


FINITE
ELEMENT
ANALYSIS

Second Ed i t ion

Thermomechanics
of Solids

� 2008 by Taylor & Francis Group, LLC.



� 2008 by Taylor & Francis Group, LLC.



CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton   London   New York

FINITE
ELEMENT
ANALYSIS

Second Ed i t ion

Thermomechanics
of Solids

David W. Nicholson

� 2008 by Taylor & Francis Group, LLC.



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2008 by Taylor & Francis Group, LLC 
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4200-5095-0 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted 
material is quoted with permission, and sources are indicated. A wide variety of references are 
listed. Reasonable efforts have been made to publish reliable data and information, but the author 
and the publisher cannot assume responsibility for the validity of all materials or for the conse-
quences of their use. 

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information 
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that 
provides licenses and registration for a variety of users. For organizations that have been granted a 
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and 
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Nicholson, D. W.
Finite element analysis : thermomechanics of solids / by David W. Nicholson. 

-- 2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-1-4200-5095-0
ISBN-10: 1-4200-5095-8
1. Thermal stresses--Mathematical models. 2. Finite element method. I. Title. 

TA418.58.N53 2008
620.1’121--dc22 2007042632

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

� 2008 by Taylor & Francis Group, LLC.



Dedication
� 2008 by Taylor & Francis Group, LLC.
To Linda and Mike,
with the deepest love



� 2008 by Taylor & Francis Group, LLC.



Contents
Preface to the Second Edition
Preface to the First Edition
Author
Acknowledgments

Chapter 1 Introduction to the Finite Element Method
1.1 Introduction
1.2 Overview of the Finite Element Method
1.3 Mesh Development

Chapter 2 Mathematical Foundations: Vectors and Matrices
2.1 Introduction

2.1.1 Range and Summation Convention
2.1.2 Substitution Operator

2.2 Vectors
2.2.1 Notation: Scalar and Vector Products
2.2.2 Gradient, Divergence, and Curl in Rectilinear Coordinates

2.3 Matrices
2.4 Eigenvalues and Eigenvectors
2.5 Coordinate Transformations

2.5.1 Transformations of Vectors
2.6 Orthogonal Curvilinear Coordinates
2.7 Gradient Operator in Orthogonal Coordinates
2.8 Divergence and Curl of Vectors in Orthogonal Coordinates
2.9 Appendix I: Divergence and Curl of Vectors in Orthogonal Curvilinear

Coordinates

Chapter 3 Mathematical Foundations: Tensors
3.1 Tensors
3.2 Divergence of a Tensor
3.3 Invariants
3.4 Positive Definiteness
3.5 Polar Decomposition Theorem
3.6 Kronecker Products of Tensors

3.6.1 VEC Operator and the Kronecker Product
3.6.2 Fundamental Relations for Kronecker Products
3.6.3 Eigenstructures of Kronecker Products
3.6.4 Kronecker Form of Quadratic Products
3.6.5 Kronecker Product Operators for Fourth-Order Tensors
� 2008 by Taylor & Francis Group, LLC.



3.6.6 Transformation Properties of VEC, TEN22, TEN21, and TEN12
3.6.7 Kronecker Expressions for Symmetry Classes in Fourth-Order

Tensors
3.6.8 Differentials of Tensor Invariants

3.7 Examples

Chapter 4 Introduction to Variational Methods
4.1 Introductory Notions
4.2 Properties of the Variational Operator d
4.3 Example: Variational Equation for a Cantilevered

Elastic Rod
4.4 Higher Order Variations
4.5 Examples

Chapter 5 Fundamental Notions of Linear Solid Mechanics
5.1 Displacement Vector
5.2 Linear Strain and Rotation Tensors
5.3 Examples of Linear Strain and Rotation Tensors
5.4 Traction and Stress
5.5 Equilibrium
5.6 Stress and Strain Transformations
5.7 Principal Stresses and Strains
5.8 Stress–Strain Relations
5.9 Principle of Virtual Work in Linear Elasticity

Chapter 6 Thermal and Thermomechanical Response
6.1 Balance of Energy and Production of Entropy

6.1.1 Balance of Energy
6.1.2 Entropy Production Inequality
6.1.3 Thermodynamic Potentials in Reversible Processes

6.2 Classical Coupled Linear Thermoelasticity
6.3 Thermal and Thermomechanical Analogs of the Principle of Virtual

Work and Associated Finite Element Equations
6.3.1 Conductive Heat Transfer
6.3.2 Coupled Linear Isotropic Thermoelasticity

Chapter 7 One-Dimensional Elastic Elements
7.1 Interpolation Models for One-Dimensional Elements

7.1.1 Rods
7.1.2 Beams
7.1.3 Beam-Columns

7.2 Strain–Displacement Relations in One-Dimensional Elements
7.3 Stress–Strain Relations in One-Dimensional Elements

7.3.1 General
7.3.2 One-Dimensional Members
� 2008 by Taylor & Francis Group, LLC.



7.4 Element Stiffness and Mass Matrices from the Principle
of Virtual Work
7.4.1 Single-Element Model for Dynamic Response

of a Built-in Beam
7.5 Integral Evaluation by Gaussian Quadrature: Natural Coordinates
7.6 Unconstrained Rod Elements
7.7 Unconstrained Elements for Beams and Beam-Columns
7.8 Assemblage and Imposition of Constraints

7.8.1 Rods
7.8.2 Beams

7.9 Damping in Rods and Beams
7.10 General Discussion of Assemblage
7.11 General Discussion on the Imposition of Constraints
7.12 Inverse Variational Method

Chapter 8 Two- and Three-Dimensional Elements in Linear Elasticity
and Linear Conductive Heat Transfer

8.1 Interpolation Models in Two Dimensions
8.1.1 Membrane Plate
8.1.2 Plate with Bending Stresses Only
8.1.3 Plate with Stretching and Bending
8.1.4 Temperature Field in Two Dimensions
8.1.5 Axisymmetric Elements

8.2 Interpolation Models in Three Dimensions
8.3 Strain–Displacement Relations and Thermal Analogs

8.3.1 Strain–Displacement Relations: Two Dimensions
8.3.2 Axisymmetric Element
8.3.3 Thermal Analog for Two-Dimensional and Axisymmetric

Elements
8.3.4 Three-Dimensional Elements
8.3.5 Thermal Analog in Three Dimensions

8.4 Stress–Strain Relations
8.4.1 Two-Dimensional Elements
� 2008 by Taylor &
8.4.1.1 Membrane Response
8.4.1.2 Two-Dimensional Members: Bending Response

of Thin Plates
8.4.1.3 Element for Plate with Membrane and Bending

Response

8.4.2 Axisymmetric Element
8.4.3 Three-Dimensional Element
8.4.4 Elements for Conductive Heat Transfer

8.5 Stiffness and Mass Matrices and Their Thermal Analogs
8.6 Thermal Counterpart of the Principle of Virtual Work
8.7 Conversion to Natural Coordinates in Two and Three Dimensions
8.8 Assembly of Two- and Three-Dimensional Elements
Francis Group, LLC.



Chapter 9 Solution Methods for Linear Problems: I
9.1 Numerical Methods in FEA

9.1.1 Solving the Finite Element Equations: Static Problems
9.1.2 Matrix Triangularization and Solution of Linear Systems
9.1.3 Triangularization of Asymmetric Matrices

9.2 Time Integration: Stability and Accuracy
9.3 Properties of the Trapezoidal Rule
9.4 Integral Evaluation by Gaussian Quadrature
9.5 Modal Analysis by FEA

9.5.1 Modal Decomposition
9.5.2 Comments on Eigenstructure Computation in Large Finite

Element Systems

Chapter 10 Solution Methods for Linear Problems: II
10.1 Introduction
10.2 Solution Method for an Inverse Problem

10.2.1 Inverse Problem in Elasticity
10.2.2 Existence of a Unique Solution
10.2.3 Nonsingularity Test

10.3 Accelerated Eigenstructure Computation in FEA
10.3.1 Introduction
10.3.2 Problem Statement
10.3.3 Hypersphere Path of Steepest Descent
10.3.4 Hypercircle Search
10.3.5 Eigenvalue Replacement Procedure
10.3.6 Example: Minimum Eigenvalue of the 33 3 Hilbert Matrix

10.4 Fourth-Order Time Integration
10.4.1 Introduction
10.4.2 Error Growth in the Newmark Method
� 2008 by Taylor &
10.4.2.1 Undamped Free Vibration

10.4.3 Adams–Moulton Formula
10.4.4 Stepwise and Cumulative Error in the Adams–Moulton

Method
10.4.5 Stability Limit on Time Step in the Adams–Moulton Method
10.4.6 Introducing Numerical Damping into the Adams–Moulton

Method
10.4.7 AMX: Adams–Moulton Method Applied to Systems

with Acceleration
10.4.8 Comments on Filtering to Remove High-Order Modes

Chapter 11 Additional Topics in Linear Thermoelastic Systems
11.1 Transient Conductive Heat Transfer in Linear Media

11.1.1 Finite Element Equation
11.1.2 Direct Integration by the Trapezoidal Rule
11.1.3 Modal Analysis in Linear Thermoelasticity
Francis Group, LLC.



11.2 Coupled Linear Thermoelasticity
11.2.1 Finite Element Equation
11.2.2 Thermoelasticity in an Elastic Conductor

11.3 Incompressible Elastic Media
11.4 Torsion of Prismatic Bars

11.4.1 Basic Relations
11.5 Buckling of Elastic Beams and Plates

11.5.1 Euler Buckling of Beam Columns
� 2008 by Taylor &
11.5.1.1 Static Buckling
11.5.1.2 Dynamic Buckling
11.5.2 Euler Buckling of Plates
11.6 Introduction to Contact Problems

11.6.1 Gap
11.6.2 Point-to-Point Contact
11.6.3 Point-to-Surface Contact

Chapter 12 Rotating and Unrestrained Elastic Bodies
12.1 Finite Elements in Rotation

12.1.1 Angular Velocity and Angular Acceleration Vectors
12.1.2 Velocity and Acceleration in Rotating Coordinates

12.2 Critical Speeds in Shaft Rotor Systems
12.3 Finite Element Analysis for Unconstrained Elastic Bodies

12.3.1 Body Axes
12.3.2 Euler Equations of a Rigid Body
12.3.3 Variational Equations of an Unconstrained Elastic Body
12.3.4 Principle of Virtual Work in Body Coordinates
12.3.5 Numerical Determination of the Current Position

of the Body Axes
12.4 Appendix: Angular Velocity Vector

in Spherical Coordinates

Chapter 13 Aspects of Nonlinear Continuum Thermomechanics
13.1 Introduction
13.2 Nonlinear Kinematics of Deformation

13.2.1 Deformation Gradient Tensor
13.2.2 Lagrangian Strain Tensor
13.2.3 Velocity Gradient Tensor, Deformation Rate Tensor,

and Spin Tensor
13.2.4 Differential Volume Element
13.2.5 Differential Surface Element

13.3 Mechanical Equilibrium and the Principle of Virtual Work
13.3.1 Traction Vector and Stress Tensors
13.3.2 Stress Flux
13.3.3 Balance of Mass, Linear Momentum, and Angular

Momentum
Francis Group, LLC.



13.4 Principle of Virtual Work under Large Deformation
13.5 Nonlinear Stress–Strain–Temperature Relations: The Isothermal

Tangent Modulus Tensor
13.5.1 Classical Elasticity
13.5.2 Compressible Hyperelastic Materials
13.5.3 Incompressible and Near-Incompressible Hyperelastic

Materials
� 2008 by Taylor &
13.5.3.1 Incompressibility
13.5.3.2 Near-Incompressibility
13.5.4 Nonlinear Materials at Large Deformation

Chapter 14 Introduction to Nonlinear FEA
14.1 Introduction
14.2 Types of Nonlinearity
14.3 Newton Iteration
14.4 Combined Incremental and Iterative Methods:

A Simple Example
14.5 Finite Stretching of a Rubber Rod under Gravity

14.5.1 Model Problem
14.5.2 Nonlinear Strain–Displacement Relations
14.5.3 Stress and Tangent Modulus Relations
14.5.4 Incremental Equilibrium Relation
14.5.5 Single Element Built-in at One End
14.5.6 On Numerical Solution by Newton Iteration
14.5.7 Assembled Stiffness Matrix for a Two-Element Model

of the Rubber Rod under Gravity
14.6 Newton Iteration near a Critical Point
14.7 Introduction to the Arc Length Method

Chapter 15 Incremental Principle of Virtual Work
15.1 Incremental Kinematics
15.2 Stress Increments
15.3 Incremental Equation of Balance

of Linear Momentum
15.4 Incremental Principle of Virtual Work
15.5 Incremental Finite Element Equation
15.6 Contributions from Nonlinear Boundary Conditions
15.7 Effect of Variable Contact
15.8 Interpretation as Newton Iteration
15.9 Buckling

Chapter 16 Tangent Modulus Tensors for Thermomechanical
Response of Elastomers

16.1 Introduction
16.2 Compressible Elastomers
Francis Group, LLC.



16.3 Incompressible and Near-Incompressible Elastomers
16.3.1 Examples of Expressions for the Helmholtz Potential
� 2008 by Taylor &
16.3.1.1 Invariant-Based Incompressible Models:
Isothermal Problems

16.3.1.2 Invariant-Based Models for Compressible
Elastomers under Isothermal Conditions

16.3.1.3 Thermomechanical Behavior under
Non-Isothermal Conditions
16.4 Stretch-Ratio-Based Models: Isothermal Conditions
16.5 Extension to Thermohyperelastic Materials
16.6 Thermomechanics of Damped Elastomers

16.6.1 Balance of Energy
16.6.2 Entropy Production Inequality
16.6.3 Dissipation Potential
16.6.4 Thermal Field Equation for Damped Elastomers

16.7 Constitutive Model in Thermoviscohyperelasticity
16.7.1 Helmholtz Free Energy Density
16.7.2 Dissipation Potential

16.8 Variational Principles and Finite Element Equations
for Thermoviscohyperelastic Materials
16.8.1 Mechanical Equilibrium
16.8.2 Thermal Equilibrium Equation

Chapter 17 Tangent Modulus Tensors for Inelastic
and Thermoinelastic Materials

17.1 Plasticity
17.2 Tangent Modulus Tensor in Small Strain Isothermal Plasticity
17.3 Plasticity under Finite Strain

17.3.1 Kinematics
17.3.2 Plasticity

17.4 Thermoplasticity
17.4.1 Balance of Energy
17.4.2 Entropy Production Inequality
17.4.3 Dissipation Potential
17.4.4 Thermoinelastic Tangent Modulus Tensor

17.5 Tangent Modulus Tensor in Viscoplasticity
17.5.1 Mechanical Field
17.5.2 Thermoinelasticity: Thermal Field

17.6 Continuum Damage Mechanics

Chapter 18 Selected Advanced Numerical Methods in FEA
18.1 Iterative Triangularization of Perturbed Matrices

18.1.1 Introduction
18.1.2 Incremental Finite Element Equation
18.1.3 Iterative Triangularization Procedure
Francis Group, LLC.



18.2 Stiff Arc Length Constraint in Nonlinear FEA
18.2.1 Introduction
18.2.2 Newton Iteration for Nonlinear Finite Element Equations
18.2.3 Newton Iteration without Arc Length Constraint
18.2.4 Arc Length Method
18.2.5 Stiff Arc Length Constraint
� 2008 by Taylor &
18.2.5.1 Stiffness of K*
18.2.5.2 Arc Length Vector Which Maximizes Stiffness:

Examples
18.2.5.3 Arc Length Vector Which Maximizes Stiffness:

General Argument
18.2.5.4 Numerical Determination of the Optimal Arc

Length Vector

18.2.6 Solution Procedure
18.2.6.1 Block Triangularization
18.2.6.2 Solution of the Outer Problem
18.2.6.3 Solution of the Inner Problem
18.3 Non-Iterative Solution of Finite Element Equations
in Incompressible Solids
18.3.1 Introduction
18.3.2 Finite Element Equation for an Incompressible Medium
18.3.3 Uzawa’s Method
18.3.4 Modification to Avoid Iteration

References
Francis Group, LLC.



Preface to the Second Edition
The first edition of Finite Element Analysis: Thermomechanics of Solids was
intended to give a unified but very concise presentation of the finite element method
applied to thermomechanics of solids, together with supporting mathematics and
continuum mechanics. Of necessity the presentation was selective, attempting to
include selected important results while remaining concise and focused on the unity
of the method. Coverage was provided on variational and incremental variational
principles ensuing from mechanical and thermal field equations and from internal
constraints, together with their realization in element formulations. Emphasis was
placed on the role of tensors, to which end Kronecker product notation was used
throughout. The scope embraced mechanical, thermal, and coupled thermomechani-
cal problems; compressible, incompressible, and near-incompressible materials;
static and dynamic problems as well as rotational effects; linear problems as well
as problems with material, geometric, and boundary condition nonlinearity; and
important numerical methods.

The second edition is nearly 170% as long as the first. It is intended to achieve
greater integration and balance between introductory and advanced levels, with
many more fully solved examples and with advanced materials more concentrated
in the latter portion of the monograph. Of course there are a number of worthy topics
that have not been possible to include, for example, meshless methods and reduced
integration. New coverage includes selected developments in numerical methods,
detailing accelerated computations in eigenstructure extraction, time integration, and
stiffness matrix triangularization. There is a much more extensive coverage of the arc
length method for nonlinear problems. The treatment of rotating bodies and of
buckling has been significantly expanded and enhanced. As in the first edition,
the intent still has been on presenting and explicating topics in a way that shows
the highly unified structure of the finite element method.

The preface to the first edition listed monographs that have excellent coverage of
many topics not addressed or done justice to. Since then the author has become
familiar with two additional monographs that the reader may find beneficial: M.A.
Crisfield (1991) and J.N. Reddy (2004).

The finite element method has matured to a point that it can accurately and
reliably be used, by a careful analyst, for an amazingly wide range of applications.
Nonlinear problems with nonlinearities due to geometry, material properties, or
boundary conditions such as contact are in many cases accessible to analysis.
Problems with instabilities, such as buckling, can be treated. Dynamic problems
can be solved, with the caution that eigenvalues and eigenvectors beyond the lowest
few natural frequencies should be viewed with skepticism. Enormous progress has
been made of the vexatious problem of sliding contact. Several areas in which
additional progress would be welcome include more accurate treatment of singular-
ities such as occurring at corners, and integrated rather than staggered treatments of
� 2008 by Taylor & Francis Group, LLC.



mixed field problems. The impact of FEA will accelerate as integration with computer-
aided design and solid modeling systems progresses and as algorithmic and compu-
tational resources permit ‘‘attacking’’ ever more complex and larger-scale applications
while insisting on high resolution.
� 2008 by Taylor & Francis Group, LLC.



Preface to the First Edition
Thousands of engineers use finite element codes such as ANSYS for thermomecha-
nical and nonlinear applications. Most academic departments offering advanced
degrees in mechanical engineering, civil engineering and aerospace engineering
offer a first course in the finite element method, and by now almost undergraduates
of such programs have some exposure to the finite element method. A number of
departments offer a second course. It is hoped that the current monograph will appeal
to instructors of such courses. Of course it hopefully will also be helpful to engineers
engaged in self-study on nonlinear and thermomechanical finite element analysis.

The principles of the finite element method are presented for application to the
mechanical, thermal and thermomechanical response, both static and dynamic, of
linear and nonlinear solids. It is intended to provide an integrated treatment of

. basic principles, material models and contact models (for example linear
elasticity, hyperelasticity and thermohyperelasticity)

. computational, numerical and software design aspects (such as finite ele-
ment data structures)

. modeling principles and strategies (including mesh design)

The text is designed for a second course, as a reference work and for self study.
Familiarity is assumed with the finite element method at the level of a first graduate
or advanced undergraduate course.

A first course in the finite element method, for which many excellent books are
available, barely succeeds in covering static linear elasticity and linear heat transfer.
There is virtually no exposure to nonlinear methods, which are considered topics for
a second course. Nor is there much emphasis on coupled thermomechanical prob-
lems. However, it is believed that many engineers would benefit from a monograph
culminating in nonlinear problems and the associated continuum thermomechanics.
Such as text may be used in a formal class or for self study. Many important
applications have significant nonlinearity, making nonlinear finite element modeling
necessary. As a few examples we mention polymer processing, metalforming, rubber
components such as tires and seals, biomechanics and crashworthiness. Many
applications combine thermal and mechanical response, such as rubber seals in hot
engines. Engineers coping with such applications have access to powerful finite
element codes and computers. But they often lack and urgently need an in-depth but
compact exposition of the finite element method, providing a foundation for address-
ing problems. It is hoped the current monograph fills this need.

Of necessity a selection to topics has been made and topics are given coverage
proportional to the author’s sense of their importance to the understanding of the
reader. Topics have been selected with the intent of giving a unified and complete
but still compact and tractable presentations. Several other excellent texts and
� 2008 by Taylor & Francis Group, LLC.



monographs have appeared over the years, from which the author has benefited. Four
previous texts to which the author is indebted are:

1. Zienkiewicz and Taylor, The Finite Element Method Vols 1,2, McGraw-
Hill, 1989.

2. Kleiber, M., Incremental Finite Element Modeling in Nonlinear Solid
Mechanics, Ellis Horwood, Ltd, 1989.

3. Bonet, J. and Wood, R.D., Nonlinear Continuum Mechanics for Finite
Element Analysis, Cambridge University Press, 1997.

4. Belytschko, T., Lui, W.K, and Moran, B., Nonlinear Finite Elements for
Continua and Structures, J. Wiley and Sons, 2000.

The current monograph has the following characteristics:

1. emphasis on use of Kronecker product notation instead of tensor, tensor-
indicial, Voigt, or traditional finite element matrix–vector notation;

2. emphasis on integrated and coupled thermal and mechanical effects;
3. inclusion of elasticity, hyperelasticity, plasticity and viscoelasticity with

thermal effects;
4. inclusion of nonlinear boundary conditions, including contact, in an inte-

grated incremental variational formulation.

Regarding (1) Kronecker product algebra (KPA) has been widely used in control
theory for many years (Graham, (1982)). It is very compact and satisfies very simple
rules: for example the inverse of a Kronecker product of two nonsingular matrices is
the Kronecker product of the inverses. Recently a number of extensions of KPA have
been introduced and shown to permit compact expressions for otherwise elaborate
quantities in continuum and computational mechanics. Examples include:

1. compact expressions for the tangent modulus tensors in hyperelasticity
(invariant based and stretch-based; compressible, incompressible and
near-incompressible), thermohyperelasticity and finite strain plasticity;

2. a general, compact expression for the tangent stiffness matrix in nonlinear
FEA, including nonlinear boundary conditions such as contact.

KPA with recent extensions can completely replace other notations in most cases
of interest here. In the experience of the author, students experience little difficulty in
gaining a command of it.

The first three chapters concern mathematical foundations, and Kronecker product
notation for tensors is introduced. The next four chapters cover relevant linear and
nonlinear continuum thermomechanics, to enable a unified account of the finite element
method. Chapters 8 through 15 represent a compact presentation of the finite
element method in linear elastic, thermal and thermomechanical media, including
solutionmethods. The final five chapters address nonlinear problems, based on a unified
set of incremental variational principles. Material nonlinearity is treated, as is geometric
nonlinearity and nonlinearity due to boundary conditions. Several numerical issues in
nonlinear analysis are discussed, such as iterative triangularization of stiffness matrices.
� 2008 by Taylor & Francis Group, LLC.
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1 Introduction to the Finite
Element Method
� 2008 by Taylor & Fra
1.1 INTRODUCTION

This monograph is intended to present a concise and unified two-part treatment of
finite element analysis (FEA) in thermomechanics. The first part encompasses topics
typically found in a first course in FEA. Included are elementary mathematical
foundations, an introduction to linear variational principles, the stiffness and mass
matrices in linear mechanical and thermal elements, assemblage, eigenstructure
determination, and numerical procedures. The second part continues into topics
which are appropriate for a second course in FEA. It addresses nonlinearity due to
material behavior, geometry and boundary conditions, as well as associated
advanced mathematical and numerical topics, incremental variational principles
including thermal effects and incompressibility constraints, and accommodation of
hyperelasticity, plasticity, viscoplasticity, and damage mechanics.

In thermomechanical analysis of members and structures, FEA is an essential
resource for computing displacement and temperature fields from known applied
loads and heat fluxes. FEA has emerged in recent decades as critical to mechanical
and structural designers. Its use is often mandated by standards such as the ASME
Pressure Vessel Code, by insurance requirements, and even by law. Its pervasiveness
has been promoted by rapid progress in related computer hardware and software,
especially computer-aided design (CAD) systems. A large number of comprehensive
‘‘user friendly’’ finite element codes are available commercially.

In FEA practice, a design file developed using a CAD system is often
‘‘imported’’ into finite element codes, from which point little or no additional effort
often suffices to develop the finite element model consisting of a mesh together with
material, constraint, boundary condition, and initial value data. The model is com-
municated to an analysis module to perform sophisticated thermomechanical analy-
sis and simulation. CAD integrated with an analysis tool such as FEA is an example
of computer-aided engineering (CAE). CAE possesses the potential of identifying
design problems and improvements much more efficiently, rapidly, and ‘‘cost-
effectively’’ than purely by ‘‘trial and error.’’

A major FEA application is the determination of stresses and temperatures in
a component or member in locations where failure is thought most likely. If
the stresses or temperatures exceed allowable or safe values, the product can
be redesigned and then reanalyzed. Analysis can also be diagnostic, supporting
ncis Group, LLC.



interpretation of product failure data. Analysis can be used to assess performance, for
example, by determining whether the design stiffness coefficient for a rubber spring
is attained. FEA can serve to minimize weight and cost without loss of structural
integrity or reliability.

1.2 OVERVIEW OF THE FINITE ELEMENT METHOD

Consider a thermoelastic body with force and heat applied to its exterior boundary.
The finite element method serves to determine the displacement vector u(X, t) and
the temperature T(X, t) as functions of the undeformed position X and time t. The
process of creating a finite element model to support design of a mechanical system
may be viewed as having (at least) eight steps:

1. The body is first discretized, i.e., it is modeled as a mesh of finite elements
connected at nodes.

2. Within each element interpolation models are introduced to provide
approximate expressions for the unknowns, typically u(X, t) and T(X, t),
in terms of their nodal values, which now become the unknowns in the
finite element model.

3. The strain–displacement relation and its thermal analog are applied to the
approximations for u and T to furnish approximations for the (Lagrangian)
strain and the thermal gradient.

4. The stress–strain relation and its thermal analog (Fourier’s Law) are applied
to obtain approximations to stress S and heat flux q in terms of the nodal
values of u and T.

5. Equilibrium principles in variational form are applied using the various
approximations within each element, leading to element equilibrium equa-
tions.

6. The element equilibrium equations are assembled to provide a global
equilibrium equation.

7. Prescribed kinematic and temperature conditions on the boundaries (con-
straints) are applied to the global equilibrium equations, thereby reducing
the number of degrees of freedom and eliminating ‘‘rigid body’’ modes.

8. The resulting global equilibrium equations are then solved using computer
algorithms.

The output is postprocessed. Initially the output should be compared to data or
benchmarks or otherwise validated, to establish that the model correctly represents
the underlying mechanical system. If not satisfied, the analyst may revise the
finite element model and repeat the computations. When the model is validated,
postprocessing, with heavy reliance on graphics, serves to interpret the results, for
example, determining whether the underlying design is satisfactory. If problems with
the design are identified, the analyst may then choose to revise the design. The
revised design is then modeled, and the process of validation and interpretation is
repeated.
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1.3 MESH DEVELOPMENT

Finite element simulation has classically been viewed as having three stages: pre-
processing, analysis, and postprocessing. The input file developed at the preproces-
sing stage consists of several elements:

1. Control information (type of analysis, etc.)
2. Material properties (e.g., elastic modulus)
3. Mesh (element types, nodal coordinates, connectivities)
4. Applied force and heat flux data
5. Supports and constraints (e.g., prescribed displacements)
6. Initial conditions (dynamic problems)

In problems without severe stress concentrations, much of the mesh data can
be developed conveniently using automatic mesh generation. With the input file
developed, the analysis processor is activated. ‘‘Raw’’ output files are generated.
The postprocessor module typically contains (interfaces to) graphical utilities, facili-
tating display of output in the form chosen by the analyst, for example, contours of
the Von Mises stress. Two problems arise at this stage: validation and interpretation.
The analyst may use benchmark solutions, special cases, or experimental data to
validate the analysis. With validation, the analyst gains confidence in, say, the mesh.
He=she still may face problems of interpretation, particularly if the output is volu-
minous. Fortunately, current graphical display systems make interpretation easier
and more reliable, such as by displaying high stress regions in vivid colors. Post-
processors often allow the analyst to ‘‘zoom in’’ on regions of high interest, for
example, where rubber is highly confined. More recent methods based on virtual
reality technology enable the analyst to ‘‘fly through’’ and otherwise become
immersed in the model.

The goal of mesh design is to select the number and location of finite element
nodes and element types so that the associated analyses are sufficiently accurate.
Several methods include automatic mesh generation with adaptive capabilities which
serve to produce and iteratively refine the mesh, based on a user-selected error
tolerance. Even so, satisfactory meshes are not necessarily obtained, so that model
editing by the analyst may be necessary. Several practical rules are given below:

1. Nodes should be located where concentrated loads and heat fluxes are
applied.

2. Nodes should be located where displacements and temperatures are con-
strained or prescribed in a concentrated manner, for example, where ‘‘pins’’
prevent movement.

3. Nodes should be located where concentrated springs and masses and their
thermal analogues are present.

4. Nodes should be located along lines and surface patches over which
pressures, shear stresses, compliant foundations, distributed heat fluxes,
and surface convection are applied.
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5. Nodes should be located at boundary points where the applied tractions and
heat fluxes experience discontinuities.

6. Nodes should be located along lines of symmetry.
7. Nodes should be located along interfaces between different materials or

components.
8. Element aspect ratios (ratio of largest to smallest element dimensions)

should be no greater than, say, five.
9. Symmetric configurations should have symmetric meshes.

10. The density of elements should be greater in domains with high gradients.
11. Interior angles in elements should not be excessively acute or obtuse, for

example, less than 458 or greater than 1358.
12. Element density variations should be gradual rather than abrupt.
13. Meshes should be uniform in subdomains with low gradients.
14. Element orientations should be staggered to prevent ‘‘bias.’’

In modeling a configuration, a good practice is initially to develop the mesh locally
in domains expected to have high gradients, and thereafter to develop the mesh in
the intervening low gradient domains, thereby ‘‘reconciling’’ the high gradient
domains. There are two classes of errors in FEA:

Modeling error ensues from inaccuracies in such input data as the material proper-
ties, boundary conditions, and initial values. In addition, there often are compromises
in the mesh, for example, modeling sharp corners as rounded.

Numerical error is primarily due to truncation and roundoff. As a practical matter,
error in a finite element simulation is often assessed by comparing solutions from
two meshes, the second of which is a refinement of the first.

The sensitivity of finite element computations to error is to some extent controllable.
If the condition number of the stiffness matrix (the ratio of the maximum to the
minimum eigenvalue) is modest, sensitivity is reduced. Typically, the condition
number increases rapidly as the number of nodes in a system grows. In addition,
highly irregular meshes tend to produce high condition numbers. Models mixing soft
components, for example, made of rubber, with stiff components, such as steel
plates, are also likely to have high condition numbers. Where possible, the model
should be designed to reduce the condition number.
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2 Mathematical
Foundations:
� 2008 by Taylor & Fra
Vectors and Matrices
2.1 INTRODUCTION

This chapter gives a review of mathematical relations which will prove to be useful in
the subsequent chapters. A more complete development is given in Chandrasekharaiah
and Debnath (1994).
2.1.1 RANGE AND SUMMATION CONVENTION

Unless otherwise noted, repeated Latin indices will imply summation over the range
1 to 3. For example,

aibi ¼
X3
i¼ 1

aibi ¼ a1b1 þ a2b2 þ a3b3 (2:1)

aijbjk ¼ ai1b1k þ ai2b2k þ ai3b3k (2:2)

The repeated index is ‘‘summed out’’ and therefore ‘‘dummy’’. The quantity aijbjk in
Equation 2.2 has two free indices i and k (and later will be shown to be the ikth entry
of a second-order tensor). Note that Greek indices do not imply summation. Thus
aaba¼ a1b1 if a¼ 1.
2.1.2 SUBSTITUTION OPERATOR

The quantity dij, later to be called the Kronecker tensor, has the property that

dij ¼
1, i ¼ j

0, i 6¼ j

(
(2:3)

For example, dijvj¼ 13 vi, thereby illustrating the substitution property.
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2.2 VECTORS

2.2.1 NOTATION: SCALAR AND VECTOR PRODUCTS

Throughout this and the following chapters, orthogonal coordinate systems will be
used. Figure 2.1 shows such a system, with base vectors e1, e2, and e3. The scalar
product of vector analysis satisfies

ei � ej ¼ dij (2:4)

The vector product satisfies

ei � ej ¼
ek , i 6¼ j and ijk in right-handed order

�ek , i 6¼ j and ijk not in right-handed order

0, i ¼ j

8>><
>>: (2:5)

The vector cross product enables introducing the alternating operator «ijk, also
known as the ijkth entry of the permutation tensor:

«ijk ¼ [ei � ej] � ek

¼
1, ijk distinct and in right-handed order

�1, ijk distinct but not in right-handed order

0, ijk not distinct

8>><
>>:

(2:6)
v1

e1

e2

v2

e3

v3

3

2

v

1

FIGURE 2.1 Rectangular coordinate system.
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EXAMPLE 2.1

For three 33 1 vectors a, b, c, we prove that a � (b3 c)¼ b � (c3 a).

SOLUTION

Writing the triple product in indical notation gives

a � b� c ! ai2ijkbjck

But 2ijk¼ 2jki (cyclic order), and hence

ai2ijkbjck ¼ ai2jkibjck
¼ bj2jkickai
¼ b � c� að Þ

Similarly a3 b � c ¼ a � b3 c

EXAMPLE 2.2

Verify that

2kij2klm ¼ dildjm � dimdjl

SOLUTION

A moment’s reflection shows that ij and ‘m must both differ from k and each other in
any nonvanishing instances of 2kij2klm. But dildjm� dimdjl likewise vanishes under
these conditions.

Furthermore, if i¼ ‘ and j¼m but i 6¼ j, 2kij2klm¼ 1, and dildjm� dimdjl¼ 1� 0¼ 1.
If i¼m and j¼ ‘ but i 6¼ j, then 2kij¼�2klm and 2kij2klm¼�1. But in this case
dildjm� dimdjl¼ 0� 1¼�1. The relation to be verified is thereby satisfied in conditions
exhausing all cases.

Now consider two vectors v and w. It will prove convenient to use two different
types of notation. In tensor-indicial notation, denoted by (*T), v and w are
represented as
*T) v ¼ viei, w ¼ wiei (2.7)

Occasionally base vectors are not displayed, so that v is denoted by vi. By displaying
base vectors tensor-indicial notation is explicit and minimizes confusion and ambi-
guity. However, it is also cumbersome.

In the current text, the ‘‘default’’ is matrix–vector (*M) notation, illustrated by

*M) v ¼
v1
v2
v3

0
@

1
A, w ¼

w1

w2

w3

0
@

1
A (2.8)
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It is very compact, but also risks confusion by not displaying the underlying base
vectors. In *M notation the transposes vT and wT are also introduced; they are
displayed as ‘‘row vectors’’

*M) vT ¼ v1 v2 v3f g, wT ¼ w1 w2 w3f g (2.9)

The scalar product of v and w is written as

*T)

v � w ¼ vieið Þ � wjej
� �

¼ viwjei � ej
¼ viwjdij

¼ viwi (2.10)

The magnitude of v is defined by

*T) vj j ¼ ffiffiffiffiffiffiffiffiffi
v � vp

(2.11)

The scalar product of v and w satisfies

*T) v � w ¼ vj j wj j cos uvw (2.12)

in which uvw is the angle between the vectors v and w. The scalar or dot product is
written in matrix–vector notation as

*M) v � w ! vTw (2.13)

The vector or cross product is written as

*T)
v� w ¼ viwjei � ej

¼ «ijkviwjek (2.14)

Additional results on vector notation will be presented in the next section, which
introduces matrix notation. Finally, the vector product satisfies

*T) v� wj j ¼ vj j wj j sin uvw (2.15)

and n is the unit normal vector perpendicular to the plane containing v and w. The
area of the triangle defined by the vectors v and w is given by 1

2jv3wj.

2.2.2 GRADIENT, DIVERGENCE, AND CURL IN RECTILINEAR COORDINATES

The derivative dw=dx of a scalar f(x) with respect to a vector x is defined
implicitly by

*M) dw ¼ dw

dx
dx (2.16)
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and it is a row vector whos e i th entry is df=dxi . In three -dimensi onal recta ngular
coordin ates the gradi ent and diver gence operators are d e fined by

*M) rð Þ ¼

@ ð Þ
@ x
@ ð Þ
@ y
@ ð Þ
@ z

0
BBBBBB@

1
CCCCCCA

(2.17)

and clearly

*M)
d

dx

� �T

ð Þ ¼ rð Þ  (2.18)

The gradi ent of a scala r function f satis fies the follo wing integral relat ion:

ð
rf dV ¼

ð
nf dS (2:19)

The expres sion r vT will be seen to be a tenso r (see Chap ter 3). Cle arly

rvT ¼ rv1 rv2 rv3½ � (2:20)

from which Equation 2.19 may be invoked to obtain the integral relation

ð
rvT dV ¼

ð
nvT dS (2:21)

Next, a most important relation is the divergence theorem. Let V denote the volume
of a closed domain, with surface S. Let n denote the exterior surface normal to S and
let v denote a vector-valued function of x, the position of a given point within the
body. The divergence of v satisfies the integral relation

*M)

þ
rTv dV ¼

þ
nTv dS (2:22)

The curl of the vector v, r3 v, is expressed by

r� vð Þi¼ «ijk
@

@xj
vk (2:23)

which is the conventional cross product except that the first vector is replaced by the
divergence operator. The curl satisfies an integral theorem, analogous to the diver-
gence theorem (Schey, 1973), namely:
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ð
r� v dV ¼

ð
n� v dS (2:24)

Finally, the reader may verify with some effort that, for a vector v(X), and a path
X(S) in which S is the arc length along the path

ð
v � dX Sð Þ ¼

ð
n � r � v dS (2:25)

The integral between fixed endpoints is single valued if it is path-independent, in
which case n � r3 vmust vanish. But n is arbitrary since the path is arbitrary, giving
the condition for v to have a path-independent integral as

r� v ¼ 0 (2:26)
EXAMPLE 2.3

Verify that the relation r2v¼r(r � v)�r3r3 v is satisfied in rectangular coord-
inates.

Here r2v¼ (r � r)v is called the Laplacian of v, and r(r � v) is recognized as the
gradient of the divergence of v.

SOLUTION

First note that r(r � v) ¼ @

@xi

@vj
@xj

: Next

r�r� v ¼2ijk
@

@xj
2klm

@vm
@xl

¼2ijk2klm
@

@xj

@vm
@xl

¼2kij2klm
@

@xj

@vm
@xl

But Example 2.2 presents the relation 2kij2klm¼ dildjm� dimdjl.
Accordingly,

2kij2klm
@

@xj

@vm
@xl

¼ dildjm � dimdjl
� � @

@xj

@vm
@xl

¼ @

@xi

@vj
@xj

� @

@xj

@vi
@xj

Verification is seen by recognizing that r(r � v)¼ @

@xi

@vj
@xj

and r2v¼ @

@xj

@vi
@xj

:
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EXAMPLE 2.4

Verify the divergence theorem using the square plate in Figure 2.2, and using

v ¼ x� y
xþ y

� �

SOLUTION

div vð Þ ¼ r � v ¼ rTv ¼ @

@x

@

@y

� �
x� y
xþ y

� �
¼ 2

and

ð
V

r � v dV ¼
ð
V

2 dx dy ¼ 2

For faces (1) and (3), n1¼ e1, n3¼�e1.

ð
S1

v � n1ð Þ dSþ
ð
S3

v � n3ð Þ dS¼
ð

x¼ 1, 0<y<1

x� yð Þe1 þ xþ yð Þe2½ � � e1 dy

þ
ð

x¼ 0, 0<y<1

x� yð Þe1 þ xþ yð Þe2½ � � �e1ð Þ dy

¼
ð1
0

1� yð Þ dyþ
ð1
0

y dy ¼ 1

For faces (2) and (4), n2¼ e2, n4¼�e2.
Y

X

1

1

FIGURE 2.2 Test figure for the divergence theorem.
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ð
S2

v � n2ð Þ dSþ
ð
S4

v � n4ð Þ dS¼
ð

0<x<1, y¼ 1

x� yð Þe1 þ xþ yð Þe2½ � � e2 dx

þ
ð

0<x<1, y¼ 0

x� yð Þe1 þ xþ yð Þe2½ � � �e2ð Þ dx

¼
ð1
0

xþ 1ð Þ dx�
ð1
0

x dx ¼ 1

Consequently,

ð
S

v � nð Þ dS ¼
ð
S1

v � n1ð Þ dSþ
ð
S2

v � n2ð Þ dSþ
ð
S3

v � n3ð Þ dSþ
ð
S4

v � n4ð Þ dS ¼ 2

and the divergence theorem has been verified in the case in question.

EXAMPLE 2.5

In the tetrahedron shown in Figure 2.3, A1, A2, and A3 denote the areas of the faces
whose normal vectors point in the �e1, �e2, and �e3 directions, and let A and n denote
the area and normal vector of the inclined face. Prove that

n ¼ A1

A
e1 þ A2

A
e2 þ A3

A
e3
3

1

A

n

A1A2

A3e1

e2

e3

2

FIGURE 2.3 Geometry of a tetrahedron.
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v

1

u

2

3

FIGURE 2.4 Illustration of the base vectors.
SOLUTION

From the definition of the normal vector and referring to the Figure 2.4, we have

n ¼ u� v

u� vj j

Let a, b, and c represent the length of the edges of the tetrahedron along 1-, 2-, and
3-axes, respectively. Now

u ¼ �ae1 þ be2 and v ¼ �ae1 þ ce3

; u� v ¼ bce1 þ cae2 þ abe3

But bc¼ 2A1; ca¼ 2A2; ab¼ 2A3. Also ju3 vj ¼ 2A. Hence

n ¼ A1

A
e1 þ A2

A
e2 þ A3

A
e3
EXAMPLE 2.6

Prove that if s is a symmetric matrix with entries sij, that

«ijksjk ¼ 0, i ¼ 1, 2, 3

SOLUTION

It is given that s is a symmetric tensor. Therefore sjk¼skj. We know that,
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«ijk ¼
1 if ijk take values in the cyclic order and are distinct

�1 if ijk take values in the acyclic order but are distinct

0 two or all of i, j, k take same values

8><
>:

Hence,

«ijksjk ¼ «111s11 þ «112s12 þ «113s13 þ «121s21 þ «122s22 þ «123s23 þ «131s31

þ «132s32 þ «133s33 þ «211s11 þ «212s12 þ «213s13 þ «221s21 þ «222s22

þ «223s23 þ «231s31 þ «232s32 þ «233s33 þ «311s11 þ «312s12 þ «313s13

þ «321s21 þ «322s22 þ «323s23 þ «331s31 þ «332s32 þ «333s33

¼ s23 � s32ð Þ � s13 � s31ð Þ þ s12 � s21ð Þ
¼ 0
EXAMPLE 2.7

If v and w are 33 1 vectors, prove that v3w may be written as

v� w ¼ Vw

in which V is an antisymmetric tensor and v is called the axial vector of V. Derive the
expression for V.

SOLUTION

Now

v� w ¼ «ijkvjwk ¼ Vikwk

where

Vik ¼ «ijkvj, V½ �ik ¼ Vik

Now V11¼ «1j1vj¼ 0. Similarly V22¼V33¼ 0. Also

V12 ¼ «132v3 ¼ �v3
V21 ¼ «231v3 ¼ v3
V23 ¼ «213v1 ¼ �v1

V32 ¼ «312v1 ¼ v1
V31 ¼ «321v2 ¼ �v2
V13 ¼ «123v2 ¼ v2
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and so

V ¼
0 �v3 v2
v3 0 �v1

�v2 v1 0

2
4

3
5

Also, V is antisymmetric, i.e., V¼VT.

2.3 MATRICES

An n3 n matrix is simply an array of numbers arranged in rows and columns, in
which case we call it a second-order array. For the matrix A the entry aij occupies the
intersection of the ith row and the jth column. We may also introduce the n3 1 first-
order array a in which ai denotes the ith entry. We likewise refer to the 13 n array aT

as first order. In the current context, a first-order array is not a vector unless it is
associated with a coordinate system and certain transformation properties to be
introduced shortly. In the following all matrices will be real unless otherwise
noted. Several properties of first- and second-order arrays are now introduced:

(i) Sum of two n3 n matrices A and B is a matrix C in which cij¼ aijþ bij.
(ii) Product of a matrix A and a scalar q is a matrix C in which cij¼ qaij.
(iii) Transpose of a matrix A, denoted AT, is a matrix in which aij

T¼ aji. A is
called symmetric if A¼AT, and it is called antisymmetric (or skew sym-
metric) if A¼�AT.

(iv) Product of two matrices A and B is the matrix C for which

*T) cij ¼ aikbkj (2:27)

Matrix multiplication may be easily visualized as follows. Let the first-order
array ai

T denote the ith row of A, while the first-order array bj denotes the
jth column of B. Then cij may be written as

*T) cij ¼ aTi bj (2:28)

(v) Product of a matrix A and a first-order array c is the first-order array d in
which the ith entry is di¼ aijcj.

(vi) ijth entry of the identity matrix I is dij. Thus it exhibits ones on the diagonal
positions (i ¼ j) and zeroes off-diagonal (i 6¼ j). Clearly I is the matrix
counterpart of the substitution operator.

(vii) Determinant of A is given by

*T) det Að Þ ¼ 1
6 «ijk«pqraipajqakr (2:29)

Suppose a and b are two nonzero first-order n3 1 arrays. If det(A)¼ 0
the matrix A is singular, in which case there is no solution to equations
of the form Aa¼ b. However, if b¼ 0, there may be multiple solutions. If
det(A) 6¼ 0, then there is a unique nontrivial solution a.
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(viii) Let A and B be n3 n nonsingular matrices. The determinant has the
following useful properties:

*M)

det ABð Þ ¼ det Að Þ det Bð Þ
det AT
� � ¼ det Að Þ
det Ið Þ ¼ 1

(2:30)

(ix) If det(A) 6¼ 0, then A is nonsingular, and there exists an inverse matrix,
A�1, for which

*M) AA�1 ¼ A�1A ¼ I (2:31)

(x) The transpose of a matrix product satisfies

*M) ABð ÞT¼ BTAT (2:32)

(xi) The inverse of a matrix product satisfies

*M) ABð Þ�1¼ B�1A�1 (2:33)

(xii) If c and d are two 33 1 vectors the vector product c3 d generates the
vector c3 d¼Cd in which C is an antisymmetric matrix given by

*M) C ¼
0 �c3 c2
c3 0 �c1

�c2 c1 0

2
4

3
5 (2:34)

Recalling that c3 d¼ «ikjckdj and noting that «ikjck denotes the (ij)th
component of an antisymmetric tensor, it is immediate that [C]ij¼ «ikjck.

(xiii) If c and d are two vectors the outer product cdT generates the matrix C
given by

*M) C ¼
c1d1 c1d2 c1d3
c2d1 c2d2 c2d3
c3d1 c3d2 c3d3

2
4

3
5 (2:35)

We will see later that C is a second-order tensor if c and d have the
transformation properties of vectors.

(xiv) An n3 n matrix A may be decomposed into symmetric and antisymmetric
matrices using

A ¼ As þ Aa, As ¼ 1
2 Aþ AT
	 


, Aa ¼ 1
2 A� AT
	 


(2:36)
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EXAMPLE 2.8

Find the transposes of the matrices

A ¼ 1 �1=2
�1=3 1=4

� �
, B ¼ 1 1=3

1=2 1=4

� �

(a) Verify that AB 6¼ BA.
(b) Verify that (AB)T¼BTAT.
SOLUTION

Here

AT ¼ 1 �1=3
�1=2 1=4

� �
, BT ¼ 1 1=2

1=3 1=4

� �

Also

AB ¼ 1 �1=2

�1=3 1=4

� �
1 1=3

1=2 1=4

� �
¼ 3=4 5=24

�5=24 �7=144

� �

BA ¼ 1 1=3
1=2 1=4

� �
1 �1=2

�1=3 1=4

� �
¼ 8=9 �5=12

5=12 �3=16

� �

and clearly AB 6¼ BA. Now

ABð ÞT ¼
3=4 �5=24

5=24 �7=144

" #

BTAT ¼
1 1=2

1=3 1=4

" #
1 �1=3

�1=2 1=4

" #
¼

3=4 �5=24

5=24 �7=144

" #

and it is seen that (AB)T¼BTAT.
EXAMPLE 2.9

For the matrices in Example 2.8 find the inverses and verify that

ABð Þ�1¼ B�1A�1
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SOLUTION

A�1 ¼ 1
1=12

1=4 1=2

1=3 1

" #
¼ 3 6

4 12

" #

B�1 ¼ 1
1=12

1=4 �1=3

�1=2 1

" #
¼ 3 �4

�6 12

" #

AB ¼ 3=4 5=24

�5=24 �7=144

" #
! (AB)�1 ¼ 1

1=144

�7=144 �5=24

5=24 3=4

" #

¼ �7 �30

30 108

" #

Now

B�1A�1 ¼ 3 �4

�6 12

" #
3 6

4 12

" #
¼ �7 �30

30 108

" #

) (AB)�1 ¼ B�1A�1

EXAMPLE 2.10

Consider a matrix C given by

C ¼ a b
c d

� �

Verify that its inverse is given by

C�1 ¼ 1
ad � bc

d �b
�c a

� �

SOLUTION

The cofactor matrix is given by

cof C ¼ d �c
�b a

� �

The adjoint matrix is given by

adj C ¼ d �b
�c a

� �

The determinant of the matrix is jCj ¼ ad� bc. Hence

C�1 ¼ adj C
Cj j ¼ 1

ad � bc
d �b

�c a

� �
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as expected. Alternatively, note that

CC�1 ¼ 1
ad � bc

d �b
�c a

� �
a b
c d

� �
¼ 1

ad � bc
ad � bc 0

0 ad� bc

� �
¼ 1 0

0 1

� �
EXAMPLE 2.11

Using thematrixC fromExample 2.10, and introducing the vectors (one-dimensional arrays)

a ¼ q
r

� �
, b ¼ s

t

� �

verify that

aTCb ¼ bTCTa

SOLUTION

aTCb ¼ q rð Þ a b

c d

� �
s

t

� �
¼ q rð Þ asþ bt

csþ dt

� �
¼ aqsþ bqt þ crsþ drt

¼ asþ bt csþ dtð Þ q

r

� �

¼ s tð Þ a c

b d

� �
q

r

� �
¼ bTCTa

and accordingly aTCb¼ bTCTa.

EXAMPLE 2.12

For the geometry of Example 2.4, verify that

ð
n� A dS ¼

ð
r� AT dV

using

a11 ¼ xþ yþ x2 þ y2

a12 ¼ xþ yþ x2 � y2

a21 ¼ xþ y� x2 � y2

a22 ¼ x� y� x2 � y2
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SOLUTION

Given

A ¼ a11 a12
a21 a22

� �

let

A ¼ b1 b2½ �, where b1 ¼ a11
a21

� �
and b2 ¼ a12

a22

� �

Now

r� b1 ¼
@

@x
e1 þ @

@y
e2

� �
� a11e1 þ a21e2½ � ¼ �2 xþ yð Þe3

r� b2 ¼
@

@x
e1 þ @

@y
e2

� �
� a12e1 þ a22e2½ � ¼ �2 x� yð Þe3

;
ð
V

r�AT dV ¼
ð
V

r�b1 r�b2½ �dV ¼
ð 0 0

0 0

�2(xþ y) �2(x� y)

2
64

3
75dx dy ¼

0 0

0 0

�2 0

2
64

3
75

For faces (1) and (3), n1¼ e1, n3¼�e1. Therefore
ð
S1

n1�Að ÞdSþ
ð
S3

n3�Að ÞdS ¼
ð

x¼1, 0<y<1

e1� b1 b2½ �dS�
ð

x¼0, 0<y<1

e1� b1 b2½ �dS

¼
ð

x¼1, 0<y<1

0 0

0 0

xþy�x2�y2 x�y�x2�y2

2
664

3
775dy

�
ð

x¼0, 0<y<1

0 0

0 0

xþy� x2� y2 x�y�x2�y2

2
664

3
775dy

¼
ð1
0

0 0

0 0

y�y2 �y� y2

2
664

3
775dy�

ð1
0

0 0

0 0

y�y2 �y�y2

2
664

3
775dy¼ 0
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For faces (2) and (4), n2¼ e2, n4¼�e2. Hence

ð
S2

n2�Að ÞdSþ
ð
S4

n4�Að ÞdS¼
ð

0<x<1, y¼1

e2� b1 b2½ �dS�
ð

0<x<1, y¼0

e2� b1 b2½ �dS

¼ �
ð

0<x<1, y¼1

0 0

0 0

xþyþx2þy2 x�yþx2�y2

2
64

3
75dx

þ
ð

0<x<1, y¼0

0 0

0 0

xþyþx2þy2 x�yþx2�y2

2
64

3
75dx

¼ �
ð1
0

0 0

0 0

xþx2þ2 xþx2

2
64

3
75dxþð

1

0

0 0

0 0

xþx2 xþx2

2
64

3
75dx¼

0 0

0 0

�2 0

2
64

3
75

Therefore

ð
S

n� Að Þ dS ¼
ð
S1

n1 � Að Þ dSþ
ð
S2

n2 � Að Þ dSþ
ð
S3

n3 � Að Þ dSþ
ð
S4

n4 � Að Þ dS

¼
0 0
0 0

�2 0

2
4

3
5

Hence
ð
S

n� Að Þ dS ¼
ð
V

r� AT dV is verified.

2.4 EIGENVALUES AND EIGENVECTORS

Again, A is an n3 n matrix. We now introduce the eigenvalue equation

A� ljI
� �

xj ¼ 0 (2:37)

The solution for xj is trivial unless A� ljI is singular, in which event det
(A� ljI)¼ 0. There are n possibly complex roots. If the magnitude of the
eigenvectors is set to unity, they may likewise be determined. As an example
consider

A ¼ 2 1
1 2

� �
(2:38)

The equation det (A� ljI)¼ 0 is expanded as (2� lj)
2 � 1, with roots l1,2¼ 1, 3,

and

A� l1I ¼ 1 1
1 1

� �
, A� l2I ¼ �1 1

1 �1

� �
(2:39)
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Note that in each case the rows are multiples of each other, so that only one row can be
considered independent. We next determine the eigenvectors. It is easily seen that
magnitudes of the eigenvectors are arbitrary. For example, if x1 is an eigenvector, so is
10x1. Accordingly, the magnitudes are arbitrarily set to unity. For x1 ¼ x11 x12f gT ,

x11 þ x12 ¼ 0, x211 þ x212 ¼ 1 (2:40)

from which we conclude that x1 ¼ 1 �1f gT= ffiffiffi
2

p
. A parallel argument furnishes

x2 ¼ 1 1f gT= ffiffiffi
2

p
.

If A is symmetric, the eigenvalues and eigenvectors are real and the eigenvectors
are orthogonal to each other: xi

Txj¼ dij. The eigenvalue equations can be ‘‘stacked
up’’ as follows:

A x1: x2: . . . xn½ � ¼ x1: x2: . . . xn½ �

l1 0 : : :

0 l2 : : :

: : : : :

: : : ln�1 0

: : : 0 ln

2
666664

3
777775 (2:41)

With obvious identifications,

AX ¼ XL (2:42)

and X may be called the modal matrix. Let yij is the ijth entry of Y¼XTX. Now

yij ¼ xTi xj ¼ dij (2:43)

so that Y¼ I. We conclude that X is an orthogonal tensor: XT¼X�1. Further

XTAX ¼ L, A ¼ XLXT (2:44)

and X may be interpreted as representing a rotation from the reference axes to the
principal axes.
2.5 COORDINATE TRANSFORMATIONS

Suppose that the vectors v and w are depicted in a second coordinate system whose
base vectors are denoted by e0j. Now e0j may be represented as a linear sum of the base
vectors ei:

*T) e0j ¼ qjiei (2:45)

But then ei � ej0 ¼ qij¼ cos(uij0). It follows that dij¼ ei0 � ej0 ¼ (qik ek) � (qjl el)¼
qikqjldkl, so that
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*T) 
qik qjk ¼ qik q

T
kj

¼ dij

In *M) notation this is writt en as

*M) QQ T ¼ I ( 2: 46 )

in which case the matrix Q is called orthogonal . An analog ous argum ent serves to prove
that QT Q ¼ I . From Equati on 2.30, 1 ¼ det( QQ T ) ¼ det( Q) det( Q T ) ¼ det 2( Q). Right-
handed rotations satisfy det(Q)¼ 1, in which caseQ is called proper orthogonal.

EXAMPLE 2.13

Consider the matrix

Q ¼ cos u sin u
�sin u cos u

� �

Verify that

(a) QQT¼QTQ
(b) QT¼Q�1

(c) For any 23 1 vector a

Qaj j ¼ aj j

(The relation in (c) is general, and the vector Qa represents a rotation of a.)

SOLUTION

First consider

QQT ¼ cos u sin u

�sin u cos u

� �
cos u �sin u

sin u cos u

� �

¼ cos2 uþ sin2 u cos u(�sin u)þ sin u cos u

�sin u cos uþ cos u sin u cos2 uþ sin2 u

" #
¼ 1 0

0 1

� �

QTQ ¼ cos u �sin u

sin u cos u

� �
cos u sin u

�sin u cos u

� �

¼ cos2 uþ sin2 u cos u sin u� sin u cos u

sin u cos uþ cos u(�sin u) cos2 uþ sin2 u

" #
¼ 1 0

0 1

� �

and QQT¼QTQ¼ I, as expected.
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Next, from the foregoing relations

Q�1 ¼ 1
cos u cos uþ sin u sin u

cos u �sin u
sin u cos u

� �
¼ QT

Let

a ¼ a1
a2

� �

Now

Qa ¼ cos u sin u
�sin u cos u

� �
a1
a2

� �
¼ a1 cos uþ a2 sin u

�a1 sin uþ a2 cos u

� �

from which

Qaj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 cos uþ a2 sin uð Þ2þ �a1 sin uþ a2 cos uð Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22

q
¼ aj j

showing that jQaj ¼ jaj.

2.5.1 TRANSFORMATIONS OF VECTORS

The vector v0 is the same as the vector v except that v0 is referred to ej0 while v is
referred to ei. Now

*T)

v0 ¼ v0je
0
j

¼ v0jqjiei

¼ viei (2:47)

It follows that vi¼ vj0qji, and hence

*M) v ¼ QTv0, v0 ¼ Qv (2:48)

in which qij is the jith entry of QT.
We now state an alternate definition of a vector as a first-order tensor. Let v be an

n3 1 array of numbers referred to a coordinate system with base vectors ei. It is a
vector if and only if, upon a rotation of the coordinate system to base vectors ej0, v0

transforms according to Equation 2.48.
Since df

dx

� �0
dx0 is likewise equal to df,

*M)
df

dx

� �0
¼ df

dx

� �
QT (2:49)
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for which reason df=dx is called a covariant vector in a more general presentation,
while v is properly called a contravariant vector.

Finally, to display the base vectors to which the tensor A is referred (i.e., in
tensor-indicial notation), we introduce the outer product

ei ^ ej (2:50)

and it is recognized as the matrix–vector counterpart eiej
T. Now

A ¼ aijei ^ ej (2:51a)

Note the useful result that

ei ^ ej � ek ¼ eidjk (2:51b)

In this notation, given a vector b¼ bkek,

Ab ¼ aijei ^ ej � bkek
¼ aijbkei ^ ej � ek
¼ aijbkeidjk

¼ aijbjei (2:52)

as expected.

2.6 ORTHOGONAL CURVILINEAR COORDINATES

The position vector of a point P referred to a three-dimensional rectilinear coordinate
system is expressed in tensor-indicial notation as RP¼ xi ei. The position vector
connecting two ‘‘sufficiently close’’ points P and Q is given by

DR ¼ RP � RQ � dRx (2:53)

where

dRx ¼ dxi ei (2:54)

with differential arc length

dSx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dxi dxi

p
(2:55)

Suppose now that the coordinates are transformed to coordinates yj : xi¼ xi(yj). The
same position vector, now referred to the transformed system, is
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dRy ¼
X3
1

dya ga

ga ¼ haga

ha ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxj
dya

dxj
dya

s (2:56)

ga ¼
dxi
dyaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxj
dya

dxj
dya

s ei

¼ 1
ha

dxi
dya

ei

in which ha is called the scale factor. Recall that the use of Greek letters for indices
implies no summation. Clearly ga is a unit vector. Conversely, if the transformation
is reversed

dRy ¼ gi dyi

¼ dyi
dxj

gi dxj (2:57)

with the consequence that

ej ¼ dyi
dxj

gi ¼
X
a

dya
dxj

haga (2:58)

We restrict attention to orthogonal coordinate systems yj with the property that

gT
agb ¼ dab (2:59)

The length of the vector dRy is now

dSy ¼ ha
ffiffiffiffiffiffiffiffiffiffiffiffiffi
dyi dyi

p
(2:60)

Under restriction to orthogonal coordinate systems, the initial base vectors ei may be
expressed in terms of ga using

ei ¼ gT
j ei

� �
gj

¼ 1
hi

@xi
@yj

gj

¼ 1
hihj

@xi
@yj

@xk
@yj

ek (2:61)
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furnishing

1
hihj

@xi
@yj

@xk
@yj

¼ dik (2:62)

Also of interest is the volume element: the volume determined by the vector dRy is
given by the vector triple product

dVy ¼ h1dy1g1ð Þ � h2dy2g2 � h3dy3g3½ �
¼ h1h2h3 dy1 dy2 dy3 (2:63)

and h1h2h3 is called the Jacobian of the transformation. For cylindrical coordinates
using r, u, and z as shown in Figure 2.5, x1¼ r cos u, x2¼ r sin u, and x3¼ z. Simple
manipulation furnishes that hr¼ 1, hu¼ r, hz¼ 1, and

er ¼ cos u e1 þ sin u e2, eu ¼ �sin u e1 þ cos u e2, ez ¼ e3 (2:64)

which of course are orthonormal vectors. Also of later interest are the relations
der¼ eu du and deu¼�er du.

Transformation of the coordinate system from rectilinear to cylindrical coordi-
nates may be viewed as a rotation of the coordinate system through u. Thus if the
vector v is referred to the reference rectilinear system and v0 is the same vector
referred to a cylindrical coordinate system, in two dimensions

v0 ¼ Q uð Þv, Q uð Þ ¼
cos u sin u 0

�sin u cos u 0

0 0 1

2
64

3
75 (2:65)
x1
r

x3

ez

x2

eq

q

er

FIGURE 2.5 Cylindrical coordinate system.
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If v0 is differentiated, for example, with respect to time t, there is a contribution from
the rotation of the coordinate system: as an illustration let v and u be functions of
time t,

d

dt
v0 ¼ Q uð Þ d

dt
vþ dQ uð Þ

dt
v

¼ @

@t
v0 þ dQ uð Þ

dt
QT uð Þv0 (2:66)

where the partial derivative implies differentiation with u instantaneously held fixed,
and

dQ uð Þ
dt

¼
�sin u cos u 0

�cos u �sin u 0

0 0 1

2
64

3
75 du
dt

(2:67)

Now dQ uð Þ
dt QT uð Þ is an antisymmetric matrix V (to be identified later as a tensor)

since

0 ¼ d

dt
Q uð ÞQT uð Þ� � ¼ dQ uð Þ

dt
QT uð Þ þ dQ uð Þ

dt
QT uð Þ

� �T
(2:68)

In fact

dQ uð Þ
dt

QT uð Þ ¼
0 1 0

�1 0 0

0 0 0

0
B@

1
CA du

dt
(2:69)

It follows that

d

dt
v0 ¼ @

@t
v0 þv� v0 (2:70)

in which v is the axial vector of V.
Referring to Figure 2.6, spherical coordi nates r , u, f are introduced b y the

transformation

x1 ¼ r cos u cosf, x2 ¼ r sin u cosf, x3 ¼ r sinf (2:71)

The position vector is stated in spherical coordinates as

r ¼ x1e1 þ x2e2 þ x3e3
¼ r cos u cosf e1 þ r sin u cosf e2 þ r sinf e3 (2:72)
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ef

f

f

p � f —

er

r

x2

x3

x1

eq

q

q

FIGURE 2.6 Spherical coordinate system.
Of course er has the same direction as the position vector: r¼ rer. It follows that

er ¼ cos u cosf e1 þ sin u cosf e2 þ sinf e3 (2:73)

Following the general procedure in the foregoing paragraphs:

@x1
@r

¼ cos u cosf,
@x1
@u

¼ �r sin u cosf,
@x1
@f

¼ �r cos u sinf

@x2
@r

¼ sin u cosf,
@x2
@u

¼ r cos u cosf,
@x2
@f

¼ �r sin u sinf

@x3
@r

¼ sinf,
@x3
@u

¼ 0,
@x3
@f

¼ r cosf

(2:74)

The differential of the position vector furnishes

dr ¼ dr er þ r cosf du eu þ r df ef

er ¼ cos u cosf e1 þ sin u cosf e2 þ sinf e3

eu ¼ �sin u e1 þ cos u e2

ef ¼ �sinf cos u e1 þ sin u e2½ � þ cosf e3

e1 ¼ cos u cosf er � sin u eu � sinf cos u ef

(2:75)
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e2 ¼ sin u cos f e r þ cos u e u � sin f sin u e f

e3 ¼ sin f e r þ cos f e f

The scale facto rs are seen to be hr ¼ 1, hu ¼ r cos f , hf ¼ r.
Conside r a vector v in the rectili near syst em, denote d as v0  when referred to a

spheri cal coordi nate system:

v ¼ v1 e 1 þ v 2 e 2 þ v 3 e 3 , v0 ¼ v r e r þ v u e u þ v f e f (2 :76 )

Elim inating e1, e 2, e 3 in favor of e r, e u, e f and use of *M notat ion perm its writing

v0 ¼ Q u, fð Þv, Q u, fð Þ ¼
cos u cos f sin u cos f sin f
� sin u cos u 0

�sin f cos u �sin f sin u cos f

2
4

3
5 (2 :77 )

Su ppose now that v( t ), u, and f are functions of time. As in cylindric al coordinates ,

d

dt 
v0 ¼ @

@ t 
v0 þ v � v0  (2 :78 )

wher e v is the axial vector of dQ uð Þ
dt QT uð Þ. After some mani pulation,

d Q uð Þ
dt

¼
� sin u cos f cos u cos f 0

� cos u �sin u 0

sin u sin f �cos u sin f 0

2
64

3
75du
dt

þ
�cos u sin f � sin u sin f cos f

0 0 0

�cos u cos f �sin u cos f � sin f

2
64

3
75d f
d t

and

dQ uð Þ
dt

QT uð Þ¼
0 cosf 0

�cosf 0 sinf

0 �sinf 0

2
64

3
75du
dt

þ
0 0 1

0 0 0

�1 0 0

2
64

3
75df
dt

(2:79)

2.7 GRADIENT OPERATOR IN ORTHOGONAL COORDINATES

The gradient operator in orthogonal coordinates is of great interest owing to its
role in form ulating the strain tenso r, a topic to b e encount ered in Chapter 5.
In rectilinear coordinates, let c be a scalar-valued function of x : c(x). Starting
with the chain rule

*T) dc ¼ @c

@xi
dxi

¼ rc½ � � dr, dr ¼ ei dxi, rc ¼ ei
@c

@xi
(2:80)

Clearly dc is a scalar and is unaffected by a coordinate transformation. Now suppose
that x¼ x(y): dr0 ¼ gi dyi. Observe that
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dc ¼ @ c

@ xi
dxi

¼
X
a

1
ha

@ c

@ ya
ha dy a

¼
X
a

ga

ha

@ c

@ ya

" #
�
X
b

hb dy b gb

� �" #
( 2: 81 )

implyi ng the identi ficati on

r cð Þ0¼
X
a

ga

ha

@ c

@ ya
( 2: 82 )

For cylindric al coordi nates in tensor-in dicial notation wi th er ¼ g r, e u ¼ g u, e z ¼ g z ,

rc ¼ er
@ c

@ r
þ eu

r

@ c

@ u 
þ e z

@ c

@ z 
( 2: 83 )

and in spheri cal coordi nates

r c ¼ er
@ c

@ r
þ eu

r cos f

@ c

@ u 
þ ez

r

@ c

@ f 
( 2: 84 )
2.8 DIVERGENCE AND CURL OF VECTORS IN ORTHOGONAL
COORDINATES

Under orthogo nal transform ations, the diverg ence and curl operat ors are invar iant
and satisfy the divergence and curl theor ems, respec tively. Unfo rtunately , the trans-
formati on proper ties o f the divergenc e and curl operat ors are elabor ate. The reader is
referred to texts in continuum mechanics such as Chung (1988). The development is
given in Append ix I. Here we simply lis t the resul ts: let v be a vector referred to
rectilinear coordinates, and let v0 denote the same vector referred to orthogonal
coordinates. The divergence and curl satisfy

r � vð Þ0¼ 1
h1h2h3

@

@y1
h2h3v

0
1

� �þ @

@y2
h3h1v

0
2

� �þ @

@y3
h1h2v

0
3

� �� �
(2:85)

r� vð Þ0 ¼ 1
h1h2h3

h1
@

@y2
h3v

0
3

� �� @

@y3
h2v

0
2

� �
 �
g1

�

� h2
@

@y1
h3v

0
3

� �� @

@y3
h1v

0
1

� �
 �
g2 þ h3

@

@y1
h2v

0
2

� �� @

@y2
h1v

0
1

� �
 �
g3

#

(2:86)
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In cylindrical coordinates:

r � vð Þ0¼ 1
r

@ rvrð Þ
@r

þ 1
r

@vu
@u

þ @vz
@z

(2:87)

r� vð Þ0¼ 1
r

@vz
@u

� @ rvuð Þ
@z


 �
er � @vz

@r
� @vr

@z


 �
r eu þ @ rvuð Þ

@r
� @vr

@u


 �
ez

� �
(2:88)
2.9 APPENDIX I: DIVERGENCE AND CURL OF VECTORS
IN ORTHOGONAL CURVILINEAR COORDINATES

Derivatives of Base Vectors: In tensor-indicial notation, a vector v may be repre-
sented in rectilinear coordinates as v¼ vkek. In orthogonal curvilinear coordinates it
is written as

v0 ¼
X
a

v0aga ¼
X
a

v0a
ga
ha

A line segment dr¼ dxi ei transforms to dr0 ¼ dyk gk. Recall that

ek ¼ @yl
@xk

gl ¼
X
b

hb
@yb
@xk

gb

ga ¼ @xa
@yk

ek, ha ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ga � ga

p
(2A:1)

From Equation 2A.1,

@ga
@yj

¼ @2xa
@yk@yj

ek

¼
X
b

a b

j

� �
hbgb,

a b

j

� �
¼ @2xa

@yk@yj

@yb
@xk

(2A:2)

The bracketed quantities are known as Christoffel symbols. From Equations 2A.1
and 2A.2

dha
dyj

¼ ga �
dga
dyj

¼ a a

j

� �
ha (2A:3)

Continuing,

@ga

@yj
¼ 1

ha

@ga
@yj

� ga

ha

@ha
@yj

¼
X
b

cajbgb, cajb ¼ 1
ha

1� dab
� � a b

j

� �
hb (2A:4)
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Divergence: The development below is based on the fact that

r � v ¼ r0 � v0 ¼ tr
dv0

dr0

� �
¼ tr

dv

dr

� �
(2A:5)

The differential of v0 is readily seen to be

dv0 ¼ dvj gj þ vj dgj (2A:6)

First note that

dvj gj ¼
@vj
@yk

gj dyk

¼
X
a

1
ha

@vj
@ya

gj

� �
ha dyað Þ

¼
X
a

1
ha

@vj
@ya

gj ^ ga

� �
�
X
b

hbgb dyb
� �

¼
X
a

1
ha

@vj
@ya

gj ^ ga

� �
� dr0 (2A:7)

Similarly

vj dgj ¼ vj
@gj

@yk
dyk

¼
X
a

vj
ha

@gj

@ya

� �
ha dyað Þ

¼
X
a

vj
ha

@gj

@ya
^ ga

� �
�
X
b

hbgb dyb
� �

¼
X
a

vj
ha

@gj

@ya
^ ga

� �
� dr

¼
X
a

vj
ha

X
b

cjabgb ^ ga

 !" #
� dr0 (2A:8)

Consequently,

dv

dr

� �
ba

¼ 1
ha

@vj
@ya

djb þ vjcjba

� �
, r � v ¼

X
a

1
ha

@va
@ya

þ vjcjaa

� �
(2A:9)
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Cur l : In rectili near coordinates , the indi vidual entri es of the curl can be expres sed as
a diver gence as foll ows. For the i th entry

r� v½ �i ¼ «ijk
@ vk
@ xj

¼ @

@ xj
w ið Þj , w ið Þj ¼ «jki v k

¼ r � w ið Þ  ( 2A :10 )

Con sequent ly, the curl of v may be wri tten as

r� v ¼
r � w 1ð Þ

r � w 2ð Þ

r � w 3ð Þ

0
B@

1
CA ( 2A :11 )

The trans formati on proper ties of the curl can be readi ly induce d from Equati on 2A.9 .

EXAMPLE 2.14

Obtain the expressions for the gradient, divergence, and curl in spherical coordinates.

SOLUTION

In spherical coordinates

g1 ¼ er , g2 ¼ eu, g3 ¼ ef

y1 ¼ r, y2 ¼ u, y3 ¼ f

hr ¼ 1, hu ¼ r cosf, hf ¼ r

On substituting these relations into the expressions for the gradient and divergence
operators in the text, we have

rc ¼ @c

@r
er þ 1

r cosf

@c

@u
eu þ 1

r

@c

@f
ef

r � v ¼ 1
r2 cosf

@

@r
r2 cosf vr
� �þ @

@u
rvuð Þ þ @

@f
r cosf vf
� �� �

¼ 1
r2

@ r2vrð Þ
@r

þ 1
r cosf

@vu
@u

þ 1
r cosf

@ cosf vf
� �

@f
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r� v ¼ 1
r2 cosf

@

@u
rvf
� �� @

@f
r cosfvuð Þ


 �
er

�r cosf
@

@r
rvf
� �� @

@f
vrð Þ


 �
eu

þr
@

@r
r cosfvuð Þ � @

@u
vrð Þ


 �
ef

0
BBBBBBBBB@

1
CCCCCCCCCA

¼ 1
r cosf

@vf
@u

� @ cosfvuð Þ
@f


 �
er

� cosf
@ rvf
� �
@r

� @vr
@f


 �
eu

þ @ r cosfvuð Þ
@r

� @vr
@u


 �
ef

0
BBBBBBBBB@

1
CCCCCCCCCA
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3 Mathematical
Foundations: Tensors
� 2008 by Taylor & Fra
3.1 TENSORS

We now consider two n3 1 vectors v and w and an n3 n matrix A such that
v¼Aw. The important assumption is made that the underlying information in this
relation is preserved under rotation of the coordinate system. In particular, simple
manipulation furnishes that

*M)

v0 ¼ Qv

¼ QAw

¼ QAQTQw

¼ QAQTw
0

(3.1)

The square matrix A is now called a second-order tensor if and only if A0 ¼QAQT.
Let A and B be second-order n3 n tensors. The manipulations below demon-

strate that AT, (AþB), AB, and A�1 are likewise tensors.

AT
� �0 ¼ QAQT

� �T
¼ QTTATQT (3:2)

A0B0 ¼ QAQT
� �

QBQT
� �

¼ QA QQT
� �

BQT

¼ QABQT (3:3)

Aþ Bð Þ0 ¼ A0 þ B0

¼ QAQT þQBQT

¼ Q Aþ Bð ÞQT (3:4)

A0�1 ¼ QAQT
� ��1

¼ QT�1A�1Q�1

¼ QA�1QT (3:5)
ncis Group, LLC.



Let x denote an n3 1 vector. The outer product xxT is a second-order tensor since

xxT
� �0 ¼ x0x0T

¼ Qxð Þ Qxð ÞT
¼ Q xxT

� �
QT (3:6)

Next

d2w ¼ dxTH dx, H ¼ d

dx

� �T
dw

dx

� �
(3:7)

But

dx0TH0 dx0 ¼ Qdxð ÞTH0Q dx

¼ dxT QTH0Q
� �

dx (3:8)

from which we conclude that the Hessian H is a second-order tensor.
Finally, let u be a vector-valued function of x. Then, du ¼ @u

@x dx (dui¼ @ui
@xj

dxj)
from the chair rule of calculus, from which we conclude that

duT ¼ dxT
@u

@x

� �T

(3:9)

But, also from the chain rule,

duT ¼ dxT
@uT

@xT
(3:10)

We conclude that

@u

@x

� �T
¼ @uT

@xT
(3:11)

Furthermore, if du0 is a vector generated from du by rotation in the opposite sense
from the coordinate axes (i.e., clockwise if the axes rotate counterclockwise), then
du0 ¼Q du and dx¼QT dx0. Hence Q is a tensor which may be viewed the counter-
clockwise rotation of the axes. (Note that x and Qx are vectors, implying that Q is a
tensor.) Also, since du0 ¼ @u0

@x0 dx
0, it is apparent that

@u0

@x0
¼ Q

@u

@x
QT (3:12)

from which we conclude that @u@x is a tensor. We may similarly show that I and 0 are
tensors, albeit of a special type (isotropic) owing to the property I0 ¼ I, 00 ¼ 0.
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3.2 DIVERGENCE OF A TENSOR

Suppose A is a tensor and b is an arbitrary spatially constant vector of compatible
dimension.

The divergence of a vector has already been defined. For later purposes we will
need to extend the definition of the divergence to the tensor A. Recall the divergence
theorem for the vector c(x):

Ð
cTn dS ¼ Ð rTc dV . Let c¼ATb in which b is an

arbitrary constant vector. Now

bT
ð
An dS ¼

ð
rT ATb
� �

dV

¼
ð
rTAT
� �

dV b

¼ bT
ð
rTAT
� �T

dV (3:13)

Consequently, we seek to define the divergence of A such that

*M)

ð
An dS�

ð
rTAT
� �T

dV ¼ 0 (3:14)

In tensor-indicial notationð
biaijnj dS�

ð
bi rTAT
� �Th i

i
dV ¼ 0 (3:15)

Application of the divergence theorem to the vector cj¼ biaij furnishes

bi

ð
@

@xj
aij � rTAT

� �Th i
i

� 	
dV ¼ 0 (3:16)

Since b is arbitrary, we conclude that

rTAT
� �

i¼
@

@xj
aij ¼ @

@xj
aTji (3:17)

and hence, if we are to write r � A as a (column) vector (mixing tensor and matrix-
vector notation) we have

r � A ¼ [rTAT ]T (3:18)

It should be evident that (r �) has a more elaborate meaning when applied to a tensor
as opposed to a vector.

Now, suppose A is written in the form

A ¼
aT
1

aT
2

aT
3

2
64

3
75 (3:19)
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in which aT
i corres ponds to the i th row o f A : a Ti

� �
j ¼ aij . It is e asily seen that

r  
T AT ¼ r T a1 r  T a2 r  T a3

� Þ (3 :20 )
3.3 INVARIANTS

Let ting A denote a nonsing ular symm etric 3 3 3 tenso r, the equati on det( A � lI ) ¼ 0
can be expanded as

l3 � I1 l
2 þ I 2 l � I3 ¼ 0 (3 :21 )

in which

I1 ¼ tr Að Þ, I 2 ¼ 1
2 tr 2

� 
A
�� tr A 2

� �� �
, I3 ¼ det Að Þ  (3 :22 )

Her e tr( A ) ¼ dijaij denotes the trace of A. Equati on 3.21 imp lies the Cay ley –
Ham ilton theor em

A 3 � I1 A 
2 þ I 2 A � I 3 I ¼ 0 (3 :23 )

from which

I3 ¼ 1
3 tr A 3

� �� I1 tr A 
2

� �þ I2 tr
� 
A
�� �

A� 1 ¼ I � 1
3 A 2 � I1 A þ I 2 I
� �  (3 :24 )

Now the trace of an y n 3 n symm etric tenso r B is invar iant under ortho gonal
trans formati ons (rot ations): tr ( B0  ) ¼  tr( B) since

a0pq dpq ¼ qpr qqs ars dpq

¼ ars q pr qqs
¼ ars d rs (3 :25 )

Lik ewise tr ( A2) and tr ( A3) are invar iant since A, A 2, and A3 are tenso rs, and hence
I1, I2, and I 3 are invar iant s. Derivat ives of invariant s are of inte rest and will be
presen ted in Secti on 3.6.8.

3.4 POSITIVE DEFINITENESS

In the finite elem ent method, an attracti ve proper ty of some symmet ric tenso rs is
po sitive de finitene ss, d e fined as foll ows. The symmet ric n 3 n tensor A is positive
definite, written A> 0, if the quadratic product V(A,x)¼ xTAx> 0 for all nonvan-
ishing n3 1 vectors x. The importance of this property is shown in the following
example. Let P¼ xTAx� xTf, in which f is known and A> 0. After some simple
manipulation,
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d2 P ¼ dxT
d

dx

� �T
d

dx 
P

" #
dx

¼ dxT A dx ( 3: 26 )

It follow s that P is a globally c onvex funct ion whi ch atta ins a (global) minim um
when Ax ¼ f (d P ¼ 0). This fact c an be invoke d in the finite element method in
classical elasticity to show that the solution of the finite element equations under
static c onditions repres ents a minim um.

The forego ing de finition is eq uivalent to the statemen t that the symm etric n 3 n
tensor A is positive de finite if and only if its eigenv alues are all posit ive. Fo r the sake
of demon stra tion, if X is the mat rix (tensor) which diagon alizes A (cf. Cha pter 2),

xTAx ¼ xTXLXTx

¼ yTLy, y ¼ XTx
� �

¼
X
i

liy
2
i (3:27)

The last expression can be positive for arbitrary y (arbitrary x) only if li> 0,
i¼ 1, 2, . . . , n. The matrix A is semidefinite if xTAx � 0, and negative definite
(written A< 0) if xTAx< 0. If B is a nonsingular tensor, then BTB> 0, since
V(BTB,x)¼ xTBTBx¼ yTy> 0 in which y¼Bx. If B is singular, for example, if
B¼ yyT where y is an n3 1 vector, BTB is positive semidefinite since a nonzero
eigenvector x of B can be found for which the quadratic product V(BTB,x) vanishes.

Now suppose that B is a nonsingular antisymmetric tensor. Then multiplying
through Bxj¼ ljxj with BT furnishes

BTBxj ¼ ljB
Txj

¼ �ljBxj

¼ �l2j xj (3:28)

Since BTB is positive definite it follows that �l2j > 0 and hence lj is imaginary:
lj¼ imj using i ¼ ffiffiffiffiffiffiffi�1

p
. Consequently, B2xj¼ l2j xj¼�m2

j xj, demonstrating that
B2 is negative definite.

3.5 POLAR DECOMPOSITION THEOREM

For an n3 n nonsingular matrix B, BTB> 0. If the modal matrix of B is denoted by
Xb, we may write

BTB ¼ XT
bDbXb

¼ XT
b Dbð Þ12YYT Dbð Þ12Xb

¼ XT
b Dbð Þ12Y

� �
XT

b Dbð Þ12Y
� �T

(3:29a)
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in which Y is an (unknown) orthogonal tensor. Accordingly, we may in general write

B ¼ YT Dbð Þ12Xb (3:29b)

To ‘‘justify’’ Equation 3.29b we introduce the tensor-valued square root
ffiffiffiffiffiffiffiffiffi
BTB

p
using

ffiffiffiffiffiffiffiffiffi
BTB

p
¼ XT

bD
1
2
bXb, D

1
2
b ¼

ffiffiffiffiffi
l1

p
0 : : :

0
ffiffiffiffiffi
l2

p
: : :

: : : : :
: : : : 0
: : : 0

ffiffiffiffiffi
ln

p

2
66664

3
77775 (3:29c)

in which the positive square roots are used. It is elementary to verify thatffiffiffiffiffiffiffiffiffi
BTB

p� �2¼ B, and also that
ffiffiffiffiffiffiffiffiffi
BTB

p
> 0. Now note that

B
ffiffiffiffiffiffiffiffiffi
BTB

p� ��1
2

� 	
B

ffiffiffiffiffiffiffiffiffi
BTB

p� ��1
2

� 	T
¼

ffiffiffiffiffiffiffiffiffi
BTB

p� ��1
2

� 	
BTB
� � ffiffiffiffiffiffiffiffiffi

BTB
p� ��1

2

� 	
¼ I (3:29d)

Thus, B
ffiffiffiffiffiffiffiffiffi
BTB

p� ��1
2
is an orthogonal tensor, say Z, and hence we may write

B ¼ Z
ffiffiffiffiffiffiffiffiffi
BTB

p
¼ ZXT

bD
1
2
bXb (3:29e)

Finally, noting that ZXT
b

� �
ZXT

b

� �T¼ Z XT
bXb

� �
ZT ¼ZZT ¼I, we make the identifi-

cation YT ¼ZXT
b in Equation 3.29b. Equations 3.29a through 3.29e play a major role

in the interpretation of strain tensors to be introduced in subsequent chapters.

3.6 KRONECKER PRODUCTS OF TENSORS

3.6.1 VEC OPERATOR AND THE KRONECKER PRODUCT

Let A be an n3 n (second-order) tensor. Kronecker product notation (Graham 1981)
reduces A to a first-order n3 1 tensor (vector) as follows:

VEC Að Þ ¼ a11 a21 a31 : : : an,n�1 annf gT (3:30)

The inverse VEC operator (IVEC) is introduced by the obvious relation
IVEC(VEC(A))¼A. The Kronecker product of an n3m matrix A and an r3 s
matrix B generates an nr3ms matrix as follows:

A� B ¼

a11B a12B : : a1mB
a21B : : : :
: : : : :
: : : : :

an1B : : : anmB

2
66664

3
77775 (3:31)
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Now if m, n, r , and s are equal to n and if A and B are tensors, then A � B transforms
as a second- order n2 3 n2 tenso r in a sense to be explained subseq uently. Equ ation
3.31 implie s that the n2 3 1 Kro necker product of two n 3 1 vector s a an d b is
written as

a� b ¼
a1b
a2b

..

.

anb

0
BBB@

1
CCCA (3:32)

3.6.2 FUNDAMENTAL RELATIONS FOR KRONECKER PRODUCTS

Six basic relations are introduced, followed by a number of subsidiary relations. The
proofs of the first five relations are based on Graham (1981).

Relation 1: Let A denote an n3m real matrix, with entry aij in the ith row and jth
column. Let I¼ ( j� 1)nþ i and J¼ (i� 1)mþ j. Let Unm denote the nm3 nm
matrix, independent of A, satisfying

uJK ¼ 1, K ¼ I,
0, K 6¼ I,

uIK ¼ 1, K ¼ J
0, K 6¼ J




(3:33)

Then

VEC AT
� � ¼ UnmVEC Að Þ (3:34)

Note that uJK¼ uJI¼ 1 and uIK¼ uIJ¼ 1, with all other entries vanishing. Hence if
m¼ n, uJI¼ uIJ, so that Unm is symmetric if m¼ n.

Relation 2: If A and B are second-order n3 n tensors, then

tr ABð Þ ¼ VECT AT
� �

VEC Bð Þ (3:35)

Relation 3: If In denotes the n3 n identity matrix and if B denotes an n3 n tensor,
then

In � BT ¼ In � Bð ÞT (3:36)

Relation 4: Let A, B, C, and D, respectively, denote m3 n, r3 s, n3 p, and s3 q
matrices, then

A� Bð Þ C� Dð Þ ¼ AC � BD (3:37)

Relation 5: If A, B, and C are n3m, m3 r, and r3 s matrices, then

VEC ACBð Þ ¼ BT � AVEC Cð Þ (3:38)
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Relation 6: If a and b are n3 1 vectors, then

a� b ¼ VEC abT
� �T� �

(3:39)

As proof of Relation (6), if I¼ ( j� 1)nþ i, the Ith entry of VEC(baT) is biaj. It is
likewise the Ith entry of a � b. Hence a � b¼VEC(baT)¼VEC([abT]T).

Symmetry of Unn was established in Relation (1): Unn¼Un2. Note that VEC
(A)¼ UvVEC(A

T)¼U2
n2 VEC(A) if A is n3 n, and hence the matrix Unn satisfies

U2
n2 ¼ In2 , Un2 ¼ UT

n2 ¼ U�1
n2 (3:40)

Unn is hereafter called the permutation tensor for n3 n tensors. If A is symmetric
(Un2� In2)VEC(A)¼ 0. If A is antisymmetric (Un2þ In2)VEC(A)¼ 0.

If A and B are second-order n3 n tensors, then

tr ABð Þ ¼ VECT Bð ÞVEC AT
� �

¼ VECT Bð ÞUn2VEC Að Þ
¼ Un2VEC Bð Þ½ �TVEC Að Þ
¼ VECT BT

� �
VEC Að Þ

¼ tr BAð Þ (3:41)

thereby recovering a well-known relation.
If In is the n3 n identity tensor and in¼VEC(In), VEC(A)¼ In�Ain since

VEC(A)¼VEC(AIn). If In2 is the identity tensor in an n2-dimensional (Euclidean
vector) space, In � In¼ In2 since VEC(In)¼VEC(InIn)¼ In � InVEC(In). But in¼ Ini
and hence In � In¼ In2.

If A, B, and C denote n3 n tensors,

VEC ACBT
� � ¼ In � AVEC CBT

� �
¼ In � Að Þ B� Inð ÞVEC Cð Þ
¼ B� AVEC Cð Þ (3:42)

But by a parallel argument

VEC ACBT
� �T ¼ VEC BCTAT

� �
¼ A� BVEC CT

� �
¼ A� BUn2VEC Cð Þ (3:43)

However, the permutation tensor Un2 arises in the n2-dimensional space in the
relation

VEC ACBT
� �T¼ Un2VEC ACBT

� �
(3:44)
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Consequently, if C is arbitrary,

Un2B� AVEC Cð Þ ¼ A� BUn2VEC Cð Þ (3:45)

and, upon using the relation Un2¼U�1
n2 , we obtain an important result

B� A ¼ Un2A� BUn2 (3:46)

If A and B are nonsingular n3 n tensors,

A� Bð Þ A�1 � B�1
� � ¼ AA�1 � BB�1

¼ In � In

¼ In2 (3:47)

The Kronecker sum and difference appear frequently (e.g., in control theory) and are
defined as follows:

A� B ¼ A� In þ In � B, A� B ¼ A� In � In � B (3:48)

The Kronecker sum and difference of two n3 n tensors are n23 n2 tensors in a sense
explained below.

3.6.3 EIGENSTRUCTURES OF KRONECKER PRODUCTS

Let aj and bk denote the eigenvalues of A and B, and let yj and zk denote the
corresponding eigenvectors. The Kronecker product, sum, and difference have the
following eigenstructures:

Expression jkth eigenvalue jkth eigenvector

A� B ajbk yj � zk
A� B aj þ bk yj � zk

A� B aj � bk yj � zk

(3:49)

As proof,

ajyj � bkzk ¼ ajbkyj � zk

¼ Ayj � Bzk

¼ (A� B)(yj � zk) (3:50)

Now the eigenvalues of A � In are 13aj, while the eigenvectors are yj � wk in
which wk is an arbitrary unit vector (eigenvector of In). The corresponding quantities
for In � B are bk3 1 and vj3 zk, in which vj is an arbitrary eigenvector of In. Upon
selecting wk¼ zk and vj¼ yj, the Kronecker sum is seen to have eigenvalues ajþbk

with corresponding eigenvectors yj � zk.
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3.6.4 KRONECKER FORM OF QUADRATIC PRODUCTS

Let R be a second-order n3 n tensor. The quadratic product aTRb is easily derived:
if r¼VEC(R)

aTRb ¼ tr baTR
� �

¼ VECT baT
� �T� �

VEC Rð Þ
¼ VECT abT

� �
VEC Rð Þ

¼ bT � aTr (3:51)

3.6.5 KRONECKER PRODUCT OPERATORS FOR FOURTH-ORDER TENSORS

Of course fourth-order tensors, and to a lesser extent third-order tensors, play a
critical role in continuum thermomechanics and the finite element method. For
example, they encompass the stiffnesses relating the stress tensor to the strain tensor.

Let A and B be second-order n3 n tensors and let C be an n3 n3 n3 n matrix.
Suppose that A¼CB, which is equivalent to aij¼ cijklbkl in which the range of
i, j, k, and l is (1,n). In this case, C is called a fourth-order tensor if there exists
such that A0 ¼C0B0. In indicial notation the entries of C0 are related to those of C by
cpqmn0 ¼ qpiqqjqkmqlncijkl.

The TEN22 operator is introduced implicitly using

VEC Að Þ ¼ TEN22 Cð ÞVEC Bð Þ (3:52)

It ‘‘collapses’’ a fourth-order tensor relating two second-order tensors into a second-
order tensor in n23 n2-dimensional space. Note that

TEN22 ACBð ÞVEC Dð Þ ¼ VEC ACBDð Þ
¼ In � AVEC CBDð Þ
¼ In � ATEN22 Cð ÞVEC BDð Þ
¼ In � ATEN22 Cð ÞIn � BVEC Dð Þ (3:53)

and hence TEN22(ACB)¼ In � A TEN22(C)In � B. Upon writing B¼C�1A, it is
immediate that VEC(B)¼ TEN22(C�1)VEC(A). But TEN22(C)VEC(B)¼VEC(A)
and hence VEC(B)¼ [TEN22(C)]�1VEC(A). We conclude that TEN22(C�1)¼
TEN22�1(C). Also, writing AT¼ ĈBT, it is immediate that Un2a¼ TEN22(C)Un2b,
and hence TEN22(Ĉ)¼Un2TEN22(C)Un2. The inverse of the TEN22 operator is
introduced using the obvious relation ITEN22(TEN22(C))¼C.

3.6.6 TRANSFORMATION PROPERTIES OF VEC, TEN22, TEN21, AND TEN12

Suppose that A and B are real second-order n3 n tensors and C is a fourth-order
n3 n3 n3 n tensor such that A¼CB. All are referred to a coordinate system
denoted as Y. Let the unitary matrix (orthogonal tensor) Qn represent a rotation
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which gives rise to a coordinate system Y0 and let A0, B0, and C0 denote the
counterparts of A, B, and C. Now, since A0 ¼ QnAQ

T
n ,

VEC A0ð Þ ¼ Q�QVEC Að Þ (3:54)

But note that (Q � Q)T¼QT � QT¼Q�1 � Q�1¼ (Q � Q)�1. Hence Q � Q is a
unitary matrix in an n2-dimensional vector space. However, not all rotations in
n2-dimensional space can be expressed in the form Q � Q. It follows that VEC(A)
transforms as an n23 1 vector under rotations of the form Qn2¼Q � Q.

Now write A0 ¼C0B0 and observe that

Q�QVEC Að Þ ¼ TEN22 C0ð ÞQ�QVEC Bð Þ (3:55)

It follows that

TEN22 C0ð Þ ¼ Q�QTEN22 Cð Þ Q�Qð ÞT (3:56)

and hence TEN22(C) transforms a second-order n23 n2 tensor under rotations of the
form Q � Q.

Finally, let Ca and Cb denote third-order n3 n3 n tensors, respectively, which
satisfy the relations of the form A¼Cab and b¼CbA. We introduce the operators
TEN21(Ca) and TEN12(Cb) using VEC(A)¼ TEN21(C)b and b¼ TEN12(C)VEC(A).
The operators satisfy the transformation properties

TEN21 C0
a

� � ¼ Q�QTEN21 Cað ÞQT n2 	 n

TEN12 C0
b

� � ¼ QTEN12 Cbð ÞQT �QT n	 n2
(3:57)

for which reason we say that TEN21 and TEN12 are tensors of order (2,1) and (1,2),
respectively.
3.6.7 KRONECKER EXPRESSIONS FOR SYMMETRY CLASSES IN FOURTH-ORDER

TENSORS

Let C denote a fourth-order tensor with entries cijkl. If the entries observe

cijkl ¼ cjikl (3:58a)

cijkl ¼ cijlk (3:58b)

cijkl ¼ cklij (3:58c)

we say that C is totally symmetric. A fourth-order tensor C satisfying Equation 3.58a
but not Equations 3.58b and 3.58c will be called symmetric.

Kronecker product conditions for symmetry are now stated. The fourth-order
tensor C is totally symmetric if and only if
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TEN 22 Cð Þ ¼ TEN 22 T Cð Þ  ( 3:59 a)

Un2 TEN 22 Cð Þ ¼ TEN 22 ( C) (3: 59 b)

TEN 22 Cð ÞUn2 ¼ TEN 22 Cð Þ  ( 3:59 c)

Equ ation 3 .59a is e quivalent to symmet ry with respec t to e xchange of ij an d kl in C .
Tot al symme try also implies that , for any second- order n 3 n tenso r B, the
corres pondin g tensor A ¼ CB is symmet ric. Thu s, if a ¼ VEC ( A ) and b ¼ VEC ( B),
then a ¼ TEN 22( C ). Also Un2a ¼ TEN 22( C) b. Multipl ying throu gh the later
exp ression with Un2 imp lies Equa tion 3.58b. Next, for any n 3 n tenso r A, the tenso r
B ¼ C �1A is symmet ric. It follow s that b ¼ TEN 22( C� 1) a ¼ TEN 22 � 1( C) a, and
Un2b ¼ TEN 22 �1( C ) a. Thu s, TEN 22( C �1) ¼ U n2TEN 22 

� 1( C). Also TEN 22( C ) ¼
[ Un2TEN 22 

� 1(C )] �1 ¼ TEN 22 ( C) U n2. The co nclusion is immedi ate that U n2TEN 22
( C ) Un2 ¼ TEN 22( C) if C is tota lly symmet ric.

We nex t prove the follow ing:

C� 1 is total ly symme tric , if C is totally sym metric (3 :60 )

Not e that TEN 22( C )Un2 ¼ TEN 22( C ) implie s that U n2TEN 22( C
� 1) ¼ TEN 22( C� 1),

whi le Un2TEN 22( C) ¼ TEN 22( C ) imp lies that TEN 22( C� 1) Un2 ¼ TEN 22(C � 1).
Finally, we prove the following: for a nonsingular n3 n tensor G,

GCGT is totally symmetric if and only if C is totally symmetric (3:61)

First , Equati on 3.56 imp lies that TEN22(GC G� T ) ¼ I � G TEN 22(C ) I � G T, so that
TEN22(GCGT) is certainly symmetric.

Next consider whether A0 given by

A0 ¼ GCGTB0 (3:62)

is symmetric in whichB0 is a second-order nonsingular n3 n tensor. But wemaywrite

G�1A0G�T ¼ CG�1B0G�T (3:63)

Now G�1A0G�T is symmetric since C is totally symmetric, and therefore A0 is
symmetric. Next consider whether B0 given by the following is symmetric:

B0 ¼ G�TC�1G�1A0 (3:64)

But we may write

GTB0G ¼ C�1G�1A0G (3:65)

Since C�1 is totally symmetric, it follows that GT B0G is symmetric, and hence B0 is
symmetric. We conclude that GCGT is totally symmetric. The ‘‘only if’’ argument
follows as a consequence of

C ¼ G�1(GCGT )G
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3.6.8 DIFFERENTIALS OF TENSOR INVARIANTS

Let A be a symmetric 33 3 tensor, with invariants I1(A), I2(A), and I3(A). For a
scalar-valued function f (A),

df Að Þ ¼ @f

@aij
daij ¼ tr

@f

@A
dA

� �
,

@f

@A

� �
ij

¼ @f

@aij
(3:66)

But with a¼VEC(A), we may also write

df Að Þ ¼ VECT @f

@A

� 	T !
VEC dAð Þ

¼ @f

@a
da (3:67)

Continuing,

@I1
@a

¼ @

@a
iTa
� � ¼ iT

@I2
@a

¼ @

@a

1
2

iTa
� �2� aTa

� 	

¼ I1i
T � aT (3:68)

and

dI3 ¼ tr A2 dA
� �� I1 tr A dAð Þ þ I2 dA

¼ tr I3A
�1 dA

� �
(3:69)

so that

@I3
@a

¼ I3VEC A�1
� �

(3:70)
3.7 EXAMPLES

EXAMPLE 3.1

Given a symmetric n3 n tensor s, prove that

tr s� tr sð ÞIn=nð Þ ¼ 0
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SOLUTION

tr s� tr sð ÞIn=nð Þ ¼ trs� tr sð Þ tr Inð Þ=n: But tr Inð Þ ¼ n:

Hence tr s� tr sð ÞIn=nð Þ ¼ trs� tr sð Þ ¼ 0
EXAMPLE 3.2

Verify using 23 2 tensors that

tr ABð Þ ¼ tr BAð Þ

SOLUTION

Let

A ¼ a b
c d

� 	
, B ¼ e f

g h

� 	

Now

AB ¼ aeþ bg af þ bh

ceþ dg cf þ dh

� 	
! tr ABð Þ ¼ aeþ bgþ cf þ dh

BA ¼ aeþ cf beþ df

agþ ch bgþ dh

� 	
! tr BAð Þ ¼ aeþ bgþ cf þ dh

Hence tr (AB)¼ tr (BA).
EXAMPLE 3.3

Express I3 as a function of I1 and I2.

SOLUTION

We know that I1¼ tr(A). Also

I2 ¼ 1
2 tr2 Að Þ � tr A2

� �� � ¼ 1
2 I21 � tr A2

� �� �
from which tr(A2)¼ I21 � 2I2. From the Cayley–Hamilton relation A3� I1A

2þ I2 A�
I3I¼ 0, it follows that

I3 ¼ 1
3 tr A3

� �� I1tr A2
� �þ I2tr Að Þ� �

¼ 1
3 tr A3

� �� I31 þ 3I1I2
� �
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Now using the relations I1¼ a1þ a2þ a3, I2¼ a1a2þ a2a3þ a3a1, I3¼ a1a2a3, we find

tr(A3) ¼ I31 � 3I3 � I1I2
EXAMPLE 3.4

Using 23 2 tensors and 23 1 vectors, verify the six relations given for Kronecker
products.

SOLUTION

Let

A ¼ a11 a12
a21 a22

� 	
, B ¼ b11 b12

b21 b22

� 	
, C ¼ c11 c12

c21 c22

� 	
, D ¼ d11 d12

d21 d22

� 	
� � � �
a ¼ a1
a2

, b ¼ b1
b2

Relation 1: VEC(AT)¼Un2VEC(A)

a11
a12

a21
a22

0
BBB@

1
CCCA ¼

u11 u12 u13 u14
u21 u22 u23 u24

u31 u32 u33 u34
u41 u42 u43 u44

2
6664

3
7775

a11
a21

a12
a22

0
BBB@

1
CCCA

implying that

U22 ¼

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

2
6664

3
7775

Relation 2: tr(AB)¼VECT(AT)VEC(B)
First

AB ¼
a11b11 þ a12b21 a11b12 þ a12b22

a21b11 þ a22b21 a21b12 þ a22b22

" #

tr ABð Þ ¼ a11b11 þ a12b21 þ a21b12 þ a22b22 (S2:1)

Next

AT ¼ a11 a21
a12 a22

� 	
! VECT AT

� � ¼ a11 a12 a21 a22f g
� 2008 by Taylor & Francis Group, LLC.



and finally

VECT AT
� �

VEC Bð Þ ¼ a11 a12 a21 a22ð Þ

b11
b21
b12
b22

0
BBB@

1
CCCA

¼ a11b11 þ a12b21 þ a21b12 þ a22b22 (S2:2)

thereby verifying Relation 2.

Relation 3: In � BT¼ (In � B)T

Here

I2 ¼ 1 0
0 1

� 	
and BT ¼ b11 b21

b12 b22

� 	

from which

In � BT ¼
b11 b21 0 0

b12 b22 0 0

0 0 b11 b21
0 0 b12 b22

2
6664

3
7775 (S2:3)

Now

In � Bð ÞT¼
b11 b21 0 0

b12 b22 0 0

0 0 b11 b21
0 0 b12 b22

2
6664

3
7775

In � B ¼
b11 b12 0 0

b21 b22 0 0

0 0 b11 b12
0 0 b21 b22

2
6664

3
7775 (S2:4)

and it is immediate that

In � Bð ÞT ¼

b11 b21 0 0

b12 b22 0 0

0 0 b11 b21

0 0 b12 b22

2
66664

3
77775

¼ In � BT

as expected.
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Relation 4: (A � B)(C � D)¼AC � BD

A� B ¼ a11B a12B

a21B a22B

� 	
¼

a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22

2
664

3
775

Similarly,

C� D ¼
c11d11 c11d12 c12d11 c12d12
c11d21 c11d22 c12d21 c12d22
c21d11 c21d12 c22d11 c22d12
c21d21 c21d22 c22d21 c22d22

2
664

3
775

Now

A� Bð Þ C� Dð Þ ¼
x1y1 x1y2 x2y1 x2y2
x1y3 x1y4 x2y3 x2y4
x3y1 x3y2 x4y1 x4y2
x3y3 x3y4 x4y3 x4y4

2
664

3
775

in which

x1 ¼ a11c11 þ a12c21, x2 ¼ a11c12 þ a12c22, x3 ¼ a21c11 þ a22c21, x4 ¼ a21c12 þ a22c22
y1 ¼ b11d11 þ b12d21, y2 ¼ b11d12 þ b12d22, y3 ¼ b21d11 þ b22d21, y4 ¼ b21d12 þ b22d22

But

BD ¼ b11 b12
b21 b22

� 	
d11 d12
d21 d22

� 	
¼ y1 y2

y3 y4

� 	

and now

A� Bð Þ C� Dð Þ ¼ x1BD x2BD
x3BD x4BD

� 	

Also

AC ¼ a11 a12
a21 a22

� 	
c11 c12
c21 c22

� 	
¼ x1 x2

x3 x4

� 	

and hence

A� Bð Þ C� Dð Þ ¼ AC� BD

as expected.
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Relation 5: VEC(ACB)¼BT � AVEC(C)
Here

ACB¼ a11 a12
a21 a22

� 	
c11 c12
c21 c22

� 	
b11 b12
b21 b22

� 	

¼ a11 a12
a21 a22

� 	
b11c11þb21c12 b12c11þb22c12
b11c21þb21c22 b12c21þb22c22

� 	

¼ a11b11c11þa11b21c12þa12b11c21þa12b21c22 a11b12c11þa11b22c12þa12b12c21þa12b22c22

a21b11c11þa21b21c12þa22b11c21þa22b21c22 a21b12c11þa21b22c12þa22b12c21þa22b22c22

� 	

Hence

VEC ACBð Þ ¼

a11b11ð Þc11 þ a12b11ð Þc21 þ a11b21ð Þc12 þ a12b21ð Þc22
a21b11ð Þc11 þ a22b11ð Þc21 þ a21b21ð Þc12 þ a22b21ð Þc22
a11b12ð Þc11 þ a12b12ð Þc21 þ a11b22ð Þc12 þ a12b22ð Þc22
a21b12ð Þc11 þ a22b12ð Þc21 þ a21b22ð Þc12 þ a22b22ð Þc22

2
66664

3
77775

¼

a11b11 a12b11 a11b21 a12b21

a21b11 a22b11 a21b21 a22b21

a11b12 a12b12 a11b22 a12b22

a21b12 a22b12 a21b22 a22b22

2
66664

3
77775

c11

c21

c12

c22

0
BBBB@

1
CCCCA

¼ b11A b12A

b21A b22A

" #
VEC Cð Þ

¼ BT � AVEC Cð Þ

as expected.

Relation 6: a � b¼VEC([abT]T)
First

a� b ¼ a1b
a2b

� �
¼

a1b1
a1b2
a2b1
a2b2

0
BB@

1
CCA (S2:5)

Now

abT ¼ a1
a2

� �
b1 b2ð Þ ¼ a1b1 a1b2

a2b1 a2b2

� 	

and also

abT
� �T¼ a1b1 a2b1

a1b2 a2b2

� 	
, VEC abT

� �T� �
¼

a1b1
a1b2
a2b1
a2b2

0
BB@

1
CCA (S2:6)

serving to verify Relation 6.
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EXAMPLE 3.5

Write out the 93 9 quantity TEN22(C) in cijkl¼ 2m(dikdjl)þ ldijdkl, which appears in
the Lamé form of the stress–strain relation in linear isotropic elasticity under small
strain, namely sij¼ cijkl«kl.

SOLUTION

It is readily verified that

C ¼ 2mIn � In þ lini
T
n , in ¼ VEC(In) (9	 1)

Here n¼ 3.
Expansion gives

C ¼ 2mð Þ
1 � I3 0 � I3 0 � I3
0 � I3 1 � I3 0 � I3
0 � I3 0 � I3 1 � I3

2
64

3
75þ l

1

0

0

0

1

0

0

0

1

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

1 0 0 0 1 0 0 0 1f g

¼ 2mð Þ

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

2
66666666666666664

3
77777777777777775

þ l

1 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1

2
66666666666666664

3
77777777777777775
EXAMPLE 3.6

Prove that the rows of a 33 3 tensor A are row vectors.

SOLUTION

First note that if f and g are 33 1 vectors, the scalar product fTg is invariant: f 0Tg0 ¼
(Qf)T(Qg)¼ fTg. Alternately, let g be a 33 1 vector but suppose initally that f is
simply a 33 1 array. If the matrix-algebraic product (Qf)T(Qg) is equal to fTg for all
orthogonal 33 3 transformation matrices Q, we conclude that the array f is in fact a

33 1 vector.
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To support this statement, suppose instead that f 0 ¼Qfþa in which a represents
the deviation from the vectorial relationship. But then f 0Tg0 ¼ (Qfþa)T(Qg), and
consequently it must be the case that aTQg¼ 0. But this must hold for arbitrary Q,
and there is a particular instance of Q, say Qa, which rotates g to be colinear with a.
If follows that aTQag can only vanish if a¼ 0.

We now consider whether the rows are transposed vectors. By hypothesis A is a
33 3 tensor. We write

A ¼
aT1

aT2

aT3

2
664

3
775

and consider the equation

Ab ¼ c

in which b and c are 33 1 vectors. Now simple manipulation serves to verify that

AQT ¼
aT1Q

T

aT2Q
T

aT3Q
T

2
664

3
775

and so we may write AQT(Qb)¼ c. Clearly,

aT1Q
T

aT2Q
T

aT3Q
T

2
664

3
775b0 ¼

aT1

aT2

aT3

2
664

3
775b

Since the scalar product of two 33 1 vectors is invariant under orthogonal transform-
ations we conclude that

aT1Q
T

aT2Q
T

aT3Q
T

2
664

3
775 ¼

a0T1

a0T2

a0T3

2
664

3
775

and in consequence that the rows of a 33 3 tensor are row vectors. Of course by using
AT we may similarly conclude that the columns of A are column vectors.

EXAMPLE 3.7

Let x denote the 33 1 position vector in a body. Also let g be an n3 1 vector, while A
(x) is an n3 n matrix dependent on position and P0 is a constant n3 n matrix. Prove
that

Ð
gTAT (x)P0A(x)g dV may be written in a form such that the integration does not

depend on P0.
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SOLUTION

From the properties of Kronecker products,

gTAT (x)P0A(x)g ¼ gT � gTVEC(AT (x)P0A(x))

¼ gT � dgTAT (x)� AT (x)VEC(P0)

The integral now reduces to

gT � gT

ð
AT (x)� AT (x) dV

� 	
VEC(P0) ¼ dgTKg

K ¼ IVEC

ð
AT (x)� AT (x)dV

� 	
VEC(P0)

� �

and the integration in the matrix K is independent of the matrix P0. This relation will be
of interest later when finite element analysis of buckling is considered.
� 2008 by Taylor & Francis Group, LLC.



� 2008 by Taylor & Francis Group, LLC.



4 Introduction to
Variational Methods
� 2008 by Taylor & Fra
4.1 INTRODUCTORY NOTIONS

In this section we introduce the central noti on of the varia tion. Rec all that Cha pter 1
described one step in FEA as expressing equilibrium equations as integral equations
using variational calculus.

Let u(x) be a vector-valued function of position vector x, and consider a vector-
valued functional F(u(x),u0(x),x), in which u0(x)¼ @u=@x. (Just like the definite
integral, a functional maps functions, say of x, into numbers.) Next, let v(x) be a
function such that v(x)¼ 0 whenever u(x)¼ 0, and also v0(x)¼ 0 when u0(x)¼ 0.
Otherwise, v(x) is arbitrary. The differential dF measures how much F changes if x
changes.

The variation dF, defined below, measures how much F changes if u and u0

change at fixed x. Following Ewing (1985) we introduce the vector-valued function
F(e:F) as follows:

F e:Fð Þ ¼ F u xð Þ þ ev xð Þ,u0 xð Þ þ ev0 xð Þ,xð Þ � F u xð Þ,u0 xð Þ,xð Þ (4:1)

in which e is a scalar ‘‘modulating’’ the difference between u and uþ ev as well as
between u0 and u0 þ ev0. The variation dF is defined by

dF ¼ e
dF

de

� �
e¼0j

(4:2)

with x fixed. Elementary manipulation using differential calculus serves to demon-
strate that

dF ¼ @F

@u
evþ tr

@F

@u0
ev0

� �
(4:3)

in which tr
�
@F
@u0 ev

0� ¼ @F
@u0ij

ev0ij. If F¼ u, then dF¼ du¼ ev. If F¼ u0, then
dF¼ du0 ¼ ev0. This suggests the notational convention ev! du and ev0 ! du0,
leading to the expression

dF ¼ @F

@u
duþ tr

@F

@u0
du0

� �
(4:4)
ncis Group, LLC.



4.2 PROPERTIES OF THE VARIATIONAL OPERATOR d

The variational operator exhibits five important properties:

1. d(�) commutes with linear differential operators and integrals. For example,
if S denotes a prescribed contour of integration

ð
dð Þ dS ¼ d

ð
ð Þ dS

� �
(4:5)

2. d( f ) vanishes when its argument f is prescribed.
3. d(�) satisfies the same operational rules as d(�). For example, if the scalars

q and r are both subject to variation,

d qrð Þ ¼ qd rð Þ þ d qð Þr (4:6)

4. If f is a prescribed function of (scalar) x and if u(x) is subject to variation,
then

d fuð Þ ¼ f du (4:7)

5. Other than for (2), the variation is arbitrary. For example, for two vectors v
and w, vT dw¼ 0 simply implies that v and w are orthogonal to each other.
However, vTdw¼ 0 implies that v¼ 0, since only the zero vector can be
orthogonal to an arbitrary vector.

In the current monograph, attention will be restricted to variations with respect to
position. There will be no consideration of variation with respect to time. Accord-
ingly d[ f (t)u(x)]¼ f (t)du(x).

4.3 EXAMPLE: VARIATIONAL EQUATION FOR A CANTILEVERED
ELASTIC ROD

Determine the variational principle for the system in Figure 4.1 which depicts a rod
of length L, cross-sectional area A, and elastic modulus E. At x¼ 0, it is built in while
at x¼ L the tensile force P is applied. Inertia is neglected. In terms of displacement u,
stress S, and (linear) strain E, the governing equations are given by
E,A

L
P

FIGURE 4.1 Rod under uniaxial tension.
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Strain� displacement E ¼ du

dx
Stress� strain S ¼ EE

Equilibrium
dS

dx
¼ 0

(4:8)

Combining the equations furnishes

EA
d2u

dx2
¼ 0 (4:9)

The steps below serve to derive a variational equation which is equivalent to the
foregoing differential equation and endpoint conditions (boundary conditions and
constraints).

Step 1: Multiply by the variation of the variable to be determined (u) and integrate
over the domain.

ðL
0

duEA
d2u

dx2
A dx ¼ 0 (4:10)
� 2008 by T
Differential equations to be satisfied at every point in the domain have now
been replaced with an integral equation whose integrand includes an arbi-
trary function.
Step 2: Integrate by parts as needed to render the argument in the domain integral
quadratic.

ðL
0

d

dx
duEA

du

dx

� �
� ddu

dx

� �
EA

du

dx

� �
dx ¼ 0 (4:11)
To determine whether an integrand is quadratic for variational purposes,
disregard the variational operator and derivatives with respect to time. If
what is left is quadratic, the integrand is positive definite. We will see that in
the finite element method terms with this property give rise to positive
definite matrices.

Now the first term in Equation 4.11 is the integral of a derivative, so that
ðL
0

ddu

dx

� �
EA

du

dx

� �
dx ¼ duEA

du

dx

�����
L

0

(4:12)

Step 3: Identify the primary and secondary variables.

The primary variable is present in the endpoint terms (rhs) under the

variational symbol and is u in the current example. The secondary variable
conjugate to u is EA du

dx.
aylor & Francis Group, LLC.



Step 4: Satisfy the constraints and boundary conditions.
� 2008 by Ta
At x¼ 0, u is prescribed and hence du¼ 0. At x¼ L, the load P ¼ EA du
dx

is prescribed. Also, note that ddu
dx

� �
EA du

dx ¼ d
�
1
2EA

du
dx

� �2�
. The right-hand

term represents the reason why the left-hand term is deemed quadratic.
Step 5: Form the variational equation.

The foregoing equations and boundary conditions are consolidated into

one integral equation as dF¼ 0 where
F ¼
ðL
0

1
2
EA

du

dx

� �2
dx� Pu Lð Þ (4:13)
4.4 HIGHER ORDER VARIATIONS

We now consider variations of order higher than unity. The jth variation of a vector-
valued quantity F is defined by

d jF ¼ e j
d jF

dej

� �
e¼0j

(4:14)

It follows that d2u¼ 0 and d2u0 ¼ 0. Now restricting F to being a scalar-valued
function F and letting x reduce to x, we obtain

d2F ¼ fduT du0TgH du

du0

 !
, H ¼

@

@u

� �T @

@u
F

@

@u

� �T @

@u0
F

@

@u0

� �T
@

@u
F

@

@u0

� �T
@

@u0
F

2
66664

3
77775 (4:15)

and H is known as the Hessian matrix.
Now consider G given by

G ¼
ð
F x,u xð Þ,u0 xð Þð Þ dV þ

ð
hT xð Þu xð Þ dS (4:16)

in which V again denotes the volume of a domain and S denotes its surface area. In
addition, h is a prescribed (known) function on S. G is called a functional since it
generates a number for every function u(x). We first limit attention to a three-
dimensional rectangular coordinate system and suppose that dG¼ 0, as in the
Principle of Stationary Potential Energy in elasticity. Note that

@

@x

@F

@u0
du

� �
¼ tr

@F

@u0
du0

� �
þ @

@x

@

@u0
F

� �
du (4:17)
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The first and third term s in Equ ation 4.17 may be recogni zed as diver gences of
vectors. We now invoke the diver gence theorem to obtai n

0 ¼ dG

¼
ð

@ F

@ u 
du þ tr

@ F

@ u0  
du0

� �� �
dV þ

ð
hT xð Þdu xð Þ dS

¼
ð

@ F

@ u 
� @

@ x

@ F

@ u0

� �
du

� �
dV þ

ð
nT

@ F

@ u0  
du dS þ

ð
h T xð Þdu xð Þ dS ( 4: 18 )

For suitable co ntinuity proper ties of u, arbitrariness of d u imp lies that dG ¼ 0 is
equivalent to the following Euler equation, boundary conditions and constraints (the
latter two are not uniquely determined by the variational principle):

@F

@u
� @

@x

@F

@u0
¼ 0T (4:19)

u xð Þ prescribed, x on S1

nT
@F

@u0
þ hT1 xð Þ ¼ 0T , x on S� S1

8<
:

Let D> 0 denote a constant positive definite and symmetric second order tensor and
let p denote a vector which is a nonlinear function of a second vector u that is
subject to variation. The function F ¼ 1

2p
T (u)Dp(u) satisfies

dF ¼ duT
@p

@u

� �T
Dp (4:20)

d2F ¼ duT
@p

@u

� �T
D
@p

@u
duþ duT

@

@u

@p

@u

� �T !
du

" #
Dp (4:21)

Since D> 0, if only the first right-hand term were present, the expression would be
quadratic with the implication that d2F> 0. However, for a general functional
relation between p and u the second right-hand term is not quadratic. Accordingly,
the specific vector u* satisfying dF¼ 0 may correspond to a stationary point which
does not constitute a minimum.

4.5 EXAMPLES

EXAMPLE 4.1

Directly apply variational calculus to F given by

F ¼
ðL
0

1
2
EA

du

dx

� �2
dx� Pu Lð Þ
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to verify that dF ¼ 0 gives rise to the Euler equation

EA
d2 u

dx 2 
¼ 0

What endpoint conditions (not unique) are compatible with d F ¼ 0?

SOLUTION

Given that

F ¼
ðL
0

1
2 
EA

du

dx

� �2
dx � Pu Lð Þ

variational operations furnish

dF ¼
ðL
0

d
1
2 
E A

d u

dx

� �2" #
dx � Pdu Lð Þ

¼
ðL
0

EA du0  u0  dx � P du Lð Þ  (4: 22)

Now consider d
dx duu0ð Þ ¼ du0  u0 þ duu00  . After some manipulation

ðL
0

E A
d

dx
duu0ð Þ dx ¼

ðL
0

EA du0  u 0 dx þ
ðL
0

EA duu00  dx

in which

ðL
0

EAdu0u0 dx ¼ EAduu0½ �L0 �
ðL
0

EAduu00 dx

On substituting Equation 4.23 into Equation 4.22, we have

dF ¼ EAduu0½ �L0 �
ðL
0

EAduu00 dx� Pdu Lð Þ

Now dF¼ 0 is seen to imply that

EAu0 Lð Þdu Lð Þ � EAu0 0ð Þdu 0ð Þ �
ðL
0

duEAu00 dx� Pdu Lð Þ ¼ 0
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from which

EAu0 Lð Þ � P½ �du Lð Þ � EAu0 0ð Þdu 0ð Þ �
ðL
0

duEAu00 dx ¼ 0

The domain integral must vanish, and the endpoint expressions must vanish. Hence

ið Þ EAu0 Lð Þ � P½ �du Lð Þ ¼ 0

iið Þ EAu0 0ð Þdu 0ð Þ ¼ 0

iiið Þ EAu00 ¼ 0

Note that (iii) states the Euler equation implied by dF¼ 0.
Finally, since du is arbitrary (i) and (ii) have the following implications:

ið Þ EAu0jx¼ L ¼ P so that
du

dx

� �
x¼ L

¼ P=EA

iið Þ EAu0jx¼ 0 ¼ 0 from which
du

dx

� �
x¼ 0

¼ 0
EXAMPLE 4.2

The governing equation for an Euler–Bernoulli beam in Figure 4.2 below is

EI
d4w

dx4
¼ 0

in which w is the vertical displacement of the neutral (centroidal) axis. The shear force V
and the bending moment M satisfy

M ¼ �EI
d2w

dx2
, V ¼ �EI

d3w

dx3
z

Y

E, I

V0

Neutral axis

L

x

FIGURE 4.2 Cantilevered beam.
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Using integration by parts twice, obtain the function F such that dF¼ 0 is equivalent
to the foregoing differential equation together with the boundary conditions for a
cantilevered beam of length L:

w 0ð Þ ¼ w0 0ð Þ ¼ 0, M Lð Þ ¼ 0, V Lð Þ ¼ V0

SOLUTION

On multiplying EIwiv¼ 0 by dw and integrating over the domain, 0 � x � L we obtain

ðL
0

dw EIwiv
	 


dx ¼ 0

Also

d

dx
dw0EIw00½ � ¼ dw0EIw000 þ dw00EIw00

Combining the last two equations furnishes

d

dx
dwEIw000½ � � d

dx
dw0EIw00½ � ¼ �dw00EIw00

Continuing,

ðL
0

dw00EIw00dx ¼ �
ðL
0

d

dx
dwEIw000½ � dxþ

ðL
0

d

dx
dw0EIw00½ � dx

¼ � dwEIw000½ �L0 þ dw0EIw00½ �L0

Note that w(0)¼w0(0)¼ 0. This implies that dw(0)¼ dw0(0)¼ 0. Also evident are
the conditions

�EIw00 Lð Þ ¼ M Lð Þ ¼ 0 and �EIw000 Lð Þ ¼ V Lð Þ ¼ V0

Some manipulation serves to establish that

ðL
0

dw00EIw00 dx ¼ dw Lð ÞV0

d

ðL
0

1
2
EI w00ð Þ2 dx

2
4

3
5¼ V0dw Lð Þ

d

ðL
0

1
2
EI w00ð Þ2 dx� V0w Lð Þ

2
4

3
5¼ 0
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Finally, since dF¼ 0 we conclude that

F ¼
ðL
0

1
2
EI w00ð Þ2 dx� V0w Lð Þ

EXAMPLE 4.3

Equation combining rod and beam behavior
What are the primary variables and the corresponding secondary variables in the

following equation?

B
@4w

@x4
� A

@2w

@x2
þ Cwþ D

@2w

@t2
¼ 0

in which 0 � x � L.

SOLUTION

The first step is to write

ðL
0

dw B
@4w

@x4
� A

@2w

@x2
þ Cwþ D

@2w

@t2

� �
dV ¼ 0

The third and fourth terms in the integrand, namely
Ð L
0 dwCw dV and

Ð L
0 dwD @2w

@t2 dV are
already quadratic. The second and first terms give, respectively,

ðL
0

dw �A
@2w

@x2

� �
dV ¼ �dw(Aw0)jL0 þ

ðL
0

dw0Aw0 dV

ðL
0

dw B
@4w

@x4

� �
dV ¼ �dw(�Bw000)jL0 � (�dw0)(�Bw00)jL0 þ

ðL
0

dw00Aw00 dV

Combining the last two equations reveals the primary variables to be w,�w0. The
corresponding secondary variables are �Aw0 þBw0 00 and Bw0 0.
EXAMPLE 4.4

Two-dimensional heat conduction
Obtain the variational equations corresponding to the following equation in two

dimensions. What are the primary variables and the conjugate secondary variables?
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The first equation is for unsteady heat conduction. The second equation has the same
form as the wave equation and the biharmonic equation in classical elasticity.

kr � rT ¼ rce
@T

@t
k¼ thermal conductivity
r¼mass density
ce¼ specific heat at constant strain

SOLUTION

The first step is to write

ð
V

dT kr � rT � rce
@T

@t

� �
dV ¼ 0

Applying integration by parts to the first term furnishes

ð
V

dT[kr � rT] dV ¼
ð
V

r � (dT[krT]) dV �
ð
V

drT � [krT] dV

Using the divergence theorem on the first right-hand term furnishes

ð
V

r � (dT[krT]) dV ¼
ð
S

dTn � krT dS

The primary variable is seen to be T owing to its presence under the variational
operator in the surface integral. The corresponding secondary variable is n � krT, which
equals the negative of the normal projection of the heat flux vector q¼�krT.
EXAMPLE 4.5

Navier equation and plate equation in elasticity
Find variational forms of the following equations. What are the primary and

secondary variables?

(mþ l)
@

@xi

@uj
@xj

þ m
@2ui
@x2j

¼ rui Navier’s equation

@2

@x2i

@2w

@x2j
¼ 0 Elastic Plate equation (static)
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SOLUTION

Navier’s equation
The first step is to write

ð
dui (mþ l)

@

@xi

@uj
@xj

þ m
@2ui
@x2j

� r€ui

 !
dV ¼ 0

First note that the third term in the integrand,�duirüi, is already quadratic. Next
consider the middle term in the integrand:

@

@xj
duim

@ui
@xj

� �
¼ @dui

@xj
m
@ui
@xj

þ duim
@2ui
@x2j

and

duim
@2ui
@x2j

¼ @

@xj
duim

@ui
@xj

� �
� @dui

@xj
m
@ui
@xj

Consequently, using the divergence theorem, the integral of the middle term gives

ð
duim

@2ui
@x2j

dV ¼
ð
duinjm

@ui
@xj

dS�
ð
@dui
@xj

m
@ui
@xj

dV

The first term in the integrand may be rewritten as

@

@xi
dui(mþ l)

@uj
@xj

� �
¼ @dui

@xi
(mþ l)

@uj
@xj

þ dui (mþ l)
@

@xi

@uj
@xj

� �

with the result that

dui (mþ l)
@

@xi

@uj
@xj

� �
¼ @

@xi
dui(mþ l)

@uj
@xj

� �
� @dui

@xi
(mþ l)

@uj
@xj

Upon integration and application of the divergence theorem,

ð
V

dui (mþ l)
@

@xi

@uj
@xj

� �
dV ¼

ð
V

nidui(mþ l)
@uj
@xj

dS�
ð
V

@dui
@xi

(mþ l)
@uj
@xj

dV

Collecting the surface terms gives

ð
S

dui ni(mþ l)
@uj
@xj

þ njm
@ui
@xj

� �
dS !

ð
S

duT (mþ l)(r � u)nþ m
du

dx
� n

� �
dS

We now identify u as the primary variable and
�
(mþ l)(r � u)nþ m du

dx � n
�
as the

conjugate secondary variable.
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We now examine the domain terms. Note that

ð
@dui
@xj

@ui
@xj

þ @dui
@xi

(mþ l)
@uj
@xj

þ duir€ui

� �
dV

¼
ð

tr
ddu

dx

� �T
m
du

dx

 !
þ (mþ l)(r � du)(r � u)þ dur€u

 !
dV

All three terms in the integrand are quadratic.
Finally the variational statement of Navier’s equation is recapitulated as

ð
tr

ddu

dx

� �T
m
du

dx

 !
þ (mþ l)(r � du)(r � u)þ duTr€u

 !
dV

¼
ð
S

duT (mþ l)(r � u)nþ m
du

dx
� n

� �
dS

SOLUTION

Plate equation
The first step, again, is

ð
V

dw
@2

@x2i

@2w

@x2j
dV ¼ 0

Integration by parts must be performed twice. The first step is

@

@xi
dw

@

@xi

@2w

@x2j

 !
¼ dw

@2

@x2i

@2w

@x2j
þ @dw

@xi

@

@xi

@2w

@x2j
(4:23)

and the second step is

@

@xj

@dw

@xi

@

@xi

@w

@xj

� �
¼ @

@xj

@dw

@xi

� �
@

@xj

@w

@xi

� �
þ @dw

@xi

@

@xi

@2w

@x2j
(4:24)

Subtracting Equation 4.24 from Equation 4.23 gives

@

@xi
dw

@

@xi

@2w

@x2j

 !
� @

@xj

@dw

@xi

@

@xi

@w

@xj

� �
¼ dw

@2

@x2i

@2w

@x2j
� @

@xj

@dw

@xi

� �
@

@xj

@w

@xi

� �

which becomes upon integration

ð
V

@

@xj

@dw

@xi

� �
@

@xj

@w

@xi

� �
dV ¼

ð
S

dw �ni
@

@xi

@2w

@x2j

 !
þ �@dw

@xi

� �
�nj

@

@xj

@w

@xi

� � !
dS
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Examination of the domain terms reveals that

ð
V

@

@xj

@dw

@xi

� �
@

@xj

@w

@xi

� �
dV ¼

ð
V

tr
d

dx

� �T
ddw

dx

 !T
d

dx

� �T
dw

dx

 ! !
dV

and the surface terms are rewritten as

ð
S

dw �ni
@

@xi

@2w

@x2j

 !
þ � @dw

@xi

� �
�nj

@

@xj

@w

@xi

� � !
dS

¼
ð
S

dw �(n � r)r2w
� �þ �rdwð Þ �(n � r)rwð Þ� �

dS

The primary variables are now identified as w,�rw, and the conjugate secondary
variables are respectively (�(n � r)r2w) and (�(n � r)rw).

EXAMPLE 4.6

Consider a one-dimensional system described by a sixth-order differential equation:

Q
d6q

dx6
¼ 0, Q a constant:

Consider an element from xe to xeþ1. Using the natural coordinate j¼�1 when
x¼ xe¼þ1 when x¼ xeþ1, for an interpolation model with the minimum order that is
meaningful, obtain expressions for w(j), F, and g, serving to express q as

q jð Þ ¼ wT jð ÞFg

SOLUTION

Since the given equation is sixth order, the lowest order interpolation model consistent
with six integration constants is a fifth-order polynomial, in the form (physical coord-
inates),

q x,tð Þ ¼ wT xð ÞFg tð Þ
in which

g tð Þ ¼

qe tð Þ
�q0e tð Þ
q

00
e tð Þ

qeþ1 tð Þ
�q0eþ1 tð Þ
q
00
eþ1 tð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
, wT xð Þ ¼ 1 x x2 x3 x4 x5

� �

We seek to identify F in terms of the nodal values of q.
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Letting qe ¼ q xeð Þ, qeþ1 ¼ q xeþ1ð Þ, q0e ¼ q0 xeð Þ . . . furnishes the following in the
matrix–vector notation:

qe tð Þ
�q0e tð Þ
q00e tð Þ
qeþ1 tð Þ

�q0eþ1 tð Þ
q00eþ1 tð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

1 xe x2e x3e x4e x5e
0 �1 �2xe �3x2e �4x3e �5x4e
0 0 2 6xe 12x2e 20x3e
1 xeþ1 x2eþ1 x3eþ1 x4eþ1 x5eþ1

0 �1 �2xeþ1 �3x2eþ1 �4x3eþ1 �5x4eþ1

0 0 2 6xeþ1 12x2eþ1 20x3eþ1

2
6666666664

3
7777777775
Fg tð Þ

Hence

F ¼

1 xe x2e x3e x4e x5e
0 �1 �2xe �3x2e �4x3e �5x4e
0 0 2 6xe 12x2e 20x3e
1 xeþ1 x2eþ1 x3eþ1 x4eþ1 x5eþ1

0 �1 �2xeþ1 �3x2eþ1 �4x3eþ1 �5x4eþ1

0 0 2 6xeþ1 12x2eþ1 20x3eþ1

2
6666666664

3
7777777775

�1

Now, on converting this to the natural coordinate j¼�1 when x¼ xe,¼þ1 when
x¼ xeþ1, we have

a ¼ 2
le

@

@x
¼ a

@

@j

from which

@6

@x6
¼ a6

@6

@j6
¼ 64

l2e

@6

@j6

Hence, the governing equation becomes

64
l2e

d6q

dj6
¼ 0

The interpolation model now becomes

q j xð Þ,tð Þ ¼ wT j xð Þð ÞFg tð Þ

and

wT j xð Þð Þ ¼ 1 j xð Þ j xð Þ2 j xð Þ3 j xð Þ4 j xð Þ5
� �

gT tð Þ ¼ qe tð Þ �q0e tð Þ q00e tð Þ qeþ1 tð Þ �q0eþ1 tð Þ q00eþ1 tð Þ� �
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Substituting j(xe)¼�1 and j(xe)¼�1 yields the desired result at

F ¼

1 �1 1 �1 1 �1

0 �1 2 �3 4 �5

0 0 2 �6 12 �20

1 1 1 1 1 1

0 �1 �2 �3 �4 �5

0 0 2 6 12 20

2
666666664

3
777777775

�1
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5 Fundamental Notions
of Linear Solid
� 2008 by Taylor & Fra
Mechanics
In this chapter we provide a condensed review of basic solid mechanics typically
presented in upper-level undergraduate courses. Our emphasis is on formal relations
as well as examples.

5.1 DISPLACEMENT VECTOR

Figure 5.1 depicts a body in both its refere nce and curren t con figurat ions. The forme r
is considered to be the undeformed configuration, and the latter is called the
deformed configuration—it reflects the deformation induced by the forces applied
to the undeformed configuration. Consider a material particle occupying ‘‘point’’ P in
the undeformed position and point Q in the deformed position. In the undeformed
configuration its position determined the undeformed position vector, given in
rectilinear coordinates as

X ¼ X1iþ X2jþ X3k (5:1)

while the same particle in the deformed configuration gives rise to the deformed
position vector

x ¼ x1iþ x2jþ x3k (5:2)

referred to the same base vectors i, j, k. It is assumed that xi are functions of Xj and
time t.

The vector difference between x and X is called the displacement vector. In
rectilinear coordinates

u ¼ x� X (5:3)

and in alternate notation

u ¼
u
v
w

8<
:

9=
; ¼

x� X
y� Y
z� Z

8<
:

9=
; (5:4)
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Deformed configuration
P

Q
X

x

u

i

j

y

x

Undeformed configuration

FIGURE 5.1 Illustration of the displacement vector.
5.2 LINEAR STRAIN AND ROTATION TENSORS

Suppose there is a slight change in the position of Q. From the chain rule of calculus,

in the X� Y plane the displacements u(X,Y) and v(X,Y) satisfy du ¼ du
dX dX þ du

dY dY

and dv ¼ dv
dX dX þ dv

dY dY . Elementary calculus furnishes

du

dv

� �
¼

du

dX

du

dY
dv

dX

dv

dY

2
64

3
75 dX

dY

� �

¼ Exx Eyx

Exy Eyy

� �
þ vxx vyx

vxy vyy

� �� �
dX

dY

� �
(5:5)

in which

Exx ¼ 1
2

du

dX
þ du

dX

� �
, Eyx ¼ Exy ¼ 1

2
dv

dX
þ du

dY

� �
, Eyy ¼ 1

2
dv

dY
þ dv

dY

� �

vxx ¼ 0, vxy ¼ �vyx ¼ 1
2

dv

dX
� du

dY

� �
, vyy ¼ 0

Of course Exx, Eyy, and Exy denote the linear strains and will be seen to comprise a
measure of local stretching. Further, vxy represents rotation.

Suppose, for example, that x¼Q(t)Xþ b(t) in which Q(t) is an orthogonal
tensor independent of X and the vector b(t) is likewise independent of X. Q(t) is
said to represent rigid body rotation and b(t) represents rigid body translation. To
first order in displacements and their derivatives, the linear strains are unaffected by
the rigid body component of the deformation. However, the rotation is strongly
affected by rigid body rotation.

In rectilinear coordinates, the linear strains and rotations are given in three
dimensions by
� 2008 by Taylor & Francis Group, LLC.



Eij ¼ 1
2

@ ui
@ Xj

þ @ uj
@ Xi

� �
!

EXX ¼ @ u

@ X 
norm al str ain

EYY ¼ @ v

@ Y 
norm al str ain

EZZ ¼ @ w

@ Z 
norm al str ain

EXY ¼ 1
2

@ u

@ Y 
þ @ v

@ X

� �
shear strai n

EYZ ¼ 1
2

@ y

@ Z 
þ @ w

@ Y

� �
shear strai n

EZX ¼ 1
2

@ w

@ X 
þ @ u

@ Z

� �
shear strai n

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

( 5: 6)

vij ¼ 1
2

@ ui
@ Xj

� @ uj
@ Xi

� �
!

vXX ¼ v YY ¼ vZZ ¼ 0

� vYX ¼ v XY ¼ 1
2

@ u

@ Y 
� @ v

@ X

� �

� vZY ¼ vYZ ¼ 1
2

@ v

@ Z 
� @ w

@ Y

� �

� vXZ ¼ vZX ¼ 1
2

@ w

@ X 
� @ u

@ Z

� �

8>>>>>>>>><
>>>>>>>>>:

( 5: 7)

In alte rnate notat ion we may write in general that

du ¼ du

dX 
dX

¼ EL þ v½ �dX ( 5: 8)

in whi ch

EL ¼ 1
2

du

dX
þ du

dX

� �T !
, v ¼ 1

2
du

dX
� du

dX

� �T !

The counte rpart of EL and v in tenso r-indici al notation is

Eij ¼ 1
2

@ ui
@ Xj

þ @ uj
@ Xi

� �
, vij ¼ 1

2
@ ui
@ Xj

þ @ uj
@ Xi

� �
( 5: 9)

Since du is a 3 3 1 vector , it follow s from Chapter 3 that du
dX is a 33 3 tensor.

Likewise du
dX

� 	T
, EL and v are 33 3 tensors.
� 2008 by Taylor & Francis Group, LLC.



5.3 EXAMPLES OF LINEAR STRAIN AND ROTATION TENSORS

EXAMPLE 5.1

The plate shown is initially square and 6 cm on a side (Figure 5.2a). It is deformed as
shown in Figure 5.2b. Find the displacement and the strain fields.

SOLUTION

Assume that the deformed coordinates can be expressed in terms of the undeformed
coordinates using the expressions

x ¼ aþ bX þ cY þ dXY (5:10)

y ¼ eþ fX þ gY þ hXY (5:11)

Our goal is to detect the coefficients a through h by fitting the coordinates at the four
corners of the element.

Along the bottom face of the block Y¼ 0 from which x¼ aþ bX and y¼ eþ fX. It
follows that y ¼ f

b x� eþ a
b, implying that the lower face remains a line after deformation.

On the right face X¼ 1 so that x¼ aþ bþ (cþ d)Y and y¼ eþ fþ (gþ h)Y. Now Y may
be eliminated from these expressions to yield a linear relation between the deformed
coordinates x and y.

Again the side of the element remains a line in the deformed cofiguration. Similar
results are are immediate for the upper face and the left-hand face.

Clearly the assumed relations (5.10, 5.11) are suitable if the sides of the square remain
straight after deformation. Eight nodal relations are used to determine the eight coefficients
in (5.10, 5.11).

Lower left node:

For (X,Y) ¼ (0,0), (x,y) ¼ (0,0) and hence a ¼ 1, e ¼ 1:

Lower right node:

For (X,Y) ¼ (6,0), x ¼ 7:1 and y ¼ 1:1: Hence b ¼ 6:1=6, f ¼ 0:1=6
6 
cm

6 cm

(a) (b)

1, 1

7.1, 1.1

1.2, 7.1

7.2, 7.3

FIGURE 5.2 Example of strain and rotation.
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Upper left:

For (X,Y) ¼ (0,6), x ¼ 1:2 and y ¼ 7:1, giving c ¼ 1:2=6 and g ¼ 6:1=6:

Apex:

For (X,Y) ¼ (6,6), x ¼ 7:2 and y ¼ 7:3: Accordingly,

7:2 ¼ 1þ b * 6þ c * 6þ d * 36 from which d ¼ �1:3=36

7:3 ¼ 1þ f * 6þ g * 6þ h * 36 from which h ¼ þ0:1=36

The displacements are found as

u ¼ x� X ¼ 1þ (�0:1=6)X þ (1:2=6)Y þ (�1:3=36)XY

v ¼ y� Y ¼ 1þ (0:1=6)X þ (0:1=6)Y þ (0:1=36)XY

Upon applying the formulae for the strains and rotations we obtain

Exx ¼ @u

@X
¼ 0:1=6� 1:3Y=36

Eyy ¼ @v

@Y
¼ 0:1=6þ 0:1X=36

Exy ¼ 1
2

@u

@Y
þ @v

@X

� �
¼ 1

2
1:3=6� 1:3X=6þ 0:1Y=36ð Þ

vxy ¼ 1
2

@u

@Y
� @v

@X

� �
¼ 1

2
1:1=6� 1:3X=36� 0:1Y=36ð Þ
EXAMPLE 5.2

A rectangular block in Figure 5.3 is rotated through u degrees. Find the displacements
and strains and rotations. What happens if the rotation angle is very small?

SOLUTION

The vector R rotates into the vector r. Both have length R. Thus, coordinates of the
endpoint of R are X¼R cos f, Y¼R sin f. The deformed coordinates, displacement,
strains, and rotation are now found to be
Y

y

r

R
f

q

x

X

FIGURE 5.3 Strain and rotation in body experiencing rigid body motion.

� 2008 by Taylor & Francis Group, LLC.



x ¼ R cos( f þ u) y ¼ R sin(f þ u)

¼ R [ cos f cos u � sin f sin u] ¼ R[ sin f cos u þ cos f sin u]

¼ X cos u � Y sin u ¼ X sin u þ Y cos u

u ¼ ( cos u � 1) X � Y sin u v ¼ X sin u þ ( cos u � 1) Y

EXX ¼ cos u � 1 EYY ¼ cos u � 1

EXY ¼ 0 vXY ¼ �vYX ¼ �sin u

At small values of u, to  first order in u EXX � 0, E YY � 0, vXY � �u. Clearly, to first
order in u, the strains vanish and the nonzero rotation is given by u. Of course u
represents rigid body rotation .

EXAMPLE 5.3

Find the displacements, strains and rotations in deformed body shown in Figure 5.4.

SOLUTION

The deformed and undeformed positions of the nodes are given in Table 5.1.
We again assume that the deformed coordinates may be expressed in terms of the
undeformed coordinates using

x ¼ aþ bX þ cY þ dXY , y ¼ eþ fX þ gY þ hXY

It was shown in the previous example that this form is capable of mapping the straight
sides in the undeformed configuration onto straight sides in the deformed configuration.
Following the same procedures as in the previous example given

Node 1: 0 ¼ aþ b0þ c0þ d0 : a ¼ 0

0 ¼ eþ f 0þ g0þ h0 : e ¼ 0

Node 2: cos u ¼ an þ b1þ c0þ d0 : b ¼ cos u

sin u ¼ eþ f 1þ g0þ h0 : f ¼ sin u

Node 4: sin u ¼ an þ b0þ c1þ d0 : c ¼ sin u

cos u ¼ en þ f 0þ g1þ h0 : g ¼ cos u

Node 3: cos uþ sin u ¼ an þ b1þ c1þ d1 ¼ cos uþ sin uþ d : d ¼ 0

sin uþ cos u ¼ en þ f 1þ g1þ h1 ¼ sin uþ cos uþ h : h ¼ 0
The lengths of the sides are unity in
both the undeformed and deformed

configurations

Undeformed

Deformed

3q

q

Y

4

1
X

2

FIGURE 5.4 Illustration of shear strain.
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TABLE 5.1
Deformed and Undeformed Nodal Coordinates

Node Undeformed Position Deformed Position

1 0, 0 0, 0
2 1, 0 cos u, sin u
3 1, 1 cos uþ sin u, sin uþ cos u
4 0, 1 sin u, cos u
We have now determined that

x ¼ cos u X þ sin u Y , y ¼ sin u X þ cos u Y

Now assuming that u is small enough to permit neglecting quadratic and higher-order
terms,

u ¼ ( cos u � 1) X þ sin u Y v ¼ sin u X þ cos u � 1ð ÞY
� uY � uX

EXX ¼ cos u � 1 EYY ¼ cos u � 1

� �u 2=2 � �u2= 2

EXY ¼ sin u vXY ¼ 0

� u

In contrast to the case of rigid body rotation, for small angle u and to first order in u, the
only nonzero strain is the shear strain, which is (approximately) equal to u. The shear
strain is a measure of how much the sides rotate relative to each other.

5.4 TRACTION AND STRESS

Conside r a different ial ‘‘brick element ’’ emana ting from an origin of the ( X,Y,Z)
coordinate system shown.

The differential forces on the faces of the element can be displayed as in
Figure s 5.5 and 5.6,

dF(i)
j ¼ differential force component in the jth direction acting on face dAi

dAi¼ differential area whose normal points in the ith direction
The stresses are introduced by

Sij ¼
@F(i)

j

@Ai

and if X, Y, and Z denote the coordinate axes,

Sxx ¼ dF(x)
x

dAx
, Sxy ¼ Syx ¼

dF(x)
y

dAx
¼ dF(y)

x

dAy

Syy ¼
dF(y)

y

dAy
, Syz ¼ Szy ¼

dF(y)
z

dAy
¼ dF(z)

y

dAz

Szz ¼
dF(z)

z

dAz
, Szx ¼ Sxz ¼ dF(z)

x

dAz
¼ dF(x)

z

dAx

(5:12)
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y

dAy

dAz

dAx

z

x

FIGURE 5.5 Differential brick element.

x

z

ydF y
(x)

dF x
(x)

dFz
(x)

dFx
(y)

dFx
(z)

dFz
(y)

dFz
(z)

dFy
(z)

dFy
(y)

x

z

y

z

y

x

FIGURE 5.6 Forces on differential brick element.
The first index i repres ents the diff erential area on which the force acts, while the
second index j repres ents the direc tion in whic h the force is acting. The total
diff erential force v ector acting on the i th face is given by dF (i ) ¼ t (i ) dAi in which
the traction vector t (i ) on the ith face is given by

t (i) ¼ d F (i)1
dAi

e1 þ dF (i )2
dAi

e2 þ dF (i )3
d Ai

e3 (5 :13 )

More generally, we consider a different ial tetrahedro n enclosing the point x in the
deform ed con figurat ion (Figur e 5.7). The area of the incl ined (shade d) face is dS, and
dSi is the area of the face on the back of the tetrahedro n whose exterior normal vector
is �ei . Simple vector analys is serves to deriv e that ni ¼ dSi=dS, see Exa mple 2.5
in Cha pter 2. Next let dF denote the force on a surface element dS, and let dF( i) denote
the force on area dSi on the back of the tetrahedro n. The traction vector acting on
the incl ined face is introduced by t ¼ dF=dS. As the tetrahedro n shrinks to a p oint, the
con tribution of volume forces such as inert ia decays faster than that of surface forces .
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2

dF (3)
dF

dS3

n

1

3

dS2

dF (1)

dF (2)

dS1 dS

FIGURE 5.7 Forces on a differential tetrahedron.
Balance of forces on the tetrahedron now requires that

dF ¼
X
i

dF(i) (5:14)

The traction vector acting on the inclined face is defined by

t ¼ dF

dS
(5:15)

which together with the equilibrium Equation 5.14 furnishes

tj ¼
X
i

dF ið Þ
j

dS

¼
X
i

dF ið Þ
j

dSi

dSi
dS

¼ Sijni (5:16)

in which

Sij ¼
dF ið Þ

j

dSi
(5:17)
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It is readily seen that Sij can be interpreted as the intensity of the force acting in
the j direction on the facet pointing in the � i d irection. It is the ijth entry in the
tenso r S . In mat rix–vector n otation the stre ss– traction relation Equ ation 5.16 is
written as

t ¼ STn (5:18)

Since ST appears in a physically based linear relation between vectors of the same
dimension, it is a tensor, as is the stress tensor S.

EXAMPLE 5.4

The plate in Figure 5.8 is subjected to the stress field

Sxx ¼ aþ bxþ cy

Syy ¼ d þ exþ fy

Sxy ¼ gþ hxþ jy

Find the traction vector and the total force acting on the top and right faces. Consider
the moment (Mz) exerted by the tractions on these two faces about the origin.

On the top face consider the interval dx at x. The total force on this interval is
dFtop¼ Syx dx exþ Syy dx ey. The total force on the face is

Ftop ¼
ðL
0

Syx dx ex þ Syy dx ey

 �

¼
ðL
0

(gþ hxþ jH) dx ex þ (d þ exþ fH) dx ey

 �

¼ gþ jH þ 1
2hL

� 	
L ex þ d þ 1

2eLþ fH
� 	

L ey
1

x

L

z

H

y

FIGURE 5.8 Forces and moments determined by tractions.
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The moment due to the force on the interval is

dMtop ¼ (xex þ Hey)� dFtop

¼ (xex þ Hey)� (gþ hxþ jH) dx ex þ (d þ exþ fH) dx ey
¼ x(d þ exþ fH) dx½ � � H(gþ hxþ jH)½ � dx ek

and integration gives

Mtop ¼ 1
2(fH þ d)L2 þ 1

3eL
3 � (H(gþ h)L� 1

2HhL
2

On the right face consider the interval dy at y. The total force on the interval is

dFright ¼ (Sxx dy ex þ Sxy dx ey)

The total force on the face is now

Fright ¼
ðH
0

Sxx dy ex þ Sxy dy ey

 �

¼
ðH
0

(aþ bLþ cy) dy ex þ (gþ hLþ jy) dy ey

 �

¼ aþ bLþ 1
2cH

� 	
Hex þ gþ hLþ 1

2 jH
� 	

Hey
EXAMPLE 5.5

At point (0,0,0) the tractions t1, t2, t3 act on planes with normal vectors n1, n2, and n3.
Find the stress tensor S, given that

n1 ¼ 1ffiffi
3

p [e1 þ e2 þ e3], t1 ¼ 1ffiffi
3

p [2e1 � 5e2 þ 6e3]

n2 ¼ 1ffiffi
2

p [e1 þ e2], t2 ¼ 1ffiffi
2

p [e1 � e2 þ e3]

n3 ¼ 1ffiffi
3

p [e1 � e2 � e3], t3 ¼ � 1ffiffi
3

p [6e1 � 1e2 þ 2e3]

SOLUTION

On applying stress–traction relation t1¼ STn1 we find

1ffiffiffi
3

p
2
�5
6

0
@

1
A ¼ 1ffiffiffi

3
p

S11 S21 S31
S12 S22 S32
S13 S23 S33

2
4

3
5 1

1
1

0
@

1
A
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and

S11 þ S 21 þ S 31 ¼ 2 (5: 19)

S12 þ S22 þ S 32 ¼ �5 (5: 20)

S13 þ S 23 þ S 33 ¼ 6 (5: 21)

Similarly, t2 ¼ ST n2 implies that

S11 þ S21 ¼ 1 (5: 22)

S12 þ S22 ¼ �1 (5: 23)

S13 þ S23 ¼ 1 (5: 24)

Finally, t3 ¼ S Tn 3 yields

S11 � S21 � S 31 ¼ �6 (5: 25)

S12 � S 22 � S 32 ¼ 1 (5: 26)

S13 � S23 � S 33 ¼ �2 (5: 27)

Solving the nine equations (Equations 5.19 through 5.27) by sequential elimination
gives the stress tensor as

S ¼
� 2 � 2 2
3 1 � 1
1 � 4 5

2
4

3
5

5.5 EQUILIBRIUM

We now consi der equil ibrium in a more general way and incl ude inert ial effects,
un der the restriction that the deform ation is ‘‘smal l enough ’’ to neglec t effects of
deform ation on the stress or the equilibrium relation. Negl ecting gravity and other
‘‘ body forces, ’’ the tota l exter nal force F on a body is assum ed to be exert ed on its
bo undaries. It is given by the integral F ¼ Ð t dS. However , recal ling that t ¼ ST n, the
diver gence theorem may be appli ed to obtai n F ¼ Ð r � ST dV . The total force must
equ al the rate of chang e of the total line ar momentu m L of the body: L ¼ Ð r _x dV in
whi ch the mass density is d enoted by r. Now owi ng to Ray leigh ’ s transport theorem
(see Chandras ekharai ah and Debnath, 1994), dL

d t ¼ d
dt

Ð
r _x dV ¼ Ð r €x d V . Acco rdingly,

F ¼ d L
dt imp lies the inte gral ( global ) equati on

Ð r � ST � r €xT
� 	

dV ¼ 0T .
In most cases of interest in the current monog raph there is a fixed point in the

bo dy so that the undefor med position X can be taken to be indepe ndent on time. In
this e vent ü ¼ ẍ . (In Cha pter 12, consi deration will be given to bodies in whi ch there
is no fixed point, with the consequence that the analysis is referred to a translating
and=or rotating coordinate system.) The integral equation must hold for the whole
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body or any close d sub-bo dy withi n the bo dy. We conclu de that the local balanc e of
linear moment um equati on

r � ST ¼ r €uT ( 5: 28 )

holds point wise (loca lly) throu ghout the body.
It is also necess ary to consi der balanc e of angula r momen tum. The different ial

moment exerted by the tract ion vector on a surfa ce p atch is given by

dM ¼ X � t dS dMi ¼ 2ijk Xj tk dS

¼ X � ST n dS ¼ 2ijk X j S
T
kl nl dS ( 5: 29 )

Invokin g the diver gence theor em (Chapte r 2), the total momen t on the body is
given by

Mi ¼
ð
2ijk Xj S

T
kl nl dS

¼
ð

@

@ Xl
2ijk X j S

T
kl

� 	
dV

¼
ð

2ijk
@ Xj

@ Xl
STkl þ 2ijk Xj

@ STkl
@ Xl

� �
dV ( 5: 30 )

Now @ Xj

@ Xl
is recogni zed as djl , and 2 ijk X j

@ STkl
@ Xl

¼2ijk X j €uk by virtue of the balanc e of
linear momentu m. We may rewrit e the forego ing equati on as

Mi ¼
ð

2ijk S
T
kj þ r 2  ijk X j €uk


 �
dV ( 5: 31 )

Invokin g Rayleigh ’ s Transpor t Theorem to be introduced in Chapter 13, the rate of
change of the angula r mom entum is given by

dH

dt
¼ d

dt

ð
r X � _u dV

¼
ð

r
d

dt 
X

� �
� _u þ r X � €u

� �
dV ( 5: 32 )

Note that d
dt X
� 	 ¼ _u and hence d

dt X
� 	� _u ¼ 0. The global e quation for the ba lance

of angular momentum now becomes, in indicial notation,

Mi ¼ dHi

dt
¼
ð
r3ijk Xj€uk dV (5:33)

Combining Equations 5.31 and 5.32, and invoking the fact that the result applies for
arbitrary closed subvolumes we have the pointwise relation
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2ijk S 
T
kj ¼ 0 (5 :34 )

The tenso r S T may be expres sed in term s of its symmet ric and antisym metric part.
Fro m Exa mple 2.6 in Cha pter 2, it was shown that 2ijk ajk ¼ 0 if the corres pondin g
tenso r A is symmet ric. By a similar argument it may be shown that 2ijk ajk 6¼ 0 if  A
is antisym metric. Consequen tly, Equati on 5.34 cannot be satis fied if ST possesses a
no nvanishing antisym metric pa rt. According ly ST is symmet ric: S ¼ ST .

EXAMPLE 5.6

Assume that the differential rectangle shown is a unit thickness (Figure 5.9). Prove from
(static) moment equilibrium that Sxy ¼ S yx .

SOLUTION

Take the moments about the lower left-hand corner.

1. The shear stresses on the bottom and left-hand faces do not create a moment relative
to this point since the line of action goes through the origin.

2. Assuming that the forces due to the normal stresses are considered to act at the
midpoint of the faces on which they act, they do not contribute to the moment since
the positive forces have the same line of action as the negative forces.

3. This leaves only the shear stresses on the right-hand and top faces. Now moment
balance M ¼ 0 implies

0 ¼ (Sxy d y) dx � (Syx dx) dy

¼ Sxy � S yx
� 	

dx dy

with the consequence that Syx ¼ Sxy . This solution illustrates the fact that the stress
tensor is symmetric. (The linear strain tensor is symmetric since it is the symmetric part
of the tensor du=dX.)
Sxx

Syy

Syx

Sxy

Sxx

dx

dy

Syy

Syx

Sxy

FIGURE 5.9 Net moment on a differential element.
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EXAMPLE 5.7

Suppose that, in a differential plate element as shown, the stresses vary slightly
across the element. Find the equations for static equilibrium of forces in the x- and
y-directions, treating the figure shown as a free body diagram at the differential level
(Figure 5.10).

SOLUTION

The total force in the x-direction is

dFx ¼ Sxx
/

þ dSxx

dx
dx� Sxx

/� �
dyþ Syx

.
þ dSyx

dy
dy� Syx

.� �

But the equilibrium condition dFx¼ 0 requires that dSxx
dx þ dSyx

dy


 �
dx dy ¼ 0, which

becomes

dSxx

dx
þ dSyx

dy
¼ 0

The total force in the y-direction is

dFy ¼ Sxy
/

þ dSxy

dx
dx� Sxy

/� �
dyþ Syy

/
þ dSyy

dx
dy� Syy

/� �
dx
Note: dSxy = 
dSxy

dx
dx, etc.

Syy

Syx

Sxy

Syy  +  dSyy

Syx +  dSyx

Sxx  +  dSxx

Sxy  +  dSxy

Sxx dy

dx

FIGURE 5.10 Balance of forces on a differential element.
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and dFy ¼ 0 immediately furnishes that

dSxy

dx
þ dSyy

dx
¼ 0
5.6 STRESS AND STRAIN TRANSFORMATIONS

The plate shown below is under a state of stre ss referr ed to the x - and y -axis.
A small cutout is shown whos e lower side is inclined at an angle u from the

x -axis . We embed a rotated coordinate syst em X 0 � Y 0 in the cutout, and seek to
exp ress the stre sses in the rotated syste m (Figur e 5.11).

We a lready know from the relations of Chapter 3 that the stresses represent a
tenso r and that the stre ss tensor satis fies the relation S0 ¼ QSQ T in which Q is the
ortho gonal matrix rotat ing the base vector s eX , e Y to the e X 0 , e Y 0  . Fu rthermor e, we
alrea dy know that , in the plane,

Q ¼ cos u sin u
� sin u cos u

� �
(5 :35 )

Ele mentary mat rix multip lications and the doub le-angle form ulae of trig onometry
suffice to verify that
Y �

X �

Sy�y� Sx�y�
Sx�x�

q

Y
Syy

X

Sxx

Sxy  =  Syx

FIGURE 5.11 Stresses referred to a rotated coordinate system.
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SX0X0 ¼ SXX þ Syy

2
þ SXX � Syy

2
cos 2uþ SXY sin 2u

SY 0Y 0 ¼ SXX þ SYY

2
� sXX � SYY

2
cos 2u� SXY sin 2u

SX0Y 0 ¼ � SXX � SYY

2
sin 2uþ SXY cos 2u

(5:36)

The strains induced by the stresses likewise represent a tensor and transform exactly
the same way as the stresses:

EX0X0 ¼ EXX þ EYY

2
þ EXX � EYY

2
cos 2uþ EXY sin 2u

EY 0Y 0 ¼ EXX þ EYY

2
� EXX � EYY

2
cos 2u� EXY sin 2u

EX0Y 0 ¼ �EXX � EYY

2
sin 2uþ EXY cos 2u

(5:37)

Several simple examples are now given illustrating the use of coordinate trans-
formations.

EXAMPLE 5.8

Relative to the x–y axes the stresses are

Sxx ¼ 0, Syy ¼ 0, Sxy ¼ 25 ksi

What are the stresses referred to axes x0 and y0 which are rotated by 458 from x and y?
Do the same for stresses referred to axes x00 and y00 rotated by �458.

SOLUTION

Using the stress transformations through þ458

Sx0x0 ¼ Sxx þ Syy

2
þ Sxx � Syy

2
cos(2 * 45)þ Sxy sin(2 * 45) ¼ 25 ksi

Sy0y0 ¼ Sxx þ Syy

2
� Sxx � Syy

2
cos(2 * 45)� Sxy sin(2 * 45) ¼ �25 ksi

Sx0y0 ¼ � Sxx � Syy

2
sin(2 * 45)þ Sxy cos(2 * 45) ¼ 0

Doing the stress transformations through �458

Sx0x0 ¼ Sxx þ Syy

2
þ Sxx � Syy

2
cos(2 * 45)þ Sxy sin(2 * 45) ¼ �25 ksi

Sy0y0 ¼ Sxx þ Syy

2
� Sxx � Syy

2
cos(2 * 45)� Sxy sin(2 * 45) ¼ þ25 ksi

Sx0y0 ¼ � Sxx � Syy

2
sin(2 * 45)þ sxy cos(2 * 45) ¼ 0

Since the elements at �458 have no shear stress, their normal stresses are the principal
stresses.
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Plate is 1 in. thick

y

B

A x

5 in.

5 3  in.

FIGURE 5.12 Length of the diagonal in a plate under strain.
EXAMPLE 5.9

The stresses in the square plate shown (Figure 5.12) are uniform and are given by

Sxx ¼ 10 ksi, Syy ¼ �10 ksi, Sxy ¼ 0

What is the total force acting transverse to the line AB, and what is the total moment of
this force relative to point A?

SOLUTION

Sx0x0 ¼ Sxx þ Syy

2
þ Sxx � Syy

2
cos 60þ Sxy sin 60 ¼ 5 ksi

Sy0y0 ¼ Sxx þ Syy

2
� Sxx � Syy

2
cos 60� Sxy sin 60 ¼ �5 ksi

Sx0y0 ¼ � Sxx � Syy

2
sin 60þ Sxy cos 60 ¼ �5

ffiffiffi
3

p
ksi

FAB ¼ Sy0y0 * area MAB ¼ �50000� 5

¼ �5 ksi * 1 * 10 ¼ �250000 in: lb

¼ �50000 lb

EXAMPLE 5.10

A plate element is under the strains Exx 6¼ 0, Eyy 6¼ 0, Exy¼ 0. What are the strains in an
element rotated þ908, �908, and 1808?

SOLUTION

Ex0x0 ¼ Exx þ Eyy

2
þ Exx � Eyy

2
cos(180)þ Exy

/
sin(180) ¼ «yy

Ey0y0 ¼ Exx þ Eyy

2
� Exx � Eyy

2
cos(180)� «xy

/
sin(180) ¼ «xx

Ex0y0 ¼ �Exx � Eyy

2
sin(180)
-

þ Exy

/
cos(180) ¼ 0
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u ¼ �90�:

Ex0x0 ¼ Exx þ Eyy

2
þ Exx � Eyy

2
cos(�180)þ Exy

/
sin(�180) ¼ Eyy

Ey0y0 ¼ Exx þ Eyy

2
� «xx � «yy

2
cos(�180)� Exy

/
sin(�180) ¼ Exx

Ex0y0 ¼ �Exx � Eyy

2
sin(�180)

- þ Exy

/
cos(�180) ¼ 0

u ¼ 180�:

«x0x0 ¼ Exx þ Eyy

2
þ Exx � Eyy

2
cos(360)þ Exy

/
sin(360) ¼ «xx

«y0y0 ¼ Exx þ Eyy

2
� Exx � Eyy

2
cos(360)� Exy

/
sin(360) ¼ «yy

«x0y0 ¼ �Exx � Eyy

2
sin(360)
-

þ Exy

/
cos(360) ¼ 0
EXAMPLE 5.11

Transformation of stresses in two dimensions (2D)
Verify the stress transformation relations using force balance in two dimensions

(Figure 5.13).
ds

ds

Syy

Sxy

Sxx

Sxy

Sxy

Sxy

Syy

Sxx

A
q

q

B

Sn Sr

n
r

Assume unit thickness

ds
sin q ds

cos q ds

FIGURE 5.13 Transformation of stress.
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SOLUTION

In the current and succeeding example we will make use of the relations
cos2 u ¼ 1

2 (1þ cos 2u), sin2 u ¼ 1
2 (1� cos 2u), and 2 sin u cos u¼ sin 2u. Given the

stresses on a square element, we seek the normal and tangential stresses on the line
AB at angle u from the x-axis.

The unit vectors defining the normal and tangential directions of the line AB are
given by

n ¼ �sin u iþ cos u j, t ¼ cos u iþ sin u j

The vectors representing the normal, tangential, and total force on the inclined line are
in terms of the normal and tangential stresses as

dFn ¼ (�sin uSn ds)iþ cos uSn ds j

dFt ¼ cos uSt ds iþ sin u St ds j

dF ¼ �sin u Sn dsþ cos uSn dsð Þiþ ( cos uSn dsþ St sin u ds)j

Balance of forces in the x and y directions requires that

� sin uSn dsþ cos uSt dsþ sin uSxx ds� cos uSxy ds ¼ 0

cos u Sn dsþ sin uSt dsþ sin uSxy ds� cos uSyy ds ¼ 0

After some manipulations involving double-angle formulae from trigonometry, we have

� sin uSn þ cos uSt ¼ �Sxx sin uþ Sxy cos u

cos u Sn þ sin uSt ¼ �Sxy sin uþ Syy cos u

sin2 u Sn � sin u cos uSt ¼ Sxx sin
2 u� Sxy sin u cos u

cos2 u Sn þ sin u cos uSt ¼ �Sxy sin u cos uþ Syy cos
2 u

Sn ¼ Syy cos
2 uþ Sxx sin

2 u� 2 sin u cos uSxy

and hence the stress normal to the line AB is given by

Sn ¼ 1
2(1þ cos 2u)Syy þ 1

2(1� sin2 u)Sxx � sin 2uSxy

¼ 1
2(Sxx þ Syy)� 1

2(Sxx � Syy) cos 2u� sin 2uSxy

in agreement with the previously reported transformation formulae.
Similar operations are performed for the tangential stress.

� sin u cos u Sn þ cos2 uSt ¼ �Sxx sin u cos uþ Sxy cos
2 u

sin u cos uSn þ sin2 uSt ¼ �Sxy sin
2 uþ Syy sin u cos u
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The stress tangential to the line AB is now found to be

st ¼ �(sxx � syy) sin u cos uþ sxy( cos
2u� sin2u)

st ¼ � (sxx � syy)

2
sin 2uþ sxy cos 2u

likewise in agreement with the previously reported transformation formulae.

EXAMPLE 5.12

Transformations of strains in 2D.
In two dimensions show that Ex0x0 ¼ @u0

@X0 , Ey0y0 ¼ @v0
@Y 0 , and Ex0y0 ¼ 1

2
@u0
@Y 0 þ @v0

@X0
� 	

.

SOLUTION

Figure 5.14 depicts the undeformed position vector X and the deformed position vector
x. It also shows X0 and x0 which are X and x0 rotated through �u. Recall that a positive
rotation of the coordinate system has the same effect as a negative rotation of a vector
relative to the same coordinate system.

The undeformed and deformed coordinates in the rotated vectors are given by

X0 ¼ cos(w� u)R Y 0 ¼ sin(w� u)R

¼ X cos uþ Y sin u ¼ �X sin uþ Y cos u

and

x0 ¼ x cos uþ y sin u, y0 ¼ �x sin uþ y cos u
R

q

q f

X

x

X �
x �

i

j

R

FIGURE 5.14 Undeformed position vector before and after rotation.
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The relations just presented may be easily inverted to furnish

X ¼ X 0  cos u � Y 0  sin u, x ¼ x0  cos u � y0  sin u
Y ¼ X 0  sin u þ Y 0  cos u, y ¼ x0  sin u þ y0  cos u

The chain rule of calculus yields the useful relations

@

@ x0
¼ @ x

@ x0
@

@ x 
þ @ y

@ x0
@

@ y

@

@ y0
¼ @ x

@ y0
@

@ x 
þ @ y

@ y0
@

@ y

¼ cos u
@

@ x 
þ sin u

@

@ y
¼ � sin u

@

@ x 
þ cos u

@

@ y

It further follows that

u0 ¼ x0 � X 0  v0 ¼ y0 � Y 0

¼ (x � X ) cos u þ ( y � Y ) sin u ¼ �(x � X ) sin u þ ( y � Y ) cos u

¼ u cos u þ v sin u ¼ �u sin u þ v cos u

Next,

E0
XX ¼ cos u

@ u

@ X 0
þ sin u

@ v

@ X 0

¼ cos u
@ u

@ X 
þ sin u

@ u

@ Y

� �
cos u þ cos u

@v

@X
þ sin u

@v

@Y

� �
sin u

¼ cos2 u
@u

@X
þ sin2 u

@v

@Y
þ cos u sin u

@u

@Y
þ @v

@X

� �
¼ 1

2(1þ cos 2u)EXX þ 1
2(1� cos 2u)EYY þ sin 2uEXY

¼ EXX þ EYY

2
þ EXX � EYY

2
cos 2uþ EXY sin 2u

in agreement with Equation 5.37.
Similarly,

EY 0Y 0 ¼ @v0

@Y 0

¼ � sin u
@u

@Y 0 þ cos u
@v

@Y 0

¼ � �sin u
@u

@X
þ cos u

@u

@Y

� �
sin uþ � sin u

@v

@X
þ cos u

@v

@Y

� �
cos u

¼ sin2 u
@u

@X
þ cos2 u

@v

@Y
� sin u cos u

@u

@Y
þ @v

@X

� �

¼ EXX þ EYY

2
� EXX � EYY

2
cos u� sin 2uEXY

again in agreement with Equation 5.37.
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Finally,

EX 0  Y 0 ¼1
2

@ u0

@ Y 0
þ @ v0

@ X 0

� �

¼1
2

@

@ Y 0 
u cos u þ v sin uð Þþ1

2
@

@ X 0  
( � u sin u þ v cos u)

¼1
2

� sin u
@

@ X 
þ cos u

@

@ Y

� �
u cos u þ v sin uð Þþ1

2
cos u

@

@ X 
þ sin u

@

@ Y

� �
( � u sin u þ v cos u)

¼1
2

2 sin u cos u
@ v

@ Y 
� @ u

@ X

� �
þ cos 2 u � sin 2 u
� 	 @ u

@ Y 
þ @ v

@ X

� �� �

¼�EXX � EYY

2
sin 2 u þ EXY cos 2 u

as expected.

5.7 PRINCIPAL STRESSES AND STRAINS

In the plane, upon rotation of the coordinate a xes through the angle u0 satisfying
tan 2u0 ¼ 2«xy

«xx � «yy
, the shear stra in and the shear stress both vanish: «X 0 Y 0 ¼ 0, sX 0 Y 0 ¼ 0.

The corres ponding norm al stresses (str ains) are call ed the p rincipal stre sses
(strains ), denote d by sI , sII ( «I, «II ). Of course from Secti on 2.4 of Cha pter 2 we
know that the eigenv ector s of the stress tenso r form the colum ns of an ortho gonal
tensor Qo( s) whi ch serves to diagon alize S. The diagon al entries are sim ply the
eigenv alues, which in the curren t contex t are called the princ ipal values. In the plane
the deter minant equations for the princ ipal stresses and stra ins are simply

EI , II ¼ Exx þ Eyy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Exx � E yy

2

� �2
þ E2

xy

s

SI , II ¼ SXX þ SYY

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SXX � S YY

2

� �2
þ S2XY

s

The rotated axes in the current contex t are called the princ ipal axes .

EXAMPLE 5.13

The strain ellipsoid
A three-dimensional body has a uniform state of strain in which

Exx ¼ 0, Eyy ¼ 0: 01, Ezz ¼ 0, Exy ¼ 0, Eyz ¼ 0, Ezx ¼ 0: 01

Imagine a small sub-body, which is spherical with radius r in the undeformed config-
uration. When the strain is imposed, it becomes an ellipsoid (Figure 5.15). What are the
lengths of the three semiaxes a, b, c of the ellipsoid, and what are their orientations
relative to the x–y–z axes? What are the principal strains?
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Undeformed body Ellipsoid

y

z

r

x

c

z

x

y

b

a

FIGURE 5.15 Deformation of a small sphere.
SOLUTION

The strain tensor E ¼
0 0 0:01
0 0:1 0

0:01 0 0

2
4

3
5 is diagonalized by a rotation of the z–x

plane about the y-axis, namely

E0 ¼
cos

p

4
0 sin

p

4
0 1 0

�sin
p

4
0 cos

p

4

2
664

3
775

0 0 0:01

0 0:1 0

0:01 0 0

2
64

3
75

cos
p

4
0 �sin

p

4
0 1 0

sin
p

4
0 cos

p

4

2
664

3
775

¼ 0:01

sin
p

4
0 cos

p

4
0 1 0

cos
p

4
0 �sin

p

4

2
664

3
775

cos
p

4
0 �sin

p

4
0 1 0

sin
p

4
0 cos

p

4

2
664

3
775

¼ 0:01

2 sin
p

4
cos

p

4
0 cos2

p

4
� sin2

p

4
0 1 0

cos2
p

4
� sin2

p

4
0 �2 sin

p

4
cos

p

4

2
664

3
775

¼ 0:01

1 0 0

0 1 0

0 0 �1

2
64

3
75

The lengths of the three semiaxes are: 1.01r, 1.0r, 0.99r. The principal strains are then
relative length changes of the semiaxes. In other words,

EI¼ 1:01r � r

r
EII ¼ 1:01r � r

r
EIII ¼ 0:99r � r

r

¼ 0:01, ¼ 0:01, ¼ �0:01
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EXAMPLE 5.14

The Von Mises stress and the Tresca stress
Often stresses calculated by finite element analysis are compared to failure stresses

measured in the laboratory. Typically, the laboratory tests are one-dimensional, either
simple tension=compression or simple shear. However, the calculated stresses are often
multiaxial. In order to enable comparison with failure stresses it is common to introduce
‘‘equivalent stresses’’ of which primary examples are the Von Mises stress and the
Tresca stress introduced as follows using principal stresses:

SVM ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SI � SIIð Þ2 þ SII � SIIIð Þ2 þ SIII � SIð Þ2

q
:Von Mises

tT ¼ 1
2max SI � SIIj j, SII � SIIIj j, SIII � SIj jð Þ :Tresca

In uniaxial tension or compression the SVM is equal to the actual stress, thereby
providing ‘‘motivation’’ for regarding it as the counterpart of the uniaxial tensile=
compressive failure stress. On the other hand, in simple shear tT is equal to the stress,
and accordingly we view it as the counterpart of the failure stress in simple shear.

In the case in which there is only one normal stress SXX and one shear stress SXY,
SVM and tT, we derive the following simple formulae:

SVM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2XX þ 3S2XY

q
, tT ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2XX þ 4S2XY

q

The principal stresses are given by

SI,II ¼ Sxx þ
Syy
/
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx þ Syy

/
2

0
B@

1
CA
2

vuuuut þ S2xy ¼
Sxx

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy,

s
SIII ¼ 0

For the Von Mises stress, we find

S2VM ¼ 1
2

SI � SIIð Þ2þ


SII � SIII

/ �2
þ


SIII
/

� SI

�2� �

¼ 1
2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s2
4

3
5
2

þ Sxx

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s2
4

3
5
2

þ Sxx

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s2
4

3
5
20

@
1
A

¼ 1
2

4
Sxx

2

� �2
þ S2xy

" #
þ 2

Sxx

2

� �2
þ Sxx

2

� �2
þ S2xy

 !" # !

¼ S2xx þ 3S2xy

For the Tresca stress,

tT ¼ 1
2
max SI � SIIj j,

���SII � SIII
/ ���, ���SIII/ � SI

���� �

¼ 1
2
max 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s������
������,

Sxx

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s������
������,

Sxx

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s������
������

2
4

3
5
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Now, taking the positive square root and noting that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx
2

� 	2þ S2xy

q
	 Sxx

2

�� ��, the magni-
tudes satisfy

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s������
������ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s

Sxx

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s������
������ ¼

Sxx

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s

Sxx

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s������
������ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s
� Sxx

2

regardless of the sign of Sxx . But, also,

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S 2xy

s
� Sxx

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s0
@

1
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s
� Sxx

2
	 0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s
� � Sxx

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s0
@

1
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s
þ Sxx

2
	 0

Consequently,

max 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S 2xy

s������
������,

Sxx

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s������
������,

Sxx

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ s 2xy

s������
������

2
4

3
5

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx

2

� �2
þ S2xy

s

from which we obtain the expected relation

tT ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxxð Þ2 þ 4S 2xy

q

5.8 STRESS–STRAIN RELATIONS

In linear elasticity, the stresses are linear functions of strain. Fu rthermor e, if the
mat erial is isotropi c , its proper ties are charact erize d by two coef ficients: the elastic
modu lus E and the Poi sson’ s ratio v . To illustrate isotropy using Figure 5.16, in one-
dimensional tension specimens cut from a single plate of a given material, the
material is isotropic if the measured stress–strain curves are the same and independ-
ent of the orientation at which they are cut. Otherwise it exhibits anisotropy, but may
still exhibit limited types of symmetry such as transverse isotropy or orthotropy.

The isotropic stress–strain relations of linear elasticity are given in alternate
forms, one of which is the Lamé form

S ¼ 2mEþ l tr(E)I (5:38)
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1 2

T

E

3 4

2 1

FIGURE 5.16 Illustration of isotropy.
As indicated in Example 3.6 of Chapter 3, in the Lamé relation there exists an
orthogo nal tensor Qo which sim ultaneousl y diagon alizes S and E. Thi s is a form al
statemen t of the proper ty of isotropy. The Lamé form may be inverted to furni sh

E ¼ 1
2m 

S � 1
2m

l

2m þ 3l 
tr ( S) I ( 5: 39 )
EXAMPLE 5.15

Invert the relation in Equation 5.36 to express the strain as a function of stress.

SOLUTION

Applying the trace operator to Equation 5.38 results in

tr ( S) ¼ 2m tr (E )þ 3l tr ( E)

from which we conclude that

tr(E) ¼ tr (S)

2m þ 3l

Now 

S ¼ 2mEþ l
tr (S)

2m þ 3l 
I

from which it is immediate that

E ¼ 1
2m

S � l

2m þ 3l 
tr (S) I

� �

Now returning to the main development, in the case of uniaxial tension the Lamé
relation yields
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EXX ¼ 1
2m

1 � l

2m þ 2l

� �
SXX , EYY ¼ EZZ ¼ � 1

2m
l

2m þ 2l 
EXX (5: 40)

Letting E ¼ SXX=EXX and n ¼ � EYY
EXX

, it is immediate that E ¼ m ( 2m þ 3l)
m þ l

, n ¼ l
2( m þ l) 

.
Another important property is the bulk modulus k ¼ 1

3
tr (S)
tr (E) , which is found to be

given by k ¼ E
3 ( 1�2 n ) ¼ 2m þ 3 l

3 . It becomes in finite in the incompressible case n ¼ 1.2.
Finally, the shear modulus is readily seen to satisfy 1

E 
¼ 1

2m � n
E
, from which m ¼ E

2 ( 1 þ n ) 
.

The inverse Lamé form of the stress –strain relations is now written in the form
E ¼ 1 þ n

E
S � n

E 
tr ( S) I, and is written out in the six relations as

Exx ¼ 1
E [Sxx � n (Syy þ Szz )]

Eyy ¼ 1
E [Syy � n (Szz þ Sxx )]

Ezz ¼ 1
E [Szz � n (Sxx þ Syy )]

Exy ¼ 1 þ n

E
Sxy

Eyz ¼ 1 þ n

E
Syz

Ezx ¼ 1 þ n

E
Szx
EXAMPLE 5.16

The 2’’ 3 2’’ 3 2’’ cube shown below is confined on its sides facing the � x faces by
rigid frictionless walls. The sides facing the � z faces are free. The top and bottom faces
are subjected to a compressive force of 100 lb (Figure 5.17). Take E ¼ 107 psi and
n¼ 1=3. Find all nonzero stresses and strains. Find all principal stresses and strains.

SOLUTION

Since parallel sides of the block remain parallel, there is no shear strain:

Exy ¼ 0, Eyz ¼ 0, Ezx ¼ 0

It follows from the stress–strain relations that the shear stresses vanish.

Sxy ¼ 0, Syz ¼ 0, Szx ¼ 0

It is immediate that the normal stresses and strains are also the principal stresses and
strains.

SI ¼ Sxx, SII ¼ Syy, SIII ¼ Szz, EI ¼ Exx, EII ¼ Eyy, EIII ¼ Ezz

We now consider the normal stresses and strains. From the description of the problem

Eyy ¼ �Fy

Ay
, Ezz ¼ 0, Exx ¼ 0
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FIGURE 5.17 Stresses and strains in compression of a confined block.
Using Exx/ ¼ 1
E



Sxx � n

� 
Syy þ Szz/ 	�

furnishes

Sxx ¼ n Syy ¼ �n
Fy

Ay
¼ � 25

3
lb

Next , from Eyy ¼ 1
E

�
Syy � n

�
Szz/ þ Sxx|{z}

n Syy

��
¼ 5

3 
� 10�6

Eyy ¼ 1 � n 2

E
Syy ¼ � 1 � n 2

E
Fy

Ay
¼ � 2

9 
� 10�5

Similarly,

Ezz ¼ 1
E



Szz/ � n (Sxx þ Syy )

� ¼ � n ( 1 þ n )

E
Syy

from which

Ezz ¼ þ n (1 þ n )

E
Fy

Ay

� �
¼ 105

9

EXAMPLE 5.17

The elements of the 9 3 9 tangent modulus tensor C implied by the Lamé form have
already been given in Example 3.6. Find the conditions on l and m, and likewise on E and
n, which render it positive definite, which is a requirement for stability of the material.
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The eigenvalues of a matrix of the form A þ bI are given by lj(A ) þ b. Conse-
quently, the eigenvalues of the stiffness tensor C ¼ 2mI9 þ liiT are given by 2m þ lj(ii

T).
The tensor ii T is of rank 1, so that eight of its nine eigenvalues vanish. The remaining
eigenvalue is given by the Rayleigh extremum principle (to be presented in Chapter 10)
as max ( z T ii T z ) in which z is a 9 3 1 vector. The maximizing value of z is in fact

i =
ffiffiffiffiffiffi
iT i

p
¼ i=

ffiffiffi
3

p j z j ¼  1 
. It follows that the eigenvalues of C are 2m þ 3l once and 2m

eight times. Positive definiteness therefore now requires that m > 0, l > � 2
3 m.

We determine the stability restrictions on E and n using the inverse Lamé relation in
Example 5.15. In particular

VEC ( E) ¼ C �1 VEC ( S) , C� 1 ¼ 1 þ n

E
I9 � n

E 
iiT

and C is called the elastic compliance tensor. By the same argument as for m and l, we
conclude that the eigenvalues of C �1 (i.e., the tangent compliance tensor) are 1 þ n

E
eight times and 1 þ n

E � 3 n
E ¼ 1 � 2 n

E once. The material is stable if the eigenvalues of
C and hence of C �1 are positive. It follows after some manipulation that E > 0 and
� 1 
 n 
 1=2.

5.9 PRINCIPLE OF VIRTUAL WORK IN LINEAR ELASTICITY

In a conti nuous medi um ‘‘dynam ic ’’ eq uilibrium is expres sed by the local form of the
balanc e of line ar momentu m. The finite elem ent method makes use of this equ ation
after it is expres sed in varia tional form as the Principle of Virtua l Wo rk

þ
dui r €ui dV þ

þ
dEij Sij dV ¼

þ
dui t i dS (5 :41 )

un der the restriction that the body is referred to a nonrotati ng coordi nate system and
has a fixed p oint within this system. Unr estrained and rotat ing coordi nates are
add ressed in Cha pter 12.

The Principle of Virtua l Work is now deriv ed and app lied to the foll owing
bo undary con ditions. At a point on the b oundary the position vector is denote d by
s . The boundar y S decom poses into porti ons S1, S2, S3:

On S1, the displacem ent u( s ) is prescr ibed as uo( s ).
On S2, the traction t (s ) is prescr ibed as t o(s ).
On S3, the traction satis fies t( s ) ¼ t 0( s )�A(s)u(s)�B(s)ü(s).

Under the stated conditions the equation for dynamic equilibrium is given by

r€ui � @ Sij
@x j 

¼ 0 (5 :42 )

Mult iplying throu gh the equatio n with dui and integrating over the domain results inþ
duir€ui dV �

þ
dui

@ Sij
@x j 

dV ¼ 0 (5 :43 )
� 2008 by Taylor & Francis Group, LLC.



As usual in variation al met hods, inte gration by parts is invoke d and furnishes

þ
dui

@ Sij
@ xj

dV ¼
þ

@

@ xj
( dui Sij ) dV �

þ
@ dui
@ xj

Sij dV

¼
þ
nj ( dui S ij ) dS �

þ
1
2

@ dui
@ xj

þ @ duj
@ xi

� �
þ 1

2
@ dui
@ xj

� @ duj
@ xi

� �� �
Sij dV

¼
þ
dui t i dS �

þ
( dEij þ dv ij )S ij dV ( 5: 44 )

Now, dvij is antisym metric and Sij is symmet ric, implyi ng that dv ijSij ¼ 0 (Examp le
3.6 of Cha pter 3) follows immedi ately.

The Princi ple of Virtua l Work is rewrit ten in the form

þ
duT r €u dV þ

þ
tr ( dEL S) dV ¼

þ
duT t dS ( 5: 45 )

and is rewrit ten yet ag ain using Kro necker product notation as

þ
duT r €u dV þ

þ
de TL s dV ¼

þ
duT t dS ( 5: 46 )

in whi ch s ¼ VEC (S ) and eL ¼ VEC ( EL ).
The const itutive relat ions of linear elasticity are stat ed using the general form

s ¼ xeL ( 5: 47 )

in whi ch x is the positive de finite tangen t modu lus tenso r . And now

þ
duT r €u dV þ

þ
de TL xe L dV ¼

þ
duT t dS ( 5: 48 )

Suppose a suffi ciently accurate approxi mation exists in the form u( X ,t ) ¼ wT ( X)
Fg ( t), in which w T( X ) is a 33 n mat rix, F is a n n 3 n const ant nonsi ngular mat rix,
and g( t ) is an n 3 1 vector of parameter s such as nodal displacem ents in a finite
element model . As will be seen in Cha pter 7, applicati on of the stra in–d isplacem ent
relations serves to deriv e the subord inate approxi mat ion for the linear stra ins as
eL � bT ( X ) Fg( t ). The Principle of Vi rtual Work now implies that

dgT M €g þ dgT Kg ¼ dgT f ( 5: 49 )

in which M and K are n 3 n p ositive de finite symmet ric mat rices a nd f is an n 3 1
vector. If g ( t) represents nodal displacem ents in a fi nite element model, M and K are
called the mass and stiffness matrices, respectively, and f is called the consistent
force vector.
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We now consider the boundary conditions more carefully. On S1 the displace-
ment is prescribed and hence du¼ 0 and dg¼ 0, and there is no contribution to the
consistent force. On S2 the traction is prescribed as t0 and the contribution is
f2 ¼ FTÐ wt0 dS2. Finally, there are both compliant and inertial supports on S3,
furnishing

ð
duT t dS3 ¼ FT

ð
wt0 dS3 �FT

ð
wA(s)wTdS3

� �
Fg�FT

ð
wB(s)wTdS3

� �
F€g

(5:50)

Assuming the foregoing approximations and carrying terms with unknowns to the
left-hand side furnishes an alternative form of Equation 5.50:

dgT (MþMS)€gþ dgT KþKSð Þg ¼ dgT (f2 þ f3)

in which

MS ¼ FT
ð
wB(s)wTdS3

� �
F

KS ¼ FT
ð
wA(s)wTdS3

� �
F

f3 ¼ FT
ð
wt0dS3

(5:51)

Clearly, MS is the n3 n matrix representing the contribution of inertial boundary
conditions to the mass matrix and the n3 n matrix KS represents the contribution to
the stiffness matrix from elastic support on the surface.

EXAMPLE 5.18

The equation of static equilibrium in the presence of body forces, such as gravity, is
expressed by

@Sij
@Xj

¼ �bi(X,t)

Without the body forces, the dynamic Principle of Virtual Work is derived as

ð
dEijSij dV þ

ð
duir

@2ui
@t2

dV ¼
ð
duiti dS

How should the second equation be modified to include body forces?
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SOLUTION

Let b denote non-inertial body forces, for example, due to gravity or electromagnetic
effects. The Equation of the balance of linear momentum is now stated as

ð
r€u dV ¼

ð
t dS�

ð
b dV

As before
Ð
t dS ¼ Ð STn dS ¼ Ð rTSð ÞTdV . For the equation to hold over arbitrary

subvolumes it is necessary that, now using indicial notation,

@Sij
@Xj

¼ r€ui þ bi

It is easily seen that the same steps as were used to derive the Principle of Virtual Work
without the body force b now lead to a more general principle in which rüiþ bi replaces
rüi. In particular,

ð
deTs dV þ

ð
duT (r€uþ b) dV ¼

ð
duT t dS
� 2008 by Taylor & Francis Group, LLC.
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6 Thermal and
Thermomechanical
� 2008 by Taylor & Fra
Response
6.1 BALANCE OF ENERGY AND PRODUCTION OF ENTROPY

6.1.1 BALANCE OF ENERGY

Sometimes called The First Law of Thermodynamics, the balance of energy principle
is stated as follows: the rate of change of total energy in a body, including internal
energy and kinetic energy, is equal to the corresponding rate of work done by
external forces on the body together with the rate of heat added to the body. In
rate form

_Kþ _� ¼ _W þ _Q (6:1)

in which
� is the internal energy with density j

_� ¼
ð
r _j dV (6:2a)

_W is the rate of mechanical work, satisfying

_W ¼
ð
_uT t dS (6:2b)

_Q is the rate of heat input, with heat production h and heat flux q, satisfying

_Q ¼
ð
rh dV �

ð
nTq dS (6:2c)

and _K is the rate of increase in the kinetic energy,

_K ¼
ð
r _uT

d _u

dt
dV (6:2d)
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It has been tacitly assumed that all wor k of exter nal forces is done on the boundar y S,
and that no wor k is done b y body forces .

Invoking the divergence theor em and balanc e of line ar mom entum furnishes

ð
r _j þ _uT r

d _u

dt
�rT T

� �
� tr TDð Þ � r h þrT q

� �
dV ¼ 0 ( 6:3)

The bracket ed term inside the inte grand vanishes by virtue of the balance of linear
mom entum . The relation holds for arbitrary v olumes, from which the local form of
balanc e of energy, referr ed to the deformed (curre nt) con figurat ion, is o btained as

� _j ¼ tr TDð Þ � rT q þ r h ( 6:4)

T is the Cauchy stress tenso r, whi ch is the stre ss referr ed to deform ed (current)
coo rdinates, and D is the stre tching-rate tenso r (c.f. Cha pter 13). To co nvert Equa tion
6.4 to undefor med coordi nates relations to be explained in Chapter 13 resul t in

ð
nT q dS ¼

ð
qT J F� T n0 dS0

¼
ð
qT0 n0 dS0 , q0 ¼ J F� 1 q ( 6:5)

in which the subscr ipt ‘‘0’’ indicates undefor med coordi nates and F is the defor-
mat ion gradi ent tenso r. In undefor med coordinates , Equati on 6.3 is rew ritten as

ð
r0

_� � tr S _E
� �� r0 h þrT

0 q 0
� �

dV0 ¼ 0 ( 6:6a)

furni shing the local form of the balanc e of energy as

r0
_j � tr S _E

� �� r0 h þrT
0 q0 ¼ 0 (6 :6b)

Her e, S is the second Piola –Ki rchhof f or nominal stre ss, which is also explained later
in Chapter 13 and whi ch is the stress-r eferre d to deformed coordi nates.

6.1.2 E NTROPY PRODUCTION I NEQUALITY

Gene ralizing the therm odynam ics of ideal and nonide al gases, the entro py produc-
tion inequality for continua is introduced as follows (Callen, 1985).

_H ¼
ð
r _h dV �

ð
h

T
dV �

ð
nTq

T
dS (6:7a)

in which _H is the total entropy, h is the specific entropy per unit mass, and T is the
absolute temperature. This relation provides a ‘‘framework’’ for describing the
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irreversi ble nature of diss ipative proces ses such as heat flow and plastic deform ation.
We apply the diver gence theor em to the surfa ce integral leadi ng to the local form of
the entro py production inequa lity:

r T _h � h �rT q þ qT r T=T (6: 7b)

The counte rpart of Equation 6.7b in u ndeformed coordi nates is

r0 T _h � h �rT
0 q 0 þ qT0 r  0 T=T (6: 7c)

6.1.3 THERMODYNAMIC POTENTIALS IN R EVERSIBLE PROCESSES

The b alance of energy introduces the internal energy � , which is an extensive
variable — its v alue accum ulat es o ver the domai n. The mass and volume averages
of extens ive varia bles will also be referred to as extens ive variables. This contr asts
with intensiv e or point wise varia bles such as the stre sses and the temperat ure.
Another extens ive variable is the entro py H . In reversibl e elastic systems , the entropy
is compl etely determin ed by heat input accordi ng to

_Q ¼ TH ( 6: 8)

(In Cha pters 16 and 17 we shall addres s severa l irre versible effects includ ing
plasticity, v iscosity, and heat conduct ion.) By v irtue of Equ ation 6.8, in undefor med
coordin ates the balanc e of e nergy for reversibl e processes may be writt en as

r0
_j ¼ tr S _E

� �þ r0 T _h ( 6: 9)

As before , S is the second Piola –Kirchhof f stress and now E is the Lag rangian stra in
to be introduce d in Chapter 13. We now invoke condition s for the right-hand side o f
Equati on 6. 9 to be uniquely integrabl e, which render s the internal energy depe ndent
only on the curren t values of the stat e varia bles consisti ng of E and h. For the sake
of understandi ng we may thin k o f T as a therm al stre ss and h as a therma l stra in.
Clearly _h ¼ 0 if there is no heat input across the surface or generat ed in the volume.
Consequen tly the entropy is an attractive state varia ble for representi ng adiaba tic
proces ses.

In Callen (1985) , a dev elopment is given for the stability of therm odynam ic
equilibri um according to which, under suitab le condition s, the stra in and the entropy
density assume values which maximize the internal energy. Other thermodynamic
potentials, depending on alternate state variables, may be introduced by a Lorentz
transformation illustrated below. Doing so is attractive if the new state variables are
accessible to measurement. For example, the Gibbs free energy (density) is a
function of the intensive variables S and T:

r0g ¼ r0j � tr SEð Þ � r0Th (6:10a)
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so that

r0 _g ¼ �tr E _S
� �� r0h _T (6:10b)

Stability of thermodynamic equilibrium requires that S and T assume values which
minimize g under suitable conditions. This potential is of interest in fluids experi-
encing adiabatic conditions in which the pressure (stress) is accessible to measure-
ment using, for example, pitot tubes. It is also commonly used in phase changes.

In solid continua the stress is often more difficult to measure than the strain.
Accordingly, for solids the Helmholtz free energy (density) f is introduced using

r0 f ¼ r0j � r0Th (6:11a)

furnishing

r0 _f ¼ tr S _E
� �� r0h _T (6:11b)

It is evident that f is a function of an intensive variable and an extensive variable. At
thermodynamic equilibrium under suitable conditions it exhibits a (stationary) saddle
point rather than a maximum or a minimum. Finally, for the sake of completeness,
we mention a fourth potential, known as the enthalpy r0h¼ r0j� tr(SE), in terms of
which local balance of energy now is expressed as

r0
_h ¼ �tr E _S

� �þ r0T _h (6:12)

The enthalpy likewise is a function of an extensive variable and an intensive variable
and exhibits a saddle point at equilibrium. It is attractive in fluids under adiabatic
conditions.

6.2 CLASSICAL COUPLED LINEAR THERMOELASTICITY

The classical theory of coupled thermoelasticity in isotropic media corresponds to
the restriction to the linear strain tensor, E�EL, and to the stress–strain temperature
relation

T ¼ 2mEþ l tr Eð Þ � a T� T0ð Þ½ �I (6:13)

Also r� r0. Here, a is the volumetric coefficient of thermal expansion, typically a
very small number in metals and elastomers. If the temperature increases without
stress being applied, the volume strain increases according to evol¼ tr(E)¼
a(T�T0). Thermoelastic processes are assumed in the present context to be rever-
sible, in which event �r � qþ h¼ rT _h. It is also assumed that the specific heat at
constant strain, ce, given by

ce ¼ T
@h

@T

����
E

(6:14)
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is constant. The balance of energy may now be restated as

r0
_� ¼ tr T_Eð Þ þ r0T _h (6:15)

Recall that j is a function of the extensive variables E and h. To convert to E and
T as state variables which are accessible to measurement, we again invoke the
Helmholtz free energy f¼ j�Th. Since f is an exact differential to ensure path
independence, we infer the Maxwell relation

�r
@h

@E

	 
����
T

¼ @T

@T

����
E

(6:16)

Returning to the energy balance equation, to express it using T and E as state
variables, we have

r0
_j ¼ tr r0

@j

@E

����
h

_E

 !
þ r0

@j

@h

����
E

_h

¼ tr r0
@j

@E

����
h

þ r0
@j

@h

����
E

@h

@E

����
T

" #
_E

 !
þ r0

@j

@h

����
E

@h

@T

����
E

� �
_T (6:17)

Also note that

T ¼ @j

@E

����
h

, T ¼ @j

@h

����
E

and hence

r0
_j ¼ tr r0

@j

@E

����
h

þ r0
@j

@h

����
E

@h

@E

����
T

" #
_E

 !
þ r0

@j

@h

����
E

@h

@T

����
E

� �
_T

¼ tr T� T
@T

@T

����
E

� �
_E

	 

þ r0T

@h

@T

����
E

_T (6:18)

We previously identified the coefficient of specific heat, assumed constant, as

ce ¼ T @h
@T jE so that

r0
_j ¼ tr T� T

@T

@T

� �
_E

	 

þ r0ce _T (6:19)

The local form of the balance of energy equation now becomes
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�r  
T q ¼ r0

_j � tr ( T _E)

¼ tr T � T
@ T

@ T

� �
_E

	 

þ r0 c e _T � tr ( T _E)

¼ tr � T
@ T

@ T

� �
_E

	 

þ r0 c e _T (6 :20 )

Fro m Equ ation 6.13, approxi mating T as T0 yiel ds T 0 @ T
@ T � �alT 0 I . Now assuming

the isot ropic v ersion of Fo urier ’ s Law q ¼�k r T in which the conduct ivity k is
assum ed to be const ant, the thermal field equation emer ges

�k r2 T ¼ alT0 tr _E
� �þ r 0 c e _T (6 :21 )

Equ ation 6.21 is subjected to variation al operat ions in Secti on 6.3 to obtai n the fi nite
elem ent equati on of the thermal fi eld.

The balanc e of linear momen tum together with the stress –strain and strain –
displ aceme nt relations of line ar isot ropic thermoel asticit y imp ly that

@

@ xj

"
2m

1
2

@ ui
@ xj

þ @ uj
@ xi

	 
� �
þ l

@ uk
@ xk

� a T � T0ð Þdij
� �#

¼ r
@  2 ui
@ t 2 

(6 :22 )

from which we obtai n the mecha nical field equation (Navier ’s equati on for thermo-
elast icity)

m r  
2 u þ l þ mð Þr tr Eð Þ � al r T ¼ r

@ u

@ t 2 
(6 :23 )

The therm al field equation depends o n the mecha nical fi eld throu gh the term
al T0 tr( _E). Con sequently, if E is static there is no coupli ng. Similar ly, the mecha n-
ical field depends on the therma l field through alr T, whi ch like ly is quit e small in,
say, met als, if the assumptio n of revers ibility is a reason able approxi mation.

We next derive the entropy. Since ce ¼ T @ h
@ T j  E is constant, we conclu de that it

has the form

r0 h ¼ r 0 h0 þ r 0 c e ln T=T0ð Þ þ r0 h * Eð Þ  (6 :24 )

wher e h*( E) rema ins to be deter mined. Wit hout loss of general ity, we take h0 to
van ish. But r0

@ h
@ E jT ¼ r 0

@ h *
@ E ¼ � @ T

@ T j E ¼ alI , implyi ng that

r0 h ¼ r 0 h0 þ r 0 c e ln T=T0ð Þ þ al tr Eð Þ (6:25)
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Now consider f , for which the fundam ental relation Equati on 6.11b imp lies

@f

@T

����
E

¼ �h r0
@f

@E

����
T

¼ T (6:26)

Integrating the entropy,

r0 f ¼ r0 f 0 � r0ce T ln T=T0ð Þ � 1ð Þ½ � � al tr Eð ÞTþ f* Eð Þ (6:27)

in which f *(E) remains to be determined. Integrating the stress,

r0 f ¼ r0 f0 þ m tr E2
� �þ l

2 tr
2 Eð Þ � al tr Eð Þ(T� T0)þ f** Tð Þ (6:28)

in which f **(T) likewise remains to be determined. Reconciling Equations 6.27 and
6.28 now furnishes

r0 f ¼r0 f0þmtr E2
� �þ l

2 tr
2 Eð Þ�altr Eð Þ T�T0ð Þ�r0ce

�
Tln T=T0ð Þ�1ð Þ�

(6:29)
EXAMPLE 6.1

(i) Invert the constitutive relations of classical thermoelasticity
(ii) Express the linear thermal expansion coefficient aL, appearing in the uniaxial

tension case, as

Exx ¼ Sxx

E
þ aL(T� T0)
� 2
in terms of the volumetric thermal expansion coefficient.

SOLUTION

Since classical thermoelasticity assumes small strain, there is no need to distinguish
between the Cauchy and the second Piola–Kirchhoff stresses.

The thermoelastic version of Hooke’s law is

Sij ¼ 2mEij þ lEkkdij � la T� T0ð Þdij

Taking the trace throughout furnishes

Skk ¼ (2mþ 3l)Ekk � 3la T� T0ð Þ

and

Ekk ¼ 1
2mþ 3l

Skk þ 3la T� T0ð Þf g
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� 20
Upon substitution,

Sij ¼ 2mEij þ l
1

2mþ 3l
Skk þ 3la T� T0ð Þf gdij � la T� T0ð Þdij

and

2mEij ¼ Sij � l
1

2mþ 3l
Skkdij � l� 3l2

2mþ 3l

	 

a T� T0ð Þdij

and the inverse relation is now

Sij ¼ 2mEij þ lEkkdij � la T� T0ð Þdij
Skk ¼ (2mþ 3l)Ekk � 3la T� T0ð Þ

Ekk ¼ 1
2mþ 3l

Skk þ 3la T� T0ð Þf g

Sij ¼ 2mEij þ l
1

2mþ 3l
Skk þ 3la T� T0ð Þf gdij � la T� T0ð Þdij

2mEij ¼ Sij � l
1

2mþ 3l
Skkdij � l� 3l2

2mþ 3l

	 

a T� T0ð Þdij

and so, following obvious steps,

Eij ¼ 1þ n

E
Sij � n

E
Skkdij þ l

1� 2n
E

	 

a T� T0ð Þdij

We next express l in terms of E and n.

2mþ 3l
3

¼ 2
3

E

2(1þ n)
þ l

¼ E

3(1� 2n)
� E

3(1þ n)

so that

l ¼ E
�
1þ n � (1� 2n)

�
3(1þ n)(1� 2n)

¼ En

(1þ n)(1� 2n)

The inverse is now obtained as

Eij ¼ 1þ n

E
Sij � n

E
Skkdij þ n

1þ n
a T� T0ð Þdij

In the absence of stress

Ekk ¼ 3
n

(1þ n)
a T� T0ð Þ
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The Kronecker Product form of the inverse relation is extended from Chapter 5 as

e ¼ 1 þ n

E
I9 � n

E 
iiT

	 

s þ na

1 þ n 
(T � T0 ) i

in which e ¼ VEC (E), s ¼ VEC(S), and i ¼ VEC(I). It is elementary that

@ e

@ s

����
T

¼ 1 þ n

E
I9 � n

E 
iiT

	 

and

@ e

@ T

����
S

¼ na

1 þ n 
i

Finally, the linear thermal expansion coef ficient is identi fied as

aL ¼ n

(1 þ n ) 
a

To verify this outcome we return to the Lamé form and set the stress to zero.

0 ¼ 2mEij þ lE kk dij � la(T � T0 ) dij

( 2m þ 3 l)Ekk ¼ 3la(T � T0 ) ! Ekk ¼ 3la
( 2m þ 3 l) 

(T � T0 )

3la
( 2m þ 3l) 

¼ 3(1 � 2n )
E

E n
( 1 þ n )( 1 � 2n ) 

! 3
n

(1 þ n )

-- � �

EXAMPLE 6.2

In classical thermoelasticity, derive the specific heat at constant stress cs , rather than at
constant strain.

SOLUTION

In classical thermoelasticity the internal energy satis fies

r _j ¼ tr S � T
@ S

@ TjE

� �
_E

	 

þ r ce _T

¼ tr Sij þ al Tdij
� � @ Eij

@ Spq
_Spq þ @ «ij

@ T
_T

� �	 

þ r ce _T

¼
�
s þ al Tið ÞT @ e

@ T

����
s

þ r ce

�
_T

/

The inverse thermoelastic relations of Example 6.1 are invoked to furnish

cS ¼ ce þ
s þ alTið ÞT na

1 þ n 
i

r

2
64

3
75

� ce þ na

1 þ n

tr Sð Þ þ T0
naE

( 1 þ n )( 1 � 2n )
r
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EXAMPLE 6.3

Determine the adiabatic elastic modulus in uniaxial tension.

SOLUTION

The issue of an adiabatic modulus arises in situations in which a test specimen is
thermally insulated to prevent heat transfer. Under uniaxial tension the stress–strain–
temperature of classical thermoelasticity is written as

sxx

E
¼ «xx � aL T� T0ð Þ

in which aL is the linear coefficient of thermal expansion. Under adiabatic conditions
the entropy is constant so that _h¼ 0. Accordingly,

0 ¼ r dh

¼ r
@h

@T
dTþ r

@h

@Exx
dExx

¼ rce
T

dT� dExx

dT
dExx

Note that rce
T
� rce

T0
,�dSxx

dT
¼ aLE. Accordingly, under adiabatic conditions

dT ¼ � aLET0
rce

dExx. Of course E is the isothermal elastic modulus.
Next,

dSxx ¼ @Sxx
@Exx

����
T

dExx þ @Sxx
@T

����
«xx

dT

¼ E dExx � aLE dT

¼ E 1þ aL
2ET0

rce

	 

dExx

and finally the adiabatic elastic modulus is

Eadiabatic ¼ E 1þ aL
2ET0

rce

	 

EXAMPLE 6.4

Neglecting mechanical effects, express the thermal equilibrium equation in:

(i) Cylindrical coordinates
(ii) Spherical coordinates
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SOLUTION

In the absence of mechanical effects the thermal equilibrium equation is given by

�r 
T kT rT þ r c e _T ¼ 0

(i) Cylindrical coordinates

Referring to Section 2.7 in Chapter 2, we have the expression for the temperature
gradient in cylindrical coordinates as

rT ¼ @ T

@ r 
e r þ 1

r

@ T

@ u 
e u þ @ T

@ z 
e z

The divergence of the gradient (cf. Equation 2.87), still using cylindrical coordin-
ates, now gives

rT kT rT ¼ k T
1
r

@

@ r
r
@ T

@ r

	 

þ 1

r

@

@ u

1
r

@ T

@ u

	 

þ @

@ z

@ T

@ z

	 
� �

¼ kT
1
r

@ T

@ r
þ @  2 T

@ r 2 
þ 1
r 2

@ 2 T

@ u 2 
þ @  2 T

@ z2

� �

Hence in the absence of mechanical effects the thermal equilibrium equation is
expressed in cylindrical coordinates as

kT
1
r

@ T

@ r
þ @ 2 T

@ r 2 
þ 1
r 2

@  2 T

@ u2 
þ @  2 T

@ z2

� �
¼ r ce

@ T

@ t

(ii) Spherical coordinates

�

� 2
Referring to the Appendix in Chapter 2, the expression for the temperature gradient
in spherical coordinates is recognized to be

rT ¼ @ T

@ r 
e r þ 1

r cos f

@ T

@ u 
eu þ 1

r

@ T

@ f 
e f

Applying the divergence furnishes

rT kT rT ¼ kT
1
r2

@

@r
r2
@T

@r

	 

þ 1
r cosf

@

@u

1
r cosf

@T

@u

	 

þ 1
r cosf

@

@f
cosf

1
r

@T

@f

	�

¼ kT
2
r

@T

@r
þ@2T

@r2
þ 1
r2 cos2 f

@2T

@u2
� tanf

r2
@T

@f
þ 1
r2

@2T

@f2

� �
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Hence, in the absence of mechanical effects the thermal equilibrium equation is
expressed in spherical coordinates as,

kT
2
r

@ T

@ r
þ @  2 T

@ r 2 
þ 1
r 2 cos 2 f

@ 2 T

@ u2 
� tan f

r 2
@ T

@ f 
þ 1
r 2

@  2 T

@ f 2

� �
¼ r ce

@ T

@ t
6.3 THERMAL AND THERMOMECHANICAL ANALOGS OF THE
PRINCIPLE OF VIRTUAL WORK AND ASSOCIATED FINITE
ELEMENT EQUATIONS

6.3.1 C ONDUCTIVE HEAT T RANSFER

Negl ecting coupli ng to the mecha nical field and assum ing the isotropic form of
Fo urier ’ s Law, the thermal field e quation in an isotropi c medi um experi encing small
deform ation may be wri tten as

�r  
T kT r T þ r c e _T ¼ 0 (6 :30 )

We now construct a thermal counte rpart of the Principle of Vi rtual Work. Mult iply-
ing by dT, the varia tion of the unknow n to be de termined , and applying inte gration
by parts , we obtain

ð
dr 

T TkT r T dV þ
ð
dTr ce _T dV ¼

ð
dT( � nTq) dS (6 :31 )

Cle arly T is regarded as the primary variable and the associ ated seconda ry varia ble is
( � nT q). Su ppose that the boundar y is decom posed into three segm ents: S ¼ SI þ
SII þ SIII . On  SI the tem perature T is prescr ibed as, say, T1. It follow s that dT ¼ 0 on
SI . On SII the he at flux q is prescr ibed as q1. Consequen tly dT( �nT q ) !
dT( �n Tq1). On SIII the heat flux is dependen t on the surfa ce tem perature throu gh a
hea t trans fer mat rix h: q ¼ q0 � h(T � T0). The right -hand side of Equati on 6.30
no w becom es

�
ð
S
dTn T q dS ¼�

ð
SII

dTnT q0 dS �
ð
SIII

dTnT q0 dS þ
ð
SIII

dTn T h T � T0ð ÞdS (6 :32 )

Next T is approxi mated using an interpola tion funct ion of the form

T� T0 � NT
T xð Þu tð Þ, dT � NT

T xð Þdu tð Þ (6:33)

from which we obtain

rT � BT
T xð Þu tð Þ, drT � BT

T xð Þdu tð Þ (6:34)

and BT is the thermal analog of the strain–displacement matrix bT F, to be illustrated
in Exa mple 6.5 and presen ted in detai l in Cha pter 7. Upon substit ution of the
08 by Taylor & Francis Group, LLC.



interpolation models, the thermal field equation now reduces to the system of
ordinary differential equations

KTu tð Þ þMT
_u tð Þ ¼ fT (6:35)

in which

KT ¼ KT1 þKT2 Thermal Stiffness Matrix

KT1 ¼
Ð
BT xð ÞkTBT

T xð ÞdV Conductance Matrix

KT2 ¼
Ð
SIII

NT xð ÞnThNT
T xð ÞdS Surface Conductance Matrix

MT ¼ Ð NT xð ÞrceNT
T xð ÞdV Thermal Mass Matrix; Capacitance Matrix

fT ¼ � ÐSII NT xð ÞnTq0dS Consistent Thermal Force;

� ÐSIII NT xð ÞnTq1dS Consistent Heat Flux

6.3.2 COUPLED LINEAR ISOTROPIC THERMOELASTICITY

The thermal field equation is repeated as

�kTr2T ¼ alT0 tr _E
� �þ rce _T (6:36)

Following the same steps used for conductive heat transfer furnishes the variational
principle

ð
drTTkTrTdV þ

ð
dTrce _TdV þ

ð
dTalT0 tr _E

� �
dV ¼ �

ð
dTnTq dS (6:37)

which is the thermal analog of the Principle of Virtual Work.
For the mechanical field the Principle of Virtual Work under small strain is

recalled as

ð
tr dESð Þ dV þ

ð
duTr€u dV ¼

ð
S
duT t sð Þ dS (6:38)

Recall that S¼ 2mEþ l tr(E)� �(T� T0)½ �I. The Principle of Virtual Work is
expanded to give

ð
tr
�
dE 2mEþ l tr Eð ÞI½ �� dV �

ð
tr
�
dEla T� T0ð ÞI� dV þ

ð
duTr€u dV

¼
ð
duT t sð Þ dS (6:39)
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Now intr oduce the interpola tion model s

u xð Þ ¼ N T xð Þg tð Þ  (6 :40 )

from which we may deriv e the strain –displacem ent mat rices B ( x) and b (x) satisfyi ng

VEC Eð Þ ¼ BT xð Þg tð Þ, tr Eð Þ ¼ bT xð Þg tð Þ  (6 :41 )

Al so, N is c alled the shape function matrix. (The operat ions to obtai n Equ ation 6.41
are illust rated in Exa mple 6.5 and presen ted in d etail in Chapter 7.)

It follow s after some manipulat ion that

Kg tð Þ þM €g tð Þ �V T u tð Þ ¼ f (6 :42 )

in which

K ¼ ÐBT xð ÞDB xð Þ dV Stiffne ss Matr ix

M ¼ ÐN xð Þr N T xð Þ dV Mass Matr ix

V ¼ Ðal bT xð ÞNT xð Þ dV Therm oelastic Matr ix

f ¼ ÐN xð Þt1 sð Þ dS Con sistent For ce Vec tor

(6 :43 )

We assume that the tract ion t( s ) is speci fi ed everywhere as t1( s ) on S. Also D is the
isot hermal tangen t modul us tenso r.

For the thermal field, assuming that the heat flux q is speci fied as q1 on the
surfa ce, the therm al counte rpart Equ ation 6.37 of the Princi ple of Virtua l Work,
toget her with the interpola tion models Equations 6.33 and 6.34 furni sh the fi nite
elem ent equati on

1
T0
KT u tð Þ þ 1

T0
MT 

_u tð Þ þV _g tð Þ ¼ 1
T0
fT , f T ¼ � Ð N T xð ÞnT q1 dS (6 :44 )

The co mbined equations for a thermoel astic medium are now writt en in state ( fi rst
order) form as

W1
d

dt

_g tð Þ
g tð Þ
u tð Þ

0
@

1
Aþ W2

_g tð Þ
g tð Þ
u tð Þ

0
@

1
A¼

f tð Þ
0

1
T0
fT tð Þ

0
@

1
A (6:45)

W1 ¼
M 0 0

0 K 0

0 0 1
T0
MT

2
4

3
5, W2 ¼

0 K �VT

�K 0 0

V 0 1
T0
KT

2
64

3
75

Multiplying by zT¼ { _g(t) g(t) u(t)}, letting yT ¼
f tð Þ
0

1
T0
fT tð Þ

0
@

1
A, and performing simple

manipulations furnish the equation

d

dt

1
2
rTW1r

	 

¼ �rTy� 1

2
rT

1
2

W2 þWT
2

� �
r: (6:46)
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Note that W1 is positive definite and symmetric, while 1
2 W2 þWT

2

� �
is positive

semi-definite. This implies that the magnitude of r is nonincreasing if y¼ 0. Other-
wise stated, coupled linear thermoelasticity is at least marginally stable, whereas a
purely elastic system is strictly marginally stable. Thus thermal conduction has a
stabilizing effect which will next be shown to be analogous to viscous dissipation.

EXAMPLE 6.5

Write down the coupled thermal and elastic equations for a one-dimensional thermo-
elastic member modeled with one element. Suppose that, on the left end of the member,
it is built into a rigid thermal reservoir with fixed temperature T0. Illustrate the analogy
between conductive heat transfer and viscous damping in the case of a constant
temperature field.

SOLUTION

This problem will be approached by modeling the member as a single one-dimensional
thermoelastic finite element, whose left end is built into a rigid thermal reservoir.
The element is supposed to have length L. The displacement is modeled using
u(x,t)¼NT(x)gm1(t) in which

NT xð Þ ¼ wT xð ÞF, wT xð Þ ¼ 1 xð Þ

F ¼ 1 0

1 L

� ��1

¼ 1
L

L 0

�1 1

� �

The corresponding strain–displacement matrix B is given by

BT xð Þ ¼ @

@x
NT xð Þ ¼ bT xð ÞF, bT xð Þ ¼ bT xð ÞF, bT xð Þ ¼ 0 1ð Þ

The corresponding relations for the thermal degree-of-freedom T�T0 are given by

NT
T xð Þ ¼ nTT xð ÞFT , nTT xð Þ ¼ 1 xð Þ

FT ¼ 1 0

1 L

" #�1

¼ 1
L

L 0

�1 1

" #

BT
T xð Þ ¼ @

@x
NT

T xð Þ ¼ bT
T xð ÞFT, bT

T xð Þ ¼ 0 1ð Þ

For one-dimensional problems, D ! E. Following the Principle of Virtual Work the
stiffness matrix is given by

K ¼
ð
B xð ÞEBT xð Þ dV

¼ 1
L2

L �1

0 1

� � ðL
0

0

1

	 

EA 0 1ð Þ dx L 0

�1 1

� �

¼ EA
L

1 �1

�1 1

� �
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and for the mass matrix

M ¼
ð
N xð ÞrNT xð Þ dV

¼ 1
L2

L �1

0 1

� � ðL
0

1

x

	 

rA 1 xð Þ dx L 0

�1 1

� �

¼ rAL

3

1 1=2

1=2 1

� �

No heat source is indicated: i.e., h¼ 0. The thermal stiffness matrix is now

KT ¼
ð
BT xð ÞkTBT

T xð Þ dV

¼ 1
L2

L �1

0 1

� � ðL
0

0

1

	 

kTA 0 1ð Þ dx L 0

�1 1

� �

¼ kTA

L

1 �1

�1 1

� �

The thermal mass matrix is similarly obtained:

MT ¼
ð
NT xð ÞrceNT

T xð Þ dV

¼ 1
L2

L �1

0 1

� � ðL
0

1

x

	 

rceA 1 xð Þ dx L 0

�1 1

� �

¼ rceAL

3

1 1=2

1=2 1

� �

Finally, the thermoelastic matrix is presented.

V ¼
ð
alNT xð ÞbT xð Þ dV

¼ 1
L2

L �1

0 1

� � ðL
0

1

x

	 

alA 0 1ð Þ dx L 0

�1 1

� �

¼ alA

2

�1 1

�1 1

� �

Collecting the foregoing results furnishes the coupled thermal and elastic finite element
equations as

EA
L

1 �1

�1 1

" #
u 0,tð Þ
u L,tð Þ

 !
þ rAL

3

1 1=2

1=2 1

" #
u 0,tð Þ
u L,tð Þ

 !..

� alA

2

�1 �1

1 1

" #
T 0,tð Þ�T0

T L,tð Þ�T0

 !
¼ f

1
T0

kTA

L

1 �1

�1 1

" #
T 0,tð Þ�T0

T L,tð Þ�T0

 !
þ 1

T0

rceAL

3

1 1=2

1=2 1

" #
T 0,tð Þ�T0

T L,tð Þ�T0

 !.

þ alA

2

�1 1

�1 1

" #
u 0,tð Þ
u L,tð Þ

 !.

¼ 1
T0
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A rigid ‘‘thermal bath’’ on the left is imagined to constrain both T(0,t)� T0 and u(0,t) to
vanish. The constraints serve to eliminate the corresponding rows and columns in the
two foregoing equations, resulting in

EA
L

u(L,t)þ rAL

3
€u L,tð Þ � alA

2
T L,tð Þ � T0ð Þ ¼ f

1
T0

kTA

L
T(L,t)� T0ð Þ þ 1

T0

rceAL

3
T L,tð Þ � T0ð Þ.þalA

2
_u L,tð Þ ¼ 1

T0
fT

If the displacement field is static there is no thermomechanical coupling through the
thermal field.

If (T(L,t)�T0)
.¼ 0, then the thermal field equation reduces to

T L,tð Þ � T0 ¼
1
T0

fT � alA

2
_u L,tð Þ

1
T0

kTA

L

and upon substitution the mechanical field becomes

EA
L

u L,tð Þ þ rAL

3
€u L,tð Þ � alA

2

1
T0

fT � alA

2
_u L,tð Þ

1
T0

kTA

L 0

0
BB@

1
CCA ¼ f

Upon reorganization,

EA
L

u L,tð Þ þ
alA

2

	 
2
1
T0

kTA

L

_u L,tð Þ þ rAL

3
€u L,tð Þ ¼ f þ alL

2kT
fT

Mathematically the middle term has exactly the same effect as conventional viscous
damping. This illustrates that convective heat transfer, by carrying energy away from a
site at which it is concentrated, has a stabilizing effect. However, in many materials the
thermal expansion coefficient is very small, rendering the effective damping coefficient
due to thermal conduction very small.
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7 One-Dimensional
Elastic Elements
� 2008 by Taylor & Fra
This chapte r introduces fi nite elem ents for one-di mens ional mem bers, including
rods, shafts, b eams, an d beam- columns. It initial ly presents inte rpolation models in
physica l coordinates for the sake of simp licity and brevity. But inte rpolation in
‘‘natur al coordi nates ’’ is then presented to enab le the u se of Gaussia n quadrature
for inte gration. Use of natural coordinates to an extent reduces the sensiti vity of the
elements to geo metric detai ls in the physical mesh . A numbe r of examp les are given
including severa l illust rating the use of natur al co ordinates.

7.1 INTERPOLATION MODELS FOR ONE-DIMENSIONAL
ELEMENTS

7.1.1 RODS

The g overning equation for the displ acemen ts in rods (als o bars, tendon s, and shaft s) is

E A
@ 2 u

@ x 2 
¼ r A

@ 2 u

@ t 2 
( 7: 1)

in whic h u( x,t ) den otes the radia l displ acement, E , A , and  r are constants, x is the
spatial coordinate, and t denote s time. Since the displacem ent is governe d by a
second- order partial different ial equati on, in the spatial domain it requires two (time-
dependen t) const ants of integration. Applied to an element, the two constants can be
supplied implicitly using two nodal displacements as functions of time. We now
approximate u(x,t) using its values at xe and x e þ 1, as show n in Figure 7.1.

The lowest-order interpolation model consistent with two integration constants
is linear, in the form

u x,tð Þ ¼ wT
m1 xð ÞFm1gm1 tð Þ, gm1 tð Þ ¼ ue tð Þ

ueþ1 tð Þ
� �

, wT
m1 xð Þ ¼ (1 x) (7:2)

We seek to identify Fm1 in terms of the nodal values of u. Letting ue¼ u(xe) and
ueþ1¼ u(xeþ1) furnishes

ue tð Þ ¼ (1 xe)Fm1gm1 tð Þ, ueþ1 tð Þ ¼ (1 xeþ1)Fm1gm1 tð Þ (7:3)
ncis Group, LLC.



ue ue+1

xe

x

xe+1

FIGURE 7.1 Rod element.
But since gm1 tð Þ ¼ ue(t)
ueþ1(t)

� �
we conclude that

Fm1 ¼
1 xe
1 xeþ1

� ��1

¼ 1
le

xeþ1 �xe
�1 1

� �
, le ¼ xeþ1 � xe (7:4)

7.1.2 BEAMS

The equation for a beam, following the classical Euler–Bernoulli theory, is

EI
@4w

@x4
þ rA

@2w

@t2
¼ 0 (7:5)

in which w(x,t) denotes the transverse (z) displacement of the beam neutral axis, and
the constant I is bending moment of area. In the spatial domain there are four
constants of integration. In an element the constants can be supplied implicitly by
specifying the values of w and �@w=@x at each of the two-element nodes. Referring
to Figure 7.2, we introduce the interpolation model for w(x,t):

w x,tð Þ ¼ wT
b1 xð ÞFb1gb1 tð Þ, wT

b1 xð Þ ¼ 1 x x2 x3
� 	

, gml tð Þ ¼
we

�w0
e

weþ1

�w0
eþ1

0
BB@

1
CCA (7:6)

Enforcing this model at xe and at xeþ1 furnishes

Fb1 ¼
1 xe x2e x3e
0 �1 �2xe �3x2e
1 xeþ1 x2eþ1 x3eþ1
0 �1 �2xeþ1 �3x2eþ1

2
664

3
775
�1

(7:7)
we

wt
e wt

e +1

we +1

xe

x

xe +1

FIGURE 7.2 Beam element.
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7.1.3 BEAM -COLUMNS

Beam-co lumns are of interest , among other reason s, to predi ct bu ckling accordi ng to
the Euler crit erion. The displ acemen t w is assum ed to depend only on x . Also u is
viewed as g iven by

u x, zð Þ ¼ u0 xð Þ � z
@ w xð Þ
@ x 

( 7: 8)

in which u0( x ) repres ents the stre tching of the neutral axis. It is necess ary to know
u0( x ,t), w( x ,t ), and � @ w(x , t )

@ x at xe and x eþ 1. Combi ning relations for the rod and the
beam elem ent, the interpola tion model is no w

u x, z , tð Þ ¼ 1 xð ÞFm 1 gm 1 � z 0 1 2x 3x 2
� 	

Fb 1 gb 1 ( 7: 9)

gm1 ¼
u0,e tð Þ
u0, e þ 1 tð Þ
� �

, gb 1 ¼
we

�w 0e
we þ 1

� w0
e þ 1

0
BB@

1
CCA

Fm 1 ¼ 1
le

xe þ 1 � xe
� 1 1

� �
, Fb1 ¼

1 xe x 2e x 3e
0 �1 �2 xe �3x 2e
1 xe þ 1 x 2e þ 1 x 3e þ 1

0 �1 � 2xeþ1 �3x2eþ1

2
664

3
775
�1
7.2 STRAIN–DISPLACEMENT RELATIONS IN ONE-DIMENSIONAL
ELEMENTS

For the rod, the stra in is given by « ¼ E11¼ @u
@x. An estimate for « implied by the

interpola tion model Equ ation 7.3 has the form

« x, tð Þ ¼ bT
m1 xð ÞFm1gm1 tð Þ (7:10)

bT
m1 ¼

dwT
m1

dx
¼ 0 1ð Þ (7:11)

For the beam the corresponding relation is

« x, z, tð Þ ¼ �z
@2w

@x2
(7:12)

from which the consistent approximation is obtained

« x, z, tð Þ ¼ �zbT
b1 xð ÞFb1gb1 tð Þ (7:13)

bT
b1 ¼

dwT
b1

dx
¼ 0 1 2x 3x2
� 	
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Fo r the beam-colum n the stra in is given by

«( x , z , t ) ¼ �b Tmb 1 xð ÞFmb 1 gmb 1 tð Þ

bT
mb 1 ¼

� 
b Tm1 � z bT

b 1

	 Fm 1 0

0 Fmb 1

� �
gm 1 tð Þ
gb 1 tð Þ

� �
(7 :14 )
7.3 STRESS–STRAIN RELATIONS IN ONE-DIMENSIONAL ELEMENTS

7.3.1 GENERAL

We first recal l the stre ss–stra in relations of an isotropi c linear elast icity. If S is the
stre ss tensor under smal l deform ation, the stre ss –strain relation for a linearly elastic
isot ropic solid under small stra in is given in Lamé ’s form by

S ¼ 2mEL þ l tr E Lð ÞI (7 :15 )

in whic h I is the identit y tenso r. The Lamé coef ficient s are denote d by l and m , and
are given in terms of the famili ar elast ic modulus E and Po isson ratio n as

m ¼ E
2 1þ nð Þ , l ¼ nE

1 � 2nð Þ 1 þ nð Þ  
(7 :16 )

Let ting s ¼ VEC ( S) and e ¼ VEC ( EL ), the stress –strain relations are writt en using
Kro necker product operat ors as

s ¼ De , D ¼ 2 mI9 þ lii T (7 :17 )

and D is the 9 3 9 tangen t modulus tensor introduced in the previ ous chap ters.

7.3.2 ONE -DIMENSIONAL MEMBERS

Fo r a beam- column, recal ling the forego ing stra in –displacem ent model

S11 x , z , tð Þ ¼ E E11 ¼ �E z bT
mb 1 xð ÞFmb 1 g mb 1 tð Þ  (7 :18 )

The cases of a rod and a beam are recovered by setting gb1 or gm1 equal to the zero
vectors, respectively.

7.4 ELEMENT STIFFNESS AND MASS MATRICES FROM
THE PRINCIPLE OF VIRTUAL WORK

Var iational calcul us was intr oduced in Chapter 4 and the Pr inciple of Virtua l Work
was introduced in Cha pter 5. It is repeat ed here asð

dEijSij dV þ
ð
duir€ui dV ¼

ð
duiti dS (7:19)
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As before d repres ents the varia tion al operat or. We assum e for present purpos es that
the displ acement, the stra in, and the stre ss sati sfy repres entations of the form

u x,tð Þ ¼ wT xð ÞFg tð Þ, e x,tð Þ ¼ bT xð ÞFg tð Þ, s x,tð Þ ¼ De x,tð Þ  ( 7: 20 )

in whi ch e ¼ VEC ( E) and s ¼ VEC ( S) are writt en as one-di mens ional arrays. Since
small strain is assumed, no distinct ion is made between the undeformed coordi nates
X and the deform ed coordinates x.

EXAMPLE 7.1

One-element model for a built-in rod
Suppose that the rod depicted in Figure 7.3 has elastic modulus E , mass density r,

area A , and length L , and is modeled using a single element. It is built in at x ¼ 0. At
x ¼ L there is a concentrated mass m to which is attached a spring of stiffness k.

The Principle of Virtual Work reduces to the variational equation

ðL
0

d
du

dx 
E A

du

dx 
dx þ

ðL
0

durA €u dx ¼ du( L, t )[ P � ku( L,t ) � m €u(L ,t )] ( 7: 21)

Upon application of the foregoing linear interpolation model for rod elements and
enforcement of the constraint u(0,t) ¼ 0 at  x ¼ 0, the stiffness and mass matrices arising
from the domain reduce to scalar values as follows: K ! EA=L, M ! rAL=3, MS ! m,
KS ! k. The governing one-element equation is EA

L þ k
� 	

gþ rAL
3 þ m

� 	
€g ¼ f :

EXAMPLE 7.2

One-element model for a built-in rod with a constant distributed surface stress
The confi guration of interest is illustrated in Figure 7.4.

(a) To derive the applicable version of the Principle of Virtual Work, integrate over the
domain and note that

ðL
0

du EA
d2u

dx2
þ px(x)

� �
dx ¼ 0, px(x) ¼ 2pr0Sxx

which holds for an arbitrary increment du(x) of u, subject to du(0)¼ 0.
E, A, L, r m k

P

FIGURE 7.3 Rod with inertial and compliant boundary conditions.
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E, L, r
0 Srx

FIGURE 7.4 Rod with constant distributed surface stress.
(b) Integrate by parts

ðL
0

d

dx
duEA

du

dx

� �
dx�

ðL
0

ddu

dx
EA

du

dx
dxþ

ðL
0

dupx(x) dx ¼ 0

and

ðL
0

d

dx
duEA

du

dx

� �
dx ¼ duEA

du

dx





L
0

¼ 0

since du(0)¼ 0 and P(L) ¼ EA
du(L)

dx
¼ 0. Accordingly

ðL
0

ddu

dx
EA

du

dx
dx ¼

ðL
0

dupx(x) dx

which expresses the Principle of Virtual Work in the current case.

(c) We model this member as one finite element and use the same approximation for
_u(x) as before, namely:

u(x) ¼ x
L u(L) ! du(x) ¼ x

L du(L)

From before,

dV ¼
ðL
0

ddu

dx
EA

du

dx
dx

¼ Dd(L)
EA
L

u(L)

Now, assuming px(x)¼ p0,

dW ¼
ðL
0

dup0 dx

¼ du(L)p0
L

ðL
0

x dx

¼ 1
2 du(L)Lp0
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Hence, dV¼ dW from which

EA
L

u(L) ¼ 1
2
Lp0 and also u(L) ¼ 1

2
L2p0
EA

Now compare the last result with the exact solution given by

u(x) ¼ u0Ax�
p0
EA

x2

2
and u(L) ¼ p0L2

2EA

The exact displacement function is quadratic, whereas the function assumed in the
interpolation model is linear. Despite this difference, the finite element solution
gives the exact displacement at x¼ L.

7.4.1 SINGLE-ELEMENT MODEL FOR DYNAMIC RESPONSE OF A BUILT-IN BEAM

Next consider a one-element model of a cantilevered beam to which a solid disk is
welded at x¼ L. Also attached at L is a linear spring and a torsional spring, the latter
having the property that the moment developed is proportional to the (negative of
the) slope of the beam. The shear force V0 and the moment M0 act at L. The member
is illustrated in Figure 7.5.

The Principle of Virtual Work now reduces to the equation

ðL
0

dw00EIw00 dxþ
ð
dwrA€w dx

¼ {dw(L,t)� dw0(L,t)}
V0 � kw(L,t)� m€w(L,t)

M0 � kt(�w0(L,t))� mr2

2
(�€w0(L,t))

8<
:

9=
; (7:22)

The interpolation model, incorporating the constraints w(0,t)¼�w0(0,t)¼ 0 a
priori, is

w x,tð Þ ¼ x2 x3
� 	 L2 L3

�2L �3L2

� ��1
w L,tð Þ

�w0 L,tð Þ
� �

(7:23)
E, I, A, L,r

z

y

x

M0

V0

mr

k

k

T

FIGURE 7.5 Beam with translational and rotational inertial and compliant boundary
conditions.
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Ignori ng rotary inert ia, the Principle of Virtua l Work and the interpola tion model
Equ ation 7.23 may now be ap plied to furni sh the domai n contribut ions to the
stiffness and mass matrices:

K ¼ EI
L3

12 6L

6L 4L2

" #
, M ¼ rAL

13
35

11
210 L

11
210L

1
105 L

2

" #
(7:24)

The stiffness and mass contributions from the boundary conditions are

KS ¼
k 0

0 kT

" #
, MS ¼

m 0

0 mr2

2

" #
(7:25)

The governing equation is now

MþMSð Þ €w L,tð Þ
�€w0 L,tð Þ
� �

þ KþKSð Þ w L,tð Þ
�w0 L,tð Þ
� �

¼ V0

M0

� �
(7:26)

EXAMPLE 7.3

Single-element model for a built-in beam under a uniformly distributed load
Assuming a static response, the Principle of Virtual Work in the present case may be
derived from

ðL
0

dw EI
d4w

dx4
� pb(x)

� �
dx ¼ 0, dw(0) ¼ 0, � dw0(0) ¼ 0

in which pb¼ Sxxa. Integrating by parts twice gives

dV ¼
ðL
0

dw EI
d4w

dx4

� �
dx

¼
ðL
0

dw00EIw00 dx� VdwjL0 �M(�dw0)jL0

Next apply dw(0)¼ (�dw0)¼ 0;V(L)¼M(L)¼ 0. From the interpolationmodel forw(x),

ðL
0

dw00EIw00 dx ¼ dV

¼ dgT EI
L3

12 6L

6L 4L2

� �
g

in which g ¼ w(L)
�w0(L)

� �
.
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� 2
We next examine the variation of the work, i.e., dW ¼ ÐL
0
dw pb(x)½ � dx, assuming pb

equals the constant value pb0: pb¼ pb0. From before, enforcing the conditions

w(0) ¼ 0, w0(0) ¼ 0, w(L) ¼ q1, � w0(L) ¼ q2

a priori, w(x) is approximated as

w(x) ¼ 3x2

L2
� 2x3

L3

� �
w(L)þ x2

L
� x3

L2

� �
(�w0(L))

and now

dW ¼ pb0 L
2dw(L)þ L2

12 (�dw0(L))
h i

¼ dw(L) (�dw0(L))f g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
dgT

pb0L

2

pb0L2

12

8>><
>>:

9>>=
>>;

The ensuing finite element equation is

EI
L

12 6L

6L 4L2

� �
w(L)

�w0(L)

� �
¼

pb0L

2
pb0L2

12

8><
>:

9>=
>;

The solution is

w(L)

�w0(L)

( )
¼ L3

EI

4L2 �6L

�6L 12

" #

12L2

L

2

L2

12

8>><
>>:

9>>=
>>;

¼
1
8

pb0L4

EI

� 1
6

pb0L3

EI

8>><
>>:

9>>=
>>;

The one-element finite element solution is now compared with the exact solution. The
governing equation and the general form of the solution are now

EIw0000 ¼ pb0

w(x) ¼ wAn þ w0
Axn þ w00

Ax
2 þ w000

A x
3 þ pb0

EI
x4

24

Note that the exact solution is one order higher in x (fourth order) than the one-element
approximation (third order). Application of the boundary conditions serves to establish
that
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V (L ) ¼ 0, w000 ( L) ¼ 0, 6w 000A þ
pb0 L

EI
¼ 0

from which w000
A ¼ � pb 0 L

6EI 
.

M (L ) ¼ 0, w 00  (L ) ¼ 0

2w00
A þ 6w000

A þ pb 0
EI

L2

2
¼ 0, xw 00A ¼

pb 0
EI

L 2

4

The tip displacement is obtained as

w( L) ¼ 1
8
pb0 L4

EI

and it agrees exactly with the one-element fi nite element solution.
The tip slope is examined next and is obtained as

� w0  ( L) ¼ � pb0
E I

L3

6

which likewise agrees exactly with the one-element fi nite element solution. Clearly,
even though the displacement model is one order lower in x than the exact solution, the
one-element model gives the correct results for the displacement and slope at the tip.

EXAMPLE 7.4

Mass and stiffness matrices for a single-element beam-column
Figure 7.7 is now modi fied to include the axial compressive force P as shown in

Figure 7.6. The member is again modeled using one element. Beam-columns are
assumed to be described by the classical Euler buckling equation, given in this case by

EIwiv þ Pw00 þ rA€w ¼ 0 (7:27)

The Principle of Virtual Work gives rise to the variational equation

ðL
0

dw00EIw00 dx� P

ðL
0

dw0w0 dxþ
ðL
0

dwrA€w dx

¼ dw(L,t)� dw0(L,t)f g
V0 � kw(L,t)� m€w(L,t)

M0 � kt(�w0(L,t))� mr2

2
(�€w0(L,t))

8<
:

9=
; (7:28)
E, I, L

Szz

a

FIGURE 7.6 Cantilevered beam under distributed load.
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z
y

E, I, A, L,r

x

k

k
T

M0
V0

r

P

FIGURE 7.7 Built-in beam-column with translational and rotational inertia and compliant
boundary conditions.
Upon application of the interpolation model Equation 7.23, the stiffness matrix due to
the domain is found after some effort to be

K̂ ¼ EI
L 3

12 6L

6L 4 L2

� �
� P

L

6 =5 L=10

L=10 2 L2 =15

� �
(7:29)

and the governing equation for the member is now

MþMSð Þ €w L,tð Þ
�€w0 L,tð Þ
� �

þ K̂þKS

� 	 w L,tð Þ
�w0 L,tð Þ
� �

¼ V0

M0

� �
(7:30)

Examination of Equation 7.29 reveals the presence of the negative definite matrix

� P
L

6=5 L=10
L=10 2L2=15

h i
. In static problems, when P becomes large enough to attain the

value Pcrit rendering K̂ singular, buckling is predicted to occur. In a later chapter, we
will consider natural frequencies in systems with inertia, at which time we will find that
a natural frequency vanishes at Pcrit.

7.5 INTEGRAL EVALUATION BY GAUSSIAN QUADRATURE:
NATURAL COORDINATES

The next step is to formulate stiffness and mass matrices in which there are no
constraints, say for the eth element lying between xe and xeþ1. It is helpful to digress
briefly to sketch Gaussian quadrature, which underlies the notion of natural coordin-
ates. We then return to formulate the matrices of the unconstrained element in terms of
both physical and natural coordinates. Gaussian quadrature is optimal in terms of the
accuracy gained for a given number of function evaluations. It, also to a certain extent,
renders the element matrices insensitive to the initial geometric details of the element.

In the finite element method, computation of element stiffness and mass matrices
gives rise to numerous integrations, the accuracy and efficiency of which is critical.
Fortunately, a method which is optimal in an important sense, called Gaussian
quadrature, has long been known. It is based on converting physical coordinates to
� 2008 by Taylor & Francis Group, LLC.



natural coordinates as illustrated next. Consider
Ð b
a f xð Þ dx. Let j ¼ 1

b� a 2x� aþ bð Þ½ �.
Clearly, j maps the interval [a,b] into the interval [�1,1]. The integral now transforms
to 1

b� a

Ð 1
�1 f jð Þ dj. Now represent f(z) using the power series

f zð Þ ¼ a0 þ a1z þ a2z
2 þ a3z

3 þ a4z
4 þ a5z

5 þ � � � (7:31)

from which

ð1
�1

f zð Þ dz ¼ 2a1 þ 0þ 2
3
a3 þ 0þ 2

5
a5 þ 0þ � � � (7:32)

The advantage of integration procedure on a symmetric interval can be seen in the
fact that, with n function evaluations, the integral is evaluated exactly through
(2n� 1)st order.

Consider the first 2n� 1 terms in a power series representation for a function:

g zð Þ ¼ a1 þ a2z þ � � � þ a2nz
2n�1 (7:33)

Now introduce the Gaussian integration formula based on n integration (Gauss)
points ji and n weights wi:

ð1
�1

g zð Þdz ¼
Xn
i¼1

g zið Þwi ¼ a1

Xn
i¼1

wi þa2

Xn
i¼1

wizi þ � � � þa2n

Xn
i¼1

wiz
2n�1
i (7:34)

Comparison with Equation 7.32 reveals that

Xn
i¼1

wi ¼ 1,
Xn
i¼1

wij ¼ 0,
Xn
i¼1

wij
2
i ¼ 2=3, . . .

Xn
i¼1

wij
2n�2
i ¼ 2

2n� 1
,
Xn
i¼1

wij
2n�1
i ¼ 0 (7:35)

It is necessary to solve for n values ji and n values wi. These are universal quantities
independent of the particular function f. With ji and wi known in general, to integrate
a given function g(j) exactly through j2n�1 it is necessary to perform n function
evaluations, namely to compute g(ji).

As an example we seek two Gauss points and two weights. Now for n¼ 2

w1 þ w2 ¼ 2 (7:36a)

w1j1 þ w2j2 ¼ 0 (7:36b)

w1j
2
1 þ w2j

2
2 ¼ 2

3 (7:36c)

w1j
3
1 þ w2j

3
2 ¼ 0 (7:36d)
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From Equ ations 7.36b and 7.36d, w1j1 j21 � j22
� 
 ¼ 0, leading to j2¼�j1. From

Equations 7.36a and 7.36c it now follows that �j2 ¼ j1 ¼ 1=
ffiffiffi
3

p
. Finally, the

normalization w1¼ 1 implies that w2¼ 1.
EXAMPLE 7.5

Modify the rod element to replace the physical coordinate x with the ‘‘natural coord-
inate’’ j in which

j ¼ axþ b, j xeð Þ ¼ �1, j xeþ1ð Þ ¼ þ1

Rewrite the interpolation model using natural coordinates, and perform the inverse to
obtain Fm1.

SOLUTION

We seek a, b for which the transformation j¼ axþ b satisfies j(xe)¼�1 and
j(xeþ1)¼þ1. Elementary manipulation furnishes that a ¼ 2

xeþ1 � xeð Þ ¼ 2=le and

b ¼ � xeþ1 þ xe
le

, in which le is the length of the element. Next @
@x ¼ @

@j
@j
@x, so that

@
@x ¼ a @

@j and @2

@x2 ¼ a2 @2

@j2
¼ 4

l2e
@2

@j2
. Accordingly, the governing equation for the dis-

placements in rods becomes

4EA
l 2e

@2u

@j2
¼ rA

@2u

@t2

For the interpolation model the natural coordinate now is

u j xð Þ,tð Þ ¼ wT
m1Fm1gm1 tð Þ, wT

m1 ¼ 1 j xð Þð Þ, gm1 tð Þ ¼ ue tð Þ
ueþ1 tð Þ

� �

Now letting ue¼ u(j(xe))¼ u(�1) and ueþ1¼ u(j(xeþ1))¼ u(þ1) yields

ue tð Þ
ueþ1 tð Þ

� �
¼ gm1 tð Þ ¼ 1 j xeð Þ

1 j xeþ1ð Þ
� �

Fm1gm1 tð Þ

Consequently,

Fm1 ¼ 1 j xeð Þ
1 j xeþ1ð Þ
� ��1

¼ 1 �1
1 1

� ��1

¼ 1
2

1 1
�1 1

� �
EXAMPLE 7.6

Rewrite the Euler–Bernoulli equation for the beam using the previous transformation.
Rewrite the interpolation model using natural coordinates, and perform the inverse to
obtain Fb1.
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� 20
SOLUTION

In the natural coordinate z satisfying

j ¼ aþ bx, j xeð Þ ¼ �1, j xeþ1ð Þ ¼ þ1, a ¼ 2
(xeþ1 � xe)

, b ¼ xeþ1 þ xe
xeþ1 � xe

the beam equation becomes

16EI
l4e

@4w

@z4
¼ 0, le ¼ xeþ1 � xe

The interpolation model is

w j xð Þ,tð Þ ¼ wT
b1Fb1gb1 tð Þ

in which

wT
b1 ¼ 1 j xð Þ j2 xð Þ j3 xð Þ� 	

, gb1 tð Þ ¼

we

w0
e=le

weþ1

�2w0
eþ1=l2

0
BBBB@

1
CCCCA

Enforcing this model at j(xe)¼�1, and j(xeþ1)¼þ1 furnishes

Fb1 ¼

1 j xeð Þ j2 xeð Þ j3 xeð Þ
0 �1 �2j xeð Þ �3j2 xeð Þ
1 j xeþ1ð Þ j2 xeþ1ð Þ j3 xeþ1ð Þ
0 �1 �2j xeþ1ð Þ �3j2 xeþ1ð Þ

2
66664

3
77775

�1

¼

1 �1 1 �1

0 �1 2 �3

1 1 1 1

0 �1 �2 �3

2
66664

3
77775

�1

¼ 1
4

2 �1 2 1

�3 1 3 1

0 1 0 �1

1 �1 �1 �1

2
66664

3
77775
EXAMPLE 7.7

We consider the clamped-free case of a beam-column modeled using a single element.
We examine the effect of the compressive load P. A model using a single element gives
08 by Taylor & Francis Group, LLC.



L L

M0

V0

P

FIGURE 7.8 Buckling of a cantilevered beam-column.

� 2
SOLUTION

Enforcing the constraints w(0)¼�w0(0)¼ 0 a priori gives the equation

12� 6
5 j 6� 1

10 j
� 	

L

6� 1
10 j

� 	
L 4� 2

15 j
� 	

L2

2
4

3
5 w(L)

�w0(L)

� �
¼ V0

M0

� �

The generalized displacements become unbounded, and hence buckling occurs, at the
value of P rendering the stiffness matrix singular (Figure 7.8).

det
12� 6

5 j 6� 1
10 j

� 	
L

6� 1
10 j

� 	
L 4� 2

15 j
� 	

L2

2
4

3
5¼ 0, j ¼ PL2

EI

from which 12� 6
5 j

� 	
4� 2

15 j
� 	

L2 � 6� 1
10 j

� 	2
L2 ¼ 0:

On solving the above equation, we have j¼ 32.18, 2.49. Accordingly, the P values
inducing buckling are

P1 ¼ 2:49
EI
L2

, P2 ¼ 32:18
EI
L2

The exact solution is taken from Brush and Almroth (1975) as

P1 ¼ p2

4
EI
L2

¼ 2:27
EI
L2

, P2 ¼ 9
4
p2 EI

L2
¼ 20:42

EI
L2

The fundamental critical load for a single element is fairly close to the exact solution,
while the second buckling load is about 50% too high. Clearly, a one-element model is
not very accurate for buckling. The model becomes more accurate as additional
elements are added.
7.6 UNCONSTRAINED ROD ELEMENTS

An element is called unconstrained if none of the points in the element are fixed.
From the Principle of Virtual Work the stiffness matrix satisfies

K ¼ Ð FTb xð ÞD0bT xð ÞF dV which for the foregoing rod element in the physical
coordinate becomes
008 by Taylor & Francis Group, LLC.



wT xð Þ ¼ 1 xð Þ, bT xð Þ ¼ @wT xð Þ
@x

¼ 0 1ð Þ

F ¼ 1 xe
1 xeþ1

� ��1

¼ 1
xeþ1 � xeð Þ

xeþ1 �xe
�1 1

� � (7:37)

Also D0 ¼E, and dV¼A dx, in consequence of which

Ke ¼
ðxeþ1

xe

1

xeþ1 � xeð Þ2
xeþ1 �1

�xe 1

" #
0

1

 !
EA 0 1ð Þ

xeþ1 �xe

�1 1

" #
dx

¼ EA
l2e

ðxeþ1

xe

xeþ1 �1

�xe 1

" #
0 0

0 1

" #
xeþ1 �xe

�1 1

" #
dx

¼ EA
le

1 �1

�1 1

" #
(7:38)

and le¼ xeþ1� xe is the element length.
We now redo the derivation for Ke using the natural coordinate j, in which

j¼ axþ b, with�1¼ axeþ b,þ1¼ axeþ1þ b. Interpolation in the natural coordin-
ate now is expressed by

wT ¼ 1 j xð Þf g, g tð Þ ¼
ue tð Þ
ueþ1 tð Þ

( )

F ¼ 1
2

1 1

�1 1

" #
, bT ¼ @wT

@x
¼ 2

le

@wT

@j
¼ 0 1ð Þ

Ke ¼
ðþ1

�1

1
4

1 �1

1 1

" #
2
le

� �2 0

1

 !
EA 0 1ð Þ

1 1

�1 1

" #
dx

(7:39)

On substituting dx ¼ le
2 dj, we obtain that

Ke ¼ EA
2le

ðþ1

�1

1 �1

1 1

� �
0 0

0 1

� �
1 1

�1 1

� �
dj (7:40)

¼ EA
le

1 �1
�1 1

� �
(7:41)

Using both the physical and the natural coordinates we next determine the mass
matrix Me for the segment, in which r denotes the mass density. In the physical
coordinates, the Principle of Virtual Work applied to the rob element gives the mass
matrix as
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M ¼
ð
rAFTw xð ÞwT xð ÞF dx

¼
ðxeþ1

xe

1

xeþ1 � xeð Þ2
xeþ1 �1

�xe 1

" #
1

x

 !
rA 1 xð Þ

xeþ1 �xe

�1 1

" #
dx

¼ rA

l2e

xeþ1 �1

�xe 1

" # ðxeþ1

xe

1 x

x x2

" #
dx

xeþ1 �xe

�1 1

" #

¼ rA

l2e

xeþ1 �1

�xe 1

" #
xeþ1 � xe 1

2 x2eþ1 � x2e
� 	

1
2 x2eþ1 � x2e
� 	

1
3 x3eþ1 � x3e
� 	

" #
xeþ1 �xe

�1 1

" #

¼ rA

l2e

1
3 xeþ1 � xeð Þ3 1

6 xeþ1 � xeð Þ3
1
6 xeþ1 � xeð Þ3 1

3 xeþ1 � xeð Þ3

2
4

3
5

¼ rAle
3

1 1=2

1=2 1

" #
(7:42)

In the natural coordinate, we obtain

Me ¼
ðþ1

�1

1
4

1 �1

1 1

" #
1

j

 !
rA 1 jð Þ

1 1

�1 1

" #
le
2
dj

¼ rAle
8

1 �1

1 1

" # ðþ1

�1

1 j

j j2

" #
dj

1 1

�1 1

" #

¼ rAle
8

1 �1

1 1

" #
2 0

0 2=3

" #
1 1

�1 1

" #

¼ rAle
3

1 1=2

1=2 1

" #
(7:43)

The terms ‘‘bar’’ and ‘‘tendon’’ are alternate names for rods. Shafts, which support
torques by twisting, are described by relations which have the same mathematical
form as the relations for rods. The same holds true for one-dimensional thermal or
electrical conductors (the latter being described by a potential). The mass and
stiffness elements for a shaft are simply

Me ¼ rJle
3

1 1=2
1=2 1

� �
, Ke ¼ mJ

le

1 �1
�1 1

� �
(7:44)

in which m ¼ E
2(1þ n) is the elastic shear modulus and J ¼ pr40=2 for a solid circular

shaft.
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7.7 UNCONSTRAINED ELEMENTS FOR BEAMS
AND BEAM-COLUMNS

We next consider the mass matrix for the beam element. It is convenient to introduce
the vectors g1, g2 and g as follows:

g1 ¼
w1(xe,t)

�w0
1(xe,t)

� �
, g2 ¼

w2(xeþ1,t)

�w0
2(xeþ1,t)

� �

g ¼
�
g1----
g2

�
¼

w1(xe,t)

�w0
1(xe,t)

-------------
w2(xeþ1,t)

�w0
2(xeþ1,t)

8>>>><
>>>>:

9>>>>=
>>>>;

(7:45)

In physical coordinates the mass matrix of the current element is given by

Me ¼

1 xe x2e x3e
0 1 2xe 3x2e
1 xeþ1 x2eþ1 x3eþ1

0 1 2xeþ1 3x2e

2
6664

3
7775
�T

rA

ðxeþ1

xe

1

x

x2

x3

8>>><
>>>:

9>>>=
>>>;
f1 x x2 x3g dx

0
BBB@

1
CCCA

1 xe x2e x3e
0 1 2xe 3x2e
1 xeþ1 x2eþ1 x3eþ1

0 1 2xeþ1 3x2e

2
6664

3
7775
�1

¼ M(e)
11 M(e)

12

M(e)T
12 M(2)

22

" #
(7:46)

M(e)
11 ¼ rALe

210
78 �11Le

�11Le 2L2e

� �
, M(e)

12 ¼ rALe
210

27 13
2 Le

� 13
2 Le

3
2L

2
e

� �

M(2)
22 ¼ rALe

210
78 11Le
11Le 2L2e

� �

The stiffness matrix of a beam segment is given in physical coordinates as

Ke ¼

1 xe x2e x3e
0 �1 �2xe �3x2e
1 xeþ1 x2eþ1 x3eþ1

0 �1 �2xeþ1 �3x2e

2
6664

3
7775
�T

EI

ðxeþ1

xe

0

0

2

6x

8>>><
>>>:

9>>>=
>>>;
{0 0 2 6x} dx

0
BBB@

1
CCCA

�

1 xe x2e x3e
0 �1 �2xe �3x2e
1 xeþ1 x2eþ1 x3eþ1

0 �1 �2xeþ1 �3x2e

2
6664

3
7775
�1

¼ K(e)
11 K(e)

12

K(e)T
12 K(2)

22

" #
(7:47)
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K(e )
11 ¼

E I
L3e

12 �6Le
� 6Le 4L2e

� �
, K (e )12 ¼

E I
L3e

12 � 6Le
6Le 2L2e

� �
, K(e )

22 ¼
E I
L 3e

12 6Le
6Le 4L2e

� �

Finally, if the mem ber serves as a beam-colum n the sti ffness mat rix is augmen ted to
furnish the new stiffnes s mat rix Ke

(bc ) given by

K(bc )
e ¼ Ke � K (P)e

K( P)
e ¼

1 xe x 2e x 3e

0 � 1 � 2xe �3x 2e

1 xe þ 1 x 2e þ 1 x 3e þ 1

0 � 1 � 2xe þ 1 �3x 2e

2
66664

3
77775

� T

P

ðx e þ 1

xe

0

1

2x

3x 2

8>>>><
>>>>:

9>>>>=
>>>>;

0 1 2x 3x 2
� �

dx

0
BBBB@

1
CCCCA

�

1 xe x 2e x 3e

0 � 1 � 2xe � 3x 2e

1 xe þ 1 x 2eþ 1 x 3e þ 1

0 � 1 �2xe þ 1 � 3x 2e

2
66664

3
77775

� 1

¼ K (eP)11 K (eP)12

K (eP)T12 K (eP)22

" #
( 7: 48 )

K(eP )
11 ¼ P

Le

6=5 � Le =10
� Le =10 2L 2e =15

� �
, K( eP)

12 ¼ P

Le

� 6=5 � Le =10
Le =10 � L2e =30

� �

K(eP )
22 ¼ P

Le

6=5 Le=10
Le=10 2L2e=15

� �
7.8 ASSEMBLAGE AND IMPOSITION OF CONSTRAINTS

7.8.1 RODS

Consider the assemblage consisting of two rod elements: denoted as e and eþ 1,
see Figure 7.9a. The re are three nodes numbered n, n þ 1, an d n þ 2. We first
consider assemblage of the stiffness matrices, based on two principles: (a) the
forces at the nodes are in equilibrium and (b) the displacements at the nodes are
continuous. Principle (a) implies that, in the absence of forces applied externally
to the node, at node nþ 1 the force of element eþ 1 on element e is equal and
opposite the force of element e on element eþ 1. It is helpful to carefully define
global (assemblage level) and local (element level) systems of notation. The global
system of forces is shown in (a) while the local system is shown in (b). At the
center node

P(e)
1 � P(eþ1)

2 ¼ 0 (7:49)

since no external load is applied. Also, clearly P (e)
2 ¼Pn and P (eþ1)

1 ¼Pnþ2.
� 2008 by Taylor & Francis Group, LLC.



(b) Forces in local system

(a) Forces in global system

Pn
Pn+2

P
1
(e)

P
2
(e) P

2
(e +1)

P
1
(e +1)

e

n n +1

e +1

e +1e

FIGURE 7.9 Assembly of rod elements.
The elements individua lly satisfy

k eð Þ 1 � 1

� 1 1

� �
un

un þ 1

� �
¼ � P eð Þ

2

P eð Þ
1

 !

k e þ 1ð Þ 1 � 1

� 1 1

� �
un þ 1

un þ 2

� �
¼ � P e þ 1ð Þ

2

P e þ 1ð Þ
1

 !  (7 :50 )

and in this case k(e ) ¼ k ( eþ 1) ¼ E A=L. These relations may be writt en as four separa te
equ ations:

k eð Þun � k eð Þunþ 1 ¼ �P eð Þ
2 ( 7:51 a)

� k eð Þun þ k eð Þu nþ 1 ¼ P eð Þ
1 (7: 51 b)

k e þ 1ð Þunþ 1 � k eþ 1ð Þun þ 2 ¼ �P e þ 1ð Þ
2 (7:51c)

�k eþ1ð Þunþ1 þ k eþ1ð Þunþ2 ¼ P eþ1ð Þ
1 (7:51d)

Now Equ ations 7.51b and 7.51c are added and Equati on 7.49 is applie d to ob tain

k eð Þun � k eð Þunþ1 ¼ �P eð Þ
2 (7:52a)

�k eð Þun þ
�
k eð Þ þ k eþ1ð Þ
unþ1 � k eþ1ð Þunþ2 ¼ 0 (7:52bþ 7:52c)

�k eþ1ð Þunþ1 � k eþ1ð Þunþ2 ¼ P eþ1ð Þ
1 (7:52d)
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and in matrix form

k eð Þ �k eð Þ 0
�k eð Þ k eð Þ þ k eþ1ð Þ �k eþ1ð Þ

0 �k eþ1ð Þ k eþ1ð Þ

2
4

3
5 un

unþ1

unþ2

0
@

1
A¼ �Pn

0
Pnþ1

0
@

1
A (7:53)

The assembled stiffness matrix shown in Equation 7.53 can be visualized as an
overlay of two-element stiffness matrices, referred to global indices, in which there is
an intersection of the overlay. The intersection contains the sum of the lowest right
hand entry of the upper matrix and the upper left hand entry of the lowest matrix. The
overlay structure for a multielement rod is illustrated in Figure 7.10.

The individual element-level stiffness matrices are now rewritten to refer to the
global degree-of-freedom numbering system as

K eð Þ ! ~K eð Þ, K eþ1ð Þ ! ~K eþ1ð Þ

~K eð Þ ¼ k eð Þ
1 �1 0

�1 1 0

0 0 0

2
64

3
75, ~K eþ1ð Þ ¼ k eþ1ð Þ

0 0 0

0 1 �1

0 �1 1

2
64

3
75 (7:54)

It is easily recognized that the global stiffness matrix (the assembled stiffness matrix
K(g) of the two-element member) is simply the direct sum of the element stiffness
matrices when they are referred to the global degree-of-freedom numbering system:
K(g)¼ ~K(e)þ ~K(eþ1).
K(N)

K(N –1)
K(N – 2)

K(5)

k
22

k
11
(5)(4)

K(4)

K(3)

K(2)

K(1)

+

FIGURE 7.10 Assembled beam stiffness matrix.
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By extend ing the two-element examp le to the mul tieleme nt rod, the global
sti ffness mat rix is seen to be given by K gð Þ ¼Pe

~K eð Þ. In the subseq uent sections
we will see that in the curren t n otation the strain energy in the two elements may be
wri tten in the form

V eð Þ ¼ 1
2 g

T ~K eð Þg eð Þ

V eþ 1ð Þ ¼ 1
2 g

T ~K eþ 1ð Þg eð Þ

g eð ÞT ¼ (un unþ 1 un þ 2 )

(7 :55 )

The total stra in energy of the two elem ents simply is the sum: 1
2 g

T K gð Þg .
Finally notice that in the two-rod element assemblag e the mat rix K (g) is singu lar:

the sum of the row s is the zero vector as is the sum of the columns. (In fact prior to the
im position of const raints the stiffnes s mat rix in any multie lement rod is singu lar.) In
this form an attempt to solve the syst em wi ll give rise to ‘‘rigid body mot ion.’’ To
illustrate this reasoning suppose for simplicity that k(e)¼ k(eþ1) in which case equilib-
rium requires that Pn¼Pnþ2. If computations were performed with perfect accuracy,
Equ ation 7.53 would pose no dif ficulty. How ever, in perfor ming computati ons e rrors
arise. For example, suppose Pn is computed as P̂n¼Pnþ «n and P̂nþ1¼Pnþ1þ «nþ1,
Pnþ1¼Pn¼P. Computationally, there is now an unbalanced force «nþ1� «n. In the
absence of mass, this in principle implies infinite accelerations, viewed conventionally
as rigid body motion. In the finite element method, the problem of rigid body motion
can be detected if the output exhibits unrealistically large deformation.

This problem of nonsingularity disappears when the constraints of the problem
are enforced. In the current example, symmetry implies that unþ1¼ 0. Recalling
Equation 7.53 we now have

EA
L

1 �1 0
�1 2 �1
0 �1 1

2
4

3
5 un

0
unþ2

0
@

1
A¼ �Pn

R

Pnþ1

0
@

1
A (7:56)

in which R is a reaction force which arises to enforce physical symmetry in the presence
of numerically generated asymmetry. The equation corresponding to the second
equation is useless in predicting the unknowns un and unþ2 since it introduces the
new unknown R. Of course R is a reaction force which arises to enforce the constraint
of symmetry. It is possible to ‘‘strike out’’ the second row of the equation and the
second column in the matrix, conventionally referred to as ‘‘condensation.’’ If the small
errors «1 and «2 are used again, the first and third equations are now rewritten as

EA
L

1 0
0 1

� �
un
unþ1

� �
¼ �Pþ «n

Pþ «nþ1

� �
(7:57)

with the solution

un ¼ �Pþ «n½ �= EA
L , unþ2 ¼ Pþ «nþ1½ �= EA

L (7:58)
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To preser ve symmet ry it is necess ary for un þ unþ 1 ¼ 0. However , the sum is
compu ted as

un þ un þ 1 ¼ «n þ «n þ 1
E A
L

� 	  ( 7: 59 )

The react ion force is given by R ¼�[ «n þ «nþ 1], and in this case it can b e considered
as a meas ure of compu tational error .

The same assembly argum ents apply equall y well to the inertial forces as to the
elastic forces . This is easily seen if acceler ations and mass matrix compo nents are
used in Equ ation 7.53 instead of displacem ents and stiffnes s compo nents (i.e.,
inertial respon se instead of e lastic respon se). Furthermor e, if both inertial and elast ic
respon ses a re p resent, the element- level mass mat rices are assem bled into the global
mass matrix in the same manner as in absence of elastic forces.

As will be shown formally in a subsequent section, the total kinetic energy T of
the two elements is

T ¼ 1
2 _g

T ~M eð Þ þ ~M eþ1ð Þ� 

_g

~M eð Þ ¼ m eð Þ 1 1=2

1=2 1

" #

m eð Þ ¼ 1
3 rAl
� 
 eð Þ

(7:60)

_gT ¼ _ue _ueþ1 _ueþ2f g

EXAMPLE 7.8

Write down the assembled mass and stiffness matrices of the following three-element
configuration (using rod elements) (Figure 7.11). The elastic modulus is E, the mass
density is r, and the cross-sectional area is A.

SOLUTION

The stiffness matrix and the mass matrix for a rod element is given by

K eð Þ ¼ EA
L

1 �1
�1 1

� �
, M eð Þ ¼ rAL

3
1 1=2
1=2 1

� �
xLL

y

L / 2

FIGURE 7.11 Three-element model of a rod.
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� 20
Now, for the first and third elements we have

K 1ð Þ ¼ K 3ð Þ ¼ EA
L

1 � 1

� 1 1

� �

M 1ð Þ ¼ M 3ð Þ ¼ r AL

3

1 1=2

1=2 1

� �

But the second element satis fies

K 2ð Þ ¼ EA
L =2

1 � 1
� 1 1

� �
, M 2ð Þ ¼ r AL=2

3
1 1=2
1=2 1

� �

The assembled (global) stiffness matrix is given by

K gð Þ ¼

k 1ð Þ
11 k 1ð Þ

12 0 0

k 1ð Þ
21 k 1ð Þ

22 þ k 2ð Þ
11 k 2ð Þ

12 0

0 k 2ð Þ
21 k 2ð Þ

22 þ k 3ð Þ
11 k 3ð Þ

12

0 0  k 3ð Þ
21 k 3ð Þ

22

2
666664

3
777775

Hence

K gð Þ ¼ EA
L

1 � 1 0  0

� 1 3 � 2 0

0 � 2 3 � 1

0 0 � 1 1

2
6664

3
7775

Continuing, the assembled (global) mass matrix is

M gð Þ ¼ r AL

3

1 1=2 0  0

1=2 3=2 1=4 0

0 1=4 3=2 1= 2

0 0 1=2 1

2
6664

3
7775
EXAMPLE 7.9

Show that, for the rod under gravity, a two-element model gives the exact answer for
the displacement at x ¼ L , as well as a much better approximation to the exact
displacement distribution (Figure 7.12).

SOLUTION

The equation for a rod under gravity is

EA
@2u

@x2
þ rAg ¼ 0, x
08 by Taylor & Francis Group, LLC.



L g
E
A
r

FIGURE 7.12 Rod stretching under gravity.

� 2
u positive downward, u(0) ¼ 0,
@u(L)

@x
¼ 0

As previously stated, the exact solution is u(x) ¼ rg
E ½Lx� x2

2 �, u(L) ¼ rg
E

L2

2 :

ONE-ELEMENT MODEL

Applying variational methods to the foregoing equation furnishes

ðL
0

du0EAu0 dx�
ðL
0

durAg dx ¼ 0

Upon invoking the interpolation model u(x) ¼ x u(L)
L , we find

EA
L

u(L) ¼ rAgL

2
! u(L) ¼ rg

E
L2

2

This result agrees with the exact solution at x¼ L. However, the interpolation model is
linear and hence does not agree with the quadratic exact solution. The finite element
model predicts that u(L=2) ¼ rg

E
L
4, while the exact solution at x¼ L=2 is 3

8
rg
E L2.

TWO-ELEMENT MODEL

Here, the weight of the rod acts (is ‘‘lumped’’) at node ‘‘3’’ and the reaction, which is
�rALg, acts at node ‘‘1.’’ Hence the finite element equation Kg¼ f can be written as,

EA
L=2ð Þ

2 �1
�1 1

� �
u2
u3

� �
¼ rgA

L

4
2
1

� �
! u2

u3

� �
¼ rgL2

E
3=8
1=2

� �

which is exact at both nodes.
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EXAMPLE 7.10

Apply the method of the previous exercise to consider a stepped rod, as shown in Figure
7.13, with each segment modeled as one element.

TWO-ELEMENT SOLUTION

The assembled stiffness matrix is

K ¼

E1A1

L1
þ E2A2

L2
�E2A2

L2

�E2A2

L2

E2A2

L2

2
6664

3
7775¼ E2A2

L2

1þ a �1

�1 1

" #

a ¼ E1A1

L1
=E2A2

L2

The assembled gravitational terms furnish the consistent gravitational force as

fg ¼ g
1
2 (r1A1L1 þ r2A2L2)

1
2 r2A2

L2
2

 !
¼ r2A2L2g

1
2 (bþ 1)

1
2

 !
, b ¼ r1A1L1

r2A2L2

The solution for the displacements is

u2

u3

 !
¼ 1

2
gr2L

2
2

E2a

2þ b

2þ aþ b

 !

The case of the previous problem is recovered if we set a¼b¼ 1 and L2¼ L=2.
L1

L2

g

E2

A2
r2

E1

A1
r1

FIGURE 7.13 Two-element rod stretching under gravity.
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EXAMPLE 7.11

Using a single finite element in each of the rod segments shown below, obtain
expressions for the natural frequencies (Figure 7.14).

SOLUTION

Adding the kinetic and strain energies furnishes

T ¼ 1
2

_u1 _u2f g � r2A2L2
6

2 1

1 2

" #
_u1

_u2

( )" #
þ 1
2
r1A1L1

3
_u22

¼ 1
2

_u1 _u2f g �
r2A2L2

3
þ r1A1L1

3
r2A2L2

6
r2A2L2

6
r2A2L2

3

2
664

3
775 _u1

_u2

( )2
664

3
775

V ¼ 1
2
u1 u2f g � E2A2

L2

1 �1

�1 1

" #
u1

u2

( )" #
þ 1
2
E1A1

L1
u21

¼ 1
2
u1 u2f g �

E2A2

L2
þ E1A1

L1
�E2A2

L2

�E2A2

L2

E2A2

L2

2
664

3
775 u1

u2

( )2
664

3
775

Two natural frequencies are obtained from the equation

det

E2A2

L2
þ E1A1

L1
�E2A2

L2

�E2A2

L2

E2A2

L2

2
664

3
775� v2

n1,2

r2A2L2
3

þ r1A1L1
3

r2A2L2
6

r2A2L2
6

r2A2L2
3

2
64

3
75

2
664

3
775 ¼ 0

Some algebra serves to obtain

v2
n1,2

¼ 3E2

r2L
2
2

3þ aþ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ aþ bð Þ2�a 3þ bð Þ

q
6þ 2b

0
@

1
A

in which a ¼ E1A1
L1

=E2A2
L2

and b ¼ r1A1L1
3 =r2A2L2

3 .
E2,A2,L2,r2E1,A1,L1,r1

FIGURE 7.14 Natural frequencies of a two-element rod.
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7.8.2 B EAMS

A similar argum ent ap plies for beams . The potent ial energy and stiffnes s mat rix of
the e th elem ent may be written as

V eð Þ ¼ 1
2 g

T
b K eð Þgb

K eð Þ ¼
K 

eð Þ
11 K 

eð Þ
12

K 
eð ÞT
12 K 

eð Þ
22

2
4

3
5

gT
b ¼ we � w 0e we þ 1 � w0

e þ 1 g
�

(7 :61 )

In a two-el ement beam model analog ous to the forego ing rod model , V (g) ¼ V ( e) þ
V ( e þ1) , implying that

K gð Þ ¼
~K 

eð Þ
11 

~K 
eð Þ
12 0

~K 
eð ÞT
12

~K 
eð Þ
22 þ ~K 

eþ 1ð Þ
11

~K 
eþ 1ð Þ
12

0 ~K 
eþ 1ð ÞT
12 

~K 
eþ 1ð Þ
22

2
6664

3
7775 (7 :62 )

Simi larly, the global mass matrix for a two-element beam segm ent is given by

M gð Þ ¼
~M 

eð Þ
11 

~M 
eð Þ
12 0

~M 
eð ÞT
12

~M 
eð Þ
22 þ ~M 

eþ 1ð Þ
11 M 

eþ 1ð Þ
12

0 ~M 
e þ 1ð ÞT
12

~M
eþ1ð Þ
22

2
6664

3
7775 (7:63)
EXAMPLE 7.12

For the system indicated below, find the equation governing nodal displacements and
slopes (Figure 7.15).
This member is modeled with two beam elements, which is the minimum possible.

The global displacement vector, absent the constrained degrees of freedom, is
gT
g ¼ w1 �w0

1 w2 �w0
2f g. The strain energy is the sum of the strain energies of

the two elements and the springs:

V ¼ V1 þ V2 þ V3 þ V4

in which

V3 ¼ 1
2
kw2

2 ¼
1
2
gT

0 0 0 0
0 0 0 0
0 0 k 0
0 0 0 0

2
664

3
775gg, V4 ¼ 1

2
kT �w0

2

� 	 ¼ 1
2
gT

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 kT

2
664

3
775g
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2

1

1

2E1,L1,L1 E2,L2,L2 M0

V0

kt

w2

−w �1

w1

3

k

Node 1

– w �
2

FIGURE 7.15 Two-element beam model with compliant supports.
Also

V1 ¼ 1
2

w1 �w0
1f gK 1ð Þ

I1

w1

�w0
1

( )
¼ 1

2
gT
g

K 1ð Þ 0

0T 0

" #
gg

V2 ¼ 1
2
gT
g

K
2ð Þ
I1 K

2ð Þ
I2

K
2ð ÞT
I2 K

2ð Þ
22

" #
gg

The total strain energy is obtained by direct addition of the element potential energies

V ¼ 1
2
gT
g

K 1ð Þ þ K
2ð Þ
I K

2ð Þ
II

K
2ð ÞT
II K

2ð Þ
III þ

k 0
0 kT

� �2
4

3
5gg

The Principle of Virtual Work now implies that

12
E1I1
L31

þE2I2
L32

� �
6

E1I1
L21

�E2I2
L22

� �
12

E2I2
L32

�6
E2I2
L22

6
E1I1
L21

�E2I2
L22

� �
4

E1I1
L1

þE2I2
L2

� �
6
E2I2
L22

2
E2I2
L2

12
E2I2
L32

6
E2I2
L22

12
E2I2
L32

þ k 6
E2I2
L22

�6
E2I2
L22

2
E2I2
L2

6
E2I2
L22

4
E2I2
L2

þ kT

2
6666666666664

3
7777777777775

w1

�w0
1

w2

�w0
2

8>>><
>>>:

9>>>=
>>>;

¼

0

0

V0

M0

8>>><
>>>:

9>>>=
>>>;

The matrix is inverted to solve for the displacements and slopes.

7.9 DAMPING IN RODS AND BEAMS

In addition to mass and stiffness matrices, rods and beams experiencing time-
dependent loads are thought to exhibit viscous damping whose effect is represented
by a damping matrix. Damping generates a stress proportional to the strain rate.
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In line ar probl ems model ed by the finite element met hod it leads to a vector –matrix
equ ation of the form

M €g þ D _g þ Kg ¼ f tð Þ  (7 :64 )

in which D is the positive de finite symmet ric dampi ng matrix.
At the element level the counte rpart of the kinetic en ergy and the stra in energy is

the Ray leigh Dampin g funct ion D ( e) given by D eð Þ ¼ 1
2 _g 

eð ÞT D eð Þ _g eð Þ, and the
‘‘ consistent da mping force ’’ on the e th elem ent is

f 
eð Þ
d tð Þ ¼ @

@ _g 
D eð Þ ¼ D eð Þ _g eð Þ  (7 :65 )

Just like kinetic and strain energi es, the Raylei gh damping function is additive over
the elements . According ly, if D̂( e ) is the damping matrix of the e th elem ent referr ed to
the global node system, the assem bled dampi ng matrix is given by

D ¼
X
e

D̂ eð Þ  (7 :66 )

It shoul d be eviden t that the global sti ffness, mass, and dampi ng mat rices have the
same bandwidt h: a force on one given node depends on the displ aceme nts (veloci-
ties , accelera tions) of the nodes of the elem ents connected at the given node, there by
deter min ing the ba ndwidth .

Of course in ligh tly dampe d metallic stru ctures the d amping proper ties can be
dif ficult to measure. In fi nite elem ent practice it is c ommon to assum e Raylei gh
Dam ping, in which the damping mat rix is assumed to be a linea r combinati on of the
mass and stiffness matrices. This has the advantage of enforcing classical normal
modes in which the damping matrix may be diagonalized by transformations that also
diagon aliz e the mass and sti ffness matrices . This topic will appear again in Cha pter 9.

7.10 GENERAL DISCUSSION OF ASSEMBLAGE

To explain the basis of the assemblage process, it is convenient to introduce
Lagrange’s equation. While the Principle of Virtual Work is based on variation of
in the spatial domain, Lagrange’s equation as stated below also applies variational
arguments to the time domain. The equation of interest is

d

dt

@

@ _gj
� @

@gj

 !
(T �V) ¼ fj (7:67)

Here gj is the jth entry of the nodal displacement vector in which constraints have
been enforced a priori. fj is the corresponding nonconservative nodal force. T and V
are the total kinetic energy and total elastic strain energy of the body, expressed in
terms of gj, _gj. In particular,

T ¼ 1
2

ð
v

r _u2i dV , V ¼ 1
2

ð
v

SijEij dV (7:68)
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But, assuming the body is represented as N elements whose volumes are denoted
by Ve,

V ¼ 1
2

XN
e¼1

ð
Vc

SijEij dV

¼ 1
2

XN
e¼1

gT
eKege (7:69a)

in which ge is the local (element-level) displacement vector, only incorporating
the displacements at the nodes of element e. Also Ke is the corresponding local
(element-level) stiffness matrix. For example, for a rod with 10 elements and with the

elements numbered from left to right, gT
5 ¼ u5 u6f g and K5 ¼ E5A5

x6 � x5

1 �1
�1 1

� �
.

But, referred to the global displacement vector g,

V ¼ 1
2

XN
e¼1

gT ~Keg

¼ 1
2
gT

XN
e¼1

~Ke

 !
g

¼ 1
2
gTKg, K ¼

XN
e¼1

~Ke

 !
(7:69b)

Otherwise stated, the (assembled) stiffness matrix K is the algebraic sum of the local
(element-level) stiffness matrices (~Ke) referred to the global nodal displacement
vector g.

A parallel argument may be applied to the kinetic energy.

T ¼
ð
V

r _ui _ui dV

¼
XN
e¼1

ð
Ve

r _ui _ui dV

0
B@

1
CA

¼ 1
2

XN
e¼1

_gT
eMe _ge

¼ 1
2

XN
e¼1

_gT ~Me _g

¼ 1
2
_gT

XN
e¼1

~Me

 !
_g

¼ 1
2
_gTM _g, M ¼

XN
e¼1

~Me

 !
(7:69c)
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Appl ied to the expres sions in Equati ons 7.69a through 7.69c, Lag range ’ s equa tion
furnishes the expected equation, namely M _gþKg¼ f(t).
7.11 GENERAL DISCUSSION ON THE IMPOSITION
OF CONSTRAINTS

Constraints serve to remove degrees of freedom. In principle, they should be
enforced a priori to reduce the displacement vector to a minimum dimension in
which all entries vary independently. Alternatively, the functional, whose variation is
to be set equal to zero, may be augmented with additional variables (Lagrange
multipliers) subject to variation. The variational principles arising from the add-
itional variables enable enforcing the constraints a posteriori. The degrees of free-
dom, without regard for the constraints, and the Lagrange multipliers are then varied
independently.

Of course, enforcing constraints a priori in complex problems can be very
difficult, especially if, for example, the constraints are ‘‘multipoint.’’ In the finite
element method based on the Principle of Virtual Work, despite the mathematical
objections to doing so, in most cases the variational principle is formulated without
enforcing constraints a priori or without augmenting the functional using Lagrange
multipliers or penalty functions. Instead, after the stiffness matrix is formulated the
constraints are imposed a posteriori. The author is not aware of any errors resulting
from this practice. However, in some classes of constraint problems an augmented
functional is used, for example, in incompressible media to be discussed in a
subsequent chapter.

There are several classes of constraints. In simple constraints one or more
displacements vanish at nodes on the boundary, or else assume prescribed fixed
values. In linear multipoint constraints such as symmetry, several nodes are required
to remain on a given line or plane. There are also internal constraints such as
incompressibility, in which a kinematic requirement is imposed at all nodes through-
out the body. As stated before, incompressibility will be addressed in a subsequent
chapter.

We first illustrate constraint enforcement when a displacement vanishes at a
boundary node, in the case of a static problem. Suppose for simplicity that the
constraint occurs at the last entry in the global displacement vector (prior to impos-
ition of constraints). The finite element equation for an n degree-of-freedom system
may be written as

K
gn�1

0

� �
¼ f,

fn�1

f n

� �
, K ¼ Kn�1 kn

kT
n knn

� �
, f ¼ fn�1

f n

� �
(7:70)

The stiffness matrix K is positive semidefinite and hence singular, since the vector
sum of the nodal forces must vanish. If only one nodal displacement is removed the
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rank of the stiffnes s matrix is n � 1, in which case the submatri x Kn� 1 must be
positive de finite . The upper block row of Equation 7.70, obtai ned by ‘‘strikin g out ’’
the nth row and column of K and nth entry of f, then implies that Kn�1gn�1¼ fn�1,
for which there exists a unique solution. This leaves the reaction force fn unknown,
but the bottom row in Equation 7.70 implies that fn¼kn

Tgn�1.
Finally, we illustrate constraint enforcement when a boundary displacement, say

the last entry of the global displacement vector, has a prescribed value gn. Now the
upper block row implies thatKn�1gn�1¼ fn�1�gnkn. Again the matrix of interest is
obtained from K by striking out the nth row and column. However, the force vector
is now different from the case of a vanishing displacement. Now there exists a
unique solution of the equation Kn�1gn�1¼ fn�1�gnkn.
7.12 INVERSE VARIATIONAL METHOD

Given the functional subject to variation, we derive the underlying differential
equation and possible combinations of boundary conditions and constraints. For
this purpose we will focus on a simple example. Suppose that a rod satisfies dC¼ 0,
in which C is given by

C ¼
ðL
0

1
2

du

dx

� �2
dx� Pu Lð Þ

EA
(7:71)

We again invoke the interpolation model

u xð Þ ¼ 1 xf gF u xe,tð Þ
u xeþ1,tð Þ

� �
(7:72)

For an element xe< x< xeþ1, we seek the matrix Ke such that

Ke
u xe,tð Þ
u xeþ1,tð Þ

� �
¼ fe

feþ1

� �
(7:73)

Applying variational operations to the given equation gives

dC ¼
ðL
0

du

dx

� �
d

du

dx

� �
dx� Pdu Lð Þ

EA
(7:74)

Using integration by parts on the first term furnishes,

dC ¼ du � du
dx

� �L
0

�
ðL
0
du � d

2u

dx2
dx� Pdu Lð Þ

EA
(7:75)
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Now dC¼ 0 implies that

du � EA du

dx

� �L
0

�
ðL
0
du � EA d2u

dx2
dx� Pdu Lð Þ ¼ 0 (7:76)

The domain integral and the endpoint expressions must vanish independently. The
endpoint conditions capture possible combinations of boundary conditions and
constraints as follows. At x¼ 0, either u¼ 0 or EA du

dx ¼ 0. At x¼ L,
du(L)½EA du(L)

dx � P� ¼ 0, from which either u(L)¼ 0 or EA du(L)
dx ¼ P.

From the domain integral we conclude that

ðL
0
duEA

d2u

dx2
dx ¼ 0 (7:77)

and the arbitrariness of du is now appealed to again to conclude that

EA
d2u

dx2
¼ 0 (7:78)

which of course is the well-known differential equation of a rod under static loading.
The expression of the stiffness matrix is, of course,

K ¼
ð
FTb xð ÞD0bT xð ÞF dV (7:79)

For a one-dimensional rod element, as before,

wT xð Þ ¼ 1 xð Þ, bT xð Þ ¼ @wT xð Þ
@x

¼ 0 1ð Þ, F ¼ 1 xe
1 xeþ1

� ��1

¼ 1
xeþ1 � xeð Þ

xeþ1 �xe
�1 1

� �
(7:80)

Again D0 ¼E, and dV¼A dx. Now, following now familiar procedures the stiffness
matrix is

Ke ¼
ðxeþ1

xe

1

xeþ1 � xeð Þ2
xeþ1 �1

�xe 1

� �
0

1

� �
EA 0 1ð Þ xeþ1 �xe

�1 1

� �
dx

¼ EA
l2e

ðxeþ1

xe

xeþ1 �1

�xe 1

� �
0 0

0 1

� �
xeþ1 �xe

�1 1

� �
dx

¼ EA
le

1 �1

�1 1

� �
(7:81)

in which le¼ xeþ1� xe is the element length.
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EXAMPLE 7.13

Redo this derivation for Ke in the previous exercise, using the natural coordinate j,
whereby j¼ axþ b, in which a and b are such that �1¼ axeþ b, þ1¼ axeþ1þ b.

SOLUTION

We show that it is possible to introduce interpolation directly in the natural coordinate j.
Since @

@x ¼ @j
@x

@
@j ¼ 2

‘e
@
@j, the rod equation becomes EA @2u

@j2
¼ 0

and the corresponding interpolation relations are

wT ¼ 1 j xð Þf g, g tð Þ ¼
ue tð Þ
ueþ1 tð Þ

( )

F ¼ 1
2

1 1

�1 1

" #
, bT ¼ @wT

@x
¼ 2

le

@wT

@j
¼ 0 1ð Þ

Using dx ¼ le
2 dj, the stiffness matrix now becomes

Ke ¼
ðþ1

�1

1
4

1 �1

1 1

� �
2
le

� �2 0

1

� �
EA 0 1ð Þ 1 1

�1 1

� �
l2
2
dj

� �

and finally

Ke ¼ EA
le

1 �1
�1 1

� �
EXAMPLE 7.14

Next regard the nodal displacement vector as a function of t. Find the matrix Me such
that

Me
u xe,tð Þ
u xeþ1,tð Þ

� �. .

þ Ke
u xe,tð Þ
u xeþ1,tð Þ

� �
¼ fe

feþ1

� �

in which r is the mass density. Derive Me using both physical and natural coordinates.

SOLUTION

First let us derive the mass matrix using the physical coordinates. On substituting
dV¼A dx, and letting le¼ xeþ1� xe we have
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Me ¼
ð
rAFTw xð ÞwT xð ÞF dx

¼
ðxeþ1

xe

1

xeþ1 � xeð Þ2
xeþ1 �1

�xe 1

" #
1

x

 !
rA 1 xð Þ

xeþ1 �xe

�1 1

" #
dx

¼ rA

l2e

xeþ1 �1

�xe 1

" # ðxeþ1

xe

1 x

x x2

" #
dx

xeþ1 �xe

�1 1

" #

¼ rA

l2e

xeþ1 �1

�xe 1

" #
xeþ1 � xe 1

2 x2eþ1 � x2e
� 	

1
2 x2eþ1 � x2e
� 	

1
3 x3eþ1 � x3e
� 	

" #
xeþ1 �xe

�1 1

" #

¼ rA

l2e

1
3 xeþ1 � xeð Þ3 1

6 xeþ1 � xeð Þ3

1
6 xeþ1 � xeð Þ3 1

3 xeþ1 � xeð Þ3

2
4

3
5

and this becomes

Me ¼ rAle
3

1 1=2
1=2 1

� �

For the natural coordinates, following the same procedure evident in the previous
exercise gives

Me ¼
ðþ1

�1

1
4

1 �1

1 1

" #
1

j

 !
rA 1 jð Þ

1 1

�1 1

" #
le
2
dj

¼ rAle
8

1 �1

1 1

" # ðþ1

�1

1 j

j j2

" #
dj

1 1

�1 1

" #

¼ rAle
8

1 �1

1 1

" #
2 0

0 2=3

" #
1 1

�1 1

" #

and finally

Me ¼ rAle
3

1 1=2
1=2 1

� �

As has been expected, the stiffness and mass matrices are the same in the rod whether
approached using physical or natural coordinates.
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8 Two- and Three-
Dimensional Elements
� 2008 by Taylor & Fra
in Linear Elasticity
and Linear Conductive
Heat Transfer
8.1 INTERPOLATION MODELS IN TWO DIMENSIONS

8.1.1 MEMBRANE P LATE

Conside r the uncon strained triangula r plate element depict ed in Figure 8.1. Suppose
that there is no out-of-plane stress (plane stress) or no out-of-plane displacement
(plane strain). The displacements u(x,y,t) and v(x,y,t) are to be modeled using the
values ue(t), ve(t), ueþ1(t), veþ1(t), ueþ2(t), and veþ2(t). A linear model in x and y
suffices for each displacement owing to providing three coefficients to match three
nodal values. The interpolation model now is

u x, y, tð Þ
v x, y, tð Þ

 !
¼ wT

m2 0T

0T wT
m2

" #
FT

m2 0T

0T FT
m2

" #
gu tð Þ
gv tð Þ

 !
(8:1)

in which

gu tð Þ¼
ue tð Þ
ueþ1 tð Þ
ueþ2 tð Þ

0
B@

1
CA, gv tð Þ¼

ve tð Þ
veþ1 tð Þ
veþ2 tð Þ

0
B@

1
CA, wm2¼

1

x

y

0
B@
1
CA, FT

m2¼
1 xe ye
1 xeþ1 yeþ1

1 xeþ2 yeþ2

2
64

3
75
�1

8.1.2 PLATE WITH BENDING STRESSES ONLY

In a plate element experiencing bending only, in classical plate theory (e.g., Wang,
1953) the in-plane displacements u and v are expressed by

u x, y, z, tð Þ ¼ �z
@w

@x
, v x, y, z, tð Þ ¼ �z

@w

@y
(8:2)
ncis Group, LLC.



z

Xe + 2, Ye + 2

Xe +1,Ye +1

Xe,Ye

Y

Middle surface

x

FIGURE 8.1 Triangular plate element.
in which z¼ 0 at the middle (centroidal) plane. The out-of-plane displacement w is
assumed to be a function of x and y only. Clearly this model permits no in-plane
(membrane) displacements in the middle plane.

An example of an interpolation model is introduced as follows to express w(x,y)
throughout the element in terms of the nodal values of w, � @w

@x , and � @w
@y . Clearly w

has been assumed to depend only on the in-plane coordinates x and y, and the time t.

w x, y, tð Þ ¼ wT
b2 x, yð ÞFb2gb2 tð Þ (8:3)

wT
b2 x, yð Þ ¼ 1 x y x2 xy y2 x3 1

2 x2yþ y2xð Þ y3
� �

gT
b2 tð Þ ¼ we �

� @w
@x

�
e
�
� @w
@y

�
e
weþ1 �

� @w
@x

�
eþ1

�

�
� @w
@y

�
eþ1

weþ2 �
� @w
@x

�
eþ2

�
� @w
@y

�
eþ2

�

F�1
b2 ¼

1 xe ye x2e xeye y2e x3e
1
2xeye xeþ yeð Þ y3e

0 �1 0 �2xe �ye 0 �3x2e � xeyeþ 1
2y

2
e

� 	
0

0 0 �1 0 �xe �2xe 0 � 1
2x

2
e þ xeye

� 	 �3y2e

1 xeþ1 yeþ1 x2eþ1 xeþ1yeþ1 y2eþ1 x3eþ1
1
2xeþ1yeþ1 xeþ1þ yeþ1ð Þ y3eþ1

0 �1 0 �2xeþ1 �yeþ1 0 �3x2eþ1 � xeþ1yeþ1þ 1
2y

2
eþ1

� 	
0

0 0 �1 0 �xeþ1 �2yeþ1 0 � 1
2x

2
eþ1þ xeþ1yeþ1

� 	 �3y2eþ1

1 xeþ2 yeþ2 x2eþ2 xeþ2yeþ2 y2eþ2 x3eþ2
1
2xeþ2yeþ2 xeþ2þ yeþ2ð Þ y3eþ2

0 �1 0 �2xeþ2 �yeþ2 0 �3x2eþ2 � xeþ2yeþ2þ 1
2y

2
eþ2

� 	
0

0 0 �1 0 �xeþ2 �2yeþ2 0 � 1
2x

2
eþ2þ xeþ2yeþ2

� 	 �3y2eþ2

2
666666666666666666666666664

3
777777777777777777777777775
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It follow s that

u x, y , z , tð Þ
v x, y , z , tð Þ
w x, y , z, tð Þ

0
B@

1
CA ¼

� z
@ wT

b 2

@ x

� z
@ wT

b 2

@ y

wT
b 2

0
BBBBB@

1
CCCCCAFb 2 gb 2 tð Þ  ( 8: 4)

8.1.3 PLATE WITH STRETCHING AND BENDING

Finally, for a plat e exp eriencing both stre tching and bendin g, the displacem ents are
assumed to satisfy

u x, y , z , tð Þ ¼ u0 x , y , tð Þ � z
@ w x, y , tð Þ

@ x

v x, y , z , tð Þ ¼ v0 x , y , tð Þ � z
@ w x, y , tð Þ

@ y

( 8: 5)

and note that w is a function only of x , y , and  t (not z ). Here z ¼ 0 at the mid dle
surface, while u0 and v 0 repres ent the in-plane displa cements. Using the nodal values
of u0, v 0, and w, a combined interpola tion model is obtained as

u x, y , z , tð Þ
v x, y , z , tð Þ
w x, y , z , tð Þ

0
BB@

1
CCA ¼

u0 x , y , tð Þ
v0 x , y , tð Þ

0

0
BB@

1
CCAþ

�z
@ w Tb2
@ x

�z
@ w Tb2
@ y

w Tb2

0
BBBBBB@

1
CCCCCCA
Fb2 gb 2 tð Þ

¼

w Tm2 0T � z
@ wT

b 2

@ x

0T w Tm2 �z
@wT

b2

@y

0T 0T wT
b2

2
6666664

3
7777775

Fm2 0 0

0 Fm2 0

0 0 Fb2

2
664

3
775

gu tð Þ
gv tð Þ
gw tð Þ

0
BB@

1
CCA

(8:6)

8.1.4 TEMPERATURE FIELD IN TWO DIMENSIONS

In the tw o-dimension al triangula r eleme nt illustrated in Figure 8.1, the line ar inte r-
polation model for the temperature is

T� T0 ¼ wT
m2Fm2u2, uT2 ¼ Te � T0 Teþ1 � T0 Teþ2 � T0ð Þ (8:7)
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8.1.5 AXISYMMETRIC ELEMENTS

An axisymmetric element is displayed in Figure 8.2. It is applicable to bodies which
are axisymmetric and are submitted to axisymmetric loads such as all-around
pressure. The radial displacement is now denoted by u and the axial displacement
is denoted by w. The tangential displacement v vanishes, while radial and axial
displacements are independent of u. Also u and w depend on r, z, and t.

There are two cases which require distinct interpolation models. In the first case
none of the nodes are on the axis of revolution (r¼ 0), while in the second case one
or two nodes are in fact on the axis. In the first case the linear interpolation model is
given by

u r, z, tð Þ
w r, z, tð Þ

� �
¼ wT

a1 0T

0T wT
a1

" #
Fa1 0

0 Fa1


 �
gua1 tð Þ
gwa1 tð Þ

� �
(8:8)

wT
a1 ¼ 1 r zð Þ, Fa1 ¼

1 re ze

1 reþ1 zeþ1

1 reþ2 zeþ2

2
64

3
75
�1

, gua1 ¼
ue

ueþ1

ueþ2

0
B@

1
CA, gwa1 ¼

we

weþ1

weþ2

0
B@

1
CA

Now suppose that there are nodes on the axis, and note that the radial displacements
are constrained to vanish on the axis. We will see later that, to attain an integrable
kernal in the stiffness matrix, it is necessary to enforce the symmetry constraints a
priori in the displacement interpolation model. In particular, suppose that node e is
on the axis with nodes eþ 1 and eþ 2 defined counterclockwise at the other vertices.
A linear interpolation model enforcing the axisymmetry constraint a priori is now

u r,z,tð Þ
w r,z,tð Þ

 !
¼ wT

a2 0T

0T wT
a2

" #
Fa2 0

0 Fa2

" #
gua2 tð Þ
gwa2 tð Þ

 !
(8:9)

wT
a2 ¼ r z� zeð Þ, Fa2 ¼

reþ1 zeþ1 � ze

reþ2 zeþ2 � ze


 ��1

For later purposes note that that ratio (z� ze)=r is indeterminate as a point in the
element is moved toward the node on the axis of revolution.
e + 2

e +1

e
r
q

FIGURE 8.2 Axisymmetric element.
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A similar formulation can be used if two nodes are on the axis of symmetry, so
that the u displacement in the element is modeled using only one nodal displacement,
with a coefficient vanishing at each of the nodes on the axis of revolution.

8.2 INTERPOLATION MODELS IN THREE DIMENSIONS

We next consider the tetrahedron illustrated in Figure 8.3. A linear interpolation
model for the temperature may be expressed as

T� T0 ¼ wT
3TF3Tu3 (8:10)

wT
3T ¼ 1 x y zð Þ

F3T ¼

1 xe ye ze

1 xeþ1 yeþ1 zeþ1

1 xeþ2 yeþ2 zeþ2

1 xeþ3 yeþ3 zeþ3

2
666664

3
777775

�1

uT3T ¼ Te � T0 Teþ1 � T0 Teþ2 � T0 Teþ3 � T0f g

For elasticity with displacements u, v, and w, the corresponding interpolation
model is

u x, y, z, tð Þ
v x, y, z, tð Þ
w x, y, z, tð Þ

0
B@

1
CA ¼

wT
3 0T 0T

0T wT
3 0T

0T 0T wT
3

2
64

3
75

F3 0 0

0 F3 0

0 0 F3

2
64

3
75

gu tð Þ
gv tð Þ
gw tð Þ

0
B@

1
CA (8:11)
e+1

e+2

e+3

0

e

z

x

y

FIGURE 8.3 Tetrahedral element.
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8.3 STRAIN– DISPLACEMENT RELATIONS
AND THERMAL ANALOGS

8.3.1 S TRAIN –DISPLACEMENT R ELATIONS : TWO DIMENSIONS

The (linear) stra in tenso r for two-di mensional deformatio n is given by

E x ,yð Þ ¼ Exx E x y

Exy E yy

" #
¼

@ u

@ x

1
2

@ u

@ y 
þ @ v

@ x

� �
1
2

@ u

@ y 
þ @ v

@ x

� �
@ v

@ y

2
6664

3
7775 (8 :12 )

In Chapter 5 we encount ered the two imp ortant cases of plane stre ss and plane strain.
In the latter case, Ezz va nishes and Szz is not needed to achiev e a solution . In the
form er c ase Szz vanishes and Ezz is not need ed for solution .

As opposed to VEC notat ion, traditi onal finite element notat ion (cf. Zienki ewicz
and Taylor, 1989) intr oduces the strain vector «0 T ¼ Exx Eyy Exy

� �
. (Stric tly

speaki ng «0 is more proper ly called an array since it does not h ave the transforma tion
proper ties of vector s (cf. Chapter 2).) Upon applyi ng the interpola tion model
we obtain

«0 ¼
Exx

Eyy

Exy

0
B@

1
CA ¼ bT

m 2F̂m2
gu2

gv 2

� �
(8 :13 )

in which bT
m 2F̂m 2 is called the strain –displacem ent mat rix and

bT
m 2 ¼

@ wT
m 2

@ x
0T

0T
@ wT

m 2

@ y

1
2
@ w Tm2
@ y

1
2
@ w Tm2
@ x

2
66666664

3
77777775
, F̂m 2 ¼

Fm 2 0

0 Fm2


 �

Her eafter, the prime will not be display ed.
For a plate with bending stresses only, a vector (array) of the strains is

displayed as

« x, y, z, tð Þ ¼ �z

@2w

@x2

@2w

@y2

@2w

@x@y

0
BBBBBBBB@

1
CCCCCCCCA

(8:14)
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from which

«0 x, y, z, tð Þ ¼ �zbT
b2 x, yð ÞFb2gb2 tð Þ, bb2 ¼

@2wT
b2

@x2

@2wT
b2

@y2

@2wT
b2

@x@y

0
BBBBBBBB@

1
CCCCCCCCA

(8:15)

Note that « 6¼ VEC(E) and instead it represents an ad hoc traditional notation in FEA.
For a plate experiencing both membrane and bending stresses, the foregoing

relations can be combined to furnish

«0 x, y, z, tð Þ ¼ bT
mb2 x, y, zð ÞFmb2gmb2 tð Þ (8:16)

bT
mb2 ¼ bT

m2 �zbT
b2

� 	
, Fmb2 ¼

Fm2 0

0 Fb2


 �
, gmb2 tð Þ ¼ gm2 tð Þ

gb2 tð Þ

� �

8.3.2 AXISYMMETRIC ELEMENT

For the previously considered toroidal element with a triangular cross section, it is
necessary to consider two cases. If there are no nodes on the axis of revolution, then
application of the strain–displacement relations to the axisymmetric interpolation
model furnishes

« r, z, tð Þ ¼

@u

@r
u

r
@w

@z

1
2

@u

@z
þ @w

@r

� �

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼ bT
a1

Fa1 0

0 Fa1

" #
gua1 tð Þ
gwa1 tð Þ

 !
(8:17)

bT
a1 ¼

0 1 0 0 0 0
1
2 1 z

r 0 0 0

0 0 0 0 0 1

0 0 1
2 0 1

2 0

2
66664

3
77775

If element e is now located on the axis of revolution, we obtain

« r, z, tð Þ ¼ bT
a2

Fa2 0

0 Fa1


 �
gua2 tð Þ
gwa1 tð Þ

� �
(8:18)
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bT
a2 ¼

1 0 0 0 0

1 z�ze
r 0 0 0

0 0 0 0 1

0 1
2 0 1

2 0

2
666664

3
777775

We now can see the reason for the special interpolation model. If ze were not present
in the foregoing matrix, the quantity z=r would result. Of course, this quantity
approaches infinity on a path approaching the node on the axis of revolution. The
quantity and its square would appear in the kernal of the integral in the stiffness
matrix, rendering the kernal nonintegrable. However, with the use of ze, a path to
node e produces a path-dependent finite value of (z� ze)=r in the limit, for which
reason the kernal is integrable. The interpolation model enforces the axisymmetry
constraint a priori, in order to achieve integrability. However, wherever possible the
Finite Element Method enforces constraints a posteriori, which is to say that assem-
bled finite element equation is initially obtained without accommodating constraints,
and then constraints are used to remove rows and columns from the stiffness matrix.

8.3.3 THERMAL ANALOG FOR TWO-DIMENSIONAL AND AXISYMMETRIC ELEMENTS

The thermal analog of the strain is the temperature gradient. Application of the
interpolation model for the temperature furnishes the relation

rT ¼ bT
T2FT2u2, bT

T2 ¼
0 1 0

0 0 1


 �
(8:19)

There is no need in the axisymmetric case to enforce constraints.

8.3.4 THREE-DIMENSIONAL ELEMENTS

Recalling the tetrahedral element in the previous section, the strain–displacement
relation for isotropic linearly elastic materials may be written as

« ¼

Exx

Eyy

Ezz

Exy

Eyz

Ezx

0
BBBBBBBB@

1
CCCCCCCCA

¼

@u

@x
@v

@y
@w

@z
1
2

@u

@y
þ @v

@x

� �
1
2

@v

@z
þ @w

@y

� �
1
2

@w

@x
þ @u

@z

� �

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

(8:20)
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¼ bT
3

F3 0 0

0 F3 0

0 0 F3

2
64

3
75

gu3

gv3

gw3

0
B@

1
CA

in which

bT
3 ¼

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 1
2 0 0 1

2 0 0 0 0 0 0

0 0 0 0 0 0 0 1
2 0 0 1

2 0

0 0 0 1
2 0 0 0 0 0 1

2 0 0

2
666666664

3
777777775
8.3.5 THERMAL ANALOG IN THREE DIMENSIONS

Again referring to the tetrahedral element, the relation for the temperature gradient is
immediately seen to be

rT ¼ bT
3TF3Tu3, bT

3T ¼
0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

2
64

3
75 (8:21)
8.4 STRESS–STRAIN RELATIONS

8.4.1 TWO-DIMENSIONAL ELEMENTS

8.4.1.1 Membrane Response

In two-dimensional elements, we have previously distinguished the cases of plane
stress and plane strain. In plane stress, the stress–strain relations reduce to

Exx ¼ 1
E Sxx � nSyy
� 


Eyy ¼ 1
E Syy � nSxx
� 


Exy ¼ 1þ n
E Sxy

(8:22)

The case of plane strain is retrieved by using E* ¼ E
1� n2

and n* ¼ n
1� n in place of E

and n. In traditional finite element notation Equation 8.22 may be written as
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Sxx
Syy
Sxy

0
@

1
A ¼ Dm21

Exx

Eyy

Exy

0
@

1
A (8:23)

in which

Dm21 ¼ E
1 �v 0
�v 1 0
0 0 1þ v

2
4

3
5
�1

¼ E
1� v2

1 v 0
v 1 0
0 0 1þ v

2
4

3
5 (8:24)

may be called the tangent modulus matrix under plane stress (note that, unlike the
previous definition, it is not based on the VEC operator and is not a tensor). The
corresponding matrix for plane strain is denoted by Dm22.

However, we shall see that a slightly different quantity from Dm22 is needed in
plane stress. The Principle of Virtual Work uses the strain energy density given by
1
2 SijEij. Elementary manipulation serves to prove that

1
2 SijEij ¼ 1

2 Sxx Syy Szzð Þ
1 0 0
0 1 0
0 0 2

2
4

3
5 Exx

Eyy

Exy

0
@

1
A (8:25)

Accordingly, in the Principle of Virtual Work the tangent modulus matrix in plane
stress is replaced by

D0
mb2 ¼

E
1� n2

1 n 0
n 1 0
0 0 2 1þ nð Þ

2
4

3
5 (8:26)

and similarly for plane strain. (The peculiarity represented by the ‘‘2’’ in the lower
right-hand diagonal entry is an artifact of traditional finite element notation and does
not appear if VEC notation is used.) The stresses are now given in terms of nodal
displacements by

Sxx x,y, tð Þ
Syy x,y, tð Þ
Sxy x,y, tð Þ

0
@

1
A¼D0

m2i

Exx

Eyy

Exy

0
@

1
A¼D0

m2ib
T
m2F̂m2

gu2

gv2

� �
, i¼ 1 plane stress

2 plane strain

�
(8:27)

8.4.1.2 Two-Dimensional Members: Bending Response of Thin Plates

Thin plates experiencing only bending are assumed to be in a state of plane stress.
The tangent modulus matrix is again given by Equation 8.26, and now an approxi-
mation for the stress is obtained as

Sxx

Syy
Sxy

0
@

1
A ¼ Dm21

Exx

Eyy

Exy

0
@

1
A� zDm21b

T
b2F̂b2gb2 tð Þ (8:28)
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8.4.1.3 Element for Plate with Membrane and Bending Response

Plane stress is likewise applicable to the combined case, and consequently the
stresses are modeled as

Sxx
Syy
Sxy

0
@

1
A ¼ Dm21

Exx

Eyy

Exy

0
@

1
A ¼ Dm21b

T
mb2 x, y, zð ÞF̂mb2gmb2 tð Þ (8:29)

8.4.2 AXISYMMETRIC ELEMENT

For the purpose of determining a stress model consistent with the underlying
interpolation model, it is sufficient to consider the case in which none of the nodes
of the element are located on the axis of revolution.

Srr
Suu
Szz
Srz

0
BB@

1
CCA ¼ Da

Err

Euu

Ezz

Erz

0
BB@

1
CCA ¼ Dab

T
a1

F̂a1 0
0 F̂a1


 �
gua1 tð Þ
gwa1 tð Þ

� �
(8:30)

in which the tangent modulus matrix is given by

Da ¼ E

1 �n �n 0

�n 1 �n 0

�n �n 1 0

0 0 0 1þ n

2
6664

3
7775
�1

¼ E
1� 2nð Þ 1þ nð Þ

1� n n n 0

n 1� n n 0

n n 1� n 0

0 0 0 1� 2n

2
6664

3
7775

For use in the Principle of Virtual Work, Da is modified to furnish D0
a given by

D0
a ¼

E
1� 2nð Þ 1þ nð Þ

1� n n n 0
n 1� n n 0
n n 1� n 0
0 0 0 2(1� 2n)

2
664

3
775 (8:31)

8.4.3 THREE-DIMENSIONAL ELEMENT

All six stresses and strains are now present. Using traditional finite element notation
we write
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Sxx

Syy

Szz

Sxy

Syz

Szx

0
BBBBBBB@

1
CCCCCCCA

¼ D3

Exx

Eyy

Ezz

Exy

Eyz

Ezx

0
BBBBBBB@

1
CCCCCCCA

¼ D3b
T
3

F3 0 0

0 F3 0

0 0 F3

2
4

3
5 gu3

gv3

gw3

0
@

1
A (8:32)

D3 ¼ E

1 �n �n 0 0 0

�n 1 �n 0 0 0

�n �n 1 0 0 0

0 0 0 1þ n 0 0

0 0 0 0 1þ n 0

0 0 0 0 0 1 þ n

2
6666666664

3
7777777775

�1

¼ E
1� 2nð Þ 1þ nð Þ

1� n n n 0 0 0
n 1� n n 0 0 0
n n 1� n 0 0 0
0 0 0 1� 2n 0 0
0 0 0 0 1� 2n 0
0 0 0 0 0 1� 2n

2
6666664

3
7777775

and for the Principle of Virtual Work, the associated matrix is

D0
3 ¼

E
1� 2nð Þ 1þ nð Þ

�

1� n n n 0 0 0

n 1� n n 0 0 0

n n 1� n 0 0 0

0 0 0 2(1� 2n) 0 0

0 0 0 0 2(1� 2n) 0

0 0 0 0 0 2(1� 2n)

2
66666664

3
77777775

(8:33)

8.4.4 ELEMENTS FOR CONDUCTIVE HEAT TRANSFER

Assuming the isotropic version of the Fourier Law, the heat flux vector, which may
be considered the thermal analog of the stress, is obtained using

q ¼ �k

bT
T1FT1u1, 1� D

bT
T2FT2u2, 2� D

bT
T3FT3u3, 3� D

8>><
>>: (8:34)
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8.5 STIFFNESS AND MASS MATRICES AND THEIR
THERMAL ANALOGS

Eleme nts of variation al c alculus were discu ssed in Chapter 3 and the Princi ple of
Virtua l Work was introduced in Chapter 5. It is repeated here as

ð
dEijSij dV þ

ð
duir€ui dV ¼

ð
duiti dS (8:35)

As before we assume that the displacement, the strain, and the stress may to
satisfactory accuracy be approximated using expressions of the form

u(x,t) ¼ wT (x)Fg(t), E ¼ bT (x)Fg(t), S ¼ DE (8:36)

in which E and S are written as one-dimensional arrays in accordance with tradi-
tional finite element notation, and of course t is the traction vector. Also, for use of
traditional finite element notation in the Principle of Virtual Work, it is necessary to
make use ofD0, which introduces the factor 2 into the entries corresponding to shear.
We suppose that the boundary is decomposed into four segments: S¼ SIþ SIIþ
SIIIþ SIV. On SI, u is prescribed, in which event du vanishes. On SII the traction t is
prescribed as t0. On SIII there is an elastic foundation described by t¼ t0�A(x)u, in
which A(x) is a known matrix function of x. On SIV there are inertial boundary
conditions by virtue of which t¼ t0�Bü. The right-hand term now becomes

ð
duiti dS ¼ dgT

ð
SIIþSIIIþSIV

FTw(x)t0 dS

� dgT

ð
SIII

FTw(x)AwT (x)F dSg(t)

� dgT
ð
SIV

FTw(x)BwT (x)F dS €g(t) (8:37)

The leftmost term in Equation 8.35 becomes

ð
dEijSij dV ¼ dgTKg(t), K ¼

ð
FTb(x)D0bT (x)F dV

ð
duir€ui dV ¼ dgTM€g(t), M ¼

ð
rFTw(x)wT (x)F dV

(8:38)

in which K is of course the stiffness matrix and M the mass matrix. Canceling the
arbitrary variation and bringing terms with unknowns to the left-hand side furnish the
equation

(KþKS)g(t)þ (MþMS)€g(t) ¼ f(t) (8:39)
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f ¼
ð
SIIþSIII

FTw(x)t0 dS

KS ¼
ð
SIII

FTw(x)AwT (x)F dS

MS ¼
ð
SIV

FTw(x)BwT (x)F dS

Clearly, elastic supports on SIII furnish a boundary contribution to the stiffness
matrix, while mass on the boundary segment SIV furnishes a contribution to the
mass matrix.

8.6 THERMAL COUNTERPART OF THE PRINCIPLE
OF VIRTUAL WORK

For current purposes we focus on the equation of conductive heat transfer as

kr2T ¼ rce
@T

@t
(8:40)

Multiplying by the variation of T� T0, integrating by parts and applying the diver-
gence theorem furnishes

ð
drTTkrT dV þ

ð
dTrce

@T

@t
dV ¼

ð
dTnTq dS (8:41)

Now suppose that the interpolation models for temperature in the current element
furnish a relation of the form

T� T0 ¼ wT
T (x)FTu(t), rT ¼ bT

T (x)FTu(t), q ¼ �kTT (x)FTu(tÞ (8:42)

The left-hand terms in Equation 8.41 may now be written as

ð
drTTkrTdV ! duT (t)KTu(t), KT ¼

ð
kFT

TbTb
T
TFT dV

ð
dTrce

@T

@t
dV ¼ duT (t)MT

_u(t), MT ¼
ð
kFT

TwTw
T
TFT dV

(8:43)

KT and MT may be called the thermal stiffness (or conductance) matrix and thermal
mass (or capacitance) matrix, respectively.

Next, suppose that the boundary S has four zones: S¼ SIþ SIIþ SIIIþ SIV. On
SI the temperature is prescribed as T1, from which we conclude that dT¼ 0. On SII
the heat flux is prescribed as nTq1. On SIII, the heat flux satisfies nTq¼ nTq1�
h1(T�T0), while on SIV, nTq¼ nTq1� h2 dT=dt. The governing finite element
equation is now
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MT þ M TS½ � _u( t ) þ KT þ K TS½ �u( t ) ¼ fT ( t )

MTS ¼ F TTT

ð
SIV

wT h2 w
T
T dS FT , K TS ¼ F TT

ð
SIII

wT h1 w
T
T dS F T ( 8: 44 )

fT tð Þ ¼ F TT

ð
V

wT n 
T q 1 dS, V ¼ SII þ SIII þ SIV
8.7 CONVERSION TO NATURAL COORDINATES IN TWO
AND THREE DIMENSIONS

The notio n of natur al coordi nates is applicable in two and three dimensi ons. It
requires transform ing the undefor med coordi nates of the phy sical elem ent to a
referenc e element with suitable symm etry proper ties. As an illust ration consi der
the quadri lateral element shown below.

We seek transform ations zk( X j) and thei r inver ses Xj (z k ) such that the nodes of
the physi cal element are mappe d to the values z (e )1 , z (e )2

� 	 ¼ ( � 1, � 1) ;

z (e þ 1 )
1 , z (e þ 1)

2

� 	 ¼ (1, � 1); z (e þ 2)
1 ,z (e þ 2)

2

� 	 ¼ ( 1,1 ) ; z (e þ 3 )
1 , z (e þ 3 )

2

� 	 ¼ ( 1, � 1) in the
transform ed elem ent. The coordi nates zk( X j) are of c ourse the natur al coordi nates .
In this instance we also require that stra ight lines rema in stra ight lines. The elem ent
in the transform ed coordi nates is depicted as follows. The mappi ng is achiev ed by
the funct ions

X1 ¼ 1 z 1 z2 z1 z 2f gFz

X (e )1

X (e þ 1 )
1

X (e þ 2 )
1

X (e þ 3 )
1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

X2 ¼ 1 z 1 z2 z1 z 2f gFz

X (e )2

X (e þ 1)
2

X (e þ 2)
2

X (e þ 3)
2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

Fz ¼

1 �1 � 1 1

1 1  � 1 �1

1 1  1  1

1 �1 1  1

2
6664

3
7775
� 1

¼ 1
4

1 1 1 1

� 1 1 1 � 1

� 1 �1 1  1

1 �1 1 � 1

2
6664

3
7775 ( 8: 45 )

Along the sides z1 ¼�1, 1, X1 and X2 are line ar funct ions of z 2. Acco rding ly they are
linear funct ions of each other and hence the top and bott om faces of the square in
Figure 8.5 map into lines between the nodal values at the endpoi nts in Figure 8.4. A
similar observation holds regarding the right and left faces.

Clearly the transformation relations between the physical and the natural coor-
dinates are reminiscent of interpolation models introduced heretofore for deformed
coordinates in terms of undeformed coordinates. If the transformation model
involves the same order of polynomial as the interpolation model, the element in
the natural coordinates is said to be isoparametric.
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X2

X1

X1
(e+3), X2

(e+3)

X1
(e+1), X2

(e+1)

X1
(e), X2

(e)

X1
(e+2), X2

(e+2)

FIGURE 8.4 Two-dimensional element in physical coordinates.
The Jacobian matrix for the transformation is defined here as by

J ¼ @X

@z
¼

@X1

@z1

@X1

@z2

@X2

@z1

@X2

@z2

2
6664

3
7775 (8:46)

in which X ¼ X1(z1,z2)
X2(z1,z2)

� �
and z ¼ z1

z2

� �
. (Sometimes J is defined as (dz=dX)T.)

The reader may find our definition surprising since, as first glance, z denotes the
coordinates being introduced by the transformation. However, we take the view that
−1,1

−1,−1 1,−1

1,1

z2

z1

FIGURE 8.5 Two-dimensional element in natural coordinates.
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the natur al coordin ates now represent the reference con figurat ion, since the fi nal
matrices and vector s wi ll be expressed in term s of the natur al c oordinates .)

The Jacobi an matrix is remin iscent of the deform ation gradi ent tenso r F. The
transform ation zk ( Xj ) is invertible and the inver se trans formation Xj ( zk ) exists if J and
hence its inverse are nonsi ngular . The volum e (area) in the physical elem ent dA and
in the transform ed element dAz are related by dAz ¼ det( J� 1) dA, and clear ly a
singular inver se Jacobi an matrix woul d imply mappi ng the physi cal element onto a
zero-v olume element in natural coordi nates . The deter minant of the Jacobi an mat rix
is denote d as J : J ¼ det( J).

Assumi ng nonsi ngular ity, the inverse of the Jacobi an mat rix is readily veri fied
using the Chain Rule of calculus to b e given by

J� 1 ¼
@ z1
@ X1

@ z1
@ X2

@ z2
@ X1

@ z2
@ X2

2
664

3
775 ( 8: 47 )

We now consider referr ing the Princi ple of Virtual Work to natur al coordinates . The
inertial term becom es

ð
du T €u r dV ¼

ð
du T €u r J dVz ( 8: 48 )

Now suppos e that the displacem ent vector in element e is approxi mated using an
interpola tion model in the natur al coordi nates :

u(X,t) ! u(z,t) � wT
z (z)Fzegze (8:49)

The inertial term in the eth element is now

ð
duT€u rJ dVz ¼ dgT

zeMze€gze

Mze ¼ FT
z

ð
wzew

T
zerJ dVz


 �
Fz

(8:50)

We next consider the consistent force, assuming that the traction vector is specified at
all points on the exterior boundar y. In Cha pter 13, we wi ll encount er a relat ion
between the deformed surface area element dSd and the corresponding undeformed

element: namely dSd¼m dS in which m ¼ det(F)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nT0C

�1n0

q
and n0 is the surface

normal vector of the undeformed element. We may now write

dS ¼ mz dSz, mz ¼ det(J)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nTz J

�1J�Tnz

q
(8:51)
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in which dSz is the area of the elem ent in the natur al coo rdinate system and nz
is the corres ponding unit norm al vector. We now deter mine the corres pondin g
con sistent force.

The term in the Princi ple of Virtua l Work which repres ents the virtual external
wor k of the tract ion is trans formed accordi ng to

ð
duT ( X,t ) t (X ,t ) dS ¼

ð
duT ( z ,t )t ( z ,t )mz ( z ,t ) dSz

¼ dg Tz e f z e (8 :52 )

fz e ¼ F z e

ð
wz ( z )t ( z ,t )m z ( z ,t ) dSz

Final ly we addres s the term representi ng virtual inte rnal work of the stre ss , and is
hereaft er called the stiffnes s term. First note that, in linear elasticity, owing to the
tota l symm etry of the tangen t modul us tenso r C( cijkl ),

dEji Sij ¼ dE ij c ijkl Ekl

¼ @ duj
@ Xi

cijkl
@ ul
@ Xk

¼ @ duj
@ zm

@ zm
@ Xi

cijkl
@ zn
@ Xk


 �
@ ul
@ zn

¼ tr
@ du

@ z

� �T

Cz
@ du

@ z

 !
(8 :53 )

in which the fourth-ord er tangen t modul us referred to natura l coordi nates is
expressed as

Cz½ �mjln¼ J�TCJ�1
� 


mjln¼
@zm
@Xi

cijkl
@zn
@Xk

The stiffness term referred to natural coordinates may now be identified.

ð
tr(dES) dV ¼

ð
tr

@du

@z

� �T

Cz
@du

@z

 !
J dVz (8:54)

The interpola tion model (Equati on 8.49) imp lies a subsi diary model of the form

VEC
du(z,t)
dz

� �
¼ bT

z (z)Fzegze (8:55)
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According ly, the stiffnes s term assum es the formð
tr (dES ) dV ! dgT

z e Kz e gz e

Kz e ¼ F Tz e

ð
bz (z ) J

� T (z ) CJ � 1 ( z)
� 	

( z )b Tz (z ) J zð Þ dVz

( 8: 56 )

The ensui ng elem ent level fi nite element equation is now stated as

Mz e €gz e þ K g e gz e ¼ f z e ( 8: 57 )

The transformation to natural coordinates preserves the kinetic energy and the potential
energy of the element, in consequence of which assemblage of element matrices to
obtain global matrices proceeds by direct addition in the manner introduced in Chapter 7.

Similar arguments to the above furnish the transformations for the thermal
stiffness matrix.ð

drTTkrTTdA ¼
ð
rBTdTð ÞkJ�TJ�1 rBTð ÞJ dAz

¼ duTzeKTzeuze (8:58)

KTze ¼ FT
Tz

ð
kbTzJ

�TJ�1bT
TzJ dVz FTz

The transformations for the thermal mass matrix and the consistent thermal force are
parallel to the mechanical field counterparts.

EXAMPLE 8.1

Find the Jacobianmatrix and its determinant for the transformation shownbelow (Figure 8.6).

SOLUTION

The transformation is achieved using

x ¼ 1 B h hBf gF
x1
x2
x3
x4

8>><
>>:

9>>=
>>;, y ¼ 1 B h hBf gF

y1
y2
y3
y4

8>><
>>:

9>>=
>>;
–1,1

–1,–1 1,–1

1,1

1.1,1.2

1,0.1

0.1,1
X2

X1

z2

z1

FIGURE 8.6 Figure for determinant of a Jacobian.
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The matrix F is given above in Equation 8.45. The Jacobian matrix is obtained as

J ¼

0 1 0 z2f gF

x( 1)1

x( 2)1

x( 3)1

x( 4)1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

0 0  1 z1f gF

x( 1 )1

x( 2 )1

x( 3 )1

x( 4 )1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

0 1 0  B1f gF

x( 1 )2

x( 2 )2

x( 3 )2

x( 4 )2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

0 0 1 B1f gF

x( 1)2

x( 2)2

x( 3)2

x( 4)2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

2
666666666666666664

3
777777777777777775

The determinant J is recognized as

J ¼ 0 0 1 B1f gF

x( 1)2

x( 2)2

x( 3)2

x( 4)2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

0
BBBBBB@

1
CCCCCCA

0 1 0 z2f gF

x( 1 )1

x( 2 )1

x( 3 )1

x( 4 )1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

0
BBBBBB@

1
CCCCCCA

� 0 0 1 B1f gF

x( 1 )1

x( 2 )1

x( 3 )1

x( 4 )1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

0
BBBBBB@

1
CCCCCCA

0 1 0 z2f gF

x( 1)2

x( 2)2

x( 3)2

x( 4)2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

0
BBBBBB@

1
CCCCCCA

¼ x( 1)1 x( 2)1 x (3 )1 x( 4 )1

� �
F T

0

1

0

z2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

0 0 1 B1f g�

0

0

1

B1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

0 1 0 B2f g

2
666664

3
777775F

x( 1)2

x( 2)2

x( 3)2

x( 4)2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ x( 1)1 x( 2)1 x (3 )1 x( 4 )1

� �
F T

0 0 0 0

0 0  1 z1

0 � 1 0 � z2

0 � z1 z2 0

2
666664

3
777775F

x (1 )2

x (2 )2

x (3 )2

x (4 )2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

and finally

x( 1 )1 x ( 2)1 x( 3)1 x( 4)1

� �¼ 0 1 1: 1 0: 1f g;

x( 1)2

x( 2)2

x( 3)2

x( 4)2

8>>>><
>>>>:

9>>>>=
>>>>;

¼

0

0: 1

1: 2

1

8>>><
>>>:

9>>>=
>>>;
, F ¼1

4

1 1 1 1

�1 1 1 � 1

�1 � 1 1  1

1 � 1 1 � 1

2
6664

3
7775

It is left to the reader to compute the value of J using the relations in the preceding lines.
08 by Taylor & Francis Group, LLC.



8.8 ASSEMBLY OF TWO- AND THREE-DIMENSIONAL ELEMENTS

We next consider assembly of stiffness matrices for physical elements in two
dimensions. Assembly in three dimensions follows the same procedures. Consider
the model depicted below (Figure 8.7), consisting of four rectangular elements,
denoted as element e, eþ 1, eþ 2, eþ 3. The nodes are also numbered in the global
system. Locally, the nodes in an element are numbered in a counterclockwise
scheme starting from the lower left-hand corner. Suppose there is one degree of
freedom per node (e.g., x-displacement), and one corresponding force.

In the local numbering system, the force on the center node induces displace-
ments according to

fe,3 ¼ k(e)3,1ue,1 þ k(e)3,2ue,2 þ k(e)3,3ue,3 þ k(e)3,4ue,4

feþ1,4 ¼ k(eþ1)
4,1 ueþ1,1 þ k(eþ1)

4,2 ueþ1,2 þ k(eþ1)
4,3 ueþ1,3 þ k(eþ1)

4,4 ueþ1,4

feþ2,1 ¼ k(eþ2)
1,1 ueþ2,1 þ k(eþ2)

1,2 ueþ2,2 þ k(eþ2)
1,3 ueþ2,3 þ k(eþ2)

1,4 ueþ2,4

feþ3,2 ¼ k(eþ3)
2,1 ueþ3,1 þ k(eþ3)

2,2 ueþ3,2 þ k(eþ3)
2,3 ueþ3,3 þ k(eþ3)

2,4 ueþ3,4

(8:59)

The conversion from local to global coordinates is expressed by

ue,1 ! u1 ue,2 ! u2 ue,3 ! u5 ue,4 ! u6

ueþ1,1 ! u2 ueþ1,2 ! u3 ueþ1,3 ! u4 ueþ1,4 ! u5

ueþ2,1 ! u5 ueþ2,2 ! u4 ueþ2,3 ! u9 ueþ2,4 ! u8
ueþ3,1 ! u6 ueþ3,2 ! u6 ueþ3,3 ! u8 ueþ3,4 ! u7

(8:60)
e + 3,4

e + 1,4

e + 1,1 e + 1,2

e + 3,3 e + 2,4 e + 2,3

e + 3 e + 2

e + 3,1

e + 3 e + 2

e +1

e + 3,2

e,4

e

e,3

e,2

e + 1,3

e + 1

e,1

e

7 8

6 45

1 2 3

9 e + 2,2e + 2,1

FIGURE 8.7 Two-dimensional assembly process.
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Addi ng the forces of the elem ents on the c enter node gives

f5 ¼ k (e )3,1 u1 þ k (e )3,2 þ k (e þ 1 )
4,1

� 

u2 þ k (e þ 1)

4,2 u3 þ k (e þ 1 )
4,3 þ k (e þ 2)

1,2

� 

u4

þ k (e )3,3 þ k (e þ 1 )
4,4 þ k (e þ 2)

1,1 þ k (e þ 3 )
2,2

� 

u5 þ k (e )3,4 þ k (e þ 3 )

2,2

� 

u6

þ k (e þ 3)
2,4 u7 þ k ( eþ 2 )

1,4 þ k (e þ 3 )
2,3

� 

u8 þ k (e þ 2)

1,3 u9 (8 :61 )

Tak ing advantag e o f the symmet ry of the stiffness mat rix, this imp lies that the fifth
row of the stiffnes s mat rix is

kT5 ¼ k ( e)3,1 k (e )3,2 þ k (e þ 1 )
4,1

� 

k (e þ 1 )
4,2 k (e þ 1 )

4,3 þ k (e þ 2)
1,2

� 
�
k (e )3,3 þ k (e þ 1)

4,4 þ k (e þ 2 )
1,1 þ k (e þ 3 )

2,2

� 
 � � � sym metry � � �� (8 :62 )

The proces s can be repeat ed for a ll of the nodes, leading to the assem bled stiffnes s
mat rix. The proces s is essent ially the same for solid and ax isymme tric elements .

Of course , a concept ually easie r way is to add the kinet ic and strain energies of
the indi vidual elem ents, referr ed to the global numbe ring system for degrees of
freedo m, as explai ned in Cha pter 7.

EXAMPLE 8.2

Assemble the stiffness coefficients associated with node n below, assuming plane stress
elements. The modulus is E and the Poisson’ s ratio is n. K (1) , K (2) , and K (3) denote the
stiffness matrices of the elements (Figure 8.8).

SOLUTION

Now suppose there are two degrees of freedom per node (x - and y-displacements), and
two corresponding forces. Since the elements are three-noded, and each node has two
degrees of freedom, the element stiffness matrices will be 63 6 and the force vectors
will be 63 1.
K (1)

K (2)

K (3)

n

FIGURE 8.8 Assemblage of triangular elements.
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� 2
The element level equation for element (1) is stated as

k(1)11 k(1)12 k(1)13 k(1)14 k(1)15 k(1)16

k(1)21 k(1)22 k(1)23 k(1)24 k(1)25 k(1)26

k(1)31 k(1)32 k(1)33 k(1)34 k(1)35 k(1)36

k(1)41 k(1)42 k(1)43 k(1)44 k(1)45 k(1)46

k(1)51 k(1)52 k(1)53 k(1)54 k(1)55 k(1)56

k(1)61 k(1)62 k(1)63 k(1)64 k(1)65 k(1)66

2
66666666664

3
77777777775

u1,1

u1,2

u1,3

v1,1

v1,2

v1,3

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

fx1,1

fx1,2

fx1,3

fy1,1

fy1,2

fy1,3

0
BBBBBBBBB@

1
CCCCCCCCCA

and similarly for two remaining elements.
Following the assemblage procedure, in the local system the force on the center

node ‘‘n’’ induces displacements according to

fx1,2 ¼ k(1)21 u1,1 þ k(1)22 u1,2 þ k(1)23 u1,3 þ k(1)24 v1,1 þ k(1)25 v1,2 þ k(1)26 v1,3

fy1,2 ¼ k(1)51 u1,1 þ k(1)52 u1,2 þ k(1)53 u1,3 þ k(1)54 v1,1 þ k(1)55 v1,2 þ k(1)56 v1,3

fx2,2 ¼ k(2)21 u2,1 þ k(2)22 u2,2 þ k(2)23 u2,3 þ k(2)24 v2,1 þ k(2)25 v2,2 þ k(2)26 v2,3

fy2,2 ¼ k(2)51 u2,1 þ k(2)52 u2,2 þ k(2)53 u2,3 þ k(2)54 v2,1 þ k(2)55 v2,2 þ k(2)56 v2,3

fx3,2 ¼ k(3)21 u3,1 þ k(3)22 u3,2 þ k(3)23 u3,3 þ k(3)24 v3,1 þ k(3)25 v3,2 þ k(3)26 v3,3

fy3,2 ¼ k(3)51 u3,1 þ k(3)52 u3,2 þ k(3)53 u3,3 þ k(3)54 v3,1 þ k(3)55 v3,2 þ k(3)56 v3,3

Conversion to the global numbering scheme for degrees of freedom is expressed by

u1,1 ! unþ1 u1,2 ! un u1,3 ! unþ3 v1,1 ! vnþ1 v1,2 ! vn v1,3 ! vnþ3

u2,1 ! unþ1 u2,2 ! un u2,3 ! unþ2 v2,1 ! vnþ1 v2,2 ! vn v2,3 ! vnþ2

u3,1 ! unþ2 u3,2 ! un u3,3 ! unþ3 v3,1 ! vnþ2 v3,2 ! vn v3,3 ! vnþ3

Now adding the forces of the elements on the center node gives

fnx ¼ k(1)22 þ k(2)22 þ k(3)22

� 

un þ k(1)21 þ k(2)21

� 

unþ1 þ k(2)23 þ k(3)21

� 

unþ2 þ k(1)23 þ k(3)23

� 

unþ3

þ k(1)25 þ k(2)25 þ k(3)25

� 

vn þ k(1)24 þ k(2)24

� 

vnþ1 þ k(2)26 þ k(3)24

� 

vnþ2 þ k(1)26 þ k(3)26

� 

vnþ3

fny ¼ k(1)52 þ k(2)52 þ k(3)52

� 

un þ k(1)51 þ k(2)51

� 

unþ1 þ k(2)53 þ k(3)51

� 

unþ2 þ k(1)53 þ k(3)53

� 

unþ3

þ k(1)55 þ k(2)55 þ k(3)55

� 

vn þ k(1)54 þ k(2)54

� 

vnþ1 þ k(2)56 þ k(3)54

� 

vnþ2 þ k(1)56 þ k(3)56

� 

vnþ3

The finite element equation for the three element configuration is

kTn,x
kTnþ1,x

kTnþ2,x

kTnþ3,x

kTn,y

kTnþ1,y

kTnþ2,y

kTnþ3,y

2
666666666666664

3
777777777777775

un
unþ1

unþ2

unþ3

vn
vnþ1

vnþ2

vnþ3

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼

fnx
fnþ1x

fnþ2x

fnþ3x

fny
fnþ1y

fnþ2y

fnþ3y

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
008 by Taylor & Francis Group, LLC.



The stiffness coefficients associated with the center node are as follows:

kn,x ¼

k(1)22 þ k(2)22 þ k(3)22

� 

k(1)21 þ k(2)21

� 

k(2)23 þ k(3)21

� 

k(1)23 þ k(3)23

� 

k(1)25 þ k(2)25 þ k(3)25

� 

k(1)24 þ k(2)24

� 

k(2)26 þ k(3)24

� 

k(1)26 þ k(3)26

� 


0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

, kn,y ¼

k(1)52 þ k(2)52 þ k(3)52

� 

k(1)51 þ k(2)51

� 

k(2)53 þ k(3)51

� 

k(1)53 þ k(3)53

� 

k(1)55 þ k(2)55 þ k(3)55

� 

k(1)54 þ k(2)54

� 

k(2)56 þ k(3)54

� 

k(1)56 þ k(3)56

� 


0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

The remaining rows of the stiffness matrix may similarly be obtained, and the entries of
the mass matrix may be obtained by a similar process.
� 2008 by Taylor & Francis Group, LLC.



9 Solution Methods for
Linear Problems: I
� 2008 by Taylor & Fra
9.1 NUMERICAL METHODS IN FEA

9.1.1 SOLVING THE FINITE ELEMENT EQUATIONS: STATIC PROBLEMS

We consider numerical solution of the linear system Kg¼ f, in which K is the
positive definite and symmetric stiffness matrix. In many problems it has a large
dimension, but is also banded. The matrix may be ‘‘triangularized’’ to yield the form
K¼LLT, in which L is a lower triangular nonsingular matrix (zeroes in all entries
above the diagonal). We may introduce z¼LTg and obtain z by solving Lz¼ f. Next
g can be computed by solving LTg¼ z. We now see that Lz¼ f can be conveniently
solved by forward substitution. Lz¼ f may be expanded as

l11 0 : : : 0

l21 l22 : : : :

l31 l32 l33 : : :

: : : : : :

: : : : : 0

ln1 ln2 : : : lnn

2
6666666664

3
7777777775

z1

z2

z3

:

:

zn

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

f1

f2

f3

:

:

fn

0
BBBBBBBBB@

1
CCCCCCCCCA

(9:1)

Assuming that the diagonal entries are not too small, this equation can be solved,
starting from the upper left entry, using simple arithmetic: z1¼ f1=l11, z2¼ [ f2�
l21z1]=l22, z3¼ [ f3� l31z1� l32z2]=l33, . . . .

Next the equation LTg¼ z can be solved by back substitution. The equation is
expanded as

l11 l12 : : : l1n

0 l22 : : : :

0 0 : : : :

: : : ln�2,n�2 ln�2,n�1 ln�2,n

: : : 0 ln�1,n�1 ln�1,n

0 ln2 : 0 0 lnn

2
6666666664

3
7777777775

g1

g2

g3

:

:

gn

0
BBBBBBBBB@

1
CCCCCCCCCA

¼

f1

:

:

fn�2

fn�1

fn

0
BBBBBBBBB@

1
CCCCCCCCCA

(9:2)
ncis Group, LLC.



Starting from the lower right-hand entry, solution can be achieved by simple
arithmetic as

gn ¼ fn=lnn, gn�1 ¼ fn�1 � ln�1,1gn½ �=ln�1,n�1

gn�2 ¼ fn�2 � ln�2,ngn � ln�2,n�1gn�1½ �=ln�2,n�2, . . .

In both procedures, only one unknown is encountered in each step (row).

9.1.2 MATRIX TRIANGULARIZATION AND SOLUTION OF LINEAR SYSTEMS

We next consider how to triangularize Kj. Suppose that the upper left hand ( j� 1)3
( j� 1) block Kj�1 has been triangularized to furnish Kj�1¼Lj�1L

T
j�1. To determine

whether the j3 j block Kj can be triangularized, we seek lj and ljj satisfying

Kj ¼ Kj�1 kj

kT
j kjj

� �
¼ Lj�1 0

lT
j ljj

� �
LT
j�1 lj

0T ljj

� �
(9:3)

in which kj is a ( j� 1)3 1 array of the first j� 1 entries of the jth column of Kj.
Simple manipulation suffices to furnish kj and ljj.

kj ¼ Lj�1lj

ljj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kjj � lT

j lj

q (9:4)

Note that lj can be conveniently computed using forward substitution. Also, note

that ljj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kjj � kT

j K
�1
j�1kj

q
. The fact that Kj> 0 implies that ljj is real. The triangu-

larization process proceeds to the ( jþ 1)st block and from there to the complete
stiffness matrix.

As an illustration, consider

A3 ¼
1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

2
64

3
75 (9:5)

Clearly L1¼L1
T ! 1. For the second block

1 0
l2 l22

� �
1 l2
0 l22

� �
¼ 1 1

2
1
2

1
3

� �
(9:6)

from which l2¼ 1=2 and l22¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3� 1=2ð Þ2

q
¼ 1=

ffiffiffiffiffi
12

p
. And so

L2 ¼
1 0
1
2

1ffiffiffiffi
12

p

� �
(9:7)
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We now proceed to the full matrix:

1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

2
64

3
75 ¼ L 3 L

T
3

¼
1 0 0
1
2

1ffiffiffiffi
12

p 0

l31 l32 l33

2
64

3
75

1 1
2 l31

0 1ffiffiffiffi
12

p l 32

0 0 l33

2
64

3
75

¼
1 1

2 l31
1
2

1
3 l 31 =2 þ l 32 =

ffiffiffiffiffi
12

p

l31 l 31 =2 þ l 32 =
ffiffiffiffiffi
12

p 
l 231 þ l232 þ l 233

2
64

3
75

( 9: 8)

We conclude that l31 ¼ 1=3, l32 ¼ 1=
ffiffiffiffiffi
12

p 
, l233 ¼ 1=5 � 1=9 � 1=12 ¼ 7=180.

The finite elem ent probl ems so far consi dered are direc t: They involve known
tractions and unknown displacem ents and c an be solve d uniquely owing to the
positive d e finiteness of the stiffness matrix. In Cha pter 10, the solution method is
extend ed to a type of inver se problem in which tractions and displacem ents are
both speci fied for some degrees of freedo m on the boundar y nodes, whi le neither is
speci fied for other degrees of freedom.

EXAMPLE 9.1

Verify that the triangular factors L3 and LT
3 for A3 in Equation 9.5 are correct.

SOLUTION

From Equation 9.5

A3 ¼
1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

2
64

3
75 , L3 ¼

1 0 0
1
2

1ffiffiffiffi
12

p 0

1
3

1ffiffiffiffi
12

p 1ffiffiffiffiffiffi
180

p

2
664

3
775

Now

L3L
T
3 ¼

1 0 0
1
2

1ffiffiffiffi
12

p 0

1
3

1ffiffiffiffi
12

p 1ffiffiffiffiffiffi
180

p

2
664

3
775

1 1
2

1
3

0 1ffiffiffiffi
12

p 1ffiffiffiffi
12

p

0 0 1ffiffiffiffiffiffi
180

p

2
664

3
775

¼
1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5

2
64

3
75

as expected.
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EXAMPLE 9.2

Invoking A3 in Equation 9.5, use forward substitution followed by back substitution to
solve

A3 g ¼
1
1
1

0
@

1
A

SOLUTION

Introducing LT
3 g ¼ z and recalling L3 from Equation 9.5, the foregoing equation

becomes

1 0  0
1
2

1ffiffiffiffi
12

p 0
1
3

1ffiffiffiffi
12

p 1
180

2
64

3
75 z1

z2
z3

0
@

1
A ¼

1

1

1

0
@

1
A

Using forward substitution

z1 ¼ 1, z2 ¼
ffiffiffiffiffi
12

p
1 � 1

2 z1
� � ¼ ffiffiffi

3
p

, z3 ¼
ffiffiffiffiffiffiffiffi
180

p
1 � 1

3 z1 � 1ffiffiffiffi
12

p z2
� �

¼
ffiffiffi
5

p

Hence

z ¼
1ffiffiffi
3

pffiffiffi
5

p

0
@

1
A

Next

1 1
2

1
3

0 1ffiffiffiffi
12

p 1ffiffiffiffi
12

p

0 0 1
180

2
64

3
75

g1

g2

g3

0
B@

1
CA ¼

1ffiffiffi
3

p
ffiffiffi
5

p

0
B@

1
CA

and using back substitution

g3 ¼
ffiffiffiffiffiffiffiffi
180

p ffiffiffi
5

p
¼ 30, g2 ¼

ffiffiffiffiffi
12

p ffiffiffi
3

p
� 1ffiffiffiffi

12
p g 3

� �
¼ �24, g1 ¼ 1 � 1

2 g 2 � 1
3 g 3 ¼ 3

We conclude that

g ¼
30
�24
3

0
@

1
A

� 2008 by Taylor & Francis Group, LLC.



EXAMPLE 9.3

Triangularize the matrix

K ¼
36 30 18
30 41 23
18 23 14

2
4

3
5

SOLUTION

Triangularizing the upper left-hand 23 2 block K2 in the form K2¼L2L2
T gives

36 30
30 41

� �
¼ 6 0

l2 l22

� �
6 l2
0 l22

� �

from which

l2 ¼ 5, l22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
41� l22

q
¼ 4

Consequently, the 23 2 matrix K2 triangularizes to

36 30
30 41

� �
¼ 6 0

5 4

� �
6 5
0 4

� �

Now extend the procedure to the 33 3 matrix K:

36 30 18
30 41 23
18 23 14

2
4

3
5 ¼

6 0 0
5 4 0
l31 l32 l33

2
4

3
5 6 5 l31

0 4 l32
0 0 l33

2
4

3
5

After simple manipulation we obtain

l31 ¼ 18=6 ¼ 3, l32 ¼ 1
4 23� 5l31ð Þ ¼ 2, l33 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14� l231 � l232
� �q

¼ 1

Accordingly, the triangular factor of K is

L ¼
6 0 0
5 4 0
3 2 1

2
4

3
5

EXAMPLE 9.4

For the linear system

36 30 24
30 41 32
24 32 27

2
4

3
5 g1

g2

g3

0
@

1
A ¼

1
2
3

0
@

1
A

triangularize the matrix and solve for g1, g2, g3.
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SOLUTION

Triangularizing the upper left-hand 23 2 block A2 in the form A2¼L2L
T
2 gives

36 30
30 41

� �
¼ 6 0

l2 l22

� �
6 l2
0 l22

� �

from which

l2 ¼ 5, l22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
41� l22

q
¼ 4

Accordingly A2 triangularizes as follows:

36 30
30 41

� �
¼ 6 0

5 4

� �
6 5
0 4

� �

For the 33 3 matrix A,

36 30 24
30 41 32
24 32 27

2
4

3
5 ¼

6 0 0
5 4 0
l31 l32 l33

2
4

3
5 6 5 l31

0 4 l32
0 0 l33

2
4

3
5

from which

l31 ¼ 24=6 ¼ 4, l32 ¼ 1
4 32� 5l31ð Þ ¼ 3, l33 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27� l231 � l232
� �q

¼ ffiffiffi
2

p

The triangular factor of L of A is now

L ¼
6 0 0
5 4 0
4 3

ffiffiffi
2

p

2
4

3
5

On introducing LTg¼ z, we encounter

6 0 0
5 4 0
4 3

ffiffiffi
2

p

2
4

3
5 z1

z2
z3

0
@

1
A ¼

1
2
3

0
@

1
A

Forward substitution results in

z1 ¼ 1=6, z2 ¼ 1=4 2� 5z1ð Þ ¼ 7=24, z3 ¼ 1=
ffiffiffi
2

p
3� 4z1 � 3z2ð Þ ¼ 35

ffiffiffi
2

p
=48

and also

z ¼
1=6

7=24

35
ffiffiffi
2

p
=48

0
B@

1
CA
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Next

6 5 4
0 4 3
0 0

ffiffiffi
2

p

2
4

3
5 g1

g2

g3

0
@

1
A ¼

1=6
7=24

35
ffiffiffi
2

p
=48

0
@

1
A

and using backward substitution gives

g3 ¼ 35
ffiffiffi
2

p
=48 � 1=

ffiffiffi
2

p
¼ 35=48, g2 ¼ 1=4 7=24� 3g3ð Þ ¼ �91=192,

g1 ¼ 1=6 1=6� 5g2 � 4g3ð Þ ¼ �73=1152

We conclude that

g ¼
�73=1152
�91=192
35=48

0
@

1
A

9.1.3 TRIANGULARIZATION OF ASYMMETRIC MATRICES

The foregoing triangularization is applicable to positive definite symmetric matrices.
Asymmetric matrices arise in a number of finite element problems, including prob-
lems with incompressibility, unsteady rotation, or thermomechanical coupling. If the
matrix is nonsingular, it may be decomposed into the product of a lower triangular
and an upper triangular matrix, followed by forward and back substitution.

K ¼ LU (9:9)

(It is also possible to triangularize a singular matrix, but L will then be singular,
preventing the use of forward substitution.)

Assuming the ( j� 1)st diagonal block has been triangularized, we consider
whether the jth block admits the decomposition

Kj ¼
Kj�1 k1j

kT
2j kjj

" #
¼ Lj�1 0

lT
j ljj

" #
Uj�1 uj
0T ujj

� �

¼ Lj�1Uj�1 Lj�1uj

lT
j Uj�1 lT

j uj þ ujjljj

" #
(9:10)

Now uj is obtained by forward substitution using Lj�1uj¼k1j, and lj is obtained
by back substitution using UT

j�1 lj¼k2j. Finally, ujjljj¼ kjj�lj
Tuj, for which purpose

ujj may be arbitrarily set to unity. After the triangularization process is completed, an
equation of the form Ku¼ f can now be solved by forward substitution applied to
Lz¼ f, followed by back substitution applied to Uu¼ z.
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EXAMPLE 9.5

Triangularize the asymmetric matrix

2mA =L 0 � A
0 4m AL =Y 2 � 2m A=L
A 2mA =L 0

2
4

3
5

(This matrix will be seen later in Chapter 11 concerning incompressible materials.)

SOLUTION

Triangularizing the upper left-hand 2 3 2 block B2 in the form B 2 ¼ L2U 2 gives

2mA =L 0
0 4m AL =Y 2

� �
¼ l11 0

l21 l 22

� �
u11 u12
0 u22

� �

On setting u11 and u22 as unity,

l11 ¼ 2m A=L , l 21 ¼ 0, u12 ¼ 0, l 22 ¼ 4m AL =Y 2

Now consider the 3 3 3 matrix B:

2m A=L 0 � A
0 4mAL =Y 2 � 2mA =L
A 2mA =L 0

2
4

3
5 ¼

2m A=L 0 0
0 4mAL =Y 2 0
l31 l 32 l33

2
4

3
5 1 0  u13

0 1  u23
0 0  u33

2
4

3
5

On setting u33 ¼ 1, simple manipulation furnishes

l31 ¼ A , l32 ¼ 2mA =L, u13 ¼ �L=2m , u23 ¼ �Y 2 =2L2 , l 33 ¼ AL =2m þ mAY 2 =L 3
� �

Finally

B ¼ LU ¼
2m A=L 0 0

0 4mAL =Y 2 0
A 2m A=L AL=2mþ mAY2=L3ð Þ

2
4

3
5 1 0 �L=2m

0 1 �Y2=2L2

0 0 1

2
4

3
5

The decomposition is not unique since it is based on setting the diagonal entries of U
to unity.
9.2 TIME INTEGRATION: STABILITY AND ACCURACY

Much insight may be gained from considering the model equation

dy

dt
¼ �ly (9:11)
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in whi ch l is complex. If Re( l) > 0, for the initial value y (0) ¼ y0 the solution is
y ( t) ¼ y0 exp( � lt ), and clearly y ( t) ! 0. In this event the system is called asymptot -
ically stable .

We now ask whether numerica l integrat ion schem es to integrate Equation 9.11
have stabili ty properties corres ponding to a symptot ic stabi lity. In other words, does
the numer ical solut ion decay when the exact solution de cays, and diver ge when the
exact solut ion diver ges? For this purpos e we con sider the trape zoidal rule, the
proper ties of which will be discu ssed in Se ction 9.3. Conside r time steps of durat ion
h, and suppos e that the solution has been calcul ated throu gh the nth time step. We
seek to compu te the solution at the ( n þ 1)st time step. The trape zoidal rule (see
Section 9.3) is given by

d y

dt
� yn þ 1 � y n

h
, � ly � � l

2 ynþ 1 þ y n½ �  ( 9: 12 )

Consequen tly,

yn þ 1 ¼ 1 � l h=2
1 þ l h=2 

yn

¼ 1 � lh=2
1 þ lh=2

� �n
y0 ( 9: 13 )

Clearly, ynþ 1 ! 0 if 1 � lh =2
1 þ lh =2

			 			 < 1, and y nþ 1 !1  if
1 � lh =2
1 þ lh =2

			 			 > 1, in which j�j implies

the magni tude. If the fi rst inequalit y is satis fied the numer ical met hod is called
A-stab le (Da hlquist and Bjork, 1974). We next write l ¼ lr þ i li , and now A-stabili ty
requires that

1 � lr h

2


 �2
þ li h

2


 �2

1 þ lr h

2


 �2
þ li h

2


 �2 < 1 ( 9: 14 )

A-stabili ty obtains if lr > 0, which is precisely the condit ion for asymp totic stabili ty.
Next consi der the matrix –vector syst em arising in the finite elem ent met hod.

M €g þ D _g þ Kg ¼ 0, g 0ð Þ ¼ g0, _g 0ð Þ ¼ _g0 (9:15)

in which M, D, and K are positive definite. Elementary manipulation serves to
establish that

d

dt

1
2
_gTM _gþ 1

2
gTKg

� �
¼ � _gTD _g < 0 (9:16)

It follows that _g! 0 and g! 0. We conclude that the system is asymptotically
stable.
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Introducing the vector p¼ _g, the n-dimensional second-order system is written
in state form as the (2n)-dimensional first-order system of ordinary differential
equations:

M 0
0 I

� �
p
g


 �.

þ D K
�I 0

� �
p
g


 �
¼ f

0


 �
(9:17)

We next apply the trapezoidal rule to the system:

M 0
0 I

� � 1
h pnþ1 � pn
� �

1
h gnþ1 � gn

� �
 !

þ D K
�I 0

� � 1
2 pnþ1 þ pn
� �

1
2 gnþ1 þ gn

� �
 !

¼
1
2 fnþ1 þ fnð Þ

0


 �

(9:18)

From the equation in the lower row, pnþ1¼ 2
h gnþ1 � gn

� 
� pn. Eliminating pnþ1

in the upper row furnishes a formula underlying the classical Newmark method:

KDgnþ1 ¼ rnþ1, KD ¼ Mþ h
2Dþ h2

4 K
h i

rnþ1 ¼ Mþ h
2D� h2

4 K
h i

yn þ Mþ h
2D

� 

h
2pn þ h2

4 fnþ1 þ fnð Þ
(9:19)

and KD may be called the dynamic stiffness matrix. Equation 9.19 may be solved by
tiangularization of KD, followed by forward and backward substitution.
9.3 PROPERTIES OF THE TRAPEZOIDAL RULE

We consider the accuracy of the trapezoidal rule, and by extension of Newmark’s
method. To fix important notions consider the model equation

dy

dx
¼ f yð Þ (9:20)

Suppose this equation is approximated as

aynþ1 þ byn þ h gfnþ1 þ dfn½ � ¼ 0 (9:21)

We now use the Taylor series to express ynþ1 and fnþ1 in terms of yn and fn. Noting
that y0n ¼ fn and y00n ¼ f 0n, we obtain

0 ¼ a yn þ y0nhþ y00nh
2=2

� 

þ byn þ hg y0n þ y00nh

� 
þ hdy0n (9:22)
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For exact agreement through h2, the coefficients must satisfy

aþ b ¼ 0, aþ g þ d ¼ 0, a=2þ g ¼ 0 (9:23)

We also introduce the convenient normalization gþ d¼ 1. Simple manipulation
serves to derive that a¼�1, b¼ 1, g¼ 1=2, d¼ 1=2, furnishing

ynþ1 � yn
h

¼ 1
2

f ynþ1ð Þ þ f ynð Þ½ � (9:24)

which may be recognized as the trapezoidal rule.
In fact the trapezoidal rule is unique and optimal in having the following three

characteristics:

(a) It is a one-step method, using only the values at the beginning of the current
time step.

(b) It is second-order accurate—it agrees exactly with the Taylor series
through h2.

(c) Applied to dy=dtþ ly¼ 0 with initial condition y(0)¼ y0, it is A-stable, i.e.,
numerically stable whenever system described by the equation is asymp-
totically stable.

EXAMPLE 9.6

For the model equation dy=dx¼ f (y), develop a two-step numerical quadrature formula:

aynþ1 þ byn þ gyn�1ð Þ þ h df ynþ1ð Þ þ «f ynð Þ þ zf yn�1ð Þ½ � ¼ 0

What is the order of the integration method (highest power in h with exact agreement
with the Taylor series)?

SOLUTION

Expressing ynþ1, yn�1, f(ynþ1), and f(yn�1) using the Taylor expansion gives

ynþ1 ¼ yn þ hy0n þ
h2

2!
y00n þ

h3

3!
y000n þ h4

4!
yivn þ � � �

yn�1 ¼ yn � hy0n þ
h2

2!
y00n �

h3

3!
y000n þ h4

4!
yivn � � � �

f ynþ1ð Þ ¼ fn þ hf 0n þ
h2

2!
f 00n þ h3

3!
f 000n þ � � �

f yn�1ð Þ ¼ fn � hf 0n þ
h2

2!
f 00n � h3

3!
f 000n þ � � �
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But fn ¼ y0n also implies

f ynþ 1ð Þ ¼ y 0n þ hy00n þ
h2

2! 
y000n þ

h3

3! 
yivn þ � � �

f yn� 1ð Þ ¼ y 0n � hy00n þ
h2

2! 
y000n �

h3

3! 
yivn þ � � �

On substitution into the quadrature formula, we have

a yn þ hy0n þ
h2

2! 
y00n þ

h3

3! 
y000n þ

h4

4! 
y ivn

� �
þ b yn

þ g yn � hy 0n þ
h2

2! 
y 00n �

h3

3! 
y000n þ

h4

4! 
yivn

� �

þ h

d y0n þ hy00n þ
h2

2! 
y 000n þ

h3

3! 
yivn

� �
þ «y0n

þ z y0n � hy 00n þ
h2

2! 
y000n �

h3

3! 
yivn

� �
2
6664

3
7775¼ 0 þ 0 h5

� �

For exact agreement through h4, the coeffi cients must satisfy

a þ b þ g ¼ 0, a � g þ d þ « þ z ¼ 0, a=2 þ g =2 þ d � z ¼ 0

a=6 � g = 6 þ d=2 þ z =2 ¼ 0, a=24 þ g = 24 þ d=6 � z =6 ¼ 0

We now introduce the convenient normalization d þ « þ z ¼ 1. Simple manipulation
serves to derive

a ¼ �1=2, b ¼ 0, g ¼ 1=2, d ¼ z ¼ 1=6, « ¼ 2=3

The quadrature formula is now stated as

� 1=2ynþ1 þ 0 þ 1=2yn �1½ � þ h 1=6f ynþ1ð Þ þ 2=3f ynð Þ þ 1=6f yn �1ð Þ½ � ¼ 0

On rearranging

ynþ1 � yn�1

h
¼ 1

3 f yn� 1ð Þ þ 4f ynð Þ þ f yn �1ð Þ½ �

which is a the two-step numerical integration model. Since the relations are exact
through h4, this is a fourth-order accurate and its order of integration is four. However,
it is not A-stable, as discussed in Chapter 10.

EXAMPLE 9.7

In the damped linear mechanical system

M€gþ D _gþKg ¼ f tð Þ
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� 2
suppose that g (t) ¼ gn at the nth time step. Derive K D and rn þ1 such that g at the (n þ 1)
st time step satisfi es

KD g nþ1 ¼ r nþ 1

SOLUTION

Introducing the state form relation p ¼ _g in the equation, we have

M 0
0 I

� �
p
g


 �.

þ D K
� I 0

� �
p
g


 �
¼ f

0


 �

This expression may be rewritten using the trapezoidal rule as

M 0

0 I

� � 1
h pn þ1 � p n
� �

1
h gn þ1 � gn

� �
 !

þ D K

� I 0

� � 1
2 pnþ 1 þ pn
� �

1
2 gnþ1 þ gn

� �
 !

¼
1
2 fnþ1 þ f nð Þ

0

 !

Now the lower row implies

pn þ1 ¼ 2
h gn þ1 � g n
� �� pn

Now consider the upper row:

1
h M pnþ 1 � pn
� �þ 1

2 D pnþ 1 þ pn
� �þ 1

2 K gnþ 1 þ gn

� � ¼ 1
2 fnþ1 þ f nð Þ

Eliminating pn þ1 results in

1
h M

2
h gn þ1 � g n
� �� 2pn

� 
þ 1
2 D

2
h gn þ1 � g n
� �þ 1

2 K gn þ1 þ gn

� � ¼ 1
2 fnþ 1 þ f nð Þ

On multiplying throughout by h2=2 and rearranging,

M þ h

2 
D þ h2

4
K

� �
gnþ 1 ¼ M þ h

2 
D � h2

4
K

� �
gn þ hMpn þ

h2

4
fn þ1 þ f nð Þ

Comparing the above equation with the given equation KDgnþ1¼ rnþ1, it follows that

KD ¼ Mþ h

2
Dþ h2

4
K

� �

rnþ1 ¼ Mþ h

2
D� h2

4
K

� �
gn þ hMpn þ

h2

4
fnþ1 þ fnð Þ

A higher-order time integration scheme is presented in Chapter 10.
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9.4 INTEGRAL EVALUATION BY GAUSSIAN QUADRATURE

The re are many inte grations in the finite elem ent method, the accu racy and ef ficiency
of which is crit ical. Fo rtunately , a method whi ch is opti mal in an importan t
sense, called Gaus sian quadrature, has long been know n (it was previ ously intro-
du ced in Chapter 7). It is based on converting physi cal coordi nates to intr insic
‘‘ natural ’’ coordinates . Conside r

Ð b
a f xð Þ dx . Let j ¼ 1

b � a 2x � a þ bð Þ½ �. Clearly,  j
m a ps t he i nt e r v a l [ a,b] into the interval [� 1,1]. The inte gral now becom es
1

b � a

Ð 1
� 1 f jð Þ dj . Now consi der the powe r seri es

f jð Þ ¼ a0 þ a1 j þ a 2 j 
2 þ a3 j 

3 þ a4 j 
4 þ a5 j 

5 þ � � �  (9 :25 )

from which

ð1
� 1

f jð Þ dj ¼ 2a1 þ 0 þ 2
3 a 3 þ 0 þ 2

5 a5 þ 0 þ � � �  (9 :26 )

The advant ages for inte gration on a symmet ric interval, evident in the zeroes in
Equ ation 9.26, can be seen in the fact that , with n funct ion evalua tion s, an integral
can be evalua ted exactl y through (2 n � 1)st o rder in the Taylor series.

Conside r the first 2n � 1 term s in a powe r series representat ion for a funct ion:

g jð Þ ¼ a1 þ a2 j þ � � � þ  a2 n j 
2n � 1 (9 :27 )

Ass ume that n inte gration (Gauss) point s ji and n wei ghts are used as follow s:ð1
� 1

g jð Þ dj ¼
Xn
i¼ 1

g jið Þwi ¼ a1

Xn
i ¼ 1

wi þ a 2
Xn
i¼ 1

wi j i þ � � � þ  a 2n
Xn
i ¼ 1

wi j 
2n � 1
i

(9 :28 )

Com parison with Equ ation 9.26 implie s that

Xn
i¼ 1

wi ¼ 2,
Xn
i ¼ 1

wi j i ¼ 0,
Xn
i¼ 1

wi j 
2
i ¼ 2=3, . . .

Xn
i¼ 1

wi j 
2 n� 2
i ¼ 2

2n � 1 
,
Xn
i ¼ 1

wi j 
2 n� 1
i ¼ 0 (9 :29 )

It is necess ary to solve for n integration point s ji and n weights wi. These are
universal quantities. Thereafter, to integrate a given function g(j) exactly through
j2n�1, it is necessary to perform n function evaluations to compute g(ji).

As an example, we seek two Gauss points and two weights (n¼ 2). After simple
manipulation

w1 þ w2 ¼ 2 (a), w1j1 þ w2j2 ¼ 0 (b)

w1j
2
1 þ w2j

2
2 ¼ 2

3 (c), w1j
3
1 þ w2j

3
2 ¼ 0 (d)

(9:30)
� 2008 by Taylor & Francis Group, LLC.



From Equ ations 9.30b and 9.30d, w1 j 1 j 
2
1 � j 22

� 
 ¼ 0, leadi ng to j2 ¼�j 1. From
Equati ons 9.3 0a and 9.30 c it now follow s that � j2 ¼ j 1 ¼ 1=

ffiffiffi
3

p 
. Final ly, the

normaliz ation w1 ¼ 1 imp lies that w2 ¼ 1.

EXAMPLE 9.8

Find the integration (Gauss) points and weights for n ¼ 3.

SOLUTION

Owing to complexity the steps in the solution are given in detail. On substituting n ¼ 3
in Equation 9.29

w1 þ w2 þ w3 ¼ 2 (9:31)

w1j1 þ w2j2 þ w3j3 ¼ 0 (9:32)

w1j
2
1 þ w2j

2
2 þ w3j

2
3 ¼ 2=3 (9:33)

w1j
3
1 þ w2j

3
2 þ w3j

3
3 ¼ 0 (9:34)

w1j
4
1 þ w2j

4
2 þ w3j

4
3 ¼ 2=5 (9:35)

w1j
5
1 þ w2j

5
2 þ w3j

5
3 ¼ 0 (9:36)

Multiplying Equations 9.32 and 9.34 by j22 furnishes

w1j1j
2
2 þ w2j

3
2 þ w3j

2
2j3 ¼ 0 (9:37)

w1j
3
1j

2
2 þ w2j

5
2 þ w3j

2
2j

3
3 ¼ 0 (9:38)

Now, on subtracting Equation 9.34 from Equation 9.37, and Equation 9.36 from
Equation 9.38,

w1j1 j
2
2 � j21

� �þ w3j3 j22 � j23
� � ¼ 0 (9:39)

w1j
3
1 j22 � j21
� �þ w3j

3
3 j22 � j23
� � ¼ 0 (9:40)

On multiplying Equation 9.39 by j22,

w1j
3
1 j22 � j21
� �þ w3j

2
1j3 j22 � j23
� � ¼ 0 (9:41)

Equation 9.40 is subtracted from Equation 9.41 to furnish

w3j3 j21 � j23
� �

j22 � j23
� � ¼ 0 (9:42)

Assuming that the integration points are equally spaced, Equation 9.42 implies

j1 ¼ �j3 (9:43)
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On substituting Equation 9.43 in Equation 9.39, we conclude that

w1 ¼ w3 (9: 44)

On substituting Equations 9.43 and 9.44 in Equation 9.32, we learn that

w2 j 2 ¼ 0

and also

j2 ¼ 0 (9: 45)

Next substituting Equations 9.43 through 9.45 in Equation 9.33 and 9.35 leads to

w1j
2
1 ¼ 1=3 (9:46)

w1j
4
1 ¼ 1=5 (9:47)

Equations 9.43, 9.46, and 9.47 serve to derive that

j1 ¼ �
ffiffiffiffiffiffiffiffi
3=5

p
, j3 ¼

ffiffiffiffiffiffiffiffi
3=5

p
Simple manipulations furnish the remaining unknowns as

w1 ¼ 5=9 ¼ w3, w2 ¼ 8=9

The results are summarized as

w1 ¼ 5=9, w2 ¼ 8=9, w3 ¼ 5=9

j1 ¼ � ffiffiffiffiffiffiffiffi
3=5

p
, j2 ¼ 0, j3 ¼

ffiffiffiffiffiffiffiffi
3=5

p

9.5 MODAL ANALYSIS BY FEA

9.5.1 MODAL DECOMPOSITION

In the absence of damping the finite element equation for a linear mechanical system,
which is unforced but has nonzero initial values, is described by

M€gþKg ¼ 0, g 0ð Þ ¼ g0, _g 0ð Þ ¼ _g0 (9:48)

Assume a solution of the form g¼ ĝ exp(lt): it furnishes upon substitution

Kþ l2M
� 


ĝ ¼ 0 (9:49)

The jth eigenvalue lj is obtained by solving det(Kþ lj
2 M)¼ 0, and a corresponding

eigenvector vector gj may likewise be computed (see example below). For the sake
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of generality suppose that lj and gj are complex. Let gj
H denote the complex

conjugate (Hermitian) transpose of gj. Now lj
2 satisfies l2j ¼ � gH

j Kgj

gH
j Mgj

. Since M and

K are real and positive definite, it follows that lj is pure imaginary: lj¼ ivj. Also,
without loss of generality, we may take gj to be real and orthogonal with respect to
both M and K.

EXAMPLE 9.9

We seek the modes of the system governed by the equation

2 0
0 1

� �
g1
g2


 �..

þ k

m
2 �1
�1 1

� �
g1
g2


 �
¼ 0

0


 �

Let z2¼vj
2=v0

2, v0
2¼ k=m. For the determinant to vanish, 1� z2� ¼ �1=

ffiffiffi
2

p
. Using

1� z2þ ¼ 1=
ffiffiffi
2

p
, the first eigenvector satisfies

ffiffiffi
2

p �1
�1 1=

ffiffiffi
2

p
� �

g
1ð Þ
1

g
1ð Þ
2

 !
¼ 0

0


 �
, g

1ð Þ
1

h i2
þ g

1ð Þ
2

h i2
¼ 1

implying that g
1ð Þ
1 ¼ 1=

ffiffiffi
3

p
, g 1ð Þ

2 ¼ ffiffiffi
2

p
=
ffiffiffi
3

p
. The corresponding procedures for the

second eigenvalue furnish that g 2ð Þ
1 ¼ 1=

ffiffiffi
3

p
, g 2ð Þ

2 ¼ � ffiffiffi
2

p
=
ffiffiffi
3

p
. It is readily verified that

g 2ð ÞTMg 1ð Þ ¼ g 1ð ÞTMg 2ð Þ ¼ 0, m1 ¼ 4=3, m2 ¼ 4=3

g 2ð ÞTKg 1ð Þ ¼ g 1ð ÞTKg 2ð Þ ¼ 0, k1 ¼ 4
3 1� 1=

ffiffiffi
2

p� 

, k2 ¼ 4

3 1þ 1=
ffiffiffi
2

p� 

Returning to the general development, the modal matrix X is now defined as

X ¼ g1 g2 g3 � � � gn½ � (9:50)

Since the jkth entry of XTMX and XTKX are gj
TMgk and gj

TKgk, respectively, it
follows that

XTMX ¼

m1 0 : : :
0 m2 : : :
: : : : :
: : : : :
: : : : mn

2
6664

3
7775, XTKX ¼

k1 0 : : :
0 k2 : : :
: : : : :
: : : : :
: : : : kn

2
6664

3
7775 (9:51)

The modal matrix is said to be orthogonal with respect to both M and K, but it is not
simply orthogonal since X�1 6¼ XT.

The governing equation is now rewritten as

XTMX€jþ XTKXj ¼ g, j ¼ X�1g, g ¼ XT f (9:52)

implying the (uncoupled) modes

mj
€jj þ kjjj ¼ gj tð Þ (9:53)
� 2008 by Taylor & Francis Group, LLC.



FIG

� 20
Suppose that gj(t)¼ gj0(t) sin vt. Neglecting transients, the steady state solution for the
jth mode is

jj ¼
gj0

kj � v2mj
sin vtð Þ (9:54)

It is evident that, if v2 e vj
2¼ kj=mj (resonance), the response amplitude for the jth

mode is much greater than for the other modes, so that the structural motion under this
excitation frequency illustrates the mode. For this reason the modes can easily be
animated.
EXAMPLE 9.10

For the system shown below (Figure 9.1),

(a) Find the eigenvalues
(b) Verify that the rows of K�vn1

2 M and of K�vn2
2 M are linearly dependent

(c) Find the eigenvectors
(d) Verify their orthogonality with respect to the mass and stiffness matrices
(e) Find the modal matrix
(f) Find the modal stiffnesses and modal dampers
(g) Find the modal masses
(h) Verify that the natural frequencies in the modal equations are the same as the

system eigenvalues
(i) Find the modal coordinates
(j) Find the modal forces
(k) Find the solutions for the two modes under the conditions

f(t) ¼ 0, x(0) ¼ 0, _x(0) ¼ _x0

(l) Transform the modal solutions back to the physical coordinates

SOLUTION

The governing equation is

m
3 0
0 2

� �
€x1
€x2

� �
þ c

3 �2
�2 2

� �
_x1
_x2

� �
þ k

3 �2
�2 2

� �
x1
x2

� �
¼ F1

F2

� �
c

k
3m

2c

2k
2m

F2F1x1 x2

URE 9.1 Two-degree-of-freedom vibrating system.
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� 2
The natural frequencies are obtained from:

det
3 �2
�2 2

� �
� v2

v2
0

3 0
0 2

� �� �
¼ 0, v2

0 ¼ k=m

resulting in the eigenvalues v2
n1,2

¼ 1� ffiffiffiffiffiffiffiffi
2=3

p� �
v2
0.

If the first eigenvalue is used, the two rows become f�3
ffiffiffiffiffiffiffiffi
2=3

p �2g and f�2 �2
ffiffiffiffiffiffiffiffi
2=3

p g.
The second row is

ffiffiffiffiffiffiffiffi
3=2

p � first row, so that the two rows are linearly dependent.

The rows corresponding to the second eigenvalue are f3 ffiffiffiffiffiffiffiffi
2=3

p �2g and f�2 2
ffiffiffiffiffiffiffiffi
2=3

p g.
The second row is � ffiffiffiffiffiffiffiffi

3=2
p � first row.

We now seek the eigenvectors. Using the first eigenvalue gives

3 1� 1þ
ffiffiffiffiffiffiffiffi
2=3

p� �� �
x(1)1 � 2x(1)2 ¼ 0 ! x(1)2 ¼ �

ffiffi
3
2

q
x(1)1

1 ¼ x(1)1

� �2þ x(1)2

� �2! x(1) ¼ 1ffiffiffi
5

p
ffiffiffi
2

p
� ffiffiffi

3
p

� �

Similarly, x(2) ¼ 1ffiffiffi
5

p
ffiffiffi
2

pffiffiffi
3

p
� �

.

The eigenvectors are orthogonal with respect to M and K since

1
5

ffiffiffi
2

p ffiffiffi
3

pn o 3 0
0 2

� � ffiffiffi
2

p
� ffiffiffi

3
p

� �
¼ 1

5
(6� 6) ¼ 0

1
5

ffiffiffi
2

p ffiffiffi
3

pn o 3 �2
�2 2

� � ffiffiffi
2

p
� ffiffiffi

3
p

� �
¼ 1

5
(6� 2

ffiffiffi
6

p
þ 2

ffiffiffi
6

p
� 6) ¼ 0:

The modal matrix is X ¼ 1ffiffiffi
5

p
ffiffiffi
2

p ffiffiffi
2

pffiffiffi
3

p � ffiffiffi
3

p
� �

. The modal masses satisfy

m1 ¼ m
1
5

ffiffiffi
2

p ffiffiffi
3

p� � 3 0

0 2

� � ffiffiffi
2

pffiffiffi
3

p
( )

¼ 12
5
m

m2 ¼ m
1
5

ffiffiffi
2

p � ffiffiffi
3

p� � 3 0

0 2

� � ffiffiffi
2

p

� ffiffiffi
3

p
( )

¼ 12
5
m

Similarly, the modal stiffnesses are k1 ¼ 12� 4
ffiffi
6

p
5 k and k2 ¼ 12þ 4

ffiffi
6

p
5 k, and the modal

dampers are d1 ¼ 12� 4
ffiffi
6

p
5 c and d2 ¼ 12þ 4

ffiffi
6

p
5 c. Finally, the modal damping factors are

z1,2 ¼ d1
2
ffiffiffiffiffiffiffiffi
k1m1

p , d2
2
ffiffiffiffiffiffiffiffi
k2m2

p .

The Modal Equations imply the natural frequencies

k1
m1

¼ k

m

12� 4
ffiffiffi
6

p

5
12
5

¼ k

m
1�

ffiffiffiffiffiffiffiffi
2=3

p� �
¼ v2

n2,
008 by Taylor & Francis Group, LLC.



k2
m2

¼ k

m

12þ 4
ffiffiffi
6

p

5
12
5

¼ k

m
1þ

ffiffiffiffiffiffiffiffi
2=3

p� �
¼ v2

n1

in exact agreement with the relations obtained from the original (coupled) system
equation.

Since X�1 ¼
ffiffi
5

p
2
ffiffi
6

p
ffiffiffi
3

p ffiffiffi
2

pffiffiffi
3

p � ffiffiffi
2

p
h i

, the modal coordinates satisfy

y1
y2

� �
¼ X�1 x1

x2

� �
¼

ffiffiffi
5

p

2
ffiffiffi
6

p
ffiffiffi
3

p
x1 þ

ffiffiffi
2

p
x2ffiffiffi

3
p

x1 �
ffiffiffi
2

p
x2

� �

The modal forces are obtained as

g1
g2

� �
¼ XT f1

f2

� �
¼ 1ffiffiffi

5
p

ffiffiffi
2

p
f1 þ

ffiffiffi
3

p
f2ffiffiffi

2
p

f1 �
ffiffiffi
3

p
f2

� �

We now seek the solutions of the modal equations. Initial conditions in terms of modal
coordinates are given by

y1(0)
y2(0)

� �
¼ 0

0

� �
_y1(0)
_y2(0)

� �
¼

ffiffiffi
5

p

2
ffiffiffi
6

p
ffiffiffi
3

p
_x1(0)þ

ffiffiffi
2

p
_x2(0)ffiffiffi

3
p

_x1(0)�
ffiffiffi
2

p
_x2(0)

� �

and the two modal forces vanish: g1
g2

n o
¼ 0

0

n o
. Introducing vd1,2 ¼ vn1,2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j21,2

q
, the

foregoing reduces to two initial single-degree-of-freedom initial value problems with
solutions

y1(t) ¼ exp(�z1vn1t)
_y1(0)
vd1

sin vd1tð Þ

y2(t) ¼ exp(�z2vn2t)
_y2(0)
vd2

sin vd2tð Þ

The solutions in physical coordinates are recovered using

x1
x2

� �
¼ X

y1
y2

� �
¼ 1ffiffiffi

5
p

ffiffiffi
2

p
[y1(t)þ y2(t)]ffiffiffi
3

p
[y1(t)� y2(t)]

� �

EXAMPLE 9.11

Figure 9.2 shows a clamped–clamped beam, modeled as two finite elements. Show that
the finite element equations decompose into two uncoupled modes: One representing
symmetric response and the other representing antisymmetric response.
L/2

E, I, A, r

L/2

FIGURE 9.2 Clamped–clamped beam modeled as two elements.
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e
�

� 2
SOLUTION

The mass and stiffness matrices of a beam element with no constraints are given by

M(e) ¼ M(e)
11 M(e)

12

MT(e)
12 M(e)

22

� �
, K(e) ¼ K(e)

11 K(e)
12

KT(e)
12 K(e)

22

� �

M(e)
11 ¼

rALe
420

156 �22Le
�22Le 4L2e

� �
, M(e)

12 ¼
rALe
420

54 13Le
�13Le �3L2e

� �
, M(e)

22 ¼
rALe
420

156 22L
22Le 4L2e

�

K(e)
11 ¼ EI

L3e

12 �6Le
�6Le 4L2e

� �
, K(e)

12 ¼ EI
L3e

12 �6Le
6Le 2L2e

� �
, K(e)

22 ¼ EI
L3e

12 6Le
6Le 4L2e

� �

Using Le¼ L=2, assembling the stiffness and mass matrices, and imposing the clamped
constraints results in

192EI=L3 0
0 16EI=L

� �
w2

�w0
2

� �
þ 13rAL=35 0

0 rAL3=420

� �
€w2

�€w0
2

� �
¼ 0

0

� �

in which w2 is the transverse displacement of the mid-node. This equation represents
two separate single-degree-of-freedom systems, with the natural frequencies

vn1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
35� 192

13

r ffiffiffiffi
E
r

s ffiffiffi
I

A

r
1
L2

, vn2 ¼ 16� 420

ffiffiffiffi
E
r

s ffiffiffi
I

A

r
1
L2

To consider the question of symmetry and antisymmetry, consider the case in which the

right-hand side satisfies M¼ 0, but V ¼ 0, t < 0
V0, t � 0

�
. This is to say that there is a shear

force imposed at t¼ 0 at the midpoint but no bending moment. If initially
(w2(L=2,0)¼ _w2(L=2,0)¼ 0, �w2

0(L=2,0)¼� _w2
0(L=2,0)¼ 0), then �w0(L=2,t)¼ 0 and

the deformation is symmetric with natural frequency vn1. On the other hand, if V¼ 0,

but V ¼ 0, t < 0
M0, t � 0

n
, then w2(L=2, t)¼ 0 and the deformation is antisymmetric with

natural frequency vn2.
EXAMPLE 9.12

As an example of eigenvalue determination, consider

M ¼ 1 0
0 1

� �
, K ¼ k11 k12

k12 k22

� �

Now det [Kþ l2I]¼ 0 reduces to

l2
� �2þ k11 þ k22½ �l2 þ k11k22 þ k212

� 
 ¼ 0
008 by Taylor & Francis Group, LLC.



with the roots

l2þ,� ¼ 1
2

� k11 þ k22½ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k11 þ k22½ �2�4 k11k22 þ k212

� 
q� �

¼ 1
2

� k11 þ k22½ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k11 � k22½ �2

q� �

so that both l2þ and l2� are negative (since k11 and k22 are positive).
Returning to the general development, we now consider eigenvectors. The eigen-

value equations for the ith and jth eigenvectors are written as

Kþ v2
j M

h i
gj ¼ 0, Kþ v2

kM
� 


gk ¼ 0 (9:55)

It is easily seen that the eigenvectors have arbitrary magnitudes, and for convenience we
assume that they have unit magnitude: gT

j gj ¼ 1. Simple manipulation furnishes that

gT
kKgj � gT

j Kgk � v2
j g

T
kMgj � v2

kg
T
j Mgk

h i
¼ 0 (9:56)

Symmetry of K and M imply that

gT
kKgj � gT

j Kgk ¼ 0, v2
j g

T
kMgj � v2

kg
T
j Mgk

h i
¼ v2

j � v2
k

� �
gT
kMgj ¼ 0 (9:57)

Assuming for convenience that the eigenvalues are all distinct, it follows that

gT
j Mgk ¼ 0, gT

j Kgk ¼ 0, j 6¼ k (9:58)

The eigenvectors are thus said to be orthogonal with respect toM and K. The quantities
mj ¼ gT

j Mgj and kj ¼ gT
j Kgj are called the ( jth) modal mass and ( jth) modal stiffness.

EXAMPLE 9.13

(a) Find the modal masses m1 and m2 and the modal stiffnesses k1 and k2 of the system

3
1 0
0 2

� �
€g1
g2


 �
þ 27

1 �1
�1 2

� �
g1

g2


 �
¼ 10

20


 �
sin 10tð Þ

(b) Determine the steady state response of the system (i.e., particular solution to the
equation).

SOLUTION

Consider the homogeneous equation

M
€g1
€g2


 �
þK

g1

g2


 �
¼ 0
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� 2
M ¼ 3
1 0
0 2

� �
€g1
€g2


 �
, K ¼ 27

1 �1
�1 2

� �
g1

g2


 �

For det[K� z2M] to vanish 9� z2�
� � ¼ �9=

ffiffiffi
2

p
. For 9� z2þ

� � ¼ þ9=
ffiffiffi
2

p
, the eigen-

vector is obtained from

27=
ffiffiffi
2

p �27
�27 54=

ffiffiffi
2

p
� �

g
1ð Þ
1

g
1ð Þ
2

 !
¼ 0

0


 �
, g

1ð Þ
1

h i2
þ g

1ð Þ
2

h i2
¼ 1

Simple manipulation furnishes

g
1ð Þ
1 ¼

ffiffiffiffiffiffiffiffi
2=3

p
and g

1ð Þ
2 ¼

ffiffiffiffiffiffiffiffi
1=3

p
The corresponding procedure for 9� z2�

� � ¼ �9=
ffiffiffi
2

p
furnishes

g
2ð Þ
1 ¼

ffiffiffiffiffiffiffiffi
2=3

p
and g

2ð Þ
2 ¼ �

ffiffiffiffiffiffiffiffi
1=3

p
The modal matrix X is given by

X ¼ g 1ð Þ g 2ð Þ� 
 ¼ ffiffiffiffiffiffiffiffi
2=3

p ffiffiffiffiffiffiffiffi
2=3

pffiffiffiffiffiffiffiffi
1=3

p � ffiffiffiffiffiffiffiffi
1=3

p� �

Hence, the modal masses are given by

XTMX ¼
ffiffiffiffiffiffiffiffi
2=3

p ffiffiffiffiffiffiffiffi
1=3

pffiffiffiffiffiffiffiffi
2=3

p � ffiffiffiffiffiffiffiffi
1=3

p� �
3

1 0
0 2

� � ffiffiffiffiffiffiffiffi
2=3

p ffiffiffiffiffiffiffiffi
2=3

pffiffiffiffiffiffiffiffi
1=3

p � ffiffiffiffiffiffiffiffi
1=3

p� �
¼ 4 0

0 4

� �

so that m1¼m2¼ 4. The modal stiffnesses are obtained using

XTKX ¼
ffiffiffiffiffiffiffiffi
2=3

p ffiffiffiffiffiffiffiffi
1=3

pffiffiffiffiffiffiffiffi
2=3

p � ffiffiffiffiffiffiffiffi
1=3

p� �
27

1 �1
�1 2

� � ffiffiffiffiffiffiffiffi
2=3

p ffiffiffiffiffiffiffiffi
2=3

pffiffiffiffiffiffiffiffi
1=3

p � ffiffiffiffiffiffiffiffi
1=3

p� �

¼ 36� 18
ffiffiffi
2

p
0

0 36þ 18
ffiffiffi
2

p
� �

and so k1 ¼ 36� 18
ffiffiffi
2

p
and k2 ¼ 36þ 18

ffiffiffi
2

p
. The steady state response of the system

satisfies

jj ¼
gj0

kj � v2mj
sin vtð Þ

Since g0 sin vtð Þ ¼ g tð Þ ¼ 10
20


 �
sin 10tð Þ, simple substitution furnishes

j1 ¼
10 sin 10tð Þ

36� 18
ffiffiffi
2

p � 100 4ð Þ and j2 ¼
20 sin 10tð Þ

36þ 18
ffiffiffi
2

p � 100 4ð Þ
008 by Taylor & Francis Group, LLC.



from which the steady state solution results as

j(t) ¼
1

182� 9
ffiffiffi
2

p
1

182þ 9
ffiffiffi
2

p

0
BB@

1
CCA5 sin 10tð Þ

EXAMPLE 9.14

Express the following equations in state form, apply the trapezoidal rule, and triangu-
larize the ensuing dynamic stiffness matrix:

M€gþKg� Sp ¼ f, STg ¼ 0

(Equations in this form will be seen to arise in finite element models of incompressible
elastic bodies.)
� 20
SOLUTION

The foregoing equation is expressed in state form as follows:

M 0 0
0T K 0
0T 0T 0

2
4

3
5 _g tð Þ

g tð Þ
p tð Þ

0
@

1
A

.

þ
M K �S
�K 0 0
0T ST 0

2
4

3
5 _g tð Þ

g tð Þ
p tð Þ

0
@

1
A ¼

f tð Þ
0
0

0
@

1
A

This expression is rewritten using the trapezoidal rule and p¼ _g as

M 0 0

0T K 0

0T 0T 0

2
64

3
75

1
h pnþ1 � pn
� �

1
h gnþ1 � gn

� �
1
h pnþ1 � pnð Þ

0
B@

1
CAþ

M K �S

�K 0 0

0T ST 0

2
64

3
75

1
2 pnþ1 þ pn
� �

1
2 gnþ1 þ gn

� �
1
2 pnþ1 þ pnð Þ

0
B@

1
CA

¼
1
2 fnþ1 þ fnð Þ

0

0

0
B@

1
CA

The second row implies that pnþ1 ¼ 2
h gnþ1 � gn

� �� pn, enabling the first row can be
rewritten as

1
h
M

2
h

gnþ1 � gn

� �� 2pn

� �
þ 1

2
K gnþ1 þ gn

� �� 1
2
S pnþ1 þ pnð Þ ¼ 1

2
fnþ1 þ fnð Þ

Multiplying throughout by h2=2 and rearranging gives

Mþ h2

4
K

� �
gnþ1 �

h2

4
Spnþ1 ¼ h2

4
fnþ1 þ fn �Kgn þ Spn½ � þM gn þ hpn½ � (9:59)
08 by Taylor & Francis Group, LLC.



The third row, after multiplying by h2=2, is now

h2

4
ST gnþ1 ¼ � h2

4
S T gn ( 9: 60)

Equations 9.59 and 9.60 are written in matrix –vector notation as

Mþ h2

4 K � h2

4 S

h2

4 S
T 0

2
4

3
5 gnþ1

pnþ1


 �
¼

gnþ1

� h2

4 S
Tgn

 !

in which

gnþ1 ¼ h2

4 fnþ1 þ fn �Kgn þ Spn½ � þM gn þ hpn½ �

The dynamic stiffness matrix emerges as

KD ¼
Mþ h2

4 K � h2

4 S

h2

4 S
T 0

2
4

3
5

Now KD is decomposed into a product of a lower triangular and an upper triangular
matrix KD¼LU as

Mþ h2

4 K � h2

4 S

h2

4 S
T 0

2
4

3
5 ¼ L11 0

L21 L22

� �
U11 U12

0 U22

� �

On setting U11 ¼ LT
11 and L22¼ I, we find that

L11L
T
11 ¼ Mþ h2

4 K

which can be triangularized to find L11 since, M and K are positive definite. In addition

U12 ¼ � h2

4 L
�1
11 S, L21 ¼ h2

4 S
TL�T

11 , U22 ¼ �L21U12 ¼ h4

16S
TL�T

11 L
�1
11 S

and finally

KD ¼ LU ¼
L11 0

h2

4 S
T
L�T
11 I

" #
LT
11 � h2

4 L
�1
11 S

0T h4

16S
TL�T

11 L
�1
11 S

2
4

3
5

EXAMPLE 9.15

Derive general expressions for the modal decomposition of the two-degree-of-freedom
system

k11 k12
k12 k22

� �
x1
x2

� �
þ m11 m12

m12 m22

� �
€x1
€x2

� �
¼ 0

0

� �
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SOLUTION

(a) Eigenvalues

0 ¼ det
k11 � v2m11 k12 � v2m12

k12 � v2m12 k22 � v2m22

� �
¼ k11 � v2m11
� �

k22 � v2m22
� �� k12 � v2m12

� �
k12 � v2m12
� �

¼ k11k22 � k212
� �� v2(m11k22 þ k11m22 � 2k12m12)þ v2

� �2
m11m22 � m2

12

� �

Letting

Dkk ¼ k11k22�k212
� �

, Dkm¼ (m11k22þk11m22�2k12m12), Dmm¼ m11m22�m2
12

� �

the eigenvalues are obtained as

v2
� �

1:2 ¼
1

2Dm
Dmk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dmkð Þ2 � 4Dk

q

We know from other considerations that (Dmk)
2� 4Dk> 0.

(b) Eigenvectors
The eigenvector paired with the eigenvalue vj satisfies

k11 � v2
j m11

� �
x( j)1 þ k12 � v2

j m12

� �
x( j)2 ¼ 0, x( j)1

� �2
þ x( j)2

� �2
¼ 1

from which

x( j)1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k11 � v2

j m11

k12 � v2
j m12

 !2
vuut

, x( j)2 ¼
� k11 � v2

j m11

k12 � v2
j m12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k11 � v2
j m11

k12 � v2
j m12

 !2
vuut

(c) Modal matrix

X ¼ x11 x12
x21 x22

� �
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k11 �v2

1m11

k12 �v2
1m12

� �2r 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k11 �v2

2m11

k12 �v2
2m12

� �2r
� k11 �v2

1m11

k12 �v2
1m12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k11 �v2
1m11

k12 �v2
1m12

� �2r � k11 �v2
2m11

k12 �v2
2m12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k11 �v2
2m11

k12 �v2
2m12

� �2r

2
666666664

3
777777775
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(d) Modal masses and stiffnesses

X T MX ¼ m1 0
0 m2

� �
, X T KX ¼ k1 0

0 k2

� �

m1 ¼ x 211 m 11 þ 2x 11 x21 m12 þ x221 m22 , k1 ¼ x211 k 11 þ 2x 11 x21 k12 þ x221 k22

m2 ¼ x 212 m 11 þ 2x 12 x22 m12 þ x222 m22 , k2 ¼ x212 k11 þ 2x12 x22 m 12 þ x222 m 22

(e) Modal coordinates
The modal coordinate vector y is obtained from the physical coordinate vector x
using

y1
y2

� �
¼ x11 x12

x21 x22

� ��1
x1
x2

� �

Carrying out the manipulations gives

x1

x2

� �
¼

x22 � x12
� x21 x 11

� �
x11 x22 � x 21 x12

y1

y2

� �

¼ 1
x11 x22 � x21 x12

x22 y1 � x12 y2
� x21 y1 þ x11 y2

� �

(f) Modal force and physical force

The modal force vector g is now obtained from the physical force vector f :

g1
g2

� �
¼ XT f1

f2

� �

¼ x11 f 1 þ x21 f 2

x12 f 1 þ x22 f 2

� �

(g) Modes
Using the foregoing relations, the system is expressed as modes, that is to say, as
two uncoupled second-order single-degree-of-freedom systems.

m1€y1 þ k1y1 ¼ g1(t)

m2€y2 þ k2y2 ¼ g2(t)

EXAMPLE 9.16

Consider the effect of the mesh on the eigenvalues of the simple system illustrated
(Figure 9.3).

SOLUTION

Formulating and assembling the stiffness and mass matrices and imposing the con-
straints at the two ends results in a single-degree-of-freedom system governed by
� 2008 by Taylor & Francis Group, LLC.



E, A, r

L1

L

FIGURE 9.3 Two-element model of a clamped–clamped rod.
EA
1
L1

þ 1
L � L1


 �
u( L1 , t ) þ r AL

3
€u(L1 ,t ) ¼ 0

The eigenvalue is given by

vn ¼
ffiffiffi
3

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a (1 � a)

p
ffiffiffiffi
E
r

s
1
L 
, a ¼ L1

L

If a ¼ 1=2, vn ¼ 2
ffiffi
3

p
L

ffiffiffi
E
r

q
¼ 3:42

L

ffiffiffi
E
r

q
. However, If a ¼ 1=4, vn ¼ 4

L

ffiffiffi
E
r

q
. These two

results are signi ficantly different from each other and from the exact solution, which

is vn ¼ p
L

ffiffiffi
E
r

q
.

However, accurate results may be obtained for this minimum eigenvalue by using a
suffi cient number of elements.

9.5.2 C OMMENTS ON E IGENSTRUCTURE C OMPUTATION IN LARGE F INITE

E LEMENT SYSTEMS

Jacobi and Subspace Iteratio ns (cf. Bathe, 1996) are prom inent among the many
met hods whi ch have been form ulated to compu te the eigenv alues and eigenvector s
of a large fi nite element system. The first finds all eigenv alues of the syst em, and then
fi nds the e igenvectors using the eigenv alues. The second selective ly finds the lowest
eigenv alues and co rresponding eigenv ectors.

One dif ficulty wi th using the finite elem ent met hod for eigenstruc tures is that the
mesh makes a contr ibution to the values obtai ned. Thi s is a relat ively minor problem
for the lowest modes, but becom es progressiv ely more bother some as the mode
nu mber increa ses.

In Chapter 10, we d escribe an easil y visualize d method, whi ch we call the
hyp ercircle method (Nichol son and Lin, 2006). It represents a kind of steepest
descent opti mizatio n method. For presen t purpose s, we descri be the min imum
proper ties of eigenv alues and eigenv ector s. For finite element equa tion of a linear
elast ic syste m M €g þ Kg ¼ 0 wi th positive de finite symmet ric matrices K andM, the
minimum eigenvalue and corresponding eigenvector (called an eigenpair) satisfy the
Rayleigh quotient relation

ln ¼ min
j

lj ¼ xTnKxn
xTnMxn

¼ min
xTx¼1

xTKx

xTMx
(9:61)
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Since the vector iter ates in the minim ization proces s are constraine d to have unit
magnitud e, all such vector s are related to each other through a proper orthogo nal
matrix. If x(0) is the initial iterate, then the v th iterate may be expres sed as
x(v ) ¼ Qvx

(0). It is readily seen that this reduces the iter ation proces s to d etermining
a sequenc e of rotation mat rices which progressiv ely reduce the magni tude of the
Raylei gh quo tient.

However , once an eigenvalue and an eigenve ctor have been determin ed, the
matrices must be alte red in such a way that the subseq uent minim ization steps do not
return to the same pair. If the eigenpair is actually removed the process is called
de flation . In contr ast in Cha pter 10, a replaceme nt process is described in whi ch the
lowest eigenvalue is replaced with a higher value without altering the eigenvectors.
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10 Solution Methods for
Linear Problems: II
� 2008 by Taylor & Fra
10.1 INTRODUCTION

Chapter 9 presen ted a number of conven tional numer ical methods in the line ar FEA.
This chapte r introduces three compa rativ ely advanced topics. The fi rst is solution on
an inverse problem, while the second addresses use of fourth-order time integration
method, and the third presents an optimization-based method for computing eigen-
values and eigenvectors.

10.2 SOLUTION METHOD FOR AN INVERSE PROBLEM

10.2.1 INVERSE PROBLEM IN ELASTICITY

Many practical applications involving response of elastic bodies give rise to inverse
problems. In FEA, for a given mesh and set of physical properties, even though a
well-posed direct problem generally possesses a unique solution in classical linear
elasticity, a corresponding inverse problem (based on the same stiffness matrix) may
not. Furthermore, even when the inverse problem possesses a unique solution when
modeled ‘‘exactly’’ using the classical linear theory of elasticity, an unfortunate
choice of a mesh may cause the finite element version of the inverse problem to
fail to do so. The current formulation addresses a particular example of an inverse
problem and exploits a matrix nonsingularity criterion for assuring that the finite
element model possesses a unique solution. A numerical test is applied to verify
satisfaction of the criterion. The test is based on the linear independence of the rows
of a nonsingular matrix. If the nonsingularity condition is violated, the mesh can be
modified and the nonsingularity condition applied again.

In a linearly elastic body which has known physical properties and which is
experiencing small strains under statically applied loads, the finite element equation
may be written as

K
u1

u2
ui

8<
:

9=
; ¼

f1
f2
0

8<
:

9=
;, K ¼

K11 K12 K13

K21 K22 K23

K31 K32 K33

2
4

3
5 (10:1)

Here the ni3 1 vector ui denotes the displacement degrees of freedom at interior
nodes, while the n13 1 vector and the n23 1 vector u2 denote displacement degrees
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of freedo m at tw o diff erent sets of b oundary n odes. It is assum ed that exter nal forces
are applied only to boundar y nodes, with the n1 3 1 force vector f 1 and the n 2 3 1
force vector f2 referred to the two sets . All matrices and vector s are real. Fu rther-
more , the fin ite element stiffness matrix K is posit ive de finite , written K > 0.

The syst em has n degrees of freedo m in which n ¼ n1 þ n2 þ ni . It is assum ed
that Equ ation 10.1 re flects degrees of freedo m remainin g after any simple const raints
on the body have been applied. Here, in a simple constraint a displacem ent d egree of
freedo m is speci fi ed and the correspond ing react ion force is an unkno wn. (Direct
probl ems only ex hibit simple constraint s.) This contr asts wi th comp lex (overspeci-
fi ed) constrain ts appeari ng in inver se problems in which both the displacem ent and
force are prescribed for a degree of freedo m.

In finite elem ent model s of static probl ems in linear elasticity, the n 3 n sti ffness
mat rix K is symmet ric and positive de finite (aft er sim ple const raints have been
enforc ed). In the direc t problem, which is consi dered ‘‘well posed, ’’ the force ve ctors
f1 and f2 are prescribed, and the corresp onding displacem ent v ectors u1 an d u2 are
un knowns to be determin ed. Acco rdingly, at each boundar y degree of freedo m only
on e quanti ty (the force) is speci fied. Positive de finiten ess of K implies that the
solut ion of the direc t probl em exist s and is unique .

In c ontrast, in the particula r type of inverse probl em (e.g., Dennis et al., 2004) of
inte rest here, the fi rst node set is ‘‘oversp eci fied ’’ in that displacem ents and tractions
are speci fi ed at the sam e nodal degrees of freedo m (com plex const raints). Corres-
po ndingly, the second node set is ‘‘unders peci fied ’’ in that neit her displ aceme nts nor
tract ions are speci fied at the degrees of freedo m. As shown subseq uentl y there is no
assur ance that a unique solution exists for the finite elemen t inver se probl em even
whe n it does in the direc t probl em .

10.2.2 E XISTENCE OF A UNIQUE SOLUTION

We first employ an example to demonstrate that in inverse problems a unique solution
may not exist eve n though the solut ion of the corres pondin g direc t probl em does.

EXAMPLE 10.1

Let K11 and K 22 be two n 3 n positive defi nite symmetric matrices, and let K 12 denote a
singular n3 n matrix. Next, introduce the matrix H given by

H ¼ K11

ffiffiffiffi
K

p
11K12

KT
12

ffiffiffiffi
K

p
11 KT

12K12 þK22

� �
¼

ffiffiffiffi
K

p
11 0

KT
12

ffiffiffiffi
K

p
22

� � ffiffiffiffi
K

p
11 K12

0T
ffiffiffiffi
K

p
22

� �
(10:2)

Of course, under the stated conditions H is positive definite and symmetric, written as
H> 0.
Direct Problem: Letting fk1

fk2

� �
be a known 2n3 2n vector, positive definiteness of H

implies that there exists a unique solution for the unknown vector uu1
uu2

� �
satisfying

H uu1
uu2

� �
¼ fk1

fk2

� �
.
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� 2
Inverse Problem: Now suppose that the right-hand side contains the vector is fk 1
fu2

� �
in

which fk 1 is known but fu 2 is unknown. Also, suppose that the left-hand side now

contains the vector uk 1
uu 2

� �
in which uk 1 is known but u u2 is unknown. We are now

confronted with the inverse problem

K11

ffiffiffiffi
K

p 

11 K 12

K T12
ffiffiffiffi
K

p 

11 KT
12 K12 þ K22

" #
uk 1

uu2

� �
¼ fk 1

fu 2

� �
( 10: 3)

The upper block row implies that

ffiffiffiffi
K

p
11 K12 uu2 ¼ f k 1 � K 11 u k 1 ( 10: 4)

But K12 and hence
ffiffiffiffi
K

p 

11 K12 are singular. Hence, either there is no unique solution for
uu2 or there are many solutions. The second block row does not mitigate this dif fi culty
since it introduces the additional unknown vector fu2 . Again the inverse problem
involving H does not possess a unique solution although the direct problem does.

Returning to the general development, a suffi cient condition is now presented for the
existence and uniqueness of the solution to a finite element model of the inverse
problem of interest. However, as will be demonstrated, it is quite possible that the
stiffness matrix in one mesh will not satisfy the sufficient condition, while the stiffness
matrix in another mesh for the same physical problem will do so.
From the third row in Equation 10.1, we have

K 31u1 þK32u2 þK33ui ¼ 0 (10:5)

and, recalling that K33> 0,

u3 ¼ �K�1
33 K31u1 þK32u2ð Þ (10:6)

Upon substitution, the upper two rows provide the equations

K11 �K13K
�1
33 K31

� �
u1 þ K12 �K13K

�1
33 K32

� �
u2 ¼ f1 (10:7)

K21 �K23K
�1
33 K31

� �
u1 þ K22 �K23K

�1
33 K32

� �
u2 ¼ f2 (10:8)

Positive definiteness of K implies that its principal minors are positive definite. It
follows that

K11 �K13K
�1
33 K31 > 0

K22 �K23K
�1
33 K32 > 0

and

K11 �K13K
�1
33 K31 K12 �K13K

�1
33 K32

K11 �K13K
�1
33 K31 K22 �K23K

�1
33 K32

" #
> 0 (10:9)
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Now suppose that u1 ¼ u k and f1 ¼ fk are known, while u2 ¼ uu and f2 ¼ fu are
unknown, thereby introducing an inverse problem of the type of interest here. Equations
10.7 and 10.8 are now rewritten as

K11 � K 13 K �1
33 K 31

� �
uk þ K 12 � K 13 K �1

33 K 32
� �

uu ¼ f k (10: 10)

K21 � K23 K
� 1
33 K31

� �
uk þ K 22 � K 23 K �1

33 K 32
� �

uu ¼ f u (10: 11)

Equation 10.10 immediately furnishes

K12 � K 13 K �1
33 K 32

� �
uu ¼ f k � K 11 � K 13 K �1

33 K 31
� �

uk (10: 12)

For the solution of the inverse problem expressed by Equations 10.10 and 10.11 to exist
and be unique it is necessary and sufficient that K12 � K 13 K

� 1
33 K 32 be nonsingular,

regardless of uk and fk . Once u u is obtained by solving Equation 10.12, fu is immedi-
ately found from Equation 10.11.

EXAMPLE 10.2

Inverse problems in two-element cantilevered beams
Figure 10.1 depicts a cantilevered beam modeled by two elements. The elastic

modulus E and the bending moment of area I are the same in the two elements, but
their lengths L1 and L2 differ. The (unclamped) nodes are denoted as 1 and 2.

The vertical (z) displacement and slope are denoted by w, � w0  , the shear force by V ,
and the bending moment by M. The fi nite element equation for the two-element beam
con figuration is given by

E I

12

L 31
þ12

L32

	 

6

L31
� 6

L 22

	 

6

L21
� 6

L22

	 

4
L1

þ 4
L2

	 

2
6664

3
7775

�12

L32
� 6

L22
6

L 22

4
L2

2
664

3
775

�12

L32

6

L22

� 6

L22

4
L2

2
664

3
775

12

L32

6

L22
6

L22

4
L2

2
664

3
775

2
6666666666664

3
7777777777775

w L1ð Þ
�w0 L1ð Þ
w L1þL2ð Þ

�w0 L1þL2ð Þ

8>>><
>>>:

9>>>=
>>>;

¼

V L1ð Þ
M L1ð Þ

V L1þL2ð Þ
M L1þL2ð Þ

8>>><
>>>:

9>>>=
>>>;

(10:13)
z

x

y

E, I E, I1 2

FIGURE 10.1 Inverse problem for a two-element beam problem.
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Four distinct inverse problems are now considered.

Case I: w(L1), V(L1), w(L1þ L2), V(L1þ L2) are prescribed.

The solution exists and is unique if 6=L21 � 6=L22 �6=L2
2

6=L2
2 6=L22

� �
is nonsingular. In

fact, it is with determinant equalling 36=L21L
2
2.

Case II: w(L1), V(L1), �w0(L1þ L2), M(L1þ L2) are prescribed.

The matrix of interest is 6=L2
1 � 6=L22 6=L22
�6=L22 6=L22

� �
, which is the transpose of the

matrix in the first case and has the same nonvanishing determinant.

Case III: �w0(L1), M(L1), �w0(L1þ L2), M(L1þ L2) are prescribed.

The matrix is 12=L31 þ 12=L32 �6=L22
�6=L22 4=L2

� �
arises which is nonsingular with deter-

minant equalling 48=L31L2 þ 12=L42.

Case IV: �w0(L1), M(L1), w(L1þ L2), V(L1þ L2) are prescribed.

The matrix 12=L31 þ 12=L32 �12=L3
2

�6=L22 6=L2
2

� �
is nonsingular, with determinant

72=L31L
2
2.
10.2.3 NONSINGULARITY TEST

We next introduce a test for nonsingularity of K12 �K13K
�1
33 K32. Of course it is

necessary that n1¼ n2, since otherwise this matrix is not square and hence is singular.
The first result, which is easily proved, is that K12 �K13K

�1
22 K32 is nonsingular if,

and only if, K12 K23

K32 K33

� �
is nonsingular.

Next a test of nonsingularity of K12 K23

K32 K33

� �
is given. An n3 n matrix A may be

written in the form

A ¼

aT1
aT2
:

aTj
:

aTn�1

aTn

2
66666666664

3
77777777775

(10:14)

in which the ith row of the matrix A is written as the row vector aj
T. Using Gram-

Schmidt orthogonalization, we may construct a set of orthonormal base vectors ei as
follows. The n base vectors ej are given by
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e1 ¼ a1= a1j j
ê2 ¼ a2 � (aT2 e1)e1, e2 ¼ ê2= ê2j j

: :
: :

ên�1 ¼ an�1 �
Xn�1

j¼1

(aTn�1ej)ej, en�1 ¼ ên�1= ên�1j j

ên ¼ an �
Xn�1

j¼1

(aTn ej)ej, en ¼ ên= ênj j

(10:15)

If A is nonsingular, the jth row vector cannot be a linear combination of the foregoing
j� 1 row vectors. Accordingly, the jth row vector aj exists in the j-dimensional
subspace spanned by orthonormal base vectors e1, e2, . . . , ej. For the moment, suppose
instead that the matrix A is singular with unit rank deficiency, and that aTn is a linear
combination of the foregoing row vectors and hence exists in an n� 1-dimensional
subspace spanned by the base vectors e1, e2, . . . , ej, . . . , en�1. But, if ên simultaneously
(i) lies in the n� 1-dimensional subspace and (ii) is orthogonal to the base vectors of
the subspace, it must equal the null vector: ên¼ 0.

Accordingly, the condition for the matrix A to be nonsingular is

êk 6¼ 0, k ¼ 1, 2, 3, . . . , n (10:16)

Conversely, if any of the vectors êk vanish, A is singular.
Simple examples are now introduced to illustrate the application and perform-

ance of the nonsingularity test expressed in Equation 10.16.

EXAMPLE 10.3

We first consider the matrix

A ¼ 1 2
2 4þ «

� �
(10:17)

in which «<< 1. Following the operations in Equation 10.15 the base vectors are found
to be

e1 ¼ 1ffiffiffi
5

p 1

2

( )

ê2 ¼
2

4

( )
� 1ffiffiffi

5
p 2 4þ «f g 1

2

( )" #
1ffiffiffi
5

p 1

2

( )

¼ � 1
5

«

4«

( )
(10:18)

In fact, this matrix A is nonsingular if «> 0 and becomes singular when « # 0. But also
note that, in the current test, ê2 6¼ 0 if «> 0 and ê2 ! 0 as « # 0, consistent with
Equation 10.16.
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EXAMPLE 10.4

Next, consider

A ¼
1 2  3

2 4 6þ «1

3 6 9þ «2

2
64

3
75 ( 10: 19)

We first seek to determine whether the current test correctly identi fies values of «1 and
«2 for which A is singular. We first check ê2.

e1 ¼ 1ffiffiffiffiffi
14

p
1

2

3

8>><
>>:

9>>=
>>;

ê 2 ¼
2

4

6þ «1

8>><
>>:

9>>=
>>;� 2 4 6þ «1f g 1ffiffiffiffiffi

14
p

1

2

3

8>><
>>:

9>>=
>>;

1ffiffiffiffiffi
14

p
1

2

3

8>><
>>:

9>>=
>>;

¼ 1
14

� 3

�6

5

8>><
>>:

9>>=
>>;«1 ( 10: 20)

It is evident that A is singular if «1 ¼ 0. The current procedure furnishes that ê2 6¼ 0 if
«1 > 0, but ê2 ! 0 as «1 # 0. Assume for the moment that «1> 0, so that

e2 ¼ 1ffiffiffiffiffi
70

p
�3

�6

5

8><
>:

9>=
>; 

( 10: 21)

Note that «1 does not appear in e2.
We next determine the third base vector, assuming «1 6¼ 0.

ê3 ¼
3

6

9þ «2

8>><
>>:

9>>=
>>;� 3 6 9þ «2f g 1ffiffiffiffiffi

14
p

1

2

3

8>><
>>:

9>>=
>>;

2
664

3
775 1ffiffiffiffiffi

14
p

1

2

3

8>><
>>:

9>>=
>>;

� 3 6 9þ «2f g 1ffiffiffiffiffi
70

p
�3

�6

5

8>><
>>:

9>>=
>>;

2
664

3
775 1ffiffiffiffiffi

70
p

�3

�6

5

8>><
>>:

9>>=
>>; ¼

0

0

0

8>><
>>:

9>>=
>>; 

( 10: 22)

The test in Equation 10.16 indicates that the matrix A is singular regardless of «2 . That
this result is correct is easily seen by recognizing that the second column in A is
proportional to the first column regardless of «2 (or «1).
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10.3 ACCELERATED EIGENSTRUCTURE COMPUTATION IN FEA

10.3.1 INTRODUCTION

Calculation of lowest modes is a common task in finite element modeling of large
systems. The primary established method in FEA is Subspace Iteration (Bathe,
1996). Here, an optimization algorithm (Nicholson and Lin, 2006) is described
which exploits the fact that (i) the eigenvectors terminate on a unit hypersphere
and (ii) that the minimum eigenvalue and associated eigenvector satisfy the Rayleigh
minimum principle. At the current estimate for the minimizing eigenvector, a direction
on the hypersphere is found analytically in which the Rayleigh quotient experiences
‘‘steepest descent.’’ Kronecker product algebra is instrumental in the derivation. The
current eigenvector and a unit vector representing the direction of steepest descent
define a plane intersecting the hypersphere along a unit hypercircle. An analytical
solution is found for the vector minimizing the Rayleigh quotient on the hypercircle,
constituting a hypercircle counterpart of a ‘‘line search.’’ At this last vector a new
steepest descent vector is determined and the process is repeated. In a numerical
example, the algorithm converges very rapidly. Also introduced is a counterpart of
‘‘deflation’’ to replace the smallest eigenvalue while leaving the eigenvectors and the
dimension of the matrix unchanged. The deflation procedure currently is based on
the assumption that none of the eigenvalues in the lowest modes are repeated.

10.3.2 PROBLEM STATEMENT

For dynamic response of a linear elastic system, the finite element equation is
conventionally written as

M̂€̂xþ K̂x̂ ¼ f̂(t) (10:23)

in which the matrices M̂ and K̂ are n3 n, real, positive definite, and symmetric,
while x̂ and f̂(t) are real n3 1 vectors. For convenience the foregoing system is
rewritten as

€xþKx ¼ f(t) (10:24)

in whichK¼M�1=2 K̂M�1=2 and x¼M1=2x̂. The modes of the system are determined
by the eigenvalues lj and the real orthonormal eigenvectors xj, with the assumed
magnitude ordering l1> l2 > � � �> ln. The primary interest is in the low-frequency
modes, say with lj having magnitudes less than a user-specified threshold value.

The foundation of the method being introduced is minimization of the Rayleigh
quotient (e.g., Dahlquist and Bjork, 1976). Namely, the minimum eigenvalue ln and
the corresponding minimizing eigenvector xn satisfy

ln(K) ¼ min
1� j�n

lj(K)

¼ xTnKxn

¼ min
xTx¼1

(xTKx) (10:25)
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To enforc e unit magnitud e of n ¼ x=
ffiffiffiffiffiffiffiffi
xT x

p
a prior i, we repla ce n with

n ¼ Q y ( 10 : 26 )

in which y is a unit vector chosen to give the initial estimat e of the minim izing
eigenv ector. Also Q is an ortho gonal trans formation rotating y to n, which of course
is also of unit magnitud e. Clearl y, the tip of n lies on a unit hypers phere (a sphere in
n-space ). As Q changes durin g minim ization, the tip of n prescr ibes a path on the
hypers phere. Ot herwise stat ed, the task is to deter mine the hyperspheri cal p ath which
is opti mal in a meaningful sense and which term inates at the tip of the desired
eigenv ector.

10.3.3 HYPERSPHERE PATH OF STEEPEST DESCENT

We now deter mine the diff erential dQ corres pondin g to the most rapid rate of
decrease of F1¼yTQT KQy. Letting q denote VEC(Q), Kronecker Product Algebra
(presented in Cha pter 3) furnishes the follow ing relations:

dF1(Q) ¼ yT dQTKQyþ yTQTK dQy

¼ yT � yTVEC(dQT KQþQTK dQ)

¼ yT � yT [(QTK)� IUþ I� (QTK)] dq

¼ [(yTQTK)� yTUþ yT � (yTQTK)] dq

¼ mT dq (10:27)

in which

dq ¼ VEC(dQ) mT ¼ (Iþ U)yT � (nTK), n ¼ Qy

However, we may also write

dF1 ¼ t(QMT
dQ) (10:28)

in which M¼ IVEC(m) and t denotes the trace. Invariance of the trace under
similarity transformations implies

dF1 ¼ t(MT
dQQT ) (10:29)

Note that the matrix dQQT is antisymmetric.
Let B¼QMT and let C ¼ 1

2 (B� BT ). The trace vanishes for the product of a
symmetric and an antisymmetric matrix:

dF1 ¼ t(B dQQT )

¼ t(C dQQT ) (10:30)
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Not e that C2 is negati ve de finite if the antisym metric matrix C is nonsin gular, so that
steep est descent is attained if dQQ T is propor tion al to C . According ly, we seek the
path de fined by the relat ion

dQ ¼ dL
C( Q) Q

t 1 =2 ( � C2 (Q )) 
(10 :31 )

and dL may be viewed as a diff erential arc lengt h since

dL ¼ t 1= 2 (d Q dQT ) (10 :32 )

Aw ay from the minim um, the procedu re coe rces F to decreas e since

dF ¼ �dLt 1= 2 ( � C 2 ( Q)) � 0 (10 :33 )

Of course the curren t position vector after j iterations is given by nj ¼ Q jy, in which
Qj denote s the curren t value of Q. The method for identifying an ortho gonal matrix
Q (i.e., Qj ) rotat ing y to n (n j) is descri bed in Nichols on and Lin (2006) .

10.3.4 HYPERCIRCLE SEARCH

Su ppose that j iterati ons have occurr ed leading to the current vector nj ¼ Q jy. We
intr oduce the incre ment al posit ion vector dnj ¼ dQ j nj . It foll ows that to first order in
the incre ments

nTj dnj ¼ yT QT
j dQj y

¼ 0 (10 :34 )

since Q T dQ is anti symmet ric. It also follow s that the unit vector r ( nj ) given by

r nj
� � ¼ dnjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dnTj dnj

q (10 :35 )

is orthogonal to nj and h ence is tangen t to the hy persphere. We say that the steepest
descent from position nj occurs in the direction repres ented by the unit vector r ( nj ).
The vector s nj and r ( n j) defi ne a hyperpl ane whos e intersect ion with the hypers phere
is a hyperci rcle, as illustrated in Figure 10.2. Any vector p term inating on the
hy percircle may be expres sed in terms of nj, r(nj), and an angle h, illustrated in
Figure 10.3. Likewise, on the hyperci rcle F may be expressed as a sim ple funct ion of
nj, r(nj), and h. The hypercircle search simply consists of determining the angle h0

which minimizes F1 on the hypercircle. It will now be seen that determination of h0

reduces to a simple algebraic problem with an analytical solution. Finally, if we
designate the value of Q minimizing the Rayleigh quotient as Qmin, the minimizing
eigenvector is obtained immediately as nmin¼Qminy, and of course, the minimum
eigenvalue satisfies lmin¼F(Qmin).
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2

1

n

r

FIGURE 10.2 Hypersphere and hyperplane determined by n and r.
Minimizing F on the hypercircle reduces to determining an angle which can be
expressed analytically in terms of an inverse tangent. The vector p(h) illustrated
below in Figure 10.3 is given by

p hð Þ ¼ coshnþ sinhr (10:36)

On the hypercircle the function F is expressed in terms of the angle h by
p(h)

nr h

FIGURE 10.3 Vector terminating on the hypercircle.
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F ¼ a cos2 hþ b sin2 hþ 2g sinh cosh

¼ aþ b

2
þ a� b

2
cos 2hþ g sin 2h

a ¼ nTKn, b ¼ rTKr, g ¼ nTKr

(10:37)

The extrema of F occur at the values of h, say h*, satisfying

�a� b

2
sin 2h*þ g cos 2h* ¼ 0 (10:38)

from which

h* ¼ 1
2
tan�1 2g

a� b

	 

(10:39)

There are two such values of h*, which are in the first and third quadrants if 2g
a�b > 0,

but the second or fourth quadrants if 2g
a�b < 0. One value minimizes F1 on the

hypercircle, and the second maximizes F1. For the present extremum to be a
minimum, h* must satisfy

�a� b

2
cos 2h*� g sin 2h* > 0 (10:40)

Simple manipulation furnishes

�g
1
g2

a� b

2

	 
2

þ1

" #
sin 2h* > 0 (10:41)

Consequently, h* is found in the first or fourth quadrants as follows:

if g � 0, �p=2 � h* � 0

if g < 0, 0 < h* � p=2
(10:42)

10.3.5 EIGENVALUE REPLACEMENT PROCEDURE

Once the minimum eigenvalue and the corresponding (minimizing) eigenvector are
determined, it is necessary to remove the eigenvalue from the matrix while leaving
the remaining eigenvalues and all of the eigenvectors unchanged, a process we refer
to as eigenvalue replacement. The scheme presented below replaces the most
recently computed minimum eigenvalue with magnitude less than a threshold
value with a value above the threshold, without altering the eigenvectors or reducing
the dimensions of (deflating) the matrix. Once the minimum eigenvalue is replaced,
the minimization process is repeated to compute the next largest eigenvalue and
corresponding eigenvector, and continues until an eigenvalue is obtained whose
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magnitude equals or exceeds a user-specified threshold value. Currently, the fore-
going deflation procedure is based on the restriction that none of the eigenvalues of
the modes of interest has multiplicity greater than unity.

Suppose ln and nn have been computed. We may construct a set of vectors
p(n�1)
n�1 ,p(n�1)

n�2 , . . . ,p(n�1)
1 which are orthonormal to each other and to nn. They are

likewise orthogonal to Knn since it coincides in direction with nn. In particular,
p(n�1)
n�1 ,p(n�1)

n�2 , . . . ,p(n�1)
1 are obtained sequentially using the Gram-Schmidt

scheme

p̂(n�1)
j ¼ q(n�1)

j �
Xn�j�1

k¼1

(q(n�1)T
j p(n�1)

jþk )p(n�1)
jþk � (q(n�1)T

j nn)nn

j ¼ n� 1, n� 2, . . . , 1, p(n�1)
j ¼ p̂(n�1)

j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂(n�1)T
j p̂(n�1)

j

q
 (10:43)

in which q(n�1)
j are ‘‘judiciously chosen’’ ‘‘trial’’ vectors. The matrix R n�1ð Þ

n given by

R(n�1)
n ¼ R(n�1)

n�1 nn
� �

, R(n�1)
n�1 ¼ p(n�1)

1 p(n�1)
2 � � � p(n�1)

n�2 p(n�1)
n�1

� �
(10:44)

is orthogonal and gives rise to the singularity transformation

R(n�1)T
n KR(n�1)

n ¼ K*
n�1 0

0T ln

" #
(10:45)

In Equation 10.45 note that (i) R(n�1)T
n KR(n�1)

n

� �
jn ¼ p(n�1)T

j (Knn) ¼ 0, (ii)

R(n�1)T
n KR(n�1)

n

� �
nj¼nTnKp(n�1)

j ¼p(n�1)T
j (Knn) ¼ 0, and (iii) K*

n�1

h i
ij
¼p

n�1ð ÞT
i Kp(n�1)

j .

The eigenvalues of K*
n�1 are ln�1, ln�2, . . . , l1, which are the largest n�1

eigenvalues of K. Of course, the eigenvectors of K*
n�1 are also eigenvectors of K.

Suppose the largest eigenvalue of interest is no greater in magnitude than a threshold
value lth, corresponding to the mode with the highest natural frequency of interest.
We may introduce the matrix

K(n�1) ¼ R(n�1)
n

K*
n�1 0

0T lth

" #
R(n�1)T

n (10:46)

Now the eigenvalues of K(n�1) are ln�1, ln�2, . . . , lth, . . . , l1. It is next demon-
strated that K(n�1) has the same eigenvectors as K.

Since K*
n�1 is symmetric and positive definite there exists an orthogonal matrix

Vn�1 (which need not be computed) such that

K(n�1) ¼ R(n�1)
n

Vn�1 0

0T 1

� �
L K*

n�1

� �
0

0T ln þ lth

" #
VT

n�1 0

0T 1

� �
R(n�1)T

n (10:47)
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in which, assuming obvious eigenvalue ordering,

L K*
n�1

� �
¼

l1 0 : : :

0 l2 0 : :

: : : : :

: : : : 0

: : : 0 ln�1

2
6666664

3
7777775

(10:48)

It follows that

L K*
n�1

� �
0

0T lth

2
4

3
5¼

VT
n�1 0

0T 1

" #
R(n�1)T

n

" #
K(n�1) R(n�1)

n

Vn�1 0

0T 1

" #" #
(10:49)

However, R(n�1)
n

Vn�1 0
0T 1

� �� �
is also recognized as an orthogonal matrix which diag-

onalizes K:

L K*
n�1

� �
0

0T ln

2
4

3
5 ¼ VT

n�1 0

0T 1

" #
R(n�1)T

n

" #
K R(n�1)

n

Vn�1 0

0T 1

" #" #
(10:50)

But matrices which are diagonalized by the same similarity transformation, in
particular K and K(n�1), have the same eigenvectors, Nicholson and Lin (1996).

The replacement process continues as follows. The next largest eigenvalue is
ln�1 with corresponding eigenvector nn�1, both of which are computed by mini-
mizing the Rayleigh quotient applied to K(n�1). A new set of unit vectors p(n�2)

j ,
j¼ n�2, n�1, . . . , 1 is generated, which are orthogonal to each other as well as nn�1

and nn. Extending the steps shown above furnishes a matrix of the form

R(n�2)T
n K(n�2)R(n�2)

n ¼
K*n�2 0 0

0T ln�1 þ lth 0

0T 0 ln þ lth

2
64

3
75 (10:51)

The deflation process is repeated to furnish the desired eigenvalues (with magnitude
not exceeding lth) in order of increasing magnitude, and to furnish the corresponding
eigenvectors.

10.3.6 EXAMPLE: MINIMUM EIGENVALUE OF THE 333 HILBERT MATRIX

We illustrate the hyperspherical method by applying it to determine the minimum
eigenvalue lmin and corresponding eigenvector nmin of the 33 3 Hilbert matrix

H3 ¼
1 1=2 1=3

1=2 1=3 1=4

1=3 1=4 1=5

2
64

3
75 (10:52)
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Hilbert matrices are notorious for being ill-conditioned even though positive definite
and symmetric. A simple program has been written in high precision to compute l3
and n3. The initial vector is assumed using the diagonal terms of H3:

v ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=2)2 þ (1=3)2 þ (1=5)2

p 1=2
1=2
1=5

8<
:

9=
; (10:53)

The procedure generates and makes use of two vectors in each step after the first step.
To use the hypercircle method in the first step, a second vector q must be introduced
at the outset. We used the vector

q ¼
1
0
0

8<
:

9=
; (10:54)

The computed iterates for the lowest eigenvalues and the relative errors are shown in
Table 10.1 below.

Even though the errors are very high in the initial estimate, convergence still
occurs rapidly and furnishes extremely accurate values. Convergence appears to be
much more rapid than in a linear convergence scheme. (Subspace Iteration exhibits
linear convergence.) The eigenvectors likewise converge very rapidly.

10.4 FOURTH-ORDER TIME INTEGRATION

10.4.1 INTRODUCTION

In FEA of elastic systems with light viscous damping, the widely used Newmark
method is the second order, one step, and A-stable. A systematic presentation of
established time integration methods for FEA is given in Zienkiewicz and Taylor
(1989), covering the well-known methods of Newmark, Houbolt, Wilson, Hibler,
and others. The Newmark method is a reformulation of the classical Trapezoidal
TABLE 10.1
Convergence of Iterations for Lowest Eigenvalue

Computed Minimum Eigenvalue Percent Error (%)

1.3422136422136 49845.800104181800000
0.1126113206822 4090.437599027870000

0.0047836190059 78.005699785540800
0.0026907039866 0.125165789790772
0.0026873457448 0.000200532865081

0.0026873403644 0.000000321273041
0.0026873403558 0.000000000515009
0.0026873403558 0.000000000001485
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Rule for systems with accelerations. Even though it is A-stable, time step sizes are
severely limited by considerations of accuracy. Also, ‘‘numerical damping,’’ for
example in the Wilson-Theta method, has been introduced to attenuate higher
order modes. It does so at a modest cost in accuracy (near-second order).

In this section a fourth-order counterpart of the Newmark method is described
which extends the fourth-order three-step Adams–Moulton (AM) method to systems
with acceleration, referred to below as AMX. (AM refers to first-order systems while
AMX refers to second-order systems.) The AMX method is three-step. No three-step
method can be A-stable, by virtue of a classical theorem of Dahlquist (cf. Dahlquist
and Bjork, 1974; Gear, 1971). However if, after every time step (or set of several
steps) numerically unstable higher order modes are filtered from the response using,
for example, the Wavelet Packet transform (Kaplan, 2002), the stability-based
restrictions on the time step size can be comparable to the restrictions ensuing
from accuracy (Nicholson and Lin, 2006). Also, a modification of the AMX method
is given to incorporate numerical damping, rendering the modification near-fourth
order. AMX gives rise to a linear system involving a dynamic stiffness matrix.
Solution using triangularization followed by forward and back substitution is seen
to require exactly the same computational effort as the Newmark method.

10.4.2 ERROR GROWTH IN THE NEWMARK METHOD

The errors and error growth in the Newmark method have been extensively
described by Nicholson and Lin (2005) for free and forced response, and results
are quoted here on undamped free response.

10.4.2.1 Undamped Free Vibration

To illustrate the error properties of the Newmark method, suppose that the highest
mode to be computed is the Jth mode with natural frequency vJ, and suppose there is
no damping. The Newmark method does not produce any magnitude error, but there
is a phase angle error since the Newmark method evidently approximates vJh=2 as
tan�1(vJh=2). The phase error in a step is given by

«h � p2

3
h

TJ

	 
2

(10:55)

in which TJ is the time period of the model. For illustration we choose h to attain a
stepwise relative error of 1

300, in which instance the number of time steps per period is
found to be TJ

h ¼ 10p � 32.
Furthermore, we determine the effect of stepwise error on cumulative error.

The exact solution after M time steps is ynþ1¼ exp(Mlh)y0¼ [exp(lh)]Mþ1y0.

Recalling Equation 10.55, the numerical solution is ~ynþ1¼ [(1þ «h) exp(lh)]
Mþ1

y0¼ (1þ «h)
Mþ1ynþ1. The cumulative error after Mþ 1 steps is «T ¼ ~ynþ1� ynþ1

ynþ1
¼

(1þ «h)
Mþ1 � 1. The number of time steps after N time periods is given by

Mþ 1¼ TJ
h N ¼ pNffiffiffiffiffi

3«h
p . Now (1þ «h)

pNffiffiffiffi
3«h

p ¼ 1þ «T , and pNffiffiffiffiffi
3«h

p ln (1þ «h)¼ ln (1þ «T ).
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We assume that both relative errors aremuch less than unity inmagnitude, and take the

first nonvanishing terms in the Taylor expansion of the natural logarithms. Now
pNffiffi
3

p ffiffiffiffiffi
«h

p � «T , so that «h � 3
p2N2 «

2
T . Otherwise stated, the time step is to be selected to

satisfy TJ
h ¼ p2

3
N
«T
. As an example, suppose that N¼10 and «T ¼1=10. This implies the

number of time steps per period is 333.
10.4.3 ADAMS–MOULTON FORMULA

Consider the differential equation

dy

dt
¼ f (y), y(0) ¼ y0 (10:56)

in which f(y) is a known function. A three-step integration formula has the form
(Gear, 1971)

a0ynþ1 þ a1yn þ a2yn�1 þ a3yn�2 þ hb0fnþ1 þ hb1fn þ hb2fn�1 þ hb3fn�2 ¼ 0

(10:57)

in which the coefficients aj and bj are to be determined from accuracy and stability
considerations. Elements of the derivations are reproduced here from, for example,
Gear (1971), to set the stage for a stability and accuracy analysis and for the
introduction of damping. Taylor expansion if ynþj and fnþj, j¼ 1, 0, �1, �2 through
fifth order furnishes the following relations:

b0 þ b1 þ b2 þ b3 ¼ 1 (10:58a)

a0 þ a1 þ a2 þ a3 ¼ 0 : d(h(0)) (10:58b)

a1 þ 2a2 þ 3a3 � b0 � b1 � b2 � b3 ¼ 0 : d(h) (10:58c)

7
12
a0 þ 1

12
a1 � 17

12
a2 � 47

12
a3 þ b1 þ 2b2 þ 3b3 ¼ 0 : d(h2) (10:58d)

� 5
12
a1 þ 1

6
a2 þ 11

4
a3 þ 7

12
b0 þ 1

12
b1 � 17

12
b2 � 47

12
b3 ¼ 0 : d(h3) (10:58e)

49
144

a0 þ 13
144

a1 � 23
144

a2 þ 157
144

a3 þ 5
12
b1 � 1

6
b2 � 11

4
b3 ¼ 0 : d(h4) (10:58f)

The error coefficient (coefficient of h5) is given by

C5 ¼ 7
48
a0 þ 5

48
a1 � 1

48
a2 þ 11

48
a3 � 49

144
b0 � 13

144
b1

þ 23
144

b2 � 157
144

b3 (10:59)
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Equ ations 10.58a throu gh 10.58 f represe nt six equations in eight unknowns. Accord-
ingl y, a0, a 1, a2, a 3, b1, and b2 may be expres sed in terms of b 0 and b3. Simple
calcul ation serves to obtain

a1

a2

a3

b1
b2

8>>>><
>>>>:

9>>>>=
>>>>;

¼

�3= 4
3=4
1=12
1=2
1=2

8>>>><
>>>>:

9>>>>=
>>>>;

þ b0

9=2
� 3=2
� 1=2
1
� 2

8>>>><
>>>>:

9>>>>=
>>>>;

þ b3

3=2
� 9=2
5=2
� 2
1

8>>>><
>>>>:

9>>>>=
>>>>; (10 :60 )

and a0 ¼ �1=12 � 5=2b0 þ 1=2 b3

The re are severa l types of error s in a mul tistep method . One is primary error
associ ated with the primary eigenv alue lJ , whic h in the current contex t deter mines
magni tude error and phase error . The primary eigenvalue shoul d mat ch the exact
eigenv alues in the physi cal mode. In addit ion there are ‘‘extra neous errors, ’’ also
call ed ‘‘parasi tic error s, ’’ whi ch are associated with seconda ry eigenv alues arising in
Equ ation 10.57 and are purel y numer ical in o rigin. It is reason able to choose b0 and
b3 to minim ize the magnitud es of the two extraneous eigenvalues at vanis hing
values of h. With this choice , a fi nite time step is requi red before the extra neous
eigenv alues (as a funct ion of the tim e step) approac h unity in magni tude and there by
imp ly instabil ity. The seconda ry eigenv alues vanish at h ¼ 0 if  b0 and b 3 are chosen
such that b0 ¼ 3

8 and b 3 ¼ 1
24 . In fact, doing so yields the classical fourt h-orde r three-

step Adams –Moul ton (AM) formula

ynþ 1 � y n þ lh 3
8 y n þ 1 þ 19

24 y n � 5
24 y n� 1 þ 1

24 y n � 2
� � ¼ 0 (10 :61 )

and more generally

ynþ 1 � y n � h 3
8 f n þ 1 þ 19

24 f n � 5
24 f n� 1 þ 1

24 f n� 2
� � ¼ 0 (10 :62 )

AM is next seen to preser ve magni tude and compu te phase angle wi th signi fica ntly
large r time steps than Newma rk for compa rable levels of accuracy . How ever, recall
that New mark is A-stable, while AM e xhibits numer ical stability only up to a crit ical
rati o (to be discu ssed) of the time step to the perio d. AM is not suit able if high-
freque ncy modes are presen t — a like ly occurr ence in large fi nite elem ent syst ems. As
stated previously, one possible way to remove high-frequency modes is filtering
using, for example, the Wavelet Packet transform.

10.4.4 STEPWISE AND CUMULATIVE ERROR IN THE ADAMS–MOULTON METHOD

We consider errors in free vibration of the undamped Jth mode. Again there is no
magnitude error, but as in Newmark there is a phase error. Nicholson and Lin (2005)
reported that the stepwise error estimate
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«h � p4

45
h

TJ

	 
4

� 2:165
h

TJ

	 
4

(10:63)

For comparison with Newmark we again choose the stepwise relative phase angle
error to be 1=300. The result is TJ=h� 4, or four time steps per period. This contrasts
with 32 time steps per period in the Newmark method.

The AM method shows an even greater advantage when cumulative error is
considered. From Equation 10.63 the error measure «h¼ (h=TJ)

4 is representative of
the relative phase error per step in the AM method applied to the transient solution.
The number of time steps in N periods satisfies Mþ 1¼NTJ=h¼N=(«h)

1=4. Now
(1þ «h)N=(«h)

1=4 ¼ 1þ «T. Use of the natural logarithm and the first term in the Taylor
series leads to N(«h)

3=4¼ «T, implying that the number of time steps per period is
given by TJ

h ¼ �
N
«T

�1=3
. As before, consider N¼ 10 and «T¼ 1=10. The number of

time steps per period is now 4.7, much lower than 333 for Newmark.
10.4.5 STABILITY LIMIT ON TIME STEP IN THE ADAMS–MOULTON METHOD

For a finite time step h the eigenvalues of the AM formula are obtained from
(Gear, 1971)

1þ 3
8lJh

� �
h3 � (1� 19

24 lJh)h
2 � 5

24 lJhhþ 1
24 lJh ¼ 0 (10:64)

We already know that the primary eigenvalue is h¼ exp(�lJ h) to fourth order in h.
This permits approximating Equation 10.64 as

(h� exp(�lJh)) h
2 þ g1hþ g2

� � ¼ 0

g1 ¼
exp(�2lJh)

lJh

24
þ exp(�lJh)

5lJh
24

	 


1þ 3
8
lJh

� � , g2 ¼
� exp(�lJh)

lJh

24

1þ 3
8
lJh

� � (10:65)

Numerical stability requires that the extraneous eigenvalues be interior to the unit
circle in the complex plane. They are given by

h1,h2 ¼ �g1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
1 � 4g2

q
(10:66)

Clearly, the complex values and magnitudes can be readily computed; they are
presented and displayed in the following paragraphs.

We concern ourselves with underdamped media, to which end we write

lJh ¼ vJh zJ þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2J

q	 

, i ¼

ffiffiffiffiffiffiffi
�1

p
, Re(lJh) ¼ vJhzJ , Im(lJh) ¼ vJh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2J

q
(10:67)
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Stability limit
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FIGURE 10.4 Maximum time step ratio vs. damping factor.
Following the language of vibration theory, zJ is called the damping factor and vJ the
undamped natural frequency (of the Jth mode). The undamped period is TJ ¼ 2p

vJ
.

Upon writing lJh ¼ 2ph
T

�
zJ þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2J

q �
, the goal becomes numerical evaluation of

the critical time step relative to the undamped period, denoted (h=TJ)max, as a
function of zJ. The results are depicted in Figure 10.4. Computations are performed
over the ‘‘underdamped’’ range 0< zJ< 1.

Two important observations may be made from Figure 10.4.

. The numerical stability limits on the time step are comparable to the
previously obtained accuracy limits. For example, a critical ratio of 0.2
corresponds to five time steps in a period, while a phase error of 1=300 in a
step involves four time steps per period.

. Subcritical damping (i.e., zJ< 1), whether numerical or viscous, may triple
the critical time step for stability compared to the undamped case. But, for a
system whose frequencies span a large spectrum, in the high-frequency
modes numerical instability associated with extraneous roots is not neces-
sarily suppressed by subcritical damping, whether viscous or ‘‘numerical.’’

Of course, in large finite element systems there are many modes. Suppose the time
step is chosen for accuracy in the lower modes but is otherwise limited from below
by considerations of computational effort.

. Above the modes of interest, say the lowest 10, in a large finite element
system there likely are modes for which the time step ratio violates the AM
stability criteria if the time step is chosen for moderate computational effort.

. Newmark is A-stable. Even so high-frequency modes are still calculated
inaccurately in consequence of the high value of h=TK, K 	 J. Fortunately,
in lightly damped systems, at a slight cost in accuracy it is possible to
employ numerical damping to attenuate higher-order modes to remove the
inaccuracy in the Newmark method.

. But, as shown above, numerical damping does not appear to be capable of
removing the numerical instability in the AM method. Instead, it appears
necessary to remove the high-frequency content from the output by another
means, such as filtering.
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10.4.6 INTRODUCING NUMERICAL DAMPING INTO THE ADAMS–MOULTON

METHOD

Of course it may not be wise to insist that, in the absence of (physical) damping (i.e.,
‘‘marginal stability’’), the magnitude be preserved in each time step, even in the
lower modes. There is a risk that, owing to round-off or truncation errors, the
magnitude will grow slightly in a time step. Accordingly, in lightly damped elastic
systems there is good reason to introduce ‘‘numerical damping’’ (cf. Zienkiewicz and
Taylor, 1989), to ensure that no such growth can occur. A formulation for numerical
damping in AM is given below, to ensure that magnitude decay in one time step
occurs in fourth order.

In terms of the primary eigenvalue the AM formula is equivalent to the Pade
approximation (Nicholson and Lin, 2005)

1þ axþ bx2
� � � 1� xþ 1

2 x
2 � 1

6 x
3 þ 1

24 x
4

� �
1þ cxþ dx2
� �

(10:68)

in which the four coefficients a, b, c, d serve to enforce accuracy through fourth
order. Now exact agreement through h3 rather than h4 requires (i) h(1): a¼ c� 1,
(ii) h 2ð Þ: b ¼ d � cþ 1

2, (iii) h
3ð Þ: 0 ¼ �d þ 1

2 c� 1
6. We next require that the remain-

der at fourth order equal xh4, in which event (iv) x ¼ 1
2 d � 1

6 cþ 1
24. As will be seen,

the parameter x controls magnitude decay and is selected to represent ‘‘numerical
damping.’’ The coefficients a, b, c, d are now expressed in terms of x as

ið Þ a¼� 1
2þ 12x, iið Þ b¼ 1

12� 6x, iiið Þ c¼ 1
2þ 12x, ivð Þ d ¼ 1

12þ 6x (10:69)

We determine the effect of x on magnitude under undamped oscillation. The

amplitude decreases in a given step if
1� 1

2 � 12x
� �

ivhþ 1
12 � 6x
� �

ivhð Þ2
1þ 1

2 þ 12x
� �

ivhþ 1
12 þ 6x
� �

ivhð Þ2
�����

����� < 1,

which is equivalent to

0 < Aþ B

A ¼ 1
2 þ 12x
� �2

vhð Þ2� 1
2 � 12x
� �2

vhð Þ2

¼ vhð Þ224x
B ¼ 1� 1

12 þ 6x
� �

vhð Þ2
h i2

� 1� 1
12 � 6x
� �

vhð Þ2
h i2

¼ 2� 1
6 vhð Þ2

h i
�12x vhð Þ2
h i

(10:70)

Consequently, the magnitude decreases if

0 < Aþ B ¼ vhð Þ2 24x � 24x½ 
 þ 2x vhð Þ4¼ 2x vhð Þ4 (10:71)
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The numer ical value of the magnitud e decreas es in each time step by D mag given by

Dmag ¼ A þ B

1 þ 1
2 þ 12 x
� �

iv h þ 1
12 þ 6x
� �

i vhð Þ2
� ���� ��� � 2x vhð Þ4 þ d h5

� �  
(10 :72 )

in which the Tay lor approximat ion has again been used. The coef ficients in the
nu merical integrati on form ula, Equati on 10.58a throu gh 10.58f, are now modi fied to
sati sfy

b0 þ b 1 þ b2 þ b 3 ¼ 1 ( 10:73a)

a0 þ a1 þ a 2 þ a3 ¼ 0 : d (h (0) ) (10 : 73 b)

a1 þ 2a2 þ 3a3 � b0 � b1 � b 2 � b3 ¼ 0 : d (h) (10 :73 c)

7
12 a0 þ 1

12 a1 � 17
12 a2 � 47

12 a3 þ b1 þ 2b2 þ 3b3 ¼ 0 : d ( h2 ) (10 : 73 d)

� 5
12 a1 þ 1

6 a 2 þ 11
4 a 3 þ 7

12 b0 þ 1
12 b1 � 17

12 b2 � 47
12 b3 ¼ 0 : d ( h3 ) (10 :73 e)

49
144 a0 þ 13

144 a1 � 23
144 a2 þ 157

144 a3 þ 5
12 b 1 � 1

6 b2 � 11
4 b3 ¼ x : d ( h4 ) (10 :73f)

from which

a1

a2

a3

b1

b2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼

�3=4

3=4

1=12

1=2

1=2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ b0

9=2

� 3=2

� 1=2

1

� 2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ b3

3=2

�9 =2

5=2

� 2

1

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ

�3

�3

3

6

�6

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
x (10 :74 )

and
a0 ¼ �1=12 � 5=2b 0 þ 1

2 b3 þ 3x

Agai n c hoosing the AM values b0 ¼ 3=8, b3 ¼ 1=24, the coef ficient s are now

a0 ¼ �1 þ 3x , a1 ¼ 1 � 3x , a 2 ¼ �3x , a3 ¼ 3x , b1 ¼ 19
24 þ 6x , b2 ¼ � 5

24 � 6x

(10 :75 )

The desir ed numer ical integration formula, repres enting the AM formula, modi fied
to incorporate numerical damping, now emerges as

ynþ1 � yn þ 3x
1�3x (yn�1 � yn�2)

h
¼ 1

1� 3x
3
8
fnþ1 þ 19

24
þ 6x

	 

fn

�

� 5
24

þ 6x

	 

fn�1 þ 1

24
fn�2

�
(10:76)

Cle arly, if x is set equal to zero, the AM formula (Equatio n 10.61) is recover ed.
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To illust rate a ttractive values of x, suppos e that the J th mode is the highes t mode

for whi ch acc urate values are sought . Recall that ampl itude reduct ion is given by

2x ( vj h)
4 ¼ 2x 

�
2 p h
Tj

�4 � 3200 x 
�
h
Tj

�4
. To attain low atte nuation of this mode, for

examp le, for a magnitud e reduct ion of 1=10000 per time step at 10 steps per period,
we obtai n x � 3 3 10 � 4.
10.4.7 AMX: A DAMS –MOULTON METHOD A PPLIED TO SYSTEMS

WITH A CCELERATION

For an elastic syst em with visco us dampi ng, the conven tional finite elem ent equation
is writt en as

M €x þ D _x þ Kx ¼ f (t ) (10 : 77 )

in whic h, as usual , M , D , and K are the n 3 n mass, damping , and stiffnes s mat rices,
assumed positive de fi nite and symmet ric, x is the n 3 1 global displ aceme nt vector,
and f(t) is the n 3 1 force vector , whi ch is prescribed as a funct ion of time.

To attain a counterpart of the Newmark formula, Equation 10.77 is expressed in
state form as

M 0

0 I

" #
_x

x

( ):

þ D K

�I 0

" #
_x

x

( )
¼ f

0

( )
(10:78)

Equati on 10. 76 imp lies the subst itution s

_x

x

( ):

� 1
h

_xnþ1 � _xn þ 3x
1� 3x

( _xn�1 � _xn�2)

xnþ1 � xn þ 3x
1� 3x

(xn�1 � xn�2)

8>>><
>>>:

9>>>=
>>>;

_x

x

( )
�

3
8 _xnþ1 þ 19

24 þ 6x
� �

_xn � 5
24 þ 6x
� �

_xn�1 þ 1
24 _xn�2

3
8 xnþ1 þ 19

24 þ 6x
� �

xn � 5
24 þ 6x
� �

xn�1 þ 1
24 xn�2

( )

f

0

( )
� 1

1� 3x

3
8 fnþ1 þ 19

24 þ 6x
� �

fn � 5
24 þ 6x
� �

fn�1 þ 1
24 fn�2

0

( )
(10:79)

Obvious reorganization furnishes

1
h

M 0

0 I

" #
_xnþ1

xnþ1

( )
þ

3
8

1� 3x

D K

�I 0

" #
_xnþ1

xnþ1

( )
¼ rnþ1

snþ1

( )
(10:80)
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in which

rn þ 1

snþ 1

( )
¼ 1
h

M 0

0 I

" # _xn � 3x
1 � 3x 

( _xn � 1 � _xn� 2 )

xn � 3x
1 � 3x 

(xn � 1 � xn� 2 )

8>>><
>>>:

9>>>=
>>>;

þ 1
1 � 3x

D K

� I 0

" # � 19
24 þ 6x
� �

_xn þ 5
24 þ 6x
� �

_xn � 1 � 1
24 _xn � 2

� 19
24 þ 6x
� �

xn þ 5
24 þ 6x
� �

xn � 1 � 1
24 xn � 2

( )

þ 1
1 � 3x

3
8 f n þ 1 þ 19

24 þ 6x
� �

fn � 5
24 þ 6x
� �

fn� 1 þ 1
24 f n� 2

0

( )

(10 :81 )

Of course rnþ 1

snþ 1

� �
is k nown from the solution s at the previ ous time steps. Use of

the second block row in Equ ation 10.80 provi des the identi ficati on
_xn þ 1 ¼ 8

3 (1 � 3x ) 1
h xn þ 1 � s n þ 1
� �

. Upon subst itution in the first block row the
desir ed fourth-ord er counte rpart AM X of the Newm ark formula, modi fi ed to incor -
po rate numerical damping, is now

KD xnþ 1 ¼ 1
( 1 � 3x )

3h2

8
rn þ 1 þ 1

h 
M

8
3 
(1 � 3x ) þ 8

3 
D

� �
snþ 1

� �

KD ¼ M þ 3
8

h

1 � 3x 
D þ 3

8
h

1 � 3x

	 
2

K

(10 :82 )

So lution of the line ar syst em Equati on 10.8 2 may be accom plished by convent ional
fi nite element procedu res consisting of triangula rization of the posit ive de finite ,
symm etric, band ed dynam ic stiffnes s matrix KD , toget her with forward and back-
war d substitutio n. In fact, the effort to do so is exactl y the same as in the Newm ark
met hod.

10.4.8 C OMMENTS ON FILTERING TO R EMOVE HIGH -ORDER MODES

By being con fined to o ne step, the New mark an d other early met hods (Zienki ewicz
and Taylor, 1989) give rise only to the prima ry eigenv alue and avoid numerical
inst ability ensuing from extra neous eigenvalues . However , high- freque ncy modes
may sti ll be compu ted inaccu rately since h=TK becom es large when K > J . To ‘‘ attenu-
ate ’’ inaccu racy in high- freque ncy modes in one-st ep met hods, numer ical dampi ng
has often been introduced at a slight loss of accuracy , for examp le the Wil son-theta
met hod. We refer to such modi fied Newm ark met hods as near-second order .

The AMX method attains high accuracy in the lower modes with appreciably
larger and=or fewer time steps than in the Newmark method. However, in systems
with a broad eigenvalue spectrum, it appears wise to introduce a technique to remove
the potentially unstable high-frequency modes. Recall that subcritical damping,
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viscous or numerical, cannot be relied upon to obviate the numerical instability
associated with extraneous eigenvalues in AM. Fortunately, even in the presence
of transients, in the last two decades high-frequency mode removal has become
possible using filters based on the fast and discrete versions of the Wavelet transform
(cf. Kaplan, 2002; Bettayeb et al., 2004).

The classical Fourier transform introduces one parameter (the frequency) and
maps the time domain onto the frequency domain. The Fourier components are
globally regular functions such as sinusoids. The Wavelet transform has two param-
eters, which are scale and time, scale being similar to the reciprocal of the frequency.
Wavelets are locally regular functions.

In simple wavelet filters, the scale function represents a ‘‘low pass filter’’
covering the lower half of the frequency spectrum, while the wavelet function
represents a ‘‘high pass filter’’ covering the upper half of the spectrum (Bettayeb
et al., 2004). In the current context the discrete signal of interest corresponds to
displacement values computed during the last few time periods, assuming filtering
was applied prior to these periods. Doing so sets the present values of the modal
amplitudes to zero in the upper half of the spectrum. The reduced signal is then
reconstructed in the time domain. The filter is now again applied to the reconstructed
signal to partition it into low pass and high pass segments. The process is continued
until the reconstructed signal has a spectrum which (a) is in the stable range, and (b)
contains the highest natural frequency (mode) for which accurate computations are
sought (assuming (b) is compatible with (a)).
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11 Additional Topics in
Linear Thermoelastic
� 2008 by Taylor & Fra
Systems
Topics addressed in this chapter include linear conductive heat transfer, linear
thermoelasticity, incompressible elastic materials, elastic torsion, and buckling.
11.1 TRANSIENT CONDUCTIVE HEAT TRANSFER
IN LINEAR MEDIA

11.1.1 FINITE ELEMENT EQUATION

The governing equation for conductive heat transfer without heat sources in an
isotropic medium is

kr2T ¼ rce _T (11:1)

in which T is the (absolute) temperature, k is the thermal conductivity, and ce is
the coefficient of specific heat at constant strain. We invoke the interpolation model
T(t)�T0¼wT

T (x)FTu(t) in which u(t) is the vector of nodal temperatures (minus
T0), while wT

T (x) and FT are the thermal counterparts of wT(x) and F in mechanical
fields. Also application of the gradient leads to a relation of the formrT¼bT

T FT u(t),
and the finite element equation assumes the form

KTuþMT
_u ¼ �q(T) (11:2)

KT ¼
ð
FT

TbTkb
T
TFT dV , MT ¼

ð
FT

TwTrcew
T
TF

T
T dV

This equation is parabolic (first order in the time rates), and implies that the
temperature changes occur immediately at all points in the domain, but at smaller
initial rates away from where the heat is added. This contrasts with the hyperbolic
(second order in time rates) solid mechanics equations, in which information propa-
gates into the unperturbed medium as finite velocity waves, and in which oscillatory
response occurs in response to a perturbation.
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11.1.2 DIRECT INTEGRATION BY THE T RAPEZOIDAL R ULE

Equ ation 11.1 is alrea dy in state form since it is first order, and the trape zoidal rule
can be applied directly.

MT
unþ1 � un

h
þKT

unþ1 þ un
2

¼ � qnþ1 þ qn
2

(11:3)

from which

KDTunþ1 ¼ rnþ1 (11:4)

KDT ¼ MT þ h
2KTrnþ1 ¼ MTun � h

2KTun � h
2(qnþ1 þ qn)

For the assumed conditions the dynamic thermal stiffness matrix is positive definite
and for the current time step the foregoing equation can be solved in the same
manner as in the static counterpart, namely triangularization followed by forward
substitution.

11.1.3 MODAL ANALYSIS IN LINEAR THERMOELASTICITY

Modes are not of much interest in thermal problems since the modes are not
oscillatory or useful to visualize. However, the foregoing equation can still be
decomposed into independent single degree of freedom systems. First we note that
the thermal system is asymptotically stable. In particular, suppose the inhomo-
geneous term vanishes and that u at t¼ 0 does not vanish. Multiplying the foregoing
equation by uT and elementary manipulation furnishes that

d

dt

uTMTu

2

� �
¼ �uTKTu < 0 (11:5)

Clearly the product uTMT u decreases continuously. But it vanishes only if u
vanishes.

Next, to examine the modes assume a solution of the form u(t)¼ u0j exp(lj t).
The eigenvectors u0j satisfy

uT0jMTu0k ¼ mTj, j ¼ k

0, j 6¼ k
, uT0jKTu0k ¼ kTj, j ¼ k

0, j 6¼ k

��
(11:6)

and we call mTj and kTj the jth modal thermal mass and jth modal thermal stiffness.
We may also form the modal matrix Q¼ [u01 � � � u0n], and again

QTMTQ ¼

mTj 0 : : 0

0 mTj : : :
: : : : :
: : : : :
0 : : : :

2
66664

3
77775, QTKTQ ¼

kTj 0 : : 0

0 kTj : : :
: : : : :
: : : : :
0 : : : :

2
66664

3
77775 (11:7)
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Let j ¼ Q� 1u and g( t) ¼ QT q( t ). Pre- and post- multiplyin g Equation 11.2 with QT

and Q, respec tively, furnishes the decoupl ed equations

mTj
_jj þ kTj j j ¼ gj ( 11 : 8)

Supposi ng for conveni ence that gj is a const ant, the general solut ion is of the form

jj ( t ) ¼ j j 0 exp �
kTj
mTj

t

 !
þ
ðt
0
exp � kTj

mTj
t � tð Þ

 !
gj (t ) dt ( 11 : 9)

illustrati ng the monotoni cally decreas ing natur e of the free ( g ¼ 0) respon se. Now
there are n uncoupled single degrees of freedo m.
11.2 COUPLED LINEAR THERMOELASTICITY

11.2.1 F INITE E LEMENT E QUATION

The class ical theory of c oupled thermoel asticity accommodat es the fact that the
thermal and mecha nical fields are couple d. For isot ropic materials, assum ing that
temperat ure only affects the volume of an elem ent, the stress –strain relation is

Sij ¼ 2m Eij þ l(E kk � a (T � T 0 ))dij ( 11 : 10 )

in which a denotes the volumetric thermal expansion coefficient. The equilibrium

equation is repeated as @Sij
@xi

¼ r€uj . The Principle of Vi rtual Work (C hapter 5) implie s

that

ð
dEij 2mEij þ lEkkdij
� �

dV0 þ
ð
duir€ui dV0 � al

ð
dEij(T� T0)dij dV0 ¼

ð
ddujtj dS0

(11:11)

in which, as before, tj refers to the traction vector.
Now consider the interpolation models

u(x,t) ¼ NT(x)g(t), Eij ! e ¼ BT(x)g(t), T� T0 ¼ vT(x)u(t), rT ¼ BT
T (x)u(x)

(11:12)

in which e is the strain written in conventional finite element notation as a column
vector. As before, N is the shape function matrix, its thermal counterpart is v(x), B is
the strain–displacement matrix, and BT is its thermal counterpart. Now familiar
procedures furnish the finite element equation

M€g(t)þKg(t)� Su(t) ¼ f(t), S ¼ al

ð
BvT dV0 (11:13)
� 2008 by Taylor & Francis Group, LLC.



The quantity S may be called the thermomechanical stiffness matrix. If there are nm
displacement degrees of freedom and nt temperature degrees of freedom, the quan-
tities appearing in the equation have dimensions according to

M, K : nm�nm, g(t), f(t) : nm�1, S : nm�nt, u(t) : nt�1

We next address the thermal field. The energy balance equation, including coupling
to mechanical effects, is given by

kr2T ¼ rce _Tþ alT0 tr( _E) (11:14)

Application of the usual variational methods and interpolation models implies that

KTu(t)þMT
_u(t)þ T0S

T _g(t) ¼ �q, q ¼
ð
vn � q dS (11:15)

Now consider the special case in which T is constant. Then, at the global level,
u(t) ¼ �T0K

�1
T S

T _g(t). The thermal field is thus eliminated at the global level, giving
the new governing equation as

M€g(t)þ T0SK
�1
T ST _g(t)þKg(t) ¼ f(t) (11:16)

Conductive heat transfer is thereby seen to be analogous to damping. The thermo-
mechanical system is now asymptotically stable (positive effective damping) rather
than asymptotically marginally stable (no effective damping).

We next express the global equations in state form as

Q1 _zþQ2z ¼ f (11:17)

in which

Q1 ¼
M 0 0
0 K 0
0 0 MT=T0

2
4

3
5, z ¼

_g
g
u

0
@

1
A

Q2 ¼
0 K �S

�K 0 0
ST 0 KT=T0

2
4

3
5, f ¼

f
0

�q=T0

0
@

1
A

Clearly Equation 11.17 can be integrated numerically using the trapezoidal rule:

Q1 þ h
2Q2

� �
znþ1 ¼ Q1 � h

2Q2

� �
zn þ 1

2 fnþ1 þ fn½ � (11:18)

We consider asymptotic stability, for which purpose it is sufficient to take f¼ 0,
z(0)¼ z0. Upon pre-multiplying Equation 11.17 by zT, we obtain
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d

dt
1
2 z

TQ1z
� � ¼ �zTQ2z

¼ �zT 1
2 Q2 þQT

2

� �
z

¼ �uTKTu (11:19)

and zmust be real. Assuming that u 6¼ 0, it follows that z # 0, and hence the system is
asymptotically stable.

EXAMPLE 11.1

Find the exact solution for a circular rod of length L, radius r, mass density r, specific
heat ce, conductivity k, and cross-sectional area A¼pr2. The initial temperature is T0,
and the rod is built into a large wall at fixed temperature T0 (see Figure 11.1). However,
at time t¼ 0, the temperature T1 is imposed at x¼ L. Compare the exact solution to the
one- and two-element solutions. Note that for a one-element model

kA

L
u(L,t)þ rceAL

3
_u(L,t) ¼ �q(L)

SOLUTION

(i) Exact solution
The governing equation for conductive heat transfer in one dimension is given by

k
@2T

@x2
¼ rce

@T

@t

We seek to solve this equation using ‘‘Separation of Variables.’’ If a ¼ k=rce.

@2T

@x2
¼ 1

a

@T

@t

Now let T# ¼T� [T0þ x(T1�T0)=L]. Now @2T#

@x2 ¼ 1
a

@T#

@t , with

T#ð0Þ ¼ T#ðLÞ ¼ 0.
Next assume the spatial-temporal decomposition T#(x,t)¼X (x)T̂(t), with the

consequence that
FIG

� 2
X00

X
¼ 1

a

_̂
T

T̂
¼ �l2j , lj the jth eigenvalue

The function X(x) corresponding to lj is now denoted as Xj(x) and similarly for
Tj(t). The two functions satisfy
L

T0 T1, t > 0

r

URE 11.1 One-element thermal conductor.
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� 20
X00
j þ l2j Xj ¼ 0 ! Xj ¼ Aj cos(ljx)þ Bj sin(ljx)

T0
j þ al2j Tj ¼ 0 ! Tj ¼ Cj exp �al2j t

	 

in which Aj, Bj, and Cj remain to be determined. The eigenvalues satisfy
sin(ljL)¼ 0 which implies that lj¼ jp=L.

With Dj¼AjCj and Ej¼BjCj, the solution assumes the form

T x,tð Þ ¼
X
j

Dj cos( jpx=L)þ Ej sin( jpx=L)
� �

exp �aj2p2t=L
� �

þ T0 þ x(T1 � T0)

L

The initial condition T(x,0)¼T0 and standard application of the orthogonality
properties of the eigenfunctions (e.g., Hildebrand, 1976) cos( jpx=L) and
sin(jpx=L) permit determination of the coefficients Dj and Ej.

(ii) Finite element solution
For a thermal element with natural coordinates j¼�1 at x¼ xe, and j¼þ1 at
x¼ xeþ1,

fT
T ¼ ( 1 j ), FT ¼ 1 �1

1 1

� ��1

¼ 1
2

1 1
�1 1

� �

Also dx ¼ L
2 dj, and

d
dx ¼ 2

L
d
dj. Consequently, the thermal stiffness (conductance)

matrix is given by

KT ¼
ð
FT

TbTkb
T
TFT dV

¼ 1
4

1 �1

1 1

� � ðþ1

�1

2
L

0

1

� �
k
2
L
( 0 1 )A

L

2
dj

1 1

�1 1

� �

¼ kA

L

1 �1

�1 1

� �

Continuing, the thermal mass (capacitance) matrix is now

MT ¼
ð
FT

TwTrcew
T
TFT dV

¼ rAceL

8

1 �1

1 1

� � ðþ1

�1

1

j

� �
( 1 j ) dj

1 1

�1 1

� �

¼ rAceL

3

1 1=2

1=2 1

� �

(iia) One-element solution: conductor built on the right-hand side (rhs)
Here, the interpolation model is T�T0¼ xu(L,t)=L. Consequently, the thermal
stiffness and mass matrices degenerate to scalars:

KT ¼ kA

L
, MT ¼ rAceL

3
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Substitution into Equation 11.2 furnishes the one-element equation

kA

L
u(L,t)þ rceAL

3
_u(L,t) ¼ �q(L)

This equation is to be solved for u(L,t) with an assumed value of q(L) adjusted to
enforce the constraint T(L)¼T1.

(iib) Two-element solution
Now the length of each element is L=2, and so

KT ¼ kA

(L=2)
1 �1
�1 1

� �
, MT ¼ rAce(L=2)

3
1 1=2
1=2 1

� �

After simple manipulation the assembled global finite element equation emerges as

kA

(L=2)

1 �1 0

�1 2 �1

0 �1 1

2
64

3
75

u(0,t)

u(L=2,t)

u(L,t)

0
B@

1
CAþ rAce(L=2)

3

1 1=2 0

1=2 2 1=2

0 1=2 1

2
64

3
75

u(0,t)

u(L=2,t)

u(L,t)

0
B@

1
CA

:

¼
q(L)

0

�q(L)

0
B@

1
CA

But u(0,t)¼ 0, and in consequence

kA

(L=2)

2 �1

�1 1

� �
u(L=2,t)

u(L,t)

� �
þ rAce(L=2)

3

2 1=2

1=2 1

� �
u(L=2,t)

u(L,t)

� �:

¼ 0

�q(L)

� �

as expected.

11.2.2 THERMOELASTICITY IN AN ELASTIC CONDUCTOR

Consider a thermoelastic rod which is built into a large rigid, nonconducting tempera-
ture reservoir at x¼ 0. The force f0 and heat flux�q0 are prescribed at x¼ L. A single
element is used to model the rod. Now

u(x,t)¼ xg(t)=L, E(x,t)¼ g(t)=L, T�T0 ¼ xu(t)=L, dT=dx¼ u(t)=L (11:20)

The thermoelastic stiffness matrix becomes S ¼ al
Ð
BvTdV ! S ¼ alA=2. The

governing equations are now

rAL

3
€g þ EA

L
g � 1

2
alAu ¼ f0

1
T0

rceAL

3
_uþ 1

T0

kA

L
uþ 1

2
alA _g ¼ �q0

(11:21)

EXAMPLE 11.2

State the equations of a thermoelastic medium in state form.
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SOLUTION

The equations of a thermoelastic medium are:

M€g(t)þKg(t)� Su(t) ¼ f(t)

1
T0

KTu(t)þ 1
T0

MT
_u(t)þ ST _g(t) ¼ � 1

T0
q

M ! rAL

3
, K ! EA

L
, KT ! kA

L
, MT ! rceAL

3
, S ¼ laA

2

On converting state form using p¼ _g, we have

M 0 0

0 K 0

0 0 MT=T0

2
64

3
75

p

g

u

0
B@

1
CA

:

þ
0 K �S

�K 0 0

ST 0 KT=T0

2
64

3
75

p

g

u

0
B@

1
CA ¼

f

0

�q=T0

0
B@

1
CA

If the trapezoidal rule with timestep h is applied, an algebraic equation arises in which
appears the dynamic thermoelastic stiffness matrix

KDT ¼
M h

2K � h
2S

� h
2K K 0

h
2S

T 0T KT

2
64

3
75

Some manipulation serves to verify that KDT satisfies the triangularization

KDT ¼
M1=2 0T

� h

2

KM�1=2

�STM�1=2

" #
K 0

0T KT

" #
þ h2

4

KM�1=2

STM�1=2

" #
M�1=2K �M�1=2S
� �

2
664

3
775

� M1=2 h

2
M�1=2K �M�1=2S
� �

0T I

2
4

3
5

11.3 INCOMPRESSIBLE ELASTIC MEDIA

Rubber and polymer-based plastics, as well as biological tissue, frequently exemplify
the internal constraint of incompressibility.

For a compressible elastic material, the isotropic stress Skk and the volume
(dilatational) strain Ekk are related by Skk¼ 3kEkk, in which k¼E=[3(1�2v)] is
recognized as the bulk modulus. Clearly, as v!1=2, the (hydrostatic) pressure
p¼�Skk=3 needed to attain a finite compressive volume strain (Ekk< 0) becomes
infinite using elastic relations in their current form. However, we will see that this
difficulty is avoided by correctly incorporating incompressibility through a limiting
process as v! 1=2.

Consider the case of plane strain implying that Ezz¼ 0. The tangent modulus
matrix D is now readily found as
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Sxx

Syy

Szz

0
B@

1
CA¼ D

Exx

Eyy

Ezz

0
B@

1
CA, D ¼ E

(1þ v)(1� 2v)

1� v2 �v(1þ v) 0

�v(1þ v) 1� v2 0

0 0 1� 2v

2
64

3
75

(11:22)

Clearly, in the current form D becomes unbounded as v! 1=2. Further, suppose that
for a material through to be nearly incompressible v is estimated as 0.495 while the
correct value is 0.49. It might be supposed that the estimated value is a good
approximation for the correct value. However, for the correct value (1�2v)�1¼ 50,
but for the estimated value (1�2v)�1¼ 100, implying 100% error.

The problem of unbounded magnitude is addressed as follows. In an incompress-
ible material a pressure field p(x) arises which serves to enforce the incompressibility
constraint. Since the trace of the strains vanishes everywhere, the strains are not
sufficient to determine the stresses. However, the strains together with the
pressure are sufficient. In FEA, a general interpolation model is used at the outset
for the displacement field. Another interpolation model must be introduced for the
pressure field. Owing to the fact that pressures are stress variables, the order of the
interpolation should be one degree lower than for the displacement interpolation
model (Hughes, 2000). The Principle of Virtual Work is now expressed in terms of
the displacements and pressure, and an adjoining equation is introduced to enforce the
incompressibility constraint a posteriori. The pressure may be shown to serve as a
Lagrange multiplier, in which event the displacement vector and the pressure are
varied independently.

In incompressible materials, to preserve finite stresses we suppose that the
second Lamé coefficient satisfies l!1 as tr(E)! 0, in such a way that the
product is an indeterminate quantity denoted by p:

l tr(E) ! �p(x,t) (11:23)

The Lamé form of the elastic constitutive relations is replaced by

Sij ¼ 2mEij � pdij (11:24)

together with the incompressibility constraint Eij dij¼ 0. There now are two independent
principal strains and the pressure with which to determine the three principal stresses.

In a compressible elastic material the strain energy function w satisfies Sij ¼ @w
@Eij

,
and the domain term in the Principle of Virtual Work may be rewritten asÐ
dEijSij dV¼ Ðdw dV . The elastic strain energy is given by w ¼ mEijEij þ l

2E
2
kk.

For reasons to be seen shortly, we introduce the augmented strain energy function

w0 ¼ mEijEij � pEkk (11:25)

and assume the variational principleð
dw0 dV0 þ

ð
duTr€u dV0 ¼

ð
duT t dS0 (11:26)

Now considering u and p to vary independently, the integrand of the first term
becomes dw0 ¼ dEij[2mEij� pdij]� dpEkk, furnishing two variational relations
� 2008 by Taylor & Francis Group, LLC.



ð
tr dESð Þ dV0 þ

ð
duTr€u dV0 ¼

ð
duT t dS0 (11:27a)ð

dpEkk dV0 ¼ 0 (11:27b)

The first relation may be recognized as a counterpart the Principle of Virtual Work
(variational principle for the displacement field), and the second equation serves to
enforce the internal constraint of incompressibility (variational principle for the
pressure field).

Next introduce the interpolation models

u ¼ NT (x)g(t), e ¼ BT (x)g(t)

Ekk ¼ bT (x)g(t), p(x,t) ¼ jT (x)p(t)
(11:28)

Substitution serves to derive that

M€g(t)þKg(t)� Sp(t) ¼ f(t)

S ¼
ð
bjTdV0, STg(t) ¼ 0

(11:29)

Assuming these equations apply at the global level, state form is expressed as

M 0 0
0 K 0
0T 0T 0

2
4

3
5 d

dt

_g(t)
g(t)
p(t)

0
@

1
Aþ

M K �S
�K 0 0
ST 0T 0

2
4

3
5 _g(t)

g(t)
p(t)

0
@

1
A ¼

f(t)
0
0

0
@

1
A (11:30)

The second matrix is antisymmetric except for the upper left-hand diagonal term.
Further, the system exhibits marginal asymptotic stability; namely, if f(t)¼ 0 while
_g(0), g(0), and p(0) do not all vanish, then

d

dt

1
2

_gT (t) gT (t) pT (t)
� � M 0 0

0 K 0
0T 0T 0

2
4

3
5 _g(t)

g(t)
p(t)

0
@

1
A

2
4

3
5¼ 0 (11:31)

EXAMPLE 11.3

Put the following equations in state form, apply the trapezoidal rule, and triangularize
the ensuing dynamic stiffness matrix assuming that the triangular factors of M and K
are known.

M€gþKg� Sp ¼ f, STg ¼ 0

SOLUTION

The given equations are expressed in state form as follows:

M 0 0
0 K 0
0 0 0

2
4

3
5 _g(t)

g(t)
p(t)

0
@

1
A:þ M K �S

�K 0 0
0 ST 0

2
4

3
5 _g(t)

g(t)
p(t)

0
@

1
A ¼

f(t)
0
0

0
@

1
A
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� 2
Using the trapezoidal rule and p¼ _g gives

M 0 0

0 K 0

0 0 0

2
664

3
775

1
h (pnþ1�pn)

1
h (gnþ1�gn)

1
h (pnþ1�pn)

0
BBB@

1
CCCAþ

M K �S

�K 0 0

0 ST 0

2
664

3
775

1
2 (pnþ1þpn)

1
2 (gnþ1þgn)

1
2 (pnþ1þpn)

0
BBB@

1
CCCA¼

1
2 (fnþ1þ fn)

0

0

0
BB@

1
CCA

The second row implies that pnþ1 ¼ 2
h (gnþ1 � gn)� pn. Thence the first row becomes

1
hM

2
h (gnþ1 � gn)� 2pn
� �þ 1

2K(gnþ1 þ gn)� 1
2S(pnþ1 þ pn) ¼ 1

2 (fnþ1 þ fn)

Multiplying throughout by h2=2 and rearranging results in

Mþ h2

4 K
h i

gnþ1 � h2

4 Spnþ1 ¼ h2

4 fnþ1 þ fn �Kgn þSpn½ � þM gn þ hpn½ � (11:32a)

The third row, after multiplying by h2=2, becomes

h2

4 S
Tgnþ1 ¼ � h2

4 S
Tgn (11:32b)

The equations are restated in vector–matrix notation as

Mþ h2

4 K � h2

4 S

h2

4 S
T 0

" #
gnþ1

pnþ1

 !
¼

gnþ1

� h2

4 S
Tgn

 !

in which

gnþ1 ¼
h2

4
fnþ1 þ fn �Kgn þ Spn½ � þM gn þ hpn½ �

The dynamic stiffness matrix now is

KD ¼
Mþ h2

4 K � h2

4 S

h2

4 S
T 0

" #

Next, KD is decomposed into a product of a lower triangular and an upper triangular
matrix. We first write

Mþ h2

4 K � h2

4 S

h2

4 S
T 0

" #
¼ L11 0

L21 L22

" #
U11 U12

0 U22

" #

Setting U11 ¼ LT
11, and L22¼ I gives

L11L
T
11 ¼ Mþ h2

4
K

which may be triangularized to find L11 since, the triangular factors of M and K are
known. Further
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U12 ¼ � h2

4
L�1
11 S

L21 ¼ h2

4
STL�T

11

U22 ¼ �L21U12 ¼ h4

16
ST

L�T
11 L

�1
11 S

Accordingly, the triangularization is expressed as

KD ¼ LU ¼
L11 0

h2

4 S
TL�T

11 I

" #
LT
11 � h2

4 L
�1
11 S

0 h4

16S
TL�T

11 L
�1
11 S

2
4

3
5

EXAMPLE 11.4

In an element of an incompressible square rod of cross-sectional area A, it is necessary
to consider the displacements v and w. Suppose the length is L, the lateral dimension is
Y, and the interpolation models are linear for the displacements (u linear in x, with v, w
linear in y) and constant for the pressure. Show that the finite element equation assumes
the form

2mA=L 0 �A
0 4mAL=Y2 �2AL=Y
A 2AL=Y 0

2
4

3
5 u(L)

v(Y)
p

0
@

1
A ¼

f
0
0

0
@

1
A

and that this implies the relation 3m u(L)
L ¼ f .

SOLUTION

The interpolation models are given by

u ¼ x

L
u(L), v ¼ w ¼ y

Y
v(Y)

Now consider the virtual work term for virtual strain energy.ð
d«ij2m«ij dV ¼ 2mALd«ij«ij

¼ 2mAL d«xx«xx þ d«yy«yy þ d«zz«zz
� �

¼ 2mAL
du(L)

L

u(L)

L
þ 2

dv(Y)

Y

v(Y)

Y

� �

¼ 2mAL(du(L) dv(Y))
1=L2 0

0 2=Y2

" #
u(L)

v(Y)

 !

But
Ð
d«ij2m«ij dV ¼ dgTKg. Accordingly, the foregoing equation implies

g ¼ u(L)
v(Y)

� �
, K ¼ 2mA=L 0

0 4mAL=Y2

� �
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� 2
Next ð
d«kk p dV ¼ ALp

du (L )

L
þ 2

dv( Y )

Y

� �
¼ ( du( L) , dv( Y ))AL

u( L)
v( Y )

� �
p

But,
Ð
d«kk p dV ¼ dgT S p. Also, if we assume that p is a constant, we have

p ¼ p, S ¼ A
2AL =Y

� �

After neglecting the inertia term in Equation 11.29, the equations of interest become

Kg� Sp ¼ f, STg ¼ 0

Use of state form furnishes

K �S
ST 0

� �
g
p

� �
¼ f

0

� �

Accordingly

2mA=L 0 �A
0 4mAL=Y2 �2AL=Y
A 2AL=Y 0

2
4

3
5 u(L)

v(Y)
p

0
@

1
A ¼

f
0
0

0
@

1
A

The foregoing matrix product is equivalent to the three relations

2mA
L

u(L)� Ap ¼ f (11:33a)

4mAL
Y2

v(Y)� 2AL
Y

p ¼ 0 (11:33b)

Au(L)þ 2AL
Y

v(Y) ¼ 0 (11:34)

Multiplying Equation 11.34 by 2m
Y gives rise to

2mA
Y

u(L)þ 4mAL
Y2

v(Y) ¼ 0 (11:35)

Next subtract Equation 11.35 from Equation 11.33b.

u(L)þ 2AL
Y

p ¼ 0, p ¼ �m

L
u(L)

Substituting the last expression in Equation 11.34 now produces the relation

3mA
u(L)

L
¼ f

This agrees exactly with the uniaxial result EA u(L)
L ¼ f in the incompressible case

since n¼ 1=2 and m¼E=2(1þ n).
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11.4 TORSION OF PRISMATIC BARS

11.4.1 B ASIC R ELATIONS

Figure 11.2 illust rates a mem ber experi encing torsion. The mem ber in this case is
cyli ndric al with lengt h L and radius r0. The base is fixed an d a torque is applied at the
top surfa ce which causes the member to twist. The tw ist at height z is u(z), and at
height L it is u0.

Ordinarily, in finite elem ent problems so far consi dered, the displacem ent is the
basic u nknown. It is approximat ed by an inte rpolation model , from which an
app roximation for the stra in tenso r is obtai ned. The n an approxi mation for the stress
tenso r is obtai ned using the stress –strain relat ions. The nodal displacem ents are then
solve d by an equil ibrium principle , in the form o f the Principle of Virtua l Work. In
the curren t probl em an alternative path is follow ed, in which the stress tensor, or
more preci sely a stress potential , is the unknown. The strains are deter mined from
the stresses. However , for arbitrary stre sses sati sfying equilibri um the strain field
may not be compa tible, enabli ng it to determin e a displacem ent field which is
un ique to within a rigid body translat ion and rotation. The compa tibility condition
(cf. Cha pter 5) is now enforc ed, furni shing a parti al diff erential equation know n as
the Poiss on equation. A variation al argum ent is applied to furnish a finite element
exp ression for the torsional const ant of the secti on.

For the mem ber be fore twist , consider points X and Y at angle f and at
radia l position r . Clearl y, X ¼ r cos f and Y ¼ r sin f . Twis t induce s a rotation
throu gh angle u( z) but it does not affect the radia l posit ion of a given point .
Now x ¼ r cos ( f þ u), y ¼ r sin ( f þ u). Use of double angle formulae furnishes
the displacements, and restriction to small angles u furnishes, to first order,
Section before twist

Section after twist

T

L

r
0

z

z

x

x

y

f

q

q0

FIGURE 11.2 Twist of a prismatic rod.
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u ¼ �Yu, v ¼ Xu (11:36)

It is also assumed that torsion does not increase the length of the member, which is
attained by requiring that w only depends on X and Y. The quantity w(X,Y) is called
the warping function.

Elementary manipulation serves to verify that all strains vanish except Exz and
Eyz, for which

Exz ¼ 1
2

@w

@x
� y

@u

@z

� �
, Eyz ¼ 1

2
@w

@y
þ x

@u

@z

� �
(11:37)

Equilibrium requires that

@Sxz
@x

þ @Syz
@y

¼ 0 (11:38)

with all other stresses vanishing owing to the assumed displacement field. The
equilibrium relation may be identically satisfied by a potential function c for which

Sxz ¼ @c

@y
, Syz ¼ � @c

@x
(11:39)

It remains to satisfy the compatibility condition, to ensure that the strain field arises
from a displacement field which is unique to within a rigid body translation and
rotation. (Compatibility is automatically satisfied if the displacements are considered
the unknowns and are approximated by a continuous interpolation model. Here the
stresses are the unknowns.) From the stress–strain relation

Exz ¼ 1
2m

Sxz ¼ 1
2m

@c

@y
, Eyz ¼ 1

2m
Syz ¼ � 1

2m
@c

@x
(11:40)

Compatibility (integrability) now requires that @2w
@x @y ¼ @2w

@y @x, from which

� @

@y

1
2m

@c

@y
þ 1
2
y
du

dz

� �
þ @

@x
� 1
2m

@c

@x
� 1
2
x
du

dz

� �
¼ 0 (11:41)

furnishing Poisson’s equation for the potential function c:

@2c

@x2
þ @2c

@y2
¼ �2m

du

dz
(11:42)

For boundary conditions, it is assumed that the lateral boundaries of the member are
traction free. Now the assumed displacement fields already imply that tx¼ 0 and
ty¼ 0 on the lateral boundary S. For traction tz to vanish requires that
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tz ¼ nxSxz þ nySyz ¼ 0 on S (11:43)

Upon examining Figure 11.3 it may be seen that nx¼ dy=ds and ny¼�dx=ds, with s
the arc length along the boundary at z. Consequently,

tz ¼ dy

ds
Sxz � dx

ds
Syz

¼ dy

ds

@c

@y
þ dx

ds

@c

@x

¼ dc

ds
(11:44)

Now dc
ds ¼ 0 on S, and therefore c is a constant on S, and it may, in general, be taken

as zero. Since c is elsewhere the unknown, the vanishing values on the exterior
boundary are analogous to constraints in conventional displacement-based problems.

We next consider the tota l torqu e T on the member. Figure 11.4 depict s the cross
section at z in which the torque dT on the element at x and y is given by

dT ¼ xSyz dx dy� ySxz dx dy

¼ �x
dc

dx
� y

dc

dy

� �
dx dy (11:45)

Integration furnishes

T ¼ �
ð
x
dc

dx
þ y

dc

dy

� �
dx dy

¼ �
ð

d(xc)

dx
þ d(yc)

dy

� �
� c

dx

dx
þ dy

dy

� �� �
dx dy

¼ �
ð
r � xc

yc

� �
dx dyþ 2

ð
c dx dy (11:46)
dy

dy

ds
n

z

nx = cos χ = dy/ds

ny = sin χ = dx/ds

–dx

y

y

FIGURE 11.3 Illustration of geometric relation.
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x

dx

y

y

z

x

dy

Syz

Sxz

FIGURE 11.4 Evaluation of twisting moment.
Application of the divergence theorem to the first term leads to
Ð
c xnx þ yny
� �

ds,
which vanishes since c vanishes on S. Finally

T ¼ 2
ð
c dx dy (11:47)

We now apply variational methods to the Poisson equation, considering the stress
potential function c to be the unknown.

ð
dc r � rcþ 2mu0½ � dx dy ¼ 0 (11:48)

in which u0 ¼ du=dx. Integration by parts, use of the divergence theorem and
imposition of the ‘‘constraint’’ c¼ 0 on S furnishesð

rdcð Þ � rc dx dy ¼
ð
dc2mu0dx dy (11:49)

The integrals are to be evaluated over a set of small elements. In the eth element
approximate c as vTc(x,y)Cehe in which vw is a vector with dimension (number of
rows) equal to the number of nonvanishing nodal values of c. The gradientrc has a
corresponding (derived) interpolation model rc ¼ bT

c(x,y)Cehe, in which bw is a
matrix. The finite element counterpart of the Poisson equation at the element level
now is written as

K(e)
c he ¼ 2mu0f(e)c (11:50)

K(e)
c ¼ CT

e

ð
bcb

T
c dx dyCe, f (e)c ¼ CT

e

ð
vc(x,y) dx dy
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and the stiffness matrix should be nonsingular since the constraint c¼ 0 on S has
already been used. It follows that, globally, hg¼2mu0K(g)�1

c f (g)c . Next, the torque
satisfies

T ¼
ð
2c dx dy

¼ 2hT
g f

(g)
c

¼ 4mu0f(g)Tc K(g)�1
c f (g)c (11:51)

In the theory of torsion it is common to introduce the torsional constant J for which
T¼mJu0. It follows immediately that J¼ 4fc

(g)T Kc
(g)�1 fc

(g).
EXAMPLE 11.5

Figure 11.5 depicts a single triangular element in the cross section of a shaft experien-
cing torsion. Assuming the interpolation model

c(x,y) ¼ ( 1 x y )
1 x1 y1
1 x2 y2
1 x3 y3

2
4

3
5
�1

c1

c2

c3

0
@

1
A

find Kc, fc, and the torsional constant J for this element.
y

x

(2,3)

(3,2)

(1,1)

FIGURE 11.5 Triangular element in shaft cross section.
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SOLUTION

Here

vTT (x,y) ¼ ( 1 x y )

C ¼
1 x1 y1
1 x2 y2
1 x3 y3

2
64

3
75
�1

¼
1 1 1

1 3 2

1 2 3

2
64

3
75
�1

¼ 1
3

5 �1 �1

�1 2 �1

�1 �1 2

2
64

3
75

h ¼
c1

c2
c3

0
@

1
A, bT

T ¼ rvTT (x,y) ¼
0 1 0
0 0 1

� �

Also

KT ¼ CT
ð
bTb

T
T dx dyC

¼ 1
9

5 �1 �1

�1 2 �1

�1 �1 2

2
64

3
75

0 0 0

0 1 0

0 0 1

2
64

3
75 ðdx dy

5 �1 �1

�1 2 �1

�1 �1 2

2
64

3
75

But

ð
dx dy ¼ 1

2
det

1 x1 y1
1 x2 y2
1 x3 y3














 ¼ Area of the triangle ¼ 3

2

Consequently,

KT ¼ 1
6

2 �1 �1
�1 5 �4
�1 �4 5

2
4

3
5

Further,

fc ¼ CT
ð
vc(x,y) dx dy ¼ 1

3

5 �1 �1
�1 2 �1
�1 �1 2

2
4

3
5ð 1

x
y

0
@

1
Adx dy

and

ð
x dx dy ¼

ð
(x� x0 þ x0) dx dy

in which (x0,y0) is the centroid of the triangle and is given by

x0 ¼ x1 þ x2 þ x3
3

¼ 2, y0 ¼ y1 þ y2 þ y3
3

¼ 2
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Continuing,

ð
(x� x0) dx0 dy0 ¼ 0, and

ð
dx0 dy0 ¼ Area of the triangle ¼ 3

2

Finally
Ð
x dx dy ¼ 3,

Ð
y dx dy ¼ 3, and

fT ¼ 1
2

1
1
1

0
@

1
A

The torsional constant J for the element is now found to be given by

J ¼ 4fTcK
�1
c fc

¼ 0:6

EXAMPLE 11.6

Find the torsional constant in the circular shaft shown below using four axisymmetric
elements, as depicted in Figure 11.6.

SOLUTION

Since the configuration is axisymmetric and the constraints c2¼c3¼c4¼c5¼ 0 are
enforced a priori, the linear interpolation model in each element is the same and may be
taken as

c(r) ¼ r0 � r

r0
c1

We conclude that

vw ! r0 � r, Cw ¼ 1
r0
, hw ¼ c1, r ¼ d

dr
, bw ¼ �1:
x
c

3

2 41

5

y

r

r0

4 3

21

FIGURE 11.6 Torsional constant of a circular shaft.
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Simple manipulation yields K(g)
w ¼ p and f (g)w ¼ 1

r0

Ð
(r0 � r)r dr dx ¼ pr20

3 , from which

J ¼ 4f (g)Tw K(g)�1
w f(g)w

¼ 4
9pr

4
0

The exact answer is J ¼ 1
2pr

4
0, so that the one degree of freedom finite element model is

accurate to within 10%.

11.5 BUCKLING OF ELASTIC BEAMS AND PLATES

11.5.1 EULER BUCKLING OF BEAM COLUMNS

11.5.1.1 Static Buckling

Under in-plane compressive loads, the resistance of a thin member (beam or plate)
can be reduced progressively, culminating in buckling. There are two equilibrium
states that the member potentially can sustain—compression only, or compression
with bending. The member will ‘‘snap’’ to the second state if it involves less
‘‘potential energy’’ than the first state. The notions explaining buckling are addressed
in detail in subsequent sections. For present purposes we focus on beams and plates,
using classical equations in which, by retaining lowest order ‘‘linearized’’ corrections
for geometric nonlinearity, in-plane compressive forces appear.

For the beam shown in Figure 11.7, the classical Euler buckling equation is

EIwiv þ Pw00 þ rA€w ¼ 0 (11:52)

and P is the axial compressive force. The interpolation model for w(x) has the form
w(x)¼wT(x)Fg. Following the usual variational procedures (integration by parts)
furnishes

ð
dwrA€w dx ! dgTM€g, M ¼ FT

ð
f(x)rAfT (x) dV F (11:53)

ð
dw EIwiv þ Pw00� �

dx ¼
ð
dw00EIw00 dx�

ð
dw0Pw0 dx

� (dw)(�Pw0 � EIw000)½ �L0� (�dw0)(�EIw00)½ �L0
x
P

z
y

M0

Q0E, I, A, L, ρ

FIGURE 11.7 Euler buckling of a beam column.
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At x ¼ 0, both dw and � dw0  vanish. Note that the shear force V and the bendin g
mom ent M are identi fied as V ¼�E Iw 

0 0 0  
and M ¼�E Iw ’’ . The ‘‘effect ive shear

force ’’ Q is de fined as Q ¼�Pw 0 � E Iw 
0 0 0  
.

For the speci fic case illustrated in Figure 11.7, for a one -element model we may
use the interpolation model

w( x ) ¼ x 2 x 3
� � L2 L3

�2L � 3L2

� ��1 

g( t), g (t ) ¼ 
w( L)

�w 0  ( L)

� �
(11:54)

As seen in Exampl e 11.7, the mass matrix is shown after some algebra to be

M ¼ rALK0, K̂0 ¼
13
35

11
210 L

11
210 L

1
105 L

2

" #  

(11 :55)

Simi larly, 

ð 
dw0  Pw0 dx ¼ dgT P

L
K̂1 g, K̂ 1 ¼

6
5

1
10 L

1
10 L

2
15 L

2

2
4

3
5

ð 
dw00  E Iw 00  dx ¼ dgT E I

L3
K̂2 g, K̂2 ¼

12 6L

6L 4L2

" # (11 :56 )

The governing equation is written in finite element form as

E I
L3

K̂ 2 � P

L
K̂1

� �
g þ r ALK 0 €g ¼ f, f ¼ Q 0

M 0

� �  

(11 :57 )

In a static p roblem, €g¼ 0 in which case the solution has the form

g ¼
cof K̂2 � PL 2

EI K̂1

	 

det K̂2 � PL2

EI K̂1
� � f (11:58 )

in which cof( � ) denote s the cofactor matrix, and clearly g!1 for values of PL2

EI

whi ch render det
�
K̂2 � PL 2

EI K̂1
� ¼ 0.

11. 5.1.2 Dynamic Buck ling

In a dynam ic probl em, it may be of inte rest to deter mine the effect of P on the
resona nce freque ncy. Supp ose that f (t) ¼ f 0 exp(i vt), in which f 0 is a known vector .
The displacement function satisfies g(t)¼g0 exp(ivt), in which the amplitude vector
g0 satisfies
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EI
L3

K̂2 � P

L
K̂1 � v2rALK̂0

� �
g0 ¼ f0 (11:59)

Resonance occurs at a frequency v0 for which

det
EI
L3

K̂2 � P

L
K̂1 � v2

0rALK̂0

� �
¼ 0 (11:60)

Clearly, v0
2 is an eigenvalue (often the minimum) of the matrix 1

rAL K̂
�1=2
0

EI
L3 K̂2 � P

L K̂1
� �

K̂
�1=2
0 . The resonance frequency v2

0 is reduced by the presence of P
and vanishes precisely at the critical value of P.
EXAMPLE 11.7

Derive the matrices K̂0, K̂1, K̂2 for a cantilevered beam modeled as one element.

SOLUTION

Enforcing the clamped constraints a priori, the interpolation model is

wT (x) ¼ (x2 x3), F ¼ L2 L3

�2L �3L2

� ��1

¼ 1
L3

3L L2

�2 �L

� �

The mass matrix satisfies

M ¼ FT
ð
w(x)rAwT (x) dx F

¼ 1
L6

3L �2

L2 �L

" # ðL
0

x2

x3

0
@

1
ArA( x2 x3 ) dx

3L L2

�2 �L

2
4

3
5

¼ rAL

13
35

11
210L

11
210L

1
105 L

2

2
4

3
5

But M¼ rALK̂0, and so

K̂0 ¼
13
35

11
210L

11
210L

1
105 L

2

" #

Continuing,

w0 ¼ bTFg, bT ¼ @=@x wT (x) ¼ (2x 3x2)
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ð
dw0Pw0 dx ¼ dgTFT

ð
bPbT dx Fg

¼ dgT P

L6

3L �2

L2 �L

" # ðL
0

2x

3x2

 !
2x 3x2
� �

dx
3L L2

�2 �L

" #
g

¼ dgT P

L

6
5

1
10L

1
10 L

2
15L

2

" #
g

But since
Ð
dw0Pw0 dx ¼ dgT P

L K̂1g, we conclude that

K̂1 ¼
6
5

1
10 L

1
10L

2
15 L

2

" #

Finally,

ð
dw00EIw00 dx ¼ dgTFT

ðL
0

2

6x

 !
EI( 2 6x ) dxFg

¼ dgT EI
L6

3L �2

L2 �L

" #
4L 6L2

6L2 12L3

" #
3L L2

�2 �L

" #
g

¼ dgT EI
L3

12 6L

6L 4L2

" #
g

But
Ð
dw00EIw00 dx ¼ dgT EI

L3 K̂2g, from which

K̂2 ¼
12 6L

6L 4L2

� �
EXAMPLE 11.8

Determine the two buckling load of a cantilevered beam modeled as one element.

SOLUTION

The two critical values can be obtained using det
�
K̂2 � PL2

EI K̂1

� ¼ 0, leading to

det
12� 6

5 j 6� 1
10 j

� �
L

6� 1
10 j

� �
L 4� 2

15 j
� �

L2

" #
¼ 0, j ¼ PL2

EI

and so

12� 6
5 j

� �
4� 2

15 j
� �

L2 � 6� 1
10 j

� �2
L2 ¼ 0
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On solving the above equation, we have j ¼ 2.49, 32.18, with the corresponding
critical values

P ¼ 2:49
EI
L2 

, 32: 18
E I
L 2

The lower value of the coeffi cient of E I=L is very close to the exact value of p2=4, but
the higher value is not very close to the exact value, given by 9p2=4 ¼ 22.2.

EXAMPLE 11.9

Interpretation of Buckling Modes
Next consider static buckling of a clamped–clamped beam as shown in Figure 11.8.
If we impose clamped constraints from both the left and right equations, the first and

second elements contribute the following stiffness matrices, using notation introduced
in Chapter 7.

K(1)
22 ¼ 8EI

L3
12 3L
3L L2

� �
, K(2)

11 ¼ EI
l3e

12 �3L
�3L L2

� �

�K(1)
22 ¼ � 2P

L
6=5 L=20
L=20 L2=30

� �
, �K(1)

11 ¼ � 2P
L

6=5 �L=20
�L=20 L2=30

� �

The assembled stiffness matrix is now obtained by direct addition:

K ¼ K(1)
22 þK(2)

11 � K(1)
22 þK(2)

11

� �
¼ 8EI

L3
24 0
0 2L2

� �
� 2P

L
12=5 0
0 L2=30

� �

and the load–deflection relation is

"
8EI
L3

24 0
0 L2

� �
� 2P

L
12=5 0
0 L2=30

� �#
w2

�w0
2

� �
¼ V2

M2

� �

The two critical buckling loads can be obained analytically since the two buckling
modes are uncoupled.

P1L2

EI
¼ 40 � 4p2,

P2L2

EI
¼ 120 � 12p2
L L

M0

V0

P

FIGURE 11.8 Buckling of a clamped–clamped beam.

� 2008 by Taylor & Francis Group, LLC.



� 20
Note that the two element values of the critical load correspond to the symmetric and
antisymmetric behaviors. (i) In particular, if M0 ¼ 0 there is only one critical load and it
is P1. Furthermore, w 02 ¼ 0 and w(L=2 � z ) ¼ w (L=2 þ z ). Alternatively stated, the
deformation is symmetric about L=2. (ii) However, if V0 ¼ 0, there is only one critical
load and it is P2. In this case, w2 ¼ 0 and w (L=2 � z ) ¼�w (L=2 þ z ). This of course
represents antisymmetry .

Returning to the main development, but referring to Figure 11.8, we now compare
the finite element approach with the exact method, assuming static conditions. Consider
the symmetric case. Let w (x) ¼ wc (x)þ wp (x), in which wc ( x) is the characteristic
solution and w p(x) is the particular solution refl ecting the perturbation. From the
Euler buckling Equation 11.52 wc(x) has a general solution of the form wc(x)¼aþ
bxþ g coskxþ d sin kx, in which k ¼

ffiffiffiffi
P
EI

q
. Now w ¼�w0 ¼ 0 at  x ¼ 0,� w0(L)¼ 0 and

EIw000 L
2

� � ¼ V 1 , expressed as the conditions

1a þ 0b þ 1g þ 0 d ¼ �w p (0)

0a þ 1 b þ 0g þ kd ¼ �w 0p (0 )

0 a þ 1b � gk sin(k L=2) þ dk cos(kL =2) ¼ �w 0p (L =2)

0aþ 0b þ gk3 sin(kL=2) � dk3 cos(kL=2) ¼ �E Iw
000
p (L=2)þ V1 

(11: 61)

or, in matrix –vector notation,

Bz ¼

� w p (0)

� wp
0  ( 0)

�  wp
0 (L=2)

�EIw 
000
p (L=2)þV1

0
BBB@

1
CCCA, B ¼ 

1 0  1  0

0 1  0  k

0 1  �k sin(kL= 2) k cos(k L=2)

0 0  k3 sin(kL =2) � k3 cos(k L=2)

2
6664

3
7775 , z ¼ 

a

b

g

d

0
BBB@

1
CCCA

(11:62)

For the solution to ‘‘blow up’’ it is necessary for the matrix B to be singular, which
occurs if the corresponding homogeneous problem in fact possesses a unique solution.
Accordingly, we seek conditions under which there exists a nonvanishing vector z for
which Bz ¼ 0 . Direct elimination of a and b furnishes a ¼�g and b ¼�kd. The
remaining coefficients must satisfy

� sin(kL=2) cos(kL=2)� 1
sin(kL=2) cos(kL=2)

� �
g
d

� �
¼ 0

0

� �
(11:63)

A nonvanishing solution is possible only if the determinant vanishes, which reduces to
the requirement sin kL¼ 0. This equation has many solutions for kL=2, including
kL=2¼ 0. The lowest nontrivial solution is kL=2¼p, from which Pcrit¼ 4p2

EI=L2¼ 39.88 EI=L2. Clearly, the symmetric solution in the foregoing two-element
model (Pcrit¼ 40 EI=L2) gives a very accurate result.
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For the antisymmetric case the corresponding result is that tan kL=2¼ kL=2. The
lowest meaningful root of this equation is kL¼ 4.49 (Brush and Almroth, 1975), giving
Pcrit¼ 80.76 EI=L2. Clearly, unlike the symmetric solution, the axisymmetric solution
from the two-element model (Pcrit¼ 120 EI=L2) is not very accurate.

To this point it has been implicitly assumed that the beam column is initially
perfectly straight. This assumption can lead to overestimates of the critical buckling
load. Now consider that there is a known initial distribution w0(x). The governing
equation is now

d2

dx2
EI

d2

dx2
(w� w0)þ P

d2

dx2
(w� w0) ¼ 0 (11:64)

or equivalently

d2

dx2
EI

d2

dx2
wþ P

d2

dx2
w ¼ d2

dx2
EI

d2

dx2
w0 þ P

d2

dx2
w0 (11:65)

Now crookedness is modeled as a perturbation. Similarly, if the cross-sectional
properties of the beam column exhibit a small amount of variation, say EI(x)¼
EI0[1þq sin(px=L)], the effect of the variation may likewise be modeled as a
perturbation.
EXAMPLE 11.10

In the clamped–clamped beam column use four equal length elements to determine
how much improvement, if any, occurs in the symmetric and antisymmetric cases.

SOLUTION

Consider the right half of the configuration, which has two beams of length L=2.
Denoting L=4 as L̂, we assume an interpolation model w(x)¼wT(x)Fg in which

wT (x) ¼ ( 1 x x2 x3 )

F ¼

1 0 0 0

0 �1 0 0

1 L̂ L̂2 L̂3

0 �1 �2L̂ �3L̂2

2
6664

3
7775
�1

¼ 1

L̂3

L̂3 0 0 0

0 �L̂3 0 0

�3L̂ 2L̂2 3L̂ L̂2

2 �L̂ �2 �L̂

2
6664

3
7775, g ¼

we

�w0
e

weþ1

�w0
eþ1

0
BBB@

1
CCCA

The interpolation model also involves the relations

w0 ¼ bTFg, bT ¼ @wT (x)

@x
¼ ( 0 1 2x 3x2 ), w00 ¼ ( 0 0 2 6x )Fg
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3
777775

3
77775

3
777775

� 20
Now

K̂1 ¼ FT
ð
bLbT dxF

¼ 1

L̂5

L̂3 0 �3L̂ 2

0 �L̂3 2L̂2 �L̂

0 0 3L̂ �2

0 0 L̂2 �L̂

2
666664

3
777775
ð
0

L 0 0 0 0

0 1 2x 3x2

0 2x 4x2 6x3

0 3x2 6x3 9x4

2
666664

3
777775dx

L̂3 0 0 0

0 �L̂3 0 0

�3L̂ 2L̂2 3L̂ L̂2

2 �L̂ �2 �L̂

2
666664

¼

6
5 � 1

10 L̂ � 6
5 � 1

10 L̂

� 1
10 L̂

2
15 L̂

2 1
10 L̂ � 1

30 L̂
2

� 6
5

1
10 L̂

6
5

1
10 L̂

� 1
10 L̂ � 1

30 L̂
2 1

10 L̂
2
15 L̂

2

2
6666664

3
7777775

Continuing,

K̂2 ¼ 1

L̂5

L̂3 0 �3L̂ 2

0 �L̂3 2L̂2 �L̂

0 0 3L̂ �2

0 0 L̂2 �L̂

2
66664

3
77775
ð
0

L 0

0

2

6x

0
BBBB@

1
CCCCA( 0 0 2 6x ) dx

L̂3 0 0 0

0 �L̂3 0 0

�3L̂ 2L̂2 3L̂ L̂2

2 �L̂ �2 �L̂

2
66664

¼

12 �6L̂ �12 �6L̂

�6L̂ 4L̂2 6L̂ 2L̂2

�12 6L̂ 12 6L̂

�6L̂ 2L̂2 6L̂ 4L̂2

2
66664

3
77775

Since the element length is L=4, the element matrices become

K1½ �1¼ K1½ �2¼

3
5 � 1

40L �3
5 � 1

40L

� 1
40L

1
120L

2 1
40L � 1

480L
2

�3
5

1
40L

3
5

1
40L

� 1
40L � 1

480L
2 1

40L
1

120L
2

2
666664

3
777775, K2½ �1¼ K2½ �2¼

12 �3L=2 �12 �3L=2

�3L=2 L2=4 3L=2 L2=8

�12 3L=2 12 3L=2

�3L=2 L2=8 3L=2 L2=4

2
666664

The assembled matrices, after enforcing the constraints w(0)¼w0(0)¼ 0 are

K̂1 ¼

1
5 0 � 6

5 � 1
40L

0 1
60L

2 1
40 L � 1

480L
2

� 6
5

1
40 L

6
5

1
40L

� 1
40 L � 1

480L
2 1

40 L
1
120L

2

2
666664

3
777775, K̂2 ¼

24 0 �12 �3L=2

0 L2=2 3L=2 L2=8

�12 3L=2 12 3L=2

�3L=2 L2=8 3L=2 L2=4

2
666664

3
777775
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The governing equation is written in finite element form as

EI
(L=4)3

24 0 �12 �3L=2

0 L2=2 3L=2 L2=8

�12 3L=2 12 3L=2

�3L=2 L2=8 3L=2 L2=4

2
666664

3
777775�

P

(L=4)

12
5 0 �6

5 � 1
40L

0 1
240L

2 1
40L � 1

480L
2

�6
5

1
40L

6
5

1
40L

� 1
40L � 1

480L
2 1

40L
1
120L

2

2
666664

3
777775

2
666664

3
777775g3¼ f3

g3 ¼

w(L=4)

�w0(L=4)

w(L=2)

�w0(L=2)

0
BBBB@

1
CCCCA, f3 ¼

0

0

V1

M1

0
BBBB@

1
CCCCA

Symmetric Case: M0¼ 0; w0(L)¼ 0
The governing equation reduces to

EI
(L=4)3

24 0 �12

0 L2=2 3L=2

�12 3L=2 12

2
6664

3
7775� P

(L=4)

12
5 0 � 6

5

0 1
60L

2 1
40L

� 6
5

1
40 L

6
5

2
6664

3
7775

2
6664

3
7775

w(L=4)

�w0(L=4)

w(L=2)

0
BBB@

1
CCCA ¼

0

0

V1

0
BBB@

1
CCCA

Buckling occurs if

det

24� 12
5 j 0 �12þ 6

5 j

0 2� 1
15 j

� �
L2=4 3� 1

20 j
� �

L=2

�12þ 6
5 j 3� 1

20 j
� �

L=2 12� 6
5 j

2
6664

3
7775 ¼ 0, j ¼ P=(L=4)

EI=(L=4)3
¼ 16

PL2

EI

The roots of the above equation are j¼ 10, 2.486, 32.1807, independently of L. The
lowest nontrivial root is j¼ 2.486 and so

P1 ¼ 39:736
EI
L2

which is very close to the exact solution (4p2 EI=L2).
Antisymmetric Case: V0¼ 0; w(L)¼ 0

Following the same steps as before, the governing equation is found to be

EI
(L=4)3

24 0 �3=2

0 L=2 1
8L

�3=2 1
8L L

2
6664

3
7775� P

(L=4)

12
5 0 � 1

40

0 1
60L � 1

480L

� 1
40 � 1

480L
1
120L

2
66664

3
77775

2
66664

3
77775

w(L=4)

�Lw0(L=4)

Lw0(L=2)

0
BBB@

1
CCCA¼

0

0

M1

0
BBB@

1
CCCA
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The critical loads are obtained from

det

24 � 12
5 j 0 1

2 � 3 þ 1
20 j

� �
0 2� 1

15 j
� �

L=4 1
2 þ 1

120 j
� �

L=4

1
2 �3 þ 1

20 j
� �

L 1
2 þ 1

120 j
� �

L=4 1� 1
30 j

� �
L=4

2
664

3
775 ¼ 0

The roots are found with a little effort to be j ¼ 5.18, 18.78, 49.38, giving the lowest
nontrivial buckling load as

P1 ¼ 82: 88
E I
L 2

which is very close to the exact solution (80.76 E I=L2 ).
Clearly, a four-element model gives a much better approximation than the two-

element model in the antisymmetric case. The percentage of error decreases from 48.6%
to 2.6%.

11.5.2 E ULER B UCKLING OF PLATES

The gov erning equation for an isotropi c plat e elem ent subje ct to in-pl ane loads is
(Wang, 1953)

Eh2

12 1 � n 2ð Þr  
4 w þ Px

@ 2 w

@ x 2 
þ Py

@ 2 w

@ y 2 
þ P xy

@ 2 w

@ x @ y 
¼ 0 (11 :66 )

in which the loads are illu strated in Figure 11.9. The v ariationa l met hods in Cha pter 4
furni sh

ð
dwr  

4 w dA ¼
ð
tr(dWW) dAþ

ð
dw(n � r)r2wdS�

ð
drw � r(n � rw) dS

(11:67)
z

x

Px

Pyx

Pxy
Py

Y

h

FIGURE 11.9 Plate element with in-plane compressive loads.

� 2008 by Taylor & Francis Group, LLC.



in whi ch W ¼ rrT w (a mat rix!). In addit ion

ð
dw Px

@ 2 w

@ x 2 
þ Py

@ 2 w

@ y 2 
þ P xy

@ 2 w

@ x @ y

� �
dA

¼
ð
dw nT p dS �

ð
( r dw) T P( r w) dA ( 11 : 68 )

p ¼
Px

@ w

@ x
þ 1

2 Pxy
@ w

@ y

� �
1
2 Pxy

@ w

@ x
þ Py

@ w

@ y

� �
0
BB@

1
CCA , P ¼ Px

1
2 Pxy

1
2 Pxy P y

� �

We recal l the interpola tion model w( x ,y ) ¼ w Tb2 Fb 2 g b2 , from whi ch we may obtain
the relat ions of the form

r w ¼ wx

wy

� �
¼ b T1b 2 F b 2 gb 2 , VEC ( W ) ¼ b T2b 2 F b 2 gb 2 ( 11 : 69 a)

b T1b 2 ¼
@

@ x 
w Tb2

@

@ y 
w Tb2

2
664

3
775 , b T2b 2 ¼

@ 2 wT
b 2

@ x 2

@ 2 wT
b 2

@ x @ y

@ 2 wT
b 2

@ x @ y

@ 2 wT
b 2

@ x 2

2
66666666666664

3
77777777777775

( 11 : 69 b)

We also assum e that the seconda ry variables E h2
12(1 � v 2 ) ( n � r) r 2 w , E h2

12(1 � v 2 ) (n � r) r w,

and p are prescribed on S. Doing so serves to derive

Kb21 �Kb22½ �gb2 ¼ f (11:70)

Kb21 ¼ Eh2

12(1� v2)
FT

b2

ð
b2b2b

T
2b2 dAFb2, Kb22 ¼ FT

b2

ð
b1b2Pb

T
1b2 dV Fb2

and f reflects the secondary variables prescribed on S.
As illustrated in Figure 11.10 we now consi der a three-dim ensional loadi ng

space in which Px, Py, and Pxy correspond to the axes in terms of which we seek
to determine a surface of critical values at which buckling occurs. In this space a
straight line emanating from the origin represents a proportional loading path. Let
the load intensity l denote the distance to a given point on this line. By analogy with
spherical coordinates, there exist two angles u and f such that

Px ¼ l cos u cosf, Py ¼ l sin u cosf, Pxy ¼ l sinf (11:71)
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Px

Pxy

q

f

l

FIGURE 11.10 Loading space for plate buckling.
Now

Kb 22 ¼ l K̂ b 22 (u,w )

K̂b22 ( u,w) ¼ F Tb 2

ð
b1 b2 P̂(u, w)b 

T
1b 2 dV Fb 2

P̂( u,f) ¼ cos u cos f sin f

sin f sin u cos f

� � (11 :72 )

Fo r each pair ( u,f ), buckli ng occurs at a crit ical load inte nsity lcrit (u ,f), satisfying

det Kb 21 � lcrit u,fð ÞK̂b 22
� � ¼ 0 (11 :73 )

A surface of critical load inte nsities lcrit( u,f ) can be draw n in the loading space of
Figure 11.10 by evalua ting lcrit ( u,f) over all values of ( u,f ) and disca rding values
whi ch a re negati ve.

Recalling Exampl e 3.8 in Chapter 3, we may write

Kb 22 ¼ IV EC FT
b 2 � F Tb 2

ð
bT
1 b2 (x) � bT

1 b 2 ( x) dV

� �
VEC ( P̂)

� �
(11 :74 )

Acco rding ly, in compu ting the part of the stiffnes s matrix incor porating the
in-pl ane load, volume inte gration need only be perfor med o nce, indepen dently of
l , u, and w.

11.6 INTRODUCTION TO CONTACT PROBLEMS

11.6.1 GAP

In many practical problems the information required to develop a finite element model,
for example, the geometry of a member and the properties of its constituent materials, can
be determined with little uncertainty or ambiguity. However, often the loads experienced
by the member are not easily identified. This is especially true if loads are transmitted to
� 2008 by Taylor & Francis Group, LLC.
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FIGURE 11.11 Simple contact problem.
the member along an interface with a second member. This class of problems has been
called contact problems, and they are arguably the most common boundary conditions
encountered in ‘‘t he r ea l w or ld .’’ The finite element community has devoted and
continues to devote a great deal of effort to contact problems, culminating in gap and
interface elements for contact. Here, we provide a simple introduction to gap elements.

First consider the three spri ng con figurat ion in Figure 11.11. Al l springs are of
stiffnes s k . Springs A and C extend from the top plate, call ed the con tactor , to the
bottom plate, called the targe t. The bottom of spring B is initial ly remote from the
target by a gap g. The exact stiffness of this con figurat ion is bilinea r:

kc ¼ 2k , d < g
3k , d � g

�
( 11 : 75 )

From the viewpoi nt of the finite elem ent met hod Figure 1 1.11 p oses the follow ing
diffi culty. If a node is set at the lowest point on Spring B and at the point direc tly below
it on the targe t, these nodes are not initial ly connect ed, but may late r be conn ected in
the physical probl em after contac t is establis hed. Further, it is necess ary to satisfy the
nonpenet ration constrain t, which may be stated as a n inequa lity, whereby the mid dle
spring does not move throu gh the target after contac t is estab lished. If the nodes
are consi dered unconnec ted in the finite element model , there is nothing to enforc e
the nonp enetratio n co nstraint. If, however, the nodes are consi dered connect ed, the
nonpenet ration const raint can be satis fied but the stiffness is arti ficial ly high.

This dif ficulty is overcom e in an approximat e sense by a bili near contac t
element. In parti cular, we intr oduce a new spring kg as show n in Figure 11.12.

The stiffness of the middle spring pair (B in series with the contact spring) is now
denoted as km and is given by

km ¼ 1
k
þ 1
kg

� ��1

(11:76)

It is desirable for the middle spring to be soft when the gap is open (g> d), and to be stiff
when the gap is closed (g< d). For the purpose of illustration we make the selection
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FIGURE 11.12 Spring representing contact element.
kg ¼ k =100, g > d
100 k , g 	 d

�
(11 :77 )

Ele mentary algebra suf fices to demon strate that

kc 
 2k þ 0:01 k , g > d
2k þ 0:99 k , g 	 d

�
(11 :78 )

Con sequent ly, the model with the contact elem ent is too stiff by 0.5% when the gap
is open and is too soft by 0.33% when the gap is close d (cont act). One observatio n
from this examp le is that the stiffness of the gap elem ent shoul d be related to the
sti ffnesses of the contac tor and the targe t in the vici nity of the contac t point .

In finite element model ing, ‘‘slave ’’ nodes placed at points ‘‘ i’’ on the targe t and
‘‘ master ’’ node s placed at point s ‘‘ j’’ on the contac tor are not initially connect ed, but
may later be c onnected in the physic al problem when contac t is estab lished. If,
ho wever, in the finite element model the nodes are always connected by the gap
elem ent, penetr ation is prevent ed, and the bilinear spri ng serves to overcom e the
dif ficult y of overstiff ness before closure and unders tiffness after closu re by render ing
the effective stiffnes ses close to the correct stiffnes ses.

11.6.2 P OINT -TO-POINT C ONTACT

Of course , in the more general case, it is not known what point s, say on the target,
wi ll come into contac t with the contac tor, and there is no gu arantee that target
no des wi ll come into contac t with contac tor nodes. The gap elements can be used
to account for the unknow n contac t area, as follow s. Figure 11.13 show s a contactor
and a target on which are indi cated candid ate contac t areas dSc and dSt , containing
nodes c1, c2, . . . , cn, t1, t2, . . . , tn. The candidate contact areas must contain all points
for which there is a possibility of establishing contact.

The gap (i.e., the distance in the undeformed configuration) from the ith node of
the contactor to the jth node of the target is denoted by gij. In point-to-point contact,
� 2008 by Taylor & Francis Group, LLC.



Candidate contactor contact surface

Candidate target contact surface
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FIGURE 11.13 Point-to-point contact.
in p reselected candid ate contac t zones, each node on the contac tor is connect ed to
each node o f the target by a sprin g with a bilinear sti ffness. (Clearly, this elem ent
may miss the e dge of the contac t zone when the edge d oes no t occur at a node.) The
angle between the spring and the normal at the contac tor node is aij , whi le the angle
between the spring and the normal to the targe t is aji. Unde r load, the ith contac tor
node experi ences displ aceme nt uij in the direc tion of the jth targe t node, and the j th
target node experi ences displ aceme nt uji . Fo r illust ration, the spring connect ing the
ith contac tor node with the j th targe t node has stiffnes s kij given by

kij ¼ kij lower , dij < gij
kij upper , dij � gij

�
( 11 : 79 )

in which dij ¼ uij þ uji is the relative displacem ent. The force in the spring connect ing
the i th contac tor node and j th targe t node is fij ¼ k ij ( gij) dij (no summ ation). The tota l
normal force expe rienced by the i th contac tor no de is fi ¼

P
j
fij cos( aij ).

As an examp le of how the spri ng stiffnes s mig ht be taken to depend on the gap to
achiev e a conti nuous approxi mation to a bilinear funct ion, consi der the expres sion

kij (gij � dij ) ¼ k 0

"
« þ ( 1 � 2«)

2
p
tan � 1

 
a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( gij � dij � g ) 2

q
� ( gij � dij � g )












� �!#

( 11 : 80 )

in which g, a, and « a re p os it iv e p ar am et er s s el ec te d a s f ol lo ws . W he n gij � dij � g > 0,
kij attains the lower shelf value k0«, and we assume that « � 1. If gij � dij � g < 0, kij
approaches the upper shelf value k0(1 � «). We choose g to be a small value to
attain a narrow transition range from the lower to the upper shelf values. In the
range 0< gij� dij< g there is a rapid but continuous transition from the lower shelf
(soft) value to the upper shelf (stiff) value. If we now choose a such that ag¼ 1,
kij equals k0=2(þ O(«)) when the gap initially closes (gij ¼ dij). The spring charac-
teristic is illustrated in Figure 11.14.
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FIGURE 11.14 Illustration of a gap stiffness function.
The total normal force on a contactor node is the sum of the individual contact
element forces. For example, for the jth contactor node,

fnj ¼
XNc

i

kij(gij � dij)dij cos(aij) (11:81)

Clearly, significant forces are exerted only by the contact elements which are
‘‘closed.’’

11.6.3 POINT-TO-SURFACE CONTACT

We now briefly consider point-to-surface contact, illustrated in Figure 11.15 using a
triangular element. Here target node t3 is connected via a triangular element to
contactor nodes c1 and c2. The stiffness matrix of the element can be written as
kð[g1� d1], [g2� d2]ÞK̂, in which g1� d1 is the gap between nodes t1 and c1, and K̂
Candidate target contact surface

Candidate contactor contact surface

dSc

dSt

t2
t1

c1
c2 c3

t3

Element connecting node
t3 with nodes c1 and c2

∗ ∗ ∗

FIGURE 11.15 Element for point-to-surface contact.
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is the geome tric part of the stiffness matrix of a triangula r elastic elem ent. The
stiffnes s mat rix of the element may be made a funct ion of both gaps. Total force
normal to the target node is the sum of the forces exert ed by the contac t e lements to
the candid ate contactor nodes.

In some finite elem ent codes schem es such as illust rated in Figure 11.15 are also
used to approxi mate the tangential force in the case of fric tion. Namely , an ‘elast ic
friction ’ force is assumed in which the tangen tial tractions are assum ed to be
propor tional to the norm al traction through a friction coef fi cient. Elast ic fric tion
models do not appear to consider sliding and may be consi dered bonded contac t.
Advanc ed models addres s sliding contac t and incorpo rate fric tion laws not based on
the Cou lomb model.
EXAMPLE 11.11

1. Consider a finite element model for a set of springs, illustrated below (Figure 11.16).
A load moves the left-hand plate toward the fi xed right-hand plate.
(a) What is the load–de flection curve of the configuration?
(b) For a finite element model, suppose a bilinear spring is supplied to bridge the gap

H. What is the load–defl ection curve of the finite element model?
(c) Identify a kg value for which the load–deflection behavior of the finite element

model is close to the actual configuration.
(d) Why is the new spring needed in the finite element model?

2. Suppose a contact element is added in the foregoing problem, in which the stiffness
(spring rate) satis fies

kij ( gij � dij ) ¼ k0

"
«þ (1� 2«)

2
p
tan�1

 
a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(gij � dij �g)2

q
� (gij� dij �g)












� �!#
FIGU

� 2008
with ag¼ 1, kL¼ k=100, and ku¼ 100k. Compute the stiffness=k for the configuration
as a function of the deflection.
L

H

k

k

k k

k
F

RE 11.16 Set of springs with gap.
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FIG

FIG

� 20
SOLUTION

1. The exact stiffness of this configuration is

kc ¼ 3k, d < H, gap is open

3:5k, d � H, gap is closed

�

in which when d � Hkc is calculated as follows:

kc ¼ 3k þ 1
k
þ 1

k

� ��1

¼ 3:5k

The exact load–deflection curve is plotted as in Figure 11.17
Now let us introduce a gap element of stiffness kg as illustrated in Figure 11.18.
F
3.5k

3k

Gap

H d

URE 11.17 Load–deflection curve of the actual configuration.

F

L

H

k

k
ji

k

k

k

kg

A

B

C

D

URE 11.18 Illustration of gap element.
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FIG

� 2
It is desirable for the spring C to be soft when the gap is open (d<H), and to be
stiff when the gap is closed (d>H). Suppose

kg ¼ k=100, d < H
100k, d � H

�

When the gap is open, i.e., d<H, the stiffness of the configuration is given by

kc ¼ 3k þ 1
k
þ 1
kg

þ 1
k

� ��1

¼ 3k þ 0:0098k

And when the gap is closed, i.e., d>H, the stiffness of the configuration is given by

kc ¼ 3k þ 1
k
þ 1
kg

þ 1
k

� ��1

¼ 3k þ 0:4975k

Accordingly

kc ¼ 3k þ 0:0098k, d < H
3k þ 0:4975k, d � H

�

The model with the gap element is overly stiff by 0.33% when the gap is open, and
is overly soft by 0.07% when the gap is closed. The exact and approximate values
are illustrated as in Figure 11.19.

Clearly, theassumedvalueofkggivesacloseapproximation to theactual configuration.
2. Case (1): gap is open: When the gap is open, g> dþ g, i.e., g� d� g> 0. Hence

we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(gij � dij � g)2

q
� (gij � dij � g)












� �
¼ 0

) kij(gij � dij) ¼ kL ¼ k0«
F

Gap

H

3k

3.5k

With kg

Actual

3.0098k

3.4975k

d

URE 11.19 Load–deflection curve of the actual and the finite element configuration.
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Case (2) gap is closed:When the gap is closed, g< dþ g, i.e.,� (g� d� g)> 0. Now

kij(gij � dij) ¼ k0 «þ (1� 2«)
2
p

tan�1 a

2
2(dþ g � g)

	 
� �

Now tan�1(a(dþ g� g)) asymptotically approaches p=2, for which

kij(gij � dij) ¼ kU ¼ k0(1� «)

Case (3) gap just closes:When the gap just closes, g< dþ g, i.e., g� d� g< 0. Now,

tan�1 a

2
2(dþ g � g)

	 

¼ tan�1 a(dþ g � g)ð Þ

On substituting ag¼ 1, we obtain

kij(gij � dij) ¼ k ¼ k0 «þ (1� 2«)
2
p

tan�1 a(d� g)þ 1ð Þ
� �

Since d¼ g under the stated condition

kij(gij � dij) ¼ k ¼ k0

�
«þ 1� «

2

�
� k0

2

The results can be summarized as

kij(gij � dij) ¼
k0«, gap is open

k0=2, gap just closes

k0, gap is closed

8<
:
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12 Rotating and
Unrestrained Elastic
� 2008 by Taylor & Fra
Bodies
12.1 FINITE ELEMENTS IN ROTATION

12.1.1 A NGULAR VELOCITY AND A NGULAR ACCELERATION VECTORS

We consi der a vector b which is referr ed to an instantan eous coo rdinate syst em
with b ase vector s ex , e y , and e z . Suppose that in a time incre ment dt there is
rotation of the x –y plane clockw ise about the z-axis throu gh a smal l angle � dc,
generating a new vector b0  , and giving rise to the new coordinates x 0  , y 0  , z 0  in which z 0

coincides wi th z . This rotat ion is depict ed in Figure 12.1. Note: A negative rotat ion
of the coordi nate syst em is equiva lent to a positive rotation of the vector ab out
the instanta neously fi xed coordinate syst em. Prior to the rotation, the vector may
be expres sed as bT ¼ {bx by bz }. For the momen t we assume that bx , by, and b z are
constan ts.

The rotation gives rise to b0  which satis fies

b 0 ¼
cos(� dc) sin(� dc ) 0

� sin(� dc) cos(� dc) 0

0 0 1

2
664

3
775 b �

1 0  0

0 1  0

0 0  1

2
664

3
775þ dc

0 �1 0

1 0  0

0 0  0

2
664

3
775

2
664

3
775 b
( 12 : 1)

from which

b0 ¼ b þ dc

0 �1 0

1 0  0

0 0  0

2
64

3
75 b

Next, suppos e that the y 0  –z 0  plane is rotated abo ut the x -axis throu gh the increment al
angle �du, co rresponding to a positive rotation of the vector wi th respec t to the
instantan eousl y fi xed x 0  y 0  z 0  coordi nate syst em (cf. Figure 12.2). We now have the
vector b00 and the directions x00, y00, z00, in which b00 is given by
ncis Group, LLC.



z, z�

y

y�

x

x�

dy

dy

FIGURE 12.1 Differential clockwise rotation about the z-axis.
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z �
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FIGURE 12.2 Differential rotation about the x0-axis.
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b00 ¼
1 0 0
0 cos(�du) sin(�du)
0 � sin(�du) cos(�du)

2
4

3
5b0 � 1 0 0

0 1 �du
0 du 1

2
4

3
5b0 (12:2)

But eliminating b0 furnishes

b00 ¼
1 0 0

0 1 0

0 0 1

2
664

3
775þ du

0 0 0

0 0 �1

0 1 0

2
664

3
775

2
664

3
775

1 0 0

0 1 0

0 0 1

2
664

3
775þ dc

0 �1 0

1 0 0

0 0 0

2
664

3
775

2
664

3
775b

� bþ du

0 0 0

0 0 �1

0 1 0

2
664

3
775þ dc

0 �1 0

1 0 0

0 0 0

2
664

3
775

2
664

3
775b (12:3)

Finally, referring to Figure 12.3, the z00�x00 plane is rotated around the y00-axis
clockwise through an angle �df, furnishing the new axes x000, y000, z000, and the new
vector b000.

The vector b000 is given by
z� z �

y �, y �

x �

x �

df

df

FIGURE 12.3 Differential clockwise rotation about the y00-axis.

� 2008 by Taylor & Francis Group, LLC.



b000 ¼
cos(�df) 0 �sin(�df)

0 1 0

sin(�df) 0 cos(�df)

2
664

3
775b00 �

1 0 0

0 1 0

0 0 1

2
664

3
775þdf

0 0 1

0 0 0

�1 0 0

2
664

3
775

2
664

3
775b00

� bþ df

0 0 1

0 0 0

�1 0 0

2
664

3
775þdu

0 0 0

0 0 �1

0 1 0

2
664

3
775þdc

0 �1 0

1 0 0

0 0 0

2
664

3
775

2
664

3
775b

� bþ
0 �dc df

dc 0 �du

�df du 0

2
664

3
775b (12:4)

The derivative of b is equated with b000� b
dt , and now

db

dt
¼

0 � _c _f

_c 0 � _u

� _f _u 0

2
64

3
75b

¼ ( _fbz � _cby)ex þ ( _cbx � _ubz)ey þ ( _uby � _fbx)ez

¼ v� b (12:5)

in which the instantaneous angular position vector is identified as u ¼ u
f
c

8<
:

9=
; ¼

uex þ fey þ cez, and the angular velocity vector is identified as v ¼ du

dt
¼

_u
_f
_c

8<
:

9=
; ¼ _uex þ _fey þ _cez. The angular velocity vector describes the rate at which

the vector b rotates in a counterclockwise sense about the instantaneous axes. In the
appendix, the vector u is expressed in terms of angles used in spherical coordinates.

The angular position vector presented above is one version of what are called the
Euler angles.
12.1.2 VELOCITY AND ACCELERATION IN ROTATING COORDINATES

More generally, again consider rotation of a body about a fixed axis in which at least
one point in the body is located on the axis. The coordinate system is embedded in
the fixed point and rotates with the body. The undeformed position vector X0 in the
rotated system is related to its counterpart X in the unrotated system by X0 ¼Q(t)X,
in which Q is a proper orthogonal tensor. If the deformed body is viewed in the same
coordinate system, the counterpart for the deformed position is x0 ¼Q(t)x. The
displacement likewise satisfies u0 ¼Q(t)u. Time differentiation gives
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du0  ( X ,t )
dt

¼ Q( t )
du( X ,t )

dt
þ _Q (t ) u( X ,t )

¼ Q( t )
du( X ,t )

dt
þ _Q (t ) Q T (t ) u0  ( X ,t ): ( 12 : 6)

We make the identi fication

@ u0  ( X,t )
@ t

¼ Q ( t )
du( X,t )

dt 
( 12 : 7)

with the interpret ation that @ u
0  (X , t )
@ t denote s the derivativ e of u0  with the rotation tensor

Q (t ) held fixed a t its curren t posit ion, and vanishes if u is unch anging relative to the
rotating syst em. In addit ion, since 0 ¼ d

d t QQ T ¼ _QQ T þ Q _Q T, V ¼ _QQ T is anti-
symmet ric. Final ly, from Cha pter 3 for the 3 3 3 anti symmet ric tenso r V an d for any
3 3 1 vector b there exists a 3 3 1 vector v satisfyi ng V b ¼ v3 b. Of course v is
the an gular veloci ty vector of dy namics, and it is referr ed to the instantan eous
(rotatin g) coordinate system; its time deriv ative @ v

@ t is the angula r accelerati on
vector, hereafter denote d by a and referred to the instantan eous coordinate
system. Corresp onding to a there is an anti symmet ric tenso r A ¼ @ V=@ t such that
Ab ¼ a 3 b .

Now with the prime on u no longer displayed, the tota l time deriv ative of the
displacem ent vector , i.e., the velocity vector v, may be exp ressed in the rotat ing
system as

v ¼ du

dt
¼ @

@ t
þ v �

� �
u ¼ @ u

@ t
þ v � u ( 12 : 8)

The acceler ation vector is sim ilarly exp ressed as

a ¼ dv=dt

¼ (@=@t þv�)(@u=@t þ v� u)

¼ @2u=@t2 þ 2v� @u=@t þv�v� uþ a� u (12:9)

The four right-hand terms in Equation 12.9 are, respectively, called the translational,
Coriolis, centrifugal, and angular accelerations, respectively.

In the Principle of Virtual Work, for reasons to be explained in a subse-
quent sections let dû denote the variation of u with the coordinate system held
fixed at its instantaneous position. The corresponding inertial term becomesÐ
dûTr

d2

dt2
(u0 þ X0)dV . Now assuming the usual interpolation model u0(X0,t) ¼

wT (X0)Fg(t), the inertial term becomes

ð
dûTr

d2u0

dt2
dV ¼ dgT M

d2g

dt2
þG1

dg

dt
þ (G2 þ A)g

� �
(12:10)
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M ¼ FT
ð
r wwT dV F, G1 ¼ F T

ð
r wV wT dV F

G2 ¼ FT
ð
r wV 2 w T dV F , A ¼ F T

ð
r wA wT dV F

The mat rix M is the convent ional positive de fin ite and symmet ric mass mat rix in a
no nrotating system. The Coriol is mat rix G1 is an tisymmetr ic, the centrifuga l matrix
G2 is negative de finite , and the angula r acceler ation matrix A is antisym metric.
( G2 invol ves the square of an an tisymmetr ic matrix. Since an antisym metric matrix
has pure ima ginar y eigenv alues [Ch apter 2], its square is symmet ric with negati ve
real eigenv alues and hence is negative de finite .)

There is also a rigid body force term due to cen trifugal and angula r acceler -
atio ns.

ð
d ûT r

d2

dt 2 
X 0  dV ¼ dgT f rot , f rot ¼ F T

ð
r w V2 þ A
� �

X 0  dV (12 :11 )

Con solidati ng the terms, the ensui ng governing finite elem ent equa tion is now

M
d2 g

dt 2 
þ G 1

dg

dt
þ [K þ G2 þ A ] g ¼ f � f rot (12 :12 )

EXAMPLE 12.1

Compare a one-element model of a rotating rod to the exact model. The rod is depicted
as follows (Figure 12.4).
We consider the member a rod and accordingly neglect effects in direction trans-

verse to the motion. The radial displacement is denoted as u(r). The acceleration is
obtained as

u ¼ uer , v ¼ vez, a ¼ aez

€u ¼ @ 2u

@ t 2 
e r þ 2vez � @ u

@ t 
e r þ ve z � ve z � ue r þ ae z � uer

The Coriolis and angular accelerations terms are aligned with eu and are therefore not of
interest in a rod. The centrifugal acceleration points back radially toward the origin. The
acceleration vector therefore reduces to

€u ¼ @ 2u

@ t 2 
� v2u

� �
e r

We also obtain the rigid body contribution €r 0 ¼ �v2 r0 e r . Enforcing the constraint at
the shaft a priori, we introduce the interpolation model u(r0,t) ¼ r0

L g ( t ). The Principle of
Virtual Work (using dû ! du) now implies
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E, A, L, r

f0 sin wt

FIGURE 12.4 Steadily rotating elastic rod.

� 2
ðL
0

dur
@2u

@t2
� v2r0 � v2u

� �
Adr0 ¼ dg

rAL

3
€g � rAL

3
v2g � rAL2

3
v

� �

The stiffness term is found as

ðL
0

dErrSrrA dr0 ¼ dg
EA
L

g

The one-element finite element equation is now

EA
L

� rAL

3
v2

� �
g þ rAL

3
€g ¼ rAL2

3
v

In the steady state €g¼ 0. Under steady state rotation, g ! 1 if v ! vcr ¼ffiffiffiffiffiffiffiffiffi
EA=L
rAL=3

q
¼

ffiffi
3
L

q ffiffiffi
E
r

q
, and vcr is called the critical speed. Note that the critical speed is

nothing but the natural frequency of the nonrotating rod.
To assess accuracy the one-element finite element model is now compared to the

exact solution.
The exact governing differential equation is expressed as

EA
d2u

dr20
þ rv2u ¼ �rv2r0

The particular solution is up¼�r0, in which event the characteristic solution satisfies

EA
d2uc
dr20

þ rv2uc ¼ 0
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The characteristic solution has the form uc ¼ a sin

ffiffiffiffiffiffi
rv2

E

q
r0

� �
þ b cos

ffiffiffiffiffiffi
rv2

E

q
r0

� �
,

and the boundary conditions are u(0) ¼ 0, EA du(L)
dr0

¼ 0, giving b ¼ 0,

a ¼ L
ffiffiffiffiffiffi
rv2

E

q
cos

ffiffiffiffiffiffi
rv2

E

q
L

� �	
.

Finally, the displacement function emerges as

u(r0;v
2) ¼

L sin

ffiffiffiffiffiffiffiffi
rv2

E

r
r0

 !
ffiffiffiffiffiffiffiffi
rv2

E

r
cos

ffiffiffiffiffiffiffiffi
rv2

E

r
L

 !� r0, g ¼ L

tan

ffiffiffiffiffiffiffiffi
rv2

E

r
L

 !
ffiffiffiffiffiffiffiffi
rv2

E

r � 1

2
66664

3
77775

The nodal displacement g becomes unbounded when
ffiffiffiffiffiffi
rv2

E

q
L ¼ p

2
, and hence when

v ¼ p
2L

ffiffiffi
E
r

q
, which is the exact natural frequency of the nonrotating rod. The critical

speed in the single element finite element model is within 10% of the exact value.

EXAMPLE 12.2

Unsteady rotation of a beam column about an axis
Consider a thin beam column that is rotating unsteadily around a shaft. Its thin

(local z) direction points in the direction of the motion, giving rise to Coriolis effects in
bending. Derive the ensuing one-element model. Note that a beam column couples
extension and bending.

SOLUTION

Enforcing the clamped constraints at the axis of revolution, the interpolation model for a

beam column (Figure 12.5) is given by u(x,y,t) ¼ u0(x,t)� y @n(x,t)
@x , with
Z

X

Y
z

r

q, y
Beam

column

w, a

FIGURE 12.5 Beam column in unsteady rotation about an axis.
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� 2
u0 (x, t ) ¼ x

L 
u0 ( L, t ) , v ¼ wT

b F b gb

wT
b ¼ ( x2 x3 ) , Fb ¼ L2 L3

� 2L �3 L2

� ��1

¼ 1
L4

3L 2 L3

� 2L � L2

� �

gb ¼
v(L )

� v0  ( L)

� �
, v0  ( x,t ) ¼ @ v( x, t )

@ x
¼ bT

b F b gb , b Tb ¼ ( 2x 3x2 )

The stiffness matrix not affected by the motion and is given by (cf. Chapter 7)

ð
d«ijsij dV ¼ dgTKg, K ¼ Km 0

0 Kb

� �

Km ¼ EA
L

, Kb ¼ EI
L3

12 6
6 4

� �
, g ¼ u0(L,t)

gb

� �

The inertial terms now are stated as

d2u

dt2
¼ @2u

@t2
þ 2v� @u

@t
þv�v� uþ a� u

¼
ð
(du0 � ydv0dv)

@2(u0 � yv0)
@t2

� v2(u0 � yv0)� 2v
@v

@t
� av

2v
@(u0 � yv0)

@t
þ a(u0 � yv0)þ @2v

@t2
� v2v

0
BB@

1
CCAr dV

¼
ð
du0

@2u0
@t2

� v2u0 � 2v
@v

@t
� av

� �
r dV þ

ð
ydv0 y

@2v0

@t2
� v2yv0

� �
r dV

þ
ð
dv 2v

@u0
@t

þ au0 þ @2v

@t2
� v2v

� �
r dV

Performing the indicated manipulations results in the following relations:

ð
du0

@2u0
@t2

r dV ¼ du0(L,t)
ðL
0

x

L

x

L
rA dx

@2u0(L,t)
@t2

¼ du0(L,t)
rAL

3

� �
@2u0(L,t)

@t2

Similarly,
ð
du0(�v2)u0r dV ¼ du0(L,t) �v2 rAL

3

� �
u0(L,t)

ð
du0(�2v)

@v

@t
r dV ¼ du0(L,t)

ðL
0

x

L
(�2v)fT

bFbrA dx _gb

¼ du0(L,tÞ(�2vrA)
1
4

L

5

� � 3L2 L3

�2L �L2

" #
_gb

¼ du0(L,t) �2v
rAL

20
(7 L)

� �
_gb
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� 20
ð
du0 ( �a v)r dV ¼ du0 ( L, t )

ðL
0

x

L 
( � a)f Tb F b r A dx gb

¼ du0 ( L, t ) � a
r A

L

� �
1
4

L

5

� � 3L2 L 3

� 2L �L 2

" #
gb

¼ du0 ( L, t ) � a
r AL

20
( 7 L )

� �
gb

ð
y2 d v0

@ 2 v 0

@ t 2 
r dV ¼ dg Tb F

T
b

ð
bb r I b

T
b d x F b €gb

¼ dg Tb F Tb

ðL
0

r I
4x2 6x 3

6x3 9x 4

" #
dx Fb €gb

¼ dg Tb
r I

L

6
5

1
10 L

1
10 L

2
15 L

2

" #
€gb

The matrix in the preceding expression is recognized as proportional to K̂1 encountered
in Chapter 10 in conjunction with buckling.
Continuing,

ð
dv au0 r dV ¼ dgT

b ar AL

7
20

1
20 L

0
@

1
Au0 ( L, t )

ð
dv

@ 2 v

@ t 2 
r dV ¼ dgT

b F Tb

ð
wb r A w

T
b dx F b €gb

¼ dgT
b F Tb

ðL
0

r A
x4 x5

x5 x6

2
4

3
5 dx Fb €gb

¼ dgT
b

r A

L 8

3 L2 � 2L

L3 �L 2

2
4

3
5 1

5 L 
5 1

6 L
6

1
6 L 

6 1
7 L

7

2
4

3
5 3L 2 L3

� 2L � L2

2
4

3
5€gb

¼ dgT
b rAL

13
35

11
210L

11
210L

1
105 L

2

2
4

3
5€gb

ð
y2dv0(�v2)v0r dV ¼ dgT

b (�v2)
rI

L

6
5

1
10L

1
10 L

2
15 L

2

" #
€gb
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� 2
ð
dv(2v)

@u0
@t

r dV ¼ dgT
bF

T
b

ð
(2v)wb

x

L
rA dx _u0(L,t)

¼ dgT
b

2vrA
L

3L2 �2L

L3 �L2

" # 1
4L

4

1
5L

5

 !
_u0(L,t)

¼ dgT
b 2vrAL

7
20

1
20 L

 !
_u0(L,t)

Finally,

ð
dv(�v2)vr dV ¼ dgT

b (�v2)rAL
13
35

11
210 L

11
210L

1
105 L

2

" #
€gb

Upon combining gm¼ u0 and gb into the vector g, the inertial terms in the Principle of
Virtual Work are now stated as

ð
du0

@2u0
@t2

r dV ¼ dgT rAL

3

� � 1 0 0

0 0 0

0 0 0

2
664

3
775€g

ð
du0(�v2)u0r dV ¼ dgT �v2 rAL

3

� � 1 0 0

0 0 0

0 0 0

2
664

3
775g

ð
du0(�2v)

@v

@t
r dV ¼ dgT �2v

rAL

20

� � 0 7 L

0 0 0

0 0 0

2
664

3
775 _g

ð
du0(�av)r dV ¼ dgT �a

rAL

20

� � 0 7 L

0 0 0

0 0 0

2
664

3
775g

ð
y2dv0

@2v0

@t2
r dV ¼ dgT rI

L

0 0 0

0 6
5

1
10L

0 1
10 L

2
15 L

2

2
664

3
775€g

ð
y2dv0(�v2)v0r dV ¼ dgT �v2 rI

L

� � 0 0 0

0 6
5

1
10 L

0 1
10 L

2
15 L

2

2
664

3
775g
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2
666664

� 20
ð
dv(2v)

@u0
@t

r dV ¼ dgT 2v
rAL

20

� � 0 0 0

7 0 0

L 0 0

2
6664

3
7775 _g

ð
dvau0r dV ¼ dgT a

rAL

20

� � 0 0 0

7 0 0

L 0 0

2
6664

3
7775g

ð
dv

@2v

@t2
r dV ¼ dgTrAL

0 0 0

0 13
35

11
210L

0 11
210 L

1
105 L

2

2
664

3
775€g

ð
dv(�v2)vr dV ¼ dgT (�v2rAL)

0 0 0

0 13
35

11
210L

0 11
210 L

1
105 L

2

2
664

3
775g

and the stiffness term becomes

ð
d«ijsij dV ¼ dgT

EA
L

0 0

0 12
EI
L3

6
EI
L3

0 6
EI
L3

4
EI
L3

2
6666664

3
7777775
g

The one-element model for the rotating beam column emerges as

rAL

3
0 0

0 13
35rAL þ 6

5
rI
L

11
210rAL

2 þ 1
10rI

0 11
210rAL

2 þ 1
10rI

1
105rAL

3 þ 2
15rIL

3
777775€gþ 2v

rAL

20

� � 0 �7 �L

7 0 0

L 0 0

2
6664

3
7775 _g

þ

EA
L

�v2 rAL

3
� 7

20arAL � 1
20arAL

2

7
20arAL 12

EI
L3

� v2 13
35rAL þ 6

5
rI
L


 �
6
EI
L3

�v2 11
210rAL

2 þ 1
10rI


 �
1
20arAL

2 6
EI
L3

� v2 11
210rAL

2 þ 1
10rI


 �
4
EI
L3

�v2 1
105rAL

3 þ 2
15rIL


 �

2
666666664

3
777777775
g¼

fu

fv

Mv

0
BBB@

1
CCCA

We observe that unsteady rotation of a beam column gives rise to Coriolis and
angular accelerations effects serving to couple the membrane with the bending
response.
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Returni ng to the mai n develo pment, in two-di mensional steady rotat ion of an
undam ped elastic medium without Cor iolis effects, the governing equati on reduces to

M €g þ (K � v2 M )g ¼ f � fv ( 12 : 13 )

We consider the eigenv alues and eigenvector s implied by this equati on. The eigen-
values v 2j and eigenvector s xj satisfy the general ized eigenv alue equation

0 ¼ �(K � v2 M) � v2
j M
�
xj

¼ 
K � 
v 2 þ v2
j

�
M
� 
xj ( 12 : 14 )

Now v2 þ v 2j ¼ v2
nj in whi ch vnj are the natur al freque ncies found in the nonrot ating

system with the same stiffnes s and mass matrix. It foll ows that the eigenv alues of the
rotating system sati sfy

v2
j ¼ v 2nj � v 2 ( 12 : 15 )

However , the eigenv ectors xj sim ultaneousl y diagonaliz e K and M regard less of v.
We conclude that the eigenv ectors are not affected by rotation .

On the other hand, if the Coriolis and angular acceleration matrices need to be taken
into account, the eigenvalues may in general have nonzero real and imaginary parts.

12.2 CRITICAL SPEEDS IN SHAFT ROTOR SYSTEMS

There is instabilit y in e lastic b odies under stead y rotation, associated with the notion
of the critical speed, alrea dy touche d upon Exampl e 12.1 . Critical speeds are
illustrated through severa l ad ditional examp les.

EXAMPLE 12.3

Find the critical speeds in a beam rotating about its axis, in the symmetric and
antisymmetric cases.

Case 1: Transverse load as shown in Figure 12.6

SOLUTION

The member under study is called a shaft in power generation applications. But here we
refer to it as a beam since we are concerned with the transverse displacements induced
by rotation. The force Fr rotates with the beam. An imperfection (mass unbalance) in
the beam will cause it to bend away from the axis, and the bent configuration will
wE, A, r
Fr

L / 2 L / 2

FIGURE 12.6 Rotating shaft with a transverse load.
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FIG

� 20
likewise rotate with the shaft. The more the beam bends the greater the centrifugal
forces, thereby tending to cause the beam to bend even further.
Using two elements and imposing clamped constraints on the right and left bearings

gives the stiffness in terms in the Principle of Virtual Work as

K(1)
22 þK(2)

11


 � w2

�w0
2

� 

¼ 192EI=L3 0

0 16EI=L

� �
w2

�w0
2

� 


in which the subscript 2 denotes the central node. (The bearings are considered rigid.)
The inertial terms of the beam are similarly found. Under the assumed steady rotation

and assuming that the deformed profile is constant in the radial (outward) direction, the
Coriolis and angular acceleration matrices vanish, leaving

M(1)
22 þM(2)

11


 � €w2

�w0
2

� 

� v2 M(1)

22 þM(2)
11


 � w2

�w0
2

� 


¼
13
35 rAL 0

0 1
420 rAL

3

" #
_w2

� _w0
2

� 

� v2 w2

�w0
2

� 
� 


The ensuing finite element equation is therefore

13
35 rAL 0

0 1
420 rAL

2

" #
€w2

�€w0
2

( )
þ

 
192EI=L3 0

0 16EI=L

" #

� v2
13
35 rAL 0

0 1
420 rAL

2

" #!
w2

�w0
2

( )
¼

Fr

0

( )
(12:16)

Of course the equations represented by the rows of Equation 12.16 are uncoupled,
leading to the two critical speeds

vc1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
192EI=L3

13rAL=35

s
, vc2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16EI=L

rAL3=420

s

Ifv¼vc1, the symmetric bending profile (about themidpoint) grows in a unstable fashion.
This happens in the current case since the force Fr induces a symmetric deformation.
In either of these cases the stiffness matrix K is singular.
However, only low amplitude motion will happen in the antisymmetric mode unless

there is a moment at the midpoint, as discussed in Case 2.

Case 2: Suppose instead that at the midpoint there is a moment which rotates with the
shaft (Figure 12.7).
wE, A, r Mr

L / 2 L / 2

URE 12.7 Rotating beam with bending moment.
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Antisymmetric profileSymmetric profile

FIGURE 12.8 Symmetric and antisymmetric deformations.
Now the response is antisymmetric. If v ¼ vc 2, an unstable antisymmetric deform-
ation occurs. However, in this case if v ¼ vc 1 , there is low amplitude response since
the applied moment only induces an antisymmetric motion.
The symmetric and antisymmetric deformations are illustrated in Figure 12.8.

EXAMPLE 12.4

Shaft rotor systems neglecting the mass of the shaft
Power transmission shafts use rotors to store kinetic energy. We seek the critical

speeds in the shaft rotor system depicted in Figure 12.9 below.
Suppose the shaft is balanced such that its center of mass is located at its geometric center.

The rotor does not induce bending if it is balanced side-to-side as well as top-to-bottom.
Top-to-bottom symmetry and side-to-side symmetry are shown below (Figure 12.10).
In top-to-bottom balance, each half has the same mass, and the centers of mass are

located at the geometric centers of the semicircular disks.
In side-to-side balance, the right half disk has its center of mass on the midpoint

along the axis, and similarly for the left-hand side (Figure 12.11).
Now suppose that the rotor is not balanced . For simplicity suppose that the centers of

mass of the top and bottom of the right and left halves lie in the same plane, which of
course rotate with the shaft. The unbalance can be modeled as follows (Figure 12.12).

Here e1 and h1 represent the horizontal and vertical offsets of the center of mass of
the upper right portion of the disk from the geometric center of the rotor, and similarly
for e2 , e3, e 4, h2 , h 3, h4.

The disk imposes a radial force and a radial moment on the shaft at its midpoint.
Taking account of the deformation of the shaft, the kinetic energy of the disk is

Td ¼ 1
2

mr2

4
þ ma2

12

� �
v2

þ 1
2
m

4
v2 (w2 þ h1 � (�w0

2)e1)
2 þ (w2 � h2 � (�w0

2)e2)
2

�
þ (w2 þ h3 þ (�w0

2)e3)
2 þ (w2 � h4 þ (�w0

2)e4)
2
�

w
E, A, I, r

a

m, r

L / 2 L / 2

FIGURE 12.9 Simple shaft rotor system.
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m /2 •

m /2 •

4r0/ 3p

4r0/ 3p

m

FIGURE 12.10 Top-to-bottom balance; rotor has mass m and radius r.

Centers of mass of the left and right half disks
are located at their geometric centers

+

FIGURE 12.11 Side-to-side balance.

u

re3

e3

e1

e1h1 h1h3 h3

h4
h4

e4

e4

e2

e2h2
h2

m/4

m/4 m/4

m/4

m/4 m/4

m/4

m/4

FIGURE 12.12 Rotor with top-to-bottom and side-to-side unbalance.

� 20
The first term represents the rigid body rotational kinetic energy of the balanced rotor
while the second term represents the unbalance contributions to the (translational)
kinetic energy.
Neglecting the kinetic energy of the beam, the elastic strain energy is the same as in

Cases 1 and 2 of Example 12.3.
The two-element finite element model is expressed as
08 by Taylor & Francis Group, LLC.



192EI =L 3 0

0 16E I =L

� �
� mv 2

1 � e1 þ e2 � e 3 � e4
4

� e1 þ e2 � e3 � e4
4

e21 þ e22 þ e23 þ e24
4

2
664

3
775

0
BB@

1
CCA w2

� w0
2

� 


¼ m v2

4

h1 � h2 þ h3 � h4
� h1 e1 þ h2 e2 þ h3 e3 � h4 e4

� 


The right-hand side represents a force and a moment induced by rigid body motion. If
the rotors are perfectly balanced side-to-side ( e1 ¼ e2 ¼ e3 ¼ e4 ¼ a=2) the off-diagonal
entries of the second matrix vanish. If the rotor is perfectly balanced top-to-bottom, then
h1 ¼ h2 ¼ h3 ¼ h4 ¼ 0 and the rigid body contribution vanishes.

The critical speeds are obtained by solving

det
192E I =L3 0

0 16E I =L

� �
� m v2

1 � e1 þ e2 � e3 � e4
4

� e1 þ e2 � e3 � e4
4

e21 þ e22 þ e23 þ e24
4

2
664

3
775

0
BB@

1
CCA ¼ 0

once numerical values have been established for the offsets.
Example 12.4 is now extended to include the effects of the shaft (beam) kinetic

energy. Using the previously developed mass matrix for the beam elements (cf. Chapter
11), we have the two-element finite element equation, and again the critical speeds are
obtained by finding the determinant of the matrix on the left-hand side of the equation.

192E I =L3 0

0 16EI =L

� �
� m v2

1 þ 13
35

rAL
m

e1 þ e 2 � e3 � e4
4

e1 þ e 2 � e3 � e4
4

e 21 þ e22 � e23 � e24
4

þ 1
420

rAL2

m

2
664

3
775

0
BB@

1
CCA w2

�w 02

� 


¼�m v2

4

h1 � h 2 þ h3 � h4
h1 e1 þ h2 e 2 � h3 e3 � h4 e 4

� 


Comput ation of the two critical speeds is stra ightforward and is left to the reader as
an exercise.

12.3 FINITE ELEMENT ANALYSIS FOR UNCONSTRAINED
ELASTIC BODIES

12.3.1 B ODY A XES

We next consi der the three -dimensi onal respon se of an e lastic body whi ch has no fixed
points, as in spacecr aft, for examp le as depict ed in Figure 12.13. It is assumed that the
tractions are prescr ibed on the undefo rme d surfa ce of the elast ic body, and that they
rotate a nd translat e with the body. The respon se is there by referr ed to the ‘‘ body axes, ’’
i.e., axes embed ded in the corres pondin g rigid body. An examp le of body axes is the
principal axes of the mom ent of inert ia tenso r in the bod y in Figure 12.13, assum ing it
is rigi d. Otherwise stated, it is assum ed that the point s of the rigi d body coincide wi th
the p oints of the elast ic body in its undeformed configuration.
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y

z
u (x,t)

rc(t)

x(t)

FIGURE 12.13 Three-dimensional unconstrained 3-D element.
The position vector r of a point in the rotating and translating elastic body may
be decomposed as

r ¼ rc þ jþ u (12:17)

in which rc is the position vector to the center of mass, j is the relative position
vector from the center of mass to the undeformed position of the current point, in the
body system, and u is the displacement from the undeformed to the deformed
position, likewise in the body system.

It is necessary to develop expressions for the variations of rc, j, and u. To this
end we regard rc as being referred to the absolute coordinate system (xyz), in which
case we need only write drc.

Next j is fixed in the rotating and translating system, so that its variation comes
purely from the coordinate system. In analogy with _j ¼ v� j with v ¼ @u

@t , we now
have dj¼ du3 j. Finally, the variation of the displacement vector has contributions
from the coordinate system as well as from the fact that it changes relative to the
rotating system. In analogy with du

dt ¼ @u
@t þv� u, the variation of u is expressed as

du¼ dûþ du3 u, in which dû is the variation of u with the coordinate system
instantaneously constrained not to rotate.

In order to conduct FEA of an elastic body undergoing unconstrained motion
(rigid body translation and rotation), it is necessary to compute the motion of the
body axes, which is achieved by integrating the Euler equations presented next.

12.3.2 EULER EQUATIONS OF A RIGID BODY

We first restrict attention to rigid bodies for which u¼ 0. The position vector now
has the decomposition

r ¼ rc þ j, dj ¼ du� j (12:18)

Neglecting body forces, equilibrium (referred to the translating=rotating frame) is
expressed as @Sij

@jj
� r[€rci þ €ji] ¼ 0. Variation with respect to rc, namelyÐ

drci
@Sij
@jj

� r[€rci þ €ji]
h i

dV ¼ 0, results in
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ð
drci

@ Sij
@ Bj

� �
dV ¼ drci

ð
[ nj Sij ] dS

¼ drci

ð
ti dS ( 12 : 19 )

and we note that F ¼ Ð t dS is the total force exerted by the surfa ce tract ions. For the
inertial terms ð

drci [r [€rci þ €B i ]] dV ¼ dr ci

ð
r dV|fflfflffl{zfflfflffl}
m

€rci þ dr ci

ð
r €ji dV ( 12 : 20 )

and so dr Tc [ F � m€r c ] ¼ 0 since the de finition of the cen ter of mass implie s thatÐ
r €ji dV ¼ 0, and m is the tota l mass . The first Euler e quation may now be stated a s

F ¼ m€rc ( 12 : 21 )

We next consi der the effect of the varia tion dj,

0 ¼
ð
dji

@ Sij
@ jj

� r[€rci þ €j]

� �� �
dV

¼
ð
2ipq dupjq

@Sij
@jj

� r[€rci þ €Bi]
� �

dV (12:22)

and 2ipq is recogni zed as the (third order) permutat ion tenso r (cf. Cha pter 3).
Observe that ð

2ipq dupBq€rcir dV ¼2ipq dup

ð
jqr dV

� �
€rci ¼ 0 (12:23)

Next,

ð
2ipq dupBq

@Sij
@jj

� �
dV ¼

ð
@

@jj
[2ipq dupBqSij]�

@

@jj
[2ipqdupjq]Sij

� �
dV

¼
ð
nj[2ipq dupjqSij]
� �

dS�
ð
2ipqdup

@jq
@jj

� �
Sij dV

¼ dup

ð
2pqi jqti dV�

ð
[2ipq dupdqj]Sij dV (12:24)

We observe thatMc¼
Ð
j3 t dS is the total moment of the tractions about the center of

mass. Also,
Ð
[2ipq dupdqj]Sij dV ¼ 0 since aij ¼ 2ipq dupdqj is antisymmetric.

It remains to consider the inertial terms
Ð2ipq dupBq[�r[€rci þ €ji]] dV . Firstð

2ipq dupjq€rcir dV ¼2ipq dup

ð
€jqr dV ¼ 0 (12:25)
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Continuing,

ð
2ipqdupjq€ji dV ¼ duT

ð
rj� €jdS

¼ duT
ð
rj� [v�v� jþa� j] dV

¼ duT
ð
[�(v� j)� (j�v)]r dV þ

ð
(�j� j�a)r dV

� �
¼ duT [Jaþv� Jv] (12:26)

in which J¼ ÐZTZr dV is the positive definite (moment of) inertia tensor, and Z is
the the antisymmetric tensor satisfying Zb¼ j3 b for any 33 1 vector b.

The second Euler equation now arises as

M ¼ Jaþv� Jv (12:27)

If we write jT¼ {j1 j2 j3} the inertia tensor is found with routine effort to be
given by

J ¼

ð
j22 þ j23 �j1j2 �j1j3

�j1j2 j23 þ j21 �j2j3

�j3j1 �j2j3 j21 þ j22

2
64

3
75r dV (12:28)

12.3.3 VARIATIONAL EQUATIONS OF AN UNCONSTRAINED ELASTIC BODY

The relations below for an elastic body are developed on the assumption that the
reference undeformed configuration in the current coordinate system coincides with
the rigid body. The balance of linear momentum expressed in the body system is

@Sij
@jj

¼ r[€rci þ €ji þ €ui] (12:29)

Recall that dr¼ drcþ du3 (jþ u)þ du0, in which du0 is the variation of u with
the axes instantaneously held fixed. The quantities rc, y, and u0 may be varied
independently since there is no constraint relating them. For drc, the variational
statement is

ð
drci

@Sij
@jj

� r[€rci þ €ji þ €ui]

� �
dV ¼ 0 (12:30)

From the previous section
Ð
drci

@Sij
@jj

� r[€rci þ €ji]
h i

dV ¼ 0. The term involving the

divergence of the stress becomes the traction term on application of the Divergence
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Theorem. But recall that the tractions are considered to be specified on the
undeformed body, which renders the tractions the same as in the rigid body. We
conclude that

Ð
drci r€ui dV¼ 0 and also

Ð
r€ui dV¼ 0. Assuming vanishing initial

values of u and _u, it follows that
Ð
ru dV¼ 0 with the consequence that the center

of mass in the elastic body coincides with that in the rigid body. It likewise follows
that in finite element modeling we may impose the constraint u(0,t)¼ 0 at j¼ 0. Of
course the constraint is applied in the body axis system.

Secondly, consider the effect of du, namely 0 ¼ Ð 2ipq dup(jq þ uq)
@Sij
@jj

� r[€rci þ €ji þ €ui]
h i

dV .

The assumption that the tractions are prescribed in the undeformed configuration
but referred to the current coordinate system implies that the moments are the same
in the rigid body and undeformed configuration of the elastic body, and hence thatÐ2ipq dupuq

@Sij
@jj

dV ¼ 0. The implication is that

ð
2ipq dup(jq þ uq)r[€ji þ €ui] dV ¼

ð
2ipq dupjqr€ji dV (12:31)

Assuming small displacements and thereby neglecting products of u and its time
derivatives results in the relation

ð
j� r€u dV þ

ð
u� r€j dV ¼ 0 (12:32)

Upon expansion of the accelerations,

0 ¼
ð
j� r€u dV þ

ð
u� r€j dV

¼
ð
u� (v�vþ a)� jr dV þ

ð
j� (v�vþ a)� ur dV

þ
ð
j� @2u

@t2
r dV þ

ð
j� 2v� @u

@t
r dV (12:33)

But
Ð
j� (v�vþ a)� ur dV ¼ �Ðu� (v�vþ a)� jr dV has the conse-

quence that

ð
j� @2u

@t2
r dV � 2v�

ð
j� @u

@t
r dV ¼ 0 (12:34)

Now the partial time derivative at fixed body axes in general has no relation to the
angular velocity vector v describing the rotation of the body axes. We conclude that
@
@t

Ð
j� ur dV ¼ 0, and with suitable initial conditions that

ð
j� ur dV ¼ 0 (12:35)
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The relations
Ð
r u dV ¼ 0 and

Ð
j � r u dV ¼ 0 have classically been deriv ed by

Tr uesdell and Nol l (1965) by assuming that the deform ed con fi guration min imizes
kinet ic energy.

EXAMPLE 12.5

Write down the proof that, for an unconstrained elastic body, if
Ð
j � u r dV ¼ 0

ð
r
d2 j

dt 2 
� u dV ¼ 0,

ð
r j � d2 u

dt 2 
dV ¼ 0

Comment: In Chapter 13 we will encounter the Reynolds Transport Theorem which
states that d

dt

Ð
r b dV ¼ Ðr d b

dt dV , for any vector b . It is used in the solution below.

SOLUTION

First
Ð
d 2 j
d t 2 � r u dV ¼ [( v � v) þ a] � Ð

j � r u dV

 � ¼ 0. Secondly, 0 ¼ d

dt

Ð
j �

r u dV ¼ v � Ðj � r u dV þ Ðj � r du
d t d V . The first right-hand term vanishes by virtue

of the problem statement, and we conclude that
Ð
j � r du

dt dV ¼ 0. Finally,

0 ¼ d 2

dt 2
Ð
j � r u dV ¼ (v � v þ a) � Ð j � r u dV þ v � Ð j � r du

d t dV þ
Ð 
j � r d 2

dt 2 u dV .

The first two right-hand terms vanish, in consequence of which
Ð
j � r d2

dt 2 u dV ¼ 0.

Returning to the general presen tation, the rotationa l relation
Ð
j � r u dV ¼ 0

toget her with u(0, t) ¼ 0 repres ents a set of constraint s that prevent the center of mass
of the elast ic body from displacin g from that the rigid body, an d also prevent s the body
axe s in the elastic body from rotating relat ive to the body axes of the rigid body.

The rotationa l constraint is global while the center-of- mass const raint can be
enforc ed at a point . To exami ne the treatmen t of the rotationa l constraint we assum e
the global interpola tion model (refer red to the body axes) in the form
uk ¼ wkl ( j)F mn g n ( t ). The const raint is now expressed in the form

Yg ¼ 0, Y ¼
ð
2ijk j j wkl F mn r dV (12 :36 )

But Equation 12.36 may be restated as

[Y3,n�3 Y3,3]
gn�3
g3

� 

¼ 0, with g3 ¼ �Y�1

3,3Y3,n�3gn�3 (12:37)

provided that Y3,3 is nonsingular. We therefore use a global constraint to remove
three degrees of freedom.

For illustration consider a finite element model in which

Kn�3,n�3 Kn�3,3

Kn�3,3 K3,3

� �
gn�3
g3

� 

¼ fn�3

f3

� 

and g3 ¼ �Y�1

3,3Y3,n�3gn�3 (12:38)
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It appears that f3 must be an as-yet-unknown reaction force arising to enforce the
rotational constraint. If the constraint is used to eliminate g3 in terms of gn–3, we
encounter gn–3.

The finite element equation to be solved is now

[Kn�3,n�3 �Kn�3,3Y
�1
3,3Y3,n�3]gn�3 ¼ f n�3 (12:39)

and note that the resulting stiffness matrix is generally nonsymmetric. If the reaction
forces enforcing the constraints are of interest, they can be computed using

f 3 ¼ [Kn�3,3 �K3,3Y
�1
3,3Y3,n�3]gn�3 (12:40)

12.3.4 PRINCIPLE OF VIRTUAL WORK IN BODY COORDINATES

To consider the effect of du0, recall that
Ð
du0i

@Sij
@jj

� r[€rci þ €ji þ €ui]
h i

dV ¼ 0. First

note that
Ð
du0ir dV €rci ¼ 0 since

Ð
du0ir dV ¼ 0. The remaining terms are formally

the same as for a body with a fixed point, and consequently the variational equations
reduce to

M
d2g

dt2
þG1

dg

dt
þ [KþG2 þ A]g ¼ f � frot

G1 ¼ FT
ð
rwVwT dV F, G2 ¼ FT

ð
rwV2wT dV F, (12:41)

A ¼ FT
ð
rwAwT dV F, f rot ¼ FT

ð
rw[V2 þ A]X0] dV

The terms in Equation 12.41 appeared in the first section of this chapter and their
names and meanings were given.

12.3.5 NUMERICAL DETERMINATION OF THE CURRENT POSITION

OF THE BODY AXES

For a complete finite element solution, it is necessary to be able to compute the
current position of the body axes using the Euler equations, although this is not
actually accomplished using finite element equations. Recall that it has been assumed
that the tractions, and hence the total force F(t) and moment M(t), are prescribed as
functions of time on the undeformed configuration of the elastic body, referred to
rotating axes. The current position of the center of mass in the absolute coordinate
system is obtained with little effort by integrating m€rc¼F(t). The current value of
the angular velocity is obtained by integrating the equations

dv

dt
¼ J�1[M(t)�v� Jv]

dQ

dt
¼ V(t)Q(t)

(12:42)
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the first of which is nonlinear. Recall that v is the axial vector of Q. Suppose the
time step in numerical time integration is h, that the time after n steps is denoted by
tn¼ nh, and that the solution has been computed at and before tn. Application of the
Trapezoidal Rule and some manipulation serve to derive the integration formula

Iþ h

2
J�1V(tnþ1J)

� �
v(tnþ1)¼ I� h

2
J�1V(tn)J

� �
v(tn)þ h

2
J�1[M(tnþ1)þM(tn)]

� �

Q(tnþ1)¼ Iþ h

2
V(tnþ1)

� ��1

I� h

2
V(tn)

� �
Q(tn) (12:43)
12.4 APPENDIX: ANGULAR VELOCITY VECTOR
IN SPHERICAL COORDINATES

This appendix gives an interpretation of the angular velocity vector in terms of the
angles appearing in spherical coordinates, as depicted in Figure 12.14. We assume
that the spherical coordinate system coincides with the body axes.

The xyz axes are a rectilinear inertial (nonchanging) system. The base vector er is
collinear with the position vector r. The second vector ej is perpendicular to r and
lies in a plane parallel to the x–y plane. The vector ez completes the right-handed rjz
system and points toward the z-axis.

The base vectors of the body system may be derived as

er ¼ cos z(cos jex þ sin jet)þ sin zeZ

ej ¼ �sin jex þ cos jet

ez ¼ �sin z(cos jex þ sin jet)þ cos zeZ

(12A:1)
z

ex

y

x

r

ere
z

z

x

FIGURE 12.14 Angles used in spherical coordinates.
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Let b denote the fixed length vector given by b¼ aexþ beyþ ced. It may be
rotated to the spherical system as b0 ¼ aerþ bejþ cez, which upon making the
substitutions according to Equation 12A.1 gives

b0 ¼ (cos j cos za� sin ja� sin z cos jc)ex þ (sin j cos zaþ cos jb� sin j sin zc)ey

þ (sin zaþ cos zc)ez (12A:2)

¼ Q

a

b

c

8>><
>>:

9>>=
>>; ¼

a0

b0

c0

8>><
>>:

9>>=
>>;, Q ¼

cos j cos z �sin j �sin z cos j

sin j cos z cos j �sin j sin z

sin z 0 cos z

2
664

3
775

Also

_Q¼
�sin j cos z �cos j sin z sin j

cos j cos z �sin j �cos j sin z

0 0 0

2
664

3
775 _jþ

�cos j sin z 0 �cos z cos j

�sin z sinj 0 �sin j cos z

cos z 0 �sin z

2
664

3
775 _z

(12A:3)

But note also that

�sin j cos z �cos j sin z sin j

cos j cos z �sin j �cos j sin z

0 0 0

2
664

3
775

cos j cos z sin j cos z sin z

�sin j cos j 0

�sin z cos j �sin j sin z cos z

2
664

3
775¼

0 �1 0

1 0 0

0 0 0

2
664

3
775

�cos j sin z 0 �cos z cos j

�sin z sin j 0 �sin j cos z

cos z 0 �sin z

2
664

3
775

cos j cos z sin j cos z sin z

�sin j cos j 0

�sin z cos j �sin j sin z cos z

2
664

3
775¼

0 0 �cos j

0 0 �sin j

cos j sin j 0

2
664

3
775

Now we regard the angles j, z to be time dependent, in which case _b0 ¼ _Qb¼Vb0,
V¼ _QQT.

After some manipulation

V ¼
0 � _j �cos j _z

_j 0 �sin j _z

cos j _z sin j _z 0

2
64

3
75 (12A:4)
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The corres ponding a ngular veloci ty v ector is vT ¼ {sin j _z � cos j _z _j } . Of
cou rse it repres ents the counte rclockwise rotation of the body abou t its instantan eous
po sition. Ref erring to the angles introdu ced in Sec tion 12.1, we now make the
ident i fications

_u
_f
_c

8<
:
9=
; ¼

sin j _z
�cos j _z

_j

8<
:

9=
; 

( 12 A :5)
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13 Aspects of Nonlinear
Continuum
� 2008 by Taylor & Fra
Thermomechanics
13.1 INTRODUCTION

The first 12 topi cs of the curren t monog raph have been concern ed with line ar FEA.
The underl ying notions of linear solid mecha nics a nd c onductive heat transfer were
addres sed in Cha pter 5 and 6. Here, we brie fl y p resent severa l nonli near topics from
continuum therm omech anics, which wi ll en able treating nonli near finite eleme nt
techniques there after. A more complete account is given, for example, in Cha ndra-
sekhar aiah and Debn ath (1994) .

13.2 NONLINEAR KINEMATICS OF DEFORMATION

13.2.1 DEFORMATION GRADIENT T ENSOR

Displa cement : In FEA for finite deformati on, it is necess ary to careful ly distingu ish
between the curren t (or ‘‘deform ed ’’) con figu ration (i.e., at the current time o r load
step) and a refere nce co nfiguration whi ch is usual ly considered strain-f ree. Here,
both con figurat ions are referred to the same orthogonal coordi nate system cha rac-
terized by the base vectors e1, e 2, e 3 (see Figure 2.1). Con sider a body with volum e V
and surfa ce S in the curren t con figurat ion. The parti cle P occupi es a position
represen ted by the posit ion v ector x, and experiences (emp irical) temperat ure T. In
the correspondi ng undefor med con figurat ion, the position of P is described by X,
and the tem perature has the value T0 indepe ndent of X . It is now assumed that x is a
function of X and t , and T is also a funct ion of X and t . The relations are wri tten a s
x( X,t ) and T( X,t ) and it is assum ed that x and T are continuous ly different iable in X
and t throu gh what ever order needed in the subseq uent develo pment (Figur e 13.1).

Displa cement Vector : The vector u( X ,t) in Equ ation 13.1 represents the displace-
ment from position s X to x :

u( X ,t ) ¼ x � X ( 13 : 1)

Now consider two close point s P and Q in the undefor med co n figuration. The
vector difference XP�XQ is represented as a differential dX with squared length
ncis Group, LLC.



Element at time t Element at time t + dt

Y

X
1

1

Y
d

c

g

a b

f

X

e

h

FIGURE 13.1 Position vectors in deformed and undeformed configurations.
dS2¼ dXT dX. The corresponding quantity in the deformed configuration is dx,
with ds2¼ dxT dx (Figure 13.2).

Deformation Gradient Tensor: The deformation gradient tensor F is introduced as

dx ¼ F dX, F ¼ @x

@X
(13:2)

F satisfies the polar decomposition theorem

F ¼ USVT
(13:3)
Deformed

Undeformed

e1

e2

x

x

FIGURE 13.2 Deformed and undeformed distances between adjacent points.
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in whic h U and V are ortho gonal and S is a posit ive de finite diagon al tensor whose
entries lj , the eigenv alues of

ffiffiffiffiffiffiffiffiffi
FT F

p
, are call ed the princ ipal stretches .

S ¼
l1 0 0
0 l2 0
0 0 l3

2
4

3
5 ( 13 : 4)

From Equati on 13.3 F may be visua lized as repres enting a rotation, follow ed by a
stretch, follow ed by a second rotation.

13.2.2 L AGRANGIAN S TRAIN TENSOR

The deforma tion-ind uced cha nge in square d lengt h is given by

ds 2 � dS2 ¼ dXT E dX , E ¼ 1
2 [ F

T F � I ] (13 : 5)

in which E denote s the Lagrangi an stra in tensor . Al so of interest is the right
Cauchy –Gre en strain C ¼ F T F ¼ 2E þ I . Note that F ¼ I þ @ u=@ X. If quadratic
terms in @ u=@ X are neglec ted the linear strain tenso r EL introduced in Chapter 5
is recover ed as

EL ¼ 1
2

@ u

@ X 
þ @ u

@ X

� �T" #
( 13 : 6)

Upon appli cation of Equ ation 13.3, E is rew ritten as

E ¼ V 1
2 ( S 

2 � I )V T
h i

( 13 : 7)

Under pure rigi d body trans lation and rotation x ¼ b( t ) þ QX , we obtai n F ¼ Q and

E ¼ 1
2 [ Q T Q � I ] ¼ 0, implyi ng that the Lagrangi an strain ident ically vanishes under

rigid body motion, unlike the line ar stra in (see Chapter 5).
EXAMPLE 13.1

F, E , and u in cylindrical coordinates
Cylindrical Coordinates : In cylindrical coordinates, the position vector in the

undeformed (reference) confi guration is given by R ¼ ReR þ ZeZ , with eR ¼ cos Q ex þ
sin Q ey and eQ ¼�sin Q ex þ cos Q ey . In the deformed (current) confi guration, the
position vector is given by r ¼ rer þ zez , er ¼ cos ue x þ sin ue y and eu¼�sin uexþ
cos uey. We first seek F.
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� 20
dr ¼ drer þ r du eu þ dz ez

¼ @r

@R
dRþ 1

R

@r

@Q
R dQþ @r

@Z
dZ

� �
er

þ r
@u

@R
dRþ r

R

@u

@Q
R dQþ r

@u

@Z
dZ

� �
eu

þ dz

dR
dRþ 1

R

dz

dQ
R dQþ @z

@Z
dZ

� �
ez

¼ F0
dR

R dQ

dZ

8><
>:

9>=
>;

0

, F0 ¼

@r

@R

1
R

@r

@Q

@r

@Z

r
@u

@R

r

R

@u

@Q
r
@u

@Z
dz

dR

1
R

dz

dQ

@z

@Z

2
6666664

3
7777775

in which the prime calls attention to the fact that the base vectors are still er, eu, ez.
Rotation of the er, eu, ez system to coincide with the base eR, eQ, eZ system gives rise to
the orthogonal tensor

QT ¼
cos(u�Q) �sin(u�Q) 0
sin(u�Q) cos(u�Q) 0

0 0 1

2
4

3
5

We conclude that the deformation gradient tensor is given by F¼QTF0.
The displacement vector is now

u ¼ [r cos(u�Q)� R]eR þ r sin ueQ þ (z� Z)eZ

We now apply the chain rule to ds2 in cylindrical coordinates to obtain the right
Cauchy–Green strain tensor C.

ds2 ¼ dr � dr ¼ dr2 þ r2 du2 þ dz2

¼ {dR R dQ dZ}C

dR

R dQ

dZ

0
B@

1
CA

in which

cRR ¼ dr

dR

� �2
þ r

du

dR

� �2
þ dz

dR

� �2
, eRR ¼ 1

2
(cRR � 1)

cQQ ¼ 1
R

dr

dQ

� �2
þ r

R

du

dQ

� �2
þ 1

R

dz

dQ

� �2
, eQQ ¼ 1

2
(cQQ � 1)

cZZ ¼ dr

dZ

� �2
þ r

du

dZ

� �2
þ dz

dZ

� �2
, eZZ ¼ 1

2
(cZZ � 1)

cRQ ¼ dr

dR

� �
r
du

dR

� �
þ r

du

dR

� �
r

R

du

dQ

� �
þ dz

dR

� �
1
R

dz

dQ

� �
, eRQ ¼ 1

2
cRQ
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� 2
cQZ ¼ 1
R

dr

dQ

� �
dr

dZ

� �
þ r

R

du

dQ

� �
r
du

dZ

� �
þ 1

R

dz

dQ

� �
dz

dZ

� �
, eQZ ¼ 1

2
cQZ

cZR ¼ dr

dZ

� �
dr

dR

� �
þ r

du

dZ

� �
r
du

dR

� �
þ dz

dZ

� �
dz

dR

� �
, eZR ¼ 1

2
cZR

Of course the Lagrangian strain tensor is obtained from E ¼ 1
2 (C� I), with Q not

appearing.
13.2.3 VELOCITY GRADIENT TENSOR, DEFORMATION RATE TENSOR,
AND SPIN TENSOR

We now introduce the particle velocity v¼ @x=@t and assume that it is an explicit
function of x(t) and t. The velocity gradient tensor L is introduced using dv¼L dx,
from which

L ¼ dv

dx

¼ dv

dX

dX

dx

¼ _FF�1 (13:8)

Its symmetric part, called the deformation rate tensor, is

D ¼ 1
2

�
Lþ LT

�
(13:9)

It may be regarded as a strain rate referred to the current configuration. The
corresponding strain rate referred to the undeformed configuration is the Lagrangian
strain rate:

_E ¼ 1
2

�
FT _Fþ _F

T
F
�

¼ FT 1
2

�
_FF�1 þ F�T _F

T�n o
F

¼ FTDF (13:10)

The antisymmetric portion of L is called the spin tensor W:

W ¼ 1
2 [L� LT ] (13:11)

Suppose the deformation consists only of a time-dependent rigid body motion
expressed by

x(t) ¼ Q(t)Xþ b(t), QT (t)Q(t) ¼ I (13:12)
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Cle arly, F ¼ Q and E ¼ 0, D ¼ 0 and L ¼ W ¼ _QQ T , and recal l from Chapter 12
that _QQ T is antisym metric.

EXAMPLE 13.2

v, L , D, and W in cylindrical coordinates
The velocity vector in cylindrical coordinates is

v ¼ @ r

@ t 
e r þ r

@ u

@ t 
e u þ @ z

@ t 
e f

¼ vr _e r þ vu e u þ vf e f

Observe that

dv ¼ dvr e r þ dvu eu þ dvz e z þ vr der þ v u de u

¼ dvr � vu
r
r du

h i
er þ dvu þ vr

r
r du

h i
eu þ dv z e z

Now converting to matrix –vector notation,

dv ¼

dvr
dr dr þ 1

r
dvr
du r du þ

dvr
dz dz �

vu
r r du

dvu
d r dr þ 1

r
dvu
du r du þ

d vu
dz dz �

vr
r r du

dvz
dr dr þ 1

r
dvz
du r du þ

dvz
dz dz

0
BBBB@

1
CCCCA

¼ L

dr

r du

dz

0
B@

1
CA , L ¼

dvr
d r

1
r
dvr
du �

vu
r

dvr
dz

dvu
d r

1
r
dvu
du þ

vr
r

dvu
dz

dvz
d r

1
r
d vz
du

dvz
dz

2
66664

3
77775

Of course D and W are obtained as the symmetric and antisymmetric portions of L.

13.2.4 DIFFERENTIAL VOLUME E LEMENT

The volume implie d by the diff erential posit ion vector dR is given by the vector
tri ple product

dV0 ¼ dX 1 � dX2 � dX3 ¼ dX 1 dX 2 d X3

dX1 ¼ dX1 e 1 , dX2 ¼ dX 2 e 2 , dX 3 ¼ dX 3 e 3
(13:13)

The vectors dXi deform into dxj ¼ dxj
dXi

ej dXi. The deformed volume is now readily
verified as

dV ¼ dx1 � dx2 � dx3

¼ JdV0, J ¼ det(F) ¼ det
1
2(C) (13:14)

and J as before is called the Jacobian.
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The time deriv ative of J is prom inent in incre mental form ulations in conti nuum
mecha nics. Recall ing that J ¼ ffiffiffiffi

I3
p

, we have

d

dt 
J ¼ 1

2J
dI3
dt

¼ J
2 tr (C 

� 1 _C )

¼ J
2 [ tr ( F

� 1 _F) þ tr ( F� 1 F� T _F
T 
F)]

¼ J tr
F� 1 _F þ F� T _F 

T

2

 !

¼ J tr( D) (13 : 15 )
EXAMPLE 13.3

Relation of D to _E
We now express D and its trace in terms of _E, E, and F . First differentiate E to find

_E ¼ 1
2 ( F

T _F þ _F
T 
F)

from which

F�T _EF�1 ¼ 1
2 ( 

_FF�1 þ F�T _F
T 
)

¼ D

Next,

tr ( D) ¼ tr ( F� T _EF� 1 )

¼ tr ( _EF �1 F� T )

¼ tr ( _E (I þ 2E ) �1 )

13.2.5 DIFFERENTIAL SURFACE ELEMENT

Let dS denote a surface element in the deformed configuration, with exterior
unit n ormal n illustrated in Figure 13.3. The counte rpart s from the refere nce con-
figuration are dS0 and n0. A surface element dS obeys Nanson’s theorem
(cf. Chandrasekharaiah and Debnath, 1994)

n dS ¼ JF�Tn0 dS0 (13:16)

Taking the magnitude of n dS, we conclude that
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dS

ds

Q∗
P∗

Q�

P�

FIGURE 13.3 Differential length changes.
dS ¼ J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nT
0C

�1n0

q
dS0, n ¼ F�Tn0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nT0C
�1n0

q (13:17)

Of course during deformation the surface normal changes direction (cf. Figure
13.4), a fact which is important, for example, in contact problems. For later use, in
incremental variational methods we consider the differential dn

dt and d(n dS):

d

dt
[n dS] ¼ dJ

dt
F�Tn0 dSþ J

dF�T

dt
n0 dS0 (13:18)

But, recalling Equation 13.15,

dJ

dt
¼ J tr(D)

dJ

dt
F�Tn0 dS0 ¼ tr(D)JF�Tn0 dS0

¼ tr(D)n dS (13:19)
dX2

dX1

dS0

n0

dx2

dx1

dS

n

FIGURE 13.4 Undeformed and deformed surface patches.
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Also, since d(FTF�T)¼ 0,

dF�T

dt
¼ �F�T dF

T

dt
F�T

¼ �LTFT (13:20)

Finally, we have

d[n dS]

dt
¼ [tr(D)I� LT ]n dS (13:21)
EXAMPLE 13.4

Referring to Figure 13.5, determine u, F, J, and E as functions of X and Y: use H¼ 1,
W¼ 1, a¼ 0.1, b¼ 0.1, c¼ 0.3, d¼ 0.2, e¼ 0.2, f¼ 0.1. Assume a unit thickness in the
Z-direction in both the deformed and undeformed configurations.

SOLUTION

A deformation model which captures the fact that straight sides remain straight is given
in the form assumed in the form

x ¼ aX þ bY þ gXY , y ¼ dX þ «Y þ zXY

It is necessary to determine a, b, g, d, «, and z from the coordinates of the vertices in
the deformed configuration.

At (X, Y) ¼ (W , 0): W þ a ¼ aW , b ¼ dW

At (X, Y) ¼ (0,H): e ¼ bH, H þ f ¼ «H

At (X, Y) ¼ (W ,H): W þ c ¼ aW þ bH þ gWH, H þ d ¼ dW þ «H þ zWH
Undeformed plate

Y

H

X
W

Deformed plate

e

a

c

d

b

X
W

H

f

Y

FIGURE 13.5 Plate elements in undeformed and deformed states.
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FIG

� 20
After elementary manipulations,

a ¼ 1þ a

W
¼ 1:1, b ¼ e

H
¼ 0:2, d ¼ b

W
¼ 0:1

« ¼ 1þ f

H
¼ 1:2, g ¼ W þ c� (W þ a)� e

WH
¼ 0:4, z ¼ H þ d � b� (H þ f )

WH
¼ 0

The 23 2 deformation gradient tensor F and its determinant now are:

F ¼ aþ gY bþ gX

dþ zY «þ zX

" #
¼ 1:1þ 0:4Y 0:2þ 0:4X

0:1 1:2

" #

J ¼ 1:3þ 0:48Y � 0:04X

The displacement vector is

u ¼ x� X
y� Y

� �
¼ (a� 1)X þ bY þ gXY

dX þ («� 1)Y þ zXY

� �
¼ 0:1X þ 0:2Y þ 0:4XY

0:1X þ 0:2Y

� �

The Lagrangian strain E ¼ 1
2 [F

TF� I] is found to be

E ¼ 1
2

1:1þ 0:4Y 0:1

0:2þ 0:4X 1:2

" #
1:1þ 0:4Y 0:2þ 0:4X

0:1 1:2

" #
� 1
2

1 0

0 1

" #

¼ 0:11þ 0:44Y þ 0:08Y2 0:17þ 0:22X þ 0:04Y þ 0:08XY

0:17þ 0:22X þ 0:04Y þ 0:08XY 0:24þ 0:08X þ 0:08X2

" #
EXAMPLE 13.5

Figure 13.6 shows a square element at time t and at tþ dt. Estimate L, D, and W at
time t. Use a¼ 0.1 dt, b¼ 1þ 0.2 dt, c¼ 0.2 dt, d¼ 1þ 0.4 dt, e¼ 0.05 dt, f¼ 0.1 dt,
Element at time t Element at time t + dt

Y

X
1

1

Y
d

c

g

a b

f

X

e

h

URE 13.6 Element experiencing rigid body motion and deformation.
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� 2
g ¼ 1 � 0.1 dt , h ¼ 1 þ 0.5 dt . Assume a unit thickness in the Z-direction in both the
deformed and undeformed configurations.

SOLUTION

First represent the deformed position vectors in terms of the undeformed position vectors
using eight coefficients to be determined using the given geometry. In particular,

x ¼ a þ bX þ g Y þ dXY , y ¼ « þ z X þ hY þ uXY

This expression likewise captures the fact that straight sides remain straight. Following
procedures analogous to Example 13.3, we fi nd

a ¼ 0: 1 dt , « ¼ 0: 05 dt

b ¼ 1 þ 0: 2 d t , z ¼ 0: 1 dt

g ¼ 0: 2 dt , h ¼ 1 � 0: 1 dt

d ¼ �0: 5 dt , u ¼ �0: 05 dt

The velocities may be estimated using vx � x � X
d t and vy � y � Y

dt , from which

vx ¼ 0: 1 þ 0: 2X þ 0: 2Y � 0: 5XY

vy ¼ 0: 05 þ 0: 1X � 0: 1Y � 0: 05XY

The tensors L , D, and W are now readily found as

L ¼ 0: 2 � 0: 5Y 0:2 � 0: 5X

0 :1 � 0:05 Y � 0: 1 � 0: 05X

" #

D ¼ 0: 2 � 0: 5Y 0: 15 � 0: 25X � 0: 025Y

0 :15 � 0: 25X � 0 :025 Y � 0: 1 �  0 :05 X

" #

W ¼ 
0 � 0: 4 � 0: 25X þ 0: 025Y

0 :4 þ 0:25 X � 0: 025 Y 0

" #
13.3 MECHANICAL EQUILIBRIUM AND THE PRINCIPLE
OF VIRTUAL WORK

13.3.1 T RACTION V ECTOR AND S TRESS T ENSORS

A stress tenso r was previ ously introduced in Chapter 5. However , it was in the contex t
of smal l deformati on, in which case it was not indicated how the stre ss changes when
referred to the undeformed as opposed to the current (deformed) con figuration. The
distinction is cen tral to the develo pment below, leading to the Cau chy stre ss tensor
(current con figurat ion) and the fi rst and second Piola –Ki rchoff stre ss tenso r.

Cauchy Stres s: We consi der a diff erential tetr ahedron enclos ing the point x in the
deformed con figurat ion, as illustrated in Figure 13.7. The area of the inclined face
008 by Taylor & Francis Group, LLC.



x3

dx3

dx2

x1

x2

dx1

x

FIGURE 13.7 Differential tetrahedron.
is dS, and d Si is the area of the face whos e exter ior normal vector is �e i . Simple
vec tor analys is serves to deriv e that ni ¼ dSi=d S, see Exa mple 2.5. Now referr ing to
Figure 13.8, let dF denote the force on the surfa ce elem ent dS, and let dF (i ) denote
the force on area dSi . As the tetrahedro n shrinks to a point , the contribut ion of
vo lume forces such as inertia decays fast er than surfa ce forces. Balance of forces
requi res that dFj ¼

P
i
dF (i)j .
dF 

(3)

dS 

(3)

dS 

(1)

dS 

(2)

dF 

(2) dF 

(1)

1

2

3

dF

n

dS

FIGURE 13.8 Forces applied to a differential tetrahedron.
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The traction vector acti ng o n the inclined face is de fined by

t ¼ dF

dS 
( 13 : 22 )

from which

tj ¼
X
i

dF (i )j
dSi

dSi
dS

¼ Tij ni ( 13 : 23 )

in whi ch

Tij ¼
dP (i)j
d Si

( 13 : 24 )

It is readi ly seen that Tij ca n be interpret ed as the inte nsity of the force acti ng in the
j direction on the facet point ing in the � i direction , and is recognize d as ijth entry
of the Cauchy stre ss T. In matrix –vector notat ion the stress –traction relation is
written as

t ¼ T T n ( 13 : 25 )

In Secti on 13.3.2 it wi ll be seen that T is symmet ric by virt ue of the balance of
angula r momentu m. Equation 13.24 implie s that TT is a tensor, from which it follows
that T is a tenso r.

In traditional depictions the stresses on the back faces are repres ented by
arrows point ing in negati ve direc tions. However , this depiction can be confusing —
the arrows actually represent the direc tions of the tract ion compo nents. Con sider the
one-dimens ional mem ber in Figure 13.9. The traction vector t e1 ac ts at x ¼ L , whi le
the traction vector�te1 at x¼ 0. At x¼ L, the corresponding stress is t11¼ te1 � e1¼ t.
At x¼ 0 the stress is given by (�te1) � (�e1)¼ t. Clearly, the stress at both ends, and
in fact throughout the member, is positive (tensile).
Y

t t x

z

FIGURE 13.9 Tractions on a bar experiencing uniaxial tension.
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We will see later that the stress tensor is symmetric by virtue of the balance of
angular momentum.

First Piola–Kirchhoff Stress Tensor: Transformation to undeformed coordinates is
now considered. From the transformation properties of a surface element, we have

t dS ¼ TTn dS

¼ TTJF�Tn0 dS0

¼ �S
T
n0 dS0, �S ¼ JF�1T (13:26)

�S is known as the first Piola–Kirchhoff stress tensor and it is not symmetric.

Second Piola–Kirchhoff Stress: We next derive the stress tensor which is conjugate
to the Lagrangian strain rate, i.e., gives the correct amount of work per unit
undeformed volume. At a segment dS at x on the deformed boundary, assuming
static conditions the rate of work d _W of the tractions is

d _W ¼ dFT _u

¼ tT _u dS (13:27)

Over the surface S, shifting to tensor-indicial notation and invoking the divergence
theorem, we find

_W ¼
ð
tT _u dS

¼
ð
Tijni _uj dS

¼
ð
@ _uj
@xi

Tij dV þ
ð
_uj
@Tij

@xi
dV (13:28)

We will shortly see that static equilibrium implies that @Tij

@xi
¼ 0, which will enable

us to conclude that

_W ¼
ð
@ _uj
@xi

Tij dV ¼
ð
tr(TL) dV ¼

ð
tr(TD) dV (13:29)

To convert to undeformed coordinates, note that

_W ¼
ð
tr(TD) dV

¼
ð
tr(JTF�1 _EF�T ) dV0

¼
ð
tr(JF�TTF�1 _E) dV0

¼
ð
tr(S _E) dV , S ¼ JF�TTF�1 (13:30)
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and the tensor S is called the second Piola–Kirchhoff stress tensor. It is symmetric if
T is symmetric, which we will shortly see to be the case.
EXAMPLE 13.6

At point (0,0,0) the tractions t1, t2, t3 act on planes with normal vectors n1, n2, and n3.
Find the Cauchy stress tensor T. Given:

n1 ¼ 1ffiffi
3

p [e1 þ e2 þ e3], t1 ¼ 1ffiffi
3

p [6e1 þ 9e2 þ 12e3]

n2 ¼ 1ffiffi
3

p [e1 þ e2 � e3], t2 ¼ 1ffiffi
3

p [0e1 þ 1e2 þ 3e3]

n3 ¼ 1ffiffi
3

p [e1 � e2 � e3], t3 ¼ � 1ffiffi
3

p [4e1 þ 5e2 þ 6e3]

SOLUTION

This problem requires application of the stress–traction relation. Now

1ffiffiffi
3

p
6
9
12

0
@

1
A ¼

T11 T12 T13
T21 T22 T23
T31 T32 T33

2
4

3
5 1ffiffiffi

3
p

1
1
1

0
@

1
A

which gives

T11 þ T12 þ T13 ¼ 6 (13:31)

T21 þ T22 þ T23 ¼ 9 (13:32)

T31 þ T32 þ T33 ¼ 12 (13:33)

Similarly,

1ffiffiffi
3

p
0
1
2

0
@

1
A ¼

T11 T12 T13
T21 T22 T23
T31 T32 T33

2
4

3
5 1ffiffiffi

3
p

1
1
�1

0
@

1
A

from which

T11 þ T12 � T12 ¼ 0 (13:34)

T21 þ T22 � T23 ¼ 1 (13:35)

T31 þ T32 � T33 ¼ 2 (13:36)

1ffiffiffi
3

p
�4
�5
�6

0
@

1
A ¼

T11 T12 T13
T21 T22 T23
T31 T32 T33

2
4

3
5 1ffiffiffi

3
p

1
�1
�1

0
@

1
A
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and now

T11 � T12 � T13 ¼ �4 (13:37)

T21 � T22 � T23 ¼ �5 (13:38)

T31 � T32 � T33 ¼ �6 (13:39)

It is elementary to attain the solution, which is

T ¼
1 2 3
2 3 4
3 4 5

2
4

3
5

13.3.2 STRESS FLUX

Consider two deformations x1 and x2 differing only be a rigid body motion:

x2 ¼ V(t)x1 þ b(t) (13:40)

in which V(t) is an arbitrary orthonormal tensor. A tensor A(x) is objective
(cf. Eringen, 1962) if

A(x2) ¼ VA(x1)V
T (13:41)

If a tensor is objective, the differences seen by observers at x1 and x2 are accounted
for by the transformations relating the two associated motions.

It turns out that the matrix of time derivatives of the Cauchy stress, _T, is not
objective, while the deformation rate tensor D is. Accordingly, if j is a fourth-order
tensor, a constitutive equation of the form _T¼ jD would be senseless. Instead, the
time derivative of T is replaced with an objective stress flux, as explained below.
First note that

F2 ¼ VF1

L2 ¼ _F2F
�1
2

¼ _VVTVF1 þ V _F1

� �
F�1
1 V

T

¼ Vþ VL1V
T , V ¼ _VVT

(13:42)

The tensor V is antisymmetric since dI=dt¼ 0¼VþVT. Clearly, the tensors F and
L are not objective.

We seek a stress flux affording the simplest conversion from deformed to
undeformed coordinates. To this end we examine the time derivative of the second
Piola–Kirchhoff stress.

dS

dt
¼ d

dt
[JF�TTF�1]

¼ Jtr(D)F�TTF�1 þ J _F
�T

TF�1 þ JF�T _TF�1 þ JF�TT _F
�1

(13:43)
� 2008 by Taylor & Francis Group, LLC.



But (F�1 _F) ¼ 0 so that _F�1 ¼ �F�1 _FF�1 and _F
�T ¼ �F�T _F

T
F�T . Continuing,

dS

dt
¼ JFT T̊F�1 (13:44)

in which

T̊ ¼ _Tþ tr(D)T� LT� TLT (13:45)

is known as the Truesdell stress flux. Under pure rotation F¼Q and _S ¼ JQT̊QT .

To prove the objectivity of T̊, note that

T̊2 ¼ _T2 þ T2 tr(D2)� L2T2 � T2L
T
2

¼ VT1V
T

� �
. þ VT1V

T tr(D1)� VL1V
T þV

� �
VT1V

T

� VTT
1V

T VL1
TVT �V

� �
¼ V _T1V

T þVVT1V
T � VT1V

TVþ VT1V
T tr(D1)

� VL1T1V
T � VT1L1

TVT �VVT1V
T þ VT1V

TV

¼ VT̊1V
T (13:46)

as desired.
The choice of stress flux is not unique. For example, the stress flux given by

T̊ ¼ T̊ � T tr(D)

¼ _T� LT� TLT (13:47a)

is also objective, as is the widely used Jaumann stress flux

4

T ¼ _Tþ TW�WT, W ¼ 1
2 (L� LT) (13:47b)
EXAMPLE 13.7

Relate the Jaumann stress flux to the Truesdell stress flux and to the rate of the second
Piola–Kirchhoff stress

SOLUTION

Expanding the velocity gradient tensor in the Truesdell stress flux gives

T̊ ¼ _Tþ T trD� LT� TLT

¼ _Tþ T trD� (DþW)T� T(D�W)
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¼ T trD� DT� TDþ ( _Tþ TW�WT)

¼ T trD� DT� TDþ
4

T

Secondly,

JF�1T̊F�T ¼ _S� JS tr _E(2Eþ I)�1
� �� {(2Eþ I)�1 _ESþ S _E(2Eþ I)�1}

Wewill discuss this result further in conjunction with incremental stress–strain relations.
It is clear that, if the Jaumann stress flux is used, conversion to undeformed coordinates
introduces increments of strain not being proportional to increments of stress.
13.3.3 BALANCE OF MASS, LINEAR MOMENTUM, AND ANGULAR MOMENTUM

Balance of Mass: Balance of mass requires that the total mass of an isolated body
not change:

d

dt

ð
r dV ¼ 0 (13:48)

in which r(x,t) is the mass density. Since dV¼ J dV0, it follows that rJ¼ r0.

Reynolds Transport Theorem: This useful principle is a consequence of balance
of mass. Let w(x,t) denote a vector-valued function. Conversion of the volume
integral from deformed to undeformed coordinates is simply achieved asÐ
V
rw(x,t) dV ¼ Ð

V0

r0w(x,t) dV0. The Reynolds Transport Theorem follows as

d

dt

ð
rw(x,t) dV ¼

ð
r

d

dt
w(x, t)

	 

þ 1
J

d

dt
(rJ)

� �
w(x, t)

� �
dV

¼
ð
r
d

dt
w(x, t) dV (13:49)

Balance of Linear Momentum: In a fixed coordinate system, balance of linear
momentum requires that the total force on a body with volume V and surface S be
equal to the rate of change of linear momentum. Assuming that all force is applied on
the exterior surface, the equation of interest is

F ¼
ð
t dS ¼ d

dt

ð
r
du

dt
dV (13:50)

Invoking the Reynolds Transport Theorem yields

ð
t dS ¼

ð
r
d2u

dt2
dV (13:51)
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In current coordinates, application of the divergence theorem (Equation 3.18) fur-
nishes the equilibrium equation

ð
t dS ¼

ð
TTn dS

¼
ð
[rTT]T dV (13:52)

Equation 13.51 now becomes

ð
rTT� r

d2uT

dt2

	 

dV ¼ 0T (13:53)

Since this equation applies not only to the whole body but to arbitrary subdomains of
the body, the argument of the integral in Equation 13.53 must vanish pointwise:

rTT ¼ r
d2uT

dt2
(13:54)

To convert to undeformed coordinates the first Piola–Kirchhoff stress is invoked to
furnish

ð
�S
T
n0 dS0 ¼

ð
r0

d2u

dt2
dV0 (13:55)

and the divergence theorem furnishes

rT
0
�S ¼ r0

d2uT

dt2
(13:56)

in which r0 denotes the divergence operator referred to undeformed coordinates.
This equation will later be the starting point in the formulation of incremental
variational principles.

Balance of Angular Momentum: Assuming that only surface forces are present,
relative to the origin and a fixed coordinate system the total moment of the traction
is equal to the rate of change of angular momentum:

ð
x� t dS ¼ d

dt

ð
x� r _x dV (13:57)

To examine this principle further it is convenient to use tensor-indicial notation. First
note using the divergence theorem that
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ð
x � t dS ¼

ð
«ijk x j t k dS

¼
ð
«ijk x j T lk nl dS

¼
ð

@

@ xl
( «ijk x j Tlk ) dV

¼
ð
«ijk djl Tlk dV þ

ð
«ijk x j

@

@ xl
Tlk dV

¼
ð
«ijk Tjk d V þ

ð
«ijk x j

@

@ xl
Tlk dV (13 :58 )

and of course «ijk is the third-ord er permutat ion tenso r introduced in Cha pter 3.
Continuing,

d

dt

ð
x � r _x d V ¼

ð
x � r€x d V þ

ð
_x � r _x dV

¼
ð
x � r€x d V

¼
ð
«ijk x j r€x k dV (13 :59 )

Bal ance of angula r mom entum may thus be restated as

0 ¼
ð
«ijk Tjk dV þ

ð
«ijk x j

@

@ xl
Tlk � r€x k

	 

dV (13 :60 )

The second term vanis hes by virtue of balance o f line ar momentu m (Equati on
13 .54), leavi ng

«ijk Tjk ¼ 0 (13 :61 )

whi ch imp lies that T is symmet ric: T ¼ T T (Examp le 2.6). Not e also that S is also
symm etric but that �S is not symmet ric.

13.4 PRINCIPLE OF VIRTUAL WORK UNDER LARGE
DEFORMATION

The balanc e of linear and the balanc e of angula r momentu m lead to auxiliary
varia tion al princ iples that are fundam ental to the finite e lement met hod. Variational
met hods wer e introduced in Cha pter 4. W e recal l the balance of linear momentu m in
rectilinear coordinates as

@

@xl
Tkl � r€uk ¼ 0 (13:62)
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and Tlk¼Tkl by virtue of the balance of angular momentum. We have tacitly assumed
that €x¼ €uk which is to say that deformed positions are referred to a coordinate
system that does not translate or rotate. A variational principle is sought from

ð
duk

@

@xl
Tkl � r€uk

	 

dV ¼ 0 (13:63)

in which duk is an admissible (i.e., consistent with constraints) variation of uk.
We consider the spatial dependence of uk to be subjected to variation, but not the
temporal dependence. For example, if uk can be represented, at least locally, as

u ¼ NT (x)g(t)

then

duk ¼ [NT (x)]kldgl(t) (13:64)

The second term in the variational equation simply remains as �Ð dukr€uk dV .
The first term is integrated by parts once for reasons which will be identified shortly:
it becomes

Ð
@
@xl

[dukTlk] dV � Ð @duk
@xl

Tlk dV . From the divergence theorem,

ð
@

@xl
[dukTlk] dV ¼

ð
nl[dukTlk] dS

¼
ð
duktk dS (13:65)

which may be interpreted as the virtual work of the tractions on the exterior
boundary. Next, since T is symmetric,

ð
@duk
@xl

Tlk dV ¼
ð
d 3kl Tlk dV

3kl ¼ 1
2

@uk
@xl

þ @ul
@xk

	 
 (13:66)

and we call 3kl the Eulerian strain. The term
Ð
d3kl Tlk dV may be called the virtual

work of the stresses. Next, to evaluate
Ð
dukTk dS we suppose that the exterior

boundary consists of three zones: S¼ S1þ S2þ S3. On S1 the displacement uk is
prescribed, causing the integral over S1 to vanish. On S2 suppose that the traction is
prescribed as �tk(s). The contribution is

Ð
S2
duk�tk(s) dS. Finally on S3 suppose that

tk ¼ �tk(s)� [A(s)]klul(s), furnishing
Ð
S3
duk�tk(s) dS�

Ð
S3
duk[A(s)]klul(s) dS. The vari-

ous contributions are consolidated into the large deformation form of the principle
of virtual work (Zienkiewicz and Taylor, 1989) in current (deformed) coordinates as
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ð
d 3kl Tlk dV þ

ð
duk r €uk dV

¼
ð
S2

duk�tk (s ) dS þ
ð
S3

duk�t k ( s) dS �
ð
S3

duk [ A( s )]kl ul (s ) dS (13 :67 )

Now consi der the case in which, as in class ical elastici ty,

Tlk ¼ dlkmn 3mn , T ¼ D 3 (13 :68 )

in which dlkmn are the entries of a fourt h-orde r const ant posit ive de finite tangen t
modul us tenso r D . The first term in Equ ation 13.67 n ow becom es
d
Ð
1
2 3kl dlkmn 3mn dV , wi th a positive de finite integrand. Achievi ng this outcom e is

the motivat ion behind integrati ng by parts once. In the langua ge of Cha pter 4, uk is
the prim ary variable and tk is the seconda ry va riable: on any boundar y point either uk
or tk is typically speci fi ed, and tk may be speci fied as a funct ion of uk . Finally,
app lication of the interpola tion model (E quation 13.64) and cancel lation of dgT

furni shes the ordin ary diff erential equati on

M €g þ [ K þ H ] g ¼ f (t ) (13 :69 )

in which

M ¼
ð
N( x) NT ( x)r dV , K ¼

ð
BD BT dV

H ¼
ð
S3

N (x )AN T ( x) dV , f (t ) ¼
ð
S2 þ S 3

N (s )�t k ( s ) dS
(13 :70 )

and in which VEC ( T) ¼ xVEC ( 3), x ¼ TEN22 ( D ). Also VEC ( 3) ¼ B T (x) g , and B is
deriv ed from the strain –displa cement relations , M is the positive de finite mas s
mat rix, K is the positive de finite matrix representi ng the domain contr ibution to
the sti ffness matrix , H is the b oundary contribut ion to the stiffness matrix , and f is the
con sistent force vector . These notions wi ll be addressed in greater detail in subse-
qu ent chapte rs.

Owing to its imp ortance in nonli near FEA we go into considerabl e detai l to
convert the foregoing large deformation form of the Principle of Virtual Work to
undeformed coordinates. Firstð

dukr€uk dV !
ð
dukr0€uk dV0ð

S2

duk�tk(s) dSþ
ð
S3

duk�tk(s) dS !
ð
S20

duk�t
0
k (s0) dS0 þ

ð
S30

duk�t
0
k (s0) dS0 (13:71)

using

�t 0k ¼ m�tk m ¼ J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nT0C

�1n0

q
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The traction relation t0¼mt is seen from the fact that t0 dS0¼ t dS¼ tm dS0.
Next,

ð
S3

duk[A(s)]klul(s) dS !
ð
S3

duk[mA(s)]klul(s0) dS0 (13:72)

Some manipulation is required to convert the virtual work of the stresses.
Observe that

d3 ¼ 1
2

@du

@x
þ @du

@x

� �T
" #

¼ 1
2

@du

@X

@X

@x
þ @du

@X

@X

@x

� �T
" #

¼ 1
2 [dFF

�1 þ F�TdFT ]

¼ F�T 1
2 [F

TdFþ dFTF]
� �

F�1

¼ F�TdEF�1 (13:73)

Third

ð
d3klTlk dV ¼

ð
tr(d 3 T) dV

¼
ð
tr(F�TdEF�1T)J dV0

¼
ð
tr(dEJF�1TF�T ) dV0

¼
ð
tr(dES) dV0

¼
ð
dEjiSij dV0 (13:74)

Consolidating the foregoing terms the Principle of Virtual Work in undeformed
coordinates is

ð
dEjiSij dV0 þ

ð
dukr0€uk dV0 ¼

ð
S20

duk�t
0
k (s0) dS0 þ

ð
S30

duk�t
0
k (s0) dS0

�
ð
S30

duk[mA(s0)]klul(s0) dS0 (13:75)
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EXAMPLE 13.8

Given the Cauchy stress tensor T, find the first and second Piola–Kirchhoff stress
tensors if x(t)¼Q(t)D(t)X, in which

D(t) ¼
1þ at 0 0

0 1þ bt 0
0 0 1þ ct

2
4

3
5

Assume Q represents a plane rotation about the z-axis.
� 20
SOLUTION

We know that the deformation gradient tensor is given by F ¼ dx(t)
dX . Hence,

F ¼ Q(t)D(t) ¼
cos u sin u 0

�sin u cos u 0

0 0 1

2
64

3
75

1þ at 0 0

0 1þ bt 0

0 0 1þ ct

2
64

3
75

¼
(1þ at) cos u (1þ bt) sin u 0

�(1þ at) sin u (1þ bt) cos u 0

0 0 (1þ ct)

2
64

3
75

and also

F�1 ¼

cos u

(1þ at)
� sin u

(1þ bt)
0

sin u

(1þ at)

cos u

(1þ bt)
0

0 0
1

(1þ ct)

2
6666664

3
7777775

The Jacobian J¼ det F is given by

J ¼ det(F) ¼ (1þ at)(1þ bt)(1þ ct)

The first Piola–Kirchhoff stress is now given by

�S ¼ JF�1T ¼ (1þ at)(1þ bt)(1þ ct)

cos u

(1þ at)
� sin u

(1þ bt)
0

sin u

(1þ at)

cos u

(1þ bt)
0

0 0
1

(1þ ct)

2
666664

3
777775T

and the second Piola–Kirchhoff stress is obtained immediately as
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� 2
S ¼ JF�1 TF �T

¼ (1 þ at )( 1 þ bt )(1 þ ct )

cos u

( 1 þ at )
� sin u

( 1 þ bt )
0

sin u

( 1 þ at )

cos u

( 1 þ bt )
0

0 0
1

(1 þ ct )

2
6666664

3
7777775

� T

cos u

( 1 þ at )

sin u

(1 þ bt )
0

� sin u

( 1 þ at )

cos u

(1 þ bt )
0

0 0
1

( 1 þ ct )

2
6666664

3
7777775
13.5 NONLINEAR STRESS–STRAIN– TEMPERATURE RELATIONS:
THE ISOTHERMAL TANGENT MODULUS TENSOR

13.5.1 C LASSICAL E LASTICITY

Under smal l deformati on, the fourth-or der tangen t modulus tenso r D in linear
elasticity is de fine d imp licitly by

dT ¼ D dEL ( 13 : 76 )

in which EL is the small stra in tenso r. In linear isot ropic elasticity, the stress –stra in
relations are writt en in the Lamé form as

T ¼ 2m EL þ l tr ( EL ) I ( 13 : 77 )

Using Kronec ker product notat ion from Chapter 3, Equa tion 13.77 may be rewrit ten as

VEC (T ) ¼ 2m I � IEL þ lii T
� �

VEC ( EL ) (13 : 78 )

from which we conclu de that

D ¼ ITEN 22 2m I � I þ lii T
� �

( 13 : 79 )

13.5.2 C OMPRESSIBLE HYPERELASTIC MATERIALS

In isot ropic hyperel asticity, which is descripti ve of compr essible rubber , the second
Piola –Ki rchhof f stre ss is taken to be de rivable from a stra in energy funct ion w which
depends on the principal invariants I1, I2, I3 of the right Cauchy–Green strain tensor,
introduced in Chapter 3.

S ¼ dw

dE
¼ 2

dw

dC
, sT ¼ dw

de
¼ 2

dw

dc
(13:80a)

s ¼ VEC(S), e ¼ VEC(E), c ¼ VEC(C) (13:80b)
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Simp le manipulation serves to obtain

s ¼ 2fi ni , fi ¼
@ w

@ Ii
, nTi ¼ @ Ii

@ c 
(13 :81 )

Fro m Chapter 3, Se ction 3.6.8,

n1 ¼ i , n2 ¼ I 1 i � c , n 3 ¼ VEC (C � 1 ) I 3 (13 :82 )

The tangen t modul us tensor D0 referred to the un deformed con figurat ion is given by

dS ¼ D0 d E , ds ¼ TEN 22(D 0 ) de (13 :83 )

and furt hermore

TEN 22 (D0 ) ¼ 4fij ni n
T
j þ 4fi A i , Ai ¼ dni

dc 
(13 :84 )

Final ly, recalling Cha pter 3,

A1 ¼ dn1
dc

¼ 0 ( 13 :85 a)

A2 ¼ dn2
dc

¼ d

dc 
[I 1 i � c ]

¼ ii T � I9 (13 : 85 b)

A3 ¼ d

dc
VEC (C � 1 ) I3
� �

¼ d

dc
I2 i � I 1 c þ VEC ( C2 )
� �

¼ inT2 � c i T þ C � C

¼ I1 ii 
T � I 9

� �� i c T þ ci T
� �þ C � C ( 13 :85 c)

13.5.3 INCOMPRESSIBLE AND NEAR -INCOMPRESSIBLE HYPERELASTIC MATERIALS

Po lymeric mat erials such as natur al rubber are often nearl y incom press ible. For
some appli cations they may b e idealized as incompres sible. But for appli cations
invol ving con finemen t, such as in the corner s of seal wells, it may be necess ary to
acc ommodat e the smal l degree of compressi bility to achiev e high accuracy in the
stre sses. Incom press ibility and near-incom press ibility repres ent inte rnal con-
stra ints . The p rincipal (Euleria n) strains are not indepe ndent, and the (Cauchy)
stresses are not determined completely by the strains, instead, differences in the
principal stresses are determined by differences in principal strains (Oden, 1972).
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An additional field is introduced to enforc e the inte rnal con straint, and we will see
that this inte rnal field may be identi fied as the hyd rostatic press ure (referred to the
curren t con figurat ion).
13.5.3. 1 Incompre ssibi lity

The const raint of incom pressibilit y is expres sed by the relation J ¼ 1 and note that

J ¼ det F

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det 2 (F)

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det( F) det( FT )

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det 2( FT F)

q
¼ ffiffiffiffi

I 3
p 

( 13: 86 )

and consequ ently the const raint of incompres sibility may be rest ated as I 3 ¼ 1.
The constraint I 3¼ 1 may be enforced using a Lagrange multiplier (Oden, 1972)

denoted here as �p. The multiplier depends on X and is in fact the additional field
just mentioned. Oden (1972) proposed introducing an augmented strain energy
function w0 similar to

w0 ¼ w I 01,I
0
2

� �� 1
2 
p( J � 1) , I01 ¼

I1

I 1 =33 

, I 02 ¼
I2

I 2 =33 

( 13 : 87 )

in which w is interpreted as the convent ional strain energy funct ion but with
dependen ce on I 3( ¼ 1) removed. I 01 and I 

0
2 are ca lled the deviatori c invariants. For

reason s to be explained in Chapter 15 which presen ts addit ional variation al prin-
ciples to address global constraints, this form serves to enforce incompressibility,
with S now given by

sT ¼ @ w0

@e

¼ 2f0
1 n 1 

0 þ 2f0
2n

0
2 � 1

J pn3 ( 13: 88 )

f0
1 ¼

@ w

@ I 01 
, f0

2 ¼
@ w

@ I 02
, n1

0 ¼ @ I 01
@c

	 
T 
, n02 ¼

@ I 02
@c

	 
T

To convert to deformed coordi nates, recall that S ¼ JF� 1TF �T. An example pre-
sented below serves to deriv e c 01 and c

0
2 and also

t ¼ VEC ( T) ¼ 2c 01 m 01 þ 2c0
2m

0
2 � pi ( 13 : 89 )

The examp le will also estab lish that iT m0
1 ¼ 0 and iTm0

2 ¼ 0. Note that t does not
denote the traction vector in the present context. We find that p¼�tr(T)=3 since
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tr(T) ¼ iT t

¼ 2c0
1i
Tm0

1 þ 2c0
2i
Tm0

2 � piT i

¼ �iTip

¼ �3p (13:90)

Evidently the Lagrange multiplier enforcing incompressibility is the ‘‘true’’ hydro-
static pressure.

Finally, the tangent modulus tensor is somewhat more complicated, because dS
depends on dE and dp. We will see in a subsequent chapter that the tangent modulus
tensor may be defined as D* using

TEN22(D*) ¼
ds
de

ds
dp

� ds
dp

� �T
0

2
64

3
75

ds

de
¼ 4 f0

1A
0
1 þ f0

2A
0
2 þ f0

11n
0
1 n01
� �Tþf0

12n
0
1 n02
� �Th

þf0
21n

0
2 n01
� �Tþf0

22n
0
2 n02
� �Ti

ds

dp
¼ � 1

J
n3

(13:91)

Note the negative sign in the lower left entry of D*.

EXAMPLE 13.9

In undeformed coordinates and Kronecker product (VEC) notation, the second Piola–
Kirchhoff stress for an incompressible hyperelastic materials may be written as

s ¼ @w0

@e

� �T

¼ 2w0
1n

0
1 þ 2w0

2n
0
2 � p

1
J
n3

Find the corresponding expression in deformed coordinates. Derive c0
1 and c

0
2, in which

direct transformation furnishes

t ¼ 2c0
1m

0
1 þ 2c0

2m
0
2 � pi

SOLUTION

The Cauchy stress is related to the second Piola–Kirchhoff stress by the relation
T ¼ 1

J FSF
T . Upon invoking Kronecker product relations

t ¼ VEC(T) ¼ 1
J F� FVEC(S) ¼ 1

J F� Fs
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Applying the transformation to the stress–strain relation results in

t ¼ 1
J
F� F 2w0

1n
0
1 þ 2w0

2n
0
2 � pI3n3

� � ¼ 2w0
1

J
F� Fn01 þ

2w0
2

J
F� Fn02 � p

1
J2

F� Fn3

Note that
1
J2

F� Fn3 ¼ i, since IVEC
1
J2

F� Fn3

� �
¼ I3

J2
FC�1FT ¼ I:

Finally, let c0
1 ¼

w0
1

J
, c0

2 ¼
w0
2

J
, m0

1 ¼ F� Fn01, m
0
2 ¼ F� Fn02:
EXAMPLE 13.10

Uniaxial tension
Consider the Neo-Hookean elastomer satisfying
w¼a[I1� 1] subject to I3¼ 1
We seek the relation between s1 and E1. The solution will be obtained twice, once by

enforcing the incompressibility constraint a priori and the second by enforcing the
constraint a posteriori.

A priori: We assume for the sake of brevity that E2¼E3. Now I3¼ 1 implies that
c2 ¼ 1=

ffiffiffiffiffi
c1

p
. The strain energy function now is w ¼ a

�
c1 þ 2ffiffiffi

c1
p � 3

�
. The stress S1 is

now found as

s1 ¼ 2
dw

dc1
¼ 2a 1� 1

c3=21

" #

A posteriori: Now use the augmented function

w0 ¼ a[II1 � 1]� p
2 [I3 � 1]

and

s1 ¼ 2
dw0

dc1
¼ 2a� p=c1

0 ¼ s2 ¼ 2
dw0

dc2
¼ 2a� p=c2

0 ¼ s3 ¼ 2
dw0

dc3
¼ 2a� p=c3

0 ¼ dw0

dp
¼ 0 ! I3 ¼ 1

It follows that c2 ¼ c3 ¼ 1=
ffiffiffiffiffi
c1

p
and p=c2¼ 2a. We conclude that

s1 ¼ 2a� p=c1

¼ 2a� c2
c1

p=c2

¼ 2a 1� c2
c1

	 


¼ 2a 1� 1

c3=21

" #

which agrees with the relation obtained by the a priori argument.
008 by Taylor & Francis Group, LLC.
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A posteriori with deviatoric invariants : Finally consider the augmented function with
deviatoric invariants:

w0 ¼ a[ I1 =I 
1= 3
3 � 3] � p

2 [I3 � 1] (13: 92)

s1 ¼ 2
d w0

dc1
¼ 2 a

1

I 1 =33

� 1
3

I1

I 4= 33

I3
c1

" #
� p

I3
c1

(13: 93)

0 ¼ s2 ¼ 2
dw0

dc2
¼ 2a

1

I 1=33

� 1
3

I1

I 4 =33

I3
c2

" #
� p

I3
c2

(13: 94)

0 ¼ s3 ¼ 2
dw0

dc3
¼ 2a

1

I 1=33

� 1
3

I1

I 4 =33

I3
c3

" #
� p

I3
c3

(13: 95)

Note that Equations 13.94 and 13.95 imply that c2 ¼ c3. Further,

dw0

dp
¼ 0 ! I3 ¼ 1

demonstrating that incompressibility is satis fied. Now I 01 ¼ I1 ¼ c1 þ 2c 2 , and using
Equation 13.94 gives

2a
3

c2 � c1
c2

	 

¼ p

c2

Substitution into Equation 13.92 results in

s1 ¼ 2a 1 � 1

c3= 21

" #

as in the a priori case and in the first a posteriori case. The Lagrange multiplier p is again
revealed as the hydrostatic pressure referred to current coordinates.
13.5.3.2 Near-Incompressibility

As will be seen in Chapter 15, in the augme nted strain en ergy funct ion

w00 ¼ w(I 01,I
0
2)� p[J � 1]� p2

2k
(13:96)

the pressure p serves to enforce the generalized constraint

p ¼ �k[J � 1] (13:97)

Here k is the bulk modulus (�@p=@J)I 01,I 02 , and it is assumed to be very large
compared to, for example, the small strain shear modulus. The tangent modulus
tensor is now
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TEN 22(D *) ¼
ds
de

ds
dp

� ds
dp

� �T 1
k

2
4

3
5 ( 13 : 98 )

13.5.4 NONLINEAR MATERIALS AT LARGE DEFORMATION

Suppose that the c onstitutive relat ions are meas ured at const ant tempe rature in the
curren t con figurat ion an d are found to obey the form

T̊ ¼ DD ( 13 : 99 )

in which the fourth-ord er tangen t modulus tenso r D may in general be a funct ion of
stress, strain, tem perature, and internal state varia bles to be discu ssed in subseq uent
chapte rs. Rec all that T̊ is the Truesdel l stre ss flux. The form in Equ ation 13.99 is
sensible since T̊ and D are both objective, and it encomp asses the rate- constitu tive
models typic al of hypoel asticity and plast icity. Conversi on to undefor med coordin-
ates is reali zed b y

_S ¼ J F � 1 D DF � T

¼ J F � 1 D F� T _EF � 1 F� T ( 13 : 100 )

With s ¼ VEC ( S) and e ¼ VEC ( E),

_s ¼ J I � F� 1 VEC ( D F� T _EF� 1 F� T )

¼ J I � F� 1 (F � 1 � I )TEN 22 ( D )VEC (F � T _EF � 1 )

¼ J F � 1 � F� 1 TEN 22 ( D )(F� T � I )(I � F� T ) VEC ( _E)

¼ J F � 1 � F� 1 TEN 22 ( D )F � T � F � T _e

¼ TEN 22 ( D0 ) _e ( 13 : 101 )

in whi ch

D0 ¼ ITE N 22 ( J F � 1 � F� 1 TEN 22 ( D )F � T � F� T ) (13 : 102 )

Since

_s ¼ TEN 22 ( D0) _e (13:103)

wemay regardD0 as the tangent modulus tensor referred to undeformed coordinates.
The use of the Jaumann stress flux, or any flux other than the Truesdell flux,

will not lead to a counterpart of D0 which is proportional only to a tangent
modulus tensor measured in the current configuration. Recall the relation derived
in Exampl e 13 .5:
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JF�1T̊F�T ¼ _S� JS tr
�
_E(2Eþ I)�1

�
� {(2Eþ I)�1 _ESþ S _E(2Eþ I)�1} (13:104)

If we assume that T̊¼ D̂D, some effort suffices to obtain a relation of the form

_s ¼ TEN22(D01 þD02) _e (13:105)

in which

D01 ¼ ITEN22
�
JF�1 � F�1TEN22(D̂)F�T � F�T

�
D02 ¼ ITEN22

�
J
�
sVECT

�
(2Eþ I)�1

��þ [S� (2Eþ I)�1 þ (2Eþ I)�1 � S]
�

Observe that D01 is proportional to D̂, but that D02 is not.
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14 Introduction to
Nonlinear FEA
� 2008 by Taylor & Fra
14.1 INTRODUCTION

Chapter s 2 through 12 addres sed line ar solid mecha nics and heat transfer, and
correspo nding finite e lement method s for linear probl ems. Applica tions that linear
methods serve to an alyze include struc tures under mild loads, disks and rotors
spinning at modes t angula r velociti es, and heated plat es. However , a large number
of problems of inte rest are nonli near. For one examp le, plasticity is a nonlinear
material s theor y suited for met als in met al form ing, vehicl e crash, and ball istics
applicati ons. In problems with high levels of heat input , mecha nical proper ties such
as the elastic modulus, and thermal proper ties such as the coef ficient of speci fic heat,
may be strongly tem perat ure dependen t. Rub ber seals and gasket s commo nly experi-
ence stra ins exc eeding 50%. Soft biological tissues typi cally a re modeled a s rubber-
like. Many probl ems involve varia ble contac t, for examp le, mesh ing g ear teeth. Heat
conduct ed across elect rical contac ts may be stro ngly dependen t o n normal press ures.
Fortun ately, much of the linear fi nite elem ent method can be extended to nonlinear
problems, as explai ned in this chapte r.

In the following sectio ns, atte ntion is con fined to isotherm al problems. The
extension to thermomechanical problems will be presented in the subsequent chapter.
In particula r, we wi ll see that the finite element equati ons in the nonli near case are
formally similar to the linear finite element equations if the displacements and forces
(and=or temperatures and heat fluxes) are replaced by incremental counterparts.
The tangent stiffness matrix is now a function of the nodal displacements (and
temperatures). In addition, it will be seen to possess the extremely important property
of serving as the Jacobian matrix in Newton iteration, which is an extremely
attractive (arguably optimal) method for solving nonlinear algebraic equations.

14.2 TYPES OF NONLINEARITY

There are three major types of nonlinearity in thermomechanical boundary value
problems: (i) material nonlinearity, (ii) geometric nonlinearity, and (iii) boundary
condition nonlinearity. Of course these effects can and do occur in together. Non-
linearities may also be present if the formulation is referred to deformed coordinates,
possibly introducing stress fluxes and convected coordinates.

Material nonlinearity may occur through nonlinear dependence of the stress
on the strain and=or temperature, including strain and temperature dependence
ncis Group, LLC.



of the tangen t modul us tensor. Nonline ar material behavi or may also ensue from
hist ory d ependenc e, for examp le, a nonlinear dependen ce on the total ‘‘plastic
wor k. ’’

Geometric nonli neari ty occurs because of large deform ation, especiall y in
probl ems referring to unde formed coordi nates. Rub ber components typicall y
exh ibit large deforma tion and require nonlinear kinem atic descripti ons. In this situ-
atio n, a choice needs to be made of a strain measure and of the stress conjug ate to it.

Boundary co ndition nonli nearity occurs because of nonli near mecha nical and
inert ial suppor ts on the boundar y. An ex ample of a nonli near suppor t is a rubber pad
un der a machi ne, to absorb vibra tions. It may also occur if the c ontact area between
tw o bod ies is an unknow n to be determin ed as part of the solut ion.

For finite elem ent methods for nonlinear probl ems, the loads are often viewed as
app lied in increment s . The n incre mental va riationa l principl es toget her with inter-
po lation model s for incre mental displ acements and incre mental temperat ures (the
prim ary varia bles) furni sh algebr aic (sta tic) or ordin ary algebraic- different ial equa-
tion s (dynamic) in terms of vector -valu ed increment al displ aceme nts and=or incre -
ment al tem peratures. For mecha nical systems a typi cal equati on is

K ( g)D g þ M (g )D €g ¼ D f (14:1)

in which Dg is the increment al displacem ent vector (to be de fined short ly), D f is the
incre mental force vector , K ( g) is the tangent stiffn ess matrix , and M ( g) is the
( tangen t) mas s mat rix. It will be seen that this type of e quation is a realization of
New ton iterati on met hod for nonli near equati ons.
14.3 NEWTON ITERATION

By virt ue of its proper ty of quadratic con vergenc e, Newto n iter ation is arguably an
op timal method for solving nonlinear algebraic equati ons. It is introdu ced in the
curren t chapter, and its appli cation to fin ite element analys is is scrut inized. In recent
yea rs very effect ive methods for solving non linear finite element probl ems, know n as
arc lengt h methods, have been introduced. In Chapter 18 we presen t an arc lengt h
met hod which in fact is a parti cular realizati on of Newto n iteration. In it, arc length
con straints are acc ommodat ed by expandi ng the solution space to a d imensio n
great er than in the conven tional finite elem ent met hod (e.g., greater than the numbe r
of incre mental displacem ent degrees of freedo m).

Le tt in g f and x denote scalars, consider the nonlinear algebraic equation f(x; l) ¼ 0
in whi ch l is a param eter we will c all the load inte nsity. Such equati ons are often
solve d numerical ly by a two-st age proces s. The first is load incre mentati on: the load
intensity l is increased progressively using small increments. The second is iteration:
at each increment the unknown x is computed using an iteration procedure. Suppose
that at the nth increment of l an accurate solution has been achieved as xn. We now
further suppose for simplicity that xn is ‘‘close’’ to the actual solution xnþ1 at the
(nþ 1)st increment of l. Using x(0)nþ1 ¼ xn as the starting iterate, Newton iteration
provides subsequent iterates according to the scheme
� 2008 by Taylor & Francis Group, LLC.



x( jþ1) ¼ x( j) � df

dx

� ��1

jx( j)
f (x( j)) (14:2)

Let Dnþ1, j denote x
( jþ1)
nþ1 � x( j)nþ1, which is the difference between two iterates. Then,

to first order in the Taylor series

Dnþ1, j � Dnþ1, j�1 ¼ � df

dx

� ��1

jx( j)
f (x( j))� df

dx

� ��1

jx( j�1)

f (x( j�1))

" #

� � df

dx

� ��1

jx( j)
f (x( j))� f (x( j�1))

� �

� � df

dx

� ��1

jx( j)
df

dx

� �
jx( j)

Dnþ1, j�1 þ 02

� �Dnþ1, j�1 þ 02 (14:3)

in which 02 refers to second-order terms in increments. It follows that Dnþ1, j� 02.
For this reason Newton iteration is observed to converge quadratically (presumably
to the correct solution if the initial iterate is ‘‘sufficiently close’’). After the iteration
scheme has converged to the solution, the load intensity is incremented again.
EXAMPLE 14.1

Consider f(x)¼ (x� 1)2. Newton iteration is realized as the iteration scheme

x( jþ1) ¼ x( j) � 1
2
(x( j) � 1)

The solution is unity, twice. If the initial iterate x(0) is taken to be 1=2, the iterates
become 1=2, 3=4, 7=8, 15=16, . . . , converging to unity. If x(0)¼ 2, the iterates are 3=2,
5=4, 9=8, 17=16, likewise converging to unity. In both cases the error is halved in each
iteration.

Returning to the main development, the nonlinear finite element method under static
conditions will frequently be seen to pose nonlinear algebraic equations of the form

duT [w(u)� lv] ¼ 0 (14:4)

in which u and w are n3 1 vectors, v is a known constant n3 1 unit vector, and l
represents ‘‘load intensity.’’ The Newton iteration scheme provides the ( jþ 1)st iterate
for unþ1 as

Dnþ1, j ¼ � @w

@u

� �
ju( j)nþ1

" #�1

w(u( j)nþ1)� ljþ1v
h i

, u( jþ1)
nþ1 � u( j)nþ1 ¼ Dnþ1, j (14:5)
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in which, for example, the initial iterate is u( 0 )n . The use of an explicit matrix inverse is
avoided by solving the linear system

@ w

@ u

� �
��u( j)n þ1

Dnþ 1, j ¼ w( u( j)nþ 1 ) � vjþ1 , u( jþ1)
n þ1 ¼ u( j)nþ 1 þ Dn þ1, j (14: 6)

Note that @ w
@ u

h i��u( j)n þ 1

in Newton iteration is a Jacobian matrix.

14.4 COMBINED INCREMENTAL AND ITERATIVE METHODS:
A SIMPLE EXAMPLE

As illust rated in Figure 14.1, consi der a one-di mensional rod of nonlinear mat erial
un der small deform ation, in which the elastic modul us is a line ar funct ion of stra in:
E ¼ E0(1 þ a« ), « ¼ E 11 . The cross -sectional area A0 and the length L 0 are constants,
on the unders tanding that the deform ation is e xpressed in terms of the undefor med
con figuration. Suppose that under static loadi ng the equil ibrium equati on is

E0 A0

L0
1 þ a

g

L0

� �
g ¼ P (14:7)

The load is applied in incre ments DjP ¼ P jþ 1 � P j and the load after the ( n � 1 )st
incre ment is applied is denote d as Pn. Su ppose next that the solut ion gn has been
compu ted accurat ely at Pn. We now consider the actions necess ary to deter mine the
solut ion gnþ 1 a t load P nþ 1. This is do ne by first compu ting the value of Dng ¼
gnþ1 � gn. Subtra ctin g Equati on 14.2 at the nth incre ment from the same equati on
bu t at the nth incre ment, the increment al equilibr ium equatio n is now

E0 A 0
L0

1 þ a
2gn þ Dn g

L

� �
Dn g ¼ D n P (14:8)

Equation 14 .8 is quadrat ic in the increment Dn g -in fact geome tric nonli nearity
gen erally leads to a quadrat ic funct ion of incre ments. The error of neglec ting the
qu adratic term may be small if the load incre ment is suffi ciently smal l. However , we
will retain the nonlinear term for the sake of accuracy and of illustrating the use of
iterative procedures. In particular, the foregoing equation may be written in the form
P

g

E0, A, L

FIGURE 14.1 Stretching of a rod of nonlinear material.
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g(x) ¼ bxþ zx2 � h ¼ 0 (14:9)

in which x ¼ Dng, h ¼ L0DnP
E0A0

, b ¼ 1þ 2agn=L0, and z ¼ a
L0
. Newton iteration fur-

nishes the quadratically convergent iteration scheme for the nth iterate, namely:

xnþ1 ¼ xn � [bxn þ zxn2 � h]

bþ 2zxn
, x0 ¼ h=b (14:10)

As an example we use the values E¼ 107 psi, A¼ 1 in2, L¼ 10 in, a¼ 2, gn¼ 1, and
DnP¼ 3. These values imply significant nonlinearity and 10% strain. A simple
program written in double precision produces the following values, which demon-
strate a convergence in two iterations.

Iterate Value
0 0
1 0.21428571e-5
2 0.21428565e-5
3 0.21428565e-5
4 0.21428565e-5

EXAMPLE 14.2

The efficiency of this scheme is addressed as follows. Consider z¼ 1, b¼ 12, and
h¼ 1. The correct solution is x¼ 0.0828. Starting with the initial value x¼ 0, the first
two iterates are, approximately, 1

12 ¼ 0:833, and 1
12 1� 1

144

	 
 ¼ 0:0828.
14.5 FINITE STRETCHING OF A RUBBER ROD UNDER GRAVITY

14.5.1 MODEL PROBLEM

Figure 14.2 shows a rubber rod element under gravity—it is assumed to attain finite
strain and to experience uniaxial tension. The figure exhibits the undeformed con-
figuration, with an element occupying the interval (Xe, Xeþ1), with X denoting the
Pe

Pe+1

g

xe+1, ue+1

xe, ue

FIGURE 14.2 Rubber rod element under gravity.
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do wnward direction . The elemen t’ s lengt h is le , its cross -sectional area is Ae , and its
mass densi ty is r. It is compo sed of rubber and is stretched axial ly by the loads Pe

and Pe þ 1. Pr ior to stretchi ng, a given material particle is located at X. After deform-
atio n it is located at x ( X), a nd the displacem ent u( X ) is given by u( X) ¼ x ( X) � X.

14.5.2 NONLINEAR STRAIN – DISPLACEMENT RELATIONS

The element in Figure 14.2 is assumed to be short enou gh that a satisfact ory app roxi-
mat ion for the displacem ent u( X) is provi ded by the linear interpola tion model

u(X ) ¼ ue þ ( X � Xe )(u eþ 1 � ue ) =l e

¼ NT ae , NT ¼ 1
le
{xe � x x� x e } (14 :11 )

in whi ch aTe ¼ { ue ue þ 1 } . Now u( X e) ¼ ue and u( Xe þ 1) ¼ ueþ 1 are v iewed as the
un knowns to be determin ed using the finite elem ent method. The Lag rangian strain
E ¼ Exx is approxi mated in the element as

E ¼ @ u

@ x 
þ 1
2

@ u

@ x

� �2

¼ ue þ 1 � ue
le

þ 1
2

ue þ 1 � ue
le

� �2

¼ 1
le
{�1 1} ae þ 1

2 
aTe

1
l 2e

1 � 1

� 1 1

" #
ae (14 :12 )

In alternati ve notation Equ ation 14.12 is writt en a s

dEx x ¼ B T dae , B ¼ BL þ BNL ae (14 :13 )

BL ¼ 1
le

� 1
1

� �
, BNL ¼ 1

l 2e

1 � 1
� 1 1

� �

The vector BL a nd the mat rix BNL are called the linear and nonli near strain –
displ acement matric es .

14.5.3 S TRESS AND TANGENT MODULUS RELATIONS

The Neo– Hookean stra in en ergy de nsity function w was previ ously encou ntered in
Cha pter 13 . It accom modates incom pressibil ity and is stat ed in terms of the eigen-
values c1, c2, and c3 of C¼ 2Eþ I as follows:

w ¼ D

6
(c1 þ c2 þ c3 � 3), subject to c1c2c3 � 1 ¼ 0 (14:14)

in which D is the (small strain) elastic modulus. We saw in Chapter 13 that c2¼ c3.
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We first enforc e the incompres sibili ty const raint a priori by using the subst itution

c2 ¼ c 3 ¼ 1ffiffiffiffiffi
c1

p ( 14 : 15 )

After elem entary mani pulations and using c1 ¼ 2E xx þ 1, the strain energy funct ion
emerges as

w ¼ D

6

�
2Exx þ 1 þ 2=( 2Exx þ 1)� 1 = 2 

� 
( 14 : 16 )

The (secon d Piola –Ki rchhoff) stre ss Sxx, defined in general in Cha pter 13, is now
obtained as

Sxx ¼ @ w

@ Exx

¼ D

3

�
1 � ( 2Exx þ 1 )� 3 =2 

� 
( 14 : 17 )

For small stra ins (2Exx þ 1) � 3=2 � 1 � 3Exx in which case S xx � DExx .
The tangen t modul us DT is also requi red:

DT ¼ @ Sxx
@ Exx

¼ D( 2Exx þ 1)� 5 = 2 ( 14 : 18 )

If the strain Exx is smal l compa red to unity, D T reduces to D .
We next sati sfy the incompres sibili ty constraint a poste riori, whi ch we will see is

how the constraint is generally satisfied in finite element analysis. An augmented
strain energy function w* is introduced by

w* ¼ D

6 
[ c 1 þ c 2 þ c3 � 3]� p

2 
(c 1 c 2 c 3 � 1) (14 : 19 )

in which the Lagrange mul tiplier p can be shown to be the (tru e) hydros tatic
pressure, as was show n in a sim ilar situati on in Cha pter 13. The aug mented energy
is stationar y with respect to p as well as c1, c2, and c3, from which it follows that
c1c2c3� 1¼ 0 (incompressibility).

The second Piola–Kirchhoff stresses satisfy

Sxx ¼ @w*
@Exx

¼ 2
@w*
@c1

¼ D

3
� p

2
c1c2c3
c1

Syy ¼ @w*
@Eyy

¼ 2
@w*
@c2

¼ D

3
� p

2
c1c2c3
c2

¼ 0

Szz ¼ @w*
@Ezz

¼ 2
@w*
@c3

¼ D

3
� p

2
c1c2c3
c3

¼ 0

(14:20)
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The second and third equati ons in Equation 14.20 are immedi ately seen to imply
c2 ¼ c 3, as previously stated. Enforcem ent of the stat ionarity condition ( dw* ¼ 0) for
p( c 1c 2c 3 � 1 ¼ 0) with Syy ¼ Szz ¼ 0 ¼ 0 now furni shes that p ¼ 2

3 D= 
ffiffiffiffiffi
c1

p 
. It follo ws

that Sxx ¼ D
�
1 � c � 3=2

1 

� 
=3, in agreem ent wi th Equati on 14.7.

14.5.4 INCREMENTAL EQUILIBRIUM R ELATION

The Principle of Virtual Work stat es the condition for static equilibri um of the rod as

f (ae;P
e) ¼

ðX eþ 1

Xe

B Sxx Ae dX � Pe � r g 

ðXe þ1

Xe 

NT Ae dX

2
64

3
75ae ¼ 0, Pe ¼ 

P ee
Pe
eþ 1

� �

(14:21)

in which the third left-hand term represents the wei ght of the element, while Pe

repres ents the forces from the adjacent elem ents. In an increment al formulation, we
repla ce the loads and displacem ents by their different ial forms. In particular

0 ¼ df ¼
ðXeþ1

Xe

B dSxx Ae dX þ
ðXeþ1

Xe

dBSAe dX � dPe

¼ Ke dae � dPe

¼ �
K1e þK2e þK3e þK4e

�
dae � dPe (14:22)

in which

K1e ¼ Ae

ðXeþ1

Xe

BLDTB
T
L dX

¼ DT Ae

le 

1 �1

�1 1

� �  

(14:23 a)

K 2e ¼ Ae

ðX eþ 1

X e 

D T (B La
T
eBNL þ BNLaeB

T
L ) dX

¼ DT Ae

le
2
[ ue þ 1 � ue ]

l e

1 �1

�1 1

� �  

(14 : 23 b)

K3e ¼ A e 

ðX eþ1

Xe

BNLaea
T
eB

T
NL dX

¼ DT Ae

le

ueþ 1 � ue
le

� �2 1 �1

� 1 1

� �  

( 14 :23 c)
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K4 e ¼ Ae

ðXe þ 1

Xe

BL S dX

¼ Sxx Ae

le

1 �1

� 1 1

� �
( 14 : 23 d)

and

DT ¼ 1
le

ðXe þ 1

Xe

DT d X , Sxx ¼ 1
le

ðX eþ 1

Xe

Sxx dX ( 14 : 23 e)

Combi ning Equ ations 14.23a throu gh 14.23e produce s a simple relation for the
tangen t stiffn ess matrix :

Ke ¼ k
1 �1

� 1 1

� �
, k ¼ DT A e

le
1 þ 2

ue þ 1 � ue
le

þ ue þ 1 � ue
le

� �2
( )

þ Sxx Ae

le

( 14 : 24 )

Suppose ( ue þ 1 � ue )=l e is smal l compa red to unity, wi th the consequ ence that Exx is
also small compared to unit y. It follows in this case that DT � D, Sxx � Sxx. In
consequ ence, Ke reduces to the stiffnes s mat rix for a rod elem ent of linearly elast ic
material experi encing smal l stra in:

Ke ¼ E Ae

le

1 � 1
� 1 1

� �
( 14 : 25 )

Returni ng to the nonlinear problem, several special cases are now used to illumi nate
additional aspects of finite element modeling.

14.5.5 SINGLE ELEMENT BUILT-IN AT ONE END

Figure 14.3 depicts a single elem ent model of a rod which is bu ilt in at X ¼ 0:
Xe¼X0¼ 0. At the opposite end, Xeþ1¼X1¼ 1, it is submitted to the load P. The
displacement at X¼ 0 is subject to the constraint u(0)¼ u0¼ 0, so that Equation
14.24 becomes

k(u1)
1 �1
�1 1

� �
0
du1

� �
¼ �dPr

dP

� �
(14:26)

in which dPr is an incremental reaction force which is considered unknown (of
course from equilibrium dPr¼ dP). Enforcing the constraint at the top of the rod
causes Equation 14.26 to ‘‘condense’’ to

k du1 ¼ dP (14:27)
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A, ρ

u1X

X1

P

g

FIGURE 14.3 Rubber rod element under gravity: built in at top.
Al so, the curren t shape function degener ates to the expres sion N ! N ¼ X=X1.
The (Lagrangi an) stra in is given by

E( u1 ) ¼ u1
X1

þ 1
2

u1
X1

� �2

(14 :28 )

and the strain –displacem ent mat rix reduces to

B ! B ¼ 1
X1

þ u1
X 21

(14 :29 )

The (second Piola –Kirchhof f) stre ss Sxx is now obtai ned as a function of u1:

Sxx (u1 ) ¼ 1
3 
D 1 � 2

u1
X1

þ 1
2

u1
X1

� �2
( )

� 1

" #�3
2

2
4

3
5 (14 :30 )

14.5.6 ON NUMERICAL S OLUTION BY NEWTON ITERATION

We see to solve Equ ation 14.21 numer ical ly by New ton iterati on, some times c alled
‘‘ load balanc ing ’’ in this contex t, as explain ed below . The Principle of Virtual Work
imp lies that

f ( u1 ) ¼
ðX 1
0

BSxx A dX � P � rg 

ðX 1
0

NTA dX

2
4

3
5ae

¼ 1
le
þ u1

l 2e

� �
AX1

1
3 
D 1� 2

u1
X1

þ 1
2

u1
X1

� �2
( )

� 1

" #�3
2

2
4

3
5

0
@

1
A� P � rgA

X1

2
u1

¼ 0 (14 :31)
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in which the residual funct ion f ( u1) has been introduced. Conside r an iter ation
proces s in which the j th iterate u j1 has been deter mined. Newto n iter ation deter mines
the next iterate u jþ 1

1 using

k( u j1 ) Dj u1 ¼ �w( u j1 )

u jþ 1
1 ¼ u j1 þ Dj u 1 ( 14 : 32 )

in which k (u j1 ) ¼ @ f( u j1 ) =@ u 
j
1 has alrea dy been given in Equati on 14.24 an d is now

seen to be the Jacobi an matrix of Newto n iteration. Convergen ce to the correct value
u1 is usually rapid provi ded that the initial iter ate u01 is suffi ciently c lose to u1.

A satisfact ory starting iter ate for the curren t load step can be obtai ned by
extrapo lating from the previous solution values. As illustrati on, suppos e the solut ion,
say, is known at the load Pj ¼ jD P, in which DP is a load incre ment. The load is now
increment ed to produce Pj þ 1 ¼ ( j þ 1) DP, and the a star ting iter ate is needed to
converg e to the solution u1, j þ 1 at this load using New ton iteration. It is freque ntly
satisfact ory to use u01, j þ 1 ¼ u1, j . Anot her possi bility is to use u 01, j þ 1 ¼ 2u1, j � u1, j� 1 ,
or more generally ‘‘line search ’’ using two or more previous solution values.

14.5.7 A SSEMBLED S TIFFNESS MATRIX FOR A T WO-ELEMENT MODEL

OF THE R UBBER R OD UNDER GRAVITY

A two-el ement model of the rubber rod under gravi ty is shown in Figure 14.4.
Assemb lage procedu res are now illust rated for combinin g the element equilibri um
relations to obtain the global equilibrium relation holding for an assemblage of
elements. We will see that they are simple extensions of assembly procedures in
linear finite element analysis. For elements ‘‘e’’ and ‘‘eþ 1’’ the element equilibrium
relations are expanded as
xe,ue

P 

e

Pe
e 

P 

e+1

P 

e+1

xe+1,ue+1

x

xe+2,ue+2

e+1

e+2

P, Ae+1

 P,Ae

e+1

g

FIGURE 14.4 Two rubber rod elements under gravity.
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ke11 due þ ke12 dueþ1 ¼ dPe
e (14:33a)

ke21 due þ ke22 dueþ1 ¼ dPe
eþ1 (14:33b)

keþ1
11 dueþ1 þ keþ1

12 dueþ2 ¼ dPeþ1
eþ1 (14:33c)

keþ1
21 dueþ1 þ keþ1

22 dueþ2 ¼ dPeþ1
eþ2 (14:33d)

The superscript indicates the element index, and the subscript indicates the node
index. If no external force is applied at xeþ1, the interelement incremental force
balance is expressed as

dPe
eþ1 þ dPeþ1

eþ1 ¼ 0 (14:34)

Adding Equations 14.33b and 14.33c furnishes

ke21 due þ ke22 þ keþ1
11

	 

dueþ1 þ keþ1

12 dueþ2 ¼ 0 (14:35)

Equations 14.33a, 14.33d, and 14.35 are expressed in matrix form as

ke11 ke12 0

ke21 ke22 þ keþ1
11 keþ1

12

0 keþ1
21 keþ1

22

2
4

3
5 due

dueþ1

dueþ2

0
@

1
A ¼

dPe
e

0

dPeþ1
eþ2

0
B@

1
CA (14:36)

Equation 14.36 illustrates that the (incremental) global stiffness matrix is formed
by ‘‘overlaying’’ Ke and Keþ1, with the entries added in the intersection (the 2–2
element).

Two identical elements under gravity, under equal end loads: If Ke¼Keþ1 and
dPe

e ¼ �dPeþ1
eþ1 ¼ �dP, overlaying the element matrices leads to the global (two

element) relation

k
1 �1 0
�1 2 �1
0 �1 1

2
4

3
5 du1

du2
du3

0
@

1
A ¼

�dP
0
dP

0
@

1
A (14:37)

Note that Equation 14.37 has no solution since the global stiffness matrix has no
inverse: the second row is the negative of the sum of the first and last rows. This
suggests that, owing to numerical errors in the load increments, the condition for
static equilibrium is not satisfied numerically, and therefore the body is predicted to
accelerate indefinitely (undergoes rigid body motion). However, we also know that
this configuration, under equal and opposite incremental loads, is symmetric, imply-
ing a constraint du2¼ 0. This constraint permits ‘‘condensation,’’ that is, reducing
Equation 14.37 to a system with two unknowns by eliminating rows and columns
associated with the middle incremental displacement. In particular,

k
1 �1
�1 1

� �
du1
du3

� �
¼ �dP

dP

� �
(14:38)
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The con densed matrix is now p roportiona l to the identity matrix, and the syste m has
a solut ion. More gen erally, sti ffness matrices may easily be singu lar or nearl y
singular (with a large condition numbe r) unless const raints are used or introduced
to suppre ss ‘‘rigid body modes. ’’
14.6 NEWTON ITERATION NEAR A CRITICAL POINT

Now the Jacobian mat rix is likely to be ill-condi tioned when ever the tangent
modulus tenso r is nearly singu lar, whi ch is said to occur at crit ical points . Unf or-
tunately, since elast omers or metals experiencin g plastici ty are typi cally very comp-
liant at large deformation , the analyst attempt ing to perform compu tations into large
strain ranges may wel l encounter a critical point. Buc kling also repres ents an
examp le of a critical point . Since the tangen t sti ffness matrix is the Jacobian mat rix
for Newto n iter ation, converg ence probl ems arise when the tangen t sti ffness
becom es singu lar or ill-condi tioned, and special methods are invoked to continue
compu tations near and past critical points.

Several ways to contin ue compu tation in the vici nity of critical points are now
listed.

1. Increase stiffnes s, such as by introd ucing additional const raints if avail able
2. Reduce load step sizes, and refor m the sti ffness matrix after each iteration
3. Switch to displace ment control rather than load contr ol
4. Using an arc lengt h method, of which a particular method is descri bed in

Chapter 17

We now illustrate such a converg ence problem using an equation of the form
c( x)¼ 0. As previously stated, Newton iteration seeks a solution through an iterative
process given by

xjþ1 ¼ xj � dc( x j )

dx

� ��1 

c(x j ) (14 : 39 )

Clearly, recalling Equ ation14.3 using sequential iterates , with Dn þ 1, j ¼ x ( jþ 1 )
nþ1 � x( j)nþ1,

Dnþ1, j � Dnþ1, j�1 � � dc

dx

� �� 1

jx ( j)
dc

dx

� �
jx( j)

Dnþ1, j�1 þ 02 (14:40)

Strictly speaking the argument of dc
dx

� �
is not x( j). Rather, thanks to the Mean Value

Theorem, the argument is an unknown value x* between xn and the converged value
of xnþ1. Clearly,

dc
dx

� �
x* does not cancel the ill-conditioned matrix dc

dx

� ��1

jx( j) , in which
case the iterates will grow rapidly.
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EXAMPLE 14.3

The performance of the Newton iteration procedure near a critical point is now
illustrated using a simple example showing a slope (analogous to the tangent modulus
tensor) which is asymptotically approaching zero. Consider

f( x) ¼ 2
p 
tan� 1 (x ) � y ¼ 0 (14: 41)

Equation 14.41 is depicted in Figure 14.5. The goal is to fi nd the solution of x as y is
incremented in the range (0,1). Clearly x approaches in finity as y approaches unity, so
that the goal is to generate the x(y ) relationship accurately as close as possible to y ¼ 1.
The curve will appear as in Figure 14.5. When y is plotted against x, the curve
asymptotically approaches unity, with the slope (stiffness) approaching zero. As y is
incremented by small amounts just below unity, the differences in x due to the
increment are large, so that the solution value at a nth load step, if used as the initial
iterate, is not close to the solution at the (n þ 1)st load step.

Suppose that y is incremented such that the nth value of y is yn ¼ nDy . To obtain the
solution of the (n þ 1)th step, the Newton iteration procedure generates the (n þ 1)st
iterate from the vth iterate as follows:

x( vþ1 )
nþ1 ¼ x( v )n þ1 �

df x( v )n þ1

	 

dx

" #�1

f x( v )n þ1

	 


¼ x( v )n þ1 � 1 þ x( v )n þ1

	 
2� �
tan �1 x( v)nþ 1

	 
�p

2 
ynþ 1 (14: 42)

in which x( v )n þ1 is the vth iterate for the solution xnþ 1. Of course a starting iterate x0nþ 1 is
needed. An attractive candidate is xn. However, this may not be good enough when
convergence dif ficulties appear.

Newton iteration for Equation 14.42 was implemented for this example in a simple
double precision program. Numerical results are shown in Table 14.1. The increment
D y was reduced signifi cantly as the asymptote was approached. Despite this reduction
the iteration count increased noticeably near y¼ 0.9999, illustrating the onset of
convergence difficulties.
Y

1

X

Encounter difficulties with convergence

FIGURE 14.5 Illustration of the inverse tangent function.
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TABLE 14.1
Convergence of Newton Iteration for y¼2tan�1(x)=p

Iteration Count x y Dy

2 12.7062083 0.95 0.0001
3 63.6568343 0.99 0.0001
3 70.7309329 0.991 0.0001
3 90.9422071 0.993 0.0001

3 127.321711 0.995 0.0001
4 212.206062 0.997 0.0001
4 636.628644 0.999 0.0001

4 909.475631 0.9993 0.0001
5 1591.60798 0.9996 0.0001
6 6367.13818 0.9999 0.0001
14.7 INTRODUCTION TO THE ARC LENGTH METHOD

In, say, uniaxial tension, the Principle of Virtual Work leads to an equation of the
form f(u)¼ f, df(u)

du ¼ k(u) (incremental stiffness matrix). The arc length method to
be discussed here is helpful if k(u) is near zero (i.e., near a critical point).

In nonlinear problems we increment the loads using a load intensity parameter l,

f ¼ lf0, 0 � l � 1 (14:43)

in which f0 is the final load to be attained. The equilibrium equation thereby becomes

f(u) ¼ lf0 (14:44)

Suppose the solution has been attained at ln f0, denoted by un, and the solution is
sought for the subsequent load increment, satisfying

f(unþ1) ¼ lnþ1 f0 (14:45)

Introducing the incremental relations f(unþ1)� f(un) � 1
2

df
du (unþ1)þ df

du (un)
	 


Dnu
¼ 1

2 (k(unþ1)þ k(un))Dnu, an approximate solution may be obtained from the
equation

1
2
(k(unþ1)þ k(un))Dnu ¼ (Dnl)f0 (14:46)

in which

Dnl ¼ lnþ1 � ln , Dnu ¼ unþ1 � un

An equation in this form is said to represent load control since the solution is
obtained at prescribed load levels.
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If we make the additional approximation that

1
2
(k(unþ1)þ k(un)) � k(un) (14:47)

the equation is ‘‘explicit’’ and its solution requires no iteration. Otherwise, the
method is implicit and iteration is required.

In problems in buckling, plasticity and hyperelasticity, it is quite possible for
1
2 (k(unþ1)þ k(un)) to be singular or nearly singular in which case there are severe
difficulties achieving convergence and accuracy.

An alternative is ‘‘displacement control,’’ in which increments of u are specified,
and the conjugate force increments become reaction forces to be computed as part of
the solution. We next discuss a combination of load control and displacement
control, known as arc length control.

The arc length method is helpful in situations in which load control fails owing
to a singular tangent stiffness matrix. It augments the Principle of Virtual Work with
an additional equation imposing a constraint on a function of the magnitudes of the
load and displacement increments. In the uniaxial tension case being considered
here, an example of the resulting equations is

f
_
(u,l) ¼ f(u)� lf0 ¼ 0 equilibrium

c(u,l) ¼ a(u� un)þ b(l� ln)� DS ¼ 0 arc length constraint
(14:48)

Here DS is a small positive number representing the ‘‘length’’ of the increment in the
u�l plane, and the coefficients a and b will be chosen subsequently to promote
convergence.

Newton iteration is now applied to this pair of equations

u(vþ1)
nþ1

l(vþ1)
nþ1

8<
:

9=
;¼

u(v)nþ1

l(v)nþ1

8<
:

9=
;�

@f
_

u(v)nþ1, l
(v)
nþ1

	 

@u

@f
_

u(v)nþ1, l
(v)
nþ1

	 

@l

@c u(v)nþ1, l
(v)
nþ1

	 

@u

@c u(v)nþ1, l
(v)
nþ1

	 

@l

2
6664

3
7775
�1

f
_

u(v)nþ1, l
(v)
nþ1

	 

c u(v)nþ1, l

(v)
nþ1

	 

8<
:

9=
;

¼
u(v)nþ1

l(v)nþ1

8<
:

9=
;�

k u(v)nþ1

	 
 �f0

a b

" #�1
f
_

u(v)nþ1, l
(v)
nþ1

	 

c u(v)nþ1, l

(v)
nþ1

	 

8<
:

9=
; (14:49)

and, consequently, Newton iteration with the arc length constraint is given by the
iteration scheme

k u(v)nþ1

	 
 �f0

a b

" #
u(vþ1)
nþ1 � u(v)nþ1

l(vþ1)
nþ1 � l(v)nþ1

( )
¼ �

f
_

u(v)nþ1, l
(v)
nþ1

	 

c u(v)nþ1, l

(v)
nþ1

	 

( )

(14:50)
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Suppose k u(v)nþ1

	 
 ¼ 0, and choose a¼ f0. The eigenvalues m1,2 of the matrix A are
now given by the equation

m2
j � bmj þ f 20 ¼ 0 (14:51)

with the two roots

m1, 2 ¼
1
2

b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4f 20

q� �
(14:52)

The choice of b which maximizes the smaller eigenvalue is b¼ 2f0. This choice
renders the two eigenvalues equal and positive with the value m1¼m1¼ f0, and
thereby circumvents the singularity arising if k u(v)nþ1

	 
 ¼ 0.
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15 Incremental Principle
of Virtual Work
� 2008 by Taylor & Fra
15.1 INCREMENTAL KINEMATICS

The Principle of Virtua l Work is e xtended to nonli near solid mecha nics by rest ating
the k inematic and equil ibrium relations in incre mental form and by applyi ng vari-
ational princ iples u sing the d isplacement incre ments as the primary varia bles. Issues
such as thermal effect s and incom pressibilit y are addres sed in Cha pters 16 and 17
dealing with thermohype relas ticity and thermoin elastici ty.

Recall that the displ aceme nt vector u( X ) has been assumed to admi t a sati sfac-
tory approxi mation at the elem ent level in the form u( X) ¼ w T (X ) Fg ( t ) . Al so recal l
that the deformation gradient tenso r is given by F ¼ @ u

@ x . Suppose that the body unde r
study is subje cted to a load vector P , whic h is appli ed increment ally via load
increment s DjP ¼ Pj þ 1 � P j. The load after the ( n � 1)th load step is denote d as Pn.
The solut ion Pn is considered to have been determin ed compu tational ly, and the
solution of the curren t displacem ent increment s is sought. Let Dnu ¼ unþ 1 � un,
implyi ng the incre mental inte rpolatio n model

D n u ¼ wT ( X) F Dn g ( 15 : 1)

By suitably arrang ing the deriv atives of D nu wi th respect to X, a matrix M ( X) may
easily be determin ed for whi ch VEC ( DnF ) ¼ M ( X) Dng, to be demon stra ted in
Exampl e 15. 1.

We next consi der the Lag rangian stra in tenso r E (X ) ¼ 1
2 ( F

T F � I ). Using
Kronecker product algebr a introduced in Cha pter 3, we readi ly find that to first
order in increments

Dn e ¼ VEC( DnE)

¼ VEC 1
2 FT D n F þ Dn F

TF
� �� �

¼ 1
2 I � FT þ F � IU
� �

VEC(D n F)

¼ G T Dng, GT ¼ 1
2 I� FT þ F� IU
� �

M(X)Dng (15:2)

The form in Equation 15.2 shows the convenience of Kronecker product notation.
Namely it enables moving the incremental displacement vector to the end of the
ncis Group, LLC.



exp ression, wi th the consequ ence that it can b e placed outsid e the domai n integrals
we will encount er subsequentl y.

Alternativ ely, for the current con figuration an alte rnative strain meas ure is the
Eul erian strain 9 ¼ 1

2 I � F� T F� 1
� �

, which refers to deform ed coordinates . Note that,
since Dn ( FF 

� 1 ) ¼ 0, D n F
� 1 ¼ �F� 1 D n FF 

� 1 . Similar ly, Dn F
� T ¼ �F� T Dn F

T F� T .
Simp le manipu lation furnishes the incre mental stra in–d isplacem ent relation for 9 as

VEC ( Dn 9) ¼ 1
2 F� T F� 1 � F� T U þ F� 1 � F� T F� 1
� �

M Dn g (15:3)

The re also are geometri c changes for which an incre mental repres entation is useful .
Fo r examp le, since the Jacobian J ¼ det( F ) satis fi es dJ ¼ J tr(F �1dF ), we obtain the
app roximate form ula

Dn J ¼ J tr( F� 1 Dn F )

¼ JVEC T (F � T )VEC (Dn F)

¼ VEC T (F � T )J M Dn g (15:4)

Al so of interest are the increment al counte rparts for the directed area of surfa ce
elem ent, the surfa ce norm al vector, and the surfa ce area of an eleme nt. Chap ter 13
report ed the relations

d[ n dS]

dt
¼ tr (D )I � L T

� �
n d S ( 15 :5a)

dn

dt
¼ nT Dn

� �
I � LT

� �
n (15 :5b)

d

dt 
dS ¼ tr ( D) � nT Dn

� �
dS ( 15 :5c)

and we directly obtai n the incre mental counterpart s as

Dn [ n dS] ¼ dS nVEC T F� 1
� �� nT � F�TU

� �
MDng (15:6a)

Dnn ¼ n nTF�T
� �� nT
� �� nT � F�TU

� �
MDng (15:6b)

Dn dS ¼ dS nVECT F�T
� �� n nTF�T

� �� nT
� �

MDng (15:6c)

EXAMPLE 15.1

The derivation of Equation 15.6b from Equation 15.5b is now presented. First note that
Dnn � dn

dt Dnt. Next
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(n T Dn)n Dn t � n nT Dn FF
�1 n

� �
¼ n nT � n T

� �
VEC Dn FF

� 1
� �

¼ n nT � n T
� �

F �T � IVEC ( Dn F)

¼ n nT F� T
� �� nT M Dn g

Finally,

� LT nDn t ¼ �F� T DFT n

¼ �VEC F� T Dn F 
T n

� �
¼ �nT � F�T U M Dn g

Several classical texts (e.g., Zienkiewicz and Taylor, 1991) on FEA have decomposed
the strain –displacement relations into a linear portion and a residual nonlinear portion.
In the current notation this is written as G ¼ BLþBNL. If we write F¼ IþFu in which
Fu ¼ @u

@ X , it is immediate from Equation 15.3 that

de ¼ BT
L þ BT

NL(g)
� �

dg

BT
L ¼ 1

2 (I� Iþ I� IU)M(X)

BT
NL ¼ 1

2 (I� FT
u þ Fu � IU)M(X)

(15:7)

EXAMPLE 15.2

Assuming linear interpolation models for u, v in a plane triangular membrane element
with vertices (0,0), (1,0), (0,1), obtain the matrices M, G, BL, and BNL.

SOLUTION

The interpolation model is

u

v

� �
¼ 1 x y 0 0 0

0 0 0 1 x y

� 	
F 0

0 F

� 	
u1

u2
u3

v1
v2

v3

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

F ¼
1 0 0

1 1 0

1 0 1

2
64

3
75
�1

¼
1 0 0

�1 1 0

�1 0 1

2
64

3
75

We first formulate the deformation gradient tensor F.
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Let g1 ¼
u1
u2
u3

8<
:

9=
; and g2 ¼

v1
v2
v3

8<
:

9=
;. Now F ¼ I þ @ u

@ x , and
@ u
@ x ¼

@ u
@ x

@ u
@ y

@ v
@ x

@ v
@ y

" #
. After some

effort we may write @ u
@ x 

¼ I þ BYG and D n F ¼ BY Dn G in which

B ¼ b T11 b T12 0T 0T

0T 0T b T21 b T22

" #
, Y ¼

F 0 0 0

0 F 0 0

0 0 F 0

0 0 0 F

2
6664

3
7775 , G ¼

g1 0

0 g1

g2 0

0 g2

2
6664

3
7775

with

bT
11 ¼ { 0 1 0}, bT

12 ¼ {0 0 1} , bT
21 ¼ { 0 1 0}, bT

22 ¼ {0 0 1}

Now

VEC ( Dn G) ¼ ( I � BY )
Dn g1

Dn g2

( )

VEC ( Dn F) ¼ ( I � BY ) VEC ( Dn G ) ¼ ( I � BY) I Dn g

in which

I ¼

I 0
0 0
0 I
0 0
0 0
I 0
0 0
0 I

2
66666666664

3
77777777775

We conclude that M ¼ (I � BY )I.
Next the strain –displacement matrix G is given by

GT ¼ 1
2 I � ( I þ BYG) T þ (I þ BYG) � I½ �U� �

( I � BY )I

Finally, the linear and nonlinear portions of the strain –displacement matrices are
obtained as

B TL ¼ 1
2 [ I � I þ ( I � I) U]( I � BY) I

BT
NL ¼ 1

2 I � (BYG) T þ [( BYG) � I]U
� �

( I � BY )I

EXAMPLE 15.3

Repeat Example 15.2 with linear interpolation models for u, v, and w in a tetrahedral
element with vertices (0,0,0), (1,0,0), (0,1,0), (0,0,1).
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SOLUTION

The interpolation model is

u( x, y, z) ¼ { 1 x y  z}F

u1
u2
u3
u4

8>><
>>:

9>>=
>>;, v( x, y, z) ¼ { 1 x y z} F

v1
v2
v3
v4

8>><
>>:

9>>=
>>;

w( x, y, z) ¼ { 1 x y  z} F

w1

w2

w3

w4

8>><
>>:

9>>=
>>;

F ¼
1  0 0 0
1  1 0 0
1  0 1 0
1  0 0 1

2
64

3
75
� 1

¼
1  0 0 0
� 1 1 0 0
�1 0 1 0
�1 0 0 1

2
64

3
75

Following Example 15.2, we again formulate the deformation gradient tensor.

F ¼ Iþ @u

@x
, DnF ¼ @Dnu

@x
,

@u

@x
¼

@u

@x

@u

@y

@u

@z
@v

@x

@v

@y

@v

@z
@w

@x

@w

@y

@w

@z

2
6666664

3
7777775
¼ BYG

G ¼

g1 0 0
0 g1 0
0 0 g1

g2 0 0
0 g2 0
0 0 g2

g3 0 0
0 g3 0
0 0 g3

2
6666666666664

3
7777777777775

Now

B ¼
bT
11 bT

12 bT
13 0T 0T 0T 0T 0T 0T

0T 0T 0T bT
21 bT

22 bT
23 0T 0T 0T

0T 0T 0T 0T 0T 0T bT
21 bT

32 bT
33

2
664

3
775

Y ¼

F 0 0 0 0 0 0 0 0
0 F 0 0 0 0 0 0 0
0 0 F 0 0 0 0 0 0
0 0 0 F 0 0 0 0 0
0 0 0 0 F 0 0 0 0
0 0 0 0 0 F 0 0 0
0 0 0 0 0 0 F 0 0
0 0 0 0 0 0 0 F 0
0 0 0 0 0 0 0 0 F

2
66666666664

3
77777777775

bT
11 ¼ bT

21 ¼ bT
31 ¼ {0 1 0 0}, bT

12 ¼ bT
22 ¼ bT

32 ¼ {0 0 1 0}
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bT
13 ¼ b T23 ¼ bT

33 ¼ {0  0 1 0}

Finally, the incremental displacements are

Dn G ¼ I

Dn g1

Dn g2

Dn g3

8<
:

9=
; 

in which I is given below:

As in Example 15.2,

M ¼ ( I � BY) I

G T ¼ 1
2 I � ( I þ BYG)T þ �

( I þ BYG) � I
� �

U 
�
( I � BY) I

BT
L ¼ 1

2 [I � I þ ( I � I) U ](I � BY ) I

BT
NL ¼ 1

2 I � ( BYG)T þ [(BYG) � I] U
� �

(I � BY ) I

and the matrix I is now obtained as

I ¼

I 0 0

0 0 0

0 0 0

0 I 0

0 0 0

0 0 0

0 0  I

0 0 0

0 0 0

0 0 0

I 0 0

0 0 0

0 0 0

0 I 0

0 0 0

0 0 0

0 0  I

0 0 0

0 0 0

0 0 0

I 0 0

0 0 0

0 0 0

0 I 0

0 0 0

0 0 0

0 0  I

2
66666666666666666666666666666666666666666666666666666664

3
77777777777777777777777777777777777777777777777777777775
� 2008 by Taylor & Francis Group, LLC.



15.2 STRESS INCREMENTS

For the purpos es of deriv ing an incre mental varia tional princ iple we shall see that the
increment al 1st Piola –Kirchhof f stre ss Dn 

�S is the star ting point . However , to formu-
late mecha nical properties , the objective increment of the Cauchy stre ss, b ased o n the
Truesdel l stress flux,

�
Dn T, is the starting point. Furthermor e, in the resultin g vari-

ational stat ement, which we call ed the Increm ental Principle of Virtual Work , we
shall fin d that quan tity which appears is the incre ment of the 2nd Piola –Ki rchhoff
stress, DnS.

From Cha pter 5, �S ¼ SFT , from which to fi rst order

Dn 
�S ¼ D n SF

T þ SD n F
T ( 15 : 8)

For the Cau chy stre ss, the incre ment must take account of the rotation of the
underly ing coordi nate syst em and there by be object ive. We recal l the objective
Truesdell stress flux @

�
T=@ t intr oduced in Chapter 13:

@
�
T=@t ¼ @T=@t þ T tr(D)� LT� TLT (15:9)

Among the possible stress fluxes, it is unique in being proportional to the rate of the
2nd Piola–Kirchhoff stress, namely

@S=@t ¼ JF�1 @
�
T=@t


 �
F�T (15:10)

An objective Truesdell stress increment
�
DnT � dt(@

�
T=@t) is readily obtained as

VEC
�
DnT

 �

¼ 1
J
FT � FVEC(DnS) (15:11)

Further, once VEC
� �
DnT

�
has been determined, the (nonobjective) increment DnT of

the Cauchy stress may be computed using

�
DnT ¼ DnTþ T tr (DnF)F

�1
� �� DnFF

�1T� TF�TDnF
T (15:12)

from which

VEC(DnT) ¼ VEC
�
DnT

 �

� TVECT F�T
� �� TF�T

� �� I� I� TF�T
� �� �

MDng

(15:13)
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15.3 INCREMENTAL EQUATION OF BALANCE
OF LINEAR MOMENTUM

We now form ulate the incre mental equilibrium equation of nonli near soli d mecha n-
ics (assu ming that the body ha s a fixed point). In the deform ed (Euleri an) con figur-
atio n, equilibrium at tn requires ð

T T n dS ¼
ð
r €u dV (15 :14 )

Ref erred to the undefor med (L agrangian) con figurat ion, this e quation becom esð
�S
T 
n0 dS0 ¼

ð
r0 €u dV0 (15 :15 )

S0 denote s the surface (bounda ry) in the undefor med con figurat ion, and n0 is the
surfa ce normal vector in the undefor med con figurat ion. Su ppose the solution for �S is
kn own as �Sn at time tn and is sought at t nþ 1. As usual , we introduc e the increment
Dn 

�S to deno te �Snþ1 � �Sn. Now subtracti ng the equil ibrium equati on at time t n from
that at tnþ1 furni shes the incre mental equilibr ium equationð

Dn 
�S
T 
n0 dS0 ¼

ð
r0 Dn €u dV 0 (15 :16 )

Appl ication of the divergence theor em furni shes the different ial equation

r  
T Dn 

�S
T


 �T
¼ r0 D n €u (15 :17 )

whi ch is the local form of the incre mental equilibr ium equation .

15.4 INCREMENTAL PRINCIPLE OF VIRTUAL WORK

To derive a varia tiona l princ iple for the current form ulation, the qu antity to be varie d
is the increment al displacem ent vector which ac cordingly is the prim ary variable .
Fo llowing Cha pter 4,

(i) Equ ation 15.17 is mul tiplied by ( dDn u )
T

(ii ) Integ ration is perfor med over the domain
(iii) The divergence theor em is invoke d once
(iv) Ter ms appeari ng on the boundar y are ident ifi ed as primary an d seconda ry

varia bles
(v) Bou ndary condition s and const raints are appli ed

The reasoning process is very similar to that in the derivation of the Principle of
Virtual work in finite deformation in which u is the unknown, and furnishesð
tr(dDnE

TDnS) dV0 þ
ð
dDnFSDnF

T dV0 þ
ð
dDnu

Tr0Dn€u dV0 ¼
ð
dDnu

TDnt0 dS0

(15:18)
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in whi ch t0 is the tract ion experi enced by dS0. The incre ment D nt0 is momentar ily
assumed to be speci fied on the und eformed boundar y. However , in a subsequ ent
section it will be derived in the case in whi ch the traction increment is speci fi ed in the
curren t con figurat ion.

The fourt h term descri bes the virtual external work of the tract ion incre ments.
The first term may be said to d escribe the virtual inte rnal wor k of the stre ss
increment s, referr ed to the undefor med con figuration. The third term describes the
virtual internal work of the inertial force incre ments. The second term has no
counte rpart in the previo usly form ulated Princi ple of Virtual Work in Cha pter 13
and arises because of nonli near geome tric effect s in the incre mental formulat ion. We
simply call it the geome tric stiffnes s inte gral.

Owing to the imp ortance of the Increment al Principle of Virtua l Wo rk, it is
derived in detail below. It is conveni ent to perfor m the derivatio n using tenso r-
indicial notation. The increment al equilibri um equ ation referr ed to the undefor med
con figurat ion is rest ated asð
dDn ui

@

@ Xj
( Dn 

�Sij ) dV 0 ¼
ð

@

@ Xj
[dDn ui ( Dn 

�Sij )] dV 0 �
ð

@

@ Xj
dDn ui½ �Dn 

�Sij dV 0

¼
ð
dDn ui r0 Dn €ui dV0 ( 15 : 19 )

The diver gence theor em is invoke d to convert the first right-hand term toð
@

@ Xj

[dDn ui ( Dn 
�Sij )] dV 0 ¼

ð
dDn ui ( nj Dn 

�Sij ) dS0

¼
ð
dDn ui Dn t0 j dS0 ( 15 : 20 )

which is recogni zed as the fourth term in Equ ation 15.18.
To first order in increments and now using tensor notation, the second right-hand

term is written asð
@

@Xj
[dDnui]Dn

�Sij dV0 ¼
ð
tr(dDnFDn

�S) dV0

¼
ð
tr dDnF DnSF

T þ SDnF
T

� �� �
dV0

¼
ð
tr FTdDnFDnS
� �

dV0 þ
ð
tr dDnFSDnF

T
� �

dV0 (15:21)

The second term is recognized as the second term in Equation 15.18. Recalling that
the variational operator is applied to the primary variable which is an incremental
displacement vector, the first term now becomesð

tr FTdDnFDnS
� �

dV0 ¼
ð
tr 1

2 FTdDnFþ dDnF
TF

� �
DnS

� �
dV0

¼
ð
tr dDnE

TDnS
� �

dV0 (15:22)
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whi ch is recogni zed as the first term in Equati on 15.18. Final ly, the third term in
Equ ation 15.18 is recogni zed as the incre mental virt ual work of the incre mental
inert ial forces .
15.5 INCREMENTAL FINITE ELEMENT EQUATION

Fo r presen t p urposes let us suppos e const itutive relat ions in the form

Dn S ¼ D0 (X , gn )D n E þ V D n t (15 :23 )

in which D0 (X , g ) is the fourth-or der tangen t modu lus tensor . Equ ation 15.23 is
cap able of describing combined rate-indep endent and linearly rate- dependen t
respon se, for examp le, combined plastici ty and visco plasticity.

To take advant age of Kro necker product notat ion, the equation is rewrit ten as

Dn s ¼ x0 ( X, gn ) Dn e þ v Dn t (15 :24 )

s ¼ VEC ( S) , e ¼ VEC ( E) , x0 ¼ TEN 22 ( D0 ) , v ¼ VEC (V )

Usi ng the interpola tion model (Equ ation 15.1), Equ ation 15.18 becom es

dDn g
T K T þ K Gð ÞDn g þ M Dn €g � [D n f � f v Dn t ]½ � ¼ 0 (15 :25 )

KT ¼
Ð 
M T G x0 G T M dV0 , KG ¼

Ð 
M T S � M dV0

M ¼ Ð
r0 F T ww T F d V , Dn f ¼

Ð 
F T wDt 0 dS0

fv ¼
Ð 
M T G v dV 0

KT is now call ed the tangent modulus matrix, KG the geome tric stiffnes s mat rix, M
the (incr emental) mass mat rix, Dnf is c alled the incre mental (surface) force vector ,
and we call Dnf v the incre mental viscous force.
15.6 CONTRIBUTIONS FROM NONLINEAR BOUNDARY
CONDITIONS

Rec alling Cha pter 13, let Ii denote the princ ipal invariant s of C , and let i ¼ VEC ( I ),
c2 ¼ VEC ( C2 ), nTi ¼ @ I i =@ c , and Ai ¼ @ ni=@ c . Recall from Chapter 13 that

n1 ¼ i, n2 ¼ I1i� c, n3 ¼ I2i� I1cþ c2 ¼ I3VEC(C
�1), I9 ¼ I� I

A1 ¼ 0, A2 ¼ iiT � I9, A3 ¼ I�CþC� I� (icT þ ciT )þ I1(ii
T � I9)

(15:26)
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Equati on 15.18 can be applied if incre ments of tract ions are prescr ibed on the
undefor med surface S0. We now consi der the more compl ex situati on in which Dn

is referred to the deform ed surfa ce S , on which they are prescr ibed funct ions of u.
This situati on may occur under, for examp le, ‘‘dead loadi ng. ’’ Using the relat ions of
Chapter 13 conve rsion to undefor med coordinates is obtained using the relations

t dS ¼ t0 dS0 , dS ¼ m dS0 , m ¼ J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nT0 C

� 1 n0

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nT0 � nT0 n3

q
( 15 : 27 )

and from Nichols on an d Lin (1997b)

Dn m � dm ¼ m T dc � mT D n c , mT ¼ n T0 � nT0 A 3 =2m ( 15 : 28 )

Suppose that Dnt is expres sed on S as follow s:

Dn t ¼ Dnt � A TM Dn u ( 15 : 29 )

Here Dnt is prescr ibed, whi le AM is a know n function of u. Also S0 is the undefor med
counte rpart of S. Owing to the presen ce of AM the expression in Equati on 15.29 is
capabl e of model ing boundar y condition s such as suppor t by a nonli near elast ic
foundat ion.

From the fact that t dS ¼ t0 dS0, we conclu de that t ¼ t 0=m . It follow s that

Dn t 0 ¼ m Dn t þ tmT D n c

¼ m (Dn t � AT
M Dn u ) þ tmT D n c ( 15 : 30 )

From the Incremental Principle of Virtual Work, the right-hand term may be written as

ð
dD uT Dt0 dS0 ¼

ð
dDu T [m (Dt � A TM D u) � tm T Dc ] dS0 ( 15 : 31 )

Now recalling the interpola tion model s for the incre ment s we o btain an increment al
force vector plus two boundary contributions to the stiffness terms. In particular

ð
dDnu

TDnt0 dS0 ¼ dDng
TDnf � dDng

T [KBF þKBN]Dng (15:32)

Dnf ¼
ð
mDnt dS0, KBF ¼

ð
FTwmAT

Mw
TF dS0, KBN ¼ 2

ð
FTw(tmT )GTM dS0

The first boundary contribution is from the nonlinear elastic foundation coupling
the traction and displacement increments on the boundary. The second arises
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from geome tric nonlineari ty in which the traction incre ment is prescr ibed on the
curren t con figuration .
15.7 EFFECT OF VARIABLE CONTACT

In many, if not most, ‘‘real wor ld ’’ problems, loads are transmi tted to the member of
inte rest via contac t wi th other mem bers, for exa mple in gear teet h. The extent of the
con tact zone is now an unknow n to be deter min ed as part of the solution proces s.
So lution of contac t problems, discu ssed in a n introduct ory way in Chapter 12, is a
dif ficult problem that has absorb ed the atte ntion of many inves tigators . Some
algor ithms are suited primarily for linea r kinem atics. Her e a develo pment is given
of an examp le which expli citly ad dresses the effect of large deform ation.

Figure 15.1 show s a contactor movi ng tow ard a foundat ion, assum ed to be rigid
and fixed. We seek to follow the develo pment of the contac t a rea and the tractions
aris ing throu ghout it. Rec alling Cha pter 12, correspon ding to a point x on the
con tactor surfa ce there is a target point y( x) on the foundation to which the normal
n (x ) at  x point s. As the contac tor starts to deform n( x) rotates and points tow ard a
new value y( x). As the point x approac hes contac t, the point y( x) app roaches the
foundat ion point which will come into contac t with the contac tor point at x.

We de fine a gap funct ion g( u,x) using y( x) ¼ x þ gn. Let m be the surfa ce
no rmal vector to the targe t (foundatio n) at y(x). Al so, let Sc be the candid ate co ntact
surf ace on the con tactor, whos e un deformed counterpart is S0c. There likewise is a
can didate contac t surfac e Sf on the foundat ion.

We limit a ttention to bo nded contac t, in which particles coming into contac t with
each other remain in contact and do not slide away from each other. Algorithms for
sliding contact with and without friction are available. For simplicity, for the moment
we also assume that shear tractions, in the osculating plane of point of interest, are
Foundation

y(x)

Contactor

g
n

m

FIGURE 15.1 Contact scenario.
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negligibl e. Supp ose now that the inte rface can be repres ented by an elastic founda-
tion satisfyi ng the incre mental relat ion

Dn t n ¼ �k ( g)D n un ( 15 : 33 )

Here tn ¼ nT t and un ¼ nT u are the norm al compo nents of the tract ion and displace-
ment vector s at x. Since the only tract ion being consi dered is the norm al traction (to
the contac tor surfa ce), the trans verse compo nents of Du are not needed (do not resul t
from wor k). Al so, k ( g) is a nonli near stiffnes s funct ion given in terms of the gap by,
for examp le,

k ( g) ¼ kH
p

p

2
� arctan( ak g � «r )

h i
þ kL , k H =k L � 1 ( 15 : 34 )

As in Chapter 12, when g is posit ive, the gap is open and k approac hes kL which
should be chosen as a small numbe r, theor etically zero. As g becom es negati ve, the
gap is closing and k there after rapid ly approac hes kH which shoul d be chosen as a
large numbe r (theoreti cally in finite to prevent penetr ation of the rigid body). A
function similar to this was also discussed in Chapter 14, and its charact eristics
were illustrated graphically.

Under the assumption that only the normal traction on the contactor surface in
important, it likewise follows that we may use the relation t¼ tnn, with the conse-
quence that

Dnt ¼ Dntnnþ tnDnn (15:35)

The contact model contributes the matrix Kc to the total stiffness matrix as follows
(Nicholson and Lin, 1997b):ð

dDuTDtm dS0 ¼
ð
dDuTnDtnm dS0

¼ �dDgTKcDg (15:36)

Kc ¼ �2
ð
FTwntnm

TbTF dSc0 þ
ð
kc(g)F

TwnnTwTFm dSc0

þ
ð
FTwtnmh

T dSc0

in which hT is presented below. To update the gap, use may be made of the following
relations reported in Nicholson and Lin (1997b). The differential vector dy is tangent
to the foundation surface, and hence mT dy¼ 0. It follows that

0 � mTDnuþ gmTDnnþmTnDng

Dg ¼ �mTDuþ gmTDn

mTn
(15:37)
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Usi ng Equ ations 15.7 and 15 .37 we may deriv e with some effort that

D g ¼ GT D g, GT ¼ �m T FT w þ ghT

m T n

h T ¼ m T n ( nT F� 1 ) � nT
� �� nT � F� T

� �
M T

(15 :38 )
15.8 INTERPRETATION AS NEWTON ITERATION

The (nonincrem ental ) Princi ple of Virtua l W ork is restated in Lag rangian coordi n-
ates as

ð
tr ( dES ) dV0 þ

ð
duT r €u dV0 ¼

ð
duT t0 dS0 (15 :39 )

We assum e for convenience that t0 is prescr ibed on S0. The inte rpola tion model for e
was shown in Equ ation 15.8 to h ave the form de ¼ BT

L þ BT
NL ( g)

� �
dg. Upon can-

cell ation of the varia tion dgT , an algebraic equation in g is obtained as

0 ¼ C (g, f ) ¼
ð
BL þ B NL (g )½ �s dV0 þ

ð
FT w r0 €u dV0 , f ¼

ð
FT w t0 dS0 , s ¼ VEC ( S)

(15 :40 )

At the nth load step Newto n iteration is ex pressed as

g (n þ 1)
nþ 1 ¼ g(n )

nþ 1 � J� 1 F g(n )
nþ 1 , f nþ 1

� �
, J ¼ @ F

@ g
g(n )
n þ 1 , f n þ 1

� �
(15 :41 )

or alternati vely as a linear system

J g(n þ 1 )
n þ 1 � g(n )

nþ 1

� � ¼ F g(n )
nþ 1 , f n þ 1

� �
g(n þ 1 )
n þ 1 ¼ g(n )

n þ 1 þ g(n þ 1 )
nþ 1 � g( n )

n þ 1

� �  (15 :42 )

If the load incre ments are small enough, the starting iter ate may be estimat ed a s the
solut ion from the nth load step. Also a stopping (conver gence) criterion is needed to
determine when the effort to generate additional iterates is not rewarded by increased
accuracy.

Careful examination of the relations from this and the incremental formulations
uncovers that

J ¼ KT þKG (static)

¼ KG þKT þ 2M=h2 (dynamic)
(15:43)
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presuming , for examp le, that the trape zoidal rule is used in the dynam ic ca se to
model the time deriv ativ es. Clearl y the incre mental stiffn ess matrix is the sam e as the
Jacobi an matrix in Newton iter ation . Equati on 15.43 is, of course , a very satisfying
result — it reveal s that the Jacobi an matrix of Newton Iter ation may be calcul ated by
convent ional finite elemen t procedu res at the element level follow ed by convent ional
assembly procedu res. If the incre mental equ ation is only solve d once at each load
increment , the ensui ng solution may be viewed as the first iter ate in a Newto n
iteration scheme. The one-time incre mental solution can potent ially be improved
by additional iter ations follow ing Equ ation 15.44, but at the cost of addit ional effor t.
However , it is a lso possible that the use of multip le iteratio ns will enable larger load
steps, there by compe nsati ng for the compu tational effort.

15.9 BUCKLING

Finite elem ent equations based on class ical line ar buckling equations for beams and
plates wer e treated in Cha pter 11 . In the classical equations, what strictly are
geome trically nonlinear terms appear through what may be consi dered a linear
correction term, furnishin g linear equati ons. Here, in the absence of inertia and
nonlineari ty in the bound ary condition s, we brie fly presen t a more general viewpoi nt
based on the increment al equil ibrium e quation

(KT þ K G ) Dn g ¼ D n f ( 15 : 44 )

This solution will predi ct a very large increment al displacem ent if the sti ffness
matrix KTþKG is ill-conditioned or outright singular. Of course, in elastic media,
KT is positive definite. However, in the presence of in-plane compression, we will
see that KG may have a negative eigenvalue whose magnitude is comparable to the
smallest positive eigenvalue of KT. To see this recall that

KT ¼
ð
MTGxGTM dV0, KG ¼

ð
MTS� IM dV0 (15:45)

We suppose that the element in question is thin in a local z (out-of-plane direction),
corresponding to plane stress. Now in plate and shell theory, it is a common practice
to add a transverse shear stress on the element boundaries to allow the element to
support transverse loads. We assume that the transverse shear stresses only appear in
the incremental force term and the tangent stiffness term, and that the geometric
stiffness term strictly satisfies the plane stress assumption. It follows that, if the three-
direction is out of the plane, the geometric stiffness term KG contains the expression

S� I ¼
S11I S12I 0I

S12I S22I 0I

0I 0I 0I

2
4

3
5 (15:46)

in which S is of course the 2nd Piola–Kirchhoff stress. In classical (linear) buckling
theory loads which are applied proportionately induce proportionate in-plane stresses
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(i.e., the stre ss compo nents have const ant ratios). Acco rding ly, for a given load path,
on ly one parameter , the lengt h of the straight line the stress point traverses in the
space of in-pl ane stre sses, arises in the eigenv alue problem for the critical buckli ng
load. In nonli near probl ems, there is n o assur ance that the stress point follows a
stra ight line even if the loads are propor tion ate. Instead, if l denotes the distance
along the line followe d by the load po int in propor tional loading in load space, the
stre sses becom e numerical functions of l.

As a simple alternative to the class ical case addres sing a complete mem ber, we
con sider buckling of a single element, and suppose that the stresses appearing in
Equ ation 15.46 are appli ed in a compr essive sense along the faces of the element and
in a proportion al manne r, i.e.,

S � I ! l
(�Ŝ11 )I (�Ŝ12 )I 0I

(�Ŝ12 )I (�Ŝ22 )I 0I

0I 0I 0I

2
4

3
5 (15 :47 )

in which the circum flex imp lies a referenc e value along the stre ss path at which
l ¼ 1. The negative signs on the stresses are presen t since buckling is associ ated with
compr essi ve stresses, although the sign is not needed for the shear stress. At the
elem ent level , the equati on now become s

KT � l K̂ G
� �

Dgnþ 1 ¼ Df n þ 1 (15 :48 )

At a given load incre ment , the crit ical stress inte nsity for the current stress path, as a
funct ion of an two (spherical ) ang les determin ing the path in the stress space
illu strated in Figure 11.11, is obtained by compu ting the l value render ing ( KT �
l K̂G ) singu lar. To an extent, the integrati on in computin g K̂G can be made inde-
pen dent of the stre ss path b y adapti ng Equation 11.70 as follows:

K̂ G ¼ IV EC 

ð
MT �MT dV0


 �
VEC Ŝ� I


 �
 �
(15:49)
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16 Tangent Modulus
Tensors for
� 2008 by Taylor & Fra
Thermomechanical
Response of Elastomers
16.1 INTRODUCTION

Elastomer ic materials embrace natur al and synth etic rubber a s well as biol ogical
tissues. Attent ion in this chapte r is restrict ed to isotropi c elastome rs. The ir ch arac-
teristic is that deform ation is recover able even up to very large stra ins, and the stre ss
is a nonli near funct ion of strain. Acco rding ly, they pose issues of material and
geome tric nonli nearity, potent ially also of boundar y condit ion nonlineari ty. They
pose two addit ional issu es not add ressed in Chap ter 15. One is the presen ce of
thermal fi elds coupled (weakly) to the mecha nical field, and the second is the
presen ce o f a press ure fie ld arising to en force the constraint of incom pressibilit y or
near-incom press ibility and serving as an add itional primary varia ble.

Within an elem ent the fi nite elemen t met hod makes use o f inte rpolation models
for the displacem ent vector u ( X,t ) and temp erature T( X,t ), and press ure p ¼�tr( t)=3
in incom pressible or near-i ncompressi ble mat erials:

u(X ,t ) ¼ N T ( X) g( t ) , T( X ,t ) � T0 ¼ n T ( X) u( t ), p ¼ jT (X )c ( t ) (16 : 1)

in whi ch T0 is the temp erature in the reference con figu ration, assumed consta nt.
Here N ( X) ¼ wT ( X) F , n( X), and j( X ) are shape functions and g, u , and c are

vectors of nodal values of displacem ent, tem perat ure (T � T0), and press ure, respec t-
ively. Application of the strain displacement relations and their thermal analogs
furnishes

f1 ¼ VEC(F� I) ¼ M1g ¼ UTM2g, f2 ¼ VEC(FT � I) ¼ M2g, de ¼ bTdg,

b ¼ M2G
T , GT ¼ 1

2 (F
T � Iþ I� FTU), r0T ¼ bT

Tu (16:2)

in which e¼VEC(E) is the Lagrangian strain vector. Also,r0¼FTr is the gradient
operator referred to the deformed configuration. Of course, the matrix b and the
vector bT are typically expressed in terms of natural coordinates.
ncis Group, LLC.



16.2 COMPRESSIBLE ELASTOMERS

The Helmho ltz potent ial was introduced in Cha pter 6 and show n to underlie the
relat ions of classical couple d thermoel asticity. The therm ohypere lastic proper ties of
compr essi ble elastome rs may likewise be derived from the Hel mholtz free energy
den sity f (per unit mass ), which is a funct ion of T and E . Under isotherm al
con ditions it is convent ional to introd uce the strain energy de nsity w( E) ¼ r0f
(T ,E) (T const ant), in which r0 is the d ensity in the undefor med con figurat ion.
Typ ically, the elastome r is assum ed to be isotropi c, in whi ch case f can be expres sed
as a function of T, I1, I 2, and I3. Altern atively, it may be expressed as a funct ion of
T and the stre tch ratios l1, l2, and l 3, which are the eigenvalues of

ffiffiffiffi
C

p 
, the square

root of the right Cauchy –Gre en strain tenso r.
With f speci fied as a funct ion of T, I1, I 2, and I 3, the entropy densi ty h per

un it mass and the speci fic heat ce at const ant (Lagrangi an) stra in are quoted from
Cha pter 6 as

ce ¼ T
@ h

@ T

����
E

, h ¼ � @ f

@ T

����
E

(16:3)

The second Piola –Kirchhof f stre ss satis fies the relat ion (cf. Cha pter 6) s T ¼
VEC T (S ) ¼ r0

@ f
@ e

��
T
and is obtained as

s T ¼ 2
X
i

r0 fi n
T
i , fi ¼

@ f

@ Ii
(16:4)

Al so of importan ce is the (iso thermal) tangent modulus matrix

DT ¼ @ s

@ e

����
T

¼ 4
X
i

X
j

r0 f ij ni n 
T
j þ 4

X
i

r0 f i A i , f ij ¼
@ 2 f

@ Ii @ I j
(16:5)

An expression for DT has also been deriv ed by Nichols on and Lin (1997c) for
compr essi ble, incom pressible , and near-incom pressible elastome rs descri bed by
stra in energy funct ions (Helmh oltz free energy functions) based on the use of stretch
rati os rathe r than invar iants.
16.3 INCOMPRESSIBLE AND NEAR-INCOMPRESSIBLE
ELASTOMERS

Wh en the temperat ure T is held const ant, elastome rs can often be consi dered to satisfy
the internal constrain t of incompres sibili ty or nea r-incompr essibility. To satisfy the
constraint a posteriori, f is augmented with terms involving a new parameter playing
the role of a Lagrange multiplier. Typically, this new parameter may be interpreted as
the pressure p, referred to the undeformed configuration. Consequently, the thermo-
hyperelastic properties of incompressible and near-incompressible elastomers may be
� 2008 by Taylor & Francis Group, LLC.



derived from the augme nted Helmho ltz free energy, which is a funct ion of E , T,
and p. The const raint intr oduces additional terms into the governi ng finite elem ent
equations and requi res an inte rpola tion model for the new prim ary varia ble p.

If the elastome r is incompres sible at constant tem perature, the aug mented
Helmho ltz funct ion f may be wri tten as

f ¼ fd (J 1 ,J 2 ,T) � lj (J ,T) =r 0 , J 1 ¼ I1 =I 
1= 3
3 , J2 ¼ I 2 =I 

2= 3
3 ( 16 : 6)

where j is a mat erial function satisfyi ng the const raint j ( J ,T) ¼ 0 and

J ¼ I 1= 23 ¼ det( F) . It is easily shown that fd depends on the deviatori c La grangian

strain Ed ( ¼ 1
2 ( C =I 

1 = 3
3 � I ) owing to the introd uction of the deviat oric invariant s J2

and J3, previously encount ered in Chapter 13, Equati on 13. 76. The ‘‘thermo-
dynam ic’’ press ure is given by

l ¼ p ¼ �tr (T )=3 ¼ @ j

@ J

����
T

( 16 : 7)

For an elast omer which is near-i ncompressi ble at constant tem perature, f may be
written as

r0 f ¼ r 0 fd ( J 1 ,J 2 ,T) � pj (J ,T) � p2 =2 k0 ( 16 : 8)

in which k0 is a const ant. The near-i ncompressi bility constraint is expres sed by
@ f=@ p ¼ 0, which imp lies

p ¼ �k0 j ( J ,T) ( 16 : 9)

The bulk modul us k defined by k ¼ � @ p
@ J

��
T 
, and we conclude that

k ¼ k0
@ j

@ J

����
T

( 16 : 10 )

Chen et al. (1997) presen ted suffi cient condit ions und er which near-inco mpressib le
models reduce to the incom pressible case as k !1. Nicholson and Lin (1996)
propos ed the relations

j(J,T) ¼ f 3(T)J � 1, fd ¼ f1(J1,J2)þ f2(T), f2(T) ¼ ceT(1� ln(T=T0))

(16:11)

with the consequence that

p ¼ �k0( f
3(T)J � 1), k ¼ f 3(T)k0 (16:12)

Equation 16.12 provides a linear pressure–volume relation in which thermomecha-
nical effects are confined to thermal expansion expressed using a constant volume
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coefficient a. It directly generalizes the pressure–volume relation of classical linear
isotropic elasticity. If the near-incompressibility constraint is assumed to be satisfied
a priori, the Helmholtz free energy is recovered as

f(I1,I2,I3,T) ¼ fd(J1,J2,T)þ k0( f
3(T)� 1)2=2r0 (16:13)

The last term in Equation 16.13 results from retaining the lowest nonvanishing term
in a Taylor series representation of f about f 3(T)J�1.

Assuming Equation 16.13, the entropy density now includes a term involving p:

h ¼ � @f

@T
¼ � @fd

@T
þ pa f 4(T)=r0, p ¼ p=f 3(T) (16:14)

The stress and the (93 9) tangent modulus tensor are correspondingly modified from
the compressible case to accommodate near-incompressibility

sT ¼ r0
@fd

@e

����
T,p

� pf 3(T)nT
3=J

DTP ¼ @s

@e

����
T,p

¼ r0
@

@e

� �T @fd

@e
� pf 3(T) 2A3=J � n3n

T
3=J

3
� �

(16:15)

16.3.1 EXAMPLES OF EXPRESSIONS FOR THE HELMHOLTZ POTENTIAL

There are two broad approaches to the formulation of Helmholtz potential:

1. To express f as a function of I1, I2, and I3, and T (and p)
2. To express f as a function of the principal stretches l1, l2, and l3, and T

(and p)

The latter approach is thought to possess the convenient feature of allowing direct
use of test data, say from uniaxial tension. We distinguish several cases.

16.3.1.1 Invariant-Based Incompressible Models: Isothermal Problems

In the entitled case, the strain energy function depends only on I1, I2 and incom-
pressibility is expressed by the constraint I3¼ 1, assumed to be satisfied a priori. In
this category, the most widely used models include the Neo-Hookean material (a):

f ¼ C1(I1 � 3), I3 ¼ 1 (16:16)

and the (two-term) Mooney–Rivlin material (b):

f ¼ C1(I1 � 3)þ C2(I2 � 3), I3 ¼ 1 (16:17)

in which C1 and C2 are material constants. Most finite element codes with hyper-
elastic elements support the Mooney–Rivlin model. In principle, Mooney–Rivlin
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coef ficients C1 and C2 ca n be determin ed independen tly by ‘‘ fitting ’’ suitable load –
de flectio n curves , for examp le, uniaxi al tension. Val ues for severa l different rubber
compo unds are listed in Nichols on and Nelson (1990) .

16.3.1. 2 Invari ant-Based Models fo r Com pressible Elastomers unde r
Isother mal Condi tions

Two widely studied strain energy funct ions are due to Blatz an d Ko (1962) . Let G0

be the shear modulus and n0 the Po isson ’ s ratio, referred to the undefor med config-
uration. The two models are:

r0f1 ¼
1
2 
G 0 I1 þ 1 � 2n0

n0 
I3 � I

n0
1� 2n0
3 � 1 þ n0

n0

� �

r 0 f2 ¼
1
2 
G0

I2
I3
þ 2I 3 � 5

� �  

( 16 : 18 )

Let w denote the Helmho ltz free energy evalua ted at a constant tem perature, in which
case it reduces to the strain energy. We note a general expression for w which is
implem ented in several commerci al finite element codes (e.g., ANSY S, 2000):

w( J 1 ,J 2,J ) ¼
X
i

X
j 

Cij (J 1 � 3)i (J 2 � 3) j þ
X
k 

( J r � 1)k =Dk ,

J r ¼ J =(1 þ E th ) (16 : 19 )

in which Eth is call ed the thermal expansi on stra in, while Cij and D k are material
constan ts. Several codes provi de soft ware routines for esti mating the model coef fi-
cients from user- supplied data.

Several author s have attempt ed to uncouple the respon se into isochoric (volu me
conser ving) and volumetr ic parts even in the compr essible range, givi ng rise to
functions of the form w ¼ w1 ( J 1 ,J 2 ) þ w 2 ( J ), and recal l that J 1, J 2 are the deviatoric
invariant s. A numbe r of propos ed form s for �2 are discussed in Holzappel (1996).

16.3.1.3 Thermomechanical Behavior under Non-Isothermal Conditions

Finally we illustrate the accommodation of couple d therm omechanical effect s. A
more detailed presen tation is given in Se ction 16.5. Simple extens ions of, say, the
Mooney–Rivlin material have been proposed by Dillon (1962), Nicholson and
Nelson (1990), and Nicholson (1995) for compressible elastomers, and in Nicholson
and Lin (1996) for incompressible and near-incompressible elastomers. From the
latter reference, the model for near-incompressible elastomers is

r0f ¼ C1(J1 � 2)þ C2(J2 � 3)þ r0ceT(1� ln(T=T0))� ( f 3(T)J � 1)p � p2=2k0
(16:20)

in which, as before, p¼ p=f 3(T). The model assumes that the coefficient of specific
heat at constant strain is a constant. As previously mentioned a model similar to
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Nicholson and Lin (1996) has been proposed by Holzappel and Simo (1996) for
compressible elastomers described using stretch ratios.

16.4 STRETCH-RATIO-BASED MODELS: ISOTHERMAL
CONDITIONS

For compressible elastomers, Valanis and Landel (1967) proposed a strain energy
function based on the decomposition

f(l1,l2,l3,T) ¼ f(l1,T)þ f(l2,T)þ f(l3,T), T fixed (16:21)

Ogden (1986) has proposed the form

r0f(l,T) ¼
XN
1

mp(l
ap � 1), T fixed (16:22)

In principle, in incompressible isotropic elastomers stretch-ratio-based models have
the advantage of permitting direct use of ‘‘archival’’ data from single stress tests, for
example uniaxial tension.

We now illustrate the application of Kronecker product algebra to thermohyper-
elastic materials under isothermal conditions. We then accommodate thermal effects.
From Nicholson and Lin (1997c), we invoke the expression for the differential of a
tensor-valued isotropic function of a tensor. Namely let A denote a nonsingular n3 n
tensor with distinct eigenvalues, and let F(A) be a tensor-valued isotropic function of
A, admitting representation as a convergent polynomial:

F(A) ¼
X/
0

fjA
j (16:23)

Here fj are constants. A compact expression for the differential dF(A) is presented
using Kronecker product notation.

The reader is referred to Nicholson and Lin (1997c) for the derivation of the
following expression. With f¼VEC(F) and a¼VEC(A),

df(a) ¼ 1
2F

0T � F0 daþW dv

F0(A) ¼
X/
0

jfjA
j�1,

dF

dA
¼ ITEN22

df

da

� �

W ¼ �(F� AF0=2)T � (F� AF0=2)þ 1
2 (A

T � F0 � F0T � A)

(16:24)

Also, dv¼VEC(dV) in which dV is an antisymmetric tensor representing the rate
of rotation of the principal directions. The critical step is to determine a matrix J such
thatW dv¼�J da. It is shown inNicholson andLin (1997c) that J¼�[AT�A]�IW,
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in which [A T � A] I is the Mors e –Penrose inver se (Da hlquist and Bjork, 1974).
According ly

df=da ¼ F0T � F0=2 � [ AT � A ]I W ( 16 : 25 )

We n ow apply the tenso r de rivative to elast omers modeled using stre tch ratios,
especiall y in the model due to Ogde n (1972) . In particula r a stra in energy funct ion
w was propos ed which for compr essi ble elastome rs and for isotherm al respon se is
equiva lent to the form

w ¼ tr
X
i

ji C 
z i � I

� � !
( 16 : 26 )

in which ji, z i are material proper ties. The (9 3 9) tangent modul us tenso r x0

appearin g in Cha pter 15 for the increment al form of the Principle of Virtua l Work
is obtai ned as

x0 ¼ 4
X
i

zi j i ( z i � 1) C z i � 2 � C z i� 2 =2 þ 4
X
i

zi j i [ A
T � A ]I W i ( 16 : 27 )

Wi ¼ � 3 � zi
2

C z i � Cz i þ zi � 1
2

[C z i � 2 � C � C � C z i � 2 ] (16 : 28 )
16.5 EXTENSION TO THERMOHYPERELASTIC MATERIALS

A develo pment of the therm ohypere lastic model in Equ ation 16.20 is now g iven,
follow ing Nichols on and Lin (1996) . The body initial ly experi ences tem perature T0

uniforml y. It is assum ed that temperat ure effect s occur primarily as thermal expan-
sion, that volum e changes are small, and that volume changes depend line arly on
temperat ure. Thu s materials of presen t interest may be descri bed as mecha nical ly
nonlinear but therm ally linear.

Owing to the role of thermal expansi on, it is de sirable to uncouple dilatatio nal
and deviat oric effects as much as possible. To this end we invoke the deviat oric
Cauchy –Gre en strain Ĉ ¼ C =I 1= 33 in which I3 is the third princ ipal invariant of C.
Upon modifyi ng w and expa nding it in J � 1,

�
J ¼ I 1= 23

	
and retai ning lowest order

terms, we obtain

w ¼ tr
X
i

ji Ĉ 
z i � I

� � !
þ 1
2 
k(J � 1) 2 ( 16 : 29 )

in which k is the bulk modulu s. The expres sion for x0 in Equati on 16.27 is affected
by these modi fi cations.

To accom modate therm al effects it is necess ary to recogni ze that w is sim ply the
Helmho ltz free energy densi ty r0f under isoth ermal condition s, in which r0 is
the mass densi ty in the undefor med con figurat ion. It is assum ed that f ¼ 0 in the
undefor med con fi guration. As for invariant -based model s, we may obtain a funct ion
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f with three terms: a purel y mecha nical term fM , a purely thermal term fT , and a
mix ed term fTM. Now with entropy denote d by h, f satis fies the relations

s T ¼ r0
�@ w
@ e jT

, h ¼ � @ w

@ Tje
(16 :30 )

As previ ously stated , the speci fic heat at constant stra in, ce ¼ T @ h =@ Tj e , is assum ed
to be constant, from which we obtai n

fT ¼ c e T[ 1 � ln(T =T0 )] (16 :31 )

On the assumption that thermal effects in shear (i.e., deviatori c effects) can be
neg lected relat ive to thermal effects in dila tation, the purely mecha nical e ffect is
equ ated with the deviat oric term in Equ ation 16.29.

fM ¼ tr
X
i

ji Ĉ
z i � I

� � !
(16 :32 )

Of great est presen t inte rest in the curren t co ntext is fTM. The develo pment of
Ni cholson and Lin (1996) furni shes

fTM ¼
k[ b3 (T)J � 1] 2

2r
, b(T) ¼ ( 1 þ a(T =T0 )=3) 

� 1 (16 :33 )

The tangen t modul us tensor x0 ¼ @ s =@ e now has tw o parts: xM þ xTM , in whi ch xM is
recogni zed as x0, deriv ed in Equ ation 16.27. Om itting the details, Kronecker product
algebr a serves to derive the foll owing expression for the thermom echanica l position
of the tangen t modul us tensor.

xTM ¼
k

J r 
b3 b3

J 2 
n3 n

T
3 þ (b3 J � 1) A 3 � n3 n 

T
3

J2


 �
 �
(16 :34 )

The forego ing discussi on of thermohype relas tic models has been limited to com-
press ible elastome rs. However , many elastome rs used in appli cations such as seals
are incompres sible or n ear-incom pressible . For such applicati ons, as we have seen
that an addit ional field variable is introduced, namely the hydrostati c press ure
(refer red to deform ed coo rdinates) . It serves as a Lagrange multip lier enforc ing the
incompress ibility and near-incom press ibility const raints. Follo wing the approac h for
invar iant -based model s, Equ ation 16.34 may be extended to incor porate the con-
stra ints of incom pressibility and near-incom press ibility.

The tangent modulus tensor presented here purely addresses the differential of
stress with respect to strain. However, if coupled heat transfer (conduction and
radiation) is considered, a more general expression for the tangent modulus tensor
is required, expressing increments of stress and entropy in terms of increments of
strain and temperature. A development accommodating heat transfer for invariant
based elastomers is given in Nicholson and Lin (1997a).
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EXAMPLE 16.1

Derive explicit forms of the stress and tangent modulus tensors using the Helmoltz
potential for a near-incompressible thermohyperelastic material.

SOLUTION

Enforcing the near-incompressibility constraint a priori, the Helmholtz potential func-
tion of interest is

f(T ,J1 ,J 2 ,p ) ¼ 1
r0

[ C1 ( J1 � 2) þ C2 ( J2 � 3)] þ c e T[ 1 � ln (T =T0 )] þ 1
r0

k0 ( f 3 (T)J � 1)2

2

Now the stress is to be obtained using the relations

sT ¼ r0
@ f

@ e

����
T, p

¼ C1
dJ1
de

þ C2
d J2
de

� p f 3 (T)
dJ

de 
, p ¼ �k 0 ( f 

3 (T) J � 1)

In terms of m1 and m2 presented subsequently in Equation 16.63

dJ1
de

¼ m T1 ,
dJ2
de

¼ m T2

Also

dJ

de 
¼ 2

d

dc

� ffiffi
I

p  

3
	 ¼ 1ffiffi

I
p  

3

dI3
dc

¼ nT3
J

Consequently,

sT ¼ C1 m
T
1 þ C2 m T2 � kp f 3 (T)

n T3
J

The tangent modulus tensor may now be stated as

DT ¼ @ s

@ e

����
T,p

¼ C1
@ m1

@ e
þ C2

@ m2

@ e
� p f 3 (T) 2

A3

J
� n3 n

T
3

J 3


 �

Since m1 ¼ 2
� 
i � 1

3
I1
I3
n3
	
= I 1 =33 and m2 ¼ 2

� 
n2 � 2

3
I2
I3
n3
	
=I 2= 33 (Equation 16.63) some

manipulation serves to derive that

dm1

de
¼ 2

dm1

dc
¼ � 4

3I3
�m1n

T
3 þ 1

I31=3
n3i

T � I1
I3
n3n

T
3 þ I1A3

� �
 �

dm2

de
¼ � 8

3
m2n

T
3

I3
þ 4

I2=33

A2 þ 2
3

I2
I32

n3n
T
3 � 2

3
n3n

T
2

I3
� 2
3
I2
I3
A3

� �
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EXAMPLE 16.2

Recover ce upon differentiating frt ¼ ceT[1� ln(T=T0)] twice with respect to T.

SOLUTION

Differentiation once gives

@frt

@T
¼ ce[1� ln(T=T0)]þ ceT � 1

T=T0

1
T0


 �
¼ �ce ln(T=T0)

Differentiating a second time gives

@2frt

@T2 ¼ �ce
1

T=T0

1
T0

¼ � ce
T

Hence

ce ¼ �T
@2frt

@T2

But we know that ce ¼ T @h
@T

��
E
, in which h ¼ � @frt

@T . It follows that

ce ¼ �T
@2frt

@T2

verifying that ce is recovered from ceT[1� ln(T=T0)].

16.6 THERMOMECHANICS OF DAMPED ELASTOMERS

Thermoviscohyperelasticity is a topic central to important applications such as
rubber mounts used in hot engines for vibration isolation. The current section
describes a simple thermoviscohyperelastic constitutive model thought to be suitable
for near-incompressible elastomers exhibiting modest levels of viscous damping
following a Voigt-type of model. Two potential functions are used to provide a
systematic treatment of reversible and irreversible effects. One is the familiar
Helmholtz free energy in terms of the strain and the temperature; it describes
reversible, thermohyperelastic effects. The second potential function, based on the
model of Ziegler and Wehrli (1987), incorporates elements for modeling viscous
dissipation and arises directly from the entropy production inequality. It provides a
consistent thermodynamic framework for describing damping in terms of a viscosity
tensor depending on strain and temperature.

The formulation leads to a simple energy balance equation, which is used to
derive a rate variational principle. Together with the Principle of Virtual Work,
variational equations governing coupled thermal and mechanical effects are pre-
sented. Finite element equations are derived from the thermal equilibrium equation
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and from the Principle of Virtual Work. Several quantities such as internal energy
density x have reversible and irreversible portions, indicated by the subscripts r and i:
x¼ xrþ xi. The thermodynamic formulation in the succeeding paragraphs is referred
to undeformed coordinates.

There are several types of viscoelastic behavior in elastomers, especially if they
contain fillers such as carbon black. For example, under load elastomers experience
stress softening and compression set, which are long-term viscoelastic phenomena.
Of interest here is the type of damping which is usually assumed in vibration
isolation, in which the stresses have an elastic and a viscous portion reminiscent of
the classical Voigt model, and the viscous portion is proportional to strain rates. The
time constants are small. It is viewed as arising in small motions superimposed on
the large strains which already reflect long-term viscoelastic effects.

16.6.1 BALANCE OF ENERGY

The conventional equation for the balance of energy is expressed as

r0 _x ¼ sT _e�rT
0q0 þ r0h

¼ sTr _eþ sTi _e�rT
0q0 þ r0h (16:35)

in which s¼VEC(S) and e¼VEC(E). Here x is the internal energy per unit mass, q0
is the heat flux vector referred to undeformed coordinates, r0 is the divergence
operator referred to undeformed coordinates, and h is the heat input per unit mass, for
simplicity assumed independent of temperature. The state variables are recognized to
be e and T. The Helmholtz free energy fr per unit mass (which is regarded as
reversible) and the entropy h per unit mass are introduced using

fr ¼ x � Th (16:36)

Upon obvious rearrangement,

rT
0q0 � r0h ¼ sTr _eþ sTi _e� r0T _h� r0h _T� r0

_fr (16:37)

16.6.2 ENTROPY PRODUCTION INEQUALITY

The entropy production inequality is stated as

r0T _h � �rT
0q0 þ r0hþ qT0rT=T

� r0
_fr � sTr _e� sTi _eþ r0T _hþ r0h _Tþ qT0rT=T (16:38)

As previously indicated, the Helmholtz potential is assumed to represent only
reversible thermohyperelastic effects. However, we decompose h into reversible
and irreversible portions: h¼hrþhi. Also, fr, hr, and hi are assumed to be
differentiable functions of E and T. We further suppose that hi¼hi1þhi2 in which
� 2008 by Taylor & Francis Group, LLC.



r0T _hi2 ¼ �rT
0q0 þ r0h

� �
i

(16:39)

This may be interpreted as saying that part of the viscous dissipation is to
‘‘absorbed’’ as heat. We finally suppose that reversible effects are absorbed as a
reversible portion of the heat input, as follows:

r0T _hr ¼ �rT
0q0 þ r0h

� �
r

(16:40)

In addition, from conventional arguments using Maxwell relations,

r@fr=@e ¼ sTr , @fr=@T ¼ �hr (16:41)

The consequence of the foregoing assumptions now emerges as the inequality

sTi _e� qT0r0T=T � r0hi1
_T (16:42)

Inequality (Equation 16.42) is satisfied if r0hi1
_T � 0 and also if

sTi _e � 0 (16:43a)

�qT0rT=T � 0 (16:43b)

Inequality (Equation 16.43b) is conventionally assumed to express the fact that heat
flows irreversibly from hot to cold zones. Inequality (Equation 16.43a) states that
‘‘viscous work’’ is dissipative. The statement r0hi1

_T� 0 is difficult to justify except
by appealing to its consequence in the form of the physically appealing inequalities
in Equation 16.43. Of course it may be true that hi2¼ 0, in which case the irrevers-
ible entropy is related to the irreversible heat input in precisely the same way as the
reversible entropy is related to the reversible heat input.

16.6.3 DISSIPATION POTENTIAL

Following Ziegler and Wehrli (1987), the specific dissipation rate potential
C(q0, _e,e,T)¼ r0hi

_T is introduced and assumed to serve as a rate potential for the
irreversible stress and temperature gradient as follows:

sTi ¼ r0Li@C=@ _e (16:44a)

�rT
0T=T ¼ Ltr0@C=@q0 (16:44b)

The function C is selected such that Li and Lt are positive scalars, in which case
inequalities (Equation 16.44a and 16.44b) require that

(@C=@ _e) _e � 0 (16:45a)

(@C=@q0)q0 � 0 (16:45b)
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This may be interpreted as indica ting the convex ity of a dissipat ion surface in ( _e,q0)
space. Final ly, to state the const itutive relat ions for a thermovi scohype relas tic
material it is suffi cient to speci fy fr and C .

A simple examp le is no w presen ted to illust rate how inequa lity (E quation 16.45 )
provide s a ‘‘ framewo rk ’’ for d escribing diss ipative effect s. On the expect ation that
proper ties governing heat transfer are not affected by strain, we intr oduce the
decom position

C ¼ Ci þ C t , r 0 C t ¼ 1
2 L t q

T
0 q0 ( 16 : 46 )

Here, Ct repres ents therm al effect s. Equ ation 16.44b implie s that

�r0 T=T ¼ L t q0 ( 16 : 47 )

This is essent ially the convent ional Fo urier law of heat con duction, with 1=Lt

recogni zed as the therm al conduct ivity.
As an elementar y examp le of viscous dissipat ion, suppos e that

Ci ¼ m (T , J 1 , J 2 ) _e 
T _e=2, D i ¼ 1 ( 16 : 48 )

in whi ch m (T, J1,J 2) is the visco sity. Applica tion of Equati on 16.44a now gives

si ¼ m (T ,J 1 ,J 2 ) _e ( 16 : 49 )

and inequalit y (Eq uation 16.45a) requires that the visco sity function m be positive .

16.6.4 T HERMAL F IELD E QUATION FOR DAMPED E LASTOMERS

The energy balanc e equati ons of thermo hyperelast icity (i.e., the revers ible respon se)
are now reappear ing in terms of a balanc e law among reversibl e portions of the
stress, entropy, and internal energy. Equ ation 16.41 implie s that

r0
_fr ¼ s Tr _e � r 0 hr

_T (16 : 50 )

The ensui ng Maxw ell recip rocity relation is

@sTr =@T ¼ �r0@hr=@e (16:51)

Now familiar operations furnish the reversible part of the equation of thermal
equilibrium (balance of energy).

�rT
0q0 þ r0h

� �
r
¼ �T @sTr =@T

� 	
_eþ r0ce _T, ce ¼ T@hr=@T (16:52)

For the irreversible part, we recall the relation

� rT
0 q0 � r0h

� 	
i
¼ �sTi _eþ r0ci _T (16:53)
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and

r0 T _h i2 ¼ r 0 T
@ hi2

@ e
_e þ r0 T

@ hi2

@ T
_T (16 :54 )

and

� sTi ¼ r0 T
@ hi2

@ e
, ci ¼ T

@ hi2

@ T 
(16 :55 )

Upon adding the reversibl e and irre versible portion s of the heat input we o btain the
therm al field equation

�r 
T
0 q0 þ r 0 h ¼ �T@ s Tr =@ T _e � s Ti _e þ r0 (c e þ c i ) _T (16 :56 )

It is easily seen that Equati on 16.62 direc tly reduces to a well-k nown expres sion in
class ical line ar thermoel asticity when irre versible terms are suppre ssed. In addition,
un der adiabatic condit ions in whi ch �r  T0 q 0 þ r 0 h ¼ 0, most of the ‘‘visco us ’’ work
s Ti _e is a bsorbed as a tem perature incre ase controlle d by r0(c e þ c i), while a smaller
po rtion is ab sorbed into the elastic strain en ergy field. Finally, n ote that the speci fic
hea t at const ant stra in posses ses a revers ible and an irreversi ble portion.

16.7 CONSTITUTIVE MODEL IN THERMOVISCOHYPERELASTICITY

If the curren t formulat ion is foll owed, it is suf ficient to introduce the Helmholtz free
ene rgy densi ty an d the dissipat ion potent ial to characteri ze thermal, mecha nical, and
visco us behavi or

16.7.1 HELMHOLTZ FREE E NERGY DENSITY

In the moderatel y dampe d therm ohypere lastic mate rial the revers ible stress is
assum ed to satisfy a therm ohypere lastic const itutive relation suit able for near-
incom press ible e lastomers. Followi ng the earli er develo pment for an undam ped
elast omer, the Helmho ltz free energy is intro duced using

fr ¼ f rm (J 1 ,J 2 ,I 3 ) þ frt (T) þ f rtm (T ,I 3 ) þ f ro (16 :57 )

Her e frm represents the purel y mecha nical respon se a nd can be ident ifi ed as the
con ventional isotherm al stra in energy densi ty function associ ated, for examp le, with
the Mooney –Rivli n model. The form ulation can easily be adapte d to stretch ratio-
based model s such as the Ogden model (Ogden, 1986). The funct ion frt (T)
repres ents the purel y thermal portio n of the Helmho ltz free energy densi ty. Finally,
frtm(T,I3) represents thermomechanical effects, again based on the assumption that
the primary coupling is through volumetric expansion. The quantity fro represents
the Helmholtz free energy in the reference state, and for simplicity it is assumed to
vanish. The forms of frt and frtm developed in the previous sections of this chapter
are recalled.
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frt (T) ¼ c e T[ 1 � ln(T =T 0 )] ( 16 : 58 )

frtm (T ,I 3 ) ¼
k

2r0
[ f 3 (T) J � 1]2 ( 16 : 59 )

J ¼ I 1 =23 ¼ det( F ), f (T) ¼ 1 þ a

3 
(T � T0 )

h i� 1

and a is of course the volum etric coef ficient of thermal expansi on. Fo r the sake of
illustrati on, for frm( J 1,J 2,I 3) we displ ay the class ical two-term Mooney –Ri vlin
model (Gent, 1992):

frm ( J 1 ,J 2 ,I 3 ) ¼ C 1 ( J 1 � 1) þ C 2 ( J 2 � 1) , I 3 ¼ 1 ( 16 : 60 )

The revers ible stress is now state d as

sr ¼ 2fj nj , fj ¼ @ f r =@ I j ( 16 : 61 )

n1 ¼ i , i ¼ VEC (I ) , n1 ¼ I1 i � c , c ¼ VEC ( C ), n3 ¼ I 3 VEC (C 
� 1 )

16.7.2 DISSIPATION P OTENTIAL

Fourie r’ s law of heat conduct ion is recal led as from

r Ct ¼ 1
2kt

[ qT0 q0 ] (16 : 62 )

The visco us stress si depends on the shear part of the strain rate as wel l as the
temperat ure. However , since the elastome rs of interest are ne arly incom pressible , to
good ap proximat ion si can be taken as a funct ion of the (total) Lag rangi an stra in rate.

The curren t framewo rk admi ts severa l possi ble exp ressions for Ci , o f which an
examp le was alread y given in Secti on 16.6.3. Her e, taking a more general viewpoi nt,
we seek expres sions of the form Ci ¼ 1

2 _e 
T D v ( e ,T) _e in which D v ( e ,T) is called the

viscosit y tensor; it is symm etric and positive de finite to satisfy Equ ation 16.45b. (Of
course , the correct expres sion is deter mined by experi ments.) The simple example in
Section 16 .6.3 corresponds to Dv ( e ,T) ¼ m( e ,T) I . As a second examp le, to e nsure
isotropy suppose that C i depends on _J 1 and _J 2 throu gh a relat ion of the form
Ci(J_1,J_2,e,T), and note that

_J1 ¼mT
1 _e, mT

1 ¼ 2 iT � 1
3
I1
I3
nT3


 �.
I 1=33 , _J 2 ¼ m T2 _e , mT

2 ¼ 2 nT2 �
2
3
I2
I3
n T3


 �.
I 2=33

( 16: 63 )

For an expres sion reminis cent of the two-te rm Mooney –Rivlin strain ene rgy funct ion
let us consider the speci fic form:

Ci ¼ m1(T) C1v _J
2
1=2þ C2v _J

2
2

� �
(16:64)
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in which C1v and C2v are constant positive material coefficients. We now obtain the
viscosity tensor

Dv ¼ m(T) C1vm1m
T
1 þ C2vm2m

T
2

� �
(16:65)

Unfortunately, this tensor is problematic since it is only positive semi-definite. To
see this consider whether there exists a nonvanishing vector b for which
(C1vm1m

T
1 þ C2vm2m

T
2 )b ¼ 0.

But this is certainly true since b need only lie in a subspace exterior to the two-
dimensional subspace spanned by m1 and m2.

As a third example, suppose that the dissipation potential is expressed in terms
of the deformation rate tensor D as Ci ¼ m(T)tr(D2)=2, which has the advantage
that the deformation rate tensor D is in the observed (current) configuration in which
measurements are performed. But now, with d¼VEC(D),

d ¼ F�T � F�T _e

Dv ¼ m(T)F�1 � F�1F�T � F�T

¼ m(T)(F�1F�T )� (F�1F�T )

¼ m(T)(2Eþ I)�1 � (2Eþ I)�1 (16:66)

which is always positive definite if m(T)> 0.

16.8 VARIATIONAL PRINCIPLES AND FINITE ELEMENT
EQUATIONS FOR THERMOVISCOHYPERELASTIC MATERIALS

16.8.1 MECHANICAL EQUILIBRIUM

In this section we present one of the several possible formulations for the finite
element equations of a thermoviscohyperelastic medium, neglecting inertia. Appli-
cation of variational methods to the mechanical field equation (Balance of Linear
Momentum) furnishes the Principle of Virtual Work in the formð

tr(dESi) dV0 ¼
ð
duT t0 dS0 �

ð
tr(dESr) dV0 (16:67)

in which t0 as usual denotes the traction vector on the undeformed surface S0. As
illustrated in the examples of the foregoing section, we expect that the dissipation
potential has the form Ci ¼ 1

2 _e
TDv(e,T) _e, from which

si ¼ Dv _e (16:68)

and Dv is of course the viscosity tensor and is symmetric. Furthermore, it is positive
definite since sTi _e � 0 for all _e. Equation 16.67 is thus rewritten as

ð
deTDv _e dV0 ¼

ð
duT t0 dS0 �

ð
deTsr dV0 (16:69)
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With interpola tion models of the form _e (X ,t ) ¼ bT ( X) F _g( t ) , u( X ,t ) ¼ wT ( X) Fg ( t ),
and T( X,t ) � T0 ¼ nT ( X) Cu ( t ) , at the elem ent level the finite element equation for
the mecha nical fie ld now becom es

Kv ( g,T) _g ¼ f � f r ( g) , Kv ¼
ð
F T bDv ( X,g,u )b 

T F dV0 , f r ( g,t ) ¼
ð
FT b sr (X ,t ,g)dV0

( 16 : 70 )

The tangen t visco us mat rix Kv now plays the role of the tangen t modulus mat rix in
hyperel asticity. Hype relastic effect s now appear in the force term fr( g,t ).

16.8.2 T HERMAL E QUILIBRIUM E QUATION

The equation for thermal eq uilibrium is rewrit ten as

r0 ( _hr þ _hi 2 ) ¼ �rT
0 q 0 þ r 0 h

� �
=T (16 : 71 )

With some effort using Equ ation 16 .56, a rate (incr emental) varia tional princ iple
may be obtai ned in the form

ð
dT � T@ s Tr =@ T _e � s Ti _e þ r0 (c e þ c i ) _T
� �

=TdV0

¼
ð
dT �r  

T
0 q0 þ r 0 h

� �
=T

� �
dV0 ( 16 : 72 )

Upon approxi mating T in the denom inat or by T0, letting k denote the thermal
conduct ivity, and invoki ng the isotropic Fourie r law of heat conduct ion, we may
obtain the therm al equil ibrium eq uation in the form

ð
dT �@ sTr =@ T _e � s Ti _e þ r0 ( c e þ c i ) _T
� �

dV0 þ
ð
k (r0 dT) 

T r0 TdV 0

¼
ð
dTr0 h dV0 �

ð
dTnTq0 dS0 (16:73)

Using the usual interpolation models for displacement and temperature, Equation
16.73 reduces directly to finite element equation for the thermal field. The equation
assumes the form

MT
_uþ STM(g,u) _gþKTu ¼ fh þ fq

STM(g,u) ¼
ð
CTn �@sTr =@T� sTi

� �
bTF dV0

(16:74)
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17 Tangent Modulus
Tensors for Inelastic
� 2008 by Taylor & Fra
and Thermoinelastic
Materials
17.1 PLASTICITY

The theories of plasticity and thermoplasticity model material behavior in important
applications such as metal forming, ballistics, and welding. The main goals of the
current section are to present an example of constitutive models in plasticity,
viscoplasticity, thermoplasticity, and damage mechanics, to derive the corresponding
tangent modulus tensors, and to formulate variational and finite element statements,
all while accommodating the challenging problems of finite strain and kinematic
hardening. But we first start with a presentation of a constitutive model in small
strain isothermal plasticity.
17.2 TANGENT MODULUS TENSOR IN SMALL STRAIN
ISOTHERMAL PLASTICITY

The basic assumptions are given below.

1. Kinematic Decomposition

The strain rate decomposes into an elastic (recoverable, reversible) portion
and an inelastic (permanent, irreversible) portion as follows:
_E ¼ _Ee þ _Ei (17:1)
in which _Ee satisfies small strain isotropic elastic relations (inverse of the
Lamé form)
_Ee ¼ 1
2m

_S� _S*� l

2mþ 3l
tr( _S)I

� �
(17:2a)
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in which Sd* is a traceless reference stress (backstress) to be introduced
shortly. The dilatational and deviatoric portions of this relation satisfy
_Eed ¼ 1
2m

_Sd � _S*
� �

, tr( _Ee) ¼ 1
2mþ 3l

tr( _S)I (17:2b)
In VEC notation, Equation 17.2 is restated as
_ee ¼ Ce(_s� _s*), Ce ¼ 1
2m

I9 � l

2mþ 3l
iiT

� �
(17:3a)
and Ce is the elastic compliance tensor (inverse of the elastic modulus
tensor). For the deviatoric and dilatational parts the corresponding relations
are
_eed ¼ C0
e _sd � _s*ð Þ, C0

e ¼
I9
2m

iT _ee ¼ 1
2mþ 3l

iT _s (17:3b)
Typically, plastic strain is viewed as permanent strain. As illustrated in
Figure 17.1, in a uniaxial tensile specimen the stress S11 may be increased
to the point A, and then unloaded along the path AB. The slope of the
unloading portion is E, the same as that of the initial elastic portion. When
the stress becomes zero, there still is a residual strain Ei, which may be
identified as the inelastic strain. However, if the stress had instead been
increased to point C, it would encounter reversed loading at point D, which
reflects the fact that the elastic region need not include the zero-stress value.
E

E

E

B

D

C

A

FEi

S11

E11

RE 17.1 Illustration of inelastic strain.
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2. Inelastic Incompre ssibili ty
� 2008
The inelasti c stra in does not contr ibute to the volum e stra in.
tr ( _Ei ) ¼ i T _e i ¼ 0 ( 17 : 4)
It foll ows that inelasti c strain only contr ibutes to the shear (devi atoric)
portion of the strain, and henc e is said to occur in shear.
3. Indepen dence of the Hydros tatic Stress

In plasticity inel astic strain is assumed not to be affected by the h ydrostatic
(isotropic) portion of the stre ss, tr (S ), and to depend only on the deviat oric
(shear) portion of the stress,
Sd ¼ S � 1
3 tr (S) I or s d ¼ I 9 � 1

3 ii 
T

� �
s

4. Yield and Loading Condi tions

There exists a funct ion C( sd � s d*,e i ,k) ¼ 0, which repres ents a closed
convex surfa ce in stre ss space, called the yield surface . Here s * is a point
interior to the yiel d surface, sometimes call ed the backstress . It changes if
inelastic strain changes, referred to as inelastic flow, and the elastic strain
vanishes when s ¼ s *. If flow is occurr ing the curren t stress po int must be
located on this surface. In Se ction 17.5, we will consi der viscoplast icity, in
which the notion of the yield surface is modified such that the current stress
point is now exterior to the yield surface during flow. The current stress
point may then be viewed as being on a loading surface while the yield
surface is now a reference surface.

In plasticity, there are three possibilities referred to as the loading
conditions.
(a) C(sd � sd*,ei,k) < 0
The stress point is interior to the yield surface and only elastic strain is
changing. The stress changes are proportional to strain changes through
elastic relations.
(b) C(sd � sd*,ei,k) ¼ 0 and
@C

@sd
_sd ¼ 0
The stress point is located on the yield surface, but is moving tangentially to
the surface. In this event inelastic strain is unchanging, and the stress
changes are related to the strain changes by elastic relations. This situation
is referred to as neutral loading.
(c) C(sd � sd*,ei,k) ¼ 0 and
@C

@sd
_sd > 0
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The stress point is located on the yield surface and is moving toward the
exterior of the surface. Inelastic flow occurs in this case, which is referred to
as loading.
5. Hardening

The vector k represents the ‘‘hardening’’ effect of inelastic deformation
history, reflecting irreversibility of plastic deformation. Visually hardening
occurs as shape, size, and location changes of the yield surface. The hard-
ening vector k is assumed to satisfy an evolution relation of the form
_k ¼ H1(sd � sd*,ei,k) _ei (17:5)
in which H1 is an experimentally determined matrix.
Work hardening is a commonly made assumption. Here it is expressed

by the relation
_k ¼ k1(s� s*) _ei (17:6a)
in which k1 is a material constant.
An example of a work hardening model for evolution of the backstress

is given by
_s* ¼ k2(s� s*) _ei (17:6b)
and k2 is a material constant. A relation of this form will play a role in our
later treatment of kinematic hardening.
6. Associated Flow Rule

The inelastic strain rate vector in plasticity is assumed to be normal to the
yield surface at the current stress point.
_ei ¼ L
@C

@s

� �T
(17:7)

� �

Note that _sT _ei ¼ L_sT @C

@s

T
. If L> 0, the associated flow rule then implies

that _sT _ei > 0 during plastic deformation, which is known as Drucker’s
criterion for stability in the small (cf. Rowe et al., 1991). It also follows
from the assumption that the yield surface is convex that (s� s*) _ei � 0.
7. Consistency Condition

The consistency condition states that the stress point remains on the yield
surface during loading, in which event the yield function satisfies the
relation
_C ¼ @C

@(sd � sd*)
(_sd � _sd*)þ @C

@ei
þ @C

@k
H1

� �
_ei ¼ 0 (17:8)
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Thanks to hardening, the yield surface deforms or moves such that the stress
point remains on it if plastic flow is occurring, even as the stress point is
moving toward the exterior of the yield surface.
8. Constitutive Relation for the Inelastic Strain Rate

Equations 17.7 and 17.8 imply that
@C

@(sd � sd*)
(sd � sd*)

. þ L
@C

@ei
þ @C

@k
H1

� �
@C

@sd

� �T
¼ 0 (17:9)
The parameter L is immediately seen to be
L ¼
@C

@(sd � sd*)
(_sd � _sd*)

� @C

@ei
þ @C

@k
H1

� �
@C

@(sd � sd*)

� �T (17:10)
The inelastic strain rate is now seen to be given by
_ei ¼ Ci(_sd � _sd*)
in which
Ci ¼
@C

@(sd � sd*)

� �T @C

@(sd � sd*)
_sd

� @C

@ei
þ @C

@k
H1

� �
@C

@(sd � sd*)

� �T (17:11)

� �� �

The requirement that L> 0 implies that � @C

@ei
þ @C

@k Hi
@C

@(sd � sd*)

T
> 0, in

which event Ci becomes positive semidefinite. In terms of the full (as
opposed to deviatoric) stress tensor S¼ IVEC(s), the relation governing
the inelastic strain rate is now
_ei ¼ Ci I9 � 1
3 ii

T
� �

(_s� _s*) (17:12)

9. Tangent Modulus Tensor

We first suppose that the evolution of the backstress follows a hardening
model of the form
_sd* ¼ H2 _ei loading

0 otherwise

n
(17:13)
But now _ei ¼ Ci(_sd � _sd*) ¼ Ci _sd � CiH2 _ei, with the consequence that
_ei ¼ (Iþ CiH2)
�1Ci _sd (17:14)
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assuming that IþCiH2 is nonsingular, as seems very reasonable owing to
the typically small magnitude of Ci. It follows that _s* ¼ H2 _ei ¼
H2Ci(_sd � _s*), and hence
_s* ¼ (IþH2Ci)
�1H2Ci _sd (17:15)
provided that plastic flow is occurring. We now add the deviatoric elastic
and inelastic strain rates to obtain the total deviatoric strain rate.
_ed ¼ _eed þ _ei ¼ (C0
e þ Ci)(_sd � _s*)

¼ I9
2m

þ Ci

� �
(IþH2Ci)

�1 _sd (17:16)

� �

It follows that _sd ¼ (IþH2Ci)

I9
2m þ Ci

�1
_ed during plastic flow.

The dilatational portion of the strain rate is elastic and satisfies Equation
17.3b: iT _s ¼ (2mþ 3l)iT _e. The relation between the total stress rate and the
total strain rate may be derived to obtain the elastic–plastic tangent modulus
tensor Dep:
_s ¼ _sd þ iiT _s ¼ Dep _e

Dep ¼ (IþH2Ci)
I9
2m

þ Ci

� ��1

I9 � iiT

3

� �
þ (2mþ 3l)iiT (17:17)
Recall that the Incremental Principle of Virtual Work requires the tensor
relating the stress increment to the strain increment. We may now
say that
Dns � DepDne (17:18)
Equation 17.18 indicates the rate independent (inviscid) nature of plasticity
since the strain increment is proportional to the stress increment no matter
how rapidly or slowly the stress is applied.
EXAMPLE 17.1

Von Mises yield surface with kinematic and isotropic hardening
The entitled yield function is given by

Ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(sd � k1ei)

T (sd � k1ei)
q

� k0 þ k2

ð
sTd _ei dt

� �
¼ 0

Observe that work hardening is present since k ¼ k2
Ð
sTd _ei dt. Also @Ci

@k ! k2 and

H1 ! k2sTd . In addition, s*¼ k1ei, so that H2 ! k1. After straighforward manipulation,
y Taylor & Francis Group, LLC.



@ Ci

@ sd
¼ nT , nT ¼ (sd � k1 e i ) 

Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( sd � k1 e i ) 

T ( sd � k1 e i )
p

@ Ci

@ ei
þ @ Ci

@ k
H1 ¼ �k1 n 

T þ k2 s
T
d

from which

Ci ¼ nn T

k1 þ k2 sTd n

This matrix is positive semide finite assuming that k1 þ k2 sTd n > 0. Substitution into
Equation 17.17 immediately yields Dep .

EXAMPLE 17.2

Yield surface with strain hardening: small deformation and uniaxial loading
In isothermal plasticity, assuming the following yield function, fi nd the stress –strain

curve under uniaxial loading.

Ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( sd � k1 e i )T ( sd � k1 e i )

q
� k0 þ k2

ðt
0

ffiffiffiffiffiffiffiffi
_e Ti _ei

q
dt

� �

We again assume that plastic strain is incompressible: tr (Ei) ¼ 0. This yield surface
exhibits strain hardening in that the radius of the yield surface depends on the arc length
traversed in inelastic strain space.

SOLUTION

In the case of uniaxial stress and isotropy, Syy ¼ Szz ¼ 0, with the consequence that

Sdxx ¼ Sxx � 1
3 (Sxx þ 0 þ 0) ¼ 2

3 S xx

Sdyy ¼ Sdzz ¼ � 1
3 Sxx

For plastic incompressibility, tr (Ei) ¼ 0. Hence, Ep
xx þ Ep

yy þ Ep
zz ¼ 0. And so for uni-

axial loading Ep
yy ¼ Ep

zz ¼ � 1
2 E

p
xx . The consistency condition C i ¼ 0 now implies that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3 s xx � k1 epxx
� �2þ � 1

3 s xx þ 1
2 k1 e

p
xx

� �2q
¼ k0 þ k2

ðt
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ep

2

xx þ 1
2 _epxx
� �2þ 1

2 _epxx
� �2q

dt

and hence

ffiffiffi
2
3

q
sxx � 3

2 k1e
p
xx

� � ¼ k0 þ k2
ffiffiffi
3
2

q
epxx so that sxx ¼

ffiffiffi
3
2

q
k0 þ 3

2 (k1 þ k2)epxx

The ensuing uniaxial stress –strain curve is depicted in Figure 17.2.
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Unloading curve

E

exx

Slope =

Sxx

k0
3
2

(k1+ k2)3
2

FIGURE 17.2 Stress–strain path with strain hardening.
17.3 PLASTICITY UNDER FINITE STRAIN

17.3.1 KINEMATICS

The deformation rate tensor admits an additive decomposition into elastic and
inelastic portions.

D ¼ De þ Di (17:19)

The Lagrangian strain tensor E satisfies the relation _E¼FTDF, from which we
formally introduce the elastic and inelastic strains (for large deformation) as

Ee ¼
ð
FTDeF dt, Ei ¼

ð
FTDiF dt (17:20)

Of course there are alternatives to this type of decomposition, for example, the
logarithmic plastic strain (Xiao et al., 1997).

17.3.2 PLASTICITY

We present an example of a constitutive equation for plasticity at large deformation
to illustrate how the tangent modulus tensor is formulated. For simplicity we ignore
the difference between the stress and strain and their deviatoric counterparts (i.e.,
ignore elastic strain), and we also assume that the backstress remains at the origin in
stress space (no kinematic hardening). With xe the tangent modulus tensor relating _s
to _e under elastic conditions (retaining the assumption of rate independence), the
constitutive equation of interest is obtained from the previous section using
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_ei ¼ Ci _s, _e e ¼ C e _s , C e ¼ x� 1
e , _k ¼ H ( s ,ei ,k) _ei

Ci ( s ,e i ,k) ¼ @ Ci

@ s

� �T @ Ci

@ s

	
h, h ¼ � @ Ci

@ ei
þ @ Ci

@ k
H

� �
@ Ci

@ s

� �T" #
( 17 : 21 )

As before Ci is calle d the yield funct ion, but now it is a funct ion of the inelastic
portion of the Lagrangi an strain, as well as of the hist ory of inelasti c deform ation
represen ted by, say, wor k hardening.

Combi ning the elastic and inelasti c p ortions furnishes the tangen t modulus
tensor as

x ¼ x� 1
e þ Ci


 �� 1¼ [ I þ xe Ci ] 
� 1 x e ( 17 : 22 )

Suppose that in uniaxi al tension the elast ic portion of the tangen t modulus is xe ! E e,
and that the inel astic porti on relating the stre ss incre ment and the inelasti c strain
increment s is C� 1

i ! Ei . Typ ically Ei � Ee . The total uniaxi al tangen t modul us is
then Ei

(1 þ Ei =E e )
.

For the sake of visua lization we illustrate severa l possible behav iors of the
yield surfa ce. It is distort ed by the history of plastic stra in throu gh hardeni ng. In
Figure 17.3, the convent ional model of isotropi c hardeni ng is illust rated in which the
yield surfa ce expands as a result of plastic deformati on. The princ ipal values of the
second Piola –Kirchhof f stress are show n on the axes, and the yield surfa ce is shown
in the SI�SII plane. This model is unrealistic in predicting a growing elastic region—
reversed plastic loading is typically encountered at much higher stresses than
isotropi c hardeni ng predicts. An alternative is kinem atic hardening (Figur e 17.4),
in which the yield surface moves with the stress point. After a few percent of plastic
strain have developed, the yield surface may cease to encircle the origin. A reference
point interior to the yield surface, previously encountered as the backstress, is
assumed to serve as the point at which the elastic strain vanishes.
Principal stresses SI  SII  SIII

SIII

SII

SI

Path of stress point

FIGURE 17.3 Illustration of yield surface expansion under isotropic hardening.
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SIII

SI

SII

Path of stress point

FIGURE 17.4 Illustration of yield surface motion under kinematic hardening.
Combined isotropic and kinematic hardening is shown in Figure 17.5. However,
this figure shows that the yield surface contracts, which is consistent with actual
observations (e.g., Ellyin, 1997). The rate of movement must in some sense exceed
the rate of contraction for the material to remain stable, with a positive definite
tangent modulus tensor.

17.4 THERMOPLASTICITY

If plastic work occurs over a sufficiently short time period there is insufficient time
for heat to escape, with the consequence that some or all of the plastic work is
converted into heat and gives rise to an increased temperature. Of course, it is also
SIII

SI

SII

Path of stress point

FIGURE 17.5 Illustration of combined kinematic and isotropic hardening.
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possible that plastic work occurs in the presen ce of exter nally intr oduced heat. Both
effects repres ent instances of thermopla sticity .

As in Chapter 16, follow ing Ziegle r and Wehrl i (1987) two potential funct ions
are introduc ed to provi de a systemat ic way to give separa te descripti ons to revers ible
and diss ipative (irr eversible) effect s. The first is interpret ed as the Helmho ltz free
energy den sity and the second is a dissipat ion potential . To ac commodat e kinem atic
hardeni ng we also assum e an extension of the Green and Nagh di (GN) (1965)
formulat ion, in whi ch the Helmho ltz free energy decomposes into revers ible and
irreversi ble parts , with the irreversible part dependi ng on the plast ic stra in. Her e it
also depends on the tem perature and a wor kless internal state variable .

Applica tion of thermodyna mic concepts to inel astic deform ation is much more
challengin g than for dampe d elast omers treated in Chapter 16. The reason is that
inelastic ity, for example, via the yield surface, is usually described in stress space
while the Helmho ltz free energy uses the stra in as a state variable.

17.4.1 B ALANCE OF E NERGY

The convent ional equation for energy balanc e is augme nted using a vector-
valued workles s internal variable a 0 regard ed as representing ‘‘mic rostructu ral
rearrang ements. ’’ 

r 0 _x 0 ¼ s T _e r þ s T _e i �rT
0 q 0 þ r 0 h þ b T0 _a0 ( 17 : 23 )

where x 0 is the internal energy per unit mass in the undefor med con figurat ion,
s ¼ VEC ( S), e ¼ VEC ( E), a nd b0 is the ‘‘flux ’’ per unit mass associated wi th a0.
However , note that b0 ¼ 0 for a0 to be wor kless, and hence its reversibl e and
irreversi ble portions are related by b0i ¼�b0r . Also  q0 is the heat flux vector
referred to undefor med co ordinates and h is the heat input per unit mass, for
simplicit y a ssumed to be independ ent of tem perature. For use in the Helmholtz
free energy, the state variables are recogni zed to be Er , Ei , T, and a0.

The next few paragra phs will go over some of the same ground as for damped
elastomers in Chapter 16, except for two major points. In Chapter 16, the stress was
assumed to decompose into reversible and irreversible portions, in the spirit of
elementary Voigt models of viscoelasticity. In the current context, the strain shows a
corresponding decomposition, in the spirit of the classical Maxwell models of visco-
elasticity. In addition, introducing a workless internal variable a0 will be seen to give
the model the flexibility to accommodate phenomena such as kinematic hardening.

The Helmholtz free energy f0 per unit mass and the entropy h per unit mass are
again introduced using

f0 ¼ x0 � Th0 (17:24)

The balance of energy, which is Equation 17.23 governing the thermal field, is now
rewritten as

rT
0q0 � r0h ¼ sT _er þ sT _ei � r0T _�0 � r0�0 _T� r0

_f0 þ bT
0 _a0 (17:25)
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17.4.2 E NTROPY P RODUCTION INEQUALITY

Ent ropy product ion now is governe d by the inequa lity

r0 T _�0 � �rT
0 q0 þ r 0 h þ q T0 r T =T

� r0
_f0 � s T _e r � sT _e i þ r 0 T _�  0 þ r 0 �0 _T þ qT0 r T =T � bT

0 _a0 (17 :26 )

Now view ing f0r as a diff erentiabl e function of e r , T, and a0, we conclu de that

@ f0r =@ e r ¼ s T , @ f 0r =@ T ¼ �r 0 h r 0 , @ f0 r =@ a 0 ¼ b T0r (17 :27 )

Ext ending the GN form ulation, we introduce the stress s * using s* T ¼ r0@ f i=@ e i and
assum e that h0 ¼�@ f0=@ T and r 0 @ f0 i =@ a 0 ¼ bT

0 i :

s *T ¼ r0 @ fi =@ e i , h0 i ¼ �@ f i =@ T, h0r ¼ �@ f r =@ T

r0 @ f0 i =@ a0 ¼ bT
0 i (17 :28 )

The entropy product ion inequa lity (Equati on 17.26) now reduces to

( sT � s *T ) _ei � qT0 r  0 T=T � 0 (17 :29 )

Inequal ity (Eq uation 17.29) is satis fied if

(s T � s *T ) _ei � 0 ( 17 :30 a)

� qT0 r  0 T =T � 0 (17 : 30 b)

Inequal ity Equation 17.30 states that the inel astic work done by the reduced stress
s T � s*T is positive and that heat fl ows from h ot to cold. The fi rst inequa lity exhibits
the qu antity s * ¼ VEC ( S*) wi th dimensi ons of stress. In the subseq uent sections s *
wi ll be viewed as the previ ously ment ioned backstress : it is inte rior to a yield surfa ce
and can be used to characteri ze the motion of the yield surfa ce in stre ss space.
Cle arly, the presen t formulat ion gives a thermo dynamic interpret ation to the back
stre ss. In class ical kinema tic hardenin g in which the hypers pherical yield surfa ce
do es not c hange size or shape but just moves , the refere nce stre ss is sim ply the
geo metric center . If kinemati c hardeni ng occurs, as stat ed before , the yiel d surfa ce
need not include the origin even with small amounts of plastic deformation. Thus,
there is no reason in general to regard _er as vanishing at the origin. Instead _er¼ 0 is
now assumed to hold when s¼ s*.

17.4.3 DISSIPATION POTENTIAL

Fo llowing the approac h develo ped in Chapter 16 we introduce a specific irreversible
potential C for which

_eTi ¼ r0Li@C=@ e, �rT
0T=T ¼ Ltr0@C=@q0,

e¼ s� s* (17:31a)
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from which, with Li> 0 and Lt> 0, Equation 17.30 becomes

r0Li(@C=@ e

)

eþ r0Lt(@C=@q0)q0 > 0 (17:31b)

Partly on the expectation that properties governing heat transfer are not affected by
strain, we introduce the following decomposition into inelastic and thermal portions:

C ¼ Ci þCt, r0Ct ¼ Lt

2
qT0q0 (17:32)

and Ci will be seen in subsequent sections to represent mechanical effects. The
thermal constitutive relation derived from Ct implies Fourier’s law:

�r0T=T ¼ Ltq0 (17:33)

17.4.4 THERMOINELASTIC TANGENT MODULUS TENSOR

The elastic strain rate is assumed to correspond to small elastic deformation super-
imposed on the finite inelastic deformation, and to satisfy a linear thermohypoelastic
constitutive relation

_er ¼ Cr(s� s*). þ ar _T (17:34)

Of course Cr is a 93 9 second-order elastic compliance tensor, and ar is the 93 1
thermoelastic expansion vector, with both presumed to be constant and known from
measurements. Analogously, for rate-independent thermoplasticity we seek tensors
Ci and ai, depending on e, ei, and T, such that

_ei ¼ Ci(s� s*). þ ai _T (17:35a)

_e ¼ [Cr þ Ci](s� s*). þ (ar þ ai) _T (17:35b)

During thermoplastic deformation the stress and temperature satisfy a thermoplastic
yield condition of the form

Pi(

e, ei,k,T,h0i2) ¼ 0 (17:36)

and Pi is called the yield function. Here the vector k is introduced to represent the
effect of the history of inelastic strain ei, for example, through work hardening. To
embrace dependence on the temperature, it is now assumed to be given by a relation
of the form,

_k ¼ K(ei,k,T) _ei (17:37)

The ‘‘consistency condition’’ requires that _Pi ¼ 0 during thermoplastic flow, and
accordingly

dPi

d

e _

eþ dPi

dei
_ei þ dPi

dk
_kþ dPi

dT
_Tþ dPi

dh0i2
_h0i2 ¼ 0 (17:38)
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We introduce a thermoplastic extension of the conventional associated flow rule,
whereby the inelastic strain rate vector is normal to the yield surface at the current
stress point. Here we add an analogous assumption regarding the entropy.

_ei ¼ Li
dPi

d

e

� �T

(17:39a)

_h0i2 ¼ Li
dPi

dT
(17:39b)

Equation 17.39 suggests that the yield function may be identified as the dissipation
potential: Pi¼ r0Ci. Upon making this identification, standard manipulation
furnishes

_ei ¼ Ci _

eþ ai _T, _h0i2 ¼ bTi _

eþ ci _T

Ci ¼ @Ci

@ e

� �T @Ci

@ e

.
H, ai ¼ bi ¼ @Ci

@ e

� �T @Ci

@T

.
H

ci ¼ @Ci

@T

� �2.
H, H ¼ � @Ci

@ei
þ @Ci

@K
K

� �
@Ci

@ e

� �T
þ @Ci

@h0i2

@Ci

@T

" #
(17:40)

and H must be positive for Li to be positive. Note that the dependence of the yield
function on temperature accounts for ci in the current formulation. The dissipation
inequalities (Equation 17.30) are now satisfied if H> 0.

Next, recall that s* depends on ei, T, and a0 since s*T ¼ r0@f0i=@ei. For
simplicity we now neglect dependence on a0 and assume that a relation of the
following form can be measured for s*:

_s* ¼ G _ei þ q _T, G ¼ @

@ei

@

@ei

� �T
Ci, qT ¼ @2Ci=@ei@T (17:41)

The thermoinelastic tangent compliance tensor and thermomechanical vector are
obtained after simple additional manipulation as

_e ¼ C_sþ a _T (17:42a)

C ¼ (Cr þ Ci) I� (Iþ GCi)
�1GCii


 �
a ¼ ar þ ai þ (Cr þ Ci)Gai � (Cr þ Ci)(Iþ GCi)

�1q

 � (17:42b)

Of course the tangent modulus tensor is the inverse of C.
The foregoing formulation may be extended to enforce plastic incompressibility.
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EXAMPLE 17.3

Thermoplastic Helmholtz free energy and dissipation function
We now provide a simple example using the Helmholtz free energy density function

and the dissipation potential function to derive constitutive relations. The expression
assumed below involves a Von Mises yield function, linear kinematic hardening, linear
work hardening, and linear thermal softening.

1. Helmholtz free energy density

f0 ¼ f 0r þ f 0i , r 0 f0i ¼ k3 e 
T
i e i

r0 f0 r ¼ e Tr C 
�1
r er =2 � aT C �1

r (T � T0 ) er þ r 0 c
0
r T( 1 � ln (T =T0 ))

in which c0r is a known constant. Applying the previous relations furnishes

e¼ r0 ( @ f 0r =@ e r ) 
T ¼ C� 1

r [er � ar (T � T0 )]

and

cr ¼ �T
@ 2 f0r

@ T 2 
¼ c0r

Of course the last two relations between the reduced stress, the elastic strain, and the
temperature are the same as in linear thermoelasticity except for the presence of
the backstress.

2. Dissipation potential
The dissipation potential is again assumed to have a decomposition into mechanical
and thermal portions, and the following specific forms are introduced:

C ¼ Ci þ C t , r 0 C t ¼ Lt

2
q T0 q0

Ci ¼
ffiffiffiffiffiffiffiffiffieT ep

� [ k0 þ k 1 k � k2 (T � T 0 )] ¼ 0, _k ¼ eT _ei

Straightforward manipulations serve to derive

H ¼ k1
ffiffiffiffiffiffiffiffiffieT ep

¼ k1[K0 þ k1k � k2(T� T0)]

Ci ¼

e eT

eT e

.
H, ci ¼ k22

.
H, ai ¼ bi ¼ k2

effiffiffiffiffiffiffiffiffieT ep
.
H

Consider a two-stage thermomechanical loading illustrated schematically in Figure 17.6.
Let SI, SII, and SIII denote the principal values of the second Piola–Kirchhoff stress, and
suppose that SIII¼ 0. In the first stage, with the temperature held fixed at T0 the stresses
are applied proportionally well into the plastic range. The center of the yield surface
moves along a line in the (SI, SII) plane, and the yield surface expands as it moves. In
the second stage, suppose that the stresses S1 and S2 are fixed but that the temperature
increases to T1 and then to T2, T3, and T4. The plastic strain must increase and hence the
center of the yield surface moves. In addition, in the assumed yield function strain
hardening tends to cause the yield surface to expand isotropically around s* while the
� 2008 by Taylor & Francis Group, LLC.
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FIGURE 17.6 Effect of load and temperature on yield surface.
increased temperature tends to make it contract. However, in this case thermal softening
must dominate strain hardening and contraction must occur since the center of the yield
surface must move further along the path shown even as the yield surface continues to
‘‘ kiss ’’ the fi xed stresses SI and SII .

Unfortunately, accurate finite element computations in plasticity and thermoplasti-
city often require close attention to the location of the front of the yielded zone. This
front will usually occur interior to elements, essentially reducing the continuity order of
the fi elds (discontinuity in strain gradients). In addition in computations the stress point
will initially deviate from the yield surface. Special procedures such as Return Mapping
(cf. Belytschko et al., 2000) have been developed in some codes to coerce the stress
point onto the yield surface.

The shrinkage of the yield surface with temperature may provide the explanation of
the phenomenon of adiabatic shear banding, which is commonly encountered in some
materials during impact or metal forming. In rapid processes such as high-speed metal-
working, plastic work is mostly converted into heat thereby causing high temperatures —
there is not enough time for the heat to flow away from a spot experiencing high plastic
deformation. However, under some conditions the process is unstable even as the stress
level is maintained. In particular, as the material gets hotter the rate of plastic work
accelerates, thanks to the softening evident in Figure 17.6. The instability is manifested in
small periodically spaced bands in the center of which the material has melted and
resolidi fied, usually in a much more brittle form than before. The adiabatic shear
bands thereby formed can nucleate brittle fracture.

17.5 TANGENT MODULUS TENSOR IN VISCOPLASTICITY

17.5.1 MECHANICAL F IELD

The thermodyna mic discussi on of Sec tion 17.4 applies to thermoin elastic deform-
atio n, for which the first example given concerned quasi-static plasticity and thermo-
plasticity. However, it is equally applicable when rate sensitivity is present, in which
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case viscoplast icity and thermovi scoplasti city are attractive model s. An examp le of a
constitu tive model , for examp le, follow ing Perzyna (1971) , is given in undeformed
coordin ates as

mv _e i ¼
�
1 � k

Ci


 @ Ci

@ e

� �T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@ Ci

@ e

@ Ci

@ e

� �T
s

�
1 � k

Ci



¼ 1 � k

Ci
if 1� k

Ci
� 0

0 otherw ise

8<
: ( 17 : 43 )

and the dissipation function Ci (

e,ei,k ,T,h0i ) now is also a loading surface funct ion
(to b e explained short ly); mv is called the visco sity . The inelasti c strain rate vanishe s
if 1 � k

Ci
< 0, whi ch is inte rpreted to mean that the stre ss point (i.e., e) is interior to

the refere nce surfa ce deter mined by point s ŝ satisfying Ci (̂s � s*,e i,k ,T,h0i ) ¼ 0.
Inelasti c flow is occurr ing if 1 � k

Ci
> 0 , in whi ch case the stre ss point eis exter ior

to the refere nce surface. The equati on of the loadi ng surfa ce is

Ci (

e,ei ,k,T,h0 i ) ¼ k
.�

1 � mv

ffiffiffiffiffiffiffiffi
_e Ti _ei

q �
, and clear ly the model must be restrict ed to

strain rates satisfyi ng mv

ffiffiffiffiffiffiffiffi
_e Ti _ei

q
< 1.

The elastic respon se is still consi dered line ar and in the form

_er ¼ x � 1
r _ eþ ar _T (17 : 44 )

Also from thermopl asticit y we retain the relations

_s * ¼ G _ei þ q _T, G ¼ @

@ ei

@

@ ei

� �T
Ci , q T ¼ @ 2 C i =@ e i @ T (17 : 45 )

Corresp onding to ethere is a new reference stress s 0  and a correspo nding reference
vector e0 ¼ s 0 � s* defined as foll ows. The vector e0 lies on the previo usly men-
tioned quasi -static reference yiel d surfa ce such the v ectors eand e0 have the same
origin and direction . The latter term inates on the refere nce surfa ce while the former
terminates outside the reference surface (at the current value of e) if inelastic flow
is occurring. Alternatively stated, e0 is located at the intersection of the reference
yield surface and the line correcting s* to s. This situation is illustrated in
Figure 17.7.

Figure 17.7 suggests that viscoplasticity and thermoviscoplasticity can be for-
mulated to accommodate phenomena such as kinematic hardening and thermal
shrinkage of the reference yield surface.

As in plasticity we assume that the backstress has an evolution law of the form
_s*¼Hb _ei, from which we find
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FIGURE 17.7 Illustration of loading surface and reference surface in viscoplasticity.
_s* ¼ mv

�
1� k

C



Hb

(@C=@ e

)Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(@C=@ e

)(@C=@ e

)T
p (17:46)

The tangent modulus tensor now reduces to the constant elastic tensor xr, and
viscoplastic effects appear in a force denoted fv, which depends on the current values
of the state variables but not the current values of their rates. From Equation 17.44
_s� _s* ¼ xr _er � xrar _T and so

_s ¼ H _ei þ xr( _e� _ei)� xrar
_T

¼ xr _e� xrar
_Tþ fv, fv ¼ mv(Hb � xr) 1� k

Ci

� �
(@C=@ e

)Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(@C=@ e

)(@C=@ e

)T
p

(17:47)

The Incremental Principle of Virtual Work and the corresponding finite element
equation are now stated to first order in increments asð

dDne
TxrDne dV0 þ

ð
dDne

TxrarDnTdV0 þ
ð
dDnu

Tr0Dn€u dV0

¼
ð
dDnu

TDnt dS0 �
ð
dDne

T fv dV0 (17:48)

and

KDngþ STMDnuþMDn€g ¼ F� Fv

STM ¼
ð
(FTb)(xrar)nC dV0, Fv ¼

ð
FTbfv dV0

in which b appears in the incremental strain–displacement relation.
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EXAMPLE 17.4

Find the stress–strain curve under uniaxial tension if a constant strain rate is imposed in
the linear, small strain, isothermal viscoplasticity model in which the yield surface is
given by

Ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(sd � k1ei)

T (sd � k1ei)
q

� k0 þ k2

ðt
0

ffiffiffiffiffiffiffiffi
_eTi _ei

q
dt

� �

Of course this surface reflects strain hardening. Referring to the previous exercise in
plasticity Ci may be written as

Ci ¼
ffiffiffi
2
3

q
Sxx �

ffiffiffi
3
2

q
(k1 þ k2) E

vp
xx � k0

To formulate the finite element relations, use is made of the fact that

@Ci

@Sxx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@Ci

@Sxx

@Ci

@Sxx

� �Ts
¼ 1

,

The constitutive model for viscoplasticity reduces to the uniaxial relations

mv
_E
vp
xx ¼

�
Ci � k

� ¼
ffiffiffi
2
3

q 

Sxx � 3

2 (k1 þ k2)Evp
xx �

ffiffiffi
3
2

q
(k0 þ k)

�
Of course the strain rate may be decomposed into elastic and viscoelastic parts as
_e ¼ _ee þ _evp. Also _E

e

xx ¼ _Sxx=E. Accordingly

_Exx ¼
_Sxx
E

þ 1
mv

ffiffiffi
2
3

q 

Sxx � 3

2 (k1 þ k2)Evp
xx �

ffiffiffi
3
2

q
(k0 þ k)

�

Now
d

dt
¼ dExx

dt

d

dExx

, and so

_Exx ¼
_Exx

E

dSxx

dExx
þ 1
mv

ffiffiffi
2
3

q 

Sxx � 3

2 (k1 þ k2)Evp
xx �

ffiffi
3
2

q
(k0 þ k)

�

from which emerges a simple differential equation for the uniaxial stress–strain relation
at the constant strain rate _Exx:

dSxx

dExx
þ

ffiffiffi
2
3

r
E

mv
_Exx

Sxx ¼
ffiffiffi
3
2

r
(k1 þ k2)E

mv
_Exx

Evp
xx þ E 1þ (k0 þ k)

mv
_Exx

� �

¼
ffiffiffi
3
2

r
(k1 þ k2)E

mv
_Exx

�
Exx � Sxx

E

�
þ E 1þ (k0 þ k)

mv
_Exx

� �

so that

dSxx

dExx
þ

ffiffiffi
2
3

r
E

mv
_Exx

þ
ffiffiffi
3
2

r
(k1 þ k2)

mv
_Exx

 !
Sxx ¼

ffiffiffi
3
2

r
(k1 þ k2)E

mv
_Exx

Exx þ E 1þ (k0 þ k)

mv
_Exx

� �
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FIGURE 17.8 Stress vs. strain at constant strain rate in a viscoplastic material.
The transient part of the solution is given by

Sxx ¼ A exp �
ffiffiffi
2
3

r
E

mv 
_Exx

þ
ffiffiffi
3
2

r
( k1 þ k2 )

mv 
_Exx

 !
Exx

 !

in which A is determined by imposing initial values on the combined transient and
steady state solutions. The steady state part of the solution is given by

Sxx ¼
3
2 ( k1 þ k2 )

1 þ 2
3
( k1 þ k2 )

E

� �Exx þ
ffiffiffi
3
2

r
[ mv 

_Exx þ (k 0 þ k )]

1 þ 3
2
( k1 þ k2 )

E

� �

The slope of the asymptote is approximately 3
2 (k1 þ k2 ) and its intercept is approximatelyffiffi

3
2

q
[(k0 þ k ) þ mv 

_Exx ] .

The ensuing uniaxial stress– strain curve is illustrated in Figure 17.8.
17.5.2 T HERMOINELASTICITY : THERMAL FIELD

Of course a varia tional equation and a finite elem ent equation are needed for the
therm al field Equati on 17.25, and are formu lated as was done in Chapter 16. To
illu strate the process of form ulating the finite elem ent equation for the thermal field,
we make the simpli fying assumptio n that the irreversi ble entro py only depe nds on
tem perat ure.

The equation for the revers ible portion of the energy balanc e is

�r  
T
0 q0 þ r 0 h

� �
r 
¼ r 0 c e _T � T

@ ( s � s *) T

@ T
_er (17 :49 )

whi ch of course reduces to the therm al field equation of class ical therm oelasticity
when the backst ress is remo ved and the revers ible strain is equate d with the total
strain.
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The equati on for the irre versible portion of the energy balance is now

�r  
T
0 q0 þ r 0 h

� �
i 
¼ r 0 c i _T � ( s � s *) _e i ( 17 : 50 )

Adding the revers ible and irreversi ble porti ons now gives

�r  
T
0 q 0 þ r 0 h ¼ r 0 ( c e þ c i ) _T � ( s � s*) _e i � T

@ ( s � s *)
@ T 

( 17 : 51 )

In ad iabatic sit uations such as short -term response after imp act, the left-hand side
of Equati on 17.51 vanishes. The right side then sugges ts that the inelasti c work
( s � s *) _ei is convert ed into temperat ure incre ase in accordan ce wi th r0( c e þ c i ) _T,
except for a small porti on (proporti onal to the thermal expansi on coe ffi cient) repre-

sented by T @ (s� s *)
@ T

.
We now wish to form ulate the incre mental fi nite elem ent equation for the

thermal field. We use the constitu tive model intr oduced in Secti on 17.5.1 for
thermopl asticit y, and the counte rparts for thermovi scoplastic ity can be recover ed
by obviou s substit utions of the constitu tive relations for the inelastic stra in rate. Fo r
simplicity we assum e that there is no internal gene ration of heat, i.e., _h ¼ 0. We also
assume Fourie r ’ s law in the form q0 ¼�k0r T, and that ( ce þ c i ) is constan t.
The governi ng eq uation now becom es

�k 0 r  
2 T þ r 0 ( c e þ c i ) _T þ la (i T _e ) � ( s � s*) T ( C _s þ a _T) ¼ 0 ( 17 : 52 )

Applyin g Fourier ’ s law now gives

� k0 r  
2 T þ r 0 (c e þ c i ) _T þ la( iT _e )� (s� s *) T C x _e� ( s � s *) T ai _T ¼ 0 (17:53)

Equations 17.52 and 17.53 provide a way of avoiding using the inelastic strain
increment explicitly in the variation al princ iple.

The finite e lement equ ation is now sought . As in Cha pter 16 we use

k0r2T � k0r2DnTþ k0r2Tn (17:54)

In terms of increments the thermal field equation is now

� hk0r2DnTþ r0(ce þ ci)� (s� s*)Tai


 �
DnT

þ laiT � (s� s*)TCx

 �

Dne ¼ hk0r2Tn (17:55)

Standard finite element procedures now provide the element-level finite element
equation for the thermal field.

[hKu þ (Mu1 þMu2)]Dnuþ ST
2Dng ¼ DnfT1 � DnfT2
� 2008 by Taylor & Francis Group, LLC.



Ku ¼
ð
CTbTk0b

T
TCdV0, Mu1 ¼

ð
CTv[r0(ce þ ci)]v

TCdV0,

Mu2 ¼
ð
CTv (s� s*)Tai


 �
vTCdV0, ST

2 ¼
ð
CTv laiT � (s� s*)TCx


 �
bFdV0,

DnfT1 ¼�
ð
CTv nT0q0

� �
dS0, DnfT2 ¼�h

ð
CTvk0r2Tn dS0 (17:56)

Finally, we recapitulate the incremental finite element equations of the mechanical
and thermal fields in the form

MDn€gþ (KT þKG)Dng� S1Dnu ¼ Dnfm : mechanical field

[hKu þ (Mu1 þMu2)]Dnuþ S
T
2Dng ¼ DnfT1 � DnfT2: thermal field (17:57)

17.6 CONTINUUM DAMAGE MECHANICS

Ductile fracture occurs by processes which are associated with the notion of damage.
A damage parameter is also introduced to explain tertiary creep, in which the strain
grows rapidly at a fixed stress and temperature. An internal damage variable is
introduced which accumulates with inelastic deformation. It also is manifested in
reductions in properties such as the experimental values of the elastic modulus and
yield stress. When the damage parameter in a given element reaches a known or
assumed critical value, the element is considered to have failed. The element may
then be removed from the mesh (the element is considered to be no longer supporting
the load). If so, the displacement and temperature fields are recalculated to accom-
modate the element deletion.

There are two different ‘‘schools’’ of thought on the suitable notion of a
damage parameter. One, associated with Gurson (1977), Tvergaard (1981), and
Thomason (1990), considers damage to involve a specific mechanism occurring in
a three-stage process: nucleation of voids, their subsequent growth, and finally their
coalescence to form a macroscopic defect. The coalescence event can be used as a
criterion for element failure. The parameter used to measure damage is the void
volume fraction f. Models and criteria for the three processes have been formulated.
For both nucleation and growth, evolution of f is governed by a constitutive equation
of the form

f ¼ �(f ,ei,T) (17:58)

for which several specific forms have been proposed. To this point, a nominal stress
is used in the sense that the reduced ability of material to support stress is not
accommodated.

The second school of thought is more phenomenological in nature and is not
dependent on a specific micromechanical mechanism. It uses the parameter D, which
is interpreted as the fraction of damaged area Ad to total area A0 that the stress
(traction) acts on. Consider a uniaxial tensile specimen which has experienced
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damage and is now exhibiting elastic behavior. Suppose that damaged area Ad can no
longer support a load. For a given load P, the true stress at a point in the undamaged
zone is S ¼ P

A0�AD
¼ 1

1�D
P
A0
¼ 1

1�D
S0. Here S0 is a nominal stress, but is also the

measured stress. If E is the elastic modulus measured in an undamaged specimen,
the modulus measured in the current specimen will be E0 ¼E=(1�D), demonstrating
that damage is manifest in small changes in properties, in particular D¼ 1�E=E0.

As an illustration of damage, suppose specimens are loaded into the plastic
range, unloaded, and then loaded again. Without the notion of damage the stress–
strain curve should return to its original path. However, owing to damage there are
slight changes in the elastic slope, in the yield stress, and in the slope after yield
(exaggerated in Figure 17.9).

From the standpoint of thermodynamics, damage is an internal variable repre-
senting irreversible effects and as such is dissipative. In reality the amount of
mechanical or thermal energy absorbed by damage is probably small, so that its
role in the energy balance equation is often neglected. Even so, for the sake of a
consistent framework for treating dissipation associated with damage, a dissipation
potential Cd may be introduced for damage, as has been done, for example, by
Bonora (1997). As an example, the contribution to the irreversible entropy produc-
tion may be assumed in the rate form D _D � 0, in which D is the ‘‘force’’ associated
with ‘‘flux’’ D. Positive dissipation is assured if relations are used such as

D ¼ @Cd

@ _D
, Cd ¼ 1

2
Ld(ei,T,k) _D

2
, Ld(ei,T,k) > 0 (17:59)

An example of a potentially satisfactory function tying damage to inelastic work is

Ld(ei,T,k) ¼ Ld0

ð
(s� s*) _ei dt, Ld0 a positive constant (17:60)

Specific examples of constitutive relations for damage are given, for example, in
Bonora (1997).
S11

Sy1

Sy2
Sy3
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E1
E2

E3

E11

FIGURE 17.9 Illustration of effect of damage on elastic–plastic properties.
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At the current values of the damage parameter, the finite element equations are
solved for the nodal displacements, from which may be computed the inelastic
strains and the inelastic work done in the current load or time increment. This
information may then be used to update the damage parameter values at each element
using the damage evolution equation (Equation 17.59). Upon doing so, the damage
parameter values are compared to critical values. As stated previously, if the critical
damage parameter value is attained, the element is deleted. In many cases the string
of deleted elements may be viewed as a crack (Al-Grafi, 2003).

The finite element code LS_DYNA version 9.5 (2000) incorporates a material
model which includes viscoplasticity and damage mechanics. It can easily be
upgraded to include thermal effects in which all viscoplastic work is turned into
heat. Such a model has been shown to reproduce the location and path of a crack in a
dynamically loaded welded structure (Moraes and Nicholson, 2002).

EXAMPLE 17.5

Tertiary Creep of IN 617 at high temperature
An example of how a damage variable is useful in modeling material behavior is

provided by tertiary creep of IN 617 (Gordon andNicholson, 2006). Creepmay be regarded
as a type of viscoplasticity except that the reference yield surface is sometimes neglected.
The steel alloy IN 617 is used in turbomachinery and experiences rapid growth of strain
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FIGURE 17.10 Tertiary creep of IN 617. (From Gordon, A.P. and Nicholson, D.W., Finite
Element Analysis of IN 617 Tertiary Creep, Report, University of Central Florida, Orlando,
FL, 2006.)
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und er fixed stress and at high temperature. The tertiary creep behavior is shown experi-
mentally in Figure 17.10, in which lower stresses were used at the higher temperatures.

A Norton-type isotropic constitutive model has been formulated in which the Von
Mises creep strain rate _«cr is modeled as

_«cr ¼ B(exp�9=RT) s

1� D

� �n
(17:61)

Here s is the Von Mises stress and 9 is the activation energy, while the constants B and
n are selected for a best fit up to 5% strain. The damage evolution equation, based on the
classical treatment of Rabotnov (1969), is given by

_D ¼ Msx

(1� D)f
(17:62)

in which M, x, and f are likewise constants to be chosen to match experiments up to
5% strain.

Equations 17.61 and 17.62 were implemented by Gordon and Nicholson (2006) in
ANSYS in a user-material model and used to find the best-fit values of B, M, n, x, and
f. An example of the comparison between the model and the experimental data, up to
5% strain, is shown in Figure 17.11.
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FIGURE 17.11 Comparison of computations and experimental values up to 5% strain. (From
Gordon, A.P. and Nicholson, D.W., Finite Element Analysis of IN 617 Tertiary Creep, Report,
University of Central Florida, Orlando, FL, 2006.)
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18 Selected Advanced
Numerical Methods
� 2008 by Taylor & Fra
in FEA
In nonlinear finite element analysis, a solution is typically sought using Newton
iteration, in classical form or augmented as an arc length method to bypass critical
points in the load–deflection behavior. Another important topic is the treatment of
incompressibility in nonlinear problems. Here three additional treatments of numer-
ical methods are presented.

18.1 ITERATIVE TRIANGULARIZATION
OF PERTURBED MATRICES

18.1.1 INTRODUCTION

The finite element method applied to nonlinear problems typically gives rise to a
large linear system of the form K0(g0)Dg0¼Df0 in which the stiffness matrix K0 is
positive definite and symmetric and banded. Also, Dg0 is the incremental nodal
displacement vector and Df0 is the incremental nodal force vector. The stiffness
matrix depends on nodal displacements and is updated during the incremental
solution process, leading to a perturbed matrix K¼K0þDK, in which DK is
assumed to be very small in norm (e.g., magnitude of largest eigenvalue) compared
to K0. Given the fact that triangular factors L0 and LT

0 have been obtained for K0, it
is attractive to formulate and employ an iteration procedure for the perturbed matrix
K using L0 as the initial iterate. The procedure should not involve solving inter-
mediate linear systems except by forward and backward substitution using already
known triangular factors. A procedure is presented in the section below following
Nicholson (2005a) and shown, in three simple examples, to produce accurate
estimates within a few iterations. In the scalar case, the iterates examined ‘‘track’’
the Taylor series exactly. The author is unaware of any previously established and
widely implemented iterative procedure for matrix triangularization.

It should be noted that updating triangular factors is relevant to important finite
element applications other than the nonlinear solid mechanics. For example, in
fracture mechanics suppose that the crack front advances. There is a local change
in the mesh in the vicinity of the crack tip, corresponding to a perturbation of the
stiffness matrix. As a second example, if the finite element method is used in an
ncis Group, LLC.



op timal desig n study, the search procedu re sets the design param eters and an FEA is
perfor med. The n the search procedu re moves the search point locally in space of
desig n parame ters, thereby pertu rbing the structura l model and the stiffness matrix.

18.1.2 INCREMENTAL FINITE E LEMENT EQUATION

To set the probl em un der study in the a ppropriate contex t, we consid er dyna mic
respon se of a nonli near solid. Applica tion of the Increm ental Principle of Vi rtual
Wo rk and introduct ion of suit able inte rpolation model s, following Chapter 15,
furni sh increment al finite elem ent relat ions:

M D €g þ K ( g) Dg ¼ Df (18:1)

M mass mat rix, n 3 n and positive de finite , assum ed constant
K ( g) incre mental sti ffness matrix, n 3 n and positive de fi nite
D g incre mental nodal displ acemen t vector
D f incre mental consistent nodal force vector

We assum e that Equati on 18 .1 is integrate d u sing a one-step procedu re based on the
trape zoidal rule (Newmark ’ s met hod). Let h d enote the time step and let gn ¼ g (t n).
At time tnþ 1 ¼ ( nþ 1)h , Equati on 18.1 be comes, following (Z ienkiew icz and
Tay lor, 1989),

M þ h 2

4 K( gn )
h i

Dn þ 1 g ¼ Dn þ 1 g (18:2)

in which

Dn þ 1 g ¼ h2

4 ( Dn þ 1 f þ Dn f � KDn g) þ M( D n g þ hDn q) , D n q ¼ Dn _g

Dn þ 1 g ¼ gnþ 1 � gn

We say that the sti ffness matrix at the ( n þ 1)st load or time step is pertu rbed relative
to the sti ffness mat rix at the nth load step. The solution of p erturbed line ar systems
has been the subje ct of many investig ations. Scheme s ba sed on explicit matrix
inver sion include the Sherm an –Morr ison–Wo odbury formulae (cf. Golub and Van
Loa n, 1986). An alternate met hod is to carry bother some terms to the right-hand side
and then to iterate. For example, the perturbed linear system may be approximated to
first order in increments as

K0Dg ¼ Df � DKg0 (18:3)

and an iterative solution procedure, assuming convergence, may then be employed as

K0Dg
( jþ1) ¼ Df � DK

�
g( j)
�
g0, g( jþ1) ¼ g0 þ Dg( jþ1) (18:4)
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Unfortunately, in a typical nonlinear problem, especially in systems with decreasing
stiffness, it is necessary to update the triangular factors after several increments. If
plasticity, hyperelasticity, or buckling is of concern, it is often wise to update the
stiffness matrix after each increment.

18.1.3 ITERATIVE TRIANGULARIZATION PROCEDURE

A square matrix is said to be lower triangular if all super-diagonal entries vanish.
Similarly a square matrix is said to be upper triangular if all subdiagonal entries
vanish. Consider a nonsingular real matrix A. It may be decomposed as

A ¼ Al þ diag(A)þ Au (18:5)

in which diag(A) consists of the diagonal entries of A, with zeroes elsewhere,
Al coincides with A below the diagonal with all other entries set to zero, and Au

coincides with A above the diagonal with all other entries set to zero.
Now limiting attention to symmetric matrices, for later use we introduce the

matrix functions

lower(A) ¼ Al þ 1
2 diag(A), upper(A) ¼ Au þ 1

2 diag(A) (18:6)

The reader may readily verify that

1. The product of two lower (upper) triangular matrices is also lower (upper)
triangular

2. The inverse of a nonsingular lower (upper) triangular matrix is also lower
(upper) triangular

To formulate the iteration procedure, let K0 denote a symmetric positive definite
matrix for which the unique triangular factors L0 and LT

0 have already been com-
puted. If K0 is banded, the maximum width of its rows (the bandwidth) equals
2b� 1, in which b is the bandwidth of L0. The factors of the perturbed matrix K
may be written as

[K0 þ DK] ¼ [L0 þ DL]
�
LT
0 þ DLT

�
(18:7)

We may rewrite Equation 18.7 as

�
Iþ L�1

0 DL
� �
Iþ DLTL�T

0

� ¼ L�1
0 [K0 þ DK]L�T

0 (18:8)

from which

L�1
0 DLþ DLTL�T

0 ¼ L�1
0 DKL�T

0 � L�1
0 DLDLTL�T

0 (18:9)
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Note that L�1
0 DL is lower triangular. It follows that

DL ¼ L0lower
�
L�1
0 DKL�T

0 � L�1
0 DLDLTL�T

0

�
(18:10)

The factor of 1=2 in the definition of lower(*) and upper(*) functions is motivated by
the fact that the diagonal entries of L�1

0 DL and DLTL�T
0 are the same.

An iteration procedure based on Equation 18.10 is proposed as

DL( jþ1) ¼ L0lower
�
L�1
0 DKL�T

0 � L�1
0 DL( j)DL( j)TL�T

0

�
DL(1) ¼ L0lower

�
L�1
0 DKL�T

0

� (18:11)

Note that the computations in Equation 18.11 may be performed using only forward
substitution involving L0. As demonstration, we introduce the matrix C using
L0C¼DK�DLDLT. (C is not the right Cauchy–Green strain tensor.) Clearly C
may be computed using forward substitution. Now introduce D using DLT

0 ¼ C, so
that L0D

T¼CT. Of course DT and hence also D are computed using forward
substitution. The last step is to compute DL¼L0lower(D).

We now introduce an approximate convergence argument. For an approximate
convergence criterion, we study the similar relation

DA ¼ A�1
�
DK� (DA)T1(DA)

�
(18:12)

in which (DA)1 is the solution (converged iterate) for DA. Consider the iteration
procedure

DA( jþ1) ¼ A�1
�
DK� (DA)T1DAj

�
(18:13)

which is very similar to Equation 18.11. Subtraction of two successive iterates and
application of matrix norm inequalities furnish

DA( jþ2) � DA( jþ1) ¼ �A�1DA1
h
DA( jþ1) � DA( j)

i
(18:14)

An example of a matrix norm is the Euclidean norm norm(A)¼ tr1=2(ATA).
Application of matrix norm properties furnishes

norm
�
DA( jþ2) � DA( jþ1)

� � norm
�
A�1DA1

�
norm

�
DA( jþ1) � DA( j)

�
(18:15)

Convergence is assured in this example if s(A�1DA1) < 1, in which s denotes the
spectral radius (e.g., Dahlquist and Bjork, 1974; magnitude of the largest eigenvalue)
and serves as a greatest lower bound on matrix norms (Varga, 1962). But then,
recalling that A is positive definite, we recognize that

s
�
A�1DA1

� � s
�
A�1

�
s(DA1) ¼ s(DA1)

lmin(A)
(18:16)
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A (conse rvative) converg ence criterio n is now reveal ed as

maxj j lj ( D A1 ) j  < min k j lk (A ) j ( 18 : 17 )

in which lj ( DA 1 ) denote s the j th eigenv alue of an n 3 n mat rix DA1  . Clearly,
converg ence is expect ed if the perturbati on mat rix DA1 has a suffi ciently smal l
norm. Applied to the current proble m, we like wise expe ct converg ence to occur if
maxj j lj ( D L1  ) j  < min k j lk (L 0 ) j.

The converg ence criterio n in Equati on 18.17 appears to be disco uragi ng if K0

is ill-conditi oned since mi nk j lk ( L0 )j is then very small. Ill -conditio ned sti ffness
matrices are a common occurrence in the nonli near finite elem ent method, for
examp le, when the structura l material exhibits plasticity or hyperel asticit y, or when
buckling occurs . How ever, in such situati ons the equ ilibrium e quation can usual ly be
adjoined to an ‘‘ arc lengt h’’ c onstraint of which an ex ample is presen ted in subse-
quent sections. Doing so results in an augme nted linear syst em in which the matrix is
no longer ill-condi tioned (Kleib er, 1989 ).

EXAMPLE 18.1

Demonstrate convergence in the scalar equation

2LD L þ D L2 ¼ DK ( 18: 18)

SOLUTION

A Taylor series representation for the solution DL exists in the form

DL ¼ a0DK þ a1DK
2 þ a2DK

3 þ a3DK
4 þ � � � (18:19)

Upon substituting (18.18) into (18.19) and making suitable identifications, the first few
terms of the Taylor series are obtained as

DL ¼ 1
2L

DK � 1
8L3

DK2 þ 1
16L5

DK3 � 5
128L7

DK3 þ O
DK3

L9

� �

The scalar version of the iteration procedure (Equation 18.11) is

2LDL( jþ1) ¼ DK � �DL( j)�2, DL(0) ¼ 0

Omitting the manipulations, the first three iterates are obtained as

DL(1) ¼ 1
2L

DK

DL(2) ¼ 1
2L

DK � 1
8L3

DK2

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Taylor series

DL(3) ¼ 1
2L

DK � 1
8L3

DK2 þ 1
16L5

DK3 � 5
128L7

DK4

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Taylor series

and are seen to ‘‘track’’ the Taylor series exactly.
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EXAMPLE 18.2

Generate the first two iterates for the matrices

K0 ¼
a 0 0

b c 0

d e f

2
64

3
75

a b d

0 c e

0 0 f

2
64

3
75 ¼

a2 ab ad

ab b2 þ c2 bd þ ce

ad bd þ ce d2 þ e2 þ f 2

2
64

3
75

and

K0 þ DK ¼
a 0 0

b c 0

d eþ g f

2
664

3
775

a b d

0 c eþ g

0 0 f

2
664

3
775

¼
a2 ab ad

ab b2 þ c2 bd þ c(eþ g)

ad bd þ c(eþ g) d2 þ (eþ g)2 þ f 2

2
664

3
775

DK ¼
0 0 0

0 0 cg

0 cg g(2eþ g)

2
664

3
775
SOLUTION

The initial triangular factor satisfies.

L0 ¼
a 0 0

b c 0

d e f

2
64

3
75, L�1

0 ¼ 1
acf

cf 0 0

�bf af 0

be� cd �ae ac

2
64

3
75

The exact (converged) triangular factor is

L0 þ DL1 ¼
a 0 0

b c 0

d eþ g f

2
64

3
75

from which

DL1 ¼
0 0 0

0 0 0

0 g 0

2
64

3
75

reflecting the error in L0 as the initial approximation to L0þDL1.
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Upon performing the iteration procedure we find

L�1
0 DKL�T

0 ¼ 1

(acf )2

cf 0 0

�bf af 0

be� cd �ae ac

2
64

3
75

0 0 0

0 0 cg

0 cg g(2eþ g)

2
64

3
75

cf �bf be� cd

0 af �ae

0 0 ac

2
64

3
75

¼ 1

(acf )2

0 0 0

0 0 a2c2fg

0 a2c2fg a2c2g2

2
64

3
75

Accordingly,

lowerðL�1
0 DKL�T

0 Þ ¼
0 0 0

0 0 0

0 g
f

1
2
g2

f 2

2
64

3
75

and we obtain the first iterate as

DL(1) ¼ L0lowerðL�1
0 DKL�T

0 Þ ¼
0 0 0

0 0 0

0 g 1
2
g2

f

2
64

3
75

In terms of the Euclidean matrix norm, a measure of relative error is introduced as

errorðDL(1)Þ ¼ normðDL1 � DL(1)Þ
norm(DL1)

¼ 1
2

g

f

				
				

Suppose g
f ¼ 0:1. The relative error for the initial iterate is then error(DL(1))¼ 5%.

Otherwise stated, in this example, the error in the triangular factors was reduced 95%
in one iterate.

We seek the second iterate and examine the additional error reduction. Now

L�1
0 DL(1)DL(1)TL�T

0 ¼ 1

(acf )2

cf 0 0

�bf af 0

be� cd �ae ac

2
664

3
775

0 0 0

0 0 0

0 g 1
2
g2

f

2
664

3
775

0 0 0

0 0 g

0 0 1
2
g2

f

2
664

3
775

�
cf �bf be� cd

0 af �ae

0 0 ac

2
664

3
775 ¼

0 0 0

0 0 0

0 0 g2

f 2 (1þ 1
4
g2

f 2 )

2
664

3
775

Continuing,

L�1
0 DKL�T

0 � L�1
0 DL(1)DL(1)TL�T

0 ¼
0 0 0

0 0 g
f

0 g
f � 1

4
g4

f 4

2
664

3
775
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lower( L� 1 DKL�T � L�1 D L( 1) D L( 1) T L �T ) ¼
0 0  0

0 0  0

0 g
f � 1

8
g 4

f 4

2
64

3
75

The second iterate is thereby given by

DL( 2 ) ¼ L0 lower(L
� 1
0 DKL� T

0 � L� 1
0 DL( 1 ) D L( 1) T L �T

0 )

¼
a 0 0

b c 0

d e  f

2
64

3
75

0 0  0

0 0  0

0 g
f � 1

8
g 4

f 4

2
664

3
775

¼
0 0  0

0 0  0

0 g � 1
8
g4

f 3

2
664

3
775

The relative error for the second iterate now is

error
� 
D L( 2)

� ¼ norm
�
D L1 � DL ( 2)

�
norm(DL1 )

¼
1
8
g 4

f 3

g
¼ 0: 0125%

Evidently, in the fi rst iterate the error is reduced to 1=20th of the initial value, and in the
second iterate to 1=8000th of the initial value, representing a 400-fold improvement
from the fi rst to the second iterate. The convergence rate is much faster than linear
convergence characteristic of ‘‘fi xed point iteration. ’’
EXAMPLE 18.3

Illustrate the effect of the perturbation on the rate of convergence.

SOLUTION

Suppose

K ¼ 1 1
2

1
2

10 þ n
30

" #
, K0 ¼

1 1
2

1
2

1
3

" #
, D K ¼

0 0

0 n
30

" #

in which n > �5=2. The exact solutions are

L ¼
1 0
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 þ n
30 � 1

4

q" #
, D L1 ¼

0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10 þ n
30 � 1

4

q
� 1ffiffiffiffi

12
p

" #

Clearly, the method fails if n ��5=2, in which case K is no longer positive defi nite.
To ensure real numbers attention is restricted to the range �5=2 � n � 5=2.
Following the procedures in Example 18.2, the first two iterates are obtained as
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TABLE 18.1
Error Reduction with First and Second Iterations

n Error(DL(1)) 1� Error(DL(1)) Error(DL(2)) 1� Error(DL(2))

0.5 0.053 0.947 0.0042 0.9958
�0.5 0.057 0.943 0.0094 0.9916
þ2.0 0.176 0.824 0.059 0.941
�2.0 0.277 0.75 0.132 0.916
D L1 ¼
0 0
0 n

10
ffiffi
3

p

� �
, DL2 ¼

0 0
0 n

10
ffiffi
3

p � n2

100 ffiffi3p

� �

The previously defined relative error measures are now given by

error D L( 1 )
� � ¼

n

5 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2n

5

r
� 1

 !					
					ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 2n
5

r
� 1

					
					

, error( DL (2 ) ) ¼

n

5 
� n2

50 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2 n

5

r
� 1

 !					
					ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 2n
5

r
� 1

					
					

The effect of the perturbation is thus reduced as illustrated in Table 18.1.
For the relatively small perturbation represented by n ¼�0.5, the fi rst iteration

removes approximately 95% of the initial error. The second iteration removes over
99% of the error, for at least a fivefold improvement over the first iteration. For the
relatively large perturbation represented by n ¼�2.0, the first iterate removes more than
70% of the initial error. Over 90% is removed by the second iteration, for at least a
twofold improvement over the first iteration.

18.2 STIFF ARC LENGTH CONSTRAINT IN NONLINEAR FEA

18.2.1 I NTRODUCTION

Arc length constraints enable iterati ve solution procedu res in nonlinea r FEA to
converg e even at critical point s, such as occur in buckli ng probl ems, and ena ble
computation to continue beyond the critical points, for example, in postbuckling.
They wer e brie fly introduce d in a simple examp le in Chapter 14. The arc length
constraint replaces the conventional m3m stiffness matrix with an augmented
(mþ 1)3 (mþ 1) stiffness matrix. Its use is referred to as arc length control, in
contrast to load control which furnishes the conventional stiffness matrix. It also
contrasts with displacement control in which displacements are introduced in incre-
ments and the corresponding forces are computed as reactions. In the current chapter,
an example of an arc length constraint is introduced following Nicholson (2005b). It
identifies arc length parameters maximizing the stiffness (absolute value of the
determinant) of the augmented matrix. The parameters, viewed as a vector, must
be perpendicular to the rows of the stiffness matrix, likewise considered vectors. The
augmented stiffness matrix is nonsymmetric and lacks the small bandwidth of the
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conventional stiffness matrix. However, using a block triangularization, it is dem-
onstrated that solution may be attained by standard finite element operations, namely
triangularization of a banded nonsingular portion of the stiffness matrix followed by
forward and backward substitutions involving banded lower and upper triangular
matrices. The proposed constraint is expected to permit convergence under longer
arc lengths than currently implemented methods. A simple example is presented to
illustrate application of the constraint.

In conventional load-control-based finite element modeling of nonlinear prob-
lems in solid mechanics, a combined incremental and iterative solution procedure is
typically followed. The iteration procedure is a realization of Newton iteration, in
which the stiffness matrix (combined geometric and tangent) serves as the Jacobian
matrix. Frequently, due to nonlinear geometry under compression or to softening
material behavior such as plasticity or hyperelasticity, the stiffness matrix appearing
in the incremental equations exhibits a ‘‘critical point’’ at (near) which it is singular
(ill-conditioned). Arc length constraints, implementing arc length control, have been
introduced to permit calculation at critical points. A recent review of arc length
methods has been authored by Memon and Su (2004). Three different implementa-
tions have been compared in Ragon et al. (2001). The initial method is attributed to
Riks (1979) and Wempner (1971), and modified by Crisfield (1981), Ramm (1981),
and Fafard and Massicotte (1993). Arc length constraints are widely implemented in
finite element codes, e.g., Moharir (1998).

Arc length methods adjoin a constraint to the conventional incremental finite
element equation arising under load control to furnish an augmented stiffness
matrix. Doing so enables iterations to converge even at critical points. The goal
of the current investigation is to identify parameters of the arc length method
ensuring that the augmented stiffness matrix is not only nonsingular but optimally
stiffened. It will be seen that the best choice is to select a vector arising in the arc
length constraint, appearing in the bottom row of the augmented stiffness matrix,
such that it is orthogonal to the rows (considered as vectors) of the conventional
stiffness matrix.

One issue raised by previous investigators (e.g., Crisfield, 1981) has been that
the augmented stiffness matrix is nonsymmetric and unbanded. However, by intro-
ducing a block triangularization, the solution procedure will be shown to reduce to
conventional finite element operations, namely triangularization of a banded sym-
metric nonsingular matrix, followed by forward and backward substitution involving
banded lower and upper triangular matrices.

The no tion of a critical point is illust rated in Figure 18.1. Conside r a body
submitted to loads following a path in load space to a final load f0, the magnitude
of which is the maximum attained on the path. Along the path the magnitude of the
load may be written as ljf0j, in which the load intensity l satisfies 0 � l � 1. The
magnitude of the global displacement vector is denoted as jgj. Figure 18.1 illustrates
a critical point followed by a zone of decreasing load intensity and negative stiffness,
such as occurs in postbuckling. In the current investigation, critical points may be
maxima, minima, or saddle points.
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FIGURE 18.1 Load–deflection characteristic exhibiting critical points and buckling.
18.2.2 NEWTON ITERATION FOR NONLINEAR FINITE ELEMENT EQUATIONS

For the sake of explaining h ow, in the instance being p resented, the arc length
method is a special case of New ton iterati on, we brie fly recapitul ate Newto n iteration
in nonli near FEA, expandi ng o n the presentation in Cha pter 14. Conside r a solid
body referr ed to the unde formed con fig uration, with volum e V and bou ndary S. It
experien ces large deform ation and nonli near material behav ior under boundar y
tractions t prescr ibed o n S. Balance of linea r mom entum (load b alancing) is ful filled
by the Princi ple of Virtual Work (Chapte r 15) as

c (g (t )) ¼ 0, dgT c (g) ¼
ð
trace( d«s) dV þ

ð
du T r €u dV �

ð
duT t dS ( 18 : 20 )

c m � 1 vector represe nting unbal anced loads when nonvanishi ng

g( t ) m � 1 time depend ent vector of nodal displac ements

u( X ,t ) 3 � 1 displacem ent vector

X 3 � 1 position vector in und eformed configur ation

« 3 � 3 Lagrangia n strai n tens or

s 3 � 3 second Piola---Kir chhoff str ess tensor

r mass density

and d denote s the varia tional operator. The goal is to compu te the displ aceme nt
vector u( X ,t).

The body is assumed to be ‘‘discr etized ’’ using a mesh of small elem ents
connect ed at nodes. In FEA, it is assum ed that the displacem ent vector in the e th
element may be approximated to satisfactory accuracy using an interpolation model
of the form

u(X,t) � wT
e (X)Fege(t) (18:21)
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in which

we( X ) ¼ me 3 1 vector -valued funct ion of position
Fe ¼ m e 3 m e mat rix of c onstants re fl ecting element geome try
ge( t ) ¼ m e 3 1 nodal displ acemen t vector for the elem ent

Su ppose that the solution process has been invoked to deter mine gn, the global nodal
displ aceme nt vector at time tn ¼ nh , with ‘‘small ’’ time step h. The task is now to
form ulate a scheme for iterati vely compu ting gnþ 1 at tnþ 1 ¼ ( n þ 1)h. For this
pu rpose, we fi rst describe Newto n iteration under load contr ol, which is well-
kn own to experi ence converg ence dif ficulties near ‘‘crit ical point s ’’ at which the
dy namic stiffnes s mat rix becom es singu lar. We then introduce a recent ly introduced
arc length met hod Nichols on (2005b) with what will be called a sti ff const raint . It
wi ll be seen to enable circu mventing the crit ical point.
18.2.3 NEWTON I TERATION WITHOUT A RC L ENGTH C ONSTRAINT

Let Dn g ¼ gnþ 1 – gn denote the increment al nodal displacem ent vector , with sim ilar
de fi nitions for stress, strain, displac ement, and tract ion. Fr om Cha pter 1 5, we know
that at dynam ic equil ibrium

Dn c ¼ [ KG þ K T ] Dn g þ M D n €g � D n f m ¼ 0

KT ( gn þ 1 ) ¼
ð
M T G xG T M dV0 , K G ( gn þ 1 ) ¼

ð
M T s � IM dV0

M ¼
ð
r0 F

T ww T F dV0 , Dn f m ¼
ð
r0 F T wD t0 dS0

VEC ( Dn F) ¼ M ( X) Dn g, GT ¼ 1
2 [I � FT þ F � I ]M ( X )

(18 :22 )

F 3 3 3 deformati on gradient tensor
KT m 3 m tangent stiffnes s mat rix
KG m 3 m geome tric stiffnes s mat rix
x 93 9 tangent modulus tensor
U 93 9 permutation tensor
VEC VEC operator
� Kronecker product symbol
The Newmark method serves to express Dn€g in terms of Dng and thereby furnishes

Dnc ¼ KG þKT þ 4
h2M

� �
Dng� Dnfm � Dnrm ¼ 0

Dnrm ¼ Dn�1fm þ 2
hMDn�1 _g� KG þKT � 4

h2M
� �

Dn�1g
(18:23)

Of course the residual vector Dnrm is known from the previous (nth) time step.
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The Newto n iteration schem e may now be stated as

KD g
(y þ 1 )
n þ 1 � g (y )nþ 1

� � ¼ �c g(y )
nþ 1

� �
, g (0)nþ 1 ¼ gn

KD ¼ KG þ K T þ 4
h2 M

( 18 : 24 )

Note that KD is real and symmet ric. Under load control, Equ ation 18.24 is the
equation to solved.

The matrix KD( g n) in many problems exhibi ts critical po ints, at (near) which
it becom es singular (ill-con ditioned) . This dif ficult y may, for examp le, be produce d
(a) by geometri c nonli nearity under compr ession (e.g., buckli ng), associ ated with the
geome tric stiffnes s mat rix KG ( gn) or (b) by material softness, such as plasticity or
hyperel asticity, associated with the tangent stiffness matrix KT ( g). Bey ond
the critical point the stiffnes s matrix may be inde finite , as in postb uckling (cf.
Figure 1 8.1). Clearl y, compu tation is imp ossible (or very diffi cult) in such cases if
direct solution of Equ ation 18.5 is attempt ed.
18.2.4 ARC LENGTH METHOD

However, as stated previously arc length methods have been used, by now for
several decades, to circumvent the numerical difficulties posed by critical points.
They involve two major features:

(a) Writing Dnfm¼ (Dnl)fm, in which fm is the final load vector to be attained,
and Dnl is the incremental load intensity

(b) Adjoining an arc length constraint to Equation 18.24 in the form

z(gnþ1, lnþ1) ¼ gTmDngþ gDnl� DS ¼ 0 (18:25)

gm an m 3 1 vector to be determined
g a scalar to be determined
DS arc length, a positive scalar parameter

We refer to
gm
g


 �
as the arc length vector.

It appears that the most commonly implemented methods (e.g., Riks, 1979)
involve the conventional choices

gm ¼ 1
2Dng

g ¼ 1
2Dnl

(18:26)

and the arc length constraint is expressed using DS2: 1
2Dng

TDngþ 1
2 (Dnl)

2 �
DS2 ¼ 0. With this choice, the arc length constraint can be visualized in terms of an
mþ 1 dimensional hypersphere surrounding the solution points at the nth load step.
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A search procedu re is then foll owed on the hyp ersphere until the e quilibrium equ ation
is sati s fied (load is balanc ed).

Returning to the general case repres ented by Equation 18.25, the m 3 m incre -
mental finite element equation is now supplanted by an (mþ 1)3 (mþ 1) augmented
system of equations. To apply Newton iteration to the augmented system, note that

dc(gnþ1,lnþ1) ¼ KD dgnþ1 � f0 dlnþ1

dz(gnþ1,lnþ1) ¼ gTm dgnþ1 þ g dlnþ1
(18:27)

Newton iteration applied to Equation 18.27 now gives rise to the m3 1 linear system

K*
g(yþ1)
nþ1 � g(y)

nþ1

l(yþ1)
nþ1 � l(y)nþ1

( )
¼

�c
�
g(y)
nþ1, l

(y)
nþ1

�
�z
�
g(y)
nþ1, l

(y)
nþ1

�
( )

, K* ¼ KD �fm

gT g

" #
, l(0)nþ1 ¼ ln

(18:28)

Choices gm and g which ensure that K* is nonsingular, and even more which
maximize the magnitude of the determinant of K*, will be said to render the arc
length constraint stiff. Our primary task now is to consider choices for gm and g to
maximize stiffness (defined below as the magnitude of the determinant). Doing so is
expected to permit convergence using larger values of the arc length parameter than
in the current method. To find the optimal parameters we restrict attention to the case
in which KD has rank m� 1 (rank deficiency of unity). The case of rank lower than
m� 1 will be addressed in a subsequent investigation.
18.2.5 STIFF ARC LENGTH CONSTRAINT

18.2.5.1 Stiffness of K*

We assume that KD is of rank m� 1 (rank deficiency¼ 1), and rewrite it as

KD ¼ K(m�1)
D km�1

kT
m�1 km

" #
(18:29)

Owing to unit rank deficiency, any row of KD can be expressed as a linear
combination of the other rows. Furthermore the rows and columns can be ordered
such that the upper (m� 1)3 (m� 1) block is nonsingular. To illustrate this fact

consider the reordering
1 0 3
0 0 0
3 0 6

2
4

3
5 ! 1 3

3 6

� �
0
0

0 0 0

2
4

3
5. The 33 3 matrix is of rank 2. The

upper left-hand 23 2 block of the reordered matrix is nonsingular. (It appears that
reordering will not be necessary if none of the rows of KD is null; for example, no

reordering is needed in
1 �1 0
�1 2 �1
0 �1 1

2
4

3
5:Þ
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We assume that the above-mentioned ordering either is not needed or has been
performed. Accordingly, K(m�1)

D is nonsingular and kT
m�1 is a linear combination of

the m� 1 rows of K(m�1)
D : there exists an (m� 1)3 1 vecto

_
r a such that

km�1 ¼ K(m�1)
D a

km ¼ kT
m�1a

¼ kT
m�1 K(m�1)

D

� ��1
km�1

¼ aTK(m�1)
D a (18:30)

If KD is positive semidefinite, K(m�1)
D must be positive definite and km must be a

positive number.
Now consider the augmented stiffness matrix incorporating the arc length

constraint.

K* ¼
K(m�1)

D km�1 �fm�1

kT
m�1 km �fm

gTm�1 gm g

2
664

3
775, gm ¼ gm�1

gm

( )
, fm ¼ fm�1

fm

( )
(18:31)

The matrix is singular if the third column is a linear combination of the first two
(block) columns. If so there exist a vector

_
m and a scalar n for which

�fm�1 ¼ K(m�1)
D mþ nkm�1 (18:32a)

�fm ¼ kT
m�1mþ nkmm (18:32b)

¼ aTK(m�1)
D mþ naTkm�1 (18:32c)

¼ �aT fm�1 (18:32d)

and

g ¼ gTm�1mþ ngm (18:32e)

In the particular situation in which fm ¼ kT
m�1K

(m�1)�1

D fm�1, the matrix is singular
regardless of the choice of gTm�1, gm, and g, since the second row (of blocks) is a
linear combination of the first row. Since the finite element code contains the matrix
K(m�1)

D and a solver, this difficulty can readily be detected. Suppose, for example,
that KD is positive semidefinite, in which case K(m�1)

D is positive definite. The linear
system K(m�1)

D h ¼ fm�1 may be solved numerically using triangularization followed
by forward and backward substitution. Next kT

m�1h is compared to fm. If they are
equal, a different path in load space should be followed to attain the final load.

Alternatively, in the much more likely situation in which fm 6¼ kT
m�1

K(m�1)�1

D fm�1, the matrix is nonsingular provided that gTm�1, gm, and g are chosen
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such that the bott om row is not a linear c ombination of the upper two (bloc k) rows:
i.e., such that there do not exist a vector m̂ and a scala r n̂ for which

gTm � 1 ¼ m̂T K (m� 1 )
D þ n̂ kT

m � 1

gm ¼ m̂T km � 1 þ n̂ k m

¼ m̂T K (m� 1 )
D a þ n̂ kT

m� 1 a

¼ gTm� 1 a

g ¼ �m̂ T fm � 1 � n̂ fm

(18 :33 )

We assum e that the choice of gTm� 1 , gm , and g does not sati sfy Equ ation 18.33, and
proceed to consider the choice which render s K * stiff.

18. 2.5.2 Arc Length Vector Which Maximiz es Stiffness: Examples

The sti ffness x( A ) of a square matrix A is de fi ned as the magni tude of its deter min-
ant: x( A ) ¼ jdet( A )j . The matrix is said to be stiff if x ( A) > 0 (i.e., is nonsingu lar).
Cle arly, if stiffnes s is near zero, the mat rix is nearl y singu lar. If the arc lengt h
param eters are chosen to maximi ze the stiffnes s, the matrix A is ‘‘ farther away ’’
from being singu lar than for other choice s.

The first m row s of K*, considered as row vectors, span an m dim ensional space,
whos e (possibl y compl ex) base vectors we denote by ej, j¼ 1, 2, . . . , m. It will be

seen that g does not affect stiffness, and that the magnitudes of gm ¼ gm�1
gm


 �
and g can

both be set to unity since it is later necessary to manipulate the arc length DS to attain
con vergenc e. (It can easily be easily seen in Equati on 18.26 that a sim ilar magnitud e
choice is implicit in the conventional arc length formulation.)

The direction of the lower row, viewed as a (row) vector, is of greatest interest.
As will be shown in the following, it should be chosen to coincide with the null
eigenvector of KD, and thereby to be orthogonal to the m rows of KD.

EXAMPLE 18.4

As a simple example, consider the matrix

A ¼
1 0 0

0 1 0
g1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22 þ g23
p g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22 þ g23
p g3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22 þ g23
p

2
6664

3
7775

The determinant of A is
g3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22 þ g23
p . The stiffness attains its maximum value if

g1¼ 0, g2¼ 0, g3¼ 1. Considering the rows as row vectors, with this choice the third
row is orthogonal to the first two rows.
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EXAMPLE 18.5

As another simple example, consider the matrix

A ¼

a11 a12 0

a12 a22 0
g1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22 þ g23
p g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22 þ g23
p g3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22 þ g23
p

2
6664

3
7775

¼
Â 0

gT
g3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22 þ g23
p

2
4

3
5, Â ¼

a11 a12

a12 a22

" #
, g ¼

g1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22 þ g23

p
g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22 þ g23
p

8>>><
>>>:

9>>>=
>>>;

Since Â is symmetric, there exists an orthogonal matrix Q for which

QÂQT ¼ L ¼ l1(Â) 0
0 l2(Â)

� �
, l1,2 ¼ a11 þ a22

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 � a22

2

� �2
þ a212

r

We now subject A to a similarity transformation as follows:

G ¼ Q 0

0T 1

" #
Â 0

gT
g3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22 þ g23
p

2
4

3
5 QT 0

0T 1

" #
¼

L 0

gTQT g3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22 þ g23

p
2
4

3
5

and G possesses the same eigenvalues as A, namely l1, l2, and
g3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g21 þ g22 þ g23
p .

Clearly, the choice which maximizes the stiffness is, again, g1¼ 0, g2¼ 0, g3¼ 1.
With this choice, considering the rows of A to be (row) vectors, the bottom row of A is
again orthogonal to the first two rows.

EXAMPLE 18.6

Finally, consider the matrix

A ¼ cos u sin u
cosc sinc

� �

The determinant of A is given by

det(A) ¼ cos u sinc� sin u cosc ¼ sin(c� u)

and the maximum stiffness clearly is attained when c� u¼�p=2. Withþp=2,

A ¼ cos u sin u
sin u � cos u

� �
, and note that the bottom row is orthogonal to the top row.

With �p=2, we obtain A ¼ cos u sin u
� sin u cos u

� �
. The second row is again orthogonal to

the first row, but points in the opposite direction from the positive choice.
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18.2.5.3 Arc Length Vector Which Maximizes Stiffness: General Argument

A proof is now given generalizing the observations from examples (18.4 through
18.6). The symmetric matrixKD is again assumed to bem3m and to have rankm� 1.
Given an m3 1 vector fm, as stated previously our task is to determine the m3 1

vector gm
gmþ1


 �
, with gm and gmþ1 both of unit magnitude, to maximize x(K*).

Since KD is symmetric, there exist m orthonormal eigenvectors jw, one of which
corresponds to the null eigenvalue. We set the order such that jm corresponds to
the null eigenvalue and form the proper orthogonal matrix Q¼ [j1 j2 � � � jm]. The
determinant of K* is unaffected by the similarity transformation, giving rise to K#

as follows:

K# ¼ Q 0

0T 1

" #
KD �f

gTm g

" #
QT 0

0T 1

" #

¼ Lm �f̂

ĝTm ĝ

" #
, Lm ¼ QKDQ

T , f̂ ¼ Qf, ĝm ¼ Qgm, ĝ ¼ g (18:34)

Since the eigenvectors serve to diagonalize KD, K
# now becomes

K# ¼

l1(KD) 0 0 : : : : : 0 �f̂1
0 l2(KD) 0 : : : : : 0 �f̂2
0 0 l3(KD) : : : : : 0 �f̂3
: : : : : : : : : :

: : : : : : : : : :

: : : : : : : : : :

: : : : : : : : : :

: : : : : : : lm�1(KD) : �f̂m�1

0 0 0 : : : : : 0 �f̂m
ĝ1 ĝ2 ĝ3 : : : : ĝm�1 ĝm ĝ

2
66666666666666664

3
77777777777777775

(18:35)

The determinant of K# is given by

det(K#) ¼ det(K*) ¼ �ĝm f̂m
Ym�1

j¼1

lj(KD) (18:36)

Note that it is independent of g¼ ĝ, which has been previously set to unit magnitude.
Recalling that {gTm�1 gm} has unit magnitude, the stiffness x(K*) is maximized

by the choice

ĝm ¼ 1 and ĝj ¼ 0 if j ¼ 1, 2, 3, . . . ,m� 2, m� 1 (18:37)
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K# is now given by

K#¼

l1(Km) 0 0 : : : : : 0 �f̂1
0 l2(Km) 0 : : : : : 0 �f̂2
0 0 l3(Km) : : : : : 0 �f̂3
: : : : : : : : : :

: : : : : : : : : :

: : : : : : : : : :

: : : : : : : : : :

: : : : : : : lm�1(Km) : �f̂m�1

0 0 0 : : : : : 0 �f̂m
0 0 0 : : : : 0 1 1

2
6666666666666666664

3
7777777777777777775

(18:38)

If the rows of K* are viewed as vectors, it is clear that ĝm is orthogonal to the first
m� 1 rows of KD. In fact, it is orthogonal to all m rows since the mth row is a linear
combination of the previous rows owing to the unit rank deficiency of KD. Hence
QKDQ

Tĝm ¼ 0.
But note that

0 ¼ QKDQ
T ĝm

¼ QKDQ
TQgm

¼ QKDgm (18:39)

from which we conclude that KDgm¼ 0, that gm is orthogonal to the rows of KD, and
finally that that gm is collinear with the null eigenvector of KD.

18.2.5.4 Numerical Determination of the Optimal Arc Length Vector

The process of identifying a unit vector orthogonal to m� 1 vectors is well known as
Gram–Schmidt orthogonalization and is briefly summarized in the current context.
Let aT1 denote the first row of K*, and let a01 ¼ a1=

ffiffiffiffiffiffiffiffiffiffi
aT1 a1

p
. A sequence of m� 1

orthonormal eigenvectors a0j is then generated sequentially according to

a
00
j ¼ aj �

Xj�1

i¼1

aTj a
0
i

� �
a0i

a0i ¼ a
00
i =

ffiffiffiffiffiffiffiffiffiffiffi
a

00T
i a

00
i

q (18:40)

in which aTj denotes the jth row of K*. Clearly,

a
0T
k a

00
j ¼ a

0T
k aj �

Xj�1

i¼1

aTj a
0
i

� �
dik ¼ 0, dik ¼ 1, k ¼ i

0, k 6¼ i



(18:41)
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The arc lengt h ve ctor is now found as

g0m ¼ bm �
Xm� 1

i ¼ 1

bTm a
0
i

� �
a0i

and

gm ¼ �g0m
. ffiffiffiffiffiffiffiffiffiffiffi

g0 T
m g

0
m

q
(18 :42 )

in which bm is a trial vector , for examp le, f m .
Note that the arc length vector gm can po int in a positive or ne gative sense along

the underlying base vector , and g may also be posit ive or nega tive. To determin e the
sense of the gm and g, we recal l Figure 18.1. Fo r consi stenc y with the posit ive arc
lengt h D S, the sum of gTm Dn g and gDn l must each be nonnegat ive. If these two terms
wer e of opposi te sign, an unsta ble numer ical proces s would ensue. Fo r examp le, if
gD nl is negativ e and grow s in magnitud e, the arc lengt h const raint requi res gTm Dng to
be posit ive and to likewi se grow in magnitud e. There is no impediment to this
proces s continuin g until both terms atta in very large magnitud es, despite the small
value of DS. Consequen tly the arc length relation (Equati on 18.24) serves as a
con straint only if b oth terms are nonnegat ive. In the stiff segm ents of the load–
deflection curve, in which the load intensity and the magnitude of the
displacement vector are both increasing, this requires that g	 0 and that

� p
2 � cos � 1 gTm D n gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

( Dn g )
T Dn g

p
� �

� p
2 . In the postb uckled segm ents, in which the load inten-

sit y decreas es bu t the magnitud e of the displacem ents increases, it foll ows that g < 0

and � p
2 � cos � 1 gTm D n gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

( Dn g) 
T D n g

p
� �

� p
2 . If the (n þ 1)st load step occurs at a critical point ,

then Dn l ¼ 0 and gTm D n g ¼ DS.
Near a critical point , an appeal ing way to predi ct the sense of gm and g befor e

comp utat ion at the curren t step is select them to sati sfy

gDn � 1 l > 0, � p

2
� cos� 1 gTm D n� 1 gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

( Dn � 1 g) 
T Dn � 1 g

p
 !

� p

2 
(18 :43 )

there by making use of the solution at the previous time step. Doi ng so shoul d be safe
away from critical points. Across the critical point, the sign of Dnþ 1l may or may not
cha nge from that Dn� 1l of dependi ng on whether it is an extre mum or a saddl e point.
In this case it appears wise to compu te one iter ate with g > 0 and one with g < 0, and
to continue with the value for whi ch gDnþ1l> 0.

18.2.6 SOLUTION PROCEDURE

At first glance, the matrix K* appears problematic in that it is asymmetric and
unbanded, as is true in the conventional arc length method. However asymmetry
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and unbandedness are consequences of the (mþ 1)st row and column. The upper left
m3m block is symmetric and can be stored accordingly. As will be seen, after a
block triangularization is invoked the solution procedure can be reduced to conven-
tional finite element operations including triangularization of the nonsingular sym-
metric matrix K(m�1)

D , followed by forward and backward substitutions using banded
lower and upper triangular matrices, respectively. The procedure is established
below.

18.2.6.1 Block Triangularization

The reader may verify the block triangularization

K(m�1)
D km �fm�1

kT
m km �fm

gTm�1 gm g

2
6664

3
7775¼

Lm�1 0

kT
m

gTm�1

( )
U�1

m�1

1 0

0 1

" #
2
664

3
775

Um�1 L�1
m�1{km � fm�1}

0T

0T

( )
km �fm

gm g

" #
� G

2
6664

3
7775

(18:44)

in which G ¼ kT
m

gTm�1


 �
U�1

m�1L
�1
m�1{km � fm�1}. Also conventional LU triangulariza-

tion is invoked to furnish K(m�1)
D ¼ Lm�1Um�1, in which Lm�1 is lower triangular

and Um�1 is upper triangular.
IfK(m�1)

D is symmetric and positive definite (i.e., KD is positive semidefinite with
rank m� 1), then Um�1 ¼ LT

m�1. If we introduce {w11 w12} obtained from
UT

m�1{w11 w12} ¼ {km �fm�1}, forward substitution and transposition furnishes
wT

11

wT
12


 �
¼ kT

m

gTm�1


 �
U�1

m�1. Also, writing Lm�1{w21 w22} ¼ {km �fm�1} and using

forward substitution furnishes the vector {w21 w22} ¼ L�1
m�1{km �fm�1}. Note

that G ¼ wT
11

wT
12


 �
{w21 w22} is a 23 2 matrix.
18.2.6.2 Solution of the Outer Problem

We first describe the solution process for the outer problem expressed as

Lm�1 {0 0}

wT
11

wT
12

( )
1 0

0 1

" #2
64

3
75

zm�1

zm

zmþ1

( )8><
>:

9>=
>; ¼ �

cm�1

cm

z

( )
8>><
>>:

9>>=
>>; (18:45)

Forward substitution is used to solve Lm�1zm�1 ¼ �cm�1 for zm�1, from which

zm

zmþ1

( )
¼ � cm

z

( )
� wT

11

wT
12

( )
zm�1 (18:46)
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18.2.6.3 Solution of the Inner Problem

The inner problem is now expressed as

Um�1 {w21 w22}

0T

0T

( )
km �fm

gm 1

" #2
64

3
75

Dnþ1gm�1

Dnþ1gm

Dnþ1z

( )8><
>:

9>=
>; ¼

zm�1

zm

zmþ1

( )8><
>:

9>=
>; (18:47)

Next

Dnþ1gm

Dnþ1z


 �
¼

1 fm
�gm km

� �
km þ fmgm

zm

zmþ1


 �
(18:48)

Finally backward substitution serves to solve for Dnþ1gm�1 using

Um�1Dnþ1gm�1 ¼ zm�1 � {w21 w22}

1 fm

�gm km

� �
km þ fmgm

zm

zmþ1


 �
(18:49)

EXAMPLE 18.7

Illustrate the orthogonalization and solution procedure using

KD ¼
1 �1 0

�1 2 �1

0 �1 1

2
664

3
775, f ¼

1

2

3

8>><
>>:

9>>=
>>;

K* ¼

1 �1 0 �1

�1 2 �1 �2

0 �1 1 �3

g1 g2 g3 g4

2
6666664

3
7777775
,

Dnc1

Dnc2

Dnc3

DnB

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ 10�3

4

3

2

1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

in which jg4j ¼ 1 and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22 þ g23

p
¼ 1.

SOLUTION

Elementary algebra serves to establish that det(K*)¼ 6(g1þg2þg3), independently of g4.
It remains to determine g1, g2, and g3. We first analytically determine the values of

g1, g2, and g3, which maximize the determinant subject to the magnitude restriction.
This is equivalent to maximizing the augmented function

P ¼ 6(g1 þ g2 þ g3)þ 9(g21 þ g22 þ g23 � 1)
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in which 9 is a Lagrange multiplier. Elementary manipulation furnishes both a max-
imum and a minimum:

@P

@L
¼ g21 þ g22 þ g23 � 1 ¼ 0

@P

@g1
¼ 6þ 29g1 ¼ 0

@P

@g2
¼ 6þ 29g2 ¼ 0

@P

@g3
¼ 6þ 29g3 ¼ 0

Clearly, the extrema satisfy the magnitude condition, and g1 ¼ g2 ¼ g3 ¼ �1=
ffiffiffi
3

p
. The

maximum value of the determinant is 6
ffiffiffi
3

p
, the minimum value is �6

ffiffiffi
3

p
, and the

stiffness is 6
ffiffiffi
3

p
.

To determine g1, g2, and g3 using the orthogonalization procedure, we set g4¼ 1 and

seek
g1
g2
g3

8<
:

9=
; to lie exterior to the subspace spanned occupied by the vectors a1 ¼

1
�1
0

8<
:

9=
;

and a2 ¼
0
�1
1

8<
:

9=
;. First,

a01 ¼
1ffiffiffi
2

p
1
�1
0

8<
:

9=
;

and a
00
2 ¼

0
�1
1

8<
:

9=
;� 1

2
{1 � 1 0}

0
�1
1

8<
:

9=
;

2
4

3
5 1

�1
0

8<
:

9=
; ¼ 1

2

�1
�1
2

8<
:

9=
;

Consequently,

a02 ¼
1ffiffiffi
6

p
�1
�1
2

8<
:

9=
;

Next, using f as a trial vector,

ĝ1

ĝ2

ĝ3

8><
>:

9>=
>; ¼

1

2

3

8><
>:

9>=
>;� 1

2
{1 �1 0}

1

2

3

8><
>:

9>=
>;

2
64

3
75

1

�1

0

8><
>:

9>=
>;� 1

6
{�1 �1 2}

1

2

3

8><
>:

9>=
>;

2
64

3
75

�1

�1

2

8><
>:

9>=
>;

¼ 2

1

1

1

8><
>:

9>=
>;
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and, setting the magnitude equal to unity, the desired vector is found as

gm ¼
g1

g2
g3

8><
>:

9>=
>;

¼ � 1ffiffiffi
3

p
1

1

1

8><
>:

9>=
>;

in agreement with the analytical maximum. Taking the positive sense, the augmented
stiffness matrix is now

K* ¼

1 � 1 0 � 1

� 1 2 � 1 � 2

0 � 1 1 � 3
1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p 1

2
666664

3
777775

To illustrate the solution procedure, a glance at Equation 18.43 reveals the identi fications

K(m�1)
D ¼ 1 �1

�1 2

" #
, Lm�1 ¼

1 0

�1 1

" #
, Um�1 ¼

1 �1

0 1

" #

km ¼ 0

�1

( )
, gm�1 ¼

1ffiffiffi
3

p 1

1

( )
, fm�1 ¼

1

2

( )

Elementary manipulation gives

U�1
m�1 ¼

1 1

0 1

� �
, L�1

m¼1 ¼
1 0

1 1

� �
,

kT
m

gTm�1

( )
U�1

m�1 ¼
0 �1

1=
ffiffiffi
3

p
2=

ffiffiffi
3

p
� �

L�1
m�1{km � fm�1} ¼ 0 �1

�1 �3

� �

and

G ¼ kT
m

gTm�1

( )
U�1

m�1L
�1
m�1{km � fm�1} ¼ 1 3

�2=
ffiffiffi
3

p �7=
ffiffiffi
3

p
� �

The block triangularization now results in

K* ¼

1 0

�1 1

� �
0 0

0 0

� �
0 �1
1ffiffi
3

p 2ffiffi
3

p

" #
1 0

0 1

� �
2
66664

3
77775

1 �1

0 1

� �
0 �1

�1 �3

� �

0 0

0 0

� � 0 �6ffiffiffi
3

p
1þ 8ffiffi

3
p

" #
2
66664

3
77775
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The outer and inner problems are expressed as

1 0

�1 1

� �
0 0

0 0

� �
0 �1
1ffiffi
3

p 2ffiffi
3

p

" #
1 0

0 1

� �
2
66664

3
77775

Dnz1
Dnz2

Dnz3
Dnz1

8>>><
>>>:

9>>>=
>>>;

¼ �10�3

4

3

2

1

8>>><
>>>:

9>>>=
>>>;

1 �1

0 1

� �
0 �1

�1 �3

� �

0 0

0 0

� � 0 �6ffiffiffi
3

p
1þ 7ffiffi

3
p

" #
2
66664

3
77775

Dng1

Dng2

Dng3

Dn§

8>>><
>>>:

9>>>=
>>>;

¼

Dnz1
Dnz2
Dnz3
Dnz1

8>>><
>>>:

9>>>=
>>>;

Upon applying forward substitution in the outer problem followed by backward
substitution in the inner problem, the solution is determined to be

Dnz1

Dnz2

Dnz3

Dnz4

8>>>><
>>>>:

9>>>>=
>>>>;

¼ 10�3

�4

�7

�9

�1þ 18
ffiffiffi
3

p

8>>>><
>>>>:

9>>>>=
>>>>;
,

Dng1

Dng2

Dng3

Dn§

8>>>><
>>>>:

9>>>>=
>>>>;

¼ 10�3

1
2 (1þ 5=

ffiffiffi
3

p
)

5 �1þ 1
2
ffiffi
3

p
� �
5

2
ffiffi
3

p �1þ ffiffiffi
3

p� �
3=2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

In the current example, it is evident that the stiffness matrix KD arising under load
control is singular. But the augmented matrix arising under stiff arc length control is
well behaved and a solution is readily attained by a procedure combining triangulariza-
tion, forward substitution, and backward substitution.

18.3 NON-ITERATIVE SOLUTION OF FINITE ELEMENT
EQUATIONS IN INCOMPRESSIBLE SOLIDS

18.3.1 INTRODUCTION

Finite element equations for incompressible and near-incompressible media give rise
to amatrix with a diagonal block of zeroes or very small numbers. Thematrices are not
amenable to conventional techniques involving pivoting on diagonal entries. Uzawa
methods (Arrow et al., 1959) have been applied to the associated linear systems. They
are iterative and converge when the matrix is nonsingular. In the current study an
alternate form of the matrix is used which is amenable to solution without iteration. It
likewise is applicable whenever the matrix is nonsingular. The solution process
consists of a block LU factorization, followed by Cholesky decomposition (triangu-
larization) of a positive definite diagonal block together with several forward and
backward substitution operations. Two illustrative examples are developed.

In compressible solids, the finite element stiffness matrix typically is positive
definite. The governing equation in finite element form can frequently be solved by
triangularization, consisting of Cholesky decomposition followed by forward and
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bac kward subst itution . However , suppos e the mat erial is incom pressible or near-
incom press ible. The stra ins are now subject to an internal c onstraint (are not
indepe ndent) , and serve to deter mine stresses only to within an indet erminate
press ure. The press ure field serves as a n unknown Lag range multip lier in an auxil-
iary finite elem ent equati on to satisfy the incompres sibili ty const raint.

The structure of the finite elem ent equations (equilibr ium plus constraint ) at fi rst
glance p oses a compu tational problem, since a block o f the stiffness mat rix is n ull.
Tr aditional triangula rization and solution met hods based o n pivoting are not direc tly
app licable to such a matrix. Much of the literat ure on this problem is based on the
Uzaw a meth od, which attains the solut ion throug h an iter ation scheme. (cf. In the
curren t inves tigatio n, a block triangula rization solut ion is formulat ed in whic h
the blocks are obtained by Cholesk y decom position , as well as forward and back-
war d substit utions. This schem e ob viates the ne ed for iterati on while using real
varia bles.)

18.3.2 F INITE ELEMENT E QUATION FOR AN INCOMPRESSIBLE MEDIUM

To set the probl em under study in a contex t, we consi der dynam ic respon se of a near-
incom press ible nonli near solid. The speci al cases of static response, incom press ible
medi a, and line ar b ehavior can be retrieved from this case. Appl ication of the
Increm ental Principle of Virtual W ork and intr oduction of suitable inte rpolation
model s (Chapte r 15) furnish the fi nite element relations

M D €g þ K( g) Dg � V Dp ¼ D f

V T Dg þ Dp

k
¼ 0

(18 :50 )

M mass mat rix, n 3 n and positive de finite
K increment al sti ffness matrix, n 3 n and p ositive de fi nite
V pressure –displ aceme nt matrix, n 3 p of rank p, p < n
D g incre ment al nodal d isplacem ent vector
D p incre mental nodal press ure vector
D f increment al consi stent nodal force vector

In particula r, as usual Dg is the diff erence betw een the n odal displacem ent vector s at
tw o load or time steps . We assum e that the mass and stiffnes s matrices are positive
de fi nite and n 3 n. The press ure –displacem ent matrix V is n 3 p a nd is restricted to
hav e rank p, p < n.

The first e quation is a reali zation of the balance of line ar mom entum, whi le the
second represe nts the a poste riori enforc ement of the near-i ncomp ressibilit y const raint.
If k!1, the incompressible case is recovered. IfM¼ 0, the static case is recovered.
Finally, to specialize to the linear case, the incremental symbol D may be removed.

We assume that Equation 18.50 is integrated using a one-step procedure based
on the trapezoidal rule (Newmark’s method). As before let h denote the time step
and let gn¼g(tn). At time tnþ1¼ (nþ 1)h Equation 18.50 becomes, following
Zienkiewicz and Taylor (1989),
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A
Dnþ1g

Dnþ1p

( )
¼ Dnþ1g

0

( )
, A ¼ Mþ h2

4 K(gn) � h2

2 V

� h2

2 V
T � h2

2
Ip
k

" #
(18:51)

in which
Ip is the p3 p identity matrix

Dnþ1g ¼ h2

4
(Dnþ1f þ Dn f �KDng)þM(Dngþ hDnq),Dnq ¼ Dn _g

Dnþ1g ¼ gnþ1 � gn:

Note that A is symmetric, with the advantage of saving computer storage.
A comment is in order on the restriction that the n3 p matrixV have rank p. We

consider whether the matrix K �V
�VT 0

� �
is singular, if K is n3 n and positive definite

while V is n3 p but of rank p� 1 (or less). The matrix is singular if, and only if,
I �K�1=2V

�VTK�1=2 0

� �
is singular. But this new matrix is singular if, and only if, there

exists a nontrivial vector whose product with this matrix vanishes. This is simply the
condition that there exist a nonzero p3 1 vector x for which VTK�1Vx¼ 0. Such a

vector exists since VTK�1V at most has rank p� 1. It follows that K �V
�VT 0

� �
is

singular if V has rank less than p.

Next consider the matrix K �V
�VT �Ip=k

� �
in which the bulk modulus is a very large

positive number (for near-incompressibility). Again V has rank p� 1. The matrix
cannot be singular since only the zero vector satisfies

�
VTK�1Vþ Ip=k

�
x ¼ 0. The

smallest eigenvalue of this latter matrix is 1=k, which is a very small number. But the
condition number of this matrix is kmax

j¼1,p
[lj
�
VK�1VT�]þ 1, and will typically be a

very large number for near-incompressible materials. Consequently, if V has rank
p� 1 (or less), the matrix is expected to be ill-conditioned and convergence will be
very difficult to achieve.
18.3.3 UZAWA’S METHOD

To explain Uzawa’s method we follow the development in Zienkiewicz and Taylor
(1989) for the case in which

C
g
p


 �
¼ f

0


 �
, C ¼ K �V

�VT 0

� �
(18:52)

There is an extensive and continuing literature on the Uzawa method (Hu and Zou,
2001).

The term p
r is subtracted from both sides to furnish

K �V

�VT � Ip
r

� �
g

p


 �
¼ f

�p
r


 �
(18:53)
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The Uzawa method is realized as the iteration scheme

B
g

p


 �jþ1

¼
f

�pj

r

8<
:

9=
;, B ¼

K �V

�VT � Ip
r

2
4

3
5 (18:54)

in which r> 0 is an acceleration parameter. Successive iterates of p satisfy

Ip þ rVTK�1V
� �

p jþ1 ¼ p j � rVTK�1f (18:55)

in which the superscript is a counter for the iterate.
This sequence converges if the maximum eigenvalue of [Ip þ rVTK�1V]�1 is

less than unity. But note that VTK�1V is positive definite and of rank p. Hence the
eigenvalues of

�
Ip þ rVTK�1V

�
all exceed unity. It follows that the eigenvalues of�

Ip þ rVTK�1V
��1

are less than unity, implying convergence. This scheme repre-
sents ‘‘fixed point iteration,’’ for which the convergence rate is linear.

We note that B can be triangularized using complex variables as follows:

B ¼
L 0

�VTL�T iIp

" #
LT �L�1V

0 i Ip
r þWTW
h i

2
4

3
5 (18:56)

LLT ¼ K, i ¼
ffiffiffiffiffiffiffi
�1

p
,

and W is obtained by solving the linear system LW¼V using forward substitution.
The triangularization is only performed once in linear problems. Forward and

backward substitution then are repeated at each iteration to attain the solution. In
particular, the decomposition is used

L 0

�VTL�T iIp

" #
z
jþ1
1

z jþ1
2

( )
¼

f

�p j

r

( )
,

LT �L�1V

0 i Ip
r þWTW
h i" #

g jþ1

p jþ1

( )
¼ z

jþ1
1

z jþ1
2

( )

(18:57a)

followed by readily performed operations on block submatrices:

Lz jþ1
1 ¼ f forward substitution (18:57b)

z jþ1
2 ¼ i

p j

r
� iVTL�Tz jþ1

1 backward substitution (18:57c)

i Ip
r
þWTW

h i
p jþ1 ¼ z jþ1

2 p� p triangularization (18:57d)

LTg jþ1 ¼ z
jþ1
1 þ L�1Vp jþ1 backward substitution (18:57e)

Note that Ip
r þWTW
h i

in Equation 18.57d is positive definite, so that Cholesky

decomposition using real mathematics applicable.
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We n ote that it is also probl ematic for the Uzawa method if the rank of V
equals p � 1 (or less). Recall from Equati on 18.54 the converg ence criterion that
the eigenv alues of ½ Ip þ rV T K� 1V 
�1 must be less than unit y. Howe ver, if rank
V ¼ p � 1, V TK � 1V is singu lar (rank less than p) and ½Ip þ rV TK � 1V 
� 1 has an
eigenv alue equal to unity. Consequen tly, converg ence will not occur. (T he existence
of a dif ficult y is not surpr ising since the mat rix in Equation 18.52 is singu lar if
rank ( V ) < p.)
18.3.4 MODIFICATION TO AVOID ITERATION

A sim ple modi ficati on to the Uzaw a method is introduced which furnishes solut ion
without iteration whi le using real mathemat ics. Returni ng to the increment al finite
element formulat ion, Equ ation 18.50 may be rewrit ten in the equiva lent form

C
Dnþ1g

Dnþ1p

( )
¼ Dnþ1g

0

( )
, C ¼

Mþ h2

4 K(gn) � h2

2 V

h2

2 V
T h2

2
Ip
k

" #
(18:58)

Note that the sign of the lower row in the matrix has been changed. This forfeits the
symmetry of the matrix (which has no real significance for computer storage), but
will prove to permit a non-iterative solution based on triangularization of positive
definite submatrices (and real number operations).

Observe that block triangular factorization in Equation 18.58 furnishes

Mþ h2

4 K(gn) � h2

2 V

h2

2 V
T h2

2
Ip
k

" #
¼
"

Ls 0
h2

2 V
TL�T

s Ip

#
LT
s �L�1

s
h2

2 V

0T h4

4 W
TWþ h2

2
Ip
k

" #

LsL
T
s ¼ Mþ h2

4 K(gn)

(18:59)

The solution is attained by the following decomposition and readily performed
operations of block submatrices.

Ls 0
h2

2 V
TL�T

s Ip

� �
Dnþ1z1

Dnþ1z2


 �
¼ Dnþ1g

0


 �

LT
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s
h2

2 V

0T h4

4 W
TWþ h2

2
Ip
k

" #
Dnþ1g

Dnþ1p


 �
¼ Dnþ1z1

Dnþ1z2


 � (18:60)

LsDnþ1z1 ¼ Dnþ1g forward substitution

w ¼ LT
s Dnþ1z1 backward substitution

Dnþ1z2 ¼ � h2

2
VTw

LsW ¼ V forward substitution
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h4

4 
W T W þ h2

2 
Ip =k

h i
Dn þ 1 p ¼ Dn þ 1 z 2 triang ularizat ion

L Ts Dn þ 1 g ¼ Dn þ 1 z 1 þ h 2

2 
W D nþ 1 p backwar d subst itution

Thi s solution procedu re is enable d by the fact that
�
h4

4 W T W þ I p =k
� 
is positive

de fi nite and hence can be triangula rized .
It is worth notin g that a non-i terative solution can be achiev ed using the

symm etric form in the Uzawa method (Equation 18.54), follow ing the procedu re
presen ted in Equ ation 18.57 involving complex numbe rs.
EXAMPLE 18.8

Demonstrate that the method works in the following example.
Consider a single element model for an incompressible isotropic elastic rod, shown

in Figure 18.2. The rod is of length L with a square Y by Y cross section, and A ¼ Y2 .
Shear modulus is m. Interpolation models are assumed in the form

u( x) ¼ xu( L) =L, v(y ) ¼ w (y) ¼ yv( Y ) =Y , p ¼ p0 (constant)

Omitting the details, the Principle of Virtual Work together with the variational form
of the incompressibility constraint may be readily shown to furnish

2m A
L 0 � A

0 4m AL
Y 2 � 2A L

Y

A 2 AL
Y 0

2
664

3
775

u( L)

v( Y )

p0

8><
>:

9>=
>; ¼

f

0

0

8><
>:

9>=
>;

This equation was encountered and solved in Chapter 11. Simple manipulation
following the foregoing procedures furnishes f ¼ 3m A

L . This is the exact answer for
incompressible isotropic linear elasticity, since the Young’s modulus E in this case
satisfies m ¼ E

2(1þn), and the Poisson’s ratio n equals 1=2.
L

m

y

f
x Y

Y

FIGURE 18.2 Rod of incompressible elastic material.
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