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Preface to the Second Edition

The first edition of Finite Element Analysis: Thermomechanics of Solids was
intended to give a unified but very concise presentation of the finite element method
applied to thermomechanics of solids, together with supporting mathematics and
continuum mechanics. Of necessity the presentation was selective, attempting to
include selected important results while remaining concise and focused on the unity
of the method. Coverage was provided on variational and incremental variational
principles ensuing from mechanical and thermal field equations and from internal
constraints, together with their realization in element formulations. Emphasis was
placed on the role of tensors, to which end Kronecker product notation was used
throughout. The scope embraced mechanical, thermal, and coupled thermomechani-
cal problems; compressible, incompressible, and near-incompressible materials;
static and dynamic problems as well as rotational effects; linear problems as well
as problems with material, geometric, and boundary condition nonlinearity; and
important numerical methods.

The second edition is nearly 170% as long as the first. It is intended to achieve
greater integration and balance between introductory and advanced levels, with
many more fully solved examples and with advanced materials more concentrated
in the latter portion of the monograph. Of course there are a number of worthy topics
that have not been possible to include, for example, meshless methods and reduced
integration. New coverage includes selected developments in numerical methods,
detailing accelerated computations in eigenstructure extraction, time integration, and
stiffness matrix triangularization. There is a much more extensive coverage of the arc
length method for nonlinear problems. The treatment of rotating bodies and of
buckling has been significantly expanded and enhanced. As in the first edition,
the intent still has been on presenting and explicating topics in a way that shows
the highly unified structure of the finite element method.

The preface to the first edition listed monographs that have excellent coverage of
many topics not addressed or done justice to. Since then the author has become
familiar with two additional monographs that the reader may find beneficial: M.A.
Crisfield (1991) and J.N. Reddy (2004).

The finite element method has matured to a point that it can accurately and
reliably be used, by a careful analyst, for an amazingly wide range of applications.
Nonlinear problems with nonlinearities due to geometry, material properties, or
boundary conditions such as contact are in many cases accessible to analysis.
Problems with instabilities, such as buckling, can be treated. Dynamic problems
can be solved, with the caution that eigenvalues and eigenvectors beyond the lowest
few natural frequencies should be viewed with skepticism. Enormous progress has
been made of the vexatious problem of sliding contact. Several areas in which
additional progress would be welcome include more accurate treatment of singular-
ities such as occurring at corners, and integrated rather than staggered treatments of
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mixed field problems. The impact of FEA will accelerate as integration with computer-
aided design and solid modeling systems progresses and as algorithmic and compu-
tational resources permit “attacking’ ever more complex and larger-scale applications
while insisting on high resolution.
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Preface to the First Edition

Thousands of engineers use finite element codes such as ANSYS for thermomecha-
nical and nonlinear applications. Most academic departments offering advanced
degrees in mechanical engineering, civil engineering and aerospace engineering
offer a first course in the finite element method, and by now almost undergraduates
of such programs have some exposure to the finite element method. A number of
departments offer a second course. It is hoped that the current monograph will appeal
to instructors of such courses. Of course it hopefully will also be helpful to engineers
engaged in self-study on nonlinear and thermomechanical finite element analysis.
The principles of the finite element method are presented for application to the
mechanical, thermal and thermomechanical response, both static and dynamic, of
linear and nonlinear solids. It is intended to provide an integrated treatment of

* basic principles, material models and contact models (for example linear
elasticity, hyperelasticity and thermohyperelasticity)

* computational, numerical and software design aspects (such as finite ele-
ment data structures)

* modeling principles and strategies (including mesh design)

The text is designed for a second course, as a reference work and for self study.
Familiarity is assumed with the finite element method at the level of a first graduate
or advanced undergraduate course.

A first course in the finite element method, for which many excellent books are
available, barely succeeds in covering static linear elasticity and linear heat transfer.
There is virtually no exposure to nonlinear methods, which are considered topics for
a second course. Nor is there much emphasis on coupled thermomechanical prob-
lems. However, it is believed that many engineers would benefit from a monograph
culminating in nonlinear problems and the associated continuum thermomechanics.
Such as text may be used in a formal class or for self study. Many important
applications have significant nonlinearity, making nonlinear finite element modeling
necessary. As a few examples we mention polymer processing, metalforming, rubber
components such as tires and seals, biomechanics and crashworthiness. Many
applications combine thermal and mechanical response, such as rubber seals in hot
engines. Engineers coping with such applications have access to powerful finite
element codes and computers. But they often lack and urgently need an in-depth but
compact exposition of the finite element method, providing a foundation for address-
ing problems. It is hoped the current monograph fills this need.

Of necessity a selection to topics has been made and topics are given coverage
proportional to the author’s sense of their importance to the understanding of the
reader. Topics have been selected with the intent of giving a unified and complete
but still compact and tractable presentations. Several other excellent texts and
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monographs have appeared over the years, from which the author has benefited. Four
previous texts to which the author is indebted are:

1. Zienkiewicz and Taylor, The Finite Element Method Vols 1,2, McGraw-
Hill, 1989.

2. Kleiber, M., Incremental Finite Element Modeling in Nonlinear Solid
Mechanics, Ellis Horwood, Ltd, 1989.

3. Bonet, J. and Wood, R.D., Nonlinear Continuum Mechanics for Finite
Element Analysis, Cambridge University Press, 1997.

4. Belytschko, T., Lui, W.K, and Moran, B., Nonlinear Finite Elements for
Continua and Structures, J. Wiley and Sons, 2000.

The current monograph has the following characteristics:

1. emphasis on use of Kronecker product notation instead of tensor, tensor-
indicial, Voigt, or traditional finite element matrix—vector notation;

2. emphasis on integrated and coupled thermal and mechanical effects;

3. inclusion of elasticity, hyperelasticity, plasticity and viscoelasticity with
thermal effects;

4. inclusion of nonlinear boundary conditions, including contact, in an inte-
grated incremental variational formulation.

Regarding (1) Kronecker product algebra (KPA) has been widely used in control
theory for many years (Graham, (1982)). It is very compact and satisfies very simple
rules: for example the inverse of a Kronecker product of two nonsingular matrices is
the Kronecker product of the inverses. Recently a number of extensions of KPA have
been introduced and shown to permit compact expressions for otherwise elaborate
quantities in continuum and computational mechanics. Examples include:

1. compact expressions for the tangent modulus tensors in hyperelasticity
(invariant based and stretch-based; compressible, incompressible and
near-incompressible), thermohyperelasticity and finite strain plasticity;

2. a general, compact expression for the tangent stiffness matrix in nonlinear
FEA, including nonlinear boundary conditions such as contact.

KPA with recent extensions can completely replace other notations in most cases
of interest here. In the experience of the author, students experience little difficulty in
gaining a command of it.

The first three chapters concern mathematical foundations, and Kronecker product
notation for tensors is introduced. The next four chapters cover relevant linear and
nonlinear continuum thermomechanics, to enable a unified account of the finite element
method. Chapters 8 through 15 represent a compact presentation of the finite
element method in linear elastic, thermal and thermomechanical media, including
solution methods. The final five chapters address nonlinear problems, based on a unified
set of incremental variational principles. Material nonlinearity is treated, as is geometric
nonlinearity and nonlinearity due to boundary conditions. Several numerical issues in
nonlinear analysis are discussed, such as iterative triangularization of stiffness matrices.
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Introduction to the Finite
Element Method

1.1 INTRODUCTION

This monograph is intended to present a concise and unified two-part treatment of
finite element analysis (FEA) in thermomechanics. The first part encompasses topics
typically found in a first course in FEA. Included are elementary mathematical
foundations, an introduction to linear variational principles, the stiffness and mass
matrices in linear mechanical and thermal elements, assemblage, eigenstructure
determination, and numerical procedures. The second part continues into topics
which are appropriate for a second course in FEA. It addresses nonlinearity due to
material behavior, geometry and boundary conditions, as well as associated
advanced mathematical and numerical topics, incremental variational principles
including thermal effects and incompressibility constraints, and accommodation of
hyperelasticity, plasticity, viscoplasticity, and damage mechanics.

In thermomechanical analysis of members and structures, FEA is an essential
resource for computing displacement and temperature fields from known applied
loads and heat fluxes. FEA has emerged in recent decades as critical to mechanical
and structural designers. Its use is often mandated by standards such as the ASME
Pressure Vessel Code, by insurance requirements, and even by law. Its pervasiveness
has been promoted by rapid progress in related computer hardware and software,
especially computer-aided design (CAD) systems. A large number of comprehensive
“user friendly” finite element codes are available commercially.

In FEA practice, a design file developed using a CAD system is often
“imported” into finite element codes, from which point little or no additional effort
often suffices to develop the finite element model consisting of a mesh together with
material, constraint, boundary condition, and initial value data. The model is com-
municated to an analysis module to perform sophisticated thermomechanical analy-
sis and simulation. CAD integrated with an analysis tool such as FEA is an example
of computer-aided engineering (CAE). CAE possesses the potential of identifying
design problems and improvements much more efficiently, rapidly, and ‘“‘cost-
effectively” than purely by “trial and error.”

A major FEA application is the determination of stresses and temperatures in
a component or member in locations where failure is thought most likely. If
the stresses or temperatures exceed allowable or safe values, the product can
be redesigned and then reanalyzed. Analysis can also be diagnostic, supporting

© 2008 by Taylor & Francis Group, LLC.



interpretation of product failure data. Analysis can be used to assess performance, for
example, by determining whether the design stiffness coefficient for a rubber spring
is attained. FEA can serve to minimize weight and cost without loss of structural
integrity or reliability.

1.2 OVERVIEW OF THE FINITE ELEMENT METHOD

Consider a thermoelastic body with force and heat applied to its exterior boundary.
The finite element method serves to determine the displacement vector u(X, 7) and
the temperature T(X, 7) as functions of the undeformed position X and time . The
process of creating a finite element model to support design of a mechanical system
may be viewed as having (at least) eight steps:

1. The body is first discretized, i.e., it is modeled as a mesh of finite elements
connected at nodes.

2. Within each element interpolation models are introduced to provide
approximate expressions for the unknowns, typically u(X, ¢) and T(X, 1),
in terms of their nodal values, which now become the unknowns in the
finite element model.

3. The strain—displacement relation and its thermal analog are applied to the
approximations for u and T to furnish approximations for the (Lagrangian)
strain and the thermal gradient.

4. The stress—strain relation and its thermal analog (Fourier’s Law) are applied
to obtain approximations to stress S and heat flux q in terms of the nodal
values of u and T.

5. Equilibrium principles in variational form are applied using the various
approximations within each element, leading to element equilibrium equa-
tions.

6. The element equilibrium equations are assembled to provide a global
equilibrium equation.

7. Prescribed kinematic and temperature conditions on the boundaries (con-
straints) are applied to the global equilibrium equations, thereby reducing
the number of degrees of freedom and eliminating “‘rigid body’” modes.

8. The resulting global equilibrium equations are then solved using computer
algorithms.

The output is postprocessed. Initially the output should be compared to data or
benchmarks or otherwise validated, to establish that the model correctly represents
the underlying mechanical system. If not satisfied, the analyst may revise the
finite element model and repeat the computations. When the model is validated,
postprocessing, with heavy reliance on graphics, serves to interpret the results, for
example, determining whether the underlying design is satisfactory. If problems with
the design are identified, the analyst may then choose to revise the design. The
revised design is then modeled, and the process of validation and interpretation is
repeated.
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1.3 MESH DEVELOPMENT

Finite element simulation has classically been viewed as having three stages: pre-
processing, analysis, and postprocessing. The input file developed at the preproces-
sing stage consists of several elements:

Control information (type of analysis, etc.)

Material properties (e.g., elastic modulus)

Mesh (element types, nodal coordinates, connectivities)
Applied force and heat flux data

Supports and constraints (e.g., prescribed displacements)
Initial conditions (dynamic problems)

A e

In problems without severe stress concentrations, much of the mesh data can
be developed conveniently using automatic mesh generation. With the input file
developed, the analysis processor is activated. “Raw’’ output files are generated.
The postprocessor module typically contains (interfaces to) graphical utilities, facili-
tating display of output in the form chosen by the analyst, for example, contours of
the Von Mises stress. Two problems arise at this stage: validation and interpretation.
The analyst may use benchmark solutions, special cases, or experimental data to
validate the analysis. With validation, the analyst gains confidence in, say, the mesh.
He/she still may face problems of interpretation, particularly if the output is volu-
minous. Fortunately, current graphical display systems make interpretation easier
and more reliable, such as by displaying high stress regions in vivid colors. Post-
processors often allow the analyst to ““zoom in” on regions of high interest, for
example, where rubber is highly confined. More recent methods based on virtual
reality technology enable the analyst to ““fly through” and otherwise become
immersed in the model.

The goal of mesh design is to select the number and location of finite element
nodes and element types so that the associated analyses are sufficiently accurate.
Several methods include automatic mesh generation with adaptive capabilities which
serve to produce and iteratively refine the mesh, based on a user-selected error
tolerance. Even so, satisfactory meshes are not necessarily obtained, so that model
editing by the analyst may be necessary. Several practical rules are given below:

1. Nodes should be located where concentrated loads and heat fluxes are
applied.

2. Nodes should be located where displacements and temperatures are con-
strained or prescribed in a concentrated manner, for example, where “‘pins”
prevent movement.

3. Nodes should be located where concentrated springs and masses and their
thermal analogues are present.

4. Nodes should be located along lines and surface patches over which
pressures, shear stresses, compliant foundations, distributed heat fluxes,
and surface convection are applied.
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5. Nodes should be located at boundary points where the applied tractions and
heat fluxes experience discontinuities.
6. Nodes should be located along lines of symmetry.
7. Nodes should be located along interfaces between different materials or
components.
8. Element aspect ratios (ratio of largest to smallest element dimensions)
should be no greater than, say, five.
9. Symmetric configurations should have symmetric meshes.
10. The density of elements should be greater in domains with high gradients.
11. Interior angles in elements should not be excessively acute or obtuse, for
example, less than 45° or greater than 135°.
12. Element density variations should be gradual rather than abrupt.
13. Meshes should be uniform in subdomains with low gradients.
14. Element orientations should be staggered to prevent “‘bias.”

In modeling a configuration, a good practice is initially to develop the mesh locally
in domains expected to have high gradients, and thereafter to develop the mesh in
the intervening low gradient domains, thereby “reconciling” the high gradient
domains. There are two classes of errors in FEA:

Modeling error ensues from inaccuracies in such input data as the material proper-
ties, boundary conditions, and initial values. In addition, there often are compromises
in the mesh, for example, modeling sharp corners as rounded.

Numerical error is primarily due to truncation and roundoff. As a practical matter,
error in a finite element simulation is often assessed by comparing solutions from
two meshes, the second of which is a refinement of the first.

The sensitivity of finite element computations to error is to some extent controllable.
If the condition number of the stiffness matrix (the ratio of the maximum to the
minimum eigenvalue) is modest, sensitivity is reduced. Typically, the condition
number increases rapidly as the number of nodes in a system grows. In addition,
highly irregular meshes tend to produce high condition numbers. Models mixing soft
components, for example, made of rubber, with stiff components, such as steel
plates, are also likely to have high condition numbers. Where possible, the model
should be designed to reduce the condition number.
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2 Mathematical
Foundations:
Vectors and Matrices

2.1 INTRODUCTION

This chapter gives a review of mathematical relations which will prove to be useful in
the subsequent chapters. A more complete development is given in Chandrasekharaiah
and Debnath (1994).

2.1.1 RANGE AND SUMMATION CONVENTION

Unless otherwise noted, repeated Latin indices will imply summation over the range
1 to 3. For example,

3
ab; = Zaibi = a1by + aby + azbs 2.1)

i=1
ajibjx = ajbix + apby + aibsy (2.2)
The repeated index is “‘summed out” and therefore “dummy”’. The quantity a;b; in
Equation 2.2 has two free indices i and k (and later will be shown to be the ikth entry

of a second-order tensor). Note that Greek indices do not imply summation. Thus
Claba = a1b1 ifa=1.

2.1.2  SuBsTITUTION OPERATOR

The quantity d;, later to be called the Kronecker tensor, has the property that

I, i=j
8 = (2.3)
O» i#j

For example, 6,7, =1 X v;, thereby illustrating the substitution property.

iV
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2.2 VECTORS
2.2.1 NOTATION: ScALAR AND VECTOR PrODUCTS

Throughout this and the following chapters, orthogonal coordinate systems will be
used. Figure 2.1 shows such a system, with base vectors e;, e,, and e;. The scalar
product of vector analysis satisfies

€ - ej = 6,']' (24)
The vector product satisfies

e;, i j and ijk in right-handed order
e; X e = ¢ —e, i7jand jjk not in right-handed order (2.5)
0, i=j
The vector cross product enables introducing the alternating operator &, also
known as the ijkth entry of the permutation tensor:
g = [e; x €] -
1, ijk distinct and in right-handed order
(2.6)
= ¢ —1, ijk distinct but not in right-handed order

0, ijk not distinct

FIGURE 2.1 Rectangular coordinate system.
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EXAMPLE 2.1

For three 3 X 1 vectors a, b, ¢, we prove thata - (b X ¢)=b - (¢ X a).

SoLuTION
Writing the triple product in indical notation gives
a-bxc— a€ubjc
But €= €, (cyclic order), and hence
a; €ijkbjck = ai €jabjcx

= bj €jicra;
=b-(cxa)

Similarly aXb-c=a-bXc

EXAMPLE 2.2

Verify that
Eij€xim = 6itSjm — OimSj1

SoLuTION

A moment’s reflection shows that ij and ¢m must both differ from k and each other in
any nonvanishing instances of ;€. But 8;5;, —8;,0; likewise vanishes under
these conditions.

Furthermore, if i = / andj: mbut i 7éj, Gk,-jeklm =1,and 3i15jm - 6im8jl: 1-0=1.
If i=m and j=/ but i # j, then €= —Ex, and €€, =—1. But in this case
0i0jm — 8i;m0;; =0 — 1 = —1. The relation to be verified is thereby satisfied in conditions
exhausing all cases.

Now consider two vectors v and w. It will prove convenient to use two different
types of notation. In tensor-indicial notation, denoted by (*T), v and w are
represented as

*T) V=ve, W=Wwe; (27)

Occasionally base vectors are not displayed, so that v is denoted by v;. By displaying
base vectors tensor-indicial notation is explicit and minimizes confusion and ambi-
guity. However, it is also cumbersome.

In the current text, the “default” is matrix—vector (*M) notation, illustrated by

V1 w1
*M) v=|[|wm ], w=|wm 2.8)
V3 w3
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It is very compact, but also risks confusion by not displaying the underlying base
vectors. In *M notation the transposes v’ and w’ are also introduced; they are
displayed as “‘row vectors”

>kl\/l) VT = {V1 Vo V3 }, WT = {W1 4%} W3} (29)

The scalar product of v and w is written as

V-W= (Vl‘e,‘> . (wjej)

*T) = Vine,' . ej

= Vin(S,'j

= ViW; (210)
The magnitude of v is defined by
*T) V=V v (2.11)

The scalar product of v and w satisfies
*T) v-w = |v||w|cos6,, (2.12)

in which 6,,, is the angle between the vectors v and w. The scalar or dot product is
written in matrix—vector notation as

*M) v-w—viw (2.13)

The vector or cross product is written as

*T) VX W=vywe Xe;
= &jjkViwW;€x (214)

Additional results on vector notation will be presented in the next section, which
introduces matrix notation. Finally, the vector product satisfies

*T) [v x w| = |v||w|sin 6, (2.15)

and n is the unit normal vector perpendicular to the plane containing v and w. The
area of the triangle defined by the vectors v and w is given by %|v X w|.
2.2.2  GRrADIENT, DIVERGENCE, AND CURL IN RECTILINEAR COORDINATES

The derivative de/dx of a scalar ¢(x) with respect to a vector x is defined
implicitly by

*M) do = %’dx (2.16)
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and it is a row vector whose ith entry is d¢/dx;. In three-dimensional rectangular
coordinates the gradient and divergence operators are defined by

20)
Ox
*M) V()= %y) 2.17)
20)
0z
and clearly
M) (5) O=v0 @.18)

The gradient of a scalar function ¢ satisfies the following integral relation:
JV(ﬁdV: anSdS (2.19)

The expression Vv’ will be seen to be a tensor (see Chapter 3). Clearly
Vvl = [Vv; Vv, Vi3] (2.20)

from which Equation 2.19 may be invoked to obtain the integral relation
JVVT dv = Jan ds (2.21)

Next, a most important relation is the divergence theorem. Let V denote the volume
of a closed domain, with surface S. Let n denote the exterior surface normal to S and
let v denote a vector-valued function of x, the position of a given point within the
body. The divergence of v satisfies the integral relation

*M) fi;VTV dv = fi;nTv ds (2.22)

The curl of the vector v, V X v, is expressed by

d
(V xv),= ik g (2.23)

which is the conventional cross product except that the first vector is replaced by the
divergence operator. The curl satisfies an integral theorem, analogous to the diver-
gence theorem (Schey, 1973), namely:
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JVXVdejnxvdS (2.24)

Finally, the reader may verify with some effort that, for a vector v(X), and a path
X(S) in which S is the arc length along the path

JV~dX(S)=Jn-VXVdS (2.25)

The integral between fixed endpoints is single valued if it is path-independent, in
which case n - V X v must vanish. But n is arbitrary since the path is arbitrary, giving
the condition for v to have a path-independent integral as

Vxv=0 (2.26)

EXAMPLE 2.3

Verify that the relation V2v=V(V - v) — V X V X v is satisfied in rectangular coord-
inates.

Here Vv =(V - V)v is called the Laplacian of v, and V(V - v) is recognized as the
gradient of the divergence of v.

SoLuTIoN
J 0Ov;
First note that V(V - v) = — j. Next
6x,- 3}6/
0 Ovp,
VXV XV=€jx — Cum =
v ijk 8Xj kim axl
o D0,
ik =kim 8xj 0}6[
. J Ovy,
= Skij Skim 6Xj 8)61

But Example 2.2 presents the relation €€ gm = 60, — 8im0ji.
Accordingly,

0 Ov,

d 0Ov,
Ekijeklma o (8:udjm — Simdj1) oy o
J

Ox; Ox;  Ox;j Ox;

v;

o oy 8 avi
8xi 8xj

dViv=_——"
eV = % o,

Verification is seen by recognizing that V(V - v) =
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EXAMPLE 2.4

Verify the divergence theorem using the square plate in Figure 2.2, and using
=)
SoLuTioN
div(v) =V-v=V'v= (8 2) (x—y) =2

&ay x+y

and

JV~VdV:J2dxdy:2
14 \4

For faces (1) and (3), n; =e;, n; = —e;.

J (von)dS+ J (v ) dS = ‘ [(x— y)er + (x + y)es] - €1 dy
S 3 x=1, 0<y<l1

| eve s e (e
x=0, 0<y<l1
1 1
= I(l —y)dy+ [ydy: 1
o 0

For faces (2) and (4), n, =e,, ny = —e,.

FIGURE 2.2 Test figure for the divergence theorem.
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J(V.nz)ds+ J(V.m)ds: J [(x— y)er + (x+ y)es] - €2 dx

S Sy O<x<l,y=1

| eyt el e
0<x<1,y=0

1 1

:J(er l)dfoxdxz 1

0 0

Consequently,

J(V~n)dS:J1(v~n1)dS+SJ2(V~n2)dS+S[(v~n3)dS+S[(V-n4)dS:2

and the divergence theorem has been verified in the case in question.

EXAMPLE 2.5

In the tetrahedron shown in Figure 2.3, A, A,, and Az denote the areas of the faces
whose normal vectors point in the —e;, —e,, and —e; directions, and let A and n denote
the area and normal vector of the inclined face. Prove that

Ay A Ay
n——e —e —€
ATTATT AT

FIGURE 2.3 Geometry of a tetrahedron.
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FIGURE 2.4 Illustration of the base vectors.

SoLuTiON

From the definition of the normal vector and referring to the Figure 2.4, we have

uxv
n—=-——
|u x v|

Let a, b, and ¢ represent the length of the edges of the tetrahedron along 1-, 2-, and
3-axes, respectively. Now

u= —ae; +be, and v = —ae; + ce;

. u XV =bce; + cae, + abe;
But be =2A1; ca=2A,; ab=2A;. Also |u X v| =2A. Hence

n=Ale 1420 A3,
TAtT AT As

EXAMPLE 2.6

Prove that if o is a symmetric matrix with entries o;, that

ezjko'jk = 0, i= 1, 2, 3

SOLUTION

It is given that o is a symmetric tensor. Therefore o, = ;. We know that,
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1 if ijk take values in the cyclic order and are distinct
gjx = —1 if ijk take values in the acyclic order but are distinct

0 two or all of i, j, k take same values
Hence,

EijkTjk = €111011 + €112012 + €113013 + €121021 + €122022 + £123023 + €13103]
+ €132032 + €133033 + £211011 + £212012 + £213013 + 221021 + £22022
+ €223023 + €231031 + €232032 + €233033 + 311011 + €312012 + 3130713
+ &321021 + &322022 + €323023 + £331031 + £332032 + £333033
= (023 —03) — (013 — 031) + (012 — 021)

=0

EXAMPLE 2.7
If v and w are 3 X 1 vectors, prove that v X w may be written as
vxw=Vw

in which V is an antisymmetric tensor and v is called the axial vector of V. Derive the
expression for V.

SoLuTioN

Now
VX W= &jxviWwg = Viwi

where

Vie = i, [V]p= Vi

Now V11 =&V = 0. Slmllarly V22 = V33 =0. Also

Vio = e132v3 = —v3
Vo = ep31v3 = v3
Va3 = &213v1 = —vi

Vi = &30v1 = vy

=
|

=eniva = —0
Viz = e123v2 = 2
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and so

0 —V3 1%)
V= V3 0 —v
-V V1 0

Also, V is antisymmetric, i.e., V= v,

2.3 MATRICES

An n X n matrix is simply an array of numbers arranged in rows and columns, in
which case we call it a second-order array. For the matrix A the entry a; occupies the
intersection of the ith row and the jth column. We may also introduce the n X 1 first-
order array a in which a; denotes the ith entry. We likewise refer to the 1 X n array a’
as first order. In the current context, a first-order array is not a vector unless it is
associated with a coordinate system and certain transformation properties to be
introduced shortly. In the following all matrices will be real unless otherwise
noted. Several properties of first- and second-order arrays are now introduced:

(i) Sum of two n X n matrices A and B is a matrix C in which c;; = a;; + bj;.

(ii) Product of a matrix A and a scalar ¢ is a matrix C in which ¢;; = ga;.

(iii) Transpose of a matrix A, denoted A”, is a matrix in which aijT =a;. Ais
called symmetric if A=A”, and it is called antisymmetric (or skew sym-
metric) if A =—A",

(iv) Product of two matrices A and B is the matrix C for which

*T) Cij = Clikbkj (227)

Matrix multiplication may be easily visualized as follows. Let the first-order
array a,” denote the ith row of A, while the first-order array b; denotes the
Jjth column of B. Then c; may be written as

#T) cj=alb; (2.28)

(v) Product of a matrix A and a first-order array c is the first-order array d in
which the ith entry is d; = a;;c;.

(vi) ijth entry of the identity matrix I is 6;;.. Thus it exhibits ones on the diagonal
positions (i = j) and zeroes off-diagonal (i # j). Clearly I is the matrix
counterpart of the substitution operator.

(vii) Determinant of A is given by

*T) det(A) = %8,:,~k8pq,a,~pa,~qak, (229)

Suppose a and b are two nonzero first-order n X 1 arrays. If det(A)=0
the matrix A is singular, in which case there is no solution to equations
of the form Aa=b. However, if b=0, there may be multiple solutions. If
det(A) # 0, then there is a unique nontrivial solution a.
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(viii) Let A and B be n X n nonsingular matrices. The determinant has the
following useful properties:

det(AB) = det(A) det(B)
M) det(A”) = det(A) (2.30)
det(I) = 1

(ix) If det(A) # 0, then A is nonsingular, and there exists an inverse matrix,
A, for which

*M) AAT=A"TA=1 (2.31)
(x) The transpose of a matrix product satisfies

#M) (AB)"=BTAT (2.32)
(xi) The inverse of a matrix product satisfies

M) (AB) '=B~'A"! (2.33)

(xii) If ¢ and d are two 3 X 1 vectors the vector product ¢ X d generates the
vector ¢ X d = Cd in which C is an antisymmetric matrix given by

0 —C3 C
*M) C= c3 0 —c (2.34)
—C c 0

Recalling that ¢ X d = ¢gyjcid; and noting that gyjc, denotes the (ij)th
component of an antisymmetric tensor, it is immediate that [C]; = &y cy.

(xiii) If ¢ and d are two vectors the outer product e¢d” generates the matrix C
given by

Cld1 C1d2 C1d3
*M) C= Czdl Czdz C2d3 (235)
C3d1 C3d2 C3d3

We will see later that C is a second-order tensor if ¢ and d have the
transformation properties of vectors.

(xiv) An n X n matrix A may be decomposed into symmetric and antisymmetric
matrices using

A=A;+A, A =1[A+AT], A, =1[A-AT] (2.36)

© 2008 by Taylor & Francis Group, LLC.



EXAMPLE 2.8

Find the transposes of the matrices

A:[—11/3 _iﬁ] B:“/z im

(a) Verity that AB # BA.
(b) Verify that (AB)” =B”A”.

SoLUTION
Here
A R T
Also
2= vl el [ e
BA:Uz iﬁ”—ll/s _};2]2{58//192 j%}

and clearly AB # BA. Now

(AB)" =

3/4  —5/24
5/24 —7/144}

1o12]] 1 —1/3] 34 -5/
1/3 1/4“-1/2 1/4][5/24 —7/144}

and it is seen that (AB)” =B7A”.

BTAT =

EXAMPLE 2.9

For the matrices in Example 2.8 find the inverses and verify that

(AB) '=B'A"!
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SoLuTION
L1 1/4 1/2
s V- { :)
3
-6

s L[ - 4
/12| -2 1 12

3 - -
ag_ | By ! 7/144  —5/24
~5/24 —7/144 /144 | 5,24 3/4

-7 =30
130 108

Now

3 —470[3 6 -7 =30
B A = =
-6 12|]|4 12 30 108

= (AB)"' =B 'A"!

EXAMPLE 2.10

Consider a matrix C given by

Verity that its inverse is given by

_ 1 d —b
c'=
ad—bc{—c a}

SOLUTION

The cofactor matrix is given by

d —c
cofC—{_b a}

The adjoint matrix is given by

ade:{ d _b}

—C a

The determinant of the matrix is |C|=ad — bc. Hence

C—l

adJC 1 d —b
IC| T ad—be a
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as expected. Alternatively, note that

co-! 1 d —bl|la b|_ 1 ad — bc 0 | o
“ad—bc|l—c allc d|  ad—bc 0 ad—bc| |0 1

EXAMPLE 2.11

Using the matrix C from Example 2.10, and introducing the vectors (one-dimensional arrays)
=) =)
r t

a’Cb =b’C’a

verify that

SOLUTION

a’Cb = (g r)K ZK?)Z(‘I ’>(jiizf>

= aqs + bqt + crs + drt

= (as+ br chrdZ)(q)
r

e ofs ()

=b'C’a
and accordingly a’Cb =b’C’a.

EXAMPLE 2.12

For the geometry of Example 2.4, verify that

JnxAdS:JV x AT dv

using
— 2., .2
an=x+y+x +y
ap=x+y+x* -y
ay =x+y—x -y

2 _ 2
apn =X—y—x —Yy
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SOLUTION

Given
A= |91 dn2
ar  ax
let
A=[B B Where[31=<a”) and ﬁz=<a12>
21 az
Now
VxB = 2e —Q—ge X [aner + azies] = —2(x + y)e
I_6xlay2 11€1 r€] = y)es
VxBa= ge +ﬁe X lane; +ane] = —2(x —ye
27 |ox ! (f)y2 12€] 20€| = y)es
0 0 00
JVXATdV:J[VXBI V X B,]dV= 0 0 drdy=1| 0 0
v v —2(x+y) —2(x—y) 20

For faces (1) and (3), n; =e;, n; = —e,. Therefore

J(nle)dSJrJ(mxA)dS: J e; x[B; B,]dS — J e x[B; B,ldS

M S3 x=1,0<y<1 x=0,0<y<1
0 0
= J 0 0 dy
x=1,0<y<1 x+y—x2—y2 x_y_xZ_yZ
0 0
- J 0 0 dy
x=0, 0<y<1 x+y—x2—y2 x_y_xz_yz
T o o o o
:J 0o 0 dy—J 0 0 |dy=0
Oly=» —y=y e e
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For faces (2) and (4), n, =e,, n, = —e,. Hence

J(nzxA)dS—i—J(mxA)dS: J er % [B, B,]dS — J e % [B, B,dS

S, Sy 0<x<l,y=1 0<x<1,y=0
_ 0 0 -
= - 0 0 dx
0<x<ly=1 | x+y+x24+y* x—y+x2—y*|
_ 0 0 -
+ J 0 0 dx
0<x<ly=0 | x+y+x2+y* x—y+x>—y*|
1 0 0 1[0 0 00
= — 0 0 dx+ 0 0 dx=| 00
0 [x+x242 x4+ 0 lx+x> x+x2 -20
Therefore

J(nxA)dS:J}(nl xA)dS+S[(n2><A)dS+S[(n3 ><A)dS+S[(n4><A)dS

Hence J(n x A)dS = [v x AT dV is verified.
) .

2.4 EIGENVALUES AND EIGENVECTORS
Again, A is an n X n matrix. We now introduce the eigenvalue equation

(A=AT)x; =0 2.37)
The solution for x; is trivial unless A —A1 is singular, in which event det
(A—AI)=0. There are n possibly complex roots. If the magnitude of the

eigenvectors is set to unity, they may likewise be determined. As an example
consider

A= {2 1} (2.38)

The equation det (A — A1) =0 is expanded as (2 — A j)z — 1, with roots Ay, =1, 3,
and

1 1 -1 1
A—)\llz{1 1}, A—)\ZI:{ 1 _1} (2.39)
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Note that in each case the rows are multiples of each other, so that only one row can be
considered independent. We next determine the eigenvectors. It is easily seen that
magnitudes of the eigenvectors are arbitrary. For example, if X, is an eigenvector, so is
10x;. Accordingly, the magnitudes are arbitrarily set to unity. For x; = {x; xlz}T,

X1 +x2=0, &, +x,=1 (2.40)

from which we conclude that x; = {1 —1}"/A/2. A parallel argument furnishes
x, ={1 1}/V2.

If A is symmetric, the eigenvalues and eigenvectors are real and the eigenvectors
are orthogonal to each other: x;"x;=§;;. The eigenvalue equations can be “‘stacked
up” as follows:

A O
0 A .
Al xg] = eixas x| .. . . (2.41)
Aot O
0 A,
With obvious identifications,
AX = XA (2.42)

and X may be called the modal matrix. Let y; is the #jth entry of Y = X"X. Now

so that Y =I. We conclude that X is an orthogonal tensor: X’ = X' Further

XTAX = A, A=XAX’ (2.44)

and X may be interpreted as representing a rotation from the reference axes to the
principal axes.

2.5 COORDINATE TRANSFORMATIONS

Suppose that the vectors v and w are depicted in a second coordinate system whose
base vectors are denoted by ej’-. Now ej’. may be represented as a linear sum of the base

vectors e;:
*T) e; = q;ji€i (245)

But then e;-e/ =g;=cos(fy). It follows that 8;=e/ e/ =(qu ) (g1 €)=
qixqjdw, so that
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+T) qikqjk = qikq]{j
=8

In *M) notation this is written as

*M) QQT =1 (2.46)

in which case the matrix Q is called orthogonal. An analogous argument serves to prove

that Q”Q = I. From Equation 2.30, 1 = det(QQ") = det(Q) det(Q”) = det*(Q). Right-
handed rotations satisfy det(Q) = 1, in which case Q is called proper orthogonal.

EXAMPLE 2.13

Consider the matrix

cosf sin6
Q= {—sin@ COSH]
Verify that
@ QQ"=Q'Q
b)) Q' =Q
(c) For any 2 X 1 vector a
IQa| = |a

(The relation in (c) is general, and the vector Qa represents a rotation of a.)

SoLuTION

First consider

T cosf sinf|[cosf® —sinf
QQ = LsinB COSB] LinB 0059}
_ cos? 6 + sin’ 0 cosf(—sinf) +sinfcosf | [1 0
N [—sin@cosﬂ—kcos@sin@ cos? 6 + sin® 0 } N {0 1}
p cosf) —sinf cosf sinf
Q= Lin@ cosO]{—sinH 0050}
B cos? @ + sin® 6 cosfsinf —sinfcosd | [1 O
B [sin000s0+cos0(sin0) cos? 0 + sin® 6 } B {O 1]

and QQ” =Q’Q =1, as expected.
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Next, from the foregoing relations

Q_l 1 [cos@ 7Sin0:| :QT

T cosfcosO + sinfsind | sinf cos
Let
= (@)
a

Now

Qa~— cosf sinf |(a;\ _ ajcosf + apsinf

" |—sin® cosf|\ay/) \—a;sin®+arcosf

from which

|Qal = \/(al €0s 0 + ay sin )7+ (—a, sin 6 + a; cos 0) = \/a? + a2 = |a|
showing that |Qa| =]a|.

2.5.1 TRANSFORMATIONS OF VECTORS

The vector V' is the same as the vector v except that v’ is referred to ¢/ while v is
referred to e;. Now

*T) = V;jSei
= V;€; (247)

It follows that v;=v/q;;, and hence
#M) v=Q%V, v =Qv (2.48)

in which g;; is the jith entry of Q.

We now state an alternate definition of a vector as a first-order tensor. Let v be an
n X 1 array of numbers referred to a coordinate system with base vectors e;. It is a
vector if and only if, upon a rotation of the coordinate system to base vectors e/, v/
transforms according to Equation 2.48.

Since (%)ldx’ is likewise equal to de,

* % /_ % T
M) (dx) = (dX)Q (2.49)
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for which reason d¢p/dx is called a covariant vector in a more general presentation,
while v is properly called a contravariant vector.

Finally, to display the base vectors to which the tensor A is referred (i.e., in
tensor-indicial notation), we introduce the outer product

e Ne; (2.50)
and it is recognized as the matrix—vector counterpart ee;’. Now
A =a e Ne (2.51a)
Note the useful result that
e;Nei-e = el (2.51b)
In this notation, given a vector b= b,e,,

Ab = aje; N e; - brey
= a;ibie; Ne;-e;
= a;ibre;j
= a;ibje; (2.52)

as expected.

2.6  ORTHOGONAL CURVILINEAR COORDINATES

The position vector of a point P referred to a three-dimensional rectilinear coordinate
system is expressed in tensor-indicial notation as Rp=ux; e;. The position vector
connecting two “sufficiently close’ points P and Q is given by

AR = Rp — Rg =~ dRy (2.53)
where
dRy = dx;e; (2.54)
with differential arc length
dS, = /dx; dx; (2.55)

Suppose now that the coordinates are transformed to coordinates y; : x; = x{(y;). The
same position vector, now referred to the transformed system, is
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g, = ha¥a (2.56)

in which h,, is called the scale factor. Recall that the use of Greek letters for indices
implies no summation. Clearly vy,, is a unit vector. Conversely, if the transformation
is reversed

dR, = g;dy;
dy;
=——g dx 2.57
2 &0 2.57)
with the consequence that
dyi d)’a
= ':E ——hy 2.58
e./ dJCj g de Yo ( )

We restrict attention to orthogonal coordinate systems y; with the property that
'yg'yﬁ = 0up (2.59)

The length of the vector dR, is now

dS, = hay/dy; dy; (2.60)

Under restriction to orthogonal coordinate systems, the initial base vectors e; may be
expressed in terms of vy, using

e = (v/e:)y,
10y
=Y

1 Ox; Oxi

—_— 2.61
hih; Oy; Oy; o @6l
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furnishing

L Oxi O _
hih; Oy; y;

S (2.62)

Also of interest is the volume element: the volume determined by the vector dR,, is
given by the vector triple product

AV, = (mdyiy,) - [hady2y, X h3dysys]
= hihyhz dy; dy, dy; (2.63)

and hyhyh; is called the Jacobian of the transformation. For cylindrical coordinates
using r, 0, and z as shown in Figure 2.5, x; =r cos 6, x, = r sin 0, and x3 = z. Simple
manipulation furnishes that 4,=1, hy=r, h,=1, and

e, =cosfe; +sinfe;, ey = —sinfe; +cosfe,, e, =e3 (2.64)

which of course are orthonormal vectors. Also of later interest are the relations
de,=e,d6 and dey, = —e,.d6.

Transformation of the coordinate system from rectilinear to cylindrical coordi-
nates may be viewed as a rotation of the coordinate system through 6. Thus if the
vector v is referred to the reference rectilinear system and v’ is the same vector
referred to a cylindrical coordinate system, in two dimensions

cosf sinf O

vV =Q(0)v, Q(#) = |—sinf cosf 0 (2.65)
0 0 1
X3
eZ
X2
€, €y
0o —
X1

FIGURE 2.5 Cylindrical coordinate system.
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If v is differentiated, for example, with respect to time ¢, there is a contribution from
the rotation of the coordinate system: as an illustration let v and 0 be functions of
time ¢,

d, d_ dQ(o)
&V = Q(H) 5V + dr v
_ 0y 9Q0) 1y (2.66)

ot dt

where the partial derivative implies differentiation with 6 instantaneously held fixed,
and

4Q(6) —sinf® cos® O ”
” = | —cosf® —sinf O o (2.67)
0 0 1

Now %@QT(O) is an antisymmetric matrix £ (to be identified later as a tensor)
since

_d ooy _ 4Q(0) p dQ(8) 71"
0="1 (Q)Q"(9)) = —q Q)+ {d—tQ (0)] (2.68)
In fact
dQ(e) 0 10 de
T _
TQ (0) = 1 0 O pm (2.69)
0 0 O
It follows that
— 9y ! (2.70)
5V = EV +m XV .

in which w is the axial vector of €).
Referring to Figure 2.6, spherical coordinates r, 6, ¢ are introduced by the
transformation
x; =rcosfcosp, x; =rsinfcos¢p, x3=rsing 2.71)

The position vector is stated in spherical coordinates as

r = xje; + x€e> + x3e3
=rcosfcos¢e; +rsinfcospe, +rsinge; 2.72)
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FIGURE 2.6 Spherical coordinate system.

Of course e, has the same direction as the position vector: r = re,. It follows that

e, =cosfcos¢e; +sinfcospe, +singe;

Following the general procedure in the foregoing paragraphs:

%:cosOcosd;, %:—rsinecou[), g—);:—rcosesin(ﬁ
%:Sin()coscb, %:rcos@coscb, %:—rsiHGSinqb
%:sinq&, %20, %zrcos‘f’

The differential of the position vector furnishes

dr =dre, +rcos¢pdbes +rddey

e, =cosfcosde; +sinfcospe; +singes
ey — —sinfe; + cosfe;

e, = —sin¢ [cosfe; + sinb e;] + cos ¢ e3

e, =cosfcos¢e. —sinfey — sindcos ey
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e, =sinfcosde, +cosfey —sindsinf ey
e3 =sin¢ge, +cospey
The scale factors are seen to be i, =1, hy=rcos ¢, hy,=r.
Consider a vector v in the rectilinear system, denoted as v/ when referred to a
spherical coordinate system:
VvV =vie| + e, + vses, vV = V€ + Vg€g + Vpey (2.76)
Eliminating e,, e,, ez in favor of e,, ey, €, and use of *M notation permits writing
cosfcos¢p sinfcos¢p sing
vV =Q(,d)v, Qb,d)= —sin 6 cosf 0 (2.77)

—sin¢cos —sin¢psind cos ¢

Suppose now that v(¢), 6, and ¢ are functions of time. As in cylindrical coordinates,

d /_a / /
gV =gy texy (2.78)

where w is the axial vector of %(IH)QT(B). After some manipulation,

—sinfcos¢ cosfcos¢p 0 —cosfsing —sinfsin¢g cos
dQ(e) ¢ . ¢ do ¢ ¢ ¢ d¢
= —cosf —sinf 0| —+ 0 0 0 —
dr o ) dr ) ) dr
sinfsin¢g —cosfsing 0 —cosfcos¢p —sinfcos¢d —sing
and
4Q(0) 0 cos¢p O 46 0 01 ib
- 7 T — — 1 N -
i Q' (6) cosp 0  sing " +]10 00 5 (2.79)
0 —singp O -100

2.7 GRADIENT OPERATOR IN ORTHOGONAL COORDINATES

The gradient operator in orthogonal coordinates is of great interest owing to its
role in formulating the strain tensor, a topic to be encountered in Chapter 5.
In rectilinear coordinates, let ¢ be a scalar-valued function of x : ¢/(x). Starting
with the chain rule

_ow
78)6,‘

= [VIM -dr, dr =e;dx;, VI/I = ei% (2.80)

*T) dy dx;

Clearly di is a scalar and is unaffected by a coordinate transformation. Now suppose
that x = x(y): dr’ = g;dy;. Observe that
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dy = N i

3x,
_ Z i % he dyg
Yo OO
) [ —a—] [Sntom) o
implying the identification
/ Yo O
(V)= he O (2.82)

For cylindrical coordinates in tensor-indicial notation with e, =+y,, g ="y, €,=1.,

Vl//: %_F%%_Fea_dj

“or T r 00 <oz (283)

and in spherical coordinates

_e W e W ey
Vi =e or * rcos¢ 00 t O (2.84)

2.8 DIVERGENCE AND CURL OF VECTORS IN ORTHOGONAL
COORDINATES

Under orthogonal transformations, the divergence and curl operators are invariant
and satisfy the divergence and curl theorems, respectively. Unfortunately, the trans-
formation properties of the divergence and curl operators are elaborate. The reader is
referred to texts in continuum mechanics such as Chung (1988). The development is
given in Appendix I. Here we simply list the results: let v be a vector referred to
rectilinear coordinates, and let v/ denote the same vector referred to orthogonal
coordinates. The divergence and curl satisfy

v 1 9 9 / i /
(V-v)= ol {ayl (hahs3v)) + o (hshivh) + o (h1h2v3)} (2.85)

. o, 9,
(V50 = [hl{ayz (1) = 5 () }'y,
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In cylindrical coordinates:

, 10(rv.)  10vg O,

;L[ f0v. O(rvg) v, Ov, d(rvg) Ov,
(V xv) = H@@ "o }e, {6r — az}rngr{ P ae}ez} (2.88)

2.9 APPENDIX I: DIVERGENCE AND CURL OF VECTORS
IN ORTHOGONAL CURVILINEAR COORDINATES
Derivatives of Base Vectors: In tensor-indicial notation, a vector v may be repre-

sented in rectilinear coordinates as v = v;e;. In orthogonal curvilinear coordinates it
is written as

o / _ / g_a
A line segment dr = dx; e; transforms to dr’ = dy;, g,. Recall that

N Oy . Oyg
€ = a—xkgz = ;hﬁa_xk'\([s

Q2A.1)

From Equation 2A.1,
og, 0xy
dy;  Oyr0y;
« B «  B] Pr Oy
= hgYs, = - 2A.2
zﬁ:[ j }”ﬁ { j } onay, ox, P

The bracketed quantities are known as Christoffel symbols. From Equations 2A.1
and 2A.2

€

dh, d
VR [a . a]ha (2A.3)
dy; dy; j

Continuing,
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Divergence: The development below is based on the fact that

dav’ dv
= Ty = —_ = —_—
V-v=V.v tr (dl“) tr (dr)

The differential of v’ is readily seen to be
dv' = dv;y; + v dy;

First note that

dv;
dvjy; = 37271' dyi

= Z (L %Y]) ho dya)

1 Ov;
= (h 8yj 'Yj/\'Ya>'Z(hB'YﬁdYB)

B
1 Ov
B <h a]YJM“)drl

Similarly

Consequently,

dv 1 [ 0v; 1 [Ovg
bl I A Cige |, Ly = —
M o L’)y 18 ¥ i ] v Z e L?ya

(%
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Curl: In rectilinear coordinates, the individual entries of the curl can be expressed as
a divergence as follows. For the ith entry

0Vk
[V xv]; = Fik G,
8 i i
= 8_xjwj( ), WJO = EjkiVk
=V -wt (2A.10)

Consequently, the curl of v may be written as

Vv - wb
Vxv=| V. -w® (2A.11)
v .-w®

The transformation properties of the curl can be readily induced from Equation 2A.9.

EXAMPLE 2.14

Obtain the expressions for the gradient, divergence, and curl in spherical coordinates.
SoLuTioN
In spherical coordinates

Yi=¢€, Y2=¢€ Y3=¢€

n=r, =0, 3=¢

hy=1, hg=rcosp, hy=r

On substituting these relations into the expressions for the gradient and divergence
operators in the text, we have

_(91# 1 o lﬁ

V(piEer—i_rcosqﬁ% 9+ 3(;’)

1 0 0
m (r cosd)v,) 20 (rve) + ad’ (rcoszbvd,)

_ 1 a(r?v,) n 1 vy 1 9(cospvy)
T2 or rcos¢ 00  rcos¢ O
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1 0 0
Vxv= Teosh | 7 cos d){a (rvg) — %(V,)}eg

+r{% (rcos¢vg) — % (v,)}ed,

dvy  O(cos d)v@)}
{W a7

1 (rvg) v,
— fcosqﬁ{ EP 7%}89

"~ rcos¢

d(rcosdvg) v,
+{ ar _ao}e"’
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3 Mathematical
Foundations: Tensors

3.1 TENSORS

We now consider two n X 1 vectors v and w and an n X n matrix A such that
v =Aw. The important assumption is made that the underlying information in this
relation is preserved under rotation of the coordinate system. In particular, simple
manipulation furnishes that

v = Qv
= QAw
=QAQ'Qw
= QAQ"W @3.1)

*M)

The square matrix A is now called a second-order tensor if and only if A’ = QAQ”.
Let A and B be second-order n X n tensors. The manipulations below demon-
strate that A, (A+B), AB, and A~! are likewise tensors.

(A7) = (@aQ")’

=QATQ" (3.2)
A'B' = (QAQ")(QBQ")

=QA(QQ")BQ"

= QABQ’ (3.3)
(A+B) =A"+B
= QAQ" +QBQ’

=Q(A +B)Q" (3.4)

Al — (QAQT)A
_ QT*]A—IQfl
=QA™'Q’ (3.5)
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Let x denote an n X 1 vector. The outer product xx” is a second-order tensor since

= (Qx)(Qx)"

= Q(XXT)QT 3.6)
Next

e = dx"Hd - (4 "(de 3.7)
e =dx X, == x (3.
But
dx"H' dx’' = (Qdx)"H'Q dx
=dx' (Q"H'Q) dx (3.8)

from which we conclude that the Hessian H is a second-order tensor.
Finally, let u be a vector-valued function of x. Then, du = é’E“dx (du;= %dxj)
from the chair rule of calculus, from which we conclude that

du’ = dx” (g) ' (3.9)
But, also from the chain rule,
du’ = degT“; (3.10)
We conclude that
(%)T: g_‘; G.11)

Furthermore, if du’ is a vector generated from du by rotation in the opposite sense
from the coordinate axes (i.e., clockwise if the axes rotate counterclockwise), then
du’ = Qdu and dx = Q” dx’. Hence Q is a tensor which may be viewed the counter-
clockwise rotation of the axes. (Note that x and Qx are vectors, implying that Q is a
tensor.) Also, since du’ = g—‘;dx’, it is apparent that

ou' _Ou

Q—Q&QT (3.12)

from which we conclude that g—: is a tensor. We may similarly show that I and 0 are
tensors, albeit of a special type (isotropic) owing to the property I' =1, 0/ =0.

© 2008 by Taylor & Francis Group, LLC.



3.2 DIVERGENCE OF A TENSOR

Suppose A is a tensor and b is an arbitrary spatially constant vector of compatible
dimension.

The divergence of a vector has already been defined. For later purposes we will
need to extend the definition of the divergence to the tensor A. Recall the divergence
theorem for the vector ¢(x): [¢'ndS = [V”cdV. Let c=A"b in which b is an
arbitrary constant vector. Now

JAn ds = JVT (A"p)d

(VIAT)dvb

%

=b" J[VTAT] (3.13)
Consequently, we seek to define the divergence of A such that
*M) J AndS — J[VTAT} Tav =0 (3.14)
In tensor-indicial notation
Jb,-aijn,- ds — Jb,- [[VTAT} T] V=0 (3.15)
Application of the divergence theorem to the vector ¢; = b;a;; furnishes

0 TAT]T _
bij[axja,.j [[v7A7 H v =0 (3.16)

Since b is arbitrary, we conclude that

G, )
TAT] __ T
[VIAT] = 8x] _ax_,« aj 3.17)

and hence, if we are to write V - A as a (column) vector (mixing tensor and matrix-
vector notation) we have

V-A=[VIATIT (3.18)

It should be evident that (V -) has a more elaborate meaning when applied to a tensor
as opposed to a vector.
Now, suppose A is written in the form

af
A= |ol (3.19)

T
o5
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in which & corresponds to the ith row of A: [aiT]j: a;;. It is easily seen that

VIA" = (Viay Via, Vi) (3.20)

3.3 INVARIANTS
Letting A denote a nonsingular symmetric 3 X 3 tensor, the equation det(A —AI) =0
can be expanded as

N —IN+bA—5=0 (3.21)
in which

L =tr(A), L=1[tr?(A) —wr(A?)], L =det(A) (3.22)

Here tr(A)=26;a; denotes the trace of A. Equation 3.21 implies the Cayley—
Hamilton theorem

AP LA+ LA -—LI=0 (3.23)
from which

I =4 [ir(A%) ~ 1 1r(A%) + Do 1r(A)] (3:24)
Al :Igl[Az—IlA—l-IzI} |

Now the trace of any n X n symmetric tensor B is invariant under orthogonal
transformations (rotations): tr(B") = tr(B) since

! —
pyOpg = Qprdqs@rsOpq

= Qrsqpr9gs
= ars(srs (325)

Likewise 7(A?) and #r(A>) are invariant since A, A%, and A> are tensors, and hence
I,, I,, and I5 are invariants. Derivatives of invariants are of interest and will be
presented in Section 3.6.8.

3.4 POSITIVE DEFINITENESS

In the finite element method, an attractive property of some symmetric tensors is
positive definiteness, defined as follows. The symmetric n X n tensor A is positive
definite, written A > 0, if the quadratic product £2(A,x) = x?Ax > 0 for all nonvan-
ishing n X 1 vectors x. The importance of this property is shown in the following
example. Let IT=x"Ax — x'f, in which f is known and A > 0. After some simple
manipulation,
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d*IT = dx”

d\" d
— ) —II|d
(dx) dx ] X
= dx’ A dx (3.26)

It follows that II is a globally convex function which attains a (global) minimum
when Ax =f (dII =0). This fact can be invoked in the finite element method in
classical elasticity to show that the solution of the finite element equations under
static conditions represents a minimum.

The foregoing definition is equivalent to the statement that the symmetric n X n
tensor A is positive definite if and only if its eigenvalues are all positive. For the sake
of demonstration, if X is the matrix (tensor) which diagonalizes A (cf. Chapter 2),

x'Ax = x' XAXTx
= yTAy, (y = XTX)
— Y a? (3.27)

The last expression can be positive for arbitrary y (arbitrary x) only if A; >0,
i=1,2,..., n. The matrix A is semidefinite if x’Ax > 0, and negative definite
(written A <0) if x’Ax<0. If B is a nonsingular tensor, then BB > 0, since
NBBx)=x"B'Bx=y’y >0 in which y=Bx. If B is singular, for example, if
B =yy’ where y is an n X 1 vector, B’B is positive semidefinite since a nonzero
eigenvector x of B can be found for which the quadratic product £2(B”B,x) vanishes.

Now suppose that B is a nonsingular antisymmetric tensor. Then multiplying
through Bx; = A x; with B’ furnishes

BTBX] = AJBTX]
= —)\jBXj
2
= —A)X; (3.28)
Since B”B is positive definite it follows that f/\]? > 0 and hence A; is imaginary:

)th: ipn; using i = v/—1. Consequently, Bzxj:/\]zx,-:fuj?xj, demonstrating that
B” is negative definite.

3.5 POLAR DECOMPOSITION THEOREM

For an n X n nonsingular matrix B, B'B > 0. If the modal matrix of B is denoted by
X, we may write

B'B = X/ A,X,
= XT(A, ) YY" (A,)X,

- (xg (Ab)%Y) (xg(Ab)%Y)T (3.292)
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in which Y is an (unknown) orthogonal tensor. Accordingly, we may in general write
B =Y"(A,)!X, (3.29b)
To ““justify”” Equation 3.29b we introduce the tensor-valued square root vV B’ B using

vAi 0
R R R v
VBB XTA Xp, A= . . (3.29¢)
. . 0
0 VA,
in which2 the positive square roots are used. It is elementary to verify that
(\/ BTB) = B, and also that VB”B > 0. Now note that

n(varm) | (V)| =[(va7B) | wwl [ (viTB) |

=1 (3.29d)

=

Thus, B( BTB)_ is an orthogonal tensor, say Z, and hence we may write

B=Z7ZvB'B

— 7ZXTAX, (3.29)

Finally, noting that (ZX©)(ZX!)"= Z(X!X,)Z" =ZZ" =1, we make the identifi-
cation Y/ = ZX,{ in Equation 3.29b. Equations 3.29a through 3.29¢ play a major role
in the interpretation of strain tensors to be introduced in subsequent chapters.

3.6  KRONECKER PRODUCTS OF TENSORS

3.6.1 VEC OPERATOR AND THE KRONECKER PRODUCT
Let A be an n X n (second-order) tensor. Kronecker product notation (Graham 1981)
reduces A to a first-order n X 1 tensor (vector) as follows:

VEC(A):{an anq asy . . . App—1 Clym}T (330)

The inverse VEC operator (IVEC) is introduced by the obvious relation
IVEC(VEC(A))=A. The Kronecker product of an n X m matrix A and an r X s
matrix B generates an nr X ms matrix as follows:

ClllB Cl]zB I Cl]mB
a21B . . .

A2B=| . S (3.31)
a, B . .. B
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Now if m, n, r, and s are equal to n and if A and B are tensors, then A ® B transforms
as a second-order n? X n” tensor in a sense to be explained subsequently. Equation
3.31 implies that the n® X 1 Kronecker product of two n X 1 vectors a and b is
written as

alb
azb
a@b=| (3.32)

a,b

3.6.2 FUNDAMENTAL RELATIONS FOR KRONECKER PRODUCTS

Six basic relations are introduced, followed by a number of subsidiary relations. The
proofs of the first five relations are based on Graham (1981).

Relation 1: Let A denote an n X m real matrix, with entry a; in the ith row and jth
column. Let I=(j— )n+i and J=(G— 1)m+j. Let U,, denote the nm X nm
matrix, independent of A, satisfying

I, K=1, _[1, K=J
”’K{o, K#1, ”’K{o, K#J (3-33)
Then
VEC(A") = U,,,VEC(A) (3.39)

Note that u;x =uy;;=1 and u;x=u;;= 1, with all other entries vanishing. Hence if
m=n, uy = uyy, so that U, is symmetric if m =n.

Relation 2: If A and B are second-order n X n tensors, then
tr(AB) = VECT (AT)VEC(B) (3.35)

Relation 3: If I, denotes the n X n identity matrix and if B denotes an n X n tensor,
then

LoB = (1,2B) (3.36)

Relation 4: Let A, B, C, and D, respectively, denote m X n, r X s, n X p, and s X g
matrices, then

(A®B)(C®D)=AC®BD (3.37)
Relation 5: If A, B, and C are n X m, m X r, and r X s matrices, then

VEC(ACB) = B" ® AVEC(C) (3.38)
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Relation 6: If a and b are n X 1 vectors, then
acb = VEC([ab’]") (3.39)

As proof of Relation (6), if I=(j — 1)n+ i, the Ith entry of VEC(ba) is b, It is

likewise the Ith entry of a ® b. Hence a ® b= VEC(ba”) = VEC([ab"]").
Symmetry of U,, was established in Relation (1): U,,=U,.. Note that VEC

(A)= U,VECAD = Uﬁz VEC(A) if A is n X n, and hence the matrix U,,, satisfies

UL =L,, Up=U,=U} (3.40)

n? =

U,,, is hereafter called the permutation tensor for n X n tensors. If A is symmetric
(U, —L)VEC(A)=0. If A is antisymmetric (U,-+ L,-)VEC(A) = 0.
If A and B are second-order n X n tensors, then

tr(AB) = VECT (B)VEC(AT)
= VEC"(B)U,.VEC(A)
= [U,2VEC(B)]"VEC(A)
= VECT (B")VEC(A)
= tr(BA) (3.41)

thereby recovering a well-known relation.

If I, is the n X n identity tensor and i,= VEC(,), VEC(A) I, ® Ai, since
VEC(A)=VEC(AL). If 1, is the identity tensor in an n’-dimensional (Euclidean
vector) space, I, ® I, =1,. since VEC(I,) = VEC(,1,) =1, ® I,VEC{,). Buti,=L,i
and hence I, ® I,,=1,..

If A, B, and C denote n X n tensors,

VEC(ACB") =1, ® AVEC(CB")
=1, ®A)(B®I,)VEC(C)
=B ® AVEC(C) (3.42)

But by a parallel argument

VEC(ACB")" = VEC(BCTAT)
=A®BVEC(C")
— A ®BU,VEC(C) (3.43)

However, the permutation tensor U,. arises in the n’-dimensional space in the
relation

VEC(ACB")' = U,.VEC(ACB") (3.44)

© 2008 by Taylor & Francis Group, LLC.



Consequently, if C is arbitrary,
U,:B® AVEC(C) = A®BU_.VEC(C) (3.45)
and, upon using the relation U,. = U;zl, we obtain an important result
B®A=U_,A®BU,; (3.46)
If A and B are nonsingular n X n tensors,

(A®B)(A"'@B™") =AA ' @ BB"!
=L,®l,
=1, (3.47)

The Kronecker sum and difference appear frequently (e.g., in control theory) and are
defined as follows:

A®B=A®,+1,2B, AcB=A®I,-1,2B (3.48)

The Kronecker sum and difference of two n X n tensors are n° X n’ tensors in a sense
explained below.
3.6.3 EIGENSTRUCTURES OF KRONECKER PRODUCTS

Let a; and B, denote the eigenvalues of A and B, and let y; and z; denote the
corresponding eigenvectors. The Kronecker product, sum, and difference have the
following eigenstructures:

Expression jkth eigenvalue jkth eigenvector

A®B «; Rz
B Y; k (3.49)

A §5) B Q; + Bk yl X Zx

ASB aj — By Y, @z

As proof,
@y; @ Bz = ifByy; © %

= ij ® BZk
= (AQB)(y; ® %) (3.50)

Now the eigenvalues of A ® I, are 1 X ;, while the eigenvectors are y; ® wy in
which wy is an arbitrary unit vector (eigenvector of I,,). The corresponding quantities
for I, ® B are B, X 1 and v; X z, in which v; is an arbitrary eigenvector of I,. Upon
selecting w; =z, and v; =y;, the Kronecker sum is seen to have eigenvalues «; + B,
with corresponding eigenvectors y; ® z.
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3.6.4 KrONECKER FORM OF QUADRATIC PRODUCTS

Let R be a second-order n X n tensor. The quadratic product a’Rb is easily derived:
if r=VECR)

a'Rb = tr[ba’R]
— VEC™ ([ba"]" ) VEC(R)
= VEC" (ab")VEC(R)
=b"®a'r (3.51)

3.6.5 KRONECKER PRODUCT OPERATORS FOR FOURTH-ORDER TENSORS

Of course fourth-order tensors, and to a lesser extent third-order tensors, play a
critical role in continuum thermomechanics and the finite element method. For
example, they encompass the stiffnesses relating the stress tensor to the strain tensor.

Let A and B be second-order n X n tensors and let C be an n X n X n X n matrix.
Suppose that A= CB, which is equivalent to a;= c; by in which the range of
i, j, k, and [ is (1,n). In this case, C is called a fourth-order tensor if there exists
such that A’ = C'B’. In indicial notation the entries of C’ are related to those of C by
C;,u/mn = 4piq qj9kmqinCijki-

The TEN22 operator is introduced implicitly using

VEC(A) = TEN22(C)VEC(B) (3.52)

It “collapses” a fourth-order tensor relating two second-order tensors into a second-
order tensor in n* X n*-dimensional space. Note that

TEN22(ACB)VEC(D) = VEC(ACBD)
=1, ® AVEC(CBD)
=1, ® ATEN22(C)VEC(BD)
=1, ® ATEN22(C)I, ® BVEC(D) (3.53)

and hence TEN22(ACB) =1, ® A TEN22(C)I, ® B. Upon writing B=C"'A, it is
immediate that VEC(B) = TEN22(C~")VEC(A). But TEN22(C)VEC(B) = VEC(A)
and hence VEC(B)=[TEN22(C)|"'VEC(A). We conclude that TEN22(C )=
TEN227'(C). Also, writing A” = CB7, it is immediate that U,.a = TEN22(C)U,:b,
and hence TEN22(C)=U,.TEN22(C)U,.. The inverse of the TEN22 operator is
introduced using the obvious relation ITEN22(TEN22(C)) =C.

3.6.6 TRANSFORMATION ProperTiES OF VEC, TEN22, TEN21, AND TEN12

Suppose that A and B are real second-order n X n tensors and C is a fourth-order
nXnXnXn tensor such that A=CB. All are referred to a coordinate system
denoted as Y. Let the unitary matrix (orthogonal tensor) Q,, represent a rotation

© 2008 by Taylor & Francis Group, LLC.



which gives rise to a coordinate system Y’ and let A’, B/, and C’' denote the
counterparts of A, B, and C. Now, since A’ = Q,,AQ,T”

VEC(A') = Q ® QVEC(A) (3.54)

Butnote that Q@ Q)'=Q" @ Q" =Q ' Q '=Q® Q) . Hence Q ® Qis a
unitary matrix in an n’-dimensional vector space. However, not all rotations in
n’-dimensional space can be expressed in the form Q ® Q. It follows that VEC(A)
transforms as an n> X 1 vector under rotations of the form Q,,=Q ® Q.

Now write A’ =C'B’ and observe that

Q ® QVEC(A) = TEN22(C")Q ® QVEC(B) (3.55)
It follows that
TEN22(C') = Q ® QTEN22(C)(Q ® Q)" (3.56)

and hence TEN22(C) transforms a second-order n> X n? tensor under rotations of the
form Q ® Q.

Finally, let C, and C,, denote third-order n X n X n tensors, respectively, which
satisfy the relations of the form A =C,b and b= C,A. We introduce the operators
TEN21(C,) and TEN12(C,) using VEC(A) = TEN21(C)b and b= TEN12(C)VEC(A).
The operators satisfy the transformation properties

TEN21(C,) = Q ® QTEN21(C,)Q" n* xn

3.57
TEN12(C}) = QTEN12(C,)Q" ® Q" n x n? -57)

for which reason we say that TEN21 and TEN12 are tensors of order (2,1) and (1,2),
respectively.

3.6.7 KRONECKER EXPRESSIONS FOR SYMMETRY CLASSES IN FOURTH-ORDER
TENSORS

Let C denote a fourth-order tensor with entries c;,. If the entries observe

Cijki = Cjikl (3.58a)
Cijki = Cijlk (3.58b)
Cijkl = Cklij (3.58¢)

we say that C is totally symmetric. A fourth-order tensor C satisfying Equation 3.58a
but not Equations 3.58b and 3.58c will be called symmetric.

Kronecker product conditions for symmetry are now stated. The fourth-order
tensor C is totally symmetric if and only if
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TEN22(C) = TEN22" (C) (3.59a)
U,»TEN22(C) = TEN22(C) (3.59b)
TEN22(C)U,» = TEN22(C) (3.59)

Equation 3.59a is equivalent to symmetry with respect to exchange of ij and &/ in C.
Total symmetry also implies that, for any second-order n X n tensor B, the
corresponding tensor A = CB is symmetric. Thus, if a= VEC(A) and b= VEC(B),
then a=TEN22(C). Also U,a=TEN22(C)b. Multiplying through the later
expression with U,,» implies Equation 3.58b. Next, for any n X n tensor A, the tensor
B=C'A is symmetric. It follows that b= TEN22(C ha=TEN22"'(C)a, and
U,-b=TEN22"'(C)a. Thus, TEN22(C')=U,.TEN22 (C). Also TEN22(C)=
[U,lzTENZZ_l(C)]_l =TEN22(C)U,.. The conclusion is immediate that U,.TEN22
(O)U,. =TEN22(C) if C is totally symmetric.
We next prove the following:

C! is totally symmetric, if C is totally symmetric (3.60)

Note that TEN22(C)U,. = TEN22(C) implies that U,.TEN22(C~')=TEN22(C™"),
while U,.TEN22(C) = TEN22(C) implies that TEN22(C ") U,. = TEN22(C ™).
Finally, we prove the following: for a nonsingular n X n tensor G,

GCG is totally symmetric if and only if C is totally symmetric 3.61)

First, Equation 3.56 implies that TEN22(GCG ") =1 ® GTEN22(C)I ® G, so that
TEN22(GCG) is certainly symmetric.
Next consider whether A’ given by

A' = GCG'B (3.62)
is symmetric in which B’ is a second-order nonsingular X n tensor. But we may write
G'AGT=cCcG 'BGT (3.63)

Now G 'A’G™" is symmetric since C is totally symmetric, and therefore A’ is
symmetric. Next consider whether B’ given by the following is symmetric:

B =GTc!G'A (3.64)
But we may write
G'B'G =C'G'A'G (3.65)

Since C™ ' is totally symmetric, it follows that G” B'G is symmetric, and hence B’ is
symmetric. We conclude that GCG” is totally symmetric. The “only if”” argument
follows as a consequence of

C =G (GCGhHG
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3.6.8 DIFrereNTIALS OF TENSOR INVARIANTS

Let A be a symmetric 3 X 3 tensor, with invariants I;(A), I»(A), and I3(A). For a
scalar-valued function f(A),

W o Paa), (L
df(A) = Fa day = tr( 5 AdA), ( 5 A) s (3.66)

But with a=VEC(A), we may also write

df(A) = VECT o ' VEC(dA)
B O0A
of
= %da (3.67)
Continuing,
oL 0
% = % (lTa) = lT
(912 0 |1 2
5o~ 5a [5 (i"a)"— aTa}
=L’ —a’ (3.68)
and
dl; = tr(A*dA) — I tr(AdA) + L dA
=1tr(LA'dA) (3.69)
so that
oL 4
5= LVEC(A™") (3.70)

3.7 EXAMPLES
EXAMPLE 3.1

Given a symmetric n X n tensor @, prove that

tr(o — tr(o)l,/n) =0
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SOLUTION

tr(o — tr(o),/n) = tro — tr(o) tr(I,) /n.  But tr(I,) = n.
Hence 1r(o —tr(o)l,/n) =tro —tr(e) =0

EXAMPLE 3.2
Verify using 2 X 2 tensors that

tr(AB) = tr(BA)

SoLuTION

Let

Now

B— {aeerg af +bh

tr(AB) = b dh
ce+ dg cf+dh]_)r( ) =ae+bg+cf +

BA — {aeJrcf be + df

tr(BA) = ae +bg + cf +dh
ag +ch bg+dh}ﬂr( J=aetbgtcf

Hence tr (AB) =tr (BA).

EXAMPLE 3.3

Express I; as a function of /; and I,.
SoLuTioN
We know that I; =#r(A). Also
I =1[1P(A) — ir(A?)] =1 [I? — 1r(A%)]

from which 1r(A?) :If — 2I,. From the Cayley—Hamilton relation A LA+ L A—
LI=0, it follows that

L =1[r(A%) — Litr(A®) + Ltr(A)]

[tr(A%) — I} + 3L

W= W=
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Now using the relations I} = a; + a, + as, I, = a1a, + axa; + asa,, s = aya,az, we find

r(A =P -3 — LI

EXAMPLE 3.4

Using 2 X 2 tensors and 2 X 1 vectors, verify the six relations given for Kronecker
products.

SoLuTioN

Let

ajy ap by b c o ocn di d12:|
A= , B= , C= , D=
[021 6122] |:b21 bzz} [621 sz} |:d21 dy»

Relation 1: VEC(AT)=U,.VEC(A)

ap Uiy Uiy Uz Uy ary
ap | U211 U2 Uz U4 as
azg Uzl uzy U3z U a
an Uqr  Ugp  U43 Uy an
implying that
1 0 0 O
U 00 1 0
2=
01 00
0 0 0 1

Relation 2:  HAB) = VECT(AT\VEC(B)

First
B aibyy +anby  anbip +anbn
az1bi1 +anby  axnbiy + anby
tr(AB) = ay by + ainby + az1biy + anby (S2.1)
Next

AT = [ 2 yECT(AT) = {ay a; axn a
{012 arn (AT) ={an an an an}
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and finally

by
- B by
VECT(AT)VEC(B) = (a11 ap ay ax) b
12
by
= anbi + anby + axbir + anby (52.2)

thereby verifying Relation 2.
Relation 3: I, ® B'=(, ® B)"

Here
L=y f| wa w=[pn ]
from which
by by 0 0
I, @B = b(;z bSZ b(l)l b(; (52.3)
0 0 b bxn
Now
byy by 0 0
(I,,®B)T: b by 0 0

0 0 bu bu
0 0 b bn

by b 0 0

byy bp 0 O
I, 9B = $2.4
® 0 0 b b2 624

0 0 by bxn
and it is immediate that

by by 0 0
by by 0 0
0 0 bu by
0 0 b bn
=1,®B"

(In & B)T =

as expected.
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Relation 4: (A ® B)(C ® D)=AC ® BD

aitbyy  anbyy  anbn
a B apB aitbyr  anbyn  apby
A®B = =
ayB  anB azibyy  axnbyy  anbn
aziby  axby  anbs
Similarly,

cudn cndiy cipdy cpdn

cidy cndn  cipdy cpdp

CeD=

cdn cndiy cpdyn cndn
crdy  cndn  cpdy cndp

Now
X1y1 X1y2 X2y1 X2y2
(A@B)(C®D) = |73 X4 25 A2
X3y1 X3y2  XaY1 o X4y2
X3y3  X3Y4  X4Y3  X4Ya
in which

X] = ajicy) +appc, X2 =apciy +ancn, X3=dazc + anc,
yi = bndy +biaday, y» = biidin + biady,  y3=byidi + bndyy,
But
by bpp||dn dn yio»m
BD = =
|:b21 bzz} |:d21 dzz} {y,? Ya
and now
_ XIBD XZBD
(A®B)(C®D) = [x3BD x;;BD}
Also
AC = [all 6112] |:C11 (312:| _ |:xl Xz}
a an||c1 X3 X4
and hence

(A®B)(C®D) = AC @ BD

as expected.
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Relation 5: VEC(ACB)=B" © AVEC(C)

Here

ACB =

Ld21 A

[an alZ} {611 C12:| |:bll b12:|
Laai axn ]| [ca ¢l by bxn

[an 012} I:bllcll +byicia biacnn +b22012}

biicar +bricn biaca +bxncexn

[anbiici +anbaicry +apbiica +anbicyn anbiaci +anbynciy +anbincar +ainbncen

Laaibricit +axibaiciz +anbiica +anbricn axbiacii +axbnciz +anbicar +anbncn

Hence
[(abii)en + (anbii)ca + (anbar)ciz + (ainbar)exn
VEC(ACB) — (azibii)en + (abii)ear + (azibar)ciz + (a2bai)exn
(anbia)cin + (anbia)car + (anbyn)cin + (ainbn)exn
L (a21b12)c11 + (anbiz)car + (aa1bxn)ciz + (azbn)en
[anbi  apbi anby  anby ci
. axibyy  anby  axby  axnby 21
aitbyy  anbi anby  apbp cn
Laxib1y  axnbiy axby axnbyp (&5
(b A bpRA
R R7e(8)
| b21A DA

=B" ® AVEC(C)

as expected.
Relation 6: a ® b= VEC([ab"]")

First
ayb
a®h= (Z;E) = Z;ZT (S2.5)
aby
Now
= (G )on b= o]
and also
a1 b
[ab”] = {Zii; Zié’j vec([ab]") = Z;Z? (S2.6)
aby

serving to verify Relation 6.
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EXAMPLE 3.5

Write out the 9 X 9 quantity TEN22(C) in ¢y = 2m(8#0;1) + A6;01, which appears in
the Lamé form of the stress—strain relation in linear isotropic elasticity under small
strain, namely 0;; = ¢;j&x.

SOLUTION

It is readily verified that
C=2ul, ®L, + Ai,i!, i, = VECT,) (9 x 1)

Here n=3.
Expansion gives

1
0
0
1'I; 0-1; 0. 0
C=02uw|01s 1-I; 0-I{+A{1%{1 0 0 0 100 0 1}
0-; 0-1; 1-I 0
0
0
1
1 00000O0O0O0] [1OOOT1O0O0O0 1]
010000000 00000O0GO0O0O
001000000 00000O0GO0O0O
000100000 00000O0O0O0O
=)0 0 00 1 000 O[+A|1 0001000 1
00000T1O00O0O0 00000O0O0O0O
00000O0T1O0O0 00000O0O0O0O
000000010 00000O0O0O0O
00 000O0O0O0TI1] [100O0T1O0O0O0 1]

EXAMPLE 3.6

Prove that the rows of a 3 X 3 tensor A are row vectors.

SoLuTION

First note that if £ and g are 3 X 1 vectors, the scalar product f'g is invariant: f'7g’ =
(Qf)'(Qg) =f'g. Alternately, let g be a 3 X 1 vector but suppose initally that f is
simply a 3 X 1 array. If the matrix-algebraic product (Qf)7(Qg) is equal to f’g for all
orthogonal 3 X 3 transformation matrices Q, we conclude that the array f is in fact a
3 X 1 vector.
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To support this statement, suppose instead that f’ = Qf + « in which « represents
the deviation from the vectorial relationship. But then f'’g =(Qf+ a)’(Qg), and
consequently it must be the case that a’Qg=0. But this must hold for arbitrary Q,
and there is a particular instance of Q, say Q,, which rotates g to be colinear with c.
If follows that &’ Q,g can only vanish if a =0.

We now consider whether the rows are transposed vectors. By hypothesis A is a
3 X 3 tensor. We write

and consider the equation
Ab=c
in which b and ¢ are 3 X 1 vectors. Now simple manipulation serves to verify that
alQ’
AQT = alQ’
alQ”

and so we may write AQ"(Qb) = c. Clearly,

Iy T
a,Q a
alQ" |b' = |al |b
T T
alQ al

Since the scalar product of two 3 X 1 vectors is invariant under orthogonal transform-
ations we conclude that

Q'] [af
Al | = |af
SOU I

and in consequence that the rows of a 3 X 3 tensor are row vectors. Of course by using
AT we may similarly conclude that the columns of A are column vectors.

EXAMPLE 3.7

Let x denote the 3 X 1 position vector in a body. Also let iy be an n X 1 vector, while A
(x) is an n X n matrix dependent on position and Py is a constant n X n matrix. Prove
that f'yTAT(x)PoA(x)'y dV may be written in a form such that the integration does not
depend on Py,

© 2008 by Taylor & Francis Group, LLC.



SoLUTION

From the properties of Kronecker products,

Y ATPAX)Y =y ® ¥ VEC(AT (x)PyA(x))
=vy" @ 6vy"AT(x) ® AT(X)VEC(Py)

The integral now reduces to
v @y" U ATx) ® AT(x) dv} VEC(Py) = 6y"Ky
K= IVEC( U AT(x) ® AT(x)dV] VEC(PO))

and the integration in the matrix K is independent of the matrix Py. This relation will be
of interest later when finite element analysis of buckling is considered.
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4 Introduction to
Variational Methods

4.1 INTRODUCTORY NOTIONS

In this section we introduce the central notion of the variation. Recall that Chapter 1
described one step in FEA as expressing equilibrium equations as integral equations
using variational calculus.

Let u(x) be a vector-valued function of position vector x, and consider a vector-
valued functional F(u(x),u’(x),x), in which u'(x)=0u/0x. (Just like the definite
integral, a functional maps functions, say of x, into numbers.) Next, let v(x) be a
function such that v(x) =0 whenever u(x)=0, and also v/(x) =0 when u'(x) =0.
Otherwise, v(x) is arbitrary. The differential dF measures how much F changes if x
changes.

The variation 8F, defined below, measures how much F changes if u and o’
change at fixed x. Following Ewing (1985) we introduce the vector-valued function
®(e:F) as follows:

P(e:F) = F(u(x) + ev(x),u'(x) + ev'(x),x) — F(u(x),u’(x),x) 4.1)

in which e is a scalar “modulating” the difference between u and u + ev as well as
between u’ and u’ + ev’. The variation 8F is defined by

SF =e¢ (dd)) 4.2)
de le=0

with x fixed. Elementary manipulation using differential calculus serves to demon-
strate that

JOF oF ,
oF = %ev + tr <6u’ ev ) “4.3)

w ') = o
8F =5u’ =ev'. This suggests the notational convention ev— Su and ev’ — éu’,

leading to the expression

in which tr(aF ev’) = OF evgj. If F=u, then SF=08u=ev. If F=u/, then

SF — g—ll:8u b (%m) 44)
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4.2 PROPERTIES OF THE VARIATIONAL OPERATOR 6

The variational operator exhibits five important properties:

1. &(-) commutes with linear differential operators and integrals. For example,
if S denotes a prescribed contour of integration

JS()dS =5 U()ds} (4.5)

2. 8(f) vanishes when its argument f is prescribed.
3. 8(-) satisfies the same operational rules as d(-). For example, if the scalars
q and r are both subject to variation,

d(gr) = qo(r) +8(q)r (4.6)

4. If fis a prescribed function of (scalar) x and if u(x) is subject to variation,
then

&(fu) =féu 4.7)

5. Other than for (2), the variation is arbitrary. For example, for two vectors v
and w, v’ dw =0 simply implies that v and w are orthogonal to each other.
However, v/ow =0 implies that v=0, since only the zero vector can be
orthogonal to an arbitrary vector.

In the current monograph, attention will be restricted to variations with respect to
position. There will be no consideration of variation with respect to time. Accord-

ingly 8L/ (Ou(x)] = f(DSu().

4.3 EXAMPLE: VARIATIONAL EQUATION FOR A CANTILEVERED
ELASTIC ROD

Determine the variational principle for the system in Figure 4.1 which depicts a rod

of length L, cross-sectional area A, and elastic modulus E. At x =0, it is built in while

at x = L the tensile force P is applied. Inertia is neglected. In terms of displacement u,
stress S, and (linear) strain E, the governing equations are given by

E,A

FIGURE 4.1 Rod under uniaxial tension.
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d
Strain — displacement E = d

Stress — strain S = EE 4.8)

ds
Equilibrium — =0
quilibrium

Combining the equations furnishes

2
EA% -0 (4.9)

The steps below serve to derive a variational equation which is equivalent to the
foregoing differential equation and endpoint conditions (boundary conditions and
constraints).

Step 1:

Step 2:

Step 3:

Multiply by the variation of the variable to be determined () and integrate
over the domain.

L
d*u
JSuEA@Adx =0 4.10)
0

Differential equations to be satisfied at every point in the domain have now
been replaced with an integral equation whose integrand includes an arbi-
trary function.

Integrate by parts as needed to render the argument in the domain integral

quadratic.
i d d do d
u u u
— |SuEA—| - == |EA—|dx = 4.11
J{dx{u dx} <dx> dx}dx 0 “4.11)
0

To determine whether an integrand is quadratic for variational purposes,
disregard the variational operator and derivatives with respect to time. If
what is left is quadratic, the integrand is positive definite. We will see that in
the finite element method terms with this property give rise to positive
definite matrices.

Now the first term in Equation 4.11 is the integral of a derivative, so that

L

L
déu du du
[1(5)er)ec e
0

(4.12)

Identify the primary and secondary variables.

The primary variable is present in the endpoint terms (rhs) under the
variational symbol and is u in the current example. The secondary variable
conjugate to u is EA%~
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Step 4: Satisfy the constraints and boundary conditions.

At x=0, u is prescribed and hence Su =0. At x =L, the load P = EA %
is prescribed. Also, note that (%‘)EA% = 6(% EA(%‘C)Z) The right-hand
term represents the reason why the left-hand term is deemed quadratic.

Step 5: Form the variational equation.

The foregoing equations and boundary conditions are consolidated into

one integral equation as 6F =0 where

T du\?
u
F = J 2EA<dx> dx — Pu(L) (4.13)
0

4.4 HIGHER ORDER VARIATIONS

We now consider variations of order higher than unity. The jth variation of a vector-
valued quantity F is defined by

. (AP
6'F = e/ | — “4.14)
de/ le=0

It follows that 8°u=0 and 8w’ =0. Now restricting F to being a scalar-valued
function F and letting x reduce to x, we obtain

T T
() v (o) 20"
5 ’ " du ou/ Ou ou/ Ou
8°F ={6u’ &su'}H , H= (4.15)
su’ o\ o e (2 ! -
(o) " (o) 3w
and H is known as the Hessian matrix.
Now consider G given by
G= JF(x,u(x),u’(x)) dv + JhT(x)u(x) ds (4.16)

in which V again denotes the volume of a domain and S denotes its surface area. In
addition, h is a prescribed (known) function on S. G is called a functional since it
generates a number for every function u(x). We first limit attention to a three-
dimensional rectangular coordinate system and suppose that §G=0, as in the
Principle of Stationary Potential Energy in elasticity. Note that

foF 1 (OF )\ 0 [0
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The first and third terms in Equation 4.17 may be recognized as divergences of
vectors. We now invoke the divergence theorem to obtain

0=0G

_ ”g_ﬁsu L (%Bu )} v + JhT(x)b‘u(x) ds

_[[(er_ oo oF T
_J[(au ox 8u’>6u}dV+Jn ou /8“d5+Jh (x)8u(x)dS  (4.18)

For suitable continuity properties of u, arbitrariness of du implies that G =0 is
equivalent to the following Euler equation, boundary conditions and constraints (the
latter two are not uniquely determined by the variational principle):

OF 0 OF _;
- = 4.19
Ou Ox o (419)
u(x) prescribed, xon S;
- OF
n’os+Hhi(x) =0 xonS—S§,

Let D > 0 denote a constant positive definite and symmetric second order tensor and
let 7v denote a vector which is a nonlinear function of a second vector u that is
subject to variation. The function F = 5 wT(u)Dw(u) satisfies

SF = ou’ (8 ) D (4.20)
ou

om o 0 (Om
2
8°F = 8u ( ) D—46u+ |du <8u<8u)>8u

Ou ou
Since D > 0, if only the first right-hand term were present, the expression would be
quadratic with the implication that 6°F > 0. However, for a general functional
relation between  and u the second right-hand term is not quadratic. Accordingly,
the specific vector u* satisfying 6F =0 may correspond to a stationary point which
does not constitute a minimum.

4.21)

4.5 EXAMPLES
EXAMPLE 4.1

Directly apply variational calculus to F given by

I LT
0
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to verify that 6F =0 gives rise to the Euler equation

d*u
BAGZe =0

What endpoint conditions (not unique) are compatible with §F =0?

SOLUTION

Given that

= | EASu'v' dx — Pou(L) 4.22)

Now consider <& (Suu’) = 8u'u’ + Suu". After some manipulation
L 4 L L
J EA o (Sur') dx = J EASu' W dx +J EASuu” dx
0 0 0

in which
L L
J EASY'v dx = [EASuu’]é —J EASuu” dx
0 0
On substituting Equation 4.23 into Equation 4.22, we have
L
8F = [EASu]} —J EASuu” dx — Pdu(L)
0

Now 6F =0 is seen to imply that

EAu (L)du(L) — EAW' (0)8u(0) —JSuEAu"dx —Péu(L) =0
0
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from which

[EAW/ (L) — PJsu(L) — EA (0)5u(0) — J&uEAu” dx =0
0

The domain integral must vanish, and the endpoint expressions must vanish. Hence

(i) [EAu'(L)— P)du(L) =0
(i) EAu(0)5u(0) =0
(iii) EAuW" =0

Note that (iii) states the Euler equation implied by 6 F =0.
Finally, since du is arbitrary (i) and (ii) have the following implications:

(i) EAW|,_, =P so that (%) = P/EA
dx x=L

d
(ii) EAw|,_,=0 from which (-“) =0
dx/._g

EXAMPLE 4.2

The governing equation for an Euler—Bernoulli beam in Figure 4.2 below is

d*w
El——=0
dx4

in which w is the vertical displacement of the neutral (centroidal) axis. The shear force V
and the bending moment M satisty

d’w d*w
z
Neutral axis
Yo
Y
E,/
_____ -4 — e — — | —_—.————~ X
L

FIGURE 4.2 Cantilevered beam.
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Using integration by parts twice, obtain the function F such that 6F =0 is equivalent
to the foregoing differential equation together with the boundary conditions for a
cantilevered beam of length L:

SoLuTioN

On multiplying Elw"™ = 0 by 8w and integrating over the domain, 0 < x < L we obtain
L
Jaw[EIW""} dx=0
0

Also
d / /! / " /! /!
— [BWEW"] = SWEW" + w"Elw

Combining the last two equations furnishes

%[BWEIW”/] - dgx [BWEIW'] = —8w"EW"
Continuing,
L . Ly
8 //E[ /! — 7 8 EI " — 8 /EI /!
Jw w'dx de[w w}dx—O—de[w w' ] dx
0 0 0

= —[SWEIW"]5 + [SWEIW"];

Note that w(0) =w’(0) =0. This implies that w(0) =w’(0) =0. Also evident are
the conditions

—EM"(L)=M(L)y=0 and —-EW"(L)=V(L)=YV,

Some manipulation serves to establish that

SW'EMW" dx = dw(L)Vy

o

EI(w")* dx| = Vodw(L)

N =

EI(w")*dx — Vow(L) | =0

N —

e~ o~
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Finally, since 6F =0 we conclude that

L
F= J %EI(W”)Z dx — Vow(L)
0

EXAMPLE 4.3

Equation combining rod and beam behavior
What are the primary variables and the corresponding secondary variables in the
following equation?

Fw Pw w
BW A62+C +D82—0

in which 0 < x < L.
SoLuTION
The first step is to write
([ ow  ow P
Js {B—W—A—+c +pZlav =0

Oox* ox? o
0

The third and fourth terms in the integrand, namely [()L owCwdV and fOL SWD% dV are
already quadratic. The second and first terms give, respectively,

L
a2w /\L ! /
dw|—A—=| dV = —éw(Aw)|; + | Sw'AW' dV
X
0

L
[ 5
0
L L
84W 1N L / N2 " "
Sw pe dV = —6w(—Bw")|5 — (=6w)(—Bw")|; + | Sw"Aw" dV
0 0

Combining the last two equations reveals the primary variables to be w, —w’. The
corresponding secondary variables are —Aw’ + Bw'" and Bw"'.

EXAMPLE 4.4

Two-dimensional heat conduction
Obtain the variational equations corresponding to the following equation in two
dimensions. What are the primary variables and the conjugate secondary variables?
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The first equation is for unsteady heat conduction. The second equation has the same
form as the wave equation and the biharmonic equation in classical elasticity.

T
kV-VT:pcea—

ot
k = thermal conductivity
p =mass density
c. = specific heat at constant strain
SoLuTioN
The first step is to write
arT
J(ST{I{V . VT—pCEE} dv =0
|4

Applying integration by parts to the first term furnishes
JBT[kV -VT]dV = JV -(6T[kVT])dV — JBVT - [kVT]adV
4 4 4
Using the divergence theorem on the first right-hand term furnishes
JV -(6T[kVT]) AV = ‘ 6Tn - kVTdS
v s
The primary variable is seen to be 7" owing to its presence under the variational

operator in the surface integral. The corresponding secondary variable is n - KV T, which
equals the negative of the normal projection of the heat flux vector q = —kVT.

EXAMPLE 4.5

Navier equation and plate equation in elasticity
Find variational forms of the following equations. What are the primary and
secondary variables?

0 Ou 0*u; . .
(n+ /\)87 87% +u b; = pu; Navier’s equation
x; Ox; 6xj
9 O*w

— — = 0 Elastic Plate equation (static
6xi2 8sz 4 ( )
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SoLUTION

Navier’s equation
The first step is to write

2.,
Jéu,<(u+A)a”’+ua” )dV_O

Ox; 0. 8x]

First note that the third term in the integrand, —ou;pii;, is already quadratic. Next
consider the middle term in the integrand:

0 5 Ou; 0814, Ou, n Pu;
| su; Uit
0x; ® 0x; 8)61 5) ; ® 8)6_]2

and

Ouip

821/{,‘_2( ) 8u,> _ 8614,‘ 814,‘

a7 oy " ag) "oy Moy

Consequently, using the divergence theorem, the integral of the middle term gives

JSu /.La—dV

Ou; Oéu; c')u,
s =] I

) i
Ui —— Ix, ds — o ax] dv

The first term in the integrand may be rewritten as

B (Bu(y,+/\)auj) 0614,( +A)—+8ul((ﬂ+)\ aa gu,)

ox; Ox;

with the result that

0 Ou; 0 Ouj\  Odu; 8uj
SMI((M+)\)8X,8 ) o (Su(p,—b—)\) ) o (m +)\)

Upon integration and application of the divergence theorem,

Jau, ((MH)i 6—) av = Jniéui(,u—i-/\)%dS— [ a5”’( +A)—fdv
Ox; Ox; Ox; .
Vv \4 |4

Collecting the surface terms gives

Jsm (n,«(u +/\)%+W%) s — JSuT ((M L0 wn 4+ 2 n)dS
Ox; 0x; dx
S S

We now identify u as the primary variable and <(/.L +A)(V-u)n+ ,u,g—; . n) as the
conjugate secondary variable.
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We now examine the domain terms. Note that

0x; 5)xj Ox;

dsu\ du
:J tr d_x) d + (u+A)V - du)(V - u) + dupii | dV

All three terms in the integrand are quadratic.
Finally the variational statement of Navier’s equation is recapitulated as

dsu\" du
J o (K) e |+ G DT BT )+ 5 pid | av

= JSUT ((M-H\)(V -uw)n —Hui—z . n) ds

N

J(@Su, Ou, 85“1( 4 )\)_ + Su,pu,) av

SOLUTION

Plate equation
The first step, again, is

9 O w
J8w8262dv 0

Vv

Integration by parts must be performed twice. The first step is

0 J Pw ? Pw 9w 0 Pw
Tlow L o 2, ORI 4.23
o ( "o 8x]2> Vo2 a2 o ow 0% @23
and the second step is
O (3w 0 0w\ (0 o\ (0 v\ w0 Fw
Ox; \ Ox; Ox; Ox;) — \Ox; Ox; ) \Ox; Ox; Ox; Ox; 8xj2 ’

Subtracting Equation 4.24 from Equation 4.23 gives

1o} o Pw a [(9dw O Ow & Pw 0 0w 0 ow
I gy L 0w O (oW I OWY_ 5, O T (O
Ox; Ox; 8xf Ox; \ Ox; Ox; Ox; Ox? Ox? Ox; Ox; 8xj Ox;

which becomes upon integration

([0 96w\ [ O Ow 0 Pw odw 0 Ow
adis Sw|—m—2" _OWN L, L9
J(ax, ax,-)(ax, ax,) V= J( W( " o m}) +( 6x,—)( " ox; ax,-)) a5

\%4 N
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Examination of the domain terms reveals that
0 0w 0 ow [ déw d\ dw
[ G 5) G ) = (((dx) & ) ((&) ?)) v
v v
and the surface terms are rewritten as
o Pw odw 0 Ow
J <5W (nla—x, 6_sz> + (78—X,> < nj axj aXI)) ds
S

= J (dw(—(n - V)V?w) + (=Vdw)(—m - V)Vw)) dS
N

The primary variables are now identified as w, —Vw, and the conjugate secondary
variables are respectively (—(n - V)V2w) and (—(n - V)Vw).

EXAMPLE 4.6

Consider a one-dimensional system described by a sixth-order differential equation:

6
Q@ =0, Q aconstant.

Consider an element from x, to x,, ;. Using the natural coordinate { = —1 when
x=x,=+1 when x=x,,, for an interpolation model with the minimum order that is
meaningful, obtain expressions for ¢(§), ®, and vy, serving to express q as

SOLUTION

Since the given equation is sixth order, the lowest order interpolation model consistent
with six integration constants is a fifth-order polynomial, in the form (physical coord-
inates),

q(x1) = @' (x)®y(1)
in which

qe(t)
7qe(t)

q,(1)
Y(l) - Qe+l([)
_qe+l(l)

(

qe+] l)

We seek to identify @ in terms of the nodal values of q.
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Letting ¢, = q(Xe), ge+1 = q(Xet1), ¢, = ¢'(x,) ... furnishes the following in the
matrix—vector notation:

9e(7) [1ox X % % ® ]
—q.,(1) 0 -1 -2x, =32 -4 -5
q, (1) 0 0 2 6r. 122 20%
- 3 4 5 Dy(1)
Ges1(1) I Xeqr x5+1 Xet1 Xet1 Xet1
_qle+1 (t) 0 -1 72xe+1 *3X§+1 *4X3+1 *SXA;F]
g (1) L0 0 2 61 1202, 20x3,, |
Hence
[ x x2 x x £ ] -
0 -1 —2x, — 3x§ —4x2 —5)c‘el
0 0 2 6x, 12x2 20x]
¢ = 2 3 4 5
LoXern Xy Xe+1 Xet1 Xet1
0 —1 —2x.y -3x2, —4x,, —5x,
0 0 2 61 1202, 20x,, |

Now, on converting this to the natural coordinate £ = —1 when x =x,, = +1 when
X=2X,,1, we have

2
“TlL

o 0
ox ~ “of

from which

O _ 60 _64 0
ot~ o T B 9

Hence, the governing equation becomes

64 d°q
2 dg

The interpolation model now becomes

and

=
=z
I

o' (&( (1 &x) &)’ &)’ &) &x))
Y1) = (qet) —qL(t) q'(t) qenr(t) —qb (D) gl (D)
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Substituting &(x,) = —1 and &(x,) = —1 yields the desired result at

-1 1 -1 1 -17"
-1 2 -3 4 -5
0 2 -6 12 -20
1 1 1 1 1
-1 -2 -3 -4 -5
0 2 6 12 20]

S O = O O =
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5 Fundamental Notions
of Linear Solid
Mechanics

In this chapter we provide a condensed review of basic solid mechanics typically
presented in upper-level undergraduate courses. Our emphasis is on formal relations
as well as examples.

5.1 DISPLACEMENT VECTOR

Figure 5.1 depicts a body in both its reference and current configurations. The former
is considered to be the undeformed configuration, and the latter is called the
deformed configuration—it reflects the deformation induced by the forces applied
to the undeformed configuration. Consider a material particle occupying ““point” P in
the undeformed position and point Q in the deformed position. In the undeformed
configuration its position determined the undeformed position vector, given in
rectilinear coordinates as

X = Xji + Xoj + Xk 5.1

while the same particle in the deformed configuration gives rise to the deformed
position vector

X = xji + xj + x3k 5.2)

referred to the same base vectors i, j, k. It is assumed that x; are functions of X; and
time 1.

The vector difference between x and X is called the displacement vector. In
rectilinear coordinates

u=x-—X (5.3)

and in alternate notation

u x—X
u=<(vpy=<y-Y 54
7—7Z
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Undeformed configuration

Deformed configuration

FIGURE 5.1 Illustration of the displacement vector.

5.2 LINEAR STRAIN AND ROTATION TENSORS

Suppose there is a slight change in the position of Q. From the chain rule of calculus,
in the X — Y plane the displacements u(X,Y) and v(X,Y) satisfy du = g—)"(dX + g—‘;dY

and dv = $£dX + & dY. Elementary calculus furnishes

du du
du) |ax dr|[dX
dv ﬂ ﬂ dY
dX dYy
Exx ny Wyy  Wyy dx
= : + (5.5)
Ey Ey Wyy Wy dy
in which
1/du du 1/dv du 1/dv dv
Eo=-—+— E,=E,==—+— Ey=——+—
o 2(dX+dX)’ = o 2(dX+dY>’ » 2<dY+dY)
1/dv  du
wy =0, wxywyx2<dx_dy)’ wyy:O

Of course E,,, E,,, and E,, denote the linear strains and will be seen to comprise a
measure of local stretching. Further, w,, represents rotation.

Suppose, for example, that x=Q(H)X + b(r) in which Q(¢) is an orthogonal
tensor independent of X and the vector b(?) is likewise independent of X. Q(?) is
said to represent rigid body rotation and b(f) represents rigid body translation. To
first order in displacements and their derivatives, the linear strains are unaffected by
the rigid body component of the deformation. However, the rotation is strongly
affected by rigid body rotation.

In rectilinear coordinates, the linear strains and rotations are given in three
dimensions by
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Exx = X
Ov
Eyy = g_Y
w
Ezz = —
E; = L(0u + Ou — ?Z&t Ov
7 2 GX] 8Xi EXY = 2(8Y + aX)
/0y Ow
Erz 5<a—z * ay)
b (0w o
X \ox "oz

1

1

—Wxz = Wzx = 5

In alternate notation we may write in general that

du
du = —dX
YT aX

in which

normal strain

normal strain

normal strain

shear strain

shear strain

shear strain

v _ow
0Z JY

wyy = wyy = wzz =0

Ou Ov
_wYX:wXYZE Y OX

1 8u,» 8uj
w; = = — — 1
72\0X;  0X; —wzy = Wyz = §<

ow_ o
oX 0Z

E_ldu+duT o Lfdu
Eoolax T \ax) )0 T 2lax

The counterpart of E; and w in tensor-indicial notation i

E—l 8ui+8uj 71 Gu,-Jrauj
i =2\ox;, T ox,)” 7T 2\ox; T ox,

du

Since du is a 3 X 1 vector, it follows from Chapter 3 that g%

. . T
Likewise (g—)‘;) , E; and w are 3 X 3 tensors.
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du
dX

))

(5.6)

(5.7)

(5.8)

(5.9

is a 3 X 3 tensor.



5.3 EXAMPLES OF LINEAR STRAIN AND ROTATION TENSORS
EXAMPLE 5.1

The plate shown is initially square and 6 cm on a side (Figure 5.2a). It is deformed as
shown in Figure 5.2b. Find the displacement and the strain fields.

SoLuTION

Assume that the deformed coordinates can be expressed in terms of the undeformed
coordinates using the expressions

x=a+bX +cY + dXY (5.10)
y=e+fX +g¥ + hXY (.11

Our goal is to detect the coefficients a through £ by fitting the coordinates at the four
corners of the element.

Along the bottom face of the block Y=0 from which x=a+bX and y=e+fX. It
follows that y =4 x — e + ¢, implying that the lower face remains a line after deformation.
On the right face X=1sothatx=a+ b+ (c+d)Y and y=e + f+ (g + h)Y. Now Y may
be eliminated from these expressions to yield a linear relation between the deformed
coordinates x and y.

Again the side of the element remains a line in the deformed cofiguration. Similar
results are are immediate for the upper face and the left-hand face.

Clearly the assumed relations (5.10, 5.11) are suitable if the sides of the square remain
straight after deformation. Eight nodal relations are used to determine the eight coefficients
in (5.10, 5.11).

Lower left node:
For (X.,Y)=(0,0), (x,y) =(0,0) and hence a =1, e = 1.
Lower right node:

For (X.Y)=(6,0), x=7.1andy=1.1. Hence b = 6.1/6, f = 0.1/6

72,73

71,11

6 cm

1,1

6cm

(@) (b)

FIGURE 5.2 Example of strain and rotation.
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Upper left:
For (X,Y)=(0,6),x=1.2and y=7.1, giving c =1.2/6 and g = 6.1/6.
Apex:
For (X.,Y)=(6,6), x="7.2 and y = 7.3. Accordingly,

72=14b%6+c*6+d+*36 from whichd=—-1.3/36
73=14+f*6+g*6+h*36 from which h = +0.1/36

The displacements are found as

u=x—X=1+(=0.1/6)X + (1.2/6)Y + (—1.3/36)XY
v=y—Y =1+(0.1/6)X + (0.1/6)Y + (0.1/36)XY

Upon applying the formulae for the strains and rotations we obtain

Ou

EM—8—:01/6—13Y/36

E, = g—_0.1/6+0.1X/36
1 1

E, 5( ):5(1.3/6—1.3X/6+0.1Y/36)
1 1

Wy = 2(01/ 0X):5(1.1/671.3X/3670.1Y/36)

EXAMPLE 5.2

A rectangular block in Figure 5.3 is rotated through 6 degrees. Find the displacements
and strains and rotations. What happens if the rotation angle is very small?

SoLuTION

The vector R rotates into the vector r. Both have length R. Thus, coordinates of the
endpoint of R are X=R cos ¢, Y=Rsin ¢. The deformed coordinates, displacement,
strains, and rotation are now found to be

Y|
y

\ -

/ //
- //X A
== [

FIGURE 5.3 Strain and rotation in body experiencing rigid body motion.

X
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x = Rcos(¢ + 0) y = Rsin(¢ + 0)

= R[cos ¢ cos b — sin ¢ sin 0] = R[sin¢ cos 0 + cos ¢ sin 6]
=Xcosf — Ysinf = Xsin6 + Y cos 0
u=(cosf —1)X —Ysin6 v=Xsinf + (cosf — 1)Y
Exx = cosf — 1 Eyy =cosf — 1
Exy =0 wyy = —wyx = —sinf

At small values of 0, to first order in @ Exy ~ 0, Eyy = 0, wxy = —0. Clearly, to first
order in 6, the strains vanish and the nonzero rotation is given by 6. Of course 6
represents rigid body rotation.

EXAMPLE 5.3
Find the displacements, strains and rotations in deformed body shown in Figure 5.4.

SOLUTION

The deformed and undeformed positions of the nodes are given in Table 5.1.
We again assume that the deformed coordinates may be expressed in terms of the
undeformed coordinates using

x=a+bX+cY+dXY, y=e+fX+gY+ hXY

It was shown in the previous example that this form is capable of mapping the straight
sides in the undeformed configuration onto straight sides in the deformed configuration.
Following the same procedures as in the previous example given

Node 1: 0=a+ b0+ c0+d0 a=0
0=e+f0+ g0+ h0 te =
Node 2: cosf =& + bl + 0+ dO :b=cos®
sinf =e+f1+ g0+ h0 :f =sinf
Node 4: sinf = & + b0 + c1 + d0 ic=sin0
cosf =& +f0+ gl +hO 1g=cosf

Node 3: cos@+sinf =& + bl +cl +dl =cos@+sinf+d :d=0
sinf +cos@ =g +f1+gl +hl =sinf+cos@+h :h=0

Y
Undeformed The lengths of the sides are unity in

’9‘/ 3 both the undeformed and deformed

4 configurations
Deformed
//
// 0] x
1 2

FIGURE 5.4 Illustration of shear strain.
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TABLE 5.1
Deformed and Undeformed Nodal Coordinates

Node Undeformed Position Deformed Position

1 0,0 0,0

2 1,0 cos @, sinf

3 1,1 cos 0 +sin 6, sin § + cos 6
4 1 sin 6, cos 6

>

We have now determined that
x=cosOX +sinfY, y=sinfX+cosfY

Now assuming that 6 is small enough to permit neglecting quadratic and higher-order
terms,

u=(cosf —1)X+sinY v=sin0X+ (cosf — 1)Y
~ Y ~ 60X
Exx =cosf — 1 Eyy =cosf — 1
~ —0%2 ~ —6%2
Exy = sin6 wxy =0
~ 0

In contrast to the case of rigid body rotation, for small angle 6 and to first order in 6, the
only nonzero strain is the shear strain, which is (approximately) equal to 6. The shear
strain is a measure of how much the sides rotate relative to each other.

5.4 TRACTION AND STRESS

Consider a differential “brick element” emanating from an origin of the (X,Y,Z)
coordinate system shown.

The differential forces on the faces of the element can be displayed as in
Figures 5.5 and 5.6,

dF;’) = differential force component in the jth direction acting on face dA;

dA; = differential area whose normal points in the ith direction
The stresses are introduced by

oIt
5i = Fa,

and if X, Y, and Z denote the coordinate axes,

_ar g AR Ry
xx — dAX ) xy — Oyx — dAx - dAy
dF® dF®  dF®

Sy = ——, Sy =8, =—=—2 (5.12)
da, YT dA,  dA,
dF® dF®  dF®

S =——, Sa=Sp=—1=—

dAZ dAZ dAx
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dA,
dA
dA, y
y
X
FIGURE 5.5 Differential brick element.
V4 V4 zZ
L dF?
@
L1 —dF}
) B
dFZ(y ) 7
dF® dF?
dfW || LdFrY
dF| Y v S~y —y
dFY
X X X

FIGURE 5.6 Forces on differential brick element.

The first index i represents the differential area on which the force acts, while the
second index j represents the direction in which the force is acting. The total
differential force vector acting on the ith face is given by dF” =t® dA; in which
the traction vector t* on the ith face is given by

dF?  dFY 4Ry
dA‘. e + dAz e+ dA3 e (5.13)

0 —
More generally, we consider a differential tetrahedron enclosing the point x in the
deformed configuration (Figure 5.7). The area of the inclined (shaded) face is dS, and
dS; is the area of the face on the back of the tetrahedron whose exterior normal vector
is —e;. Simple vector analysis serves to derive that n;=dS;/dS, see Example 2.5
in Chapter 2. Next let dF denote the force on a surface element dS, and let dF® denote
the force on area dS; on the back of the tetrahedron. The traction vector acting on
the inclined face is introduced by t = dF/dS. As the tetrahedron shrinks to a point, the
contribution of volume forces such as inertia decays faster than that of surface forces.
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dSl/
1
dF®
ds,
3
FIGURE 5.7 Forces on a differential tetrahedron.
Balance of forces on the tetrahedron now requires that
dF =) "dF? (5.14)
The traction vector acting on the inclined face is defined by
dF
t=— 5.15
ds ( )
which together with the equilibrium Equation 5.14 furnishes
dr¥
= J
— dS
dr" gs,
ds; ds
in which
dr!
Si = —2 5.17
7 dSl ( )
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It is readily seen that S;; can be interpreted as the intensity of the force acting in
the j direction on the facet pointing in the —i direction. It is the ijth entry in the
tensor S. In matrix—vector notation the stress—traction relation Equation 5.16 is
written as

t=S"n (5.18)

Since S” appears in a physically based linear relation between vectors of the same
dimension, it is a tensor, as is the stress tensor S.

EXAMPLE 5.4

The plate in Figure 5.8 is subjected to the stress field

Sic=a+bx+cy
Sy =d+ex+fy
wa:g+hx+]y

Find the traction vector and the total force acting on the top and right faces. Consider
the moment (M) exerted by the tractions on these two faces about the origin.

On the top face consider the interval dx at x. The total force on this interval is
dF,, =S, dxe,+S,,dxe,. The total force on the face is

Fiop Syxdxe, + Sy, dre,]

(g + hx+ jH)dxe, + (d + ex + fH) dxe,|

L
:J[
0
L
:J[
0
= (g +jH +hL)Le, + (d +eL + fH)Le,

R

W L

FIGURE 5.8 Forces and moments determined by tractions.
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The moment due to the force on the interval is

dMip = (xe, + Hey) x dFy,p
= (xe, + He,) X (g + hx + jH)dxe, + (d + ex + fH) dxe,
= [[x(d + ex + fH) dx] — H(g + hx + jH)] dxe;

and integration gives
Moy = 3(fH + D)L* + Lel’ — (H(g + W)L — IHAL?
On the right face consider the interval dy at y. The total force on the interval is
dFyigne = (S dye, + S,y dxey)

The total force on the face is now

[Sxrdye, + S,y dye,]

[(@+bL+cy)dye, + (g +hL+jy) dye,]

H
i
H
|
= (a+bL +jcH)He, + (g + hL + }jH)He,

EXAMPLE 5.5

At point (0,0,0) the tractions ty, t,, t3 act on planes with normal vectors ny, n,, and nj.
Find the stress tensor S, given that

n = \/%[el +e +es3], t = \/%[2‘31 — Se; + 6es]
n, = Jsler +el, ty = 5[er — e +e3]
n; = \/Lg[el —e; —es], tz = *%[681 — ley + 2e;3]

SoLuTioN
On applying stress—traction relation t, = S"n; we find

1 S Sa Si 1
—=| 5= —%|S2 S» S» 1
V3 6 V3 Si3 Sz S3 1
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and

S11+S21+S31 =2 (5.19)
Si2+ S22+ S5, =-5 (5.20)
Si3+ 8523 +8S33=6 (5.21)

Similarly, t, = $"n, implies that

Sit+Sy =1 (5.22)
Si2+ S =~1 (5.23)
Si3+ S5 =1 (5.24)
Finally, t; = S7n; yields
Si1—S21 —S31 =—6 (5.25)
Si2 =S-S5 =1 (5.26)
S13 —Sa3 = S33 = -2 (5.27)

Solving the nine equations (Equations 5.19 through 5.27) by sequential elimination

gives the stress tensor as
-2 -2 2
S=13 I -1
1 -4 5

5.5 EQUILIBRIUM

We now consider equilibrium in a more general way and include inertial effects,
under the restriction that the deformation is “‘small enough” to neglect effects of
deformation on the stress or the equilibrium relation. Neglecting gravity and other
“body forces,” the total external force F on a body is assumed to be exerted on its
boundaries. It is given by the integral F= [ tdS. However, recalling that t = S™n, the
divergence theorem may be applied to obtain F= [V - STdV. The total force must
equal the rate of change of the total linear momentum L of the body: L= [ pxdV in
which the mass density is denoted by p. Now owing to Rayleigh’s transport theorem
(see Chandrasekharaiah and Debnath, 1994), ¢=£ { pxdV = [ px dV. Accordingly,
F =4 implies the integral (global) equation [(V -S" — px") dV = 0".

In most cases of interest in the current monograph there is a fixed point in the
body so that the undeformed position X can be taken to be independent on time. In
this event it = X. (In Chapter 12, consideration will be given to bodies in which there
is no fixed point, with the consequence that the analysis is referred to a translating
and/or rotating coordinate system.) The integral equation must hold for the whole
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body or any closed sub-body within the body. We conclude that the local balance of
linear momentum equation

V- ST = pi? (5.28)
holds pointwise (locally) throughout the body.
It is also necessary to consider balance of angular momentum. The differential

moment exerted by the traction vector on a surface patch is given by

dM =X xtdS  dM; = € Xt dS
=X x $"ndS = € X;Sym dS (5.29)

Invoking the divergence theorem (Chapter 2), the total moment on the body is
given by

M; = | € X;S;mdS

0
= | 5 (€ XSi)dV

15).¢]
0X; as?,
— [(€nZsT + c,ux, )y 5.30
] <€JkaXl w t ik Xj X, (5.30)

oxX; . . ost . .
Now ()—X; is recognized as §;;, and eiijjaT(k,’ = € Xjily by virtue of the balance of

linear momentum. We may rewrite the foregoing equation as
M; = J(e,-jks,{j+pe,-jkxjuk)dv (5.31)

Invoking Rayleigh’s Transport Theorem to be introduced in Chapter 13, the rate of
change of the angular momentum is given by

dH d .
E—a JpX x udV
d . ..
= J[p(EX> xu+ pX X u]dV (5.32)

Note that (% X) = u and hence (% X) x u = 0. The global equation for the balance

of angular momentum now becomes, in indicial notation,

dH; ..
M; = a = Jpa,-ijjuk dv (5.33)

Combining Equations 5.31 and 5.32, and invoking the fact that the result applies for
arbitrary closed subvolumes we have the pointwise relation
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€Sy =0 (5.34)

The tensor S” may be expressed in terms of its symmetric and antisymmetric part.
From Example 2.6 in Chapter 2, it was shown that €;a;, = 0 if the corresponding
tensor A is symmetric. By a similar argument it may be shown that €a; # 0 if A
is antisymmetric. Consequently, Equation 5.34 cannot be satisfied if S” possesses a
nonvanishing antisymmetric part. Accordingly S” is symmetric: S =S”.

EXAMPLE 5.6

Assume that the differential rectangle shown is a unit thickness (Figure 5.9). Prove from
(static) moment equilibrium that S,, = S,,.

SoLuTION

Take the moments about the lower left-hand corner.

1. The shear stresses on the bottom and left-hand faces do not create a moment relative
to this point since the line of action goes through the origin.

2. Assuming that the forces due to the normal stresses are considered to act at the
midpoint of the faces on which they act, they do not contribute to the moment since
the positive forces have the same line of action as the negative forces.

3. This leaves only the shear stresses on the right-hand and top faces. Now moment
balance M =0 implies

0 = (Syy dy) dx — (S, dx) dy
— (S0 - S, drdy

with the consequence that S,,=S,,. This solution illustrates the fact that the stress
tensor is symmetric. (The linear strain tensor is symmetric since it is the symmetric part
of the tensor du/dX.)

Syy
Sxx >S}/X
S Xy
P dy SXX ~
Sxy dx
_
Syx
S

vy

FIGURE 5.9 Net moment on a differential element.
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EXAMPLE 5.7

Suppose that, in a differential plate element as shown, the stresses vary slightly
across the element. Find the equations for static equilibrium of forces in the x- and
y-directions, treating the figure shown as a free body diagram at the differential level
(Figure 5.10).

SOLUTION

The total force in the x-direction is

dF, = (\Sx +%’fdx—\5x)dy+ (S/ﬁ %dy - S/x)

But the equilibrium condition dF,=0 requires that <d%“+%)dxdy =0, which

dy
becomes

dsxx ds yx
+ )

=0
dx dy

The total force in the y-direction is

dF, = (B}Y +%dx—3}x)dy+ (3\}x +d§;” dy —S}X)dx

Sy +dSyy,

S+ dS,y

Sy + dS,,

Syx T USy
Sy = dy T~

Y dx
P l—

yx

S,Vy

ds
Note: dS,, = dxy dx, etc.
X

FIGURE 5.10 Balance of forces on a differential element.
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and dFy, =0 immediately furnishes that

dS,,  dS,,

=0
dx dx

5.6 STRESS AND STRAIN TRANSFORMATIONS

The plate shown below is under a state of stress referred to the x- and y-axis.

A small cutout is shown whose lower side is inclined at an angle 6 from the
x-axis. We embed a rotated coordinate system X’ — Y’ in the cutout, and seek to
express the stresses in the rotated system (Figure 5.11).

We already know from the relations of Chapter 3 that the stresses represent a
tensor and that the stress tensor satisfies the relation 8’ =QSQ” in which Q is the
orthogonal matrix rotating the base vectors ey, ey to the ey, ey. Furthermore, we
already know that, in the plane,

cosf sinf
Q= [sinﬂ 0050} (535
Elementary matrix multiplications and the double-angle formulae of trigonometry
suffice to verify that

FIGURE 5.11 Stresses referred to a rotated coordinate system.
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S S Sxx — S,
Syxr = XX;_ W 2XX 5 ? cos 26 + Sxy sin 26
S S -S
Sy =X ; v Ixx 1 0520 — Syy sin 20 (5.36)
Sxx — S
Sxy = — % sin 20 + Sxy cos 20

The strains induced by the stresses likewise represent a tensor and transform exactly
the same way as the stresses:

Exx +Eyy Exx —E

Exy = > + 3 ™ c0s26 + Exy sin 26
E E Exx — E
Eyy = -2 er X 7 " c0s26 — Exy sin 20 (5.37)
Exx — E
Exy = — % sin 26 + Exy cos 26

Several simple examples are now given illustrating the use of coordinate trans-
formations.

EXAMPLE 5.8

Relative to the x—y axes the stresses are
Six =0, S,,=0, S, =25ksi

What are the stresses referred to axes X’ and y’ which are rotated by 45° from x and y?
Do the same for stresses referred to axes x’’ and y” rotated by —45°.

SoLuTION

Using the stress transformations through +45°

S)oc S y S)cx - S y . .
e er A 5 2 cos(2 # 45) + S,y sin(2 #45) = 25 ksi
Se Sy S — Sy . .
Syy = —; 2 2 cos(2 #45) — S,y sin(2 #45) = —25 ksi
S)cx - Syy .
Sy = — — sin(2 #45) + Sy, cos(2%45) = 0

Doing the stress transformations through —45°

Su+S, Su— Sy , .
Suw — ; 2 0 c0s(2 #45) 4 S,y sin(2 #45) = <25 ki
Sxx Sv Sxx —S, . .
Syy =20 2 c05(2 % 45) — Sy sin(2  45) = +25 ksi
Sex — Syy :
Sey = — — sin(2 #45) + oy, cos(2%45) = 0

Since the elements at +45° have no shear stress, their normal stresses are the principal
stresses.
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Plate is 1 in. thick

B

5in.

5(3in.
FIGURE 5.12 Length of the diagonal in a plate under strain.
EXAMPLE 5.9
The stresses in the square plate shown (Figure 5.12) are uniform and are given by
Sy =10 ksi, Sy, = —10 ksi, S, =0

What is the total force acting transverse to the line AB, and what is the total moment of
this force relative to point A?

SoLuTioN
Sxx S yy Sxx - S . .
Suy = er w4 % 0560 + Sy 5in 60 = 5 ksi
Sir + Sy Sk — Syy . .
Sy/),/ = ; AN 2 cos 60 — Sxy sin 60 = —5 ksi
S — Sy . .
Sey = — # sin 60 + S, cos 60 = —5v/3 ksi

Fag = S,y * area Muag = —50000 x 5
= —5ksix1%10 = —250000 in. 1b
= —50000 1b

EXAMPLE 5.10

A plate element is under the strains E,, # 0, E,, # 0, E,,, = 0. What are the strains in an
element rotated +90°, —90°, and 180°?

SoLuTioN
E. +E, E.—E,
Eyve = XX; » = 5 » cos(lSO)—i—E}Xsin(lSO):eyy
En+E, E.—E,
Eyy = ”; S cos(180) — 2y sin(180) = £,

E,m: - E
Eyy = 7%?&1@@ + By cos(180) = 0
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0 = —90°:

E.+E, Eu.—E,

Epy = ’; LA = 5 Y cos(—180) + By sin(—180) = E,,
Eu +E,y — &y

E,y = “; 2 Z I Gos(-180) — By sin(-180) = Ex,

E.—E
Ery = =5 SIe~180)+ By cos(~180) = 0

0 = 180°:
Exx E y Exx —E,, .
Evy = —; AN 3 2 cos(360) +Ex sin(360) = &,
E E, E.—E,
ey = xxer W 2 cos(360) — By sin(360) = &,

E. - E,
ey = == SIE0) + By cos(360) = 0

EXAMPLE 5.11

Transformation of stresses in two dimensions (2D)
Verify the stress transformation relations using force balance in two dimensions
(Figure 5.13).

| ds |
| . |
Y Assume unit thickness
MMM
[ NG I XYA
-
T =|sv N =
P —_—
ds SXXE\I Sxy FE Sy )n/r
:\I ,S\”/s, /$Z//
1 = =
= & 6 =
L L L = S

D }

S

sing ds
vy 0
cos @ ds

FIGURE 5.13 Transformation of stress.
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SOLUTION

In the current and succeeding example we will make use of the relations
cos? 0 =1 (1 4 cos26), sin”6 =1(1 —cos26), and 2sin6cosf=sin20. Given the
stresses on a square element, we seek the normal and tangential stresses on the line
AB at angle 6 from the x-axis.

The unit vectors defining the normal and tangential directions of the line AB are
given by

n= —sinfi+cosfj, T=coshi+sinbj

The vectors representing the normal, tangential, and total force on the inclined line are
in terms of the normal and tangential stresses as

dF,, = (—sin @S, ds)i +cosf0 S, dsj
dF, = cos0S,dsi+sinfS,dsj
dF = (—sin6 S, ds + cos 0 S, ds)i + (cos 6 S, ds + S, sin 6 ds)j

Balance of forces in the x and y directions requires that

—sinf S, ds +cos S, ds 4 sin@ S, ds — cos 0 S, ds = 0
cos @S, ds +sinfS,ds + sinf S,, ds — cos 6 Sy, ds =0

After some manipulations involving double-angle formulae from trigonometry, we have

—sin@S, +cosfS; = =Sy sinf + S, cos O
cos0S, +sinfS; = —S,, sinf + S, cos O
sin’0'S, — sinfcos#S, = Sy, sin’ @ — S, sin O cos O
cos’ 6 S, +sinfcosfS, = —S,,sinfcos O + S,, cos’

S, =S,y c0s* 0 + S, sin’ @ — 2sinfcos 6 S,,
and hence the stress normal to the line AB is given by

Sy = (1 + cos 20)S,, + 4(1 — sin® §)S,x — sin26'S,,

= %(Sxx +S,) — %(Sxx —S,y)cos26 —sin260 S,

in agreement with the previously reported transformation formulae.
Similar operations are performed for the tangential stress.

—sinfcoshS, + cos>0S, = —S,, sinf cos g + Sy cos’ 0

sinfcos6S, + sin® 0 S; =Sy sin 0 + S,y sin 6 cos 6
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The stress tangential to the line AB is now found to be

0; = —(0xx — 0yy)sinf cos 6 + o, ( cos’f — sin20)

o, = _((J-KZ;UW) sin26 + o, cos 20

likewise in agreement with the previously reported transformation formulae.

EXAMPLE 5.12

Transformations of strains in 2D.
: : __ ou _ o _ 1 (o o
In two dimensions show that Ey = o Eyy = 57 and Eyy = 3 (W + W)

SoLuTION

Figure 5.14 depicts the undeformed position vector X and the deformed position vector
x. It also shows X’ and x’ which are X and x’ rotated through —6. Recall that a positive
rotation of the coordinate system has the same effect as a negative rotation of a vector
relative to the same coordinate system.

The undeformed and deformed coordinates in the rotated vectors are given by

X' = cos(¢ — O)R Y’ =sin(¢ — )R
= Xcosf + Ysinf = —Xsinf + Ycos6

and

X =xcosf +ysinf, y = —xsin® +ycosf

FIGURE 5.14 Undeformed position vector before and after rotation.
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The relations just presented may be easily inverted to furnish

X =X'cosf — Y'sin0,
Y = X'sinf + Y’ cos 6,

x=2x'cosf —y sinf
y = x'sinf + ' cos 0

The chain rule of calculus yields the useful relations

o _0xd o

ox'  Ox' Ox  Ox' dy
0 .0
—cosﬁa—i—smﬂa—y

It further follows that

W =x-X
=(x—X)cosO+ (y— Y)sinf
=ucosfh + vsinf

9 _axo oo
oy 0y Ox Oy Oy

:—smG8 +cost988y
v/:yl_Y/

= —(x—X)sinf + (y— Y)cosf
= —usinf 4 vcos 6

Next,

Ou ov
Eyy = COSGWJr smﬂﬁ

ou du v ov
:(COSG8 +s1nﬂay>cos0+(cosﬂa +sm98 >sin9
du ov o) d
= cos? Ba——i—sn Ga——kcosﬁsme(&u/ 6;)
= 5(1 + cos 20)Exy + 5(1 — cos 26)Eyy + sin 26Exy
_ Exx +Eyy  Exx —

> 5 Y 0520 + Exy sin 20

in agreement with Equation 5.37.

Similarly,
Eyy :%
= fsin0%+cost9%
= - fsmBaXJrcosOg } sinf + { smOSXJrcosOg }cosﬂ
= sin Og—X—i-cos 0%— §1n000§0(§;+ g)‘;)
= Exx ; Evy — Exx ; Evr cos 0 — sin 260Exy

again in agreement with Equation 5.37.
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Finally,

E 71 a_bt,+a_‘/
X =s\oy " ox’

0 10
(ucosO+vsin@)+-——(—usinf+vcos )

~20v7 20X’
1 0 0 . 1 0 0
72( smﬂa—X—k—coseﬁ) (ucosO+vsinh)+ (cos@a—x+51n0 )( usin@+vcos )
1 v Ou ou Ov
2(2 s1n00050(aY 8_X> + (cos®@ —sin’6) (8Y+8X)>
Exx—E
:—¥sin20+EXy cos20

as expected.

5.7 PRINCIPAL STRESSES AND STRAINS

In the plane, upon rotation of the coordinate axes through the angle 6, satisfying
tan26y = 28“ , the shear strain and the shear stress both vanish: exy =0, oyy = 0.

The correspondlng normal stresses (strains) are called the principal stresses
(strains), denoted by oy, oy (g1, €yp). Of course from Section 2.4 of Chapter 2 we
know that the eigenvectors of the stress tensor form the columns of an orthogonal
tensor Q(0) which serves to diagonalize S. The diagonal entries are simply the
eigenvalues, which in the current context are called the principal values. In the plane
the determinant equations for the principal stresses and strains are simply

E.+E Euw — E,\
Ern = > }yi\/( 5 yy) +Ei\,

Sxx + S Sxx — Syr
S = xx-zF YY:l:\/( xx2 YY) +S)2(Y

The rotated axes in the current context are called the principal axes.

EXAMPLE 5.13

The strain ellipsoid
A three-dimensional body has a uniform state of strain in which

Eo =0, E,=00l, E.=0, E,=0, E.=0, E.=00l

Imagine a small sub-body, which is spherical with radius p in the undeformed config-
uration. When the strain is imposed, it becomes an ellipsoid (Figure 5.15). What are the
lengths of the three semiaxes a, b, ¢ of the ellipsoid, and what are their orientations
relative to the x—y—z axes? What are the principal strains?
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% ——y

Ellipsoid

Undeformed body

FIGURE 5.15 Deformation of a small sphere.

SoLuTioN
0 0 0.01
The strain tensor E=1] 0 0.1 0 is diagonalized by a rotation of the z—x
001 O 0

plane about the y-axis, namely

il 0 sinz cosz 0 —sinZ
COS4 2 0 0 0.01 2 4
E = 0 1 0 0 0.1 0 0 1 0
ar ar o T
—sin— —110.01 O 0 sin — i
sin 1 0 cos 1 sin 1 0 cos 1
ro. T ™ T . mT
sin 1 0 cos 1 cos 1 0 —sin 1
=0.01 0 1 0 0 1 0
l 0 —sinz sinz 0 cosI
L€9%% 4 4 4
[ 2 sing cosg 0 cos? g — sin2§
=0.01 0 1 0
_cosz % —sintZ 0 -2 sin% cos%
(1 0 O
=001{0 1 O
10 0 —1

The lengths of the three semiaxes are: 1.01p, 1.0p, 0.99p. The principal strains are then
relative length changes of the semiaxes. In other words,

:l.Olp—p EH:l.OIp—p E111:0.99p—p

p
=0.01, =0.01, = —0.01

E,
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EXAMPLE 5.14

The Von Mises stress and the Tresca stress

Often stresses calculated by finite element analysis are compared to failure stresses
measured in the laboratory. Typically, the laboratory tests are one-dimensional, either
simple tension/compression or simple shear. However, the calculated stresses are often
multiaxial. In order to enable comparison with failure stresses it is common to introduce
“equivalent stresses’” of which primary examples are the Von Mises stress and the
Tresca stress introduced as follows using principal stresses:

1 .
Svm = \ﬁ\/(sl —Su)’ +(Su = Sm)” + (Sm —S1)*  : Von Mises
1 = $max(|S; — Sul, [Su — Sul, |Su — Si) : Tresca

In uniaxial tension or compression the Sy is equal to the actual stress, thereby
providing “motivation” for regarding it as the counterpart of the uniaxial tensile/
compressive failure stress. On the other hand, in simple shear 71 is equal to the stress,
and accordingly we view it as the counterpart of the failure stress in simple shear.

In the case in which there is only one normal stress Syy and one shear stress Syy,
Svm and 71, we derive the following simple formulae:

1
Sym = 1/S2y + 382, Tr = E‘/Si’( + 482,

The principal stresses are given by

S

Srir = Su + 7 +

Su}
7) +S§y, Sur=0

For the Von Mises stress, we find

1 2 2
S%/M = E((Sl - 511)2+(511 - é?u) + (g)& — S,) )
2 : 2 : 2 :
1 Sxx 2 Sxx Smf 2 Sxx Smf 2
S(ETes e ] - s

1 S\
=_(4|(= 2
2( (2)+sxy

=S5, +3S},

+2

For the Tresca stress,

s

Si — Sm M—S,”

1 Sxx 2 2 Sx)c S)m 2 2 Sxx SXJC ’ 2
= 5max 2 (7)+Sxy, 7+ (7)+S A (7>+Sxy

1
TT = Emax [|S[ — S[]I,
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. . . 2
Now, taking the positive square root and noting that (57) + Sﬁy >
tudes satisfy
SuY | SuY . 2
AT T
Sec S—“‘2+S2 o Sur +S:
2 2 2 2 v

Su Se¥  w | (S »  Sa
2/(2)+Sw—ﬂz)+s 2

regardless of the sign of S,,. But, also,
Sur) Sk Sur\
2 2xx 2 | 2= il 2 ) =
() vs- (23 =) =
S S Su) S S
2/ (=) 482 - | == )2 = () 4L =20
()5 2%(2)%) JE) e S

Consequently,

S, ¥ S S, ¢ S (AN
max | |2 (%)JFSQ%JF (7“)+wa,7“— (%)4—0’%

S} | w
=2 (7) +85,

from which we obtain the expected relation

20

mr=4/(50) 482,

5.8 STRESS-STRAIN RELATIONS

In linear elasticity, the stresses are linear functions of strain. Furthermore, if the
material is isotropic, its properties are characterized by two coefficients: the elastic
modulus E and the Poisson’s ratio v. To illustrate isotropy using Figure 5.16, in one-
dimensional tension specimens cut from a single plate of a given material, the
material is isotropic if the measured stress—strain curves are the same and independ-
ent of the orientation at which they are cut. Otherwise it exhibits anisotropy, but may
still exhibit limited types of symmetry such as transverse isotropy or orthotropy.

The isotropic stress—strain relations of linear elasticity are given in alternate
forms, one of which is the Lamé form

S = 2uE + A tr(E)I (5.38)
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FIGURE 5.16 Illustration of isotropy.

As indicated in Example 3.6 of Chapter 3, in the Lamé relation there exists an
orthogonal tensor Q, which simultaneously diagonalizes S and E. This is a formal
statement of the property of isotropy. The Lamé form may be inverted to furnish

1 1A
E=—S—— " _u@®I 5.39
> o™ (5-39)

EXAMPLE 5.15
Invert the relation in Equation 5.36 to express the strain as a function of stress.

SoLuTION

Applying the trace operator to Equation 5.38 results in
tr(S) = 2u tr(E) 4+ 31 tr(E)

from which we conclude that

tr(S)
E)—
) =5
Now
tr(S)
=2uE + A ——1
S=2E+As T

from which it is immediate that

1

A
E=—(S-—"
ZM(S 2u+3A

tr(S)I)

Now returning to the main development, in the case of uniaxial tension the Lamé
relation yields
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1 A 1 A
Exx = — (1 )SXXv Eyy =Ezz = Exx (5.40)

2w\ 2u+2A 2w 2m+ 27
Letting E: Sxx/Exx and » = —%, it is immediate that E = ”(2.”:;.)‘), v=> (u)‘+ 5
Another important property is the bulk modulus k = % ;:((Eg, which is found to be
given by k = ﬁ = 2231 It becomes infinite in the incompressible case v =1.2.

Final%y, the shear modulus is readily seen to satisfy % = i — ¢ from Yvhich. n= ﬁ
The inverse Lamé form of the stress—strain relations is now written in the form

E= IE”S — £1r(S)L, and is written out in the six relations as

En = %[Sxx - V(Syy + 8]

Eyy = %[Syy - V(SZZ + Swol

E;, = %[S" =Sy + Syy)]
1+v

E, = E Sy
1+v

E, = E Sy,
1+v

E, = E Su

EXAMPLE 5.16

The 2" X 2" X 2" cube shown below is confined on its sides facing the £ x faces by
rigid frictionless walls. The sides facing the + z faces are free. The top and bottom faces
are subjected to a compressive force of 100 Ib (Figure 5.17). Take E=10" psi and
v=1/3. Find all nonzero stresses and strains. Find all principal stresses and strains.

SoLuTioN

Since parallel sides of the block remain parallel, there is no shear strain:
E, =0, E,=0, E,=0

It follows from the stress—strain relations that the shear stresses vanish.
Sy =0, S,;=0, S,=0

It is immediate that the normal stresses and strains are also the principal stresses and
strains.

Si=Sw, Su=S,, Sw=S; Er=E. Ep=E,, Ey=E;

We now consider the normal stresses and strains. From the description of the problem
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FIGURE 5.17 Stresses and strains in compression of a confined block.

—_

Using% = E[SM — V(Syy + 84 )} furnishes

F, 25

Sxx = VS}'}' = _VA_y = _? Ib
Next, from By, — | S _3 106
ext, from B, = = w— V(34 + Su =3
vS,,
1—212 1—-12F, 2
E,, = Sy = — 2=_Zx107
VY E yy E Ay 9
Similarly,
1 v(l +v)
E. = E[% — (S + Sy)] = — £ Sn
from which
v(l +v) (F, 10°
E. = ) =
R

EXAMPLE 5.17

The elements of the 9 X 9 tangent modulus tensor C implied by the Lamé form have
already been given in Example 3.6. Find the conditions on A and u, and likewise on E and
v, which render it positive definite, which is a requirement for stability of the material.
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The eigenvalues of a matrix of the form A +bI are given by A(A)+b. Conse-
quently, the eigenvalues of the stiffness tensor C = 2uly + Aii” are given by 2u + A j(iiT).
The tensor i’ is of rank 1, so that eight of its nine eigenvalues vanish. The remaining
eigenvalue is given by the Rayleigh extremum principle (to be presented in Chapter 10)
as max(LT 7 &) in which £ is a 9 X 1 vector. The maximizing value of £ is in fact

i/Vili = i/\/g‘“:l. It follows that the eigenvalues of C are 2+ 3\ once and 2u
eight times. Positive definiteness therefore now requires that u > 0, A > — % M.

We determine the stability restrictions on E and » using the inverse Lamé relation in
Example 5.15. In particular

l+v V..

E Iy fEu

VEC(E) = C"'VEC(S), C ! =

and C is called the elastic compliance tensor. By the same argument as for u and A, we
conclude that the eigenvalues of C™' (i.e., the tangent compliance tensor) are IE”
eight times and ILEV —-3g= l_—E2” once. The material is stable if the eigenvalues of
C and hence of C™' are positive. It follows after some manipulation that E >0 and

—1<v<1)2.

5.9 PRINCIPLE OF VIRTUAL WORK IN LINEAR ELASTICITY

In a continuous medium ““dynamic’ equilibrium is expressed by the local form of the
balance of linear momentum. The finite element method makes use of this equation
after it is expressed in variational form as the Principle of Virtual Work

under the restriction that the body is referred to a nonrotating coordinate system and
has a fixed point within this system. Unrestrained and rotating coordinates are
addressed in Chapter 12.

The Principle of Virtual Work is now derived and applied to the following
boundary conditions. At a point on the boundary the position vector is denoted by
s. The boundary S decomposes into portions Sy, S», S3:

On S|, the displacement u(s) is prescribed as u(s).
On S,, the traction #(s) is prescribed as #,(s).
On S5, the traction satisfies #(s) =ty(s) — A(s)u(s) — B(s)ii(s).

Under the stated conditions the equation for dynamic equilibrium is given by

o 05y _
il = 5 =

0 (5.42)

Multiplying through the equation with 6u; and integrating over the domain results in

8S;
8xj

+8u,~pi4} dv — TFSui dv=20 (5.43)
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As usual in variational methods, integration by parts is invoked and furnishes

8Sl] o 8 88u,~
o 1 861,{, 8814/' 1 851,{[ 88Mj
= On;(0u;S;) dS — +<2( ox, + o ) + 2( ox, " o, )) S;dV
= pdu;t; dS — %(SEU + 8w;)S; dV (5.44)

Now, dw;; is antisymmetric and S;; is symmetric, implying that dw;S;; = 0 (Example
3.6 of Chapter 3) follows immediately.
The Principle of Virtual Work is rewritten in the form

ﬂ;Bquﬁ dv + %tr((SELS) dv = ff&uTt ds (5.45)
and is rewritten yet again using Kronecker product notation as
+8quii dv + +8eZs av = ?j;auTt ds (5.46)

in which s = VEC(S) and e, = VEC(E,).
The constitutive relations of linear elasticity are stated using the general form

s = xer, 5.47)

in which x is the positive definite tangent modulus tensor. And now
1;5qu11 dv + {aae{xeL dv = jﬂauTt ds (5.48)

Suppose a sufficiently accurate approximation exists in the form u(X,r) = ¢’ (X)
®~y(1), in which ¢’ (X) is a 3 X n matrix, ® is an n X n constant nonsingular matrix,
and y(#) is an n X 1 vector of parameters such as nodal displacements in a finite
element model. As will be seen in Chapter 7, application of the strain—displacement
relations serves to derive the subordinate approximation for the linear strains as
eL~ BT(X)(I)'y(t). The Principle of Virtual Work now implies that

SY'My + 8y Ky = 8yt (5.49)
in which M and K are n X n positive definite symmetric matrices and f is an n X 1
vector. If y(7) represents nodal displacements in a finite element model, M and K are

called the mass and stiffness matrices, respectively, and f is called the consistent
force vector.
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We now consider the boundary conditions more carefully. On S, the displace-
ment is prescribed and hence §u =0 and 6y =0, and there is no contribution to the
consistent force. On §, the traction is prescribed as t; and the contribution is
f, = (I)fopto dS,. Finally, there are both compliant and inertial supports on Sj,
furnishing

JSuTt ds; = &7 J¢t0 ds; — @7 U <pA(s)<pTds3} Oy — P U <pB(s)<pTds3] Dy
(5.50)

Assuming the foregoing approximations and carrying terms with unknowns to the
left-hand side furnishes an alternative form of Equation 5.50:

Y (M + M)y + 8vy" (K + Ks)y = dv"(F2 + £3)

in which

M = &7 U (pB(s)cpTdS3} P
Kg = &7 U (pA(s)&pTdS3} P (5.51)

f; =@ J(ptodS3
Clearly, Mg is the n X n matrix representing the contribution of inertial boundary

conditions to the mass matrix and the n X n matrix Kg represents the contribution to
the stiffness matrix from elastic support on the surface.

EXAMPLE 5.18

The equation of static equilibrium in the presence of body forces, such as gravity, is
expressed by

as;
oX;

= —b;(X,)
Without the body forces, the dynamic Principle of Virtual Work is derived as
(921/{,*
SE;S;dV + |duip 55V = | duit;dS

How should the second equation be modified to include body forces?
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SoLUTION

Let b denote non-inertial body forces, for example, due to gravity or electromagnetic
effects. The Equation of the balance of linear momentum is now stated as

JpﬁdV:JtdS—deV

As before [tdS = [STndS = [(V”S)"dV. For the equation to hold over arbitrary
subvolumes it is necessary that, now using indicial notation,

6Sii
- = pit; + b;
X, pit; +

It is easily seen that the same steps as were used to derive the Principle of Virtual Work
without the body force b now lead to a more general principle in which pii; + b; replaces
pii;. In particular,

JSeTs dv + JSuT(pﬁ +b)dv = JSuTt ds
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6 Thermal and
Thermomechanical
Response

6.1 BALANCE OF ENERGY AND PRODUCTION OF ENTROPY

6.1.1 BALANCE OF ENERGY

Sometimes called The First Law of Thermodynamics, the balance of energy principle
is stated as follows: the rate of change of total energy in a body, including internal
energy and kinetic energy, is equal to the corresponding rate of work done by
external forces on the body together with the rate of heat added to the body. In
rate form

K+E=W4+0 6.1)

in which
= is the internal energy with density &

== J pédv (6.2a)
W is the rate of mechanical work, satisfying
W= Jl’thdS (6.2b)
Q is the rate of heat input, with heat production / and heat flux q, satisfying
0= J phdV — JandS (6.2¢)
and 8\ is the rate of increase in the kinetic energy,
du

v (6.2d)

A . T
&= qu ”
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It has been tacitly assumed that all work of external forces is done on the boundary S,
and that no work is done by body forces.
Invoking the divergence theorem and balance of linear momentum furnishes

”pé +u’ [p% - VTT] —tr(TD) — ph+V'q|dV =0 (6.3)

The bracketed term inside the integrand vanishes by virtue of the balance of linear
momentum. The relation holds for arbitrary volumes, from which the local form of
balance of energy, referred to the deformed (current) configuration, is obtained as

pé=tr(TD) — V' q + ph (6.4)

T is the Cauchy stress tensor, which is the stress referred to deformed (current)
coordinates, and D is the stretching-rate tensor (c.f. Chapter 13). To convert Equation
6.4 to undeformed coordinates relations to be explained in Chapter 13 result in

Jan ds = JqTJF_Tno dSy

= quno ds,, q,=JF'q (6.5)

in which the subscript “0” indicates undeformed coordinates and F is the defor-
mation gradient tensor. In undeformed coordinates, Equation 6.3 is rewritten as

J[pog' —tr(SE) — poh + Viqy] dVo =0 (6.6a)

furnishing the local form of the balance of energy as
pof — tr(SE) — poh + Vigy =0 (6.6b)

Here, S is the second Piola—Kirchhoff or nominal stress, which is also explained later
in Chapter 13 and which is the stress-referred to deformed coordinates.

6.1.2 ENTROPY PRODUCTION INEQUALITY

Generalizing the thermodynamics of ideal and nonideal gases, the entropy produc-
tion inequality for continua is introduced as follows (Callen, 1985).

. h Iqu
— ndV > | —=dV — | — .
H Jp’f] d J d J ds (6.7a)

in which H is the total entropy, 7 is the specific entropy per unit mass, and T is the
absolute temperature. This relation provides a ‘“framework™ for describing the
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irreversible nature of dissipative processes such as heat flow and plastic deformation.
We apply the divergence theorem to the surface integral leading to the local form of
the entropy production inequality:

pTy > h—Viq+q'VT/T (6.7b)
The counterpart of Equation 6.7b in undeformed coordinates is

poTH > h—V{qy+q) VoT/T (6.7¢)

6.1.3 THERMODYNAMIC POTENTIALS IN REVERSIBLE PROCESSES

The balance of energy introduces the internal energy =, which is an extensive
variable—its value accumulates over the domain. The mass and volume averages
of extensive variables will also be referred to as extensive variables. This contrasts
with intensive or pointwise variables such as the stresses and the temperature.
Another extensive variable is the entropy H. In reversible elastic systems, the entropy
is completely determined by heat input according to

QO=TH (6.8)

(In Chapters 16 and 17 we shall address several irreversible effects including
plasticity, viscosity, and heat conduction.) By virtue of Equation 6.8, in undeformed
coordinates the balance of energy for reversible processes may be written as

poé = 1r(SE) + p,Tn (6.9)

As before, S is the second Piola—Kirchhoff stress and now E is the Lagrangian strain
to be introduced in Chapter 13. We now invoke conditions for the right-hand side of
Equation 6.9 to be uniquely integrable, which renders the internal energy dependent
only on the current values of the state variables consisting of E and 7. For the sake
of understanding we may think of T as a thermal stress and 7 as a thermal strain.
Clearly 1 =0 if there is no heat input across the surface or generated in the volume.
Consequently the entropy is an attractive state variable for representing adiabatic
processes.

In Callen (1985), a development is given for the stability of thermodynamic
equilibrium according to which, under suitable conditions, the strain and the entropy
density assume values which maximize the internal energy. Other thermodynamic
potentials, depending on alternate state variables, may be introduced by a Lorentz
transformation illustrated below. Doing so is attractive if the new state variables are
accessible to measurement. For example, the Gibbs free energy (density) is a
function of the intensive variables S and T:

Pog = poé — r(SE) — poTn (6.10a)
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so that

po& = —tr(ES) — pynT (6.10b)

Stability of thermodynamic equilibrium requires that S and T assume values which
minimize g under suitable conditions. This potential is of interest in fluids experi-
encing adiabatic conditions in which the pressure (stress) is accessible to measure-
ment using, for example, pitot tubes. It is also commonly used in phase changes.
In solid continua the stress is often more difficult to measure than the strain.
Accordingly, for solids the Helmholtz free energy (density) f is introduced using

pof = Poé — poTn (6.11a)

furnishing
pof = tr(SE) — p(mT (6.11b)

It is evident that fis a function of an intensive variable and an extensive variable. At
thermodynamic equilibrium under suitable conditions it exhibits a (stationary) saddle
point rather than a maximum or a minimum. Finally, for the sake of completeness,
we mention a fourth potential, known as the enthalpy poh = poé — tr(SE), in terms of
which local balance of energy now is expressed as

poh = —tr(ES) + p,T7) (6.12)

The enthalpy likewise is a function of an extensive variable and an intensive variable
and exhibits a saddle point at equilibrium. It is attractive in fluids under adiabatic
conditions.

6.2 CLASSICAL COUPLED LINEAR THERMOELASTICITY

The classical theory of coupled thermoelasticity in isotropic media corresponds to
the restriction to the linear strain tensor, E ~ E;, and to the stress—strain temperature
relation

T = 2uE + A[rr(E) — a(T — To)]I (6.13)

Also p = py. Here, a is the volumetric coefficient of thermal expansion, typically a
very small number in metals and elastomers. If the temperature increases without
stress being applied, the volume strain increases according to eyo =1tr(E)=
a(T — Tp). Thermoelastic processes are assumed in the present context to be rever-
sible, in which event —V - q+ h = pT7. It is also assumed that the specific heat at
constant strain, c,, given by

0

= T3, (6.14)

Ce
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is constant. The balance of energy may now be restated as

poé = tr(TE) + p,T1) (6.15)
Recall that € is a function of the extensive variables E and 7. To convert to E and
T as state variables which are accessible to measurement, we again invoke the

Helmholtz free energy f=¢& — Tm. Since f is an exact differential to ensure path
independence, we infer the Maxwell relation

577

OE
Returning to the energy balance equation, to express it using T and E as state
variables, we have

JaT

=51, (6.16)

. 0
E) +Poa_i M
E

. 0
poé =1tr (Po 9E
n

0¢ 81]
<p°8E PG|, OE E>+p0[a aT }T ©.17)
Also note that
0
T:— . = —
8E,7 on|g
and hence
. 81] o0&l Onl .
E —| —| |T
poé = <p08E JFPoan 3E|, >+p0[8”’7EaTE

aT on

E T—| T 6.18

=l 3 ) o 6.18)
We previously identified the coefficient of specific heat, assumed constant, as

o
= T3 |g so that

: oT
poé = ([T T aT} )+poce (6.19)

The local form of the balance of energy equation now becomes
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~V'q = pof — ir(TE)

oT] - . .
= tr( [T — Ta—T} E) + poc.T — tr(TE)

oT] - .
= tr( [—T ﬁ} E) + poc.T (6.20)

From Equation 6.13, approximating T as T yields Ty % ~ —aATyl. Now assuming
the isotropic version of Fourier's Law q= —kVT in which the conductivity k is
assumed to be constant, the thermal field equation emerges

—kV2T = aA T tr(E) + pyc. T (6.21)

Equation 6.21 is subjected to variational operations in Section 6.3 to obtain the finite
element equation of the thermal field.

The balance of linear momentum together with the stress—strain and strain—
displacement relations of linear isotropic thermoelasticity imply that

. . 2.
0 [m F (a”‘ + %ﬂ A {% — (T — To)a,-,H = p%;’ (6.22)

o |2 2\axy T o o

from which we obtain the mechanical field equation (Navier’s equation for thermo-
elasticity)

)
uV2u+ (A + w)V r(E) — aAVT = pa—:; (6.23)

The thermal field equation depends on the mechanical field through the term
aA Ty tr(E). Consequently, if E is static there is no coupling. Similarly, the mechan-
ical field depends on the thermal field through aA VT, which likely is quite small in,
say, metals, if the assumption of reversibility is a reasonable approximation.

We next derive the entropy. Since ¢, = Tg—; |g is constant, we conclude that it
has the form

PoM = PoMo + Poce In(T/To) + pon*(E) (6.24)

where n*(E) remains to be determined. Without loss of generality, we take 7, to
vanish. But p, g—g It = po% = — 91 |g = aAL implying that

PoM = PoMo + Poce In(T/To) + ar tr(E) (6.25)
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Now consider f, for which the fundamental relation Equation 6.11b implies

i3
oT

9
n Pan

- T (6.26)
E

T:
Integrating the entropy,
pof = pofo — poce[T(In(T/To) — 1)] — ak 1r(E)T + f*(E) (6.27)
in which f*(E) remains to be determined. Integrating the stress,
pof = pofy + mtr(E*) +31r*(E) — aA tr(E)(T — To) + f*%(T) (6.28)

in which f**(T) likewise remains to be determined. Reconciling Equations 6.27 and
6.28 now furnishes

pof =pofy-t pir(E?) +4r () —ak tr(E) (T~ To) — pyec [(TIn(T/To) ~ 1)]
(6.29)

EXAMPLE 6.1

(1) Invert the constitutive relations of classical thermoelasticity
(i) Express the linear thermal expansion coefficient «;, appearing in the uniaxial
tension case, as

S
e A )

in terms of the volumetric thermal expansion coefficient.

SoLUTION
Since classical thermoelasticity assumes small strain, there is no need to distinguish
between the Cauchy and the second Piola—Kirchhoff stresses.
The thermoelastic version of Hooke’s law is
Sii = ZI“LEii =+ )\EkkS,:,- — )\a(T — T())Sij
Taking the trace throughout furnishes

Sik = Cu 4+ 3M)Ew — 3/\0((T — T())

and

1
ﬁ{Skk + 3AO[(T — To)}

Eu =
kk o
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Upon substitution,

Sij = 2/.LE,_‘1' + A {Skk + 3)\0((T - To)}ﬁ,;,- — )\C\((T — To)(s,j

1
2+ 3A
and

1 32
2/.LE,'j = S,‘j — )\mskkﬁ,j — (/\ — 2“ T 3/\>a(T — To)ﬁ,‘j

and the inverse relation is now
S;j = 2uE;j + AEwd;; — Aa(T — Ty)d;

Skk = (2/-1« + 3/\)Ekk — 3)\0((T — To)

{Skk + 3)\a(T — T())}

1
By =
R YPNEE )Y

S,‘j = 2/.LE,J +/\ {Skk + 3)\0{(T — TO)}BU — )\OI(T — To)S,‘j

1
2u+3A

1
2u+3A

32

2uE; = Sy — A A
KBy = Sy 20+ 3\

Skk6ij — ()\ >a(T - T())S,'j

and so, following obvious steps,

1—2v
E

I+

S — %Skkay +A ( >a(T = To)sy

We next express A in terms of E and v.

21+ 3A
3

E
2(1+V)+)\
_E E
T3(1-2v) 3(1+v)

2
3

so that

E[l +v— (1 —2v)]
31 4+ v)(1 —2v)
_ Ev
T +v)-2v)

The inverse is now obtained as

1+v v
Eij = 75,']' — *Skkﬁij + VO[(T — T())(S,'j

v
E E 1+
In the absence of stress

v
Ew=3——a(T-T
kk (1+V)a( 0)
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The Kronecker Product form of the inverse relation is extended from Chapter 5 as

(14w V.. va .
e—( E Iy E" >S+1+V(T7T0)l

in which e = VEC(E), s = VEC(S), and i = VEC(I). It is elementary that

I+v V..p Oe
= (—1y—= d =
. ( g Lo gl ) and =

%
s

va
=—1i
s l+v

Finally, the linear thermal expansion coefficient is identified as

o, = v o
LT+

To verify this outcome we return to the Lamé form and set the stress to zero.

0= 2/.LE,J + )\Ekké,»j — )\CY(T — TO)S,»J-
3A

o
2 SMEy =30a(T—-Ty) - Eyp =—— (T —T,
(2p + 30)Eg af 0) Kk (2M+3)\)( 0)

e T3 20) Ev 5
Cu+3) B d+ot<2y)  (1+w)

EXAMPLE 6.2

In classical thermoelasticity, derive the specific heat at constant stress c, rather than at

constant strain.

SOLUTION

In classical thermoelasticity the internal energy satisfies

. 9S8 1. .
= - E T
pé tr( {S T 8T|,j ) + pc.

OE; o ey .
= tr([S,;,- —+ a)\TS,_v,-] |:8Sl,il %"‘ (;:‘Tj T:|) + ngT

B .7 Oe
= [(s + aATi) 3T

+ pce} T

S

The inverse thermoelastic relations of Example 6.1 are invoked to furnish

(s+aATi)Tlﬂi
cs = |Ce + Tv
p
vaE
1r(S) 4 Tp——2=
.M S+ To a2
4w p
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EXAMPLE 6.3

Determine the adiabatic elastic modulus in uniaxial tension.

SOLUTION

The issue of an adiabatic modulus arises in situations in which a test specimen is
thermally insulated to prevent heat transfer. Under uniaxial tension the stress—strain—

temperature of classical thermoelasticity is written as

% = &xx — aL(T - T())
in which « is the linear coefficient of thermal expansion. Under adiabatic
the entropy is constant so that 77 =0. Accordingly,

0=pdn
877 on
a4t + p- 2 gE,,
Par® TPEE,
= p—CEdT - —dE

Note that &~ "T—C: —‘f—T“ =arE. Accordingly, under adiabatic
dT = -« ET‘) dE,,. Of course E is the isothermal elastic modulus.
Next,
_ OSu OS .«
dS,, dE —| dT
XX aE ‘XX + a,r o

= EdE,, — o,EdT

2
—E (1 L= ETO) dE,,
pCe

and finally the adiabatic elastic modulus is

a;’ET
Eadiabalic = E(l + u)

pee

EXAMPLE 6.4

Neglecting mechanical effects, express the thermal equilibrium equation in:

(i) Cylindrical coordinates
(i) Spherical coordinates
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SoLUTION

In the absence of mechanical effects the thermal equilibrium equation is given by

V7T VT 4+ pceT =0

(i) Cylindrical coordinates
Referring to Section 2.7 in Chapter 2, we have the expression for the temperature
gradient in cylindrical coordinates as

oT 10T
VI=Ce +-2
er+r89

e
or ot

€;

9z

The divergence of the gradient (cf. Equation 2.87), still using cylindrical coordin-
ates, now gives

Ty [L O () f L0 (LOTY 0 (T
VkTVTikTL’ar "or +r80 r 00 +8Z 9z

Lo e g
My or ok T2 997 T 022

Hence in the absence of mechanical effects the thermal equilibrium equation is
expressed in cylindrical coordinates as

{18’1" ST 1 0°T 82T} oT
T|= 5 = PCe

ror Tor TR e T oz TP

(i) Spherical coordinates
Referring to the Appendix in Chapter 2, the expression for the temperature gradient
in spherical coordinates is recognized to be

aT 1 0T 10T

T=— —— -2
v 8rer+rcos¢> 8(9(364_r3¢>eqS

Applying the divergence furnishes

Tt L2 (9T 1 0 ( 1 oy 1 o( 0T
VkTVTikT[rZE)r g or +rcos¢80 rcos ¢ 00 +rcosq§8¢> cos ro¢

. [28T PT 1 T tandpdT 182T}
—=KT

ror R e g 067 72 06 r20g?
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Hence, in the absence of mechanical effects the thermal equilibrium equation is
expressed in spherical coordinates as,

20T O°T I T tang 9T 1 T oT

rar T TR s 0 2 0 Raed) P

6.3 THERMAL AND THERMOMECHANICAL ANALOGS OF THE
PRINCIPLE OF VIRTUAL WORK AND ASSOCIATED FINITE
ELEMENT EQUATIONS

6.3.1 ConbpbucTtivE HEAT TRANSFER

Neglecting coupling to the mechanical field and assuming the isotropic form of
Fourier’s Law, the thermal field equation in an isotropic medium experiencing small
deformation may be written as

—V7kVT 4 pe, T =0 (6.30)

We now construct a thermal counterpart of the Principle of Virtual Work. Multiply-
ing by 0T, the variation of the unknown to be determined, and applying integration
by parts, we obtain

JSVTTkTVT dv + JSTpceT dv = J6T(—n7q) ds (6.31)

Clearly T is regarded as the primary variable and the associated secondary variable is
(—n’q). Suppose that the boundary is decomposed into three segments: S =S, +
S+ Sy On S; the temperature T is prescribed as, say, T;. It follows that 5T =0 on
S;. On Sy the heat flux q is prescribed as q;. Consequently 6T(—an) —
8T(—n’q,). On Sy the heat flux is dependent on the surface temperature through a
heat transfer matrix h: q=qo—h(T — Ty). The right-hand side of Equation 6.30
now becomes

—J 8TnlqdS= —J 8Tn’q,dS — J
N S

8Tn”q,dS+ J 8Tn"h(T —Ty)dS (6.32)
Sm

Sur

Next T is approximated using an interpolation function of the form
T —To ~ NL(x)0(7), 8T ~ NL(x)80(¢) (6.33)
from which we obtain
VT ~ BL(x)0(z), SVT ~ BL(x)50() (6.34)

and B is the thermal analog of the strain—displacement matrix B @, to be illustrated
in Example 6.5 and presented in detail in Chapter 7. Upon substitution of the
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interpolation models, the thermal field equation now reduces to the system of
ordinary differential equations

Kr0(r) + Mp0(r) = fr (6.35)
in which

Kr =Kt +Kp Thermal Stiffness Matrix
K11 = [Br(x)krBT(x)dV Conductance Matrix
K = ISm Nt (x)nThNg(x)dS Surface Conductance Matrix

Mt = [Nr(x)pc, NL(x)dV Thermal Mass Matrix; Capacitance Matrix
fr =— ISu Nr(x)n”q,dS Consistent Thermal Force;

-, Nt (x)n’q,dS Consistent Heat Flux

6.3.2 CourLED LINEAR ISOTROPIC THERMOELASTICITY

The thermal field equation is repeated as
—kr VT = aATo tr(E) + pe, T (6.36)

Following the same steps used for conductive heat transfer furnishes the variational
principle

JSVTTkTVT dv + JSTpceT dv + JBTa/\TO tr(E)dV = — JSTan ds  (6.37)

which is the thermal analog of the Principle of Virtual Work.
For the mechanical field the Principle of Virtual Work under small strain is
recalled as

Jtr(SES) dv + J&quﬁ dv = J su’t(s)ds (6.38)
N

Recall that S=2uE +A[tr(E) — a(T — Ty)]I. The Principle of Virtual Work is
expanded to give

Jtr(BE[Z,LLE +Atr(E)))dV — Jtr(ﬁE)\a(T — To)I) dV + JSquii dv

= Jﬁurt(s) ds (6.39)
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Now introduce the interpolation models
u(x) = N'(x)y(1) (6.40)
from which we may derive the strain—displacement matrices B(x) and b(x) satisfying
VEC(E) = BT (x)y(t), tr(E) =b"(x)y(z) (6.41)

Also, N is called the shape function matrix. (The operations to obtain Equation 6.41
are illustrated in Example 6.5 and presented in detail in Chapter 7.)
It follows after some manipulation that

Ky(t) + My () — Q"0(r) = £ (6.42)
in which
K = [B'(x)DB(x)dV  Stiffness Matrix
M = [N(x) pNT(x) Mass Matrix (6.43)
Q = [ar bT Nrt(x)dV  Thermoelastic Matrix '
f = [N(x) )dS Consistent Force Vector

We assume that the traction t(s) is specified everywhere as t;(s) on S. Also D is the
isothermal tangent modulus tensor.

For the thermal field, assuming that the heat flux q is specified as q; on the
surface, the thermal counterpart Equation 6.37 of the Principle of Virtual Work,
together with the interpolation models Equations 6.33 and 6.34 furnish the finite
element equation

LK10(r) + £M10(r) + QY(1) = Lfr, fr=—[Np(x)n’q dS  (6.44)

The combined equations for a thermoelastic medium are now written in state (first
order) form as

e0 0 f(1)
Wla y() | +Wal v(1) | = 0 (6.45)
0(1) 0(1) 7. f1(1)
M 0 0 K -
W, =0 K 0 |, W,=|-K 0 0
0 0 My Q 0 {Kr

f(r)

Multiplying by z” = {(r) () (1)}, letting y' = ( 0 ), and performing simple
7 fr(7)

manipulations furnish the equation !

d (1 1,1
o ( TW1r> =-r'y— 5rT5 (W2 +W))r. (6.46)
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Note that W is positive definite and symmetric, while 1 (W, + W7}) is positive
semi-definite. This implies that the magnitude of r is nonincreasing if y = 0. Other-
wise stated, coupled linear thermoelasticity is at least marginally stable, whereas a
purely elastic system is strictly marginally stable. Thus thermal conduction has a
stabilizing effect which will next be shown to be analogous to viscous dissipation.

EXAMPLE 6.5

Write down the coupled thermal and elastic equations for a one-dimensional thermo-
elastic member modeled with one element. Suppose that, on the left end of the member,
it is built into a rigid thermal reservoir with fixed temperature T,. Illustrate the analogy
between conductive heat transfer and viscous damping in the case of a constant
temperature field.

SOLUTION

This problem will be approached by modeling the member as a single one-dimensional
thermoelastic finite element, whose left end is built into a rigid thermal reservoir.
The element is supposed to have length L. The displacement is modeled using
u(x,t) = N7(x)¥,,1(£) in which

N0 =00 ¢ =(1 o
I A

The corresponding strain—displacement matrix B is given by

0

BT()C) = a

N'(x) =" ()@, b'(x)=p' ()@, B'(x)=(0 1)
The corresponding relations for the thermal degree-of-freedom T — T, are given by

Ni(x) =vp(0)®7, vi(x)=(1 x)

1 o] 1L o
O = —=
1 L L|-1 1

0

Br(x) = 5 Nr(x) = Br(x)®r, Br(x) = (0 1)

For one-dimensional problems, D — E. Following the Principle of Virtual Work the
stiffness matrix is given by

| ORI
EA 1 —10
:T{q 1}
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and for the mass matrix

M= JN(x)pNT(x) dv

S (O O
ngL;z lﬂ

No heat source is indicated: i.e., h = 0. The thermal stiffness matrix is now

Kr = JBT(x)kTBg(x) dav
L
“ilo ] (Do me ]
“r2lo ) )\)T -1 1
0
_kTA{ 1 —1}
L [-1 1
The thermal mass matrix is similarly obtained:
Mr = JNT(x)pceNg(x) dv
L
71L—1JIA(1)deO
S0 1 x )P Yo
0

_pc AL 1 1)2
3 12 1

Finally, the thermoelastic matrix is presented.
Q= Ja/\NT(x)bT(x) dv
L
L L O
J arA(0 1)dx
-1 1
0
_adA[-1 1
2 -1

Collecting the foregoing results furnishes the coupled thermal and elastic finite element
equations as

Ea[ 1 —17/u00) par[ 1 1/2] (u00)\" ara[-1 =17 [TO0.)~To
- + — — =f
L{—l 1} <u(m> 3 (12 1Ku<m> 2 {1 1} <T<L,z>—n>

LkeA[ U1 (TOO=To\ 1 pear[ 1 1/2] (TOH=To\" ama[-1 1] (w0 |
+ = +— =—fr
To L -1 1|\T@)-T) To 3 [1/2 1 |\1@nH-T 2 -1 1] \u@n) To
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A rigid “thermal bath” on the left is imagined to constrain both 7(0,f) — T, and u(0,f) to
vanish. The constraints serve to eliminate the corresponding rows and columns in the
two foregoing equations, resulting in

%M(L,t) + ’”%Lu(u) - # (T(Lt) —To) = f
1 kA 1 peAL L aMA L
T (T = To) o P55 (T = To) + 57 () =

If the displacement field is static there is no thermomechanical coupling through the
thermal field.
If (T(L,f) — To)" =0, then the thermal field equation reduces to

1 alA |

T—OfT - T”(LJ)

T(L,t) - T() = ]—kTA
Ty L

and upon substitution the mechanical field becomes

1 alA .

RPN )
EA pAL . ara [Tfr 5 L
7)) = T | S
To L 0

Upon reorganization,

+oh

(a)\A)2

EA AL AL

A + 32 2 iy + P = f + ¢
3 2k

Mathematically the middle term has exactly the same effect as conventional viscous
damping. This illustrates that convective heat transfer, by carrying energy away from a
site at which it is concentrated, has a stabilizing effect. However, in many materials the
thermal expansion coefficient is very small, rendering the effective damping coefficient
due to thermal conduction very small.
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7 One-Dimensional
Elastic Elements

This chapter introduces finite elements for one-dimensional members, including
rods, shafts, beams, and beam-columns. It initially presents interpolation models in
physical coordinates for the sake of simplicity and brevity. But interpolation in
“natural coordinates” is then presented to enable the use of Gaussian quadrature
for integration. Use of natural coordinates to an extent reduces the sensitivity of the
elements to geometric details in the physical mesh. A number of examples are given
including several illustrating the use of natural coordinates.

7.1 INTERPOLATION MODELS FOR ONE-DIMENSIONAL
ELEMENTS

7.1.1 Robs

The governing equation for the displacements in rods (also bars, tendons, and shafts) is

&u 0%u

EA or?

in which u(x,7) denotes the radial displacement, E, A, and p are constants, x is the
spatial coordinate, and ¢ denotes time. Since the displacement is governed by a
second-order partial differential equation, in the spatial domain it requires two (time-
dependent) constants of integration. Applied to an element, the two constants can be
supplied implicitly using two nodal displacements as functions of time. We now
approximate u(x,f) using its values at x, and x,, |, as shown in Figure 7.1.

The lowest-order interpolation model consistent with two integration constants
is linear, in the form

) =y (B0, v = () el =a v a2

We seek to identify ®,,; in terms of the nodal values of u. Letting u, = u(x,) and
Uy 1 = u(x.1) furnishes

ue(t) - (1 -xe)(I)ml'le(t)’ Uet1 (t) = (1 xe+1)(l)ml“/ml(t) (73)
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Ug Ug+1

Xe Xe+1

FIGURE 7.1 Rod element.

But since v, (t) = ue(r) we conclude that
Uet1(0)
1 -1
(I)ml = |: e :|
1 Xe+1
1 Xe+1 —Xe
= s e =Xer1 — Xe 7.4
3 [ 1 ] +1 (7.4)
7.1.2  Beams
The equation for a beam, following the classical Euler—Bernoulli theory, is
F*w 0w
El—+pA—=0 7.5
o P o 7)

in which w(x,?) denotes the transverse (z) displacement of the beam neutral axis, and
the constant / is bending moment of area. In the spatial domain there are four
constants of integration. In an element the constants can be supplied implicitly by
specifying the values of w and —Ow/0x at each of the two-element nodes. Referring
to Figure 7.2, we introduce the interpolation model for w(x,7):

We
/
—w
wint) = @4 (P vy (1), @ () = (1 x o2 ) vut)=| e | (7.6)
—Wei
Enforcing this model at x, and at x,, | furnishes
1 2 3 -1
X, X, X,
0 -1 —2x —3x2
b, = 1 5 ¢ ;¢ 7.7)
Xetl  Xopg Xet1
0 —1 —2x.1 —3x2,
wh whi
We We+1
| ——>x
Xe Xo+1

FIGURE 7.2 Beam element.
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7.1.3 Beam-CoOLUMNS

Beam-columns are of interest, among other reasons, to predict buckling according to
the Euler criterion. The displacement w is assumed to depend only on x. Also u is
viewed as given by

ow(x)
Ox

u(x,z) = up(x) — z (7.8)

in which uy(x) represents the stretching of the neutral axis. It is necessary to know

ug(x,1), wx,f), and — % at x, and x,, ;. Combining relations for the rod and the

beam element, the interpolation model is now

u(x,z,t) =1 )Py, —2(0 1 2x 3x2)Byyy, (7.9)
We
—_— ( o (1) ) v —w,
ml Upet1(1))’ b Wet1
_W/e-H
1 x x2 x -
1|x, Xe 0 -1 —2x, —3x2
@, =—| ! , @y = 2 3 ¢
l.| —1 1 I oxer1r Xy X,
0 -1 —2x4 -3+,

7.2 STRAIN-DISPLACEMENT RELATIONS IN ONE-DIMENSIONAL
ELEMENTS

For the rod, the strain is given by ¢ = E}| = g—; An estimate for ¢ implied by the
interpolation model Equation 7.3 has the form

e(x,1) = By ()@Y, (1) (7.10)
d T
By = ‘g;”l=(0 ) (7.11)

For the beam the corresponding relation is

Pw
e(x,z,t) = o2 (7.12)
from which the consistent approximation is obtained
e(x,2,1) = —zBy; (x)Pp1vp (1) (7.13)
d T
Bl = :&” 0 1 2x 39
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For the beam-column the strain is given by

e(x,z,t) = —B,{,m (X)DPrp1¥ 1 (7)

o ar ary|®m 0] A1) (7.14)
Brir = (B ZBM){ 0 (Dmbl:|<7bl(t)>

7.3 STRESS-STRAIN RELATIONS IN ONE-DIMENSIONAL ELEMENTS
7.3.1 GENERAL

We first recall the stress—strain relations of an isotropic linear elasticity. If S is the
stress tensor under small deformation, the stress—strain relation for a linearly elastic
isotropic solid under small strain is given in Lamé’s form by

S = 2uE; + A tr(Ep)I (7.15)

in which I is the identity tensor. The Lamé coefficients are denoted by A and w, and
are given in terms of the familiar elastic modulus E and Poisson ratio v as

E vE
ST M DI e

Letting s=VEC(S) and e = VEC(E,), the stress—strain relations are written using
Kronecker product operators as

s=De, D =2uly+ \ii 7.17)
and D is the 9 X 9 tangent modulus tensor introduced in the previous chapters.

7.3.2  ONE-DIMENSIONAL MEMBERS
For a beam-column, recalling the foregoing strain—displacement model

Si1(x,2,1) = EE;; = —EzBT | (X)® 1V, (1) (7.18)
The cases of a rod and a beam are recovered by setting vy, or vy,,,; equal to the zero

vectors, respectively.

7.4 ELEMENT STIFFNESS AND MASS MATRICES FROM
THE PRINCIPLE OF VIRTUAL WORK

Variational calculus was introduced in Chapter 4 and the Principle of Virtual Work
was introduced in Chapter 5. It is repeated here as
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As before & represents the variational operator. We assume for present purposes that
the displacement, the strain, and the stress satisfy representations of the form

u(xt) = @ (X)Py (1), e(xt) =B (X)Py(r), s(x,) = De(x,t) (7.20)

in which e = VEC(E) and s = VEC(S) are written as one-dimensional arrays. Since
small strain is assumed, no distinction is made between the undeformed coordinates
X and the deformed coordinates Xx.

EXAMPLE 7.1

One-element model for a built-in rod

Suppose that the rod depicted in Figure 7.3 has elastic modulus E, mass density p,
area A, and length L, and is modeled using a single element. It is built in at x=0. At
x =L there is a concentrated mass m to which is attached a spring of stiffness k.

The Principle of Virtual Work reduces to the variational equation

SupAii dx = Su(L,t)[P — ku(L.t) — mi(L,t)] (7.21)

O~
=2
&
&
&
+

O ——

Upon application of the foregoing linear interpolation model for rod elements and
enforcement of the constraint u(0,7) =0 at x =0, the stiffness and mass matrices arising
from the domain reduce to scalar values as follows: K — EA/L, M — pAL/3, Mg — m,

Ks — k. The governing one-element equation is (% + k)v + (% + m)"y'l =f:

EXAMPLE 7.2

One-element model for a built-in rod with a constant distributed surface stress
The configuration of interest is illustrated in Figure 7.4.

(a) To derive the applicable version of the Principle of Virtual Work, integrate over the
domain and note that

L
d*u

JSu {EAE +px(x)} dx =0, pi(x) =27roSx

0

which holds for an arbitrary increment du(x) of u, subject to du(0) =0.

P

|A
NNV
E AL p m. ok

FIGURE 7.3 Rod with inertial and compliant boundary conditions.
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FIGURE 7.4 Rod with constant distributed surface stress.

(b) Integrate by parts

L L L
d du dou _ du
0 0

and

L
du dul*

0
since u(0) = 0 and P(L) = EAE) _ 0 Accordingly
L L
J %EA% dx = Jﬁupx(x)dx
0 0

which expresses the Principle of Virtual Work in the current case.

(c) We model this member as one finite element and use the same approximation for
1u(x) as before, namely:

u(x) = u(L) — du(x) = 76u(L)

From before,

L
déu _  du
68V=|—EA—dx
J dx dx
0
EA
= AS(L)—u(L)
L
Now, assuming p.(x) = po,
L
oW = Jﬁupo dx
0

L
1
_ duLypo Jx “
L
0
= Lou(L)Lpy
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Hence, 6V =06W from which

EA ! 1 Lpy
S W) =3lpo andalso u(l) =3

Now compare the last result with the exact solution given by

_ pol?
" 2EA

The exact displacement function is quadratic, whereas the function assumed in the
interpolation model is linear. Despite this difference, the finite element solution
gives the exact displacement at x=L.

7.4.1 SINGLE-ELEMENT MODEL FOR DYNAMIC RESPONSE OF A BUILT-IN BEAM

Next consider a one-element model of a cantilevered beam to which a solid disk is
welded at x = L. Also attached at L is a linear spring and a torsional spring, the latter
having the property that the moment developed is proportional to the (negative of
the) slope of the beam. The shear force V;, and the moment M, act at L. The member
is illustrated in Figure 7.5.

The Principle of Virtual Work now reduces to the equation

L
JSW”EIW” dx + JﬁprW dx
0

Vo — kw(L,1) — mw(L,1)

= {6w(L,t) — 6w/ (L,»)} (7.22)

2
Mo — k(—w'(L.1)) — %(—Mm))

The interpolation model, incorporating the constraints w(0,1)=—w'(0,/)=0 a
priori, is

W) = (2 ) [_L;L _I;LZ] N (_V:V(,L([f)to (7.23)

E,LALp

FIGURE 7.5 Beam with translational and rotational inertial and compliant boundary
conditions.
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Ignoring rotary inertia, the Principle of Virtual Work and the interpolation model
Equation 7.23 may now be applied to furnish the domain contributions to the
stiffness and mass matrices:

_Er[12 6L By
l& 4L2] M:pAL[ P (7.24)
210 105

The stiffness and mass contributions from the boundary conditions are

0 kT ’ s 0 7{2 .
The governing equation 1S now

(M + M) (-%%3;)) + (K +Kg) (_V:V(,%Lt)t)) = ( A‘;‘; ) (7.26)

EXAMPLE 7.3

Ks =

Single-element model for a built-in beam under a uniformly distributed load
Assuming a static response, the Principle of Virtual Work in the present case may be
derived from

i d*w ,
J(?W {EI@ —pb(x)} dx=0, ow0) =0, —-'0)=0
0

in which p, = S,.a. Integrating by parts twice gives

Sw'EIW" dx — Vow|§ — M(—8w))}

L
8V = J(SW {EI —]
0
L
(!
Next apply dw(0) = (—éw') = 0; V(L) = M(L) = 0. From the interpolation model for w(x),
L
JSW”EIW” dx =6V
0

L EI {12 6L }
= Y
6L 4l

in which y = {—vv‘;S(LL))}
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L
We next examine the variation of the work, i.e., 6W = ijLpb(x)] dx, assuming p,,

0
equals the constant value pyg: p, = ppo. From before, enforcing the conditions
w(0) =0, w'(0) =0, w(L) = q1, —wW(L)=q

a priori, w(x) is approximated as

322 2
w(x)z[— x} (L)+{XL Lz}( Wi(L)

and now

SW = pio [@w(L) +L(—ow (L))]

proL

= {dw(L) (=6w' (L))} 5

_rT—’ ProL

oy 12
The ensuing finite element equation is

proL

Er[12 oL wl) | 2
L [6L 4L\ -w(@) | |pwl?

12

The solution is

4L —6L| .,
w(L) I {—6L 12 } 2
{—w’(L)} T EI 1212 I?
12

1 ppl’

)8 EI

a 1 ppl?

6 EI

The one-element finite element solution is now compared with the exact solution. The
governing equation and the general form of the solution are now

EIWNII — pb()

” X2 /// 2 @ x_
W) = g W W W o
Note that the exact solution is one order higher in x (fourth order) than the one-element
approximation (third order). Application of the boundary conditions serves to establish
that
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Pl

V(L) =0, w'()=0, 6WX, + - 0
L
from which ' = —%.
M(L) =0, w'(L) = 0
pro L? peo L?
2// 6/// 77:0 /o0
watowa H g 5 =0 ATEl 4

The tip displacement is obtained as

1 ppoL*

v =5 g

and it agrees exactly with the one-element finite element solution.
The tip slope is examined next and is obtained as

3
/ Pbo L
—w() = —— —
@ El 6
which likewise agrees exactly with the one-element finite element solution. Clearly,
even though the displacement model is one order lower in x than the exact solution, the
one-element model gives the correct results for the displacement and slope at the tip.

EXAMPLE 7 4

Mass and stiffness matrices for a single-element beam-column

Figure 7.7 is now modified to include the axial compressive force P as shown in
Figure 7.6. The member is again modeled using one element. Beam-columns are
assumed to be described by the classical Euler buckling equation, given in this case by

Ew" + Pw" + pAiv =0 (7.27)

The Principle of Virtual Work gives rise to the variational equation

L L L
JSW” Em"dx — P J Sw'w' dx + JSWpAv'{/ dx
0 0 0

Vo — kw(L,t) — min(L.1)

= {Sw(L,t) — W/ (L.1)} (7.28)

2
Mo — k(= w(Lyt)) — %(— W (L,D))

SZZ

A

E, L

FIGURE 7.6 Cantilevered beam under distributed load.
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ELALp

FIGURE 7.7 Built-in beam-column with translational and rotational inertia and compliant
boundary conditions.

Upon application of the interpolation model Equation 7.23, the stiffness matrix due to
the domain is found after some effort to be
. EIf12 6L P[6/5 L/10
K:T{ 2}——{ / é } (7.29)
L° |6L 4L L|L/10 2L?/15

and the governing equation for the member is now

o (3 o (30 (1) o

Examination of Equation 7.29 reveals the presence of the negative definite matrix
p [ 6/5 L/10

L|L/10 2L%/15
value P, rendering K singular, buckling is predicted to occur. In a later chapter, we
will consider natural frequencies in systems with inertia, at which time we will find that
a natural frequency vanishes at P.

]. In static problems, when P becomes large enough to attain the

7.5 INTEGRAL EVALUATION BY GAUSSIAN QUADRATURE:
NATURAL COORDINATES

The next step is to formulate stiffness and mass matrices in which there are no
constraints, say for the eth element lying between x, and x, ;. It is helpful to digress
briefly to sketch Gaussian quadrature, which underlies the notion of natural coordin-
ates. We then return to formulate the matrices of the unconstrained element in terms of
both physical and natural coordinates. Gaussian quadrature is optimal in terms of the
accuracy gained for a given number of function evaluations. It, also to a certain extent,
renders the element matrices insensitive to the initial geometric details of the element.

In the finite element method, computation of element stiffness and mass matrices
gives rise to numerous integrations, the accuracy and efficiency of which is critical.
Fortunately, a method which is optimal in an important sense, called Gaussian
quadrature, has long been known. It is based on converting physical coordinates to
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natural coordinates as illustrated next. Consider f: f(x)dx. Leté = 72— [2x — (a + b)].
Clearly, ? maps the interval [a,b] into the interval [—1,1]. The integral now transforms
1

to 5= Jll f(€) dé. Now represent f{{) using the power series
fQ) =ao+arl + ol + a3’ +aul* +asl® + - (7.31)
from which
: 2 2
J f(§)d{=2a1+0+§a3+0+§a5+0+--~ (7.32)
-1

The advantage of integration procedure on a symmetric interval can be seen in the
fact that, with n function evaluations, the integral is evaluated exactly through
(2n — 1)st order.

Consider the first 2n — 1 terms in a power series representation for a function:

g) =ar+al+ - 4! (7.33)

Now introduce the Gaussian integration formula based on n integration (Gauss)
points &; and n weights w;:

1 n n n n
j g =) glwi=a1 Y wita Y wili++am Y wili' (1.34)
-1 i=1 i=1 i=1 i=1
Comparison with Equation 7.32 reveals that

anwi =1, i:w,f:O, zn:w,fiz =2/3,...
p i=1 i=1

n ) n
2n—2 2n—1
2 C Y wEr =0 7.35
IE:] Wi w1 wig; (7.35)

It is necessary to solve for n values ¢&; and n values w;. These are universal quantities
independent of the particular function f. With &; and w; known in general, to integrate
a given function g(&€) exactly through &' it is necessary to perform n function
evaluations, namely to compute g(&;).

As an example we seek two Gauss points and two weights. Now for n =2

wi+wy =2 (7.36a)
wié) +w2é, =0 (7.36b)
wiél 4+ waés =2 (7.36¢)
wiél +mé =0 (7.36d)

© 2008 by Taylor & Francis Group, LLC.



From Equations 7.36b and 7.36d, w1, [£] — €] = 0, leading to &= —¢;. From
Equations 7.36a and 7.36¢ it now follows that —&, = & = 1/+/3. Finally, the
normalization w; = 1 implies that w, = 1.

EXAMPLE 7.5

Modify the rod element to replace the physical coordinate x with the “natural coord-
inate” £ in which

E=ax+b, &x)=—-1, &) =+1

Rewrite the interpolation model using natural coordinates, and perform the inverse to
obtain ®,,;.

SoLUTION

We seek a, b for which the transformation é=ax+ b satisfies &(x,)=—1 and

&(x,41)=-+1. Elementary manipulation furnishes that a:ﬁ:Z/le and
b= —x"”IJ, in which [, is the length of the element. Next 0—"1:(% % so that

D gD g B 2P 4P
0x_a6§ and = a 08 T 2 9g%

placements in rods becomes

Accordingly, the governing equation for the dis-

4EA d%u Pu

2 02 Par

For the interpolation model the natural coordinate now is

W(EC) D) = @ By (1), @Fy = (1 £0). y,,ﬂ(r):( ”e(f’)

Uet] (t)

Now letting u, = u(£(x,)) =u(—1) and u, | = u(&(x.1)) = u(+1) yields

( ue(t))) — oy, () = “ gfgj)](bmwml(t)

Uet (t

Consequently,
I C I N B R R N IS B
(I)’”'_{l g(xgﬂ)} _{1 1} _5{—1 1}

EXAMPLE 7.6

Rewrite the Euler—Bernoulli equation for the beam using the previous transformation.
Rewrite the interpolation model using natural coordinates, and perform the inverse to
obtain ®@,,;.
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SoLuTioN
In the natural coordinate { satisfying

2 _ Xetl + X,

(xe+l _-xe), _xe-H — Xe

§ =a+ bx, g(xf) =-1, f(X€+1) =41, a=

the beam equation becomes

16EI 0*
l:()a le = Xet1 — Xe

oot

The interpolation model is

w(€(x).1) = @3 Pp1vy (1)
in which

We

/
w,/l,
We1

_2W/e+1/l2

©h = (1 &(x) £(x) 53(?5))’ Y (t) =

Enforcing this model at &(x.) = —1, and &(x,, ;) =+1 furnishes

—1

(1 Ex)  E(x) & (x)

0o -1 —28(x.)  —3&(x,)
1 E(xert)  E(xen1) £ (Xes1)
L0 —1 —2&(xe1) 38 (xet)

-1 1 -177"

EXAMPLE 7.7

We consider the clamped-free case of a beam-column modeled using a single element.
We examine the effect of the compressive load P. A model using a single element gives
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FIGURE 7.8 Buckling of a cantilevered beam-column.

SoLUTION
Enforcing the constraints w(0) = —w/(0) =0 a priori gives the equation

12-8¢ (6-7é)L { w(L) }_{vo}
(6-he)L (4-For| L@ LM

10

The generalized displacements become unbounded, and hence buckling occurs, at the
value of P rendering the stiffness matrix singular (Figure 7.8).

12-3¢ (6-5d)L | P
(6-HeL (4- 2O H

from which (12 — 8&) (4 — 2&)L* — (6 — 5¢)°L* = 0.

On solving the above equation, we have £=32.18, 2.49. Accordingly, the P values
inducing buckling are

El El
P = 2.49ﬁ, P, = 32.18§

The exact solution is taken from Brush and Almroth (1975) as

9 LEI Er
Pi=——=5=227T—, P,= T 20.42E
The fundamental critical load for a single element is fairly close to the exact solution,
while the second buckling load is about 50% too high. Clearly, a one-element model is
not very accurate for buckling. The model becomes more accurate as additional
elements are added.

7.6  UNCONSTRAINED ROD ELEMENTS

An element is called unconstrained if none of the points in the element are fixed.

From the Principle of Virtual Work the stiffness matrix satisfies
K = [®"B(x)D'B" (x)®dV which for the foregoing rod element in the physical
coordinate becomes
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¢ =0 x), B0="50_

(7.37)

-1
P — 1 Xe _ 1 Xetl —Xe
1 Yot (xe+1 - xe) -1 1
Also D' =E, and dV=A dx, in consequence of which
et 1 1 Xep1 —1 0 Xerl —X
&:JA———ﬁ “ EAO 1| T |d
Xe (Xg+1 — -xe) —Xe 1 1 —1 1
EA (Yet! | Xet1 -1 0 0 Xe+l —Xe
_= J + + dr
Bl |—x. 1[0 1]|-1 1
Ea|l I -1
=— (7.38)
le | =1 1
and [, =x,, | — x, is the element length.
We now redo the derivation for K, using the natural coordinate £, in which

¢é=ax+b, with—1=ax,+b,+1 =ax,, + b. Interpolation in the natural coordin-
ate now is expressed by

u,(t
e ={l &M,VMZ{ “}

ueJrl(t)
q)_l bl BT_a_‘PT_Ea_‘F’T_(O 1)
72 —1 1 ’ a 8x _le 8§ a (7'39)

- L]0 e o] o

On substituting dx = %dg, we obtain that

+1
EA 1 -1 0 0 1 1
Kzl“l 1”0 1”—1 Jdg (740
EA[ 1 -1
:Z{—ll] (7.41)

Using both the physical and the natural coordinates we next determine the mass
matrix M, for the segment, in which p denotes the mass density. In the physical
coordinates, the Principle of Virtual Work applied to the rob element gives the mass
matrix as
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1
pA [ Xet1 —11 [ Xepl —Xe (a2 —xf)] [xe+1 —xel
300 —x) 5

(Xer1 — x6)3 %(xeﬂ - x6)3

oAl
lg _%(errl_XE)S %(errl_xE)S
Al 1 1/2
_ pAke / (7.42)
3012 1
In the natural coordinate, we obtain
M T“ IR L
= |- pA(1 ~“d
CodAl 1\ -1 12
- +1 - -
:pAle 1 -1 J 1 ¢ i 1 1
8 v v le e [0
CpAL 1 —17[2 0 11
8 |1 1 ][0 2/3][-1 1
AL [ 1 1/2
P / (7.43)
3 Q12 1

The terms “‘bar” and “‘tendon’ are alternate names for rods. Shafts, which support
torques by twisting, are described by relations which have the same mathematical
form as the relations for rods. The same holds true for one-dimensional thermal or
electrical conductors (the latter being described by a potential). The mass and
stiffness elements for a shaft are simply

_pJl | 1 1)2 77 I
T

in which u = ﬁ is the elastic shear modulus and J = 7} /2 for a solid circular
shaft.
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7.7 UNCONSTRAINED ELEMENTS FOR BEAMS
AND BEAM-COLUMNS

We next consider the mass matrix for the beam element. It is convenient to introduce
the vectors vy, ¥, and vy as follows:

B { wl(xe,t)} B {Wz(XeJrlJ) }
Y11= —Wh (xe,1)) Y2 — Wy (Xet1,0)

w1 (Xe,t)
. ) (7.45)
(R B v
— W (Xeq1,0)

In physical coordinates the mass matrix of the current element is given by

1 x, x2 ] - Xet1 (1
0 1 2x, 3x2 X
M, = 26 ¢ pA , o1l x ¥ xX}dx
LoXewr X0 X4 X
K0 1 2Xe11 3x3 ] Xe X3
(1 x x2 x ] -
0 1 2 3| [M7 MY 7.46)
LoXert Xy X4 MY M$) '
L0 1 20y 32 ]
@ PAL.| 78 —11L, @ PAL.| 27 BL,
210 [S1Le 2L 7 2210 (-8, 312
@ _ pALe 78 11Lg
27910 | 11L, 217
The stiffness matrix of a beam segment is given in physical coordinates as
1 x xf xg - Xex1 (O
0 -1 —2x, —3xf, 0
K, = ) ; El {0 0 2 ox}dx
I X1 Xy Xe+1 2
0 -1 —2x.4 —3x§ Xe 6x
I x x2 x -
0 -1 —2x, —3x
X 1 2 3
Xe+1 Xet1 Xet1
0 -1 —2x.4 —3x§
K(e) K(e)
=l gor o (7.47)
Ky Ky
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K(e)_EI[ 12 —6L,
11 —

El ko _El[12 —6L, Eff12 6L,
3| 6L 4L, |© T2

- K© = —
3|6L, 2L |° "2 [3|6L 4L

Finally, if the member serves as a beam-column the stiffness matrix is augmented to
furnish the new stiffness matrix K given by

K% =K, - K

1 Xe xg x‘z - Xet1 0
0 -1 —2x, —3x2 1
K® ‘ ¢ P {0 1 2x 32}dx
L Xeqr x§+1 x2+1 2x
0 -1 —2x.4 3x3 Xe 3x2

2 3
Xet1 Xet1 Xet1
0 —1 —2x. -3
(eP) (eP)
Kl 1 K 12

(eP)T (eP) (7.48)
K}, Ky

Ker - P 6/5  —L/10 ke _ P -6/5 -L./10
T | —Lej10 2127150 2 T |L/10 —L2/30
P

K(eP):_

22 Le

o 2id)is)

7.8 ASSEMBLAGE AND IMPOSITION OF CONSTRAINTS
7.8.1 Robs

Consider the assemblage consisting of two rod elements: denoted as e and e+ 1,
see Figure 7.9a. There are three nodes numbered n, n+ 1, and n+2. We first
consider assemblage of the stiffness matrices, based on two principles: (a) the
forces at the nodes are in equilibrium and (b) the displacements at the nodes are
continuous. Principle (a) implies that, in the absence of forces applied externally
to the node, at node n+ 1 the force of element e+ 1 on element e is equal and
opposite the force of element e on element e+ 1. It is helpful to carefully define
global (assemblage level) and local (element level) systems of notation. The global
system of forces is shown in (a) while the local system is shown in (b). At the
center node

PO — P =0 (7.49)

since no external load is applied. Also, clearly Pz(“) =P, and Pl(“’“) =P,
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q : ]
(e) J (e+1)
e -

(b) Forces in local system

FIGURE 7.9 Assembly of rod elements.

The elements individually satisfy
_ _plo
£© 1 1 U, _ P,
-1 1 Up+1 P(le)
(e+1)
k<e+1) 1 -1 Upt1 _ _P2
-1 1 Un+2 P(le+l)

(7.50)

and in this case k' = k“*? = EA/L. These relations may be written as four separate
equations:
K, — kyyy = —PY (7.51a)
Ky 4 kD gyyy = PO (7.51b)

KV — kD, = —P;eﬂ) (7.51¢)
ke gy ke g, = Pl (7.51d)

Now Equations 7.51b and 7.51c are added and Equation 7.49 is applied to obtain

Ky, — K9y, = —PY (7.52a)
kO, + [k + kD sy — KV =0 (7.52b + 7.52¢)
_k(6+l)un+] _ k(€+l)un+2 — P§e+1) (752d)
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and in matrix form

k(e’) _k(e) O Uy _Pn
—k© gl 4 pler)  _ple+D) o1 |=1 0 (7.53)
0 —kletD) klet1) Unt2 Py

The assembled stiffness matrix shown in Equation 7.53 can be visualized as an
overlay of two-element stiffness matrices, referred to global indices, in which there is
an intersection of the overlay. The intersection contains the sum of the lowest right
hand entry of the upper matrix and the upper left hand entry of the lowest matrix. The
overlay structure for a multielement rod is illustrated in Figure 7.10.

The individual element-level stiffness matrices are now rewritten to refer to the
global degree-of-freedom numbering system as

K© _ K@, K _ g

1 -1 0 0 0 0
KO = -1 1 of, KetV=fl]0o 1 —1 (754)
0 0 0 0 —1 1

It is easily recognized that the global stiffness matrix (the assembled stiffness matrix
K® of the two-element member) is simply the direct sum of the element stiffness
matrices when they are referred to the global degree-of-freedom numbering system:
K® —K® 4 KetD

- — — =g —
|
N )
En N G
- T _I._ T K@
|
-1 - 7Kg®
Lo |
| 4) | | 5)
b Ky +k(ll
— — — aK(N-2)
| | K(N—l)
I b |
| |
T T T R®W

L — 2
|

L L - —

FIGURE 7.10 Assembled beam stiffness matrix.
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By extending the two-element example to the multielement rod, the global
stiffness matrix is seen to be given by K® = e K©. In the subsequent sections
we will see that in the current notation the strain energy in the two elements may be
written in the form

yletl) — %,YTK(eH)Y(e) (7.55)

The total strain energy of the two elements simply is the sum: %'YTK(g)'y.

Finally notice that in the two-rod element assemblage the matrix K® is singular:
the sum of the rows is the zero vector as is the sum of the columns. (In fact prior to the
imposition of constraints the stiffness matrix in any multielement rod is singular.) In
this form an attempt to solve the system will give rise to “‘rigid body motion.” To
illustrate this reasoning suppose for simplicity that k'’ =&“"" in which case equilib-
rium requires that P, = P,, . If computations were performed with perfect accuracy,
Equation 7.53 would pose no difficulty. However, in performing computations errors
arise. For example, suppose P, is computed as P, = P, + &, and P, =P, 1 + Enils
P, .1 =P, = P. Computationally, there is now an unbalanced force &, — &,. In the
absence of mass, this in principle implies infinite accelerations, viewed conventionally
as rigid body motion. In the finite element method, the problem of rigid body motion
can be detected if the output exhibits unrealistically large deformation.

This problem of nonsingularity disappears when the constraints of the problem
are enforced. In the current example, symmetry implies that u,,; =0. Recalling
Equation 7.53 we now have

1 -1 0 u —P

EA n n

- |12 -l o |=| R (7.56)
0 -1 1 Up2 l)n—k—l

in which R is a reaction force which arises to enforce physical symmetry in the presence
of numerically generated asymmetry. The equation corresponding to the second
equation is useless in predicting the unknowns u, and u, ., since it introduces the
new unknown R. Of course R is a reaction force which arises to enforce the constraint
of symmetry. It is possible to “strike out” the second row of the equation and the
second column in the matrix, conventionally referred to as “‘condensation.” If the small
errors £1 and &, are used again, the first and third equations are now rewritten as

EA[1 0 U, —P+e,
= = 7.57
L |:O 1:|<un+l> (P+8n+l> ( > )
with the solution
Uy = [—P+&,)/BL, upir = [P+e,]/E2 (7.58)
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To preserve symmetry it is necessary for u, +u,,; =0. However, the sum is
computed as

&En+ Ent1
Uy + Upy] = : EA s (7.59)
(%)
The reaction force is given by R= —[¢&,, + £,,1], and in this case it can be considered

as a measure of computational error.

The same assembly arguments apply equally well to the inertial forces as to the
elastic forces. This is easily seen if accelerations and mass matrix components are
used in Equation 7.53 instead of displacements and stiffness components (i.e.,
inertial response instead of elastic response). Furthermore, if both inertial and elastic
responses are present, the element-level mass matrices are assembled into the global
mass matrix in the same manner as in absence of elastic forces.

As will be shown formally in a subsequent section, the total kinetic energy T of
the two elements is

T — %?T [M(e) + M(e+1)},’-{

M<e>:m<e>[1 1/2]
/2 1 (7.60)

m® = [%pAl] (©)

"./T = {ue’;‘eJr 1 ue+2}

EXAMPLE 7.8

Write down the assembled mass and stiffness matrices of the following three-element
configuration (using rod elements) (Figure 7.11). The elastic modulus is E, the mass
density is p, and the cross-sectional area is A.

SoLuTioN

The stiffness matrix and the mass matrix for a rod element is given by

K(g):Ei{l —1} M(e)_pAL{l 1/2}

L|-1 1 312 1

I

| L L2 L — =~

FIGURE 7.11 Three-element model of a rod.
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Now, for the first and third elements we have

Ll-1 1
M<1>:M<%>:PA7L{ ! 1/2}
3 12 1

But the second element satisfies

Lj2|-1 1] 3 |1/2 1

The assembled (global) stiffness matrix is given by

kY kY 0 0
1 1 2 2
K — k;l) kéz) + kil) kgz) 0
2 2 3 3
oW )
3 3
0 0 kY k)
Hence
1 -1 0 0
Ko _EAI-1 3 —20
L]0 -2 3 -1

0o o0 -1 1
Continuing, the assembled (global) mass matrix is

1 12 0 0
pAL|1/2 3/2 1/4 0
T30 174 3/2 1)2

0 0 1/2 1

M@

EXAMPLE 7.9

Show that, for the rod under gravity, a two-element model gives the exact answer for
the displacement at x=L, as well as a much better approximation to the exact
displacement distribution (Figure 7.12).

SOLUTION

The equation for a rod under gravity is
u

EA
Ox?

+ pAg =0, x
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> m
~
Q

FIGURE 7.12 Rod stretching under gravity.

Ou(L)

o 0

u positive downward, u(0) =

As previously stated, the exact solution is u(x) = 4 [Lx — "72], u(l) =18 L—zz

ONE-ELEMENT MODEL

Applying variational methods to the foregoing equation furnishes
L L
Jb‘u'EAu'dx - JSupAgdx =0
0 0

Upon invoking the interpolation model u(x) = xM we find

pg L*

EAL*A L
P T Y

This result agrees with the exact solution at x = L. However, the interpolation model is
linear and hence does not agree with the quadratic exact solution. The finite element
model predicts that u(L/2) = %, while the exact solution at x=1L/2 is 3 £ 12,

TWO-ELEMENT MODEL

Here, the weight of the rod acts (is “lumped”) at node ““3”’ and the reaction, which is
—pALg, acts at node ““1.” Hence the finite element equation Ky =f can be written as,

a0 = ()= () =" ()

which is exact at both nodes.
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EXAMPLE 7.10

Apply the method of the previous exercise to consider a stepped rod, as shown in Figure
7.13, with each segment modeled as one element.

TWO-ELEMENT SOLUTION

The assembled stiffness matrix is

ElAl + E2A2 _ E2A2

K — L L, Ly | B4, l+a -1
B4y E-A; L, -1 1
L, L,
EiA /B4,
o=
Ly L

The assembled gravitational terms furnish the consistent gravitational force as

f,—g %(P1A1L1+92A2L2) ~ pAalag %(B"‘]) ﬁzplAlLl
’ 3pA % ’ ; ’ prA2 Ly

2

The solution for the displacements is

up 7lgp2L% 2+B
) 2 Ea \2+a+p

The case of the previous problem is recovered if we set a =B =1 and L, =L/2.

FIGURE 7.13 Two-element rod stretching under gravity.
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EXAMPLE 7.11

Using a single finite element in each of the rod segments shown below, obtain
expressions for the natural frequencies (Figure 7.14).

SOLUTION

Adding the kinetic and strain energies furnishes

.. . -PzAzl/z 2 1w lpAiLl .,
T—— . |PA22 2piaih
P il PN wfl T2 3 *
[ prA2Ls +P1A|L| prA2L, .
1 . . 3 3 6 u
=Z{in i} .
2 prA2Ly P A2l | | ity
L 6 3

1 _E2A2 1 -1 up 1E1A| 2
V== . —
Pt |7, [1 ] 2

E.A, I EA; _ E.A,

1 l/z L] L2 uy
={u w}-
2 _BAy EsA, up
L Ly L,

Two natural frequencies are obtained from the equation

B4y I B B4y prA2Ly n piALLL  pyAsl,
det L, L, Ly | _ 2 3 3 6 —0
_BEAy E.A, ma prA2 Ly prAL L,
A L, 6 3

Some algebra serves to obtain

2 OB 3+a+Bi\/(3+a+ﬁ)2—a(3+B)
me o p,L3 6+ 28

; ; _ EA /BAy _ pAiL pyAsls
in which o = 52t /52 and g = Big=t /B2,

A\
EpALLyn O) B A Ly0, O
J

FIGURE 7.14 Natural frequencies of a two-element rod.
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7.8.2 Beams

A similar argument applies for beams. The potential energy and stiffness matrix of
the eth element may be written as

(7.61)

Yo ={we Wl ower —wi)

In a two-element beam model analogous to the foregoing rod model, V& = V© 4+
Ve implying that

Ky RS
K =R R R R 06
o RET g

Similarly, the global mass matrix for a two-element beam segment is given by

T T
e R R 0.6
o Mg g

EXAMPLE 7.12

For the system indicated below, find the equation governing nodal displacements and
slopes (Figure 7.15).

This member is modeled with two beam elements, which is the minimum possible.
The global displacement vector, absent the constrained degrees of freedom, is
vy ={wi —w} wy —wj}. The strain energy is the sum of the strain energies of
the two elements and the springs:

V=Vi+V,+V:+Vy

in which
0000 000 0
1., 1,00 00 1 W 1000 o0
Vi=ghkwi=2v" g o g o|Ye Va=zki(ow)=3Y"10 5 o o |
0000 00 0 k
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FIGURE 7.15 Two-element beam model with compliant supports.

Also
1 (1) 1 1 T K(l) 0
Vi=={w Wi Ky =5Y Y
2 —w) 2781 of o] ¢
2 2
L[ KR
2 =7 .
2 %8 2)T 2 8
KT Ky

The total strain energy is obtained by direct addition of the element potential energies

ool KO +K{? K
=-v 2T 2 kK 01|V
2 ¢ K§I) KI<H) + |:0 k :| ’

The Principle of Virtual Work now implies that

r E.I, E,rI E.I, E,rI E,I B, T
12< 131 n 232) 6( 121 _ 222> 12 232 _6 222
Ly Ly Ly Ly Ly L;
Eil, Eul Eil, Esl E,l E,l wi 0
6 121_ 222 4Bt Bob 6222 ,Eala /
Ll L2 L] L2 L2 L2 —Wi . 0
E,l E,l E,l E,l N
12 232 6 222 12 232+k 6 222 w2 Vo
Ly Ly > 2 —w) My
E,I E,I E,I E,I
_6 222 2D 6 222 g2
I 2 L, J2; L,

The matrix is inverted to solve for the displacements and slopes.

7.9 DAMPING IN RODS AND BEAMS

In addition to mass and stiffness matrices, rods and beams experiencing time-
dependent loads are thought to exhibit viscous damping whose effect is represented
by a damping matrix. Damping generates a stress proportional to the strain rate.
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In linear problems modeled by the finite element method it leads to a vector—matrix
equation of the form

MY + Dy + Ky = f(f) (7.64)

in which D is the positive definite symmetric damping matrix.

At the element level the counterpart of the kinetic energy anthhe strain energy is
the Rayleigh Damping function D® given by D(®) = %'\'/(e) D© 5 and the
““consistent damping force” on the eth element is

0
£9(r) = = D@© = plely(© 7.65
Just like kinetic and strain energies, the Rayleigh damping function is additive over
the elements. Accordingly, if D® is the damping matrix of the eth element referred to
the global node system, the assembled damping matrix is given by

D= Z De© (7.66)
e

It should be evident that the global stiffness, mass, and damping matrices have the
same bandwidth: a force on one given node depends on the displacements (veloci-
ties, accelerations) of the nodes of the elements connected at the given node, thereby
determining the bandwidth.

Of course in lightly damped metallic structures the damping properties can be
difficult to measure. In finite element practice it is common to assume Rayleigh
Damping, in which the damping matrix is assumed to be a linear combination of the
mass and stiffness matrices. This has the advantage of enforcing classical normal
modes in which the damping matrix may be diagonalized by transformations that also
diagonalize the mass and stiffness matrices. This topic will appear again in Chapter 9.

7.10 GENERAL DISCUSSION OF ASSEMBLAGE

To explain the basis of the assemblage process, it is convenient to introduce
Lagrange’s equation. While the Principle of Virtual Work is based on variation of
in the spatial domain, Lagrange’s equation as stated below also applies variational
arguments to the time domain. The equation of interest is

d 0 0
(dta%—ay) (T-B)=Ff (7.67)

Here +; is the jth entry of the nodal displacement vector in which constraints have
been enforced a priori. f; is the corresponding nonconservative nodal force. T and B
are the total kinetic energy and total elastic strain energy of the body, expressed in
terms of v;, ;. In particular,

1 1
T = EJ pirdv, 8= EJS,;,-EU dv (7.68)

v v
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But, assuming the body is represented as N elements whose volumes are denoted
by V.,

B

N —

N
> J S;E;dv
e=1

B,
1 N
=35> VKo, (7.69a)
e=1

in which v, is the local (element-level) displacement vector, only incorporating
the displacements at the nodes of element e. Also K, is the corresponding local
(element-level) stiffness matrix. For example, for a rod with 10 elements and with the

elements numbered from left to right, y! = {us u¢} and Ks = XGESf;S [_11 _11 }
But, referred to the global displacement vector vy,
1
— TR
B = E Z Y Ke'Y

1, N
=57'Ky, K= (ZK) (7.69b)

Otherwise stated, the (assembled) stiffness matrix K is the algebraic sum of the local
(element-level) stiffness matrices (I~(e) referred to the global nodal displacement
vector vy.

A parallel argument may be applied to the kinetic energy.

Loron .
=¥ My, M= (Z Me> (7.69¢)
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Applied to the expressions in Equations 7.69a through 7.69¢, Lagrange’s equation
furnishes the expected equation, namely My + Ky =1£().

7.11 GENERAL DISCUSSION ON THE IMPOSITION
OF CONSTRAINTS

Constraints serve to remove degrees of freedom. In principle, they should be
enforced a priori to reduce the displacement vector to a minimum dimension in
which all entries vary independently. Alternatively, the functional, whose variation is
to be set equal to zero, may be augmented with additional variables (Lagrange
multipliers) subject to variation. The variational principles arising from the add-
itional variables enable enforcing the constraints a posteriori. The degrees of free-
dom, without regard for the constraints, and the Lagrange multipliers are then varied
independently.

Of course, enforcing constraints a priori in complex problems can be very
difficult, especially if, for example, the constraints are “multipoint.” In the finite
element method based on the Principle of Virtual Work, despite the mathematical
objections to doing so, in most cases the variational principle is formulated without
enforcing constraints a priori or without augmenting the functional using Lagrange
multipliers or penalty functions. Instead, after the stiffness matrix is formulated the
constraints are imposed a posteriori. The author is not aware of any errors resulting
from this practice. However, in some classes of constraint problems an augmented
functional is used, for example, in incompressible media to be discussed in a
subsequent chapter.

There are several classes of constraints. In simple constraints one or more
displacements vanish at nodes on the boundary, or else assume prescribed fixed
values. In linear multipoint constraints such as symmetry, several nodes are required
to remain on a given line or plane. There are also infernal constraints such as
incompressibility, in which a kinematic requirement is imposed at all nodes through-
out the body. As stated before, incompressibility will be addressed in a subsequent
chapter.

We first illustrate constraint enforcement when a displacement vanishes at a
boundary node, in the case of a static problem. Suppose for simplicity that the
constraint occurs at the last entry in the global displacement vector (prior to impos-
ition of constraints). The finite element equation for an n degree-of-freedom system
may be written as

SRV L S VA

The stiffness matrix K is positive semidefinite and hence singular, since the vector
sum of the nodal forces must vanish. If only one nodal displacement is removed the
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rank of the stiffness matrix is n» — 1, in which case the submatrix K,,_; must be
positive definite. The upper block row of Equation 7.70, obtained by “‘striking out™
the nth row and column of K and nth entry of f, then implies that K, 7y, ;=1f,_,
for which there exists a unique solution. This leaves the reaction force f;, unknown,
but the bottom row in Equation 7.70 implies that f, = K,/ y,,_.

Finally, we illustrate constraint enforcement when a boundary displacement, say
the last entry of the global displacement vector, has a prescribed value vy,. Now the
upper block row implies that K,,_;v,,_1 =f,_; — v,k,. Again the matrix of interest is
obtained from K by striking out the nth row and column. However, the force vector
is now different from the case of a vanishing displacement. Now there exists a
unique solution of the equation K,,_1y,_1=1f,_1 — v,K,.

7.12 INVERSE VARIATIONAL METHOD

Given the functional subject to variation, we derive the underlying differential
equation and possible combinations of boundary conditions and constraints. For
this purpose we will focus on a simple example. Suppose that a rod satisfies 6W =0,
in which V¥ is given by

L1 fdu\ Pu(L)

We again invoke the interpolation model

u(x) = {1 x}«b(u”(x“’) ) (1.72)

(errl’t)

For an element x, <x < x,, 1, we seek the matrix K, such that

ulxet) \ [ fe
K6<u(xe+1,t)> B (feH ) (7.73)

Applying variational operations to the given equation gives

(" (du du Péu(L)
o [ (4 (%) P -

Using integration by parts on the first term furnishes,

L L 2
du} 7] du Pu(L) (7.75)
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Now &6W¥ =0 implies that

dul® (% d’u
-EA—| — | du-EA—dx — Péu(L) = .
[Bu dx} . L u 2 dx u(L) =0 (7.76)

The domain integral and the endpoint expressions must vanish independently. The
endpoint conditions capture possible combinations of boundary conditions and
constraints as follows. At x=0, either u=0 or EA% =0. At x=1L,
Su(L)[EA %L — p] = 0, from which either u(L) =0 or EA%4E = p.

From the domain integral we conclude that

L d*u

and the arbitrariness of du is now appealed to again to conclude that
d’u
EA F 0 (7.78)
which of course is the well-known differential equation of a rod under static loading.
The expression of the stiffness matrix is, of course,
K= J@TB(X)D’BT(X)cb dv (7.79)

For a one-dimensional rod element, as before,

W= . B ="5 0 e[} * ]

Ox I Xep
1 Xerl —Xe
= 7.80
(Xes1 — Xe) { -1 1 (750

Again D' =E, and dV=A dx. Now, following now familiar procedures the stiffness
matrix is

et 1 Xe —-17/0 Xe —Xe
S M W () U B

Xe (errl - xe) —Xe 1 1 -1 1
2l e

2, l-x 1]l0 1][-1 1

CEA[1 -1 L
_le{—l 1] (7.81)

in which [, =x,, | — x, is the element length.
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EXAMPLE 7.13

Redo this derivation for K, in the previous exercise, using the natural coordinate &,
whereby & =ax+ b, in which a and b are such that —1 =ax,+ b, +1=ax,, +b.

SoLuTiON

We show that it is possible to introduce interpolation directly in the natural coordinate &.

ince & =% 0 _2 0 i Pu _
Since 5. = 5 9T 0B the rod equation becomes EA 0

fe 087 . . og®
and the corresponding interpolation relations are

, u,(t)
¢ ={1 &} v()=

Uet ([)

(0 1)

L X
110 ox |, 08

Using dx = %dg, the stiffness matrix now becomes

+1
K~ |
-1

and finally

EXAMPLE 7.14

Next regard the nodal displacement vector as a function of 7. Find the matrix M, such

that
() () = ()

in which p is the mass density. Derive M, using both physical and natural coordinates.

SOLUTION

First let us derive the mass matrix using the physical coordinates. On substituting
dV=Adx, and letting [, =x, . — x, we have
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M, = ijd>’¢<x>¢T (x)® dr
Xe+1 1 Xe+1 -1 1 Xe+1 —Xe
= J —_— pA(1 x) dx
v (Xep1 —xe) —X, 1 X -1 1
pA [Xer1 —17 prens [1 x Xeyl —Xe
~Z J ) | &
e | —x. 1 X |x X —1 1

pA —xe-H 1:| |: Xe+1 — Xe %(xir] xg):| |:xe+l xe:|
7
B | Y R Y ) | R

pA %(xeﬂ _xe)3 é(xeﬂ _xe)3

_é(xeﬂ *xe)S %(xeﬂ *xe)3

and this becomes

_PAL| 112
M. = 3 [1/2 1}

For the natural coordinates, following the same procedure evident in the previous
exercise gives

and finally

_pAL [ 1 1/2
Me=73 {1/2 1}

As has been expected, the stiffness and mass matrices are the same in the rod whether
approached using physical or natural coordinates.
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8 Two- and Three-
Dimensional Elements
in Linear Elasticity
and Linear Conductive
Heat Transfer

8.1 INTERPOLATION MODELS IN TWO DIMENSIONS

8.1.1 MEMBRANE PLATE

Consider the unconstrained triangular plate element depicted in Figure 8.1. Suppose
that there is no out-of-plane stress (plane stress) or no out-of-plane displacement
(plane strain). The displacements u(x,y,f) and v(x,y,f) are to be modeled using the
values u,(t), v (t), o 1(8), Vey1(t), Uoi2(t), and v, ,(f). A linear model in x and y
suffices for each displacement owing to providing three coefficients to match three
nodal values. The interpolation model now is

(u(x,y, t)) B e, 0 lq)riz 0’ ] (’Yu@) @.1)
v(x,y,1) 0" | 07 @, |\ ()
in which
u,(t) Ve (1) 1 I x v =
’Y”(t): Uet1 (t) s ’Yv(t): Ve+1 (t) s P =1X |- (1)13;2: 1 Xet1 Yerl
Uei2(t) Veta(t) y 1 Xeq2 Yet2

8.1.2 PiLATE WiTH BENDING STRESSES ONLY

In a plate element experiencing bending only, in classical plate theory (e.g., Wang,
1953) the in-plane displacements u# and v are expressed by

0
v(x,y,z,t) = = (8.2)

u(x,y,z,t) = —z o

W
Ox’
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Xe+ 2r Ye+ 2

/ Xe+1:Yer1

X, Y, /

e

L Middle surface
FIGURE 8.1 Triangular plate element.

in which z=0 at the middle (centroidal) plane. The out-of-plane displacement w is
assumed to be a function of x and y only. Clearly this model permits no in-plane
(membrane) displacements in the middle plane.

An example of an interpolation model is introduced as follows to express w(x,y)
throughout the element in terms of the nodal values of w, — %—Z, and — %—Vy”. Clearly w
has been assumed to depend only on the in-plane coordinates x and y, and the time .

w(x,y,1) = @5 (%, 9)Ppr¥y (1) (8.3)

ohxy)={1 x y ¥ xy ¥y 2 1&y+yx) »}
T oo ow ow ow
Vi () —(We (%)~ (G )= (50,

() (5 (5).00)

I xe Yy X XeYe ¥ x IXeYe(Xe+ye) y:
0 -1 0 -2x, -y 0 -3 — (xeve +132) 0
00 -1 o0 X —2x 0 — (322 + xeye) —3y?
I Xer1 Yet1 X§+1 Xet1Ye+1 y§+1 X§+1 %x€+1y€+l(~x6+l+y€+l) y2+1

(D;jzl =10 =1 0 —2xi11 —Yer1 0 _3x§+1 _(xe+lye+l +%Y§+1) 0
0 0 -1 0 —Xet1 _ZyeJrl 0 _(%xir] +xe+1ye+l) 73y5+1
3

2 2 3 1 3
1 Xet2 Yet2 Xeyn  Xet2Vet+2  Vein Xet2 Exe+2y6+2(xe+2 +ye+2) Yet2

0 =1 0 260 —verr 0 =32, —(vrveat+hZ,) 0

00 —1 0 =X 2 0 —(,+Xesaven) —3¥0,]
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It follows that

a‘{5’1{2

B, )

u(x,y,z,1) Ox
v(x,y,z,1) | = _Za‘PZz Dy, (1) 84

w(x,y,z,1) Oy

®h

8.1.3 PLATE WITH STRETCHING AND BENDING

Finally, for a plate experiencing both stretching and bending, the displacements are
assumed to satisfy

ow(x, y,t
u(x, y,2,1) = uo(x, y,1) — Z%

ow(x,y, 1) (8.5)
v(x,y,2,1) = vo(%,y,1) — 28—y

and note that w is a function only of x, y, and ¢ (not z). Here z=0 at the middle
surface, while u and v, represent the in-plane displacements. Using the nodal values
of uy, vp, and w, a combined interpolation model is obtained as

_Za‘sz
u(x,y,2,1) up(x, y, 1) ox
vioy,zt) | = | voluyt) |+ _Za‘Pzz Dy, (1)
w(x,y,z,1) 0 Oy
‘PZz
Ol
roof  _ b2
®m Tox [P 0 0T /7,()
= T Ol || 0 @, 0 || ()

07 T
‘PmZ < ay
, , 0 0 (I)bg ’yw(t)
0 0 @5
(8.6)

8.1.4 TemperATURE FIELD IN TwWO DIMENSIONS

In the two-dimensional triangular element illustrated in Figure 8.1, the linear inter-
polation model for the temperature is

T—To=¢ @0, 0 =(T.—To Tey1—To Tey2—To) (8.7)
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8.1.5 AXISYMMETRIC ELEMENTS

An axisymmetric element is displayed in Figure 8.2. It is applicable to bodies which
are axisymmetric and are submitted to axisymmetric loads such as all-around
pressure. The radial displacement is now denoted by u and the axial displacement
is denoted by w. The tangential displacement v vanishes, while radial and axial
displacements are independent of 6. Also u and w depend on r, z, and ¢.

There are two cases which require distinct interpolation models. In the first case
none of the nodes are on the axis of revolution (»=0), while in the second case one
or two nodes are in fact on the axis. In the first case the linear interpolation model is

given by
( M(I’, <5 t) ) _ ‘PZI OT |:(I)a1 0 :l < Yual (t) > (8 8)
W(r, 2y t) OT ‘PZI 0 D, ‘Ywal(t) .
1 ro =z ! U, We
‘PZI = (1 r Z), (I)al = |1 el Ze+l > Yual = Uet1 |5 Ywal = We1
1 rey2 Zew2 Uet2 Wet2

Now suppose that there are nodes on the axis, and note that the radial displacements
are constrained to vanish on the axis. We will see later that, to attain an integrable
kernal in the stiffness matrix, it is necessary to enforce the symmetry constraints a
priori in the displacement interpolation model. In particular, suppose that node e is
on the axis with nodes e + 1 and e + 2 defined counterclockwise at the other vertices.
A linear interpolation model enforcing the axisymmetry constraint a priori is now

M(}",Z,t) o ‘P171-2 OT (I)(IZ 0 ’YuuZ(t) (8 9)
W(F,Z,t) OT (sz 0 () Ywa2 (t) .

-1

¥, Z —Z

T e+1 e+1 e

‘Pa2:(r Z_ZE)v (I)a2_|:
Tet2 Zet2 — Ze

For later purposes note that that ratio (z — z.)/r is indeterminate as a point in the
element is moved toward the node on the axis of revolution.

|\~

FIGURE 8.2 Axisymmetric element.
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A similar formulation can be used if two nodes are on the axis of symmetry, so
that the u displacement in the element is modeled using only one nodal displacement,
with a coefficient vanishing at each of the nodes on the axis of revolution.

8.2 INTERPOLATION MODELS IN THREE DIMENSIONS
We next consider the tetrahedron illustrated in Figure 8.3. A linear interpolation
model for the temperature may be expressed as

T — Ty = ¢1,P370; (8.10)

T
er=(1 x y 2
I x. Y Ze
I Xer1 Yer1  Zeti
D3 =
Xe+2  Yet+2 Zet2

I Xer3 Yer3s Zets

05, ={Te—To Tes1 —To Teyo—To Teys —To}

For elasticity with displacements u, v, and w, the corresponding interpolation
model is

u(x,y,z,t) e 0o 0" [®;s 0 0 Y. (2)
vixyzt) | =107 ¢ 0T || 0 @3 0 v, (1) (8.11)
w(x,y,2,1) 0 0" o]0 0 @5 \v,00)
z
e+3
0
e e+2 Y
e+l
X

FIGURE 8.3 Tetrahedral element.
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8.3 STRAIN-DISPLACEMENT RELATIONS
AND THERMAL ANALOGS

8.3.1 STRAIN-DisPLACEMENT RELATIONS: TwO DIMENSIONS

The (linear) strain tensor for two-dimensional deformation is given by

(o e
Exx Exy 8)( 2 (9y a.x
-, (8.12)

E, E, ou Ov v
) m w ov
2\0dy Ox Jy

In Chapter 5 we encountered the two important cases of plane stress and plane strain.
In the latter case, E,, vanishes and S,, is not needed to achieve a solution. In the
former case S, vanishes and E_; is not needed for solution.

As opposed to VEC notation, traditional finite element notation (cf. Zienkiewicz
and Taylor, 1989) introduces the strain vector &”={E,. E,, E,}. (Strictly
speaking &’ is more properly called an array since it does not have the transformation
properties of vectors (cf. Chapter 2).) Upon applying the interpolation model
we obtain

E(xy) = l

e = | Ey :B,’,"Q(i)mz(y”z) (8.13)
E Y2

in which BZ,®,, is called the strain—displacement matrix and

i 8‘(—’312

T
ox 0
8@T P (I)mz 0
T _ OT m2 , (I)m _
m2 ay ? 0 (I)mZ
la‘P,{qz 18‘93;2
12 dy 2 Ox |

Hereafter, the prime will not be displayed.
For a plate with bending stresses only, a vector (array) of the strains is
displayed as

O
Ox?
82

e(x,y,2,1) = -z gv; (8.14)
Pw
OxQy
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from which
32@52
Ox?

/ _ T _ 82@52
e (x,),21) = 2By (%, y)Prvpn(t), By = By’ (8.15)

82‘{31{2
Ox0y

Note that € # VEC(E) and instead it represents an ad hoc traditional notation in FEA.
For a plate experiencing both membrane and bending stresses, the foregoing
relations can be combined to furnish

e (x,y,2,t) = Bz;le (%, 9, 2) @2 ¥ (1) (8.16)
(DmZ 0 Ym2 (t)
T — T — r , (I)m = |: :| 5 m 1) = < "
me2 (Bmz ZBbZ) b2 0 (I)bZ Y b2( ) Y2 (t)

8.3.2 AXISYMMETRIC ELEMENT

For the previously considered toroidal element with a triangular cross section, it is
necessary to consider two cases. If there are no nodes on the axis of revolution, then
application of the strain—displacement relations to the axisymmetric interpolation
model furnishes

u
or
u
r (I)al 0 ‘Yual(t)
g(r,z,1) = ow BaTll 0 (Dl](y T (8.17)
az wa
(o ow
2\0z Or
01 0 0 0 O
;b1 o000
471000 0 0 1
001lo1lo

If element e is now located on the axis of revolution, we obtain

_ T (I)az 0 :|(‘Yua2(t)>
e(r,z,t) = Baz[ 0 @ul\y. .0 (8.18)
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1 0 000
1 &= 0 0 0

T: r

“ 1o 0 0 0 1
o L o0 lo

We now can see the reason for the special interpolation model. If z, were not present
in the foregoing matrix, the quantity z/r would result. Of course, this quantity
approaches infinity on a path approaching the node on the axis of revolution. The
quantity and its square would appear in the kernal of the integral in the stiffness
matrix, rendering the kernal nonintegrable. However, with the use of z,, a path to
node e produces a path-dependent finite value of (z — z.)/r in the limit, for which
reason the kernal is integrable. The interpolation model enforces the axisymmetry
constraint a priori, in order to achieve integrability. However, wherever possible the
Finite Element Method enforces constraints a posteriori, which is to say that assem-
bled finite element equation is initially obtained without accommodating constraints,
and then constraints are used to remove rows and columns from the stiffness matrix.

8.3.3 THERMAL ANALOG FOR TWO-DIMENSIONAL AND AXISYMMETRIC ELEMENTS

The thermal analog of the strain is the temperature gradient. Application of the
interpolation model for the temperature furnishes the relation

(8.19)

T - 01 0
VT:BTZ‘I)TZOZ’ BT2:

0 0 1

There is no need in the axisymmetric case to enforce constraints.

8.3.4 THREE-DIMENSIONAL ELEMENTS

Recalling the tetrahedral element in the previous section, the strain—displacement
relation for isotropic linearly elastic materials may be written as

@
ox
Ov

m m
BB <]
e

N
ISl

ém [TJ(:

= ou O (8.20)
(& &)

<
5t

o

© 2008 by Taylor & Francis Group, LLC.



D 0 0 Y3
=B5| 0 @ 0 || vy,
0 0 (I)3 ’YW3

in which

01000000000 0
00000O0TO0O0O0O0 O
. |l0ooo0oo00000000°11
B=lo0100l000000
00000O0O0TZLo0O0O<Lo0
0001000001410 0]

8.3.5 THERMAL ANALOG IN THREE DIMENSIONS

Again referring to the tetrahedral element, the relation for the temperature gradient is
immediately seen to be

01 00000O00O0O0O0 0
VT =BL®s0;, BL,=[0 0 0 0 0 0 1 000 0 0| (821
00000O0O0GO0OGO 0O 1

8.4 STRESS-STRAIN RELATIONS
8.4.1 Two-DIMENSIONAL ELEMENTS

8.4.1.1 Membrane Response

In two-dimensional elements, we have previously distinguished the cases of plane
stress and plane strain. In plane stress, the stress—strain relations reduce to

Exx = % [Sxx vsyy]
Ey = £ [Syy — VS| (8.22)
Ey = 1 -Ev S,\t)

The case of plane strain is retrieved by using E* = 1151/2 and v* = %= in place of E

and v. In traditional finite element notation Equation 8.22 may be written as
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SXJC E)CX
SY,V = Dle Eyy (8.23)
S E,
in which
1 —v o 1 E [t v O
D, =E|—v 1 0 =5 (v 10 (8.24)
0 0 1+v V10 0 14w

may be called the tangent modulus matrix under plane stress (note that, unlike the
previous definition, it is not based on the VEC operator and is not a tensor). The
corresponding matrix for plane strain is denoted by D,,;25.

However, we shall see that a slightly different quantity from D,,;», is needed in
plane stress. The Principle of Virtual Work uses the strain energy density given by
%SijE,-j. Elementary manipulation serves to prove that

1 0 0] /Eu
(S Sy Sz)|0 1 0f[Ey, (8.25)
0 0 2] \E,

Accordingly, in the Principle of Virtual Work the tangent modulus matrix in plane
stress is replaced by

E
2

D:nb2:1_v

1 v
v 1 0 (8.26)
0 0

and similarly for plane strain. (The peculiarity represented by the ‘2’ in the lower
right-hand diagonal entry is an artifact of traditional finite element notation and does
not appear if VEC notation is used.) The stresses are now given in terms of nodal
displacements by

S (X, f) D’ Ex D' oA Yo . 1 plane stress
Syy(-x»ya t) = Mmi Eyy = m2iBm2(I)I712 Y , 1= 2 plane strain (827)
Siy(x.,7) Eyy '

8.4.1.2 Two-Dimensional Members: Bending Response of Thin Plates

Thin plates experiencing only bending are assumed to be in a state of plane stress.
The tangent modulus matrix is again given by Equation 8.26, and now an approxi-
mation for the stress is obtained as

Sxx E.
Syy - Dm21 Eyy - ZDle BZZ(I)}?Z’YZQ (t) (8 28)
Sy E,,
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8.4.1.3 Element for Plate with Membrane and Bending Response

Plane stress is likewise applicable to the combined case, and consequently the
stresses are modeled as

SXX Exx
Syy = Dm21 Eyy = Dm21 BZ’;bz (X, Yy, Z)(I)me'Ym}ﬂ (t) (8.29)
Sxy Exy

8.4.2 AXISYMMETRIC ELEMENT

For the purpose of determining a stress model consistent with the underlying
interpolation model, it is sufficient to consider the case in which none of the nodes
of the element are located on the axis of revolution.

SW Err
See Egg T{(i)l 0 }('Y 1(0)
=D, =D.B, al ua 8.30
SZZ EZZ B ! 0 (I)al Ywal (t) ( )
S, E,
in which the tangent modulus matrix is given by
1 —v —v 0 717"
D, — E v 1 —v 0
—-v —v 1 0
0 0 0 1+4+v
1—v v v 0
B E v 1—v v 0
S (1=22v)(1+v) | » v l-w 0
0 0 0 1—-2v

For use in the Principle of Virtual Work, D,, is modified to furnish D/, given by

1—v v v 0
E v 1—v v 0
/ —
D“7(1—2V)(1—|—V) v v 1—v 0 ®.31)
0 0 0 2(1 —2v)

8.4.3 THREE-DIMENSIONAL ELEMENT

All six stresses and strains are now present. Using traditional finite element notation
we write

© 2008 by Taylor & Francis Group, LLC.



2
g

E.
S, E,,
S_‘y EY) (1)3 0 0 ,Yu3
1 =Dy “ 1 = D3[53T 0 &; 0 Y3 (8.32)
Su Exy 0 0 P v
Syz Eyz 3 w3
SZJC EZX
r1T —v —v 0 0o 1!
-v 1 —v 0 0
—v —v 1 0 0
D; =E
0 0 0 1+v 0 0
0 0 0 0 1+v 0
L 0 0 0 0 0 1+v]
1—v v v 0 0 0
v 1—v v 0 0 0
B E v v 1-v 0 0 0
(1 =2v)(1 +v) 0 0 0 1 —-2v 0 0
0 0 0 0 1—-2v 0
0 0 0 0 0 1—-2v
and for the Principle of Virtual Work, the associated matrix is
E
D,=— —
ST =20)(14v)
r—v v v 0 0 0 T
v 1—v v 0 0 0
v v 1—v 0 0 0
8.33
“1 0o o 0 20-2») 0 0 (8.33)
0 0 0 0 2(1 —2v) 0
L O 0 0 0 0 2(1 —2v) |

8.4.4 ELEMENTS FOR CoNDUCTIVE HEAT TRANSFER

Assuming the isotropic version of the Fourier Law, the heat flux vector, which may
be considered the thermal analog of the stress, is obtained using

Bl,®r0,, 1-D
q=—k{ BL®r0,, 2-D (8.34)
B, ®r;0;, 3-D
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8.5 STIFFNESS AND MASS MATRICES AND THEIR
THERMAL ANALOGS

Elements of variational calculus were discussed in Chapter 3 and the Principle of
Virtual Work was introduced in Chapter 5. It is repeated here as

JéE,_-jS,j dVv + Jﬁuipiii dv = Jﬁu,-ti ds (8.35)

As before we assume that the displacement, the strain, and the stress may to
satisfactory accuracy be approximated using expressions of the form

u(x,t) = @ x)®y(r), E =B x)®y(r), S=DE (8.36)

in which E and S are written as one-dimensional arrays in accordance with tradi-
tional finite element notation, and of course t is the traction vector. Also, for use of
traditional finite element notation in the Principle of Virtual Work, it is necessary to
make use of D’, which introduces the factor 2 into the entries corresponding to shear.
We suppose that the boundary is decomposed into four segments: S=S;+ S, +
Sir+ Spv. On S, u is prescribed, in which event du vanishes. On Sy; the traction t is
prescribed as ty. On Sy; there is an elastic foundation described by t =t, — A(x)u, in
which A(x) is a known matrix function of x. On Sy there are inertial boundary
conditions by virtue of which t=t;, — Bii. The right-hand term now becomes

J'(Suiti ds =&y7 J ®Tp(x)tydS
Su+Su+Swv

e J D7 p(0AP" ()P dSY(1)
N
—&yT J DT p(x)Be’ (x)P dSY(1) (8.37)
SIV
The leftmost term in Equation 8.35 becomes

JaE,,-s,»jdv =6v'Ky(), K= JCDTB(X)D’BT(X)(I) dv
. (8.38)
J Suipii; AV = 8y"MY(1), M = Jp<I>T<p(x)<pT(x)q> dv

in which K is of course the stiffness matrix and M the mass matrix. Canceling the
arbitrary variation and bringing terms with unknowns to the left-hand side furnish the
equation

K+ Kg)y(@®) + (M + Mgy (@) = £(0) (8.39)
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f= D7 p(x)79dS
Su+Sm
Ks=| ®'exAe’x)®ds
SIII
Ms=| P ex)Be! x)PdS
ISy

Clearly, elastic supports on Sy; furnish a boundary contribution to the stiffness
matrix, while mass on the boundary segment S, furnishes a contribution to the
mass matrix.

8.6 THERMAL COUNTERPART OF THE PRINCIPLE
OF VIRTUAL WORK

For current purposes we focus on the equation of conductive heat transfer as

T
kV?T = pc, — 8.40
\Y% pee s, (3.40)

Multiplying by the variation of T — T, integrating by parts and applying the diver-
gence theorem furnishes

T
J(SVTTkVT dv + JSTpce % dv = JSTan ds (8.41)

Now suppose that the interpolation models for temperature in the current element
furnish a relation of the form

T —To = @r(x)®70(1), VT = Br(x)®0(1), q=—k (x)Pr0(1)  (8.42)

The left-hand terms in Equation 8.41 may now be written as

JSVTTkVT dv — 80" (OKr0(), Kr = chb?ﬁTB;cI)T dav
(8.43)

JSTpce% dv =807 ()M70(1), My = Jk<p£¢T¢§cpT dv
K7 and M7 may be called the thermal stiffness (or conductance) matrix and thermal
mass (or capacitance) matrix, respectively.

Next, suppose that the boundary S has four zones: S =S;+ S+ Sy7+ Spv. On
S; the temperature is prescribed as Ty, from which we conclude that 5T =0. On Sy
the heat flux is prescribed as anI. On Sy, the heat flux satisfies an:an1 —
h{(T —Ty), while on Sy, an = anl — hydT/ds. The governing finite element
equation is now
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M7 + Mys]0() + [Kr + Krs]0() = f1(1)

My = ‘I’;—[J

erheldS®r, Kis = <I>§J erhehdS®;  (8.44)
S

N

fr(t) = @ JQ o’ qidS, Q= Sy+Sy+ Sy

8.7 CONVERSION TO NATURAL COORDINATES IN TWO
AND THREE DIMENSIONS

The notion of natural coordinates is applicable in two and three dimensions. It
requires transforming the undeformed coordinates of the physical element to a
reference element with suitable symmetry properties. As an illustration consider
the quadrilateral element shown below.

We seek transformations {i(X;) and their inverses X;({) such that the nodes of
the physical element are mapped to the values (g @ (26)) =(—1,-1);
(£(1e+l)’g(ze+l)) — (1’_1); (gge+2)’§(2e+2)) — (1’1); (§§e+3)’§(26+3)) _ (1’_1) in the
transformed element. The coordinates {i(X;) are of course the natural coordinates.
In this instance we also require that straight lines remain straight lines. The element
in the transformed coordinates is depicted as follows. The mapping is achieved by
the functions

X Xy
ie_H) X;e-H)
Xl - {1 §1 §2 §1g2}¢)§ (e+2) X2 = {1 gl §2 gng}q)g (e+2)
1
X x5
1 -1 -1 17" 1 1 1 1
o 11 =1 =10 1-1 1 1 - (8.45)
S T R TS T A7 (O R R B '
-1 1 1 -1 1 -1

Along the sides {; = —1, 1, X; and X, are linear functions of {,. Accordingly they are
linear functions of each other and hence the top and bottom faces of the square in
Figure 8.5 map into lines between the nodal values at the endpoints in Figure 8.4. A
similar observation holds regarding the right and left faces.

Clearly the transformation relations between the physical and the natural coor-
dinates are reminiscent of interpolation models introduced heretofore for deformed
coordinates in terms of undeformed coordinates. If the transformation model
involves the same order of polynomial as the interpolation model, the element in
the natural coordinates is said to be isoparametric.
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X

+2 +2
X:Ee )’ Xée )

e+3 e+3
Xi )7 Xz( )

(e+1) yo(e+1)
X7 X

(€)
Xle ) Xée)

Xy

FIGURE 8.4 Two-dimensional element in physical coordinates.

The Jacobian matrix for the transformation is defined here as by

o o
0X g, 0L,
== 8.46
T ox o A
ot oL,

. . I Xi¢1.40) &4 . . T
in which X = {X2(§1’£2) } and { = { 3 } (Sometimes J is defined as (d{/dX)".)

The reader may find our definition surprising since, as first glance, { denotes the
coordinates being introduced by the transformation. However, we take the view that

&
-1,1 1,1

&

-1,-1 1-1

FIGURE 8.5 Two-dimensional element in natural coordinates.
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the natural coordinates now represent the reference configuration, since the final
matrices and vectors will be expressed in terms of the natural coordinates.)

The Jacobian matrix is reminiscent of the deformation gradient tensor F. The
transformation (X)) is invertible and the inverse transformation X;({}) exists if J and
hence its inverse are nonsingular. The volume (area) in the physical element dA and
in the transformed element dA; are related by dA,=det(J ')dA, and clearly a
singular inverse Jacobian matrix would imply mapping the physical element onto a
zero-volume element in natural coordinates. The determinant of the Jacobian matrix
is denoted as J: J=det(]).

Assuming nonsingularity, the inverse of the Jacobian matrix is readily verified
using the Chain Rule of calculus to be given by

90 94

_ (‘3X1 8X2
= 8.47
Vo o ®47

0X, 0X,

We now consider referring the Principle of Virtual Work to natural coordinates. The
inertial term becomes

JSuTﬁ pdV = JSuTii pJ AV, (8.48)

Now suppose that the displacement vector in element e is approximated using an
interpolation model in the natural coordinates:

u(X,t) = u@n) ~ @, QP (8.49)

The inertial term in the eth element is now

J'«SuTii pJ dVy = v} Mz,
(8.50)
Mg = @] “ P rp) dVg} @,

We next consider the consistent force, assuming that the traction vector is specified at
all points on the exterior boundary. In Chapter 13, we will encounter a relation
between the deformed surface area element dS, and the corresponding undeformed

element: namely dS;= udS in which pu = det(F)q/ng C'ng and n, is the surface

normal vector of the undeformed element. We may now write

dS = p dS;, g, = det(@)y/nf I T "o (8.51)
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in which dS; is the area of the element in the natural coordinate system and n;
is the corresponding unit normal vector. We now determine the corresponding
consistent force.

The term in the Principle of Virtual Work which represents the virtual external
work of the traction is transformed according to

JSuT(X,t)t(X,t) ds = J5uT(§,t)t(§,t)p,§(§,t) ds;

= 8v} fr. (8.52)

fr, = @ Jtpg(é)t(é,t)ug(é,t) as;

Finally we address the term representing virtual internal work of the stress, and is
hereafter called the stiffness term. First note that, in linear elasticity, owing to the
total symmetry of the tangent modulus tensor C(c;x),

SE]’,‘S,:]' = BE,:/‘Cijk]Ek]

8814] 9%By; Ouy
ox; ™ ox,

_ Oy [%
ez

osu)” _ osu

in which the fourth-order tangent modulus referred to natural coordinates is
expressed as

(9{,1:| aul
L,

Cijkl

Uy 0L,

[Cg]mjln: [JiTCJ_l]mjln: aX Cijkl 557 8X

The stiffness term referred to natural coordinates may now be identified.

odu odu
Jtr(SES) dv = Jtr({ aC } C, aC >JdV{ (8.54)

The interpolation model (Equation 8.49) implies a subsidiary model of the form

du(l,n)
dg

VEC( ) = B[ QP (8.55)
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Accordingly, the stiffness term assumes the form

Jtr(SES) dV — B‘YQK{e’Y;E

(8.56)
K. = @, [ B0 T©CI Q) OB/ Q) v,
The ensuing element level finite element equation is now stated as
M{e;y{e + Kye'Y{g = f{e (857)

The transformation to natural coordinates preserves the kinetic energy and the potential
energy of the element, in consequence of which assemblage of element matrices to
obtain global matrices proceeds by direct addition in the manner introduced in Chapter 7.

Similar arguments to the above furnish the transformations for the thermal
stiffness matrix.

JéVTTkVTT dA = J(V;TST)kJ‘TJ“ (V.T)J dA;
= 807Ky, (8.58)
Krze = ‘I);g JkﬁTgJ_TJ_lBﬂJ dV; ®r;

The transformations for the thermal mass matrix and the consistent thermal force are
parallel to the mechanical field counterparts.

EXAMPLE 8.1

Find the Jacobian matrix and its determinant for the transformation shown below (Figure 8.6).

SoLUTION

The transformation is achieved using

X1 Y1
_ - - X2 _ - . y2
x={l ¢ n ng}® u (Y {1 ¢ n ng}® Vs
X4 Y4

0.1,1 1.1,1.2

X2
&
11 11
)
1,0.1

X1 11 -1

FIGURE 8.6 Figure for determinant of a Jacobian.
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The matrix ® is given above in Equation 8.45. The Jacobian matrix is obtained as

i (1)
X
2
X
{010 L@l
x(3)
1
J= x<,4)
= x(z')
x(2)
{010 ¢
X
2
)
L "2
The determinant J is recognized as
AP
e
J=[{0 01 ¢}@ {01
(3)
X
e
(1)
X
A
{001 ¢} {0
x(3)
1
(4)
X
(0
@D @ 3 @ T !
={x” A A Ve {0
0
L\d
o 0 0
{(1) 2 3 (4)} T 00 !
=) 7 K e
1 1 1 1 0 -1 0
L0 =4 &
and finally

(6D A X x9Y=10 1 1.1 0.1};

A0 ]
(2)
X
{0 0 1 43@q
X
4
£
1
x5
P
{00 1 ciq o
X
4)
X5 ]
(1)
X
(2)
AT I
2 O
1
4)
X
K
K
10 4@
x(3)
2
K
0 K
X
01 ¢}— {010 c}®
x(3>
2
S1 x(24)
1
0 X
& @ x(22)
-4 x(23)
4
0 A0
x5 0 111 1
S D S G B e B I
SO )12 4|-1-11 1
A0 1 1 —11 -1

It is left to the reader to compute the value of J using the relations in the preceding lines.
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8.8 ASSEMBLY OF TWO- AND THREE-DIMENSIONAL ELEMENTS

We next consider assembly of stiffness matrices for physical elements in two
dimensions. Assembly in three dimensions follows the same procedures. Consider
the model depicted below (Figure 8.7), consisting of four rectangular elements,
denoted as element e, e + 1, e + 2, e + 3. The nodes are also numbered in the global
system. Locally, the nodes in an element are numbered in a counterclockwise
scheme starting from the lower left-hand corner. Suppose there is one degree of
freedom per node (e.g., x-displacement), and one corresponding force.

In the local numbering system, the force on the center node induces displace-
ments according to

foz = K uer + kQuen + ke + ke

_ ple+D) (e+1) (e+1) (e+1)
f6+1,4 - k4‘1 Uet1,1 + k4’2 Uet1,2 + k4’3 Uet1,3 + k4y4 Uet1,4

(e+2) (e+2) (e42) (e+2) (8.59)
e e e e
Jer21 = kl,l Uei2,1 + k1,2 Uet22 + k1,3 Uet23 + k1,4 Uet24

_ ple+3) (e+3) (e+3) (e+3)

fe+3,2 = k2!1 Uet31 + kz’z Uet32 + k2,3 Uet33 + k2,4 Uet3,4
The conversion from local to global coordinates is expressed by
Ue1 — U] Uep — UL Ue3 — U5 Ues — U
Uer1,1 — U2 Uetr12 — U3 Uep13 — U4 Uep1 4 — Us (8.60)

Uet2,1 = US  Uet22 — U Uey23 — U9 Uey24 — U

Uey3 ] — U Uer3p — U Uey33 — UZ  Ueyr34 — U7

e+3,4 e+3,3 e+2,4 e+2,3
e+3 e+2
e+3,1 e+3,2\7 8 9/e+21 e+22
e+3 e+2
6 5 4
e e+l
e4 e,3p///l 2 3\\\A
e+1,4 e+13
e e+l
el e2 e+l1 e+1,2

FIGURE 8.7 Two-dimensional assembly process.
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Adding the forces of the elements on the center node gives

5= kg‘jul + [k( +k(e+1)] 1y + k(€+])u3 i [k(e-H) n k(e”)}
DR R R s (KGR
e+ [+ RS s+ K g 8.61)

Taking advantage of the symmetry of the stiffness matrix, this implies that the fifth
row of the stiffness matrix is

€= (K T Y R K
[ k) + k(eﬂ) + k(Hz) + k(eH)] - - symmetry - - } (8.62)

The process can be repeated for all of the nodes, leading to the assembled stiffness
matrix. The process is essentially the same for solid and axisymmetric elements.

Of course, a conceptually easier way is to add the kinetic and strain energies of
the individual elements, referred to the global numbering system for degrees of
freedom, as explained in Chapter 7.

EXAMPLE 8.2

Assemble the stiffness coefficients associated with node n below, assuming plane stress
elements. The modulus is E and the Poisson’s ratio is v. K(l), K(z), and K® denote the
stiffness matrices of the elements (Figure 8.8).

SoLuTION

Now suppose there are two degrees of freedom per node (x- and y-displacements), and
two corresponding forces. Since the elements are three-noded, and each node has two
degrees of freedom, the element stiffness matrices will be 6 X 6 and the force vectors
will be 6 X 1.

FIGURE 8.8 Assemblage of triangular elements.
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The element level equation for element (1) is stated as

G
ok 8 | | [
R k8| | | g
O
€K Ry || e ||
Ky Ry ) s/ s

and similarly for two remaining elements.
Following the assemblage procedure, in the local system the force on the center

[IPRL)

node “n”” induces displacements according to

fan = kVuy + Ko + kS uns 4+ ksgvia + k9o + kgvis

forp = kw4 ko + kw3 + kv + kSvio + kv

foo = k;zl)uz,l + kgzz)uz,z + k%)uzg + kgi)le + kg‘;)vz,z + k%)vm

Fron = kS usy + kG un + kG urs + k) vay + kG vas + kD5

faa2 = k§31>u3,1 + k(232)u3,2 + k%)u3,3 + k(zi)v&] + k§35>\13,2 + k(236)V3,3

fran = kSuz g + kQusp + kG uss + k9 vy + kDvan +kvas
Conversion to the global numbering scheme for degrees of freedom is expressed by

Ul — Upp1 UL — Up U3 — Upt3 VL 7 Varl V12 — Vi VI3 — Vny3
Ul — Upyl U2 — Uy U3 — Upy2 V21 — Vil V22 — Vo V23 — Vpy2

Uzl — Upy2 U3 — Up  U33 = Upy3 V31— Vp2 V32— Vo V33 =7 Vny3
Now adding the forces of the elements on the center node gives
Foe = [+ K+ 3 - [ 5y Jatnsn + k53 4 K T+ [R5+ K53 s
+ [k + K Ko [k + K v + (K56 + K5 Tvnen + [R5+ K3 ] v
1 2 3 1 2 2 3 1 3
Sy = [kgz) +kG + k:(n)}”n + [kgl) + kgl)]“nﬂ + [k§3) + kgl)]”nﬁ + [k§3) + kgs)}”nﬁ
[ v [k K v+ [k K v+ [k 4 K5 v

The finite element equation for the three element configuration is

T kT T
mx Uy ﬁvc
kT
;+1’X Un+1 fn+1x
kn+2x Un+2 Jn+ox
T
kn+3,x Up+3 o fn+3x
T =
k., Vi Sy
T
Koy || Vest Jutty
T v
k’1+2,y n+2 fn+2y
k! V43 fn+3y
L ®n+3,y J
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The stiffness coefficients associated with the center node are as follows:

The remaining rows of the stiffness matrix may similarly be obtained, and the entries of
the mass matrix may be obtained by a similar process.

(K5 + k53 + k5]
[k + K57
[k + K5}
(K + k53]

[k + K53 + kS
[k + K
[k$e + &S]
[k + k5]
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kS + K5 + &S]
[K§) + k7]
(kG + k)]
[KSS + k5]

(K + kS + kY]
(K +
(K + K&
[KS§ + k53]




9 Solution Methods for
Linear Problems: |

9.1 NUMERICAL METHODS IN FEA

9.1.1 SoLvING THE FINITE ELEMENT EQUATIONS: STATIC PROBLEMS

We consider numerical solution of the linear system Ky =f, in which K is the
positive definite and symmetric stiffness matrix. In many problems it has a large
dimension, but is also banded. The matrix may be ‘“‘triangularized” to yield the form
K=LL’, in which L is a lower triangular nonsingular matrix (zeroes in all entries
above the diagonal). We may introduce z = L’y and obtain z by solving Lz = f. Next
~ can be computed by solving L’y = z. We now see that Lz = f can be conveniently
solved by forward substitution. Lz =f may be expanded as

[ 0 07 21 fl
by I»n 2 i
L Do I3 <N 5 ©.1)
0
L lnl ln2 lrm i Zn fn

Assuming that the diagonal entries are not too small, this equation can be solved,
starting from the upper left entry, using simple arithmetic: z; =f1/I;1, z2=1[f> —

bzl 23 =15 — 3121 — I222) /33, . . ...
Next the equation L’y =z can be solved by back substitution. The equation is

expanded as

© 2008 by Taylor & Francis Group, LLC.

[l Do hn ] (7 fi
0 122 Y2
00 B = 9.2)
ln—2,n—2 ln—2,n—1 ln—2,n f;r—2
0 bictn-1 Ip—1a Jn—i
L 0 an 0 0 lnn J Yn fn



Starting from the lower right-hand entry, solution can be achieved by simple
arithmetic as

Yn :ﬁ1/lnm Yn-1 = [ﬁl*l - lnfl,l’Yn]/ln*I,n*I
Yn—2 = [fn72 - ln72,n'yn - ln72,nfl 'yn—l}/ln72,n72, cee

In both procedures, only one unknown is encountered in each step (row).

9.1.2 MATRIX TRIANGULARIZATION AND SOLUTION OF LINEAR SYSTEMS

We next consider how to triangularize K;. Suppose that the upper left hand (j — 1) X
(j— 1) block K;_; has been triangularized to furnish K;_; = Lj,leT_l. To determine
whether the j X j block K; can be triangularized, we seek A; and [;; satisfying

K_ | k; L_, 0][L", N\
K=" f] = [ J H i1 f} 9.3
J [ Kk N ©-3)

in which k; is a (j—1) X 1 array of the first j — 1 entries of the jth column of K.
Simple manipulation suffices to furnish k; and /j;.

K =LA
- . (9.4)
i =\/kij —N\j N

Note that A; can be conveniently computed using forward substitution. Also, note

that [;; = | /kj — KjTKjill K;. The fact that K; > 0 implies that /; is real. The triangu-

larization process proceeds to the (j+ 1)st block and from there to the complete
stiffness matrix.
As an illustration, consider

L2 s

Ay=|1 11 ©.5)
11 1
3 4 5

Clearly L, = LT1 — 1. For the second block

1 01 A |1 %
{/\2 122] [0 122:| - {% % 9.6)
from which A, =1/2 and l)=1/1/3 — (1/2)2 _ 1/\/ﬁ And so

1 O
L, = [1 1} 9.7
2 V2
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We now proceed to the full matrix:

1 11
23
A
111
3 4 5
1 0 0 1 % I3
=|1 ﬁ 0o \/% I3 9.8)
LG By B3] [0 0 I3z
M1 % I3
= % % 131/2+l32/\/12
LG B /2+/V12 B+ B, + B,

We conclude that I3y =1/3, l5p=1//12, Z;=1/5—1/9 — 1/12=17/180.

The finite element problems so far considered are direct: They involve known
tractions and unknown displacements and can be solved uniquely owing to the
positive definiteness of the stiffness matrix. In Chapter 10, the solution method is
extended to a type of inverse problem in which tractions and displacements are
both specified for some degrees of freedom on the boundary nodes, while neither is
specified for other degrees of freedom.

EXAMPLE 9.1

Verify that the triangular factors L; and L3T for A; in Equation 9.5 are correct.

SOLUTION

From Equation 9.5

1 11 1 0 0
2 3 L
11 1 PO
Az = 7 3 7| L;=|2 Un 0
111 L1 _1_
3 45 3 V2 180
Now
r 1 1
1 0 0 I3 3
r_ |1 L S
Ll =3 /5 O 75 Tm
L1 1 1
L3 V2 V180 0 0 180
r 11
1353
|1l 1 1
— |2 3 1
11 1
L3 4 5

as expected.

© 2008 by Taylor & Francis Group, LLC.



EXAMPLE 9.2

Invoking Aj in Equation 9.5, use forward substitution followed by back substitution to
solve

1

SOLUTION

Introducing Lg'y =z and recalling L3 from Equation 9.5, the foregoing equation
becomes

1 0 0 a 1
1 1

2w =] =11
1 1 1

3 U5 Tsod \B 1

Using forward substitution

71 = 1, 2= \/E(l —%Zl) = \/g, 3 = \/180<1 —%Z1 _\/%Q) = \/§

Hence
1
z=1| 3
V5
Next
1 % % Y1 1
1 1
0 75 7mll»|=|Vv3
0 0 L]\7n V5

=
3

and using back substitution
V3=V 180V/5 = 30, Y2 = \/ﬁ<\/§_ﬁ7’3> =-24, vy =1 _%72 _%73 =3

We conclude that

30
vy=| -24
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EXAMPLE 9.3

Triangularize the matrix

36 30 18
= |30 41 23
18 23 14

A
\

SOLUTION

Triangularizing the upper left-hand 2 X 2 block K in the form K, =L,I%, gives
36 30| |6 0|6 A
30 41| A2 In||0 Ixn

from which

M=5, Ip=1/41-A3=4

Consequently, the 2 X 2 matrix K, triangularizes to
36 30| _[6 0[|6 5
30 41| |5 4(|0 4
Now extend the procedure to the 3 X 3 matrix K:
36 30 18 6 0 O 6 5 Az
30 41 23| =5 4 O 0 4 A
18 23 14 A3 Az I3 0 0 I

After simple manipulation we obtain

A3 =18/6=3, Ap=1(23-5A31) =2, L=./(14—13 —1}) =1

Accordingly, the triangular factor of K is

6 0 0

L=(5 4 0

321

EXAMPLE 9.4
For the linear system

36 30 24 Y 1
30 41 32 v, | =12
24 32 27 V3 3

triangularize the matrix and solve for vy, y,, ¥.
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SOLUTION

Triangularizing the upper left-hand 2 X 2 block A, in the form A, = Lng gives
36 30| _[6 O0[[6 A
30 41| (A Dnl||0 In

from which

Ao=5, lp=1/41-A2=4

Accordingly A, triangularizes as follows:

ER R HAI A

For the 3 X 3 matrix A,

36 30 24 6 0 O 6 5 Az
30 41 32| =5 4 0[]0 4 Az

24 32 27 A3 A I3 0 0 I

from which

A3 =24/6 =4, /\32:;1‘(32—5)\31):3, 133:\/(27_)‘§1_)‘§2):\/§

The triangular factor of L of A is now

6 0 0
L=|5 4 0
4 3 2

0 07 /x 1
4 0 |lal=|2
BN

2 =1/6, 2 =1/42—5z2)=7/24, z3=1/V2(3 -4z —32) = 35V2/48

\S)

Forward substitution results in

and also

1/6
z= 7/24
351/2/48
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Next

6 5 4 Y 1/6
0 0 V2| \ 1 35/2/48

and using backward substitution gives

vy = 35V2/48 - 1/V/2 =35/48, v, =1/4(7/24 — 3y;) = —91/192,

v, = 1/6(1/6 — Sy, — 4y,;) = —73/1152

We conclude that

—73/1152
v=| -91/192
35/48

9.1.3 TRIANGULARIZATION OF ASYMMETRIC MATRICES

The foregoing triangularization is applicable to positive definite symmetric matrices.
Asymmetric matrices arise in a number of finite element problems, including prob-
lems with incompressibility, unsteady rotation, or thermomechanical coupling. If the
matrix is nonsingular, it may be decomposed into the product of a lower triangular
and an upper triangular matrix, followed by forward and back substitution.

K=LU 9.9)

(It is also possible to triangularize a singular matrix, but L. will then be singular,
preventing the use of forward substitution.)

Assuming the (j— 1)st diagonal block has been triangularized, we consider
whether the jth block admits the decomposition

K. — Kj,1 Ky o Lj,1 0 Uj,] U;
! Kl kj NG|l oT

LjflUjfl Lj,1Uj

9.10
)\JTUJ;1 }\jTllj + ijljj ( )

Now u; is obtained by forward substitution using L;_;u;=ky;, and A; is obtained
by back substitution using Uijl A = ;. Finally, ul; = k;; — )\JT»uj, for which purpose
u; may be arbitrarily set to unity. After the triangularization process is completed, an
equation of the form Ku=f can now be solved by forward substitution applied to

Lz =f{, followed by back substitution applied to Uu = z.
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EXAMPLE 9.5

Triangularize the asymmetric matrix

2uA/L 0 .\
0 4uAL/Y?  —2uA/L
A 2uA/L 0

(This matrix will be seen later in Chapter 11 concerning incompressible materials.)

SoLuTION

Triangularizing the upper left-hand 2 X 2 block B, in the form B, =L,U, gives

2uA/L 0 {0 | junn up
0 4[LAL/Y2 - 121 lzz 0 Uz

On setting u1; and uy, as unity,
l“ = 2/.LA/L, 121 = 0, Uupp = 0, 122 = 4/.LAL/Y2

Now consider the 3 X 3 matrix B:

2uA/L 0 —A 2uA/L 0 071 0 ups
0  4uAL/Y? 2pA/L|=| 0  4uAL/Y* 0 | |0 1 ux
A Z,LLA/L 0 131 l32 l33 0 0 uszs

On setting u33 = 1, simple manipulation furnishes

l3| :A, 132 = 2/.LA/L, uiz = —L/Z/.L, Uz = —Y2/2L2, lxx = (AL/Z/.L +/.LAY2/L3)

Finally
2uA/L 0 0 1 0 —L/2u
B=LU= 0 4pAL)Y? 0 0 1 -Y?/21?
A 2uA/L  (AL/2u+ pAY?/L3) | [0 0 1

The decomposition is not unique since it is based on setting the diagonal entries of U
to unity.

9.2 TIME INTEGRATION: STABILITY AND ACCURACY
Much insight may be gained from considering the model equation

dy_

=—A 9.11
ar y (9.11)
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in which A is complex. If Re(A) > 0, for the initial value y(0) =y, the solution is
y(t) = yo exp(—At), and clearly y(f) — 0. In this event the system is called asymptot-
ically stable.

We now ask whether numerical integration schemes to integrate Equation 9.11
have stability properties corresponding to asymptotic stability. In other words, does
the numerical solution decay when the exact solution decays, and diverge when the
exact solution diverges? For this purpose we consider the trapezoidal rule, the
properties of which will be discussed in Section 9.3. Consider time steps of duration
h, and suppose that the solution has been calculated through the nth time step. We
seek to compute the solution at the (n+ 1)st time step. The trapezoidal rule (see
Section 9.3) is given by

Q ~ Yni+1 — Yn

., — Ay —2Lly, ' 9.12
B 7 Y& =5V + 3l 9.12)
Consequently,
1 —Xh/2
Yn+1 = 1 +Ah/2yn
1 —Ah/2]"
= |—1= 9.13
[1 +/\h/2] Yo ©-19)
1—Ah/2 1—Ah/2

T+ AR/2 1+ AR/2
the magnitude. If the first inequality is satisfied the numerical method is called
A-stable (Dahlquist and Bjork, 1974). We next write A = A, + iA;, and now A-stability

requires that
(-9 (5)
2 2
<1 9.14)
1M 2+ MY
2 2

A-stability obtains if A, > 0, which is precisely the condition for asymptotic stability.
Next consider the matrix—vector system arising in the finite element method.

Clearly, y, 1 — 0 if ‘ ‘ <1, and y, — 0 if’ . > 1, in which |-| implies

My + Dy +Ky =0, v(0) =", ¥(0)="1 9.15)

in which M, D, and K are positive definite. Elementary manipulation serves to
establish that

dil. . 14 Troe
— =y M v Ky|=—v'D 0 9.16
ar ZY 'Y+2'Y Y vy Dby < ( )

It follows that y — 0 and y — 0. We conclude that the system is asymptotically
stable.
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Introducing the vector p =1y, the n-dimensional second-order system is written
in state form as the (2n)-dimensional first-order system of ordinary differential

EEASIG)-G) e

We next apply the trapezoidal rule to the system:

o (fe )+ [ S (de ) = ()
9.18)

From the equation in the lower row, p, ;= % [’Y,H.] - ’Y,,] — p,,- Eliminating p,,
in the upper row furnishes a formula underlying the classical Newmark method:

KpYui1 = i1, Kp = {M +5D +§K}
(9.19)

2

s [M—F%D_%ZK}YH + [M+gD] %p” +’Z (Fuer +£4)

and Kp may be called the dynamic stiffness matrix. Equation 9.19 may be solved by
tiangularization of Kp, followed by forward and backward substitution.

9.3 PROPERTIES OF THE TRAPEZOIDAL RULE

We consider the accuracy of the trapezoidal rule, and by extension of Newmark’s
method. To fix important notions consider the model equation

dy_

o ») (9.20)

Suppose this equation is approximated as

oYpy1 + Byn + h[‘){ﬁl“rl + Bfn] =0 9.21)

We now use the Taylor series to express y,, and f,,, | in terms of y, and f,,. Noting
that y/, = f, and y// = f/, we obtain

0=aly, +Y,h+ih/2]
+ Byn + hy [y, + yih] + hoy, 9.22)
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For exact agreement through 4%, the coefficients must satisfy
a+pB=0, a+y+6=0, a/24+y=0 (9.23)

We also introduce the convenient normalization y+ 6 =1. Simple manipulation
serves to derive that a = —1, B=1, y=1/2, § = 1/2, furnishing

Y+l — Yn

1
h - E [f(ynJrl) +f(yn)} (924)
which may be recognized as the trapezoidal rule.
In fact the trapezoidal rule is unique and optimal in having the following three
characteristics:

(a) Itis a one-step method, using only the values at the beginning of the current
time step.

(b) Tt is second-order accurate—it agrees exactly with the Taylor series
through /7.

(c) Applied to dy/d¢+ Ay =0 with initial condition y(0) = yy, it is A-stable, i.e.,
numerically stable whenever system described by the equation is asymp-
totically stable.

EXAMPLE 9.6

For the model equation dy/dx =1 (y), develop a rwo-step numerical quadrature formula:

(@Y1 + By + ¥¥n1) +A[8f Yni1) + & (Va) +4f (u1)] =0

What is the order of the integration method (highest power in /& with exact agreement
with the Taylor series)?

SoLuTiON

Expressing y,,+ 1, Yu—1, fVns1), and f(y,_) using the Taylor expansion gives

" n A
Ynt+1 = Yn +hy;l +§y;’ +7y:'l” +Eyn +e

3!
h2 h% 4 -
Yamt = Y = Yy oy = g =

_ / hizll E///
f(Yn+l)7fn+hfn+2|fn +3|f;l +e

_ / h? /" n "
f(Yn—l)*ﬁz_hfn'i_Efn —gfn +--
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But f,, =y, also implies

h h3
FOui1) =y +hy, + 550 + 3,yn +

"

h h?
f(yn 1)—)7,1—/’! +2|yn _gyn_'—

On substitution into the quadrature formula, we have

2 4

h h? h
/ " iv
a {y” + hyn 2' yn + yyn + myn } + Byn

[ W, h K
Y =y S - 3,y;”+my,,}

/ // h /" h3 v /
S yn+hyn 2|yn +§yn +8yn
h? n i
+ {yﬁ, —hy 5 =3 y,,”}

For exact agreement through *, the coefficients must satisfy

+h =0+0(n)

a+B+y=0, a—y+6+e+{=0, a/24+7y/246-(=0
al6—y/64+8/2+(/2=0, a/24+y/24+6/6—-(/6=0

We now introduce the convenient normalization 6 + & + ¢ = 1. Simple manipulation
serves to derive

a=-1/2, B=0, y=1/2, §=¢(=1/6, £¢=2/3
The quadrature formula is now stated as
[0/ 251 + 0+ 1/21] + B[1/6f Gust) +2/3f () + 1/6f (ya-1)] = O
On rearranging

Ynt1 = Yn-1

= U Onen) + 4 ) +£ ()]

which is a the two-step numerical integration model. Since the relations are exact
through h*, this is a fourth-order accurate and its order of integration is four. However,
it is not A-stable, as discussed in Chapter 10.

EXAMPLE 9.7
In the damped linear mechanical system

My + Dy + Ky = £(1)

© 2008 by Taylor & Francis Group, LLC.



suppose that y(7) =+, at the nth time step. Derive Kp and r,, ; such that y at the (n + 1)
st time step satisfies

Kp¥,11 = rut1

SOLUTION

Introducing the state form relation p =+ in the equation, we have

oG5 6)-6)

This expression may be rewritten using the trapezoidal rule as

Mo (upnﬂ —m)) - <;<pn+l +pn>> _ (ml +1)
0 I %('YnJr]_'Yn) -1 0 %(’Ynﬂ_‘_'yn) 0

Now the lower row implies
Pui1 = % ('Yn+1 - 'Yn) —Pu
Now consider the upper row:
iM(Pit = Pu) + 5D(Pit + ) + 3KVt +¥a) =3 (Fasr + 1)
Eliminating p,,; results in
M (Vo = %) = 2P,) + 307 (Yot = ¥a) + 3K (Vs +¥,) =5 (it + 1)

On multiplying throughout by h2/2 and rearranging,

M+p+ K _ M+ 0P kly, + v +h2(f +1,)
2 4 Ynt1 = 2 4 Yn Pn 4 n+1 n

Comparing the above equation with the given equation Kpy, .| =r, 1, it follows that

h h?
Kp=M+-D+—K
D { +2 +4 }
h H? n?
Ly = l:M‘i'ED_ZK:l Yn +hMpn +Z(fn+l +fﬂ)

A higher-order time integration scheme is presented in Chapter 10.
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9.4 INTEGRAL EVALUATION BY GAUSSIAN QUADRATURE

There are many integrations in the finite element method, the accuracy and efficiency
of which is critical. Fortunately, a method which is optimal in an important
sense, called Gaussian quadrature, has long been known (it was previously intro-
duced in Chapter 7). It is based on converting physical coordinates to intrinsic
“natural” coordinates. Consider f: f(x)dx. Let £ == [2x — (a + b)]. Clearly, &
maps the interval [a,b] into the interval [—1,1]. The integral now becomes

- Lllf(f) dé. Now consider the power series

&) =ao+aré+ € + azf + s’ +as& + - (9.25)

from which

1
J f(€)dé =20 +0+5a3+0+3a5+0+--- (9.26)
-1

The advantages for integration on a symmetric interval, evident in the zeroes in
Equation 9.26, can be seen in the fact that, with n function evaluations, an integral
can be evaluated exactly through (2n — 1)st order in the Taylor series.

Consider the first 2n — 1 terms in a power series representation for a function:

&) =ar+mé+ -+ o, (9.27)

Assume that n integration (Gauss) points &; and n weights are used as follows:

1 n n n n
| FOEED SR ST SUEIERs) Sty
- i=1 i=1 i=1 i=1

(9.28)
Comparison with Equation 9.26 implies that
Sowi=2, Y wiE=0, > wiel =2/3,...
i—1 i—1 =1
zn:w-g?"-z __2 Zn:w-g?"—‘ =0 9.29)
o m—1 e .

It is necessary to solve for n integration points & and n weights w;. These are
universal quantities. Thereafter, to integrate a given function g(§) exactly through
£ s necessary to perform n function evaluations to compute g(&,).

As an example, we seek two Gauss points and two weights (n = 2). After simple
manipulation

wi+wr=2 (a), wi§ +wé=0 (b)

(9.30)
wiél +m&E =2 (©), wi +m&E =0 ()
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From Equations 9.30b and 9.30d, w1, [£] — €] = 0, leading to &= —¢;. From
Equations 9.30a and 9.30c it now follows that —¢&, = &, =1/+/3. Finally, the
normalization wy = 1 implies that w, = 1.

EXAMPLE 9.8

Find the integration (Gauss) points and weights for n =3.

SoLuTioN

Owing to complexity the steps in the solution are given in detail. On substituting n =3
in Equation 9.29

wi+wy+wy =2 (9.31)
wié) +waéy +wiéy3 =0 9.32)
Wi} + wadl + w3és =2/3 (9.33)
wi&] +waés +wséy =0 (9.34)
wiél +waéy +waéy =2/5 (9.35)
wié] +waé + wséy =0 (9.36)

Multiplying Equations 9.32 and 9.34 by §% furnishes
wiE16 + W& + widrE; =0 9.37)
WIEE + WS +wibE =0 (9.38)

Now, on subtracting Equation 9.34 from Equation 9.37, and Equation 9.36 from
Equation 9.38,

wiéi(& — &) +mé& (8 - 8) =0 (9.39)
wiE (8- &)+wm&(E-8) =0 (9.40)
On multiplying Equation 9.39 by &,
WiE (& — &) +wE&(E - 8) =0 9.41)
Equation 9.40 is subtracted from Equation 9.41 to furnish
wi&s (6 - 8)(E - &) =0 ©.42)

Assuming that the integration points are equally spaced, Equation 9.42 implies

& =& (9.43)
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On substituting Equation 9.43 in Equation 9.39, we conclude that
Wi = w3 (9.44)
On substituting Equations 9.43 and 9.44 in Equation 9.32, we learn that
waé, =0
and also
&H =0 (9.45)
Next substituting Equations 9.43 through 9.45 in Equation 9.33 and 9.35 leads to
wiél =1/3 (9.46)
wié =1/5 (9.47)
Equations 9.43, 9.46, and 9.47 serve to derive that
& = —\/%’ & = \/%
Simple manipulations furnish the remaining unknowns as
wy =5/9=ws, w,=238/9
The results are summarized as

w; =5/9, wy =8/9, w3=15/9

G =35 6£=0. &=\35

9.5 MODAL ANALYSIS BY FEA
9.5.1 MobAL DECOMPOSITION

In the absence of damping the finite element equation for a linear mechanical system,
which is unforced but has nonzero initial values, is described by

My +Ky =0, v(0) =2, 7v(0)="1 (9.48)
Assume a solution of the form y =4 exp(A7): it furnishes upon substitution
[K+XNM]y=0 (9.49)

The jth eigenvalue A; is obtained by solving det(K + )\Jz- M) =0, and a corresponding
eigenvector vector y; may likewise be computed (see example below). For the sake
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of generality suppose that A; and <y; are complex. Let 'yjH denote the complex

. .. . AKY, .
conjugate (Hermitian) transpose of y;. Now )\f satisfies /\f =— :;,M;I’_. Since M and
J J

K are real and positive definite, it follows that A; is pure imaginary: A; = iw;. Also,
without loss of generality, we may take <y; to be real and orthogonal with respect to
both M and K.

EXAMPLE 9.9

We seek the modes of the system governed by the equation

2 0 y,"+£ 2 —1|(y\_ /O

0 1|\ 7 m|—1 1 v, ) \0O
Let {*=w;’/wy’, wy> =k/m. For the determinant to vanish, 1 — {3 = +1//2. Using
1-¢ i =1/ \/E, the first eigenvector satisfies

NI } 7 (0> [ <1>}2 Ok
= .|y +[7 } =1
l:_l 1/\/5 7(21) 0 1 2
implying that ygl) =1/V3, 7<21) = \/f/ /3. The corresponding procedures for the
second eigenvalue furnish that y<12) =1/v/3, 7(22) = —/2/+/3. 1tis readily verified that
YITMyY = My =0, p, =473, w,=4/3

YRy = yTRy® =0, k) =4[1-1/V2], ka=%[1+1/V2]

Returning to the general development, the modal matrix X is now defined as

X=[vi Y2 ¥s " Yul (9.50)

Since the jkth entry of X"MX and X"KX are 'ijM'yk and 'ijK'yk, respectively, it
follows that

mye 000 ki 0
0 My o . 0 Ky . . .
XMxX=|. . . . .| XKX=|. . . . . (9.51)
M, ... Kp
The modal matrix is said to be orthogonal with respect to both M and K, but it is not
simply orthogonal since X' £ X”.
The governing equation is now rewritten as
X"MXE+ X'KXE =g, £=X"y, g=X't 9.52)

implying the (uncoupled) modes

wié; + ki = gi(t) (9.53)
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Suppose that g;(r) = go(?) sin wt. Neglecting transients, the steady state solution for the
Jjth mode is

& = —>—— sin(wt) (9.54)

It is evident that, if w” ~ (1)_/2=Kj//.1,j (resonance), the response amplitude for the jth
mode is much greater than for the other modes, so that the structural motion under this
excitation frequency illustrates the mode. For this reason the modes can easily be
animated.

EXAMPLE 9.10

For the system shown below (Figure 9.1),

(a) Find the eigenvalues

(b) Verity that the rows of K — ®3 M and of K — 0%, M are linearly dependent

(c) Find the eigenvectors

(d) Verify their orthogonality with respect to the mass and stiffness matrices

(e) Find the modal matrix

(f) Find the modal stiffnesses and modal dampers

(g) Find the modal masses

(h) Verify that the natural frequencies in the modal equations are the same as the
system eigenvalues

(i) Find the modal coordinates

() Find the modal forces

(k) Find the solutions for the two modes under the conditions

f()=0, x(0)=0, x(0)=xp
(1) Transform the modal solutions back to the physical coordinates

SoLuTiON

The governing equation is

CLIRII S AR B [+ U R (W R VY,

c [ 2c
3m ~aA~AASAAANAAN 2m
k 2k
IA F1 IAF2
X1 X2

FIGURE 9.1 Two-degree-of-freedom vibrating system.
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The natural frequencies are obtained from:

3 2] @[3 0]] -
o[ 7]l Y] -e oo

resulting in the eigenvalues ) , = <l + \/2/3)(0%.

If the first eigenvalue is used, the two rows become {-3,/2/3 -2} and {-2 —2,/2/3}.
The second row is /3/2 x first row, so that the two rows are linearly dependent.

The rows corresponding to the second eigenvalue are {3./2/3 -2} and {-2 2./2/3}.
The second row is —+/3/2 x first row.
We now seek the eigenvectors. Using the first eigenvalue gives

3(1 - (1 + \/i/‘3> )x(ll) - 2x(21) =0— xgl) = —\/%x(ll)
2 2 1 2
L= G ) = f V2
Similarly, x® = % {ﬁ}

The eigenvectors are orthogonal with respect to M and K since

stavaifo 2){ G} -0

2, 2] -to-aeni-a-

. 1 [v2 V2 } .
The modal matrix is X = — . The modal masses satisf
NG {\ﬁ -3 y
1 30 V2 12

wa=nt{vz 3}, ;’H_@} 12

5
Similarly, the modal stiffnesses are x; = 12 54fk and k) 12Jr“‘/‘k and the modal
dampers are 8, =122 4‘/_6 and 6, = 12+4‘/_c Finally, the modal damping factors are

{1 2= 2\/KllM ’ 2\/K2H2

The Modal Equations imply the natural frequencies

12 -4V6
Mok s ke
i (1 2/3)70)2
5
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12 4+ 46
Kz_k 5 _k - 2
__%—2 _—<1+\/2/_3>—wn1

I2%) m
5

in exact agreement with the relations obtained from the original (coupled) system
equation.

Since X! = % [g _‘%] the modal coordinates satisfy

S e eanivay

The modal forces are obtained as

{gl}zxr{fl}zi{\/ﬁﬁ +\/§fz}

82 fa V3 L V2fi = V3h

We now seek the solutions of the modal equations. Initial conditions in terms of modal
coordinates are given by

{mm} _ {0} {yl(O)} :ﬁ{\/ﬁxl(owﬂxz(m}
¥2(0) 0 7200) J 7 2v/6 | V3i1(0) — v21,(0)

and the two modal forces vanish: {g; } = {8} Introducing wg12 = wy124/1 — & ,, the

foregoing reduces to two initial single-degree-of-freedom initial value problems with
solutions

NIOES eXp(—§1wn1t)yl(0) sin(wq; 1)
@41
y2(0

»n() = CXP(*évzwnzf)yZ( ) sin(wgyt)
oy}

The solutions in physical coordinates are recovered using

{xl } :X{y‘ } :L{ \/i[yu(t)+yz(t)]}
x »2 V5 L V3Ii) — ya(0]
EXAMPLE 9.11

Figure 9.2 shows a clamped—clamped beam, modeled as two finite elements. Show that
the finite element equations decompose into two uncoupled modes: One representing
symmetric response and the other representing antisymmetric response.

L/2 + L/2

FIGURE 9.2 Clamped—clamped beam modeled as two elements.
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SoLUTION

The mass and stiffness matrices of a beam element with no constraints are given by

(e) () () (e)

M© — M7 M} K© — Kii Ky
MT(L’) M(L’) ’ KT(t’) K(é’)

12 22 12 22

M@ _PALe[ 156 —22L) o pAL[ 54 13L, © PAL.[ 156 22L,
W00 | =220, 412 | T2 420 |—13L, —3L2)7 T2 420 |22L, 4L

(E)_EI{ 12 —6Le}

ko _El © EI[12 —6L,
W3 | —6L, 4L

ko _EI o _ EI[12 6L,
PR 3|6l 2L

Kz T L3 |6L, 4L

Using L, = L/2, assembling the stiffness and mass matrices, and imposing the clamped
constraints results in

192E1/13 0 wa | 13pAL/35 0 Wi | J0
0 16EI/L || —w) 0 pAL3 /420 | —h [~ |0

in which w, is the transverse displacement of the mid-node. This equation represents
two separate single-degree-of-freedom systems, with the natural frequencies

oy — /33192 E\ﬁi, oy = 16 x 420 Eﬁi
13 \[pVar2 oVar

To consider the question of symmetry and antisymmetry, consider the case in which the

right-hand side satisfies M =0, but V = {(‘)/ ; ; 8 . This is to say that there is a shear
0> =

force imposed at =0 at the midpoint but no bending moment. If initially

(Wa(L/2,0) =Wwn(L/2,0) =0, —w5(L/2,0)=—wA(L/2,0)=0), then —w'(L/2,/)=0 and

the deformation is symmetric with natural frequency w,;. On the other hand, if V=0,

but V = { A?I’ ;;8, then w,(L/2, 1)=0 and the deformation is antisymmetric with
0s =

natural frequency ,;.

EXAMPLE 9.12

As an example of eigenvalue determination, consider

|1 0 ki ki
M=o 9] k=i 2]

Now det [K +A%I] =0 reduces to

(W) kit + koo ]A2 + [Kiikas +K35] = 0
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with the roots

1
A= 3 [—[ku + k] £ \/[ku + ko)~ 4 [kiika + k%z]}

:% [_[kll + kyo) 4/ ki1 — kzz]z}

so that both /\i and A% are negative (since k, and k,, are positive).
Returning to the general development, we now consider eigenvectors. The eigen-
value equations for the ith and jth eigenvectors are written as

[K n w_,?M] v, =0, [K+ oMy, =0 (9.55)

It is easily seen that the eigenvectors have arbitrary magnitudes, and for convenience we
assume that they have unit magnitude: ‘ij'yj = 1. Simple manipulation furnishes that

‘y,fK'yj — 'ijK'yk — {wjz'y,fM'yj — wi'ijM‘yk} =0 (9.56)
Symmetry of K and M imply that
YKy, — ¥/ Ky, =0, [0}¥]My, - o}y/My,] = (0} - o} )¥[ My, =0 ©.57)
Assuming for convenience that the eigenvalues are all distinct, it follows that
Y/ My, =0, v/Ky,=0, j#k (9.58)

The eigenvectors are thus said to be orthogonal with respect to M and K. The quantities
M = 'ijM'yj and k; = 'ijK'yj are called the (jth) modal mass and (jth) modal stiffness.

EXAMPLE 9.13

(a) Find the modal masses u; and u, and the modal stiffnesses k; and k, of the system

1 0|/ I —1|(v\_[10}) .
3{0 2}(72)+27{_1 2}(}’2 = {20 sin(10¢)
(b) Determine the steady state response of the system (i.e., particular solution to the
equation).

SoLuTiON

Consider the homogeneous equation

M(?l) +K<”1> =0
Y2 Y2
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vl ) < 26

For det[K — °M] to vanish (9 —¢%) = £9/v/2. For (9 — (%) = +9/V/2, the eigen-
vector is obtained from

27/vz —21 1(¥) _ (0 RO
7 W) (0h) = (5 BTbT =
Simple manipulation furnishes
'y(ll) =+/2/3 and 'ygl) =+/1/3
The corresponding procedure for (9 — {*) = —9/v/2 furnishes

W =V23 ad ¥ =-/1/3

The modal matrix X is given by

>
Il
.</—\
2
C
.
I
—
NS
~
W
NS
~
W
| I

Hence, the modal masses are given by

- [ ML -1

so that u; = u, =4. The modal stiffnesses are obtained using

e[ B I B
{3648\6 0 ]
0

58]

36+ 18v2

and so k| = 36 — 18y/2 and k, = 36 + 18+/2. The steady state response of the system
satisfies
gjo

&=—"" sin(wr)
1Tk — w2,uj

Since g, sin(wt) = g(t) = ( ég) sin(10¢), simple substitution furnishes

10sin(10z 20 sin(10¢
£ = U0 ng g, = (100

36 — 18v/2 — 100(4) 36+ 18v2 — 100(4)
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from which the steady state solution results as

1
£ = | 18279V2 |ssincion)

182 + 92

EXAMPLE 9.14

Express the following equations in state form, apply the trapezoidal rule, and triangu-
larize the ensuing dynamic stiffness matrix:

My+Ky—-3a=f 3y=0

(Equations in this form will be seen to arise in finite element models of incompressible
elastic bodies.)

SoLuTioN

The foregoing equation is expressed in state form as follows:

M 0 0] /v@®Y\ M K -3 /%0 f(?)
0O K of[v®)]+|-K 0 0 vy | =1 0
0" 0" o \=() (1K S (1) 0

This expression is rewritten using the trapezoidal rule and p="y as

M 0 0]/L(pui—p,) M K 37 /1(pui+p)
o K 0|f[Ll(vyy—v) | +|-K 0 0 5 (Yt +v0)
0" 0" 0] \j(m1 —m) 0" 300 J\j(mu + )
%(fn+l+fn)
- 0
0

The second row implies that p,,; = 2 (v,,; —¥,) — P, enabling the first row can be
rewritten as

1

1. ]2 1 1
ZM [ﬁ (Va1 = ¥a) — 2pn:| + EK('YnH V) — Ez(ﬂnﬂ + ) = 5 (Fui1 + 1)

Multiplying throughout by 4?/2 and rearranging gives

h? h? h?
|:M + ZK:| ’Yn+l - Zzﬂlﬁ'l = Z [fn+1 + fn - K‘Yn + 277’1] + M[le + hpn] (959)
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The third row, after multiplying by #%/2, is now

ZE Ynt1 = _ZE Yn (960)

Equations 9.59 and 9.60 are written in matrix—vector notation as

n i
M+IK 4 <’Yn+l>_ 2rr1
57 0 |\ ~i3ly,

in which
gn+1 = }sz [fn+1 + fn - K‘Yn + Eﬂﬂ] + M[‘Yn + hpn]
The dynamic stiffness matrix emerges as

M+ZK —2y
Kp=|
eyt 0

Now K, is decomposed into a product of a lower triangular and an upper triangular
matrix Kp =LU as

2 2
M+LK -3 [
Lyy Lyn|| 0 Uy

L, 0 } [Un U12:|
2T
ey 0
On setting U} = LIT1 and L,, =1, we find that
LyLl =M +%K
which can be triangularized to find L;; since, M and K are positive definite. In addition
Up=-2L7'Y, Ly =53"L{, Up=-LyUp=253"Li/LY
and finally
L 0 L1T1 - % Ll_llz
Kp=LU=

P~sTy =T
IE L” 1 OT %ETLT]TL?IIE

EXAMPLE 9.15

Derive general expressions for the modal decomposition of the two-degree-of-freedom

system
ki k2 {Xl 4| mi {551 _ 0}
kip ko | | x2 myy my | | X2 0
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SoLuTION

(a) Eigenvalues

2
kit — *myy kip — @?mpp
0 = det ) )
ki —w*miy  kyp — 0 ma

= (ki — @’my) (ka2 — @*mn) — (kia — @’my2) (k1o — @?my2)

= (kitkaa — ki) — @*(mytkay + kjymay — 2kipmyn) + (w2)2(m”m22 —m},)
Letting
A= (kitkan — k1), Apn = (mykoz +kyymay — 2kiamin), Ay = (my1ma —m,)
the eigenvalues are obtained as

1
(@),,= mAmk £/ (Aw)® — 40

We know from other considerations that (A,x)* — 4A; > 0.

(b) Eigenvectors
The eigenvector paired with the eigenvalue w; satisfies

. AN\ 2 A\ 2
(k]] - wzm“) () <k12 — wfmn)x(z/) = 0, (xﬁ”) +(x(2/)) =1

from which

ki — m“

ki — w2m12

A = 1 U _
2 2

1+ kll_ m]l 1+ kll_ szll

kip — mlz kip — m12

(¢) Modal matrix

- 1 1 -
1+ ki — wimy 2 1+ ki — wimy 2
X X ki 7w%mlz kio 7w§m]2
X = [x X :| = ki —wimy _kn *wzmn
21 X2 P— " ko —wmn
2 2
ki — wfmy ki1 S|
Rt IR VARd (=)
_\/ + ki — @lmyy + ki —wimiz) |
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(d) Modal masses and stiffnesses

XTMX:{MI 0}, XTKX:{KI 0}
0 Mo 0 K2

_ .2 2 _
By = Xmyy 4 2 xm + X3 my, Kk = x5k + 2xx1k 4 X3 koo

_ 2 2 _ .2 2
Mo = Xphyy + 2X12X00m + X5Mp, Ko = Xpkiy + 2x12X00m 2 + X5,mn

(e) Modal coordinates
The modal coordinate vector y is obtained from the physical coordinate vector x

using
-1
Yol _ [*nn X2 X1
Y2 X1 X22 X2
Carrying out the manipulations gives
{ X22 _-x12:|
{xl } _L=X1 X {YI }
X2 X11X22 — X21X12 (Y2
_ 1 { X0y — X122 }
XXz — XXz ( —x21y1 + X11y2
(f) Modal force and physical force

The modal force vector g is now obtained from the physical force vector f:

R
£ h
{lefl -Hmfz}
xXi2f1 + x22f2

(g) Modes

Using the foregoing relations, the system is expressed as modes, that is to say, as
two uncoupled second-order single-degree-of-freedom systems.

w1 +kiyr = gi(0)
MY + Kays = ga(t)

EXAMPLE 9.16

Consider the effect of the mesh on the eigenvalues of the simple system illustrated
(Figure 9.3).

SOLUTION

Formulating and assembling the stiffness and mass matrices and imposing the con-
straints at the two ends results in a single-degree-of-freedom system governed by
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FIGURE 9.3 Two-element model of a clamped—clamped rod.

1 1 pAL ..
BA| —+—F |uL ——ii(Ly,0) =
<L1+L—L1)u( 1,1 + 3 u(Lyt) =0

The eigenvalue is given by

V3 El L
W, = —F— ——, o =
va(l—a)\ pL L

If a=1/2, w, = %5\/%:%\/%. However, If a =1/4, w, = %\/%. These two

results are significantly different from each other and from the exact solution, which

isw, =7,/F

However, accurate results may be obtained for this minimum eigenvalue by using a
sufficient number of elements.

9.5.2 COoMMENTS ON EIGENSTRUCTURE COMPUTATION IN LARGE FINITE
ELEMENT SYSTEMS

Jacobi and Subspace Iterations (cf. Bathe, 1996) are prominent among the many
methods which have been formulated to compute the eigenvalues and eigenvectors
of a large finite element system. The first finds all eigenvalues of the system, and then
finds the eigenvectors using the eigenvalues. The second selectively finds the lowest
eigenvalues and corresponding eigenvectors.

One difficulty with using the finite element method for eigenstructures is that the
mesh makes a contribution to the values obtained. This is a relatively minor problem
for the lowest modes, but becomes progressively more bothersome as the mode
number increases.

In Chapter 10, we describe an easily visualized method, which we call the
hypercircle method (Nicholson and Lin, 2006). It represents a kind of steepest
descent optimization method. For present purposes, we describe the minimum
properties of eigenvalues and eigenvectors. For finite element equation of a linear
elastic system MYy + Ky = 0 with positive definite symmetric matrices K and M, the
minimum eigenvalue and corresponding eigenvector (called an eigenpair) satisfy the
Rayleigh quotient relation

) x Kx, . xTKx
An = mjm A= xI'Mx, ~ Al XTMx ©-61)
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Since the vector iterates in the minimization process are constrained to have unit
magnitude, all such vectors are related to each other through a proper orthogonal
matrix. If xX© is the initial iterate, then the vth iterate may be expressed as
x” = Q,x. It is readily seen that this reduces the iteration process to determining
a sequence of rotation matrices which progressively reduce the magnitude of the
Rayleigh quotient.

However, once an eigenvalue and an eigenvector have been determined, the
matrices must be altered in such a way that the subsequent minimization steps do not
return to the same pair. If the eigenpair is actually removed the process is called
deflation. In contrast in Chapter 10, a replacement process is described in which the
lowest eigenvalue is replaced with a higher value without altering the eigenvectors.
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’I O Solution Methods for
Linear Problems: Il

10.1 INTRODUCTION

Chapter 9 presented a number of conventional numerical methods in the linear FEA.
This chapter introduces three comparatively advanced topics. The first is solution on
an inverse problem, while the second addresses use of fourth-order time integration
method, and the third presents an optimization-based method for computing eigen-
values and eigenvectors.

10.2 SOLUTION METHOD FOR AN INVERSE PROBLEM

10.2.1 INVERSE PROBLEM IN ELASTICITY

Many practical applications involving response of elastic bodies give rise to inverse
problems. In FEA, for a given mesh and set of physical properties, even though a
well-posed direct problem generally possesses a unique solution in classical linear
elasticity, a corresponding inverse problem (based on the same stiffness matrix) may
not. Furthermore, even when the inverse problem possesses a unique solution when
modeled “exactly”” using the classical linear theory of elasticity, an unfortunate
choice of a mesh may cause the finite element version of the inverse problem to
fail to do so. The current formulation addresses a particular example of an inverse
problem and exploits a matrix nonsingularity criterion for assuring that the finite
element model possesses a unique solution. A numerical test is applied to verify
satisfaction of the criterion. The test is based on the linear independence of the rows
of a nonsingular matrix. If the nonsingularity condition is violated, the mesh can be
modified and the nonsingularity condition applied again.

In a linearly elastic body which has known physical properties and which is
experiencing small strains under statically applied loads, the finite element equation
may be written as

u f Kii Kp Kz
K up = f2 N K= K21 K22 K23 (10 ])
u; 0 K3 Kz K3

Here the n; X 1 vector u; denotes the displacement degrees of freedom at interior
nodes, while the n; X 1 vector and the n, X 1 vector u, denote displacement degrees
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of freedom at two different sets of boundary nodes. It is assumed that external forces
are applied only to boundary nodes, with the n; X 1 force vector f; and the n, X 1
force vector f, referred to the two sets. All matrices and vectors are real. Further-
more, the finite element stiffness matrix K is positive definite, written K > 0.

The system has n degrees of freedom in which n=n; 4+ n, 4+ n;. It is assumed
that Equation 10.1 reflects degrees of freedom remaining after any simple constraints
on the body have been applied. Here, in a simple constraint a displacement degree of
freedom is specified and the corresponding reaction force is an unknown. (Direct
problems only exhibit simple constraints.) This contrasts with complex (overspeci-
fied) constraints appearing in inverse problems in which both the displacement and
force are prescribed for a degree of freedom.

In finite element models of static problems in linear elasticity, the n X n stiffness
matrix K is symmetric and positive definite (after simple constraints have been
enforced). In the direct problem, which is considered ““well posed,” the force vectors
f; and f, are prescribed, and the corresponding displacement vectors u; and u, are
unknowns to be determined. Accordingly, at each boundary degree of freedom only
one quantity (the force) is specified. Positive definiteness of K implies that the
solution of the direct problem exists and is unique.

In contrast, in the particular type of inverse problem (e.g., Dennis et al., 2004) of
interest here, the first node set is “overspecified” in that displacements and tractions
are specified at the same nodal degrees of freedom (complex constraints). Corres-
pondingly, the second node set is ““‘underspecified’ in that neither displacements nor
tractions are specified at the degrees of freedom. As shown subsequently there is no
assurance that a unique solution exists for the finite element inverse problem even
when it does in the direct problem.

10.2.2 ExisTeNCE OF A UNIQUE SOLUTION

We first employ an example to demonstrate that in inverse problems a unique solution
may not exist even though the solution of the corresponding direct problem does.

EXAMPLE 10.1

Let Ky and K5, be two n X n positive definite symmetric matrices, and let K;, denote a
singular n X n matrix. Next, introduce the matrix H given by

H— { K VKK, } _ {\/ﬁn 0 }{\/Kn K ] (10.2)
KLvKi KLKp + Ko K, VK» 0" VKx

Of course, under the stated conditions H is positive definite and symmetric, written as

H>0.

Direct Problem: Letting {:“ } be a known 2n X 2n vector, positive definiteness of H
k2

implies that there exists a unique solution for the unknown vector {:’l”' } satisfying

uy, — fkl
H{ llu; } - {sz }
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Inverse Problem: Now suppose that the right-hand side contains the vector is {:"‘ } in

u2
which f; is known but f,, is unknown. Also, suppose that the left-hand side now

L3

contains the vector {u } in which u; is known but u,; is unknown. We are now

{ukl } _ {fkl } (10.3)
W fuZ

u2

confronted with the inverse problem

K VKK
KLvK, KLKp + Ky

The upper block row implies that

VK Kpu, = i — Kijjuy (10.4)

But K, and hence \/K”K]z are singular. Hence, either there is no unique solution for
u,, or there are many solutions. The second block row does not mitigate this difficulty
since it introduces the additional unknown vector f,,. Again the inverse problem
involving H does not possess a unique solution although the direct problem does.
Returning to the general development, a sufficient condition is now presented for the
existence and uniqueness of the solution to a finite element model of the inverse
problem of interest. However, as will be demonstrated, it is quite possible that the
stiffness matrix in one mesh will not satisfy the sufficient condition, while the stiffness
matrix in another mesh for the same physical problem will do so.
From the third row in Equation 10.1, we have

Kju; + Kpu, + Kzzu; =0 (10.5)
and, recalling that K33 >0,
u; = — K3 (Ksuy + Kauwp) (10.6)
Upon substitution, the upper two rows provide the equations
[Ki1 — KisK3 KarJu + [Kip — KisKy K Juy =1 (10.7)
(Ko — KosK35 Ky Jug + [Ko — KosK K Juy =1 (10.8)

Positive definiteness of K implies that its principal minors are positive definite. It
follows that

K — KiK' K3 >0
K» — KiK' K3 >0

and

Ki — KiK' Kz K — KiK' Ks

B 3 >0 (10.9)
Kii — Ki3K;; Kz Ko, — KK Ks,
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Now suppose that u; =u; and f; =f; are known, while u,=u, and f,=f, are
unknown, thereby introducing an inverse problem of the type of interest here. Equations
10.7 and 10.8 are now rewritten as

[Kii — Ki3Kyy Ko Jug + [Ki2 — Ki3Ki K Ju, = fi (10.10)

(Ko — KoK KarJu + [Ko2 — KosK5 Ko Ju, =1, (10.11)
Equation 10.10 immediately furnishes
[Ki2 — Ki3K5 K Ju, = £ — [Kiy — Ki3K5 Ky Jug (10.12)

For the solution of the inverse problem expressed by Equations 10.10 and 10.11 to exist
and be unique it is necessary and sufficient that K;, — K13K3’3' K3, be nonsingular,
regardless of w; and f;. Once u,, is obtained by solving Equation 10.12, f, is immedi-
ately found from Equation 10.11.

EXAMPLE 10.2

Inverse problems in two-element cantilevered beams

Figure 10.1 depicts a cantilevered beam modeled by two elements. The elastic
modulus E and the bending moment of area I are the same in the two elements, but
their lengths L; and L, differ. The (unclamped) nodes are denoted as 1 and 2.

The vertical (z) displacement and slope are denoted by w, —w’, the shear force by V,
and the bending moment by M. The finite element equation for the two-element beam
configuration is given by

r 12 12) (6 6 12 6
) \6 B B B
6 _6) (4 4 6 4 w(Ly) V(L)
g| L\ED 13 \Li Lo L3 L W) (_ ) ML) (10.13)
12 6 12 6 w(Ly +L,) V(L +Ly) '
L3 I3 L3 L3 —w (L1 +Ly) M(Li+Ls)
6 4 6 4
I L3 L, L3 L |
V4
— —_—t —
/Vy
SN Y E, | 2| —x

FIGURE 10.1 Inverse problem for a two-element beam problem.
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Four distinct inverse problems are now considered.
Case I.  w(L,), V(Ly), w(L; + L), V(L + L) are prescribed.

6/Li —6/L; —6/L3
6/L 6/L;

fact, it is with determinant equalling 36/L3L3.

The solution exists and is unique if [ } is nonsingular. In

Case II:  w(L,), V(L;), —w'(L; + L,), M(L, + L,) are prescribed.

6/I2—6/12 6/13
—6/13  6/I2
matrix in the first case and has the same nonvanishing determinant.

The matrix of interest is [ ] which is the transpose of the

Case III: —w/'(L,), M(L,), —w'(L, + L,), M(L; + L) are prescribed.

12/03 + 12/13  —6/13
—6/L3 4/L,

minant equalling 48/L3L, + 12/L5.

The matrix is [ ] arises which is nonsingular with deter-

Case IV: —w/'(L,), M(L,), w(L; + L), V(L + L) are prescribed.

: 12/03 +12/13  —12/13
The matrix [ o 612

] is nonsingular, with determinant
72/L315.

10.2.3 NONSINGULARITY TEST

We next introduce a test for nonsingularity of K;, — K13K3_3' K3,. Of course it is
necessary that n; = n,, since otherwise this matrix is not square and hence is singular.

The first result, which is easily proved, is that K;; — K 13K2_21 K3, is nonsingular if,

e [ Koo Ko : ;
and only if, [Kn K33] is nonsingular.
. . K
Next a test of nonsingularity of [K

2 gzz} is given. An n X n matrix A may be
. . 32 33
written in the form

A= | af (10.14)
aT

n—1
a

T
L 4,

in which the ith row of the matrix A is written as the row vector a,-T. Using Gram-
Schmidt orthogonalization, we may construct a set of orthonormal base vectors e; as
follows. The n base vectors e; are given by
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€ 231/|a1|
& =a, — (ale)e, e =&,/|&]

n—1
R o (10.15)
Gir=a,1— ) (A €)e;, €1 =& 1/[é 1]

J=1

n—1
én =a, — Z (asej)ej7 €, = én/|én‘
=1

If A is nonsingular, the jth row vector cannot be a linear combination of the foregoing
Jj—1 row vectors. Accordingly, the jth row vector a; exists in the j-dimensional
subspace spanned by orthonormal base vectors e, €,, . . . , €;. For the moment, suppose
instead that the matrix A is singular with unit rank deficiency, and that a’ is a linear
combination of the foregoing row vectors and hence exists in an n — 1-dimensional
subspace spanned by the base vectors ey, €, ..., ¢, ...,€,_;.But,if €, simultaneously
(1) lies in the n — 1-dimensional subspace and (ii) is orthogonal to the base vectors of
the subspace, it must equal the null vector: €,=0.
Accordingly, the condition for the matrix A to be nonsingular is

& £0, k=1,23,....n (10.16)

Conversely, if any of the vectors &, vanish, A is singular.
Simple examples are now introduced to illustrate the application and perform-
ance of the nonsingularity test expressed in Equation 10.16.

EXAMPLE 10.3

We first consider the matrix

1 2
A= {2 4+a} (10.17)

in which & << 1. Following the operations in Equation 10.15 the base vectors are found
to be

s sl
8

In fact, this matrix A is nonsingular if £ > 0 and becomes singular when ¢ | 0. But also
note that, in the current test, & # 0 if £>0 and &, — 0 as £ | 0, consistent with
Equation 10.16.

o>
]
Il
—
IO

| —
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EXAMPLE 10.4

Next, consider

1 2 3
A=|[2 4 6+¢ (10.19)
3 6 944&

We first seek to determine whether the current test correctly identifies values of & and
&, for which A is singular. We first check &,.

1
1
e =——=< 2
1 V14
3
2 1 1
é 4 {2 4 6+ }1 PR
= — & e ——
’ Y14 V14
6+ & 3 3
-3
—i 6 (10.20)
“1a el :
5

It is evident that A is singular if &; =0. The current procedure furnishes that &, # 0 if
g1 >0, but & — 0 as &, | 0. Assume for the moment that £, > 0, so that

-3
1
e =— 10.21)
2= (
Note that &, does not appear in e,.
We next determine the third base vector, assuming &; # 0.
3 1 1
é 6 {3 6 94+&} ! 2 ! 2
= — el —— _
3 2 Jia Viv
9+& 3 3
-3 -3 0
{3 6 9+ }—1 6 L 6 0 (10.22)
- & — — = .
210 V70
5 5 0

The test in Equation 10.16 indicates that the matrix A is singular regardless of &,. That
this result is correct is easily seen by recognizing that the second column in A is
proportional to the first column regardless of &, (or &;).
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10.3 ACCELERATED EIGENSTRUCTURE COMPUTATION IN FEA
10.3.1 INTRODUCTION

Calculation of lowest modes is a common task in finite element modeling of large
systems. The primary established method in FEA is Subspace Iteration (Bathe,
1996). Here, an optimization algorithm (Nicholson and Lin, 2006) is described
which exploits the fact that (i) the eigenvectors terminate on a unit hypersphere
and (ii) that the minimum eigenvalue and associated eigenvector satisfy the Rayleigh
minimum principle. At the current estimate for the minimizing eigenvector, a direction
on the hypersphere is found analytically in which the Rayleigh quotient experiences
“steepest descent.” Kronecker product algebra is instrumental in the derivation. The
current eigenvector and a unit vector representing the direction of steepest descent
define a plane intersecting the hypersphere along a unit hypercircle. An analytical
solution is found for the vector minimizing the Rayleigh quotient on the hypercircle,
constituting a hypercircle counterpart of a “line search.”” At this last vector a new
steepest descent vector is determined and the process is repeated. In a numerical
example, the algorithm converges very rapidly. Also introduced is a counterpart of
““deflation” to replace the smallest eigenvalue while leaving the eigenvectors and the
dimension of the matrix unchanged. The deflation procedure currently is based on
the assumption that none of the eigenvalues in the lowest modes are repeated.

10.3.2 PROBLEM STATEMENT

For dynamic response of a linear elastic system, the finite element equation is
conventionally written as

Mx + Kx = f(¢) (10.23)

in which the matrices M and K are n X n, real, positive definite, and symmetric,
while X and f(r) are real n X 1 vectors. For convenience the foregoing system is
rewritten as

X + Kx = f() (10.24)

in which K =M~ KM ~'/? and x = M'/?%. The modes of the system are determined
by the eigenvalues A; and the real orthonormal eigenvectors Xx;, with the assumed
magnitude ordering A > A, > --- > A,,. The primary interest is in the low-frequency
modes, say with A; having magnitudes less than a user-specified threshold value.

The foundation of the method being introduced is minimization of the Rayleigh
quotient (e.g., Dahlquist and Bjork, 1976). Namely, the minimum eigenvalue A, and
the corresponding minimizing eigenvector x,, satisfy

An(K) = lgljign A;(K)

T
x, Kx,

min (x” Kx) (10.25)

x'x=1
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To enforce unit magnitude of n = x/v/x”x a priori, we replace n with
n=Qvu (10.26)

in which v is a unit vector chosen to give the initial estimate of the minimizing
eigenvector. Also Q is an orthogonal transformation rotating v to n, which of course
is also of unit magnitude. Clearly, the tip of n lies on a unit hypersphere (a sphere in
n-space). As Q changes during minimization, the tip of n prescribes a path on the
hypersphere. Otherwise stated, the task is to determine the hyperspherical path which
is optimal in a meaningful sense and which terminates at the tip of the desired
eigenvector.

10.3.3 HyYPERSPHERE PATH OF STEEPEST DESCENT

We now determine the differential dQ corresponding to the most rapid rate of
decrease of @, = v'Q” KQu. Letting q denote VEC(Q), Kronecker Product Algebra
(presented in Chapter 3) furnishes the following relations:

dd,(Q) = v/ dQ"KQv + v QTK dQv

=v! @ v VECdQT KQ + Q'K dQ)

=" @ v [(Q"K)® IV +1® (Q"K)]dq

= ['Q'K)®v'U +v" @ ' Q'K)ldq

=m’ dq (10.27)
in which

dq = VECWQ) m’ = I+ U)v" ® @’K), n=Qu
However, we may also write
d®; = 7(QM” dQ) (10.28)

in which M=IVEC(m) and 7 denotes the trace. Invariance of the trace under
similarity transformations implies

d®, = r(M"dQ Q") (10.29)
Note that the matrix dQ Q7 is antisymmetric.
Let B=QM” and let C = %(B — BT). The trace vanishes for the product of a

symmetric and an antisymmetric matrix:

d®; = 7(BdQ Q")
= 7(CdQ Q") (10.30)
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Note that C? is negative definite if the antisymmetric matrix C is nonsingular, so that
steepest descent is attained if dQQ7 is proportional to C. Accordingly, we seek the
path defined by the relation

cQQ

dQ = m (10.31)
and dA may be viewed as a differential arc length since
dA = 7'2dQdQ") (10.32)
Away from the minimum, the procedure coerces @ to decrease since
dd = —dAT2(=C*Q) <0 (10.33)

Of course the current position vector after j iterations is given by n;= Qv, in which
Q; denotes the current value of Q. The method for identifying an orthogonal matrix
Q (i.e., Q)) rotating v to n(n) is described in Nicholson and Lin (2006).

10.3.4 HYPERCIRCLE SEARCH

Suppose that j iterations have occurred leading to the current vector n;= Qv. We
introduce the incremental position vector dn; = dQ;n;. It follows that to first order in
the increments

n/ dn; = vTQjT dQ, v

=0 (10.34)

since Q7 dQ is antisymmetric. It also follows that the unit vector r(n;) given by

d .
ny (10.35)

\/dn/ dn;

is orthogonal to n; and hence is tangent to the hypersphere. We say that the steepest
descent from position n; occurs in the direction represented by the unit vector r(n;).
The vectors n; and r(n;) define a hyperplane whose intersection with the hypersphere
is a hypercircle, as illustrated in Figure 10.2. Any vector p terminating on the
hypercircle may be expressed in terms of n;, r(n;), and an angle 7, illustrated in
Figure 10.3. Likewise, on the hypercircle @ may be expressed as a simple function of
n;, r(n;), and 7. The hypercircle search simply consists of determining the angle 1
which minimizes @ on the hypercircle. It will now be seen that determination of 7,
reduces to a simple algebraic problem with an analytical solution. Finally, if we
designate the value of Q minimizing the Rayleigh quotient as Q;,, the minimizing
eigenvector is obtained immediately as n,;, = Qui,v, and of course, the minimum
eigenvalue satisfies A i = P(Quin)-

r(nj) =

© 2008 by Taylor & Francis Group, LLC.



FIGURE 10.2 Hypersphere and hyperplane determined by n and r.

Minimizing @ on the hypercircle reduces to determining an angle which can be
expressed analytically in terms of an inverse tangent. The vector p(n) illustrated
below in Figure 10.3 is given by

p(n) = cosmn + sinyr (10.36)

On the hypercircle the function @ is expressed in terms of the angle 1 by

FIGURE 10.3 Vector terminating on the hypercircle.
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@ = acos’> n + Bsin® n + 2ysinncosn

_a+pB a—p
=72 Tt

a=n’Kn, B=r'Kr, y=n"Kr

cos2mn + ysin2n (10.37)

The extrema of @ occur at the values of 7, say n*, satisfying

_2=B n 2m* + ycos 2m* = 0 (10.38)
from which
1 2y
* = — tan~ ! 10.3
K (a —B) (1039

There are two such values of n*, which are in the first and third quadrants if QZTVB > 0,
but the second or fourth quadrants if 012%/5 < 0. One value minimizes @; on the
hypercircle, and the second maximizes @;. For the present extremum to be a

minimum, n* must satisfy

2

A cos2n* — ysin2n* > 0 (10.40)

Simple manipulation furnishes

1 (a—B\*
‘7[?( £) +

Consequently, n* is found in the first or fourth quadrants as follows:

sin2m* > 0 (10.41)

ify>0, —w/2<7n*<0

. (10.42)
ify<0, 0<n*<w/2

10.3.5 EiGENVALUE REPLACEMENT PROCEDURE

Once the minimum eigenvalue and the corresponding (minimizing) eigenvector are
determined, it is necessary to remove the eigenvalue from the matrix while leaving
the remaining eigenvalues and all of the eigenvectors unchanged, a process we refer
to as eigenvalue replacement. The scheme presented below replaces the most
recently computed minimum eigenvalue with magnitude less than a threshold
value with a value above the threshold, without altering the eigenvectors or reducing
the dimensions of (deflating) the matrix. Once the minimum eigenvalue is replaced,
the minimization process is repeated to compute the next largest eigenvalue and
corresponding eigenvector, and continues until an eigenvalue is obtained whose
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magnitude equals or exceeds a user-specified threshold value. Currently, the fore-
going deflation procedure is based on the restriction that none of the eigenvalues of
the modes of interest has multiplicity greater than unity.

Suppose A, and n, have been computed. We may construct a set of vectors
pf:’__ll),pg’__zl), .. .,p(l”_') which are orthonormal to each other and to n,. They are
likewise orthogonal to Kn,, since it coincides in direction with n,. In particular,

p op . pi"" are obtained sequentially using the Gram-Schmidt

scheme
n—j—1
(n—1) _ (n—1) (=T _(n—1)\ (n—1) (n—DT
P T =q - @ Pk P — (@ Ty,
k=1 (10.43)
j=n—1,n-2,...,1, p}"’l) = f)}”l)/ ﬁ}"*I)TQE”*I)
in which qj(-"fl) are “‘judiciously chosen” “‘trial” vectors. The matrix Rﬁl”_l) given by

Rglnfl):[Rilr:I) nn}, R<"*1>:[p(1n71> ng) pgle) Pff:])] (10.44)

n—1

is orthogonal and gives rise to the singularity transformation

ES
Riln_l)TKR;n_l) — anl 0 (1045)
0" A,

In Equation 1045 note that (i) [RVV'KRY ], = p;"*”T(Kn,,)T: 0, (ii)
RYKRY ], =nTKp! ™ =p V" (Kn,) = 0, and (iii [K;‘ﬂ]i.:pl(n-n Kp! .

The eigenvalues of Kj;l are A,_1, Apyoy.nns /}1, which are the largest n—1
eigenvalues of K. Of course, the eigenvectors of K;q are also eigenvectors of K.
Suppose the largest eigenvalue of interest is no greater in magnitude than a threshold
value Ay, corresponding to the mode with the highest natural frequency of interest.
We may introduce the matrix

%k
K® D — R*=D K, ., 0 R®—DT (10.46)
n OT /\[h n
Now the eigenvalues of K™Y are A, 1, Ay_2y.vvs Agys-..s Ap. It is next demon-

strated that IS””) has the same eigenvectors as K.
Since K, _, is symmetric and positive definite there exists an orthogonal matrix
V,._1 (which need not be computed) such that

.
V.. 0 A(K ) 0 T
K<n_1>:RZn-1>[ i ] - {Vn;l ?]Rfj"” (10.47)
0 Ap+An
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in which, assuming obvious eigenvalue ordering,

A0
0 A O
AKL) =] (10.48)
0
0 )\n—l
It follows that
A(K;,) 0 v V. 0
= " RV KD RO (10.49)
00 A 0" 1 0" 1

However, |R"D {V(’)’T’ ! (1)} ] is also recognized as an orthogonal matrix which diag-

onalizes K:

AKL) o

vl o0

o 1 K

(n=DT (n=1)
R" R

0T

V,, 0
(10.50)
o7 A, 1

But matrices which are diagonalized by the same similarity transformation, in

particular K and K(”_l), have the same eigenvectors, Nicholson and Lin (1996).
The replacement process continues as follows. The next largest eigenvalue is

A,_1 with corresponding eigenvector n,,_;, both of which are computed by mini-

mizing the Rayleigh quotient applied to K” . A new set of unit vectors pj("fz),
j=n—2,n—1,...,1is generated, which are orthogonal to each other as well as n,,
and n,,. Extending the steps shown above furnishes a matrix of the form
K, 0 0
ROZTKOPRIY = | 07 A fAn 0 (10.51)
0’ 0 An + A

The deflation process is repeated to furnish the desired eigenvalues (with magnitude
not exceeding Ay,) in order of increasing magnitude, and to furnish the corresponding
eigenvectors.

10.3.6 ExampLe: MINIMUM EIGENVALUE OF THE 3 X 3 HILBERT MATRIX

We illustrate the hyperspherical method by applying it to determine the minimum
eigenvalue A,,;, and corresponding eigenvector n,;, of the 3 X 3 Hilbert matrix

1 1/2 1/3
Hy=|1/2 1/3 1/4 (10.52)
1/3 1/4 1/5
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Hilbert matrices are notorious for being ill-conditioned even though positive definite
and symmetric. A simple program has been written in high precision to compute A3
and n;. The initial vector is assumed using the diagonal terms of Hj:

. 1/2

= 1/2
a0 | 1

(10.53)

The procedure generates and makes use of two vectors in each step after the first step.
To use the hypercircle method in the first step, a second vector ¥ must be introduced
at the outset. We used the vector

9={0 (10.54)
0

The computed iterates for the lowest eigenvalues and the relative errors are shown in
Table 10.1 below.

Even though the errors are very high in the initial estimate, convergence still
occurs rapidly and furnishes extremely accurate values. Convergence appears to be
much more rapid than in a linear convergence scheme. (Subspace Iteration exhibits
linear convergence.) The eigenvectors likewise converge very rapidly.

10.4 FOURTH-ORDER TIME INTEGRATION
10.4.1 INTRODUCTION

In FEA of elastic systems with light viscous damping, the widely used Newmark
method is the second order, one step, and A-stable. A systematic presentation of
established time integration methods for FEA is given in Zienkiewicz and Taylor
(1989), covering the well-known methods of Newmark, Houbolt, Wilson, Hibler,
and others. The Newmark method is a reformulation of the classical Trapezoidal

TABLE 10.1

Convergence of Iterations for Lowest Eigenvalue
Computed Minimum Eigenvalue Percent Error (%)
1.3422136422136 49845.800104181800000
0.1126113206822 4090.437599027870000
0.0047836190059 78.005699785540800
0.0026907039866 0.125165789790772
0.0026873457448 0.000200532865081
0.0026873403644 0.000000321273041
0.0026873403558 0.000000000515009
0.0026873403558 0.000000000001485
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Rule for systems with accelerations. Even though it is A-stable, time step sizes are
severely limited by considerations of accuracy. Also, ‘“‘numerical damping,” for
example in the Wilson-Theta method, has been introduced to attenuate higher
order modes. It does so at a modest cost in accuracy (near-second order).

In this section a fourth-order counterpart of the Newmark method is described
which extends the fourth-order three-step Adams—Moulton (AM) method to systems
with acceleration, referred to below as AMX. (AM refers to first-order systems while
AMX refers to second-order systems.) The AMX method is three-step. No three-step
method can be A-stable, by virtue of a classical theorem of Dahlquist (cf. Dahlquist
and Bjork, 1974; Gear, 1971). However if, after every time step (or set of several
steps) numerically unstable higher order modes are filtered from the response using,
for example, the Wavelet Packet transform (Kaplan, 2002), the stability-based
restrictions on the time step size can be comparable to the restrictions ensuing
from accuracy (Nicholson and Lin, 2006). Also, a modification of the AMX method
is given to incorporate numerical damping, rendering the modification near-fourth
order. AMX gives rise to a linear system involving a dynamic stiffness matrix.
Solution using triangularization followed by forward and back substitution is seen
to require exactly the same computational effort as the Newmark method.

10.4.2 ERROR GROWTH IN THE NEWMARK METHOD

The errors and error growth in the Newmark method have been extensively
described by Nicholson and Lin (2005) for free and forced response, and results
are quoted here on undamped free response.

10.4.2.1 Undamped Free Vibration

To illustrate the error properties of the Newmark method, suppose that the highest
mode to be computed is the Jth mode with natural frequency w,, and suppose there is
no damping. The Newmark method does not produce any magnitude error, but there
is a phase angle error since the Newmark method evidently approximates wi/2 as
tan~'(w,h/2). The phase error in a step is given by

™ (h\?
N — | — 10.55
oy 3 (Tj) ( )

in which 7} is the time period of the model. For illustration we choose % to attain a
stepwise relative error of ﬁ, in which instance the number of time steps per period is
found to be %2 = 107 ~ 32.

Furthermore, we determine the effect of stepwise error on cumulative error.
The exact solution after M time steps is y,, 1 =exp(MAh)yy,= [exp()\h)]M+1 Yo-

Recalling Equation 10.55, the numerical solution is y, ;= [(1+ &) exp(/\h)]MJrl

yo=1 +«9h)M“yn+1. The cumulative error after M+ 1 steps is ey = % =
(14 &)"*!' — 1. The number of time steps after N time periods is given by

M+1=3N=7L Now (1+&)V =1+er, and Z-In(1+e) = In(1+ep).
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We assume that both relative errors are much less than unity in magnitude, and take the
first nonvanishing terms in the Taylor expansion of the natural logarithms. Now
L\/g\/g_h ~ &1, so that &, ~ 3> &7. Otherwise stated, the time step is to be selected to
satisfy % = %2 g As an example, suppose that N=10 and 7 = 1/10. This implies the

number of time steps per period is 333.

10.4.3 Abpams—MouLTON FORMULA

Consider the differential equation

d
d—f = 1), y(0) =yo (10.56)

in which f(y) is a known function. A three-step integration formula has the form
(Gear, 1971)

Q0Yn+1 + a1Yn + a2Yn—1 + a3yp—2 + hB()fnJrl + hBl n+ thfnfl + hB3fn72 =0
(10.57)

in which the coefficients «;; and B; are to be determined from accuracy and stability
considerations. Elements of the derivations are reproduced here from, for example,
Gear (1971), to set the stage for a stability and accuracy analysis and for the
introduction of damping. Taylor expansion if y,,; and f,,,; j=1, 0, —1, —2 through
fifth order furnishes the following relations:

Bo+ B+ B+ B =1 (10.58a)
o+ ar +ar+ a3 =0:d(h?) (10.58b)
a) + 205 + 3a3 — By — By — By — B3 = 0:d(h) (10.58¢)
7 1 17 47
S0 e — e — sy + By + 2B, +3B; = 0:d(h?) (10.58d)

5 1 11 7 1 17 47
— ot st 5Byt B — 5B — 5B = 0:d(A*)  (10.58e)

49 13 23
— o+ -—a; ——a«
142 %0 T g T g

157
—«

1 11
st B = By = B = 0:d(hY)  (10.58D)

The error coefficient (coefficient of 4°) is given by

7 5 1 11 49 13
Cs = el +@a1 T +@a3 - mﬁo - mBl
23 157
+ 144B2 - 14433 (10.59)
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Equations 10.58a through 10.58f represent six equations in eight unknowns. Accord-
ingly, ag, ay, az, a3, B1, and B, may be expressed in terms of 8, and B;. Simple
calculation serves to obtain

a —3/4 9/2 3/2

as 3/4 ~3/2 —9/2

az p =14 1/12 3 +Bpd —1/2 3 + B3¢ 5/2

8, 1/2 1 2 (10.60)
B, 1/2 —2 1

and o= —1/12—5/2B,+ 1/2B;

There are several types of errors in a multistep method. One is primary error
associated with the primary eigenvalue A;, which in the current context determines
magnitude error and phase error. The primary eigenvalue should match the exact
eigenvalues in the physical mode. In addition there are “‘extraneous errors,” also
called ““parasitic errors,” which are associated with secondary eigenvalues arising in
Equation 10.57 and are purely numerical in origin. It is reasonable to choose B and
B3 to minimize the magnitudes of the two extraneous eigenvalues at vanishing
values of h. With this choice, a finite time step is required before the extraneous
eigenvalues (as a function of the time step) approach unity in magnitude and thereby
imply instability. The secondary eigenvalues vanish at 7 =0 if By and B3 are chosen
such that 8 = % and B3 = 5. In fact, doing so yields the classical fourth-order three-
step Adams—Moulton (AM) formula

Y1 = Yn + AR Yni1 5300 = 34¥n-1 +35Vn2) =0 (10.61)
and more generally

Y41 — Yn — h[% n+1 +£ n 25_4f;171 +ﬁﬁ172} =0 (1062)

AM is next seen to preserve magnitude and compute phase angle with significantly
larger time steps than Newmark for comparable levels of accuracy. However, recall
that Newmark is A-stable, while AM exhibits numerical stability only up to a critical
ratio (to be discussed) of the time step to the period. AM is not suitable if high-
frequency modes are present—a likely occurrence in large finite element systems. As
stated previously, one possible way to remove high-frequency modes is filtering
using, for example, the Wavelet Packet transform.

10.4.4 StepwisE AND CUMULATIVE ERROR IN THE ADAMS—MOULTON METHOD

We consider errors in free vibration of the undamped Jth mode. Again there is no
magnitude error, but as in Newmark there is a phase error. Nicholson and Lin (2005)
reported that the stepwise error estimate
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4 4 4
o~ (ﬁ) ~2.165 (ﬁ) (10.63)

For comparison with Newmark we again choose the stepwise relative phase angle
error to be 1/300. The result is 7,;/h ~ 4, or four time steps per period. This contrasts
with 32 time steps per period in the Newmark method.

The AM method shows an even greater advantage when cumulative error is
considered. From Equation 10.63 the error measure &, = (h/ T)*is representative of
the relative phase error per step in the AM method applied to the transient solution.
The number of time steps in N periods satisfies M + 1 =NT;/h :N/(ah)l/ 4 Now
(1 + g,)V/@)'"* = 1 + ;. Use of the natural logarithm and the first term in the Taylor
series leads to N(g;)*/* =er, implying that the number of time steps per period is
given by 72 = () '3 As before, consider N= 10 and 7= 1/10. The number of
time steps per period is now 4.7, much lower than 333 for Newmark.

10.4.5 StaBILITY LIMIT ON TIME STEP IN THE ADAMS—MOULTON METHOD

For a finite time step & the eigenvalues of the AM formula are obtained from
(Gear, 1971)

(14 3nm)n° — (1 — BA > = A+ 5 ,h =0 (10.64)

We already know that the primary eigenvalue is 7 =exp(—A; h) to fourth order in 4.
This permits approximating Equation 10.64 as

(n —exp(—=Ash) [0° + yim+ v, =0

Ash S5Ash
(exp(zmh>2’4+exp(—m> o ) _exp(_AJmAZ’ff
"= 3 s =g (10.65)
(1 + §)\,h) (1 n g/\,h)

Numerical stability requires that the extraneous eigenvalues be interior to the unit
circle in the complex plane. They are given by

NN = —Y1 £/ ')’% — 4, (10.66)

Clearly, the complex values and magnitudes can be readily computed; they are
presented and displayed in the following paragraphs.
We concern ourselves with underdamped media, to which end we write

Ah = wsh (gj +iy/1— ﬁ), i=V—1, Re(A\;h) = wsh{;, Tm(\;h) = wshy/1 — {2
(10.67)
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Stability limit
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FIGURE 10.4 Maximum time step ratio vs. damping factor.

Following the language of vibration theory, ¢, is called the damping factor and w; the

undamped natural frequency (of the Jth mode). The undamped period is T = 2Z.

w;
Upon writing Ajh = @ ({ T i/1-8 ), the goal becomes numerical evaluation of
the critical time step relative to the undamped period, denoted (h/T;)yax, as a
function of {;. The results are depicted in Figure 10.4. Computations are performed
over the “‘underdamped” range 0 < ¢, < 1.

Two important observations may be made from Figure 10.4.

¢ The numerical stability limits on the time step are comparable to the
previously obtained accuracy limits. For example, a critical ratio of 0.2
corresponds to five time steps in a period, while a phase error of 1/300 in a
step involves four time steps per period.

* Subcritical damping (i.e., {; < 1), whether numerical or viscous, may triple
the critical time step for stability compared to the undamped case. But, for a
system whose frequencies span a large spectrum, in the high-frequency
modes numerical instability associated with extraneous roots is not neces-
sarily suppressed by subcritical damping, whether viscous or “‘numerical.”

Of course, in large finite element systems there are many modes. Suppose the time
step is chosen for accuracy in the lower modes but is otherwise limited from below
by considerations of computational effort.

* Above the modes of interest, say the lowest 10, in a large finite element
system there likely are modes for which the time step ratio violates the AM
stability criteria if the time step is chosen for moderate computational effort.

* Newmark is A-stable. Even so high-frequency modes are still calculated
inaccurately in consequence of the high value of 1/Tk, K >> J. Fortunately,
in lightly damped systems, at a slight cost in accuracy it is possible to
employ numerical damping to attenuate higher-order modes to remove the
inaccuracy in the Newmark method.

* But, as shown above, numerical damping does not appear to be capable of
removing the numerical instability in the AM method. Instead, it appears
necessary to remove the high-frequency content from the output by another
means, such as filtering.
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10.4.6 INTRODUCING NUMERICAL DAMPING INTO THE ADAMS—MOULTON
METHOD

Of course it may not be wise to insist that, in the absence of (physical) damping (i.e.,
“marginal stability’’), the magnitude be preserved in each time step, even in the
lower modes. There is a risk that, owing to round-off or truncation errors, the
magnitude will grow slightly in a time step. Accordingly, in lightly damped elastic
systems there is good reason to introduce ‘“‘numerical damping” (cf. Zienkiewicz and
Taylor, 1989), to ensure that no such growth can occur. A formulation for numerical
damping in AM is given below, to ensure that magnitude decay in one time step
occurs in fourth order.

In terms of the primary eigenvalue the AM formula is equivalent to the Pade
approximation (Nicholson and Lin, 2005)

(I+ax+b2) ~ (1 —x+ 1% =L + L) (1 + ex + di?) (10.68)

in which the four coefficients a, b, ¢, d serve to enforce accuracy through fourth
order. Now exact agreement through n rather than h* requires (i) KV a=c—1,
(i) hP:b=d—c +7 1 Gil) h®:0 = —d + c—= We next requrre that the remain-
der at fourth order equal xh*, in which event (iv) X 1 sd — —c + 2 7- As will be seen,
the parameter y controls magnitude decay and is selected to represent ‘‘numerical
damping.” The coefficients a, b, ¢, d are now expressed in terms of y as

(i) a = =1+ 12y, (i) b= 5 — 6x, (iii) c =1+ 12y, (iv) d =5+ 6x  (10.69)

We determine the effect of x on magnitude under undamped oscillation. The
1 - (3 = 12x)iwh + (& — 6x) (iwh)®
1+ (L4 12x)iwh + (& + 6x) (iwh)

amplitude decreases in a given step if

s

which is equivalent to

0<A+B
A= (A4 12x)*(wh)*= (4 = 12x)(wh)?
_ 2
= (wh) 24y ) (10.70)
B =[1- (+6x)(wh) } 1= (s = 6x) (wh)’]
l 2
[ ¢ } [ 12x(wh) }
Consequently, the magnitude decreases if
0 < A+ B = (0h)*[24x — 24x] + 2x(wh)*= 2x(wh)* (10.71)
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The numerical value of the magnitude decreases in each time step by Amag given by

A+ B

e 1+ (o 12x)ioh -+ (5 + 6x) k)|

~ 2x(wh)* +d(1®)  (10.72)

in which the Taylor approximation has again been used. The coefficients in the
numerical integration formula, Equation 10.58a through 10.58f, are now modified to
satisfy

Bo+B1+By+B;=1 (10.73a)

ag +a; +ay + a3 =0 :dh®) (10.73b)

o) +2ar +3a3 — By — By — By — B3 = 0 :d(h) (10.73¢)

Lo+ a1 —15ay — oz + By + 2B, +3B3 =0 :d(h?) (10.73d)

—Sa i+ as+ 5By + 5B — 1By — 5By =0 :d(h’) (10.73¢)

%ao —&—ﬁal —%az —&—%og —&—15—2,8, _%Bz —%,83 = x :d(h*) (10.73f)

from which
a —3/4 9/2 3/2 -3
s 3/4 -3/2 -9/2 -3
az p =4 1/12 » +Boq —1/2 » +B3¢ 5/2 + 3 X (10.74)
B, 1/2 1 -2 6
B, 1/2 -2 1 —6
and

ag = —1/12=5/2B, 4+ 3B;5 + 3x
Again choosing the AM values Byo=3/8, B3 =1/24, the coefficients are now

ap=—143x, a1 =1-3x, a0 = =3y, a3 =3y, B, 23—1—6)(, 32:—%—6)(
(10.75)

The desired numerical integration formula, representing the AM formula, modified
to incorporate numerical damping, now emerges as

3x
Y1 = Yn + m(ynfl - yan) 1 3 19
h =13y |:§fn+l + (ﬁ+6)()fn
5 1
— (G o) tgha]  (1076)

Clearly, if yx is set equal to zero, the AM formula (Equation 10.61) is recovered.
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To illustrate attractive values of y, suppose that the Jth mode is the highest mode
for which accurate values are sought. Recall that amplitude reduction is given by

2x(wh)* = 2x (27”’) ~ 3200y (- ) To attain low attenuation of this mode, for
example, for a magmtude reduction of 1 /10000 per time step at 10 steps per period,
we obtain y~3 X 107%.

10.4.7 AMX: ADAMS—MOULTON METHOD APPLIED TO SYSTEMS
WITH ACCELERATION

For an elastic system with viscous damping, the conventional finite element equation
is written as

Mx + Dx + Kx = f(r) (10.77)

in which, as usual, M, D, and K are the n X n mass, damping, and stiffness matrices,
assumed positive definite and symmetric, X is the n X 1 global displacement vector,
and f(t) is the n X 1 force vector, which is prescribed as a function of time.

To attain a counterpart of the Newmark formula, Equation 10.77 is expressed in

state form as
NSNS
+ = (10.78)
0 I||x X 0

Equation 10.76 implies the substitutions

. . 3x . .
{X } Xp+1 — Xy + m(xn—l — Xp-2)

X X (Xn—l - Xn—2)
3x

{X} { ;Xn+1 + ( 24 + 6X)Xn (254+ 6X>5(n71 +2]_4Xn72 } (1079)
gxn+1 + (ﬂ+ 6X)Xn - (%+ 6X)Xn71 +ﬁxn72

{f}N 1 {gf,,+1+(24+6,\/)f—(§+6X)fn1+2—14f,,2}

0 1 -3y 0

D K
-1 0

S| =

Xp+1 _Xn+1

X

Obvious reorganization furnishes

1M oo]fha) 3
hio I Xn+1 1 —3x

D K
-1 0

X, r,
L (10.80)
Xn+1 Sn+1
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in which

) 3 .. .
{+} 1[M 0] R
== X
Sn+1 0 I _ X _
X, 1— 3)( (anl Xn72)
L D K {—(§+6x)in+(§+6x)kn_1—ﬁfcn_z}
L=3X -1 0 | = (224 6x)%0 + (4 6X) %01 — 54Xn2
L e + (6 — (5 +6x) s + 55f02
1-3y 0

(10.81)

Of course {:H:} is known from the solutions at the previous time steps. Use of
n+

the second block row in Equation 10.80 provides the identification
Xpi1 = 5(1 = 3x)(+Xus1 — Sur1). Upon substitution in the first block row the
desired fourth-order counterpart AMX of the Newmark formula, modified to incor-
porate numerical damping, is now

1 3K 1.8 8
KpXup1 = ————|m -M-(1-3 s D|su
P T 3y 8 {”‘%h 307073 }s“]
s N (10.82)
Kp=M+-— D+ (> K
b 8T 3y +(81—3x>

Solution of the linear system Equation 10.82 may be accomplished by conventional
finite element procedures consisting of triangularization of the positive definite,
symmetric, banded dynamic stiffness matrix Kp, together with forward and back-
ward substitution. In fact, the effort to do so is exactly the same as in the Newmark
method.

10.4.8 CoMMENTS ON FILTERING TO REMOVE HIGH-ORDER MODES

By being confined to one step, the Newmark and other early methods (Zienkiewicz
and Taylor, 1989) give rise only to the primary eigenvalue and avoid numerical
instability ensuing from extraneous eigenvalues. However, high-frequency modes
may still be computed inaccurately since /1/Tx becomes large when K > J. To “attenu-
ate” inaccuracy in high-frequency modes in one-step methods, numerical damping
has often been introduced at a slight loss of accuracy, for example the Wilson-theta
method. We refer to such modified Newmark methods as near-second order.

The AMX method attains high accuracy in the lower modes with appreciably
larger and/or fewer time steps than in the Newmark method. However, in systems
with a broad eigenvalue spectrum, it appears wise to introduce a technique to remove
the potentially unstable high-frequency modes. Recall that subcritical damping,
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viscous or numerical, cannot be relied upon to obviate the numerical instability
associated with extraneous eigenvalues in AM. Fortunately, even in the presence
of transients, in the last two decades high-frequency mode removal has become
possible using filters based on the fast and discrete versions of the Wavelet transform
(cf. Kaplan, 2002; Bettayeb et al., 2004).

The classical Fourier transform introduces one parameter (the frequency) and
maps the time domain onto the frequency domain. The Fourier components are
globally regular functions such as sinusoids. The Wavelet transform has two param-
eters, which are scale and time, scale being similar to the reciprocal of the frequency.
Wavelets are locally regular functions.

In simple wavelet filters, the scale function represents a ‘“low pass filter”
covering the lower half of the frequency spectrum, while the wavelet function
represents a “‘high pass filter”” covering the upper half of the spectrum (Bettayeb
et al.,, 2004). In the current context the discrete signal of interest corresponds to
displacement values computed during the last few time periods, assuming filtering
was applied prior to these periods. Doing so sets the present values of the modal
amplitudes to zero in the upper half of the spectrum. The reduced signal is then
reconstructed in the time domain. The filter is now again applied to the reconstructed
signal to partition it into low pass and high pass segments. The process is continued
until the reconstructed signal has a spectrum which (a) is in the stable range, and (b)
contains the highest natural frequency (mode) for which accurate computations are
sought (assuming (b) is compatible with (a)).
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’I’I Additional Topics in
Linear Thermoelastic
Systems

Topics addressed in this chapter include linear conductive heat transfer, linear
thermoelasticity, incompressible elastic materials, elastic torsion, and buckling.

11.1 TRANSIENT CONDUCTIVE HEAT TRANSFER
IN LINEAR MEDIA

11.1.1 FiNiTE ELEMENT EQUATION

The governing equation for conductive heat transfer without heat sources in an
isotropic medium is

kV2T = pe, T (11.1)

in which T is the (absolute) temperature, k is the thermal conductivity, and c, is
the coefficient of specific heat at constant strain. We invoke the interpolation model
T() — Tochg(x)(brﬂ(t) in which 0(7) is the vector of nodal temperatures (minus
Typ), while <p§(x) and ®; are the thermal counterparts of ¢’ (x) and @ in mechanical
fields. Also application of the gradient leads to a relation of the form VT = B; D 0(2),
and the finite element equation assumes the form

K70 + M0 = —¢(T) (11.2)

K; = Jq);BTkB;(I)T dv, My = Jq);‘prpc&;cb; dv

This equation is parabolic (first order in the time rates), and implies that the
temperature changes occur immediately at all points in the domain, but at smaller
initial rates away from where the heat is added. This contrasts with the hyperbolic
(second order in time rates) solid mechanics equations, in which information propa-
gates into the unperturbed medium as finite velocity waves, and in which oscillatory
response occurs in response to a perturbation.
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11.1.2 DIRecT INTEGRATION BY THE TRAPEZOIDAL RULE

Equation 11.1 is already in state form since it is first order, and the trapezoidal rule
can be applied directly.
0n+1 - 0n 0rHrl + 0n q +1 + q
M K == =
T VT 2

(11.3)

from which
Kpr0,11 =111 (11.4)
Kpr = My + %Kyrp) = M70, — 5K70, —4(q,., +q,)

For the assumed conditions the dynamic thermal stiffness matrix is positive definite
and for the current time step the foregoing equation can be solved in the same
manner as in the static counterpart, namely triangularization followed by forward
substitution.

11.1.3 MobAL ANALYSIS IN LINEAR THERMOELASTICITY

Modes are not of much interest in thermal problems since the modes are not
oscillatory or useful to visualize. However, the foregoing equation can still be
decomposed into independent single degree of freedom systems. First we note that
the thermal system is asymptotically stable. In particular, suppose the inhomo-
geneous term vanishes and that 0 at =0 does not vanish. Multiplying the foregoing
equation by 07 and elementary manipulation furnishes that

d (OTMTO

YA
w7 ) 0"K;0 < 0 (11.5)

Clearly the product "M@ decreases continuously. But it vanishes only if @
vanishes.

Next, to examine the modes assume a solution of the form 0(z) = 0; exp(A;?).
The eigenvectors 0, satisfy

KTy, ]:k
O’ j?ék

/*LTj» ]:k
0, j#k

and we call ur; and ky; the jth modal thermal mass and jth modal thermal stiffness.
We may also form the modal matrix @ = [0¢; - - - 0,], and again

0,;M76,, = { 00,K700, = { (11.6)

py 0 . . 0 ky 0 . .0
. 0 M- . 0 Kij . . .
0'M;0 = : , OKO=| . | (dL7
0 e 0
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Let £=07'0 and g(r) = ®"q(¢). Pre- and post-multiplying Equation 11.2 with @”
and O, respectively, furnishes the decoupled equations

pré + k€ = g (11.8)

Supposing for convenience that g; is a constant, the general solution is of the form

&) =& exp(— ﬂt) + J exp<— Ll (t— 7)> gi(m)dr (11.9)
Rz 0 M

illustrating the monotonically decreasing nature of the free (g =0) response. Now
there are n uncoupled single degrees of freedom.

11.2 COUPLED LINEAR THERMOELASTICITY
11.2.1 FiNiTE ELEMENT EQUATION

The classical theory of coupled thermoelasticity accommodates the fact that the
thermal and mechanical fields are coupled. For isotropic materials, assuming that
temperature only affects the volume of an element, the stress—strain relation is

Sij = 2uE; + MEx — a(T — To))d; (11.10)

in which a denotes the volumetric thermal expansion coefficient. The equilibrium
equation is repeated as % = piij. The Principle of Virtual Work (Chapter 5) implies
that

JSE,-J- [2uE; + AEud;]dVo + Jau,-pu,» dVy — aA JSEU(T —To)8;dVy = Jaau,t, ds,
(11.11)

in which, as before, f; refers to the traction vector.
Now consider the interpolation models

u(x,)) = N'x)y(1), Ej — e = Bix)y(1), T — Tp = v/(0)8(z), VT = BL(x)0(x)
(11.12)
in which e is the strain written in conventional finite element notation as a column
vector. As before, N is the shape function matrix, its thermal counterpart is v(x), B is

the strain—displacement matrix, and By is its thermal counterpart. Now familiar
procedures furnish the finite element equation

MYy () + Ky() — 200) = (1), X =aA JBvT dvy (11.13)
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The quantity 3 may be called the thermomechanical stiffness matrix. If there are n,,
displacement degrees of freedom and n, temperature degrees of freedom, the quan-
tities appearing in the equation have dimensions according to

M, K : npxn,, @), @) nax1, X: nyxn, 00 : nx1

We next address the thermal field. The energy balance equation, including coupling
to mechanical effects, is given by

kV2T = pe, T 4 aAT, r(E) (11.14)

Application of the usual variational methods and interpolation models implies that
K70(1) + M70(r) + TOET?(t) =—q, q= Jvn -qdS (11.15)

Now consider the special case in which T is constant. Then, at the global level,
0(r) = —ToK, 1ET'\'/(I). The thermal field is thus eliminated at the global level, giving
the new governing equation as

MY (1) + To2K; '3 y(1) + Ky(1) = £(£) (11.16)

Conductive heat transfer is thereby seen to be analogous to damping. The thermo-
mechanical system is now asymptotically stable (positive effective damping) rather
than asymptotically marginally stable (no effective damping).

We next express the global equations in state form as

Qz+Quz=f (11.17)
in which
M 0 0 ¥
Q=10 K 0 , 2= |~
0 0 M;/T, 0
0 K -3 f
Q,=|-K 0 0o |, r= 0
T 0 Ky/To —q/To

Clearly Equation 11.17 can be integrated numerically using the trapezoidal rule:

Q, +4Q,]zu1 = [Q —2Q, )z, + 1 [fri1 + 1] (11.18)

We consider asymptotic stability, for which purpose it is sufficient to take f=0,
2(0) =z,. Upon pre-multiplying Equation 11.17 by z’, we obtain
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d
o (127Qz) = —2'Q,z

=~ [Q + Qs
=—0"K;0 (11.19)

and z must be real. Assuming that 0 £ 0, it follows that z | 0, and hence the system is
asymptotically stable.

EXAMPLE 11.1

Find the exact solution for a circular rod of length L, radius r, mass density p, specific
heat c,, conductivity k, and cross-sectional area A = 2. The initial temperature is 7y,
and the rod is built into a large wall at fixed temperature T, (see Figure 11.1). However,
at time ¢ =0, the temperature T, is imposed at x = L. Compare the exact solution to the
one- and two-element solutions. Note that for a one-element model

pc.AL
3

%B(L,t) + 6(L,1) = —g(L)

SoLuTION

(i) Exact solution
The governing equation for conductive heat transfer in one dimension is given by

Pr_ o

a2 P
We seek to solve this equation using “Separation of Variables.” If o« = kjpc,.

r_ion
o2 a Ot

Now let T#=T—[To+x(T,-Ty/Ll. Now ZLr =1
T#(0) = T#(L) = 0.

Next assume the spatial-temporal decomposition T#(x,) =X (x)T(t), with the
consequence that

oT# .
()g—t, with

Xﬂ—lff A2, A; the jth ei 1
X = p ’i" = 'k j EJ elgenva uce

The function X(x) corresponding to A; is now denoted as X;(x) and similarly for
Tj(#). The two functions satisfy

=

To T, t>0

FIGURE 11.1 One-element thermal conductor.
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X!+ A7X; = 0 — X; = Ajcos(\;x) + Bj sin(A;x)
T+ ATy = 0 — Ty = Cyexp(—aA?)

in which A;, B;, and C; remain to be determined. The eigenvalues satisfy
sin(A;L) = 0 which implies that A;= jar/L.
With D;=A,C; and E; = B,C;, the solution assumes the form

T(xt) = Y (Djcos(jmx/L) + E;sin( jmx/L)) exp(—aj*mt/L)

j
x(Ty — To)

+To + I

The initial condition T(x,0) =T, and standard application of the orthogonality
properties of the eigenfunctions (e.g., Hildebrand, 1976) cos(jmx/L) and
sin(jmmx/L) permit determination of the coefficients D; and E;.

(i) Finite element solution
For a thermal element with natural coordinates £ =—1 at x=x,, and £ =+1 at
X=Xe415

r R R U
$r =1 &) (DT_[I 1} _5{—1 1}

Also dx = %dg, and % = % d%. Consequently, the thermal stiffness (conductance)

matrix is given by

Kr = Jcbﬂsrkﬁ;cm dav

+1
171 =17 [ 2/0\. 2 L 1 1
:1[1 1}[Z<1)k2(0 I)Aidg{fl 1}
1
R
*T{—l 1}

Continuing, the thermal mass (capacitance) matrix is now

My = J(D;‘prCE‘P;(DT av

+1
_ pAcL[1 -1 1 11
-8 {1 1“(5)“ g)dg{—l 1}
_pAceL{l 1/2]
3 (12 1

(iia) Ome-element solution: conductor built on the right-hand side (rhs)
Here, the interpolation model is T — Ty =x6(L,f)/L. Consequently, the thermal
stiffness and mass matrices degenerate to scalars:
kA Ac.L

Ky =—, My ="
= T 3
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Substitution into Equation 11.2 furnishes the one-element equation
pc.AL

7 LD =—qL)

kA
—O(L,t
7 0D+

This equation is to be solved for 6(L,r) with an assumed value of g(L) adjusted to
enforce the constraint T(L) =T,.

(iib) Two-element solution
Now the length of each element is L/2, and so

KA {1 _1} MT:pAce(L/Z){I 1/2}

TTwy -1 o1 3 12 1

After simple manipulation the assembled global finite element equation emerges as

1 -10 6(0,1) 1 1/2 0 6(0,0)
95 -1 2 —1||6w/rn +M 1/2 2 1/2| | 6@/2.0
0 -1 1 6(L,1) 0 1/2 1 O(L,1)
q(L)
=| o0
—q(L)

But 6(0,r) =0, and in consequence

kA { 2 —1} (O(L/Z,t)) . pAce(L/Z)[ 2 1/2} (B(L/Z,t))'
w2y -1 1 O(L.1) 3 12 1 O(L.1)

- <qu(L>>

as expected.

11.2.2 THERMOELASTICITY IN AN ELAsTICc CONDUCTOR

Consider a thermoelastic rod which is built into a large rigid, nonconducting tempera-
ture reservoir at x = 0. The force f; and heat flux —g are prescribed at x = L. A single
element is used to model the rod. Now

uCx,t) = xy(t)/L, E(x,t)=y({@)/L, T—To=x6(t)/L, dT/dx=0@)/L (11.20)

The thermoelastic stiffness matrix becomes ¥ = aA [By'dV — 3 = aAA/2. The
governing equations are now

AL. EA 1

PRy + =2y —sarAd = f

3 L~ 2 (11.21)
lpceAL0-+lkA0+1 AAY — ’
T, 3 T, L~ 29T

EXAMPLE 11.2

State the equations of a thermoelastic medium in state form.
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SOLUTION

The equations of a thermoelastic medium are:
MY(1) + Ky(1) — 20() = £(1)

1 1. . ... 1
T—OKTB(I) + T—OMre(t) +3 90 = T, 4

pAL EA kA pc.AL AaA
M—-—, K—>—, Kr——, M =—
i 3 - L’ T L’ T — 3 p3 )
On converting state form using p =y, we have
M 0 0 P\’ 0 K -X p f
0 K 0 vy|+|-K 0 0 v | = 0
0 0 M;/To| \0 3T 0 Kp/To| \ 0 —q/Ty

If the trapezoidal rule with timestep # is applied, an algebraic equation arises in which
appears the dynamic thermoelastic stiffness matrix

M iK -43
Kpr=|—-%2K K 0
it 0" Ky

Some manipulation serves to verify that Ky satisfies the triangularization

M2 of
Kpr = KM~'2 ][K 0 2 [ KM~1/2
S + 2 [M12K  —M~12x ]
203" 12|07 Kp| 4 [3'M12

h
12 = —-1/2 Ry e
y [M 5 M2k —M 2]}

o7 I

11.3 INCOMPRESSIBLE ELASTIC MEDIA

Rubber and polymer-based plastics, as well as biological tissue, frequently exemplify
the internal constraint of incompressibility.

For a compressible elastic material, the isotropic stress Sy and the volume
(dilatational) strain Ej; are related by Sy =3kEy, in which k =E/[3(1—2v)] is
recognized as the bulk modulus. Clearly, as v—1/2, the (hydrostatic) pressure
p=—Si/3 needed to attain a finite compressive volume strain (Eg < 0) becomes
infinite using elastic relations in their current form. However, we will see that this
difficulty is avoided by correctly incorporating incompressibility through a limiting
process as v — 1/2.

Consider the case of plane strain implying that E,, =0. The tangent modulus
matrix D is now readily found as
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Sxx Exx E 1-— V2 —V(l =+ V) 0
S,y |=D| E , D=—— — | — _ 2
¥y vy d+ v —2v) v(l+v) 1-v 0
Szz Ezz 0 0 1—-2v
(11.22)

Clearly, in the current form D becomes unbounded as v — 1/2. Further, suppose that
for a material through to be nearly incompressible v is estimated as 0.495 while the
correct value is 0.49. It might be supposed that the estimated value is a good
approximation for the correct value. However, for the correct value (1—2\})71 =50,
but for the estimated value (1—2v) ™" = 100, implying 100% error.

The problem of unbounded magnitude is addressed as follows. In an incompress-
ible material a pressure field p(x) arises which serves to enforce the incompressibility
constraint. Since the trace of the strains vanishes everywhere, the strains are not
sufficient to determine the stresses. However, the strains together with the
pressure are sufficient. In FEA, a general interpolation model is used at the outset
for the displacement field. Another interpolation model must be introduced for the
pressure field. Owing to the fact that pressures are stress variables, the order of the
interpolation should be one degree lower than for the displacement interpolation
model (Hughes, 2000). The Principle of Virtual Work is now expressed in terms of
the displacements and pressure, and an adjoining equation is introduced to enforce the
incompressibility constraint a posteriori. The pressure may be shown to serve as a
Lagrange multiplier, in which event the displacement vector and the pressure are
varied independently.

In incompressible materials, to preserve finite stresses we suppose that the
second Lamé coefficient satisfies A — oo as t7(E) — 0, in such a way that the
product is an indeterminate quantity denoted by p:

Atr(E) — —p(x,1) (11.23)
The Lamé form of the elastic constitutive relations is replaced by

together with the incompressibility constraint E;; §;;= 0. There now are two independent

principal strains and the pressure with which to determine the three principal stresses.

In a compressible elastic material the strain energy function w satisfies S;; = 0‘%,
ij

and the domain term in the Principle of Virtual Work may be rewritten as
[8E;S;;dV=[6wdV. The elastic strain energy is given by w = uE;E; +4E.
For reasons to be seen shortly, we introduce the augmented strain energy function

and assume the variational principle

Jaw’ dvy + J&quii dvy = JSuTt dsSy (11.26)

Now considering u and p to vary independently, the integrand of the first term
becomes 6w’ = 8E;[2uE;; — pd;;] — 6pE., furnishing two variational relations
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er(aES) avy + JSquii dvy = JéuTtdSo (11.27a)
JSpEkk dVy =0 (11.27b)

The first relation may be recognized as a counterpart the Principle of Virtual Work
(variational principle for the displacement field), and the second equation serves to
enforce the internal constraint of incompressibility (variational principle for the
pressure field).

Next introduce the interpolation models

u=N'xvy(), e=B (X))

(11.28)
Ey = b (x)y(0), px.p) =& x)m()
Substitution serves to derive that
MY(1) + Ky(t) — Zm(r) = f(1)
(11.29)

3 = JbgTdVO, Ty =0

Assuming these equations apply at the global level, state form is expressed as

M 0 0], /70 M K -37 /30 £(t)
0 K olS(vol+|l-x 0o o l|[vo]|=[ 0| a130
0" o oY\ o T o7 0 |\ =m0 0

The second matrix is antisymmetric except for the upper left-hand diagonal term.
Further, the system exhibits marginal asymptotic stability; namely, if f(f) =0 while
v(0), ¥(0), and 77(0) do not all vanish, then

M 0 0] /0
(V'O YO =@)| 0 K 0y |=0 (11.31)
0 0 0 7(t)

1
dr (2

EXAMPLE 11.3

Put the following equations in state form, apply the trapezoidal rule, and triangularize
the ensuing dynamic stiffness matrix assuming that the triangular factors of M and K
are known.

My+Ky—-3m=f 32'y=0

SoLuTION

The given equations are expressed in state form as follows:

M 0 01 /vy [M K -37/%0 £(t)
0 K of{vo]+]-K 0 o xo | =1 o
0 0 0|\ =0® 0o 37 0 0] 0
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Using the trapezoidal rule and p =y gives

M 00 %(pn-%—l - pn) M K _2 %(pn-f—l + pn) %(fn-%—l + fn)
0 KO %('YnJrl - 'Yn) + -K 0 0 %('YnJrl +‘Yn) = 0
0 0 0]\ }(mu i —m) 0 32" 0 \Jm+m) 0

The second row implies that p,,, | = %(yn 11— Yu) — P,,- Thence the first row becomes
M@ = v = 2p,] + 5K +¥,) = 32 (@ + ) = 3(Eair + )
Multiplying throughout by h2/2 and rearranging results in
[M+%QQYH4*§ERH»=§Hm4+fm—Kyw+2mJ+hﬂw4JmA (11.32a)
The third row, after multiplying by h2/2, becomes
B3y, =53y, (11.32b)

The equations are restated in vector—matrix notation as

M+%K _%2 Yot1 ) But1
;Z—ZET 0 T+l 7%22T'yn

in which

hZ
i1 = 4 (foi1 + £, — Ky, + 2m,] +M[y, + hp,]

The dynamic stiffness matrix now is

M+EK -3
KD: 4 4

2T
3 0

Next, K is decomposed into a product of a lower triangular and an upper triangular
matrix. We first write

M+EK —%£3] [Ly, 0 |[Uy Up
§ET 0 Ly Lo 0 Uxp
Setting Uy; = L,TI, and L,, =1 gives
]’12
u@ﬁ:M+ZK

which may be triangularized to find L;; since, the triangular factors of M and K are
known. Further
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W
U12 = *ZLHIE

h r _r
L21 :Zz L”
Ay
U22:—L2]U]2 :EE L” LHE

Accordingly, the triangularization is expressed as
Ly, 0][L, —ZL;'s
Kp =LU=

2Ty —
B3I

0 E3LL'Y

EXAMPLE 11.4

In an element of an incompressible square rod of cross-sectional area A, it is necessary
to consider the displacements v and w. Suppose the length is L, the lateral dimension is
Y, and the interpolation models are linear for the displacements (u linear in x, with v, w
linear in y) and constant for the pressure. Show that the finite element equation assumes
the form

2uA/L 0 —A u(L) f
0  4uAL/Y? —2AL)Y || wy) | ={0
A 2AL/Y 0 p 0

and that this implies the relation 3,u,% =f.

SoLUTION

The interpolation models are given by
u= %M(L), v=—w= %v(y)
Now consider the virtual work term for virtual strain energy.
JSs,ﬂusii dV = 2uALdeje;;

=2uAL [Ssxxeﬂ +0eyyEyy + 58(-‘-82;}

oL {Su(L) ul) | 5nY) @}

L L Y ¥
= 2WALGBU(L)  Sv(Y)) VL0 fuh
oA 7 0 2/ |\ vy

But [8s;2ue;dV = 8vTKy. Accordingly, the foregoing equation implies

() _[ewa/L 0
Y_(v(Y))’ K‘{ 0 4MAL/Y2]
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Next

du(L ov(Y
[SSkkpdV:ALp{ u£ )+2 V)(, )

_ u(L)
} = (bu(L), 5v(Y))AL(V(Y) )p

But, [SeypdV = 8y"m. Also, if we assume that p is a constant, we have

A
m=p E= <2AL/Y>

After neglecting the inertia term in Equation 11.29, the equations of interest become

Ky—-3m=f 3y=0

= o)) 6)

Use of state form furnishes

Accordingly
2uA/L 0 —A u(L) f
0 AuAL)Y?  2AL/Y [ v(¥) | =10
A 2AL/Y 0 p 0

The foregoing matrix product is equivalent to the three relations

Z'LLTAM(L) —Ap=f (11.33a)
4uAL 2AL

72 v(Y)—Tp:O (11.33b)

Au(L) + 2ATLV(Y) =0 (11.34)

Multiplying Equation 11.34 by 27“ gives rise to

2uA 4uAL
A u(L) + 7

wWY)=0 (11.35)
Next subtract Equation 11.35 from Equation 11.33b.
2AL m
Ly+—p=0 =——u(L
u(L) + y P=0»r i3 u(L)
Substituting the last expression in Equation 11.34 now produces the relation

u(l)

SwA—= =/

This agrees exactly with the uniaxial result EA% = f in the incompressible case
since v=1/2 and u=E/2(1 + v).
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11.4 TORSION OF PRISMATIC BARS

11.4.1 Basic RELATIONS

Figure 11.2 illustrates a member experiencing torsion. The member in this case is
cylindrical with length L and radius rq. The base is fixed and a torque is applied at the
top surface which causes the member to twist. The twist at height z is 6(z), and at
height L it is 6.

Ordinarily, in finite element problems so far considered, the displacement is the
basic unknown. It is approximated by an interpolation model, from which an
approximation for the strain tensor is obtained. Then an approximation for the stress
tensor is obtained using the stress—strain relations. The nodal displacements are then
solved by an equilibrium principle, in the form of the Principle of Virtual Work. In
the current problem an alternative path is followed, in which the stress tensor, or
more precisely a stress potential, is the unknown. The strains are determined from
the stresses. However, for arbitrary stresses satisfying equilibrium the strain field
may not be compatible, enabling it to determine a displacement field which is
unique to within a rigid body translation and rotation. The compatibility condition
(cf. Chapter 5) is now enforced, furnishing a partial differential equation known as
the Poisson equation. A variational argument is applied to furnish a finite element
expression for the forsional constant of the section.

For the member before twist, consider points X and Y at angle ¢ and at
radial position r. Clearly, X=rcos¢ and Y=rsin¢. Twist induces a rotation
through angle 6(z) but it does not affect the radial position of a given point.
Now x=rcos(¢+6), y=rsin(¢ +60). Use of double angle formulae furnishes
the displacements, and restriction to small angles 6 furnishes, to first order,

Section after twist

Section before twist ¢ N
L N ~ 07 -~
S -7 Y
1
s | 1
X 1 1!
\l I’ z
1 1!
-7 RIS / Y

FIGURE 11.2 Twist of a prismatic rod.
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u=—-Y0, v=X0 (11.36)

It is also assumed that torsion does not increase the length of the member, which is
attained by requiring that w only depends on X and Y. The quantity w(X,Y) is called
the warping function.

Elementary manipulation serves to verify that all strains vanish except E,, and
E,., for which

V2

Lfow 06 Lfow 06
Be==|——y—|, Ep==|——+x— 11.
2 {8x yc'?z} ) [8)1 +x5z] (1137
Equilibrium requires that
0S.; | 0Sy;
= =0 11.38
o T By ( )

with all other stresses vanishing owing to the assumed displacement field. The
equilibrium relation may be identically satisfied by a potential function ¢ for which

o R

sz:a_y’ S”__ax

(11.39)

It remains to satisfy the compatibility condition, to ensure that the strain field arises
from a displacement field which is unique to within a rigid body translation and
rotation. (Compatibility is automatically satisfied if the displacements are considered
the unknowns and are approximated by a continuous interpolation model. Here the
stresses are the unknowns.) From the stress—strain relation

1 10 1 10
EXZ:_ Xz:——lp, VZ_—S),Z:———lp (1140)
2 2u dy ’ 2 2 Ox
Compatibility (integrability) now requires that 57; 5 = 53; 3, from which

o1 o0 1 do 0 1 0 1 do
_oGLov 140 + 4 ———d/——x— =0 (11.41)
Oy |2mw dy 27dz] Ox| 2uox 2 dz
furnishing Poisson’s equation for the potential function i
2 2
oy 8lﬁ——Z a0 (11.42)

o2 o T Tt

For boundary conditions, it is assumed that the lateral boundaries of the member are

traction free. Now the assumed displacement fields already imply that £,=0 and
t,=0 on the lateral boundary S. For traction ¢, to vanish requires that
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t.=nS.+nS,.=0 onS (11.43)

Upon examining Figure 11.3 it may be seen that n, = dy/ds and n, = —dx/ds, with s
the arc length along the boundary at z. Consequently,

_dy dx
& ds 4o T ds &
_dy 81,[/ dx 81,[1
ds 8y ds ox
dy
s 11.44
s ( )

Now i—"s” = 0 on S, and therefore i is a constant on S, and it may, in general, be taken
as zero. Since ¢ is elsewhere the unknown, the vanishing values on the exterior
boundary are analogous to constraints in conventional displacement-based problems.

We next consider the total torque 7 on the member. Figure 11.4 depicts the cross
section at z in which the torque d7 on the element at x and y is given by

dT = xS, dxdy — yS,, dxdy

_ |4 dy
_{ oy y}dxdy (11.45)
Integration furnishes
d
(e d(ylP) dx _dy
- H dx y] w[dijdy”dXdy
__[v. ( )dxdy+2J¢jldxdy (11.46)

\J / n,=cos x =dy/ds

n,=sin y =dx/ds

FIGURE 11.3 Illustration of geometric relation.
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X

FIGURE 11.4 Evaluation of twisting moment.

Application of the divergence theorem to the first term leads to [¢s [xnx + yny} ds,
which vanishes since ¢ vanishes on S. Finally

T:2J¢dxdy (11.47)

We now apply variational methods to the Poisson equation, considering the stress
potential function ¢ to be the unknown.

J&/l[v Vi + 26 dxdy = 0 (11.48)

in which 6’ =d6/dx. Integration by parts, use of the divergence theorem and
imposition of the “constraint” ¢y =0 on S furnishes

J(v&p) - Vipdrdy = J8¢2pﬂ/dx dy (11.49)

The integrals are to be evaluated over a set of small elements. In the eth element
approximate ¢ as vw(x,y)llfgne in which v, is a vector with dimension (number of
rows) equal to the number of nonvanishing nodal values of . The gradient Vi has a
corresponding (derived) interpolation model Vi = BJT/(x,y)‘Ifene, in which B is a
matrix. The finite element counterpart of the Poisson equation at the element level
now is written as

K, = 2u0'f) (11.50)

K = w! Jmﬁidxdy ., f=v] Jw<w>dxdy
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and the stiffness matrix should be nonsingular since the constraint ¢y =0 on S has
alr§a§y been used. It follows that, globally, ‘qg:2y,9/ Kff)flff/jg) . Next, the torque
satisfies

T = Jledxdy

In the theory of torsion it is common to introduce the torsional constant J for which
T=uJo'. It follows immediately that J = 4f," K, ' £,©.

EXAMPLE 11.5

Figure 11.5 depicts a single triangular element in the cross section of a shaft experien-
cing torsion. Assuming the interpolation model

Uy n]
Pey) =1 x )|l x » 1)
I x3 3 3

find K, f;, and the torsional constant J for this element.

(2.3)

3.2

(1.1

FIGURE 11.5 Triangular element in shaft cross section.
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SoLUTION

Here
T _
vrxy) =(1 x y)
1 ox w1 11 17! 5 -1 -1
=1 x y»| =|1 3 2| ==-|-1 2 -1
1 x3 y3 1 2 3 -1 -1 2
14
010
) B;:w;(x,y):{o 0 1}
3
Also
Ky = w7 Jms;a;cdyqr
15—1—1000 5 -1 -1
5_12_1010JdXdy_12_1
-1 -1 2 0 0 1 -1 -1 2
But
1 1 X1 Y1 3
dedyzidetl Xy Y2 | = Area of the triangle:i
I x3 s
Consequently,
1 2 -1 -1
KT:E -1 5 -4
-1 -4 5
Further,
. 1 5 -1 -1 1
f,,,:\I'T‘vl,,(x,y)dxdy:— -1 2 -1 J x | dxdy
. 3
-1 -1 2 y
and

dexdy = J(x—xo + xo) dx dy

in which (x,yo) is the centroid of the triangle and is given by

X1 +x2 + X3 Yi+y2+y3
Xg=— 7+ =2, == - =

2
3 Yo 3
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Continuing,
. 3
(x — x0) dxp dyp = 0, and |dxp dyy = Area of the triangle = 3
Finally [xdxdy =3, [ydxdy = 3, and

1
fT == E
The torsional constant J for the element is now found to be given by
_ fTR-1
J =4, K, 1,
=0.6

EXAMPLE 11.6

Find the torsional constant in the circular shaft shown below using four axisymmetric
elements, as depicted in Figure 11.6.

SoLUTION

Since the configuration is axisymmetric and the constraints ¢, =3 =y =15 =0 are
enforced a priori, the linear interpolation model in each element is the same and may be
taken as

o —r
P(r) = ¥
We conclude that
1 d
Vo — To— T, ‘Ifq,:%, 'qq,:z,[f], :a, sz:_l-
= o —
‘y
X

FIGURE 11.6 Torsional constant of a circular shaft.
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Simple manipulation yields Kff) = 7 and fif) = % [ro —rrdrdy = WTY'Z’, from which

— Af@TK(®)—1e(2)
J = 4fOTKE s
_ 4,4
7§’7Tr0

1

The exact answeris J = 5 Wré, so that the one degree of freedom finite element model is

accurate to within 10%.

11.5 BUCKLING OF ELASTIC BEAMS AND PLATES
11.5.1 EuLer BuckLING oF BEam COLUMNS

11.5.1.1 Static Buckling

Under in-plane compressive loads, the resistance of a thin member (beam or plate)
can be reduced progressively, culminating in buckling. There are two equilibrium
states that the member potentially can sustain—compression only, or compression
with bending. The member will “snap” to the second state if it involves less
“potential energy’’ than the first state. The notions explaining buckling are addressed
in detail in subsequent sections. For present purposes we focus on beams and plates,
using classical equations in which, by retaining lowest order ““linearized” corrections
for geometric nonlinearity, in-plane compressive forces appear.
For the beam shown in Figure 11.7, the classical Euler buckling equation is

Em" + Pw" 4+ pAiw =0 (11.52)
and P is the axial compressive force. The interpolation model for w(x) has the form

w(x) = ¢’ (x)®7y. Following the usual variational procedures (integration by parts)
furnishes

J5WpA13{/dx —6y'My, M=o Jd)(x)pAd)T(x) dvao (11.53)

J(SW[EIW” + Pw”]dx = JSW”EIW" dx — JSW/PW/ dx

—[Bw)(—Pw — ElW"))5—[(—8w')(—EW")];

7Y

7 E,LLALpP \Qo
( AP
<Mo

FIGURE 11.7 Euler buckling of a beam column.
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At x=0, both w and —&w’ vanish. Note that the shear force V and the bending
moment M are identified as V=—EM and M= —EIw". The “effective shear
force” Q is defined as Q = —Pw' — Elw’".

For the specific case illustrated in Figure 11.7, for a one-element model we may

use the interpolation model

2 3 7!
W) = {2 xs}[ —L2L _ng} YO, () = (:VV((LL))) (11.54)

As seen in Example 11.7, the mass matrix is shown after some algebra to be

131
35 20k
M = pALK,, K,= (11.55)
ALy 172
210~ 105
Similarly,
1
2 L
P, N 5 10
JSW’Pw’dx = 8’yTZK1'Y, K, =
1
wl L
(11.56)
EI R . 12 6L
JBW”EIWN dx = 5‘YT—3K2‘Y, K, =
L 6L 412
The governing equation is written in finite element form as
= P .. Qo
|:L3K2LK1:|’Y+pALK0‘Yf, f= <M0> 11.57)
In a static problem, ¥y =0 in which case the solution has the form
cof <K2 — PE—’}ZKI)
= f (11.58)

Y7 de(K, - EK,)

in which cof(-) denotes the cofactor matrix, and clearly y — oo for values of PE—L12
which render det(Kz - PE—Lfﬁl) =0.

11.5.1.2 Dynamic Buckling

In a dynamic problem, it may be of interest to determine the effect of P on the
resonance frequency. Suppose that f(r) = f; exp(iwf), in which f; is a known vector.
The displacement function satisfies y(f) = vo exp(iwf), in which the amplitude vector
VYo satisfies
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Er K
[ - —K1 — @ pALKoil Yo = fo (1159)

Resonance occurs at a frequency wq for which
Erl . ) N
det K2 - K1 — wypALKy| =0 (11.60)

Clearly, w3 is an eigenvalue (often the minimum) of the matrix ﬁfia 1/2

[ K, -2 Kl] “172 The resonance frequency “’o is reduced by the presence of P
and vanishes preczsely at the critical value of P.

EXAMPLE 11.7

Derive the matrices KO, Kl, Kz for a cantilevered beam modeled as one element.

SOLUTION

Enforcing the clamped constraints a priori, the interpolation model is

2 r 1[3L L2]

T — (2 3 _
=6 x) (I)_{—ZL 32| T2 -L

The mass matrix satisfies

M =®7 }(p(x)pA(pT(x) dx ®

L 3L =214/ # 3L 12
=76 J pA(x* x3)dx
2 —L]g\¥ -2 -L
13 1
35 ok
= pAL
11 1 72
a0l 15l
But M= pALKO, and so
1 L
P 35 2
Ko = Ly ]L:|
210 105

Continuing,

w =Py, B =0/0x ¢’ =(x 32
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JSW/PW/ dx = sy"®" JBPBT dx By

3L —27%/ 2« 3L 12
N | O s [
> —-L ; 3x? -2 —-L

6 1
Pl 5 w6l
=ov Y
wl L7

Finally,

L
2
JBW”EIW”dx::S'yT(I)TJ EI(2 6x)dx®y
5 6x
3L -27[4L 6L*7[3L I?
Y
> —L||6* 12L3||-2 —-L

E/[12 6L
=oy' = v
Sler ar2

But [8w”"Ew" dx = 67 %sz, from which
K, — 12 6L
27 Lo 4r?
EXAMPLE 11.8

Determine the two buckling load of a cantilevered beam modeled as one element.

SoLuTioN

The two critical values can be obtained using det[K, — 2K, ] = 0, leading to

Dot (o heL P2
El

and so
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On solving the above equation, we have £=2.49, 32.18, with the corresponding
critical values

El El
P=249—, 32.18—
L2 I?
The lower value of the coefficient of EI/L is very close to the exact value of 7%/4, but
the higher value is not very close to the exact value, given by 97° /4=22.2.

EXAMPLE 11.9

Interpretation of Buckling Modes
Next consider static buckling of a clamped—clamped beam as shown in Figure 11.8.
If we impose clamped constraints from both the left and right equations, the first and
second elements contribute the following stiffness matrices, using notation introduced
in Chapter 7.

K(l)_SEI{lz 3L] (2)_EI{12 —BL}

2 73|30 12 = B -3 12
KO — 2P 6/5 L/20 KD = 2P 6/5 —L/20
2= " 20 12/30) W= T 020 12730

The assembled stiffness matrix is now obtained by direct addition:
1 2 1 2
K = K + K — (Ky) +K)

78EI{24 0}_2P{12/5 0}

T30 22| L| 0 %30

and the load—deflection relation is

87EI 24 0| 2P[12/5 0 wa | _ W
3|0 I? L| 0 I1?2/30 —wh[ T | M
The two critical buckling loads can be obained analytically since the two buckling

modes are uncoupled.

PL?
El

P2
21 =120 ~ 127°

=40 ~ 477,

"
{ )
Mo

FIGURE 11.8 Buckling of a clamped—clamped beam.

© 2008 by Taylor & Francis Group, LLC.



Note that the two element values of the critical load correspond to the symmetric and
antisymmetric behaviors. (i) In particular, if My = 0 there is only one critical load and it
is P;. Furthermore, w =0 and w(L/2 —{)=w(L/2+{). Alternatively stated, the
deformation is symmetric about L/2. (ii) However, if V,=0, there is only one critical
load and it is P,. In this case, w, =0 and w(L/2 — ) = —w(L/2 4 ). This of course
represents antisymmetry.

Returning to the main development, but referring to Figure 11.8, we now compare
the finite element approach with the exact method, assuming static conditions. Consider
the symmetric case. Let w(x)=w.(x) +w,(x), in which w.(x) is the characteristic
solution and w,(x) is the particular solution reflecting the perturbation. From the
Euler buckling Equation 11.52 w.(x) has a general solution of the form w.(x) =« +

Bx + vy cos kx + 6 sin kx, in which k = \/%. Noww=—w'=0atx=0, —w'(L)=0 and

Em" (%) = Vj, expressed as the conditions

la 408 + 1y + 06 = —w,(0)
O + 18 + 0y + k8 = —w,(0)

(11.61)
Oa + 18 — yksin(kL/2) + 8k cos(kL/2) = fw;,(L/Z)
O + 0B + i sin(kL/2) — 8x° cos(kL/2) = —Elw, (L/2) + V;
or, in matrix—vector notation,
~w,(0) 10 1 0 «
—w; (0 01 0
Bz = ,p( ) ,B= ' K a= B
—wy, (L/2) 0 1 —xsin(kL/2) kcos(kL/2) v
—Ehw, (L/2)+ Vi 0 0 w3sin(kL/2) —k>cos(kL/2) s
(11.62)

For the solution to “blow up” it is necessary for the matrix B to be singular, which
occurs if the corresponding homogeneous problem in fact possesses a unique solution.
Accordingly, we seek conditions under which there exists a nonvanishing vector z for
which Bz=0. Direct elimination of @ and B furnishes « = —y and 8= —«k8. The
remaining coefficients must satisfy

—sin(kL/2) cos(kL/2)—1]/vy\ (0
sin(kL/2) cos(kL/2) } (3) = (0) (11.63)

A nonvanishing solution is possible only if the determinant vanishes, which reduces to
the requirement sinkL=0. This equation has many solutions for «L/2, including
kL/2=0. The lowest nontrivial solution is «L/2=4r, from which P.;= 47
EI/L2:39.88 EI/L2. Clearly, the symmetric solution in the foregoing two-element
model (P =40 EI/LZ) gives a very accurate result.
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For the antisymmetric case the corresponding result is that tan kL/2 =kL/2. The
lowest meaningful root of this equation is kL = 4.49 (Brush and Almroth, 1975), giving
P.;=80.76 EI/L2. Clearly, unlike the symmetric solution, the axisymmetric solution
from the two-element model (P = 120 EI/LZ) is not very accurate.

To this point it has been implicitly assumed that the beam column is initially
perfectly straight. This assumption can lead to overestimates of the critical buckling
load. Now consider that there is a known initial distribution wq(x). The governing
equation is now

& _ & d?
@EI@(W—W())-FP@(W—W()):O (11.64)
or equivalently
2 2 2 2 2 2
d d d d d
@E]@W-‘:-P@W:@E[@WO-FP@WO (11.65)

Now crookedness is modeled as a perturbation. Similarly, if the cross-sectional
properties of the beam column exhibit a small amount of variation, say El(x)=
Elo[1+ 9 sin(mx/L)], the effect of the variation may likewise be modeled as a
perturbation.

EXAMPLE 11.10

In the clamped—clamped beam column use four equal length elements to determine
how much improvement, if any, occurs in the symmetric and antisymmetric cases.

SoLuTION

Consider the right half of the configuration, which has two beams of length L/2.
Denoting L/4 as L, we assume an interpolation model w(x) = " ()@ in which

fW=(1 x 2 )

1 0 0 0 717! 2 0o o0 o0 We

0 -1 0 0 1] 0 —-I) 0 O —w,
P = . = . ==z o o N A , Y=

1 L L L 3| —3L 21* 3L I2 Werl

0 -1 -2 -3[2 2 L -2 -L Wi

The interpolation model also involves the relations

_ 9’

S =0 1 2 3). W'=(0 0 2 6r)by

w=p'dy, p’
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I3 o -3, 27 L[0 0 0 O I3 0 0 0
1o -3 202 —L 0 1 2x 3x @ 0 -I3 0
DSlo o0 3 -2 0 2x 4 6 i 202 30 Q2
0 0 I* —L]p |0 3 6 o 2 L -2 -L
¢ —nL - gl
el B L 5
T e 17 6 17
5 10 5 10
kL —ki LD
Continuing,
I3 0o 3L 27 L 3 0
. 110 =13 202 —L 0 0 L3 o0
K, = — X (0 0 2 6x)dx| . . o
L’lo o0 3L -2 2 —3L 2[* 3L 1I?
o o [* —-L]lo \ex 2 L -2 -L

12 —6L —12 —6L
—6L 41 6L 2I?
—-12 6L 12 6L
—6L 2I% 6L 4i?

Since the element length is L/4, the element matrices become

R A S ) 12 -3L/2 —-12 -3L/2

A S S i —3L/2 [?/4 3LJ2 L?*/8
[Kl]]:[K1]2: 3 1 3 1 > [KZMZ[KZ]QZ

R A Y —12 3L/2 12 3L)2

—&L —gsl? AL LI -3L/2 I?/8 3L/2 I*/4

The assembled matrices, after enforcing the constraints w(0) =w/(0) =0 are

1 0 -§ _1p 24 0 -12 -3L)2
& - 06 ol L —asl? &, - 0 L*/2 3L/2 L/8
- AL & AL -12 3L/2 12 3L)2
oL - Lr AL L2 —-3L/2 L¥8 3L/2 L*/4
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The governing equation is written in finite element form as

240 —12 -3L/2 L 0o ¢ —LL
El 0 I?/23L/2 L*8 P 0 S5l HL —l?
3 N Vs =13
@/ —12 312 12 32| WH| ¢ Lp ¢ I
—3L/2 I?/8 3L/2 L*/4 -l ol HL ogl?
w(L/4) 0
—w/(L/4) 0
Y3 = , 3=
w(L/2) Vi
—w/(L/2) M,
Symmetric Case: Mo=0; w'(L)=0
The governing equation reduces to
24 0 -—I2 2 0 -¢ w(L/4) 0
E/ P
—— | 0 I?*/2 3L/2| ——r L2 Lp -wW&L/H| =10
L4y / / (L/4) 60 0 w(L/4)
—12 3L/2 12 -¢ &L ¢ w(L/2) Vi
Buckling occurs if
24 —12¢ 0 -1248¢
P/(L/4) PI?
det 0 21O/ B-LOL2| =0, é=—LL " =16—
( 155) / ( 20 ) / £ EI/(L/4)3 El
1

—12+8%& (3-%&)L/2 12— 8¢

The roots of the above equation are ¢ =10, 2.486, 32.1807, independently of L. The
lowest nontrivial root is & =2.486 and so

Erl
P, =39.736—
12
which is very close to the exact solution (47> EI/L2).
Antisymmetric Case: Vo=0; w(L)=0
Following the same steps as before, the governing equation is found to be

240 -3/2 2 0 -5 w(L/4) 0
El P
L/2 4L |———| 0 &L —L —Lw'(L/4) [ =] 0
(L/4)3 / 8 ) 60 780 w(L/4)
-3/2 {L L -5 —ml ol Lw/(L/2) M,
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The critical loads are obtained from

u-e 0 (3449
det 0 2-%8L/4 (G+5:6)L/4| =0

The roots are found with a little effort to be £ =15.18, 18.78, 49.38, giving the lowest
nontrivial buckling load as

El

which is very close to the exact solution (80.76 EI/L2).
Clearly, a four-element model gives a much better approximation than the two-

element model in the antisymmetric case. The percentage of error decreases from 48.6%
to 2.6%.

11.5.2 EuLer BUCKLING OF PLATES
The governing equation for an isotropic plate element subject to in-plane loads is

(Wang, 1953)

En? 4 O*w 0w O*w
PS4 P P, =
Viw + + +Po gy

12(1 — 12) Tox2 Y 0y? 0 (11.66)

in which the loads are illustrated in Figure 11.9. The variational methods in Chapter 4
furnish

Jawv“wdA = Jtr((SWW) dA + Jaw(n -V)V2wdS — JﬁVW -V(n-Vw)dS

(11.67)

FIGURE 11.9 Plate element with in-plane compressive loads.
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in which W = VV7w (a matrix!). In addition

Pw O*w Pw
= JSwnTp ds — J(VSW)TP(VW) dA (11.68)
ow | Ow
(N
n ow owl] |” |ip, P,
1 - -7 25 xy y
i n g

We recall the interpolation model w(x,y) = cpzzfl)bzybz, from which we may obtain
the relations of the form

Vi — <$> — BT @y,  VECW) = BL, @0y, (11.69a)
)
[0 |
Ox?
9 (pT aZ‘PZ;Z
ox P Oxdly
Bio=|, | Buw= (11.69b)
T 62‘PT
. P2 Z
Oy Oxdy
Pl
L Ox%

We also assume that the secondary variables %hfvz) (n - V)V2w, % (n-V)Vw,

and p are prescribed on S. Doing so serves to derive

K1 — Kpna]yp =f (11.70)

En?

Koy =——
P -2

@, JBmBQZ dA®y,, Kyn =), JﬁlbzPﬁlsz dv &,

and f reflects the secondary variables prescribed on S.

As illustrated in Figure 11.10 we now consider a three-dimensional loading
space in which P,, P,, and P,, correspond to the axes in terms of which we seek
to determine a surface of critical values at which buckling occurs. In this space a
straight line emanating from the origin represents a proportional loading path. Let
the load intensity A denote the distance to a given point on this line. By analogy with
spherical coordinates, there exist two angles 6 and ¢ such that

P, =Acosfcos¢p, P,=Asinfcos¢p, P, =Asing (11.71)
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FIGURE 11.10 Loading space for plate buckling.

Now

Ky = AKp00(6,9)

Ky22(0.0) = @7 Jﬁlbzﬁ(e,wﬁﬁ,z AV @y, (11.72)
13(0,(1)) _ {cos 0 cos ¢ sin ¢

sin ¢ sin 6 cos ¢

For each pair (6,¢), buckling occurs at a critical load intensity A.;(6,¢), satisfying
det [Kn1 — /\crit(9,<l'>)f(h22] =0 (11.73)

A surface of critical load intensities A(6,¢) can be drawn in the loading space of
Figure 11.10 by evaluating A.;(0,¢) over all values of (6,¢) and discarding values
which are negative.

Recalling Example 3.8 in Chapter 3, we may write

Ky» = IVEC< [cb,{z ® D}, JBIT,,Z(X) ®BT,x) dv] VEC(f’)) (11.74)

Accordingly, in computing the part of the stiffness matrix incorporating the
in-plane load, volume integration need only be performed once, independently of
A, 6, and ¢.

11.6 INTRODUCTION TO CONTACT PROBLEMS
11.6.1 Gar

In many practical problems the information required to develop a finite element model,
for example, the geometry of a member and the properties of its constituent materials, can
be determined with little uncertainty or ambiguity. However, often the loads experienced
by the member are not easily identified. This is especially true if loads are transmitted to
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LP / Contactor

FIGURE 11.11 Simple contact problem.

the member along an interface with a second member. This class of problems has been
called contact problems, and they are arguably the most common boundary conditions
encountered in “‘the real world.” The finite element community has devoted and
continues to devote a great deal of effort to contact problems, culminating in gap and
interface elements for contact. Here, we provide a simple introduction to gap elements.

First consider the three spring configuration in Figure 11.11. All springs are of
stiffness k. Springs A and C extend from the top plate, called the contactor, to the
bottom plate, called the target. The bottom of spring B is initially remote from the
target by a gap g. The exact stiffness of this configuration is bilinear:

2%, 6<g
kc—{3k’ 5o (11.75)

From the viewpoint of the finite element method Figure 11.11 poses the following
difficulty. If a node is set at the lowest point on Spring B and at the point directly below
it on the target, these nodes are not initially connected, but may later be connected in
the physical problem after contact is established. Further, it is necessary to satisfy the
nonpenetration constraint, which may be stated as an inequality, whereby the middle
spring does not move through the target after contact is established. If the nodes
are considered unconnected in the finite element model, there is nothing to enforce
the nonpenetration constraint. If, however, the nodes are considered connected, the
nonpenetration constraint can be satisfied but the stiffness is artificially high.

This difficulty is overcome in an approximate sense by a bilinear contact
element. In particular, we introduce a new spring k, as shown in Figure 11.12.

The stiffness of the middle spring pair (B in series with the contact spring) is now
denoted as k,, and is given by

11!
S 11.7

Itis desirable for the middle spring to be soft when the gap is open (g > ), and to be stiff
when the gap is closed (g < ). For the purpose of illustration we make the selection
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FIGURE 11.12 Spring representing contact element.

[ k/100, g>8
kg_{ 100k, <3 (11.77)

Elementary algebra suffices to demonstrate that
) 2k+0.01k, g>9é
ke~ { 2k +0.99%, g<é (11.78)

Consequently, the model with the contact element is too stiff by 0.5% when the gap
is open and is too soft by 0.33% when the gap is closed (contact). One observation
from this example is that the stiffness of the gap element should be related to the
stiffnesses of the contactor and the target in the vicinity of the contact point.

(T332

In finite element modeling, ‘“‘slave’ nodes placed at points ‘i’ on the target and
“master”” nodes placed at points *‘j”” on the contactor are not initially connected, but
may later be connected in the physical problem when contact is established. If,
however, in the finite element model the nodes are always connected by the gap
element, penetration is prevented, and the bilinear spring serves to overcome the
difficulty of overstiffness before closure and understiffness after closure by rendering

the effective stiffnesses close to the correct stiffnesses.

11.6.2 PoinT-TO-POINT CONTACT

Of course, in the more general case, it is not known what points, say on the target,
will come into contact with the contactor, and there is no guarantee that target
nodes will come into contact with contactor nodes. The gap elements can be used
to account for the unknown contact area, as follows. Figure 11.13 shows a contactor
and a target on which are indicated candidate contact areas dS. and dS,, containing
nodes cy, ¢a, ..., Cy, 1, b2, . . ., 1,. The candidate contact areas must contain all points
for which there is a possibility of establishing contact.

The gap (i.e., the distance in the undeformed configuration) from the ith node of
the contactor to the jth node of the target is denoted by g;;. In point-to-point contact,
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Candidate contactor contact surface

[ dS, *

Candidate target contact surface

FIGURE 11.13 Point-to-point contact.

in preselected candidate contact zones, each node on the contactor is connected to
each node of the target by a spring with a bilinear stiffness. (Clearly, this element
may miss the edge of the contact zone when the edge does not occur at a node.) The
angle between the spring and the normal at the contactor node is «;;, while the angle
between the spring and the normal to the target is a;;. Under load, the ith contactor
node experiences displacement u;; in the direction of the jth target node, and the jth
target node experiences displacement u;;. For illustration, the spring connecting the
ith contactor node with the jth target node has stiffness k;; given by

ky =< rover Y Y (11.79)
v { kijuppera 81} > 8ij

in which 6;; = u;; 4 uj; is the relative displacement. The force in the spring connecting
the ith contactor node and jth target node is fj; = k;;(g;))8;; (no summation). The total
normal force experienced by the ith contactor node is f; = > fi; cos(a)).

As an example of how the spring stiffness might be taken/to depend on the gap to
achieve a continuous approximation to a bilinear function, consider the expression

kij(gij — 6;) = ko

2
e+ - 28); tan~! (C; H (8 — 8 — v)* — (g5 — 8 — 7)”)1
(11.80)

in which v, a, and ¢ are positive parameters selected as follows. When g;; — o i—7v>0,
k;; attains the lower shelf value ke, and we assume that e < 1. If g;; — 6, — v <0, k;
approaches the upper shelf value ky(1 —&). We choose y to be a small value to
attain a narrow transition range from the lower to the upper shelf values. In the
range 0 < g;; — 6;; <y there is a rapid but continuous transition from the lower shelf
(soft) value to the upper shelf (stiff) value. If we now choose a such that ay=1,
k; equals ko/2(+O(e)) when the gap initially closes (g;=9;;). The spring charac-
teristic is illustrated in Figure 11.14.
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FIGURE 11.14 Tllustration of a gap stiffness function.

The total normal force on a contactor node is the sum of the individual contact
element forces. For example, for the jth contactor node,

N
fui = Z kii(gij — 8;)8;; cos(a;j) (11.81)

Clearly, significant forces are exerted only by the contact elements which are
“closed.”

11.6.3 PoOINT-TO-SURFACE CONTACT

We now briefly consider point-to-surface contact, illustrated in Figure 11.15 using a
triangular element. Here target node #; is connected via a triangular element to
contactor nodes ¢; and c¢,. The stiffness matrix of the element can be written as
k(g1 — 61, [g2— 82])K, in which g; — 8 is the gap between nodes #; and ¢;, and K

Candidate target contact surface

f— 45, —

Element connecting node
t; with nodes ¢; and ¢,

Candidate contactor contact surface

FIGURE 11.15 Element for point-to-surface contact.
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is the geometric part of the stiffness matrix of a triangular elastic element. The
stiffness matrix of the element may be made a function of both gaps. Total force
normal to the target node is the sum of the forces exerted by the contact elements to
the candidate contactor nodes.

In some finite element codes schemes such as illustrated in Figure 11.15 are also
used to approximate the tangential force in the case of friction. Namely, an ‘elastic
friction” force is assumed in which the tangential tractions are assumed to be
proportional to the normal traction through a friction coefficient. Elastic friction
models do not appear to consider sliding and may be considered bonded contact.
Advanced models address sliding contact and incorporate friction laws not based on
the Coulomb model.

EXAMPLE 11.11

1. Consider a finite element model for a set of springs, illustrated below (Figure 11.16).
A load moves the left-hand plate toward the fixed right-hand plate.
(a) What is the load—deflection curve of the configuration?
(b) For a finite element model, suppose a bilinear spring is supplied to bridge the gap
H. What is the load—deflection curve of the finite element model?
(c) Identify a k, value for which the load—deflection behavior of the finite element
model is close to the actual configuration.
(d) Why is the new spring needed in the finite element model?
2. Suppose a contact element is added in the foregoing problem, in which the stiffness
(spring rate) satisfies

2 _
s+(1—28);tan ! (g |:‘\/(gij6[jy)2_(gij§[j’y)‘:|>:|

with ay =1, k, = k/100, and k, = 100k. Compute the stiffness/k for the configuration
as a function of the deflection.

kij(gij — 6i) = ko

— H —
| L |

FIGURE 11.16 Set of springs with gap.
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SOLUTION

1. The exact stiffness of this configuration is

k. — 3k, 6 < H, gap is open
7\ 3.5k, &> H, gap is closed

in which when & > Hk, is calculated as follows:

ko= 3kt (140 71—35k
c k' k) T

The exact load—deflection curve is plotted as in Figure 11.17
Now let us introduce a gap element of stiffness k, as illustrated in Figure 11.18.

3.5k

N

3k

|
|
|
!
T
H

~<—— Gap —>

FIGURE 11.17 Load—deflection curve of the actual configuration.

"~ k

D

= H —

| |
| L |

FIGURE 11.18 Illustration of gap element.
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It is desirable for the spring C to be soft when the gap is open (6 < H), and to be
stiff when the gap is closed (6 > H). Suppose

L _ [k/100, 8 <H
¢~ 100k, &>H

When the gap is open, i.e., 6 < H, the stiffness of the configuration is given by

11 !
ke=3k+ (-+—+-) =3k+0.0098k
+ (k + . + k) +

And when the gap is closed, i.e., 8 > H, the stiffness of the configuration is given by

11 1\
ke=3k+ (—4+—+-—] =3k+0.4975k
k' ky K

Accordingly

b {3k+0.0098k, S<H
¢ | 3k+0.4975k, 8§>H
The model with the gap element is overly stiff by 0.33% when the gap is open, and
is overly soft by 0.07% when the gap is closed. The exact and approximate values
are illustrated as in Figure 11.19.
Clearly, the assumed value of k, gives a close approximation to the actual configuration.
2. Case (1): gap is open: When the gap is open, g >06+ 7, i.e., g—86 —y>0. Hence
we have

H\/(gzji — 8 — Y — (g5 — 8 — Y)H =0

= kij(gij — 3,1) = kL = k()8

—— Withk,

|

: ———— Actual
| 7

|

|

|

|

3.5k /7
7/

4
/273.4975k
4
(4
4

-

3.0098k -

-z

3k

FIGURE 11.19 Load-deflection curve of the actual and the finite element configuration.
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Case (2) gap is closed: When the gap is closed, g <6 + v, i.e., — (g — 6 — y) > 0. Now
2 ]
ki(gy — 8) = ko &+ (1~ 26)~ tan (52(6+7—g)>

Now tan™'(a(8 + v — g)) asymptotically approaches /2, for which
kij(gij — 8;)) = ky = ko(1 — &)
Case (3) gap just closes: When the gap just closes, g <0 + y,i.e.,g —6 —y < 0. Now,
tanfl(% 20 +y— g)) =tan a@ + vy — 9))
On substituting ay =1, we obtain

kij(gij — 6;) =k = ko |:8 +1 - 28)% tanfl(a(ts -8+ 1)]

Since 6 = g under the stated condition

l—¢ ki
ki,-(g,-,»—aij)=k=k0(g+ . )NEO

The results can be summarized as
koe, gap is open

kij(gj — 65) = < ko/2, gap just closes
ko,  gap is closed
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’I 2 Rotating and
Unrestrained Elastic
Bodies

12.1 FINITE ELEMENTS IN ROTATION
12.1.1 ANGULAR VELOCITY AND ANGULAR ACCELERATION VECTORS

We consider a vector b which is referred to an instantaneous coordinate system
with base vectors e,, e,, and e, Suppose that in a time increment dr there is
rotation of the x—y plane clockwise about the z-axis through a small angle —di,
generating a new vector b’, and giving rise to the new coordinates x’, y’, z’ in which z’
coincides with z. This rotation is depicted in Figure 12.1. Note: A negative rotation
of the coordinate system is equivalent to a positive rotation of the vector about
the instantaneously fixed coordinate system. Prior to the rotation, the vector may
be expressed as b’ = {b, b, b.}. For the moment we assume that b,, by, and b, are
constants.
The rotation gives rise to b’ which satisfies

cos(—dy) sin—dy) 0 1 0 0 0 -1 0
b’ = | —sin(—dy) cos(—dy) O|b~ |0 1 Of+dgy{1 0 O]|b
0 0 1 0 0 1 0O 0 O
(12.1)
from which
0O -1 0
b=b+dy|1 0 O0l|b
0O 0 O

Next, suppose that the y'—7' plane is rotated about the x-axis through the incremental
angle —d6, corresponding to a positive rotation of the vector with respect to the
instantaneously fixed x’y’z’ coordinate system (cf. Figure 12.2). We now have the
vector b” and the directions x”, y”, z”, in which b” is given by
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5 y

4 y

dy x

X/

FIGURE 12.1 Differential clockwise rotation about the z-axis.
ZI z//
do~
y/
de y/l

X, X

FIGURE 12.2 Differential rotation about the x’-axis.
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1 0 0

b" = [0 cos(—df) sin(—d@) |b' =~

0 —sin(—df) cos(—do)

But eliminating b’ furnishes

1 00 0 0 O 1

b= |[]0 1 0| +do|0 0O -1 0
0 0 1 01 O 0

0 0 O 0 -1

~b+|de|0 O —1|+dy|1 O
01 O 0 O

[

1 0 0
0 1 —do|v
0 do 1
0 0 —1
O +dy|1 o0
1 0 0
b

(12.2)

(12.3)

Finally, referring to Figure 12.3, the z’/—x" plane is rotated around the y”-axis

n /11
)

clockwise through an angle —d¢, furnishing the new axes x"’, y

vector b”’.
The vector b”’ is given by

2" Z

dg

X
d¢

X//

n

y"y

FIGURE 12.3 Differential clockwise rotation about the y”-axis.

© 2008 by Taylor & Francis Group, LLC.

7", and the new



cos(—dp) 0 —sin(—dg) 100 0 01

b" = 0 1 0 b"~ |01 0|+dp| 0O 0 0] |b”
sin(—d¢) 0 cos(—d¢) 001 -1 00
0 01 00 0 0-10
~b+|dp| 0O 00|+dO[{0 0 —1|+dy|(1l O O||b
-100 01 0 0 00
0 —dy do
~b+ | dyp O —dé|b (12.4)
—d¢ d6 O

The derivative of b is equated with =2, and now

v oy 5l
dt . .
- 6 0
= (¢pb. — yby)e; + (b — 0b,)e, + (8by — Pb.)e;
—wxb (12.5)

9
in which the instantaneous angular position vector is identified as 0 = {¢} =
v

de
Oe, + ¢e, + e;, and the angular velocity vector is identified as =4

] . . .
{q§} = fe, + e, + ;. The angular velocity vector describes the rate at which
[

the vector b rotates in a counterclockwise sense about the instantaneous axes. In the

appendix, the vector 0 is expressed in terms of angles used in spherical coordinates.
The angular position vector presented above is one version of what are called the
Euler angles.

12.1.2 VEeLocity AND ACCELERATION IN ROTATING COORDINATES

More generally, again consider rotation of a body about a fixed axis in which at least
one point in the body is located on the axis. The coordinate system is embedded in
the fixed point and rotates with the body. The undeformed position vector X’ in the
rotated system is related to its counterpart X in the unrotated system by X' = Q(H)X,
in which Q is a proper orthogonal tensor. If the deformed body is viewed in the same
coordinate system, the counterpart for the deformed position is X' = Q(f)x. The
displacement likewise satisfies u’ = Q(r)u. Time differentiation gives
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du’(X )

d
— QX “( D L QuX.n

d
— Q) “( SO 1 QQT (Ol (X0, (12.6)

We make the identification

Gu’éX 1) —Q )du(X 1) (12.7)

with the interpretation that 24 (X D denotes the derivative of u’ with the rotation tensor
Q(?) held fixed at its current pos1t10n and vanishes if u is unchanging relative to the
rotating system. In addition, since 0 = %QQT =QQ" +QQ", @ = QQ7 is anti-
symmetric. Finally, from Chapter 3 for the 3 X 3 antisymmetric tensor £ and for any
3 X 1 vector b there exists a 3 X 1 vector w satisfying Qb = wXb. Of course w is
the angular velocity vector of dynamics, and it is referred to the instantaneous
(rotating) coordinate system; its time derivative %—‘;’ is the angular acceleration
vector, hereafter denoted by « and referred to the instantaneous coordinate
system. Corresponding to e there is an antisymmetric tensor A = 9€2/0¢ such that
Ab=a Xb.

Now with the prime on u no longer displayed, the total time derivative of the
displacement vector, i.e., the velocity vector v, may be expressed in the rotating
system as

du 6 Ju

The acceleration vector is similarly expressed as

a =dv/dt
= (0/0t + @ x)(Ou/0t + ® X u)
= 0"u/0f + 20 x Ou/dt+ o x @ xu+axu (12.9)

The four right-hand terms in Equation 12.9 are, respectively, called the translational,
Coriolis, centrifugal, and angular accelerations, respectively.

In the Principle of Virtual Work, for reasons to be explained in a subse-
quent sections let i denote the variation of w with the coordinate system held
fixed at zts instantaneous position. The corresponding inertial term becomes

f6u p a 2(u +X')dV. Now assuming the usual interpolation model u'(X’,f) =
o (X")®(1), the inertial term becomes

d2 &
J M dZ’+G1 +(Gy + Ay (12.10)

© 2008 by Taylor & Francis Group, LLC.



M = &7 Jp(p(pT ave, G, =7 Jp(pﬂ(pT dv @
G, =" J pe Q" dV D, A =@ J peAe’ dV @

The matrix M is the conventional positive definite and symmetric mass matrix in a
nonrotating system. The Coriolis matrix G, is antisymmetric, the centrifugal matrix
G, is negative definite, and the angular acceleration matrix A is antisymmetric.
(G, involves the square of an antisymmetric matrix. Since an antisymmetric matrix
has pure imaginary eigenvalues [Chapter 2], its square is symmetric with negative
real eigenvalues and hence is negative definite.)

There is also a rigid body force term due to centrifugal and angular acceler-
ations.

d2
JaﬁTp@ X'dV =y fro,  frq = B thp [Q% +A]X'dV (12.11)

Consolidating the terms, the ensuing governing finite element equation is now

d d
M+ G+ K+ G+ Aly = £ — (12.12)

EXAMPLE 12.1

Compare a one-element model of a rotating rod to the exact model. The rod is depicted
as follows (Figure 12.4).

We consider the member a rod and accordingly neglect effects in direction trans-
verse to the motion. The radial displacement is denoted as u(r). The acceleration is
obtained as

u=ue, ®=owe, o=ae
0%u

Ou
= We’ + 2we, X 5er + we, X we, X ue, + ae; X ue,

it

The Coriolis and angular accelerations terms are aligned with ey and are therefore not of
interest in a rod. The centrifugal acceleration points back radially toward the origin. The
acceleration vector therefore reduces to

a [P T,
u= By wule,

We also obtain the rigid body contribution iy = —w’rge,. Enforcing the constraint at
the shaft a priori, we introduce the interpolation model u(ro,t) = % y(). The Principle of
Virtual Work (using 6t — 6u) now implies

© 2008 by Taylor & Francis Group, LLC.



N

fo sin ot

i

FIGURE 12.4 Steadily rotating elastic rod.
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L

0 AL
Jﬁup {—u — Wy — wzu]AdrO =08y {p— y
0

pAL , pAL?

3 YT 39T

w

or?

The stiffness term is found as
i EA
JSEt‘rSrrA dro = 87T Y
0

The one-element finite element equation is now

EA pAL AL AL?
[_7P_w2}y+P . P ©

L 3 3 Y73

In the steady state y=0. Under steady state rotation, y — o0 if v — w., =

,/% = \/%\/E, and w,, is called the critical speed. Note that the critical speed is

nothing but the natural frequency of the nonrotating rod.
To assess accuracy the one-element finite element model is now compared to the
exact solution.
The exact governing differential equation is expressed as
d*u
EA— + pw*u = —pw’rg
drg
The particular solution is u, = —rjp, in which event the characteristic solution satisfies

d*u
EA— + po?u, =0
drg pwte
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.. . . 2 2
The characteristic solution has the form u. = asm(\/%ro) + Bcos( %m),

and the boundary conditions are u(0)=0, EA‘{:‘—%L):O, giving B8 =0,

o= 1o L.

Finally, the displacement function emerges as

[ow? 2
L sin( %ro> tan( %L)
—n,  y=L|——~L 1
[pw? po?, pw?
E NV E E

The nodal displacement y becomes unbounded when %L = g, and hence when

0= \/E, which is the exact natural frequency of the nonrotating rod. The critical

2
u(ro;w”) =

speed in the single element finite element model is within 10% of the exact value.

EXAMPLE 12.2

Unsteady rotation of a beam column about an axis

Consider a thin beam column that is rotating unsteadily around a shaft. Its thin
(local z) direction points in the direction of the motion, giving rise to Coriolis effects in
bending. Derive the ensuing one-element model. Note that a beam column couples
extension and bending.

SoLuTION

Enforcing the clamped constraints at the axis of revolution, the interpolation model for a

beam column (Figure 12.5) is given by u(x,y,r) = up(x,t) — y%, with

V4
— 1 = o a

Beam /
column

FIGURE 12.5 Beam column in unsteady rotation about an axis.
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X
uo(et) = uo(LD), v = o, Dy,

F 2 T I N Y B 5
T 2 3
=x x), P,= =—
@ = B {—ZL —3L2} {—ZL —LZ}

(L) , Mv(x,t
vh:(_vv,(L)), Vi = 20— playy, B =x 30)

The stiffness matrix not affected by the motion and is given by (cf. Chapter 7)

JBEUUU dVv = 8'YTK‘Y, K= |:Km 0 :|

0 K,
_ EA _ EIf12 6 [ up(L,p)
Km_Ty Kb_5|:6 4:|, 'Y—( v

The inertial terms now are stated as

d>u  H*u

dt2—812+2m><3+m><m><u+a><u

2 p—
M — 0y — yv') — zw@ —av
or? ot
= J(Suo — y8V'8v) , 5 pdVv
» g — V')

2 T—i—a(uo fyv/)+%fw2v
= Jﬁuo (% — otugy — ZM% — av)pdV + Jyﬁv ( %22/ wav’)pdV
+ [6v(2w%+ Qg +(89i2 —w v)pdV
Performing the indicated manipulations results in the following relations:

Puo(L,1)

82140
Jﬁuowpdv = Sug(L,t) o

S~ =
h\k

L
Jiim
— Sug(L,p) (pT) i "gt(f 1)

A
Similarly, jﬁuo(—wz)uop dV = u(Ly1) ( ”T) uo(L,1)

L
JSMO(—Zw) % pdV = Sug(L.1) [ %(—Zw)d),{(I)pr dxy,
o

1o\ [32 1* .

L
AL
— Sup(L.1) (72w pToU L)> Y
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L

[ X

J Sug(—av)p dV = Suy(L,t) J z(—a)d);q),,pA dxvy,
0

ool )

AL
= Sup(L,t) (—a p2—0 (7 L)) Yo

1\ [ 382

pdV =8y, q)T BbPIBb dx @y,

, 0%V
o2

. 42 6x°
—5'Yb(l)bJP
0
6 1
pl| 5 10 ..
:ﬁygf{l 2 2]%
wl 5L

L3

—L

:|'Yb
2

The matrix in the preceding expression is recognized as proportional to K| encountered

in Chapter 10 in conjunction with buckling.
Continuing,

JSvauop dv = By,fapAL uo(L,t)

J

1

20L

2

o~ v .
5V¥P dV = 8y, @} | @,pAe; dx sy,

X4

PpA
x

L

x
dx @y,

5o

=Syl
0
(312 —2L
7 PA

th

oy

w

W

= 8y, pAL )
11

1 42
10 L

L s
6
5 1

L

[
J YoV (—o*WpdV = 8yj (*“’2)% [ 1
10
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du X .
Jb‘v(2w) 8—;’ pdV = syl ] J Qw)p, | pAdx (L)

2wpA [3L% —2L7 [iL*
— oyl 222 5 i
L 3 12 % 5

;
20
= 8722a)pAL< 1( >it0(L,t)
EL
Finally,
13 11
55 20l
Sv(—wHvpdV = 5'Yb( w?)pAL s Vb

1 72
210 1()5L

Upon combining v,, = up and 1y, into the vector v, the inertial terms in the Principle of
Virtual Work are now stated as

1 00
J'auoa(;pdv 5 T(”E‘L) 00 0%
0 0 0
1 00
JSMO(—wz)uopdV:(SyT(—wszTL) 0 0 0w
0 0 0
0 7 L
J6u0(72w)%pd\/:5‘y ( 20 %) 0 0 0%
0 0 0
0 7 L
J.Suo(—av)pdV:&yT(—a%) 0 0 Oy
00 0
0 0 0
J28v882—2pdv ay”zl 0o ¢ LL|y
0 HL &L
0 0 0
J.y25\/(—w2)\/pdV:87T(—w2%]> |:0 2 %L v
0 KL L
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0 0 0

.[Sv(Zw)%pdV:S‘yT(pr?—oL) 7 0 0|y
L 00
0 0 0
J(Svauopdeﬁ'yT(a%) 7 0 0|y
L 00
0 0 0

v T .
1

9|

Jﬁv(fwz)vpdV:(O“YT(—wszL) 0 % anl |v
1

0 2l sl
and the stiffness term becomes

EA

— 0 0

L
Er EI

JS.&‘,-,—O’,-jdV =6vT| 0 125 65 v

EI EI

0 65 45

The one-element model for the rotating beam column emerges as

pAL
3

0 0 0 -7 —-L

. pAL y
222517 0 o
0 EpAL+SE  JGpAL + gl y+(w20) '

1 2 3,2 L 0 0
0 FLpAL* + Lpl [pAL® + ZpIL
EA_ ,pAL 7 1 2
+ 7 AL 12E1 2(13 AL 6pl 6EI 2(11 ALZ 1 I — f
209P 75~ @ (SPAL+5) 65—’ (5ipAL* +gpl) | Y= | /o
M,

Bl 3,2
—— (ﬁpAL* +ﬁpIL)

El
BPAL? 65— o (35pAL + 15pl) 47

We observe that unsteady rotation of a beam column gives rise to Coriolis and
angular accelerations effects serving to couple the membrane with the bending

response.
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Returning to the main development, in two-dimensional steady rotation of an
undamped elastic medium without Coriolis effects, the governing equation reduces to

MYy + (K — o*M)y =f — £, (12.13)

We consider the eigenvalues and eigenvectors implied by this equation. The eigen-
values wf and eigenvectors X; satisfy the generalized eigenvalue equation

0= [K—o’M) — o;M]x
= (K= (o + 0} )M)x; (12.14)

Now w? + w% = w?, in which w,,; are the natural frequencies found in the nonrotating
system with the same stiffness and mass matrix. It follows that the eigenvalues of the

rotating system satisfy
W = o, — o (12.15)

However, the eigenvectors X; simultaneously diagonalize K and M regardless of w.
We conclude that the eigenvectors are not affected by rotation.

On the other hand, if the Coriolis and angular acceleration matrices need to be taken
into account, the eigenvalues may in general have nonzero real and imaginary parts.

12.2 CRITICAL SPEEDS IN SHAFT ROTOR SYSTEMS

There is instability in elastic bodies under steady rotation, associated with the notion
of the critical speed, already touched upon Example 12.1. Critical speeds are
illustrated through several additional examples.

EXAMPLE 12.3

Find the critical speeds in a beam rotating about its axis, in the symmetric and
antisymmetric cases.

Case 1: Transverse load as shown in Figure 12.6

SOLUTION

The member under study is called a shaft in power generation applications. But here we
refer to it as a beam since we are concerned with the transverse displacements induced
by rotation. The force F, rotates with the beam. An imperfection (mass unbalance) in
the beam will cause it to bend away from the axis, and the bent configuration will

F
E,Ap 1 '

nw

L/2 L/2

FIGURE 12.6 Rotating shaft with a transverse load.
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likewise rotate with the shaft. The more the beam bends the greater the centrifugal
forces, thereby tending to cause the beam to bend even further.

Using two elements and imposing clamped constraints on the right and left bearings
gives the stiffness in terms in the Principle of Virtual Work as

0 on ) w2 | _ [ 192E1/13 0 W
(K2 + K”){ —Wh } o [ 0 16EI/L | | —w)
in which the subscript 2 denotes the central node. (The bearings are considered rigid.)
The inertial terms of the beam are similarly found. Under the assumed steady rotation

and assuming that the deformed profile is constant in the radial (outward) direction, the
Coriolis and angular acceleration matrices vanish, leaving

Wz W)
oy ey { " 4wt ag e { 7 )
w —wy

2

_ %pAL 0 Wz 7(1)2 %)
S0 LpAL? —W, —w),

The ensuing finite element equation is therefore

BpAL 0 W) 192E1/L 0
+
0 gopAL* | | - 0 16EI/L

5 BpAL 0 wa | [ F 1
T 0 a2 A I (1210
n0P W

Of course the equations represented by the rows of Equation 12.16 are uncoupled,
leading to the two critical speeds

192E1/L3 16E1/L
l = A Ta a7 2 P2 = A A 737400
P =\ 13pAL/35 U2 T\ pALR /420

If w = w,, the symmetric bending profile (about the midpoint) grows in a unstable fashion.
This happens in the current case since the force F, induces a symmetric deformation.
In either of these cases the stiffness matrix K is singular.

However, only low amplitude motion will happen in the antisymmetric mode unless

there is a moment at the midpoint, as discussed in Case 2.

Case 2: Suppose instead that at the midpoint there is a moment which rotates with the
shaft (Figure 12.7).

E,Ap

{'\(D

M,
]
—

A— L/2 L/2

FIGURE 12.7 Rotating beam with bending moment.
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o o [m]

Symmetric profile Antisymmetric profile

FIGURE 12.8 Symmetric and antisymmetric deformations.

Now the response is antisymmetric. If @ = w.,, an unstable antisymmetric deform-
ation occurs. However, in this case if ® = w,;, there is low amplitude response since
the applied moment only induces an antisymmetric motion.

The symmetric and antisymmetric deformations are illustrated in Figure 12.8.

EXAMPLE 12.4

Shaft rotor systems neglecting the mass of the shaft

Power transmission shafts use rotors to store kinetic energy. We seek the critical
speeds in the shaft rotor system depicted in Figure 12.9 below.

Suppose the shaft is balanced such that its center of mass is located at its geometric center.
The rotor does not induce bending if it is balanced side-to-side as well as top-to-bottom.
Top-to-bottom symmetry and side-to-side symmetry are shown below (Figure 12.10).

In top-to-bottom balance, each half has the same mass, and the centers of mass are
located at the geometric centers of the semicircular disks.

In side-to-side balance, the right half disk has its center of mass on the midpoint
along the axis, and similarly for the left-hand side (Figure 12.11).

Now suppose that the rotor is not balanced. For simplicity suppose that the centers of
mass of the top and bottom of the right and left halves lie in the same plane, which of
course rotate with the shaft. The unbalance can be modeled as follows (Figure 12.12).

Here e; and h; represent the horizontal and vertical offsets of the center of mass of
the upper right portion of the disk from the geometric center of the rotor, and similarly
for e, es, e4, hy, hs, hy.

The disk imposes a radial force and a radial moment on the shaft at its midpoint.
Taking account of the deformation of the shaft, the kinetic energy of the disk is

T, — 1 (mr? +ma2 2
172\ T2 )
Im , h / 2 h / 2
+ 3 Zw [(wz +h — (—wy)er)” + (w2 — hy — (—wy)e)
+ (wy + 3 + (—wh)es)” + (wa — hy + (—wh)es)’]

( EATLp

m
it

= w O °
— —

CL

a
L/2 L/2

FIGURE 12.9 Simple shaft rotor system.
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FIGURE 12.10 Top-to-bottom balance; rotor has mass m and radius r.

— + Centers of mass of the left and right half disks
are located at their geometric centers

FIGURE 12.11 Side-to-side balance.

. u |
m/4 mil4 .
I
€3 e r ml4 i ml4
./g Th | > hy Ie?, e hy
o—h4 h2 h4 l ey iez lh2
€, ez._ mi4 ' m/4
I
ml4 ml4

FIGURE 12.12 Rotor with top-to-bottom and side-to-side unbalance.

The first term represents the rigid body rotational kinetic energy of the balanced rotor
while the second term represents the unbalance contributions to the (translational)
kinetic energy.

Neglecting the kinetic energy of the beam, the elastic strain energy is the same as in
Cases 1 and 2 of Example 12.3.

The two-element finite element model is expressed as
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1 _ate-—e-ea
192E1/L3 0 o 2 { W, }
0 16EI/L ate—e—e etatate —w)
4 4
7111(02{ hy —hy +hy — hy }

4 | —hie; + ey + hzes — haey

The right-hand side represents a force and a moment induced by rigid body motion. If
the rotors are perfectly balanced side-to-side (e; = e, = e3 = ¢4 =a/2) the off-diagonal
entries of the second matrix vanish. If the rotor is perfectly balanced top-to-bottom, then
hy=hy, =h3=h4=0 and the rigid body contribution vanishes.

The critical speeds are obtained by solving

1 ey +e—e3—ey
192E1/L° 0 ) B 4
- mo 2. 20202
0 16EI/L ate-—ea-ea egtoateate
4 4

=0

once numerical values have been established for the offsets.

Example 12.4 is now extended to include the effects of the shaft (beam) kinetic
energy. Using the previously developed mass matrix for the beam elements (cf. Chapter
11), we have the two-element finite element equation, and again the critical speeds are
obtained by finding the determinant of the matrix on the left-hand side of the equation.

| 4 13pAL el tex—e3—ey
{192E1/L3 0 ]_ 5 35 m —a W,
0 16EI/L e|+e—e3—ey e%+e§—e§—ei+Lﬁ ,sz
4 4 420 m

- mwz{ hy—hy+hs —hy }
__T

hiey +hyey — hzes — hyey

Computation of the two critical speeds is straightforward and is left to the reader as
an exercise.

12.3 FINITE ELEMENT ANALYSIS FOR UNCONSTRAINED
ELASTIC BODIES

12.3.1 Boby Axes

We next consider the three-dimensional response of an elastic body which has no fixed
points, as in spacecraft, for example as depicted in Figure 12.13. It is assumed that the
tractions are prescribed on the undeformed surface of the elastic body, and that they
rotate and translate with the body. The response is thereby referred to the “body axes,”
i.e., axes embedded in the corresponding rigid body. An example of body axes is the
principal axes of the moment of inertia tensor in the body in Figure 12.13, assuming it
is rigid. Otherwise stated, it is assumed that the points of the rigid body coincide with
the points of the elastic body in its undeformed configuration.

© 2008 by Taylor & Francis Group, LLC.



re(f)

'
FIGURE 12.13 Three-dimensional unconstrained 3-D element.

The position vector r of a point in the rotating and translating elastic body may
be decomposed as

r=r.+&+u 12.17)

in which r. is the position vector to the center of mass, § is the relative position
vector from the center of mass to the undeformed position of the current point, in the
body system, and u is the displacement from the undeformed to the deformed
position, likewise in the body system.

It is necessary to develop expressions for the variations of r., €, and u. To this
end we regard r,. as being referred to the absolute coordinate system (xyz), in which
case we need only write dr..

Next & is fixed in the rotating and translating system, so that its variation comes
purely from the coordinate system. In analogy with § = o x § with » = %, we now
have 6& =060 X &. Finally, the variation of the displacement vector has contributions
from the coordinate system as well as from the fact that it changes relative to the
rotating system. In analogy with ‘31—‘; = %‘; + ® X u, the variation of u is expressed as
ou=45610+060 X u, in which & is the variation of u with the coordinate system
instantaneously constrained not to rotate.

In order to conduct FEA of an elastic body undergoing unconstrained motion
(rigid body translation and rotation), it is necessary to compute the motion of the

body axes, which is achieved by integrating the Euler equations presented next.

12.3.2 EuLer EQuATiONS OF A RiGID Boby

We first restrict attention to rigid bodies for which u=0. The position vector now
has the decomposition

r=r.+§& 6E=00xE§ (12.18)
Neglecting body forces, equilibrium (referred to the translating/rotating frame) is
0S;; . -- .. .
expressed as ag; — plFei+ &1 =0. Variation with respect to r. namely
[ 81 [g% — plia+ éi]} dV = 0, results in
]

© 2008 by Taylor & Francis Group, LLC.



JS Fei |:aszj:| dv = 81‘0,' J [an,~,~] ds
dg; -

= (SI'C,'JI,' ds (12.19)

and we note that F = [tdS is the total force exerted by the surface tractions. For the
inertial terms

Jarc-i[p[%c.i LTIV = b,y Jp av i 1 S jpé,» @ (1220)
—

and so SrCT[F — mr.] = 0 since the definition of the center of mass implies that
| p&;dV = 0, and m is the total mass. The first Euler equation may now be stated as

F = mi, (12.21)

We next consider the effect of the variation 6§,

o[ v

S
J S L(?f — plici + s,]] av (12.22)
J

and €;,, is recognized as the (third order) permutation tensor (cf. Chapter 3).
Observe that

J Cipg 80,5, 7ip AV = €,y 86, U .0 dV} P =0 (12.23)

Next,

0S;
Jetpq 59P$q { J}

J [6&1 [€ipg80,5,Si] — (% e,pqﬁepfq]su} dv

0&,
:J 1€ 1pq 0,€,571] dS — ”e,-,,qae,, > g}sy av
J
- Je,,q,gqtldv J[ei,,,,ae,,aqj]sij av (12.24)

We observe that M. = [£ X tdS is the total moment of the tractions about the center of
mass. Also, [[€;,460,841S;dV = 0 since a;; = €;,,80,0, is antisymmetric.

It remains to consider the inertial terms je,-pq 00,6,[—plici + éi]] dV. First

Je,-p,,se,,gqn,«p dv =€,,,86, ngp dv=0 (12.25)
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Continuing,

| €00yt av =07 [t x Eas

:SOTJpgx[mxwxg—i—axg]dV

=507 U[—(w x £) x (£ x w)]pdV + J(—g x & x a)pdV
=80"Jou+ o x Jo] (12.26)
in which J= jZTZp dV is the positive definite (moment of) inertia tensor, and Z is

the the antisymmetric tensor satisfying Zb =& X b for any 3 X 1 vector b.
The second Euler equation now arises as

M=Ja+»x Jo (12.27)

If we write £ = {&, & &) the inertia tensor is found with routine effort to be
given by

E+E &8 &
—§& E+8 —&6H& |pdV (12.28)
&€ —6& §?+§§

J

12.3.3 VARIATIONAL EQUATIONS OF AN UNCONSTRAINED ELAsTic BoDY

The relations below for an elastic body are developed on the assumption that the
reference undeformed configuration in the current coordinate system coincides with
the rigid body. The balance of linear momentum expressed in the body system is

S
= i ; i 12.2
5 = Plia +& +iil (12.29)

Recall that 6r =06r.+ 60 X (§ +u)+u’, in which du’ is the variation of u with
the axes instantaneously held fixed. The quantities r., v, and W’ may be varied
independently since there is no constraint relating them. For ér,, the variational
statement is

J(‘Src,» [% — plis+ & + u,»]} dv =0 (12.30)
¢;

From the previous section f8rci{ S pliei + é}]} dV = 0. The term involving the

05,
E;
divergence of the stress becomes the traction term on application of the Divergence
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Theorem. But recall that the tractions are considered to be specified on the
undeformed body, which renders the tractions the same as in the rigid body. We
conclude that [8r.pii;dV=0 and also [pii;dV=0. Assuming vanishing initial
values of u and u, it follows that fpu dV =0 with the consequence that the center
of mass in the elastic body coincides with that in the rigid body. It likewise follows
that in finite element modeling we may impose the constraint u(0,/) =0 at £=0. Of
course the constraint is applied in the body axis system.

Secondly, consider the effect of &0, namely 0= [c;, 86,(&, + uy)

9S; .. PR
|52 = ol + & + il av.
The assumption that the tractions are prescribed in the undeformed configuration

but referred to the current coordinate system implies that the moments are the same
in the rigid body and undeformed configuration of the elastic body, and hence that

J€ipg6ptty G2 dV = 0. The implication is that

Jeipqaep(fq + I/lq)P[éi + i;]dV = J.Gipq 80,,§qpé,- dv (12.31)

Assuming small displacements and thereby neglecting products of u and its time
derivatives results in the relation

Jg x pindV + Ju x pEdV =0 (12.32)
Upon expansion of the accelerations,
0= Jg X piidV—i—Ju x pEdV
:Ju X (0 X o+ o) X §pdV+J§x (w X w+ o) xupdV
+J§x%pdV+J§x2mx%pdV (12.33)

But [£x (0 X @+ a)xupdV =—[ux(wxo+a)xEdV has the conse-
quence that

O*u Ou

Now the partial time derivative at fixed body axes in general has no relation to the
angular velocity vector w describing the rotation of the body axes. We conclude that
%jg x updV = 0, and with suitable initial conditions that

J‘g’, xupdV =20 (12.35)
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The relations [pudV =0 and [£ x pudV = 0 have classically been derived by
Truesdell and Noll (1965) by assuming that the deformed configuration minimizes
kinetic energy.

EXAMPLE 12.5

Write down the proof that, for an unconstrained elastic body, if jg xupdV =0

Fu

Jﬁx dv=20 ng dv=20
Pag “HE =0 P8 e Y =

Comment: In Chapter 13 we will encounter the Reynolds Transport Theorem which
states that % fpb dv = jp%dV, for any vector b. It is used in the solution below.

SoLuTioN

First ‘:;ng x pudV = [(® x ®) + a] x ([£ x pudV) =0. Secondly, 0=2< [£x
pudV = x [€ x pudV + [ x p9dV. The first right-hand term vanishes by virtue
of the problem statement, and we conclude that jg X p‘?j—‘r‘dV = 0. Finally,
0="2 [Ex pudV = (0 x 0+ @) x [£x pudV + @ x [£x pdV + [£x pLudV.

The first two right-hand terms vanish, in consequence of which [£ x pg—;udv =0.

Returning to the general presentation, the rotational relation [§ x pudV =0
together with u(0, #) = 0 represents a set of constraints that prevent the center of mass
of the elastic body from displacing from that the rigid body, and also prevents the body
axes in the elastic body from rotating relative to the body axes of the rigid body.

The rotational constraint is global while the center-of-mass constraint can be
enforced at a point. To examine the treatment of the rotational constraint we assume
the global interpolation model (referred to the body axes) in the form
u = @ (E) Dy, (7). The constraint is now expressed in the form

Yy =0, Y= [cugou®upav (12.36)
But Equation 12.36 may be restated as

[Y3, 3 Y3,3]{ ”;;3 } =0, with y; = =Y33Y3, 37, 3 (12.37)

provided that Y’ 3 is nonsingular. We therefore use a global constraint to remove

three degrees of freedom.
For illustration consider a finite element model in which

Ko 3,3 Ki33| [ V.3 Jn-3 _1
i ' S = and =-Y33Y3,3v, 3 (12.38
an3,3 K3’3 :| { vs f3 Y3 3,3 13, 3Yn-3 ( )

© 2008 by Taylor & Francis Group, LLC.



It appears that f3 must be an as-yet-unknown reaction force arising to enforce the
rotational constraint. If the constraint is used to eliminate 5 in terms of vy,_3, we
encounter y,,_3.

The finite element equation to be solved is now

(Ky—3,-3 — Kn73,3Y3_,§Y3,n73]'Y,,73 =f.3 (12.39)

and note that the resulting stiffness matrix is generally nonsymmetric. If the reaction
forces enforcing the constraints are of interest, they can be computed using

f3=1Ki33 —K33Y53Y5,30v, 3 (12.40)

12.3.4 PrincipLe OF VIRTUAL WORK IN BoDY COORDINATES

To consider the effect of du’, recall that | &u] [%S‘g’ — plFei + fl + i,i,-]] dV = 0. First

note that | dupdV #,; = 0 since [dujpdV = 0. The remaining terms are formally
the same as for a body with a fixed point, and consequently the variational equations
reduce to

2

d-y dy
M¥+Gla+[K+G2 +A]'Y:f7fr0[
G, =(I>ijcp9<pTdV<I), ngfI)TJpchZcpTdV(I), (12.41)

A=®" J peAeT dV®, f,, =BT J pe[Q? + AlX'1dV

The terms in Equation 12.41 appeared in the first section of this chapter and their
names and meanings were given.

12.3.5 NUMERICAL DETERMINATION OF THE CURRENT POSITION
OF THE BoDY AXES

For a complete finite element solution, it is necessary to be able to compute the
current position of the body axes using the Euler equations, although this is not
actually accomplished using finite element equations. Recall that it has been assumed
that the tractions, and hence the total force F(f) and moment M(z), are prescribed as
functions of time on the undeformed configuration of the elastic body, referred to
rotating axes. The current position of the center of mass in the absolute coordinate
system is obtained with little effort by integrating mr .= F(¢). The current value of
the angular velocity is obtained by integrating the equations

(L—w =J'M(®) — o x Jw]
dé (12.42)
G QHQ)
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the first of which is nonlinear. Recall that m is the axial vector of Q. Suppose the
time step in numerical time integration is &, that the time after » steps is denoted by
t, =nh, and that the solution has been computed at and before #,,. Application of the
Trapezoidal Rule and some manipulation serve to derive the integration formula

[I+§J‘ﬂ(rn+l.l>} (1) = ({I —%Jlﬂ(mJ] o(t,) +§J*‘[M(rn+1) +M(rn>]>

h - h
Qty1) = [I + iﬂ(ml )] [I - 2Q(tn)] Q) (12.43)

12.4 APPENDIX: ANGULAR VELOCITY VECTOR
IN SPHERICAL COORDINATES

This appendix gives an interpretation of the angular velocity vector in terms of the
angles appearing in spherical coordinates, as depicted in Figure 12.14. We assume
that the spherical coordinate system coincides with the body axes.

The xyz axes are a rectilinear inertial (nonchanging) system. The base vector e, is
collinear with the position vector r. The second vector e; is perpendicular to r and
lies in a plane parallel to the x—y plane. The vector e, completes the right-handed r&Z
system and points toward the z-axis.

The base vectors of the body system may be derived as

e, = cos {(cos ée, + sin &e;) + sin ey

e; = —sinée, + cos &e; (12A.1)
e; = —sin{(cos ée, + sinée;) + cos {ez
z
I~ e{ €,

x

FIGURE 12.14 Angles used in spherical coordinates.
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Let b denote the fixed length vector given by b =ae, + be,+ ce,. It may be
rotated to the spherical system as b’ =ae,+ be;+ ce;, which upon making the
substitutions according to Equation 12A.1 gives

b" = (cos cos{a — sinéa — sin{ cos éc)e, + (sinécos {a + cos &b — sinésin{c)e,

+ (sinda + cos{c)e, (12A.2)

a a cosécos{ —sin& —sincosé

=QS{b =<V, Q= |sinécos{ cosé& —sinésinl

c d sin{ 0 cos{
Also
—sinécos{ —cos¢ sinsiné —cosésin{ 0 —cos{cosé
Q= cosécos{ —sin¢é —cosésind §+ —sin{siné 0 —sinécos{ |
0 0 0 cos{ 0 —sing

(12A.3)

But note also that

[—sinécos{ —cosé sinsiné cosécos{ sinécos{ sin{ 0-10
cosécos{ —sin¢ —cosésing —siné cos & 0 |=([1 00
L 0 0 0 —sin{ cosé —sinésind cos{ 000
[—cosésind 0 —cos{cosé cosécos{ sinécos{ sin{ 0 0 —cosé
—sindsiné 0 —sinécosd —siné cosé 0 |={( 0 0 —siné
cos{ 0 —sin{ —sin{cosé —sinésind cos{ cosé siné 0

Now we regard the angles &, { to be time dependent, in which case b = Qb =Qb/,
Q=QQ".

After some manipulation

0 —é —cos §g’f
Q= é 0 —sin & (12A.4)
cosé&l  siné&l 0
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The corresponding angular velocity vector is w’ = {singé —cosfé é}. (0)3
course it represents the counterclockwise rotation of the body about its instantaneous
position. Referring to the angles introduced in Section 12.1, we now make the

identifications

é sin fé .
¢ ¢ = —cos&l (12A.5)
U &
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13 Aspects of Nonlinear
Continuum
Thermomechanics

13.1 INTRODUCTION

The first 12 topics of the current monograph have been concerned with linear FEA.
The underlying notions of linear solid mechanics and conductive heat transfer were
addressed in Chapter 5 and 6. Here, we briefly present several nonlinear topics from
continuum thermomechanics, which will enable treating nonlinear finite element
techniques thereafter. A more complete account is given, for example, in Chandra-
sekharaiah and Debnath (1994).

13.2 NONLINEAR KINEMATICS OF DEFORMATION

13.2.1 DerOoRMATION GRADIENT TENSOR

Displacement: In FEA for finite deformation, it is necessary to carefully distinguish
between the current (or “deformed”) configuration (i.e., at the current time or load
step) and a reference configuration which is usually considered strain-free. Here,
both configurations are referred to the same orthogonal coordinate system charac-
terized by the base vectors ey, e;, e3 (see Figure 2.1). Consider a body with volume V
and surface S in the current configuration. The particle P occupies a position
represented by the position vector x, and experiences (empirical) temperature T. In
the corresponding undeformed configuration, the position of P is described by X,
and the temperature has the value T, independent of X. It is now assumed that x is a
function of X and ¢, and T is also a function of X and ¢. The relations are written as
x(X,f) and T(X,?) and it is assumed that x and T are continuously differentiable in X
and ¢ through whatever order needed in the subsequent development (Figure 13.1).

Displacement Vector: The vector u(X,?) in Equation 13.1 represents the displace-
ment from positions X to x:

uX,n) =x — X (13.1)

Now consider two close points P and Q in the undeformed configuration. The
vector difference Xp — X, is represented as a differential dX with squared length
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1

Element at time t Element at time t+dt

FIGURE 13.1 Position vectors in deformed and undeformed configurations.

ds*=dX”dX. The corresponding quantity in the deformed configuration is dx,
with ds? = dx” dx (Figure 13.2).

Deformation Gradient Tensor: The deformation gradient tensor F is introduced as

ox
dx=FdX, F=— 13.2
X X (13:2)
F satisfies the polar decomposition theorem
F=U3V’ (13.3)

Deformed

€;

Undeformed

€

FIGURE 13.2 Deformed and undeformed distances between adjacent points.
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in which U and V are orthogonal and ¥, is a positive definite diagonal tensor whose
entries A;, the eigenvalues of V FF, are called the principal stretches.

A 00
S=10 A 0 (13.4)
0 0 As

From Equation 13.3 F may be visualized as representing a rotation, followed by a
stretch, followed by a second rotation.

13.2.2 LAGRANGIAN STRAIN TENSOR

The deformation-induced change in squared length is given by
ds* —ds* = dX"EdX, E=1[F'F-1I] (13.5)

in which E denotes the Lagrangian strain tensor. Also of interest is the right
Cauchy-Green strain C=F'F=2E+1 Note that F=T1+0u/0X. If quadratic
terms in Ju/OX are neglected the linear strain tensor Ep introduced in Chapter 5
is recovered as

1|0u ou\’
E, = 3 8_X+ (G_X) (13.6)

Upon application of Equation 13.3, E is rewritten as
E=V B 32— I)VT} (13.7)

Under pure rigid body translation and rotation x = b(#) + QX, we obtain F = Q and
E= % [QQ — I] = 0, implying that the Lagrangian strain identically vanishes under

rigid body motion, unlike the linear strain (see Chapter 5).

EXAMPLE 13.1

F, E, and u in cylindrical coordinates

Cylindrical Coordinates: In cylindrical coordinates, the position vector in the
undeformed (reference) configuration is given by R = Rey + Ze,, with e = cos Qe, +
sin @e, and eg = —sin @e, 4 cos Oe,. In the deformed (current) configuration, the
position vector is given by r=re,.+ze,, e.=cosfe,+sinfe, and e, = —sin e, +
cos Oe,. We first seek F.
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dr = dre, +rdfey + dze,

or 1 or or
00 r 06 a0
dz 1 dz 0z
o 1o or
dr '’ OR ROO® 0Z
—Flrao\, w00 roo 00
OR RO® 0Z
“ & 1d o
dR RdO® 0Z

in which the prime calls attention to the fact that the base vectors are still e,, ey, e..
Rotation of the e,, ey, €, system to coincide with the base e, e, €z system gives rise to
the orthogonal tensor

cos( — ) —sin(d —0) 0
QT = |sin(f—0) cos(@—0) 0
0 0 1

We conclude that the deformation gradient tensor is given by F = QF'.
The displacement vector is now

u = [rcos(d — ®) — Rleg + rsinfee + (z — Z)ez

We now apply the chain rule to ds* in cylindrical coordinates to obtain the right
Cauchy—Green strain tensor C.

ds?> =dr - dr = d? + r* d6® + d7

1
epe = (coo — 1)

dR
={dR RdO® dz}C| RdO
dz
in which
B r2+ d02+ dz\’ L N
CRR = dR rdR dr )’ €RR =3 CRR
ao)
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40N (40N (rdoy  (de) (1 dz
"4R "dar ) \R 4© IAVEL)
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1
ezz = E(CZZ -1

1
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_(Ldr\(dr\  (rde\( do\ (142 (d 1
c0z=\ra0)\dz R0 )\ az RdO ) \dz) €07 T3¢0
_ (dr\(dr) | (,d6) (40N  (dz) (dz _1
“r = \4z) \dr "az )\ ar az)\ar )’ 7R = 5 2R

Of course the Lagrangian strain tensor is obtained from E = %(C —I), with Q not
appearing.

13.2.3 Verocity GrRADIENT TENSOR, DEFORMATION RATE TENSOR,
AND SPIN TENSOR

We now introduce the particle velocity v =090x/0¢ and assume that it is an explicit
function of x(¢) and ¢. The velocity gradient tensor L is introduced using dv =L dx,
from which

=FF! (13.8)

Its symmetric part, called the deformation rate tensor, is
D=I[L+L"] (13.9)
It may be regarded as a strain rate referred to the current configuration. The

corresponding strain rate referred to the undeformed configuration is the Lagrangian
strain rate:

E=![FF+FF
—F {{[FF '+ F 7] }F
= F'DF (13.10)
The antisymmetric portion of L is called the spin tensor W:
W =1[L-L"] (13.11)

Suppose the deformation consists only of a time-dependent rigid body motion
expressed by

x() = QX +b®)., Q'MHQ(M) =1 (13.12)
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Clearly, F=Q and E=0, D=0 and L=W= QQ’, and recall from Chapter 12
that QQ is antisymmetric.

EXAMPLE 13.2

v, L, D, and W in cylindrical coordinates
The velocity vector in cylindrical coordinates is

or ot 00 e+ 0z
vV=—e,+r— —
ot oS " %
=v,€, + vgey + V$€d
Observe that

dv=dv,e, +dvgeg +dv,e, + v.de, + vy dey
- [dv, — v—"rde]e, + [dve + &rdt‘)]eg Fdve,
r r

Now converting to matrix—vector notation,

dvr 1 dv,

ey + 1 9 r o+ Qe s — Y1 do

dv = dved y1dve, do+%dz—%rdo

dr rdg’ dz

dv, 1 dv dv,

A
dv, 1dv, vy dv,
dr dr 7do 1 dz
= — |dve 1dvg v, dyg
it RS Rl i i i
dz dv, 1 dv, dv,
dr r do dz

Of course D and W are obtained as the symmetric and antisymmetric portions of L.

13.2.4 DIFFeRENTIAL VOLUME ELEMENT

The volume implied by the differential position vector dR is given by the vector
triple product

dVo = Xm . dX2 X dX3 = dX1 dX2 dX3

(13.13)
dX] = Xmel, dX2 = dXzez, dX3 = dX3 €3

The vectors dX; deform into dx; = %ej dX;. The deformed volume is now readily
verified as

dv = Xm . dXz X dX3
= JdVy, J = det(F) = det’(C) (13.14)

and J as before is called the Jacobian.
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The time derivative of J is prominent in incremental formulations in continuum
mechanics. Recalling that J = /I3, we have

d 1 dh
dt™ 27 dt
=4m(C7'C)

— L[t (F'F) + or(F'FTE'F))]

(F‘F + FTFT>
=Jr —

= Jtr(D) (13.15)

EXAMPLE 13.3

Relation of D to E )
We now express D and its trace in terms of E, E, and F. First differentiate E to find

E=1FF+EF)
from which

FTEF =1FF ' +FTF)
-D

Next,

tr(D) = tr(F"EF ")
= r(EF'F7)
= r(EI+2E)")

13.2.5 DIFFERENTIAL SURFACE ELEMENT

Let dS denote a surface element in the deformed configuration, with exterior
unit normal n illustrated in Figure 13.3. The counterparts from the reference con-
figuration are dS, and ny. A surface element dS obeys Nanson’s theorem
(cf. Chandrasekharaiah and Debnath, 1994)

ndS = JF "nydS, (13.16)

Taking the magnitude of ndS, we conclude that
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P éz—ds

FIGURE 13.3 Differential length changes.

/ FiTno
n; ny

Of course during deformation the surface normal changes direction (cf. Figure
13.4), a fact which is important, for example, in contact problems. For later use, in
incremental variational methods we consider the differential fl—‘t‘ and d(ndS):

-T

d dJ dF
a[ndS] :EF*TnodSJrJ ny dSo (13.18)

dr

But, recalling Equation 13.15,

dJ
— = Jr(D
” r(D)

dJ
EF‘THO dSy = tr(D)JF Ty dS,
= tr(D)ndS (13.19)

dx, | as,

dx; dx,

FIGURE 13.4 Undeformed and deformed surface patches.
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Also, since d(F'F~ 1) =0,

dF " —_F7T gF*T
dr dr
= —LTF" (13.20)
Finally, we have
d[nds
[';t ! [tr)I - L']nds (13.21)

EXAMPLE 13.4

Referring to Figure 13.5, determine u, F, J, and E as functions of X and Y: use H=1,
W=1,a=0.1,b=0.1,¢=0.3,d=0.2, e=0.2, f=0.1. Assume a unit thickness in the
Z-direction in both the deformed and undeformed configurations.

SoLuTION

A deformation model which captures the fact that straight sides remain straight is given
in the form assumed in the form

x=aX+BY+yXY, y=86X+eY+ XY

It is necessary to determine «, 3, 7, 6, &, and { from the coordinates of the vertices in
the deformed configuration.

At (X,Y) = (W,0): W+a=aW, b=38W
At (X, Y) = (0, H): e=pH, H+f=eH
At(X,Y)=(W,H): W+c=aW+BH~+yWH, H+d=0W+eH+(WH

vy Y
-
L e _dr
H =~ | —
f] :
|
| —b
7 X W — X
lal
Undeformed plate Deformed plate

FIGURE 13.5 Plate elements in undeformed and deformed states.

© 2008 by Taylor & Francis Group, LLC.



After elementary manipulations,

=11, B===02, 6:%20.1

T H
- - H+d—b—(H
:W+c (W +a) e:0.4’ (= +d—b—( +f):0

a=1+—=
f

—14+L 12,

e=l+y Y WH WH

a
w

The 2 X 2 deformation gradient tensor F and its determinant now are:

1.14+04Y 02404X
0.1 1.2

a+vyY B+vyX
§+LY e+X
J=1340.48Y —0.04X

The displacement vector is

(@ — DX + BY + yXY

C(x—X\ _ (01X +02Y + 0.4XY
YSly-rv) T\ sxtEe-nr+oxy ) T

0.1X +0.2Y

The Lagrangian strain E = %[FTF — I is found to be

1.14+04Y 0.1
024+04X 12

0.11 + 0.44Y + 0.08Y?
0.17 + 0.22X + 0.04Y + 0.08XY 0.24 + 0.08X + 0.08X>

1.1+04Y 02404X 1|1 0O
0.1 1.2 210 1

0.17 - 0.22X + 0.04Y + 0.08XY

1
2

EXAMPLE 13.5

Figure 13.6 shows a square element at time ¢ and at 7+ d¢. Estimate L, D, and W at
time t. Use a=0.1d7, b=140.2dt, c=0.2dt, d=1+0.4dt, e=0.05dt, f=0.1dt,

Y

1
Element at time ¢

Element at time t + dt

FIGURE 13.6 Element experiencing rigid body motion and deformation.
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g=1-0.1ds, h=1+0.5dz. Assume a unit thickness in the Z-direction in both the
deformed and undeformed configurations.

SOLUTION

First represent the deformed position vectors in terms of the undeformed position vectors
using eight coefficients to be determined using the given geometry. In particular,
x=a+ BX +yY + 6XY, y=¢e+{X+nY +0XY

This expression likewise captures the fact that straight sides remain straight. Following
procedures analogous to Example 13.3, we find

a=0.1dt, e =0.05dr

B=1+02d:, ¢=0.1dt

y=02dt, n=1-0.1d

6 =—0.5ds, 0 = —0.05dr
x—X

The velocities may be estimated using vy

5 and vy~ %, from which

vy =0.1+0.2X+0.2Y — 0.5XY
vy =0.05+0.1X — 0.1Y — 0.05XY

The tensors L, D, and W are now readily found as

[02-05Y 02-05%
L= |0.1-0.05Y —0.1—0.05X
02-0.5Y 0.15 — 0.25X — 0.025Y
Y= lo1s02sx 005y —01-005x
[ 0 —0.4 — 0.25X + 0.025Y
W= 0.4+ 025X — 0.025Y 0 }

13.3 MECHANICAL EQUILIBRIUM AND THE PRINCIPLE

OF VIRTUAL WORK

13.3.1 TRrRACTION VECTOR AND STRESS TENSORS

A stress tensor was previously introduced in Chapter 5. However, it was in the context
of small deformation, in which case it was not indicated how the stress changes when
referred to the undeformed as opposed to the current (deformed) configuration. The
distinction is central to the development below, leading to the Cauchy stress tensor

(current configuration) and the first and second Piola—Kirchoff stress tensor.

Cauchy Stress: We consider a differential tetrahedron enclosing the point x in the
deformed configuration, as illustrated in Figure 13.7. The area of the inclined face
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X3

dxz

dx,

X2

dx,

X1
FIGURE 13.7 Differential tetrahedron.

is dS, and dS; is the area of the face whose exterior normal vector is —e;. Simple
vector analysis serves to derive that n; = dS;/dS, see Example 2.5. Now referring to
Figure 13.8, let dF denote the force on the surface element dS, and let dF® denote
the force on area dS;. As the tetrahedron shrinks to a point, the contribution of
volume forces such as inertia decays faster than surface forces. Balance of forces
requires that dFj = dl*“;i).

1

ds@
dF®

ds®

dF®

FIGURE 13.8 Forces applied to a differential tetrahedron.
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The traction vector acting on the inclined face is defined by

dF
t=— 13.22
s ( )
from which
drF gs,
t = i 9o
! Z ds; ds
= Tyn; (13.23)
in which
dpr”
T = déj’- (13.24)

It is readily seen that T;; can be interpreted as the intensity of the force acting in the
Jj direction on the facet pointing in the —i direction, and is recognized as ijth entry
of the Cauchy stress T. In matrix—vector notation the stress—traction relation is
written as

t=T"n (13.25)

In Section 13.3.2 it will be seen that T is symmetric by virtue of the balance of
angular momentum. Equation 13.24 implies that T” is a tensor, from which it follows
that T is a tensor.

In traditional depictions the stresses on the back faces are represented by
arrows pointing in negative directions. However, this depiction can be confusing—
the arrows actually represent the directions of the traction components. Consider the
one-dimensional member in Figure 13.9. The traction vector fe; acts at x =L, while
the traction vector —ze; at x = 0. At x = L, the corresponding stress is #;; =te; - €] =1.
At x =0 the stress is given by (—te) - (—e;) =t. Clearly, the stress at both ends, and
in fact throughout the member, is positive (tensile).

FIGURE 13.9 Tractions on a bar experiencing uniaxial tension.

© 2008 by Taylor & Francis Group, LLC.



We will see later that the stress tensor is symmetric by virtue of the balance of
angular momentum.

First Piola—Kirchhoff Stress Tensor: Transformation to undeformed coordinates is
now considered. From the transformation properties of a surface element, we have

tdS =T 'ndS
=T'JF TnydS,
—8"nydS,, S=JFIT (13.26)

S is known as the first Piola—Kirchhoff stress tensor and it is not symmetric.

Second Piola—Kirchhoff Stress: We next derive the stress tensor which is conjugate
to the Lagrangian strain rate, i.e., gives the correct amount of work per unit
undeformed volume. At a segment dS at x on the deformed boundary, assuming
static conditions the rate of work dW of the tractions is

dw = dFTu
=tTads (13.27)

Over the surface S, shifting to tensor-indicial notation and invoking the divergence
theorem, we find

W= |t'ads
iy oT;
= |=ZT,av + |i,—2dv 13.28
axl- v + Ju] Gxi ( )

We will shortly see that static equilibrium implies that % = 0, which will enable
us to conclude that

W= J%Tg dv = Jtr(TL) dv = er(TD) dv (13.29)
Xi

To convert to undeformed coordinates, note that
W = | r(TD)dV
= | r(JTF'EF ) dv,
= | tr(F "TF'E)dV,

= |nSE)dv, S=JFTTF! (13.30)
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and the tensor S is called the second Piola—Kirchhoff stress tensor. It is symmetric if
T is symmetric, which we will shortly see to be the case.

EXAMPLE 13.6

At point (0,0,0) the tractions ty, t,, t3 act on planes with normal vectors ny, n,, and ns.
Find the Cauchy stress tensor T. Given:

n = %[el + e, + e3], T = %[661 +9e; + 12e3]
m=ler+ex—el, T2 =z[06 + les + 3e3]

n;=zler—ex—esl, T3 =—z[4e + Se; + Ges]

SOLUTION

This problem requires application of the stress—traction relation. Now

6 Ty T T

1 1
— | 9 | =|Ta T Tu|—
V3 T3 T3 Ts V3l
which gives
Ti+Ti+Tiz=6 (13.31)
Tor + T+ Ty =9 (13.32)
T31 +Taz +Taz = 12 (13.33)
Similarly,
1 0 Iy T Tis| 1
— |1 |=|Ta T Tu|—F7| 1
v3\2 T3 T Ts3 V3l
from which
T +Ti—Ti=0 (13.34)
Tor + T =Ty =1 (13.35)
T3 + Tz — T3 =2 (13.36)
1 (4 I T Ts| 1
— | 5| =|Ta T Tu|—| -1
V3 —6 T3 Tz Ts3 V3 -1
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and now

Ty =Ty —Tiz=-4 (13.37)
Ty —Top —Toz = =5 (13.38)
T31 —Tay =T33 = -6 (13.39)

It is elementary to attain the solution, which is

13.3.2 Stress FrLux

Consider two deformations x; and x, differing only be a rigid body motion:
x2 = V(O)x; + b(®) (13.40)

in which V(f) is an arbitrary orthonormal tensor. A tensor A(X) is objective
(cf. Eringen, 1962) if

A(x2) = VAx))VT (13.41)

If a tensor is objective, the differences seen by observers at x; and x, are accounted
for by the transformations relating the two associated motions.

It turns out that the matrix of time derivatives of the Cauchy stress, T, is not
objective, while the deformation rate tensor D is. Accordingly, if & is a fourth-order
tensor, a constitutive equation of the form T= &D would be senseless. Instead, the
time derivative of T is replaced with an objective stress flux, as explained below.
First note that

F, = VF,
L, = F,F,!
= [VV'VF, + VF|JF;'V'
=Q+ VLV, Q=VvV/

(13.42)

The tensor €2 is antisymmetric since dI/dt=0=Q + Q7. Clearly, the tensors F and
L are not objective.

We seek a stress flux affording the simplest conversion from deformed to
undeformed coordinates. To this end we examine the time derivative of the second
Piola—Kirchhoff stress.

s d
— =—[JF TTF!
@ dr! ]
— Jr(D)FTTF! 4 JF "TF! 4+ JFTTF! + JFTTF (13.43)
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But (F'F) = 0 so that F~' = —F'FF' and ¥ ' = —F"F F~T. Continuing,

d °
d—f — JF'TF! (13.44)

in which
T=T + ()T — LT — TLT (13.45)

is known as the Truesdell stress flux. Under pure rotation F = Q and S= JQ’i“QT.
To prove the objectivity of T, note that

T, =Ty + T, r(Dy) — LT, — T,LY
= [VIV']" + VT, Vtr(Dy) — [VL V! + Q] VT, V!
— VI{V'[VL,"V" — Q]
=V, V' + QVT, V! — VT, VIQ + VT,V 1r(D))
— VLT,V — VT|L," V! — QVT, V! + VT,V Q

= VT,v’ (13.46)

as desired.
The choice of stress flux is not unique. For example, the stress flux given by

T =T - Tw(D)
=T-LT-TL” (13.47a)

is also objective, as is the widely used Jaumann stress flux

T=T+TW — WT, W=1(@L-L") (13.47b)

EXAMPLE 13.7

Relate the Jaumann stress flux to the Truesdell stress flux and to the rate of the second
Piola—Kirchhoff stress

SoLuTiON

Expanding the velocity gradient tensor in the Truesdell stress flux gives

T=T+T#D-LT - TL"
=T+Tu#D—D+WT-TD-W)
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=Tu#D —DT —TD + (T + TW — WT)
=T#D — DT —TD +T

Secondly,
JFTFT =8 —JStr(EQE+1D7") — {QE + 1) 'ES + SEQE + )}
We will discuss this result further in conjunction with incremental stress—strain relations.

It is clear that, if the Jaumann stress flux is used, conversion to undeformed coordinates
introduces increments of strain not being proportional to increments of stress.

13.3.3 BALANCE OF MAss, LINEAR MOMENTUM, AND ANGULAR MOMENTUM

Balance of Mass: Balance of mass requires that the total mass of an isolated body
not change:

d
&devzo (13.48)

in which p(x,f) is the mass density. Since dV =JdVj, it follows that pJ = py.

Reynolds Transport Theorem: This useful principle is a consequence of balance
of mass. Let w(x,) denote a vector-valued function. Conversion of the volume
integral from deformed to undeformed coordinates is simply achieved as
| pw(x,1)dV = | pyw(x,t) dV,. The Reynolds Transport Theorem follows as

Vv Vo

d d 1/d
& Jpw(x,t) dv = J(p [a w(X, t)} + 7 (E (pJ)) w(X, t)) dv
d
= [p—wx,1)dV (13.49)
dr
Balance of Linear Momentum: In a fixed coordinate system, balance of linear
momentum requires that the total force on a body with volume V and surface S be

equal to the rate of change of linear momentum. Assuming that all force is applied on
the exterior surface, the equation of interest is

d du
F=[tdS=— —dV 13.50
J dr det ( )

Invoking the Reynolds Transport Theorem yields

d*u
tdS = —dV 13.51
J deﬁ ( )
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In current coordinates, application of the divergence theorem (Equation 3.18) fur-
nishes the equilibrium equation

JtdS:JTTndS

_ J[VTT]TdV (13.52)
Equation 13.51 now becomes
d*u”
HVTT i }dv =07 (13.53)

Since this equation applies not only to the whole body but to arbitrary subdomains of
the body, the argument of the integral in Equation 13.53 must vanish pointwise:

d*u”

vIT =
p dr?

(13.54)

To convert to undeformed coordinates the first Piola—Kirchhoff stress is invoked to
furnish

—T dzll
S nydSy = pOFdVO (13.55)

and the divergence theorem furnishes

_ d*u”
ViS = Pogr (13.56)

in which V, denotes the divergence operator referred to undeformed coordinates.
This equation will later be the starting point in the formulation of incremental
variational principles.

Balance of Angular Momentum: Assuming that only surface forces are present,
relative to the origin and a fixed coordinate system the total moment of the traction
is equal to the rate of change of angular momentum:

d
JxxtdS:aJXXdeV (13.57)

To examine this principle further it is convenient to use tensor-indicial notation. First
note using the divergence theorem that
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JX x tdS = EijkXjlk ds
= e,-jkijlknl ds
0
= ] 6_)61 (8iijjT[k) dv

0
= | g0 Ty dV + Jeljkxj —TydV
8)(1

0
= | epTpdV + Jaijkxja—)CZle dv (13.58)

and of course g;j is the third-order permutation tensor introduced in Chapter 3.
Continuing,

d
&JxprdV: xxpidV+JX><deV
= | x x pxdV

= | &inxipXe dV (13.59)

Balance of angular momentum may thus be restated as

0 ..
0= Jé‘ijijk dVv + Jaijkxj |:3_xl Ty — pxk:| dv (13.60)

The second term vanishes by virtue of balance of linear momentum (Equation
13.54), leaving

g Tix =0 (13.61)

which implies that T is symmetric: T = T” (Example 2.6). Note also that S is also
symmetric but that S is not symmetric.

13.4 PRINCIPLE OF VIRTUAL WORK UNDER LARGE
DEFORMATION

The balance of linear and the balance of angular momentum lead to auxiliary

variational principles that are fundamental to the finite element method. Variational

methods were introduced in Chapter 4. We recall the balance of linear momentum in
rectilinear coordinates as

aﬁTkl — pity = 0 (13.62)
x;
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and Ty, = Ty, by virtue of the balance of angular momentum. We have tacitly assumed
that X =i, which is to say that deformed positions are referred to a coordinate
system that does not translate or rotate. A variational principle is sought from

J&tk |:8Tkl - pﬂk] dvV =0 (13.63)
8x,

in which éu; is an admissible (i.e., consistent with constraints) variation of uy.

We consider the spatial dependence of u; to be subjected to variation, but not the
temporal dependence. For example, if u; can be represented, at least locally, as

u =Ny
then
Suy = INT(x)]udv,(1) (13.64)

The second term in the variational equation simply remains as — [ Suxpiix dV.
The first term is integrated by parts once for reasons which will be identified shortly:

it becomes fa% [6ux Ty]dV — jagzk Ty dV. From the divergence theorem,

Ji [SMszk] dVv = an[ﬁulek] ds
8)61

= JSuktk ds (13.65)

which may be interpreted as the virtual work of the tractions on the exterior
boundary. Next, since T is symmetric,

0
Jaa)l;k Ty dV = JS Su Ty dV
1
10w o (13.66)
Y72 oy ox

and we call >y, the Eulerian strain. The term J"BB « T dV may be called the virtual
work of the stresses. Next, to evaluate [8u;TydS we suppose that the exterior
boundary consists of three zones: S=S;+ S5, + S3. On S, the displacement u; is
prescribed, causing the integral over S; to vanish. On S, suppose that the traction is
prescribed as #i(s). The contribution is fSZSMkf;((s) dS. Finally on S5 suppose that

t, = ti(s) — [A(s)]u(s), furnishing fsz‘dukt_k(s) ds — J;quuk[A(s)]k,u;(s) dS. The vari-
ous contributions are consolidated into the large deformation form of the principle
of virtual work (Zienkiewicz and Taylor, 1989) in current (deformed) coordinates as
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J(S Su TpedV + Jaukpilk dv

Suity(s)dS — J Our[A(s)]yui(s) dS (13.67)

= J 8ukfk(s) ds + J
Sz S3

S

Now consider the case in which, as in classical elasticity,

Ti = dimn S, T=D> (13.68)

in which dy,,,, are the entries of a fourth-order constant positive definite tangent
modulus tensor D. The first term in Equation 13.67 now becomes
8[% St dijnn Dmn AV, with a positive definite integrand. Achieving this outcome is
the motivation behind integrating by parts once. In the language of Chapter 4, uy is
the primary variable and #; is the secondary variable: on any boundary point either u;
or f is typically specified, and #, may be specified as a function of u,. Finally,
application of the interpolation model (Equation 13.64) and cancellation of &y’
furnishes the ordinary differential equation

My + [K 4+ H]y = f(?) (13.69)
in which

M= JN(X)NT(x)p dav, K= JBDBTdV
(13.70)

H= J NANT(x)dV, f(r) = J N()i(s) dS
S3 S$2+83

and in which VEC(T) = xVEC(3), x = TEN22(D). Also VEC(3) =B’ (x)y, and B is
derived from the strain—displacement relations, M is the positive definite mass
matrix, K is the positive definite matrix representing the domain contribution to
the stiffness matrix, H is the boundary contribution to the stiffness matrix, and f is the
consistent force vector. These notions will be addressed in greater detail in subse-
quent chapters.

Owing to its importance in nonlinear FEA we go into considerable detail to
convert the foregoing large deformation form of the Principle of Virtual Work to
undeformed coordinates. First

JSukpiik dv — Jﬁukpoiik dVo

J Suyti(s)dS + J Suyti(s)dS — J
Sa S3 S5

aukzg(so)dso+J Sut)(so)dSy  (13.71)
S30

using

f]? = /.Ll_k M :J\/ngC_lno
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The traction relation ty = ut is seen from the fact that t, dSy=tdS =tu dS,.
Next,

J Sur[A(s)yui(s) dS — J Oug [ A(S)]ui(so) dSo (13.72)
S3

S3

Some manipulation is required to convert the virtual work of the stresses.

Observe that
o S = l @ + @ !
T2 ox ox

0X Ox 0X 0Ox

!
)

= 1[6FF ' + F78F"]
=F"[L[F"8F + 8F'F]|F "

=F TSEF~! (13.73)
Third
JSBHTM dV = |tr(6 5 T)dV
= | r(FTSEF'T)J dV,
= | r(SEJF'TFT)dV,

= | r(SES) dV,

— | 8E;i8;dVp (13.74)

Consolidating the foregoing terms the Principle of Virtual Work in undeformed
coordinates is

JSEJ,»SU dvp + Jaukpouk dvy = J Suy 1} (s0) dSo +J Suxty (so) dSo

Szo S30

_ J Suae [ A (s0) wta(50) dSo (13.75)
S30
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EXAMPLE 13.8

Given the Cauchy stress tensor T, find the first and second Piola—Kirchhoff stress
tensors if x(r) = Q(HA(H)X, in which

1 +at 0 0
A = 0 1 + bt 0
0 0 1 +ct

Assume Q represents a plane rotation about the z-axis.

SoLUTION

We know that the deformation gradient tensor is given by F = %. Hence,

[ cos® sinf O] [1+ar 0 0
F=Q®»A(¢) = | —sinf cosf 0 0 1+ bt 0
0 0 1 0 0 1+ct

[ (1 +at)cos® (14 bt)sinb 0
= |- +atsinf (14 bt)cos6 0

0 0 (1 +ct)
and also

cosf sin 6

1 +an 1 +bn
1 _ | sin® cosf
(1 +at) (A+b)
1
0
(1+ct)

The Jacobian J=det F is given by
J =det(F) = (1 +at)(1 + b1)(1 + ct)

The first Piola—Kirchhoff stress is now given by

cos 6 _ sin 6
1 +ar) 1+ br)

- in6 cos 6
S=JFIT=( 1+ b1 +en| 22 T
(I +an)(1 + b)(1 + c1) Gtan (100

0

(1 +ct)

and the second Piola—Kirchhoff stress is obtained immediately as
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S=JF'TF T

cos 6 sin 6
1 +an 1+ b
sin O cosf
=( (1 + br)(1 )| ——
(rand+bnld +e)\ Gmn Txe
1
0 0 1 +ct)
cos 6 sin 6 0
(I+at)y {A+by
T sin 6 cosf 0
(I 4+at) (14 br)
1
0 0 —_
(1+ct)

13.5 NONLINEAR STRESS-STRAIN-TEMPERATURE RELATIONS:
THE ISOTHERMAL TANGENT MODULUS TENSOR

13.5.1 CuassicaL ELasTiciTy

Under small deformation, the fourth-order tangent modulus tensor D in linear
elasticity is defined implicitly by

dT = DdE, (13.76)

in which E; is the small strain tensor. In linear isotropic elasticity, the stress—strain
relations are written in the Lamé form as

T =2uE; + Atr(Ep)I 13.77)
Using Kronecker product notation from Chapter 3, Equation 13.77 may be rewritten as
VEC(T) = [ZMI ®IE; + )\iiT] VEC(EL) (13.78)

from which we conclude that

D = ITEN22(2pud ® T+ \ii") (13.79)

13.5.2 CoMPREsSIBLE HYPERELASTIC MATERIALS

In isotropic hyperelasticity, which is descriptive of compressible rubber, the second
Piola—Kirchhoff stress is taken to be derivable from a strain energy function w which
depends on the principal invariants Iy, I, I; of the right Cauchy—Green strain tensor,
introduced in Chapter 3.

Ldw_dw o dw v
~dE TdC’ ~de “dc
s = VEC(S), e=VECE), c¢=VECC) (13.80b)

(13.80a)
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Simple manipulation serves to obtain

ow ol
s=2pm;, ¢, al,’ N =o0 (13.81)
From Chapter 3, Section 3.6.8,
n =i, m=ILi—c, m=VECICH (13.82)

The tangent modulus tensor D, referred to the undeformed configuration is given by

dS = DydE, ds = TEN22(Dy)de (13.83)
and furthermore
T dll,‘
TEN22(Do) = 4pnin] +4p,A;, A, = s (13.84)
Finally, recalling Chapter 3,
d
A, :%:0 (13.852)
UL
27 de
d
= & [I]i — c]
=iil — I (13.85b)
Az = a [VEC(C™ "]
3 de 3
d
=— [bi—Iic + VEC(C?)]
dc
=in] —¢i’ +Ca® C
=1[ii" =] — [ic" +ci’] +CaC (13.85¢)

13.5.3 INCOMPRESSIBLE AND NEAR-INCOMPRESSIBLE HYPERELASTIC MATERIALS

Polymeric materials such as natural rubber are often nearly incompressible. For
some applications they may be idealized as incompressible. But for applications
involving confinement, such as in the corners of seal wells, it may be necessary to
accommodate the small degree of compressibility to achieve high accuracy in the
stresses. Incompressibility and near-incompressibility represent infernal con-
straints. The principal (Eulerian) strains are not independent, and the (Cauchy)
stresses are not determined completely by the strains, instead, differences in the
principal stresses are determined by differences in principal strains (Oden, 1972).
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An additional field is introduced to enforce the internal constraint, and we will see
that this internal field may be identified as the hydrostatic pressure (referred to the
current configuration).

13.5.3.1 Incompressibility

The constraint of incompressibility is expressed by the relation J=1 and note that

J =detF

= \/det*(F)
= 1/ det(F) det(FT)
= 1/ det*(F'F)

/N (13.86)

and consequently the constraint of incompressibility may be restated as I3 = 1.

The constraint /3 = 1 may be enforced using a Lagrange multiplier (Oden, 1972)
denoted here as —p. The multiplier depends on X and is in fact the additional field
just mentioned. Oden (1972) proposed introducing an augmented strain energy
function w’ similar to

I , L

1
3 3

in which w is interpreted as the conventional strain energy function but with
dependence on I3(=1) removed. /] and I, are called the deviatoric invariants. For
reasons to be explained in Chapter 15 which presents additional variational prin-
ciples to address global constraints, this form serves to enforce incompressibility,
with S now given by

ow'
T _ JRE—
S = e
= 2¢\ )’ + 2450, — pny (13.88)
ow Ow or" ek
il r_ Y A b 1 |Z2
¢ = or’ ¢ or,’ m {ac} - M [ac}

To convert to deformed coordinates, recall that S=JF 'TF~". An example pre-
sented below serves to derive ¢/, and ¢, and also

t = VEC(T) = 24/, m’, + 24/,m, — pi (13.89)

The example will also establish that i’ m} = 0 and i’ m, = 0. Note that t does not
denote the traction vector in the present context. We find that p = —#(T)/3 since

© 2008 by Taylor & Francis Group, LLC.



r(T) =i't
= 24" m} + 295" m), — pi'i
=—ilip
=-3p (13.90)
Evidently the Lagrange multiplier enforcing incompressibility is the “true’ hydro-
static pressure.
Finally, the tangent modulus tensor is somewhat more complicated, because dS

depends on dE and dp. We will see in a subsequent chapter that the tangent modulus
tensor may be defined as D* using

e
TEN22(D") = .7
_(ﬁ) 0
dp
ds T T
do = 4[UAL 5%+ um (n) "+ m (n) ason)
AEAVAYS 1o (T
+¢2ln2(nl) "‘d’zznz(nz) }
s _ 1
dp J }

Note the negative sign in the lower left entry of D*.

EXAMPLE 13.9

In undeformed coordinates and Kronecker product (VEC) notation, the second Piola—
Kirchhoff stress for an incompressible hyperelastic materials may be written as

ow\" I /o 1
s = e :2cplnl+2<p2n2—p7n3

Find the corresponding expression in deformed coordinates. Derive ] and i, in which
direct transformation furnishes

t =2y m| + 2y, m) — pi

SoLuTION

The Cauchy stress is related to the second Piola—Kirchhoff stress by the relation
T= }FSFT. Upon invoking Kronecker product relations

t = VEC(T) = 1F @ FVEC(S) = 1F ® Fs
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Applying the transformation to the stress—strain relation results in

1 29, 2¢), 1
= SF @ F(2¢]n; + 2¢m; — plim;) = “PIF @ Fn, + “22F @ Fn), — p5F @ Fny

J I
Note that J—2F ® Fnz =i, since IVEC(ﬁF QFnz | = ﬁFC IfT = 1.

/

Finally, let #, = =L, ¢, = ~2, m|, = F ® Fn|, m}, = F @ Fn).

EXAMPLE 13.10

Uniaxial tension

Consider the Neo-Hookean elastomer satisfying

w=all; — 1] subject to I3 =1

We seek the relation between s; and E;. The solution will be obtained twice, once by
enforcing the incompressibility constraint a priori and the second by enforcing the
constraint a posteriori.

A priori: We assume for the sake of brevity that E, =Es. Now I3 =1 implies that
=1/ y/c1. The strain energy function now is w = a [cl + \/—— — 3] The stress S is
now found as

dw 1
A posteriori: Now use the augmented function
w =alll - 1] =4[l — 1]

and

dw’
s =20 — a0 —
1= 250 =2 pfel
dw’
0=s, =2— =2aq—
S5 i a—p/c

/

dw
0=s3=2—=2a —
s3 a2 p/cs

d
0= _o_ 11
dp

It follows that ¢; = ¢3 = 1/,/c| and p/c, =2a. We conclude that
s =2a —p/c

€
P
o Clp/cz
:201{1—6—2}
¢
1
=2a|l ———=
[ 67/2]

which agrees with the relation obtained by the a priori argument.
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A posteriori with deviatoric invariants: Finally consider the augmented function with
deviatoric invariants:

w = all, /1 =31 =21 — 1] (13.92)
T R 1399
0:sz=2(;cwz/=2a[];/3;é;32}—pg (13.94)
Oz%-Z%-Za[ﬁ—%éﬁi—j fpi—z (13.95)

Note that Equations 13.94 and 13.95 imply that ¢, = c¢3. Further,

d
W 70H13—1
dp

demonstrating that incompressibility is satisfied. Now I} = I; = ¢; + 2¢3, and using
Equation 13.94 gives

2

2 [ca—ci| _p
3 2 -

Substitution into Equation 13.92 results in

1
51 =2« {1 3/2}
1

as in the a priori case and in the first a posteriori case. The Lagrange multiplier p is again
revealed as the hydrostatic pressure referred to current coordinates.

13.5.3.2 Near-Incompressibility

As will be seen in Chapter 15, in the augmented strain energy function

2
"= w(l|L) — plJ — 1] — ‘;LK (13.96)

the pressure p serves to enforce the generalized constraint
p=—k[J—1] (13.97)
Here k is the bulk modulus (— Bp/aj)p 1 and it is assumed to be very large

compared to, for example, the small strain shear modulus. The tangent modulus
tensor is now
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ds
de

(&)

13.5.4 NONLINEAR MATERIALS AT LARGE DEFORMATION

TEN22(D*) = (13.98)

xI— &2

Suppose that the constitutive relations are measured at constant temperature in the
current configuration and are found to obey the form

T — DD (13.99)

in which the fourth-order tangent modulus tensor D may in general be a function of
stress, strain, temperature, and internal state variables to be discussed in subsequent
chapters. Recall that T is the Truesdell stress flux. The form in Equation 13.99 is
sensible since T and D are both objective, and it encompasses the rate-constitutive
models typical of hypoelasticity and plasticity. Conversion to undeformed coordin-
ates is realized by

S=JF'DDF T
=JF 'DF TEF 'F 7 (13.100)

With s = VEC(S) and e = VEC(E),

§=JIQF 'VEC(DF "EF'FT)
=JI®QF '(F ! @ DTEN22(D)VEC(F TEF )
=JF '@ F 'TEN22(D)F T @ I ® F ) VEC(E)
=JF'@F 'TEN2(D)F T @ F Té

= TEN22(Dy)é (13.101)
in which
D, = ITEN22(JF ' @ F'TEN22(D)F T @ F 1) (13.102)
Since
$ = TEN22(Dg)é (13.103)

we may regard D, as the tangent modulus tensor referred to undeformed coordinates.

The use of the Jaumann stress flux, or any flux other than the Truesdell flux,
will not lead to a counterpart of Dy which is proportional only fo a tangent
modulus tensor measured in the current configuration. Recall the relation derived
in Example 13.5:
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JF'TF T =§ —JSir(EQE+D™)
—{QE+1)"'ES+SEQE + 1)} (13.104)

If we assume that T = ISD, some effort suffices to obtain a relation of the form
§ = TEN22(Dy; + Dg)é (13.105)
in which

Do = ITEN22(JF ' @ F'TEN22(D)F T @ F~7)
Dy, = ITEN22(J[sVECT (RE+ D) +[S® QE+ D' + CE+ D' ®S])

Observe that Dy, is proportional to D, but that Dy, is not.
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4 Introduction to
Nonlinear FEA

14.1 INTRODUCTION

Chapters 2 through 12 addressed linear solid mechanics and heat transfer, and
corresponding finite element methods for linear problems. Applications that linear
methods serve to analyze include structures under mild loads, disks and rotors
spinning at modest angular velocities, and heated plates. However, a large number
of problems of interest are nonlinear. For one example, plasticity is a nonlinear
materials theory suited for metals in metal forming, vehicle crash, and ballistics
applications. In problems with high levels of heat input, mechanical properties such
as the elastic modulus, and thermal properties such as the coefficient of specific heat,
may be strongly temperature dependent. Rubber seals and gaskets commonly experi-
ence strains exceeding 50%. Soft biological tissues typically are modeled as rubber-
like. Many problems involve variable contact, for example, meshing gear teeth. Heat
conducted across electrical contacts may be strongly dependent on normal pressures.
Fortunately, much of the linear finite element method can be extended to nonlinear
problems, as explained in this chapter.

In the following sections, attention is confined to isothermal problems. The
extension to thermomechanical problems will be presented in the subsequent chapter.
In particular, we will see that the finite element equations in the nonlinear case are
formally similar to the linear finite element equations if the displacements and forces
(and/or temperatures and heat fluxes) are replaced by incremental counterparts.
The tangent stiffness matrix is now a function of the nodal displacements (and
temperatures). In addition, it will be seen to possess the extremely important property
of serving as the Jacobian matrix in Newton iteration, which is an extremely
attractive (arguably optimal) method for solving nonlinear algebraic equations.

14.2 TYPES OF NONLINEARITY

There are three major types of nonlinearity in thermomechanical boundary value
problems: (i) material nonlinearity, (ii) geometric nonlinearity, and (iii) boundary
condition nonlinearity. Of course these effects can and do occur in together. Non-
linearities may also be present if the formulation is referred to deformed coordinates,
possibly introducing stress fluxes and convected coordinates.

Material nonlinearity may occur through nonlinear dependence of the stress
on the strain and/or temperature, including strain and temperature dependence
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of the tangent modulus tensor. Nonlinear material behavior may also ensue from
history dependence, for example, a nonlinear dependence on the total “plastic
work.”

Geometric nonlinearity occurs because of large deformation, especially in
problems referring to undeformed coordinates. Rubber components typically
exhibit large deformation and require nonlinear kinematic descriptions. In this situ-
ation, a choice needs to be made of a strain measure and of the stress conjugate to it.

Boundary condition nonlinearity occurs because of nonlinear mechanical and
inertial supports on the boundary. An example of a nonlinear support is a rubber pad
under a machine, to absorb vibrations. It may also occur if the contact area between
two bodies is an unknown to be determined as part of the solution.

For finite element methods for nonlinear problems, the loads are often viewed as
applied in increments. Then incremental variational principles together with inter-
polation models for incremental displacements and incremental temperatures (the
primary variables) furnish algebraic (static) or ordinary algebraic-differential equa-
tions (dynamic) in terms of vector-valued incremental displacements and/or incre-
mental temperatures. For mechanical systems a typical equation is

K()Ay + M(v)Ay = Af (14.1)

in which Avy is the incremental displacement vector (to be defined shortly), Af is the
incremental force vector, K(vy) is the tangent stiffness matrix, and M(7y) is the
(tangent) mass matrix. It will be seen that this type of equation is a realization of
Newton iteration method for nonlinear equations.

14.3 NEWTON ITERATION

By virtue of its property of quadratic convergence, Newton iteration is arguably an
optimal method for solving nonlinear algebraic equations. It is introduced in the
current chapter, and its application to finite element analysis is scrutinized. In recent
years very effective methods for solving nonlinear finite element problems, known as
arc length methods, have been introduced. In Chapter 18 we present an arc length
method which in fact is a particular realization of Newton iteration. In it, arc length
constraints are accommodated by expanding the solution space to a dimension
greater than in the conventional finite element method (e.g., greater than the number
of incremental displacement degrees of freedom).

Letting f and x denote scalars, consider the nonlinear algebraic equation flx; A) =0
in which A is a parameter we will call the load intensity. Such equations are often
solved numerically by a two-stage process. The first is load incrementation: the load
intensity A is increased progressively using small increments. The second is iteration:
at each increment the unknown x is computed using an iteration procedure. Suppose
that at the nth increment of A an accurate solution has been achieved as x,,. We now
further suppose for simplicity that x,, is “close’ to the actual solution x,; at the
(n+ D)st increment of A. Using x9 = x, as the starting iterate, Newton iteration

n+l —
provides subsequent iterates according to the scheme
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Let A, ; denote x

KD — ) [%} 71f(x(j)) (14.2)

dx |x()

G+ _ O

bl T Xl which is the difference between two iterates. Then,

to first order in the Taylor series

a1 o [a ! -
Aty = By jor = — [d_q ‘xmf(x(/)) _ [d_ﬂ ‘xufl)f(x(j 1))1
~ = n -1+ 02
dx} |x0) [ } ¥ L

Ao+ 0? (14.3)

Q

in which 07 refers to second-order terms in increments. It follows that Apir = 0%

For this reason Newton iteration is observed to converge quadratically (presumably
to the correct solution if the initial iterate is “‘sufficiently close’). After the iteration
scheme has converged to the solution, the load intensity is incremented again.

EXAMPLE 14.1

Consider flix) = (x — 1)%. Newton iteration is realized as the iteration scheme

KD — ) %(xm — 1)

The solution is unity, twice. If the initial iterate 2@ is taken to be 1 /2, the iterates
become 1/2, 3/4, 7/8, 15/16, ..., converging to unity. If x” =2, the iterates are 3/2,
5/4,9/8, 17/16, likewise converging to unity. In both cases the error is halved in each
iteration.

Returning to the main development, the nonlinear finite element method under static
conditions will frequently be seen to pose nonlinear algebraic equations of the form

dulfem) —Av] =0 (14.4)

in which u and ¢ are n X 1 vectors, v is a known constant n X 1 unit vector, and A
represents ‘“‘load intensity.”” The Newton iteration scheme provides the (j+ 1)st iterate

for u, | as
[
au

—1

G+D _ (1)

By = @2 —Aserv]. wl —ul =M, 49)

n+l
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in which, for example, the initial iterate is u(”’. The use of an explicit matrix inverse is
avoided by solving the linear system

Ou )
Wi

i) . : .
H, A =@@l) v wliP=wl + A0, (146

Note that [0—‘5] | o in Newton iteration is a Jacobian matrix.
n+1

14.4 COMBINED INCREMENTAL AND ITERATIVE METHODS:
A SIMPLE EXAMPLE

As illustrated in Figure 14.1, consider a one-dimensional rod of nonlinear material
under small deformation, in which the elastic modulus is a linear function of strain:
E =Eq(1 + a¢), e =Eq;. The cross-sectional area Ay and the length L are constants,
on the understanding that the deformation is expressed in terms of the undeformed
configuration. Suppose that under static loading the equilibrium equation is

Evo( 7)
1+a— =P 14.7
Lo aLO Y (14.7)

The load is applied in increments AP =P;,; — P; and the load after the (n — 1)st
increment is applied is denoted as P,. Suppose next that the solution v, has been
computed accurately at P,. We now consider the actions necessary to determine the
solution %, at load P,;. This is done by first computing the value of A,y=
Yn+1— Ya- Subtracting Equation 14.2 at the nth increment from the same equation
but at the nth increment, the incremental equilibrium equation is now

Eodo (1 Lot Ay A”) Ay = AP (14.8)
Ly L

Equation 14.8 is quadratic in the increment A, y-in fact geometric nonlinearity
generally leads to a quadratic function of increments. The error of neglecting the
quadratic term may be small if the load increment is sufficiently small. However, we
will retain the nonlinear term for the sake of accuracy and of illustrating the use of
iterative procedures. In particular, the foregoing equation may be written in the form

(: Eqp AL ) —
L .7

FIGURE 14.1 Stretching of a rod of nonlinear material.
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g)=Bx+ix* —m=0 (14.9)

ig which x =A,y, n = Ll‘E’OAA"f ,B= 1' + 2€vyn /Lo, and { = 7 Ne'wton iteration fur-
nishes the quadratically convergent iteration scheme for the vth iterate, namely:

v v2
xv-H = = W’ xo = n/B (1410)

As an example we use the values E = 107 psi,A=1 in2, L=101in, a =2, ¥, =1, and
A,P=73. These values imply significant nonlinearity and 10% strain. A simple
program written in double precision produces the following values, which demon-
strate a convergence in two iterations.

Iterate Value
0 0
1 0.21428571e-5
2 0.21428565¢-5
3 0.21428565¢-5
4 0.21428565e-5

EXAMPLE 14.2

The efficiency of this scheme is addressed as follows. Consider { =1, =12, and
mn = 1. The correct solution is x =0.0828. Starting with the initial value x =0, the first

two iterates are, approximately, 11—2 = 0.833, and 11—2(1 — ﬁ) = 0.0828.

14.5 FINITE STRETCHING OF A RUBBER ROD UNDER GRAVITY
14.5.1 MobDEL PROBLEM

Figure 14.2 shows a rubber rod element under gravity—it is assumed to attain finite
strain and to experience uniaxial tension. The figure exhibits the undeformed con-
figuration, with an element occupying the interval (X,, X, ), with X denoting the

P

_lIXevUe Lg

l )Xot Uon

Pe+1

FIGURE 14.2 Rubber rod element under gravity.
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downward direction. The element’s length is /,, its cross-sectional area is A,, and its
mass density is p. It is composed of rubber and is stretched axially by the loads P,
and P, . Prior to stretching, a given material particle is located at X. After deform-
ation it is located at x(X), and the displacement u(X) is given by u(X) =x(X) — X.

14.5.2 NONLINEAR STRAIN—DISPLACEMENT RELATIONS

The element in Figure 14.2 is assumed to be short enough that a satisfactory approxi-
mation for the displacement u(X) is provided by the linear interpolation model

uX) = up, + X — X )(Uey1 — ue)/le

1
=NTa,, NT:T{xfx X — X} (14.11)

in which aeT ={u, Ue+1}. Now u(X,)=u, and u(X,, ) =u.,, are viewed as the
unknowns to be determined using the finite element method. The Lagrangian strain
E =E,, is approximated in the element as

g1 <a>
Ox 2 \0Ox
Uer1 — Ue 1 <ue+1 - ue>2
= + =

N
a, (14.12)

In alternative notation Equation 14.12 is written as

| —

{—1 1}a, +

~
m
N —

dE,, = B’da,, B =B, +By.a, (14.13)

1 [ -1 1|1 -1
AR L {
The vector B, and the matrix By, are called the linear and nonlinear strain—
displacement matrices.

14.5.3 StreEss AND TANGENT MoDuULUS RELATIONS

The Neo—-Hookean strain energy density function w was previously encountered in
Chapter 13. It accommodates incompressibility and is stated in terms of the eigen-
values ¢y, ¢, and ¢3 of C=2E +1 as follows:

D
w= E(Cl +c+c3 —3), subject to cice3 —1=0 (14.14)

in which D is the (small strain) elastic modulus. We saw in Chapter 13 that ¢, =c3.
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We first enforce the incompressibility constraint a priori by using the substitution

022032L (14.15)

NG
After elementary manipulations and using ¢; =2E,, + 1, the strain energy function
emerges as

w:%[2EM+ 1 42/(2Bqu + )77 (14.16)

The (second Piola—Kirchhoff) stress S,,, defined in general in Chapter 13, is now
obtained as

ow
aExx

_D (1 — QEw + D7 (14.17)

S =

For small strains (2E,, + 1)"*?>~ 1 — 3E,, in which case S, ~ DE_..
The tangent modulus Dy is also required:

_ OSx
OBy
= DQE, + 1)7/? (14.18)

Dr

If the strain E,, is small compared to unity, D7 reduces to D.

We next satisfy the incompressibility constraint a posteriori, which we will see is
how the constraint is generally satisfied in finite element analysis. An augmented
strain energy function w* is introduced by

D
w = Zler e+ e =31 =L (e — 1) (14.19)

in which the Lagrange multiplier p can be shown to be the (true) hydrostatic
pressure, as was shown in a similar situation in Chapter 13. The augmented energy
is stationary with respect to p as well as ¢, ¢,, and c3, from which it follows that
c1c3¢c3 — 1 =0 (incompressibility).

The second Piola—Kirchhoff stresses satisfy

ow* ow* D pciecs
SXX = = = — — —
BEXX (961 3 2 C1
ow* ow* D pciecs
S,y = = =——=—""=0 .
» OE,, dca 3 2 o (14.20)
S :8w* ow* _Q_E 10263 _0

- 6EZZ - 3C3 N 3 2 C3
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The second and third equations in Equation 14.20 are immediately seen to imply
¢, = c3, as previously stated. Enforcement of the stationarity condition (dw* = 0) for
p(cicez —1=0) with S, =S, =0=0 now furnishes that p = %D/\/a It follows
that S, = D[1 — c,_3/2] /3, in agreement with Equation 14.7.

14.5.4 INCREMENTAL EQUILIBRIUM RELATION

The Principle of Virtual Work states the condition for static equilibrium of the rod as

Xet1 Xet1
Pe
b(a,;P°) = J BS. A, dX —P¢ — |pg J N'A,dX | a, =0, Pe:( h )
X X Pe+1
(14.21)

in which the third left-hand term represents the weight of the element, while P,
represents the forces from the adjacent elements. In an incremental formulation, we
replace the loads and displacements by their differential forms. In particular

Xet1 Xet1
0=d¢ = J BdS,, A, dX + J dB SA, dX — dP¢
X, X,
=K,da, — dP°
= {Ki. + Kz, + K3, + Ky, }da, — dP* (14.22)
in which
Xe+l
K. =A, J B.D;B] dx
Xe
DA, [ 1 -1
= 2Tl 14.23a
l, {—1 1 ( )
Xeri
Ko = A, J Dr(Bra’ By, + Byza,Bl)dX
Xe
l_)TAe [”e+1 - Me] 1 -1
= 2 14.23b
I, I, -1 1 ( )
Xet1
Ks = A, J By.a.al Bl dX
Xe
BTAE Uer1 — Ue 1 -1
= ¢ 14.23
I ( I ) 11 (14.23¢)

© 2008 by Taylor & Francis Group, LLC.
y Tay! p



§xer 1 -1
= 14.23d
le {—l 1 ] ( )
and
Xey1 Xeti
— 1 — 1
Dr = J DrdX. Su= J S, dX (14.23¢)
e fa e i

Combining Equations 14.23a through 14.23e produces a simple relation for the
tangent stiffness matrix:

1 71 l_)Ag e — Ue e _62 §XXA€
Ke_K[l 1], K:; {quﬂ u+<u+1 u>}+

(14.24)

Suppose (4, | — u,)/l, is small compared to unity, with the consequence that E,, is
also small compared to unity. It follows in this case that Dy~ D, S, ~S,. In
consequence, K, reduces to the stiffness matrix for a rod element of linearly elastic
material experiencing small strain:

EA.[ 1 -1
K, = T |:_1 1 } (14.25)

Returning to the nonlinear problem, several special cases are now used to illuminate
additional aspects of finite element modeling.

14.5.5 SINGLE ELEMENT BuiLT-IN AT ONE END

Figure 14.3 depicts a single element model of a rod which is built in at X=0:
X, =Xy =0. At the opposite end, X, =X, =1, it is submitted to the load P. The
displacement at X =0 is subject to the constraint u(0) =u,=0, so that Equation

14.24 becomes
1 -1 0 —dP,
K(ul)[_l 1 }(du|> = ( dP > (14.26)

in which dP, is an incremental reaction force which is considered unknown (of
course from equilibrium dP,=dP). Enforcing the constraint at the top of the rod
causes Equation 14.26 to “‘condense” to

kdu; = dP (14.27)
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L

FIGURE 14.3 Rubber rod element under gravity: built in at top.

Also, the current shape function degenerates to the expression N — N =X/X|.
The (Lagrangian) strain is given by

2
ui 1 up
E =—+4+-|= 14.28
(u1) X, +2<X1> ( )
and the strain—displacement matrix reduces to
B—B——4+ (14.29)
— D =—-+—= .
X, X?

The (second Piola—Kirchhoff) stress S, is now obtained as a function of u;:

Uui 1 ui 2 7%
2{X—1+§ (}71) } - 1] (14.30)

14.5.6 ON NUMERICAL SOLUTION BY NEWTON ITERATION

1
Sulu) =3D |1 =

We see to solve Equation 14.21 numerically by Newton iteration, sometimes called
“load balancing” in this context, as explained below. The Principle of Virtual Work
implies that

X

Xi
d(uy) = JBSMAdX—Pf ngNTAdX a,
0

3
2 2
up 1 uy Xl
p2 Gty ot I Q| —P—pgAt
{X1+2(X1)} ] pefim

(14.31)

(=]
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in which the residual function ¢(u;) has been introduced. Consider an iteration
process in which the jth iterate « has been determined. Newton iteration determines
the next iterate u]"" using

kDA, = —@u))
W=+ Ajuy (14.32)

in which K(ujl) = 8¢(ujl) / 81/1 has already been given in Equation 14.24 and is now
seen to be the Jacobian matrix of Newton iteration. Convergence to the correct value
u, is usually rapid provided that the initial iterate u? is sufficiently close to u;.

A satisfactory starting iterate for the current load step can be obtained by
extrapolating from the previous solution values. As illustration, suppose the solution,
say, is known at the load P;=jAP, in which AP is a load increment. The load is now
incremented to produce P;,q=(j+1)AP, and the a starting iterate is needed to
converge to the solution u; ;; at this load using Newton iteration. It is frequently
satisfactory to use ”(1),]‘+1 = u1,;. Another possibility is to use “(1),]‘+1 = 2uyj — Ui j-1,
or more generally “‘line search’ using two or more previous solution values.

14.5.7 ASSEMBLED STIFFNESS MATRIX FOR A TwWO-ELEMENT MODEL
oF THE RuUBBER ROD UNDER GRAVITY

A two-element model of the rubber rod under gravity is shown in Figure 14.4.
Assemblage procedures are now illustrated for combining the element equilibrium
relations to obtain the global equilibrium relation holding for an assemblage of
elements. We will see that they are simple extensions of assembly procedures in

[TP%E]

linear finite element analysis. For elements “¢” and “e + 17 the element equilibrium
relations are expanded as

Xelle [ —

Xe+1,ue+l —_—

e+l
[/PM

P, Ae+1

Xe+2,Ue+2 o pe+l
' e+2
XV

FIGURE 14.4 Two rubber rod elements under gravity.
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kS, due + kS duty = dP° (14.33a)

KS, dug + Ky dutg = dP2, | (14.33b)
KT dutgr + K dugsn = dPET] (14.33¢)
KT duey + K53 duesr = dPL) (14.33d)

The superscript indicates the element index, and the subscript indicates the node
index. If no external force is applied at x,.,;, the interelement incremental force
balance is expressed as

dPe, +dPit =0 (14.34)
Adding Equations 14.33b and 14.33c furnishes
kS, du, + (Ko, + KT dueyr + k3" dugsn = 0 (14.35)

Equations 14.33a, 14.33d, and 14.35 are expressed in matrix form as

kS, kS, 0 du, dpe
K, ks, +KTN KT | duey | = 0 (14.36)
0k K \duo/  \aptd

Equation 14.36 illustrates that the (incremental) global stiffness matrix is formed
by “overlaying” K, and K, ;, with the entries added in the intersection (the 2-2
element).

Two identical elements under gravity, under equal end loads: If K, =K, | and
dP¢ = —dP¢t] = —dP, overlaying the element matrices leads to the global (two
element) relation

1 -1 07 /duy —dP
k-1 2 —1||ldn|=1] o0 (14.37)
0 —1 1 |\dus dp

Note that Equation 14.37 has no solution since the global stiffness matrix has no
inverse: the second row is the negative of the sum of the first and last rows. This
suggests that, owing to numerical errors in the load increments, the condition for
static equilibrium is not satisfied numerically, and therefore the body is predicted to
accelerate indefinitely (undergoes rigid body motion). However, we also know that
this configuration, under equal and opposite incremental loads, is symmetric, imply-
ing a constraint du, =0. This constraint permits ‘“‘condensation,” that is, reducing
Equation 14.37 to a system with two unknowns by eliminating rows and columns
associated with the middle incremental displacement. In particular,

L@ -G e
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The condensed matrix is now proportional to the identity matrix, and the system has
a solution. More generally, stiffness matrices may easily be singular or nearly
singular (with a large condition number) unless constraints are used or introduced
to suppress “‘rigid body modes.”

14.6  NEWTON ITERATION NEAR A CRITICAL POINT

Now the Jacobian matrix is likely to be ill-conditioned whenever the tangent
modulus tensor is nearly singular, which is said to occur at critical points. Unfor-
tunately, since elastomers or metals experiencing plasticity are typically very comp-
liant at large deformation, the analyst attempting to perform computations into large
strain ranges may well encounter a critical point. Buckling also represents an
example of a critical point. Since the tangent stiffness matrix is the Jacobian matrix
for Newton iteration, convergence problems arise when the tangent stiffness
becomes singular or ill-conditioned, and special methods are invoked to continue
computations near and past critical points.

Several ways to continue computation in the vicinity of critical points are now
listed.

Increase stiffness, such as by introducing additional constraints if available
Reduce load step sizes, and reform the stiffness matrix after each iteration
Switch to displacement control rather than load control

Using an arc length method, of which a particular method is described in
Chapter 17

el NS

We now illustrate such a convergence problem using an equation of the form
P(x) = 0. As previously stated, Newton iteration seeks a solution through an iterative
process given by

dip)]
Xjy1 =X — { dxj P(x;) (14.39)
. . . L . o GED )
Clearly, recalling Equation14.3 using sequential iterates, with A, ; = x,/ " — x|,
dy] " [dy )
A1 — A jor = —|— —| Aut1-1+0 14.40
11, +1,j-1 {dx] o le o +1,j-1 + ( )

Strictly speaking the argument of [%’”] is not x'. Rather, thanks to the Mean Value
Theorem, the argument is an unknown value x* between x,, and the converged value
of x,.1. Clearly, [§£] . does not cancel the ill-conditioned matrix [§£] . in which

) ¢ . | x())?
case the iterates will grow rapidly.
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EXAMPLE 14.3

The performance of the Newton iteration procedure near a critical point is now
illustrated using a simple example showing a slope (analogous to the tangent modulus
tensor) which is asymptotically approaching zero. Consider

) = %tan_l(x) —y=0 (14.41)
Equation 14.41 is depicted in Figure 14.5. The goal is to find the solution of x as y is
incremented in the range (0,1). Clearly x approaches infinity as y approaches unity, so
that the goal is to generate the x(y) relationship accurately as close as possible to y=1.
The curve will appear as in Figure 14.5. When y is plotted against x, the curve
asymptotically approaches unity, with the slope (stiffness) approaching zero. As y is
incremented by small amounts just below unity, the differences in x due to the
increment are large, so that the solution value at a nth load step, if used as the initial
iterate, is not close to the solution at the (n 4 1)st load step.

Suppose that y is incremented such that the nth value of y is y,, = nAy. To obtain the
solution of the (n+ 1)th step, the Newton iteration procedure generates the (v + 1)st
iterate from the vth iterate as follows:

Xnt1

— “n+l n+1

(v) -1
v+1) _x(v) . |:d¢(g;+l):| (b(x(V) )

, 2 e T
=l - (1 + () )tan (11) = 5 Yt (14.42)
in which xﬁl‘il is the vth iterate for the solution x,, . Of course a starting iterate xJ_ | is

needed. An attractive candidate is x,. However, this may not be good enough when
convergence difficulties appear.

Newton iteration for Equation 14.42 was implemented for this example in a simple
double precision program. Numerical results are shown in Table 14.1. The increment
Ay was reduced significantly as the asymptote was approached. Despite this reduction
the iteration count increased noticeably near y=0.9999, illustrating the onset of
convergence difficulties.

Encounter difficulties with convergence

Y T

FIGURE 14.5 Illustration of the inverse tangent function.
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TABLE 14.1
Convergence of Newton Iteration for y=2tan"'(x) /7

Iteration Count b's y Ay

2 12.7062083 0.95 0.0001
3 63.6568343 0.99 0.0001
3 70.7309329 0.991 0.0001
3 90.9422071 0.993 0.0001
3 127.321711 0.995 0.0001
4 212.206062 0.997 0.0001
4 636.628644 0.999 0.0001
4 909.475631 0.9993 0.0001
5 1591.60798 0.9996 0.0001
6 6367.13818 0.9999 0.0001

14.7 INTRODUCTION TO THE ARC LENGTH METHOD

In, say, uniaxial tension, the Principle of Virtual Work leads to an equation of the
form ¢(u) =f, % = k(u) (incremental stiffness matrix). The arc length method to
be discussed here is helpful if k(u) is near zero (i.e., near a critical point).

In nonlinear problems we increment the loads using a load intensity parameter A,

f=M, 0<A<1 (14.43)
in which fj is the final load to be attained. The equilibrium equation thereby becomes
d(u) = Afy (14.44)

Suppose the solution has been attained at A, fo, denoted by u,, and the solution is
sought for the subsequent load increment, satisfying

d)(unJrl) = An+1f0 (1445)

Introducing the incremental relations ¢ (ut,41) — P(u,) ~ %(%(M,H_]) + %(un))A,,u
= %(k(u,,ﬂ) + k(u,))A,u, an approximate solution may be obtained from the
equation

%(k(un+l) + k(up)Apu = (And)fo (14.46)

in which
An/\ = AnJrl — Ay, Anu = Upy1 — Uy

An equation in this form is said to represent load control since the solution is
obtained at prescribed load levels.

© 2008 by Taylor & Francis Group, LLC.



If we make the additional approximation that
1
5 (k1) + k) ~ k() (14.47)

the equation is “explicit” and its solution requires no iteration. Otherwise, the
method is implicit and iteration is required.

In problems in buckling, plasticity and hyperelasticity, it is quite possible for
%(k(unﬂ) + k(u,)) to be singular or nearly singular in which case there are severe
difficulties achieving convergence and accuracy.

An alternative is ‘““displacement control,”” in which increments of u are specified,
and the conjugate force increments become reaction forces to be computed as part of
the solution. We next discuss a combination of load control and displacement
control, known as arc length control.

The arc length method is helpful in situations in which load control fails owing
to a singular tangent stiffness matrix. It augments the Principle of Virtual Work with
an additional equation imposing a constraint on a function of the magnitudes of the
load and displacement increments. In the uniaxial tension case being considered
here, an example of the resulting equations is

é (u,\) = du) — Afy =0 equilibrium (14.48)
P(u,A) = a(u — u,) + BAA —A,) — AS =0 arc length constraint '
Here AS is a small positive number representing the ““length” of the increment in the
u—A\ plane, and the coefficients & and 8 will be chosen subsequently to promote
convergence.
Newton iteration is now applied to this pair of equations

06 (4, A0) 06 (w40 )]
"‘;V:ll) B ile)rl B ou OA ¢( '(131”\531)
A AL O ()1 AyTy) O ()1 AT Wyl A
L Ou OA
(v) v -1 v) )
_ Uyt - k( E’H)'l) _ﬁ)] d)( n+1’An+l) (14.49)
A;Vll L « B ‘/’( iva)rl’/\;vJ)rl)

and, consequently, Newton iteration with the arc length constraint is given by the
iteration scheme

[k(u;vl]) foHufffl” — } _ {$( i fﬁl)} (14.50)
¥

(v+1) ) ) v)
a B At — A ( Upiys )‘n+1)
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Suppose k (), ) = 0, and choose a =;. The eigenvalues ;> of the matrix A are

now given by the equation
w—Bu+f3 =0 (14.51)

with the two roots

P2 = % (B +/B - 4f02> (14.52)

The choice of B8 which maximizes the smaller eigenvalue is 8 =2f;. This choice
renders the two eigenvalues equal and positive with the value w; = =fy, and
thereby circumvents the singularity arising if k ("}, ) = 0.
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15 Incremental Principle
of Virtual Work

15.1 INCREMENTAL KINEMATICS

The Principle of Virtual Work is extended to nonlinear solid mechanics by restating
the kinematic and equilibrium relations in incremental form and by applying vari-
ational principles using the displacement increments as the primary variables. Issues
such as thermal effects and incompressibility are addressed in Chapters 16 and 17
dealing with thermohyperelasticity and thermoinelasticity.

Recall that the displacement vector u(X) has been assumed to admit a satisfac-
tory approximation at the element level in the form u(X) = ¢”(X) ®y(#). Also recall
that the deformation gradient tensor is given by F = % Suppose that the body under
study is subjected to a load vector P, which is applied incrementally via load
increments AP =P, ; —P;. The load after the (n — 1)th load step is denoted as P,
The solution P, is considered to have been determined computationally, and the
solution of the current displacement increments is sought. Let A,ju=u, ; —u,,
implying the incremental interpolation model

Aju =" (X)PA,y (15.1)

By suitably arranging the derivatives of A,u with respect to X, a matrix M(X) may
easily be determined for which VEC(A,F)=MX)A,y, to be demonstrated in
Example 15.1.

We next consider the Lagrangian strain tensor E(X) :%(FTF—I). Using
Kronecker product algebra introduced in Chapter 3, we readily find that to first
order in increments

A,e = VEC(AE)
= VEC(} [F"A,F + A FF])
=1[I®F" + F ® IU]VEC(A,F)
=G"Ayy, G'=1[I®F +FxIUMX)A,y (15.2)

The form in Equation 15.2 shows the convenience of Kronecker product notation.
Namely it enables moving the incremental displacement vector to the end of the
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expression, with the consequence that it can be placed outside the domain integrals
we will encounter subsequently.

Alternatively, for the current configuration an alternative strain measure is the
Eulerian strain 3 = 1 (I — F-7F '), which refers to deformed coordinates. Note that,
since A,(FF 1) =0, A,F' = —F'A,FF~!. Similarly, A,F 7 = -F TA,F'FT.

Simple manipulation furnishes the incremental strain—displacement relation for 3 as
VEC(A, D) =L [F'F'@F "U+F '@ F "F'|MA,y (15.3)

There also are geometric changes for which an incremental representation is useful.
For example, since the Jacobian J = det(F) satisfies dJ = J tr(F*IdF), we obtain the
approximate formula

A = J ir(F7'A,F)
= JVECT(F YVEC(A,F)
= VECT(FT)JMA,y (15.4)

Also of interest are the incremental counterparts for the directed area of surface
element, the surface normal vector, and the surface area of an element. Chapter 13
reported the relations

d[r;fs] — [r(D)I — L"]nds (15.52)
‘(11—'; = [(n"Dn)I - L']n (15.5b)
%dS = [tr(D) — n"Dn]dS (15.5¢)

and we directly obtain the incremental counterparts as

A,[ndS] = dS[nVECT(F') —n" @ FTU|MA,y (15.6a)
An = [n [(nTF’T) ® nT] -n’'® F’TU] MA,y (15.6b)
A,dS = dS[nVEC" (F") —n(n"F") @ n"|MA,y (15.6¢)

EXAMPLE 15.1

The derivation of Equation 15.6b from Equation 15.5b is now presented. First note that
An ~ ‘é—'t‘A,,t. Next
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(m"Dn)nA,¢ ~ n(nTA,,FFfln)

n(n” @ n")VEC(A,FF ')

n(n” @ n")F " @ IVEC(A,F)
(

n(n"F7) @n"MA,y

T

®
@

Finally,

—L™nA,t = —F "AF'n
= —VEC(F"A,F'n)
=-—n" @F TUMA,y
Several classical texts (e.g., Zienkiewicz and Taylor, 1991) on FEA have decomposed
the strain—displacement relations into a linear portion and a residual nonlinear portion.

In the current notation this is written as G =B + By;. If we write F=1+F,, in which
F, = g—)‘;, it is immediate from Equation 15.3 that

Se = [B] + BJ,(v)|5vy
B, =1I®1+I1xIU)MX) (15.7)
B}, =1A®F! +F, ® IU)MX)

EXAMPLE 15.2

Assuming linear interpolation models for u, v in a plane triangular membrane element
with vertices (0,0), (1,0), (0,1), obtain the matrices M, G, B;, and By;.

SOLUTION

The interpolation model is

uy

uz

u I x y 00 0][® O us

{V}Z{OOley][O <I>} Vi

V2

V3
1 0 01" 1 00
®=|1 10| =|-11 0
1 0 1 -1 0 1

We first formulate the deformation gradient tensor F.
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Let v, = {u;} and y, = {v;} Now F=1+9% and % = [gf 2 1. After some
us v o oy
effort we may write %“ =1+ BYT and A, F = BYA,I' in which
e 0 0 O v, 0
B — B]Tl B|T2 0" 0" Y — 0 & 0 0 r— 0 v
o o Bl BL[ 0 0 & o v, 0
0O 0 0 @ 0 v,
with
=010}, p,=1(001}, B, =(010}, B, =1{001}
Now
An‘Yl
VEC(A,T') = I ® BY)
AnYZ
VECAF) = A BY)VECA,I') = A BY)IA,y
in which
I 01
0 0
0 I
5= 0 0
10 0
I 0
0 0
_0 I_

We conclude that M=1 ® BY)J.
Next the strain—displacement matrix G is given by

G" =112 I+ BYD) + [+ BYD) @ U]I ® BY)I

Finally, the linear and nonlinear portions of the strain—displacement matrices are
obtained as

B, =lI®I+dxDUId® BY)JI
By, =1[1® @YD) + [(BYD) @ IIUJd @ BY)JI

EXAMPLE 15.3

Repeat Example 15.2 with linear interpolation models for u, v, and w in a tetrahedral
element with vertices (0,0,0), (1,0,0), (0,1,0), (0,0,1).
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SoLUTION

The interpolation model is

uj Vi
up V2
utx,y,2)=1{1 x y z}® , vy, =1{1 x y z}®
us V3
Uy V4
wi
Wy = {1 x y 2@ "
w3
Wy
1 00 077" 1 00 0
o—|! L OO _ -1 100
11 01 0| “|-1 010
1 0 01 -1 0 0 1

Following Example 15.2, we again formulate the deformation gradient tensor.

ou Ou Ou
dx 0Oy 0z
ou OAyu  Ou dv  Ov  Ov
F=ltoe &F =30 o |ae oy oz | oY
ow Ow Ow
ox Oy 0z
[vi 0 0]
0 v, 0
0 0 v
Y, 00
r={0 v 0
0 0 v,
s 0 0
0 v; O
L0 0 v

Now
LOBL BL 0T 0T 0T 07 0 o
B=10" 0o o Bl B, 0 o o

=

0" 0" o" 0" o 0" B} B, B
® 0 0 0 0 0 0 0 07
0 ® 0 0 0 0 0 0 0
0 0 & 0 0 0 0 0 0
0 0 0 & 0 0 0 0 0
Y=[0 0 0 0 ® 0 0 0 0
0 0 0 0 0 ® 0 0 0
0 0 0 0 0 0 & 0 0
0 0 0 0 0 0 0 ® 0
(000 00 0 0 0 @]
Bl =L, =B, =10 1 0 0}, BL=pL=8L=(0 0 1 0)
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Bl =Bx =B =10 0 1 0]
Finally, the incremental displacements are
AIIYI
A,I' =3¢ Ay, p in which 3 is given below.
An'Y3

As in Example 15.2,

M= (I3 BY)J

G =1Ied+BYD + [0+ BYD) 2 IU]d® BY)JI
B, =;0@1+I®DUId® BY)I

By, =1[1® @YD + [(BYD) @ IIU]d ® BY)JI

and the matrix J is now obtained as

L2

Il
S OO OO OO OO OO OO O OSSO -
[ I R N I R I R I R A}
B — R — I — IR I A I R R I — I — I I I ]
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15.2 STRESS INCREMENTS

For the purposes of deriving an incremental variational principle we shall see that the
incremental 1st Piola—Kirchhoff stress A,S is the starting point. However, to formu-
late mechanical properties, the objective increment of the Cauchy stress, based on the
Truesdell stress flux, A, T, is the starting point. Furthermore, in the resulting vari-
ational statement, which we called the Incremental Principle of Virtual Work, we
shall find that quantity which appears is the increment of the 2nd Piola—Kirchhoff
stress, A,,S.
From Chapter 5, S = SF, from which to first order

A,S = A,SFT + SA,FT (15.8)

For the Cauchy stress, the increment must take account of the rotation of the
underlying coordinate system and thereby be objective. We recall the objective
Truesdell stress flux 9T/t introduced in Chapter 13:

oT /ot = 9T /0t + Ttr(D) — LT — TL” (15.9)

Among the possible stress fluxes, it is unique in being proportional to the rate of the
2nd Piola—Kirchhoff stress, namely

S/t = JF~! (af/at)F-T (15.10)
An objective Truesdell stress increment AnT ~ dt(a’i' /0r) is readily obtained as
o 1
VEC (A,,T) —SF @ FVECQ,S) (15.11)

Further, once VEC (3,,T) has been determined, the (nonobjective) increment A, T of
the Cauchy stress may be computed using

AT=AT+T tr((A,F)F ') — A, FF'T — TF TA,F” (15.12)
from which

VEC(A,T) = VEC(A,T) — [TVECT (F ) — (TF ") @1 - 1 (TF ") Ma,y
(15.13)
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15.3 INCREMENTAL EQUATION OF BALANCE
OF LINEAR MOMENTUM

We now formulate the incremental equilibrium equation of nonlinear solid mechan-
ics (assuming that the body has a fixed point). In the deformed (Eulerian) configur-
ation, equilibrium at 7, requires

JTTndS: inidV (15.14)
Referred to the undeformed (Lagrangian) configuration, this equation becomes
JSTnO ds, = Jpoﬁ av, (15.15)

So denotes the surface (boundary) in the undeformed configuration, and ny is the
surface normal vector in the undeformed configuration. Suppose the solution for S is
known as S,, at time #, and is sought at 7, ;. As usual, we introduce the increment
A,S to denote S, — S,.. Now subtracting the equilibrium equation at time #, from
that at 7, | furnishes the incremental equilibrium equation

JAnSTnO ds, = J oAt Vi (15.16)
Application of the divergence theorem furnishes the differential equation
T =T\T ..
(v AS ) — poAvii (15.17)
which is the local form of the incremental equilibrium equation.

15.4 INCREMENTAL PRINCIPLE OF VIRTUAL WORK

To derive a variational principle for the current formulation, the quantity to be varied
is the incremental displacement vector which accordingly is the primary variable.
Following Chapter 4,

(i) Equation 15.17 is multiplied by (5A,u)”
(ii) Integration is performed over the domain
(iii) The divergence theorem is invoked once
(iv) Terms appearing on the boundary are identified as primary and secondary
variables
(v) Boundary conditions and constraints are applied

The reasoning process is very similar to that in the derivation of the Principle of
Virtual work in finite deformation in which u is the unknown, and furnishes

Jtr(SAnETAnS) dVp + JSAnFSAnFT dvy + JéAnquOAnii dvy = JSAnuTA,lto dS
(15.18)
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in which ty is the traction experienced by dSy. The increment A, t, is momentarily
assumed to be specified on the undeformed boundary. However, in a subsequent
section it will be derived in the case in which the traction increment is specified in the
current configuration.

The fourth term describes the virtual external work of the traction increments.
The first term may be said to describe the virtual internal work of the stress
increments, referred to the undeformed configuration. The third term describes the
virtual internal work of the inertial force increments. The second term has no
counterpart in the previously formulated Principle of Virtual Work in Chapter 13
and arises because of nonlinear geometric effects in the incremental formulation. We
simply call it the geometric stiffness integral.

Owing to the importance of the Incremental Principle of Virtual Work, it is
derived in detail below. It is convenient to perform the derivation using tensor-
indicial notation. The incremental equilibrium equation referred to the undeformed
configuration is restated as

9

9 _ _ _
J‘O‘Anui a_XJ(AnSU) dV() = Ja)(j [SA,,u,(AnS,])] dV() — J— [BAnui]AnSij dV()

0

e

= JSAnuipoAnui dVo (15.19)
The divergence theorem is invoked to convert the first right-hand term to

9 _ _
ﬁ [5A,1u,(AnSU)] dV() = SAnui(njA,,Sij) dS()
]

= J8AnuiA,,t0j dSo (15.20)

which is recognized as the fourth term in Equation 15.18.
To first order in increments and now using tensor notation, the second right-hand
term is written as

Jaix [5A,u;1A,S; AV = | tr(6A,FA,S)dV,
. J

= | tr(8A,F[A,SF" +SA,F']) dV,

= tr(FTSA,,FA,,S)dVo+Jtr(5AnFSAnFT)dVO (15.21)

The second term is recognized as the second term in Equation 15.18. Recalling that
the variational operator is applied to the primary variable which is an incremental
displacement vector, the first term now becomes

Jtr(FTSA,,FA,,S) dvp = er(% [FT8A,F + 8A,F F|A,S) dVy

= Jtr(SAnETAnS) dv, (15.22)
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which is recognized as the first term in Equation 15.18. Finally, the third term in
Equation 15.18 is recognized as the incremental virtual work of the incremental
inertial forces.

15.5 INCREMENTAL FINITE ELEMENT EQUATION

For present purposes let us suppose constitutive relations in the form
A,S = DX, y,)ALE + QA ¢ (15.23)

in which Dy(X, v) is the fourth-order tangent modulus tensor. Equation 15.23 is
capable of describing combined rate-independent and linearly rate-dependent
response, for example, combined plasticity and viscoplasticity.

To take advantage of Kronecker product notation, the equation is rewritten as

As = Xo(X,v,)Ae + wA,t (15.24)
s = VEC(S), e=VECE), x,=TEN22(Dy), o = VEC(Q)

Using the interpolation model (Equation 15.1), Equation 15.18 becomes

ALY [(Kr + Kg)A,y + MA, Y — [Af — f,A,1]] =0 (15.25)
Kr = [M'Gx,G"MdV,, K;=[M'S®MdV,
M= [p,® e’ ®dV, Af = [® pAtydS,
f, = [M'GodV,

K7 is now called the tangent modulus matrix, K the geometric stiffness matrix, M
the (incremental) mass matrix, A,f is called the incremental (surface) force vector,
and we call A, f, the incremental viscous force.

15.6 CONTRIBUTIONS FROM NONLINEAR BOUNDARY
CONDITIONS

Recalling Chapter 13, let I; denote the principal invariants of C, and leti = VEC(),
¢, = VEC(C?), n! = 0I;/9c, and A, = dn;/dc. Recall from Chapter 13 that

n =i, m=Li—-c¢, m3=hi—Lc+c,=LVEC(C™), Ih=1Ix1 (15.26)
A =0, Ay=ii’ — Ty, A;=10C+CI—(ic/ +ci’)+nGi"-T)
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Equation 15.18 can be applied if increments of tractions are prescribed on the
undeformed surface Sy,. We now consider the more complex situation in which A,
is referred to the deformed surface S, on which they are prescribed functions of u.
This situation may occur under, for example, “dead loading.” Using the relations of
Chapter 13 conversion to undeformed coordinates is obtained using the relations

tdS=tydSo. dS=pdSo, p=J\/nfC ny=\/nf @niny  (1527)
and from Nicholson and Lin (1997b)
Ayp~du=m’de~m’A,ec, m'=n! @nlA;/2u (15.28)
Suppose that At is expressed on S as follows:
Ajt=At—AlAu (15.29)

Here A, t is prescribed, while A, is a known function of u. Also S is the undeformed
counterpart of S. Owing to the presence of A,, the expression in Equation 15.29 is
capable of modeling boundary conditions such as support by a nonlinear elastic
foundation.

From the fact that tdS =t,dS,, we conclude that t=t,/u. It follows that

Anto = At +tm’A,c
= u(At — A5 Au) + tm"Ayc (15.30)

From the Incremental Principle of Virtual Work, the right-hand term may be written as
JSAuTAtO ds, = JSAuT[M(Ag — Al Au) — tm” Ac] dSy (15.31)

Now recalling the interpolation models for the increments we obtain an incremental
force vector plus two boundary contributions to the stiffness terms. In particular

JaAnuTAnto dSy = SAY A — A,y [Kpr + KpylAry (15.32)
At = [ udtdSo. Kr = [ @ @ualie! @ass, Kax =2 [ @ otm"GMas;

The first boundary contribution is from the nonlinear elastic foundation coupling
the traction and displacement increments on the boundary. The second arises
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from geometric nonlinearity in which the traction increment is prescribed on the
current configuration.

15.7 EFFECT OF VARIABLE CONTACT

In many, if not most, “‘real world” problems, loads are transmitted to the member of
interest via contact with other members, for example in gear teeth. The extent of the
contact zone is now an unknown to be determined as part of the solution process.
Solution of contact problems, discussed in an introductory way in Chapter 12, is a
difficult problem that has absorbed the attention of many investigators. Some
algorithms are suited primarily for linear kinematics. Here a development is given
of an example which explicitly addresses the effect of large deformation.

Figure 15.1 shows a contactor moving toward a foundation, assumed to be rigid
and fixed. We seek to follow the development of the contact area and the tractions
arising throughout it. Recalling Chapter 12, corresponding to a point X on the
contactor surface there is a target point y(x) on the foundation to which the normal
n(x) at x points. As the contactor starts to deform n(x) rotates and points toward a
new value y(x). As the point x approaches contact, the point y(x) approaches the
foundation point which will come into contact with the contactor point at x.

We define a gap function g(u,x) using y(x)=x-+gn. Let m be the surface
normal vector to the target (foundation) at y(x). Also, let S, be the candidate contact
surface on the contactor, whose undeformed counterpart is So.. There likewise is a
candidate contact surface Sy on the foundation.

We limit attention to bonded contact, in which particles coming into contact with
each other remain in contact and do not slide away from each other. Algorithms for
sliding contact with and without friction are available. For simplicity, for the moment
we also assume that shear tractions, in the osculating plane of point of interest, are

{ Contactor

Foundation

FIGURE 15.1 Contact scenario.
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negligible. Suppose now that the interface can be represented by an elastic founda-
tion satisfying the incremental relation

Anty = —k(2)Auty (15.33)

Here 1, =n’t and u,, =n"u are the normal components of the traction and displace-
ment vectors at X. Since the only traction being considered is the normal traction (to
the contactor surface), the transverse components of Au are not needed (do not result
from work). Also, k(g) is a nonlinear stiffness function given in terms of the gap by,
for example,

k(g) = k;H g — arctan(a g — s,)} +kp, kp/kp>1 (15.34)
As in Chapter 12, when g is positive, the gap is open and k approaches k; which
should be chosen as a small number, theoretically zero. As g becomes negative, the
gap is closing and k thereafter rapidly approaches ky which should be chosen as a
large number (theoretically infinite to prevent penetration of the rigid body). A
function similar to this was also discussed in Chapter 14, and its characteristics
were illustrated graphically.
Under the assumption that only the normal traction on the contactor surface in
important, it likewise follows that we may use the relation t=1,n, with the conse-
quence that

At =At,n+1,An (15.35)

The contact model contributes the matrix K, to the total stiffness matrix as follows
(Nicholson and Lin, 1997b):

J SAUTAt/J, dsy, = JSAM:AIV,M dsSy

= —6AY K Ay (15.36)
K. =2 J(I)T@ntanBT(I) dS.o + J ke(g)®" @nn’ ¢" ®p dS.
+ J q)T‘Ptn/J“hT dSCO

in which h” is presented below. To update the gap, use may be made of the following
relations reported in Nicholson and Lin (1997b). The differential vector dy is tangent
to the foundation surface, and hence m” dy = 0. It follows that

0~miAu+gm’An+minAg

m’Au + gm’An
g mn (15.37)
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Using Equations 15.7 and 15.37 we may derive with some effort that

mT(I)T<p+ghT
m’n (15.38)
W' =m [n(@FHen")-—n"aF M

Ag=TTAy, TT=—

15.8 INTERPRETATION AS NEWTON ITERATION

The (nonincremental) Principle of Virtual Work is restated in Lagrangian coordin-
ates as

Jtr(SES) dvy + JSquii dvy = JSuTto dSy (15.39)

We assume for convenience that t is prescribed on S,. The interpolation model for e
was shown in Equation 15.8 to have the form de = [B; + BJ, (y)|8y. Upon can-
cellation of the variation 8y, an algebraic equation in vy is obtained as

0=W(y,f= J[BL + By (y)]sdVy + J@T(ppoﬁ vy, f= J(I)T(pto dS,, s=VEC(S)

(15.40)
At the nth load step Newton iteration is expressed as
V=l ), = W) 054D
or alternatively as a linear system
J('Yf;jll) - Yffll) = (I)('Yszl’fnﬂ) (15.42)

v+ _ o, (v+1) )
Yor1 =Ynmi1 T ['Ynyﬂ - 'Yny+1]

If the load increments are small enough, the starting iterate may be estimated as the
solution from the nth load step. Also a stopping (convergence) criterion is needed to
determine when the effort to generate additional iterates is not rewarded by increased
accuracy.

Careful examination of the relations from this and the incremental formulations
uncovers that

J = K7 + K (static)

, _ (15.43)
= K¢ + K7 + 2M/h* (dynamic)

© 2008 by Taylor & Francis Group, LLC.



presuming, for example, that the trapezoidal rule is used in the dynamic case to
model the time derivatives. Clearly the incremental stiffness matrix is the same as the
Jacobian matrix in Newton iteration. Equation 15.43 is, of course, a very satisfying
result—it reveals that the Jacobian matrix of Newton Iteration may be calculated by
conventional finite element procedures at the element level followed by conventional
assembly procedures. If the incremental equation is only solved once at each load
increment, the ensuing solution may be viewed as the first iterate in a Newton
iteration scheme. The one-time incremental solution can potentially be improved
by additional iterations following Equation 15.44, but at the cost of additional effort.
However, it is also possible that the use of multiple iterations will enable larger load
steps, thereby compensating for the computational effort.

15.9 BUCKLING

Finite element equations based on classical linear buckling equations for beams and
plates were treated in Chapter 11. In the classical equations, what strictly are
geometrically nonlinear terms appear through what may be considered a linear
correction term, furnishing linear equations. Here, in the absence of inertia and
nonlinearity in the boundary conditions, we briefly present a more general viewpoint
based on the incremental equilibrium equation

K7+ Kp)A,y = Auf (15.44)

This solution will predict a very large incremental displacement if the stiffness
matrix K7+ Kg; is ill-conditioned or outright singular. Of course, in elastic media,
K7 is positive definite. However, in the presence of in-plane compression, we will
see that K; may have a negative eigenvalue whose magnitude is comparable to the
smallest positive eigenvalue of K7. To see this recall that

K = JMTGXGTM dvy, Kg = JMTS @ IMdV, (15.45)

We suppose that the element in question is thin in a local z (out-of-plane direction),
corresponding to plane stress. Now in plate and shell theory, it is a common practice
to add a transverse shear stress on the element boundaries to allow the element to
support transverse loads. We assume that the transverse shear stresses only appear in
the incremental force term and the tangent stiffness term, and that the geometric
stiffness term strictly satisfies the plane stress assumption. It follows that, if the three-
direction is out of the plane, the geometric stiffness term K contains the expression

Sl SppI 01

S®I= [Spl Syl Ol (15.46)
o O Ol

in which S is of course the 2nd Piola—Kirchhoff stress. In classical (linear) buckling
theory loads which are applied proportionately induce proportionate in-plane stresses
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(i.e., the stress components have constant ratios). Accordingly, for a given load path,
only one parameter, the length of the straight line the stress point traverses in the
space of in-plane stresses, arises in the eigenvalue problem for the critical buckling
load. In nonlinear problems, there is no assurance that the stress point follows a
straight line even if the loads are proportionate. Instead, if A denotes the distance
along the line followed by the load point in proportional loading in load space, the
stresses become numerical functions of A.

As a simple alternative to the classical case addressing a complete member, we
consider buckling of a single element, and suppose that the stresses appearing in
Equation 15.46 are applied in a compressive sense along the faces of the element and
in a proportional manner, i.e.,

Sl (=S 01
SRIT—=A (=Sl (=S Ol (15.47)
o1 o 0l

in which the circumflex implies a reference value along the stress path at which
A = 1. The negative signs on the stresses are present since buckling is associated with
compressive stresses, although the sign is not needed for the shear stress. At the
element level, the equation now becomes

(Kr — AKG)AY, | = Ay (15.48)
At a given load increment, the critical stress intensity for the current stress path, as a
function of an two (spherical) angles determining the path in the stress space
illustrated in Figure 11.11, is obtained by computing the A value rendering (K7 —

AKg) singular. To an extent, the integration in computing K¢ can be made inde-
pendent of the stress path by adapting Equation 11.70 as follows:

K, = IVEC ((J M’ o M7 dv0> VEC (s ® I)) (15.49)
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’I 6 Tangent Modulus
Tensors for
Thermomechanical
Response of Elastomers

16.1 INTRODUCTION

Elastomeric materials embrace natural and synthetic rubber as well as biological
tissues. Attention in this chapter is restricted to isotropic elastomers. Their charac-
teristic is that deformation is recoverable even up to very large strains, and the stress
is a nonlinear function of strain. Accordingly, they pose issues of material and
geometric nonlinearity, potentially also of boundary condition nonlinearity. They
pose two additional issues not addressed in Chapter 15. One is the presence of
thermal fields coupled (weakly) to the mechanical field, and the second is the
presence of a pressure field arising to enforce the constraint of incompressibility or
near-incompressibility and serving as an additional primary variable.

Within an element the finite element method makes use of interpolation models
for the displacement vector u(X,#) and temperature T(X,¢), and pressure p = —tr(7)/3
in incompressible or near-incompressible materials:

uX,r) = N'(X)yy(t), T(X,H) —To=v"(X)0(), p =& X)) (16.1)

in which Ty is the temperature in the reference configuration, assumed constant.

Here N(X) = ¢"(X)®, v(X), and &(X) are shape functions and vy, 0, and ¥s are
vectors of nodal values of displacement, temperature (T — T), and pressure, respect-
ively. Application of the strain displacement relations and their thermal analogs
furnishes

fi =VECF —I) =My =U"M,y, f,=VECEF" —I)=M,y, b&e=p’5y,
B=MG", G'=1F"®I+I1FU), V,T=p0 (16.2)

in which e = VEC(E) is the Lagrangian strain vector. Also, Vo =F"V is the gradient
operator referred to the deformed configuration. Of course, the matrix 3 and the
vector 7 are typically expressed in terms of natural coordinates.

© 2008 by Taylor & Francis Group, LLC.



16.2 COMPRESSIBLE ELASTOMERS

The Helmbholtz potential was introduced in Chapter 6 and shown to underlie the
relations of classical coupled thermoelasticity. The thermohyperelastic properties of
compressible elastomers may likewise be derived from the Helmholtz free energy
density ¢ (per unit mass), which is a function of T and E. Under isothermal
conditions it is conventional to introduce the strain energy density w(E)= pg¢
(T,E) (T constant), in which p, is the density in the undeformed configuration.
Typically, the elastomer is assumed to be isotropic, in which case ¢ can be expressed
as a function of T, I}, I, and I5. Alternatively, it may be expressed as a function of
T and the stretch ratios Ay, A,, and A3, which are the eigenvalues of V/C, the square
root of the right Cauchy—Green strain tensor.

With ¢ specified as a function of T, Iy, I, and I3, the entropy density m per
unit mass and the specific heat ¢, at constant (Lagrangian) strain are quoted from
Chapter 6 as

d¢

, n=-2 (16.3)

The second Piola—Kirchhoff stress satisfies the relation (cf. Chapter 6) s’ =

VECT(S) = p, g—f and is obtained as

7

¢
T _ T —
s =2 % podpim;, &= oI, (16.4)

Also of importance is the (isothermal) tangent modulus matrix

0s
DT—% .

F0)
=4 Z Zpod’ijniﬂjr +4 Zpod’iAi, b; = Lol (16.5)
i i i
An expression for Dy has also been derived by Nicholson and Lin (1997¢) for
compressible, incompressible, and near-incompressible elastomers described by
strain energy functions (Helmholtz free energy functions) based on the use of stretch
ratios rather than invariants.

16.3 INCOMPRESSIBLE AND NEAR-INCOMPRESSIBLE
ELASTOMERS

When the temperature T is held constant, elastomers can often be considered to satisfy
the internal constraint of incompressibility or near-incompressibility. To satisfy the
constraint a posteriori, ¢ is augmented with terms involving a new parameter playing
the role of a Lagrange multiplier. Typically, this new parameter may be interpreted as
the pressure p, referred to the undeformed configuration. Consequently, the thermo-
hyperelastic properties of incompressible and near-incompressible elastomers may be
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derived from the augmented Helmholtz free energy, which is a function of E, T,
and p. The constraint introduces additional terms into the governing finite element
equations and requires an interpolation model for the new primary variable p.

If the elastomer is incompressible at constant temperature, the augmented
Helmholtz function ¢ may be written as

b = g1 I T) — AW T) /pgs Sy =L/L°, 1 =L/ (16.6)

where ¢ is a material function satisfying the constraint &(J,T)=0 and
J = 131/ 2= det(F). It is easily shown that ¢, depends on the deviatoric Lagrangian

strain Ed(:%(C / 13l 3 I) owing to the introduction of the deviatoric invariants J,
and J;, previously encountered in Chapter 13, Equation 13.76. The ‘“‘thermo-
dynamic’ pressure is given by

23

/\:p:—tr(T)/3:$ ; (16.7)

For an elastomer which is near-incompressible at constant temperature, ¢ may be
written as

pod = PodaJ1.J2.T) — p&(J,T) — p*/2ko (16.8)

in which k¢ is a constant. The near-incompressibility constraint is expressed by
0¢/0p =0, which implies

p = —koé(J,T) (16.9)
The bulk modulus « defined by k = — % - and we conclude that
%3
= K)p— 16.10
K=Kooy . ( )

Chen et al. (1997) presented sufficient conditions under which near-incompressible
models reduce to the incompressible case as k — oo. Nicholson and Lin (1996)
proposed the relations

EITD) =T =1, ¢y=d(1.2) + (D), ¢y(T) = ¢, T(1 — In(T/Tp))
(16.11)

with the consequence that

p=—ko(fA(DJ = 1), k=f (Do (16.12)

Equation 16.12 provides a linear pressure—volume relation in which thermomecha-
nical effects are confined to thermal expansion expressed using a constant volume
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coefficient «. It directly generalizes the pressure—volume relation of classical linear
isotropic elasticity. If the near-incompressibility constraint is assumed to be satisfied
a priori, the Helmholtz free energy is recovered as

U1L1,T) = $y(J1.J2,T) + ro(f(T) = 1)*/2p, (16.13)

The last term in Equation 16.13 results from retaining the lowest nonvanishing term
in a Taylor series representation of ¢ about f(T)J—1.
Assuming Equation 16.13, the entropy density now includes a term involving p:

9 99,

757 *a—T+7Taf4(T)/pO’ 71-:p/fS(T) (16.14)

The stress and the (9 X 9) tangent modulus tensor are correspondingly modified from
the compressible case to accommodate near-incompressibility

9,

s’ = Po e | af3(T)nl /J

T,m

s
Dyp = —

oe

oY o
T’77::,30(55) 7%?-nf%Tﬂ2A3//—lhn§/ﬂ] (16.15)

16.3.1 ExamprLes oF ExPREssIONS FOR THE HELMHOLTZ POTENTIAL

There are two broad approaches to the formulation of Helmholtz potential:

1. To express ¢ as a function of Iy, I, and I3, and T (and p)
2. To express ¢ as a function of the principal stretches A, A, and A3, and T

(and p)

The latter approach is thought to possess the convenient feature of allowing direct
use of test data, say from uniaxial tension. We distinguish several cases.

16.3.1.1 Invariant-Based Incompressible Models: Isothermal Problems

In the entitled case, the strain energy function depends only on /), I, and incom-

pressibility is expressed by the constraint /3 = 1, assumed to be satisfied a priori. In

this category, the most widely used models include the Neo-Hookean material (a):
p=Ch=3), =1 (16.16)

and the (two-term) Mooney—Rivlin material (b):

d=C, -3)+C(l,-3), L=1 (16.17)

in which C; and C, are material constants. Most finite element codes with hyper-
elastic elements support the Mooney—Rivlin model. In principle, Mooney—Rivlin
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coefficients C; and C, can be determined independently by “fitting” suitable load—
deflection curves, for example, uniaxial tension. Values for several different rubber
compounds are listed in Nicholson and Nelson (1990).

16.3.1.2 Invariant-Based Models for Compressible Elastomers under
Isothermal Conditions

Two widely studied strain energy functions are due to Blatz and Ko (1962). Let G,
be the shear modulus and v, the Poisson’s ratio, referred to the undeformed config-
uration. The two models are:

1 1-2 = 1
pod1 =5Go <11 + aly . L - ki VO)
2 Vo Vo

1 (I
pod2 =5 Go (—2+213 —5) (16.18)
2 '\

Let w denote the Helmholtz free energy evaluated at a constant temperature, in which
case it reduces to the strain energy. We note a general expression for w which is
implemented in several commercial finite element codes (e.g., ANSYS, 2000):

W) =Y Y Cii =3 (o =3Y + Y (= /Dy,
J k

i

J,=J/(1+Eg) (16.19)

in which E,, is called the thermal expansion strain, while C;; and D; are material
constants. Several codes provide software routines for estimating the model coeffi-
cients from user-supplied data.

Several authors have attempted to uncouple the response into isochoric (volume
conserving) and volumetric parts even in the compressible range, giving rise to
functions of the form w = wy(J;,J2) + wa(J), and recall that J4, J, are the deviatoric
invariants. A number of proposed forms for ¢, are discussed in Holzappel (1996).

16.3.1.3 Thermomechanical Behavior under Non-Isothermal Conditions

Finally we illustrate the accommodation of coupled thermomechanical effects. A
more detailed presentation is given in Section 16.5. Simple extensions of, say, the
Mooney-Rivlin material have been proposed by Dillon (1962), Nicholson and
Nelson (1990), and Nicholson (1995) for compressible elastomers, and in Nicholson
and Lin (1996) for incompressible and near-incompressible elastomers. From the
latter reference, the model for near-incompressible elastomers is

pod = C1(Jy — 2) + Cao(Ja — 3) + poc. T(L — In(T/To)) — (f* (T — Dar — 7 /20
(16.20)

in which, as before, 7= p/f 3(T). The model assumes that the coefficient of specific
heat at constant strain is a constant. As previously mentioned a model similar to
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Nicholson and Lin (1996) has been proposed by Holzappel and Simo (1996) for
compressible elastomers described using stretch ratios.

16.4 STRETCH-RATIO-BASED MODELS: ISOTHERMAL
CONDITIONS

For compressible elastomers, Valanis and Landel (1967) proposed a strain energy
function based on the decomposition

dA1,A2,A3,T) = (A1, T) + p(A2,T) + d(A3,T), T fixed (16.21)

Ogden (1986) has proposed the form
N

PodA.T) = Z myA% — 1), T fixed (16.22)
1

In principle, in incompressible isotropic elastomers stretch-ratio-based models have
the advantage of permitting direct use of “archival’ data from single stress tests, for
example uniaxial tension.

We now illustrate the application of Kronecker product algebra to thermohyper-
elastic materials under isothermal conditions. We then accommodate thermal effects.
From Nicholson and Lin (1997¢), we invoke the expression for the differential of a
tensor-valued isotropic function of a tensor. Namely let A denote a nonsingular n X n
tensor with distinct eigenvalues, and let F(A) be a tensor-valued isotropic function of
A, admitting representation as a convergent polynomial:

FA) =) ¢A (16.23)
0

Here ¢; are constants. A compact expression for the differential dF(A) is presented
using Kronecker product notation.

The reader is referred to Nicholson and Lin (1997c¢) for the derivation of the
following expression. With f=VEC(F) and a= VEC(A),

df(a) = 1F" © F'da + Wdo
x ., dF df
F'(A) =) jpA~", — =ITEN22(— .
(A) Zojm, A < da) (16.24)

W= —(F-AF/2)" ©(F - AF/2) + AT F' —F" @ A)

Also, dw = VEC(dQ) in which d€Q is an antisymmetric tensor representing the rate
of rotation of the principal directions. The critical step is to determine a matrix J such
that W dw = —J da. Itis shown in Nicholson and Lin (1997¢) that J = —[AT & A]'W,
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in which [A7©A]’ is the Morse—Penrose inverse (Dahlquist and Bjork, 1974).
Accordingly

df{da = FT @ F//2 — [AT © AI'W (16.25)

We now apply the tensor derivative to elastomers modeled using stretch ratios,
especially in the model due to Ogden (1972). In particular a strain energy function
w was proposed which for compressible elastomers and for isothermal response is
equivalent to the form

w= n(Z&i[Cff —I}) (16.26)

in which §;, {; are material properties. The (9 X 9) tangent modulus tensor Xq
appearing in Chapter 15 for the incremental form of the Principle of Virtual Work
is obtained as

Xo =4 L& — DCH2 @ Ch2 /244> (£[AT © AT'W; (16.27)

3¢ 1
Wi=-——~ bt o ch 1 gT [C62®C—C®Ch (16.28)

16.5 EXTENSION TO THERMOHYPERELASTIC MATERIALS

A development of the thermohyperelastic model in Equation 16.20 is now given,
following Nicholson and Lin (1996). The body initially experiences temperature T
uniformly. It is assumed that temperature effects occur primarily as thermal expan-
sion, that volume changes are small, and that volume changes depend linearly on
temperature. Thus materials of present interest may be described as mechanically
nonlinear but thermally linear.

Owing to the role of thermal expansion, it is desirable to uncouple dilatational
and deviatoric effects as much as possible. To this end we invoke the deviatoric
Cauchy—Green strain c=C /131 /* in which I3 is the third principal invariant of C.
Upon modifying w and expanding it in J — 1, (J = I; / 2) and retaining lowest order
terms, we obtain

W= rr(Zg[éff I]> Jr%K(J* 12 (16.29)

in which « is the bulk modulus. The expression for X, in Equation 16.27 is affected
by these modifications.

To accommodate thermal effects it is necessary to recognize that w is simply the
Helmholtz free energy density pp¢ under isothermal conditions, in which pg is
the mass density in the undeformed configuration. It is assumed that ¢ =0 in the
undeformed configuration. As for invariant-based models, we may obtain a function
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¢ with three terms: a purely mechanical term ¢,,, a purely thermal term ¢, and a
mixed term ¢z, Now with entropy denoted by n, ¢ satisfies the relations

O O

e 0% 16.30
ol " ), (16.30)

T_
S = Po

As previously stated, the specific heat at constant strain, ¢, = Tdn/9T|,, is assumed
to be constant, from which we obtain

¢ = c.T[1 —In(T/Ty)] (16.31)

On the assumption that thermal effects in shear (i.e., deviatoric effects) can be
neglected relative to thermal effects in dilatation, the purely mechanical effect is
equated with the deviatoric term in Equation 16.29.

by = 1r (Z &[ch - I]) (16.32)

Of greatest present interest in the current context is ¢z, The development of
Nicholson and Lin (1996) furnishes

3myJ - 177
= %, B(T) = (1 + a(T/Ty)/3) " (16.33)

The tangent modulus tensor x, = 9s/de now has two parts: X,, + Xz in Which x,/is
recognized as X, derived in Equation 16.27. Omitting the details, Kronecker product
algebra serves to derive the following expression for the thermomechanical position
of the tangent modulus tensor.

3
K 3B

nzn?
Xv = EB ﬁmn? +(BJ - 1)[A3 — ;23} ] (16.34)

The foregoing discussion of thermohyperelastic models has been limited to com-
pressible elastomers. However, many elastomers used in applications such as seals
are incompressible or near-incompressible. For such applications, as we have seen
that an additional field variable is introduced, namely the hydrostatic pressure
(referred to deformed coordinates). It serves as a Lagrange multiplier enforcing the
incompressibility and near-incompressibility constraints. Following the approach for
invariant-based models, Equation 16.34 may be extended to incorporate the con-
straints of incompressibility and near-incompressibility.

The tangent modulus tensor presented here purely addresses the differential of
stress with respect to strain. However, if coupled heat transfer (conduction and
radiation) is considered, a more general expression for the tangent modulus tensor
is required, expressing increments of stress and entropy in terms of increments of
strain and temperature. A development accommodating heat transfer for invariant
based elastomers is given in Nicholson and Lin (1997a).
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EXAMPLE 16.1

Derive explicit forms of the stress and tangent modulus tensors using the Helmoltz
potential for a near-incompressible thermohyperelastic material.

SoLuTiON

Enforcing the near-incompressibility constraint a priori, the Helmholtz potential func-
tion of interest is

3 _1\2
¢(T,Jl,12,w>=pi[cl<11 2+ Ca2 = I+ T = In(T/To)l +- ! M
0

Now the stress is to be obtained using the relations

0 dJ, dJ:
T:poa—fr —at czd—z—wfm— 7= —ko(f(T)J — 1)

In terms of m; and m, presented subsequently in Equation 16.63

dJ; r dh 7

de M de ™
Also
dJ d 1 d5 n;
- = fi =3
de =23 V1) VI; de —J
Consequently,

T
= cim! + Com! — mrf3(T)"73
The tangent modulus tensor may now be stated as

Js
oe |

_ _pom o omy g [ As nsng
Dr =2 =G tO f(T){ i

Since m; =2(i — 3} L‘n )/131/3 and my = 2(m — 2 ’ln3)/13/ (Equation 16.63) some
manipulation serves to derive that

dm, 2@ 4
“de de = 3L
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EXAMPLE 16.2

Recover ¢, upon differentiating ¢,, = ¢, T[1 — In(T/Ty)] twice with respect to T.

SOLUTION

Differentiation once gives

b,
oT

1 1
= c[1 = In(T/To)] + ¢ T {— T/T, T_o}

= —c, In(T/Ty)

Differentiating a second time gives

Pd, 1 1 e
otz “T/T, T, T
Hence
O,
«=Tom

Ui;f’T”. It follows that

_ 70 : : _
But we know that ¢, = Ta_r g In which n = —

T 82 ¢rt
oT?

e =

verifying that c, is recovered from ¢, T[1 — In(T/Ty)].

16.6 THERMOMECHANICS OF DAMPED ELASTOMERS

Thermoviscohyperelasticity is a topic central to important applications such as
rubber mounts used in hot engines for vibration isolation. The current section
describes a simple thermoviscohyperelastic constitutive model thought to be suitable
for near-incompressible elastomers exhibiting modest levels of viscous damping
following a Voigt-type of model. Two potential functions are used to provide a
systematic treatment of reversible and irreversible effects. One is the familiar
Helmholtz free energy in terms of the strain and the temperature; it describes
reversible, thermohyperelastic effects. The second potential function, based on the
model of Ziegler and Wehrli (1987), incorporates elements for modeling viscous
dissipation and arises directly from the entropy production inequality. It provides a
consistent thermodynamic framework for describing damping in terms of a viscosity
tensor depending on strain and temperature.

The formulation leads to a simple energy balance equation, which is used to
derive a rate variational principle. Together with the Principle of Virtual Work,
variational equations governing coupled thermal and mechanical effects are pre-
sented. Finite element equations are derived from the thermal equilibrium equation

© 2008 by Taylor & Francis Group, LLC.



and from the Principle of Virtual Work. Several quantities such as internal energy
density y have reversible and irreversible portions, indicated by the subscripts 7 and i:
X = Xr+ Xi- The thermodynamic formulation in the succeeding paragraphs is referred
to undeformed coordinates.

There are several types of viscoelastic behavior in elastomers, especially if they
contain fillers such as carbon black. For example, under load elastomers experience
stress softening and compression set, which are long-term viscoelastic phenomena.
Of interest here is the type of damping which is usually assumed in vibration
isolation, in which the stresses have an elastic and a viscous portion reminiscent of
the classical Voigt model, and the viscous portion is proportional to strain rates. The
time constants are small. It is viewed as arising in small motions superimposed on
the large strains which already reflect long-term viscoelastic effects.

16.6.1 BALANCE OF ENERGY

The conventional equation for the balance of energy is expressed as

pox =s'e = Vqy + poh
=sTe+sle—Vigqy+poh (16.35)
in which s = VEC(S) and e = VEC(E). Here y is the internal energy per unit mass, qq
is the heat flux vector referred to undeformed coordinates, V| is the divergence
operator referred to undeformed coordinates, and 4 is the heat input per unit mass, for
simplicity assumed independent of temperature. The state variables are recognized to

be e and T. The Helmholtz free energy ¢, per unit mass (which is regarded as
reversible) and the entropy = per unit mass are introduced using

¢, =x—Tn (16.36)
Upon obvious rearrangement,

Vodo — poh =, é + 5] é — poTn — ponT — Po(i)r (16.37)

16.6.2 ENTROPY PRODUCTION INEQUALITY

The entropy production inequality is stated as

poTH > —Viqo + poh + ¢ VT/T
> pob, — sLé —sTé + poTiy + ponT + q)VT/T (16.38)
As previously indicated, the Helmholtz potential is assumed to represent only
reversible thermohyperelastic effects. However, we decompose 7 into reversible

and irreversible portions: m=mn,+n;. Also, ¢,, m,, and 7; are assumed to be
differentiable functions of E and T. We further suppose that 1; = 7;; + 1, in which
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poTin = [=Vido + pohl, (16.39)

This may be interpreted as saying that part of the viscous dissipation is to
“absorbed” as heat. We finally suppose that reversible effects are absorbed as a
reversible portion of the heat input, as follows:

poT9, = [=Viao + poh], (16.40)
In addition, from conventional arguments using Maxwell relations,
pop,/0e =s', 0¢,/0T = —n, (16.41)
The consequence of the foregoing assumptions now emerges as the inequality
s/ e —q)VoT/T > pyn, T (16.42)
Inequality (Equation 16.42) is satisfied if Po”th < 0 and also if

s’é >0 (16.43a)

—@oVT/T >0 (16.43b)

Inequality (Equation 16.43b) is conventionally assumed to express the fact that heat
flows irreversibly from hot to cold zones. Inequality (Equation 16.43a) states that
“viscous work”” is dissipative. The statement pyn; T < 0 is difficult to justify except
by appealing to its consequence in the form of the physically appealing inequalities
in Equation 16.43. Of course it may be true that 1, =0, in which case the irrevers-
ible entropy is related to the irreversible heat input in precisely the same way as the
reversible entropy is related to the reversible heat input.

16.6.3 DissiPATION POTENTIAL

Following Ziegler and Wehrli (1987), the specific dissipation rate potential
W(qo,e.e,T) = pon,T is introduced and assumed to serve as a rate potential for the
irreversible stress and temperature gradient as follows:

s = pyA;,OW/0e (16.44a)
—VIT/T = Ap,0W /0q, (16.44b)

The function W is selected such that A; and A, are positive scalars, in which case
inequalities (Equation 16.44a and 16.44b) require that

(OW/9e)é > 0 (16.452)
(O /dqp)qy > 0 (16.45b)
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This may be interpreted as indicating the convexity of a dissipation surface in (€,q)
space. Finally, to state the constitutive relations for a thermoviscohyperelastic
material it is sufficient to specify ¢, and .

A simple example is now presented to illustrate how inequality (Equation 16.45)
provides a “framework’ for describing dissipative effects. On the expectation that
properties governing heat transfer are not affected by strain, we introduce the
decomposition

V=" +W, pV = %A,ngo (16.46)
Here, W, represents thermal effects. Equation 16.44b implies that
—VoT/T = Aq, 16.47)
This is essentially the conventional Fourier law of heat conduction, with 1/A,
recognized as the thermal conductivity.
As an elementary example of viscous dissipation, suppose that
W, = (T, J;,n)e'é/2, A =1 (16.48)
in which u(T,Jy,J5) is the viscosity. Application of Equation 16.44a now gives
si = w(T,Jy,Jh)e (16.49)

and inequality (Equation 16.45a) requires that the viscosity function u be positive.

16.6.4 THerMAL FiELD EQUATION FOR DAMPED ELASTOMERS
The energy balance equations of thermohyperelasticity (i.e., the reversible response)
are now reappearing in terms of a balance law among reversible portions of the
stress, entropy, and internal energy. Equation 16.41 implies that

po, = sfe —pom,T (16.50)
The ensuing Maxwell reciprocity relation is

ds! /0T = —pyOm, /e (16.51)

Now familiar operations furnish the reversible part of the equation of thermal
equilibrium (balance of energy).

[—Vido + poh] = —T(0s] /OT)é + pyc.T, ¢, =Tom,/OT (16.52)
For the irreversible part, we recall the relation

— (V840 — poh),= —s € + pociT (16.53)
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and

. oy, . oy, -
Tn., = p T —% T—=T 16.54
and
om; om;
—sl = p, T2, ¢=T=-2 16.
s =pT 50 a=To (16.55)

Upon adding the reversible and irreversible portions of the heat input we obtain the
thermal field equation

—Viqy + pyh = —TosT JOTé — sTé + py(c, + )T (16.56)

It is easily seen that Equation 16.62 directly reduces to a well-known expression in
classical linear thermoelasticity when irreversible terms are suppressed. In addition,
under adiabatic conditions in which —V{q, + pyh = 0, most of the “viscous” work
siTé is absorbed as a temperature increase controlled by po(c, + ¢;), while a smaller
portion is absorbed into the elastic strain energy field. Finally, note that the specific
heat at constant strain possesses a reversible and an irreversible portion.

16.7 CONSTITUTIVE MODEL IN THERMOVISCOHYPERELASTICITY

If the current formulation is followed, it is sufficient to introduce the Helmholtz free
energy density and the dissipation potential to characterize thermal, mechanical, and
viscous behavior

16.7.1 HewmHoLTZ FRee ENERGY DENSITY

In the moderately damped thermohyperelastic material the reversible stress is
assumed to satisfy a thermohyperelastic constitutive relation suitable for near-
incompressible elastomers. Following the earlier development for an undamped
elastomer, the Helmholtz free energy is introduced using

¢r = ¢rm(J1 ’12’13) + ¢rt(T) + ¢rtm(T’]3) + d)m (]657)

Here ¢,,, represents the purely mechanical response and can be identified as the
conventional isothermal strain energy density function associated, for example, with
the Mooney—Rivlin model. The formulation can easily be adapted to stretch ratio-
based models such as the Ogden model (Ogden, 1986). The function ¢,(T)
represents the purely thermal portion of the Helmholtz free energy density. Finally,
&,m(T,I3) represents thermomechanical effects, again based on the assumption that
the primary coupling is through volumetric expansion. The quantity ¢,,, represents
the Helmholtz free energy in the reference state, and for simplicity it is assumed to
vanish. The forms of ¢,, and ¢,,,, developed in the previous sections of this chapter
are recalled.
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¢,/(T) = ¢, T[1 — In(T/To)] (16.58)

bun(Tl3) = % [T — 112 (16.59)
0
J =1L = det®), f(D=[14+5T-To)]

and « is of course the volumetric coefficient of thermal expansion. For the sake of
illustration, for ¢,,,(J1,J2,I3) we display the classical two-term Mooney-Rivlin
model (Gent, 1992):

b, (1J2.03) = Ci(J1 — 1) + Co(J, — 1), L=1 (16.60)
The reversible stress is now stated as

s, =2dm;, ;= A, /Ol (16.61)

n =i, i=VECI), n =hLi—¢, c¢=VECC), n;=LVECC™"

16.7.2 DissIPATION POTENTIAL

FOUI‘iCI"S law of heat conduction is recalled as from
oW L [q’qq] (16.62)
t 2kt qO qO .

The viscous stress s; depends on the shear part of the strain rate as well as the
temperature. However, since the elastomers of interest are nearly incompressible, to
good approximation s; can be taken as a function of the (total) Lagrangian strain rate.

The current framework admits several possible expressions for W;, of which an
example was already given in Section 16.6.3. Here, taking a more general viewpoint,
we seek expressions of the form W; = %éTDv(e,T)é in which D,(e,T) is called the
viscosity tensor; it is symmetric and positive definite to satisfy Equation 16.45b. (Of
course, the correct expression is determined by experiments.) The simple example in
Section 16.6.3 corresponds to D,(e,T) = u(e,T)I. As a second example, to ensure
isotropy suppose that W, depends on J; and J, through a relation of the form
W,(J;,J.e,T), and note that

. 11 . 21
Ji=mjé, m] Z[ir = ]/11/3, J,=mlé, mj= [ . —7—2 T] /12/3
(16.63)

For an expression reminiscent of the two-term Mooney—Rivlin strain energy function
let us consider the specific form:

W, = 1,(T)[C1,J7 /2 + T3] (16.64)
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in which Cy, and C,, are constant positive material coefficients. We now obtain the
viscosity tensor

D, = w(T)[Cymm] + C;ymym] | (16.65)

Unfortunately, this tensor is problematic since it is only positive semi-definite. To
see this consider whether there exists a nonvanishing vector b for which
(ClvmlmlT + C2vm2m2T)b =0.

But this is certainly true since b need only lie in a subspace exterior to the two-
dimensional subspace spanned by m; and ms,.

As a third example, suppose that the dissipation potential is expressed in terms
of the deformation rate tensor D as W; = /.L(T)tr(Dz) /2, which has the advantage
that the deformation rate tensor D is in the observed (current) configuration in which
measurements are performed. But now, with d = VEC(D),

d=FTeoFTé
D,=uwF '@F 'FTeFT
=wDEFE'FHeE'FT
=wlQRE+D '@ QE+1)! (16.66)

which is always positive definite if u(T) > 0.

16.8 VARIATIONAL PRINCIPLES AND FINITE ELEMENT
EQUATIONS FOR THERMOVISCOHYPERELASTIC MATERIALS

16.8.1 MecHANICAL EQUILIBRIUM

In this section we present one of the several possible formulations for the finite
element equations of a thermoviscohyperelastic medium, neglecting inertia. Appli-
cation of variational methods to the mechanical field equation (Balance of Linear
Momentum) furnishes the Principle of Virtual Work in the form

Jtr(BES,-) dvy = JSuTto dsS — Jtr(aEs,) dvy (16.67)

in which t; as usual denotes the traction vector on the undeformed surface S,. As
illustrated in the examples of the foregoing section, we expect that the dissipation
potential has the form ¥; = %éTDV(e,T)é, from which

s;=D,é (16.68)

and D, is of course the viscosity tensor and is symmetric. Furthermore, it is positive
definite since s! € > 0 for all é. Equation 16.67 is thus rewritten as

JSeTDvé dv, = JSuTto dsy — JSeTs, dVy (16.69)
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With interpolation models of the form é(X,r) = BT (X)®y(1), u(X,r) = ¢’ (X)®y(1),
and T(X,t) — Ty = vT(X)WO(r), at the element level the finite element equation for
the mechanical field now becomes

K.(v.T)yy=f—f.(v), K,= JchBDV(X:y,e)BTchvo, f,(y.0)= J‘DTBSr(XJ,'Y)dVO
(16.70)

The tangent viscous matrix K, now plays the role of the tangent modulus matrix in
hyperelasticity. Hyperelastic effects now appear in the force term f,(vy,?).

16.8.2 THEermAL EQuILIBRIUM EQUATION

The equation for thermal equilibrium is rewritten as
Po(i, + 1) = [~V do + poh] /T (16.71)

With some effort using Equation 16.56, a rate (incremental) variational principle
may be obtained in the form

JBT [~Tos] /0Té — s € + py(c. + c)T] /T AV,
= JaT[[—Vg qo + poh) /T] dVo (16.72)

Upon approximating T in the denominator by T,, letting k denote the thermal
conductivity, and invoking the isotropic Fourier law of heat conduction, we may
obtain the thermal equilibrium equation in the form

JST [—0s! /0Té —s]€ + py(ce + c)T] dVy + Jk(VOST)TVOT dvy

= Janoh dvy — JSTanO dSy (16.73)

Using the usual interpolation models for displacement and temperature, Equation
16.73 reduces directly to finite element equation for the thermal field. The equation
assumes the form

M6 + S (v,0)y + K70 = f), + f,

16.74
Sy ) = [WTv[08] 0T — o] |BT @ vy (1679
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’I 7 Tangent Modulus
Tensors for Inelastic
and Thermoinelastic
Materials

17.1 PLASTICITY

The theories of plasticity and thermoplasticity model material behavior in important
applications such as metal forming, ballistics, and welding. The main goals of the
current section are to present an example of constitutive models in plasticity,
viscoplasticity, thermoplasticity, and damage mechanics, to derive the corresponding
tangent modulus tensors, and to formulate variational and finite element statements,
all while accommodating the challenging problems of finite strain and kinematic
hardening. But we first start with a presentation of a constitutive model in small
strain isothermal plasticity.

17.2  TANGENT MODULUS TENSOR IN SMALL STRAIN
ISOTHERMAL PLASTICITY

The basic assumptions are given below.
1. Kinematic Decomposition
The strain rate decomposes into an elastic (recoverable, reversible) portion
and an inelastic (permanent, irreversible) portion as follows:

E=E, +E (17.1)

in which E, satisfies small strain isotropic elastic relations (inverse of the
Lamé form)

. 1 . ‘o A .
E, = W (S -8 - Y tr(S)I> (17.2a)
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in which S¥ is a traceless reference stress (backstress) to be introduced
shortly. The dilatational and deviatoric portions of this relation satisfy

. 1 . . . 1 .
E.=—(Sq—S%), tr(E,) = ———t(S)I 17.2b
d ZM(d ), tr(E,) YA r(S) ( )
In VEC notation, Equation 17.2 is restated as
é, = Ce(s — %), C L I fLiiT (17.3a)
e e e T ou Y 2u+3A '

and C, is the elastic compliance tensor (inverse of the elastic modulus
tensor). For the deviatoric and dilatational parts the corresponding relations
are

. .. Iy

€y = C/e(Sd — S*), C; = ﬂ

ile, = LiTs (17.3b)
T 2u+3A '

Typically, plastic strain is viewed as permanent strain. As illustrated in
Figure 17.1, in a uniaxial tensile specimen the stress S;; may be increased
to the point A, and then unloaded along the path AB. The slope of the
unloading portion is E, the same as that of the initial elastic portion. When
the stress becomes zero, there still is a residual strain E; which may be
identified as the inelastic strain. However, if the stress had instead been
increased to point C, it would encounter reversed loading at point D, which
reflects the fact that the elastic region need not include the zero-stress value.

FIGURE 17.1 Illustration of inelastic strain.
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2. Inelastic Incompressibility
The inelastic strain does not contribute to the volume strain.

trE) =ilé; =0 (17.4)

It follows that inelastic strain only contributes to the shear (deviatoric)
portion of the strain, and hence is said to occur in shear.

3. Independence of the Hydrostatic Stress
In plasticity inelastic strain is assumed not to be affected by the hydrostatic
(isotropic) portion of the stress, t(S), and to depend only on the deviatoric
(shear) portion of the stress,

Se=8—1r(OI or s;= (I, —1ii")s

4. Yield and Loading Conditions

There exists a function W(s; — s,e;, k) = 0, which represents a closed
convex surface in stress space, called the yield surface. Here s* is a point
interior to the yield surface, sometimes called the backstress. It changes if
inelastic strain changes, referred to as inelastic flow, and the elastic strain
vanishes when s =s*. If flow is occurring the current stress point must be
located on this surface. In Section 17.5, we will consider viscoplasticity, in
which the notion of the yield surface is modified such that the current stress
point is now exterior to the yield surface during flow. The current stress
point may then be viewed as being on a loading surface while the yield
surface is now a reference surface.

In plasticity, there are three possibilities referred to as the loading
conditions.

(@) W(sg —si.enk) <0

The stress point is interior to the yield surface and only elastic strain is
changing. The stress changes are proportional to strain changes through
elastic relations.

L4
(b) W(s;—sie,k)=0 and a—sd =0
an

The stress point is located on the yield surface, but is moving tangentially to
the surface. In this event inelastic strain is unchanging, and the stress
changes are related to the strain changes by elastic relations. This situation
is referred to as neutral loading.

() W(sy—sie,k)=0 and @sd >0
88,1
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The stress point is located on the yield surface and is moving toward the
exterior of the surface. Inelastic flow occurs in this case, which is referred to
as loading.

5. Hardening
The vector k represents the ‘‘hardening” effect of inelastic deformation
history, reflecting irreversibility of plastic deformation. Visually hardening
occurs as shape, size, and location changes of the yield surface. The hard-
ening vector Kk is assumed to satisfy an evolution relation of the form

k = H(sq — s;,€,K)e; (17.5)

in which H; is an experimentally determined matrix.
Work hardening is a commonly made assumption. Here it is expressed
by the relation

k = ki(s — s%)é; (17.62)

in which k; is a material constant.
An example of a work hardening model for evolution of the backstress
is given by

§* = ky(s — s%)¢; (17.6b)

and k, is a material constant. A relation of this form will play a role in our
later treatment of kinematic hardening.

6. Associated Flow Rule
The inelastic strain rate vector in plasticity is assumed to be normal to the
yield surface at the current stress point.

T
é = A(%—f) (17.7)

Note that §7¢; = AsT(%)T. If A >0, the associated flow rule then implies
that $7¢; > 0 during plastic deformation, which is known as Drucker’s
criterion for stability in the small (cf. Rowe et al., 1991). It also follows
from the assumption that the yield surface is convex that (s — s*)e; > 0.

7. Consistency Condition
The consistency condition states that the stress point remains on the yield
surface during loading, in which event the yield function satisfies the
relation

ov

oV ow
= _ ;= 17.
e Jozo @

(Sa — $3) + (8_ei+ﬁHl
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Thanks to hardening, the yield surface deforms or moves such that the stress
point remains on it if plastic flow is occurring, even as the stress point is
moving toward the exterior of the yield surface.

8. Constitutive Relation for the Inelastic Strain Rate
Equations 17.7 and 17.8 imply that

ov e oV ov LA
76(&1_8;5)(5‘1 —87) +A<8ei+8kHl> (an) =0 (17.9)

The parameter A is immediately seen to be

ov
sy — s3)

- ov 0w or  \
oe; Ok )\ sy — s

The inelastic strain rate is now seen to be given by

(8a — $3)

(17.10)

¢ = Ci(84 — $)

( oV )T o .
& ey Od
c _ (sa — 84)) 084 — Si) (17.11)

B axler@H or Y
de; Ok ') \a(sy —sh)

T
The requirement that A >0 implies that — (% + (aﬂkHi) (&) >0, in

sa —S})
which event C; becomes positive semidefinite. In terms of the full (as
opposed to deviatoric) stress tensor S =IVEC(s), the relation governing
the inelastic strain rate is now

in which

¢ = Ci(Io — 1ii") (s — %) (17.12)
9. Tangent Modulus Tensor
We first suppose that the evolution of the backstress follows a hardening

model of the form

L { H,¢; loading

= 17.13
Sd 0 otherwise ( )

But now &; = Ci(S; — 8)) = C;$8; — C;H,¢;, with the consequence that

¢ =0+ CH,) 'Cisy (17.14)
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assuming that I + C;H, is nonsingular, as seems very reasonable owing to
the typically small magnitude of C, It follows that §* = H,é; =
H,C;(s; — §*), and hence

§* = (I+ H,C) ' HCi8y (17.15)

provided that plastic flow is occurring. We now add the deviatoric elastic
and inelastic strain rates to obtain the total deviatoric strain rate.

€ =€+ & = (C, + C))($y — §%)

I
= (9 + c,) I+ HC) '8y (17.16)
2p

It follows that s, = (I + H,C;) 21—;1 + C; léd during plastic flow.

The dilatational portion of the strain rate is elastic and satisfies Equation
17.3b:i7§ = (2 + 3A)i’ é. The relation between the total stress rate and the
total strain rate may be derived to obtain the elastic—plastic tangent modulus
tensor Dep:

§ =8y +ii'$ = Depé

I -1 T
D, = (I + H,C) (ﬁ + C,-) (19 — %) +Qp+ 3N’ (17.17)

Recall that the Incremental Principle of Virtual Work requires the tensor
relating the stress increment to the strain increment. We may now
say that

A,s ~ DepAje (17.18)
Equation 17.18 indicates the rate independent (inviscid) nature of plasticity

since the strain increment is proportional to the stress increment no matter
how rapidly or slowly the stress is applied.

EXAMPLE 17.1

Von Mises yield surface with kinematic and isotropic hardening
The entitled yield function is given by

v, = \/(sd —kie)' (sq — kye;) — (ko + ky [sgé,- dt) =0

Observe that work hardening is present since k = k; J"sgéi dt. Also % — kp and

H, — kzsg. In addition, s* = k;e;, so that H, — k. After straighforward manipulation,
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ov,; T T (Sq — klei)T

=n’, n
s V(sq — kie)T(sq — kie)

ov; oY,
: “H, = —kin" + kys})
e, + ok 1n° + ks,
from which
__on"
T k] +k255n

This matrix is positive semidefinite assuming that k; + kzsgn > 0. Substitution into
Equation 17.17 immediately yields Dyp.

EXAMPLE 17.2

Yield surface with strain hardening: small deformation and uniaxial loading
In isothermal plasticity, assuming the following yield function, find the stress—strain
curve under uniaxial loading.

1
v, = \/(Sd —kie) (sq — kie;) — <ko + sz éfe; dt>
0
We again assume that plastic strain is incompressible: t(E;) =0. This yield surface

exhibits strain hardening in that the radius of the yield surface depends on the arc length
traversed in inelastic strain space.

SOLUTION

In the case of uniaxial stress and isotropy, Sy, =S, =0, with the consequence that
dey = Sdzz = 7% Sxx

For plastic incompressibility, tr(E;) =0. Hence, E? + E’yj‘ +Ef, = 0. And so for uni-
axial loading E’j), =E =- %E‘;X The consistency condition W; =0 now implies that

t
VBow— kel +(-don+bhel)’ —hoke | Vel )+ en)
0
and hence

V3ow—2hel) =k +hoy B, sothat o = ko +3 0k + kel

The ensuing uniaxial stress—strain curve is depicted in Figure 17.2.
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Slope = %(kl+ ky)

Unloading curve

FIGURE 17.2 Stress—strain path with strain hardening.

17.3 PLASTICITY UNDER FINITE STRAIN

17.3.1 KINEMATICS

The deformation rate tensor admits an additive decomposition into elastic and
inelastic portions.

D =D, + D, (17.19)

The Lagrangian strain tensor E satisfies the relation E=F'DF, from which we
formally introduce the elastic and inelastic strains (for large deformation) as

E, = JFTDeF d, E; = JFTD,»F dr (17.20)

Of course there are alternatives to this type of decomposition, for example, the
logarithmic plastic strain (Xiao et al., 1997).

17.3.2 PuLasTicity

We present an example of a constitutive equation for plasticity at large deformation
to illustrate how the tangent modulus tensor is formulated. For simplicity we ignore
the difference between the stress and strain and their deviatoric counterparts (i.e.,
ignore elastic strain), and we also assume that the backstress remains at the origin in
stress space (no kinematic hardening). With x, the tangent modulus tensor relating §
to € under elastic conditions (retaining the assumption of rate independence), the
constitutive equation of interest is obtained from the previous section using
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éi - Cié7 ée - Ces7 Ce - Xgla k - H(S’ei7k)éi

v\ ow, ov; ov; ow\"
Ci(s,e;.k) = (85) s /h, h = _[<8ei + oK H) ( 85) ] 17.21)

As before W; is called the yield function, but now it is a function of the inelastic
portion of the Lagrangian strain, as well as of the history of inelastic deformation
represented by, say, work hardening.

Combining the elastic and inelastic portions furnishes the tangent modulus
tensor as

_ -1 _
x=[x'+C] =0+x.Cl"x, (17.22)

Suppose that in uniaxial tension the elastic portion of the tangent modulus is x, — E,,
and that the inelastic portion relating the stress increment and the inelastic strain
increments is Ci_l — E;. Typically E; < E.. The total uniaxial tangent modulus is
then Uiﬁ

For the sake of visualization we illustrate several possible behaviors of the
yield surface. It is distorted by the history of plastic strain through hardening. In
Figure 17.3, the conventional model of isotropic hardening is illustrated in which the
yield surface expands as a result of plastic deformation. The principal values of the
second Piola—Kirchhoff stress are shown on the axes, and the yield surface is shown
in the S;—S;; plane. This model is unrealistic in predicting a growing elastic region—
reversed plastic loading is typically encountered at much higher stresses than
isotropic hardening predicts. An alternative is kinematic hardening (Figure 17.4),
in which the yield surface moves with the stress point. After a few percent of plastic
strain have developed, the yield surface may cease to encircle the origin. A reference
point interior to the yield surface, previously encountered as the backstress, is
assumed to serve as the point at which the elastic strain vanishes.

Sy

_ -Path of stress point

Principal stresses S; S;; Sy,
S

FIGURE 17.3 Illustration of yield surface expansion under isotropic hardening.
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FIGURE 17.4 Tllustration of yield surface motion under kinematic hardening.

Combined isotropic and kinematic hardening is shown in Figure 17.5. However,
this figure shows that the yield surface contracts, which is consistent with actual
observations (e.g., Ellyin, 1997). The rate of movement must in some sense exceed
the rate of contraction for the material to remain stable, with a positive definite
tangent modulus tensor.

17.4 THERMOPLASTICITY

If plastic work occurs over a sufficiently short time period there is insufficient time
for heat to escape, with the consequence that some or all of the plastic work is
converted into heat and gives rise to an increased temperature. Of course, it is also

v
7 Path of stress point

S

S

FIGURE 17.5 Tllustration of combined kinematic and isotropic hardening.

© 2008 by Taylor & Francis Group, LLC.



possible that plastic work occurs in the presence of externally introduced heat. Both
effects represent instances of thermoplasticity.

As in Chapter 16, following Ziegler and Wehrli (1987) two potential functions
are introduced to provide a systematic way to give separate descriptions to reversible
and dissipative (irreversible) effects. The first is interpreted as the Helmholtz free
energy density and the second is a dissipation potential. To accommodate kinematic
hardening we also assume an extension of the Green and Naghdi (GN) (1965)
formulation, in which the Helmholtz free energy decomposes into reversible and
irreversible parts, with the irreversible part depending on the plastic strain. Here it
also depends on the temperature and a workless infernal state variable.

Application of thermodynamic concepts to inelastic deformation is much more
challenging than for damped elastomers treated in Chapter 16. The reason is that
inelasticity, for example, via the yield surface, is usually described in stress space
while the Helmholtz free energy uses the strain as a state variable.

17.4.1 BALANCE OF ENERGY

The conventional equation for energy balance is augmented using a vector-
valued workless internal variable o regarded as representing ‘‘microstructural
rearrangements.”’

PoXo = 5" &, +8"é; — Viqy + poh + B (17.23)

where x, is the internal energy per unit mass in the undeformed configuration,
s=VEC(S), e=VEC(E), and B, is the “flux” per unit mass associated with .
However, note that Bo=0 for o to be workless, and hence its reversible and
irreversible portions are related by Bo;=—Bo, Also qq is the heat flux vector
referred to undeformed coordinates and /4 is the heat input per unit mass, for
simplicity assumed to be independent of temperature. For use in the Helmholtz
free energy, the state variables are recognized to be E,, E;, T, and «.

The next few paragraphs will go over some of the same ground as for damped
elastomers in Chapter 16, except for two major points. In Chapter 16, the stress was
assumed to decompose into reversible and irreversible portions, in the spirit of
elementary Voigt models of viscoelasticity. In the current context, the strain shows a
corresponding decomposition, in the spirit of the classical Maxwell models of visco-
elasticity. In addition, introducing a workless internal variable oy will be seen to give
the model the flexibility to accommodate phenomena such as kinematic hardening.

The Helmholtz free energy ¢, per unit mass and the entropy n per unit mass are
again introduced using

bo=Xxo — Ty (17.24)

The balance of energy, which is Equation 17.23 governing the thermal field, is now
rewritten as

Voao — poh = s"é, +s"& — pyTin — pnoT — pocby + B o (17.25)
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17.4.2 ENTROPY PRODUCTION INEQUALITY

Entropy production now is governed by the inequality

poTio > —Viqy + poh + qf VT/T
> poo — s €, — s'é; + poTii + poroT + qLVT/T — Blay  (17.26)

Now viewing ¢, as a differentiable function of e,, T, and e, we conclude that

6(b()r/aer = ST’ 8¢()r/aT = —PoMr0> ad)()r/aao = Bgr (1727)

Extending the GN formulation, we introduce the stress s* using sl = poO¢;/De; and
assume that 1o = —0¢/0T and pydd,;/dag = Bg,-:

s*1 = pyd¢;/Oei, Mo = —0;/IT, my, = —0p,/OT
Poddoi/ oo = BY; (17.28)

The entropy production inequality (Equation 17.26) now reduces to
" —s*")é; — q{VoT/T >0 (17.29)
Inequality (Equation 17.29) is satisfied if

(sT—s*T)e; >0 (17.30a)
—q§VoT/T >0 (17.30b)

Inequality Equation 17.30 states that the inelastic work done by the reduced stress
s” —s*" is positive and that heat flows from hot to cold. The first inequality exhibits
the quantity s* = VEC(S*) with dimensions of stress. In the subsequent sections s*
will be viewed as the previously mentioned backstress: it is interior to a yield surface
and can be used to characterize the motion of the yield surface in stress space.
Clearly, the present formulation gives a thermodynamic interpretation to the back
stress. In classical kinematic hardening in which the hyperspherical yield surface
does not change size or shape but just moves, the reference stress is simply the
geometric center. If kinematic hardening occurs, as stated before, the yield surface
need not include the origin even with small amounts of plastic deformation. Thus,
there is no reason in general to regard €, as vanishing at the origin. Instead €, =0 is
now assumed to hold when s =s*.

17.4.3 DissiPATION POTENTIAL

Following the approach developed in Chapter 16 we introduce a specific irreversible
potential ¥ for which

¢/ = pyAi0W /D3, —VIT/T = Ap,0¥/dq,, 3 =s—s* (17.31a)
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from which, with A; >0 and A,> 0, Equation 17.30 becomes
poAi(0W¥/03)3 + pyA(OV/Dqy)qy > 0 (17.31b)

Partly on the expectation that properties governing heat transfer are not affected by
strain, we introduce the following decomposition into inelastic and thermal portions:

A
V=W, poW = 4040 (17.32)

and W; will be seen in subsequent sections to represent mechanical effects. The
thermal constitutive relation derived from W, implies Fourier’s law:

17.4.4 THERMOINELASTIC TANGENT MoDULUS TENSOR

The elastic strain rate is assumed to correspond to small elastic deformation super-
imposed on the finite inelastic deformation, and to satisfy a linear thermohypoelastic
constitutive relation

é, =C,(s —s%) +a,T (17.34)

Of course C, is a 9 X 9 second-order elastic compliance tensor, and a, is the 9 X 1
thermoelastic expansion vector, with both presumed to be constant and known from
measurements. Analogously, for rate-independent thermoplasticity we seek tensors
C; and a;, depending on 3, e;, and T, such that

¢ =Ci(s —s*)" +aT (17.35a)
é =[C, + Cil(s — s%)" + (a, + a)T (17.35b)

During thermoplastic deformation the stress and temperature satisfy a thermoplastic
yield condition of the form

IL;(3,e;,k, T, mp;,) =0 (17.36)

and II; is called the yield function. Here the vector K is introduced to represent the
effect of the history of inelastic strain e;, for example, through work hardening. To
embrace dependence on the temperature, it is now assumed to be given by a relation
of the form,

k = K(e;, k, T)é; (17.37)

The “‘consistency condition” requires that I, =0 during thermoplastic flow, and
accordingly

dary; . 4L, dIl; . dIL . dId;

5 i k T S, =0 17.38
B ae T a Tar T T, 2 (17.38)
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We introduce a thermoplastic extension of the conventional associated flow rule,
whereby the inelastic strain rate vector is normal to the yield surface at the current
stress point. Here we add an analogous assumption regarding the entropy.

m\ 7
¢ = A, (dd_3> (17.39a)
; dII;
MNoiz = A 4T (17.39b)

Equation 17.39 suggests that the yield function may be identified as the dissipation
potential: 11;=py¥;. Upon making this identification, standard manipulation
furnishes

é,-:C,-'3+a,-T, ‘f]OiZZbITé—f—CiT
ow;\ ow,; ow,Y ov,;
C"‘(aa) aa/H’ ai"”"‘(aa) or /™
ov,\ ov, oV, ovN’ o, oV,
ci = (aT) H, H__l(aei + 5K K)<83> +8n0i2 m] (17.40)

and H must be positive for A; to be positive. Note that the dependence of the yield
function on temperature accounts for c¢; in the current formulation. The dissipation
inequalities (Equation 17.30) are now satisfied if H > 0.

Next, recall that s* depends on e; T, and « since sl = Po0¢y;/Oe;. For
simplicity we now neglect dependence on « and assume that a relation of the
following form can be measured for s*:

T
§*=Té;+9T, I'= 9(2 v, ¥ = 0*V,/0e,0T (17.41)
oe; \ Oe;

The thermoinelastic tangent compliance tensor and thermomechanical vector are
obtained after simple additional manipulation as

é=Cs+aTl (17.42a)

C=(C,+C) [I -+ FCi)ill_‘Cii]

] (17.42b)
a=[a, +a;+(C,+Cpla; — (C, + CA +TI'C) ']

Of course the tangent modulus tensor is the inverse of C.
The foregoing formulation may be extended to enforce plastic incompressibility.

© 2008 by Taylor & Francis Group, LLC.



EXAMPLE 17.3

Thermoplastic Helmholtz free energy and dissipation function

We now provide a simple example using the Helmholtz free energy density function
and the dissipation potential function to derive constitutive relations. The expression
assumed below involves a Von Mises yield function, linear kinematic hardening, linear
work hardening, and linear thermal softening.

1. Helmholtz free energy density

B0 = o, + boi  podo; = kae] e
podbor = €' C e, /2 —a ' C, (T — Ty)e, + poc' T(1 — In(T/Tp))

in which ¢/ is a known constant. Applying the previous relations furnishes

> = py(Ddby,/De,)" = C, e, — a (T — Ty)]

and

2
0 ¢0r _ C,

=T =4

Of course the last two relations between the reduced stress, the elastic strain, and the
temperature are the same as in linear thermoelasticity except for the presence of
the backstress.

2. Dissipation potential
The dissipation potential is again assumed to have a decomposition into mechanical
and thermal portions, and the following specific forms are introduced:

A
V=it W, pW = a5q
W, =Vala—[k+hkik—k(T-Tyl =0, k=13"¢
Straightforward manipulations serve to derive

H=kV3"3=k[Ko + kik — k(T — To)]

33 B k23
Ci:ﬁ H, Ci:k2 H, a,»:b,»:—;T;
Consider a two-stage thermomechanical loading illustrated schematically in Figure 17.6.
Let Sy, Sy, and S;;; denote the principal values of the second Piola—Kirchhoff stress, and
suppose that S;;; =0. In the first stage, with the temperature held fixed at T, the stresses
are applied proportionally well into the plastic range. The center of the yield surface
moves along a line in the (S;, Sy;) plane, and the yield surface expands as it moves. In
the second stage, suppose that the stresses S; and S, are fixed but that the temperature
increases to 7' and then to 75, T3, and T;. The plastic strain must increase and hence the
center of the yield surface moves. In addition, in the assumed yield function strain
hardening tends to cause the yield surface to expand isotropically around s* while the
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FIGURE 17.6 Effect of load and temperature on yield surface.

increased temperature tends to make it contract. However, in this case thermal softening
must dominate strain hardening and contraction must occur since the center of the yield
surface must move further along the path shown even as the yield surface continues to
“kiss” the fixed stresses S; and S;;.

Unfortunately, accurate finite element computations in plasticity and thermoplasti-
city often require close attention to the location of the front of the yielded zone. This
front will usually occur interior to elements, essentially reducing the continuity order of
the fields (discontinuity in strain gradients). In addition in computations the stress point
will initially deviate from the yield surface. Special procedures such as Return Mapping
(cf. Belytschko et al., 2000) have been developed in some codes to coerce the stress
point onto the yield surface.

The shrinkage of the yield surface with temperature may provide the explanation of
the phenomenon of adiabatic shear banding, which is commonly encountered in some
materials during impact or metal forming. In rapid processes such as high-speed metal-
working, plastic work is mostly converted into heat thereby causing high temperatures—
there is not enough time for the heat to flow away from a spot experiencing high plastic
deformation. However, under some conditions the process is unstable even as the stress
level is maintained. In particular, as the material gets hotter the rate of plastic work
accelerates, thanks to the softening evident in Figure 17.6. The instability is manifested in
small periodically spaced bands in the center of which the material has melted and
resolidified, usually in a much more brittle form than before. The adiabatic shear
bands thereby formed can nucleate brittle fracture.

17.5 TANGENT MODULUS TENSOR IN VISCOPLASTICITY
17.5.1 MEecHANICAL FieLD

The thermodynamic discussion of Section 17.4 applies to thermoinelastic deform-
ation, for which the first example given concerned quasi-static plasticity and thermo-
plasticity. However, it is equally applicable when rate sensitivity is present, in which
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case viscoplasticity and thermoviscoplasticity are attractive models. An example of a
constitutive model, for example, following Perzyna (1971), is given in undeformed
coordinates as

ow\T
. <1 k> 03
M€ = —— )
Vil fow,

o, (oW’
03 \ 03

k k
k l—— if1——2>0 17.43
<1 ‘a> RN e
! 0 otherwise

and the dissipation function W,( 3,e;k,T,m¢;) now is also a loading surface function
(to be explained shortly); w, is called the viscosity. The inelastic strain rate vanishes
if 1 — q,i < 0, which is interpreted to mean that the stress point (i.e., 3) is interior to
the reference surface determined by points § satisfying W,(S§—s*,e.k,T,ny)=0.
Inelastic flow is occurring if 1 — q,% > 0, in which case the stress point 3 is exterior
to the reference surface. The equation of the loading surface is

V:(3,e;,k,T,ny) = k/ (1 — M/ éiTéi ), and clearly the model must be restricted to

strain rates satisfying w, 4 /éiTéi <1

The elastic response is still considered linear and in the form
é&=x"'9+aT (17.44)

Also from thermoplasticity we retain the relations

T
s*=Té;+dT, I'= 9 (9 v, " = 0*V,/0e;0T (17.45)
88,‘ 66,‘

Corresponding to 3 there is a new reference stress s’ and a corresponding reference
vector 3’ =s' —s* defined as follows. The vector 3’ lies on the previously men-
tioned quasi-static reference yield surface such the vectors 3 and 3’ have the same
origin and direction. The latter terminates on the reference surface while the former
terminates outside the reference surface (at the current value of 3) if inelastic flow
is occurring. Alternatively stated, 3’ is located at the intersection of the reference
yield surface and the line correcting s* to s. This situation is illustrated in
Figure 17.7.

Figure 17.7 suggests that viscoplasticity and thermoviscoplasticity can be for-
mulated to accommodate phenomena such as kinematic hardening and thermal
shrinkage of the reference yield surface.

As in plasticity we assume that the backstress has an evolution law of the form
s* = Hye;, from which we find
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Sy Reference yield surface

Loading surface
v, = k/(l_,uv\‘éiTéi )

V. =K
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Backstress Stress
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FIGURE 17.7 Illustration of loading surface and reference surface in viscoplasticity.

) k OV /03)"
* — 1——)\H 17.46
$ uv< \If> b V(©OV/93)(0F/d3)" ( )

The tangent modulus tensor now reduces to the constant elastic tensor X,, and
viscoplastic effects appear in a force denoted f,, which depends on the current values
of the state variables but not the current values of their rates. From Equation 17.44
§ — §* = x,&, — x,o,T and so

s = He; + xr(e —¢;) — X0, T

k. ) O¥/03)"
Vi) /(0¥ /0 30V /D)
(17.47)

= Xre - XrarT + fv, fv = I“LV(Hb - Xr) <1

The Incremental Principle of Virtual Work and the corresponding finite element
equation are now stated to first order in increments as

JSAneTx,Ane dvy + JSAneTx,a,A,,T dvy + JSA,,quOA,,ii dVy

= JSAnuTA,,tdSO — JSAneva dv, (17.48)

and

KAy + S7A,0 + MA, ¥ = F — F,

S = j(@%)(x,ar)vw dvo, F, = Jdﬂm dvo

in which B appears in the incremental strain—displacement relation.
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EXAMPLE 17 .4

Find the stress—strain curve under uniaxial tension if a constant strain rate is imposed in
the linear, small strain, isothermal viscoplasticity model in which the yield surface is

given by
t
W, =/ (sq — k1e)(sy — kie;) — (k +k J \élé: dt)
\/ d 1 d 1 0 2 0

Of course this surface reflects strain hardening. Referring to the previous exercise in
plasticity ¥; may be written as

W= /280 — 3 + k) EX —

To formulate the finite element relations, use is made of the fact that

o, [ 0w (0w
OSu/ \0Su \OSw)

The constitutive model for viscoplasticity reduces to the uniaxial relations

wEL = (W= k) = S —3 (i + EL — 5k + 0]

Of course the strain rate may be decomposed into elastic and viscoelastic parts as
é=¢ +é7. Also E; = S,,/E. Accordingly

- S 1 ,
Bu= VA Se =3 HkBY — ko + )]
d dE, d
No d_ti—dt dEXX,a.nd SO
E, dS, 1 )
= gt VS 3 kRS 3k £ b

from which emerges a simple differential equation for the uniaxial stress—strain relation
at the constant strain rate E,:

ds,, 2 E 3 (k; + k)E ko + k
_+\/:_.sm \[ME%LE{ (ko + )}
dEX’( 3 l‘LVE)CX 2 /-LVE My Exx

:\f<k1+kz>E(E__sxx>+E{1+<ko+k>]
2 wEu Y E i Ex

so that

xx E
3tk g \/i(kl kB +E[1 +(ko+k>}
3#« Eo V2 pE. 2 By B
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FIGURE 17.8 Stress vs. strain at constant strain rate in a viscoplastic material.

The transient part of the solution is given by

e (R )

in which A is determined by imposing initial values on the combined transient and
steady state solutions. The steady state part of the solution is given by

g __ atkithk) \/5 [14,Bx + (ko + K)]
e V2

2k +hk)) V2 3 (ki + ko)
(1+§T) (”zT)

The slope of the asymptote is approximately %(k 1 + k») and its intercept is approximately

Vo + 0 + Bl

The ensuing uniaxial stress—strain curve is illustrated in Figure 17.8.

17.5.2 THERMOINELASTICITY: THERMAL FIELD

Of course a variational equation and a finite element equation are needed for the
thermal field Equation 17.25, and are formulated as was done in Chapter 16. To
illustrate the process of formulating the finite element equation for the thermal field,
we make the simplifying assumption that the irreversible entropy only depends on
temperature.

The equation for the reversible portion of the energy balance is

A(s —sHT

a1 e, (17.49)

(—ngo + Poh), = poc.T—T

which of course reduces to the thermal field equation of classical thermoelasticity
when the backstress is removed and the reversible strain is equated with the total
strain.
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The equation for the irreversible portion of the energy balance is now
(=VEao + poh) = pociT — (s — s%)é; (17.50)
Adding the reversible and irreversible portions now gives

o(s — s%)

—Viqy + poh = pylce + )T — (s — s¥)é; — T 57

(17.51)

In adiabatic situations such as short-term response after impact, the left-hand side
of Equation 17.51 vanishes. The right side then suggests that the inelastic work
(s —s*)eé; is converted into temperature increase in accordance with po(ce+c,»)T,
except for a small portion (proportional to the thermal expansion coefficient) repre-
sented by TQ(SB;TS*).

We now wish to formulate the incremental finite element equation for the
thermal field. We use the constitutive model introduced in Section 17.5.1 for
thermoplasticity, and the counterparts for thermoviscoplasticity can be recovered
by obvious substitutions of the constitutive relations for the inelastic strain rate. For
simplicity we assume that there is no internal generation of heat, i.e., # = 0. We also
assume Fourier’s law in the form o= —«oVT, and that (c,+c;) is constant.
The governing equation now becomes

—koV>T + py(ce + c)T + Aa(i’é) — (s — s%)T(C$ 4 aT) = 0 (17.52)
Applying Fourier’s law now gives
—koV>T + py(ce + c)T + da(i’€) — (s —s9)TCxé — (s —sH) ;T =0 (17.53)
Equations 17.52 and 17.53 provide a way of avoiding using the inelastic strain
increment explicitly in the variational principle.
The finite element equation is now sought. As in Chapter 16 we use
koV*T =~ ko VA, T + ko V>T, (17.54)

In terms of increments the thermal field equation is now

— oV AT + [pylce + ¢i) — (s — s) o] A, T
+ [Aai” — (s — s¥)"'Cx]Aye = hko VT, (17.55)

Standard finite element procedures now provide the element-level finite element
equation for the thermal field.

[AKg + (Mg1 + Mg2)]A,0 + 3TA,y = A fr1 — Aufro
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J‘I’T rkoBIW dVy, My, = J‘FTV[pO(CE + eV v,
J s—s9 oV WdVy, 3= J\I'Tv [Aai” — (s —s*) Cx|BPdV,,

Afr =— J\Iﬂv(ngqo) dso, Ay = —hJ‘I’TVKOVZTn dsSo (17.56)

Finally, we recapitulate the incremental finite element equations of the mechanical
and thermal fields in the form

MA,¥ + (Kr + Ko)Ayy — 214,0 = A f, : mechanical field
[hKg + (Mg + Mpo)]A,0 + E;Any = A, fr1 — A, f7o: thermal field (17.57)

17.6 CONTINUUM DAMAGE MECHANICS

Ductile fracture occurs by processes which are associated with the notion of damage.
A damage parameter is also introduced to explain tertiary creep, in which the strain
grows rapidly at a fixed stress and temperature. An internal damage variable is
introduced which accumulates with inelastic deformation. It also is manifested in
reductions in properties such as the experimental values of the elastic modulus and
yield stress. When the damage parameter in a given element reaches a known or
assumed critical value, the element is considered to have failed. The element may
then be removed from the mesh (the element is considered to be no longer supporting
the load). If so, the displacement and temperature fields are recalculated to accom-
modate the element deletion.

There are two different ““schools” of thought on the suitable notion of a
damage parameter. One, associated with Gurson (1977), Tvergaard (1981), and
Thomason (1990), considers damage to involve a specific mechanism occurring in
a three-stage process: nucleation of voids, their subsequent growth, and finally their
coalescence to form a macroscopic defect. The coalescence event can be used as a
criterion for element failure. The parameter used to measure damage is the void
volume fraction f. Models and criteria for the three processes have been formulated.
For both nucleation and growth, evolution of fis governed by a constitutive equation
of the form

f ==(f.e.,T) (17.58)

for which several specific forms have been proposed. To this point, a nominal stress
is used in the sense that the reduced ability of material to support stress is not
accommodated.

The second school of thought is more phenomenological in nature and is not
dependent on a specific micromechanical mechanism. It uses the parameter D, which
is interpreted as the fraction of damaged area A, to total area A, that the stress
(traction) acts on. Consider a uniaxial tensile specimen which has experienced
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damage and is now exhibiting elastic behavior. Suppose that damaged area A, can no
longer support a load. For a given load P, the true stress at a point in the undamaged
zone is S = ﬁ =5 A% =55 Here §' is a nominal stress, but is also the
measured stress. If E is the elastic modulus measured in an undamaged specimen,
the modulus measured in the current specimen will be E' = E/(1 — D), demonstrating
that damage is manifest in small changes in properties, in particular D=1 — E/E’.

As an illustration of damage, suppose specimens are loaded into the plastic
range, unloaded, and then loaded again. Without the notion of damage the stress—
strain curve should return to its original path. However, owing to damage there are
slight changes in the elastic slope, in the yield stress, and in the slope after yield
(exaggerated in Figure 17.9).

From the standpoint of thermodynamics, damage is an internal variable repre-
senting irreversible effects and as such is dissipative. In reality the amount of
mechanical or thermal energy absorbed by damage is probably small, so that its
role in the energy balance equation is often neglected. Even so, for the sake of a
consistent framework for treating dissipation associated with damage, a dissipation
potential W, may be introduced for damage, as has been done, for example, by
Bonora (1997). As an example, the contribution to the irreversible entropy produc-
tion may be assumed in the rate form DD > 0, in which D is the “force” associated
with “flux’ D. Positive dissipation is assured if relations are used such as

.7

D=—",
oD

1 .
W, = EAd(ei,T,k)Dz, Ad(e,TK) >0 (17.59)
An example of a potentially satisfactory function tying damage to inelastic work is

Ay(e;, T.K) = Ay J (s —s*)e;dr, Ay a positive constant (17.60)

Specific examples of constitutive relations for damage are given, for example, in
Bonora (1997).

Sll

% p2

FIGURE 17.9 Illustration of effect of damage on elastic—plastic properties.

© 2008 by Taylor & Francis Group, LLC.



At the current values of the damage parameter, the finite element equations are
solved for the nodal displacements, from which may be computed the inelastic
strains and the inelastic work done in the current load or time increment. This
information may then be used to update the damage parameter values at each element
using the damage evolution equation (Equation 17.59). Upon doing so, the damage
parameter values are compared to critical values. As stated previously, if the critical
damage parameter value is attained, the element is deleted. In many cases the string
of deleted elements may be viewed as a crack (Al-Grafi, 2003).

The finite element code LS_DYNA version 9.5 (2000) incorporates a material
model which includes viscoplasticity and damage mechanics. It can easily be
upgraded to include thermal effects in which all viscoplastic work is turned into
heat. Such a model has been shown to reproduce the location and path of a crack in a
dynamically loaded welded structure (Moraes and Nicholson, 2002).

EXAMPLE 17.5

Tertiary Creep of IN 617 at high temperature

An example of how a damage variable is useful in modeling material behavior is
provided by tertiary creep of IN 617 (Gordon and Nicholson, 2006). Creep may be regarded
as a type of viscoplasticity except that the reference yield surface is sometimes neglected.
The steel alloy IN 617 is used in turbomachinery and experiences rapid growth of strain

Lo T 7]
[ Material: IN617 1
0.8 T A
< [
T 0.6 g g
£ -
E L
27)1 L
=< 04
< [
l_ -
027 ]
i —_@— 649C (1200F)| |
i : —y/— 760C (1400F) ]
0.0 TR —— 871C (1600F)
L : —O— 982C (1800F) J
0 50 100 150 200
Time, t(h)

FIGURE 17.10 Tertiary creep of IN 617. (From Gordon, A.P. and Nicholson, D.W., Finite
Element Analysis of IN 617 Tertiary Creep, Report, University of Central Florida, Orlando,
FL, 2006.)
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under fixed stress and at high temperature. The tertiary creep behavior is shown experi-
mentally in Figure 17.10, in which lower stresses were used at the higher temperatures.

A Norton-type isotropic constitutive model has been formulated in which the Von
Mises creep strain rate &, is modeled as

ér = B(exp —3/RT) (%) (17.61)

Here o is the Von Mises stress and 3 is the activation energy, while the constants B and
n are selected for a best fit up to 5% strain. The damage evolution equation, based on the
classical treatment of Rabotnov (1969), is given by

D= _Ma™ (17.62)
(1-Dy*

in which M, x, and ¢ are likewise constants to be chosen to match experiments up to

5% strain.

Equations 17.61 and 17.62 were implemented by Gordon and Nicholson (2006) in
ANSYS in a user-material model and used to find the best-fit values of B, M, n, x, and
¢. An example of the comparison between the model and the experimental data, up to
5% strain, is shown in Figure 17.11.

----- Secondary only
30 v @ 871C-62MPa T — T
[| o 871C-62MPa Material: IN617 ]
s F| ® 871C-69MPa o 3
F| o s7ic-69MPa ti ]
C Secondary and tertiary| O ) 3
20 + @]
3 - 0 .
& - o] .
@ X [ 1m] ]
o 15 ; .
IS - ]
7 C ]
< 10
‘5 - -
~ N . ]
5 : '"";'-"—"*"""’"——’ :
X - L .
0T .
0 200 400 600 800 1000 1200
Time, t (h)

FIGURE 17.11 Comparison of computations and experimental values up to 5% strain. (From
Gordon, A.P. and Nicholson, D.W., Finite Element Analysis of IN 617 Tertiary Creep, Report,
University of Central Florida, Orlando, FL, 2006.)
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’I 8 Selected Advanced
Numerical Methods
in FEA

In nonlinear finite element analysis, a solution is typically sought using Newton
iteration, in classical form or augmented as an arc length method to bypass critical
points in the load—deflection behavior. Another important topic is the treatment of
incompressibility in nonlinear problems. Here three additional treatments of numer-
ical methods are presented.

18.1 ITERATIVE TRIANGULARIZATION
OF PERTURBED MATRICES

18.1.1 INTRODUCTION

The finite element method applied to nonlinear problems typically gives rise to a
large linear system of the form Ko(yo)Ayo = Afy in which the stiffness matrix Ky is
positive definite and symmetric and banded. Also, Ay, is the incremental nodal
displacement vector and Afy is the incremental nodal force vector. The stiffness
matrix depends on nodal displacements and is updated during the incremental
solution process, leading to a perturbed matrix K=K,+ AK, in which AK is
assumed to be very small in norm (e.g., magnitude of largest eigenvalue) compared
to Ky. Given the fact that triangular factors L and Lg have been obtained for K, it
is attractive to formulate and employ an iteration procedure for the perturbed matrix
K using L as the initial iterate. The procedure should not involve solving inter-
mediate linear systems except by forward and backward substitution using already
known triangular factors. A procedure is presented in the section below following
Nicholson (2005a) and shown, in three simple examples, to produce accurate
estimates within a few iterations. In the scalar case, the iterates examined ‘‘track’
the Taylor series exactly. The author is unaware of any previously established and
widely implemented iterative procedure for matrix triangularization.

It should be noted that updating triangular factors is relevant to important finite
element applications other than the nonlinear solid mechanics. For example, in
fracture mechanics suppose that the crack front advances. There is a local change
in the mesh in the vicinity of the crack tip, corresponding to a perturbation of the
stiffness matrix. As a second example, if the finite element method is used in an
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optimal design study, the search procedure sets the design parameters and an FEA is
performed. Then the search procedure moves the search point locally in space of
design parameters, thereby perturbing the structural model and the stiffness matrix.

18.1.2 INCREMENTAL FINITE ELEMENT EQUATION

To set the problem under study in the appropriate context, we consider dynamic
response of a nonlinear solid. Application of the Incremental Principle of Virtual
Work and introduction of suitable interpolation models, following Chapter 15,
furnish incremental finite element relations:

MAY + K(y)Ay = Af (18.1)

M mass matrix, n X n and positive definite, assumed constant
K(y) incremental stiffness matrix, n X n and positive definite
Ay  incremental nodal displacement vector

Af incremental consistent nodal force vector

We assume that Equation 18.1 is integrated using a one-step procedure based on the
trapezoidal rule (Newmark’s method). Let 2 denote the time step and let y,, = y(z,,).
At time f,,;=(n+1)h, Equation 18.1 becomes, following (Zienkiewicz and
Taylor, 1989),

[M + %K(vn)} A1y =An18 (18.2)
in which

Mg =5 Qi f + AF — KA +M@A,y +hA,q), Ag =47

An+1"/ =Yt+1 — Yn
We say that the stiffness matrix at the (n + 1)st load or time step is perturbed relative
to the stiffness matrix at the nth load step. The solution of perturbed linear systems
has been the subject of many investigations. Schemes based on explicit matrix
inversion include the Sherman—Morrison—Woodbury formulae (cf. Golub and Van
Loan, 1986). An alternate method is to carry bothersome terms to the right-hand side

and then to iterate. For example, the perturbed linear system may be approximated to
first order in increments as

KoAy = Af — AKy, (18.3)

and an iterative solution procedure, assuming convergence, may then be employed as

KoAyUtD = Af — AK(v)vo, ¥V = yo +Ay7D (18.4)
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Unfortunately, in a typical nonlinear problem, especially in systems with decreasing
stiffness, it is necessary to update the triangular factors after several increments. If
plasticity, hyperelasticity, or buckling is of concern, it is often wise to update the
stiffness matrix after each increment.

18.1.3 ITERATIVE TRIANGULARIZATION PROCEDURE

A square matrix is said to be lower triangular if all super-diagonal entries vanish.
Similarly a square matrix is said to be upper triangular if all subdiagonal entries
vanish. Consider a nonsingular real matrix A. It may be decomposed as

A = A, + diag(A) + A, (18.5)

in which diag(A) consists of the diagonal entries of A, with zeroes elsewhere,
A, coincides with A below the diagonal with all other entries set to zero, and A,
coincides with A above the diagonal with all other entries set to zero.

Now limiting attention to symmetric matrices, for later use we introduce the
matrix functions

lower(A) = A; + 1diag(A), upper(A) = A, + 1diag(A) (18.6)

The reader may readily verify that
1. The product of two lower (upper) triangular matrices is also lower (upper)
triangular
2. The inverse of a nonsingular lower (upper) triangular matrix is also lower
(upper) triangular
To formulate the iteration procedure, let K, denote a symmetric positive definite
matrix for which the unique triangular factors L, and Lg have already been com-
puted. If K, is banded, the maximum width of its rows (the bandwidth) equals

2b — 1, in which b is the bandwidth of L,. The factors of the perturbed matrix K
may be written as

[Ko + AK] = [Lo + AL] [L{ + AL'] (18.7)
We may rewrite Equation 18.7 as
[T+ Ly'AL] [1+AL"Ly"] = Ly'[Ko + AK]L; " (18.8)
from which

L,'AL + AL'L,” = Ly"AKL, " — Ly 'ALAL"L, " (18.9)
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Note that Ly ' AL is lower triangular. Tt follows that
AL = Lolower(Ly'AKL,” — Ly"ALAL"L, ") (18.10)

The factor of 1/2 in the definition of lower(*) and upper(*) functions is motivated by
the fact that the diagonal entries of L' AL and ALL,” are the same.
An iteration procedure based on Equation 18.10 is proposed as

ALY*Y = Lolower(Ly 'AKLy T — Ly 'ALYALYTL;T)

AL" = Lolower(Ly 'AKL, ") (184
Note that the computations in Equation 18.11 may be performed using only forward
substitution involving L. As demonstration, we introduce the matrix C using
LoC=AK—ALAL”. (C is not the right Cauchy—Green strain tensor.) Clearly C
may be computed using forward substitution. Now introduce D using DL{ = C, so
that LoD” =C”. Of course D’ and hence also D are computed using forward
substitution. The last step is to compute AL = Lglower(D).

We now introduce an approximate convergence argument. For an approximate
convergence criterion, we study the similar relation

AA = A7 [AK — (AA)T (AA)] (18.12)

in which (AA), is the solution (converged iterate) for AA. Consider the iteration
procedure

AAYUTD = AT[AK — (AA)] AA] (18.13)

which is very similar to Equation 18.11. Subtraction of two successive iterates and
application of matrix norm inequalities furnish

AAUR) — AAUFD = _ATTAA [AAU“) - AAU')] (18.14)

An example of a matrix norm is the Euclidean norm norm(A):trl/ 2(ATA).
Application of matrix norm properties furnishes

norm (AAY*? — AAY*D) < norm(A™'AAL) norm (AAYTD — AAD)  (18.15)

Convergence is assured in this example if 0(A"'AA ) < 1, in which o denotes the
spectral radius (e.g., Dahlquist and Bjork, 1974; magnitude of the largest eigenvalue)
and serves as a greatest lower bound on matrix norms (Varga, 1962). But then,
recalling that A is positive definite, we recognize that

g(AAL)

O'(A_IAAOO) < O'(A_I)O'(AAOO) = o A)

(18.16)
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A (conservative) convergence criterion is now revealed as
max;|A;(AA)| < ming|Ax(A)] (18.17)

in which A (AA.) denotes the jth eigenvalue of an n X n matrix AA. Clearly,
convergence is expected if the perturbation matrix AA,, has a sufficiently small
norm. Applied to the current problem, we likewise expect convergence to occur if
max;|A;(ALs)| < ming|Ag(Lo)|.

The convergence criterion in Equation 18.17 appears to be discouraging if K,
is ill-conditioned since ming|\t(Lo)| is then very small. Tll-conditioned stiffness
matrices are a common occurrence in the nonlinear finite element method, for
example, when the structural material exhibits plasticity or hyperelasticity, or when
buckling occurs. However, in such situations the equilibrium equation can usually be
adjoined to an “‘arc length” constraint of which an example is presented in subse-
quent sections. Doing so results in an augmented linear system in which the matrix is
no longer ill-conditioned (Kleiber, 1989).

EXAMPLE 18.1

Demonstrate convergence in the scalar equation

2LAL + AL* = AK (18.18)

SoLUTION
A Taylor series representation for the solution AL exists in the form
AL = agAK + | AK? + a, AK® + asAK* + - - (18.19)

Upon substituting (18.18) into (18.19) and making suitable identifications, the first few
terms of the Taylor series are obtained as
AK3
AK® + 0( 75 )

The scalar version of the iteration procedure (Equation 18.11) is

AL = —AK - —AK2 —AK3
2L 8L3 RETTE 128L7

2LALYD = AK — (ALY)?, AL® =0

Omitting the manipulations, the first three iterates are obtained as

ar® — Lak
2L

AL? = —AK Ve
8L

Taylor series

ALY = —AK e LAk - O Akt

3L3 16L3 128L7

Taylor series

and are seen to “‘track” the Taylor series exactly.
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EXAMPLE 18.2

Generate the first two iterates for the matrices

a 0 O][a b d a? ab ad
Ko=|b ¢ 0|0 ¢ e|=|ab b*+¢* bd + ce
d e f][L0 0 f ad bd+ce d*+ e +f?
and
[a 0 Olla b d
Ko +AK = | b c 0[]0 ¢ e+g
|d e+g f]|0 O f
[ a? ab ad
= |ab b? + c? bd + cle + g)
Llad bd+cle+g) d2+(e+g)2+f2
[0 0 0
AK= (0 0 cg
10 cg gQe+g)
SoLuTioN

The initial triangular factor satisfies.

a 0 0 | cf 0 0

Lo=|b ¢ 0|, Lg'=—| —-bf o O
acf

d e f be —cd —ae ac

The exact (converged) triangular factor is

a 0 0
Lo +AL = | b c 0
d e+g f

from which
0 00
AL, =10 0 0
0 g O
reflecting the error in L as the initial approximation to Lo+ AL..
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Upon performing the iteration procedure we find

of
L,'AKL," = L —bf

0o 2

(@cf) | be — cd

| [0 0

=——0 0
(acf)

Accordingly,

0 0
af 0
—ae ac
0
a*c*fg

| 0 a2c2fg a262g2

0
0
0

lower(L,'AKL, ") =

and we obtain the first iterate as

ALY = Lolower(L,'AKL,”) =

0 0

0 cg
cg 8Re+yg)

00 0

00 0

2

0§ 1%

0 0

0 0

0 ¢

of

0

—bf
af

be — cd
—ae

ac

In terms of the Euclidean matrix norm, a measure of relative error is introduced as

error(AL(")

_ norm(ALy, — AL®D

norm(AL,,)

-4

Suppose & = 0.1. The relative error for the initial iterate is then error(AL"Y) = 5%.

f

Otherwise stated, in this example, the error in the triangular factors was reduced 95%

in one iterate.

We seek the second iterate and examine the additional error reduction. Now

L, ALVALYTL, T =

Continuing,

1
(acf)?

cf
x |0
0

cf 0
—bf af
be —cd —ae
—bf be—cd
af —ae
0 ac

0
0

ac

L,'AKL,” — L,'ALPALYL, " =
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00 0
lower(L 'AKL™" — L'ALOALYTLT)= |0 0 0
0 & —lg

The second iterate is thereby given by

AL® = Lylower(Ly 'AKLy " — Ly 'ALWALDTLT)
ra 0 071]0 0 0O

a
=|b ¢ 0|0 O O
ld e fl0 ¢ —i%
[0 0 0
=[(0 0 O
14
0 & 57

The relative error for the second iterate now is

4

norm(ALaO — AL(Z)) B % f:—
norm(AL,.) - ?

2

error(AL(2>) = =0.0125%

Evidently, in the first iterate the error is reduced to 1/20th of the initial value, and in the
second iterate to 1/8000th of the initial value, representing a 400-fold improvement
from the first to the second iterate. The convergence rate is much faster than linear
convergence characteristic of ““fixed point iteration.”

EXAMPLE 18.3

Ilustrate the effect of the perturbation on the rate of convergence.

SoLuTioN
Suppose
1 i 11 0
_ 2 _ 2
K= 1 10+n:|’ Ko = L 1]’ AK = L]
2 730 2 3 30
in which n > —5/2. The exact solutions are
1 0 0 0
L= 1 10+n 1] ALy = 0 104n 1 _ 1
2 30 4 30 4 Vi

Clearly, the method fails if n < —5/2, in which case K is no longer positive definite.
To ensure real numbers attention is restricted to the range —5/2 < n < 5/2.
Following the procedures in Example 18.2, the first two iterates are obtained as
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TABLE 18.1
Error Reduction with First and Second Iterations

n Error(AL™") 1 — Error(AL™) Error(AL®) 1 — Error(AL®)
0.5 0.053 0.947 0.0042 0.9958

-0.5 0.057 0.943 0.0094 0.9916

+2.0 0.176 0.824 0.059 0.941

-2.0 0.277 0.75 0.132 0916

0 O 0 0
ALl = 0 _n_ | ALQ - 0 n_ _ n*
10V/3 103 10043

The previously defined relative error measures are now given by

n 2n
—— (y/1+—=-1
2n
A\ 1+——1

The effect of the perturbation is thus reduced as illustrated in Table 18.1.

For the relatively small perturbation represented by n==0.5, the first iteration
removes approximately 95% of the initial error. The second iteration removes over
99% of the error, for at least a fivefold improvement over the first iteration. For the
relatively large perturbation represented by n = £-2.0, the first iterate removes more than
70% of the initial error. Over 90% is removed by the second iteration, for at least a
twofold improvement over the first iteration.

error(AL") = , error(AL®) =

18.2 STIFF ARC LENGTH CONSTRAINT IN NONLINEAR FEA
18.2.1 INTRODUCTION

Arc length constraints enable iterative solution procedures in nonlinear FEA to
converge even at critical points, such as occur in buckling problems, and enable
computation to continue beyond the critical points, for example, in postbuckling.
They were briefly introduced in a simple example in Chapter 14. The arc length
constraint replaces the conventional m X m stiffness matrix with an augmented
(m+1) X (m+ 1) stiffness matrix. Its use is referred to as arc length control, in
contrast to load control which furnishes the conventional stiffness matrix. It also
contrasts with displacement control in which displacements are introduced in incre-
ments and the corresponding forces are computed as reactions. In the current chapter,
an example of an arc length constraint is introduced following Nicholson (2005b). It
identifies arc length parameters maximizing the stiffness (absolute value of the
determinant) of the augmented matrix. The parameters, viewed as a vector, must
be perpendicular to the rows of the stiffness matrix, likewise considered vectors. The
augmented stiffness matrix is nonsymmetric and lacks the small bandwidth of the
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conventional stiffness matrix. However, using a block triangularization, it is dem-
onstrated that solution may be attained by standard finite element operations, namely
triangularization of a banded nonsingular portion of the stiffness matrix followed by
forward and backward substitutions involving banded lower and upper triangular
matrices. The proposed constraint is expected to permit convergence under longer
arc lengths than currently implemented methods. A simple example is presented to
illustrate application of the constraint.

In conventional load-control-based finite element modeling of nonlinear prob-
lems in solid mechanics, a combined incremental and iterative solution procedure is
typically followed. The iteration procedure is a realization of Newton iteration, in
which the stiffness matrix (combined geometric and tangent) serves as the Jacobian
matrix. Frequently, due to nonlinear geometry under compression or to softening
material behavior such as plasticity or hyperelasticity, the stiffness matrix appearing
in the incremental equations exhibits a “critical point” at (near) which it is singular
(ill-conditioned). Arc length constraints, implementing arc length control, have been
introduced to permit calculation at critical points. A recent review of arc length
methods has been authored by Memon and Su (2004). Three different implementa-
tions have been compared in Ragon et al. (2001). The initial method is attributed to
Riks (1979) and Wempner (1971), and modified by Crisfield (1981), Ramm (1981),
and Fafard and Massicotte (1993). Arc length constraints are widely implemented in
finite element codes, e.g., Moharir (1998).

Arc length methods adjoin a constraint to the conventional incremental finite
element equation arising under load control to furnish an augmented stiffness
matrix. Doing so enables iterations to converge even at critical points. The goal
of the current investigation is to identify parameters of the arc length method
ensuring that the augmented stiffness matrix is not only nonsingular but optimally
stiffened. It will be seen that the best choice is to select a vector arising in the arc
length constraint, appearing in the bottom row of the augmented stiffness matrix,
such that it is orthogonal to the rows (considered as vectors) of the conventional
stiffness matrix.

One issue raised by previous investigators (e.g., Crisfield, 1981) has been that
the augmented stiffness matrix is nonsymmetric and unbanded. However, by intro-
ducing a block triangularization, the solution procedure will be shown to reduce to
conventional finite element operations, namely triangularization of a banded sym-
metric nonsingular matrix, followed by forward and backward substitution involving
banded lower and upper triangular matrices.

The notion of a critical point is illustrated in Figure 18.1. Consider a body
submitted to loads following a path in load space to a final load f;, the magnitude
of which is the maximum attained on the path. Along the path the magnitude of the
load may be written as A|fy|, in which the load intensity A satisfies 0 < A < 1. The
magnitude of the global displacement vector is denoted as |y|. Figure 18.1 illustrates
a critical point followed by a zone of decreasing load intensity and negative stiffness,
such as occurs in postbuckling. In the current investigation, critical points may be
maxima, minima, or saddle points.
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FIGURE 18.1 Load-deflection characteristic exhibiting critical points and buckling.

18.2.2 NEewtON ITERATION FOR NONLINEAR FINITE ELEMENT EQUATIONS

For the sake of explaining how, in the instance being presented, the arc length
method is a special case of Newton iteration, we briefly recapitulate Newton iteration
in nonlinear FEA, expanding on the presentation in Chapter 14. Consider a solid
body referred to the undeformed configuration, with volume V and boundary S. It
experiences large deformation and nonlinear material behavior under boundary
tractions t prescribed on S. Balance of linear momentum (load balancing) is fulfilled
by the Principle of Virtual Work (Chapter 15) as

By®)) =0, Sy P(y) = Jtrace(ﬁso') dv + J«Squii dv — JSuTt ds (18.20)

s m x 1 vector representing unbalanced loads when nonvanishing
v(t) m x 1 time dependent vector of nodal displacements
u(X,r) 3 x 1 displacement vector
X 3 x 1 position vector in undeformed configuration
€ 3 x 3 Lagrangian strain tensor
o 3 x 3 second Piola—Kirchhoff stress tensor
p mass density

and 6 denotes the variational operator. The goal is to compute the displacement
vector u(X,?).

The body is assumed to be “discretized” using a mesh of small elements
connected at nodes. In FEA, it is assumed that the displacement vector in the eth
element may be approximated to satisfactory accuracy using an interpolation model
of the form

uX,n) = ¢, (X)Pey, (1) (18.21)
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in which

©.(X) =m, X 1 vector-valued function of position
®, =m,X m, matrix of constants reflecting element geometry
Y.(f) =m, X 1 nodal displacement vector for the element

Suppose that the solution process has been invoked to determine vy,,, the global nodal
displacement vector at time ¢, =nh, with ““small” time step h. The task is now to
formulate a scheme for iteratively computing vy,.; at t,,7=(n+ 1)h. For this
purpose, we first describe Newton iteration under load control, which is well-
known to experience convergence difficulties near “‘critical points” at which the
dynamic stiffness matrix becomes singular. We then introduce a recently introduced
arc length method Nicholson (2005b) with what will be called a stiff constraint. It
will be seen to enable circumventing the critical point.

18.2.3 NEwWTON ITERATION WITHOUT ARC LENGTH CONSTRAINT

Let A, ¥ =%,.1 — Y. denote the incremental nodal displacement vector, with similar
definitions for stress, strain, displacement, and traction. From Chapter 15, we know
that at dynamic equilibrium

An‘b = [Kg + KT]AH‘Y + MAH‘Y - Anfm =0

Kr(Y,,1) = JMTGXGTM Vo, Ke(vni)) = JMTO' ® IMdV,

(18.22)
M = JpOCDTcpcpTd) dvy, Af, = JpOCI)T(pAtO dSy
VEC(AF) = M(X)A,y. G =11®F" +F®IMX)
F 3 X 3 deformation gradient tensor

K;  m X m tangent stiffness matrix
Kz  m X m geometric stiffness matrix
X 9 X 9 tangent modulus tensor

U 9 X 9 permutation tensor

VEC VEC operator

® Kronecker product symbol

The Newmark method serves to express A,y in terms of A,y and thereby furnishes

An‘!’ - [KG +Kr + %M] An'Y A gy = A, =0

. (18.23)
Anrm = Anflfm + %MAnfl'y - [KG + KT - %M] Anfl"y

Of course the residual vector A,r,, is known from the previous (nth) time step.
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The Newton iteration scheme may now be stated as

Kp[vi" =] = —$(vih). vl =,

(18.24)
Kp =K + K7 + M
Note that K is real and symmetric. Under load control, Equation 18.24 is the
equation to solved.

The matrix Kp(y,) in many problems exhibits critical points, at (near) which
it becomes singular (ill-conditioned). This difficulty may, for example, be produced
(a) by geometric nonlinearity under compression (e.g., buckling), associated with the
geometric stiffness matrix Ks(y,,) or (b) by material softness, such as plasticity or
hyperelasticity, associated with the tangent stiffness matrix Kz (y). Beyond
the critical point the stiffness matrix may be indefinite, as in postbuckling (cf.
Figure 18.1). Clearly, computation is impossible (or very difficult) in such cases if
direct solution of Equation 18.5 is attempted.

18.2.4 ARrc LENGTH METHOD

However, as stated previously arc length methods have been used, by now for
several decades, to circumvent the numerical difficulties posed by critical points.
They involve two major features:

(a) Writing A,f,, = (A, )f,,, in which f,, is the final load vector to be attained,
and A, is the incremental load intensity
(b) Adjoining an arc length constraint to Equation 18.24 in the form

(Vi1 M) = LAY + gAML — AS =0 (18.25)

gn anm X 1 vector to be determined
g  ascalar to be determined
AS arc length, a positive scalar parameter

We refer to {i;”} as the arc length vector.

It appears that the most commonly implemented methods (e.g., Riks, 1979)
involve the conventional choices

= lAn
On = 20nY (18.26)
8 = EA"A
and the arc length constraint is expressed using AS*: JA,yTA,y +1(A0)7 —

AS? = (0. With this choice, the arc length constraint can be visualized in terms of an
m+ 1 dimensional hypersphere surrounding the solution points at the nth load step.
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A search procedure is then followed on the hypersphere until the equilibrium equation
is satisfied (load is balanced).

Returning to the general case represented by Equation 18.25, the m X m incre-
mental finite element equation is now supplanted by an (m + 1) X (m + 1) augmented
system of equations. To apply Newton iteration to the augmented system, note that

d¢(7n+17)‘n+1) = KD d‘Yn+1 — fo d)\n+l

. (18.27)
d§(7n+1,An+1) = gm d'YnJrl + gd)\iH—]

Newton iteration applied to Equation 18.27 now gives rise to the m X 1 linear system

(v+1) () () @)
K Yot — Yopr | _‘b(ynﬂ’ ’\n+1) K* — Kp —fu PROR
@+ _ o [ ® o [ T o7 v Mgl T An
An+l - /\I‘H-l _g(’yn+l’ /\n-H) g 8
(18.28)

Choices g,, and g which ensure that K* is nonsingular, and even more which
maximize the magnitude of the determinant of K*, will be said to render the arc
length constraint stiff. Our primary task now is to consider choices for g,, and g to
maximize stiffness (defined below as the magnitude of the determinant). Doing so is
expected to permit convergence using larger values of the arc length parameter than
in the current method. To find the optimal parameters we restrict attention to the case
in which Kp has rank m — 1 (rank deficiency of unity). The case of rank lower than
m — 1 will be addressed in a subsequent investigation.

18.2.5 StiFF ARC LENGTH CONSTRAINT

18.2.5.1 Stiffness of K*

We assume that Kj, is of rank m — 1 (rank deficiency = 1), and rewrite it as

K, = (18.29)

-1
K([;n ) Ki—1
K,Z;_l km

Owing to unit rank deficiency, any row of K, can be expressed as a linear
combination of the other rows. Furthermore the rows and columns can be ordered
such that the upper (m — 1) X (m — 1) block is nonsingular. To illustrate this fact

[1 0 3 1 3] o
consider the reordering |0 o 0} — [[3 6] 0}. The 3 X 3 matrix is of rank 2. The
306 00 0

upper left-hand 2 X 2 block of the reordered matrix is nonsingular. (It appears that
reordering will not be necessary if none of the rows of K, is null; for example, no

1 -1 0
reordering is needed in | -1 2 1} )
0 -1 1
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We assume that the above-mentioned ordering either is not needed or has been
performed. Accordingly, Kg"il) is nonsingular and k! _, is a linear combination of
the w — 1 rows of K(Dm_l): there exists an (m — 1) X 1 vector e such that

Ky_1 = Kg”_])a
km=x! |«
_ T (m—1)7—1
=Ky [KD ] Kin—1

=o'KI' Va (18.30)

If Kp, is positive semidefinite, Kg”_l) must be positive definite and k,, must be a
positive number.

Now consider the augmented stiffness matrix incorporating the arc length
constraint.

-1
K(Dm ) Kn—1 _fmfl

gn—1 fmfl
K* = KnTl—l km _fm s &n = P fm = (1831)
’ 8m S
g 8

m—1 8m

The matrix is singular if the third column is a linear combination of the first two
(block) columns. If so there exist a vector . and a scalar v for which

1 = KU Vw4 vk, (18.32a)
—fn = K| A+ Vhpn (18.32b)
= o'K" Pp 4 va'k, (18.32¢)
=—a'f, (18.32d)
and
8 =8, 11+ ¥gn (18.32¢)

In the particular situation in which f,, = k!, _ 1Kg"il)ilfm_l, the matrix is singular
regardless of the choice of gnTlfl, gm, and g, since the second row (of blocks) is a
linear combination of the first row. Since the finite element code contains the matrix
KE’)”_I) and a solver, this difficulty can readily be detected. Suppose, for example,
that Kp, is positive semidefinite, in which case K(L;”_l) is positive definite. The linear
system K(L;”_Un = f,,_1 may be solved numerically using triangularization followed
by forward and backward substitution. Next k! _ % is compared to f,,. I they are
equal, a different path in load space should be followed to attain the final load.
Alternatively, in the much more likely situation in which f, # k!
Kg”‘”flfm,l, the matrix is nonsingular provided that g’ |, g,,, and g are chosen
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such that the bottom row is not a linear combination of the upper two (block) rows:
i.e., such that there do not exist a vector . and a scalar ¥ for which

g1 = llTKgnil) + K,
gm = P Kyt + Py
= WKy Vo + k! |« (18.33)
=g, @

8= _llemfl — U

We assume that the choice of g;_, , &m» and g does not satisfy Equation 18.33, and
proceed to consider the choice which renders K* stiff.

18.2.5.2 Arc Length Vector Which Maximizes Stiffness: Examples

The stiffness x(A) of a square matrix A is defined as the magnitude of its determin-
ant: y(A) = |det(A)|. The matrix is said to be stiff if y(A) >0 (i.e., is nonsingular).
Clearly, if stiffness is near zero, the matrix is nearly singular. If the arc length
parameters are chosen to maximize the stiffness, the matrix A is “farther away”
from being singular than for other choices.

The first m rows of K*, considered as row vectors, span an m dimensional space,
whose (possibly complex) base vectors we denote by e;, j=1, 2,..., m. It will be

seen that g does not affect stiffness, and that the magnitudes of g,, = {g;**'} and g can

both be set to unity since it is later necessary to manipulate the arc length AS to attain
convergence. (It can easily be easily seen in Equation 18.26 that a similar magnitude
choice is implicit in the conventional arc length formulation.)

The direction of the lower row, viewed as a (row) vector, is of greatest interest.
As will be shown in the following, it should be chosen to coincide with the null
eigenvector of Kp, and thereby to be orthogonal to the m rows of Kp,.

EXAMPLE 18.4

As a simple example, consider the matrix

1 0 0
A= 0 1 0
81 82 83

Veitata Veitates Vetata

83

Vel + 8+ 83
g1=0, g2=0, g3=1. Considering the rows as row vectors, with this choice the third
row is orthogonal to the first two rows.

The determinant of A is . The stiffness attains its maximum value if
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EXAMPLE 18.5

As another simple example, consider the matrix

i ap an 0
A— an an 0
81 82 83
Va+a+8 Vatat+a Vetegt+a
- a &
A 0 N ar  a;n Vg%-i—g%-i—g%
= | 4T 83 , A= , 8=
ap  ap 82

2 2 2 R —
VeI t+&teg
e Veitg e

Since A is symmetric, there exists an orthogonal matrix Q for which

A M(A 0 ap +axn aj; —an\?
QAQT=A={ 1(()) )\2(1&)}’ Aip = > + < 2 )+a%2

We now subject A to a similarity transformation as follows:

Q o][A 0 Q' 0 A 0
F:[0T 1 g’ 2 832 2 o7 1}: g'Q 2 832 2
V& +8& +8&; V8l t+8& t+8;

83

and I' possesses the same eigenvalues as A, namely A, A,, and —
V81 T8 T8

Clearly, the choice which maximizes the stiffness is, again, g; =0, g, =0, g3=1.
With this choice, considering the rows of A to be (row) vectors, the bottom row of A is
again orthogonal to the first two rows.

EXAMPLE 18.6

Finally, consider the matrix

| cos@ sin@
" |cosy sinig

The determinant of A is given by
det(A) = cos f sinyy — sin O cos i = sin(yy — 6)

and the maximum stiffness clearly is attained when ¢ —60=+7/2. With+7/2,

= C(.)SG sin6 , and note that the bottom row is orthogonal to the top row.
sinf —cos@

cosf sinf

—sinf cos6

the first row, but points in the opposite direction from the positive choice.

With —r/2, we obtain A = { } . The second row is again orthogonal to
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18.2.5.3 Arc Length Vector Which Maximizes Stiffness: General Argument

A proof is now given generalizing the observations from examples (18.4 through
18.6). The symmetric matrix Kp is again assumed to be m X m and to have rank m — 1.
Given an m X 1 vector f,,, as stated previously our task is to determine the m X 1

vector { En }, with g,, and g,,, | both of unit magnitude, to maximize x(K%*).

Em+1

Since Kp, is symmetric, there exist m orthonormal eigenvectors &, one of which
corresponds to the null eigenvalue. We set the order such that &, corresponds to
the null eigenvalue and form the proper orthogonal matrix Q=1[&; & - --§,]. The
determinant of K* is unaffected by the similarity transformation, giving rise to K*

as follows:
_ T
K# — Q 0| |Kp —f||Q" 0
0" 1||gl g |0 1
A, —f - X R
= ., .| An=QKp,Q', f=Qf, g, =Qg,. g=¢ (18.34)
g, &
Since the eigenvectors serve to diagonalize Kp, K* now becomes
[A1(Kp) 0 0 R . 0 —j:q !
0 A (Kp) 0 o . 0 —]fz
0 0 MKy oL . 0 —f
K#f
)\mfl (KD) . 7‘]}7}171
0 0 0 0 —fn
L &1 82 83 8m—1 8m g |
(18.35)

The determinant of K* is given by

m—1
det(K™) = det(K*) = — & fon H Ai(Kp) (18.36)

J=1

Note that it is independent of g = g, which has been previously set to unit magnitude.
Recalling that {g |, g,,} has unit magnitude, the stiffness x(K*) is maximized
by the choice

gn=1 and =0 ifj=123,....,m—2,m—1 (18.37)
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K7 is now given by

—/\I(Km) 0 0 e e e . 0 —Al
0 MK, 0 .... : 0 —f
0 0 MKy ... : 0 —f3
. . . . )\mfl(Km) . _fmfl
0 0 0o .... .0 —f

) 0 0o .... 0 1 1

If the rows of K* are viewed as vectors, it is clear that g,, is orthogonal to the first
w — 1 rows of Kp. In fact, it is orthogonal to all m rows since the mth row is a linear
combination of the previous rows owing to the unit rank deficiency of K. Hence

But note that
0=QK,Q'g,
= QKDQTng
from which we conclude that K,g,, = 0, that g, is orthogonal to the rows of K, and
finally that that g, is collinear with the null eigenvector of Kp.
18.2.5.4 Numerical Determination of the Optimal Arc Length Vector

The process of identifying a unit vector orthogonal to w — 1 vectors is well known as
Gram-Schmidt orthogonalization and is briefly summarized in the current context.
Let al denote the first row of K*, and let a} = a;/y/ala,. A sequence of u—1
orthonormal eigenvectors a; is then generated sequentially according to

P (18.40)

in which ajT denotes the jth row of K*. Clearly,

i1 .
a’kraj’-l = a}cTaj — Z (ajTag)Sik =0, 8= {(1): 2 ; i (18.41)

i=1
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The arc length vector is now found as

m—1

_ ZbT//

i=1

and
—— / glg (18.42)

in which b,, is a trial vector, for example, f,,.

Note that the arc length vector g, can point in a positive or negative sense along
the underlying base vector, and g may also be positive or negative. To determine the
sense of the g, and g, we recall Figure 18.1. For consistency with the positive arc
length AS, the sum of g’ A,y and gA,A must each be nonnegative. If these two terms
were of opposite sign, an unstable numerical process would ensue. For example, if
gA, A is negative and grows in magnitude, the arc length constraint requires g’ A,y to
be positive and to likewise grow in magnitude. There is no impediment to this
process continuing until both terms attain very large magnitudes, despite the small
value of AS. Consequently the arc length relation (Equation 18.24) serves as a
constraint only if both terms are nonnegative. In the stiff segments of the load—
deflection curve, in which the load intensity and the magnitude of the
displacement vector are both increasing, this requires that g>0 and that

V&TAY

sity decreases but the magnitude of the displacements increases, it follows that g <0

—-3< cos™! (&> Z. In the postbuckled segments, in which the load inten-

and — 7 < cos~! (ﬁ) Z. If the (n + 1)st load step occurs at a critical point,
Y.

then A,A =0 and g7 A,y = AS.
Near a critical point, an appealing way to predict the sense of g,, and g before
computation at the current step is select them to satisfy

A
gA, 1A > 0, —gg cos1< B 1Y ) gg (18.43)

V (An—l'y)TAn—l'Y

thereby making use of the solution at the previous time step. Doing so should be safe
away from critical points. Across the critical point, the sign of A,,, ;A may or may not
change from that A,, ;A of depending on whether it is an extremum or a saddle point.
In this case it appears wise to compute one iterate with g > 0 and one with g < 0, and
to continue with the value for which gA,,, (A > 0.

18.2.6 SoLutioN PROCEDURE

At first glance, the matrix K* appears problematic in that it is asymmetric and
unbanded, as is true in the conventional arc length method. However asymmetry
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and unbandedness are consequences of the (m + 1)st row and column. The upper left
m X m block is symmetric and can be stored accordingly. As will be seen, after a
block triangularization is invoked the solution procedure can be reduced to conven-
tional finite element operations including triangularization of the nonsingular sym-
metric matrix Kg"_l), followed by forward and backward substitutions using banded
lower and upper triangular matrices, respectively. The procedure is established
below.

18.2.6.1 Block Triangularization

The reader may verify the block triangularization

K(Dm_]) Ky —fni L, 0 Ui L';ll {wn — fini }
g . gm g gl | 01 0’ &m &
(18.44)

T
in which I' = { ':”' }UYZI_IL;_I{K,,, — f,,—1}. Also conventional LU triangulariza-

m—1
tion is invoked to furnish Kg"*l) =L,_1U,_1, in which L,,_; is lower triangular
and U,,_ is upper triangular.

If KE’)’H) is symmetric and positive definite (i.e., Kp, is positive semidefinite with
rank m—1), then U,_; = LZ,;?I. If we introduce {w;; Wwj,} obtained from
U;_l {wii wp}={k, —f,_1}, forward substitution and transposition furnishes

T T
{vv:;‘} = {g';’" }U;ll. Also, writing L,,_1{wy; Wy} ={x, —f,_1} and using

12 m—1

forward substitution furnishes the vector {wy; Wy} = L;ll{K,,, —f,,_1}. Note

.
that I' = {:‘Tl }{Wzl Wy} is a 2 X 2 matrix.
12

18.2.6.2 Solution of the Outer Problem

We first describe the solution process for the outer problem expressed as

L, {0 0} Zm—1 tbmfl
wlT1 1 0 Zm = — P, (18.45)
Wi, 0 1 Zm+1 I4

Forward substitution is used to solve L,,_;z,,—1 = —s,,_; for z,,_;, from which

Zm l]r’m W{]
= — e 18.46
I R B M S
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18.2.6.3 Solution of the Inner Problem

The inner problem is now expressed as
Up-1 {war wa} Ant 1Yo Zm—1
0’ km — —fm AviiV) ¢ = Zm (18.47)
OT 8m 1 AnJrlé’ Im+1
Next
s
A, — m
{ “”m} _ L8 K { : } (18.48)
An+lg km +fmgm m+1

Finally backward substitution serves to solve for A, {7,,_; using

o
—8m km Zm
Upn1801Ym—1 = Zm—1 — {W2 sz}—{ } (18.49)
m n+1 ¥m—1 1 km +fmgm i
EXAMPLE 18.7
Tlustrate the orthogonalization and solution procedure using
rtT -1 0 1
Kp=|-1 2 —1]|, f=¢2
L0 -1 1 3
1 -1 0 -1 Ay 4
-1 2 -1 =2 Ay 3
K* = S — 1073
o -1 1 =3 Ay 2
La1 & & & Aug 1

in which |g4| =1 and \/g] + &3 + &3 = L.

SOLUTION

Elementary algebra serves to establish that det(K*) = 6(g,+g»+g3), independently of g,.

It remains to determine g;, g», and gs. We first analytically determine the values of
g1, &, and g3, which maximize the determinant subject to the magnitude restriction.
This is equivalent to maximizing the augmented function

M=6(g +g+eg)+IE+e+8 -1
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in which 3 is a Lagrange multiplier. Elementary manipulation furnishes both a max-
imum and a minimum:

oIl
a—A:g%-i-g%-i-g%—l:O

11
—=6+2dg;, =0
g1

oIl
—=6+2dg, =0
0g>

oIl

0gs
Clearly, the extrema satisfy the magnitude condition, and g; = g, = g3 = +1/ V/3. The
maximum value of the determinant is 61/3, the minimum value is —6v/3, and the

stiffness is 6v/3.
To determine g, g, and g3 using the orthogonalization procedure, we set g4 = 1 and

81 1
seek { & } to lie exterior to the subspace spanned occupied by the vectors a; = {1}
83 0

0
and a; = {—1 } First,
1

1
a'—L -1
=
V2 o
0 1 0 1 1 -1
and a, =< —1 b {1 =1 0}{ -1 -1 :E 1
1 1 0 2
Consequently,
-1
1
!
ay =—7=< —1
Ve 2
Next, using f as a trial vector,
81 1 1 1 1 -1
1 1
=<2 ~3 {1 —10}< 2 -1 ~% {—1 —12}< 2 -1
23 3 3 0 3 2

1
=2¢1
1
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and, setting the magnitude equal to unity, the desired vector is found as

81

in agreement with the analytical maximum. Taking the positive sense, the augmented
stiffness matrix is now

To illustrate the solution procedure, a glance at Equation 18.43 reveals the identifications

oy [T 10 1l
I(D = > mel = P Umfl =
-1 2 -1 1 0 1
0 1 1 ¢ 1
Ky = s m—1 — = 5 m—1 —
-1 VAR 2

Elementary manipulation gives

., 11 B 10
Um—l = 4 Lmzl = ’
0 1 1 1

L,;I,I{Km - fmfl}

(e f =L il

Il

| —|
=
—

|
U9 ==
—

and

r=d o Lo L e }—{ ! 3 }
I ) A N S TV R AV

The block triangularization now results in
{ 1 O} [O O} {1 71} [O 71}
" -1 00 0 1 -1 -3
K

[ e [ s

| — |
S L o
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The outer and inner problems are expressed as
{ 1 0 } { 0 0 ] Anzi

-1 1 0 0 A,z

O - 1 |: 1 0 :| AnZ3

% % 0 1 AHZ 1

{1 71} {0 —1} Anyy Az

=-10"3

—_— N W B

0 1 -1 -3 Ay | ) Az
[0 0} 0 —6 Ays [ )] Auzs
00 \/§ 1+ % Ang Anzl

Upon applying forward substitution in the outer problem followed by backward
substitution in the inner problem, the solution is determined to be

1
Anzi _4 Auy, 21 +5/V3)
1
nZ3 - n'Y3 % (_1 4 \/g)
A;1Z4 -1+ 18\/§ Ang 3/2

In the current example, it is evident that the stiffness matrix Kj arising under load
control is singular. But the augmented matrix arising under stiff arc length control is
well behaved and a solution is readily attained by a procedure combining triangulariza-
tion, forward substitution, and backward substitution.

18.3 NON-ITERATIVE SOLUTION OF FINITE ELEMENT
EQUATIONS IN INCOMPRESSIBLE SOLIDS

18.3.1 INTRODUCTION

Finite element equations for incompressible and near-incompressible media give rise
to a matrix with a diagonal block of zeroes or very small numbers. The matrices are not
amenable to conventional techniques involving pivoting on diagonal entries. Uzawa
methods (Arrow et al., 1959) have been applied to the associated linear systems. They
are iterative and converge when the matrix is nonsingular. In the current study an
alternate form of the matrix is used which is amenable to solution without iteration. It
likewise is applicable whenever the matrix is nonsingular. The solution process
consists of a block LU factorization, followed by Cholesky decomposition (triangu-
larization) of a positive definite diagonal block together with several forward and
backward substitution operations. Two illustrative examples are developed.

In compressible solids, the finite element stiffness matrix typically is positive
definite. The governing equation in finite element form can frequently be solved by
triangularization, consisting of Cholesky decomposition followed by forward and
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backward substitution. However, suppose the material is incompressible or near-
incompressible. The strains are now subject to an internal constraint (are not
independent), and serve to determine stresses only to within an indeterminate
pressure. The pressure field serves as an unknown Lagrange multiplier in an auxil-
iary finite element equation to satisfy the incompressibility constraint.

The structure of the finite element equations (equilibrium plus constraint) at first
glance poses a computational problem, since a block of the stiffness matrix is null.
Traditional triangularization and solution methods based on pivoting are not directly
applicable to such a matrix. Much of the literature on this problem is based on the
Uzawa method, which attains the solution through an iteration scheme. (cf. In the
current investigation, a block triangularization solution is formulated in which
the blocks are obtained by Cholesky decomposition, as well as forward and back-
ward substitutions. This scheme obviates the need for iteration while using real
variables.)

18.3.2 FiNITE ELEMENT EQUATION FOR AN INCOMPRESSIBLE MEDIUM

To set the problem under study in a context, we consider dynamic response of a near-
incompressible nonlinear solid. The special cases of static response, incompressible
media, and linear behavior can be retrieved from this case. Application of the
Incremental Principle of Virtual Work and introduction of suitable interpolation
models (Chapter 15) furnish the finite element relations

MAY + K(y)Ay — QA = Af

A (18.50)

O'Ay+=—==0

K
M mass matrix, n X n and positive definite
K incremental stiffness matrix, n X n and positive definite
QO  pressure—displacement matrix, n X p of rank p, p <n
Ay incremental nodal displacement vector
A7t incremental nodal pressure vector
Af  incremental consistent nodal force vector

In particular, as usual Avy is the difference between the nodal displacement vectors at
two load or time steps. We assume that the mass and stiffness matrices are positive
definite and n X n. The pressure—displacement matrix €} is n X p and is restricted to
have rank p, p <n.

The first equation is a realization of the balance of linear momentum, while the
second represents the a posteriori enforcement of the near-incompressibility constraint.
If k — o0, the incompressible case is recovered. If M = 0, the static case is recovered.
Finally, to specialize to the linear case, the incremental symbol A may be removed.

We assume that Equation 18.50 is integrated using a one-step procedure based
on the trapezoidal rule (Newmark’s method). As before let 2 denote the time step
and let vy, =v(,). At time f,. 1=+ 1)h Equation 18.50 becomes, following
Zienkiewicz and Taylor (1989),
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Aﬂ Aﬂ

A Y LR (18.51)
ArH—lTr 0

in which
I, is the p X p identity matrix

h? .
ArH—lg = Z(An—o—lf + An f— KAn'Y) + M(An'y + hA11q)7Anq = An'y
AnJrl'Y =Yut1 — Y-

Note that A is symmetric, with the advantage of saving computer storage.
A comment is in order on the restriction that the n X p matrix £ have rank p. We

consider whether the matrix {—I(()T ’(? } is singular, if K'is n X n and positive definite
while € is n X p but of rank 7 — 1 (or less). The matrix is singular if, and only if,
-K 20

B incl 2 0 ] is singular. But this new matrix is singular if, and only if, there

exists a nontrivial vector whose product with this matrix vanishes. This is simply the
condition that there exist a nonzero p X 1 vector x for which Q7K ~'Qx =0. Such a
vector exists since Q"K~'Q at most has rank 7 — 1. It follows that [}éT 700 } is
singular if {2 has rank less than p.

Next consider the matrix {f;r :I:}K] in which the bulk modulus is a very large

positive number (for near-incompressibility). Again € has rank 7 — 1. The matrix
cannot be singular since only the zero vector satisfies [QTK’IQ +I,/ K]x = 0. The
smallest eigenvalue of this latter matrix is 1/«, which is a very small number. But the
condition number of this matrix is k 52211;( [A; (QK’IQT)] + 1, and will typically be a

very large number for near-incompressible materials. Consequently, if €2 has rank
p — 1 (or less), the matrix is expected to be ill-conditioned and convergence will be
very difficult to achieve.

18.3.3 Uzawa’s METHOD

To explain Uzawa’s method we follow the development in Zienkiewicz and Taylor
(1989) for the case in which

C{;’r}z{g} C:{_I& _09} (18.52)

There is an extensive and continuing literature on the Uzawa method (Hu and Zou,
2001).
The term % is subtracted from both sides to furnish

K -Q7(y f
o i 559
p p
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The Uzawa method is realized as the iteration scheme

v j+1 f . K -0
B{w} =q @, B= _o’ I (18.54)
p p

in which p > 0 is an acceleration parameter. Successive iterates of  satisfy
1, + p Q' K'Q|n/! =@/ — pQ'K'f (18.55)

in which the superscript is a counter for the iterate.

This sequence converges if the maximum eigenvalue of [I, + pQTK’IQ]’1 is
less than unity. But note that Q”K '€ is positive definite and of rank p. Hence the
eigenvalues of [Ip + pQTK’IQ] all exceed unity. It follows that the eigenvalues of

11! Lo . .
[I,, +pQ'K I.Q} are less than unity, implying convergence. This scheme repre-
sents ““fixed point iteration,” for which the convergence rate is linear.

We note that B can be triangularized using complex variables as follows:

(18.56)

L 0o]|LT -L'Q
—Q'LT || 0 ik WW]
LLT =K, i=+v-1,

and W is obtained by solving the linear system LW = () using forward substitution.
The triangularization is only performed once in linear problems. Forward and
backward substitution then are repeated at each iteration to attain the solution. In

particular, the decomposition is used
LT —L_IQ ﬁyj“"l z{+l
1, . = .
0 [ﬁ n WTW} it 4

L 0] (=" f
_QTLfT in zé'Jrl _7771 ’

(18.57a)

followed by readily performed operations on block submatrices:
Lz{+1 =f forward substitution (18.57b)
zé“ =i %j — iQTL’Tz{+1 backward substitution (18.57¢)

i[% + WTW] it = zf’l p X p triangularization (18.57d)

L7y = 2" 4 L7'Qm/™!"  backward substitution (18.57e)

Note that [IF’ + WTW} in Equation 18.57d is positive definite, so that Cholesky

decomposition using real mathematics applicable.
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We note that it is also problematic for the Uzawa method if the rank of €
equals p — 1 (or less). Recall from Equation 18.54 the convergence criterion that
the eigenvalues of [Il,,+p!)TK71£)]71 must be less than unity. However, if rank
Q=p—1, Q'K'Q is singular (rank less than p) and [I, + pQ'K'Q] " has an
eigenvalue equal to unity. Consequently, convergence will not occur. (The existence
of a difficulty is not surprising since the matrix in Equation 18.52 is singular if
rank () < p.)

18.3.4 MODIFICATION TO AvOID ITERATION

A simple modification to the Uzawa method is introduced which furnishes solution
without iteration while using real mathematics. Returning to the incremental finite
element formulation, Equation 18.50 may be rewritten in the equivalent form

C{ An+1'Y} _ {An+lg}’ C—
An+l1T 0
Note that the sign of the lower row in the matrix has been changed. This forfeits the
symmetry of the matrix (which has no real significance for computer storage), but
will prove to permit a non-iterative solution based on triangularization of positive
definite submatrices (and real number operations).

Observe that block triangular factorization in Equation 18.58 furnishes

(18.58)

ol

M+§K('Yn) _hZZQ‘|

2ol n
7 Q 2

I
K

T —1 12
LS —L; %Q
T r*ywT Pl
0 TW W+7f

M+%Ky,) -50] [ L 0
%QT %l %QTL;T L

'l
LLT =M + £ K(y,)

(18.59)

The solution is attained by the following decomposition and readily performed
operations of block submatrices.

{ L, 0]{An+1z1 } _ {An+1g}
PO'LT L] Az 0

18.60
L L% {Amv}{AnHzl} (18.60)
An+1’ﬂ' An+1Z2

T hwT Pl
0 7WW+7;

LsAn+lzl = An+1g

T
w=L A,z

An+112 = —EQ w
LW =0
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forward substitution

backward substitution

forward substitution



4 2
[%WTW —|—% [,/ K} A,y = A, 12, triangularization

2
LSTA,,HY =Nz + %WA,,_H’IT backward substitution

This solution procedure is enabled by the fact that [%WTW +1,/ K} is positive
definite and hence can be triangularized.

It is worth noting that a non-iterative solution can be achieved using the
symmetric form in the Uzawa method (Equation 18.54), following the procedure
presented in Equation 18.57 involving complex numbers.

EXAMPLE 18.8

Demonstrate that the method works in the following example.
Consider a single element model for an incompressible isotropic elastic rod, shown
in Figure 18.2. The rod is of length L with a square Y by Y cross section, and A = ¥?,
Shear modulus is u. Interpolation models are assumed in the form

u(x) = xu(L)/L, v(y) =w(y) =yv(Y)/Y, p = po(constant)

Omitting the details, the Principle of Virtual Work together with the variational form
of the incompressibility constraint may be readily shown to furnish

w0 A u(L) f
4uAL —

0 AL _oaL|w(y) 3 =40

A 24 Po 0

This equation was encountered and solved in Chapter 11. Simple manipulation
following the foregoing procedures furnishes f = % This is the exact answer for
incompressible isotropic linear elasticity, since the Young’s modulus E in this case

satisfies u = ﬁ, and the Poisson’s ratio v equals 1/2.

FIGURE 18.2 Rod of incompressible elastic material.
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