 and 8 (and 10) and thus has correlation
1000010010.

This representation gives a useful and concise way of representing period

297
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sets of strings of a given length over a finite alphabet.
Among the possible 2n binary vectors of length n, only a proper subset are

valid correlations. Indeed, the vector 100001001000 is not the correlation of
any word, a fact implied by Theorem 3.1 because any word having periods 5
and 8 and length at least 5 + 8 − gcd(5, 8) has also gcd(5, 8) = 1 as period.
Valid correlations will also be called full word correlations.

When p ∈ P ′(u) \ P(u) we say that the partial word u has a strictly weak
period of p. We now extend the definition of a “correlation” of a full word to
incorporate the difference between strictly weak periods and strong periods,
a difference which does not occur in the case of full words.

DEFINITION 11.2

• The binary correlation of a partial word u satisfying P ′(u) = P(u) is
the binary vector v of length |u| such that v0 = 1 and

vi =

{
1 if i ∈ P(u)
0 otherwise

(11.2)

• The ternary correlation of a partial word u is the ternary vector v of
length |u| such that v0 = 1 and

vi =


1 if i ∈ P(u)
2 if i ∈ P ′(u) \ P(u)
0 otherwise

(11.3)

We will say that a ternary vector v of length n is a valid ternary correlation
provided that there exists a partial word u of length n over an alphabet A
such that v is the ternary correlation of u. We define

P(v) = {i | 0 < i < n and vi = 1} ∪ {n}

and

P ′(v) = {i | 0 < i < n and vi > 0} ∪ {n}

as the period set and the weak period set of v respectively. Valid binary
correlations and related terminology are defined similarly. Valid binary or
ternary correlations will also be called partial word correlations. When i ∈
P(v) \ {n}, we say that i is a nontrivial period of v. Similarly, when i ∈
P ′(v) \ {n}, we say that i is a nontrivial weak period of v.

Example 11.2
The partial word abca�cadca has periods 9 (and 10) and strictly weak period
3. Thus its binary correlation vector is 1000000001 and its ternary correlation
vector is 1002000001.
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11.2 Characterizations of correlations

We now state one of the results that motivates this chapter. It gives a
complete characterization of the possible period sets of full words of arbitrary
length. We first need a couple of definitions.

DEFINITION 11.3 A binary vector v of length n is said to satisfy
the forward propagation rule provided that for all 0 ≤ p < q < n such
that vp = vq = 1 we have that vp+i(q−p) = 1 for all integers i satisfying
2 ≤ i < n−p

q−p .

DEFINITION 11.4 A binary vector v of length n is said to satisfy the
backward propagation rule provided that for all 0 ≤ p < q < min(n, 2p)
such that vp = vq = 1 and v2p−q = 0 we have that vp−i(q−p) = 0 for all
integers i satisfying 2 ≤ i ≤ min(b p

q−pc, b
n−p
q−p c).

Example 11.3

The vector v = 100001001000 of length n = 12 does not satisfy the forward
propagation rule since p = 5 and q = 8 satisfy vp = vq = 1 but vp+i(q−p) =
v11 6= 1 when i = 2.

THEOREM 11.1

For correlation v of length n the following are equivalent:

1. There exists a word over the binary alphabet with correlation v.

2. There exists a word over some alphabet with correlation v.

3. The correlation v satisfies the forward and backward propagation rules.

REMARK 11.1 As a corollary, we obtain that for any word u over an
alphabet A, there exists a binary word v of length |u| such that P(v) = P(u),
a result that was stated in Chapter 5 (see Theorem 5.1).

Referring to Example 11.3, notice that if a twelve-letter word has periods
5 and 8, then it must also have period 11. Some periods are implied by other
periods because of the forward propagation rule.

We begin the process of characterizing the partial word correlations by
recording the next lemma which formalizes the relationship between partial
words and the words that are compatible with them.
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LEMMA 11.1
Let u be a partial word over an alphabet A. Then

P(u) =
⋃

w∈C(u)∩A∗

P(w)

PROOF Consider first a period p of u. This implies that for each 0 ≤ i < p
the partial word ui,p = u(i)u(i+p)u(i+2p) . . . is 1-periodic, say with letter ci ∈
A (if ui,p is a string of �’s, then ci can be chosen as any letter in A). Letting
|u| = mp+ r for 0 ≤ r < p, we see that u ⊂ (c0c1 · · · cp−1)mc0c1 · · · cr−1 = w.
The full word w has period p and is compatible with u.

In the other direction, let w be a full word with period p that is compatible
with u. Then w(i) = u(i) for all i ∈ D(u). If 0 ≤ i, j < |u| with i ≡ j mod p,
we have that w(i) = w(j) by the definition of periodicity. But then if i, j ∈
D(u) with i ≡ j mod p, we have that u(i) = w(i) = w(j) = u(j) and thus p is
a period of u.

Example 11.4
Consider the partial word u = abca�cabca over the alphabet A = {a, b, c}.
Then P(u) = {3, 6, 9, 10} = P(w1) ∪ P(w2) ∪ P(w3) where w1 = abcaacabca,
w2 = abcabcabca, w3 = abcaccabca are the words w satisfying w ∈ C(u)∩A∗.

The characterization of partial word correlations relies on the following
concept.

DEFINITION 11.5 Let u and v be partial words of equal length. The
greatest lower bound of u and v is the partial word u ∧ v, where

(u ∧ v) ⊂ u and (u ∧ v) ⊂ v, and
if w ⊂ u and w ⊂ v, then w ⊂ (u ∧ v)

Example 11.5
If u = ab�cdef��gh and v = acbcdef�fhh, then we can use the following table
to calculate u ∧ v:

u = a b � c d e f � � g h
v = a c b c d e f � f h h

u ∧ v = a � � c d e f � � � h

That is, whenever the partial words differ, we put a �. Whenever they are the
same, we put their common symbol.

One property we notice immediately about the greatest lower bound and
which we leave as an exercise for the reader is the following.
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LEMMA 11.2
If u, v are partial words of equal length over an alphabet A, then P(u)∪P(v) ⊂
P(u ∧ v) and P ′(u) ∪ P ′(v) ⊂ P ′(u ∧ v).

We are now ready to state the first part of the characterization theorem.

THEOREM 11.2
Let n be a positive integer. Then for any finite collection u1, u2, . . . , uk of full
words of length n over an alphabet A, there exists a partial word w of length
n over the binary alphabet with P(w) = P ′(w) = P(u1)∪P(u2)∪ · · · ∪P(uk).

PROOF The case k = 1 follows from Theorem 5.1 and so we assume that
k ≥ 2.

For all integers p > 0, define 〈p〉n to be the set of positive integers less than
n which are multiples of p. Then

k⋃
j=1

P(uj) \ {n} =
⋃
p∈P

〈p〉n

for some P ⊂ {1, . . . , n − 1}. Thus for all 1 ≤ j ≤ k, we assume that
P(uj) = 〈pj〉n ∪ {n} for some 0 < pj < n.

With these assumptions, we move on to the case when k = 2. For notational
clarity we set u = u1, v = u2, P(u) \ {n} = 〈p〉n and P(v) \ {n} = 〈q〉n for
some 0 < p < q < n. Define

ωp =

{
(abp−1)mabr−1 if r > 0
(abp−1)m if r = 0

(11.4)

where n = mp + r with 0 ≤ r < p. Similarly define ωq. Obviously P(ωp) =
〈p〉n ∪ {n} and P(ωq) = 〈q〉n ∪ {n}. Then we claim that P(ωp ∧ ωq) =
P(ωp) ∪ P(ωq).

By Lemma 11.2 we have P(ωp)∪P(ωq) ⊂ P(ωp∧ωq). In the other direction,
consider ξ ∈ P(ωp ∧ωq). Assume that ξ /∈ P(ωp)∪P(ωq). Then by definition
we have that neither p nor q divides ξ. Now the first letter of ωp ∧ ωq is a
as both ωp and ωq begin with a. Then for all i divisible by ξ we have that
(ωp ∧ ωq)(i) is either a or �. But both the symbols a and � can appear only
where a appears in either ωp or ωq. These occur precisely at the positions
j where p|j or q|j respectively. As neither p nor q divides ξ we have that
(ωp ∧ ωq)(ξ) = b, a contradiction.

Moreover, we see that ωp ∧ ωq has no strictly weak periods. Assume the
contrary and let ξ ∈ P ′(ωp∧ωq)\P(ωp∧ωq). Then there exist i, j ∈ D(ωp∧ωq)
such that i ≡ j mod ξ and (ωp ∧ ωq)(i) = a and (ωp ∧ ωq)(j) = b, and for all
0 ≤ l < n such that l ≡ i mod ξ and l is strictly between i and j we have
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l ∈ H(ωp ∧ ωq). Let l be such that |i− l| is minimized, that is, if i < j then l
is minimal and if i > j then l is maximal:

i j
l → � �

...
...
� � ← l
j i

This minimal distance is obviously ξ. Then p and q divide i and at least one
of them divides l. But we see that only one of p and q divides l, for if both
did then (ωp ∧ ωq)(l) = a 6= �. Without loss of generality let p|l. But as p|i
and p|l, we have p divides |i − l| = ξ. Then since ωp is p-periodic, we have
that ωp(i′) = ωp(i) = a for all i′ ≡ i mod p. But j ≡ i mod ξ and p|ξ, so
j ≡ i mod p. Therefore, ωp(j) = a and thus (ωp ∧ωq)(j) 6= b, a contradiction.

Now let k > 2 and let {p1, . . . , pk} ⊂ {1, . . . , n−1} be the periods such that
P(uj) = 〈pj〉n∪{n}. We claim that P(ωp1∧· · ·∧ωpk

) = P(ωp1)∪· · ·∪P(ωpk
).

But we see the same proof applies. Specifically, ωpj
(0) = a for all 1 ≤ j ≤ k.

Moreover, we see that (ωp1 ∧ · · · ∧ ωpk
)(ξ) is a or � if and only if ωpj (ξ) = a

for some 1 ≤ j ≤ k. But ωpj (ξ) = a if and only if pj |ξ. Thus, if ξ ∈
P(ωp1 ∧ · · ·∧ωpk

)\{n} then pj |ξ for some j, that is, ξ ∈ 〈pj〉n = P(ωpj
)\{n}

for some j. The proof of the nonexistence of strictly weak periods translates
easily as well.

Theorem 11.2 tells us that every union of the period sets of full words over
any alphabet is the period set of a binary partial word. But Lemma 11.1 tells
us that the period set of any partial word u over an alphabet A (including
the binary alphabet) is the union of the period sets of all full words over A
compatible with u. Thus, we have a bijection between these sets which we
record as the following corollary.

COROLLARY 11.1
The set of binary correlations of partial words of length n over the binary

alphabet is precisely the set of unions of correlations of full words of length n
over all nonempty alphabets.

In light of Lemma 11.1, the following corollary is essentially a rephrasing
of the previous one:

u is a partial word over A

⇓ Lemma 11.1

P(u) = P(u1) ∪ P(u2) ∪ · · · ∪ P(uk)
where u1, . . . , uk are the full words over A compatible with u
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⇓ Theorem 11.2

There exists a partial word v over {a, b} with
P(v) = P ′(v) = P(u1) ∪ P(u2) ∪ · · · ∪ P(uk) = P(u)

COROLLARY 11.2
The set of binary correlations of partial words over an alphabet A with ‖A‖ ≥
2 is the same as the set of binary correlations of partial words over the binary
alphabet. Phrased differently, if u is a partial word over an alphabet A, then
there exists a binary partial word v of length |u| such that P(v) = P(u).

Theorem 11.2 and Corollaries 11.1 and 11.2 give us characterizations of
binary correlations of partial words over an arbitrary alphabet. They do
not mention at all, though, the effect of strictly weak periods. The second
part of the characterization theorem completely characterizes the partial word
ternary correlations.

THEOREM 11.3
A ternary vector v of length n is the ternary correlation of a partial word

of length n over an alphabet A if and only if v0 = 1 and the following two
conditions hold:

1. If vp = 1, then vip = 1 for all 0 ≤ i < n
p .

2. If vp = 2, then vip = 0 for some 2 ≤ i < n
p .

PROOF Corollaries 11.1 and 11.2 imply the result for the case when
P ′(v) \ P(v) = ∅. For the opposite case, let v satisfy the above conditions
along with the assumption that n is at least 3 since the cases of one-letter
and two-letter partial words are trivial by simple enumeration considering all
possible renamings of letters. So we may now define

u = (
∧

p>0|vp=1

ωp) ∧ (
∧

p|vp=2

ψp) (11.5)

where ωp is as in Equality 11.4 and

ψp = abp−1�bn−p−1 (11.6)

with distinct letters a, b. We claim that u is a partial word with correlation
v.

Set P = {p | p > 0 and vp = 1} ∪ {n} and Q = {p | vp = 2}. By the proof
of Theorem 11.2, P ⊂ P(u). We show the reverse inclusion by contradiction.
Let p be a period of u that is not in P . Since u(0) = a, by the definition of
periodicity, u(ip) = a or u(ip) = � for all positive integers i. But u(ip) 6= a
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since ψq(j) 6= a for all q ∈ Q and j > 0. So u(ip) = � for all positive i.
Specifically, u(p) = � and so p is either in P or Q, but we assumed that
p /∈ P . Then vp = 2 and by our assumptions, there exists an integer i such
that 2 ≤ i < n

p and vip = 0 (or ip /∈ P ∪Q). But this means by construction
that u(ip) = b, a contradiction.

Since this gives that P = P(u) and we have that P ∪Q ⊂ P ′(u) it suffices to
show that if p ∈ P ′(u)\P(u) then p ∈ Q. So assume that p ∈ P ′(u)\P(u). We
have that some ui = u(i)u(i+ p)u(i+ 2p) . . . contains both a and b. But the
only possible location of a is 0, so we may write this as u(0) = a, u(jp) = �,
and u(kp) = b for some k ≥ 2 and 0 < j < k. But notice then that u does not
have period p, and so p /∈ P . Thus, since u(p) = �, we have that p ∈ Q and
have thus completed this direction of the proof.

Now consider the other direction, that is, if we are given a partial word u
with correlation v, then v satisfies the conditions. By Lemma 11.1 we have
that Condition 1 must be met. So it suffices to show that Condition 2 holds.

If vp = 2, then there must exist some 0 ≤ i < p such that two distinct letters
a, b appear in ui. Assume without loss of generality that a appears before b.
Let k be a position with letter a in ui and k′ be a position with letter b in ui,
that is, u(i+ kp) = a and u(i+ k′p) = b. Then u is neither (k′ − k)p-periodic
nor (k′ − k)p-strictly weak periodic, or in other words, v(k′−k)p = 0. Thus v
satisfies Condition 2 and the result follows.

Example 11.6
The ternary vector v1 = 102000101 is a valid ternary correlation since it
satisfies both Conditions 1 and 2 of Theorem 11.3. However, the vector v2 =
102010101 violates Condition 2 and therefore is not a valid ternary correlation.

To emphasize the algorithm described in the proof of Theorem 11.3, we
record it as follows.

ALGORITHM 11.1
For n ≥ 3 and 0 < p < n, let n = mp+ r where 0 ≤ r < p. Then define

ωp =

{
(abp−1)m if r = 0
(abp−1)mabr−1 if r > 0

ψp = abp−1�bn−p−1

Then given a valid ternary correlation v of length n, the partial word ∧
p>0|vp=1

ωp

 ∧
 ∧

p|vp=2

ψp


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has ternary correlation v.

Example 11.7
Given v = 1020000101, then ab�bbbb�b� has correlation v as is seen by the
following computations:

ω7 = a b b b b b b a b b
ω9 = a b b b b b b b b a
ψ2 = a b � b b b b b b b

a b � b b b b � b �

In analogy to Corollary 11.2, we record the following.

COROLLARY 11.3
The set of ternary correlations of partial words over an alphabet A with
‖A‖ ≥ 2 is the same as the set of ternary correlations of partial words over
the binary alphabet. Phrased differently, if u is a partial word over an alphabet
A, then there exists a binary partial word v of length |u| such that P(v) = P(u)
and P ′(v) = P ′(u).

We end this section with the following two remarks.

REMARK 11.2 Note that this corollary was shown true in the case of
one hole in Chapter 5 (see Theorem 5.3).

REMARK 11.3 Note that this corollary stipulates that the alphabet A
must contain at least two letters. Otherwise, the only possible correlation of
length n is 1n.

11.3 Distributive lattices

Having completely characterized the set of full word correlations of length
n as well as the sets of binary and ternary partial word correlations of length
n and having shown that all such correlations may be taken as over the binary
alphabet, we give these sets names.

We will denote by Γn the set of all correlations of full words of length n.
We will also denote by ∆n (respectively, ∆′

n) the set of all partial word binary
(respectively, ternary) correlations of length n.
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In this section, we study some structural properties of the above mentioned
sets. We show that Γn,∆n and ∆′

n are all lattices under inclusion (suitably
defined in the case of ∆′

n). Moreover both ∆n and ∆′
n are distributive. We

start by defining the “distributive lattice” concept.
Let ρ be a binary relation defined on an arbitrary set S, that is, ρ ⊂ S×S.

We recall from Chapter 8, that instead of denoting (u, v) ∈ ρ, we often write
uρv. There, a reflexive, antisymmetric, and transitive relation ρ defined on S
was called a partial ordering, and (S, ρ) was called a partially ordered set or
poset.

Some examples of posets include the following.

Example 11.8

• Given a set S, the pair (2S ,⊂), where 2S = {X | X ⊂ S} is the power
set of S and ⊂ is standard inclusion, is a poset.

• Let An
� be the set of partial words of length n over the alphabet A

where A� = A ∪ {�}. Then the pair (An
� ,⊂), where ⊂ denotes the

“containment,” is a poset.

If ρ is a partial ordering on a finite set S, we can construct a “Hasse dia-
gram” for ρ on S by drawing a line segment from u up to v if u, v ∈ S with uρv
and, most importantly, if there is no other element w ∈ S such that uρw and
wρv (so there is nothing “in between” u and v). If we adopt the convention
of reading the diagram from bottom to top, then it is not necessary to direct
any edges.

DEFINITION 11.6 If (S, ρ) is a poset, then an element u ∈ S is called a
maximal element of S if for all w ∈ S, w 6= u implies (u,w) 6∈ ρ. Similarly,
an element u ∈ S is called a minimal element of S if for all w ∈ S, w 6= u
implies (w, u) 6∈ ρ. An element u ∈ S is called a null element if uρw for all
w ∈ S. Finally, an element u ∈ S is called a universal element if wρu for
all w ∈ S.

DEFINITION 11.7

• A join semilattice is a poset (S, ρ) such that for all u, v ∈ S, there
exists an element (u ∨ v)∈ S, called the join of u and v, such that
uρ(u ∨ v) and vρ(u ∨ v) and for all w with uρw and vρw we have that
(u ∨ v)ρw.

• A meet semilattice is a poset (S, ρ) such that for all u, v ∈ S, there
exists an element (u ∧ v)∈ S, called the meet of u and v, such that



Correlations of Partial Words 307

(u ∧ v)ρu and (u ∧ v)ρv and for all w with wρu and wρv we have that
wρ(u ∧ v).

• A lattice is a poset (S, ρ) that is both a join and a meet semilattice.

We give some examples.

Example 11.9

• The poset (2S ,⊂) is a lattice where the join ∨ is set union ∪ and the
meet ∧ is set intersection ∩. It has a null element, ∅, and a universal
element, S.

• The poset (An
� ,⊂) is a meet semilattice. Recall from Definition 11.5

that for any two partial words u, v over A of length n we have that
u ∧ v, the greatest lower bound of u and v, is the maximal word which
is contained in both u and v. It is represented in Figure 11.1 for n = 3
and A = {a, b}.

FIGURE 11.1: Meet semilattice (A3
�,⊂) where A = {a, b}.

DEFINITION 11.8 A lattice (S, ρ) is called distributive if for all
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u, v, w ∈ S, the following two equalities hold:

u ∧ (v ∨ w) = (u ∧ v) ∨ (u ∧ w)
u ∨ (v ∧ w) = (u ∨ v) ∧ (u ∨ w)

Example 11.10
The lattice (2S ,⊂) is distributive since the familiar distributive laws of sets
hold:

X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z)
X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z)

for all subsets X,Y, Z of S.

We now state the Jordan-Dedekind condition.

DEFINITION 11.9 Let (S, ρ) be a poset. A nonempty subset X of S is
called a chain if for all distinct u, v ∈ X we have that either uρv or vρu. The
length of a chain is its number of elements minus one. A chain X is called
maximal provided that for all u, v ∈ X with uρv and w ∈ S, if uρw and
wρv then w ∈ X. The poset (S, ρ) is said to satisfy the Jordan-Dedekind
condition if all maximal chains between two elements of S are of equal length.

Returning to the poset (A3
�,⊂) of Figure 11.1, it is easy to check that it

satisfies the Jordan-Dedekind condition. For instance, all maximal chains
between ��� and abb have length 3. They are

X1 = {���, ��b, a�b, abb}
X2 = {���, a��, ab�, abb}
X3 = {���, �b�, �bb, abb}

REMARK 11.4 If a poset violates the Jordan-Dedekind condition then
the poset is not distributive.

In the next two sections, we will give partial word counterparts to the
following theorem which is left as an exercise. For u, v ∈ Γn, define u ⊂ v if
P(u) ⊂ P(v).1

THEOREM 11.4
The pair (Γn,⊂) is a lattice which does not satisfy the Jordan-Dedekind

condition.

1Do not confuse “correlation u is contained in correlation v” as defined here with “partial
word u is contained in partial word v” as defined in Chapter 1.
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11.3.1 ∆n is a distributive lattice

For u, v ∈ ∆n, define u ⊂ v if P(u) ⊂ P(v), and p ∈ u if p ∈ P(u).

THEOREM 11.5
The pair (∆n,⊂) is a lattice.

• The meet of u and v, u∩ v, is the unique vector in ∆n such that P(u∩
v) = P(u) ∩ P(v).

• The join of u and v, u∪v, is the unique vector in ∆n such that P(u∪v) =
P(u) ∪ P(v).

• The null element is 10n−1.

• The universal element is 1n.

PROOF We leave it to the reader to show that the pair (∆n,⊂) is a poset
with null element 10n−1 and universal element 1n. First, if u, v ∈ ∆n then
(u ∩ v) ∈ ∆n. To see this, notice that if p ∈ (u ∩ v) then p ∈ u and p ∈ v.
Thus 〈p〉n ⊂ P(u) and 〈p〉n ⊂ P(v). So 〈p〉n ⊂ P(u∩ v) and by Theorem 11.3
we have that u ∩ v is a valid binary correlation. Second, if u, v ∈ ∆n then
(u ∪ v) ∈ ∆n. Indeed, if p ∈ u then 〈p〉n ⊂ P(u). Similarly if p ∈ v then
〈p〉n ⊂ P(v). Thus, if p ∈ (u∪v) then 〈p〉n ⊂ P(u∪v). Thus, by Theorem 11.3
we have that u ∪ v is a valid binary correlation.

Figure 11.2 depicts ∆6, the set of partial word binary correlations of length
6, as a lattice and Figure 11.3 its associated nontrivial period sets.

Since the meet and the join of binary correlations are the set intersection
and set union of the correlations, we have the following theorem.

THEOREM 11.6
The lattice (∆n,⊂) is distributive.

11.3.2 ∆′
n is a distributive lattice

We now expand our considerations to ∆′
n, the set of ternary correlations of

partial words of length n, and show that ∆′
n is a lattice again with respect to

inclusion, which we define suitably.
For u, v ∈ ∆′

n, define u ⊂ v if P(u) ⊂ P(v) and P ′(u) ⊂ P ′(v). Equiva-
lently, u ⊂ v provided that whenever ui > 0 we have that ui ≥ vi > 0. Or
more explicitly, u ⊂ v if the following two conditions hold:

• If ui = 1, then vi = 1.

• If ui = 2, then vi = 1 or vi = 2.
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FIGURE 11.2: A representation of the lattice ∆6.

FIGURE 11.3: The associated nontrivial period sets of Figure 11.2.
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Under these definitions, we have the following lemma.

LEMMA 11.3
The pair (∆′

n,⊂) is a poset. Its null element is 10n−1 and its universal element
is 1n.

PROOF If u ∈ ∆′
n, then u ⊂ u and so reflexivity holds.

For antisymmetry, consider u, v ∈ ∆′
n such that u ⊂ v and v ⊂ u. Then

whenever ui = 0 we have that vi = 0 since v ⊂ u. Moreover, whenever ui = 1
we must have that vi = 1 since u ⊂ v. Finally, whenever ui = 2 we have that
vi = 1 or vi = 2 since u ⊂ v and that vi 6= 1 since v ⊂ u. Thus, vi = 2.
Therefore, u = v.

For transitivity, let u, v, w ∈ ∆′
n satisfy u ⊂ v and v ⊂ w. When ui = 1

we have that vi = 1, and so wi = 1. And when ui = 2 we have that vi = 1
or vi = 2. In the first case we have that wi = 1 and in the second case we
have that wi = 1 or wi = 2. Thus, in either case, ui ≥ wi > 0. The inclusion
u ⊂ w follows.

Consider ternary correlations u, v ∈ ∆′
n. We define the intersection of u

and v as the ternary vector u ∩ v such that P(u ∩ v) = P(u) ∩ P(v) and
P ′(u ∩ v) = P ′(u) ∩ P ′(v). Equivalently,

(u ∩ v)i =


0 if either ui = 0 or vi = 0
1 if ui = vi = 1
2 otherwise

(11.7)

LEMMA 11.4
The set ∆′

n is closed under intersection.

PROOF Let u, v ∈ ∆′
n. If p ∈ P(u ∩ v) then up = vp = 1, and so

uip = vip = 1 and equivalently (u∩v)ip = 1 for all multiples ip of p. Moreover,
if p ∈ P ′(u∩v)\P(u∩v) then up or vp is 2. Without loss of generality, assume
that up = 2. Then Theorem 11.3 implies that for some multiple ip of p we
have that uip = 0. But this means that (u ∩ v)ip = 0 and so Theorem 11.3
implies that (u ∩ v) ∈ ∆′

n.

We may define the union in the analogous way. Specifically, for u, v ∈ ∆′
n,

P(u ∪ v) = P(u) ∪P(v) and P ′(u ∪ v) = P ′(u) ∪P ′(v). Equivalently, u ∪ v is
the ternary vector satisfying

(u ∪ v)i =


0 if ui = vi = 0
1 if either ui = 1 or vi = 1
2 otherwise

(11.8)
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However ∆′
n is not closed under union. Indeed, the union of the two cor-

relations u = 102000101 and v = 100010001 is (u ∪ v) = 102010101, which
violates the second condition of Theorem 11.3. Indeed, there is no i ≥ 2 such
that (u∪ v)i2 = 0. On the other hand, we can modify the union slightly such
that we obtain the join constructively. If we simply change (u∪ v)2 from 2 to
1, then we have created the valid ternary correlation 101010101. Calling this
vector u ∨ v, we see that u ⊂ (u ∨ v) and that v ⊂ (u ∨ v).

THEOREM 11.7
The poset (∆′

n,⊂) is a lattice.

• The meet of u and v, u ∧ v, is the unique vector in ∆′
n defined by

Equality 11.7.

• The join of u and v, u ∨ v, is the unique vector in ∆′
n defined by

P ′(u ∨ v) = P ′(u) ∪ P ′(v)

and

P(u ∨ v) = P(u) ∪ P(v) ∪B(u ∪ v)

where B(u ∪ v) is the set of all 0 < p < n such that (u ∪ v)p = 2 and
there exists no i ≥ 2 satisfying (u ∪ v)ip = 0.

PROOF The proof is analogous to the proof of Theorem 11.5 except this
time we do not have the union of the two correlations to explicitly define the
join. One method of proving that the join exists is to notice that the join
of u, v ∈ ∆′

n is the intersection of all elements of ∆′
n which contain u and v.

This intersection is guaranteed to be nonempty since ∆′
n contains a universal

element. Note that B(u∪v) is the set of positions in u∪v which do not satisfy
the second condition of Theorem 11.3.

We claim that u ∨ v is the unique join of u and v (and thus justify the
use of the traditional notation ∨ for the binary operation). Notice first that
since P(u ∪ v) = P(u) ∪ P(v) and P ′(u ∪ v) = P ′(u) ∪ P ′(v), we have that
(u ∪ v) ⊂ (u ∨ v). Thus we have that u ⊂ (u ∪ v) ⊂ (u ∨ v) and that
v ⊂ (u ∪ v) ⊂ (u ∨ v). We also see that (u ∨ v) ∈ ∆′

n. This follows from the
fact that if p ∈ P(u ∨ v) then either p ∈ P(u) ∪ P(v) or for all i ≥ 1 we have
that ip ∈ P ′(u) ∪P ′(v), and if p ∈ P ′(u ∨ v) \ P(u ∨ v) then (u ∪ v)p = 2 and
(u ∪ v)ip = 0 for some i ≥ 2, and so (u ∨ v)ip = 0 for some i ≥ 2. In the first
case where p ∈ P(u) ∪ P(v), we have that 〈p〉n ⊂ P(u) ∪ P(v) ⊂ P(u ∨ v).
In the second case where for all i ≥ 1 we have that ip ∈ P ′(u) ∪ P ′(v), by
the definition of u∨ v and the fact that the multiples of all multiples of p are
again multiples of p, we must have that 〈p〉n ⊂ P(u ∨ v). Thus, using the
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∨ operator instead of the ∪ operator resolves all conflicts with Theorem 11.3
and so (u ∨ v) ∈ ∆′

n. From here it suffices to show that (u ∨ v) is minimal.

Let w ∈ ∆′
n such that u ⊂ w and v ⊂ w and w ⊂ (u ∨ v). We must show

that w = (u ∨ v). Note first that if ui = vi = 0 then (u ∨ v)i = 0, and so
wi = 0. Moreover, if ui = 1 or vi = 1 then (u ∨ v)i = 1 by construction, and
also wi = 1 by the definition of inclusion. Finally, we must consider the case
when at least one of ui and vi is 2 while the other is either 0 or 2. In this
case we have by the definition of inclusion that wi = 1 or wi = 2. If wi = 2,
then there must be some k ≥ 2 such that wki = 0, and thus uki = vki = 0.
Therefore, (u ∨ v)ki = 0 and (u ∨ v)i = 2. On the other hand, if wi = 1, then
(u ∨ v)i = 1 since w ⊂ (u ∨ v). Thus, w = (u ∨ v).

Figure 11.4 depicts ∆′
5, the set of valid ternary correlations of length 5, as a

lattice and Figure 11.5 its associated nontrivial period and weak period sets.

FIGURE 11.4: A representation of the lattice ∆′
5.

Strangely, even though the join operation of ∆′
n is more complicated than

the join operation of ∆n, we still have that ∆′
n is distributive and thus satisfies

the Jordan-Dedekind condition. This is stated in the following theorem.

THEOREM 11.8

The lattice (∆′
n,⊂) is distributive.
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FIGURE 11.5: The associated nontrivial period and weak period sets of
Figure 11.4.

PROOF By definition, we must show the following two equalities:

u ∧ (v ∨ w) = (u ∧ v) ∨ (u ∧ w) (11.9)
u ∨ (v ∧ w) = (u ∨ v) ∧ (u ∨ w) (11.10)

for all u, v, w ∈ ∆′
n. We recall first that the archetypal distributive lattice

is a subset of a power set closed under set theoretic union and intersection.
Since the sets of weak periods of the meet and join of two ternary correlations
are defined as the intersection and union of the weak period sets of the two
correlations, we need not worry about showing the definition of equality for
the sets of weak periods. That is, the only difference in either equality between
the left and right hand sides could be in the sets of periods.

Consider first Equality 11.9. We must show that p ∈ P(u∧(v∨w)) = P(u)∩
P(v∨w) if and only if p ∈ P((u∧v)∨(u∧w)). We note that p ∈ P(u)∩P(v∨w)
if and only if p ∈ P(u) and p ∈ P(v ∨ w). But p ∈ P(v ∨ w) if and only if
either p ∈ P(v) ∪ P(w) or for all i ≥ 1 we have that ip ∈ P ′(v) ∪ P ′(w). In
the first case, p is in one of P(u ∧ v) and P(u ∧ w) and is thus in the union.
In the second case, we see that since p ∈ P(u) that 〈p〉n ⊂ P(u) ⊂ P ′(u).
Therefore, for all i ≥ 1 we have that ip ∈ P ′(u)∩P ′(v) or ip ∈ P ′(u)∩P ′(w),
and ip ∈ P ′(u ∧ v) ∪ P ′(u ∧ w). Thus, by the definition of ∨, we have that
p ∈ P((u∧v)∨(u∧w)). But all these assertions are bidirectional implications,
and therefore we have the equality we seek.

Next consider Equality 11.10. We must show that p ∈ P(u ∨ (v ∧ w)) if
and only if p ∈ P((u ∨ v) ∧ (u ∨ w)) = P(u ∨ v) ∩ P(u ∨ w). Assume that
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p ∈ P(u ∨ (v ∧ w)). If p ∈ P(u) or p ∈ P(v ∧ w) = P(v) ∩ P(w) then we
are done. Otherwise, for all i ≥ 1 we have that ip ∈ P ′(u) ∪ P ′(v ∧ w) =
P ′(u)∪ (P ′(v)∩P ′(w)) = (P ′(u)∪P ′(v))∩ (P ′(u)∪P ′(w)). But then we have

ip ∈ P ′(u) ∪ P ′(v) and ip ∈ P ′(u) ∪ P ′(w)

for all i ≥ 1, thus p ∈ P(u ∨ v) ∩ P(u ∨ w). The proof in the other direction
is the same and thus Equality 11.10 holds.

So unlike the lattice of correlations of full words which does not even sat-
isfy the Jordan-Dedekind condition, the lattices of both binary and ternary
correlations of partial words are distributive.

11.4 Irreducible period sets

We notice that in the case of full words, some periods are implied by other
periods because of the forward propagation rule (see Definition 11.3). For
instance, if a twelve-letter word has periods 7 and 9, then it must also have
period 11 because 11 = 7 + 2(9 − 7). The period set {7, 9, 11} can then be
reduced to the set {7, 9}, while the latter is irreducible.

We will denote by Λn the set of these irreducible period sets of full words
of length n. We invite the reader to prove the following proposition (we will
prove its partial word counterpart later in this section).

PROPOSITION 11.1
The pair (Λn,⊂) is not a lattice but does satisfy the Jordan-Dedekind condi-
tion as a poset.

The forward propagation rule does not hold in the case of partial words.
For example, abbbbbb�b�bb has periods 7 and 9 but does not have period 11.
Thus, {7, 9, 11} is irreducible in the sense of partial words, but not in the
sense of full words.

This leads us to the notion of generating set.

DEFINITION 11.10 A set P ⊂ {1, . . . , n−1} generates the correlation
v ∈ ∆n provided that for each 0 < i < n we have that vi = 1 if and only if
there exists p ∈ P and 0 < k < n

p such that i = kp.

One such P is P(v) \ {n}. But in general there are strictly smaller P which
have this property. For example, if v = 1001001101 then

{3, 6, 7, 9}
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{3, 6, 7}
{3, 7, 9}
{3, 7}

generate v. The set {3, 7} is the minimal generating set of v.
For every v ∈ ∆n, there is a well defined minimal generating set for v as

stated in the next lemma.

LEMMA 11.5

For every v ∈ ∆n, there exists a unique set P that generates v and is such
that for all sets P ′ that generate v we have that P ⊂ P ′. Namely, P is the
set of all p ∈ P(v) \ {n} such that for all q ∈ P(v) \ {n} with q 6= p we have
that q does not divide p.

PROOF If there exists q distinct from p such that q divides p, then
〈p〉n ⊂ 〈q〉n. Moreover, since there are no divisors of the elements of P in
P(v) \ {n} the only p ∈ P(v) \ {n} which can generate r ∈ P is r itself. Thus
we have achieved minimality.

We call the unique minimal generating set P of Lemma 11.5 the irreducible
period set of v and denote it by R(v). In the example above where v =
1001001101, R(v) = {3, 7} and {3, 7} is the irreducible period set of v.

We will denote by Φn the set of irreducible period sets of partial words
of length n. There is an obvious one-to-one correspondence (or bijection)
between ∆n and Φn given by

R : ∆n → Φn

v 7→ R(v)

E : Φn → ∆n

P 7→
⋃

p∈P 〈p〉n

For instance, the correspondence between ∆6 and Φ6 is as depicted in Fig-
ure 11.6 (to make it easier to read, we have deleted the trivial period 6 from
the period sets).

For n ≥ 3, we see immediately that the poset (Φn,⊂) is not a join semi-
lattice since the sets {1} and {2} do not have a join because {1} is maximal.
On the other hand, the following holds.

PROPOSITION 11.2

The pair (Φn,⊂) is a meet semilattice that satisfies the Jordan-Dedekind
condition. Here the null element is ∅, and the meet of two elements is simply
their intersection.
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FIGURE 11.6: Bijective correspondence between ∆6 and Φ6.

PROOF The proof is left as an exercise for the reader.

Figure 11.7 depicts Φ6 as a meet semilattice.

FIGURE 11.7: A representation of the meet semilattice Φ6.
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11.5 Counting correlations

In this section we look at the number of partial word correlations of a given
length. In the case of binary correlations, we give bounds and link the problem
to one in number theory, and in the case of ternary correlations we give an
exact count.

To begin, we recall the definition of a primitive set of integers from number
theory.

DEFINITION 11.11 Let S be a subset of N = {1, 2, . . .}. We say that
S is primitive if for any two distinct elements s, s′ ∈ S we have that neither
s divides s′ nor s′ divides s.

Example 11.11
The sets ∅, {1} and {p | p is prime} are examples of primitive sets.

The amazing thing is that the irreducible period sets of correlations v ∈ ∆n

are precisely the finite primitive subsets of {1, 2, . . . , n−1}. So if we can count
the number of finite primitive sets of integers less than n then we can count
the number of partial word binary correlations of length n. We present some
results on approximating this number.

THEOREM 11.9
Let S be a finite primitive set of size k with elements less than n. Then
k ≤

⌊
n
2

⌋
. Moreover, this bound is sharp.

PROOF We show this by induction. First note that the basis when n = 2
is obvious since the only such (nonempty) set is {1}. So consider n > 2. Then
the inductive hypothesis is that the maximum size of a finite primitive set
with elements less than n − 1 is

⌊
n−1

2

⌋
. This tells us that for any primitive

set with elements less than n, the subset of elements less than n− 1 can have
a maximum size of

⌊
n−1

2

⌋
. Thus, the whole set can have maximum length⌊

n−1
2

⌋
+ 1. When n is even,

⌊
n−1

2

⌋
+ 1 =

⌊
n
2

⌋
and we are done.

So consider the case when n is odd. We show that given a primitive set of
size

⌊
n−1

2

⌋
with elements less than n− 1 that n− 1 cannot be added to this

set. First notice that this statement is true for n = 3. So taking n ≥ 5, we see
that if S is a maximal primitive set with elements less than n− 1 then 1 /∈ S
since 1 divides all integers and the set {2, 3} is primitive and of size greater
than the set {1}. We claim that if n−1

2 is prime then n−1
2 ∈ S. We show this

by demonstrating that neither a divisor nor a multiple of n−1
2 can lie in S.

Indeed, the only proper divisor of n−1
2 is 1 and we have shown that 1 /∈ S.
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Moreover, the least proper multiple of n−1
2 is n − 1 itself. Thus, if n−1

2 /∈ S
then we may add it to S and obtain a strictly larger set than S.

If n−1
2 is not prime and n−1

2 ∈ S, then n − 1 cannot be added to S. If
n−1

2 is not prime and n−1
2 /∈ S, then some proper divisor of n−1

2 must be in
S. For if not we could again increase the size of the set while maintaining
primitivity simply by adding n−1

2 since the least multiple of n−1
2 is n−1. But

every divisor of n−1
2 is again a divisor of n−1, so n−1 cannot be added to S.

Thus the inductive step is proven and first statement of the lemma follows.
For the sharpness of the bound consider the set of integers which are greater

than or equal to
⌊

n+1
2

⌋
and which are less than n. All multiples of each element

of this set are at least n. Therefore, this is a primitive set of the desired size.

This bound shows that the number of partial word binary correlations of
length n is at most the number of subsets of {1, 2, . . . , n− 1} of size at most⌊

n
2

⌋
. This number is

bn
2 c∑

i=0

(
n− 1
i

)
=

2n−2 + 1
2

(n−1
n−1

2

)
if n is odd

2n−2 +
( n−1

bn−1
2 c

)
if n is even

(11.11)

Moreover, the sharpness of the bound derived in Theorem 11.9 gives us that

‖∆n‖ ≥ 2b
n
2 c

Thus

ln 2
2 ≤

ln ‖∆n‖
n ≤ ln 2

The bounds we give show explicitly that ln ‖∆n‖ ∈ Θ(n). 2

Several values of this sequence are listed in Table 11.1. The time and space
needed to continue this sequence farther is very great and so the problem does
not lend itself to much empirical observation.

We now show that the set of partial word ternary correlations is actually
much more tractible to count than the set of partial word binary correlations.
Specifically, we show that ‖∆′

n‖ = 2n−1.
To this end we first note an interesting consequence of Theorem 11.3.

LEMMA 11.6
Let u be a partial word of length n and let p ∈ P ′(u). Then p ∈ P(u) if and
only if ip ∈ P ′(u) for all 0 < i ≤ bn

p c. That is, a weak period is a strong
period if and only if all of its multiples are also weak periods.

2For f, g : Z+ → R, we say that f is “big theta of g,” and write f ∈ Θ(g), if there exist
k1, k2 ∈ R+ and a positive integer N such that k1|g(n)| ≤ |f(n)| ≤ k2|g(n)| for all integers
n ≥ N .
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TABLE 11.1: Number of primitive sets of
integers less than n.

n Number n Number n Number

1 1 15 733 29 355729
2 2 16 1133 30 711457
3 3 17 1529 31 879937
4 5 18 3057 32 1759873
5 7 19 3897 33 2360641
6 13 20 7793 34 3908545
7 17 21 10241 35 5858113
8 33 22 16513 36 10534337
9 45 23 24593 37 12701537
10 73 24 49185 38 25403073
11 103 25 59265 39 38090337
12 205 26 109297 40 63299265
13 253 27 163369 41 81044097
14 505 28 262489 42 162088193

PROOF If p ∈ P ′(u) and all of its multiples are also in P ′(u), then we
have by Theorem 11.3 that p /∈ P ′(u) \ P(u). Thus, p ∈ P(u). On the other
hand, if p ∈ P(u) then we have again by Theorem 11.3 that all of its multiples
are in P(u) ⊂ P ′(u). Therefore, the lemma follows.

This lemma leads us to the following.

LEMMA 11.7

If S ⊂ {1, 2, . . . , n − 1}, then there is a unique ternary correlation v ∈ ∆′
n

such that P ′(v) \ {n} = S.

PROOF For each p ∈ S, let vp = 1 provided that all of the multiples of
p are in S and let vp = 2 provided that there is some multiple of p which is
not in S. For all other 0 < p < n, let vp = 0. Notice that v satisfies the
conditions of Theorem 11.3 to belong to ∆′

n. Moreover, it is obvious that
these are the conditions forced on the ternary vector by Theorem 11.3. Thus,
this correlation is unique.

We note that Lemma 11.7 agrees with the definition of the join forced
upon us in Section 11.3. Considering all periods as weak periods and then
determining which ones are actually strong periods is how we defined that
operation.

So the cardinality of the set of partial word ternary correlations is the same
as the cardinality of the power set of {1, 2, . . . , n− 1}.



Correlations of Partial Words 321

PROPOSITION 11.3
The equality ‖∆′

n‖ = 2n−1 holds.

Table 11.2 lists all the 32 partial word ternary correlations of ∆′
6.

TABLE 11.2: The partial word
ternary correlations of ∆′

6.
100000 101010 111111 120111
100001 101011 120000 121010
100010 101110 120001 121011
100011 101111 120010 121110
100100 102000 120011 122000
100101 102001 120100 122001
100110 102100 120101 122100
100111 102101 120110 122101

Exercises

11.1 What is the binary correlation of the partial word u = aaba�bab�a�a?
What is the ternary correlation of u?

11.2 Does the vector v = 100001001000 satisfy the backward propagation
rule?

11.3 Is the ternary vector v = 1002000001 a valid ternary correlation?

11.4 Give an example of a nonvalid binary correlation and an example of a
nonvalid ternary correlation.

11.5 S What is the population size of the correlation 102100 over the al-
phabet {a, b}, that is, what is the number of partial words over {a, b}
sharing the correlation 102100?

11.6 Prove Lemma 11.2.

11.7 Run Algorithm 11.1 on the valid ternary correlation v = 122211011.

11.8 Show that the pair (∆n,⊂) is a poset with null element 10n−1 and
universal element 1n.

11.9 Show that if (S, ρ) is a poset with a null element, then it is unique.
Show a similar statement if (S, ρ) has a universal element.
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11.10 Is the poset (An
� ,⊂) a join semilattice with u ∨ v defined as the least

upper bound of u and v?

11.11 S Show that if v ∈ ∆′
n, then vp 6= 2 for all p >

⌊
n−1

2

⌋
.

11.12 H List all the correlations in ∆′
4 and their corresponding nontrivial

period and weak period sets.

11.13 Draw ∆′
4 as a lattice.

Challenging exercises

11.14 H Represent the lattice Γ9 in a Hasse diagram. Show two maximal
chains of different lengths between 108 and 19.

11.15 Prove that if a poset violates the Jordan-Dedekind condition, then the
poset is not distributive.

11.16 Prove Theorem 11.4.

11.17 Show that Equality 11.11 holds.

11.18 S While there is a natural bijection between the lattice ∆6 and the
meet semilattice Φ6 given by the maps R and E, show that these maps
are not morphisms.

11.19 Define ϕ : ∆′
n → An

� by

v 7→

 ∧
p∈P(v)\{n}

ωp

 ∧
 ∧

p∈P′(v)\P(v)

ψp


The proof of Theorem 11.3 shows that ϕ is a lattice morphism from
the join semilattice ∆′

n to the meet semilattice An
� . Verify that for all

v, w ∈ ∆′
n, we have that ϕ(v ∨ w) = ϕ(v) ∧ ϕ(w).

11.20 Prove Proposition 11.1.

11.21 Show that for any v ∈ Γn, based on forward propagation an irreducible
period set associated with v exists and is unique.

11.22 S Prove Proposition 11.2.

11.23 H Referring to Table 11.1, find a function f that approximates the
number of primitive sets of integers less than n.
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Programming exercises

11.24 Design an applet that provides an implementation of Algorithm 11.1,
that is, given as input a valid ternary correlation v of length n, the
applet outputs the partial word u in Equality 11.5 with correlation v.

11.25 Design an applet that when given as input a partial word u over an
alphabet A, outputs the ternary correlation of u.

11.26 Write a program that counts the number of partial words over the
alphabet {a, b} sharing a given ternary correlation. Run your program
on correlation 10200101.

11.27 Write a program that lists all the valid ternary correlations of a given
length. Run your program on length 7.

11.28 In Chapter 5, we showed that given a partial word u with one hole,
we can compute a partial word v over the binary alphabet such that
P(v) = P(u), P ′(v) = P ′(u), and H(v) ⊂ H(u). This last condition
cannot be satisfied in the two-hole case. Write a program to check that
the pword abaca��acaba has no such binary reduction.

Website

A World Wide Web server interface at

http://www.uncg.edu/mat/research/correlations

has been established for automated use of a program that when given a partial
word u over an alphabet A, computes a binary partial word v of length |u| such
that P(v) = P(u) and P ′(v) = P ′(u). Another website related to correlations
of partial words is

http://www.uncg.edu/cmp/research/correlations2

Bibliographic notes

In [82], Guibas and Odlyzko considered the period sets of full words of length
n over a finite alphabet, and specific representations of them, (auto) corre-
lations, which are bit vectors of length n indicating the periods. Among the
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possible 2n binary vectors, only a small subset are valid correlations. There,
they provided characterizations of correlations (Theorem 11.1), asymptotic
bounds on their number, and a recurrence for the population size of a corre-
lation, that is, the number of full words sharing a given correlation.

In [125], Rivals and Rahmann showed that there is redundancy in period
sets and introduced the notion of an irreducible period set based on the for-
ward propagation rule (Proposition 11.1). They proved that Γn, the set of
all correlations of full words of length n, is a lattice under set inclusion and
does not satisfy the Jordan-Dedekind condition (Theorem 11.4). They pro-
posed the first efficient enumeration algorithm for Γn and improved upon the
previously known asymptotic lower bounds on the cardinality of Γn. Finally,
they provided a new recurrence to compute the number of full words sharing
a given period set, and exhibited an algorithm to sample uniformly period
sets through irreducible period sets.

In [31], Blanchet-Sadri, Gafni and Wilson introduced partial word binary
and ternary correlations and all results on such correlations discussed in this
chapter are from there. The bound on the size of primitive sets with elements
less than n (Theorem 11.9) is due to Erdös [76].



Chapter 12

Unavoidable Sets of Partial Words

The notion of an unavoidable set of words appears frequently in the fields
of mathematics and theoretical computer science, in particular with its con-
nection to the study of combinatorics on words. The theory of unavoidable
sets has seen extensive study over the past twenty years. An unavoidable set
of words X over an alphabet A is a set for which any sufficiently long word
over A will have a factor in X. It is clear from the definition that from each
unavoidable set we can extract a finite unavoidable subset, so the study can
be reduced to finite unavoidable sets.

In this chapter, we introduce unavoidable sets of partial words. In Sec-
tion 12.1, we recall the definition of unavoidable sets of words and some use-
ful elementary properties. There, we present a definition for unavoidable sets
of partial words and introduce the problem of classifying such sets of small
cardinality and in particular those with two elements. In Section 12.2, we
show that the problem of classifying unavoidable sets of size two reduces to
the problem of classifying unavoidable sets of the form

{a�m1a . . . a�mka, b�n1b . . . b�nlb}

where m1, . . . ,mk, n1, . . . , nl are nonnegative integers and a, b are distinct
letters. In Section 12.3, we give an elegant characterization of the particular
case of this problem when k = 1 and l = 1. In Section 12.4, we propose a
conjecture characterizing the case where k = 1 and l = 2. There, we prove
one direction of the conjecture. We then give partial results towards the
other direction and in particular prove that the conjecture is easy to verify in
a large number of cases. Finally in Section 12.5, we prove that verifying this
conjecture is sufficient for solving the problem for larger values of k and l.

12.1 Unavoidable sets

We begin this section with the following basic terms and definitions.
Let Z denote the set of integers. A two-sided infinite word w is a function

w : Z → A. A finite word u is a factor of w if u is a finite subsequence of w,
that is, there exists some integer i such that u = w(i)w(i+1) . . . w(i+ |u|−1).
The empty word ε is trivially a factor of w.

325
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For a positive integer p, we say that a two-sided infinite word w has period
p, or that w is p-periodic, if w(i) = w(i+ p) for all integers i. If w has period
p for some p, then we call w periodic.

If v is a finite word, then we denote by vZ the unique two-sided infinite
word w with period |v| and such that w(0) . . . w(|v| − 1) = v.

If X is a set of partial words, then we use X̂ to denote the set of all full
words compatible with a member of X. In other words,

X̂ = C(X) ∩A∗

For example, if A = {a, b} and X = {�a, b�}, then X̂ = {aa, ba, bb}.
The concept relevant to this chapter is that of an unavoidable set of partial

words. We start with the full word concept and some relevant properties.

DEFINITION 12.1 Let X ⊂ A∗.

• A two-sided infinite word w avoids X if no factor of w is in X.

• The set X is unavoidable if no two-sided infinite word avoids X, that
is, X is unavoidable if every two-sided infinite word has a factor in X.

Example 12.1
Let A = {a, b}. Then

• The set X1 = {ε} is unavoidable since ε is a factor of every two-sided
infinite word.

• The set X2 = {a, bbb} is unavoidable. Indeed, if a two-sided infinite
word w does not have a as a factor, then w = bZ and w has bbb as a
factor.

Following are two useful lemmas giving alternative characterizations of un-
avoidable sets of full words.

LEMMA 12.1
Let X ⊂ A∗. Then X is unavoidable if and only if there are only finitely

many words in A∗ with no member of X as a factor.

LEMMA 12.2
Let X ⊂ A∗ be finite. Then X is unavoidable if and only if no periodic

two-sided infinite word avoids X.

We now give our extension of the definition of unavoidable sets of words to
unavoidable sets of partial words.
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DEFINITION 12.2 Let X ⊂W (A).

• A two-sided infinite word w avoids X if no factor of w is in X̂.

• The set X is unavoidable if no two-sided infinite word avoids X, that
is, X is unavoidable if every two-sided infinite word has a factor in X̂.

We first explore some trivial examples (some less trivial examples will come
soon).

Example 12.2
Let A = {a, b}. Then

• For any nonnegative integer n, the set Y1 = {�n} is unavoidable as well
as any set containing Y1 as a subset. Let us call such sets the trivial
unavoidable sets.

• The set Y2 = {aa, b�b} is unavoidable. Clearly bZ does not avoid Y2.
Thus if there were a two-sided infinite word w avoiding Y2 it would have
an a as a factor. Without loss of generality w(0) = a. Then since w
avoids aa, w(−1) = w(1) = b. Then bab ∈ Ŷ2 is a factor of w.

Clearly if every member of X is full, then the concept of unavoidable set in
Definition 12.2 is equivalent to the one in Definition 12.1. There is another
simple connection between sets of partial words and sets of full words that is
worth noting.

REMARK 12.1 By the definition of X̂, a two-sided infinite word w has
a factor in X̂ if and only if that factor is compatible with a member of X.
Thus the two-sided infinite words which avoid X ⊂ W (A) are exactly those
which avoid X̂ ⊂ A∗, and

X ⊂W (A) is unavoidable if and only if X̂ ⊂ A∗ is unavoidable

Thus with regards to unavoidability, a set of partial words serves as a rep-
resentation of a set of full words. The set

X = {a���a, b�b}

represents the set of full words over {a, b} with two a’s separated by three
letters and two b’s separated by one letter, or the set

X̂ = {aaaaa, aaaba, aabaa, aabba, abaaa, ababa, abbaa, abbba, bab, bbb}
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It is natural to begin investigating the unavoidable sets of partial words
with small cardinality. Of course, every two-sided infinite word avoids the
empty set and thus, there are no unavoidable sets of size 0.

It is clear that unless the alphabet is unary, the only unavoidable sets of size
1 are trivial. If the alphabet is unary, then every nonempty set is unavoidable
and in that case there is only one two-sided infinite word. Thus the unary
alphabet is not interesting and we will not consider it further. Classifying the
unavoidable sets of size 2 is the focus of the next section.

12.2 Classifying unavoidable sets of size two

In this section, we restrict ourselves to two-element sets. If X is an unavoid-
able set, then every two-sided infinite unary word has a factor compatible with
a member of X. In particular, X cannot have fewer elements than the alpha-
bet. Thus since X has size 2, the alphabet is unary or binary. We hence
assume that the alphabet A is binary say with distinct letters a and b. So
one element of X is compatible with a factor of aZ and the other element is
compatible with a factor of bZ, since this is the only way to guarantee that
both aZ and bZ will not avoid X. Thus we may restrict ourselves to nontrivial
unavoidable sets of size 2 of the form

Xm1,...,mk|n1,...,nl
= {a�m1a . . . a�mka, b�n1b . . . b�nlb}

for some nonnegative integers m1, . . . ,mk and n1, . . . , nl. The question we
ask is:

For which m1, . . . ,mk and n1, . . . , nl is the set Xm1,...,mk|n1,...,nl

unavoidable?

The following lemma shows that we need only answer the question for cases
where m1 + 1, . . . ,mk + 1, n1 + 1, . . . , nl + 1 are relatively prime, or

gcd(m1 + 1, . . . ,mk + 1, n1 + 1, . . . , nl + 1) = 1

LEMMA 12.3

If p is a nonnegative integer, then set

X = Xm1,...,mk|n1,...,nl

and Y = Xp(m1+1)−1,...,p(mk+1)−1|p(n1+1)−1,...,p(nl+1)−1. Then X is unavoid-
able if and only if Y is unavoidable.
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PROOF In terms of notation, it will be helpful to define

Mj =
j∑

i=1

(mi + 1)

Suppose that a two-sided infinite word w avoids X, and set

v = . . . (w(−1))p(w(0))p(w(1))p . . .

We claim that v avoids Y . Suppose otherwise. Then v has a factor compatible
with some x ∈ Y . Without loss of generality say that

x = a�p(m1+1)−1a . . . a�p(mk+1)−1a

Then to say that v has a factor compatible with x is equivalent to saying that
there exists some integer i for which

v(i) = v(i+ pM1) = · · · = v(i+ pMk) = a

But if we set h = b i
pc, then this implies that

w(h) = w(h+M1) = · · · = w(h+Mk) = a

contradicting the fact that w avoids X.
We prove the other direction analogously. Suppose that a two-sided infinite

word w avoids Y , and set

v = . . . w(−p)w(0)w(p) . . .

We claim that v avoids X. Otherwise v has a factor compatible with some
x ∈ X which we may suppose without loss of generality is a�m1a . . . a�mka.
Then there exists some integer i for which

v(i) = v(i+M1) = · · · = v(i+Mk) = a

but this implies that

w(pi) = w(pi+ pM1) = · · · = w(pi+ pMk) = a

which contradicts the fact that w avoids Y .

Two simple facts of symmetry are worth noting.

REMARK 12.2 Say that w avoids X = Xm1,...,mk|n1,...,nl
. The reverse

word . . . w(1)w(0)w(−1) . . . avoids Y = Xmk,...,m1|nl,...,n1 , and the word ob-
tained from w by swapping the a’s and b’s avoids Z = Xn1,...,nl|m1,...,mk

.
Hence one of the sets X,Y and Z is unavoidable precisely when all three of
them are.

In order to solve the problem of identifying when Xm1,...,mk|n1,...,nl
is un-

avoidable, we start with small values of k and l. Of course, the set
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{a, b�n1b . . . b�nlb}

is unavoidable for if w is a two-sided infinite word which does not have a as a
factor, then w = bZ. This handles the case where k = 0 (and symmetrically
the case where l = 0).

12.3 The case where k = 1 and l = 1

We now consider the case where k = 1 and l = 1, that is, we consider the
set

Xm|n = {a�ma, b�nb}

In this case, we can give an elegant characterization of which integers m,n
make this set avoidable: Xm|n is avoidable if and only if the greatest powers
of 2 dividing m+ 1 and n+ 1 are equal.

THEOREM 12.1
Write m + 1 = 2sr0 and n + 1 = 2tr1 where r0, r1 are odd. Then Xm|n is

avoidable if and only if s = t.

PROOF Let w be a two-sided infinite word avoiding Xm|n. Then w also
avoids b�mb. Otherwise for some integer i, w(i) = b and w(i+m+1) = b. Since
w avoids b�nb we must have that w(i+n+1) = a and w(i+m+1+n+1) = a,
which contradicts the fact that w avoids a�ma. A symmetrical argument
shows that w avoids a�na.

For ease of notation, define a = b and b = a. If p is a nonnegative integer,
then we call a two-sided infinite word w p-alternating if for all integers i,
w(i) = w(i+ p). By our previous observation, it is easy to see that w avoids
Xm|n if and only if w is m + 1- and n + 1-alternating. Notice that if w is
p-alternating, then it has period 2p: for every integer i,

w(i) = w(i+ p) = w(i+ 2p) = w(i+ 2p)

Set p = m+ 1 and q = n+ 1. Thus to prove the theorem it is sufficient to
show that a two-sided infinite word exists which is both p- and q-alternating
if and only if the greatest power of 2 dividing p is equal to the greatest power
of 2 dividing q. Write p = 2sr0 and q = 2tr1 with r0 and r1 odd.

Suppose that s 6= t. Without loss of generality say s < t. Then s + 1 ≤ t.
Let l be the least common multiple of p and q. The prime factorization of
l must have no greater power of 2 than the prime factorization of q. Thus
there exists an odd number k such that kq is a multiple of 2p. If there were a
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two-sided infinite word w which was p-alternating and q-alternating, then we
would have w(0) = w(2p) = w(kq) since w is 2p-periodic. But since k is odd
and w is q-alternating, we also have w(0) = w(kq). This is a contradiction.
We have half of the necessary implication.

We now prove the other half. Suppose that s = t, and so p = 2sr0 and q =
2sr1. We only need to prove that there exists some w which is p-alternating
and q-alternating and we do this by induction on s.

If s = 0, then p and q are odd, and the word (ab)Z is p-alternating
and q-alternating. This handles our basis. Now say w is 2sr0- and 2sr1-
alternating. Then v = . . . w(−1)w(−1)w(0)w(0)w(1)w(1) . . . is 2s+1r0- and
2s+1r1-alternating. This finishes the induction and the result follows.

12.4 The case where k = 1 and l = 2

We next consider the case where k = 1 and l = 2, that is, sets of the form

Xm|n1,n2 = {a�ma, b�n1b�n2b}

On the one hand, we have identified a large number of avoidable sets of the
form {a�ma, b�nb}. For Xm|n1,n2 to be avoidable it is sufficient that one of
the sets

{a�ma, b�n1b} or {a�ma, b�n2b} or {a�ma, b�n1+n2+1b}

be avoidable. Thus by first identifying the avoidable sets for smaller values of
k and l, our job has gotten a little easier. On the other hand, the structure
of words avoiding {a�ma, b�n1b�n2b} is not nearly as nice as those avoiding
{a�ma, b�nb}. Thus a simple characterization seems unlikely, unless perhaps
there are no unavoidable sets of this form at all.

But there are. We check that the set

{a�7a, b�b�3b}

is unavoidable. Seeing that it is provides a nice example of the techniques we
use.

Example 12.3
The set {a�7a, b�b�3b} is unavoidable. Suppose instead that there exists a
two-sided infinite word w which avoids it. We know from Theorem 12.1 that
{a�7a, b�b} is unavoidable, thus w must have a factor compatible with b�b. Say
without loss of generality that w(0) = w(2) = b. This implies that w(6) = a,
which in turn implies that w(−2) = b. Then we have that w(−2) = w(0) = b,
forcing w(4) = a. This propagation continues: w(−4) = w(−2) = b and so
w(2) = a, a contradiction.
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This example is part of a more general phenomenon. Notice how in this
example as the patterns reoccur, we have a sequence of a’s traveling to the
left toward the b at w(0). There is a symmetric situation in which the b’s
travel to the right towards the a at w(n1 + 1).

In proving that a set of the form Xm|n1,n2 is unavoidable our strategy is to
derive a contradiction using structural properties that any potential two-sided
infinite word w avoiding X would have. These properties take the form of
certain rules involving the occurrences of letters in w. For example, whenever
w(i) = w(i+n1 +1) = b in w, we must have that w(i+n1 +n2 +2) = a. The
presence of an a also has implications: if w(i) = a then w(i−m− 1) = b and
w(i+m+ 1) = b. Often particular values of m,n1 and n2 have a relationship
that cause these patterns to reoccur and perpetuate themselves, making a
contradiction easy to find. In order for this to happen we also need a starting
point for the perpetuation. For this Theorem 12.1 is a very handy tool.

Both scenarios are covered by the following proposition.

PROPOSITION 12.1
Suppose either m = 2n1 + n2 + 2 or m = n2 − n1 − 1, and n1 + 1 divides
n2 + 1. Then Xm|n1,n2 is unavoidable if and only if Xm|n1 is unavoidable.

PROOF If a two-sided infinite word w avoids {a�ma, b�n1b}, then it also
avoids Xm|n1,n2 .

Now we suppose instead that {a�ma, b�n1b} is unavoidable. We will just
consider the case m = 2n1 + n2 + 2 (the case where m = n2 − n1 − 1 is
similar and is left as an exercise). Suppose for contradiction that the two-
sided infinite word w avoids Xm|n1,n2 . Since {a�ma, b�n1b} is unavoidable
and w avoids a�ma, w must have a factor compatible with b�n1b. Suppose
without loss of generality that w(0) = w(n1 + 1) = b. We must have that
w(n1 + n2 + 2) = a which immediately gives us

w(n1 + n2 + 2−m− 1) = w(n1 + n2 + 1− 2n1 − n2 − 2) = w(−n1 − 1) = b

Since w(−n1 − 1) = w(0) = b, we must have w(n2 + 1) = a. By induction
we can verify that this process continues, and we ultimately find that

a = w(n2 + 1) = w(n2 + 1− (n1 + 1)) = w(n2 + 1− 2(n1 + 1)) = . . .

Since n1 + 1 divides n2 + 1 we find that w(0) = a, a contradiction.

One notable consequence of Proposition 12.1 is that if m is odd, then both
{a�ma, bb�m+1b} and {a�ma, bb�m−2b} are unavoidable.

The next theorem takes advantage of the perpetuating pattern phenomenon
in a more complicated context. Proposition 12.1 held because each a forced
a b into the next position of an occurence of w(i) = w(i+ n1 + 1) = b, which
in turn forced a new a in w. This created a single traveling sequence of a’s
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and b’s, causing an a to overlap with the b at w(0), yielding a contradiction.
In the next argument, we take notice of the fact that each a occurring in w
may contribute to two occurrences of w(i) = w(i+n1 +1) = b simultaneously
so that a contradiction will occur after many traveling sequences of letters
appear and overlap.

THEOREM 12.2

Say that m = n2 − n1 − 1 or m = 2n1 + n2 + 2, and that the highest power
of 2 dividing n1 + 1 is less than the highest power of 2 dividing m+ 1. Then
Xm|n1,n2 is unavoidable.

PROOF Since the highest power of 2 dividing n1 +1 is different than the
highest power of 2 dividing m + 1, we have that the set Y = {a�ma, b�n1b}
is unavoidable. Consider the case where m = n2 − n1 − 1 and suppose for
contradiction that there exists a two-sided infinite word w that avoids X =
Xm|n1,n2 . Then w has no factor compatible with a�ma, and so since Y is
unavoidable it must have a factor compatible with b�n1b. Assume without
loss of generality that w(0) = b and w(n1 + 1) = b.

We now generate an infinite table of facts about w. Two horizontally adja-
cent entries in the table will represent positions in w which are n1 + 1 letters
apart. Two vertically adjacent entries in the table will represent positions in
w which are m+ 1 = n2 − n1 letters apart. The two upper left entries of our
table are w(0) = b and w(n1 + 1) = b, two facts we have already assumed.
Since w avoids X we have more information relevant to the table: two hori-
zontally adjacent b entries force an a entry diagonally down and to the right
from them as seen in Figure 12.1. And an a entry forces a b entry in the

FIGURE 12.1: Horizontal arrows.

vertically adjacent positions as seen in Figure 12.2.
From these rules we can build the table of Figure 12.3, labeling the columns

C0, C1, . . ..
For a nonnegative integer i, we shall define vi to be the factor of w repre-

sented by Ci. If i is odd then Ci has i entries, and if i is even then Ci has
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FIGURE 12.2: Vertical arrows.

FIGURE 12.3: The table.

i+ 1 entries. Thus we define

vi =
{
w(in1 + i)w(in1 + i+ 1) . . . w(in2 + i) if i even
w(in1 + i)w(in1 + i+ 1) . . . w(n1 + (i− 1)n2 + i) if i odd

Two adjacent entries in Ci represent a distance of m + 1 positions between
letters in vi. Thus for i even we have that |vi| = im + 1 and for i odd we
have that |vi| = (i − 1)m + 1. We can also use the table to get some partial
information about the positions of a’s and b’s in vi. For a nonnegative integer
j, vi(j) = b if j ≡ 0 mod 2m+ 2, and vi(j) = a if j ≡ m+ 1 mod 2m+ 2.

Because the highest power of 2 dividing n1+1 is no greater than the highest
power of 2 dividingm+1, there exists some k for which k(n1+1) ≡ m+ 1 mod
2m+ 2. Take i sufficiently large so that Columns Ci and Ci+k overlap, or in
other words |vi| > kn1 + k. Because of how k was chosen, we have that
vi(kn1 + k) = a. However examining the table we see that

w((i+ k)n1 + i+ k) = vi(kn1 + k) = vi+k(0) = b

a contradiction. This handles the situation where m = n2 − n1 − 1. The
reader can check that the case where m = 2n1 + n2 + 2 is similar, the only
difference being that the table will represent increasingly negative positions
of w, rather than increasingly positive ones.

REMARK 12.3 Take m = 1 in Theorem 12.2. Let us see for which
nonnegative integers n1 the hypotheses of the theorem hold to make Xm|n1,n2
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unavoidable. The highest power of 2 dividing n1 + 1 should be less than the
highest power of 2 dividing m+ 1 = 2. Thus n1 + 1 must be odd, n1 is even.
Since m = 1 we cannot have m = 2n1 +n2 +2. Say we have m = n2−n1− 1.
Then n2 = n1 + 2. So we have that for any even n1, the set {a�a, b�nb�n+2b}
is unavoidable. We will prove that this is a complete characterization of
unavoidability of Xm|n1,n2 for m = 1.

Propositions 12.2 and 12.3 are other results for k = 1 and l = 2.
The next proposition identifies another large class of unavoidable sets using

a modification of the strategies discussed so far.

PROPOSITION 12.2
If n1 < n2, 2m = n1 + n2 and m − n1 divides m + 1, then Xm|n1,n2 is

unavoidable.

By taking n1 = m− 1 and n2 = m+ 1, Proposition 12.2 yields a nice fact:
the set {a�ma, b�m−1b �m+1 b} is unavoidable for all m > 0.

We believe that together Proposition 12.1, Proposition 12.2, and Theorem
12.2 nearly give a complete characterization of when Xm|n1,n2 is unavoidable.
The casem = 6, n1 = 1 and n2 = 3 is what we believe to be the only exception.

PROPOSITION 12.3
The set X6|1,3 = {a�6a, b�b�3b} is unavoidable.

Extensive experimentation suggests that these results, and their symmetric
equivalents, give a complete characterization of when Xm|n1,n2 is unavoidable.
Using Lemma 12.3, we may assume without loss of generality that m+1, n1 +
1, n2 + 1 are relatively prime.

Conjecture 1 Let m,n1, n2 be nonnegative integers satisfying n1 ≤ n2 and
gcd(m+1, n1 +1, n2 +1) = 1. The set Xm|n1,n2 is unavoidable precisely when
the hypotheses of at least one of Proposition 12.1, Proposition 12.2, Proposi-
tion 12.3 or Theorem 12.2 hold. In other words, Xm|n1,n2 is unavoidable if
and only if one of the following cases (or symmetric equivalents) holds:

• The case where Xm|n1 is unavoidable, m = 2n1 + n2 + 2 or m = n2 −
n1 − 1, and n1 + 1 divides n2 + 1.

• The case where m = n2 − n1 − 1 or m = 2n1 + n2 + 2, and the highest
power of 2 dividing n1 + 1 is less than the highest power of 2 dividing
m+ 1.

• The case where n1 < n2, 2m = n1 + n2 and m− n1 divides m+ 1.

• The case where m = 6, n1 = 1 and n2 = 3.
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The reader may verify that for any fixed m the only one of the above cases
that contributes infinitely many unavoidable sets to Xm|n1,n2 is Theorem 12.2,
and that this theorem never applies to even m. Thus the conjecture states
that there are only finitely many values of m,n1, n2 with m fixed and even
and Xm|n1,n2 unavoidable. We will prove that this is indeed the case.

An important consequence of the conjecture is that in order for Xm|n1,n2

to be unavoidable it is necessary that either m = 6 and {n1, n2} = {1, 3}, or
that one of the following equations holds:

m = 2n1 + n2 + 2 (12.1)

m = 2n2 + n1 + 2 (12.2)

m = n1 − n2 − 1 (12.3)

m = n2 − n1 − 1 (12.4)

2m = n1 + n2 (12.5)

In order to prove Conjecture 1, only one direction remains. We must show
that if none of the aforementioned cases hold, then Xm|n1,n2 is avoidable. We
now give partial results towards this goal.

We have found that in general identifying sets of the form Xm|n1,n2 as
avoidable tends to be a more difficult task than identifying them as unavoid-
able. In the case of unavoidability we needed only consider a single word
then derive a contradiction from its necessary structural properties. To find a
class of avoidable sets we must invent some general procedure for producing
a two-sided infinite word which avoids each such set. This is precisely what
we move towards in the following propositions in which we verify that the
conjecture holds for certain values of m and n1.

It is easy to see that none of Equations 12.1, 12.2, 12.3, 12.4 or 12.5 are
satisfied when max(n1, n2) < m ≤ n1 + n2 + 2. Thus the conjecture for such
values is that Xm|n1,n2 is avoidable. The following fact verifies that this is
indeed the case.

PROPOSITION 12.4
If max(n1, n2) < m < n1 + n2 + 2, then Xm|n1,n2 is avoidable.

The next proposition gives an easy way of verifying the conjecture for even
values of m.

PROPOSITION 12.5
Assume that m is even and 2m ≤ min(n1, n2). Then Xm|n1,n2 is avoidable.

PROOF If either n1 or n2 is even, then either
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{a�ma, b�n1b} or {a�ma, b�n2b}

is avoidable by Theorem 12.1. Both situations imply that Xm|n1,n2 is avoid-
able. Thus we only need to prove that Xm|n1,n2 is avoidable for n1,n2 odd.
Say without loss of generality that n1 ≤ n2.

Let v = bm, and let u = baba . . . ab with |u| = n2 + 2. We claim that
w = (uv)Z avoids Xm|n1,n2 . Clearly w avoids {a�ma}. Because of periodicity,
it is enough to prove that for any i ∈ {0, . . . , n2+2+m−1} if w(i−n1−1) = b
and w(i) = b then w(i+n2 +1) = a. We claim that such an i must be greater
than m. Suppose for contradiction that i ≤ m. Then −|uv| = −n2− 2−m <
i− n1 − 1 < −m = −|v|. Thus w(i− n1 − 1) occurs in the repetition of u at
w(−n2 − 1 −m) . . . w(−m − 1), and so since i − n1 − 1 is an even number,
w(i− n1 − 1) = a which is a contradiction.

Since i > m we have that

|uv| = n2+2+m ≤ i+n2+1 < n2+2+m−1+n2+2 = 2n2+m+3 = |uv|+|u|−1

Thus w(i + n2 + 1) occurs in the second repetition of u at w(n2 + 2 +
m) . . . w(2n2+m+3), and so since i+n2+1 is an even number, w(i+n2+1) = a.

Thus for any fixed even m we only need to verify the conjecture for finitely
many values of n1 and n2, which is generally easy. The reader may verify that
this is consistent with the conjecture. Similarly the conjecture for m = 2 is
that X2|n1,n2 is avoidable except for n1 = 1, n2 = 3 or n2 = 3, n1 = 1. It is
easy to find avoiding two-sided infinite words for other values of n1 and n2

less than 5 when m = 2. By Proposition 12.5 this is all that is necessary to
confirm the conjecture for m = 2. In this way we have been able to verify the
conjecture for all even m up to very large values.

The following proposition shows that the conjecture is true for m = 1.

PROPOSITION 12.6
The conjecture holds for m = 1, that is, X1|n1,n2 is unavoidable if and only

if n1 and n2 are even numbers with |n1 − n2| = 2.

PROOF ThatX1|n1,n2 is unavoidable for n1 and n2 even with |n1−n2| = 2
is a direct consequence of Theorem 12.2 and was explained in Section 12.3.
Thus we only need to prove that the set is avoidable for other values of n1 and
n2. We divide these values of n1 and n2 into cases and prove that X1|n1,n2 is
avoidable in each case. By symmetry we may assume that n1 ≤ n2 through-
out.

Claim 1. For n1 or n2 odd, X1|n1,n2 is avoidable. If both n1 and n2 are
odd then m+1, n1 +1, n2 +1 are all divisible by 2. Thus by applying Lemma
12.3 with Proposition 12.5, we find that X1|n1,n2 is avoidable. If either n1 or
n2 is equivalent to 1 mod 4, then X1|n1,n2 is avoidable by Theorem 12.1. The
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last case to consider is when n1 or n2 is equivalent to 3 mod 4. By symmetry
we may suppose that n1 ≡ 3 mod 4 and n2 is even. Thus we divide into two
further cases.

First say n2 ≡ 0 mod 4 and write n2 = 4k. Let v = (aabb)kabb. We prove
that w = vZ avoids X1|n1,n2 . Certainly it avoids a�a. By periodicity we may
assume without loss of generality that i ∈ {0, . . . , |v|− 1} and w(i+n1 +1) =
w(i+ n1 + n2 + 2) = b. We then only need to prove that w(i) = a. Since w is
|v| = 4k+3-periodic, we have that w(i+n1+n2+2) = w(i+n1+n2+2−n2−
3) = w(i+n1−1). Examining v we see that w(i+n1−1) = w(i+n1 +1) = b
can only occur if i+n1+1 = 4k+1. It is easy to see that since n1+1 ≡ 0 mod 4
and n1 ≤ n2 that w(i+ n1 + 1− n1 − 1) = a, and so w(i) = a.

For the second case say n2 ≡ 2 mod 4 and write n2 = 4k + 2. The reader
may verify using a similar argument that ((aabb)kaabbb)Z avoids X1|n1,n2 in
this case and the claim is proved.

Claim 2. If n1 < n2 − 2 and either n1 ≡ 0 mod 4 and n2 ≡ 2 mod 4,
or n1 ≡ 2 mod 4 and n2 ≡ 0 mod 4, then X1|n1,n2 is avoidable. Take the first
case, n1 ≡ 0 mod 4 and n2 ≡ 2 mod 4. Write n2 = 4k + 2, with k ≥ 1 which
is valid since we have assumed n1 < n2 − 2. Let v = (aabb)k−1aabbb. Our
argument is similar to those used for the last claim. In particular we show
that w = vZ avoids X1|n1,n2 . Certainly it avoids a�a. By periodicity we may
assume without loss of generality that i ∈ {0, . . . , |v|− 1} and w(i+n1 +1) =
w(i+ n1 + n2 + 2) = b. We then only need to prove that w(i) = a. Since w is
|v| = 4k+1-periodic, we have that w(i+n1+n2+2) = w(i+n1+n2+2−n2+
1) = w(i+n1 +3). Examining v we see that w(i+n1 +1) = w(i+n1 +3) = b
can only occur for w(i + n1 + 1) = 4k − 2. It is easy to see that since
n1 + 1 ≡ 1 mod 4 and n1 < n2 − 2 that w(i + n1 + 1 − n1 − 1) = a, and so
w(i) = a.

For the second case, where n1 ≡ 2 mod 4 and n2 ≡ 0 mod 4, write n2 = 4k.
Then ((aabb)k−1abb) avoids X1|n1,n2 and the claim is proved.

The only possible values of n1 and n2 left to consider are where n1, n2 ≡
0 mod 4 or n1, n2 ≡ 2 mod 4.

Claim 3. If n1 < n2−2 and either n1, n2 ≡ 0 mod 4 or n1, n2 ≡ 2 mod 4
then X1|n1,n2 is avoidable. First say n1, n2 ≡ 0 mod 4 and write n2 = 4k. In
this case (aabb)kabb avoids X1|n1,n2 . Second suppose n1, n2 ≡ 2 mod 4 and
write n2 = 4k + 2. In this case (aabb)kaabbb avoids X1|n1,n2 .

The other odd values of m seem to be much more difficult and will most
likely require more sophisticated techniques.

The following proposition intuitively says that if m and n1 are close enough
in value, then Xm|n1,n2 is avoidable for large enough n2.

PROPOSITION 12.7
Let s be a nonnegative integer satisfying s < m − 2. Then for n > 2(m +

1)2 +m− 1, Xm|m+s,n = {a�ma, b�m+sb�nb} is avoidable.
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12.5 Larger values of k and l

We end this chapter with the following proposition which implies that if
Conjecture 1 is true, then Xm1,...,mk|n1,...,nl

is avoidable for all k = 1, l ≥ 3,
and for k ≥ 2, l ≥ 2: avoidable sets of the form Xm1,...,mk|n1,...,nl

for small
values of k and l translate directly to avoidable sets for larger values of k
and l. If indeed Conjecture 1 is true, then we have completely classified the
unavoidable sets of size two.

PROPOSITION 12.8
If Conjecture 1 is true, then Xm1,...,mk|n1,...,nl

is avoidable for all k = 1, l ≥ 3,
and for k ≥ 2, l ≥ 2.

PROOF Assume Conjecture 1 holds. To prove the proposition it is suf-
ficient to prove that both Xm1,m2|n1,n2 and Xm|n1,n2,n3 are avoidable for all
m1,m2, n1, n2.

First let us consider Xm1,m2|n1,n2 . Assume without loss of generality that
m1,m2, n1, n2 are relatively prime. In order for this set to be unavoid-
able, it is necessary that the sets {a�m1a, b�n1b�n2b}, {a�m2a, b�n2b�n2b},
{a�m1a�m2a, b�n1b} and {a�m1a�m2a, b�n2b} be unavoidable as well. For each
of these sets, Conjecture 1 gives a necessary condition: either m = 6 and
n1 = 1, n2 = 3 (or symmetrically n1 = 3, n2 = 1) or one of Equations 12.1,
12.2, 12.3, 12.4 or 12.5 must hold. Consider the following tables:

m1 = 2n1 + n2 + 2 m2 = 2n1 + n2 + 2
m1 = 2n2 + n1 + 2 m2 = 2n2 + n1 + 2
m1 = n1 − n2 − 1 m2 = n1 − n2 − 1
m1 = n2 − n1 − 1 m2 = n2 − n1 − 1

m1 = 6, n1 = 1, n2 = 3 m2 = 6, n1 = 1, n2 = 3
m1 = 6, n2 = 1, n1 = 3 m2 = 6, n2 = 1, n1 = 3

2m1 = n1 + n2 2m2 = n1 + n2

n1 = 2m1 +m2 + 2 n2 = 2m1 +m2 + 2
n1 = 2m2 +m1 + 2 n2 = 2m2 +m1 + 2
n1 = m1 −m2 − 1 n2 = m1 −m2 − 1
n1 = m2 −m1 − 1 n2 = m2 −m1 − 1

n1 = 6,m1 = 1,m2 = 3 n2 = 6,m1 = 1,m2 = 3
n1 = 6,m2 = 1,m1 = 3 n2 = 6,m2 = 1,m1 = 3

2n1 = m1 + n2 2n2 = m1 +m2
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In order for Xm1,m2|n1,n2 to be unavoidable it is necessary that at least one
equation from each column be satisfied. It is easy to verify using a computer
algebra system that this is impossible except in the case where the last equa-
tion in each column is satisfied. However in this case m1 = m2 = n1 = n2

and so by Theorem 12.1, the set is avoidable.
Now let us consider Xm|n1,n2,n3 . In order for this set to be unavoidable, it is

necessary that {a�ma, b�n1b�n2b}, {a�ma, b�n2b�n3b}, {a�ma, b�n1+n2+1b�n3b}
and {a�ma, b�n1b�n2+n3+1b} be unavoidable as well. Again, for each of these
sets Conjecture 1 gives a necessary condition: either m = 6 and n1 = 1, n2 = 3
(or n1 = 3, n2 = 1) or one of Equations 12.1, 12.2, 12.3, 12.4 or 12.5 must
hold. Consider now the following tables:

m = 2n1 + n2 + 2 m = 2n2 + n3 + 2
m = 2n2 + n1 + 2 m = 2n3 + n2 + 2
m = n1 − n2 − 1 m = n2 − n3 − 1
m = n2 − n1 − 1 m = n3 − n2 − 1
2m = n1 + n2 2m = n2 + n3

m = 6, n1 = 1, n2 = 3 m = 6, n2 = 1, n3 = 3
m = 6, n2 = 1, n1 = 3 m = 6, n3 = 1, n2 = 3

m = 2(n1 + n2 + 1) + n3 + 2 m = 2n1 + n2 + n3 + 3
m = 2n3 + (n1 + n2 + 1) + 2 m = 2(n2 + n3 + 1) + n1 + 2
m = (n1 + n2 + 1)− n3 − 1 m = n1 − (n2 + n3 + 1)− 1
m = n3 − (n1 + n+ 2 + 1)− 1 m = (n2 + n3 + 1)− n1 − 1

2m = (n1 + n2 + 1) + n3 2m = n1 + (n2 + n3 + 1)
m = 6, n1 + n2 + 1 = 1, n3 = 3 m = 6, n1 = 1, n2 + n3 + 1 = 3
m = 6, n3 = 1, n1 + n2 = 3 m = 6, n2 + n3 = 1, n1 = 3

Again unavoidability of Xm|n1,n2,n3 requires that one equation from each
column be satisfied. It is easy to verify that no such system of equations has
a nonnegative solution.

Conjecture 1 has been tested in numerous cases via computer, and verified
for m = 1 and a large number of even values of m.

Exercises

12.1 Let n be a nonnegative integer. Is the set An, or the set of all words of
length n, avoidable?

12.2 If A = {a, b}, then show that X = {a�, �b} is unavoidable.
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12.3 Show that the set X = {a���a, b�b} is unavoidable.

12.4 S Let A = {a, b}. Characterize the two-sided infinite words that avoid
X = {a�nb, b�na} where n is a nonnegative integer.

12.5 Setting A = {a, b}, is the set {a�6a, b�b�3b} unavoidable?

12.6 No nontrivial unavoidable set can have fewer elements than the alpha-
bet. True or false?

12.7 Show that the set X4|2,3 is avoidable by giving a word v such that vZ

avoids it.

12.8 S Repeat Exercise 12.7 for the set X5|1,3.

12.9 Show that the set {a�ma, bbb} is avoidable.

12.10 Describe C5 of Figure 12.3.

12.11 S Classify the sets X4|3,4 and X2|3,2 as avoidable or unavoidable.

12.12 S Prove Proposition 12.2.

12.13 Verify that the conjecture for m = 0 is that X0|n1,n2 is always avoid-
able, which is given by Proposition 12.5.

Challenging exercises

12.14 Prove Lemma 12.1.

12.15 H Prove Lemma 12.2.

12.16 Prove the case where m = n2 − n1 − 1 of Proposition 12.1.

12.17 Check the case where m = 2n1 + n2 + 2 of Theorem 12.2.

12.18 S Prove Proposition 12.3.

12.19 S Prove Proposition 12.4.

12.20 S Prove Proposition 12.7.
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Programming exercises

12.21 Referring to the first two tables in the proof of Proposition 12.8, verify
using a computer algebra system that it is impossible that at least one
equation from each column be satisfied except in the case where the last
equation in each column is satisfied.

12.22 Referring to the last two tables in the proof of Proposition 12.8, verify
for each column that no such system of equations has a nonnegative
solution.

Website

A World Wide Web server interface at

http://www.uncg.edu/mat/research/unavoidablesets

has been established for automated use of a program that classifies a set of
partial words Xm1,...,mk|n1,...,nl

of size two as avoidable or unavoidable. If the
set is avoidable, then the program gives a word v such that vZ avoids the set.
Another related website is

http://www.uncg.edu/cmp/research/unavoidablesets2

for classifying sets of size three.

Bibliographic notes

The concept of an avoidable set of full words was explicitly introduced in
1983 in connection with an attempt to characterize the rational languages
among the context-free ones [73]. Since then it has been consistently studied
by researchers in both mathematics and theoretical computer science. Test-
ing the unavoidability of a finite set X can be done in different ways [51]:
Check whether there is a loop in the finite automaton of Aho and Corasick [1]
recognizing A∗ \A∗XA∗, or simplify X as much as possible. These same algo-
rithms can be used to decide if a finite set of partial words X is unavoidable by
determining the unavoidability of X̂. However this incurs a dramatic loss in
efficiency, as each pword u in X can contribute as many as ‖A‖‖H(u)‖ elements
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to X̂. We refer the reader to [50, 126] for more information on unavoidable
sets.

Unavoidable sets of partial words were introduced by Blanchet-Sadri, Brown-
stein and Palumbo [22]. The results in this chapter are from there. In terms
of unavoidability, sets of partial words serve as efficient representations of sets
of full words. This is strongly analogous to the study of unavoidable patterns,
in which sets of patterns are used to represent infinite sets of full words [107].





Solutions to Selected Exercises

CHAPTER 1

1.2

1. {9, 10}
2. {3, 9, 10}
3. 0010�10110

1.4 If ‖α(u)‖ ≤ 1, then there exists a letter a ∈ A such that u ⊂ ap with
p ≥ 2. Conversely, if u is not primitive, then there exists a word v such
that u ⊂ vn with n ≥ 2. But then n divides |u| = p, and since p is prime
we get n = p. We conclude that |v| = 1 and so ‖α(u)‖ ≤ 1.

1.10 We prove the first statement (the second one is similar). We use Figure 1
to illustrate our ideas. If |u| ≥ |v|, then set u = wz with |v| = |w|. Then

FIGURE 1: Picture for Lemma 1.2.

wzx = ux ↑ vy and the simplification rule gives the result.

1.11 First, assume that u is unbordered. Suppose to the contrary that
p(u) < |u|. Then u ⊂ vnw for some word v satisfying |v| = p(u), some
prefix w of v distinct from v, and some positive integer n. If w = ε, then
n ≥ 2 and u ⊂ vvn−1 and u ⊂ vn−1v. If w 6= ε, then put v = wy for
some nonempty word y. In this case, u ⊂ wyvn−1w and u ⊂ vnw. In
either case, we get a contradiction with the fact that u is unbordered.

Second, let u be an unbordered partial word and assume that u is not
primitive. Then u ⊂ xk for some word x and integer k ≥ 2. But then
|x| is a period of u smaller than |u|.

345
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1.13 Conjugacy on full words is reflexive (u = uε and u = εu) and trivially
symmetric. It is also transitive. To see this, if u and v are conjugate
and v and w are conjugate, then there exist words x1, y1, x2, y2 such
that u = x1y1, v = y1x1 = x2y2 and w = y2x2. We first assume that

FIGURE 2: Conjugacy on full words is transitive.

|y1| ≥ |x2| (the case where |y1| < |x2| is handled similarly). There
exists z such that y1 = x2z and y2 = zx1, and u = x1y1 = x1x2z and
w = y2x2 = zx1x2. Therefore, u and w are conjugate (see Figure 2).

Conjugacy on partial words is reflexive (u ⊂ uε and u ⊂ εu) and trivially
symmetric. However, conjugacy on partial words is not transitive as the
following example shows. Consider, u = a�babb�a, v = �b��aa��, and
w = ba�bbbaa. By setting x = a�b and y = abb�a, we get u ⊂ xy
and v ⊂ yx showing that u and v are conjugate. Similarly, by setting
x′ = �bbbaa and y′ = ba, we get v ⊂ x′y′ and w ⊂ y′x′ showing that v
and w are conjugate. But we can see that u and w are not conjugate.

1.16 The partial word x�x where x ∈ {0, 1}∗ is as desired.

1.17 Write u as v1v2 . . . vkr where |v1| = |v2| = · · · = |vk| = p and 0 ≤ |r| <
p, and vk as st where |s| = |r|. Set x1 = v1 . . . vk−1s and x2 = v2 . . . vkr.

1.18 The conclusion is immediate for the base case |u| = 1. Now suppose
the statement is true for partial words whose length is smaller than |u|.
If u is primitive, then let v be any word such that u ⊂ v. Then v is
primitive as well and the result follows in this case. If u is not primitive,
then u ⊂ vn for some word v and integer n ≥ 2. Since |v| < |u|, by
the inductive hypothesis, there exists a primitive word w and a positive
integer m such that v ⊂ wm. We have then u ⊂ wmn.

Uniqueness does not hold for partial words. The partial word u = �a
serves as a counterexample (u ⊂ a2 and u ⊂ ba for distinct letters a, b).
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1.19 If x ↑ y, then x ⊂ (x ∨ y) and y ⊂ (x ∨ y). Thus xy ⊂ (x ∨ y)2 and
yx ⊂ (x∨ y)2. Therefore (xy ∨ yx) ⊂ (x∨ y)2. The reverse containment
is true.

1.21 Assume that p(u) = |u|. If |v| = |x|, then put u = u1u2 where |u1| = |x|.
So u ⊂ xx and |x| is a period of u smaller than p(u), a contradiction. If
|v| > |x|, then put v = v1v2 where |v2| = |x|. So u ⊂ xv1x and |x| is a
period of u smaller than p(u), a contradiction.

The statement does not necessarily hold when |v| < |x| as the partial
word u = aba�babb shows. Here u is bordered since u ⊂ (ababb)(abb)
and u ⊂ (aba)(ababb) but p(u) = |u|.

CHAPTER 2

2.5 If k = 4 and l = 10, then u = a�baab�aabaa�� is (4, 10)-special since
seq4,10(0) contains the positions 6, 12 which are in H(u) = {1, 6, 12, 13}
while

u(0)u(4)u(8)u(12)u(2)u(6)u(10)u(0) = aaa�b�aa

is not 1-periodic. However, the partial word v = �babab�babab�b is not
(4, 10)-special.

2.10 If k = 3 and l = 6, then the partial word w = ab��bc�bc is {3, 6}-special
since seq3,6(0) = (0, 3, 6, 0) contains the consecutive positions 3 and 6
which are in H(w) = {2, 3, 6} (but w is not (3, 6)-special).

2.11 If k = 3 and l = 6, then the partial word w = ab��bc�bc is {3, 6}-
special since seq3,6(0) = (0, 3, 6, 0) contains the consecutive positions 3
and 6 which are in H(w) = {2, 3, 6} (but w is not (3, 6)-special). Here,
by letting u = abc and v = abcbbc, we have w ⊂ uv and w ⊂ vu and
uv 6= vu. Our answer does not contradict Lemma 2.5.

2.17 Assume that uz ↑ zv with ‖H(z)‖ = 1 (the case where z is full comes
from Corollary 2.1). Let m be such that m|u| > |z| ≥ (m − 1)|u|. Put
u = x1y1 and v = y2x2 where |x1| = |x2| = |z|−(m−1)|u| and |y1| = |y2|
(here |u| = |v|). Put z = x′1y

′
1x

′
2y

′
2 . . . x

′
m−1y

′
m−1x

′
m where |x′1| = · · · =

|x′m−1| = |x′m| = |x1| = |x2| and |y′1| = · · · = |y′m−1| = |y1| = |y2|. Since
uz ↑ zv, we get

x1 y1 x
′
1 y

′
1 x

′
2 y

′
2 . . . x

′
m−2 y

′
m−2 x

′
m−1 y

′
m−1 x

′
m

↑
x′1 y

′
1 x

′
2 y

′
2 x

′
3 y

′
3 . . . x

′
m−1 y

′
m−1 x′m y2 x2
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If the hole is in x′m, then y1 = y′1 = y′2 = · · · = y′m−1 = y2, x′m ⊂
x2, and x′m ⊂ x′m−1 = · · · = x′1 = x1. Here, u = x1y1, v = y1x2,
z = (x1y1)m−1x′m. Now, if the hole is in x′i for some 1 ≤ i < m,
then y1 = y′1 = y′2 = · · · = y′m−1 = y2, x′i ⊂ x′i+1 = · · · = x′m = x2,
and x′i ⊂ x′i−1 = · · · = x′1 = x1. Here, u = x1y1, v = y1x2, z =
(x1y1)i−1x′iy1(x2y1)m−i−1x2 and Statement 1 holds.

If the hole is in y′i for some 1 ≤ i < m, then x1 = x′1 = x′2 = · · · = x′m =
x2, y′i ⊂ y′i+1 = · · · = y′m−1 = y2, and y′i ⊂ y′i−1 = · · · = y′1 = y1. Here,
u = x1y1, v = y2x1, z = (x1y1)i−1x1y

′
i(x1y2)m−i−1x1 and Statement 2

holds.

2.18 By weakening, uz ↑ zv. If Statement 1 of Exercise 2.17 holds, then
there exist partial words x, y, x1, x2 such that u = x1y, v = yx2, x ⊂ x1,
x ⊂ x2, and z = (x1y)mx(yx2)n for some integers m,n ≥ 0. Since u, v
are full, we have y, x1, x2 full and thus, ‖H(x)‖ = 1. Since z ↑ z′, there
exists a word x′ such that x < x′ and z′ = (x1y)mx′(yx2)n. Now, uz ↑
z′v implies (x1y)m+1x(yx2)n ↑ (x1y)mx′(yx2)n+1 and by simplification,
x1yx ↑ x′yx2. Thus, x1 ↑ x′. The latter along with the fact that both
x1 and x′ are full lead to x′ = x1, and Statement 1 holds in this case.
If Statement 2 of Exercise 2.17 holds, then Statement 2 follows.

2.21 True. Indeed, a word u is primitive if and only if u is not a proper factor
of uu, that is, uu = xuy implies x = ε or y = ε. To see this, assume
that u is primitive and that uu = xuy for some nonempty partial words
x, y. Since |x| < |u|, by Lemma 1.2, there exist nonempty partial words
z, v such that u = zv, z = x, and vu = uy. Then zvzv = xzvy yields
vz = zv by simplification. By Theorem 2.5, v and z are powers of a
common word, a contradiction with the fact that u is primitive.

Now, assume that uu = xuy for some partial words x, y implies x = ε
or y = ε. Suppose to the contrary that u is not primitive. Then there
exists a nonempty word v and an integer n ≥ 2 such that u = vn. But
then uu = vn−1uv, and using our assumption we get vn−1 = ε or v = ε,
a contradiction.

2.22 Put i = l + j where 0 ≤ j < k. Since xy ⊂ u and yx ⊂ u, we have

x(j) ⊂ u(j) and y(j) ⊂ u(j),
y(j) ⊂ u(j + k) and y(j + k) ⊂ u(j + k),

y(j + k) ⊂ u(j + 2k) and y(j + 2k) ⊂ u(j + 2k),

y(j + 2k) ⊂ u(j + 3k) and y(j + 3k) ⊂ u(j + 3k),
...

y(j+(m−2)k) ⊂ u(j+(m−1)k) and y(j+(m−1)k) ⊂ u(j+(m−1)k),

y(j + (m− 1)k) ⊂ u(j +mk) and x(j) ⊂ u(j +mk).
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Put x(j)y(j)y(j + k) . . . y(j + (m − 1)k)x(j) = vj . As in Case 1, the
partial word vj is 1-periodic, say with letter aj in A ∪ {�}. By letting
z = a0a1 . . . ak−1, we get x ⊂ z and y ⊂ zm as desired.

CHAPTER 3

3.3 By Theorem 3.1(2), gcd(p′(u), q) is a period of u since |u| ≥ p′(u) + q.
Since p(u) is the minimal period of u and p′(u) is the minimal weak
period of u, we get p′(u) ≤ p(u) ≤ gcd(p′(u), q). We conclude that
p′(u) = gcd(p′(u), q) and so p′(u) divides q.

3.4 The bound is optimal here as can be seen with abaaba� of length 7 which
is 3-periodic and 5-periodic but not 1-periodic.

3.7

1. Using Definition 3.2,H(u) = {5, 6, 7, 11, 14} 1-isolates S = {0, 2, 4, 9}.
Left If i ∈ S and i ≥ q, then i− q ∈ S or i− q ∈ H(u).

For i = 9, we have i− q = 9− 5 = 4 ∈ S.
Right If i ∈ S, then i+ q ∈ S or i+ q ∈ H(u).

For i = 0, we have i+ q = 0 + 5 = 5 ∈ H(u);
for i = 2, i+ q = 2 + 5 = 7 ∈ H(u);
for i = 4, i+ q = 4 + 5 = 9 ∈ S;
for i = 9, i+ q = 9 + 5 = 14 ∈ H(u).

Above If i ∈ S and i ≥ p, then i− p ∈ S or i− p ∈ H(u).
For i = 2, we have i− p = 2− 2 = 0 ∈ S;
for i = 4, i− p = 4− 2 = 2 ∈ S;
for i = 9, i− p = 9− 2 = 7 ∈ H(u).

Below If i ∈ S, then i+ p ∈ S or i+ p ∈ H(u).
For i = 0, we have i+ p = 0 + 2 = 2 ∈ S;
for i = 2, i+ p = 2 + 2 = 4 ∈ S;
for i = 4, i+ p = 4 + 2 = 6 ∈ H(u);
for i = 9, i+ p = 9 + 2 = 11 ∈ H(u).

2. Using Definition 3.3, H(v) = {7, 9, 10, 16, 17, 19} 2-isolates S =
{12, 14}.

3. Using Definition 3.4,H(w) = {14, 17, 20, 21} 3-isolates S = {19, 22}.

3.9 Although G(4,7)(u) is disconnected, the partial word u is not (2, 4, 7)-
special by using Definition 3.1. The undirected graph G(4,7)(u) is shown
in Figure 3.

3.13 The proof is divided into two cases.

First, if p = 1 and q > 1, then by Definition 3.1(2)(d), i−p, i+p, i+q ∈
H(vn) with i = 1.
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FIGURE 3: The disconnected graph G(4,7)(u).

Second, if p > 1, then by Definition 3.1(1)(b), i+ p, i+ q ∈ H(vn) with
i = 1. The weakly p- and weakly q-periodicity can be seen in Figure 4.

FIGURE 4: A (3, p, q)-special binary partial word.

3.16 The sequence (abp−1�bq−p−1�H−1bn)n>0 satisfies the desired properties.

3.20 See Reference [14].

CHAPTER 4

4.3 Let x, y, s be nonempty partial words satisfying y ⊂ x, u = rx and y = vs
for some pword r. Here w = uv = rxv, and since v is the maximal suffix
with respect to �r, we get xv �r v. Since y ⊂ x, we get yv �r v.
Replacing y by vs in the latter inequality yields vsv �r v, leading to a
contradiction.

4.9 The minimal local periods are: 3, 3, 1, 1, 3 and 3. The maximum among
all minimal local periods is 3. Since p′(w) = 3, w has four critical
factorizations.
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4.10 The statement is true. The partial word w = a�bc serves as an example.
Note that if a ≺l b ≺l c, then w is special according to Definition 4.4(1).
Here (a�b)(c) = uv = w = u′v′ = (ε)(a�bc) and |v| ≤ |v′|. We have
p(w, |u| − 1) = 2 < 3 = |u| and r = a 6∈ C(S(u)).

4.11 Here v = ccb�ab�ba and v′ = ab�ba are the maximal suffixes of w
with respect to �l and �r respectively. We have |v′| < |v| and w =
u′v′ = (ccb�)(ab�ba). Since p(w, |u′| − 1) = p(w, 3) = 1 < 4 = |u′| and
r = ccb 6∈ C(S(u′)), w is special.

4.12 The result being trivial for v ∈ A+, assume that ‖H(v)‖ = 1. If
u ∈ P (v), then both u �l v and u �r v. Conversely, if both u �l v and
u �r v, then either u is a prefix of v, or u = pre(u, v)ax, v = pre(u, v)by
with a, b ∈ A ∪ {�} satisfying a ≺l b and a ≺r b. The latter possibility
leads to a = �, contradicting the fact that u is full.

4.19 Below are tables for the nonempty suffixes of the partial word w =
a�cbba and its reversal rev(w) = abbc�a. These suffixes are ordered in
two different ways: The first ordering is on the left and is an ≺l-ordering
according to the order � ≺ a ≺ b ≺ c, and the second is on the right
and is an ≺r-ordering where � ≺ c ≺ b ≺ a. The tables also contain the
indices used by the algorithm, k0, l0, k1, l1, and the local periods that
needed to be calculated in order to compute the critical factorization
(a�c, bba). The minimal weak period of w turns out to be equal to 5.

k0 p0,k0 v0,k0 v′
0,l0

p0,l0 l0
5 �cbba �cbba 5
4 a cbba 4
3 a�cbba bba 3
2 ba ba 2
1 bba a 1
0 1 cbba a�cbba 0

k1 p1,k1 v1,k1 v′
1,l1

p1,l1 l1
5 �a �a 5
4 a c�a 4
3 abbc�a bc�a 3
2 bbc�a bbc�a 2
1 bc�a a 1
0 5 c�a abbc�a 0

Algorithm 4.3 starts with
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(v0,0, v
′
0,0) = (cbba, a�cbba) and (v1,0, v

′
1,0) = (c�a, abbc�a)

and selects the shortest component of each pair, that is, v0,0 and v1,0.
In Step 2, mwp is set to 0. In Step 7, p0,0 and p1,0 are calculated to
be 1 and 5 respectively. In Step 10, the value of mwp is updated to be
p1,0 = 5. In Part 3 of Step 10, the critical factorization is output as
(a�c, bba).

4.21

Case 2. p0,k0 < |u0,k0 | and p0,k0 > |v0,k0 |
Here Definition 4.2(3) is satisfied and there exist partial words
x, y, r, s, γ such that |x| = p0,k0 , γ ↑ v0,k0 , u0,k0 = rx = rγs,
and y = v0,k0s. Note that if k0 = 0 and v0,k0 ⊂ γ, then y ⊂ x and
we get a contradiction with Lemma 4.3. If r 6∈ C(S(u0,k0)), then
w is ((k0, l0))-special by Definition 4.4(1). If r ∈ C(S(u0,k0)), then
there exists x′ such that x′r ↑ rx. The result follows as in Case 2.

Case 3. p0,k0 < |u0,k0 | and p0,k0 ≤ |v0,k0 |
Here Definition 4.2(1) is satisfied and there exist partial words
x, y, r, s such that |x| = p0,k0 , x ↑ y, u0,k0 = rx, and v0,k0 = ys.
Note that if k0 = 0 and y ⊂ x, then we get a contradiction with
Lemma 4.2. Here w is ((k0, l0))-special by Definition 4.4 unless
r ∈ C(S(u0,k0)) and s ∈ C(P (v0,k0)). If the two conditions hold,
then x′r ↑ rx and ys ↑ sy′ for some x′, y′. The result follows as in
Case 3.

Case 4. p0,k0 ≥ |u0,k0 | and p0,k0 < |v0,k0 |
Here Definition 4.2(2) is satisfied and there exist partial words
x, y, r, s such that |x| = p0,k0 , x ↑ y, x = ru0,k0 and v0,k0 = ys.
Note that if k0 = 0 and r = ε and y ⊂ x, then we get a contradiction
with Lemma 4.2. Here w is ((k0, l0))-special by Definition 4.4(2)
unless s ∈ C(P (v0,k0)). If s ∈ C(P (v0,k0)), then ys ↑ sy′ for some
y′ and the result follows as in Case 4.

CHAPTER 5

5.1

• Find the minimal period p(u) of u.

• Find integers m and r such that |u| = mp(u) + r where 0 ≤ r <
p(u).

– If r = 0, then v = ε, w = u(0) . . . u(p(u)− 1) and k = m.
– If r 6= 0, then v = u(0) . . . u(r − 1), w = u(r) . . . u(p(u) − 1)

and k = m.
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• Output u = (vw)kv.

5.3 The partial word 0�00 has a period of 1 but u does not; 0�01 has a
period of 2 but u does not; 0�10 has a period of 3 but u does not; and
0�11 has a weak period of 1 but u does not.

5.10 If u = (adabc)(d)(�dabc)(d)(adabc) = v1wv2wv3, then

Bin(v1wv1) = 01111101111

and T (u) = [011111�1111101111, a, a]. Both u and Bin′(u) have only
the periods 6, 12, 17 and the weak periods 6, 12, 17. This example
illustrates Item 2(b)(iii).

5.12 On input u = (abcdabedabcd)(ab�dabedabcd)(abedabedabcd), the algo-
rithm proceeds as follows:

• The partial words found satisfy Lemma 5.7 with 1 < i < k and
a 6= b. Indeed,

u = (abcdabedabcd)(ab�dabedabcd)(abedabedabcd) = w1w2w3,

where v = ε, k = 3, i = 2, x = ab, y = dabedabcd and c 6= e.

• And T (vwiv) = [Bin′(vwiv), α, β] is such that (α = 2 and β = 2)
or (β 6= 2 and x 6= ε). Indeed, T (w2) = [011111110111,2, c] is
such that β = c 6= 2 and x 6= ε.

In this case,

1. Compute Bin′(vwiv) = v′w′v′ where |v′| = |v| and |w′| = |wi|.
Here Bin′(w2) = (0111)(1111)(0111).

2. Compute h′ = h − (i − 1)p′(u) or h′ = h − (2 − 1)p′(u) = 14 −
(2 − 1)12 = 2, and compute d ∈ {0, 1} as follows: Since α =
2, β 6= 2, x 6= ε, the “a” value is equal to β and |x| < |y|,
we have d = Bin′(vwiv)(h′ + p′(vwiv)) = Bin′(w2)(2 + p′(w2)) =
(011111110111)(10) = 1.

3. Output T (u) =
[((v′w′)(h′, d))i−1(v′w′)(h′, �)((v′w′)(h′, d̄))k−iv′, a, b] =
= [(011111110111)(01�111110111)(010111110111), c, e]
Both u and Bin′(u) have only the periods 32, 36 and the weak
periods 12, 32, 36.

5.13 Statement 3 is impossible.

5.17 For any 0 ≤ j < |u| − q = p(u) + |v| − r, we have u(j) = (vwv)(j)
and u(j + q) = (vwv)(j + r). Hence u(j) = u(j + q) if and only if
(vwv)(j) = (vwv)(j + r). The latter implies that q ∈ P(u) if and only
if r ∈ P(vwv), as claimed.
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5.19 Let us first consider finding the minimal period of a word. A linear pat-
tern matching algorithm can be easily adapted to compute the minimal
period of a given word u. Given words v and w, the algorithm finds the
leftmost occurrence, if any, of v as a factor of w. The comparisons done
by the algorithm are of the type a ?= b, for letters a and b. We consider
a new letter (wild card) # which passes the test # ?= a for any letter
a. Put u = au′, where a is a letter. Then we run the algorithm on the
inputs u, u′#|u|. Clearly, an integer p, 1 ≤ p ≤ |u|, is a period of u if
and only if u is a factor starting at position p− 1 of u′#|u|. Therefore,
the leftmost occurrence of u as a factor of u′#|u| (which always exists)
gives the minimal period of u. Consequently, the computing of p(u) can
be performed in linear time. Finding a positive integer k and words v, w
satisfying Lemma 5.3 is performed in linear time, since we know that
p(u) = |vw| from computing the minimal period as described above.
Step 2(2) is obviously performed in linear time. At Step 2(1), we have
to test which of the words Bin(v)1|w|−10 or Bin(v)1|w|−11 is primitive.
Primitivity can be tested in linear time for full words as will be shown
in Chapter 6. Indeed, a word u is primitive if and only if u2 = xuy
implies that either x = ε or y = ε.

The algorithm is recursive, so let us compute the complexity of a single
call of the procedure Bin, say f(n), where n is the length of the current
word for this call, say u. Consequently, we have shown so far that a
single call of Bin requires f(n) = O(n) time. More precisely, there is a
constant c such that f(n) ≤ cn, for any n ≥ 0.

To calculate the time required for the whole algorithm on an input u
of length n, we first determine how fast the length of the current word
decreases from a call to the next call. Consider u1 and u2 the current
words for two consecutive calls of Bin on u, respectively. We have that
either u1 = (vw)kv and u2 = vwv with k ≥ 2 (if Bin(u2) is called at
Step 2(2) in Bin(u1)), or u1 = vwv and u2 = v (if Bin(u2) is called
at Step 2(1) in Bin(u1)). In either case, |u2| ≤ 2/3|u1|. Therefore, the
time required by the algorithm to compute Bin(u) is at most

Σi≥0f((2/3)in) ≤ Σi≥0c(2/3)in ≤ 3cn

hence it is linear, as claimed. Finally, it is clear that the algorithm is
optimal, as the problem requires at least linear time.

5.20 Let u be a nonempty partial word over A with minimal weak pe-
riod p′(u). Then |u| = kp′(u) + r where 0 ≤ r < p′(u). Put u =
v1w1v2w2 . . . vkwkvk+1 where |v1w1| = |v2w2| = · · · = |vkwk| = p′(u)
and |v1| = |v2| = · · · = |vk| = |vk+1| = r. If wi is empty, then
r = |vk+1| = |vk| = p′(u), a contradiction. If k = 0, then u = vk+1

and u has weak period |vk+1| < p′(u) contradicting the fact that p′(u)
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is the minimal weak period of u. Since p′(u) is the minimal weak period
of u, we get viwi ↑ vi+1wi+1 for all 1 ≤ i < k and vk ↑ vk+1. The result
follows.

5.24 There exists c such that Bin(v2)1|w|−1c is primitive by Lemma 5.1. The
equality P ′(u) = P(u) holds since every weak period of u is greater than
or equal to p′(u), and the equality P ′(u′) = P(u′) holds trivially.

To see that P(u) ⊂ P(u′), first note that P(Bin(v2)) = P(v2), and all
periods q of u satisfy q ≥ p′(u). If q = p′(u), then q is a period of u′. If
q > p′(u), put q = p′(u) + r where r > 0. Then r is a weak period of
v1. Since β = 2, h+ r ≥ h+ p′(v1) ≥ |v1| where H(v1) = {h}. In this
case, r is a period of v2 and hence of Bin(v2), and so q ∈ P(u′).

Assume then that there exists q ∈ P(u′)\P(u) and also that q is minimal
with this property. Either q < |Bin(v2)| or |Bin(v2)|+ |w|−1 ≤ q < |u|,
since Bin(v2) does not begin with 1. If q < |Bin(v2)|, then, by the
minimality of q, q is the minimal period of u′, and Lemma 5.2 implies
that p′(u) is a multiple of q, and so Bin(v2)1|w|−1c is not primitive, a
contradiction. If q = |Bin(v2)| + |w| − 1, then c = 0. In this case, if
|w| > 1, we get Bin(v2)1 = 0Bin(v2), which is impossible, and if |w| = 1,
we get that Bin(v2) consists of 0’s only and therefore Bin(v2)1|w|−1c =
Bin(v2)0 is not primitive. Hence q > |Bin(v2)|+ |w| − 1, and q > p′(u)
since p′(u) 6∈ P(u′) \ P(u). By putting q = p′(u) + r where r > 0, we
get that r is a period of Bin(v2) and hence of v2. Therefore q ∈ P(u).

5.25 See Reference [23].

CHAPTER 6

6.1 Here u = abca���bc where D(u) = {0, 1, 2, 3, 7, 8} and H(u) = {4, 5, 6}.
The algorithm proceeds as follows:

k = 1, l = 8: Compatibility of u with U [1..10) is nonsuccessful.

k = 2, l = 7: Compatibility of u with U [2..11) is nonsuccessful.

k = 3, l = 6: Compatibility of u with U [3..12) is successful.

a b c a � � � b c a b c a � � � b c
a b c a � � � b c

The partial word u is not (3, 6)-special and is thus nonprimitive
(u ⊂ (abc)3).

6.6 The values are 408 and 513.
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6.9 The result follows from the following list of equalities:

P1,k(n) = T1,k(n)−N1,k(n)
= T1,k(n)− nN0,k(n)
= T1,k(n)− n(T0,k(n)− P0,k(n))
= nkn−1 − nkn + nP0,k(n)
= n(P0,k(n) + kn−1 − kn)

6.12 Consider for example the partial word u = b�b�b. Neither ua nor ub is
primitive since ua ⊂ (ba)3 and ub ⊂ (bb)3.

6.18 Let w′ be the prefix of length |u|+ |v| of w. Both |u| and |v| are periods
of w′. By Theorem 3.1, gcd(|u|, |v|) is also a period of w′, and hence
there exists a word x of length gcd(|u|, |v|) such that w′ is contained in a
power of x. If H(w′) = ∅, then the result clearly follows. Otherwise, put
H(w′) = {i} where 0 ≤ i < |w′|. Let r, 0 ≤ r < |x|, be the remainder of
the division of i by |x|. If i < |x|, then i = r and w′(i+ |x|) = x(r), and
if i ≥ |x|, then w′(i−|x|) = x(r). Hence for all 0 ≤ j < |x| and j 6= r, we
have x(j) = w′(j), and we have x(r) = w′(i+ |x|) or x(r) = w′(i− |x|).
Since |x| divides both |u| and |v|, we conclude that u = xk and v = xl

for some integers k, l.

6.19 First, assume that n = 1. Let x be a primitive word such that uv = x.
By Proposition 6.10, since uv is primitive, vu is also primitive. The
result follows with y = vu.

Now, assume that n > 1. Since uv = xn, there exist words x1, x2 such
that x = x1x2, u = (x1x2)kx1 and v = x2(x1x2)l with k + l = n − 1.
Since x = x1x2 is primitive, x2x1 is also primitive by Proposition 6.10.
The result follows since vu = (x2x1)n.

Now, suppose that uv is a primitive partial word. If vu is not primitive,
then there exists a word y such that vu = ym for some m ≥ 2. So there
exist words y1, y2 such that y = y1y2, v = (y1y2)ky1 and u = y2(y1y2)l

with k + l = m − 1. Hence uv = (y2y1)m and uv is not primitive, a
contradiction. Therefore, if uv is primitive, then vu is primitive.

6.20 Put u = u1�u2�u3�u4 where the uj ’s do not contain any holes.

m = 2: There exist a word x and integers 0 = i0 < i1 ≤ 3 such that

ui0+1� . . . �ui1 ⊂ x
ui1+1� . . . �u4 ⊂ x

m = 3: There exist a word x and integers 0 = i0 < i1 < i2 ≤ 3 such
that
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ui0+1� . . . �ui1 ⊂ x
ui1+1� . . . �ui2 ⊂ x
ui2+1� . . . �u4 ⊂ x

m = 4: There exist a word x and integers 0 = i0 < i1 < i2 < i3 ≤ 3
such that

ui0+1� . . . �ui1 ⊂ x
ui1+1� . . . �ui2 ⊂ x
ui2+1� . . . �ui3 ⊂ x
ui3+1� . . . �u4 ⊂ x

Consequently, the set S3 consists of the partial words of the form

x1ax2bx3�x1�x2�x3 or x1�x2�x3�x1ax2bx3

for words x1, x2, x3 and letters a, b; or x1�x2�x3�x4 for words x1, x2, x3, x4

and letters a, b satisfying x1ax2 = x3bx4; or

x1�x2�x1ax2�x1ax2 or x1ax2�x1�x2�x1ax2 or x1ax2�x1ax2�x1�x2

for words x1, x2 and letter a; or x�x�x�x for a word x.

CHAPTER 7

7.5 Note that Proposition 7.9 implies that if u is a full bordered word, then
x1 = x is unbordered. In this case, u = xu′x where x is the minimal
border of u. Hence a bordered full word is always simply bordered.

7.8 Yes. Here u = (abaa)(aba)(abaaac)(a) where abaa, aba, abaaac, and a
are prefixes of v = abaaacc.

7.9 The following table depicts the information submitted:

partial word v ab��ba��abba
prefix sequence (ab��, ab, ab��ba�, a, ab��ba��a)

The set S contains all nonempty prefixes of v, while the set S′ contains
all nonempty unbordered prefixes of v. The set S consists of the elements

a, ab, ab�, ab��, ab��b, ab��ba, ab��ba�, ab��ba��,
ab��ba��a, ab��ba��ab, ab��ba��abb, ab��ba��abba
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and the set S′ of

a, ab

In the first iteration, the multiset T ′ contains the input sequence. During
subsequent iterations, it is determined whether each object in T ′ is well
ordered, badly bordered, or unbordered. If the object is well bordered,
it is split into two smaller objects, and T ′ is updated. Otherwise T ′

is updated and the algorithm continues until either a badly bordered
object is found or T ′ ⊂ S′.

Iteration T ′

1 {ab��, ab, ab��ba�, a, ab��ba��a}
2 {ab�, a, ab, ab��ba, a, a, ab��ba��, a}
3 {ab, a, a, ab, ab��b, a, a, a, ab��ba�, a, a}
4 {ab, a, a, ab, ab�, ab, a, a, a, ab��ba, a, a, a}
5 {ab, a, a, ab, ab, a, ab, a, a, a, ab��b, a, a, a, a}
6 {ab, a, a, ab, ab, a, ab, a, a, a, ab�, ab, a, a, a, a}
7 {ab, a, a, ab, ab, a, ab, a, a, a, ab, a, ab, a, a, a, a}

Since T ′ ⊂ S′, a sequence of unbordered prefixes of v does exist that is
compatible with the original sequence:

ab, a, a, ab, ab, a, ab, a, a, a, ab, a, ab, a, a, a, a

7.12 The factorization (u, v) = (aa, bc�bc) of w is critical and w′ = vu =
bc�bcaa is unbordered. The position |v| − 1 = 4 is a critical point of w′.

7.15 These equalities can be seen from the fact that if a word has odd length
2n+1 then it is unbordered if and only if it is unbordered after removing
the middle letter. If a word has even length 2n then it is unbordered
if and only if it is obtained from an unbordered word of length 2n − 1
by adding a letter next to the middle position unless doing so creates a
word that is a perfect square.

7.16 Let Bk(j, n) be the number of full words of length n over a k-letter
alphabet that have a minimal border of length j:

Bk(j, n) = Uk(j)kn−2j

If we let Bk(n) be the number of full words of length n over a k-letter
alphabet with a border of any length, then we have that

Bk(n) =
bn

2 c∑
j=1

Bk(j, n)
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7.23 Let x be a minimal border of w. Because w is well bordered, we
can write w = x1w

′x2 with x1 ⊂ x and x2 ⊂ x and x1 unbordered.
Suppose first that au′ = au. If |x| = |au| = |au′|, then we have that
w = au′w1 ⊂ xw1 and we also have that w = w2bu

′ ⊂ w2x. But because
au′ ⊂ x and bu′ ⊂ x this leads us to conclude that a = b, contradicting
(2). If |x| < |au|, then x1 is a prefix of au = au′ and x2 is a suffix of
u′ so au′ is bordered by x, which contradicts (3). So we must have that
|x| > |au|, and the conclusion follows. If au′ is a proper prefix of au,
then we have three cases similar to the above:

Case 1. |x| < |au′|
Then we conclude, as above, that au′ is bordered. This contradicts (3).

Case 2. |x| = |au′|
Then, as above, we conclude that au′ ⊂ x and bu′ ⊂ x and a = b which
contradicts (2).

Case 3. |au′| < |x| ≤ |au|
Here x1 is a longer unbordered prefix of au than au′. This contradicts
(3) and so we must have that |x| > |au|, and au must be contained in a
proper prefix of x.

7.24 Suppose there exists w a factor of u with w = hv′h such that h is not
compatible with any factor of v′. The equality h = unb(hv′h) holds.
If v is a full word, then v′ is full and the conditions of Proposition 7.5
are met for hv′h and we have that v′h is unbordered. So |v′h| ≤ µ(u)
but this only holds if v′ = ε. So we must have u = h(h′)k−2h for some
integer k ≥ 2 and word h′ satisfying h ⊂ h′. So u is |h|-periodic and thus
weakly |h|-periodic and we have that p′(u) ≤ |h| = µ(u). Proposition 7.4
states that p′(u) ≥ µ(u) so we must have that p′(u) = µ(u).

The equality u = h(h′)k−2h cannot be replaced by u = hk as is seen by
considering u = a�bcabbcabbca�bc. We have u = hvh where h = a�bc is
unbordered and v = abbcabbc is full.

CHAPTER 8

8.1 The inclusion ⊂ in Statement 1 follows from the fact that P(u) ⊂ P(uk)
for all u, k. To see that the inclusion < holds in case (i, j) 6= (1, 1), we
argue as follows: if i > 1, then we consider u = � and v = ai−1b which
satisfy (u, v) 6∈ δ and uδi,jv; and if j > 1, then we consider u = aj−1b
and v = � which satisfy (u, v) 6∈ δ and uδi,jv. Statement 2 follows from
the fact that P(u) = A for all u.

8.8 No since bbb ∈W (A) \ F (C(X∗)).
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8.10 Let u = a�b and v = aababbaababb so that |v| = 4|u| and ‖H(v)‖ = 0.
A nontrivial compatibility relation does exist, u2v ↑ vu2,

a�ba�baababbaababb ↑ aababbaababba�ba�b

thus this set is not a pcode. Note that this set yields a nontrivial com-
patibility relation prior to the upper bound of k = 4.

8.12 If {u, v} is a pcode, then clearly uv 6↑ vu. Conversely, assume that
{u, v} is not a pcode and uv 6↑ vu. Then there exist an integer n ≥ 1
and partial words u1, u2, . . . , un, v1, v2, . . . , vn ∈ {u, v} such that

u1u2 . . . un ↑ v1v2 . . . vn

and with |u1u2 . . . un| as small as possible contradicting Proposition 8.4.
We hence have u1 6= v1 and un 6= vn, and we may assume that n ≥ 2.
There are four possibilities: u1 = un = u, v1 = vn = v; u1 = vn =
u, v1 = un = v; u1 = vn = v, v1 = un = u; and u1 = un = v, v1 =
vn = u. In all cases, put u2 . . . un−1 = x and v2 . . . vn−1 = y. These
possibilities can be rewritten as

(1) uxu ↑ vyv (2) uxv ↑ vyu (3) vxu ↑ uyv (4) vxv ↑ uyu

Since |u| > |v|, for any of the possibilities (1)-(4), there exist nonempty
pwords w,w′, z, z′ such that u = wz = z′w′, w ↑ v, and w′ ↑ v. The
latter two relations give w ⊂ v and w′ ⊂ v since v is full. Since |w| =
|z|, we get u = ww′ ⊂ v2, uv ⊂ v3, vu ⊂ v3, and thus uv ↑ vu, a
contradiction.

First, consider the set {aba, a��bab}. Let u = a��bab and v = aba so
that |u| = 2|v| and ‖H(v)‖ = 0. In this case, uv 6↑ vu,

a��bababa 6↑ abaa��bab

and thus this set is a pcode.

Second, consider the set {b�abb�, bba}. Let u = b�abb� and v = bba so
that |u| = 2|v| and ‖H(v)‖ = 0. A nontrivial compatibility relation does
exist, uv ↑ vu,

b�abb�bba ↑ bbab�abb�

and thus this set is not a pcode.

8.14 Suppose that there exist two distinct conjugate partial words u and v
in X, and let x, y be partial words such that u ⊂ xy, v ⊂ yx. If x = ε
or y = ε, then u ↑ v, contradicting the fact that X is a pcode. So we
may assume that x 6= ε and y 6= ε. Since X is a circular pcode, the two
conditions yux ↑ vv and u ⊂ xy imply x = ε, a contradiction.
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8.16 To see this, suppose the contrary. Then there exists a partial word
u 6∈ X such that Y = X ∪ {u} is a pcode. Since |un| is a multiple of n,
the partial word un can be written as u1u2 . . . u|u| where |ui| = n for all
i = 1, . . . , |u|. Thus un belongs to Y ∗, and there exist v1, v2, . . . , v|u| ∈ X
such that u1 ↑ v1, . . . , u|u| ↑ v|u| showing that un also belongs to C(X∗).
We get the nontrivial compatibility relation

u1u2 . . . u|u| ↑ v1v2 . . . v|u|

and so Y is not a pcode and X is maximal.

8.17 Let ϕ : B∗ →W (A) be a morphism such that ϕ is a bijection of B onto
X. Let u, v ∈ B∗ be words such that ϕ(u) ↑ ϕ(v). If u = ε, then v = ε.
To see this, ϕ(b) 6= ε for each letter b ∈ B since ϕ(b) ∈ X and X does
not contain ε. If u 6= ε and v 6= ε, put u = b1 . . . bm and v = b′1 . . . b

′
n

with positive integers m,n and b1, . . . , bm, b
′
1, . . . , b

′
n ∈ B. Since ϕ is a

morphism, we have

ϕ(b1) . . . ϕ(bm) ↑ ϕ(b′1) . . . ϕ(b′n)

But X is a pcode and ϕ(bi), ϕ(b′j) ∈ X. Thus m = n and ϕ(bi) = ϕ(b′i)
for i = 1, . . . ,m. Now ϕ is injective on B. Thus bi = b′i for i = 1, . . . ,m,
and u = v. This shows that ϕ is pinjective.

Conversely, let ϕ : B∗ → W (A) be a pinjective morphism such that
X = ϕ(B). If

u1u2 . . . um ↑ v1v2 . . . vn

for some positive integers m,n, and u1, . . . , um, v1, . . . , vn ∈ X, then
consider the elements bi, b′j ∈ B such that ϕ(bi) = ui, ϕ(b′j) = vj for
i = 1, . . . ,m, j = 1, . . . , n. Since ϕ is pinjective, the above compatibility
relation implies that b1 . . . bm = b′1 . . . b

′
n. Thus m = n and bi = b′i for

i = 1, . . . ,m. Whence ui = vi for i = 1, . . . ,m.

For Corollary 1, let ψ : B∗ → W (A) be a pcoding morphism for X.
Then ϕ(ψ(B)) = ϕ(X), and since ϕ ◦ ψ : B∗ → W (C) is a pinjective
morphism, Proposition 8.13 shows that ϕ(X) is a pcode over C.

For Corollary 2, let ϕ : B∗ → W (A) be a pcoding morphism for X.
Then Xn = ϕ(Bn). But Bn is a code over B. Thus the conclusion
follows from Corollary 1.

8.18 Put N = M \ {ε}. First, we prove that X generates M . Since X ⊂M ,
we have X∗ ⊂M . To show the other inclusion, we use induction on the
length of partial words. Clearly, ε ∈ X∗. If m ∈ N \N2, then m ∈ X.
If m ∈ N2, then put m = m1m2 where m1 and m2 are elements of N
shorter than m. Therefore m1,m2 belong to X∗ and m ∈ X∗.
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Now, we prove that X is contained in any set Y ⊂W (A) generating M .
We may assume that ε 6∈ Y . Then each x ∈ X is in Y ∗ and therefore
can be written as x = y1y2 . . . yn where y1, y2, . . . , yn ∈ Y and n ≥ 0.
The facts that x 6= ε and x 6∈ N2 imply n = 1 and x ∈ Y . This shows
that X ⊂ Y and thus X is a minimal generating set. The uniqueness of
such a minimal set follows.

8.20 Assume first that M is stable. Put X = (M \ {ε}) \ (M \ {ε})2. To
prove that X is a pcode, suppose the contrary. Then there exist positive
integers m,n and partial words u1, . . . , um, v1, . . . , vn ∈ X such that

u1u2 . . . um ↑ v1v2 . . . vn

and with |u1u2 . . . um| as small as possible contradicting the definition
of a pcode. We hence have u1 6= v1. We may suppose |u1| ≤ |v1|. If
|u1| = |v1|, then u1 ↑ v1. Since M is stable, we deduce that u1 = v1, a
contradiction. If |u1| < |v1|, then v1 = u′1w for some partial words u′1, w
satisfying u1 ↑ u′1 and w 6= ε. It follows that u1, u

′
1w, v2 . . . vn are all in

M , and wv2 . . . vn ∈ C(M). Since M is stable, u1 = u′1 and w ∈ M .
Consequently, v1 = u′1w 6∈ X, which yields a contradiction. Thus X is
a pcode.

Conversely, assume that M is pfree and let X be its base. Let u, u′, v, w
be partial words with u ↑ u′, u, u′w, v ∈ M and wv ∈ C(M). Put u =
u1 . . . uk, wv ↑ uk+1 . . . um, u′w = v1 . . . vl, and v = vl+1 . . . vn where
u1, . . . , um, v1, . . . , vn ∈ X. The compatibility relation uuk+1 . . . um ↑
u′wv implies

u1 . . . ukuk+1 . . . um ↑ v1 . . . vlvl+1 . . . vn

Thus m = n and ui = vi for i = 1, . . . ,m since X is a pcode. Moreover,
l ≥ k because |u′w| ≥ |u|, showing that

u′w = u1 . . . ukuk+1 . . . ul = uuk+1 . . . ul

Hence u = u′ and w = uk+1 . . . ul ∈M . Thus M is stable.

8.24 If {u, v} is a pcode, then clearly u2v 6↑ vu2. Conversely, assume that
{u, v} is not a pcode and u2v 6↑ vu2. Then there exist an integer n ≥ 1
and partial words u1, u2, . . . , un, v1, v2, . . . , vn ∈ {u, v} such that

u1u2 . . . un ↑ v1v2 . . . vn

and with |u1u2 . . . un| as small as possible contradicting Proposition
8.11. We hence have u1 6= v1 and un 6= vn, and we may assume
that n ≥ 2. There are four possibilities: u1 = un = u, v1 = vn = v;
u1 = vn = u, v1 = un = v; u1 = vn = v, v1 = un = u; and u1 = un =
v, v1 = vn = u. In all cases, put u2 . . . un−1 = x and v2 . . . vn−1 = y.
These possibilities can be rewritten as
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(1) uxu ↑ vyv (2) uxv ↑ vyu (3) vxu ↑ uyv (4) vxv ↑ uyu

Since |u| < |v|, for any of the possibilities (1)-(4), there exist nonempty
pwords w,w′, z, z′ such that v = wz = z′w′, w ↑ u, and w′ ↑ u. Con-
sidering |v| = 2|u|, it is clear that |w| = |z| and so v = ww′. Since
u ↑ w and u ↑ w′, by multiplication ww′ ↑ uu. Therefore v ↑ u2 and
consequently u2v ↑ vu2, a contradiction.

It should be noted that in the case where w ↑ w′, it is apparent that the
power of u2 is not necessary in determining the potential of a nontrivial
compatibility relation. In this case, uv 6↑ vu if and only if {u, v} is a
pcode.

First, consider the set {bab�, baa��bab}. Let u = bab� and v = baa��bab
so that |v| = 2|u|. In this case, u2v 6↑ vu2,

bab�bab�baa��bab 6↑ baa��babbab�bab�

and thus this set is a pcode.

Second, consider the set {a�b, aa�abb}. Let u = a�b and v = aa�abb
so that |v| = 2|u|. In this case, a nontrivial compatibility relation does
exist, u2v ↑ vu2,

a�ba�baa�abb ↑ aa�abba�ba�b

and thus this set is not a pcode.

Third, consider the set {�b�abb, ab�}. Let u = ab� and v = �b�abb so
that |v| = 2|u|. Factor the partial word v such that v = ww′ where w =
�b� and w′ = abb. In this case, w ↑ w′, �b� ↑ abb, so the compatibility
of uv ↑ vu will suffice to determine if this set is a pcode. A nontrivial
compatibility relation does exist, uv ↑ vu,

ab��b�abb ↑ �b�abbab�

and thus this set is not a pcode.

CHAPTER 9

9.2 The set X is pairwise noncompatible. Here

U1 = {a}
U2 = {�b, baaa, bba}
U3 = {aa, aaa, b, ba}
U4 = {b, baaa}
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U5 = {baaa}
U6 = ∅

and X is a pcode because ε 6∈ Ui for any i ≥ 1.

• The set U1 is obtained by the following. Consider u = a�b. In this
case, a�b ↑ abba and therefore x = a. No other choices of u are
successful and thus U1 = {a}.

• In obtaining U2, the first set is empty since every u ∈ X is greater
in length than every word in U1. However, comparing U1 with X
produces a nonempty set:

1. a ↑ a�b and thus x = �b
2. a ↑ �baaa and thus x = baaa

3. a ↑ abba and thus x = bba

• For U3, comparing X with U2 produces the empty set since each
of the elements of X is either greater in length or equal in length
and not compatible with the elements of U2. However, comparing
U2 with X produces the following:

1. �b ↑ a�b and thus x = b

2. �b ↑ �baaa and thus x = aaa

3. �b ↑ abba and thus x = ba

4. bba ↑ �baaa and thus x = aa

• Similarly, the set U4 is computed:

1. aa ↑ a�b and thus x = b

2. b ↑ �baaa and thus x = baaa

• The set U5 is generated with the single comparison of b ↑ �baaa.
The set U6 is equal to the empty set since no comparisons between
U5 and X produce any results. Therefore, it is evident that ε 6∈ Ui

for any i ≥ 1 and thus X is a pcode.

9.6 This is because U1 = ∅ for such sets.

9.10 By definition, E1-edges only originate at the open node and do not
terminate there. Hence, an E1-edge cannot be bidirectional. A similar
statement holds for E2-edges.

Let e be an E3-edge. Then e is of the form (
(
u
ε

)
,
(
uv
ε

)
) (or symmetrically,

(
(

ε
u

)
,
(

ε
uv

)
)) for some u ∈ C(P (X)) \ {ε} and v ∈ X. By definition, v

is nonempty, and so |u| < |uv|. If e were bidirectional, then (
(
uv
ε

)
,
(
u
ε

)
)

would be an edge, implying u = uvv′ for some nonempty pword v′ ∈ X.
Thus, |u| < |uv| < |uvv′| = |u|, which is impossible. Thus an E3-edge
cannot be bidirectional.
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9.12 Here X1, X2, X3 and X5 are pcodes since U1 = U2 = U3 = · · · = ∅
in each case and so none of the Ui-sets contain ε. But X4 is not a
pcode since by setting u1 = �b, u2 = a�b and u3 = aa�bba we get
u2u1u2 ↑ u3u1.

9.18 See Reference [16].

CHAPTER 10

10.2 Here x2 ↑ y4 and so m = 2n = 4 and u = ε. We have

(ε)(�bb)(ε)(ab�)(ε) = u0v0u1v1u2 = x = v2u3v3 = (�bb)(ε)(ab�)

and y = uv = (ε)(a�b).

10.8 Set x = (u1)k1 , y = (u2)k2 and z = (u3)k3 for some primitive words
u1, u2, u3 and some positive integers k1, k2, k3.

10.11 Integers for the first triple are m = 2, n = 1 and p = 4.

10.12 Note that if the conditions hold, then trivially x2 ↑ ym for some
positive integer m. If x2 ↑ ym for some positive integer m, then we
consider the cases where m is even or odd. If m = 2n + 1 for some
integer n, then there exist partial words u, v such that y = uv, x ↑
(uv)nu and x ↑ v(uv)n = (vu)nv. From this, we deduce that |u| = |v|.
Now note that x may be factored as x = (u0v0) . . . (un−1vn−1)un =
vn(un+1vn+1) . . . (um−1vm−1) where ui ↑ u and vi ↑ v for all 0 ≤ i < m,
If m = 2n for some n, then x ↑ yn and set u = ε in the above.

10.17 We show that z = ε and m = 2 (the result will then follow by sim-
plification). Suppose to the contrary that z 6= ε or m > 2. In either
case, we have |x| > |y| > 0. By Corollary 10.2, u and v are contained in
powers of a common word, say u ⊂ tk and v ⊂ tl for some word t and
nonnegative integers k, l. Indeed, this is trivially true when either u = ε
or v = ε. When both u 6= ε and v 6= ε, Condition 1 of Corollary 10.2
is satisfied. Since y = uv and y is primitive, we have (k = 0 and l = 1)
or (k = 1 and l = 0). In the former case, u = ε and in the latter case,
v = ε. By Theorem 10.2, z = ε or z = y. If z = ε, then m > 2. If
m is even, then by Proposition 10.1, m = 2n and u = ε. Therefore,
x = v0 . . . vn−1 with n > 1, and x ⊂ vn leading to a contradiction with
the fact that x is primitive. If m is odd, then m = 2n + 1 by Proposi-
tion 10.1 and |u| = |v| = 0 leading to a contradiction with the fact that
|y| = |uv| > 0. Now, if z = y, then x2 ↑ ym+1. If m + 1 = 2n, then
u = ε and n > 1, and if m + 1 = 2n + 1, then |u| = |v| = 0. In either
case, we get a contradiction as above.
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10.19 Set x = abaabb, y = ab� and z = ε.

10.20 A nontrivial solution is x = a�b, y = b�a and z = abba.

CHAPTER 11

11.5 The population size is 8. The strings are as follows (up to a renaming
of letters): aa��ab, ab��bb, ba��aa and bb��ba.

11.11 If vp = 2, then there must exist some i > 1 such that vip = 0. But if
p >

⌊
n−1

2

⌋
then p ≥

⌊
n+1

2

⌋
and thus 2p ≥ n. So for all i ≥ 2 we have

that ip ≥ n and thus p violates the second condition of Theorem 11.3.

11.12 There are 8 of them.

11.14 See Reference [125].

11.18 Consider the nontrivial period sets {1, 2, 3, 4, 5} and {2, 4}. Then
R({1, 2, 3, 4, 5}) = {1} and R({2, 4}) = {2}, and so R({1, 2, 3, 4, 5}) ∩
R({2, 4}) = {1} ∩ {2} = ∅ 6= {2} = R({1, 2, 3, 4, 5} ∩ {2, 4}).

11.22 Let S = {p1, p2, . . . , pk} and T = S ∪ {q1, q2, . . . , ql} be elements of
Φn. Moreover, let S < C1 < C2 < · · · < Cm < T be a maximal chain
from S to T . We claim that for all 1 ≤ i < m, ‖Ci‖ = ‖Ci+1‖ − 1.
For if Ci+1 \ Ci ⊃ {qi1 , qi2} were of order at least 2, then both the sets
Ci ∪ {qi1} and Ci ∪ {qi2} would both lie in Φn since Ci+1 ⊂ T and no
element of T divides any other so all subsets of T lie in Φn. Moreover,
we see that Ci∪{qi1} and Ci∪{qi2} both lie strictly between Ci and Ci+1

in the poset Φn. Thus the chain is not maximal and we have produced
a contradiction. This shows that m = l and therefore, Φn must satisfy
the Jordan-Dedekind condition and for any two distinct S, T ∈ Φn we
have that the maximal chain length is ‖T \ S‖+ 1.

11.23 The number of primitive sets of integers less than n seems to be
between 1.55n−1 and 1.60n−1.

CHAPTER 12

12.4 Let w be a two-sided infinite word that avoids X. Whenever w(i+n+
1) = b, because w avoids a�nb we have that w(i) = b. Similarly whenever
w(i+ n+ 1) = a, we have that w(i) = a. Thus we can characterize the
words avoiding X as exactly those with period n+ 1.

12.8 The word v = aabb is such that vZ avoids X5|1,3.
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12.11 Both are avoidable by (ab)Z.

12.12 Say that the two-sided infinite word w avoids Xm|n1,n2 . An a occurs
in w, say without loss of generality that w(0) = a. Then w(−m− 1) =
w(m+ 1) = b. We have n1 + 1 +n2 + 1 = 2m+ 2, and so since w avoids
b�n1b�n2b we necessarily have w(−m − 1 + n1 + 1) = w(n1 −m) = a.
Repeating this argument,

w(2(n1 −m)) = w(3(n1 −m)) = · · · = a

But since n1 −m divides m+ 1, w(−m− 1) = a, a contradiction.

12.15 See Reference [107].

12.18 We first claim that any two-sided infinite word which avoids X6|1,3

must also avoid {b�b�b}. Suppose otherwise. Then w avoids X6|1,3 but
has a factor compatible with b�b�b. Without loss of generality say that
w(0) = w(2) = w(4) = b. Then we have w(6) = w(8) = a, which in turn
implies that w(−1) = w(1) = b. This implies that w(5) = a, which tells
us that w(−2) = b. Since w(−2) = w(0) = b, w(4) = a, a contradiction.

Now suppose for contradiction that the two-sided infinite word w avoids
X6|1,3. It must avoid a�6a, and since {a�6a, b�b} is unavoidable it
has a factor compatible with b�b. Say without loss of generality that
w(0) = w(2) = b. The reader may verify that this ultimately leads to a
contradiction, using the fact that w avoids X6|1,3 and {b�b�b}.

12.19 Let v = ambm+1 and w = vZ. We claim that w avoids Xm|n1,n2 .
Clearly it avoids a�ma. Let i be an integer. If w(i) = w(i+n1 + 1) = b,
then the gap in b�n1b cannot straddle a block of a’s, since n1 < m
and these blocks come in sequences m letters long. Thus we must have
w(i) . . . w(i+n1 +1) = bn1+2. Similarly if w(i) = w(i+n2 +1) = b since
n2 < m we have w(i) . . . w(i+ n2 + 1) = bn2+2. Hence if there were an
integer i with w(i) = w(i+ n1 + 1) = w(i+ n1 + n2 + 2) = b, we would
have w(i) . . . w(i + n1 + n2 + 2) = bn1+n2+3 which is impossible since
m+ 1 < n1 + n2 + 3.

12.20 For any nonnegative integer p, all integers greater than p2 can be
written as pq+(p+1)r for some nonnegative integer q, r. This is because

pp, (p− 1)p+ p+ 1, (p− 2)p+ 2(p+ 1), . . . , p+ (p− 1)(p+ 1)

is a sequence of consecutive integers with p members.

Now let C = {bm+1am+1, bm+2am+1}. There exists u ∈ C∗ with |u| =
n−m− 2. We claim that w = uZ avoids Xm|m+s,n. It certainly avoids
a�ma. We need to verify that whenever w(i−m−s−1) = b and w(i) = b
that w(i+ n+ 1) = a. Examining C we see that the only i’s for which
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this is possible are those for which w(i) is part of an initial segment of
s b’s in a sequence of b’s. Say without loss of generality that

w(0)w(1) . . . w(s) . . . w(m) = bm and w(m+ 1) = a

Since w is n−m− 2-periodic, w(s+n+1) = w(s+m+3), s+m+3 <
m− 2 +m+ 3 = 2m+ 1 so w(s+ n+ 1) = a. Similarly w(0 + n+ 1) =
w(m+ 3) = a. Thus w has no factor compatible with b�m+sb�nb and w
avoids Xm|m+s,n.
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anti-commutative, 244
anti-prefix, 239
anti-suffix, 240
antichain, 226

bad border, 201
badly bordered, 200
base, 237
Big-Oh notation, 150
Big-Theta notation, 319
binary relation, 93, 225, 306

antisymmetric, 93, 225
positive, 225
reflexive, 93, 225
strict, 225
symmetric, 225
transitive, 93, 225

biprefix pcode, 232
biunitary monoid, 236
biunitary submonoid, 238
border, 199

bad, 201
good, 201
minimal, 199

border relation, 227
bordered, 40, 199

chain, 308
length, 308
maximal, 308

circular code, 249
circular pcode, 249
code, 229

circular, 249
prefix, 239
suffix, 240

commutative relation, 227

commutativity, 43, 48
companion, 29
compatible, 37
completable, 241
complete, 241
component, 80
concatenation, 26, 30
conjugacy, 43–45
conjugate, 40, 44, 216, 217
connected, 74, 77, 79
containment, 36
correlation, 297

binary, 298
full word, 297
partial word, 298
ternary, 298
valid, 298

critical point, 97
cylinder, 67, 72

defect theorem, 225, 239
dense, 241
disconnected, 74
distributive lattice, 307
domain, 27, 28
domain interval, 78
domino, 265
domino function, 264, 265, 268
domino set, 269

embedding relation, 227
empty word, 25
equal, 36
exact period, 167
exponent relation, 227

factor, 33
proper, 33
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factor relation, 227
factorization, 33, 96

X-, 34
critical, 96, 97, 99, 111

free monoid, 26
free semigroup, 26
full word, 28
function, 27

partial, 27
total, 27

generating set, 315
minimal, 316

good border, 201
good pair, 284
good triple, 287
graph, 73
greatest lower bound, 300

Hasse diagram, 306

irreducible period set, 315
isolation

1-, 68
2-, 68
3-, 69

join, 306
join semilattice, 306
Jordan-Dedekind condition, 308

lattice, 307
distributive, 307

least upper bound, 38
left unitary monoid, 236
left unitary submonoid, 238
length, 27

critical, 77
optimal, 82, 85

length relation, 227
letter, 25
local period, 96, 99

minimal, 96, 99

Möbius function, 163
maximal common prefix, 34

maximal element, 306
maximal pcode, 232
maximal suffix, 94
meet, 306
meet semilattice, 306
minimal border, 199
minimal element, 306
minimal local period, 93
monoid, 26

biunitary, 236
free, 26
left unitary, 236
pfree, 236
right unitary, 236

morphism, 236
pcoding, 236
pinjective, 236

multiplication, 39

nonspecial, 100, 105
null element, 306

o-primitive, 241
optimal, 63
optimal length, 82, 85
ordering, 94

partial, 94, 226, 306
total, 94

overlap, 213

pairwise noncompatible, 39, 230, 257
pairwise nonspecial, 56
partial function, 27
partial ordering, 94, 226, 306

compatible, 226
left compatible, 226
right compatible, 226

partial word, 28
badly bordered, 200
bordered, 199
companion, 29
conjugate, 217
domain, 28
set of holes, 28
specially bordered, 203
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unbordered, 199
well bordered, 200

partially ordered set, 226, 306
pcode, 225, 230

biprefix, 232
circular, 249
maximal, 232
prefix, 232
suffix, 232
uniform, 232

pcoding morphism, 236
period, 30

exact, 167
local, 96, 99
minimal, 31
minimal local, 96, 99
nontrivial, 298
strictly weak, 298
strong, 30
weak, 31

periodic, 30
pfree hull, 238
pfree monoid, 236
pfree submonoid, 236
pinjective morphism, 236
poset, 226, 306
power, 26, 30
prefix, 33
prefix code, 239
prefix pcode, 232
prefix relation, 227
primitive, 26, 37, 157, 187

o-, 241
primitive set, 318
proot, 174
propagation rule

bacward, 299
forward, 299

proper, 33
pshuffle, 47
pure submonoid, 250
pword, 28

relation
border, 227

commutative, 227
embedding, 227
exponent, 227
factor, 227
factorizable, 264, 267
length, 227
prefix, 227
suffix, 227
trivial, 230, 264, 267

reversal, 35
right unitary monoid, 236
right unitary submonoid, 238
root, 39

semigroup, 26
free, 26

set of holes, 28
simplification, 39
simplified domino graph, 264, 265,

268
simply bordered, 218
solution, 291

trivial, 291
Type 1, 291
Type 2, 291

special, 100, 104, 105, 111
((k, l))-, 104, 111
(2, p, q)-, 65
(3, p, q)-, 65
(H, p, q)-, 65, 70, 72
(H, p, q)- of Type i, 70, 72
(k, l)-, 49, 51
{k, l}-, 53

specially bordered, 203
sshuffle, 47
stable submonoid, 237
strong period, 30
submonoid, 236

biunitary, 238
left unitary, 238
pfree, 236
pure, 250
right unitary, 238
stable, 237
very pure, 250
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substring, 34
suffix, 33

maximal, 94
suffix code, 240
suffix pcode, 232
suffix relation, 227
Symbols

2S (power set of set S), 306
A (alphabet), 25
A∗ (set of all words over al-

phabet A), 26
A+ (set of all nonempty words

over alphabet A), 26
An
� (set of partial words of length
n over alphabet A), 306

A� (A ∪ {�}), 306
C(X) (set of all partial words

compatible with elements
of set X), 38

C(u) (set of all partial words
compatible with u), 39

D(f) (domain of function f),
27

D(u) (domain of partial word
u), 28

F (X) (set of all factors of ele-
ments in X), 34

G(X) (simplified domino graph
of set X), 265, 268

Gj
(p,q)(u) (subgraph ofG(p,q)(u)

corresponding to D(u) ∩
Nj), 74

G(p,q)(u) (graph associated with
partial word u and weak
periods p and q), 73

H(u) (set of holes of partial
word u), 28

L(H,p,q) (critical length for H
holes and strong periods
p and q), 83

Nj (set of indices in the jth
array of partial word), 72

Nh,k(n) (number of nonprimi-
tive partial words with h

holes of length n over an
alphabet of size k), 162

O(n) (big-O notation), 158
P (X) (set of all prefixes of el-

ements in X), 34
P (u) (set of all prefixes of par-

tial word u), 34
Ph,k(n) (number of primitive

partial words with h holes
of length n over an alpha-
bet of size k), 162

Q (set of all primitive words
over a given alphabet), 187

Qi (set of all i-powers of prim-
itive words over a given
alphabet), 187

R(v) (irreducible period set of
partial word binary corre-
lation v), 316

RNh,k(n, d, h′) (number of non-
primitive pwords of length
n with h holes over an al-
phabet of size k with a
nonprimitive proot having
length d and containing h′

holes), 174
RPh,k(n, d, h′) (number of non-

primitive pwords of length
n with h holes over an al-
phabet of size k with a
primitive proot having length
d and containing h′ holes),
174

Rh,k(n, d) (number of nonprim-
itive pwords of length n
with h holes over an al-
phabet of size k with a
proot of length d), 174

S(X) (set of all suffixes of el-
ements in X), 34

S(u) (set of all suffixes of par-
tial word u), 34

Th,k(n) (number of partial words
with h holes of length n
over an alphabet of size
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k), 162
W (A) (set of all partial words

over alphabet A), 29
Wi(A) (set of all partial words

over alphabet A with at
most i holes), 29

XY (product or concatenation
of sets X and Y ), 33

X∗ (submonoid of W (A) gen-
erated by set X), 33

X+ (subsemigroup ofW (A) gen-
erated by set X), 33

Xi (i-power of set X), 33
Bin′(u) (binary equivalent of

partial word u), 124
Bin(u) (binary equivalent of word

u), 119
∆′

n (set of partial word ternary
correlations of length n),
305

∆n (set of partial word binary
correlations of length n),
305

Γn (set of correlations of full
words of length n), 305

Λn (set of irreducible period
sets of full words of length
n), 315

Φn (set of irreducible period
sets of partial words of length
n), 316

α(u) (set of distinct letters in
partial word u), 25, 29

� (hole), 29
∅ (empty set), 25
gcd(p, q) (greatest common di-

visor of integers p and q),
63

X̂ (set of all words compatible
with a member of set X),
326

∈ (element), 25
〈p〉n (set of positive integers

less than n which are mul-
tiples of p), 301

Z (set of integers), 325
E(w) (set of exact periods of

partial word w), 167
Nh,k(n) (set of nonprimitive par-

tial words with h holes of
length n over an alphabet
of size k), 162

Ph,k(n) (set of primitive par-
tial words with h holes of
length n over an alphabet
of size k), 162

RN h,k(n, d, h′) (set of nonprim-
itive pwords of length n
with h holes over an al-
phabet of size k with a
nonprimitive proot having
length d and containing h′

holes), 174
RPh,k(n, d, h′) (set of nonprim-

itive pwords of length n
with h holes over an al-
phabet of size k with a
primitive proot having length
d and containing h′ holes),
174

R(w) (reduced set of exact pe-
riods of partial word w),
167

Rh,k(n, d) (set of nonprimitive
pwords of length n with
h holes over an alphabet
of size k with a proot of
length d), 174

Th,k(n) (set of partial words
with h holes of length n
over an alphabet of size
k), 162

µ (Möbius function), 163
µ(u) (maximum length of the

unbordered factors of par-
tial word u), 211

pre(u, v) (maximal common pre-
fix of partial words u and
v), 34

�c (commutative ordering), 244
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rev(X) (reversal of set X), 35
rev(u) (reversal of partial word

u), 35
ρc (commutative relation), 227
ρd (embedding relation), 227
ρe (exponent relation), 227
ρf (factor relation), 227
ρl (length relation), 227
ρo (border relation), 227
ρp (prefix relation), 227
ρs (suffix relation), 227
seqk,l(i) (sequence of i relative

to k, l), 50
\ (set minus), 26√
u (root of full word u), 39

< (proper subset), 33
⊂ (subset), 33
unb(u) (longest unbordered pre-

fix of partial word u), 207
ε (empty word), 25
a (letter), 25
l(H,p,q) (critical length for H

holes and weak periods p
and q), 77

p′(u) (minimal weak period of
partial word u), 31

p(u) (minimal period of par-
tial word u), 31

u = v (partial words u and v
are equal), 36

u ≈ v (partial words u and v
satisfy u� v and v � u),
208

u� v (there exists a sequence
v0, . . . , vn−1 of prefixes of
v such that u = v0 . . . vn−1),
200

u ∼ v (partial word u is con-
jugate of partial word v),
217

u < v (partial word u is prop-
erly contained in partial
word v), 36

u ⊂ v (partial word u is con-
tained in partial word v),

36
u ↑ v (partial word u is com-

patible with partial word
v), 37

u ∨ v (join of u and v), 306
u ∨ v (least upper bound of

partial words u and v), 38
u∧ v (greatest lower bound of

partial words u and v), 300
u ∧ v (meet of u and v), 306
u[0..i) (prefix of partial word

u of length i), 34
u[i..j) (factor of partial word

u starting at position i and
ending at position j − 1),
34

ui (i-power of partial word u),
30

u(H,p,q) (optimal binary par-
tial word withH holes and
weak periods p and q), 80

u� (companion of partial word
u), 29

v(H,p,q) (optimal binary partial
word withH holes and strong
periods p and q), 85

D(n) (set of divisors of n dis-
tinct from n), 167

P ′(u) (set of all weak periods
of partial word u), 31

P(u) (set of all periods of par-
tial word u), 31

x

[
i
p

]
(ith residual word of x

modulo p), 281

total function, 27
total ordering, 94
trivial, 229
trivial solution, 287, 291
trivial unavoidable set, 327
two-sided infinite word, 325
Type 1 set, 245
Type 1 solution, 291
Type 2 set, 245



Index 385

Type 2 solution, 291

unavoidable set, 325, 326
unbordered, 40, 199, 241
uniform pcode, 232
universal element, 306

very pure submonoid, 250

weak period, 31
minimal, 31
nontrivial, 298

weakening, 39
weakly periodic, 31
well bordered, 200
word, 25

conjugate, 216
full, 28
partial, 28
primitive, 26, 187
unbordered, 199
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