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Preface

The author is pleased to present Finite Element Method in Mechanics. This book will
serve a wide range of readers, in particular, graduate students, Ph.D. candidates,
professors, scientists, researchers in various industrial and government institutes,
and engineers. Thus, the book should be considered not only as a graduate textbook,
but also as a reference book to those working or interested in areas of finite element
modelling of solid mechanics, heat conduction, and fluid mechanics.

The book is self-contained, so that the reader should not need to consult other
sources while studying the topic. The necessary mathematical concepts and
numerical methods are presented in the book and the reader may easily follow the
subjects based on these basic tools. It is expected, however, that the reader should
have some basic knowledge in the classical mechanics, theory of elasticity, and
fluid mechanics.

The book contains 17 chapters, where the chapters cover the finite element
modeling of all major areas of mechanics.

Chapter 1 presents the history of development of finite element method, where
the key references are given and the progress of this science is discussed.

Chapter 2 is devoted to the basic mathematical concepts of finite element
method. The method of calculus of variation is discussed and the distinction of
boundary value problems versus the variational formulation is presented and
several examples are given to make the reader familiar with the concepts of
function and functional. The material then follows into the discussion of traditional
Ritz and Galerkin methods. Numerical examples show the powerful nature of
these numerical techniques.

Introduction to the finite element method is given in Chap. 3 with the discussion
of elastic membrane. The subject of elastic membrane is selected because the
height of membrane is approximated with finite element method. This gives a
physical feeling for the finite element approximation to the reader.

Since a linear triangular element is employed to model the elastic membrane in
Chap. 3, Chap. 4 discuss the one-, two-, and three-dimensional elements with
linear and higher order approximation. The discussion gives a feeling to the reader
that there is no limitation in the type of elements and the order of approximation,
geometrically and mathematically. The subparametric, isoparametric, and super-
parametric elements are discussed and the natural coordinates are presented.
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The finite element approximation of the field problems, harmonic and
biharmonic, are given in Chap. 5.

Chapter 6 deals with the finite element approximation of the heat conduction
equations. One-, two-, and three-dimensional conduction in solids are discussed
and the transient heat conduction problems are presented. Both variational and
Galerkin techniques are presented.

Up to this point, the reader learns how to obtain the element stiffness, capa-
citance, and force matrices for one element. He questions how a solution domain
with many number of elements should be modeled and solved to obtain the
required domain unknowns. A comprehensive treatment is given in Chap. 7 to give
a proper tool to the reader to write his own computer program. Many numerical
examples are solved to show the numerical scheme, and proper algorithms are
given. The assembly of global matrices, bandwidth calculation, the method to
apply the boundary conditions, and the Gauss elimination method are presented.
The method of solution of the transient and dynamic finite element equations are
then presented. The central difference method, the Houbolt Method, the Newmark
Method, and the Wilson-0 method are presented. At this stage, the reader learns
how to write his own computer problem. Now, he should learn how different
problems of mechanics are formulated by the finite element approximation. These
techniques are discussed in the following chapters.

Chapter 8 deals with the finite element approximation of beams. Static beam
deflection equation, based on the Euler beam theory, is presented and the Galerkin
and variational formulations are obtained. The axial, torsional, and lateral vibra-
tions of beams are modeled. Finally, the vibrations of Timoshenko beam are
presented.

Chapters 9 and 10 present the finite element formulations of elasticity problems
based on Galerkin and variational formulations.

Torsion of prismatic bars and rods are given in Chap. 11 and quasistatic
thermoelasticity theory is discussed in Chap. 12.

Chapter 13 is devoted to the finite element solution of viscous fluid mechanic
problems. Derivation of the Navier-Stokes equations is presented and the finite
element formulation of the two-dimensional fluid flow based on the velocity
components and pressure are derived. In the following section, the vorticity
transport model of the Navier-Stokes equations are obtained and the finite element
formulations are derived. The method of solution of the resulting nonlinear finite
element equation is presented.

Chapter 14 presents one-dimensional higher order elements. The local natural
coordinate for the quadratic and cubic elements are derived and the Jacobian
matrix is obtained. To describe the application, field problem for one-dimensional
case is discussed and the element of the matrices are calculated. The chapter is
completed with a discussion of layerwise theory for composite beams, where
one-dimensional higher order element is used to discuss the problem.

The higher order element in two dimension in discussed in Chap. 15. The
triangular element with quadratic and cubic shape functions are given in terms of
the area element and the Jacobian matrix is calculated. The quadratic element is
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employed to obtain the element matrices for a two-dimensional field problem.
In the following, the quadrilateral element is discussed and its application to the
field problem is presented.

Chapter 16 presents the linear coupled thermoelasticity problems, and their
method of solution by finite element method. This chapter is unique in the
literature of finite element analysis of solid elastic continuum. The most general
form of the three-dimensional classical coupled thermoelasticity equations are
considered and the finite element formulations are presented.

Computer programs for three different types of problems are given in Chap. 17.
The first program is related to the elastic membrane problem, where Poisson’s
equation is solved. This program may be used for any other application of
Poisson’s equation, such as the steady-state heat conduction, torsion of prismatic
bars, inviscid incompressible fluid flow problems, and the pressure in porous
media. The second computer program handles two-dimensional elasticity
problems, and the third computer program presents three-dimensional transient
heat conduction problems. The programs are written in C++ environment.

At the end of all the chapters, except Chap. 1, there are a number of problems
for students to solve. Also, at the end of each chapter, there is a list of relevant
references.

The book was prepared over some 40 years of teaching the graduate finite
element course. During this long period of time, the results of classwork
assignments and student research are carefully gathered and put into this volume of
work. The author takes this opportunity to thank all his students who made
possible to provide this piece of work.

October 2013 M. Reza Eslami
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Chapter 1
Introduction and History

Abstract This section provides a brief history of the development of the finite
element method. The general picture of the science of mechanics to formulate the
most general rules, variational and boundary value problems, are presented. The
approximate solution of both types of formulations are discussed and how these
approximate solutions are transformed into the finite element method are presented.
The key references in the development of finite element method are cited.

1.1 Introduction

Problems in classical mechanics are either formulated on the basis of the force
summation method, or the variational method. The first method is more widely
used in statement of the equilibrium condition of a system and derivations of the
associated equilibrium equations. The concept of equilibrium of mechanical systems
is expressed in a form that satifies Newton’s law for static and dynamic systems.
Applying Newton’s law to a system results in a set of differential or partial differential
equations describing the state of static and dynamic equilibrium of the system. The
solution to these differential equations is necessary to determine the response of the
system under the applied forces. The study and analysis of the system and its behavior
under the applied forces depends upon the information that we obtain by solving the
governing equations. A more exact and precise solution, provides better and more
informative data about the system and helps in better understanding the behavior of
the system. The second approach for formulating the classical problems of mechanics
is the variational method. This method is based on the concept of energy and the
principles governing the equilibrium of a system in nature. As a general rule of nature,
a system is in a state of equilibrium if the associated functional is extremized within
the constraint paths applied to the system. The state of the extremized functional
always coincides with the equation stating the static or dynamic equilibrium condition
of the system. On the other hand, while the variational principles of engineering
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systems are a fact of nature in regard to the state of equilibrium of a system, they
reduce to the same governing differential equations of equilibrium and boundary
conditions that we were able to obtain from the force summation method.

As an example of the foregoing discussion, consider the problems of solid mechan-
ics and dynamics. The general principle governing the state of equilibrium of all the
problems of this nature is the principle of virtual work. Accordingly, the system is in
a state of equilibrium if the first variation of the work vanishes for all possible virtual
paths. The expression for general work is called a functional. In the mathematical
sense, the system is in a state of equilibrium if the functional is minimized within
the given constraints. This leads to a class of classical extremum problems. How-
ever, the functional is a function of dependent functions. As the dependent functions
vary, the functional varies too. Among all the classes of admissible functions, the
functions which extremize the functional are the governing equilibrium equations of
the system. We call the function the dependent function which governs the state of
the equilibrium equation. The governing equations of equilibrium obtained from the
force-summation method result in boundary value problems.

In solid mechanics, the general principle of virtual work is divided into two cat-
egories, the static and dynamic problems. The principle of virtual work reduces to
the principle of minimum potential energy for the static problems and to Hamilton’s
principle for the dynamic problems. That is, the general expression for a functional
in static problems is the total potential energy function of the system, and in dynamic
problems is the Hamilton function. Now, one can employ the mathematical tools of
the calculus of variation and apply them to either functions of static or dynamic
problems. Minimizing the functional of the total potential energy of the static prob-
lems by the method of calculus of variations provides the boundary value problems
associated with the static equilibrium of the system. An alternate method for arriv-
ing at the same boundary value problem is to set > F = 0. The latter approach
is more common in classical literature for obtaining the governing equations of a
boundary value problem. By similar means, application of the Hamilton principle to
dynamic problems and the minimization of the related functionals yield the boundary
value problems of the system associated with > F = ma. It is, however, a com-
mon practice in engineering analysis to set up the governing differential equations
of equilibrium of the system by the load summation method and try to solve the
resulting equations by theoretical or numerical methods for obtaining the response
of the system under the applied loads.

Either formulation of the engineering systems, variational or forced summation
method, result in the governing differential equations of equilibrium. Traditionally,
one has to consider the resulting differential equations and try to obtain a solution
by either exact analytical or approximate numerical means. The exact analytical
solutions to some classical problems with simple geometries and boundary conditions
are well developed, but the majority of mathematical models describing the behavior
of the physical systems are left analytically unsolved.

The necessity of understanding the behavior of mechanical systems under applied
loads has forced alternate techniques for obtaining solutions of the problems. The
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alternate solution techniques include classical approximation methods and numerical
methods.

Historically, numerical techniques were developed based on two different
approaches, variational and weighted residual methods. In 1908, Ritz [1] developed
a method where a series solution was assumed for the dependent function, and its
constant coefficients were found such that the functional remained stationary with
respect to constant coefficients. The traditional Ritz method was, therefore, devel-
oped as an approximate solution of the extremum problems, and was used whenever
the functional of the problem was known. On the other hand, in 1915, Galerkin [2]
developed another technique which was suitable for the approximate solution of the
boundary value problems. According to this technique, a series solution was assumed
for the dependent function and the residue of the governing equilibrium equation was
made orthogonal with respect to the weighting functions. The weighting functions
were selected to be the same functions in the series solution. The result yields a
system of linear equations which are solved for the unknown constant coefficients
of the series solution. The Galerkin method is one technique among three others,
namely subdomain, collocation, and least squares, which are all developed as an
approximate method of solution of the boundary value problems.

The method of finite differences is in the class of weighted residual methods and, as
a special technique of collocation, considers the differential operators approximated
by the Taylor series for a finite span of the variables. The first term of the series
is retained and the differential operator is expressed in terms of the values of the
function at the nodal points of a rectangular mesh. The efficiency of this method is
proved whenever the solution domain is confined to a geometrically fine problem
where the finite different meshes are either rectangular cells or sections of a circle.
The residue of the governing equations are set to zero at the predefined nodal points
of the meshed domain. The accuracy of the solution depends upon the proper number
of nodal points in the solution domain.

All the mentioned approximate numerical techniques convert the governing sys-
tem of differential equations of equilibrium into a set of linear equations to be solved
for their unknowns. A more exact solution requires a larger number of terms, or nodal
points, and consequently a larger system of equations and unknowns. Prior to the
1950s, the solutions of the set of equations for unknowns were restricted to a few,
which could have been found through hand calculations. During the years 1954—
1956, the concept of the computer was developed at the Massachusetts Institute of
Technology and the concept was very rapidly turned into actual electronic comput-
ers. One of the very first applications for this new invention was the solution of a
system of equations for unknowns. The approximate numerical techniques became
very important, and the attention of scientific communities was rapidly turned toward
this new concept of analysis. The old concepts of numerical methods became alive
again, reborn as new concepts with the same basic mathematical principles, but
implemented through new approaches.

A decade before the invention of the computer, Courant in 1943 [3] and Prager and
Synge in 1947 [4] used the Ritz concept and applied it to the principle of minimum
potential energy, formulating the elasticity problems in terms of finite elements. The
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proposed technique was not developed any further due to the limitations imposed
on the solution of the systems of large numbers of equations and unknowns. In
1956, Turner et al. [5] proposed a numerical technique for solving complex struc-
tural problems using the structural stiffness method. This paper later became a basis
for development of the finite element method. Szmelter [6] and Clough [7], in 1959
and 1960, respectively, applied the Ritz method to the two-dimensional elasticity
problems and came up with the finite element method. Many papers were then pub-
lished on the subject of finite elements using the Ritz method, modeling different
problems of mechanics by the finite element method [8—13]. In 1967, Zienkiewicz
[14] collected his extensive works and that of others into the first volume of a book
on the finite element. The finite element method up to this time was primarily based
on the Ritz method and was limited to problems which had a known expression for
the functional. The fluid mechanics problems, which were based on Navier Stokes’
equations, could not be analyzed by the finite element method, as the associated
functional was not known at the time (and is still not known as of this writing). The
fluid dynamic problems confined to the potential flow and creeping flow theories
could be analyzed due to their known expressions for the functional.

Due to the lack of knowledge about the extremum principles of fluid dynamic
problems, the finite element analysis of this class of problems was not developed
until the late 1970s when the weighted residual approach was introduced to the
finite element technique. Since the equations of motion of fluid flow were known,
the weighted residual method, especially the Galerkin method, was employed to
model the discretized solution domain of fluid flow problems. The finite element
method based on the Galerkin technique was rapidly utilized to model all different
problems of compressible and incompressible fluid flows. The energy equations for
non-isothermal fluid flows were also treated through the convective heat transfer
equations and the fluid and thermal boundary layer problems were modeled by the
finite element method according to the weighted residual techniques.
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Chapter 2
Mathematical Foundations

Abstract This chapter presents basic mathematical concepts and tools for the
development of finite element method. The concept of functional, associated with the
variational formulation, and the function, associated with the boundary value prob-
lems, is discussed; the method of calculus of variation which transfers the variational
formulation into the boundary value problem is also presented. A brief discussion of
the numerical solution methods to handle the variational formulation and the bound-
ary value problem is presented. Some numerical examples are given to show the
convergence efficiency of the numerical methods.

2.1 Introduction

The fundamental problems of mechanics are governed by differential or partial differ-
ential equations which state the equilibrium and continuity conditions of the system.
In particular cases, where the geometry, loading, and boundary conditions are simple,
these governing differential equations are solved and the solutions are presented in
the form of mathematical functions.

The problems of mechanics, in general, should satisfy the condition of the
extremum of a functional at equilibrium condition. That is, a problem formulation is
described by its proper differential equations of equilibrium as well as its associated
energies at the extremal condition. While the formulation of problems based on the
forced summation method and the variational method are entirely different, they are
both related and yield identical results. That is, the equilibrium equations describing
the system at equilibrium are associated with the minimum total work of the system.
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2.2 Statement of Extremum Principle

Engineering problems are usually formulated in terms of a system of equilibrium
equations which may be in the form of algebraic, ordinary, or partial differential
equations. For many systems, the equilibrium equations are equivalent to a known
extremum problem. The reality for physical problems relies on the basic laws of
nature wherein the state of equilibrium is associated with a specific physical law in
nature.

The mathematical statement of the extremum principle is as follows; a certain
class of allowable functions ¥(t,x;) i = 1,2,3 is fixed between time intervals
t1 <t <ty and in space domain D(x1, X3, X3), and a means for associating a value
@ () with each function ) is defined. For a particular function 1, there exists a
single function for ® such that as 1) ranges through the class of allowable functions,
the corresponding functional value of ® varies. The class of functions 1 are called
function and their corresponding ® values are called functional. The extremum
problem is to locate the function v in which its functional ® remains stationary.

In the statement of the extremum problems and the relationship between the
functional and function, the following two questions arise:

1. Given a function (¢, x;), i = 1,2, 3, associated with a boundary value prob-
lem, does an equivalent extremum problem exist? and if so, what is the class of
allowable functions and what is the functional ®?

2. Given an extremum problem, what is the equivalent function satisfying the bound-
ary value problem?

We expect to answer the first question for the physical and engineering prob-
lems by the known extremum principle based on the laws of nature and physics.
For mechanical problems, the examples are the law of entropy for thermodynamic
problems, Hamilton’s principle for the dynamic problems, and the law of minimum
potential energy for the static problems. A more general treatment may be based
on the principle of virtual work. The extremum values of entropy or work done
under certain circumstances are always associated with the general equilibrium of
the mechanical systems which are obtained by means of balance of forces, moments,
and energies. There are no general mathematical treatments for obtaining the func-
tional directly from its associated boundary value problem obtained through the
balance of forces, moments, and energies.

The answer to the second question, on the other hand, is always positive and is
based on the algorithm of calculus of variations. That is, it is always possible to
find the associated boundary value problem of a given functional, using the method
of calculus of variation. Applying this method, results in the boundary value prob-
lem expressing the state of equilibrium and natural boundary conditions, which are
essentially obtained during the weak formulations of integral equations.
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2.3 Method of Calculus of Variation

The general statement of the calculus of variation and the relationship between a
functional and the function associated with its extremum is discussed in this section.
In terms of physical problems, we try to obtain the equilibrium equation of a bound-
ary value problem which governs the function (¢, x;), i = 1, 2, 3, through the
minimization of its associated functional ® ().

Assume that the function ¥ (x;), i = 1, 2, 3, is defined and is a function of the
space variables x1, xz, and x3 satisfy the equilibrium equation

L[ (x1, x2,x3)] = 0. (2.3.1)
The essential boundary condition which 1) has to satisfy is
Bi(v) = gi i=1,2,.. (2.3.2)

where L is a mathematical operation, B; is a linear operation on v, and g; is the
non-homogeneous boundary condition applied on . The associated functional of
Eq.(2.3.1) is

D =d(@Y). (2.3.3)

Now, consider a variational function # which meets the continuity conditions and
satisfies the homogeneous boundary conditions

Bi(u) =0 i=12,... (2.3.4)

Now, if 1 is the true solution of Eq.(2.3.1), (¢ + eu) may be made to represent
an arbitrary admissible function which satisfies the real non-homogeneous bound-
ary conditions. For fixed u, the variational parameter ¢ may be changed to make a
one-parameter family of admissible functions. Since u satisfies the homogeneous
boundary conditions, it follows that

Bily) + eu] = g; i=1,2,... (2.3.5)

Substituting the family of admissible functions 1)+ eu in Eq. (2.3.3), the functional
® may be changed by varying the variational parameter €. The extremum of the
functional ® is obtained from the following rule:

(M) loco = 0. (2.3.6)
Oe

This rule holds for every possible family of (i + eu) for the arbitrary variational
function u. The rule expressed in Eq. (2.3.6) is the basic and formal procedure of the
method of calculus of variation. The basic approach in the treatment of Eq. (2.3.6) is
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integration by parts such that the arbitrary function u is factored out in the resulting
equations. Since u is an arbitrary function, the remaining part is set to zero. This
provides the boundary value problem and the associated natural boundary conditions.

To describe the method, a few general types of functional are considered, and,
using the method of calculus of variation, their associated boundary value problems
are obtained.

2.4 Function of One Variable, Euler Equation

Let us consider a functional ® being a function of y(x) and its first derivative y’(x)
as given below,
x2
Syl = [ Py, @41)
X

1

The boundary conditions on y(x) are assumed to be

y(x1) = »n y(x2) = y2. (2.4.2)

It is further assumed that the function F is continuous in the interval x| and x;, and
its derivative up to the first order exists and is continuous.

Among all functions y(x) which satisfy the continuity conditions and the given
boundary conditions, which we call the class of admissible functions, there is only
one special function y(x) which minimizes the functional ®.

In order to determine y(x), an arbitrary function u(x) is selected such that it is
continuous in the interval x; and x, along with its first derivative and satisfies the
homogeneous boundary conditions

u(xy) = u(x2) =0. (2.4.3)
Now, the function y is constructed as
y(x) = y(x) + eu(x) (2.4.4)

where y(x) satisfies all the continuity conditions and the given boundary conditions.
The parameter € is a positive arbitrary variational parameter and is selected as suf-
ficiently small so that the function y(x) is as close as possible to the function y(x).
Therefore, since y(x) makes the functional at a relative minimum, for ¢ # 0 the
following inequality exists:

Dy +eu) > O(y). (2.4.5)

The functional @ is a function of € and is at a relative minimum for e = 0. Calling
f(e) = ®(y + eu), f(e) is a function of ¢, and according to Eq. (2.4.5),
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fe = £(0). (2.4.6)

This suggests that f(e) is at a relative minimum when ¢ = 0, and since f(e) =
®(y + eun) is differentiable, the necessary condition for f(e) to be at a relative
minimum is therefore

5f (6)

o = 0. (2.4.7)

Introducing Eq.(2.4.4) into Eq. (2.4.1) yields

X2

D(y +eu) = / Flx, (y +eu), (y + eu')ldx. (2.4.8)

Differentiating with respect to e gives

0D (y + eu)

*2 0 0
=/ [—= F(x,y+eu,y +euyu +— Fx,y+eu,y
e oy

ay’
+ euu'ldx. (2.4.9)

Integrating the last integral by parts gives

8<D(y+eu) /’CZ OF (x,y +eu,y +eu')

dy
d 0F(x,y+6u,y’+eu’) OF
dx dy’ ] “dx"i‘a—)_),(x,y—keu,y/—i-eu’)u(x) ¥
(2.4.10)
Setting € = 0 yields
8d>(y+eu)| _/xz[aF(x’y’y/) _4a aF(X,y,y/)]u(x)dx
o T oy dx oy
oF
+_”'x2 =0. (2.4.11)

The function u(x) is an arbitrary function satisfying the homogeneous boundary
conditions. The expression in Eq. (2.4.11) should be zero for all values of u(x). This
leads to the Euler equation

oF d OF

- 2 2.4.12
dy dx 0y ( )

subjected to the natural boundary condition
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oF

a_y/ =0 at x = X1

oF

0 at x=x. (2.4.13)
ay’

Equation (2.4.12) is equivalent to the boundary value problem. Expanding the dif-
ferential term yields

OF O*F dy 9*F d*y &*F

- _ -2 - =0. 2.4.14
Oy  0x0y' dx Oydy  dx% 0y? 0 ( )

Equation (2.4.14) is the necessary condition for a function y(x) to minimize the
functional ®(y) given by Eq. (2.4.1).

2.5 Higher Order Derivatives

Consider a functional as a function of the variable x, function y(x), and higher order
derivatives of function y” (x), defined in the interval [x1, x2] as

x
Ply(x)] = / F(x,y,y,...oMdx. 2.5.1)
X1

The function y(x) is (n) times differentiable with respect to x. The boundary condi-
tions are given for the function and its derivatives up to the order n — 1, as

V(X1) = Y1 ceeeeennn yk(x]):y{(
)’(xz) = V2 eeeeenennns yk(xz) = ylzc k = 1’ 2,... , (n _ 1) (252)
where yi, y2, ..., y’f, and y’z< are known functions on the boundary. That is, the

boundary conditions are specified for the function itself and its derivatives up to order
(n — 1). Consider a variational function u(x), and construct the function y(x) as

y(x) = y(x) + eu(x). (2.5.3)

The variational function u(x) is an arbitrary function with the following properties:

1. The function u(x) and its derivatives up to order n are continuous in the interval
(x1, x2).

2. The function u#(x) and all of its derivatives up to order (n — 1) satisfy the homo-
geneous boundary conditions.
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u(xy)) =0--- -uk(xl) =0
u@x) =0 -uk(x) =0 k=1,2,----(n—1).
Substitution of Eq.(2.5.3) in Eq.(2.5.1) yields
X2
S(y +eu) = / F(x,y+eu,y +eu,.y"+ecu")dx. (2.5.4)
X

1

The derivative of @ with respect to € gives

ob [ OF 9y  OF 0y OF "

—= —_— = —= =+ .. 2.5.5
ac ~ )., '35 o Tay o T T o5 e (2:)
Let € = 0, yields
2 OF oF oF
/ u+ —u' + Dy ' .+ oy u™ydx. (2.5.6)
Using integration by parts, gives
2 JF OF 2 d JF
uwdx = — 72— —(=—)udx 2.5.7
/m o wax = oo / G @57
2 9F OF /xz d*> OF
—u'dx = —; - —(=—)udx. (2.5.8
. ay//u x ay,,bt(x)l ( ,,)u( ) s dx2(8y”)u x. ( )

Higher order derivatives are similarly reduced to factors of u(x) and a series of
terms which should be evaluated at the boundaries x = x| and x = x;. Since the
arbitrary variational function u(x) and all it’s derivatives up to (n) are continuous in
the interval (x1, x») and vanish at x| and x», Eq. (2.5.6) therefore reduces to

00y +ew) _/Xz[a_F _d oF  d* OF
Oe =0 = x Oy dx 0y dx% 9y’
da" 8F OF oF d OF
. —l n xz I b o R X2
+ ( ) dx 8 / X1 + 8y”u X1 dx (8)1”) X1
+.... (2.5.9)

This equation is valid for all possible arbitrary functions u(x) with the given
properties. Therefore, if the integral equation should be zero for all possible functions
u(x), the following expressions must be identically equal to zero :

OF d OF d*> OF , d" OF
— - — +—-= 55 +..(=D
ady dx 8y dx? 0y” dx" Jy"

=0. (2.5.10)
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The natural boundary conditions are

OF 4 OF, & OF, Ly S OF
dy'  dx ! dx? oy dx"=1 9yr -
OF d OF d"? OF
— (=)t (=D)"2 — =
8)}” dx ay/// dxn 6)7"
oF _ = d x= 2.5.11
W_O at x =x;, and x = xj. (2.5.11)

Since the function F is known, Eq.(2.5.10) results in the boundary value problem
governing the function y(x). This function minimizes the functional ® given by
Eq.(2.5.1). Equation (2.5.11) are the natural boundary conditions derived through
the integrations by parts of the functional.

2.6 Minimization of Functions of Several Variables

Consider a function u(x, y) defined in the domain D enclosed by the boundary
curve C. The functional @ is assumed to be proportional to the function u and it’s
first partial derivatives with respect to the variables x and y as defined:

Olu(x, y)] :/ F(x, y, u, uy, uy)dxdy (2.6.1)
D

where u, and u, are the partial derivatives of the function u with respect to x and
y. We assume the functional F to be at least differentiable up to the second order
and the extremizing function u(x, y) differentiable up to the first order. We further
assume that the class of admissible functions u(x, y) has the following properties;

a-u(x, y) is prescribed on boundary curve C.

b-u(x, y) and it’s partial derivatives with respect to x and y up to the order one,
are continuous in the domain D.

We assume that the function u(x, y) is the only function among the class of
admissible functions which minimizes the functional ®. Now, the variational function
g(x, y) with the following properties is considered

a-g(x, y) = 0 for all the boundary points on C.

b-g(x, y) is continuous and differentiable in D.

We construct the variational function as

ulx, y)=ulx, y)+egl, y). (2.6.2)
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Substituting in Eq. (2.6.1) and carrying out the partial derivatives gives

od 0

S =5 | ot @ @ e, ldxdy. 263)
Oe de Jp

Carrying out the integration and setting € = 0 yields

o0d OF OF OF
oo = — - — . 2.6.4
66| 0 /D(gau +gxaux +g>auy)dxdy (2.6.4)

The subscripts indicate differentiating with respect to x or y. To evaluate the integral,
consider the expressions

AL A P L

ox o, O T ox ou, T ou, &

o OF o OF OF

9 oF \_90 oF L OF 2.6.
Dy (auy 8=73; (auy)g oy (2.6.5)

Substituting Eq. (2.6.5) in Eq. (2.6.4), the last two terms become

/((’)F +8F \dxd / 8(8F )+8(6F N axa
— g+ — xdy = — — (=— X
p Ouy § Ouy 8y Y p LOx Ouy § Oy Ouy § Y

0 OF 0 OF
— /D |:8_x (8ux) + 8_y (a_uy)] g dxdy. (2.6.6)

Here, — (
. 8x au'x . . . . . .
forming the partial derivatives with respect to x, the variable y remains constant, that

1S

) is called the total partial derivative with respect to x, and in per-

0 OF _ *F N O*F +82F dux OP*F  Ou,y 2.67)

Ox Ou,’  OxOuy Ou,ou e QuZ Ox  Ouyduy Ox o
and

0 OF, _ O*F N O*F N O*F aux+82F Ouy 2.68)

dy Ouy”  Oyduy = OuyOu “y OuyOuy dy — Oud dy’ o

Now, using Green’s integral theorem, the area integral is transferred into the line
integral as

oM ON
/ (— + =) dxdy = / (Ndy — Mdx). (26.9)
p Oy Ox c

Using this rule, we obtain
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I

The right-hand side of this equation is integrated over the boundary curve C. From
Egs. (2.6.10) and (2.6.6), we get

dy — — dx)g (2.6.10)

OF oOF 0 OF (9
/ G &+ gy 80ty == [ 150 G+ 5 (a—ngdxdy

/(aux - dx)g 2.6.11)

Substituting Eq.(2.6.11) into Eq.(2.6.4), and letting the expression Eq.(2.6.4)
be zero, we obtain

[ =52 () — ¢ (—)]g dxdy

/8F 0 OF Jd OF
ou  Ox aux 8 ou

/( dy — — dx)g =0. (2.6.12)
Outy
Since the function g(x, y) is arbitrary,

— - = =0 inD. (2.6.13)

This equation is called the Euler equation, which is the boundary value problem
associated with the functional Eq. (2.6.1). The natural boundary condition is

/( dy — —— dx) =0 onC (2.6.14)
Ouy

2.7 Cantilever Beam

Consider a cantilever beam of arbitrary cross-sectional area and length L and bending
stiffness E/ subjected to a bending force F, as shown in Fig.2.1.

We will now write the potential energy function of the beam under the applied
force F, and by minimization of this function, using the method of calculus of
variation, we obtain the Euler equation for the equilibrium of the beam.

The potential energy of the beam is the sum of two parts, internal strain energy,
and the strain energy of the external forces, as

V=U+Q (2.7.1)
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/] L F
7
/-r_,_-:-—"-———————"—"-'*—"—'—"":
S
H"‘-H y’
Yy R S
~J

Fig. 2.1 A cantilever beam under transverse force F

where V is the total potential energy of the beam, U is the internal strain energy and
2 is the strain energy of the external forces.

From the strength of the material, it is recalled that the internal strain energy of a
beam subjected to a bending force is obtained from the following relation

L m2q
U= / al (2.7.2)
0

2EI

where M is the bending moment distribution along the beam and dx is an element
of the length of the beam the associated strain energy of which is dU. From the
elementary beam theory, the bending moment M and the curvature 1/R are related
by

El

M 2.7.3
R (2.7.3)
Substituting M from Eq. (2.7.3) into Eq. (2.7.2) yields
L EI
U= —— dx. 2.7.4)
o 2R?

The radius of curvature R and the beam’s elastic deflection equation are related as

7 (2.7.5)
[yl

Since for the small deformation, assumption y' << 1, ¥’ is neglected compared to
1 in Eq.(2.7.5). Substituting the reduced form of Eq.(2.7.5) in Eq.(2.7.4) gives

L
U= %/0 EI (y ) dx. (2.7.6)

This equation is valid for an arbitrarily small deflection, provided that plastic defor-
mation does not occur.
The potential energy of external force F is
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Q=—Fy, (2.7.7)

where y; is the deflection under the force F in y-direction and the negative sign
indicates that work is done on the system. The total potential energy from Eq. (2.7.1),
after substituting from Eqgs. (2.7.7) and (2.7.6), becomes

L
V =—Fy + %/ EI(y )? dx. (2.7.8)
0

In Eq.(2.7.8) y, the deflection function is a function of the variable x. As y takes on
different values, the functional V varies. The equilibrium state of the beam occurs
when the functional V has it’s minimum value, and at this condition, y(x) represents
the deflection equation of the beam at equilibrium. The function y(x) has to satisfy
certain conditions. The function y(x) and its first derivative y’(x) have to be contin-
uous over the interval (0, L). Furthermore, the second derivative y// must exist, and
must be an integrable function. The function y(x) must also satisfy the boundary
conditions at the beam’s boundary.

In this case, the boundary conditions at the clamped edge for a cantilever beam
are y(0) = y’(0) = 0. These conditions are called the essential boundary conditions
since they are physical constraints of the problem.

Now, we may apply the method of calculus of variation to obtain the minimum of
the potential energy function and, thus, the equilibrium equation for the deflection of
the beam. Let us define the variational function 7(x) and the variational parameter
€. The variational function n(x) is arbitrary, and both itself and its derivative with
respect to x are continuous functions between the interval (0, L). The potential energy
of the beam, corresponding to the deflection y = y + en, is

L
Vi)=—-F(1 +emn) + % EI/ (y +en )odx (2.7.9)
0
or
L " L "
V() =—F( +6771)+%E1[/0 & )2dx+/0 (( )dx
L " "
+2/ ey (1 )*dx]
0

differentiating with respect to € gives

ov

L L
=—F7]1+%E1[2e/ (n )de+2/ y n dx]
86 0 0

Setting € = 0 yields
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av L " "
a—ls=o=—F771-l-E1/ y n dx=0
€ 0

where in the above equation € is set equal to zero, and according to the rule of calculus
of variation, the remaining expression is equal to zero. Two times integrations by
parts give

L
—Fn(L)+Ely 7|5 —Ely nk+ EI/ yVpdx =o.
0

This may be written as

L
— Fn(L) + EIly (L)n'(L) —y (L)n(L) +/0 YWondx]=0.  (27.10)

In order that Eq. (2.7.10) vanishes for all the admissible functions 7(x), the following
conditions must hold
yIV'=0 (2.7.11)

and

F+EIY' (L)=0 y'(0)=0
Yy (L)=0 EIy (0) = 0. (2.7.12)

The conditions Eq. (2.7.12) are known as the natural boundary conditions, since
they are necessary to make the potential energy a minimum. Equation (2.7.11) is
known as the Euler equation and is the equilibrium equation of the beam which
minimizes the total potential energy equation under the given boundary conditions.

A general solution of Eq. (2.7.11) is

y = Co+ Cix 4+ Cax? + C3x° (2.7.13)

where Cy, C1, C> and C3 are the constants of integration. For the given essential
boundary conditions, we have

Co=C1=0. (2.7.14)

The other two force boundary conditions related to the moment and shear force on
x = L give
FL —F

Cr = — Cr= ——
2T 2FE1 37 6EI

(2.7.15)

and therefore, the deflection equation of the beam becomes



20 2 Mathematical Foundations

R 27.16
Y=2E1 Y TeEl " (2.7.16)
or
_F2 (L—21) 2.7.17)
YT 3E1 3 -

2.8 Approximate Techniques

A system under equilibrium condition is considered, in which its equilibrium equation
is described by the general form

Lop[¥] = f (2.8.1)

where L, is a general type of mathematical operation of order 2m applied to the
function ¢, and f is a known function of the given variables. The function v satisfies
the general form of the boundary conditions given as

Bi[Y] = g i=1,2,...,2m (2.8.2)

where B; is a linear mathematical operator describing the boundary conditions on
1. Here, the known functions g; are the given boundary conditions.

We further assume that the equilibrium equation Eq.(2.8.1) is associated with a
variational problem such that the general expression for the functional ® is

® = D). (2.8.3)

An approximate solution of Eq.(2.8.1) may have the following linear form

=0+ > Cjo, (2.8.4)

j=1

where the functions ¢; are linearly independent known functions of the variables in
the solution domain D satisfying the homogeneous boundary conditions. Function
¢o is a known function of the variables satisfying the nonhomogeneous boundary
conditions, and the constants C; are the undetermined parameters. With the above
definitions, the functions ¢; in Eq. (2.8.4) satisfy the boundary conditions

Bilpol=g¢i i=1,...,2m
Bilpj1=0 i=1,....2m, j=1,...,n. (2.8.5)

Thus, the function v of Eq.(2.8.1) satisfies all the boundary conditions for arbi-
trary values of the constant coefficients C;.
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We find the undetermined parameters C; so that they make the functional @,
related to system (2.8.1), stationary. In this case, a set of n simultaneous equations
for the constants C; must be obtained. This method may therefore be considered
as a means for reducing a continuous equilibrium problem to an approximately
equivalent equilibrium problem with n degrees of freedom. There are, however,
two different approaches for finding the undetermined coefficients C;: the weighted
residual methods and the variational method. The weighted residual methods are
based on four different techniques. These approaches are discussed in the following
section.

2.8.1 A: Weighted Residual Methods

When the trial solution Eq.(2.8.4), which satisfies Eq.(2.8.5), is inserted into
Eq. (2.8.1), the residual equation R is

R=f— Lonl¢*] = f — Lanlgo + D_ C;o;1. (2.8.6)

j=1

For the exact solution, the residual R has to be identically zero. For a proper
approximate solution, it should be restricted within a small tolerance. The classical
weighted residual methods are as follows:

2.8.1.1 Collocation

The solution domain D is considered and n arbitrary points are selected inside
the domain, usually with a known geometric pattern. The residual R of equation
Eq.(2.8.6) is set equal to zero at n points in the domain D. That is

R=f—Loldo+ Y Cjp;1=0. (2.8.7)
j=1

This provides n simultaneous algebraic equations for the constants C;. The locations
of the points are arbitrary but, as mentioned, are usually such that D is covered more
or less uniformly by a simple pattern.

2.8.1.2 Subdomain

The solution domain D is subdivided into n subdomains D;, i = 1,2,...,n,
usually according to a simple pattern. Then, the integral of the residual Eq.(2.8.6)
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over each subdomain D; is set equal to zero, as
/ RdD=0 i=1,...,n. (2.8.8)
D;

This equation provides a system of n algebraic equations to be solved for n constant
coefficients C;.

2.8.1.3 Galerkin

The complete solution domain is considered, and the residue R is made orthogonal
with respect to the approximating functions ¢; over the whole domain as;

/qSdeD:O k=1,...,n. (2.8.9)
D

This equation provides a system of n algebraic equations for the n constant coef-
ficients C;.

The main difference between the collocation and subdomain methods and the
Galerkin method is that, in the collocation and subdomain methods, the solution
domain is divided into a number of elements and nodal points, while in the Galerkin
method the solution domain is considered as a whole. This is called the traditional
Galerkin method.

2.8.1.4 Least Square

Similar to the Galerkin method, the complete solution domain is Considered, and
the integral of the square of the residue is minimized with respect to the constant
coefficients C; as

0 2
< dD=0 k=1.....n. 2.8.10
ack/,) " (2.8.10)

This equation provides a system of n algebraic equations with n unknowns
C;, which may be solved for C;. If Ly, is a linear mathematical operator, then
Eq.(2.8.10) is simplified as

—Z/RLzm[qSk]dD:O k=1,...,n (2.8.11)
D
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2.8.2 B: Stationary Functional Method

Let ® be a functional such that the extremum problem for & is equivalent to the
equilibrium problem. The Ritz method consists of treating the extremum problem
directly by inserting the trial family Eq. (2.8.6) into ® and setting

i?Cj / ’ ’

These n equations are solved for the constants C;, and when multiplied by their
corresponding functions ), represent an approximate solution to the extremum prob-
lem. It is an approximate solution, because it gives & a stationary value only for the
class of functions ¢ which are part of the trial family Eq.(2.8.5).

The most important step in the above discussion is the selection of the trial family
Eq. (2.8.5). The purpose of the above criterion is merely to pick the best approxima-
tion from a given family.

2.9 Further Notes on the Ritz and Galerkin Methods

In discussion of the boundary-value and extremum problems, it was concluded that
any boundary-value problem representing a mechanical system in equilibrium is
associated with an equivalent extremum problem in which it’s corresponding func-
tional is in a relative minimum condition.

Now, let us assume that the potential energy of a mechanical system is represented
by the following double integral

O(W) = / /D F(, v, %, s, y)dxdy 29.1)

subjected to the condition
Yv=¢(s) on T (2.9.2)

where I" is the contour bounding the region D and the subscriptin Eq. (2.9.1) indicates
the derivative with respect to x or y. Let 1) be the exact solution to this problem, and
® (1p) = m the value of the minimum. If we can find a function @Z_)(x, y) which satisfies
the boundary condition Eq. (2.9.2) and for which the value of functional ® (1/_)) is very
close to m, then ¢ is a good approximation for the minimum of functional Eq. (2.9.1).
On the other hand, if we can find a minimizing sequence v, i.e., a sequence of
functions satisfying the condition Eq.(2.9.2), and for which ® (¢),,) approaches m, it
would be expected that such a sequence would converge to the solution.

Ritz proposed a classical method in which one can find ¢, a function which
minimizes the integral Eq. (2.9.1), systematically. To describe the Ritz method, let us
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assume 1) to be a function of the variables x and y with n coefficients a;, az, ..... ,dy.

Y=, y, ai, az, .. , dn). (2.9.3)

This function is chosen in such a way that, regardless of the values of a,,, ¢ satisfies
the boundary condition Eq.(2.9.2). The Ritz method is then based on calculating
the coefficients a; through a, for which 1 of equation Eq.(2.9.3) minimizes the
integral Eq.(2.9.1). Upon substitution of equations Eq.(2.9.3) into Eq.(2.9.1), and
performing the necessary differentiation and integration, we find that & is converted
into a function of the coefficients a;, aj, ..., a,. Thatis, ® = ®(ay, an, ....,a,). To
minimize this function, Ritz proved that the coefficients a, must satisfy the following
system of equations:

0P
— =0 k=1, 2,...,n. 2.9.4)
Oay

Let us assume that the solution to Eq. (2.9.4) for n coefficients a, is a1, ao, ...., dy.

Substituting this solution into Eq.(2.9.3) for ¢, we obtain

Yv(x, y) =Y, y, ai, az, ....., ap) (2.9.5)

for which v is now the minimum of integral Eq. (2.9.1).
Now, let us apply the Ritz method to obtain a close approximation to the actual
minimum using a family of functions

Yx, y) =vu(x, y, a1, az, ....,ap) n=1.2,... (2.9.6)

Let 1), be the nth. approximation giving the last value for integral ® in comparison
with all the functions up to the nth. family. Since each successive family contains all
the functions of the preceding, i.e., for each successive problem the class of admissible
functions is broader, it is clear that the successive minimums are non-increasing,

D) = (W) > P(Wy). (2.9.7)

The Galerkin method is an approximate numerical technique which directly solves
the boundary-value problems. This method is particularly suitable for nonlinear prob-
lems due to its fast rate of convergence. In order to describe the method, we assume
a boundary value problem represented by the following differential equation:

L(y) = f(x) (2.9.8)
subjected to homogeneous boundary conditions

yx) =0
y(x2) =0 (2.9.9)
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where L is a mathematical operator and f (x) is a known function. Note that nonho-
mogeneous boundary conditions of

y(x1) =n
y(x2) =y (2.9.10)

can be transformed to the homogeneous conditions Eq. (2.9.9) with a proper change
of variables.

Let us choose a set of continuous linearly independent functions w; (x) in the
interval (x; — x7) that satisfy the boundary conditions Eq.(2.9.9), that is,

wi(x) =wi(xx) =0 i=1,2,...,n. (2.9.11)

We seek the solution of the Eq.(2.9.8) in the form of
n
Yn = Z a;j wi(x) (2.9.12)
i=1

where a;’s are constant coefficients to be determined.
Galerkin suggested that, in order to find the coefficients a;, the following orthog-
onality condition must be satisfied by the functions w; (x) in the interval (x1, x2)

/X2 [L(Z a; wi(x)) — f(x)]w;(x)dx =0 i=1, 2,...,n. (2.9.13)

1 i=1

When the number of functions w;(x) tends to infinity, (n —> 00), the solution
tends to the exact solution. In order to solve for the coefficients a;, the linear set of
Eq.(2.9.13) has to be solved for the unknowns a; (for discussion and solution of such
asystem of equations, one may refer to Kantrovich and Krylov [1]). In practical cases,
a finite number of series Eq. (2.9.12) are considered from which, upon substitution
in Eq. (2.9.13), a finite set of linear equations are obtained to solve for a;.

The functions w; (x) are usually selected in polynomial or trigonometric forms as

(x —x)(x — x2) (x —x1)*(x — x2) (x —x1)"(x — x2)
. nw(x —xp)
sin —————~ n=1,2,... (2.9.14)
X2 — X1

It is obvious that the origin of the coordinate system can be transformed to x; and,
thus, in Eq.(2.9.14) x; = 0.

The Galerkin method is a powerful tool for obtaining an approximate solution for
the ordinary differential equations of any order n, systems of differential or partial
differential equations.
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2.10 Application of the Ritz Method

‘We will now apply the Ritz method to the solution of an ordinary differential equation
of the second order [1]

d
L(y) = d—(Py/) —qy—f=0 (2.10.1)
x
under the homogeneous boundary conditions
y(©0)=0, y()=0. (2.10.2)

It may be verified that Eq. (2.10.1) is the minimum of the functional

L
P(y) = /0 [Py + gy +2fyldx (2.10.3)

subjected to the boundary conditions Eq. (2.10.2). We furthermore assume that in the
given interval the following inequalities are satisfied:

px) >0 qgx) >0 0<x<L. (2.10.4)
Let us now take a series of linearly independent functions ¢ (x), k = 1,2, ..., n,

continuous in the interval [0, L] together with their first derivatives and satisfying
the conditions Eq. (2.10.2). Such a series of functions may be taken as, for example,

. kmx
¢k = S T
o = (L — x)xk k=1,2,...,n. (2.10.5)

We now apply the Ritz method to obtain the minimum of the functional Eq. (2.10.3)
using the series of linear combinations of the functions ¢;. We seek a solution in the
form of

n
Ya =D akdx. (2.10.6)
k=1
Substituting y, in Eq. (2.10.3), gives

L
D(yy) = /O [Py +qyy + 2 fyaldx

L n n n
- /0 S i + 9 b + 20 wdldx.  (2.107)
k=1 k=1 k=1
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But n n n
O ad)* =D a ag ¢d. (2.10.8)
k=1 k=1 s=1
Therefore
n
() = / DSt +a 3 S avasnos + 2f2ak¢k1dx
k=1 s=1 k=1 s=1
(2.10.9)
Calling
L
ks = Qs k :/O (17¢§¢¢; + qorps)dx
L
Bk = / frdx. (2.10.10)
0
‘We have
D (y,) = ZZak saxds + ZZﬁkak (2.10.11)
k=1 s=1

Taking the derivative with respect to ag

d®(yn)

: da Zak sk + 05 =0 (2.10.12)
s k=1
or
d®(yn
2 diy) Z/ (P +Q¢k¢s)akdx+/ fosdx =0.  (2.10.13)

Multiplying ay through the parentheses

dd(yn) L3 z
P2 = [ aptis + Y atisia+ foodx =0 210.14)
s k=1 k=1
or, finally
L
/0 Py, + qynds + fos)dx =0  s=1,2,...,n. (2.10.15)

Equation (2.10.15) represents a set of n integral equations to be solved for a;. Using
the rule of integration by parts gives
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L L
d
/ pypdidx = [py, sl —/ T Py dsdx. (2.10.16)
0 0 X

The first term in the right-hand side of the above equation vanishes, as ¢; vanishes
at 0 and L, and thus

L L d
/ Py, dydx = —/ d—(py;l)(ésdx. (2.10.17)
0 0 X

Substituting in Eq. (2.10.15), yields

L q
/ 5= (p3)) = 4n = flbdx = 0 (2.10.18)
0 X

or, finally .
/ L(yy)¢sdx = 0. (2.10.19)
0

Noticed that application of the Ritz method in this case reduced the problem to that
of the Galerkin method.

2.10.1 Non-homogeneous Boundary Conditions

In the previous section, we discussed application of the Ritz method to problems with
homogeneous boundary conditions. Now, let us consider a problem with a general
non-homogeneous boundary condition as

y(x1) =y
y(x2) = y2. (2.10.20)

For this case, we will take the solution in the form

Yn = Zak¢k + ¢o(x) (2.10.21)

k=1

where ¢o(x) satisfies the given nonhomogeneous boundary conditions. Since the
known functions ¢ (x) satisfy the homogeneous boundary conditions

dr(x1) = dp(x2) =0 k=1,2,...,n (2.10.22)

thus, the function ¢o must satisfy the nonhomogeneous conditions as
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do(x1) = ¥
do(x2) = y2. (2.10.23)

As an example, considering a linear approximation, function ¢q(x) has the following
form:

do) = 2" x —x)+ (2.10.24)
X X1

where y; and y, are given values.
Example 1 Consider an ordinary differential equation such as

YVi+y+x=0 (2.10.25)
subject to the boundary conditions

y(0) =y =0. (2.10.26)

It is required to find an approximate solution of the equation using the Ritz method.

Solution: The exact solution of the above differential equation, using the classical
method for the solution of a differential equation with constant coefficients, is
sin x

y = — —X. (2.10.27)
sin 1

Now, the approximate solution of Eq.(2.10.25) is found and compared with
Eq.(2.10.27).
The corresponding expression for the functional of Eq. (2.10.25) is

1
I= / O+ y* = 2xy)dx. (2.10.28)
0

Comparing Eq. (2.10.28) with Eq. (2.10.3) revealsthat p = 1,g = —1,and f = —x.
The solution is approximated with one term of the series Eq.(2.10.5) as

y1=ai¢gr = ayx(l —x). (2.10.29)

Substituting the approximate solution Eq. (2.10.29) in the expression for the func-
tional, using Eq. (2.10.19), gives

1 1
/ L(yp¢rdx = / [—2a; +a;x(1 —x) +x]x(1 — x)dx = 0.
0 0

Multiplying and integrating gives
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1+2 1+3
[615_1 X — +4 Dty +3 A3 —aix?y =0
al 14 2a4 14 3a;
_ _ =0
5 5 T3 a
a) = 1_8

and thus, the solution is
5
v = 8 x(1 —x) (2.10.30)

Example 2 Consider again the same problem as in Example (1), but with an approx-
imate solution with two terms of the series being considered as

pr=x(1—-x) , ¢pp=x*(1—x)

and
y2 = x(1 = x)(a1 + axx).

Substituting in Eq. (2.10.19) gives

1
/ L(y))$1dx =0 (2.10.31)
0

and |
/ L(y2)¢padx = 0. (2.10.32)
0

Substituting for y, ¢;, and ¢, in Eqs.(2.10.31) and (2.10.32) yields
1
/ [v5 + x(1 — x)(a1 + azx) + x]x(1 — x)dx =0
0
1
/ [yy + x(1 — x)(a1 + ax) + x]x*(1 — x)dx =0
0
or
1
/ [2(a2 —a1) — (6ay — 1 — ap)x + (a2 — a))x* — axx](x — x>)dx =0
0
1
/ [2(ar — a1) + (a1 + 1 — 6az)x + (ap — al)x2 — a2x3](x2 _ x3)dx =0.
0

Multiplying and integrating, yields
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Table 2.1 Comparison of the

exact solution with one-and J 21 22

two-term approximate x=1/4 0.044 0.052 0.044

solutions x=1/2 0.070 0.069 0.069
x=3/4 0.060 0.052 0.060

18a; +9a> —5=0

3 N 13 1 _o
20T 105?20
Solving for a; and a, gives
71 7
a = —, dy= —
=369 74
or
=x(1 )(71 + ! ) (2.10.33)
2= TS T Y A0

Now, the exact solution of the differential equation Eq.(2.10.25) is compared
with the one-term and two-term approximate solutions. The exact solution from
Eq.(2.10.27) is called y, the one-term approximate solution from Eq.(2.10.30) is
called yp, and the two-term approximate solution from Eq.(2.10.33) is called y».
All three solutions satisfy the given boundary conditions at x = 0 and x = 1. To
compare the three solutions, their values at x = 1/4, x = 1/2, and x = 3/4 are
calculated and shown in Table 2.1.

Comparing the results, it is seen that the error of the first approximation is about
%15 and that of the second approximation about %]1.

Example 3 Consider the Bessel differential equation
2y +xy + (2 —1y=0 (2.10.34)

defined in the interval 1 < x < 2. The boundary conditions at x = 1 and x = 2 are

assumed as
y(1) =1 y(2) =2. (2.10.35)

The exact solution of the assumed Bessel differential equation under the given bound-
ary conditions is
y = 3.60721; (x) 4+ 0.75195Y1 (x) (2.10.36)

where 11 and Y are the modified Bessel functions of the first and second types and
of order 1.

Now, the solution of Eq.(2.10.34) may be approximately obtained using the
Galerkin method. Let us change the dependent function y to z by the transformation
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Table 2.2 Comparison of the

exact solution with a one-term y 1

approximate solution 1.3 1.4706 1.4703
1.5 1.7026 1.7027
1.8 1.9294 1.9297

y = z + x. Then, Eq. (2.10.34) transforms into the following form:

xz—1

xz +7 + 74+ x2=0. (2.10.37)

The boundary conditions in terms of the function z become z(1) = z(2) = 0. We
assume the solution by one-term approximation z = a ¢, with o1 = (x —1)(2—x).
Applying the Galerkin method to Eq.(2.10.37) gives

2 " ’ _x2 e 1
/ 2 +z+——a + x2]¢1dx = 0. (2.10.38)
1

Substituting for z1 yields

x2

x_ l(x — D@2 = x)a; +x7]

(x — DR —x)dx =0. (2.10.39)

2
/ [—2a1x + (3 —2x)a; +
J1

Solving for a; gives
a; = 0.8110 (2.10.40)

and the approximate solution of Eq.(2.10.34) with one-term approximation for y;
becomes
y1 =0.8110(x — D2 —x) +x (2.10.41)

The exact solution Eq. (2.10.36) is compared with the one-term approximate solution
Eq.(2.10.41) in the following at three different locations (Table?2.2).

It should be noted that a very close agreement is reached with even the one-term
approximation.

2.11 Problems

1. When the equilibrium problems Eq. (2.8.1) and Eq. (2.8.2) are linear, the weighted-
residual methods to the trial family Eq.(2.8.4) all lead to equations for the C;
having the following form:
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aip ap .... iy gl Zl
ary ax ... Ay 2 2
arl Ay .... Apy Cr br

Show that for collocation

axj = Loml@j(P)] b = f(Pr) — Lam[¢o(Pr)]

where the Py are the r locations arbitrarily selected. Show that for the subdomain
method

agj =/ LowlojldD by = {f — Loml¢ol}dD
Dy Dy

where the Dy, are the r selected subdomains. Show that for the Galerkin method

ar = /D bt Lonl61dD by = /D 6¢ (f — Lanldo])dD

and for the least-square method

ag;j =/D Lowm[¢r]LomlejldD by =/D Lom[éx](f — Lomléo)dD.

Note that in every case the matrix A has to do with the characteristics of the
system and that the matrix B is related to the loading in the domain and acting
on the boundary.

2. Show that the equation applying to the unknown value of an approximate solution
to Poisson’s equation at a nodal point is the same by either the finite element or
finite difference method (solve this problem after the introduction to the finite
element method).

3. Employing the Galerkin method, solve the following differential equation:

y//// + (Ax + B)y _ C
y(x1) =0
y(x2) =0

where A, B and C are constants. Solve this problem first by taking n = 1 in
Eq.(2.9.12), that is, take only one term of the series. Then, solve the problem by
taking n = 2 and compare the results. Any numerical values may be assumed for
the constants A, B, and C.

4. Consider a functional given in the form
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D[(u(x, y)] =/ F(x, y, u, ux, uy, Uxyx, Uyy, Uxy)dxdy
D

where u, and u, are the first partial derivatives of the function u, and uy, uy,,
and u, are the second partial derivatives with respect to x and y. We assume the
functional F to be at least differentiable up to the third order, and the extremizing
function u(x, y) differentiable up to the second order. We further assume that
the class of admissible function u(x, y) has the following properties;

a-u(x, y) is prescribed on boundary curve C.

b-u(x, y) and it’s partial derivatives with respect to x and y up to the second
order are continuous in the domain D.

Using the method of calculus of variations, obtain the associated Euler equation
and the natural boundary conditions.

Further Readings

1. Kantrovich LV, Krylov VI (1964) Approximate methods for higher analysis. P. Noordhoff,
Holland

2. Langhaar HL (1962) Energy methods on applied mechanics. Wiley, New York

3. Elsgolts L (1973) Differential equations and the calculus of variations. Mir Publisher, Moscow



Chapter 3
Finite Element of Elastic Membrane

Abstract To physically show the finite element approximation, an elastic membrane
is selected. By the finite element method, we approximate the height of an elastic
membrane. This provides a physical feeling of what the finite element approximation
means. In addition, since the governing equation of an elastic membrane is Poisson’s
equation, many other mechanical problems governed by Poisson’s equation may be
treated by the detailed mathematical derivations of this chapter.

3.1 Introduction

Analysis of a finite element is described in this chapter. To give a geometric and
physical explanation of the finite element method, an elastic membrane is selected.
The governing equation of an elastic shallow membrane, which describes the height
of the membrane due to the inside pressure, is Poisson’s equation. According to the
finite element technique, the domain of the membrane is described by a number
of elements, and the height of the membrane over each element is approximated
with a given shape function. The outcome of the finite element model of the elastic
membrane is a geometric model, which is simple to imagine. As a result, the reader
would receive a physical feeling for the finite element approximation. For example,
if the membrane’s domain is divided into a finite number of triangular elements, and
the shape function over each element is selected as linear, it means that the smooth
space surface for the height of the membrane is approximated with a flat plane over
each triangular element.

Another important feature of this chapter is the derivation of the membrane func-
tional. The related functional of the elastic membrane is obtained using the total
potential energy of the elastic membrane. Now, since the equilibrium equation of the
elastic membrane is similar to many other problems, such as conduction heat transfer
or potential flow problems, we may thus write the functional of such problems from
the membrane analogy. Otherwise, it is not possible to write the functional of the

M. R. Eslami, Finite Elements Methods in Mechanics, 35
Solid Mechanics and Its Applications 216, DOI: 10.1007/978-3-319-08037-6_3,
© Springer International Publishing Switzerland 2014
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Fig. 3.1 Membrane domain v
in xy—plane

A

heat conduction problems right from the energy principals of thermodynamics. The
variational formulation of heat and fluid flow problems are not yet obtained.

3.2 Poisson’s Equation

The problem is to determine ¢ governed by equation

¢y 9%
@-Fﬁz—f(x, y) 3.2.1)

over D, where ¢ is an unknown function and f (x, y) is a specified function of x
and y. Furthermore, on the boundary d D, any of the following boundary conditions
may be specified (Fig.3.1).

¢ = fi(s)ondD, where f] is specified (3.2.2)
ad
8—¢ = fo(s) on 0D, where f; is specified (3.2.3)
n
ad
8—¢ + hl¢p — f3(s)] =0on dD, where f3 and h are specified. (3.2.4)
n

Any combination of Eq. (3.2.1) with the boundary conditions (3.2.2), (3.2.3), or
(3.2.4) is called a boundary value problem (BVP). More specifically, if f(x,y) =0
over D, Eq. (3.2.1) is called the plane Dirichlet problem. Note that Eq. (3.2.1) in this
case, where f = 0, is called the Laplace equation. If f(x, y) = cte, then Eq. (3.2.1)
is called Poisson’s equation. Also, Eqgs. (3.2.3) and (3.2.4) are called Dirichlet and
Neumann boundary conditions, respectively.

3.2.1 Physical Examples

1. Steady state heat conduction: the governing differentiation equation is
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kVT =0 (3.2.5)

where 7T is the absolute temperature at any point, k is the coefficient of thermal
conduction, and Q is the rate of energy generation per unit volume.

2. Torsion of the prismatic bar: the governing differential equation is
V2 = —2G6 (3.2.6)

where ¢ is the stress function, G is the torsional rigidity, and 6 is the angle of
twist per unit length of the prismatic bar.
3. Pressure distribution in a porous media: the governing differential equation is

Vp=0 (3.2.7)

where p is the pressure in the porous media.

4. Fluid dynamics: Consider a steady-state inviscid irrotational flow of an incom-
pressible fluid. The potential function and the stream function are governed by
the following equations:

V2¢ =0, ¢ = fi(s) on 3D
V29 =0, ¥ = fo(s) on dD (3.2.8)

where ¢ is the potential function and v is the stream function. The velocity
components in a two-dimensional fluid flow are related to the potential and stream
functions as

I b2
ox ay
9 9
u=_2 p=¥ (3.2.9)
dy ax

where u is the velocity component along the x—axis and v is the velocity com-
ponent along the y—axis.

The physical problems given in the above examples are all governed by Poisson’s,
or the Laplace, equation and their analytical solution may be obtained by the method
of separation of variables. The final solution, however, requires calculations of the
separation constants using the boundary conditions. Unless the solution domain does
not have a regular shape, such as rectangular or circular, the integration constants
can not be obtained. Using the finite element method, the numerical solution may
be obtained for any type of boundary condition. Since the governing equation of the
elastic membrane is identical with the above physical examples, all the mathematical
and numerical formulations of the elastic membrane will be applicable to the above
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Fig.3.2 A shallow membrane 7]
ab
n
+P(x,y)
X
Fig. 3.3 Boundary of elastic Y
membrane

examples. Thus, it is worth studying the mathematical and finite element formulations
of the elastic membrane.

3.3 Weightless Elastic Membrane (Method I)

Consider a weightless elastic membrane based in an x—y plane, as shown in Fig. 3.2.
Let ¢ (x, y) be the vertical displacement of the membrane and T be the stretched
force per unit length of the membrane surface, which is assumed to be constant.
Then, T'ds is the net force for a length ds of the membrane boundary. The force T'ds
is tangent to the membrane surface. The vertical component of T'ds for the shallow
membrane, in ¢-direction, is T'ds x d¢/dn, where 7 is the unit outer normal vector
to the boundary. This vertical force, integrated over the boundary of the membrane,
should be balanced with the vertical force of the inside pressure under the membrane,
as

)
f T—¢ dS+/pdxdy=0. (3.3.1)
ap 0 D

n

Recall from Green’s theorem in plane and Fig. 3.3
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/(%xfb%dxdy:% A-dS
D aD
dS =dSyi +dSyj
dS = (—dSsin6)i + (dScos6)]

- dy\ - dx\ -
ds = (—as22 )i+ (as2E) . (3.32)
dn dn
Note that 9 96 d 96 d
9 _ 99 dx | 99 dy (3.3.3)
on ox dn  Jy dn
Therefore
9 3 - 3¢ - dy - dx - Lo
jf T—d’dS:]f (=227 22 5) (=279 5 dszjf T A-d§
oD on 9D ay ox dn dn 9D
(3.3.4)
where 3 3
A:——¢7+—¢f. (3.3.5)
dy ox

Using Green’s theorem in the plane, the line integral in Eq. (3.3.4) is converted to

8 - - - - -
f T—¢dS:jI{ TA~dS:/ T(VxA)-kdxdy:/ TV2pdxdy.
ap On D D D
(3.3.6)
Substituting in Eq. (3.3.1), gives

/ (TV2¢ + p)dxdy = 0. (3.3.7)
D

Since the above equation should hold for all values of the integrand, therefore

TV2¢ +p =0. (3.3.8)

3.4 Membrane Analysis (Method II)

Let ¢ be the vertical displacement of the membrane due to the inside pressure p,
and T the membrane tension. The section of the membrane in ¢—x is shown in
Fig. 3.4. A strip of the membrane with width dy is considered. The tension force
of the membrane across the strip width is 7'dy. For a shallow membrane, where
sina ~ tan o = d¢/dx, the net force in the vertical direction between the nodes of
an element dx of the strip is
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7
2
a®, gﬁ? dx
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agy
s : P(xy)
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i dx |
- - x
Fig. 3.4 Section of elastic membrane in ¢—x plane
Td 0¢ + 82¢ d Td 09 T82¢ dxd 3.4.1)
_ — dx — e = —F dax . L.
Y\ox T ax2 Y\ ox 0x2 Y

Now, a strip of width dx of the membrane in the y—¢ plane is considered and the net
vertical component of the force between the ends of an element dy of the strip is

9 92 9 92
Tdx _¢> + —¢ dy) —Tdx —¢ = T—¢ dxdy. (3.4.2)
dy  0y? dy dy?

Adding the vertical components of the forces of an element dxdy of the membrane
from Eqs. (3.4.1) and (3.4.2) results in

3¢ 3¢

T—= dxdy + T—= dxdy. 343
a2 Xy 2y2 y (3.4.3)
These forces must be balanced with the vertical force of the inside pressure pdxdy,
and thus, from a summation of the forces in the vertical direction, we have

% 9%
T|— + — =0. 3.44
( %) + 3y2) +p ( )

Equation (3.4.4) may be solved by analytical or numerical methods. The boundary
conditions on ¢ are of the form

¢ = fi(§) ondD (3.4.5)
9 _ f2(8) ondD (3.4.6)
on

where f1(S) and f>(S) are known functions on the boundary.
Equation (3.4.5) describes that the edge displacement of the membrane is fixed.
In this case, the prescribed displacement on the edge is f1(S). Equation (3.4.6) is
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@

3
b~

Fig. 3.5 Section of elastic membrane in ¢—x plane

0
related to the edge of the membrane where force is prescribed. That is, T’ —¢ is equal

to the vertical component of force per unit length along the membrane edge.

3.5 Strain Energy of Elastic Membrane

Recall that the potential energy associated with a conservative system in stable equi-
librium is at a relative minimum. Let us use this law for the formulation of the
extremum problem of a membrane. Consider an elastic weightless membrane under
inside pressure. The deflection of the membrane is assumed to be small (shallow
membrane assumption). Also, assume that the membrane tension 7 is constant.
Take an elastic strip, as shown in Fig. 3.5. The change of potential energy is

Change in potential energy = AV = AU + AQ 3.5.1)

where

AU = change in internal strain energy

A2 = change in potential energy of the external forces. (3.5.2)

The change in internal strain energy can be calculated as

AU =T(L* = L) =T A¢? + Ax2 — Ax)

3\ >
AU =T 1+(=) ) Ax — Ax
ox

The radical in the above equation may be expanded by the binomial series as
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nn — 1)a? N nin—1)n —2) 2

n __
(14+a)"=14+na+ 2 3l

+ - (3.5.3)

where, by comparison,a = (%)2 andn = % Recalling the small deflection assump-

tion, the higher order terms may be neglected, and therefore

Ap\? B (A 2
1+(A—x) _1+§(A—x) +e (3.5.4)
Thus
2
AU = 1+l(%) Ax — Ax} T
- 2\ Ax
T (A¢>)2
AU = = (ZZ) Ax (3.5.5)
2 \ Ax
or )
dU = T (d—¢) dx. (3.5.6)
2 \dx

Extending the above result, which is the internal strain energy of a strip, to a
differential element of a two-dimensional membrane yields

T {36\ (90)°
dU = = [(5) + (5) :|dxdy. (3.5.7)

The potential energy of the external forces (inside pressure) is
dQ2 = —podxdy. (3.5.8)

Substituting Eqgs. (3.5.7) and (3.5.8) in (3.5.1), yields

v=/ [; [(g—f)z + (g—f)z} - p¢} dxdy. (3.59)

Equation (3.5.9) is the expression for the functional associated with Poisson’s
equation. The importance of this expression springs from a situation in which the
behavior of a system is defined by Poisson’s equation and its energy principles are
not known. As an example of such problems, one may refer to the conduction heat
transfer in solids. While the variational formulation of the thermodynamic problems
may be based on the entropy inequality, the detail formulations from the entropy
inequality to the proper functional expression for the heat conduction problems are
not yet developed in the literature. In fact, the conduction heat transfer in solids is
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directly derived from the first law of thermodynamics. From the membrane analogy,
however, the expression (3.5.9) may be used for the functional of heat conduction
problems in solids, solely because their boundary value problems are identical.

3.6 Application of Calculus of Variation

To show that the expression of the functional given in Eq. (3.5.9) is associated
with Poisson’s equation, we use the standard method of calculus of variations to
minimize Eq. (3.5.9). The expression which minimizes the functional (3.5.9) should
be Poisson’s equation.

Consider a variational parameter € and the variational function u = u(x, y). The
variational function u(x, y) satisfies the homogeneous boundary conditions. The
function u(x, y) and its first partial derivatives with respect to x and y are continuous
in the solution domain D. That is:

1. u(x,y)=0o0na D.
2. u(x,y), u x,and u_ y are continuous in D.

Now, we may construct the function

P(x,y) = P(x,y) + eulx, y). (3.6.1)

Substituting ¢ in the expression of the functional from Eq. (3.5.9) gives

- TI(3+e)\> [3(p+eu)\?
vl [ {3 (F5) + (5 [ oo ) fasas
- TT(3p\> 3 du  , (du\> (04
via= [ 5[(5) v 5 e () ()

2
o 20 0u +ez(%) } —p(¢+eu)Idxdy

dy dy ay
v TT. 3¢ 9 du\*> .9 9
_:/ T1,00 9u o () 08 3
de pl2] dx ox ax dy dy
du\>
+2€(a—) ]—pu]dxdy (3.6.2)
y

Now, let ¢ — 0. Therefore,

% 3¢ du ¢ u
— e = T|— —+— — | — dxdy = 0. 3.6.3
3 <0 /D[ [8xax+ayay} p”]” G0

The above integral is divided into two integrals using the method of integrating by
parts and the Gauss theorem as
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Fig. 3.6 Finite element rep- v
resentation of a continuum

k1) 0 ¢ 0 ¢ B
ﬁDuTa—n ds — /Du [a (Ta) + 5 (TE) + p] dxdy =0. (3.64)

Since u is an arbitrary function, we argue that the integrand of the above equation
must vanish independently. Therefore,

0
T8—¢ =0 on daD, where ¢ isnot specified
n
0 0 0 0
D (122 L 5 (r22 =—p inD. (3.6.5)
ax ax ay ay

The above equations are the necessary conditions for V to be minimum. Note that
as a consequence of requiring V to be stationary, we are implicitly imposing the

requirement that 8_¢ = 0 on 0 D. Equation (3.6.5), which minimizes the functional

n
of potential energy, is the equilibrium equation of the elastic membrane.

3.7 Introduction to the Finite Element Method

We begin by subdividing the domain of a typical problem into a number of arbitrary
elements. Figure 3.6 illustrates the concept of subdividing the solution domain into
a number of smaller triangular elements. Each of these subdivisions is called an
element.

We will refer to the intersection of element sides as nodal points. In Fig. 3.6, the
element sides are arbitrarily selected to be straight. Later on, we will note that both
element geometry and the approximating function may be selected as nonlinear. That
is, the sides of the element may be curves, the element may be selected to have four
sides with irregular shape, and the approximating function may have a higher order
form.

The Ritz method may be used to minimize the functional of energy. That is, we
assume trial solution, or interpolating function, with undetermined coefficients asso-
ciated with the nodal points displacement. Then, the principal of stationary potential
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Fig. 3.7 Notation for the v
approximated continuum R*

energy is applied to determine the coefficients such that the trial solution is close to
the exact solution in each element.

To illustrate the concept of the finite element method in detail, let us consider the
following example problem.

3.7.1 The Elastic Membrane

We seek the solution for the deflection (small) of an elastic weightless membrane
from some (x, y) reference plane. The formulation of the associated boundary value
problem and the equivalent extremum problem are given in the following:

3.7.2 Boundary value problem

Determine ¢, the membrane deflection, such that

V==L i D (3.7.1)
T
, 0% 9% : .
where V- = — + —, p is the pressure under the membrane, and T is the traction
axZ = 0y? P

force per unit length of the membrane. The boundary condition is ¢ = fi(s) ondD,
where f7 is prescribed on the boundary as a function of arc length s.

3.7.3 Extremum problem

We are to determine ¢, the membrane deflection, such that

= G ()| erfosr o

is a minimum with respect to the given boundary condition.
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The emphasis is the solution of the extremum problem by approximate technique.
We assume the trial function ¢*, for ¢, over each element in D* of the finite element
representation. Figure 3.7 shows the finite element representation of the problem
solution domain.

We require ¢* to be sufficiently smooth such that a corresponding value of V =
V[¢*], as given by (3.7.2), will be a minimum. Also, ¢* must satisfy the forced
boundary conditions. It is further required that the approximating function ¢* be
close to the exact solution ¢ at the nodal points in D*. Essentially, the original
problem with infinite degrees of freedom is reduced to one with a finite number
of degrees of freedom. If the elements in D* are smaller (with a larger number of
elements in the solution domain), or if the interpolating function is of a higher order,
then our goal of matching ¢* to ¢ should become ever closer, at least in principle.
Practical difficulties, such as round-off error and computation time, enforce the user
to make judicious choices regarding the element size and the degree of approximating
shape function selected to model the problem.

In Fig. 3.7, let a typical node in D* be denoted by k and let the approximating
value of ¢ at node k be denoted by ¢;'. Further, let a typical element in D* be named
the base element (e). Then, the approximate potential energy associated with the
problem is

V* = Z(V*)e (3.7.3)

e=1

where r is the number of elements in D* and

E 2 * 2
(V¥ =/ F [(&p ) + (M ) ]—p¢*}dxdy (3.7.4)
ADe 2 0x By

where A D¢ is the subdomain of D* associated with the base element (e).
A necessary condition for V* to be a minimum is

=0 k=1,2,....n (3.7.5)

where n is the number of nodal points in D*. Equation (3.7.5) implies that the nodal
point values of the interpolating function ¢* play the role of generalized coordinates
for the approximate solution over D°.

Consider a typical base element (e), as shown in Fig. 3.8. The asterisk of V* and
¢* is dropped for simplicity and it is assumed that these quantities are approximate
values unless noted otherwise.

We assume a simple linear interpolating function for ¢ in the base element (e).
The assumed approximating function for ¢ represents, in the geometrical sense, a
flat plane surface over A D*. We can then express ¢ in terms of values of ¢ on the
nodal points 7, j, and m. The coordinates of the nodal points are (x;, y;), (xj, y;),
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Fig. 3.8 Notation foratypical y
base element (e)

(% Y)
™m (z;:y5)

i (I;ly'l)

and (x,,, ym), respectively. The linear interpolation function for ¢ in (e) is assumed
as

¢ =a; +axx +azy. (3.7.6)

We solve for ay, ap, and a3 by requiring

p=¢; atx=x; y=y;
¢p=0¢; atx=x; y=yj
¢ =¢n atx =xy, Y =Ym-

The resulting solution for the ay, a>, and a3 is
1
a = - (aipi +ajdj + ampm)

1
a == (bidi +b;jpj + bydm)

1
a3 =5+ (ci¢hi +cjPj + cmbm) (3.7.7)
where
1 x;i i
2A = 2(area of the base element (e)) = det |1 x; y;
1 Xy ym
and
ai =Xj¥m — Xm)j aj = XmYi — XiYm m = XiYj — XjYi
bi=yj—ym bj = ym— i by = yi —y;
Ci =Xm —Xj Cji=Xi —Xm Cm = Xj — Xj.
(3.7.8)

Substituting Egs. (3.7.7) in (3.7.6) and rearranging the terms in products of nodal
point values of ¢ yields

1
¢ = A {(ai+b; x+c; y)pi+(aj+bjx~+c;y)pj+(am+bnx+cmy)dm} (3.7.9)
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let
N = % +bix +ciy N = aj+bjx+c;y N, = O + bpx +my
2A 2A
(3.7.10)
Then, Eq. (3.7.9) for the element (e) may be written as
¢ = Nigi + Njdj + Nuum. (3.7.11)

Note that N;, Nj, and N,, are functions of geometry only and are called shape
functions. Introducing matrix notation, we write the interpolating function for the
element (e) as

()
o
¢ =(N; Nj No)1o; 1 = (N)© {¢)© (3.7.12)
bm

where {¢}(©) implies the degrees of freedom vector, or generalized coordinates vector,
associated with the element (e) for the approximate solution ¢. From Egs. (3.7.4)
(asterisk dropped)

B r T a¢ 2 3¢ 2
V_Z/me)[? |:(3_x) + (@) ]—mﬁ]dxdy. (3.7.13)

e=1

We substitute the interpolating function from Eq. (3.7.12) in Eq. (3.7.13) and
perform the differentiation over the element area. Furthermore, the interpolating
function ¢ is locally dependent upon the generalized coordinates (¢; ¢; ) ©
associated with a typical element (e).

Although the sum in Eq. (3.7.13) is taken over the complete set of elements in D,
the entire set need not be considered in any one computation given by Eq. (3.7.5).
Due to the local dependence of the interpolating function for ¢, and noting that
only a finite number of elements have a common nodal point, only the collection of
elements which share the nodal point k£ need be considered in the eventual summation
implied by Eq. (3.7.13). We shall call this collection of elements the finite element
neighborhood of nodal point k.

Definition The finite element neighborhood, 7y, associated with a nodal point ,
is the set of finite elements such that the generalized coordinate, ¢, occurs in the
interpolating function (for ¢») associated with each element in 7;. As an example, for
the linear interpolating function considered here, the finite element neighborhood of
node k is shown shaded in Fig. 3.9.

In order to apply Eq. (3.7.13), we must be able to compute 0V /d¢; for the element
e. Our eventual goal is to let i — k in order to generate a set of n linear algebraic
equations, which can be solved for ¢x on n generated nodal points. The differentiation
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Fig.3.9 Finite element neigh-
borhood of nodal point k

of the total potential energy of the element (e) with respect to ¢; is

ave :/ [T[%i(@)Jr% i(@)}_p %]dxdy.
0¢; D(e) dx ¢ \ 0x dy 0¢; \ 0y 0¢;
(3.7.14)

Substituting Eq. (3.7.11) in (3.7.14) and performing the differentiation yields

e e

ove _/ ii((b.b.b ) ii. bi + (¢ ¢i cm) :zi. c-)
8¢l D(e) 4A2 1 J m ¢’:’/‘L 1 1 J m ¢’:l 1
— pNi]dxdy. (3.7.15)

We note that the scalar product is involved in the first two terms of the integrand
of Eq. (3.7.15), where the coefficients b and ¢ are constants. Thus

ove T ¢i ©
o =E((bz’bi bibj biby) + {(cici cicj cicm)) | @)
! Dm
—/D( )pN,-dxdy. (3.7.16)
e

If p is assumed to be constant in the element (e), then the last term of Eq. (3.7.16)
becomes
p pA

A D(e)(a,- +bix +c¢;y)dxdy = —g(ai +bix +ciy) = —-5

where x, y are the coordinates of the centroid of element (e). Then, Eq. (3.7.16) may
be written as



50 3 Finite Element of Elastic Membrane

Fig. 3.10 Example solution Y
domain 21 22 23 24 25
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16 )
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ave T P

ob E((bibi bibj biby) + (cici cicj cicm)' { b,

l ®m
pPA

-5 (3.7.17)

where, in this example, 7" and p are constants in D(e). It may be noted, however,
that a simple representation of 7 and p as variables over D¢ may be achieved by
letting 7 and p be constant within any one element, but different from one element
to the next. If the mean values of T and p are used within any one element, then a
step function representation of the variables 7' (x, y), p(x, y) is obtained. It can also
be noted that the quantities b, ¢, and A are expressed in terms of the coordinates
i, j, and m of the nodal points of element (e).

Let us consider an example to describe the application of Eq. (3.7.17). Consider,
for simplicity, a square solution domain D. We subdivide the domain and number
the nodal points as shown in Fig. 3.10. Let us select node i in Eq. (3.7.17) to be
node 13 in Fig. 3.10. Then, the finite element neighborhood of node 13, based on
our previous assumptions, is shown shaded in Fig. 3.10 and

NE
1% av©
__::§: =0 (3.7.18)
Ipi = i

The sum in this equation should actually be taken over the elements e through eg,
as labeled in Fig. 3.10. Thus

v STT ¢ At
MBZOZ;[M ({bi bj bm)bi+  (ci ¢ Cm>ci)|¢j] _T:| r=1,2,...6.

m

(3.7.19)

We let i = 13 for each element in e,. To assign the remaining (j, m) for each
element in e,, we proceed in a Counter-clockwise direction around the element,
always starting with node 13. Thus,
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for e;, i=13 j=12, m=38
for e, i=13 j=8 m=9
for e3, i=13 j=9, m=14
for eq, i=13 j=14, m =18
for es, i=13 j=18, m=17
for eq, i=13 j=17, m=12 (3.7.20)
and thus
oV =0= T b13, b1o, bg)b el
9o 0= A ((b13, b12, bg)b13 + (c13, c12, c8)C13)
o13 TQ P13
X 1012 ¢ + ——= ((b13, bg, bo)b13 + (c13, ¢, c9)c13)? | @3
4A(€2)
o3 @9
T©® ¢13
+ ——— ((b13, b17, b12)b13 + (c13, 17, c12)c13)° {1 17
4 A (e6)
12
- g (A1 4 A® ... 4 A), (3.7.21)

Note that in Egs. (3.7.21) the parameters by and ¢, are constants and depend on the
coordinates of the element nodal points. It is simply verified that (b13)¢! # (b13)2.

We may call the coefficients of ¢ by k. Then, substituting Eq. (3.7.21) in the set
of Eq. (3.7.5) results in a system of linear 25 x 25 equations for 25 unknowns ¢x.

The 13th equation of this system is

@1
fors
k13,8 . k13,13 - k13,18

¢.18

| P25 |

or

[K1{¢} = {F}.

d13¢ =

A€l + A€2 —+ .- +Ag6 (3722)

w3

(3.7.23)

It is seen that the columns 1-7 and 19-25 of this equation are zeros. In general, the
coefficients in any row s of the coefficients matrix [ K ] may be nonzero only when they
correspond to coefficients of unknowns at nodal points associated with the elements
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in the finite element neighborhood of node s. It follows that the coupling of the
elements of the unknown vector are accomplished by nonzero elements of [K], and
this in turn implies the nature of the connectivity of the finite element representation
of the solution domain of the problem. Thus, the resulting system of finite element
equilibrium equations is banded in nature. The bandwidth of the resulting stiffness
matrix depends upon the nodal points numbering system. The more efficient solution
of the resulting equations is when the bandwidth of the stiffness matrix is the smallest.

An alternate approach to derive equations similar to (3.7.22) is based on the
concepts employed in structural mechanics. Let us consider applying Eq. (3.7.5)
for each of the generalized coordinates (vertical displacements of the membrane)
@i, P, dm, associated with the nodes of the typical element e. Then, employing
matrix notation, and referring to Eq. (3.7.17), we can write,

bib; + cic; b,'bj + cicj biby, + cici bi

E bjb,'—i-CjC,' bjbj—i-CjCj bjbm +cjcm ¢j - — 11

bmbi + cic; bmbj + cmcej binbp + cmem Om

(3.7.24)

The above equation represents the force balance, or equilibrium equation, of an

element of the membrane in terms of vertical displacements of its resultant nodes

and forces, or pressure. The coefficients such as T/(4A) x (b; b; + ¢; ¢;) may be
regarded as stiffness coefficients. Let us rewrite Eq. (3.7.24) as

kij kij kim oi fi
ki ki kim |18 > 11 (3.7.25)
kmi kmj kmm ¢m fm

Now, consider the case where the displacements ¢; = ¢,, are fixed and are zero. If
the membrane element is given a unit of vertical displacement at node j, then we
can interpret k;; to be the reaction at the fixed node i due to the unit displacement,
¢; = 1, of node j. The other coefficients can be interpreted by a similar line of
reasoning. Thus, the square matrix of Eq. (3.7.24) or (3.7.25), essentially represents
the response characteristics or stiffness of the membrane element.

If we assemble a group of elements together to represent a membrane model, then
the elements consequently share nodes in common. It follows that the stiffness of
the assembled structure may be obtained by simply adding together the appropriate
stiffness coefficients of individual elements according to the way in which they
are interconnected. That is, those coefficients which multiply the displacement at a
common node would be summed. In effect, this procedure corresponds to adding the
stiffness of springs in parallel (connected to a common displacing point) in order to
obtain the overall spring stiffness associated with the point.

The above structurally motivated procedure, which can be used to obtain
Eq. (3.7.25), is referred to as the direct stiffness method. The development of this
seemingly obvious procedure (along with the structural finite element concept) for
obtaining the response characteristics of an approximated continuum is responsible
in large part for the present success of the finite element method.
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3.7.4 Boundary Conditions

To account for boundary conditions of the Dirichlet type, ¢ = fi(s), we simply set
the values of ¢ associated with the boundary nodal points equal to an appropriate
mean value. The mean value for a point » may be obtained by averaging fi(s)
over a segment of the boundary on either side of the point. Thus, a step function
representation of f(s) over the boundary is achieved.

A variety of computational schemes have been used for rearranging the equations
so that the specified values of ¢ essentially become part of the constant vectors on the
right side of Eq. (3.7.23). If we consider the membrane problem, then by partitioning
the stiffness matrix, one separates the original equation into two sub-equations such
that the ¢ values for the interior nodes are unknown for one set of equations, and
the components (reactions) of the F' vector associated with the boundary nodes are
unknown for the second set. Solving the second set and back substituting into the
first set yields the solution for reactions at fixed boundary nodes and displacement
of the interior nodes of the membrane.

More complicated boundary conditions of the form

T 3 +kp=gq (3.7.26)
on
may be represented by an appropriate addition of terms to the functional of Eq. (3.7.2).

The appropriate functional representing potential energy of the membrane with

boundary conditions (3.7.26) is

3 T | (06\> [3¢\> k
V—/D[E[(a) +($) i|—p¢]dxdy+£D§¢dS—ngq¢dS.

(3.7.27)

The additional boundary integral terms may be regarded as being the potential
energy derived from the membrane edge being supported by a continuous elastic
foundation along dD and also being loaded by a distributed load ¢g. The edge is
then free to move vertically subjected to the resulting force balance requirement of
Eq. (3.7.26).

Equation (3.7.26), which is a force balance relation for the membrane, may be
regarded as a flux balance relation in the convection boundary condition for steady
state heat transfer problems. One may simply let¢p — T, the temperature, —k/T —
h/k*, where h and k* are the film coefficient and conductivity, respectively, of a body
immersed in a fluid of constant temperature.

Let us consider a finite element model to represent the condition (3.7.26). Refer
to Fig. 3.11 for notation. Essentially, we seek to apply the requirement

v
T

(3.7.28)
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Fig.3.11 Notation for bound-
ary elements and nodes

whichis similar to Eq. (3.7.5). We note, however, that the finite element neighborhood
of node r (shaded) includes two boundary segments, o—r and r—s. This node is
common in the elements ep_1, ep, and ep41. These elements contribute to V as
previously discussed, and the effect on V of the segments o—r and r—s can be handled
readily. If we consider the segment r—s, and assume ¢ to vary linearly along it, we
can write

¢ =, + Li (b5 — ér) (3.7.29)
1

which is consistent with our previous assumption. We substitute Eq. (3.7.29) in the
line integral terms of Eq. (3.7.27) and apply Eq. (3.7.28) to obtain

gLy | kL, b5
-t (¢r ¥ 7) _ (3.7.30)

Similarly, from the segment o—r, also in the finite element neighborhood of node
r, we obtain the additional contribution to Eq. (3.7.28) as

qLy  kL; $o
— T—I_T (¢r+7)_ (3.7.31)

In conclusion, the coefficients of ¢, and ¢ appearing in Egs. (3.7.29) and (3.7.30)
are added to the appropriate locations in the coefficients matrix corresponding to
Eq. (3.7.25).

If a problem involves an obvious axis of symmetry in the solution domain, then
we may take advantage and reduce the solution domain. In this case, along the axis of

. .0 . o
symmetry of the solution domain —¢ = 0. This condition is met as a natural boundary

condition resulting from the minir’rlﬁzation of the area integral of Eq. (3.7.27). An
axis of symmetry of the solution domain may be handled as a boundary of the
reduced solution domain. It should be noted that a geometrical axis of symmetry is
not necessarily an axis of symmetry for a solution.
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3.8 Problems

1. Show that

/ [T(% 8_u+% 8_u) —pu]dxdy
D dx ox  Jdy dy
=-7{ MT% ds —/ u |:i (T%) + i (T%) + p] dxdy.
3D on p Lox dx ay dy

2. Consider a square elastic shallow membrane of dimensions 1 x 1 under lateral
pressure p = 5 with the membrane surface tension 7 = 10. The given data
are in dimensionless form. The membrane sides along the x and y-directions
are divided into two equal sections providing eight triangular elements. If the
boundary conditions are zero along the sides of the membrane, calculate the
height of the middle node.

3. What is the minimum band width of the stiffness matrix of an elastic membrane
if the sides along the x and y-directions are each divided into ten divisions?

Further Readings

1. Oden JT (1972) Finite elements of nonlinear continua. McGraw-Hill, New York
2. Langhaar HL (1962) Energy methods in applied mechanics. John Wiley, New York
3. Fung YC (1965) foundations of solid mechanics. Prentice Hall, New York



Chapter 4
Elements and Local Coordinates

Abstract The presentation of the finite element method for the elastic membrane
problem, a triangular element with straight sides and linear shape function to approx-
imate the elevation of the elastic membrane due to lateral pressure, was employed.
In this chapter, we correct ourself that there is no limitation as far as the geometry
of the element and the order of approximation of the shape function is concerned. In
one, two, and three dimensional problems elements with higher order geometries and
approximating shape functions may be used to prepare a finite element model. Also,
since it is always more efficient to employ the local coordinates for the integration
purpose of the element stiffness and force matrices, the local and global coordinate
systems are discussed and the Jacobian matrix is explained.

4.1 Introduction

In the previous chapter, two-dimensional triangular elements with straight edges
were considered to approximate the deflection of the membrane by the finite element
method. The first question that one may ask is, what about the membrane with curved
edges?, And, is it possible to approximate the membrane elevation with higher order
curves, rather than a flat surface confined to a triangle, to improve the accuracy? The
answers to these questions are positive. Elements with curved edges to model and
fit the boundary of the solution region can be used in finite element analysis. Also,
higher order polynomials can be employed to approximate the dependent function in
the element. These techniques are simply incorporated into finite element modeling
without significant complications in the solution procedure. The following sections
show the common curved and higher order elements in finite element analysis. It
is, however, customary to consider polynomials up to the third order degree as the
shape functions. Polynomials of orders four and higher are seldom used to model an
element, due to the possibility of occurrence of roots of the polynomial within the
element.

M. R. Eslami, Finite Elements Methods in Mechanics, 57
Solid Mechanics and Its Applications 216, DOI: 10.1007/978-3-319-08037-6_4,
© Springer International Publishing Switzerland 2014
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4.2 Subparametric, Isoparametric, and Superparametric
Elements

An element in the finite element model is characterized by its two principle features,
the degree and order of approximating function describing the dependent function in
the element (order of shape function), and the order of geometric description of the
element. An element in one-, two-, and three-dimensional space is not necessarily
made of straight sides. Curved side elements for modeling the solution regions with
curved boundaries are frequently used in finite element modeling. By the order of
geometric description of the element, we mean the degree of polynomial describing
the curved sides of the element.

An element is called isoparametric when the order of approximating shape func-
tion and the order of geometric description of the element are equal. The element is
subparametric when the geometric order is less than the order of the approximating
shape function of the element, and is superparametric when the geometric order is
larger than the order of the approximating shape function.

Consider, for example, a one-dimensional element. Let u describe the displace-
ment of the element. The nodal values for displacement are denoted by U; and the
nodal coordinates are represented by X;. The interpolation function for the element
shape function u and element geometric description s are

U= iNiUi 5 = ZH:N,.’Xi 4.2.1)

i=1 i=1

where N; and N/ are the shape functions describing the dependent function u and
the geometric configuration s of the element in one-dimensional space. Note that the
element’s geometry is not necessarily along straight axis x, and may have a curved
form in the x—y system. The two expressions of Eq. (4.2.1) for u and s give the values
of u and s within the element in terms of the nodal values U; and X;. The type of
element is defined as follows:

1. Anelementisisoparametric whenm = n. Thatis, the same order of polynomials is
selected to describe both element geometry and the approximating shape function.

2. The element is subparametric when n < m.

3. The element is superparametric when n > m.

This concept is extended to two- and three-dimensional space, and elements can
be selected of any type. The three types of element in two dimensions are shown in
Fig.4.1. The symbol O denotes a nodal point for displacement and e denotes a nodal
point describing the side geometry. Figure4.1a shows an isoparametric element,
Fig.4.1b a subparametric, and Fig.4.1c a superparametric.
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Fig. 4.1 Subparametric, isoparametric, and superparametric elements

Fig. 4.2 One-dimensional e L |
simplex element o | !
—A—1 ] L
i J

(e)

4.3 One-Dimensional Elements

4.3.1 Straight Linear Element

This is the simplest element to approximate a one-dimensional element, where the
element’s geometry is a straight line and the shape function is linear. The element
is shown in Fig.4.2. If the dependent function is called ¢ and the variable is x, the
shape function is

¢ = o) + arx. 4.3.1)

The constants 1 and oy are found in terms of ¢; and ¢ ;. This element is called
a one-dimensional simplex element, or isoparametric element of the first order.

4.3.2 Straight Quadratic Element

To improve the accuracy of the solution, the shape function in the base element (e)
can be approximated with a second order shape function as FIX

@ = a1 + arx + azx’. (4.3.2)
The three constants o to a3 are found in terms of ¢;, ¢ ;, and ¢ located at three

nodal points i, j, and k, where node j is at equal distance from nodes i and k. The
element is shown in Fig.4.3.
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Fig. 43 Quadratic element L
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Fig. 4.4 Cubic element, C 0_continuous

4.3.3 Straight Cubic Element

To further improve the accuracy, a cubic element can be assumed such as
¢ = o) + arx + a3x? + aux’. (4.3.3)

The four constants o1 to o4 are found according to the nodal point data on the element.
There are two ways to evaluate the constants «. The first is to consider four nodal
points in the element, as shown in Fig. 4.4a. The constants o to o4 are then calculated
in terms of ¢;, ¢, ¢, and ¢;. This approximation, similar to element types 4.3.1 and
4.3.2 of Sect. 4.3, results in a continuous variation of the dependent function ¢ in the
solution domain, but the slope of ¢ between two adjacent elements is not necessarily
equal, as shown in Fig.4.4b. Another technique for finding the coefficients « is to
define a straight element with two end nodal points i and j, but with nodal values
of ¢ and d¢/dx (or ¢ ), as shown in Fig.4.5a. This type of element approximation
insures the continuity of function and its derivative with respect to x between any two
adjacent elements, as shown in Fig.4.5b, and is thus called Cl-continuous element.
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Fig. 4.5 Cubic element, C'-continuous

Fig. 4.6 Curved quadratic element

4.3.4 Curved Quadratic Element

The one-dimensional element may geometrically be selected as a curved element of
a second order polynomial. In this case, the shape function can also be approximated
by the same polynomial, as shown in Fig.4.6.

The shape function in terms of s, measured along the arc, is

$© = o) + ars + azs> (4.3.4)
where a1 to a3 are found in terms of ¢;, ¢, and ¢. Since the element curve equation

is also described by a second order polynomial, the element is called second order
isoparametric element.
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Fig. 4.7 Curved cubic ele- (b)
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4.3.5 Curved Cubic Element

This element is similar to the previous element except that the curve equation and
the shape function are both described by a cubic polynomial. This element is shown
in Fig.4.7. The shape function in terms of s, measured along the arc length, is

qb(e) =y + azs + a3s? + aus>. (4.3.5)

The constant coefficients o] to a4 are found in terms of ¢ on the nodal points. Both
types of approximations described in Sect.4.3.3 are allowable. Two nodal points
are selected at the ends of the element, and the other two may be selected either in
between the ends at equal distances, describing the function ¢, or selected at the same
end points and describing ¢ ;. The latter element provides C'-continuous element,
where both the function and its derivative are continuous between any two adjacent
elements.

4.4 Two-Dimensional Elements

4.4.1 Linear Triangular Element

This is the simplest element in two-dimension, where a triangular element with
straight sides and three nodal points are considered, as shown in Fig.4.8. The shape
function for the dependent function ¢ is

@ =y + arx + azy. (4.4.1)

This is called a simplex element and is of first order isoparametric type.
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Fig. 4.8 Two-dimensional v
simplex element k
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Fig. 4.9 Two-dimensional v
quadratic element
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4.4.2 Quadratic Element

The element is considered triangular with straight sides. Six nodal points are defined
on the element, three on the apex, and three in the middle of sides, as shown in
Fig.4.9. The shape function is assumed quadratic, as

@ = a1 + ax + a3y + agxy + asx’ + agy>. (4.4.2)

The six constants o] to g are found in terms of ¢ to ¢¢ at six nodal points on the
element.

4.4.3 Cubic Element

The element is triangular with straight sides. Ten nodal points are defined on the
element, three on the apex, six on the sides at equal distances on each side, and one
at the centroid of the element, as shown in Fig.4.10. The shape function is assumed
to be a third order polynomial as given
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Fig. 4.10 Two-dimensional Y,
cubic element

x
Fig. 4.11 Two-dimensional v
curved quadratic element
5
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x
¢ =ay + ax + a3y + asxy + asx® + agy?
+ a7xy? + asx?y + aox’ + a0y, 4.423)

The constants « to g are found in terms of ¢ to ¢19, at ten nodal points on the
element.

4.4.4 Curved Quadratic Element

The element is triangular with curved sides described by a second order Polynomial,
and the shape function is also considered second order. The element is shown in
Fig.4.11 and the shape function is the same as Eq. (4.4.2).

This is a second order isoparametric element in two-dimension.
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Fig. 4.12 Two-dimensional 7}
curved cubic element

Fig. 4.13 Two-dimensional Y,
quadrilateral element

(e)

4.4.5 Curved Cubic Element

The same shape function as in Eq. (4.4.3) is used for the triangular element with sides
described by a cubic polynomial, as shown in Fig.4.12.

The nodal points are equally distanced along the curved sides and the values of the
constants o] to ¢ are found in terms of ¢; to ¢1¢. This is a third order isoparametric
element.

4.4.6 Quadrilateral Element

The elements in two-dimension may be selected quadrilateral with straight or curved
sides. The simplest form of this element is shown in Fig.4.13 with straight sides.
The shape function is approximated by a second order polynomial as

¢(") = o] +a2x +azy + asxy. 4.4.4)

The four constants « to aq4 are found in terms of ¢ to ¢4, the values of the shape
function on the nodal points.
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Fig. 4.14 Two-dimensional curved quadrilateral element
Fig. 4.15 Three-dimensional

simplex element

It is interesting to note that the advantage of this element over the triangular
simplex element is that a solution domain approximated with a quadrilateral element
contains half of triangular elements while the approximation function is second order,
rather than linear. In another words, approximation with a quadrilateral element
will cut the element numbers by half and improve the accuracy of the solution by
considering a higher order polynomial, compared to the simplex element.

The other types of the quadrilateral elements with higher order shape functions
are shown in Fig.4.14. The sides may be straight or curved.

4.5 Three-Dimensional Elements

4.5.1 Linear Tetrahedral Element

A tetrahedral element of four nodes and flat side planes in a three-dimensional co-
ordinates system is considered, as shown in Fig.4.15. The shape function in the xyz
system is selected linear as
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Fig. 4.16 Three-dimensional V4
quadratic element

$© =) + arx + a3y + a4z 4.5.1)

The values of | to a4 are calculated in terms of four values of ¢ on the nodal points.
This is a first order isoparametric element in three-dimension.

4.5.2 Quadratic and Cubic Elements

The element is tetrahedral with flat side planes, but with 10 nodes at the corners and
middle of the sides, as shown in Fig.4.16. The approximating shape function is

@ =y +ax + a3y + aaz + asxy + aexz + a7yz
+ agx® 4 agy? + w10z’ (4.5.2)

The constants o] to 1o are found in terms of the values of ¢ at 10 nodal points on
the base element (e).

The cubic element is similar to Fig.4.16 but with four nodes at four corners and
12 nodes on six sides, two nodes equally spaced at each side. The shape function is
similar to Eq. (4.5.2) with six more terms related to the extra cubic terms.

4.5.3 Quadratic and Cubic Curved Isoparametric Elements

Quadratic and cubic curved isoparametric elements in three-dimensions are consid-
ered geometrically to fit the solution domain with curved boundaries. The quadratic
element has ten nodes, shown by e in Fig.4.17, and the cubic element has 16 to
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Fig. 4.17 Three-dimensional z
curved element
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Fig. 4.18 Six sides elements z
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19 nodes, where the element with 16 nodes is shown by x in Fig.4.17. The shape
function for the quadratic element is similar to Eq. (4.5.2), and the shape function of
the cubic element is similar to Eq. (4.5.2), with six to nine more cubic terms.

4.5.4 Six Sides Elements (Parallelepiped)

Elements with six sides with straight or curved side planes and edges are considered
in three-dimensions, as shown in Fig.4.18a, b. Up to 19 nodes are selected on these
types of elements to approximate a full cubic shape function. The sides and edges may
be straight or curved. The efficiency of these elements, considering the computation
time, is higher compared to the tetrahedral elements. Using the six side elements
reduces the total number of elements in the solution domain, while the degree of the
approximation polynomial is higher compared to the tetrahedral element.
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4.6 Global and Local Coordinates

To solve a problem by the finite element method, the first step is to sketch the problem
geometry in a global coordinates system and divide it into a number of arbitrary ele-
ments. To evaluate the finite element matrices associated with the base element (e),
it is always preferable to use a local coordinates system referring to that particular
element to avoid complications incurred by the use of a global coordinates system.
Since the local coordinates system is somehow fixed to the base element (e), its
origin is different from the origin of the global system and is usually rotated through
some defined angle. In addition, there are different analytical methods to evaluate
the integrals of the members of finite element matrices in the local coordinate sys-
tem. These analytical integration methods are extremely important in finite element
analysis and significantly reduce the computation time. For this important reason,
the local coordinates system and the analytical integration techniques related to the
local coordinates system are essential tools in finite element analysis.

Let us consider the global coordinates system to be shown by the xyz system
and the local coordinate system fixed to the base element (e¢) by £n¢. The relation
between two coordinates systems are continuous and differentiable and are known
as [1]

x=x(,n,0)
y=y&,n¢)
z=2z(&,n,0). (4.6.1)

This coordinate transformation is unique such that it maps a point in the xyz system
(domain D) to a unique point in the £n¢ system (domain D). A line differential is
mapped from the xyz system to the £n¢ system according to the following rule:

dx ox 0x
0§ dn o¢
dx ey ay ay d&
n
dz dz 9z 0z d¢
d& dn o¢

The square matrix on the right-hand side is called the transformation matrix, or the
Jacobian matrix, and is

dx ox 0dx

9E 9y
(7] = dy dy dy

| 98 9n ¢
dz 0z 0z

9 o 3¢

(4.6.3)
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Thus, a line element in the xyz system is transformed to a line element in the £7¢
system as

dx d&
dy t =[J]1dnt. (4.6.4)
dz d¢

The inverse transformation is possible and unique and is

d& dx
dnt =117 " {dyt. (4.6.5)
d¢ dz

This condition, which implies the existence of an inverse transformation, requires
that |J| > 0 every where in both domains.

Now, consider a function ¢(€) (&, n, ¢) defined in the base element (e) in local
coordinates and described in terms of the shape function Nl.(e) (&, n, ¢) and the nodal
values ¢; as

POE O =NYE N OG i=1,2,...r (4.6.6)

where r is the total number of nodes per element (e), and ¢; is the value of ¢ on
nodal point i. The transformation law between two coordinate systems xyz and £§n¢
are

x=ByNjE ) i=123=12...r (4.6.7)

where B;; are the coordinates (x, y, z) of node j in D. Equation (4.6.7) is the explicit

form of Eq. (4.6.1), which maps D to D. The transformation of the shape functions
and their derivatives are done similarly as

Nj(x,y,2) = Nj[E(x, v, 2), n(x, ¥, 2), £(x, ¥, 2)]

dN, ON; o N, N,
j N 98 NG dn  ON; L3 (468)
ax; € 0x; an  ox; a¢  dx;

The integration of a scalar function ¢ (x, y, z) in D is related to its equivalent value
in D as

/D ¢(x,y,2)dD = /D G, 0, OIJ(E 0, 0)|dD (4.6.9)

where
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Fig. 4.19 One-dimensional simplex element

GE.0.0) = ¢l NiE 0.0,y NjE 1.0, ;N E 0. O j=1.2,...r
(4.6.10)
and |J (&, n, ¢)| is the determinant of the Jacobian matrix.

4.7 Local Coordinates in One-Dimension

It is a general rule in finite element analysis to derive the element matrices in the
local coordinates. The element matrices are then multiplied by the proper rotation
matrix, transformed to the global coordinates system, and assembled. The reason
for selecting the local coordinates is the ease of calculation and integration of the
members of the element matrices.

Consider a one-dimensional simplex element (e), as shown in Fig. 4.19. The shape
function is

$© = o) + arx. 4.7.1)
The boundary conditions of the element are

X = X; X =X

dp=0¢i ¢=20;. (4.7.2)

Substituting in Eq. (4.7.1) gives

¢ = ay + ax;

¢j = oy +oox;. (4.7.3)
Solving for o1 and «; yields
P kL R e (4.74)
Xj— X Xj— X
Substituting in Eq. (4.7.1), yields
$© = Xj— X ¢ + LN ®; 4.7.5)

L L
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Fig. 4.20 A one-dimensional

element with natural coordi- ai—

nates amy €=+1
L °]
* (e) J
where L = x; — x;. Calling
Xj—x X —Xx
Nj==7— N;= T (4.7.6)
the shape function reduces to
¢ = Nigi + Njg; = ( N )¢} *7.7)
where the matrix of the shape function is
(N)YD =(N; Nj). (4.7.8)

The shape functions N; and N; were defined in terms of the global coordinate
variable x. A local coordinate s may be defined such that at x = x;, s = 0 and at
x =xj,s = L. Thus, since x = x; + 5,

Ne1_2% N3 (4.7.9)
1 — L J—L- ol

The range of variation of s is0 < s < L.
Since the variable s has a dimension of length, it is further necessary to define a
dimensionless variable (Fig.4.20). Calling the dimensionless variable

—2—S 1 4.7.10
§=T - (4.7.10)

and measuring it from the center of the element (e), it is seen that the range of
variation of £ between nodes i and j is

—1<&<+1. 4.7.11)
The shape functions in terms of the dimensionless variable & are

Ni=%1(1-§ N;=1%1+8). (4.7.12)

Since the variable is ultimately changed from x to &, a proper Jacobian must

be considered in evaluation of the integrals of the members of force and stiffness

matrices. An integral in the global coordinate system may be evaluated in the local
coordinate system using the Jacobian of transformation as
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(a) (b)
y y

Fig. 4.21 Area coordinates

/ﬂnﬂ=/f®m& 4.7.13)

where the Jacobian in this case is

dr = 2% g = |J1ae
X = — =
0&
L
I=7. (4.7.14)

for example

. _[Tximx [ oty Lo L
/MmM—L llm—/M®Mﬁ—llﬁlafE—?
(47.15)

4.8 Local Coordinates in Two-Dimensions

A popular coordinate system in triangular elements in two -dimensions is the area
coordinates. Using this coordinates system, the integration of the shape functions
and their derivatives may be obtained by analytical methods [2].

Consider the triangular element (e) with nodes 1, 2, and 3, as shown in Fig.4.21a.
The area of the element is bh

A 7 (4.8.1)

An arbitrary point P in the element makes the triangle A the area of which is, see
Fig.4.21b
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s
2

Al (4.8.2)

where I»3 is the length of side 23 and /1 is the height of the point P relative to /»3.

The ratio

L = 4.8.3
1= ( )

is considered as a coordinate of the arbitrary point P. The other coordinates of the
point P are
Az

L, = L
2= 3

- (4.8.4)

where A and A3 are the areas of the triangles of apex P and bases /13 and /12,
respectively. The coordinates of any point in the element (e) are defined by the
coordinates L1, Ly, and L3, as shown in Fig.4.21c. Since

Li+Ly+Ly=1 (4.8.5)

thus, two of the three coordinates L, L, and L3 are independent. These new vari-
ables are called area coordinates, and have some interesting properties.

It is easily verified that the area coordinates L1, Ly, and L3 are identical to the
linear shape functions in the triangular elements as

Li =Ny L,=N> L3= Ns. (4.8.6)

Due to their definition, their value is one at the node indicated by its subscript and
zero at the other nodes, i.e.,

L= [ 1 onnodel 487)

0 onnodes 2 and 3.

The coordinate transformation between two systems (x, y) and (L1, Ly, L3) are

x=L1X1+LrX>+ L3X3
y=L1Y1+ LyY> + L3Y3 (4.8.8)

where (X1, Y1), (X2, Y»), and (X3, Y3) are the coordinates of nodes 1, 2, and 3,
respectively. Either of the variables L1, L,, and L3 may be eliminated in terms of
the others using Eq. (4.8.5), leaving only two independent variables.

The significance of using the area coordinates is the capability for analytical
evaluation of the element integrals. This is an important factor in preparation of the
finite element model. If the element integrals are left to be evaluated numerically,
a substantial computation time will be required. It is always preferable to evaluate
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the element integrations by analytical methods to save computation time for other
essential steps of the finite element solution. When area coordinates are used, the
following rules are known for evaluation of the element integrals [3]

alb!
LiLbde = ——" 1 489
/E =2 (a+b+1)! (4.8.9)
1hlc!
/ LOLYLSdA = — 27 9p. (4.8.10)
A (a+b+c+2)!

Equation (4.8.9) is used to evaluate the line integrals over the edge of triangular
elements and L is the length of the edge of the element under consideration. Some
examples of these integral formulas are given in the following:

o 110! A

NiNjdA = | L'LA%dA=——"" _7a="=
A A (I4+14+0+2)! 12
210!0! A

c

/NfdA =/ LILILYdA = ————— 24 ="
A A 2+0+0+2)!

4.9 Volume Integral

Similar to the area coordinates, the volume coordinates in a tetrahedral element are
defined as the ratio of volumes. The coordinates of an arbitrary point P in the base
element (e) are defined by L1, Ly, L3, and L4, where

Vl V2 V3 V4
Li=—, Ly=—, Li3=—, Lj=— 49.1
1 2 3= 4= ( )

where V is the total volume of the element, V] is the volume of the tetrahedral made
of apex P and side opposite to node 1, and so on. From Eq. (4.9.1),

Li+ Lo+ L3+ Ly=1. 4.9.2)

Three of the four variables L1, Ly, L3, and L4 are independent. It is further verified
that

Li=Ny, Ly=N>, L3= N3, Ls= Ny. 4.9.3)

The coordinate transformation law between the conventional coordinates x, y, z
and the volume coordinates L, Lo, L3 and L4 are
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Fig. 4.22 Volume coordi- z 4
nates
! 3
2
Y
x

x=L1 X1+ LrX,+ L3X3+ LsXy

y=L1Y1 + LY, + L3Y3 + L4¥4

z=1L1Z1+ LyZr+ L3Z3 + L4Z4. “4.94)

The advantage of using volume coordinates in tetrahedral elements is the simple
analytical integration formula of the element matrices. The formula for the volume
integral is [2]

alblcld!

Lerbrsrdav = 6V. 495
/V 1727374 (a+b+c+d+3) (4.9.5)

The volume coordinate integral rule is a simple means by which to evaluate the nec-
essary matrix integral calculations analytically. This formula eliminates the need for
numerical integration of the elements of matrices when preparing the finite element
model of a problem. For example,

b d b d
/ Ny N>dV :/ (a1 +bix +cry+ 1Z) (az + byx +c2y + 22) dxdyds
\% |4

6V 6V

%4
= LiL,dV = —. 4.9.6
/V 1L 20 ( )

4.10 Problems

1. Use Eq.(4.3.3) and obtain the coefficients «| to o4 in terms of the nodal values
for the C° and C!-continuous shape functions.

2. Obtain the coefficients a1 to ae of Eq. (4.4.2) in terms of the coordinates of nodes
1to6.
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For a three-dimensional simplex element, find the coefficients «; to as from
Eq. (4.5.1) in terms of the nodal values ¢; to ¢4.

Write the C? and C'-continuous shape functions of a one-dimensional element in
terms of the local coordinate &. Then, find the Jacobian matrix of the transformed
coordinate.

Prove that for a triangular simplex element, as shown in Fig.4.21, L} = Ny,
L> = N>, and L3 = N3, and that they are 1 at the node they represent and zero
at the other nodes.

Verify the coordinate transformation law of a simplex triangular element given
by Eq. (4.8.8) and find the Jacobian of the transformation.

Prove that for a tetrahedral simplex element, as shown in Fig.4.22, L} = Ny,
L> = N>, L3 = N3, and L4 = N4, and that they are 1 at the node they represent
and zero at the other nodes.

. Verity the coordinate transformation law of a simplex tetrahedral element given

by Eq. (4.9.4) and find the Jacobian of the transformation.

References

—_

Kardestuncer H (ed) (1988) Finite element handbook. McGraw-Hill, New York

Segerlind LJ (1984) Finite element analysis. Wiley, New York

Eisenberg MA, Malvern LE (1973) On finite element integration in natural coordinates. Int J
Num Method Eng 7:574-575



Chapter 5
Field Problems

Abstract Many problems in mechanics are governed by harmonic and biharmonic
partial differential equations. This chapter presents detail derivation of the finite
element matrices for harmonic and biharmonic problems. The finite element matri-
ces for harmonic equations in Cartesian and cylindrical coordinates, axisymmetric
condition, are derived.

5.1 Introduction

Field problems are related to that class of problems in which the governing partial
differential equation is Poisson’s equation. Many problems in mechanics are gov-
erned by Poisson’s partial differential equation. Problems of conduction heat transfer
in solids, potential flow problems, diffusion of pressure in porous media, and elastic
torsion of prismatic bars are examples of field problems. Their equilibrium conditions
are all governed by Poisson’s equation, in which the dependent variables are temper-
ature, potential or stream functions, pressure, and stress function, respectively. The
general treatment and the basic mathematical formulations are similar to the elastic
membrane. This chapter attempts to generalize the finite element formulation of field
problems such that the formulations can be easily adopted to any similar problems.

5.2 Governing Equations

The general form of Poisson’s partial differential equation describing a time-
dependent function in the xyz-coordinates system is

¢ d a¢ d d¢ ap .
— (kyxy — — (kyy — — (ky; — =a — D 5.2.1
aX(,\cx ax)+ay()) ay)+az(zz aZ)+Q aal‘ m ( )
M. R. Eslami, Finite Elements Methods in Mechanics, 79
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where kyy, kyy, k.-, and a are the material properties which may be either constants
or functions of space variables. The function Q is the heat generation per unit volume
per unit time, and may be a constant or a function of space variables.

The equilibrium equation (5.2.1) is exposed to the initial and boundary conditions
described as:

The initial condition:

¢(x,y,2,t) = ¢po(x,y,z,0) in D for t =0. (5.2.2)
The boundary conditions:

¢(x,y,2,t) =¢s onaDfort >0

0 B Bl
¢l+kyy ¢m+ku ¢n+q+h(¢—¢oo)=0
ay 9z

ondD fort >0 (5.2.3)

where 9 D is the boundary of the solution domain D. Here, ¢ (x, y, z, 0) is the known
value of ¢ att = 0, ¢ is the known value of ¢ on the boundary, [, m, and n are the
cosine directions of a normal unit vector 7 at the boundary. The parameters g, i, and
¢ are assumed to be known constants.

The functional associated with Poisson’s equation (5.2.1) is written in analogy
with the elastic membrane problem as

d
X = [ H o GEP ko G2+ G2 =20 = a 0plaV
+/ qudS—i—/ L h(¢ — ¢s0)?dS. (5.2.4)
S1 S2

It is simply verified that the minimum of the functional (5.2.4), using the method of
calculus of variations, is Eq. (5.2.1) subjected to the boundary conditions (5.2.3).
Defining the gradient matrix (g) as

dp dp 3¢
(g) = (a oy 8_z> (5.2.5)

and the conduction coefficient matrix as

ke 0 0
[kKl=| 0 ky 0 (5.2.6)
0 0 k..

the functional (5.2.4) can be written in matrix form as
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)
x= [ L1t wie) 20 - a $0uv
1% t

+/ q¢>dS+/ L h(® — ¢0)?dS. (5.2.7)
S1 S2

To find the finite element solution to the field problems, the solution domain
is discretized into N E number of elements with total NN number of nodes. The
function ¢ is approximated for each element, and the functional is the total sum of
the functionals of each element (¢) as

_ g: (e) _ % 1 { (6)}T[k]{ (e)}dV
X = X = Ve 518 g
e=1

e=1

8¢)(e) (e)
- a2 av
/V(e) (Q “ o ¢

NE
4 Z (/ g Q¢©ds +/ T h@® - ¢oo)2ds) . (5.2.8)
Si(e) $2(e)

e=1

Here, S1 and S, are the boundaries of the solution domain where the following
boundary conditions are specified:

a "
k —¢ =g on §
on
3
k 8—¢ =h(¢p — pos) on Sh. (5.2.9)
n

Denoting the shape function for approximation of ¢ in the base element (e) by
(N©), the function ¢ in terms of its nodal values in element (e) is approximated as

¢ = (N, y, D@ @)} (5.2.10)
where {®}(© is the matrix of nodal values of ¢. It is noted that the space and time
variables are considered in separate functions. This is called the Kantrovich approx-
imation. For an element of p nodal points

(D)@ = (D) Dy --- D))

Substituting Eq. (5.2.10) in (5.2.5), the gradient matrix in terms of the nodal values
is
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CON; ONy 9N, @
¢ © ax Ox dx ¢
8 ) i
¢ dN1 ON; N .
(g©@) = I — Wwa_y” - (5.2.11)
3 .
0z AN Ny 0Ny P,
| Jdz 0z 0z |
Calling
CON; 9Ny 9N, @
dx 0x 0x
dN| ON; oN
[B]© = E E .. B_yp . (5.2.12)
dN| ON> oNp
L dz 0z 0z |
Then
(g}© = [B]©{D}. (5.2.13)

Substituting in the expression for functional of element (e), yields
x“):/ 1Y BT [KIB{®}V — (@} N}V
Ve) Ve)
T 0P T

+ a{®} {N}N)3 —{dV + q{®} {N}dS
V(e) ot Si(e)

+ / L h(@)T (N)(N) (®)dS — / hool @) (N)dS
S>(e) Sa(e)

+ [ dngias (5:2.14)
$2(e)

Since the matrix {®} is constant, it is taken out of the integral sign. Applying the
Ritz law yields

© _
a{(b} a{q)} ZX (5.2.15)

The differentiation of the functional with respect to {®} may be applied to the
functional of each individual element and the resulting expressions summed over the
entirety of elements in the solution domain. The differentiation follows as
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roge = ([ o sy ) o1+ (] )]
—_— = B]" [k][B]dV ) {®} + NYN)YdV )i —
S0y = Uy, BT HIBRY J(@)+ (| atvimav || T

- O(N}dV +/ g{N}ds + (/S ())h{N}(N)dS) (@)

V(e Si(e)

—/ hoso{N}dS. (5.2.16)
S$2(e)

This equation may be written as

(e)
£Q@=MW@@+MWM@+UM (5.2.17)

where the definitions of each of the above matrices are
[c]® = / a{N}(N)dV
V(e)
m@zf wHMMW+/ H(N}(N)AS
V(e) Sa(e)

()@ = - QWMV+/

q{N}dS—/ hopoo{N}dS.
V(e) Si(e) $2(e)

(5.2.18)

Substituting Eq. (5.2.17) in (5.2.15) and adding up the differentiated functional
of all the elements in the solution domain gives

dx

NE
— @ rpr@ @ rpr(@ (e) —
a{D) g[c] (@} + [k} + {f} 0 (5.2.19)

or, in general, .
[C1{®} + [K]{®} = {F} (5.2.20)

where
NE
[€1="> [y
e=1
NE
[K]1= D [k]g
e=1

NE
[F1= > {f15. (5.2.21)

e=1
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The matrices [C], [K], and {F} are called the capacitance, stiffness, and force
matrices, respectively. The index G means that the matrices are transformed into the
global coordinate system. The relationship between the element matrices in the local
and global coordinate systems are given as

(1% =[RI"[c1{[R]

(k18 =R K1 [R]

(A =R 1) (52.22)
where matrix [ R] is the rotation matrix, transforming the local coordinates into global

coordinates.

5.3 Axisymmetric Field Problems

Consider Poisson’s equation in two-dimensional axisymmetric problems in rz-plane

as
2 1 3¢ 9%¢
k |— +- = )+k — = 5.3.1
r (8r2+r 8r)+ ‘972 P ( )

where z is along the axis of symmetry and r is the radial direction. Considering the
base element (e) in the rz-plane, as shown in Fig. 5.1, the shape function for the
dependent function ¢ may be written as

¢ =N;®P;+ N;D; + Ny Dy (5.3.2)
where
1
Ni = 5~ (@ +bir +¢iz)
1
N; = A (aj +bjr+cjz)
1
Ny = A (ax + brr + ciz). (5.3.3)
The constants a, b, and ¢ are defined in terms of the nodal coordinates and A is the

area of the element (e). Using the Galerkin method, the residue of Eq. (5.3.1) is made
orthogonal with respect to the shape functions N, s =i, j, k as

2 k. 3¢ 9%
ky — +—~ —~ 4k, — — p |NydV =i, j k. 53.4
/V(e) ( " or2 r or T 972 p) y SEh ( )

Equation (5.3.4) may be written as
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[ 5 bk S = pINGAY s =ik (5.3.5)

/ ke 8 93¢ 3%¢
V(e) r or ' 812

The terms with the second order partial derivatives are subjected to weak formu-
lation using the Gauss integral theorem. From the rule of differentiation

la[NY a_¢]=1azvs g 1 d  ap

ror Mo T e T T Ve )
o 1 0 0 1 9 ad oN, 0
—NS—(r—d)):—— Nsr—¢ _ 9N 99, (5.3.6)
r or or r or or ar or
Similarly, since
B L) 3%p  ON, 3¢
= [Ng 1= Ny o5 +—
0z 0z 0z dz 0z
then s
0°¢ a ¢ ON; 0¢
— = — (Ny —) — — —. 5.3.7
Substituting Egs. (5.3.6) and (5.3.7) in (5.3.5) gives
ON; o oN; 0
/ [—kr—s—d)—kz S—‘p—Nsp}dv
V(e) ar or 0z 0z
k. 0 0 ] d
L N E- ) (I CER)
V) ' Or or 0z 9z

The second volume integral of Eq. (5.3.8) is transformed into the surface integral
using the Gauss integral theorem as

k B 3
/ [—r (Nyr —¢) cos 6 + k. N 99 sin@} dr (5.3.9)
I(e) ar 90z

r

where 6 is the angle of a unit outer normal vector to the element boundary with
r-axis. Simplifying expression (5.3.9) and substituting in Eq. (5.3.8) yields

dNg 0 ONg 0
/ [k, — —¢+kz : —¢]dV— Ny pdV
Vie) or or 0z 0z V(e)

) 9
—/ Ny (k, 9 oso+k. 22 sine) dr. (5.3.10)
I'(e) or 0z

Substituting for ¢ its value from Eq. (5.3.2) yields
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Fig. 5.1 An element in z
axisymmetric plane [

aNg 9N, INs 9N,
[/ (kr SR Tk —t) dV] b, — Ny pdV
Vi) or or 0z 0z V(e)

N, N,
- [/ N (kr L cosO +k, —L sine) dr] & st =i}, k.(53.11)
T'(e) 0 0z

r

In matrix form, Eq. (5.3.11) for element (e) is

K@Y — (£} — (£} (5.3.12)

where

dN; 9N, dN; IdN,
k] =/ (kr O8N5 O 4 g, &0 _’) dv
V(e) ar or dz 0z

(f)@ = ” )NspdV s,t=1i, ],k
e

oN aN,
{/p}© =/ N, (k, —L cosb +k, —- sine) dr. (5.3.13)
I'(e) ar 9z
Assembling all the elements of the solution domain, Eq. (5.3.12) is added up for
the elements and becomes

[KI{®} = {Fp} + {Fb} (5.3.14)

where the force matrix {F),} is due to the force p distributed in the solution domain,
and {F}p} is the contribution of the boundary forces.

For a simplex element shown in Fig. 5.1, using the set of shape functions (5.3.3),
the elements of the stiffness matrix are

— b;b; bib; b;by - CiCi CiCi CiCk
277k i0i OiDj Dj 277k iti ¢ty ¢
Tk bjbi bjbj bjbk Z; £ CjCi CjCj CjCk (5.3.15)
bib; bybj biby CkCi CkCj CkCk

k1€ =
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where R+ Ri+ R
F= T TR (5.3.16)
3
The elements of the force matrix are
VN,‘
{fp}© = / p{N}dV = an/ rN; t dA (5.3.17)
V(e) A(e) r Ni

where dV = 2nrdA. Replacing the shape functions with the area coordinates and
considering the rule of coordinate transformation

r=NiRi + NjRj + Ny Ry = L1R; + LyR; + L3Ry. (5.3.18)
Equation (5.3.17) is rewritten as

Li(L1R; + LoRj + L3Ry)
()@ = 27Tp/ Lo(L1R; + LoR; + L3Ry) | dA. (5.3.19)
A@ | L3(L1R; + LoR; + L3Ry)

The integration, using the rule of area coordinates, yields
2R; + R + Ry

Ri +2Rj + Ry ¢ . (5.3.20)
Ri +R; + 2Ry

(f) = 224

The distribution of p in element (¢) was assumed to be uniform. In the case of
variable p inside the element (e), proper integration technique must be considered
to take care of the variation of p.

5.4 Biharmonic Field Problems

Many problems of mechanics are governed by the biharmonic operator. The lateral
deflection of plates, the Airy stress function of the two-dimensional elasticity, and
the potential theory of thermoelasticity are examples of such problems. The finite
element solution of such problems may be approached by the variational formulation
of the biharmonic operator, employing the Ritz method. For such an approach, the
functional of the biharmonic operator must be considered.

Consider a biharmonic field problem. The functional of a biharmonic equation is

5 2
x(¢)=// [(V ¢) —2f(x,y)¢}dxdy (5.4.1)
D
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where ¢ is the solution of a biharmonic field problem. We first show that the expres-
sion of the functional given in the above equation is associated with V4¢ = f(x, y).
To prove this assertion, we use the standard method of calculus of variations to mini-
mize the expression of the functional. The expression which minimizes the functional
should be V4¢ = f(x, y). We consider the expression

92 92
x(@) = // [(8—xf+—¢) —2f¢]dxdy. (5.4.2)

Expanding the first term

0% %\ 9% 9%
X(d)) // |:(8x2) (W) +2m8—yz—2f¢ dxdy. (5.4.3)

Consider a variational parameter € and the variation function # = u(x, y). The
variation function u (x, y) must satisfy the same conditions of the class of admissible
functions of ¢.

The function u(x, y) and its first and second partial derivatives with respect to x
and y are continuous in the solution domain D. That is:

1. u(x,y)=0o0onadD
2. u(x,y), uy, Uy, Uxy, Uyy, Uy are continuous in D.

Now, we may construct the function

P (x, y) = ¢ (x, y) +eulx,y). (5.4.4)

Substituting ¢* in the expression of the functional gives

o= [ [ [T (o]

92 (¢ + €u) 0% (¢ + €u)
+2|: dx2 9y2

i| —2f(¢p+ eu)} dxdy. (54.5)

To apply the method of calculus of variation, the derivative of the functional with
respect to the variational parameter € is

2 2
0 0%u 9? 02 0%u 9*
X<¢> // 400 () 4000
8x2 x2 9x2 dy? dy2 9y?

2¢ 3%u  9%u 9%¢ N 9%u 0%u
— — — — e__
0x2 9y2 = 9x2 9y? 9x2 9y2

) —2uf(x, y):| dxdy.
(5.4.6)
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Setting the variational parameter equal to zero yields

9 Pud’p  ud’e  ud’e  8%ud’
X(¢)|e—>0_// : ¢ Ml Jl"'ll_”f(xay) dxdy.
9x2 9x2 8y2 ay?  0x2 0y?  0y? ax?
(5.4.7)

This expression is simplified to

8x(¢)

le—0 = / / [(V2pV2u — uf (x, y)ldxdy. (5.4.8)

The first term of the integral may be written as
0
[ [evtuasay = [ [ v + —(v2¢—“>]dxdy

2 2
// AR +—( "’)]dd

2v72 2 2
/ / a V¢ oV ¢]dxd (5.4.9)

Now, using the Green integral theorem, the area integral is transferred into the
line integral as

aM  aN
/ ML 0N dy = / (Ndy — Mdx). (5.4.10)
p 0y 0x aD

Using this rule, the first and second area integrals transform into the line integral
around the boundary of solution domain d D as

_ / / (262 ¢ 2 9292 1axdy = / V2o Xay - M
p 0X 0x dy dy aD X y

L.
= Vep— ds (54.11)
aD ad

a v a AV B av2¢ V3¢
‘//D[a‘“ 1 >dedy——/wu[ " Lay -l ax

_ —/ u 2 s, (5.4.12)
aD n

Substituting Egs. (5.4.9), (5.4.11) and (5.4.12) into (5.4.8) for Xa(d)) le—0, and
€

letting this equation be zero, we obtain
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Ix(p)

o = / / (V2692 —uf(x. ] dxdy
D

9 9
- // " v4¢dxdy+/ V222 45 —/ u — V2pds.
D aD on ap On

(5.4.13)

Since u(x, y) is an arbitrary function, we argue that the integral of the above
equation must vanish independently. Therefore, the resulting boundary value problem
is

V4 — f(x,y) =0 (5.4.14)

34 5 9% a4¢

— — 5.4.15
57 T 25y T gy =) (5.4.15)
and the natural boundary conditions are
0 2 2
a—V ¢=0and V¢ =0 on dD. (5.4.16)
n

5.5 Finite Element of Biharmonic Formulation

The functional of a biharmonic equation is

X = /D [(V29)? = 2f(x, y)pldxdy. (5.5.1)

The solution domain is divided into N E number of arbitrary elements, and the Ritz
law is applied to the functional of each element for the generalized degrees of freedom
qi (Fig. 5.2). The function distribution in the base element (e) is approximated as

¢ = Nig; (5.5.2)

and the Ritz law is
ax _ a3k

— 0. (5.5.3)
aqi a‘b

The derivative of the functional of the base element, x @ with respect to the nodal
degree of freedom is

3X(e) / 5 v 2¢ /
= \% ——dxdy —_— dA. 554
v = o (79) 5 e G54
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w
DD =

w
0.
2
o,
1 w
6
9}’

Fig. 5.2 Degrees of freedom of the base element (e)

The first term is

9 (V2
/ (V2¢) dedy
D(e) 9qi
/ N N PNy SN Kllg} (55.5)
= X R— D
Dy 0x? dy2 " 9x2 9y? Y9 1

and the second term is

- fx, y)Nidxdy = —{f}. (5.5.6)
D(e)

With the sum of the above equations, the final form of the finite element equilib-
rium equation when all element equations are assembled is

[K1{Q} = {F}. (5.5.7)

This equation is solved for the unknown values of the nodal degrees of freedom
at the nodal points.

5.6 Finite Element Solution

The shape function in terms of the local coordinates may be considered to be of the
following form:

¢ = ai +at +azn+asE’ +asEn+agn” +azé +ast n+aokn® +an’. (5.6.1)
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Fig. 5.3 Element and the natural coordinates

The coordinate transformation law between the global coordinates (x, y) and the
local coordinates (£, 1), as shown in Fig. 5.3, is

x=0-§&—nx1 +&(2) +n(x3)
y=0—=&—=my1 +&K2) +ny). (5.6.2)

The inverse transformation is

X3 — X1y X3y + yix — X3 — X3
X2y3 — X2yl — X1y3 — Y2X3 + y2x1 + y1x3

_ TX1Y X2y — X2Y1 — YaX + yoX1 + yiX

X2y3 — X2V1 — X1Y3 — y2x3 + yoxi 4 yix3’

(5.6.3)

The nodal degrees of freedom for a C'-continuous element are selected to be ¢,
0y, and 0y, as given

¢ =a1 + arxE + azn + as€” + asén + ‘aen’
+a78” + as&*n + aokn’* + aron’

d

Ox = _8? = ay + 2a4¢ + asn + 3a76” + 2agén + aon® (5.6.4)
d¢ 2 2

Oy = — = a3 + asé + 2aen + ag&” + 2a9én + 3ajon (5.6.5)

YT o
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where the coefficients ¢; in terms of the nodal degrees of freedom at nodes 1, 2, 3,
and 4 are

ay = ¢
ay =0y
az =0y

ag = — 3¢ — 201 +3¢2 — 0x2
as = — 36x1 — 13¢1 — 30y1 — T2 + 202 — Oy2 — 0x3 — T¢h3
+20y3 +27¢4

ag = — 3¢1 — 20y1 + 3¢p3 — 0y3

a7 =06x1 +2¢1 — 2¢2 + 6x2

ag =20y1 + 3051 + 13¢1 + T2 — 20,2 + 20,2 + Ox3 + Tp3 — 20,3 — 27 ¢4
ag =13¢1 + 201 + 30,1 + Tpp — 20,2 + 6y + 203 + T3 — 20,3 — 27¢4
aio =0y1 +2¢1 — 2¢3 + 0y3. (5.6.6)

The constants a; to ajg are substituted into Eq. (5.6.1) and ¢ is written in terms
of the shape functions Nj to Nig as

¢ = Ni1¢1 + N20x1 + N3Oy + Nago + N50x2 + Neby2 + N7gp3 + Ngby3
+ Ngby3 + N1og4 (5.6.7)

where the shape functions in terms of the local coordinates are

Ny = =382 — 13&n — 3> + 263 + 13620 + 1 + 13n%€ + 21°

Ny = 282+ 206 + £3 + £ — 360+ 387y

N3 = =36 +n+n° —3&n + 2862 — 21

Ny =Ty — 26 — Ten + 7670 + 382

Ns = &3 — 28 — £2 — 2n°€ + 281

No = n*t — &0 +2&™n

N7 =T =2 — T&n + 760 + 3n°

Ng = &%+ 2n°€ — &n

No = —2n%& —n” + 1’ + 260 — 2&™n

Nio = 27&n — 270 — 27&%. (5.6.8)

Employing these shape functions for the base element (e), the stiffness and force
matrices of elements are constructed using Egs. (5.5.5) and (5.5.6), and the final finite
element equilibrium Eq. (5.5.7) is assembled using a proper algorithm. A method
for assembling the global stiffness and force matrices is presented in Chap. 7.
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5.7 Problems

1. Consider a one-dimensional field problem along the x-axis. Using a one-
dimensional simplex element, obtain the elements of the capacitance, stiffness,
and force matrices.

2. Consider a solution domain made of two straight one-dimensional elements with
three nodes. With the assumptions of Problem 1, obtain the global matrices.

3. Reconsider Problem 2 and assume that the coordinates of nodes are 1, 3, and
5, respectively. For Q = +10, ¢ = 420, h = 15, and ¢, = 70, when the
one-dimensional element has a circular Cross-section with diameter d = 0.5,
calculate the global matrices.

4. Consider a two-dimensional field problem in xy-coordinates. Obtain the elements
of the stiffness and force matrices associated with a triangular simplex element.
It is assumed thatthe h = ¢ = 0, and Q # 0.

5. Obtain the elements of the capacitance matrix of Problem 4.

6. Solve Problem 4 for a three-dimensional field problem with a tetrahedral simplex
element.

7. An element in an axisymmetric plane is assumed. With a linear shape function,
obtain:

a. the elements of the shape function in the r—z plane.
b. with the linear shape function, obtain the members of the stiffness matrix.
c. obtain the members of the force matrix.

8. Reconsider Problem 7 and assume that the coordinates of the nodal points i, j,
and k of the element (e) in the r—z plane are (1,2), (2,3), and (4,2), respectively.
Compute the members of the stiffness and force matrices, where k, = k, = 20,
and p = 50.

9. Consider the functional

1= vao)? —2(1 rore LAY 2 @t dxd
—//D (Vo))" =2(1 —v) WTyz_(m) —2f(x,y) xdy
od
—2/ p(s)d>ds+2/ m(s)—ds.
aD aD on

Use the method of calculus of variation to obtain the natural boundary conditions.
The associated boundary value problem has already been discussed and is the
biharmonic operator on ®.

Further Readings

1. Zienkiewicz OC, Cheung YK (1965) Finite elements in the solution of field problems. Eng J
220:507-510

2. Segerlind LJ (1984) Applied finite element analysis. Wiley, New York

3. Kantorovich LV, Krylov VI (1964) Approximate methods of higher analysis (trans: Benster CD
Interscience Publishers, New York) P. Noordhoff-Groningen, The Netherlands



Chapter 6
Conduction Heat Transfer in Solids

Abstract Heat conduction problem in solid continuum is one of the major fields in
mechanics. This chapter presents detail derivations of the finite element matrices of
one, two, and three-dimensional conduction problems. Both variational and Galerkin
methods are employed to derive the finite element formulations. Derivation of the
capacitance matrix for the transient heat conduction problems is carried out for the
one, two, and three-dimensional cases.

6.1 Introduction

Heat transfer in solid bodies by conduction is governed by the equation obtained by
the first law of thermodynamics for the balance of heat. This equation, for the steady
state conduction and the homogeneous and isotropic materials, is Poisson’s equation.
For unsteady heat conduction, the time rate of change of the temperature is added. Due
to the analogy of the governing equation of heat conduction with an elastic membrane,
we may write the expression for the functional. Otherwise, a straight approach for
deriving the expression of the functional from thermodynamic principles is not yet
formulated. Therefore, the Ritz method may be used to derive the finite element
formulations of conduction heat transfer in solids. This is primarily possible due to
the mathematical analogy of the governing equation of heat conduction with that of
the elastic membrane. That is, there is no physical justification for an expression of the
functional of heat conduction problems from the point of view of thermodynamics.

In this chapter, the finite element formulations of the heat conduction problems
in a solid continuum are obtained based on both variational and weighted residual
methods. The variational derivations are based on the Ritz method, and the weighted
residual derivations are based on the Galerkin method. It is interesting to note how
the weak formulations in the Galerkin method provide a powerful means to derive all
possible boundary conditions in Galerkin formulations. As one of the first historical

M. R. Eslami, Finite Elements Methods in Mechanics, 95
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© Springer International Publishing Switzerland 2014



96 6 Conduction Heat Transfer in Solids

works on application of the finite element method to heat conduction problems, one
may refer to the paper presented by Wilson and Nickell [1],

6.2 Galerkin Formulations

From the first law of thermodynamics, the thermal energy balance in a solid contin-
uum is [2]

0 agy 0 oT
dx | Oy | ai;) +0=pe— 62.1)

~Cox dy at

where ¢; are the components of heat flux, Q is the rate of energy generation per unit
volume per unit time, 7 is the absolute temperature, p is the mass density, and ¢
is the specific heat of the material under consideration. From Fourier’s law of heat
conduction in anisotropic solids, the heat flux components are related to the gradients
of temperature as [3]

oT aT oT
qdx = —(kxx a +kxy 5 +kxz 8_Z)
oT oT oT
4y = —(kyx o +kyy By +Kyz 3_Z)
aT oT oT
Gz = —(kzx Fm + kzy EN + ke, a_z) (6.2.2)

where k;; are the coefficients of heat conduction in a solid continuum of general
anisotropic properties, and are assumed to be constant with the temperature varia-
tions. Substituting Eqs. (6.2.2) in (6.2.1) results in the thermal equilibrium equation
of a solid continuum. The initial and the general boundary conditions are one, or a
combination, of the following

T(x,y,2,0) =To(x,y,z) att =0

T(x,y,z,t)=T; onS; andt >0

gl +gym + q.n = —q” onSyandt > 0

qxl +gym +qn =h(T —Ty) onS3andt >0

gl +gym+q.n = oceT* — agr onSgand?t >0 (6.2.3)

where Tp(x, v, z) is the known initial temperature, 7 is the known specified tem-
perature, q” is the known heat flux on the boundary, # and T, are the convection
coefficient and ambient temperature, o is the Steffan-Boltzman constant, € is the
radiation coefficient of the boundary surface, « is the boundary surface absorption
coefficient, and ¢, is the rate of thermal flux reaching the boundary surface per unit
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area. The cosine directors of the unit outer normal vector to the boundary in x, y,
and z-directions are shown by [, m, and n, respectively.

Now, we may consider a solution domain divided into a number of elements. The
base element (e) with r—nodes is considered. With a Kantrovich approximation for
the time and space domain, the temperature distribution in the base element (e) is
approximated as

,
T, y.2.0) = D Ni(x.y. T (1)

(6.2.4)
i=1
or, in matrix form
T (x, y,2,1) = (N(x, y, DT 1)} (6.2.5)
The gradient matrix of temperature is
TON; N, N, 7@
aT )@ -— ©
P 8.x a.x ox Ti(t)
oT INT  ONa IN, n) .
ay [ | ay oy dy : (626
o LRIV 'S I
| 0z 9z 0z
or
9T 1@
ax
aT
—t =[BT") (6.2.7)
dy
oT
0z
where
TON, N> N, @
ox 0x 0x
N, 9N, AN,
Bl¥ =| — —= 6.2.8
[B] 3y R 3y ( )
oNy O0N2 oN,
L 0z 0z 0z |
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Using the approximation of Eq. (6.2.5) and applying the Galerkin method to the
equilibrium Eq. (6.2.1) yields

9g. g, 0 T
/ (G Oy % e N =0 i=1,2...r (629)
Ve) 0x 8y 9z at

Now, we may use the Gauss integral theorem to apply integration by parts to
selected terms. This is a very important stage of the preparation of the finite element
model of the problem and is called the weak formulation. The weak formulation
is used for two important reasons: to obtain the natural boundary conditions, and
to lower the order of differentiation of the terms of highest differentiation order
for the use of lower order shape functions. The first reason is important since a
clever formulation is the one which provides a model with all possible boundary
conditions. These possible boundary conditions may be obtained through proper
weak formulations applied to the selected terms, although not necessarily the one
with the highest differentiation order.

The weak formulation of the heat flux gradients gives

9 d 0 .
/ ( 4x +ﬂ+£)NidV= (g -n)N;dS
Vi) 0X dy 0z S(e)
oON; ON; ON; 9x
_ (— — —)1gqytdV (6.2.10)
V(e) dx By 0z .

q:

where S(e) is the boundary of the base element (e). Substituting Eq.(6.2.10) in
(6.2.9) and rearranging the terms gives

aT aN; ON; oN; |%x
/ pc—N,-dV—/ (— — =) 1qydV = ON;dV
V(e) ot V(e) 0x 8y 0z q- V(e)

—/ (G -WNidS i=1,2,---r (6.2.11)
S(e)

According to the boundary conditions given by Eq. (6.2.3), the last surface integral
is decomposed into four integrals over S through Sy as

aT IN; ON; ON; |9~
/ pc—N;dV —/ (————)1gqy ¢ dV
V(e) at Ve dx Jdy 0z q
Z
= [ onav- | G -iNds+ / 4 NidS
Ve) S S»
_/ h(T — Too)Nid S — (G€T4—Olqr)N,'dS i=1,2,---r
S3 S4

(6.2.12)
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Note that the signs of the integrals in Eq. (6.2.12) depend upon the direction of
the heat input. The positive sign is defined when the heat is given to the body, and
the negative when the heat is removed from the body. That is, q” is defined to be
positive in Eq. (6.2.12), since we have assumed that the heat flux is given to the body.
On the other hand, we have assumed negative convection, which means the heat is
removed from the S3 boundary by convection. Similarly, the S4 boundary is assumed
to radiate to the ambient, as the sign of this integral is considered negative. From
Eq.(6.2.2)

AT )@
ax
CIx (6) k.X.X k.Xy k.XZ (E) 8 ;‘
qy =—|kyx kyy ky; e (6.2.13)
qz kzx kzy ke; 9T
9z
Substituting from Eq. (6.2.7) in (6.2.13), gives
G (e)
gyt = —IKIBUT}. (6.2.14)
qz

Upon substitution of Eq.(6.2.14) in (6.2.12) and adding up and assembling the
resulting matrices for all the elements in the solution domain, the finite element
equilibrium equation is obtained as

[CUT}+ [[Ke]+ [Kn] + [KAUTY = (Fo} 4+ {Fs} + {Fg} + {Fu} + {Fr} (6.2.15)

where the element of each of the matrices for the base element (e) is
€19 = [ pelnyniav
V(e)
[k = / [B1" [K1[B1dV
V(e)
(k] = / h{N}(N)dS
S3(e)
[k 1T} = / oeT*{N}dS
Sa(e)
(119 = [ @ -ids
Si(e)

{fo}® = / O{N}av
Vie)
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AN =/ ¢ (N}dsS
Sa(e)
(5 = [ Tl
S3(e)
(/1@ = / aq {N}dS (6.2.16)
Sa(e)

where [c] is called the capacitance matrix, [k.], [k;], and [k,] are the conductive,
convective, and the radiative stiffness matrices, respectively. The force matrices are
the heat generation matrix { fo}, the heat flux matrix { f }, the convective matrix { f;,},
and the radiative force matrix {f}. It is important to note that the stiffness terms
[k,1 and [k,]© appear only for the elements which are exposed to these two types
of boundary conditions. Similarly, the force matrices { fq}(e) ASn)@, and { £,}© are
considered only for the elements which are experiencing such boundary conditions.

6.3 Variational Formulations

The partial differential equation of heat conduction in a solid continuum based on
the first law of thermodynamics was given by Eq. (6.2.1). Considering Fourier’s law
of the form

oT
@ =k oy
oT
qy = —ky By
aT
g = —k, — 6.3.1)
0z

the first law of thermodynamics for the conduction of heat transfer in a solid contin-
uum becomes

" I L, T )+ kS0 =pc s (632)
ax " ax’ o ay : v 3.
The initial and boundary conditions are
T(x,y,2,0) =To(x,y,2) (6.3.3)

T(x,y,z,t) =Ty

aT aT aT
ke 5oLtk Wy mot ke - n+q=h(T = Tu). (6.3.4)
Z
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The associated functional of Eq. (6.3.2) is obtained in analogy with the membrane
problem as

aT aT aT aT
1 2 2 2
= Yk (=) +ky (—) 4+ k. (—)*> =2(Q — pc —)T } dV
X /Vz[x(ax)+>(ay)+z(az) (Q pcat)]
+/ qus+/ L (T — Two)?dS. (6.3.5)
S1 S>

It is easily verified that the extremum of Eq. (6.3.5) reduces to Eq. (6.3.2). The finite
element approximation is followed by applying the Ritz method to the functional
(6.3.5). Using the Kantrovich approximation to separate the time domain from the
space domain in the base element (e), the temperature is approximated as

TO(x, y,2,1) = (N(x, y, )T (1)} (6.3.6)
where
(N)@ = (Ny Ny --- N,) (63.7)

and r is the total number of nodes in the base element (¢). The total functional of the
solution domain is the sum of the functional of each of its subdomain elements (¢) as

NE
X = Z %x© (6.3.8)
e=1
The Ritz method is
NE

ax ax© .

9x _ - =1,2,---NN 3.

o ZaTi 0 i=1,2, (6.3.9)

e=

where NE and NN are the total number of the elements and nodal points in the
solution region, respectively. The differentiation of the functional of base element
(e) with respect to the nodal temperature 7; is

ax(e):/ [k aT(E)i 9T © e BT(e)i aT(e))
aT; Vi) ax 0T; = Ox Y 3y 9T, Oy
aT®© 9 T aT®© 9rT©
c e o Car ) T @Rl ) an] v

aT© AT
+/ q dS+/ W(T® — To)
sie) 9T $2(e) IT;

Differentiating the terms of Eq. (6.3.10) yields

ds. (6.3.10)
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aT® AN, N> AN,

0x <8x 0x Bx) {7
9 0T ON;
aT; ~ ox = Ox
aT©
oT;
o' = <N>(€) 3_T
ot ot
aT® AT oT aT, aT
— (L 22 TNt @ | O (6.3.11)
at ar ot ot ot
Substitution of Egs. (6.3.11) in (6.3.10) yields
ax© .
S = TN — (19 + Tl HTHO + [T (6.3.12)
1

where

(&) ON; ON; ON; ON; ON; ON;
[kil;;" = ky — —+ky — — +k; — —)dV
Vie) ox 0x dy Jy dz 0z
kol :/ hN;N;dS
$2(e)

[c]l(;) = / PcN;N;dV
V(e)

(1= QN,'dV—/ qN,~dS+/ hTsN;dS. (6.3.13)
40 S1(e) $1(e)

The sign of the force matrices is selected positive when heat is given to the body.
An alternative approach is the matrix representation of the element matrices,
which is more convenient to use. Defining the gradient matrix {g} as

aT
0x
aT
dy

(g} = (6.3.14)

aT
| 02

It follows from Eq. (6.3.6) that, for the base element (e), the matrix {g} is
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© [ aN N

?)_T 0x dx dx 7]

X ; ; .

Ip)
{g}(e) — 8_T — aﬂ @ - ON: — [B](e){T}(e).

dy dy dy dy

aT . . .o
" AN, N, N, T;

L 0z 0z 0z
(6.3.15)

Substituting in the functional of element (e) given by Eq. (5.2.7), gives

x©@ ={T}" (/V( ) ] [B]T[k][B]dV) {1}

-y’ Q{N}dv+{T}T(/ pc{N}<N>dV){T}
Ve)

V(e)

+{r)y" (/ q{N}dS) {17 (/ 3 h{N}(N)dS) (T}
Si(e) Sa(e)

+/ T hrZds — ()" (/ hTOO{N}dS) (6.3.16)
S>(e) S2(e)

where the matrix [k] is

(e)

k 0 0
k19=|0 k, 0
0 0 k&

Applying the Ritz method, the following matrix forms are obtained for the element
matrices

[k]© =/ [B]T[k][B]dV+/ h{N}(N)dS
Vi) $2(e)

[c]® =/ pc {NYN)dV
V(e)

(19=+ [ wreimas+ [ owav- [ qnds. 6317
$2(e)

V(e) Si(e)

The matrix form of the element matrices, as given by Eq.(6.3.17), are more
convenient to use.

Substitution of Egs. (6.3.12) in (6.3.9), and performing the summations over all
the elements in the solution domain, yields
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3)( B NE 8)((6)
a_Ti - e=1 aTl
NE
= > (19T + 119 + o] TN = (1)) =0 (63.18)
e=1

This equation results in the general equilibrium finite element equation of the
system as

[CUT} + [KUT)} = {F} (6.3.19)

where

NE

[C1= D _[RI"[c][R]

e=1

NE
[K1= D [RI"[[k1]° + [k2]1[R]

e=1

NE
(Fy= > [RI"{f} (6.3.20)
e=1

where [ R] is the proper rotation matrix for transferring the matrices from the local ele-
ment coordinates to the problem global coordinates. The coordinate transformation is
(] = [R)" [c]i[R]
(k1 = (R [k)i[R]
{1 =[RI"{f (6.3.21)
Equation (6.3.19) is the finite element equilibrium equation describing the tran-
sient three-dimensional temperature distribution in a solid continuum. For a steady-

state condition, matrix [C] vanishes and the solution is obtained from the following
equation:

[KHT} = {F}. (6.3.22)
The elements of the stiffness and force matrices depend upon the order of approx-

imation, element geometry, and the problem dimensions. In the following sections,
the one-, two-, and three-dimensional problems are discussed.
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Fig. 6.1 A one-dimensional \ L o
straight element |
—AN—¢ ]
0 7 :
1 2

3_’3; (e)

6.4 One-Dimensional Conduction

Consider a one-dimensional conductive heat transfer in a solid. The examples are
conduction heat transfer in extended surfaces in the form of rods, and heat transfer in
bars. If the bar is straight, or the elements can be approximated as a straight element,
its geometry is as shown in Fig.6.1. Assuming a linear element, two nodes i and j
are sufficient to describe the approximation for the temperature distribution along
the element. The linear temperature approximation is

T: (e)
T = N, T, + N;T; = (N; Nj) (6.4.1)
T;
where
Xi—x X —Xx;
N; = ]L N; = T ! (6.4.2)
Thus
1 1
BY® —(—— _\@ 6.4.3
(B) ( I L) ( )
Since
(k] = [kx].

Using the variational formulation, the first part of the stiffness matrix is

1 1 1
[kl]“):/ [B]T[k][B]dvz/ [ IL][kxu—— —)dV.
Vie) vl T L L

For a bar of constant cross section A, dV = Adx and

kKA1 -1
() — 22
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The second part of the stiffness matrix is related to the convection on the boundary
of the element as

[k2]<e>=/ h{N}(N)dSZ/ h[ N ]<Nl. N,)ds
Sa(e) Sa(e) s AV

or

X N2  N;N;
[kr]© =/ h [ i 21} ds.
sie) LNjNi  Nj

This integral should be evaluated on the portion of the element surface where the
convective heat transfer is specified, assuming the peripheral surface of the element
is exposed to convective heat transfer to the ambient at (7, Ty). Since dS = Pdx,

thus,
[k2]© / h[Niz Nl’Nf}de
2 = 2
Ss(e) NN Nj

where P is the periphery of the element. Carrying out the integration gives

PhL [2 1
(e) —

The total stiffness matrix of the element (e) is then

kA T1 -1, PhL [2 1
@ = 2
(k1 = — [_1 1}+ G [1 2].

The force matrix is the sum of three matrices. The first part of the force matrix is
related to the heat generation within the element at the rate Q as

© _ Ni dV:/ [Ni]Ad )
i /V(e)Q[Nj] V(e)Q 7]

For constant Q,

© _ QAL [1
Q== 1t

The second part of the force matrix is the radiative part appearing wherever a
surface of the element is exposed to the radiative heat flux 4+¢ . Let us assume that
the cross section at node j is exposed to the radiation ¢ . Thus,
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N » 10 ” 0
{fz}(e)=/ q{N’_]dS=/ q HdA=q Aj H
Si(e) J Si(e)

where A; is the area of cross-section of node j. For the constant cross-section
element, A; = A.

The third part of the force matrix is the convective force defined on the surface of
the element, assuming an element with peripheral surface exposed to the convective
heat transfer. If heat is transferred by convection to the ambient, this force matrix
becomes

; N; N;
{f3)© = — hT, [ lldS:—/ hT, [ llpdx
fSZ(e) <N sie) N

T PL |1
-

The total force matrix of the element (e) is then

@ QAL [1] . .+ [0] hTwPL |1

Note that the sign of the heat flux force is assumed positive, which means the
body is receiving heat flux ¢ on its boundary Si. The convective heat transfer on
the S» boundary is assumed negative.

6.5 Two-Dimensional Conduction

Two-dimensional heat conduction problems in the x — y coordinates may be modeled
by the linear triangular elements as shown in Fig. 6.2. The linear approximation for
the temperature distribution in the base element (e) is

T© =a; + arx + a3y (6.5.1)
where ay, ay, and a3 are constants to be determined in terms of the nodal coordi-

nates. At nodes i, j, and k, the nodal temperatures are T;, T, and T, respectively.
Substituting these conditions in Eq. (6.5.1) gives

i = a1+ axxi +azyi
T; =a) +axxj+azy;
Tr = a1 + axxy + az y. (6.5.2)

Solving for ay, az, and a3 yields
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Fig. 6.2 Two-dimensional

: Y
triangular element
k(‘tbyh)
J(=5.3)
i(xisyj)
x
ar = 5 Loy = xayp)Ti + Gayi = iy Tj + (ayj = xjyi) Tel
1
a = (yj =y Ti + Gk — YD) Tj + (i — )Tkl
1
a3 = [k —x)DT; + (i —xi)Tj + (xj — xi) Tie ] (6.5.3)
Substituting in Eq. (6.5.1), gives
T;
T@ = N;T; + N;Tj + Ny Ty = (N; N;j Ni) T
Ty
or
T = (N)T)© (6.5.4)
where
N, = +bix +ciy
2A
N; = aj+bjx+cjy
2A
b
Ny, = w. (6.5.5)
2A
Here,
1 1 1
2A =2 x areaof element (¢) = |x; x; X (6.5.6)
Yio Yjo Yk

and
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@i = XjYk = XkYj aj = XrYi — Xi Yk Ak = Xiyj — XjYi
bi=yj— bj =yr— i bk =yi—yj . (657
Ci = Xk — Xj Cj =Xj — Xk Ck =Xj — X

The stiffness and force matrices are calculated using Eq. (6.3.17). According to
definition, the submatrices of the stiffness matrix are

IN;  IN; BN

@ _ | ax ax ax | _ 1 bi bj b
BIT=1an, aN; N |~ 240 o 6.58)

By ay 9y

and

m=1% o] (659)

Thus, the first part of the stiffness matrix, for an element of unit thickness, is

(k] = / [B1 [k1[B1dV
V(e)

bi ¢
1 i i . .
=/ — |bj ¢ [’8‘ ]?be bi bk:|dxdy. (6.5.10)
Vi) 4A b viLe < <k

This, upon integration, reduces to the following matrices:

ky b;b; b,‘bj b; by @ , CiCi CiCj  CiCk ©
[k1© = 1A bibi bjb; bjby +_1)4 cjci cjej cjcg | . (6.5.11)
bib;  bibj  brby CkCi  CkCj  CkCk

The second part of the stiffness matrix is related to elements that are exposed to
convective heat transfer, and is

N,'N,' N,'Nj NiNk
[k2]<e>=/ h{N}(N)dS:/ h|NjN; NjNj N;jNg|dS. (6.5.12)
Sa(e) Sa(e) NiN; NkNj N Ni

As an example, if the heat is transformed by convection through the i j —side of
the element, then Ny = 0 and

210
[kz]@):ﬂ 1 2 0
6 1o 0 o
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Fig. 6.3 Convection heat )
transfer on side i !

g ”
x
where S§;; is the area of side ij of the element (e) as shown in Fig.6.3.
The force matrix due to the internal energy generation is
A©
(9= owav=2 (65.13)
V(e) 3

where the thickness of the element is assumed to be a unit. The second part of the
« . " " " . ..
force matrix is due to the heat flux ¢ . For positive heat flux +¢ , this force matrix is

N;

{fz}(”:/ q{N}dS=/ g {N; bas. (6.5.14)
Si(e) Si(e) N

As an example, if the side ij of the element (e) is exposed to the heat flux +q”,
the related force matrix is

N;i
(10 = / g {Njtas=1
Si(e) 0

The third part of the force matrix, due to a negative convection, where heat is
removed from the surface S»(e), is

"

Sij
2

1
1

N;
() = —/ hToo{N}dS = —/ hTsx {N; 1 dS
$2(e) Sa(e) N

which again reduces to either one of the following matrices, depending on the side
of the element (e) exposed to free convection:
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Fig. 6.4 A three-dimensional 2z
simplex element

x
s, |!
— My (1) for ij side
0
(0@ =1 =M% It forkj side
1
1
— % 0 for ik side.
i
The total force matrix is
A =1 + {1 + () (6.5.15)

6.6 Three-Dimensional Conduction

Consider a three-dimensional solid continuum subjected to a thermal gradient. The
heat is transferred into the body by means of the energy generation within the body,
or through the boundary surfaces by convection, radiation, or conduction. The heat
is then transferred through the body by conduction.

To model the finite element formulations of the problem, a linear approximation
for the temperature distribution within the three-dimensional element (e) may be
assumed. A four-side base element (e) is considered in the xyz-system, as shown in
Fig. 6.4. Four nodes i, j, k, and m are considered, and the temperature distribution
within the element (¢) is assumed to be linear as
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T© =a +arx + a3y + asz. 6.6.1)

The four constants a; through a4 are evaluated in terms of the nodal temperatures
and the coordinates as

T; = a1 +arx; + azy; + aaz;

Tj =a) +axxj+azy; +a4z;j

Ty = ay + axxg + azyy + aszy

T = a1 + axXp + azym + aqzm (6.6.2)

Solving the system of eq. (6.6.2) for a’s yields

7€ = N;T; + N;Tj + NkTi + Ny Ty = (N)(e){T}(e) (6.6.3)
where
a;i +bix +ciy +diz a,~+bjx+c,~y+d,~z
6V 6V
ax + brx + cry + diz am + byx + cmy +dnuz
Ny = N,, = 6.6.4
k 6V " 6V o9

where the constant coefficients a’s, b’s, ¢’s, and d’s are given in terms of the nodal
coordinates. For node i, they are

XjpoYio% Loyioz
ai = |Xk Yk Zk bi=|1 yr
Xm  Ym Zm L Ym zm
x; 1z x; oy |1
ci=|xr 1 z di=|xr y 1 (6.6.5)
Xm 1 zm Xm  Ym 1

The other coefficients for nodes j, k, and m are found in a similar manner. The
element volume is

I xi v z
v _ L X yog (6.6.6)
6 11 xx y zx|” e
I Xm Ym 2Zm

The stiffness matrix is calculated using Eq. (6.6.3) for temperature. The first part
of the stiffness matrix is

(k1] = /V ( )[B]T[k][B]dV 6.6.7)
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which, upon substitution, is

bibi  bibj  biby  biby

k)@ = o |bjbi Dby bjbie bjb
36V |bibi brbj  brbr  biby

bubi  bubj bybr  bpyby

CiCj Ci Cj CiCk CiCm
ky lcjei  cjcj  cjek cjcm
36V |ckCi  CkCj  CkCk  CkCm

CmCi  CmCj  CmCk  CmCm

did;  did;  didy  didy
k. |did; djd; did didy
36V |did;  did;  didi  didy
dnd;  dpdj dpdi  dpdy

x (6.6.8)

The second part of the stiffness matrix is related to the convection of those elements
which are exposed to this type of boundary conditions and is

NiN; NiN; NiN; N;iNy
N;N; N;jN; N;jN; N;N,
k‘”:/ hNNdS:/h” s S dS
el Sa(e) I sy |NkNi NgNj o NiNi NiNp
NuN;i NuNj NuNy NNy
(6.6.9)

As an example, when the triangular side ijk is exposed to free heat convection,
N,, = 0 and the integration of Eq. (6.6.9), using the area coordinates, reduces to

21 1 0
hAix 11 2 1 0

(e) _ L
“‘2]—121120'
0 0 0 0

The force matrix is calculated in a similar manner as one and two-dimensional
problems. The first part of the force matrix, due to the thermal energy generation per
unit volume per unit time, is

N; 1
N; ove@ |1

(1)@= Q{N}de/ ol"itav = (6.6.10)
V() V(e) Ni 4 1
N, 1

The second part of the force matrix related to the radiation —l—qﬁ to the surface of
the element (e) is
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N;i

{f2)© = / q (N}dS = / g 1Nitas.
Si(e) Si(e) N
N

This is reduced to one of the following forms, depending on the boundary surface
exposed to the heat flux +¢ :

(1)
q//Aijk 1 foriiksid
i orijk side
0
0]
"A 1
[’AT’"”‘ ) for jkm side
(@ 1
{2 = 1) (6.6.11)
na, |0
q’gﬂ | for kmi side
14
(1)
q/,Amij 1 f e .
— or mij side
0
L 1 P

The third part of the force matrix related to the free convection heat transfer on the
boundary of the element (¢), when heat is transferred by convection to the ambient, is

{fz}(‘f’z—/ hToo{N}dS:/ hTs N' ds. (6.6.12)
Sa(e) S2(e) k

If the side ijk of the base element (e) is exposed to the free convection to the
ambient, the related force matrix is

T Ajjk

()@ = 3

O = = =

The total force matrix is the sum of all element forces, and is
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{f}(e’) — {fl}(e) + {f2}(e) 4 {f3}(e)‘ (6.6.13)

6.7 Transient Heat Conduction

The finite element equilibrium equation for transient heat conduction problems was
derived in Sect. 3, and is

[CUT} + [KUT)} = {F)} (6.7.1)

where the capacitance matrix [c] for the base element (e) was defined as
[c]© = / pc{N}(N)dV. 6.7.2)
V(e)

This matrix is now calculated for the one-, two-, and three-dimensional simplex
elements.

For the one-dimensional linear element (e), with two nodes i and j and length L,
the matrix [c] reduces to

L X
@ _ (1—z)] _E X
[c]© = pe /0 [ G =D Gnaa 67.3)

which, after integration, gives

@ _ [ PcAL ©@ry g
L] —( 6 ) 1 2

For two-dimensional elements with linear shape functions, the matrix [c] is
NiN; NiNj N;N¢
[c]© = / pc| NjN; N;N; N;jNi|dA (6.7.4)
V(e NiN;  NyN; NiNg

which, after integration, gives

201 1
A (e)
[c]© = (&) 1 2 1

12 11 2

For the three-dimensional elements with linear shape functions, the matrix [c] is
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NiN; N;N; N;N. N;Ny

) _ NjNi NjNj NjNy NNy
o= ¢ av 6.7.5
e} /V(e) p NiN;i  NyNj  NiNp  NiNp ( )

NmNi NmN] Nme NmNm

which, after integration, yields

2

[c]© = (ﬂ)(e) 1
20 1

1

—_ = N —
—_ N =
DN = = =

Once the capacitance, stiffness, and force matrices are obtained for the problem
under consideration and the matrices are all assembled for the total elements in
the solution region, the finite element equilibrium equation is well-defined, and is
solved. Since this equation is an ordinary differential equation in terms of time for
the transient problems, a numerical scheme must be employed to integrate the system
of equations numerically in the time domain and solve the system for each time step.
The most appropriate technique is the finite difference method in the time domain.
The total transient time is divided into a number of time increments, and, for each
time increment, the equation is solved in terms of its known matrices at an earlier
time interval. There are a variety of finite difference numerical schemes for solving
the time-dependent problems. The direct integration method for solving the transient
problems is discussed in Chap. 7.

6.8 Problems

1. A one-dimensional simplex element with nodes i, j and circular cross-section
under heat flux q// at the cross-sections i and j and convective heat transfer to the
ambient form at its periphery is considered. Find the stiffness and force matrices.

2. A one-dimensional heat transfer in a rod is considered. The rod is divided into
two elements e and e> with lengths /1 and /> and constant cross-sectional area A
and periphery p. Element e is exposed to heat transfer to the ambient at (h, To),
where the element e is under exposed heat flux q// from its periphery. The rod is
thermally insulated from its ends. Find the stiffness and force matrices of the rod.

3. Reconsider Problem 2, in which the initial temperature of the rod at r = 0 is
assumed to be a constant 7p. At¢ > 0, the thermal boundary conditions given in
the problem are assumed to be applied. Calculate the capacitance matrix of the
rod, if the heat is generated at the rate of Q per unit volume and unit time.

4. Problem 2 is considered with the numerical values /; = 2 c¢cm, I = 3 cm, with
the first node of the element e at the coordinates x = 0. It is assumed that
h = 20 Kcal/min/cm?, To, = 25°C, ¢' = 50 Kcal/min/cm?. Calculate the
members of the stiffness and force matrices of the rod.
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5. Consider a two-dimensional heat conduction in xy-coordinates. Obtain the el-
ements of the stiffness and force matrices associated with a triangular simplex
element with nodes i, j and k. It is assumed that the sides ij and jk are exposed
to heat convection at /1, T, and side ik is exposed to a heat flux q//. The heat is
assumed to be generated at a constant rate Q.

6. Obtain the elements of the capacitance matrix of Problem 5.

7. Aheat transfer domain of rectangular shape with node coordinates A at (0,0), B at
(4,0), C at (0,3), and D at (4,3) centimeters is considered. Heat is generated at the
rate Q0 = 50 K cal / sec / cm? in the domain. Connecting nodes A and D, two
triangular elements are obtained. Find the problem stiffness and force matrices if
the sides A B and AC transfer the heat to the ambient at /1, T, where the other two
sides are thermally insulated. Take & = 20 K cal / min / cm? and T, = 10 °C.

8. Reconsider Problem 7, in which the initial temperature of the domain at t = 0
is Tp = 25 °C. At t > 0, the boundary conditions are as given. Calculate the
capacitance, stiffness, and force matrices, when p = 7800 kg/cm3 and ¢ = 20.
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Chapter 7
Computer Methods

Abstract Once the theoretical derivations to obtain the finite element matrices for a
base element (e) is completed, the element matrices are assembled to form the finite
element equilibrium equation. The computer methods to solve this final equation
includes the matrix assembling, bandwidth calculation, application of the boundary
conditions, solution algorithm, and preparation of the output results. This chapter
briefly explains the computer techniques to perform the required operations and
through a number of numerical examples show the details of the mathematical con-
cepts. That is, it puts the mathematical concepts into the computer algorithms. At
the end of the chapter, a number of classical methods of solution of dynamic finite
element equations are discussed.

7.1 Introduction

In this chapter, brief discussions of the computational methods are presented. The
structures of the finite element computer programs are similar in a number of subpro-
grams. All programs written to solve a problem with the finite element method have
three major sections: the input section, the section dealing with the mathematical
operations, and the output section. The section on mathematical operations should
be able to solve a banded matrix subjected to a number of boundary conditions. This
process needs to establish and assemble the global stiffness matrix from the input
data, transform the global stiffness matrix to a banded matrix, apply the boundary
conditions, employ a solution technique to solve the resulting system of equations,
back substitution, calculate the nodal required information, and finally, prepare the
output data. This strategy is for a simple static finite element problem. The solution
of the dynamic problems depends upon the type of dynamic analysis. If a finite ele-
ment program is considered as a system of integrated subsystems, then each module
is responsible for a definite task, and may be used to perform that special job. A
computer program developed to solve a two-dimensional elasticity problem may be
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easily modified and adapted to solve a two-dimensional heat conduction problems,
as many subprograms are about identical in both cases. Therefore, one would be well
justified in investing some time in writing a finite element program, as well as trying
to separate it into different modules, each responsible for a definite task. A main
program can then gather these modules into a more complete computer program
for a special problem. Another more general main program can put these special
programs into a more general purpose finite element computer program.

7.2 Assembly of the Global Matrices

The element matrices are of finite dimensions and are related to the total number of
nodes per element and the degrees of freedom per node. These matrices are assembled
into the global matrices the dimensions of which depend upon the total number of
nodes of the problem and the degrees of freedom per node. Thus, the global matrices
have large dimensions and are obtained as the sum of the element matrices of much
smaller dimensions. This means the assembly process of the element matrices is not
just a simple addition, but rather a process of expansion and summation.

Consider a solution domain discretized into N N nodes. Furthermore, consider
only one degree of freedom per node, called . An element (e) of the solution domain
may have the nodes, say, [, m, and n, and the element unknown matrix

W)@ = (uy um un)®. (7.2.1)

The global unknown matrix, which includes the unknowns u;, u,,, and u, of the
element (e), is
(U) =(uy ug---up-- -ty Uy - UNN). (7.2.2)

The global unknown matrix contains u# to uyy in increasing order of numbers,
where u;, u,,, and u,, are placed in (U) in sequence of their subscript number. The
question is where their associated stiffness matrix coefficients are placed in the global
stiffness matrix [K] ?. An algorithm is needed to do this job with a system of refer-
encing related to the subscript number of unknown ug, s = 1, 2, ... NN. To establish
the algorithm, consider the following example.

Example 1 A two-dimensional problem in the x—y coordinates is considered. The
solution domain is assumed to be a rectangle which is divided into two elements, as
shown in Fig.7.1.

The node numbers are shown in the figure. The unknown function at the nodes
is u. The global unknown matrix is

(U) = (u1 uz uz uy). (7a)
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Y,
1 3
©)
©,
2 4

Fig. 7.1 A rectangular domain with two elements

The element unknown matrices for the elements (1) and (2) are

W)V = (uy uz ua).

)@ = (uy us u3).

Tk kia ki ] [ Ji M
ka1 k22 ko3 uy ¢ =1 f2
| k31 k3 k33 | us 3
and
(ki ko ki3 12 [ a1?
ka1 koo ko3 ug ¢ =1 f2
| k31 k32 k33 | u3 3

121

(7b)

(7¢)

(7d)

(7e)

The global stiffness matrix is 4 x 4, while the element stiffness matrix is 3 x 3. The
global stiffness matrix is the sum of the element stiffness matrices. This means that
the element stiffness matrices should be first expanded into a 4 x 4 matrix, and then
summed over in the global stiffness matrix. The expansion process is proportional

to the subscript number of the unknown matrices () and (u)@. This is

ki kg 0 ki T [ g i W
ka1 k22 0 k23 uz [ f2
0O 00O u3 0

k31 k32 0 k33

ug S

(7f)
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Table 7.1 Matrix CON(, /)

Nodes
Element 1 m n
1 1 2 4
2 1 4 3
2 2
ki 0 ki3 kia 19 [ u %
000 O uy 0
= 7
k31 0 k33 k32 u3 J3 (7e)
k21 0 ko3 koo U4 f2

It should be noted that in the expansion process, the columns and rows of the element
matrices are displaced according to the sequence number of the global unknown
matrix (U). The process of summation is now possible, and is

K R R (] [
L I % I A
S B Y e S
e ey ag el | e

Example 1 describes the process of summation of the element stiffness and force
matrices into the global matrices in two steps. The first step is to expand the element
matrices to the dimensions of the global matrices, and the second step is the summa-
tion of the element matrices to form the global matrices. The final form of the finite
element equation is

[K{U} = {F}. (7.2.3)
where

NE

[K]=D [k (7.2.4)
e=1
NE

(Fy=> {11, (7.2.5)
e=1

where N E is the total number of the elements in the solution domain. The system of
expansion of the element matrices into the global matrices was based on the subscript
number of the associated u; in the element unknown matrix. The subscript numbers
of the nodal points around the element (e) are real numbers compared with the
locations in the global matrices. If we form a connectivity matrix of the elements, it
may be used to perform the assembly operations for the stiffness and force matrices.
To show the process, consider the example problem.

The nodal points around element (1) are (1, 2, 4) and those around element (2)
are (1, 4, 3). Saving these numbers in a matrix called CON(j, j), we have Table7.1.
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This matrix is constructed during the input data entry, and it is all known when the
input data is completed. This matrix is called the connectivity matrix, and gives the
information regarding the node numbers around each of the elements in the solution
domain. The index i ranges from 1 to NE and refers to the element, and the index
Jj defines the node number around element (i) with the consideration of the degrees
of freedom per node. For triangular elements, j takes on three numbers, and for the
four-side elements, j takes on four numbers.

(a) When we have one degree of freedom per node, the unknown matrix is

(U) ={uy up uz ug). (7.2.6)
For element (1)

(U)YY = (uy uy ug)
CON(1, j) = (1 2 4).

For element (2)

(U)Y® = (uy us us)
CON(2, j) = (1 4 3).

(b) When we have two degrees of freedom per node, such as u and v, the unknown
matrix is

(U) =(u1 vi up va uz v3 ug v4).
For element (1)

(UYD = (uy vy uz vy ug vg)
CON(l,j)=«(1 23 4 7 8).

For element (2)

(U)Y® = (ur vi usg va uz v3)
CON(Q2,j)=(127 85 6).

The expansion of the element stiffness and force matrices [k] and { £} into the
global matrices [K ] and {F}(® is done using the CON(i, j) matrix as

(e) (e)
kij — Ky,

() ()
i = F,
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where for each element (e)

CONE(i) = CON(e, i)
CONE(j) = CON(e, ).

and

[ =CONE() i=12,...n4
J =CONE(j) j=1,2,...n4

where n4, is the total number of degrees of freedom of element (e). Therefore, the
expansion process is done as

(e) (e) (e)
K1) = Kconew.coneg) = = ki
(e) (e) (.
Fy7 =Feonga = 1i (7.2.7)

On this basis, an algorithm may be written as.

Algorithm

e Initialize matrices [K] and {F}.
e For each element (e)
K;j =Ky —i—k(e) i=1,2,...n4¢
Fr=F+f° j=12. ng.
where

I = CONE(i)
J = CONE()).

This simple algorithm assembles the stiffness and force matrices for all elements in
the solution domain.

7.3 Bandwidth Calculation

Due to the nature of finite element approximation, the resulting global mass and
stiffness matrices are banded. The reason is very simple, as each element is only
connected to a few number of elements around its sides and nodes. It is very important
to recognize the bandwidth of the mass and stiffness matrices and use a numerical
solution algorithm which employs the bandwidth of the matrices [1]. This is in
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contrast to the standard Gauss elimination method, which constructs the solution
procedure based on n x n matrices.

To determine the bandwidth of the stiffness matrix, we may consider the member
K7 of the global stiffness matrix. The diagonal members of the global matrix are
located on locations I = J. For the upper triangle of the stiffness matrix (where
J > I), the band of an element K;; of the global matrix is bge]) =J—-1,or

b') = J — I = CONE(j) — CONE(i) J > I. 7.3.1)

Now, when the element stiffness matrices kl.(‘?) are assembled, their members, which
are located at far distance from the diagonal, are the band of the global matrix for
that element and for the rows under consideration. Thus, the element bandwidth for
row I, when the element stiffness matrix kl.(;) is assembled, is the maximum value

of b;ej) for all non-zero terms of that row, and is

i=1,2,...n40

[ = CONE(i)
j=1,2,...nq
b\ = Max (CONE(j) — I). (7.3.2)

When all the elements are assembled, the bandwidth for row I of the global matrix
is

e=1, NE
by = Max(b'\"). (7.3.3)

for all elements (e). The final bandwidth of the global matrix is the maximum b; of
all the rows as

I=1, NN
b = Max(by). (7.3.4)

where N E and N N are the total number of elements and nodal points in the solution
region, respectively.

With a similar method, the element band height h(;), band height of each column
of the global stiffness matrix /7, and the total band height of the stiffness matrix &
is obtained. The element band height h(f) of column J of [K ©] is the maximum of

h(lej) of all non-zero terms of column J, as obtained from the following algorithm
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J=12,...n40

J = CONE())
i=1,2,...n4¢
h(;) = Max (J — CONE(i)) . (7.3.5)

The band height /4 ; of column J of the global stiffness matrix [ K ], when all elements
are assembled, is
hy = Max(h'"). (1.3.6)

and the total band height % of the global stiffness matrix is

J=1, NN
h = Max(hy). (7.3.7)

The band height of each column is needed for the skyline method of solution, as
discussed later in this chapter.

7.4 Boundary Conditions

The finite element equilibrium equation for static problems has the general form
[K{X} = {F}. (7.4.1)

Before solving this system of linear equations, the boundary conditions must be
applied. Itis very important to note that the boundary conditions must be well defined
such that once the forces are applied to the model, the model stays stationary. An
ill-defined boundary condition results in the rigid body motion of the model. The
sign of rigid body motion appears in the calculation procedure, as the determinant
of the stiffness matrix becomes zero.

Let us define the boundary conditions by

(X} = {X}i. (7.4.2)

where {X}; are the degrees of freedom in which their boundary values are defined
by {X};. The boundary conditions (7.4.2) must be introduced in Eq.(7.4.1) and the
equilibrium equation (7.4.1) be modified and solved for the rest of the degrees of
freedom. The solution will be influenced by the given boundary conditions. There
are several techniques for introducing the boundary conditions into the equilibrium
equation [2].
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Method 1: Large Number on Diagonal Term

The global stiffness and force matrices are assembled before the boundary conditions
are considered. Once the assembly process is completed, the boundary conditions
are introduced. For each known boundary condition X; = X;, its associated term on
the diagonal of the stiffness matrix K;; is replaced by K;; + 8, where 8 is a very large
number compared to the other terms of K;;. Since § is an arbitrary large number,
K;; + B =~ B, and thus, its corresponding unknown Y; in the same row is essentially
very small and negligible compared to the other unknowns. Keep in mind that at
the nodes where their nodal values are known, their reaction forces are unknown.
The right-hand side of equation i is —K;; X;. The term K ji)_(,- is subtracted from
the right-hand side of all the other equations, such that equation j before and after
modification is

e before modification K;1 X1 + KjpXo + - K;iX; + - Kjy Xy = F;
e after modification K ;1 X1 + Kjp2 X +--- K Y +--- Kjp X,y = Fj — Kji)_(i-
(7.4.3)

Note that since ¥; is negligibly small, K ;¥; is negligible compared to the other
terms of the equation. In addition, since the term K;; X; is moved to the right-hand
side of the equation, the j—equation is thus identical before and after modification.
Therefore, the right-hand side of all j—equations (except equation ¢) are modified
by Fi =F;j — K ;i X;. The i—equation before and after modification is

e before modification Kj1 X; + KinXao + - - -Kii Xi + -+ -KinXn = Ri

e after modification K;1 X1 + KixXo + - - -BYi + - - -Kin Xy = —K;i X;.
(7.4.4)

Note that we purposely named the force at the node where its nodal displacement is
known by R;. The value of R;, the reaction force, is unknown. That s, at a node, either
the force is known or its nodal displacement. Subtracting the second of Eq.(7.4.4)
from the first equation gives

or
R; = —BY. (7.4.5)

where R; is the reaction force associated with degree of freedom X;.

The advantage of this technique is that the original symmetric stiffness matrix re-
mains symmetric after modifications to include the boundary conditions. The method
is very simple to apply.
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Method 2: Wiping Rows and Columns

Consider the boundary condition X; = X; defined at node i. To apply the boundary
conditions, the row and column of the stiffness matrix associated with the node i are
all set equal to zero, except K;;, which is set equal to 1. The force matrix is then
properly modified as

Kij=K;;=0 j=12,...n i#]
Ki=1 (7.4.6)
The matrix representation of Eq.(7.4.6) is
[ K -+ Kii-1 0 Kiir -+ K | [ Xu
Ki11--Ki—1,i-10Ki—1i+1 - Ki—1 Xi-1
0 0 1 0 0 X;
Kiv11-- Kiz1,i-1 0 K141 - Kig1n Xit1
L Kn,l t Kn,ifl 0 Kn,iJrl t Knn _ Xn
[ Fi — KuX;
Fiop—Ki1iX,
= X; . (7.4.7)
Fig1 — Kip1i Xi
Fn - Km')_(i

The matrix equation (7.4.7) is solved for all the unknowns {X} except X;, the bound-
ary value of which is given as X;. In this method, the reaction forces are not directly
obtained.

Example 2 A two-dimensional problem is considered as shown in Fig.7.2. The
solution domain is assumed to be a rectangle which is divided into four elements.

The nodes are numbered as is shown in the figure. The unknown function at node
i is u;. The global unknown vector is
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Fig. 7.2 A rectangular domain with four elements
(U) ={(u1 uz u3z ug us ug).
The local unknown vectors of the elements are

@)V = (uy uz ug)

(

W) = (uy ug us)

@)® = (u3 us ue)
(

W)@ = (uz ug us).

The general form of equilibrium equations at the elements level are

ki ko ki3 19 [ N ©
ka1 ka2 ko3 uy t =1 f2
k31 k3o k33 u3 f3

The connectivity matrix, CON(i,j), for these four elements is (Table 7.2).

The global stiffness matrix is 6 x 6, and is constructed by the sum of the element
stiffness matrices. Now, we proceed by assembling the local stiffness matrix and
force vector of each element into the global stiffness matrix and force vector of the
problem, respectively.

For element one:

CONE(i) = CON(1,i) = (1 2 4).

1 1 1 1
kgl) — K11 kiZ) — K2 k§3) — K4 1( N F
1 1 1 1
k%{; — Ko k%%; — Ko k%?; — Koy 251; — .
k31 — K41 k32 — Ka» k33 — Ky f3 — Fy

The global stiffness matrix and force vector become
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Table 7.2 Matrix CON(, j) Nodes

Element

1

W W = ==
o~ B w3

2
3
4

wn N W RS

M (D) (1) (H 7]
kl} k1% Okl% 00
0
— (e) | —
(Kol =[]+ [K9]= | 0 g 0 g0
31 ™32 33
0 00O0O0O0
0 000 00]

T
Fr=F+ "= oV ool .
For element two:

CONE(i) = CON(2,i) = (1 4 3).

2 2 2 2

kgl) — K1 k](2) — K4 k§3) — K3 fl( N Fi
2 2 2 2

kél) — K41 kéz) — K ké; — Ku3 fz( ) Fy.
2 2 2 2

kél) — K31 k;z) — K3y k§3) — K33 f; N Jk!

The global stiffness matrix and force vector become

(1) (2) (1) (2 (1)
O S S S

T
(e) 1 2 1 2 1 2
Fr=Fr 4+ fC ={ 1<)+f1<>f2(>f3<)f3<)+f2<>00} _

For element three:
CONE(@{) = CON(@3,i) = (3 4 6).

(1) 2) (1) 1(2) (D) 2) ]
ki +1k“ k1]2 ki3 ki3 +1k12 00

4
(K1) = [Kis1+ [k ] = B0k k00
3 ko3 k3z +ky; 00
0 0 O 0 00
O 00 0 00
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3 3 3 3

kgl) — K33 kgz) — K3 k§3) — K3g fl( ) F
3 3 3 3

KD = Kas kS — Kaa kS — Kag Ry
3 3 3 3

k;l) — Ke3 kgz) — Kea k§3) — K¢ f3( ) Fg.

The global stiffness matrix and force vector become

A 2) (1) ) (1 ) ]

ki t)kn k%%) ki3 ki3 ‘('1)"12 00

k%21) k22 ) 0 3) (2)k23 3) 0 (()3)

(Ki/]1=[K;]+ k9] = k31 0 ky3 +kjy k3 Tk Ok
17 17 1 kD L@ W G () @) T0) g, 0)
31 TRy K3y Koz TRy K3+ Kyy Ky U ks

0 0 0 0 00
o 0 K k5 0k

T
F‘() 1 2 1 2 3 1 2 3 3

For element four:
CONE() = CON#4,i) =(3 6 5).

4 4 4 4
kil) — K33 k%Z) — K36 ki; — K35 1( N Y
i 7 1 4
kéi) — Ke3 ké%) — Kep kég) — Kes f2(4) — Fg.
kél) — Ks3 kéz) — Ksg k§3) — Kss5 f3( ) Fs

The final forms of the global stiffness matrix and the force vector become

(Ko = [Kis1+ K9]
(1) (2) (D) 2)
ki ‘(’I)kn k%%) ki3
i S
= (1)k31 2) ?1) k33 _(E)k” —(g)kl
kyy +kyy kyy  kys —ZkZI
0 0 k)
3) 4)
0 0 k31 +k21

Fr=F;+ f[(e)

4)
1

kY +k3 00
kY 0 0
kg 4k KKk
K K K 0 kY
o Ta
Ko ey kg

3 3 T
="+ 12 B P+ 1P+ 1P BV 524 5D 5P B 500

Example 3 Calculate the bandwidth of the stiffness matrix for the previous example.
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Solution: The bandwidth of the system matrices will be calculated by the algorithm
described for the bandwidth calculation. In a computer code, determining the band-
width of the system matrices, prior to assembling local element matrices, is beneficial
in allocating an appropriate amount of storage volume to the system matrices. The
algorithm loops over each element of the FE model and calculates the corresponding
bandwidth. The final bandwidth is then the maximum of all those calculated.

For element one:

j=1,J=CONE() =1
i=1, I=CONE()=1 1 j=27J=CONEQ2) =2
j=3,J=CONE®3) =4

b =Max(1J —11) — b =Max(0, 1,3)=3
j=1,J=CONE(l) =1
i=2 I=CONEQ2)=2 1j=2,J=CONEQ)=2
j=3,J=CONE@®3) =4

b =Max(1J —11) — b =Max(1,0,2)=2

j=1,J=CONE() =1
i=3, I=CONEQ3) =4 }j=2 J=CONEQ2) =2
j=3,J=CONEQB)=4

b =Max(1J —11) — b =Max(3, 2, 0)=3.

For element two:

j=1,J=CONE() =1
i=1, I=CONE()=1 1 j=2 J=CONEQ) =4
j=3,J=CONEQ3)=3

b\ = Max(1J —11) — bP =Max(0,3,2)=3

j=1,J=CONE() =1
i=2 I=CONEQ2)=4 1j=2J=CONEQ)=4
j=3,J=CONEQB)=3

b =Max(1J —11) — b =Max(3,0, 1)=3

j=1,]=CONE() =1
i=3, I=CONE3)=4 |j=2 J=CONEQ2) =2
j=3,J=CONEQ)=4

b =Max(1J —11) — b =Max(3,0, 1)=3.

For element three:
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j=1,J=CONE() =3
i=1, I=CONE()=3 }j=2,J=CONEQ) =4
j=3,J=CONE@3)=6

b = Max(1J —11) — b =Max(0, 1,3)=3
j=1,J=CONE(l) =3
i=2 I=CONEQ)=4 }j=2 J=CONEQ) =4
j=3,J=CONEQB3)=6

b = Max(1J —11) — b =Max(1,0,2)=2
j=1,J=CONE()=3
i=3, I=CONEB3)=6 }j=2 J=CONEQ)=4
j=3,J=CONE®3)=6

b = Max(|J —1]) — b = Max(3, 1, 0)=3.
For element four:

j=1,J=CONE() =3
i=1, I=CONE()=3 1j=2 J=CONEQ2) =6
j=3,J=CONEQ3)=5

b = Max(1J —11) — b =Max(0, 3, 2)=3
j=1,J=CONE() =3
i=2, I=CONEQ2)=6 }j=2 J=CONEQ2)=6
j=3,J=CONEQ3)=5

b = Max(1J —11) — b’ =Max(3,0,2)=3
j=1,J=CONE() =1
i=3, I=CONE3)=5 1j=2 J=CONEQ) =2
j=3,J=CONEQ)=4

b =Max(1J —11) — b =Max(2,1,0)=2.
The bandwidth for row [ of the global matrix is

by = Max(b", b® bP pP ) =3
by = Max(by", b2, b, bYY) =2
by = Max(b", B, b, p¥ ) =3
by = Max(b", bP, b, b)) =2
b by =2
W B =3

by = Max(®'")

The final bandwidth b of the global matrix is the maximum b; of all rows

133
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b= Max(b;) = Max(by ,by ,b3 ,bs b5 ,bs) =3
Example 4 Consider the following system of equations;

2X1+272+X3—2X4=2
4X1 4+ 6X2+5X3+ X4 = Ry
X1 — X2+ X3+ X4=4
2X1 + X2+ X3+ X4=5

Impose the prescribed condition of X» = 4 to the system of equations once by the
technique of large number on diagonal term and once by the technique of wiping
rows and columns. Solve the resultant system of equations by the Gauss elimination
method to obtain the remaining unknowns.

(a) Solution by the technique of large number on diagonal term: To impose the known
boundary condition X, = 4 on the system of equations, the associated diagonal term
K> is replaced by a very large number 8 = 102, In addition, the right-hand side
of the 2nd equation, R», is replaced by —K 2 X5, and the term k jzfz is subtracted
from all the other jth equations. The system of equations after modification take the
following form:

2X14+2Y20+ X3 —2X4=2—-2x4=-6
4X1 + 10127, +5X3+ Xy = —6x4=-24
Xl—-Yr+X34+X4=4—-(—1)x4=8
2Xi1+ 1+ X3+ Xy=5—-1x4=1

Now, the Gauss elimination method is implemented to obtain the unknowns of the
above system of equations. To produce zero terms in the first column, the first equation
is multiplied by —4/2 = —2 and the result is added to the second equation, the first
equation is multiplied by —1/2 and added to the third equation, and finally, the first
equation is multiplied by —2/2 = —1 and added to the fourth equation. The result is

2X14+2Yr 4+ X3 —2X4 = —6
0+ 1027, +3X34+5X4 = —12
0—2Ys + $X3+2X4 = 11
0—Y,+0+3X4 =7

Now, the second equation is multiplied by 2/10'> = 2 x 107! and added to the
third equation, and multiplied by 1/10'> = 107! and added to the fourth equation
to give

2X1+ 2, + X3 —2X4 = —6
0+ 1027, +3X3 4+ 5X4 = —12
0+0+5X3+2Xy =11
0+04+0+3X4=7
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The last step is to produce a zero term in the third column and below the fourth
equation, which is already zero. Now, the system of equations is upper triangularized
and is ready to solve. The backward solution from the fourth equation for X4 gives

X—7
4=73-

This value of X4 is substituted in the third equation to obtain X3 as

1 7 38
—X3=11-2X4=11-2x - > X3 = —.
2 3 3

By substituting X4 and X3 in the second equation, Y> is obtained as

- 38 7 185 5
1020y = —12-3X3 = 5X4 = —12 =3 x = =5x 2 > Y =——= x 107"

Finally, by substituting X4, X3 and Y> in the first equation, X is obtained as

—115 38

2X1 = —6-2Y, — X3+2X4=—-6—2x x 10712 - =

7
+2x§—>X1=—7.

The unknown value in the right-hand side of the 2nd equation, R», is obtained as

185

I 185
Ry=—BY, = —10'2 x —= =,

x 10712 =

(b) Solution by the technique of wiping rows and columns: To impose the known
boundary condition X, = 4 on the system of equations, all entries of the row and
column of the stiffness matrix associated with the index i = 2 are set equal to zero,
except K;; = K», which is set equal to 1.

KZ/:K12:O for ]:17374 (]#2)
Ky =1.

Accordingly, the force matrix is modified as

Fj=Fj_Kj2Y2 for j=1,3,4 (j #2)
Fz:?z.

The system of equations after these modifications takes the following form:
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2X1 404+ X3 —-2X4=2-2x4=—6
0+X,+0+0=4

X1-04+ X3+ Xa=4—(—1)x4=28
2X1 -0+ X3+ X4a=5-4x1=1

Now, similar to the previous case, the Gauss elimination method is implemented to
obtain the unknowns of the above system of equations. The first column has already
a zero term in the second equation. To cancel the non-zero terms in the first column,
the first equation is multiplied by —1/2 and the result is added to the third equation,
and the first equation is multiplied by —2/2 = —1 and added to the fourth equation.
The result is

2X14+0+ X3 —2X4 =6
0+X,+0+0=4
0—0+3X3+2X4 =11
0-0+0+3X4=7

The system of equations is now upper triangularized and is ready for implementing
the backward solution. From the fourth solution, X4 is obtained as

X—7
4=z

By substituting the value of X4 in the third equation, X3 is obtained as

1 7 38
—X3=11-2X4=11-2x - > X3 =—.
2 3 3

From the second equation, we have X, = 4, as is expected. Finally, the first equation
gives the value of X after substitution of values of X3 and X4 as

38 7

The unknown value in the right-hand side of the 2nd equation, R», is obtained as

— 38 7
R2=4X]+6X2+5X3+X4=4X(—7)+6X4+5X?—i-g:—.

7.5 Gauss Elimination

The Gauss elimination method is widely used to solve systems of equations obtained
through finite element modeling. The standard method of Gauss elimination is de-
veloped to solve a system of equations with a constant coefficient matrix of n x n
size, or a square matrix. This method is partially modified to handle the rectangular
banded matrices, which are naturally obtained for finite element problems. Gauss
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elimination is a direct method of solution of the system of equations. An alternative to
this method is the iteration and relaxation algorithm, which is sometimes employed
to solve a system of equations obtained by finite element modeling.

To describe the method, consider the general system of three linear equations

aiixy +apxz +aixz =ci
az1x1 + axxy +axz =c2
az|x] + azyxp + azzxz = c3. (7.5.1)

As the first step, the first equation is multiplied through by —a»;/aj; and added to
the second equation to replace the second equation. Similarly, the first equation is
multiplied through —a31x;1/a;; and added to the third equation to replace the third
equation. The final set of equations become

arrxy +apx2 +aizxz = ¢y
/ / /
apXy +aypx3 =c)
/ I /
az3xy + ayx3 = c3. (7.5.2)

where a’ and ¢’ are the new coefficients resulting from the multiplications and addi-
tions. The result of the first step operation was elimination of the variable x| from the
second and third equations. Now, as the second step, we try to eliminate x from the
third equation. Multiplying through the second equation by —a3, /a}, and adding it
to the third equation yields

aixy +apxz +apxz =c

/ / /
axX2 + ay3X3 = ¢
asjx3 = c5. (7.5.3)

where a5 and c’; are obtained from the arithmetic operations. The system of equations
(7.5.3) is now triangularized and is ready to be solved. The solution begins from the
last equation, in which

x3 = c§/az;. (7.5.4)

The value of x3 from Eq.(7.5.4) is substituted into the second of Eq.(7.5.3) and is
used to solve for x;. Finally, the values of x3 and x, are substituted into the first of
Eq.(7.5.3) and x is obtained. The solution procedure will begin once the system of
equations are triangularized, as seen in Eq. (7.5.3).

The operation of triangularization may be followed through a series of matrix
multiplications. Consider the following matrix

ary apz agz ¢y
[D]=[AIC]= | a1 axp a3 c2 | . (7.5.5)
azy asy azs c3
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where the broken line indicates the matrix partitioning. Defining the matrices [3]

1 007 1 00
[S1=|—2L10| [S]=| 0 10
L 0 01 ] -0l
1 0 0]
[S31=19 1 0 (7.5.6)
0-221
an

it is verified that the following matrix multiplication provides the triangularization
from (7.5.3) :
ail a2 a3 i
[SSASAISDI = | 0 ay a)y &) | (1.5.7)
0 0 af;ch

Once the matrix of coefficients is triangularized, the solution follows from the last
equation, and proceeds upward by proper back substitution.

Example 5 Obtain the solution of the following system of four equations:

2x1 +5x2 —3x3+x4 =6

S5x1+xp —2x3 —S5x4 =15
—3x1 —2x2 + 6x3 + 2x4 = 12

X1 —5x3 4+ 2x3+3x4 =17.

Solution: Following the Gauss elimination method, the first equation is multiplied
by —5/2 and the result is added to the second equation, then multiplied by 3/2 and
added to the third equation, and finally, multiplied by —1/2 and added to the fourth
equation, to give

2x1 +5x0 —3x34+ x4 =6
23 11 15

0_7)524‘7)53—7)64:0

0+ Lt 2+ Ly =2
P 2T E

0- 2ot Loyt 20y =4
2)(2 2)63 2)(4— .

Now, the second equation is multiplied by 11/23 and is added to the third equation,
and then multiplied by —15/23 and added to the fourth equation, to give
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2x1 +5x2 —3x3+x4 =6
23 11 15

—7X2 + 7X3 — 7X4 =0
95 2
= Zxy =21

TRl TN
2 1m0
3BT T

Finally, the third equation is multiplied by 2/95 and is added to the fourth Equation,
yielding

2x1+5x —3x3+x4 =06
23 11 15

ety yu=0
+2 2 1y =21
3T 3T
16146 422
X4 = —.
2185 95

The backward solution from the fourth equation for x4 is

211
x4 = — = 0.601.
351

This value of x4 is set in the third equation to obtain x3 as

95 2 211
— — — — =21 - x3 =15.097
23 23 23

Substituting x4 and x3 in the second equation, x» is obtained as

23
—7)62 +107.8 =999 =0 — xp = 2.046

And, finally, substituting x4, x3, and x> in the first equation, x is calculated as
2x1 + 5(2.046) — 3(5.097) +0.601 =6 — x; =5.23

The matrix multipliers [S] for this problem are

1 000 1000
5
~5100 0100
= 2 =
(511 0o010]| 5 3010

0 001 0001
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1000 1000
0100 0100

1551=1 0 010] B1=1011 19
—-1001 0001
1000 1000

01 00 0100
1551=109 0 10| BeI=|0010
15 2

0-L01 0021

The process of diagonalization of the coefficient matrix is done through the fol-
lowing matrix multiplication:

5 -3 1 6
115 55 =75 0
4.1304 0.0869 21

2
[S61[S51[S41[S31[S21[811[D] = 8 -
0 0 7.39 4.442

o O

The process of Gauss elimination is to transform a square matrix into an upper
triangular form, as described. This operation can be done in a series of matrix mul-
tiplications. Consider the square stiffness matrix [K]. To transform the matrix [K]
into an upper triangular form, the matrix multiplications are performed as [4]

(L' L LMK = (U] (7.5.8)

where [U] is the final upper triangular matrix. The matrix [L;] is called the Gauss
multiplying matrix, and is defined as

1

(L7 = iars . (7.5.9)

—lit2,

—Ini 1

where the Gauss multiplying factors are

(@)
it+j,i
ligji=—2". (7.5.10)

11
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The right superscript (7) in Eq. (7.5.10) indicates that an element of the matrix
(L] 1Ly LKL (7.5.11)

is used.
Reverting Eq. (7.5.8), yields

[K]=[L1][L2] - - - [Lp1]lU]. (7.5.12)
where B _
1
0
1
[L;]= I (7.5.13)
i+1,i
liva,i
0 .
w1
Calling
(L] = [L1][L2] - - - [Lp—1]. (7.5.14)

the matrix triangularization is obtained by
[K]=[LIU] (7.5.15)

where the Gauss multiplying matrix is

1
I 1
l31 I3 1
(L] = lgy lap g3 1 ) (7.5.16)
. 1
_lnl ln,n—l 1_

Example 6 Obtain the Gauss multiplying matrices of Example 5.

Solution: The coefficient matrix is



142
(41D =
Fori =1,
i
ligjn % I,1
11
la
Thus,
1 000
5
= 100
_| 2
=1 Z010
1
ool
Matrix [A]@ is
(AP =[7"11AD] =
Thus,
[AP] =
Fori =2,
o
R L
l2+],2 - A(z) -

22

Thus,

7 Computer Methods

2 5 =31
5 1 —2-5
—3-26 2
1 =52 3
ALY s Ay 3
S T BT T T,
11 2 All 2
Ay
RO
11
1 000
5
_ 3100
=1 $
1 j1010
—3001
1 000 2 5 =31
—3100(| 5 1 -2-5
3010||-3-26 2
_%001 1 =52 3
2 5 =3 1
0-1155.5-7.5
0 55 15 35
0 —7.5 35 25
2) (2)
Ap _ W _An 1S
@ ' @)
A2 23 AQ 23
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1 0 00 1
01 00 B 0
=g 1y L=,
0 é 01 0
Matrix [A](3) 1S now
1 0 0072 5 =3
_ 01 00||0=-2% 1 _
15 5
[0-301][o-L ]
Thus,
2 5 -3 1
5 02 1 _Is
[A( )]_ 0 O2 é _i
232 |
00 -5 &2
Fori = 3,
3) 3
[34j3 Saei 43—A$) 2
T 3) ; MO
33 33 95
and
10 0 0 100
o1 00 4, 010
31=100 1 0 571=100 1
2 2
00— 1 00 &
Therefore,
U1 =115 "11APT = 1571105 10 ' 1Al
1000712 5 =3 1
23 11 15
_|otoo|lo-% 3
0010 00 z_g _%_?
2 2 1
005 1 00 —55 5%
25 -3 1
23 11 15
o & 2
00 2 —2Z
0 0 203 1684
2185

The matrix [L] is then

= — o
W

[5S]
W

- o O O

S = O O
- o O O

143
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1000 1 0 00
i1 oo |3 1 00
L=\ im0 31 10
1 15 2

lg1 lap laz 1 5 23 —5s 1

Matrix [U] is an upper triangular matrix. If we define a diagonal matrix [D], in
which its diagonal elements are d;; = Uj;, then we can write

[U] = [DI[S]. (7.5.17)
Substituting for [U] from Eq. (7.5.17) into (7.5.15) gives
[K1 = [LI[DI[S]. (7.5.18)
When the matrix [K] is symmetric, its decomposition is unique, and we obtain
[S1=1L1". (7.5.19)
which, substituting into Eq. (7.5.18), gives
[K]1=[L][DIL]". (7.5.20)
where [L]7 is the transposition of [ L]. Equation (7.5.20) is the factorization of matrix
[K]into [L][D][L]F form.
Now, consider the system of equations
[KI{X} = {F}. (7.5.21)
The load matrix { F} is reduced to obtain the matrix {V} as

[L{V}={F}. (7.5.22)

where
(Vy=1L"1- - Ly LT ). (7.5.23)

Substituting the factorized form of [K] from Eq.(7.5.20) into (7.5.21) gives
[LIDIL (X} = {F} = [L]{V}. (7.5.24)

or
[DIL)T{X} = (V). (7.5.25)

The solution for the unknown matrix {X} from Eq.(7.5.25) is now obtained as
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[L17{X} = [D]"}{V}. (7.5.26)

The steps of solution and the related matrices are shown in Example 7.

Example 7 Find the solution of the system of equations of Example 5 with steps of
triangularization and the related matrices.

Solution: From the solution of Example 6

5 3 1
N tEY
L= 2 |, L)” = 23 23
-5 —§—3 1 0 00 1 —95
171 2
5 3 -5l 00 0 1
Now,
1 0 0 0
(L] = -2.5 1 0 0
~ 1 0.3043 0.4783 1 0
1.1368 —0.6421 0.0211 1
and
1 -2.50.3043 1.1368
Tl -1 | 0 1 04783 —0.6421
(Lo =IL] = 0 O 1 0.0211
0 0 0 1
The matrix [V] from Eq. (7.5.23) is
1 0 0 O 6 6
-2.5 1 0 O 15 0
LY — _
W= R =1 03043 04783 1 o|)12[ ] 21
1.1368 —0.6421 0.0211 1 7 4.44

The diagonal matrix [ D] from the solution of Example 2 is

The inverse of the diagonal matrix is
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100 0
2
4, |0=%0 0
(DT=14 ¢ 20
2185
00 0 16146
Then
100 0 6 3
_ 0-20 0 0 0
1 — 23 _
V=10 9 20 21 [ 7 ] 5.084
2185
0 0 0 285 | |444 0.601
And, finally,
1 —2.50.3043 1.1368 3 5.23
iy Tr=lry—1 |0 1 04783 -0.6421 | | O ] 2.046
XP=LLT1DH/VE=1 0 o 1 00211 |]5084[ = ]5.007
0 0 0 1 0.601 0.601

The algorithm of Gauss elimination based on the foregoing discussion is now
presented [4].

Algorithm

dn =kn
for j=2,---n

8mj,j = kquj'

gij =kij— > Ligj i=mj 1. -1
r=my,
where

8ij . .

Iy =22 i=my -1

Y di jreed

I_k// Z lr/gr/
r=m;

where m;, = Max(m;, mj), m; is the row number of the first non-zero element in
column 7, and m ; is the row number of the first non-zero element in column j (see
Sect.7.6).
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Skyline
o (L . _
bn k0. 0 0.0 @ |0
kaa koz 1t 0 f:g\.—,: 0 =0 D
kas  kag kas 0. kar : 0
, kyy kys kg 0 ' 0
Gl i s W
kes ker kes
k7r ks
I kss |
b)) -
p g Lol g [l 0
Ay As1 0 An 0 __0_ 0
Ay A7 Al 07 A 0
[A] il AG Ag Ay Ass E 0
Ag Az A7 0,
Az A A
A5 Az
L A‘Zﬂ_
()

DK(I)=<124 6812 15 20 23 >

Fig. 7.3 Skyline representation of a banded matrix

7.6 Skyline Method, Static Problems

The stiffness matrix obtained in a finite element problem is always a banded matrix.
Therefore, the Gauss elimination solution method has to be partially modified to
handle the banded matrix, rather than a full square matrix. The resulting algorithm
will substantially reduce the required storage capacity of the standard Gauss elim-
ination method, in addition to major cuts in unnecessary arithmetic operations for
zero members which are located outside of the band of the matrix. The zero members
inside the band of the matrix, however, are considered, and their necessary arithmetic
operations during the elimination process must be carried out.

The skyline method is basically developed to eliminate some of the zero members
inside the band of the stiffness matrix. The results are further cut in unnecessary
arithmetic operations and the improvement of the computation time. In addition,
the rectangular banded matrix [ K] is transformed into a one-dimensional array {A},
resulting in further improvement in storage capacity.

To describe the skyline method, consider a typical stiffness matrix [K ], as shown
in Fig.7.3. It is assumed that the matrix [K] is symmetric and, therefore, only the
upper half of the matrix is shown [4]. Figure 7.3 shows that only the upper half of the
matrix is considered, including the diagonal members. The skyline is drawn on the
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top of each non-zero element of columns. The elements above the skyline on each
column are, thus, zero. The zero elements under the skyline are considered in the
calculations. By inspecting Fig. 7.3, it is clear that some of the zero members which
are considered in the banded matrix are excluded from the arithmetic operations in the
skyline algorithm. As for the storage strategy, a numbering system must be adopted
to save the elements under the skyline in the one-dimensional array A(/). Knowing
the height of the skyline of each column, we can save the location of the diagonal
members of [K] in the one-dimensional array (DK), as shown in Fig. 7.3. The first
location of (D K) is always 1, and the last location number is one number larger than
the last column location in [K] (number 23 in Fig. 7.3 shows that the last non-zero
member of matrix [K] in column 8 is located at 22). The value m;, i = 1,...n,is
defined as the row number of the first non-zero element in column i. The variables
m;, i = 1,...n will thus define the skyline of the matrix. The variable (i —m;) is the
column height of the i—th column. The half-bandwidth of the stiffness matrix, m g,
isequal to Max(i —m;), i = 1,2, ...n. The values of m; for Fig.7.3 are m| = 1,
my=1,m3 =2, mqg =3, ms =2, mg =4, my; =3, and mg = 6. From Fig.7.3,
it is noted that D K (1) is equal to the sum of the column heights up to the (i — 1)st
column plus 7. With known reference system DK (1), the location of each element
of matrix [K] in the array (A) is known, and with a proper referencing system and
algorithm, the Gauss elimination method is used to solve the system of equations in
which their coefficient matrix is stored in a one-dimensional array (A).

The skyline algorithm is used in the computer program ADINA [5]. Also, a listing
of the solver using the skyline method for the symmetric matrix [K] is available in
reference [4].

7.7 Solution of Transient Problems

A general form of the transient finite element equation is
[CUX} + [K](X} = {F). (7.7.1)

where [C] is the damping matrix. An example of this equation is the transient
heat conduction problem. The direct integration method may be used to integrate
Eq.(7.7.1) in the time domain. Two states of {X}, separated by time increment A¢
and denoted by {X}; and { X}, A;, are considered. According to the trapezoidal rule,
the two vectors are related as

{X}iear = (X} +[(1 = BUXY + B{Xhvad] (AD. (7.7.2)

where B is a constant which may be selected by the analyst. Equation(7.7.1) is
written at times ¢ and ¢t + At, the first equation is multiplied by (1 — §) and the
second equation is multiplied by g to give
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(1= B) (ICUX} + [KUX}) = (1 — p{F),
B (ICHX Y ar + (KN X} isar) = B{Fhsar. (7.7.3)

These two equations are added and Eq. (7.7.2) is used to eliminate the time derivatives
of {X}. The resulting equation is solved for {X};a;, which yields

1 1
(E [C] +ﬂ[K]) {(X}irar = (E [C]—-d - ﬂ)[K]) {X}:
+ (= BfFY + B{Fivar- (7.7.4)

In the derivation of Eq.(7.7.3), it is assumed that the matrices [C] and [K] are
constant by time. This equation is used to calculate the vector {X} at time ¢ + Af in
terms of its value at time 7. The solution starts with the known initial value of {X}
att = 0 ({X}o). With a proper time increment A¢, the value of {X} at t = At is
obtained using the known value {X}o. The process is then repeated for the next A¢,
and so on. We may march through the time as long as required.

The stability of the solution algorithm depends on the numerical value of At,
which is inversely proportional to the stability parameter 8. For 8 < 1/2, the largest
value of At for the solution to be stable is [6]

2

Aty = ——m——————.
(1 = 2B) Wiax

(7.7.5)

where w4 1s the largest eigenvalue of the problem. It is important to note that the
value of B, which provides an unconditionally stable algorithm, does not prove the
accuracy of the solution. The accuracy measure depends upon the numerical value
of At.

For B > 1/2, the algorithm is unconditionally stable, regardless of the value of
At. Different values of 8 are associated with various numerical schemes. The value
B = 0 provides the forward finite difference method, which is a conditionally stable
algorithm. The Crank-Nicolson, or trapezoidal rule, is associated with § = 1/2,
which is an unconditionally stable method. The value of 8 = 2/3 is the Galerkin
algorithm and is an unconditionally stable scheme. For 8 = 1, we get the uncondi-
tionally stable standard backward finite difference method. For 8 = 0, the algorithm
is called explicit, and for B > 0, it is called implicit.

Itis usually preferable to select 8 = 1/2. In this case, some unwanted oscillations
may appear in the solution. The oscillations may be reduced by using a smaller
value for At, or numerically damped by selecting a value for 8 larger than 1/2. For
nonlinear problems, the only choice for 8 which provides an unconditionally stable
solution is § = 1. In this case, the analyst must be very careful in obtaining the
accuracy of the solution [6].
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7.8 Solution of Dynamic Problems

When the applied loads or the initial conditions of a system are functions of time
and their variations by time are rapid enough to excite the inertia of the system, then
the response of the system is obtained through the dynamic equations. For dynamic
problems, the finite element equation is of general form

[MI{X} 4+ [CH{X} + [K]{X) = (F}. (7.8.1)

where [M], [C], and [K] are the mass, damping, and stiffness matrices, {F} is the
force matrix, and {X} is the unknown matrix. The matrices {X } and {X } are the
acceleration and velocity matrices. By the finite element approximation, we have
been able to transform the differential operator of space into a system of algebraic
equations, while the time variable remains in the equation. The final equilibrium
equation (7.8.1) is a system of second order differential equations in terms of time.
To solve this system, several classical methods are developed which may be used to
integrate the dynamic equations. These methods are described as given.

7.8.1 The Central Difference Method

The dynamic equation (7.8.1) is a set of ordinary differential equations with constant
coefficients. Any classical method of solution of the system of ordinary differential
equations may be used to solve this system. These techniques essentially assume
a small enough time increment and write the incremental form of Eq.(7.8.1). The
resulting incremental form is then solved by a proper method by marching through the
time. Through this method, we have essentially used the finite difference method in
the time domain. A simple finite difference method is to assume a central difference
and, with a proper time increment Az, approximate the velocity and acceleration
matrix as [3]

(X = —— = (Xdegar = (X)) (7.8.2)
X} = ﬁ (X }ivar = 24X} 4+ {(Xh—an) - (7.8.3)

Now, we may write Eq.(7.8.1) at time ¢ as
MIX} + [CUXY, + [KH{X}, = {F). (7.8.4)

Substituting {X}; and {X}, from Egs. (7.8.3) and (7.8.2) in (7.8.4) and rearranging
the terms to give
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1 1 2
(A_tz [M] + AL [C]) {(X}rpar =1{F} — ([K] T A2 [M])

1 1
x {X}; — (P [M] — AT [C]) {(X}i—ar-
(18.5)

From this equation, {X};;+; is solved in terms of the known values of {X}; and
{X}:—ar. To solve this equation at time increment A¢, we must know {X}; and
{X};— ;. Since the solution starts from the known initial conditions, it is thus assumed
thatat7 = 0, {X}o,{X}oand {X}o are known. Note that with the known initial values
of {X}o and {X}o, the initial value of {X}( can be used from Eq.(7.8.1) as

{X)o = M1 ({F}o — [Cl{X}o — [K](X}o) . (7.8.6)

With the known initial values of { X}, {X }o,and {)? }o, the value of { X'} _ A, is obtained
using Eq.(7.8.2) and (7.8.3) as

) A2 ..
{(X}-ar = {X}o — Ar{X}o + - {X}o. (7.8.7)

Once the vector {X}_a; is calculated in terms of the initial conditions, time is ad-
vanced an increment At and the solution procedure is repeated using Eq. (7.8.5).

The selection of time increment A¢ for the convergence of the solution is very
important. A proper value for Ar must be selected with two important features. This
value must be small enough to insure the solution convergency, and truly exhibit the
vibrational characteristics and behavior of the system. The system will not exhibit
any of its natural behavior, such as its vibrating behavior, for time increments which
are larger than At. The analytical solution of a continuous system provides a set of
infinite eigenvalues corresponding to natural frequencies of the dynamical system.
Not all of these infinite natural frequencies are important in the engineering prob-
lem. In fact, to motivate and excite the higher natural frequencies and mode shapes
of a continuous system requires a very severe and short time period of dynamical
excitations. Therefore, a solution for the dynamic behavior of a continuous system
for engineering purposes needs consideration up to a finite number of natural fre-
quencies and mode shapes. The selection of time increment Af must be based on this
highest natural frequency of the system. The foregoing discussion suggests that the
selection of time increment At must be some how related to the mass and stiffness
matrices. The natural frequencies of a continuous system, which is discretized by
finite element modeling, depends upon its mass and stiffness matrices. A criteria for
selecting a proper value for the time increment is [4]

T,
At < Ate = —. (7.8.8)
s
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where T}, is the period of lowest natural frequency of vibration of the finite element
assemblage. The calculation of 7;, is not easy. A finite element model with total
N = NN x DOF/Node degrees of freedom, where NN is the total number of
nodes, has N eigenvalues where 7, of Eq.(7.8.8) must be the smallest of all time
periods associated with the eigenvalues. It is virtually mathematically impossible,
and physically insignificant, to obtain all eigenvalues of a finite element model. As
an example, a finite element model may easily have a total of 10 degrees of freedom,
where the best and most efficient eigenvalue calculation algorithms may determine
the eigenvalues of a matrix of the order of 10%. Finally, the physical significance
of the natural frequencies of a continuous system are, say, up to the first 20 lowest
natural frequencies. For this reason, the best strategy for selecting a proper value for
the time increment is usually by trial and error. We must select a value for At and
solve the problem. If the solution converges, for the selected Az, repeat the solution
for another At which is either twice or half of the previous At and check the solution
for its consistency with the previous solution.

7.8.2 The Houbolt Method

The Houbolt method, similar to the central difference method, assumes an approxi-
mation for the velocity and acceleration matrices in terms of the displacement matrix.
The approximations are [7]

. 1
{(X}irar = oA AT{X s — 18 {X} + 9 {X}i—ar =2 {X}i2a) . (7.89)

. 1
{(X}irar = A2 @C X par =5 {X} +4{X}i—ar — {X}i2a0) . (7.8.10)

These approximations are based on two backward-difference formulas with errors
of (Ar)%. Now, consider Eq. (7.8.1) written at time (1 + A7) as

IMUX) i ar + [CHX Yrrar + (KU X b ar = (Flisar (7.8.11)

Substituting Eqs. (7.8.9) and (7.8.10) in Eq.(7.8.11) and keeping the unknown
matrix at time (¢ + Ar) at the left-hand side, gives

2 11 5 3
(p [M]+ AL [C]+ [K]) {(XYrar = {Flrar + (F [M]+ A7 [C])

4 3
x (X} — (F [M]+ AL [C]) {(X}r—ar

1 1
+ (TIZ [M]+ 3A7 [C]) X {X}i-2ar.
(7.8.12)
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To start the procedure for the time increment Az, in addition to the known ini-
tial conditions {X}o, {X}o, and {X}o, we need to have {X}_a; and {X}_2a;. This
means that a special starting procedure is required. One method may be based on
the integration of Eq. (7.8.1) for the solution of {X}_,; and {X}_»A,, using a central
difference technique.

7.8.3 The Newmark Method

In this technique, the velocity and displacement matrices at time ¢ + Af are approx-
imated in terms of their values at time ¢ as [8]

(XVrar = (X} + 10 — )X} + (X} irar]At (7.8.13)

. 1 . .
(Xeear = X} + XA+ - AHXE A+ BIX )iy ard(AD?. (7.8.14)

where the coefficients « and B are parameters which determine the accuracy and
stability of the numerical technique. Rewriting Eq. (7.8.1) for time (¢ + Atr), we get

IMUX ) ar + [CHX Y rrar + (KU X b ar = (Flisar (7.8.15)

Equation (7.8.14) is solved for {X}z+m- The result is then substituted for {X}H—At in
Eq. (7.8.13) to obtain an expression for {X };1 ;. Now, two expressions are obtained
for {X }i+ar and {X }t+ar in terms of {X};4 A, and other matrices, which are substi-
tuted in Eq.(7.8.15), and the resulting expression is solved for {X};a; to give the
following relation:

[KI{X}ignr = {F). (7.8.16)
where
- 1
K] = M]+ C K
(K] [ﬂ(m)z[ 1+ /M)[ 141 ]]
-~ 1 1 . 1 .
F} ={F};xas M| —— {X}; — {X} — — D{X},
(F) = {Flya +1 ](ﬁ(m)z{ bt sy K+ G5 = D })
a1 (1x1 + (ana — e (& X ), — 240 %
- ]({ b+ (A — a) (X, + ﬁ(m){ b+ ﬁ{ b= (f—ﬂ){ },).
(7.8.17)

With the given initial conditions {X }o, {X}o, and {X}o, Eq.(7.8.16) is used to march
through the time and obtain { X} at an increment advanced in time. The velocity and
acceleration matrices at time (¢ + At) are obtained from Egs. (7.8.13) and (7.8.14).

The Newmark time marching algorithm is the name of a family of methods which
are obtained for different numerical values for & and . As an example, the method
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for« = 1/2 and B = 1/4 is called the average acceleration method, which is
unconditionally stable.

7.8.4 The Wilson-0 Method

Based on the Wilson-0 method, the acceleration between times ¢ and t + Af is
approximated by a linear function [9]. Figure 7.4 shows the variation of the acceler-
ation between times 7 and (¢ + 6 At), where 6 > 1.0. For & = 1, the method reduces
to the linear acceleration method. The method becomes unconditionally stable for
0 > 1.37. A value of & = 1.4 is usually considered in the numerical solutions.

Denoting 7 as the time increment, where 0 < v < 6 At, the acceleration matrix
at time ¢ 4 t is approximated as

Re = (%) + o (Rhrvonr = 1X). (7.8.18)

Integrating Eq. (7.8.18) twice with respect to time gives

2

{(X}r4e = (X} + 0{X} + oA ({X}roar — (X)) (7.8.19)
. -[2 . 1’3 . .
{(X}i4r = {Xh +o{X} + 5 {X} + SOAT ({X}t+9At - {X}t) - (7.8.20)

Evaluating Eqgs. (7.8.19) and (7.8.20) at time T = 6 At gives

. . O At .

Krronr = (X + == ((Krvonr + (X)) (7.8.21)

©“Aan? | ..

{(X}roar = (X} +0AH{X ), + < ({X}voar +2{X}) . (7.8.22)

Equations (7.8.21) and (7.8.22) are solved for {X}rwm and {X}r+9m in terms of
{X}i+oar as

6 . ..
{(X}ronr — (X)) — AT {X} —2{X} (7.8.23)

. 6
{X}t+9At = m (

X 3 . OAL ..
(Khrroar = = (Xhroas — (X)) = 20X) = - (X, (7.8.24)
Now, the equilibrium equation (7.8.1) is written at time # + 6 At as
[MU{X}iroar + [CHXYrroar + [K1(X)rsoar = (Flesonr- (7.8.25)

where {F }i+0A: 18 an average force during the time ¢ and t 4+ 6 A¢, and is obtained
as

{Fyivonr = (FY 4+ 60 (Fliear — {F)1). (7.8.26)
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Fig. 7.4 Variation of
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Fig. 7.5 Elastic membrane in xy-plane

Substituting Egs. (7.8.23) and (7.8.24) in Eq.(7.8.25), an expression is obtained
for {X};4+9A; which can be solved in terms of the known values of {X};. The result
is then substituted in Eq. (7.8.23) to obtain (X }i+0A;- Finally, the value of (X boAr
is substituted in Eqgs. (7.8.18), (7.8.19), and (7.8.20), and these expressions are used
for T = At to calculate {X}Hm, {X}Hm, and {X};1Ar.

7.9 Problems

1. Use the solution algorithm to obtain the solution of the system of equations of
Example 5.

2. Consider an elastic membrane in the x y-plane with surface tension 7" and pressure
P, as shown in Fig. 7.5. Use the algorithm given in Sect. 7.2 to generate the global
stiffness and force matrices. The element dimension along the x-direction is 1 cm
and in the y-direction is 0.5 cm.

3. Calculate the band width of the stiffness matrix of the elastic membrane of Prob-
lem 2.

4. Consider the same elastic membrane. The boundary conditions of nodes 1, 2, 3,
6,9, 8,7, and 4 are ¢ = 0. Use method 1 of the boundary conditions to obtain
the final form of the equilibrium equation of node 5.
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5. Reconsider Problem 3 and use method 2 of the boundary conditions to obtain the
final form of the equilibrium equation of node 5.
6. A system of linear equations is assumed of the form
x+y+z=2
2x —y+2z=7
x+y—3z=-6.
Use the Gauss elimination technique to obtain the upper triangular matrix with
the help of matrix multipliers [L] defined by Eq.(7.5.16).
7. Decompose the matrix [K] of the above problem into [L][D][L]7, defined by
Eq. (7.5.20).
8. Find the solution to the system of equations in Problem 6 by the method given
by the equation
Ty—1 -1
{(X}=[L"1"'[D” |V}
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Chapter 8
Finite Element of Beams

Abstract The finite element derivations for a base element of beams and bars under
different types of behaviors are discussed in this chapter. The static lateral defection
and axial, torsional, and lateral vibrations of beams and bars are studied and the mem-
bers of mass, stiffness, and force matrices are derived. The chapter concludes with a
discussion of the Timoshenko beam and the derivations of the element matrices.

8.1 Introduction

Beams are one of the basic elements in many practical structural design problems. The
classical flexural beam theory is based on the Love-Kirchhoff assumption, where it
is assumed that the plane sections of the beam remain plane after determination. This
simplifying assumption implies that the transverse shear strains are zero. In addition,
the normal lateral stress and strain are assumed to be zero. Such a beam theory is
referred to as the Euler beam. A more advanced theory assumes non-zero transverse
shear deformation and includes the rotary inertia. The mathematical modeling of the
beam with these additional assumptions, which is still categorized as the flexural
beam theory, is called the Timoshenko beam theory. Whenever a more precise beam
analysis is required, the Timoshenko beam theory may be used.

In this Chapter, the finite element analysis of beams based on both the Euler beam
and the Timoshenko beam are discussed. The variational formulation of the Euler
beam is written on the basis of membrane analogy.

8.2 Euler Beam, Variational Formulation

The deflection equation of the beam based on the Love-Kirchhoff hypothesis is

d2
E1 S = M) (8.2.1)
dx
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q(x)

N
F— —

— . = —

x

Fig. 8.1 A beam under lateral distributed force ¢ (x)

where y is the beam’s lateral deflection, which is a function of the x-coordinate along
the beam, M (x) is the bending moment acting on the cross-section of the beam and
is a function of x, E is the modulus of elasticity, and / is the moment of inertia of
the cross-section. A typical beam is shown in Fig.8.1. The analogy of Eq.(8.2.1)
with the deflection of the two-dimensional shallow elastic membrane, suggests the
expression of the functional of the beam as

L [EI dy\?
1% :/ = (—) + M(x)y | dx. (8.2.2)
0 2 dx

Dividing the beam into a number of elements and considering the base element
(e), the shape function for the deflection may be written as (Fig. 8.2)

yOx) = NiY;i + N;Y; = (N)O{r}@ (8.2.3)

where
N=2 1 N =t lxi (8.2.4)

where L = x; — x;. The total functional of the beam is the sum of the functionals of
each of the elements of the beam as

NE
V= Z(V)@ (8.2.5)
e=1

where the functional of element (e) is

)C,' 2
(V)(e) :/.- |:% (j_z) +M(x)y:| dx. (8.2.6)

Applying the Ritz method, we get

9(V)© Xj d B d ad
V) :/ ! er(2) 2 (& + M(x) D Nax m =i,j (827
oY, xX; dx ) 0Y, \dx Y,
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Fig. 8.2 An element of the Y
beam

()

ol

i

X

Substituting for y(e) from Eq. (8.2.3) in Eq. (8.2.7), and carrying out the integration,
gives

(V)© _/xj [E”@ de)de [Y,-
Xi

] +M(x)Nm] dx m=i,j.

Y dx dx ' dx (Y
(8.2.8)
The element stiffness and force matrices are then calculated as
EI |1 -1
(e) — —~
[k]Y = 2 |: 11 i| (8.2.9)
{f}(e) — _£ 21 M; (8.2.10)
6 1 2 Mj -

where the distribution of M (x) between nodes i and j is approximated by the linear
shape functions as M (x) = N;(x)M; + N;(x)M;. The elements are assembled to
form the general equilibrium equation as

[KI{Y} = {F]}. (8.2.11)

With proper boundary conditions, the unknown matrix {¥'} is determined.

8.3 Euler Beam, Galerkin Formulation

The deflection equation of the beam is

d2y
o M (x). (8.3.1)

EI
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Dividing the beam into a number of elements, the deflection of the base element
(e) may be approximated with a linear shape function as

e e Yi
y© = (N; Nj)© [Y. ] (8.3.2)
J

where N; and N; are given by Eq. (8.2.4). Applying the Galerkin method yields

L d2 (e)
/ (EI dy MO Npdx =0 m=1i, (8.3.3)
0

2
The weak formulation of the first term is

L d2v© dv© L dN,, dv©
/ E1%Y _ N,dx = EIZ leé—/ Er&m O gy om=i, ]
0 dx? dx 0 dx dx
(8.3.4)

X

Substituting Eq. (8.3.4) in Eq. (8.3.3), gives

dvy®@ L dN, dvy©
EIZ leé—/ EI=" §—+M<€>(x) N Jdx=0 m=i, .
0 X

dx dx
(8.3.5)
Substituting for element deflection from Eq. (8.3.2), we get
d d [1-2% I [-1
—{N}=—1, Li=—
dx dx | T L |1
dy d 1 Y;
— =— (N){Y}=—(-11 ! 8.3.6
I dx(>{} L( ><Yj} (8.3.6)

Using Eq. (8.3.6), the element stiffness and force matrices are
L d dy LEI (-1 Y,
k(e)Yz/EI—N—dzf— —-11 ' id
[KFY) 0 dx{}dxx o L% |1 = >Yj *
_EI1 —1] Y
L -1 1 Y;
L L ,
{f}§€>:_/ {N}M(e)(x)dx:—/ {N}<N>[ ’_]dx
0 0 j
_£ 21 M;
6 1 2 Mj

{f}56)=E1{N}Z—)yC I8=E1{N}0|6=EII_9°] (8.3.7)

<X

oL



8.3 Euler Beam, Galerkin Formulation 161

where a linear distribution is assumed for M (©)(x) between nodes i and j. Adding
up the stiffness and force matrices, yields the finite element equilibrium equation as

[KI{Y} = {F}1 +{F}2 (8.3.8)

where the definition of the stiffness and force matrices for the base element (¢) are
given in Eq. (8.3.7). The force matrix is divided into two parts, { F}; and {F},. The
force { F'}; is related to the bending moment distribution along the element (e), while
{F}, is related to the kinematical bounding conditions at the ends of the beam. The
kinematic force { f }ée) contains the slopes of the element at nodes i and j. Due to
the continuity of beam, these slopes cancel each other out between any two adjacent
elements except the very first and last nodes of the beam or anywhere in the beam
where the slope is defined as a given boundary condition. Both matrices are, however,
of force type, and thus, the force and kinematical conditions are both placed in the
force matrix.

8.4 Axial Vibration of Bars and Beams

Consider a straight bar of cross section A. The bar is subjected to an axial dynamic
force p(t). As a result, the axial displacement u is produced in the bar which is a
function of position x along the bar and time ¢, u = u(x, t). The differential equation
for the axial vibration of the bar is

92%u 9%u

where E is the elastic modulus and p is the mass density. Note that the axial strain
in the bar is

0
€ = — (84.2)
ax
The kinematical boundary conditions are either of the followings:
u=i atx=1L
ou _ -
€& =—=¢€, atx =1L (8.4.3)
ox

where L is the position in which the boundary conditions are specified. The first
boundary condition is of kinematical type with specified displacement, and the second
boundary condition is of the force type, in which €, is defined and may be related to
the applied force on the boundary. The force boundary condition is obtained using
Hooke’s law in one-dimension as

oy = Ee¢, (8.4.4)
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Fig. 8.3 An element of rod 1/ f B __J] uJ
¥
3 © 2
or
p(t) = Aoy = AEe, = AEE,. (8.4.5)

Consider the base element (e) with nodes i and j and length L, as shown in
Fig.8.3. The element shape function is assumed to be linear as

© _ v ) Ui
u® = (N; N,)in(t)] (8.4.6)

where U; (¢) and U (¢) are the axial displacements of nodes i and j, and

Xj—x X —Xx
Ni === N; = T (8.4.7)
Applying the Galerkin method, we have
0u 0u
/V(e)( a2 P a2 p)m m =i, j (8.4.8)
The weak formulation of the first term yields
3%u du . [F  du dN,
—— NndV = — NuAly — A— dx
V(e) 0X ox o 0x dx
/ P NndV = AeuNp L /LA dNi - dN; | Ui
V(e) dx2 " N xmio 0 dx dx Uj(t)
dN,
X —=dx m=i,j (8.4.9)
dx

where A is the cross sectional area of the element (e¢). Thus, the elements of the
stiffness matrix are

dN; dN; dN; dN;

L dx dx dx dx
[k,-,-](e’=/ EA dx. (8.4.10)

0 dNj dN; dN; dN;

dx dx dx dx
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The mass matrix from Eq. (8.4.9) is

L L i,
/ 0 ANiidx =/ p AN, (N; Nj) { Lt } dx.
0 0

Uj

Thus, the elements of the mass matrix are

L
@ _ NiN; NiN;
i) _/o pA[N/Ni NjN; dx.

The force matrices from Eqgs. (8.4.8) and (8.4.9) are

e N;
(/1)) = EAe, [N,] o

L
©_ "4 N,-]d
(£ /0 P[Nj x

163

(8.4.11)

(8.4.12)

(8.4.13)

where { f1} is the force matrix related to the kinematical boundary conditions and

{ f>} is the axial force matrix related to the applied force on the beam.

Using the shape functions given by Eq. (8.4.7), the stiffness matrix becomes

EA [1 -1
() — =22

The mass matrix becomes

(e) _ ,OAL 2 1

and the force matrices are

Ni | L Ni | L
{fl}(e)zEAe< ’}| =0AI ]|
X Nj 0 X Nj 0

Evaluating at nodes 0 and L, yields

(e _ Ni(L) | N ©O) || _
1= [ SO o |40 1|

and

(1@ =

Ap®)L |1
2 1

Once the displacement is obtained, axial stress is calculated as
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du dN; dNj\“ [U; 1)
ox e ax <dx dx > Uj(t)
or

o= w0 - Uien©
X L Jj i

8.5 Torsional Vibration of Bars and Beams

Consider a beam under time-dependent torsional moment 7 (x, ¢). Calling the angle
of twist by 6, the equation of torsional vibration of the beam is

920 T(x,1) 920
— =p— 8.5.1
o2 T g Poar ®&3.1)

where G is the shear modulus, p is the mass density, J is the polar moment of inertia
of the cross-section, and T (x, ¢) is the applied torque. The dependent function 6 is
defined as the angle of twist per unit length of the beam.

The boundary conditions on 6 are defined as

0=06r x=1L (8.5.2)
where L is the length of the bar. The initial conditions are
0(x,0) =6

06 .
— (x,0) =26 8.5.3
5 (x,0) =6 ( )

To apply the Galerkin finite element method, the beam is divided into N E number
of elements and NN nodes. The base element (¢) may be considered, and with a
linear approximation for 6, the shape function is

6© — (N; Nj) [ 8/((?) ] . (8.5.4)

The element with two end nodal points is shown in Fig. 8.4. The Galerkin approx-
imation to Eq. (8.5.1) for the base element (e) yields

/ G—829+M( 1) il NpdV =0 i) j (8.5.5)
_x’ —_ —_— = m = l, e
V(e) dx2 p3l2 " /

where M (x,t) = T(x,t)/J. The weak formulation of the first term gives
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Fig. 8.4 An element of beam J A
1 J
(e)
%0 30 L 90 dN,
G — ) NpudV =G — Np, A|0 GA — — dx. (8.5.6)
V(e) ox ox 0 ox dx

Substituting for 6(¢) from Eq. (8.5.4), gives

3%0 a0 dN; dN; \ dNp
G — NpdV =G — N,All — GA —= dx
V(e) dx2 ox 0 dx dx dx

®; () L
X [®j(t) ] m=i,j (8.5.7)

where A is the cross-sectional area of the element. Substituting Eq.(8.5.7) in
Eq.(8.5.5) gives

<dN dN; > ®; @) "o
dx |9 dx
. ; (1) L
/ Ni Nj)Nudx x {@ ()] /0 AM (x,t)Nydx
—GAY NJE m=i 8.5.8
= Py mlg m=1, j. (8.5.8)

The term on the right-hand side of Eq.(8.5.8) cancels out between each of the
two adjacent elements, due to the natural continuity of 6, except for the first and
last nodal points of the beam. This term contributes to the force matrix. Adding up
Eq.(8.5.8) for all the elements in the solution domain, results in the finite element
equilibrium equation as

[M{®} + [K{®} = {F} (8.5.9)
where the mass, stiffness, and force matrices for the base element (¢) are

dN; dN; dN; dN;

L dx dx dx dx
(ki1 =/ GA dx (8.5.10)
0 dN; dN; dN; dN;

dx dx dx dx

L
() _ N; N; N; N;
[ml]] /() Ap |:Nj Ni Nj N, dx (8.5.11)
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30 [N
(e) _ i
UH =645, { N;j }

L L
+/ AM (x, ) Npdx. (8.5.12)
0

0

The stiffness matrix, after substituting for the shape functions and integrating,

yields
GA [1 —1
() —

The mass matrix becomes

(e)_pAL 21
(™ = —¢ [1 2

The force matrix, due to the weak formulation, is

© _ 90 L _ dNi dN>|@i]L
{f1} GANy, |0_GA| ]<dx i |10 lo

or
dN; dN;
(e) iﬁ Ni dx ®; L
e ZGA 1
{f1} N_dNi NdN <®j}|o
! dx ! dx

Substituting for the shape functions gives

GA [-(1-2 _x .
(1€ = [_(Q o L)Hg’hé
J

L L I
Finally, the force matrix, due to the weak formulation, becomes

e =2 e =%

L |9,-0,
Force, due to the applied torque for constant M in the element, is
L AML (1
()9 = / AM(x, ONpdx = —— { | ]
0

8.6 Lateral Vibration of Beams

Consider a beam of general cross-section subjected to the lateral dynamic force. The
equation for the lateral vibration of the beam is
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Fig. 8.5 Lateral vibration of v
beam
q(z,t)
| /—\‘ i
- aa_; |:El(x) %} +q(x, 1) =m(x) % (8.6.1)

where E is the modules of elasticity, I (x) is the cross-sectional area moment of inertia
about the z-axis and passing through the center of the cross-section of the beam, m (x)
is the mass per unit length, and g (x, ¢) is the lateral force being a function of position
and time, as shown in Fig. 8.5. The lateral deflection of the beam is y(x, #), which is
a function of position x and time 7. The boundary conditions are:

Clamped edge at x = 0

9y(0,1)

y(0,1) =0 0 (8.6.2)
ax
Simply supported edge at x = 0
9%y(0,1)
y©0,0)=0 EI(x) —/——=0 (8.6.3)
ax
Free edge atx =0
El 220D g 3 [y 20007 (8.6.4)
X e JEm— X = V. .0.
dx2 dx dx2

The initial conditions are the specified initial deflection yg(x) and velocity
yo(x), as

y(x,0) = yo(x) (8.6.9)
y(x, 0) = yo(x). (8.6.6)

To find the finite element solution, the solution domain is divided into N E ele-
ments and N N nodes. Let us consider the case of abeam with constant cross-sectional
area, where I (x) = I and m(x) = p. The base element (e) is considered and the
Galerkin method is used, employing the equilibrium Eq. (8.6.1), as
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Fig. 8.6 An element of beam i ] k l
with third order polynomial, e - = —
CO-continuous
I L/3 L/3 L/3
| L
(e)
v
oty 9%y
El — — — 1) | NpdV =0 8.6.7
[ B 5+ 0 55 —awo |, (8:6.7)

where dV = Adx. Since the equilibrium equation has a term with a fourth order
partial derivative, the linear shape function for y is node suitable as it all vanishes. A
second order polynomial may be appropriate to approximate the lateral deflection of
the beam, provided that the first term is considered for two times weak formulations.
The weak formulations of the first term of Eq. (8.6.7) is

L 54 3 L 43
0 il 9y dN,
/ medx me Ié—/ 2L g
0 0

x4 a3 a3 dx
_a3yN L %y dNm L 32y dszd 868
= o Mmoo =g g o x2 a2 dx (869

Substituting Eq. (8.6.8) in Eq. (8.6.7), gives

LaZy dZNm L 82y
EIA — d A N, — d
/0 ox? dx2 YHP /0 m o2

oy
2

dNw 1
— |y. (8.6.9
0x> dx o € )

L 83y L
=A q()c,t)dex—EIA—3 Nply + ETA
0 dax

Considering a third order polynomial for the shape function of the element (e), as
shown in Fig. 8.6. The shape function for a C%-continuous third order element may
be written as

¥ = NiYi + N;Y; + NeYe + N Y (8.6.10)

where the shape functions are



8.6 Lateral Vibration of Beams 169

e ()3 )

N=2_? (%)2 n g (%)3 8.6.11)

Substituting Eq. (8.6.10) in Eq. (8.6.9), the stiffness matrix for the element (e) is

L g2y d*N,
K19yt :EIA/ — - n
K1Y (1)} L dl

=(EIA R —dzN’” dx | {Y( 8.6.12
= (e [ G2} G2 Jar)won worn

where s,m =i, j, k,l, or

[ d®>N; d®>N; d*N; d*N; d*N; d*Ny d’N; d’N,
dx?  dx? dx?  dx? dx?  dx? dx?  dx?
d*N; d’N; d>N; d’N; d*N; d*Ny d>N; d’N,
dx?  dx? dx?  dx? dx?  dx? dx? dx?
d*Ni d®N; d>Ny d*N;  d*Np d*Ni  d>Ne d*N
dx? dx?  dx? dx? dx? dx? dx? dx?
d2Nl dzN,* d2N] dzNj dzN] dsz d2N1 d2N1

L dx? dx? dx? dx? dx?  dx? dx? dx? |

L
k1@ = EIA/ dx. (8.6.13)
0

Substituting for the shape functions from Eq. (8.6.11) in Eq. (8.6.13) and carrying
out the integrations, yields

81 -4 162 Y
e — E1A —45 567 193 162
T3 | 162 1% 567 4B

81 405
-8 62 45 gg

The elements of the mass matrix are
. L 82y L .
[m](e){Y} — pA/ Ny, mdx = (pA/ {N}(N)dx) {Y} (8.6.14)
0 0

or
NiN; NiN;, NiNy NN,
L
N;N; N;N; NiN; N;N
(&) _ jiNi NIV N jINE N jINT
m = pA dx 8.6.15
] =p /0 NiNi NiNj NeNe NNy (8.6.15)
N/N; N/N;j NN, NN,

Substituting for the shape functions from Eq.(8.6.11), the mass matrix becomes
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8 33 _3 19
G/ A
@ = pAL | B0 Ty
A T
1630 140 3560 105
The force matrices are
Y = U+ )+ ) (8.6.16)

where { f;} is the force due to the lateral applied force g (x, t) on the element and is

L
{f =A/0 g(x, ){N}dx. (8.6.17)

The force matrix {f} is the boundary force due to the applied shear force on
the element boundary. This force is cancelled out between all the adjacent elements,
except the first node of the first element Fy; and the last node of the last element
of the solution domain Fyyp and is written for the whole solution domain (after
element assembly) as

(Fs) = (Fs1000 --- 0 Fynn) (8.6.18)
provided that the applied concentrated external shear force on the beam is zero

everywhere, except at the end boundaries. In this case, if F5; and Fsyy are the
boundary shear forces, then

83
Fy = —ElAﬁ at x =0
83
Fyny = +E1A% at x =1 (8.6.19)

where L is the total length of the beam. Similarly, the bending force {f;} is the
boundary force due to the applied external moment on the element boundary. These
forces will also cancel each other out between any two adjacent elements, except
where a local bending moment at a node is applied, where the bending moment is then

3%y dN
fy= E1A S5 & .
9x* dx |y_gor L

(8.6.20)

Now, consider a C!-continuous element, where at two end nodal points the deflec-
tion and slope of the beam are unknowns, as shown in Fig. 8.7. The third order shape
function is

y(e) =a+ bx + cx? + dx’. (3.6.21)

The nodal degrees of freedom are
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|—x

< [ >
% ly,
dy, | | &
= 1 2 &

Fig. 8.7 C'-continuous beam element

dy dy dy dy
Yy =y = Ir =01 y=m» — =) =0
Y =0 X dx /4 Y=L dx dx ), .
x=0 x =1L
(8.6.22)
Substituting in Eq. (8.6.21) gives
y(e) = N1Y| + N20; + N3Ys + Nubr (8.6.23)
where
N | 3x2 n 253 N 2x2 n x3
= —_—— _— =X - — JR—
! 2 3 2 L 12
R No= XL X (8.6.24)
ST L3 T T >

Substituting for the shape functions from Eqgs. (8.6.24) in Eq.(8.6.13) and inte-
grating, the stiffness matrix becomes

12 6L —12 6L
(K]© — EIA | 6L 4L> —6L 2L’
L3 | —-12 —6L 12 —6L

6L 2L? —6L 4L2

The mass matrix from Egs. (8.6.24) and (8.6.15) becomes

r 13 11 9 43 -7
£ ol 7 —molL
11 1 2 13 11 y2
a0l wsL”  mol  —aml
m]© = pAL
9 13 13 101
70 ml 5 —210 L
43 11 72 101 71 12
L =m0l —m0l” —a0l 10517

The force matrices are evaluated similar to Egs. (8.6.17), (8.6.18), and (8.6.20).
It is interesting to note that the Galerkin method provides a complete and flexible
model, when proper weak formulations are considered. When, for example, the con-
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Fy F,

Fig. 8.8 Simply supported beam under linear load

2 : 2

| |
d_y) dy
dx/, a)z

Fig. 8.9 C' continuous element

centrated sheer forces or bending moments are present on a beam under lateral vibra-
tion, they are directly considered through the boundary forces (8.6.19) and (8.6.22).
When these boundary forces are absent, the terms obtained by the weak formulations
are moved into the proper places in the stiffness matrix (Figs. 8.8 and 8.9).

Example I As an example, consider a simply supported beam under a linear lat-
eral distributed load (g), as shown in Fig.8.1. The following numerical values are

assumed:

N
g=1 —
m
Total length =1 m
I=1 mm*
E=1 (GPa)

Number of elements (NE) = 4

Using a C!-continuous element and the Galerkin method, divide the beam into
four elements and obtain the elements of the global stiffness and force matrices.

Solution: Each of the following equations may be used to employ the Galerkin

method
2

d-y
M(x) = EI—= 8.6.25
(x) - (8.6.25)
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d3

Vix) = Elﬁ (8.6.26)
d4

q(x) =EI d—xi (8.6.27)

The last equation of beam deflection under linear distributed load g is written in the
form
d? d*y
— |EI— ) = . 8.6.28
e ( dx2) q(x) (8.6.28)

To solve the equation by the finite element method, the solution domain is dis-
credited into NE elements and NN nodes. Then, in each element a shape function N;
is used to approximate the lateral deflection.

y(x) = (Ni () “{¥i ). (8.6.29)
Equation (8.6.28) is written in the form

d? d?
(Elﬁ) —q(x) = R(x) (8.6.30)

dx?

where R(x) is the residue. Applying the Galerkin method, the residue is made orthog-
onal with respect to the approximating shape function N; as

/Ni (x)R(x)dV = 0. (8.6.31)

We write this equation for the solution domain with NE number of elements as
e=NE
> 7{ (N; (x))¢R(x)dV = 0. (8.6.32)
e=1 V¢
Substituting Eq. (8.6.28) into Eq. (8.6.32) gives
e=NE

d? d?y
; éN,» (x) [W (Elﬁ) - q(x)i| dv =0 (8.6.33)

and
dV = Adx

where A is the element’s area. To obtain the kinematical boundary conditions, weak
formulation is applied:
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L 3 e
¢ (d’y dN;(x)
/ N(x)ed ’ Nl<x>| —/0 (ﬁ - )dx
and finally
Le dy dy L, d*ydNi(x)* Le (a%y d®Nf (x)
Ni e 7 — 7Ni e\be 7 7 e “r i d
0 *x) dx4dx dx3 )l dx?  dx lo +/ dx? dx? *
(8.6.34)
Substitution in Eq. (8.6.33) gives
Le @2y d>N¢ (x) Le d®y
EIA/0 ﬁd—;ﬂdx =A/0 q(x)N; (x)‘dx—EIAd N(x) |0
d*y dN;(x)¢ |
EIA— 8.6.35
+ dx? dx |O ( )

Dividing through by A and substituting for y from Eq. (8.6.29) yields

b [d2Nn ()| d2Ni(0)° b . Py
El/o [ dx ]< ax W:/O qEON; () dx = E1 73Ny Iy’

d?y dN;(x)°
El—=
+ dx?  dx

lbem,i=1,2,3, ... NN
(8.6.36)

Assembling this equation for all the members in the solution domain, we arrive
at the final finite element equilibrium equation

[KI{X} = {f} (8.6.37)

where the stiffness and force matrices of the base element (¢) are

&1 = [ EI d*> Ny (x)¢ d* N (x)° 4
_/ { dx? } dx? Jdx

{flg = /{Ni(X)E}Q(X)dx

B d
{f}xhear = dx )

{f}frmment = EIA

N (x)¢ |()

d*y dN; (x)
dx 2

| (8.6.38)

where [K]¢ and { f}¢ are the element stiffness and force matrices, respectively. The
last two equations denote the natural boundary conditions, describing the shear and
bending moment boundary forces. These two boundary forces appear at the very
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ends of the beam, where the shear and bending moment are given. They may also
appear between the end edges of the beam, where shear force or bending moments
are externally applied on the beam.

In this example, a cubic C I continuous element is considered, where nodal points
of the element deflection and slope at two ends are defined as the nodal degrees of
freedom. A third order polynomial is considered as

y(x) =g +a1x + a2x2 + a3x3.

Evaluating the constants ¢, in terms of the nodal variables give

Y1
Y@= (Nf N5 NS OND.g o (8.6.39)
) 2
Y2
where the shape functions are
3x2 2x3 2x% X3
Nl(x)zl—?-i-ﬁ N2(X):x_T+ﬁ
3x2 2x3 x2 X
N3(x) = 72 T3 Na(x) = A + 17 (8.6.40)

The transformation from the global coordinate x to the local coordinate & is
E=—. (8.6.41)

The shape functions in terms of the local coordinate become

Ni(E) =28 —3E24+1 Ny(€) = (& — 282+ &)L

N3(§) =362 — 283 Nu(x) = (8% — ED)L. (8.6.42)
and
dx = Ld§
Thus,

5 (125 —6)

d°Ni(x)* 1 | L(6& -2)
T2 | (12 —6) (8.6.43)

L(6§ —2)

Considering the following integral
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0 0.25 0.5 0.75 1
2 3 4
Fig. 8.10 Beam with 4 elements
L
gnde = —° (8.6.44)
L, m + 1

and substituting the shape functions and their derivatives from Eqgs. (8.6.42) and
(8.6.43) into Eq. (8.6.38), and evaluating the integrals according to Eq. (8.6.44), the

stiffness matrix becomes

12 6L,

[K]ezﬂ 6L, 4L2
L3 | -12 -6L,

6L, 2L?

—12 6L,

—6L, 2L2
12 —6L,

—6L, 4L2

For the linear variation of ¢ (x) in the base element (¢) from ¢ to ¢5, we have

X

X
= 1— _ e
q(x) = ( Le)ql + L.

Therefore, the force matrix becomes

1 — 382 4 2¢°
. L,(§—2 2 3
L.(8% —£%)
7 3
e _Le| Lo 2% | [a
Py =t b 2 {qz
-2k L,

e __ _ q1
g1 =1 —=8§) é][qzl'

(8.6.45)

_ q1
[1-§ §&ldg [‘12]

Using the numerical values of the given problem, we find:

Element stiffness matrix:

768 96 —768 96

. | 96 16 —96 38
(KI"=1 _768 —96 768 —96
% 8 -9 16

The global stiffness matrix for four elements, as shown in Fig. 8.10, is
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[ 768
96

—768
96

[K]global —

eleloNeloNe]

The element force matrix:

9% —768 96
16 —-96 8
-9 1536 O
8 0 32
0 —-768 —96
0 96 8
0 0 0
0 0 0
0 0 0
0 0 0
[F]element —

—768
-96
1536

—768
96

)
Boxwgoo

ooooé,w

—0.0094

—0.0005

—0.0219
0.0008

The global force matrix for four elements is

[F]glabal —

—0.0094
—0.0005
—0.0625
—0.0010
—0.125
—0.0010
—0.1875
—0.0010
—0.1156

0.0188 |

S O O

0
—768
—-96
1536
0
—768
96

S O O

0
96
8
0
32
-96
8

0 0

0 0

0 0

0 0

0 0

0 0
~768 96
9 8

68 —96
—9% 16 |

177

Solving the finite element matrix equation, the following results are obtained:

'yl

0
y2
)
y3
03
Y4
04
Y5
0s

0

—0.0194
—0.0044
—0.0144
—0.0065
—0.0012
—0.0048
0.0142

0

| 0.0222
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Deflection (mm

-0.005 |

-0.006 |

-0.007 [—o—Finite Element Solution - - = Analytical Solution|

Fig. 8.11 Deflection of beam under linear load

0.025
0.02 4
0.015 -
0.01
0.005

04

Slope (rad

0.005
0011
0,015

0.02
20,025 |--4--Finile Element Solution = = = Analytical Solution

Fig. 8.12 Slop of beam under linear load

The deflection and slope of the beam under the lateral static load, using the finite
element solution, are shown in Figs. 8.11 and 8.12. The results are compared with
the analytical solution, in which the plots are closely related.

8.7 Timoshenko Beam

According to the Timoshenko beam theory, a beam subjected to the lateral load and
bending moment distribution along the length deforms such that its plane sections
remain plane after deformation, but not necessarily perpendicular to the longitudinal
axis of the beam. This assumption results in a situation in which the transverse shear
deformation exists, contrary to the Euler beam theory, in which this assumption was
neglected.
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Fig. 8.13 Deformation of a Timoshenko beam element

Consider a beam as shown in Fig.8.13a. The lateral deflection is shown by
w. An element of the beam at distance x from the origin is shown by length
Ax. After lateral deformation of the beam, the element is deformed downward by
amount w(x) to the position shown in Fig.8.13b. The straight plane section ABC
of Fig.8.13a, which was originally perpendicular to the beam axis, is deformed
into the straight line A’B’C’ which is not perpendicular to the beam axis and
is rotated at angle v (x). The angle {(x) is not equal to the slope of the beam
dw/dx, and thus, the line A’B’'C’ is not perpendicular to the beam axis. The
difference v — (—dw/dx) is a measure of shear stress and is related to the
shear deformation. The components of displacement across the beam height are

u=—zy(x)
V=
w = w(x). (8.7.1)

The nonzero stresses are
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d
oxx =—Ez %
dw
Tox = Gk (¢ + T ) (8.7.2)

where G is the shear modulus and k is a constant.
The moment M and shear force V are related to the normal stress o, and shear
stress 7, by

d
M = / oozdA = —E1 Y
A dx

dw
V = / T.xdA = kGA <—1ﬂ + —) . (8.7.3)
A dx

From the elementary beam theory, the shear force and bending moment are
given as

dv
dx

dM
dx

—f®)

-V (8.7.4)

where f(x) is the distribution of the lateral load per unit length. Substituting
Eqgs. (8.7.3) in (8.7.4) yields

4 [kGA (—1// + d—w)] Ff) =0 (8.7.5)
dx dx

d dy dw\

- (EI E) +kGA (—w + E) —0 (8.7.6)

The system of ordinary differential equations for the functions ¥ and w must be
solved simultaneously to give the static distributions of these functions along the
axis of beam.

When the applied lateral force is a function of time, f = f(x,t), the beam
vibrates and the inertia term must be included in the governing equations. The system
of equations governing the lateral vibration of the Timoshenko beam are

d ow .

— | kGA\ Vv + — )|+ fx,t) =m 8.7.7)
0x 0x

0 oy ow .
—\\El— |+ kAG| vV +— ) =JV (8.7.8)
0x dax 0x

where m is the mass of the beam per unit length and J is the mass moment of
inertia per unit length. When the mechanical and geometrical properties are constant
along the beam, the system of Eqs. (8.7.7) and (8.7.8) become
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82
_kAG a—w +KGA S+ f(x.1) —mid = 0 (8.7.9)
21/[ ow
El 55 — kAGY +KAG 5= — Ji = 0. (8.7.10)

The finite element model of the beam is prepared by dividing the beam into a
number of elements. For the base element (e), the approximating shape functions
for the dependent functions ¥ and w are

= > gi()Yi(0) (8.7.11)

i=1

w* = ZN,- ()w; (1) (8.7.12)

i=1

Substituting the shape functions for ¥* and w* in Egs.(8.7.9) and (8.7.10), the
residues are obtained. The residues are then made orthogonal with respect to the
shape functions according to the standard Galerkin method as

92w* w*
kAG —kAG + f(x,t) —m* | Nijdx =0 (8.7.13)
Ve) 8)62

82 * Jw* .
/ |:EI Ve kAGy* +kaG Jw*} gidx =0.  (8.7.14)
Vi) dx? dx

azw* aZl/f*
The weak formulation of term 0.2 in Eq.(8.7.13) and term ——— 912 in Eq.(8.7.14)
X
yield
dw* | L dw* dn; L an;
kAG 22y, —kAG/ d Ldx — kAGl/f*Ni|é+kAG/ —L Y*dx
ox 0 o O0x dx o dx
L 42 L
+ fx,t)Nidx —m — w*N;dx =0 (8.7.15)
dr? 0
* L * L
IV* do;
'/’ o —EI/ LAY dx—kAG/ Y gidx
0 ox dx 0
L * 2 L
d d
+kAG/ O pidx —J —/ UHdidx = 0. (8.7.16)
0o Ox dt? 0

Substituting for w* and ¥* from Egs. (8.7.11) and (8.7.12) yields

L dN; dN; L dN;
mw]/ NjN,-dx—i-kAij/ —L d—dx—kAGw]/ ¢,-d—’dx
0 X

o dx dx
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L
+ kAGY*Ni|§ (8.7.17)

*

L dw
=/ f(x,t)Nidx + kAG N,‘

9 ) I o, A
lﬂj pjpidx + EIV; ——d x+kAGY; ¢jpidx

(8.7.18)

kAG /Lde¢d EI 1/’*¢
—iAGw: | N g .
Yo dx ! ax

0

The system of Eqs. (8.7.17) and (8.7.18) in matrix form, when all elements in the solu-
tion domain are considered and their associated matrices are assembled, is written as

(M6} + (K1 1w} + (K21} = (F1) + {FP€) (8.7.19)
[TV} + [K3I{(y} + [Kal{w) = {FYC} (8.7.20)

where the submatrices for the base element (e) are

](e)_m/ N;N;dx

k119 = kAG di dﬂ
Hij o dx dx

dN;
kol = kAG/ — ¢jdx

{AYEC =

w* L

(B9 = kAG( Ni 4+ V" N;)

0

19 = /0 pigyjdx

La
[k3]§j.>=El/o d‘i’ dd’fd +kAG/ ¢idjdx

L .
[kl = —kAG /0 ¢>,»d—x’dx

ay*

L
ox o

0

(Y€ = EI

(8.7.21)

Using a proper dynamic algorithm for the solution, the system of Eqgs.(8.7.19) and
(8.7.20) is solved in the time domain. The initial and boundary conditions must be
known for input into the dynamic algorithm.

Now, by assuming linear shape functions for the unknown variables in Egs. (8.7.11)
and (8.7.12), the values of the element matrices are evaluated. The shape functions
¢i(x) and N;(x) are
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183
Ny X2 — X X — X1
N = , Ny = , Ny = 8.7.22
i [ N> } 1 7 2 I ( )
b1 X2 — X X — X1
= , -2 = 8.7.23
oi [¢2 o1 2 {03} 2 ( )

By using these shape functions, the element mass matrices in Eq.(8.7.21) become

L 2
@ _ Nj NN _ 21
[M]; —m/o [N]Nz N2 dx =7 6 |1 2

L 2
© _ ér G JL |: ]

The element stiffness matrices in the equation become

T dNy dNi dN; dN,

L —— = = KAGT1 —1
[Kll,fj):kAc/o A, d R 48 dx=—|: ]

ANy diN1  daiNy diNy L -1 1
dx dx dx dx
. _le dN; #
%2 kAG [ -1 —1
(e) _ _
(K>, —kAG/O ddN2 adﬁz ) dx = T[l | ]
dx 2

d¢1 d¢1 d¢ dga

(K31 = EI ’ g g é’xé? dx — kAG “let e dx
i o | 992 do1 ddx ddn 0

d¢2 Aoy b1d2 B3
dx dx dx dx

_EITL -1 KAGL T2 1
“Ll-11 | e 12

Ll g dNy # dN,
(@ 1 1 kAG [ -1 —1
[K4);) = kAG & = | 8725
O 1o —— ¢ —— 2
dx dx

The system of equations for the base element (e) can be written as

(M1X} + [K19X}) = (F/}© (8.7.26)

where

(X3 = {wi, 1, w2, ¥}’ (8.7.27)

In this notation, the element matrices are
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Fig. 8.14 Beam under uniform distributed load

|

7
Z
L
Fig. 8.15 Beam under concentrated load
2m m 0
[M’](e) _ £ 0 2J 0 J
6|lm 0 2m O
o J 0 2J
kAG _kAG _kAG _kAG
taG E1? kL kad _El_ kacL
/
(K ](6) — ﬁz kLA_G 3 _%ﬂ @ 6 . (8.7.28)
_lkA_G _2E_I _ kAGL liGL E_% _ kAGL
2 L 6 2 L 3

8.8 Problems

1. Consider a beam of rectangular cross-section b x h and length L, as shown in
Fig.8.15. The beam is under the uniform lateral distributed load w and is simply
supported at the ends.

Divide the beam into three elements of equal length and write the global stiffness
and force matrices [K] and {F}.

2. A beam of rectangular cross-section b x h and length L under a concentrated

force F acting at the mid-length of the beam, as shown in Fig. 8.15, is assumed.
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2 L2 ———————
X
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Fig. 8.16 Cantilever beam under concentrated load
7
p(t)
| ¢e—
X
L
Fig. 8.17 Axial vibration of steel rod
V7
") T(t)
X
|
L -

Fig. 8.18 Steel bar under torsional moment

The beam’s boundary conditions are assumed to be simply supported. Divide the
beam into three elements of equal length and calculate the global stiffness and
force matrices.

3. Assume a rectangular cross-section cantilever beam, as shown in Fig.8.16. The
length of the beam is L. The concentrated forces Fj and F, are acting at the end
and mid-length of the beam, respectively. The beam is divided into four elements
of equal length. Find the global stiffness and force matrices.

4. A steel rod of circular cross-section of length L and cross-sectional area A, as
shown in Fig.8.17, is considered. Dynamic load p(¢) is applied to the free end
of the rod at x = L along the axial direction. The end x = 0 is fixed. Divide the
rod into two elements of equal length L /2 and calculate the stiffness, mass, and
force matrices related to the axial vibration when L = 20cm A = 1 cm?, and
p(t) = 100e™" N.

5. Consider a steel bar with circular cross-section under torsional vibration due to a
time dependent torsional moment 7 (¢) acting at the free end of the bar at x = L
(see Fig.8.18). The end x = 0 is fixed, and the initial condition is at # = 0 is at
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y

Fig. 8.19 Beam under non-uniform distributed load

t =0is6(L,0) =0 and 06(L, 0)/9¢t = 0. Dividing the bar into two elements
of equal length L /2, find the global mass, stiffness, and force matrices when L =
20 cm, cross-sectional diameter of 1cm, and under dynamic torsional moment
T(t) = 100e~%1" N-cm.

Employ the C'-continuous shape functions given by Eq. (8.6.24) and obtain the
mass, stiffness, and force matrices of a simply supported steel beam under lateral
force of g(x,t) = 50sin Ax sin wt. The beam is divided into two elements, as
shown in Fig.8.19. Assume that L = 30 cm and [ = 2 cm*.
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Chapter 9
Elasticity, Galerkin Formulations

Abstract The chapter begins with derivation of the equations of motion of an elastic
continuum and presentation of the basic equations of theory of elasticity. Employing
the Galerkin method, the equations of motion are made orthogonal with respect to
the assumed element shape function. A base element is considered and the weak
formulation is applied to the terms of higher order derivatives and the finite element
equation for the three-dimensional elasticity is obtained. The resulting equations
are reduced to the case of two-dimensional elasticity, plane stress, and plane strain
conditions. Employing the two-dimensional simplex shape functions, the member
of element matrices are obtained.

9.1 Introduction

In this chapter, the problems of linear elasticity are discussed. The finite element
formulations are presented based on the Galerkin method. The governing equa-
tions of three-dimensional linear elasticity are given without detail treatments for
the derivations. It is expected that the reader is already familiar with the basic
assumptions, concepts, and equations. The three-dimensional equations are reduced
to two-dimensional plane strain and plane stress problems and the related finite ele-
ment formulations are presented.

9.2 Basic Equations of Elasticity

A homogeneous and isotropic elastic continuum is considered. We assume that the
continuum occupies the volume V and is bounded by exterior surface S at a time ¢.
The continuum is under the action of the external surface traction force with compo-
nents ¢/ acting on a surface where its outer unit normal vector is 7. Also, the internal

M. R. Eslami, Finite Elements Methods in Mechanics, 187
Solid Mechanics and Its Applications 216, DOI: 10.1007/978-3-319-08037-6_9,
© Springer International Publishing Switzerland 2014
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body force with components X; per unit volume is present in the continuum. It is
further assumed that the acting forces, either surface tractions or body forces, are
time-dependent dynamic forces resulting in elastodynamic behavior of the contin-

uum. In the case of elastostatic problems, the mass matrix is ignored and the dynamic
problem reduces to that of static elasticity. The total force on the body is

Fi :/ti”dS+/ X;dV. 9.2.1)
S Vv

Using Cauchy’s formula
1= oijn; 9.2.2)

1

the Gauss theorem can be used to transform the surface integral of the traction forces
into a volume integral as

/tl-"dSz/Ujindez/ oji jdV. (9.2.3)
S S 1%

Thus, the total force acting on the body in components is
F = /V(aj,-,j + X;)dV. 9.2.4)
We designate the linear momentum by
Pi = /V pu;dV (9.2.5)

where p is the mass density. The Newton law of motion requires that

F, =P (9.2.6)

Upon substitution from Eqs. (9.2.4) and (9.2.5) in (9.2.6), we obtain
/(aji,j + X;)dv =/ pii;dV. 9.2.7)
1% 1%

Since the volume V is arbitrary, Eq. (9.2.7) reduces to the following equation of
motion [1]:

0ji,j + Xi = pii;. (9.2.8)

The expanded form of the equations of motion in Cartesian coordinates is
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00 x n 00y n 007y,
ax ay a0z
00y 00y, 0oy
xy 4 B%y | POz
ax dy 0z
00y n doy, 00y

Z = pw. 9.2.9
ax ay + 0z * P ( )

For the infinitesimal theory of elasticity, the strain-displacement relations, refer-
ring to the Cartesian coordinates system, is

€ij =3 ji+uij). (9.2.10)

Here, ¢;; is the symmetric strain tensor, and u; is the displacement tensor. In
terms of the conventional Cartesian coordinates system, the six strain-displacement
relations are

ou av ow
€xx=a nyza GZZZE
1 ou dv 1 dv  ow 1 ow Ju
GXy—E(E"‘a) €yz = 5(3_14_5) sz—z(a-i-a)-
(9.2.11)

Eliminating the displacement components i, v, and w in Eqs. (9.2.11) provides six
independent equations among the strain components called the compatibility equa-
tions. These equations in rectangular Cartesian coordinates in conventional form are

ey %€y 9%y
dy?2 ax2 dxdy
ey, 0% 0%
972 ay2 T dydz
e, %€y 92%e,.
dx2 922 oxdz
3%€,x 0 O0ey; O€yy €y,
WZE( ay 3z ox
0%y, 0 Dexy | 0ey  Dex

dxdz Ay 0z ox ay
e. D ey  Dey;  0e

y
= . 9.2.12
dxdy 0z dy ax 0z ) ( )

In the classical theory of linear elasticity, the components of a strain tensor are
linear functions of the components of the stress tensor. The linear relations are called
Hooke’s law and are
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B 1

i = 5G Okkbif) (9.2.13)

( %
O — —
Yool 4w
where G is the shear modulus and v is Poisson’s ratio. Equation (9.2.13) is known as
the constitutive law of linear elasticity. Solving this equation for stress tensor o;; gives

0ij = 2Gleij + —— ewdi] (9.2.14)
1—2v
where §;; is the Kronecker delta.
It is sometimes useful to write the stress-strain relations in terms of the Lamé
constants A and u, where p is the same as shear modulus G. The strain tensor in
terms of the Lamé constants is related to the stress tensor by

1
€ij = Z(Uij - makk(sij)- (9.2.15)
Solving for stress tensor o;; gives
0ij = 2u€ij + Aekkdij (9.2.16)

where 1 and A are the Lamé constants and are related to G and v as

2Gv

:G )\,: .
H 1—2v

(9.2.17)

The complete relationships between the elastic constants are given in reference.
There are six equations between the six components of stress and six components of
strain. Substituting Eq. (9.2.10) in Eq. (9.2.16) yields

oij = p(u;j +uj;) + Aug ;. (9.2.18)

The derivative of o;; with respect to x; is

Oij,j = Mui jj + (uj jj +Auj j;. (9.2.19)

Substituting Eq. (9.2.19) in Eq. (9.2.8) results in an equation of motion in terms
of the displacement components as

pui i+ O+ wuj i + X = pii;. (9.2.20)
This equation is called the Navier equation and is equivalent to the three equi-

librium equations, six compatibility equations, and six stress-strain relations. The
expanded form of this equation is
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ou ov

MV2M+()~+M)—(—+3—+—)+X pli
2 du  dv .
uv v+()»+/1~)—(— —+—)+Y=,ov
ay 0z
ou Jdv Jdw ..
w+(k+u)—(—+8— 8—Z)+Z=pw- (9.2.21)

The finite element approximation follows by discretizing the solution domain into
a number of elements and nodal points. The base element (e) is considered and the
displacement components are approximated by proper shape functions N, as

u®(x,y,z,1) = (N(x,y, 2)) U )}
VO, y,2,1) = (N(x, y, )V (1)}@
w(x, y,z,1) = (N(x, y, 2))O{W @)} . (9.2.22)

These approximations are of Kantrovich type, where the space and time variables
are separated. The matrix of shape function in expanded form is

(N(x,y,2)® = (N; Na...N)© (9.2.23)
where r is the number of nodal points in the based element (e). Following the standard

Galerkin method, the equations of motion (9.2.21) are made orthogonal with respect
to the shape function matrices (9.2.23) over the volume of the base element (¢) as

[ s ou v
MVM+(?»+M)—(—+—+—)+X pii [NsdV =0
vie L dy
[ s ou  0v
;Nv+(/\+u)—(— —+—)+Y pU |NedV =0
Vi L dy
[ ou v
Viw + (h + )—(— —+—)+Z pw |NgdV =0
V(e)_ dy

s=1,2,...r (9.2.24)

These equations constitute the basic governing finite element equations for the equi-
librium of the base element (e).

9.3 Galerkin Finite Element Formulation

Consider a three-dimensional elastic continuum under the action of the surface trac-
tion forces ¢ and the body forces X;. The solution domain of the problem is divided
into an arbitrary number of elements. The shape function N; is selected to describe
the displacement components in the base element (e¢). According to the Galerkin
method, the following orthogonal form is considered [2, 3]:
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/ (Oij,j—i-Xi—,Oi{'i)N[dV:O [=1,2,...r 9.3.1)
V(e)

where r is the total number of the nodal points of the base element (e). Applying the
weak formulation to the first term yields

N
/ (01j ) )NidV = / oijn;NidS —/ X odv 9.32)
Vie) ste) J

Vie) 0Xj

where 7 is the component of the unit outer normal vector to the boundary. Substi-
tuting Eq. (9.3.2) in Eq. (9.3.1) gives

aN,
/ UijanldS—/ —IO','jdV~|-/ XiNldV—/ pii; NidV = 0.
see) V() 9X; V(e V(e
(9.3.3)
According to Cauchy’s formula, the traction force components acting on the

boundary are related to the stress tensor as
ti” =0jjn; 9.3.4)

Thus, the first term of Eq. (9.3.3) is

/ oijnjNidS = / t;NidS. 9.3.5)
S(e) S(e)

The stress tensor is related to the displacement components, using Egs. (9.2.10)
and (9.2.14), as
oij = Guij +uji+2Aug 1di;) (9.3.6)

where A = v/(1 — 2v). Substituting in the second term of Eq. (9.3.3) yields

aN, oN,
/ o GijdV = G/ i (u,-,j +uji+ 2Auk‘k3ij)dv. 9.3.7)
Vie) 9X; Vie) 9x;

Substituting in Eq. (9.3.3) yields

. N,
/ puiNldV+G/ S i+ ugi + 2Au i 8)dV
V(e) V(e) 0%

=/ X,-N;dV—i—/ 1;NidS. (9.3.8)
V(e) S(e)

Now, the base element (e) is considered, and the displacement components in the
element (e) are approximated as

u® (x, v, 2,0 = (NG, 3, ) U = NUpi. 9.3.9)
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Using this approximation, Eq. (9.3.8) is

. " AN, ON,
/ PNiNyUpidV +G( [ 220 22 gy,
V(e) Vi) 0xj 0x;
aN; ON N, AN,
+G(/ O 0 V) U, + 2AG L 0%m
V(e) ())Cj 3)(,'

—AVYU,;
V(e) Bx,- ij "
=/ XiNidV +/ t;NidS
V(e) S(e)

ILm=12...r i,j=123. (9.3.10)

Equation (9.3.10), after assembling all the element matrices and substituting for
the shape function, results in the finite element equation

[MI{A} + [K){A} = {F}.

(9.3.11)
For a two-dimensional problem, i and j take the values 1 and 2.1In this case, two
equations are obtained in the x and y-directions as

oN; ONy,
Vi) 0x 0x

aN; 9N, aN; ON,
/ 9N JdV]Um + |:G/ 9N m
Vi) 0y 9y Vi) 0y 0x
dN; 9N,
+2AG/ & 2my
\%4

v]v,,,:/ XN;dV—I—/ (NS, (9.3.12)
() 9x 3y V(e) S(e)

(/ PN NpdV)Uyy, + [2G(A +1)
V(e)

. AN, N
( PNINpdV)Vy 4+ | 2G(A + 1) -—
Vie) Ve 9y dy
dN; 0N, dN; 0N,
+G/ il ’”dv]vm+ [G/ L 2m
V(e) Jdx 0x 1%

A 20m gy
aN; ON,

+2AG/ 2o 2m
\%4

(e) 0x 3y
dv] mz/ YNZdV+/ NS, (93.13)
(e) 0y Ox V(e) S(e)

The definition of the mass, stiffness, and force matrices of the element (e) are

PN NydV
i = [

0
9.3.14
0 Jve ledev} ©3.19

dN; 0N,
26(A+1) [y

ON; 0N,
SR TImay 4 G/ ST m gy
0x 0x V(e) 8)1 8)1

Lkly =
aN; ON aN; ON
G [y —— =24V +2AG Lo

Vi) Hx ay v

— ——dV
(e) 8y ox
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AN, dN,, AN, dN,,
G v 5y ! dV+2AG/ Eal
V(e) ax By
AN, dN, AN, ON
2GAHD [y 5o ’ —dV+G/ L mgy
dy V@) 0x 0x
(9.3.15)
Sy XNdV + [g,) txNidS
(1 = [ © © (9.3.16)
fv(e) YNV + fs(e) tyNidS
and the unknown matrix is
U
{8} = [v] . (9.3.17)

9.4 Two-Dimensional Elasticity

The classical theory of elasticity distinguishes two conditions of plane stress and
plane strain problems. The conditions correspond to the real practical problems of
elasticity. The two conditions are discussed and the proper finite element formulations
are presented in the following.

Plane stress condition

According to this assumption, the normal and shear stresses along the z—axis are
assumed to be zero,
Oy = Taz =Ty, =0 94.1)

From Hooke’s law
€z =€y; =0
v
€z=—7 (Oxx + 0ypy). 9.4.2)
This condition corresponds to the case where w, the deflection component along

the z—direction, is a function of x and y (w = w(x, y)). By this assumption, w dis-
appears from the first and second equilibrium equations, and Eqgs. (9.2.21) reduce to

Pu  3%u 1+v. 3 du v
M(ﬁ‘f‘ﬁ)‘f‘ﬂ( )a—x(a—+a—)+X=Pu
v % 1+ du ;
% (m + 3_)/2) + ay ox 5) + Y =pv. 9.4.3)

Consider the base element (e) with the shape functions given as
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u®(x, y, 1) = (N(x, ) QU (1))@
v, y, 1) = (N(x, )V (1))@ (9.4.4)

where (N (x, y))© = (N1 N2...N,)®© and r is the number of nodes of the base
element (e). The Galerkin approximations for the element (e) are

J Z Py () L B0 pi|mav =
v L a2 T T ax “ox | dy pujtar =

/ A S A L LIS )
v v 1tv, 8 u Bv, o _
v LM Va2 Ty TR By Yax Ty pu
I=1,2,...r. (945)

Now, the weak formulation may be applied to the terms with second order
derivatives.

Reason for weak formulation

The mathematical explanation of a physical problem is in the form of a set of
partial differential equations associated with a number of boundary conditions. The
boundary conditions related to the problems of solid mechanics are described in
terms of kinematical form, in which the displacement components are defined on the
boundary, or of forced type where the forces (or stresses) are defined on the boundary.
When the displacement-based finite element formulation is employed, satisfaction of
the kinematical boundary conditions is easy to handle, but the force type of boundary
conditions is complicated. The same is true when force-formulations are employed,
in which the force type boundary conditions are easy to handle and the kinematical
boundary conditions become a complicated issue. An ideal finite element formula-
tion is the one which provides a model in which both kinematical and forced types
of boundary conditions become available in the final numerical model. This is an
essential tool in the finite element modelling of plate and shell problems, in which
the displacement type of boundary conditions appear on the edges of the plates or
shells in the form of clamped or simply supported boundaries. The force boundary
conditions on the plates or shells appear in the form of applied bending moments or
in-plane forces. An ideal finite element model for these types of structures is the one
which can handle both types of kinematical and forced boundary conditions.

The Galerkin finite element formulation has the advantage of preparing a more
general, detailed, and complete numerical model to handle more different and various
types of boundary conditions, either in the form of kinematical or forced. The process
of weak formulation is to provide a means to prepare such a general and complete
model. It is not that we should always apply the weak formulation to the terms of
higher order derivatives. A proper and ideal finite element model is the one which
provides a menu that can handle all possible types of boundary conditions associated
with that problem. Here is why the potential to create all possible types of boundary
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conditions becomes important. The Galerkin method, if properly handled, is capable
of providing such an ideal numerical model.

To show the details of weak formulations and justifications for weak formulations,
we consider the following example.

Example 1 Consider a rectangular solution domain in the Rectangular Cartesian
Coordinates. In this special example, the unit outer normal vectors in the x and y-
directions coincide with unit vectors along the coordinate axes, where ny =n, = 1.
The weak formulation of the first term of Eq. (9.4.5) is

9%u 9 du AN,
M/ 22 Ndv = u/ —”N,dr—u/ 0N gy
Vi(e) dx I'(e) 0x Ve) dx 0x

N, N, IN
:M/ eledl"—M/ G S hway Slav.
T'(e) Vi 0x

It is noticed that the weak formulation of the first term results in the x-component
of strain on the boundary. This term may then be related to the stress along the
x-direction, providing a means to satisfy the forced type of boundary condition, in
addition to the possibility of satisfying the kinematical boundary condition along the
same axis (which is u).

. . du .
The weak formulation of the second term results in 3y which does not have any

physical meaning by itself. We may keep this term from the weak formulation and

9%v

add it to the weak formulation of the first term of the second equation of (9.4.5) 0z
X

. . . . du
with respects to x, to obtain an expression for the shear strain €,, = % (8_ + —).

This is if the decision is made to bring such a boundary condition into the finite
element formulations. If not, the weak formulation of the second term is done as

9%u AN AN,
M/ ~— NV =u/ <—1... ){U(t)} NidT
V(e 0y Ty 9y

- / (M aN’>{U(r>} Wigy 948
oo ay T oy dy o

where the integral over the boundary of the element will be transformed into the
stiffness matrix as coefficients of the unknown matrix U.

With similar reasoning, we may proceed into the weak formulation process. The
third term is

14+v
1—v

82
u( )/ NidV = M(—) €xNidl'
\%4

(o) 9x2 v Jre)
14+v 0Ny aN, N

) V(g)(gm U@ AV

— u(
(9.4.7)
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The fourth term is

14+v 9%v 14+v ov
e / NV =2y [ 2 yar
=V Jy(e) 0x0y I—=v" Jre) 0x
14+v ov IN;
- M(l ) / — ——dV
—V V(e) 8X 8y
1+v JIN; ON,
=,u(1 ) (- HV(@OIN,dT
—V I'(e) dx ox
1+v dN; IN; IN;
- M(l ) (— = NHV®O}——4dV.
=V Jye 0x ax dy
9.4.8)
The fifth term is
/ XNidV. (9.49)
V(e)
The sixth term is
/ P(N7 . ..N,){U(t)}NldV (9.4.10)
Vie)

Substituting into the first of Eqgs. (9.4.5) gives

[/ p<N>deV}{U}+[ 24 / (NN 4y
V(e) 1—v V(e) dx = 0x

ON 0N, oN
u/ (NN Gy u/ <—>der}w(r)}
V) 0y dy I'e) 0¥

14+v ON ON;

—)—dV
l—v) V(e)<8x> ay

+ [M(
1+v oN

) <8—)deF}{V(t)}
X

1—v I'(e)

2
=/ XN dv + =K / e NdU 1=1,2,...r (94.11)
Vie) I —v Jre

—n(

With a similar procedure, the weak formulation of the second of Egs. (9.4.5) gives

.. 14+v ON 0N,
[/ p<N>dev]{V}+ [u( (OO Gy
V(e IL—=v" Jye dy ox

l+v oN dN 0N
tug—) (—)deF}{V(t)} + [M/ (o) dV
—V I'(e) 8)1 V(e) dx  0x

2 IN ON IN
[ oG av—uf <—>N1dr}{U(r>}
L—v Jye 9y dy I'e) 0X
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2
=/ YNV + —& / eNdl  [=1.2,...r (94.12)
Vie) L =v Jre

The system of Egs. (9.4.11) and (9.4.12) provides a linear set of 2r x 2r equations
describing the dynamic equations of the base element (e). A detailed review of these
two equations reveals that both types of kinematical and forced boundary conditions
are considered in the resulting equations. When the constraint is applied on the dis-
placement components U and V on the boundary, then the force matrix related to
the strain is transformed into the displacement components on the boundary employ-
ing the shape functions and substituted into the stiffness matrix. On the other hand,
when force is applied on the boundary, then the force matrix containing the strain
is properly changed to include the forced boundary condition, and the displacement
components on the same boundary are unknown and should be obtained solving the
finite element equation.

Equations (9.4.11) and (9.4.12), once written in the global coordinate system,
are added for all elements in the solution domain, and ultimately provide the finite
element equation of motion as

[MI{A} + [KI{A} = {F (1)} (9.4.13)
in which the elements of each matrix for the base element (¢) are
(8)@ = ((81) (82)--- (8N (9.4.14)

where (8;) = (U; V;). The members of the other matrices for the base element (e)
of thickness % are given in the following. The members of the force matrix are

2uh
fric1 = ecNidl + h XN;idA
IL=v Jre Ale)

2uh
1—v

fu =

/ eyN;dl + h/ YN, dA i=1,2,3. (9.4.15)
I'(e) Ale)
The members of the mass matrix are

mai—1,2j—1 =h/ PN;N;dA
Ale)

mai_12; =0
ma;i2j—1 =0
m; 2 :h/ PN;N;dA i=1,2,3 j=1,2,3. (9.4.16)
Ae)

The members of the stiffness matrix are
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2uh ON; ON; ON; ON;
kai—1,2j-1 - / — =L dA—i—pLh/ —L —JgA
L —=v Jae 0x ox Ay Oy dy

N,
— uh N; — dl

I'(e) dy
1 ON; ON; 1 ON;
kai 1.2 = +”/ LT gA — +”/ N i
1—v A(e) ay ax 1—v I'(e) ax
1 ON; ON; 1 ON;
kpioj—1 =ph hld / — —LdA—ph e / N; —Ldi
1—v Ale) dx By 1—v I'(e) 8y
ON; ON; 2uh dN; ON;
kai2j Zuh/ SN0 a4 2K / —L 1A
’ A(e) ox ox 1—v A(e) 8y 8)7
dN; . .
— uh Ny —Ldl i=1,2,3 j=1,2,3. (9.4.17)
re — 0x

Plane strain condition

According to this assumption, the normal and shear strains along the z—axis are
assumed to be zero as

€7 = €x; = €y, = 0. (9.4.18)
Using these assumptions in Hooke’s law gives

Taz =Ty; =0
Ev

UZZ = 1 A~
(14 v)(1 —2v)

(Oxx + Oyy)- (9.4.19)

Substituting Eq. (9.2.10) in (9.2.16), with the assumption of plane strain condition
(9.4.19), and substituting the results in Eq. (9.2.8), the equations of motion in terms
of the displacement components for the plane strain condition become

82u+82u LM 9 8u+8v X i
u  0%u 9 (Ou , By — i
M o2 T 52) T 1=20 ax \ox "oy P

% 9% w 9 (du A
— =4+ = Y = pv. 9.4.20
“(ax2+ay2)+1—2v ox (8x+8y)+ oY (9-4:20)

Following a similar procedure as described for the plane stress condition, begin-
ning from Eq. (9.4.5), the final form of the finite element equation becomes

[MI{A} + [K]{A} = {F)} (9.4.21)

where the definition of matrix {§} is the same as Eq. (9.4.14) and the members of the
force matrix are
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1 —
Foiy = puh (—— exNidl +h/ XNid A
1 =2v" Jr Ale)
1 —
fi=ph (———) [ eyNidl +h / Y N;dA. (9.4.22)
I=2v" Jr Ae)

The elements of the mass matrix are

mai—1,2j—1 =h/ PN;N;dA
Ale)
mai—12j =mzi2j—1 =0

mz,-,zj:h/ pNiN;jdA i=1,2,...r j=1,2,...r. (9.4.23)
Ae)

The members of the stiffness matrix are

1—v dN; ON; ON; ON;
koi—12j—1 =ph ( ) — ———dA+puh dA
A A

1—2v (e) ax 0dx (e) E By
IN;
— uh N; —=dl
re 0y
h ON; ON; h ON;
k2i—12,’=“—/ LT dA— e / Ni—]dl
o 1—2v Ale) 8y ox 1—2v T(e) ox
h ON; ON; h ON;
kai2j -1 =’“‘—/ L aa- K / Ni == dl
1 —=2v Jae 0x dy 1 —=2v Jr dy
dN; ON; 1-— oN; ON;
k2i,2j:Hh/ S50 A+ ph (—— — L dA
Ae) dx 0x 1—2v Ale) 3)7 8y
ON; . .
— uh ; —=dl i=1,2,...r j=12,...r (94.24)
T'(e) 0x

Once the element shape function is defined, all the matrices for the element (e) are
determined and assembled to give the final finite element equilibrium equation. In
the next section, a triangular simplex element in two-dimensions is considered, and
the members of the mass, stiffness, and force matrices are derived.

9.5 Two-Dimensional Simplex Element

Consider a two-dimensional triangular element with linear assumption for the shape

functions for # and v as

U; ()

u® =(N; N; No©@{U;
Uy
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focfeluf
TTy i .
T'z—-

sy

"l X

Fig. 9.1 Triangular simplex element

Vi (e)

1

U(e):(Ni N; Nk)(e) V; . 9.5.1)
Vi

The thickness of the element is assumed to be 4. The side ij is assumed to be
under the external traction forces T, and 7). The elements of the matrices for the
two-dimensional plane stress problem are (Fig.9.1)

uexAii XV
fi=p=200 20
1—v 3
XV
=7
_ /LGyAij Yv
fa=fa= T 3
Yv
fo = 5 (9.5.2)
The elements of the stiffness matrix are
where
:Mh(l-i-V) B:M—h C:MAij
4A(1 —v) 4A 4A
uh [,LAij(l +v)
D= " = 7 A;; = hl;;. 953
2A(1 —v) 4A(1 —v) Y i 9:5:3)

Here, [;; is the side length ij of the element (e). Note that the stiffness matrix in
this case is not symmetric. The members of the mass matrix are

phA©  pv@ @
= = = m22 = M33 = M4q = M55 = Me6

=g 6 6
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ki1 = Dbl«2 + BCi2 —Cgqi

ki3 = Db;ib; + Bcicj; — Cc;j
k15 = Db;by + Bcick — Cci
ka1 = Db;jbj + Bcic; — Cc;
ks = Db + Bcj — Ce;

kas = Dbjby + Bcjcy — Cey
k31 = Db;by + Bcicg

k33 = Dbjby + Bcjcy

k3s = Db,% — Bc]%

ka1 = Abjc; — Ec;

ka3 = Abjcj — Ec;

kas = Abjck — Ecy

ksy = Abjc; — Ec;

ks3 = Abjcj — Ec;j

kss = Abjcy — Ecy

ko1 = Abyc;
kez = Abyc;
kes = Abycy

9 Elasticity, Galerkin Formulations

k12 = Abjc; — Eb;
ki4 = Abjci — Eb;
kig = Abyc; — Eby,
kyp = Abjcj — Eb;
ka4 = Abjcj — Eb;
koo = Abicj — Eby

k3 = Abjcy
k3g = Abjcy
k3e = Abycy

kap = Bbi2 + DCi2 — Cb;

kag = Bbib; + Dcic; — Cb;
ka¢ = Bbiby + Dcicr — Cby
kso = Bbib; + Dcic; — Cb;
ks4 = Bb% + Dci — Cb;

ksg = Bb.jbk + Dc‘jck — Cbhy,
ke2 = Bbiby + Dcicy

ko4 = Bbjby + Dcjcy

koo = Bb,% + Dc]%

m3 =m31 = M5 = ms| = mp4 = M4y = My = Mgy = M35 = Ms3

=mae = Mot = —

The mass matrix is symmetric.

phA©  py©
12

m©

all other m;; = 0. 9.5.4)

The elements of the matrices for the two-dimensional plane strain condition are
obtained in a similar manner and are as given. The elements of the force matrix are

_ pheg (1 —v)
f21—1 = 1 =20

o pwhey(1 —v)
f2z = 1— 20

N,dl+h/ YN;dA.
T'(e) Ale)

N;dl +/’l/ XN;dA
I'(e) Ale)

(9.5.5)

Substituting for N; and integrating gives

_,u,ExAij(l—l)) XV

h==a-m T3
nexAij(l—v) XV

fr=t = 2
2(1 —2v) e
XV

f=5
pLEyAij(l — l)) Yv

fr=t o
2(1 —2v) 3
neyAij(l—v) YV

fr=BR 2 T

2(1 —2v)

3
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Yv
fo=— (9.5.6)
3
where it was assumed that the traction force acts on the (ij)—side.
The elements of the stiffness matrix are
ki = A/bi2 + B/Ci2 —Cl¢; ki = D'b;c; — E'b;
ki3 = A/b,'b_,‘ + B/C,'C_,‘ — C,C_,‘ kg = D/bjC,‘ — E’b_,‘
kis = A’biby + B'cicy — C'cy kig = D'brc; — E'by
k1 = A/b,‘bj + B/C,'C_,‘ —Clci ko = D’b,‘Cj — E'b;
koy = A'bT + B'c; —=C'c; k= D'cjbj — E'b;
kos = A/bjbk + B,Cjck — Clcy kyg = D/Cjbk — E'by
k31 = A’brb; + B'cic; k3p = D'cyb;
k3z = A/b/(bj + B/Ckcj' k3g = D/Ckbj
k3s = A/b,% + B/C,% kg = D'byby
k41 = D'bic;i — E'c; kap = A,Ci2 + B,bi2 — C'b;
k43=D/b[Cj—E,Cj k44=A/C,‘Cj+B/b,'bj—C/bj
k4s = D'bijcy — E'ck kao = A'cick + B'biby — C'by.
ks1 = D/bjC,' — E'c; ksy = A,Cicj‘ + B/b,'bj — C'b;
ks3 = D'bjcj — E'c; ksq = A'c; + B'b; — C'b;
kss = D/bjck — E'cy kse = A/Cjck + B/bjbk — C'b
ke1 = D'bici key = A'cke; + B'bib;
kez = D/bij kes = A/Cij + C/bkbj
kes = D'bycy koo = A/C]% + B/b]%
where
/_ /’Lh(l_‘)) B/_/'L_h C = :u'Aij
4A(1 = 2v) 4A 4A
h Aij
p =" =R (9.5.7)
4A(1—2v) 4A(1—2v)
The elements of the mass matrix are
m
mijj = g
mi3 =m3] = M15 = Mms5] = M4 = M4 = M26 = Me2 = M35 = N53
m@
=M4e = Me4 = D all other mjj = 0. (9.5.8)

Once the elements of the mass, stiffness, and force matrices are calculated for one
element, an algorithm is used to generate and assemble the global mass, stiffness,
and force matrices. The finite element solution of such an assembled system provides
the general displacement matrix at the required time. The strain and stress matrices
are then calculated using the displacement matrix.

Example 2 Consider a two-dimensional elasticity problem.
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(a) Reduce Eq. (9.3.10) to the two-dimensional plane strain condition.

(b) Do part (a) for the plane stress condition.

(c) Consider a triangular simplex element and derive the members of the stiffness
and mass matrices using Egs. (9.3.14), (9.3.15), and (9.3.16).

(a) For a two-dimensional plane strain condition, the displacement component
along the z direction is zero and the other components of the displacement are
independent of the z coordinate. The procedure in deriving Eq. (9.3.10) remains
unchanged, except that the term u, is eliminated from the trial and test func-
tion spaces. Thus, the final equations have index range I[,m = 1,2 instead of
I,m = 1,2,3. The result is Egs. (9.3.12) and (9.3.13) in the x and y directions,
respectively.

(b) For the two-dimensional plane stress condition, we have 0, = 0; = 0y, =0
and the other components Of the stress tensor are independent of the z coordinate. The
stress-displacement relation, Eq. (9.3.6), which is used in the procedure for deriving
Eq. (9.3.10), should be modified accordingly. For the plane stress condition, Eq.
(9.3.6) should be modified by reducing the index range to i, j, k = 1, 2 and using
A = v/(1 — v) instead of v/(1 — 2v). The final equations (9.3.12) and (9.3.13)
remain unchanged, except that the new value of A should be used.

(c) From Eq. (4.8.9), integrals of the element mass matrix could be obtained.
There are two forms of integrals in the element mass matrix:

) 21010! S
pNiN;dV = PNfdV = — 2§ = —
V(e) V(e) 2+0+4+0+2)! 6

11110! S
pNiN;dV = ———— 2§ ==
V(e) (1+14+0+2)! 12

where dV = tdS, t is the thickness (which is assumed to be unity), and dSS is the
area element. The term fv(e) PN;N,dV (I, m = 1, 2, 3) becomes

s [2 ]
/ pPNINgdV =22 |1 2
40 201

DO =

Therefore, the element mass matrix for the simplex element becomes

oS

(e _
[m] B

SO O = =N
S OO =N
S OO N = =
—_——_— N O OO
—_ N = O O O
N == O O O

Now, the element stiffness matrix is calculated. The integrals of the element
stiffness matrix are
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b.
oN; ON, ! 11
/ el —de:/ bt {bi b b} —===dS
V(e) ax ox S(e) bk 2828
1 bib; bibj bib
= s bib; bjb; bjby
bib;  bybj  brby
and
aN; ON, ci 11
/ S 0m gy :/ Cj {c,- Ccj ck}——dS
Vi 0y 0y s@ | ¢ 2528
CiCj C,'Cj CiCk
CjCi cjicj CjCk
CkCi  CkCj  CkCk
and

b;
ON; 0N ! 11
/ gy =/ bjt {cicjcr} ====dS
V(e) ax 8y S(e) bk 2828

1 bic,- bl'Cj b,-ck
ZE bjci bjCj bjck
bic;i brcj bicy

~

The terms involved in the element stiffness matrix become

2G(A+1) —dV + G — ——dV =
Vi) 0x 0x (e) Oy 0y

G Bbib; +cic; Bbibj+cic; Bbiby + cick
Bbjbi—i-c‘jci Bbjbj—i-CjCj Bbjbk—I-CjCk

ON; ON, / IN; 0Ny,
%

45 Bbib; +crc;  Bbpbj +crc;  Bbpby + crck
and
dN; oN, oN; oN,
2G(A + 1) —’—’"dV+G/ gy =
Ve) dy dy V(e) ox dx

Beici +bib;  Bcicj+bibj  Bcicy + biby
E BCjCi—}-bjb,‘ BCjCj -I—bjbj BCjCk+bjbk
Bceyei +bib; Begej +brb; Begeg + brby

and
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SR

F(t)=FE,sin(wt)
q—

i |

Fig. 9.2 An elastic rod under dynamic load

ON; Ny dON; ANy,
G — ——dV 4+ 2AG — —dV =
V(e) 8y ox V(e) dx By

cibi +2Ab;c; Cibj + 2AbiCj ciby + 2Abick
4— Cjbi+2AbjCi Cjbj +2AbjCj Cjbk"‘ZAbjCk
S | ckbi +2Abe;  cxbj +2Abe;  cxby + 2Abgey

and

IN, N, IN, 9N,
G/ —’—’"dV+2AG/ 2 Sm gy =
\% \%4

(e) 0x ay (e) 8y 0x
AN, 9N, AN, 9N, T
(G/ Sy +2A*G/ o —de)
V(e) ay ax Ve) Bx 8y

where B = 2(A +1). Therefore, the element stiffness matrix for the simplex element
becomes

K€ = % x
Bb;b; + cici Bb,'bj +cicj Bbiby + cicy cibi +2Ab;c; C,‘b_/' + 2Ab,'Cj ciby + 2Abjcy
Bbjbi+CjC,' Bbjbj +cjc; Bbjbk+0jck Cjb,'+2AbjCi Cjbj +2Abj0j Cjbk+2AbjCk
Bbyb; + cici Bbib;j + cicj Bbiby + crer ckbi +2Abc; crbj +2Abrc;  crbi + 2Abjc
¢ibi +2Abic;  cjb; +2Abjc;  ckbi +2Abyc; Bcici + bib; Beicj +bib; Bcick + bibi
cibj +2Abic; cjb;+2Abjc; cxbj +2Abrc;  Bcjci +bjb; Bcjcj +bjb; Bcejer +bjby
ciby +2Abicy  cjby +2Abjcr  cxby + 2Abkcy Beyei + bib; Berej + bbj Beycy + brby

9.6 Problems

1. Reduce the general finite element equations (9.3.12) and (9.3.13) for one-
dimensional elasticity and obtain the members of the stiffness and mass matrices.
2. Consider the one-dimensional elasticity of an elastic rod. Divide the rod into
a number of elements, and for the base element (¢), write the members of the
stiffness and mass matrices associated with a one-dimensional simplex element.
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Fig. 9.3 A two-dimensional elastic domain

3. A rod of constant cross-section A, length L, mass density p, and the modules of
elasticity E is considered. The rod is under a dynamic load F = Fj sin wt at its
free end at x = L and fixed at the other end x = 0 (Fig.9.2).

Divide the rod into three elements of equal length and derive the elements of
the global mass, stiffness, and force matrices of the rod.

4. Use Egs. (9.3.12) and (9.3.13), and reduce them to the two-dimensional plane
strain condition.

5. Do Problem 4 for the plane stress condition.

6. Consider a triangular simplex element and derive the members of the stiffness
and mass matrices of Problem 4.

7. Assume atwo-dimensional solution domain with two triangular simplex elements,
as shown in Fig.9.3.

The coordinates of nodes 2 and 3 are (6,0) and (0,5) centimeters, respectively.
The problem is assumed to be in a plane stress condition. The side (3-4) is under
a static uniform distributed load of 200 N/cm. Obtain the members of the global
stiffness and force matrices.

8. Compare the results of Problem 6 with those given in Sect.9.5.
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Chapter 10
Elasticity, Variational Formulations

Abstract The derivation of finite element equation of motion based on the variational
formulation is presented in this chapter. The Hamilton principle for elastic continuum
is derived and basic relations for the linear elasticity, the constitutive law, and the
kinematical relations, are presented. Employing the linear shape functions for three
displacement components, the elements of the mass, stiffness, and force matrices are
derived. The two-dimensional plane stress and plane strain elasticity are discussed
and the axisymmetric elasticity formulation follows.

10.1 Introduction

In this Chapter, finite element analysis of the problems of elasticity based on
variational formulations and the Ritz method are discussed. The field variables are
considered to be the displacement components. The formulations start with the gen-
eral form of Hamilton’s principle for non-conservative external forces, and the gen-
eral form of the three-dimensional elastodynamic finite element equation is derived.
The problem is then reduced to the two-dimensional plane stress and plane strain
problems. Finally, the axisymmetric elasticity problems are discussed and the related
finite element equations are given. Through out the chapter, the material under con-
sideration is assumed to be isotropic and homogeneous. The detail element matrices
are derived using the first order isoparametric elements. The formulations may be
extended to derive the element matrices based on the higher order elements.

10.2 Hamilton’s Principle

Consider an elastic continuum under isothermal conditions, but loaded on its bound-
ary surface by the traction forces. At an arbitrary point of the continuum, the traction
force vector 7; and the body force vector X; act. The virtual work of these forces
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due to the virtual displacement Su; is [1]
sSW :/tf&uidSvL/ X;du;dV (10.2.1)
s 1%

where T; is the component of the traction vector at a point on a plane the outer unit
normal vector of which is 7. From Cauchy’s formula [2]

tin =0ojjn; (10.2.2)

where o;; is the stress tensor at the point. Substituting Eq. (10.2.2) in the first term
of Eq. (10.2.1) and using the Gauss integral theorem to convert the area integral into
the volume integral gives

/tl-"cSuidAz/o,-januidA=/(aij8ui)7jdv. (10.2.3)
A A \%4

Carrying out the differentiation, gives

/I?(SuidA:/ oij,szuideL/ O'ij(sui,jdv. (10.2.4)
A \4 Vv

The strain tensor is
€ij =% (uij+ujp). (10.2.5)

Considering the above relation, and also the symmetry of the stress tensor, the
last term in Eq. (10.2.4) can be written as

1
/ ojjdu; ;jdV = / E(o,-jéu,-,j +0jiduj;)dV =
1% v
1
/ Oij _(aui,j + SMj)i)dV =/ O'ijSEijdV. (10.2.6)
v 2 %
Substituting Eq. (10.2.6) in Eq. (10.2.4) and using the equilibrium equation
0ij,j + Xi = pii; (10.2.7)
where p is the mass density yields
/tl-"SuidA = —/ (Xi —,()I:ii)(SuidV—i—/ O'ij(SE,'jdV (10.2.8)
A 1% 1%

or

/a,-jSEijdV+/ p,jisuidvz/ Tl.”aul-dA+/ Xidu;dV. (10.2.9)
Vv Vv A Vv
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The first term on the left-hand side of Eq. (10.2.9) is
/ 0ijd€;jdV = 8/ UpdV = 8U (10.2.10)
v v

where Uy is the strain energy function per unit volume, and U is the total strain
energy function. The time integration of Eq. (10.2.9) in the time interval #; to #,

leads to
t 5] 1)
/ /3U0dle-‘r/ /piiiSMidthZ/ /Ti”au,-dAdt
11 \% I3 \% 1 A
n
+/ /XiSMidth. (10.2.11)
131 \%4
The inertia term may be written as
/ /,ou Su;dVdt = /(/ pliidu;dt)dV
=/pu,-3u,-|§3d\/—/ /puiaaidvm
\4 131 \4
123 n
—/ (5/ LpuiiidV)ydt = —/ SKdt (10.2.12)
151 |4 141

where the following conditions are used:
Sui(t)) =0  Su;(nn) =0. (10.2.13)

The conditions (10.2.13) are used, since the values of u; att = ¢; and t = , are
known. The kinetic energy is defined as

K = %/ puj;dV. (10.2.14)
v
Calling the virtual work of the traction force 7; and the body force X; by §A as
SA :/ t{’éuidA—i—/ Xidu;dVv (10.2.15)
A v
and substituting Eqgs. (10.2.15) and (10.2.12) in (10.2.11) yields

n

/ S(U—- K — A)dt =0. (10.2.16)
n

Calling the Lagrangian by
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L=K-U, (10.2.17)

Equation (10.2.16) becomes
%) 15
8/ Ldt + 8/ Adt =0 (10.2.18)
1 11

where the variation symbol is placed before the time integration, as the virtual oper-
ator applies only to the space coordinates. Equation (10.2.18) is called Hamilton’s
principle, and expresses the law of dynamic equilibrium of a system. For elastody-
namics problems, the expression

F=L+A (10.2.19)

is the functional, in which its stationary value is associated with the dynamic equilib-
rium of a system. This variational principle is reduced to the principle of minimum
potential energy by setting the kinetic energy expression equal to zero. The resulting
expression is the functional of the elasto-static problems and may be used to derive
the equilibrium equations of the elasticity problems.

10.3 Basic Relations of Linear Elasticity

The infinitesimal theory of linear elasticity is based on the linear strain-displacement
relations and Hooke’s law. The strain-displacement relations of the infinitesimal
theory of elasticity in the rectangular Cartesian coordinates are

_ ou 1 Ou ov

T TGt
av 1 (Bv n Bw)
€yy = — €y; =5 (—+ —
Ty T T )
ow ;| 0w Ou
= — =5(—+— 10.3.1
€2z 9z €x = 3 (3)6 + 32) ( )

where u, v, and w are the displacement components along the x, y, and z axes,
respectively. Equation (10.3.1), in matrix form, are
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- 5 _
Py 0 0
Yo
0 —
€xx dy
0
of lo 0o 2 |f
S T 0z v (10.3.2)
€xy L= 1 79
29y 29 w
€y; y X
€ 9 0
zx 0 s — 2 —
2 9z 2 88y
0 1
1= 9 7
L 29z 2 9x
Calling
{G}T = (€xx €yy €z €xy €yz €41 )
Y =(uvw) (10.3.3)
and the mathematical operator [d] by
W 0 0
S
0 il
dy
0 0 %
[di=] 3 | 9 < (10.3.4)
35,2 9: 0
y X
9,0
0 32357
0z 88)1
0 1
1= 9 17
| 29z 2 9x
the strain-displacement relations (10.3.2) are written as
{e} = [dI{ S} (10.3.5)

The stress-strain relations of linear elasticity from Hooke’s law in terms of the
modulus of elasticity E and Poisson’s ratio v are

1

€xx = E [oxx — U(ny +0z2)]

€yy = E [Uyy —v(0zz + Oxx)]

1

€2z = E [0z — v(oxx + 0yy)]
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Tyy
=36
T}‘Z
“: =26
Tzx

— Zx 10.3.6

€zx 2G ( )

where o denotes normal stress, T stands for the shear stress, E is the modulus of
elasticity, v is Poisson’s ratio, and G is the shear modulus, which is related to E and

v as
E

G=—. (10.3.7)
2(1 +v)

Solving Eq. (10.3.6) for the stresses and writing them in matrix form gives
{o} = [Dl{e} (10.3.8)

where
(0} = (04x Oyy 07z Tay Tyz Tox )- (10.3.9)

The matrix of elastic constants [ D] is obtained as

1
E(1—v) 1

[PT= (I4+v)(1=2v) sym. T

(10.3.10)

10.4 Finite Element Approximation

Consider a three-dimensional simplex base element (e) in the rectangular Carte-
sian coordinates, as shown in Fig. 10.1. Nodal coordinates are known in the global
xyz—coordinates. We apply the finite element approximation to the displacement
field. The resulting equations are then called the displacement based finite element
model. In this model, the displacement fields for u, v, and w are compatible and their
continuity in the solution domain is insured. In addition, the kinematical boundary
conditions are easily applied. On the other hand, to satisfy the traction boundary
conditions, they must be transformed into the displacement components, providing
a complicated formulation. That is, while the solution domain is described in terms
of the displacement components, the boundary conditions are given in terms of the
forces. To handle the forced boundary conditions, the relationship between the trac-
tion and displacement components must be used to provide a proper formulation to
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Fig. 10.1 Three-dimensional z
simplex element m

satisfy the forced boundary conditions. For a general discussion of the displacement
and stress-based finite element modeling, the reader is referred to the discussion
given in [3, 4].

Considering the displacement formulation, the displacement components u, v,
and w may be approximated by linear shape functions as

u(x,y,z,1) = a1 +axx + azy + asz
v (x,y,2,1) = as + aex + a7y + asz
w©(x, y,2.1) = ag + ayox + a1y + anz (10.4.1)

where a; through aj, are functions of time and are found in terms of the nodal
displacements as

u="U; u="U; u= U u="U,
X =X X=X X =X X =Xm (10.4.2)
Y =i y=Yj Y=Yk Yy =DYYm
2=z z=7zj z=1z 2=1m

The same conditions are considered for v and w. Conditions (10.4.2) are substi-
tuted in the first of Eq. (10.4.1). Four equations are obtained for the four unknowns
ay through a4, which are then solved and obtained in terms of U;, U}, Uy, and U,.
Similar conditions are used for v and w and are substituted in the second and third
of Eq. (10.4.1), through which the constants a5 through a, are obtained in terms of
the nodal values of v and w. The results are

w9, y, 2,0 = (N(x,y,2) ) U @)}
VO, y,2,0) = (N(x,y,2) )V (1))
wx, y,z,0) = (N(x, y,2) YW (@)} (10.4.3)

where
(N)© = (N; Nj Ny Ny, )© (10.4.4)
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and the shape functions are

ai +bix +ciy +diz

N; =
' 6V
aj +bjx +cjy +de
N; =
6V
ay + bix + cry + diz
Ny =
6V
b d
N,, = dm T omx ;FVC’"y +om2 (10.4.5)

where the constants a, b,, ¢, and d,, r = i, j, k, m are functions of the nodal coor-
dinates, (see Chap.4). The approximations given by Eq. (10.4.3) are of Kantrovich
type, in which space and time are separated in the given form. We transfer Eq. (10.4.3)
into the matrix form as

(e)

u
(19 ="1y = [N]1©9{¢}@ (10.4.6)
w
where
N,OONjO O Nt O ON,, O O
[INJ9 =] ON;O ON; O ONO O Ny O (10.4.7)
0 0N O ONjO 0 N. 0 0 Ny,
and
(eYOT = (&) (¢)) (k) (m))- (10.4.8)

Here, the matrix {¢(¢)} is the nodal displacement matrix which is a function of
time, i.e.,

Uiy |
a9 =1vio t . (10.4.9)
Wi (1)
From Eq. (10.3.5), the strain matrix is
e} = [d1{ ).

Substituting from Eq. (10.4.6) gives
(€)@ = 1IN (£}

Calling
[B]® = [d][N]“ (10.4.10)
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Fig. 10.2 Distributed and z
concentrated nodal forces

Ll 4
x
the strain matrix for the element (¢) becomes

(€} = [B19{¢}©. (10.4.11)

For the simplex element shown in Fig. 10.1, the elements of matrix [ B] are

bi 0 0 b; O O b O O b, O O

Ci 0 0 ¢ 0 0 ¢ 0 0 Cm 0

[B](e)—i 0 0 4 0 0 4 0 0 d O 0 dy

T 6V | ci/2bi/2 0 ¢j/2bj/2 O cx/2bk/2 O cn/2bu/2 O

0 di/2¢i/2 0 djj2c;j/2 0 di/2ck/2 0 dn/2cp/2

di/2 0 b;/2d;j/2 0 bj/2d/2 0 bi/2dn/2 0 by/2
(10.4.12)

This matrix is constant for the simplex elements in the rectangular Cartesian
coordinates.

To obtain the finite element solution, Hamilton’s principle is used. From
Eq. (10.2.9), we have

/O‘jjﬁé,’jdv-i-/ pit','au,'dVZ/tin(Su,'dA+/ Xiéu;dV. (10.4.13)
\% \% A \4

The matrix form of this equation for the base element (e) is
| wertoiav [ perTifav = [ or)Tira
V(e) V(e) Ae)
+ ZS{;}T{FC} +/ {(Sf}T{X}dV (10.4.14)
i=1 Vi)

where the surface traction forces are divided into two types, the distributed traction
force over the boundary of the element {F,;}, and the concentrated force acting on a
concentrated nodal point on the element boundary {F.}, as shown in Fig. 10.2.
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The virtual work of the distributed force is obtained by its product with the distrib-
uted virtual displacement 6{ f'}, while the virtual work of the concentrated boundary
force is obtained by its product with the nodal point displacement matrix §{¢ }. In the
latter case, it is convenient to choose a nodal point under the point of effect of the
concentrated force.

Substituting from Eqgs. (10.3.8), (10.4.6), and (10.4.11) in Eq. (10.4.14) gives

sy’ (/V( [B1"[D] [B]dV) ey +8{e)" (/V()p[N]T[N]dV) {¢}

=5(¢g)” " )[N]T{Fd}dA +3{4}T/V( )[N]T{X}dv +8{) D (F
(10.4.15)

Itis noted that the matrix {¢ } is the nodal point displacement matrix and is independent
of coordinate variables, and is thus taken out of the integral sign. Since §{¢} is the
virtual displacement of the nodal points and is arbitrary, it is omitted from both sides
of Eq. (10.4.15). Adding up the element equilibrium equations for all the elements
in the solution domain, Eq. (10.4.15) provides

[MI{A} + [KHAY = {Fpr) + {Fa} + {Fe) (10.4.16)

where [M], [K], and {F'} are the total global mass, stiffness, and force matrices and
{A} is the total unknown nodal displacement matrix. The mass, stiffness, and force
matrices of the base element (e) are

[m]© = / o[NTT[N1dV
V(e)
[k]© = / [B1"[D][B1dV
V(e)
(F5r)© = / INTT(X)dV
V(e)

) = / INT (fa)dA
Ale)
[} = {f.}©. (10.4.17)

Equation (10.4.16) is a system of second order, coupled with an ordinary differ-
ential equation in time. It is called the finite element semi-discretized equilibrium
equation, since although the nodal displacement matrix {¢ } is discretized in space, it is
a continuous function of time. The dynamic equilibrium Eq. (10.4.16) may be solved
by means of modal methods or direct integration techniques in the time domain. The
first method uncouples the equations for the natural frequencies and their associated
mode vectors. The second method establishes a time integration technique, and with
a proper time increment, marches through time, as described in Chap. 7.


http://dx.doi.org/10.1007/978-3-319-08037-6_7

10.5 Two-Dimensional Elasticity 219

10.5 Two-Dimensional Elasticity

In the classical theory of elasticity, reduction from the three-dimensional theory to the
two-dimensional theory is through the plane stress or plane strain assumptions. Each
of these assumptions has valid physical applications. The finite element formulation
based on the displacement components is discussed in this section.

10.5.1 Plane Strain Condition

According to the plane strain assumption, the normal and shear strains in the
z—direction are zero, i.e.,

€7 = €x; =€y, =0. (10.5.1)
Setting €., = 0, the normal stress in the z—direction from Hooke’s law becomes

07z = V(0xx + 0yy). (10.5.2)

The strain-stress relations, using Eq. (10.5.2), are

I+v
€xx = E [(1 — V)Oxx — VUyy]
14+v
=% [ =)oy — vou]
Txy 2(1 4+ v)
€xy = ? = T Txy- (1053)
Solving for the stresses gives
{o} = [Dl{e} (10.5.4)
in which the elastic constants matrix is
1 &= 0
E(l — =y
pj=—E4=v b T g | (10.5.5)
1+v)(1—2v) 0 0 J=2v
2(1—v)
The strain-displacement relations for the two-dimensional plane strain condition
reduce to
ou av 1 [ 0u n av (10.5.6)
€ = — € = — € = 5 - - o
e Y dy w2 dy  ox

In matrix form,

{e} =1d){f} (10.5.7)



220 10 Elasticity, Variational Formulations

where
o
[dl=| 0 > (10.5.8)
1 0 1 0
2 9y 2 9x
and
Y =wv) {e}] = (exx €y €xy). (10.5.9)

Now, the finite element solution requires the discretization of the solution domain
into a number of elements. Considering the base element (e), the displacements u
and v are approximated as

u@(x, y, 1) = (N(x, ) U @)}
v x, y, 1) = (N(x, )V (1)} (10.5.10)

where
(N(x, y))© = (N; Ny ... N)© (10.5.11)

and r is the number of nodal points in the element (e). Equation (10.5.10) in matrix
form is written as
(19 =N} (10.5.12)
where (¢;) = (U; V). Substituting Eq. (10.5.12) in Eq. (10.5.7) gives
(€} = 1d1{ ) = [N (). (10.5.13)

Calling
[B1 = [d][N]® (10.5.14)

the strain matrix for the element (¢) becomes
(€} =B}, (10.5.15)

For example, matrix [ B] for a simplex two-dimensional triangular element, using
the linear shape function, is

[0 b 0 om0 9
[B]© = A 0 ¢ 0 ¢ 0 ¢ ) (10.5.16)
¢i/2bi/2¢j/2bj)2 ck/2 by/2

This matrix is used to evaluate the stiffness matrix.
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10.5.2 Plane Stress Condition

The Plane stress condition is assumed when
Oy = Txz = Ty, = 0. (10.5.17)
This condition results in non-zero strain in the z— direction as
v

€z = E (O'xx'i‘o'yy)' (10.5.18)

The stress-strain relations from Hooke’s law are

1
€xx = E (oxx — 1)O’yy)
€yy = £ (oyy — voxx)
1 2(14+v)
ny = E Xy = T ‘L’xy. (10519)

Solving for the stresses gives the stress-strain relations in matrix form as
{o} =[Dl{e} (10.5.20)
in which the matrix of elastic constants for the plane stress condition becomes

1v O

vl 0 |. (10.5.21)
1—

00 T"

[D]=1_v2

The strain-displacement relations remain the same as Eq. (10.5.7). Defining the
shape function matrix [ N] for the displacement matrix { f}, as given by Eq. (10.5.12),
the strain-displacement relations in terms of the shape function matrix become similar
to Eq. (10.5.15). The matrix [B] for the base element (e), assuming linear shape
function, becomes identical with Eq. (10.5.16).

The stiffness matrix [k] for the base element (e) is defined by Eq. (10.4.17) as

[k]© = / [B1T[D1[BldV (10.5.22)
Vie)

For a two-dimensional problem dV = hdA in which & is the thickness of the
element. The elasticity constant matrix [ D] for the plane strain condition is given by
Eqg. (10.5.5), and for the plane stress condition is given by Eq. (10.5.21). The final
dimension of the stiffness matrix [k] for a linear two-dimensional triangular element
is 6 x 6.
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Fig. 10.3 An element of axisymmetric body under axisymmetric load (v = 0)

10.6 Axisymmetric Elasticity

Consider an elastic body of revolution under axisymmetric loads. We describe the
geometry of the body in the cylindrical-coordinates with r, 8, and z indicating the
radial, circumferential, and axial directions, respectively. The displacement compo-
nents along the coordinates r, 6, and z are called u, v, and w, respectively. Since
the body has three-dimensional configuration, both the axial stress and strain are
non-zero, while the shear stresses and strains in 76 and 6z-directions are zero due
to the axisymmetric geometry and load distribution. Therefore, the stress and strain
matrices are

(o) = (0yr Ovp Oz Trz)
(€) = (€rr €00 €72 Erz>~ (10.6.1)

The strain-displacement relations for this type of loading are

ou
€rr = 5
u
€pp = —
r
Jw
€z = a_z
ou ow

Figure 10.3 shows an element of the body in the cylindrical coordinates with the
direction of the stresses and displacements. Equation (10.6.2) in matrix form is
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(e} = [d]{ f} (10.6.3)
where
u
(1= [ w]
3
— 0
Blr 0
d=| , 2 (10.6.4)
19 lazi
29z % or

1
€rr = E [O'rr — v(ogg + Uzz)]
1
€0 = % [o96 — v(0vr + 022)]
1
€7 = E [Ozz - V(Grr + 000)]
1 2(1+v)
Erz = 5 ‘L'rz = T 'L'rz. (1065)

Solving Eq. (10.6.5) for the stresses yields the relations in matrix form as
{o} =[DNe} (10.6.6)

where the elasticity constant matrix is

D= —— - v v 10.6.7
PI=arna- [ 1o (1069
0 0 0 1—21)

2(1-v)

The finite element approximation of the body is in the rz-plane, which is the plane
of revolution. The stresses and strains are all independent of the angle 6. Thus, an
axisymmetric plane of the body in the rz-plane is sufficient for the analysis. Now,
the section of the body in the rz-plane may be considered and drawn in the global
rz-coordinates and divided into a number of elements. A base element (¢) in the
rz-plane is shown in Fig. 10.4.

Assuming the shape function N for the displacement vector, the displacement
matrix in terms of the nodal displacement matrix {¢} and shape function [N] is
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Fig. 10.4 An element in z
rz—plane k
1
5
-
Substituting Eq. (10.6.8) in (10.6.3) gives the strain matrix of element (e) as
{6}(6) _ [d][N](e){é'}(e) (10.6.9)
or
{E}(e) — [B](E){é—}(e) (10.6.10)

where [B]© = [d][N]®. Due to the nature of the operator matrix [d] in cylindrical
coordinates, as given by Eq. (10.6.4), matrix [B] is in general a function of the
variable r. For the simplex linear triangular element, matrix [NV] is

@ [N 0N 0N O
[N] _[0 Ny O N; O N (10.6.11)

where
Ny = a; +bir + ¢z
2A
N; = aj+bjr+cjz
2A
b
N = O ¥ Gz (10.6.12)
2A
Substituting Eq. (10.6.12) in Egs. (10.6.8) and (10.6.9) gives
bi 0 b; 0 b O
1 2AN; 2AN; 2AN;
B =— | 7 0757 0570 (10.6.13)
2A 0 ¢ O Cj 0 ¢k
b;
2

< G obioa b
2 2 2 2 2

Matrix [ B] for the axisymmetric elements, even when a triangular linear element
is considered, is a function of the variable r and is not constant. The element integra-

tions, as required for the stiffness and force matrices, are more complicated and need
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special mathematical techniques. One technique is to approximate the variables r

and z at the centroid of the element. For example, the stiffness matrix for the element
(e) is approximated as

(k1) = / (BY"[DI[B1dV = [B]' [DI[B] | aV (10.6.14)
V(e) Vie)

where [B] is evaluated at the centroid of the triangular element (¢). The integral of
volume is

V =27 RA. (10.6.15)

Here, A is the cross-sectional area of the element (¢), and R = (r; + r i +re)/3.
The final approximate value for the element matrix [k] is

[k1© = [B]" [D][B127 RA. (10.6.16)

The body force matrix can be evaluated using area coordinates. By the definition
{fer}® =/ (N7 {X}dV. (10.6.17)
Vie)

For the axisymmetric condition

=

{fr}® =/() [§]2nrdA (10.6.18)
V(e

=X o
cZXozo

oz
=

where R and Z are the components of the body force vector in the r and z-directions
at the centroid of the element. In terms of the area coordinates

rLi O
0 VL1

L, 0 |[R
{fBF}“):/A() r02rL2 [Z}anA. (10.6.19)
e

rLy 0
0 rlLj

Substituting for r its expression in terms of the area coordinates as

r=RiLi+ RjLy+ RyL3 (10.6.20)
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in Eq. (10.6.19) results in integrations of terms of the type Ll.2 and L;L;. In
Eq. (10.6.19), R;, R, and Ry are the nodal coordinates of nodes i, j, and k, respec-
tively. Using the rule of the area integration yields

(2R; + R; + ROR
(2R; + R} + ROZ
27A | (Ri +2R; + RO)R
(e) i J k
{fBr} = B (R + 2R, + ROZ | (10.6.21)
(Ri + Rj +2Rp)R
(Ri + Rj +2Rp)Z

Expression (10.6.21) is the exact integration of the body force matrix when a
linear shape function in a triangular element is used.
The force matrix related to the distributed traction force is

{fa}@ = /A( )[N]T{fd}dA. (10.6.22)

In terms of the area coordinates, we have

L 0
0 Ly
L 0 | [
(e) _ 2 r
{fa} —/A(e) 0 L, {fz]dA. (10.6.23)
Ly 0O
0 Lj

Assuming a triangular element with external constant distributed traction forces
acting on its ij —side, Eq. (10.6.23) becomes (N; = 0 on ij—side)

rL; O
0 rLq
(e) _ rLy 0O fr B
{fa} _/L,-,- 0 rL, [fz 2wdL;; (10.6.24)
0 0
0 0

where d A = 2nrd L. Using the rule of length integral, we get

(2Ri + R;j) fr
(2Ri + Rj) [
P76 | (Ri+2R) L -
0
0

where L;; is the length of the ij—side of the element.
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Fig. 10.5 An elastic rod under static load

v w=100N/m
F=200N

I el L T
C(5.3)

(2)

(1) .
A(0.0) ] x

B(5.0)

Fig. 10.6 A plane stress elastic domain

10.7 Problems

1.

Reduce the general form of the finite element Eq. (10.4.15) to the one-dimensional
case. Obtain the members of the stiffness and mass matrices for the base element
(e) with a simplex linear shape function.
An elastic rod of cross-sectional area A, length L, mass density p, and the modules
of elasticity E is assumed. The rod is divided into two elements of equal length,
as shown in Fig. 10.5.
The rod is under static load. Compute the members of the global stiffness matrix
for the simplex linear element.
Reconsider Problem 2, where, at the free end node 3, the dynamic load F = Fy
sinwt is acting. Derive the members of the global mass, stiffness, and force
matrices of the bar.
Use Eqgs. (10.5.5) and (10.5.16) and obtain the elements of the stiffness matrix of
a plane strain condition.
For a triangular simplex element, use Eq. (10.4.15) to derive the members of the
element mass matrix.
For a triangular element of axisymmetric elasticity, derive the elements of the
stiffness matrix using Eq. (10.6.14).
Consider a rectangular domain in the plane stress condition, as shown in Fig. 10.6.
The coordinates of the node are shown in centimeters on the figure. The dis-
tributed force w = 100 N /cm is applied on the top surface of element (2) and a
horizontal force ' = 200 N is acting on node C. Nodes A and B are fixed. The
domain is divided into two elements. Write the global stiffness and force matri-
ces, and using the algorithm of wiping rows and columns, find the horizontal and
vertical displacements at nodes C and D.
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Chapter 11
Torsion of Prismatic Bars

Abstract This chapter deals with the torsion of prismatic bars. Bars of general
cross-sectional area are considered and the equilibrium equation of the bars under
torsional couple is derived, using the concept of stress function. The final form of the
equilibrium equation is that of the Poisson equation, where its functional is similar
to that of the elastic membrane. Employing a base element (e), the Ritz method is
used to derive the stiffness and force matrices of the finite element equation.

11.1 Introduction

The bars of the general cross-sectional area may be under the application of a torsional
moment. The stresses, as the result of the torsional moment, are pure shear stresses
acting on the cross-section of the bar. For the bars of the circular cross-sectional
area, the shear stress is obtained using the classical theory of strength of materials.
This subject is usually studied under the topic of power transmitting shafts. For the
bars of triangular, elliptical, and rectangular cross-sections, the analytical methods
of analysis are available in the theory of elasticity. However, there are no analytical
solutions for shear stresses produced by the applied torsional moment for bars having
other geometrical types of cross-sections.

The governing equation of the bars under the torsional moment is Poisson’s equa-
tion in terms of the stress function. The analytical solution of Poisson’s equation is
simple, as the standard method of separation of variables may be used. To obtain
the constants of integration, however, the boundary conditions should be used. The
constants of integration, using boundary conditions, may be obtained only for the
classical types of cross-sectional geometries, such as circle, ellipse, triangle, and
rectangle.

For bars of general cross-section under torsion, the finite element method may
be used for stress analysis. The Galerkin or Ritz method may be applied, as both a
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boundary value problem and the variational formulations for the torsion problems
exist.

11.2 Equilibrium Equation for Torsion of Bars

Consider a prismatic bar of general cross-sectional area and length L. The cross-
section is constant along the bar. The bar is fixed at one end in the xy—plane, as
shown in Fig.11.1. At distance z away from the fixed end, the torsional couple T
is applied. Due to the applied couple T, the bar twists at an angle of «. Calling the
angle of rotation per unit length by 6,

a =0z, (11.2.1)

we assume that both 6 and « are small. The section of the bar at distance z from the
fixed end is shown in Fig. 11.2.

The point P on the cross-section with coordinates (x, y, z) moves to point P’ (x +
u, y+v, z+ w) after deformation. The projection of P’ on xy—plane is P/, as
shown in Fig. 11.2. The angle of rotation between lines O P and O P| is a. If « is
small, then cos ¢ ~ 1 and sin « = «, and the components of displacements are

u=rcos(f+a)—rcosp=rcosacosf —rsinasinf —rcosp

N —ya
v=rsin(f+a)—rsinf =rsinaecosf +rcosasinff —rsinf

R Xa. (11.2.2)

Combining with Eq.(11.2.1), gives us

u=—0yz
v =0xz. (11.2.3)

The deflection component along the z—axis is denoted by w and is called the
warping function, and is assumed to be a function of x and y, as w = w(x, y). The
strain components are thus

€xx = €yy =€z = €xy =0

€xz =

|
o=
/N
Q| @
S
|
<
>
N

€y, = (11.2.4)

|
=
/X
Q| @
&g
_l’_
=
>
N

Using Hooke’s law, the stresses are
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Y
z
x

Fig. 11.1 A prismatic bar under torsional couple

Fig. 11.2 Cross-section of Y

the bar at point z from the 1

fixed end Y

I?(x+m:.,y+v.z+w)

P(x,y.2z)

x

Oxx = Oyy = Ozz = Txy =0

4. =G (% + x@) . (11.2.5)

The equilibrium equations of the three-dimensional theory of elasticity, in the
absence of body force, are

00y x N 0Txy n 0Ty

=0
ax ay 0z
0Tyy oy, 0Ty
=0
ax + ay * 9z
0Ty,  0Ty; = 00y
- = 0. 11.2.6
ox + ay + 0z ( )

Substituting the stresses from Eq. (11.2.5) into (11.2.6), the first two equilibrium
Eq. (11.2.6) are identically satisfied and the third equilibrium equation yields
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92w 9w

Vw=— 4 —
ax2 dy?

—0. (11.2.7)

The solution to Eq.(11.2.7) results in an expression for the warping function.

The compatibility equations for linear elasticity from Eq.(9.2.12) are now used
to relate the strain components. Four compatibility equations are identically satisfied
using the strain components (11.2.4), and the last two are

0 [0ey; D€y _0
dx \ ox ay )

a dey d
_ (%, %) g, (11.2.8)
ay ox ay
Integration yields
d a
Sz Tz _ const = 6. (11.2.9)
0x dy

Substituting from Hooke’s law

1
ze = E sz
1
€= 35 e (11.2.10)

the compatibility Eq.(11.2.9) becomes

0Ty; 0Ty
ax dy

=2G6. (11.2.11)

Now, introducing the stress function ¢ such that

¢ d¢
szzg Tyzz—a, (11212)
the compatibility Eq.(11.2.11), in terms of the stress function, becomes
3’¢ %9
V= — 4+ — = —2G6. 11.2.13
¢ a2 T 5y2 ( )

The solution to Eq. (11.2.13) for the stress function ¢ provides the expressions for
the shear stresses from Eq. (11.2.12). However, the solution of Eq.(11.2.13) for the
stress function ¢ needs boundary conditions to evaluate the constants of integration.

The general form of the expressions for boundary conditions in three-dimensional
elasticity for a body under surface tractions is
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Oxxl + Toym + 1y on =T,
Tyl +oypym +1yn =T,
Todl +Ty;m 4o n =T, (11.2.14)

where [, m, and n are the cosine directions of a unit outer normal vector to the
boundary, and 7, Ty, and T are the components of the traction force acting on
the boundary. For the case of torsion, the first two of Eq.(11.2.14) are identically
satisfied, and the third equation is reduced to

Tl + Tyom = 0. (11.2.15)

For the torsion problems, the traction force on the boundary is zero. From Fig. 11.3,
the cosine directors of unit outer normal vector 7 to the boundary of the bar cross-
section in x y—plane are

d
l=cos(n,x)=d—y
s

d
m = cos (1, y) = d—x. (11.2.16)
S

Substituting Eqs. (11.2.16) and (11.2.12) into Eq. (11.2.15) gives

8¢ dy ¢ dx d¢

— —=—= (11.2.17)
8y ds ' 9x ds ds
Integrating with respect to s yields
¢ = cte on the boundary . (11.2.18)

Since the derivative of ¢ with respect to x and y has physical meaning (sheer
stresses), the value of ¢ itself on the boundary may be selected as any constant, such
as zero. Thus, the value of the constant in Eq.(11.2.18) is selected as zero.

The torque acting on the section of the bar is computed from the expression

2//(fyzx — Tyzy)dxdy
// (—x—i—a— y) dxdy. (11.2.19)

Integrating by parts and making use of the boundary conditions gives us

T = 2//¢dxdy. (11.2.20)

This equation relates the applied torque 7 to the stress function ¢.
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11.3 Finite Element Solution

The equilibrium equation of torsion of prismatic bars in terms of the stress function
¢ is identical to the membrane equation. All the finite element techniques that were
discussed for the solution of elastic shallow membrane problems also apply to torsion
problems.

The equilibrium equation for the torsion of the bar from Eq. (11.2.13) is

V2p = —2G6. (11.3.1)

From the membrane analogy, the expression for the functional V is

2 2
V= %/ [(%) + (%) + G@d)] dxdy. (11.3.2)
p| \0x ay

The boundary condition for ¢ is
¢=0 on 0D (11.3.3)

where D is the solution domain, being the cross-sectional area of the prismatic bar,
and 9D is its boundary.

To solve the torsion problem by the finite element method, the cross-section of
the prismatic bar is divided into an arbitrary number of elements with a proper
approximating shape function for the base element (e). The finite element model is
obtained through the Galerkin method, if Eq.(11.3.1) is used. On the other hand, the
variational formulation based on the Ritz method may be used, if the finite element
method is based on the functional expression given by Eq. (11.3.2). These techniques
were described in Chap. 6 for conducting heat transfer problems.

To obtain the finite element model, the solution domain is divided into a number
of elements and the shape function for the stress function ¢ in the base element (e)
is approximated as

¢ (x, y) = (N (x, )@}, (11.3.4)

where N (x, y) is the approximating function for the stress function in element (e).
Using the variation formulation and the Ritz method, Eq.(11.3.4) is substituted in
the expression for the functional in Eq. (11.3.2) and the Ritz method is applied as

oV % aV©
i = ¢
NE

_ 06 D (06N 06 D (08) o 06T,
_Z/D(e)[ax ;i (3x)+3y 00 (ay)+G0 a¢i]dxdy_0,

e=1
(11.3.5)
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Fig. 11.3 Cross-section of Y,
the prismatic bar in xy—plane

x
dx
7
This leads to the final form of the finite element equilibrium equation
[K){®} = {F} (11.3.6)
where the element stiffness and force matrices are
(k] = / [B]"[DI[B1dV
D(e)
(1 = Ge/ {N}dxdy (11.3.7)
D(e)

where [D] = [/] is the unit matrix. The equilibrium Eq. (11.3.6) is subjected to the
boundary conditions ¢ = 0.

Once the stress function matrix {¢} is determined from the solution of Eq. (11.3.6),
the shear stresses ,; and 7y, can be determined from Eq.(11.2.12) as

3¢ 3¢
Txz = 5 Ty = —a. (1138)

For element (e), the shear stresses are

0
19 = % (N){ph®

Tl = <d—N>(e){¢}(e). (11.3.9)
dy
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Fig. 11.4 A prismatic bar of

. y
rectangular cross-section ©3) (2.3) (4.3)
@ 4)
(1) (3)
X
(0.0) (2,0) (4,0)
Similarly
dN
1@ — (T @gy@), (11.3.10)
dx

vz

Since the element shape function and the nodal values for ¢ in element (e) are
known, the distribution of the shear stresses 7, and 7, in the element (e) are found

from Eqs. (11.3.9) and (11.3.10).

11.4 Problems

1. Consider a prismatic bar under torsional couple 7". The Cross-section of the bar is
divided into a number of triangular elements. Obtain the members of the stiffness

and force matrices of the base element (¢e).

2. A prismatic bar of rectangular cross-section under the torsional couple 7 is con-
sidered. The cross-section of the bar is divided into four elements, as shown in

Fig. 11.4. Determine the global stiffness and force matrices.

Further Readings
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Chapter 12
Thermoelasticity

Abstract The chapter begins with an explanation of the basic governing equations
of linear thermoelasticity, including the equations of motion, the linear thermoelastic
constitutive law, and the kinematical relations. Using the governing equations, the
Navier equations of motion in terms of the displacement components are derived. The
condition for the case of zero thermal stresses is then discussed. The displacement-
based finite element equations in conjunction with the heat conduction equation are
derived employing the Galerkin method. The final of the finite element equation of
motion is reduced to the case of two-dimensional thermoelasticity problems, where
the element matrices for the base element (e) are derived. The dynamic finite element
equation is further reduced to the one-dimensional case, where for a one-dimensional
simplex element the detail of element matrices are calculated.

12.1 Introduction

In general, the variation of the temperature field within an elastic continuum results
in thermal stresses. The influence of the temperature field in the governing equations
of thermoelasticity is through the constitutive law. The theory of linear thermoelas-
ticity is based on the linear addition of thermal strains to mechanical strains. While
the equilibrium and compatibility equations remain the same for elasticity problems,
the main difference rests in the constitutive law. On this basis, many techniques that
have been developed for solving the elasticity problems are also applicable to the
thermoelasticity problems. There are, however, special classes of thermoelasticity
problem, such as the coupled thermoelasticity problem, which require entirely dif-
ferent mathematical approaches and means of analysis. Even for these classes of
problem, some of the basic equations remain the same. It is, therefore, necessary to
define the basic laws of thermoelasticity and to derive the governing equations. In
this chapter, the thermoelastic material is assumed to be homogeneous and isotropic,
with constant material properties.
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12.2 Governing Equations

The general governing equations of the classical theory of thermoelasticity are the
equations of motion, the compatibility equations, and the constitutive law of linear
thermoelasticity. The equation of motion was derived and is given by Eq. (9.2.8) as

oij,j + Xi = pii; inV. (12.2.1)

For the infinitesimal theory of thermoelasticity, the displacement gradient is small,
so that the strain tensor ¢;; becomes linear as

€ij =5 wji+uij). (12.2.2)

In the classical theory of linear thermoelasticity, the components of the strain
tensor are linear functions of the components of the elastic strain tensor and thermal
strain; that is [1],

€j = efj + 65 (12.2.3)

where el‘] denotes the elastic strain and 65 stands for the thermal strain. Consider a
cubic element the temperature of which is raised from the reference temperature 7y,
at which strains and stresses are zero, to the temperature 7. The sides of the element
are free from traction. The thermal strain of the element due to the temperature
change is

ey = a(T — Tp)dj; (12.2.4)

where T — Ty is the temperature change, and « is the coefficient of linear thermal
expansion. The relation (12.2.4) represents a property of an isotropic body, in which
a temperature change 7' — Ty results in no change of shear angles, the only result
being a change of volume in the element.

The elastic strain tensor is linearly proportional to the stress tensor as

e

% =35G (0ij Okkdij) (12.2.5)

v
1+v
where G is the shear modulus and v is Poisson’s ratio. Equation (12.2.5) is known

as the constitutive law of linear elasticity, or Hooke’s law. From Eqs. (12.2.4) and
(12.2.5), the total strain tensor is

V
(0ij — —— owkbij) +a(T — Tp)d;;. (12.2.6)

€ij 14+v

T 26

Equation (12.2.6) is called the constitutive law of linear thermoelasticity. Solving
this equation for the stress tensor o;; gives
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+v

0ij =2G |:‘5ij + (€xk — (T — To))&y} . (12.2.7)

v
1—2v
Itis sometimes useful to write the stress-strain relations in terms of Lamé constants

XA and u, where u is the same as shear modulus G. In terms of Lamé constants,
A =2Gv/(1 —2v) and u = G, the strain tensor is related to the stress tensor by

1

ﬂ(aij okkdij) +a(T — Tp)d;;. (12.2.8)

A
€ = _
Y 3+2u

Solving for the stress tensor o;;, gives
0ij = 2ue€ij + [Aegp — aBA +2u) (T — Tp)1é;;- (12.2.9)

From Eq. (12.2.6), denoting the first invariant of the strain tensorby e = 1 1/ =€+
€yy + €;; and the first invariant of the stress tensor by /1 = oy + 0y, + 0,7, We

obtain
1 1—-2v

B3a(T—Ty) = — —=
e= 3l =10 =75z 77)

1. (12.2.10)

For an isotropic elastic material in a state of uniform temperature, Eq. (12.2.10)

reduces to
14+v

1—2v

I =2G e =3Ke. (12.2.11)
The constant K is called the bulk modulus. The quantity e, for the infinitesimal
displacement field, is the change of volume per unit volume of the material. Thus,
Eq. (12.2.11) relates the first invariant of the stress tensor to the first invariant of the
strain tensor. For the special case of hydrostatic compression

Oxx = Oyy =0z, = — P, Oxy = 0y; = 0z =0, (12.2.12)
the first invariant of the stress tensor is /1 = —3 p. Substituting for e using Eq. (12.2.2)
into (12.2.11), we obtain
AV
2Y__ P (12.2.13)
14 K

where V is the volume and AV is the change of volume. Equation (12.2.13) states
that a material under hydrostatic compression is compressible, provided that the
bulk modulus of the material is of a finite value. For incompressible materials, the
bulk modulus K approaches infinity. For this special case, from Eqs. (12.2.13) and
(12.2.11),v = 1/2,and since G = E/2(1 +v), G = E/3. The value of v = 1/2 is
an upper limit of Poisson’s ratio.

The stress-strain relations in terms of Young’s modulus and Poisson’s ratio are
frequently used, and they are



240 12 Thermoelasticity

1
€xy = — [Oxx — U(O'yy + Uzz)] + (T — To)

—

€y =% [oyy — V(02 + 0x0)] + (T — Tp)

1
€z = E [07; — v(oxx + O-yy)] +a(T — Tp)

Oxy
=36

OyZ
“: =126
€, = & (12.2.14)
X 2G' VN

The relationship between Lamé constants A and ., Young’s modulus E, Poisson’s
ratio v, and the bulk modulus K are [2] (see also the complete table in Hetnarski and
Ignaczak [3], p. 144)

L Ev _ 2Gv _ G(E—2G) 3Kv 3KQ3K—E)
T d+wv(1-2v) 1-2v 3G—E ~1+v  9K-—E
2G
K- =
3
E A(l —2v) 3 3KE 3K(1 —2v)
w=0_G= = =—(K—-)= =
2(1 +v) 2v 2 9K — E 2(1 +v)
Al 1-2 GBA+2G
E=2G(14v) = dEVA=20) _ GGL+26) _ 0 5,
v L+ G
_ 9KG  9K(K — 1)
T 3K+G  3K-—»X
E . A 3K — E A 3K —2G
V= —— — = = = =
2G 20+ G) 6K 3K — A 23K + G)
_E 26 2G(+v)  GE = Ml+v)
31 —-2v) 3 31-2v) 3B3G-E)  3v
(12.2.15)
12.3 Displacement Formulation
The equation of motion in terms of the stress tensor is
0ij,j + Xi = pii;. (12.3.1)

The stresses can be expressed in terms of the strains and then in terms of the
displacements. Substituting for the strain tensor ¢;; in terms of the displacement u;,
Eq. (12.2.7) gives

oij = wuij +uj;)+ [Aug g — oG +2u)(T — To)1é;;. (12.3.2)
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Taking the partial derivative of Eq. (12.3.2) and substituting into the equation of
motion (12.3.1) yields [4-6]

mui gk + A+ wWug i — GA+2wal; + X; = pii;. (12.3.3)

Equation (12.3.3) is called the Navier equation. It is expressed in terms of the
displacement components along the three coordinate axes.
The boundary conditions must be satisfied on the surface boundary of the body.
If the traction components on the boundary are given as ¢, Cauchy’s formula, see
Eq. (9.3.4),
tl-n = ojjn; (12.3.4)

states the boundary conditions. Since, however, the problem formulation is in terms

of displacements, the prescribed traction on the boundary can be related to the dis-
placement components by Eqs. (12.3.2) and (12.3.4) as

= A+ g + D — oG+ 20T — To)ldijing. (123.5)

Writing Eq. (12.3.5) in components yields

du du du Jav Jw
t —)‘enx+G(”x +”lya*+l’l f)*FG(I’lX +n)a +nz—)
Ea(T — To)
1—-2v *
ov dv Jdv ow
l _)Len,—i—G(nx——i-ny —i—nZ )+G(nx —i—nV +n,—)
dy dy dy
Ea(T — Tp)
-,
1—21)
n ow ov
1; =hen; +G(nx +n)8—+n —)+G(nx +nva—+n 7)
Ea(T — T;
- M n. (12.3.6)
1—-2v

where ny, ny, and n; are the cosine directions of the unit outer normal vector to the
boundary, and e = €,y + €y, + €, is the first invariant of the strain tensor.

The traction boundary conditions along with the thermal boundary conditions
will fully define the displacement and temperature fields. It should be noted that
the solution to Navier equation (12.3.3), simultaneously satisfies the compatibility
condition and the constitutive law, and, therefore, is an acceptable solution for a
problem of thermoelasticity.
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12.4 Temperature Distribution for Zero Thermal Stress

Generally, when a body is exposed to a thermal gradient, it is expected that thermal
stresses will be developed within the body. The question arises as to whether any
type of thermal gradient results in thermal stresses [7, 8].

Consider a freely supported body, so that no constraint prevents its thermal expan-
sion. We further assume that the boundary traction 7' and the body force X; are
zero. Setting all the stress components equal to zero, o;; = 0, the surface boundary
condition

lTl-n =nj6ij (1241)
is identically satisfied, and the governing equation in terms of the stresses reduces
to [8]

3L+2u

T, 4 ="
it A42u

T kdij = 0. (12.4.2)

In the expanded form, this equation reads as

l+v _, T
VT 4+ — =0
(1 - v) + dx2
I4+v, _, 3T
— )W+ —= =0
S + 72
I4+v . _, 3°T
VT + — =0
1= o
0°T 3°T 3°T
=0, — =0, =0. (12.4.3)
0xdy dyoz 0z0x

Adding up the first three equations results in V27 = 0. This means that the only
possible temperature distribution which produces zero thermal stresses in a body of
a simply connected region is when

V2T =0
92T 92T 92T

= = =0. (12.4.4)
dxdy  dydz  0dzox

The unique solution for the temperature distribution satisfying Eq. (12.4.4) is
T—To=a+bx+cy+dz= By+ Bjx; (12.4.5)

wherea, b, c,andd are some arbitrary constants of integration, and By =a, Bj =b,
By =, and B3 =d. A temperature distribution of this form will not produce any ther-
mal stresses in a body of a simply connected region provided that the body has not
been constrained by its boundary in any direction.
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In general, a linear distribution of temperature in a body, of either a simply or mul-
tiply connected region, results in zero thermal stresses, provided that the boundaries
are free of traction [8].

12.5 Finite Element Formulation

For a quasi-static or quasi-stationary thermoelasticity, the temperature must be known
in order to evaluate the resulting thermal stresses. The temperature distribution is
obtained by solving the heat conduction equation. Let us assume that the heat con-
duction equation is solved and the temperature distribution is known. To obtain the
resulting thermal stresses, a finite element formulation may be developed based on the
Galerkin method. The finite element model of the problem is obtained by discretizing
the solution domain into a number of arbitrary elements. In each base element (e),
the components of displacement and temperature change are approximated by the
shape functions [8]

' (x1, X2, %3, 1) = Upi (1) Nyp (x1, X2, x3)
0 (x1, x2, %3, 1) = O (ONm (x1,x2,x3)  m=1,2,....,r (12.5.1)

where r is the total number of nodal points in the base element (e). The summation
convention is used for the dummy index m. This is a Kantrovitch type of approxi-
mation, in which the time and space functions are separated into distinct functions.
Here, U,,; () is the component of displacement at each nodal point, and 6,,(¢) is
the temperature change at each nodal point, all being functions of time. The shape
function N, (x1, x2, x3) is a function of space variables.

Substituting Eq. (12.5.1) into Eq. (12.2.1) and applying the weighted residual
integral with respect to the weighting functions N, (x1, x2, x3), the formal Galerkin
approximation reduces to

/ (0ij,j + Xi — pii))NidV =0 1 =1,2,...,r. (12.5.2)
Vi)
Applying the weak formulation to the first term, yields

oN,
/ (Uij,j)Nldv = / O'ijnJ'N]dA —/ o (T,'jdV (12.5.3)
Vi Ale) V(e) 0Xj

where n; is the component of the unit outer normal vector to the boundary. Substi-
tuting Eq. (12.5.3) in Eq. (12.5.2) gives
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N,
/ G,'jn,'NldA—/ —IO','jdV-I—/ X,’NldV—/ pii; NidV = 0.
A V() 9x; V(e V(e
(12.5.4)
According to Cauchy’s formula, the traction force components acting on the
boundary are related to the stress tensor as

i =ojn;j. (12.5.5)

Thus, the first term of Eq. (12.5.4) is

/ Gijansz=/ tiNidA. (12.5.6)
A(e) Ale)

From Hooke’s law, the stress tensor is related to the strain tensor, or the displace-
ment components, and temperature change 6 = T — Ty, Tp being the reference
temperature, as

Ojj = G(u,‘,j + Mj,i) + Auk’k&-j — ,BGSij. (12.5.7)

Substituting for o;; in the second term of Eq. (12.5.4) yields

aN; N,
D O','jdV = —_— [G(ui,j + l/lj,i) + )\uk,kfsij — ,395[]']dV. (12.5.8)
V() 0Xj V() 0Xj

Substituting this expression in Eq. (12.5.4) gives

. aN,
/ pii; NidV +/ bl [G(uij +uj;i) + Aug rdi;1dV
V(e) V() 0X;
oN;
— BO—dV = XiN/dV + tiNidA. (12.5.9)
Vi) 00X V(e A(e)

Now, the base element (e¢) with r nodal points is considered, and the displace-
ment components and temperature change in the element (e) are approximated by
Eq. (12.5.1). Using these approximations, Eq. (12.5.9) becomes

. IN, N,
([ PNINudV)Upi + (|  G=L 2
V(e) V) 0Xj 0x;
IN, ON, IN, ON,
+( G Zavyu, + (A2 Z2avyu,,
V(e) Bx] axi Ve) Bxi ax]

dV)Umi

N,
— BEEN,dV)E =/ X,~N,dV+/ i NidA
Vi) 9% V(e Ale)

Lm=1,2,...r i,j=1,23(125.10)

Equation (12.5.10) is the finite element approximation of the equation of motion.
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The Galerkin approximation may also be applied to the energy equation given by
Eq. (6.2.1) as

00
/ (Gii+pc — —QNAV =0 [=12,---r (12.5.11)
V(e) Jat

The weak formulation of the heat flux gradient g; ; gives

3 9 3 .o
/ giiNidV = / (S Sy g M N gy = / G- )NidA
V(e) Vi) 0x dy 0z Ale)

(12.5.12)

where A (e) is the boundary surface of the base element (e). Substituting Eq. (12.5.12)
in Eq. (12.5.11) and rearranging the terms gives

20 aN,
/ ,oc—NldV—/ qi —ldV
Ve 0t Ve 0%

= QdeV—/ (G-WNidA 1=1,2,---,r.
Vie) Ale)

(12.5.13)

Substituting for the temperature change 6 its approximate values in the base
element (e) from Eq. (12.5.1) gives

Ny 9N, .
(f k2 2 avye, + (| peNuNidV )by,
Vi) 0x;i 0x; V(e

= ON;dV —/ (c} -n)NidA.
V(e) Ale)

(12.5.14)

Equation (12.5.14) is the finite element approximation of the heat conduction
equation.

Equations (12.5.10) and (12.5.14) may be assembled into a matrix form, resulting
in the general finite element equations given by

[MU{A} + [CHA} + [KI{A} = {F} (12.5.15)
where [M], [C], and [ K] are the mass, damping, and stiffness matrices, respectively.

Matrix {A}" = (U;, 6) is the matrix of unknowns, and { F} is the known mechanical
and thermal force matrix.
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For a two-dimensional problem, [ and m take the values 1, 2, ...r. In this case,
Eq. (12.5.10) reduces into two equations in the x and y-directions, as

3 IN; 9N,
(| PN NwdV)U, + [/ QG + 1)L gy
V(e) V(e) ox 0x

IN; 9N, IN; N,
+/ feeals —”‘dv] Um+[/ ¢l m gy
Ve V(o)

ay dy ay ox
aN; N N,
+/ pial —dej| Vi — [ ,BNm—lde| O
V(e) dx By V(e) 0x
:/ XN,dV+/ t.NidA (12.5.16)
V(e) Ae)
; aN; 9N
(| PNiNadV)Vy + [(2G v [ LI
Vie) Ve 0y dy
dN; N AN, N
+/ el ”’dv} Vi + [/ 2L Zm gy
Ve) Bx 8x V(e) ax E)y
N, N aN,
+/ Yl —de] Up — [ /SNm—ldV] Om
V) 0y ox V(e dy
:/ YNldV—i—/ tyNidA. (12.5.17)
V(e) Ale)

The energy equation (12.5.14) for a two-dimensional problem becomes

ON,, IN;

( PN Nid V)6, + ( k —dv
V(e) V(e) 0x 0x
dN,, 0N, N
+/ k" —ldV)Q :/ QNldV—/ (g-n)NdA. (12.5.18)
Vey 0y 9y V(e) Vie)

The elements of the mass, damping, stiffness, and force matrices of the base
element (e) are

[y pNiNmav] 0 0
[M](e) — 0 [fV(e) 'ONledV] 0|- (12.5.19)
0 0 0

The damping matrix is

00 0
[c]©@ =100 0 (12.5.20)
00 [ fy pENmNidV ]
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and the stiffness matrix is
ki1 k12 ki3
(K19 = | ka1 ka2 ko3 (12.5.21)

k31 k3o k33

where

aN; ON, N, N,
[kim] = [/ QG+t gy +/ fepm —mdv}
V(e) dx V(e

0x dy dy
ON; 0N, AN; 0N,
(ki3] = / fepat de+/ ot gy
V(e) By ox V(e) 0x By
N
Km = — Ny—dV
(k5] [ V(e)ﬁ m ]
oN; 0N, dN; ON,
(k5] = [/ Ga—l a—de+/ Aa—l ade}
V(e) X y Ve) y X
aN; 9N, aN; 0N,
[k = / QG + 1)L —de+/ G = av
Vie) dy dy V(e) dx Jx
N
[klm]:_[/ N, —dV]
23 V(e)'B " 3y
(k7] = [kao]™ =0
ON,, 0N, ON,, ON,
Ve) Bx Bx V(e) 8y 8y

The force matrix is

i XNV + [, teNidA
o = Jviy YNidV =+ [ tyNidA (12.5.23)
{fV(e) QNldV - fV(e)(a . ﬁ)N[dA}
and the unknown matrix is
{U}

(8} =11{v}t. (12.5.24)
{6)

The initial and general forms of the thermal boundary conditions are one, or
combinations, of the following:
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0(x,y,2,0) =0(x,y,z) atr =0
O(x,y,z,t) =6;on Ayandt > 0

qxl +gym + q;n = —q// onAzandt >0
qxl +gym+qn=h(® + Ty — T) on Azandt > 0
qxl +gym 4+ q.n =o0e(0 + TO)4 — ogpgron Agandt > 0 (12.5.25)

where Ty(x, v, z) is the known initial temperature, 6; is the known specified temper-
ature change on a part of the boundary surface A, q” is the known heat flux on the
boundary Aj, h and T, are the convection coefficient and ambient temperature spec-
ified on a part of the boundary surface A3, respectively, o is the Stefan-Boltzmann
constant, € is the radiation coefficient of the boundary surface, o, is the bound-
ary surface absorption coefficient, and g, is the rate of thermal flux reaching the
boundary surface per unit area, all specified on boundary surface A4. The cosine
directors of the unit outer normal vector to the boundary in the x, y, and z-directions
are shown by /, m, and n, respectively. According to the boundary conditions given
by Eq. (12.5.25), the last surface integral of the energy equation (12.5.14) may be
decomposed into four integrals over A through A4 as

/ @-MM¢4=/,fNMA—/)M9+R—ﬂ@NMA
Ae) As A3

— | (e +To)* — awpgr)NidA 1=1,2,--r.
Ag
(12.5.26)

Note that the signs of the integrals in Eq. (12.5.26) depend upon the direction
of the heat input. The positive sign is defined when the heat is given to the body,
and the negative when the heat is removed from the body. That is, q” is defined
positive in Eq. (12.5.26), since we have assumed that the heat flux is given to the
body. On the other hand, we have assumed negative convection on the surface area
Az, which means the heat is removed from the Az boundary by convection. Similarly,
the boundary A4 is assumed to radiate to the ambient, as the sign of this integral is
considered negative.

In order to discuss the method in more detail, a one-dimensional problem is
considered [8, 9]. The equation of motion in terms of displacement is

9%u 90 9%u

A+26)— —B— =p— 12.5.27

*+ )8x2 ﬁax v ( )
and the first law of thermodynamics reduces to
%0 30

pc— = 0. (12.5.28)

ax2 s
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Taking a line element of length L, the approximating function for the axial dis-
placement in base element (e) is assumed to be linear in x as

u(x, ) = N;U; + N;Uj = (N)© (U}© (12.5.29)

where the piecewise linear shape function (N) is N; = (L —n)/L, N; = n/L, and
n = x — x;. Similarly, the temperature change is approximated by

6(x, )@ = N;#; + N;6; = (N)© {6}, (12.5.30)

Employing the formal Galerkin method and applying the weak form to the first
and second terms of Eq. (12.5.27) and the first term of Eq. (12.5.28) results in the
following system of equations:

(/ PN Ny dn)Um+(/ <2G+x>@ ﬂd DU

j L
—(/ BN M 0 = 1N, +/ XNidn (12.5.31)
0 an ; 0

ON, 0N,
( / PN Nidp + ( / k=5 Gy dmon
— G- N +/ ON,dn (12.5.32)
0
This system of equations may be written in matrix form as

[MI{A} + [CI{A} + [K{A} = {F} (12.5.33)

where the mass, damping, stiffness and force matrices for the first order element are
4 x 4 matrices and are defined as

pN,'N,' 0 pNiNj 0

L
0 0 0 0
M)© = / d 12.5.34
[ ] 0 ,ONjN[0,0NijO 1 ( )
0 0 0 0
0 0 0 0
L
0 pcN;N; 0 pcN;N;
(e) _ PCN;IN; U PCING IV j
[C] —/0 0 0 0 0 dn (12.5.35)

0 pCNjNi 0 ,OCNij
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IN; AN; d

@G+ _pn, 2N 06 1y !
on on on  on
aN;
L 0 k(——)? 0
[K](E) — an
3Nj oN; Nj 3Nj 5
O | eG+n— -BN;—L  2G +M0(—D)
an an 5917\7] an
aN; ON;
0 k—t — 0
L an  dn
L
teNil§ + [y XNidn
L
(O =]~ axNil§ + [ RNidn

teNj|, + Jy XNjdn
L
— qxNjly + Jy RN;dn
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T] .
(12.5.36)

(12.5.37)

Upon substitution of the shape functions in the foregoing equations, the subma-

trices for the base element (e) are

L L
Teto
(MO = | ,u o pr
G050
0000
0000
pcL pcL
©_|05 0%
[ET" =100 0 0
L L
025k o 25t
QG+y) B (2G+h) B
) 0 % S
KT =1 _eotn s coen _p
L I% L k2
o £ 0 k
_[x|0+¥
Qx|0+%
(Y =
tx|L+%
_qx|L+%

and the matrix of unknown nodal value is

(12.5.38)

(12.5.39)

(12.5.40)

(12.5.41)
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(1 (2) (3)
I | [
U,
Fig. 12.1 A one-dimensional rod with known nodal temperatures
() (2) 3)
| | | e——
U, tx=50cos(10t)

Fig. 12.2 A one-dimensional rod with known nodal temperatures under axial dynamic load

U;
0;
Uj
0;

(A} = (12.5.42)

Once the nodal temperature changes to 6 and the forces are known, the axial
thermal displacements can be obtained.

The general rule for the solution of thermal stress problems is that the tempera-
ture distribution must be known in the solution domain prior to thermal displacement
analysis. That is, the heat conduction equation must be considered and solved inde-
pendently to obtain the temperature distribution. Temperature distribution may be
in the steady state condition, or a function of time in transient or dynamic forms.
Still, the heat conduction equation is uncoupled from the thermoelasticity equations,
even with dynamic temperature distributions. In industrial applications, this situation
occurs almost all of the time.

For the coupled assumption, the duration of the period of time of thermal shock
application must be much smaller than the magnitude of the first time period of the
body’s natural frequency to cause thermal coupling. In many thermal stress problems,
this situation does not occur, and thus, thermal stress problems may be solved with
sufficient accuracy under uncoupled conditions.

12.6 Problems

1. A one-dimensional rod of constant cross-section A and length L is considered.
The rod is made into two elements of equal length L /2 and nodal points 1,2, and
3, as shown in Fig. 12.1.

The steady-state temperature changes at nodes 1,2, and 3 are 61, 6>, and 63 and
are known. The axial displacement at node 1 is fixed (U; = 0). Find the elements
of the stiffness and force matrices and obtain the thermal axial displacement of
nodes 2 and 3.
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(0

X

Fig. 12.3 A linear triangular element with known nodal temperatures under axial dynamic loads
at node j

(6]

1 3 X

Fig. 12.4 A two-dimensional simple plane strain rectangular domain with known nodal
temperatures

2. Reconsider Problem 1, where an axial dynamic force ¢, = 50 cos 10¢ is applied
at node 3. Node 1 is fixed, and the nodal temperature changes are constant with
time.

Find the elements of the mass, stiffness, and force matrices, and obtain the axial
displacements at nodes 2 and 3. The mass density is assumed to be p (Fig. 12.2).

3. Check Egs. (12.5.16) and (12.5.17) to show that these equations are associated
with the simple plane strain thermoelasticity condition.

4. ReduceEq. (12.5.10) for a two-dimensional thermoelasticity plane stress condition.

5. Employ a linear triangular element and use Egs. (12.5.16) and (12.5.17) to obtain
the elements of the mass, stiffness, and force matrices.
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The element load condition is shown in Fig. 12.3. Temperature changes at
nodes i, j, and k are 91 ,0;,and Gk, respectively, and node j is under two dynamic

concentrated forces ¢ (¢) and ty (#). The mass density of the element is assumed
to be p.
Consider a two-dimensional rectangular domain with simple plane strain condi-
tion. The domain is divided into two triangular elements, as shown in Fig. 12.4.
Temperature changes at nodes are known to be 6 to 6,4, and are constant with
time. The kinematic boundary conditions are #; = v; = 0 and u» = 0. Find the
elements of the stiffness and force matrices and obtain the thermal displacements
at nodes 2,3, and 4.
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Chapter 13
Incompressible Viscous Fluid Flow

Abstract The flow of incompressible and viscous fluid is considered in this chapter.
The continuity condition and the equations of motion, the Navier-Stokes equations for
the Newtonian fluid, are derived. The Stokes equation for the low Reynolds number
flow is discussed and its associated functional expression is presented. The govern-
ing equations are then made dimensionless and employing the Galerkin method, the
finite element equation is derived, using two different shape functions for the velocity
components and pressure. The general finite element equations are then reduced to
the case of two-dimensional fluid flow and the elements of mass, stiffness, and force
matrices are calculated. The general form of boundary conditions are discussed and
the selection/limitation of the shape functions for the velocity components and pres-
sure is explained. As another method of fluid flow problems, the vorticity transport
technique is presented and the finite element modeling of the fluid flow in terms of
the vorticity and stream function is presented and the element matrices are derived.
Since the governing finite element equations are nonlinear, the method of lineariza-
tion technique is discussed. The finite element matrices for two-dimensional flow of
an incompressible viscous fluid employing two-dimensional simplex elements are
derived.

13.1 Introduction

Newton’s law of motion, which is used to derive the equations of motion of a solid
elastic continuum, is employed to derive the equations of motion of viscous fluid
flow. The derivations for the Newtonian fluids, in which the stress tensor is linearly
related to the rate of the strain tensor, is directly follows from Newton’s equation
of motion for a continuum by proper substitution for the stress tensor. The resulting
equilibrium equations are called the Navier-Stokes equations.

The laws governing the motion of fluid are essentially those of classical mechanics.
The energy principle and the balance of force and momentum equations all hold for
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fluid flow too. The exception is that the general laws and principles that are based on
energy equations, are not well-defined and formulated for the fluid flow problems.
In other words, the variational formulation of fluid flow problems does not exist.
Therefore, the finite element analysis of fluid dynamic problems of viscous flow
based on the Ritz method is not yet developed, as the functional of such problems
does not exist.

The Galerkin method is a well-accepted technique for the finite element formula-
tion of fluid dynamic problems. In particular, since the Navier-Stokes equations are
nonlinear partial differential equations, the Galerkin method, which has a strong rate
of convergence, is an appropriate tool for handling such nonlinear partial differential
equations.

In this chapter, the basic governing equations of fluid dynamics are derived. Using
the Galerkin method, two-dimensional Navier-Stokes equations are employed with
continuity equations to derive the finite element equation of motion. As an alter-
nate method, the Navier-Stokes equations are transfered into the vorticity transport
equations, for which the Galerkin method is employed to derive the associated finite
element equilibrium equations. A triangular simplex element is used to derive the
element mass and stiffness matrices. Finally, an iterative method is proposed to solve
the resulting nonlinear finite element equations.

13.2 Continuity Equation

The continuity equation is derived from the principle of conservation of mass. Con-
sider an element of fluid volume dv. The mass of the volume element is pdv, where
p is the mass density of fluid. This element of mass, during the motion of fluid, is
not changed with time, and thus [1, 2]

B(d)—O (13.2.1)
Dt,ov— 2.

where D/ Dt is called the substantial derivative, and is defined as

b _08.,,20 (13.2.2)
— = —+4u — 2.
Dt~ ot ' Ox

where u; is the component of the fluid velocity vector. The physical concept of
Eq.(13.2.1) is that the mass is conserved. Expanding the derivative, Eq.(13.2.1)
becomes

D(dv) Dp
dv — =0 13.2.3
Dt tav Dt ( )
since
D(dv) ou;
=dv — (13.2.4)

Dt 0x; ’
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Thus, substituting in Eq. (13.2.3), gives

31/!,‘ D,O
—+—=0 13.2.5
Pox T D1 (1323
This equation may be written as
0 a(pu;
b Oloui) _ (13.2.6)
Jat 0x;

Equation (13.2.6) is called the continuity equation and describes the conservation
of mass. For the incompressible fluids, p = cte, and thus, Eq. (13.2.6) reduces to

8 .
i _ . (13.2.7)
ax,-

In conventional notation, the continuity equation is

ou v Jdw
—+ —+—=0. 13.2.8
ox + ay + 9z ( )
This equation must always be satisfied for any flow of incompressible fluid in the
absence of fluid shock.

13.3 Equation of Motion

Newton’s equation of motion for a continuum is

8 ..
% 4 B = pa (133.1)
ax]'

in which 7;; is the stress tensor, p is the mass density, B; is the body force tensor
per unit volume, and q; is the acceleration tensor. Fluid is a continuum that does not
stand shear stress, and flows under the applied shear stress.

For a Newtonian fluid, the stress tensor is linearly dependent on the pressure and
rate of the strain tensor, as [1, 2]

Ty = —pbij + 1, (133.2)

where p is the pressure, 7/ f is the viscous stress tensor and is a function of the
derivatives of the velocity components, and §;; is the Kronecker delta. Calling
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D=1 (g% n %) (133.3)
the shear stress tensor r,.’j for an isotropic fluid is defined as
Ti,j = AAS;j +2uD;jj (13.3.4)
where
A = Dy1 + Dy + D33 = Dyy. (13.3.5)

The coefficients A and p are the fluid constants and have the dimension of (force)
X (time) / (length)z. Substituting Eq. (13.3.4) in (13.3.2), gives

Tij = (=p + AA)éij + 2uDij. (13.3.6)
Expanding the equation, we get

11 = —p+AA 4+ 2uDy
T =—p+ArIA+2uDyp
733 =—p+AA+2uD33

T12 = 2uD12
T23 = 20 D23
713 = 2uDq3. (13.3.7)

To find the constants A and u, consider a fluid flow field in which
u; = f(x2), up = uz = 0. For this flow

D=4 —. (13.3.8)

Thus, from Eq. (13.3.6), the shear stress is

TI] =T22 =T33 = —P

T3 =13=0
d

T2 =1 —f (13.3.9)
dx;

Equation (13.3.9) shows that the constant p is the proportionality coefficient
between the shear stress and the velocity gradient. This proportionality constant is
called viscosity. From Eq. (13.3.6)
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1 2
3 = (A +3 M) A. (13.3.10)

This equation relates the mean stress (7xx/3) to the rate of volume change (A).
The sum of the constant coefficients (A 4 2/3u) is called the bulk modulus, as

k=h+3n (13.3.11)

For incompressible fluids, & tends to infinity.

13.4 Incompressible Newtonian Fluid Flow

For the incompressible fluids, the rate of volume change is zero (A = 0), and thus,
the relation between the stress and velocity gradients from Eq.(13.3.6) is [1, 2]

Tij = _Paij + 2[LDij. (13.4.1)

In this equation, the pressure is substituted by the mean normal stress
(p = —7ix/3). The velocity gradient is

1 3Lt,' 314]'
Djj = —+ ). (13.4.2)

Substituting in Eq. (13.4.1), gives

ou; ou ;
T = —pdij +M(E+B_XJ) (13.4.3)

The equation of motion (13.3.1) for fluid flow is written as

0T;j Du; au; au;
4 B=p — = — i—. 13.4.4
ox; PPEP D TP\ T Ay, (1344)

Using Eq. (13.4.3), the left side of Eq.(13.4.4) is

Tij.j =— P.jdij + mui ;) j + pu(uj ;)i
=—p,j6ij +unuij),; (13.4.5)

in which, due to the continuity equation for incompressible fluid, (u;;),; =
(uj, ;)i = 0. Substituting Eq. (13.4.5) in (13.4.4) gives
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8M,'
'O(E +ujuij) = pBi —pi+unuij),;. (13.4.6)

This equation is called the Navier-Stokes equation for the motion of incompress-
ible fluid flow. Expanding Eq.(13.4.6) and using the conventional notation for the
velocity components as u, v, and w, gives

ou du au du ap R2u  9%u  9%u

P T TV T ) =P T TG T T o)

av av av dv ap v v %
P T TV gy T ) =P8y — gy TG T T o)
ow Jw Jw ow ap 2w 2w 9w
P Ty TV gy T ) =pBe g TGt )

(13.4.7)

Along with the Navier-Stokes Eq. (13.4.7), the continuity equation must be con-
sidered. For incompressible fluids, the continuity equation is

UL L (134.8)
ax  dy 9z o

The system of partial differential Egs. (13.4.7) and (13.4.8) must be solved simul-
taneously for the dependent functions u, v, w, and p.

13.5 Stokes Equation

For low Reynolds number fluid flow problems, called creeping flow, the convective

ou; . . . . .

term u 8—’ in the Navier-Stokes equations may be ignored. The resulting equations

X
J

are called Stokes equations. For steady-state incompressible fluid flow, the Stokes

equations for two-dimensional flow are

Bp_

v? 0
pv 0x
3
wviv— L _g (13.5.1)
dy

which should be solved simultaneously with the continuity equation

ou Jv
— 4+ —=0. (13.5.2)
dx  dy
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In Eq. (13.5.1), the body force components are ignored. Unlike the Navier-Stokes
equations, in which the expression for the functional is not known, the Stokes equa-
tions have a functional. The expression for the functional is

du; ou; u;
Tw,v,p)=5 [ 24 ﬂdsz—/ PRaiiytey (13.5.3)
2 an]‘ ax]' Q a i

Using the technique of calculus of variation described in Chap. 2, the minimum
of functional (13.5.3) may be obtained. The class of admissible functions is selected
as

u =u+en
vt =v+em
P =p+en (13.5.4)

in which u, v, and p are the functions minimizing the functional (13.5.3), 1, 12,
and 13 are the variational functions satisfying the homogeneous boundary conditions,
and €1, €, and €3 are the variational parameters, respectively. It is verified that when
Eq. (13.5.4) are substituted in the expression of functional (13.5.3) and the method of
calculus of variation is applied, the set of boundary value Eqgs. (13.5.1) and (13.5.2)
are obtained.

13.6 Dimensionless Form of Equations

The most basic and important rule in any computational method is to write and use
the dimensionless form of the governing equations. An even more important point
is that, when the finite element method is used, the governing equations must be
dimensionless in terms of the characteristic length of the element. Otherwise, if the
equations are dimensionless in terms of the problem’s characteristic length, such as
the total length of a plate, the order of magnitude of the members of the total assem-
bled mass and stiffness matrices are subjected to high variations from very small
to very high numbers. This high variation of the magnitudes of the members of the
mass and stiffness matrices results in a very unstable solution to the problem. An
optimum method for preparing the dimensionless form of the governing equations, is
to make them dimensionless with respect to the order of magnitude of the element’s
characteristic length. This should be done in such a way that the resulting assem-
bled stiffness and mass matrices have the lowest possible variations of the order of
magnitude of their members.

This law should also be observed between the mass and stiffness matrices in
comparison with each other. That is, the order of magnitude of the members of the
assembled mass and stiffness matrices must be as close as possible. With this law
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in mind, the Navier-Stokes equations are now made dimensionless to prepare the
proper finite element model.

The dimensionless quantities for the Navier-Stokes and continuity equations are
introduced as

xF=xi/l

uy =u;/ug

t* =tug/l

p* = p/(pup) (13.6.1)

in which [ is a characteristic length (of the order of element size) and ug is the
base velocity (or free stream velocity). With the introduction of the dimensionless
quantities, the continuity and the Navier-Stokes equations in dimensionless form
become

ui _ (13.6.2)
s = 6.
ouf ~ ,ouf I 9p* 1 %l
COup L L 13.6.3
or* Tuj ax;f Fr2  ox} + Re Bx;’.‘ax* ( )

J
in which F'r is the Froud number and Re is the Reynolds number defined as

Fr =ug/vIlB
Re = pupl/. (13.6.4)

13.7 Galerkin Finite Element Formulations

To prepare the finite element model of the viscous fluid flow problems, the Navier-
Stokes equations must be modified for the weak formulations of the terms of higher
order derivatives. The dimensionless form of the equation is

. [; 1
i Ui = s = P o ), (13.7.1)
This equation may be written as
. l; 1
i tujuij =45+ —péij + Re (u;;) B (13.7.2)

Now, the solution domain is divided into a number of elements, and the base ele-
ment (e) is considered. The velocity components u; are approximated with identical
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shape functions ¢ and the pressure is approximated with a shape function called v,
as [3]

u = pjuf) i=1,2 ...

<€> = Y p@ n=1,2,...r (13.7.3)
where s and r are the number of nodal points of velocity and pressure shape functions,
respectively. Applying the Galerkin method, the Navier-Stokes equations are made

orthogonal with respect to the shape function of velocity and the continuity equation
is made orthogonal with respect to the shape function of pressure as

. l;
/¢m[u,~+uju,-,,——F’r2—[ Pij + o (u,,)] ]dQ:O
Q

i=1,2,3 m=1,2,...s (13.7.4)
/ Yuui i d2 =0 n=12,...r (13.7.5)
Q
From Eq.(13.4.5),
AT B 1 8%
L P 2 (13.7.6)
0x; 0x; Re 0x;0x;
or :
iii=\\—pdii + — u; ; . 13.7.7
Tij,j ( poij + Re ul,]),j ( )

Substituting Eq. (13.7.7) in (13.7.4), gives

l;
/d)m |:(ut+u]ul]) Fr =) Tl]’]:|d§2=0
i=1,2,3 m=1,2,...s. (13.7.8)
Applying the weak formulation to the last term of Eq. (13.7.8) gives
[ on [+ wgsp]a@+ [ gnuja0
Q Q
l.
=/Q¢mﬁdsz+/r¢mnjnjdr. (13.7.9)

InEq. (13.7.9), 7;jn  is the component of the traction vector 7; acting on the boundary.
Also, since

Tij = —pdij + (uz Jugi. (13.7.10)
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Thus,

. 1
/¢m(ui+ujui,j)d9—/ P¢m,id§2+/ Om,j— (Ui j+uj;)dQ
Q Q Q Re
l.
=/Q¢mﬁd§2+/¢m7"idr. (13.7.11)
r

The continuity equation is

—/ Ypu; i d2 = 0. (13.7.12)
Q

The system of Eqs. (13.7.11) and (13.7.12) provides the basic finite element equation
to be used for the three-dimensional viscous fluid flow problems.

13.8 Two-Dimensional Fluid Flow

Consider viscous incompressible flow in two-dimensional coordinate system xy. The
conventional notation for the velocity components in two-dimensions are # and v in
the x and y-directions, respectively. Dividing the fluid flow domain into a number
of elements, the velocity components u v, and the pressure p in the base element are
approximated as

u® = (@) () = ;"
V@ = (@)} = v i=1,2,...5 (13.8.1)
P =P =pl? j=1.2...r (13.8.2)

in which (¢) is the approximating shape function for velocity and () is the approx-
imating shape function for pressure. The number of nodal points of element (e)
to describe the velocity is s and for pressure is r. The Galerkin approximation for
the two-dimensional fluid flow from Eqs.(13.7.11) and (13.7.12), in terms of the
conventional notation, is [3]

8 a ]
/¢>m - + - dQ—/ m 10
3y Q ax
1 a a d ] d ad
+— ﬂ S 7oL AT (LR DT
Re Jo 0x adx  dx Re Jq ay dy  ox

l
:/Q(bm F_);zdg'i‘/(mexdr m = 1,2,...S (1383)
r
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av av O0dm
¢m — u—+v— ds2 — p —dQ
dy ol Ty
1 d a a 1 a ad ad
PRI BTN (R oS (L (LR
Re Jo 0x dx  dy Re Jo 0dy ay  dy
l
=/ bm F—y2d9+/¢mTydr m=12,...s (13.84)

8u
/1# ( )dQ n=12,...r. (13.8.5)

The negative sign in Eq. (13.8.5) is used to make the part of the stiffness matrix
symmetric. Substituting from Eqs. (13.8.1) and (13.8.2) in Egs. (13.8.3), (13.8.4) and
(13.8.5) gives

d¢i
/¢z (uj(l)] + updru; i-'- Vi ru ¢J)dQ_/Qai Pm¥mdS2

T, %%+%% sy L [0
Re dx ox 8y dy Re ax ax

% %] /¢, dQ+/¢,T T (13.8.6)

vj
ox
3 I
/¢i (i)j(ﬁj + urdrv; % + vk %) d< —/ % Pm¥md Q2
Q y Q dy
L [v (a¢, a¢,+%%)}m 1 [ d; 3¢

_ +_ _
Re dx 0x dy dy Re Vi ay dy

dp; 0 / I /
a0 = [ ¢ —LdQ . Tydl 13.8.7
uj oy ox } Q¢ P + r¢ y ( )

—[/Q (MJI//, 9 4y, %) ]:o. (13.8.8)

These equations in matrix form are rewritten as

|:/Q¢z¢]d9:|u]+[Re/Q(2 o 2 2 8y)d§2]uj

+ 1 a¢] 8¢ld9j| vl |:uk/¢l¢k —dQ—‘r k/¢l¢k ¢j :|
Q J0x dy

99 b ‘
- /Qa_ wmdﬂ] Pm —/qu, =3 dQ+/F¢,TxdF (13.8.9)

saols | L 09i 9¢; | 04i 9¢;
|:/Q¢l¢1d9}v1+[13 /9(2 dy dy +8x 8x)dg2]vj

96, oy
+_Re/98y’ 8xd9}u, [uk/@k—dmk/@m }
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|: 09, ] Iy
- /— Umd 2| pm _/ i —d§2+/¢iTde (13.8.10)
Q d r

[/ Vi a¢jd9} [/ i 3;;" dQ} v; =0. (13.8.11)

Defining the element matrices as

e _ [ Jodidid2 0
(i) —[ 0 [ gigde (13.8.12)
99i 99) , 0i 99; dp; 99;
[k'-](")—i [Q (2 dx 0x +3i;§y dy af; 9x "
YT Re dp; 6, ag; 005 3¢ 09;
fQ ax dy J. <8x ox +2 oy 8y)dsz
(13.8.13)
09 / 09
[N @);;]© = uk [ ki o dQ-(i)—vk quk(pl % dQ
0
u Jo drdi — ¢ dQ + k/d)k«z), Wi yq| (13814
i
o [ lavi s
[eij 1 = aéf, (13.8.15)
_fsz vj 8_
- iTxdF i Lo a2
(i) = STl + Jo @ i . (13.8.16)
_fF¢iTydr+fQ¢i 7 a2

The finite element equation describing two-dimensional viscous fluid motion
becomes

[MI{U} + [K + N()U} + [C{P} = (F) (13.8.17)
[c1"{uy =o. (13.8.18)

The set of Egs. (13.8.17) and (13.8.18) for steady state fluid flow is reduced to

[[K] ?‘C[}];](M)] {g}} [{l}{}] _ [{g} ] ' (13.8.19)
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The system of Egs.(13.8.17) and (13.8.18), or Eq.(13.8.19), is nonlinear, due
to the existence of matrix [N («)]. This matrix is a function of the velocity matrix,
which itself is unknown. Therefore, the finite element modeling of the inviscid fluid
flow through the Navier-Stokes equations is nonlinear in velocity, as are the original
basic equations. There are a number of techniques available to apply and solve the
resulting nonlinear finite element equations. One of these techniques is an iterative
method of solution with increment placed on the Reynolds number. This technique
is described later on in this chapter.

13.9 Boundary Conditions

The finite element method described in the preceding section was based on velocity
and pressure as dependent functions. This method is called the conventional formu-
lation, and as with the boundary conditions, the velocity components and pressure
values must be known on the boundary.

Calling the normal traction and normal velocity 7,, and u,, and the tangential
traction and velocity 7; and u,, the normal and sheer stresses on the boundary I of
the fluid flow field are [3, 4]

ouy
T,=—p+2u

on
T o= (2 g O (13.9.1)
S NP PR 7

in which the subscripts n and f represent the normal and tangential directions
on the boundary I". The boundary condition on the outlet flow of a flow field is
T, = T; = 0. This condition is equivalent to the traction free boundary condition.
For high Reynold’s numbers, this condition results in a reliable solution, while that
may not be the case for the low Reynolds numbers. For a symmetric flow field, the
condition of u, = T; = 0 along the symmetry axes may be used. The boundary
conditions on a rigid boundary are satisfied by u, = u, = 0.

It is usually not possible directly to define the pressure on a fluid flow boundary.
For an incompressible fluid flow, the pressure distribution at each point adjusts itself
such that the continuity condition V-U = 0 is satisfied. Now, if the pressure on a fluid
flow boundary is defined through the boundary conditions, the continuity condition
V-U=0 along the given boundary may not be truly satisfied [3]. This may cause
complications in a reliable solution field and result in a physically incompatible fluid
field, as the law of conservation of mass is violated along the boundary where the
pressure is defined. It is thus recommended to use the condition of normal traction

duy,,
dn

T, =—p+ (13.9.2)
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Fig. 13.1 A general four- v
sides element n x=x(£,1)
y=y(¢.1)
3
\ z==(1.n)
y=y(1,m)
x
Fig. 13.2 Element in local n
coordinates £n
(“ 1, I) (f, f)
3
A
Q
("‘fu‘_r) (rﬁ_f)

on the boundary where pressure is being specified, especially at high Reynold’s
numbers. When condition (13.9.2) is used on a boundary, the pressure is specified
on the boundary and the continuity condition is also satisfied.

13.10 Element Selection

A proper element for the conventional finite element formulation of viscous fluid
flow in two-dimensions is a general four-sided element, as shown in Fig. 13.1. The
global coordinates system xy and the local system &7 are shown in Fig. 13.1. With
proper coordinate transformation [3]

x=x(&,n)
y=y&.n (13.10.1)

the element (e) of Fig. 13.1 is transformed into the square element (e) in domain f,
as shown in Fig. 13.2, with domain variables specified as

—1<&=<+l1
—1<n<+1. (13.10.2)

The law of transformation between the two systems is
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@‘nod.es for
velocity and
pressure

'®) Nodes for
velocity
Y
S

Fig. 13.3 A four-sides element for velocity and pressure

_._()_—_..-3

0x ox
dx | _ E ﬁ d&
[dy] = a_y a_y dn | (13.10.3)
9§ an
Thus, the Jacobian is ax 9 a9
J=J=28 O (13.10.4)
9§ dan  dn 0§

The Jacobian is used when the derivatives of the shape functions are involved in
the element matrices. Consider the relations

ON ) ToE T [N by vy
ax L _laxax |Joe l_ L | ap o¢ &
IN [ =[98 on [VoN [ Tig | ox ax [N [ (13103
dy dy dy an on 0 an
or
N IN
ox | _ o | 08
aN =Y g (13.10.6)
dy an

Since the shape functions are described in forms of the natural coordinates & and 7,
their derivatives in the local coordinates are carried out, and then, from Eq. (13.10.6),
are related to the variables x and y in the global coordinates.

For the conventional formulations, in which the field variables are selected to be the
velocity vector and pressure, the shape function associated with velocity components
must always have higher degrees compared to the shape function describing the
pressure distribution in the element. For the four-sided element in two-dimensions,
the shape function for velocity components is selected as a third order polynomial,
and for pressure, a second order polynomial. Figure 13.3 shows an element with
eight nodal points for velocity and four nodal points for pressure. As noted, the
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corner nodes are common for both velocity and pressure, where the middle side
nodes are for velocity alone. Thus, eight nodes describe the velocity components u
and v, while four nodes describe the pressure. The shape functions describing the
velocity components is of order three and are.

¢ =%(—1+En+§2+n2—52n—5n2)
pr=5 (1 —n—8+&)
¢3=Alf(—1—$n+§2+n2—52n+$n2)
pa=3(I+&—n"—&n)
¢5=%(—1+$n+§2+n2+52n+$n2)

p6=1% (1+n—& —¢&n)
¢7=%(—1—$n+%‘2+n2+$2n—5n2)

bg = % (1—& —n?+&nd). (13.10.7)

The shape functions describing the pressure are of order two and are

tﬁ1=3—‘(1—5—n+$n)
wz=3—t(1+5—n—%‘n)
w3=41—‘(1+$+n+§77)
Vs = 3—‘ (1—&+n—E&n. (13.10.8)

13.11 Vorticity Transport

The Navier-Stokes equations in terms of the velocity components and the pressure
were used to construct the finite element model of fluid dynamics problems. A differ-
ent approach for describing the field equations are the governing equations of fluid
dynamics in terms of the vorticity and stream function. The Navier-Stokes equations
are modified into a system of equations written in terms of the vorticity and stream
function and are called the vorticity transport [5].

Let us consider a two-dimensional incompressible viscous fluid flow. By defini-
tion, the stream function i is related to the velocity components as

Y

S ax

oy
Uu=—
dy

(13.11.1)
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The vorticity w is defined as

v 9
o (13.11.2)
dx  dy

The continuity and the Navier-Stokes equations for a two-dimensional steady-
state incompressible viscous fluid flow in a dimensionless form are

du 9
L% (13.11.3)
dx  dy
du du ap 1 (3*u d%u
= — (= + 13.11.4
i v ay dx  Re (8x2 + 8y2> ( )
v N v dp N 1 (3% +_82v 13.115)
u — vV — = —_— —_— —_— . .
0x dy 39y  Re \9x2 ' 9)2

Adding and subtracting terms dv/dx and du/dy to Eq.(13.11.3) yields

du ov dv ov Ju ou

E”L@”Lax dx dy dy

Using the definition of vorticity and stream function, this equation is written as

Yy 2y Pty vy
dxdy  dxdy  axz  9y?

=(1)=O

which simplifies to
V2 +w=0. (13.11.6)

To obtain the second equation, Eq.(13.11.4) is differentiated with respect to y
and Eq.(13.11.5) is differentiated with respect to x and is subtracted from the first
equation to give

ou Jdu 9%u ov du 9%u du Jv 9%v dv dv 9%

u —tVv - ——U—— 77— —
dy ox 0xdy 0y 9y dy2  9x dx 0x2  9x dy 0xdy
1 3w Bu v v

~ Re (8y8x2 + 9y’ 9x3 8x8y2)'

This equation may be rearranged as

(82u 82v)+ (82u 8211) ou (8u+ ) dv (8u+8v) R
U(—— — —= v(— —. —+ — —+ — e
xdy  9x?2 ay? axdy 8y ax ax - ox ay

2 ou  dv_ 3% du v

=2 T ez G T
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Using the continuity equation, we have

ou ou
8— (- —) 2 ey,
x dy By ay  0x
% du v 3 du
=2 Gy ) T Gy o o,
x* dy ox dy  ox

Substituting from Eqgs. (13.11.1) and (13.11.2), we obtain

vzw-Re(ﬁﬂ-ﬁf-ﬁf-gf)zza (13.11.7)

This equation relates the vorticity w to the stream function . The system of
Egs.(13.11.6) and (13.11.7) are a pair of partial differential equations relating two
independent functions w and 1. This system of equations is substituted for the system
of Eqgs.(13.11.3) to (13.11.5), which relates p, u, and v. Therefore, we may either
solve the system of Eqs. (13.11.3) to (13.11.5) for the independent functions p, u, and
v, or solve the system of Eqs. (13.11.6) and (13.11.7) for the independent functions
w and . The latter system of equations is called the vorticity transport equations.

13.12 Finite Element Modelling

The system of equations in terms of the vorticity transport is written as

VY +o=0 (13.12.1)
V2w — Re (— — — — —) =0. (13.12.2)
Dividing the solution domain into a number of arbitrary elements, the residues

of the governing equations over the base element (e) on the weighting function wy,
using the Galerkin method, are

/ (V2Y* + 0" wedxdy = 0 (13.12.3)
D(e)
IY* dw* Yt o
j/ [v2w*-Re(—f; 43--—f—-iiq}u%dxdy==0 (13.12.4)
D(e) dy 0x ax dy

where ¥ * and w™ are the approximate functions describing the stream function and
the vorticity in the element (e).
To evaluate the integrations and weak formulations, consider the integral
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I =/ AV?Bdxdy (13.12.5)
D(e)

where A and B are two arbitrary functions of x and y. This equation is written as
3*B 3*B
I = A — dxdy + A — dxdy (13.12.6)
D) 0x Dy 9y

or

3’B 3’B
I = A vy dx )dy+ A Y dy )dx. (13.12.7)
y—dir x—dir 0x x—dir y—dir dy

The weak formulation of Eq. (13.12.7) gives

B JA 0B B
I = AL gy 2282 dxdy + A 22y
y—dir dx D(e) dx dx x—dir dy

JA OB
—/ 98 9T ixdy. (13.12.8)
D(e) 0y 9y

The sum of the first and third terms in Eq. (13.12.8) is the integration of function
B along the normal to the boundary curve, i.e., A 3B/dn on I'(e), where n is the
unit outer normal vector to the boundary of the element. Thus,

) 9B dA 0B 0A 3B
AV*Bdxdy = A—dS— (— —+— ——)dxdy. (13.12.9)
D(e) Ny on D) 0x dx  dy dy

Using the rule of weak formulation given by Eq. (13.12.9), the weak formulation
of Eq.(13.12.3) is

/ we VY *tdxdy +/ wrw*dxdy =0 (13.12.10)
D(e) D(e)
or

dy dwe Yt dwp dY*
/ we dS—/ Qwi 0VT | dwk BV )dxdy+/ wiw*dS = 0.
re — on D) 9x dx  dy dy r(e)

(13.12.11)

This equation is rearranged as

dwe Yt dwp dyY* dy*
/ Qwi 0YT | dwk BV )dxdy—/ wka)*dxdyz/ we s,
D) 0x Ox dy dy D(e) I'(e) on

(13.12.12)
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Similarly, using the rule of Eq.(13.12.9), the weak formulation of Eq.(13.12.4)
yields

dwp d0*  dwyp do* I dw* Yt do
/ dwi D™ dwy i)dxderRe/ A LG A I I
JD(e) 0x Ox ay dy D) 0y 0x d d
8 k
:/ wp 2 gs. (13.12.13)
I'(e) on

The system of Eqs. (13.12.12) and (13.12.13) establishes the element equilibrium
equations.

Consider the base element (e). The stream function and vorticity are approximated
in (e) as

,
1p*(e) _ ZNi e (13.12.14)
i=1
r
*© ZZNiwi (13.12.15)
i=1

where N; is the approximating shape function. Here, we have assumed identical
approximating shape functions for i and w. Replacing the weighting function w by
N, the finite element equilibrium Egs. (13.12.12) and (13.12.13) become [6]

ON; 0> Ny, IN; 0> Ny,
/ (_k Z Vi + 0Nk Z Vi _ NkZNiwi) dxdy
D(e)

ox ox ay dy
8 k
= Ny v ds
I'(e) on

/ (% BZN,'Q),‘_'_% BZNiwi)dxdy
D(e) \ 90X ax dy ay
Re/ Nk<3ZNilp[ BZNjwj B 3ZN,'W,' azNjwj)dxdy
D(e) dy ox ax ay
dw*
= Ni das.
I'(e) on

These equations are rearranged as
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Z/ (aN"aNi+aN"aN)dd Vi — Z/ NNidxd
— — 4+ — —)dx idxdy | w;
9% 9x dy y D) kAVi Y| wi

i i

ds (13.12.16)

ONy ON;  ONp ON;
Z[/ (—k—'—ir—k—)dd}
; D(e) Jx ox E)y

N (8N,' ON; oN; aN] Niyaxdy )
R A X .
k dy ox dx Jdy Y @i

ds. (13.12.17)

Note that ¥; and w; are the stream function and vorticity at the nodes of the element
(e), and thus, are constants with respect to the domain integrations. Considering the
constant matrices of coefficients as

ONy ON;  ONp ON;
A =/ (—" I )d dy
D(e) Jx ox ay 3

B = NiNidxdy
D(e)

ON; ON; ON; ON;
Crii =/ Ny (—l - _ = —])dxd
J y
D(e) 0

a *
fie= N v ds
T'(e) on
dw™
Sk = r()Nk o ds, (13.12.18)
e

the system of finite element Eqs. (13.12.16) and (13.12.17) are written as
_ZBkiwi +2Akiw,~ = fu (13.12.19)

ZAk,a)l + Rech,]w,w, = for. (13.12.20)
i,

Assembling the element equilibrium equations for all the elements in the solution
domain results in the final equation of motion of finite elements as

[A{W} — [BI{Q2} = {F1} (13.12.21)
[A1) + Re[C(Q)NY} = {F). (13.12.22)
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It should be noted that Eq.(13.12.22) is nonlinear, as the products of @ and ¥
appear in the equation.

13.13 Linearization Technique

The set of Egs. (13.12.19) and (13.12.20) establishes a system of nonlinear equations
with constant coefficients to be solved for the dependent functions ¥ and 2 on
the nodal points. A method for solving this system of equations, is the incremental
technique and linearization method. The increment is placed on the Reynolds number
Re.

Let us, for the time being, assume that the boundary conditions are set such that
{ f1} and { f>} are both zero. This point is discussed later in Sect. 13.9 of this chapter.
The system of Egs. (13.12.19) and (13.12.20) is now written as [6]

= Biiwi + > A =0 (13.13.1)
i i

> Ariw; + Re > Cuijvriw; = 0. (13.13.2)
i i,j

Now, let us assume that at Reynolds number R, the values of 1/; and w; are known
and satisfy Eqs.(13.13.1) and (13.13.2). At an additional increment of Reynolds
number R + § R, the stream function and the vorticity are v¥; 4+ 8v; and w; + dw;.
Since ¥; and w; are assumed to be known at R, their incremental values §v/; and dw;
must be calculated at R 4+ § R. Substituting in Eqgs. (13.13.1) and (13.13.2) yields

— > Bui(wi +8w) + DAY +8yi) =0 (13.13.3)

D" Aki(@i +80) + (R+8R) D Crij(Yi + 8Y) (@) + 8wj) =0.  (13.13.4)
i ij

Expanding Eq.(13.13.3)
= Buwi+ ) Auti — Y Buidwi + Y Audyi =0.
i i i i
According to Eq. (13.13.1), the first two terms are zero, and thus,

~ > Budwi + D Audvi = 0. (13.13.5)
i i

Expanding Eq. (13.13.4) yields
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> Akiwi+ D Awdw; + R Crijioj + R CuijVidw;
i i ij ij
+ R z Crijéyiwj + R Z Crijdyidw; + SR Z Crijioj
i,j i,J iJ
+8R D Cuijhidwj +8R D Crijdiw; + R D Crijéidw;.  (13.13.6)
ij ij ij
If 6R is selected small enough, then terms with 6§ and 688 in Eq.(13.13.6) are
neglected and the equation reduces to

> Awwi + R Crijioj + D (A + R D Cuji)dw;
i i,j i j
+RD CuijdYiwj + 8R D Crijviw;. (13.13.7)
i,j i,J

The first two terms, using Eq. (13.13.2), are zero, and thus,

Z (Axi + R Z CiijVi)dw; + R Z Crijdviw;
i j i,j
= —8R Y CuijYio;. (13.13.8)
inj

Equations (13.13.5) and (13.13.8) are a set of linearized equations to be solved
for 8v; and Sw;.

13.14 Triangular Simplex Element

We try to use the simplex triangular element to model the two-dimensional fluid
flow problems based on vorticity transport equations. This is an interesting point
to compare with the conventional formulations in which essentially higher order
polynomials were used to approximate the velocity components. The efficiency
and accuracy of simplex triangular element for modeling the flow problems of
incompressible fluids based on vorticity transport equations are shown in references
[6, 71.

Consider a two-dimensional flow of an incompressible fluid. A simplex triangular
element (e) withnodes i, j,and k is considered. The stream function and the vorticity
are approximated with linear shape functions as
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Vi
@ = (N; N; N){,
Yk
wj
0@ =(N; Nj Ni){oj (13.14.1)
Wi

where

Ni:a,'+b,'x+ciy szaj—l—bjx—i-c‘jy Nk:ak+bkx+cky
2A 2A 2A

(13.14.2)

in which a, b, and ¢ are constant coefficients and A is the area of triangle (e) (see

Chap. 4). Substituting for the values of shape functions in Eq. (13.12.18), the members

of the coefficient matrices are obtained through proper integrations. From the rule of

area coordinates,

alblc!

NONPNCdxdy = ———— DA, 13.14.3
J S A e PRy Ry ( )
Thus,
A = — W+ Adxdy = +—L
N /A(e>4A2(’+C’)xy 4A

A =/A — (bib; + cicp)dxdy = 2L GG

) 4A 4A
A
B,‘l‘ = N,-Nidxdy = —
Ale) 6
A
Bij =/ N;Njdxdy = —. (13.14.4)
Ale) 12
Substituting in Eq. (13.13.5) gives
cc[—kA] [k]] | c{éw} c{0}
13.14.5
[ [k] [01] [ {w}] - [{fl}] (13.145)

where


http://dx.doi.org/10.1007/978-3-319-08037-6_4
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211
A
kA]© = — [ 121
201112
1 bi2+ci2 bibj+CiCj biby + cick
[k](e) = a bjbi +cjci b? + C? bjbk +cjck
bib; + crci brbj + crc; b]% ~|—c,%

{560}T=(8w,~ Sw; ka)(e)
By’ = 6o 895 o). (13.14.6)

Equation (13.14.5), derived from Eq. (13.13.5), is linear.

To derive the element members of the matrices related to the nonlinear
Eq.(13.12.20), or its equivalent linearized Eq. (13.13.8), the coefficients Cy;; must
first be evaluated. From Eq.(13.12.18),

Crij = Ne(— —L — —L ZLydxay.
Y e dy ox dy ox

Substituting from Eq. (13.14.2), gives

Ni
Crii =/ ——(cibj — cib;)dxdy.
ij AS) 4A2 ivj jli

Using the rule of area coordinates, the integration yields

cibj —c;bi 1770 A0
or
Cibj—Cjbi
i ="px

Substituting Cy;; in Eq.(13.13.8), with known A;;, Results in

cc[=kA] [k] ] [cldw}] _ [c{0)
[[k+kz/f] [kw]] l {(w}] - [{f}] (13.14.7)

in which the definition of submatrices is
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[ > Ciitn X, Cirjvn > Cikdn
k1“9 =R | >, Ciuivn > Citjn > Ciuetn
| 22 Crivn 22 Craj¥n 22 Crarn
[ >, Cinen X, Cijion Y Ciraay
kol =R | X, Cjuon 3, Cjjion 3 iy
| 21 Critwr 2 Crjion D2 Crniaoy
ZI,m CiimViwn
{1 =—=8R 1>, CitmWiom | . (13.14.8)
2 1.m ChimViom

The definitions of [Ak] and [k] are given in Eq.(13.14.6). The system of
Eqgs. (13.14.5) and (13.14.8) is linear in terms of the nodal unknowns {5} and {Sw}.
The problem must be solved incrementally, i.e. marched through the Reynolds num-
ber § R. The numerical solution must start from the initial state where, at Reynolds
number R, the values of ¥ and w at all nodal points are known. With a proper
small value of § R, the solution is incrementally solved through the advancement of
the Reynolds number until the required Reynolds number, by which the problem is
defined, is reached.

13.15 Boundary Conditions

The general form of the finite element equations of two-dimensional incompressible
steady-state fluid flow problems for the base element (e) was derived as

— > Buwi + > Auti = fur (13.15.1)
i i

> Awiwi + R Cijio; = fu. (13.15.2)
i i,j

The definitions of the force matrices fix and fo; are given by Eq. (13.12.18). These
forces are evaluated on the boundary of the solution domain, and are directly calcu-
lated knowing the boundary conditions.

Consider a solution domain with boundary C. We divide the boundary curve
C into two parts,; namely, C; and C;. The boundary C; is assumed to be where
the stream function ¥ and dv/dn are defined, and C; is the part of the boundary
where the inflow and outflow are defined, and thus, v and w are known, as shown in
Fig.13.4.

The boundary C is fixed and is the rigid boundary of the fluid field. The fluid
arrives from the left side through boundary C5 and flows out from the right boundary
C>. The value of ¥ is known on the boundary C; and the values of ¥ and w are
known on the boundary C».

According to definition, the element force matrices fi; and fox are
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Fig. 13.4 The solution
domain of a steady-state
two-dimensional fluid flow

Y

WA

Fig. 13.5 Element (e) near
the solid boundary

a *
fik = Ni v ds
I'(e) on
8 *
S = N Y ds. (13.15.3)
I'(e) on

These forces cancel each other out between any two adjacent elements inside
the solution domain, as the integrations over any common side of two adjacent
elements become positive (for one element) and negative with equal magnitude (for
the adjacent element), so that the sums of two integrations over the common side of
two adjacent elements cancel each other out.

Now, the value of forces f1; and f>; on the solid boundary of the solution domain,
such as C1, will be considered. We take the element (e) with one side ij on the solid
boundary, as shown in Fig. 13.5. We also designate the directions n and # as normal
and tangent to the solid boundary. According to the definition of stream function,
from Eq.(13.11.1),

oy v
v = 5, U=, (13.15.4)
where v; and v, are the tangential and normal velocities on the solid boundary. It
immediately follows that, due to the fluid viscosity, v; = 0, and due to the solid
boundary, v, = 0. Therefore, on solid boundaries, the force fi; from Eq.(13.15.3)
is zero.
From Eq. (13.11.2), the vorticity on the solid boundary is

v, 0v;
= - —. (13.15.5)
at on
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Fig. 13.6 Poiseuille flow in a T
straight pipe

HHHH

?
=
\

Moving along the solid wall (¢-direction), v, remains zero, and thus, dv, /9t = 0.
On the other hand, dv,/dn is not zero and is proportional to the shear stress. Since
the shear stress along the n-direction varies, dw/dn # 0. This suggests that the
force for from Eq.(13.15.3) must be evaluated on the solid wall. In this case, one
may use the shape function for w from Eq. (13.14.1), substituting it in the second of
Eq.(13.15.3) for fa, and evaluate the integral.

Now, consider the part of boundary C;, where the inflow and outflow are defined.
These boundaries are usually defined in such a way that the flow conditions are either
given or estimated, such as free stream conditions or undisturbed flow patterns defined
far from the solution domain. Since the velocity profiles on this type of boundary
is known, both ¢ and » functions are readily calculated from Eqs.(13.11.1) and
(13.11.2), and are set on C».

To explain the foregoing discussion, consider the Poiseuille flow in a pipe, as
shown in Fig. 13.6. From Eqgs. (13.12.1) and (13.12.2), since the variations of ¥ and
w along the x-direction is zero and the velocity component along the y-direction is
also zero, we have

3%y
3_)/2 +w=0 (13.15.6)
82
¥ . (13.15.7)
dy?
Integrating Eq. (13.15.6) gives
w=Ay+B (13.15.8)

in which A and B are the constants of integration. Substituting Eq.(13.15.8) in
(13.15.6) and integrating, gives

Y A
4 =——_y*—By+C (13.15.9)
ay 2
A3 B,
1//=—gy -5 +Cy+ D. (13.15.10)
The boundary conditions are
oy



13.15 Boundary Conditions 283

W_o

(13.15.12)
dy

In Eq. (13.15.12), the value of v is arbitrarily set to 1, as the difference of i with
respect to y is important, not its numerical value. From conditions (13.15.11) and
(13.15.12),

C=D=0 A=12 B=—-6 (13.15.13)
and thus,
w=12y—6 (13.15.14)
Y =3y? —2y°. (13.15.15)

This example demonstrates how the boundary conditions on a solid wall are
imposed. Since the functional relationship of w and ¥ with respect to y are known,
their numerical values at any arbitrary point along the y-direction is calculated from
Eqgs. (13.15.14) and (13.15.15). This boundary condition is of C-type.

13.16 Problems

1. Consider a two-dimensional fluid flow of an incompressible viscous fluid in a
general flow field. While for this type of fluid flow, the linear triangular element
is not a proper choice for describing the velocity components u# and v and the
pressure p, the procedure for employing such an element to obtain the mass,
stiffness, and force matrices remains the same as those of higher order elements.
For this reason, try to use Egs. (13.8.9) to (13.8.11) to obtain the elements of the
mass, stiffness, and force matrices employing the linear triangular element.

2. For a two-dimensional fluid flow employing the formulations based on the vortic-
ity transport, derive the matrix elements of Eq.(13.12.18) for a linear triangular
element and verify those given by Eqs. (13.14.4) to (13.14.6).

3. For the linear triangular element, derive the members of the matrix Cy;; and the
final form of the matrices given by Eq.(13.14.8).

References

—

Brodkey RR (1967) The phenomena of fluid motions. Addison-Wesley, Reading

2. Yuan SW (1969) Foundations of fluid mechanics. Prentice-Hall, New Delhi

3. Soheili A (1988) Finite element analysis of two-dimensional incompressible viscous fluid flow,
BS final project, submitted to ME department. Amirkabir University of Technology, Tehran

4. Eftekhari K (1988) A galerkin finite element analysis of free surface fluid flow, MS thesis
submitted to ME department. Amirkabir University of Technology, Tehran

5. Teman R (2001) Navier-stokes equations. AMS Chelsea Publishing, New York



284 13 Incompressible Viscous Fluid Flow

6. Saffar-Avval M, Damangir E, Eslami MR, and Sorooshe AA (1994) Finite element formula-
tion of blood flow in bifurcation of femoral artery to predict atherosclerosis plaque formation.
In:proccedings of ASME-ESDA94 conference London

7. Damangir E, Mehdinejad V, Marivani M, Eslami MR, and Saffar-Avval M (1996) Numerical
solution of pulsatile blood flow in a bifurcation with elastic wall. In:proccedings of ASME-
ESDA96 conference France, July 1-4



Chapter 14
One-Dimensional Higher Order Elements

Abstract The chapter begins with the definition of straight one-dimensional
quadratic element, where the natural coordinate and the Jacobian matrix is then
calculated. As an application, the field problem is selected and the stiffness and force
matrices are calculated. The cubic element in the general and local coordinates are
discussed the Jacobian of transformation is calculated. The layer-wise theory is then
described and it is applied to a composite beam under static and dynamic loading
conditions.

14.1 Introduction

In Chap.4, different types of elements and shape functions were described. To
increase the accuracy of the finite element solution, the approximating shape function
may be selected of higher order polynomials. It was discussed that the polynomials of
the second and third orders are usually employed to describe the field approximation
within the elements. The polynomials of orders higher than three are, in general, not
recommended due to the possibility of having roots within the element domain.

In this chapter, the one-dimensional higher order polynomials are used to approx-
imate the function in the base element. The application of such elements is discussed
in the beam’s layer-wise approach to the finite element.

14.2 One-Dimensional Quadratic Element

Consider a one-dimensional straight element. To describe a quadratic shape function,
three nodal points must be considered on the element. Figure 14.1 shows the element
(e) with three nodes i, j, and k. Node j is taken in the middle of the element. If

M. R. Eslami, Finite Elements Methods in Mechanics, 285
Solid Mechanics and Its Applications 216, DOI: 10.1007/978-3-319-08037-6_14,
© Springer International Publishing Switzerland 2014
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Fig. 14.1 A quadratic straight £
element L
L/2
L] .
i J k
(e)

we assume the local coordinate x at origin i, the second order approximation for the
dependent function ¢ within the element (e) is

¢ =a; + arx + azx>. (14.2.1)

To evaluate the constants ay, ap, and az, we write

¢ =i ¢ =¢; ¢ = o
[x:O szLl/z Hx:L . (1422)

Substituting Eq. (14.2.2) in (14.2.1), gives

ay = ¢i
_4¢j —3¢i — ¢k
a=———
L
2
az = ﬁ(q&, —2¢; + ¢i). (14.2.3)

With the known values for a;, a», and a3, the shape function (14.2.1) becomes

i ©
@ =(N: N; N){9; (14.2.4)
Dk

in which the shape functions are

N=( ==
T L L

N — 4x a X )
L L

Ne=-Ta- 2 (14.2.5)
k=7 s 2.

The shape functions N have two important properties. The first property is that

their sumis 1,
Ni +Nj+ Ng =1. (14.2.6)
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The second property is that their value is 1 when evaluated at the associated nodal
point and O when evaluated at the other nodes, i.e.,

N, = [ 1 onnodea (14.2.7)

0 on other nodes

14.3 Natural Coordinates, Jacobian Matrix

The natural coordinate system & may be considered with a coordinate transformation
from x. Referring to Fig. 14.2, the transformation law is

2x
£ = T~ 1. (14.3.1)

With this coordinate transformation, & = 0 at x = L/2 (at node j) and

& =—1 atnodei
& =41 atnodek. (14.3.2)

The new variable & varies from —1 to +1 in the element,
—l1<e<l. (14.3.3)

The shape functions N, in terms of the natural coordinate &, are obtained using
Egs. (14.2.5) and (14.3.1) as

§

Ni=-2 (-8
Nj=(0+81-§)
Ny = % (1+8). (14.3.4)

Since the variable is changed from x to &, the element integrations involving the
shape functions and their derivatives require the Jacobian matrix. To evaluate the
Jacobian matrix, we need the law of coordinate transformation.

)C:NiXi+Nij+Nka (14.3.5)

in which where X;, X ;, and X} are the coordinates of nodes i, j, and k in the global
coordinates system, and N;, N;, and N; are the shape functions in terms of the
variable &, as given by Eq.(14.3.4).

The derivative of the shape function N, with respect to & is related to the derivative
with respect to x as
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Fig. 14.2 One-dimensional z 2 &

straight element with natural ?"’ 2_‘

coordinates system § . 3
i L2 L2k

dN,  dNy dx
de  dx d&

(14.3.6)

or
dNy 1 dNg

dx _ dx/dtE dE

(14.3.7)

The term dx/d& is called the Jacobian matrix of coordinate transformation
from the variable x to &. Using Eq.(14.3.5), the Jacobian matrix, which, for one-
dimensional problems, is a 1 x 1 matrix, is

_ dx dN; dN; d Ny

From Eq.(14.3.4),
dNi gy S 1 88
i CEUEE RS BEE R RS
ﬁ—l—é—(“r%)—l—é—l—é——%
ds N N
ANk _ 1 §_1
i =;(0+H+T=5+8& (14.3.9)

Thus, the Jacobian matrix for the straight quadratic element is
1=X;(E—3)—2X;6 + Xi (5 + 1) (14.3.10)
when the coordinates of nodes i, j, and k are known, Eq. (14.3.10) is fully determined.

For equi-distanced nodes, the Jacobian matrix of this element becomes constant
independent of &

(14.3.11)

|~

1=0x (=4 ~2x 5 xE+Lx (5 +4) =
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Fig. 14.3 One-dimensional —x ]—¢
quadratic element

14.4 Application to the Field Problems

The application of the quadratic element in the field problems is discussed in this
section. The stiffness and force matrices were obtained in Chap.5, as

[k]<e>=/ [B]T[k][B]dV+/ h{N}(N)dS
V(e) S2(e)

9=/ omwav+ /

q”{N}dS—/ hpoo{N}dS.  (14.4.1)
Ve Si(e)

S2(e)

Considering the quadratic element, the shape function for the dependent function
¢ for the base element (e) is (Fig. 14.3)

¢ 1
»© = (N; N; Ni)y éj . (14.4.2)
Pk
The gradient matrix for this case is
d¢  dN; dN; dNe D
()@ =" =< =L TR S g3, (14.4.3)

dx dx dx dx b

Substituting for N from Eq.(14.2.5) in (14.4.3) and recalling the definition of
matrix (B)(© gives

4x 3 4 8x  4dx 1
S DG - H) E ) > (14.4.4)

(B>(€) —< ~
L L L

Since [k] = kyy and dV = Adx, A being the element cross-sectional area, the first
term of the stiffness matrix becomes


http://dx.doi.org/10.1007/978-3-319-08037-6_5
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[k1]© = /{B}[k](B)Adx

~—
NS
|
~w
—
(3]
—
S~
NG
|
W
—
—
lES
|
e
—
~—
~
RIE
|
~w
SN—"
—
~
N
|
=
SN—"

L 2
=kt | (-3 (-B)(E-b)|e
2
[sym (#-1) |
(14.4.5)
After integration we get

AL 14 —16 2
k1€ =""2 | —16 32 —16|. (14.4.6)

6L 1 2 _16 14

The above integration can also be evaluated using natural coordinates. The matrix
(B)© is

d¢  dN; dN;j dN _
(B)© = £ < Ed_gjd_gk =[] < (- 1) (-26) (3 +&) > . (144.7)

The first term of the stiffness matrix becomes

k1€ = s / (B)Ik](B)A[J1d&
E-HE-Hew -

2k A [T
= T/l 482 (—26) (£ + %) |dE, (144.8)

sym (E+1)°

which after integration yields the same result as that obtained by using the x coordi-
nate given in Eq.(14.4.6). The second part of the stiffness matrix is

NiN; N;N; N;Ng
[ko]© :/h{N}(N)dS:h/ N;N; N;N; NjNy | dA. (14.4.9)
$ A | NkN;i NeNj NiNi

When convection from the peripheral surface is considered, the integration yields

4 2 —1
PhL
[k2]<e>=T 2 16 2 (14.4.10)
12 4
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in which P is the periphery of the element.
The force matrix is the sum of terms of Eq.(14.4.1), in which the first term is

L N; AQL 1
/ Q{N}dV = AQ/ N; tdx = —== (14.4.11)
V(e (U 6 1

The force related to the heat flux q” applied to the peripheral area of the element
is

1

T ¢ PL
g{N}dS =q P Njtdx=—— 14¢. (14.4.12)
Si(e) . 6 1
The last term of the force matrix is
L | Ni
/ hoso{N}dS = hP¢oo/ Nj ¢ dx. (14.4.13)
$2(e) o | N,

If convection occurs from the cross-section of node i, then

N; 1
—/ hoo 3 0 ¢dS =—hodoA;i 10 ¢ . (14.4.14)
S2(e) 0 0

Thus, the total force for the given condition is

1 " 1 1
AQL L
{f}@):% 4l 9P Il ppoalol. (14.4.15)
1 1 0

14.5 Straight Cubic Element

A cubic element may be used to improve the accuracy of the finite element solution.
For this purpose, a straight element with four nodes is considered, as shown in
Fig. 14.4. The nodal points j and k are considered at distances L /3 from nodes i and
m and from each other, so that the element is equally divided into three distances.
The element shape function in terms of a third-order polynomial is

qj(e) =a) +axx + a3x2 + a4x3. (14.5.1)

The constants a; through a4 are obtained using the following conditions:
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Fig. 14.4 A one-dimensional 4 Ee
cubic element b j E -
L/3 L/3 L/3
L
Fig. 14.5 A one-dimensional g_._g
cubic element in terms of
natural coordinate ; J. % 2
(e)
X=X [ X=X | X=X | X=2xp (14.5.2)
[¢=¢i [¢=¢j [¢=¢k [¢>=¢m

Substituting the condition (14.5.2) in Eq. (14.5.1), the constants a; through a4 are
obtained, which, upon substitution, gives

¢ = Nipi + Njpj + Neg + Nt = (N) (g} (14.5.3)
in which the shape functions N are
No= (- 50— 5ok
T L 2L L
Ox 3x X
Ni=—(--")1-2=
i=T ( 57 )( L)
Ox 3x X
Ny = ——(1— )1 —=
k L ( 2 )( 2 )
Ny = - a3 (14.5.4)
) L 2L -

The shape functions may be written in terms of the natural coordinates &. Con-
sidering the definition for &€, and from Fig. 14.5, we have

R 1 1
= - DE+E-7)

N'—27(E+1)(€ 91¢3 1)

7716 3

Ne = 21+ 1)(E - D(E +3)

AT 3

N = 9($+1)($+1)(€ 1) (14.5.5)

"6 3 3 -

in which the natural coordinate £ is defined as the length ratio and is

—-1<&=<+1 (14.5.6)
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Fig. 14.6 CP-continuous
shape functions for a
one-dimensional cubic
element

and its value in terms of the x-coordinate is given by Eq. (14.3.1).
The coordinate transformation from the x-coordinate to the &£-coordinate is

X = NiX; + NjX; + Ne Xg + N Xom (14.5.7)

in which X;, X ;, Xy, and X, are the coordinates of nodes i, j, k, and m in the global
system. The Jacobian matrix in this case is 1 x I and is given as

dx dN; dN; d Ny dN,,
—=Xi —/— +X; X —— + X
ds d§

e Vg T a T

(14.5.8)

Substituting for the derivative of the shape functions with respect to &, provides
the expression for the Jacobian matrix as [J] = L/2.

Example 1 Consider a one-dimensional cubic element with nodes placed at succes-
sive equal distances:

(a) Find the relation between x and & for this element.

(b) Calculate the Jacobian matrix.

(c) Find the elements of the stiffness matrix [k1]© + [k2]@ and the force vector
{119 + {£}© + { £3}© for this element.

(d) Do steps (a) to (c) fora C I_continuous two-node element.

Solution: The coordinate transformation from the x-coordinate to the £-coordinate
is given by Eq.(14.5.7), in which the shape functions N; are given in terms of the
&-coordinate in Eq. (14.5.5). These shape functions are plotted in Fig. 14.6.

By substituting the expressions for the shape functions N; in terms of the &-
coordinate, Eq.(14.5.5) into Eq.(14.5.7), the relation between x and & can be
obtained. For an element with equi-distanced nodes, the nodes coordinates can be
written as
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X; =0
X;=L/3

X¢ =2L/3

Xm =L (14.5.9)

where L is the element length. By substituting Eq.(14.5.5) and Eq.(14.5.9) into
Eq.(14.5.8), the relation between x and & is obtained. The result after algebraic
simplification is

X = %(l—ké). (14.5.10)

The Jacobian matrix for this element is 1 x 1 and is given by Eq. (14.5.8) as

=L o x, Dy, Ny W, D
IV TRRRPT: T T mgE

By substituting Eq.(14.5.5) and Eq.(14.5.9) into the above equation and using
Eq. (14.5.10), the Jacobian matrix is obtained as

[J]_dx L
== =7

dE
The element stiffness matrix [k;] is

L gN dN

[k1]¢© :/ (BT [KI[B]dV = Akxx/ (b= oo >dx
Ve) 0 X dx

1 dNd dN d d
- Akxx/ (AN dE, dNdS  dx .
_y L dE dx dé dx ~ d&

Ak /+l{dN} < an [J]d& (14.5.11)
= XX e e = : -
—1d§ d§

dN;
The derivatives of the shape functions with respect to the &-coordinate, d_él’ are

obtained from Eq. (14.5.5) as

dN;
dE
dN;
g
d Ny,
g
dN,,
d§

_ 9 2
= e (342 +987)

_ 2
= J¢ (-1 185 +276%).
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By substituting the above equations into the expression for the stiffness matrix
[k11), Eq.(14.5.11), and after performing the integrations, we have

148 —189 54 —13
Akyy | —189 432 —297 54
40L 54 =297 432 —189

—13 54 —189 148

[k]© =

The element stiffness matrix [k7](© is
L
(k2] = / h{N}(N)dS = hp / {N}(N)dx
Sa(e) 0

+1 dx
A NYN)—dE = h
p/l{ I >d§E p/

+1
1 {NXN)[J1d§

where p is the periphery of the element (dS = pdx). After performing the integra-
tions, the stiffness matrix [k;]© is obtained as

128 99 —36 19
_ phL | 99 648 —81 —36
1680 | —36 —81 648 99

19 —36 99 128

(k2]

The element force vector { f1}© is

L
(@ = omav=ag / (N)dx
V(e) 0
+1 dx +1
=AQ/ {N}—d€=AQ/ (N)LJ .
-1 dg§ -1

After performing the integrations, the force vector { f1}) becomes

AQL

e ==

—_ ) W =

The other terms of the force vector, { />} and {f3}(¢), are obtained in a similar
manner:
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L
(A} = / ¢ (NYdS = ' p / (N)dx
Si(e) 0

. "pL
=q p/1 [N}[J1dE = %

—_ 0 W =

and

L
(/) = — / hoo(NVdS = — phehos / (N)dx
Sa(e) 0

1
+1 /’1¢ L 3
= — pho / (N} 1de = — 10
- 8 3
1
If convection occurs from the cross-section of node i, then
N; 1
(719 = <o [ 0 Vs =—honeai f
Sa(e)
0 0

where A; is the cross-section area at node i.

Now, the previous calculations will be done for a C I_continuous two-node ele-
ment. First, the element shape functions are obtained in terms of the natural coordinate
&. Two end nodal points are defined per element, and on each of these two nodes,
the primary variable ¢ and its derivative d¢/dx are the corresponding unknowns.
Having four unknowns for each element, a third-order polynomial may be used to
define the element shape function

09 = a) + aré + a3’ + ay&’ (14.5.12)

in which the variable & varies from —1 at node i to +1 at node j through the element.
The constants a; through a4 are obtained using the following conditions:

£=—1 £=+1
Lo (90 _ao| {527 av _do).
_do| (570 1de_de

=0 2 T a dE = @t |,

1

By substituting these conditions into Eq.(14.5.12), the constants a; through a4
are obtained. Equation (14.5.12), after substitution of the values for a; through a4,
is written in the form



14.5 Straight Cubic Element

297
Fig. 14.7 C!-continuous _J
shape functions for a ! N ’]YQ"—
one-dimensional two-node ol
element ,,/'

0.5F X
Nl-""',';*,: .......
0 ,'_.::./~ _____ -
.~ - ',’/
R T, v’]’V
~0.4 : L
-1 -0.5 0 0.5 1
d¢ d¢
¢ = Nig1 + N2 —| + Nago+ Ny —
d& |, d& |,
in which the shape functions N; are
1 3
Ni=, 6" -38+2)
1
Ny= (-8 -6+
1 3
Ny =—7("=36-2)
— ! 3 2
N4—Z(§ +&°-&-1). (14.5.13)

These shape functions are plotted in Fig. 14.7.

Now, the relation between x and £ may be found. The coordinate transformation
from the x-coordinate to the &£-coordinate is

dx

— + _—
' ! g d E d %‘

+ N3X7 + Ny
1

2

By using the condition

X =0 dx _L
YTY e, T2
dx L
X2:L _ = —
dg|, 2

the relation between x and & is obtained as
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X_E( +&)

which is identical to the one for the previous case with a straight cubic element.
Similar to the previous case, the Jacobian matrix for this element is 1 x 1 and is
given by

1= )

The element stiffness matrix [k;]© is

L
[k]](e) :/ [B]T[k][B]dV = Akxx/ {d_N} < d_N > dx
Vie) 0 dx

dx
+1 AN dN
= Akxx/_l {E} < ' > [J]d§.

By using the expressions for the shape functions given by Eq. (14.5.13), the inte-
grations in expression for the stiffness matrix [k11© are evaluated. The result is

36 3L —36 3L
Akyx | 3L 4L%* —3L —L?
30L | =36 —3L 36 -3L

3L —L%? —3L 412

[k1]© =

The terms of the stiffness matrix [k7](© are obtained in a similar manner
lal® = [ hiNYNYas =
$2(e)

L +1
:hp/o (V}(N)dx :hp/l (N}(N)LJ 1de

156 22L 53 —13L
22L 4L* 13L —3L?
53 13L 156 —22L
—13L —3L% —22L 412

= phL

The force vector { f1}© is

L

9= omwav =ag / (N)dx
V(e) 0

1 6

_ + _AQL | L

_ AQ/_l T =

—L
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(3) ) (5) FO (0
® 9 ——
ELEMENT ONE ELEMENT TWO

Fig. 14.8 Axial vibration of a cantilever beam

Similarly, the other terms of the force vector { f>}©) and { f3}© are

L
() = / ¢ (NYdS =g’ p / (N)dx
Si(e) 0

6
+] 4
" qg pL L
= N} J]dé = ——
qp/_l{}[]é B 6

—L

and

L
(/) = — / hpooN}dS = — phehos / (N)dx
Sa(e) 0

6
+1
phocL | L
= —ph N}[J1dE = —
phos [ NI = PG
~L |
If convection occurs from the cross-section of node 1, then
Ny 1
N 1
(71 = =g [ 12 Vas = —homtr f
$2(e)
0 0

where A is the cross- section area at node 1.

Example 2 Consider the axial vibration of a cantilever beam under force Fy(t),
shown in Fig. 14.8. The beam is descritized using two quadratic elements. Derive the
local and global system matrices.

Solution: The axial vibration of a beam was formulated in Sect. 4 of Chap. 8. The
weak formulation gives

L N L 9N N L L
/ PANINy, dx Uy, + / EA———dx Uy = F(x)Nnlg +/ PANy, dx
0 0 ox 0x 0

(14.5.14)
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From which the elements of the mass, stiffness, and force matrix are

L | NiN1 NiNy N1N3
[mij1© = PA/ NoNy NaoNa NaoN3 | dx (14.5.15)
O | N3N; N3Ny N3N3

and
rdNy dN; dNi dNy dN; dN3 7
dx dx dx dx dx dx
L
[kij1®© = EA/ Nz dN1 dNa dNy dNy dNs | 4, (14.5.16)
0 dx dx dx dx dx dx
dN3 dNi dN3 dNy dN3 dNj
L dx dx dx dx dx dx 4
and
Ny L | N
(il =Fx){ N, |(I)‘+pA/ No b dx (14.5.17)
N3 0 N3

respectively. Substituting for the values of the shape Functions, the mass, stiffness,
and force matrices for a quadratic element are obtained as

2 1-1
AL
[ml,j]<e>:/)1_ 181 (14.5.18)
Sol-11 2]
and _
7 -8 1
EA
[kij](e) =~ 1_-816 —8 (14.5.19)
Ly —g 7|
and
—F(0)
(mne=1 o (14.5.20)
F(L)

respectively. Assembling the local mass matrices of elements one and two gives the
global mass matrix as
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2
1
pAL

[M;;]= T

—

(14.5.21)

—_
SO = 0 =
>
—_—0 = O O

0 1
00-11 2

In a similar way, the global stiffness and force matrices are obtained as

7 -81 0 0
EA —-816 -8 0 0
(Kijl==| 1 —814 81 (14.5.22)
L1o o -816-8
0 0 1 -87
and
—F
0
Fr=1 o (14.5.23)
0
—Fo(1)
respectively.

14.6 Layer-Wise Theory of Composite Beams

As an example of higher order one-dimensional elements, the composite beams may
be considered. There are two finite element approaches for the analysis of composite
structures: the equivalent layer theory and the layer-wise theory. The first theory
considers composite layer stacking as one single layer and assumes a continuous
distribution of the displacement components across the thickness of the structure.
The second theory, on the other hand, takes into account the layers, and applies the
finite element approximation both along the layers and across the layers (through
the thickness). Each layer of composite may be divided into an arbitrary number of
elements. The shape functions along and across the layers may be considered linear
or of higher order polynomials. In this section, as a practical example, a composite
beam is considered, and with the layer-wise theory, shape functions in both directions
of the beam (along the length of the beam and across the beam’s cross-section) are
considered of higher order polynomials.

In designing composite multi-layer structures, a critical issue is the inter-laminar
stress situation. Many composite defects arise from the lack of knowledge of stress
distribution across the layers and the resulting delamination or crack propagations
along the laminate faces. Among different parameters influencing inter-laminar
debounding, temperature distribution and the resulting thermal stresses are important.
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Fig. 149 A model of YA
composite multilayer beam

— |

Since the coefficient of thermal expansion along the fiber is substantially lower than in
the transverse direction, the thermal gradient within an angle-ply layered composite
structure causes significant normal and transverse shear stresses.

The first-order and higher order shear theories are developed to investigate the
stress distribution caused by mechanical and thermal loads in composite structures.
The works of Stavsky [1], Nemirovski [2], Shaldyrvan [3], Rao [4], Wu and Tauchert
[5, 6], Khadeir and Reddy [7], and Huang and Tauchert [8] are examples of these
types of analysis. In these theories, the displacement field is described in terms of
infinitely differentiable functions with respect to thickness variable, but the proposed
model cannot properly describe the distribution of the transverse shear stresses across
the thickness due to the induced thermal bendings.

The number of publications dealing with the calculation of thermal stresses in
layered composites is small. Huang and Tauchert [9], Thanjitham and Choi [10],
Noor and Burton [11], and Tanigawa and Murakami [12, 13] are some examples.
Chen et al. [14], Cho et al. [15], and Eslami et al. [16, 17] have considered the
transverse stresses in their models and investigated the static and dynamic behavior
of thick composite layered beams under thermal stress conditions.

Consider a thick beam consisting of k orthotropic layers. The x-axis is taken along
the beam length and the z-axis is along the thickness, as shown in Fig. 14.9.

The displacement components along the x and z axes are u and w, respectively.
Using the layer-wise approach of the finite element and the Kantrovich approximation
along the thickness, the displacement components are approximated by

u=¢;)U’ (x,1)
w=¢; )W/ (x,1) j=1,2,..N (14.6.1)

in which U/ and W/ are the displacements at node j, and ¢ ; 1s the continuous
piecewise Lagrangian functions of which the second-order form is
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P =v"@  a<z<z
$i(2) = ¥3 (2) Z2im1 < 2 < it
$i+1(2) = 1/f3(i)(Z) 22i-1 <2 < 2241
$2i+i(2) = 1/f1(i+1)(Z) 2i+1 <2 < 22i43
PN () = Y] () N2 <z<2ZN (14.6.2)

where
® = (1 Sya— 2
v, (2) = hk)(l hk)
W, _ 4z
(2 (Z)_hk(l hk)
wék’(z)=—hi(1——) 0<z<h (14.6.3)
k

with N = 2N, + 1, in which N is the number of nodes, and N, is the number of

elements across the thickness. The number N, may be equal to or different from

the true number of physical laminate layers; with the increase of the number N,,

the accuracy of the solution increases. In Eq. (14.6.3), z denotes the local coordinate

between two adjacent nodes, z; is the coordinate of node j,z =z — z],j, in which Z,’j

is the lower coordinate of the k-th layer, and Ay is the thickness of the k-th layer.
For small deflection analysis, the strain-displacement relations are

€ij =3 (ij+uji) (14.6.4)

Substituting the first of Eq.(14.6.1) in (14.6.4) gives

au/
= a=d G
do; )
oo m ey = 2Py
Z
dp; . oW/
2o —es =P yiy b; : (14.6.5)
dz 0x

The stress—strain relations for the two-dimensional state of the k-th lamina made
of orthotropic material [18] is

o CiiCi3 0 © (e —annr)®
o3t =|Ci3Cx 0 €3 — ay AT (14.6.6)

05 0 0 C55 €5
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in which o1 = 04y, 03 = 0,;, 05 = Ty, and oy, and o, are the coefficients
of thermal expansion along the x and z directions. The coefficients Cl.(J].‘) are the

transformed elastic constants C i(J].() from the (xyz) system to the orthotropic laminate’s
coordinate with

Eq Ej
Cii=—— Ci3=——"7"—
I —vi3v3 I —vi3v3
vizEj
Cz=—— Css =G3 (14.6.7)
1 —vi3v3

in which E;| and E3 are the elastic moduli along the x and z directions of lamina,
v;;j is the Poisson ratio, and G13 is the shear modulus. According to the principle of
virtual work,

/Oij56ijdv=/ Bi(SuidV-l-/l‘inSuidS—/ pii;éu;dV (14.6.8)
|4 |4 S |4

in which B; is the body force. For elastic analysis in the absence of body force in
Eq.(14.6.8),using Eqgs. (14.6.1),(14.6.5), and (14.6.6), and substituting in Eq. (14.6.8)
yields

j 99U 5 j 51 9OW;
N{——tdA+ | Q36WidA+ [ 058U;dA+ | 05— —dA
A X A A A X
+/ Iijjc‘SUmdA—i-/ ™MW 8Wd A
A A

Z/N{(SU,dL+/ Q§5WjdL+/(f15W1 + £ 8WdA  (14.6.9)
r r A

in which

N-1 Zk+1

N =" / o1¢/dz
k=1 2k
N=D vzt g

Qé = / a5idz
k=13 dz

N N-l k41 ~

0l=>" / os¢ldz
k=1 v <k

) N=L gy dei

Q:]; = / O'3—dZ

. n. N-1 Zk+1 . R
Uy = / p(@'o™, ¢/Pp™)dz (14.6.10)
7k
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In Eq.(14.6.9), f1 and f;, are the distributed forces applied to the lower and upper
surfaces of the beam and I is the cross-section perpendicular to the z-axis and I" is
the perimeter of the cross-section.

To solve Eq.(14.6.9), the finite element method is used along the x-axis. Thus,
considering a shape function of the form

Uj(x, 1) = (N U (1))
WiCx, 1) = (NOWW; (1)) (14.6.11)

and substituting Egs. (14.6.10) and (14.6.11) in (14.6.9) yields

n

D K™ (Un} + D K™ (Wi + D [M V" (U}

m=1 m=1 m=1

. Xe+1 . dN
=b{N{}+b T/ {— }dx (14.6.12)
X dx

D K™ U} + DK V™ (Wi} + D Mo 1" (W}
m=1 m=1 m=1

Xe+1

=0(0.)+0 [

Xe

T (N)dx + / N, (14.6.13)

Equations (14.6.12) and (14.6.13) are the finite element equilibrium equations of
the beam. The element stiffness and mass matrices for a base element (e) are

im jm Yetl dN dN Xe+1
(K )™ = CJ! b/ (o< > de+ b/ (N}(N)dx
Xe Xe

. ~ Xetl N Xe+1 dN
[Kuw]f’":c{;”b/ (=) <N >dx + Bl b/ (N} < — > dx
X dx Xe dx

e

. ~ Xe+1 dN e Xe+l N
(Kl = stmb/ Wh= gy = dxt Céé”b/ PR
Xe

Xe

. . Xe+1 . Xerl N dN
[wa]lmzcégnb/ {N}<N>dx+Dg;nb/ {—} —>dx
Xe Xe
. , Xe+l
(M, )" = Ifmb/ (N} < N > dx
Xe
X . Xe+1
(M, /" = I/mb/ (N} < N > dx (14.6.14)
Xe

and the constants are

im N-1 k1 _ .
Cil = Z/ Cuqﬁfqudz
k=1 Y%k
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. A+l dp) do™
cly = Z / Cos g%

. NZUovan _ qgi
cly = / C13di¢’"dz
k=1 v <k <
. N-bezn do"
pJm _ Aoy X
By = Z/Z Css5¢ &= dz
k=1 "%
s N-1 e+l _ L dp™
By = / C13¢J%d2
k=1 "%k <
s N-1 U+l _ J
Csjgn = / C55i¢ dz
k=1 "%
jm N [ AT dgm
C3/;n = / C3qiidz
k=1 Y%k dz dz
A im N-1 T+l _ L.
DéS = / Css¢p’ ¢™dz
k=1 Y%k
. N-1 Zk+1 _ _ .
T = / (0xxC11 + 0z C13) AT ¢’ dz
k=1 Zk
N _ _ d¢j
) = / (ererCia + 0z C3a) AT ——diz (14.6.15)
k=1 Y%k <

Static Thermal Stresses

Consider a cantilever beam of three layers, for which the bottom layer is number
(1), the middle layer is number (2), and the top layer is number (3). The layers (1)
and (3) are divided into 3 numerical layers and layer (2) is divided into 2 numerical
layers. Since a second order approximation polynomial is used, a total of 17 nodes
are considered along the thickness. The beam length is divided into 80 elements,
where the element sizes are proportionally smaller close to the clamped edge. A
uniform temperature rise of AT = 103 °F is applied to the beam. The selection of
this temperature rise is for the purpose of comparing the results with references. Since
the governing equations are linear, the results can be applied to a lower temperature
rise using the proper scale.



14.6 Layer-Wise Theory of Composite Beams 307
3
b
2
Fig. 14.10 Distribution of axial thermal stress based on layer-wise theory
The physical properties of the layers are:
Layer 1:
E{" = E(1)3 = 6.89 GPa, o’ +a!” =13 x107°/°F, vy =i} =
033, AV =5cm.
Layer 2:
E® = EQ3 =30GPa, o +a® =25x107°F, w2 =1 =
033, h»=0.1cm.
Layer 3:

EY = E(); =20.69 GPa, o +a =
0.25, h® =5cm.

6.5 x 1076/°F, vy =) =

Figure 14.10 shows the distribution of axial stress along the length of the beam.
The stresses oy, 0p, 0., and o, are axial stresses at the free bottom surface, between
the bottom layer and the inner glued surface, between the upper layer and the inner
glued surface, and at the free upper surface, respectively. The solid lines are the results
of the layer-wise theory, and the dotted lines are the results given by Chen et al. [14].
The axial stress at the interface between the lower plate and the middle plate, and
between the upper surface and the middle plate, are shown in Fig. 14.11. The solid
lines are the results of the layer-wise theory and the dotted lines are the results of
Cho et al. [15]. The results of Cho are obtained using the higher order equivalent
layer and are compared with the SAP IV computer program (dashed dotted line). In
Fig. 14.12, the normal stress versus the length of the beam are plotted and compared.
The solid line is the result of the layer-wise theory, the dashed line is due to Chen,
the dotted line is the result of SAP IV, and the dashed-dotted line is the result of Cho.
As shown, the maximum lateral normal stress is located at the end of the beam.
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Layerwise
17 SARY | =
-~ 05 Cho e
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o 0.92 0.94 0.96 098 /4

Fig. 14.11 Comparison of results of axial thermal stresses

0.5
0 =T T T T
019 0.92 0.94 0.96
-0.5
w Layerwise
© SAP IV
2k Cho e
Chen —
1.5 1
-2

Fig. 14.12 Comparison of lateral normal stress

Dynamic Thermal Stresses

As an example, consider a composite beam made of four unsymmetric layers of
graphite epoxy arranged as (0/90/0/90). Both ends of the beam are clamped. The
beam is divided into 80 elements along the length and 8 quadratic elements (17
nodes) along the thickness. The physical properties of the beam are assumed to be

Eq1 = 180 GPa, Eyy = E3z3 = 10 GPa, G13 = 7.17 GPa, Gy3 = 2.87 GPa,
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=| =t
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Fig. 14.13 Lateral deflection and axial displacement at middle length

vio = vz = 0.28, 13 = 0.33, p =2 x 103 kg/m3, g1 = 0.02 x 10761/°C,
oy =33 =225 x 1070 1/°C.
The dimensionless parameters are defined as

_ t _ u
[ = —— u =
VpI2/E ajToL
7 w 7= = =2 (14.6.16)
w = = — X = — .0.
anToL ST L

for which L is the length of the beam, / the thickness, Tj the ambient temperature,
and p the mass density of the layers. The temperature rise is assumed to be applied

uniformly to the beam as
T=0.1x(1—e 10 (14.6.17)

Figure 14.13 shows the lateral deflection and axial displacement at the middle
length of beam (at x = 1/2). The period of lateral vibration is 40 and axial vibration
is 5 nondimensional units. In Figs. 14.14 and 14.15, the normal and shear transverse
stresses between layers 1 and 2 (a), layers 2 and 3 (b) and layers 3 and 4 (c) versus
time are shown. It should be noted that the period of vibration of transverse shear
stress is about 40 times that of the transverse normal stress. Figure 14.16 shows the
time history of the axial thermal stress at the top of layers 1 and 2 at the middle length
of the beam. The curve (a) shows the axial thermal stress at the top of layer 1, and
curve (b) at the top of layer 2.
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Fig. 14.14 Lateral normal stress
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Fig. 14.15 Transverse shear stress

14.7 Problems

1. Consider a straight one-dimensional quadratic element, as shown in Fig. 14.17.
Verify that

/{N(x)}dx=/ {N@E)}HJ|dS.
(e) (e)

2. The first part of the stiffness matrix of Eq.(14.4.1) is

[k]© = / [B1T [k][B)dv.
V(e)



14.7 Problems 311

10

84 4 — - . . "

0 2 4 6 8 10 12 14 16

Fig. 14.16 Time history of the axial thermal stress at the top of layer 1 and 2 at middle length

Fig. 14.17 One-dimensional . L -
quadratic element 0 N ey

i 2 j L2 k
35-* (e

In terms of the global coordinate system variable x, [k;]© is calculated and given
in Eq. (14.4.6). Use the natural coordinates (14.3.4) and the Jacobian (14.3.10) to
arrive at the same matrix (14.4.6).

For the straight cubic element, the shape functions in the global coordinates are
given in Eq.(14.5.4). Derive these equations in terms of the natural coordinates
(14.5.5) and calculate the Jacobian matrix.

Find the elements of the stiffness matrix [k;]© for a straight cubic element using
the natural coordinates and the Jacobian matrix.

The shape functions given in Eq.(14.5.4) are for a C%-continuous third order
element. Find the associated shape function for a C'-continuous element in terms
of the natural coordinate &.
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Chapter 15
Two-Dimensional Higher Order Elements

Abstract The triangular elements with quadratic and cubic shape functions in terms
of the local area coordinates are presented and coordinate transformation law with the
associated Jacobian matrix calculations are given in the chapter. As an application,
the Field problem in two dimensions is considered and employing the quadratic
triangular element, the stiffness and force matrices are calculated. The quadrilateral
element is discussed in the following and the shape functions in the global and local
coordinates are obtained. The field problem is reconsidered and the element matrices
are calculated employing the bilinear quadrilateral element.

15.1 Introduction

For a higher accuracy of solution in two-dimensional domains, we may select
two-dimensional higher-order elements. In this case, the approximating polynomial
for describing the dependent function is selected of second or third order degrees.
As described in Chap.4, these elements may be of triangular or four-sided shapes
with straight or curved sides. A second or third order isoparametric element can be
selected to fit the curved boundary geometry of the solution domain, in which the
solution accuracy is well-considered.

When triangular elements are considered, the area coordinates may be selected
to describe the approximating shape functions. This selection will properly provide
a formulation which is easy for the element integrations. The triangular elements of
second and third order polynomials can be described in terms of the area coordinates,
as will be discussed in this chapter.
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Solid Mechanics and Its Applications 216, DOI: 10.1007/978-3-319-08037-6_15,
© Springer International Publishing Switzerland 2014
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Fig. 15.1 Quadratic element 5

15.2 Triangular Element

Consider a triangular element with straight sides. A quadratic element will have a
total of six nodes, three at the apex and the other three at the mid-sides, as shown
in Fig. 15.1. The area coordinates L, Ly, and L3 are shown in the figure, and their
definitions are given by Eq. (4.8.6). The shape functions in terms of the area coordi-
nates are

Ni=L{Q2L1 —1) Ny =4L L,
N3 =L,2L, — 1) Ny =4L,15
Ns =L32L3; — 1) Ne =4L3L (15.2.1)

in which the following relation relates L1, Ly, and L3.
Li+Ly+L3=1 (15.2.2)

Itis noted that the three variables Ly, L», and L3 are not independent. When carrying
out the element differentiations, the dependency relation (15.2.2) must be considered.
The mathematical relations for the derivatives of the shape functions will be discussed
in the next section.

A triangular element with cubic shape function in terms of the area coordinates is
shown in Fig. 15.2. The nodal points are defined in the element, three at the triangular
apex, six equally spaced on the sides, and one at the element centroid. Ten cubic shape
functions defined in terms of the area coordinates are
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Fig. 15.2 Cubic element

Ni =3 LiBL1 = DBL1 —2)

No=2 LiLy3L; — 1)

N3 =3 L1Ly(3L, — 1)

Ny =3 LrB3L, — D(BL, — 2)

Ns = 3 LyL3(3Ly — 1)

Ne = 2 LoL3(3L3 — 1)

N; =3 L33L3 — H)(BL3 —2)

Ng = 3 L3L{(3L3 — 1)

No =3 LiL3(3Ly — 1)

Nyo = 27L1L, L3 (15.2.3)

[STE S el = IO )

The area coordinates L1, Ly, and L3 are related to each other through Eq.(15.2.2).
Consideration of Eq. (15.2.2) leaves two independent variables among the three vari-
ables L, Ly, and L3.

15.3 Jacobian Matrix

The element matrices must be calculated using the coordinates. The final form of
the element matrices, after the necessary differentiations and integrations, must be
obtained in the global coordinate system. This requirement provides the means to
evaluate the Jacobian matrix. When the area coordinates are used, the coordinate
transformation from the two-dimensional x and y coordinates to the area coordinates
L1, L, and L3 must be known to evaluate the Jacobian matrix. The Law of coordinate
transformation is
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Fig. 15.3 Area coordinates Y,
3
)
2
X
x=L1 X1+ LxXo+ L3X3
y=L1Y1+ LY, + L3Y3 (15.3.1)

in which (X1, Y1), (X2, Y2),and (X3, Y3) are the x and y coordinates of the apex of the
triangular element, as shown in Fig. 15.3. In the two-dimensional (x, y) coordinates,
two independent variables x and y are considered as the problem variables, while in
terms of the area coordinates, three variables L, L, and L3 are introduced. Since
the area coordinates are always related through the following equation,

Li+Ly+L3=1 (15.3.2)

only two of the three area coordinates are independent. Let us assume that L and
L, are two independent variables. Thus, from Eq. (15.3.2),

Ly;=1—-L{ — L». (15.3.3)

Now, according to the definition, the Jacobian matrix for the coordinate transfor-
mation from x and y to L and L is

ax dy

_ | dLy oL
[J]= a_xla_y] . (15.3.4)

dLy 0Ly

The differential of the shape functions with respect to the new variables L and
Lo, when Ny = Ng(x, y), are

JNg _ IdN; 0x n dN; 0dy
dL;  9x 9L, 9y 9L,
ON; _ ON; 0x ON; 0y

9L, _ ax oL, 9y oL,

(15.3.5)
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or, in terms of the Jacobian matrix,

AN, Ny
oL | _ 0
aNi =[J] 31{55 . (15.3.6)
0L» ay
The inverse relation is
0Ny O Ny
=1 (%l . (15.3.7)
ay oL,

Since L1 and L, depend on L3, the derivative of Ny with respect to L is related

to L3 as
dNs  9ON; 0L, n ONg 0L3

- 5= — (15.3.8)
L, oL, 0L, dL3y 0L,
From Eq. (15.3.3)

ONs  ONs 9N
= — . (15.3.9)

dL dL 0Lj3

Similarly,

aN, aN. dN.,

A SAALY (15.3.10)

dL» dL, JLs3

That is, when the derivative of shape functions with respect to the area coordinates
are evaluated, the dependency relation (15.3.3) must be taken into account. This is
also valid for the evaluation of the Jacobian matrix. Considering the law of coor-
dinate transformation from Eq.(15.3.1), the members of the Jacobian matrix from
Eq.(15.3.4) are evaluated as

0x 0x 0x

_—= = — = X] - X3

JdL 0L dL3

0x dax 0x

— = — — — =X, — X3

dL, 0L, 0Lj

0 0 0

99y

JLq oLy dL3

0 d 0

Dy, (15.3.11)

dL, dL, 0Lj

Thus, the Jacobian matrix is

| X1 —=X3Y -7
[J]= [Xz Cxon_ YJ . (15.3.12)
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Fig. 15.4 A quadratic Y
triangular element | 1

15.4 Quadratic Element

As for the application of the quadratic triangular elements, we may consider the
two-dimensional field problems. A triangular element with six nodes is shown in
Fig. 15.4. The shape functions in terms of the variables x and y have a general form
given by

@ = a; + arx + azy + asx> + asy® + agxy. (15.4.1)

Using the nodal point coordinates, the constants a; through ag are calculated in
terms of the nodal values of ¢, and Eq. (15.4.1) is written in matrix form as

9 (x,y) = (N(x, y){®}© (15.4.2)
where

(N(x,y))® = (N N2 N3 Ny Ns Ne)®© (15.4.3)
(D)@ = (@] Dy D3 Dy D5 Dg)©.

The gradient matrix of element (e) is

¢
(g}© = gé = [B]9{®} (15.4.4)
dy

in which
dNi 0Ny ON3 ON4 ONs5 dNg

[B]© = (15.4.5)

Using the area coordinates, the transformation law from the global to local area
coordinates is
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N, on;
oL _ ax
aN} =[J] an; [ (15.4.6)
aL» ay

Similarly, the transformation law for matrix [B]® from the local to the global

coordinate is
[B,] = [J17'[BI] (15.4.7)

where

@ _ | 9L, 9L, oL, oL, aL; oL
(B = | 5N} 9Ny 9Ns dNs ONs 9Ng |- (15.4.8)

For quadratic elements, the relations between the shape function N and the area
coordinates L are

Ni=LiQ2L;1—1)
Ny =Ly(2L, — 1)
N3 = L3Q2L3; — 1)

Ny =4LLy
Ns =4L,L3
Ne =4L3L;. (15.4.9)

Considering the following constraint equation among the area coordinates,
Li+Lry+L3y=1, (15.4.10)
and selecting L1 and L, as the independent variables, Eq. (15.4.8) becomes,

(e) _ |4L1 —1 0 4Ly +4Ly —3 4L, —4Ly 4—4L, — 8L
(3] _|: 0 4Ly —1 4Ly +4Ly —3 4L 4 —4L; —8Ly —4Ly ’ (15411)

For field problems, the stiffness matrix for the base element (¢) was derived and
given by Eq.(5.2.18) as

[k]© = /[Bg]T[D][Bg]dA. (15.4.12)
Using Eq. (15.4.7)

Bo” = (11 's1) =" (107) (154.13)
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Thus, substituting in Eq. (15.4.12) gives

[k]© = / [B,1"[D][Bgldxdy = / [BL1T[J N7 [DIJT ' [BLIJ|dL1d Ly

(15.4.14)
in which the indices g and L are referred to the global and local coordinate systems
and [J]is the Jacobian matrix. To evaluate the Jacobian matrix, the law of coordinates
transformation between the local and global coordinate systems are considered as

x=L1X1+ LX>+ L3X3 (15.4.15)
y = LiY1 + LaY2 + L3Ys.

Selecting L and L, as the independent variables, the Jacobian matrix is

dx dy
_ | oLy 0Ly | _ X1—-X3Y1—-Y;
[J]= B_x a_y = [X2 X3 Y, — V3| (15.4.16)
0L, 0L

The inverse of the Jacobian matrix is

- L | Jn —Jn2 1 Jn —Ji
JIl= — = 15.4.17
L1 [J] |:—J21 Ji1 2A© [ —Ja1 Jii ( )

in which

Ju=X1-X;3 Ju=X,—-Xj3

Jop =Y1—13 Jn =Yy, —7Y;. (15.4.18)
For the case in which
[D] = [kg" k(jy] (15.4.19)
we have
DI = BN [ kex I3y + kyy J3, _kxx-122-]212 — kyy1221111]
4A% | —kxxJiadn —kyyJuidar ke Ji +kyyJ
(15.4.20)
or
9D = ﬁ [Z; Z;ﬂ (15.4.21)

in which
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an = (kxszzz +kny221)
a2 = (—kyxJ22J12 — kyy J21J11)
ax =ap

ay = (kax J3y + kyy J3).

321

(15.4.22)

Substituting the matrix product (15.4.20) in Eq.(15.4.14) and carrying out the

integration, gives the element stiffness matrix as

jair  —gan ¢ (ai +an) %alz
ax & (a2 +an3) %aZI
- 1
[k](") _ 1 symmetric 5(a1 + 2a12 + ax) ) 0
2A© 3 (a11 + az21 + ax)
L . .
5 (a1 +az)
—2 (a21 +an) 0
_% (a2 + ax) _% (a1 + az21) (15.4.23)
—% (a11 +az1) —% (a2 +an)
3 (an +aip +axn) % an
% (a1 + a2 +az) |
The force matrix related to the pressure is
1
%)
(F}© = / p{N}dA = / p x3 dA (15.4.24)
Ale) Ale) 4
Ns
N¢
or
Ly2Ly = 1)
Ly2L, — 1)
(F)© = / p{PCE = DY asiaL,. (15.4.25)
Ale) L1L2
4L,L5

4L3L4
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15.5 The Quadrilateral Elements

Consider a two-dimensional quadrilateral element with four straight sides, as shown
in Fig. 15.5. The interpolating shape function in the element for a dependent function
¢ is

¢(e) = a +a2x+a3y+a4xy, (1551)

The constants a; through a4 are obtained using the nodal point coordinates. With
reference to Fig. 15.5, the nodal coordinates are

X=a X =—a X =—a X=a
y=>b y=>b y=—b y=—b (15.5.2)
¢ = o, ¢ = = i ¢ = dm.

Substituting conditions (15.5.2) in Eq. (15.5.1) and solving for the constant coef-
ficients a; to a4, gives

ar =g (¢ +bj + b + bm)
ay =35 (¢ — bj — bk + bm)
a3 = = (¢ +b; — bk — bm)
ay = 75 (¢ — dj + k — dm). (15.5.3)

Substituting the values of aj to a4 in Eq.(15.5.1), yields
¢ = Nigi + Njdj + New + N (15.5.4)
where

Ni = 75 @ +x)(b+y)
Nj =75 (@a—x)(b+)
Ne = 7 (a—x)(b—y)
Nm = 705 (@+x)(b — y). (15.5.5)

The main advantage of using the quadrilateral element with four nodes over the
triangular simplex element is that, while the number of total elements in the solu-
tion domain is half of that of triangular elements with the same number of nodal
points, the approximating shape function is quadratic. Therefore, the selection of the
quadrilateral elements in the finite element modeling results in lower computational
time, due to the lower number of elements in the solution domain, and higher so-
lution accuracy, compared to the simplex triangular element. This element is thus
very efficient in two-dimensional modeling. Due to the quadratic nature of the shape
function, the gradients of the dependent function in the x and y-directions are not
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Fig. 15.5 A quadrilateral element with four nodes
Fig. 15.6 A general Y
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constant. The gradient of the function in the x-direction, for example, is constant
with respect to x, but is a linear function of y; that is,

d

—¢ =az +asy
0x

d

—¢ = a3+ asx.
dy

(15.5.6)

In Fig. 15.5, the quadrilateral element is shown by a rectangle with perpendicular
sides. This element is generalized into an arbitrary four-sided element represented
by a pair of natural coordinates & and 7, as shown in Fig. 15.6. To write the shape
functions in terms of the natural coordinates & and n, we refer to Fig. 15.6 and write

the shape function Nj as

N—l b 1! 1
1= b-n@-n=7 (

X

b

)(1-3)

(15.5.7)

The range of the variables x /b and y/a in the element (e) are
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—1<- <41 —1<

Q=

< +1. (15.5.8)

S| =

The variables x /b and y/b may now be redefined as

g=2 5,22 (15.5.9)
b a

The variables & and n are the natural coordinates, as defined in Fig. 15.6, and their
range of variations in the element (e) is between —1 and +1. The shape function in
element (e), as shown in Fig. 15.6, in terms of the natural coordinates is written as

¢ = N1t + Nag + Nagp3 + Naps (15.5.10)
in which
N =3 (1=&1—-n
Ny =3 (1+&1—1n)
N3 =3 (1+&1+n)
Ni=1(1=61+n). (15.5.11)

The & and 5 axes in Fig. 15.6 are along the lines connecting the middle points of
the sides of the quadrilateral. In the next section, Eq.(15.5.11) will be proven for a
more general bilinear quadrilateral element with a general shape.

15.6 Bilinear Quadrilateral Element

Consider a bilinear quadrilateral element with nodal coordinates (x;, y;), i =
1,2,3,4 in the x—y coordinates system, as shown in Fig.15.7a. This quadrilat-
eral element of general shape can be mapped into a square with nodal coordinates
(£1, £1), as shown in Fig. 15.7b. The coordinates of any point in the mapped ele-
ment are < £ 7 >, while in the original, coordinates are < x y >. The coordinate
transformation law between two coordinate systems can be described in terms of the
shape functions as

4
x(Em) = > NilE, n)x”

i=1

4
YE. ) =D NiE my©. (15.6.1)
i=1
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(1,1)

<17 71)

(a) (b)

Fig. 15.7 A bilinear quadrilateral element in the global and local coordinates
in which & and 7 are called the natural coordinates. To obtain the shape functions of
the coordinate transformation law, we assume the bilinear expansion of the forms

x(,n) =ao+ai§ +an+azén
(&, n) = bo+ b1§ + ban + b3én. (15.6.2)

Using the conditions

x(&, i) = x° (15.6.3)
Y& i) =y

we obtain
XL =D =x  y=1,-1) =)y
x(1,—1) = x y(1, —1) =y
x(1,1) = x{? v, 1) = y{
x(—1,1) =x y(=1,1) = y{©. (15.6.4)

Conditions (15.6.3) imply that
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Ni(§j) = 6ij.
That is, from Eq. (15.6.1),
4
X =x(Ejn) =D Nitgj npx. (15.6.5)
i=1

This equation is valid when N;(§;, n;) = §;;. Using Egs. (15.6.2) and (15.6.4), the
following matrix equations are obtained:

x{ 1-1-11 aop
5| _ |11 -1-1 aj
[T 11 a (15.6.6)
xg 1-11 —1] |a3
i 1 —-1-11 bo
sl |11 —1-1]]n
A= 11 el (15.6.7)
V4 1—11 —1||bs
Solving Egs. (15.6.6) and (15.6.7) for a’s and b's, we obtain
NiE ) =5 A=801-n
NaE,m) =5 (L+&)(1—n)
N3, n) =5 (L+&)(1+n)
NaE ) =5 (1=&(A +n). (15.6.8)

15.7 Application to the Field Problems

Consider a two-dimensional field problem with ¢ = ¢ (x, y). Dividing the solution
domain into a number of arbitrary quadrilateral elements, the one degree of freedom
at each node is ¢. The base element (e¢) with four nodes is shown in Fig. 15.6. The
function ¢ in the base element (e) is approximated in terms of its nodal values

< ¢1, P2, P3, P4 > as
?1
»©(x,y) =< Ny N» N3 Ns> P21 (15.7.1)

&3
P4

The gradient matrix in element (e) is
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¢ dN1 N> 3N3 INs7 [
o ax ox ox | |4

@@ =151=1% &K K X, o [ = [B1S):
dy dy dy 9y 9y o

327

(15.7.2)

The gradient matrix is transformed and written in terms of the natural coordinates

& and n as
99 99
@ =185 1 =017 155
dy an

where [J] is the Jacobian matrix of transformation and

3¢ ONi ON>» ON3 INs (o

OE 9E 0t 0t o0& | ]@ 5

8 [ =]y Ny o v | (4] =110
an an dn 9n 9In ¢4

Thus, matrix [B] is related to matrix [B] through the relation
[B] =[J1""[B].

To obtain the Jacobian matrix, we have

ap P IE 3¢ In
9x  9gox T anox
dp 99 d&  0¢ In
By 0Edy | anoy’

The inverse transformation is

dp 9 dx  9¢ dy
9 ox0E 0y 0%
d¢ 9 dx  0¢ dy
on  axan  ayon’

From Eq. (15.7.3),

% %9
bo =115
an By

in which the Jacobian matrix is

(15.7.3)

(15.7.4)

(15.7.5)

(15.7.6)

(15.7.7)

(15.7.8)
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ax dy
=551 (15.7.9)
an on
The coordinate transformation laws between the global (x, y) coordinates to the
local (&, n) coordinates are

X =i Nigxi x =20 Niyx;
4 4
voe=2 1 Nieyi yn=2,_1Ninyi (15.7.10)

Thus, the Jacobian matrix is

X1 )1

_rpie) | X2 )2
1=1819 | 22 (157.11)

X4 Y4

Using Eq. (15.6.8), we have
= L == (I=n A+ -0+n)
(e) _

B =3 [—(1—s> —(48) (1 +6) (1—s>] (157.12)

The inverse of the Jacobian matrix is

_ L[ Jn —Ji
JIl=— 15.7.13
o J [—le Ju ( )

in which J is the determinant of the Jacobian matrix
J =det[J] = Ji1J22 — Ji12J21. (15.7.14)

Now, the stiffness matrix of a field problem may be obtained. In terms of the vari-
ables (x, y) in the global coordinate system, the stiffness matrix is (see Eq. (5.2.18)),

K]© = / / (81T [KI[Bldxdy. (15.7.15)

The stiffness matrix in terms of the natural coordinates & and 7 is calculated with
[ B] written in terms of the natural coordinates as

1 1
) = / / (81 (KB ldédy. (15.7.16)
“1J-1

Substituting for [ B] from Eq. (15.7.5) yields
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(a) A v (b) ATl
5 -L1) (1.1)
D c
A
B (-1.-1) (1.-1)
.\"
Fig. 15.8 Linear quadrilateral element
1 1 \T B
Wi = [ [ (e ] ey (15.7.17)
or _—
K = [ [ brEagdy (15.7.18)
-1J-1
in which
_ Y
k1= (17") a1 (15.7.19)

The Jacobian J is, in general, a function of & and 7. For the special cases of

rectangle and parallelograms, it becomes a constant.

15.8 Problems

1. Use Eq.(15.4.25) to integrate and obtain the elements of the force matrix associ-

ated with a two-dimensional quadratic triangular element.

2. Consider the linear quadrilateral element of Fig. 15.8a with the nodal coordinates
A2,2), B(5,1), C(6,5), and D(3,4). Find the coordinate transformation laws
which transform the element into the local coordinates & and 5, as shown in

Fig.15.8b.
3. Find the Jacobian matrix of the element of Problem 1.
4. Find the determinant of the Jacobian matrix of Problem 1.
5. Use Eq.(15.7.19) to find the members of matrix [k], when [k] = [l(; 2 .
6. Use Eq.(15.7.18) to calculate the stiffness matrix of the element of Problem 1.
7. The force matrix of a two-dimensional field problem is
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()@ = /A pIN}dA

Using the linear quadrilateral element, find the general form of the related force
matrix.
8. Find the force matrix of the element of Problem 1, when p is a constant.

Further Readings

1. Nejad-Malayeri AR, Mansour K (1999) Finite element solution of two-dimensional potential
flow using linear, second, and third order shape functions, B.Sc. project, submitted to the Aero-
nautical and Aerospace Department, Amirkabir University of Technology, Spring

2. Segerlind LJ (1984) Applied finite element analysis. Wiley, New York

3. Bathe KJ, Wilson EL (1976) Numerical methods in finite element analysis. Prentice Hall Inc.,
New Jersey



Chapter 16
Coupled Thermoelasticity

Abstract The problems of coupled linear thermoelasticity are among those classes
of mechanics which seldom have analytical solution even for simple structures such
as beams and rods. Therefore, finite element method is one of the most reliable
numerical methods to handle the solution of structural members. The chapter begins
with the Galerkin method to obtain the finite element equations of the coupled prob-
lems for general three-dimensional case. The members of each related matrice in
the resulting finite element equations are calculated and given. The method is then
applied to a number of problems. The function- ally graded layer under thermal shock
load is analyzed in the next section. Thick spherical vessels under radially symmetric
thermal shock load applied to its inside surface is dis- cussed in the next section. The
coupled thermoelastic equations for an axisymmetrically loaded disk with different
approximation orders is presented in the last section. Elements with various orders
are employed to investigate the effects of the number of nodes in an element

16.1 Introduction

Due to the mathematical complexities encountered in the analytical treatment of
coupled thermoelasticity problems, the finite element method is often preferred.
The finite element method itself is based on two entirely different approaches: the
variational approach based on the Ritz method, and the weighted residual methods.
The variational approach, which for elastic continuum is based on the extremum of
the total potential and kinetic energies, has deficiencies in handling coupled ther-
moelasticity problems due to the controversial functional relation of the first law
of thermodynamics. On the other hand, the weighted residual method based on the
Galerkin technique, which is directly applied to the governing equations, is quite
efficient and has a very high rate of convergence [1-4].

M. R. Eslami, Finite Elements Methods in Mechanics, 331
Solid Mechanics and Its Applications 216, DOI: 10.1007/978-3-319-08037-6_16,
© Springer International Publishing Switzerland 2014
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16.2 Galerkin Finite Element

The general governing equations of classical coupled thermoelasticity are the equa-
tion of motion (9.2.8) and the first law of thermodynamics as [1]

0ij.j + X; = pii; inV (16.2.1)
gii + pcb + BToé;; = R inV. (16.2.2)

These equations must be solved simultaneously for the displacement components
u; and temperature change 6. The thermal boundary conditions are satisfied by either
of the equations

0 =06, onA fort > 1 (16.2.3)
0p+ab=>b onA fort >t (16.2.4)

in which 6, is the gradient of temperature change along the normal to the surface
boundary A, and a and b are either constants or given functions of temperature on the
boundary. The first condition is related to the specified temperature and the second
condition describes the convection and radiation on the boundary.

The mechanical boundary conditions are specified through the traction vector
on the boundary. The traction components are related to the stress tensor through
Cauchy’s formula given by

! =ojjnj onA fort >t (16.2.5)

in which " is the prescribed traction component on the boundary surface the outer
unit normal vector of which is 7. For displacement formulations, using the constitu-
tive laws of linear thermoelasticity along with the strain-displacement relations, the
traction components can be related to the displacements as

i =i +ujin;+ ruggn; — Gr+2u)abn; (16.2.6)

inwhich 8 = T — Ty is the temperature change above the reference temperature 7j. It
is further possible to have kinematical boundary conditions where the displacements
are specified on the boundary as

u; =u;(s) onA fort > ty. (16.2.7)

The system of coupled equations (16.2.1) and (16.2.2) does not have a general
analytical solution. A finite element formulation may be developed based on the
Galerkin method. The finite element model of the problem is obtained by discretizing
the solution domain into a number of arbitrary elements. In each base element (e),
the components of displacement and temperature change are approximated by the
shape functions
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ul@(xl,xz, x3, 1) = Upi (t) N (x1, X2, X3) (16.2.8)
0 (x1, x2, X3, 1) = O (1) Nin (x1, X2, x3) m=1,2,..,r (1629)

in which r is the total number of nodal points in the base element (¢). The summation
convention is used for the dummy index m. This is a Kantrovitch type of approxi-
mation, in which the time and space functions are separated into distinct functions.
Here, U,,;(t) is the component of displacement at each nodal point, and 6, (¢) is
the temperature change at each nodal point, all being functions of time. The shape
function N,,(x1, x2, x3) is a function of space variables.

Substituting Eqs. (16.2.8) and (16.2.9) into (16.2.1) and applying the weighted
residual integral with respect to the weighting functions N, (x1, x2, x3), the formal
Galerkin approximation reduces to

/ (0ij,j + Xi — pii)NidV =0 1=1,2,...,r (16.2.10)
Ve)

Applying the weak formulation to the first term yields

JIN;

/ (0ij,j)Nidv =/ oijnjNidA —/ —o0;;dV (16.2.11)
V() Ae) Vie) 9%;

in which n; is the component of the unit outer normal vector to the boundary. Sub-
stituting Eq. (16.2.11) in (16.2.10) gives

Y
/ UijanldA—/ —laijdV-i-/ X,’NldV—/ pii; NidV = 0.
Ae) V(e 0%; v(e) V(e
(16.2.12)
According to Cauchy’s formula, the traction force components acting on the
boundary are related to the stress tensor as

lp =ojjn;j. (16.2.13)

Thus, the first term of Eq. (16.2.12) is

/ Gij"szdA=/ tiNidA. (16.2.14)
Ale) A(e)

From Hooke’s law, the stress tensor is related to the strain tensor, or the displace-
ment components, and temperature change 6 as

ojj = G(u,',.,' + u.,",') + )»uk,k&'j - ,3981/. (16.2.15)

Substituting for o;; in the second term of Eq. (16.2.12) yields



334 16 Coupled Thermoelasticity

IN; oN;
/ TU,‘jdV = / T[G(W’j +uj i)+ Augpdij — B0s;;1dV. (16.2.16)
V(e) 0X;j V(e) 9X;j

Substituting this expression in Eq. (16.2.12) gives

oN,
/ pii; NjdV +/ a—l[G(ui,j +uji) + AugdijldV
V(e)

V(e) 0Xj
IN;
— BO—dV = XiNidV + tiNidA. (16.2.17)
Ve  0x; Vie) Ae)

Now, the base element (e) with r nodal points is considered, and the displace-
ment components and temperature change in the element (e¢) are approximated by
Eqgs. (16.2.8) and (16.2.9). Using these approximations, Eq.(16.2.17) becomes

. dN; DN,
(/ pN,dev) Ui + (/ G—’—’”dv) Ui
vee) V(e 0xj 0x;
IN; ON IN; ON,
+ (/ G—l—’”dv> Unj + (/ A—l—’”dv) Unj
V(e) 8Xj ox; ’ V(e) ax; 3Xj

N
- (/ ﬁ—’dev) O =/ X;N,dV +/ f:Nid A
Vi) 0Xi Vie) Ale)

Lm=1,2,...ri,j=1,273 (162.18)

Equation (16.2.18) is the finite element approximation of the equation of motion.
The Galerkin approximation of the energy equation given by Eq. (16.2.1) becomes

a0
/ (q,,,- + pe— + ToBig; — R) NdV =01=1,2,---,r. (162.19)
V(e) ot

The weak formulation of the heat flux gradient g; ; gives

0 d 0
/ GiiNidV = / ( L ﬁ) NidV
Vie) V(e \ 0x dy 9z

. AN,
=/ (q-n)NldA—/ q,-—ldV (16.2.20)
A(e) Ve 0xi

in which A(e) is the boundary surface of the base element (e). Substituting
Eq.(16.2.20) in (16.2.19) and rearranging the terms gives

06 Y
/ pc—NldV—/ q,-—’dv+/ ToBiti i N;dV
V) Ot Vi) 0X; V(e

:/ RNldV—/ G-MNdA 1=1,2,...,r. (16221)
V(e) Ae)
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Substituting for the displacement components #; and temperature change 6 their
approximate values in the base element (¢) from Eqgs. (16.2.8) and (16.2.9) gives

dN,, ON, aN, )
(/ k—’"—’dv) O + (/ Toﬂ—’"N,dv) Ui
Ve 0x;i 0x; V(e 0x;

+(/ chmN,dv)émz/ RN;dV—/ (G-nNdA.  (16.2.22)
V(e) V(e) A(e)

Equation (16.2.22) is the finite element approximation of the coupled energy equa-
tion.

Equations (16.2.18) and (16.2.22) are assembled into a matrix form resulting in
the general finite element coupled equation given by

[MI{A} + [C){A} + [K{A} = {F} (16.2.23)

in which [M], [C], and [K] are the mass, damping, and stiffness matrices, respec-
tively. Matrix {A}Y = (U;, 6) is the matrix of unknowns and {F} is the known
mechanical and thermal force matrix.

For a two-dimensional problem, / and m take the values 1, 2, ...r. In this case,
Eq.(16.2.18) reduces into two equations in the x and y-directions as

; AN, ON
(/ pN,dev) Up + [/ QG + 0L m gy
V(e) V(e) dx 0x

IN; IN IN; ON
+/ G—l—’”dv] U,,,+[/ ¢ LMy
V(e) V(e)

dy dy ay ox
dN; 0N, oN,
V(e) 0x 8y Ve) 0x
=/ XNldV—I-/ tyNidA (16.2.24)
V(e) Ale)
.. JdN; IN,
(/ pN,deV) Vi + [(ZG +2) SHITm gy
Vie) Viey 0y dy

ON; ON dN; 9N,
+/ G—l—de} Vm+[/ G2y
V(e) dx 0x V(e) dax 8)7

IN; DN, N,
+ / A de} Up — [ ﬁNm—ldV} O
vy 9y dx Vie) dy

=/ YN[dV—i—/ tyNidA. (16.2.25)
V(e) Ale)
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The energy equation (16.2.22) for a two-dimensional problem becomes

AN, ) AN, )
(/ Toﬁ—’”N,dv) U, + (/ Toﬂ—ledV) Vin
V(e ox V(e dy

. IN,, ON;
+ pcNy NidV ) 6,, + k—2——dV
V(e) V(e) Jdx OJx

IN ON, -
. / k_m_ldv) 6, = / RNV — / G - NdA.
Ve Oy dy Vie) V(e)

(16.2.26)

The elements of the mass, damping, stiffness, and force matrices of the base
element (e) are

[fV(e) PN|N,,,dV] 0 0
[M](e) — 0 [fV(e) PN/N,,dV]0 |. (16.2.27)
0 0 0

The damping matrix is

0 0 0

(€19 = 0 0 0 (16.2.28)
ey ToBHZNidV [,y ToB 22 NidV] [,y peNmNid V]

and the stiffness matrix is

ki1 k12 ki3
[k]1© = | ka; koo ko3 (16.2.29)
k31 k32 k33

in which

N, DN N; ON
[kim] = [/ QG+ 0Ll gy +/ G—’—mdv}
Ve dx  ox vy 0y 9y

IN; AN IN; 3N,
[kim] = [/ e de+/ A—l—’"dv]
V) dy ox Vie)

aIN;
K= — Nyp—dV
s [ v@)ﬁ " ox }

ON; AN, N, 9N,
[kl = [/ G—l—de—l—/ i "dV]
Ve) 0x 3)1 Ve) 3y 0x

N, ON, N, ON
(k] = [/ QG+ 0Ly +/ el v}
V(e) By By V(e) Jdx Ox
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Im IN;
[k23] = - ,BNm_dV

Ve dy
[K57] = [ka]™ =0
ON,, ON, 0Ny, ON,
[k%’] — [/ k—m—ldV _|_/ k_m—ldVi| . (16.2.30)
V(e) 8X 8)6 Ve) 8}’ ay

The force matrix is

{fV(e) XN dV + fA(e) tyNidA}
N =1 Uy YNV + [y tyNidA) (16.2.31)
v RNAV = [y )G - DN d A}

and the unknown matrix is
{U}
(8@ =1{vit. (16.2.32)
{6}

The initial and general form of the thermal boundary conditions are one, or a
combination, of the following:

0(x,y,2,0) =0(x,y,z)at t =0
O(x,y,z,t) =6s0n Ajyand ¢t >0
gl +gym + g.n = —q// on Ay and ¢t > 0
gxl +qym +g;n =h(® +Tp — To) on Azand t >0

q<l +gym+q.n =o€ + To)4 — ogpgr on Agand t >0
(16.2.33)

where To(x, y, z) is the known initial temperature, 6; is the known specified temper-
ature change on a part of the boundary surface A, q// is the known heat flux on the
boundary A,, h and T, are the convection coefficient and ambient temperature spec-
ified on a part of the boundary surface Az, respectively, o is the Stefan-Boltzmann
constant, € is the radiation coefficient of the boundary surface, o, is the boundary
surface absorption coefficient, and g, is the rate of thermal flux reaching the boundary
surface per unit area, all specified on boundary surface A4. The cosine directors of the
unit outer normal vector to the boundary in the x, y, and z-directions are shown by /,
m, and n, respectively. According to the boundary conditions given by Eq. (16.2.33),
the last surface integral of the energy Eq.(16.2.22) may be decomposed into four
integrals over A through A4 as
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/ @'%MdAz/‘fNﬂA—/'M#+%—ZﬁNﬂA
A(e) Ar A3

(0€® + T0)* — aupqr)NidA 1 =1,2,--r
Ay

(16.2.34)

Note that the signs of the integrals in Eq. (16.2.34) depend upon the direction of
the heat input. The positive sign is defined when the heat is given to the body, and
is negative when the heat is removed from the body. That is, q” is defined positive
in Eq. (16.2.34), since we have assumed that the heat flux is given to the body. On
the other hand, we have assumed negative convection on the surface area A3, which
means the heat is removed from the A3 boundary by convection. Similarly, boundary
Ay is assumed to radiate to the ambient, as the sign of this integral is considered
negative.

In order to discuss the method in more detail, a one-dimensional problem is
considered [5-7]. The equation of motion in terms of displacement is

9%u 90 9%u

A+2G)— — B— = p— 16.2.35
(A + )ax2 ﬁax v ( )
and the first law of thermodynamics reduces to
320 a0 9%u
k— — pc— — BT =0. 16.2.36
o2 P Pog: ( )

Taking a line element of length L, the approximating function for axial displace-
ment for the base element (e) is assumed to be linear in x as

u(x, )@ = N;U; + N;Uj = (N)© (U}© (16.2.37)

in which the piecewise linear shape function (N) is N; = (L —n)/L, N; = n/L,
and n = x — x;. Similarly, the temperature change is approximated by

0(x, )@ = N;6; + N;0; = (N)© {6}, (16.2.38)
Employing the formal Galerkin method and applying the weak form to the first and

second terms of Eq.(16.2.35) and first term of Eq. (16.2.36) results in the following
system of equations:

L
(/ oNN,, dn)U +(/ (2G+A)@ aaidn)
n

N j
,BN —dn Om =ty Nil; + XN]dn (16.2.39)
0
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L L L
N, ) . dN,, N,
( / Typ Lom den) U + ( / chmden) b + ( / Al —la’n) .
0 an 0 0 an  dn
) L
=— (G- NN +/ RN;dn. (16.2.40)
0
This system of equations may be written in matrix form as
[MI{A} + [CH{A} + [K]{A} = {F} (16.2.41)

in which the mass, damping, stiffness and force matrices for the first order element
are 4 x 4 matrices and are defined as

pN,'N,' 0 ,ON,'N]' 0

L

© 0 0 0 0
[M] _/0 oN;N: 0 pN;N; 0| ¥ (16.2.42)

0 0 0 0

0 0 0 0
L 1B Ni 2% peN;iN; Tof Ni2L peN;N;
[C](e)z/ 0B ()l a P Ol i Top Ol an PCOz J dn (16.2.43)
0

AN, ON;
ToB Ni %t peNjN; ToB Nj 5k peN;N,

1\ 2 . AN .
(2G+)‘)(831:') —;SN,-E’;X’ (2G+)‘)831:' j ﬁquN,

an an
P 2 P .
L 0 k(2 0 k2NN
El ] F]
(K] = / N o ( "QV_ WAL, |0 (162.44)
J i J J J
0 1 QG +a)Fk Gt —BNi gy (2G+)‘)(an) —BNj 5,
aN; ON; aN; |2
0 k an 87]/ 0 k( 877/)

teNi 1§+ fOL XN;dn
— g+ Nil§ + [y RN;dn

6N, + fo XN;dn
— quNjly + Jo RN;dn

{F)© = (16.2.45)

Upon substitution of the shape functions in the foregoing equations, the subma-
trices for the base element (e) are

(M]© = (16.2.46)

ook o wR
o o oo
o v o aR
o o oo
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0O 0 0 O
_ DB pcL Top pcL
[C]© = 23 2 6 (16.2.47)
0O 0 0 O
_ToB pcL Top pcL
2 6 2 3
QG+n) B Q2G+n) B
L 2 L 2
0 k 0 _k
(e) _ L L
[K]¥ = @G B @Gy B (16.2.48)
L 2 L 2
k k
0 -7 0 A
txlO + %
+ RL
o= | bt (16.2.49)
lp + 5
= gxlp + %
and the matrix of unknown nodal value is
U;
@ _ | 0
{APY = (16.2.50)
Uj
0;

16.3 Functionally Graded Layers

Functionally Graded Materials (FGMs) are high-performance, heat-resistant
materials able to withstand the ultra-high temperatures and extremely large ther-
mal gradients used in the aerospace industries. FGMs are microscopically inhomo-
geneous and their mechanical properties vary smoothly and continuously from one
surface to the other [8]. Typically, these materials are made from a mixture of ceramic
and metal.

The coupled thermoelasticity of a layer with isotropic material is discussed in the
literature. Bagri et al. [9] proposed a new system of coupled equations that contains
the LS, GL, and GN models [10-14] in a unified form. They employed the suggested
formulation and then analytically solved the coupled system of equations for a layer
using the Laplace transform. The effect of the thermomechanical coupling coefficient
in the problems of coupled thermoelasticity is pointed out in Refs.[15, 16].

Except for a few cases of coupled problems, the general closed form solution for
the coupled thermoelasticity problems is not available in the literature, and most of
the relevant problems are solved numerically. Among the numerical procedures, the
boundary and finite element method, as well as the finite difference method, are most
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considered for these types of problem. Tamma and Namburu [17] have an overview
of these numerical methods. Chen and Lin [18] proposed a hybrid numerical method
based on the Laplace transform and control volume method for analyzing the transient
coupled thermoelastic problems with relaxation times involving a nonlinear radiation
boundary condition. Hosseini and Eslami [19, 20]considered the boundary element
formulation for the analysis of coupled thermoelastic problems in a two-dimensional
finite domain and studied the coupling coefficient effects on thermal and elastic wave
propagation.

The response of functionally-graded materials under dynamic thermal loads and
using the coupled form equations of thermoelasticity theories are found in just a
few articles. Zhang et al. [21] modeled an isotropic ceramic-metal laminated beam
subjected to an abrupt heating condition, and demonstrated the influence of thermo-
mechanical coupling on the thermal shock response. Praveen and Reddy [22] studied
the static and dynamic response of the functionally-graded plates and showed that
the response of FG plates is not intermediate to the response of the ceramic and metal
plates. Bagri et al.[23] considered the classical coupled thermoelasticity theory to
study the behavior of an FG layer under thermal shock load. The effect of the mate-
rial composition profile on the distribution of temperature, displacement, and stress
through the thickness of the layer is studied.

In this section, the dynamic response of a layer made of FGMs based on the LS
theory is investigated Bagri et al. [24]. The power law form function is assumed
for the material properties distribution. A suitable transfinite element method via
the Laplace transform is employed to find the temperature and displacement field
solution in the space domain. Finally, the temperature, displacement and stress in
the physical time domain are obtained using a numerical inversion of the Laplace
transform proposed by Honig and Hirdes [25]. The temperature, displacement and
stress waves propagation and reflection from the boundaries of layer are studied. Also,
the relaxation time and material volume fraction effects on temperature, displacement
and stress variations are investigated.

Consider a ceramic-metal FG layer with thickness of L and assume that the
properties of the FG layer obey a power law function as

p= (%)" (P — P.) + P. (16.3.1)

in which x is the position from the ceramic rich side of the layer, P is the effective
property of FGM, n is the power law index that governs the distribution of the
constituent materials through the thickness of the layer, and P, and P, are the
properties of metal and ceramic, respectively. Meanwhile, the subscripts m and ¢
indicate the metal and ceramic features, respectively.

For the LS theory, in the absence of body forces and heat supply, when the deriv-
ative of the relaxation time with respect to the position variable is neglected, the
governing equations of an FG layer in terms of displacement and temperature are as
follows [24]
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9%u O +2w) du AB(T —To)] _ 9%u

At 2u)— — (1632
G253t o ox ax Pz (1632
9 ( oT aT 92T 92 9\ ou
—k—) - pc— — pcto— — BTy (10— + — ) — =0 16.3.3
ax( ax) P P2 ﬂ0(03t2+8t)8x (16.3.3)

in which ¢y is the relaxation time proposed by Lord and Shulman. The preceding
equations may be introduced in dimensionless form for convenience. The nondi-
mensional parameters are defined as

XCm~ Pm an + 2ihm) = T—To

X = , T =
* ki Ty
_ t(un + 2Um)Cm - 1o + 2m)Cm
f= e gy = e e
ki ki
— dx L= Oxx
= v Oxx = o+
CmnTan Pm (A + 214m) BmTa
A o) 32 172
P o + 20m)”" "~ (16.3.4)

ki ,Bm Ty

in which the subscript m denotes the metal properties and term 7y is a charac-
teristic temperature used for normalizing the temperature. Using the dimensionless
parameters, the governing equations (16.3.2) and (16.3.3) appear in the form

(42p) 92 1 IA+2w) 9 p 9]
[(xm +20m) 082w+ 20m) 0% 0% p_mﬁ} !
L (% + ﬁi) T=0 (16.3.5)
B \ 0% ox
k 82 1 3k 9 pc (0 _ 9*\] -
[k—a— Tk 05 9T  pem (a_f+ 8—7)} !
BinTo 9% 9\ du
— ot Zum)ﬂ (zoﬁ + a_t‘) o= 0. (16.3.6)

Also, the dimensionless stress-displacement-temperature relation and the heat
conduction equation for the functionally graded layer based on the LS theory are

3 O.+2p) o B

G — Lt (16.3.7)
T O+ 2um) 3% B
_ 3Gy k oT
h— = ———. 16.3.8
e T 1077 k, 9% ( )

=1
IA

The layer is occupied in the region 0 <
less boundary conditions are

1 and the corresponding dimension-
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Ge=1—(1+1000)e ' 5.=0 a

T=0; a=0 a (16.3.9)

To solve the coupled system of equations, the transfinite element method may

be employed. To this end, the equations may be transformed to the space domain

using the Laplace transformation. Assume that the layer is initially at rest and the

initial displacement, velocity, temperature, and temperature rate are zero. Applying
the Laplace transformation to Egs. (16.3.5) and (16.3.6) gives

(+2u) 9 ! 3(X+2M)i_£sz]ﬁ*
| o+ 2m) 3X2  (up +2m) X OX pm
1 (3B 3\ -
——(ZE4+p—=)T*=0 16.3.10
B (ax ”33;) (16:3:10)
[k 92 1 9k @ P 4o | T
—— t — == - s s
P T 0

,BmTO oun*

— Bs(1 +1ps)— = 0. (16.3.11)
PmCm (Am + 21tm) ox

To find the solution of the equations using the transfinite element method, the
geometry of the layer may be divided into a number of discretized elements through
the thickness of the layer. In the base element, the Kantorovich approximation for
the displacement u and temperature T with identical shape functions is assumed as

4 14
7@ — ZNi 01'* T*e) _ ZNi TZ* (16.3.12)
i=1 i=1

in which N; is the shape function and terms Ui* and Tl* are the unknown nodal
values of displacement and temperature, respectively. Substituting Eq. (16.3.12) into
(16.3.10) and (16.3.11) and then employing the Galerkin finite element method, the
following system of equations, applying the weak form to the terms of second order
of derivatives of the space variable, is obtained:

[KnllKi2l ] [U*] _ | F*
|:[K21] [Kzzl] [ T* ] - [ 0* ] (16.3.13)

The submatrices [K11], [K12], [K21], [K22], F* and Q* are

- T (A42u1) ON; ON; 2
[K;JI]Z/ [M__l__]_F’OLNiNj]dX (16.3.14)
ir (Am +2up) 0x 0x Pm

.. 1 Xe 8N
(K}5] = ﬂ_m[ [ﬂNj—x'/ + —Nl-Nj] d5 (16.3.15)
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Fig. 16.1 Distribution of the nondimensional temperature through the thickness of the layer for

n=1

Fig. 16.2 Distribution of the

nondimensional stress through
the thickness of the layer for

n=1

Nondimensional stress

Nondimensional x

K B / 1+ N—d 16.3.16
[ 2]] mem()L T 210,) B( 0S)N; X ( )
k dN; dN, _ )
(K] = SO L P S+ is)NiN LR (163.17)
X kyn 0x 0x PmCm
Ty (1 +i9)g;
0 0
{F*} = ) ; {07 = ) ) (16.3.18)
0 0

In these equations, X s and X, are the first and last nodes of the solution domain,

respectively.

The system of Eq. (16.3.13) is solved in the space domain. To transform the results
from the Laplace transform domain into the real time domain, the numerical inverse
Laplace transform technique given in Ref. [25] is used.

Consider an FG layer composed of aluminum and alumina as metal and ceramic
constituents, respectively. The reference temperature is assumed to be 7p = 298K .
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Fig. 16.3 Variations of the nondimensional temperature at the middle point of the thickness of the
layer for different values of power index

Fig. 16.4 Variations of the
nondimensional stress at the
middle point of the thickness
of the layer for different values
of power index
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Nondimensionl time

The relaxation time of aluminum and alumina are assumed to be #y,, = 0.64, . =
1.5625, respectively. The linear Lagrangian polynomials are used for the shape func-
tions in the base element. Figures 16.1 and 16.2 show the temperature and stress wave
propagation and reflection from the boundaries of the layer for n = 1. In Fig. 16.1,
the times 7 = 0.2, 0.4, 0.6, 0.8, 1.7 show the temperature wave propagation through
the thickness of the layer, while the reflection of the temperature wave occurred at
time = 1.9. Figure 16.2 shows that the maximum of stress occurs at the temper-
ature wave front. In Figs. 16.1 and 16.2, it can be seen that a conversion between
the mechanical and thermal energies occurs at the temperature wave front. It may
be found from the figures that the propagation velocity of waves varies through the
thickness of the layer.

The effect of power law index, n, on variation of the temperature and stress at a
point located at the middle point of the layer thickness is shown in Figs. 16.3 and
16.4. It is seen from Fig. 16.3 that when n increases, the speed of the temperature
wave decreases. In Fig. 16.4, it is shown that the amplitude of stress variation is
decreased with the increase of n.

The relaxation time effect on variation of the temperature and stress at the middle
point of the thickness of the layer is investigated and is shown in Figs.16.5 and
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Fig. 16.5 Variations of the nondimensional temperature at the middle point of the thickness of the
layer for the classical and LS theories
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Fig. 16.6 Variations of the nondimensional stress at the middle point of the thickness of the layer
for the classical and LS theories

16.6. The value of n = 1 is considered for the power law index. It is seen that,
for the classical theory of thermoelasticity, the case when 79 = 0, smaller values
for amplitude of temperature and resulting stress variations are obtained. Since with
the increase of relaxation time the propagation velocity of the temperature wave
decreases, these maximum values of variation occur at the later times.

16.4 Coupled Thermoelasticity of Thick Spheres

The finite element analysis of coupled thermoelasticity of thick spheres and cylinders
was studied by Li et al. [26], by Ghoneim [27], and by Eslami and Vahedi [28, 29].
The Galerkin method is basically used to obtain the finite element formulations. The
analysis is also based on displacement formulation.

Consider a thick-walled sphere of inside and outside radii r;, and r,,;, respectively.
For symmetric loading condition
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0pp = Ogpgp €00 = €¢p¢ (16.4.1)
the equation of motion is
9 _
Orr 4 T 900 _ i (16.4.2)
or r

and the strain-displacement relations are

u u
€rp = 5 €y — ; = €¢¢ (1643)
From Hooke’s law
E
Orr = m[(l — V)€ + 2vegg — (1 +v)a(T — Tp)]
E
opp = ——————€gp + verr — (1 +v)a(T — Ty)]. (16.4.4)

(14 v)(1 —2v)

The first law of thermodynamics for a coupled condition is

92T 23T  pc..

—+-———-——T = 2 16.4.5

Py e Y1(érr + 2€00) — ( )
where y; = 3A+2u)aTy/ k. Elimination of the stresses from Egs. (16.4.2), (16.4.3),
and (16.4.4) results in the equation of motion in terms of the displacement

2u  20u  2u (1+v)8T (1 +v)A=2v)p ..

FrE A R R W b P | Y (16:4.6)
The energy equation, after substitution for strains, becomes
%+32Z %T n (2 )~ R (16.4.7)
The boundary conditions are in general given as
O X Ny =1t — k%—z =qr (16.4.8)

where n, is the unit vector in the radial direction. In terms of displacement, the
boundary conditions at the inside and outside radii are:
Atr =rip

E(1—v) [ou v o2u (1+v)
(1+v)(1—2v)[§+(1—u)r (1—-v)

——a(T — To)] = —Pu(1)
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2 \2 2 2
t t pcert
Ty =To 42+ |(2E90) — 2898 4] -~ (16.4.9)
k k
Atr = rous
u=20
oT
koo = —holT = Ty) (16.4.10)
r

in which #, is the convection coefficient at the inside and outside surfaces of the
sphere, respectively, 7T;(¢) is the inside surface temperature, which is assumed to
vary in time and is applied as a thermal shock to the inside surface, T is the constant
outside ambient temperature, and P,(¢) is the applied pressure shock at the inside
surface, which may be considered zero.

The governing equations are changed into dimensionless form through the fol-
lowing formulas:

(T -Ty
_—To
l—v pccru
1+U) ka Ty
(1 —2v)oy,
EaTy
_ pccr

~

u =

pccyt

_\/& (16.4.11)
DTNV T+nd -2 -

~
Il

Using these quantities, and in the absence of heat generation, the governing equa-
tions are expressed in dimensionless form (bar is dropped for convenience)

0 (du 2u aT

(=)= 16.4.12
ar (8r + r ) or " ( )
o (0T 20T . 1o ,
— (= S T =C——(r-n). 16.4.13
ar(ar)+r8r ERP ( )

The boundary conditions are

T
or r EaTy
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Fig. 16.7 The element (e) along the radius
T=1+@—-t-1)e" atr=a (16.4.14)
and
u=0
oT
a =—-n,T at r=»> (16.4.15)

in which a and b are the dimensionless inner and outer radii of the sphere, respectively,
and the parameters used in these equations are defined as

To(l + v)Ea? 2v ho
= ; = — = . 16.4.16
scd—md-2v T a=v "7 s ( )

Due to the radial symmetry of loading conditions, the variations of the dependent
functions are along the radius of the sphere. Thus, the radius of the sphere is divided
into a number of line elements (N E) with nodes i and j for the base element (e), as
shown in Fig. 16.7.

The displacement of element (e) is described by the linear shape function

u(r, t) = ai(t) + o (t)r (16.4.17)

in terms of unknown nodal variables, the unknown coefficients a1 (z) and o, () are
found from Eq. (16.4.17) as

Ui(t) = a1 + aor;
U;j(t) = a1 +azr;. (16.4.18)

Solving for o1 and «» and substituting in Eq. (16.4.17) yields

L —
Tu + EUJ. (16.4.19)

5t ==
u(n, 1) 2 7

in which 7 is the variable in local coordinates, n = r —r;, and L is the element length
L = r; — r;. Defining the linear shape functions as
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Ni=—— N;=— (16.4.20)

the displacement u is allowed to vary linearly in the base element (e) as

w9, 1) = NiUi + N;Uj = (N; N [Z’ﬂ}zm@ Uy, 164.21)
J

Similarly, the temperature variation in the element (e) is assumed to vary linearly.
T, t) = NiT; + N;Tj = (N)© (T} (16.4.22)

Using Eqs. (16.4.21) and (16.4.22) and applying the formal Galerkin method to the
governing equations (16.4.12) and (16.4.13) for the base element (e) yields

o (du  2u OT  d%u 2
——=—+=)- = Npdr =0 (16.4.23)
no LOr \or r ar 02

Nl (8T 20T T .19 (,0u\] ,
+-————-C5—|r"— ) |r"Nupdr=0
. ar \or ror Ot r2 or ot
m=i,j. (16.4.24)

Considering the change of variable n = r —r; and applying the weak formulation
to the terms of second-order derivatives gives

L 2
/a[(n+r,)1vm]aud _/ <n+r,>1vm( 2w )dn
0

an m+r)dn  (+r)?
L 9
+/ (n+r,»>2Nm—dn+/ (1 + 1)2 Niidn = (1 + 11 Ny = |6
0 an 0 an
(16.4.25)

L3l +r)*Ny] 0T L aT

/ M d’]-/ 2('7+rl)Nmid7)+ (77+rl) NdeT)
0 an an 0

L 9

9 N2 _ 2 90

+C/ N —[(n+ri)7uldn = (n + ri) NmA lo

0 an an

m=i,j. (16.4.26)

Substituting the shape functions for # and 7" from Eqgs. (16.4.21) and (16.4.22) yields

L )2
[ (R (4 1y 4
0

dn dn d17>_ (N)]) dn{U}

L dN L ..
+/ (n+r,~)2Nm<—>dn{T}+/ (14 1)* N (N) dn{U}
0 dn 0

—n+ r,v)szg—yé (16.4.27)

L rdi(+1r)>Nwl |dN dN
/o(idn <Tn>‘2<”+”wm<ﬁ>)d"{”
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L L 2 )
+/ (0 + 1) N <N>dn{r'}+c/ Nm<w>dnw}
0 0 dn
dT
= (n+ri)2Nma‘(%~
m—ij (16.4.28)

The terms on the right-hand side of Eqs. (16.4.27) and (16.4.28) are derived through the weak
formulation and coincide with the natural boundary conditions. They cancel each other out between
any two adjacent elements except the first node of the first element and the last node of the last
element, which coincide with the given boundary conditions on the inside and outside surfaces of
the sphere. These boundary conditions are

ou —2v
2 2 2
—a®>—|| = 2ayU; —a’T Pu(t
a an|1 apUy —a"T) +a EaTo a ()
Uy =0
Ti=1+@—-1t—1)e!
aT
b28—|M = —b*n,Tu (16.4.29)
n

in which the index 1 denotes the first note of the first element of the solution domain at r = a and
the index M denotes the last node of the last element of the solution domain at » = b. It is to be
noted that due to the assumed boundary conditions at r = a and r = b, terms —a? % |1 and b? g—f] |m
vanish. Equations (16.4.27) and (16.4.28) are solved for the nodal unknown of the element (e¢) and
are finally arranged in the form of the following matrix equations:

[MI{A} + [CI{A} + [K{A} = {F}. (16.4.30)

The definitions of the mass, damping, stiffness, and force matrices of Eq.(16.4.30) for the base
element (e) are
Mass matrix

mip 0 mi3 0
0000
() —
(M@ = ma1 0 mas 0 (16.4.31)
0000
in which the components of the mass matrix are
L
miu= [ 4NNy
0
L
m13:/ (n+r)*N;N;dn
0
L
m3 :/ (n+r)*N;jN;dn
0
L
m33:/ 1+ 12N N;dy (16.4.32)
0
Damping matrix
0o 0 0 O
e _ | Ca1 Coa Co3 Co4
=159 9 o (16.4.33)

Cy1 Cyp Cy3 Cyy
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in which the components of the damping matrix are
L d . 2N'
C21=C/ N; [(n+r) l]dn
0 dn
L d . 2N_
C23:C/ N; [(n+ri) j]dr]
Jo dn
L d . 2N'
Cui :C/ Nj [(n+r) l]dn
0 dn
L d . 2N.
Cus :C/ Nj [(n+r) j]dn
0 dn
L
Ca= [ O NiNid
0
L
c24:/ (n+r)*N;N;dn
0
L
c42:/ (n+r)*NjNidn
0
L
Cas = / (n+ )N N;dn (16.4.34)
0
Stiffness matrix
K11 K12 Ki3 K4
0 Kn 0 Ky
K1© — d 16.4.35
K] K31 K32 K33 K3q | @7 ( )
0 Ko 0 Ky
in which the components of the stiffness matrix are
L rd(n+r)>N;1 dN; dN;
K =/ (Mil_z(n‘f‘ri)]vi : +2NiNi))d77
0 dn dn dn
L rdl(n+r)?N;1dN; dN;
K3 =/ (Mij =20+ r)Ni —+ +2NiN_/)) dn
0 dn dn dn
L (dl(n+ri)*N;1dN; dN;
K31 = — -2 ON;— +2N;N;) ) d
31 /0 ( dn dn (n+ri) j dn + j l)) n
L rdl(m+r)*N;1dN; dN;
K33 = T o+ 'N<—]+2N'N')d
33 /0 ( dn dn (m+ri) Jj dn Jj ]) n
L dN:
K12=/ (i) Ny ——~di
Jo n
L dN;
K14=/ (U+ri)2Ni7d Ldn
0 n
L dN;
K= [ G S an
0 dn
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Lrd )?>N;] dN; dN;
Ka» =/ M L2+ )N, —~ ) dn
0 dn dn dn

[t d[(n+r,)2N]de dN;

g _./0 ( dn 20N dn )dn
_ L d[(’H—h) Nj 1 dN; dN;
_/0 ( dn —2(m+71)N; dn )dn
_ L d[('}+h) NJ] dNJ J
_/0 ( an —2(n +ri)N; 7 )dn

(16.4.36)

Also, matrix {F'}, for this special case, is related to the boundary conditions. With the inside
temperature and pressure shocks and outside surface insulated, as given by Eq. (16.4.29), the final
assembled form of this matrix becomes

2ay,Uy — a*Ty + a® 53 Pa(0)
1+@2—t—1)e g
0
0
(F) = , . (16.4.37)
0
0
_bznoTM

Moreover, the matrix of unknown nodal values is

{A)© = (16.4.38)

Using the linear shape functions (16.4.21) and (16.4.22) for {U} and {T'}, the component of the
matrices are simplified as
Components of mass matrix

L(L? + 5r;L + 10r?)

30
L(L? +10r; L + 10ri2)
mi3 = m3| =
60
L(6L% +15r; L + 10r2
— o i) (16.4.39)

Components of damping matrix

(L? +4r;L — 6r})

Cy=C
21 2
2 2
= cCL +8;;L+6ri)

c (L% + 4r;L + 6r})

Cy =—
41 D
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c (9L2 + 16r; L + 6r?)

Cuz =
43 12
2 2
o — L(L +5r; L + 10r7)
30
3L2 + 10r; L + 1072
Cy=Cyp = L( l 0
60
6L% + 15r;L + 10r?
Cas = 1. = ;) (16.4.40)
Components of stiffness matrix
Kt = Kun — LZ—{—riL—i—ri2
11 = A33 = I
ri(L +ri)
K = K = -
13 31 I
K K Lo L 1o
K= —— L2 Ly L —
12 14 B 37 i
K K 1L2 2 L L2
K= ——12_ L L
32 34 1 3l 37
L% +3r;L + 3r?
K22 = K44 = —K24 = —K42 = # (16441)

3L

The element matrices given by Eqgs. (16.4.34)—(16.4.36) are generated within a loop to construct
the general matrices of Eq. (16.4.30), where after assembly of all the elements in the solution domain,
they are solved using one of the numerical techniques of either the time marching or modal analysis
methods.

As a numerical example, a thick sphere is considered with the following properties: £ =
70 x 10°N/m?, v = 0.3, p = 2707Kg/m’, k = 204W/m-K, & = 23 x 10°°1/K, ¢ =
903 J/Kg-K, Top = 298 K. The pressure at the inner surface of the sphere is assumed to be zero
(traction free condition) and the outer surface of the sphere is insulated (with #, = 0). The plot of
the internal thermal shock is shown in Fig. 16.8. The distribution of temperature, radial displacement,
radial stress, and hoop stress at different times are plotted in Figs. 16.9, 16.10, 16.11 and 16.12.
Figures 16.12 and 16.13 show the variations of radial and hoop stresses versus the radius at different
times. Figure 16.13 shows the time variation of the radial and hoop stresses and temperature at the
mid-point of the thickness of the sphere.

16.5 Higher Order Elements

Chen and Lin [18] proposed a hybrid numerical method based on the Laplace transform and
control volume method for analyzing the transient coupled thermoelastic problems with relaxation
times involving a nonlinear radiation boundary condition. Hosseini and Eslami [19] considered
the boundary element formulation for the analysis of coupled thermoelastic problems in a finite
domain and studied the coupling coefficient and relaxation times effects on thermal and elastic wave
propagations.

In this section, a transfinite element method using the Laplace transform is used to solve the
coupled equations for an axisymmetrically loaded disk in the transformed domain. Elements with
various orders are employed to investigate the effects of the number of nodes in an element. Finally,
the temperature and displacement are inverted to obtain the actual physical quantities, using the
numerical inversion of the Laplace transform method proposed by Honig and Hirdes [25].
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In the absence of the heat source and body forces and for isotropic materials, the nondimen-
sionalized form of the generalized coupled thermoelastic equations of the axisymmetrically loaded
circular disk based on the Lord-Shulman theory in terms of the displacement and temperature may

be written as [30]

2 19 1 92 aT
ar2 r or r2 912

a2+1a 9 1+ta rcl, 93 +132 +32+1a
a2 T roar ot 051 O\ 9ra2 " r a2 | Bror | roor

(16.5.1)

(16.5.2)
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Here, C = TyB?/ [pce (A + 211)] is the coupling coefficient. For the plane stress condition, A =
Mz_—‘gﬂk and ﬁ = MZ_—PZLM/S. In the preceding Equations, p, u, Ty, T, ,3 , Ce, and fg are the density,
radial displacement, reference temperature, temperature change, stress-temperature moduli, thermal
conductivity, specific heat and the relaxation time (proposed by Lord and Shulman), respectively,
while A and p are Lamé constants. The dimensionless thermal and mechanical boundary conditions
are
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in which o, and a and b are the radial stress and dimensionless inner and outer radii, respectively.

In order to derive the transfinite element formulation, the Laplace transformation is used to
transform the equations into the Laplace transform domain. Applying the Galerkin finite element
method to the governing equations (16.5.1) and (16.5.2) for the base element (e), yields

L r |
/ { { 1 ad 1 _32}u—ali|Nm(n+ri)+Mal}dn
0 L

(m+r)an  (+r)? an an an
L
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. L
XNm(nJrri)JrMal}dn: Nm(n+ri)8—T (16.5.5)
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inwhichu = > | NyUy and T = >0 _| Ny T,y In the preceding equations, s, Ny, n =
r—ri, ri, L, Uy, andT,, are the Laplace parameter, shape function, local coordinates, the radius of
the i-th node of the base element, the length of element in the radial direction, nodal displacement,
and the nodal temperature, respectively. The terms on the right-hand sides of Egs.(16.5.4) and
(12.5.5) cancel each other out between any two adjacent elements, except the nodes located on the
boundaries of the solution domain. These boundary conditions are

aT
—a——| =agin; U =0
o |y
9 x
Ty = 0 [l Un +bTy (16.5.6)

%M _5»"‘2#

The subscripts 1 and M refer to the first and last nodes of the solution domain, respectively.
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Fig. 16.16 Elements with linear, second, and third order shape functions

To investigate the accuracy of the method, a numerical example is considered. The material of
the disk is assumed to be aluminum. The dimensionless inside and outside radii are @ = 1 and
b = 2. The dimensionless input heat flux is defined as the Heaviside unit step function. Since the
applied boundary conditions are assumed to be axisymmetric, the radius of the disk is divided into
100 elements. Three types of shape functions, linear, second order, and third order polynomials are
used for the finite element model of the problem. Results for each of these orders are plotted and
compared.
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Figures 16.14 and 16.15 show the wave propagation of the temperature and radial displacement
along the radial direction [26]. The numerical values of the coupling parameter and the dimensionless
relaxation time are assumed to be 0.01 and 0.64, respectively. The wave propagation is shown at
several times. Two wave fronts for elastic and temperature waves are detected from the figures,
as expected from the LS model. It is seen from the figures that the results of the three types of
shape functions (Fig. 16.16) for the assumed number of elements coincide. For a smaller number
of elements, the difference between the results obtained for different shape functions increases
noticeably. For the assumed number of elements, the curves for radial displacement and temperature
distribution are checked against the known data in the literature, in which very close agreement is
observed. Figure 16.14 clearly shows the temperature wave front (the second sound effect), which
is propagating along the radius of the disk.

16.6 Problems

1. Verify Eqgs.(16.2.46) to (16.2.49) for the coupled thermoelasticity of a one-dimensional rod
with a simplex linear element.

2. Consider a one-dimensional element, for which the axial displacement « and the temperature
change 6 are approximated in the element by a quadratic polynomial. Obtain the mass, damping,
stiffness, and force matrices.

3. Usea C'-continuous straight element in terms of the natural coordinates, and rework Problem 2.

4. Use Eqgs.(16.2.27) to (16.2.31) and employ a linear simplex triangular element to derive the
members of the mass, damping, stiffness, and force matrices. To derive these matrices, use the
area coordinates. What is the determinant of the Jacobian matrix?.

5. Consider arod of length L thermally insulated along its length. The initial temperature atx = L
is suddenly raised by
T(L,t) = Toe™"/™.

Divide the rod into two elements with linear shape functions for the displacement and temper-
ature change. Find the temperature and displacement at the nodal points for the fixed boundary
conditions at x = 0 and at the free end x = L.

6. A rod of length L is considered. The heat is generated along the rod by the following equation:

Q(x, 1) = Q1(t)cos (x/L).

The end x = O is fixed, but the end x = L is free. Divide the rod into two elements with
linear shape functions for the displacement and temperature change. Find the temperature and
displacement at the nodal points.
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Chapter 17
Computer Programs

Abstract In this chapter, three computer codes are presented. These codes are
written to solve the elevation of elastic membrane under static load, the static elastic-
ity, and the three-dimensional transient heat conduction problems. The descriptions
and de- tails of the processor and postprocessor for each computer program is pre-
sented in this chapter.

17.1 Description of the Membrane Computer Program

In the following, the different parts of the membrane program, are divided into
three main categories (preprocessing, processing, and postprocessing) and discussed
separately. The program is written in a C++ environment.

17.1.1 Preprocessor

In the preprocessor unit, five different options are considered for use:

1. The subprogram mesh_rd_3nte.cpp, which generates the mesh for a rectangular
domain by three node triangular elements. The inputs to this program are the
length and width of the rectangular domain and the number of divisions in each
direction.

2. The subprogram mesh_rd_6nte.cpp, which generates the mesh for a rectangular
domain by six node triangular elements. The inputs to this program are the length
and width of the rectangular domain and the number of divisions in each direction.

3. The subprogram mesh_td_3nte.cpp, which generates the mesh for a right-angled
triangular domain by three node triangular elements. The inputs to this program
are the dimensions of the triangle and the number of divisions, which is assumed
to be equal in both directions.

M. R. Eslami, Finite Elements Methods in Mechanics, 363
Solid Mechanics and Its Applications 216, DOI: 10.1007/978-3-319-08037-6_17,
© Springer International Publishing Switzerland 2014
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4. The subprogram mesh_td_6nte.cpp, which generates the mesh for a right-angled
triangular domain by six node triangular elements. The inputs to this program are
the dimensions of the triangle and the number of divisions, which is assumed to
be equal in both directions.

5. The subprogram mesh_ed_3nte.cpp, which generates the mesh for an elliptic
domain by three node triangular elements. The inputs to this program are dimen-
sions of the ellipse and the number of divisions in the radial direction, and also
the number of divisions in the angular direction for the first layer of elements
around the ellipse center.

In implementation of the skyline method, it is necessary to compute the height
of each column separately and then use these heights to find the address of different
terms in the stiffness matrix. The individual heights of columns are computed in the
subprogram bandwidth.cpp.

17.1.2 Processor

The processor unit is programmed for two different situations. In the first situation,
the stiffness matrix is assumed in banded symmetric form. The boundary conditions
are then imposed on this banded form of the stiffness matrix, and then the Gauss
elimination procedure is invoked to solve it. In the second situation, the concept of
skyline is invoked and the nonzero elements of the stiffness matrix are stored in
an array which is more compacted in dimension. The boundary conditions are then
imposed on this array, and then the LU decomposition procedure is implemented to
obtain the unknown primary variables. The processor unit, where the largest amount
of computing time is spent, consists of three parts:

1. A subprogram for calculating element matrices and assembling them in the global
matrix. This is done in the subprogram core-3nte.cpp for the three node triangular
element and in the subprogram core_6nte.cpp for the six node triangular element.
The assembly of element matrices is carried out as soon as they are computed,
rather than waiting until element matrices of all the elements are computed.

2. Imposition of boundary conditions on primary variables. This is done in the
subprogram boundary_sym_banded.cpp for a banded symmetric form and in the
subprogram boundary_sym_skyline.cpp for a skyline symmetric form.

3. Solving the system of linear equations to obtain the unknown primary vari-
ables. Similar to the previous step, two different subprograms are considered
for this purpose. The first subprogram solve_gauss_sym_banded.cpp uses the
Gauss elimination procedure for a banded symmetric form. The second subpro-
gram solve_LUdecom_sym_skyline.cpp uses the LU decomposition procedure for
a skyline symmetric form.

An important aspect of the computer implementation of the Gauss elimination
solution procedure is that a minimum solution time should be used. In addition, the
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Fig. 17.1 Deformed shape of the membrane for the three node triangular mesh of a rectangular
domain

high-speed storage requirements should be as small as possible to avoid the use of
backup storage. The use of the skyline method, in spite of its greater complexity,
could be justified in the cases in which not only out-of-band elements of the stiffness
matrix are zero, but many elements inside the band are zero too.

17.1.3 Postprocessor

After solving the linear system of algebraic equations in the processor unit, it follows
that one should print or plot the results in a convenient format. In the postprocessor
unit, the results are written on certain files to be read by convenient software (e.g.,
MATLAB or MATHEMATICA) and plotted in two and three-dimensional form.The
short subprogram file_out.cpp does this job in a C++ environment and writes the
results on some files. A sample of the results is shown in Fig. 17.1.

17.2 Description of the Static Elasticity Computer Program

Like the first computer program, the different parts of the static elasticity program
are divided into three categories (preprocessing, processing, and postprocessing) and
discussed separately. The program is written in a C++ environment.
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17.2.1 Preprocessor

In the preprocessor unit, two different options are considered for use:

1. The subprogram mesh_LRE.cpp, which generates the mesh for a rectangular
domain by four node rectangular elements. The inputs to this program are the
length and width of the rectangular domain and the number of divisions in each
direction.

2. The subprogram mesh_serendipity.cpp, which generates the mesh for a rectangu-
lar domain by eight node rectangular elements (called serendipity elements in the
literature). The inputs to this program are the length and width of the rectangular
domain and the number of divisions in each direction.

17.2.2 Processor

The stiffness matrix is assumed in banded symmetric form. The boundary conditions
are then imposed on this banded form of the stiffness matrix, and then the Gauss
elimination procedure is invoked to solve it. The processor unit, where the largest
amount of computing time is spent, consists of three parts:

1. A subprogram for calculating element matrices and assembling them in the global
matrix. This is done in the subprogram core_LRE.cpp for the four node rectan-
gular element and in the subprogram core_serendipity.cpp for the eight node
rectangular element. The assembly of element matrices is carried out as soon as
they are computed, rather than waiting until element matrices of all the elements
are computed.

2. Imposition of boundary conditions on primary variables. This is done in the
subprogram boundary_sym_banded.cpp for the banded symmetric form of the
stiffness matrix.

3. Solving the system of linear equations to obtain the unknown primary variables.
The subprogram solve_gauss_sym_banded.cpp uses the Gauss elimination pro-
cedure for the banded symmetric form of the stiffness matrix.

17.2.3 Postprocessor

After solving the linear system of algebraic equations in the processor unit, it follows
that one should print or plot the results in a convenient format. In the postprocessor
unit, the results are written on certain files to be read by convenient software (e.g.,
MATLAB or MATHEMATICA) and plotted in two and three-dimensional form. The
short subprogram file_out.cpp does this job in a C++ environment and writes the
results on some files. A sample of the results is shown in Fig. 17.2.
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Fig. 17.2 Deformed shape of a cantilever beam under uniform vertical shear load at the right edge

17.3 Description of the 3D Transient Heat Conduction
Computer Program

This computer program solves three-dimensional transient heat conduction by using
sparse matrices and iterative solvers. The C++ standard template library (STL) and
the concept of classes are used in this computer code.

For three-dimensional problems, the region inside the bands of the system matrices
is generally more sparse than in two-dimensional problems. Also, the number of
nodes is generally far greater than in two-dimensional cases (n X n X n vs. n x n).
These two reasons motivate the use of sparse matrices instead of banded or skyline
matrices for three-dimensional cases. In sparse matrices, only those entries of the
system matrices that are nonzero are stored, and the way of numbering the DOFs
and arranging them in the vector of unknowns, makes *no* difference in the size of
data (in contrast to banded and skyline formats). In general, the data storage volume
for sparse matrices is considerably smaller than that for banded matrices (even in
the case in which the DOFs are numbered in a way so as to produce a very narrow
band in the system matrices). This makes sparse formats very suitable for models
involving a very large number of degrees of freedom.

There are different formats for storing a sparse matrix (coordinate format, com-
pressed row and compressed column). In this study, the coordinate format is that in
which three different vectors are used for representing a sparse matrix. One vector
for storing the row index of nonzero entries, one vector for the column index and
one vector for the values of nonzero entries. Before constructing these vectors, the
number of nonzero entries should be known. The map class available in a C++
standard template library is used for this purpose to map the pair of indexes of a
nonzero entry on its location in the three vectors mentioned earlier. This mapping is
also used to search for nonzero entries in the assembling process from local matrices
onto global matrices. After performing assemblies, the mapping has no job and is
deleted, and only the three vectors mentioned earlier are representative of the sparse
matrix structure. Since the dimensions of these vectors is specified in the run time
of the code, two vector classes are defined in the code the dimensions of which are
given by non-constant integers calculated during the run time of the code. These
vector classes use the dynamic memory (heap segment) to store vectors of types int
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and double. It is possible to use mapping directly in all sections of the code without
developing such vector representation of sparse matrices, but the problem is that the
computational time increases drastically by doing so.

In the next stage, these sparse matrices should be given to a solver subprogram
to obtain the responses. Since the Gauss elimination solver deteriorates the sparse
structure of the system matrices in the region inside the bands, it would not be a good
choice for solving equations with sparse matrices. There is another class of solvers
called iterative solvers, in contrast to the Gauss elimination method, which is a direct
solver. Iterative solvers have the advantage that they do nor alter the sparse structure
of the matrices. In other words, when using iterative solvers, only nonzero entries
are manipulated and zero entries remain zero through the solution process. There
are different iterative algorithms available for solving symmetric or non-symmetric
matrices. In this study, we chose the Conjugate Gradient Method, which can be
used for solving a system of equations with a symmetric positive definite coefficient
matrix. Most finite element models give matrices of this type. To improve the conver-
gence rate of an iterative solver, it is common to use a matrix called a preconditioner
to transform the coefficient matrix into a form that has more convenient spectral prop-
erties. In this study, the Jacobi preconditioner is used, the simplest preconditioner
for iterative solvers. More sophisticated ones are more efficient.

The pseudo-code for the Preconditioned Conjugate Gradient Method is given in
the following box. It uses a preconditioner M. Further description of the method can
be found in Ref.[10].

Compute r@ = b — Ax© for some initial guess x(©
fori =1,2,...
solve Mz(—D = (=D
. T
iy = r=D7 =D
ifi =1
) = O
else
Bi—1 = pi-1/pi—2
P = ZG=D 4 g | =D
endif
gD = Ap® o
o = pi-1/p® q?
X0 = x (=D 4 g )
P = =D _ g ®
check convergence; continue, if necessary
end

For the meshing process, two options are considered in this code. One is to use the
subprogram Mesh_Cube.cpp to produce a tetrahedronal mesh for a cube, and another
is to use gmesh software to produce the mesh for a 3D arbitrary shape of the solution
domain. Since meshing a three-dimensional body is not a straightforward task (except
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Fig. 17.3 A dodcahedronal solid that is warmed by sunshine

for very simple geometries like a cube), a convenient mesh generator software can be
used to mesh a 3D body and write the mesh information on a file. This file can then
be used by a finite element code to do the subsequent jobs. In this study, the gmesh
software is chosen for this purpose. Itis a very efficient software which is also capable
of reading the results obtained from the finite element code and plotting some 2D and
3D figures of them in combination with the corresponding mesh information. In this
code, by choosing the option for use of gmesh, the mesh information is first read from
a file generated by gmesh. Then, different stages of calculations are performed by
the code and the results are obtained. These results are then appended to the file that
first contained the mesh information. After augmentation of this file by the results
obtained from the finite element code, it is read by gmesh software and the results
are plotted in certain figures. A sample of the results is shown in Fig. 17.3.
The different subprograms used in this code are as follows:

1. The subprogram Det.cpp is used for calculating the determinant of a 3 x 3 matrix,
which is encountered frequently in this code.

2. The subprogram Mesh_Cube.cpp generates a tetrahedronal mesh for a cube if the
gmesh software is not chosen for the mesh generation.

3. The subprogram Core_LTE.cpp calculates element damping and stiffness matri-
ces for a tetrahedronal element (3D simplex element) and assembles these local
matrices into the global ones.

4. The subprogram Flux_LTE.cpp calculates the right-hand side vector (force vector)
in the matrix equation. Calculation of the force vector is separated from calculation
of the element matrices because the surface heat flux and also the internal heat
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source may change from one time step to another one and implementation of
the subprogram Flux_LTE.cpp may need to be repeated in each time step of
calculations.
. The subprogram Adjust.cpp imposes essential boundary conditions.
. The subprogram Preconditioner calculates the Jacobi preconditioner.
7. The subprogram Conjugate_Gradient.cpp solves the linear system of equations
by the Conjugate Gradient Method.

AN

It should be noted that the type of preconditioner used for an iterative solver has a
noticeable effect on the computational time and the number of iterations required to
reach a prescribed accuracy. As mentioned earlier, the Jacobi preconditioner, which
is the simplest one, is used in this study. Calculating this preconditioner requires a
very small computational time, but after that, the number of iterations in the solution
process is large. In contrast, a more sophisticated preconditioner, like incomplete
Cholesky factorization, needs more computational time to be Calculated, but then
the number of the subsequent iterations are reduced. The sum of these two effects
reduces the computational difference between different preconditioners for static
problems (assuming the system matrix is well conditioned). But for transient and
dynamic problems, the difference is large, since the preconditioner can be calculated
once and then be used for all time steps. Therefore, a preconditioner like incomplete
Cholesky factorization can be more efficient than the Jacobi preconditioner for tran-
sient linear problems. Improving the incomplete Cholesky factorization by using the
filling technique can further reduce the computational time by trading between data
storage volume and the computational time.

Some of the references that helped the author to prepare these three computer
codes [1-11].
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